

SEPTEMEER 1970
HIT
MUMTDISTAU
MOISTURE SENEOR FOR
AIR CONDIRIONINE
EVSTEMS

YLSO INSIDE:

ADCDLA Soldering Instruments add to your efficiency

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits

(illustrated) available
COPPER

- $38 \quad \frac{1}{}{ }^{\prime \prime}$ - 3.2 mm chisel face	
S 14 彦" -2.4 mm	Chisel face
$B 24$ ㄴ․ - 4.75 mm SCREWDRIVEA	
B12 $\mathrm{i}^{\prime \prime}{ }^{\prime \prime}-4.75 \mathrm{~mm}$	eyelet mit
B $588^{-\frac{1}{4}}$ - 6.34 mm	chisel face
LONG LIFE	
7	
B 42 LL $\frac{3}{16}^{*}-4.76 \mathrm{~mm}$	CHISEL face
$\square \bigcirc$	
\longrightarrow	
B14 LL $\frac{3}{32}{ }^{*}$ - 2.4 mm CHISEL FACE	
\square	
S 44 LL $\frac{3}{16}{ }^{\circ}-4.75 \mathrm{~mm}$	SCREWDRIVER face

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and catalogue

EX RENTAL TV's

17" 2YEAR8'GUARANTEE 19"

RECORD PLAYER CABINET \mid TWO-YEAR GUARANTEED REGUNNED TUBES

 2 in.-109/6: $100^{\circ} 17 i n ., 19 i n .421 i n$. Exchanged Bowls. Carr. 10/6.
Cloth covered. Size $16 \frac{1}{2}^{-} \times 14 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{2}$ Takes any modern autochanger.

SPEAKERS GALORE, BRAND NEW $10 /=$ P. \& P. $1 / *, 2 \frac{1}{2}{ }^{*} \Omega, 3 \frac{1}{3}{ }^{*}$ $25 \Omega, 4^{*} 10 \Omega, 3^{*} \times 5^{*} 8 \Omega, 7^{*} \times 4^{*}$ and $8^{\prime \prime} \times 3^{*} 3 \Omega$.
TRANSISTOR CASES, 4 FOR CI. Cloth covered, many colours. Size $9 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \cdot 6 \frac{1_{2}^{N}}{}+3 \frac{t^{\prime \prime}}{}{ }^{\prime \prime}$. P. \& P. 9/6. Similar cases in plastic.
RECORD PLAYER \& TAPE MOTORS IO/ ERANDNEW P. \& P. 3/6.
TRANSISTORS $2 / 6$ EACH. OC44, OC45, OC7I, OCEI, OCEID, AFII4, AFI17. AC128.

DUKE \& CO. (LONDON) LTD.
$621 / 3$ Romford Road, Manor Park, E. 12
Phone 01-4786001-2-3
Stamp for Free List

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chatif Boarda, Chemicale, Etching Menual, Infra-Red Phototranglator, Latching Relay, 2 Tranautors, Condensers, Reaiators, Gain Control, gteady-Llght Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) whlch can be

photoelectric kit 39/6
Pontage and Pack. 2/6 (UK) Commonwealth: SURFACE MAIL 3/6 AIR MAIL 41.0 .0 Autralle, New Zealand 4. Africa, Canade and U.E.A. Also Eseential Data Cireuits and Plans for Butlding 10 Advanced Designs

INYISIBLE BEAM OPTICAL KIT
Everytbing needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Recelver (at mustrated). Suitable for all Photoelectric Burglar Alarma,
CONTENT8: 2 lentes, 2 mirrors, 245 -degree wooden blocks, Inira-red Bliter, projector lamp holder, building plans, pertormance data, etc. Price'19/6. Poatage and Pack.
$1 / 6$ (U.K.). Commonwealth: Surface Mail $2 /$; A Ar Mail $8 /$.

LONG RANGE INVISIBLE BEAM OPTICAL KIT

CONTENTS: As above. Twice the range of standard kit. Larger Lenses, Filter, etc. Price 80/6. Postage avd Pack. 1/6 (U.K.). Commonmealth: Surface Eail 2/6. Air Mall $10 /$.

JUNIOR PHOTOELECTRIC KIT

Verantile Inviaible-beam, Relay-leas, Steady-light Photo-8witch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Inlra-Red Bensitive Phototransistor, 3 Transiators, Chanais, Plantic Case, Realitors, Screwa, etc. Full slze Plans, Instructions, Data Sheet ' 10 Advanced Photoelfetric Denign
Price
JUMIOR OPTICAL KIT
CONTENTS: 2 Lentes, Intra-red Filter, Lampholder, Bracket, Plant, etc. Rvery: thing (ezcept plywood) to build 1 minature invialble boam projector and photocell recelver for use with Junior Photoelectric Kit.
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail4/-
YORK ELECTRICS
335 BATTERSEA PARK ROAD, LONDON, S.W.II
Send a S.A.E. for full detauts, a brief'description and Photographs of all Kits and all D2 Radio, Electronir and Photoelectric Projects Assembled,

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The mostimportant are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Total harmonic distortion Less than 1% at full output. Load impedance $110 \mathrm{~dB}(100,000,000,000$ times) total. Power gain $110 \mathrm{~dB}(100,000,000,000$ times) total. Supply voltage Size
Sensitivity
Input impedance
$1 \times 0.4 \times 0.2$ inches 5 mV .
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

Project 60 laboratory standard modular high fidelity

Sinclair Project 60 comprises a range of modules which connect together simply to form a compact stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.

The modules are: 1 . The $Z .30$ and $Z .50$ high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The Active Filter Unit with both high and low audio frequency cut - offs. 4. The PZ. 5 and PZ. 6 power supplies. A complete system could comprise, for example, two Z.30's one Stereo-60, and a PZ.5. The PZ. 6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between PZ.5 or PZ. 6 unless loudspeakers of very low efficiency are being used, in which case the PZ. 6 will be required. For assemblies using two
Z.50's there is the new $P Z .8$ supply unit to ensure maximum performance from these amplifiers.
All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled in the wood of the plinths to mount the control unit and A.F.U. Any slight slip here will be covered by the aluminium front panels of the Steren 60. The Project 60 manual gives all the buildings and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe. Project 60 prices are remarkably low.

$\mathbf{Z . 3 0}$

The Z. 30 together with the higher powered $Z .50$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the $\mathbf{Z . 3 0}$ or Z.50 power amplifiers in your Project 60 system will depend on personal preference, but they are both the same physical size and may be used with other units in the Project 60 range equally well. The $Z .30$ is unique in that it may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the Z. 30 use PZ. 5 power supply unit for most domestic requirements, or PZ. 6 if you have very low efficiency loudspeakers. For Z.50, use the PZ.5, PZ. 6 or the PZ. 8 described below.

Power Outputs

Z.30 15 watts R.M.S. into 8 ohms, using $35 \mathrm{~V} / 20$ watts R.M.S. continuous into 3 ohms using 30 volts.
2.50 40 watts R.M.S. into 3 ohms: 30 watts R.M.S. into 8 ohms, continuous, using 50 V .
Frequency response 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion 0.02° o into 8 ohms
Signal to noise ratio better than 70 dB unweighted
Input sensitivity 250 mV into 100 Kohms
For speakers from 3 to 15 ohms impedance
Size $3 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{t^{\prime \prime}}{} \times \frac{1}{\frac{1}{2}}$

STEREO 60 Preamm/Control unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great atte:ition has been paid to achieving a really high signal-to-noise rajo and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very-carefully designed and tested.

ACTIVE FILTER UNIT $\begin{aligned} & \text { High Pass and } \\ & \text { Low Pass }\end{aligned}$

For use between Stereo 60 unit and two Z.30s or Z.50s, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 d B / o c t a v e$), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible by reason of the careful design and generous negative feedback employed.
Two stages of filtering are incorporated-rumble (high pass) and scratch (low pass).
Supply voltage- 15 to 35 V . Current- 3 mA H.F cut-of (-3 dB) variable from 28 kHz to 5 kHz L. F cut-off (-3 dB) variable from 25 Hz to 100 Hz Filterslope, both sections 12 dB per octave

Built, tested and guaranteed Distortion at 1 kHz (35 V supply) $0.02^{\circ} \cap$ at rate output

SINCLAIR POWER UNITS

$\begin{array}{ll}\text { PZ-5 } \begin{array}{ll}\text { 30 roits } \\ \text { unstabilised }\end{array} & £ 4.19 .6 \\ \text { PZ-6 } \\ \text { stabilis } \\ \text { stad }\end{array} \quad £ 7.19 .6$
PZ-8 45 volts stabilised (less mains transformer) for use with $Z .50 \quad, £ 5.19 .6$

APPLICATIONS

Hi-fi amplifier; car radio amplifier; record player amplifier fed directly from pick-up; intercom; electronic music and instruments; P.A.; laboratory work, etc. Full details for these and many other applications are given in the manual supplied with the Z.30.
The $\mathbf{Z . 5 0}$ is completely interchangeable with the $\mathbf{Z . 3 0}$ and can be used in all Z.30 applications.

STEREO 60 SPECIFICATIONS

- Input sensitivities-Radio-up to Tone controls-TREBLE +15 to $3 m V$ Mas. P.U. $-3 m V$: correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} ; 20$ to $25,000 \mathrm{~Hz}$ R.I.A.A. curve $\pm 1 d \mathrm{~B} ; 20$ to $25,000 \mathrm{~Hz}$ Ceramic
up to 3 mV . -250 mV .
- Signal-to-noise ratio-better than 70dB.
- Channel matching-within IdB.
-15 dB at $10 \mathrm{KHz:} \mathrm{BASS}+15$ to一15dB ae 100 Hz .
- Power consumption 5 mA .
- Front panel-brushed aluminium with black knobs and controls.

BUILDING A PROJECT 60 ASSEMBLY

The illustration here shows quite clearly how easily Project 60 can be contained in one of today's slim, modern plinths. Very little space is required to house these Sinclair units, and within the space of the motor plinth, you can install a stereo amplifier of the very highest quality, If, for example you have already put together an assembly as illustrated here, adding the Active Filter Unit would be very easy.

Mains tronsformer for PZ-8

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any cost to you whatsoever provided that it is returned to us within 2 years of purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mai charged at cost.

	plastic MpN silicon transis. Natind -,00 picar		
	PLANAR TRANS. Henh qualike ition 	TRANSISTOR EQVT. BOOK	
	,		

YATES ELECTRONICS

RESISTORS
High stability carbon film. Very low noise. 0.5 watt $5 \% 4.7 \Omega$ to $2.2 \mathrm{M} \Omega$ E2 2.5 d each. 0.5 watt $10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega \mathrm{EI} 22 \mathrm{~d}$ each. DEVELOPMENT PACK
0.5 watt 5% resistors 5 off each value 4.7Ω to IMO

MUS resistors E12 series 50/-. 650 resistors E24 series 100/
$400 \mathrm{~V}: ~ 0.001 \mu \mathrm{~F}, ~ 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}$. $6 \mathrm{~d} .0 .0068 \mu \mathrm{~F}$, $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .047 \mathrm{~F}, 9 \mathrm{~d} .0 .068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$ $160 \mathrm{~V}:{ }^{\circ} 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .1 \mu \mathrm{~F}, 9 \mathrm{~d}$ $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 .33 \mu \mathrm{~F}, 1 / 3$. $0.47 \mu \mathrm{~F}, 1 / 6$. $0.68 \mu \mathrm{~F}, 2 / 3 \mathrm{~F} .1 .0 \mu \mathrm{~F}, 2 / 6$. 250V: P.C. mounting miniature $\pm 20 \%: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$, 7 d $0.033 \mu F, 0.047 \mu F, 0.068 \mu F, 8 d .10 .1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}, 1 / 4$
MYLAR FILM CAPACITORS MYLAR FILM CAPAC 00.005
CAPACIT Selection of ceramic and polyester capacitors 100 pF to $1.0 \mu \mathrm{~F}$. Total 100 capacitors E2.18.0.

$50 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$40 \mu \mathrm{~F}$	16 V	$16 \mu \mathrm{~F}$	40 V
$100 \mu \mathrm{~F}$	6 V	$64 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	12 V	$6.4 \mu \mathrm{~F}$	25 V	$50 \mu \mathrm{~F}$	40 V
$200 \mu \mathrm{~F}$	6 V	$125 \mu \mathrm{~F}$	$10 V$	$50 \mu \mathrm{~F}$	12 V	$25 \mu \mathrm{~F}$	25 V	$2.5 \mu \mathrm{~F}$	64 V
$320 \mu \mathrm{~F}$	6 V	$200 \mu \mathrm{~F}$	$10 V$	$100 \mu \mathrm{~F}$	$12 V$	$B_{j} \mathrm{~F}$	40 V	$10 \mu \mathrm{~F}$	64 V

$250 \mu \mathrm{~F} 12 \mathrm{~V}, 100 \mu \mathrm{~F} 40 \mathrm{~V} 1 / 6 . \quad 1000 \mu \mathrm{~F} 25 \mathrm{~V} 6 /-. \quad 2500 \mu \mathrm{~F} 25 \mathrm{~V} 9 /-. \quad 500 \mu \mathrm{~F} \quad 50 \mathrm{~V}$ 5/-. $1000 / \mathrm{LF} 50 \mathrm{~V} 81$
CERAMIC DISC CAPACITORS
CERAMIC DISC CAPACITORS $100 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 330 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}, 1000 \mathrm{pF}, 2000 \mathrm{pF}$, 100 pF , $150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}$,
5000 pF , $10,000 \mathrm{pF}, 5 \mathrm{~d}$ each.
GANGED STEREO POTENTIOMETERS
IM -l.IM $\frac{1}{2}$ watr carbon track $5 \mathrm{k} \Omega+5 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega+\mathrm{M} \Omega$ log or linear 1M -l. 1M
SKELETON PRE-SET POTENTIOMETERS
Linear: $100,250,500$ ohms and decades to $5 \mathrm{Mohm}=20 \% \leqslant 250 \mathrm{k} \Omega,=30 \%$, - $250 \mathrm{k} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).

Miniature 0.3 watt $1 /$ - each.
Sub-miniature 0.1 watt lod each.
SILICON RECTIFIERS
BY236 800V 0.8 amp $3 /$-each. IN 40071000 V I amp 43 each,
VEROBOARD

ERO		0.1 Matrix		0.15 Matrix	0.1 Matrix
$2 \frac{1}{2} \times 3 \frac{1}{4}$	3/3	$3 / 6$	Pin insertion rool	$9 / 6$	$9 / 6$
$2 \frac{1}{2} \times 5$	3/9	4/3	Pkt. 36 pins	3/3	3/3
$3{ }^{3} \times 3$ \%	3/9	$3 / 9$	Spot face cutter	7/3	7/3
31×5	5/3	5/3			
17×3	14/6				

YATES ELECTRONICS (FLITWICK) LTD. ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD

LEARN HOW COMPUTERS WORK WITH COMPUKIT

 ONLY 7 GNS. (p. \& p. 5/-) from LIMROSE ELECTRONICS (PE), Lymm, Cheshire

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $82 / 6$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. P.E.30)
54 Dundonald Road, London, S.W. 19

ELEGANT BUDGET PRICED BOOKSHELF SPEAKER SYSTEMS

The AS- 57 is a real space saver. This fine bookshelf high lidelity sueaker system will provide good quality sonind for use where space is at renarkably low cost. Designed is ineal for the small apartspecial high effleiency 5 tull range speaker has a frequency range of $70-18,000$ Hz with a peak handling capacity of 10 watts, Imp. 8
ohms. Finish: oiled walmut. ohms. Finish: oiled
Size: 5 : $\times 1515$ Bfin

Laskr's
 PRICE
 f15 p

DIGITAL CLOCK

 SCOOP:- MADE ESPECIALLY FOR LASKY'S BY FAMOUS MAKER
- MAINS OPERATION - 12-HOUR ALARM - AUTO "SLEEP"' SWITCH - HOURS, MINUTES AND SECONDS READ-OFF
- FORWARD AND BACKWARD TIME ADJUSTMENT
- SILENT OPERATION SYNCHRONOUS MOTOR Thle unique DIGITAL CLOCK is now available EXCLUSIVELY FROM LASXY'g it chassie form for you to mount in any housing that you choose.
All settings are achieved by two dual-concentric controls at the front including ON-OFF-AUTO and AUTO ALARM, "sleep" switch, 10 minute division "clich" get alarm fup to fity quality map the
any pre-bettime up to 60 min , and in coniunction with the AUTO getting witl etc. at on the appliance again next morning The clock measures $4!\mathrm{W} \times 1!\times 3 \mathrm{AD}$ (overall (rom front of drum to back of switch), SPEC: $210 / 240 \mathrm{~V}$ AC 50 Hz operation; switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$. Complete with instructions, complete with full set of knobs. HUNDREDS OF APPLICATIONS FOR THE
ELECTRONICs HOBBYIRT macroontis tobiysi

LASKY'S PRICE ©6.I9.6 post 36.

SPECIAL QUOTATIONS FOR QUANTITIES

N. NP. 25 Mk II

$\left\{G A O C^{\prime} K\right.$ THE U.K.'s MOST POPULAR HI
TURNTARIE 4 -speed single record playing deek features include: heavy proclaionbuilt turntable, pick-up arm bias compensation, calibrateri styllasiorce adjustment, cueing tevice, rises, returas to rest and switches fif motor. Finish: dark green

LASKY'S PRICE £11.19.6

\$P 25 Mk. II with A.D. 76 K stereo Magnetic Cartridge 118100 OTHER GARRARD UNITS FROM STOCK
AUTOCHANGFRS
SL72B 3000 complete with STAHC Btereo SL75B $\ldots2880$ cartridge 89186

GINGLE PLAYERS

AP Th, 18.10 .0 . APT5 with ADTiK watg cirl 220.0.0.

BASES AND COVERS FOR GARRARD UNITS
Type WBI and WB6 for models 2025TC, 3000, SL 85 B 10%. 4 P25 Mk II Price WB 28.16.6. WB5 25.12.6. Type WB4 for models sL72B, SL;3B, sL95B Price 25.12.6. Perspex covers: SPC1 for WB1. \&3.14.1. APC4 for WB4 ari Why (allows unit to be played with the cover in place)-price $\mathbf{2 4 . 8 . 0}$.

PACKAGE DEALS

AP75 complete with AD76K Stereo magnetic dSO.O.0 post 10 SP"25 Mk 11 complete with ADI6K cartridge, teak $E 19.0 .0$
plinth and perspex cover
plinth and perspex cover 61.9 .6 Post $7 / 6$ Post on Garrart units: 6/- extra-evcept AP15, NLA5B. whash and 401 i/b extra
SPECIAL OFFER-BSR UA-15
4 speed autochangers with modifed tubuiar tove arm. Comp. with stereo cart. 26.18.6. Post B

Audio Tronics 70

The 1970 elition of Jask y 's fanous Audio-T onics catalcgue it available FREE on request. The 28 tabloid pages namy in full colour are packel with 1000 's of itenus fron the largest stocks in Great Britain of everything for the Fidio and $\mathrm{Hj}-\mathrm{Fi}$ enthusiast Electronics Hohbyist, Bervicemen and Commilnications H am. Over half the pages are devoted exclusively to every aspect of Hi-Fillneluding Lawy's budget Stereo \$ystemp ath Package Deala). Tape recording and Andio accessimiea phas lasky's anazing
mouey saving vouchers worth over $£ 5.5$. money saving vouchers worth over $£ 25$.
SEND TODAY. Send: Your name, address and $\because / /$ for the post and incluation of your name on our regtilar mailing lizt.
THIS MONTH'S VOUCHERS WORTH 50/-

[^0]21d High Street, Acton, London, W. 3 Also at 323 Edgware Road, London, W. 2 ALL ORDERS BY POST TO OUR ACTON BRANCH Terms C.W.O. All enquiries S.A.E.

This superb stereo system is a sea! price breakthrough. It comprises the VISCOUNT F.E.T. Mk. 1 amplifier on which full details are given below, the famous Garrard SP2S Mk. II fincluding teak veneer base and transparent cover) with diamond cartridge or 2025 TC and the very successful OUO aype 2 speakers.
Measuring $17 \frac{1}{2}$ in $\times 10 \frac{2}{2 n} \times 6 \frac{1}{4} \mathrm{in}$, the Duo cype 2 speakers are beautifully finished in reak veneer with matching vynair grills. They incorporate a $10 \frac{1}{2}$ in $\times 6 \frac{1}{\frac{1}{2}}$ in drive unir and high frequency speaker, both of which are of 3 ohms. impedance. The Duo speaker system is also available separately at
$\mathbf{\$ 6 . 6 . 0}$ each plus IS $/ \cdot$ P. \& P.
Complete stereo system $\mathbf{2 4}$) plus $\mathbf{2} 2.10 .0$ P. \& P.

The Classic

Teak finised case £9.10 .Plus P. \& P. 7/6 SPECIFICATION Sensitivities for 10 watr output at 1 KHz into 3 ohms. Tape Head: 3 mV (at 3 z P.s.) Mag. P.U.: 2 mV . Çer.P.U. ; B0mV Tuner: 100 mV . Tone Control Ronge: Boss: 13 dB at 60 Hz , Treble: +14 dB at 15 KHz . Total Dis. tortion: (for 10 watt output) $<1.5 \%$. Signal Noise: $<-60 \mathrm{~dB}$. A.C. Mains

THE RELIANT Mk. II solid state
GENERAL PURPOSE AMPLIFIER

£7.5.0 Pius P. \& P. 7/6

In teak finished case
SPECIFICATION: Output: 10 Inputs: (1) for mike (10 mv). Input (2) for gram. radio (250 mV) individual bass and treble control.

ELEGANT SEVEN Mk. III (350mW Output)
7-transistor fully tunable M.W,-L, W. Superhet portable. Set of parts. Complete with all components, -back printed for foolproot conscruction MAlNS POWER PACK KIT: $9 / 6$ extra.
\$5.5.0 Plus P, \& P, 7/6. Circuit 2/6. Free with parts
THE DORSET (600 mW Output) 7-transistor fully tunable M.W.-L.W. Superhet portable with baby alarm facility. Set of parts. The this simple to build. Sizes: $12 \times 8 \times 3$ in.
MAINS POWER PACK KIT: 9/6 extra
65.5.0 plus P. \& P. 7/6. Circuit 2/6. Free with parts.

The Viscount F.E.T. Mk. I $£ 14.5 .0$ plus 7/6 P. \& P. High fidelity transistorstereo amplifier employing field effect transistors. With this feature and accompanying guaranteed specifications below, the Viscount
F.E.T. vastly surpasses amplifiers costing far more.

SPECIFICATION

Output per channel- 10 W rms.
Frequency bandwidth 20 Hz to 20 kHz Frequency bandw
\pm IdB (niw.
Total dissortion (a) 1 kHz a $9 \mathrm{~W} 0.5 \%$. Input sensitivities-CER. P.U. 100 mV into 3 Mg : Tuner 100 mV into 100 KR ; Tape 100 mV into $100 \mathrm{k} \Omega$.
Overload; Factor-Berer than 26 dB Overload Factor-Better than 26 dB . Signal to noise ratio- 70 dB on all Mk. II (MAG. P.U.) \&IS.15.0 Specification same as Mk. I, but with the following inputs: Mag. PU. CER. P.U. Tuner.

50 WATT AMPLIFIER

Price $\mathbf{E 2 8 . 1 0 . 0}$ Plus 20/, P\& \& P.

Controls-6 position selector switch (3 pos. stereo and 3 pos. mono), separate vol. controls for left and isht channets. 60 Hz : Treble (with DPS on/off) +12 dB is 10 kHz (wh D.P.S.
one Tape recording output sockets on each channel. 6 in 2 in in teak. Size $12 \frac{t}{t i n} \times$
finished case. Built and tested. Post \& packing $10 /$ extra.
Spec. on Mag, P.U. 3 mV I kHz inpur impedance 47 kR . Fully equalised to within \pm IdB RIAA. Signal to noise ratio-65dB (vol. max.). An extremely reliable general purpose et space or. Its rugged construmakes t by far the best value for money. TECHNICAL SPECIFICATIONS 3 electronically mixed channels, with 2 npurs perchannel, enables the use of eparate instrumencs at the same time are located directly above the corres. ponding input sockets. Sensitivitien and Input Impedances. Channels I and 24 mV at 470 K . These 2 channels (4 inpurs) are suitable for microphone or guitars. Channels 3 and 4300 mV instrumenes (aram tuner, organ ete) at Input sensitivity relarive to high output instrumenzs (Bram, tuner, organ, etc.). Input sensitivity relative to loW output.
 $15 \mathrm{KHz} / \mathrm{s}$. With bass and treble controls central - 3 dB poines are $30 \mathrm{~Hz} / \mathrm{s}$ and 20 $\mathrm{KHz} / \mathrm{s}$. Power output. For speech and music 50 watts rms. 100 watts peak. For sustained music 45 watts rms. 90 watts peak. For sinc wave 38.5 watts rms. Nearly 80 watts peak. Total distortion at rated output $3 \cdot \mathbf{2} \%$ at $\mathrm{IKHz} / \mathrm{s}$. Total distortion at 20 watts 0.15% at $1 \mathrm{KHz} / \mathrm{s}$. Negative feed back 20 dB at $1 \mathrm{KHz} / \mathrm{s}$. Signal te noise ratio 60dB. Mains voltages. Adjustable from 200-250V A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of unit. Output imped-
ance 3,8 and 15 ohms.

Originally sold complete for $£ 15.4 .6$

SET OF PARTS

 plus 7/6 P. \& P.

Circuit diagram $2 / 6$, free with parts
Speaker, baffle and fixing kit 25/- extra plus 4/- P. \& P.
Postage free when ordered with parts
RADIO \& TV COMPONENTS (ACTON) LTD.
Post orders to:-2Id High Street, Acton, London, W. 3
Also at 323 Edgware Road, London, W. 2

Goods not despatched outside U.K.
Terms C.W.O.
All Enquiries S.A.E.
 The'New Picture-Book'way of learning 3AS C ELECTRICITY (5vols.)
You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by "an accurate, cartoon- over these subjects.
type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and

WHAT READERS SAY

'. . . careflully written
I am very satisfied with these carefully written and well expressed manuals..A.W., Shanklin.

[^1]CAY BOOX CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATKN TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of 20 - each BASIC ELECTRONICS $90 /$ - Cash Price or Down Payment of $20 /$ - followed by 4 fortnightly payments of $20 /-$ Price or Down Payment of 20/- followed each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed an free trial) BASIC ELECTRICITY

BASIC ELECTRONICS \square
Prices include Postage and Packing.
Signature
(If under 18 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

FOR ONLY

PREMIER STELREO SCSTEM "ONE" Consists of an all transistor stereo amplifier. Garrard $2025 \mathrm{~T} / \mathrm{C}$ anto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The so transistor anplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls; Bass, Treble, Volume, Balance, Selector. Power on/off, stereo/mono switcilı. Brushed aluminium front panel. Black metal rase with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{n}$. high (Amplifier available separately if required £14.19.6. Carr. 7/6).

PREMIER STEREO SYSTEM "TWO"
As system "ONF:" : bhove but with G:arraral Spos.

PREMIER
PRICE 45 GIS. CnIr

"VERITONE" RECORDING TAPE spechaly manupactured in d.s.a. from extra strone
 TEYsLLISED to engure the most permanent base. Highly regiel ant to treak age, moisture, heat, cold or humididy. High polished gplice free finish. Sthooth

 TAPE sPOOLS $8^{*} 1 /-, 5^{\circ}, 57^{\prime}, 7^{\prime} 1 / 8 . \quad$ TT7 $7^{*} 3600^{\prime}$ POLYESTER $50 /-$

CASSETTE HEAQ CLEANER

Remover unwanted deposita from delicate tape heads. Fits all cassette recorders. | | / 6 P. \& P. 1 All cassettes con be supplied with library cases at 6 d extra each.

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerials now fitted with thting bracket and 4 element grid reflectors
Luft Mounting Arrays. 7 element, $40-7$ 11 element, 4 Ti6; 14 element, Jö-; 18 element, 62/6. Wall Mounting with Cranked Arm, 75-; 18 element, $82 / 6$. Mast Mounting with 2in. clamp. 7 element, 426: 11 element, 55-: 14 element, $62-; 18$ clement, 70, Chimney Mounting Iriass, Complete, 7 element Ti: $6 ; 11$ element, $80 ;-: 1+$ element, 87,$6 ; 18$ element 95,- Complete assembly instructions with every unit. Low Loss Cable. I/ amps from lis,-
required on a

BBC • ITV AERIALS

 0.3.0.0.

ITV (Band 3). 3 element loft array, $30-5$ element, 40%. 7 element, 50 .- Wall mounting, 3 element, 00 - 5 clement, 55 , Comblned IBBC/ITV' Loft $1+3,40 /-; 1+5,50 /-; 1+7$
$60 /-$ Wall mounting $1+3$, $60 /-1+5,70$,
$1+3,70-1+50-8 i m n e y$ IIF + trinsistor pre-amps,

COMHINED HRC1-ITV-HBCB AERIALS $1+3+9,70-1+5+9.80-1+5+14,90$ $1+7+14,100,-$ Loft mounting onl
F.M. (IBand ${ }^{2}$), Loft S D, 1\% 6. "H", 35, 3 element, 576 , External units available. Co-ax cable, $8 \mathrm{~d} . y \mathrm{~d}$. Co-ax. plugs, 1,6 . Outiet boxes, $5,-\mathrm{-}$
Diplexer Crossover Hoxes, 17,6 , C.W.O. or C.O.D P. \& P. $6 / 6$. Send (id. stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)

40-41 Monarch Parade
London Road, Mitcham, Surrey 01-6484884

DIMMASWITCH

5

(1)

This is an attractive dimmer unit which fits in place of the normal wall light switch. The ivory mounting plate matches modern fittings and the centrol knob is in bright chrome. An ON/OFF switch is incorporated to control 40 to 600 watts at mains voltage from 200 $250 \mathrm{~V}, 50 \mathrm{~Hz}$.
These are normaliy sold at $\angle 4$ 19s $6 d-$ These are normaliy sold at 4 igs od © 2 issa completekit of parts with simple instructions enabling you to build this dimmer yourself.
The circuit uses a miniature RCA triac and diac triggering device to give suppression is included.
Post and Packing l/6d extra
to:-
DEXTER \& COMPANY
ULVER HOUSE, 19 KING STREET CHESTER CHI 2AH

$$
\text { Tel.; Chester } 25883
$$

As supplied to H.M. Govt. Deportments Hospitols, Local Authorities, ets

The Unique
MULTI-MIM TWIN-VICE

An extra "Pair of hands" for those tricky jobs ASSEMBLY-SOLDERING-GLUING-WIRING-DRILLING ETC.

- INDEPENDENT ADJUSTMENT OF THE TWO VICE HEADS TO ANY ANGLE WITH POSITIVE LOCKING
- JAWS WILL FIRMLY GRIP, ROUND. FLAT, SQUARE, OR HEXAGONAL PARTS.
TWIN VICE: $\mathbf{6 5}$-18-0 (4/6 P \& P) also available
SINGLE VICE: $\mathbf{\text { E3-7.6 (3/- P \& P) }}$
COVENTRY MOVEMENT CO.LTD
BURNSALL ROAD, COVENTRY
CV5 6BU
STD 0203-74363

Two new

Build-it•yourselfspeaker kits from Wharfedale

"Why don't you produce kits for bigger speakers?" people asked us when Unit 3 proved such a success.
We hope you'll like our answer-Unit 4 (2-speaker floor

Unit 4 full range floor standing system.

2 speakers (12" Bass and $3^{\prime \prime}$ Treble)
to give full range, balanced reproduction.
Frequency response of 45-17,000 Hz . when housed in suitable cabinet. Superior 4-element crossover unit ensures optimum performance from each speaker.
Rec. Retail Price $£ 16-0-\theta$

All kits include speakers, crossover network, acoustic wadding, mounting bolts and connecting wire, together with full assembly instructions. No expert technical knowledge needed.
the true sound in High Fidelity \pm

$\underset{\text { whatertoalt }}{\top}$
Rank Wharfedale Ltd., Idle • Bradford • Yorkshire
standing system) and Unit 5 (3-speaker monitor system).
So if you're a high fidelity enthusiast who enjoys
building his own equipment, send for details.

Unit 5 the monitor system you can build yourself.

3 speakers ($12^{\prime \prime}$ Bass, $5^{\prime \prime}$ Mid-Range unit, and $1^{\prime \prime}$ Treble) give clean, smooth performance.
Frequency response of 40-20,000 Hz . when housed in suitable cabinet.
Unique mechanical/electrical 6 element crossover unit.

Rec. Retail Price $£ 23$-10-0.

BELCO AF-5A SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR

$18-200,000 \mathrm{~Hz}$ Square $18-50,000 \mathrm{~Hz}$ Ontput \max
+10 dB
(10k 0$).$ Operation internal Ittactive two-tone case $7 \mathrm{tin} 5 \mathrm{in} \times 2 \mathrm{in}$. Price $\$ 17.10 .0$ C'arr, 3/6.

CLASS D WAVEMETERS

 cryatal controlled hetero dgne frequency meter $\begin{array}{lll}\text { covering } & 1.7-8 & \text { Mc/8. } \\ \text { Operation } & \text { on } 6 \mathrm{~V} & \text { al.c. }\end{array}$ Ideal for amateur use A vallable in good used condition. 8.19.6. Carr. 7/6 or brand new With acces.
CLASS D WAVEMETERS No. 2 Crystal controlled. $1 \cdot 2-19$ Mc/s. Mains or 12 J d.c. operation. Complete Flth 110.100 charts. Excellent condition

R209 MK II COMMUNICATION RECEIVER

 11 valve high grade communication receiver suitable for tropical use. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. AM/CW/FM operation, Incorporates precibion vernier iriver, BFO. Aerial nal speaker and
12 V d.c. in ternal power
aupply. Sup. plled in excel plent condition fully tested and checked.
f/5 Carr. 20/-
B.C. 221 FREQUENCY METERS lateat release 125 kHz to 20 MHz . Excellent condition. Fully teated and checked and complete with calibrator chnrts. \$87.10.0. each, Carr. 10%.

TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent geweral purpose D/B oвclloscope. Bandwidth $\quad 5.5 \mathrm{kc} / \mathrm{s}$ Senaitlvity $33 \mathrm{mV} / \mathrm{CM}$ Operating voltage 0/110 $200 / 250$ V. a.c. Supplied in excellent working con Carriage 30/-.

MARCONI CT44/ TF956 AF ABSORPTION WATTMETER
$1 \mu / w a t t$ to 6 watta.
220. Carr. 20!-

SOLABTBOH CD. 71182 DOURLE BEAM OLCILLOSOPL. D.C. to $9 \mathrm{Mc} / \mathrm{s}$, Perfect order, 508. Carr, 50/-

TO-2 PORTABLE

OSCILLOSCOPE
 book, stew.10.0. Carr, 10/-

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

bridge portable bridge offering ex cellent range and cost. Ranges: R .
 HENRYS
Ges Ran
-2%
C Ranges $+2 \%$. TURNS RATIO MFd. 1:11100, 6 Ranges 1%. Bridge voltage at $1,000 \mathrm{cps}$. Operated from 9 volts. $100 \mu \mathrm{~A}$. 1,000 cps. Operated from 9 volts. $100 \mu \mathrm{~A}$.

HALF PRICE OFFER!

SINCLAIR STEREO 25

Hi-Fi solid state pre-amplifier and control unit incorporatling treble, base, volume and balance controls. Switched input for p.u. (magnetic and ceramle), mlke and radio. Will also accept tape head. Operates from $9 \mathrm{~V}-12 \mathrm{~V}$ battery (20V max. 7.5 mA). Frequency reaponse $25 \mathrm{~Hz}-30 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Noise level better than -50 dB on all inputs. Principally deslgned for use with Z12 Amplifier but luil lnatructions are supplied to enable it to be used plus knobs. Brushed and politished aluminium front plus knobs. Bruaned and polishedaluminum matching knobs. Supplied brand new panel with matching knobs, 8upplied brand new and guaranteed, With fulinstructions. Original

UNR-30 4-BAND COMMUNICATION

RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{B}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built-in speaker and phone jack. Metal cabinet. Operation $220 /$ instructions. Supplied brand new. guaranteed with

TRIO JR-310 THW AIATEUR BAED 10-80 HETRE RECEIVER. In stock. 877,10.0.

LaFAYETTE SOLID STATE HabOO RECEIVER
5 BAND AM/Gw/ASE AMATEUR AMD BHORT

 1 miter 8 meter 024 in Bandicpread 8230 V A.c./127 d.c. neg. earth operation or RT galn
 lor full

13 gns.

TRIO COMMUNICATION

RECEIVER MODEL 9R-59DE

4 band recelver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ 40 and 80 metres. 8 valve plus 7 diode circult. $4 / 8 \mathrm{ohm}$ output and phone jack. SSB.CW © ANL - Variable BFO - 8 neter - sep . bandspread dial - IF $445 \mathrm{Kc} / \mathrm{s}$ - Audio output 1.5 W . Variable RF and AF gain controls, $115 / 250 \mathrm{~V}$ A.C. Mains. Beautifully deaigned, Size 10im. With instruction nanual and service data. Des Carriage pail
OUR PRICE 88.15 .0 if purchased with above receiver.

RCA COMMUNICATION RECEIVER AR88D
Lateat release by miniotry BRAND NEW in original cases. $110-2500$ a.c. operation. Fre quency in 6 Bands. $535 \mathrm{Kc} / 8-32 \mathrm{Mc} / \mathrm{o}$ continuous. Output impedance $\mathbf{5 . 5 - 6 0 0}$ ohms. Incorporating eflectivity, etc. Price $\mathbf{8 6 5}$. Carr, $\mathbf{2} 2$.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new trandigtorised receiver covering
$1 \overline{0} 2-174$ Mc/a. Fully tuneable or crystal controlled (not eupplied) for fixed frequency operation. In. corporates 4 INTEGRATED CIRCUITB. Built in speaker and illuminated dial. Squelch and vol. ume controls. Tape recorder output. 75Ω aerial
input. Headphone jack. Operatlon 230 V . A.C. 12v. D.C. Neg. earth. 287.10.0. Catr. 10:-.

TELETON MODEL CR $10 T$ AM/FM STEREO TUNER AMPLIFIER
 A new model from Teleton. 31 solid state ceramic/crystal cartridge. Frequency range AM $540-1600 \mathrm{KHz}$ FM 88.108 MHz . Automatic FM atereo reception. Stereo indicator. Controls: Tuning, function selector, Tone
and $\& ~ L ~ v o l u m e ~ c o n t r o l s . ~ A F C ~ a w i t c h . ~$ Stereo headphone socket. Slize: $133^{*} \times 3$. $\times 91^{\prime \prime}$ approx. Price $\frac{8}{4} 9,10,6$. Carr. $7 / 6$.

$50 \mu .4 .$. $50.0-50 \mu$

$50.0-50 \mu$
$100-0.100 \mu \mathrm{~A}$
$100-0.100 \mu$
$200 \mu \mathrm{~A}$

POWER RHEOSTATS

High quality ceramic construction. Windings embedded in vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range © 5 -atoci Single hole fixing, in. dia, ahafte. Bulk quantities availab
$50 \mathrm{WATL} .10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,000 / 2,000$ of 5,000 ohms, 14/6. P. \& P. $1 / 6$ 100 WATF. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 600 / 1,000$ or 2,500 ohms, $27 / 6$. P \& \& P. $1 / 6$.

CRYSTAL CALIBRATORS NO. 10
 Snall portable eryatal controlled wavemeter. size $7^{\prime \prime} \times 71^{\prime \prime} \times 4^{\circ}$. Fre quency range suo Kc/s $10 \mathrm{Mc} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{s}$ on harmonics). Cali brated dial. Power re quirements 300 V.D.C 15 mA and 12 V.D.C 0.3 A . Excellent con
dition, 89/6. Carr, $7 / 6$. diltion. 89/6. Carr, $7 / 6$.

T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges:
 R. 110 Decibels $-40^{4 \mathrm{c} / \mathrm{s},-1-2 \mathrm{Mc} / \mathrm{s} .}$ $\underset{\text { Supplied }}{\text { Decibels }}-40$ to +50 dB . Supplied brand new
complete with leads and instructions. Operation 230 V a.c. $\quad \mathbf{2 1 7 , 1 0 . 0}$. Carr. 5/-

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0.20 \mathrm{Kc} / \mathrm{s}$ on 2 rangea. Output 500Ω or $5 k \Omega$. Operation $200 / 250 \mathrm{~V}$. A.C Supplied in perfect order, $\mathbf{3 1 2 . 1 0 . 0}$. Carr
10/-.

TE-65 VALVE VOLTMETER High quality instrument
 with 28 ranges. D.c. volte $1 \cdot 6-1,500 \mathrm{~V}$ A.c. voltis up to 1,000 megohms ${ }_{20}{ }^{42} / 240 \mathrm{~V}$ a.c. operation. Complete with probe and instructions. 817.10.0. P. \& P. 6/-. Additional Probes available: R.F. 42/6. H.V. $50 /=$
COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
D.c. coupled. Band width like/s. Perfect

AM/FM SIGNAL GENERATORS

 Oscillator Teat No.
2. A high quality prechaion instrument made for the ministry by Airmec. Frequency cover-
age $20-80 \mathrm{Mc} / \mathrm{A}, \mathrm{AM}$ age $20-80 \mathrm{Mc} / \mathrm{g} . \mathrm{AM}$
$\mathrm{C}, \mathrm{W} . / \mathrm{FM}$. Incorporates precision dial level meter, precision porates preciaion dial, level meter, precibion 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. Size $12 \times 8: \times 9 \mathrm{in}$. Supplied in brand new condition complete with all connectors fully teated. Sis. Carr. 20/-.

RUSSIAN C1-16 DOUBLE
BEAM OSCILLOSCOPES
5 MHz Pans Band. Separate Y1, Y2 anupli fiers. Callbrated triggered sweep from $0 \cdot 2 \mu$ нec to 100 m aec $/ \mathrm{cm}$.
supplied complete with all acceseories and
instructions. 887 Carr pald intructions, 887, Carr, pald.
EDDFETONE THY RECEIVERS YODRL 770R. 19-165 Mc/s. Excellent condition, 150
 TR-16A Tranaistorised 400 kHz - 30 man . 5 rangea $400 \mathrm{kHz-30} \mathrm{mHz}$. An inexpensive instrument
for the handyman. Operfor the handyman. Oper
ates on 9 v battery. Wide, easy to read scale. $5\} \times 5\} \times 315$. Complete with instructions and leads, $\mathbf{3 7 . 1 6 . 6 . P . \& P , ~ 4 / - . ~}$
TE-1035 STEREO HEADPHONES Low cost high performance stereo headphones. Foam rubber ear cups. Adjustable headband. 8 ohns impedance.
$25-18,000 \mathrm{~Hz}$. With
lead and atereo

jack plug.
ONLY 80/6.
P.\& P. $2 / 6$.

> AUTO TRANSFORMERS
$0,115 / 230 \mathrm{v}$. Step up or atep down. ghrouded

150 W. A8.2.6, P. \& P. 3/6

1,000 W.
1,500 W.
W8.10.0. P. \&
\& P.

G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos, page

VARIABLE TRANSFORMERS

 Input 230 V n.e. $50: 60 \mathrm{~Hz}$. Output variable 0-2601:
bence modytua

1 amp , 28.10.0; 24 anip, $26.15 .0: 5 \mathrm{amp}$

PAMEL HOUHTMG
I аmp, 25.10.0: 2 I mmp , 20.12.6.
TE-2ORF SIGNAL GENERATOR Accurate wide range single generator cover$\mathrm{mg} / 120 \mathrm{ke} / \mathrm{f}-280$
 Directly calibrated Directly
varizble R.F.
calibrated
attenuatior. 0
Brand new with in structions. sis.0.0. P. \& P. 7/8. 8.A.E. for details.
TE22 SINE SQUARE WAVE AUDIO GENERATORS

Sine: $20 \mathrm{c} / \mathrm{s}$ to
$200 \mathrm{kc} / \mathrm{on} 4$
1

 bande, square:
20 cts to
30
kc / s. Output impedance b,
$200 / 2500$
020 supplied brand new and guaranteed with instruc-
18.10.0. Carr. 7/6.
thon masusl and leade. al

MasCOMI TFILRE DISTORTION FACTOR

 MTars. Excellent condition. Fully tested. Een. Carr. 35/-

ADVANCE TEST EQUIPMENT grand new and boxed in original sealed cartone. IIB, AUDIO SIGMALGEDERATOR. ohme or 6 ohms. 850.0 .0
VM79. UBP MILLIVOLTMETER. $100 \mathrm{Kc} / \mathrm{s}$ to $1,000 \mathrm{Mc} / \mathrm{s}$ a.c. 10 mV to 3 V . D.c. 10 mV to 3 V . Current $0.01 \mu \mathrm{~A}$ to 0.3 mA . Reaistance 1 ohm to 10 megohm . I185.0.0.
TT18. TRANBIgTOR TERTEE. Full range of facllitles for tenting PNP or NPN trangintore in or out of circuit. \$87.10.0.
Carriage 10/-per item.

TO-3 PONTABLE OSCILLOSCOPE

 Input imp. 2 meg $025 p \mathrm{~F}$
X amp. semaitivity 0.9 v
p- $/ \mathrm{CM}$. P-p/CM. Bandwidth 1.5 cps
-800 KHz . Input imp. meg $\boldsymbol{a} 20 \mathrm{pF}$. Time base. $\$$ rangea 10 cps- 300 KHz . Synchronization. Internal/ rnal. Illuminated acale $140 \times 915 \times 330$ rbm . Weight 151 lb . $220 / 240$ V. A.C. Supphied

TE111.

DECADE

CrTATUATOR $0-111 \mathrm{~dB}$. range nections. balaneed T and Bridge T. Impedno 6000 ramge $(0.1 \mathrm{~dB} \times 10)+(1 \mathrm{~dB} \times 10)$ $+10+20+30+40 \mathrm{~dB}$. l.c. to $200 \mathrm{kHz}(-3 \mathrm{~dB})$. Accuracy: 0.05 dB . +indication dB $\times 0.01$. Marimum input less than iW (50V). Built in $500 \therefore$ load ranistance with internal/ex teroal
switch. Brand new 887.10 .0 . P. \& P. $5 /$.

BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New high quality port. able inatrument. Sine 1 Hz to 100 kHz . Bquare 20 Hz + 10dB (10k). Opera. tlon $220 / 240 \mathrm{~V}$ a.c. Slize $215 \mathrm{~mm} \times 100 \mathrm{~mm}$: 120 mam . S/F.

ulilissThe latest odition giving full range of HI FI EQUIPMENT. COMPONENTS. TEST EQUIP. MENT and COMMUNICATIONS EOUIPMENT. . .. Over 230

Cadalourepages, fully illus-
trated and detait. trated and detait-
ing thousands of items - many at bargain prices
FREE DISCOUNT COUPONS
VALUE

SEND NOW-ONLY 7/6, P\&PII6

GARRARD

FULL CORREAT RAHGE OFFERED, BRAND MRW AT PANTASTIC EAVLIGS

> TEAK PLINTHS AND PERSPEX COVERS

1. For SP25, 8L665, SL55, 3000, 2025T/C, 2025, 1000. 24.10.0
2. For AP75, SL75, SL95. \$5.19.6
3. For speds etc. to operate with lid in place 25.19 .6

Carriage 7/6 extra each type.

SPECIAL OFFERS!

Garrard SP2s fitted foldring G800 cartridge and wooden plinth. Total liat price £32.8.5.
OUR PRICE s19.15.0. Carr. 10/.
Plastic Cover 25/-extra.
GOLDBING GL69 Atted Goldring G800 cartridge complete with deluxe base and cover. Total hist price espor
OUR PRICE 299. Carr. $20 /$

MULTIMETERS for EVERY purpose/

TRW-51. NEW $20,000 \Omega /$
VOLT MULTLETER with VOLT MOLTDEETER with
overload protection and mirror scale. 0/6/80/120/ $1,200 \mathrm{~V}$ a.c. $0 / 3 / 30 / 60 / 800 /$
$600 / 3,000 \mathrm{~V}$ d.c. $0.60 / \mathrm{A} / 1$ t 1300 mA d.c. $0 / 60 \mathrm{~K} / 6 \mathrm{meg}$ $0 \mathrm{hm} .92 / \mathrm{s}$. P. \& P. $\frac{2}{} / 6$.

MODEL AS-100D. mirror ecale. Bullt: In meter protectlon.
 $\begin{array}{lll}300 / 600 & 1,200 \mathrm{~V} \\ \text { d.c. } & 0 / 6 / 30 / 120 / 300 /\end{array}$ $600 \mathrm{~V} / 2, \mathrm{C} .0 / 10 \mu \mathrm{~A} /$

$6 / 60 / 300 \mathrm{MA} 12$ | $0 / 2 \mathrm{~K}$ |
| :--- |
| 200 K | AM ; $\begin{array}{ll}200 \mathrm{M} Q . & 20 \\ +17 \mathrm{~dB} . & 212.10 .0\end{array}$

HODEL TE-200 20,000 O.P.V. Mirror geale, overload protec 0/10/00/250/1,000 V.A.C. $0 / 50$ $\mu \mathrm{A} / 250 \mathrm{MA}, 0 / 60 \mathrm{~K} / \mathrm{B}$ meg.

10DIL TE-70. 30.000 O.P.V. 0/9/15/60/300 $600 / 1,200 \mathrm{~V} . \mathrm{d.c} 0 /$.6

$30 / 120 / 600 / 1,200 \mathrm{~V}$ | $30 / 120 / 600 / 1,200 \mathrm{~V}$ |
| :--- |
| 1.c. $0 / 30 \mu \mathrm{~A}$ | 300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $1 \cdot 6 \mathrm{M}, 16 \mathrm{megoh}^{2}$

MODEL FT-94. 1.000 O.P.V.0/10/ $1,000 \mathrm{~V}$ a.c. and d.c. $0 / 1 / 100 / 500$
 $1 / 6$.
 TE-900 20,000 2 FOLT GIALT MULTMIETKER Bin. full view neter. 2 colour gcale, overload
protection. $0 / 2 \cdot 5 / 10 /$ protection. $0 / 2 \cdot 5 / 10 /$ $0 / 25 / 125 / 10 / 50$; $250 / 1,000 / 5,000 \mathrm{~V}$

100	
d.c. 20 K	500 mA
Ma	10 A

MODEL TES00 20,000 O.P.V. Mirror scale, overload protection. 0/ 1.200 V d.c. $0 / 6 / 30 / 120 /$ $600 / 1,200 \mathrm{~V}$ a.c. $0 / 30 \mu \mathrm{~A} /$ $6 \mathrm{~mA} / 60 \mathrm{~mA} / 300 \mathrm{~mA}$, $600 \mathrm{~mA}, 0 / 9 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K} /$ 8 meg. -20 to +63 HR . 8.19.6. P

MoDEL TE-10A, 20kg/ $V_{\text {, d.c. }} \quad 10 / 50 / 100 / 500$ l $\begin{array}{ll}1,000 \mathrm{~V} . & \text { t.c. } \quad 0 / 50 / \mu \mathrm{A} / 2 \cdot 5\end{array}$ mA./250.4. d.c. $0 / 6 \mathrm{~K} / 6$ megohm. -20 to +22 dB . $10-0,100 \mathrm{mfd}$, to $0.100-0 \cdot 1$ mft . $0 / 6$. P. \& P. $2 / \mathrm{f}$.
LAPAYETTE 57 Range Multimeter. Volts $125 \mathrm{~V}-1,000 \mathrm{~V}$ A.c. Volts 1.5 V 1,000V D.c. Current $25 \mu \mathrm{~A}-10$ A np . Ohms. $0.15 \mathrm{Meg} \Omega$
$\mathrm{dB},-20$ to +81 dB.

dB. -20 to $+81 d B$.
Overload Protection.
122.10.0. Carr. $3 / 6$.
SAVE UP TO 33 $\frac{3}{3} \%$ ON AMEF EOUPPENT Send for discount price list

AVO CT471A MULTIMETER
Battery operated, fully transiatortsed. Genaitivity $100 \mathrm{~m} \rho / \mathrm{V}_{0}$ Meararea $\mathrm{AC} / \mathrm{DC}$ Voltages 12 mV to $1,200 \mathrm{v}$. AC/DC Current 12 uA to 1.2 Amp. Reantance 12 ohm to
 4 V up to $1,000 \mathrm{Me} / \mathrm{s}$. offered in perfect

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long diatances. Separate call and press to talk buttons,
$2 \cdot$ wire connection. 1000 's of applicatlone. Beautifully finished in ebony. Bupplled complete with batterles and wall brackets. M.19.6. P. \& P. 3/G.

SINCLAIR EQUIPMENT

Project 60. Package offern. 2×280 ampliter stereo 60 pre-amp, PZ0 power supply, Fing With PZB power supply
 With PZ8 power supply. amplifier,
itereo 2×2000 amp, PZ8 power oupply ispicio.0, power aupply.
Crarr,
 the above 4 4.17.6. for active Add to any and 216 for a patr of Q16 apeakers.
All other Slaclair products In stack. 2,000 amplifier, 空8, Carr. 7/6. Neoteric amplifler, 44, Carr. 7/6.

PEAK SOUND PRODUCTE
Full range of Amplifiers, Kita, Speakera in Ftock.

SOLID STATE VARIABLE A.C. VOLTAGE REGULATORS Compact snd panel mount-
 ing. Ideal for control of appliances, etc. Input appliances,
$250 / 240 \mathrm{~V}$ a.c. etc. Input put continuously variable from 20 V to 280 V .
Model MR2305 5A 68×16
$\times 43 \mathrm{~mm}$, 48.7.6. Model
 60 mm, : 11.10. Potage $^{2} / 6$.

HOSIDEN DH-08S DE-LUXE

 STEREOHEADPHONES Featurem unique mech anical $2 \cdot$ way unite and controls. 8 ohm pedance. 20-20.000cps. Complete with epring lead at stereo Jack phug 87.10.6. P. \& P. 2/6.

RECORDING HEADS
cosmocord t-track headn. High imp. record/playback $25 /-$ Low imp. erase $20 /$-. MABEIOTT 1 track heads. High imp. record/playback 65/-. Low imp. erase $80 /$-. Post extra.

RACAL MA. 168 TRAVETYORIMED DIVERSITI sWITGH. Brand New Condition 115. Carr. 10/-

AMERICAN TAPE

First grade quality American tapes. Brand new Diacount on quantities.
$3 \mathrm{in}, 225 \mathrm{ft}$. L.P. acetate.
31 in .600 ft . T.P. mylar sin. g001t. std. platic Sin. $9001 t$. L.P. acetate. 5 in . 1,2001t. D.P. mylar
5 in.
2001.
L.P. acetate filn. 1,2001t. L.P. mylar jitn. 1,8001t. D.P. myiar 5 in. 2,4001t. L.P. mylar in. $1,2001 \mathrm{t}$. std. acetate. in. 1,800ti. L.P. mylar In. 2,400ft. D.P. mylar 7 in . $3,600 \mathrm{ft}$. T.P. mylar Postage 2/-. Over $\mathbf{2 3}$ post pald.

a SOLDERNG INSTRUMENTS

A range of micro soldering instruments combining high performance with really small dimensions and providing exceptional versatility.

Weighing about $\frac{1}{2} \mathrm{oz}$. (less flex) these miniature tools ensure the utmost accuracy and safety in use, resulting in consistently high standards of soldering with minimum operator fatigue.

Ultra-slim unbreakable nylon handles give a cool, comfortable grip for sustained delicacy of operation.

Slip-on bits are fitted over the element shaft, so absorbing all the heat produced and giving high performance with rapid heating and recovery. A wide range of interchangeable tip sizes is available to suit different types of work.

There are six ADAMIN models to choose from, 5 to 24 watts, in voltages from 6 v . to 240 v .

Please ask for leaflet A/37

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL
Telephone 01-688 8589 and 4559

MONO TRANSISTOR AMPLIFIER $\mathrm{A}_{\mathrm{A}}^{\mathrm{t} \text { really }}$ hish ficelity mon aural autplifie mance charac teristjes to suit the most diseriminating lis tener. circuit withintegrated prcamplifier assembled apecial printe Aub pabel

symmetrical operating in
pair. Output tranaformer coupleal to 3 ohm andil 15 uhen speaker sockete. Standarl pbono input sockets wave bridge rectitier power supply for atc. intins 200wave bridge rectifier power supply for a.e. thatias 200-
240 r . Controls: bass, treble, voluncionfoff. Function elector for P'1, P'2, tipe. radjo. The HSL. 700 is etrongly coustructed on rigid steel chassis bronze himminer enamel finish, size 91.5 itin. high.

Senstivity-PC \mathbf{T} - $50 \mathrm{~m} / \mathrm{s}$, 56k input impediance
PL2-110m/9, 1 mrg input impedance
Tape-110m/r: 1 neg ioput impedance Radio- $110 \mathrm{~m} / \mathrm{s}, 1 \mathrm{meg}$ input impedance Output power ineasuren into 15 ohbe 2 watts RMS into 3 ohms, 5.8 wates RMS into lo ohnis. Overall frequency
 +10 db to -10 db at $10 \mathrm{Kc} / \mathrm{s}$.
The HSL. 700 has bees deaigued for true high filelity reproduction from radio tuper, granophone deck and tape recorder preamp. Supplied rcady built and tested, contplete with knobs, attractive anodiaed iluminium front escutcheon panel, long spindles (can be eut to euit your housing requiremente) full circuit diagrann and operiting

3 LOUDSPEAEER BARGAIMS

7,4 in 3 ohm $21 / \cos$ \& P P, $4 /-\quad 10,8 i n 3$ ohm $87 / 6$ P. P. 6/-. E.M.I. $8 \times 5 \mathrm{in} 3$ ohm with high flux maguet
$26 /-$ P. \& P. $4 /-$ E.M.I. 131 in 3 ohm with high
 E.M.1. 13×8 in, 3 or 15 ohin with two inbuilt tweeters retwork 4 gns, P. \& P. 6/-
BRAND NEW. 1 :iu 15 w . H/D speakers, 3 or 15 ohm Curreat production by well-knoun British maker. Now With Hifux ceramic ferrobar inaguet absembly \mathbf{P}. 4.10 .0 , E.M.I. 84!n HEAVY DUTY TWEETERS. Powerfu ceramic magnet. Available in
15 ohm $18 / 6$ each. $P \& P$ in

1\%in "RA" TWIN CONE LOUDSPEAKER
6, P. \& P. 6/ 35 OHM SPEAXERS
3 in 14/-, P. \& P. $2 / 6 ; 7>4 \mathrm{in}$ 21/*, P. \& P. 4/-. Medium impedance Bratul New - Special Price 48/. P. \& P.

BALANCED ARMATURE EARPHONE

Approx. 70 ohm impedance. Cin be used as ultra sensitive mike or speaker.
CHISTAL MIEES High imp. for deak or hand use HIGH IMPEDANCE CRYBTAL 8TICK MIKES, OU'R PRICE 81/.. P. \& P, 1/6. HIGH DIPEDANCE DYNAMIC 8TICK MIKES. High seneitivity. 20/6. P. \& P. 2/6.

BPECLAL OFFER! PLERSEY TYPE 28 TWIN TUNLNG GAEG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and
 HONEYWELL MICROSWITCEES 8/P.C/O. Push-button
 TELESCOPIC AERLALS WITH SWIVEL JOINT, Can be angled and rotated in any direction. 12 section Heavy Chrome. Extends from 7" to approx. 56". Maxinum diameter $\frac{1}{\prime \prime}^{\prime} 10 /-\mathrm{cach}$. P. \& P. 1/6. 6 section Lacquered

TRANSFORMER BARGAINS! DRAND NEW MOLTI-RATIO MAIMS TRAHEFORMERS Givy 0 ationes. 0 -10-15-0.0-15-30-35-40-60V wave at 1 ap $10.0-10$ 20-0-90 $30-0.30 \mathrm{~V}$-60V hall full wave, kize 3 in $L \cdot 3$ inds $: 3 i n D$. Price $35 /-$ P. \& P. 6

MAIFS TRANSFORMER. For transistor power supplics. Pri. 200/240V. Sec. $9-0-9$ at 500nl4. 14/0. P. \& P. 2/6 Pri. 200/240V. Sec. 12-0-12 at 1 amp. 17/G. P. \& P. 2/6.
Pri. 200/240V. sec. $10-0-10$ at 2 amp. 27/6. P. \& P. 3/6 Tapped Primary $\because 00-2 \because 0-240$ V. Sec. $91 \cdot 3 \mathrm{~V}$ at 500 nIA . 12/6. P. \& P. $9 / 6$.
BATTERY CHARGER TEANSFORMERS. $200 / 240 \mathrm{~V}$
 P. \& P. $5 /=$.

HIGH GRADE COPPER LAMDHATE BOARDS
Open 9-5.30 Monday to Saturday
Early closIng Wed. 1 p.m. A few minules from South Wimbledon
Tube Station

8TOCKISTS OF SIMCLAIR EQUIPMERT 2.39. implifier 89/6. P. \& P. $9 / 6$. Stereo 60 Pre-Atnpliter
 Integrated Corcult $50 / 6$. P. \&. P.

SPECIAL OFFER!!

HI-PI LOUDSPEAEER SYSTE艮i. Beautilully made Coal gisish enclosure with most attractive Trgan tront
 E.M. I. Coramic Magnet 18" 8^{*} basis unit, two H.F.
tweater anits and cromover. Power handling 10 watto. Availsble 3 or 15 ohm impedance. 8 Gns. Carriage

TRANSISTOR STEREO $8+8$ MK II Now using Silicon Transistors int firt five stages on each channel resulting in ewer tower noise level with inproved Csea If transistors giring of watts push lull output per channel (16W mono). lutegratel pre-annp. nith hase, Treble and Volume controls. Suitiable for use with Ceranice or Crystal cartridges. Output stage for any supplied including uriHed attractive frout paucl, kuobs, wire, solder, nuts, boltsno extras to buy. Simple stel by step instructione enable any coustructor to build an amplifier to be proud of. Brief specifleation: Freq. response $\frac{1}{-3 d B . ~ 20-20,000 \mathrm{c} / \mathrm{s}}$
Bass boust approx. to +12 dB . Trcble cut approx. to Batas boust approx. to +12 ab. Trcbic cut approx. To -15dls. Negative fecdback 18 dB
PRICES: MPLIFIER K1T 810.10 .0 . POWER ${ }^{\prime}$ (KIT 23.0.0; CABINET 83.0.0, All Post Free
Also available STEREO $10+10$. As above but 10 watts per channel. PRICES: AMPLIPIER KIT E12. POWER PACK KIT 8.10 .0 .
Circuit rliagram, construction details and parts liat (frce with kit) $1 / 6$. (s.A.E

GENERAL PURPOSE IHIGR STABILITY TRANSISTOR PRE-AMPLIFIER. For P.l ${ }^{*}$. Tape, Mike, Guitar, etc, and buitable for use with valve or
transigtor equipmest. $9-18 \mathrm{~V}$. Buttery or fron H.T. transigtor equipment. $9-18 \mathrm{~V}$. Buttery or 1 rom H.T.
live $200 / 300 \mathrm{~V}$. Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. live $200 / 300 \mathrm{~V}$. Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$.
Uain 26 dB . Solid encapsulation size $17 \div 1!\$ \mathrm{in}$.
 Brand new - complete with illstruction.
$17 / 6 . \mathrm{P} . \& \mathrm{P} .2 / 6$.

SPECIAL PURCHASE E.M.I. 4-SPEED PLAYER Itears 81 in. metal turutahle. Low flut ter performance $200 /$ 250 Vhaded motor (90 V tap). Complete with latert
type ightweight pick-up arm type lightweight pick-up arm
and mono cartridge with $t / 0$ atylii for LP/78. OSLY

QUALITY RECORD PLAYER AMPLFIER MK II A top-quality record player amplifier employing heavy duty do valves. Separate I3ass, Treble and v. Complete with output transformer matched for 3 ohn speaker. Hize 7 in . w. 3 d. ${ }^{-} 6 \mathrm{~h}$. Ready built avd tested. PRICE 75/ P. \& P. 6/\% ALSO AVAILABLE_mounted on board with output transformer and speaker ready to fit into cabinet below. PRICE 07/6. P. \& P. 7/6
DE LUEE QUALITY PORTAELE R/P CAEINET MK II Encut motor board eize 14\} " 12 in ., clearance 2 in . below, $\delta 1$ in. above. Will take above amplitier and any B.S.R. or GARRARD changer or Single Player (except AT60 and SP25). Sizc $18 \times 15 \times 8$ in. PRICE 79/6. P. \& P, 9/6.

A mer
AMPLIFIER HA34 MK II Designed for Hi-F'j reproduc-
tion of records. A.C. Maios operation. Ready built on plated heavy gauge metal chassis, yize 7in w. x 4in. d. \because $41 \mathrm{in} . \mathrm{h}$. Incorporates ECC83, EL84, EZ80 valves. Heary duty. double wound mains
travoiormer and output transtransiormer and output trans-
former natehed for 3 ohm epeaker. Scparate volume control and now with inproved Wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output 4; watts. Front panel can be detached and leads extended for renote mounting of controle. Complete with knobs,
wired and tested for only \&4.16.0. P. \& P. 6/-

HSL "FOUR" AMPLIFILR KIT. Similar in appearance to HA34 above but employs entirely different and advanced cifcuitry. Complete set of parts, etc. 78/6. P. \& P. 6/-.

HARVERSON'S SUPER MONO AMPLIFIER

A super quality grame amplifier using a double wound mains tranblormer, EZ80 rectitler and ECL8: triode pentode valve as audio amplifier and power output stage. and tone controls. Chaseis size only 7 in . wide $\times 3$ Sin. deep $:$ 6 in . high overall. AC najns $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New completely wired and tested with valves and good quality output transformer. FEW ONL $\begin{aligned} & \text { ODR ROCE BOTTOM } \\ & \text { BARGAL PRICE }\end{aligned} \quad 55 /=\quad$ P. \&

DE LUXE STEREO AMPLIFIER

EZ80 as full wive rectiner. Two Triode Pedtodes are provjded for lyass and treble control, giving bass and arc provjed for lrass and treble control, giving bass and Balance of the left and right hand channels can be adjusted by means of a separate "balance" coutrol titted at the rear of the chassis. 1nput scnsitivity is approximately $300 \mathrm{~m} / \mathrm{y}$ for full peak output of 4 watto per channe (8 watls mono), ituto 3 ohm speakers. F'ull uegativ feedback in at carcfully calculated circuit, allows high volune levels to be used with negligible distortion. supplied complete with knobs, chassis size 11 in. w $\because:$ in. x 0 verall height including valyes 5iu. Ready buijt and teotell to at high standard. Price \&8.18.6. P. \& P. 8/-

4-SPEED RECORD PLAYER BARGAIMS

 Majn models. All prand net in mater's packing LATEST B.S.R. C109/A21 4-SPEED AOTOCDANGER With latest mono compatible cartridge 88.19.6. Carr. 0/6 With stereo cartridge 27.18.6. Carr. 6/'6.LATEST GARRARD MODELS. All types available 1026 2025, BP25, 8000, AT00 ote. Eend 8.A.E. for Latent Frices! PLINTH OHITS cut out for Gurrard Models 1025, 2025 $2000,3000,3500$, ete. Wlth rigid transparent platic corer. Special design enables above models to be used with cover in position. Also suitable for housing AT60 and $\mathrm{BP} \pm 5$. OUR PRICE 25.15 .0 completc. P. \& P. $8 / 6$

LATEST ACOS GP91/18C Mono Competible Cartridge with to etyluy for LP/EP/78. Iniversal mounting bracket $80 /$. P. \& P. 1
somotone 2538 Higb output stereo Cartridge T/O stylus for sitereo/LP/78. Coniplete with universal mounting bracket. List 48/7. OUR PRICE 25/-. P. \&P. 1/6 BOHOTONE 日TABC compatible Stereo Cartridge with diamond stylus $50 / \mathrm{F}$. ${ }^{\text {P. }}$ \& P. P. $2 /$
LATEST RONETTE T/O Stereo Compatible Cartridge to EP/LL'/Stcreo/78. 32/6. P. \& P. 2/EP/LP/78 mono or atcreo records on mone equipment $30 /-$ P. \&i P. 21

cenerous size Driver aud Output Trambformers. Outpu Tranalormer tapped for ohm and 15 obm tpeakere pair of AC1.28 o/p). 9 volt operation. Everything supplied wire, battery cips, solder, cte. Comprehensive easy to follow instructions and circuit diagranl $2 / 6$ (Free with Kit). All parts sold separately, gPECINL PRICE 40/6. P. \& P. $3 /-$. Also ready built and teated, $58 /-$. P, \& P. $3 /$ 10/14 WATT HI-FI A0/PLIFIER EIT A stylighly finished monaural ampllfier with an output EL84a in puah-pull. Super reproduction specch, with negli specch, with negli
gible bum. Separate gible hum. Scparate
inputs for mike aut gram allow records and tunouvements
 to follow each ot her
F'ully shrouded section wound output tanstormer t mateh $3-15$ n speaker and 2 independent volune controls, and separate base and treble controls are provided giving good-lift and cut. Vilvelinc-up 2 EL84s, ECC83, EY86 an
 Also available ready built and tested connplete with std input eocketa, e9.19.6. P. d P. 8/6

BRAND NEW TRANBIGTOR BARGALES GET 15 (Matched Pair) 15/-; V15/10p,
Set of Mullard 6 transistore OC44, $\because-0 C 4 B$, AC1:8D matched pair . $\mathrm{Cl} 1: 8$ 25/=; ORP1: Culmiun Sulphid Cell 10/6. All post free.
VYYAIR AND REXITE GPEAKERS AND CADINET FABRICS app. 54 in . wide. Cteually 35/- yd., our price $15 /$ yd. length. P. \& P. $3 / 6$ (min. 1 yd .). S.A.E. for samples

NOW?! a fast easy way TO LEARN BASIC RADIO and electronics

*

Build as you learn with the exciting new

 TECHNATRON Outfit! No mathematics.No soldering-but you learn the practical way,
Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possible read circuits, assemble standard components, experiment, build . and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains ceverything you need, from tools to transistors . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the cquipment agan and againand it remains your own property.
You LEARN-but it's as fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a reaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard tor a carcer in Radio and Electronics or provide a great new, sparetime interest.

A 14-year-old could under stand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set here's your chance to master basic Radio and Electronics, even if you think you're a "non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards
Send now for free I 64 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fil! in the coupon and post it today. We'll send you full details and a 164 -page book -'ENGINEERING OP-PORTUNITIES'-Free and without any obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept. 371B, Aldermaston Court, Aldermaston, Berkshire.

BI-PAK=LOW COST 1.6's

BI-PAK Bemiconductors now offer you the largest and most popular range of I.C's available at these EXCLUBIVE LOW in-line platio 14 and 10 pin packages. in-line plastic 14 and 16 pin packages.

BI-PAE		Price and aty. prices		
Order Fo \%	Simalar Types to:- Description			100 up
BP00 7400	Quad 2-Input NAND GATE	6/6	5/8	4/8
BP017401N	Quad 2-Input NAND Gate OPEN COLLECTOR	8/6	b/6	4/8
BP04 7404N	HEX INVERTER	816	${ }^{6 / 6}$	4/8
BP10 7410N	Triple 3-Input NAND GATE	$8 / 8$	5/6	$4 / 6$
BP20 7420N	Dual 4-Input NaND GATE	$8 / 6$	5/6	$4 / 6$
BP30 7430N	Single 8-Input NAND GATE	$8 / 6$	$5 / 6$	$4 / 6$
BP40 7440N	Dual 4.Input BuFFER GATE	8/6	5/8	4/6
BP41744	BCD to decimal decoder and NIT Driver	22/6	20]-	17/8
BP42 7442N	BCD to decimal decode (TTL O/P)..	22/6	201-	17/6
BP50 7450N	Dual 2-Input AND/OR/NOT GATE	6/6	5/6	4/8
BP53 7463N	single GATE- Input B AND/OR/NOT	0/6		16
BP60 7460N	Dual 4-Tnput-expandable	6/8	5/6	4/6
BP70 7470N	Blingle JK Flip-Flop-edge triggerell	9-		$7 /-$
BP72 7472N	Stigle Master Slave JK Flip-fiop	8/-	8 -	7/-
BP73 7473N	Dual Master Slave JK Flip-flop	10)-	9/-	$8 / 6$
BP74 7474N	Duai D Flip flop	10/-	8/-	$8 / 6$
BP75 7475N	Quasl Bistable Latch	11/-	101-	$9 / 6$
BP78 7476N	Dual Master Slave Flip-flop with preset and clear	11/-		9/6
BP83 7483 N	Four Bit Binary Adjer	28/-	$28 / 6$	${ }^{20}$
BP90 7490N	BCD Decade Counter	29/6	$201-$	17/8
BP92 7492N	Divide by 124 Bit binary counter	R2/6	20/-	17/8
BP93 7493N	Divide by 164 Blt binary counter..	22/6	201-	17/6
BP94 7494N	Dual Entry 4 Bit Shift Register	22/6	$201-$	$17 / 8$
BP95 7495N	4 Bit Up-Down Shift Register	22/6	$201-$	17/6
BP9887496	${ }_{5}$ Bit mift register	24/-	21/-	18/6

BRAND NEW. FULL TO MANUFACTURERS -709
BP709 Operational Amplifter, dual-in-line 14 pin pack This is a high performance operational ampliffer with Inputs and low impedance output

TTL INTEGRATED CIRCUITS

Manufacturera' 'Fallouts-*-out of spec. devices sncluding functlonal units and part functional but classed as out of spec. from the manufacturers very rigid specifcations. perfect.

PAK No.			PAE No.			
U1C00 $=$	$5 \times 7400 \mathrm{~N}$	10/-	UTC73	$=5$	$\times 7473 \mathrm{~N}$	10/-
U1C01 $=$	$5 \times 7401 \mathrm{~N}$	10/-	UIC74	$=5$	$\times 7474 \mathrm{~N}$	10/-
UIC02 $=$	$5 \times 7402 \mathrm{~N}$	10/-	U'IC75	- 5	$\times 7475 \mathrm{~N}$. 10 /
U1C03 =	$5 \times 7403 \mathrm{~N}$	101-	U1C76	$=5$	$\times 7476 \mathrm{~N}$. 10/-
U1C04 $=$	$5 \times 7404 \mathrm{~N}$	10/-	UIC80	- 5	$\times 7480 \mathrm{~N}$. 10/-
UIC05 $=$	$5 \times 7405 \mathrm{~N}$	$101-$	UIC82	$=5$	$\times 7482 \mathrm{~N}$	10/-
UIC10 $=$	$5 \times 7410 \mathrm{~N}$	10/-	UIC83	$=3$	$\times 7483 \mathrm{~N}$	10/-
U1C20 =	$5 \times 7420 \mathrm{~N}$	10/-	UIC86		$\times 7486 \mathrm{~N}$	$10 /-$
UIC40 $=$	$5 \times 7440 \mathrm{~N}$	10/-	UIC90	$=5$	+7490N	$10 /-$
UIC41 UIC42	$5 \times 74414 N$ $5 \times 7442 N$	$10 /-$ $10 /-$	UIC92	$=3$	$\times 7492 \mathrm{~N}$	$\cdots 10 /-$
U1C50	$5 \times 7450 \mathrm{~N}$	10/-	UIC93	$=5$	$\times 7493 \mathrm{~N}$	101-
UIC61 =	$5 \times 7451 \mathrm{~N}$	10/-	UIC94	$=6$	$\times 7494 \mathrm{~N}$	10/-
UIC60 $=$	$5 \times 7460 \mathrm{~N}$	10/-	UIC95	$=6$	$\times 7495 \mathrm{~N}$	10/-
U1C70 $=$	$5 \times 7470 \mathrm{~N}$	10/-	UfC96	$=5$	$\times 7496 \mathrm{~N}$	101-
UIC72 $=$	$5 \times 7472 \mathrm{~N}$	10/-	UICX1	$=20$	\times ASST'D	30/-

Every PAK carriea our BI-PAK satisfactlon or money back GUARANTEE.
DUAL-IN-LINE LOW PROFILE SOCKETS
14 and 16 lead sockets for use with Dual-in-Line Integrated Circuits.

RTL FAIRCHILD (U.S.A.) I.C's

RTL Mictologic Ciscuits	Qty. pricen each			$100+$
Epoxy case To-5 temp. range $15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	1-11	12-24	25-99	
$\mu \mathrm{L} 900 \mathrm{Buffer}$	8/-	7/-	6/6	5/6
$\mu \mathrm{L} 914$ Dual two-input GATE	8/-	7/-	$8 / 6$	$8 / 6$
ML 923 J-K Flip-fiop	10/6	10/-	$9 / 6$	$8 /=$
Full data and circuits for 10's in Booklet fo	price 1/6			
$\boldsymbol{\mu A 7 0 3 E}$ Linear RF-IF AMPLIFIER	11/-	101-	9/-	8/3

DTL DIGITAL I.C's

DTL dual in-line package.
Price
Type MC844P expandable dual 4 -input NAND Power Gate
Type MC845P Clocked Flip-fiop/nOR
Type 862 Triple 3 Input NAND/N
10/- each
FULL DATA SUPPLIED WITH UNITS

Please eend all orders direct to our warehouse and despatch department

BI-PAK SEMICONDUCTORS

P.O. BOX 6, WARE, HERTS.

Postage and packing add $1 /-$. Overseas add extra for Airmail. Minimum order 10/-. Canh with order please

VALUE ALLTHE WAY

LINEAR INTEGRATED CIRCUITS

BI-PAK MONOLITHIC AMPLIFIERS (co-s 8 lead) BP709C, Operational ampllfier, $15 /$-each. BP701C, Operational amp. lifler (with Zener output), $18 / 6$ each.
BP702C, Operation BP702C, Operational amplifler (with direct out
put) put), $12 / 8$ each.
BPb01, W'ide ba
Ber, $18 /$ ide bach.
fler ampll BP521 $18 /$-each.
band amprithmic wid $14 /=$ each. BP20/C, General purpose amplifier (TO-5 8 leasl). (voltage or curreut amp.) 12/6 each-
I.C. Operatinual Amplifler With Zener output Trpe 701C. Ideal for l^{3}. \mathbf{E} Froll data.
Our price $12 / 6$ each
3 ofll1/-each. Large Qty
Prices quoted for

IC AMPLIFIER

 pin enticapsulation and following: $\$ \mathrm{~L} 402 \cdot 3$, IC10 and IC403. Each circuit incorporates a preamp and class A. B. Power amp atage capable of delivering up to 3 watts RMs. Fully tested and guaranteed. Supplied and data. CODED ISP 1010 OUR LOWEST P'RICE $30 /$ - each 10 ul $25 /-$ each

MULLARD I.C
AMPLIFIERS
TAA243, Operational amplifier, $70 /$ - each
fier 15 , inear AF ampliTAA?93, General purpose
\qquad

CA30RO RCA (U.S.A.)
LINEAR MTEGRATED CIRCUITS
udio Power Amplifier
80/ each

OTHER MONOLITHIC

 DEVICESD13D1 Silicon Unilatera switch 10/- each.
Silicon Planar
lithic integrated, circuit having thyristor electrical characteristics, but with an anode gate abd as built-jo "Zener"' diode between gate and cathode. Full
data and application circuits available on request

Silicon Microwave Diodessylvania (U.S.A.)
IN218 and IN218R matched pair s. Band
mixer. Max. overall noise faction 13.7 HB at $3,000 \mathrm{~m} / \mathrm{cc}$ Brand new and boxel.
Clearance Pries B/- pair

EX-EQUIPMENT m ULLARD AFllf transistors. Large
can 4 lead type. Leads cut short hut gtili usable,

ADI61 nev ADI62 PNP
MATCHED COMPLE. OF GERM POWER TRANBIETORS
For main driven out put atages of Amplifler OUR LOWEST PRICE OF 12/6 PER PAIR HIGH POWER SILI. CON PLANAR TRAN SISTORS. TO.3 FERRANTI ZT148: VCB60 le 6A V CE40 P'tot. 75 W PRICE 15/-EACH 2N3055 115 WATT SIL OUR PRICE 12/6 EACH

ZEAER DIODES

 VOLTAGE RANGE C-18V 400 mV (DO. 7 Case) $2 / 6$ ea. 11 W (TopHat) $3 / 6$ ea. 10 W (So.10 Stud) 5/- eat. All tully marked. state voltage

BRAND NEW TEXAS GERM. TRAN8IBTORS Coded and Guaranteed $\begin{array}{lll}\text { Pak No. } & \text { EQV } \\ \text { T1 } 8 \text { 2G37ta OCII }\end{array}$ T2 8 2G374 OC75 $\begin{array}{llll}\mathrm{T} 3 & 8 & 2(33744 \mathrm{~A} & \text { OC81I) } \\ \text { T4 } & 8 & 2(13814 & 0 \mathrm{C} 81\end{array}$ $\begin{array}{cccc}\text { T4 } & 8 & 2(1381 \mathrm{~A} & \text { OC81 } \\ \text { T5 } & 8 & 2(3382 T & \text { OC8 }\end{array}$ $\begin{array}{cccc}\text { T5 } & 8 & 2(1382 T & \text { OC82 } \\ \text { T6 } & 8 & 2(3444 A & 0 C 44\end{array}$ | | 6 | | |
| :--- | :--- | :--- | :--- |
| T | 8 | 2 G 345 A | $0 \mathrm{C4}$ | T8 8 2G378 0C78

All 10/-each pack
2R2060 NPN SIL. DUAL
TRANS. CODE D1699
TEXAS. Our price $6 /-$
aach.

120 VCB MIXIE DRIVER TRANSISTOR. Sim FULLY TESTED AYD COLED NDI20. 1-24 3/6 each. To-5 N.P.N. 25 up
$3 /-$ each.

Sil. trans. suitable tor
P.E. Organ. Metal TO. 18 P.E. Organ. Metal TO. 18
Eqrt. ZTX $3001 /-$ each.

FREE
One 10/- Pack of yous Own choice free with
orders valued 84 or over. ordert valued 84 or over.
NPN DJFFUSED NPN DIFFUSED
SILICON PHOTO. DUO-DIODE TYPE Readout, high suritching Reatout, high switching cators, $50 \mathrm{~V}, 200 \mathrm{~mW}$. OUR PRICE 10/-EACH, 60 OR OVER 8/6 EACH, FULL DETAILS.

FET'S

2N 3819
2N 3820
MPF105
LOW COST F.E.T.: Fully Testel, Guaranteed Perameters equit. to
2N3819, MPF゙102, 5459 . 1 , MPF102, 2 N 5469 . $1027 / 8$ each;
2599 each; 100 up 5/8 each. Coded FE19. Full data selit. TO-7.

CADMIUM CELLS

ORP12 8/6
RP60. ORP61
PHOTO TRANS.

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS

NEW BI-PAK UNTESTED SEMICONDUCTORS
Satigfaction (iUARANTEED in Every Pak, or money back Pak No.
U1 120 Glass Sub-min. General Purpose Gernanium Diodes 60 Mixed Germanjum Tranistors AF/RF 75 Germanium Gold Bonded Diodes sim. OAS, OA47 40 Germaniuin Transistors like OC81, AC128 60200 mA sub-min. Sil. Diodes
30 Silicon Pianar Trangistors NPN gim. BSY95A, 2 N 706 16 Silicon Rectifiers Tod-Hat 750 mA up to $1,000 \mathrm{~V}$ 50 Sil. Planar Dioder 250 mA OA/200/202 20 Mixed Volts I watt Zener Diodes
$3 \bar{n}$ PNP Silicon Planar Tranaistors TO- 5 eim. 2N 1132 30 PNP-NPN Sil Trangistors $0 C 200$ \& $2 S 104$ 150 Mixert silicon and Germantum Diodes
25 NPN Silicori Planar Transiatora T0.5 sim. 2 N 697. $\frac{10}{30}$ 3-Amp Silicon Rectiflers Stud Type up to 1000 PIV ... 86 - Amp silicon Rectiflera ByZi3 Type up to 600 PIV 25 silicon NPN Traneistors like BC108
$121.5-\mathrm{amp}$ silicon Rectifiers Top-17at up to 1,000 PIV .. 30 A.F. Germaniunt alloy Transistora $2 \mathbf{G} 300$ Series \& OC71. 30 Mailt's like Mat seriea PNP Transistora 20 Germaniun 1 -amp Rectifers GJM u_{k} to 300 PIV $25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Traneistors 2 N 708 , B8Y 27 30 Fabt Switching Silicon Diodes like IN914 Micro-min . Experimenters' Assortment of Integrated Circuits,
Gates, Flip-Flops, Registers, etc., 8 A ssorted Pieces U29 101 amp SCR's T0-5 can up to 600 PIV CRS $1 / 25-600$ 20 sil. Planar NPN traus. low noise Ally 2N3707 25 Zener diodes 400 mW Dor case intixed Volts, 3-18 U33 15 Plastic case 1 amp Silicon rectiters IN 4000 series U34 30 Sil. PNP alloy trans. TO-5 BCY26, $28302 / 4$ 25 sil. Planar trang. PNP TO-18 2N2906.
U36 25 \$11. Planar NPN trans. TO-5 BFY60/51/52
U3: 30 Sil. alloy trans. so-2 PNP, OC200 2 s 322.
U38 20 Fast Switching sil. Urane. NPN, $400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~N} 3011$
U39 30 RF Germ. PNP trams. $2 \mathrm{~N} 1303 / 8$ TO-5
U40 10 Dual trans. $\overline{\text { b lead To }} \mathbf{~ - ~} 52 \mathrm{~N} 2060$
U41 2a R1 Germ. trans. TO-1 OC45 NKT72.
U42 10 WHF Germ. PNP trans. TO I NKTG67 AF117
Code Nos. mentioned above are given as a guide to the type of device in
the Pak. The devices thenselveq are normally unmarkerl
to

NEW LOW PRICE TESTED S.C.R.'s

	$\begin{gathered} \text { 1A } \\ \text { (TO-5 } \\ \text { case) } \end{gathered}$	$\stackrel{3 \mathrm{~A}}{(\mathbf{T O - 6 6}}$	$\begin{gathered} 7 \mathrm{~A} \\ \text { (T0.48 } \end{gathered}$ case)	16 (T0 cas		30
PIV	each	each	each	each	PIV	eac
50	4/6	$5 /-$	9/8	10/8	$\because 5$	$20 /$
100	5/-	8/6	10/8	12/6	50	23/
200	7/-	$7 / 6$	11/8	15/-	100	$28 /$
400	8/6	9/6	13/6	18/8	$\because 00$	32
600	10/B	11/8	15/6	25 /-	400	35
800	12/6	14/-	18/-	30/-	600	80

2A POTTED BRIDGE RECTIFIERS. $200 \mathrm{~V} 10 /$

TRANSISTOR EQVT. AND SPECIFICATION BOOK. (German Publication,) A complete European, Americion add Japanese Transistors. Exclusive to BI-PAK. 15/- each

PRINTED GIRCUITS
EX-COMPUTER
Packed with semicomluctors and components, 10 boards give a guaranteed 10/-. Plus $2 /-P$. \& P.

PLEASE NOTE. To avoid any further Increased Postal Charges to our Customers and enable us to keep our ''By Return Postal service" which is second to none, we have re-organised and streamlined our Despateh Order Department and we now requeat you
to send all your orders together with your renittince, direct to our Warehouse and Despatch Department, postal address: BI-PAK SEMICONDUCTORS. Despatch Dept.. P.O. BOX G. WARE, HERTS, Postage and packing still I/- per oriter. Minimun

QUALITY-TESTED PAKS

6 Matched Trana, OC44/45/81/81D
20 Red spot AF Trane. PNP.
16 White Spot RF Trans. PNP.
5 Bliticon Recti. 3 A 100.400 PIV
210 A Bilhcon Rects. 100 PIV
12 A 8CR 100 PIV 8witchlta
3 B11. Trans. 28303 PNP
$3200 \mathrm{Mc} / \mathrm{B}$ Sil. Trane. NPN BSY'26/2
3 Zener Diodea IW 33V 5% Tol.
4 High Current Trans. OC42 Eqvi
2 Power Trandetora $10 \mathrm{OC2} 21$ OC 35
5 silicon Rects, 400 PIV 250 mA
4 OC75 Trabsistore
1 Power Trana. OC20 100y
10 OA 202 SII. Diodes Sub-iní.......
2 Low Noise Trans. NPN 2N929/30
2 Low Noise Trans NPN 2N929/30
8 OA81 Diodea
4 0C72 Trambiator

- 0C77 Transintor

4 Sij. Rects. 400 PIV 500 miA
5 GET884 Trans Eqvi. OC44
5 GET883 Trana. Eqvi. OC46
$22 N 708$ Ell. Tram $300 \mathrm{Mc} / \mathrm{NPN}$
3 OT31 LF Low Noiae Germ Trans
6 IN 914 Bil. Dioden 76 PIV 75 mA
3 NPN Germ. Diodes Sub-nin. IN
2 OC22 Power Trans. Germ.
2 OC22 Power Trans. Germ
4 ACl 28 Trana. PNP High Gain
4 ACl27/128 Comp. pair PNP/N
3 2N 1307 PNP switching Trane
7 Ca62H Germ. Diodea Equt. OA7I
3 AFl 16 Type Trana.
12 Asaorted Germ. Diodes Marked
4 AC126 Germ. PNP Trans.
4 Sllicon Rects. 100 PIV 750 mA
7 OCA1 Type Trans
ocifl Tre Tr
6 2N2926 Sil, Epory
2 S 701 Sll Trans
210 A 600 PIV gil. Rects. 1846 L
3 BC108 ©il. NPN High Gain Trar
1 2N910 NPN SII. Trans. VCB 100
21000 PIV Bll. Rect. 16 A R53310
3 B8Y95A 9il. Trans. NPN 200Mc/
3 OC200 Bil. Trans
2 GET880 Low Nobse Germ. Trant
1 AF139 PNP High Freq. Trans.
3 NPN 1 rant 1 ST141 \& 2ST140
3 Madt's 2 MATlol 2MAT120
4 OC44 Germ. Trans. AF
3 ACl27 NPN Germ. Trans
1 2N3906 Bif. PNP Trans. Motorola
2 sil. Power Rects. BYZ13
1 sil. Power Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$
2 2N1132 PNP Epitaxial Planar Sil
3 2N 697 Epitaxial Planar Trans. Sti
1 Uerni. Power Tranis. Eqzt.
2 Sil. Trans. $200 \mathrm{Mc} / \mathrm{s} 60 \mathrm{Vch}$ ZT83/84 20 NKT Trans. AF. RF. VHF. Coded Equi. List
a 2N2712 Sil Epoxy Planar HFE225
8 BY100 Type Sll. Recto.
25 Stl, and Germ. Trans. Mixell, all $20 /$

SEMICONDUCTORS FOR "P.E." $50+50 \mathrm{M}$ (${ }^{\text {P }}$			
TYPE	EACH	TYPE	EACH
2N1613	4/6	IN914	1/-
2N3055	12/6	OA200	1/-
2N3703	3/-	BFY5	$3 / 6$
2N 3704	3/6	BYZ13	4/6
2N3707	$3 / 8$	40362	14/-
2N3819	$8 /-$	22 V 11 W	8/8

CIRO No. 338.7006
BI-PAK

K I N G

OF
 T: E

HOME RADIO (Components) Itd., Dept. PE, $234-240$ London Road, Mitcham, CR4 3HD. Phone 01-648 8422

Ever had

 karntafindapartitisAt some time or another most constructors of radio and electronic projects get hit by this complaint! The symptoms? Depression . . . exasperation . . . headaches ... weariness ... sore feet, etc. The causes? Frustrating hours spent in thumbing through inadequate out-of-date catalogues, making numerous fruitless phone calls, tramping or touring from shop to shop - all in a vain attempt to locate some vità components.

Here is the answer to the problem-the Home Radio Components Catalogue, a world renowned medicine for preventing the complaint or for quickly clearing up the trouble if symptoms have already begun to appear! Just send the coupon with $8 / 6 \mathrm{~d}$ plus $4 /$ - postage and packing, and your copy will be despatched immediately. In its 350 pages over 8,000 components are clearly listed, over 1,500 of them illustrated. A cross-reference Index and a 30 -page Price List enable you to locate your components without any trouble.

RADIO
HOME RADIO (COMPONENTS) LTD

The price of $12 / 6$ applies only to catalogues purchased by customers residing in the U.K.

Once you have your Home Radio Catalogue you can, if you wish, make life even easier for yourself by joining our Credit Account Service. Then you can order by telephone any time of day or night, Sundays included! No need to bother with postal orders, cheques, registering envelopes every time you order. We send prepaid envelopes and only one payment is required each month. So simple! Write for details or telephone 01-648 8422.

HOME RADIO (COMPONENTS) LTD., Dept. PE 234-240 London Road, Mitcham, Surrey, CR4 3HD

SELF-GENERATING

RECENT developments portend a dramatic expansion of what has become popularly known as "Spare Part Surgery", a subject which implicates electronics to a very great extent. Human heart transplants have provided sensational headlines in the recent past. Even more startling are the possibilities of using inorganic replacements for decayed or damaged body organs.
The possibility has become almost a certainty now that electric power can be produced directly from the living system. Several American companies have proved the feasibility of a "biological fuel cell". Tiny electrodes of gold-palladium inserted into the blood stream react with the blood and provide an e.m.f. in a manner reminiscent of the voltaic cell. The amount of current produced is said to be sufficient to power a heart pacemaker for a lifetime. It is suggested that groups of cells could be linked together to form a battery capable of providing greater power. This then leads to the likely use in the future of artificial hearts, which are already in the experimental stage.
Much further work is required before this biological fuel cell materialises as an aid for the surgeon. But in the meanwhile another important innovation in medical electronics is the tiny nuclear-electronic power converter which will operate a heart pacemaker for an estimated 10 years. This "atomic battery" has been well publicised recently following the first implantation of this device in a human patient in this country.

Unlike either the atomic battery or the conventional chemical battery normally used to operate pacemakers, the biological fuel cell is expected to last as long as the body system is functioning. Use of the living system itself to produce electrical energy for electronic or electromechanical transplants is an audacious idea, yet it is a perfectly logical step as technology marches on. The electrical nature of the nervous system is well known, the muscles being servo-operated by minute electric currents generated by chemical reaction at the nerve ends. Thus there is a striking similarity between living systems and man-made electronic systems.

With an internal source of power on tap, there will be greater scope to exploit the latest technical developments in the commendable attempt to alleviate pain and discomfort and to prolong life. But since important ethical principles are involved, the engineer's natural eagerness to advance his own technology must always remain subservient to the opinions of the medical profession and other competent authorities. And this must be seen to be so, to allay any alarm and distress this rather special and intrusive use of technology might cause in the mind of the ordinary person.

THIS MONTH

CONSTRUCTIONAL PROJECTS

hUMIDISTAT
GUITAR PICK-UP
"VALSTAB" POWER SUPPLY
PHOTO TIMER 737

SPECIAL SERIES

MAKING THE MOST OF
LOGIC I.C. $5-3$

GENERAL FEATURES

INGENUITY UNLIMITED

BEGINNERS

400 mW AMPLIFIER
THIS WAY TO
ELECTRONICS-6

NEWS AND COMMENT

EDITORIAL
SPACEWATCH 704
ON THE FRINGE 711

ELECTRONORAMA 718

NEWS BRIEFS 722
POINTS ARISING 722

READOUT

Our October issue will be published on
Monday, September 14

[^2]
THE HOMMDUSTAT

By D. BOLLEN

| T is sometimes necessary to control the level of humidity in, say, a glasshouse or storeroom. A simple approach is to employ a switch actuated by a humidity sensor. When the level of humidity departs from a required value, the switch closes and applies suitable corrective action. A disadvantage of many humidistats, particularly the hygroscopic and chemical types, is that they need regular re-calibration to maintain accuracy.

The unit described here exploits the well-known principle of the psychrometer, and uses two negative coefficient thermistors to sense humidity. One thermistor is continuously wetted and is placed in a well ventilated position; the process of evaporation makes it slightly cooler than its companion dry thermistor if atmospheric humidity is less than 100 per cent. A definite relationship exists between wet and dry thermistor temperatures for a given level of humidity. Provided that the supply of moisture to the wet thermistor is maintained, and there is not an excessive
build-up of dirt, calibration will hold good for long periods.

HUMIDITY SENSOR

Consider the circuit and curves of Fig. I. Two thermistors are arranged in the form of a simple potential divider, fed from a fixed input voltage V_{i}. When the atmosphere is saturated (humidity 100 per cent) both resistances will have the same nominal value, thus giving a potential divider output of $0.5 \mathrm{~V}_{\mathrm{i}}$. If there is now an ambient temperature change, this will be sensed by both thermistors, and the same resistance ratio and output voltage will be maintained over a wide range of temperature, hence the straight line representing 100 per cent humidity on the graph of Fig. I.

Assume now that humidity has been reduced to 50 per cent, with the ambient temperature standing at 20 degrees Centigrade. Evaporation of moisture from the wet thermistor will reduce its temperature and increase its resistance, but the dry thermistor resistance

Fig. 1. Basic humidity sensor circuit with curves showing how output varies with humidity and temperature
(right) The complete humidity sensor without its case

remains at the 20 degrees Centigrade value. With wet thermistor resistance greater than dry thermistor resistance, the output voltage from the potential divider will have increased to $0.58 V_{\mathrm{i}}$, shown by the 50 per cent humidity curve in Fig. 1.

ACCURACY

Ideally, the sensor should respond only to changes in humidity and not to variations of ambient temperature. If the two thermistors had a linear resistance/temperature characteristic the curves of Fig. 1 would take the form of straight, sloping lines originating near 0 degrees Centigrade, with slope inversely proportional to humidity. Such a law would render the sensor highly temperature dependent. Fortunately, the natural nonlinearity of the thermistors makes a useful contribution here, by causing a flattening off of the curves between 20 degrees and 30 degrees Centigrade. Remembering that the sensor output was $0.58 V_{i}$ at 20 degrees Centigrade for a 50 per cent level of humidity, it can be
seen from Fig. 1 that there is virtually no change of output when the ambient temperature is increased to above 30 .degrees Centigrade. It follows that the humidistat will offer good accuracy when operated at normal to very warm room temperatures while handling humidity levels of 25 to 100 per cent; this covers the majority of standard applications. However, in environments colder than 20 degrees Centigrade, or hotter than 30 degrees Centigrade, the humidistat will have a higher temperature dependence, and should only be used where the temperature is fairly constant.

HUMIDISTAT CIRCUIT

The purpose of the humidistat circuit shown in Fig. 2 is to measure and amplify the small voltage changes generated by the thermistor sensor. In Fig. 2, the sensor is represented by thermistors X1 (dry) and X2 (wet). As in Fig. 1, a drop in humidity will increase the resistance of X 2 and cause a rise in output voltage at the junction of X 1 and X 2 .

COMPONENTS . . .

Resistors	
RI	$3.3 \mathrm{k} \Omega$
R2	$2.7 \mathrm{k} \Omega$
R3	$1 \mathrm{k} \Omega$
R4	$1.5 \mathrm{k} \Omega$
R5	$1 \mathrm{k} \Omega$
R6	470Ω
R7	150Ω
R8	10Ω
All $\pm 10 \%$, $\frac{1}{2}$ watt carbon	

Potentiometers
VRI 500Ω miniature skeleton preset
VR2 $2.5 \mathrm{k} \Omega$ linear carbon or wirewound
Thermistors
XI, X2 VA1005, CZI, or
Radiospares TH2A
Semiconductors
TRI BCI07
TR2 BCl07
TR3 ACY20
DI ZBI2, 12 V 250 mW

Miscellaneous

RLA Radiospares type IIA relay (see text) Veroboard $0 \cdot 1$ in matrix lin $\times 3 \cdot 4 \mathrm{in}$. Terminal blocks. Plywood. Perforated zinc. TO5 clip-on heat sink (cooler). Expanded polystyrene. Plaster of paris. Epoxy resin glue.

Fig. 2. Circuit diagram of the humidistat

Long-tailed pair TR1 and TR2 in Fig. 2 acts as an amplifying bridge circuit, where the sensor voltage is compared with a reference voltage derived from Zener diode D1, VR1, VR2, R4, R5, and R6. Normally, TR2 is just biased off, with its collector voltage close to that of the positive supply rail. Hence, direct coupled pnp relay driver TR3 will also be off and the relay RLA will not be energised.
Following a slight increase of humidity, the voltage at the junction of X 1 and X 2 will fall, tending to turn TR1

Fig. 3. Dial callbration for VR2

Fig. 4. Power supply for the humidistat
off. At the same time, TR2 and TR3 are turned on, and the relay is energised, closing contacts W and Z .

CONTROL

One possible way of reducing relative humidity is to heat the air. If relay contacts W and Z are wired in series with the supply to. a domestic type fan heater, corrective action will be applied whenever the level of humidity exceeds a pre-determined value. However, it would be wasteful to have the fan heater responding to every small fluctuation of humidity, switching on and off at frequent intervals. The humidistat circuit therefore incorporates some backlash, which is determined mainly by the beta of TR3 and emitter resistor R8. At a nominal setting of 60 per cent humidity, and with 10 ohms for R8, humidity will cycle between ± 3 per cent of the set value. If a smaller deviation is required, R8 can be shorted out of circuit.

If VR1 in Fig. 2 was used as a set humidity control, the dial graduations would be cramped towards the 100 per cent end of the scale. Most applications involve humidity levels lying between 50 and 100 per cent, and it is desirable that the scale should be expanded over this range. Potentiometer VR2 and R6 across R4 provide the necessary scale correction-when VR2 is used as a set humidity control-and yields the dial calibration shown in Fig. 3, with well-spaced divisions where they are most needed.

Power supply requirements for the Fig. 2 circuit are 15 volts ± 2 volts at up to 100 mA . A simple bridge rectifier and smoothing circuit, similar to that shown in Fig. 4, will serve to power the humidistat.

CONSTRUCTING THE SENSOR

The wet thermistor is embedded in a block of plaster of paris; this material is extremely porous and can be cleaned readily with an old toothbrush while moist. The plaster block stands in a tin containing water, which is thermally insulated by a covering of expanded polystyrene (ceiling tile), see Fig. 5. Capillary action takes water to the exposed top of the porous block where it then evaporates and cools X2.

Commence construction by fitting sleeving to the
leads of X 2 , then coat the body and sleeved leads of the thermistor with a generous layer of warmed epoxy resin glue. It is most important to ensure that the thermistor is made completely waterproof. A second application of glue, after the first has set hard, is advised, and can be used to attach the thermistor to the expanded polystyrene mould core.

Next, prepare a cardboard mould, with two holes to take the thermistor leads, and fix the polystyrene core inside with small wedges or strips of adhesive tape. Mix the plaster of paris with water, to a thin consistency, and pour into the mould without delay. After several hours, remove the plaster block by tearing away the mould, and leave to dry out completely.

Cut a hole in the mustard tin lid to clear the plaster block, and solder the copper water filler tube to the base of the tin. Paint the tin to prevent rusting. Wind a length of cloth around the copper tube and cover the tin with panels of expanded polystyrene, held in place with adhesive tape.

The dry thermistor Xl can be mounted on a small piece of s.r.b.p. board which is attached to a plywood base, along with a terminal block to take the leads from the remote amplifier panel; see first photograph.

AMPLIFIER CONSTRUCTION

The amplifier components, within the dotted boundary in Fig. 2, are mounted on a 0.1 inch matrix Veroboard, 10 holes wide by 34 holes long, with copper strips running parallel to the longest side. Component layout and wiring diagrams are given in Fig. 6.

Break the Veroboard copper strips with a spot face cutter in the positions shown in Fig. 6. To avoid overheating the transistors, insert and solder all resistors, VR1, wire links, and flying leads first. Transistor TR 3 should be provided with a clip-on heat sink.

RELAY

Any relay with a contact rating of 5 to 10 amps at 250 volts a.c., a pull-in voltage of about 6 volts, and a maximum coil current of 100 mA at 12 volts can be used with the humidistat amplifier. The Radiospares type 11 A normally just operates at 9 volts, but the armature return spring can be stretched to increase sensitivity.

TESTING THE HUMIDISTAT

Lay out the humidistat amplifier panel on a bench or table, and connect up the sensor (X 1 and X 2), the relay RLA, the set humidity potentiometer VR2, and a 15 volt d.c. supply. Colour coded connections are shown in Fig. 6. Ensure that the X2 plaster block is completely dry, and has attained ambient temperature.

Set VR1 fully anti-clockwise and VR2 at maximum resistance. The relay should be energised. Now rotate VRI slowly clockwise until the relay armature just drops out. Try rocking the spindle of VR2 to make the relay contacts open and close. The maximum resistance setting of VR2 now corresponds to 100 per cent humidity, with the relay just opening as VR2 slider approaches the end of its track.

As a final check, set VR2 slider at the mid-track position and warm XI by gripping between the thumb and forefinger. After a short delay the relay armature should drop out, then pull in again as X 1 is allowed to cool. During final assembly, when the amplifier panel is placed in a box, take care not to alter VRI setting.

EXAMPLES OF HUMIDITY CONTROL

(b)

(c)

Fig. 7. Equipment for decreasing humidity: (a) fan heater, (b) dew-point condenser, (c) desiccator

(a)

Fig. 8. Equipment for increasing humidity: (a) water spray, (b) steam jet

(b)

HOUSING THE AMPLIFIER

Amplifier panel, power pack, and relay can be conveniently mounted inside a small wood or metal box, together with a terminal block to take the leads from the thermistor sensor and humidity control equipment. Alternatively, the humidistat assembly could form part of the main equipment inside a single housing, with the sensor situated elsewhere in a well ventilated position.

Mount the set humidity control VR2 on the front panel of the box, with a calibrated scale traced from Fig. 3. If desired, the calibration can be checked against a wet and dry bulb hygrometer, after filling the humidistat water reservoir.

DECREASING HUMIDITY

To decrease humidity in an environment, the air can either be heated, cooled down to dew-point to condense out the water vapour, or passed through a desiccant. The first method has the advantage of simplicity, but also carries the penalty of an uncontrolled temperature change, which may not be satisfactory for glasshouses or rooms where people are working.

In Fig. 7a, a 1 to 2 kilowatt fan heater is wired in series with a mains supply and the normally open contacts W and Z of RLA1. The heater is switched on when ambient humidity rises above the level set by VR2.

Although more complicated, the technique of cooling air to condense out water vapour is very effective. In Fig. 7b, air from a fan is directed over fins which are cooled by a refrigerant. Excess water vapour condenses on the fins and drips into a water container, then the air is reheated to bring it back to its original temperature. Control of both humidity and temperature is easy to achieve with the one unit, by placing a thermostat in series with the heating element.

To construct a de-humidifier similar to that shown in Fig. 7b, air could be directed around the ice box of an old refrigerator, and elements taken from an electric toaster would serve to re-heat the air.

If air is blown over a desiccant, such as calcium chloride, water vapour is extracted from the air to form a saturated solution on the surface of the chemical, which drips away to expose a fresh, absorbant surface. Over a period of time, the solid desiccant is converted to a liquid. The advantage of using a desiccant for air drying is that it does not introduce any significant change of air temperature. In Fig. 7c, the calcium chloride is contained in a tray, with the air flow from a fan arranged to pass over and through the desiccant.

INCREASING HUMIDITY

Some environments are naturally dry, and water vapour has to be added to the air to maintain humidity at a constant level. Note here that the control equipment is wired to RLAl contacts W and Y , so that corrective action takes place with a drop in humidity.

Looking at Fig. 8a, a fan blows air at high velocity over a needle valve jet to form a fine water spray. Evaporation will cause some degree of air cooling and it may be found necessary to heat the water in the spray container to offset the change of air temperature.

In Fig. 8b, a small boiler is heated by an immersion element. The water in the boiler is maintained close to boiling point by efficient thermal lagging. At a command from the humidistat, the heater is switched on, the water boils, and a jet of steam adds water vapour to the air. Steam heat will, of course, tend to raise the air temperature.

 FERROUS METAL LOCATOR

This highly sensitive instrument is based on a new design concept for ferrous metal locators. It utilises the magnetic resonance properties of protons in order to monitor the earth's magnetic field intensity. Any anomalies due to presence of ferrous materials are indicated visually on a meter or audibly on a headset.

TRIAGL LaMp Prifullion

A circuit specially designed to maintain constant light intensity under varying mains voltage conditions. This controller is intended for darkroom use in conjunction with anenlarger lamp to achieve consistent results while printing from film negatives.

ORDER YOUR COPY NOW!

PRACTICAL

OCTOBER ISSUE

- ON SALE SEPTEMBER 14 -

THE pick-up to be described is a moderately high impedance unit which will readily match any commercial guitar amplifier. It is ideal for mounting in solid guitars but can be adapted for use with acoustic instruments.

There are few parts required including six small magnets and a coil mounted on a platform or base, preferably made of steel. The magnets employed in this design are bar or rod type.

MAGNET ASSEMBLY

The magnet assembly is made up on a small piece of 18 s.w.g. bright mild steel sheet $\frac{3}{4}$ in wide by $2 \frac{1}{2}$ in long. Mark the centre line along the length of the strip and mark off six stations at $\frac{3}{8}$ in intervals (or dimensions to suit your guitar string spacings if different) along this line. Work from the centre to each end in turn when marking these string spacings.

At these six points, drill six holes through the strip with an eleven sixtyfourths drill. Lightly ream the holes with the tag end of a suitable file so that the magnets are a firm push fit in the holes (see Fig. 1). Drill a small hole $\frac{1}{8}$ in dia. as indicated for the wires. The assembly is now ready to accept the coil.

MAKING THE COIL FORMER

Coil winding may, at first, sound formidable but, in fact, is quite easy, although patience and care are required. The coil should have a d.c. resistance of about 5 kilohms and will require 5,000 turns of 47 s.w.g. enamelled copper wire. This is obtainable from some of the component suppliers advertising in this magazine: about 2 ounces will be enough for this coil.

To construct a bobbin or former (as shown in Fig. 2) a scrap of 4 in or 6 mm ply about 2 in square and two pieces of $\frac{1}{16}$ sheet s.r.b.p. about 3 in square and four 6B.A. nuts and bolts are required.

Fig. I. Magnet assembly with the six magnets in position ready to accept the coil

Fig. 2. Exploded view of the coil formers, showing how the pieces are assembled. Lower left-how the tying cotton is positioned under the tape before winding

Tel. 01-452 0161/2/3
A. MARSHALL \& SON Telex 21492 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2

CALLERS WELCOME HRS, 9-5.30 Mon-Sat

Begin by marking and cutting the ply into a disc 1 in in diameter and do the same with the sheet s.r.b.p. making these 2 in diameter. Drill through the centre of all three pieces with a number 12 drill and assemble temporarily, bolting together with a 2B.A. nut and bolt.

Mark off and drill four holes with a number 32 drill at 90 degree intervals half an inch from the centre. The former can now be dismantled and the wood centre piece cut in half across its diameter. Reassemble the former, bolting together with the four 6B.A. nuts and bolts and note that the centre now has two slots across its face the thickness of the saw cut.
Drill a small hole in one cheek plate just outside the periphery of the wooden centre for a lead-out wire.

PREPARING FOR WINDING

A temporary set-up for turning the former can be provided by a hand drill fixed in a vice; alternatively a slow turning lathe with hand clutch would be useful. Check the gear ratio of the hand drill to determine the turns required to rotate the bobbin 5,000 times. This can be done by counting the teeth. Divide the number of turns of wire required $(5,000)$ by the gear ratio of the drill and this will indicate the number of times the handle must be turned.
Now prepare the bobbin for winding but first ascertain that the edges of the "cheeks" are very smooth or they will cut the wire, which is only 0.002 in diameter and needs careful handling.
A few "odds and ends" will be needed; these are four lengths of sewing cotton each about 6 in long, some thin insulating tape (not transparent cellulose adhesive tape) fin wide and a foot or so of very thin p.v.c. covered flexible wire (size $7 / 0048$). About a foot of thin screened pick-up wire and a thin polythene bag are also required.
Begin by cutting a piece of the tape of sufficient length to go round the centre of the former with about an inch to spare (about 6in). A rounded or slightly angled cut across one end will make the tape easy to introduce into one of the slots. Push the tape about half an inch into one of the slots and, sticky side outermost, wrap the tape round the former.
Place a length of cotton across the cheeks, trapping it beneath the tape. Place the remaining lengths of cotton similarly at equal spacings round the bobbin and continue wrapping the tape, finishing with about half an inch over-lap at the slot where you started. Fig. 2 shows one cotton trapped beneath the tape.
The four loose ends of cotton on each side of the bobbin can now be taped temporarily to the face of the cheeks to prevent them from getting in the way when rotating the bobbin.
Cut a length of the thin p.v.c. wire about 3 in long and bare and tin about $\frac{1}{8}$ in at both ends. Carefully bare the end of the enamelled copper wire for about an inch by rubbing very lightly all round with fine sandpaper. The copper will show brighter when cleaned. Wrap this around the tinned end of the thin p.v.c. covered wire and lightly coat with solder.

A hand drill can now be fixed in a vice (turning hand uppermost) and the bobbin fixed to the chuck by means of a 2B.A. bolt which is already fixed through the centre hole of the bobbin with a nut. Check that the bobbin does not slip when the chuck is rotated.

WINDING THE COIL

The p.v.c. wire, with the 47 s.w.g. wire attached, can be threaded through the hole in the cheek of the bobbin. Leave the soldered joint just inside the hole and tape

Six Eclipse bar magnets $\frac{3}{16}$ in $\times \frac{1}{2}$ in (James Neill \& Co. (Sheffield) Ltd., Napier Street, Sheffield II) Miniature p.v.c. wire $7 / .0048$
Enamelled copper wire 47 s.w.g. (2 ounce reel)
Bondaglass casting resin and catalyst
Bondaglass colouring pigment
Bondaglass release agent No. 2
Miniature screened lead, single conductor (Ift)
Steel sheet 18 s.w.g. I sq ft
S.R.B.P. sheet $\frac{1}{16}$ in thick, 3 in $\times 6$ in
Scrap of $\frac{1}{4}$ in plywood about 2 in square
Wood strip lin square $\times 3 \frac{1}{2}$ in long

down to the sticky face of the lining tape with another short length of masking tape. The beginning of the winding will be securely held.

The reel of 47 s.w.g. wire can be stood on one end and the wire will run over the upper end as the chuck is rotated, if we position the reel beneath the chuck. It is important that the enamel coating on the $47 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. is not scraped or damaged and the wire is not allowed to kink.
Guide the wire on to the bobbin very lightly with one hand while slowly turning the drill handle with the other. Endeavour to pile it evenly across the width of the former. Five thousand turns of wire should just fill to within about 3_{3}^{3} in from the outer edge of the cheeks of the bobbin.

When the winding is complete, hold the winding firmly so that it does not work loose, then attach a p.v.c. lead-out wire to a bared end of the winding. Before removing from the chuck, un-tape the ends of the cotton and lightly tie the mating ends over the coil, then cut a few strips about $\frac{1}{2}$ in wide from the polythene bag.

After removing the bobbin from the chuck, dismantle by removing the four 6B.A. bolts and the cheek plates. Push out the wood centre, being especially careful not to catch any of the loops of wire, and cut off the surplus masking tape that was threaded into the slot in the centre of the coil.
Position the two p.v.c. leads together and carefully bind the coil with the polythene strips by passing through the centre hole and half-lapping the strip edges. A termination to the binding can be made effectively by applying a spot of polystyrene cement to the polythene and welding the join.
The circular bound coil which results can now be quite safely squeezed into an oblong shape and fitted over the magnets. Feed the two p.v.c. wire ends through the hole in the platform.

View of pick-up mounted on an f-hole guitar

If an ohmmeter is available check the coil resistance. If the coil does not fit snugly enough on the magnets it can be tied in position with further lengths of cotton.

RESIN MOULD

The completed pick-up assembly is moulded in resin; Bondaglass casting resin or similar products can be used to encapsulate the pick-up assembly. It is supplied with the accelerator ready mixed and only requires the catalyst to be added. The resin is clear so a colouring pigment can be added if desired.

A mould must be made in which to encapsulate the pick-up; this can be made from brass, copper or steel. Do not use plastics or card. The finished "case" can be any size to suit the constructor's needs or taste, but a suitable size would be about $3 \frac{3}{4}$ in long, lin wide and $\frac{5}{8}$ in deep, with parallel sides and radiused ends as suggested in Fig. 3.

The base plate of the mould is about one inch larger all round than the body dimensions. The sides are pre-formed round a wood block cut and shaped to the intended finished case size. The metal is butt jointed in the centre of one side and a capping plate sweated over the join on the outside.

Fig. 3. Suggested mould for casting the pick-up body. The material used would preferably be 18 s.w.g. brass, copper or steel

Pick-up mould and the finished casting removed from it

Cut a piece of metal (not aluminium) about 3 in by 5 in for the base and a strip the same width as the intended height of the pick-up of suitable size to shape round the block, also a small piece for the seam cover. The seam cover is best sweated over the joint whilst the side is still round the block.

Position the body on the base and thoroughly clean the surfaces to be joined. Use a large soldering iron to run a solder fillet all round the join. Some assistance may be required to perform this operation.

When the mould is cool, clean up the inside and polish with metal polish. The resin will faithfully reproduce the detail of any surface against which it is cast, so all surplus solder and other projections must be cleaned off.

Now is a good time to attach the screened lead to the pick-up assembly. Make the join as close to the platform as possible and connect the outer terminal wire of the coil to the screen, soldering both to the platform, so earthing the metal work. The inner termination of the coil is connected to the inner conductor of the screened lead and insulated.

CASTING

Place the pick-up assembly centrally in the mould and note the position of the two end magnets. Mark their position and drill two holes (number 26 drill) in the base of the mould to coincide with the position the magnets occupy. These will be "release" holes. Remove the pick-up assembly.

The inside of the mould should now be coated with a "releasing" agent, such as the alcohol based liquid prepared especially for metal moulds by the resin manufacturer. Let this dry thoroughly whilst mixing the resin and pigment to the maker's recommendations. Measure out sufficient resin to fill the mould, using an empty glass jar or similar container.

On the underside of the mould base, cover the release holes with pieces of masking tape pressed down firmly and place the pick-up assembly centrally in the mould with the platform uppermost. Tape'the screened lead to the outside of the mould to keep it under control whilst the resin is setting.

The catalyst may now be added to the resin (follow the maker's instruction). Pour some of the mixture into the mould at one end and tilt slightly to enable the resin to run more freely between the magnets and coil.

Continue pouring the resin in slowly at one end so as to prevent the formation of air bubbles, until the mould is full. The casting will set in about 40 minutes but is best left for a couple of hours to "cure" before removing from the mould.

When'it is ready for removal peel off the tape covering the release holes and insert a 4B.A. bolt in the holes alternately, tapping very gently with a light hammer; after a few taps the casting should come readily out of the mould. The top edge all round the casting should then be slightly chamferred or radiused with a fine file, the whole body being finally polished with metal polish or, better still, buffed on a polishing mop if one is available.

MOUNTING THE PICK-UP

Reference to Fig. 4 will show a method of mounting which needs little explanation. This method, basically, is adopted almost universally by professional guitar makers. Mount the finished pick-up on a strip of metal the same width as the body and about $4 \frac{1}{2}$ in long, inserting two small pieces of foam plastic or felt between them and glueing with impact adhesive.

a new 4-way method of mastering by doing - and - seeing ...

| 4 | CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC |
| :--- | :--- | :--- |
| CIRCUITS AND SEE HOW THEY WORK . . INCLUDING | |

VARIABLE VOLTAGE TRANSFORWERS

LIGHT SENSITIVE SWITCH
Kit of parts, including ORPI2 Cadmium Sulphide Photocell, Relay, Transistor and Circuit, etc., 6-12 voit $\& P$. ORP 12 including circuit. 12/6 each, Post Paid.
A.C. MAINS MODEL. Incorporates Mains Transformer, Rectifier and special relay with 2×5 amp mains c/o contaces Price inc. circuit $47 / 6$ plus $2 / 6 \mathrm{P} .8 \mathrm{P}$. CELL MOUNTING At $t=$ Precision engineered
 light source with adjustab
 amp housing, to take MBC bulb. Separat photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair $\leqslant 2.15 .0$, P. \& P. $3 / 6$ UNISELECTOR SWITCHES NEW
4 Bank 25 Way 24 V d.c.
 peration $£ 5.17 .6$, P, \& P. $2 / 6$
6 Bank 25 Way 24 V d.e. 6.10 .0 , p.p. $2 / 6$. 8 Bank 25 Way 24 V d.c. operation \&7.12.6 plus 4/6 P. \& P.

RELAYS NLew SIEMENS,

 relays at COMPETTTIVE PREGICES
T.M.C ILLUMINATED LOCKING PUSH BUTTON KEY SWITCH No. S.525594 Lock $4 \mathrm{c} / \mathrm{o}$ Complete with mounting bracket. push knob and
lenses (green. amber, red or cleare)

rice $14 / 6$ each excludin

 bulb, post paid. Discounselectronic organ kit

for Electronically minded boy. Easy to build,
(less sharps sold flate. Fited hardwood case, using two penlite $1 \frac{1}{} v$ batteries. Complete set of parts including speaker together with full instructions and 10 tunes. Have all the pleasure of building this instrument and finish with a delightful gift for any child. Price $£ 3.0 .0$. P. \& P. $4 / 6$.
50 IN I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, Speaker, Meter, Relay, Transformer, plus a host of other components and a 56 page instruction leaflet. Some examples of the 50 possible Projects are: Sound level Meter, 2 Transiscor Radio, Amplifier, etc. etc. Price $£ 7,15.0$. P. \& P $6 /-$

10 IN I PROJECT KIT

10 easy to build Projects including: Radio. Morse Oscillator, LF Oscillator, et etc. A Solar Cell is included in this Kit as alternative power for some of the instruction leaflet Price $33,17.6$. P \& P step $4 / 6$

INPUT $230 / 240 \mathrm{v}$. A.C. $50 / 60$ BRAND NEW
Keenest prices in the country. All Types (and Spares) from $\frac{t}{2}$ to 50 amp. from stock. SHROUDED TYPE
1 amp, f5. 10. $0 . \quad 2.5$ amps, \&6. 15. 0 . 5 amps, \&9. 15. 0 . 8 amps, 144.10 .0 .10 amps, f18. 10. 0. 12 amps, $£ 21.0$. 0. 15 amps, $£ 25.0 .0 . \quad 20$ amps,
$£ 37.0 .0 .37 .5 \mathrm{amps}, \pm 72$. 0.0. £37. 0. 0.137 .5 amp
50 amps, 192.0 .0.
OPEN TYPE (Panel Mounting) $\frac{1}{2}$ amp, £3.18.6. $1 \mathrm{amp}, \mathbf{£ 5 . 1 0 . 0}$. 2 2 i amps, $£ 6.12 .6$.

Carriage extra on open types.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and trigger ing circuit. 230/250v. A.C. operation.
EXPERIMENTERS' ECONOMY KIT
Speed adjustable I to 36 Flash per sec. All electronic
components including Veroboard S.C. R Unijunction components including Veroboard S.C.R. Unijunction Xenon Tube andinstructions 25.5.0 plus Si P \& P NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyrist
Speed adjustable I-80f.p.s. Price $9 \mathrm{gns} .7 / 6 \mathrm{P} .8 \mathrm{P}$. HY-LYGHT STROBE
This strobe has been designed and produced in response to wide public demand, for use in large rooms, halls and the photographic field, and utilizes a silica plug-in tube assembly, also a special erigger coil and output capacitor Speed adjustable 0-30f.p.s. Light output approx. 4 joules. Price \& 10.17 .6 . P. \& P. $7 / 6$. 7-inch POLISHED REFLECTOR
Ideally suited for above Scrobe kits. Price 10/6. P. \& P. 2/6

100 WATT POWER RHEOSTATS TNEWI

AVALLABLE IN THE FOLLOWING VALUES
1 ohm, 10 a.; 5 ohm, $4.7 \mathrm{a} \cdot ; 10 \mathrm{ohm}, 3 \mathrm{a} . ;$
 280 mA ; 1.5 Kohm, $230 \mathrm{~mA} ; 2 \cdot 5$ Kohm, $2 \mathrm{a} . ; 5 \mathrm{Kohm}, 140$ mA. Diameter 31 in. Shaft length lin., dia. bis in. All at $27 / 6$ each. P. \& P. $1 / 6$.
50 WATT.
50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 15 / 2.5 / 5$ Kohm Allat 21/= each. P. \& P $1 / 6$ - 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 15 / 25$ Kohm. All at $14 / 6$ each. P. \& P. $1 / 6$.
VEEDER ROOT, 230 V a.c. 50 cycle, 5 -figure ses
 NTCKEL CAD. BATTERY OUTFIT (Ex. W.D.)

24-30V D.C. operation. Stabilised unijunction imer and S.C.R. (30 V I amp.), encapsulated
 1) from a fraction of a second to several minutes by means of external resistor or pot. By adding a 24 V Relay many other complex timing Functions are possible.
Price: $16 / 6$ incl, circuit. P. \& P. $2 / 6$. Suitablerelay $10 /$ postpaid

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV. 8 AMP

Now available EX STOCK. Supplied with full data and applications sheet. Price $21 /$-plus $1 / 6$ P. \& P.

RE-CHARGEABLE

BUTTON CELLS $21.2 V 250 \mathrm{MA} / \mathrm{MR}$ Nickel Cad. Cells, connected to give $2 \cdot 4 \mathrm{~V}$ (u. 25
milliamp/10 hour rate, completc with $200 / 250 \mathrm{~V}$ A.C. charger. Fully tesed and unused. Price
$9 / 6$ each plus $1 / 6 \mathrm{P}$ \& P or 2 units for Cl Post

insulated terminals Availabie in red. white, rellow. black, blue
and green.
New ,
Price $2 /$ each

SERVICE
 TRADING CO

All Mail Orders-Also Callers-Ample Parking Space
Dept. P.E. 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY

Personal callers only 9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

20 SOLD STATE PROJECTS FOR THE HOME

by R. M. Marston

18/-
Postage $1 /$-.
POWER ENGINEERING USING THYRISTORS VOL. 1 , by Mullard. $30 / \mathrm{F}$.

TRANSISTOR AUDIO AND RADIO CIRCUITS, by Mullard. 30/.. Postage $1 /$ DIGITAL COMPUTER BASICS, by Bureau of Naval Personnel. 19/-. Postage

PAL-D COLOUR RECEIVER QUESTIONS \& ANSWERS, by K. J. Bohlman. 13/6. Postage $1 /$
PRACTICAL INTEGRATED CIRCUITS, by A. J. McEvoy and McNamara. 18/-. Postage i/
TRANSISTOR MANUAL, by General Electric Company. 21/-. Postage 1/6. RADIO COMMUNICATION HAND. BOOK, by R.S.G.B. 36/-. Postage 4/6. AUDIO, CIRCUIT DESIGN, by Motorola. 12/6. Postage 1/6
VHF-UHF MANUAL, by G. R. Jessop 21/-. Postage $1 / 6$.

THE MOODRN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON, W. 2 Phone: PADdington 4185
Closed Saturday I p.m.

hUGE SAVING ON USUAL RETAIL PRICE!!

Latest new and improved "JUliette nasolba communications receiver 5 BAND MAINS/BATTERY SOLID STATE A.F.C. PORTABLE RECEIVER

OUR PRICE 3

(cash only) + 9/-P. \& P.

Optional extra B.F.O. Unit. Add 35/- to your remittance.

- Am Band: Full Mediu!n Band: Shipping. Hame, sw, ete - FM/VHF: Ratios 2, 3, 4; TY sound, Public Services, etc. tivity); Airlines, Military Aircraft, ant Grount Control. -PB (High VHF Band): TV Sound, Fire. Ambulance, ętc.. Taxis, shipphing, Fụel Boarts, Oil Rige (fas and Electric Boards, Local Hame, Industrial and Commercial Motiles, ete. (ALL DEPENDING ON LOCALITY.) Frequencies covered: AM 535 to 1600 Kc , MB 1.6 to $4.6 \mathrm{Mc}, \mathrm{VHF} 108$ to $134 \mathrm{Mc}, \mathrm{FM} 88$ to 108 Mc , PB 148 to 774 Me . Impressive and sturdy design in Chrone and Black Leather. Ultra sensitive. Transistor circuit. Earpiece and sorket. Lealher carrying alll shoulder atraps. Powertul 4 in PM dynamic Hi-Fi apeaker. VHF directional telescopic and internal ferrite rod ierials. Size: 9 in : $5 \mathbf{5}$ in $\times 4 \mathrm{in}$. Wt. 5 良lb. Standard

STOCKTON PARTNERS (P.E.)
 bRIGHOWGATE, GRIMSBY, LINCS.

Telephone 0472 58815/64196
Irrporters and Electronic Equipment Distributors

PICKUP WELL IN BODY OF SOLID GUITAR PLATE DRILLED AND TAPPED 6BA
Fig. 4. Pick-up fitted in the well of a solid guitar body

The body of solid instruments has a "well" of suitable dimensions cut to about half the thickness of the body, or a little less, at a position close to the end of the finger board, and another close to the position the bridge will occupy when two pick-ups are fitted. These wells are interconnected by a channel to take wiring and controls and the whole is covered by an artistically shaped plastics plate known as a "scratch" plate, to which pick-ups and controls are attached.

The usual method of attaching the pick-up (Fig. 4) is to mount it on a metal plate, with a tapped hole at each end and about half an inch away from the pick-up body. Corresponding holes are drilled in the scratch plate through which are passed boits to screw in to the tapped holes in the mounting plate. The bolts also pass through coiled compression springs positioned between the mounting plate and the underside of the scratch plate. On some American made instruments, rubber grommets are used instead of springs.

The action of turning the bolts or screws will cause the mounting plate to come closer or further away from the scratch plate, so adjusting the height of the pick-up relative to the strings. Two or even three of these pick-ups may be so fitted with whatever switching and control arrangement the player may decide.

Acoustic instruments of the " f " sound hole type can also be fitted with this pick-up, provided the strings are of sufficient height above the top of the guitar body. In ihis case, the pick-up should be equipped with "feet" cut from thin felt and lightly spot glued to the top of the guitar just forward of the end of the finger board. This will not impair the acoustic qualities of the instrument. The scratch plate on this type of instrument is usually mounted on brackets holding it some distance away from the body and will accommodate volume and tone controls quite readily in most instances.
In use, the pick-up will be very robust, completely impervious to moisture and likely to give many years of unfailing service. Frequency response is fairly linear and the output should be in the region of at least 200 mV peak-to-peak.

A pick-up having four poles suitably spaced for a bass guitar can be made in exactly the same way but in this instance the coil should have a d.c. resistance of approximately 8 kilohms.
off the shelf for as little as $2 /$ - per watt. Maximum distortion $0.1 \% 20 \mathrm{~Hz}$ to 20 kHz . Full power bandwidth 10 Hz up to $80 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Complementary and quasi-complementary versions in all power ratings perform to the same high standard Unconditionally stable. Fully protected against accidental misuse.

* Stereo Integrated Circuit Preamplifiers
* Stereo Headphone Amplifiers
* Toroidal Mains Transformers all designed to the exacting standards of the professional user
Transaudio combines sophisticated design and no-nonsense engineering in semi-kit products incorporating Motorola transistors/ICs and other dependable components assembled on fibre glass circuit boards. Write today for full details.

Transaudio Limited
8 Elsworthy Rise London N W 3
"Setting the Standard for the Seventies'

FIRST CHINESE SATELLITE

China's first successful launch of an earth satellite took place on April 24, 1970. Peking announced the event the next day on a frequency of 20.009 MHz .

The satellite signals were of an unusual nature in that there was a one minute cycle of alternate music and telemetry. The music consisted of five bars of ""Tungfanghung" (The East is Red).
G. E. Perry at Kettering Grammar school, well known for his tracking of Russian satellites and probes, picked up the signals at the end of the twelfth orbit at 14.02 UT on April 25. His analysis of the signals showed that the first 40 seconds of the one minute period was devoted to the musical theme. This was followed by an interval of 5 seconds, a 10 second transmission of telemetry and a further interval of 5 seconds. After this the cycle was repeated.

The telemetry consists of audio tones in steps of 13.6 Hz . The duration of the first tone, which is of the same frequency as the highest musical frequency, has a duration of twice the time of the succeeding tones. The frequency is one hundred times the minimum difference between tones. The first tone is followed by 20 tones of equal duration followed by several rapid tones. Perry suggests that the outputs are quantised at 32 levels before transmission and points out that there is the possibility that the readout is a five-bit binary code.

APOLLO 14

The launch of Apollo 14 will not now take place before January 31, 1971. The crew, Alan Shephard, Stuart Roosaand and Edgar Michell will make for the Apollo 13 moon site at the hilly Fra Mauro area.

The necessary modifications recommended by the Apollo 13 review board are being implemented. The principal changes will include stainless steel tubes to carry the wiring inside tanks in place of Teflon. The fans used to stir up the liquid oxygen will be removed from the tanks to obviate the need of wires that might introduce a fire hazard.
An additional oxygen tank will be added to the service module and will be used when the normal tanks are 70 per cent emptied. Oxygen
tank failure alarins are to be fitted and additional warning and alarm to watch sub-systems operation are being added. Some of these will operate in the spacecraft and some at the ground control centre at Houston.

TRACKING STATION IN SPAIN

The third and final link which will form the world-wide tracking system of three main stations spaced equidistant round the earth has just been completed in Spain, 40 miles from Madrid. This facility will enable continuous monitoring of spacecraft several hundred million miles into space. It is possible that under certain conditions the monitoring may extend to the edge of the solar system.

The US National and Aeronautics Space Administration have an agreement with the Instituto de Technica Aerospacial for this new facility, in addition to that one existing and using the 85 foot antennas for deep space tracking. The three larger stations with 210 foot antennas (one at Goldstone in USA, one at Tidbinbilla near Canberra and the new one near-Madrid) will greatly extend the efficiency of the system.

At Goldstone the antenna has for several months been used to study the Einstein relativity theory. This uses the signals from the small 7 watt transmitters aboard Mariner 6 and Mariner 7 which are moving in orbit behind the sun. The distances at which successful contact has been made is 251 million miles for Mariner 6 and 242 million miles for Mariner 7.

WEIGHTLESSNESS

The recent Russian long period orbital experiments with astronauts is reported to have revealed a number of effects which need careful and objective appraisal.

Future manned flights to Mars will require very long periods in the artificial environment of a spacecraft and generally the problem of environment can be solved by the improvements that can be made in the life support systems. However, the medical considerations of weightlessness and its effects on the human body are important and must influence the progress that is to be made in planetary exploration.

MINERAL DEFICIENCY

The two-man Gemini flights revealed that the minerals important to the human skeleton were very much depleted. If this continued in spite of enriched calcium diet and exercise, such as on a spaceflight of many months, then a fragility of bone could arise.

Another more serious process is that known as cardiovascular deconditioning, which leads to an impairment of the circulatory system. On earth, in normal gravitation conditions, the lower limbs have about a litre of blood indistribution. During weightlessness there is a redistribution and some blood rises to the chest level. This can produce a distention of the vessels near the heart and also an increase in urine output. The result of this is that the amount of blood in circulation is reduced by more than 10 per cent.

These changes are not of great importance in moonflights. All the astronauts showed an unsteadiness on their feet on return but this passed off fairly quickly. Long flights of many months to Mars, for example, could mean that even in the reduced gravitational field that exists on that planet the astronauts might need time to recover before they could carry out their physical tasks.

It is clear that there is much work to be done in this field before extensive manned flights can be undertaken. It may be that a form of artificial gravity will need to be built in the spacecraft. Provision of adequate exercising facilities, so designed that gravity can be simulated, could be a more simple answer. It may well be that there is a minimum level of gravity required to offset these effects, in which case the problem may not be a formidable or costly one.

Only after long periods of weightlessness have been experienced can it be decided just how important the effects described are to the future well being of the astronaut and any other space traveller.

URANUS AND NEPTUNE

Two Russian astronomers have recently suggested that the temperatures at the centre of the Uranus and Neptune planets is very high. These two members of the Moscow Institute of Earth Physics put forward the hypothesis that only the outer surface down to a depth of a few hundred kilometers has cooled to any great extent during the time since their formation.

Assuming a period of 5 billion years and a surface temperature of $-173^{\circ} \mathrm{C}$, then the interior or core temperature will be of the order of $26,400^{\circ} \mathrm{C}$ for Uranus and $31,000^{\circ} \mathrm{C}$ for Neptune. From this they conclude that the planets have hot cores and icy surfaces. This hypothesis can be tested, for if the planet; have a magnetic field it will support the idea of a hot interior.

SPEGIAL OFFER - 7/6 OFF T-Dec.
Normal recommended retail price of $50 /-$
Take this coupon to your local stockist who will supply one T-Dec. for 42/6d

Offer closes 15th September 1970

S.D.C. ELECTRONICS (SALES) LTD.

34 Arkwright, Astmoor Industrial Estate, Runcorn, Cheshire. Tel: Runcorn 5041.

FULLY TESTED AND MARKED			
${ }_{\text {ACl }}^{\text {ACl }}$ A ${ }^{\text {ACl26 }}$	3/6	OC170	3/-
${ }^{\text {A C }} 127$	$3 / 6$		3/6
${ }_{4}{ }^{\text {A C } 176}$	$5 /$	26301	$2 / 6$
ACY17	3/-	$2 \mathrm{2G303}$	2/6
${ }_{\text {AF }}^{\text {AF } 2396}$	${ }_{10}^{12 / 6}$	${ }_{2}^{2 N 711} 2$	10/-
AFF139	10 -	2N1304-5	$5{ }_{5}^{4-}$
BC154	5	$2{ }^{\text {N1 } 1306.7}$	6/-
	${ }^{2 / 6}$	2N1308-9	$\stackrel{8 /-}{5 /-}$
	${ }^{2} 1$		5--
EF274	3/-	Power	
Y50	4;-	Transistors	
ESY2S	$7 / 6$	OC20	10/-
ESY26	3/-	$\bigcirc{ }^{\circ} \mathrm{C} 23$	
ESY27	$3 /$	OC25	$8 /$
ESY28	$3 /$		
	$3 /$	$\bigcirc \mathrm{C} 28$	7/6
BSY95A		OC35	
${ }^{\circ} \mathrm{CO41}$	2/6	${ }^{\circ} \mathrm{OC} 36$	${ }^{7 / 6}$
${ }_{\text {OC4 }}$	${ }_{2}^{2 / 6}$	AUYIO	30/-
CC71	216	25034	10/-
$\mathrm{aCl}^{\text {C72 }}$	$2 / 6$	2N3055	15/-
${ }^{\circ} \mathrm{Cl} 73$	3/6	Diodes	
$00^{0.810}$	216	OA95	2/2
- 083	$4 /$	OAT9	$1 / 9$
-\%E139	3/6	OAB1 IN914	1/9

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS OVER 24

SURPLUS INTEERATED CIRCUITS

These are brand new genuine surplus stocks marked and guaranteed to full mákers' specification and not re-marked rejects.

NE808A
Single $81 / \mathrm{P}$ Nand Gate TTL
NE825A \quad D.C. Clocked J-K Flip-Flop NE840A Dual $4 \mathrm{~J} / \mathrm{P}$ Exclusive OR Gate TTL NE855A Dual 4 Power Gate TTL $\begin{array}{ll}\text { NE870A } & \text { Triple } 31 / P \text { Nand TTL } \\ \text { SN7430 } & 8 \text { Input Posirive Nand }\end{array}$ SN7430 8 Input Positive Nand Gate TTL SP631A Quad 2 1/P Gate Exparider DTL $\begin{array}{ll}\text { SP670A } & \text { Triple } 3 \text { Nand Gate TTL }\end{array}$ SP806A Duali/P Expander TTL SPB16A Dual 4 I/P Nand Gate TTL SP82SA \quad D.C. Clocked J-K Flip-Flop TTL SP855A Dual 4 Power Gate TTL SP870A Triple 3 J/P Nand TTL SP880A Quad 2 //P Nand TTL NES00K Video Amplifier
NE50IK Video Amplifier
NE501K Video Amplifier 40 MHz NE806J Dual $41 / P$ Expander TTL $\begin{array}{ll}\text { NE808J } & \text { Single } 8 / / P \text { Nand Gate TTL } \\ \text { NE816J } & \text { Dual } 41 / P \text { Nand Gare TTL }\end{array}$ NE825J D.C. Clocked J-K Flip-Flop NE8401 Dual 4 IJP Exclusive OR Gate TTL NE855s Dual 4 Power Driver TTL NE880. Quad 2 I/P Nand TTL
ST620A J-K Flip-Flop DTL
Dual 4 Buffer/Driver DTL
NEW TESTED AND GUARANTEED PAKS

$\overline{B 2}$	4	$\begin{aligned} & \text { Photoc Cell/s.s. } \\ & 0.3 \text { ro } 0.5 \mathrm{sv} \text {, } 0 \end{aligned}$	10/\%
B77	2	ADI61-ADI62 NPN/PNP Trans Comp. Ouspur Pair	10/-
-81	10	Reed Switches, mixed type large and small	/-
- $\overline{\text { ®9 }}$	2	SSPS Light Sensitive Cells Light Res. 400Ω Dark $1 \mathrm{M} \Omega$	10/-
в9	8	NKT163/164 PNP Germ. TO-S equivalent to OC44, OC45	/-
B92	4	NPN. Sit. Trans. AO6 = $85 \times 20,2 \mathrm{~N} 2369500 \mathrm{MHz}$ 360 mW	10/-
3	5	GET113 Trans equiv. ACYIT-21 PNP Germ.	/-
6	5	2N3136 PNP Sit. Trans. TO-18. HFE 100-3	-
B98	10	XB112 and XB102 equiv. to AC126. AC156. OC81/2 , NkT27, etc	10/-
H4	250	Mixed Resistors. Post an	10
H7	40	Wirewound Resistors. Mixed sypes and values. Postage 1/6	10
H8	4	BYII S Sil. Recs 1000 PIV. I amp. plastic.	10/-
H9	2	OCP7I Light Sensitive	10/

RETURN OF THE UNBEATABLE P.I PAK. NOW GREATER VALUE THAN EVER
FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS, APPROX 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRAN SISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA TION ON THE TRANSISTORS.
please ask for pak P.I only $10 /=$
2/- P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
and accurate rev.
counter for any car.
FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL
P.O. RELAYS

Various Contacts and Coil Resistances. No individual selection. Post \& Packing 5/

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

PART THREE-By R. W. COLES

DIODE TRANSISTOR LOGIC

Diode Transistor Logic, like RTL, was initially used in discrete component form, the general circuitry will therefore be familiar to many readers who have had any experience of logic design.
Again like RTL, DTL was an early starter in the integrated circuit field, and since its inception, has become very popular with system designers because of its range of advantages coupled with a low price tag.
A departure from the usual trend in i.c. logic, DTL is available in several variations, depending on the manufacturer, but these variations are not basic, and in this discussion we will deal with what can be considered the "typical" trend in DTL characteristics at the present time.
One of the major features of recent DTL circuitry is its compatibility with what must certainly be the king of i.c. logic, the Transistor Transistor Logic family (TTL). Manufacturers now offer these two families under a common title of CCSL (compatible current sinking logic); the advantage of this compatibility will become obvious when TTL is dealt with later in this series.

BASIC DTL GATE

The building block on which DTL circuitry is based is the basic gate arrangement shown in Fig. 3.1. This is employed in the various gates, flip-flops, and monostables available in this family, with only minor changes. If this circuit is analysed, it will be a simple matter to understand the more complex arrangements described later.

Unlike RTL, the DTL gate is used as either a positive logic NAND gate, or a negative logic NOR gate, the gate operation being of the current sinking type. The components on the silicon chip, from which the circuit is constructed, are diodes, npn transistors, and silicon resistors.

The only other component to be utilised in any of the more complex arrangements, is a capacitor, formed by a reverse biased diode, but this is only used in a certain kind of flip-flop, and the monostable.

CURRENT SINKING

Fig. 3.2 shows a "skeleton" version of the basic gate, which is included to make explanation simple, and to show the current sinking path into an external circuit (gate 1). The inputs to the gate are applied to diodes D1 and D2, and may comprise either a positive voltage (which will reverse bias the input diodes), or an effective ground path (through a bottomed output transistor in a previous gate) which allows current to flow out of the diodes to earth.

TR1 is an emitter follower, providing current (not voltage) gain, and allowing the use of a fairly large resistor in the R1 position, thus limiting the current which can flow out of the input diodes. This is desirable, as this current will, of course, have to be sunk by the output of another gate.

Any reduction here will increase the number of inputs an output can handle, i.e. the fan-out will be increased. Diode D3 is used to increase the voltage necessary at the base of TR1, before TR2 will turn on, to give a "low" output. The total voltage which will be necessary, in fact, is the sum of the $V_{\text {be }}$ of TR1 and TR2, and the forward voltage drop of D3, making about 1.8 volts in all.

TR2 is the current sinking, or output device, and is connected in the common emitter configuration to provide both current and voltage gain. When this

Fig. 3.1. Basic gate circuit of DTL

Fig. 3.2. Two gate i.c.s connected to illustrate current sinking path

A	B	OUTPUT C
0	0	1
1	0	1
0	1	1
1	1	0

A	B	OUTPUT C
0	0	1
1	0	0
0	1	0
1	1	0

Fig. 3.3. Logic symbols of (a) positive logic NAND gate and (b) negative logic NOR gate with truth tables

Fig. प3.4. Typical dual gate expander integrated circuit. The two halves can be used together or separately

Fig. 3.5a. Circuit layout

Fig. 3.5b. Symbolic layout

(c)

Fig. 3.5c. Typical opplication
Fig. 3.5. Wired-OR logic circuits
transistor is off, the full positive supply, $V_{c c}$, is fed out of the gate, via R 4 , reverse biasing any following gate input connected to it.

When TR2 is turned hard on, it provides the earth path for any following connected inputs. The voltage at the collector of TR2 in this condition is determined by the number of inputs connected. This number is limited so that this voltage does not rise above 450 mV in practice.

DYNAMIC CONDITIONS

Let us now consider this gate under various input conditions. If one of the inputs is low, current will flow out of the diode concerned. The voltage presented to the base of TRI will be the sum of the output voltage of the previous gate (which is a maximum of 450 mV in the low state) and the forward drop of the input diode (about 600 mV).

As the voltage necessary to turn on TR1 and TR2 is 1.8 V , these transistors will not turn on, and the output will be high, at $+V_{\mathrm{CC}}$.

If both inputs are high, both the input diodes will be reverse biased; the base of TR1 will be effectively connected to $+V_{\mathrm{CC}}$ through R1, turning TR1 and TR2 hard on and giving a low output.

From this it can be seen that using positive logic any " 0 " input will give a " 1 " output, and two " 1 " inputs will give a " 0 " output (i.e. NAND). Using negative logic, any 1 input will give a 0 output, and two 0 inputs will give a 1 output (i.e. NOR). The logic
diagrams for these two configurations, and the truth tables showing their performance for various inputs, are given in Fig. 3.3.

EXPANDER INPUTS

Each of the integrated circuit families has its own unique family characteristics, not only in the circuitry used, but also in the way it may be used to implement logic functions. DTL incorporates several very useful features which can simplify logic layouts considerably.

A scan through any manufacturer's catalogue shows that many of the gates have "expander" inputs avaiiable, and an example of this is shown in Fig. 3.1. This input gives direct access to the base of the first transistor, by-passing the input diodes. As its name suggests, it is intended to allow the connection of extra diodes to increase the fan-in of the gate.

These extra input diodes may be discrete silicon switches, or, more usually, they may be in the form of another i.c. package, usually containing about eight diodes, as shown in Fig. 3.4.

It can be seen that this gate expander has further expander inputs, and in fact the number of inputs to the basic gate can be increased to more than twenty by this method, without adversely affecting its operation.

WIRED "OR"

The outputs of the standard series of DTL gates may be connected together to produce what is called the "wired-or" logic function. This most useful feature
allows the outputs of several gates to be connected together as an OR function without any extra components being used.

This function, which may also be called "dot-or" or "distributive-or", was used in logic designs before the advent of integrated circuits, because it effected real economies.
The operation of wired-or is quite simple, and is shown in Fig. 3.5a. If either of the output transistors is cut on, it will sink the current through the output resistors of both gates, giving a common low level output. The only affect this will have on the gate concerned, is a slight reduction of fan-out, because of the reduction in the effective value of the load resistance.

If both gate outputs are low at the same time, the same result will be produced, and only if both gates have high level outputs will the wired-or output rise. Although this operation is called wired-or, it could also be called "wired-AND" if negative logic is assumed, because the outputs of both gates have to be high to give a high output.
By connecting the outputs together in this way the fan-out available is reduced; in practice it may be assumed that for each extra gate output, the fan-out is reduced by one load.

IMPROVING FAN-OUT

To overcome the slight disadvantage of losing fan-out capability when using wired-or with standard DTL gates, an alternative gate is available without an internal load resistor. This type of gate can be wired together with an external resistor equal to one standard load or, alternatively, a group of these gates may be combined with a single standard gate. This will provide the necessary load without recourse to a discrete resistor.
In both of these cases the fan-out will be the same as for a single standard gate, no matter how many gates are involved.

A SIMPLE EXAMPLE

As a simple example of the use of this important logic function, consider Fig. 3.5c, which represents part of a digital computer. Here a dual two-input gate is used to route data from one of two shift registers; into a third, in serial form.
The instruction to load data from register \mathbf{A} or \mathbf{B}, is in the form of a positive logic 1 , fed to the appropriate two-input gate from the control unit, which will in turn be controlled by the programme. The data from the two source registers is in the inverted form (data) so that after passing through the NAND gate, it will be restored to its true form.
The action of this system is quite simple. If the programme requires that data from register A be transferred to C, a logical one is applied to the control input of gate X, and shift pulses are applied to both registers.
The data from A will therefore open or close gate X, depending on whether ones or noughts are present, and the true data will be shifted into C.

Alternatively, if the programme requires that data from B should be transferred, then a logic 1 will be applied to gate Y , the action continuing as before. The logic for this operation could be expressed as A and $\overline{L A}$ or \bar{B} and $\overline{L B}$, where LA and LB are the control signals.

SPEED

Diode Transistor Logic is generally rated as a medium speed family, though some manufacturers offer variations which may be either much faster or slower than the average. A good example of this is the Ferranti Micronor II series which is roughly twice as fast as what we will be taking as the "typical" DTL characteristic.
The speed of a logic gate, usually called its propagation delay, may be defined as the time taken to produce an appropriate output level after the arrival of a certain input level. For DTL this time is usually of the order of 40 ns . In practical terms this means that any pulse applied to a gate input which is not substantially longer than 40 ns , will not have any affect on the gate output.

The figure of 40 ns is only a typical value; under certain output conditions the delay will be longer or shorter. In addition, there are quite different figures for delay to high-level output, and delay to low-level output, due to the change in output impedance of the gate.

When the output level is dropping, the output transistor will be turned on, and the output impedance will be equal to the saturation resistance of the transistor, perhaps 50 ohms.

When the output level is rising the transistor will be turned off, and the output impedance will be equal to the load resistance, typically 6 kilohms.

As the main factor affecting the propagation delay is the effective capacitive load on the gate, it can be seen that this differing output impedance will in turn give a delay time which depends on whether the gate output is rising or falling.

FLIP-FLOP

There are usually two types of flip-flop in any manufacturer's DTL range, the d.c. coupled type, referred to as a JK element, and the capacitively coupled type, referred to-as a pulse triggered binary.

The former type can be operated at up to about 8 MHz , depending on the exact circuitry used. It is used in shift registers as well as counters and frequency dividers. The latter type is specifically designed for high speed counters and dividers operating at up to 20 MHz .

It is unlikely that the speed of a logic family will be of importance to any amateur experimenter, as most designs will be run at lower speeds than the maximum available, even with a slow logic type. However, there is one speed problem which is important, even in designs which run very slowly indeed; this concerns the rise time of the clock pulse in counters or shift registers.

CLOCK PULSE

Of the two types of flip-flop mentioned above, the pulse triggered type requires a very fast clock pulse rise time which must not be longer than 25 ns. The d.c. coupled flip-fiop does not require anything like such a rapid rise time, but it is recommended to keep it below $2 \mu \mathrm{~s}$ or trouble may be experienced.
As a general rule, no matter how infrequently each clock pulse occurs, it is vital to ensure that its leading edge is very fast, so fast in fact that the resolution available on the simpler oscilloscopes will make it immeasurable.

This problem is not as difficult to solve as it may sound, because any clock pulse edge which is too slow may be speeded up by using a DTL gate as a buffer. If
necessary, more than one gate may be used in series, each gate speeding up the clock pulse leading edge by at ieast ten times.

If, however, the source of clock pulses has a very poor rise time (for example, those derived from sine waves), it is best to use a Schmitt trigger circuit to speed them up. An example of both methods is shown in Fig. 3.6.

In the first example (Fig. 3.6a) the clock pulses are derived from a conventional multivibrator, and speeded up by two gates in series.

In the second example (Fig. 3.6b) the pulses are derived from the 50 Hz mains, via a Zener diode rectifier-squarer, the speed-up being performed by a simple complementary Schmitt trigger. The output of this is passed through a single gate to increase the speedup and provide the fan-out necessary to drive several flip-flop clock inputs.

FAN-OUT

As we have already investigated the subject of fan-out when dealing with RTL, it is not necessary to go very deeply into this specification when considering DTL. The reasons why fan-out is limited have been mentioned when dealing with the circuit of the basic gate. The
guide, under the very worst conditions, the smallest value for noise immunity is 200 mV . Under normal operating conditions a noise voltage of at least 500 mV is necessary to upset the operation of a gate or flip-flop.

As a practical guide, if a system occasionally malfunctions, and the design can be considered sound, noise may be suspected as the cause.

The first thing to consider is adequate supply decoupling. It is best to decouple the 5 V supply line every five i.c. packages with a capacitor of about $0 \cdot 1 \mu \mathrm{~F}$ to ensure that noise voltage spikes are prevented from travelling via this line from one package to another.

The next "noise-abatement" rule is never to use connecting wires (or printed circuit runs) of longer than about 12 in . This minimises the risk of pick-up, and also prevents "transmission-line", reflections that can occur due to the fast square leading edges present when gates switch.

OUTPUT LOGIC LEVELS

The output voltage of a DTL gate, under various loading conditions, has a major implication on the noise immunity of a system.

discussion of the wired-or function mentioned the special fan-out rules to be employed in that special case.

The fan-out of the DTL gate is normally quoted as eight loads, or gate inputs. However, in cases where a greater driving capability is required, a special buffer gate is available which has a fan-out of 25 loads, making it particularly useful for driving long clock lines.

The circuit of the buffer gate follows the same principles as the basic gate, except that an extra transistor is used to provide increased current gain.

NOISE IMMUNITY

Due to the circuitry used in the basic DTL gate, it is difficult to evolve any simple rule to describe the effects of noise pulses on a logic system. The immunity varies with fan-out, supply voltage, temperature, noise polarity, and gate output level.

A detailed discussion of all of these variables would be out of place in an article such as this, but as a useful

The worst case output voltages of a gate are those used to derive the noise immunity figures given previously. When a gate output is high, the only current it is called upon to supply is the leakage of the input diodes of other gates connected to it. This current will be very small, so the voltage dropped across the output load resistor will also be very small.

It is most unlikely that the high level gate output voltage will drop below 3 V , even at maximum fan-out.
In the low level output state, however, the output transistor will be called upon to sink a much larger forward current from the same input diodes, but as the resistance of a saturated transistor is much lower than that of the output load resistor, the output voltage in this state is unlikely to rise above 400 mV .

Next month a simple application-a slide projector delay timer-will be described which employs only four DTL packages and a few discrete components.

OHIWHETHNGL

ANTIQUE RECORDINGS

When talking about recordings we generally think in terms of tape or LP's or maybe the earlier types made on cylinders. Could there have ever been recordings made before this on any other type of medium? I was pondering the possibilities of this only a few weeks back and by a peculiar coincidence saw a letter by a fellow from New Jersey, USA, who has come across some pretty staggering facts.

It has been suggested that the process of making hand-thrown clay pots or even the brushstrokes produced in painting a canvas, could result in the direct mechanical recording of short snatches of conversation or other ambient sounds present at the time.

To check the hypothesis a pick-up cartridge, suitably furnished with a large wooden stylus and connected to a simple amplifier and headphones, was held against a newly-made pot that was allowed to revolve on a well balanced turntable. Now it was previously known that the potter's wheel used to produce the pot had developed a pronounced "chatter" and so on "play-back" the same anomaly was expected to be heard.

Indeed this seems to have been the case, but more interesting still, it appears that odd sounds made during the fashioning of the pot also could be detected! Similar effects, I understand, have been noticed in brushstrokes made with oil paints. If

you like the idea and would care to experiment, here's a set-up that seems to work:

Hook up a taut canvas to a small wooden stretcher or frame and arrange things so that it can be free to vibrate. To ensure that this is so you will need gently to apply an old pick-up stylus to the canvas (connect the pick-up to the input of an amplifier, see Fig. 1) and "speak to it". Assuming all is O.K. you should hear your voice. If a few brushstrokes are made while a radio or other source of noise is functioning nearby and then allowed to dry hard, subsequent examination of the strokes with a magnifying glass should reveal that certain strokes do carry the expected striations. Actually, if you can run the stylus over the canvas at the correct speed, a brief snatch (possibly distorted!) of the original is likely to be heard.

If you can afford a Ming vase or a Constable it might be worth a bit more research to see whether any hidden secrets became enmeshed in the finished work!

TACTILE IMAGER

Have you ever thought just how perceptive your skin is? Indeed, you might fancy performing a little experiment to demonstrate this point! First blindfold yourself, then ask your wife or girl friend to "write" on the back of your hand with the end of a clean spent match. Try asking them to write single letters of the alphabet to begin with. The results of determining what has been written are generally incredibly good and go to show us that we often have faculties we barely credited the existence of.

This ease we seem to have of "seeing" with the skin has quite recently been put to good use in helping the blind to obtain a kind of graphico-tactile impression of their surroundings. The idea has been brought to a reality by Professors P. Bach-y-Rita and C. Collins of the University of the Pacific, Stockton, California.

Their system, which they refer to as a tactile imager, relies upon a miniature television camera which feeds a processing unit driving a 20×20 matrix of vibrators. These are plastic tipped devices, each actuated by a solenoid and situated about 12 mm apart. The matrix is made to form part of the back of a dentalchair and in use transforms the images received by the camera into tactile impulses that effectively form a two dimensional reproduction of the scene. In operation the blind person sits in the chair and simply points the camera while getting a tactile representation of the picture "drummed" out on his back.

After only short periods of training with the machine, pupils have been able to distinguish between various overlapping objects and relationships between a number of objects
in the same field. There are likely to be many other applications for this system and one can imagine it being useful in enabling the deaf to learn about the way speech is formed. No doubt a modified version of the system could be utilised in providing "feeling'" to artificial limbs and other prosthetic devices.

UFOLOGISTS

It's possible that you have not heard of the term Ufology, but, believe me, it does exist. Currently, there are thousands of people constantly engaged on the look-out for "flying saucers" (or UFOs-unidentified flying objects) who call themselves by this name. From the fact that there are many well authenticated reports on the subject, and often by highly qualified reliable individuals, the case for UFOs, whilst by no means proven, appears to be worth some examination.
From the people "in the know" on this subject I gather that there exist a number of ways in which UFOs might be detected. Apart from the use of radar, more simple systems apparently rely upon little more than some method for sensing the magnetic fields that "saucers" are purported to produce.

For your interest a really basic arrangement is shown in the accompanying illustration, Fig. 2. This uses a magnet suspended on a fine piece of wire having only a limited degree of movement within a wire loop. The loop and suspension represent a switch which, if the magnet is influenced by a field, will close causing the associated circuit to latch and thereby actuate a bell or some other indicator.

Obviously a set-up of this type is extremely sensitive to vibration so if you build one don't think that because your brain-child is hooting at you a "flying saucer" is hovering over-head!

400 mW AMPLIFIER

 A SPECIAL PROJECT

 A SPECIAL PROJECT

 FOR BEGINNERS

 FOR BEGINNERS}

ONE of the most important applications of transistors is their use to convert a small voltage input into a large voltage output. This process of increasing the signal level is known as amplification.

Amplifiers can be broadly categorised in a number of families which embrace d.c., audio, video and radio frequencies. In this article we will only be concerned with the amplification of audio frequencies which is a band that extends from about 15 Hz to 18 kHz for the very best of hearing.

In audio amplifiers the power output which can be obtained from a single output stage employing ordinary transistors is usually restricted to about 50 milliwatts. Whilst this is adequate for driving earphones it is rather too small for use with a loudspeaker; an output of approximately 400 mW is provided from the amplifier to be described so that it can be used in general purpose applications.

The circuit configuration given in Fig. 1 is probably one of the most common output stages to be currently found in low power amplifiers, so familiarity in this department will no doubt assist in the repair of transistor radio output stages.

QUIESCENT STATE

To understand the working of this circuit it is probably best to find out what is going on when no input signal is applied. This state is called quiescent, that is, all the voltages are static or d.c. at the various junctions. First, we can ignore VR1 and Cl as the capacitor has a very high resistance to d.c.

Looking next at TR1, a pnp transistor, it can be seen that this has a negative voltage bias applied to its base via R6 and R1 which drives it into conduction.

TRANSISTOR CONNECTIONS

Fig. I. Circuit diagram of the 400 mW amplifier. The a.c. oscillograms and d.c. voltages are measured relative to OV line

The load, or resistance appearing at the transistor collector, is made up of R2, R3, and the loudspeaker LS1. Obviously, since current is passing through these components there will be voltage drops across them. These are in fact, so arranged in polarity as to just switch on TR2 and TR3. If reference is made to point A, the "mid-voltage" line and the transistor bases, the d.c. voltages given indicate a difference of 150 millivolts positive for TR3 and 150 millivolts negative for TR2.

In electronic parlance since no capacitors figure between TR1, TR2 and TR3 they are said to be d.c. coupled. Similarly, the arrangement of transistors TR2 and TR3 is described as complementary since in combination they afford a d.c. path between the 0 volt and minus 9 volt lines.

APPLYING A.C.

Now what happens when an alternating signal is applied. Providing this is less than 18 mV r.m.s. and so does not produce distortion, this will appear across R1 and at the base of TRI. Since the function of a transistor is to amplify, an amplified replica of this signal will appear at the bases of TR2 and TR3.

Reference to Fig. 1 shows these signals to be in phase, that is, they move positive and negative together. But since these transistors have very slight d.c. forward biasing, TR2 will conduct on a negative excursion of the base sine wave and TR3 on the positive half.

Ideally, for economic reasons, it would be best if these transistors did not conduct in the quiescent state, then they could be neatly switched on and off by the alternating signal. Unfortunately, because of the characteristics of the transistors this would produce a rather nasty form of distortion at the loudspeaker known as crossover distortion, which is not unlike a rattling noise. A typical waveform showing this effect is given in Fig. 2.

LOUDSPEAKER OUTPUT

Since a loudspeaker is electrodynamic, power must be supplied to move the mass of the cone. This means that a sizeable alternating current is required. This must be provided by the power transistors TR2 and TR3.
Since these conduct on alternate half cycles the only path to a.c. must be through LSI and the large value capacitor C2. In practice the voltage drop across this component is very small.

CONSTRUCTION

Construction using the T-Dec is a simple plug-in procedure but see that transistor leads are not allowed to come into contact. The hole numbers for T-Dec are given on the circuit diagram (Fig. 1). Once again other constructional methods can be employed if the advice of the first article in this series is followed.
If this circuit is to perform efficiently with the minimum of distortion it is important that the gain, or h_{FE}, of each output transistor is matched to at least 10 per cent. Most retailers will advise you on this. \star

COMPONENTS . . .

THIS MONTH's article continues the brief survey of transducers-devices that convert one form of energy into another form.

SOUND SENSORS

Sound is a longitudinal pressure wave motion of a medium such as air.

Carbon Microphone

The carbon microphone (Fig. 6.1a) contains loosely packed carbon granules which are brought into more intimate contact by pressure on the diaphragm. Contact resistance between the granules varies with sound pressures, and in turn causes a change of current flowing through the microphone and series resistor R , thus giving rise to an electrical signal.

Crystal and Ceramic Microphone

Crystal and ceramic microphones make use of the piezoelectric effect, whereby certain crystals and ceramic materials are capable of developing an e.m.f. when subjected to strain. The effect is reversible; a voltage applied across the crystal can produce a mechanical force.

In Fig. 6.1b, a slice of piezoelectric material is clamped at one corner. Movement of the diaphragm is transmitted to the opposite corner by a light rod, tending to bend the slice. Conductive coatings on the faces of the slice serve to collect the resulting e.m.f. and yield an output voltage.

Dynamic Microphone

When a conductor is made to vibrate inside a magnetic field it will generate an alternating current; this is the principle of a dynamic microphone, Fig. 6.1c.
The moving coil version has a wire conductor wound on a paper or plastics cylindrical former. This lightweight coil is fixed to the diaphragm. Sound pressure waves move the diaphragm pushing and pulling the coil within the magnetic field, thus generating an electrical signal.

In the case of the ribbon microphone, the conductor is nothing more than a short length of corrugated

A NEW

 SERIES FOR THE BEGINNER

Fig. 6.Ia. Carbon microphone

OUARTZ ROCHELL SALT OR BARIUM
TITANATE WAFER COATED ON BOTH SIDES WITH METAL OR CONDUCTIVE LAYER
Fig. 6.1b. Piezoelectric microphone

Fig. 6.1c. Dynamic microphones: moving coil and ribbon

Fig. 6.1d. Electrostatic (capacitor) microphone

aluminium alloy foil, which responds directly to sound pressures. An output voltage is set up across the ribbon when it vibrates.

Electrostatic Microphones

Fig. 6.1d shows an electrostatic or capacitor microphone. If a charge is applied to the plates of a variable capacitor and the distance between the two electrodes is varied by movement of a diaphragm attached to one
of them, the voltage across the electrodes will vary. The greater this distance, the greater will be the voltage. The reverse takes place when the electrodes are brought closer together.

The electrodes of the capacitor microphone are made up of a thin layer of foil or metallised plastics and a rigid perforated metal disc, with a thin flexible insulator or dielectric in between.

The battery and high value resistor R in Fig. 6.1d maintain a steady d.c. charge on the electrodes. Sound pressures acting on the foil cause it to move in relation to the rigid disc and a small alternating voltage is set-up across the microphone.

SOUND EMITTERS

A sound emitter converts electrical signals into pressure waves, usually in air, but sometimes in other gases or liquids. Loudspeakers and earphones are common examples of sound emitters, but there are other devices which emit ultrasonic frequencies well beyond the range of human hearing.

Moving Coil Loudspeaker

The moving coil loudspeaker in Fig. 6.2a is similar to a moving coil microphone, but has a larger diaphragm and magnet assembly. An alternating current flowing through the wire coil makes it vibrate within the magnetic field. The coil is wound round a paper tube which is attached to a large conical diaphragm. The vibrations of the coil are transmitted to the air by a piston-like action of the whole assembly.

Electrostatic Loudspeaker

Fig. 6.2b shows an electrostatic loudspeaker, consisting of a rigid, perforated metal plate and a thin frame of insulated material supporting a stretched metallised membrane. The frame provides a small air-gap between the two electrodes, sufficient to ensure good insulation and allow room for the membrane to vibrate.

A steady d.c. voltage via high value resistor R polarises the electrodes. The membrane is alternately attracted to and repelled by the rigid plate on application of an alternating voltage input, thus imparting pressure variations directly to the air.

Crystal Earphone

A slice of piezoelectric crystal will bend or vibrate when subjected to applied voltages. The crystal earphone in Fig. 6.2c has a small metal diaphragm mechanically coupled to the slice, thereby converting vibrations of the crystal into sound pressure waves.

Ionic Loudspeaker

The ionic loudspeaker in Fig. 6.2d is capable of reproducing sound frequencies above the upper limit of human hearing, and can cover the range $3-50 \mathrm{kHz}$. Air inside a quartz tube is strongly ionised by a large alternating voltage from a high frequency oscillator operating at 27 MHz .

Ionised air has very little mass and inertia, and is capable of causing rapid sound pressure changes inside the acoustic horn when the oscillator output level is varied by a suitable input signal.

Fig. 6.2a. Moving coil loudspeaker

Fig. 6.2b. Electrostatic loudspeaker

Fig. 6.2c. Crystal earpiece

Fig. 6.2d. Ionic loudspeaker
 RING WOUND WITH INSULATED WIRE

Fig. 6.2e. Magnetostrictive echo sounder
\qquad

Echo Sounder

Finally, an example of a sound emitter that works in water instead of air is the magnetostrictive echo sounder, shown in Fig. 6.2e. An alternating current in a coil of wire wound on a nickel iron ring sets up an alternating magnetic field.

A ferromagnetic material like nickel iron exhibits dimensional changes within a magnetic field, so the ring contracts and expands and imparts pressure variations to the surrounding water.

MAGNETIC SENSORS

The Hall effect was first observed in a strip of gold leaf. With a current flowing along the strip, and a magnetic field disposed at right angles to its surface, a small voltage was developed across the strip, due to the sideways deflection of electrons by the magnetic field.

Hall Probe

A modern counterpart is the semiconductor Hall probe, which is used to measure the strength of magnetic fields, see Fig. 6.3a. Instead of gold leaf the probe employs a much more sensitive layer of indium antimonide, to which contacts are attached.
The lateral output voltage is proportional to the product of bias current and magnetic flux density. A typical device will yield 0.5 millivolts output per milliamp-kilogauss.
In the circuit of Fig. 6.33, a steady d.c. bias current flows from the battery via R between contacts A and B . The magnetic field to be measured is arranged vertically, and the output proportional to field strength is developed across contacts C and D .
Hall effect devices are also employed as mathematical multipliers in analogue computers, where an electromagnet provides the multiplier in the form of a variable magnetic field, the d.c. bias current is the multiplicand, and the output voltage is the product.

Magnetoresistor

Bismuth wire and certain semiconductor materials have the property of increasing in resistance in the
presence of a magnetic field. Unfortunately, bismuth wire is also highly temperature dependent.

A modern semiconductor magnetoresistor will yield a typical resistance change of 25% per kilogauss and is virtually immune to temperature, see Fig. 6.3b.

Tape Head

Fig. 6.3c shows a tape playback head, consisting of a " C " shaped stack of soft iron alloy laminations and two bobbins wound with enamelled copper wire.
Unlike the Hall probe and magnetoresistor, a playback head cannot detect a steady magnetic field, but relies on the movement of the tape past the gap in the head to set up a continuously varying magnetic field within the gap, thus inducing alternating currents in the coils. The tape, of course, has a fixed magnetic pattern on its surface, put there during recording.

MAGNETIC FIELD GENERATORS

A magnetoelectric material such as chromium oxide will become magnetised when placed in an electric field, and conversely produces a voltage when subjected to a magnetic field, but this phenomenon has not been widely exploited in electronics.

By far the most common form of magnetic output transducer uses the magnetic field associated with a current flowing in a length or coil of wire. The transducer is coupled to the output of an oscillator or amplifier, examples being the scanning coils in television receivers, tape recording and erase heads, and the inductive loop in short-range communication systems.

Inductive Loop

An interesting example of an inductive loop, now being developed for commercial use in farming, is that of the driverless tractor, Fig. 6.4. A multi-turn rectangular loop of wire is buried beneath the surface of a field, with the turns staggered to give a series of parallel lines of fixed spacing.

The loop is fed from a low frequency oscillator and sets up a magnetic pattern which can be traced by a

driverless tractor equipped with a magnetic sensor. The result is that the tractor can work for long periods with a minimum of supervision.

ELECTROMECHANICAL SENSORS

Mechanics is a subject that includes specialist branches of technology such as dynamics, circular motion, moments of inertia, statics, hydrostatics, elasticity, friction, and so on. There are many forms of transducer for converting mechanical phenomena into electrical signals. Those listed in Fig. 6.5 are intended to be representative rather than comprehensive.

Resistive Strain Gauge

A resistance element embedded in a thin strip of insulating material will show a small resistance variation when the strip is bent, due to dimensional changes of the element.

The resistive strain gauge (Fig. 6.5a) can be attached to a mechanical device, such as a cantilever, and will respond to the bending or vibration resulting from applied forces. For example, the force acting on the cantilever could arise from hydrostatic pressure on a diaphragm, a mass being subjected to acceleration or gravity, or the impact of a moving body.

The bridge circuit of Fig. 6.5a serves the purpose of cancelling out the intrinsic resistance of the gauge under zero strain conditions, and gives a voltage output only when the strip is bent.

Piezoelectric Strain Gauge

The ceramic strain gauge (Fig. 6.5b) has a larger output than the resistive type and does not require a bridge circuit, but cannot be used to measure very slow rates of deformation; it is principally a vibration sensor and works in much the same way as the active element in a crystal pick-up or microphone.

Tachogenerator

A d.c. tachogenerator is really nothirg more than a precision dynamo, constructed to give an output proportional to angular velocity or acceleration, see Fig. 6.5c.

Pick-up Cartridge

With the moving coil or dynamic type of gramophone pick-up cartridge shown in Fig. 6.5d, the stylus tracks the wavy groove in the disc and translates this motion into oscillations of a coil in a permanent magnet field, and so an alternating current output is induced in the coil.

Part seven next month will conclude the section on transducers.

Antilock Braking

MUllard Research Laboratories have recently developed an electronically-controlled vehicle braking system which will prevent wheels from locking on any road surface. It may prove to be the first-ever economically acceptable system for widespread application in all types of motor vehicles.

The problems of antilock control are partly mechanical and partly electronic. Sensing and computing the dangerous condition of a road wheel is best done by electronic means while releasing and reapplication of the brake is clearly a mechanical operation

Right-individual wheel control test switches (lower centre) and the instrument (top left) for measuring stopping distances and speed during road tests

Left-the anti-lock actuator mounted on a disc brake unit showing the toothed ring from which the transducer senses the speed of the wheel

The control circuits can only determine the onset of a dangerous wheel condition. They cannot in themselves modulate brake pressure to prevent the wheel locking and some form of actuator is needed to control brake pressure in response to electronic warnings.

Once pressure is released by a signal from the electronics to prevent the wheel locking, it has to be reapplied to continue to slow the vehicle; in the Mullard system, energy is extracted from the wheel to pressurise the brakes. If the antilock system is working, the wheel cannot lock and
the rotating wheel is therefore available to provide the necessary energy. This direct use of wheel energy means that a very small unit is feasible and in the case of the test car the eritire mechanism is housed in the existing brake calipers.

The result of this work is a compact "fail-safe" system which can be applied to two or four wheels. When applied to four wheels the stopping distance is reduced (as compared with locked wheels) and steering control is maintained during emergency braking. The system can be fitted to any car which has hydraulic braking.

Electronic Rhino

Miniature transmitters are being implanted in the horns of African rhinoceros to discover valuable information about the habits of two of the species.
Terrain over which rhinoceros roam makes it difficult to carry out normal methods of study. It was therefore decided to develop a radio tracking system which would assist in locating individual animals.

After the animal had been drugged with a dart from a gun, a hole was drilled in the posterior horn without unduly weakening it (see photograph). The transmitter was inserted and the aerial accommodated in a groove cut around the horn.

The transmitter is a crystal controlled pulsed oscillator working on approximately 4 metre wavelength. The tuned circuit comprises a trimmer and a one-turn loop aerial. The d.c. power supply is an RM1N Mallory Mercury cell with a capacity of $1,000 \mathrm{mAh}$.

Selectavision Tape

A cartridge colour television tape player, that RCA expect to market some time in 1972, will be the first consumer product to employ lasers. The RCA system will enable any Selectavision cartridge to be played on all of the world's T.V. systems. The cost of the system is expected to be considerably less than other proposed systems.

The tapes, that are produced by holography, are of polyvinyl chloride (p.v.c.), have no chemical coating, no emulsion, no sprocket holes, are scratch proof, dust proof and virtually indestructible. RCA are already working on an original library of 100 programmes.
The photograph above shows the basic set-up for replaying the tapes using a laser and a television camera; in the prototype equipment these are incorporated, together with the tape transport system, within a unit of approximately the same size as a portable tape recorder.

ELEGTRONORAMA

Push-Button Exchanges

The British Post Office moves into the "push-button age" with an order worth nearly $£ \frac{1}{2}$ million to T.M.C. for 20,000 operator's keysenders. The keysender replaces the ten hole dial on P.O. main exchange switchboards with a 12 pushbutton configuration contained roughly within the existing dialling area, Already trial keysender installations have shown a marked improvement in operator accuracy and efficiency, coupled with a notable reduction in fatigue.

A typical Key Sender installation at a large P.O. Telephone Exchange where all the operator positions have been converted to Key Sender operation

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

MODEL RAILWAY POINTS SWITCH

ELectrical switching of model railway points is readily accomplished by an electromagnetic technique, a common method being to provide two solenoids, one to open and the other to close the points, selection being by means of a simple switch. Momentary connection of an a.c. or d.c. source, usually 12 V , gives an impulse to a magnetic slug which, through a lever connection, operates the point mechanism, Fig. 1.
An appreciable current is required in many cases and the solenoid is only rated for pulse workingconnection to the source for any length of time would cause overheating. A simple spring loaded push button switch may be used, or a lever switch with an "off" end position. But both may be misused, and in any event the simultaneous operation of both solenoids should be excluded mechanically. Finally, the push button control requires further complication if the position of the point is to be indicated after an operation.
The simple electrical point switching method shown in Fig. 3, has the advantage of using circuit components commonly available. In particular, a controlled current pulse is used for switching-no steady currents can flow in the solenoid, and a simple doublepole double-throw panel switch indicates the sense of the point after each switching event.
A rough measurement of the effort required to change a point (by finding the distance moved and the force needed at the solenoid lever) gives values in the region of 10^{-3} to 10^{-1} joules. An electrolytic capacitor of $150 \mu \mathrm{~F}$, when charged to 12 volts, stores some 10^{-2} joules of energy. If discharged through the solenoid rapidly, a sufficient impulse may be available to operate the point. For any particular type of point, this may be investigated easily by touching the leads of such a capacitor (careful about polarity!) on the d.c. train supply at 12 volts, and then touching them on the terminals of one of the point solenoids. A sufficiently large capacitance should be chosen to give a smart operation of the point.
Two modes of operation are possible and are shown in Fig. 2 a and b . In Fig. 2a, if the capacitor is initially discharged, on closing the switch, the charging current that flows into C through R (the solenoid, say) will dissipate an energy equal to that finally stored on the
capacitor, i.e. $\frac{1}{2} \mathrm{CV}^{2}$ joules. For this purpose the inductance of the solenoid is neglected.

The time taken to complete the flow is of the order of $R C$, the time constant of the circuit, which for $C=1,000 \mu \mathrm{~F}$ and $R=10$ ohms, will be about 10^{-2} seconds. In Fig. 2b, if the capacitor is initially charged, on closing the switch the stored electrical energy $\frac{1}{2} C V^{2}$ will be dissipated in the solenoid.

The circuit in Fig. 3 shows a system that economically combines both charge and discharge modes. Coils L1 and L2 are the points solenoids, C the capacitor. With the arms of the D.P.D.T. switched as shown, the capacitor charges from the 12 V d.c. source; the charging current flowing in coil L1 operates the points in one sense. On completion of charging, the current in coil LI falls to zero and the switch "dolly" indicates the position of the points. On switching over the D.P.D.T. switch, the fully charged capacitor is discharged through coil L2, operating the points in the opposite sense. Again, the coil current falls to zero and the switch "dolly" position indicates the point position.

In practice, a separate switch and capacitor are required for each point, the coils of which should be i olated from the track, and care must be exercised he polarity of the high capacity capacitors.
A. E. Kiss, Ph.D., Orpington.

Fig. I

Fig. 2

Fig. 3

AUDIO INDICATORS

HAVINg been annoyed by motorists failing to cancel indicators, I have installed the device shown in Fig. I.
The components of the circuit were all salvaged from a broken transistor radio, the transistor being one of the output type and L1 being the secondary (tapped) of the driver transformer.

The unit was assembled and fixed under the dashboard and the speaker, fixed in a location where the driver could hear it, i.e. behind a ventilation grille.

The unit was connected to earth and to an output pin on the flasher unit usually located under the nearside section of the dashboard.

R. J. Marrington, Hayes, Middlesex.

Fig. I. Circuit diagram of the car indicator alarm

THEATRICAL CUE-LIGHT

SOME readers may be interested in the circuit of a theatrical cue-light which I have designed.
In the circuit, Fig. I, the thyristors SCR1, 3, 5 and 7 are triggered by press button switches S 1 to S 4 through the respective gate resistors. When triggered, they turn on two lamps, LP1 and LP2 for SCR 1, and also apply a gate current to one of the line of thyristors SCR2, 4, 6 and 8 . When all the thyristors have been triggered, a current will flow through SCR2, 4, 6 and 8 and lamps LP3, 5 and 9 will light. The circuit is reset by opening S5.

The components within the dotted line are assembled in the master control box. This would normally be located with the lighting controls with the sub-units distributed to key personnel, e.g. prompter, stagemanager and house-manager.

The method of operation is as follows: As each person is ready to begin they press the switch on their sub-unit thus lighting one lamp on their sub-unit and one on the master control box.

When all the lamps on the master control have been
lit as described, the lamps LP3, 6 and 9 will light to inform that everyone is ready to begin.

The master control cues the start of the performance by opening S5 and hence extinguishing all the lamps.

In the prototype it was found that, because of the capacitance caused by having long leads to connect the sub-units to the master control, when the unit was switched on a small current would flow in the thyristor gate circuits causing them to switch on. This was overcome by connecting a $10 \mu \mathrm{~F} 16 \mathrm{~V}$ capacitor between the negative rail and the gates of the affected thyrist $)$ rs, these having the effect of shunting this small current away from the thyristors.

Any type of thyristor may be used provided it can handle the voltages and currents involved. The ones used in the prototype were 600 p.i.v. IA devices. Some variation in resistor values may be necessary to suit particular thyristors.
D. P. Delaney, Englefield Green, Egham, Surrey.

Fig. I. Circuit diagram of theatrical cue-light

MAINS LAMP FLASHER

THE CIR CUIT diagram above is a cheap, simple, and safe method of flashing a mains a.c. lamp. The circuit is conventional and the rate of flashing may be altered by changing the values of the electrolytic capacitors. The present values give a range of approximately 1 to 4 Hz

The reed switch coil was salvaged from a television receiver, or can be wound from thin wire (approximately 1,000 turns) on a former. The reed switch is inserted in the centre of the former.

The device may also be used to interrupt other a.c. devices at preset intervals, determined by the electrolytic capacitors.
J. S. Maud, Scunthorpe, Lincs.

ECONOMICAL IC HOLDER

INTEGRATED circuits are now available at prices which many readers can now afford. However, IC holders, which are invaluable for experimentation, are very expensive items, usually costing more than $£ 1$. Because of this situation I have devised a simple i.c. holder using cheap, readily obtainable materials.

There are some transistor sockets available on the market, for less than 1s each, with five contact springs. These contacts are removed as shown in Fig. 1. To make the holder for an integrated circuit, $\frac{3}{64}$ in holes are drilled in a piece of hardboard in the appropriate pattern. The pattern shown in Fig. 2 is for a 14 -pin DTL package ($0 \cdot 1 \mathrm{in}$ matrix veroboard makes a good template). Insert the contact springs into the holes in the hardboard, leaving 1 to 2 mm of metal protruding above the board, see Fig. 2. Spread out the protruding sections of the two prongs of the contact and flatten them against the top of the board and, on the underside of the board, bend the other end of the contact sideways to keep it in position.

C Masson,
Edinburgh, 12.

NEWS BRIEFS

Skynet II

HAwker Siddeley Dynamics Lid., and GEC-AEI (Electronics) Ltd., have each been given a contract by the Ministry of Technology to develop, in co-operation with American industry, proposals for higher powered Skynet communications satellites for defence purposes. A decision on which firm is to be the eventual prime contractor for two such satellites will be taken later this year. The satellites are to be ready for launching in 1973 as replenishment for the initial two satellites of the Skynet system which were built by the United States. The first of these was successfully launched last November. The replenishment satellites will be substantially more powerful than these first Skynet satellites and will be capable of operating in conjunction with small transportable aerials.

Register for Engineers

- ast September the Board of CEI (Council of Engineering Institutions) passed the following resolution: "The Council of Engincering Institutions will, in collaboration with other interested parties and subject to the agreement of the Privy Council, initiate the formation of an organisation to create and administer a system of qualification and title, and to establish and maintain a composite register covering the principal sections of the engineering community, currently Chartered Engineers, Technician Engineers, and Engineering Technicians.'

Subsequently, CEI has prepared outline proposals for the structure for a registering organisation and also for qualifying standards based on those prepared by SCNQT (a group of non chartered institutions drawn together by CEI), for admitting non Chartered Engineers to the register. These proposals were tabled at a meeting between CEI and SCNQT and others last December and subsequently circulated earlier this year to all those institutions who had expressed interest in collaborating with CEI in establishing such a register under the authority of the CEI Charter and By-laws.

Numerous discussions with interested parties have indicated general support for CEI setting up such a register and, on 20th May 1970, the Board agreed to implement its resolution to set up an Engineers Registration Board.

वulle

P.E. ORGAN-II (March 1970)

Having conducted some further experiments with the variable vibrato circuit, Fig. 11.2, it was found that if a green spot 2 N 2926 transistor is used for TR2 and the feedback resistor R3 changed to 1 kilohm the circuit works excellently.
P.E. MARKSMAN (July 1970)

Capacitor Cl should be $1,000 \mu \mathrm{~F}$ not $1,000 \mathrm{pF}$ as given in the components list.
P.E. COMMUNICATIONS RECEIVER (October
1969-June 1970)

See letter on page 741.
TEMPERATURE ALARM (Ingenuity Unlimited,
July 1970)
See reader's letter on page 742.

Aversatile weil equipped workshop, where experimental and repair work is carried out, often requires a range of d.c. and a.c. power supplies suitable for driving both valve and transistor circuitry.

Commercial equipment, including radio, television, and test gear still carry some valve circuits and, where the in-built power supply may have failed, a temporary substitute is a valuable asset. Equipment employing cold cathode tubes also need high voltage d.c. supplies.

The "VALSTAB" is a new P.E. project to fill these needs, while the "TRANSTAB" (to be described in a later article) is its matching companion, specially designed for driving low voltage transistor circuits.

Both power units offer a high degree of voltage stabilisation under variable load conditions.

COST

The "Valstab", described in this article, is a high voltage valve stabilised power unit, whose non-technical features are versatility of range and output, reliability, and portability, coupled with a straightforward form of conventional chassis construction.

The specification for this unit is given in the display panel below, from which it will be seen that both positive and negative voltages are available. To achieve
the wide range of output available the circuit is perhaps a little more elaborate than the more orthodox power unit.

It is considered essential that the unit should have sufficient outlet points to allow more than one piece of apparatus to be powered simultaneously, within the limitations of the current and voltage ratings.

The cost can be kept reasonably low without sacrificing any of the principle features which make the project worthwhile. As cost is often an important consideration with such projects, some attempt has been made to give an approximation of the total cost. The figures quoted are included as a very rough guide, as components can vary so widely in price.
Both the Valstab and the Transtab use the same type of cabinet, costing 34s at the time of writing. The meters, if purchased new, can cost up to 75 s each depending on the quality and source of supply.

If purchased on the surplus market and calibrated (as described later), the meters can cost as little as 10 s each. The total cost of all other components, if bought new, can be as much as $£ 1410$ s per unit. If a careful search is made through suppliers' catalogues, advertisements in the technical press, and in shop windows, this figure can be reduced to as low as $£ 8$ per unit.

SPECIFICATION

OUTPUT I
D.C. Voltage
D.C. Current

Regulation $(0-100 \mathrm{~mA})$
Ripple at 175 V full load
Ripple at 325 V full load
Change in output for $-3 \%+5 \%$
change in mains voltage
OUTPUT 2
D.C. Voltage
D.C. Current

Regulation
Ripple
OUTPUT 3
A.C. Voltage (heater supply)

DIMENSIONS
Width 12 in , height 7in, depth 7 in
+175 V to 325 V
0 to 100 mA (120 mA reduced regulation)
Less than 0.5% over $175-325 \mathrm{~V}$ range
Less than $10 \mathrm{mV} \mathrm{p}-\mathrm{p}(<0.003 \%)$
Less than $50 \mathrm{mV} \mathrm{p}-\mathrm{p}(<0.006 \%)$
Less than 0.5\%
$-150 \mathrm{~V}$
0 to 10 mA
Better than 1%
$60 \mathrm{mV} \mathrm{p}-\mathrm{p}(<0.02 \%)$
6.3V 4 A centre tapped or as available from TI

APPLICATION

A very wide range of positive voltage output up to 325 V is available, stability being maintained for large changes in load current. The -150 V auxiliary supply is particularly useful as a negative bias line for use with high gain d.c. amplifiers, pulse and relaxation circuits. Generally speaking the supplies available cover a sufficiently wide range of both voltage and current outputs to meet the requirements of most amateur experimenters and constructors.

As more than one item of apparatus may be required to be supplied at any one time, the various outputs are brought out to two octal sockets, situated on the front panel for ease of operation. This means that various pieces of apparatus which may be used from time to. time are each terminated in an octal plug, the supply leads being connected to the appropriate pins.

Any of these pieces of apparatus can be plugged into either socket without the fear of the wrong supply being applied to the wrong piece of equipment. This allows a great deal of versatility of equipment to be achieved once the initial change over to octal plugs is made.

Octal plugs and sockets were chosen in preference to the numerous other types of multi-pin plugs and sockets available because they are cheap, easily obtainable, and simple to wire in.

Besides the octal socket outlets, each supply is also brought out to two groups of wander plug sockets or screw terminals, these also being situated on the front panel.

All controls, fuses, output points, and meters are brought out on the front panel for ease of operation and metering. As all components and valves are amply rated, the power unit should give trouble free and reliable service over a long period of time.

POSITIVE SUPPLY CIRCUIT

The complete circuit diagram of the Valstab is shown in Fig. 1.

The transformer secondary $350 \mathrm{~V}-0-350 \mathrm{~V}$ output is applied to the full wave rectifying circuit D3 and D4. The network C1, C2, R3, and R4 prevents mains transients being fed via the transformer to the diodes and stabilising circuits, as these transients, although of very short duration, can have quite a high peak voltage. This could be harmful to the rest of the circuit, particularly the rectifiers.

The full wave positive rectified output is then fed to a conventional pi smoothing filter, L1, C3 and C5. The reservoir capacitor C 3 is kept to a reasonably low value to prevent excessive surge current passing through the diodes.

The output from the smoothing circuit is fed into the series regulator V1. This being a double triode, the two halves are connected in parallel. The type of valve used (6080) was specifically designed as a series regulator, having a very low r_{a}, high g_{m} and high dissipation value. The stopper resistors R5, R6, R11, and R12 prevent parasitic oscillation, while R11 and R12 also limit grid current.

The action of V1 is controlled by the high gain pentode amplifier V3. The actual circuit shown in Fig. 1 is a little unconventional in that the voltage reference tube, which normally holds the cathode of V3 above earth, and acts as the circuit reference point, has in this case been dispensed with.

The cathode is held constant at the earth or common rail level and the -150 V stabilised line is utilised as a constant reference point. This was found necessary in order to allow the very wide voltage output range to be achieved. With the conventional type of circuit,

only a relatively narrow output swing is possible, due to the cathode of V3 being held at such a high potential above earth, so limiting the amount of anode swing on V3.

With the circuit shown, however, the full swing of both V3 and V1 valve characteristics are used, allowing a much wider range of output to be obtained on the one control.

The screen grid of V3 is fed from the unstabilised side of the supply via the potential divider R7, R8, and R9, the anode load being R13. The anode is d.c. coupled to the grids of the series regulator V1. The grid of amplifier V3 is d.c. coupled to the h.t. output line via the divider chain R16, VR1, R17, and VR2.

The bottom end of the chain is held constant at -150 V with respect to earth, the h.t. output level being adjusted between the limits quoted by means of VR1. VR2 is a preset control which is first set up to ensure that VRI only swings across the range quoted, and does not let V3 pass beyond its cut-off and saturation limits and so lose stability.

Grid limiting is provided by R15 and decoupling by C 8 , this also helping to reduce overall ripple. Final smoothing on the regulated output is provided by C9 and helps to achieve the low ripple values quoted.

As the effective capacitance of electrolytic capacitors decreases rapidly at higher frequencies, in order to keep the output impedance of the unit low at the higher frequencies, C 9 is shunted by a lower value capacitor C10. Both h.t. voltage and current are metered by M1 and M2 respectively.

NEGATIVE STABILISATION

The subsidiary -150 V line is stabilised by means of a gas filled regulator tube V2. This supply is completely independent of the main h.t. supply. The negative

line is developed from the secondary of the mains transformer via the dropping resistors R1 and R2, which feed diodes D1 and D2. These give a full wave output which is then applied to the smoothing circuit C4, C6 and R10. R10 also provides the necessary voltage drop to the stabiliser V2.

The negative output line is taken from the cathode of V2, R14 providing a small current bleed across this circuit. Capacitor C7 shunts V2 and prevents any tendency towards self oscillation, these type of valves often being prone to this form of trouble.

STABILISING EFFECT

The action of the stabilising circuit may be described as follows: assume that with the circuit working normally a sudden increase in load current occurs. The h.t. voltage will fall, the voltage drop across the divider network R16, VR1, R17, and VR2, will also fall and thus the grid of V3 will go more negative with respect to the cathode.

Both the cathode and the bottom of the divider chain always remain constant with respect to one another. The fall in grid voltage will tend to cut V3 off, reducing anode current and thus the voltage drop across the anode load R13. The anode will therefore go more positive and, being d.c. coupled to the grids of the series regulator V1, will drive this valve harder on. This allows more current to flow through V1 from the source to compensate for the initial increase in load current.

The action is almost instantaneous. The function of the circuit may therefore be shown to form a complete negative feedback loop. In effect, V3 provides amplified negative feedback between the input and output circuits of V1, this keeping the output voltage constant.

Due to the very high gain of the overall circuit, very small changes in h.t. level can be detected, these small changes being amplified and applied to V1 which then compensates for any change in the detected output. This gives a high stabilisation factor.

For a decrease in load current the reverse action occurs, while changes in source voltage due to mains fluctuation are compensated for in a similar manner. This type of circuit allows very low ripple values to be obtained as the amplifier "sees" ripple as a change in mean h.t. value and compensates accordingly.

As VR1 may be considered to control the standing value of V3 grid voltage, altering this control has a similar effect to that described, lowering or raising the grid voltage with respect to the reference level. By this

Side view of the top of the finished
chassis. Note the meter
shunt mounted on
M2 terminals

Fig. 2 (above). Drilling details of the top of the chassis with guide to positions of TI and LI. Notice the cut outs at the front

Fig. 3 (left). Layout and wiring of the two component boards

Fig. 4 (below). Underside view of the chassis showing some of the wiring

Never Buili a Kii Before? prove how easy it is the HEATHKIT way.

See for yourself how easy it is to build a Heathkit model. Why not purchase a constructional manual now ? ONLY $10 /$ Each. Simply order the manual for the model of your choice on the order form below. If you order a kit later the manual price may be deducted from the price of the kit.

Stereo Record Player Exciting Sound - Budget Price Kit: K/SRP-I 629.18 Carr. $16 /$	Deluxe Car Radio Top Value - Powerful Output Kit K/CR-I $\$ 12.12$ Carr. 6/- (Speaker Extra)	Economy SW Receiver I-30 MHz plus $550-1620 \mathrm{KHz}$ Kit: K/GR64 ¢25 Carr. 10/-
Model Maker's Tacho Measure R.P.M. the easy way!	AM/FM Radio $\begin{aligned} & \text { Good Looks }-\quad \text { Luxury Sound } \\ & \text { Kit K/Severn } \\ & \text { E18.18 } \end{aligned} \text { Carr. } 10 \text { /- }$	Low-cost Mini Speaker Luxury Sound Small Size Kit K/Avon
		FM Stereo Tuner/Amplifier Unbeatable Value Kit: K/AR-17 636.10 (Cabinet Extra)

COMPONENTS

Resistors

RI	$10 \mathrm{k} \Omega 5 \mathrm{~W}^{*}$	R8 $150 \mathrm{k} \Omega$ IW	R15 $100 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R2	$10 \mathrm{k} \Omega 5 \mathrm{~W}$ *	R9 $150 \mathrm{k} \Omega 1 \mathrm{~W}$	R16 100k Ω IW
R3	$100 \Omega+W$	R10 $2 \cdot 2 \mathrm{k} \Omega 5 \mathrm{~W}^{*}$	RI7 39k Ω IW
4	$100 \Omega \frac{1}{2} W$	RII $470 \Omega \frac{1}{2} W$	R18 See text
5	10Ω IW	R12 470 $\frac{1}{2} \mathrm{~W}$	R19 See tex
R6	10ת IW	R13 470k $\Omega \frac{1}{2} \mathrm{~W}$	
R7	$22 \mathrm{k} \Omega \mathrm{IW}$	R14 100k $\Omega \frac{1}{2} \mathrm{~W}$	ound

All 10% carbon except were stated

Potentiometers

VRI $25 \mathrm{k} \Omega$ linear wirewound
VR2 $25 \mathrm{k} \Omega$ linear wirewound preset

Capacitors

Cl	${ }_{0} 0 \cdot 1{ }_{\mu} \mathrm{F}$ paper $1,000 \mathrm{~V}$
C2	$0.1 \mu \mathrm{~F}$ paper 1.000 V
C3	$16 \mu \mathrm{~F}$ elect. 500 V
C4	$16 \mu \mathrm{~F}$ elect. 250 V
C5	$32 \mu \mathrm{~F}$ elect. 500 V
C6	$32 \mu \mathrm{~F}$ elect. 250 V
C7	$0.25 \mu \mathrm{~F}$ paper 250 V
C8	$0.5 \mu \mathrm{~F}$ paper 500 V
C9	$32 \mu \mathrm{Felect}$. 500 V
Clo	$0 \cdot 1 \mu \mathrm{~F}$ paper 500 V

Transformer

TI Any mains transformer with the following minimum ratings:
Primary: 0-200, 220, 240 V
Secondary 1: $350-0-350 \mathrm{~V}$ at 120 mA
Secondary 2: 6.3V 3A (for VI)
Secondary 3: 6.3 V 3 A centre tapped (or as required for external use)
Inductor
LI 20 H 150 mA smoothing choke
Valves
$\begin{array}{llllll}\text { V1 } 6080 & \text { V2 } & \text { 150B2 } & \text { V3 } & \text { EF80 }\end{array}$
Diodes
DI, D2 OA210 (2 off)
D3, D4 OA2II (2 off)
Meters
MI $0-400$ or 500 V f.s.d. (see text)
M2 0-150mA f.s.d. (see text)

Switches

SI Double-pole, on-off toggle switch
S2 Single-pole, on-off toggle switch
53 Single-pole, on-off toggle switch
Fuses and fuseholders
FSI IA
FS2 250 mA

Miscellaneous

LPI Mains neon indicator with current limit resistor
Cabinet $12 \mathrm{in} \times 7 \mathrm{in} \times 7 \mathrm{in}$ aluminium case type W , fully louvred (H. L. Smith \& Co. Ltd., 287-289 Edgware Road, London, W.2)
Chassis $11 \frac{1}{2}$ in $\times 6 \frac{3}{4}$ in $\times 1 \frac{1}{2}$ in to suit case
Front Panel 12 in $\times 7$ in to fit case
Valveholders: International octal (3 off); B9A (I off); B7G (I off)
Plugs: International octal (2 off), wander plugs and sockets (10 off)
Knob, large pointer type
Component tag boards (3 off), tag strips
Grommets, 18 s.w.g. tinned copper wire and sleeving
Nuts and bolts, 2B.A., 4B.A., 6B.A.
Chrome handle, 9in. Lettering or transfers
means the output level of the h.t. line can be set to any value in the range quoted; the circuit then automatically stabilises the output at this level.

CHASSIS CONSTRUCTION

The construction of the unit should offer few difficulties, the circuit not being at all critical as regards layout. While the method of construction adopted by the author will be described, any other form of construction may be used to fit in with individual requirements or existing apparatus.

The above chassis layout together with relevant dimensions is shown in Fig. 2. As the dimensions of various manufacturers' transformers and chokes vary slightly, the chassis should be marked out first with the particular transformer and choke to be used. The remainder of the above chassis components, valves and component boards, being located as necessary.

Before mounting any components the two slots should be cut out of the chassis front (shaded portions). These give clearance to the output sockets which could otherwise touch the top of the chassis.

WIRING

The electrolytic smoothing capacitors, diodes, and dropping resistors are all arranged on two tag boards, these being wired up first and then mounted vertically on the chassis by means of small angle brackets. This form of construction allows a great saving in space. If the negative terminals of C4 and C6 are connected to the cans, these must be isolated from the chassis.

If the components are mounted and wired first, fly leads being left for connections coming away from the boards, they are simply mounted on the chassis after the larger components have been fixed in place. The layouts of the two boards are shown in Fig. 3. It will be noted that components which are likely to dissipate most heat (i.e. dropper resistors and diodes) are mounted at the top of the boards.

The under chassis layout, again with dimensions, is shown in Fig. 4. As there is ample space under the chassis, no particular care has to be taken as, regards wiring layout, etc. Grommets, earth tags 'and tag strips should be used where shown.

It will be noticed that an 18 s.w.g. tinned copper wire earth "bus-bar" is used, this being run from the main earth input around the chassis, all earth and common connections being taken to this line. While not essential, this form of earthing is always good policy to adopt in mains power units.
Underside view of part of the chassis showing the wiring of the valveholders

We'll make you a £2,000 a year technician.

We're going to give 175 men just about the finest apprenticeship in the world.

If you're $15 \frac{1}{2}$ to $17 \frac{1}{2}$ (and bright at Science or Maths) you could be one of them.

We'll train you to be a top Navy technician, in electronic, air or marine engineering.

And that means you'll take equipment like radar, missiles, helicopters, diesels, computers and automation in your stride.

Our training will make you a $£ 2,000$ a year man. With more to come.

And some of the best firms in the country will be keen to sign you on, when you leave us.

Send the coupon for your free booklet. With 175 top technicians to train, you're in with a chance.

ROYAL NAVY

\star

WIN $£ 250$
HQ250 HAMMARLUND TRANSISTOR COMMUNICATION RECEIVER

AT THE

INTERNATIONAL RADIO ENGINEERING COMMUNICATIONS EXHIBITION

Royal Horticultural Hall GREYCOAT STREET • WESTMINSTER LONDON, S.W. 1

WEDNESDAY TO SATURDAY 19th to 22nd AUGUST, 1970 OPEN 10 a.m. to 9 p.m.

ADMISSION 4/-

Displays by

- royal air force
- royal signals
- ROYAL NAVY
- POST AND TELECOMMUNICATIONS
- HOME CONSTRUCTION AND dESIGN COMPETITION \& DISPLAY
- COMPLETE TRANSMITTING STATIONS WORKING THE WORLD
- edÚcation and training INFORMATION
hand this advertisement in at THE DOOR FOR FREE ENTRY for the above receiver

Fig. 5. Drilling details of the front panel with the chassis position shown dotted. The fixing holes for the meters may differ according to the instruments used

FRONT PANEL

The front panel layout together with necessary dimensions is shown in Fig. 5.

As the type and size of meters used may vary, the meter holes should be cut to suit the particular meters which are going to be used (see later). The remainder of the front panel components should be mounted as shown, much of the front panel wiring being done before the panel is fitted to the chassis.

With the particular type of cabinet specified, a lip of approximately $\frac{3}{8}$ in will be found all round the inside when the front panel is removed. The front panel is fitted into the upper and lower lips by means of self tapping screws.

To allow the chassis to fit into the cabinet, both of the vertical or side lips should be cut off, these serving no particular purpose. As the cabinet is made from aluminium, they can be simply removed using a small hacksaw blade or Abrafile.

When mounting the front panel to the chassis, allow the bottom edge of the front panel to protrude approximately $\frac{3}{8}$ in below the bottom edge of the chassis. This compensates for the bottom lip of the cabinet as mentioned above.

If the fixing holes are drilled in the front panel first, they can be marked off on the chassis front with the chassis inside the cabinet, the front panel being loosely held in place by two of its four fixing screws. A hole must also be cut in the rear of the cabinet to line up with the grommet for the mains supply lead outlet.

Front panel lettering can be made using either Dymo tape or transfers.

With all the construction completed, final extras in the form of rubber feet and a carrying handle may be fitted if required. Four $\frac{3}{4}$ in rubber feet mounted on the bottom of the cabinet prevent benches or tables being scratched, while a 9 in chrome handle mounted on the bottom of the front panel (as illustrated) or on top of the cabinet, not only improves the appearance of the unit, but also makes the unit portable.

METER CALIBRATION

Before going on to the testing of the unit, a mention may be made on the types of meters used and their calibration. The meters may be any $1 \frac{1}{2}$ in to $2 \neq i n$ moving coil type instruments, having either round or square faces.
While new meters may be obtained to cover the ranges quoted, these can be rather expensive. However, any moving coil instruments having a basic movement of $1-5 \mathrm{~mA}$ may be used, these being suitably calibrated using an external shunt for the milliammeter and an external series resistor for the voltmeter.
The meters are calibrated using a scale to suit the particular scale divisions marked on the meter face, new numerals being marked by hand on the scale if necessary.
The shunt resistance R19 is wound using a suitable length of fine resistance wire on a small diameter bobbin or former, normally only a few inches of wire being required. The series voltmeter resistance R18 should be a 5 per cent high stability type.

While calibrating one's own meters can involve extra work, a great saving in cost is made as such instruments can generally be picked up on the surplus market at a very modest price. The accuracy of the calibrated meters can be checked against a normal multirange meter, this being sufficiently accurate for this type of calibration.

SHUNT AND SERIES RESISTORS

Two examples for calculating shunt (R19) and series resistors (R18) are shown below, the equations holding good for all types of moving coil meter. These resistors will only be needed if low rating meters are used.

Assume a 1 mA movement, scaled $0-1$ f.s.d. in 10 divisions, having a resistance of 50 ohms (meter resistance is normally marked or can be measured), is to be used for the voltmeter.

When Mainline Offer You Components At Manufacturers' Prices,

MOTORS

HIGH PRECISION MAINS MOTOR ${ }_{3,000}^{230 V} 50 \mathrm{~Hz}$ z h.p. continuougly rated. ing Model KA 60 JFB. Suitable for capstan motor. Size Bin long, 4 in diameter with 6 in dianeter flange and 4 fxing holes. These notors are Capacitor Start Capacitor Run, supplied less Capacitor. Aloo a vailable 3 Phase. 24.10.0. each. £1.5.0. P. \& P

SHADED POLE MOTORS 120 V 50 Hz

 Precision made as used in record decks and tape recorders. suitable many otherapplicationg. 10/- each. P. \& P. 3/-,

PRECISION MOTORS by PULLIN
 P. \& P. ©

HYSTERESIS REVERSIBLE MOTOR
Incorporating two coils. Each coil when energised will produce opposite rotationi ot output shaft. 120 V 00 Hz . 1110 r.p.m. $30 /-\mathrm{F}$
each. P. \& P. $3 /-$.

LOW TORQUE MOTOR MA23
 Ideal for inatrument
 iy quiet
 areas where ambient
 High starting torque

enables relative high
driven up to fiozin.
nertfa Ioads
Available following speeds and ranges; 240 V 50 Hz ,
 1/10 r.p.m., $1 / 12$ r.p.11., $1 / 2000$ r.p.m., 85/- each. P. \& \mathbf{P}.

HYSTERESIS CLUTCH MOTOR
With integral clutch allow Jog the motor to drop out of engagement with the geartrajn, thereby facilitat-
ing easy resetting when used in timers or in conunction with a light spring. 6 oz torque at $240 \mathrm{~V} \quad 50 \mathrm{~Hz}$, $1 / 12 \mathrm{r}$ r.p.m., $\hat{\mathrm{o}} \mathrm{r}$ r.p.m.,

r.p.m.
r.p.m. $120 \mathrm{~V} / 12 \mathrm{r} . \mathrm{p}$
60 Hz ,

D.C, MOTORS

Similar to above type MD 83. 28V 1/20 r.p.m., $1 / 60$ r.p.m., 1 r.p.m. 12 V $1 / 20 \quad$ r.p.m. 24 V ($1 / 16$ r.p.m. 30 V
$1 / 12$ r.p.m. $30 /-$ P. \& P. $3 / \mathrm{h}$.

SYNCHRONOUS MOTORS
$200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$. New condition, ex-equipment. S.7 1 r.p.h. and 1 r.p.m. Self atarting, complete with gearing shaft
dia. 1 in long. $30 /-$. l^{\prime}. $\mathrm{P} .3 /-$.

OSCILLOSCOPE TYPE CT 52 A very handy miniament for inatripurpore applications. 2 in diam. tube. Wave form nvestigation from $10 \mathrm{~Hz}-20 \mathrm{MHz}$. Pulse monitoring duration 50 microseconis to 0.1 $10 \mathrm{~Hz}-40 \mathrm{kHz}$. Time base free running from 50 knic . Also seconds to 3 mieroseconds "Y") Amplitier. Delay Line Callbration Voltage. Power supply $110-250 \mathrm{~V} 40 / 60 \mathrm{~Hz}$ 50W. Supplied with metal carrying case. 1. 13in. H. 8ill. W. 6 in. Weight 141 lb Price \&\&2. P. \& P. 30

AVO TRANSISTOR ANALYSER CT 446

 In V. G. condition. Current instrument

ELECTRIC CLOCK MOTOR

NEW $200-250 \mathrm{~V}, 50 \mathrm{~Hz}, 2 \mathrm{~W}$. Syachronous induction motor. '2 revs. per hour. $0 / \mathrm{P}$ shaft. fin dia $\%$ in long. Clockwise rotation. Three-holed nounting at 120°
on 2 in PCD. Price $15 /-$. P. \& P. $5 /-$.

LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT AND COMPONENTS

YOMETERS
These well-known portable test instru
These well-known portable test instru-
ments have been overhauled and are ments have been overhauled and are clips and prods.

Cosar 10
Cossor 1
solartion 523
Solartron D30U
Furzehill 111010
Furzehlll 0110
Furzehill 168
irmee
in
Airniec 249
Airmec 723
Carriage extr
COUNTERS
ELECTRO MAGNETIC
COUNTER 300 ohnin 24 V
slow impulse counter
of 10 innpulses per
яeconit. B/B. P. \& P.
C DIGIT ELECTRICAL IMPULSE COUNTER with electrical and mechanieal reset counter driven by 110 V DC 4400
ohms coil. Reset $110 \vee$ DUC 800 ohms coil ohma col. Reset 10 V DC 800 ohms coil heuse in platetc-alloy case. The unts cal
be interlocked with eaeh other to give
verticul vertical or horizontal displaye. Price 58/6.
VEEDER ROOT 6 DIGIT COUNTER
Suitable for counting all kinds of bro-
duction runs, business nachine operation Mechanically driven. Reeet type KA 1337 manual kuob. Ex-equilit. but new cont
dition. special prtce $25 /-$ plus $5 /-\mathbf{P}$, 3 DIGIT RESETTABLE COUNTER Totalising 48V I.c. at 48 min ; 10 impulses sec. Length 4 in in \because lin. Price
$E 3.15 .0$ P. \& P. $5 /-$.

4 DIGIT NON-RESETTABLE COUNTER

6 DIGIT RESETTABLE COUNTER
Totaltining 240 V 30 Hz . Viewing windon

6 DIGIT TOTALISING NON-RESETTABLE

 COUNTERMechanical operation. Chromium fimish Length 1 in \times in fin with viewing window tin x fin. Ex-equipment. Price
BERKELEY DECIMAL COUNTING UNIT 0.9

type 5!lig syeciat quadity
Lyit pluge juto stasdary octal base. Morlular con-
struction with 10 millidtrue ueon lamps on display panel Power suppliea bane, a.c., 150 V it.c. Cut-
out or cut-on 15%. Nize

MINIATURE DIGITAL DISPLAY

projection
projoctamp.
ligits with high o-s gymbor, i.e
$3 z^{*}$ deep, 1 it" high

$\overline{\text { EAC }}$ DIGIVISOR MK. II DIGITAL

PORTABLE WHEATSTONE BRIDGE
Specitication. Type: Moving Coil Galvano-
 4. 50 to 5.000 ohms. 5.500 to 50,000 ohme Scales: Sxitched. Slidewire: 0.5 Galvanometer Scale: 10-0-10. Case

AMPS

250V, 15 W, MBC. Panel lanipe, Ileal making up displayk, etc. Length 21 in 5/-.
MEMORY CORE Stores
with 40 of 10 loat dioles store comiliplet With 40 A 10 loan dionea. Idenl for buidel ing computer store or holing information
miniature moving coil

RELAY SIIS

By Sangam A high sensitivity relay more sensitive than the electromagnetic type.
Single Coil Resistance Single Coil Resistance
$310 \mathrm{micro} \mathrm{tmps}$.3150 Liat price $\dot{x}^{\prime} 4.10$. Our price $20 /-$ P. \& P. 3/.

NUMICATORS

Colu cathode gas fillel
line 0-9 digital displa
tubes. Looug life expeet
ances. Loug life expect
ancy. Minimum striking
voltage 180 V . side reading
Type XN 13 and XN 3
niber. Price $18 / 6$ each

DOUBLE AUDIO FADERS
fessional recording pidio fersional recording studio
mits are jileal for audio bignal mixing, fading pro grammes in aud out etc
Two bank $1,000+1,000$ ohon wire-wound paralle connection to give foo ohm makinge, with red alwl blue control hnobe Panill montin £3.19.6. P. \& P. $7 / 6$.

LINEAR THYAISTOR CONTROLLED LIGHT DIMMER-BRAND NEW
 electric hamp portabl electric ham drijls. Fits standarel yin
conduit box, $40 \mathrm{~V}, 50 \mathrm{~Hz}$, toow conduit box. 240 V ,
$59 / 6 . \quad$ P. \&. $2 / 6$.

POCKET CALCULATOR

Save time and molse al
your multiplication, divi your mutiplication, divi
gion, percentage, cube sion, percentage, cube Lasy to use pocket calculator with no errors. In-
valuable dally abd, valuable daily abd
should last a lifetime offered complete in blac Faliet with full instruc
tiong, 3 inin dans. $12 / 8$

Ruartz Inam Rew Infa Red Tubular source for brying Ovens, Fgg Hatching, Jncubators, et $240 \mathrm{~V}, \mathrm{P}, 440 \mathrm{~V}, 20,040$ Angetrouns
irice 15 ;-

REPEAT CYCLE TIMERS

 These timers repeat a se tions via a cim an micro switch. for as loug ats the motor is energisedSingle Cam ra ${ }^{3} \mathrm{Ifin}$ Single Cam Rn ${ }_{2}{ }_{2}$ In 6 min eycles at $45 /-$ Twin Citn R D
$3 \mathrm{~min}, 4$ min cycles at $55 /-.4$ Can RD 24 in 4 min and $\overline{0}$ min creces at $75 /-$. 3 min, 4 min cycles at o5 Cam RIL 26 in $28 \mathrm{~m} \frac{3}{}$ min, 4 min cycles at $115 /-$. All plus
P. \& P.

ELECTRONIC BROKERS LTD. (Dept. P.E.), 49-53 Pancras Rd., London, N.W.I Tel. 01-837 7781-2 Cables: Selelectro

Fig. 6. Regulation characteristics of the Valstab unit

Table 1: VOLTAGE CHECK
All voltages shown were measured with respect to chassis (common line) on a $20 k \Omega$ per volt multi-meter uader no load canditions. Mains input 246 V on 250 V topping. Output I voltage set at 25 JV

V1 anodes (pins 2 and 5)	446 V
V1 grids (pins 1 and 4)	118 V
V3 anode (pin 7)	11 EV
V3 screen grid (pin 8)	345 V
Wiper of VR1	-8 V
Junction of VR1, R16	+23 V
Junction of VR1. R17	$-32 V$
Junction of VR2, 217	-120 V
V2 cathode	-150 V
C4 negative terminal	$-157 V$

TEST I. H.T. POSITIVE OUTPUT NOT STABILISING OR INCORRECT

(a) Check voltage across C 5 or voltage from VI anode to chassis. If incorrect proceed to Test 2 "No h.t. output". If correct proceed as follows.
(b) Check negative supply across C7. If incorrect proceed to Test 3 "No negative supply output". If correct proceed as follows.
(c) Check that VR2 and VRI are set up and O.K. Check RI6, RIT are correct value. If O.K. proceed to (d).
(d) Check V3 is operating correctly. Check values of R7, R\&, R9, R15, RI3. Check for short circuit in C8. If O.K. proceed to (e).
(e) Check VI is operating correctly. Check values of R5, R6, RII, RI2.

TEST 2. NO H.T. POSITIVE OUTPUT

Check voltage across C5 or voltage from VI anode to chassis. If incorrect proceed as in (a) below. If correct proceed as in (b) below
(a) Incorrect voltage across C5

Check voltage across C 3
Check voltage on TI secondary 350-0-350
Check FSI, SI, and mains supply
Check for short circuit across C3, C4, C5, C6, C1, C2 Check for open circuit across D3, D4, LI
(b) Correct voltage across C:

Check VI is oferating
Check for epen circuit across R5, R. 6
Check for short sircuit across MI, $\mathrm{CP}, \mathrm{ClO}$
Check for cpen circuit across M2, FS2. S2

TEST 3. NO H.T. NEGATIVE OUTPUT

Check voltage across $C 4$. If incorrect proceed as in (a) below. If correct proceed as in (t) below

(a) Incorrect voltage across C4

Check voltage on Tí secondary 350-0-350
Check for open circuit across RI, R2, D1. D2, FSI, SI
Check for short circuit across C4
(b) Correct rohage across C4

Check for open circuit across R10, S3
Check for short sircuit across C6, R14, V2, C7
Check potential divider RIG, VRI, R.17, VR2

TEST 4. EXCESSIVE HUM OR NOISE ON H.T.

Check for faulty choke LI, capacitors C3, C5, C9. CIO, CI, C2
Check VI and V3 for heater-cathode short when warm

Check D3, D4, [1, D2 for correct operation Check for leakage between transhormer windings and chassis

View of the valves between TI and LI. Note the twisted leads from the transformer

Rescale the dial 0-400 volts f.s.d., each division now representing 40 volts.

$$
\text { Series Resistance } R_{18}=\left(\frac{V}{T_{M_{1}}}\right)-R_{M_{1}}
$$

Where
$V=$ full scale voltage required (400)
$R_{M_{1}}=$ meter resistance (50)
$I_{M_{1}}=$ basic meter movement in amperes (0.001)

$$
R_{18}=\left(\frac{400}{0.001}\right)-50=399,950 \mathrm{ohms}
$$

say 400 kilohms.
Assume a 2 mA movement, scaled $0-2$ f.s.d. in 10 divisions, having a resistance of 30 ohms, is to be used for the milliammeter.

Rescale the dial $0-150 \mathrm{~mA}$ f.s.d., each division now representing 15 mA .

$$
\text { Shunt Resistance } R_{19}=\frac{R_{\mathrm{M}_{2}}}{n-1}
$$

where
$R_{\mathrm{M}_{2}}=$ meter resistance (30)
$n=$ ratio by which meter range is to be extended (150 to $2=75$ to 1).
$R_{19}=\frac{30}{75-1}=\frac{30}{74}=0.405 \mathrm{ohms}$, say 0.4 ohms.

SETTING UP

The testing of the power unit is quite straightforward, although when testing and setting up, high lethal voltages are present, great care should therefore be taken when working with the unit "live".

Set VR2 to approximately mid-position, switch on and allow the unit to warm up for ten or fifteen minutes. Next check the voltage swing available on VR1, either M1 or an external testmeter being used. Set VR1 to give maximum output (extreme clockwise direction) and adjust VR2 until output voltage falls to 325 volts. VR1 should then give a voltage output swing of approximately $175-325$ volts.

A dummy load which will draw $50-100 \mathrm{~mA}$ should next be connected across the h.t. sockets (a 3 to 6 kilohm 5 or 10 watt resistor being suitable), $\mathbf{S} 2$ being switched off. With VR1 set to give minimum output (175 volts), close $\mathbf{S} 2$ and ensure that there is no discernible change in the voltage output level.
This should be repeated at mid and maximum outputs (250 and 325 volts). Do not keep S2 closed longer than is necessary so as not to overheat the dummy load resistor.

Should stabilisation not be maintained at one or other of the extreme settings of VR1, a very slight adjustment on VR2 may be made to pull that point into the stabilised zone of the circuit characteristics. The tests are repeated until voltage stabilisation is maintained over the full range of VR1.

Check also that the load current drawn by the dummy load is correctly metered by M2. With the above tests satisfactorily completed, switch off S2 and remove the dummy load from the output sockets.

It now only remains to check the -150 V supply and 6.3 V heater supplies. Connect a multimeter across the -150 V output sockets (remembering that the positive lead of the voltmeter will go to the earth socket) and close S3. The voltage should read 150 ± 2 volts.

Switch off and temporarily connect a $15-20$ kilohm 1 watt dummy load resistor across the same output sockets, leaving the meter still in circuit. When S3 is closed there should be negligible change in output voltage.

VOLTAGE CHECKS

Using a suitable a.c. voltage range on the testmeter, check the voltage between earth and each heater output socket; these should read approximately $3 \cdot 2$ volts per side and 6.4 volts across the heater sockets themselves.

Finally, with S2 and S3 closed, check that the correct voltage is present on the correct pin of the two output octal sockets and also all the small sockets. The unit can now be fixed in the cabinet and is ready for use.

In case of difficulty or for future servicing a voltage table is shown in Table 1. The readings listed were taken on a 20 kilohm/volt instrument with VRI set to give 250 volts out, no external loads being connected. The figures given will of course vary slightly between units due to normal component and valve tolerances. If the unit is correctly wired, however, using the components specified, no difficulty should be encountered with the setting up and testing.

SERVICING AND FAULT FINDING

When working through the fault finding chart. check not only the circuit voltage at individual check points mentioned, but also check circuit for dry joints and incorrect wiring. Components should be checked for both open and short circuit, preferably under normal working conditions. Follow the checking chart carefully for each stage. 44 wis
PRACTICAL ELECTRONICS has some interesting and unusual practical projects from yesterday, today and tomorrow, many of them in working displays

> COME AND SEE US AT THE INTERNATIONAL RADIO ENGINEERING AND COMMUNICATIONS EXHIBITION (R.S.G.B.)
> August 19 to 22, 10 a.m. to 9 p.m.
> Royal Horticultural New Hall, Greycoat Street, London S.W.I (Victoria or St. James's stations)

CLIND-AIR AUDIO

C.IOOI MULTI-TESTER

Overload
20,000
protection 20,000 ohurs per volt;

a.c. volts $10 . \quad 50$ | 2.50, | $1,000 \mathrm{~F}$ |
| :--- | :--- |
| 20 | $1 . e$ | volts $5-25,125 ; 500$. $2,500 \mathrm{~V}$; d.c. current $0-50 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$: Resistance $0-60 \mathrm{k} \Omega$ -20 to +22 dB decibels of meter $4 \mathrm{in} \times 3$ in $\times 1 \mathrm{in}$. Complete with of meter 4 in 3 in $\times 1 \mathrm{in}$. Complete with

leat her case. $85 /-, \mathbf{P} . \&$ P. $3 / 6$.

62 D. MULTI-TESTER
 $0-6 \mathrm{k} \Omega, 0-6 \mathrm{M} \Omega(300$ ohlus and 30 ksl at
centre seale ; capacitance 10 F to 0.60 hmF , $0.001 \mu \mathrm{~F}$ to $0-1 \mu \mathrm{~F}$; decibels - 20 to +2 dBB

LIND-AIR LA. 20

fantastic flereo amplifier mate exclu arvely for Lind-Air and represents con amplifiers. Inputs for gram and radi tuner and provision for direct tape recording. Attractive and modern panel With bass, treble balance and voluine controls also on/off and stereo mono power: Frequency response $40-00,000 \mathrm{H}$ 8-16 ohjn speaker matching size 1f1in $14 \mathrm{in} \times 4 \mathrm{in}$
LIND-AIR
PRICE 524
10/-

SINCLAIR IC-IO
INTEGRATED CIRCUIT
10W Amplifter. Size only $1 \mathrm{in} \times 0.4 \mathrm{in}$ 0.2in. A true hi-f amplifier eomplete with manual giving fetails of a wide range of
applicstiong and instruct ions. Guarantee applicst iong and instructions. (iuarantee
SPECIAL TRAMEFORMER FOR OPERA TING 8INCLAIR IC-10 from a.c. Maine $230 / 250 \mathrm{~V}$. Output $13 y^{\circ}$ at $0.5 \mathrm{~A}, 16 / 6$.

HI-TONE RECOROING TAPE

NEW! STAREOO B - TRACK STETEO

TELETON STP. 800 8-TRACK STEREO CARTRIDGE HOME PLAYER A complete solid state unit realy to plug in and play. Hi-Fi reproduction at 3 i.p.s. Player unit incorporates volume, tone and balance controls and push-hatton track selector. Wize litill $10 \pm i \mathrm{il}$. Math heil speakers,

 LIND-AIR PRICE 49 Gns. ${ }_{30}$ Carr

 Hnit 3 Kit …...es11.19.8 eeich

 39 Gns. pair

SAVE ON AKAI!

AKAf foou steres Tape Recorider.
Liet Price 8124.18 .9.
Our Price 99 Gns.
akal 400GD *TERko tape

Our Price 69 Gns.

DE-LUXE STEAEO EEADPHONES With soft rubber earpieces. Imped ance 8-1 50 hms. Fre quency response $23-$
$13,000 \mathrm{~Hz}$ With lead anil gtereo plug enly $50 / 6$. P. $\& P$. VHFAIRCRAFT BAND CONVERTOR
$\begin{aligned} & \text { When placed within } \\ & \text { lin of a MW band }\end{aligned}$
radio full coverage band
VHF Aircraft Band
$108-135 \mathrm{Mc} / \mathrm{s}$
obtained. All tranaiator
rully tunable operation
ection unable $18 \frac{1}{2}$ in

S-DEC BREADBOARD

Solderless bre:ubluart pauels, for fant re diable component connections
single DeCs. One $\mathrm{S} \cdot \mathrm{DeC}$ with Control ranel Jig and Accessories for solderless connectious to controls, etc., with booklet "Projects on s-DeC" giving conatruction details for a variety of circuits. $29 / 8$. 4-DeC KIT. Four s- Deca with two Control Panels, Jige and Accessories and the book let 'Projects on $\mathrm{S}-\mathrm{DeC}$ " all contained in
gtrong attractive plastic case. Jileal fo strong attractive plast ic case. Jileal for
the profesgional user. 25.17 .6 . \mathbf{P} \& the profesuional user. 25.17 .6 . \mathbf{P} \& \mathbf{I}^{\prime} superb quatity hi-fi. 10 W ver
chimel music power. Inputs for gram (magnetic and crystal), tuner and auxiliary. Tape record output. Controls. olume, balance, bass, cabine with lrushed aluminu cabine with brushed aluminiun List Price 828.7.0. Our Price 22 Gns.

SPECIAL LIND-AIR OFFER!

 ROTEL 100 AMP STEREO AMPLIFIER
rully transistorised with al
facilities for the home hi-fl aystem diat price $\mathrm{K}_{3} 5$

Parrard HI-FITURNTABLES

$3025 \mathrm{~T} / \mathrm{C}$ with Btereo cartridge. \quad e8.19.6 3000 with sonotone 9 PAHCD stereo cartridge
210.19 .6 SP25 Mk. II
ML65B E10.19.6 Base and cover for athove. $\mathrm{AP75}_{\mathrm{ML} 2 \mathrm{~B}}$.

NL75B
SL95B
SL95B Bage and cover for above ... e28.10.0 P. \& P. Decks, $12 / 6$; Base and Cover, $10 /-$ Deck/Base/Cover, 17/6.

$\$ \mathrm{P} 25 \mathrm{Mk} .1 \mathrm{I}$ with sonotene \&. $15 /-$
9TAHCD cartridge and base
Sonotone 9TAHCD cartridge P . \& P. $15 /-$

18/19,25 \& 53 TOTTENHAM CT. ROAD, LONDON W. 1 Telephone: 01-580 2255/4532/7679
0 pen 9-6 pm. Monday to Saturday. Thursday until 7 pm.

technceal training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns', Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.
- Now available, Colour T.V. Servicing

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. pro-fessional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

R.S.T. Valve mail order co.

BLACKWOOD HALL, WELLFIELD RD., S.W. 16
SPECIAL EXPRESS MAIL ORDER SERVICE

1N21	3/6	28308	9/-	BCY54	$7 / 3$	GET116	6/-	0 C 20	201-
1N21B	$81-$	28501	6)-	BCY 60	191-	GET118	4/-	0 C 22	8/-
1N23	4/-	28703	12/6	BCY70	61-	GET119	4/-	0 C 23	$8 / 6$
1 N 85	17/6	3N 143	19/-	BCZ11	61-	GET120	6/6	$0 \mathrm{OC2} 4$	$9 /-$
1N283	101-	A13759	4)-	BD121	19/-	GET887	$8 / 6$	0C25	$7 / 6$
1N256	101-	AA129	$51 /$	BD123	22/6	GET872B	6/-	OC28	6/-
1N646	51-	AAZ12	3/6	BD124	12/-	GET873	3/-	OC28	12/6
1N725A	4/-	AAZ13	3/-	BDY11	0/6	GET875	6/-	OC29	14/6
1N4007	$4 / 6$	AC107	5/6	BF118	5/6	GET880	8/9	OC30	$8{ }^{8}-$
18021	$4{ }_{1}$	ACl26	417	BF117	10/-	G ET882	6/-	Oc35	6/3
19113	$3 /-$	AC127	51-	BF167	6/6	GET885	101-	0 O 36	$8 / 6$
18130	$2 / 6$	ACl28	$4 / 6$	BF173	7/3	GEX 35	4/6	0 C 38	$10 / 3$
18131	$2 / 6$	AC129	$7 / 6$	BF181	$61-$	GEX44	1/6	OC41	4/6
2 C 220	12/6	AC187	11/-	BF184	$7 / 6$	GEX941	4/-	OC42	5/-
2G240	3/6	AC188	11/-	BF185	61	GJ3M	$7 / 6$	OC43	91-
2 G 301	$3 / 6$	ACY17	4/6	BF194	$6 / 3$	GJ4M	7/6	OC44	4-
$2 \mathrm{C3} 06$	$81-$	ACY18	4/-	BF195	$5 / 6$	GJBM	7/6	$0 \mathrm{OC44}$	-
$2 \mathrm{G371B}$	4/-	ACY19	$5 /-$	BF196	$5 / 6$	HG1005	101-	OC4 45 OC46	3/3
2G381A	4/6	ACY 20	81-	BF197	5/6	MAT100	$61-$	OC46	/
$2 \mathrm{G403}$	10/-	ACY21	4/6	BFX12	516	Mat101	$8 / 3$	OC58	-
$2 \mathrm{Cl14}$	6/-	ACY22	4/-	BFX 13	5/6	MAT120	\$/9	OC69	-
$2 \mathrm{Cl17}$	6/-	ACY27	\$1-	BFX29	12/-	MAT121	6/-	OC70	3/6
2N214	$8 / 6$	ACY28	4/-	BFX 30	8/6	MJ420	$221-$	$0 \mathrm{OC71}$	$3 /-$
2N 404	$6 \mathrm{~J}^{-}$	ACY 39	12/6	BFX35	19/6	MJ421	22f-	$0 \mathrm{OC72}$	4/-
2 N 247	$9 / 6$	ACY40	$4 /-$	BFX4	8/3	NKT128	6/-	0 C 73	7/3
2N697	4/-	ACY41	\$1-	BFX44	$8 / 3$	NKT129	6/-	$0 \mathrm{C74}$	4/6
2N698	4/6	ACY44	7/6	BFX68	13/-	NKT135	$5 / 3$	0C75	4/6
2N706	$3 /-$	AD140	81-	BFX68A	13/6	NKT210	$61 /$	$0{ }^{0} 76$	$3 /-$
2N706A	3/6	AD149	12/-	BFX85	10 /-	NKT211	6/6	0 C 77	$8 /-$
2N708	4/-	AD150	151-	BFX86	9/6	T212	5/4	$0 \mathrm{OC78}$	$3 /-$
2N709	12/6	AD161	$7 / 6$	BFX87	$9 / 6$	T213	6/4	${ }^{\text {OC78D }}$	$3 / 3$
2N711	7/6	AD162	7/-	BFX88	81-	14	4/4	0 C 79	51-
2N987	10/6	AF106	10/6	BFY20	12/-	216	4/6	$0 \mathrm{C81}$	4/-
2N1090	6/6	AF114	$51-$	BFY21	8/6	16	6/4	OC81D	$31-$
2N1091	6/6	AFl1s	\$/9	BFY24	$91-$	7	82/4	OC81DM	3 J
2N1131	$8 / 6$	AF116	4/6	BFY41	9/6	NKT218	22/6	OC81M	51-
2N1132	$7 / 6$	AF117	1/6	BFY43	12/6	NKT219	6/6	OC82	3/-
2N1302	4/-	AF118	12/-	BFY50	$5 /-$	NKT221	5/6	OC82D	$3 /-$
2N1303	4/3	AF119	41-	BFY51	$61-$	NKT223	$6 / 6$	OC83	$4 / 6$
2N1304	4/9	AF124	5/-	BFY53	${ }^{6} / 6$	NKT225	$4 / 9$	0C84	4/9
2N1305	5/-	AF125	8/-	BFY77	12/-	NKT227	$5 / 9$	OC114	$7 / 6$
2N1306	5)-	AF126	81/	BFY90	12/6	NKT229	8/9	OC122	12/6
2N1307	$5 /-$	AF127	$4 / 6$	BEX27	101-	NKT237	$7 / 9$	${ }_{0} 0 \mathrm{C} 123$	1/4
2 N 1308	6/-	AF139	7/6	B8X60	18/6	NKT238	$8 / 9$	OC139	$7 / 6$
2N1309	$6 /-$	AFl78	12/6	BEX61	12/-	NKT240	$6 / 6$	OC140	616
2N1420	$7 / 3$	AF179	11/-	B8Y26	316	NKT241	6/6	OC141	12/3
2N1607	8/6	AF180	12/-	B8Y27	47-	NKT25	4/9	OC169	61-
2N1526	$7 / 6$	AF181	8/-	BSY51	101-	NKT261	4/6	OC170	5/6
2N1909	451-	AF188	11/-	BSY78	$9 / 3$	NKT274	$4 / 9$	OC171	61-
2N2147	16/6	AFY19	22/6	BSY79	$9 / 3$	NKT275	$61-$	OC172	7/-
2N2148	12]-	AFZ11	6/-	B8Y82	101-	NKT277	4/9	OC200	5/6
2N2160	14j-	AFZ12	6/6	BSY83	11/-	NKT403	$9 / 9$	OC201	$8 / 6$
2N2193	8/6	A8Y26	\$/6	B8Y84	121-	NKT404	12/6	OC202	$8 / 6$
2 N 2287	20/6	A8Y27	$7 / 6$	B8Y95A	$3 / 6$	NKT678	6/-	0 C 203	$6 /-$
2N2297	$6 /-$	A8Y28	$5 / 3$	BY100	4/6	NKT713	$7 / 6$	OC204	5/6
2N2369A	$51-$	A8Y29	81-	BY213	51-	NKT773	6/-	OC205	$1-$
2N2410	10/6	A8Y36	$5 / 6$	BYZ11	$51-$	NKT777	7/6	OC206	14/6
2N2411	6/6	A8YB0	b/-	BYZ11N	$7 / 6$	NKT80113		OC207	+7/6
2N2412	6/6	A8Y5	7/6	BYZ12	87/		20/-	$0 \mathrm{OC450}$	6 6-
2N 2483	5/6	A8Y53	$4 / 9$	BYZ14	$27 / 6$	078B	$7 / 6$	OC470	8/-
2N2484	7/6	A8Y54	4/9	BYZ15	35/-	OAS	3/6	0 OP 71	$201-$
2N 2646	11/6	ASYDS	6/-	BYZ16	17/6	OA10	3/-	PS144	201-
2N2696	6/3	ABY62	${ }_{6 / 6}^{6 /}$	C111	13/-	0447	$21 /$	819T	6/-
2N2865	12/-	A8Y86	$6 / 6$ $13 / 6$	CREA 105	$12 / 6$ $5 /-$	OA70	1/6	SAC40	${ }_{6 /-}$
2N2904	7/6	${ }^{\text {A8Z }} 187$	$13 / 6$ $7 / 3$	CR81/05	51-	OA71	21-	${ }_{\text {SFT308 }}$	${ }^{7 / 6}$
2N2904A	$81-$	A8Z20	$7 / 3$ $7 / 6$	C84B	37/6	OA73	$21-$	8FT308	$7 / 6$
2N2908	$8 /-$	${ }^{\text {A8Z21 }}$	$7 / 6$ $19 / 6$	CS10B	$67 / 6$	OA74	4/-	8JO52F	$7 / 6$ $5 /-$
2N2907	$7 / 6$	ASZ23	19/6	CV101	$5{ }^{51}$ -	OA79	1/9	${ }_{\text {ST }}$	$5 /-$ $12 / 6$
2N2926	$3 /-$	AUY10	19/6	CV253	$20 /-$	OA81	1/6	ST7231 gX 68	12/6
2N2924	4/6	BC107	$3 / 6$	CV2154	32/6	0485	1/6	SX68UH	4/6
2N3014	7/6	BC108	3/6	CV2155	32/6	OA86	41-	${ }_{\text {SX }}^{\text {SX }}$ (631 U	$4 / 6$ $7 / 6$
2N3054	$11 /-$	BC109	3/6	CV2279	10/6	OA90	1/6	SX631 SX631U0	7/6
2N3085	14/6	BC1 13	6/3	CV2923	4/6	0 A 91	1/6	${ }_{8 \times 681} 8 \times$	10/-
2N3705	4/-	BC115	6/6	CV4073	$3 /-$	OA96	1/6	8X680T SX634W	4/-
2N3706	4/6	BC116	11/6	CV4074	$3 / 6$	OA200	2/-	SX634W	8/-
2N3707	4/-	BC118	6/6	CV7108	80/-	OA202	$27-$	8X753	15/-
2N3708	4/-	$\underset{\text { BC12 }}{ }$	4/-	CV7109 CV7183	$751-$ $30 /-$	OA210 OA211	6/6	${ }_{\text {SZ33C }}^{\text {S15 }}$	12/-
2N3709	4/-	BC125	13/6-	CV7312	$30 /-$ 10	OA211	10/-	V18/10P	15/-
2N3710	4/-	BC126	13/-	CV7324	101-	OAZ2201	10/-	V180/301P	$16 /-$ $9 / 6$
2N3819	$8 /-$ $20 /-$	BC140	11/-	CV7341		OAZ202	7/6	XA122	${ }_{6} 1$
2N3823	17\%-	BC145	16/-	CV7347	12/6	OAZ203	$8 /-$	XA124	$41-$
2N3900	10/6	BC147	$4 / 9$	CV7361	12/6	OAZ204	$8 /-$	XA142	B1-
2 N 3900 A	11/-	BC148	4/6	D246	$7 / 6$	OAZ207	101-	XA143	B_{1} -
2N5027	$10 / 6$	BC149	$51-$	DD006	6/6	OAZ208	$6 / 6$	XA162	$5 /-$
2NB028	$11 / 6$	BC157	4/-	DD007	$81-$	OAZ210	6/6	XA162	8/6
2N6307	7/6	BC160	12/6	DD008	$7 / 6$	OAZ222	$9 / 6$	XB101	$8 / 6$
2N5308	$7 / 6$	BCY 31	$61-$	GD3	6/6	OAZ224	$9 / 6$	XB121	$8 / 6$
2N5309	11/-	$\mathrm{BCY} 32^{\text {BCY }}$	$7 / 6$	GD4	$71-$	OAZ241	$7 / 6$	XK505	5 -
28005	14J-	BCY 33	8/-	GD5	$6 / 6$	OAZ242	4/6	XK618	6/-
28013	15%	BCY34 BCY38	$8 / 6$ $8 / 6$	GD6	6/-	OAZ246	4/6	Z2A82CR	5/-
28013A	16/6	BCY 39	$71-$	GET102	B/-	0 Cl 16	15/-	2832A	$61-$
28301	12/6	BCY 40	7/6	GET113	5)-	0C16T	$16 / 6$	ZT21	$6 /-$
28304	$9 /-$	BCY42	3/-	GET114	4/-	OC19	$8 / 6$	ZT43	$5 /-$

TRANSISTORS (POSTAGE, PACKING \& INSURANCE) I/3 PER ORDER
SEND S.A.E. FOR LIST OF 3,000 TYPESVALVES, TUBES AND TRANSISTORS

[^3]

By B. H. BAILY

THIS timer was primarily designed for use with a 240 volt enlarger as a darkroom universal timer to give times of 1 to 60 seconds. However, in view of its high repeat accuracy- $\frac{1}{2}$ second in one minute-it is ideally suited to other applications where high timing accuracy is required.

CIRCUIT

The circuit (Fig. 1) uses two transistors, a 2 N2926 and an OC71. A power supply of 12 volts is derived from transformer T1, the output of which is rectified by D2 and smoothed by C2. The heart of the timing circuit is a tantalum capacitor, C 1 , which charges through VR1 and R1: on the higher time range R2 is included in the charging path. The voltage across Cl is monitored by TR1 and TR2 which act as a comparator, comparing Cl voltage with the reference set at VR2 slider. When this reference is slightly exceeded, D1 conducts, turning on TRI which then draws current from TR2 base; TR2 immediately conducts, operating RLA, which then locks in via its own contact RLA1. Simultaneously, Cl is shorted to earth by contact RLA2. The timer may be reset by momentary interruption of the relay coil path by operation of S 2 to
"time" position. Some compensation against timing errors caused by mains variation is achieved by the connection of VR2 across the 12 V supply. Transistor TRI reference voltage remains proportional to the charging potential of Cl despite small changes in supply voltage.

OPERATING SWITCH

The operating switch S2 is a G.P.O. type key switch, having a centre position, one lock position and a biased position, i.e. the switch returns to the centre position when released. This type of switch allows a "focus" facility (the lock position), which is essential when the timer is used in the darkroom. Timers without this feature have a habit of clicking off just as one gets the enlarger lens almost adjusted to the best focus position. In the "focus" position, the relay RLA is held de-energised by S2b contacts. To ensure that the relay pulls in immediately after focussing, a bias is applied to C1 via S2a. If this were not done, one would have to wait for the circuit to "time out" before the enlarger lamp went out.

The relay used is a G.P.O. type, having a coil resistance of 500 ohms. Platinum contacts are used for the enlarger lamp control contacts (RLA3), to ensure adequate current switching capacity.

CONSTRUCTION

The smaller components can be wired on a single 13 way tagstrip as shown in Fig. 2, secured to the inside of the cabinet. The cabinet is a metal sloping front type measuring $8 \times 5 \times 5$ inches, which houses all components without wastage of space, and allows good earthing to be effected. A slide switch is used for the time range switch to avoid accidental change of range.

To avoid unnecessary extra mains leads, the enlarger output is taken from the timer already "live" and needs only to be connected to the lamp via the 3 pin socket SK1. Wiring of all components inside the case is shown in Fig. 3.

CALIBRATION

Accuracy of the timer will depend to some degree on the choice of components. The time scale potentiometer should be wire-wound, of precision pattern if possible. This will ensure a consistent and linear scale calibration. To calibrate the finished timer, first mark on a circular cardboard scale as in the photograph the two extremes reached by the pointer knob. With SI set to $\mathrm{I}-30$ seconds position, test the anti-clockwise position by operating the "time" switch. The relay should latch after about I second, due to the inclusion of RI. Next, turn VR1 to maximum time and again operate timer. If the relay pulls in early (before

COMPONENTS . . .

```
Resistors
    RI Ik\Omega
    R2 100k S
    R3 150\Omega
    R4 47k \Omega
    R5 330\Omega
    R6 150\Omega. All }\frac{1}{2}\textrm{W},5% carbo
```


Capacitors

$\mathrm{Cl} 140 \mu \mathrm{~F}$ tantalum 50 V
C2 $500 \mu \mathrm{~F}$ elect. 25 V
Semiconductors
TRI 2N2926 (green)
TR2 OC71
DI, D3 OA91
D2 DD000 or similar 50 p.i.v.
Miscellaneous
VRI $100 \mathrm{k} \Omega$ wirewound potentiometer
VR2 $2 k \Omega$ skeleton preset potentiometer
SI D.P.S.T. slide switch
S2 Three-pole three-way G.P.O. keyswitch (see text)
RLA G.P.O. type relay, coil resistance 500Ω having one set of changeover contacts, one set of normally open contacts and one set of normally closed platinum contacts
TI Mains transformer 220/240V primary 18 V secondary
SKI 3 pin mains socket (flying lead type)
FSI 250 mA fuse and holder
Metal case (see text)
Knob, pointer
13 way tagstrip

Fig. 2. Tag strip wiring diagram
30 seconds have elapsed), adjust VR2 towards the "live" end of its travel, or vice versa. Switch "range" to $30-60$ seconds and check for accurate one minute timing. If this is incorrect, re-adjust VR2 to correct, and on the $1-30$ second range find the exact point at which 30 seconds timing is achieved. Mark this point and leave VR2 set. Potentiometer VR2 has a slightly greater control over the longer periods of time than the shorter intervals, since the charging of Cl is exponential.

Finally, the intermediate timing calibrations for the five second intervals can be determined by experiment, and marked in. The one second graduations may be filled in by eye afterwards, since they obey a strictly linear law.

Note: Be sure to earth all darkroom equipment. Use three core cable and three pin plugs for the timer and enlarger, and earth all metal cabinets.

Fig. 3. Photo-timer layout and wiring diagram. Components mounted on the tag strip have been omitted for clarity

2 $\ddagger \mathrm{kW}$ FAN HEATER
Three positlon switching to suit changes in the weather 8 imitch up for full heater (21
 blowe cold for summer cooling -adjuatable thermoatat act as auto control and eafety cut out. Complete kit \&8.15.0 Poot and ins. $7 / 6$.

FLUORESCENT CONTROL KITS
Each kit comprines aeven items-Choke, 2 tube ends, starter. starter holder and 2 tube clipe With wiring insiructions. Buitable for normal fish tanks and indoor plant Chakes are ouper fish tanks and indoor plants. Chokes are super: Kit B-30-40 w. 19/6. Kit C-80 w. $25 / \mathrm{s}$ Kjt MF1 is for 6 in., 9 in . and 19 in . minlature tubes, 10/6. Postage on K its A and $B 4 / 6$ for one or two kits then $4 / 6$ for each two kits ordered. Klt C, $4 / 6$ on first kit then $3 / 6$ for $3 / 6$ on each two k ita ordered.

3 DIOIT COUNTER For Tape Recorder or other appessing button. Price $5 / \mathrm{s}$.

TRANSDUCER

Made by Acos, reference No .D.1on. For measuring vibra tions, etc., to be used in con Junction with ' 'G'' Meter. Megu-
lar price $\& 5$. Our price $49 / 6$. Brand new and unused.

ISOLATION SWITCH 20 Amp B.P. 250 volts. Ideal to con trol Water Heater or any other appli-
ance. Neon indicator current is on. $4 / 6$. 48/-per dozen.

LIGHT CELL
Amost zero resiatant in sunlight increaees to 10 K .0 hrms in dark or dull light, epoxy resin sealed. Hize approx. 1 in . dia, by \ddagger in. thick.

FLEX BAMGAINS

screened 2 Core Fox. Each core 14/0076 Copper PVC insulated and coloured, the corea laid together and nietal braided overahl. Price $\mathbf{\$ 8 . 1 5 . 0}$ per $100 y$ ds. coil, p. $\%$ p. $6 / 6$.
15 Amp 8 Core Mon-kink Flez. 70/0076 insulated coloured cores, protected by tough rubber sheath. then black cotton braided with white tracer. A normal domestic flex as fitted to 3 Kw. fres.
Regular prices $3 / 6$ per $y d .50$, 4 . coil 4.10 .0 . p. $\&$ p. 6,6 .
p. 10 Amp 8 dore Nom-kink Fler. As above but cores are $28 / 0076$ Copper. Normal price $2 / 6$ per $y d$. 100 yd. coil $\mathbf{2 7}$.10.0, p. \& p. $6 / 6$.
6 Amp 2 Core Flex, AE above, but \because Cores each $23 / 0076$ as used for Vacuum Cleaners. Electric Blankets, etc. $89 / 6100 \mathrm{yd}$. coil, p. \& p. $6 / 6$. mally told at $1 / 6$ yd. Our price 100 yd, coll mally sold Poet and ineurance $6 / 6$.

C, 12 or 24 VOLT
SOLENOID
For energtaing Reed Switches, voltinge.

RADIO STETHOSCOPE

Bacieat way to fanlt find-traces signal fromaerial to speaker when eignal atops you've found the lauit. lse it on Radio, TV amplifier, anything - coniplete kits comprises two specia. ding probe tube and crysta ding probe tube and crysta
earpiece $29 / 6$, twin stetho set instead of earplece $11 /-$ extra-post and ins. 2/9.

TELESCOPIC

 AERIAL for portable, car radio or tranamitter. Chrome pla. i) to 47 in . Hole in bottonds from
BATTERY OPERATED TAPE DECK

With Capstan controlThis unit is extremely Thia unit is extremely wres approx. 6×5 : $2 \ln$. deep. Has three piano key type controla for
Record, Playback Record, Playback
and
Rewind. Motor is a special heavy duty type ntended for operation off $4 / 5$ volts. Suppiled complete with 2 gpoois reads Replayhead is the senaitive M.
use with transtor, amplifer. Price $70 / 6$. Poit and insurance 4/6.

INTEGRATED CIRCUIT BARGAIN
A parcel of integrated circulta made by the famoua Pleasey Company. A once-In-a-lifetime offer of Micro-electronic devices well below cont of manu1acture. The parcel contsins 5 ICs all new and perfect, first-grade devlce, definitely not sub-standard or seconds. The ICs are all single silicon chip
General Purpose Ampliflers. Regular price of which la well over al each. Full circult delails of the ICe are included and in addition you wlll receive a ligt of 50 difterent ICsavallable at bargain prices $5 /-$ upwards with circuith and technical data of each. Complete parcel only $\& 1$ poat pald: or Liat and all data 10!- post free. Credited whep you order IC: value $\mathbf{3 0} \%$ - and upwards

DISTRIBUTION PANELS
Just what you need for work bench or lab. 4×13 amp sockets and on/off switch with 4/6 port and insurance
$89 / 6$ wired up. ready to work plus $4 / 6$ post and insure

Standard size 11 wafer-silver-plated 5 -amp contact, standard din spindle 2 in long-with locking washer and nut.									
No. of Pol	2 way	3 wa	4 way	5 way	6 way	8 way	9 way	10 way	2 way
1 poie	8/6	d/6	6/8	6/6	6/6	8/6	8/6	6	6/6
2 poles	6/6	8/6	6/6	$8 / 6$	$6 / 6$	6/6	$8 / 6$	10/6	10/6
3 poles	6/6	6/6	6/6	$6 / 6$	$10 / 6$	$10 / 6$	$10 / 6$	14/6	14/6
4 poles	8/6	6/6	8/6	10/6	$10 / 6$	$10 / 6$	$10 / 6$	18/6	18/6
5 polea	6/6	$6 / 6$	$10 / 6$	$10 / 6$	$14 / 6$	14/6	14/6	$22 / 6$	$28 / 8$
6 poles	6/6	10/6	10/6	10/6	14/6	14/6	$14 / 8$	20/6	28/6
7 polea	10/6	10/6	10/6	$14 / 6$	$18 / 6$	18/6	18/6	$20 / 6$	80/6
8 poles	10/6	10/6	10/8	14/6	$18 / 6$	18/6	18/6	24/6	$84 / 6$
9 poles	10/6	$10 / 6$	146	$14 / 6$	2e/6	20/6	2e/6	$38 / 6$	38/6
10 poles	10/6	$10 / 8$	$14 / 6$	18/6	2e/6	2e/6	$20 / 6$	48/6	42/6
11 poles	10/6	14/6	14/6	18/6	$28 / 6$	26/6	28/6	$48 / 6$	$48 / 6$
12 poles	10/6	14/6	14/6	18/6	88/6	20/4	28/6	50/6	$50 / 6$

HI-FI SPEAKERS (15, 30, 40\& 100W)
FULL F1 12 IMCH LOUDSPEAKER. Thls is undoubtedly one of the by one of the country's most fanious mer offe has a die-cast metal frame and is strongly recommended for Hi -Fi lead and Rhythrn Guitar and public address. Flux Density 11,000 gause-Total Fiux 44,000 MaxwelligPower Handing 15 watt R.M.R. Cone Mounlded fibreFreq, response $30-10,030$ c.p.8. - Specify 3 or 15 ohmsMains remonance 60 c c.p. A - Chasais Dlam. 12 in - -121 in over mounting lugs Baffle hole 11 in . Dlam.-Mounting holes 4, holes-tin. diam. on pitch circle 11 in. diam. 121 n .40 watt 88.196 .15 in .28 watt 87.19 .6 . 18 in . 100 wat 819.10, plue $7 / 6$ p. id p .

THIS MONTH'S SNIP

Mains Transformer

Mante by Hincusey. normal primary tapped $200 / 250 \mathrm{~V}$, 2 secondaries $275-0$ -

$$
\begin{aligned}
& 275 V \text { at } 90 \mathrm{~mA} \text {. } 83 \mathrm{~V} \text { at } 4 \text { amps. Upright mountlng, stock size } 1 t \times 2 \text { in. } \\
& \text { Today's regular price } 39 / 6 \text {. Special snip price } 19 / 6 \text { plus } 4 / 6 \text { post and ins. }
\end{aligned}
$$

Horstmann "Time and Set" Switch

A 16 gmp Switsh). Just the thing if you want to come home o warm home without it costing you a fortune. You can delay the switch on time of your electric flires, etc., up to
14 hours from getting time or you can use the switch to give a boort period of up to 3 hours. Equally suitable to control procesaing. Regular price probsbly around $\varepsilon 5$. Special saip price 29/6, p. and ine. $4 / 6$.

3 kW TANGENTIAL HEATER UNIT

This heater unit is the very lateat type, mont efficient and quiet running. Is as fitted in
Hoover and blower heater. more. We have a few only. Comprises motor, impeller, 2 kW element and 1 kW element allowiag switching 1, 2 and 3kW and with thermal safety cut-out. Can be
fitted into any metal line case or cabinet Atted into any metal line case or cabinet.
Only need control switch. $89 / 6$. 2 kW .
Model as above except 2 kilowatto $89 / 6$. Postage and insurance 6/6. Don't mise this.

MOST AMAZING BARGAIN

PRINCESS AUTO CHANGER

The most amazing bargain everl A brand new Auto change record player for less than the price of a aingle player. . d due to a fruatrated ezport order we are able eally fine machine Princesm 4 speed Autochanger-

The Balfour has two unique features (1) A patented brush aystem which automatically cleane atylua atter each record playing and (2) at shut oft the pick-up locks itself into Its recess-other features inciude pick-up helght and
stylus presaure adjuatments, and motor suitable for our $230 / 240$ or for 115%. continental mains.
Beabtifully stylet-this is a high clase expensive instrument but you can purchase one this month for only 50/6 plus $10 / 6$ post and packing. One point, these changers have been to France and back and the vibrations of the journey, However, with each we bupply a 16 page service namual and fault finding chart which is so detalled that if neceseary you could completely re-build the changer. So this la truly a bargain that you will not want to mise so order today

NEEO A SPECIAL SWITCH ?
Double Lew Contact
Very slight premare closes both contacts, $1 / 8$ each, 18/- doz. Plantic
puah-rod multable for operating, $1 /-$ each, for doz.
ELECTRIC CLOCK
WITH 25 AMP
SWITCH
Made by Smith's, these unite are as fitted to many top quality cookere to control the oven The clack is maind driven and fre quency controlled so it is ex tremely accurate. The two amal diale epable switch on and on
 timee to be accurately set. Ideal for switchlng on tape recorders. Offered at only fraction of the regular price-new and unosed only $\begin{gathered}\text { sid } \\ 6\end{gathered}$, lean than the value of the clock alonepost and ineurance 2/9.

DRILL
CONTROLLER Electronically changes apeed from approximately 10 revs, to
maximum. Full power maximum. Full power tip control. Ky Kit tncludea all parta, caee,
everything and full inatructions. 1*/6 plus $2 / 6$ pott and insurance.

MAINS MOTOR Preciaion made - as and tape recordera ideal aloo for extractor tan, blower, heatera, Snip at $9 / 8$. Pottage (9) a co $)^{3 /-}$ 3/- for first one then

PP3 BATTERY
ELIMINATOR
Run your bmall tranalator radio from the mains-full wave circult. Made up ready to wire lato your set and adjuatable high or low current. $8 / 6$ each.
ACFAN
Small but very poweriul maina motor with $5 \frac{1}{4}$ in. bladea. Ideal for cooling equlpment or as extractor. 8 ilent but very
efficlent. $17 / 6$. pont $4 / 6$. Mouut from back or front $1 /-$ for each one
ordered. 12 and
over post with 4BA screws.

BALANCED ARMATURE UNIT

500 ohm, operates apeaker or micro-
phone, $s 0$ useful in intercom or similar
phone, so useful in intercom
circuits. $0 / 6$ ea., tis. 10.0 doz
circuita. 6/8 ea.,
80 ohm model $5 / 6$.
THERMOSTATS
Type "A" 15 amp . for controling room heaters greenhouses, airing cupboard. Has spindle for pointer knobe. Qulckiy ad $9 / 6$ plus $1 /-$ post. Sultable box for wall mounting $5 /-$ P. \& P. $1 /-$. Trpe "g" 16 amp. This is a $17 /$. long rod typ the famous sunvic Co. Apindie adjuse
thom $50-560^{\circ} \mathrm{F}$. Internal screw alters the setting to this could be adjuatable over 30° to $1000^{\circ} \mathrm{F}$. Suitable for controlling furnace, oven, heater or to make fiame-atat or fire alarm. $8 / 8$ plus $2 / 6$ poat and lnsarance Wedreezing polnt, $2 / 3 \mathrm{amp}$. Has many uses one of which would be to keep the loft pipe from freezing, if a length of our blanket wire (16 yd 10/-) lo wound round the pipen. $7 / 6$ P. \& P. 1/Type "E". This is atanderd refrigerator thermotat. Spindle adjuatmenta cover normal refrigera tor temperature. $9 / 6$, plus $1 /$-post.
Tpe "F". Olase encased for controling the temp. of liquid-particularly those in glase tanks, vate rubber sucker or wire clip-ideal for fish tankdevelopers and chemical baths of all types Adjustable over range 60° to $150^{\prime} \mathrm{F}$. Price $18 /$ plus 2/-post and insurance.

THERMOSTAT

Continuously variable $30^{\circ} \cdot 90^{\circ} \mathrm{C}$. Has sensor bulb connected by 331 n . of flexibl gwitch ís opened and in addjtion 1 plunger moves throngh approx. in. This could be used to open valve on ventllator etc. 10/6 plus $4 / 6 \mathrm{p}$. and ins.
230 VOLT SOLENOID in. stroke. size 2 in.
$2 / 9$.

Where postage is not atated then ordera over 55 are post free. Below 25 add $2 / 9$. Semiconductors add 1/- poat. Over 11 post free. S.A.E. with enquiries please.

ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CRO 2TH Alse 102/3 Tamworth Mond, Croydon

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We the magazine. Technical queries cannot be dealt with on the telephone.

P.E. communiculions receiver

Sir-I am at present constructing the P.E. Wideband H.F. Communications Receiver and I think that Mr R. Hirst's description of the receiver and of its construction are excellent.

However, there are one or two points that I would like clarified.

Firstly, in the preview of this receiver in the September 1969 issue, it is described as having a built-in crystal comparator to ensure accurate alignment. If this were described I an sure that others who, like myself, have not access to a vast array of test equipment, would benefit.

Secondly, the receiver is designed primarily for the reception of S.S.B., but so far as I can understand, it provides only for Upper Sideband, and not for Lower (or inverted) Sideband reception.

Since the inverted form is, I believe. used on the 160,80 , and 40 meter bands by amateurs, I am sure that facilities for reception of this mode would be very useful. I would think that facilities for switching out the 36 MHz crystal in the lst oscillator, and replacing it with a 32 MH ; crystal would cater for this.

Thirdly, it was stated that optional arrangements for a local oscillator would be described, but the series has now been concluded with no such provision. Also, I would like to know how stable I can expect the oscillator that has been described to be.

Fourthly, if Al transmissions are received by the "offset" method, then will not the a.g.c. fail to respond to the signal, and indeed possibly allow another signal to control the receiver gain? I would think that a switch to render a.g.c. unoperative, or audio devised a.g.c. would solve this problem.
Lastly, in order to connect the a.g.c. module to the receiver, will it not be necessary to have two output sockets on the first i.f. module?
I realise that the above list is one of only minor points, and I most certainly do not wish to detract from Mr Hirst's marvellous design, but merely to ensure that my finished receiver will give the best possible performance of which it is capable.
R. Smith,

Basingstoke.

As you will appreciate, the designing of a piece of equipment of this nature for a large and varied range of applications requires considerable predesign thought on the part of the designer. Due to the flexibility of this type of wideband design, one could have written a never ending series around peripheral equipment. Bearing this in mind, perhaps you would consider the following observations upon your comments a reasonable compromise between what one would have liked to have done and what one had the space to do it in.
I. As you quite rightly state, the initial intention had been to describe a crystal comparator and the original equipment around which the design was centred had this unit included. When, however, the cost and the ability of the constructor to actually set up the crystal comparator was considered in much more detail, a certain amount of doubt surrounded the adviseability of including this particular unit in the finalised design.
2. As you quite rightly suggest, the receiver is designed primarily for upper sideband reception but as you will see from the introduction to the series, the design was intended for receiver enthusiasts with some knowledge of the particular subject. There are two ways of simply converting the receiver for lower sideband reception.
(a) By changing the second oscillator to 32 MHz .
(b) Change the sideband filter.

Obviously the first suggestion is the most simple to carry out.
3. Regarding the optional local oscillator arrangements, you simply have to use the second oscillator circuit and use the crystal (with the required tuned collector load) for the frequency you require.
4. If Al reception is required, one would use the arrangement that does not include the a.g.c. Unit where the i.f. gain is manually controlled by the front panel Carrier Control.
5. In order to connect the A.G.C. module, it will be necessary to add a socket to the first i.f. unit,
in parallel with the output to the sideband filter unit, in a manner similar to that used on the second and first oscillator units.

Your observations are quite correct and no doubt other constructors will make the basic receiver with all types of modifications to suit their own requirements and as you will understand, the permutations are innumerable.

I hope that the comments will convey to you the reasons for failing to enumerate all the variables.-R.H.

Fringe benefil

Sir-I should like to take this opportunity of congratulating you on the publication of Gerry Brown's "On the Fringe," particularly that part on the possibilities of emotions in plants. Many publishers fight shy of anything which may turn out to be controversial, and the layman has little opportunity to learn of, and udge for himself, the truth about such subjects.

I personally think that there are many things in nature that before today were the prerogative of top scientists to investigate, and most of these were too concerned with keeping up prestige to "dabble" in anything which might show them up as cranks. Now, with the abundance of i.c.'s, it is quite within the realms of possibility for an amateur to make sophisticated equipment, such as d.c. amps., simply by connecting up an i.c., and, as Gerry Brown has done, try out some of these fringe experiments in confidence that if the experiment turns out unsuccessful, nothing is lost. If successful, it could well be that great scientific discoveries could be achieved by a determined "dabbler"

I have no doubt that there will be many letters as a result of this subject on plant emotions, as it is my experience that many who are keen electronic enthusiasts have the kind of minds which are stimulated by new challenges.

I look forward to seeing full articles covering the construction of suitable apparatus for testing out E.S.P. also, and may even get around to having a go myself when time permits!
B. H. Baily,

Ferndown, Dorset.
 GIVE FOR THOSE WNO. GAVE

A SELECTION FROM OUR POSTBAG

Now we've Zene î all

Sir-I was interested to note that in B. Grainger's letter (July 1970 Readout) he wants an equivalent to a Zener diode. Here's one: A battery!

As used in a power supply unit:

and another (even worse!): Shunt stabilising.

City University, London, E.C.I.

Mobile rally

Sir,-Readers may be interested to learn that a Mobile Rally is being organised by the Peterborough Amateur Radio and Electronics Society on Sunday, September 20, from 2 to 5 p.m., in the Walton Senior School, Mountsteven Avenue, Peterborough.

There will be numerous trade-stalls and exhibition stands of electronic components, plus a giant sale of surplus equipment. Entertainment is to be provided for wives and families, and parking space will be ample.

Talk-in stations will be G3QS on $1,980 \mathrm{kHz}$, and G3RED on 2 metres. A special feature will be a display of antique wireless receivers, complete with cats-whiskers and horn loudspeakers!

Further details can be obtained from the hon. secretary :

Douglas Byrne, G3KPO,
Jersey House, Eye, Peterborough, Hunts.

Temperature alarm

Sir-Thank you for publishing my article under the Ingenuity Unlimited pages in the July issue of your magazine.

I would however like to point out an error; the bridge rectifier has been rotated a quarter of a turn so that the leads from the Wheatstone bridge network and the leads to the transistor have become transposed.

It may help anyone constructing the temperature alarm to note that the battery BY1 need not be $1 \frac{1}{2} \mathrm{~V}$ but can be increased to a maximum limited by the breakdown voltages of the components used. This can be done to increase the sensitivity of the circuit. Sensitivity can also be greatly improved by the addition of a second transistor; a revised circuit diagram is shown below.
D. G. Warner,

Birmingham

Fig. I. Improved temperature alarm circuit

Courses ...

BRENTFORD

September 21, 7.15 p.m. Radio Amateurs' Course.
September 22, 24, 7.15 p.m. Radio and Television Servicing. September 23, 7.15 p.m. High Fidelsy and Tape Recording.
November 6, 7.15 p.m. Mathematics of Radio. Fee is $£ 3$ or as an extra class $£ 1$. All above courses held at Brentford Centre of Adult Education, Brentford Secondary Girls'School, Clifden Road, Brentford.
Enrolments: September 10, 11, 14 and $15 ; 6.30-8.30 \mathrm{p} . \mathrm{m}$.

CEANFORD

September 21, 7.15 p.m. Radio Hobbies, at Cranford School, Woodfield Road, Cranford.
Enrolments: September 10, 11, 14 and $15 ; 6.30-8.30$ p.m.

FARNBOROUGH

City \& Guilds Amateurs' Examination Course.
Commences Mid-September and full details available from The Principal, Cove Further Education Centre, Cove County Secondary School, St. John's Road, Farnborcugh, Hants.

GLASGOW

September 15, 7.0 p.m. Radio Amateurs' Examination Course, at Glasgow College of Nautical Studies, 21, Thistle Street, Glasgow, C. 5 .
Enrolments: September 15, 7.0 p.m. Fees: $£ 3$.

HESTON

September 25, 7.15 p.m. Basic Elecironics Hobby Course, at Heston School, Heston Road, Heston.
Enrolments: September 10, 11, 14 and 15; 6.30-8.30 p.m.

ORPINGTON

September 23, 7.30 p.m. Everyman's (and Woman's) Electronics, at Orpington \& District Adult Education Centre, NewsteadwoodSchool for Girls, Avebury Road, Orpington, Kent.
Postal enrolments commence September 1. Fees: $£ 2$ 10s. (30 weeks).

\section*{PORTABLE AMPLIFIER Portable minip.a.sytem Many uses -ideal for Partios, of as a Baby

Alarm, Intercom, Telephone or Record Plajer Amplifer, etc. Attraciive rerine covered cabinet tixe 12 ; 9 in., with powerful 7 4is. speaker and four tranaistor one wa
 power amplifler. Uses PP9 battery.

Brand new in Makers' carton with frand new in makers World lamous make.
 Only 75/= Post
 | RA2W Ferite Aerial -18/B | Spare Cores |
| :---: | :---: |
| RA2W Ferrite Aerial . 12/6 | Spare Corea |
| Oec. P50/1AC $5 / 4$ | Driver Trans. LFDT4 |
| I. P. P50/2cc $470 \mathrm{mc/s} \mathrm{}. \mathrm{}. \mathrm{5/7}$ | Printed Circuit, PCA1 |
| 3rd 1.F. P50/3CC 6/- | J.B. Tuuing Gang 10/6 |
| P51/1 or P51/2 5/7 | Weyrad Booklet $2 /$ |
| P61/8 6/- | OPT1 |
| Forrite Rod 8 jin, 4/-. 6 . | ${ }_{1}^{1}$ in. 5/- |

VOLUME CONTROLS 80 omm Coax 9d. yd. Long spindles. Midget size British aerialite 5 K . obms to 2 Meg. LOG or AERAXIAL-AIR SPACED LIM. L/S $3 /-\quad$ D.P. $5 /-10 \mathrm{yd} .28 /-; ~ 60$ yd. $40 /-$ STEREO L/S 11/- D.P. 15/- FRITGE LOW LOS8 2 Edge SK. S.P. Transistor, $5 / \mathrm{m}$. Iden 625 lines
WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WAT small type with mall knob. STANDARD EIZE POTE.

VEROBOARD 0.15 MATRIX
21 - $5 \mathrm{in}, 3 / 8$. $2 \frac{1}{2} \times 31 \mathrm{in}, 3 / 2$. $81 \times 3 / \mathrm{in}, 3 / 8$. $31 \cdot 5 \mathrm{in} .52$ PINS 86 per packet $3 / 4$. FACE CUTTERS $7 / 6$ S.R.B.P. Board 0.15 MATRIX 2tin. wide Ed, per lin. 3 in. wide od, per 1 in .; bin. wide $1 /$ - per lin. (up to 17 in .) S.R.B.P. undrilled hin. Board 10 , 8 in. 3 /-

 linch DIAMETER WAVE-CHANGE SWITCHES p. 2-way, or 2,6 whay, or 3 p . 4 -way $4 / 8 \mathrm{each}$
 2 p. 6 -way, 3 p. 4 -way, 4 p. 3 -way. 6 p. 2-way. 1 w. 12 -wp $12 /-$ TOGGLE SWITCHES, sp. 2/6; sp. dt. 3/6; dp. 3/8; dp. dt. 4/6

ALL PURPOSE HEADPHONES

H.R. HEADPHONES 2000 ohms Super Sensitive LOW RESISTANCE HEADPHONES $3-5$ ohm DE LUXE PADDED STEREO PHONES 8 ohm
"THE IN8TANT
BULK TAPE ERASER AND RECORDING RECOR
HEAD
DEMAGNETISER
200/250 ₹. A C. Ieall

GENERAL PURPOSE TRAHSIBTOR RE AMPLIFIER BRITIBR MADE for Mire, Tape, R.U., Guitar.
Battery ${ }^{9-12 p}$. or H.T. line $200-300 \mathrm{p}$. D.C. operation. 8ize
 Fall inalructions anplied. Brand nee rall initructions mpplied. Brand new.
$17 / 6$ each IEW TUBULAR ELECTROLYTIC NEW T
$2 / 350 \mathrm{~V}$ $4 / 350 \mathrm{~V}$

$1 / 350 \mathrm{~V}$	$\cdots 2 / 6$	$100 / 25 \mathrm{~V}$	$250 / 25 \mathrm{~V}$	$2 /-$							
$2 / 6$	$16+18 / 500 \mathrm{~V}$										
150 V	\cdots	$2 / 8$	$50 / 25 \mathrm{~F}$			$1 / 450 \mathrm{~V}$	$2 / 6$	$500 / 25 \mathrm{~V}$	\cdots	$4 / 6$	$60+50 / 350 \mathrm{~V}$
:---	:---	:---	:---	:---	:---						
$10 / 450 \mathrm{~V}$	$2 / 250 \mathrm{~V}$						$16 / 450 \mathrm{~V}$	$3 /-$	$8+8 / 450 \mathrm{~V}$	$3 / 6$	
:---	:---	:---	:---	:---							
$32 / 450 \mathrm{~V}$	\cdots	$4 /-$	$8+16 / 450 \mathrm{~V}$	$4 /$		$25 / 25 \mathrm{~V}$	$2 /-$	$16+18 / 450 \mathrm{~V} 5 /-$	$32+32 / 450 \mathrm{~V}$	$8 / 6$	
:---	:---	:---	:---	:---	:---						
$50 / 50 \mathrm{~V}$	$2 /-$	$32+32 / 350 \mathrm{~V} 5 /-32 / 350 \mathrm{v}$.	$8 / 6$								

 200 mF 16 V 2/-; $500,1000 \mathrm{~m}$ F $12 \mathrm{Y}, 3 / 6,80,25,30,50,100$ CERAMIC, 1 pF to $0.01 \mathrm{mP}, 9 \mathrm{~d}$. 8 ilver Mice 2 to 5000 pF , 9 d $500 \mathrm{~V}=0.001$ to $0.06 \mathrm{gd} \cdot 0.11 /-0.251 \mathrm{~m} \cdot \mathrm{imp} 150 \mathrm{~V}$ $1000 \mathrm{~V}-0.001,0.0029,0.0047,0.01,0.09 ; 1 / 8,0.0$, 000 ILVER MICA Clos tolerance $10.02,2,0.047,01,2 / 6$ $2,800 \mathrm{pF} 2 /-; 2,700-5,600 \mathrm{pF} 4 /-; 6,800 \mathrm{pF}-001$, mid $8 /-; 500$ TWIM GANG. "0,0" 208pF + 176 pF , $11 /$; 810 m motion drive $365 \mathrm{pP}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 11 /=500 \mathrm{p}$ F slow motion, standard $9 /-$; mall $3-\mathrm{gang}$ 500pF $28 /-$. SHORT WAVE. 25pF, 11
CHROME TELESCOPIC AERIALS $23 \mathrm{in} .5 /$ -
TONING. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ each TRIMMERS. Compression 30, $50,70 \mathrm{pF}, 1 /$
$100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 8 ; 250 \mathrm{pF}, 1 / 8 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 2 / 2 ; 1000 \mathrm{pF}, 2 / 6$ 85 mA 9/6. SILICON BYZ18 6/-: BY100 $10 /-$ 5mA 9/6. SILICON BYZ18 6/-; BY100 10/
ull wave Bridge Rectifiers $75 \mathrm{~mA} 10 /-$; $150 \mathrm{~mA} 19 / 6$.
EX-GOV1'. RECTIFIERS 250%. 200 mA 8/-
MEON PANEL INDICATORS 250 v . AC/DC Red, Amber 4
RESISTORS. Preferred values, 10 ohms to 10 meg.
 Ditto so'. Preforred values 10 obme to 22 meg., 9 d .
WIRE-WO UND REsISTORS 5 watt 10 watt. 15
WIRE-WO UND RESISTORS 5 watt, 10 watt, 15 watt
0 ohms to 100 K . 2/-each; 2! watt. 1 ohm to 8.2 ohms. 2/-
Q MAX CHASSIS CUTTER
Complete: a die, a punch, an Allen screw and key

TRANSISTOR MAINS POWER PACES. FULL WAVE 9 rolt 500 mA . Size $4 \frac{1}{2} \cdot 2 \frac{1}{2} \cdot 2 \mathrm{in}$. Metal case. $49 / 6$ Hall Wave 9 volt 50 mA . Size 2 g 1 in. Snap terminala 32,6

MAINS TRANSFORMERS

$250-0-25050 \mathrm{~mA} .6 .8$ $\nabla .2$ amps, centre tapped
$250-0-25080 \mathrm{~mA} .6 .3 \nabla .4 \mathrm{mmp}$.

 MINLATURE 200 v. $20 \mathrm{~mA}, 6.8 \mathrm{~F}, 1 \mathrm{a} .21$ 2 14 in

 $8,8,9,10,12,15,18,24$ and 30 . at 2 a. $. \ldots \ldots, 38$
1 amp., $6,8,10,12,16,18,20,24,30,36,40,48,60.38$ AUTO TRANSFORMERS $0-115-230$ vinput/Output 60w. 18/6: 150w. 38/-: 500w. E5: 1000 w . £12.
CHARGER TRANSPORMERS. Input 200/250 CHARGER TRANSPORMERS. Input 200/250v lor 6 or 12v., $1:$ amp., $24 /-; 4$ amp., $38 /-$
FULL 6 or 12 F . outputs. $1!\mathrm{amp} .8 /-; 2 \mathrm{amp} .11 / \mathrm{m} ; 4 \mathrm{amp} .17 /-$ COAXIAL PLUG 1/3, PANEL SOCKETS 1/3. LIME 3/6. UTLET BOXES. SURFACE OR PLUSH 5
BALANCED TWIN FEEDERS $1 /-5 d, 80$ ohms or 300 ohme. AACK SOCKET Std. open-circuit 2/8, closed circuit 4/6; Cbrome Lead Socket 7/6. Phono Plugs 1/-. Phono Socket $1 /$. JACK PLUGS 8td. Chrome $3 /-3.5 \mathrm{~mm}$ Chrome $2 / 6$. DIN SOCKETS Chassia 3 -pin 1/6; 5 -pin 2;-. DIN SOCKETS Lead $3-\mathrm{pin} 3 / 6 ; 5-\mathrm{pin} 5 /-$ DIN PLUGS 3-pin 3/6; 5-pin $\$ 1$
VALVE HOLDERS. 9d.; CERAMIC $1 / \%$ CANS

E.M.I. $13 \frac{1}{2} \times 8$ in. LOUDSPEAKERS

With flared tweeter cons and ceramic magnet. 10 watts.
Bass rea. $45-60 \mathrm{cps}$
Plux 10,000 gaus. Post $2 / 6$ Speech coil, 3 or 15 ohm. Poal $2 / 6$ Also with cronsover. 3 or 8 or $15 \quad \leq 4$ ohmi. 10 watt. or pori $2 / 8 \quad \leq 4$ $\begin{array}{llll}\text { Recommended Teak Cabinet } \\ \text { Size } & 16 & 10 & \text { gin. } \\ \text { Post } 2,6\end{array} \quad$ (5

MINI-MODULE

 LOUDSPEAKER KIT
10 WATT 65/= CARRIAGE5.

Triple speaker system combining on ready cut baffie. in. chipboard 15 in .8 in. Separate Bans, Middle and Treble loudspeakers and crosiover condenter. The cone. The Mid-Range unit is apecially designed to add drive to the middle register and the twoeter recreates the top end of the musical spectrum. Total renponse $\mathbf{2 0 - 1 5 , 0 0 0} \mathrm{cps}$. Full intiructiona for 3 or 8 obm TEAK VENEERED BOOKSHELP ENCLOSURE. $16 \times 10: 9$ in. Hodern Scandinavian $\quad 5$ Post 5

ALL 10 OLLS "BAKER SPEAKEBS" IN BTOCE BAKER 12in MAJOR £9

$30-14,500$ c.p.s., 12 in oubie cone, wooter asd With o BAKER ceramic with a BAKER ceramic fue densitr of 14,000 caus and a fotal Aux of 145,000 Mazwella. Bana esonance 45 c.p.a. Rated 20 watte. Voice coill 3 or 8 or 15 ohme. Post Free.

Module kit, $\mathbf{9 0 - 1 7 , 0 0 0}$ c.p.t.

Fith tweeter, croisover bane and $\mathbb{1}$.1.10.0 | BAKER " GRODP SOURD" SPEAKERS P08T FREE | |
| :--- | :--- |
| 'Group 25" | Group 35' |
| 'Group 50' | | Group 50

 15 matt $\mathbf{E} 9$ TEAK HI-FI SPEAKER CABINET8. Fluted wood front. For 10 or $18 i n$ round Londspeaker For 10 8in or 81 kn round Loudspeazer
LOUDSPEAKER CABINET WADDING 18 in wide. $3 i-\mathrm{it}$
Horn Tweeters 2-16kc/s, 10 W 15 ohm 20/6.
De Lave Horn Twetera 2-18 Kc/s, 15
$3000 \mathrm{c} . \mathrm{p} .1$. CROsSOVERRS 8 or 8 or 15 ohm 18
SPECLAL OFFER! 80 ohm. $24 \mathrm{in}, 21 \mathrm{jn}$. dis.; 25 ohm, 3 in . $25 \mathrm{ohm}, 8 \mathrm{in}$ dia, 6 ; $4 \mathrm{in} ; 8.8 \mathrm{gin} ; 8$ 6in. $17 / 6 \mathrm{EACH}$ 15 ohm, 8 jin dia.; $7 \times$ inin; 8, 5 in . $1 /$ TYPE
 LOUDGPRAEERS P.IT, 8 OHIIS. 6
$8<2$ ija $18 /-: 8$ in $85 /-; 10 \times 6 i n 18 /-$
5 in . WOOFER. 8 wats max. $80-10,000 \mathrm{eps} .8$ or $15 \mathrm{ohm} .30 /$ Sin. WOOFER. 8 watt max. $80-10,000 \mathrm{cps}$.8 or $15 \mathrm{ohm} .38 /$
ELAC 8 in. De Laze Cerame 3 ohm or 15 ohm $50 /-$ SPECLAL OFFER : FAMOUS RICHARD ALLAK LOUD8PEAEERS 8 or 10 or $12 i n$ Twin cone 8 or 15 ohm $39 / 6$. 8PEAKERS 8 or 10 or 12 in Tein cone 8 or 16 ohm $39 / 6$. OUTPUT TRANB, EL8 4 ete. 5/-i HEE TRANS. $50: 1$ 5/-
SPEAKER COVERIMG MATERIALS. Bemplei Large S.A.E

SOUND ACTIVATED

 PSYCHEDELIC LIGHT BOXFascinating light patterns o Green, Blue, Red and Amber. Works with any mono or stereo mpluer, tape recorder, radio A.C. meine operated, size 13

C|2.10.0 Post Free

ALL EAGLE PRODUCTS

ILLUSTR SUPPRLIED AT LOWEST PRICES
Post Iree
BARGAIN AM TUNER. Medium Wave. $79 / 6$
Transistor Superhet. Ferrite aerial. 9 volt.
BARGAIN DE LUXE TAPE SPLICER Cuts, $22 / 6$
trims, joins for editing and repairs. With 3 bledes.
add musical highlighte and sound oftects to recordings Will mix Microphone, records, tape and tuner
with separate controla into fingle output. 9 volt. $59 / 6$
BARGAIN PM TUNER 88-108 Mc/a Siz Tranaintor. 8 volt. Printed Circuit. Calibrated slide dial tuning. $\mathbf{6 9 . 1 0 . 0}$ Chassin only, leas cabinet 67.10.0
PM STEREO MULTIPLEX ADAPTOR lor above or $99 / 6$
general nee. Ready made with 4 transigtora, 6 diodes
BARGAIN 3 WATT AMPLIFIFR. 4 Transistor
Push-Pull Ready built, with volume control. 9 v . $69 / 6$ \star RADIO BOOKS \star (Postege 9d.)

Practical Radio Inaide Oo

Practical gtereo Handbook
Supersensitive Transistor Pocket Radio
 T.V. Fault Finding 405/625' lines..

Trantistor Commanicetion Sets.
Wireless World Radio Vifve Data
Trantistor Circuits for Radio Controlled Modela
alves, Transistors and Diodes equivalents Manual
Coil Denign and Construction
Gartiey on Hi-Fi Redio Taner
22 Circuits lor Micro-Alloy Transistore
Practical Car Radio Installation
3 inch MOVING COIL METERS BRITISH MAD Various calibrations/movements. 500 Microsmp; $37 / 6$
1 Millismp; $50-0-50$ microsmp. etc. $8 . A$.E. lor lint.
1 MAINS ELECTRIC MOTORS (120v, or 240v, AC), Size 24,24 <1!in. $\begin{aligned} \text { duty } 4 \text { pole } & 50 \mathrm{~mA} \text {. Epindle } \\ & \text { BARGAIM } \mid 7 / 6 \text { EACH } \\ & \text { PRICE }\end{aligned}$ PRICE 3 ior $50 / 6$ Post $2 / 6$

CALLERS WELCOME

RADIO COMPONENT SPECIALISTS

101
 = BETTER QUALITY, SERVICE, PRICES \& LARGGEST STOCKS

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

MEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

 plated telescopic acrial for short wases call br anglen and rotatel for maxmum performance. Push-pull output usimis 600Mw type transistors. Socket for car adidal. Tape recoral mochet. Selectivit $y^{\text {suitch. SWitched earplece socket connple with earphece for private listenigg. } 8 \text { tran- }}$ sistors plus 3 diodes. Famous make 7 , 1 speaker. Air spaced ganged tubing eondenser. On/off shate with gold blocking. Size 9 , 7 , in inprox. Eantrol follow ingtructions and ditagranis make the Roancr Eight a pleasure to builit. Jarta price list and easjobuitl plang $5 /-$ (FREF with parth).

Total building costs $59.1+6$
P. \& P

roamer seven
mk IV
f rCLLy TUNable waye BANDS-M.W.I, M.W.2. L.W. Mand. S.W.2, S.W.3 and Trawlet provides eatier tunimg of Radio Laxembourg, etc. Built in ferrite rod acrial for Medium and Long Waver. Recractable 4 bection 24 tr chrome phated teleacopic aerind for peak Short Wave listening, Socket

an

 pleasure to build. Parta price liet and easy huidel plane 3/- (FREE with parts).

Total building costs

NEW!

transeight

SIX WAVEBAND
PORTABLE WITH
3in. SPEAKER
Attractive case in blatk with
red grille and cream knobs an!

approx. Tunable on Medium ant Leng
Waves, 3 Short Waves and Trawler Band.
8 improved type transiators plus 3 , dionles. Wuah Telencopie aterial for thort Wases. 8 improved type trabsistors plus 3 dionleg. Push-jull outpil. Battery economiser
switch for extended battery life. Ample power to drive ; latger apeaker. Farts price lint and cany huild plank 5 - (FREE with parts).

Total building costs

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER
4 fin 1 in. 7 tages- 5 trathisiors and $=$ diodes. Total building costs ferrite rod aerial, tuning condenser, volune control. fine toue moving coil speaker. Eay buikd phims: in parta price liat 1/6 (FREE with parts).

3 ini. Tumabie over buth Medium and Long Wave with "steuded M.W. biand for easier tuning if 1,nxembourg. etc. ${ }^{7}$ stages - 5 (ranisistors and $\underline{2}$ diodes, supersensitive ferrite rod derial, fine tone
moviug coil spraker. Easy buidd plang And part moviug coil speaker. Easy bu
price ligt $1 / 6$ (FREE with parte).

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Atractive case with gilt tittinge. size \bar{i}, 1 14 in . Tuable on Medium and Loug Waves, two for easier tuniug of Luxentbourg, etc. Sensitive ferrite roil acrial and telescopic iverial for Short Waves, 8 stages- 6 tranelistort and 4 diodes ial cluling Micro-Alloy R.F. Transistort, etc. (Carrying strap $1 / 6$ extra). Easy build plans and parts price Hist 2f- (FREE with parts). (Note: When present stocks of these cases are cehausted a nerv case simitar to "Tranecight " rill be supplied.)

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

Total building costs $44 / 8 \begin{array}{cc}\text { P. \& P } \\ 3 / 6\end{array}$

Total building costs

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
| enclose £ase send items marked

ROAMER EIGHT	\square	ROAMER SEVEN	
TRANSEIGHT	\square	POCKET FIVE	\square
TRANSONA FIVE	\square	ROAMER SIX	\square

Parts price list and plans for
Name
Address

ELEGTROVILUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS
BARGAINS IN NEW SEMICONDUCTORS

RESISTORS

Prices are in pence ench for samp ohmic value and power rating.
Nor mired values
Notore fraction of order.)

INTEGRATED CIRCUIT AMPLIFIERS

SINCLAIR IC. 10 complete with imstruction brok giving
PLESSEY SL403A. Only $48 / 8$ each. $3 W$ into 75Ω for $18 y$
supply. Application data with two or more

WAVECHAMGE SWITCHES LONG SPINDLES
1P 12W; PP 6W; 3P 4 W ; 4P-3W .. $4 / 9$ each
SLIDER SWITCHES D.P.D.T
3/- each

NEON INDICATOR LAMPS all 200020

Square bezel, red only
Round chronie bezel red, amber, clear $\quad 3 / 9$ each
Toggle switches, 250 V a.c. 1.5 A . Chrome tolly itnil chrome milled nuts.P.S.T. 3/9; S.P.D.T.4/6; D.P.D.T. 5/日
S.P.D.T. centre off $5 /-$.

8-DeC'n put an end to "birdsnesting", Components just plug in. Saves valuable time. Use components again and ngain. s.DeC ouly 30/- post free. Compact T-DeC, increased capacity, may be temperature-cycled. T-DeC
only $50 /$ poot free. Fuil range stocked.

MULLARD POLYESTER C280 series $250 \mathrm{~V} 20 \%$: $0.01,0.022,0.033,0.047,8 \mathrm{~d}$ ea.: $0.068,0.1$, MULLARD SUB-MIN ELECTROLYTIC

C4ith range issial leth $1 / 3$ each
 $4 / 40,5 / 64,6,4 / 64,64 / 25.8 / 4.8 / 40,10 / 45.10 / 16,11 / 64$,
 $32 / 10,32 / 40,32 / 64,40 / 16,40 \geq 5,5064,50 / 25,50 / 40,84 / 4$, $64 / 10,80 / 25,80 / 16,80 / 25,100+4,125 / 4,125 / 10,125 / 16$.
$160 / 2 \cdot 5,200 / 64,200 / 10,2004,320 / 25,820 / 64.400 / 4$, $160 / 2 \cdot 5$.
$500 / 2-5$.

LARGE CAPACITORS

High ripple current types: $1000 / 25$ 5/8; 1000/50 8/2 $1000 / 10016 / 3: 3000 / 2 \overline{5} 7 / 4 ; 2000 / 5011 / 4 ; 2000 / 10028 / 0$ $2500 / 6415 / 5 ; 2500 / 7018 / 6 ; 3000 / 25$ 12/6: 5000/50 $21 / 11$ $5000 / 10058 / 3: 10000 / 1017 /-: 10000 / 25 \quad 24 / 6 ; 10000 / 50$

MEDIUM RANGE ELECTROLYTICS

Axialleads: $50 / 502 /-: 100 / 252 /-; 100 / 502 / 6$: $250 / 252 / 8$; $330 / 25$ 2/6: $250 / 50 \quad 3 / 9 ; 500 / 253 / 9 ; 50 n / 504 / 8 ; 1000 / 25$ $4 /-: 1000 / 506 / \mathrm{C}:-200 / 256 /$

SMALL ELECTROLYTICS

Axial leads: $4 \cdot 7 / 10,4 \cdot 7 / 2 \breve{5}$, a/j0, $1 /$ - ea, $10 / 10,10 / 25$ $10 / 50,33 / 10,50 / 10,1 /-\mathrm{ea}, 25 / 25,25 / 20,47 / 25,100 / 10$
$220 / 10,1 / 3 \mathrm{ea}$.

PEAK SOUND PRODUCTS
ENGLEFIELD AMPLIFIER

STEREO AMPLIFIER SA.I0-10

beveloped from the very giving first clase stereo amplitication featuring separate rolume cont rols for controls. 10 wats per chamel into on to 8Ω. Kit
$t 18.7 .6$ nett.: huilt $2 \& 4.16 .8$ nett. Snitable 8Ω widle range speakers availate $£ 13.15 .0$ each nett

MAINLINE AMPLIFIER KITS RCA/SGS designed mainamplither hita. Input sergitivil
 $\begin{array}{lcc}\text { Power } & \text { including components } & \text { power gupply } \\ 12 W & 140 /-n e t t & 92 /-\end{array}$ 20W $165 /-$ nett
70 W
185/- nett
$115 / 1$
$138 / 10$

30 WATT BAILEY AMPLIFIER KIT
 Sensitivity $1 \cdots \sqrt{2}$ for full output into 8Ω, Transistors
for one chanmel 27.5 .6 list, E8 only nett. Transistors for two channele 14.11 .0 list 811 only nett. Capacitors and muregulated power suphly kit $87 / 6$ nett.

ZENER DIODES

5% full range E24 values: 400 mW : \because iv to $30 \mathrm{~V} 4 / 8$ ea

CARBON TRACK POTENTIOMETERS

Double wiper ensures miltimuni noige level. Single gang linea single gang log
Dual gang linear
$\begin{array}{ll}\text { Dual gang gang log } & 4.7 \mathrm{~K} \Omega \text { to } 2.2 \mathrm{M} \Omega \\ & 4.7 \mathrm{~K} \Omega \text { to } 2.2 \mathrm{M} \Omega\end{array}$ Loglantilog log 4.7 Kg to 2.2 Mg 10k, $47 \mathrm{~K}, \mathrm{IM} \Omega$ only Any type with is D.P. mains mwitch, extra 8/6 Please note: ouly decades of 10,22 and $4 \overline{\text { are arailahle }}$ within ranges quotel.

CARBON SKELETON PRE-SETS

small high quality, type PR, linear onty 100Ω, 200Ω, $70 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$ $1 \mathrm{M}, 2 \mathrm{M} \cdot, 5 \mathrm{M} .10 \mathrm{M} \Omega$. Vertical or horizontal mounting

COMPONENT DISCOUNTS

10% on orders for components for E 5 or more. 10% on orders for componelite for $£ 10$ or more (No discount on
nett itemas).

POSTAGE AND PACKING

Free on orders over 22 . Please ald $1 / 0$ it under. Over
seas orders welcome: carriage charged at coat.

ELECTROVALUE

VARI-STAT

SOLDERING IRON

HIGH PRODUCTION MINIATURE MODEL D. 50 WATT
Weight
2 oz.
Heating time 50 seconds
Bit Sizes .. $1 / 16^{\prime \prime}, 3 / 32$
$1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage . . 250 to 12 volts
Price
HIGH PRODUCTION INSTRUMENT MODEL H. I50 WATT

Weight	6 oz .
Heating time	1 min .45 sec.
Bit Sizes	3/16", 1/4", 3/8', 7/16
Nickel or Iron	Plated
Voltage	250 to 24 volts
Price	

OTHER VARI-STAT IRONS:

Miniature Model M 50 watt Push-in Bits 1/32" 1/15", 3/32
Instrument Model B 70 watt Bit Size 11/64
Industrial Model I 500 watt Bit Size 5/8"

CARDROSS ENGINEERING CO. LTD.

Woodyard Road, Dumbarton
Phone: Dumbarton 2655

PARKERS SHEET METAL FOLDING MACHINES HEAVY VICE MODELS
 With Bevelled Former Bars
 Carr. free

No. I. Capacity 18 gauge mild steel $\times 36 i n$. wide
£ 15.0 .0
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide
E10.0.0
No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$. Wide
$t 10.0 .0$
Also new bench models. Capacities 48 in . $\times 18$ gauge $\mathbf{f 4 0} .36 \mathrm{in} . \times 18$ gauge E30.0.0. 24 in . $X 16$ gauge $\mathbf{~ 2 9 . 0 . 0}$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36in. model, $5 / 6$ per ft . Other models $3 / 6$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals. One year's guarantee. Money refunded if not satisfied. Send for details.

If you're a telecommunications man and matchup to the qualifications below cut yourself into a slice of Britain's future

Become a

 Technician
in the fast-growing world of Air Traffic Control
Please send me an application form and detals of how I can join the fascinating world of Air Traffic Control Telecommunications

Name
Address
\qquad
Not applicable to residents outside the United Kingdom
To: A J Edwards, C Eng. MIEE,
The Adelphi, Room 705, John Adam Street, London WC2
marking your envelope 'Recruitment'

Sending this coupon could be your first step to a job that's growing in importance every year.
The National Air Traffic Control Service needs Radio Technicians to install and maintain the vital electronic aids that help control Britain's ever-increasing air traffic

This is the kind of work that requires not only highly specialised technical skills but also a well developed sense of responsibility, and candidates must be prepared to undergo a rigorous selection process. Those who succeed are assured a steadily developing career of unusual interest and challenge Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over): scale maximum $£ 1590$ (higher rates at Heathrow). There is a good annual leave allowance and a non-contributory pension for established staff You must be 19 or over, with at least one year's practical experience in telecommunications, ('ONC' or 'C and G' qualifications preferred)

NATCS

National Air Traffic Control Service

Practical Electronics Classified Advertisemenis

RATES: $1 / 6$ per word (minimum 12 words). Box No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Pracfical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS

TOP TRANSISTORS

	ACY22	$1 / 9$	BFY5I	$1 / 9$	
OC201	$1 / 9$				
BC108	$1 / 9$	BFY52	$1 / 9$		OC202
BC109	$1 / 9$	OC45	$1 / 9$	ZTX300	$1 / 9$
BC168	$1 / 9$	OC71	$1 / 9$	$2 N 706$	$1 / 9$
BC169	$1 / 9$	OC72	$1 / 9$	$2 N 2926$	$1 / 9$
BSY27	$1 / 9$	OC200	$1 / 9$	$2 N 3708$	$1 / 9$

All the above types are available at 16 for $£ 1$ Brand New. Individually Tested, unmarked but guaranteed to be within their correct specification, or money refunded.

ANTEX SOLDER IRON

A lightweight iron with a 15 watt nicke plated bit. Designed to enable you to weld reliable joints accurately. Model CN240 volts Special low price. Act Now, Only 29/II.
MONEY BACK GUARANTEE. P. \& P.I/J. M. KING (Q)

17 Buckridge, Portpool Lane, London, E.C.I

POWER SUPPLIES

Professional grade silicon transistor power supply modules. Units consist of p.c. board assembly size $6^{\prime \prime} \times 3 \frac{1}{2}$ ". 240 Volts AC input. DC Voltage adjustable from 9.13 Volts at max 250 mA . No load to full load voltage change less than 1%. Ripple less chan 2 mV . $£ 5,2$. 6d. each.
Also available PEAC Op. Amps. 34/- each.
WESTEK
P.O. BOX 7, RICKMANSWORTH, HERTS

MORE ROBOTS

Synthetic Animals with "BRAINS" of their own. The LATEST range of projects include: an electronic 'animal' which "LEARNS", and an Electro Chemical device capable of "REPRODUCING". itself! Capable of REPRETO INTRIGUEYOU Other projects SURE TO NTRIG EYiates are a transmitter/receiver which radiates
without using r.f. so there's NO NEED TO without using r.f. so there's NO NEED TO
WORRY ABOUT A LICENCE, also TEN WORRY ABOUT A LICENCE, also TEN dice machine. HOSTS OF EASY-TO CONSTRUCT projects, for anyone with a basic knowledge of Electronics. DON'T WAIT. SEND 3/- for your list-NOW!
To: 'BOFFIN PROJECTS'
4 CUNLIFFE ROAD
STONELEIGH. EWELL, SURREY Designed by GERRY BROWN and JOHN SALMON and presented on T.V.
MUsical MIracles! Drum, Cymbals, Waawaa and Fuzz modules. New unique effects units, Percussion, etc. Goorl waa-waa kits 49/-. Famous "Mister Bassman" bass pedal unit. Also bargain components list of reed switches, etc. Send S.A.E. NOW! D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

ENAMELLED COPPER WIRE

S.W.G.	Per 1 lb reel	Per 1lb reel
i $8-22$	$11 / 3$	$16 / 6$
$23-30$	$11 / 9$	$17 / 6$
$31-35$	$12 / 3$	$18 / 6$
$36-40$	$15 /-$	$24 /-$
$41-44$	$17 / 9$	$29 / 6$

Orders despatched by return of post. Please add $1 /$ - per item P. \& P. Supplied by: BANN.ER TRANSFORMERS, 84 Old Lansdowne Road, West Didsbury, Manchester, 20. TRADE ENQUIRIES INVITED.

COOD CONNECTIONS take seconds with the revolutionary new Keynector. Cuts out plugs, sockets and dangers from bare wires. Just the job for high speed testing of electronic equipment. A must for the do-it-yourself enthusiast: Send for leaflet to: E.B. INSTRUMENTS (Dept. PE), 49/53 Pancras Road, London, N.W. 1 ($01-837$ 7781). Only 46/6 plus postage.

MISCELLANEOUS (continued)

CLEARING LABORATORY, scopes, V.T.V.M's, Y. O. M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentioneters, bridges, spectrum analysers, voltage regulators, sig-gens, M / C relays, components, etc. Lower Beeding 236

ALL THO8E LITTLE ITEM8 which you can never find are available from our stock. Also speaker fabrics, 1 BAF wadding, Peerless speakers, cabinet kits, cross-over's. For full details send 9d. in stamps to: AUDIOSCAN, Jept. PE, 4 Princes Square, Harrogate, Yorks.

POLYSTYRENE CAPACITORS, Computer Panels, etc. as advertised last month. Closed for holidays Sept. 5 to 19. J.W.B. RADIO, 75 Hayfield Road, Salford 6, Lanes.

PHOTOTRAN8ISTORS. Similar OCP71, only 7/6 each or two for 12/-. P.B. ELECTRONICS, 3 Fernside, Amberlands, Backwell, Somerset.

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ in \times any length. DEW LTD., Ringwond Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

PARAPHYSICAL LABORATORY, Downton, Wilts. Telekinetic photographs/data. S.A.E. for list. samples 20s.
"SHURE" TAPE HEADS
Record/Playback and erase in one unit, mounted on bracket. with tape guide, etc. 10/- post paid. "MARRIOT"'single record/playback heads. 5/- post paid.
PHOTO ELECTRIC SWITCH KIT Light cell transistor, relay, etc. Elegant case in hammer blue $5 \exists^{*} \times 2 z^{*} \times 4 t^{*}$ fitted with light etc. $35 /-\mathrm{post}$ paid.

6 OR 12 VOLT
 FLUORESCENT LIGHTS

12 ins. 8 Watt tube ample light for caravan, tent, etc. Fully transistorised, low battery drain. Unbeatable at $65 / 6$
or inkitform 57/6

4 WATT GRAM AMPS.

Volume and tone controls, mains operation, 3Ω output, new and boxed
SALOP ELECTRONICS $72 / 6$ POST 23 Wyle Cop Shrewsbury, Shropshire S.A.E.forlists

EDUCATIONAL

QET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms, etc. For FREE 100^{-} page book, write Dept. 856K, CHAMBERS OOLLEGE, College House, 29-31 Wrights Lane, Kensington, London, W.8.

FOR SALE

NEW CATALOGUE No. 18 , containing credit vouchers value $10 /$, now available. Manufacturers' new and surplus electronic and mechanical components, price 4/6, post free. ARTHUR SALIIS RADIO CONTROL LTD., 28 Gardner Street, Brighton, Sussex.

MORSE MADE ! !

FAC"T NOT FICTION. If you start RIGHT you will be renling amateur and commercial Morsa within a month (normal progress to be expected).
Using scientitically prepared 3 -speed records you automatically learn to recognise the code RHYTHM without translating. You can't belp it, it's as easy as learniug a tone. 18 W.P.M. in 4 weeks guaranteed

For details and course C.O.D. ring S.T.D. 01-660 2896 or send 8d. stamp for explanatory booklet to:
GSHSC (Box 19), 45 GREEN LANE, PURLEY SURREY

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete with layout drawing.
XAMPLES
Marine Tachometer (May 1970) 5/-ea. Musical Stave (May 1970) 8/• ea.
Waa- Waa pedal Vol. 4 No. $7 \quad 2 / 9$ ea, Audio Sie
Gen. (Sine and Square on one board) Vol. 5 No. $108 / 6$ ea.
S.A.E. for List. Now available from:- HENRY'S RADIO LTD., Edgware Road, London, W. 2 P.H. ELECTRONICS, Industrial Estate,

Sandwich, Kent. Tel. 2517

electrical

240 ELECTRICITY ANYWHERE

BEST EVER 200/240 VOLT" MAINS"
SUPPLYFROM I2 VOLTCAR BATTERY
Exclusive World Scoop Purchase. The fabulous Mk. I2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Brilliant $200 / 240$ volt perforDrills, Power Tools, Mains Lighting, AC Fluorescent Lighting and all 200/240 volt Unorescent Lighting and all 200/240 volt tremendous cost for U.S.A. Govt, by DelcoRemy. This magnificent machine is unobtainable elsewhere. Brand Now and Fully Tested. Only E4.19.6 + $10 / 6$ postage. C.O.D. with pleasure, refund guarantee. Please send S.A.E. for illustrated details.
Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade Blackpool, Lancashire

EDUCATIONAL (continued)

ENGINEER8. A technical certiflcate or qualiflcation will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng. A.M.I.E.R.E., A.M.S.E (Mech. \& Elec.), City \& Guilds, A.M.I.M.I. A.I.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Elec., Auto. Electronics, Radio, Computers Draughts., Building, etc. For full details write or FREE 132-page guide. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

TELEVISION

 This private College provides efficient theoretical and practical training in Radio and TV Servicing. One-year day courses, commencing in Sept., January and April, are available for beginners, and shortened courses for men who have had previous training. Write for free prospectus to:-London Electronics College, Dept. LX/3. 20 Penywern Road, Earls Court, London, S.W. 5

Tel. 01-373 8721

SURPLUS HANDBOOKS

Careers in Marine and Aircraft Electronics

Marine Radio Officers
2 years' full time course leading to the General Certificate in Radiocommunications. term full time course leading to the Board of Trade Radar Maintenance Certificate Conversion Course (Isr or 2nd Class PMG Certificate ro General Certificate) (Restricted).

Courses for Qualified Marine Radio and Electronics Officers | Short courses:- | True Motion Techniques |
| :--- | :--- |
| Single Sideband Techniques- 2 weeks | 1 week |
| Transistor Techniques | - 2 weeks |
| Transistorised Radar | FM/VHF Techniques |
| Marine Electronics Diploma- 12 weeks | |

Licensed Aircraft Radio Engineers
A full time course of two years duration commences in September of each year
This leads to the award of the Aircraft Maintenance Engineers (Radio) Licence, issued by the Air Registration Board. The course includes the associated

approved by the $A R B$ and all instruction and practice is carried out with modern equipment and test instruments, in fully equipped laboratories and workshops. approved laboratories at

THE SCHOOL OF MARINE RADIO AND RADAR

Principal Lecturer: F. E. Barltrop. For further information, apply to

Bristol Polytechnic

Director of Studies, Department of Navigation, Marine Radio Radar, Bristol Polytechnic, Ashley Down, Bristol BS7 98 S

8ERVICE SHEETS

LARGE SUPPLIER OF

SERVICE SHEETS

T.Y., RADID, TRAMSISTORS, TAPES, CAR RADIOS 5/- EACH, MANUALS FROM IO:PLUS LARGE S.A.E
(Uncrossed P.O.'s please, original returned if service sheets not available.) FREE TV FAULT TRACING CHART OR TV LIST ON REQUEST WITH ORDER C. CARANNA

7 I BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

8ERVICE 8HEET8. Radio, TY, ete., $\mathrm{s}, 000$ models. List 2/-. S.A.E. enquiries. TELKAY 11 Maudland Bank, l’reston.

8ERVICE 8HEET8 (1925-1970) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault Finding Guide. Prices from $1 /-$. Over 8,000 models available. ('atalogue 2/6. Please send S.A.E. with all orders/enquiries. HAMILTON Radio, 54 London Road, Bexhill, Sussex.

RADIO TELEVI8ION, over 8,000 Models JOHN GILBERT TELEVISION, 1 b Shep herds Bush Rd., London, W.6. SHE 8441.

WANTED

CA8H PAID for New Valves, Payment by return. WILLOW VALE ELECTRONICS. 4 The Broadway, Hanwell, London. W.7. 01-587 5400/2971.

WANTED. Loan or purchase, PRACTICAL ELECTRONIC'S MARCH 68. State price to Box No. 30:

HI-FI EQUIPMENT

8HURE GOLDRING Cartridges. Post Free. G800, M44/5/7 27.17.6. M3D 25.5.0. M44E 28.19.6. M55E e9.19.6. M75E/2 \&16.10.0. Garrard
 ULTIMATE ELECTRONICS, 38 Achilles Road, London, N.W.6. Mail Order Only.

ELECTRONICS FOR EVERYMAN (AND

 WOMAN). An evening class dealing with basic essentials. Students will be encouraged to embark on individual or group projects. Further details from: Orpington \& Drojects. Further details from: Orpington \& District Adult Ed. Centre, Avebury RoaFN. 5706 (MORNINGS ONLY).

8ITUATIONS VACANT

A.M.I.E.R.E., A.M.S.E. (Elec.), (ity \& Guilds, G.C.E., etc., on 'Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-FREE. Please state subject of interest. BRITISH INSTITUTE OF ENGINELRING TECHNOLOGY (Dept. 124 K), Aldermaston Court, Aldermaston Berks.

IIIT
 Established 1891
 TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S trained man. Let IC 5 train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio, TV Engineering and Servicing, also Colour TV Servicing, Electronics, Computers, etc.
Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E,B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students coached until successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL

CORRESPONDENCE

SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

RANK WHARFEDALE LIMITED require

tester/

troubleshooters
The Company, who are leading producers of quality Hi-Fi equipment, require suitably qualified staff for production line testing of transistorised electronic equipment.
Applicants should preferably possess either a formal qualification in radio servicing or testing, or have obtained equivalent experience in similar work.
Location-Bradford, Yorkshire.
The positions carry staff status, and good salaries will be paid to the successful candidates.
There is a contributory pension scheme and free lifé assurance benefit. Assistance with removal expenses will be paid if applicable.
Applications to:

> The Personnel Manager RANK WHARFEDALE LIMITED Bradford Road Idle, Bradford BD10 8SQ Yorkshire
> Tel: Bradford 612552

RECEIVER8 AND COMPONENT8

GUARANTEED TUBES AT GEDUESD PRIGES

We are the area stockists for Display Electronics Re-manufactured Tubes. These tubes have complete new gun assembly, the glass is the only reconditioned part and that cannot wear out We invite enquiries from the trade or the public Daily 9.30-5.30. Fri. 9.30-8, closed Wednesday. TELEVISION CITY
50 Richmond Road, Kingston, Surrey Telephone 01-546 3961 (100 yards from station)

A CORNUCOPIA OF COMPONENTS! Scarce valves, selected TV components, speakers and cabinets. Computer panels-long leads, NOT printed circuits. Transistors, resistors-new and recovered. State your requirements. S.A.E. for details MAIL-MART, 6 Eastbourne Road,

UNIVERSITY OF SURREY DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING
 SENIOR TECHNICIAN for
 ELECTRONIC SERVICING

A Senior Technician is required in the Department of Electronic and Electricai Engineering to service a range of electronic equip
ment and to build specialised electronic research apparatus. Applicants should have had sufficient experience in the electronics fleld to enable them to work with the minimum of supervision.
The successful applicant will be entitled to 3 weeks' annual holiday (rising to 4 weeks after 5 years' service) plus generous leave at Christmas and Easter. Every encouragement is given to available. The post is superannuated.
Salary scale $E 1,278$ - El,586 per annum plus £50 Qualification Allowance.
Applications should be sent to the Staff Officer, University of Surrey, Guildford, Surrey.

Pevensey Bay, sussex.

TOP PRICES PAID

for new valves and components
Write:
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

R \& R RADIO
51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

EBF80	$3 /-$	PCC84	$3 /-$	PYBI	$3 / 6$
EBF89	$3 / 6$	PCF80	$3 /-$	PY82	$3 /-$
ECC82	$3 /-$	PCF82	$3 / 6$	PY800	$3 / 6$
ECL80	$3 /-$	PCL82	$4 /-$	PYB0I	$3 / 6$
EF80	$1 / 6$	PCL83	$4 /-$	U191	$4 / 6$
EF85	$3 /-$	PL36	$5 /-$	$30 F 5$	$2 / 6$
EY86	$4 /-$	PL8I	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C D 6 G$	$7 / 6$

POST, ONE VALVE9d. TWOTOSIX 6d. OVER SIX POST PAID.

15 WATTS FOR £5.5.0!!

Now available for return of post delivery-"Hardcastle" I5W Amplifier kit as described in Hi-Fi News. This outstandingly low price includes Fibreglass PCB with screened legend for easy assembly, heatsink, transistors, low noise resistors, capacitors and misc. hardware, circuit diagrams and post packing and insurance. A unique feature is that the output power can be varied from 10 to 30 watts and the output impedance between 8 and 15 ohms. (Basic kit at $£ 5.5 .0$ gives 15 watts/ 15 ohms). An ideal educational project. Send now for your kit by return of post or send a stamped self-addressed envelope for details to:
L.S.T. ELECTRONLC COMPONENTS LTD. DEPT. PE77
7 COPTFOLD ROAD, BRENTWOOD, ESSEX

MULLARD CR25 RE818TORS. $0.4 \mathrm{~W} 5 \%$ HS $2.5 \times 7 \mathrm{~mm} 1 \frac{1}{2}$ each. $47 \Omega-1 \mathrm{M} \Omega$ P. \& P. $1 /-$ SPRING ELECTRONIC's LTI)., 25 Cranley Gardens Muswell Hill, N. 10.

AMAZING VALUE

New Branded Full SPECIAL DEVICES
Integrated Circuita complete with data:
N5709A Type 709 Op. Amp.
GE PA234 1W Audio Amplifier
GE PA237 2 W Audio Anplifie
Plessey Slit02A Preamp. and 2W Amp.
(equiv. IC10) with instructions)
GE D40C1 4W Darlington Amplifier,
Yery High Gain 10,000 min. .
MEL 11 Photo Darlington Anp.
High Quality Low Cost Tranaistors:
GE $2 \mathrm{~N} 5172 \quad 1 / 9 \quad$ MUL BFX88

Triacs for Full Wave Power Control: RCA 40669 8A, 400 V
astic Rectifers for Power Supplies:

$$
\begin{aligned}
& \text { ITT } 1 \text { Amp. } 4000 \text { series: } \\
& \text { 1N } 4001,50 \mathrm{~V} \quad 1 / 9 \quad 1 \mathrm{~N} 4004,400 \mathrm{~V}
\end{aligned}
$$

$\begin{array}{lll}1 \mathrm{~N} 4002,100 \mathrm{~V} & \ell /- & 1 \mathrm{~N} 400 \mathrm{~s}, 600 \mathrm{~V} \\ 1 \mathrm{~N} 4003,200 \mathrm{~V} & 9 / 2 & \text { IN } 4006,800 \mathrm{~V}\end{array}$ $\begin{array}{cll}\text { 1N4003, } 200 \mathrm{~V} & 2 / 2 & 1 \mathrm{~N} 4006,800 \mathrm{~V} \\ 1 \mathrm{~N} 4007,1,000 \mathrm{~V} & 4 /-\end{array}$
$1 \mathrm{~N} 48201.5 \mathrm{~A}, 400 \mathrm{~V}$ Si Rectiffer
W'005 IA, 50V full wave bridge it
PD40 2A, 400 V full wave bridge $8 i$

JEF ELECTRONICS

(P.E.9), York Eouse, 12 York Drive

Grappenhall, Waxrington, Lancashire
Mail Order Oniy. C.W.O. P. \& P. 1/• per onder Overseas 7/6. Money back if not atisfled

RECEIVERS AND COMPONENTS

(continued)
BRAND NEW ELECTROLYTICS $15 / 16 \mathrm{~V}$ $0 \cdot 5,1,2,5,10,20.30,40,50,100 \mathrm{mF}, 8 \cdot 5 \mathrm{~d}$ E12 series 5% resistors, Carbon Film $+W$ 10Ω to $1 \mathrm{M} \Omega, 1.5 \mathrm{~d}$. Wirewound $5 \mathrm{~W} 15 \Omega$ to $15 \Omega, 10 \mathrm{~d}$. Postage $1 /-$. The C.R.STPPLY ('O.. 127, Chesterfleld Rd.. Sheffield, s8 ORN.
COMPUTER BOARD8 $5 \mathrm{in} \times 5 \mathrm{in}$. Average 10 silicon transistors (mainly $n p n$), 20 diodes, other components, $2 / 6$ each, P. \& P. 6d; 5 for $10 / \mathrm{L}, \mathrm{P}$ \& P. $1 / 6 ; 25$ for $22,5 /-; 100$ for 26 , P. \& P. 7/6. TRIMPOTS, 26-turn, 2/6. LOAIC J.C.s, 100% good from 2/6, 2N3955 $3 /=.1 \mathrm{lh}$ mixed components. $10 /-$. S.A.E. list, data, free samples. PAWSON, 114 South St , Armadale, W. Lothian.

NEW MODEL V.H.F. KIT MK2

Our latest KIt , improved design and performance plus extra Ampllfier Stage, receives Aircraft, Amateurs, Moblle, Radio 2, 3, 4, etc.
This novel little set will give you endless hours of pleasure and can be built in one evening. Powered by 9 Vol battery, complete with easy to follow instructions and bult in Jack Socket for use with Earphones or Amplifier Oniy 68/-. P. R. Fras U.K. only

Postal Orders, Cheques to:
Dept. P.E.
Galleon Trading Co., 25 Avelon Road, Romford, Essex

NEW MK. 2
 Psychodelic Lighting Unit

This new psychodelic lighting unit offers even greater sensitivity than our original unit, requiring typically only 1V r.m.s. for full drive. It features higher input impedance circuitry for less loading of speaker lines and is now manufactured on professional fibreglass printed-circuit board material.

Drive voltage is derived directly from amplifier output or across speakers. The unit converts the audio frequency signals into a three-coloured light display; the colour depending on the frequency of the signal and the intensity on the loudness of the audio source.

Uses latest full-wave triac circuitry and incorporates signal input level and minimum ambient light level controls. Will drive up to 1.5 kW per channel at 240 V a.c. Complete printed-circuit board assembly built and tested. Size $8 \frac{1}{4}$ in $6 \frac{1}{2} \mathrm{in}$: $3 \frac{1}{2} \mathrm{in}$.
£17.10.0 net plus 10/-carriage MAIL ORDER ONLY
Dabar Electronic Products 98a Lichfiefd Street, Walsall, Staffs.

4-gtation Tranintor Intercom syatern (l matter and 8 Snbr), in de-luxe plastic cabineta for desk or wall mounting. Call/talk/listen from Master to Subs and Sobs to Master. Ideally suitable for Business, Sur gery, Schools, Hospltal, Office and Home. Operate on one 9 V battery. On/oti switch. Volume control. Complete with 3 connecting wires each 66ft. and other acc

MAINB INTERCOM
Mo batteries-no wirea. Just plug in the maius for Inatant two way, loud and clear communication On/off switch and volume control
Price S11,10.8. P. \& P. 8/6 extra.

Same as 4.station Intercom for two-way ingtant Bame as astation Intercont for two-way instant
communication. Ideal as Baby Alarm and Door Phone. Complete with
Battery 2/6, P. \& P. 4/6.
 for. Take down long telephone nessages or converse Without holding the bandset. A useful office aid. On/ 3/6. Full price refupded if not satigied in 7 . P, \&

WEST LOMDON DIPRCT SUPPLIES (PE
WEST LONDON DIRECT SUPPLIES (PE/3)
69 KEASIFGTON HIGH STREET, LONDON, W.

Please mention

PRACTICAL

ELECTRONICS
when replying to

ADVERTISEMENTS

GLASS FIRRE OPTIC
FLEXIBLE LIGHT PIPE now available in any length. $150+$ glass fibres in 0.080 in. diam,
P.V.C. sheath with 3 times lower loss than plastic fibre.
Used like wire but to convey light to remote or inaccessible positions for inspection, panel indicators, photo-electricand other applications.
Prices per it. (Post free) $1-9,5-; 10-49,4 /-$; Prices per ft. (Post (ree) $1-9$.
$50-249,3 /-$ Enquiries $\$$. A.E.

SYSTEM 696 \& CO.
15 BELL RD., EAST MOLESEY, SURREY

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO. RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: $6 v, 9 v, 12 v$, $18 v$ (single output) $39 / 6$ each. P. \& P, $2 / 9$. $9 y+9 y 6 y+6 v$;or $4 i y+41 v$ (two separate outputs) $42 / 6$ each. P. \& P. 2/9.' Please state
output required. output required. All the above units are completely isolated from mains by double
R.C.S. PRODUCTS (RADIO) ITD.
(Dept. P.E.), 31 Oliver Road, London, E. 17

AUDIO EFFECTS

5 SHAW LANE, HALIFAX, YORKS.
Buy with confluence and obtain the right reaulta. Refunds without question if any of our products fail to give 100% satisfaction.

AMATEUR BANDS ALL TRANSISTOR

SUPERHET RECEIVER KIT. No fuse, mo drilling. Just fit the components on our printed circuit. Slow Motion tuning. Simple IF aligniment. Perspex front panel. Push pull AF amp drives your 8 - 15 ohm speaker. Amp can be usect separately. Deaigned to
 $\begin{array}{lllllll}2 \mathrm{~T} . & 0.5 & \text { to } 1.54 \mathrm{Mhz} & 3 \mathrm{~T} . & 1.67 & \text { to } & 5.3 \mathrm{Mhz} \\ 4 \mathrm{~T} . & 5.0 \text { to } 15 & \mathrm{Mhz} & 5 \mathrm{~T} & 10.5 & \text { to } & 31.5 \mathrm{Mhz}\end{array}$ Range 3T normally supplied with kit. Useas 9 volt battery. Easy step by step inst ructions. Complete Kit. \&8.19.6 plus 5/6 P.P. \& lis. Extra ranges 12/- per range.
POWER CONTROLLER. Power at your finger tlpa. Not merely half wave control but full wave. A single variable control gives zero to full power. Uses latest 15 amp 3 kW triac and special triggering device. Ideal for all types of lighting, fires, motore, drills, etc. Complete with box, power socket, cables, etc. In kit form with easy to follow instructions 86.0 .6 . Ready built 29.4 .6 plus $5 / 6$ P. P. \& Ins. REVERBERATION AMPLIPIER. Self contained transistorised, battery operated. An entirely different approach to sound reproduction. Normally, sound reproduction from a single source, has a flat one dimensional effect. With this unit, proper sound delay through reverberation, tones, are ball originality. Two controls adjust volume and hall originality. Two controls adjust volume and etc., in, and the out put into your amplifier. Supplied on a beautiful walnut cabinet 7 tin $\vee 3$ in ~ 4 in \$10.4.0. P. P. \& Ins. 6/-
Vox sWITCH. This sound operated switch is ideal for mobile TX work, tape recorder switching, etc. You speak, it switches. High and medium imp.
inputs. AF take off point. Drives your 12 volt relay. In kit form with full instructions 49/6. Ready built, tested nid gnaranteed. 69/6 post paid. METRONOME UNIT. Variable beat. Listen while you play and keep in time. Easity built, pocke post pald. Ready built in an attractive polythene case, $87 / 8$ post pald.
MORSE OSCILLATOR. PC board, transistors, high stab. components, battery carrier, ear piece. Adjust-
able tone. Juat attach your key. Drives phones or speaker. In kit form $17 / 6$ post pailu. Ready built in ainilar case as above 27/8 post paid.
STRAIGHT FROM THE PRESS. Latert Mullard manual: Audio Ampe, FM tuners, Sterco decoder Receiver circuits, Hi Fi, Tape, etc., etc. $32 / 6$ po pald
TEXAS THANSISTORS, Complementary mametry. Driver, NPN, PNP output. The set of thre ONLY $/ 6$ post pald.

SPECIAL OFFERS 4 TRANSISTOR AMPLIFIER

altur suaplus MULLARD COMPONENTS OUTPUT 800 MIL.WATT OPP VOLTS 9v

27/6 p.4. P. 26

Supplied complete with circuit
 OAZ200 5.2 V Zener Diodes, 3 for 10/- P. \& P. l/-. 2NHz H.C. 6μ Crystals with bage. 10 - ea. P. \& P. 10 MHz Crystal $10 \mathrm{XJ} .15 /$ - ea. P. \&P. $1 /-$. 50 MHz Crystal H.C. 6μ. $10 /-$ ea. P. \& P. $1 /-$.
Min. Audio Output Transformera 3 ohm: $4 /-$ P. \& P. $2 / \theta$. Min. Audio Output Transformers 3 ohm: 4/-. P. \& P. $2 / 9$. Min. 500 mw Transistor Output Transformers. $8 / 8$ ea Min. Tuning Cond: Jap Type $80+150 \mathrm{pF}$. 4/6. P. \& P $2 / 6$. Send $2 / 6$ for Stock List.

THE TRADING POST
4 CASTLE STREET, HASTINGS, SUSSEX

SOUND MIXING UNITS
We manufacture a rransistorised six channel SOUND mixing unit/preamplifier suitable for discotheques. Ready built Assembled circuit board, pots, knobs and wire etc., for mounting in existing installations DISCOSOUND CONTROL SYSTEMS 19 Nilverton Ave.,Sunderland, Co. Durham

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

BAKER 12in. MAJOR £9
The remarkable quality and performance of the "Major" makes possible truly brilliant and rich sound from a single oudspeaker. It recreates the entire musical spectrum from 30 to 14,500 c.p.s. The unis consists of the latest double cone, wooter and tweeter cone together with a special Baker CERAMIC mag t assembly having a flux density of 4,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 45 c.p.s. For Hi-Fi or P.A. Rated 20 watts. Voice coils available 3 or B or 15 ohms. tweeter. crossover, bafile $\mathbf{E l |} \mathbf{1 0 . 0}$

Sand 4d Stamp for
Further Defails
Baker Reproducers Lid
Bensham Manor Road Passage, Thornton Heath, Surrey.
01-684-1665

VALUABLE NEW HANDBOOK

 Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available - without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES', should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience ortraining.

On 'SATISFACTION OR REFUND OF FEE' terms

This remark able book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tech.Frequency Modulation Transistors.
CLECTRICAL ENG.
Advanced Electrical Eng.General Elecrical Eng. Installations - Drcughtstmanship - Illuminating Eng. Refrigeration - Elem. Elec Science - Elec. Supply Mining Elec. Eng
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng --Sanifary Eng.-Road Ens. - Hydraulics - Mining

Water Supply - Petrol Tech

RADIO \& T.V. ENG. Advanced Radio - General Radio-Radio \& TV Servicing - TV Enginecring - Telecommumications - Somnd Recording -- Automation Pracrical Radio - Radio Amateurs' Examination. MECHANICAL ENG. Advanced Mcchanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. Tress Tool Design - Sherer Mefal t'onk -- Welding Beng. Pattern Making -hispection- Draughsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Ausomobile Eng.Gicneral Auto. Eng. - Auto Maintenance - Repair Auto. Diessl Maintenance Aluo. Electrical EquipmentGarage Managemem.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E. A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.IO.B., A.M.IEX., A.RI'C.S., M.R.S.H., A.M.I.E.D.,A.M.IMun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interest ing job.
* HOW to qualify for rapid promotion.
* HOW to put some letters ofter your name and become akey man .. quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can zake advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

$$
164 \text { PAGES OF EXPERT }
$$

CAREER - GUIDANCE

PRACTICAL INCLUDING EQUIPMENT TOOLS

Basic Practical and Theore lic Courses for beginners in Electronics, Radio, I.V. Ete. A.M.I.E.R.E. City \& Guilds Radio Amateurs Exam. R.T.E.B. Certilicate P.M.G. Certifitale Practical Elettronics Elettronits Engineeting Practical Radio Radio \& Television Servicing Automation

The specialist Elecronics Division of B.I.E.T. NOW offers 3On a real laboratory iraining at home with practical equipment. Ask for details. B.I.E.T

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

POST COUPON NOW!

TO B.I.E.T. 3IGA, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS

303.309-354-356 EDGWARE ROAD LONDON W. 2

Abstract

COMPLETE STEREO SYSTEM FOR E39.10.0 HENELEC 5.5 STEREOAMPLIFIER. Inputs for ceramic carcridge, AUX/Tuner. Output for ${ }^{8}$ to is ${ }^{2}$ Size 12 in $3 \frac{1}{2}$ in $6 \frac{1}{2}$ in. Fitted headphone socket. British made. Complece system comprises 5-5 amplifier Garrard 3000 or model 50 with TAAC diamond cartridge. Pair E.M.I. CW speakers. twin tweeters and crossover with polished wood cabinets 18 in 1 lin . in . Also plinch and cover - Complete stereo system (Rec Price 150), 63.10 .0 , p.p. 20/- Amplifier only 613.19 .6 p.p - Amplifier only, ilini9.6, p.p. $7 / 6$. phones, 39/6. Credits sale-callers only

BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND. REPRODUCTION MONO AND STEREO. A popular VHF FM Tuner for qualicy and reception of mono and stereo. There is no doubt about it - VHF FM gives the REAL sound All parts sold separately PARTSTOTAL COST DECODER 65.19 .6 . E6.19.6. ASK FOR (FOR STEREO) BROCHURE No. 3 P.P. $3 / 6$ ```New printed circuit design with BU|LD full power oucput. Fully tuneable on both MW/LN bands. } Mullard transistors. Fitted 5in speaker, Room filling power. A Easy to build with terrific results. QUALITY Two colour leachercloth cabinet RADIO with silvered front. All local and conninental stations. Complete``` Total cost $£ 6,19.6$. p.p. $6 / 6 . \quad$ Ask for Leaflet No. 1.

SINCLAIR EQUIPMENT SPECIAL OFFER

Z30, 75/- each, stereo 60, 68.10.0; PZ5, 79/6; PZ6, C6.19.6; Z50. ©5.9.6; PZB, £5.19.6. Two of Z30, stereo 60 , PZ5 (usually E 23.10 .0) $\mathbf{E} \mathbf{1 9}$, or with PZ 6 in place of $\mathrm{PZ5}, £ 21$. Complete range of amplifiers and preamplifiers Complete range of amplifiers and preample instock. All derailed in catalogue above.

1 equipment to suit EVIRYPOCKET

FREE
STOCK LIST
BEST RALUE REQUEST
best value in U.k.
Choose from 100 complete stereo systems-complete range of individual units also in stock. Demonstrations all day
100 STEREO SYSTEMS
LOW CASH AND CREDIT/HP PRICES
\star VISIT THE NEW HI-FI CENTRE AT 354 EDGWARE ROAD
henry's Latest catalogue NEW PRINT-NOW 350 PAGES \star COMPONENTS, TESTGEAR * EQUIPMENT, MODULES \star SPECIAL OFFERS, ETC. EVERYTHING FOR THE CONSTRUCTOR
Complete with 10 - value discount vouchers for use with purchase. Price 7/6, p.p. 2
WHY NOT SEND AWAY TODAY?

NEW!

25W and 50W RMS SILICON AMPLIFIERS
LOOK AT THE SPECIFICATIONS

- 0.3% distortion at full power.
- $-1 \mathrm{dS} \mid \mathrm{lc} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$ at full power.
- Response $-1 d 8 \mathrm{l} / \mathrm{c} / \mathrm{s}-100 \mathrm{k} \mathrm{c} / \mathrm{s}$.

PA25- 10 silicon transistors; differential mput, 25 Wr r.m.s. into 8 ohms, 400 mV inpus Supplied with edge connector and harness.

PASO- 12 transistor version, 50W r.m.s. into $3-4$ ohms.
MU442-power supply for one or two PA25 or one PA50

- PA25 f7, 10.0 PA50, $£ 9,10.0$. MU442, $£ 6$.

NEW! STEREO FET SELFPOWERED PREAMPLIFIER MODEL. FET 154 STEREO
nputs for pickup (mag, etc). Tuner/Aux. Tape in and out. Response 20c/s Slim design size 12 " NO SOLDERING-JUST PLUG CONNECTORS

> YOU CAN SAVE 25" "brand new GARRARD (post $7 / 6$).

SP25 Mk. || fll.9.6; AP75, f16.19.6; SL65日 E14.19.6; SL72B, $£ 25$; GL69. 122.

9TAHC diam. G800, add $£ 7100$ etic, add 70 /-: with Goldring Also-Fitted with 9TAHC diamond, 2025TC E9.15.0; 3000 LM , $\mathbf{9 . 1 5 . 0 \text { . Plinths/covers }}$ Standard, 99/6. p.p. 4/6; Deluxe, 68.10.0, P.P. 6 ,

SCOOP - New I TRACK TAPE DECKS British made 3 -speed mains-operated and Machine. Fitted Marriott XRPSI7 operation. Designed for the home constructor. Operates with up to 7 in spools vertically or horizontally. Size 13 in $\times 10: \mathrm{n} \times 5 \frac{1}{2} \mathrm{in}$. PRICE \&13.19.6, p.p. $10 / 6$.

ELECTRONIC ORGANS

- modern all british transisTORISED DESIGNS AVAILABLE AS KITS OR READY BUILT
- TEAK MENEER
- M9 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO 49 MANUAL NOTE
* KITS AVAIL
* HP and CREDIT SALE FACILITIES.
\star FREE
16-PAGE BROCHURE

Covering organs in kit form and ready built-wrice or

- ELECTRONIC ORGANS, PUBLIC ADDRESS DISCOTHEQUE EQUIPMENT 309 edgware road london w. 2 TEL. $01 \cdot 7236963$
- hich fidelity sales
and demonstrations
354, EDGWARE ROAD LDNDON W. 2 TEL: 01 -402 5854

TEL. 01.402 4736:
OPEN MONDAY TO SATURDAY 9 AM TO 6 PM. THURS $9 A M$ TO 1PM. OPEN ALL DAY SATURDAY

[^0]:

 207 EDGWARE ROAD, LONDON, W.2.
 33 TOTTENHAM CT. RD, LONDON, W1P 9RB. Tet: 01-636 2505 Open all day. 9 a.m.-6 p.m. Monday to Saturday 109 FLEET STREET, LONDON, E.C. 4. 152/3 FLEET STREET, LONDON, E.C. 4 Open all day Thursday, carly closing 1 pim. Saturday Tel: 01-353 5812

 HIGH FIDELITY AUDIO CENTRES
 42-45 TOTTENHAM CT. RD, LONDON, WIP 9RD Tel 01-58i $257 \overline{3}$
 Open all day. 9 a m -6 p m . Monday to Saturdiv Open all day. 9 a.m.- $\mathbf{p} \mathrm{p}$ m. Monday to Saturdiv \quad Tel: 01723 978s

[^1]: \therefore. valuable assistance
 Your valuable assistance has enabled me to find a good position as a Radio and TV Engineer ... D.S. , Bristol.
 '...they are imaluable ...
 I find that as a base for a course in Electronics they are invaluable and I have yet to find anything even to approach the same standard...H.N., Rotherham.

[^2]: © IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are refiable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 45 s .
 Editorial and advertisement offices: Fleetway House, Farringdon St., London, E.C.4. Phone 01-236 8080

[^3]: TERMS OPEN DAILY TO CALLERS
 C.W.O. Mon.-Sat. 9 a.m. -5.30 p.m. Closed Sat. 1.30 p.m. -2.30 p.m. no C.O.D.

 Tel. 01-769 0199/1649

