PRACTICAL

PRICE $3^{\prime} 6$

ADCOLA Soldering Instrumentis add to your efficiemcy

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.

*Additional Stock Bits

(illustrated) available
COPPER

B $14 \frac{3}{12}{ }^{\text {² }}$ - 2.4 mm CHISEL face	
$\text { B } 24 \frac{3}{16}^{n}-4.75 \mathrm{~mm}$	sCREWDRIVER FACE
B $58^{\frac{1}{4}}$ " 6.34 mm chisel face	
LONG LIFE	
$\square 0$	
B 42 LL $\frac{3}{16}^{\circ}$ - 4.75 mm	Chisel face
\longrightarrow -	
B 38 LL $\frac{1^{*}}{}{ }^{*}$ - 3.2 mm Chisel face	
\square	
B14LL $\frac{3}{3}^{\frac{3}{2}}$ - 24 mm Chisel face	
\square	
B 44 LL ${ }^{\frac{3}{16}}$ - 4.75 mm	$\text { m } \begin{aligned} & \text { SCREWDRIVER } \\ & \text { FACE } \end{aligned}$

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list and catalogue
ADCOLA PRODUCTS LTD.,
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01.622 0291/3 - Telegrams: Soljoint London Telex •Telex: Adcola London 21851

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra.Red Phototransiator. Latching Relay, 2 Transiators, Condensers, Resistors, Gain Control Terninal Block, Wlegant Case, Screws, etc. Cor modited tor modulatete-light operation.

39/6

Postage and Pack. 2/6 (UK) Commonwealth:
SURFACE MAIL $3 / 6$ AIR MATL $\boldsymbol{E 1 . 0 . 0}$ Australia, New Zealand S. Africa, Canada and U.S.A. Also Essential Data Cireuits and Plans for Building 10 Advanced Deajgne

INYISIBLE BEAM OPTICAL KIT

Everytbing needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as Illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENT8: 2 lenses, 2 mirrors, 245 -degree wooden blocke, Infra-red filter, projecto lamp holder. building plans, performance data, etc. Price 19/6. Postage and Pack 1/6 (U.K.). Commoowealth: Surtace Mail 2/-: Air Mail 8/-,
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of staodard kit. Larger Lenses, Filter, etc. Price 29/6. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/6. Air Mail 10/-

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm Door Opener, Counter. etc., for the Eiperimenter
CONTENTS: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassis, Plast ic Case. Resistors, Screws, etc. Full Size Plans, Instructions, Data Sheet ' 10 Advanced
Photoeipctric Designa'
Price 19/6. Postage and Pack. 1/6 (U.K.). Commonwealth 2/-; Air Mail 4/-.
JUNIOR OPTICAL KIT
CONTENTS: 2 Lensey, Infra-red Filter, Lampbolder, Bracket, Plann, etc. Everything (except plywood) to build 1 miniature invisible beam projector and photocell thing (except plywood) to build 1 miniaiure in
receiver for uge with Junior Photoelectric Kit.
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealih: Surface Mail2/; Air Mail 4/.

YORK ELECTRICS

335 BATTERSEA PARK ROAD, LONDON, S.W.II
sent a S.A.E. for full details, a briff description and Photographs of att kits and all 32 Radio, Electranic and Photodertric I'rojects A siembled.

MONOLITHIC
 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by hundredth of an inch thick, has an output 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the meta! heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total harmonic distortion Less than 1% at full output. Load impedance
Power gain $110 \mathrm{~dB}(100,000,000,000$ times $)$ total.
Supply voltage
Size
Sensitivity
Input impedance
$1 \times 0.4 \times 0.2$ inches.
Adjustable externally up to
2.5 M ohms.

- CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

E APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR
IC. 10

Project 60
 laboratory standard modular high fidelity

Sinclair Project 60 comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.

The modules are: 1 . The $Z .30$ and $Z .50$ high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The Active Filter Unit with both high and Iow audio frequency cut - offs. 4. The PZ.5 and PZ.6 power supplies. A complete system could comprise, for example, two Z.30's one Stereo-60, and 'a PZ.5. The PZ. 6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between PZ. 5 or PZ. 6 unless loudspeakers of very low efficiency are being used, in which case the PZ. 6 will be required. For assemblies using two
Z.50's there is the new PZ. 8 supply unit to ensure maximum performance from these amplifiers.
All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled in the wood of the plinths to mount the control unit and A.F.U. Any slight slip here will be covered by the aluminium front panels of the Stereo 60. The Project 60 manual gives all the buildings and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe. Project 60 prices are remarkably low.

2.30

 20 WATT R.M.S. POWER AMPLIFIER (40 WATTS PEAK) 40 WATT R.M.S.POWER AMPLIFIER
(80 WATT PEAK)

The Z. 30 together with the higher powered $\mathbf{Z . 5 0}$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the $\mathbf{Z .} 30$ or Z. 50 power amplifiers in your Project 60 system will depend on personal preference, but they are both the same physical size and may be used with other units in the Project 60 range equally well. The $Z .30$ is unique in that it may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the Z. 30 use PZ. 5 power supply unit for most domestic requirements, or PZ. 6 if you have very low efficiency loudspeakers. For Z.50, use the PZ.5, PZ. 6 or the PZ. 8 described below.

Power Outputs

2. 3015 watts R.M.S. into 8 ohms, using $35 \mathrm{~V} / 20$ watts R.M.S. continuous into 3 ohms using 30 volts.
Z. 5040 watts R.M.S. into 3 ohms: 30 watts R.M.S. into 8 ohms, continuous, using 50 V .
Frequency response 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion 0.02% into 8 ohms
Signal to noise ratio better than 70 dB unweighted
Input sensitivity 250 mV into 100 Kohms
For speakers from 3 to 15 ohms impedance
Size $3 \frac{1}{2} \times 24^{\prime \prime} \times \frac{t^{\prime \prime}}{}$

STEREO 60 Preamp/Control unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

AGTVE FILTER UNT High Pass and

For use between Stereo 60 unit and two $\mathbf{Z . 3 0 s}$ or $\mathbf{2 . 5 0 s}$, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible by reason of the careful design and generous negative feedback employed.

Two stages of filtering are incorporated-rumble (high pass) and scratch (low pass).
Supply voltage- 15 to 35 V . Current-3mA
H.F cut-off (-3 dB) variable from 28 kHz to 5 kHz L. F cut-off (-3 dB) variable from 25 Hz to 100 Hz Filterslope, both sections 12 dB per octave Distortion at 1 kHz (35 V supply) 0.02° ", at rate output

SINCLAIR POWER UNITS £4.19.6

Built, tested and guaranteed £5.19.6

PZ-8 45 volts stabilised (less mains transformers) for use with $Z .50$
£5.19.6

APPLICATIONS

Hi-fi amplifier; car radio amplifier; record player amplifier fed directly from pick-up; intercom; electronic music and instruments; P.A.; laboratory work, etc. Full details for these and many other applications are given in the manual supplied with the Z.30.

[^0]2.50

Built, tested and guaranteed with circuits and

- Tone controls-TREBLE + 15 to 15 dB at 10 KHz : BASS +15 to
-15 dB at 100 Hz . -15 dB at 100 Hz .
- Power consumption 5 mA .
- Front panel-brushed aluminium with black knobs and controls.
- Size $8 \frac{1}{d} \quad 1 \frac{f}{2}$, 4 in .

The illustration here shows quite clearly how easily Project 60 can be contained in one of today's slim, modern plinths. Very little space is required to house these Sinclair units, and within the space of the motor plinth, you can install a stereo amplifier of the very highest quality. If, for example you have already put together an assembly as illustrated here, adding the Active Filter Unit would be very easy.

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any cefect arise in normal use we will service it at once and without 2 years of purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.

SINCLAIR Q. 16

new elegance in an outstanding loudspeaker

All the superb features which went to make the Sinclair Q. 14 have been incorporated in the new Q. 16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successful departure from conventional design, the new Q. 16 presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The Q. 16 is compact and slim. Its new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of Q.16s in stereo and marvel at the standards of quality and clarity they give.

The Q. 16 will handle loading up to 14 watts R.M.S. and presents an 8 ohm impedance to the amplifier output. Frequency response extends from 60 to $16,000 \mathrm{~Hz}$. with exceptional smoothness. A specially designed driver system is used in a sealed and contoured pressure chamber to ensure good transient response at all frequencies. Size: $9 \frac{3}{4}$ " square $\times 4 \frac{3}{4}$ " deep from front to back.

£8.19.6

POST FREE

SINCLAIR MICROMATIC The oentis mos succesesful miniature radio

Specifications
Size:

Weight incl. batteries:
I oz. (28.35 gm) approx.
Tuning:
Medium wave band with bandspread at higher ireq
Earpiece.
Magnetic type
Case:
Black plastic with anodized aluminium front panel. spun aluminium dial.
USE THIS COUPON FOR MICROMATIC AND Q. 16 ORDERS
To: SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation much easier than with many larger sets. The plug-in magnetic earpiece which matches exactly with the output provides wonderful standards of reproduction. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

SINCLAIR GENERAL GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are available to all Sinclair customers.

SINCLAIR RADIONICS LIMITED
22 NEWMARKET ROAD
CAMBRIDGE Tel. 022352731

newbury SOUND EQUIPMENT	
PRESENT THE LATEST MODULE	
$\left.\right\|^{\text {THE }} 6 T 2-\underline{\underline{20 ~ W A T T S}} \text { (RMS) }$ AMPLIFIER WITH INTEGRAL PRE-AMP	
18	
10-30,000 Ht @ 10 WATTS \pm IdB LESS THAN 0.25% DISTORTION (a) 100 mW \& 15 W POWER GAIN 80 dB INPUT 40 mV into 10 Kilohms	
ABSOLUTE SATISFACTION	GUARANTEED
86/ + 2/6.p. \& p, 35 VOLT SUPPLY FOR TWO 6 T2 MODULES 86/ $+4 / 6$ p. \& p.	
ALSO ! ! FIVE ENCAPSULATED CIRCUITS AT LESS THAN EI EACH!	
BRAND NEW FULLY GUARANTEED AND TESTED MODULES	
POWER AMPLIFIER MODULE 19/6 Type 3TI Ideal for intercoms, baby alarms, record-players, etc. $9-12 \mathrm{~V}$ operation.	500 mw maximum output, 200 mW for leas than 6% distortion. Power gain 50 dB . Iaput 40 mV into 400 ohms. $3-15$ ohms load. Frequency response $35-45,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$.
MULTI-PURPOSE PRE-AMPLIFIER 19/6 Type 3T0 For use with the 3TI, ur as an impedance hatcher, high gain pre-amp., headphone amplifier, etc. It may be uaed as an oscllator or high fidelity preamplifer uaing the requislte feedback loops.	Input impedance and gain ully variable up to 500 kllohms and 40 dB . Output impedance 300 ohms. Will deliver 30 mW into 15 ohms. Frequeacy Supply voltage $6-24 \mathrm{~V}$. Noise level -60 dB .
ralve or transidtor amplifiers. A high sanuothing Iactor 112. posalibe.	
TACHOMETER MODULE $\quad 18 / 9$	
Type 2TN For 4 or 6 cylinder, 6 or 12 V positive or negative earth vehicles. Will operate 200 microamp to 1 mA meters on 12 V and $200-500 \mathrm{micramp}$ meters on $6 V$. Suitable meters from s.o. 10,000 r.p.m. If your car can provide the mignal!	21 Lancaster Court, Lanacater Avo., London, 8.E. 27 P.O.s. P.O.e. Quant Quantity dlecounts. Trade enquartea welcomed. Callors by appointmeat.

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full-time 2 year College Diploma Course which gives a thorough fundamental training for radio and television engineers starts on 2nd September, 1970.
The course includes theoretical and practical instruction on Colour Television receivers and is designed to cover the syllabus of the new City and Guilds Radio, Television and Electronics Technicians' Course. Pembridge College diplomas are awarded to successful students.
The way to get ahead in this fast growing industry-an industry that gives you many far-reaching opportunities-is to enrol now. Minimum entrance requirements: " O " Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PE4), 34a Hereford Road, London, W. 2. Please send, without obligation, details of the Full-time Course in Radio, Television and Electronics.

NAME

21d High Street, Acton, London, W. 3
Also at 323 Edgware Road, London, W. 2 ALL ORDERS BY POST TO OUR ACTON BRANCH Terms C.W.O

All enquiries S.A.E.

This superb stereo system is a real price breakshrough. It comprises she VISCOUNT F.E.T. amplifier. on which fult details are given below, the famous Garrard SP25 Mk. If (including ceak venter base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO type 2 speakers.
Measuring $17 \frac{1}{\frac{1}{2}}$ in $\times 10 \frac{3}{2}$ in $\times 6 \frac{1}{2}$ in, the Duo type 2 speakers are beautifully finished in teak veneer with matching vynair grills. They incorporate a $10 \neq$ in $\alpha 6$ tin drive unit and high frequency speaker, borh of which are of 3 ohms . impedance. The Duo speaker system is also available scparacely at \&6.6.0 each plus 15/- P. \& P.

Complete stereo system $\mathbb{\& 1 1}$ plus $£ 2.10 .0$ P. \& P.

Th

Teak finished case
89.10

Plus P. \& P. $7 / 6$
SPECIFICATION at IKHz into 3 ohms
I.P.S.) Mag. P.U.: 2 mV . Cer.P.U.: 80 mV . Tuner: 100 mV Aux. 100 mV . Tape/Rec. Output. Equalisation for each Control Range: Boss. 3 dB at 60 Hz . Treble: $\pm 14 \mathrm{~dB}$ at 15 KHz :o 20 KHz (for 10 . Sort $200-250 \mathrm{~V}$. Size $\$ 2 \frac{1}{2}$ in long. 4 k in deep, 2 tin high. Built and tested.

THE RELIANT Mk. II SOLID STATE GENERALPURPOSE AMPLIFIER

£7.5.0 Plus P. \& P. $7 / 6$

in teak finished case

SPECIFICATION: Output: 10 warts into a ${ }^{3}$ ohms speaker. Inputs: (1) for mike (10 mV). Input (2) for gram. radio (250 mV) individual bass and treble control.
 case.

ELEGANT SEVEN Mk. III (350mW Output)
7-transistor fully tunable M.W.-L.W. Superhet portable. Set of parts. Complete with all components, -back printed for foolproof construction MAINS POWER PACK KIT: $9 / 6$ extra.
£5.5.0 Plus P. \& P. 7/6. Circuit 2/6. Free with parts
THE DORSET (600 mW Output)
7.transistor fully tunable M.W.-L.W. Superhet portable with baby alarm facility. Set of parts. The atest modulated and prealignment techniques makes his simple to build. Sizes: $12 \times 8 \times 3 \mathrm{in}$.
65.5.0 plus P. \& P. 7/6. Circuit 2/6. Free with parts

The Viscount F.E.T. Mk. 1 \& 4.5 .0 plus $7 / 6$ P. \& P High fidelity transistorstereo amplifier employing field effect transistors. With this feature and accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more

SPECIFICATION

Output per channel-low rms
Frequency bandwidth 20 Hz to 20 kHz Toral Total distortion or I kHz
Input sensitivities-CER $9 \mathrm{~W} 0.5 \%$ Input sensitivities-CER. P.U. Tuner 100 mV into
into 3 Ma . 100K Ω : Tape 100 mV into $100 \mathrm{k} \Omega$. Overload Factor-Better than 26dB. Signal to noise ratio-70dB on all Minputs (with vol. max). CIS.IS Mk. II (MAG. P.U.) £I5.I5.0 Specification same as Mk. I, but with she following inputs: Mag. P.U. CER. PU. Tuner.

50 WATT AMPLIFIER A.C. Mains 200-250V

Price £28.10.0 Plus 20/. P. \& P.

Controls-6 position selector switch (3 pos. stereo and 3 pos. mono). separate vol. controls for left and
right channels. Bass I 4 dB right 60 Hz ; Treble (with D.P.S on/off) $\pm 12 \mathrm{~dB}$ reble (10 kHz . Tape recording output sockets on ize 12 tin x 6in 2 in in teak finished case. Built and tested. Post \& packing $10 /$ extra. Spec. on Mag. P.U. 3 mV a IkHz input impedance $47 \mathrm{k} \Omega$. Fully equalised to ratio- 65 dB (vol. max.). An extremely reliable general purpose
valveamplifier. Its rugged construction valve amplifier. Its rugged construction yet space age styling and design make TECHNICAL SPECIFICATIONS 3 electronically mixed channels, with inputs perchannel, enables the use of 6 separate instruments at the same time The volume controls for each channel are locased directly above the corresponding input sockets. Sensitivities and Input Impedances. Channels and 24 mV at 470 K . These 2 channets (4 inputs) are suitable for microphone or guitars. Channels 3 and 4300 mV
at 1 m . Suitable for most high output at 1 m . Suitable for most high output instruments (gram, tuner, organ, etc.). Input sensitivityrelative to Tone Controls are common to all inputs. Bass 8 oose + 2 dB ac 60 Hz , Bass Cu $15 \mathrm{KHz} / \mathrm{st} 60 \mathrm{~Hz} / \mathrm{s}$. Treble Boost $+1 / \mathrm{dB}$ at $15 \mathrm{KHz} / \mathrm{s}$. Treble $\mathrm{Cut}-12 \mathrm{~dB}$ at $\mathrm{KHz} / \mathrm{s}$. Power output. For speech and music 50 watts rms. 100 watts peak. For sustained music 45 watts rms. 90 watts peak. For sine wave 38.5 watts rms. Nearly 80 watts peak. Total distortion at rated ousput $\mathbf{3 - 2 \%}$ at IKHz/s. Total distortion at 20 watts 0.15% at $1 \mathrm{KHz} / \mathrm{s}$. Negative foed back 20 dB at $1 \mathrm{KHz} / \mathrm{s}$ Signal to noise ratio 60dB. Mains voltages. Adjustable from 200-250V. $\mathrm{A} . \mathrm{C}$. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of unit. Output impedance 3, 8 and 15 ohms.

196411
 TOURISTE MK3 CAR RADIO

LIQUIDATED STOCK

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F.
module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size $7^{\prime \prime} \times \mathbf{2}^{\prime \prime}>4 \frac{1}{2}$ " deep.

Originally sold complete for $£ 15.4 .6$

SET OF PARTS

plus $7 / 6$ P. \& P.
Speaker, baffle and fixing kit 25/- extra plus 4. P. \& P.
Circuit diagram 2/6, free with parts.

RADIO \& TV COMPONENTS (ACTON) LTD.

Post orders to:-2Id High Street, Acton, London, W. 3
Also at 323 Edgware Road, London, W. 2
Goods not despatched outside U.K.
Terms C.W.O.
All Enquiries S.A.E.

㤨男

WESTON MILLIAMMETER Modern Clear Plaatic Design． in／A full scale calibration $0-100$ ．：tin
45／－Plua $\% / 6 \mathrm{P} .4 \mathrm{P}$

IMPORTED PANEL METERS

 $1 \mathrm{M} / \mathrm{A}, \operatorname{3n\cap v}$ ．Allat 29／6 Plus $1 /$
39／6 ${ }_{\text {P．}}^{\text {Plus }}$ \＆ EP P．
All modern design and made to bigh staudards．

SOLID STATE BLOCK MODULES Phono pre－amp E1311：input，100k；gain ${ }_{9}^{28}$ db；max．out， 3 －volt：max．in， $50 \mathrm{~m} / \mathrm{V}$ ：power Tap
Tape pre－amp E1312，as above
Power amplifer E1s14：laput， 1.000 ohnus； gain， $20 \mathrm{db}, 300 \mathrm{M} / \mathrm{W}$ ；power． 9 ．voit d．c．
Electronie organ，tone ose．W1315：toue freq $200-1 \mathrm{kHz}$ ；output， $80 \mathrm{M} / \mathrm{W}$ ；power． 9 V ；current， $15 \mathrm{M} / \mathrm{A}$ ． Dual flasher E1318；flasher time， $1 / 4$ gecs；power， 6 V ：current． $150 \mathrm{M} / \mathrm{A}$ Wamp． 6 V 150M／A．
orse code practice modules in this range
all at 25／－Plus $2 /-\mathrm{P}$ ． ． P ．

Two teak finish shelves on a black fratne （overall size： 28 in $\because 20 \overline{l n}$＂$\because 12 \mathrm{in}$ ）．Ideal for hi fi equipment；ampifiere，speaker cabinets etc．The perfect answer for housing unit audio and equipment．This unit is wall 50／－Plug Rit P．太 P．

EMI SET 850

A complete speaker aratem IS XIT FORM．We supply a modern gtyled tenk finish cabinet with black front． Orerall dimensions： 14 in $\because 9 \mathrm{in} \therefore 9 \mathrm{mp}$ ．Made to a very high standari．A 6 in EMI Foofer．A 3In tweeter wire and fixing network．Acoustic uxiding．Output 10．watts：frequency， 65.20 kHz ；Jmp $8-15$ ohme Kit price 9 GीS．Plus T／t P．d．P．

S．G．BROWN HEADPHONES

 Used！But in ximal norking condition Theme Type＂${ }^{\prime}$＂＇phone are $4,000 \Omega$ imp． and a bargain at$$
10 /=\text { Plus }: /-P . * \text { P. per pair }
$$

TTC G1105

High quality imporied headphones
1，000n per phone
Plus $\ddot{\theta}_{/- \text {P．}}$ ．${ }^{\text {de P．per pair }}$
$15 / 11$
$17 / 6$

COMPONENTS CORNER

8 in ．in one silled printed circuit boart？
BY100 type rectifier 800 p．i．s．750M／A
4 pin transislor holders
24 in 25 ohm loudspeaker
2 In 8 ohnt loudapeaker
Click battery holders（blue platic）
Flick emitches 1 in dolly mains typu
Model motors 6－12 volt
10 ohm W／W pot loudapeaker control
Tape recorder rev counter
Hend $\mathbf{3} /$－for our Component Catulogue

The BITTEREPSThat Woit Let Vou Down？

Mallory RECHARGABLE cells in U2 and Penlite U7 sizes Kestral Battery Charging Unit

Uses：
Tape recorders，Portable
radio and TV，Radio controlled model ircraft and boats，Cine cameras，Flashyuns， Cordess shavers and other battery appliances． Whenever you must have utterly dependable battery power－then these new Mallory Alkaline－Manga－ nese rechargeable cells will provide it．The cells can be recharged many times，a simple job with the Kestrel Charging Unit which has been specially designed for these new type batteries．

PRICES

 Batteries U2Penlite 47 －quiv． $10 /=$
Charging unit bestery holde

Sole
Distributors
for Chargers
and batteries

275 West End Lane，London，N．W．6．O1－794 9811

MULLARD POLYESTER CAPACITORS

$\begin{array}{lll}\text { All values are in microfarads．} \\ 160 \mathrm{~V}, 10 \% & 0.01,0.015, & 0.022,0.033,\end{array}$ $0.047,5 \mathrm{~d} .0 .068,6 \mathrm{~d} .0 .1,0.15$ ，8d． 0.22 ， 9 d ． $0.33,1 /=0.471 / 2.0 .68,1 / 9.110,212$. $400 \mathrm{~V}, 10 \%: 0.001,0.0015,0.0022,0.0033$ ， 0.033 ， 6 d ． $0.047,0.068 \quad 0.1$ ．d， 0.15 ， 11 $0.22,1 / 2 . \quad 0.33,1 / 9 . \quad 0.47,2 / 2$ ．

MULLARD ELECTROLYTICS

Miniazure series．Tolerance -10% to | $+50 \%$ | | Allild each． |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 V | | | $\begin{array}{ccccccc}4 V V & 8 & 32 & 64 & 125 & 250 & 400 \\ 6.4 V & 6 \cdot 4 & 25 & 50 & 100 & 200 & 320 \\ 10 V & 4.5 & 16 & 32 & 64 & 125 & 200 \\ 16 V & 2.5 & 10 & 20 & 40 & 80 & 125 \\ 25 V & 1.6 & 6.4 & 12.5 & 25 & 50 & 80 \\ 40 V & 1 . & 4 . & 8 & 16 & 32 & 50 \\ 64 V & 0.64 & 2.5 & 5 & 10 & 20 & 32\end{array}$

CARBON FILM RESISTORS

High stabilizy，very low noise，carbon film construction．E12 series 4R7 to 1M Prices－per ohmic value
each $10 \quad 100 \quad 1.000$ $\begin{array}{lllllll} & 0.5 W & 5 \% & 1+1 & 1 / 2 & 10 / 6 & 17 / 6\end{array}$

SKELETON PRESET CONTROLS

Carbon construction．Linear track only available．100， 250 and 500 ohms to 5 m ． Horizontal or vertical mounting on 0 mazrix board．Miniature 0.33 W od each．

No minimum order charge．Please add 1／－postage and packing per order．Export enquiries particularly welcome．Return of post service．No discount to trade avail－ able．Cash with order only．Send your name and address for our catalogue．

L．M．JONES（Electronic Components） 304 Avery Hill Road London，S．E． 9

-. LiND-AiR AUDiO

BATTERY ELIMINATOR

witch and ou/oft awitch. Case nize 4 in $\times 2$ in $\times 2$ in, complete with maing 59/8, P. \& F. $3 / 6$.

HI-TONE RECORDING TAPE

BRITISH MADE TOP QUALITY							
J1001	311	L. P .	pve	225 ft	5/6	P. \& P. 1/2	
J1002	3 іп	T.P.	Poly	600 ft	10/6	P. \& P. 1/2	
${ }^{1} 1003$		$1 . P$.	PVC		10/-	P. s P. 1/8	
J1004	¢in	D. ${ }^{\text {P }}$	Poly	1,200ft	15,-	P. \& P. 1/8	i Intre
11005	5 ¢in	L. P.	Pし	1,200ft	12/6	P. \& P. $2 /-$	
J1006	- ${ }^{\text {an }}$	D.P	Poly	1,800ft	22/6	P. \& P.2/-	
J1007	\%in	S.P.	PVC	1:200ft	12/6	P. AP. P/ $2 / 6$	ror merrymber in
$\xrightarrow{1008}$	\%in	${ }_{\text {Ler }}$	PVC	1,800ft	17/6	P. \& P. ${ }^{2 / f}$ (${ }^{\text {d }}$	
${ }^{1} 1010$	${ }^{\text {\% }} \mathrm{H}$	T. $\mathrm{P}^{\text {P }}$		${ }^{3}$		P. \& P. $2 / 6$	
	(asselte (Library caveil) 8/6 p \& P. $\mathbf{1}^{\text {/ }}$						
'90	Cassette (Lilrary casci) $18 /-\mathrm{P}$ \& P.1/-						
Cr20	Casmet te	(Libr	ary ea		18/-	P. \& P. 1/-	

DELOTE TTEREO With soft rubber earpiecee. Impedance $8-16 \mathrm{hms}$. Frequency response 23 lead, and stereo plug.
Only $50 / 6$.
P. 3/6.

VHF AIRCRAF BAND CONVERTOR

C.IOOI MULTI-TESTER

Overload protectio 20,000 ohms per volt:
a.c. voltt 10,50 . $350,1,4005: 11 . c$ volts 5-25, 125; 500 $2,500 \mathrm{~V}^{\prime} ;$ t.c. current $\begin{array}{ll}0-50 \mu \mathrm{~A}, & 0-250 \mathrm{~mA} \\ \text { Resistance } & 0-60 \mathrm{k} \Omega\end{array}$ $\begin{array}{ll}\text { Resistance } & 0-60 \mathrm{k} \Omega \\ 0-6 \mathrm{M} \Omega & \text { decibels }\end{array}$ $0-6 \mathrm{M} \Omega: \quad$ decibels
-20 to +22 dB. Bize of meter $4 \frac{1}{2} \mathrm{in} \times 3$ in $\times 1 \mathrm{in}$. Complete with leather case. $85 /-$. P. \& P. 3/6

62D.MULTI-TESTER

20,000 ohrme per volt; d.c. voltage $5,25,50$,
$250,500 \mathrm{~V}, 9.5 \mathrm{kV}(9,000$ ohms per volt), a.c. voltage $10.50,100,500$, $1,000 \mathrm{~V}$ (10,000 ohms per volt): (l.c. current -250 ma 0-2.jnA,
 $0-6 \mathrm{k} \Omega, 06 \mathrm{M} \Omega(300$ ohms and $30 \mathrm{k} \Omega$ a
centre seale); capacitance 10 F to 0.001 mF $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$; decibele -20 to +22 dB size $4 \frac{1}{1}$ in $3 t \mathrm{in}$ lin. $71 /-\mathrm{P}$. \& P. $3 / \epsilon$

 Rrojectio

An attractive altermative for the enthusiast preparel to assemble these excellen modules to make a stereo assembly quired)
Stereo sixty Control/Preamplifier, 29.19.6. PZ5 Power Supply Unit, \&4.10.6. Project to is aupplied complete with inatruction manual and templates for plinth mounting SDICLAIR PROJECT GOPACKAGE DEAL PRICE 19 Gng. P. \& P. $12 / 6$
EIMCLAIR 1C-10 IMTEGRATED CIRCUIT 10W Amplifter. Size only $1 \mathrm{in} \times 0.4 \mathrm{in}$ 0.2 in . A true hi-fi amplifier complete with applications and inst ruct ions. Guarinteed 5 years. ONLI 59/6. P. \& F. 1/6.
SPECIAL TRAMSFORMER FOR OPERATUG BLICLAIE 1C-10 from a.c. main $230 / 250 \mathrm{~V}$. Output 13 V at $0 \cdot 5 \mathrm{~A}, 16 / 6$.

LIND-AIR LA. 20

 fision for lir
tape recording. Attractive and moderu frout panel with basm, treble balance and volume controls also on/oft and stereo/mono switeh. Output ow per channel music power. Frequency re
LIND-AIR PRICE 2844 P. \& P. 10

Complete with all componente for building into suitable cabinets. Unit 3 Kit 211.19 .6 eac 221 palr Unit 4 Kit 818.0 .0 each 28 Gns. pair exs.10.0 each
39 Gns. pair
P. \& P. 10/-

SAVE ON AKAI!

AKAI 4000 Stereo Ta
Our Price 99 Gns.

GKAI 4000D STEREO TAPF DECK, (As illus.)
Our Price 69 Gns.

TELETON SAQ203 TRANSISTOR STEREO AMPLIFIER

Superb quality hi-fi. 10W per channel music power. Inputs for gram (magnet ic and cryatal), tuner
and auxiliary. Tape record out put. ('ontrols: volume, balance, bass, treble. Attractive oiled walnut cabinet with hrushed aluminium front panel.
Our Price 22 Gns. P. \& P. $10 /$

SPECIAL LIND-AIR OFFER!

ROTEL 100 AMP STEREO AMPLIFIER
 Fully transistorised with al Liat price 845 Our Price $\mathbf{E 3 7 . 1 0 . 0}$

TRANSISTOR MODULES

E1311. PHOLO PRE AIPLIPIRR. Biz Built-in in in Built-in R.I.A.A characteriatics en abling low output magnetic pick-up aniplifted up to M Input 100 k (nin 28d8. Max output 3V. Max input ommt. Distortion 0.15% (at iv level)
 OSCLLATOR. Uged in conjunction with an organ keyboard, variable resistance and a 9 porer supply, this module acts as the oecilator unit for an electronic organ. Tone Frequency $200-1,000 \mathrm{~Hz}$. Output E1816. MORSE CODE OSCHLLAT E1816. MORSE CODE OSCLLLATOR. transiatorised morse conle oscillator
(unzzer) to be tatell in conjunction with an operating key. Suitable for direct con nection to it loudspeaker. Tone freq 400 Hz . Power output 80 n w. Powe supply 3-9V. Current 45 mA , 25/-

hi-FITURNTABLES

2020 T/C with stereo cartridge. $\quad 88.19 .0$ 3000 with Sonotone 9TAHCD stereo cartridge
\rightarrow L65B.
210.19 .6

BL65 B
Base and cover for above.
SL22B
SL75B
SL95B
401.
Hase

Hase and cover for above s88.10.0 P. ©-P. Decks, 12/6: Base 98.19.6 Deck/Base/Cover, $17 / 6$

SPECLAL OFFERS: ATAHCD cartridge and base 815.18 .0 sonotone 9TAHCD catritge P. \& P. 10.

18/19,25 \& 53 TOTTENHAM CT. ROAD, LONDON W. 1 Telephone: 01-580 2255/4532/7679
 Open $9-6 \mathrm{pm}$. Monday to Saturday. Thursday until 7 pm

All Mail Orders and correspondence to Dept L4/ Kirkmen House, 54 a Tottonham Court Rond London, W.1. Tel: 01-580 7041/2.

CAR LIGHT FLASHERS
 Heavy duty light flasher ennploys a
condenaer diacharge condenaer discharge
principle operating on electro mechanical relay, (As inset.) cal relay, (As inset.)
Housed in strong plastic case. Flanhing rate between tiof $1: 20$ per minute. tion. Ma cuntumbload 6 amps. Nize $511 / 16^{\circ}$ dia. $\times 4^{4 *}$. Supplied brand new it a fractlon (3 for 17/8. P. \& P P 4/6.)

CLASS D WAVEMETERS

 an iyne frequency heter meter covering
Opering Mc/s
1.7. Operation on for or dic.
ldeal for antateur use. Available in good used use. lition. E5.19.6. Carr. or brand new with accee:
mories. 27.19 .8 . Carr.

CLASS D WAVEMETERS No. 2 r'ryatal controlted. 1-9-19 Mc;'s. Mains or 12-
calibration
l.c. operation. Complete with
charts. Evellent
condition. i12.10.0. Carr. 30.-

R209 MK II COMMUNICATION RECEIVER 11 valve high grade communication receiver Ruitable for tropical use. $1 \cdot 20 \mathrm{Mc/s}$ or ${ }^{4}{ }^{2}$.
bands. AM/CW/FM operation. Incorpor. atee precieion vernier iniver, BFO. Aerial
 wal mer, inter nal
12
\mathbf{v}
apeaker and
d.c.
in ternal power supply. Sup. plied in excelent condition,
folly tested and checked.
£ 15
TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent general pur-

 Sandwivity $3.3 \mathrm{mv/CM}$.
Senita
Operating voltage $0 / 110$ Operating voltage 0/110/
000/250 V. a.c. \$upplied in excellent working con dition. 222.10 .0 or complete with all accessories, probe leads, lid,
225 . Carrlage $30 /-$.

MARCONI CT44/ TF956 AF ABSORPTION WATTMETER
1 Miwatt to ${ }^{6}$ watte. 820. (Mrr. 20'-

SOLARTRON CD. 71182 DOUELE BEAM OBCILLOBCOPES. D.C. to $5 \mathrm{ma} / \mathrm{s}$. Perfec | order. |
| :---: |
| C.R.T. |
| L25. |

TO-2 PORTABLE

OSCILLOSCOPE

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

A new portable
bridge offerlag ex.
 cellent range and uccuracy at
cost. Rangen:
R. $1 \mathbf{\Omega - 1 1 . 1} \quad \operatorname{meg} \Omega$

ges $-2 \% . \mathrm{C} .10 \mathrm{pF}$
1.110 m

UNR-30 4.8AND COMMUNICATION
RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{a}-30 \mathrm{Mc} / \mathrm{a}$. Iucorporates Bro. Built-in speaker and phone jack. Metal cabinet. Operation ${ }^{2} 20$
240 V , ac. Supplied brand new, guaranteed with $\begin{array}{lll}\text { instructions. } & \text { Carr. } 7 / 6 \quad 13 \text { gns. }\end{array}$

TRIO JR-sio HEW AIATEUR BAND 10-80 MERRE RECEIVAR. In Btock. $10-80$ METRE RECEIVAR. In stock. $277,10.0$.

 277.10.0.

LAFAYELTTE SOLID STATE HAGOO RECEIVER 5 BAMD AM/CW/SEB ABATEDR AND SHORT WAVE $150 \mathrm{ke} / \mathrm{s}-400 \mathrm{ke} / \mathrm{s}$ and $550 \mathrm{kc} / \mathrm{a}-80$ 直 c / s dial © Product detector © Variabio BFO - Noie limiter © S meter - Rhin Bandapread - 280 V s.c./12V d.c. nef. earth operation 6 RE gein exceptional yalue. 245. Cart, 10/-. 8.a.e. for foll detalil.

TRIO COMMUNICATION

RECEIVER MODEL 9R-59DE
4 band receiver covering $650 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. "outinuous and electrical bandspread on $10,15,20$, 40 and 80 metres. 8 valve plus 7 diode crircuit. t/8 ohm output and phone fack. S8B-CW ANL tial $1 \mathrm{~F} .445 \mathrm{Kc} / \mathrm{s}$ Audio output 1.5 W . Varlable RF and AF gain controls. $115 / 250 \mathrm{~V}$ A.C. Mains. Beautifuly designed. Size: $7 \quad 15$

TRIO COIMORICATION TYPE HEADPHONES Nornally as.19.6.

UR-IA SOLID STATE COMMUMICATION RECEIVER
4 ballds eoveriug $550 \mathrm{Kc} / \mathrm{h}-30 \mathrm{mlc} / \mathrm{s}$ continuous. Special features are use of FET
transistors, \& meter, built in speaker and transistors, telescopic aerial, variable BFO for $88 B$ reception, noise linulter, bandepread control, sensitivity control. Output fur low fmpedance headphones. Operation $220 / 240$ volt A.C. or 12 volt D.C. Size $122^{\prime \prime} \times 48^{\circ} \times 7^{*}$. Excellent
 l2 vol D.C. Size $128^{*} \times 42^{\circ}$
value. UNLY 284 . Carr. $7^{\prime} \mathrm{G}$

LAFAYETTE EA. 800 6-BAND AMATEUR RECEIVER, 57.10 .0 , Catr. Paid

RCA COMMUNICATION

RECEIVER AR88D

Latest releage by ministry BRAND NEW in original cases. $110-250 \mathrm{~V}$ a.c. operation. Frequency $\ln 6$ Bands. $536 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$ continuous. Output impedance $2 \cdot 6-600$ ohms. Incorporating crystal filter, noige limiter, variable BFO, variable selectivity, etc. Price \$85. Carr. \&2.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

A completely new transistorised receiver covering 15:- $174 \mathrm{Mc} / \mathrm{s}$. Fully tuneable or cryatal controlled corporates 4 INTEGRATED CIRCU1TR. Built in speaker whd illumimated dial. Squelch and volune controls. Tape recorder output. 750 aerial input. Headphone jack. Operation gr30V. A.
12V. D.C. Neg. earth. \&37.10.0. Carr. 10 :-

TELETON MODEL CR $10 T$ AM/FM STEREO TUNER AMPLIFIER

Luew moilel from Teleton. 31 solid state levices. $4+4$ watt output. lupute for
ceramid/crystal cartridge. Frequency range ceramic/crysta cartridge. Frequency range
$1 \mathrm{M} 540-1600 \mathrm{KHzFM} 88-108 \mathrm{MHz}$. Autoinatic FM stereo receptlon. Stereo iudicator Controls: Tuning, function selector, Tone and It \& L voluine controls. $A F C$ bwitch. stereo headphone socket. Size: 13!"; 3 ! , 91" approx. Price E84. Carr. 7/6.

$50 \mu \mathrm{~A} \ldots$.
$50-0-50 \mu$
100 मА $200 \mu \mathrm{~A}$ 114 $40^{\circ}-$
CLEAR PLASTIC PANEL METERS First grade quality Moving Coil pan
Type MR $38 \mathrm{P} .1^{21} / \mathrm{g}$ in gquare fronts. Type MR 38P. $1^{21 / / 38}$ in square ironts.
$500-0.500 \mu \mathrm{~A}$
27/6
50 mA

500-0-500 4 A 27	50mat 27	150V. D.C.... 27
$1 \mathrm{~mA}27 / 8$	100mA $27 / 6$	300V. D.C. . . $27 / 1$
1-0-1miA27/6	150mA $27 / 8$	500V. D.C. . . $27 / 6$
2mA $27 / 8$	200mA $27 / 6$	750v. D.C. . . .27
5 mA $27 / 8$	300mA $27 / 6$	15V. A.C. . . . 27
10 mA $27 / 8$	600mA $27 / 8$	50V. A.C . . . 27
760 mA . . - - $27 / 8$		150V, A.C. .. 27
1 amp $27 / 8$		3005. A.C. . 27
$2 \mathrm{amp}27 / 6$	10ヶ. D.C..... $27 / 8$	500**. A.C. . . 27%
$5 \mathrm{mmp}2876$	20 V , D.C. . . . $27 / 8$	s meter $\ln \mathrm{n}$ A. $82 /$
20m.4 $27 / 6$	100V. D.C.. . . 27/6	VU meter....42
1	es in stock. Me	

POWER RHEOSTATS

High quality ceramic conetruction. Windinge embedded in vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range ex-stock Single hole fixing, itin. dia. shatts. Bulk quant ities a vallable.
\&f WATM. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 oher 50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohnis, $14 / 8$. 1 . 100 WATT. $\mathrm{J} / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 ohme, $27 / 6$. I \& P. $\mathrm{P} / 6$.

CRYSTAL CALIBRATORS No. 10

	Bmall portable cryata controlled wavemeter Size $7^{\prime \prime} \times 71^{\prime \prime} \times 4^{\prime \prime}$ Fre quency range $600 \mathrm{Kc} /$ $10 \mathrm{Mc} / \mathrm{s}$ (up to $30 \mathrm{Mc} /$ on harmonics). Cali brated dial. Power re quirements 300 V.D.C rismA and 12 V.D.C 0.3 A . Excellent con dition. 89/6. Carr. 7/6.

T.E. 40

HIGH SENSITIVITY
 Carr. 5/-

LELAND MODEL 27 BEAT

 FREQUENCY OSCILLATORS Frequency $0.00 \mathrm{Kc} / \mathrm{s}$ on 2 ranges. Output orpliel in merfect ordet 112.100 A.C Supplol-

TE-65 VALVE VOLTMETER

High quality instrument with 28 ranges. D.c. volte
$1.5-1.600 \mathrm{~V}$. A.c. volts $1.5-1,500 \mathrm{~V}$. A.c. Volta up to 1,000 megohme. $200 / 240 \mathrm{~V}$ a.c. operation. Complete with probe and instructions.
P. \& $\&$. $6 / \mathrm{F} .10 .0$. P. \& P, 6/-. Addltional 35/=. H.V. $48 / 6$.

COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
D.c. coupled. Band width $1 \mathrm{kc} / \mathrm{s}$. Perfect order. *25. Carr. 30/

AM/FM SIGNAL GENERATORS

Oscillator Test No. (a) ment made for the
ministry by Alrmec. Frequency cover. age $20-80 \mathrm{Mc} / \mathrm{s}, \mathrm{AM}$
(. $\mathrm{W} . / \mathrm{FM}$. porates precision alial, level nieter, precision attenuator $1 / \omega \mathrm{V}-100 \mathrm{mV}$. Operation from 12 d.c. or 0/110/200/250V a.c. Size $12<8,9$ in. Supplied ith brand new fully tested. 845 . Carr. 90 -.

PLESSEY SL 403A

3 watt Integrated Amplifier Circuit
49/8 POST PADD
EDDYSTONE VEF RECEIVERS MODEL 770R. 19-16ã Mc's. Excellent e ondition. $\$ 150$

TE-18A Trassintorised 81 gnal Generator 5 rangea $400 \mathrm{kHz}-30 \mathrm{mHz}$. An inexpensive instrumen for the handyman. Oper-
ates on 9 y battery. Wide entes on 9 v battery, Wiue ${ }^{2} 00 \mathrm{kHz}$ modulation $5, \cdots 5:<314$. Complete with instructions and
hOSIDEN DH-OZS STEREO HEADPHONES Wonderful value inn excellent performance combined. band. 8 ohnu impedance.
$30-12,000$ eys.
Complete with lead
and stereo latek plug.

AUTO TRANSFORMERS
$0 / 115 / 230 \mathrm{v}$. step up or step down. Frull shrouded.

1,000 W. 26.10 .0, P. \& P. $7 / 6$
1,500 W. 27.19 .8, P. \& P. $8 / 6$
7,500 W. 215.10 .0, P. \& P. $20 /-$
G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 A.F. SIIE WAVE
$20-200,000$ $\begin{cases}20-200,000 & \mathrm{c} / \mathrm{s} \\ \text { Square wave } \\ 30-\end{cases}$ $\begin{array}{ccc}\text { Bquare } & \text { wave } & 20- \\ 30,000 & \text { c/s. } & 0 / \mathbf{P} . \\ \text { HIGE } & \text { Illp. } & 21 \mathrm{Y} .\end{array}$ EIGE IMP. 21V.
P/P600 3.8 V P/P. TF $100 \mathrm{kc} / \mathrm{s}-300$ atteduation int/ext. modulation. Incorpor ates dual purpose meter to monitor AF out put and \% mod. on R.F 220/240 888,10.0. Carr. 7/6
TE-20RF SIGNAL GENERATOR Accurate wide range aignal generator cover-
ing 120 kc/g-260
 $\begin{array}{lll}\mathrm{ing} \\ \mathrm{Mc} / \mathrm{s} & 120 & \mathrm{k} / \mathrm{k} / \mathrm{s}-260 \\ \mathrm{i} & \text { bands. }\end{array}$ Directly calibrated
variable R.F. atvariable R. R.
tenuator. Operation $200 / 240 \mathrm{~V}$ a.c
Brand new with in
atruction. $/ 25.15 .0$ 1^{1}. \& P. 7/6. S.A.E for details.
TE22 SINE SQUARE WAVE AUDIO GENERATORS
 Sine: $20 \mathrm{ch} / \mathrm{s}$ to
$200 \mathrm{ke} / \mathrm{s}$ on bands. Square
$20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$ Output impedance 5,000 ohme. 200p2500. A.C.
Supplied brand supplied brand new and guatan-
teed with instruction manual and leadk. E16.10,0. Carr. 7/f. HARCOMI TPILAE DIBTORTION FACTOR 190. Carr, 15/-.

LAFAYETTE TE46 RESISTANCE

ADVANCE TEST EQUIPMENT frand new and bozed in original nealed cartons. JIB, AUDIOSIGMALGERERATOR. ohms or 5 ohme. $E 30.0 .0$.
V 4 79. UHE MILLIVOLT METER $100 \mathrm{Ke} / \mathrm{s}$ to $1,000 \mathrm{Mc} / \mathrm{s}$. a.c. 10 mV to 3 V .
D.c. 10 mV to 3 V . Current. $0.01 \mu \mathrm{~A}$ to 0.3 mA . Resistance 1 ohm to 10 megohm. 2125.0.0,

TTIS. TRANEISTOR TESTER, Full range of facilities for teating PNP or NPN transistors in or out of circuit. 237.10 .0 .

Carriage $10 /$ - per item.

TO-3 PORTABLE OSCILLOSCOPE

3in. tube. Y amp. Sensiti
vity 0.1 v p- p / CM. Band vity 0.1 v p-p/CM. Banr-
width 1.5 eps-1.5 MHz^{2}
Input width 1.5 eps-1.5
Mnput imp. 2 meg
M
X app
amp. x amp. Benaitivity 0.9 v .
p-p/CM. Bandwidth 1.5 cps -800 KHz . Input imp. 2 meg $\Omega 20 \mathrm{pF}$. Time base. 5 ranges 10 cpa- 300 KHz . external. Illuminated ecale $140 \times 215 \times 330$ mm. Weight 15 It 1 . $220 / 240$. A.C. Supplied

TE111.

DECADE

EEgISTAMCE
ATTEGUATOR
Varlable range
 nectlons. Unbalanced \mathbf{T} and Briclge T. Impedance 600Ω range $(0.1 \mathrm{~dB} \times 10)+(1 \mathrm{~dB} \times 10)$ $+10+20+30$
d.e. to 200 kHz
(
(-30 dB . Frequeney 0.05 dB . +indication $\mathrm{dB} \times 0.01$. Maxi mum input less than $4 W(50 \mathrm{~V}$). Built in 600Ω load resistance with internal/ezternal witch. Brand new $42 z^{2} .10 .0$. P. \& P. 5/-
AVOMETER MOVEMENTS

Spare movementa for Model 8 or 9 . (Fitted Theter. Brand New and Bozed $69 / 6$. P. \&P, $3 / 6$.

SEND NOW-ONLY 7/6 P\&PI:

GARRARD

FULL CURRENT RANGE OFPERED, BRAND NEW AT FANTASTIC BAVINGS

TEAK PLINTRS AND PERSIPEX COVERS
 3. For $\mathrm{SP}_{2} 5$ etc. to operate with lid in place $\mathbf{2 5 , 1 9 . 6}$ Carriage $7 / 6$ extra each type.
SPEC/AL OFFERS! Garrard SP:25 fltted (ioldring (i800 list price $£ 32.8 .5$
OUF PRICE 119.15 .0 . Carr. 10/GOLDRING GL69 titted Goldring (8800 cartridge complete with deluxe base and cover. Total list price $\mathbf{~}^{5} 50.16 .0$.
OUR PRICE 239. Carr. 20/.
RTC 2494 TRACK TAPE DECK

MULTIMETERS for EVERY purpose!

MODEL

$$
\begin{aligned}
& 100 \mathrm{~K} \Omega / \mathrm{YOL} \\
& \text { mirror }
\end{aligned}
$$

TE-61. MEW $20,000 \Omega$ VOLT MULTIMETER with overload protection and
mirror scale. $0 / 6 / 60 / 120 /$ $\begin{array}{ll}\text { mirror } \\ 1.200 \mathrm{v} & \text { acate. } 0 / 6 / 6 / 60 / 120 / \\ 0 / 3 / 30 / 60 / 300 /\end{array}$ $1,00 / 3,000 \mathrm{~V}$ d.c. $0 \cdot 60 / \mathrm{A} / 1$ 1300 mA d.c. $0 / 60 \mathrm{~K} / 6 \mathrm{meg}$ "hm. 92/6. P. \& P.

AS-1000 $0 / 3 / 12 / 60 / 120$ $300 / 600 / 1,200 \mathrm{~V}$
d.c. $0 / 6 / 30 / 120 / 300 /$ $\begin{array}{ll}\text { d.c. } & 0 / 6 / 30 / 120 / 300 / \\ 600 \mathrm{~V} & \text { a.c. } \\ 0 / 10 \mu \mathrm{~A}\end{array}$ 6/60/300MA/12 Amp. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$, $200 \mathrm{M} \Omega$. -20 to
$\begin{array}{ll}+17 \mathrm{~dB} . & \text { \& } 12.10 .0 . \\ \mathrm{P} . \& \mathrm{P}, 3 / 6\end{array}$

$\begin{array}{lrr}\text { MODEL TE-90 } & 50,000 \\ O P V & \text { MIRROR } & \text { SCALE }\end{array}$ O.P.V. MIRROR SCALE OVERLOAD PROTECTIOR $0 / 3 / 12 / 60 / 300 / 600 / 1,200 \mathrm{~V}$
d.c. $0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{~V}$ d.c. $0.03 / 6 / 60 / 600 \mathrm{MA}$ d.c -20 to +6 isd.$~ 27100$ F. 20 to $+6: 3 \mathrm{~dB}$. $\quad \mathbf{2 7 . 1 0 . 0}$,

MODEL TE-70. 30,000 O.P.V. $0 / 3 / 15 / 60 / 300 /$ $600 / 1,200 \mathrm{~V}$. d.c. $0 / 6 /$ $30 / 120 / 600 / 1,200 \mathrm{~V}$. a.c. $0 / 30 \mu \mathrm{~A} / 3 / 30$
$300 \mathrm{~mA} .0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $\begin{aligned} & 300 \mathrm{~mA} . \\ & 1.6 \mathrm{M}\end{aligned}, 16 \mathrm{~K} / 160 \mathrm{~K}$

0

YODEL PT-34 1.000 O.P.V.0/10 $50 / 250 / 500$
$1,000 \mathrm{v}$ a.c. and $1,000 \mathrm{~V}$ a.c. avd
d.e. $0 / 1 / 100 / 500$

MODEL TE 80, 20,000 O.P.V 1.000 V a.c 100,50
0,
 $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Me}$ 84.17.8. F. \& F. $3 /-$

$\begin{array}{ll}\text { MODEL } & \text { TE12. } \quad 20,000 \\ 0 / 0 \cdot 6 / 30 / 120 / 600\end{array}$ O.P.V. $\quad 0 / 0 \cdot 6 / 30 / 120 / 600 /$
$1,200 / 3.000 / 6,000 \mathrm{~V}$ $1,200 / 3,000 / 6,000 \mathrm{~V}$ d.c. $1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ a.c.
$0 / 60 \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$.
$0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$.
Megohm $\quad 50 \mathrm{PF} . \quad 2$ MFT
 LAFAYETTE 57 Range
50,000 O.P.Y M0,000 O.P. Multimeter. L.c.
Volts $125 \mathrm{~V}-1,000 \mathrm{~V}$ 1,000V J.c. Current $25 \mu \mathrm{~A}-10$ Amp Ohms. 0-15 Meg Ω
 $\mathrm{dB} .-20$ to +81 dB

SAVE UP TO 33 $\frac{1}{3} \%$ ON HI-FI EQUIPMENT Send for discount price list

AVO CT471A MULTIMETER Battery operated. fully transistoriaed. Senaltivity $100 \mathrm{~m} \Omega / \mathrm{s}$, Measures $A C / D C$
Voltages $1 V_{m}$ to $/ 200 \mathrm{v}$ AC/DC Current 12 u A to 1.1 . mmp . Resistance 1% ohm to 120 ma HF , VHF, UHF, Foltage with multiplier 4 vio 400 v up to $80 \mathrm{Mc} / \mathrm{s}, 40 \mathrm{~mJ}$ to 4 V up to $1.000 \mathrm{Mc} / \mathrm{h}$. Carr, 10:-

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Separate call
and press to talk buttons. 3 -wirc conuection. 1000 's of applications. Beautifully finished in cbony. Suplylica complete with battering and
wall brackets. \&8.19.B. P. \& J^{\prime}

SINCLAIR EOUIPMENT

Iroject 60 range of new molely now in stock
 SPECLAL PACKAGE OFPER ZSO Amplifiers, Stereo 60 and PZ5 Power Supply 818 Speakers $\mathbf{~ M i c r o m a t i c ~ C a r r . ~} \overline{1}$," SINCLAIR 16/10 IN NTOC'た 50/6 2000 Amplifier 283.10 .0 . (turr. $7 / 6$ Neoteric . Implifier $\mathbf{8 4 . 0 . 0}$. Ciarr. 7

PEAK SOUND PRODUCTS
Full range of Amplitiers, Kits, speakers in stock

ECHO HS-60G STEREO HEADPHONES

Wonderfully com fortable. Light winyl headband. vinyl headband
bift. cable and stereo jack plug.
$-5-17,000$ hhut imp. $67 / 6$

RECORDING HEADS COSMOCORD t-track heads. High imp. recort playback 65/-, Low imp. erase 20/- MARRIOTT $\frac{1}{2}$ track heads. crase $80 /$-. Post crtra. RACAL MA. 168 TRAMSISTORI8ED DIYER-
gITY SWITCH. Branl New Condition 215. Carr. 10'-

AMERICAN TAPE

First grade quality Anericin tapes. Brant new Discount on quantitier.
3in, $205 f t . ~ L . P . ~ a c e t a t e . ~ ~$
31 in .295 ft L. \mathbf{P}. acetate
3 tin .600 ft . T. P. mylar
sin. booft. st.d. plastic
5in. 900 ft . L.P. acetatc 5in. $1,200 \mathrm{ft}$. D.P. inylar 5 in. 1,200ft. L.P, acetatc 5*in. 1, o00ft. L.P. mylar 5 in. 1,800ft. D.P. mylar 5in. 2,400ft, L.P. mylar Tin. $1,200 \mathrm{ft}$. std. acetate. in. 1.800ft. L. P mylar 7 in . $2,400 \mathrm{ft}$. L.P. mylar 7in. 3,600t. T.P. mylar Postage ${ }^{2}-$. Over $\mathbf{E} 3$ post paid.

TAPE CASSETTES

Top quality in plastic library boxe
C60 $60 \mathrm{~min} 8 / 63$ for $24 / 6$
C $9090 \mathrm{~min} 18 / 83$ for $36 / \circ$ C120 $120 \mathrm{~min} 15 /-3$ for $43 / 8$

Available now! The new Mullard data book for 1970

Quick! get up-to-date with the latest information about Mullard semiconductors, valves, television picture tubes and components.

For easy flick-through location each section of this pocket-sized data book is colour-coded

VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

OZ4	4,0	20 F	13/6	DK9	7/3	EL3	9/8	PCL	12	UBC	
1476'	7/6	$20 \mathrm{P}^{3}$	11/9	DL35	5/-	EL34	9/6	PCL84	$7 / 6$	UBF80	$8 / 8$
1H8GT	7/8	20P4	18/6	DL92	5/9	EL38	17/8	PCL88	θ	UBF8	8/8
1NGGT	7/9	25L6G	T 5/-	DL94	8/3	ELA1	11/-	PCL88	8/3	UC92	5/6
$1 R 5$	8/9	20U4\%T	T11/6	DL96	7/3	EL84	1/8	PEN	12/8	UCC84	7/-
185	4/8	3001	8/6	DY86	5/9	EL90	46	PFL2	11/9	UCC86	7/8
1 T 4	2/9	30 Cl 15	13/-	D 187	5/8	EL500	12/6	PL36	$9 / 9$	UCF80	7/8
384	B/9	30 Cl 17	16/-	EABC'8	6/8	EM80	$8 / 6$	PL81	$8 / 9$	UCH42	12/6
3 V 4	6/8	30 C 18	14/-	EAF42	10.	EM81	$8 / 8$	${ }^{\prime} \mathrm{L}^{1} 81$	1016	UCH81	0/8
$5 \mathrm{Y3GL}$	5/0	30F's	18/-	EB91	$2 / 3$	EM84	$8 / 9$	PL82	$8 / 6$	UCL82	7/\%
5Z4G	7/6	30 FLL 1	$12 / 8$	EBC33	8 8-	FM8 ${ }^{\text {a }}$	7/8	PI, 83	6.6	UCL83	11/8
6/30L2	12/-	$30 \mathrm{FL1}$	14/6	EBC41	9/6	EY51	7/3	PL84	8/6	UF41	10/6
-ALS	2/8	30FL	14/9	EBF80	6/9	EY86	6/6	PL500	18/-	UF85	$8 / 9$
6AM6	$2 / 9$	30L1	6/6	EBF89	0/3	EZ40	8 /-	PL. 504	13/6	UF39	618
6AQD	4/6	30L15	13/-	ECC81	3/8	EZ41	8	PLL508	83/6	UL41	12/
6AT0	4/-	30 Ll 17	15/6	ECC82	4/9	EZ80	4/6	PM84	718	UL44	20/-
6AU6	4/6	30 P 4	12/-	ECC83	71	EZ81	$4 / 8$	PM84	12	UL8	7/-
68A6	4/6	30 P 12	13/8	ECCA5	\$/-	(2 Z 32	$8 / 9$	PX25	12-	UM84	$0 / 6$
6BE6	$4 / 8$	30 Pl 9	12/-	Eccal	3/6	(iz34	9/8	TY32	$10-$	UY41	7/6
98J6	$8 / 6$	$301{ }^{\text {P }}$ L 1	148	LCC804	12/-	KT61	9/9	IT33	10/3	UY85	5/9
6 CSG	$4 / 8$	30PL13	17/6	ECP80	8/6	KT8G	18/9		$5 / 3$	VP4 ${ }^{\text {d }}$	10/-
6F13	$8 / 6$	30 PL 14	16,6	ECF82	6/6	N 78	17/8	PY82	$5 / 8$	W77	3/6
6 F 14	0/-	35L6GT	8/8	ECH35		PABC*	7/-			W11	7/-
6 F 23	14/3	35 W 4	4/6	ECH42	13/6	PC86	10/3			7.77	$2 / 9$
6 F 26	13/-	$38 \mathrm{Z4G}$ T	8/-	ECHR 1	5/8	PC88	10/3			AC10	8/6
6J56:	$4 / 9$	807	9/-	ECH83	8/3	PC96	8/6	80	${ }^{7 / 8}$	AC127	2/6
6K7 ${ }^{\text {\% }}$	2/6	6063	12/8	EClis.	$7 / 6$	1-97	8/6	R19	816	AD140	7/6
6 K 8 B	$2 / 9$	AC/V	210/-	ECL80	7/-	PC900	7/6	R20	12/6	AF1Is	8/-
6L18	6/.	AZ31	9/6	ECL82	$8 / 8$	PCCS4	8/6	TH2	$17 / 6$	AF115	$8 /-$
6SN7G	4/3	B729	12/6	ECL83	$8 / 9$	PCCs5	6/-	125	13/-	AF117	4/-
6V6G	3/8	CCH35	$13 / 6$	ECL8i	8 -	PCC88	9/-	U2t	12/-	AF125	3/6
6V6G	8/6	CL33	18/6	EF37A	6/6	PCCS	10/6	U47	13/6	AF127	8/6
6×4	4/3	CY31	6/9	E1:39	$4 / 9$	PCC18:	11/6	V49	13/8	OC26	5/-
$6 \times 5 \mathrm{GT}$	B/9	DAC32	7/3	EF41	11/9	PCF80	6/6	V	$4 / 3$	$0 \mathrm{C4} 4$	2/6
10F1 1	14/-	DAF91	4/3	EF80	4/6	PCFB2	8/6	U19	12.6	Oc4s	9/6
10F18	7-	DAF90	7/3	EF85	63	PCF86	10/6	U193	$8 / 6$	0c71	2/6
10P13 1	12/-	DF33	7/9	EF88	$6 / 3$	PCF800	13/6	U251	14/6	OC72	$2 / 6$
12AT7	$8 / 9$	DF91	2/9	EF89	5/3	PCP801	6/8	U301	$10 \cdot 6$	0075	2/6
12AU6	4/9	DF96	7/8	EF9]	2/8	PCFB02	9/-	U329	$14 / 6$	0C81	2/6
12AU7	$4 / 9$	DH77	4/-	EF94	4/6	PCF805	14/-	U801	19/6	OC81 1	2/6
12AX7	4/9	ПК32	$7 / 8$	EFI83	6/9	PCF806	12/8	UA ${ }^{\text {che }}$	8/6	0c8́2	$2 / 6$
12K8GT	7/3	DK91	$5 / 8$	EF184	6/6	PCF808	14/8	U/AF42	10/3	OC821)	2/6
$9 \mathrm{BG6}$	17/0	DK92	10	EH!0	8/3	L82	7/3	['R41	8/6	0 C 170	

READERS RADIO (P.E.)

85 TORQUAY GARDENS, REDBRIDGE, ILFORD ESBEX. ES8EX.

Postage on 1 valve $9 d$. extra. On 2 valves or more, posta.ge 6d. per
valve extra. Any Parcel Insured against Damage in Transit od. extra

PARKERS SHEET
METAL FOLDING MACHINES
HEAVY VICE MODELS

With Bevelled Former Bars
Carr. free
No. 1. Capacity 18 gauge mild steel $\times 36 i n$. wide \ldots... \ldots £ 15.0 .0 No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide $\ldots .$. No. 3. Capacity 16 gauge mild steel $\times 18 i n$. wide $\ldots \ldots$. Also new bench models. Capacities 48 in . $\times 18$ gauge $£ 40.36 \mathrm{in} . \times 18$ gauge £ 30.0.0. 24 in. $\times 16$ gauge $\mathbf{E 2 9 . 0 . 0}$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in. model, $5 / 6$ per ft . Other models $3 / 6$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals. One year's guarantee. Money refunded if not satisfied. Send for details.
A. B. PARKFR, Folding Machine Works, Uppet George St., Heckmondwike, Yorks. Heckmondwike 3997

BSR 4SPEED SUPERSLIM

 MODEL UA25 RECORD CHANGERPlayi $12 ", 10$ " or $7 "$ records
Anto or Manual. A high

STEREO/MONO PRICE

£6.19.6
${ }_{5 / 6}^{\text {Post }}$
BSR UA70 Stereo/Mono Transcription $\mathbf{A} 12.19 .6$ BSR Minichanger UA 50 Sterea/ Mono
£7.19.6 BSR Minichanger UA50 Stereo/Mono.
Size 12 - Bein. AC $200 / 250 \mathrm{v}$. Post $5 / 6$.

GARRARD PLAYERS with Sonotone 0TA Cartridges Stereo Diamond Mono Sapphire. SF25 mx H 14.19 .0 AT00 Mk II 214.18.6. Model 3000 212.18.6. Posi $5 / 6$ RECORD PLAYER PORTABLE CABINET
RCS DE-LUXE 3 WATT AMPLIFIER. Ready made and 3 watts outpot Tone and ing triode pentode valved main trantiormer. With knobs, loudspeaker and valves ECL82 EZ80. Frequency response $50-12,000 \mathrm{cps} . \quad 89 / 6$
Sensitivity 200 mV . Post $5 / 6$. R.C.S. TEAKWOOD BASE Ready cut out for $77 / 6$ mounting

7716 R.C.S. PLASTIC COVERS FOR ABOVE BASE

77/6 Durable tinted attractive appearance.
mono cartridge 29/6.
EMI PICK-UP ARM. Complete with mono cartridge
EMI JUNIOR 4 SREED RECORD PLAYER
Mains operated motor, turntable and pick up
complete. Post $5 / 6$.
complete. Post 5/6.
GP94 55/-; GP98 45/ GP91 30/ GP67 19/6, ACOS L.P. only 10,6 . All standard fixing complete with atylas.

CRYSTAL MIKE INSERTS
$11^{\prime \prime}$ dia. B/6. ACOS $13^{\prime \prime}$ dia. 12/6. BM3, 1^{*} dia. $9 / 6$
PORTABLE AMPLIFIER
Portable minip.a. Bystem
Partjes, or as a Baby Alarm, Intercom, Telephone or Record Player Amplifier, etc. Attractive rexine covered cabinet give $12 \% 9: 4$ in., with poweriul 7 , 4in. apeaker power amplifier. Uses PP9 battery Brand new in Makers' carton with ull makers' guarantee.
 World lamous make.

Only 75/= Pos
WEYRAD P50 - TRANSISTOR COILS
RA2W Ferrite Aerial Onc. P50/1AC
.F. P50/2CC $470 \mathrm{kc} / \mathrm{s}$ 2rd I.F. P50/3CC P51/1 or P51/2 P51/3. /4 Driver Trans. Letr Printed Circuit, PCAI .. 9/ J.B. Tuning Gang Weyrad Booklei
Perrite Rod 8 . . inin. $4 /$ in8 d.
$8 / 8$

YOLUMECONTROLS 80ohm COAX 9d, yd.

Lone spindles. Midget Size
K , ohms to 2 Meg LOG or
 edge 5K. S.P. Transistor, S/-. $\begin{aligned} & \text { FRINGE LOW LOS } 825 \\ & 2 /\end{aligned}$ WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WAT mall type with small knob. STANDARD SIZE POTS $\begin{array}{lll}\text { Values } 10 \Omega \text { to } 30 \mathrm{~K} ., \\ \text { Carbon } 30 \mathrm{~K} \text { to } 2 \mathrm{meg} . & 5 / \mathrm{l} & \text { LONG SPINDLE } \\ 10 \text { OHMS to } 100 \mathrm{~K} .8\end{array}$ VEROBOARD 0.15 MATRIX
in, $3 / 8$. $21 \times 3 i \operatorname{lin}, 3 / 2,3 i \times 3 i \mathrm{in} .3 / 8$. $3 i \times 5 \mathrm{in}, 5 / 2$
EDNS CONNECTORS 16 way $5 /-24$ way $7 / 6$.
S.R.B.P. Board 0.15 MATRIX 2 inn, wide 8d. per lin 81 in wide 8 d . per 1 in. ; Sin. wide $1 /-\operatorname{jer} 1 \mathrm{in}$. (up to 17 in .) s,R.B.P. uudrilled tiin. Board 10, Bin, $3 /-$
LANK ALDMINIUM CHASSIS. 18 日.w.g. 2 in, ides $\times 4 \mathrm{in}, 6 /-\mathrm{i} 11<3 \mathrm{in} ., 7 / 6 ; 11,7 \mathrm{in}$. $8 / 6: 18 \times 0 \mathrm{in}$, $10 / 6$ $15 \times 14 \mathrm{in} ., 15 /-; 9 \times 7 \times 2 \mathrm{in},, 8 / 6 ; 14 \times 11 \times 2 \mathrm{in}^{2}, 14 / 6$, ALUMINIUM PANELS 18 g.w.g. $12 \times 12 \mathrm{in}, 6 / 6: 14 \times 8 \mathrm{in}$
$6 / 6: 12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{in}, 3 / 6 ; 8 \times 6 \mathrm{in} .2 / 6: 6 \times 4 \mathrm{in}, 1 / 6$ Iinch DIAMETER WAVE-CHANGE SWITCHES p. 2-way, or 2
1
p. 12 -way, or 4
p.
2 -w
-way, or
4 inch DIAMETER Wavechange "MAKITS" 1 p. 12-way
 TOGGLE SWITCHES, $8 \mathrm{sp} .2 / 6 ; \mathrm{sp} . \mathrm{dt} .3 / 6 ; \mathrm{dp} .3 / 6 ; \mathrm{dp}$. dt. $4 / 6$ ALL PURPOSE HEADPHONES H.R, HEADPHONES 2000 ohms Super Senitive LOW RESISTANCE HEADPHONES 3-5 ohms.
DE
"THE IN8TANT BULK TAPE ERABER AND
RECORDING
HEAD
©EMAGNETISER

s00/250 V. A.C. Leallet

MINI-MODULE LOUDSPEAKER KIT

10 WATt 65/- carriages -
Triple speaker system combining on ready cut baffle.
 heavy duty 5 in . Bass Woofer nait has a low retonance cone. The Mid-Range onit is specially designed to add drive to the middle register and the tweeter recreates the top end of the musical spectrum. Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm . TEAK VENEERED BOOKSHELF ENCLOSURE. $16 \times 10 \times \theta \mathrm{in}$. Modern Scandinavian \quad (5 Post 5 ;

all monels "bakrr speakerg" in stock
 BAKER 12in MAJOR £8

30-14,500 c.p.s., 12 in doable cone, woofer and

 tweeter cone together with a BAKER cerrmic magnet assembly having a flax dengity of 14,000 gansi and a total flax of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coils 3 or 8 or 15 ohms.Module kit, 30-17,000 c.p.s. with tweeter, crossover, $\begin{aligned} & \text { bafle and } \\ & \text { instructions. }\end{aligned} \leq 10.19 .6$
BAKER" GROUP SOUND" SPEARERS --POST FREE 'Group 25' 'Group 35' 'Group 50

TEAK HI-FI SPEAKER CABINETS. Fluted wood Iront,
For 10 or l2in roand Londapeaker
For 10 . Gin or 8 !in round Loudspeaker
29.0 .0.
85.0 .0
$\$ 4.0 .0$

LOUDSPEAKER CABINET WADDING 18 in wide, 2/6it
Horn Tweeters 2-16kc/s, $10 \mathrm{~W} 8 \mathrm{ohm} 20 / 6$.
De Luxe Horn Tweeters $2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~W}, 16$ ohm 596. EMI Plattic Cone 2 in 8 ohm 17/6.
CROSSOVERS 3 or 8 or 15 ohm $16 / 6$.
SPECIAL OFFER! 80 ohm, $21 \mathrm{in}, 21 \mathrm{in}$. dia.; 35 ohm, 3 in SPECIAL OFFER: 80 ohm. $21 \mathrm{in}, 21 \mathrm{in}$, dia.; $35 \mathrm{ohm}, 3 \mathrm{in}$,
$25 \mathrm{ohm}, 3 \mathrm{in} . \operatorname{dia}, 8-4 \mathrm{in} ; 83 \mathrm{in} ; 8$ 5in. $17 / 6 \mathrm{EACH}$ $25 \mathrm{ohm}, 3 \mathrm{in}$. dia.; $6 \cdot 4 \mathrm{in} ; 8 \mathrm{sin} ; 8$ sin. $7 /$ TYPE 8 ohm 8 , 4 in; 3 ohm, $21 \mathrm{in}, 3 \mathrm{in}, \sin , 5$ 3in, 7 , 4 in.

in. WOOFER. 8 watts max. $20-10,000 \mathrm{cps} .8$ or $15 \mathrm{ohm}, 39 / 8$ ELAC 8 in. De Luxe Ceramic 3 ohm or 15 ohm $50 /$ Sin LOUDSPEAKER. TWIN CONE 15 ohm 3.5/ RICEARD ALLAN 10 or 12 in Twin cone 3 or 15 ohm 39/8. OUTPUT TRANS, EL84 etc. $5 /-$ MIKE TRANS. $50: 1 \mathrm{~S} /-$
SPEAKER COVERING MATERIALB. Samples Large S.A.E

SOUND ACTIVATED PSYCHEDELIC LIGHT
 Fascinating light patterns o Green, Blite, ked and Amper. Worka with any mono or stereo amplifter. Inpat required 0.2 Fizett, A.C. maint operated.

© 12.10 .0

ALL EAGLE PRODUCTS

SUPPLIED AT LOWEST PRICES
ILLUSTRATED EAGLE CATALOGUE 5/-. Post free

BARGAIN DE LUXE TAPE SPLICER Cnts. $22 / 6$
BARGAIN 4 CBANNEL TRANSISTOR MIXER.

Add musical highlights and sound effects to recordings | Will mix Microphone, records, tape and tuner |
| :--- |
| with separate controls into single output. 9 volt. |

BARGAIN FM TUNER 88-108 Mc/s Six Transiator. 9 volt Printed Circuit. Calibrated slide dial tuning. $\mathbf{4 9 . 1 0 . 0}$ Whastis only, lens cabinet $87,10.0$
FM BTEREO MULIMPLEX ADAPTOR for above or $99 / 6$
general uie. Ready made with 4 tranistors, 6 dioder $99 / 6$
BARGAIN 3 WATT AMPLIFIER, 4 Transistor $69 / 6$
Pugh-Pull Ready built, with volume control. 8 v . 69
Push-Pull Ready built, with volume control. $8 v$ \& RADIO BOOKS
Practical Transistor Recejver
Practical Radio Inside Out
Practical Radio Inside Out
Practical 8teroo Handdook
Supersenaitive Transistor Pocket Rraio
Superienaitive Rransishor Pocket Radio …............... 3/6
T.V. Fanlt Finding 405/625 lines

Shortwave Transistor Receivers
Transistor Communication Sets
Sub-Miniature Tranaislor Receivers
Wireless World Radio Valve Data.
International Radio Stations Guide
Transistor Circaits for Radio Controlled Models
Valves, Tranaistors and Diodeı equivalents Manual.... $10 / 6$
3 inch MOVING COIL METERS BRITISH MADE
Various calibrations/movements. 500 Microamp; $37 / 6$
1 Milliamp; $50-0-50$ microamp. etc. S.A. , for list. MAINS ELECTRIC MOTORS (120\%. or 240% AC), Size $21 \times 21: 111 \mathrm{n}$.

BARGAIN	$7 / 6$ EACH
PRICE	
3 for $50 / \% ; 6$ for $90 / 6$	

VALUE ALLTHE WAY

QUALITY－TESTED PAKS
Matched Trans．OC44／45／81／81D
20 Red Spot AF Trans．PNP
16 White Spot RF Trans．PN1
B Billicon Recta 3 A $100-400$ P

6 Billon Rects． 3 A $100-400$ PI
$210 ~ A ~ B i l l i c o n ~ R e c t s . ~$

2 10 A Silicon Recte． 100 PIV
12 A SCR 100 PI
3 8il Trans 2 S 303 PN
$3200 \mathrm{Mc/B}$ Bil．Trans．NPN BSY26／9
Zener Diodes 1 W 33V 5° ，Tol．
High Current Traus．OC42 Eayt，
Power Tranistora 1 OC26 1 OC 35
Power Tranistors 1 OC26 1 OC
Sillicon Rects， 400
OC75 Tranailators．
0 Power Trans．OC40 100 y
OA202 sil．Dlodes Sub－min． 1 sil．Trane．NPN FB 100 ZT80 ${ }_{8} 8 \mathrm{OA} 81$ Diode
${ }_{4} 0 \mathrm{OC} 2 \mathrm{D}$ Tranelators
4 Oc7 7 Transistors
4 Sill．Recte， 400 PIV 00 mis
5 GET884 Trans．Eqvt．OC44，
5 GET 883 Trans．Equt．OC45．
2 2N708
2 2N708 sil．Trane， $300 \mathrm{Mc/f}$ NPN
3 GT31 LF Low Noise Germ
 － 0 A95 Germ．Diodes Sul－min．IN69
3 NPN（lerm．Trane．NKTī3 Equt
$2{ }^{2} 022$ Power Trans．Germi
0 Oc 25 Pouer Trade，（ierm
AC127／128 Comp palr PNP／NP
3 2N1307 PNP Switchine Trans．
CG62H Germ．Dlodes Eqvt 0.37
3 AF1 16 Type Trans．
12 Absorted Gern．Diodes Marke
${ }^{4}$ ACI26 Gern．PNP Trans
＊sillicon Rects．I00 PIV 750 ll
AF117 Trans
Oc81 Type Tr
2N2926 Sil．Epoxy Tians
cil Type Trane．
10 A 600 PIV sil．Rects．is 46 R BC108 Sil．NPN High Gain Trame 2N910 NPN Eil．Trans．YCB 100 1000 PIV Sil．Rect． $1 \cdot 5$ A 1253310 B8Y95A sil．Transo NI＇N $200 \mathrm{Mc} / \mathrm{s}$ OC200 Sil．Trans．
AFT880 Low Noise Gerin．Trane AFI39 PNP High Freil．Trang． Made＇e 2 Mation \＆ 2 MAT120 Madt＇s 2 Matj01 \＆ 1 MATIEI
4 OC44 Germ．Trans．AF
12 2N 3900 Sil．PNP Trans．
2 Sit．Power Rects．BYZ13

TK201A．
2N1132 PNl＇Epltaxial llawar il
Germ．Power Trana，Eqt．OCfí
1 Germ．Power Tralis．EqVt．
2 Sil．Trans． $200 \mathrm{Mc} / \mathrm{s}$ bo Veh ZT83／88 EySt List

25 sil．and Germ．Trans．Mixel，al
SEMICONDUCTORS FOR＂P．E．＂ $50 \div 50 A M P$

TYPE	F．ACH	TYPE	EACH
2N1613	4／8	IN914	
2N3055	12／6	OA200	
2N3703	$3 /-$	BFY5	3／6
2N3704	3／6	BYZ13	$4 / 6$
2N3707	3／9	40362	14／－
2N3819	8／－	20V1 1 W \％ener	

BI－PAK

KING OF THE PAKS Unequalled Value and Quality

NEW BI－PAK UNTESTED SEMICONDUCTORS

satisfact

L2	60 Mlxed Germanium Transistors AF／RF
V3	75 Germanium Gold Bonded Diodes sim．OA5，OA47 ．．．．．．．10／－
U	40 Germalium Transistors like 0C81，AC128 ．．．．．．．．．．．．．．10／－
U	60200 ma Sub－min．Sil．Diodea
U6	30 silicon Planar Transistors NPN sim．BSY95A，2N706 ．．．10／－
U7	16 Silicon Rectifiers Top－Hat 750mA up to 1，000\％．．．．．．． $10 /-$
U8	50 Sll．Planar Dioder 250miA OA／200／202 ．．．．．．．．．．．．．．．．．10／－
U9	20 Mixed Volts 1 watt Zener Dlodes ．．．．．．．．．．．．．．．．．．．．．．10／－
U11	30 PNP silicon Planar Transiators T0－5 sim．2N1132 ．．．．．．10／－
T13	30 PNP－NPN Sil．Trandistors OC200 \＄28104 ．．．．．．．．．．．．．．10／－
1.14	150 Mixed Sillicon and Germaniunı Diodes ．．．．．．．．．．．．．．． $10 /-$
U	25 NPN silicon Planar Translators TO－5 8itn．2N697．．．．．．．．10／－
U16	103 －Amp silicon Rectifers Stud Type up to 1000 PIV ．．．．．10／－
U	$\overline{30}$ fiermanium PNP AF Transistors TO－6 like ACY 17－22 ．．10／－
$\overline{\mathrm{t}}$	86 －Amp silicon Rectiflers BYZ $\overline{3}$ Type up to 600 PJV ．．．．10／－
U	25 Stlicon N PN Transistors like BClos
	$121 \cdot 0$ amp sificon Rectifiers Top－Hat up to 1，000 P1v．．．． 10 －
U	30 A．F．（Sermanium alloy Translstors 26 $\mathbf{3} \mathbf{3 0 0}$ Series \＆
L	30 Martt＇s like
U24	20 Germanium
	$\pm 5300 \mathrm{Mc} / \mathrm{B}$ NPN Silicon Transistors 2N708，B4Y27
	30 Fast Switching silicon Dlodes like 1N914 Micro－min ．．．． 10
U	Experimenters＇Assortment of Integrated Circuits，untested． Gates，Flip．Flojs，Reglsters，etc．， 8 Assortel I＇leces
U	10 I amp SCR＇s T0－5 can up to 600 PIV CRS $1 / 25 \cdot 600 \ldots . . .20 /$
	20
	25
	15 Plastic case I amp Silicon rectifiers
	25 Sil．Planar tranm．
	25 Sit．Planar NPN tranh．TO－5 BFY $50 / 51 / 52$
	30 Sil alloy trans．so－2 PNP，OC200 2
	20 Fast Switching Ril，trans．NPN，400Mc／g 2N3011 ．．．．．．． 10
	30 RF （ierth．PNP trans． $2 \mathrm{~N} 1303 / 5 \mathrm{TO}-5$
U40	10 Dual trans． 6 lead TO－5 2N2060
U41	25 RF Germ．trans．TO－1 0C45 NKT72．．．．．．．．．．．．．．．．．．．． 10
U42	10 VhF Germi P＇NP trans．TO 1 NKTinf APllit ．．．．．．．． 10
	ver are normally whma

NEW LOW PRICE TESTED S．C．R．＇S

$\frac{1.4}{(\mathrm{TO}-5}$		$\stackrel{3-1}{\text { TO-66 }}$	$\frac{7 .}{\mathrm{TO} \cdot 4 \mathrm{~N}}$	$\begin{gathered} 1 \mathrm{tin} \\ (\mathrm{TO}-\mathrm{sk} \end{gathered}$		：10．）
	case）	case）	case）			
1＇ハV＇	cach	each	c：ch	each	1以	cauch
50	4／6	5／－	9／6	10／6	25	20／－
100	5／－	6／6	10／6	12／6	50	23／－
200	7／－	7／6	11／6	$15 /-$	1001	28／－
400	8／6	9／6	13／6	18／6	$\because 00$	32／－
600	10／6	11／6	15／6	25／－	\＄00	$35 /-$
800	12／6	14／－	18／－	30 －	fion	80／－

2A POTTED BRIDGE RECTIFIERS． 201 V 10／－， $600 \mathrm{~F} 15 / \mathrm{F}$ ，B00 $20 /-$

TRANBISTOR EQVT．AND SPECLFICATION BOOK．（German Publication．）i complete crobs reference and equivitent book for European，Aherican and Japaneee Tranas－

PRINTED CIRCUIT

EX－COMPDTER
Packed with semicomluctors and com－ 30 trans and 30 ilio：les．give a guaranteed $10 /-$ Plus $9 /-I^{2} . \& \mathrm{I}^{\circ}$

PLEASE NOTE
ncreased Postal chargea to any inrther and enable us to keep our＂Hy Return Postal service＂which is second to none，we have re－organise 1 and streanlimen our Deopatch Order Department and we now request you o gend all your ordere together with your remittance，direet to onr Warehoure anil BI－PAK SEMICONDOCTORS，Deapatch Dept．，P．O．BOX B，WARE，HERTS．Postage and packing still $y /-$ per ariler．Minimunt

ADI61 sp．
 ADI 62 p．y

MATCHED COMPLE．
MENTABI PAIRA
OF GERM POWER
TRANSIATORS． TRANSIFTORE For mains triven out－ put blages of Amplifiers and Radio recelvers． OF 12／6 PER PAIR HIGH POWER SILI－ CON PLANAR TR． FERP MTI
CIT NPN

YCEAT P＇tot． 55 W
VEB8 bFElす－45
PRICE 15／－EAC＇H
2N3055 115 WATT BIL 2HOUS POWER NPN OUR PRICE $12 / 6$ EACH FULL RANGE OF
ZENER DIODES RANGE
VOLTAGE RAN 2－167．400mV（DO－7 Case） $2 / 6$ ea． $1+W$（Top
Hat） $3 / 6$ ea Stud） 5

marke，l

require

BRAND NEW TEXAS GERM．TRANBISTORS

 Coded and Guaranteed
8 g6：3744 OC811）
8 2 A 381 A 0c81
$\begin{array}{lll}4 & 24382 \mathrm{~T} & \text { OCR } \\ 82(3344 A & \text { OC44 }\end{array}$

T10 x－QG47 NF117
All $10{ }^{\circ}$－ewh path

2N2060 NPM 8IL．DUAL

 TFXAs．Our price $5 /-$ each．120 VCB MIXIE DRIVER TRANSISTOR
BSX21 \＆C40 $\quad 3 \times 1893$ CODED NDD： 0 ． 1 － $243 / 6$ each．T
3 －each．
sil．trans．Ruitable
P．E．Organ．Metal TO－18 Eqyt．7TXann 1／－pach． Ans

FREE

One 10／－Fack of your own choice free with orders valued 44 or over．

$\begin{array}{lc}\text { NPN } & \text { DIPFLESED } \\ \text { SILICON } & \text { PHOTO－}\end{array}$

 DUO－BIODE PHOTO－ Is701（2N2175）for Tape Readout，high britching and measurement inli－ 50 OR OVER 8 ／G EACH， FULL DETAILS．
$\frac{\text { MPF105 ．．．．．．．．8／－}}{\text { LOW COST F．E．T．}}$
Fully Teated，Guaranteed
2N3819，MPF102
5459．1－ㄴ $7 / 8$ each $\begin{array}{ll}25-99 & 6 / 3 \text { each：} 100 \text { up } \\ 5 / 6 \text { each．Cole }\end{array}$ Full data sent，TO－72

CADMIUM CELLS

ORPIS $8 / 6$

ORP60，ORPE1 B／－eac
PHOTO TRANS．

PHOTO TRANS．
integrated CIRCUITS
BI－PAK MOMOLITHIC AMPLITIERS
（TO－5 8 lead）
Br，09C，Operational amp－ Br7er，18／－each． lifler Operational sam－ put（with Zener out－ put）， $12 / 8$ each． lifer（with direct anp－ put）．12／6 each． Bpot）．W／8 each． fier， $18 /=$ each． BP521，Logarithmic wide band arnp．，14／－each． amplifler（TO．5 purpose
lead）． （voltage or current amp．）， 12／0 each．
1．C．Operational Amplither With Zener output． Typa 701C．Idea！for P．E． Projecta．
Full data．
Our price $12 / 6$ each
Soft 1ll－each．
IC AMPLIFIER

Itentical encapsulation and
pin confguration to the pin conflguration to the
following：SL402．3，ICl0 and 1C403．Each circuit incorporates a pre－amp and class A．B．Pouter amp etage capathle of delivering up to 3 watte HMs．Fully teated and guargnteen．Supplied complete with circuit details and data．CODED BP． 1010. OIJR LOWEST PRICE

OTHER MONOLITHIC DEVICES
DlaDi Silicon Vilateral britch $10 /$－each． lithic integrated，mono－ havinge thyristor electrical characteristics，but with an anode gate and a built－in ＂Zener＂＂liude between
gate and cathorle．Full data and application cir－

FAIRCHILD（U．sA． INTEGRATED CIRCUITS
Epox：case $18-5$ lead ellyp range $15^{\circ} \mathrm{C}$ ， $105^{\circ} \mathrm{C}$ ． CL9014．Huffer， $9 / 9$ each． gate，gig each UL923 J－K－nip－flop，13／2

Complete data and cirenits arailalije in monklet form

MOLLARD I．C AMPLIFTERS
Tat2＊3，Operational amp－ lifler，70／－each． TA．A263，Linear fler， $15 / 9$ each．
TAA293，Cicneral purnose AA293，Ceneral pur
amplitier， $21 /-$ each

CA3020 RCA（D．S．A．） LINEAR INTEEGRA CIRCUITS 30／－each，

BI－PAK DIGITAL CRECUIT （ 10 lead TO－5） Bl＇305．t，6－Input anl

gate， $9 / 6$ ewch．
NOR gate，$\theta / 6$ each．
BP31GA，Dual 2－lnput
NOR gatp（pxpandahle）
9／6 each．
Brodat，J－K－Bima
ment， $11 / 6$ each．
ment， $11 / 6$ each
BP332A，Dual

BI-PAK=LOW OOST I.O'S

BI-PAK semiconductors now offer you the lurgeat and most
popular range of I.C'月 availatic at these EXCLUSIVE LOW popular range of I.C's available at these EXCLDSIVE LOW manufacturers' aperifications. Dual in-line plastic 14 aml in pin packages.

BI-PAK

Order Xo.
$\mathrm{BP} 00=\mathrm{SN} 7400 \mathrm{~N}$ BP01 = AN:401N

BP04 $\mathrm{SN} \overline{\mathrm{T}} 404 \mathrm{~N}$ $\mathrm{BP} 10=\mathrm{SN} 7410 \mathrm{~N}$ BP20 $=$ SN7420N BP30 $=$ SN7430N BP40 $=$ AN 7440 N BP41 MNT441AN

BP42 8 BN 7442 N BP50 $=$ SN 7450 N HP53 $=8 \mathrm{~N} 7453 \mathrm{~N}$
$\mathrm{BP} 60=\mathrm{SN} 7460 \mathrm{~N}$ BP70 $=$ BN7470N BP72-8N7472N BP73 $=$ 8N 7473 N BP74-8N7474N BP75-8N7475N BPT6 RNT4FiN

BP83-NN7483N BP90-SN7490N BP92 $=$ SN 7402 N BP93 $=\mathrm{BN}$ (493N BP94 $=8 \mathrm{~N} 7494 \mathrm{~N}$ BPGS = 8N7495N BP96 = 8N749in

Description

Quad 2-Input NAND © it E. Quad ?-Input NAND date- OPEN COLLECTOR

HEX INVERTER

Triple 3-1mput NAND Gite
Dual 4-Input NAND GATH
Ringle 8-Input NAND GATE Dual 4-1nput BIFFFER GATE BCD to decimal decoler and N1T Driver Dual 2-Input AND/OR/NOT GATF -expandable
Single 8-Input AND/OR/NOT GATE-expandab Dual 4.Input-expandable Single JK Fiip.Flop-edge triggered Single Master Slave JK Flip-flop Dual Master Slave JK Plip-flop Dual D Flip-flop
Quad Bistable Litch
Dual Mater slace Flip-flof, with preset and clear
Four Bit Binary Addet
BCD Decule Counte:
Divide by 124 Bit binary counter Divide by 164 Bit binary counter Dual Entry 4 Bit Bhift Register 4 Bit Up.Down Shift Register 5 Bit shift register

Price and aty prices
$1-24$
$25-49$

| $6 / 6$ | $5 / 6$ | $4 / 6$ |
| :--- | :--- | :--- | $\begin{array}{lll}0 / 6 & 5 / 6 & 4 / 6 \\ 0 / 6 & 5 / 6 & 4 / 6\end{array}$ $\begin{array}{lll}0 / 6 & 3 / 6 & 4 / 6 \\ 6 / 6 & 5 / 6 & 4 / 6\end{array}$ $\begin{array}{lll}6 / 6 & 5 / 6 & 4 / 6\end{array}$ $\begin{array}{lll}8 / 6 & 5 / 6 & 4 / 8\end{array}$ B/6 $\quad \mathrm{B} / 6 \quad 1 / 6$ 22/6 20/- $\quad 17 / 6$ $\begin{array}{lll}22 / 6 & 20 & 17 / 6\end{array}$ $\begin{array}{lll}6 / 6 & 5 / 6 & 4 / 6\end{array}$

| $0 / 6$ | $8 / 6 \quad 4 / 6$ |
| :--- | :--- | :--- |

$\begin{array}{lll}6 / 6 & 5 / 6 & 4 / 6 \\ 8 /- & 8 /- & 7 / 6\end{array}$
$\begin{array}{lll}8 /- & 8 /- & 7 /- \\ 8 /- & 8 /- & 7 /-\end{array}$

$10 /-$	$8 /-$	$8 / 6$
$10 /-$	$8 /-$	$8 / 8$

$\begin{array}{rrr}10 /- & 9 /- & 8 / 6 \\ 11 /- & 10 /- & 9 / 6\end{array}$
$11 /-\quad 10 /-6$
$\begin{array}{lll}11 /- & 10 / & 9 / 6 \\ 26 / & 22 / 6 & 20 /- \\ 22 / 8 & 20 /- & 17 / 6\end{array}$

$22 / 6$	$20 /-$	$17 / 6$
$22 / 6$	$20 /-$	$17 / 6$

$22 / 6$	$20 /-$	$17 / 6$
$22 / 6$	$20 /-$	$17 / 6$

24/- 21/- 18/6

SOLDERING IRONS?

Whatever your particular application we are almost certain to have just the tool for the job.

ADAMIN-featherweight instruments with the slip-on bits and the big performance.

LITESOLD-the best-selling seven-model range of topquality 'conventional' irons.

THERMOSTATIC CONTROL? The new LITESTAT instruments are surely the most advanced available - at not so advanced prices.

You ought to get the whole story. Ask for catalogue L37.
Free.

Postage and packing add $1 /-$. Overseas adil extia for Airmait. Minimum order 10/-. Cash with order please.

Type NC\&44P expandable diat
Type MC84sp Clocked Flip-flop
FCLL DATA SIPILLED WITH INITM

Dhta is available for the NST4N series of lntegrated circuitn in broklet form, price 2/B.
Please sewd all orders direct to our warehouse aml deapateh departincent

BI-PAK SEMICONDUCTORS
P.O. BOX 6, WARE, HERTS.

BRAND IEW. FULL TO MANUPACTURERS' SPECIICATIOK
BP709 Operational Amplitier, dual-in-line 14 pin puck
PNT-709 and smilar tu MICr09 and ZLDa Inputs and low impedance output

INTEGRATED CIRCUITS

Manufacturers'"Fall outa"- out of npec; hevices including functional units and part functional but classed as out of spec. from the manufacturere very ridged speciffcations. Ideal for learning about I.C'a ami experimental work, on teating, some will br foum pertect.

PAE No.

U1C00 $=5 \times 7400 \mathrm{~N}$ UICO1 $=5 \times 7401 \mathrm{~N}$
UIC10 $=5: 7410 \mathrm{~N}$
U1C20 $=5 \times 7420 \mathrm{~N}$
UIC30 $=5 \times 7430 \mathrm{~N}$
U1C40 $=5 \times 7440 \mathrm{~N}$
VIC4I $=5 \times 7441 A N \quad \cdots \quad 10 / \sim \quad$ UICXI $=20 \times$ ast'd. $74^{\prime} \mathrm{s} . \quad 80 /-$
Packs cannot be split but 20 atsorted pieces (our mix) Is avallable as PAK CiCXI. Every PAK carries our BI-PAK satisfaction or money back OUARANTEE

MOTOROLA DIGITAL I.C's
 /---

PRACTICAL!

VISUAL!

Nn Mn

 EXCITING!a new 4-way method of mastering by doing and seeing . . .

THE LOGIC WAY-OR BIT BY BIT

THOUGH oft satirised and unjustly blamed for human errors, the electronic computer is firmly entrenched as an indispensable functional part of everyday life. Nothing succeeds like success, and ever increasing demands can be expected for faster, yet smaller, more versatile machines to cope with society's expanding needs for facts and figures.

There is thus a great impetus for the electronics industry to strive to improve existing digital techniques and to develop even more advanced ideas in the field of computers and data processing. But while we can be assured of continuing (and possibly, spectacular) advancement in this area, it is well to pause and take stock of certain existing achievements which have resulted from the computer revolution.

The more obvious and significant technological " spin-off" has been the development of semiconductor integrated circuits. Only the huge quantities needed by the computer manufacturers could have made their development and production an economic proposition in the first place. But now the vast outpourings from the IC factories have become a dominant factor in the whole electronics industry. For instance, the inevitable move from analogue to digital methods for measurement and control purposes has been accelerated by the availability of logic IC's.

This fact was well demonstrated at the IEA Exhibition held at Olympia, London, last May, where a wide range of digital instruments and equipments and miniature computers formed a notable part of the display. On this evidence, the extension of automation into the smaller industrial plants is clearly becoming feasible, no doubt much to the joy of the Minister of Technology, who has been advocating this for some time now. And laboratory workers can enjoy the improved readout presentation (and often better performance) of various digital measuring instruments-though at present these are not competitive in price with the traditional analogue type instruments.

In amateur circles, to date, linear IC's have received rather more attention than logic devices. This is understandable, since the kind of projects that can be built around a linear IC (amplifiers, detectors, modulators etc.,) fall naturally into the more traditional areas of electronics -like radio and audio. But now, as we have remarked, there is a general shift of emphasis from analogue to digital techniques, with on/off switching of pulses taking precedence over amplitude variation of a.c. and d.c. signals, for many purposes.

Our new series "Making The Most of Logic I.C's" which commences in this issue points the way and indicates the prospects for the enthusiast.

THIS MONTH

CONSTRUCTIONAL PROJECTS

P.E. COMMUNICATIONS
RECEIVER- 10
P.E. MARKSMAN 558

WAA WAA UNIT
TRANSISTOR D.C. MULTIMETER 573

SPECIAL SERIES

MAKING THE MOST OF LOGIC I.C's—I

GENERAL FEATURES

INGENUITY UNLIMITED

BEGINNERS

THIS WAY TO ELECTRONICS-4

NEWS AND COMMENT

EDITORIAL
SPACEWATCH
AUDIO TRENDS 550
NEWS BRIEFS 582
ON THE FRINGE 557
MARKET PLACE 566
READOUT
F.E.B.

[^1]

SILICON monolithic integrated circuits are available at a price that makes them not only a possible alternative to discrete components, but often far cheaper. What can be done to utilise these useful building bricks? This series of articles gives a broad introduction to the various different types of logic i.c.s, explains their modes of operation, and offers some suggestions on how to use them.

The economics of integrated circuits, as far as the manufacturer is concerned, are simple: a circuit is suitable for integration providing it can be sold in very large quantities, because setting up a production line is extremely expensive while the cost of actually producing the circuits, once the line is running, is comparatively low.

The computer industry lends itself well to this economic climate, as computers and associated data handling equipments use large quantities of a small number of different types of logic elements. These logic i.c.s then, can be produced most cheaply, and it is with the characteristics and uses of the various families of these circuits that this article will concern itself.

Many advertisers in this magazine now supply a range of circuits of this type, some are manufacturers' rejects, but these are not always as bad as they seem because each package usually contains several entirely separate functions, and the manufacturer may have rejected the whole package because one of these was down on specification.

For those who prefer to play safe, circuits are available which conform to a relaxed specification, and are usable over a restricted temperature range; these are quite suitable for amateur use. Of course the full specification ranges intended for professional use are available from their respective manufacturers. These are a little more expensive, but can be used over the temperature range of -55 to +125 degrees C .

THREE MAIN GROUPS

Logic i.c.s are available in three main groups of package outlines (Fig. 1.1); the flat pack is the smallest of these, but this very fact makes it less suitable for amateur "breadboard" layouts. The other two are both easily used; the TO-5 can conforms to the same outline as a TO- 5 transistor can, and may have eight to twelve leads. Spreaders are available to enable these to be inserted in the standard $0 \cdot 1$ in matrix perforated s.r.b.p. board, but perhaps the easiest package of all to employ, is the $14 / 16$-lead dual in-line, whose pins conform to the above matrix as supplied. This package is also the cheapest and most versatile.
Logic i.c.s fall into several different "families" which are defined by their design philosophy. These families are usually called by their initial letters (see Table 1.1) and all have their own attendant advantages and disadvantages.

Circuits of one family are usually made by several manufacturers, and are often physically interchangeable. Apart from a brief description some of these families need not concern us here, as they are either too costly for amateur use at present, or they offer advantages which the amateur is unlikely to need, (for example, very high speed of operation).

Fig. I.I Three basic outline forms used in making logic integrated circuits

The families which may be employed in our projects with most success are:

1. Resistor Transistor Logic-RTL
2. Diode Transistor Logic-DTL
3. Transistor Transistor Logic-TTL

This month's article will concern itself with the first of these, the other two following later.

RESISTOR TRANSISTOR LOGIC GATES

RTL was the first family to appear on the market and is still being extensively used. The basic element of any family is the gate, and the one used in RTL is a positive logic NOR type shown in Fig. 1.2. The gate shown has two inputs A and B. If either of these is taken above the threshold voltage, its attendant transistor will saturate, taking the output of the gate down to very nearly zero volts.

Now, if we substitute the logic notation of 1 for a positive voltage, and 0 for a zero voltage, it can be seen that, if any of the gate inputs is a 1 , the output will be a 0 . Similarly, if both the inputs are 0 the output will be a 1 .

In this description we have assumed that a positive voltage represents a I, but if zero volts represents a I and a positive voltage represents a 0 (i.e. negative logic), then from the previous analysis, two inputs (1) will give a 0 output. This gate is now operating as a NAND gate.

This dual function of gates is very important, and needs consideration when attempting to fathom out the operation of some of the more complex integrated circuits. A simple way of setting out the operation of a

Table I.I. LOGIC I.C. FAMILIES

Family	Characteristics
ECL	Emitter Coupled Logic, non-saturating, capable of very high speed operation, up to 300 MHz

TTL Transistor Transistor Logic, characterised by the multi-emitter input transistor; high speed of operation and high fan-out

DTL Diode Transistor Logic, a medium speed family, using conventional circuitry

RTL Resistor Transistor Logic, the first integrated logic family available; medium speed, low power line voltages

MOS
Metal Oxide Silicon (logic), uses f.e.t. technology; low cost, high density low speed

A	B	OUTPUT
0	0	1
1	0	0
0	1	0
1	1	0

truth table for POSITIVE LOGIC
tinta tagle for

mesative losic (i.e. $1^{\prime}=\mathrm{OV}$)
(i.e. $1^{\prime}=$ POSITIVE)

Fig. 1.2. Basic two-input RTL gate with truth tables for positive and negative lagic

A	B	C	0	OUTPUT E
0	0	0	0	1
1	0	0	2	0
0	1	0	0	0
1	1	0	0	0
0	0	1	0	0
1	0	1	0	0
0	1	1	0	0
1	1	1	0	0
0	0	0	1	0
1	0	0	1	0
0	1	0	1	0
1	1	0	1	0
0	0	1	1	0
1	0	1	1	0
0	1	1	1	0
1	1	1	1	0

Fig. I.3. Four-input RTL gate with truth table for positire logic NOR. Invert for negrtive Jogic

Fig. I.4. Circuit of a JK flip-flop with logic symbol. The truth table shows negative logic operation, which is best for describing JK characteristics. Note that simultaneous "l" inputs to the flip-flop cause the output state to reverse
gate is by means of a "truth table" which sets out the performance using logic terms, not, it must be remembered, voltage levels.

The truth table for our simple gate is set out beside it in both positive and negative logic notation, just as a maker's catalogue would show it.

This gate is the most simple basic element, but to increase the number of inputs merely entails adding extra transistors and resistors, as in Fig. 1.3. Manufacturers often put more than one logic function in each package, in fact the number of such elements is limited more by the number of leads available than by the physical size of the semiconductor chip.

The 8-lead Fairchild TO-5 can series of resistor transistor logic can be obtained with a 4 -input gate or two 2 -input gates or four 1 -input (NOT) gates.

JK BISTABLE IN ONE CAN

Apart from simple gates, a logic system also requires a storage element, or bistable. Although these may be built up by interconnecting gates, it is simpler to have it in one can, because a bistable which is suitable for use in any application can become very complicated.

The storage element of the RTL family is the JK binary (Fig. 1.4). This really is the complete bistable, performing nearly all functions necessary without extra gating. It can be used in frequency dividers, counters, shift-registers, memories, and as a simple latch.

To describe the action of the JK, reference can be made to the truth table (Fig. 1.4). A bisfable of this type has two main inputs, J and K, and a gating or clock pulse input, which allows the data on the J and K inputs into the bistable at the correct time.

There are also asynchronous inputs, "set" and
"clear", which are overriding inputs, independent of the clock pulse, and allow the insertion of parallel data into registers. The "set" input may have been omitted, due to the number of pins available on a particular package, but the "clear" input is always available to allow resetting of counters, registers, and so on, to a state of all 0 before or after a logical operation has been performed.

The way in which the JK differs from simpler RS bistables (rarely used in integrated form) is that the JK has internal feedback to prevent simultaneous 1 inputs from producing indeterminate output states, as can be seen from the truth table.

Inputs of I on both J and K inputs cause the outputs to reverse, thus the JK can be made to act as a divider or counter simply by leaving the J and K inputs open circuit (this simulates 1 inputs in this logic system) and connecting the input to the clock pulse connection. The two outputs will be at half the input frequency and in antiphase.

If a further JK were to be connected to the output of the first stage in the same way, its output would be at a quarter of the original frequency and so on. The waveforms produced by three such stages are shown in Fig. 1.5; the binary digits represented by these waveforms are shown superimposed.

Those who are familiar with the binary system will be able to see that the counter has eight states, each of which corresponds to a decimal digit in natural binary. If these binary states are decoded and each output used to switch on a bulb or other indicating device, then at any point in time only one bulb would be lit. Successive input pulses would cause the next bulb in the line to light, and so on, until, on the ninth input pulse, the first bulb would be lit again,

This simple arrangement has been described to demonstrate the way in which RTL i.c.s can be employed in a workable system, and to aid the constructor in grasping the application of these useful elements.

For those interested in building such a system, the logic diagram is shown in Fig. 1.6, the logic notation is negative logic, so as to use the eight 3 -input gates as nand gates. The package count for this arrangement is seven, as three single JKs and four dual 3 -input gates are required. A suitable bulb driving circuit is shown using a single $n p n$ transistor and a resistor; one of these is required for each of the eight outputs.

SYSTEM DESIGN

So much for the basic principles of RTL. Let us now look into the practical aspects of system design based on RTL.

The supply voltage used is usually either 3 or 3.6 volts, depending on the specified temperature range of the device selecrion in use. The cheap Fairchild range most readily available to use, has a restricted temperature range and uses a 3.6 volt supply. The professional ranges from all manufacturers use a 3 volt supply, which gives the same performance as the restricted range at a lower dissipation, allowing a wider range of operational temperatures.

Manufacturers' data often state a maximum supply voltage as great as 12 volts, but operating these circuits at anything other than the recommended 3 or 3.6 V (plus or minus 10 per cent) is definitely not to be recommended, for a variety of reasons which need not be gone into here.

The maximum voltage that may safely be applied to any input pin is generally stated as plus or minus 4 V , the positive part being limited by power dissipation considerations. The negative part is limited by the reverse voltage breakdown of the base emitter junction of the transistors used in the package.

This particular rating is unlikely to be of any concern to us if the correct supply voltage is used, unless we wish to interface our RTL logic with another system using higher voltages. In this case, a "go between" or interface circuit, that will convert the input levels to a 'suitable form, will have to be used.

FAN-OUT

Perhaps the most fundamental and necessary parameter to bear in mind when using RTL (or any of the other families) is the maximum "fan-out" any gate is capable of providing.

Fan-out means the number of inputs to other gates any single gate can drive, and as each input will draw a finite current from the gate output which is driving it, it is only natural that the fan-out will be limited to a certain number of inputs. Exceeding this number will cause the high level output voltage to drop to a level which is below the threshold, and malfunctions will occur.

To prevent us having to work out the possible fan-out with pen and paper, the manufacturers have fortunately worked it all out for us.
An input to the basic gate is called one load, and other inputs are scaled accordingly. The clock input of a JK element, for instance, represents two loads and, although there may be some special cases where an input represents more loads than this, these will be enough to remember for the moment, as they cover 90 per cent of the cases we are likely to encounter.

Fig. 1.5. Three cascaded firp-flop: used for frequency division. Each bistable changes state on the negraive edge of the input putse. Positive logic is shown

$4 \times$ MLg15 USED AS NEG. LDEIC NAND -

Fig. r.6. Eight three input NAND gates are used with the three JK flip-flops to aecc.de the binar: states and provide virual indicarion of these stater by using bulb drivers

LOGIC TERMS

ADDER A binary adder is an arrangement of logic gates which will add two binary digits together and produce "sum" and "carry" outputs. A half-adder neither accepts a "carry $\mathrm{in}^{2 \prime}$, nor produces a "carry out'".

AND GATE A circuit that will provide a logic 1 output only when a 1 is fed into all inputs.

ASYNCHRONOUS OPERATION of flip-flops. In this mode, entry of data into a flip-fiop does not require a gating, or clock pulse.

BIT One binary digit (0 or 1), which usually forms part of a binary word.

BOOLEAN ALGEBRA The mathenatical method of simplifying logic systems in whict the expressions are derived from some sort of truth table

EUFFER GATE A logic gate which has a high output drive capability, or fan-out, which is used when a large number of gate inputs are to be driven by one gate function.

CLEAR INPUT This input tc a flip-flop is used to set Q output to logic 0 , and is an asynchronous input.

CLOCK PULSE The pulse which is used to gate information into a flip-flop when it is used in the synchronous mode. In JK connectec flip-flops it will cause counting if the data inputs are both held at a logic 1.

COUNTER An arrangement of flip-flops producing a binary word, which is increased in value by one each time an input pulse is received. May also be called a divider, because successive stages of the counter divide each input frequency by two.

CURRENT SINKING LOGIC This term collectively describes both DTL a rid TTL and is used to indicate that the output of these gates "sink" (or earth) the current which would otherwise be halding on the input of the driven gate.

CURRENT SOURCING LOGIC This term describes, among others, RTL, and incicates that the output of this type of gate supplies current to hold on the input transistor of a driven gate.

DECODER A decoder is an arrangement of gates which will change an input word in one code, into a different type of code (for example, binary to decimal).

DIODE TRANSISTOF LOGIC (DTL) This type of logic uses diode inputs and a single transistor as an output current sinker.

ENITTER COUPLED LOGIC This type of logic is the fastest available; may be used at clock rates up to 300 MHz . It is non-saturating; the basic gate circuit utilises a long-tailed pair.

EXCLUSIVE OR GATE This type of gate produces an output when the inputs are the same, tiut not when they are different, i.e. $A B$ or $\overline{A B}$.

EXPANDER INPUTS Many logic families contain gates which have this facility, which is used to increase the number of logic perfarmirg inputs.

FAN-IN The number of inputs a single gate has.

FAN-OUT The output drive capability of any gate, and is quoted as the number of gate inputs an output will handle.

FLIP-FLOP This is the basic storage element in a binary logic system, and is used to build memories, counters and shift registers. Also called a bistable, toggle, or binary.

HIGH THRESHOLD LOGIC A modified form of DTL specially designed for use in noisy environments where its high input voltage threshold makes it insensitive to transients.

INTERFACE CIRCUIT Circist used to link one type of logic family with another, or with analogue circuitry. In effect it translates the logic voltage swing of one into the logic swing of tre other.

LARGE SCALE INTEGRATON Integrated circuits which contain very large numbers of individual gates (often many hundreds in fact). These gates are interconnected to form such things as memories which compare in size, and may be used to replace, core stores.

LINE DRIVERS AND RECEIVERS When logic signals have to be sent over many yards of cable a simple logic gate will not wark properly as a driver, due to reflections and noise pick-up. Under these conditions it is necessary to use these special drivers and receivers, which use very low output impedance drive circuitry, and differential input receive circuitry.

LOAD LOGIC One load, as defined for a particular logic family, usually represents one input to a standard gate of that family. A gate output which will drive ten loads will reliably drive ten gate inouts.

LOGIC POSITIVE AND NEGATIVE Positive logic infers that the more positive voltage logic swing represents a 1 , and the more negative swing represents a 0 . Negative lagic is the converse of this. Therefore any type of logic circuit may be treated as a positive or negative logic building brick.

MEDIUM SCALE INTEGRATION Those i.c.s which form a simple, self-contained logic system, such as a decade counter, or a five-bit shift register. These chips often contain up to 100 gates.

MONOLITHIC I.C. Integrated circuits of this type are made entirely on one very small silicon chip, as opposed to thin or thick film devices.

MONOSTABLE Type of multivibrator with one stable state. The integrated circuit version usually has input gating incorporated, and sometimes a Schmitt trigger: In i.c. parlance they are often termed single-shots, or one-shots.
M.O.S. LOGIC Logic circuits of this type are built entirely from metal oxide silicon field effect transitors, which enables a large number of gates to be built economically on a small chip, due to the small physical area needed for eact active device.

NAND GATE A NAND gate is an AND gate followed by an inverter. All its inputs have to be taken to a logic 1 state before the output will fall to a D. Using the opposite logic polarity, this type of gate beccmes a NOR gate.

NOISE IMMUNITY The largest noise voltage transient level on any input which the family is guaranteed to reject, i.e. not respond to.

NOR GATE A NOR gate is simply an OR gate followed by an inverter. If any of its inputs are at the logic 1 level, its output will be a logic 0 . Using the opposite logic polarity, this type of gate tecomes a NAND gate.

OR GATE A circuit that will provice a logic 1 output when any input is fed with a logic 1.

PRESET The preset input of a flip-flop is an asynchronous input which sets the Q output to a logic 1, and the \bar{Q} output to a logic 0 .

PROPAGATION DELAY The finite time delay, in the order of nanoseconds, between a gate receiving an input and setting up an apprcpriate output. For flip-flops, this delay time is aften given in the form of the maximum input frequency at which the device will switch.

RESISTOR TRANSISTOR LOGIC This kind of logic uses resistors at its inputs 10 drive the output switching transistor directly.

SHIFT REGISTER A series connected string of flip-flops with a common clock line. On the receipt of a clock pulse the infcrmation contained by each flip-flop is shifted one place to the right or left. It is a simple type of memory.

SYNCHRONOUS OPERATION of flip-flops. Flipflops used in this configuration require a gating, or clock pulse to enter information waiting at their inputs.

TEMPERATURE RANGE (OPERATING) There are three distinct temperature ranges for logic i.c.s. This factor determines the cost more then anything else. Circuits for military use are characterised from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, those for ndustrial use from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and those for 'entertainment"' use from $+15^{\circ} \mathrm{C}$ to $\div 55^{\circ} \mathrm{C}$.

TOGGLE Another word for a flip-tlop, but it implies that the flip-flop will change state at the receipt of a clock pulse. It is mainly used to descrite flip-flops connected as a counter, where the process of changing state is described as "toggling".

TRUTH TABLE A truth table may be used either to describe or design a simple logic element. A list of the input conditions possible is made; the output conditions which will result, or which are required, are arranged alongside. The logic expression may then be read off.

TRANSISTOR-TRANSISTOR LOGIC This logic family, usually termed TTL or $T^{2} L$, is the most versatile general purpose logic available. It utilises a multi-emitter input transistor, and a "totem-pole" output stage.

Yec This symbol is used to denote the positive or negative supply voltage to an i.c. parkage, with respect to ground.

WORD A binary word is a collection of binary digits which together represent a complete number or command.

PULL-UP RESISTOR USED WITH

Fig. 1.7. Buffer element logic symbol and circuit

The drive capability of an output is rated as the number of loads it can successfully handle. A basic gate has an output which will drive anything up to five loads. There is one other system used by manufacturers to describe the fan-out of RTL which works in exactly the same way except that the input of the basic gate is stated to represent three loads, and the output drive capability is scaled up accordingly (i.e. 16 for the basic gate).

The obvious question now crops up, what happens when we need to drive more inputs than the gate fan-out allows us to? The answer is that we use a separate RTL package called a "buffer" to provide current amplification of the gate output. This enables us to drive up to 25 input loads, which will be necessary when driving the long "clock"' lines of shift registers or certain kinds of counter.

BUFFER

The circuit of the buffer element is shown in Fig. 1.7, and a cursory glance will show us that it differs considerably from the basic RTL circuit from which all the gate and bistable elements are assembled. In fact, it bears a resemblance to the "totem-pole" quasi-complementary output stage much used in audio power amplifiers these days. The circuit operation is very similar, the aim being to provide a very low output impedance in both the high and low logic states.

This element is also very useful for constructing astable and monostable multivibrators, because although these can be made using a dual 2 -input gate, the capacitance drive capability is poor due to the relatively high impedances associated with the basic RTL circuit; also the output wave shape will not be very square.

ASTABLE

A circuit for an astable is shown in Fig. 1.8; 1wo buffer elements are required. The only discrete components needed are two capacitors, which set the frequency, and mark-space ratio. Note that the "pull-up" resistors R1 and R2 are provided inside the package, and have a value of 1 kilohm.

The astable is a very useful circuit as it can be used as the "clock" of a digital system; it also has a large fanout and complementary outputs.

Having drifted slightly from discussing system design pointers, let us continue by bringing up another

Fig. 1.8. Astable multivibrator made up from two buffer elements. The frequency of operation is defined by the capacitor values and the pull-up resistors RI and R2. $f_{0}=1 /\left(1 \cdot 4 \times R_{1} \times C_{1}\right)$

Fig. 1.9. Loaded basic gate circuit with fan-out of one
important point; the voltages or logic levels we can expect to find in a practical system in operation.

SATURATED LOGIC

RTL employs "saturated logic", that is, the output transistor of the basic gate is either fully turned on (saturated) or completely cut-off. The output voltages are therefore either just above earth, or at the full supply potential, for an unloaded gate. The output low voltage will not vary much with loading, but the output high voltage most certainly will, and to see why, let us consider the loaded basic gate circuit (Fig. 1.9).

When TR 1 and TR2 are both turned off, TR 3 of gate G1 will see a positive potential through R1 and R2 and will turn on. Now the output terminal of G 1 is a
point somewhere along the potential divider made up from R1, R2, and the base-emitter junction of TR3. The voltage across this junction $V_{b e}$ is essentially the same as that across a forward biased silicon diode; this is usually 0.6 V and is independent of the current through it.

Therefore the current through the divider is found from

$$
\frac{V_{\mathrm{cc}}-V_{\mathrm{be}}}{R_{1}+R_{2}}=\frac{3-0.6}{640+450} \simeq 2.2 \mathrm{~mA}
$$

The voltage at the output terminal of Gl is

$$
\begin{aligned}
V_{0} & =V_{\mathrm{CC}}-\left(R_{1} \times 2.2 \times 10^{-3}\right) \\
& =3-\left(640 \times 2.2 \times 10^{-3}\right) \\
& =3-1.408 \\
& \simeq 1.6 \text { volts }
\end{aligned}
$$

This lengthy explanation has been given to show that, even with a fan-out of only one, the logic levels will be quite low, and also to show what actually occurs when gates are interconnected, a point easily forgotten in arranging systems. The minimum output high voltage which will always operate another RTL gate, is in the region of 800 mV at room temperature, and the maximum output low voltage is in the region of 250 mV .

NOISE IMMUNITY

In any electronic circuit there is always present a certain amount of spurious noise, which can be due to anything from mains ripple to switching transients within the circuit itself. In a digital system this noise can cause gates to turn on when they are not intended to, and bistables to change state, if the noise is of sufficient amplitude and duration.

The noise immunity of a logic family is basically defined as the voltage necessary to raise or lower the quiescent input voltage to a gate sufficiently for it to change state. As RTL is associated with very low voltages, it follows that it will have a poor noise immunity, and this is in fact how it turns out in practice.

The manufacturers guarantee only a 300 mV minimum noise rejection under worst case conditions, so any system we may design using this family will have to have due consideration paid to supply line decoupling and perhaps screening if it is essential to avoid malfunction.

A feature of any family, which industrial or professional users would be most interested in, but which is unlikely to concern us as amateurs, is the speed of operation or propagation delay, which is the frequency at which a bistable will change state, or the delay between a gate receiving an input, and setting up a relative output.

Although RTL is quite a slow family, its minimum frequency capability is 8 MHz , and its maximum propagation delay is in the region of 30 ns , which should prove more than adequate for our use.

This concludes the design considerations of RTL and it is hoped that readers now have some idea of the uses and limitations of this, the cheapest family.

Next month's article will show an example of how the RTL family can be put together in a practical project. Later articles will deal with the DTL and TTL families.

ELEOTROVILUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

RESISTORS

CODES: $C=$ earbon fim high stabllity low noise. MO = metal oxide Electrosil TR5 ultralow noise, Ww wire
FALDEs: E
al 11,1212 denotes series: $10,12,15,18,22,27,33,39,47,56,68,82$ und their lecalen. ELA denotes serien: an E12 16, 20, 24, 30, 36, 43, 61, 62, 75, 91 and their decaules.
Prices are in penee each for same ohmic value and power rating,
NOT mixed nalues. (/ gnore fractions of 1d on tolal resistor
order.)

INTEGRATED CIRCUIT AMPLIFIERS
EnTCLANE IC. 10 complete with instruction book giving Component pack for IC. 10 stereo ampliffer, complete inc knobs, plugs, sockets, neon and switch 4.15 .0 nett.
PLESSEY SL403A. Only 48/6 each. 3 W into $7-5$ a for 18 V supply. Application data with two or more. P.E. Stereo Amplitier kit less metaivork $\$ 11.18 .2$ nett complete.

WAVECHANGE SWITCHES LONG SPINDLES
1P 12W; 2P 6W; 3P 4W; 4P 3W
ELDDER 8WITCEES D.P.D.T.
4/9 each
$3 /-$ each

NEON INDICATOR LAMPS all $200 / 250 \mathrm{~V}$
Square bezel, red only
Round chrome bezel red, amber, clear $\quad \therefore$ 1/9 each chrome milled nuts.P.S.T.8/B, S.P.D.T. 4/8: D.P.D.T. $8 / 9$ S.P.D.T. centre off $6 /$

D-DeC' put an end to "birdenesting". Components just plug in. Saves voluable time. Use componenta again and again. 8-DeC only 80/- pont free. Compact T-DeC, increased capacity, may be temperature-cycled. T-DeC
only $51 /$ - poat free. Full range stocked.

MULLARD POLYESTER C280 series $250420 \%: 0.01,0.022,0.033,0.047$, 8d ea. : $0.068,0.1$, $\begin{array}{lllll}9 d \text { ea.; } 0.15,11 d ; & 0.22,1 / 2 & 10 \%: & 0.33,1 / 6 ; 0-42.1 / 8 ; \\ 0.68,2 / 3 ; 1 \mu \mathrm{~F}, 2 / 9 ; & 1.5 \mu \mathrm{~F}, 4 / 2 ; & 2.2 \mu \mathrm{~F}, 4 / 9 .\end{array}$

MULLARD SUB-MIN ELECTROLYTIC

C426 range axial lead $1 / 8$ each
Yalues ($\mu F / V$): $0 \cdot 64 / 64,1 / 40,1 \cdot 6 / 25,2 \cdot 5 / 16,2 \cdot 5 / 64,4 / 10$, $4 / 40,5 / 64,6 \cdot 4 / 6-4,64 / 45,8 / 4,8 / 40,10 / 2 \cdot 6,10 / 164,10 / 64$, $32 / 10,32 / 40,32 / 64,40 / 16,40 / 2-5,50 / 6.4 / 64,4,25 / 25,32 / 4$,
 $160 / 2 \cdot 5,300 / 6 \cdot 4,200 / 10,250 / 4,320 / 2 \cdot 5,320 / 6 \cdot 4,400 / 4$, $600 / 2 \cdot 5$.

LARGE CAPACITORS

High ripple current types: 1000/25 5/6; 1000/60 8/2; $1000 / 10016 / 8 ;{ }_{2500 / 64} 16 / 5 ; 2000 / 257 / 4 ; 2000 / 50$ 11/4; $2000 / 10088 / 9:$ $5000 / 100 \mathrm{B8} / 8 ; 10000 / 1517 /-$; $10000 / 2584 / 6 ; 10000 / 50$ 44/-: $10000 / 70$ 61/-

MEDIUM RANGE ELECTHOLYTICS

Axial leads: $\quad 80 / 601 / 9 ; 100 / 251 / 9 ; 100 / 502 / 6 ; 250 / 25$ 2/6; $330 / 25$ 2/6: $250 / 508 / 9 ; 500 / 258 / 9 ; 500 / 504 / 8 ; 1000 / 25$

SMALL ELECTROLYTICS
Axial leads: $4.7 / 10,47 / 25,5 / 50,1 /$ - ен. $10 / 10,10 / 25$. $10 / 50,33 / 10,50 / 10,1 /-$ ея. $25 / 25,25 / 50,47 / 25,100 / 10$, 220/10, 1/8 ea.

PEAK SOUND PRODUCTS
ENGLEFIELD AMPLIFIER

BAXANDALL
SPEAKER SYSTEM
Designed by Peter Baxandall. Nuuerb
reprolnction for it reproluction for its size. Handles 10 wat with ease. Uses ELAC 15Ω E9RM109 speaker unit. Kit 818.12 .0 netti.: built
ine.8.6 nett. 218.8 .6 nett

STEREO AMPLIFIER SA. $10-10$
Developed from the very nuccessful sians ampllfer giving first chass ftereo
amplification featuring weparate volume controls for ench chamel, hass and treble controls 10 watts per whandel into j to 80 Kit range speakers avallable $\$ 13.15 .0$ each nett.

MAINLINE AMPLIFIER KITS
RCA/SGS designed main amplifier kits. Input mensilivity
600 700 mi f for full output into 80 $500-700 \mathrm{nt}$ for full output into 8Ω
Power including components powitable unreg,

Power	including components	power supply lit
12 W	$140 /-$ nett	$86 /-$
26 W	$165 /-$ nett	N / A
40 W	$195 /-$ nett	$101 / 6$
70 W	$210 /-n e t t$	$181 /-$

10 WATT BAILEY AMPLIFIEN KIT
Special summer reduct lon (to Esept. 30th, 1970, only). sensitivity $1 \cdot 2 \mathrm{~V}$ for full output into 8Ω. Transistors
for one channel $\mathbf{2 7 . 5 . 6} 1 \mathrm{Ht}, 86$ only nett. Translatore for two channels 814.11 .0 list ill only nett. Capacitors and resistors (metal oxide) 30/- per channel nett. Complete unregulated power supply kit 87/6 nett

ZENER DIODES

 1W: 6-8V to 82 V 0/- ea. $1.5 \mathrm{~W}: 4.7 \mathrm{~F}$ to $75 \mathrm{~V} 12 /-\mathrm{ea}$. Cltp to increase $1.5 W$ rating to 3 watte (type 268F) 9 d .

CARBON TRACK POTENTIOMETERS, long mpindles. Double wiper ensures minhumm noise level.
Single gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega$ single gang log
$4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ Dual gang linea
4.7 KG to 2.2 Mg

Dual gang log
$10 \mathrm{~K}, 47 \mathrm{~K}, 1 \mathrm{Mg}$ only Dual antilog 10 K only Any type with $\frac{1}{}$ A D.P. mains switch, extra $8 / 6$. within ranges quoted.

CARBON SKELETON PRE-SETS
Small high quality, type PR, linear only $1000,220 \Omega$, $4,0 \mathrm{~K}, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, 1/-each.

COMPONENT DISCOUNTS

10% on orilers for components for ib or more. 15% on nett iterms).

POSTAGE AND PACKING
Free on ordere over t2. Please add $1 / 6$ if under. Overseas orders welcome: carriage charged at cost

A selection of readers' suggested circuits. Ie should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

CAR ANTI-THEFT ALARM

ASIMPLE Car anti-theft alarm using three miniature relays is shown in Fig. 1. When triggered, the alarm prevents the engine from being started, sounds the horn continuously, and switches on the interior light. The alarm is normally controlled by a dashboard switch and push-button. Once the alarm is triggered the dashboard controls are rendered inoperative. The alarm can then only be released by the master switch which is mounted on the relay unit. For maximum security the relay unit should be situated in the locked bonnet or boot of the car.

OPERATION

The thief gets no warning that an anti-theft device is fitted to the car until having made his entry he closes the the door behind him. The alarm then triggers.

When the owner returns to his car he avoids triggering the alarm by moving the dashboard switch to the "OFF" position before closing the door.

CIRCUIT DESCRIPTION

The complete circuit diagram of the alarm unit fitted to a car is shown in Fig. 1. All relays are shown released and switches S 1 and S 3 closed. This is the "alarm set" state. Switches S1 and S2 are mounted on the dashboard, the master switch $\mathbf{S 3}$ is mounted on the relay unit.

When a thief opens the car door the switch S4 closes and provides a path for relay RLA to operate via RLC1 contact. As the relay operates its contact RLA1 on changing over causes relay RLB to operate. Contact RLB1 provides a holding path for relay RLB independent of contact RLA1. Contact RLB3 short circuits the ignition contact breaker to earth thus preventing the engine from being started. On opening the door, relays RLA and RLB operate and hold in. When the door is closed, relay RLA releases as its holding path via the door switch S4 is interrupted. As the relay releases, contact RLA1 provides a path for relay RLC to operate, via contacts RLB1 and RLB2 which are still made.

The horn is switched on via contacts RLC3, RLA1, and RLB1. The interior light is switched on via contacts RLC1, RLB2, RLA1, and RLB1. Contact RLB3 still disables the ignition circuit. The only possible method of releasing the alarm is by opening the master switch S3 which allows all three relays to release.

SETTING-UP

With the door closed, move S1 to "on". Push button switch S 2 is pressed and held in whilst the door is opened. Switch S2 may now be released, and closing the door leaves the alarm set.

The circuit operation for setting the alarm is as follows. Operating S2 causes relay RLC to operate. Opening the door provides a holding path for relay RLC independent of S2, i.e. via RLC1 contact and door switch S4. Closing the door breaks the holding path allowing it to release. Hence when the alarm is set, all three relays are released.

Fig. I. Circuit diagram of the car anti-theft alarm

CONSTRUCTION

Any type of 12 V relays having the required number of contacts may be used, see Fig. 1. Miniature sealed relays are most suitable as they will prevent the entry of dirt and moisture to the contacts. However, it is important that the contacts are heavy duty types and capable of carrying the horn current, which could be as much as 7 amps at switch on. The relays can be mounted on a piece of s.r.b.p. board and then mounted in a metal diecast box. The master switch S3 and a 9 -way terminal block should be mounted on the sides of the box.

WIRING

Care should be taken to ensure that connections are made to the correct points on the car wiring. (Refer to Fig. 1.) Terminal 8 is connected to the horn-push side of the horn. Terminal 7 is connected to the terminal marked CB on the ignition coil.

The alarm may be fitted on cars using either positive or negative earth systems. Terminal 1 must be connected to the earth (chassis) side of the battery and terminal 9 to the other side of the battery via the fuse.

Fig. 2. Additional circuitry for adding an interrupted alarm note to the car anti-theft alarm

MODIFICATIONS

If an interrupted note from the horn is preferred, another relay must be added, see Fig. 2.

The component values may be adjusted to find the preferred interruption rate and on/off ratio. The circuit is a simple charge-discharge system with the coil of relay RLD forming the emitter load of the transistor. The relay coil resistance should be greater than 150 ohms, and the transistor chosen to suit the power requirement of the relay.

The circuit Fig. 2 is drawn for use on cars with positive earth. For negative earth systems a pnp transistor should be used and capacitor Cl reversed.

It may be preferred by some motorists to dispense with the ignition cut-out and hooter alert, and to arrange that the alarm condition merely disconnects the petrol pump. This is easily done by omitting RLC3 and RLB3 contacts, and providing a "break" contact on RLC relay connected in series with the petrol pump.

> K. L. Spence,
> London,
> N.W.7.

TEMPERATURE ALARM

Fig. I. Simple temperature alarm circuit

WONDER if the temperature alarm circuit shown in
Fig. 1 is of interest to your readers. When the temperature of a liquid or solid, etc. must be kept constant the thermistor is inserted into the liquid and the potentiometer set so that there is no voltage applied to the transistor, the relay will not operate.

When there is a temperature change, approximately ± 1 degree depending on the transistor and components used, the relay will operate, ringing a bell or any other suitable alarm.

David G. Warner, Birmingham, 34.

I.C. HOLDER

SOME time ago I bought a Fairchild $\mu \mathrm{L} 914$ integrated circuit with the idea of carrying out various simple experiments. As soon as the device arrived it was obvious that constantly soldering and unsoldering would soon ruin it. However, a B9A valve base plug was to hand and the i.c. was soldered to it as in Fig. 1.

The numbers indicate the i.c. terminal numbers. Note that lead 8 is singled out by the flat or spot on the i.c. case. All i.c. leads are wired to the plug following the standard B9A pin numbering, i.e. 1 to $1 \ldots 8$ to 8 . The result is very robust and has stood up to a great deal of wear and tear.
N. Harrison, Stafford.

Fig. I. Wiring details for the B9A valve base plug i.c. holder

Get your own Multimeter today (complete with plastic case, leads, instruction booklet and a full year's guarantee) from your local supplier, or ask for details direct from Avo.

HOME RADIO (Components) LTD. Dept. PE

234 London Road, Mitcham CR4 3HD Telephone 01-648 8422

Purchase a Home Radio Catalogue, using the Coupon below. Please enclose a cheque or postal order for 12/6 (8/6 plus 4/- packing and postage). Your catalogue will be sent by return of post.
Choose your components. In the Home Radio Catalogue over 8,000 components are listed and more than 1,500 illustrated. A comprehensive index helps you to locate your requirements easily.
Join our Credit Account Service. Full details are enclosed with every catalogue. Order your components. Having joined our Credit Account Service, you may order either by phone or post. If you phone out of office hours, a recording machine takes your message.
Get started on that project! Whether it's constructing or servicing work. the fact that you can obtain the right components easily, without having to chase from shop to shop, will put you in the right frame of mind to make a better job of it.

Brand New Fully Guaranteed TRANSISTORS \& DEVICES

NEW RADIO TELESCOPE

India's new radio telescope is in operation and the first results have been released. During the first 14 days of observations the telescope was directed at the southern part of the sky and five new radio sources are reported to have been discovered.

The design of the telescope is based on the cylindrical paraboloid. There are 24 towers of equidistant spacing over a distance of 530 metres. Each tower supports a parabolic arm of 30 metres in length and the 24 arms support the wire reflectors and the aerials. The whole aerial can be steered through 140 degrees elevation.

Sited at Ootacmund in Southern India and being near the equator, it is one of the largest telescopes that is able to track sources for more than two hours a day, and in an east west direction for more than nine hours per day. The operating frequency is 324 to 329 MHz and a further system of dipoles is being designed for use at 100 MHz .

The new tracking station, under the direction of Dr D. Swarup, who had his training in America, puts India on the map in radioastronomy and will add another observatory to chart the sources from the southern hemisphere with great precision.

It is planned to set up two dishes 13.5 metres in diameter at a point 3.5 km to the west of the present site in order to provide interferometer facilities.

There is one unusual task that the observatory will carry out and that is to measure minute changes in the almost non-existent atmosphere of the moon caused by the dumping of terrestrial materials on the surface of the moon.

CARBON MONOXIDE IN SPACE

Hydrogen, water, anmonia, formaldehyde and the hydroxil radical have already been found in galactic clouds. Using the 35 ft microwave telescope, the National Radio Observatory in West Virginia have discovered carbon monoxide at a frequency of 115 GHz .

Five main sources have been recorded but the most important are in the sources of Sagitarius A and Orion A. Sagitarius A is in the
direction of the nucleous of the galaxy and Orion A is in a region of star formation. The width of the line is 2 MHz in the Orion source and the total extent of the $C O$ is 1 degree in diameter which is larger than the source itself.

The Sagitarius source is a complicated one having several doppler shifted lines over a total bandwidth of 100 MHz .

ECHO 1 AND ECHO 2

The two passive satellites Echo 1 and Echo 2 both died within a short time of each other and have left the geodesists in a little difficulty. Having magnitudes of $2.5 \times$ they were easily recorded by small cameras. These cameras were able to photograph the satellites against the background of stars as part of the triangulation programme of Western Europe.

Having now to use much fainter satellites the International Association of Geodesy is pressing for another Echo satellite. Those being used at the moment, Explorers 19 and 39 , are often too faint for European cameras. The present accuracy of location is about 30 metres and it is hoped to bring this to 3 metres with standard photographic methods. When the laser methods come into use in 1972 the accuracy will improve to less than 1 metre.

UK-5

In 1973 satellite UK-5, which when in orbit will have its name changed to Ariel 5, will have a number of interesting experiments to undertake. There will be six experiments altogether and they will all be concerned with cosmic X-rays or X-ray astronomy, and for the second time a British satellite will carry an American experiment.

In the GEC-Marconi design of the UK-5 satellite, all the sky surveys and precision measurements of point sources can be made from the same vehicle. Two survey instruments are mounted in the cylindrical walls of the spinning satellite and look out sideways. The four measuring instruments which deal with the components of the individual sources, look along the satellite's axis of spin. Fine gas jets are provided so that the axis can be pointed in any direction.

The United States experiment is being prepared by the Goddard

Spaceflight Center and together with Leicester University's experiment will carry out the survey of sources. An experiment of the University College, London, will fix the positions of the sources with an accuracy of one minute of arc.

APOLLO 12

The Apollo 12 has provided one of the most worth while scientific experiments in the moon programme. The magnetometer which the Apollo 12 crew set up on the moon for the Ames Research Centre, has shown some remarkable results reported Dr C. P. Sonett of Ames, whose group have some considerable experience in this field, when he spoke at a special conference held in Newcastle by the Nato advanced study institute.

In 1967 the magnetometer on board Explorer 35 which orbited the moon provided some detailed information about the solar wind. This showed that like the earth a "shadow" existed on the side away from the sun. The magnetometer with three sensors showed that there was a relatively large field on the surface of about 350 microgauss.

It is thought that this arises from a large mass of magnetised material at a distance of some 200 km from the Apollo $/ 2$ site. It is not possible that this is part of an overall field because it would have been registered on Explorer 35. It must therefore be a localised field. This idea fits in with the discovery by Apollo $/ 2$ of "fossil" magnetised material on the moon.

This must mean that at some time the moon was in a much larger magnetic field than at present. Sudden variations which have been noted by Explorer 35 in the area of the Apollo 12 magnetometer are due to fluctuations in the solar field and are up to five times as large than elsewhere. From this it follows that there must be a conducting core surrounded by a much less conductive shell. Calculation shows that this shell has a depth of something of the order of a few hundred kilometres. Perhaps here is another important clue to the composition of the moon.

COnSTRUCTION details of the receiver and local oscillator were completed last month. The local oscillator tuning dial must now be calibrated and the operational sequence learned before the receiver can be used. This final article also gives details of an automatic gain control module which can be easily added to the receiver chassis if required.

DIAL CALIBRATION

The dial specified in the components list last month is calibrated 0 to 500 by the manufacturer and dial calibration is carried out with reference to these markings-using the vernier dial. Table 10.1 shows the received frequencies, corresponding to dial readings in steps of 50 . Five frequencies are given for each dial position corresponding to the five ranges selected by the range switch. The dial can be calibrated in MHz , using Letraset numerals for each range.

A.G.C. MODULE

The a.g.c. unit is provided as an additional item and is used in conjunction with the carrier control; the only difference to the operator is that once the carrier level has been set by the carrier control, the gain of the receiver will automatically compensate for any change in the received carrier level. The unit works in the following manner.

CIRCUIT DESCRIPTION

The sideband and the carrier signal is picked up from SK6 on the i.f. unit and fed to SKI of the a.g.c. module (Fig. 10.1). Capacitors C2, C3, C4 and crystals X 1 and X 2 act as a sharp sided filter at 2 MHz exactly,
the bandwidth being approximately 100 Hz , equally displaced about 2 MHz . As a result of this filter action, the 2 MHz carrier signal is accepted and the sideband information rejected. Transistors TR1 and TR2 amplify the 2 MHz carrier signal selectively due to the filter action of $\mathrm{L}!$ and C 7 (tuned to 2 MHz). Maximum gain is achieved in this two stage amplifier as the feedback, via R2 and R3, is fully decoupled by C8.

All the voltage gain is developed in TR1, TR2 reduces the output impedance to match the following common base amplifier TR3. Transistor TR3 has a similarly tuned collector load, in the shape of L2 and C 13 , and further voltage gain, at 2 MHz , is developed

Table 10.1. DIAL CALIBRATION

Range	A	B	C	D	E		
Dial reading	Frequency in						$\mathbf{M H z}$
0	1.8	3.0	5.0	8.5	16.0		
50	1.85	3.18	5.04	8.75	16.7		
100	1.87	3.25	5.1	8.9	17.0		
150	2.07	3.47	5.6	9.5	18.05		
200	$\mathbf{2 . 2}$	3.66	5.9	10.0	18.5		
250	2.36	3.88	6.21	11.0	20.3		
300	2.53	4.2	7.0	11.91	22.5		
350	2.8	4.5	8.01	12.8	24.8		
400	3.02	4.9	8.42	13.85	26.0		
450	3.38	5.55	9.61	16.0	30.5		
500	4.0	6.8	11.8	18.2	35.2		

Fig. 10.I. A.G.C. module cirčuit diagram

3BELECTRONIC BROKERS

MOTORS

HIGH PRECISION MAINS MOTOR

230 V .60 Hz t h.j. continuouely rated
3,000 r.p.m. Made by Croydon Enyineer ing Model $\mathrm{KA} \quad 60 \mathrm{JFB}$. Suitable for capstan motor. Size 8in long, 4 in dia holes. These motors are Capacitor start Coles. treser orplied less Capacitor. 4.10.0. each. 11.5 .0. P. \& P

SHADED POLE MOTORS 120 V 50 Hz
Preclsion made as used in record deck and hape recorders. Suitable nany other applications. 10/

PRECISION MOTORS by PULLIN $28 \mathrm{~V}^{\prime}, 3,000$ r.p.m. 0.0016 h.p. $28 y$ P.\& P. $8 /-$

HIGH QUALITY D.C. MOTORS

VACTHIC. 6-3V with 40/1 ratio gearbox. torque $2 \mathrm{lb} / \mathrm{in}: 6.3 \mathrm{Y}$ with $300 / \mathrm{l}$ ratio gearbor, torque ? 1b/in; 28V 5,000 r.p.m. ${ }^{16.10 .0}$ each P. \& P. ©

hYSTERESIS REVERSIBLE MOTOR

Incorporating two coils. Each coil whell energised will produce opposite rotation of each. P \& P

LOW TORQUE
Ydeal sor instrument
chatt drives. Extreme1y quiet. useful in notise levels are low
High starting torque
nables relative high inertia loads to be griven ul to fiozith. Available in the following sp

HYSTERESIS CLUTCH MOTOR

With integral clutch allowing the motor to drop out gear train, thereby facilitating casy resetting when used in timers or in conunction with a light spring. 6 oz torque at $240 \mathrm{~V} \quad 50 \mathrm{~Hz}, 1 / 12$ r.p.m., $1 / 10$ r.p.m.,
 $1 / 10$ r.p.m., r.p.m., $0 / 12$ r.p.m.. 411
 ※ $5 /$ each. P. \& P. $3 /-$

D.C. MOTORS

Similar to above type MD 83. 28V $1 / 20$ r.p.m., $1 / 60$ r.p.m. 1 r.p.m. 12 V $1 / 20$ r.p.m. 24 V 1/15 r.p.m. 30V 1/12 r.p.m. 6Y 2 r.p.m. 30/-. P. \& P.

SYNCHROKOUS MOTORS

$200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$. New condition, ex-equipment. S.] RPM. Self starting, complete with gearing shatt tin dia., $\frac{1}{3}$ in long.
$30 /-$ P. \& P. $3 /-$.

BRAND NEW [SENSITIVE A.C.
MILLIVOLT METER
Estremely high innut impedance maintained over 10 overlapping rangers.
Battery powered giving freedon from Battery powered giving freedon from maing hum, iblee wice 89.10 . P. \& P . $10 /-$

TAPE RECORD PLAYER MOTOR
$110 \mathrm{~V}, 50 \mathrm{~Hz}, 1,200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Shaded pole $0 / \mathrm{P}$ shatt 1 in dia. \times in long Welght 2202 .

ELECTRIC CLOCK MOTOR

NEW $200-250 \mathrm{~V}, 50 \mathrm{~Hz}, 2 \mathrm{~W}$. Bynchronoue induction motor. 2 reva. per hour. O/P
clockwise rotation. Three-holed mounting at 120° on 2 in PCD. Price $80 /-$. P. \& P. $8 /-$

LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT AND COMPONENTS

DELAY LINE
2 microsecond, 4,000 ohm, Type MON 2484D. Length 2 in \times tin \times Hin. En-
capsuiated module. Price $80 /-$ P. \& P. $5 /-$ NEW FRACTIONAL HP SINGLE PHASE INDUCTION MOTOR
$230 \mathrm{~V}, 50 \mathrm{~Hz}$. Continuously rated. Impe dance protected type

r.p.m.	Amp. Approx. H.P
875	.0.83 1/16
876	1.8.......... 1/8
875	1-19........ 1/12
1.275	0.82... . . . $1 / 16$
1,300	.0-25 $1 / 50$
1,300	.127. 1/25
1,300	0.44 $1 / 30$
1,300	027 1/50
1,300	.0-25 $1 / 50$
1,300	0.91 $1 / 20$
1,500	1-47 1/7
2,500	.0-72 1/20
2,600	.0-45 $1 / 30$
Price 35/-. P. \& P. 7/6.	
IIATUR	
UNISELECTORS	
3 bank, 12 way, 260 ohm.	
24 V . Type 2200A. Sup-	
plied completc with plug-in	
base. Size 31n \times lin $\times 2 \mathrm{in}$.	
A very neat precision com-	
poneat.	84.19.6.
P. \& P. 5/	

METERS

Milliammeter. A.C./DC. I00MA and 200m FSD Cambridge $47526 / 4$ Electro dyuamic e2s
Precision Voltmeter. A.C./D.C. 0-7BY $0-150 \mathrm{~V}: \quad 0-300 \mathrm{~V}$ sangamo Weaton 3.92.1-1 285

Precision Multim
E.I.L. Model 44
Watt Absor ption M.............. CT44 200 UW-6W
A.F Micro Voltmeter. Dymar
 TF886B 245. 0.0 Wide Band Millivoltmeter
Marconi TR1371

SET OF MEASURING INSTRUMENTS

Ranges from
$0.01 \mathrm{M} \Omega$
M
M 11 Mo . Accuracy 0.05%. Maximum Power Rating 0.1W per atep Price 188.10.0. P. \& P. E1.0.0.

PORTABLE WHEATSTONE BRIDGE

 Bpecification. Type: Moving Coil Galvanometer. Ranges: 1. 0.05 to 5 ohms. 2. 0.5 to 50 ohms. 3. 5 to 500 ohmes.4. 50 to 5,000 ohme. 5.500 to 50,000 ohme. Bcales: Switched. Slidewire: 0.5 to 50 , Galvanometer Scale: 10-0.10. Case: Mry battery. Dimensions: $200 \times 110 \times$ 65 mm . Welght: 0.9 kg . LAst price 28. Gomm. Welght:
Our price $2 \theta .19$.

OSCILLOSCOPES

Cossor 1035

Cossor 1049
Solartron 613
Solartron D300
Furzehill 0100
Furzehill 0110
F'urzehill 1684B
Airmec 249
Airmec 723

COUNTERS

ELECTRO MAGNETIC

COUNTER 300 ohm 24 Slow impulse counter of 10 impulsen per
second. $/ 6$. P. \& P. 3

6 DIGIT ELECTRICAL IMPULSE COUNTER with electrical and mechanical reset counter driven by 1100 ohms coil. Reset 110 DC 800 hrms coil. Housed in plastic-alloy case. The units can be interlocked with each other to give vertical or horizontal diaplaye. Price $79 / 6$.

VEEDER ROOT 6 DIGIT COUNTER

Sultable for counting all kinds of production runs, businese machine operation.
Mchanically driven. Reset type KA 1337 , Mechanically driven. Reset type KA 1337 ,
manual knotr. Ex-equipt. but new conmanual knotr, Ex-equipt. but new con-
dition. Special price $\% /-$ plus $5 /-P^{2}, \& P$. 3 DIGIT RESETTABLE COUNTER Totalising 48 V d.c, at $48 \mathrm{~mA} ; 10 \mathrm{impulse}$, ecc, Length $4 i n \times$ in $\times 1 i n$. Price 4 DIGIT NON-RESETTABLE COUNTER Totaliaing 10 impalses per second. Length 3 in $\times 1 \frac{1}{2} \times 1$ in in . 24 V d.c., 300 ohri. Price 6/6. \mathbf{P}. \& \mathbf{P}.

6 DIGIT RESETTABLE COUNTER

Totaliaing 240 y boriz. Viewing window 2 in \times in. Ex-equipneat. Price $65 /$.

6 DIGIT TOTALISING NON-RESETTABLE COUNTER
Mechanical operation. Cbromium finish. Length 1 in \times tin \times in with viewing window tin x ? in. Ex-equipment. Price
0/6. P. \& $x^{\prime} .2 / 6$.

BERKELEY DECIMAL COUNTING

UNIT 0-9

4 valres double triode type 6965 special quality Unit plugs into stamdard octal base. Modular constructlon with 10 minature neon ${ }^{2} \mathrm{mps}$ on display panel.
Power supplies $6-3 \mathrm{~V}, \mathrm{a}, \mathrm{c} .150 \mathrm{~V}$ d.c. CutPower supplies 6-3V, a.c., 150 y d.c. Cut

MINIATURE DIGITAL DISPLAY

Operatee on a rear projectlon 6.3 pilot lamp. The lamp projects the corresponding digit on the condensing jeus lens, on to the viewing acreen at the front of the unit. Weight 3ioz. Character bize tio high. 0.9 with 8 right hand decimal point and degree. Llat price 6 gns. Our price $49 / 0$
$\frac{\text { P. \& P. G/-. }}{\text { EAC DIGIVISOR Mk. II DIGITAL }}$ READ-OUT DISPLAY Ideally suitable for use in conJunction withriraning devices. The DIGIVISOR incorporates a moving coil movement whlch moves a trans-
 lucent arale through an optical system and the resultant single piane Image is projected on a ocreen. sent digita $0-9$. specificatlons: 6.3 V 250 microamp. Image height fin. Size 4 $9 / 16 \times 239 / 64 \times 1$ in. Out price 8 部

MICROSWITCHES

Assorted miniature typer. Special ofler 15 Ior 11 , P. \& P. $6 /-$

MINIATURE MOVING COIL

> RELAY Slis

DOUBLE AUDIO FADERS
These hard to get, prolesalonal recordlag studlo ungral mixing, fading prorammes in and out pro Two bank $1,000+1,000$ ohm wire-wound parallel connection to give 600 ohm nuependent track fited scale Fakinge, with red and the control knobs. Panel mounting. Ex-equipment. Price 8.10.6. P. \& P. $7 / 6$

LINEAR THYRISTOR CONTROLLED
LIGAT DIMMER-BRAND NEW High grade full wave brldge clrcuit
linear control light brightne日s. Idea for controlling room lighting and a.c./d.c. commutator motors

$$
\begin{aligned}
& \text { ftted to portable } \\
& \text { electric hand drlls. }
\end{aligned}
$$ electric hand drills. Fits standard ?In $58 / 6$. P \& $\mathbf{P} .240 \mathrm{~V}, 50 \mathrm{~Hz}, 600 \mathrm{~W}$. Price

POCKET CALCULATOR

Save time and bolve all your multiplication, diviaion, percentage, cube Eaby to use pocket calculator with no errors. Invaluabie dally aid, should last a lifetime, offered complete in black wallet with rull inetruc
 tlons, 3 in diann. $12 / 6$

New complete telephone dial a mble New complete telephone dial assemblles
Clear pergpex dial. - no marklngs $80 /$ Clear perepex dial - no markinge $20 /$ RAPID MEAT SOURCE

x

from brand new Intre Red Tubolar Quartz Lampa. Ideally sulted as Wiat nource for Drying OVens, Egg Hatching
Incubators, etc. $240 \mathrm{~V}, 1,440 \mathrm{~V}, 20,000$ Angetrome. Leagth $12 \mathrm{in} \times$ in ila . $\begin{array}{ll}\text { Angetroms. } & \text { P. } 15 \text { P. } 5 /\end{array}$

SOLENOIDS

High quality solidly coustructed solenoids. Actuated by 48 V 300 n coil. Overall length 3×1 square with a
dia. Bhaft. $8 / 8 . \quad$ P. \& P. $3 /$

INDICATOR LAMPS

Panel-mounting. Various colours and typer. Press to test facility. Prices from $5 /$ - each. P. \& P. $1 / 6$.

FIG. 10.2. A.c.C. MODULE

Component layout of a.g.c. module

Underside wiring of a.g.c. module

COMPONENTS . . .

A.G.C MODULE

Resistors

Capacitors

Cl	$0.047 \mu \mathrm{~F}$ ceramic
C2	27pF
C3	56 pF ¢mica $\pm 5 \%$
C4	27pF
C5	$0.047 \mu \mathrm{~F}$ ceramic
C6	$0.1 \mu \mathrm{~F}$ polyester
C	1,800 pF polystyrene $\pm 5 \%$
CB	0.047 ceramic
C9	$0.1047 \mu \mathrm{~F}$ ceramic
C10	$0.1 \mu \mathrm{~F}$ polyester
CII	$0.147 \mu \mathrm{~F}$
CI2	$0.144 \mu \mathrm{~F}\}$
C13	1,300pF polystyrene $\pm 5 \%$
$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{Cl} \end{aligned}$	$0.1 \mu \mathrm{~F}$ polyester 64, F elect. IOV

Semiconcuctors
TRI 2N2219
TR2, 3, 4 2N2218 (3 off)
TR5 2N+2219
TŔs 2FN2904
TR7 2 r 2218
CI. 2 OA91 (2 off)

Induetors
LI $4 \mu \mathrm{H}$ choke $\pm 5 \%$
L2 $4 \mu \mathrm{H}$ choke $\pm 5 \%$

Crystals

XI $22 \mathrm{MHz}(1.999900$ to 2.000010MHz, 2 off)

Miscellaneous
SK coaxial output socket
Pil/a-d lead through connectors (4 off)
Veroboard $3 \frac{1}{2}$ in $\times 3 \frac{1}{2} \mathrm{in}, 0.1 \mathrm{in}$ grid

in this stage. Transistor TR4, acting as an emitter follower, presents a high impedance to the collector load of TR3, thus sustaining the high impedance load required for voltage gain to take place, and presents a low impedance to the diodes D1 and D2.

Diodes D1 and D2 rectify the positive going portion of the signal and the resultant positive d.c. voltage is fed, via R14, to the base of TR5. As the voltage at the base of TR5 becomes more positive and the collector of TR6 is connected to the base of TR7, the emitter of TR7 follows the change in TR5 base voltage and the quiescent 2 to 5 volts at the junction of R18 and R19 starts to go more positive due to the extra current being

drawn through R19. When this voltage becomes more positive the gain of the receiver is reduced, due to the fact that this point is connected back to the r.f. and i.f. units.

A point of equilibrium is reached, and Cl 5 ensures that the overall loop does not oscillate. The charging time of Cl 5 is relatively quick, due to the low source resistance of D1 and D2, and the output impedance of the emitter follower, while the discharge time is a matter of some seconds as a result of the high resistance discharge path via R14 and the input impedance of TR5 -in the order of 50 kilohms.

A.G.C. MODULE CONSTRUCTION

The a.g.c. module is constructed in a case similar to those used for other modules in the main receiver chassis, as shown in Fig. 2.1. All components are mounted on plain perforated Veroboard and wired up on the underside using component leads wherever possible. Component layout and wiring are shown in Fig. 10.2.

Once constructed and tested-as detailed later-the a.g.c. module is fitted in the main receiver chassis in the vacant module position. The module is wired up with reference to the circuits given in Fig. 10.3. It can be

From SK6 :

seen that wiring already connected around M2 and VR3 ("carrier") will have to be modified to incorporate the a.g.c. module.

SETTING UP INSTRUCTIONS Equipment required

(a) Power Supply $12 \mathrm{~V}, 100 \mathrm{~mA}$.
(b) Multimeter.
(c) Signal Generator 2 MHz (Crystal controlled) giving an output of up to 10 mV .

PROCEDURE

Apply the supply voltage, in the correct polarity, to the correct terminals and check the d.c. potentials to see that they correspond to those indicated in Table 10.2. Having established that the d.c. conditions are correct, apply a 2 MHz signal, $\pm 20 \mathrm{~Hz}$, to SK1 at a level of 0.25 mV . Connect a multimeter between pins $\mathrm{PL1} / \mathrm{a}$ and PL1/b with the positive lead to PL1/a. The voltage at this point should be 2.5 volts ± 0.3 volts. Increase the input signal level to 1 mV and the voltage at PL1/a should increase to approximately 10.8 volts. The voltage at PL1/a should start to increase positively as the 2 MHz input signal level reaches approximately 0.5 mV . If the voltage at PL1/a has not increased to 10.8 volts when the input signal is 1 mV at 2 MHz reduce the value of R16 until the correct voltage has been established (R16 must not be less than 270 ohms).

If the voltage is more than 4 volts at PL1/a, when the input signal at 2 MHz is 0.25 volts, then insert a resistor in series with C8 until the voltage is reduced to approximately 3 volts.

OPERATIONAL SEQUENCE

The sequence for setting the controls, when searching for a station and finally setting the receiver when the required station has been located, would appear, at first sight, to be somewhat complicated. However, this is not the case. For the operation to be simply understood it must be remembered that in single side-band transmission a carrier tone is transmitted at some level below the sideband information. The carrier tone is the information that indicates to the receiver what gain setting it should take up. In the case of automatic gain control (described earlier in this article) the carrier signal is sensed and the r.f. and i.f. gain of the receiver is automatically set. This leaves only the audio output level and the "R.F. Gain" to be individually adjusted.

OPERATION WITHOUT A.G.C.

First of all the "Audio Gain" is set to position 6 (the total sweep of VR1 and VR2 is divided equally into 10 divisions) and the "R.F. Gain" advanced to it's maximum gain condition (i.e. fully clockwise). The "Carrier" control is now advanced until the V.U. meter (M1) reads the noise of the receiver fluctuating around -10 dB . The local oscillator is set to the required, frequency and when the signal is located the "Carrier" control is adjusted until the V.U. meter reads 0 V.U. If the signal strength (\mathbf{S}) meter (M2) reads less than 9 dB the "R.F. Gain" control is left at it's maximum setting. However, if the Signal Strength Meter reads in excess of 9 dB the "R.F. Gain" should be reduced and the "Carrier" increased until the signal strength meter reads 9 dB and the V.U. Meter reads 0 V.U. It is this final adjustment that may prove to be a little awkward until some experience has been obtained in operating the

Table 10.2. A.G.C. UNIT D.C. VOLTAGES

Stage	Vc	Ve	Vb
TRI	7	$1 \cdot 2$	1.9
TR2	10	$6 \cdot 3$	7
TR3	7	1.2	1.9
TR4	10	$6 \cdot 3$	7
TR5	12	0	0
TR6	0	${ }^{0}$	12
TR7	12	2.5 (10.8V max	0
		with full input signal-see text)	

TR5, 6 and 7 voltages are taken with no input to SKI
receiver when it will be found that it only takes two or three seconds to make the necessary adjustment.

CONCLUSION

It was stated in part one of the receiver articles that a b.f.o. unit would be included in the local oscillator. A separate b.f.o. unit has not been described as the "offset A1" system of c.w. reception has been used. To receive keyed c.w., the receiver is tuned to the required frequency and then offset approximately 1 kHz by the fine tune control thus giving a 1 kHz tone.
There are various other small alterations from the original description of the receiver, in particular the fitting of the power supply in the receiver main chassis and not in the local oscillator chassis as originally described. This has been altered to provide a selfcontained receiver unit that can be used with any signal generator. The power supply can, of course, be fitted in the local oscillator unit to provide a complete signal generator if required. It should be noted that the output frequency of the local oscillator is 34 MHz higher than the frequencies indicated on the tuning dial.

Note: a kit of Neosid coil parts for the local oscillator unit is now available from Neosid Ltd., Stonehills House, Howardsgate, Welwyn Garden City, Herts. The kit to be called "Wideband Local Oscillator Kit" contains the following parts:

Former 722/I Bakelite	5 off
Base plate $5027 / 6 \mathrm{PLD}$	5 off

The "Wideband Local Oscillator Kit" is for the local oscillator only and is in addition to the "Wideband Kit" which is for the main receiver only. The above kit is available from Neosid at the above address on receipt of a 25 s postal order-no cheques.

Correction: chassis type numbers given last month should have been-1690C and BC510

ANEMOMETER

An electronic remote reading anemometer, suitable for meteorological use or for the sailor or sailing club. The anemometer gives linear readings of windspeed on a moving coil meter.

DECIMAL CURRENCY CONVERTER

Decimal currency for the U.K. will be implemented in February next year. This novel design, using diode logic circuitry, converts the present British currency into the new decimal equivalents. It makes a useful instructional aid for all types of business where cash transactions are commonplace.

Starting NEXT MONTH

A series of practical projects for the beginner in electronics. Based upon a well-known constructional system, these designs are intended to combine theory with practice to form useful electronic devices.

August issue on sale July 16

THE introduction and development of two-channel stereo recording and radio has brought about a pleasing and very acceptable new dimension to high fidelity sound reproduction in the home. The latest innovation, and one which is claimed to be an improvement on the two-channel system, is four-channel stereo which has been designed to reproduce the "ambience" as well as the spatial effect of the concern hall.

The latter technique requires a four track tape recording with four separate replay amplifiers and loudspeakers. Two loudspeakers are placed in front of the listener in the normal way and two are placed at the rear to produce the reverberant effect that would normally be experienced in a large hall.

As four separate tracks are required for reproduction, recordings are at present only made on magnetic tape. Whether the system might be extended to disc and even radio, remains to be seen as it would necessitate either four separate recordings in one groove or the use of a parallel groove for the two extra channels. Fourchannel stereo radio would involve more complexity.

FOUR-CHANNEL STEREO AT SONEX '70

Demonstrations of four-channel stereo by the American company Acoustic Research, and sponsored by their U.K. agents Bell and Howell Ltd. at the recent "Sonex '70"' exhibition, tended to show that in an average size living room, the sound from the loudspeakers at the rear became too confused with sound from those at the front, especially to a listener positioned midway between the speaker systems. The more or less double expenditure for four channels merely to obtain a reverberation effect from the rear hardly seems to be worthwhile.

Four-channel stereo and the extra cost involved might be better used to improve the overall stereo effect from the front. Reverberation could always be added to a small degree by feeding the channel signals into a reverberation unit and taking the output from this to a rear (of the listener) loudspeaker.

Over 160,000 tickets were issued for the Sonex ' 70 audio exhibition at the Skyway Hotel, Heathrow, the first of its kind to be staged by the industry's own trade association, the Federation of British Audio.

The exhibitors" original policy of "strictly hi fi equipment only" seems to have been ignored for there was a good deal of equipment on show that could only be rated as "capable of good but otherwise pleasing quality".

LOUDSPEAKER KITS

A loudspeaker can be a fairly expensive item and, for stereo, the cost is doubled, but for those who can successfully carry out the cabinet work at home there are some new loudspeaker kits to choose from.

Richard Allan Limited, a well-known name for loudspeakers, have just brought out three kits which include their "Triple Assembly", a three-unit system for 15 watts at 8 or 15 ohms, and the "Super Triple" assembly (three units) for power up to 20 watts. The smallest kit is a twin speaker system for 10 watts called the "Twin Assembly".

Each kit contains the appropriate bass, mid-range and treble units and crossover network, details for building a suitable enclosure, and there is a choice of Vynair speaker aperture covering materials. Further details from Richard Allan Limited, Bradford Road, Gomersal, Cleckheaton, Yorks.

TUNER AMPLIFIER

A completely new product, featuring integrated circuits, ceramic filters and f.e.t.'s in the v.h.f. tuner section, is the Rank-Wharfedale tuner amplifier called the 100.1 Multiplex Receiver and has an output power rating of 35 watts r.m.s. per channel combining f.m. stereo and medium and long wave a.m. radio channels.
It has inputs for tape recorder replay and magnetic and ceramic pick-up cartridges with outputs for up to four loudspeakers and stereo headphones. The makers claim the very low distortion factor of 0.1 per cent at full power, a weighted signal-to-noise ratio of 90 dB at 35 watts from the output stages and 75 dB at 35 watts from the pick-up inputs.

Control features include a low pass (whistle) filter, v.h.f. muting and local and remote speaker switching. Further details and the recommended retail price are available from Rank-Wharfedale Limited, Idle, Brad-
ford, Yorkshire, who have incidentally just introduced three loudspeaker unit kits for constructors and will send details on request.

AUDIO AMPLIFIER MODULES

Readers interested in professional fields of recording and public address, and who need to build their own equipment for special requirements, may find the Millbank Electronics' range of audio modules very useful. These modules include microphone preamplifiers, equalising amplifiers for tape head and pick-up inputs, a high signal level amplifier for passive mixer networks, a VU meter amplifier, a line-up tone oscillator and many others.

Each unit is pre-assembled on a plug-in printed circuit board and many different combinations can be used to build up complete items of equipment. Suggestions include signal mixers with, say, two low impedance microphone inputs, one magnetic pick-up input, two high level signal inputs, a VU meter and a 600 ohm line output.
The modules are designed for high quality professional equipment and prices range between about $\mathfrak{£} 10$ s for a microphone pre-amplifier to $£ 11$ for a 600 ohm line amplifier. Suitable power supplies and other accessories are also available. Details from Millbank Electronics, The Square, Forest Row, Sussex.

MONO TAPE RECORDER

Recently introduced at the "Sonex" exhibition, the new Brenell 6 M series now includes a complete mono tape record/replay unit known as the MK6 type M. The deck has a three-motor tape transport system and will take up to 8 in diameter spools. It runs at $15,7 \frac{1}{2}$ and $3 \frac{3}{4}$ and $1 \frac{7}{8} \mathrm{in} /$ second and has a half-track mono threehead system which allows for off-tape monitoring.

The MK6 Type M unit includes separate recording and replay amplifiers and has a 15 watt output stage. Inputs are provided for microphone and magnetic or ceramic pick-up cartridges and high level signals. Other features are bass and treble controls, a built-in loudspeaker and signal mixing facilities. Further details from Brenell Engineering Company Limited, 231/5, Liverpool Road, London, N.I.

ACOMPLICATED electronic circuit is usually little more than a collection of familiar sub-circuits or stages, each consisting of just one or two transistors arranged in a special way. With experience these stages, or "building bricks", can be easily recognised at a glance and thus enables a whole circuit diagram to be "read" with ease.

There now follows a short compendium of the more commonly used sub-circuits.

SINGLE TRANSISTOR PHASE-SPLITTER

The "phase-splitter" is widely used in audio amplifier circuits to convert an input signal into two forms of output signal. In Fig. 4.1 these outputs are shown at the collector and emitter. Output 1 from the emitter is an "in-phase" replica of the input signal, i.e. when the
 is phase inverted. (Phase inversion was explained in - Part 3.)

The two outputs are of almost equal amplitude if $\mathbf{R}_{2}=\mathbf{R}_{3}$ but they move in opposite polarity directions. The phase splitter can be regarded as a commoncollector combined with a common-emitter configuration in a single transistor stage.

LONG-TAILED PAIR

Fig. 4.2 shows the circuit of the "long-tailed pair", so called because its common emitter resistor \mathbf{R}_{3} projects downwards like a tail. It is also known as a "differential amplifier".

The action of the long-tailed pair is fairly complicated, with inputs fed into the two bases. Looking at TR1 first in Fig. 4.2, an input signal at the base is amplified and appears in phase-inverted form at the collector of TR1. At the same time, a second in-phase output is fed directly from the emitter of TRI to the emitter of TR2. Now if a signal is fed to the base of TR2, there will be an output at TR2 emitter combining with that from TRI, and a phase inverted output at TR2 collector.

Fig. 4.2. Long-tailed pair, one output for two inputs N.

TInde

If the two inputs are in phase there will be no output at the collectors. An output will only be obtained between the collectors when the two inputs are in opposite phase.
In the form shown in Fig. 4.2 (there are several variants of this circuit) the pair act as a "differential" or "difference" amplifier, producing an output signal which is directly proportional to the difference between the two independent input signals. Notice how the battery centre-tap in Fig. 4.2 is earthed, and forms the common input terminal for both signals; this automatically provides self-bias and allows the circuit to accept a.c. as well as d.c. signals without the need for bias resistors.

One of the main advantages of the long-tail pair is that it is insensitive to changes of temperature, which makes it particularly useful for amplifying small d.c. signals. An increase of TRI collector current with a rise in temperature is accompanied by a similar increase of TR2 collector current, thus the circuit tends to remain in balance and does nct "drift".

DARLINGTON AND COMPOUND PAIRS

Transistors can be coupled together to yield a. very large current gain and a high value of input impedance. The "super-alpha pair" shown in Fig. 4.3a is a modified common-collector amplifier TRI feeding a commonemitter amplifier TR2. Overall current gain is approximately equal to the product of the individual gains of each transistor, typically 2,500 .

The input impedance of an amplifier usually falls with increasing frequency of the a.c. signal, due to small amounts of stray capacitance within the circuit. Input impedance Z_{i} of the super-alpha pair can be more than 50 kilohms below about 5 kilohertz, and voltage gain is around 100. The output is taken from TR2 collector.

Next, the Darlington pair circuit of Fig. 4.3 b is made
up of two common-collector amplifiers, and offers an input impedance Z_{i} which can be several megohms under ideal conditions. Current gain is about the same as for the circuit of Fig. 4.3a, but voltage gain will be slightly less than unity. The output is taken from the emitter of TR2.

Some interesting compound circuits can be devised with complementary arrangements of $n p n$ and $p n p$ transistors. Fig. 4.3c shows one form of complementary compound pair, with TRI acting as a modified $p n p$ common-collector amplifier which drives an $n p n$ common-emitter amplifier. Because the d.c. collector voltage of TRI is very low, the overall current gain of the circuit is no more than approximately 1,000 , but the input impedance Z_{i} is high.

When base bias resistors are added to the circuits of Fig. 4.3 they tend to reduce or shunt the input impedance, and this creates problems.

BOOTSTRAPPING

Bootstrapping is a technique used to boost amplifier input impedance to high values, while avoiding the shunting effect of bias resistors. Such a circuit appears to pull up its input impedance "by its bootstraps" so to speak.

In the common-collector circuit of Fig. 4.4, a resistance $\mathbf{R} 3$ is inserted between the transistor base and the bias resistors R1 and R2. An input signal is fed via Cl straight to the base of TRI, and reappears as an output signal across the emitter resistor R4 without a change of phase. This output signal is then fed-back through C2 to the other end of R3 so that almost equal in-phase voltages are present at both ends of R3. If the voltages at each end of R3 are equal and in phase there will be no flow of current through R3, and this resistor therefore behaves like a very high impedance, typically several megohms at low frequencies.

WAY TO ELECTRONICS

 for high input impedance and large current gain

Fig. 4.3b. Darlington pair, common collector mode. Very high input impedance, low output impedonce

Fig. 4.3c. Complementary pair, pnp and npn, gives current gain of about 1,000 and high input impedance

Fig. 4.4. High input impedance can be achieved by using "bootstrap" circuit. R3 is made to appear as a very high impedance to the signal fed into TRI base

Fig. 4.5. Square wave generators

SQUARE WAVE OSCILLATOR

The circuits considered so far are frequently used for amplifying or producing signals which vary smoothly with time. Much of electronics, however, is concerned with abrupt transitions of signal level, and the handling of steep-sided pulses of different duration and shape. A square wave oscillator, for example, yields an output consisting of a train of rectangular shaped pulses which can be used to trigger other circuits.

In Fig. 4.5a, two common-emitter amplifiers are coupled together with capacitors. TRI collector output is coupled via Cl to the base input of TR2, and the collector of TR2 is coupled back to the base of TRI by capacitor C2, making a closed loop. The result is unrestrained positive (in-phase) feedback which causes the circuit to oscillate vigorously, with each transistor switching on and off alternately. A transistor is said to be "on"' when it is passing maximum collector current and its collector is at almost the same voltage as its emitter.

At the start of a pulse, one transistor will be hard on while the other transistor is off or non-conducting. After a time, dependent on the values of R3, R2, Cl and $C 2$, there is a rapid transition when the transistors reverse their roles, i.e. the "on" transistor goes off and vice versa.

The square wave oscillator of Fig. 4.5a is called an "astable multivibrator" (i.e. non-stable), and it belongs
to an important trio of pulse circuits. An alternative (and more common) way of drawing the astable is given in Fig. 4.5b.

An $n p n$ and a pnp can be used as a complementary pair as shown in Fig. 4.5c, both transistors conduct at the same time, and turn off simultaneously. However, if the transistors both switch off completely, they will cease to amplify and the circuit will not oscillate. Therefore, TR2 is held slightly on by a high value of base bias resistor R4.
Fig. 4.5 d shows an emitter coupled astable. The base of TR1 is held "steady" by Cl decoupling capacitor, and TR1 therefore acts as a common-base amplifier, with an emitter input and a collector output which feeds phase-split ter TR2 via C2. Direct coupling between the two emitters provides' a positive feedback path, and a square wave output is taken from R4.

SAWTOOTH OSCILLATOR

Another waveform shape is the "sawtooth"; a train of triangular pulses obtained by alternately charging and discharging a capacitor. The sawtooth oscillator provides a ramp or rising voltage output which is almost directly proportional to time, and is therefore utilised in timing circuits and for the X axis sweep in oscilloscopes.

In the circuit of Fig. 4.6 the feedback from the collector of TR2 to the base of TR1 is positive (in-

人_Input pulse

(a) Collector coupled monostable

Fig. 4.7 (above left). Schmitt trigger circuit. Square wave output is derived from opproximote sine wave input, based on upper and lower threshold voltages that are set by choice of component values

Fig. 4.8 (above right). Staircase generator. Used as a memory store or counter. It registers each input pulse and steps up the output voltage
Fig. 4.9 (left and right). Monostable multivibrators. A short pulse at the input becomes a long pulse or square wave ot the output

(b) Complementary pair

 monostablephase), and would give a square wave oscillation if the capacitor C2 was disconnected. This is a form of multivibrator, positive feedback being applied via C1.

When TR2 conducts, C2 is connected to the positive supply rail via TR2 and R4. The capacitor C2 charges up relatively slowly, and the voltage across it increases almost linearly with time. When the circuit switches, TR2 goes off and C2 discharges through R5, giving a downward sloping ramp. So, the output taken from across C2 is a sawtooth waveform.

The working of this circuit depends on critical choice of component values, since the regenerative action depends on the working voltages set by R3 and R5.

SCHMITT TRIGGER

The "Schmitt trigger" fulfills the role of a fast acting switch which is controlled by a change of input voltage.

When the input exceeds a set value (upper threshold), the circuit triggers on, and turns off when the input drops to slightly less than another set value called the lower threshold. The circuit in Fig. 4.7 closely resembles that of a long-tailed pair and has a similar action, except that the bias resistor R 3 is connected to the collector of TR1 instead of to the positive battery rail. This arrangement supplies d.c. positive feedback, and causes the circuit to "change state" very rapidly, typically in less than one microsecond.

Among the many applications of the Schmitt is that of converting a sine wave-or any irregular shaped
waveform, into a square wave of the same frequency; see the waveforms of Fig. 4.7 which show the trigger levels.

STAIRCASE GENERATOR

From a pulse input, the "staircase generator" or "pump circuit" of Fig. 4.8 supplies an output which rises in steps, one step per input pulse. The circuit actually "remembers" each input pulse and adds the next to it.

The mode of operation is as follows. A positive input pulse is passed by Cl and D 2 to place a positive charge on capacitor C2. Because of D2, the only discharge path for C2 is via the base of TR1. However, TRI is a common-collector amplifier, and presents a high resistance to $C 2$ which will discharge this capacitor relatively slowly. If the input pulses are not widely spaced in time, the voltage across C2 will remain almost constant between pulses, giving a flat top to each step of the staircase. The purpose of D1 is to keep the height of each step constant by feedback from the emitter of TRI.

If a d.c. voltmeter is placed across the staircase generator output, it will give an indication of the number of input pulses received. The circuit can also be used as a frequency meter if a resistor R 2 (shown dotted in Fig. 4.8) is added to discharge C2 quickly. Yet another application is that of frequency divider, if
some means of discharging C2 is devised, which operates when the output voltage reaches a pre-arranged level.

MONOSTABLE MULTIVIBRATOR

A feature of many pulse circuits is that they have two "states". For example, the "monostable multivibrator" has a stable and a quasi-stable state. When triggered by an input pulse of short or indeterminate duration, the circuit of Fig. 4.9a switches from its stable state (TR1 off, TR2 on) to its quasi-stable state (TR1 on, TR2 off), where it remains for a time dependent on the values of capacitor Cl and resistor R2, thus furnishing an output pulse of precise length or duration. At the end of the timed period, the monostable reverts to its stable condition and is then ready to accept the next input pulse.

The complementary version of the monostable draws hardly any current from the battery when stable, but an input pulse causes both transistors to turn on during the timed period, see circuit Fig. 4.9b.

The monostable can provide a delaying action if the trailing edge of its output pulse is used to trigger a following circuit, and it will also act as a frequency divider.

BISTABLE MULTIVIBRATOR

The third member of the multivibrator family is the "bistable". With its two stable states, the action of this circuit is similar to that of a self-latching toggle switch.

Looking at the basic bistable circuit of Fig. 4.10a, a positive input pulse will turn TR1 on, overcoming the potential - VB\&. TR2 is held hard off by this action and by $-V_{13,}$. The voltage at TR2 collector will be almost $+V_{\text {cc }}$ volts. Further positive input pulses will not change the state, but a negative pulse will reset the circuit to its former condition, by pulling TRI into a state of cut-off, and turning TR2 on. The voltage at TR2 collector will then drop to near zero volts.

For most purposes it is preferable to use the bistable with input pulses of one polaritv. and here diodes can
be added to the circuit to "steer" the pulses to the appropriate transistor base, as shown in Fig. 4.10b. Diodes DI and D2 alternately steer only negative input pulses to whichever transistor happens to be on at the time, bringing the base of that transistor down to its emitter potential and turning it off. Meanwhile the other transistor turns on and is then ready to receive the next input pulse.

Digital computers depend on the bistable for counting and other mathematical operations. The computer version of the bistable, similar to the circuit of Fig. 4.10b, is usually called a "flip-flop" or "binary stage'".

A complementary bistable is given in Fig. 4.10c. A positive input pulse will turn on both transistors at the same time.

Part 5 next month will look at a range of electronic devices, including transducers which are used to translate mechanical and other phenomena into electrical signals.

DON'T MISS . . .

PROJECT BUILDING FOR BEGINNERS

A new series of practical projects for beginners to make

STARTING NEXT MONTH

Gerry Brown OWHEHFH|NGE

EMOTIONAL TOMATO

Few would think seriously about the likelihood of a tomato plant owning any kind of emotion, much less consider the possibility of botanical specimens demonstrating a form of telepathy. Nevertheless, Cleve Backster, a research psychologist with the Backster Foundation
 in New York, has very strong reasons for believing so. Backster made his discovery some little while ago when he connected a polygraph (sophisticated lie-detector) across one of the leaves of a tomato plant.

His idea at the time was to try and gain some evidence for a co-relationship between sap movement, after watering the plant, and changes in the plant's tissue resistance at such times.

During his experiments he decided, apparently "for the hell of it", to concentrate his attention on the particular leaf connected to the equipment and make a strong mental impression of his definite intention to burn the plant with a lighted match. Imagine his utter amazement when the polygraph pen took a steep downward swing over the recording paper! Like all sensible experimenters he of course checked the repeatability of the effect. Surprisingly the same down-going trace appeared on the chart on almost every occasion.

Since the early experiments Backster has speculated on what the effects might be for related traumatic experiences of other plant and animal species in the environment of a specimen undergoing test. For example, killing off quantities of brine shrimp by dumping them in boiling water containers resulted in "wild" movements of the pen.

Backster wonders whether there is some kind of signal generated by cell life when it dies that might be sensed by other cells still living. He found

too that violence of virtually any form could produce a reaction. Pricking his finger or even breaking an egg in the vicinity of the test specimen could apparently cause quite remarkable reactions on the machine.

Backster maintains that there were times when if he had haressed the test plants enough he could be several miles away and on the instant of his intention to return to the laboratory there would be recorded a strong movement on the chart.

Obviously I can only report on Cleve Backster's findings so far but, just for the record, I have performed some simple experiments along the same lines and really the results can be quite staggering! In my short experience of the Backster effect a response was obtained 70 per cent of the time.

Setting equipment up for observation of the effect can be very tricky, since the application required in order to see a response must be high, see Fig. 1. This, if one does not meticulously null out offset voltages and carefully balance the input to the amplifier, can cause such havoc that it may be impossible to obtain any worthwhile results at all. It is not therefore recommended that beginners to electronics should try out such a set-up; the results could be ambiguous at best!

LIT-UP BUGS

The time was when miners had to carry canaries around with them in order to remain in circulation. Since
 then things have changed a bit and among the many methods that have come along since the early days is this extremely bright new way of detecting firedamp. The idea is a British patent which, according to the specification, utilises a transparent cell containing a micro-organism called Photobacterium fischeri.

This culture has the peculiar property of glowing quite brightly when exposed to air. However, it seems that if air contaminated with some toxic material is passed over the cell the organism's light output drops dramatically until a point is reached when the light from it fails completely. Following an exposure of this kind the culture rapidly regains its previous abilities to emit light when the air is purer.

In its entirety the detector uses a sensitive photocell and amplifier to monitor any changes in the intensity of the emission from the bacteria. This may then be used to signal, either locally or at some distant station, any imminent threat to the lives of those in the hazardous environment.

Over the normal working life of the culture its ability to recover from toxic agents diminishes and so it is necessary to incorporate within the
electronics compensatory circuitry which can adjust the sensitivity of the amplifier at a corresponding rate.

Since the "bugs" appear to be sensitive to other materials in addition to firedamp one can speculate that they may well prove invaluable to researchers connected with atmosphere pollution due to traffic exhaust.

PLATED LEAVES

Although I can recall doing it in the school physics lab' some years back, there are a great number of people who have now joined the craze for electroplating various forms of flora. In fact, it seems, just about any-
 thing from leaves to chrysanthemums have an appeal in this direction!
The technique is fairly simple as you will see. Having obtained your specimen (not, I hope, from Kew Gardens) it must be dunked in warmed petroleum jelly (Vaseline) and any surplus liquid shaken off. When cooler, a thin piece of insulated wire is firmly wrapped round the steam of the leaf.

Powdered graphite must then be carefully sprinkled all over and, assuming the specimen has been completely, covered it is now ready for the plating bath. The electrolyte of course depends entirely on what you intend plating your leaf with; the old favourite copper is a fairly inexpensive beginner and so copper sulphate would be the correct electrolyte to use. Details of the required set-up are shown in Fig. 2.

The plating process needs to be carried on for a fair period of time; over-night is likely to prove sufficient. Following this the plated material must be lifted from the bath with care to avoid removing the coating. After leaving it to dry out during the day it should then have a coating of lacquer applied to protect it.

The number of things that can be plated seems to be pretty well limitless and I have it on very good authority that someone has already electroplated a cabbage! I think this must have been done for posterity, since this particular genus of edible flora will probably cease to exist on the table when we go over to swallowing the Sunday roast in tablet form!

REALISTIC
*
PHOTO ELECTRICHIT AND SCORE TARGETS

* COMPLETELY SAFE FOR CHILDREN

By G.W. JONES

The circuit of the rifle shown in Fig. 1 is such that when the spring loaded "trigger" switch S1 is operated, a flash of light is emitted from the torch and irrespective of the time the switch contacts are made, the duration of the flash is constant. Correct trigger pressure and operation relative to firing a rifle may thus be practiced.

Since the target is a phototransistor, the time period of the flash is also important with respect to range and scoring assessment and providing competitive firing is carried out at the same range, accurate score assessing by the phototransistor is obtained. In practice a time period of approximately 0.25 seconds enables sufficient light to be emitted from the torch but prevents the firer from dwelling on the aim to obtain a false assessment of the original shot.

GUN CIRCUIT

The rifle circuit (Fig. 1) is based on a standard 3 volt torch with the lamp (LP1) electrically isolated from the normal switch and batteries.

Switch S2 is the reload switch and is of the double pole, change over type. In the reload position Cl is charged to the battery potential and since virtually no current is dissipated with the switch in this position, the

Fig. I. Circuit diagram of the "Gun"
rifle system may be considered to be switched off for storage purposes (the prototype has stood for months in this condition and is still serviceable).

When the switch is changed to the load position the capacitor charge is ready at S 1 for discharge into the base of TR1, hence the term "reload switch". Switch S1 is a single pole spring loaded switch and serves as the trigger; when it is operated the capacitor discharges into the resistor network (R 1 and R 2) and the base of the transistor TR1 which is switched on for a period of time determined by the $C R$ network. Since lamp LP1 is the collector load of the transistor, the lamp flashes for the time period determined by the network and then switches off to await the next reload operation carried

GUN
 Resistors
 RI $100 \Omega \frac{1}{4} \mathrm{~W}$ carbon $上 \underline{E} 10 \%$
 R2 $560 \Omega \frac{1}{4} W$ carbon $\pm 10 \%$
 Capacitor
 CI 1,000pF elect. 6 V

Transistor
TRI OC84
Switches
SI s.p.s.t. biassed off toggle
S2 d.p.d.t. toggle

Miscellaneous

LPI small 3 V spot torch (used as gun barrel) BYI $\}$
SKI miniature four way connector
Gun-plastics toy gun (see text)
Veroboard $2 \frac{1}{4}$ in $\times 1 \frac{1}{6}$ in, 0.15 in matrix
realistic since a physical bolt action is necessary in conjunction with a correct trigger pressure. A reasonable simulation of firing a rifle is thus obtained.

GUN CONSTRUCTION

The flash circuit is constructed on a small piece of Veroboard, as shown in Fig. 2. The circuit is connected to S1 and S2 by insulated flexible leads so that S1 and S2 can be fixed in the gun, as described earlier,
out by S2. Resistors R1 and R2 in conjunction with capacitor Cl determine the flash time and typical values are given.

When S 2 (the reload switch) is positioned at the right-hand side of the rifle in the approximate location of the rifle bolt, the firing action of the rifle becomes

Fig. 2. "Gun" circuit layout and wiring

Fig. 3. Electronic installation in a plastics toy gun and alteration and wiring of the torch used as the gun barrel
before the component panel is positioned in the body or handle of the rifle. The board is connected to BYI and LP1 via flexible insulated leads and a four way miniature connector (SKI).

The torch can be removed from the gun to change batteries and LP1 when necessary and, in the prototype, was affixed in place of the gun barrel by two spring clips. Details of the prototype gun are shown in Fig. 3.

Fig. 4. Fundamental target circuit diagram

Since LP2 is in the emitter line of TR4, a flash of light is emitted from LP2. Lamp LP2 is fitted adjacent to TR2 and hence capacitor C2 receives a further and stronger pulse when TR2 senses the adjacent flash of light, in consequence the lamp remains on. However, since the capacitor C2 discharges at a higher rate than the rate maintained by the now constant light, the filament switches off after a time period determined by the $C R$ network. The filament thus serves as a visual indication of a "hit" on the phototransistor and automatically switches off after a few seconds.

The potentiometer VR1 enables the target to be set up to operate relative to ambient light conditions which includes virtually any light normally experienced indoors. Maximum sensitivity (range) is obtained by rotating the potentiometer knob until the circuit hunts (the lamp operates in a continuous on off sequence) and then retarded slightly so that the lamp is off. A flash from the torch in the rifle assembly accurately aimed at the phototransistor will operate the lamp in the target assembly for several seconds.

It should be noted that the above circuit operates from a "rate of change" of light, and a shadow intercepting light received by the photocell could operate the filament under certain conditions; it is therefore advisable to position the target where the level of light is likely to be reasonably constant.

FUNDAMENTAL TARGET CONSTRUCTION

Layout and wiring of the components, mounted on a Veroboard panel, for the fundamental target is shown in Fig. 5. The target is constructed in a tobacco tin (Fig. 6) and is completely self contained. Holes are cut in the lid of the tin for the potentiometer and "target area" above TR2. A 9V PP4 battery is used as shown in Fig. 6.

This target, although simple, has a variety of applications; as previously stated it can be used, in conjunction with others, to give evaluation of aim; it can also be used as a moving target and affixed to any moving object-including a person.

Fig. 5. Layout and wiring of fundamental target

GOMPDNENTS...

```
            FUNDAMENTAL TARGET
Resistors
    R3 2.2k\Omega
    R4 47k\Omega
    R5 Ik\Omega
    All }\frac{1}{4}\textrm{W}\pm10% carbo
Capacitor
    C2 50\muF elect. 12V
Semiconductors
    TR2 OCP71 (phototransistor)
    TR3 OC84
    TR4 OC84
        DI OABI
Miscellaneous
    VRI 100k\Omega potentiometer
    LP2 6V 0.04A bulb and holder
    BY2 9V PP4 battery
        S3 s.p.s.t. toggle switch
        Case, small oblong tobacco tin
        Knob for VR!
    Veroboard 2in }\times1\frac{13}{4}\textrm{in},0.15\mathrm{ in matrix
```


The latter application opens up a new range of ideas for childrens' games and, with small modifications to prevent alteration of controls during use, the target can provide "hit" indication for childrens' "war" or "cowboys" games.

AUTOMATIC SCORE TARGET

In order to provide a target system for competitive scoring, additional circuits are necessary and invariably one must look for the most economic approach with the greatest entertainment potential. The circuit described is designed to obtain maximum facilities with the minimum number of components. The facilities available may be divided into two sections:
(a) A digital evaluation of the "shot" with respect to an aiming mark on the target
(b) A flare or cascade of lights which may be adapted to provide dramatic visual effects.

Fig. 6. Complete fundamental target wiring and installation

In either case, sound effects may be included to augment the overall effect.

This particular target consists of a phototransistor and three lamps fitted in line and fairly close together. The three lamps light in sequence or cascade according to the value of light received by the phototransistor and may therefore serve for both digital or flare effect indications relative to aim accuracy. A potentiometer adjusts the threshold of lamp operation so that-range or degree of accuracy required is variable.

Digital indication is available when the lamps are identified $1,2,3$, in left to right sequence, so that a direct hit will light all lamps and a near miss might light only one or two. The flare effect of the filaments may also be adapted to illuminate silhouettes such as the outlines of a tank or an aeroplane; considerable scope is available for similar innovations.

In order to make a fair assessment of each shot the position of the light image obtained from the gun must be evaluated relative to a fixed point at the target. A phototransistor serves as this aiming mark but since the shape and intensity of the image varies when light is emitted from a standard torch, there is every likelihood that when a photocell is used as the aiming mark of the target the same image will probably produce two or three bright spots over its area, each capable of obtaining the direct hit indication from the three lamps. So that this characteristic is largely eliminated a unique target arrangement is constructed.

TARGET ARRANGEMENT

Assuming the rifle range is used in a room where ranges in the region of 10 to 20 feet are required, an area of misted perspex is used as the target surface. It will be found that the image produced by a cheap torch is approximately 4 to 6 inches across at its brightest area when shone on to a wall at a range of 10 feet. By cutting the perspex to a similar size (which may be square or circular) the area of the image and target surface will be roughly the same at operational range.

A phototransistor is fitted into a hole in the centre of the perspex to accommodate the dome of the transistor so that direct light from the torch will not fall on the sensing element. When the torch is shone on to the perspex, some of the light penetrating the target surface travels at right angles to the beam of light and illuminates the edges of the hole in which the photocell is fitted. If the full image from the torch covers the target area, the phototransistor will register maximum light from the torch and any inaccuracy of alignment will reduce the signal derived from the phototransistor. This still leaves a certain margin for error but when it is realised that a control is available to set the threshold of lamp operation, the degree of measurement variation becomes surprisingly consistent as the prototype target has proved. A means for evaluating the accuracy 'of the beam of a standard torch relative to a fixed point is thus achieved. Fig. 7 illustrates the circuit for such a target and when an oscillator is driven by the last transistor, an effective whine can be obtained from a miniature headphone.

AUTOMATIC SCORE CIRCUIT

The flash from the torch in the gun assembly is sensed by the phototransistor TR5 and amplified by TR6 and 7. Capacitor C3 and resistor R7 provide an initial delay into the circuit which is highly desirable at the next stage. The variable potentiometer VR2 and resistor R6 serve to obtain a threshold to relate the sensitivity of the phototransistor to the ambient light

level. Diode D2 minimises drift in the initial amplifying stage (TR6 and 7) and the output of the amplifier is applied to the delaying $C R$ network consisting of D3, C4 and resistors R9, R 10 and R11. These resistors are stepped in value so that a low output from the amplifying stage will only switch on TR8 and consequently lamp LP3. An increased output will operate the second transistor TR9 so that two lamps are energised and when the maximum signal is sensed by the phototransistor, all three lamps are energised since all three transistors are switched on.

The delaying effect obtained from C 4 and resistors R9, 10 and 11 tends to produce a cascade effect with respect to the amount of light falling on the phototransistor TR5.

Since VR2 determines the threshold for lamp operation relative to ambient light, it will be appreciated that this control can also determine, to a certain extent, the degree of accuracy required at a specific range.

Fig. 7. Circuit diagram of the automatic score evaluation target

Fig. 8. Veroboard layout and wiring for the score evaluation target

Quite an effective and economical sound effect is obtained when an oscillator is arranged to be driven in parallel with lamp LP5. When a signal reaches this section of the circuit (LP5) it is virtually varying in strength continuously and the result is that a plaintive whine is emitted from the earpiece. The oscillator consists of a npn transistor, TR11 and a pnp transistor TR12, operating in conjunction with a $0.01 \mu \mathrm{~F}$ capacitor, C5. A $2,000 \mathrm{ohm}$ earpiece (X1) is used for sound effects and provides audible whines which are apparent in comparatively quiet conditions; amplification may be added as required.

AUTOMATIC SCORE TARGET CONSTRUCTION

Most of the circuitry for the automatic score evaluation target is mounted on a piece of Veroboard as shown in Fig. 8. Veropins are inserted in the board to provide anchor points for the connecting leads.

The two sockets SK2 and SK3, VR2, S4, X1 and BY3 are mounted on a " U " shaped aluminium chassis and wired to the Veroboard as shown in Fig. 8. The chassis used measures $7 \times 5 \times 3$ inches and is made of two "U" shaped interlocking sections.

Fig. 9. Chassis details of score evaluation target. Switch wafer S4a has been displaced for clarity

Fig. 10. Target wiring details

Fig. II. Target construction details

The actual target and score indicator assembly is mounted on top of the aluminium chassis and is positioned and held by SK3. Misted perspex sheet that forms the target is fixed to the aluminium mounting by four screws and spacers. Phototransistor TR5 is fitted in a small hole drilled in the perspex so that the junction is covered by the surrounding perspex.

Two feed-through terminals affixed to the aluminium serve to connect the phototransistor leads to the circuit. All target wiring is shown in Fig. 10 and construction details are shown in Fig. 11. The target size will depend on the light image size as indicated earlier.
The misted perspex target area must not be extended to cover the indicator lamps as this will cause the first lamp to trigger the second and third lamps as the light will be transmitted through the perspex. If a covering is required for the lamps a second piece of perspex can be mounted in front of the lamps and the edges of the two pieces painted black to prevent light transmission. A screen should also be placed below the lamps to prevent any stray light from reaching the phototransistor, see Fig. 11

VISUAL EFFECTS

In the prototype, transparent silhouettes are arranged to fit over the three indicators. One is divided into three holes which fit over the three lamps and digital information is obtained when each hole is identified with a number. Another outlines the side section of a fighter aircraft with the nose of the fuselage over the first indicator. The effect of a hit tends to make the aircraft appear to catch fire from the nose rearwards and flames appear to rapidly sweep along the fuselage.

The silhouettes are made from cardboard and may take shapes which may be associated with the sound effect. For example, the eyes of a ghoulish figure may be made to light up when "shot" and this effect may be accompanied by an agonising wail.

The basic circuit could be extended to provide mechanical movements when the target is "hit" and no doubt some readers will add this facility.

marhei PLACE

Items mentioned in this feature are usually available from electronic equipment and component rectailers advertising in this magazine. However, where a full address is given. enquiries and orders should then be made direct co the firm concerned.

EDUCATIONAL KITS

Each month the range of educational construction kits available on the market seems to multiply. This month there are two new ranges from Geatronix and Limrose Electronics.

Known as the Mark II Norkit, the Geatronix range of transistor/resistor logic modules consist of NAND, $A N D, N O R$ and $O R$ gates together with bistable units and lamp and relay drivers.

These modules hàve solderless connections and the assembly system allows for grouping together of up to 18 modules. There are three busbars which pass through eyelets in the printed circuit boards and serve the dual purpose of holding the assembly rigid and distributing power supplies.

Interconnections are made with patching leads which push into slots in the printed circuit board. Rearrangement of the logic circuit is achieved by removal and reconnection of the patching leads.

Prices of the Norkit Mark II range of kits is obtainable from Geatronix Ltd., 28 Redstock Road, Southend-on-Sea, Essex.

The Compukit 1 is an educational aid to learning and teaching elements of logic, Boolean algebra and fundamentals of digital computers now being marketed by Limrose Electronics.

Logic circuits are constructed by making soldered, or solderless connections to the terminal pins mounted on the special printed circuit board. Logic states are indicated by miniature wire-ended $4 \frac{1}{2} \mathrm{~V}$ bulbs mounted on the board.

Assembly is fairly simple and a 16-page illustrated instruction book is included with the kit. The kit contains: 18 silicon transistors; 18 germanium diodes; 42 carbon film resistors; 2 lamps and plastics clips; a $9 \frac{3}{4}$ in $\times 5 \frac{1}{2}$ in printed circuit board; battery; 2 microswitch pushbuttons; terminal pins; wire; solder; wire cutter and stripper.

The kit is aimed at the serious amateur, apprentices, students, and teachers interested in understanding the basic working principles of digital computers and logic operations.

The basic Compukit 1 costs $£ 77 \mathrm{~s}$ and can be supplied ready assembled for an extra 27s 6d from Limrose Electronics, Lymm, Cheshire.

BUILDING BRICKS

A range of encapsulated modules have been received from Newbury Sound Equipment. Having uniform dimensions and occupying less than two cubic inches of space, these units are: a general purpose 500 mW power amplifier suitable for 3-15 ohm loudspeakers. A pre-amplifier with a gain maximum of 40 dB and suitable for use in combination with the power amplifier. A square wave generator with a frequency range of $30 \mathrm{~Hz}-6 \mathrm{kHz}$. A tachometer module which will provide a linear indication of engine r.p.m. in 4- or 6-cylinder vehicles whether 6 or 12 V . Finally, a pre-amplifier suitable for line voltages of $9-24 \mathrm{~V}$ or $200-500 \mathrm{~V}$, the gain being 26 dB .

Bench testing of these various units bore out the specifications given, in fact the power amplifier and preamplifier modules have found a permanent place as test gear adjuncts in the workshop.

Control and input and output connections on the encapsulations are made via 20 s.w.g. wire leads.

Experiment with these modules proved than any reversal of supply polarity would result in irreparable damage. This problem could have been eliminated by the simple inclusion of a diode in the module supply line.

Further information on these modules may be obtained by writing to Newbury Sound Equipment, 21, Lancaster Court, Lancaster Avenue, London, S.E. 27 .

AUDIO

First introduced at the Sonex 70 exhibition two new products from Sinclair Radionics may be of interest to readers.

Newbury Sound Equipment encapsulated modules
The first is the Sinclair Active Filter Unit which is an addition to their Project 60 range of high fidelity modules. The purpose of a filter unit is to reject frequencies above (scratch) or below (rumble) specific cut-off frequency when these frequencies are likely to contain interference. This unit contains continuously variable cut-off frequency controls for both the scratch and rumble filter circuits.

Designed specifically to complement the other modules in the Project 60 range the active filter can easily be added to other amplifier systems.
The cost of the Sinclair Active Filter Unit is $£ 519 \mathrm{~s} 6 \mathrm{~d}$.
The $Z .50$ power amplifier is the other new product from Sinclair. This amplifier is similar in design to the Z .30 but, by using higher current power transistors, the output is increased to 40 W continuous r.m.s. into 3 or 4 ohms or 30 W r.m.s. into 8 ohms. Also, the maximum supply voltage is raised to 50 V .
The $Z .50$ amplifier costs $£ 59 \mathrm{~s} 6 \mathrm{~d}$ built and tested.

FOR GUITAR EFFECTS

By D.C.HAMILL

THE "Waa-Waa" effect, much used in pop music, is produc:d by passing the output from a guitar or organ, etc. through a band-pass filter, the resonant frequency of which can be altered. The rapid changing of this formant, as it is called, produces the Waa-Waa effect.

The unit described in this article obtains this shifting formant by switching different values of capacitance across an inductor, thus changing the resonant frequency of the tuned circuit. This must not be done by mechanical switches, as clicks will be produced; these are objectionable, especially if the tuned circuit rings at all when it is energised by the switching transients.

In this design, the switching is done by transistors controlled by time delay networks, so that the capacitors are switched slowly in and out of circuit.

SWITCHED CAPACITORS

The circuit diagram of the unit is given in Fig. 1. Here the input signal is fed to SKI, the input to the preamplifier TR1. Capacitor coupled to the collector is the band-pass filter L1, C3.

To alter the resonant frequency of this filter the capacitors C5 and C8 can be switched in by biasing on the transistors TR2 and TR3

There are two modes of switching; automatic, which applies negative-going square waves via the footswitch S1, and single-shot, which applies the line voltage to the transistor bases for as long as S 2 is depressed.

The automatic pulses are derived from the multivibrator comprising TR5 and TR6. These can be varied in their mark/space ratio by adjustment of VR1.

TIME DELAY

With the depression of either of the footswitches there is a small delay before the capacitors C5 and C8 are switched. This is achieved by connecting the resistor-capacitor networks R4, C6 and R5, C7 at the bases of TR2 and TR3 respectively. The time constants are arranged so that TR2 switches on before TR3, so there is a gradual transition of the resonant frequency.

As the formant circuit attenuates the signal, an additional amplifier TR4 is used.

Fig. I. Complete circuit diagram of the waa-waa unit

COMPONENTS . . .

Resistors

RI	$220 \mathrm{k} \Omega$	R7
R2	$10 \mathrm{k} \Omega$	$2.2 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$	R8
R4	$1 \mathrm{k} \Omega$	
R5	$10 \mathrm{k} \Omega$	R9
R6	$3.3 \mathrm{k} \Omega$	
R6 $39 \mathrm{k} \Omega$	R10	$10 \mathrm{k} \Omega$
All $\pm 10 \%$, $\frac{1}{4}$ watt carbon	R11	$1 \mathrm{k} \Omega$
R	220Ω	

Capacitors

$$
\begin{array}{ll}
\mathrm{Cl} & 30 \mu \mathrm{~F} \text { elect. } 6 \mathrm{~V} \\
\mathrm{C} 2 & 0.1 \mu \mathrm{~F} \text { polyester } \\
\mathrm{C} 3 & 4,700 \mathrm{pF} \text { polystyrene } \\
\mathrm{C} 4 & 100 \mu \mathrm{~F} \text { elect. } 25 \mathrm{~V} \\
\mathrm{C} 5 & 0.033 \mu \mathrm{~F} \text { polyester } \\
\mathrm{C} 6 & 25 \mu \mathrm{~F} \text { elect. } 12 \mathrm{~V} \\
\mathrm{C} 7 & 50 \mu \mathrm{~F} \text { elect. } 12 \mathrm{~V} \\
\mathrm{C} 8 & 0.22 \mu \mathrm{~F} \text { polyester } \\
\mathrm{C} 9 & 0.01 \mu \mathrm{~F} \text { polyester } \\
\mathrm{C} 10 & 100 \mu \mathrm{~F} \text { elect. } 12 \mathrm{~V} \\
\mathrm{C} 11 & 50 \mu \mathrm{~F} \text { elect. } 12 \mathrm{~V} \\
\mathrm{C} 12 & 8 \mu \mathrm{~F} \text { elect. } 12 \mathrm{~V} \\
\mathrm{C} 13 & 100 \mu \mathrm{~F} \mathrm{elect.} 12 \mathrm{~V}
\end{array}
$$

Inductor
LI 660 turns of 38 s.w.g. enamelled copper wire wound on bobbin of Ferroxcube pot core type LAI

Potentiometer

VRI 10k Ω linear wirewound preset

Transistors

TRI, TR4, TR5, TR6 OC7I (4 off)
TR2, TR3 OC200 (2 off)

Switches

S1, S2 Single pole, changeover press switches (Bulgin S.M.357) (2 off)
S3 On/off toggle switch
Sockets
SKI, SK2 Coaxial sockets (2 off)

Battery

BYI 9V, type PP3 or similar

Miscellaneous

8in $\times 6$ in $\times 2 \frac{1}{2}$ in aluminium chassis, Veroboard, battery clips, 6B.A. nuts, bolts and spacers

Waa-Waa unit circuit board

Fig. 4. Layout and wiring of the complete waa-waa unit in an aluminium chassis. The end flanges are shown folded flat for clarity

Depressing the sIngle footswitch ($\mathbf{S} 2$) produces a single "Waa". With a little practice it is easy to add this effect to single notes or chords, then quickly releasing the switch to produce a second "Waa".

If the aUTo switch (S1) is used, the effect can be produced continuously at a frequency determined by the setting of the potentiometer VR1. This is very effective on rhythm guitars as the Waa-Waa will not always coincide with the beat of the music.

MODIFICATIONS

If the Waa-Waa is used with an electronic organ, where the pitch is generally higher and harmonics more prominent, it would be better to reduce the values of C5 and C8.

If the effect is still too heavy, a resistor can be wired in parallel with L1 to reduce its Q-factor. The actual value would depend on experiment and personal requirement.

Again, with other instruments it is necessary to ensure that the first stage is not overloaded. In the prototype, a 16 mV signal proved the maximum for the least distortion. If this figure is in fact exceeded a 1 kilohm potentiometer should be interposed between SKI and Cl to provide signal attenuation.

Mainline set the NEW standard in amplifiers

Mainline 70ABD
The 70ABD is a fully integrated Preamplifier and Power Amplifier to the specifications of the Pre-4 and 70AB. Size $6 \frac{3}{4}{ }^{\prime \prime} \times 15 \frac{1}{2}{ }^{\prime \prime} \times 4 \frac{34^{\prime \prime}}{}$.

Recommended Retail Price E64.0.0.

Mainline 70AB power amplifier

The MAINLINE 7OAB is a high fidelity power amplifier, which is in every respect one of the finest units available on the market today, regardless of price. One of the main features of this remarkable amplifier is its elaborate protection against shoft and open circuit, and we can guarantee that it is virtually indestructible. Allied to this is the very high power output (70 watts RMS) a frequency range that is superb, and distortion well below 1% even at full output. The unit is suitable for use in discotheques, groups, P.A., etc., or anywhere that high quality, high output is required. Coupled to our Pre-4 Control Unit the results are quite remarkable. The Mainline 70AB main amplifier can be used with any other good quality control unit.
Specificacion
POWER OUTPUT 70 watts RMS $\pm 1 \mathrm{db}$ at B OHMS.

INPUT SENSITIVITY 700 mV at $20-30 \mathrm{~K}$
FREQUE
SIGNAL/NOISE RATIO - 70 db at full output HARMONIC OISTORTION less than 0.5% at full output.

OHMS.
SIZE 7" $\times 9^{*} 6 \frac{1}{2}$ "
A.C. FUSE 1.5 amps (British Standard).

Recommended Retail Price $£ \mathbf{3 5} .0 .0$.

Mainline Pre-4 mixer
pre-amp control unit $£ 24.0 .0$.

Mainline Pre-4 mixer pre-amp control unit

The MAINLINE Pre-4 is a high quality control unit, which has been designed specifically for use where mixing facilities are essential, and features many facilities not normally found on control units of this type.
The unit has four individual inputs each with its own gain control, plus separate bass, treble and master volume controls, for versatility in use. Inputs 3 and 4 are duplicated on the back panel so that if the unit is panel mounted the two auxiliary inputs (which are suitable for P.U. Tuners, Tape-recorders, etc.) may be connected from the rear. As the Pre-4 is self-powered it can be used with any other Power Amplifier, but has been designed basically as the control unit for our MAINLINE 70AB Amplifier Module.

Specification
INPUIS VOL. 18 mV at 50 K OHMS (mic) VOL. 28 mV at 50 K OHMS (mic). VOL. 350 mV at 500 K 0 HMS (aux). VOL 450 mV at 500 K OHMS (aux). 50 OHM and 600 DHM Mic inputs may be ordered at E2.0.0. extra per Input.
1 or 2 meg OHM aux inputs may be ordered at no exira cost.
FREQUENCY RESPONSE $30-20.000 \mathrm{HZ}=3 \mathrm{db}$.

SIGNAL/NOISE RATIO Better than - 65 db . HARMONIC OISTORTION Less than 0.5% 11 volt.
BASS Continuously variable 20 dt at 100 HZ . TREBLE Continuousiy variabie 30 dt at 10 KHZ . SIZE $12 \frac{1}{2} \times 6^{\prime \prime} \times 4$ CUT OUT REQUIREO $11 \frac{1}{2}{ }^{*} \times 5$
FUSE 60 ma internally mounted
Recommended Retail Price E24.0.0.

You could be paying too much for your semiconductors and electronic components. One sure way of saving money is to buy RCA, IR, SGS, Emihus, Semitron, Keyswitch, Plessey, Morganite, Litesold devices (together with manufacturers' application data) direct from us.

For example:PLESSEY SL403A

As described in Practical Electronics
Integrated Circuit (Dual in Line Package) Audio Amplifier incorporating its own Pre-Amplifier. A Class A-B Power Amplifier stage capable of delivering up to 3.5 Watts RMS. The SL403A can be used to form the basis of a simple Audio Amplifier using a minimum of external components. Complete with Data Sheet. 44/-each

[^2]The results of the combined resources of SGS and RCA, these Universal Quasi Complementary Symmetry Amplifier kits use rugged NPN Hometaxial base output transistors and provide full power to bevond 20 KHz .
The all siticon circuit with nine transistors and eleven diodes provides outstanding performance for the most stringent requirements of Hi -fi equipment manufacturers.

Each kit is supplied complete with all semiconductors, resistors, capacitors, P.C. board and heat sink.

12 A	£7. 0.0.
$25 A$	£8. 5.0.
40A	E9. 0.0
704	110.10.0.

70A \qquad £10. 10.0 .

Any two will make an outstanding stereo equipment.

BI-PREPAK
 LIMITED

SURPLUS INTEGRATED CIRCUITS

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER 14

> These are brand new qenuine surplus stocks, and not re-marked rejects

> Pric
> NE816A Dual 41/P Nand Gate TT
> NE825A D.C. Clocked J-K Flip-Flop TTL 17
> NE840A Dual $41 / P$ Exclusive OR Gate TTL
> NE855A Dual 4 Power Gate TTL
> NEBBOA Quad 2 Nand TTL
> SP616A Dual 4 Nand Gate DTL
> SP631A Quad 2 I/P Gate Expander DTL
> SP670A Triple 3 Nand Gate DTL
> $\begin{array}{ll}\text { SP806A } & \text { Dual 1/P Expander TTL } \\ \text { SPG08A } & \text { Single } 81 / P \text { Nand Gare TT }\end{array}$
> SP808A Single 8 I/P Nand Gate TT
> $\begin{array}{ll}\text { SP816A } & \text { Dual } 41 / P \text { Nand Gate TTL } \\ \text { SP825A } & \text { D.C. Clocked J-K Flip-Flop TT }\end{array}$
> $\begin{array}{ll}\text { SP825A } \\ \text { SP840A } & \text { Dual } 41 / P \text { Exclusive OR Gate TL }\end{array}$
> SP8850A Dual 41/P Exclusive OR Ga
> SP870A Triple $3 \mathrm{I} / \mathrm{P}$ Nand TTL
> SPBBOA Quad $2 \mathrm{I} / \mathrm{P}$ Nand TTL
> NE500K Video Amplifier
> NE501K Video Amplifier 40MHz
> NE8061 Dual $41 / \mathrm{P}$ Expander TTL
> NE8081 Single $81 / P$ Nand Gate TTL
> NEB16J Dual $41 / P$ Nand Gate TTL
> NE825J D.C. Clocked J-K Flip-Flop TTL 17
> NE840J Dual $41 / P$ Exclusive OR Gate TTL 7
> NE855J Dual 4 Power Driver TT
NE880J Quad 2 I/P Nand TTL
> ST620A J-K Flip-Flop DTL
> ST659A Dual 4 Buffer/Driver DTL

Suffix $A=$ DIP 14 lead; $K=10$ lead TO5; $J=F$ lat Sufix
pack.

LOOK! TRANSISTORS ONLY 6d EACH

PNP TYPE A
TO-5 CAN
SPEC:
ICER AT VCE $=20 V$
1 mA MAX
HFE 15-100
THESE ARE OF THE 25300
TYPE WHICH IS A DIRECT
EQUIVALENT TO THE
OC200/205 RANGE
pNf SILICON PLAStIC encapsulation SPEC
ICER AT VCE = 10v
ImA MAX
HFE 10-200
THESE ARE OF The 2N3702/3 AND 2N4059/62 RANGE

PNP GERMANIUM FULLY marked ano tested.

NEW TESTED AND GUARANTEED PAKS			
82	4	Photo Cells, Sun Batteries. 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA .	10/-
877	2	ADI61-ADI62 NPN/PNP	10/=
881	10	Reed 5 witches, mixed types large and smali	10/-
889	2	SSP5 Light Sensitive Cells. Light Res. 400 n Dark 1 Mn n	10/-
891	8	NKT163/164 PNP Germ. TO. 5 equivalent to OC44. 0 C 45	10/=
892	4	NPN. Sil. Trans. AO6 $=$ BS $\times 20,2 \mathrm{~N} 2369500 \mathrm{MHz}$ 360 mW	10/-
$\overline{893}$	5	GETII 1 Trans. equiv. $t 0$ ACY17-21 PNP Germ.	10/-
$\overline{896}$	5	2N31 36 PNP Sil. Trans. TO-18. HFE $100-$ 600 mA .200 MHz	10/-
B98	10	$\times \mathrm{BI} 12$ and $\times \mathrm{B} 102$ equiv, to AC126, AC156, OCBI/2. OC71\|2. NKT 271 , etc.	10/=
899	200	Capacitors, Electrolytics paper, silver mica, etc. Post packing, this Pak $2 / 6$	0/-
न4	250	Mixed Resistors. Post and Packing 2/-	10/-
H7	40	Wirewound Resistors. Mixed types and values. Postage $1 / 6$	10/-
нв	4	$\begin{aligned} & \text { BYI27 Sil. Recs } \\ & 1000 \text { PIV. I amp. plastic } \end{aligned}$	10/-

RETURN OF THE UNBEATABLE P.I PAK.

 NOW GREATER VALUE THAN EVERFULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS, APPROX 170. WE GUARANTEE AT LEAST 30 really HIGH QUALITY FACTORY MARKED TRAN. SISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS, IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA. tION ON THE TRANSISTORS.
please ask for pak P.I only $10 /-$
2/- P. \& P. on this Pak.

Make a Rev. Counter for your Cay. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.
P.O. RELAYS

Various Contacts and Coil Resistances. No individual selection. Post \& Packing 5 /

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Basic amplifier design, amplifier construction and stabiliser construction were detailed last month. We now move on to describe the remainder of the circuitry and give further construction details.

OVERLOAD PROTECTION

At the amplifier input, steps are taken to reject spurious signals, and also to protect the amplifier against excessive inputs. The high resistances in series with the input (Fig. 2) give some protection against overloads, since the base-emitter junctions of the transistors are able to pass a current of milliampssufficient to drop a high voltage across the resistors.
To maintain conduction when one base-emitter junction is reverse biased, the diodes D1 and D2 are added. Under normal conditions, both diodes are reverse biased, and do not affect the working of the circuit. When an excessive voltage is applied, either D1 or D2 will conduct, according to the polarity.

INTERFERING SIGNALS

No connection is made between the amplifier circuit and the earthed metal case in which the meter is housed, but there will still be some leakage resistance and capacitance; common mode inputs are therefore possible, although greatly attenuated. A common mode interfering voltage acts equally on both input terminals, displacing the differential signal asymmetrically relative to zero signal potential.
The high impedance of TRII (Fig. 2) in the emitter circuit of the input stage, causes any common mode input to be reproduced in the emitter circuit, and not to appear elsewhere in the amplifier. The emitter circuit must be able to cope with the largest common mode signal encountered.

Mains frequency interfering signals could upset the action of the amplifier and cause severe pointer vibration, especially on the more sensitive ranges. This is overcome by restricting the bandwidth of the amplifier; in other words, by lengthening the time constant. Two $0 \cdot 1 \mu \mathrm{~F}$ feedback capacitors (C 1 and C 2) from the emitters of the output transistors, provide a timeconstant of 0.13 second, increasing to 0.85 second on the more sensitive ranges. The risk of inaccuracy due to leakage through the capacitors, is decreased with modern humidity resistant dielectrics. A dielectric resistance of 10,000 megohms can be maintained by certain types of capacitor.

RANGE EXTENSION

Various methods of range extension are outlined in Fig. 5. Independent variation of R_{L} is the simplest method, as it involves only one resistance. As R_{L} is reduced, the voltage amplification increases. The higher values of R_{L} provide improved zero stability.
It is convenient to have the milliammeter in series with the load resistance R_{L}, instead of forming part of it. The resistance of the copper wire of the moving coil increases with temperature, and putting the milliammeter outside R_{L} avoids temperature errors. To make the arrangement symmetrical, a 75 ohm resistor is connected on the other side of R_{t}.

The number of ranges that can be provided by varying R_{I}. is limited, but as a complement to other methods, it has an independent multiplicative effect, giving rise to an expanded series of ranges. For complete coverage, another method of range extension is necessary. This is to vary the two series resistances at the input, switching in values of 100 kilohms, 1 megohm, and 10 megohms. Resistances much higher than this are not practicable, so the higher voltage ranges are obtained by switching in a shunt element to produce the attenuation required. This will tend to reduce the accuracy on the upper ranges.

Currents are measured by means of a number of shunt resistances that can be switched across the input terminals. Advantage is taken of the sensitivity of the instrument to provide low potential drops on the current ranges of between 2 millivolts and 50 milli-volts-less than the 75 millivolt potential difference of the milliammeter itself. Two pole switching is necessary to avoid switching surges, and double connections are required for the 1 ohm (R15) and $0 \cdot 1$ ohm (R27) resistors to exclude the resistance of the leads.

Some of the higher shunt resistors have to be adjusted in value to allow for the input impedance of the instrument in parallel. These small adjustments are made by means of other resistors in series.

RESISTOR TOLERANCES

Overall accuracy of the multimeter will depend upon resistor tolerances together with the accuracy of the moving coil meter (M1), which is within 2 per cent. When resistors of a particular tolerance are connected in series or parallel, the combined tolerance remains the same. However, when the resistors are used in obtaining ratios or products, the tolerances become additive. Range resistors of ± 0.5 per cent tolerance, used as input, feedback, and load resistors will add $1 \cdot 5$ per cent to the 2 per cent tolerance of the meter, making the overall figure ± 3.5 per cent.

On the higher voltage ranges, the need to introduce an attenuator arrangement will bring this up to ± 4.5 per cent. On the current ranges, the added 0.5 per cent for the shunt resistors, will make the overall tolerance ± 4 per cent.

Fig. 5. Methods of range extension used in the d.c. multimeter

Fig. 6. Range switching assembly and layout details

It can be seen that a close tolerance on range resistors is necessary, and metal film resistors are the obvious choice. These have the best stability of any resistors available, and withstand soldering better than other types of resistors.

LOW VALUE RESISTOR

The $0 \cdot 1$ ohm shunt (R 27) has to be specially made; construction is as shown in Fig. 6. The resistor is wound on a rectangle of s.r.b.p., measuring $1 \frac{3}{8}$ inches x $\frac{1}{2}$ inch. At each end of the former twin connections are formed of doubled $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. tinned copper wire passed through a pair of holes drilled at each end of the strip. The resistance consists of three strands of $23 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. double cotton covered Constantan wire, each 8 inches long. These are bared at one end, twisted round one of the tinned copper wires where it is doubled, and soldered.

Temporary connection is established at the other end, and successive adjustments are made in a bridge circuit until the value is very close to 0.1 ohm. The testmeter can be used on the 2 millivolt range as a null detector, but will only function with the $0 \cdot 1 \mathrm{ohm}$ resistor omitted if the lower pair of terminal pins (marked XX) are connected together. The bridge circuit, Fig. 7, requires a precision 10 ohm resistor, precision 100 to 1 ratio arms, and a means of varying the current up to about 100 mA . Some difficulties are produced by thermoe.m.f.s and by heating of the resistances, and may
result in a lower accuracy than the ± 0.5 per cent aimed at.

Final adjustment is made after winding the three strands of Constantan wire on to the strip of s.r.b.p. and soldering the ends. One turn of three strands can be separated and scraped very carefully to increase the resistance; assuming that the value is only very slightly less than $0 \cdot 1$ ohm. Once the correct value has been reached the resistance can be varnished.

Fig. 7. Bridge circuit for measuring the value of R27

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

MEW/ roamer eight mk 1 WITH VARIABLE TONE CONTROL

- Tunable Wavebands: Medium Wave 1, Medlum Wave 2, Long Wave, S.W.1, S.W.2, s.W.3 and Travler Band. Built in terite rod aerial for Medium and Long Waves. $\overline{5}$ bection 22 in chrome plated telescopic aerial for short Waves can be angled and rotated for maximum performance. Push-pull output using 600 Mw type transistors. Socket for car aerial. Tape record socket Belectivity switch. Switched earpiece socket complete with earpiece for private listenlng. 8 tran-
sistors plus 3 diodes. Famous make 7×4 in speaker. Air spaced ganged tuning condenser. On/off siotors plus 3 dodes. Famous make \quad, $\begin{aligned} & \text { in speaker. Air spaced ganged tuning condenser. On/oni }\end{aligned}$ ahade with gold blocking. Size $9 \times 7 \times$ in approx. Easy to follow instructions and diagrams make the Roamer Eight a pleasure to bulld. Parta price list and easy build plans $5 /-$ (FREE with parts).

Tount unutaso coun £6.19.6
roamer seven mk IV

7 FULLY TUNABLE wave BANDSM.W.1, M.W.2, L.W. Band. Extra Medium waveband provides easier tunlag of Radio Luxembourg, etc. Bulit in ferrite rod aerial Ior Medium and Long Waver. 5 Section 22 in chrome plated telescopic aerial for short Wavescan be angied and rotater for peak
Powerful pubh-pull output. 7 transibtors and two diodes Including Micro-Alloy R.F. Tranelstore. Famous make
7×4 in P.M. bpeaker. Air apaced ganged tuning condenser. Volume/on/off control wave change switches and tuning control. Attractive case with carrying handle. Bize $9 \times 7 \times 4 \mathrm{in}$ approx. Easy to follow instructions and diagrams make the Roamer 7 a
pleagure to bulld. Parts price list and easy build plang $3 /-($ FREE with parts pleasure to buld. Parts price list and easy build plans $3 /$-(FREE with parts).

Total building costs
£5.19.6
P. \& P. Personal Earpiece with switched socket 7/6 tor private listening, $5 /$-extra.

pocket five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractive black and gold case. Size $51 \times 1 \frac{1}{1}$ 5 in . Tunable orer both Medium and Long Wave with extended M.W. band for easier tuning of diodes, aupersensitive ferrite rod aerial, fine tone duvang coll speaker. Easy buifl plans trul phet price list $1 / 6$ (FREE with parts).

Total building costs 4.4. $8 \underset{3 / 6}{\text { P. \& } P \text {. }}$

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractive case with red speaker griile, Size $6 ;$ 4 in $\times 1 \frac{1}{2}$. 7 stages- 5 tranaistors and 2 diodes. lerrite rod aeriat, tuning condenser, Volume control,
fine tone moving coil speaker also Personal Earpiece ne tone moving coil apeaker Personal Earpice Total building costs with switched socket for private liatening. Easy
build plans and parts price list $1 / 6$ (FREE with buidd plans and parts price list $1 / 6$ (FREE with
part

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
l enclose £ please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN	
TRANSEIGHT	\square	POCKET FIVE	\square
TRANSONA FIVE	\square	ROAMER SIX	\square

Parts price list and plans for
Name
Address

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

NEW!

transeight

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case in black with red grille and cream knobs and dial with polished bras inserts. Size $9 \times 54 \times 2 / \mathrm{fin}$.
approx. 3 Tunable on Mediun and Long
Sensitive ferrite rod aerial for M.W. and L. W. Telescopic aerial for short Wave 8 improved type trangistors plus 3 diodes. Push-pull output. Ample power to drive a larger apeaker. Parts price list and easy build plans $5 /$ - (FREE with parta).
Total building costs
$89 / 6^{\text {p.at }}$
Earpiece with switched socket for private listening $5 /$-extra.

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER
Attractive case with gilt fittings. Bize 7 ? $\times 5$: 1tin. Tunsble on Medium and Long Waves, two Short Waves, Trawler Band plus an exira M. W. band Ior easier tuning of Luxembourg, etc. Sensitive
ferrite rod aerlal and telescople aerlaa for Short Werrite rod aerlal and telescople aerial for short cluding Micro-Alloy R.F. Tranilistora, etc. (Carrylng atrap $1 / 6$ extra). Easy bulld plans and parts price Hat $2 /$ - (FREE with parts).

Total building costs $79 / 6 \begin{gathered}\text { P. \& } P \text {. } \\ 4 / 6\end{gathered}$

tariable voliage transfonimers
 LIGHT SENSITIVE SWITCH
 Kit of parts, including ORP12 CadTrans Sulphide Photocell, Relay. volt D.C. op. price 25/- plus 2/6 P. \& P. ORP 12 including circuit, 12/6 each, Post Paid.
 A.C. MAINS MODEL. Incorporates Mains Transformer, Rectifier and special relay with $2 \times 5 \mathrm{amp}$ mains c / o contacts Price inc. circuit $47 / 6$ plus $2 / 6$ P. \& P.
 LIGHT SOURCE AND PHOTO CELL MOUNTING Precision engineered light source with adjustable
 lamp housing, to take MBC bulb. Separate
 INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE $0-260 \mathrm{v}$. BRAND NEW
 Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp . from stock. SHROUDED TYPE 1 amp, 65. 10.0 .2 .5 amps, 66. 15. 0.15 amps, £9. 15. 0 . 8 amps, $£ 14.10$. 0.10 amps, f18. 10.0 . 12 amps, $£ 21.0 .0$. 15 amps, $£ 25.0 .0 .20$ amps, 637. 0. $0.37 .5 \mathrm{amps}, 672$. 0.0 50 amps, $£ 92.0 .0$.
 OPEN TYPE (Panel Mounting) $\frac{1}{2} \mathrm{amp}, \pm 3.18 .6$. $1 \mathrm{amp}, \notin 5.10 .0$.

 photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair $\mathbf{£ 2 . 1 5 . 0}$. P. \& P. 3/6.UNISELECTOR SWITCHES NEW
4 Bank 25 Way 24 V d.c.
 operation E5.17.6, P. \& P. 2/6
6 Bank 25 Way 24 V d.c. 66.10 .0 , p.p. $2 / 6$. - Bank 25 Way 24V d.c. operation. 67.12.6 plus 4/6 P. \& P.

Ω 52 170 170 230 280 700 700 700 1250 2500 5800 9000

RELAYS Now S!EMENS rolays at COMPLESITIVE PRICES Coil Working Contacts
 9-12V d.c. 2 c/0 500 M.A. contacts.

 ohm coil. Size $1 \times \frac{1}{5} \times 1$ in. B/6. Post paid. 230 VOLT AC RELAY LONDEX $4 \mathrm{c} / \mathrm{o}$ 3 amp contacts. $18 / 6$ inc. base, post paid. 18-24Y. D.C. RELAY 2 c/0 3A contacts 400 S $1 / 6$ or 3 for $30 /$-post paid TYPE A.G.C.
NEW 12 a.c. 3 A contacts.

NEW $9 / 6$ plus $1 / 6$ P. \& P
or 3 for 30
posi paid.
36 V 30 amp . a.c. or d.c. VARIABLE L.T. SUPPLY UNIT INPUT 220/240V a.c. OUTPUT CONTINUOUSLY CONTINUOUSLY

Fully isolated. Fitted in robust metalitase with Voltmeter, Ammeter, Panel Indicator and handles. Input and output fully fused, Ideally suited for
plus 40/- P. \& P.

RING TRANSFORMER

Functional Versatile Educational
This multi-purpose Auto Transformer, with large centre aperture, can be used as a Double wound current Transformer. Auto Transformer, H.T. or L.T. Transformer, by simply hand winding the required number of turns RTough the centre opening. E.g., using the
RT 100 VA Model the outpur. wound to give BV (as) $12 \frac{1}{2} A, 4 \mathrm{~V}$ (n) $25 \mathrm{SA}, 2 \mathrm{~V}$ 9.50A, etc.

Price: RTT ioova 3.18 turns per volt, $\mathbf{2} 2.5 .0$ plus $3 / 6$, P. \& P. RT 300 VA 2.27 curnsper volt, 14.4 .0 plus $5 / 6$ P. \& P. RT 1 kVA 1.82
 \&14.0.0 plus $9 / 6$ P. \& P

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering cirsuit. $230 / 250 \mathrm{v}$. A.C. operation.
EXPERIMENTERS' ECONOMY KIT
Speed adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijunction NEW INDUSTRIAL KIT Ideally suitable for schoots, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyristor. HY-LYGHT STROBE
This strobe has been designed and produced in response to wide public demand, for use in large rooms, halls and the photographic field, and utilizes a silica plug-in tube for longer life expectancy, printed circuit for easy Speed adjustable O-30f.p.s. Light outputapprox. 4 joules. Price $£ 10.17 .6$. P. \& P. $7 / 6$.
7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 10/6. P. \& P. 2/6 or Post Paid with kits.
100 WAIT POWER RHEOSTATS (NEW)
AVAILABLE IN THE FOLLOWING VALUES:
$10 \mathrm{hm}, 10 \mathrm{a} . ; 5 \mathrm{ohm}, 4.7 \mathrm{a}$; 10 ohm, 3 a . 25 ohm, 2 a.; 50 ohm, 1.4 a; 100 ohm, 1 a 250 ohm, 7 a a.; 500 ohm, 45 a . 1 Kohm ,
280 mA ; $1 \cdot 5 \mathrm{Kohm}, 230 \mathrm{~mA} ; 2 \cdot 5$ Kohm, 2 a.; $5 \mathrm{Kohm}, 140$ mA . Diameter 3 i in. Shaft length in., dia. $\begin{aligned} & \text { bin } \mathrm{in} \text {. All at } 27 / 6\end{aligned}$ each. P. \& P. $1 / 6$.
50 WATT. 1/5/10/25/50/100/250/500/1/1-5/2.5/5 Kohm All at 21/- each. P. \& P. 1/6
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 \mathrm{Kohm}$. All at $14 / 6$ each. P. \& P. $1 / 6$. at $14 / 6$ each. P. \& P. 16. VEEDER ROOT, 230 V a.c. 50 cycle, 5 -figure
counter (non-resettable). $8 / 6$, P. \& P. 1/6. counter (non-resettable). 18/6, P. \& P. 1/6. . . . Two metal carrying cases each containing $10 \times 1.2 \mathrm{~V} 7 \mathrm{AH}$ (12 V) Batteries, also $10 \times 1 \cdot 2 \mathrm{~V} 22 \mathrm{Ar}$
Batteries (40 batteries in all).
Batteries (40 batteries in all). controlled charging unit. Designed batteries simultaneously. Input voltage

can be adjusted between 100 and 250 V a.c. Ruilt to Ministry specification. Idea! power supply for field work. Offered at fraction of makers' price. Two sets of batteries, 1 charging unit. The set 445 P. \& P. $30 /-$

BURGESS MICRO SWITCH

9d P. \& P.

10 in makers' carton 35/- post paid.
SOLID STATE INTERVAL TIMER
24-30V D.C. operation. Stabilised unijunction Timer and S.C.R. (30 V 1 amp .), encapsulated in metal core. Timing interval adiustable
 from a fraction of a second to several minutes by means of external resistor or pot. By adding a 24 V Price: $16 / 6$ incl.circuit. P. \&, P. 2/6. Suitable relay 10/-post paid. PARVALUX TYPE SDI9 $230 / 250$ VOLTS A.C. REVERSIBLE GEARED MOTOR 30 r.p.m. 401b. ins. Position of drive spindle adjustable to 3 different angles. Mounted on substantial cast alumi-
niumbase. Ex-equipment. Tested and in nirst class running order. A really powerful motor offered at a fraction of makers price. 6 GNS. P. \& P. $101-$

INSULATED TERMINALS

Available in red, white, yellow, black, blue Available in red, white, yellow,
and green. New Price $2 /$ - each.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY 576

Personal callers only 9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

NEW EDTITON! COLOUR TELEVISION
with particular reference to the PAL system by G. N. Patchett
50/-
Postage I/6

THE RADIO AMATEUR'S HANDBOOK 1970 by A.R.R.L. 48/-. Postage $4 / 6$. THE MUSIC LOVER'S ALL IN ONE GRAMOPHONE BOOK by Vivian Capel. 15/-. Postage 9d.
THE PRACTICAL AERIAL HANDBOOK by Gordon ل. King. 54/-, Postage BAS
BASIC COMPUTER STUDIES by P J. Barker \& W. T. Beveridge. 22/-," Postage

20 SOLID STATE PROJECTS FOR THE HOME by R. M. Marston. 18/Postage
THE HI-FI AND TAPE RECORDER HANDBOOK by Gordon J. King. 40/-.
Postage 2/6.
BEGINNER'S GUIDE TO TRANSIS TORS by J. A. Reddihough. 15/.. Postage 1/-.
SCR
SCR MANUAL by General Electric Company 25/-. Postage $1 / 6$.
RADHO COMMUNICATION HANDBOOK by Radio Society of Great Britain. 63/-. Postage 4/6.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-2| PRAED STREET LONDON, W. 2 Phone: PADdington 4185 Closed Saturday I p.m.

DIMMASWITCH

This is a dimmer of standard size in This is a dimmer of standard size in
iyory and chrome to replace modern light switches without wiring changecontrols $40-600$ watts, $200 / 250$ volts at 50 Hz of all lights except fuorescents.
Two models are available with on/off switch to control from maximum to zero.
DS500/2 at $\mathbf{E 3}^{\mathbf{1} 2 \mathrm{~s} .}$. d , with clockwise everse dimming, with the switch at full DS500/2/P at 43 18s. uses a patented switch giving on/off control at any position of dimming.
Both are available in D.I.Y. kit form at 10/- less. Fuse protection is available at 2/6extra.

Please send C.W.O. so:

DEXTER \& COMPANY ULVER HOUSE, IQ KING STREET CHESTER CHI 2AH Tel.; Chester 25883

As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc.

RESISTOR CONNECTIONS

In Fig. 6, R27 is shown soldered to the two pairs of terminal pins. The separate input and output connections must be preserved so that no part of the connections becomes part of the shunt resistance, and there must be two separate connecting leads to the switch; these can be of flexible p.v.c. covered wire. A somewhat similar arrangement is used for R15, although the resistor itself has single axial leads.

When the testmeter is completed, it is possible to compare the 0.1 ohm resistance with the 1 ohm resistance, by comparing a reading on the $100 \times 0.5 \mathrm{~mA}$ range with the corresponding reading on the $10 \times 5 \mathrm{~mA}$ range. It is not a highly accurate check, because, even if the current is kept exactly the same on both readings, there is a tolerance of 2 per cent involved. Used instead of the bridge method, it could make possible a tolerance of 5 per cent on the 100 mA range.

RANGE SELECTION

Range selection is by means of two rotary switches, S1 and S2, forming part of an integrated section that can be wired up before final installation. The rangeswitching assembly combines the switches and range
resistors in a compact unit (Fig. 6) constructed from insulating material. A circular aperture in each end enables the connecting leads to be brought out. The ends are $\frac{1}{4}$ inch thick to take the 6 B . A.bolts holding the assembly together, and can be made, if necessary, by sandwiching a piece of $\frac{1}{8}$ inch thick material between two pieces $\frac{1}{16}$ inch thick. It is convenient to fix the 6B.A. nuts temporarily in position on the inside of the circular aperture by applying some adhesive around them.

The sides of the assembly are formed by the boards on which the range resistors are mounted, consisting of 0.1 inch matrix plain perforated Veroboard.

The range resistors are soldered to rows of terminal pins along the edges of the group boards. The spacing is arranged as in Fig. 6 to accommodate the different sizes of the resistors. Wiring behind the boards is also indicated. Further wiring, shown diagrammatically in Fig. 8 consists of flexible p.v.c. covered leads to the switches, and external leads to the amplifier board, etc.

WAFER SWITCHES

When the range switching assembly is fitted in the testmeter, it is secured in position by the nuts on the

Fig. 8. Range switch wiring details
switch bushes-inserted through the aluminium case. The top and bottom of the range switching assembly are panels of $\frac{1}{16}$ inch insulating material, measuring $5 \frac{1}{6}$ inches by 2 inches. The panel that is fixed to the case has $\frac{3}{8}$ inch diameter holes for the switch bushes.

Each switch has to be keyed in position to prevent turning. As shown in Fig. 6, holes of $\frac{1}{8}$ inch diameter are drilled in the insulating panel at the required positions for the spigots that are fitted on the switch bushes. The spigot rings combine limit stops for the switches, and a check should be made to ensure that the switch rotates a total of six positions for S 2 , and 11 positions for S 1 .

The wiring of the range switching assembly is carried out with reference to Fig. 8. The circuit diagram of the entire testmeter appeared last month and can be used to check the wiring; all pin numbers were shown on the circuit diagram. A different colour of p.v.c. covered flexible wire can be used for each switch wafer. The external leads to the amplifier pins should also be in different colours. Wires should not be pushed down to the bottom of the switch assembly where they could become jammed in the switch mechanisms.

										SEND S.A.E. GUAR Satisfactio refu	R LISTS TEE money .
VALVES								CATHODE RAY TUBES			
		Ez8501	149610	PY32	10, 10		$\xrightarrow{915}$		clia citaf	6.12.0	4.1.12.6
(1)											
											5. 7.6
	$88 / 6$	${ }_{\text {P }}$	250/3	${ }^{\text {PrF500 }}$	201-1	${ }^{65123}$	12/6		CIMAH	7.13 .4 10.56 .4	S. 8.10.6 8. 7.
		C189	12/3	UCH8	10,9		20	AW59-91			7. 4.0
¢CCL83		${ }_{\text {PCFB801 }}^{\text {PCF802 }}$	${ }_{12}^{12 / 3}$	UL84	$11 / 1 /$	30 FL	$12 / 9$		CME2306	(13.13.0	10.19 .6 10.19.6 10.10 .0
${ }^{\text {EF39 }}$		PCF805	131-2	UM80/4	9	${ }^{30 \mathrm{FLL}}{ }^{\text {30FL/4 }}$	${ }_{\substack{17 / 1 / 6 \\ 13}}^{1616}$	As9-23W/R		${ }_{12.12 .0}$	10.10 .0
				${ }_{4}^{425}$	$\underset{15 /-}{15}$	${ }^{30 L 15}$	15/3/6				8.15.0
	VALVE ON ORDERS UNDER G, OTHERWISE FREE POST AND PACKING.									IER UNIT GUARANTE	
		SEMIC	OND	DUCT	ORS				Sock	MONTHS	

AC117	12/-	BCI 15	6/6	BF225	6/-	2NI 305	4/10
ACl26	4/4	BC117	7/9	BF257	9/6	2N1306	6/2
ACl27	4/9	BCl 18	7/9	BF22A	9/6	2N3055	15/-
ACl28	4/6	BC134	11/6	NKT125	5/9	2N3392	5/-
ACI76	7/4	BC147	5/8	NKT281	4/-	2N3702	5/6
ACYI7	$61-$	BC148	4/4	NKT401	$17 / 6$	2N3705	4/6
ACY20	6/-	BCI52	5/6	OC25	9/6	2N3711	4/9
ADI49	$11 / 8$	BC175	5/6	OC44	5/6	2N3819	$9 /-$
ADI61	6/9	BC187	5/8	OC45	5/4	2N3826	6/-
AD162	$6 / 9$	BC213L	5/4	OC71	4/4	2N4062	4/6
AFII4	4/8	BDY20	30/6	OC72	5/4	2 N 4289	4/6
AFII 5	4/8	BFY50	5/-	OC77	5/6		
AFII6	$4 / 9$	BFX84	7/-	OC78	5/-		
AF117	4/6	BFX29	$7 / 6$	OC81	4/-		
AFl18	12/-	BFII5	5/6	OC8ID	4/-	RECTIFIER	
AFI26	4/8	BFII7	9/6	(GETII3)		BY127	5/4
AFI27	4/8	BF163	71-	OC84	5/-	BYI27	5)-
AFI39	$8 / 8$	BF167	6/-	OC169	4/8		
AF178	9/-	BFI73	7/-	OC171	6/-		
AF179	9/-	BFI78	7/-	OC200	6/6	DIODES	
AFI80	12/4	BFI80	8/-	OC202	9/6	AA119	2/-
AFI81	$9 / 4$	BFI8I	8/-	OC203	$6 / 6$	OA47	1/9
AFI86	13/4	BFI82	$8 /-$	OCP7	$12 / 6$	OA79	1/10
AF239	8/6	BF184	5/-	P346A	4/6	OA8I	1/10
BCl07A	5/-	BF194	5/-	2N456A	17/6	OA91	$2 /$
BC108B	4/6	BF197	$6 / 4$	2N697	5/10	OA202	2--
BC109C	5/-	BF200	7/4	2N698	10/6	BZY88	
BCl13	5/6	BF224	6/-	2NII32	11/6	(SERIES)	6/6

ADD 5d. PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES.

Complete with Aerial Socket and wires for Radio and Allied TV sets but can be used for most makes.
Continuous Tuning, $90 /-$; Push Button, 100/-.

STYLII

TC8, GC2, GP59, GC8, DC284, Stereo $105,106,208,2$ - each (individually boxed); ST3/5, ST8/9, 9TA, 9TA/HC, GP91, 8/-, Diamond. Post and packing 5d per item for orders under 24.

TAPES (Polyester PVC)

4 in L.P., 8/6; 3in L.P., 5/6.
Standard Play: 600ft $5 \mathrm{in}, 8 / 6 ; 900 \mathrm{ft} 5 \mathbf{z} \mathrm{in}, 10 / 6 ; 1,200 \mathrm{ft} 7 \mathrm{in}, 12 / 6$
Long Play: $900 \mathrm{ft} 5 \mathrm{in}, 11 /$-; $1,200 \mathrm{ft} 5 \mathrm{zin}, 13 /-; 1,800 \mathrm{ft} 7 \mathrm{in}, 18 /-$.
Double Play: $1,200 \mathrm{ft} 5 \mathrm{in}, 16 /-$; $1,800 \mathrm{ft} 5 \frac{1}{2} \mathrm{in}, 19 /-$; $2,400 \mathrm{ft} 7 \mathrm{in}, 28 /-$
Philips type Cassettes (in plastic library pack): C60, 10/6; C90. 12/6; Philips type
C120, $19 / 6$.
Post and packing $1 / 6$ on all orders.

ACOS CARTRIDGES

GP91-I-Medium output Mono Crystal, 21/- inc. P. Tax
GP9I-3sc-High output Mono Crystal (TC8H, TC8M, BSR X3H. X3M), 21/-- inc. P. Tax.
GP93-1-Stereophonic Crystal, 24/9 inc. P. Tax.
GP94-I-Stereophonic Ceramic, 31/-inc. P. Tax.
GP95-1-Stereophonic Crystal, $24 / 9$ inc. P. Tax.
GP95-1-Stereophonic Crystal, $24 / 9$ inc. P. Tax.
GP96/I-Stereophonic Ceramic, $31 / 6$ inc. P . Tax.
TERMS, CASH WITH ORDER ONLY. POST AND
PACKING PAYABLE ON ORDERS UP TO $£ 3$,
AFTER THAT, FREE EXCEPT C.R.T.'s.

MICRO SWITCH
5 amp. changeover contacta, $1 / 8$ each, $18 /$ doz. 15 mmp . model $2 /-\mathrm{m}$ each or 21 j- doz

TOGGLE SWITCH 3 amp each, 250 V w doz .

CONSTRUCTORS PARCEL

1. Plessey miniature 2 gang tuning condenser with built-in trimmers and wave gang switch. 2. Ferrite slab aerial with coils to suit the above uning condenser. 3. Circuit diagram giving all component values for 6 transistor circuit covering padio 2 . The three itema for only $7 / 8$ which is half of the price of the tuning condenser alone

10 AMP 24Y BATTERY CHARGER Ideal unit for garage, boat tation, etc., seq.10.0 each plus carriage and cost.

BEHIND THE EAR DEAF-AID

Made by a very tamous maker. Thoroughiy overhauled, cleaned and re-conditloned. Guaranteed o monthe. Regular price around $\mathbf{\varepsilon 5 0}$. Our price 210

SOLATION TRANSFORMERS

200-250 MAINS
A must if you work on mains equipinent. Prevents accidents and shocks even in damp conditions. loput and output separately sereened by con-
nectlon block. 100 watt 88.10 .0 . 250 watt 25 . SLOW MOTION DRIVES
For coupling to tuning condensers, etc. One end in shaft, the other end fits to ${ }^{1}$ fin shaft with

LARGE PANEL MOUNTINE

MOVING COFL METERS

Size 5 in 4 in C'entre zero 200-0-200 micro anp. made by Sangamo Weston. Regular price

A.C. AMMETER

o-5 smps. flush mounting-lloving iron. Exequipment but guaranteed perfect 29/6.

CIRCUIT BOARDS

Heavy copper on $3 / 32$ paxolin sheet ideal for making power packs, etc., th sheet is very strong with hacksaw blade. Sin «sin $1 \cdot 16$ each 15 in 5 in $4 / 6$ each.

6kVA AUTO-TRANSFORMER

n ventilated sheet steel case-tapped 110 V $140 \mathrm{~V}-170 \mathrm{~V}-200 \mathrm{~V}-230 \mathrm{~V}$. Ex-eqnipment but varanteed perfect 219.10 .0 carrlage at cost

PP3 BATTERY

ELIMINATOR

Run your emall transistor wave circuit, Made up ready to wire into your set and adjuatable high or low current
 /6 each.

\longrightarrow REED SWITCHES

ilass encased, switches operated by external magnet-cold welded contacts. We can now offer types:
Mniature. lin long approxlmately in dianeter. Price make and break up to zA up to 300 standard, 2 in long α nin diameter. This will break currents of up to 1 A , voltages up to 250 volts. Price $2 /$-each, 18/- per dozen.
Fiat. Flat type, 2 in long, just over tin thick, fattened out, so that it can be fitted into a maller space or a larger quantity may be packed nto a square solenoid. Rating 1 amp 200 volts, Price 8/- each. 88 per dozen.
switches $1 / 9$ each. 18/- dozen.

0.005 mFd TUNING

CONDENSER
Proved design, ideal for atraight o
reflex circuits $2 / 6$ each, $84 /-$ dozen
SUB-MINIATURE MOVING COIL MICROPHONE
as used in behind the ear deaf aids Acts also as earphone size only $\frac{1}{4}$ in $\times \operatorname{lin} \times$ inn. Regular price probanly 23 or more. Our price $10 / 6$. Note these are ex-equipment but if not in perfect working order they will be exchanged.

CHART RECORDER MOTOR

manl (2in diameter approx.) hastrument motor with fixing flange and spindle (tin long in diameter) intregal gear box gives 1 rev per 24 hours. $19 / 6$.
IGNITION (E.H.T.)TRANSFORMER Made by Parmeko Ltd., Primary 240 V 50Hz Becondary 5 kV at 23 mA . 8ize approx. 41 in
$3 \frac{1}{i n} \times 2 \underline{i}$ in thick. $29 / 6$ plus $4 / 6 \mathrm{P}$, \& P .

12 YOLT EXTRACTO
BY DELCO
Ideal for ventilation in Caravan, Car or Boat. " Bladed 5in diameter fan inolde heavy duty fixing hole. Length approx. 81 in . Exceptional bargain 87/6 plus $8 / 6$ poet and infurance.

INTEGRATED CIRCUIT BARGAIN

A PARCEL OF INTEGRATED CIRCUITS MADE BY

 THE FAMOUS PLESSEY COMPANYA once-in-a-hifetime ofrer of mincro-electronic devices well below cost of manu facture. The parcel containa 5 ICa all new and perfect, first-grade device, definitely not oub-standard or aeconds. The ICs are all single silicon chip Gevieral Purpose Amplifiers. Regular price of which is well over $£ 1$ each. Full circult details of the 1 Ca are included and in addition you will receive a list of 0 different ICs available at bargain price s/-upwards with circuits and techlcal data of each. Complete parcei only 81 post paid; or List and ail data

24 HOUR TIME SWITCH

Mains opersted. Adjustable Contacts give \because on/offs per 24 hours. Contracts rated 16 amps. repeating mechanjem theal for shop window control, or to switch hall lights (anti-burglar precaution) while you are on holiday. Made by the famous Nmiths Conupany. This month onsuran pontage
inimel.

distribution panels
Just what you need for work bench or lab. 4×13 anp sockete and on/off switch with
neon warning light in metal box. Tr.
9/6 wired up, read to work plus $4 / 6$ post and insurance
5 amp 3 pin model $85 / \mathrm{m} . \quad 15 \mathrm{amp} 3$ pin model $45 / \mathrm{m}$

MICROSONIC RADIOS
 tranaiator Key chain Rad to in very pretty soft leather zipped bag. Specification:Circuit: 7 transiator superheterodyne. Frequency range: 530 to $1,600 \mathrm{Kc} / \mathrm{s}$.
 Aensitivity: $5 \mathrm{my} / \mathrm{m}$. Intermediate
 requency: $465 \mathrm{Kc} / \mathrm{s}$, or $455 \mathrm{Kc} / \mathrm{s}$. Powe
 output: 40mD. Antema: ferrite rori.
 In indpeaker: Permanent magnet type.
 sllght corrosion as the batteries were left in them but when this corruig slight corrosion as the batteries were left in them but whell this corrosion except that they are new. Price only $24 / 6$ plus $2 / 6$ poat and insurance. Re. chargeable batteriea $8 / 6$ pair. Plug in maina charger 12/6.

THE 5-5 WATT STEREO AMPLIFIER

Made by one of our most famous makers for a de-luxe player. This amplifier has a quality of reproduction much better than average. Uing a total 16 transistors nd a generously sized mains power pack. Controls include bass, treble, balance tweeter mid-range and bass thus giving option of 1,2 or 3 speakers per channel. Offered at about one third of its original price only $\mathbf{2 9 . 1 9 . 6}$ plua $8 / 6$ poet and masurance

$$
\text { The 'Princess' } 4 \text { apeed automatic record chn SNIP. }
$$

The 'Princess' 4 apeed automatic record changer and player for beauty, long-life. Will take up to ten records wich may be mixed, at glus brush cleans atylue after each playing-other features include pick-up height
adjustment and stylus pressure adjustment. This truly is a fine instrument part of a cencelled. This truly is a fine instrument, part of a cancelled export order, which has travelled back and forth. The changer,
therefore, may need mechanical re-adjustment but we supply mervice manual. We offer these at less than the price of a aingle player-only $49 / 6$ plus 6/6 P. \& P.

HOUR MINUTE TIMER

Made by famous Smiths company, these have arge clear dial, size $41 \times 3 i n$, which can be get in
minutea up in 1 hour. After preset period the bell minuted up for procesing, a memory togger or by adding simple lever, would operate mlero-switch. \&2/8.

A.C. CONDENSERS

These make good voltage droppers for working low voltage appliances from a mains- the big advantage being there is no beat. Aleo useful in power factor correction, motor starting and in d.c. circuits where reverse vollage in
$\begin{array}{llllll}1.5 \mathrm{mfd} 400 \mathrm{~V} & 3 / 6 & 5 \mathrm{mfd} 570 \mathrm{~V} & 9 / 6 & 12 \mathrm{mdd} 250 \mathrm{~V} & 11 / 6\end{array}$ $\begin{array}{llllll}1.5 \mathrm{mfd} 400 \mathrm{~V} & 3 / 6 & 5 \mathrm{mfd} 570 \mathrm{~V} & 9 / 6 & 12 \mathrm{mdd} 250 \mathrm{~V} & 11 / 6 \\ 2 \mathrm{mfd} 40 \mathrm{~V} & 4 / 6 & 6-25 \mathrm{mfd} 250 \mathrm{~V} & 8 / 6 & 15 \mathrm{md} 250 \mathrm{~V} & 18 / 6 \\ 3.4 \mathrm{mfd} 440 \mathrm{~V} & 6 / 6 & 8 \mathrm{mfd} 250 \mathrm{~V} & 9 / 6 & 20 \mathrm{mfd} 275 \mathrm{~V} & 16 / 6\end{array}$ $\begin{array}{lll}3.4 \mathrm{mfd} 440 \mathrm{~V} & 6 / 8 & 8 \mathrm{mfd} 250 \mathrm{~V} \\ 3.5 \mathrm{mfd} 250 \mathrm{~V} & 5 / 6 & 8 \mathrm{mfd} 440 \mathrm{~V}\end{array}$
RECHARGEABLE TORCH Neat fat torch. Fits unobtrusively in your pocket, contains 2 Nlcad cells and adapter and charges from our standard $200 / 240 \mathrm{~V}$ mains. American made, sold originally at over 4 dollars. Our prlce only $19 / 6$ each.

NGENTIAL HEATER UNIT This heater unit is the very latent running. Is as fitted in Hoover and hlower heaters costing $£ 15$ and more We have a few only. Comprizes
motor, impeller, 2 kW element and motor, impeller, 2 kW element and and 3 kW and with thermal gafety cut-out. Can be fitted into any metal ine case or cabinet. Only need control switch. 79/6. Postage and inguranc. 6/6. Don't mise this.
3 STAGE PERMEABILITY TUNER

This Tuner is a precision instrument made by the famous "Cyldon' Company for the equally famous Rad iomobile Car
Radio. It is a medium wave tuner (but set of long wave colla avallable as an extra if required) with a frequency coverage $1620 \mathrm{Kc} / \mathrm{s}-525 \mathrm{Kc} / \mathrm{s}$ and intended to operate with an I, F. value of $470 \mathrm{Kc} / \mathrm{s}$. Extremely compact (size only $2 \% \times 2 \times$ inn. thick) With reduction gear for fine tuning. Bnip price this month 18/6, with circult of front end suitable for car radio or

NEED A SPECIAL SWITCH?
Double Leaf Contact

50-Way Connector Block
Heary duty block, size $24 \mathrm{in} 2!\mathrm{in} 18 \mathrm{in}$ abie inlet and outlet deaigned for easy con section. Also, each way has !l test sockets and a lisconnecting plug. Ideal for inserting anmeter ir other device without breaking circuit, offered at 99/6 etheh, which is only a fraction of the regulat price, postage and insurance $5 / 6$).
Under-floor Heating Cable
$200 f$ t lengths, suitable for 1 lasipating 1,000 watts at 80 volts. Join three in series to make a 240 volt mains operated element of 3 kW . Price 20/- per length, $4 / 6$ prat on any quantity:
-Core Leads
Heavy duty $23 / 36$, avernge length 3 ft 10:- per Papst Motors
Fint. 1/40th h.p. Male for $110-1: 30$ volt working but two of these work deally together off our A really beautiful notor extremely quiet runuing
 and reversible, 30^{\prime} - each
instrument Knobs In lia. head with 3 in shank cach, $8 /$ - llozen. Ditto but with metal lise, 1/- cach, Midget Output Transformer

Ratio 140: J. size approx $\operatorname{lin}_{\text {impedance }} \mathbf{z 5 0 0}$. Connection by flying leads. $4 / 8$ each, Midset Output Transformer
Rormer
Ratio $80: 1$. Nize approx
 circuit board connection 4-Gang Air Spaced Tuning Condenser For AM/FM circuits. AM rI bection 200 pl osc section
80 pf both with trimmers.FM if section 9.5 pf osc section $11 \cdot 2$ pt-integral
slow-motion drice. $9 / 6$ each. motion drive. $9 / 6$ each.

Maine Connector

 quick way to connec equipment to the mains safely and firmly-L., N, and E, coded to new colour mache; discon-nection by plugs prerents nection by plugs prerent has sockets which allow
 asertion of meter without diaconnection; cable inlete firmly hold one
7.029 cahles. 12/6 pach.

DRILL

CONTROLLER

Electronically change apeed from approxi mately 10 'revs. to maximum. Full power at all speeds by fingerincludes all parts, case, nstructions. $19 / 6$ plus $2 / 6$ post and insurance.

ELECTRIC CLOCK

WITH 25 AMP

SWITCH

Hade by Smith's, these units a as fitted to many top quality cookers to control the oren. The lock is mains driven and frequency controlled 80 it is ex dremely accurate. The two imall times to be accurately met. Ideal
or switching on tape recorders. Oftered at only : raly $89 / 8$ the regular price-new and unused post and insurance $9 / 9$.

MAINS TRANSISTOR POWER

PACK

Designed to operate transistor sets and amplifiers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12$ volts for up to 00 mA (clasg \mathbf{B} working). Takes the place of any PP7 PP9 And bathere. Kit comprises: , Prains transformer rectifer, amoothlog and lowd reaigtor, condensers and instructions. Real snip at only 16/6, phas 3/6 postage.

Where postage is not stated then ordera over es are post free. Below 25 add $2 / 9$. Semiconductors add 1/- post. Over \&1 poat free. S.A.E. with enquirles plespe.

ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CRO 2TH

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Nematic Crystals

Sir-Perhaps the following background comment, on the above subject, may prove of interest to readers G. E. Dunning and L. P. E. Light (P.E. "Readout", January 1970).

The nematic mesophase is a phenomena exhibited by some 0.5 per cent of organic crystals as they are heated through their freezing points to their melting points.

where T_{1}, T_{2} and T_{3} are reversible transition temperatures.

Nematic comes from the Greek "Nematos" meaning threadlike. Smectic also comes from the Greek "smectos" meaning soaplike. These intermediate phases, or mesophases, occur within definite temperature ranges, specific for each compound and mostly above ambient temperatures. The threaded texture of the nematic mesophase is clearly visible between crossed polaroids. Only the nematic mesophase is affected by magnetic or electric fields.

The phenomena was first noted in the literature in 1888 (Reinitzer) and there have been sporadic bursts of interest in it to the present day. A good deal of the published work has been carried out with p-Azoxyanisole using conductive glass by the Corning Glass Co. Voltages used were of the order of $1-3 \mathrm{kV} / \mathrm{cm}$ with frequencies mainly between d.c. and 1 kHz (although frequencies up to microwave are recorded). In practice, only thin films of about 50 microns, sandwiched between layers of conductive glass, were used. Excitation was supplied by low frequency oscillators having outputs of $10-20$ volts. It is generally accepted that magnetic fields are more effective in lining up the thread-like "swarms" of molecules, than electric fields. Also of interest is the fact that under the conditions outlined above, the nematic mesophase exhibits properties similar to those shown by ferroelectric materials, namely that it
has a "domain" structure and also displays hysteresis effects. It is thought that impurities may affect the alignment direction.

Current interest in these compounds is not confined to their electrical properties. Research is at present being carried out using them in nuclear magnetic resonance techniques where they have proved useful as solvents.

They are also currently being used in the field of gas chromatography as liquid phases, mainly in the separation of meta and para isomers.

The compounds used in the above work can be considered as organic research chemicals. Most have been synthesised by the chemists carrying out the research, but a few of them are marketed by specialised chemical companies to chemical laboratories:-
(1) 4-n-Butoxybenzoic Acid

Ralph Emmanuel
Cat. No. 12,420-6
Cost $100 \mathrm{~g}=69 /-$

Also by:-
 Kodak Ltd., Kirkby,

 Liverpool.(2) p-Azoxyanisole

British Drug Houses
Cat. No. 27888 Cost $10 \mathrm{~g}=23 /-$
(3) Methyl Red (o-Carboxybenzene-azo-dimethylaniline) is a very common indicator. No supply difficulties should be encountered.
In conclusion, may 1 point out a typographical error in F. J. Stone's reply to G. E. Dunning:-

P-N Butoxy Benzoic Acid should, of course, read:-p-n-Butoxy Benzoic Acid or alternatively
4-n Butoxybenzoic Acid.
In chemical nomenclature -N means that two chemical groups are linked through a nitrogen atom, while $-n$ - means that the Butyl group is straight chained.
I. MacKinnon,

Glasgow.

Best investment

Sir-After teaching for forty-one years at the lower end of the education spectrum, I feel 1 can add
something to your Editorial about the Electronics Industry's best invest-ment-aid to school leavers.

This is indeed a good idea, but it needs more than an unlimited supply of transistors and resistors to make it work.

In the school staff room, Technology is a forbidden subject, and only woodwork, metalwork and technical drawing are respectable.

The much boasted Nuffield Physics, with its "find out for yourself", doctrine and "Worcester Circuit Board" are not good enough, in fact I would say this kind of approach to electrical science is definitely harmful, remembering that electricity is a good servant but a bad master, and hit and miss methods, especially with beginners, can lead to very bad habits.

Many schools are carrying out worthwhile projects in physics, chemistry and scientific thinking, but these are usually led by enthusiasts who know where they are going, and more often than not at a high level in the school strata, where we find the future scientists; so that the shortage of skilled manpower will still persist.

What is needed is a careful programme of practical teaching, beginning with the ten year olds, not based upon hook-ups and make shift apparatus, and with a status at least equal to the more established subjects.

Then all those enthusiasts and interested youngsters will indeed be ready when they are needed.
G. A. Cozens, Southampton.

P.E. Organ on television

Sir-I have constructed the P.E. Electronic Organ and the results have been excellent except in so far as I am told that a neighbouring television set picks up my playing! 1 have reduced this interference by earthing the mains chassis. Could you or any reader please suggest any further modification to lessen the interference?
C. Young,

London, N. 8 .

Good reception!

Sir-May I congratulate you on the series of articles for the holiday motorist and suggest a further article on constructing a unit to enable an extra car battery to be charged to provide power for camp lighting, and even electric soldering for the enthusiast who cannot leave his hobby at home.

In addition, could someone please suggest how to stop the guitar pickup featured in April "Ingenuity Unlimited" from acting like a radio receiver?
D. B. Bloomfield. Lambley,
Nottingham.

Mobile rally

continued

Sir-I wonder if it would be possible for you to publish some of the following information in the July issue of your magazine.

On Sunday, June 21 at 1 p.m., Swansea University Radio Society will be holding its mobile rally, the venue being the University grounds at Singleton Park (on the A4067 road).

There will be talk-in on topband and two meters for those unfamiliar with the area. The usual type of events are being organised, including a mobile/pedestrian d.f. hunt.

This will be an outing suitable for "all the family" as there are many local amenities. Refreshments will, of course, be provided. Further details may be obtained from me at the address below.

Philip Regan (P.R.O.),
Union House,
University College,
Swansea SA2 8PP.

Quod eral corrigendum

Sir-I read your interesting article on your Chessboard Computer, where you mention Napier. The enclosed copy is taken from one of my First Editions printed in 1623-Francis Bacon's "De Augmentis Scientioerum", written when he was Lord Chancellor and printed later in 1623.

Bacon actually corrected Napier's logarithms and instigated the publication of them; the actual book with his annotations is in the Folger Library in America.
I am no mathematician, but is this not the binary scale expressed in terms of A and B. The context of this page of the book is part of his illustration of the "Bilateral Cypher" he invented in the 1570's while in France.
If you substitute 0 and 1 for A and B do you not have binary, or am I wrong?

Ewin MacDuff, Shoreham-by-Sea, Sussex.
Plate 1.

Litea Sextus.	279
Exemplum \mathcal{A} Aplabest Biturranj.	
aabbs. aab6b. abaae a	
abboc.abkab. abbba absb5. bacac basab	
T v w $\quad x \quad y \quad z$. baaba. baabb. 6abaa . babub. babba babb6.	
Neque lewe quiddam obuta hoe modo perfeaturn eft Eienimextior plopater Modus, qun ad omnem	
Loct Difuatism, pet Obseda que yd Vifu vd Audi thecat, fimodo Obiciallia, duplocis carsum Diffen.	
tur capacia funt, veluti per Campause, per Buceros, per flammeos, per Sonatus Tarmentonum, \& alia que- Scriben Jum accingem, Epiftolam Interorem in alpheo brium hoc Oditreanimm folues. Sut Epiffola interior, Fuge	
Exemplum Solusioni.	
$\mathscr{F} \quad 3 . \quad G$	
Aabab. Gaabb. aabba, «abaa.	
Pranil	

A truly practical man

I have been a reader of Practical Electronics for a considerable period of time and derive a great deal of pleasure from studying and building various circuits. However, I find the greatest pleasure in "making do" with transistors and components that are the results of gleaning from various sources.

Making a transformer or coil which actually produces sound or operates a reed switch is very satisfying especially when the wire has been taken off an old choke that was once doing sterling service in dad's first superhet!

In other words, to build a chrome encrusted, mahogany housed, hi-fi " amplifier, and to spend twenty or thirty pounds on sophisticated crystals, special non-noise, nonscratch, non-itch transistors, just does not appeal.

I would like to see more articles on the typical sizes, turns, wire data of coils, transformers, relays, etc. etc.

Some considerable time ago, one reader wanted to know where to obtain square copper wire, the idea of making the stuff not appearing to have occurred to him. Why, the oldtimers would have softened an old file, drilled it, filed it, hardened and tempered it, and pulled the wire through the die in the time it took to write the letter.

Which reminds me, I must get back to my snuff box. I'm soldering it up to make a transducer for a home-made barometer-I wonder how I can suck some of the air out?

Anybody got a long-winded circuit to replace these new-fangled Zener diodes?
B. Grainger, Birmingham.

NEWS BRIEFS

Queen's Award to Industry 1970

The fifth list of The Queen's Award To Industry was announced recently. This year there are 104 recipients, 25 of whom are receiving the award for technological innovation. The award has been given to the following 19 firms for technological innovation or exports concerned with electronics:
For technological innovation-
British European Airways Corporation-automatic landing of aircraft
Computer Technology-production of a modular computing system
William Cotton Led.-electronic control of knitting machines
Elliott Flight Automation Ltd.-digital cathode ray tube displays
Hawker Siddely Aviation Led.-automatic landing of aircraft by the Hatfield Division
Imperial Chemical Industries Ltd.-computerised control of an olefine chemical plant by the Heavy Organic Chemicals Division, Billingham
Radyne Ltd.-semiconductor manufacturing equipment
Saunders-Roe Developments Ltd.-self-powered light sources (Betalight)

For Export-
Brush Clevite Company Led.-Electronic components
Cambridge Scientific Instruments Ltd.-X-ray microanalysers and scanning electron microscopes
Coulter Electronics Ltd.-Electronic particle sizing equipment
Elliot Flight Automation Ltd.-Aviation electronic equipment
Garrard Engineering Ltd.-Record playing equipment
G.K.N. Floform Ltd.-Precision components for the electronics industry
Honeywell Ltd.-Computers, controls and automation systems
Johnson, Matthey and Co. Ltd.-Refined base and precious metals (Engineering metals)
K.E.F. Electronics Ltd.-Loudspeakers

Racal-Mobilcal Ltd.-Radio telephone equipment
Redifon Ltd.-Electronic equipment
Short Brothers and Harland Ltd.-Guided weapon systems
Two of the above firms are of particular interest, these are: Imperial Chemical Industries Ltd., and K.E.F. Electronics Ltd. I.C.I. are one of two firms-the other being Rolls-Royce-who have won the award in all five years.- K.E.F. Electronics, a company which was formed only eight and a half years ago, have increased exports by 250 per cent in the last three years.

It is interesting to note that out of 104 companies receiving the award almost one-fifth have received it due to innovations or exports allied to electronics.

MONO TRANSISTOR AMPLIFIER

A really high sural amplifer with performance charac teriatles to suit crimlnatlog lis crimer. 6 tran aistor circuit with integrated preamplifier masembled on apecial printed pub panel. AD161-Ab162
aymmetrical ymmetrical operating palr. Output transformer coupled to 3 ohm and 15 ohm apeaker sockets. Standard phono Input sockets. Full Wave bridge rectifler power mupply for a.c. mains 200240v. Controls: basa, treble, vario. The H8L. 700 it strongly constructed on rigid steel chasais bronze hammer enamel finish, size $9 \dagger \times 6 \times 4 i \mathrm{in} . \mathrm{high}$.
Senaltivjty-PL' $-60 \mathrm{~m} / \mathrm{v}, 66 \mathrm{~K}$ input impedance PU2-110m/v, 1 meg input inpedance Radio- $110 \mathrm{~m} / \mathrm{v}, 1 \mathrm{meg}$ input impedanc
Output power measured at $1 \mathrm{Kc}-6.2$ watte RMS futo 3 ohms, $5-8$ watta RMS into 15 ohm . Overall frequency response $30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{s}$: Continuously variable tone controls; Bass, +8 db to -12 db at $100 \mathrm{c} / \mathrm{s}$. Treble +10 db to -10 db at $10 \mathrm{Kc} / \mathrm{s}$
Tbe H8L. 700 has been designed for true high fidellty reproduction romradio tuner, gramophone deck and tap recorder preamp. Supplled ready built and tented, comescutcheon panel, long spindles (can be cut to sult your housing requirements) full circuit diagram and operating
Ingtructions.
OUR BPRCIAL PRICE $\$ 7.19 .6$. P. \& P. $7 / 6$.

LOUDSPEAKER BARGADMS

 3 ohm with high fux magnet $28 /-\mathrm{P}$. \& \mathbf{P} 4/-. E.M $131 \times 8 \mathrm{in} 3 \mathrm{ohm}$ with high flux ceramic magnet $42 /$ ($16 \mathrm{ohm} 45 /-$), P. \& P. $6 /-$ E.M.I. $13 \times 8 \mathrm{in}, 3$ or 15 ohm with two Inbuilt tweeters and crossover network 1 gin, P. \& P. 6/

BRAND NLTW. 12 in 15 w H/D Speakers, 3 or 15 ohm. Current production by well-known British maker Now
 E.I.I. 8 th HEAVY DUTT TWERTERS. Powerful ceramic magnet. Avaisole in 3 or $8 \mathrm{ohm} 15 /-$ each $15 \mathrm{ohm} 18 / 6$ each. P. \& P. 2/6.

1\%in "RA" TWLE CONE LOUDSPEAKER 10 watta peak handling. 3 or $15 \mathrm{ohm}, 87 / \mathrm{s}$, P. \& P. 6/35 OHI SPEAKRES 3 in $14 /=$ P. \& P. $2 / 6 ; 7 \times 4 \ln 21 /-$, P. 4 P. $4 /-$

BALANCED ARMATURE EARPHORE
Approx. 70 ohm impedance. Can be used as $1 / 0$ tra sensitive CEYTRAL $\mathbf{H I K E s}$. High imp. for desk or hand use High eenaitivity, $18 / 6$. P. \& P. 1/6.
HIGH ITPEDANCE CRYBTAL BTICK MIKES. OITR PRICE 21/-. P. \& P. 1/6.
HIGH MYPEDANCE DYKAMIC 8TICK MIEES. High sensitivity. 39/6. P.'\& P.2/6.

BPECLAL OFFERI PLESEEY TYPE RO TWIN TUNING aAIG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and 5:1 Integral slow motion, Suitable for nominal $470 \mathrm{kc} / \mathrm{s}$
I.F. Size approx. $2 \times 1 \times 1$ in. Only 8/6. P. \& $\mathbf{P} .2 / 6$.

HOIETWFLL MICROSWITCEES 8/P. C/O. Push-button action. Rating 250v. AC at 15 amps. Slze approx THLEMCOPIC AMRIALS WITH 8WIVEL JONTT. Can be angled and rotated in any direction. 12 section Heavy Chrome. Extende from 7° to approx. 60°. Maximuri diameter $1^{\prime \prime} 10 /$ - each. P. \& P. 1/6. 6 eection Lacquered Brass. Extend from 6^{*} to approx. 221". Maximum

TRANSFORMER BARGAINSI BRAID MRW MULTI-RATIO MADES TRANBPORYTRE. dary combln dary combinatlon: $0-5-10-15-20-25 \cdot 30+36-40-60 \mathrm{~V}$ hal full wave. Size $3 \mathrm{inL} \times 3 \mathrm{in} W \times 3 \mathrm{inD}$. Price $82 / 8$. P. \pm P. $6 /-$.

YANI TRADSPORHER. For transistor power supplies Pri. 200/240V. Sec. $9-0-9$ at 500 mA . $11 / \mathrm{c}$. P. \& P. $2 / 6$ Pri. 200/240V. Bec. $12-0-12$ at 1 amp. 14/6. P. \& P. P. 2/6 Pri. 200/240V. 8ec, 10-0-10 at $2 \mathrm{amp} .87 / 8$. P. \& P. $3 / 6$ Tapped Primary $200-220-240 \mathrm{~V}$. Sec. $21 \cdot 5 \mathrm{~V}$ at 500 mA .
12/6. P. $\mathrm{F} .2 / 6$. BATTERY CHARGRE TRAARPORMERS. $200 / 240 \mathrm{~V}$ nput. Nominal output lor or 12 V . batter iea 3 amp Size approx. $3 \times 2 \frac{21}{} \times 2 \frac{1}{} \mathrm{n}$. Brand New. Price $21 /$ P. \& P. $5 /$

HIGH GRADE COPPTR LAMTATK BOARD $8 \times 6 \times \times \mathrm{HIGH}$ GRADE COPPRER LAMITATL

SPECIAL OFFER!!

Your opportanity to aceulre a frst clan HI-FI LOUD8PEAKRE SYBTEI at an oxtremely moderate price !
 $\times 8^{*}$ deop. Fitted With E.M.I. Ceramic Magtiot $18^{\circ} \times$ Powar handing 10 watts. Available 8 or 15 ohm impedance. OUR PRICE WHILE LDITED 8 Gns. Carriage
gTOCK LAST

TRANSISTOR STEREO $8+8$ MK II Now uaing Sillicon Trauslators in firot flve atages on each channel resulting in even lower nolme level with improved senalivity. A really first-class Hi-Fi Stereo Amplifier Kil Usea 14 tranaistofs giving 8 watte ples pull output pet channel (16 W mono). Integrated pre-amp. With Bass Treble and Volume controis. Suitable for use with Ceramic or Crystal cartridges. Output stage for any applied including drilled metal work. Clr-Kit board upplied tront panel, knobs, wire, solder, nuts, bolts co extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of Brief specifcatlon: Freq. remponae \pm 3dB. 2J-20.000c/s Bass boost approx. to +12 dB . Treble cut approx. to -16 dB . Negative leedback 18 dB over main amp Power requirementa 25 V at 0.6 amp .
PRICES: AMPLIFIER KIT E10.10.0; POWER PACK K1T ${ }^{2} 8.0 .0$; CABINET 88.0 .0 . All Pobt Free.
Also available STEREO $10+10$. As above but 10 watt er channel 9310 . PACK KIT £3.10.0.
Circuit diagram, construction detaile and parts ligt (free

GENABAL PURPOSE HIGH 8TABILITY TRAK GENEBAL PURPOBE HIGH 8TABILITY TRAN Quitar, etc., and suitable for use with valve of Guitar, etc., and suitable ior equipment. Can be operated from $9-18 \mathrm{~V}$ Battery supply or direct from $\mathbf{H} . \mathrm{T}$. line $200 / 300 \mathrm{~V}$ F'requency reaponse $15 \mathrm{~Hz}-26 \mathrm{KHz}$, Galn 26 dB
gold encapsulation sixe $14 \times 1 \& \times 1 \mathrm{in}$. Brand new Golld encapsulation size $1: 3 \times 11 \times$ in. Brand new
complete wilth inatructions. Price $17 / 6$. P. \& P. $2 / 6$.

EPMCLAL PURCHASE! avy 8ain tartal turntab Low flutter performance 200 250 V shaded motor (90 tap). Complete with lateat ype lightweight pick-up arm and mono cartridge with on

QUALITY RECORD PLAYBR AMPLIPIER ME II

 top-quality record player ampliner employing heav uty double round malns transiormer, ECEBS, ELS4, Rz80 valves. Separate Bass, Trebie and Volume controls complete wize $7 \mathrm{in}, \mathrm{w} \times 3 \mathrm{~d} \times 6 \mathrm{~h}$. Ready built and teated on board with output transformer and speaker ready to fit into cabinet beiow. PR1CE 97/6. P. \& P. 7/6. DE LUXE QUALITY PORTABLE R/P CABINET MK II Uncut mnotor board size 14) $\times 12$ in., clearance 2 in. below 51 in. above. Will take above amplifier and any B.S.R. or GARRARD changer or Bingle Piayer (except AT60 and SP25). \$1ze $18 \times 15 \times 8$ in. PRICE 79/6. P. \& P. 9/6

MPLITERE HAS4 $\mathbf{Y E}$ II Designed for Hi-Fi reproduc lon of records. A.C. Main operation. Ready bullt on plated heavy gauge metal chassis, slze 7 in $w . \times 4$ in. d. \times 4in. h. Incorporates ECC83 EL84, Ez80 valves. Heary duty, double wound malna transformer abd output trans peaker. Separate volume control and now with improved wide range tone controls glving basa and treble lift and cut. Negative feedback line. Output $4 \frac{1}{\text { watts. Front }}$ panel can be detached and leads extended for remote mounting of controls. Complete with knobe
wired and tented for only $\mathbf{\$ 4 . 1 5 . 0}$. P. \& P. $6 /$

HEL "TOUR" ATPLIFIEAR EIT. Bimilar in appearance to circuitry. Complete set of parts, etc. 7918. P. \& P. B/-

HARVERSON'S SUPER MONO AMPLIFIER

A super quality gram amplifier using a double wound pentode valve as audio armplifter and power output atage impedance 3 ohms. Output approx. 3.5 watts. Volume and tone controls. Chaeaia size only 7 in . Wide $\times 3 \mathrm{~h}$. deep in. high overall. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutel y Brand New completely wired and tested with valves a ount
OUR ROCK BOTTOE
SARGAN PRICE

DE LUXE STEREO AMPLIFIER

\times EZ80 as full wave rectifier Two Triode Pentodes. re provided for bass and treble control, giving baseters are provided for bass and treble control, giving base and Balance of the left and right hand channels can be adjusted by means of a separate 'balance' control fitted at the rear of the chassia. Input senaitivity fo approxlmately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watte per channel (8 watte mono), Into 3 ohm apeakers. Full negative leedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortlon. Supplied complete with knobs, chassia size 11 in . w $\times 4$ in. x Overall helght including valves $5 i n$. Ready built and teated to a high standard. Price 8 gns. P. \& P. 8/-

S-SPEED RECORD PLAYER BARGALIS

finin mot

 LATEST B.S.R. C109/AR1 4-SPRED AUTOCEANGR (1) With stereo cartridge 27.19.6. Carr. 6/6.LATEST GARRARD MODELS. All types avallable 1025 2025, 8P85, 2000 , AT60 te. Sond 8.A.E. Jor Latelt Prices PLITTH UNITS cut out for Garrard Models 1025, 2025 2000. 3000, AT60, 8P25. With transparent piatic cover OUR PRICE 5 gas . complete. P. \&P. 8/6.

LATRST ACOS GP91/18C Mono Compatible Cartridge with o btylu for LP/EP/78. Cniversal mounting bracket $80 / \mathrm{F}$. P. \& P. 1/6
sONOTORE 2589 High output Stereo Cartridge. outing rar stereo/ Price 48/7
OUR PRICE 2s/-. P. \& P $1 / 6$.
SONOTONE STAHC compatible Stereo Cartridge with diamond stylus $50 /-$ P. \& P. 2/*
LATEST RONETTE T/O Stareo Compatible Cartridge for EP/LP/Stereo/78. 32/6. P. \& P. 2/-
EP/LP EP/LP/78 mono or stereo records on mono equipinent /-, P. \& P. 2/

HIGR GAN 4 TRANBIETOR

 PRINTED CROUIAMPLIFIER KIT
Type TA1
put in excese
of 1$\}$ watte.

- All stan-
dard Britigh
componente.
- Bullt o

printed circuit panel size $6 \times 3 \mathrm{~m}$. Output Tranatormers - Generous aize Dricer and output Tranaiormers Output transformer tapped for 3 ohm and 16 ohm
speakera. Transistorn (GET1 14 or $\$ 1$ Mullard AC 128 D and matched pair of AC128 o/p). 9 volt operation. - Everythjug supplied, wire, battery clips, solder etc. - Comprehensive easy to follow instructions and circuit diagram 2/6 (Free with Kit). All parts sold separately sPRCIAL PRICE $45 /-$ P. \& P, 3/-. Also ready built and tested, 52/6. P. P. 3/

10/14 WATT HI-FI AMPLIFIER EIT
A itylishly finished monaural amplifier with an output of
14 watts from 2 EL84s in puah-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records nd ansouncements

Fully shrouded sec wally shrouded section wound output transformer to and separate basa and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifler. Simple instruction booklet $2 / 6$ (Free with parts). All paris cold separately. ONLY E7.9.6. P. \& P. $8 / 6$ Also arailable ready built and tested complete with std input sockets, t9.8.0. P. \& P. 8/6

BRAID KEW TRANSISTOR BARGADS. GET 16 (Matched Pair) 15/=;V15/10p, 10/-; OC71 \$/-; OC76 0/AF117 8/6;20339 (NPN) 8/-
et of Mullard 8 transistora OC44, 2-OC45, AC128D matched pair AC128 2

VYFAR AID REXITE spEAKERS AID CABLIET FABRICS app. 64in. wide. Uaually 35/-yd., our price 18/Yd. length. P. \& P. $2 / 6$ (min. 1 yd.). 8.A.E. for aamples.

Open all day Saturday Early closing Wed. 1 p.m. A few minuten from South Wimbledon Tube Stalton

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01.560 3985 send stamped adoressed envelope with all enquiries

Never Built a Kiir Before?

Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

Stereo Record Player
Kit: K/SRP-I - © $\mathbf{E 2 7 . 6 . 0}$ Carr. 11/-

Deluxe Car Radio
Kit: K/CR-I ($\left.\begin{array}{l}\text { less } \\ \text { Spks. }\end{array}\right) £ 12.12 .0$ Carr. 5/-

'SEVERN ' AM/FM Radio Kit: K/SEYERN - $\mathbf{£ 1 8 . 1 8 . 0}$ Carr. 5/-

Model

Builder's
Tacho

Kit: K/GD-69 - - $£ 11.0 .0$ Carr. Paid

YATES ELECTRONICS

RESISTORS
High stability carbon film. Very low noise. 0.5 watt $5 \% 4.70$ to 2.2 Mn 2 d each. 0.5 watt $10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega 2 \mathrm{~d}$ each. 2 watt $20 \% 100 \Omega$ to DEVELOPMENT PACK
0.5 watt 5% resistors 5 of each value 4.7Ω to $1 M_{\Omega}$

325 resistors E12 series $50 /-$. 650 resistors E24 series 100%.
MULLARD POLYESTER CAPACITORS 110%
$400 \mathrm{~V}: \quad 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F} .0 .0047 \mu \mathrm{~F} . \quad 6 \mathrm{~d} .0 .0068 \mu \mathrm{~F}$
$0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F} .7 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$ $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d}, 0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$ $0.15 \mu \mathrm{~F} .0 .22 \mu \mathrm{~F}, \operatorname{IId} \quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}, 2 / 3, \quad 1.0 \mu \mathrm{~F}, 2 / 6$.
 MYLAR FILM CAPACITORS MOOV: $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}$
CAPAC $0.01 \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 6 \mathrm{~d}, 0.05 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 8 \mathrm{~d}$,
5 election of ceramic and polyester capacitors 100 pF to $1 \cdot 0 \mu \mathrm{~F}$. Total 100
Capacitors, E2.I8.0.

$50 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$40 \mu \mathrm{~F}$	16 V	$16 \mu \mathrm{~F}$	40 V
$100 \mu \mathrm{~F}$	6 V	$64 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	12 V	$6.4 \mu \mathrm{~F}$	25 V	$50 \mu \mathrm{~F}$	40 V
$200 \mu \mathrm{~F}$	6 V	$125 \mu \mathrm{~F}$	10 V	$50 \mu \mathrm{~F}$	12 V	$25 \mu \mathrm{~F}$	25 V	$2.5 \mu \mathrm{~F}$	64 V
$320 \mu \mathrm{~F}$	6 V	$200 \mu \mathrm{~F}$	10 V	$100 \mu \mathrm{~F}$	12 V	$8 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	64 V

$250 \mu \mathrm{~F} 12 \mathrm{~V}, 100 \mu \mathrm{~F} 40 \mathrm{~V} 1 / 6$. $1000 \mu \mathrm{~F} 25 \mathrm{~V} 6 /-. \quad 2500 \mu \mathrm{~F} 25 \mathrm{~V} 9 /-1500 \mu \mathrm{~F} \quad 50 \mathrm{~V}$
$5 / \mathrm{m} . \quad 1000 \mu \mathrm{~F} 50 \mathrm{~V}$ B/-
CERAMIC DISC CAPACITORS
$110 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 330 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}, 1000 \mathrm{pF}, 2000 \mathrm{pF}$ $5000 \mathrm{p} F$, $10,000 \mathrm{p}$, 5d each.
GANGED STEREO POTENTIOMETERS
$\frac{1}{2}$ watt carbon track $5 k \Omega+5 k \Omega$ to $\mid M \Omega+M \Omega \log$ or linear, 8/- each
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500$ ohms and decades to 5 M ohm $\pm 20 \% \leqslant 250 \mathrm{k} \Omega, .30 \%$, $-250 \mathrm{k} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
Miniature 0.3 watt $1 /-$ each.
5 ub-miniature 0.1 watt 10 d each.
SILICON RECTIFIERS
BY236 $800 \mathrm{~V} 0.8 \mathrm{amp} 3 /-$ each. BY237 $1250 \mathrm{~V} 0.8 \mathrm{amp} 3 / 6$ each.
VEROBOARD

	0.15 Matrix	0.1 Matrix		0.15 Matrix	0.1 Matrix
$2 \frac{1}{2} \times 3 \frac{1}{2}$	$3 / 3$	$3 / 6$	Pin insertion tool	$9 / 6$	916
21×5	3/9	4/3	Pkt. 36 pins	3/-	3/-
$3 \frac{1}{2} \times 3 \frac{1}{2}$	3/9	3/9	5pot face cutter	7/3	7/3
$3 \pm \times 5$	5/3	5/3			
17×32	14/6	-			

YATES ELECTRONICS (FLITWICK) LTD. 29 LYALL CLOSE, FLITWICK, BEDS.

Let us give you the facts
From cover to cover Goodmans Manual is packed with fascinating articles on Stereo; a beginners guide to High Fidelity: Stage-built Systems: complete details of Goodmans High Fidelity Audio products. 28 pages you can't afford to miss .. . and it's yours FREE 1

Please send me a free copy

Name
Address
Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tel : 01-902 1200

InW Boins

 $M \sim M \sim M \sim M \sim M$
(Editors and Engineers)

 RADIO HANDBOOK 18th Editionby William I. Orr (April)
105/
HOW TO USE INTEGRATED C by J. W. Streater (March) 28/ 101 QUESTIONS\& ANSWERS ABOUT HI-FI \& STEREO by Leo G. Sands and Fred Shunaman (March) 24/SWL \& ANTENNA CON STRUCTION PROJECT by Edward M. Noll (June) 25/ABC'S VOLTAGE-DEPENDENTS R RESISTORS by Rufus P. Turner (June) 22/WORKSHOP IN SOLID STATE by Harold E. Ennes (July) 65/TAPE RECORDER SERVICING GUIDE by Robert G. Middleton (July) 35 ABC'S OF THERMISTORS by Rufus P. Turner (July) 22/

FOULSHAM-SAMS TECHNICAL BOOKS
 (W.FOULSHAM \& CO.LTD.) YEOVIL RD., SLOUHH, BUCKS, ENGLAND

NEW RAMGE V.H.E. TV AERMIS

All U.H.F, aerials now fitted with tilting bracke and 4 element grid refectors.
Loft Mounting Arrass. 7 element, 40 62, Whail Younting with Cranked 18 elemen 62,6. Wail tiounting with cranked Arm 75/-; 18 element, 82/6. Mast Mountlng with 2 in . cłamp. 7 element, 42;6; 11 element, 35 ;14 element, 62:- 18 element, 70:-. Chimne Mounting Arrass, Complete, 7 element 72,6;11 element, $80 ;-$; 14 element, 87/6; 18 element 95'- Complete assembly instructions with ever unit. Low Loss Cable, 16 y required on all orders

BBC. ITV AERIALS

ExC (Band 1). Loft, ${ }^{25}{ }^{25}$ " External
E2.15.0.
ITV (Band 3), 3 element loft array, 30 - 5 element, 40 ': 7 element, 50;-. Wall mounting Combined BBC/ITV. Loft Combined B BC/ITV
$1+3,40 /-1+5,50 /-i+7$ 60/-: Wali mounting $1+3$,
$60,-; 1+5,70,-;$
$1+3$ Chimney IIIF transistor pre-amps

COMBINED BBC1-ITV-BBC' AERIALS $1+3+9,70-1+5+9,80,1+5$
$1+7+14,100-$ Loft mounting only.
F.M. (Hand ${ }^{2}$), Loft S D, 17 6. ' H ', 35,,${ }^{3}$ cable, 8d. yd. Co-ax plogs, 6 . Outer boxes, Diplexer Crossover Boxes, 17,6 . C.W.O. or C.O.D P. \& P \mathbf{P} 6/6. Send 6d. stamps for itlustrated llsts. CALLERS WELCOME
OPEN ALL DAY SATURDAY

K.V.A. ELECTRONICS (Dept. P.E.)

40.41 Monarch Parade

London Road, Mitcham, Surrey 01-648 4884 Complete with 3 connecting wires each 66 ft , and other accessories. P. \& P. $7 / 6$.

MAINS INTERCOM
Ho batteries - DO wirez. Just plug in the mains for instant two way, loud and clear communlcation On/oll switch and volume control
Price s11.19.8. P. \& P. 8/6 extra

same as 4-Station Intercom for two-way instan communication. Ideal as Baby Alarm and Doo Phone. Complete with 66 ft . connecting wire Battery 2/6. P. \&P. 4/6. buslnesa eft clency with this incredible De-Luxe Tolophone Amph fier. Take down long telephone messages or converse without holding the handset. A useful office ald. On 3/6. Full price refur Batcory

Full price refunded if bot sathaed in 7 day
WEST LONDON DIREGT SUPPLIES (PE/3)

COMPLEAE STHEO SHITIM

FOR ONLY

39 us

CARRIAGE 35/-

PREMIER STEREOSYSTEM "ONE" COnsists of an all transistor stereo amplifier. Garrard $2025 \mathrm{~T} / \mathrm{C}$ auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The ro transistor amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls : Bass, Treble, Volume, Balance, Selector. Power on/off, stereo/mono switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{3}$ hin. high (Amplifier available separately if required $£ 14.18 .6$. Carr. 7 6).

PREMIER STEREO SYSTEM "TWO"

TELETON SAQ203E STEREO AMPLIFIER

A small but poweriul innplifien designed for stereo hit reproduction. 10 watte per channel masic power
Inputs for (irant Magnetic and Cryatal). Tuner and Auxiliary. Tape Recorli output. Controla: Volume Balance, Bass. Treble, stereo/Mono slide suitch. Stereo headphone socket. Attractive oilpd walnut cabinet with brushed atuminium front panel. List Price $£ 28.7 .0$ $\underset{\text { PRICE }}{\text { PREMIER } 22 G A S . ~}$

PREMIER STEREO SYSTEM
Teleton SAQ203E Amplifier (as above) Garrard 8P25
Thare H3D and cover
Pair of Hi-Fi Eaclosures fitted E.M.I.
Speakers
Total cont il purchased separately
PREMIER 65 GMS

VERITAS V-149 MIXER
Battery operated 4 -channel audio mixer providirg four separate inputs. Size 6×3 microphone, with transformer radio, tape, etc. Max. input 15V, max. output $2 \cdot 5 \mathrm{~V}$, gain 6idB. Btandard jack plug socket inputs, phonopluge ontput. Attractive teak woon grain tinish case $\begin{array}{ll}\text { Kono } \\ \text { Kodel } \\ 59 / 6 & \text { stereo } 69 / 6\end{array}$

WIDE RANGE OF HI-FI STEREO EI All leading makes available incluling Rogers, Armstrong,
E.M.I. $13 \times 8 \mathrm{in}$. HI-FI SPEAKERS
Fitted two 2 in. tweeters and crosgover network. Impedance 15 ohms. Handling enpacity 0w. Brand nea
79/6

HI-FI STEREO HEADPHONES

 Designed to the higbest possible standard. Fitteil 2 in. speaker units with boft padiled ear mufta Alfustable heiutband 8 ohm impedance. Complete with 6ft. lead and $59 / 6=\stackrel{r}{5}$
'VERITAS' V-313 TAPE HEAD DEFLUXER A must for all tape users! Tape heads become permanently magnetized Fith

background noise that prevents perfect Lackround noise that prevents perfect
recordings simply applied to recording
head the visl leaves head tree of mat. head the 313 leaves head ree of mag. netiom. Cleans any tape head in seconds.
"MOVA" 505 STEREO AMPLIFIER

A superts stereo amplitier offering every facility for the hi-fi enthusiast. Output 5 watts per channel. Frequency response $\$ 0-20,000 \mathrm{~Hz} \quad 3 \mathrm{~dB}$. Inpuis for ralio, P. \mathbf{L}. Ceramic, P.Y. Magnetic Tape. Keparate lass and treble controla, Solume and Balance controls, Mono stereo switch. Aloo features headphone socket and tape
output. Teak case with attractive illuninated front ontput. Teak case with attractive ilhmanated front rebeyer 18 Gns . $\underset{\text { Premer }}{ } 18$ Gns. carr. 10

PREMIER STEREO SYSTEM " THREE"	
	${ }_{\substack{418.18 .0 \\ 111.19 .8}}$
Sonotobe 9TAHCD	22.15:0
Teak baee and cover	25.10.0
Pair of hi-Fi Enclosares atted E.M. Spertis	228.5.0
Total cost if purchssed separately	265.7 .8
$\underset{\substack{\text { PREMIER } \\ \text { PRICE }}}{ } 55$ GNS. ca	

TWO STATION TEASSIBTOR
IMTERCOMS Complete with battery wire. Compact aize, two way call system. Ideal fot home, oftec factory.
$\mathbf{6 5 / -} . \& \mathrm{i}$
析
 6/

TAPE CASSETTES

"VERITONE" RECORDING TAPE
SPECLALLY MARUPACTURED IN U.S.A. FROI EXTRA ETROEG FRE-8TRETCHED MATERIAL TRE QUALITY IS UNEQUALLED. TENSILISED to ensure the most permanent base. Highly resistant to breakage, moisture, heat, cold or humidity. High polished splice free finish. Smooth output throughout the entire atudio range. Double urapped - attractively hoxed. $\begin{array}{lllllllll}\text { LP3 } & 3^{*} & 250^{\circ} & \text { P.V.C. } & 5 / 6 & \text { LPG } & 51^{*} & 1200^{\prime} & \text { P.V.C. } \\ \text { TT3 } & 3^{\gamma} & 450 & \text { POLYESTER } & 7 / 6 & \text { DT6 } & 5 \%^{*} & 1800^{\prime} & \text { POLYESTER } \\ \text { PO } & 28 / 6\end{array}$

 $\begin{array}{lllllllll}\text { LPS } & 5^{*} & 900^{\prime} & \text { P.V.C. } & 10 /- & \text { LP7 } & 7^{*} & 1800^{\prime} & \text { P.V.C. } \\ \text { DT5 } & 5^{*} & 1200^{\prime} & \text { POLYESTER } & 15 /- & \text { DT7 } & 7^{\prime \prime} & 2400^{\prime} & \text { POLYESTER } \\ 25 /-\end{array}$
 Post and P1cking $\left.3^{\prime \prime}\right]^{1 / 2}, 5^{*}, 52^{\prime \prime} 1 / 6,7^{*} 2 \%$. (3 reels and over Post Fref.)

C90 $\binom{(90}{$ min }$\quad 12 / 6$ (120 Ee For 36/ 1 (min. $17 / 6$ P. \& P. $1 /$

CASSETTE HEAD

CLEANER
femoves unwanted deposila from delicate tape head. Fits all cassette recorders. \| $1 / 6 \begin{array}{ll}6 & \text { P. \& } P \text {. } \\ 1 /-\end{array}$
All casectes tad be supplied with Ifbrary cases at 6d.

Pructicul Electronics Classified Advertisements

RATES: $1 / 6$ per word (minimum 12 words). Box No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics " IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS

PHOTO ELECTRIC SWITCH KIT

 Lizht cell transistor, relay etc. Elezant case in hammer blue $5 t^{*} \times 2 t^{*} \times 4 t^{*}$ fitted with lighthood, ideal counter alarm, dawn/dusk switch hood, ideal counter alarm, dawn/dusk switch, etc. js/- post paid.

6 OR 12 VOLT

FLUORESCENT LIGHTS
12 ins. 8 Watt tube ample light for caravan, tent, etc. Fully transistorised, low battery drain Unbeatable at $65 / 6$ post paid. or in kitform $57 / 6$
4 WATT GRAM AMPS.
Volume and cone controls, mains operation, 3Ω output, new and boxed $72 / 6$ POST SALOP ELECTRONICS 23Wyle Cop
Shrewsbury, Shropshire Callers welcome

ERVICE FOR THE AMATEUR ELECTRONIC ENTHUBIAST. Are you building equipment requiring a transforner? If so send for an inmediate quotation, or sa.e. for our comprehensive price list. Also available on request enamelled copper wire price list. BANNER THANSFORMERS, 84 Old lansdowne Rd. West Didsbury, Manchester, 20.

GLEARING LABORATORY, scopes, V.T.V.M's Y.O.M's, H.s. recoriers, transcription turntables, electronic testmeters, calibration units, P.S.''.'s, pulse generators, D.C'. nullpotentioneters, bridges, spectrum analysers, voltage regulators, sig-gens, M/C relays, components, etc. Lower Beeding 236 .
musical miracles! Drum, Cymbals, Waawaa and Fuzz modules. New unique effects units, Percussion, etc. Good wat-waa kits 49/-. Famous "Mister lassiman" bass pedal unit. Also bargain components list of reed switches, ete. Send S.A.E. NOW! D.E.W. LTI)., 254 Ringwood Road, Ferndown, Dorset.

MORE ROBOTS

Syntheric Animals with "BRAINS" of their own. The LATEST range of projects include: an electronic 'animal'' which "LEARNS", and an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE YOU are a transmitter/receiver which radiates without using r.f. so there's NO NEED TO WORRY ABOUT A LICENCE, also TEN new projects, one of which is an electronic dice machine. HOSTS OF EASY-TO CONSTRUCT projects, for anyone with a basic knowledge of Electronics. DON'T WAIT. SEND $3 /$ - for your list-NOW!
To: 'BOFFIN PROJECTS'
CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

PARAPHYBICAL LABORATORY, Downton, Wilts, Telekinesis. Magazines. Send S.A.E. for list. Samples 20/-

CHEAPEST EVER: unmarked transistors, 100% good, similar Ori71. Only $3 /-$ for 10 !

 FOX, Ridgeway, Farnsfleld, Notts.CASTLE LABORATORIE8 for printed circuits and senuiconductors. Examples: zener diodes, $400 \mathrm{~mW}, 3 /-.1 .5 \mathrm{~W}, 3 / 9.10 \mathrm{~W}, 5 /-. \quad$ Triacs from 16/-. Design service for printed circuits as well as stock boards for P.E. Projects. Veroboard cut to your exact sizes at no extra charge. Send stamp for full lists. (CASTIE LABORATORIES, Stapleton Close, Highworth, Wilts.

MISCELLANEOUS (continued)

TOP TRANSISTORS

ACY22	$1 / 9$	$O C 45$	$1 / 9$	Z 1×300	$1 / 9$
BC108	$1 / 9$	$O C 71$	$1 / 9$	$2 N 706$	$1 / 9$
BFY551	$1 / 9$	OC201	$1 / 9$	$2 N 2926$	$1 / 9$
BFY52	$1 / 9$	OC202	$1 / 9$	$2 N 3708$	$1 / 9$
All the above types are available at 16 for 41.					

ANTEX SOLDER IRON

This is a lightweight iron firced wish a 15 wart nickel plated bir. It has been designed to enable you to weld reliable joints accurately.
Special low price. Model CN240 volts.

ACT NOW 29'11

MONEY BACK GUARANTEE, P. \& P. 1^{\prime} J. M. King (U), 17 Buckridge Portpool Lane, London, E.C. 1

A CORNUCOPIA OF COMPONENTS! Scarce valves, selected TV components, speakers and cabinets. Computer panels-long leads, NOT printed circuits. Transistors, resistors-new and recovered. State your requirements. S.A.E. for details MAlI-MART, 6 Eastbourne Road, levensey lans, sussex.

BUILD IT in a IDEWBOX quality cabinet in $\times 2$ itin \times any length. DEW LTD. lingwood Road, Ferndown, Dorset. S.A.E for leatfet. Write now-righit now.

SPEAKER CABINET BARGAIN

Beautifully finished in Straighe Grained Teak Veneers with harmonising material front. Spare baffle for any size of speaker up to 10×6 ins. Size $16 \times 8 \times 6$ ins. Only 67/6d each or 2 at $62 / 6 \mathrm{~d}$ each, carr. free. Send for free and illusroted lists. ALBION ELECTRONIC8 8UPPLIE8, 16 Albion Road, Birchington, Kent.

POWER SUPPLIES

Professional grade silicon transistor power supply modules. Units consist of power supply modules. Units consist of
p.c. board assembly size $6^{\prime \prime} \times 3 \frac{1}{n}^{\prime \prime}$. 240 Volts P.c. board assembly size $6^{\prime \prime} \times 3 \frac{1}{n}^{\prime \prime}$ ic 240 Volts
AC input. $D C$ Voltage adjustable from $9-13$ AC input. DC Voltage adjustable from 9-13
Volts at max 250 mA . No load to full load voltage change less than 1%. Ripple less than 2 mV . $E 5.2 .6 \mathrm{~d}$. each
Also available PEAC Op. Amps. 34/- each. WESTEK
P.O. BOX 7, RICKMANSWORTH, HERTS

FOR SALE

NEW CATALOGUE No. 18 , containing credit vouchers value $10 /$-, now available. Manufacturers' new and surplus electronic and mechanical components, price 4/6, post free. ARTIUR SALLIS HADIO CONTROL LAD., 28 Gardner Street, Brighton, Sussex.

MORSE MADE ! !

FACT NOT IFICIION. It you start IRIGIIT you will le readiug amateur ancl cornmercial Morse Within a month (normal grogress to be expected).
utomatically learn to recognise the code records you automatically learn to recognise the code IAHYTHM
without translating. You can't help it, it'o as eaby as learnitg a tune. 18 W.P.M. in 4 weeks guaranteed. For details and course C.O.D. ring B.T.D. 01-660 2896 or send 8d. stamp for explanatory booklet to:
G8H8C (Box 19), 45 GREEM LAAE, PURLEY, BURREY

WANTED

CAEH PAID for New Valves. Payment by return. WILLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, London. W.7. $01-567$ 5400/2971.
"PRACTICAL ELECTRONIC8"', April 1968, G. WILKINsON, Deepwell House, West Chinnock, Crewkerne, Somerset

8ERVICE 8HEETS

LARGE SUPPLIER OF

SERVICE SHEETS

T.V., RADIO, TRAMSISTORS, TAPES, CAR RADIOS

5/- EACH, MANUALS FROM 10/-
PLU'S LARGE S.A.E.
(Uncrossed P.O.'s please, original returned If service sheets not available.) FREE TV FAULT TRACING CHART OR TV
C. CARANNA

7I BEAUFORT PARK, LONDON, N.W.I I MAIL ORDER ONLY

BERVICE 8HEET8. Radio, TV, ptc., 8,000 models. List 2/-. S.A.E. Pnquiries. TELRAY, 11 Maudland Bank, l'reston.

8ERVICE 8HEET8 (1925-1970) for Televisions, Radios, Transistors, Tape Recorders, Record Players, ett., by return post, with free FaultPlayers, etc, by return poist, with free Fault-
Finding Guide. Prices from $1 /-$. Over 8,000 Finding Guide. Prices from $1 /-$. Over 8,000
models avallable. (ntalogue 2/6. Please send S.A.E. with all orders/enguiries. HAMILTON RADIO, 54 London Road, lexhill, sussex

RADIO TELEVISION, over 8,000 Models. JOHN GILBELR ITLLEVISION, 1 b Shepherds Bush Red., London, W.6. SilE 8441.

APPOINTMENTS

LONDON BOROUGH OF EALING

SOUTHALL COLLEGE OF TECHNOLOGY

dEPARTMENT OF ELECTRICAL

 AND ELECTRONIC ENGINEERING
LECTURER

Required from Ist September, 1970 to teach, initially, Electronics and Television Servicing to Inter and Final C \& G 47/48 Course students. To assist with development of new Radio, Television and Electronics Technicians' Course (C \& G 434) and tuition of these students. Recognised qualification to at least Final Certificate C \& G Course 47, 48, or 49 level, or a relevant Higher National Certificate and appropriate industrial experience sought. Teaching experience advantageous.
Salary £1,195-£2,165 inc. L.A. subject to qualifications and experience.
Further details and application form (returnable quoting Ref. E/LI/09/21 by 29th June) from Registrar, Southall College of Technology, Beaconsfield Road, Sourhall.

EDUCATIONAL

[^3]
TELEVISION

国This private College provides efficient theoretical and practical training in Radio and TV Servicing. One-year day courses, commencing in Sept., January and April, are available for beginners, and shortened courses for men who have had previous training. Write for free prospectus to:London Electronics College, Dept. LX/3. 20 Penywern Road, Earls Court, London, S.W. 5

Tel. 01-373 8721

QET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms, etc. For FREE 100 page book, write Dept. $856 \mathrm{~K}, \mathrm{CHAMBERS}$ COLLEGE, College House, 29-31. Wrights Lane, Kensington, London, W.8.

HI-FI EQUIPMENT

8HURE Cartridges. Post Free. M3D 24.19.6. M44/5/7 87.10.0. M44E 88.17.6. M55E \&9.17.6. M75E/2 \$16.10.0. GOLIDRING G 800 \&7.17.6. Garrard SP. 25 Mk. II \&10.17.6. AP.75 \&16.17.6. Garrard SP.
Teleton $S A Q \quad 203 \mathrm{E}$ \&19.15.0. P. \& P. 7/6. Teleton SAQ $203 E$ 219.15.0. P. ${ }^{\text {\& }}$ PTMATE $\mathrm{P} / 6$.
ILECTRONICS. 38 Achilles Road, London, N.W.6. Mail Order Only.

SITUATIONS VACANT

A.M.I.E.R.E., A.M.S.E. (Dlec.), City d Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronies, Computers, Radio, T.V., etc. 132-page Guide-FREE. Please siate subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept, 124 K), Aldermaston Court, Aldermaston Berks.

BOOK8 AND PUBLICATION:

AMATEUR ORQANI8T. Fab. mag. for organ enthusiasts. Send stamp for FREE specimen copy to Dept. G3, Amateur Organist, P.O. Box 9 , Romford, RM5 3UT.

SURPLUS HANDBOOKS

19 set Circuit and Notes
7/-P.P. 9d
19 set Circuit and Notes
1155 set Circuit and Nores Il55 set Circuit and Notes 7/-P.P.9d H.R.O. Technical Instructions . . $\%$ - P.P. 9d 38 set Technical Instructions.. 46 set Working Instructions. © 8 et Technical Instruccions. BC. 221 Circuic and Notes. Wavemeter Class D Tech. Instr IS set Circuit and Notes BC. 1000 (31 set) Circuit E Notes BC. 1000 (31 Eet) Circuit E Notes 6/-P.P. 9d CR. $100 / B .28$ Circuit and Notes IO/6 P.P. I/. R. 107 Circuit and Notes
A.R.8sD. Instruccion Manual. . . $18 / 6$ P.P. P. 9d A.R.8sD. Instruction Manual $18 / 6$ P.P. 9d
62 set Circuit and Notes 7/- P.P. 9d 52 set Sender 3 Receiver Circuits $/$ /-post fren Circuit Diagrams $5 / 6$ each post free. R.I| $16 /$ A, R. $1224 /$ A, R. 1355, R.F, 24, $25,226$. A.1134, T.1154, CR.300, BC.342. BC. 312. BC.348.J.E.M.P. BC.624. 22 set. Colour Code Indicator 2/6 P.P. 6d Colour Code indicator $2 / 6$ P.
S.A.E. with all enquiries please Postage rates apply to U.K. only. Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbor House, 28 Talbor Gardens Leeds 8

1 ITs
 Established 1891
 TECHNICALTRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC5 trained man. Let I C S train YOU for a well-paid post in this expanding field.
I CS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: - C. a G. TELECOMMUNICATION TECHNICIANS' CERTS. - C. \& G. ELECTRONIC SEAVICING.

- R.T.E.B. RADIO AND TV SEAVICING CERTIFICATE.
- RADIO AMATEUAS' EXAMINATION.
- p.m.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students coached until successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL
 CORRESPONDENCE

Schools

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

AMAZING VALUE

All NEW FULL SPECIFICATION DEVICES
Intograted Circaity complete with data:
GE PA230 Audio Preamplifier
GE PA234 IW Audio Amplifler
Pleвеу gl402A Preamp and $2 \mathrm{~W} A \mathrm{mp}$ equivalent to I.C. 10
MEL $1 I$ Photo Darlington Amp
L Microcircaite for 5 V 8npply;
8N7400, SN7410, SN7420, SN7451 18/8 each
Connectors for GE' ${ }^{\text {and }}$ TTLL
High Quality low cost transigtors:
GE 2N5172 NPN 200 mW
ME 0412 PNP 200 mW
TI 2N4059 PNP 250 mW
MUL BFX86 NPN 800 mW
MUL BD124 NPN 15W
S 2N3055 NPN $115 W^{W}$
Triaca for full wave power control:
RCA 406698 A 400 V
RCA 40583 Trigger Diode
Plastice rectifors for powor apppites:
1N 48201.5 A 400 V Si Rectifier
PD40 2A 400 V full wave bridge si

JEF ELECTRONICS

York House, 12 Yorl Drive, Grappenhall, Warrington
C.W.O. P. \& P. 1/-per order. Mail Order Only Money back if not satisfled

MAINB POWER PACK8 suitable for transistor ampliflers. 240 a.c. input. Vominal 24 V d.e. 350 m.a. out. $35 /-$ plus $3 / 6$ P. \& P. C.W.O. V.S. AlDDIO, 44 a High Road, Swaythling, Southampton.
E.M.C. PRODUCTS, BOURNEMOUTH OUTSTANDING NEW INNOVATION FROM E.M.C.

MINI-LEZ

The smallest BIG sound rotary padde tone cabinet yet. From $\mathbf{5} 39$.
S.A.E. for details of above and new illustrated
price list including stop tab assemblies, etc.

Department P.E. 3

E.M.C. PRODUCTS

22 Norwich Road, Bournemouth

FTVADTIED TUEES AT REDUGED PiICES

We are the arca stockists for Display Electronics Re-manufactured Tubes. These iubes have a complete new gun assembly, the glass is the only We invite enquiries from the cannot wear out. Daily 9.30-5.30. Frl. 9.30-8, closed Wedmesday TELEVISION CITY
50 Richmond Road. Kingston, Surrey
Telephone 01-546 3961 (ioo yards from station)

R \& R RADIO
 51 Burnley Road, Rawtenstall Rossendale, Lancs

Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTAED

EBF80	$3 /-$	PCC84	$3 /-$	PY81	$3 / 6$
EBF89	$3 / 6$	PCF80	$3 /-$	PY82	$3 /-$
ECC82	$3 /-$	PCF82	$3 / 6$	PY800	$3 / 6$
ECL80	$3 /-$	PCL82	$4 /-$	PY801	$3 / 6$
EF80	$1 / 6$	PCL83	$4 /-$	U191	$4 / 6$
EF85	$3 /-$	PL36	$5 /-$	$30 F 5$	$2 / 6$
EY86	$4 /-$	PL81	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 / 6$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C O 66$	$7 / 6$

POST, ONE VALVE Pd. TWO TO SIX 6d. OVER SIX POST PAIO.

EX COMPUTER PRINTED CIRCUIT PANELS $2^{\prime \prime} \times 4^{\prime \prime}$ packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards 10/-. P. \& P. I/6. With a guaranteed minimum of 35 transistors. Transistor data included.
SPECIAL BARGAIN PACK. 25 boards for \&1. P. \& P. 3/6. With a guaranteed minimum of 85 transistors. Transistor data included.
PANELS with 2 power transistors sim. to OC28 on each board plus components. 2 boards $(4 \times O C 28) 10 /$. P. \& P. $1 / 6$.

9 OAS, 3 OAIO, 3 Pot Cores, 26 Resistors. 14 Capacitors, 3 GET872, 3 GET872B, I GET875. All long leaded on panels $13^{\prime \prime} \times 4^{\prime \prime}$.
4 for 20/F, P. \& P. 5/.

EX COMPUTER "MEMORY" CORE STORE PLANES

160 BITS $£ 1$	P. \& P. 2/-
4,000 BITS $£ 4$	P. \& P. 4/-

MIXED RESISTORS
 $\frac{1}{4} \& \frac{1}{2}$ Watt $\quad 12 / 6$
 P. \& P. 1/6
 250

D I O D E S

| 10 Amp \|50 PIV | 4 for $10 /-$ |
| :--- | :--- | :--- | :--- |
| 20 Amp $\mid 50$ PIV | 4 for 41 |
| 35 Amp 450 PIV | 4 for $45 /-$ |

EXTRACTOR/BLOWER
FANS (Papst)
100 c.f.m. $4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} 4 \frac{1}{2}^{\prime \prime}$
2,800 r.p.m.
$50 /=$ ea. P. \& P. $5 /$.

RELAY OFFER

Single Pole Changeover Silver Contacts $2^{\prime \prime} \times 6^{\prime \prime} \times 7^{\prime \prime} .25 \mathrm{~K} \Omega$ coil operates on 25 to $50 \mathrm{~V}, 8$ for $10 / \mathrm{m}$. P. \& P. 1/6

PYE CAR RADIO
Push Button Tuning Heart
This PRESTOLOCK 5 station Push-Button Tuner Heart with Manual Over-ride is an ideal basis for 2 quality $A M$ car radio. Size 6_{2}^{1} in $\times 4$ in $\times 2 i n$. 25/- plus 3/P. \& P.

BUMPER BARGAIN PARCEL

We guarantee that this parcel contains at least 1,750 components. Short-leaded on panels, including a minimum of 350 transistors (mainly NPN and PNP germanium, audio and switching types-data supplied). The rest of the parcel is made up with: Resistors 5% or better (including some 1%) mainly metal oxide, carbon film, and composition types. Mainly : and i watt ... diodes, miniature silicon types OA90, OA91, OA95, IS130, etc. ... capacitors including tantalum, electrolytics, ceramies and polyesters ... inductors, a selection of values ... also the odd transformer, trimpot, etc., etc. ... These are all miniature, up-to-date, professional, top quality components. Don't miss this, one of our best offers yet! Price 65/-. Post and Packing 6/6 U.K.; 20/- New Zealand. Limited stoeks only

150

HIGH STABS $\frac{1}{d}, \frac{1}{2}$ and I Watt 5% and Better /2/6. P. \& P. I/6

LARGE CAPACITY	RIPPLE
ELECTROLYTICS	CURRENT
$6 A$	

1,500 mid 150 V
$4,000 \mathrm{mid} 72 \mathrm{~V}$
$7 / 6$ each
$16,000 \mathrm{mid} 12 \mathrm{~V}$
P. \& P. I/6

EXTENSION TELEPHONES

These phones are extensions and do not contain bells

KEYTRONIGS

MAILING ADDRESS:
 52 EARLS COURT ROAD, LONDON, W. 8 1-478 8499

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complet with layout drawing.
EXAMPLES
Marine Tachometer (M Waa-Waa pedal Vol. 4 Na Gen. (Sine and Square on one board) Vol. 5 No. $108 / 6 \mathrm{ea}$.
S.A.E. for List of over 36 Boards. Trade enquiries
W.H. ELECTRONiCS, Industrial Eatate,

Sandwich, Kent. Tel. 2517

NEW MODEL V.H.F. KIT MK2

Our latest Kit, improved design and performance plus extra Ampllifier Stage, recelves Alrcraft, Amateurs, Mobile. Radio 2, 3, 4, et
This novei ilter will give you endless hours of pleasure and can be built in one evening. Powered by 9 Volt built in Jack Socket for use with Earphones or Amplitier.

Only 68/-. P. \& P. Free U.K. only Postal Orders, Cheques to:
Galleon Trading Co., 298A Lodge Lane Romford, Essex

500 MORGANITE 100 KOHM EDGEWI8E UN8WITCHED POTENTIOMETER8. Type 56 N White. Brand Now Surplus to requirements. Ideal for Thyristor dimming circuits. Price 2/- each postage paid or $\$ 30$ for all 500. WILKINSON \& SON, "Carinya", Bell Lane, Nuthampstead, Royston, Herts. Tel. Barkway 553.

TOP PRICES PAID

for new valves and components Write:
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

BRAND NEW ELECTROLYTICS 15/16V $0.5,1,2,5,8,10,20,30,40,50,100 \mathrm{mF}, 8 \cdot 5 \mathrm{~d}$. E12 series 5\% resistors, Carbon Film iw 10Ω to $1 \mathrm{M} \Omega$, 1.5d. Wirewound $5 \mathrm{~W} 15 \Omega$ to $15 \mathrm{~K} \Omega, 10 \mathrm{~d}$. Postage $1 / \mathrm{m}$. The C.R. SUPPLY CO., 127, Chesterfleld Rd., Sheffield, S8 0RN.

SIILCON TRANSISTORS
 1,000,000 FOR SALE

Clearance of pap Silicon Alloy Transis tors from the 25300 (TO-5) and 25320 (SO-2) range and simikar to the OC200-205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost All chese devices would normally be subject to re-selection for industrial use but owing o company policy change have been made available to us surplus to requirements Offering these transistors in varied quantities make them ideal for Amateur Electronics Radio hams and for experimental use in Schools. Colleges and Industry

Supplied uncoded (no warrancy by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors Please state preference of type, i,e., TO-5 25300 or $\mathrm{SO}-2 \mathbf{2} 320$.

Approximate count by weight
100 off-15s. (plus p. \& P. 25.)
300 off-CI 15s. (plus p. \& p. 3s.)
500 off-62 10s. (plus p. \& p. 3s, 6d.)
1.000 off- 64 (plus p. \& p. 5 s.)
0.000 off <35 (plus p. \& p. ils.)

Large quantities quoted for on request
EXPORT ENQUIRIES WELCOME
Alt correspondence, cheques, postal orders, etc., to

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts. Tel.: WARE 3442

POLYESTER CAPACITORS

$400 \mathrm{~V}, 0.0068,0.0047,0.0033,0.0022 \mu \mathrm{~F}, 7 \mathrm{~d}$
$160 \mathrm{~V}, 0.01,0.015,0.022,0.033,0.047,7 \mathrm{~d}$ $0.068,0.1,8 d ; 0.15,0.22,10 \mathrm{~d} ; 0.33,1 / \mathrm{i}$ 0.47, $1 / 4 ; 0.68,2 /$
ica: $350 \mathrm{pF}, 2 \mathrm{kV}, 600 \mathrm{pF}, 240 \mathrm{pF}, 160 \mathrm{pF}$, $150 \mathrm{pF}, 100 \mathrm{pF}, 62 \mathrm{pF}, 30^{\circ} \mathrm{pF}, 27 \mathrm{pF}, 22 \mathrm{pF}$, $10 \mathrm{pF}, 8 \cdot 2 \mathrm{pF}, 3 \cdot 3 \mathrm{pF}, 6 \mathrm{~d}$.
pinted circuit type: $470 \mathrm{pF}, 220 \mathrm{pF}$ 50pF 6d, ELECTROLYTIC CAPACITORS
$500 \mu \mathrm{~F}$ can, $6 \mathrm{~V} ; 400 \mu \mathrm{~F}, 6 \cdot 4 \mathrm{~V} ; 320 \mu \mathrm{~F}, 10 \mathrm{~V}$;
${ }^{30} \mu \mathrm{~F}, 6 \mathrm{~V} ; 20 \mu \mathrm{~F}, 6 \mathrm{~V} ; 8 \mu \mathrm{~F}, 6 \mathrm{~V} ; 4 \mu \mathrm{~F}, 4 \mathrm{~V}, 1 / \mathrm{F}$ RESISTORS
$\frac{1}{2} W 20002 \cdot 7 \mathrm{k}, ~ 22 \mathrm{k}, 30 \mathrm{k}, ~ 62 \mathrm{k}, 83 \mathrm{k}, 150 \mathrm{k}, 430 \mathrm{k}$; $\frac{1}{2} W 1 k_{1} 1 \cdot 5 k, \quad 3 \cdot 6 k, 5 \cdot 6 k, 27 k, 47 k, 68 k$; TRAN, $2 \frac{1}{2} d$ IORS
TRANSISTORS
OC200, 6/-: OC201, 7/6; BCY30, 6/-; BCY31, 7/6.
Tested Silicon TOS and 5O2, Audio: high gain, 4/-; medium, 2/-, low, 1/-.
Diode IN914, I/6. Connecting Wire, 25yd, 2/6. C.W.O. Post and Packing $1 / 6$

VALECTRON
LINKS ROAD, LOWESTOFT

TRAN8F0RMER8. Rewound, Prototypes and pecials. To order. Reasonable prices. SAE. Enquiries. RatclifFe, 18 Beech Avenue, Thongsbridge, Huddersfteld, Yorks.

CONNOR 8IGNAL TESTER for testing Radios, Record Player, Ampliffers, and T/Vs. Tester consists of Audio Anplifer, Multivibrator, a Dectector (AM), and Test Speaker (25z). Speed up your service with a Connor Tester. Battery operated, \&15, with probe leads, less battery, Post free. C.W.O. CONNOR ELEC. TRONICS, 43 Wade Reach, Kirby Road, Walton on Naze, Essex.

AUDIO8CAN-HI-FI loudspeaker systems for the home constructor, cabinet kits, new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding and all necessary components. Free speaker fabric samples on request. Send 9d in stamps to: AUDIOSCAN, Dept. PE, 4 Princes Square, Harrogate, Yorks.

RECEIVER8 AND COMPONENT8
(continued)
dalyne Bargain Corner CONPOMENTS YOU WANT-WHEN YOU WANT TMEM Elactrolytice

Electrolydicu
by. Goneral Instruments
br C.c.L.
$\begin{array}{lll}2 \mu \mathrm{~F} & 16 \mathrm{~V} & 8 \mathrm{~d} \\ 10 \mu \mathrm{~F} & 25 \mu \mathrm{~F} & 12 \mathrm{~V} \\ 10 \mathrm{~V} & \mathrm{by} \text { C.C.L. } \\ 1500 \mu \mathrm{~F} & 25 \mathrm{~V} 8 / 6\end{array}$ $10 \mu \mathrm{~F} 12 \mathrm{~V} 10 \mathrm{~d} \quad 40 \mu \mathrm{~F} 12 \mathrm{~V} 10 \mathrm{~d} \quad 470 \mu \mathrm{~F} \quad 63 \mathrm{~V} 6 /-$ $20 \mu \mathrm{~F}$ 6V 10d $100 \mu \mathrm{~F} 15 \mathrm{~V}$ 1/8 $8 \mu \mathrm{~F} 450 \mathrm{~V} 2 / 6$ TRARSISTORS
TRANSISTORS
2N37028/- MJ481 $25 / 6 \quad$ BC125 9/- 2 N 3055 18/-2N37038/- MJ491 28/9 BC126 9/- 2N706 $8 /{ }^{2}$ N3704 $1 / 840361$ 12/- BC108 2/6 2N2926 $2 /$ BC169 2/8 40362 14/- BC109 2/8 BFYB1 4/Rectifiers, wire ended (PIV stated)

Zeners $5 \% 400 \mathrm{~mW}$
$100 \mathrm{~V} 0.75 \mathrm{~A} \quad 1 / 9 \quad 100 \mathrm{~V} \quad 1 \mathrm{~A} 2 / 3$ all preferred values $400 \mathrm{~V} 1 \mathrm{~A} 3 /-1000 \mathrm{~V} 1 \cdot 5 \mathrm{~A} 4 / 63 \mathrm{~V}$ to $30 \mathrm{~V} 4 /-$ each 200V 1A bridge 10/-
Volume controls 1 In or $\log :$ mono $2 / 6$; stereo $8 /-$. All preferred values in series $4 \cdot 7,10,22,47$, etc.:-4.7K to $2 \cdot 2 \mathrm{M} \Omega$
Terma: 10 or more of each item: Deduct 20%.
P. \&P. on all orders 2/-; Poatal service, U.K. only. asistaction guaranteed
dalyne components Blisworth, Northants
P.C. RECEIVER BOARDS:-PCR 1, if transistur $t\} p t$ with OC'44, two OC45s, but less the aut io transistors i.e. OCKID, aml twu OCBIs. Rin. Bin. as pre Vinusly idvertised, trausformeriess output if watt to 8 whin speaker, $\frac{b}{}$ watt to 20 ohm. with commecting data to clear at $25 /$ each.
PCR \& , 7 transistors, 3 AF'117s, \because ACC127s, $\because \quad A(128 s$ complementary output pair giving \& watt to 5 ohm
speaker, no oscillator coil but l.F. amp and audio

 PCR 3. 6 tranaistors, $O C 44$, \because OC45s, OCB1D "OCK1s, transformerless vatput approx. 400 milli watts, overall size $3 \mathrm{in} \times 5 \mathrm{in}$. with uace. coil and edgewige volume control on boarl, for 6 volt operation, no data or circuit, only $22 / 6$ each.
NOTE. All beards require ferrite aernal, tuning capacitor, wavechange switch, etc. and are all as new and unused.
Push-pull output tansformers to match \because ELs*B pprox. 8 watt ratimg with negative feetback wind 50 brathl, new only $10 /-$ post paid.
opp postage stanp type trinmers (new) ceramic hisulation, 6 d each, $4 / 6$ doz. Ferrite slab aerials . long, M.W. and L.W., requires " 250 pF tuning eapacitor, $3 / 6$ each (deopatched ouly with the above boarcles).
P.C. Board with $\overline{\text { a transistors, ninfature resistors, }}$ capacitors, etc. was used as squelch switch but can be ugel as electronic switch or light sensitive brand new only 12/.
Mall Order Only
All Items plus $1 / 6$ post
A. J. H. ELECTRONICS 59 WAVERLEY ROAD, THE KENT RUGBY, WARWICKSHIRE

RUGBY 71066

ELECTRICAL

240 ELECTRICITY ANYWHERE

BEST EVER $200 / 240$ VOLT "MAINS" SUPPLYFROM 12 VOLT CAR BATTERY Exclusive World Scoop Purchase. The fabulous
Mk. 12 D American H avy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Brilliant $200 / 240$ volt perfor mance of all time. Marvellous for Television Drills, Power Tools, Mains Lighting, AC Fluorescent Lighting and all $200 / 240$ vol Universal AC/DC mains equipment. Made a tremendous cost for U.S.A. Govt. by Delco Remy. This magnificent machine is unobtain Only $65.96+10 / 6$ postage COD with Only $65.9 .6+10 / 6$ postage. C.O.D. with for illustrated details.

Dept. PE, SCIENTIFIC PRODUCTS Mount Street, Fleetwood

GLASS FIBRE OPTIC

FLEXIBLE LIGHT PIPE now available in P.V.C. sheath with 3 times lower loss than plastic fibre.
Used like wire but to convey light to remote or inaccessible positions for inspection, panel in dicators, photo-electric and other applications Prices per ft. (Post free) 1-9, 5/-; 10-49,4/-
$50-249,3 /-$ Enquiries

SYSTEM 696 \& CO. 15 BELL RD., EAST MOLESEY, SURREY

AUDIO EFFECTS

5 SHAW LANE, HALIFAX, YORKS.
Buy with confidence and obtain the right rebult. Refunds without question if any of our prodncts fail to give 100% satisfaction.
AMATEUR BANDS ALL TRANSISTOR SUPERHET RECEIVER KIT. No fuse, no drilling. Motion tuning. Simple IF alignment. Persjex front panel. Push pull AF amp drives your $8-15$ ohm speaker. Amp can be used separately. Designest to accept a BFO signal. I'ses Denco plug in coils 2T. 0.5 to $1.84 \mathrm{Mhz} \quad 3 \mathrm{~T} .1 .67$ to 5.3 Mhz 4 T .5 .0 to $15 \mathrm{Mhz} \quad 5 \mathrm{~T} .10 .5$ to 31.5 Mhz Range 3T normally aupplied with kit. Uses 9 Holt Kit. e8.19. 6 plus $\mathbf{3} / 6$ P.P. \& Ins. Extra ranse 12/- per range.
POWER CONTROLLER. Power at your finger tips. Not merely half wave control but full wave A single variable control gives zero to full power Cbes latest 15 atup 3 kW triac and apecial triggering device. Ideal for all types of lighting, fires, motors driks, eti. Complete with box, power socket cables, etc. In kit form with easy to follow instruc
tions \&8.9.6. Ready built $89.4,8$ plus $5 / 6 \mathrm{P}$. \& Ins. REVERBERATION AMPLIFIER. Nelf contained transistorised, battery operated. An entirely different approach to sound reproduction. Norinally, sound reproduction from a single nource has a flat one dimensional effect. With this unit proper sound delay through reverberation, tones, are hall originality truly third dimension for concer reverberation simply plus microphone guitar etc., in, and the output into your auplitier supplied in a beautitul walnut cabinet ftin, tin. 4 tin 810.4.0. P. P. \& Ins. 6/-

Vox SWITCH. Thi sound operated switch in inteal for mobile TX work, tape recorder awitching, etc. inputs. AF take ofl point. Drives vour it relay. In kit form with full instructions 42/6 Ready built, tested and guaranteed. 82/6, plua

METRONOME UNIT. Variable beat. Listen whil you play and keep in time. Easily built, pocke size with personal mini earphone. In kit form 27/6 pont paid. Ready bullt in an attractive black and white polythene rase, $37 / 6$ post pain.
MORSE OSCILLATOR. PC board. transistors. high atab. componenta, batiery carrier, ear piece. Ad)ust able tone. Just attach your key. Drives phones or speaker. In kit form 17/6 post pald. Ready huilt in similar case ab above 25/- post pail
8TRAIGHT FROM THE PRESS. Latest Mullard nanual: Audio Amps. FM tuners, Stereo decoder Receiver circuits, Hi Fi, Tape, etc., etc. $32 / 6$ post paid.
JUST ARRIVED IN STOCK. Texas transiators. Complementary symmetry. Driver, NPN, PNP Free liats with erery order. For lials anty nelid $1 / 6$ Free lists with erery order.
(deduct ible from first order).

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER | AMPLIFIER, etc. Types available: $6 v, 9 v$, |
| :--- |
| $18 v(s i n g l e ~ o u t o u r) ~$ |
| $9 / 6$ each. $P . \&$ P. $2 / 9$ | $18 v$ (single output) $39 / 6$ each. P. \& P. sig.

$9 v+9 v ; 6 v+6 v$; or $4, v+4!v$ (two separat outputs) $42 / 6$ each. P. \& P. $2 / 9$. Please state outputs) required. All the above units are completely isolated from mains by double wound transformer ensuring 100° safery.
R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E.), 31 Oliver Road, London, E.17

If you have difficulty in obłaining PRACTICAL ELECTRONICS

Please place a regular order with your newsagent or send 1 year's subscription (£2-5-0) to Subscription Department, Practical Electronics, Tower House, Southampton St., London, W.C.2.
R.S.T. VALVE MAIL ORDER CO.

BLACKWOOD HALL, WELLFIELD RD., S.W. 16

SPECIAL EXPRESS MAIL ORDER SERYICE

SOLDERING IRON

HIGH PRODUCTION MINIATURE MODEL D. 50 WATT
Weight . 2 oz.
Heating time 50 seconds
Bit Sizes .. $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage . . 250 to 12 volts
Price
HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT
Weight
Heating time 1 min .45 sec .
Bit Sizes
3/16", 1/4", 3/8", 7/16'
Nickel or Iron Plated
Voltage . . 250 to 24 volts
Price
OTHER VARI-STAT IRONS:
Miniature Model M 50 watt Push-in Bits 1/32" $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$
Instrument Model B 70 watt Bit Size 11/64" Industrial Model I 500 watt Bit Size $5 / 8^{\prime \prime}$
CARDROSS ENGINEERING CO. LTD.
Woodyard Road, Dumbarton
Phone: Dumbarton 2655

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send 82/6 for this invaluable spiral slide rule on approval with money back
 guarantee if not satisfied. CARBIC LTD. (Dept. PE29) 54 Dundonald Road, London, S.W. 19

BAKER 12in. MAJOR £8
The remarkable quality and performance brilliant Major" makes possible truly loudspeaker. It sound from a single musical spectrum from 30 to $14,500 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The unit consists of the latest double cone, woofer and tweetercone together With a speciat Baker CERAMIC mag net assembly having a flux density of Maxwells 45 c.p.s For Hi-Fi or P.A. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Major Module $30-17,000$ cps with tweeter, crossover, baffle 1910.19 .6
$12!$ in. andinstructions.

[^4]Further Dolails
Baker Reproducers Ltd
Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES'' is now available-without charge to all who are anxious for a worthwhile post in Enginecring. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES", shouk be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engincering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.

Advanced Electronic Eing.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.Frequency Modhlation Transistors.
ELECTRICAL ENG. Advanced Electrical Eng General Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elec Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.Gencral Civil Eng. - Municipal Eng. - Structural Eng. -Sanifary Eng.—Road Eng. - Hydraulics - Mining W'ater Supply - Petrol Tech

RADIO \& T.V. ENG.

 Advanced Radio-General Ratho-Ratiod IV Scrving -TV Lnvinecring - ToleRecording - Automation Practical' Radio - Radto Amateurs' Examination.MECHANICAL ENG. Advanced Mecharical Eng.Gen. Mech. Eng.-Mantenance Lirg. - Diesel Eng. Tress Tool Design - Shect
Mefal Work - Welding Metal Wook -- Melding -
Cug. Pattern Making -Inspection-Diaughrsmanship - Metalhurgy - Production Ling.
AUTOMOBILE ENG. Advanced Automobile Eng.Gencral Ano. Eng. - Antio Maintenather - Repair -
Auto. Diesel Mamenance Auto. Electrical EquipmentGarare Managentm.

WE Have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E.. A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.EX., A.R.IC.S., M.R.S.H. A.M.I.E.D., A.M.I.MUN.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man... quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

$$
164 \text { PAGES OF EXPERT }
$$

CAREER - GUIDANCE

PRACTICAL
EQUIPMENT
Basie Practical and Theoretic Courses for beginners in Electroniss, Radio, T. V., Els., A.M.I.E.R.E. City \& Guilds Radio Amatcurs' Exam, R.T.E.B. Certificale P.M.G. Cerlificate Practical Electronits
Eleclronics Engineering Prattial Radio Radio Radio 8 Television Servising Automalion

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

TO B.I.E.T. 316A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE, Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

myen

COMPLETE STEREO SYSTEM FOR £39.10.0 HENELEC 5 -5 STEREO AMPLIFIER, Inputs for ceramic cartridge. ANX/Tuner Output for ${ }^{8}$ to 15 ohms speakers. Silver with black and wood
finish. British made. Size $12 \frac{3}{4}$ in $3 \frac{1}{2}$ in $\times 6 \frac{1}{2}$ in. Fitted headphone Compl Complete system comprises $5-5$ amplifier. Garrard 3000 or model 50 with
TIAHC diamond cartridge. Pair E.M.I. ioW speakers. twin tweeters and crossover with polished wood cabinets I8in Ilin 7in. Also plinth and cove

- Complete stereo system (Rec. Price (50), 439.10.0, p.p. 20/-.
- Amplifier only, $\mathbf{E} 13.19 .6$, p.p. 7/6 - DHO25 recommended stereo

BUILD THIS VHF FM TUNER
5 MULLARD TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH. PRINTED CIRCUIT, HIGH FIDELIT REPROQUCTION. MONO AND STEREO. A
popular VHFFM Tuner for quality and reception of mono and stereo. There is no doubt about it -VHF FM gives the REAL sound. All parts PARTS TOTAL COST DECODER £5.19.6. 66.19.6. ASK FOR BROCHURE No. 3
(FOR STEREO)
(FOR ST
P.P. 3/-

New printed eircuit design with BUILD full power output. Fully tuneable YOURSELF Mullard transistors. Fitted $\sin \mathrm{A}$
Easy to build with terrific results. OUALITY Two colour leathercloth cabinet RADIO
with silvered front. All local and RADIO continental stations. Complete detailed instructions.
Total cost $£ 6.19 .6$. p.p. $6 / 6$

Ask for Leafler No

SINCLAIR

EQUIPMENT
SPECIAL OFFER
Z30, 75/- each; stereo 60, £8.10.0; PZS, 79/6
PZ6, £6.19.6; Z50, 65.9.6; PZ8, ©5.19.6. Two of Z30, stereo 60, PZ5 (usually $£ 23.10 .0$) $£ 19$;
Complece range of amplifiers and preamplifiers in siock
Complece range of amplifiers and preamplifiers in stock. All detaled catalogue above.

TEST EQUIPMENT FOR YOUR HOME

 catalogue

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED. A CATALOGUE IS A MUST!

HI-FI equipment to suit EYSRY POCKI

STOCK LIST NO. $16 / 17$ ON
REQUEST

Choose from 100 complete stereo systems-complete range of individual units also in stock. Demonstrations range or
all day.
100 STEREO SYSTEMS
LOW CASH AND CREDIT/HP PRICES (Credit terms from $£ 30$ purchase callers only)

HENRY'S LATEST CATALOGUE
NEW PRINT-NOW 350 PAGES
\star COMPONENTS
\star EQUIPMENT
\star SPECIAL OFFERS

* TESTGEAR
* MODULES

EVERYTHING FOR THE CONSTRUCTOR
Complete with 10 - value discount vouchers for use with purchase. Price 7/6, p.p. 2/-
WHY NOT SEND AWAY TODAY?
25W and 50W RMS SILICON AMPLIFIERS
LOOK AT THE SPECIFICATIONS:

- 0.3% distortion at full power.
- IdB I lc/s to $40 \mathrm{ke} / \mathrm{s}$ at full power
- Response - $1 \mathrm{~dB} / 1 \mathrm{c} / \mathrm{s}-100 \mathrm{kc} / \mathrm{s}$.

PA25-10 silicon transistors; differential
 and harness.
PA $50-12$ eransistor version, 50 W r.m.s. into $3-4$ ohms.

- PA25, $£ 7.10 .0$. PASO. £9.10.0. MU4

NO SOLDERING-JUST PLUG CONNECTORS

ELECTRONIC ORGANS

\star
MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS
KITS OR READY BUILT

TEAK VENEERED CABINETS FOR

- manuate, 6 note single MANUAL DESIGNS ALSO TWO c manual Note
- KITS AVAILABLE IN SECTIONS AS
- REQUIRED
- HP and CREDIT SALE FACILITIES.
\star FREE
16.PAGE brochure

Covering organs in kit form and ready built-write or
phone to ORGAN DEPT. Ask for Peter Elvins.

[^0]: - Input sensitivities-Radio-up to 3 mV Mag. p.u. 3 mV correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} ; 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u.-up to 3 mV : Aux.up to 3 mV .
 - Output-250mV.
 - Signal-to-noise ratio-better than
 ${ }^{70 \mathrm{~dB}}$ Channel matching-within 1 dB .

[^1]: © IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannor, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 45 s .
 Editorial and advertisement offices: Fleetway House, Farringdon St., London, E.C.4. Phone 01-236 8080

[^2]:

 A member of the ECS Group of Companies

[^3]: ENOINEER8. A technical certificate or qualitication will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B. and G.C.E. examis. Diploma courses in all branches of Engineering-Mech., Elec Auto, Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132-page guide. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 125 K), Aldernaston Court, Aldermaston, Berks.

[^4]: Sand Ad Stamp for

