PRACTICAL
 \# =CTRTNICS

- project buthing for BEGINNEIS

ADCOLA Soldering Instruments add to your efficieincy

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument－supplied with standard $3 / 16^{\prime \prime}$（ 4.75 mm ） diameter，detachable copper chisel－face bit＊．
Standard temp． $360^{\circ} \mathrm{C}$ at 23 watts．
Special temps．from $250^{\circ} \mathrm{C}$－ $410^{\circ} \mathrm{c}$ ．
＊Additional Stock Bits
（illustrated）available
COPPER

$\underline{\square}$	
B $14{ }^{\frac{3}{37}}{ }^{\text {a }}$－ 2.4 mm	chisel face
812 －${ }^{16}{ }^{\circ}-4.75 \mathrm{~mm} \mathrm{EYELET} \mathrm{BIT}$	
B58＊＊${ }^{\frac{2}{4}}$－ 6.34 mm	chisel fac
LONG LIFE	
\cdots－	
B 42 LL $\frac{3}{16}{ }^{*}-4.75 \mathrm{~mm}$	CHISEL FACE
－	
B 38 LL $\frac{1}{6}^{\circ}-3.2 \mathrm{~mm}$	Chisel face
\cdots	
B 14 LL $3^{\frac{3}{7}}{ }^{*}$－ 2.4 mm	Chisel face
＝－	
B 44 LL $\frac{3}{16}$－ 4.75 mm	SCREWDRIVER

Don＇t take chances．We don＇t． All our ADCOLA Soldering Instruments are of impeccable quality．You can depend on ADCOLA day after day．That＇s why they＇re so popular．You get consistent good service ．．．relia－ bility ．．from our famous therm－ ally controlled ADCOLA Element and the tough steel construction of this ideal production tool．

米
Write for price list and catalogue ADCOLA PRODUCTS LTD．， （Dept．L．），ADCOLA HOUSE，GAUDEN RD．，LONDON，S．W．4． Teleghone；01－622 D291／3－Telegrams：Soljoint London Tolex •Teiex：Adcola London 21851

EX RENTAL TV＇s

17＂ 2 YEARS＇GUARANTEE 19＂ SLIMLINE SLIMLINE 405 ONL．Y FREE ILLUSTRATED $405 / 625$ Ell． 10.0 LIST OF TELEVISIONS BBC 2 39 gns ．

$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS
SIZES AND PRICES dEMONSTRATIONS DALLY

CARR．INS．
30／－
RECORD PLAYER CABINET \mid TWO－YEAR GUARANTEED 49／6

 Takes any modern autochanger．
 REGUNNED TUBES

$70^{\circ} \& 90^{\circ} 14 \mathrm{in},-79.6,17 \mathrm{in} .-99.6$ $2 \operatorname{lin} .109,6.110^{\circ} 17 \mathrm{in}, 19 \mathrm{in}$, \＆ 21 in Exchanged Bowls．Carr．10：6．

SPEAKERS GALORE，BRAND NEW 10：\％P．\＆P．J $/=2 \frac{1}{2}^{\circ}$ 日R， $3 \frac{1}{3}$ $25 \Omega, 4^{*} 10 \Omega, 3^{*} \times 5^{-} 8 \Omega, 7^{-r} \times 4^{*}$ and $8^{\prime \prime} \times 3^{+} 3 \Omega$ ．
TRANSISTOR CASES， 4 FOR CI．Cloth covered，many colours．Size $9 \frac{1}{2}^{2} \times 6 \frac{1}{2}^{\circ} \times 3 \frac{1}{2}^{\circ}$ ．P．\＆P．9／6．Similar cases in plascic．
RECORD PLAYER 意 TAPE MOTORS IO：BRAND NEW P．\＆P．3i6． TRANSISTORS 2：6EACH．OC44，OC45，OC7I，OCBI，OC8ID，AFII4 AFI17．AC 128．

DUKE \＆CO．（LONDON）LTD． 621／3 Romford Road，Manor Park，E． 12 Phone 01－478 6001－2－3

Stamp for Free List

PRINTED CIRCUIT KIT

BJILD 40 INTERESTING PROJECTS on \＆PRINTED CIRCUIT CEASSIS with YARTS and TRANSISTORS Lrom your SPARES BOX
CONTENTS：（1） 2 Copper Laminate Boarda $4^{2}{ }^{\prime \prime} \times 22^{2}=$（ 9 ）Board for Match－ box Radio．（3） 1 Buard for Wrist watch Radio，etc．（4）Resist．（5）Resist Solvent． （6）Etchant，（7）Cleanser Degreaser．（8） 16 －page Booklet Printed Circrits for Amateurg． （9） 2 sinnature Radio Dlald SW／MW／LW．Asso irce with each kit．（10）Essentia Design Data，Oircuits，Chassis Plans，etc．ior 40 TRANSISTORTSED PROJECTS． A very comprehensive selection of circuits to suit everyone＇s requirements and for the firet time，lacluiling 10 new circuits．

EXPERIMENTER＇S printed circuit kit

8／6

Postage \＆Pack．lif（だK） Commonwealth： SURFACE MAIL $2 /-$ AIR MAIL 8j－ Australia，New Zealand Bouth Afrlea，Canada．
（2）Grystal Set with biased Detector．（2）Cryatal Set with voltage－quadrupler detector，（3）Crystal Set with Dynamit Loudspeaker．（4）Crysta）Tuner with Audio Reflex，（7）Matchbox or Photocell Rarlio．（8y＂TREFLE XON＂Triple Reflex with seli－adjusting regeneration（Patent Pending）．（9）Solar Battery Luugeneaker Badio The smallest 3 designa yet offered to the Home Constructor anywhere in the World． 3 Subminiature Radio Recejvers based on the＂Tritlexon＂clrcait．Let us know if you know of a amaller derign published anywhere，\｛10）Postage Stamp Radio．
 RIng Radio $70^{\prime \prime} \times 70^{\circ} \times 5^{\circ}$ ．（18）Bacterar－powered Radio．Ruts on sugar or oreat．（14）Radio Control Tone Receiver，（15）Transistor P／P Amplither，（16）Inter－ Guited Mibajie，（20）Perpetual Motjon Machtne．（21）Mrial Detector，（22）Tranaistor Tester．（233）Humars Boil Pulistlon iretector（24）Man／Woman Discriminator （25）algraal Injector．（26）Pocket Transceiver（Lijence required），（27）Corstant Fohume Intcreom．（28）Remote Control of Models by Induction．（29）Inductive－Loop Transmitter，$\langle 30$ P Pocket Triple Reflex Ralio．（31）Wristwatch TransmitteriWire－tess Mlcrophone．（82）Ratn Alarm．（33）Uitrasontc Switch／Alarm．（34）Stereo Preampliter，（30）Quality stereo Pueh－Puil Ampifier．（36）Dight－Beam Telephone ＂Pbotophone＂．（37）Light－Beam Transmitter．（38）Silent TV Sound Adaptor．（39） Ultrasonls Transmitter．（40）Thyristor Drill \＆peed Controller．

YORK ELECTRICS

335 BATTERSEA PARK ROAD，LONDON，S．W．II
Scnd a S．A．E．for full detatts，a brief description and Photographs of all Kits and alt 5̄ Radio，Nlectrontic and Photolectric Projects Axsembled．

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

theworld's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which hoids the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The 16 -10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response $5 \mathrm{~Hz} 80100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total hamonic distortion Less than 1% at full output. Load impedance 3 to 15 ohms. Power gain $110 \mathrm{~dB}(100,000,000,000$ times) total. Supply voltage Size
Sensitivity
Input impedance
5 mV .
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each $1 \mathrm{C}-10$ is sold with a very comprehensive manual giving circuit and wiring diagrams for a large. number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAFR

Project 60

 laboratory standard modular high fidelity

 laboratory standard modular high fidelity}

Sinclair Project 60 comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.

The modules are: 1. The $Z .30$ and $Z .50$ high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The Active Filter Unit with both high and low audio frequency cut - offs. 4. The PZ.5 and PZ.6 power supplies. A complete system could comprise, for example, two Z.30's one Stereo-60, and a PZ.5. The PZ. 6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between PZ. 5 or PZ. 6 unless loudspeakers of very low efficiency are being used, in which case the PZ. 6 will be required. For assemblies using two
Z.50's there is the new PZ. 8 supply unit to ensure maximum performance from these amplifiers.
All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled in the wood of the plinths to mount the control unit and A.F.U. Any slight slip here will be covered by the aluminium front panels of the Stereo 60. The Project 60 manual gives all the buildings and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe. Project 60 prices are remarkably low.

2.30

The Z.30 together with the higher powered Z. 50 are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the $Z .30$ or Z.50 power amplifiers in your Project 60 system will depend on. personal preference, but they are both the same physical size and may be used with other units in the Project 60 range equally well. The $Z .30$ is unique in that it may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the Z.30 use PZ. 5 power supply unit for most domestic requirements, or PZ. 6 if you have very low efficiency loudspeakers. For Z.50, use the PZ.5, PZ. 6 or the PZ. 8 described below.

Power Outputs

Z. 3015 watts R.M.S. into 8 ohms, using $35 \mathrm{~V} / 20$ watts R.M.S. continuous into 3 ohms using 30 volts.
Z. 5040 watts R.M.S. into 3 ohms: 30 watts R.M.S. into 8 ohms, continuous, using 50 V .
Frequency response 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion 0.02% into 8 ohms
Signal to noise ratio better than 70 dB unweighted
Input sensitivity 250 mV into 100 Kohms
For speakers from 3 to 15 ohms impedance
Size $3 \mathfrak{t}^{*} \times 2 \ddagger^{*} \times \mathfrak{t}^{*}$

STEREO 60 Preamp/Control unit

The Stereo 60 is a stereo preamplifier and control unit desloned for the Project 60 range but suitable for use with any high quality power amplifier. 'Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high slgnal-to-nolse ratio and excellent tracking between the two channels. input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

ACTIVE FILTER UNIT High Pass and

For use between Stereo 60 unit and two $\mathbf{Z . 3 0 s}$ or $\mathbf{Z . 5 0 s}$, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negliglble by reason of the careful design and generous negative feedback employed.
Two stages of filtering are incorporated-rumble (high pass) and scratch (low pass). Supply voltage- 15 to 35 V . Current-3mA H.F cut-off (-3 dB) variable from 28 kHz to 5 kHz L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz Filtersiope, both sections 12 dB per octave Built, tested Distortion at 1 kHz (35 V supply) $0.02_{\mathrm{G}}^{\circ}$ at rate and guaranteed 25.19.6 output

SINCLAIR POWER UNITS

PZ-5 \(\begin{gathered}30 volts
unstabilised\end{gathered}\)

£4.19.6
PZ-6 35 volts stabilised

Ł7.19.6
PZ-8 45 volts stabilised (less mains transformer) for use with $2.50 \quad £ 5.19 .6$

APPLICATIONS

H1-fl amplifer: car radio amplifier; record player amplifler fed directly from pick-up; intercom; electronic music and instruments; P.A.; laboratory work, etc. Full details for these and many other applications are given in the manual supplied with the Z.30.
The $\mathbf{Z . 5 0}$ is completely interchangeable with the $\mathbf{Z . 3 0}$ and con be used in all Z. 30 applications.

7.30

Bulle, tested and guoronteed with instructions
instructions manual

Buift, tested and guaronteed with circuits and 109/6

STEREO 60 SPECIFICATIONS

 1 m . Mas. p. U. 3 M . Ceramic p.4.-up to 3 mV : Aux.up to 3 mv .

- Outpur- 250 mV .
${ }_{700}{ }^{\text {Sigenableto-noise ratio-better than }}$ 70 dB .
- 15 dB at 10 KHz : BASS + 15 to - 15 dB at 100 Hz .
- Power consumpcion 5 mA ,
- Chanrel matehing-within IdB.
- Front panel-brushed aluminium wich black knobs and conerols.
- Size $8 \frac{1}{2} 1 \frac{1}{2} \times 4 \mathrm{in}$.

STEREO 60
Duitc, tested
auif, tested
ond guaranteed
£9.19.6

If at any time within 3 months of purchasing Project 60 modules from us, you are dissasisfied wich shem, we will refund your money at once. Each module is guaranteed to work perfectly and should any dofect arise in normal use we will service it as once and withouk
any cost to you whatsoever provided that it is returned to us wishin any cost to you whatsoever provided that it is returned to us wishin 2 years of purchase date. There will be a small charge for service therged ac cosc.
\square

SINCLAIR Q. 16

new elegance in an outstanding loudspeaker

All the superb features which went to make the Sinclair Q. 14 have been incorporated in the new Q. 16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successful departure from conventional design, this speaker presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The Q. 16 is compact and slim. Its new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of Q.16s in stereo and marvel at the standards of quality and clarity they give. At the price, this Sinclair speaker represents outstanding value as you will discover the moment

Specifications
 Sixe:
 I $1{ }^{2} \times 1$ in $^{2} \times \frac{1}{2}(46 \times 33 \times 13 \mathrm{~mm})$.
 or. $(28.35 \mathrm{gm})$ spprox
 Tusing:
 Medium wave band with bandspread ae higher frequency end.
 Earpisce.
 Magnetic type.
 Case:
 Slack plastic with anodized aluminium front panel, spun aluminium dial.
 USE THIS COUPON FOR MICROMATIC
 Complete kit incl, eorpiece, cose, Complete kit incl, eorpiece, cose, solder ond instructions in fitted pock.
 Ready buit, tested and guaranteed, with earpiece,
 49/6
 Inc. P/Tax
 59/6
 Inc, P/Tox (2 required) each $2 / 9 d$.
 RDERS

「To: simclair raiolowics Lmiteg, z2 newmanket roand, CAMBRIDGE

For which | enclose cash/chequel money order.

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation much easier than with many larger sets. The plug-in magnetic earpiece which matches exactly with the output provides wonderful standards of reproduction. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

SINCLAIR GENERAL GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are available to all Sinclalr customers.

SINCLAIR RADIONICS LIMITED
22 NEWMARKET ROAD, CAMBRIDGE Tel. 022352731

CREMSMEM

CRESCENT CASSETTES Top quality ciseettex at unbentable prices（ 00 m －

STEREO HEADSET

8 ohm impedance，complete Fith plag and 5 it tereo Without noise interruptling the pleasure Wonderful value $59 / 6 \quad$ Plus 4／－P．\＆P．

STEREO JUNCTION BOX For stereo atmplithere wilhout atereo jack socket． $22 / 6$ Plus $] / 6$ P．\＆P．

MICROPHONE STANDS

 All have standard fittinga for average Mkz． Deak Stand 14 in extended length 484，3－Bection foor gtand， 4468 In E／L MFS11． 2 －Section fioor stand，B1t E／L BMEI，btt fioor stand with 214 iln boom

STANDARD GOOSE NECKS ．－

Plus $1 / 6$ P．\＆${ }^{\circ}$
SOLID STATE BLOCK MODULES Phono preamp E1311：mput，100K；以aln， 983 b ； max．out，s－volt；max，in，o0M／V゙；yower．9V Tape pre－amp E1312，as above．
Sic．pre－mip El3i3，as above．
Ruwer ampltier E1314：Juput， 1,000 ohme Power ampltifer E1314：iuput，1，000 ohtus gaju，sodb， $300 \mathrm{M} / \mathrm{W}$ ；power， 8 －volt d．c． $80 \mathrm{M} / \mathrm{FF}$ ；power 9 y ；curreut， $15 \mathrm{M} / \mathrm{A}$ ． 00－1k．iz；output， 8 ， 1 ，pow $/ 4$ gecs Amp，BV $150 \mathrm{M} / \mathrm{A}$ ．
We also stock the morae eode practice modules in thls range，
ahe at 25／－Plus 9／－P．\＆P．

BATTERY ELIMINATOR Plug Sour Tranoiator Radto，
Amplifer，Cunvetto，etce，into the a．e．malno through thia compact
eliminazor． approx． $4 \frac{4}{6}$ volt 6
9
9 volt $7 \frac{1}{2}$ volt compice $\because \ddot{\substack{29 / 6 \\ 29 / 0}}$ plug for Philps Casette
39／6 Plan 2／－P．\＆P．each

TTC G1105

High quality lmported headphoncs． 2，000 2,00 per phone Plan $3 /-$ R．\＆P．per pair ${ }^{17 / 6}$

TELETON TYPE NM． 33 MAGNETIC CARTRIDGE stereo with diatuond stylt．This ever pupulur cartridge now at
 Separation，requency at iok Hz ．
$79 / 6$ Plus 1／6 г．\＆ ．

Two teak finioh shelves on 2 black fram （overall size： $28 \ln \times 95 \ln \times 12 \ln$ ）．Ideal for overall size： h fin $\mathrm{equlpment:} \mathrm{ampllifers}$, etc．The perfect ph⿴囗十介er for honging unlt audio and equlpment．Thla unit is wall mounting．

50／－Plus efa p．\＆P．

INTERNATIONAL TAPE

 A 品
 Pease note the postage and packing is $\mathrm{E}_{\mathrm{R}} \mathrm{E}$ $\frac{1}{4}$ TAPE BARGAD a tape bargain
Emitape 3n 178 it in EMI case 5／－еасн

WESTON MILLIAMMETER Modern Clear Plustic Design． 1M／A fult scale calibration 0－100．3tin解 $\%$ Itin．
$45 /=$ Plus 2／6P．\＆P

COMPONENTS CORNER

8 in x in one ulded printed efreuai，board
BY 100 t 3 pe rectilier 800 p－i．v． $550 \mathrm{M} / \mathrm{A}$
4 pin trancistor holders
2 In 80 ohm Ioudapesker
ilin 8 ohm loudspeaker
Uy buttery huldera（blue plastic）
FHek ewltchea 1 1In dolly masins type Model matora 6－12 tolt
10 ohan W／W pat loudspi
ape rown $4,000 \mathrm{ohm}$ phones（used but la goud cumalition）10／－per palr Please include \boldsymbol{P} ，\＆\ddot{P} ．

Send 8／－for our Component Catulogue and Flog Linin

BELCO AF-5A
SOLID STATE SINE SOUARE WAVE C.R. OSCILLATOR

8ipe $18-200,000 \mathrm{~Hz}:$ Square $18-50,000 \mathrm{~Hz}$. +10 dB (10 k 2) Operation Internal batteries.
Attractive tiwo-tone case 7iln $\times 8$ in \times gin Price $\$ 17.10 .0$ Carr. $\$ / 6$.

CLASS D WAVEMETERS a cryital controlled hetero-
 dyne
coverlig
frequency
$1.7-8$
 Ideal for amateur use Availuble in good used conditlon. E55.10.6. Carr. 7/6

CLASS D WAVEMETERS No. 2

 Crystal controlled. $1 \cdot 2-19$ Mos. Moins or 125 d.c. operation. Complete with eallbration charta. Excellent condlition. il8.10.0. Carr. 30\%R209 MK II COMMUNICATIOK RECEIYER 11 ralve blgh grade communieation receiver
 basde. AM/CW/FM, operation. Incorpor-

 tertal ${ }_{\text {power }}^{\text {d.e. in }}$ surpaly
phed
po
supe lent condition, fulls teted and checked.
£ 15 carr. 20/-
TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent general purpose D/B oncliloscope.
 Senslefivity $83 \mathrm{mV} / \mathrm{CM}$. Operating voltage 0/230j $200 / 250$ V. B.c. Supplied in excellent working comdition, 28e, 10.0.
Carriage $30 /$
MARCONI CT44/
TF956 AF ABSORPTION WATTMETER
$11 \mu / \mathrm{watt}$ to
enc. Carr, $20 /$ -
solartan ed. 71182 dodale beay order. 2R5.' Carr. boj-

TO-2 PORTABLE
OSCILLOSCOPE
Eost general purpose low eost economy osclllo
ecope for everyday we. \mathbf{Y} amp. Bandwldth $2 \mathrm{CPg}-1$ MHZ. Input Imp. 2 meg
M 25
25
P.F Lubminated scale. $115 \times 180^{2 i n} \times$ tube, $115 \times 180 \times$
230 mm . Felght 81 b . 220/240 V a.c. Supplled brand new with hand boots. age.10.0. Carr, 10\%

TRANSISTORISED L.C.R. A.C. HEASURING BRIDGE a new portable
 bridge otering ex. cellemt range and accuracy at low
cost. Kanges: cont. Ranges: R,
$\mathbf{1 n}-11 \cdot 1$
mage
 L. 1 HK -121 ges $-2 \%, ~ C, ~ 10 \mathrm{pF}$
$\pm 1120 \mathrm{~m}$ Ranges $\pm 2 \%$. TURNS RATIO $1: 1 / 1000-$ 1:11100. 6 Ranges $\frac{1}{2} 1 \%$. Bridge voltage at 1,000 cpg. Operated from o solls. $100 \mu A$, Meter findieation. Attractive $\frac{2}{2}$ tone metal

UNR-30 4-BAND COMMUNICATION

 RECEIVERCoverlog $550 \mathrm{Ke} / \mathbf{y}-30 \mathrm{Ke} / \mathrm{B}$. Incorporater BFO . Bullt-in upeaker and phone jack. Metal cabintt. Operation $220 /$ instructions.

TRIO JR-810 LET AMATEUE BAND 10-80 METRE RECEIVER. In stock $10-80$.
877.10 .0.

Lafayette solid state hagor recelver
 WAVE $160 \mathrm{ke} / \mathrm{s}-300 \mathrm{ke} / \mathrm{i}$ and $650 \mathrm{ke} / \mathrm{a}-30 \mathrm{Me} / \mathrm{s}$ Gxa tront tad 2 mechanical atterg Eage
 s.e./28y d.e. neg. oarth oportion e RE ghim control, gize $15 \mathrm{in} \times 9$ in $\times 8$ In. Weight 181 m . EXCEPTIOHAL VALDE, 245. Curs. 10/- 8.A.E for fall details.

TR10 COMMUNICATION

 RECEIVER MODEL BR-59DE4 band receiver covering $\$ 00 \mathrm{Ke} / \mathrm{B}$ to $30 \mathrm{Hc} / \mathrm{a}$ coutinuous and electrical bandepread on $20,15,20$. 46 and 80 metres. 8 snlve plua 7 diode eircuit, 4/8 ohm output and phone jack. BSB-CW - ANE: (Yarlable BFO 8 meter Sep, handspread
 Varlable RF and AF gain controls, $115 / 250 \mathrm{y}$
A.C. Maing, Beantifully deaigucd. Size: $7 \times 15 \times$ 10in, With instruction manual and service data. stag Carringe paid
OUR PRICE Es.15.0 if purchased with nbove receiver

TRIO JR-s008E 10-BD Malre AMATEUR RECEIVER 885	TRIO TS 510 AMATEUR T TAMACEIVER with speaker and mains P.8.0, 2180

VARIABLE TRANSFORMERS

Input 230 Y a.c. $80 / 60 \mathrm{~Hz}$. Onlput varinble 0-460V.

BEMCE MOUHTIIC

1 anp, 25,10.0; 21 amp; $88.15 .0 ; 5$ atnp 18.10.0; 20 amp ; 237.0 .0

LAYAYETTE HA. 800 G-BAND AMATEUR

RCA COMMUNICATION

RECEIVER AR88D

Latest release by ministry BRAND NEW in originil cases. $110-250 \mathrm{~V}$ a.c. operation. Frequency in 6 Bands. $635 \mathrm{Ko} / \mathrm{g}-39 \mathrm{ye}$ e/a conkinuous, Output impedance $2.5-600$ ohrna. Incorporating crytal filter, noise Ilmiter, Yarlable BF
gelectivity, etc. Price E85. Carr, e2.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

A completety new transistoriaed recelver covering 152-174 Mc/a. Fully tanesble or crystal controlled (not supplied) for fixed frequency operation. In
corporates $\&$ INTEGBATED CIRCUITS. Built in speaker and lluminated dial. Squeleh and solin epeaker and tiuminated dial. Squeleh and rol mput. Headphone jack. Operation 230V. A.O. 12v. D.C. Neg. earth. top.10.0. Carr. 10/-

TELETON MODEL CR 10T AM/FM STEREO TUNER AMPLIFIER new model trom Teleton gl sold stat A new model from Teleton, 91 solld atate
devicen. $4+4$ watt output. Inputs for devicen, $4+4$ watt outpul, Inputa for ceramicjeryotal cartridge. Frequency range
$\mathrm{AM} \delta 40-1600 \mathrm{~K} \mathrm{~F}=\mathrm{FM} 8 \mathrm{~B}-108 \mathrm{MHz}$. Auto matic FM utereo reception. Stereo indicator. Controln: Tuning, function selector, Tone
and \mathbf{R} \& L volume controls. AFC gwitch, Stereo headphone socket. Size! 13!" $\times 3$ in * X 9f" approx. Príce sid. Carr.7/6.

TELETON MODEL CR $10 T$ A

CLEAR PLASTIC PANEL METERS Firat grade quallty Moving Coll panel metere.

Type MR 38 P .

718	100 mA
$27 / 8$	150 mA
37/6	200mA $27 /$
27/8	$300 \mathrm{~mA}87$
.27/8	500 ms 271
27/6	3V. D.
$27 / 6$	10V. D.C..... 27
.27/5	15V. D.C. ... $27 / 0$
.27/6	20V. D.C..... 27
7/6	100V, D.C. ...87/6
	en in stock, Et

150V. D.C. ... $77 / 6$
$\operatorname{lma}_{1-0.1} \ldots$

5 mA

50 $50-0-50 \mu \mathrm{~A} . .$.
$100 \mu \mathrm{~A} . .$.
$100-0-100 \mathrm{j} \mathrm{A}$
$200 \mu \mathrm{~A}$

$.401-$

$500 \mu \mathrm{~A}$.

POWER RHEOSTATS

High quality ceramic construction. Windings embedded in vilreoun examel. Zleavy duty brach wiper. Conllnuous rating. Wide range er-stock slagle hole sxing, zin, dia. ohaft. Buik quantities avallable.

CRYSTAL CALIBRATORS NO. 10
 mall portable eryatal
 quericy range soo Kc / E $10 \mathrm{Me} / \mathrm{e}$ (up to 30 Hole on hirmonics). Callbrated dial. Power ra^{-} quiremente 300 V.D.O 15 mA and 12 V.D.O. 0.3A. Excellent con-
dition. 89/6. Carr. 7/6.

T.E.40

HIGH SENSITIVITY A.C VOLTMETER

10 mag. input 10 rangea
10 meg. input 10 ranges:
 Decibels -40 to +50 d B . Supplied brand new complete with leads and
 Instructions, Operation

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS Frequeney 0.20 Kefs on ${ }^{2}$ ranges. Oatpui 500 g or 3 ka . Operation $200 / 250 \mathrm{Y}$. A.C Supplled in periect order, E18.10.0. Carr

TE-65 VALVE VOLTMETER
High quality instrument
 with 28 ranges. D, c, Folth $\begin{array}{ll}1 \cdot 5-1,500 V \\ 1 \cdot 5-1,500 \mathrm{~V}, & \text { A.c. Folts }\end{array}$ up to 1,000 megohma $220,240 \mathrm{~V}$ a.c. operation Complete with probe and instructions. si7.10.0. P. \& P. 6]-. Additional 480:6. H.V. 50/m.
COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
D.c. conpled. Band width 1kcje. Pezfect

AM/FM SIGNAL GENERATORS

(STMEsth Oscilator Te8t No.
 precisfon instru ment made for the ministry by Airmec. Fraqueney cover:
age $20-80 \mathrm{He} / \mathrm{o}_{\mathrm{s}} \mathrm{ALP}$ age $20-30 \mathrm{He} / \mathrm{s}, ~$
C. 5 F
IVM.
Incotporatei prectsion dial, level meter, prectalon attenuntor $1 \mu \mathrm{~V}-109 \mathrm{mV}$ Oieration from
 $12 \times 8 \frac{1}{5} 918$. Supplied in brand new condition completo with all connector fully teoted. 245, Carr, 20/-.

RUSSIAN CT-16 DOUBLE

BEAM OSCILLOSCOPES
©MHz Pass Band. Separate Y1, Y2 armplf(ieraz Pass Band, Calibrated triggered Bwenp froto
 Bupplted eomplete with all
3nstructions,
E87, Carr. paid.
 7708. $19-165 \mathrm{Mc} / \mathrm{y}$. Excellent condition. 8150

Tx Stonal fieneratoriotrangen
 inexpensive ingtrument for thensive ingryman. Oper ates on 9v battery. Wide, 800 easy to read acale. 800 kHz moduiation. $53 \times 57 \times 814$ Complete with inntructions and
Ieads. $77.18 .6, P, * P, 1 /=$
HOSIDEN DH-02S STEREO HEADPHOHES Fonderful ralue and excellent periormance combined. Adjuatable head band. 8 olan
impedance.
Complete with
and utereo jack plug.
ONLY47/6. P.AP. 2/6
AUTO TRANSFORMERS
0/115/230\%. Step up or step down. Pully ahrouted.

150 W .	29.2.6, P. \& P. $2 / 6$
300 W .	13.5.0, P. \& F. $4 / 6$
600 W .	84.10.0, P, \& P. 6 ¢ 6
000 W.	0.10.0, P, \& P. 7/6
W.	17.19.8, P. \& P. $8 / 6$

, 600 W, 夆 15.10 .0 P, \& P. 801

G, W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 A.F. 8 8DE WAVE
$20-200,000$ c/6.
c. Sequare wave c/6. 20.
30, Hian rixp.
 ates dual purpose meter to monitor AF outnut and \% mod, on R.F $220 / 240$ 138.10.0. Carr. $7 / 6$.

TE-20D RF SIGNAL GENERATOR
 \&nat zenerator coper
 on 6 brinds. Directiy
calibrated.
Fariable RF atteunator, audio output. Xtal socker for calibration.
2400^{2} a.c. 8 ize 140% $215 \times 170 \mathrm{~mm}$. Brand new with instructions. 815. Carr. 7/6

TY75 AUDIO SIGNAL gine GENERATOR 200ke/s. Square Wave 20c/s to $\left.\begin{array}{c}\text { 30ke/s. High } \\ \text { and } \\ \text { impedance }\end{array}\right)$ and low imperdance
output. Outpnt rarialle up to 6 volts. $220 / 240$ $150 \times 120 \mathrm{mml}$. Brand new with ingtruetions. 218. Carr. 7/6.

MARCOMI TYICRE DISTORTIOX FACTOR MeTERS Excetlent condition. Fulls tested. teso. Cars. $13 /$

ADVANCE TEST EQUIPMENT Erand now and boxed fin original senled cartong 18. ADDIO 81GMAL GEMERATOE, $15 \mathrm{c} / \mathrm{s}$ to 50 Kofa . sin , weve. Output 600 ohms or 5 ohme. A80.0.0.
FM\% THF MILLIVOLTMETER 100 Kojg to $3,0003 \mathrm{Se} / \mathrm{s.a}$ a.c. 10 mV to 8 V .
D.c. 10 mV to 3 V . Current $0.01 \mu \mathrm{~A}$ to 0.3 A. Reeistance 1 ohm to 10 megohm, 2125.0.0.

TTIS, TRANBISTOR TESTER. Falf range ot facilitite for cestlog PNP or NPN transietors artace 10% per

TO. 3 PORTABLE OSCILLOSCOPE

-it 0 I. p amp. 8ensiti-

 p-p/CM, Bandwidth 1.5 eps
 meg $0{ }^{20 p F}$. Time base.
5 rangea 10 epa- 300 KHz , of rangea $\begin{aligned} & \text { Synchronization. Internal/ }\end{aligned}$ external. Illuminated geale $140 \times 215 \times 330$
um. Weight $10+26.220 / 240 \mathrm{~V}$. A.C, Supplited

RE111.
 RESISTAXCE TTEKUATO b-111dB range ections.

 balanecd T and Brldge T. Itopedance $100 \mathrm{nange}(0.1 \mathrm{~dB} \times 10)+(1 \mathrm{~dB} \times 10)$ $+10+20+30+40 \mathrm{~dB}$. $+10+20+30+40 \mathrm{~dB}$ (-8 dB). Frequencs; 0.05 dB . +indication $d \mathbb{B} \times 0-01$. Maxi mum input less than $4 W$ ($50 \mathrm{~T}^{\prime}$). Bulit in 300 n Load resiatance with internal lexteraal switch, Brand new itiz,10,0. P. \& P. $51=$
 BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New hlgh quality pore Able instrument.Sine 1 Hz to 100 kHz . Square $20 \mathrm{H}_{2}$ +10 dB (i0k D). Opera $+10 d \mathrm{~B}(10 \mathrm{k} 0)$. Opera
tion $220 j 240 \mathrm{~V}$ a.c. Size $215 \mathrm{~mm} \times 150 \mathrm{~mm} \times$

SEND NOW-ONLY $7 / 6$ P\&P116

GARRARD

FULL CURREAT RANGE OFYRRED, BRAMD NETH AT PAYTASTIC BAVDGS

MULTIMETERS for EVERY purposel

MODEL AS-100D. 100K $\mathrm{K} / \mathrm{V} 0 \mathrm{LT}$
 + 1 j dB.
$\mathrm{F} . \mathrm{P} .3 / 6$ In meter protection. $\begin{array}{ll}0 / 3 / 12 / 60 / 1200 \text { ! } \\ 300 & 600\end{array}$ d.e. $0 / 8 / 30 / 120 / 300$ d.c. $0 / 6 / 30 / 120 / 300$
600 V
a.c. $0 / 10 \mu \mathrm{~A}$ $209 \mathrm{~K} / 2 \mathrm{MP}$ $200 \mathrm{M} \Omega, \quad-20$ to

MODEF TE-80 50,000
$O . P . Y$ MTEOR O.P.V. MIRBOR SCALE
OVBRLOAD FROTECTIOK 0/3/12/60/300/600/1,2000 d.c. $0 / 5 / 30 / 120 / 300 / 1,200 \mathrm{~V}$ d.c. $0-03 / 6 / 607600 \mathrm{MA}$ $16 \mathrm{~kg} / 160 \mathrm{~kg} \mathrm{f} 1.6 / 16 \mathrm{M} \%$.
-20 to +69 BR . 27.10.0. F. 20 to 3

MODEL TK-70. 30,000 O.P.Y, 0/1/15/60/800 $30 / 120 / 600 / 1,200 \mathrm{~V}$ a.c. $0 / 30 \mu \mathrm{~A}$ / $3 / 80$ 300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ 1.6M 16megohm ©5.20.0. F. \& P. 3/-.

MODEL PT-34.
1.000 O.P.V010 $50 / 250 / 500$ d.c. 0/1/100/500

$\begin{array}{lll}\text { MODKL } & \text { TE300 } \\ \text { O.P.F. } & \text { Misror } \\ \text { \#cale. }\end{array}$ overlosd protection. Of
$0.6 / \frac{1}{8} / 16 / 60 / 300$ 1.200 V d.c. $0 / 6 / 30 / 120$
 $600 \mathrm{~mA} .0 / 9 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K}$
 $8 \mathrm{meg}, \overline{20}$ to +63 dB .
$\mathbf{8 5 . 1 9 . 6 . ~ P . ~ \& ~ P . ~} 3 /$.

MODEL TE18, $\quad 20.000$
 $1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}^{-}$a.c 0/60pa / $6 / 50 / 600 \mathrm{Ma}$ $0 / 6 \mathrm{~K} / 600 \mathrm{~K}$ / tmeg. 60 , $\begin{array}{lll}\text { Megohm 50PF. \& } \\ \$ 5.19 .6 \text {. } & \text { P. \& P }, 3 / 6,\end{array}$

E ZAFAYETTE 57 Knage
00,000 0.P.Y. Multimeter. Volts $125 \mathrm{~V} \cdot 1,000 \mathrm{~V}$ A.e, Volts l.5F:
1.000 V D.e. Current $25 \mu \mathrm{~A}-10$ Amp Ohms, 0-15 Meg 2
 dB. -20 to +81 dB.
Overload Protectiod. E12.10.0. Carr. $3 ; 6$.

SAVE UP TO $33 \frac{1}{3} \%$

 ON HI-FI EQUIPMENT Send for discount price listAVO CT471A MULTIMETER
Battery operated, fulty tranaletorised. Battery operated, fulty tranalatorised.
Benailivity 100 m
Is. Measurea ACJDC Voltageal 12 mV to $1,200 \mathrm{v}$. ACJDC Current 12uA to 1.2 Amp. Regietanes 12 ohm to 120 m m HP, VHF, UHP, Voltage with muttiplier 4 y to 400 y up to $80 \mathrm{Mctr}, 40 \mathrm{mV}$ to iv up to $1,000 \mathrm{Me} / \mathrm{E}$.
oftered in periect condition. 405 each. Cart. 10]-

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Beparate call 3-wlre counection. 1000's of applications. Beautifully fingehed in ebony. Supplied complete with batterles and
\%all brackets.
18.19.8. P. F. 3 . 6.

SINCLAIR EQUIPMENT

Project 60. Package offern. g. Z 30 amplther eterea 60 pre-amp, $\mathbf{P Z 5}$ power supply; E18.0.0, Carr. 7/6, Or

 Transformer 4 P7B, 59/6 extra. Add to any of the above 84.17 .8 . for actire
for a pair of 216 speakerw,
All other Sinclair productes in stork. g, 000
Sip
 \$48. Carr. 76.

PEAK SOUND PRODUCTS Fult range of Ampliflers, Kits. Bpeakers in Etork.

60 mm , $811,10.8$ Postage 2/6.
HOSIDEN DHO4S 2-WAY STEREO HEADSE'TS
 Each beadphone con-
tains a ofin woofer
and a sha twreeter. Buit in indlvidual
 cable and tereo with cable and ateren plug.

RECORDING HEADS COBMOCOBD $\frac{3}{2}$ track heade, High Imp. recorli;plarback 08j-. Low Imp. High imp, recordiplayback $65 /=$. Low Imp. erabe 80/-. Post extra.

RACAL MA, 168 TRANSISTORISED DIVERSIIZ 8 WITCES Brand New Condltion E15. Carr. 10%

AMERICAN TAPE
First grade quality American fapes. Brand new Discount on quantstles.
8 in, gipsty. I. P, acetate.
31 in . 00 Ht . T.P. mylar
aing, 600it. btd. plastic .
Oin. 900ft. L. P, acetate.
gin. 1.200t. D.P. mslar

S_{2} Ia. $2,400 \mathrm{ft}$, Z. P . mylar
in. $1,200 \mathrm{ft}$, gts. acetate.
inn. 1,800it. I.P. acetate
inn., 800 It. L. P. mylar.
inin, 1,800it. L.P. mylar
7in, $3,6004 t . T, P, ~ m y t a r ~ ~$
Postage $9 /-$ Orer $£ 3$ post paid.
TAPE CASSETTES
Top quallity in plastic hibrary boxes.
C 6060 min
8.83 for 24,6
$\begin{array}{cc}\text { C60 } 60 \mathrm{~min} & 8,83 \text { for } 24,6 \\ \text { C } 90 & 90 \mathrm{~min} \\ 12,63 \text { for } 36 / 6\end{array}$
C120120 min $16 / \operatorname{lig}^{3}$ for $43 / 0$
Castette Head Cleaner 11/8. All Posk Extra.

 Aux icomv P. U.: 2 mV . Cer.P.U_: B0mV. Tuner: 100 mV . input is correct to within +2 dB (R.1.A.A.) from $\cdot 20 \mathrm{~Hz}$ to 20 KHz . tortion: (for 10 watt output) $<1.5 \%$. sisnal Noise: $<-60 \mathrm{~dB}$. A.C. Mains $200-250 \mathrm{~V}$. Size $12 \frac{1}{2}$ in long, 44 in deep, 2 itin high, Built and tested.

THE RELIANT Mk. If GOLID STATE
£7.5.0 Plus P. \& P. $7 / 6$ In teak finished caso
SPECIFICATION: Ousput: 10 Inpurs: (1) forts into mike (10 mV) ohms spaker. Inpue (2) for gram. radio (250 mV) individual bass and creble contral. Transistors: 4 silicon and chree germanium. Moins input: $220 / 250$
 case.

ELEGANT SEVEN Mk. III (350mW Output)
7-transiator fully tunable M.W.-L.W. Superhet poreable. Ser of parts. Complete with all components, including ready etched and drilled printed circuit board Power printed for foolproof construction. MAINS
45.5.0 plus P. \& P. 7/6. Cireuit 2/6. Froe with parts.

THE DORSET (600 mW Output)
7-transistor fully tunabie M.W.-L.W. Superher portable with baby alarm facility. Set of parts. The patese modulared and pre-alignment techniques makes Itest modulated and pre-alignment techiqu
this simple to build. Sizes: $12 \times 8 \times 3$ in.
SAMS POWERPACK MAINS POWER PACK KIT: $9 / 6$ extra.
\$5.5.0 Plus P. \& P. 7/6. Circuit 2i6. Free with parts.

The Classic

 Teak finithed dasse 49.10Plus P. \& P. $7 / 6$

The Viscount F.E.T. Mk. 1 E14.5.0 puwher.ae High fidelity transistorstereo amplifier amploying field effect eransistors. Wish this featuro and accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more.

SPECIFICATION

Output per channel-10W rms.
Frequency bandwideh 20 Hz so 20 kHz

Total distortion (ac 1 kHz tr $9 \mathrm{~W} 0-5 \%$. Input sensitivities-CER. P.U. 100 mV into 3 Mg : Tuner 100 mV into Overload Fape 100 mV into 100 kn , Signal to moise ration than 26 dB . Signal to noise ratio-70dB on all
MK. II (MAG. P.U.) \&I5.IS.0
Specification same as Mk. I, but with the following inputs: Mag. P.U. CER. P.U. Tuner.

50 WATT

Price $\mathbf{E 2 8 . 1 0 . 0}$
Plus 20/- P, \& P

Controls-6 position selecror switch (3 pos. stereo and 3 pos. mono). separate vol. consrols for left and righe channels. Bass $\pm 14 d \mathrm{~B}$ yi
on/ofi)
onz
Treble (wish D.P.S. on/of) $\pm 12 \mathrm{~dB}$ 伤 10 kHz .
Tape recording output sockets on each channel.
Sixe $12 \frac{1}{2}$ in $\times 6$ in $\times 2 \frac{1}{}$ in in teakfinished case. Buite and tested.
Post \& packing $10 /=$ extra.
Spec, on Mag, P.U. 3 mV , HkHz input impedance $47 \mathrm{k} \Omega$. Fully equalised to within $\pm 1 \mathrm{fB}$ RIAA, Signal to noise
ratio- 65 dB (vol, max.).

An extremely reliable seneral purpose valveamplifier. Its rugged construction yet space age styling and design makes TECHNICAL SPECIFICATIONS 3 efectronically mixed channols, with 2 inpurs per channef, enables the use of 6 separate instruments at the same time. The volume conerols for each channal are located directly above the corresponding inpur sockets. Sensicivitios and 24 mV ar 470 K . Those 2 channels (4 iriputs) are suitable lor microphons or guitars. Channels 3 and $\$ 300 \mathrm{mV}$ or guitars. Channels 3 and 1300 mV
at 1 m . Suizable for most high outpue instruments (gram, tuner, organ, etc.). Input sensitivity relacivo to 10 W output, Tone Controls are common to all inputs. Base Boast $+12 d B$ at $60 \mathrm{~Hz} / \mathrm{s}$. Bass Cut -13 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Treble Boast +11 dB at $15 \mathrm{KHz} / \mathrm{s}$. Trabie Cut -12 dB at KKHz/s. With bass and ereble controls central - 3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and 20 $\mathrm{KHz} / \mathrm{s}$. Power output. For speceh and music 50 wates rms. 100 watss peak. Nor sustained music 45 wates rms. 90 wates peak. For sinc wave 38.5 watts mms, distortion ac 20 wates 0.45% as $1 \mathrm{KHz} / 5$. Negative feed baele 20 dB ac $\mathrm{IKHz} / \mathrm{s}$, Signal so noise ratio 60dB. Mains volezers. Adjustable rom $200-250 \mathrm{~V}$. A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of unit. Outpue imped ance 3,8 and 15 ohms.

Originally soid complete for \& 15.4 .6

SET OF PARTS

RADIO \& TV COMPONENTS (ACTON) LTD.

Post orders to:-21d High Street, Acton, London, W. 3 Also at 323 Edgware Road, London, W. 2

Goods not despatched oukside U.K.
Terma C.W.O.
All Enquiries S.A.E.

1月干1 A SALES
 P.O. BOX 5 WARE, HERTS

 TEL.: WARE 3442300 mW SIL. G.P. DIODES 400 mV (M Sub-Min ully T 500 Fully Tasted 1,000
Ideal for Organ Builders.
$10 /-$
$30 /-$
65
69
Post and Packing costs are continually risingPlease add I/Q towards same. CASH WITH
ORDER PLEASE, GIRO No, $30-102$ ORDER PLEASE, GIRO No. 30-102
OVERSEAS GUOTATIONS AY RETURN WYORLD

Build working radio receivers and electronic circuits in an evening

Beginner or advanced student－ you learn fast with Radionic kits

Circuits work first time with the Radionic＇no soldering＇method．With the X30 kit，build 33 experiments ：a printed circuit transistor radio． burglar alarm，morse code buzzer etc． The more advanced kits are suitable for G．C．E．， City and Guilds，National Certificate and higher． Every set includes construction notes and all circuit diagrams．
It＇s so easy for you to build and learn because you construct circuits that resemble the theoretical diagram．Re－use components easily，too－they＇re screw－in－mounted
Send off this coupon today．

Whwar for Bomponents

gILICON TRANSISTORS POR HIGH QUALITY EQUIPMENT

BC107	$3 / 8$	HD123	24／8	TIP32A	28／－	2N3055	16／9
BC108	81	BDY 20	24／3	T＇IS44	$1 / 0$	2N37042	$3 / 8$
BC10：	$8 / 3$	BF184	$7 / 6$	TIE49	$2 / 6$	2 N 3703	$8 / 8$
RC158	$7 / 8$	BF194	71－	TIPS0	$9 / 0$	2N3704	8／0
BC3821．	3 －	BFX29	$9 / 6$	2N696	4／6	2N3705	3／4
BC1831	2.6	BFX84	8／8	2 N 607	8／－	2N3707	d／9
BCl84L	$3 /-$	BFX85	$8 / 8$	－ 5704	8）－	せN3708	2.5
RC2121，	$3 ; 9$	BFY50	4／8	2N113\％	$10 / 9$	2N3819	$7 / 8$
BC2182	$2 / 9$	BFY区1	4／2	2N2906	18／	2N3820	16／9
BC214L	4）．－	BFY52	$51-$	2 N 2904	4／4	2 N 3826	\＄／11
BCY70	4／9	BSY95A	$8 / 9$	2N：920	$5 / 8$	2 N 4058	4／8
BCE71	$8 / 6$	MJ481	27－	3 S 2926	210	2N4059	$3 / 5$
BCY\％	4／－	MJ491	29／6	2\％ 3 3053	6；8	－ 5 6457	$9: 9$
Rnill	17／8	T1P31A	17／－				

WATT AMPLIPIER YODULE TXPE PCM1

Thle asuplifier unit it a printed circuif moilule Incurporsting the popular and well tried PAD34 i．c，amplifier．The unit is a cuntplete AUDIO AMPLIFIER and requires no externs compnaents，you situply connect sn 1 ，role power bupply and the ontput capacitar are includedil The overall dimenalons，including
 300 mV inte 100 kohans
Thim unit is arallable at only $30 /-$ wel contplete $w 1$ ith descriptive Jeaflet or $70 /$－ net per pair．Send for free leaffet．

ELEEERONIC COMPOKENTR IH THE WEST MIDLANDS

A wide range of tomponents are available from stoek for CALLEERS，ftetuding the following：
 tee Uf MIXED values of 5otur choice fa the E12 serles from 10 ohm to 10 Mohm）， CAPACITORS（includes Polyenters，polystyrone，metalliaed film，ministure electrolytics，sitver fuicas）． rausishorb，dodes，rectifierg）． cte．
WE ARE AK INTGRTATIONAL RECTIFIER SEMICOMDDCTOR OEATRE Mallorfer，1／6P．\＆P．per order inhasd，Overseas at cont，miln，10／－，Open 9.00 a ．m．

STONE LANE KINVER
StOURBRIDGE WORCS
Telephuini KINVER 2099

YATES ELECTRONICS

RESISTORS carbon film．Very low noise， 0.5 watt $5 \% 4.7 \mathrm{n}$ to 2.2 Mg d each． 0.5 wate $10 \% 4.7 \Omega$ to $10 M \Omega$ 2d each． 2 watt $20 \% 100 \Omega$ to lookn IOd each．
0.5 wate 5% resistors 5 off each value $4 \cdot 7 \Omega$ to $1 \mathrm{M} \Omega$

25 resistors E12 series $50 /$－． 650 resistors E24 saries $100 / \%$
MULLARD POLYESTER CAPACITORS 10%
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, \quad 0.0015 \mu \mathrm{~F}, 0.0022_{\mu} \mathrm{F}, 0.0033 \mu \mathrm{~F}, 0.0047_{\mu} \mathrm{F}$ ，6d． $0.006 \mathrm{~B} \mu \mathrm{~F}$ $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$ $60 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .1 \mu \mathrm{~F}, 9 \mathrm{~d}$ $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 11 \mathrm{~d}, \quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, 1 / 6+0.68 \mu \mathrm{~F}, 2 / 3, \quad 1.0 \mu \mathrm{~F}, 2 / 6$. .033 F 0.047 F 0.06 F ． $0.1 \mu \mathrm{~F} 0 \mathrm{~d} 0.15 \mu \mathrm{~F}, 0.23 \mu \mathrm{~F}, 0.13 \mathrm{~F}, 114$ MYLAR FILM CAPACITORS $100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 6 \mathrm{~d}$ 。 $0.05 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, \mathrm{gd}$ ． CAPACITOR DEVELOPMENT PACK 100 FF to $1 \cdot 0 \mu \mathrm{~F}$ ．Total 100 MINIATURE E2．18．0．

$50 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$40 \mu \mathrm{~F}$
$100 \mu \mathrm{~F}$	6 V	$64 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	12 V	$6.4 \mu \mathrm{~F}$

$100 \mu \mathrm{~F}$
$300 \mu \mathrm{~F}$
320 F

6 V	$64 \mu \mathrm{~F}$
6 V	$125 \mu \mathrm{~F}$
6 V	$200 \mu \mathrm{~F}$

$10 \mu \mathrm{~F}$
$50 \mu \mathrm{~F}$
$100 \mu \mathrm{~F}$

16 V	$16 \mu \mathrm{~F}$
25 V	$50 \mu \mathrm{~F}$
25 V	$2.5 \mu \mathrm{~F}$
40 V	$10 \mu \mathrm{~F}$

40 V
2 V 8 $\mu \mathrm{F}$
 $5 /-\quad 1000 \mu \mathrm{~F} 50 \mathrm{~V} 8 /-$
CERAMIC DISC CAPACITORS
$110 p F, 150 p \mathrm{~F}, 220 \mathrm{pF}$ ，270pF，330pF，470pF， $560 \mathrm{pF}, 680 \mathrm{pF}, 1000 \mathrm{pF}, 2000 \mathrm{pF}$ $5000 \mathrm{pF}, 10,000 \mathrm{pF}$ ，5d each．
GANGED STEREO POTENTIOMETERS
watt carbon track $5 k \Omega+5 k \Omega$ to $1 M \Omega+M \Omega$ log or linear， $8 /$ e each
SKELETON PRE－SET POTENTIOMETERS
Linear： $100,250,500$ ohms and decades to $5 M$ ohm $\pm 20 \% \leqslant 250 \mathrm{k} \Omega, \pm 30 \%$ $250 k \Omega$ ．Horizontal or vertical P．C．mounting（ 0.1 matrix）．
Miniature 0.3 watt $1 /-$ each．
Sub－miniature 0.1 watt 10d each．
SILICON RECTIFIERS
BY236 800V $0.8 \mathrm{amp} 3 /=$ each．BY237 $1250 \mathrm{~V} 0.0 \mathrm{amp} 3 / 6$ each．
VEROBOARD

YATES ELECTRONICS（FLITWICK）LTD． 29 LYALL CLOSE，FLITWICK，BEDS．

FULLY TESTED AND MARKED

AC107	3／－	OC170	3／－
AC126	216	OCI7t	41－
AC127	316	$0<200$	3／6
AC128	216	OC201	710
AC176	5－	2G301	2／6
ACY17	1）－	$2 G 303$	$2 / 6$
AFII4	4／－	2N711	101－
AFIIS	1／6	$2 \mathrm{~N} 1302-3$	4／－
AFII6	$3 / 6$	2N1304－5	51－
AFI 17	3／6	$2 \mathrm{~N} 1306-7$	61－
AF239	$12 / 6$	2N1308－9	\％
AFI86	101－	2N3844A	5／
AFI39	101－	Power	
BFY50	4／－	Tranuistors	
85Y25	$7 / 6$	OC20	10：－
85Y26	31－	$00^{\circ} 23$	10\％
BSY27	3／－	0 C 25	有
B5Y28	3／－	OC26	5／－
BSY29	$3{ }^{3}-$	OC^{28}	7／6
BSY95A	3／－	OC35	5／m
0 C 41	$2 / 6$	0 O 36	7／6
0 O 44	216	AD149	101－
0 O45	$2 / 6$	AUYIO	101－
$0 \mathrm{C7} 1$	$2 / 6$	25034	10\％
－C72	$2 / 6$	2N3055	$15{ }^{-}$
0 C 73	1／6	Diodet	
0 Cal	$2 / 6$	AAY42	2／－
OCBID	2／6	OA95	2%
0 Cb 3	4／4	OA79	$1 / 9$
OCl39	2／6	OABI	$1 / 9$
0 Cl 40	$3 / 6$	IN914	116

$\square \square \mathrm{m}$

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10／－WITH ORDERS OVER $\mathbf{Z} 4$

SURPLUS INTEBRATED CIRCUITS

These are brand new sanuine surplus stocks marked and suaranteed to full makers＇specification and not remmarked rejects．

NEBOBA Single $8 \mathrm{I} / \mathrm{P}$ Nand Gate $T \mathrm{TL}$
NED16A Duat 4 UP Nand Gave TTL
NEG25A D．C．Clocked JKK Flip－Flop TTL
NE840A Dual 41／P Exclusive OR Gace TTL
NEB55A Dual 4 Power Gare TTL
NEg70A Triple 3 \＆／P Nand TTL
NEB80A Quad 2 Nand TTL
SP616A Dual 4 Nand Gate OTL
SP631A Quad 2 I／P Gate Expander DTL
5P670A Triple 3 Nand Gate DTL
5P806A Dual J／P Expander TLL
SP808A Single 8 I／P Nand Gate TTL
SP808A Single $8 / / P$ Nand Gate TTL
SPQ16A Dual Clocked J－K Flip－Flop TT
5P840A Dual 4 U／P Exclusive OR Gare TTL
SP855A Dual 4 Power Gate TTL
SP870A Triple 3 I／P Nand TTL
SP880A Quad 2 I／P Nand TTL
NES00K Vidzo Amplifier
NE501K Videa Amplifier 40 MHz
NE006J Dual $41 / P$ Expander TTL
NE日08）Single $81 / P$ Nand Gate TTL
NE日16）Dual $41 / P$ Nand Gate TTL
$\begin{array}{ll}\text { NE8251 } \\ \text { NEg40 } & \text { D．C．Clocked J－K Flip－Flop TTL } \\ 41 / P \text { Exclusive OR Gate TTL }\end{array}$
NEBSS！Dual 4 Power Driver TTL
NE85SJ Qual 4 Power Driver
NE880」 Quad 2 I／P Nand TTL
ST620A Dual 4 BufferjDriver DTL
Price
$7 /-$ 710 $7 / 6$ pack．

LOOK！TRANSISTORS

TYPE A TYPE B
PNP SILICON A ALLOY SPEC：－
ICER $A T$ TCE $=20 \mathrm{~V}$ ImA MAX．
HFE 15－100
THESE ARE OF THE 25300 TYPE WHICH IS A DIRECT EQUIVALENT TO
OC200／205 RANGE

PNP SILICON PYP PLASTIC ENCAPSULATION SPEC：－ ICER AT VCE＝IOV ImA MAX HFE 10－200
THESE ARE OF THE 2N3702／3 AND 2N4059／62 RANGE

O－5 CAN

ONLY 6d EACH

NEW UNMARKED UNTESTED PAKS
${ }^{878} \quad 12$ inergated Cirewits，Dara 10

878	12	Intergrated Cirevits，Data and Carceuiss of types．	0／－
－800	8	Dual Trass．Matcted ${ }^{\text {dip }}$ pairs	10／－
®82	10	OC45，OCBID and OCGI＇Trans．Mullard	10／－
－ 8	200		$10 /=$
884	100	Sille	10／－
866	150	High quailisy Germ－t	10／－
866	50		10／－
887	100		10／－
8ө8	50	 	10／－
860	10	7 Watt C Iener Diodes	10／m
H5	16	${ }_{\text {IA Amp．Plastic }}^{\text {Soliodes }}$	10／－
H6	40	250mW．Zener Diodes D0．7Min Glass Type	101－

HEW	TES	and guaranteed	aks
${ }^{\text {B2 }}$	4		10／－
\％ 77	2	ADI61－ADIIE2 NPN／PNP	10／－
¢ 81	10		$10 /-$
68	2		$10 /-$
¢91	8		10／－
892	4		10／－
$\overline{893}$	5	GETT13 Trans．equiv．to	10／－
$\overline{896}$	5	600 mA .200 MHz	10／4
¢98	10	 	10／－
M4	250	Mixededesisisors．Post and	10\％
H7	40	Wirewound Resistors．Mixed	10／－
Me	4		10／－
49	2	OLPP7 Light Sensitive Phoco Transistor	10／－

RETURN OF THE UNBEATABLE P．I PAK．

 NOW GREATER VALUE THAN EVERFULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS，APPROX． 170．WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKEO TRAN SISTORS PNP AND NPN，AND A HOST OF SISTORS PNP AND NPN，AND A HOST OF
DIODES AND RECTIFIERS MOUNTED ON DIODES AND RECTIFERS MOUNTED ON CHART SUPPLIED TO GIVE SOME INFORMA－ TION ON THE TRANSISTORS．
PLEASE ASK for pak P．I ONLY 10／＝
2／－P．\＆P．on this Pak．

Make a Rev．Counter for your Car．The ＇TACHO BLOCK＇．This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev． counter for any car．

20／－each
FREE CATALOGUE AND LISTS for：－

ZENER DIODES

 TRANSISTORS，RECTIFIERS FULL PRE－PAK LISTS \＆SUBSTITUTION CHARTMINIMUM ORDER 10／－CASH WITH ORDER PLEASE．Add $\%$－post and packing per order．OVERSEAS ADD EXTRA FOR AIRMAIL．

P．O．RELAYS
Various Contacts and Coil Resistances．No individual selection．Post \＆Packing 5／m

FREE！A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

TELEPHONE：SOUTHEND（0702） 46344

OnV｜mean VISUAL！ EXCITING！

 $4-1 m$ a new 4－way method of mastering ELECTRONICS by doing－and－seeing

4
 VALVE EXPERIMENTS TRANSISTOR EXPERIMENTS AMPLIFIERS OSCILLATORS SIGNAL TRACER

 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK ．．．INCLUDING ．．．PHOTO ELECTRIC CIRCUIT
COMPUTER CIRCUIT
BASIC RADIO RECEIVER
ELECTRONIC SWITCH
SIMPLE TRANSMITTER

A．C．EXPERIMENTS
D．C．EXPERIMENTS
－SIMPLE COUNTER
TIME DELAY CIRCUIT
－SERVICING PROCEDURES
This new style course will enable anyone to really understand electronics by a modern，practical and visual method－ no maths，and a minimum of theory－no previous knowledge required．It will also enable anyone to understand how to test，service and maintain all types of Electronic equipment，Radio and TV receivers，etc．

[^0]Advertisement Manager D.W. B. TILLEARD

FINE ART

ndustrial Art has become a recognised subject for comment and serious study. But surprisingly, electronic engineering is not given the amount of attention it would seem to deserve. At first, it may seem a trifle absurd to consider electronic hardware in terms of art. Yet there is a beauty of form and colour in many a humble mass produced component, and intricate patterns pleasing and attractive to the eye are composed by electronic assemblages making up severely functional equipment. No matter how practical and down-to-earth we may be, there is no reason why we should be blind to this aesthetical quality.
But this incidental, or accidental, art of the component manufacturer and the wireman is conceated from lay eyes by sombre metallic shrouds or wooden caskets which have for long been deemed the right and proper housing for much electronic equipment. For the general user, the outward sign of electronics is limited to the appendages mounted on a control panel. Notwithstanding the good styling of these adjuncts, and the obvious thought which is bestowed. upon their arrangement, such items are not representative of the true "electronic art" which exists within.
Look again at those delicate nerve-like systems traced by multi-coloured leads of a cableform; at the variety of maze patterns provided by printed circuit boards; and at the mosaics built up from resistors and capacitors variegated not only in hue and shape but in their disposition, and those tiny semiconductor devices whose jewel-like resemblance is often most striking.
Here one would have thought is wealth indeed for artist and sculptor alike to contemplate and adopt for their particular purposes-with tremendous effect. In contrast, how pitiful are certain works of art that some of our artistic contemporaries have presented to the public gaze as representative of, or inspired by, electronic technology!

The moral would seem to be this. If electronics is to have an influence in the world of art commensurate with its great impact in strictly practical matters, it must reveal more to the public eye. Maybe some drastic rethinking by industrial designers and engineers is overdue. Why not make certain domestic equipments living works of art by using transparent cases; or even encapsulating complete assemblies in blocks of transparent resin. And why not think in terms of less conventional shapes for the complete equipment. Flexible printed circuits and wiring boards could free designers from the limitations of the commonplace rectangular box; would not spherical forms be more appropriate for the space age?
F.E.B.

THIS MONTH

CONSTRUCTIONAL PROJECTS

ANEMOMETER 606
OSCILLOSCOPE CALIBRATOR 627
DECIMAL CURRENCY CONVERTER 638
TRANSISTOR D.C. MULTIMETER 649
SPECIAL SERIES
MAKING THE MOST OF LOGIC I.C's-2 643
GENERAL FEATURES
ANALYTICAL ELECTRON MICROSCOPE 614
BEGINNERS
PROJECT. BUILDING 620
METRONOME 622
THIS WAY TO ELECTRONICS—5 632
NEWS AND COMMENT
EDITORIAL 605
PRACTICAL ELECTRONICS! 613
SPACEWATCH 624
BOOK REVIEWS 631
POINTS ARISING 635
ELECTRONORAMA 636
MARKET PLACE 657
Our September issue will be published onFriday, August /4

[^1]

ANEMOMETER

By J.S.HAGGIS

For anyone interested in meteorology, sailing, or just wind speed, the cost of an anemometer is rather high. When the author's son became interested in meteorology, an anemometer was required, so one was constructed using readily available components.

Many commercial remote anemometers work on the a.c. generator principle, that is the faster the generator armature is rotated by the wind force on the anemometer cups, the greater the voltage produced. This has the disadvantage of not giving a linear output, with the consequent difficulty of meter scale production. It also requires about a $5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$, wind to overcome the resistance of the magnetic poles of the generator before the cups will start to rotate.

With the anemometer described, wind speeds of less than $5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. can also be measured, and the scale is linear. The design is suitable for use on sailing yachts, and details are given on how to run the unit from the boat's power supply.

If three anemometer cups are arranged to rotate freely in the wind, and a disc with a number of holes around the periphery is fixed to a shaft being driven by the cups, the holes can be counted as they revolve with the aid of a light source and a phototransistor. This count can then be made to register on a meter.

CIRCUIT DESCRIPTION

When the holes in the rotating disc pass over the phototransistor, light is allowed to fall on the phototransistor (TR1) from the light source, producing a pulse at the collector of TR1 as indicated in Fig. 1, the circuit diagram of the anemometer. The pulse is
squared off by transistors TR2 and TR3 which form a Schmitt trigger. The pulse is then differentiated by C2 and R8 to trigger transistors TR4 and TR5 which constitute a monostable. It is arranged by the selection of C2, that the monostable is in its unstable state for 3 milliseconds. This timing is such that at a wind speed of $100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. (higher than one hopes to experience) the monostable has time to return to its stable state before the next pulse.
The time of 3 milliseconds is selected to correspond to the disc and hole size described in this article, and any increase or decrease in disc or hole size will have to be compensated for. Meter M1 integrates the 3 millisecond pulses which vary in frequency, but are all of the same duration.

At wind speeds of less than 5 m.p.h. the pulses are detectable on the meter as fluctuation of the needle. The fluctuation can be reduced by fitting a $100 \mu \mathrm{~F}$ capacitor (C3) across meter M1; this does not completely eliminate the pulsing, so at very low speeds one can check that the system is not missing pulses by observing a regular flick on the meter.

CIRCUIT POWER SUPPLY

It is essential for consistent reliability to have a good stabilised power supply. The mains power supply in Fig. 2, is stabilised with the aid of the Zener diode D7. It incorporates a series resistor which provides overload protection. When the anemometer is to be used from a 12 volt or 24 volt battery the supply for lamp and circuitry can be as shown in Figs. 3 and 4; all resistors used in these two circuits are wirewound types.

Fig. I. Circuit diagram of the basic anemometer

As can be seen from Fig. 3 the supply circuit for a 12 volt battery only provides 10 volts d.c. to the anemometer circuit. This is so that stabilisation of the 12 volt input can be effected by R2 and D1, the lower voltage will not affect circuit operation providing that the instrument is calibrated at the lower voltage, and not used at a higher voltage afterwards.

LAMP POWER SUPPLY

A 6.5 volt 0.3 amp bulb is used to illuminate TR1; the voltage on the bulb should be kept as low as possible to increase bulb life, A mains operated circuit for the bulb supply is given in Fig. 5. A good d.c. supply must be used or the anemometer will be unreliable in operation.

The value of R1 Fig. 3, or R1 and R2 Fig. 4, or R14 Fig. 5, depends on the length of wire used to carry the supply to the anemometer; in most cases this will be many yards, therefore an appreciable volt drop can be expected. Bearing in mind the need to keep the bulb voltage as low as possible, the appropriate resistor may have to be slightly adjusted in value, as explained later.

CIRCUIT CONSTRUCTION

The circuit is assembled on a printed circuit board, details of which are given in Fig. 6. Layout is not critical, but that detailed has proved successful. If the

Fig. 2. Mains power supply cfrcuit for the anemometer circuit

Fig. 3. Power supply to operate the anemometer circuit and lamp from a 12 V battery

Fig. 4. Power supply to operate the anemometer circuit and tamp from a $\mathbf{2 4 V}$ battery

Fig. 5. Mains power supply circult for the lamp

ANEMOMETER CIRCUIT WIRING

Fig. 6. Layout of the anemometer circuit on a printed circuit board

COMPONENTS . . .

Resistors

RI $4.7 \mathrm{k} \Omega$
R2 $2 \cdot 2 \mathrm{k} \Omega$
R3 $22 \mathrm{k} \Omega$
R4 $2.2 \mathrm{k} \Omega$
R5 $5.6 \mathrm{k} \Omega$
R6 $1 \mathrm{k} \Omega$
R7 47Ω
R8 $2 \cdot 2 \mathrm{k}$ §
R9 $2.2 \mathrm{k} \Omega$
R10 10k Ω
RII 10k Ω
R12 lks
RI3 $27 \mathrm{k} \Omega$
All $\frac{1}{4}$ W. 10% carbon
Capacitors
Cl $0.1 \mu \mathrm{~F}$ polyester
C2 $0.35 \mu \mathrm{~F}$ polyester ($0.1 \mu \mathrm{~F}$ and $0.25 \mu \mathrm{~F}$ in parallel)
C3 $100 \mu \mathrm{~F}$ elect. 12 V

Transistors
TRI OCP71 (phototransistor)
TR2 2G302
TR3 2G302
TR4 2N3702
TR5 2N3702

Miscellaneous

VRI $10 \mathrm{k} \Omega$ skeleton preset potentiometer
MI $50 \mu \mathrm{~A}$ moving coil meter
SKI Miniature sealed four pin plug and socket Copper clad s.r.b.p. board $4 \frac{1}{2}$ in $\times 2$ in

Fig. 7. Layout of the mains power supply for the anemometer circuit using Veroboard

Fig. 8. Layout of the mains power supply for the lamp using Veroboard

(b)

Fig. 9. Layout of the battery supplies using a fiveway tagstrip (a) for a 12 V battery, (b) for a 24 V battery

COMPONENTS

Resistors

MAINS CIRCUIT SUPPLY

RI5 120Ω
R16 $3 \cdot 3 \mathrm{k} \Omega$
R17 $5.6 \mathrm{k} \Omega$
All $\frac{1}{4} W, 10^{\circ}$; carbon
Capacitors
C6 $100 \mu \mathrm{~F}$ elect. 50 V
C7 $50 \mu \mathrm{~F}$ elect. 25 V
Semiconductors
TR6 CC84
D5, 6 ZS70 or SX641 or DD003 or ISJI50 (2 off)
D7 $12 \mathrm{~V} 250 \mathrm{~mW} 5 \%$ Zener type
M-ZEI2 (Radiospares) or Z12
Miscellaneous
T2 Miniature mains transformer $220 / 240 \mathrm{~V}$ primary $20 \mathrm{~V}-0 \mathrm{~V}-20 \mathrm{~V}$ secondary (Radiospares)
$\$ 2$ D.P.S.T. toggle switch
Veroboard 2 in $\times 1 \frac{1}{4} \mathrm{in}, 0.15 \mathrm{in}$ matrix

COMPONENTS . . .

MAINS LAMP SUPPLY

Resistor

R14 10Ω (see text)
Capacitors
C4 $\quad 1.000 \mu \mathrm{~F}$ elect. 15 V
C5 $1,000 \mu \mathrm{~F}$ elect. 15 V
Diodes
DI-4 ZS70 or DD003 (4 off)
Transformer
TI Miniature mains transformer 220/240V primary $6 \mathrm{~V}, 300 \mathrm{~mA}$ secondary

Miscellaneous

> FS| 300 mA fuse and holder
> SI D.P.S.T. toggle switch
> LPI $6.3 \mathrm{~V}, 0.3 \mathrm{~A}$ m.e.s. bulb

Clip on m.e.s. bulb holder (Radiospares)
Veroboard $2 \mathrm{in} \times 1 \frac{1}{4} \mathrm{in}, 0.15 \mathrm{in}$ matrix
constructor is not able to etch the component board, then Cir-kit copper strip can easily be made to follow the layout given.

Layout and wiring diagrams for the circuit and bulb supplies are given in Figs. 7, 8 and 9. The two layouts shown in Fig. 9 use tag strips because some of the components may warm up when the unit is in use. It is not normally necessary to provide a heat sink for the Zener diode as this diode will only pass current near to its maximum capability when no current is taken by the anemometer circuitry, and when battery voltage is at its highest.

The circuit boards, MI, and SI can be mounted in a die cast box, the size of which will depend on the type of power supply used. If the unit is for use on a sailing boat, or will be out in the elements, both the inside and outside of the case should be painted; the lid, supply lead and SK1 should be sealed.

Meter MI can be any $50 \mu \mathrm{~A}$ type available with as large a scale as possible and is best mounted on a rubber

HEAD DETAILS

Fig. 12. Arrangement of the cups and arms on the rotating cylinder

Fig. 10. Development of one cup

Fig. II. Construction of the anemometer head, a four core lead out wire is needed

MATERIALS

Brass plate $3 \frac{1}{2}$ in $\because 3 \frac{1}{2}$ in $\times \frac{1}{16} \mathrm{in}$ (disc)
Copper sheet $20 \mathrm{in} 20 \mathrm{in}, 20$ s.w.g. (cups, cylinders and hub brackets)
Round brass rod 12 in $\times \frac{1}{4}$ in diameter (cup arms)
Whitworth nuts tin 6 off (cup fixings)
Bicycle front wheel hub complete with nuts (see text)
Nylon or rubber washer to fit hub
Countersunk bolts $4 \mathrm{~B} . \mathrm{A} ., \frac{1}{2} \mathrm{in}, 4$ off (hub bracket fixings).

Round head bolts 4 B.A., $\frac{1}{2} \mathrm{in}, 3$ off (hub bracket and TRI block fixings)
Nuts 4R.A., 6 off
Angle iron $12 \mathrm{in} \times \frac{1}{2}$ in $\times \frac{1}{2}$ in (mounting bracket if required)
Tuffol 1 ! in $\times \sin \times$ in (TRI and RI mounting) Diecast case (see text)
Veropins 3 off (TRI and RI mounting)
washer. The circuit boards can be mounted on foam rubber to provide shock protection where necessary.

MECHANICAL CONSIDERATIONS

With reference to the Handbook of Meterological Instruments, it was found that the best arrangement is an anemometer using 3 cups of 5 inches diameter, the centre of the cups rotating $6 \frac{1}{2}$ inches from the axis. As will be appreciated, the aerodynamics of the cups bear some relation to the efficiency of the rotation. The cups described here are not the ultimate in design, but they can easily be constructed and are quite adequate for the job, giving reasonable accuracy to the anemometer.

Ideally, all metal work is best made from copper or brass, as there is then no trouble from corrosion, bearing in mind that the instrument will suffer the worst of the elements.

CUP CONSTRUCTION

A development of one cup is shown in Fig. 10; three of these are required to make the three cups. The copper is bent smoothly round so that tab " A " lies on "Al" where it is soldered in position.

On the edge of each cup, by the joint of tabs " A " and "AI", the shape is slightly flattened to take the arms, as shown in Fig. 11. The arms are made from $\frac{1}{\ddagger}$ inch brass rod 4 inches long, threaded at one end. The threaded end passes through a hole in the side of the cup wall near the periphery. One nut either side of the cup wall is used so that the position of the cups on the arms can be adjusted in order that the three can be balanced. It is best not to bolt the cups to the arms at this stage, but to wait until the arms have been soldered to the top of the anemometer body.

BODY CONSTRUCTION

As can be seen in Fig. II the body of the instrument consists of two copper cylinders, one fitting over the other. The lower cylinder is fixed, while the upper cylinder is free to be rotated by the pressure of the wind on the cups. The upper cylinder has a diameter of 4.4 inches and is 4 inches deep, while the lower cylinder has a diameter of 4 inches and is 3.6 inches deep. The construction of these two open ended cylinders is quite simple therefore no further details will be given here.

Some form of bearing is required to support the upper cylinder: the prototype unit used the hub from a bicycle front wheel. It is quite important that this hub be in good condition, for if low and reliable wind speeds are to be recorded, there must be very little mechanical friction.
The hub must be secured to the walls of the lower cylinder; this is achieved by making 4 brackets from 20 s.w.g. copper strip as illustrated in Fig. 11. The brackets must be made to fit tightly around the hubthe diameter of the clip will depend on the make of hub used. The brackets should be about I inch deep.
The four brackets are bolted around the centre of the hub and placed inside the lower cylinder to ensure that the hub fits precisely in the centre.

The light dise is constructed from in inch brass plate as shown in Fig. 11, and is 3 inches in diameter. A hole is drilled in the centre to take the spindle of the hub. Twelve $\frac{1}{4}$ inch diameter holes are drilled around the dise, the centre of the holes being $\frac{3}{8}$ of an inch from the periphery; the holes are set 30 degrees apart. It is advisable to paint the disc with matt black paint when complete, this will stop any chance of light reflections affecting the phototransistor. The inside of both cylinders should also be painted matt black.

ASSEMBLY

The disc is bolted to one end of the hub spindle and the whole assembly, that is the hub complete with brackets and disc, is placed in the lower cylinder leaving a clearance of 0.8 inch between the disc and the bottom of the cylinder. The Tufinol phototransistor mounting block is situated beneath the disc. No precise measurements are given for the fitting of the hub, because it depends a great deal on the type of hub used. With the hub held in the centre, and with 0.8 inch clearance between the disc and cylinder base, the 4 holes that secure the brackets to the cylinder walls can be drilled through the wall and bracket at the same time. It is necessary to countersink the cylinder holes as much as possible, this being done the brackets can be bolted to the cylinder. The heads of the countersunk bolts are then filed down to conform to the radius of the cylinder wall, to prevent them touching the inner wall of the upper cylinder. The spindle and disc should now spin freely in the lower cylinder.

The upper cylinder is completed by drilling a hole in the centre of the top to take the hub spindle. The arms are soldered in place on the top of the cylinder, they are placed at an angle of 120 degrees to each other, as shown in Fig. 12. The arms are not taken to the centre of the top, as a space is left in the centre to take the nut of the spindle.

When this has been done the cups can be fitted onto the threaded ends of the arms as shown in Figs. 11 and 12. The assembly can now be tried out in position over the lower cylinder by placing the top end of the hub spindle through the hole in the top of the upper cylinder. A nylon or rubber washer is placed over the spindle and the nut is screwed on and tightened; the nylon or rubber washer seals the spindle hole.

The upper cylinder, complete with cups, should be free to rotate over the lower cylinder without touching. Check that there is good clearance between the two all the way round and correct if necessary.

Fig. 13. Mounting block for TRI and RI

PHOTOTRANSISTOR MOUNTING

Phototransistor TR1 is mounted on a block of Tuffnol as shown in Fig. 13. A 3 inch hole is drilled into the side of the block, as close to the top as possible, this hole is to hold the phototransistor. A second hole is drilled at right angles to the first hole with a No. 30 drill. The two holes connect with each other as shown in Fig. 13. The second hole is to allow light from LPI to reach the sensitive spot of phototransistor TR1.

In the block, at the rear of TRI, three small holes are drilled to take three Veropins. These pins act as connecting points for TRI and RI. Resistor RI is mounted close to TRI to reduce the number of wires from the anemometer head to the remote circuitry.

A 4B.A. hole is drilled and tapped in the base of the block to secure it to the base of the lower cylinder.

Inspection of the internals of the OCP71' will reveal two junctions, one either side of a flat plate, it is the smaller of these junctions that is sensitive to light, and it is this junction that must be positioned under the small hole in the mounting block. Once, TRI is in position with the sensitive spot placed correctly, a dab of adhesive is applied to prevent the phototransistor from moving.

The bulb to supply the light is mounted in a clip on bulb holder. The clip is pushed over one of the hub brackets, as shown in Fig. 11. It should be positioned close to the disc and directly over the holes.

SETTING-UP

Before any setting up can be completed, the phototransistor block must be secured in position. To do this remove the upper cylinder from the spindle, and remove the hub and bracket from the lower cylinder. Remove the disc from the spindle, and replace the hub, less the disc, and secure. Now position the phototransistor block with its light hole immediately under the bulb and mark its position on the base of the cylinder. Remove the hub and secure the phototransistor block, complete with the phototransistor and R1, to the marked position.
The hole that secures the block to the base of the cylinder can be slightly larger than the 4B.A. bolt as this will allow the block to be finally adjusted. Now re-assemble the lower cylinder.

With the anemometer on the bench, rotate the dise until a hole is directly under the bulb so that light can fall on TR1. Connect the power supply to the anemometer circuit, ensuring the correct polarity, and connect up the bulb supply, using the same length of cable as will be required when the anemometer is installed.

Aim to apply the minimum voltage to the bulb to reliably operate the circuit. In the prototype, the component values shown in Fig. 5 were used. The circuit arrangements shown in Figs. 3, 4 and 5 apply approximately 4 volts to the bulb at the end of 40 yards of $14 / 0.0076$ cable. The d.c. voltage supplied by the circuit of Fig. 5 has a ripple of 270 millivolts.

COLLECTOR VOLTAGE

With light falling on TRI, collector voltage must be less than minus 0.5 volts. If the collector voltage is above 0.5 volts when measured with a d.c. meter, adjust the bulb position, or the position of TR1, until the voltage is correct. In some cases it may be necessary to reposition TR1 in the mounting block. If this fails, then the bulb voltage should be increased by changing the value of R1 in Figs. 3 and 4 or R14 in Fig. 5. Once the voltage has been set rotate the disc to cut off the light, and check that the collector voltage of TR1 has increased to almost the supply voltage. When a battery supply is to be used the above procedure should be carried out at the lowest normal battery voltage.
The upper cylinder complete with cups can now be fitted and revolved. If an oscilloscope is available observe the output from TR1 collector to ensure that the circuit is not missing any pulses. If no oscilloscope is available, connect meter M1 into the circuit with C3 disconnected. Revolve the cups slowly and check that the meter registers regular pulses.

CALIBRATION

At a height of 33 feet above ground level, wind speeds will seldom exceed $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in this country,

Fig. 14. Diagram of the additional range circultry
therefore it is suggested that the maximum reading of the meter be $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. If it is required to operate in very exposed areas it may be necessary to have a full scale reading of $100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., but the lower the maximum can be kept the better it will be for reading low wind speeds, unless a very large meter is used.

It is possible to add a lower scale to the anemometer by including a range switch and additional resistor and trimmer as shown in Fig. 14. If this is done both ranges will have to be calibrated as described below.

Having decided what maximum scale is required it is necessary to draw the scale on a plain meter backing card, numbering every $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and marking every single m.p.h. The scale is linear.
The best way to calibrate the instrument is against the reading of an existing anemometer, but an alternative is to calibrate against a car speedometer. To do this a calm day is needed so that the only airflow is that of the cups through still air, and not against a wind adding to the required speed. Hold the anemometer as far away from the car body as possible to get away from any slipstream. With the car travelling at a steady $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. adjust VRI until the meter of the anemometer reads $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Then travel at greater speeds to check through the range.

POSITION OF ANEMOMETER

The wind speed near the surface of the Earth varies rapidly with height and is also greatly affected by the presence of obstacles such as trees or houses. The Handbook of Meteorological Instruments defines the conditions under which measurements should be made for climatological records, as over open level terrain at a height of 33 feet above ground level. "Open level terrain" is defined as an area where the distance between the anemometer and any obstruction is at least 10 times the height of the obstruction above ground level at the anemometer.

It is unlikely that all constructors will be able to fulfill these requirements, but the position should be chosen with these requirements in mind and a suitable compromise can usually be reached.

The constructor may wish to build the mechanical parts of the instrument in a different manner than that described, or with slightly different dimensions. A pair of small roller bearings can be utilised if this is found to be more convenient than the "hub" system described.

1AM constantly being re-assured of the advantages of this table-top hobby. One's husband can be at home, in fact in the very same room as his wife and still pursue his hobby -no gallivanting, leaving a distraught and worried wife at home wondering where on earth he is. True-and this as far as I can see is the only advantage of this hobby, though there are others, I am told.
Think of all the marvellous "modcons" one can have! The Jones' will really have their work cut out keeping up with us. Automatic garage doors and gates which save us the tedium of getting out of the car to open them; a lawn mower which goes scampering off round the lawn on its own, while my husband sits in a deck chair occasionally glancing up from his paper to see that it is not making a bee-line for him; the automatic camera which clicks each time a little bird sits on the bird table; the automatic chicken feeder which sprays food out to the freerange chickens at regular intervals; and the washing machine which miraculously switches itself on at four in the morning, and by the time we get up, all the weekly wash is done! So what am I complaining about? You may well ask.

As yet, these and many other ideas are only on the drawing board, so to speak, and some, not even as far advanced as that, but are only ideas lurking darkly in my husband's imagination. To begin with, we have not even our own house, let alone garage, gates and lawn and certainly no chickens! However, the projetts go ahead as if we had all these things and each time we move, we leave behind a landlady bewildered by what she saw of those embryonic inventions!

Puticel Electonics! 1

By JUDITH TERRY

Consider the words "table-top hobby". Indeed this is no misnomer! Oh no! There are always little "bits" (and some not so little!) on our dining room table and were it not for the fact that my husband likes food even more than electronics, we should never clear even the smallest space for our meals.
As it is, we sit amidst a jumble of soldering irons smoking ominously, circuit diagrams and hundreds of little striped things, with fine wiry legs which I am told are very expensive. Not that that makes them any the more acceptable!
I noted with a sigh this morning, that when we leave a bewildered landlady behind this time-we will leave an irate one because there are now a dozen little drill holes in that polished table.

When we move, and it scems we are destined to be an itinerant family, all the "bits" go with us. They are carefully and lovingly packed in tin boxes and huge wooden crates.

Amongst the things we carry round with us are several old washing machine motors, which "may come in handy" (I ask you!) and a pair of the most incongruous binoculars I
have ever seen! These latter are almost 2 ft long and weigh about 91 b and have to be strapped onto one's head. If you have ever tried strapping a 2 ft long, 9 lb weight onto your head (as if you would!) you will know that it results in your having to gaze permanently at your feet!

The strange thing with these binoculars is that one cannot actually see one's feet-or anything else for that matter. I am told the reason for this is that they have infra-red lenses. My husband hopes now to use them for his "anti-crash-on-motorways-in-fog" device but initially they were bought for seeing reindeer in the dark in Lapland! Curiouser and curiouser!

When we were in Germany, my husband discovered a "wonderful" electronics shop in Dusseldorf where one could buy all manner of switches, knobs, resistors, capacitors and the like. He and some other enthusiasts all left for Dusseldorf one Saturday morning at 7 a.m.-to be there when the shop opened.

My biggest agony is to be dragged round the electronics shops up and down the Tottenham Court Road (apologies to any advertisers!) Oh I know I could go shopping on my own in Oxford Street, but I know too that my husband would never meet me at the given time or place later. In fact, I very much doubt whether I would ever see him again.

EMMA

analytical electron microscope

Agreat deal that has been written and said about electron microscopes may tend to be glamourised by their ability to show clear pictures of minute particles beyond the scope of conventional optical instruments.
Although the same can be said about the latest instrument, developed jointly by scientists from A.E.I. and Tube Investments Research Laboratories near Cambridge, it is now possible for the operator to correlate the results precisely with information on elemental composition. This information can be obtained from a much smaller area than has been achieved before, even with separate instruments.
In the new instrument, called "EMMA-4", thin film samples can be electron-optically magnified up to 160,000 times, with a resolution of about $10 \AA$. For the first time, they can be simultaneously probed with an electron beam focused down to about $1,000 \AA$ in diameter (about four millionths of an inch) which is over ten times smaller than is possible in the normal electron microscope.

This permits both x-ray spectrometric analysis to identify the elements present, and the production of an electron diffraction pattern characteristics of the crystal structure and orientation, from the same very small selected area.

An important characteristic of any instrument designed to perform these functions is ease of operation; the operator must be able to select the facility he requires in a matter of seconds. Only then can the operation of the machine be truly problem-oriented.

It frequently arises, for example, that the classification of a field of particles into several different types requires repeated correlation between position and chemical analysis, with occasional checks on the type of crystal structure. Or again, in a tissue section, details of cell structure may be recognised only by their thin-section morphology, and the chemical analysis of any one feature must be correlated with its position within the cell.

For this reason, particular attention has been paid to the control layout; all controls are grouped on one console and the instrument can be switched very quickly from one mode of operation to another, and all necessary adjustments made from the operating position.

HISTORY AND DEVELOPMENT

The ideas which have culminated in the production of EMMA-4 arose out of earlier work, whereby the first scanning microanalyser was produced. In this instrument, a finely focused electron beam was scanned over a

Simplified section of EMMA-4. The transmission electron image is viewed on a screen at the bottom of the column. X-rays from the specimen are analysed by the crystal spectrometers. Note how the small size of the mini-lens leaves a clear exit path for X-rays from the specimen

UARIIABLE VOLTAGE TRAHSFORINERS

LIGHT SENSITIVE SWITGH
Kit of parts, including ORPI2 Cadmium Sulphide Photocell, Relay, Transistor and Circuit, etc., 6-12 voit D.C. op. price 25/- plus 2/6 P. \& P. ORP 12 including circuit

12/6 each, Post Paid.
A.C. MAINS MODEL. Incorporaces Mains Transformer, Rectifier and special relay with $2 \times 5 \mathrm{amp}$ mains c/o contacts. Price inc, circuit 47/6 plus 2/6 P. \& P.
LIGHT SOURCE ANO PHOTO CELL MOUNTING Precision engineere light source with adjustable
lens assembly and ventilated ens assembly and ventilated $-2 \equiv$ lamp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair $\mathbf{4 2 , 1 5 . 0}$. P. \& P. $3 / 6$. UNISELECTOR SWITCHES NEW
4 Bank 25 Way 24 V d.c

peration $£ 5.17 .6$, P, \& P. 216
6 Bank 25 Way 24 V d.c. $£ 6.10 .0$, p.p. $2 / 6$ Bank 25 Way 24 V d.c. operation 67.12.6 plus 4/6 P. \& P

RELAYS NEew SEMENS, relays at COMPLETITIVEX PRICES min Coil Working Contaets

6 M
 MINIATURE RELAYS $-12 V$ d.e. 2 e/o 500 M.A. cont
$\times 7 \times$ tin. Price $11 / 6$ poss paid. $1 \times 7 \times$ tin. Price $11 / 6$ past pand.
$24-36 \mathrm{~V}$ d.c. 2 c/a 500 MA . consacts. hm coil. Size $\mid x$ if \times 据in, 8/6. Pos 3,200 230 VOLT AC RELAY LONDEX $4 \mathrm{e} / \mathrm{o}$ 3 amp contacts. $18 / 6$ inc. base, post paid. 18-24Y. D.C. RELAY colo 3 A toritacts 400% coil. NEW 9/6, P. \& P TYPE A.G.C. IM IB 12 V

$$
\begin{aligned}
& \text { A.C. operation } 3 \text { A contacts. } \\
& \text { NEW } 9 / 6 \text {. }
\end{aligned}
$$

NEW $9 / 6$ plus $1 / 6$ P. \& P
pose paid.
T.M.C ILLUMINATED LOCKING PUSH BUTTON KEY SWITCH No. S. 525594 Lock 4 c/o
Complete with mounting
lenses (green, amber, red
or clear-
Price $34 / 6$ each excluding
buib, post paid Discoung

RING TRANSFORMER

Functional Yersatile Educational

This multi-purpose Auto Transformer.
centre aperture, can be
used 25 a Double wound an H.T. or L.T. Transformer, by simply hand winding the required number of turns through the centre opening. E.g., using the RT 100 VA Model the ourput could be wound to
 plus $3 / 6$, P. \& P. RT 300 VA 2.27 turnsper volt, E4.4.0 plus $5 / 6$ P. \& P. RT IkVA 1.82 turns per vols, $\{6,10.0$ pius $6 / 6$ P. \& P. $9 / 6 \mathrm{P}$ \& P RT 3 kVA t. S surns per volc,

INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE 0-260v. BRAND NEW
Keenest prices in the country. Alt Types (and Spares) from $\frac{1}{2}$ to 50 amp. from stock.
SHROUDED TYPE
1 amp, f5. $10.0 . \quad 2.5$ amps.
 86.15 .0 . 5 amps, 59 . 15 . 0. 8 amps, f14. 10.0 . 10 amps. 15 amps, $£ 25.0 .0 .20$ amps. 137. 0. 0. 37.5 amps , $72.0,0$. 50 amps, $892,0.0$.
OPEN TYPE (Panel Mounting)

Carriage extra on open types.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube, Solid stace timing and triggering circuit. $230 / 250 \mathrm{v}$. A.C. operation.
EXPERIMENTERS' ECONOMY KIT
 components including Verobard S.C.R. Unijunction NEW INDUSTRIAL KIT
Ideatly suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyristor. peed adfuseable 1-80 f.p.s. Price 9 gns. $7 / 6$ P. \& P.

HY-LYGHT STROBE

This strabe has been designed and produced in response to wide public demand, for use in large rooms, halls and the photographic field, and utilizes a silica plug-in zube for fonger life expectancy, printed circuit for easy assembly, also a special trigger coil and output capacitor, Speed adjustable 0-30r.p.s. Light output approx. 4 joules 7-inch POLISHEO REFLECTOR
Ideally suited for above Strobe kits. Price 10/6. P. \& P. 2/6 or Post Paid with kits.

10D WATY POWER RUEOSTATS (NEM)

AVAILABLE IX THE FOLLOWING VALUES
$1 \mathrm{ohm}, 10 \mathrm{a} . ; 5 \mathrm{ohm}, 4.7 \mathrm{a}, 10 \mathrm{ohm}, 3 \mathrm{a}$. s 250 ohm, 7 a.; 500 ohm, 45 a.; 1 Kohm,
280 mA ; $1 \cdot 5$ Kohm, 230 mA ; $2 \cdot 5$ Kohm, 2 a.; 5 Kohm, 140
 each. P. \& P. $1 / 6$.
50 WATT. 1/5/10/25/50/100/250/500/1/1.5/2.5/5 Kohm All at 21/- each. P. \& P. J/6.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / \mathrm{l} / 1.5 / 2.5 \mathrm{Kohm}$. All at $14 / 6$ each. $P . \& P$.
VEEDER ROOT, 230 V a.c. 50 cycle, 5 -figure counter (non-resettable). $18 / 6$, P. \& P. I/6. an so NICKELCAD. BATTERY OUTFIT (EX. W.D.)
Two metal carrying cases each containing $10 \times 1.2 \mathrm{~V} 7 \mathrm{AH}$ (12 V) Batteries (40 batteries in all).
One dual voltage, dual meter thyristor controlied charging unit. Designed for charging the 7AH and 22AH

batteries simultaneously. Input voltage \square can be adjusted between 100 and 250 V a.c. Built to Ministry specification. Ideal power supply for field work. Offered at fraction of makers, price. Two sets of batteries, 1 charging Unit. The set C45, P. \& P. 30/-
24-30V D.C. operation. Stabilised unijunction
 from a fraction of a second to several minutes
by means of external resistor or por. By adding a 24 V Relay many orher complex timing Functions are possible. Price: $16: 6$ incl, circuit. P.\&P. 2:6. Suitable relay $10 /$ opost paid

MOTOROLA MAC/II PLASTIC

 THYRISTOR. 400 PIV. 8 AMPNow available EX STOCK. Supplied with full data and applications sheet. Price 21/-plus $1 / 6$ P. \& P.

RE-CHARGEABLE

BUTTON CELLS

Nickel Cad Cells connected $10 \mathrm{~V}, 250 \mathrm{MA} / \mathrm{HR}$ milliamp/l0 hour rate, complere with 200/250V ic. charger fully tested and unused. Prise

INSULATED TERMINALS
Available in red, white, yellow, black, blue

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 5HOWROOM NOW OPER CLOSED SATURDAY

Personal callers only 9 LITTLE NEWPORT \$T. LONDON, W.C.2. Tel. GER 0576

THE RADIO AMATEUR'S наАОВОО 1970

by A.R.R.L
48/-
Postage 4/6

COLOURTELEVISION, PALSYSTEM by G. N. Patchett. 50/. Postage I/ SERVICING WITH THE OSCILLO. SCOPE, by Gordon J. King. 28/-. Postage 1/-. 110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR, by R. M. Marston. I8/-. Postage $1 /$-.

TRANSISTOR SWITCHING AND SEQUENTIAL CIRCUITS, by John J. Sparkes. 25/-。 Postage 1/
TRANSISTOR AUDIO AND RADIO CIRCUITS, by Mullard. 30/-. Poscage 1/-u SOLID STATE HOBBY CIRCUITS MANUAL, by RCA. 17/6. Postage $1 / 6$

BASICTHEORY AND APPLICATION OF TRANSISTORS. 17%. Postage $1 / 6$.
RADIO HANDBOOK, by William l. Orr.
105/-. Postage 4/6.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books |9-2| PRAED STREET LONDON, W. 2
Phone: PADdington 1185
Closed Saturday I p.m.

DIMMASWITCH

This is a dimmer of standard size in ivory and chrome to replace modern light switchess without Wiring changecontrois $40-600$ watts, $200 / 250$ volts 2 50 Hz of all lighte except fluorascents
Two models aro avallable with on/off zwro.
DS500/2 at $\mathrm{E}_{3} 12$ z. 6d, with clockwisa or everse dimming, with the wwitch at full everse rotation.
DS500/2/P at 63 18s. uses a patented witch giving on/off control at any position of dimming.
Both are availsble in D.l.Y, kit form at
lo/- feas. Fuse protection is available 10/- teas. Fuse protection is available at 2,6 extra.

DEXTER \& COMPANY

ULVER HCUSE, 19 KING STREET CHESTER CHI 2AH
Tef.; Chenter 25883
As supplied es H.M. Government Deportments, Hospitafs, Locol Authorities, etc.
solid specimen; the x-ray emission characteristic of one element present was used to produce an enlarged cathode ray tube image representing the distribution of the selected element over a chosen area. At the same time, the electrons back-scattered from the specimen could be used to present a picture comparable to that produced by an optical microscope.

This instrument proved extremely useful in the identification of local concentrations of residual elements in steel, and of non-metallic inclusions of great significance in the seamless tubemaking process.

A limitation of all instruments dealing with solid specimens is that, due to scattering of electrons within the specimen, the smallest area which can be probed at any instant is about $1 \mu \mathrm{~m}$ across. At the same time, neither the electron image, nor the optical microscope with which such instruments are fitted, enables a very high magnification to be used.

EMMA-I

These limitations were overcome by the development of a new instrument in which a thin sample could be used; for example, a metal film, a carbon film carrying particles extracted from a bulk sample, or a thin section of biological tissue. The electrons could then be

A conventional magnetic lens compared with the mini-lens. Elimination of the bulky and heavy Iron core leads to a dramatic reduction in size and a great improvement in performance
focused into a probe only $1,000 \AA$ in diameter, which passes straight through the specimen without appreciable sideways scattering, exciting x-rays from a region an order of magnitude smaller in diameter than is possible with a solid specimen.

Alternatively, the defocused beam could be used to illuminate a wider area of specimen. The transmitted electrons are then used to produce a magnified image on a fluorescent screen, as in a straightforward electron microscope.

This was found to be the first practical combination of electron microscope and microanalyser, and was called "EMMA-1", but was built for development of the technique itself without particular regard for convenience in use. The maximum beam energy was limited to 50 keV for ease of construction.

SECOND SPECTROMETER

One early improvement was the addition of a second spectrometer, which permitted the simultaneous analysis of two elements. This was more than a time-saving addition; the ratio of the amounts present could be

Simplified section of liquid-cooled mini-lens developed for EMMA-4. The precision winding is supported on a copper former, and there is no magnetic core of any kind. This design not only improves focusing performance but gives better access to the specimen
measured independently of any slight instability of the specimen, since small drifts affect equally the x-ray intensity from each element.

It soon became evident, however, that the beam energy should be increased to a level similar to that of conventional electron microscopes-say 100 keV , to give adequate penetration of a wide range of sample types. The main difficulty here was that this would require heavier lenses. In particular, the probeforming lens would be a heavy and bulky item, tending to obscure the x -ray path into the spectrometer.

MINI-LENS

It was at about this time that the Technical University of Delft showed that, if the lens windings could be formed accurately enough, no iron shield or pole-piece would be necessary. Elimination of these heavy and bulky components itself made even smaller windings possible, the result being a spectacular reduction in overall size of the lens-the now well-known "minilens", in fact.

It then became apparent that the new A.E.I. EM802 microscope would provide an ideal instrument in which to mount such a lens, having adequate space in the region above the specimen for this purpose, and room on the column to attach two spectrometers.

The joint development work was started, the prime aim being to add the microanalysis system to this microscope with a minimum of modification.

A special design of mini-lens was evolved by T.I. together with a new form of high-sensitivity spectrometer, while A.E.I. concentrated on the specimen stage and other aspects of the microscope. The work was completed in under two years with the emergence of the prototype "EMMA-3".

The production version, "EMMA-4", differs from EMMA-3 only in having the instrument and control equipment fully integrated into a single operating console.

Controls are conveniently grouped on the operating console in the production EMMA-4

Transmission Electron Micrograph

10 microns

Characteristic peaks plotied for silicon and iron from fibre A

Fig. I. Electron micrographs diffraction pattern and spectrometer plots identifying fine particles of oluminium nitride in a tube steel

EMMA-4

The microscope column of "EMMA-4" is mounted in the centre of the console, the spectrometers attached on either side. Control of the spectrometers is simplified in that each one carries a tuning scale, which is set out something like that on a radio receiver. Four wavebands are selected by different crystals and each is calibrated directly in x-ray wavelength with each station marked by element name. Tuning may be carried out either by a fine manual control for accurate wavelength determinations or by a servo system, enabling any one of six preset elements to be selected by push-button. A complete spectrum may also be plotted on a chart recorder with the aid of a slow-scan motor. The instrument can analyse for all elements from atomic number 11 (sodium) to atomic number 92 (uranium).
Six specimens up to 3 mm in diameter, some of which can be calibration standards for microanalysis, may be accommodated on the specimen stage. These are directly interchangeable without breaking the vacuum but when reloading is necessary, the stage may be withdrawn from the column through an airlock.

APPLICATIONS

EMMA-4 offers unique facilities for the intensive and correlated examination of the morphology, chemical composition and crystallographic structure of extremely small specimen areas. It is expected to be useful in many fields of research where thin film examination is feasible 'and relevant. Obvious areas are metallurgy, where the'prototype instruments have already provided valuable new information on the composition of
precipitates and inclusions in steels; biology, in which it has great potential in the examination of bone and tissue sections; and generally for the analysis of particles deposited on thin substrates.

DETECTING SURFACE CRACKS ON STEEL TUBING

During the final stages in the manufacture of steel tubing, the base material is subjected to very severe mechanical working at elevated temperatures. This can result in the surface of the tubes breaking up and the incidence of such defects can be related to the aluminium content of the material.

- It is, therefore, important to find where the aluminium is located and since the distribution turns out to be on a very fine scale, the electron microscope is one of the few research tools which can be usefully employed. With the facilities afforded by EMMA-4 it is possible to identify one site for aluminium as a precipitate of aluminium nitride. The aluminium content of the particles is demonstrated by x-ray microanalysis and the specific compound confirmed by electron diffraction.

Fig. 1 illustrates the results of a study of an extraction made from a tube showing surface defects. The precipitates are supported on a carbon film in the conventional manner for electron microscopy. Particle A is identified as aluminium nitride and particle \mathbf{B}, and its surrounding neighbours, as pearlite ($\mathrm{Fe}_{3} \mathrm{C}$)-a normal precipitate in the material. The smaller of these particles (A) measures only $1,500 \AA$ across and is therefore well below the detection limit of the normal electron probe microanalyser (about 1 micron).

Transmission Eleciron Mierographs

5 Mierons

1 Mieron

Electron diffraction pottern from porticle A

Lattice parameters
from pattern
$a=3-136 \pm-03 \AA$
for Aluminium Nitride $a=3.114 \AA$

Characteristic x-ray peaks from parlieles

Fig. 2. Electron Micrographs and spectrometer plats showing presence of AMOSITE asbestos fibres in human lung tissue

ASBESTOSIS IN HUMAN LUNG

An example of the application of the EMMA-4 technique in medical research concerns the study of asbestos fibres extracted from human lungs.

Recent work in several laboratories has demonstrated the danger of inhaling such fibres, and has shown that the ill-effects may not manifest themselves until many years after the inhalation. The problem therefore arises of establishing to which group of the asbestos materials particular extracted fibres belong, in order to be able to relate this to the lung damage and also to trace the source.

Fig. 2 illustrates the type of results obtained with the new instrument. The transmission image shows the fibres on this sample, a lung tissue section, to be as thin as about $1,000 \AA$, often with "trains" of growth along them (top centre of the image). Surface and internal detail are also made visible.

The direct spectrometer output in the form of peaks plotted for silicon and iron (K) radiations from the fibre A is also shown in this illustration. Simply by measuring fibre composition in the form of element ratios from such peaks it is possible to identify these particular fibres as AMOSITE asbestos. Further confirmation can be obtained by electron diffraction, if required.

The essence of the problem posed by this particular specimen, i.e. the correlation of chemical, morphological and crystallographical information on a submicron scale is, of course, very general and it is for this reason that the scope for application of the new instrument is likely to be very widespread.

A simple, effective system of sensing and controlling humidity levels based on the psychrometer, and using two negative temperature coefficient thermistors to sense humidity. The Humidistat will prove extremely useful in areas where humidity has to be increased or decreased and it will operate for long periods without attention.

To cater for existing valve circuits (including television) the "VALSTAB" can provide most of the requirements of experimental or temporary replacement power supplies. It has voltage stabilisation for variable loads and mains voltage. Outputs are $175-325$ volts at $100 \mathrm{~mA} ;-150$ volts at $10 \mathrm{~mA} ; 6.3$ volts at 4A centre tapped.

The VALSTAB appears next month; look ouf for the matching "TRANSTAB" later.

OrderYoursnow

PGACTICAL

ELECTRONICS

> 7 HE new series of practical subjects for beginners to build commences in this issue. Subsequent articles in the series will be easily identified under the "Beginners" heading in the Contents and by the symbol which will appear at the beginning of each article.

T HE projects are shown built up on a "breadboard" system for four main reasons.

1. Whilst the initial cost of the systems may be high, this could be more than offset by the fact that components can be easily removed, re-positioned or used again in a more permanent construction.
2. The circuit can be assembled very quickly or expanded by adding extra functions later.
3. The actual layout of the components can follow a similar layout to that in the circuit diagram.
4. Soldering is only needed for connecting wires to large components, such as switches and potentiometers; inter-component wiring is already provided.

USING T-DEC

The "breadboard" system used is called T-Dec. It is a manufactured plastics base plate with a matrix of numbered holes. Certain combinations of interconnection are provided by spring strips underneath the holes. These are snown in Fig. la corresponding to the raised lines moulded on to the surface of the board itself.

T-Dec is divided into two sections which are electrically isolated, enabling two or more separate circuits to be built on to the same board. If required any part of one circuit can be connected to any part of the other circuit by using single strand copper link wires.

Some components have very thin connecting wires; these should be helped into the holes by holding the wire with a pair of long-nose pliers.

Transistor and diode wires can be inserted directly into the holes if spacing permits. It may be necessary to open up the spacing of these wires; in which case, careful bending with pliers at least $\frac{1}{8}$ in from the encapsulation can do this without damaging the transistor or diode seal. Alternatively, special adaptor plugs supplied by the T-Dec manufacturers can be used to mount these components.

The component wires should be at least $\frac{3}{8}$ in and preferably $\frac{5}{8}$ in long to ensure satisfactory connection. Longer wires will of course, make the components more versatile in their use. It is never good practice to trim these wires short if they are to be used again.

Whole systems of breadboarding can be built by fitting two or more boards together by the dovetail tongues and grooves around the sides. Small panels for switches, potentiometers, lamps and so on are provided and are easily fitted into the slots on the edge of the boards.

HOLE IDENTIFICATION

Coming now to the numbering of holes for identification you will notice that the T-Dec has two blocks side by side with letter references A to H on both.

Fig. 1a. The T-Dec breadboard. Notice the connections between holes are shown as ralsed lines

Fig. Ib. How the T-Dec holes are identified. Only the first two rows are shown here

Fig. 2a. Underside view of Veroboard showing the copper strips

BUILDING

 for BEGINNERS

 for BEGINNERS}

The numbers run in sequence for each row or group of holes in a row (see Fig. 1b). It is important not to be confused with these since, in each alternate row per block, there are two groups of four holes which are numbered separately.

In the other rows connection is already indicated between the two groups; these cannot be separated. If insufficient holes are available for a particular junction of components, a link wire can be carried to another vacant group elsewhere on the board.

ALTERNATIVE CONSTRUCTION

Some readers may prefer to use alternative construction systems, perhaps in a more permanent form. These will probably require the use of a soldering iron and, although component recovery is possible, it is not as easy as with T-Dec.

Suggestions for some construction systems are given here, using mainly some form of s.r.b.p. sheet machined or treated by proprietary manufacturers.

In order to simplify translation from T-Dec to these other forms, the same basic layout is assumed and connection code numbers correspond. If the board is too large, it can be trimmed before commencement to the size required, but the basic layout remains the same.

COPPER STRIP WIRING BOARD

Veroboard is the first of the alternative examples here because translation is very straightforward. Fig. 2a shows this board with the copper strips on the underside. To keep the same layout appearance the holes are numbered in sequence so that the top surface is that without the copper.
If the copper strips are cut to conform with the T-Dec

Fig. 2b. Veroboard with the strips cut to show the T-Dec whing pattern

Fig. 3a. Veroboard strips prepared for the first project

Fig. 3b. The finished metronome project

Fig. 4a. Plain perforated s.r.b.p. sheet with copper wire connections and soldering pins

Fig. 4b, Plain s.r.b.p. with the connecting wire hooked through the end holes in the rows

Fig. 5. Cir-kit adhesive copper strips fixed between rows of holes on plain perforated board
layout the appearance would be as shown in Fig. 2b.
The strips can be cut with a special spot-face cutter, a $\frac{1}{8}$ in drill, or a sharp knife.

Before cutting any strips, study the project circuit layout in the practical article to see how many breaks are really necessary. If only one half of the T-Dec is used none of the centre breaks will be necessary. However, if at a later stage you decide to assemble another circuit on the same board, the copper around the centre columns of holes, between column H on the left and A on the right, will need to be cut. Before doing so, check to see if any links are needed between left and right, in which case leave the appropriate strips uncut.

Next look at the project layout to see if any connections are needed between column D and column E. Having established those required cut all the other copper strips between D and E to form the groups of four holes (Fig. 3a).

Now the columns and rows of holes can be numbered exactly as for T-Dec. You can do this by laying the board on a sheet of paper and marking through each required hole in the board with a pencil. Remember that the T-Dec numbering follows that for Veroboard that has the copper side face down.

Carry out the assembly and soldering making sure that no solder bridges two or more adjacent strips. Good clean soldering is the keynote to success; dry joints will not do. Fig. 3b shows the finished project.

PERFORATED S.R.B.P. AND WIRE

The next system is simple and follows the same lines as with Veroboard, except that plain perforated board has no copper face. All connections are carried out using soldering pins and tinned copper wire; see Fig. 4a. However, do not fit wires that are unlikely to be used; this is a waste of materials and effort.

The pins can be dispensed with if the copper wire is hooked through the end holes of each row and secured with solder. An example of a typical layout is shown in Fig. 4b.

STICK ON WIRING

The third system is a development of the previous one except that the wires are replaced by self-adhesive copper strips called "Cir-kit". The method is otherwise exactly the same (Fig. 5). The narrow strip will just fit between adjacent rows of holes on plain perforated board.

PRINTED CIRCUIT

There is no reason why printed circuit board should not be used. This will require more patience by following the instructions given with the printed circuit kit. Not all kits carry instructions, so if you are unfamiliar with printed circuit techniques try and obtain a kit that has.

It will probably be necessary to sketch out a layout of the copper pattern corresponding to the project actually being built. It is recommended that an experienced friend helps you with this as mistakes can be expensive.
This short introductory article is not intended to provide comprehensive details of using these alternative methods. Full details and instructions can be obtained from manufacturers of these and other proprietary items which are advertised in this magazine.
The project which follows can be built very easily using one of the methods described here. Future projects in the same series are to be dealt with in a similar manner.

To study a musical instrument, one of the most important requirements is strict attention to playing speed. To assist in the correct interpretation of the music's tempo the composer conveniently heads his composition with a rough guide to the rate at which it should be played like Andante or Allegro, this usually being followed by the number of crotchets, quavers, etc. that should be played per minute.

Whilst the accomplished musician has little difficulty in interpreting these tempo marks, the beginner does need some sort of aid to assist in establishing a sense of time.

More than a hundred years ago Maelzel provided such an aid in his invention of the mechanical metronome which produced loud ticks with the movement of a weighted pendulum. With the simple electronic metronome to be described, we can reproduce these ticks just as effectively without the labour of winding up springs.

RELAXATION OSCILLATOR

To simulate the sound of its mechanical counterpart the circuit of Fig. 1 was designed to produce asymmetric pulses of short width and rapid rise and fall times. The pulse generated across the loudspeaker LS1 is shown in this diagram, and it ensures a very rapid cone movement.

The frequency range extends from 40 to 220 beats per minute, which is adequate.

As this little device is very precise in its counting, it can also be used as an audible "darkroom" timer when set to 60 beats/minute.

The circuit itself is a simple relaxation oscillator where two complementary $n p n$ and $p n p$ transistors are made to switch on and off at a rate determined by the resistance chain VR1, R1 and capacitor C1. With S1 closed, Cl charges until it reaches about 650 mV when TR1 is switched on and immediately discharges the capacitor.

The current pulse produced by TR1 in turn switches on TR2 with the result that almost the whole of the supply voltage is made to appear across the loudspeaker.

The actual discharge time of the capacitor depends on the base-emitter impedance of TR1, the loudspeaker impedance and the output impedance of TR2 which collectively account for the exponential hump on the output pulse waveform.

With the completion of the pulse the capacitor again charges to the conduction potential of TR1, when the pulse cycle starts again.

METRONOME

Fig. 1. Circuit diagram of the metronome showing the T-Des hole connections, transistor wire identification and output waveform

LOW LEAKAGE

In the application of this unit timing precision is important. The simple factor most likely to give trouble in this aspect is leakage current. The choice of a silicon transistor for TR1 and a tantalum electrolytic capacitor for C1 virtually eliminates the problem.

In the choice of speaker it will be found that sound output is a function of cone diameter. In practice, a 5 in speaker proved very satisfactory.

CONSTRUCTION

Construction of the unit merely involves plugging the components into the T-Dec as shown in the photograph: For the holes employed refer to Fig. 1, which shows the hole numbers for each junction.

If it is intended to make a permanent unit of this, the wiring configuration will readily translate to any of the board constructional methods outlined in the introductory article.

If such construction is undertaken the potentiometter setting must be calibrated in terms of the number of beats produced per minute. Using a wrist watch with seconds sweep or preferably, a stop watch, the potentiometer should be advanced at 20 beat intervals. These positions can be recorded on a piece of white card. A pointer knob attached to the potentiometer shaft will simplify this operation.

COMPONENTS . . .

Resistors
RI $22 \mathrm{k} \Omega 10 \% \frac{1}{2}$ watt carbon
Potentiometers
VRI $100 \mathrm{k} \Omega$ linear carbon
Capacitor
$\mathrm{Cl} 22 \mu \mathrm{~F}$ tantalum elect. 16 V
Transistors
TRI ZTX300 (Ferranti) or 2N2926 orange spot
TR2 NKT223 (Newmarket) or GETIO2 (Mullard)

Switch
SI on/off toggle switch
Loudspeaker
LSI 3Ω 5in permanent magnet moving coif unit

Battery
BYI 6V rype 996
Miscellaneous
T-Dec. .
Single strand connecting wire
Battery connectors or clips

Fig. 2. The layout of components on T-Dec. Make sure the bottery is correctly connected.

APOLLO 13 RESULTS

The results of the special investigation into the results of the Apollo 13 troubles have been released by the chairman of the committee, Edgar M. Cortright. The explosion was caused by the failure of two thermal switches in the system which controlled the heater inside the oxygen tank. The failure allowed the wires inside the tank to heat up to a high temperature, the insulations burned off and the spark resulting from the short circuit caused the explosion,

The cause of the failure of the switches is thought to be the detanking sequence which is part of the countdown procedure. This procedure does in fact place a much more severe strain on the system than the actual spaceflight. The reason for this is that during the checking sequence the heaters are on for a much longer period and at a higher current level than when in flight.

The necessary modifications are being carried out and at the time of writing the next launch is not likely to take place before December 3 this year.

MARINER 7 PHOTOGRAPHS PHOBOS

Mars has two satellites, Phobos and Diemos, and one of these satellites has been successfully photographed by Mariner 7. Both are very small and near to the planet surface, Phobos being some 3,700 miles from the surface and Diemos about 12,500 miles.

The Mariner spacecraft was about 82,000 miles from Phobos when the picture was taken. The satellite was near one of the dark areas on Mars known as Syrtis Major, and appeared as a dark spot on the lighter background of the Aeria region.

Analysis of the photograph was carried out by Dr Bradford A. Smith of New Mexico State University, and he deduced that the satellite was oval shaped with a diameter of 13.75 miles in the plane of its orbit and $11-25$ miles diameter across its poles. A significant result of the analysis is that the "albedo" (the ability to reflect light) has proved to be very low, the lowest in fact of any satellite or asteroid in the solar system.

The darkness of the satellite appears to be due to its small size
and dust from the surface could easily escape due to the low gravity. In fact it is so low, that should one of the suggestions that it could be used as a space station be implemented, the personnel would have to be careful not to jump with too much enthusiasm or they might go into orbit. The escape velocity is 12 metres a second.

Since the satellite is elongated it is unlikely that it came into being by accretion and it is possible that it is a captured asteroid.

GERMAN SATELLITE

The contract for the construction and systems management of Aeros, the second German satellite, has been awarded to the Dornier-System GmbH . Aeros is the successor to the recently launched Azur and is devoted to the study of the physical processes in the upper layers of the atmosphere. There will be five experiments, four German and one American and it is expected that it will be put into orbit in the summer of 1972, from the Vandenberg test range in California using an American Scout rocket.

The instruments to be carried for the German experiments are a mass spectrometer for the study of the atmosphere's chemical composition. This is done by measuring the number density of ions and neutral particles. An impedance probe will determine electron density in the ionosphere. A retarding potential analyser will measure the energy distribution of electrons and ions. An ultraviolet spectrometer will measure the flux and spectral distribution of the far ultraviolet radiation of the Sun.

The American experiment will measure the nitrogen present in the various layers of the uppr- atmosphere and the overall density of the neutral particles.

As the results of the last experi-

An engineer uses a microscope to examine and find the cause of discolouration to the Surveyor 3 television camera landed on the moon in April 1967, and returned to Earth by the Apollo 12 astronauts last November.

The scientists expect the study to provide a guide in selecting materials and components for future space
ment are required for a NASA satellite due to be launched in 1973, it will be essential that the construction programme and launch date be on time. The planned orbit is a specially selected one and the satellite will be placed in a polar orbit with a perigee of 235 km and an initial apogee of $1,000 \mathrm{~km}$. The friction of the atmosphere at these altitudes will cause the satellite to fall towards the Earth.

After 105 days the apogee will have been reduced to 580 km ; at this point it will be raised again by 200 km using a hydrazine chemical rocket. The reason for doing this is to collect data from comparable altitudes at different times of the year.

After a period of six months at this new altitude the satellite will then enter the denser parts of the atmosphere and finally burn up. Measurements during the final phase of its life are expected to be of considerable interest.

After each measuring orbit there will be one or two idle orbits to allow the batteries time to be recharged and the stored data transmitted back to Earth. The satellite is an airtight cylinder with one flat and one conical end.

NIMBUS D SATELLITE

Nimbus D was launched from the Western test range in California by a Thorad Agena D. The butterfly shaped satellite weighs 620 kg , and is in a circular near polar orbit $1,110 \mathrm{~km}$ above the Earth and orbits in 107.3 minutes.

The British experiment was developed by GEC-Elliot for Oxford and Reading Universities and uses a very sensitive selective chopper radiometer which can detect radiation at low levels over six discrete bands. The measurements will give the first complete continuous picture of the 15 micron radiation. The temperature field in the region $25-50 \mathrm{~km}$ above the surface and the conditions below 25 km will be of considerable importance to forecasting in the future.

GEC-Elliot are now working on Nimbus E due to be launched in late 1972. In this satellite the number of channels will be increased to 16. The Meterological Office will check the data against Radio Sonde measurements and provide daily charts for the Northern Hemisphere with information relating to several levels. exploration.

			VAL	VES			
Az		${ }^{\text {EFFIRH94 }}$	$11 / 3$			6u4	15,-
Darab	${ }_{8}^{8 / 3}$	E134	\%\% $\%$	${ }^{\text {Plegiala }}$	${ }^{12 / 3}$	SUGA	\% 56
DFigh	,i/1/6	His	${ }_{79}^{9 / 9}$	${ }_{\text {pras }}$	${ }^{10} 9$,
- $\mathrm{D} \times 96$	${ }_{7}^{11 / 6}$		1\%/6	(etson	${ }^{19} 181 /$		
-	\% 7.6	Emath	1719	${ }^{\text {P15 }}$	201/		16,
Cresf	${ }_{8}^{816}$		776	(tLeos	${ }^{30,9}$	(ta	近
	${ }^{10,10}$	Ez880	${ }_{519}^{619}$	${ }_{\text {Prema }}^{\text {Pros }}$	70,	${ }^{6 \times 4}$	${ }_{7 / 6}$
	$8 / 6$	G7301	19.6	${ }_{\text {Pren }}^{\text {Pry }}$	${ }^{10,9}$	(tas	
	\%/	${ }^{623214}$	1169	Preoo	${ }_{8}^{8 / 3}$		${ }_{12,}^{12}$
	8 8,		2516	${ }_{\text {Prea }}^{\text {pre3 }}$	\% 10	${ }^{12857}$	$\sqrt[4]{1 / 4}$
	${ }_{8}^{5 / 3}$	${ }_{\text {N }}^{\substack{\text { N33 }}}$	1516	Prysio	${ }^{80} 18$		${ }_{\text {12,6 }}^{12,6}$
	${ }_{816}^{8,6}$	Prcabli	${ }^{10,3}$	${ }_{\text {P1930 }}^{\text {PT3 }}$	13\% ${ }^{165}$	${ }^{6654} 8$	
	$11 / 1 / 6$	${ }_{\text {Pcos }}$	$7{ }_{7}^{7 / 3}$	${ }_{\text {22abcso }}^{120}$	${ }^{15 / 6}$	${ }^{6 \times 28}$	1156
cectail		${ }_{\text {Prccis }}$	9				
-	${ }_{\text {l }}^{13 / 3}$	${ }^{\text {Pccers }}$	${ }_{12}^{12} / 3$	${ }^{\text {UCCCB5 }}$	91313		
	10,3	PCCFI99	${ }_{10,3} 12$	UCL	${ }^{109}$	2084	\%
	296	${ }_{\text {PCF }}$	10,6	${ }_{\text {U }}$	1213	50,	${ }_{3}$
	8	${ }^{\text {PCFF6\% }}$	${ }_{163}^{12,3}$	UF80/5	7/3	cois	
	\% $1 / 9$	${ }^{\text {PCFF801 }}$	12,3	ULis.	$11 / 16$	30FL	${ }_{129}$
${ }^{\text {EmF3 }}$		${ }_{\text {PCFFras }}$	13/3		8 \%	${ }^{305}$	\%
${ }^{\text {ermas }}$	$10 / 3$	${ }^{\text {Precrasg }}$	13,6	U25	-69,		${ }_{53}$
${ }^{\text {Erab }}$.13/3		${ }_{120}^{10,3}$	${ }_{4}^{425}$	19/6	${ }^{30012}$	146
${ }_{\text {cma }}$	106	PCL84	10, 10		${ }^{817}{ }^{8 / 2}$		(1)9,
		Pclso		${ }_{\text {z729 }}{ }^{\text {W29 }}$	$24 / 6$		12,9
		${ }^{\text {PFL3 }}$				30 PL 15	\%/6

SEMICONDUCTORS

AC117	12/-	BCII5	6/6	BF225		305	410
AC126	4/4	BC 117	$7 / 9$	BF257	$9 / 6$	2N1306	$6 / 2$
AC127	$4 / 9$	BC118	$7 / 9$	BF22A	$9 / 6$	2N3055	15/-
AC128	4/6	BCl34	11/6	NKT125	$5 / 9$	2N3392	5/m
AC176	$7 / 4$	BC\|47	$5 / 8$	NKT281	4 -	2N3702	5/6
ACY17	6/-	BC148	$4 / 4$	NKT 401	17/6	2N3705	4/6
$\mathrm{ACY}^{\text {c }}$	6/-	${ }^{\text {BC }} 152$	$5 / 6$	OCL^{25}	916	2N3711	4/9
ADI49	11/8	BC175	$5 / 6$	OC44	5/6	2N3819	9 -
AD161	6/9	BC187	5/8	OC45	5/4	2N3826	6/-
AD162	$6 / 9$	BC213L	$5 / 4$	OC71	$4 / 4$	2 N 4062	$4 / 6$
AF14	$4 / 8$	BPY20	30/6	$0 \mathrm{C72}$	5/4	2N4289	1/6
AFII5	4/8	BFY50	5/-	OC77	$5 / 6$		
AFII6	4/9	8FX84	71.	OC78	5/-		
AFII 7	1/6	BF29	716	OC81	4/-		
AFII8 AF:26	12/-	${ }^{\text {BFII }} 15$	$5 / 6$	OC810	4/-.	${ }_{\text {BYI } 126}$	
AFil27	$4 / 8$	${ }_{\text {BFI }}^{\text {BFI }} 17$	9/6	-GE113)	5/-	BY127	5/-
AF139	$8 / 8$	BF167	6/-	OC169	$4 / 8$		
AF178	\%/-	BFI73	7 7-	OC171	6/-		
AF179	$9 /$	BF178	71 -	OC200	$6 / 6$	diodes	
AF580	$12 / 4$	BF180	8 -	OC202	916	AAll	$2 /$
AFIII	$9 / 4$	BFi81	8 -	OC203	616	OA47	1/9
AF186	$13 / 4$	BF182	8 -	OCP71	12/6	OA79	1/10
AF239 BCl07A	8	${ }_{\text {BF184 }}^{81}$	5 5-	P346A	$17 / 6$	OABI	$1 / 10$
${ }^{8 C 107 A}$	5/-	BF194	5 -	2N456A	$17 / 6$	OA91	2/-
${ }^{8 C 108 B}$	4/6	BF197	$6 / 4$	2 N 697	$5 / 10$	OA202	$2:$
BCIO9C	5/-	BF200	$7 / 4$	2N698	10/6	BZY88	2
BC113	5/6	BF224	6/-	2N1132	11/6	(SERIES)	6/6

ADD 5d. PER ITEM FOR POST AND PACKING
FOR ORDERS UNDER 24 PIECES.

CATHODE RAY TUBES

New and Budget tubes made by the teading British manufacturars Guaranteed for 2 years. In the event of failure under guarantee, replacement is made without the usual time wasting forms and postage expense.
Type

MW36-20
MW36-21
MW36-21
MW43-69Z

AW43-80Z

AW43-88
AW47-90
AW47-91
A47-14W

A square wave generator for calibrating oscilloscope Y amplifiers, and the frequency compensation of probes and attenuators.
Is also useful as a general purpose unit for checking audio amplifiers, tone control circuits, Schmitt triggers, monostables, etc.

SPECIFICATION

OUTPUT	Square wave, 10 V peak-to-peak max.	OUTPUT LEVEL $0.1 \mathrm{~V}, 0.2 \mathrm{~V}$,
FREQUENCIES	$1 \mathrm{kHz}, 10 \mathrm{kHz}$, and 25 kHz	$0.5 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$
CALIBRATION	With ordinary d.c. voltmeter	RISE TIME Better than $1 \mu \mathrm{~s}$

0NE problem often associated with home constructed projects is that of calibration. This article describes a small unit for calibrating the " Y " amplifier of an oscilloscope.

The best calibration waveform for this purpose is the square wave, its flat top and bottom make it easy to see and align with graticule markings. It can also be used for adjusting the frequency compensating capacitance of an attenuator or probe. Having decided on the waveform, we need a method of calibrating the calibrator.

USING A VOLTMETER

A conventional multimeter could be used on the a.c. voltage ranges (but see end of articie). Rather old a.c. meters are not recommended because their meter rec-

tifiers tend to change their characteristics with age. In any case, multimeters are usually considered to be more accurate and are more easily checked on the d.c. ranges. It would, therefore, be more convenient to use the d.c. ranges because the meter is an average reading instrument.

If we try to measure a square wave voltage on a d.c. meter, the reading will be zero (Fig. 1a) because the positive parts of the waveform cancel the negative sections. If we offset the d.c. level to the bottom of the square wave, the meter will read half the maximum (Fig. Ib).

EMITTER TIMING CIRCUIT

The circuit (Fig. 2) is quite straightforward, consisting of a multivibrator followed by an output stage. The multivibrator, TR1 and TR2, has the timing components in the emitters and uses only one capacitor. This is an advantage if different frequencies are required since only one capacitor is required for each frequency.

It is also possible to adjust the frequency by varying the value of the collector resistor of TR1. This makes it possible to set the multivibrator to an exact frequency if required.

The basic frequency of the instrument is 1 kHz ; this is a "standard" frequency for voltage calibration and is used on commercial oscilloscopes.

The output transistor TR3 has its current set to 10 mA

by VR2 (see setting up) so that the output voltage is directly related to the collector resistor. This makes it a simple matter to select resistors for any desired sequence of output voltages.
The output is taken from this resistor, the earth being the positive side of the supply. This method of connection gives the d.c. level to the signal. This resistor is divided into sections which subdivide the output voltage in a $1,2,5$ sequence from 100 mV to 10 volts peak-to-peak.
Only the 10 volts position of output voltage selector needs to be adjusted; all other positions depend on the accuracy of the resistors used.

CONSTRUCTION

Layout is not critical, except that the voltage selector switch and VR2 should be close to TR3. See Fig. 3. The resistors used in the voltage selector switch should be selected to. 2 per cent or better from 5 per cent stock; all other resistors can be 5 per cent.
Any transistors having similar specifications to those quoted should work satisfactorily. Take care to connect them correctly; the first two are pnp and the output transistor is an npn type.

SETTING UP

After checking the wiring for errors, switch on and view the output on the oscilloscope. Set the mark space ratio to exactly $1: 1$ by adjusting VR1. Then, set the output switch to the 10 volts position, connect a d.c. voltmeter to the output socket and adjust the set output control until the reading is 5 volts. The unit is now ready for use. Connect it to the " Y " amplifier input on the oscilloscope.

Resistors

R1	$820 \Omega 5 \%$
R2	$6.8 \mathrm{k} \Omega 5 \%$
R3	$10 \mathrm{k} \Omega 5 \%$
R4	$1 \mathrm{k} \Omega 5 \%$
R5	$3.9 \mathrm{k} \Omega 5 \%$
R6	$500 \Omega(1 \mathrm{k} \Omega+1 \mathrm{k} \Omega$ in parallel)
R7	$300 \Omega(150 \Omega+150 \Omega$ in series $)$
R8	$100 \Omega(100 \Omega+100 \Omega$ in parallel $)$
R9	$50 \Omega(100$
R10	$30 \Omega(15 \Omega+15 \Omega$ in series $)$
R11	10Ω

RH 10Ω
All $\frac{1}{4}$ watt, 5% carbon except R6 to R1I at 2%

Potentiometers

VRI $5 \mathrm{k} \Omega$ skeleton presef or slider preset
VR2 Ik Ω linear preset control

Capacitors

CI $0.47{ }_{\mu} \mathrm{F}$ polyester 5%
C2 $8 \mu \mathrm{~F}$ elect. 15 V
C3 $0.47 \mu \mathrm{~F}$ polyester 5%
$\mathrm{C} 40.047 \mu \mathrm{~F}$ polyester 5%.
C5 $\quad 0.02 \mu \mathrm{~F}$ polyester 5%
(See Table 1)
Transistors
TR!, TR2 GET882 or 2NI305 (2 off)
TR3 2N706

Switches

SI Single pole, 3-way rotary switch
S2 3 -pole, 7 -way (8 positions minimum) can be made up from wafer switch parts, two or three wafers, up to 12 -way, 8 used

Fig. 3. Wiring and component layout

Sockets (with plugs)

SKI, SK2 Coaxial panel mounted sockets and plugs or "u.h.f." style p.t.f.e. connectors as on model

Miscellaneous

Aluminium case to hold components and batteries approx. 6 in $\times 5$ in $\times 5$ in
Miniature tag strips, knobs and wire

USING THE CALIBRATOR

To calibrate an oscilloscope, set the calibrator output voltage switch to the 10 volts position, set the " Y " input switch on the 'scope to 10 volts per centimetre and adjust the preset " Y " gain control until the top and bottom of the square wave are in line with graticule lines 1 centimetre apart (Fig. 4).
Repeat this for the other ranges, checking that the square wave is not distorted on any of them. If it is, adjustment of the attenuator trimmer should correct this to a good waveform with a square corner and flat top. Incorrect compensation will show up as overshoot of the leading edge (over compensated) or as a rounded corner (under compensated).

It does not matter if the 'scope is a.c. or d.c. coupled. If the 'scope is a.c. coupled it will be immune to the d.c. level in the signal. If the 'scope is d.c. coupled a slight readjustment of the " Y " shift control is all that is required.

The signal has a d.c. level so that the unit can be calibrated using an ordinary d.c. voltmeter (preferably an Avo " 8 "). Once the mark space ratio is set to $1: 1$ the d.c. level is always half the peak to peak value. This feature makes it unnecessary to use Zener diodes to stabilise the supplies, since it only takes a moment to check the calibration.

FREQUENCY COMPENSATION

As well as voltage calibration the unit is also useful for frequency compensation of attenuators and probes.

The risetime is better than $1 \mu \mathrm{~S}$ and the top is flat so that observation of the unit's waveform on the 'scope under test will show if adjustment of the 'scope is required.
The circuit of a typical 'scope attenuator section is shown in Fig. 5. When in correct adjustment the time constant of $\mathrm{C} 1, \mathrm{R} 1$ will be equal to that of $\mathrm{C} 2, \mathrm{R} 2$.

Because a square wave contains high frequency components in the verticals and low frequency com-
ponents in the flat sections, a square wave at the input will be undistorted at the output only if $C_{1} R_{1}$ equals $C_{2} R_{2}$.
In practice the unit is connected to the 'scope input, the waveform is observed and any departure from the correct waveform is compensated for by adjustment of the trimmer Cl in Fig. 5.

OTHER USES

Apart from these two jobs the unit is useful as a square wave generator for general purposes. Checking audio amplifiers, tone controls, Schmitt triggers, monostables and other switching or CR circuits.
The ramp output SK1 is for checking trigger circuits. If the oscilloscope is fitted with a "Trigger Level" control it should be possible to select any point on the ramp and trigger at that point.
To make the unit more useful as a general purpose square wave generator, two other frequencies are available. These are (on the author's unit) 10 kHz and 25 kHz . When the original was built, these two frequencies were chosen, together with a slightly different output stage which gave a much faster rise time, for work on oscilloscope delay lines.
They are rather high for audio work though, and some constructors may prefer lower frequencies such as 500 Hz and 5 kHz for this work. All that needs to be done is to change the timing capacitor, C_{2}, as indicated in Table 1.

Table I. EMITTER COUPLING CAPACITANCE

Capacitance	Frequency
$1.0 \mu \mathrm{~F}$	500 Hz
$0.5 \mu \mathrm{~F}$	1 kHz
$0.1 \mu \mathrm{~F}$	5 kHz
$0.05 \mu \mathrm{~F}$	10 kHz
$0.025 \mu \mathrm{~F}$	20 kHz
$0.02 \mu \mathrm{~F}$	25 kHz

METER MEASUREMENTS

There is sometimes confusion about measurements with moving coil meters and especially about the terms "average" and "r.m.s." when applied to readings taken with such meters. The output waveform from the meter rectifier on sine waves is shown in Fig. 6. If the
continued on page 654

To find the average value of the sine between zero and π, find the area and divide by the base.
Area $=\int_{0}^{\pi} \sin x \mathrm{~d} x=[-\cos x]_{0}^{\pi}=[1]-[-1]=2$ sq. units. Average $=\frac{2}{\pi}=0.637$ Form factor $=\frac{0.707}{0.637}=1.11$
Fig. 6. Meter rectifier output wave form for sine wave input. To find the average value of the sine between zero and π find the area and divide by the base

M4 REDCEWS

PHOTOELECTRONIC DEVICES

By J. B. Dance, M.Sc., B.Sc. Published by Iliffe Books L.td. 172 pages, $8 \frac{1}{2} \mathrm{in} \times 5 \frac{1}{2} \mathrm{in}$. Price 42 s .

MUCH of the usefulness of modern electronics is due to the exploitation of the photoelectronic effect. It follows that full appreciation of electronic circuits is not possible without a good knowledge of photoelectronic devices. This book is timely and offers a sound introduction to the subject to readers who have a previous knowledge of basic physics to about G.C.E. "advanced" level.

After an introduction to the basic physics of infrared, visible light and ultra-violet radiation, there follow chapters on semiconductor fundamentals, with emphasis on electron energy levels, and photoemissive materials. The remainder of the book deals with a variety of different devices: evacuated tubes, such as photoemissive diodes, photomultiplier tubes, and image intensifiers and converters; semiconductor photodevices, including junctionless photoconductive cells such as the familiar cadmium sulphide and cadmium selenide devices; junction photodevices such as phototransistors, and more sophisticated integrated circuit light detectors, based on new principles.

The final chapter is devoted to electroluminescent devices and provides a valuable curtain raiser to what is undoubtedly going to be a most exciting development area in the future.

To the student and amateur enthusiast alike, the value of this book is enhanced by the inclusion of practical circuits illustrating some everyday applications for the devices described. Component values are included, and device types are specified.
F.E.B.

110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR

By R. M. Marston

Published by lliffe Books Ltd.
125 pages, $8 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in. Price 18 s (soft back).

BASIC differences between silicon and germanium transistors and their circuit configurations provide an essential introduction to the common usage of silficon devices. From here on this book describes many well established circuits or "building bricks" which can be found elsewhere.

With a title such as this book carries, one would expect to find more practical details in addition to theory, such as is found in the book "Using Semiconductors" (reviewed in our May issue). This book has no practical guidance at all, and it is left to the "home constructor" to sort out the information himself. He can do much the same by obtaining technical application reports.

The circuits dealt, with include one- and two-stage linear amplifiers (small signal only), switching circuits, regulators, f.e.t. amplifiers, unijunction oscillators, S.c.r. switching at low voltages, and a variety of circuits using the simple "dual gate" integrated circuit.
M.A.C.

CIRCUIT CONSULTANT'S CASEBOOK
By T. K. Hemingway
Published by Business Books Ltd.
210 pages, 9 in $\times 5 \frac{3}{3} \mathrm{in}$. Price 75 s .

FOR circuit designers and trouble shooters alike, this excellent volume goes a long way towards attacking design defects that are all too often overlooked.

Although a circuit can be designed to function fairly easily by using reference works, there are factors which can make the reliability of long term safe operation an unknown quantity. The principle concern of the author here is to safeguard transistors in spurious, irregular, or transient overload conditions.

As Head of Electronic Technology at the Guided Weapons Division of B.A.C., it is easy to understand that diagnosis and cure are by-products of a reliability conscious designer. Yet he has attempted here to help other designers to adopt such an approach to first principles design philosophy.

The text is written in an absorbing manner and should be of value to designers with a fairly broad background in circuit design.

While openly admitting that the examples given are not intended to be the last word in all applications, the author does set the designer on his toes for some of the more common pitfalls.

This book is divided into two parts: Part 1 discusses basic design problems, common errors and their correction; Part 2 deals with the ways of meeting specification requirements not readily achieved by standard textbook circuits. The maths is kept to a minimum and only involves the simple algebra normally expected in basic principles.

It is a curious thing that some of the best books on electronics tend to be pricy, but 75 shillings spent on this could save several pounds on damaged components.
M.A.C.

LUMINESCENT SCREENS, PHOTOMETRY AND COLORIMETRY

 By J. Kalmer M.Sc. Published by Iliffe Books L.td. 200 pages, $8 \frac{1}{2}$ in $\times 6 \frac{1}{2}$ in. Price 60 sAS THE title of this book suggests, colorimetry and photometry form the subject matter, it is not concerned with luminescence generally, and anyone expecting an explanation of the luminescence mechanism will be disappointed.

The author is concerned only with cathodoluminescence (this is the principle used in cathode ray tubes where phosphors are excited by an electron beam) and then only with the testing of emitted light rather than production of the radiation. Other forms of luminescence, photoluminescence, electroluminescence, etc. are defined on page 1 and then disregarded.

As a book on television screen testing, however, it is difficult to rival. The author, a Czechoslovakian, has had many years experience in objective methods for assessing TV picture quality in both monochrome and colour and practically all aspects are covered. Chapter four, "Colour Measurements" is particularly good.

This book is likely to be of interest to the television enthusiast, particularly with regard to colour, but it is not for casual, general interest reading. The testing methods described are not for the amateur, they are rigorous and require a well equipped laboratory. Mathematical treatment is used throughout.

In all, a very specialised book, but certainly an authoritative work in its field.
K.J.M.

F the input or output device connected to an electronic circuit converts one form of energy into another it is called a "transducer".

The block diagram in Fig. 5.1 shows a typical transducer application, the Geiger counter. A Geiger Müller tube corverts energy resulting from radioactive decay processes into pulses of electrical energy, which are then amplified for conversion into "clicks" of sound energy by a loudspeaker.
In the following descriptions transducers are grouped under six main headings; light, heat, sound, magnetism, motion, and atomic radiation, denoting the type of energy conversion involved.

LIGHT SENSORS

Photoemissive Cell

The photoemissive cell in Fig. 5.2a consists of two electrodes in a vacuum or gas. The cathode is coated

exposed to light (Fig. 5.2c). A small silicon photovoltaic diode will generate a current of several milliamps at a potential of about 0.5 V in direct sunlight.

Photovoltaic cells used in photographic light meters employ selenium as the photosensitive material.

Light Dependent Resistor

A photoresistor or light dependent resistor (Fig. 5.2d) has a resistive element, usually made of cadmium sulphide, contained in a transparent case. When light shines on the element its resistance decreases. In the circuit in Fig. 5.2d, the output voltage increases with illumination.
The photoresistor is not polarised like a diode, and behaves like an ordinary resistor under conditions of constant illumination, so can be fed from an a.c. as well as d.c. source.

Phototransistor

The phototransistor has a built-in amplification characteristic. Light on the base-emitter junction causes an internal base current to flow, even when the base lead is left disconnected, and this gives rise to a much larger collector current. In the circuit in Fig. 5.2e, the output varies inversely with light intensity.

Response

There is a limit to the speed with which a photosensor will respond to rapid changes of light intensity. For example, the output signal from cadmium sulphide photoresistors and selenium cells tends to fall off if the light input is made to pulsate rapidly at frequencies in excess of a few hundred hertz.
Ordinary silicon phototransistors and photodiodes can respond quite well to light pulsating at 20 kHz , while special photoconductive diodes will reach 300 MHz . The upper frequency limit of photoemissive cells is theoretically high, but is usually limited in practice, by the high impedance of the device, to around 25 kHz .

Fig．5．2a．Photoemissive cell

Fig．5．2b．A semiconductor diode used as a light－ sensor

Fig．5．3a．Tungsten filament lamp

Fig．5．3b．Gas discharge lamp

WAY TO EIECTRONIES

Fig．5．3c．Laser tube

Fig．5．2d．Light dependent resistor

Fig．5．2e．Phototransistor has light sensitive base emitter junction

LIGHT EMITTERS

Filament Lamp

Tungsten filament lamps can be used as output transducers to convert an electrical signal into a modulated light signal, (Fig. 5.3a) examples being colour organs, psychedelic displays, and systems for transmitting information by modulating light instead of radio waves to one of the photosensors mentioned above.

Unfortunately, the tungsten filament transducer is hampered by thermal inertia and cannot respond efficiently to a.c. input signals of more than a few hundred hertz.

Gas Discharge Tube

Gas discharge tubes (Fig. 5.3b) 'can give pulsating light outputs up to several kilohertz when fed from a high voltage input signal. Applications are similar to those of the tungsten lamp, but also include the stroboscope and photographer's electronic flash gun.
The light amplifier or laser shown in Fig. 5.3c is basically a gas discharge tube, arranged so that most of its light output is reflected back into the tube by mirrors, thus causing a build-up of energy. The output taken from a small orifice in one of the mirrors can be a narrow, high intensity parallel beam of coherent light or infra-red.
One method of modulating the light output is to pass the beam through a crystal which exhibits variable light transmission with applied voltage. Lasers also make effective heat emitters due to the high energy content of the beam.

Semiconductor Diode

Semiconductor diodes made of gallium arsenide will emit infra-red energy (just beyond the red end of the visible spectrum) when forward biased (see electroluminescent diode Fig. 5.3d). Light output is proportional to forward current and can be modulated up to 100 MHz .

Cathode Ray Tube

In a television cathode ray tube, a narrow, controlled beam of electrons bombards a phosphorus coating and causes it to emit visible light, Fig. 5.3e.
Although the cathode ray tube is electrically capable of responding to high frequency signals, and can give a fine definition picture of slow moving images, the rate at which the phosphorescent output can change stateffrom white to black is restricted by the afterglow properties of the coating.
Special phosphors used with film scanners can have an afterglow persistence of less than $0.2 \mu \mathrm{~s}$, equivalent to a modulated light output of 5 MHz , but ordinary television tubes are much slower than this, say $50 \mu \mathrm{~s}$ or
more.

HEAT SENSORS

A heat sensor can either work by conduction, in direct physical contact with a heat emitting substance or device, or by radiation when infra-red energy is absorbed. The energy and wavelength of infra-red radiation is dependent on temperature. Several types of light sensor will also respond to infra-red emissions from substances which are not quite red hot, say at 300 degrees C, but are unsuitable for lower temperatures.
There are certain semiconductor devices-mainly confined to the laboratory-that will detect the heat of

the human body, but they usually have to be refrigerated in a cryostat at near absolute zero temperature. For temperatures below $300^{\circ} \mathrm{C}$ there remain the devices which operate by conduction.

Thermocouple

The first example of a heat sensor is the thermocouple in Fig. 5.4a. Two wires of dissimilar metals, say copper and constantan, are joined together to form a bimetal junction. A voltage will be produced across this junction when it is heated or cooled relative to the connecting wires. Output is zero at ambient temperature and of opposite polarities for hot and cold.

Thermistor

A thermistor (Fig. 5.4b) has an exaggerated negative temperature coefficient, that is to say its resistance

Fig. 5.5a. Electronic stencil cutter

Fig. 5.5b. Dielectric heater

Fig. 5.5c. Inductive heater
decreases markedly with a rise in temperature. In the circuit in Fig. 5.4b, a thermistor is arranged in series with a resistor, so that output voltage will increase with temperature.

The response of a thermistor to temperature is not linear, but varies exponentially with inverse absolute temperature (${ }^{\circ} \mathrm{K}$). Positive temperature coefficient thermistors are shown in circuit diagrams with a small circle in place of the black dot.

Heat Sensitive Diode

An ordinary silicon signal diode of the type commonly encountered in electronic circuits will act as a heat sensor when forward biased. The output voltage taken from across the diode in the circuit of Fig. 5.4c is inversely proportional to temperature.

HEAT EMITTERS

Heat emission occurs in electronic circuits as a byproduct when resistive components are conducting a current, but this is not the deliberate use of heat as output energy from a transducer.

Spark Maker

The humble electric spark is a heat emitter which is often taken for granted. For instance, the output from an electronic car ignition system is applied at precise intervals by means of a spark.
Then there is the electronic stencil cutter which employs a spark to burn holes of variable diameter in ink duplicator stencils, see Fig. 5.5a. A similar idea is sometimes used to reproduce weather maps from satellite transmissions, on heat sensitive paper.

Dielectric Heater

A dielectric heater-resembling a capacitor-can weld or emboss sheets of thermoplastic material, in the manufacture of motor car seats, purses, wallets, and so on (see Fig. 5.5b).
The plastics to be heated are inserted between two cold electrodes of almost any desired shape and surface finish, which are then pressed together by a spring. One electrode is earthed and the other is fed from the output of a powerful high frequency oscillator ($30-50 \mathrm{MHz}$ at $1-10 \mathrm{~kW}$).

Molecular disturbance within the plastics generates internal heat without appreciable heating of the electrodes, thus softening the plastics. A microwave household oven works on a very similar principle to cook food right through in a short time.

Inductive Heater

Inductive heaters (Fig. 5.5c) are suitable for heat treatment of conductive materials, or materials enclosed in a conductive container. Processes such as melting, hardening, tempering, annealing, soldering, brazing, and sintering can be performed with great precision in this manner.

In Fig. 5.5 c an oscillator supplies a.c. to a coil of copper tubing, into which the work to be heated is placed. At low frequencies the work will be heated uniformly, but if the oscillator is tuned to several megahertz, heating will take place only at the surface of the workpiece.

Gas Discharge

Lasers have been successfully employed as heat emitters for micro-spot welding of metals and for fixing detached retinas in eye operations, refer back to Fig. 5.3c.
Part six next month will continue the section on transducers and the series will be concluded with descriptions of miscellaneous electronic devices.

POIIIIS Dilsinc

MUSICAL STAVE (May 1970)

In the paragraph relating to power output the r.m.s. output voltage should have been given as $\frac{9}{\sqrt{2}}$ since a sinusoidal swing would be between \pm $4 \frac{1}{2}$ volts. As the actual output from the circuit is rectangular, the power available will vary with the signal mark-space ratio reaching a peak of 580 milliwatts when the ratio is unity.

B.B.C. Automatic Data Exchange

oN April 6 the B.B.C. brought into service a new automatic message switching system using an STC 6350 automatic data exchange (ADX).

The B.B.C.'s Teleprinter network for the transmission of news and other messages serves 60 outstations in London and the Regions. It handles more than 700,000 messages each year and has had an annual growth rate of some 3 per cent. The hub of the system is at the London Communications Centre in Broadcasting House.

Before the introduction of the new system a point had been reached where further expansion was not possible and the congestion that inevitably occurred at peak periods. due to manual connection to addressee outstations, could not be relieved. This congestion created delays in message transmission. Moreover, a substantial amount of urgent news traffic for non-metropolitan stations had to be diverted to the public telephone service to ensure immediate delivery.

In addition to routing and retransmitting messages automatically through the communications centre with a transit time of only milliseconds, some of the major facilities provided by the new 6350 ADX system, the computer section of which is shown below left. are:

On-line message preparation for messages telephoned into the centre or delivered by messenger, there are six夕-unit code 100 word per minute teleprinters, shown above; which feed the messages to the ADX system that immediately puts the messages into the standard format and transmits them to various outstations according to the addressing information given.

Connection to the automatic Telex network; under licence from the Post Office connections to the network have been included to cater for both incoming and outgoing messages.

System reporting and control facilities that report abnormal conditions for supervisory action. These facilities include a visual display unit, shown in operation above, for the inspection and correction of messages rejected by the ADX because of incorrect or incomplete routing information.

Climatological Station

THE photograph below shows a "Hy-Met" recorder test set being used to check the functioning of a Climatological Recording Station. Both the equipments in the photograph are manufactured by the Environmental Sensors Division of Plessey.

The Climatological Station makes and records over 55,000 measurements. It is self-contained and can monitor such parameters as rainfall: humidity: wind speed and direction; air. soil and water temperatures: barometric pressure; solar radiation; water level, flow and pH .

The equipment can be installed on land, drilling rigs, or on board ships and the information is recorded on standard $\frac{1}{t}$ inch magnetic tape. This tape is translated using standard Plessey equipment to provide computer compatible paper tape.
Designed for use with Plessey hydrological and meteorological monitoring and recording systems. the "Hy-Met" recorder test-set provides facilities for readily checking the function of the station.

Electronic Test Equipment

Two recently announced electronic circuit test equipments are shown above and left, they are; the Fixit (left), an inspection test system for checking mass-produced electronic circuit board assemblies. and the test console (above) used by H. J. Leak for checking tuners and amplifiers.

Fixit, a plugboard or tape programmed test system, has been introduced by Systomation. Inc., New York. The system has the ability to check the exact values of electronic components. such as resistors, diodes, transistors. etc.. even though they are wired together in complex parallel electronic circuits. The system is already in use in the United States.

The comprehensive final testing of high fidelity tuners and amplifiers takes up to forty-five minutes by hand. Now H. J. Leak. part of The Rank Organisation, are using a 10.000 Ethermatic test console that carries out an exhaustive test procedure on each unit in about onetenth of that time. A print-out of all readings made on a tuner or amplifier is available at the end of each test cycle. The unit is shown in use testing a stereo hi-fi amplifier.

Mini-Computer

ThE latest commercial mini-computer from Raytheon Computers is only 16 inches high and weighs 75 pounds, yet has a memory expansion of up to 32.000 . The computer is particularly suitable for applications relating to instrument and process control, data communications and data acquisition as well as basic scientific research.

A small Raytheon digital computer that was produced specifically for space flight is shown being programmed via a display keyboard, during testing, below. The "brain" of the Apollo flights. these computers are only approximately one cubic foot in volume.

THe change to decimal currency in the U.K. on February 15, 1971 draws nearer as the series of new coins is introduced. But the fact remains that we have undertaken a very difficult operation by maintaining the pound as the major unit of currency, and created the task of relating 24 old pennies to 10 new pence.

Electronic methods of conversion to cope with all the 199 values under $£ 1$ fall into two categories: analogue or digital computer techniques.
The analogue method using a simple Wheatstone bridge type of balance was tried, but it was difficult to obtain a sufficient degree of accuracy, it being necessary to be within 0.5 per cent. It is difficult to achieve this, even with quite sophisticated circuits and impossible with simple electronics using dials or meters, so this method was abandoned.

DIGITAL CONVERSION

When one tries the digital method it is then that the problems which our planners have imposed become apparent. The instrument finally devised uses switches to select the shilling and pence values, while lamps show the new pence equivalents. Some way of combining the switches and reducing the number of lamps had to be found to reduce the cost of the instrument. It is emphasised at this stage that this instrument carries out conversion only and is not suitable for use as an adding machine. The circuit diagram of the Decimal Currency Converter is shown in Fig. 1.

DIODE LOGIC

This conversion unit uses diode logic. Following the front panel layout in Fig. 2, the selector switches are divided into three rows, one for the even values of shillings (two to eighteen), one row for the odd values of shillings (one to nineteen) and one row for the old pence values- $1 \mathrm{~d}, 2 \mathrm{~d}$ and $3 \mathrm{~d}, 4 \mathrm{~d}, 5 \mathrm{~d}, 6 \mathrm{~d}, 7 \mathrm{~d}, 8 \mathrm{~d}, 9 \mathrm{~d}$ and 10 d , and 11 d , thus giving a total of 28 switches. Notice that 2 d and 3 d are combined on one switch, so are 9d and 10 d .
The lamps are arranged in two vertical columns, the left-hand column of nine lamps representing 10 p at the bottom of the column, $20 \mathrm{p}, 30 \mathrm{p}$ and so on up to 90 p at the top. There is a single lamp to the right of these columns which correspond to $\frac{1}{2} \mathrm{p}$.

In this way any of the 199 values of shillings and old pence can be selected using two switches. The equivalent value in new pence will appear in the columns of lamps, one lamp in each column lighting up.
The lamps can be 6 volt 0.1 A m.e.s. bulbs or 6 V 0.75 W 1.e.s. bulbs. The relay coil must also be rated for 6 volts operation. Of course, other lamp and relay voltages can be used, but care must be taken not to use current ratings which are too heavy for the diodes to handle.
These diodes are small silicon types such as OA200 or OA202. Some suitable types of diodes are available at very low cost and it may be possible to economise considerably by selecting from these. They are germanium types and are obtainable for as little as $2 \cdot 5$ p ($6 d$) each when purchased in bulk quantities.

SWITCH WIRING

Starting with the 1d value, this switch S28 is wired directly in series with the $\frac{1}{2} p$ lamp LP19, and S29. See Fig. 3. The 2d and 3d values are combined in the next switch, which is in series with the 1p lamp.
The 4 d switch is also in series with this lamp, but there is a diode D1 between the switches and the lamp, which will conduct when either switch is closed.

COMPONENTS . . .

Front view of the converter giving layout positioning of components. All switches must be returned to the off position after each calculation

Diodes
DI-D42 Any type that will carry 100 mA or more (42 off)

Lamps

LPI-LPI9 6 volt O.1A or less; with panel lamphoiders (19 off)

Relay
RLA Any 6 V type with at least one set of changeover contacts

Switches

SI to S28 Double-pole changeover slide or toggle switches (28 off)
S29 Single-pole, on/off, toggle switch ($\$ 2$, S4, S6, S8, S10, S12, S14, S16, S18, S20 to $\$ 28$ can be single pole)

Battery
BYI 6V type 996 or $2 \times 3 \mathrm{~V}$ type 800
Miscelfaneous
Single row tag strips, $\frac{1}{4}$ in pitch, 7 in long (2 off)
Wood for case, p.v.c. covered wire, lettering

Fig. 2. Front panel layout of lamps and switches

Diode D3 separates the 4 d switch from the $2 \mathrm{~d} / 3 \mathrm{~d}$ switch and D4 connects the 4 d switch to the $\frac{1}{2} \mathrm{p}$ lamp.

This pattern is repeated for all the values up to 1 s , so that the 5 d switch turns on the 2 p lamp, and the 6 d switch the $2 \frac{1}{2} \mathrm{p}$ lamp, the 7 d switch the 3 p lamp, and the 8 d switch the $3 \frac{1}{2} \mathrm{p}$ lamp. 'The values 9 d and 10 d and combined in one switch which operates the 4 p lamp and the 11 d switch operates the $4 \frac{1}{2} \mathrm{p}$ lamp. The is switch operates the 5 p lamp.
The 2 s switch at the start of the row of even shillings switches is in series with the 10 p lamp at the bottom of the left hand column of lamps. The even shillings switches are each in series with a corresponding lamp up to the 18 s switch, which operates the 90 plamp at the top of the column.
The line of switches corresponding to the odd numbers of shillings calls for comment since these switches are double-pole, single-throw types. One side is in series with the coil of a relay and a diode. When any one of the odd value paths is completed through another diode, and the "pence" switch and back to the battery, the relay operates.

RELAY CONTACTS

The relay contacts are single-pole changeover, changing the battery return lead for the $1 p, 2 p, 3 p, 4 p$ and 5 p lamps, so that the $6 \mathrm{p}, 7 \mathrm{p}, 8 \mathrm{p}$, and 9 p lamps are operated. In this way 5 p are added to the value each time an odd number of shillings is selected.

For example, suppose we select the value 2 s 11 d . The 2 s switch operates the 10 p lamp, and the 11d switch operates the 4 p lamp via diodes D18 and D16, and the $\frac{1}{2}$ p lamp via diode D19.
Now try the value 15 s 6 d . The 15 s switch operates the 70 p lamp via D37. When the 6 d switch is made the circuit through the relay coil is completed via the second contact on the 15 s switch and diode D10. The relay contacts change over and the 7p lamp is lit by the circuit through D8 and D7. The $\frac{1}{2} p$ lamp is lit through D9.

Thus the 70 p lamp, and 7 p lamp and the $\frac{1}{2} \mathrm{p}$ lamp give a complete reading of $77 \frac{1}{2} \mathrm{p}$.
The fact that the 15 s switch and the 6 d switch must both operate to bring on the 7 p lamp make this an example of the classic AND gate.

COMPONENTS

The bulb holders used in this model are instrument panel indicators. If a protruding lamp is used, it is sometimes difficult to see when the lamp is on in conditions of bright sunlight; the front panel can be set back so that the sides of the case shield the lamps.
The whole instrument can incorporate a small power pack for mains operation; a 6 voit mains transformer and rectifier only is necessary. These should be capable of handling the total current consumption from the relay and the maximum number of lamps in operation at any time. The model shown here used two 3 volt batteries in series; a high capacity 6 volt battery would be equally suitable, for example type 996.

The relay can be almost any type that will operate at 6 volts and has a set of changeover contacts. Examples are Post Office type 600 or Omron type MH2. It is recommended that the coil resistance is as high as is practical to conserve battery power.

TAG STRIPS

This instrument does not lend itself to: any of the modern wiring methods; that shown in the diagram uses long tag strips between the switches.
It is important to make sure that the diodes are connected correctly. The end with the coloured spot or band corresponds to the cathode and is shown on the circuit diagram with a + sign. Relay contacts RLA1 are shown in the non-operative position.
The layout of the instrument with component positions is shown in Fig. 3. It is not essential to follow this rigidly. The drilling details of the front panel will depend on the sizes of the lamps and switches; it should not be beyond the ingenuity of the constructor to arrange these as he chooses.

OF LICICIC's

PART TWO-By R. W. COLES

PRACTICAL RTL DICE

ARMED with the basic facts of RTL from Part 1, we can now consider a simple "novelty" application, an electronic dice unit, which will take the place of the usual cube of dots used in so many games of chance.

Anyone interested in RTL will find plenty to get his teeth into, as the design employs the main elements of this family as well as interface circuits and a multivibrator.

This article will describe the design of a small electronic unit which will replace the conventional playing dice.

It must be appreciated that this is intended purely as an exercise in the use of RTL; it is possible to design a more simply way of simulating dice.

The system is designed around RTL logic integrated circuits, and serves as a useful introduction to the use of these versatile devices, which are now available quite cheaply from several different advertisers in this magazine.

OPERATION OF THE SYSTEM

The operation of the system is quite simple: a free running astable multivibrator is used as the input to a binary counter, which is programmed to divide by six. The six separate states of the counter are decoded by a system of gates, and are used to illuminate six miniature lamps, only one of which will be on at a given time.

Each of the bulbs is assigned a decimal value between one and six, and the bulb which is illuminated at the end of the count represents the "up" side of the dice.

The element of chance is introduced by allowing the "thrower" to control the input to the counter by means of a push button. The multivibrator, or "clock", speed is arranged to be fast enough to prevent the eye from following the count, which will be "frozen" when the button is released.

The unit employs a total of five integrated circuits: two ML914 dual two-input negative logic NAND gates and three ML923 JK bistable flip-flops. These i.c.s are also shown as $\mu \mathrm{L} 914$ and $\mu \mathrm{L} 923$ in suppliers' lists. In addition, eight $n p n$ silicon bulb-driver stages, ten resistors, and two capacitors are employed.

The "clock" is made by a.c. coupling a dual gate to form a multivibrator which oscillates at approximately 1 kHz , and gives a square-wave output to drive the counter. The circuit of the ML914, with the two resistors and two capacitors which set the frequency and pulse width of the output, is shown in Fig. 2.1. To enable the clock to be switched on and off, a push button switch is connected in its positive supply line.

BINARY COUNTER

The divide by six counter is formed from three JK bistables, with feedback to prevent it cycling in unwanted states (because a three-stage counter would normally have eight separate states), each stage dividing by two. The "text-book" way to make a divide by six counter is to force a divide by eight counter to reset to zero when a count of seven is decoded by an AND gate. However, by using JK flip-flops, the same result can be achieved in a simpler way, with the added advantage that bulb decoding gating can also be made simpler than would be the case with a conventional binary divider.

The simplest way to set about designing a counter which is not required to divide to a binary multiple (two, four, eight, 16, etc.), is to divide the required divisor by two until the lowest odd integer is obtained. A counter, with feedback, is then designed to divide by this number, followed by (or preceded by) a number of divide by two stages, to make the final divisor up to the required number.

Our divide by six counter can be constructed by using a divide by three counter followed by one divide by two stage. A further divide by two stage would turn it into a divide by 12 counter, and so on. The advantage of using this method is that it is much simpler to arrange the feedback for resetting a divide by three counter than for a complete divide by six counter.

There is a disadvantage which could be important in some other applications, the counter outputs are not in the natural binary code, as can be seen from the truth tables of the two types of counter discussed (see Fig. 2.2).

Fig. 2.1. Clock pulse generator made up from two 2-input NAND gates with C1, C2, R1, and R2 added to make up an astable multivibrator. $R I=R 2=\mid k \Omega$. $C I=C 2=0.68 \mu \mathrm{~F}$

Fig. 2.2a. Conventional $\div 6$ counter

Fig. 2.2b. This -6 counter is used in the dice system

Fig, 2.3a. Simple
Fig. 2.36. Shift register bistable latch bistable

Fig. 2.3c. Simplifled logic dlagram of a JK bistable

VERSATILE JK

Perhaps it might be as well to consider the way in which the JK has developed to become the "doanything" device, suitable for use in memory circuits, shift registers, and various forms of counters, used in logic circuitry today.

The simplest form of bistable is the set/reset or latch, which is formed simply from two NAND or NOR gates, as in Fig. 2.3a. The inputs to this circuit must be complementary, and there is no provision for a clock input, so its use is limited and confined to simple memory applications.

The first step in improving the set/reset type is to add AND gates to the inputs, enabling information to be gated in synchronism with a clock pulse, which is common to both gates. The asynchronous inputs of the simple latch can be retained if required by adding an OR gate between the bistable and the AND gates. A circuit of this type is shown in Fig. 2.3b.

This is a useful circuit which may be used in shift registers, but the inputs must still be complementary to ensure proper operation. To enable the circuit to be self-complementing, feedback can be provided from the collector outputs of the bistable to the inputs of the AND gates, ensuring that if two "ones" are present at the inputs of the AND gates, the bistable will change state. This circuit is the basis of the JK flip-flop, and is shown in Fig. 2.3c.

It must be appreciated that this is a simplified representation, and there are some problems which have not been considered in this treatment.

DICE COUNTER

The complete logic system of the electronic dice is shown in Fig. 2.4. A divide by three synchronous counter is made up from the JK flip-flops A and B. The third JK flip-flop C is a divide by two stage. The complete counter conforms to the truth table given in Fig. 2.2.
The decoding of the six separate states of the counter is likely to appear very complicated to those unfamiliar with the "dodges" which are often used in this type of circuitry. A knowledge of Boolean algebra is necessary to design such circuits, but a simple explanation will be given here. By using this in conjunction with the truth table a constructor should be able to sort out exactly what is going on.
The transistors used to drive the bulbs are also used as a form of and gate. This is possible as a transistor requires both that its base be taken positive, and that its emitter be grounded, before it will turn on, assuming $n p n$ transistors are used.

Therefore, if we let bistable C control the grounding of the emitters of the bulb drivers, we can see from the truth table that output C is down for three counts. Output $\overline{\mathrm{C}}$ is down for the other three counts, enabling the emitters of bulb drivers I, 2 and 3 to be connected together and ground them through another transistor, whose base is controlled by the $\overline{\mathrm{C}}$ output. Drivers 4 , 5 , and 6 can be similarly controlled by the C output.
Having dealt with the C bistable, A and B can be decoded having gone through two complete counts of three in any count of six. The bases of drivers I and 4, 2 and 5, 3 and 6 can be connected together in pairs and driven from the decoded states, which represent the three separate states of bistables A and B.

The decision as to whether 1 or 4,2 or 5,3 or 6 is illuminated is carried out by bistable C , switching on only one emitter of each pair.

SCOOP Garrard 3000

CUSTOM UNIT
 BY fAMOUS BRITISH MANUFACTURER

A defuxe custom atyled and built record player unit mand by world famous Britiah manufacturer. The unit Incorporates the reaowned Garrard 3000 four speed autochanger with lightweight tubular pick-up arm FJTTED WTTH SONOTONE 9T/A 8TRREO CARTRIDAR with dianiond atylus. The beautifuly made pllith te finiehed in richly figured teak veneer with tinted perspex paneln in the lid and with attractive charcoal grey "mirror" insert panel on front. All metal trim party are in satin

LASKY'S SPECIAL PRICE £16.15.0 port 5 Sb-

SOTILSAS-57

ELEGANT BUDGET PRICED BOOKSHELF SPEAKER SYSTEMS

The AS-57 is a real space saver, This Ane bookehelf highancity bpeaker system will provide good quality sound ior use where apace is at a premlani, the $A \mathcal{A}-5$? system is Ideal for the amall apart-
ment or 1 tolated area. The ment or toolated area. The special high efficleocy 5×7 in tull range speaker hus a trequency range of 70-19,000 Hz with ${ }^{\circ}$ peak mandiling capacity of 10 watta. Imp. 8 slze: 5 2 $\times 151 \times 8\{\mathrm{in}$.
LAskr's $\mathrm{fl\mid 5}$ per PAIR ㅍC(U): DIGITAL CLOCK

 PROOF - bUILT IN ALARM 8UZZER

- MADE ESPECIALLY FOR LASKY'S BY FAMOUS MAKER
- MAINS OPERATION
- 12-hour alarm
- AUTO "SLEEP" SWITCH
- hours, minutes and SECONDS READ-OFF
- FORWARD AND BACKWARD THME ADJUSTMENT
- SILENT OPERATION SYNCHROMOUS MOTOR This unique DIGITAL CLOCK is now avallable EXCLUSIVELY FROM LABEY'S in chasois form for yout to monnt in any hoosing that you choome.
All settings are achleved by two dual-concentric controls at the front fncluding:
OX.OFF-AUTO and AUTO ALARM, "sleep" ewlich, 10 minute divielon "ellek: ON.OFF-AUTO and AUTO ALARM, "sleep" Ewilch, 10 minute divilon "cllec" set alarm (up to 12 hour delay), time oujustmnent. Ultra simple mechanism and high qually manuacture guarantee reiable operation and iong life.
The sleep switch will automaticaly turn of nny applamee-radlo, TV, Hght elc, at any pre-set time up to 60 min . and in conjunction with the AUTO eetting will ewitch on the appliance again next morning.
The clock meagure $43 \mathrm{~W} \times 13 \times 31 \mathrm{D}$ (overall from front of drumi to back of switch). tlons, complete AC 00 Hz cperation; switeh rating $250 \mathrm{~V}, 3 \mathrm{~A}$. Cainplete mith instrucELECTRONICS MOBBYIFT.

LASKYMSREM POST $3 / 6$

SPECIAL QUOTATIONS FOR QUANTITIES

4 -speed single record playing dects features Inciude: hears" preeision-
 force adjuatment, cneIng revice. After play, the nrm automatically rises, returns to reat and swltches
oft motor. Finiah:
diark green pmolychronnatic and sitver

LASKY'S PRICE £11.19.6

SP 25 Mk . II with A.D. 76 K stereo Mugretic Cartridge 215100 OTHER GARRARD UNITS FROM STOCK AUTOCRANGERS

SL79B 3000 complete with \&TABC 178 cartridge \&s is B
${ }^{\text {SLBOLB }}$
8L95B
\$L75B
SINOLE PLAYERS
AP $75,118.10 .0$. AP75 with AD76K ming. cart., 481.10 .0 , 401 Tranacription Unit 420.0.0.

BASEG AND COVERS FOR GARRARD CNITS
Type WB1 and WB6 for noodels 2025TC, 3000, 8L65B 1026. 8P25 Mk II Price WB1 28.10.6. WBS *6.19.6. Type WB4 for models SLT2B, 8Lis6B, SL95B Price e5.18.4, Perspex covers: SFCl for HB1. 28.14 .1 . 8FCA for WB4 and WBs tallows unit to be played with the cover in place)-price es.8.0.

PACKAGE DEALS

AP75 complete with AD7BK stereo magnetic \&30.0.O Posc 10 ;SP25 Mk II complete with AD76K cartridge, teak pllpth and perspex cover
1625 complete with $\mathrm{J} \because 10 \mathrm{E}$ atereo ceramic cart., teak \&19.0,0 Pose 7/6 plinch aad perspex cover Poot on Garrard unite: 6/- extra-except APT5, SLi56B, RL95B and 401 i/f extra Oost on basea an cove ext
SPECIAL OFFER-BSR UA-15
4 apeed sutochankers with modified tabular tone arm, Comp, with stereo cart, eit.18.8.

Audio Tronics 70

The 1970 elition of J,arky's fanous Aud io-Tronica catalogue is available FREF on request. The 28 tabloid pages many in full eolour are packed wIth 1000^{\prime} 's of items from the largett otockil in Great Britaln of everything for the Radio and H1-Fl enthusiant, Electronlco Hobby ist, Mervicemen and Communications Ram. Over halt the pages are devoted excluaively to every sapect of Hi-Fidincindlng Laaky'a buiget Stereo Systems and Package Deale). Tape recording and Audio accesantles plus Lakky's amazling money saving vouchers worth over $£ \geq 15$.
SEID TODAE. Send: Yowr name, address and 2/- for the poat and inctunton of your ne on our regular malting liet.
THIS MONTH'S VOUCHERS WORTH 50/-

Tel: 01 - 3535812 152/3 FLEET STREET, LONDON, E.C. 4. Open all day Thymaty, enly closing 1 pim. Sat. Tet: 01-353 2833

HIGH FIDELITY AUDIO CENTRES
42-45 TOTTENHAM CT, BD, LONDON, WIP SRD. TEL: 01-580 2573 Open all div. 9 a.m - bom. Monday to Saturday H8 EDEWARE ROAD, LONDOR, W.2.

Tek: 01-723 9789
$\operatorname{macmber}_{\infty}^{\infty}$

The decoding of each of the three states of A and B is rendered simple by the type of counter employed. The first state has to be described in terms of A and B , but states 2 and 3 are described merely by deciding whether the A output or the B output is "up". A gate is only necessary to decode counts 1 and 4; counts 2 or 5 can be driven by the NOT output of bistable A, as this is positive only during these two states. Similarly, counts 3 and 6 can be driven by the \bar{B} output.

The gate used to decode the first stage of the counter uses half of an ML914, used as a 2 -input negative logic NAND gate, its inputs being \mathbf{A} and $\overline{\mathrm{B}}$, which are both negative at a count of one only.

As a bit of light relief, let us see what has happened to the spare half of the ML914, left over from the decoding circuit. It is in fact being used as an amplifier, with both its inputs connected together, to square up the edges of the clock waveform.

This is necessary, as the JK flip-flop needs a very fast negative edge on the clock input, for it to operate correctly; our clock multivibrator cannot be relied upon to produce such edges.

PRACTICAL DETAILS

This completes the circuit description, except for a few practical details. The supply voltage used poses a bit of a problem, the RTL i.c.s. specified are designed for a supply voltage of 3.6 volts. Since this is not easily obtained from dry batteries, a compromise is used of 4.5 volts, and an extra cell is used to boost this to 6 volts for the bulb circuitry.

The bulbs used must be low consumption types, requiring in the region of 50 mA at 6 V . Although they will be slightly under-run, due to the saturation voltages of the two driver transistors appearing in series with each of them, this is not a bad thing from the point of view of reliable readout.

The actual layout of the circuit can be safely left to the constructor, as there are no special problems involved, but perhaps a few hints would be useful. There are several kinds of perforated baseboard suitable for the support of this kind of circuit on the market. Veroboard is one which can be used for this particular application.

Using this type of board in the 0 - lin matrix size the integrated circuits can be directly inserted, but due to the component density, a good deal of the connections will have to be made using "jumper" wires to realise a compact unit.

The i.c. leads can be left at least $\frac{1}{2}$ in long, if desired, but to be sure of re-use of the i.c.s, Lektrokit board can be used. In this case a ring of terminal pins can be used for the i.c.s, which can be mounted upside down on the board, wiring being carried out underneath.

A miniature soldering iron is a virtual necessity when working on this sort of layout, unless the constructor possesses a very steady pair of hands.

The completed unit can be accommodated in a small plastics box, the only controls being the on/off switch, the push button, and a row of six miniature lamp holders.

Next month's article in this series will look into Diode Transistor Logic or DTL.

(i)
 LiND-AiR AUDIO

E.M.I.

COMBINATION LOUD. SPEAKERS

CIOOI MULTI-TESTER

Overloas protectron a,c. velts 10 , 50 , 250, $1,000 \mathrm{~V} ; \mathrm{d.c}$. volte 5-25, 125: 500 , $4,500 \mathrm{~V}$; d.e. current $0-60 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$; Resktance $0-60 \mathrm{k} \Omega$ $0 \rightarrow 6 \mathrm{Mn}$; decibels -20 to $+22 d B$. Elize of meter 4 in $\times 3 \frac{2}{2}$ in \times Iin. Complete with leather cmee. $85 /-\mathrm{P}$, 总 $\mathbf{P}, 3 / \mathrm{f}$

62D. MULTI-TESTER

A fantantic stereo muplifer made excluively for siace in amplifiera. Inpats for gram and radio tuner and provision for direct tape reoording. Attractlye and modern panel with bass, treble halance and volume controls also onfoft and stereofmono awiteh. Outpus 5 w per chapmel nausle power. Frequency reepense $40-20,000 \mathrm{~Hz}$ $8-16 \mathrm{ohm}$ speater matching. Size, 161 in $\times 14 \ln \times \sin$.

SINCLAIR IC.IO

 INTEGRATED CIRCUIT10w Amplifier, Size only in $\times 0.4$ in 2 manual glving detalls of a wide range of applleations and inatructions. Fiuaranteed 5 years. OKLY 59'\%, P. \& P. $1 / 6$. APECIAL TRAMSFORMER FOR OPERA-

HI-TONE RECORDING TAPE

BRITISH MADE TOP QUALITY						
J100:	3 in	L, P.	PYC	2205t	5/6 P. \& P. 1/2	
51002	3in	T. ${ }^{\text {P, }}$	Poly	600ft	10/6 P. \& P. 1/2	
J1003	5in	L. ${ }^{\text {P }}$.	PVC	9001 t	10/= P. P. $1 / 8$	
J1004	5 Lim	D.P.	Poty	1,2001t	15:-P. \& P. $1 / 8$	T 10170
J1005	5住t	L.P.	PVO	1,200.01t	12/6 P. \& P. 2/-	
$J 1006$	6iln	D.P.	Poly	1,800tt	29/6 P. \& P. $2 /-$	
51007	\% 7 in	S.P.	PVC	1,2001t.	19/6 P. \& P. $2 / 6$	(ymy
$J 1008$	$7 \mathrm{7in}$	L. P .	PVC	1,800ft	17/6 P. \& P. 2/6	C-2-dy
51009	7 Ta	D.P.	Poly	3,400ft	$25 /-\mathrm{P} .4 \mathrm{P}$ 2/6	
51010	\%in	T.P.	Poly	3,600tt	50/-P. \& P. $9 / 6$	
C60	Cossatte (Library cased) 8,6 P. it P. 1/-					
C90	Cassette	e (Lib	rary cat	ed)	13/-P. \& P. 17-	
C120	Crasetle	(Lab	rary che	ed)	18/- P. * P.1/~	

NEMI STPBOO 8-TRACK STEREO

TELETON STP. 8008 -TRACK BTEREO CARTRIDGE HOME PLAYER A complete solld state unit reauly to plug in and play. Hi-Fireproduction at 3 1.p.s. Player anit Incorporates volume, tone and balance controle and purh-button track selector. size $\mathbf{1 4 3} \mathrm{in} \times 10 \mathrm{i} \mathrm{in}$. Matched speakern, gize $111 \mathrm{n} \times 8 \mathrm{in} \times$ bita $_{\frac{1}{2}} \mathrm{ta}$ each.

WHARFEDALE SPEAKER KITS

Cornplete with all components for bullding into sultable cablate. Tnit 8 KIt E1L. 19.8 ench esi palr Unit 4 K it \% Gng. palt Unit 5 Kit 89 Gns. pait 816.0.0 each 289.10.0 each P. \& P. $10 /$-each, 15/- pair

SAVE ON AKAI!

AKAI 40to stereo Tape Recorder List Price E124.18.0.
Our Price 99 Gns.

AKAI 4000 B STERZO TAPE DECK. (As illua.)
Our Price 69 Gns.

Superb quality hi- A . 10W per channel munic power. Inputs for gram (mignetic and eryetal), tumer and auxitary, Tape record output. Controla: volume, balance, bass, cablnet with brushed alominjum cabinet with brashed aluminjuna Liat Price \&2g. $\mathbf{E} .0$.
Our Price 22 Gns.
\qquad SPECIAL LIND-AIR OFFER! ROTEL 100 AMP STEREO AMPLIFIER

Fully tranaistorlaed with all folities for the home hl-fi bystem. Liet price $\mathbf{5 4 5}$
Our Price $£ 37.10 .0$

British Made
Solderlcas brealboard yanels, for thet reHable component connections.
Single DeCa. One B-DeC with Control Panel, $31 \mathrm{~g} \cdot$ and Accessorles for soldertess connectlons to controls, etc., with booklet "Projecta on 8-DeC" givlng canatruction details for a variety of circuite. $29 / 6$. P. \& P. 2/t.

4-DeC KIT. Four S-DeCs with two Control Panela, Jigs and Acceessories and the hookstrong attractive plantic came. Ideal for the profespional uetr. 85.17 .6 . P. \& P.

Parrard

HI-FITURNTABLES

2025 T/C' with stereo cartrjuge... 88.19 .8 3000 with Sonotone 9 rAMCD atereo cartridge 8P2 5 Mz . II ..
ex0.10.6 BL6EB 110.19 .6
 4P75 cover for above. . AP75 8LF2B
8L75B 8L75B
8L96B
SL9BZ
...... . . 188.7 .0
Bace and cover for above $888,10$. P. \& P. Decks, 12/6; Base and Cover, 10% Deck/Rase/Cover, 17/6.

SPECLAL OFFERS:

SP28 Mk. II with bage 814.10 .0 \$225 Mk. II with Sonotone $\mathrm{P} .15 \mathrm{j}-$ SP25 Mk, II with Sonotone
BTAKCD cartridge and base $\ldots \ldots$. $\mathbf{\$ 1 5 . 1 8 . 0}$ Sonotone 9TABCD cartridge ... P. $\mathbf{3} .15 / \overline{0}$

18/19,25 \& 53 TOTTENHAM CT. ROAD, LONDON W. 1. Telephone: 01-580 2255/4532/7679
0 pen 9.6 pm . Monday to Saturday. Thursday until 7 pm .

HOME RADIO (Components) LTD. Dept. PE
234 London Road, Mitcham CR4 3HD Telephone 01-648 8422

The $A B$ of obtaining components-

 SIMPLY! QUICKLY!Purchase a Home Radio Catalogue, using the Coupon below. Please enclose a cheque or postal order for 12/6 (8/6 plus 4/- packing and postage). Your catalogue will be sent by return of post.
3 Choose your components. In the Home Radio Catalogue over 8,000 components are listed and more than 1,500 illustrated. A comprehensive index heips you to locate your requirements easily.
Join our Credit Account Service. Full details are enclosed with every catalogue.
Order your components. Having joined our Credit Account Service, you may order either by phone or post. If you phone out of office hours, a recording machine takes your message.
Get started on that project! Whether it's constructing or servicing work, the fact that you can obtain the right components easily, without having to chase from shop to shop, will put you in the right frame of mind to make a better job of it.

Whether or not you wanc to use the Credit Account Service mentioned above, you certainly need the Home Radio Components Catalogue, if you construct or repair radio, television and electronic gadgets. By the way, the catalogue contains six vouchers, each worth a shilling when used as instrueted, and with the catalogue we supply a 30 -page Price Supplement and a Bookmark giving electronic abbreviations.

Post the Coupon today, with 12/6.

The price 12/6 applies only to cotalogues purchased by customers residing in the U.K.

Never Built a Kit Before?

Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

Deluxe Car Radio Kit: K/CR-I ($\left.\begin{array}{l}\text { lesps } \\ \text { Sprs. }\end{array}\right) \leq 12.12 .0$ Carr. 5/-

Kit: K/IM-18U - \quad I6.14.0
Carr. 5/-

'SEYERN' AM/FM Radio Kit: K/SEVERN - £18.18.0 Carr. 5/-

Kit: K/GD-69 - - II.0.0 Carr. Pald

transistor DacaMMULTINOETER

「N this, the final part of the "Transistor D.C. Multimeter", we give mounting details of the components and boards inside the diecast case, final wiring details and setting up instructions.

CASE DETAILS

The multimeter is housed in a diecast case of outside dimensions $8{ }_{3}^{\frac{3}{4}} \mathrm{in} \times 5 \frac{3}{4} \mathrm{in} \times 2{ }_{32} \mathrm{in}$. The box is used upside down, since the screws of the lid prevent the lid from being used as the top panel. The lid, therefore, becomes the underside of the instrument, to which four rubber feet are screwed, and the bottom of the box makes a satisfactory top panel. Top panel dimensions are in less than the overall dimensions, because, with a diecast box, the sides taper slightly inwards. When drilled, as in Fig. 9, the case is painted to protect it; paint has to be removed from openings and from the edges and interior of the case when dry.

The neon signal lamp is mounted just under the edge of M1 and is raised $\frac{1}{8} \mathrm{in}$, by fitting a piece of black

Bakelite under it as shown in Fig. 10. This is positioned on the top panel between the milliammeter and the Perspex switch escutcheon. On final assembly, the signal lamp is fastened from the inside, by pushing on a spire nut, over the plastic lampholder.

SWITCH ESCUTCHEON

The Perspex switch escutcheon is shaped to fit between the signal lamp and terminals, and is dimensioned as shown in Fig. 11. Two $\frac{3}{4}$ in diameter holes enable it to fit around the nuts securing the range switches, and it is held in place by two 8B.A. countersunk screws. These are situated under the knobs of the range switches.

To set the switch knobs accurately, a small depression has to be drilled in the shaft for the grub screw. The smooth end of the grub screw can be scored with a file, so that the grub screw will leave a mark on the shaft at the required position. An indentation is made on this spot with a small drill.

NOTE: It is recommended that a suitable meter be obtained before

Fig. 9. Case drilling detalls
Fig. 11. Perspex switch escutcheon

Adequate clearance has to be ensured between the knobs and the Perspex escutcheon. The escutcheon can be marked, as shown in the photograph, to give switch positions and potentiometer designations.

MAINS WIRING

The metal case of the testmeter has to be earthed to the mains earth via SK3. The circuit of the testmeter is in no way connected to the metal case or to mains earth.
The insulated mounting for the miniature mains transformer T1 (Fig. 12) insulates it from the metal case, and provides a junction box for the transformer connections. The p.v.c. insulation of the connecting leads is carried into the insulated mounting, which consists of three rectangular pieces of insulating material sandwiched together. Parts B and C are of $\frac{1}{8}$ in laminated Bakelite, and can be bonded with adhesive. These are bolted at two corners to part A, which is of $\frac{1}{6}$ in material. A pair of 6 B.A. countersunk bolts at the other corners, secure the mounting to the inside of the case.

The insulated leads from the signal lamp are hardly long enough to reach the mains switch S26, and to avoid running these wires very close to the range resistors, it is necessary to increase the length of the existing leads.

Details are given in Fig. 13 of a special insulated cover for the mains switch, which ensures safety if tests have to be made on the low voltage wiring with the unit turned on. All the mains wiring is double insulated, by wrapping each pair of p.v.c. covered wires with cloth insulation tape, avoiding an excessive thickness.

Fig. 12. Insulated mounting for Tl , holes are arranged to clear transformer tags. Sections B and C are $\frac{1}{8}$ in thickness Bakelite

Fig. 13. Insulated cover for S2b. The lower section with the screw in position should be fitted before the wiring is connected to the switch

BSR 4－SPEED SUPERSLIM AUTO RECORD CHANGER

quality unit baeked by BSR garantee．Sive 18 ： 11zin．Above
 bolow 2iin．AC 200； 250%

 with SYEREOMONO XTAL E6．19．6 BSR Minichanger UA50 StereotMono．

£7．19．6
GARRARD PLAYER8 Fith Sonotone 9TA Cartridges， 8torto Biemondimono Sappaire．SP25 Lt II si4．18．6． AT60 MI II £14．19．B．Model 3000 E18．18．6．Post 5 ， 6

75／－
BC8 DE－LDXE 3 WATT AMPKIFIER．Ready made and testedi，A \＆－stage unit naing triode pentode ralve，giving transtormer，with knolss，londspeat E280．Preguency reaponse $50-12,000$ cpz．
$89 / 6$ Sensitivity $200 \mathrm{~m} V$ ．Post 516 ．
R，C．B．TEAKWOOD BASE Ready cut out for $77 / 6$ P0．PL ASTIC COFRRS FOR ABOVE
2．C．8．PLABTIC COVERS FOR ABOVE BASE， $77 / 6$
Durabje tinged plastie，Ettractlve appearenes． SMI PICX－UP ABE Complote wit

RMI YOMIOR 4 SPEED RECORD PLAYRE Malns operated motor，turntable and pick up $59 / 6$
complete．Post $5 / 6$ ． complete．Post $5 / 0$ ．

RI－FI PICK UP EARTRIDGES
GP94 55／－；GP98 45／－；GP91 90：－；GP67 1916，ACOS L．F．only 10；6．All wtandard fixing complete with stylog．

CRYSTAL MIKE INSERTS
1y＂die．6／6．ACos 1z＂山la．12／6．BM3， 1^{*} 山is． $9 / 6$
PORTABLE AMPLIFIER

Fortable mint p，in，bystem． Many nilas－idoal for	
Parties，or as a Eahy	
Ahem，Inlercom，Tele－	
Amplifier，tie．Attrective	
rexing covered	
sise $12 \times 8 \times 4 \mathrm{in}_{\mathrm{s}}$ ，with powerfal 7×4 in．日peaker	
and four tranmigtor one whtt	
gower amyliter．Usen PF9 hattery．	
Brand new in Makere＊certon with	
fall makari＇guarmitee．	
World Jamous mikse．	
WEYRAD P50－TRANSISTOR COHS	
RA2W Ferrite Aerial ． $12: 6$｜spere Cores ．．．．．．．．．．	
Onc．Pborinc ．．．．．．．．．．．5，4	Driver ITans．LFDT
I．F．P50／RCC $470 \mathrm{kc} / \mathrm{s}$ ．． $5 / 7$	Printed Clreait，PCAl
	J．B．Tuning Gang
P5y1 or $\mathrm{Pb1}^{12} \mathrm{E}$ ．．．．．．． 517	Wegred Booklet
P61／8．．．．．．．．．．．．．．．． 8 ：－	OPT1
Fertite Rod $8 \times$ lin．4／－． 8 ；	

VOLUME CONTROLS 80 omm Coax 9 4．yd． Cong pindlen．Midgof Size BRITISHAERIALITE 40 7u， $88 / \mathrm{m} .60 \mathrm{yd} .40 / \mathrm{m}$ LNEREO I／S 11／－D．P．15／－FRDNGE LOW LOSS 2／－ WIRE－WOUND A－WATT POTS．WLRE－WOUND 3－WATT Ymsil trpe with small knob，8TANDARD SIZE POTS

VEROBOARD 0－15 MATRIX
$81 \times 5 \mathrm{in}, 818.23 \times 834 \mathrm{~m}, 8 j 2,31 \times 3.2 \mathrm{in}, 818,32 \times 5 i \mathrm{~m} .52$
EDGE CONRECNORS 16 way $5 /-124$ way $7 / 6$.
PLIS 98 per packet 3／4．FACD CUTLERS $7 / 6$.
E．B．B．P．Board 0．15 MATRIX 2yin．wide Bd．per 1 m ．

 S／6； 12×8 in． $4 / 6 ; 10 \times 7 \mathrm{in} .3 ; 8 ; 8 \times 8 \mathrm{in}, 2 / 6 ; 8 \div 41 \mathrm{n}, 1 / \mathrm{B}$,

 TOOGLE 8WITCEES，ip．2，6；sp．At，3．6；dp．8．8；dp．dt，4；6 ALL PURPOSE HEADPHONES LOW RESISTANCE HEADPHONBS B－ 5 ohms． DE LUXE PADDED STEREO PHONES 8 ohm
＂THE INSTANT
BULK TAPE
ERABER AND
REGORDING
HEAD
DEMAGNET18ER
200／250＊．A．C．Eeallet $5 . A$

GBAERAL PURPOEE TRANSISTOR
PRE AEPLIFIER BRITISH MADE for Mike，Tape，P．O．，tiuitar．
Battery $8-18 y$ ，or E．T．line $800-300 \mathrm{y}$ ．D．C，operation，Sise
 se wit

NEW TUBULAR ELECTROLYTICS CAD TYPEB

 NEW T81350 V
4.850 V
8.450 V 1.450 V
$18 / 450 \mathrm{Y}$ $18 / 450 \mathrm{~V}$
$38 ; 450 \mathrm{~V}$ $25 ; 450 \mathrm{~V}$
$25: 25 \mathrm{~V}$ $25: 25 \mathrm{~V}$
$50: 60 \mathrm{Y}$
 18
50
60
38
38
88
100 $16+18 / 800 \mathrm{~V}$
$50+50: 350 \mathrm{Y}$ $30+100: 350 \mathrm{~V}$
$32+32 / 250 \mathrm{~V}$
$28+32: 450 \mathrm{~V}$

SUB－MIF．EL，ECTROLYHICS．1，2，4，5，9，18，25，30， 80,100 ， 200 mF 15 V R $; 500,1000 \mathrm{mF} 12 \mathrm{~V} 3,8: 2000 \mathrm{mF} 25 \mathrm{~V}$ ，i－

 $1.000 \mathrm{~V}-0.00 \lambda, 0.0082,0.0047,0.01,0.02,16 ; 0.047,0.1,2 ; 6$ ． SILYER MICA，Ciose tolorance $20.2 .2500 \mathrm{pF} 1: 0$ ； 580 2． 200 pF 2：－ $2,700-5,800 \mathrm{pP} 4 /-; 6,800 \mathrm{pF}-0-01$ ，mfd $8,-$ e each．
 motion，standard 9 ．－mmall 3 －gang 500 pF 22 8HORT WAVE，25pF， 11
 TUNING．Solid aielectric． $100 \mathrm{pF}, 800 \mathrm{pR}, 500 \mathrm{pF}, 7,-$ each．
TRINMERS，Compression $80,50,70 \mathrm{pF}, 1 ;-7$ $100 \mathrm{pF}, 150 \mathrm{pF}, 18 ; 250 \mathrm{pF}, 1: 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 2,-1000 \mathrm{pF} 2: 6$ RECTLFIERS CONTACT COOLED WWave 80 mA
 FEON PANEL INDICATORS 250 V ．ACDC Red．Amber 4 RESISTORS．Preferred values， 10 ohms to 10 mes．
 Ditto 5．o．Preferred values 10 ohms to 22 mag．， 9 d ． WIRE－WOUND RESIBTORS 5 watt， 10 watt， 15 wath 10 ohms to 100 K ． $2 /$－each； 82 whtt． 1 ohm to 8.2 ohms． $2 / 1$
Q MAX CHASSIS CUTTER

 TRANSISTOR MALNS POWER PACKS，FULL WAYE 9 voit 500 mi Size $4 \frac{21}{2} 2 \mathrm{in}$ Kital casse． $49 / 6$ Kalf Wave 9 volt 50mA．Size 2！ 11 in．Snap terminals 3q： 6

MAINS TRANSFORMERS
 $250-0-25050 \mathrm{~mA} .6 .8 \mathrm{v}, 2$ amps，centre tapped

$250-0-250 \mathrm{g0mA}, \mathrm{~B}, 3 \nabla .4 \mathrm{amp}$ ．

 $8,8,8,10,12,15,18,24$ and 307 ．at $28,40,48,80,38 /$
1 amp．， $8,8,10,12,16,18,20,24,20,38,40,48,80$

 COAYIAL PLUG 1：3，PANEL SOCKETS 1／8．LINE 8：6． BARITOD TWI TEEDERS 1／ F Fi， 80 ohms or 300 ohme． JACK SOCKET std．opan－circuit 2,6 ，closed circuit 4,6 Chrome Lasd Socket 7，8，Phono Piufali－，Phono 8ocketile dAOK PLUGS 8td．Chrome $3 /-8.6 \mathrm{~mm}$ Ohrome 2．6．DIN

E．M．I． $13 \frac{1}{2} \times 8 \mathrm{in}$ ． LOUDSPEAKERS

With Aared tweeter cons and cermmic

 magnet． 10 patts，Bass res， $55-00 \mathrm{cps}$, Bass res， $45-60$ cps． speech coll 8 or 15 45／－ Also with twin tweeters，Complete With crosnover．sor 8 or 15 \＆4 ohmis． 10 witi． 44
Recommended Teak Cabinet $\quad 55$
$\$ 18: 10 \times$ Oin．

MINI－MODULE LOUDSPEAKER KIT
 10 watt 65／－carriages．

Triple speaker syxtom combining on ready cut bando． 3 in ．chipboard $15 \mathrm{in}, \times 87 \mathrm{in}$ ．Beparate Bass，Widdle and troble loudipeakers and crossover condenser．The heavy duty 5 m．Bass Woolor unit has a low remonance
cone．This drive to the middle registar and the tweoter recreates the op end of the masical mpectrom．Total response 80－15，000 cps．Fall instructions for 3 or 8 ohm TEAK YEREERED BOOKSHELF ENCLOSDRE．

ALH YODELS＂\＃AKER BPEAKERG＂M GTOCE BAKER 12in MAJOR £8

Module kit， $80-17,000$ e．p．s．
Fith tweeter，cronsorer
bate sith bafter and
Instructions．
I $10.19 .6 ~$ BAKER＂GROUP SOJND＂SPEAKERS POST FREE ＇Group 25＇＇Group 35 ＇＇Group 50
 TEAE EI－FI SPEAKER CABLEETS．Fluted wood tront． For 10 or 12in round loudspenker
For 18 a 8 in of 8 in round Loudapes ker
LOUDSPEAKER CABLIEL WADDLMG 18 m wide， $\mathrm{S}_{1}=\mathrm{ft}$
Horn Tweeters 2－18 $\mathrm{fc} / \mathrm{s}, 10 \mathrm{~W} 8 \mathrm{chm} 29 / 8$ ．
De Luye Eorn Twettert 2－18 Ecis，15w， 16 ohm 598.
Koviag Coil Cone Twetter 8 ohm 19：
000 c．p．s．can PECLAL OFFAR： 80 obm． $2 \mathrm{lim}_{\mathrm{y}} 2 \mathrm{jin}$ ，dia．： 85 ohmo 3 im ，

 8.2 in $21 ;$ ； 8 in $35 /-i 10 \times$ 自in $20 / \%$
to．WOOFER． 8 metto maz．20－10，000 cps． 8 or 15 ohm， $39 / 6$ ， ELAC 8 in．De Laxe Carmic 3 olm or 15 ohm soio 8in LOUDSPEAXER．TWIN CONE 15 ohm 35\％－ BICH．ALLAN 8 or 10 or 12ib Twin cone 8 or 16 ohm $39 / 8$ ， SPEAKER COVRAING MATERIALS．Samples LATEES．A．．．

SOUND ACTIYATED psychedelic LIGHT BOX
 Fancinating light patterne o Works with any mono or stereo emplifier．Inpnt required 0．2 prath．A．C．main ogerated．

 Size 18 18：c
£ 12.10 .0

ALL EAGLE PRODUCTS SUPPLIED AT LOWEST PRICES． BARGAIN AM TUEER．Medium Wava． BARGAD AM TUFER，Dedium Wava，
Tranalifor Superhat．Ferrite aetial． 9 volt．

BARGAIH 4 CRANAES TRANSISTOR MIXER．
Add mandeal hishlights and soanil eftects to Will mix Milerophone，zecords，tape and tunez $59 / 6$ With eeparate controls isto single output． 9 volt
BARGATM FM TUNER 88－108 Mc／a 8ix Transistor． 9 volt． Frinted Circuit．Calibratod slide disi tuning． $\mathbf{1 9 . 1 0 . 0}$ Fralnut Cabinte Sixe 7 \＆ 5 din Chassis only，let cabinet geaersl use．Ready made with 4 transistorn， 6 diodes
 Pustrepull Etesdy bail，with volume coatrol， Practical R R RADIo Iotide Ont
Supervangitive Transistor Pocket Radio
Radfo Valve Gaile，Booke 1，2， 8 ，or
2．F．Pa ralt Finding 405；685 line
Wireless World Radio Valve Date
Jrantister Circuits for Radio Conkolled Modals
Falres，Transistors and Diodes equivalent Manul． Coll Derign and Constrnetlon
Burtfey on Ei－Ni Radio Tuneri
22 Circuita tor Mero－Alloy Transistor
Practical Car Rado Invtallation
3 inch MOVING COIL HETERS BRITISH MADE Yarious calibrationi mopoments． 500 Micoroamp； $37 / 6$
1 Millismp； $50-0-80$ \＃ieroamp，etc．8．A．E．lor hist， E m MARN ELECTRIC MOTORS （120\％of 240\％，AC），Size 21×21 11in． BARAAIN $17 / 6$ EACR
BRIGE 3 for $50 \%=$ for $80 / \%$

RADIO COMPONENT SPECIALISTS

181

 = BETTER QUALITY, SERVICE, PRICES \& LARGEST STOCKS

[^2]

Fig. 14. Interior of the multimeter showing component positioning and potentiometer wiring

COMPONENTS . . .

Potentiometers

VRI $10 \mathrm{k} \Omega$ miniature carbon
VR2 Ik Ω miniature carbon
Sockets
SKI Red insulated screw terminal
SK2 Black insulated screw terminal
SK3 Miniature three pin mains connector

Transformer

TI Minlature mains, primary 0-220/240V, secondary $12-0-12 \mathrm{~V}, 40 \mathrm{~mA}$. type P9005 (Electroniques)

Meter

Mi Moving coil milliammeter, B.P.L. type S40-VI (ImA f.s.d.) or SEW type MR-65P

Miscellaneous

LPI Neon signal lamp type SGF9/A (Electroniques)
Knobs pointer (2 off)
Diecast case $8 \frac{3}{4}$ in $\times 5 \frac{3}{4}$ in $\times 2 \frac{5}{32}$ in
Bakelite; $\frac{1}{6}$ in thickness, $5 \frac{7}{16}$ in $\times 3 \frac{1}{1}$ in, $\frac{1}{16}$ in thickness $4 \mathrm{in} \times 1 \frac{1}{2} \mathrm{in}$, $\frac{1}{6}$ in thickness black $2 \frac{1}{16}$ in $\times \frac{1}{2}$ in Perspex $3 \frac{1}{6}$ in $\times 5 \frac{5}{6}$ in $\times \frac{1}{6}$ in thickness 6B.A. and 8B.A. fixings

CONNECTING UP

The Veropins on the amplifier board are connected up with reference to the pin numbers on the circuit diagram (Fig. 2), the switch connection diagram (Fig. 8), and Fig. 14, the plan of the interior of the multimeter. The two Veropins adjacent to the meter terminals are connected to the terminals by short leads, and the Veropins nearest to the stabilised voltage supply, are connected to the two on the vertical panel as shown in Fig. 14. The row of Veropins on the left of the amplifier board are connected by flexible p.v.c. covered wires to the range switching assembly, and to the two potentiometers that are mounted as shown in Fig. 15 by means of strips of $\frac{1}{8}$ in insulating material.

Fig. 15. Potentiometer mounting details, the ends of the spindles should be flush with the top of the case when fitted

The three secondary connections from the mains transformer are joined to the terminal pins on the voltage stabiliser panel.

Positioning of all components is shown in Fig. 14 and once the various sections have been mounted and wired up as described previously the meter can be connected to the mains supply ready for setting up and testing.

OFFSET ADJUSTMENT

A high gain differential d.c. amplifier needs pre-set adjustments to take up the mismatch in transistors and other components; adjustment is at the input stage where the sensitivity is greatest.

In the absence of an applied input, the terminals of the testmeter should be at the same potential. A small difference of potential at the input is called offset voltage, and arises from mismatch in the base-emitter potentials of the two input transistors. It can be balanced out by adjusting VR2, thus bringing the two input terminals to the same potential.

There is also an offset in the bias current of the two input transistors. The bias currents-less than a microampere-flow through the two $1 \mathrm{M} \Omega$ feedback resistors and produce a small potential drop between output and input. The bias current adjustment is carried out indirectly by VR1 in the collector circuit of the input stage. When both offsets have been balanced out, there will be no potential difference, either at the input or at the output.

METER ZEROING

The two adjustments are not independent of each other. Each potentiometer has to be adjusted in turn to bring the pointer of the meter exactly to zero. A short insulated wire is connected between the input terminals each time that VR2 is adjusted, and temporarily disconnected when adjusting VR1. The potentiometer VR1 is thus the open circuit adjustment, and VR2 the short circuit adjustment, and the two are marked "O.C." and "S.C." respectively on the Perspex escutcheon.
Successive adjustments become smaller and should be continued on the most sensitive 2 mV range until the pointer is at zero under both input conditions. The short circuit adjustment (VR2) is rather critical on the 2 mV range, and it is probably advisable to solder a 470 ohm carbon film resistor permanently across it to make adjustment easier, providing that the narrower range of adjustment contains the required setting.
Once the above adjustments have been made and the meter has been tested on all ranges it is ready for use. \star

OSCILLOSCOPE CALIBRATOR continued from page 630

maximum amplitude is 1 unit the average is 0.637 and this is what the meter will read.

However, we are usually more interested in the r.m.s. value which is, for sine waves, 0.707 . If we divide the r.m.s. value by the average, we find the form factor, in this case $1 \cdot 11$. This is the amount by which the meter is scaled or calibrated. So the meter is known as average reading, r.m.s. calibrated. The form factor is obviously different for other waveforms, this calibration is therefore true only for sine waves.

AMPLIFIER TESTING

Square wave testing of amplifiers has the advantage of time saving. Plotting a frequency response curve is a tedious business. It involves changing the frequency of the signal generator point by point along the frequency base, and noting the amplifier's output reading. From this the output voltage versus frequency graph is drawn.

It is obvious that examining the effects of tone controls of an audio amplifier can be a long and dreary process. But, by applying a square wave to the amplifier input, and monitoring the output on an oscilloscope, the effects of tone controls and filters can be seen by the alteration to the wave shape. See Fig. 7.

Treble boost will show up as overshoot of the leading edge and treble cut as a rounding off. Bass boost will tilt the flat top left to right and bass cut right to left.

Checking a pre-amplifier with a square wave for the first time you may be dismayed to find that the output appears to be distorted. Even at the mid-point of the controls, the leading edge will probably display a slight kink and the top a slight curve. This is due to the type of tone control circuit which is common to many pre-amplifiers. However, the basic square shape, and the variation as the tone controls are adjusted is quite clear.

= ELECTRONIC BROKERS

MOTORS

HIGH PRECISIOH MAINS MOTOR
 a,000 r.p.m. Made by Croydon Kngineer:
ing model KA 60 JFB. Buitable for Ing yodel KA 60 JFB. Buitable for
capstan motor. Bize Bin long, 41 fn diacapatan motor. Bize sin long, 4 in dia-
meter with 6 in diameter flange and 4 fixing meter with ind diameter fange and it fing Capacitor Bun, supplled less Capacitor apacitor him, 3 phere 140.0 each 21.6.0.P. \& P.

SHADED POLE MOTORS 120 Y 50 Hz
Precisioa made as used in record decks anc sppilcationg, $10 /$-each P, \& P. $3 /-$

PRECISION MOTORS by PULLIN

P. P. $\mathbf{B}=1$

HYSTERESIS REVERSIBLE MOTOR
Incorporating two coils. Each coll when energloed will produce opponite rotation o

LOW TORQUE MOTOR MA23
 Ideal for instrument chart drives. Extremeareas ${ }^{5}$, whete amblent mise levela are low nable relarting torque enable relative high driven up to 6 oz/is.

 r.p.ing apeeus and ranges: 240 V in the

 25/-each. P. \& P. $3 j-$
 $1 / 360 \begin{array}{cc}\text { r.p.m., } \\ \text { r.p.fil }\end{array}$

HYSTERESIS CLUTCH MOTOR

hich integral clateh allow ang the motor to drop out
of engagement with the gear train, thereby facliltating easy resetting when unctlón with a $240 \mathrm{~F} .50 \mathrm{~Hz}, 1 / 12$ r.p.m.,

D.C. MOTORS

Similar so abova type MD 83. g8v $1 / 20$ r.p.m., $1 / 60$ r.p.mi, 1 r.p.12, 12 V $1 / 12 \mathrm{~s}, \mathrm{p} . \mathrm{m} .80 /-\mathrm{P}$ \& \& 8 81-

SYNCRRONOUS MOTORS
 went, S-1 MPH. Nelf Etarting, complet $80 / m$.
P. \& P. $81-$.

OSCILLOSCOPE TYPE CT 52
bble Tastru
ment for general
purpose applien-
tube. Wave form
$10 \mathrm{~Hz}-90 \mathrm{MH}$ y
monitoring furation $=0$,
monitoring intration 50 inlerasecomis to 0 . $10 \mathrm{~Hz}-40 \mathrm{kHz}$. Also single sweep facillt from 50 mberoseennila lo $\$$ microsecond I Amplfiter. Delay Eine Catlbrstin 50w. Supplled with metal carrying case L. 133 n . H. Bin. W. 6 j In . Wpight $14 \frac{1}{2} 1 \mathrm{~b}$

AYO TRANSESTOR ANALYSER CT 446 rent instrument Battery powered, size $15 z^{\circ}$
Weigbt $151 b$. Prlce $\mathbf{2 4 8 , 1 0 . 0}$

ELECTREC CLOCK MOTOR

AEW 200-250V, $80 \mathrm{~Hz}, 2 \mathrm{Y}$. Synchronous induction motor, 2 reve. per hour. O/P shaft. Aln dia \% sha long. Clockwige rotation, Three-haled moonting at 120
on Sin PCD. Price $20 /-$. P. \& P. $8 /-$.

LOW COST ELEGTRONIC \& SCIENTIFIC EQUIPMENT AND COMPONENTS

NEW fRACTIONAL HP SINGLE PHASE
INDUCTION MOTOAS
diter
dance protected type. Arailabie ns
т.р.л.1. A. Aıир.
...1-19........1/1/3
j,820...........0.0.28
0.27
${ }_{1}$
${ }_{1,300}$

MINIATURE UNISELECTORS
 plied complete with plus oin bres. Slze 3in $\times 1 \mathrm{ja} \times$ 2in A very neat preciajon com- jousht, Pricy 8.19 .6 .

AVOMETER

These well-known porknale teat instrumenti have beest overhauled and are
offered complete with leads, crocodife clips and prods.

other general d.c. appli-

d.e. appli
cations. Sppplied with 3 shunts in neat attache trpe metal carroing case. Specialtache tipe nelal carrsiog cose 0 Speci-0-450V. D.C. Linear nairror scale 9 mA
 $0-0.8 \mathrm{~A}, 0-0.75 \mathrm{~A}, 0-1.6 \mathrm{~A}, 0-7 \cdot 5 \mathrm{~A}, 0-16 \mathrm{~A}$, $0-30 \mathrm{~A}$. The ammeter ean also be nised as a
$0-7 \delta \mathrm{mV}$ Voltmeter. Scale Jength 88 mm .

 80X

Ranges
0.01 Ka

Marlm to $111 \mathrm{M} \Omega$. Accitact 0.05%. Maximuta Power Ralimg 0.1W per ttep.
Price \&i上2.10,0. P. \& P. E1.0.0.
PORTABLE WHEATSTONE BRIDGE Hpecification. Type: Moving Coil fialvan rueler. Kanges: 0.05 to 5 ohms, 4. 50 to 5,000 ohms. 5,500 to 50,000 ohms. Scales: Switched. Slidewire: 0.5 to 50 . Gnifanometer Scale: $10-0-10$. Cage:
Moukded plastic. Internal Sonrce: \&
 65 min_ Weight: 0.8 kg . Lat prlce e2s, Our price ts.19.6.

OSCILLOSCOPES

Cossor 1030 Cobesor 1049

 Consor 1049Solartron Solartron D300 Furzehill 0100 Furzehill 0110 Furzehll 1684B Airmee ${ }^{24} 49$
Airmec Airmee $\overline{i l} 3$

COUNTERS

ELECTRO MAGNETIC
COUNTER 300 ohm 24)
Slow Impulbe cometer second. B/6. P. \& P.

DIGIT ELECTRICAL IMPULSE COUNTER with electrical and mechanical reset counter drlven by 110 Y DC 4400
ohms coil. Retet 110 V DC 800 ohma coll. Housed in piastic-nlloy case. The units can be intericeked with each other to glye rertical or horizontal digplagk. Price 7日; 6 ,

VEEDER ROOT 6 DHGIT COUNTER

Buitable for counting all kinds of - praduction runs, business machine operation,
Yechnalealls drlven. Reset type KA1337, Yechanleally drisen. Reset type KA 1397,
manual knob Ex-equipt. but mem con:

3 DIGIT RESETTABLE COUNTER
Totallsing 481 d.c. at 48 mA ; 10 impulses)

4 DIGIT NON-RESETTABLE COUNTER
ratalision 101 mp ulses per second, Length Price 6/6. P. \& P. $5 /$

6 DIGIT RESETTABLE COUNTER

Totalising 240 50Hz. Sewing whadow
P. \& P. bj-. 6 DIGITEO
COUNTER
COUNTER
Mechanical operation. Chromium Anioh.
 0/6, P. D P. 2 IG. Fx-equipment. Price

BERKELEY DECIMAL COUNTIMG

 UNIT 0.94 ralves double triode type 5985 special quality Unit plugg into standard octal base, modurar construction with 10 Power supplies $6 \cdot 3 \mathrm{Y}$, a.e., 150 V d.e. Cut3 3in. Prlce 85j-
MINIATUAE DIGITAL DISPLAY

Operater on a rear
projection 8.8 phlot
lamp. The thmp projects the corres ponding dilgit on the condenoing letus through a projector lens, on to the tewing screen a the froat of the unlt 1tn widith. $3^{3} \frac{3}{3} \mathrm{fn}$ deep. 1 , in high 0.9 with 8 right hand decimal point and degree. List price 6 gns , Our price $49 / 8$.

EAC DIGIVISOR MK. II DIGITAL

 READ.DUT DISPLAY Teeally sultable for uscin conjunction with tran sistortraed lecade count Yisg device. The DIGI Yisor incorporatea moying coil Which moves a trans
 opt.jeal scale through a plane image is profecter reaultant gingle The translucent projected on a acreen. nent digita 0-9. \&pecifcations: 0.3 V 250 microamp, linage height fin. Size 4

Michoswitches
ssoorted miniature typer. Specinl ofter
15 for $\& 1$. \mathbf{P}. \& P.

MINIATURE MOYING COIL

RELAY $\$ 115$
By sanganio Weston,
witable for D.C. Mrevit.
A high sensitivity relay
more bemaitive than the electromagnet tic type.
Single Coil Reistance 3 3ngle Coil Renistance Liat price 24.10. Our price 20/-, P. \& P.3/-

NUMICATORS

Fis. uize 10 m
Cold eathode gas filled in
line o-9 digital ditaplay tubes. Long hite expectvoltage 180 V . Side reading Type XN 13 and XN 3 ,
 Type Si 1. End readipg.

DOUBLE AUDIO FADERS
These hard to get, pro-
fessional recording studio
 units are idenl for nudio slgnal mixing, fading prorrammea in and out, etc. Two
ohm
witce-wound
waranilel Independent tracks fitted scale makings, with red and blue control knobs. Padel montining. Ex-eguipment. Price 23.19.6. P. \& P. $7 / 6$

LIMEAR THYRISTOR CONTROLLED LIGHT DIMMER-BRAND NEW
High grade fall wave
bidge clrcuit
give linear control of light brightness, Jdeal lor controling roon lighting and a.c./d.c.
commutator motors fitted to portable
electrio linnd drilta. conduit box. $240 \mathrm{~V}, 50 \mathrm{~Hz}$, 600 W , Price 50/6. P. \& P- $2 / 6$.

POCXET CALCULATOR

Bave time and tolve all sour multiplication and oquareroot problems. Eney to use pocket calculator with no errorg. Invaluable daily ald, should last a Hetime, offered complete in black Wallet with full ingtruc

each, P. P

New complete telephone dial assembliea Clear perapex dial - no markinge 20/-

RAPID HEAT SOURCE

3%

from brand new Inita Red Tulylar Quartz Lamis. Ideaily saltet as heat source for Drying Ovens, Egg Hatching, Angetroms. Length 12 in x zin fla.

SOLENOIDS

High quaitty sollilly constructed salenoilis. Actuated by $48 \mathrm{~V} 300 \Omega$ coil. Orerall length ain

INDICATOR LAMPS

Panel-mounting. Farions colours and types. Press to lest frcillty. Prices from

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

5 Tuumble Wavehanda: Medium Wave 3. Mediunt Wave g, long Wave, S.W.1, 8.W.2. B.W.3, and Trawler Band. Bultt in territe tod aerial for Mediuna and Long Waves. δ section 22 In chrome plated teleacople aerlal for ghort Waves can be angled and rotated for maximum performance. Puhappull output uing 600Mw type tranaintorg. Socket for car aerlal. Tape recaral eocket.
gelectivity
 ewitch volume control, Wave change awitch and tuniag control. Atractive case in rich cheatont shade with gold blocking. Slze $\$ \times 7 \times 4 \ln$ approx. Easy to follow instruct lons and diagrems make the Romer Fight a pleasure to build. Parta price list and easy bultd platis 5j- (FREE with parta).

roamer seven mk IV

7 fLLLy TiNable waye BANDS M.W.1; M.W.2, L.W., B.W.1, S.W.2, B.W.a and Trawler Band. Extra Medium wavebant provklea eabier tuning of Radio Ruxembourg, etc. Built in ferrite rod perlal for Mfedium and Long Waves. SSection 22in chrome plated telescopic aertal for short Wavercan be angled and rotated for peak
B.W. Ilstening. Socket for Car Aerial Powerfut push-pull output. 7 tranulatorn and t wao diodes melveling Mficro-Alloy R.F. Transistors, Panюous make
$7 \times \sin$ P.M. apeaker. Air apaced ganged tuning conilenser. Folumeion/of control wave change switches and turling control, Attructive case wlith carrying handle. Size pleasure to buldd. Parto price ligt and eass buikl plani $3 / \sim$ (FREE with paits)

Total bulding costa
$\nleftarrow 5.19 .6$
P. \& P. Peraonnl Earplece with switchel ancket 7/6 for private listening, 0/- extra.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractive black and gold cane. Size $5!\times 11$ with extended over both Medium and Long Waves Luxembourg, etc. 7 otagey 5 er easief torning of diodea, aupersensitive ferrite rod aerial, fine wone moving coil speaker, alto Peroonal Earplece with owleched socket for private lintening. Easy build plans and parta price litat $1 / 6$ (FREE with parta).

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case wleh gitt fittings. Size if x b $5: 3$ Ailn. Tunable on Mediom suld Long Wavea, two Bbort Wrves, Trawler Band plue an extra Y. W., band for eatier tuning of Luxembourg, etc. Senslitive ferrite rod aerlal and telescopic aerial for sthort Waven. 8 atageo- 6 trannietora and 2 dioden in-
clading Micro-Alloy R.F. Trandiotorn, etc. (Carrying cluding Micro-Alloy R.F. Traniotora, etc. (Casrying
it rap $1 / G$ extra). Eany bulld plans andf parts prlee atrap $1 / 6$ extra). Eany build plans and parts prlee lite $2 j$ (FREE with parta).

Total building costs $A \cdot 4 . / 8 \quad \begin{aligned} & \text { P. \& P. } \\ & 3 / 6\end{aligned}$

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

NEW!

transeight

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case in black with red grille and cream knobe and dial wlth pollished brass inserta. Size $9 \times 5 z \times 3$ yin.
approx. Tamable on Mediutm ant
waves, 8 ghort Warea and Trawler Hanul
Senaitlve ferrity roll aerlul for M.W. and L.W. Welescople aerial foe Short Waves, drnproved type translators plus 3 dindes. Fush-pail output. Ample power to drive a lirger apeaker. Parto price lint and easy bulld plane 5t- (FREE with

Total building costs

transona five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractlve ease with red speaker grille. Slze $6 \frac{1}{2} x$ Alln $\times 1$ ining 7 otages δ tranilgtors and 2 diodes, Total building costs ferrite rod aerial, tuning condenser, volume control
fine tone moving coil speaker. Fiasy buijd plana and parts prlee list 1/6 (FREE with parta).
 $47 / 6^{\substack{\text { P. } \\ 3 / 9}}$

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
I enclose £.................. please send items marked
ROAMER EIGHT \square ROAMER SEVEN TRANSEIGHT \square POCKET FIVE TRANSONA FIVE \square ROAMER SIX
Parts price list and plans for.
Name
Address.

mariei PLACE

items mentioned in this feacure ara usually svailable from electronic equipmene and component recailers advertising in this magazine. However, where a full address is given, enquiries and orders should shen be made direct to the firm concerned.

RHYTHM UNIT

To interest our musically minded readers this month is a versatile automatic rhythm unit to add complete accompaniment to an organ or other solo instruments.

Known as the Rhythm Ace it gives a choice of 10 different percussion tones: bass drum; small drum; conga (high and low); brush; claves;

Rhythm Ace from Severn Musical Industries

cow bell; cymbal, maraccas, and bongo. There are 16 different rhythm patterns ranging from waltzes to samba and cha-cha.

The required performance is selected by push-buttons and there are four separate cancel buttons for culting out the cymbal, cow bell, bass drum and claves. The unit is operated by manual start or footswitch operation and a tempo or speed control, mounted on the front panel, is also incorporated.

The rythm unit is designed to play through any high impedance amplifier, retails at $£ 147$ and is available from any branch of Selmer Musical Instruments Ltd., or for nearest stockist write to Severn Musical linstruments Lid., Woodchester, Stroud, Gloucester.

Another sound effect in vogue at the present time is that of reverberation. Readers who are experimenting in this field may be interested in the range of Gibbs Spring Line units from Hammond Organ (U.K.) Ltd. These units range from a delay time of 0.027 sec large spring, 0.022 sec small spring to 0.038 sec large spring, 0.025 sec small spring. The delay times vary from 2 sec to 1.5 sec

Prices and further particulars can be obtained from Hammond Organ (U.K.) Ltd., Deansbrook Road, Edgware, Middlesex.

SPEED SENTRY

The fear of prosecution for speeding and the inevitable licence endorsement which accompanies this offence is always a threat to the person who is dependent on his licence for his livelihood. The Speedset Audible Speed Indicator from Automents Ltd. is a worthwhile fitment for the car as it removes the necessity for constantly looking down at the speedometer to check the speed, and enables the driver to give full attention to the road.

The Speedset gives an audible alarm instantly a preselected road speed is exceeded. The selection of the required road speed is accomplished by depressing push buttons, the range available is $30,40,50,60$ and $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. or for continental use $50,65,80,100$ and 120 k.p.h.

The speed alarm consists of two main units, the control unit which is fitted beneath the dashboard, and a self-adhesive transducer which fixes to the back of the vehicle's speedometer and plugs into the control unit. The transducer detects the rotor speed within the speedometer and transmits this to the control unit where the actual road speed is computed and triggers the alarm if the selected speed is exceeded.

An adjustable volunse control is fitted and preset potentiometers are accessible from the front panel of the control unit enabling a certain amount of speed setting variations, i.e. 30 m.p.h. can be set between 28 and $38 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Designed to fit any 12 V positive or negative earth vehicle the current consumption is claimed to be less than a car parking light. The prize of the Speedset is $£ 1915 \$$ and further particulars can be obtained from Automents I.td., New Street, Oadby, Leicester.

STROBOSCOPE

The latest version of the Dawe transistor stroboflash, type 1209 C , is ideal for educational and industrial laboratories (not psychedelic).

The new model has internal modifications and additional facilities and is intended for the measurement
of the repetition rate of cyclical events, or for observing such events in slow motion.

The instrument has a basic operating range from 300 to 18,000 flashes per minute in three switchable ranges. Speeds up to $180,000 \mathrm{rev} / \mathrm{min}$ can be measured by using harmonics by virtue of the very short flash duration of 5-10 microseconds, depending on flash rate. The Xenon tube used gives high-intensity white light and provides a mean illumination at 1 metre distance which increases from 50 lux on the 18,000 flashes/min range to 100 lux on the 1,800 flashes $/ \mathrm{min}$ range. Mean flash tube power is 6 W maximum.

The flash rate is controlled by a variable transistorised oscillator, which also drives the anologue frequency meter calibrated directly in flashes $/ \mathrm{min}$. Alternatively, an external mechanical contactor or photoelectric pick-up can be used; in both cases the flash rate is indicated on the meter.

Dawe Stroboflash type 1209C

An extension lamp can be plugged in and there is now a selector switch which enables the output to be switched between the built-in and extension lamps.

Further specifications and application details can be obtained from Dawe Instruments Ltd., Concord Road, Western Avenue, London, W. 3 .

LOGIC TESTER

A new logic tester, designed to ease the problem of checking a digital system is being manufactured by Southern Techniques (Electronics) Ltd., Waldeck House, Waldeck Road, Maidenhead, Berks.

The tester emits an audible tone, the pitch of which is high when its probes are connected to a logical " 1 " level, and low when its probes are connected to a logical " 0 " level. An open circuit condition between the probes is indicated by the absence of tones. An earphone jack is provided which disconnects the internal loudspeaker when the earphone plug is inserted.

A particularly useful feature is a built-in transient detector. With the tester switched to transient detection and the probes connected to a circuit under test, then the arrival of a logical " 1 " pulse causes the tester to emit a continuous tone until reset.

Logic Tester from Southern Techniques (Electronics) Ltd.

Models of this tester are available for operation from internal batteries or mains supply, and suitable for high or low voltage logic systems, prices range from $£ 15$ to $£ 20$.

DIGITAL CLOCK INDICATOR

Readers experimenting with their own designs for constructing digital clocks may be interested in the recent product introduced to the U.K. market by ITT Component Group Europe. It is a synchronous motordriven digital time indicator incorporating an alarm setting mechanism. The alarm operates a changeover microswitch which permits any desired warning device to be triggered at the selected time.

The standard model operates from 240 V a.c. 50 Hz . Time indication is for a 12 -hour clock, divided into minute intervals and the alarm graduation is for 24 hours at 10 minute intervals. The indicating numerals are white on black.

Full particulars are available from ITT Components Group Europe, Trading Services, Edinburgh Way, Harlow, Essex.

INTEGRATED CIRCUITS

A 250 mW low power audio i.c. amplifier, type MFC 4000, is the first of a new range of low cost integrated circuits designed specifically for the consumer market by Motorola Semiconductors.

The special feature of this i.c. is that the pin spacing is wider, uses smaller chips, fewer circuit elements and is designed so that it will easily mount on the standard perforated boards. Built in a four-lead package, it is the equivalent to six transistors, three diodes and five resistors.

The transformerless output is suitable for loads up to 16 ohms and a typical harmonic distortion figure at 50 mW is 0.7 per cent. The input sensitivity is 15 mV r.m.s. for 50 mW

ITT Synchronous motordriven digital time indicator
output. Powered by a 9 V d.c. supply the quiescent current is 3.5 mA .

The type MFC 4000 is designed mainly for small radios but can be used for any low power'amplifier output stages.

Also in the same range is the type MFC 4010 which is a high gain wide-band amplifier that could be used either as a general purpose a.f. amplifier or as an i.f. amplifier at 465 kHz .

This i.c. contains three transistors and five resistors. Typical output noise is 1 mV r.m.s. and with a 18 V supply the current drain is 3 mA .

Another integrated circuit for use either as a television intercarrier sound limiter-amplifier, detector and a.f. pre-amplifier, or for a similar function in high quality f.m. stereo radio receivers and tuner units is the TAA661 from SGS (United Kingdom) Ltd.

At an input level of 1 mV the a.m. rejection is better than 40 dB . It is claimed to give good performance from a supply voltage ranging from
4.5 to 15 V , with a typical quiescent current of 15 mA at 12 V . The limiting threshold voltage is about $100 \mu \mathrm{~V}$ and remains independent of the supply voltage.

Designed to replace the conventional complementary-symmetry audio output stage, driver and preamplifier stages in 9 V or 12 V battery. operated radio receivers, record players and tape recorders, the TAA661 is capable of delivering $1 \mathbf{W}$ r.m.s. from a 9 V supply without a heat sink.

The integrated amplifier can be directly driven from a diode detector circuit or crystal pick-up with negligible distortion. Few external components are required and bias conditions are stabilised; no pre-set resistor or setting-up procedure is necessary. Feedback is available if required by the use of one external resistor.

A 3 watt 24 V version is available and is designated TAA621.

Integrated circuits from Motorola Semiconductors

LITERATURE

The new edition of the excellent Henry's Radio components catalogue has a new companion in the form of a special audio catalogue. Like their other catalogue the same high standard is maintained throughout and separate sections deal with amplifiers, tuners, tape recorders, record decks and accessories.

The catalogues are to be revised every three months in future.

Henry's are now expanding their business to further premises and the electronic components and equipment section is moving to 354 Edgware Road, London, W.2. The high fidelity section, with four demonstration rooms, to 356 Edgware Road, and the store at 309 Edgware Road is to become the electronic organ department coupled with public address and discotheque equipment.

The existing premises at 303 Edgware Road will handle all mail order and identical sales for the time being.

MICRO SWITCH
 ?

TOGGLE SWITCH

 each, 1 EV/- 10 with Axing ringONSTRUCTORS' PARCEL

1. Fiearey miniature eg gang tunitsg condenaer with built-in trimtuers and wave gang switch tuning condenser. 8. Clicuit diagranil giving at component values for 6 transistor cirenit covering full medions wave and the logg wave band arouni radto 2. The three jtetns for only $7 / 6$ whlch h hall of the price of the tuning condenser alone
10 AMP 24Y BATTERY CHARGER Ides unlt for garage, boat atution, etc., 282.10 .0

BEHIND THE EAR OEAF-AID

Kade by a very fanmon maker. Thoroughly
overhauled,
cleaned and overhauled, cleaned and remonditfoned Our price \&10.

1SOLATION TRANSFORMERS

200-250 MAINS

A mast if you work on majne equiputent. Prevents acciutente and shoviks evera in danip eomelitions. Ioput and output separately
nectan block. 100 watt 23.10 .0 , 250 wat
nen
SLOW MOTION DRIVES
For coupling to tuning condeasers, elc. One cul tin eafl. the other end fits tas in haft with

LARGE PANEL MOUNTING MOVING COIL METERS
Bize 6in X in Ceatre zero $200-0-200$ micren anpp. probably \&s, Our price $69 ; 6$. Ditto but $100-0.100$

A,C. AMMETER

$0-5$ ampe. Gush mount lig-viovilug irous \& CIRCUIT BOAROS
Heavy copper on $3 / 8 \cdot 2$ paxolin abeel teal for making power pisks, etco, as sheet la very btrong
and thick enowg to allow copper to be cut ayky and thick enough to allow copper la be cut awiky
with hackan blade. 5 in $\times 5 / a 1 / 0$ each with hackusw blad

6KVA AUTO-TRANSFORMER
$140 \mathrm{~V}-170 \mathrm{~V}-000 \mathrm{z}-\mathrm{s} 30 \mathrm{y}$

PP3 BATTERY
 ELIMINATOR

Radio from the trausistor fadio from the maing-ful wave circuit, Made up read *djuatab

\rightarrow REED SWITCHES Hass enchsel, swituhes operated by external 3 types:
Winlature. lin long x appproximately din diameter. Will make and break up to $\frac{1}{\mathrm{~A}} \mathrm{~A}$ up to $\$ 00$ voils. Price 2,6 each, $24 /$-dozen.
htadand. 2 in long $i 6$ oh in diameter. Thin will break cyrrents of up 601 A , voltages up to 250 Folts. Price $2 /$-each, 18/- per dozen.
Fiat. Flat type, 2 in long, fuet orer in in thek Asttened out, 60 that it esta be fitted into a tmto a square solenoid. Ratitag 1 any 200 ruits. Price 6/- each. ts per dozen. switches 1 ig each. 18:- dozen

0.405 mFd TUNING

CONDENSER

Proved denign, fdeal for atraight of SUB-MINIATURE MOVING COIL MICROPHONE
as used in behind the ear deaf-aids Acts also us earphone size only $1 \mathrm{ln} x$. $\mathrm{in} \times \mathrm{f}$ in Kegular price probably in or Note these mre ex equipment ont it not in perfec

CHART RECORDER MOTOR

 diameters friegral genr box given 1 rev. per p. moure. $20 / 6$.

IGNITION (E.H.T.)TRANSFORMER

 Mate by Pammeko Lid., Primary $240 \mathrm{~V}^{5} 50 \mathrm{~Hz}$

12 VOLT
EXTRACTOR FAN BY DELCO
Ideai for ventliation ta Curavan, Car or Bout 8 Bladed sin diameter fun inside beavy duty fluing hole. Leagth approx. 8\}fa. Lxceptlonal bargaln $87 / 6$ plus $5 / 6$ jhat atad insurance.

INTEGRATED CIRCUIT BARGAIN

A parcel of integrated circulta made loy the furnows Pleasey Company. A
 definitely not sub-standard or meconle. The 1 Ca are ali aingte silican chip General Purpose Amplifiers. Regulur price of whlch is wetl over fl each. Full circuit detalla of the ICo are Included and In addition you will reoelve a itst of 60 utferent 1 Ces avalluble at bargain prices of $/=$ upwards with circuits and echnlcal datat of eich. Complete parcel only $\mathrm{it}^{2} 1$ post paict: or Llat and all data 10/-poot free. Credited when you order 1Cs value $30 /$ and upwards.

24-HOUR TIME SWITCH

Mains operated. Adjustable Contacts give 2 onloffe jer 24 honrs. Coneracts ruted 15 anipe. repeating mechanisht 80 ideal for uhop window control, or to switch ball lighta (aptl-burglap precantion) while 500 nre on bolidas, Made by the fampus 8 mithe Compans This month only a0/6 with Perspex cover, plus $3 / 6$ postage and irsurnace, a real mip which हhouk not-be

DISTRIBUTION PANELS
Just what you ueed for work bench or lab:
neon warning 1 gght in metal box. Tak
a9/8 wired up, ready to work plan $1 / 6$ poat and truarance

MICROSONIC RADIOS

7 trunsielor Key chain Radio in vers pretty
 Circuit: 7 Iranuletor superheterodyne. Frequency range: 530 to $1,600 \mathrm{Ke} / 8$. Senjitirjty: $5 \mathrm{M} 1 \mathrm{v} / \mathrm{m}$. Internuedlate Irequency: $465 \mathrm{Kc} / \mathrm{g}$, or $455 \mathrm{Ke} / \mathrm{s}_{\text {. }}$ Powe output: 40nw Antenna: ferrite rod. Loudbypaker: Permatient magnet type.
In trangit from the Enut these sets suffere In transit from the Erat these sets suffered
alight corrosion the the batterfes were left in

slight corrosion to the batterfes were left in then but when this corrosion is cleared nway they should work perfectly-offered without guaraztee exeept that they are mew. Price
batceries. 6 for 87. goat free.

THE 5-5 WATT STEREO AMPLIFIER

Mide by one of our noost famous makers for a de-luxe player. This anduplifier has a gualliy of reproduction mwich better than average. Using a cotal 16 transigtori nnd a fenerously Eized mains power pack. Controls include bass, treble, balance and volume. Sultable for B-16 ohms hupedance speakers with crossovera for Offered at about one thiru of ils origimal price only 19.19 .6 plus $6 / 6$ poat und Offered at about one third of ila origimal price insurance.

3 KW TANGENT1AL. HEATER UNIT

This heater unit is the very latest type, mont efflcient and quiet runufng. In as fited in
Hoover nad blower heaters costing flo and Hoover ind blower heaters costing 116 and more. We have ad few only. Contpriaca
motor, Impeller, 3 w w element and 1 kW motor, lmpeller, ekW element and 1kW
element Hllowing awitching $1_{1}, 2$ and 3 kW and with therinal satety cut-out. Can be And with into any mutal line case or cablnet.
Only nced control owitith. $58 / 8 . \quad 2 \mathrm{kw}$ Only need control switch. $\$ 8 / 8$.
Model as above extept 2 kW
kilowatte
$88 / 6$. Pobtage and innurance 6/6. Don't mise this.

AUTO ELECTRIC CAR AERIAL

With dush board control switch-fulls extendable to 40° or fully retracted. Suitable cotmplete with fitting instructions and ready wIred dash board switch $85.18 .5^{\circ}$ plus $5 /-$ p. \& p .
 changer and 'pluyer for beanty, long-life. nised, stylus brush deans atylus afler each playing other features Include pick-up phefght adjustmeut and stylue pressure adjustment. This iruly' is a fine instrument which is a cancelied export order. Therefore they have travelled back and forin and may need mechanical readjustmeat. We offer these at less than the price of asiakle phayerouly 49/6 plus 9/6 p. © p. 200-2501

Staudart size is wafer-silver-plated 5 -amp locking washer nnd nut.

To, of Poleat was 3 way 4 way 8 way 6 way 8 way 9 way 10 way lit way

1 pole	8:6	$8: 6$	6/6	$8 / 6$	0	$8 / 6$	$6 / 6$	$8 \cdot 6$	\%/6
13 poles	$8 \cdot 6$	$6 \cdot 6$	$8 / 8$	$6{ }^{6}$	6/6	6:8	$0 / 6$	1016	10,6
8 proles	\%/0	616	$\theta / 6$	6/6	10/6	10/6	$10 / 8$	14/6	146
4 poles	8.6	8:6	6.6	10/	$10 / 6$	1018	$10 / 6$	18/6	18,6
5 potes	$0 / 6$	$8 \cdot 6$	10;6	$10 / 6$	14/6	14/4	14/6	2\%/5	20/6
6 pros	810	$10 / 8$	$10 / 6$	10/6	14/6	14/6	1418	$28 / 6$	28/6
7 poles	10/0	$10 / 8$	$10 / 6$	14/6	$18 / 6$	$18 / 8$	18/6	90/6	8016
8 poles	10:\%	10,8	$10: 6$	$14 / 8$	$18: 5$	$18 ; 6$	1878	84/8	$84 / 0$
9 pulea	10,6	10/6	14/6	14/6	22/6	$28 / 6$	$22 / 6$	$28 / 6$	88/6
10 proles	10.6	$10 / 6$	14/6	18/	22/6	29/6	22/8	$42 / 8$	48/6
I1 poles	$10 / 6$	14:6	14/6	$18 / 8$	28/8	$28 / 6$	$28 / 5$	$48 / 6$	46/6
12 joder	10/6	14/6	14/6	18/6	28/0	$26 / 6$	$20 / 6$	$50 / 6$	$50 / 6$

NEED A SPECIAL SWITCH!

Double Leaf Contact

Very alight preasure closem both contacts, 1/ each, 18f- doz. Plantle posh-rod suitable for operatlag, $1 /-$ each, $9 /-$

COMPUTER MUETI-CORE

CABLES
12, 14/0076 copper cares, each one ingulated by coloured P.V.C. then separately acreened, the 12 metal braided cores laid together and P.V.C. covered overall making a cable just under it in dia. but quite pllable, Price $7 / 6$ jer $7 t$. Any length cut. Other alzes asailuble 7 core $\mathrm{b} /=5 \mathrm{t}$.

INSULATED TERMINAL HEADS
Ternial and aave halt the coe 2BA 6d each, $15 /-$ doz
48A
od each,
4/- doz.

MAINS TRANSFORMER BARGAIN Normal najin prinuary 250 V tapped 230 V -lour
beconulariea $300-0-350$ fas $150 \mathrm{MA}, 100 \mathrm{~V}$ (0) 20 MA , beconluriea $300-0,300$ g $150 \mathrm{MA}, 100 \mathrm{~V}$ g 20MA $6-3 \mathrm{~V}$ 영 $3 \mathrm{~A}, 4 \mathrm{~V}$ 웅

RING MAIN (13 AMP) SPUR BOX for joining water heaters-clocks and ah aut by f.E.C. $9 /=$ exch 18%-doz.

250 V 15 AMP CHANGEOVER SWITCH
Double pole with centre off-auitable reveraing or und to prolong life of fiocilanitu - 8i8 each and to prolong iffe of हiondan - $2 / 8$ each

Instrument Knobs
 each, $8 /$ - dozen. Ditio bai with metal dilic, $1 /-$ each. Midget Output Trans
 Rormer

 by flyisg Jeats. /io each. 48/-doz.
Midget Output Trantformer
 circuit board connection

4-Gang Air Spaced

Tuning Condenter
For A3MFM, circuits. AM If 80 pf both with osimmection FH xf section 9.5 pf oec sectlon $11 \cdot 2 \mathrm{pf}$-integra

Mains Connector A quick way to connect cquipment to the maine safely and brnaly-L., N.
and E. coded to new colour scheme; disconnection by pluge preventa accidental awitching on; has socketd which allow inleta firmly hold one hat wire on op cable 7.029 crbles. $12 / 6$ each.

DRILL

COMTROLLER
Electronically changea opeed from approximately 10 reva, to
maximun. Full power

at all speede by finger| at all speede by fingex |
| :--- |
| tip control. K 1 | includes all parto, case,

nstructions. $19 / 6$ plus $2 / 6$ poot and fingarance darle tip inchel titso avallable, $37 / 0$ plus $=16$ 0. a

ELECTAC CLOC

WITH 25 AMP

WWITCH
ade by gmith's, these units are cookera to control the oren The chock for muisis driven and freruency controlled so it is ezcremely accurate. The two smalt dialn enable awitch on and off
 imee to be accurately pet. Ideal or switching on tape recordera. Offered at only friy onty $88 / 0$, less than the
post and jusurance $2 / 9$.

[^3]ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CRO 2TH

BOOKSBYG．a．BRIGES

AERIAL HANDBOOK

（second edition）
176 pages， 144 illustrations．
PRICE（semi－stiff cover）15／－（16／6 post íree）．
Cloth bound $22 / 6$（ $24 /$－post free）．

CABINET．HANDBOOK
112 pages， 90 illustrations．
PRICE $7 / 6$（ $8 / 6$ post free）．Semi－stiff cover．
Cloth bound $15 /$－（ $16 / 6$ post free）．

AUDIO BIOGRAPHIES
344 pages， 64 contributions from pioneers and leaders in Audio．Cloth bound．
PRICE 25／－（27／－post free）．

MUSICAL INSTRUMENTS AND AUDIO
240 pages， 212 illustrations．Cloth bound． PRICE $32 / 6$（ $34 / 6$ post free）．

LOUDSPEAKERS

Fifth edition－ 336 pages， 230 illustrations．
Cloth bound．PRICE 30／－（32／6 post free）．

A TO Z IN AUDIO
224 pages， 160 illustrations，Cloth bound． PRICE $15 / 6$（ $17 /$－post free）．

PIANOS，PIANISTS AND SONICS
190 pages， 102 illustrations．Cloth bound．
PRICE 18／6（20／－post f́ree）．

ABOUT YOUR HEARING
132 pages， 112 illustrations．
PRICE（semi－stiff cover）15／6（16／6 post free）．
Cloth bound $22 / 6$（ $24 /$－post free）．

READERS OPINIONS

I have recently been going through eight of your books and they have been a feast of information．I have been like a dog with eight tasty dishes，not knowing which one to tackle first but nipping about and sampling each one． Somerset，Sept． 69

Having read the majority of your＂Bibles on Hi Fi＂，of such a remarkably＂hi＂＂standard，I eagerly await a copy of your Cabinet Handbook．

London N22，Nov． 69

Pleose send orders and enquiries to：－－

RANK WHARFEDALE BOOK DEPT．B．W．S．
13 WELLS ROAD ILKLEY YORKS
Tolephone：ILKLEY 4246

Published by

MANK WHARFEDALE LIMITED IDLE BRADFORD YORKSHIRE

XCELITE

Precision made hand tools for the professional

69CG Radio－TV Pliers
69 CG Radio－TV Pliers
70 Cl Nose Pliers 71CG Round Nose Pliers

PLIERS

69CG
${ }^{72 \mathrm{CG}}$ Chain Nose Pliers
${ }^{73 C G}$ Tip Cutking Pliers A complete range of miniature lightweight pliers especially designed for holding，bending，shaping and cutcing of fine wires in electronic，Radio／TV，electrical and jewellery work． Precision made for the oxport with miniatures in
mind．Cushion grip handle，coil spring openers．

SEIZERS

$32 \mathrm{H} 5^{*}$ Straighe Nose Junior 5＂Seizer
42H 6 ．Straight Nose Seizer 35H 5^{*} Curved Nose Junior 5° Seizer $\quad 43 \mathrm{H} 6^{\circ}$ Curved Nosa Șeizer
Box joint construction，two position snap on lock．Precision machined from perfectly tempered steel．
Holds like surgical clamp and acts as heat sink．
Straight or curved nose，in $5^{\prime \prime}$ and 6° sizes．
Distributed by
Special Products Distributors Limited
81 Piccadilly，London，W．I
Tel．01－629 9556 Cables：SPECIPROD，London，W．I
Full details on request
Made in U．S．A．

VALVES

SAME DAY SERVICE NEW！TESTED！GUARANTEED！

	$20 \mathrm{P3} 11 / 9$	DK96 7／8	EL38 1718	83 78		
1A7GT 7／6	20P4 18／6	DL3s 5i－	ELA1 11／－	PCL83 12j－	UB	6／0
1Hbat 7／9	25LAGT \％	DL92 6／9	EL84 4／B	PCL84 7／6	UBF89	6／0
1N6ET 70	25U゙4GT11：6	DL94 8：8	EL90 4.6	3CL85 9／－	Ucces	71－
IRS $6 / 0$	30 Cl －${ }^{3} 6$	DL96 7／3	ELE00 12：\％	PCL8 8，	LCCss	718
186 4／9	30015 13／－	DY86 5i8	EM80 8，8	PCL88 14／8	UCFS0	7／3
1 T 2j0	$30 \mathrm{C17} 16$／－	DY87 5／9	EM81 8i8	PCL $80015 / 6$	UCH42	12：6
984 5／日	$30 \mathrm{Cl} 1812 / 6$	EABC80 6：8	EMIP4 0i8	PENA4 8i6	UCH81	6／6
5V4 6／8	30 FE 10\％	EAF42 10\％	EM87 76	PFL20011／9	UCL82	$7{ }^{7 /}$
8Y3GT b10	$305 \mathrm{LC1} 129$	E891 2：8	EY01 718	PL36 9／8	UCL83	11.0
524976	30FL1214／8	EBC33 8i：	EY88 6，8	PL81 8i3	UF41	10\％
6／90L2 18／－	30FLI4 14／6	EBC41 9\％6	EZ40 8／－	PL82 0／6	UF85	$8 / 9$
0 Als 8.8	30L3 8／6	EBFB6 6；9	ER41 8／－	PLB3 E／6	UF89	0
OAM6 2\％	30 L 15 181－	EBF89 6／8	EZ80 4／6	PLB4 6／9	ULA1	18／－
OAQS $4 / 4$	$30 \mathrm{L17}$ 18／6	ECC81 810	EZ81 4i0	PLS00 18\％	UL44	201－
OATE 4／＝	30P4 12／－	ECC82 4：9	Cz32 810	PL004 18；6	ULB4	$71-$
${ }_{6}{ }^{\text {AUG }}$	$30 \mathrm{P12} 19 / 9$	ECC83 $\quad 7-$	KT41 150	PL508 83／6	UM800	$5 /-$
OBAB 4／0	30P19 12／－	ECC8S 6	KT61 8／9	PM84 7／8	UM84	4／6
OBES 4 i， 9	$30 \mathrm{PL1} 18 ; 9$	ECCSO 412 j	KT68 16，9	$\begin{array}{ll}\text { P484 } & 7 / 8 \\ \text { PXP5 } & 88\end{array}$	UY41	718
0，is Bio	$30 \mathrm{PL} 1315 / 6$	ECF80 6／6	LN329 $14 / 6$	$\begin{array}{ll}\text { PX25 } & 88 / 6 \\ \text { PY32 } & 10 \%\end{array}$	UY85	6／9
	30PL14 14／6	ECF82 6i6	$\begin{array}{ll}\text { N78 } & 17 / 6\end{array}$	$\begin{array}{ll}\text { PY32 } & 10 \% \\ \text { PY33 } & 10 \%\end{array}$	VP4B	15／8
	351．6GT 818	ECH35 6：－	P61 10：－	$\begin{array}{ll}\text { PY33 } & 10 /- \\ \text { PY81 } & \text { Bis }\end{array}$	W77	$3 / 6$
OFl4 0／－	$35 W 4$ \＄6	ECH42 $13 \% 6$	PABC80 $7 / \%$	$\begin{array}{ll}\text { PY81 } & 58 \\ \text { PY82 } & 6 / 8\end{array}$	W119	7%
日F23 14／8	${ }^{35 Z 4 G T}$ 8j－	ECH81 519	PC86 10／8	$\begin{array}{ll}\text { PY82 } & \text { 518 } \\ \text { PY83 } & 5 / 8\end{array}$	277	2／9
$\mathrm{OFP}^{55} 13 \mathrm{j}$	807 8／－	ECH83	$\begin{array}{ll}\text { PC88 } & 10 / 8\end{array}$	$\begin{array}{ll}\text { PY83 } & 5 / 8 \\ \text { PY88 } & 8 / 8\end{array}$	AC107	8 A
6JJG 4／8	15043 12；8	ECH84 76	$\begin{array}{ll}\text { PC96 } & 8 / 6\end{array}$	$\begin{array}{ll}\text { PY88 } & 8 / 6 \\ \text { PY800 } & 7 / 8\end{array}$	AC127	$2 / 6$
6K70 2／6	ACJVP21E／B	ECLS 7 \％－	$\underset{\mathrm{PC97}}{81-}$	PY800 PY801 $7 / 8$	AD140	7／4
OK86 2＇8	A231 0i6	ECL82 619	$\begin{array}{ll}\text { PC900 } & 776 \\ \text { PCC84 } & 8 / 6\end{array}$	$\begin{array}{ll}\text { P1801 } & 7 / 6 \\ \text { R19 } & 8 / 6\end{array}$	AF11\％	$8 /$
69N7GT 4／8	$\begin{array}{ll}\text { B349 } & 18 / 8 \\ \mathrm{~B} 229 & 18.6\end{array}$	ECL86 ${ }^{\text {EF／－}}$	$\begin{array}{ll}\text { PCC84 } & 8 / 6 \\ \text { PCCR } & 8 /-\end{array}$	$\begin{array}{ll}\text { R19 } & 8 / 8 \\ \text { R20 } & 18 / 8\end{array}$	AF116	8／－
6V6G 3i：		EF37A 8 \％	PCCR8 8 8－	$\begin{array}{ll}\text { R20 } & 18 / 6 \\ \text { Y25 } & 185\end{array}$	${ }^{\text {AFP117 }}$	
$\begin{array}{ll}\text { 6Y60T } & \text { 8，8 } \\ \text { \％X4 }\end{array}$	$\begin{array}{ll}\text { CCH35 } & 18: 6 \\ \text { CL38 } & 18 / 6\end{array}$	$\begin{array}{ll}\text { EFS9 } & 49 \\ \text { EF41 } & 11 / 9\end{array}$		$\begin{array}{ll}\text { U25 } & 18 \% \\ \text { V2\％} & 12 \%\end{array}$	${ }_{\text {AF128 }}$	
6X4	$\begin{array}{cr}\text { CL38 } & 18 / 6 \\ \text { CY31 } & 6 / 8\end{array}$	$\begin{array}{rr}\text { EF41 } & 11 / 9 \\ \text { EF80 } & 4 / 6\end{array}$	PCC89 10，6	$\begin{array}{ll}\text { U28 } & 18 /- \\ 447 & 18 / 6\end{array}$	${ }_{\text {AP127 }}$	$8 / 0$
10F1 14－	DAC32 7,8	EF85 618	PCC80513：－	C49 18，6	0 CA	2／8
10F18 7\％	DAF91 4：8	EF86 6／8	PCF60 8，6	U78 4／3	$0 \mathrm{CA5}$	9／8
$10 \mathrm{Pl} 5^{12 / m}$	DAF96 $7 / 8$	EF89 5／3	PCF92	U191 12，	0 C 71	$2 / 6$
124.178	DF33 719	EF91 2.9	PCF88 101－	$\mathrm{C193}$ 8：6	0 CF 2	$2 / 6$
12AEG 46	DF91 2／9	EF94 4 if	PCF800 $12 ; 6$	U251 14／6	0.075	20
12AU7 4／0	DF96 7／3	EF183 510	PCF801 $8 \cdot 9$	U301 10：6	$0 \mathrm{C8} 1$	$2 / 6$
12 AX7 419	DH77 4／－	EF184 60	PCF802 9\％－	US23 14，6	OCA1D	
12K8GT7／8	DK32 $7 / 6$	EH90 6／a	PCF80519；${ }^{\text {d }}$	［801 18／6	0 C 82	
19BGBG17／6	DK91 6，9	EL33 9 9，9	PCFPG6 12，	UABCS0 ${ }_{6} 6$	9CB2D	$2 / 6$
$20 \mathrm{Fz} 218 ; 6$	DK92 8：8	EL3I 9，0	PCFE0814／6	L＇AF42 10is	OC170	40

READERS RADIO（P．E．）
B5 TORQUAY GARDENS，REDBRIDGE，ILFORD， E8SEX．

Tef． $01-5807441$
Postage on 1 ralva 9 d ．extra．On 2 valvea or more，pastage 6 d ．per

ELECTROVALUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

BARGAINS
 IN
 Al mexer

$3 / 3$ + 40 Б12

$1 / 8$	$2 N 3708$
$4 /-$	$2 N 3707$

1×914	1/8	2N3708
1N3754	4/-	2N3707
1N4148	1/0	2N3708
1N5054	4-	2N3709
18940	1/-	2N3710
25696	516	2N3\%11
2N69\%	5/6	2N3731
2N506	$2 / 9$	2N3794
2N1302.	4/0	2N3819
2N1803	4/-	2N3820
2N1304	4/6	2N9804
2N1308	$4 / 6$	2×3906
2N1306	0/8	2N 4058
2N1307	$8 / 9$	2N4059
2N1308	8.0	2N408
2N1309	8.4	2N4061
2 NF 1618	61-	$2 \mathrm{St} 4 \mathrm{~S}^{2}$
$2 \mathrm{N1711}$	71-	2N4284
2×2147	18,	2N4286
2N2218	918	2N4289
2×2270	$12 / 8$	2N4291
2N2484	$18 / 8$	92N4292
2N2646	10 \%	2N4418
2N2904	11-	2N0063
2N2924	/1/	2N6163
2 N 2925	$4 / 8$	2N8192
2 N 9926	2/5	2N0195
2N3063	5/6	2N5457
2N3054	14/8	2N5458
2N3065	181-	2N5469
2N3395	10/9	40250
2)3668	11/6	40361
2N3702	816	40\$69
2N3703	8/8	40406
2N3704	$1 / 0$	40408
2N3700	$3 / 5$	40430

RESISTORS

 plus $11,13,16,20,24,30,36,43,61,62,75,91$ and their decades.

Nior mized valuex. (fgnore frantion of 1 an fotat reatition order.)

INTEGRATED CIRCUIT AMPLIFIERS

8NNCLAIR 10,10 complete with inatruction book giving amplifier circuit detallsand range of aprolications, 59/8 nett

PLESSEY BL408A. Only $48 / 6$ exch. $3 W$ Into 7.5 g for 185 Eupply: Application rlath with twa or mare.

WAVECHANGE SWITCHES LONG SPINDLES
1P 12W; 2P 6W; SP 4W; 4P 3W
SLDER 8WTTCHES D.P.D.T.
4/8 each
8/-erch

NEON INDICATOR L.AMPS anl $200 / 250 y^{\circ}$
Aquare bezel, red only

 S.P.D.T. centre off 6/-

8-DeC's pat an end to "birdaneating". Components just plug in. Saves valuable time. Use componente again and agaik. 8-DeC only $80 /-$ poat free. Compact T-DeC, only bof- post free. Full rasge stocked.

MULLARD POLYESTER C280 series 200V $20 \%: 0.01,0.022,0.033,0.047$, 8d eati $0.068,0.1$.

MULLARD SUB-MIN ELECTROLYTIC Csts range axial lead 1/3 ench
Values ($\mu \mathrm{F} / \mathrm{H}$): $0 \cdot 64 / 64,1 / 40,1 \cdot 6 / 2 \overline{2}, 2 \cdot 5 / 16,2.5 / 64,4 / 10$, $4 / 40,5 / 64,6 \cdot 4 / 6 \cdot 4,6 \cdot 4 / 25,8 / 4,8 / 40,10 / 2 \cdot 5,10 / 16,10 / 64$, $32 / 10,32 / 40,32 / 64,40 / 16,40 / 2 \cdot 5,50 / 6-4,50 / 25,50 / 40,64 / 4$, $64 / 10,80 / 2 \cdot 5,80 / 16,80 / 25,100 / 6 \cdot 4,125 / 4,125 / 10,125 / 16$,
 $500 / 2 \cdot$.

LARGE CAPACITORS

High ripple current types: 1000 t2 $6 / 6 ; 1000 / 50$ 8/2. $1000 / 10018 / 3: 4000 j 257 / 4 ; 2000 / 0011 / 4 ; 2000 / 10028 / \mathrm{B}:$ $\overline{5000 / 100} 58 / 3 ; 10000 / 1517 /-: 10000 / 25 ; 24 / 6: 100 / 200 / 50$ $41 /=10000 \mathrm{~F} 961$

MEDIUM RANGE ELECTROLYTICS

Axial leads: $50 / 50$ 2/m: 100/25 2/-; 100/50 2/6; 250/25 2/6;
 4j-: $1000 / 50$ 8/न: 2000 j 2 $6 /-$

SMALLL ELECTROLYTICS

Axial leads: $4 \cdot 7 / 10,4 \cdot 7 / 25,5 / 50,1 /$ ea, $10 / 10,10 / 25$ $10 / 50,33 / 10,50 / 10,1 /=$ ea. $25 / 25,25 / 50,43 / 25,100 / 10$ 120/10, 1/8 ea.

PEAK SOUND PRODUCTS ENGLEFIELD AMPLIFIER

ZENER DIODES
 Clip to Increase 1-5W rating to 3 watto (type edefF) Di.

CARBON TRACK POYENTIOMETERS, long spimiles. Donble wiper enanres minimum aolse level. Single gang linear
Single gang log siagle gang log
Dual gang linear Dual gang log log/antilog Dual antilog
4.7 K 20 2.9 MO
$4 \cdot 7 K \Omega$ to $2.2 \mathrm{M} \Omega$
Dual antilog $10 \mathrm{~K}, 47 \mathrm{~K}, 1 \mathrm{M} \Omega$ obly
Plen sype with IA D.P. maina Ewitch, extra \&ic. within ragges quoted.

CARBON SKELETON PRE-SETS

Smail high quility, type PR, dnear only 100 a, w20 0 . $470 \Omega, 1 \mathrm{~K}, \pm \mathrm{Kz}, 4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, $1 \mathrm{M}, 2 \mathrm{M} \mathrm{m}_{2}, \mathrm{a}_{\mathrm{M}} \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or harlzontal mounting 1 - each.

COMPONENT DISCOUNTS

10\% on ordera for components for e5 or more, 16% on orderif for componenta for 215 or nore (No discount on

POSTAGE AND PACKING
Free on ordere over 32. Please add $1 / 6$ if unde
seas orders weloome; carrlage charged at cost.

COMPLIF STHEO SIf
 FOR ONLY

PREMIER STEREO SISTEM "ONE" Consists of an all transistor stereo amplifier. Garrard 2025 T/C auto/mannal record player unit fitted stereo/nono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The 10 transistor amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls: Hass, Treble, Volume, Balance, Selector. Power on/off, stereo/monn switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{2}$ in. high (Amplifier available separately if required $£ 14,19.6$. Carr. 7/6).

PREMIER STEREO

 SYSTEM "TWO"As bystem "ONE" above luit with farsard 8Pos.
PRENTER 45 Gins. Carr.

And NOW A NEW KIT

The famous "MISTER BASSMAN" Model B2M by Dewtron

IN NEW COMPLETE "DEW-IT-YOURSELF" KIT FORM!
Kit contains steel cabinet, finished hammer-blue, and ALL PARTS and PANEL LABELS. MASTER CIRCUIT MODULE supplied BUILT! Printed wiring mounting board ensures quick and simple assembly in 2-3 hours by average-talent technician. CLEAR CONCISE INSTRUCTIONS, step-by-step.
Direct from makers. $£ 25$ complete kit of parts less batteries. Post paid.
D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset BH229AR

* Specially designed to allow use with the Philips Phitjeorda. Can be connected to Organ Gram socker and used without additionial amplifier.
* Adds effective bass when used with a piano.
* The versatile tuning featura makes the instrument ideal as accompanimant for guitars, clarinets and many other solo instruments, including one-man bands!
Weight: Approx. $8 \frac{1}{2} l \mathrm{~b}$ unboxed.
Dimenisions: $50 \mathrm{~cm} \times 27.5 \mathrm{~cm} \times 9 \mathrm{~cm}$ (approx) Output impedarice vominatly high, but will match wide range of amplifier inputs without distortion.
* 13-Note Pedal board giving full chromatic scale, nominially C to C, but adjustable by Key controf to play in any key desirad.
* Octaya sump switch, giving in'stant change from bit to 16 ft pitches and vice-versa at the touch of a foot-switch.
* Sustain Ori/Off switch, enabling Sustain co be switched in or out at the souch of a foot-switch.
大 Variable Sustain Time control giving adjussment of sustainifrom 0 to 3 zeconds after any peffect.
\$ Fully adjustable playing key giving a halfoctave adjustment in either dirsction up or down scale, allowing instrument to be played in any key withour the nead for difficult transposing 1
* Fully adjustable volume conerol enabling best level to be see to suit any normal
amplifier. Very bizh siznal output is amplifier, Very high sossible making the use of additional preamplifiers unnecessary.
\star Completely self-contained and independent of mains. Requires onty to be pluged into an amplifier. Runs on its own incernal consumption diving months of life with normal playing.

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next fult-time 2 year College Diploma Course which gives a thorough fundamental training for radio and television engineers starts on 2nd September, 1970.
The course includes theoretical and practical instruction on Colour Television receivers and is designed to cover the syllabus of the new City and Guilds Radio, Television and Electronics Technicians' Course. Pembridge College diplomas are awarded to successful students.
The way to get ahead in this fast growing industry-an industry that gives you many far-reaching opportunities-is to enrol now. Minimum entrance requirements: "O" Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PE4), 34a Hereford Road, London, W.2. Please send, without obligation, details of the Full-time Course in Radio, Television and Electronics.

NAME
ADDRESS

BI-PAK=LOW COST 1.O's

BI-PAK Semlconductors now offer you the largest and most popular range of I.C'B available ut thene ExCLUgry Low PRIOES. TrL Dlgital sN74N Berrea fully coded, brand new to manulacturers' specifeations. Dunt in-line plastlc 14 and 16 pin packagee.

BLYAK
Order Yo
$B P 00=8$
$8 P 00=8 \mathrm{~N} 7400 \mathrm{~N}$ $\mathrm{BP} 01=8 \mathrm{~N} 7401 \mathrm{~N}$

BP04=8N7404N BP10 $=8 \mathrm{~N} 7410 \mathrm{~N}$ BP20 $=8 \mathrm{NF} 720 \mathrm{~N}$ BP30 = 8N7430N BP40 = SN7440 BP41 - SN7441A
BP42 $=$ SN7442N $\mathrm{BP50}=\mathrm{SN} 7480 \mathrm{~N}$

BP5S = 5N7453N
BP60 $=$ SN7460N
BP70 $=8 N 7470 \mathrm{~N}$
BP72m8N7474N BP73 $=8 N 7473 \mathrm{~N}$ BP74 = 8N7474N BP75 $=$ EN7T776N
BP76 $=8 \mathrm{BNT} 476 \mathrm{~N}$
BP83 $=$ BN7483N $\mathrm{BP} 90=8 \mathrm{N7490N}$ $\mathrm{BP} 9=8 \mathrm{~F} 749 \mathrm{~N}$
BP 98
$=8 \mathrm{~N} 7493 \mathrm{~N}$ BP94 $\quad 8 \mathrm{gN7} 494 \mathrm{~N}$ BP95=SN7490N BP96 - 827496N

Description
Quad -mput NAND GATR COLLECTOR HEX INYERTER
Triple 3-Input NAND G:ATE Dual 4-Input NAND GATE gingle B-Input NAND GATE Dual 4-Input BUFFER GATE BCD to decimal decoder and NiT Driver BCD to decinal decode (TTL O/P).. Dual 2 -Input AND/OR/NO' GATE single 8 -Input GATE-expandable Doal 4-Ipput-expandable Single JK FiLp-Flop edge triggered Single Maater Slave JK Flip-flop Dual Mrater sluve JK Flip-finp Dual D Flip-flop
Quad Biatable Lateh
Dual Kapter Slave Ellip-fiop with preset and clear Four Bit Binary Adder
Divide by 124 Bit blnary coututer Dlvide by 164 Bit binary counter Duat Unty 4 Bit shit Hegister 6 Bit shift register

Frice and aty, prices

Friee and aty, gricti		
$\begin{gathered} 1-24 \\ 6 / 6 \end{gathered}$	$\begin{array}{r} 25-98 \\ 6 / 8 \end{array}$	$100 \mathrm{up}$
$0 / 6$	5/8	4/8
$0 / 6$	6/8	4/6
$8 / 6$	$5 / 0$	4/8
8	$5 / 6$	$4 / 8$
010	$8 / 8$	4/8
$8 / 6$	5/6	4/6
22/6	801-	17/6
焬	201-	17/
$8 / 6$	5/0	4/6
6/6	b/o	4/0
0	$8 / 0$	$4 / 8$
9-	8 /-	7/-
01-	8 --	71
10\%-	9-	$8 / 6$
10/-	81-	$8 / 8$
11/-	101-	$9 / 6$
11/-	10\%-	$0 / 0$
281-	28/6	201-
2e/8	201-	$17 / 6$
22/0	201-	$17 / 8$
22/0	$201-$	$17 / 8$
28/6	201-	17/8
$29 / 6$	$201-$	$17 / 0$
24/-	81/-	18/6

Data la avalinble for the SN 74N Seriea of Integrated circuita in booklet form, price 2/8.

BRAND HEW, FULL TO MANDFACTURERS 8Pzerrication

Pribs each
BP709 Operatfonal Amplifer, duat-ln-line 14 pjn pack
$1-24 \begin{array}{r}\text { Prics eag } \\ 20-98\end{array}$
age $=8 \mathrm{~N} 72709$ and similar to M1C709and ZLD709C. .
10/0 $0 /-\quad 8 /-$
Thla is a hlgh performance operational amplifer with high impedance diferentia inpute and 10% mpedance outpuk.

INTEGRATED CIRCUITS

Marntacturera" "Full outs"- out of apec, devicea facluding fometional unlta and part functional but classed as out of spec, from the manufactureru very rigld specliticationg. Ideal for learning about I.C'I sind experimental work, on leating, wome will be found periect.

PAK $\%$ 。
UIC00 $=5 \times 7400 \mathrm{~N}$
U1C01
U1003 $=$
UIC03 =

UIC04 $=5 \times 7402 \mathrm{~N}$
$8 \times 7402 \mathrm{~N}$

UCOS $=5 \times 7404 \mathrm{~N}$
U1C05 $=5 \times 7405 \mathrm{~N}$
U1C10 $=$
U1C20
U1C20 $=$
UIC10 $=$
UlCA1 =
UIC42
UICSO
U1CA0 $=$
UFCb1 =
UIC80 =
1670
TC72 $=5 \times 7472 \mathrm{~N} \cdot . . .1101-$
Packe cannot be spllt but 20 asaorted pieces (our mix) ts avallable as PAK UICX1
Every PAK carrien our BI-PAK \&atisfaction or money back GUARANTEE.

DUAL-IN-LINE DOW PROFILE SOCKETS

14 and 16 lead wocketa for tae with Daal-in-Line Integrated Circuita.

FAIRCHILD (U.S.A.) I.C's

RTZ Hiorologle Circulta
Epoxy case To-5 temp range $15^{\circ} \mathrm{C}$ to $56^{\circ} \mathrm{C}$
μ L. 900 Buftes
$\mu \mathrm{L}$ g1\& Dual two-input GATE

Full data and circuits for 1C" in Booklet forn price $1 / 8$ each
PLASTIC CASE To- 6 tead up to $100 \mathrm{~m} / \mathrm{cos}$
MOTOROLA DIGITAL I.C's
MDTL dual in-line paukage.
Type MCB44P expandable dugt 4-imput NAND Power Gate Type MCa45P Clocked Flip-flop

PULH, DATA BUPPLIED WITH UNITS
Please send all ordera direct to our warehouse and deapatch department.
BI-PAK SEMICONDUCTORS

P.O. BOX 6, WARE, HERTS.

Poatage and packisg aud $1 /-$. Overseas aud extra for Alrmail. Minlmum order 20/-. Cash with order please.

LINEAR integrated CIRCUITS

BX－PAE MOMOLTTHIC AMPLIFIERB （T0－5 8 lemd） BP709C，Operntional anıp－ Lnter，18／－each． BP701C，Operational aup bilter（with Zeper out put）， $12 / 6$ each． BP702C，Operatlonal amp winer（with direet out BP501，Wide ba
fler $18 /=$ each
BPS21，Logarithaule whle band amp．，14／－each． BP20／C，Geuersl purpose
amplifer（TO－5 8 lead）． （voltage or current nap．） 12／8 each． L．C．Operathoual Amplifier Type 701C，Iteal for P．E． rojecta． 8 Lead TO－5 cabe
Oor priea $12 / 6$ each 5 off $11 /$－each．Large Qty Prices quoted for

IC AMPLIFIER

Identicai encasobulation and pla confguration to the loblowing：Btrues－3，1C10 no lesos，bach circuis class A．B．Power amp and ciasa A．B．Power amp stag 3 wntts RMS．Fully tested and tusranteed．sumpled complete with circult details and data，CODED ISP． 1010. OUR LOWEST MRICE $80 /=$ each， 10 wp $25!=$ each．

MULLARD I．C． AMPLIFTERS
TAA243，Operational aup－ ilfer， $70 / 0$ esch． Rer， $15 / \mathrm{s}$ each．
TAA293，Cesseral purpose amplifier， $81 /=$ ench．

0A3020 RCA（ O .8 A.$)$

 CLRCUITsAvilla Power Amplifer， $80 / \mathrm{e}$ each．

VALUEALL THE

ADI61 yps

 ADI62 pyp MATCHED COMPLE－ MENTARY RARES TRANEISTORS．For inaias driven out－ pat blages of Amylliters
and Rado recelvers． OUR LOWEST PRIC OF 12i8 PER PA／A HIGH POWER SILI－ CON PLANAR TRA． SISTORS，TO－3．
FERRANTI ZT148

yCB80

OE゙R PRICE 12／6 EACH
FULL RAEGE OF
ZENER DIODES EAYGR
VOLTAEE 2－18V． 400 mV （D0－7 Cuse） $8 / 6$ en． 1 WW （Top－
Hat）$\$ 18$ ea， $10 \mathrm{~W}(80-10$ Hat） 36 ea， 10 F （80－10
Stua） $6 /$－ea．All fully Studi）6／－ea．All fully
tested 5% tol．and
marked．Mtate voltage required．
BRAND REW TEXAS GERM．TRANEIRTORS Coded and Gnnranteed Pak No．
$\begin{array}{ll}8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 & 8 \\ 7 & 8 \\ \text { T } & 8 \\ \text { T10 } & 8 \\ \text { T1 } & 8\end{array}$
$2 \mathrm{G37} \mathrm{~A}$ OCII
208744 +0 0c510
gG381／00881
2G384T OC8：
$\begin{array}{ll}20344 A & 0 \mathrm{C} 44 \\ 2 G 345 \mathrm{~A} & \text { OC45 }\end{array}$
2G378 OC78
T10 8 2 $2 \mathrm{G4} 47$ AF117
Alt 10！－each prack
2M2080 HP BIL，DUAT
TRAK8，CODE D 1699 TEXAS．Our price $5 j^{-}$
each．
120 YCB MLXIB DRTVER

 FULLY TB．STED AND CODED ND120． $1-248 / 6$ each．To－5 N．P．N， 25 up

Sil．trans．Euitable for P．E．Organ．Metal TO－18 Eqvi，2TX 300 1／－ench．

FREE

Ono 10j－Fack of your onn choics fros with ordert valued 54 or over． NPN DIPPUSED SILICON PHOTO－ DUO－DIODE TYPE 1S701（2N2175）for Tape
Readout，high gwitching Readout，high syitching
and measurement indi－ and measurement indi－
catora．o0V， 250 mW ． OUR PRRCE $10 /-E A C F$ ． DO OR OVER 8／G EACH， FULE DETAILS．
FET＇S
${ }^{2 N} \quad 3819$

$2 N$
MPF 105

LOW COST ETBI＿ Fully Teated，Guaranteel Perametera equit． 5459 M 5459．1－29 8／8 tuch 10 each： K／t each．Coded FE19． Full datu sent．TO－7． case．

CADMIUM CELLS

 ORP12 $8 / 6$ORPGO，ORPGI $8 /$－each
PHOTO TRANS．

KING OF THE PAXS Unequalled Value and Guality SIJPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS

Sutisfuet
Pak No．

	12
C2	60 Mixed Germauium Transisiorb AF／RF ．．．．．．．．．．．．．．．．．．10／－
Ǔ3	${ }_{7} 5$ Oermanlum Gold Bonded Dlodes elm，OAS，OA47 ．．．．． $10 \mathrm{j}-$
它完	i0 Gertmanium Tranaintora like OC81，AC128 ．．．．．．．．．．．．．． 10 T
L5	00200 mA Sub mina 8i1．Diadet ．．．．．．．．．．．．．．．．．．．．．．．．．．．． $10 /-$
$\overline{\mathrm{L}^{\prime} 6}$	
$\overline{\mathrm{r}}$	
E8	50 Sil．Plamar Diodes 200mA OA／200／202 ．．．．．．．．．．．．．．．．101－
\％9	20 Mixed Volte 1 wati Zener Diontes
E1	
U13	
［14	I60 Mixed Silicon and Gernnssium Diodes ．．．．．．．．．．．．．．．． 10 1－
E	
E16	10 3－Amp gilleon Rectitiera Stud Type up to 1000 PIS ．．．．． $101-$
［17	SO Germanhim PNP AF Tramglitors T0－6 Hke ACY 17－22 ．．10：－
E18	$\overline{8}$ 6－Amp Silcon Rectifers BYZ ${ }^{\text {B }}$ Type up to 600 PIV ．．．．$\overline{10 \%}$
L＇19	20 Silicon NPN Tranilators like BC108 ．．．．．．．．．．．．．．．．．．．．． 10 ．
U	12 1－6－amp Silicon Rectitera Top－Hat np to 1，000 PIVi ．．．．． 10 j
C21	30 A．F．Gernunum alloy Translstors 20300 series \＆OC71．．105－
U23	30 Madt ＇／like MAT Serles PNP Transistorb ．．．．．．．．．．．．．． 107 －
区24	20 Gernanium 1－anip Rectifers GJM up to \＄00 PIV ．．．．．．． 105
U25	
－26	30 Fast \＄witching Bilicon Diodes like JN914 Micro－mia．．．．．．10／－
U28	Experimenterg＇Assortment of Integratel Circulte，untested． Gates，Filp－Fiops，Reglstere，etc．， 8 Absorted Pleces
	101 amp SCR＇s T0－5 can up to 600 PIV CR81／25－600．．．．．． $20 /-$
L	$20 \mathrm{Sll} ,\mathrm{PLunr} \mathrm{NPN} \mathrm{trans} \mathrm{low} \mathrm{noise} \mathrm{Atup} 2 \times .3707$.
1732	25 Zener tloules 400mW J07 cabe tuixed Votts，3－18．．．．．．．． $10 /-$
L゙	15 Plutic case 1 aup gificon recthere 1×1000 serien．．．．．．．． 10 \％
	80 Sil．PNP alloy trane．TO－8 BCYa6，28302／4．．．．．．．．．．．．． 10 ．
	25 2tl．Planar trang．PNP TO－18 2N2906．．．．．．．．．．．．．．．．． $10 /$
L	25 8il．Planar NPN trans，T0－8 BFY $00 / 61 / 02$ ．．．．．．．．．．．．．101－
1－3	30 812，alloy trang．80－2 PNP，OC200 28322．．．．．．．．．．．．．．．．． 10 j －
U38	
t＇39	
U	10 Dual trans， 6 lead T0－5 2N2060 ．．．．．．．．．．．．．．．．．．．．．．．．．． 10 －
U41	
U42	10 VHP Germ．PNP trans．TO． 1 NKT667 AF117 ．．．．．．．．． $10 /-$

6 Matched Trans．OC44／45／81／81D 20 Red Spot AF Trans．PNP
6 Blicon Recte． 3 A $100-400$ Pi
10 A $811 i c o n$ Recte． 100 PI
OCl 140 Trans．NPN \＆wltchisg
12 A BCR 100 PIV
914．Tranh 2 s 303 PNP
200 Mrcha 8il．Transt．SPN BSY20／2
Bener Colodes 1W 33Y 5\％Tol．
BIgh Corrent Trata．Oct 2 Eqvt．
Power Tranaistora i
OC2
OC3
Power Tranaistord 10 O2 261 oc
Oc75 Transistora
Power Trang．OC 20 100

Ell．Trane．NPN VCB 100 ZT8t
0 A81 Dlodes．
0 Cramsietors
OC77 Traneiatorb
SH．Recto． 600 PIV 60041 ．
GET8a3 Trans．Eqvt．OC45
2 N 708 sil ．Traze． $300 \mathrm{Mc} / \mathrm{s} \mathrm{N} \boldsymbol{P}$
GTsl LIF Jow Noise fierm Trame
1N914 BH．Dtodes TS PJV F5mA
0 A95 Germu．Dlodes sub－mln．1N 69°
NPN Germ．Than．NKTif3 Eqve．
Oc22 Power Trans．Germ
OC25 Power Trans Gernl．
AC128 Traus．PNP HLgh Ga
AC128 Traus．PNP HLgh Gain
AC127／12A Comp，pair PNP／SE
2N1307 PNP Awitching Trabs． AFile Type Trans．
Assorted Germ．Dlodes Marked
AC126 ferm．PNP Tranti．
sillicon Rects． 200 PIV 750 Hin ．
AF117 Trans．．．
7 ocal Tspe Tran
2N2926 sil．Epoxy Traha．
Oc71 Type Trana．
28701 sil．Trani．Texas
10 A 800 PIV Sil．Rects， 1 S4 48 H
BC108 Sll．NPN High（ialn Trank
2N910 NPN SII．Trand．YCB $100{ }^{\circ}$
BSY95A Bil Trane N PN 200Mc／a
Oc200 Snl．Trane．
Getbso zow Nolse Gerth．Traho．
AF139 PNP High Freg．Trang．
NPN Iranc． 1 日T 141 \＆ $28 T 140$
Madt＇ 2 MAT100 \＆ 2 MAT120
3 Madt＇ 2 MaT101 \＆ 1 MAT121
40 OC 4 Germ ．Trans．A
3 AC127 NPN Germ．T
3 AC127 NPN Germ．Trane．
2N3900 BL，PNP Trank．Motornla
1 BIL．Power Trana．NPN J00Me
TK201A，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
2N697 Fpltaxinl Plamar Trans，䦔
4 Germ．Power Trans．Eqvi，OCt
1 Enifunctlou Trane．2N2E46

	$\stackrel{\text { IA }}{\text { (TO-5 }}$	$\begin{gathered} 3 \mathrm{~A} \\ 1 \mathrm{~T}-66 \end{gathered}$	$\underset{T 0-4 B}{7 A}$	（26		30 A
	cace）	case）	case）			
P1V	ench	each	ench	ench	PIV	each
60	4／8	3／－	$0 / 6$	10／6	25	201
100	51－	dot	10／6	12／6	50	
200	7 －	$7{ }^{8}$	12／6	16／－	100	
409	$8 / 6$	$1 / 8$	$18 / 6$	18／8	200	
600	10／8	11／6	$18 / 8$	251－	400	
800	$12 / 6$	14／－	18：－	301 －	000	80／

2A POTMED BRIDGF EECTETIERS，
200 V 10\％．

TRAMSISTOZ EQYT．AND SPECIFICATIOK B008，（German rublication．）A complete European Anterican and Japanese Tranalg tors．Exchustre to BI－PAK． $16 /$－each．

PRITTED CIRCUTT

Ex－corrothe
Packed with memifonductors and com ponents， 10 boards give a guaranteed $10 / \rightarrow$ Plua $9 /-\mathrm{P}$, \＆

PLEASE HOTE To avold any further Increased Povial Charges so pur Custamern and enable us to keep our＂By Return Postal servise＂Whleh fo second to none，we have re－organised and htreamlined our Deepatch
Order Denartment and we now request you Order Department and we now request you
to eent all your orders together with your remiltance，direct to our Warehouse and Deapatch Department，poatal addrest： BI－PAE BFYMCOMDUCXORS Derpateh Depl．，P．O．BOI 6，WARE，EKRTs，Posisge and packing atill $1 /$－per order．Minimum

20 NKT Trans．AF，KE，VHF．Coued

25 8H，and Cerm，Trana．Mixed，all

SIL．RECTS．TESTED | 50 | $1 / 2$ | $8 / 9$ | $4 / 8$ |
| :---: | :---: | :---: | :---: |
| $0 / 8$ | | | |
| 100 | $1 / 8$ | $8 / 8$ | $1 / 8$ |
| 000 | $15 /-$ | | |

MONO TRANSISTOR AMPLIFIER A really high fidelity mon－ aural amplifer mance charac teristice to suit the most ulir－ crjminating lis－ tener． 6 tran－ siator circuit mith integrated preamplisier special prluted aub Damel
AD161－Ap162
 ymanetrical complement pair．Output tranafortuer counpled tw 3 ohn and 15 ohm peake bridge rectifier porser phom input Backeta，Full 240\％．Controls：bass，treble，voly for a．c．naina $200-$ elector for PU1，PV2，tane，ratio．The HGL 709 in trosgly conatructed on rigid uteel chasals bronse hamumer enamel Aniah，size 9$\} \times 5 \times 4 \frac{1}{2} \mathrm{~m}$ ．high．
Sensitivity－PCil－ $50 \mathrm{~m} / \mathrm{v}, 56 \mathrm{~K}$ input lmopedunce
Pt2 $-110 \mathrm{~m} / \mathrm{x}$, i meg input impedance．
Tape $-110 \mathrm{~m} / \mathrm{v}, 1$ neg input impedane
Radio－ $110 \mathrm{~m} / \mathrm{v}$ ， 1 ，meg input inapedane
Output power mesured at $1 \mathrm{Ke}-\mathrm{B} \cdot 2$ watto RMS into ohine， $5 \cdot 8$ watts RMB Inta 15 ohm．Overall frequency esponge $30 \mathrm{c} / \mathrm{g}-18 \mathrm{Ke} / \mathrm{a}:$ Continiwusly variable tone controls：Bass，+8 db to -12 db nt 100 c The BgL． 700 bas been tesignal for true high adelity reproduction from radto tuner，graniophoue deck and tape ecorder preamp．Supptied ready bulit and tested，coni－ escutcheon panel，lons spindles（can be cut to suit your housing requiremente）foll circult diagtan sand operatine Inatructions．
OUR gPRCIAL PRICE 5 ． 19.6. P．\＆P． $7 / 6$.

in 4 ohm LOUDSPRAXER MAEGATN8

$\times 4 \operatorname{in} 3$ ohm $21 / \mathrm{P}$ \＆$P, 4 /-\quad 10 \times 6 \mathrm{in} 3$ ohm $27 / \mathrm{H}_{\text {，}}$
 dux ceramic magnet $42 /=$ ，（ 16 ohn 45／w），P，\＆P．6j－－ E．M．I． $13 \times$ 日in， 3 or 15 ohm with two Inhuilt tweeter
AKAND HEW． $12 \ln 15 w H / D$ Speakert， 3 or 15 ohm．
Current production by well known Britigh taker，Now
AKAND HEW． $12 \ln 15 w H / D$ Speakert， 3 or 15 ohm．
Current production by well known Britigh taker，Now Current production by well－known Britigh maker，Now

 $15 \mathrm{ohm} 18 / 6$ cerch Arailable in 3 or 8 otum $15 /=$ each； $15 \mathrm{ohm} 18 / 6$ tach．P．\＆P． $2 / 6$

1tin＂RA＂TWIM CONR LOUDRPRAKER 10 watts peak handiling． 3 or 15 ohm， $37 / 6$ ，P，\＆P． $6 /$ 35 ORD SPEASERS

HAGXA YOX DESE TYPE MOYLFQ COLL MICROPRORE． Fedran mpedspce．Bratad New－Special Price 42／－
P．\＆P． $2 /$ ．

BACAMCED ARMATURE EARPHOKE
Approx， 70 ohm impedance．Can be uned as ultra sensitive
mike or speaker．ONL，Y $1 / \mathrm{d}$ ，P．\＆P．1／6
CaY日ray likges，HIgh imip．for deek or hand use．
High sensitivity，18／6．P．\＆P． 16
HIGE DIP HDATCE CRY8TAL SIICK MIKES．OUR HgGE MWPGDAZCE DYRAMC BTICK KIEES．High Bensitivity，si／G，P，\＆P． $8 / 6$ ． GANG． $400 \mathrm{pz}+146 \mathrm{pF}$ ．Fitted with trimmers and $8: 1$ Integral alow motion，Suitable for nominal $470 \mathrm{ke} / \mathrm{s}$
1．F．Slze approx． $2 \times 1 \times 1, \mathrm{in}$ ．Only $8 / 6$ ．P．\＆\quad P， $2 / 6$ ． EOMETWELL MCROBWHCEES \＆／P．C／O，Puah－button
 TELESCORIC AERIALS WITK BWIVEL JOLTT．Can be angled and rofated in any direction， 12 bection Heavy Chrome．Extends froin $7^{* *}$ to approx，56＂．Maximum
diameter ${ }^{\text {P．}}$ ．10／－each．P．\＆P．1／6．Usection Lacquered Bras．Extenda from 6 to approx．291．Maximum

TRANSFORMER

EARGAINS！ BRAND HEW MULTI－BATIO MAWS TRAMEPORYMRE． Giviog 13 alternatives．Primary：0－210－240V，Secon－
dary combisations： $0-50-10-150-20-25-30-35-50-60 \mathrm{~V}$ hait dary combinations： 0 －55－10－15－20－25－30－35－40－60V hait

MATA8 TRA2月8FORMER．For tranbistor power oupplieg．

 Tapped Primary 209－29ㅇㅇ－240V．Sec． 21.5 V at 500 mA ． Tapped Primary
12／6，\＆P． $2 / 6$.
BATKERY CEARGER TRABGFORMERS， $200 / 240 \mathrm{~V}$ ． taput．Nomlnal putput for 6 or 12 V ．batteries 3 amps． Bjze approz． 8 ： 21×2 gin．Brand Kew．Prlce 21：－

RIGE GRADE COPPER ZAMMNATS BOARDS

Open 9－5．30 Monday

 fo SaturdayEsply closing Wed．I p．m． A few minutes from Sowth Wíndedon
Tube Station

170 HIGH ST．，MERTON，LONDON，S．W． 19 Tel．01－540 3995 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

DE LUXE STEREO AMPLIFIER

$1 \times$ Ez80 as full wave rectifer．Two dual polenliometers are provlded tor bues and trebte controt，giving bass and treble boost and cut．A dual Yolume control 18 uscd．
Bolance of the lett and r thbt hand channels can bo Boance of the left ard right hand chamnels can bo adjusted by means of a separate＂bulance＂control atited at the rear of the chassis．Input gennitivity is approxi－ mately $300 \mathrm{~m} / \mathrm{y}$ for sul peak out put of 4 watts per chanuel （8 watio mono），meo ${ }^{3}$ ohn speakers，Full negative seedback in a carefully calculated circuit，allows high
volume 1 evels to bo used with nerligble difuortion． Gupplied completo with knobs，chassis gize 11in，wx \times tin．x ．
 tested to it high standard．Price 8 end．

4－SPEED RECORD PLAYER BARGAINS

Mains modelh．All brand new in maker＇s packing． LATEST B．8．B．C109；A91 4－SPEED AUTOCHAYGER．

LAFEST GARRARD MODELS AII GPPes avaitible 1096， $2020,8 P R 5,8000, ~ A T 80$ etc，Send S．A．E．for Latest Prices PLMME J3FIS cut out for flarrard Models 1025,2023 2000,3000, AT60，SP25．Whe rigll transparent piabtio ID position，OUR PRICZ $85,15.0$ complete．P．\＆P．8／6．

LATEST ACOS OP91／18G MOno fompabible Cartridge with $30 /=$ P．\＆P．1／6．
s0NOTONE 2539 High output \＆tereo Cartridge T／O atjlus fur Stereo／1．P／7\％．Complete with unlveretil mountlug bracket．List Price 48／7．
 A top－quality record player amplifler emploging heavy
 Complete with output transiormer matehed for 8 olin Complete with output trangiormer matohed for a oha
speaker．Bize $7 \mathrm{in}, \mathrm{w}, \times 3 \mathrm{~d}, \times 6 \mathrm{~h}$ ．Ready buitt nul teated． PRICE $75 /=$, P．$\& P$ ． $8 / \%$ ．AISO AVAILABLE mounted At into crbinet below．PRICE 日7／6．P．\＆$P_{1} 7 / 6$ ． Uncut motor board size $14 \frac{1}{2} \times 12 \mathrm{in}$ ．，clearance 2 in ．below， 5 in．above．Will take above amplifter and any B．S．R．or （P25），Size $18 \times 15 \times 8 \mathrm{ln}$ ．PRICE 70／6．P．\＆P． $9 / 6$ ．
 speaker．Separate volume control and now with improved Wide range tone controls giving basd and treble lift and panel can be detached and lemid extended for remote moanting of controls，Complete with knobs，valves，etc． wired and tested for only \＆4．15．0．P，\＆P，6／

HgZ＂FOUR＂AMPLIFIER RIT，Siniliar ith appearance to HA3d above but employi entirely different and advanced
circuitry．Complele set of parts，elc，79：0．P．\＆P．6／－

HARVERSON＇S SUPER MONO AMPLIFIER A super qualify gram amplifer uving at double wound pantode valve an audio amplifier and power output triole Impedance 3 ohms．Ontput approx．\＆．S watts．Volume and tonc controle．Chasais size only 7jn，wide $\times 31 \mathrm{n}$ ．deed x 6 in．high overall．AC maina ${ }^{2} 00 j^{2} 40 \mathrm{~V}$ ．Sapplled absolvlely Branil New completely wired and tested with valvea and grami New completely wired and teted with valvea and OUR ROCK BONMOM FFI P \＆
OUR ROOK BONAOM 55
BARGAIN PRICE

SOFOTOHE \％TAEC compatible stereo Cartridge with LATEST BONETEE T／O Stareo Compatible Coritidge for LATMP／Gtcreo／28．SG／6．P．\＆P．2／\％， EP／LLP／F8 mono or atereo records on mono equipment． HIGE GAI 4 TRANEIATOR PRNFTED CLRCUIT
ABPLPPLE KIK

3－VALYE AVDIO ANPLIFIER EAS4 MX II Designed for Hi－Fi reproduc operation．Reads busili on plated heavy gauge metal chassig，alze $7!\ln w . \times 4$ in，d．x
4itin．h．Incorporates RCC83， EL85，Ez80 valves．Henvy duty，double wound mains
transiormer and output（rnns－

SPECIAL PURCHASE Heavy 8 sin．metal turntable Low futier performance 200 Lap）．Complete with latest type lightwelght pick－up arm and mono caritidge with tio解于IH for LP／78．ONLY ABPLTPI
TYPE TAI
put in excess
of in in หalte
Ah1 Btan
components．
BuIt
prlnted circuit panel slze $6 \times 3 \mathrm{in}$ ．
Generous alze Driver and Output Tranaformers．Output transformer tapped for 3 ohm and 15 obm epeakers，
Trannistor：（C．BT114 or $\$ 1$ Mullard AO 128D and matched Tranistors（CBT114 or $\$ 1$ Mullard AO 128D and matched pair of AC198－o（p）， 9 volt operation，Everything mupplied，
wlre，batiery clipa，solder，elc．Comprehensive eaby to Wire，batkery cliph，solder，elc．Comprehenslve easy to iollow instructions and circult diagram $2 / 6$（Free with

10／14 WATT EI－FI A PLrvice kiT A stylishly Aniehed wilh an output of 14 watts irare EISts is pash－pull． Guper reproduction of both musie and apeech，with negli＊ gible hum．Beparate Inpute for mike and gram allow recorda
and announccments

$$
\begin{aligned}
& \text { and annouracements } \\
& \text { to follow each other. }
\end{aligned}
$$

Fully shrouded section wound output transtormer to match $3-160$ eppealter and 2 independent volume controle， sood lift and cut．Valvellie－up 2 ELB4s，ECCB3，EFE6 and 2Z80 rectifler．Simple Ingiruction booklet $2 / 6$（Free with parto）．All pertu sold eoperately，ONL Y 37．9．6．P，\＆P． 8 i6． Also avaitable ready built and seated cormplete with etd
 （Matehed Raly）15／：V1510p，10／o；OC71 $5 / \circ$ OC76 $8 /$ AF117 8／8： $2(9339$（NPN） $8 /=$ Set of Mullard 6 trungistora OC44， $2=0 \mathrm{OC45}, \mathrm{AC128D}$, matched pait AC138 25
Cell 10／6．All post free．
YKWARR AND EEEIGE BPRAKBRB AND OABIALET

（Please write clearly）
PLEAEB HOTE：P．\＆P．CEARGES SOOTED APTLY TO E．E．OHLY： CAARGED EXTRA．

Brand New Fully Guaranteed TRANSISTORS \& DEVICES

LONDON, W.2
OPEA MOK-SAT SAm-6pm THERS Yam-lpm

If you can put a'Yes' in every box, you might just make a RADIO TECHNICIAN in Air Traffic Control

An all-consuming interest in telecommunications

At least one year's practical experience in telecommunications, preferably with 'ONC' or 'C and G' technical qualifications
A highly developed sense of responsibility

Willingness to undergo a rigorous programme of training \square

Aged 19 or over

To the right man, the National Air Traffic Control Service offers the prospect of an interesting and steadily developing career as a Radio Technician in air traffic control.

The work involves the installation and maintenance of some of the very latest electronic equipment at civil airports, radar stations and other specialist establishments all over the country. Important today. the job will become increasingly vital as Britain's air traffic continues to grow. and prospects for promotion are excellent. Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over). Scale maximum $£ 1590$ (higher rates at Heathrow). The annual leave allowance is good, and there is a non-contributory pension for established staff.

If you feel you can meet the demands of this rather special job-and you have a strong determination to succeed-you are invited to complete the coupon below.

Send this coupon for full details and application form To: A J Edwards, C Eng, MIEE, The Adelphi, Room 705. John Adam Street, London WC2, marking your envelope "Recruitment".

Name

PET/GI

Not applicable to residents outside the United Kingdom

NATCS

National Air Traffic Control Service

Practical Electronics Classified Advertisements

RATES: $1 / 6$ per word (minimum 12 words). Box No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS

MORE ROBOTS

Synchetic Animals swith "BRAINS" of cheir own. The LATEST range of projects include: ${ }^{\text {an }}$ capable of "RERRODUCING" itselfi Other projects SURE TO INTRIGUE YOU are a transmitter/receiver which radiates without Using r.f.f so there's NO NEEDTO WORRY ABOUT A LICENCE, ziso TEN new projects, one of which is an electronic dice machine. HOSTS OF EASY-TO. CONSTRUCT projects, for anyone with basic knowledge of Electronics. DONT WAIT, SEND3/- for your list-NOW!
To: 'BOFFIN PROJECTS'
4 CUNLIFFE ROAD
Stoneleigh, ewell, surrey
Designed by GÉRRY BROWN and JOHN SALMON and presented on T.V.

TOP TRANSISTORS
 ACY22 1/9 OC45 1/9 ZTX300 1/9

 $\begin{array}{llll}\text { BSY27 } & 1 / 9 & \text { OC202 } & 1 / 9 \\ 2 N 3708 & 1 / 9\end{array}$
 All the above items are a vailable at 16 for $£ 1$. Brand new. Individually tested.
 ANTEX SOLDER IRON
 This is a lightweight iron fite ed with a 15 watt nickel plated bit. It has been designed to enable you to weld reliable joints quickly and accurately.
 Special low price. Model CN240 volts.

ACT NOW 29/11

MONEY BACK GUARANTEE-P.\& P. I/-

> J. M. KING (S), 17 Buckridge
> Portpool Lane, Löndon, E.C.

A CORNUCOPIA OF COMPONENT8! Scarce alves, selected TV components, speakers and cabinfts. ('omputer pancls-long leads, NOT printed circuits. Transistors, resistors-newand rewovered. State your requirements. S.A.E. for detabls Mall-MART, 6 Eastbourne Road, Pevensey Bay, Mussex.

BUILD IT in a Dewbox fuality cabinet $2 \ln \times 2$ दin \times any length. DEW LTD, kingwood Road, Ferndown, Dorset. S.A.E. for leatlet. Write now-right now.

POWER SUPPLIES

Professional grade silicon transistor power supply modules. Units consist of p.c. board assembly size $6^{\prime \prime} \times 32^{2 *}, 240$ Volts AC inpuc. DC Voltage adjustable from $9-13$ Volts at max 250 mA . No load to full load voltage change less than 1%. Ripple less chan 2 mV . E5. 2. 6d. each.
Also available PEAC Op. Amps, 34/- each. WESTEK
P.O. BOX 7, RICKMANSWORTH, HERTS

ENAMELLED COPPER WIRE

S.W.G.	Per 11 b reel	Per 11b reel
$18-22$	$11 / 3$	$16 / 6$
$23-30$	119	$17 / 6$
$31-35$	$12 / 3$	$18 / 6$
$36-40$	$13 / 6$	$21 / 6$
$41-44$	$16 / 3$	$28 / 6$
Orders despatchedl by reurn of post	1 Please	

Orders despatched by relurn of post. Mease add $1 /-$ per item P. \& P. Supplied by: BANNER TRANSFORMERS, 8S OId Lansdowne Road, West Didsbury, Manchester, 20, TRADE ENQUIRIESINYITED.

PARAPHY8ICAL LABORATORY, Downton,
Wits. Telpkinetic photographs/data. S.A.E.
for Ilst, samples 203.

MISCELLANEOUS (continued)

PHOTO ELECTRIC SWITCH KIT

 Light cell transistor, relay etc. Elegant ease inhammer blue $5 z^{-} \times 24^{\prime \prime} \times 4 t^{\circ}$ fited with ligh hood, ideal counter alarm, dawn/dusk switch, ete. 3 is/-post paid.

6 OR 12 VOLT

FLUORESCENT LIGHTS
12 ins. 8 Watt tube ample light for caravan, Unbeatable at 65/6 post paid.
or in kicform 57/6

4 WATT GRAM AMPS.

Volume and tone controls, mains operation, 3Ω output, new and boxed $72 / 6$ POST
SALOP ELECTRONICS Callers weicomo 23 Wrio Cop

> Shropshira

S.A.E. for lists

GLEARINE LABORATORY, scopes, V.T.Y.M's, V.O.M's, H.S. recorders, transcriptlon turntables, electronte testmeters, callbration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, $s i g$-gens, M / C relays, components, etc. Lower Beeding 236.

MUSIGAL MIRACLES! Drum, Oymbals, Waswas and Fuzz modules. New unique effects units, Percussion, etc. Good was-waa kits 49/Famous "Mister Bassman" bass pedal unit Also bargain components list of reed switches, etc. Send S.A.E. NOW! D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

FOR SALE

NEW CATALOGUE No, 18, containing credit vouchers value $10 /$-, now available, Manufacturers' new and surplus electronic and mechanical components, price 4/6, post free. ARTIUR SALLIS RADIO CONTROL LTD. 28 Gardner Street, Brighton, Sussex.

MORSE MADE ! !

FACF NOT FICTION. If you ntart RIGHT you wilf lie reading amatear und cotmmerclal Morse within a month (norinal progreas to be expected). Uuing se-tent|fically prepured 3 -speed records you antonatically learn to recognise the code REYTHM without transluting. You canst hefp it, it's as ensy as Parning a tone. 18 W.P.M. in 4 weeka guaranturen. For detaits and course C.O.D. ring S.T.D. 0 G8ESC (BOX 19), 45 GREES LANE, PURLEY SURREY
ALL KINDS OF EVERYTHINE for sale to Irlsh readers. Write for price list, plus Bargain page. TONER ELECTRONICS, Lismore Park, Waterford. Phone $30 \wedge 8$.
FOR 8ALE. (rystal Mlerophone and Stand. New unused, JOHNSON゙, Stalham, Norfolk-

LOUDBPEAKER CABINETS LIMITED.

 Number of quality made Speaker Cablnets For Sale size $23 \frac{3}{3} \mathrm{in}$ high, 10 in deep, 15 in wide. Avallable in teak or waluut. C.W.O. Price $210+1$. \& $\mathbf{P} .10 \%$. Callers welcome. ELEC TRONIC SOUND, 31 Vewberrles Parade, Kadlett, Ferts. Tel. 5440 .
HI-FI EQUIPMENT

8HURE GOLDRING Cartridges. Post Free. G800, M44/5/7 E7.17.6. M3D £5.5.0. M44E e8.19.6. M55E £9.19.6. M75E/2 \$16.10.0. Garrard SP25/2 \&10.17.6. AP.75 \&16.17.6. P. \& P. $7 / 6$. ULTIMATE ELEOTRONICS, 38 Achilles Road, London, X,W.6. Mail Order Only.

WANTED

CASH PAID for New Valves. Payment by return. WILLOW VALE ELECTRONICS, 4 The Broadway, Hanwell. London. W.7. $01-567{ }_{5400 / 2971 \text {. }}$

SERVIGE SHEETS

LARGE SUPPLIER OF

SERVICE SHEETS

T.Y., RABIO, TRAHSISTDRS, YMPES, CRR RDOOOS

5/- EACH, MANUALS FROM $10 /-$
(Uncrossed P.O.'s please, original returned If service sheets not available.) free tv fault tracing chart or ty LIST ON REQUEST WITH ORDER

> C. CARANNA

71 BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

8ERVICE 8HEET8. Radio, TV, ete., 8,000 models, List 2/-. S.A.E. enquiries. TEERAX, 11 Maudland Bank, Preston.

8ERVICE 8HEET8 (1925-1970) for Televisions, Radios, Translstors, Tape Recorders, Record Players, etc., by return post, with free Fault Finding Guide. Prices from $1 /-$. Over 8,000 models available. Catalogue 2/6. Please send S.A.E, with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELJVISION, is Shepherds Bush IRd, Iondon, W.6. SHE 8441.

BOOKS AND PUBLIGATIONS

SURPLUS HANDBOOKS

Abstract

19 set Circuit and Notes 1155 set Circuic and Notes H.R.O. Technical Instructions 38 set Technical Instructions. 46 set Working Instructions 88 set Technical Instructions BC. 221 Cirevis and Notes Wavemeter Class D Tech. Instr 18 set Circuit and Notes BC. 1000 (31 set) Circuit \& Notes CR.100/8.28 Circuit and Notes R. 107 Circuit and Notes. A.R.B8D. Inseruecion Manual, 62 set Circuit and Notes

\title{ 7/-P.P. 9d } 7/-P.P.9d set Sender \& Receiver Circuit Circuit Diarame 56 cuits $0 /$-poscíreo Rircuit Diagram. 5 , 6 each post free R.1/16/A, R. $1224 /$ A, R.1355, R.F. 24, 25, \& 26 A. 134, T. 1154, CR.300, BC. 342, BC. 312. BC.348.J.E.M,P. BC. 624.22 seR. Colour Code Indicator $2 / 6$ P.P. $6 d$ Colour Code Indicator $2 / 6$ P.P. S.A.E. with all enquiries please Postage rates apply to U.K. only.

Mail order only to: Instructional Handbook Supplies Dept, P.E., Talbot House, 28 Talbot Gardens Leeds 8

EDUCATIONAL

ENGINEER8. A technical certificate or qualification will bring you becurlty and much better pay. Clem. and adv. private postal courses for C.Eng., A.M.E.E.R.B., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B, and (f.C.E. exams. Diploma courses In all branches of Engineering-Mech., Elee., Auto, Electronícs, Radio, Computers,
Oraughts., Bullding, etc. For full details write Oraughts, Bniding, etc. For full details write for FREE 132-page guide. BRITISH NOLOGY (Dept. 125K), Aldermaston Court, Aldermnston, Berks.
GET INTO ELECTRONIC8 - big opportunities for trained men, Learn the practical way with low-cost Postal Training, complete with equipmont. A.M.I.E,R.E., I.T.E.B., City \& Guilds, Radio, T/V, Telecoms., ete. For FREE 100 page book, write Dept. 856K, CHAMBERS $00 \mathrm{~L} E \mathrm{EGE}$, College House, $29-31$ Wrights Lane, Kensington, London, W.8.

COURSES

FULL TIME COUR8ES in (a) Basic Hlectronics, (b) Television-Servicing. Sine month contrses starting September 21 mext, leading to City and fuilds eertificates. Extensive laboratory work incluted. Full details from: Section $47 / 4 \%$, NOETHALE COLLEAE OF TECIVOIOGY, Beaconsfleld Road, Southall, Middx.

ISLEWORTH POLYTECHNIC

FULL-TIME COURSES IN ELECTRONICS FOR SCHOOL-LEAVERS

ARE YOU: between 16 and 18 years old? aiming at a career in electronics?

HAVE YOU:
completed 5 years secondary education (preferably taking C.S.E's in Machs and Physics?)
lived in the U.K. for 3 years or more?
DID YOU KNOW: further education, for you, is free?

One year full-time courses at Isleworth Polytechnic prepare students for the Part I Radio Television and Electronics Technician's Certificate and the Part I Telecommunication Technician's Certificate (C. and G. 434 and 49). (Also courses available for Electronics Mechanics (Part I C. and G. 433).

Write for details and application forms
The Head of Science and Electrical Engineering Department,
Isleworth Polytechnic,

> St. John's Road, Isleworth, Middx.

OFFIGIAL APPOINTMENTS

LONDON BOROUGH OF EALING EDUCATION DEPARTMENT

LABORATORY TECHNICIAN required at Southall College of Technology as soon as possible to work in the Electronics and Television Servicing Laboratories. Experience in zelavision/electronics servicing essential. Good trade or other relevane qualifications will be an advantage. Salary $\mathbf{£ 1 , 0 5 5 - £ 1 , 2 2 0}$ inclusive (under review).
Application forms obtainable from the Registrar of the College. Beatonsfield Road, Southall, Middlesex, returnable within 14 days of appearance of this advertisement.
P. J. COOMBER

Town Clerk and Chief Executive Officer

SITUATIONS VACANT

A.M.T.E.R.E. A.M.S.E. (Elec.), Clity \& Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132 -page Guide-luEE. please
 atate subject of interest. BRITISH NOLOGY (Dept. 124K), Ahlermaston Court, Aldermaston Berks.

RECEIVER8 AND COMPONENT8

GU:RATTEED TUSES AT BEDUCED PRICES

We are the area stockisis for Display Electronics Re-manufactured Tubes. These tubes have a complete new gun assembly, the glass is the only reconditioned part and that cannot wear out.
We invite enquifies from the trade or the public. Daily 9.30-5.30. Fri. 9.30-8, closed Wednesday. TELEVISION CITY
50 Richmond Road, Kingston, Surrey Telephone 01-546 3961 (100 yards from station)

BRAND NEW ELECTROLYTIE8 15/16Y $0.5,1,2,5,8,10,20,30,40,50,100 \mathrm{mF}, 8 \cdot 5 d$, R12 series 5% resistors, Carbon Film 41 V 10Ω to 1 MQ , 1.5d. Wirewound 5 F . 15Ω to $15 K \Omega, 10 d$, Postage $1 /=$. The C.R. SL'PPL, CO., 127, ("hesterfield Rd., Sheffield, S8 ORN.

ALIVE AND WELL and living in Croydon. Amatronix Ltd. still going strong. Ceramic fiters, transjstots, amplifier packs, 2N3819 7/6, HC169 2/6. List 6d. Mail order only. 398 Seisdon Road, S. Croydon, Surrey CR2 ODE.

BIRD ORGAN SPARES

We hold large stocks having purchased manufacturers* entire stock.
6 watt amplifier. Black cloth finish. $6^{\circ} \times 10^{\circ}$ speaker, 2 inputs. Tone volume controls. Size $14^{\circ} \times 6 \frac{1}{3}^{\circ} \times 24^{\circ}$. Price 144 C.W.O.
100 wates solid state amplifiers. 2, 4 and 6 input. Separate volume. Treble, bass, master controls from 883.9 .6 .
Mini-Lez "Leslie" type cabinet. Teak finish. Size $15^{\circ} \times 13 \frac{1}{2}^{*} \times 17 \frac{1}{2}^{-1}$ from $£ 39$.
Srop Tab units, Pedal Boards, Swell Pedals, etc. Send S.A.E. for brochures and price lists: E.M.C. P.E,2

22 Norwich Raad
Bournemouth 日H2 3日2

SITUATIONS VACANT

UNIVERSITY OF SOUTHAMPTON
 INSTITUTE OF SOUND AND VIBRATION RESEARCH

Person required to help with development and operation of instrumentation systems for noise and vibration measurement, including analysis of data and routine maintenance of equipment. Salary on scale either - $\mathbf{4 5 6}-\mathbf{2 7 7 1}$ or $\mathbf{4 9 0 5 - 6 1 , 2 7 3}$ with supplementary allowances for qualifications. Please write stating date of birth, experience and qualifications and giving the names of two referees to the

Deputy Secretary The University
Southampton SO9 5NH quoting Ref.: PE

JUNIOR TECHNIGAL OFFICER or TECHNICIAN

required ac our Hampstead Laboratories,

 Holly Hill, N.W.3, to assist scientists engaged on new concept of medical research of 'Human Aerodynamics'. Suitable for applicant in early 20 's with some experience of workshop practice and interest in electronic inserumentation. Salary according to experience and qualifications (O.N.C./H.N.C.) on scale 6759 - $\mathbf{£ 1}, 508$ p.a. Please apply quoting our reference PE 51/| so:Mr. J. H. WOODCOCK
National Insticure for Medical Research
The Ridgeway, Mill Mill London, N.W. 7
Telephone 9593666

IISE
 Established 1891

TECHNICALTRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man.

 Let I C S erain YOU for a well-paid post in this expanding field.I CS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.

- C. \&. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
* p.M.g. CERTIFICATES IN RADIOTELEGRAPhY.

Examination Students coached until suecessful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your awn 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of IC S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL CORRESPONDENCE
 ScHOOLS
 A WHOLE WORLD OF KNOWLEDGE AWAITS YOU !

International Correspondence Schools
(Depr. 152), Intertext House, Stowarts Road, London, S.W.E.

NAME

Block Capitals Please

ADDRESS

INSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT. Connects between guitar and amplifier. Operatet from 9 V battery cested. Size 3 itin $x 2$ itin x in. $65 /-$ plus $2 / 6$ carriage.
"WAA-WAA" UNIT. Connecrs berween guitar and amplifier. Operates from 9 V battery. Complete printed-circuir board assembly, built and
tesced. Size $3+$ jin $\times 2$ in \times 量in. $65 /=$
 carriage

CREATE "PHASE" on your tape recordings, records, etc., unique elecrronic circuitry enables you connect between pre-amp. and power-amp.
This is not waz-waa, white-noise or swish but genuine phase-shift created electronically. Input and output impedances match to $10-50 \mathrm{k} \AA$. Operates from 9 V battery. Completa printed-circuic assembly, built and tested.
Size 4 in $\times 2 \frac{1}{2}$ in $\times 1 \frac{1}{2} i n . ~ 65 /-$ plus $2 / 6^{\circ}$ carriage.
"AUTO-WAA". The basic "waz-waa" type amplifier concept has botn mado more sophisticated by automatically generating this effect with an asciliacpr. This ramoves the need for a potentio controls to alter the repetition rate and duty cycle of the oscillator.
This unit can be connecred berween a guitar and an amplifier to provide continuous waa-waa' effees; or between an orisan keyboard and amplifier. To provide an effecs similar co a "Leslie" spaaker with variable speed from chorale to fasc rate Oparates from $2^{\circ} \times 9 \mathrm{~V}$ batcories. Complete printed circuit assembly, buifr and reste

Trode Enquiries invited

Mail Order Only
S.a.e. for all anquiries

ELECTRONIC PRODUCTS

98a LICHFIELD STREET WALSALL, STAFFS.

POLYESTER CAPACITORS

$400 \mathrm{~V}, 0.0068,0.0047,0.0033,0.0022 \mu \mathrm{~F}, 7 \mathrm{~d}$ $160 \mathrm{~V}, 0.01,0.015,0.022,0.033,0.047, \% \mathrm{~d}$; $0.068,0.1,8 \mathrm{~d} ; 0.15,0.22,10 \mathrm{~d} ; 0.33$, 1/.i | $0.47,1 / 4 ;$ |
| :---: |
| Mica: |
| $350.6 \mathrm{p}, 2 /=$ |
| 2 kV |

 $150 \mathrm{pF}, 100 \mathrm{pF}, 62 \mathrm{pF}, 30 \mathrm{pF}, 27 \mathrm{pF}, 22 \mathrm{pF}$,
$10 \mathrm{pF}, 8.2 \mathrm{pF}, 3.3 \mathrm{pF}, 6 \mathrm{~d}$, Princed circuit
Princed eircuit eype: $470 \mathrm{pF}, 220 \mathrm{pF}, 50 \mathrm{pF}$, 6d.
ELECTROLYTIC CAPACITORS
$30 \mu \mathrm{~F}, 6 \mathrm{~V}: 20 \mu \mathrm{~F}, 6 \mathrm{~V} ; 6 \mu \mathrm{~F}, 6 \mathrm{~V} ; 4 \mu \mathrm{~F}, 4 \mathrm{~V}, 1 /=$
RESISTORS
$\frac{1}{2} W 200 \mathrm{n} 2 \cdot 7 \mathrm{k}, 22 \mathrm{k}, 30 \mathrm{k}, 62 \mathrm{k}, 93 \mathrm{k}, 150 \mathrm{k}, 430 \mathrm{k} ;$
W $1 \mathrm{k}, 1.5 \mathrm{k}_{1} 3.6 \mathrm{k}, 5.6 \mathrm{k}, 27 \mathrm{k}, 47 \mathrm{k}, 68 \mathrm{k}$,
TRANSISTORS
OC200, 6/:: OC201, 7/6; BCY30, 6!-; 8CY31,
Tesco
Tested Silicon TO5 and SO2, Audio: high gain,
Diode IN914, 1/6. Conneeting Wire, 25yd, 2/6,
C.W.O. Post and Packing 1/6

VALECTRON
LINKS ROAD, LOIVESTOFT
CONNOR BIANAL TESTER for testing Radios Jecord Player, Ampliflers, and T/VB, Tester consists of Audio Amplifter, Multivibrator, a Dectector (AM), and Test Speaker ($25 z$). Speed up your service with a Connor Tester. Battery operated, 815 , with probe leads, less battery, I'ost free. C.W.O. CONNOR ELECTRON゙JCS, 43 Wade Reach, Kirby Road, Walton on Naze, lissex.

[^4]POLY8TYRENE CAPACITORS: $125 / 350 \mathrm{~V}$ 150,
180. 330,390 , $560,680,820,1,800,2,200$ $2,700.5,600,6,800,8,200: 125 \mathrm{~V} 18,22,120$, $220,1,200,1,500,3,300,3,900,0.01,0.012$, 0.015 . Paper: $100 \mathrm{~V} 0.0001,0.001,0.002,0.005$, 3/- doz. Computor Panels: 5-BC108, Diodes, 3/=, 4-10/= 8-0C76, 8-0A10, 5/=- 4-0C42, 3/8 -OC43/GET875, 24-0A81, 7/6; 24-A1678, 550 MCE pnp- 24 Diodes 10/-i 3-OC23, 8 Diodes $10 /-$. Mned Transistors on Panels $10020 / \mathrm{m}$. Brand Now Chassis: 2-0C35, 2-0020,
 $12-W, h$. Resistors, $25 / \mathrm{m}$, Electrotytics: 4,000 ,
$60 \mathrm{~V}, 7 / 6$. Post $1 / 6$ order. J.W.B. RADIO, 75, Hayfleld Road, Salford, 6, Lanes.

R \& R RADIO
 51 Burnley Road, Rawtenstall Rossendale, Lancs

Tel.: Rossendale 3152

VALVES BOXED, TESTED GUARANTEED

EbF80	3/-	PCCA4	3/-	PYa!	3/6
EBFB9	1/6	PCF80	$3 /$	PYE2	3/-
ECCE2	3f-	PCFE2	3/6	PY800	316
ECL80	3/7	PCL22	4/-	PY801	316
EF80	$1 / 6$	PCL83	4/-	U191	4/6
EFAS	3 -	PL.36	$51-$	30F5	2/6
EYB6	4/-	PLBI	4/-	30 P 12	4/6
EZ40	$4 / 6$	PL83	4i-	30 C 15	3/-
EBC41	4/6	PY33	5/-	50CD6G	7/6

POST, ONE VALVE 9d. TWO TO SIX \&d.
OVER SIX POST PAID.

BRAND NEW FULL SPECIFICATION COMPONENTS

 2N706 3/- 2 2NITII $^{2} 18 ; 2 N 2906[2 /-; 2 N 3456$ $30 /=1 \mathrm{~N} 3 \mathrm{jo3} 3 / 3 ; \mathrm{BFli7} \quad 10 / \mathrm{F}$ SL403A $46 / \mathrm{F}$ SL702C $21 / 4$ Sub-min. polyestar capacitors: $250 \mathrm{~V}: 0.0047$ and $0.01 \mu \mathrm{~F}$. 11 d en., $0.022 \mathrm{I} / \mathrm{ez}$. $0.0471 / 1$ ea. Hirh ssab 1 W 5 . resistors 47 ohm 5o $10 \mathrm{MQ} 1 / 4$ por 5; 5/3 per 25; 19/- per 100your selection. CataloSPECIALIST ELECTRONICS CO.
26 York Road, Crosby, Liverpool L23 ST

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drifled and roller sinned complete With iayout drawing.
EXAMPLES
Marine Tachometer (May 1970) 3/-ea. Musical Stave (May 1970) ${ }^{8 / 0}$ ea.
Waa-Waa pedal Yol. 4 No. 7 2/9 ea. Audio Sig. Gen. (Sine and Square on one board) Vol, 5 No
108.6 ea
S.A.E. for List of over 36 Boards. Trade enquiries
welh, ELECTRONICS, Industrial Estate,
S.H, ELECTRONICS, 517

PRINTED CIRCUIT8. Capacity now available Send artwork for quote. S.A.E. Sample 1 off. Artwork, reduction, negative, 4d. per. $\$ 9 \mathrm{in}$. ain Fibreglass. $1 / 6$ per sq in . including tinning Drdling extra. FREEMANTLE, 18 Pennine Road, Mulbrook, Southampton.

OFFER. Copper laminated tin ibreglass. Board single-alded 4d. per $8 q \mathrm{in}$. Double-sided 5d. per sq in. Any size cut. Minimum order 10/P. \& P. plus 10%. FREEMANTLE, 18 Pennine Road, Millbrook, Southampton.

CONSTRUCTOR UNITS

R.F. Generotor. Supplied with coits, tuning cap., switch and details for wiring and calibration. Covers $150 \mathrm{KH} / \mathrm{x}$ to $30 \mathrm{MH} / \mathrm{z}$. $89 / 6+3 / 6 \mathrm{p} . \mathrm{p}$. A.F. Unit. Osc. operaces at 2 freq's, for A,F, R.F. checks, connects as amp. for continuity checks. Dual freq. square wave o/p for audio/HiFi sests Provides modulation for R.F unit.
39/6 + 3/6 p.p.
S.A.E. for details. Tweed Electronics (PE), 9 The Green, Hatfield Peverel, Chelmsford, Essex

NEW MODEL Y.H.F. KIT MK2

Our latest Kit, improved design and performance plus extra Ampllisir Stage, recelves Aircraft. Amateurs, Moble, Radlo $2,3,4$, etc and can be bullt in one evening. Powered by 9 Voit Battery, complete with easy to follow instructions and built tit Jack Socket for use with Earphones or Amplifier Only 68jo, P. A P. Freo U.K, only Postal Orders, Cheques to:
Gaileon Tradng Co., 298A Lodge Lane

SILICON TRANSISTORS 1,000,000 FOR SALE

Clearance of pmp Silicon Alloy Transiscars from the 25300 (TO-5) and $2 \$ 320$ (SO-2) range and similar so the OC200-205 and BCY $30-34$ series. Available only from us at a frastion of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use bur owing to company policy change have been made available to us surplus to requirements. Offering chese transistors in varied quantities make them ideal for Amateur Electronics, Rodio Hams ond for experimental use in Schools, Colfeges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors, Please state preference of type, i.e., TO-5 25300 or SO-2 25320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- EJ 15s. (plus p. \& p. 3s.)
500 off -42 10a. (plus p. \& p. 3s. 6d.)
1,000 off- $\mathbf{E 4}$ (plus p. \& p. 5s.)
10,000 off- $\mathbf{L 3 5}$ (plus p. \& p. lis.)
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES P.O. BOX 5

63a High Street, Ware, Herts. Tel.: WARE 3442

AMAZING VALUE NEW BRANDED FULL SPECIFICATION DEVICES
 Integrated Circults complete with datal GE PA234 IW Audio Amplifier $17 / 6$ GE PA237 2 W Audio Amplifier $37 / 6$ GE PA237 2W Audio Amplifier $32 / 6$ Plessey SL402A Preamp, and 2W Amp. (equiv Plessey SL402A Preamp, and 2 CClO with inseructions $40 /-$
 GE D40Cl 4W Darlingcon Amplifier. Very
 MELII Phote Darlington Amp. $9 / 6$
 Connectors for DiL I.C. $\$ 7 /-$
 High @uality low cont transistors:
 GE 2N5t72 $1 / 9 \quad$ MUL BFX86 $6 /-$ ME 0412 MUL $3012412 /-$ $\begin{array}{llll}\text { ME 0412 } & 3 / 9 & \text { MUL BD124 } & 12 / \\ \text { TI } 2 N 4059 & 3 / 6 & S 2 N 3055 & 14 j\end{array}$

Triace for full wave power controlt
RCA 40669 gA 400 V 24/-
RCA 40583 Trigger Diode 5/3
Plastic Rectifiera for power supplies: ITT I Amp. 4000 series
$1 \mathrm{~N} 4001,50 \mathrm{~V} 1 / 9$
IN4004, $400 \mathrm{~V} 2 / 5$
I N4005; $600 \mathrm{~V} 2 / 9$
1N4003, 200 V 2/
1 N 4820 1.5A 400 V \$i Rectifier $2 / 6$
W005 IA 50 V full wavo bridge $5 i 7 / 6$
D40 2A 400 V full wave bridge $\$ \mathrm{t}$ 12/6
JEF ELECTRONICS (P.E.8)
York House, $\mathbf{1 2}$ York Drive, Grappenhall
Warrington, Lancs. Mall Order Only
C.W.O. P. \& P. $1 /$ - per order Overseas $7 / 6$. Money bick if not satisfied.

TOP PRICES PAID

for new valves and components

Write:

KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

9V 3A Transformers, suitable P.E. Model Train Controller (June), New, impregnated, 19/mincluding postage. F.C. STAIRS, 07 a High Street, Edgware, Middx.

Practical Electronics August 1970

ELECTRICAL

240 ELECTRICITY ANYWHERE

BEST EVEA 200/240 VOLT "MAINS" SUPPLYFROM 12 VOLTCAR BATTERY Exclusive World Scoop Purchase. The fabulous Mk, I2DAmeriean Heavy Duty Dynumoter Unit with a Massive 220 watt output and mance of all time. Marvellous for Tolevision. Drills, Power Tools. Mains Lighting, AC Fluorescent Lighting and all $200 / 240$ volt Universal AC/DC mains equipment. Made at remendous cose for U.S.A. Govt, by DelcoRemy. This magnificent machine is unobtain. Only $65.9 .6+10 / 6$ postage, COD, with leasure, relund guarantes. Please send SAE for illustrated datails.

Dept. PE, SCIENTIFIC PRODUCTS
Rear Derby Road North Promenade Blackpool, Eancanhire

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aetlals now fitted with tilting bracket and 4 element grid reffectors.

Loft Mountint Arravs, 7 element, $40 .=$ 11 element, $476 ; 14$ etement, 55 ; 18 element, 62, S. Wall Moanting with Cranked Arm, $75-; 18$ element, 826 . Mast Mounting with
 14 element, 62:- 18 element, $70 . \omega$ Chimnes Mownting irrass, Complete, 7 element, T: 6; 11 element, $80,-514$ element, 87,$6 ;$ is element, nit. Low Loss Cable, 1.6 yd. U.H.F, Pre amps from 75. State clearly channel number required on all orders.

BBC . ITV AERIALS

 External S.D. 30 ETV (Band 3), 3 element loft array, $30,-5$ element, $40:-$ 3 element, 50:- Wall mounting Combined Bisciriv. Loft $1+3,40 j-1+5,30 /=1+7$,
$60 j=:$ Wall mornting $1+3$

COMBINED BECL-ITV-BBC2 AERYALS

F.M. (TRand 2) Loft S. D, 17 G, "H", 33-, ${ }^{3}$ element, 37.6 . External units available. co-ax.
 Divexer Crossover Boxes, iv. 6 . C.W.O, or C.O.D.
P. $\&$ P. $6 / 6$. Send od, stamps for illustrated lists. Callers welcome
open all day saturday

K.Y.A. ELECTRONICS (Dept. P.E.)

 40-1 Manarch ParadeLondon Road, Mitcham, Surrey $01-6484881$

tion problems with this 4-Atation Trantiafor Iotercom ayatem t2 marter avd 8 8ubnj, in de-Jure plastic cablinets for deak or wall mounting. Call/tairs/isten from Master to Subs and
Eubi to Master. Fieally suitable for Buslpess, surBury, Schorde, Hospital, ofice and IFome. Operates
gor on one ©Y batlery. Onfor switch. Volume control. Complete with 3 connecting wires each 66 ft . and MAIN8 INTERCOM
Ho bafteries-no wires. Just pligg in the maing for instant twowsy, lond and elear communication. On/off bwitch and volume control with lock syetern Prlee $\$ 11.19 .6$. $P_{=}{ }^{\boldsymbol{p}}$ P. B/G extra.

3 Gns
Eame as 4-Station Intercom for iwo-may fnstant commusication. Idnal as Baby Alarm and Door Phone Complete with 66ft. connecting wire
Bathery 2/6. P. \& P. 4/6.

jency with bisincredible beriness effle lor. Take down long telephove messages ore Ampliwhout holding the handset. A usefal operce ald off switch. Volume control, Battery 2,6 extra. P. \& P $3 / 6$. Foll pilce reiunded it not eatiolied in 7 days.
WEAT LOXDON DIRECP SUPPLIES (PE/\$) 169 KEASLMGTON HIGE STRRET, LONDON, W. 8
R.C.A. 40669 8A. 400 p.i.v. Plastic Triac 21/- only.
BCI84L 2/6; BCI69C 3/-; 2N4058 3/6; 2N4302 11/.
Carbon Film Resistors EI2 Series $10 \Omega-1 M \Omega 5 \% \frac{1}{2} W$. Your Selection 1-12, 3d each 13 and over, 2.5d each.
Dulci 207 Stereo Amp. 7+7W o.p. cl9.10s few only.
MAIL ORDER ONLY. P. \& P. I/-.
SPECTRUM AUDIO
45 SELBORNE ROAD, LONDON, N. 22

AUDIO EFFECTS

5 SHAW LaNE, Halifax, Yorks.
Buy with confluence and obtaln the right reaults. Refunde without queation if any of our producta fall to give 100% satiffaction.

AMATEUR BAKDB ALL TRANSIBTOR
BUPERHET RECETVER KIT. No fuse, he drilling. Juat fit the componente on our printed circuit, 8 fow Motlon tuming. Simple IF algoment. Perapex front peaker. Amp can be tusels separately. Designed to accept a BFO signal. Tsee Denco plag in colis

 altery. Easy step by etep instruetlons. Complete Cit. 38.19 .8 plus b/a P.P. \& Ins. Extra ranges 12\%- per range.
POWER CONTROLLFR. Power at your fuger than. Not merely halt wave control but foll ware. tiale valade control gives zero to full power. Ubes latets 18 amp 3 kW trlac and apectal triggering device. Ideal for all types of lighting, fires, motors, cables etc. In kit form with easy, to follow sockec. tions 28.8.6. Ready built 2日, 4, 6 plus $5 / 6$ P. P. $\&$ In REVERBERATIOK AMPLTFIER. Belf contained ranaistorised, battery , operated. An entirely diferent approach to aound reproduction. has a flat one dineprodional enf from a single source, proper sound delay through reverberation, tonce, are crested with a truls third dimenslon for concert halt originulity. Two controls adjust volume and reverberation. simply plag microphone, guitar, etc., fin, and the output Into your ampHfer, Bupplled in ${ }^{\text {a }}$ beauttiul walnut cabinet $\overline{z i}$ in $\times 3$ in $\left.\times 4\right\}$ in. 410.4.0. P. P. \& Ins. 6

VOX 8WITOH. 'Thts sounnl operated awitch la lileal for mobile TX work, tape recorder awitching, etc. You speak, it switches. High and mediutn imp. mpute. AF raze of point. Drives your 12 voit
relay. In kit form with full instructions $42 / 0$, Ready built, tested and guaranteed. $88 / 6$ yost paid. METEOMOMS TKIT, Tarleble beat. Listen while you play and keep it lime. Easily bullt, pocket pont pald. Ready built in an attractive polythene case, 87,0 post pald.
MORSE OSCILEATOR, PO board, (ransistors, high tiab. components, battery carrler, ear piece. Adjustapeaker. In kit form $17 / 6$ poost pald. Reads buill in uimilar case sa shove $27 / 6$ posit paid.
STRAYCHT PROM THE PRESS. Latest Mullard madual: Audio Ampa, FY tuners, stereo decoder, Becelver efrenits, $\mathbf{H i} \mathrm{Fi}_{4}$ Tape, etc., etc. $82 / \mathrm{p}$ port pald.
TBXAS TRANSIETORB. Complementary aymmetry Drtier, NPN, PNP output, The set of thre only $8 / 6$ post pald.

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTOR RADIO, RECORO PLAYER,TAPERECORDER, AMPLIFIER, eke. Types available: ${ }^{6 v}$, 9 v . 1218 v (single output) $39 ; 6$ each. P. \& P. 2/9. $9 v+9 v i 6 v+6 v i$ or $4 \mathrm{div}+4 \mathrm{dv}$ (two separate outputs) $42 / 6$ each. p. \& P. 2/9. Please state output required. All the above units are completely isolated from mains by double
wound transformer ensuring 100° R.C.S, PRODUCTS (RADIO) LTD
(Dept. P.E.), 31 Oliver Road, London, E. 17

R．S．T．VALVE MAIL ORDER CO．

BLACKWOOD HALL，WELLFIELD RD．，S．W． 16 SPECIAL EXPRESS MAIL ORDER SERVICE

12	$3 / 6$	碞		BCY ${ }^{\text {S }}$	$7 / 3$	G		0020	201－
1N213	51－	$2 \mathrm{S501}$	0－	BCX 80	191－	GET118	4）	OC2	81－
1N23	$1 /$	28703	12／6	BCY70	－	GET119	41－	OC2	6
1N85	$17 / 6$	3N143	191－	BCz11	8－	GET120	6／6	0 C 24	－
2N259	101－	A19759	1／－	BD121	19／－	GET587	$8 / 8$	OC2s	$7 / 6$
1N256	101－	AA128	5 －	BD123	22／6	EET872B	6／－	OC2	析
1N645	6）	AAZ12	3／6	BD124	12／－	GET873	31－	OC28	
$1 \mathrm{N725A}$	$1 /$	AAZ13	$3 / 5$	BDY1I	5／6	CETE75	8）－	O^{2}	14／6
1×4007	$1 / 6$	AC107	510	BP115	5／8	GET880	$8 / 9$	OC30	
18023	4 －	${ }^{\text {AC126 }}$	1－	BF117	101－	GET882	6／－	0036	8／3
18113	3 －	AC127		8F＇167	8／6	GET88		OC36	8／6
18130	$2 / 6$	AC128	1／8	BF173	$7 / 3$	GEX35	$4 / 6$	OC38	10／3
18191	$2 / 6$	${ }^{\text {AC129 }}$	716	BP181	65－	GEX44	1／6	OCA1	4／6
2 E 220	12／6	AC187	11／－	BF184	$7 / 8$	GEX941	41.	0 C 42	
20240	$3 / 6$	${ }^{\text {ACl188 }}$	11／－	BF185	6）－	GJ3M	$7 / 8$	0 C 43	9－
2 G 301	$3 / 8$	ACY17	1／6	BF194	8／3	GJ5M	${ }_{7 / 6} 7$	0 Cl 4	4－
${ }^{26} 9306$	8 8－	ACY18	51－	BF196	$5 / 8$	${ }_{\text {GJSM }}$	${ }^{7} 1015$	0 OCA	3／3
	．4／8	ACY\％	$5 / \mathrm{m}$	BF197	${ }_{5 / 6} 6$	MAT100	61	OC	3／－
$2 \mathrm{CH03}$	10	ACY21	4／6	BFX12	5／6	Mat101	$8 / 3$	OC59	$12 / 8$
29616	$61-$	ACY22	4）－	BrX13	$8 / 6$	Mat 120	519	OC59	17－
26417	$61-$	ACY27		BFX29	12f－	MAT121	61－	${ }_{0} 0 \mathrm{Cl} 71$	吅
2 N 214	$8 / 6$	ACY2		BFX 30	816		$222-$	OC72	
2 N 404	81	ACY39	12／6	BFX 36	1916	NKT128	${ }_{6}^{221-}$	${ }_{0} \mathrm{OC7}$	$7 / 3$
${ }^{2 \times 24}$	976	ACY40		BFX43	813	NKT129		$0 \mathrm{C74}$	／a
2N697	41－	ACY41	${ }^{5} 16$	BPX44	818	NKT135	${ }_{6 / 8}^{6 /}$	OCZS	／ 6
2N698	$4 / 6$	ACY44	7／6	BFX68	131－	NKT210	6／－	OCl6	－
${ }_{2 N 7068}$	$3 / 6$	$\begin{aligned} & \text { AD140 } \\ & \text { AD16 } \end{aligned}$	812－	BFX68A	1818	NKT211	$8 / 6$	0 C 77	－
2N700A	3／6	AD150	161－	BFX88	10／8	NKT212	$5 / 4$	0078	$1-$
2N709	12／6	AD181	716	BFX87	$9 / 6$	NKT219	$8 / 4$	$\mathrm{OC78}^{0}$	／3
2N711	7／6	AD162	71	BFX88	5t－	NKT214	$4 / 4$	$0 \mathrm{C73}$	
2N987	1076	AF106	10／8	BFY20	12\％	NKT218	6／4	${ }_{0}^{0} 0 \mathrm{Cs} 1{ }^{\text {O }}$	
2N1090	${ }_{6 / 6}^{616}$	AFP116	${ }_{5 / 8}^{6 /}$	BFY21	$8 / 6$	NKT217	$8 / 4$	OCsidm	3－
2N1091	6／8	${ }_{\text {AF1 }}{ }^{\text {AF }} 16$	4／6	${ }_{\text {BFY }}{ }^{\text {BFI }}$		NKT218	$22 / 6$	OC81M	8）－
	${ }^{8 / 8}$	${ }_{\text {AFP17 }}$	4／6	BFY43	12／6	NKT219	6／6	0 C 82	3）－
2 N 130	4 4－	AF118	121－	BFYS0	Si－	NKT221	${ }_{6 / 8} 8$	0c82	
2 N 13	$4 / 3$	AF118	1 －	ERESI		NKT228	${ }_{19} / 8$	OC83	8
2N1304	1／8	AF124	5／－	BFY83	5／6	NKT2	4	$0 \mathrm{C84}$	／8
2N1305	of－	AF125	$5 /$	Bry7	121－	NKT22	${ }^{1 / 8}$	OC114	8
2N130		AF126	85	BFY00	12／6	NKT2	$8 / 8$	OC122	$2 / 6$
2N1307	60－	AF127	46	88x 27	101－	NK T297	7／8	$0 \mathrm{OC123}$	
2N130	6／－	AF139	776	B8X60	18／8	NKT238	$5 / 9$	OC139	
2N1309	61	AF178	12,6	B8X61	$12 / 3$	NKT240	6／8．	$0 \mathrm{OC14}$	
2N1420	$7 / 3$	A F179	$11 /$	${ }^{88 Y 26}$	3／6	NKT241	$6 / 6$	OC141	
${ }^{2 N 150}$	$0 / 6$	AF180	8	B88 ${ }^{\text {B }}$	$4{ }^{4}$	NKT251	$4 / 9$	Oc169	8）－
2N1526	7／6	${ }^{\text {AF188 }}$		BSY ${ }^{\text {BS }} 8$	$9 / 8$	NKX283	$4 / 6$	$0 \mathrm{Oc170}$	
2 N 1909	4518	${ }_{\text {AFY }}$	22／6	B8YY79	$9 / 8$	NKT274	$4 / 9$	OC171	
2N2147	16／6	${ }_{\text {AFYZ1 }}$	${ }_{\text {22／6 }}^{1 /}$	B8Y79	913	NKT275	$61-$	0 Oc 172	$\overline{-}$
2N2148	$12]^{1}$	${ }_{\text {AFZ12 }}$	$6 / 6$	B8Y92	1010	NKT277	$4 / 8$	Oczeo	6
2N2190	14／－	$\mathrm{AFP12}^{88}$	$6 / 6$ $6 / 6$	B8Y88	11／－	NKT 408	$9 / 9$	OC201	6
2N2193	${ }^{516}$	A8x2	${ }_{7 / 6} 18$	Bgy8	$12 /$	NKT404	$12 / 6$	OC202	6
${ }^{2 N 2287}$	2076	A8Y2	76	BSY95A	$3 / 6$	NKT678	$61-$	OC203	
2N2297	$6]$	ASY2	$5 / 3$	BY100	$4 / 6$	NKT713	$7 / 8$	OC204	816
2N2869A	5）	ASY29	6／－	BY213	5／－	NKT773	$61-$	OC205	9\％
2N2410	10／6	A8Y36	516	BYZ11	－	NKT777	7／6	OC208	$1 / 6$
2N2411	616	A8Y50		BYZ1IS	$7 / 8$	NKT8011		OC207	$7 / 6$
2N2412	$6 / 6$	A8Y51	76	BYZ12	${ }^{67}{ }^{-}$		01－	00450	81－
2N 2483	676	ASY53	${ }_{4 / 8}$	${ }_{\text {BYZ }}$	27／6	0788	716	OC470	81
2N 2484	$7 / 6$	Asybi	${ }^{4 / 9}$	BYY ${ }^{\text {BYZ }}$	17／6	OA5	3／6	OCP71	0－
2N2646	11／6	AsY 62	${ }_{51} 5^{-}$	${ }_{\text {C111 }}$	137－	OA10	${ }_{2 j-}^{31-}$	P8144	1－
$12 \mathrm{~N}$	12／8－	AsY86	616	c20a	$12 / 6$	OA70	$1 / 8$	S19T	－
2N2904	${ }_{76}$	A8Z17	13／6	CRS1／05	5／－	OA71		8AC40	
2N2904	81 －	Aszi	$7 / 3$	C848	$37 / 6$	OA73	$2{ }^{1}$	SFT30	6
2N290	8	A8821	$7 / 6$	C8108	$67 / 6$	OA74	，	F	
2N2907	$7 / 6$	ASZ23	$19 / 6$	CV101	6）－	OA79	$1 / 9$	$8{ }^{8172}$	218
2N2926	9／1	AUY	19／6	CV253	$20 /-$	OA81	1／6	8X68	＋1／0
2N2924	$4 / 6$	BC107	$3 / 6$	CV2164	$32 / 6$	OA85	$1 / 6$	8X680\％	
2N3014	$7 / 6$	BC108	316	CV2100	${ }^{3218}$	OA86		8X691	7／6
2N3054	11，－	${ }_{8 C 113}$	${ }^{3 / 9}$	${ }^{\text {CV } 2279}$	18	OA90	$1 / 6$	8x631UC	
2N3056	14／6	${ }_{\text {BC115 }}$	6／9	${ }_{\text {CV } 4073}$	4：6	OA91	$1 / 6$	8X6B0T	
${ }^{2 N 3705}$		${ }_{\text {BCH }} 16$	$11 / 6$	CV4074	3／8	OA200	2 －	SX634WK	$8 /$
		RC118	$6 / 6$	CV7108	$801-$	OA202	3 －	8X753	151－
$\begin{aligned} & \text { 2N5707 } \\ & \text { 2N8708 } \end{aligned}$	4）－	BC121	$41-$	CY7109	751 $301-$	OA210	${ }^{616}$	${ }_{\text {V }} 833 \mathrm{C}$	－
2N3709	4,	$\mathrm{BCl}^{\text {BC122 }}$	$4{ }^{4} \cdot$	CV7189	$301-$	OA211	10］－	V15／10P	
2N3710	8	${ }_{8 C 126}$	${ }_{131}^{13}$	CV7324	105		10／－	$\mathrm{V}^{\text {V0／201P }}$	
2N3819	${ }^{8 /-}$	BC140	$11 /-$	CV7311	${ }_{61}$	$0^{0} \mathrm{Az} 202$	716	XA122	
2N382	$201-$	BC145	151－	CV7347	4／－	OAz203	$81-$	XA124	4－
${ }_{2}^{2 N 3823}$		8C147	$4 / 9$	CV7981	$12 / 6$	OAz204	8 －	X X 1142	b－
2N3900	${ }_{11 / 2}^{10 / 8}$	BC148	5／6	D246	718	OAZ207	101－	XA143	8－
$\begin{aligned} & 2 \mathrm{~N} 3900 \mathrm{~A} \\ & 2 \mathrm{~N} 5027 \end{aligned}$		BC149	51－	DD006	976	OAZ208	$8 / 6$	XA152	$5 /-$
2N5028	$11 / 6$	BCL157	4－	DD007	87－	OAz210	析	X ${ }^{\text {A } 162}$	${ }_{8}$
2N5307	${ }_{176}$	${ }^{\text {BCI60 }}$	32	DD00		OAZ22	918	X B101	8
2 N 5308	$7 / 8$	8CX32	$7 / 6$	GD4		0Az241	$7 / 6$	XK505	
2N6309	11／－	BCY33	5）－	GD5	$6 / 8$	0 OR242	4／6	XX518	
28005	14／－	日CY34	1	GD6	81－	OAZ246	416	Z2A82CR	
28018	$151-$	BCY 38	5／6	cns	5／－	OAz290	9 9－	ZR24	
A	18／8	BCY39	$7{ }^{7}$	GET102	51－	$0 \mathrm{OL16}$	151－	2832A	$1-$
${ }_{28301}$	12／6	BCY40	$7 / 6$	GET113	51	$0 \mathrm{Cl16T}$	$18 / 8$	2 T 21	－
28304	91	BCY	$3 /-$	GETI14		C19	8	2 T 43	5%
TRANSISTORS（POSTAGE，PACKING \％INSURANCE）I／3 PER ORDER									
SEND S．A．E．FOR LIST OF 3，000 TYPES VALVES，TUBES AND TRANSISTORS									
TERMS OPEN DAILY TO CALLERS C．W．O． Mon．－Sat． 9 a．m．-5.30 p．m．Closed Sac， 1.30 p．m．$-2.30 \mathrm{p} . \mathrm{m}$. no C．O．D． Tel． $01-7690199 / 1649$		OPEN DAILY TO CALLERS Mon．－Sat． 9 a．m．-5.30 p．m．Closed Sac， 1.30 p．m．-2.30 p．m． Tel．01－769 0199／1649							

newbury

 20 Watts RMS for $86 /-$ ，tituTHE 6T2 POWER ANPLIFIER WITH INTEGRAL PRE－AMPLIPIER USES THE LATEST R．C．A．PLASTIC OUTPUT TRANSISTORS－ENABLING OUTPUTS OF
25 WATTS MUBIC TO BS OBTAINED FROMA $3 \xi^{-} \times 2 \eta^{\circ}(8.5 \mathrm{~cm} \times 8 \cdot 6 \mathrm{~cm})$ CIRCUIT BOARD－RECOMMENDED POR ECONOMY HI－FI P．A．APPLICATION OR GUITAR AMPLIFIERS．

－${ }_{(G)} 10-80,000 \mathrm{Wzz}$ ${ }^{(9)} 10 \mathrm{Batt}$
－Distartion 0.25% typl cal ge 15
－Power gain 80 dB ．
－ 35 foit apers． tion．
－$\underset{\text { cosad }}{\text { dancer }} \frac{\text { Impeo }}{3-15}$ olims．
－Six Tranaig． Dor，two
－Top quality components

ZOWER AKPLIFXRE ST1 19／6
500 mW for 40 mV input $35 \cdot 45,000 \mathrm{~Hz}$
OROAK MODULE 3TE 17／6
000 Hz
Will act as Oscillator or Divider up to $6,000 \mathrm{~Hz}$ KULTI－PURPOSE PRE－AMPLIFIER 1B／6 9．24V gain variable to 40 dB
DOAL VOLTAGE PRE－AMPL
DUAL YOLTAGE PREAMTPLIFIRR 17／6 9－24V，200－500V 26 dB gaja．
TAGHOMETER HODULE（an
ALL NEWBURY MODULES ARE DESIGNED TO BE INTER－ CONNECTED WITH EASE
NEWBURY SOUND EQUIPMENT， 21 LANCASTER CT． LANCASTER AVENUE，S．E． 27

We welcome your application problems，but please send an S．A．E． whth your enquiry．

Build the＇COIT＇in only is hours

By using our factory－made，fully tested units
太 Suited to all kinds of music
Internal 10 watt amplifier and loudspeaker
t Uses latest integrated circuits ＊49－notes， 8 stops，glide， vibrato，etc．
\star All units available separately
Price $\mathbf{6 8 2 . 1 0 . 0}$ complete （terms available）
Other models oue shortiy

Harmonics

（Bromley）Ltd．
Clarion Works，Napier Road，Bromley，Kent．OI－460 2122

VALLUBBIE NEW HANDBOOK FREC EOAMBITIIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new 'sENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Enginecting industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.-Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG. Advanced Electrical Eng.General Electrical Eng. Installations - Dratghtsmanship - Illuminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Ens. -Sanifary Eng.-Road Eng. - Hydraulics -- Mining Water Supply - Pesrol Tech.

RADIO \& T.V. ENC.
Advanced Radio - General Radio-Radio \& TV Servicing - TV Engineering - Telecommumications - Somnd Recording -Automation -
Practical Practical Radio Raino Rad
Analucurs' Examinaion. MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Ens. Press Tool Design - Sheet Mfetal Is'ork - Welding Eng. Pattern Making 二 Inspection-Draughtsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng.Gencral Ablo. Ens.- Anto. Maintenance - Repair Auto. Diesel Maintenance -
Auto. Electrical EquipmentGuro. Elecrical Equipmin-
Garaze Managemint.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
t HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man ... quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantoge of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT

Basic Prastical and Theorelic Courses for beginners in Electronics, Radio, T. Y., Elc., A.M.I.E.R.E. Cily ${ }^{\mathbf{8}}$ Guilds Radio Amateurs' Exam, R.J.E.B. Certificate P.M.G. Certifitate Prattical Eletronics Electranics Engineering Prartical Radio
Radio 总Television Serviting Aulomation

INCLUDING TOOLS
The specialist Electronics Division of B.I.E.T. NOW offers yout a real laboratory training af home wish practical equipment. Ask for details.

You are bound to benefit from reading 'ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Se.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun,E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDU'CATION, ETC.

BRITISH INSIITUTE OF ENGINEERING TECHNOLOGY
316A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

TO B.I.E.T. 316A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

[^5]

COMPLETE STEREO SYSTEM FOR ©39.10.0 HENELEC 5.5 STEREO AMPLIFIER, Inputs for ceramic careridge, AUX/Tuner. Output for 8 to 15 ohms speakers. Silver with black and wood finish. British made. Size $12 \frac{1}{\mathrm{i}}$ in $\times 3 \frac{1}{\frac{1}{i}} \mathrm{in} \times 6+\mathrm{in}$. Fitted headphone cket.
Complete system comprises $5-5$ amplifier, Garrard 3000 or model 50 with 9TAHC diamond cartridge. Pair E.M.L. IOW speakers, twin tweeters and crossover with, polished woad eabinets 18 in $\times 11$ in \times Jin. Also plinth and eover

- Complece stereo system (Rec Price E50), $£ 39.10 .0$, p.p. 20/-. - Amplifier only, E13.19.6, p.p. 7/6. - TE1035 recammended stereo phonies, $39 / 6$

BUILD THIS VHF FM TUNER 5 MULLARD TRANSISTORS 300ke/s BAND. WIDTH. PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION. MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stareo. There is no doubt about it -VHF FM gives the REAL sound. All parts PARTS JOTAL COST DECOOER E5.19.6 66.19.6. ASK FOR (FOR STEREO) P.P. 3/~.

BROCH
P.P. $3 / 6$.

New printed circuit design with BUILD full power ourpue.i Fully tuneable Y YOURSELF
on both MW/LiN bands.
7 Mullard transistors. Fitted $\sin A$ speaker. Room filling power.
Easy to build with terrific resules. QUALITY Two colour leathercloch cabiner RADIO Two colour leathercloth eabiner
with silvered fronc. All local and RADIO coritinencal stations. Complete cortiled instructions. Total cose 66.19 .6 . p.p. $6 / 6$.

Ask for Leafle: No.

SINCLAIR
EQUIPMENT
SPECIAL OFFER

730, 75/- each, scereo 60, f8.100, PZ5, $79 / 6$

 Two of Z 230 , stereo $60, ~ P Z 5($ usually $£ 23.10 .0$) $\mathbf{1 8}$,
or with PZ6 in place of PZ5, 621 .
Complete range of amplifiers and preamplifiers in stock. All detailed in caralogue above.

TEST EQUIPMENT FOR YOUR HOME

AFIO5 50kV multimeter (Illus.),

 case, $28 / 6$.$200 \mathrm{H}, 20 \mathrm{~kJ}$ multimeter. price E3.17.6, P.D. $31-\mathrm{i}$ case, $12 / 6$ TE20D R.F. Generator (illus.), price E15, P.p. $7 / 6$.
Mritching Audio Generator, TE65 Vice falive.p. $7 / 6$. 617.10.0. p.p. $7 / 6$ Full decail catalogue.
SLIM POCKET TEST GEAR - SIGNAL INJECTOR 35/-, p.p. I/6 - sIGNAL TRACER 29/6, p.p. 1/6

$$
\text { N E W World's lowest cost Stereo Magnetic Cartridge. O/P } 79 / 6
$$

p.p. $2 / 6$

HI-FI equipment to suit EVERY POGKGT

CDEE STOCK LIST
THE——NO. $16 / 17$ ON

Choose from 100 complete stereo systems-complete range of individual units also in stock. Demonstrations all dzy.

I00 STEREO SYSTEMS

LOW CASH AND CREDIT/HP PRICES
(Credit terms from $£ 30$ purchasecallers only)
henry's latest catalogue
NEW PRINT--NOW 350 PAGES
\star COMPONENTS, TESTGEAR

* EQUIPMENT, MODULES
\star SPECIAL OFFERS, ETC.
EVERYTHING FOR THE CONSTRUCTOR
Complete with $10 /-$ value discount vouchers for use with purchase. Price 7/6, p.p. 2/-.
WHY NOT SEND AWAY TODAY?

NEW!

25 W and 50W RMS SILICON AMPLJFIERS
LOOK AT THE SPECIFICATIONS:

- 0.3% distortion at full power.
- - $1 \mathrm{~dB} \mathrm{ilc} / \mathrm{s}$ to $40 \mathrm{ke} / \mathrm{s}$ at full power.
- Responise $-1 \mathrm{~dB} \mid \mathrm{c} / \mathrm{s}-100 \mathrm{ke} / \mathrm{s}$.

PA25-10 silicon eransistors; differential
input i 25 W r.m.s. into 8 ohms, 400 mV input.

Size only sin x in $x 2 i n$. Four-hole fixing

PA50 12 transistor version, 50 W r.m.s. into $3-4$ ohms.
MU442-power supply for one of two PAz5 or one PA50

NEWI STEREO FET SELFP POWERED PREAMPLIFIER MODEL FET 154 STEREO
Mnputs for pickup (mag. etc). Tuner/Aux. Tape in and out, Response 20c/s to $30 \mathrm{ke} / \mathrm{s}$. Output adjussable up to 1 volt. Mains operated stabilised supply. Slim design. Size $12^{*} \times 51^{-2} \times 12^{*}$. Price 616.10 .0 .
NO SOLDERING-JUST PLUG CONNECTORS
YOU CAN SAVE 25% brand new GARRARD (post 7/6).
SP25 Mk, II $1+1.9 .6$; AP75, E16.19.6; SL65B £14.19.6; SL72B, £25; A70 Mk. II, C11.19.6. SPECIAL-Abore with sanotone 9TAHC diam., G800, add E8. 10.0,
Also-Fitted with 9TAHC diamond, Madel 50. C8.10.0; 3000 LM , 49.15.0. Plinthsicavers: Standard, 99/6, p.p. 4/6; Deluxe, ER.10.0, p.p. 6/-: SL72B zype, \&8.10.0, p.p. $6 /-$ (Not for
 A70).

SCOOP - NEW 4" TRACK TAPE DECKS
Brisish made 3 -speed mains-operated tape machine. Firted Marriote XRPSI7
and XESII tin track heads. Piano key and XESIt tin track hear the home construetor. Operates with up so 7 in spools vertically or horizonitally. size 13 in $\times 10$ in $\times 5 \frac{1}{2} i n$.
PRICE 413.19 .6 , p.p. $10 / 6$.

ELECTRONIC ORGANS

- MODERN ALL BRITISH TRANSIS. TORISED DESIGNS AVAILABLE AS KITS OR READY BUILT

순 TEAK VENEERED CABINETS FOR ALL MODELS

- M9 NOTE GI NOTE SINGEE 49 MANUAL NOTE

4. KITS AVAILABLE IN SECTIONS AS

* Required
* hP and Credit sale facilities.
\star FREE
16-PAGE BROCHURE

Covering organt in kic form and ready built-wr
phone to ORGAN DEPT. Ask for Peter Elvins.

[^0]: To：BRITISH NATIONAL RADIO SCHOOL，READING，BERKS．Please send your free Brochure，without obligation，to：we do not employ representatives

 NAME ．．BLOCK CAPS
 ADDRESS
 PLEASE P．E． 8 ．

[^1]: © IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure chat the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it: Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 45s.
 Editorial and advertisement offices: Fleetway House, Farringdon St, London, E.C.4. Phone 01-236 8080

[^2]: Prices quoted are current at time of going to press, E. \& O. E, and many be aubject to variation wilthout notice- 1 teme hited not in curreat production will be Fithdrawn when stocke sdvertieet are sold. Somiconductore oflered carry Cull Mapufacturert' ouaranfee where spulicable. Data sheeta will be rupplied on requeat 1/-per copy. Price brenkd apply at $25+$ and $100+$. Please contact Balea Dept. for Price and avalisbility
 Torms of Boainess: Retafl Mall orders-caoh with order only please. Traide: Nett Montbly Accoumt on receipt Derpateh: Gioodin quoted
 Derpatch: Laoodn quoted ex atock are normally deapstched witbin one working day by first class poat
 Export ordera and enquirlea particularty welcome
 Export ordera and entquirlea particularty welcome. Cables: LEBTROCO BRENTWDOD.
 Post und Paeking allow 1/- per order Imland: 4/- Europe; 12/-Common

[^3]: Where postage th not stated then orders over 5 st are poit free. Below 25 ald $9 / 9$. semiconductors add 1/- post. Over ost free. S.A.E. whth enquiries please.

[^4]: AUDIO8CAN-HI-FI Iotidspeaker systems for the home cunstructor, cabinet kits, new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding and all necessary components. Free speaker fabric necessary components. Free speaker rabric AUDIOSCA request. Dept. PK, 4 Princes Square, AUdIoscas, Derks.

[^5]: Andover, Fants. Sole Agenta for Australa and Now Zealand-Gordon \& Gotch (A/bia) Ltd. ; Bouth Africa-Cintral News Agency Litd. ; Rhodeaia and Zambla-Kingatons Lid. East Africn-Stationery and Ofhce Supplies Ltd. Subscription Rate (inoluding postage) : For one year to any part of the world $£ 2$ bs. Od.

