PRACTICAL

 JUNE 1970
 PRICE $3^{\prime} 6$

ADCOLA Soldering Instruments add to your efficiency

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
(illustrated) available

COPPER

B $14 \frac{3}{3 \prime}^{\frac{1}{2}}-2.4 \mathrm{~mm}$	Chisel face
B $24 \frac{3}{16}{ }^{\prime \prime}-4.75 \mathrm{~mm} \underset{\substack{\text { SCREWDERIVER }}}{\text { FACE }}$	
B $12 \frac{3}{16}$ - 4.75 mm EYELET BIt	
B $58 \frac{1}{4}^{\prime \prime}-6.34 \mathrm{~mm}$ chisel face	
LONG LIFE	
$\square \square$	
B 42 LL $\frac{3}{16}{ }^{*}-4.75 \mathrm{~mm}$ Chisel face	
B 38 LL $\frac{1}{8}$ - 3.2 mm CHISEL FACE	
\longrightarrow	
B 14 LL $\frac{3}{32}^{*}-2.4 \mathrm{~mm}$	CHISEL FACE
\square	
B 44 LL $\frac{3}{16}$ - 4.75 mm	SCREWDRIVER FACE

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for
price list
and
catalogue
ADCOLA PRODUCTS LTD.
(Dept. L), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01-622 0291/3 - Telegrams: Soljoint London Telex • Telex: Adcola London 21851

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS On a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Boards $4!^{\prime \prime} \times 21_{2}^{\prime \prime}$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16-page Booklet Printed Circuits for A mateurs. Design Data, Circuits, Chassis Plans, etc. for 40 TRANSISTORISED PROJECTS A very comprehensive selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT

8/6

Postage \& Pack. $1 / 6$ (UK) Commonwealth: SURFACE MAIL 2/AIR MAIL 8/Australia, New Zealand South Africa, Canada.
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler Aetector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Reflex. (7) Matchbox or Photocell Radio. (8) "TRI-FLEXON" Triple Reflex with self-adjusting regeneration (Patent Pending). (9) Solar Battery Loudspeaker Radio. The smallest 3 designs yet offered to the Home Constructor anywhere in the World. 3 Subminiature Radio Receivers based on the "Triflexon" circuit. Let us know if you know of a smaller design published anywhere. (10) Postage Stamp Radio.
Size only $1.62^{\prime \prime} \times-95^{\prime \prime} \times 125^{\prime \prime}$. (11) Wristwateh Radio $1 \cdot 15^{\prime \prime} \times \cdot 80^{\prime \prime} \times \cdot 55^{\prime \prime}$. (12) Size only $1 \cdot 62^{\prime \prime} \times 0^{\prime \prime} \times 5^{\prime \prime} \times 25^{\prime \prime}$. (11) Wristwateh Radio $1 \cdot 15^{\prime \prime} \times 80^{\prime \prime} \times{ }^{5} 5^{\prime \prime}$. (12)
Ring Radio $70^{\prime \prime} \times \cdot 70^{\prime \prime} \times{ }^{\circ} 55^{\prime \prime}$. (13) Bacteria-powered Radio. Runs on sugar or Ring Radio $70^{\prime \prime} \times 70^{\prime} \times \stackrel{5}{\prime}$. (13) Bacteria-powered Radio. Runs on (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifier. (16) Interbread. (14) Radio Control Tone Receiver. Burglar Alarm. (19) Light-Seeking Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. Volume Intercom. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Transmitter/Wire-less Microphone. (32) Rain Alarm. (33) Ultrasonic Switch/Alarm. (34) Stereo Preamplifier. (35) Quality Stereo Push-Pull Amplifier. (36) Light-Beam Telephone "Photophone". (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed Controller.

YORK ELECTRICS

335 BATTERSEA PARK ROAD, LONDON, S.W.II
Send a S.A.E. for full detaits, a brief description and Photographs of alt Kits and alt 52 Radio, Electronic and Pholoelectric Projects Assembled.

New for Project 60

 Active Filter Unit

 Active Filter Unit}

The Sinclair Active Filter Unit is a new addition to our Project 60 range of high fidelity modules and is designed to complement the other modules in the range. Its parformance is such, however, that users of other amplifier systems might weli consider adding it to their assemblies.
The purpose of a filter unit is to reject frequencies above (scratch) or below (rumble) a specific cut off frequency when these frequencies contain unwanted interference. The Sinclair A.F.U. is unique in that the cut off frequency is continuously variable for both the scratch and rumble units and, as the attenuation in the rejection band is rapid (12dB per octave), the removal of interference can be achieved with less loss of the wanted signal than has previously been possible.

H!GH PASS

LOW PASS

Each channel of the A.F.U. has an overall gain of unity and, as the imput impedance is high and the output impedance is low, it may be connected between the pre-amplifier and power amplifier sections of any amplifier. Bot' amplitude and phase distortion have been made quite negligible by the careful design and the large amount of negative feedback employed.

Specifications

Designed for connection between the Stereo 60 pre-amplifier and two Z-30 or Z-50 power amplifiers.
Employs two Sallen \& Key type active filter stages, the first being a rumble (high pass) fitter and the second a scratch (low pass) filter. The two stages use complementary transistors to minimise distortion. Supply voltage 15 to 35 V Current 3 mA max. Gain at 1 kHz , filtersflat $0.98(-0.2 \mathrm{~dB})$
H. F. cut off (-3 dB) variable from 28 k Hz to 5 kHz
H.F. filter slope 12 dB /octave
L.F. cut off (-3dB) variable from 25 Hz to 100 Hz l.F. fitter slope $12 \mathrm{~dB} /$ octave

Distortion at 1 kHz (35 v supply) 0.02% at rated output (250 mV R.M.S.) Frequency response, flat position, 35 Hz to 20 kHz - 1 dB

25 Hz to $28 \mathrm{kHz}-3 \mathrm{~dB}$
Buill, tested and guarainteed
£5.19.6
Circuit Diagram of Sinclair Active Filter Unit

\square FORTY WATT R.M.S. (80 WATT PEAK) HIGH FIDELITY POWER AMPLIFIER

The Z-50 has been designed for applications requiring higher output power than the Z.30. The maximum supply voltage is raised to 50 Volts and the output power is 40 watts continuous R.M.S. in to 3 or 4 ohms and 30 watts continuous into 8 ohms. The Z-50 is otherwise identical to the Z-30 in design and specification, the increased power being obtained by using much higher current power transistors used well within their rated limits.
The Z-50 is, of course, compatible with the other Project 60 modules, such as the Stereo 60, and since the price is only 20/- higher than that of the Z-30, customers may like to consider the advantages of buying two Z-50's for their systems now in case higher power is required later.
Where the full output power is not required the Z-50 may be used with the PZ-5 or PZ-6 but for the full output power the PZ-8 should be used. This unit is a stabilised power supply providing 45 volts at up to 3 amps. It is supplied without mains transformer as it is designed for use with a readily available "Radiospares" unit.

Project 60 an exciting alternative

It is not likely that anyone purchasing an amplifier today would have difficulty in finding one that met all his requirements, although the price might not be as low as could be wished. But one's needs can change, also the technically correct amplifier may be physically inconvenient. If there is an amplifier available, of the right size and price, to meet all your needs for the foreseeable future, then that is your best buy. If not, we offer a possibility which we believe to be an exciting alternative approach. That alternative is Project 60.

Project 60 now comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter, facilities.

The modules now are: 1. The Z-30 and Z-50 high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 pre-amplifier and control unit, 3. The Active Filter unit with both high and low audio frequency cut-offs. 4. The PZ-5 and PZ-6 power supplies. A complete system could comprise, for example, two Z-30's, one Stereo-60, and a PZ-5. The P-Z6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may
be added later. In a normal domestic application, there will be no significant difference between using PZ-5 or PZ-6 unless loudspeakers, of very low efficiency are being used, in which case the $\mathrm{PZ}-6$ will be required. For assemblies using two $\mathrm{Z}-50$'s. there is the new PZ-8 stabilised supply unit to ensure maximum performance from these amplifiers.

All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit. Any slight slip here will be covered by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the buildings and operating instructions you can possibly ; want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range.show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

Z.30 TWENTY WATT R.M.S. (40 WATT PEAK) HIGH FIDELITY POWER AMPLIFIER

The $\mathbf{Z} .30$ is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly tow being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification. no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The Z. 30 is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a $\mathbf{Z . 3 0}$ to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the $\mathbf{Z . 3 0}$ are covered in the manual of circuits and instructions supplied with every $\mathbf{Z} .30$ high fidelity power amplifier.

SPECIFICATIONS

Power output-15 watts R.M.S. into 8 ohms using a 35 volt supply: 20 watts R.M.S. Into 3 ohms using a 30 volt supply.
Output-Class AB.
Frequency responge:
Distortion:
SIgnal-to-noise ratio:
Input sensitivity:
Damping factor:
Loudspeaker impedances:
Power requirements: From 8 to 35 V. d.c. $\{$ The $Z 30$ will operate ideally from bat-
Size:
30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
0.02% total harmonuc distortion at full output into 8 ohms and at all lower output levels.
bettar than 70 dB unweighted.
250 mV into 100 Kohms .
>500. teries if required.)
$3\} \times 2 \ddagger \times t$ inches.

QTEREO $60 \begin{aligned} & \text { PRE-AMPLIFIER AND } \\ & \text { CONTROL UNIT }\end{aligned}$

The Stereo 60 is a stereo preamplifier and control unit designed for the Projeçt 60 range but suitable tor use with any high quanty power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for alf the usual inputs. The tone controls afe also very carefully designed and testad.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV Magnetic Pickup -3 mV : correct to R.I.A.A. curve $=1 d B ; 20$ to $25,000 \mathrm{~Hz}$. Ceramic Pickup-up to 3 mV : Auxiliary up to 3 mV .
- Output-250mV
- Signal-to-noise ratio-better than 70d8.

Channel matching-within 1 dB . - Tone Controls-TREELE +15 to- 15 dB . at 10 KHz : BASS +15 to -15 dB at 100 Hz .

- Power cansumption 5 ma .
- Front panel-brushed aluminium with black knobs and controls.
- Size $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4 \mathrm{ins}$.

SINCLAIR
 MAINS POWER
 SUPPLY UNITS

PZ-5 30 volts unstabilised-sufficient to drive two 2.30 's and a Stereo 60 for the majority of domestic applications.
£4.19.6
PZ-6 35 volts stabilised-ideal for driving two Z.30's and a Stereo 60 when very low efficiency speakers are employed. . £7.19.6
PZ-8 45 volts power supply unit for use with 2.50 amplifiers (less mains transformer)
£5.19.6

APPLICATIONS
Hi-fi amplifier: car radio amplifies; secord play*r amplifier fed directly from pick-up; intercom ; electronic music and instruments ; P.A.; laboratory work, etc. Full detaits for these and many other applications are given in the manual supplied with the Z.30.

Resdy for immediate Installation
f9. 19s. 6d.

The illustration here shows quite clearly how easily Project 60 can be contained in one of today's slim, modern plinths. Very little space is required to house these Sinclair units, and within the space of the motor plinth, you can in. stallastereo amplifierof the very highest quality. If, for example you have already put together an assembly as illustrated here, adding the Active Filter Unit would be very easy.

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guarantesd to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoover provided that it is returned to us within 2 years of purchase date. There will be a small charge for service thereafter. No charge for pastage by surface mail. Air-mail charged at cost.
16.10 MICROMATIC AND 0.16. Please see naxt page

To: SINCLAIR RADIONICS LTD., 22 NEWMARKET RD., CAMBRIDGE | Prease send

P.E.6/70

SINCLAIR IC. 10
 MONOLITHIC INTEGRATED CIRCUIT HI-FI AMPLIFIER COMBINED WITH PRE-AMP

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This device is more rugged and reliable than any previous amplifier and has considerable performance advantages. The most important are complete freedom from thermal runaway and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition tone and volume control network and a battery or mains power supply. The IC-10 may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout). Stabilised power supply, oscillator, etc. The pre-amp section can be used as R.F. or I.F. amplifier. We give a full guarantee on every IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

SINCLAIR MICROMATIC

In kit complete with earpiece, case, instructions and solder in fitted pack.

49/6

Ready built, tested and guaranteed. with earpiece.

59/6

Mallory Mercury Cell. RM675 (Two needed) 2/9 each.

A powerful high quality radio smaller than a matchbox

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver with remarkable standards of selectivity, power and quality. Powerful A.G.C. counteract fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy at all times. Venier type tuning and self-contained special ferrite rod aerial makes station separation easy. The plug-in matching high quality magnetic earpiece ensure wonderful reproduction of speech and music. Everything including the batteries is contained within the attractively designed black and aluminium case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

Sinclair Project 60-see previous three pages

SPECIFICATIONS

Developed on entirely original design principles, this compact, beautifully styled shelf-speaker accepts up to 14 watts R.M.S. loading at 8Ω. Frequency response $60-16,000 \mathrm{~Hz}$. Size $93^{3 \prime}$ " square $\times 4 \frac{3}{4}^{\prime \prime}$ deep, on plinth. Teak surround, with all-over cellular foam front and ispecial seamless sealed sound chamber.

£8.19.6
 .

Output:
Watts peak. 5 Watts R.M.S. continuous
Frequency response:
Total harmonic distortion: Load impedance:
Power gain: Supply voltage: Size:
Sensitivity:
Input impedance:
5 Hz to $100 \mathrm{kHz} \perp 1 \mathrm{~dB}$
Less than 1% at full output.
3 to 15 ohms. $110 \mathrm{~dB}(100,000,000,000$ times) total.
8 to 18 volts. $1 \times 0.4 \times 0.2$ inches. 5 mV . Adjustable externally up to 2.5 M ohras.

anansiors ased in pe-amp and 10 in the power
3 transistors are used in the pre-amp and 10 in the power amplifier. Class $A B$ output with closely controlled quiescent current which is independent of temperature. Generous negative feedback round both sections, completely free from cross-over distortion at all supply voltages, making battery operation eminentlv satisfactory.

With comprehensive manual of circuits \& instructions Post free.

0.16an outstandingly fine loudspeaker

59/6

TO: SINCLAIR RADIONICS LTD., 22 NEWMARKET RD.,CAMBRIDGE Please send

NAME
ADDRESS
for which 1 enclose cashicheque/money order

No soldering -circuits work first time. Build and learn aboutelectronics with these exciting kits

Build a radio set in an evening with a Radionic radio kit. Construct a digital computer that adds, subtracts, divides and multiplies. Make electronic music with the simple yet highly effective electronic organ.
Special 'Radionic mounted' components require no soldering and can be used time and time again. You can build 26 circuits with just one kit. And you can learn as you build.
Suitable for study towards G.C.E., City and 'Guilds, National Certificate, or even higher qualifications.

Write to the address below for free details of Radionic radio and electronics construction kits.

Radionic Products Ltd

St. Lawrence House, Broad Street, Bristol BS1 2HF.

THCG-IDSI METER

A completely new design 20,000 O.P.Y- pocket
multimeter with mirtor scale and bultojn thernag multimeter with mirtor scale and bullt-in thernal protection. Exceptlonally large easy to read meter tcales. Single positive cllck-jn, recesbed selec. tion switch for ald ranges. Ohms zero adjustment,
Range spec. A.C. volta: $0-6-30-300-1,200 \mathrm{v}$ $10 \mathrm{~K} / \mathrm{ohms} / \mathrm{F}$, D.C, volte: $0 \cdot 3-15-150 \cdot 300 \cdot 1 \cdot 2 \mathrm{KV}$ at $20 \mathrm{~K} / 0 \mathrm{hm} / \mathrm{C}$. Resistance: 0 -60K-emegs. D.C $\begin{array}{ll}\text { current: } & 0-60 \mu A-300 \mathrm{~mA} \text {. Dectbeta: }-20 \mathrm{~dB} \text { to } \\ +17 \mathrm{~dB} \text {. Extremely high standarl of accuracy }\end{array}$

on all ranges, Uees one 1 !'v penlighi battery. Strong fupact resistant plastic cabinct and battery: 31 linin. Two colour bunigreen flaigh. Complete with test leails and battery.
LASKY'S PRICE 75/- Post $2 / 6$

TMK 100,000apv

"LAB" Model A highly accurate yet rugged Multitester
taling a $10 \mu \mathrm{~A}$ meter hand ctitibrated to a D.O. nceuracy of. $+3 \%$ of finll scale Spectal features-altra large meter scale $6 \mathrm{f} \times 3$ in incorporating an entirely new type of range belection panel which glves
instant range ifentification wlthout taking instant range iflentification without taking
your eyes from the meter. An audible buzter is provided for easy short testing. 8PEC: D.C./V ranges: 0.5. $2-5,10$, s0,
$250, \$ 00,1.000$ at $100 \mathrm{~K} / 0$. Y. Y. A.C.f $\begin{array}{ll}\text { ranges; } 3,10,50,250, ~ & 500,1,000 \mathrm{~V} \text {, ht }\end{array}$ $0-10,100 \mathrm{~mA}, 0-2 \cdot \mathrm{~B}, 10 \mathrm{~A}$, Resiviance: $0-1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{M}, 100 \mathrm{M} / \mathrm{hmm}$, Decibels: -10 to $49-4 \mathrm{~dB}$. Continuity test: Audible buzzer. Operales on $\times 11 \cdot 5 \mathrm{~V}$ U2 nnd $1 \times 15 V$ B, 154 type batteries.
Cabinet size

LASKY'S PRICE £I9.IO.0

SAISE

SE-700 MINI

POWER SUPPLY

Ideal as power supply for bench works or
as A.C, adaptor for translstor radios, cassette tape-recorders, etc. Power source: 117. $220 / 240 V$ A.C. $50 / 60 \mathrm{~Hz}$. Output voltage: Withee 0.6 A . Output voltage regulation: fack (front) and battery gdentor terminal frear) fack (front) and battery adaptor terminal (rear)
Strong metal cabjinet. Slze $3 \frac{2}{12} \times 2 \frac{1}{2} \times 4 \mathrm{in}$.

LASKY'S PRICE 15.50

Fhin! 11 ?

TPC-2

SOLID STATE COMPACT CASSETTE RECORDER
'A Laky' BTAR BAROASN this beautifulsy made compact cassette tremendons performance and ralue. BRIEF SPEC: 6 translstor and I thermister circuit. Conatant bipect capstan drive syatem. A.C. bias recording. PM magmet erase. 2kln PM Dynamic speaker. Economical operation on $4 \times 1 \cdot 5 V$ (U-2 type) Aatterles, APECLAL FEATCRES: Absolutely foolprool operation.
Piano key controls. Powerhil volume Piano key controls. Powertul volume
with recessed control. Handsome impact reaistant cabtact Bnshed in black with satin aluminfum and ivory trim. Size $91 \times 5 \| \times 2 \ddagger$ in. Jack sockels for remote control microphone, eat-
 plece and external 6V battery pack (or A.C., adaplor). COMPLETE WITH Relmote control Dynamak microphone, earplece, removable carrying strap, batteries, full instrnotiona

LASKY'S PRICE EIT.IO.0 USA made CASSETTES

AT LASKY'S BUDGET PRICES

10

THE AMAZING

 Astrad ORIONTHE WORLD'S SMALLEST 6 TRANSISTOR
TWO WAVEBAND. RADIO
OVER 50,000 SOLD
Made to the highest epace-age standurds-this remarksable mierox ofe get measurcs only 1 tu x in and other components combined in a photo etched eirctit, only $\mathrm{i} \times \frac{1}{1} \mathrm{in}$ tuning capacitor, ferrite rod aeribl, battery, wave band selection switc Output to a high impedance crystal earpie. ample volume (automatically adjusted) and clear tone. Brlet
 tech. spec.: Waveband coverage-Medlum wave 598 , 180 kHz Love wแye 158 kHz to 480 kHz . Sensltivity: 85 MV max. Selectlvily -10dB (at 30 kHz dottuning). The Oronrce: $1 \times 1 \cdot 4 \mathrm{~V}$ Mercury battery.
fitting earphone is uplied fully built and teated complete with battery, lete and right cate (matching the orts and attractive black and fory plastic presentation/carryins is an fdeal gift for all, providing a condtapt source of enjoyment without disturbing insirs (ixtes ONLY 39/6

* FOTE: The battery we rapply with the Orion fo a rechargeshle bype, Charger

PRICE 19/6 extra. Posit tre with radio.ochermies 2 .

Auriditionices 10
 The 1970 edition of Lasky's famous Audio-Tronics

catalogue is now available -FREE on request. The COMMUNICA 28 tabloid pages - many in full colour are packed with mund 1000 's of items from the largest stocks in Great
Britain of everything for the Radio and Hi-Fi enthusiast, Eleccronics Hobbyis
Servicemen and Communications
Ham. Over half the pages are
devored exelusively
every aspece of $\mathrm{Hi}-\mathrm{Fi}$ (including Lasky's budget Systems and Package Deals). Tape recording and Audio accessories plus Lasky's amazing money saving vou-
SEND TODAY Send Your name. post onfy and inclusion post only and inclusion
of your name on our regufar mailing list.

THIS MONTH'S

VOUCHER WORTH 40/-!

TMK METER KITS

These two muter kits by ank offer the unique apportualty of builuling is reaily frst elass precision multimeter at a worthwhile saring in cost, The cabinets are supplied with the meter bcale and morement monnted in position; the Model 200 also has the realetora are used throughout. Supplied completa with full corstructional, circuit
 $11 \pm \leq 2 \leq 1)$ Features 24 mearuremeat Large 3 oin meter, Full scale accuracy: DCF and $0 \cdot 6 \mathrm{~V}$ DC range for tranaistor circult measurentenis. SPECIFICATIOX

- DCF: $\quad 0-0 \cdot 6-6-30-120-000-1,200 \mathrm{~V}$ 部 0 ºK/OPV. Current: $0-0.6-6-600 \mathrm{~mA}$. ${ }^{\text {at }}$ Restatance: $0-10-\mathrm{K}$ $100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M}$ /obing ($58-580-5.8 \mathrm{~K}-58 \mathrm{~K}$ it mid-acale). - Capacitance: 0-002-0.2 $\mu \mathrm{F}$ (AC 8 V range). Decibele -20 to +63 dB . Ontput: $0.05 \mu \mathrm{~F}$ blocking capacitor. bslese two .

KIT PRICE ONLY 85/-

57 MEASUREMENT RANGES

Eses an entirely wes runge gelection mechanism which permitt the use of a really harge High apeed rotary range nelection knob; polarty reversal switch. shielded meter movement with overload protection circuit; Special $\mu \mathrm{A}$ and mis measurement ranges.
SPROLFICATIOX DCV: $0-0.25-4.5-10-50-$ $250-1,000 \mathrm{Y}$ at $25 \mathrm{~K} / O \mathrm{PV}, 0-125-1 \cdot 25-$ $10-50-250-1,000 \mathrm{~V}$ at $2 \cdot 5 \mathrm{~K} / \mathrm{OPV}$. $0-1.5-5-$ 25-125-500V at 5K/OPV. DC $\mu A: 0-25 \mu$,

 250 mV . DC Amps: 0-5A at $125 \mathrm{mV} ; 0-10 \mathrm{~A}$ | st e50my, Resiatance: $0-10 \mathrm{M} /$ ohris. Out- |
| :--- |
| put: Capacitor $(0.1 \mu \mathrm{~F}, ~$ |
| 00 V) In series | with ACV ranges. Decibels: - 20 to to $+81 \cdot 6 \mathrm{diB}$. Operates on two 1.5 V batta.

KIT $\in 10.10$
ALSO AVAILABLE READY BUILT AND TESTED E12,10.0. Post 5!
ㄱCCLUSTVIE
DIGITAL CLOCK SCOOP\&

FIRST AGAIN!

- MADE ESPECIALLY FOR LASKY'S BY FAMOUS MAKER
- MALNS OPERATION
- izhour alarm
- AUTO "5LEEP" SWITCH
- HOURS, MIMUTES AND SECONOS REAO-OFF
- FORWARD AND back WARD TIME ADJUSTMENT
- SHOCK AND YIBRATION PROOF
- built in alarm 8UZZER
- SILENT OPERATION SYMCHRONOUS MOTOR
This uulque DIGITAL CLOCK ta now avallable ExCLDaIVELT FROM LASEY' in chassis form for you to mount in any housing that you choose
Al aotengr are achieved by two dual-concentric controls at the front includiug ON-OFP-ALTO and ACTO ALARM, "sleep" awlech, 10 minute division "click set alarm (up to 12 hour delay), tlune dijustment. Litia uimple mechaniem and high quality manufacture guarantee reliable operation and fous life.
St any preset time up to 00 min . and In on any applance-radio, TV, light etc any preset ime up to 00 min . and in coajunc With on the applisince again next morning.
Gwitch). $B P B C=210 / 240 \mathrm{~V}$ AC 50 Hz operation from tront of drutn to beck of

LASKY'S PRICE \&5.19.6 rostr, 5PECIAL QUOTATIONS FOR QUANTITIES

AUDIO DEVELOPMENT

fine balance adjuatment is provided. The fired head has olandard fin mounting with all firing nuta and Fack ensmel with chrorse lifting apur. Arm rest atoo length 285 mna ; needle to plvot length 223 mm : offet angle 24^{c}; overhang 10 mm Requalres alngie 7/18in dia, mounting hole.

LASKY'S PRICE $£ 9.19 .6$ MIFEMITIOIDI

POST $3 ; 6$

MAGNETIC RECORDING TAPE FROM THE U.S.A. AT LASKY'S RECORD LOW PRICES
 Sin Message tape, $2251 t$ 150 3zin Triple play, 600ft Myla 6in Double play, 1,2001t Myia 5 in Long play, 900 ft Acetate. 5 Ln Standard pley 800 It . Syin Double play, 1, soott Fy ylar 5 in Long play $1,2001 \mathrm{t}$ Acetate 180
 fin Etandard play, 1,zoot in standard play, 3,2001 7 in Long play, $2,80 \mathrm{Bft}$ Kylar.. 7in Double play, 2,4001t Mylay 7 in Long play 1,800 ft Acetate 150 P. \& P. 1/- oxtre mer mel, 4 mels and over Port Free. Special goote for quantitioe

Te! $01-723327$
33 TOTTENHAM CT. RD, LONDON, WIP SRB. Tel: 01-636 2605 Open all TIS FLEET STREET, LONDON, E.C.4. 152/3 FLEET STREET, LONDON, E.C. 4.

Tel: $91-3535812$ Tếl: 01-353 2833

HIGH FIDELITY AUDIO CENTRES
42-45 TDTTENHAM CT. RD, LONDON, WIP SRD. Tel. 01-580 2573 Omen all coy, sam. Gp.m. mandey to Stiverday
T1B EDGWARE ROAD, LONDON, W.2.
opon all doy Srterday errly ciosing 1 p.m. Thweder

* EXPERIMENTERS MODULE

* MULTIMETER Return of a popular
model. 2,000 ohms/V $0 / 10150 / 500 / 1,000 \mathrm{~V}$ a.c. d.c. $0 / 50 \mu$ A. $0100 \mathrm{k} / 1 \mathrm{MA}$ resistance. dB and capacieance scales. Size sina 3 in. x litin. Robust and easy to use. Romplete with leads,

batteries and instructions. THL33a. Price 82/6. p.p. 2/6. Leather case. Price 22/6

* GRID DIP METER

 All transistor grid dip ose. derector. Frequency ange 440 KC s to 280Me's cors plus diode with 500μ A mecer. InternalTEI5 Price $611,10,0$. p.p. $3 / 6$

$\star \mathbf{5 0 , 0 0 0}$ OHMS PER YOLT MUITIMETER Recommended quality instrument with mirror scaie and overload protection. $0 / 0 \cdot 3 / 3 /$ $12 / 60 / 120 / 300 / 600 / 1,200 \mathrm{~V}$ d.c.
$50 \mathrm{k} 0 / \mathrm{V} ; 0 / 6 / 30 / 120 / 300 / 600$ i 50 k Q /V: $0 / 6 / 30 / 120 / 300 / 6001$
1200 V a.c. $10 \mathrm{kR} / \mathrm{V} ; 0 / 30 \mu \mathrm{~A}$ 1.200 V a.c. $10 \mathrm{k} R / \mathrm{V} ; 0 / 30 \mu \mathrm{~A} /$
$6 / 60 / 300 \mathrm{~mA}$, 0/12A; resist$6 / 60 / 300 \mathrm{~mA}$
ance $0 / 10 \mathrm{~K}$ R/I $/ 10 / 100 \mathrm{Ma} \mathrm{M}$. ance $0 / 10 k \Omega / 1 / 10 / 100 \mathrm{Ma}$.
Meter movement $20 \mu \mathrm{~A}$, Meter movement 20jgA, Polarity reversing switch
Complete with batteries leads and instructions. A

P 1 F 16 PAGE BROCHURE COVERING LOW COST TEST EQUIPMENT FULL Y DETAILED AND ILLUSTRATED. OVER 50 UNITS DETAILED ASK FOR PUBLICATION 'T' - REMEMBER IT'S FREE 1

* LOW COST VACUUM TUBE ValVe VOLTMETER

New model Multi-Range and easy to use; d.c. and a.c. Volts o(1 $1 / 5 / 15 / 50 / 150 / 500 /$ 4,200 . Resitance 0.2 ohm to $1,000 \mathrm{Meg}$

 $5 \mathrm{Me} / \mathrm{s}$. Complete with probe and handbook. Size 10 tin. x Stin. $\times 4$ itin.

Naw printed circuit design with BUILD full power output, fully tuneable YOURSEL Mullard transistors. Fitted 5in. A Speaker, Room flling power. OUALITY Two colour leathercloth cabinet RADIO
with silvered front. All local and with silvered front. All local and
continental stations. Complete continental stations.
Total cosiffif9.6. p.p. 4/6. Ask for Leafler No. I.

SCOOP! STAAR RECORU PLAYER

Deck plays $33,45,78$, r.p.m.
records
gY operated, with mono cartridge. BRAND NEW ... is

> Price 30/6 p.p. $3 / 6$. leaflet No, HEADPHONES Qualicy Stere. Phones DH02S 45/m, p.p. 3/-.

MULLARD I WhTT AMPLIFER Portabie Transistor Ideal for intercoms, Baby Players or Guitar Practice. $9 V 5$ transistors with volume control, output 3 ohms. Ideal for use with Staar Record Deck. Price 45/-. 9.p. 2/6

FIELD STRENGTH METERS

 Earphone output. scales.FL30HA
 Also non calibrated cype peaking F/S Meter. FSt Price 45/-p.p. 2/6
LOUDSPEAKERS.
low cost bargains.
EMI TYPE 450 io wate wieh 2 tweeters
and crossover $13 \frac{1}{2}$ in $\times 8 \frac{1}{2}$ in, 3,8 or 15
ohms (state which) Price $63 j-$ p.p. $41-\mathrm{p} .51$
Polished cabinets Is x in $x 7$ in 20 - 20 wate version of above
i5 ohms (state which) $\$ 6.19 .6$, p.p. $5 /-$.
ohms (state which) 6 watt 8 ohm syster. Sin p.p. heavy EMI
bass unir. $2 \frac{1}{5}$ in tweeter and crossover
(made to self for $\mathbf{£ 5 . 1 0 . 0 \text {) price } 5 9 / 6 , ~}$
D.P. $5 /-\frac{1}{2} \times 8 \frac{1}{2} 6$ watt units 3,8 or 15 ohms
(state which) $39 / 6$, p.p. $3 / 6$.

QUALITY PANEL METERS (D.C. RANGES)

3 Series. Face size $42 \mathrm{~mm} \times 42 \mathrm{~mm}$ (13in. $200 \mu \mathrm{~A}$,) $32 / 6 ; 500 \mu \mathrm{~A}, 27 / 6 ; 1 \mathrm{~mA}$, $35 /-; 200 \mu A, 32 / 6 ; 500 \mu A, 27 / 6 ; 1 \mathrm{~mA}$
$5 \mathrm{~mA}, 10 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}$, 500 mA 2 mA , each: $10 \mathrm{~m}, 20 \mathrm{~V}, 50 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}$ and $500 \mathrm{~V}, 25 \mathrm{j}=$ each: 1 A and $5 \mathrm{~A}, 25 \mathrm{j}$ each. " 5 " meter, $I \mathrm{~mA}, 29 / 6$ VUmeter, $37 / 6$. 65 Series, Face size $86 \mathrm{~mm} \times 78 \mathrm{~mm}$ (3jin. $\times 3 \frac{1}{8}$ in.). $50 \mu \mathrm{~A}, 62 / 6$: $100 \mu \mathrm{~A}$. $52 / 6: 200 \mu \mathrm{~A}, 47 / 6 ; 500 \mu \mathrm{~A}, 45 \mathrm{l}-1 \mathrm{~mA}$, $5 \mathrm{~mA}_{1} 10 \mathrm{~mA}, 500 \mathrm{~mA}, 37 / 6$ each. "S" meter, $\operatorname{ImA}, 42 / 6$. Ocher ranges and sizes in stock. Ask for list, ref. no. 33 .

+ 10 in I TEST UNIT
A new design tests most eircuits. Modis SE400 *A.c.lde. Vaits (4K/Volv) $0 / 15 / 50 /$
$150 / 500$. * Resistance 0/10K1300K 11 Meg *Five values resistance and capacitance substitution.
* RF F/S Meter I co $140 \mathrm{Mc} / \mathrm{s}$.
t $455 / 700 \mathrm{ke} / \mathrm{s}$ RF, Generator
Size 7 tin. $x 3$ inin. $x 1 y$ in
\star D.e. Ammeter $0 / 500 \mathrm{~mA}$.
$\star 400 \mathrm{c} / \mathrm{s}$ Audio Generator.
\star SIGNAL INJECTOR AND TRACER
Pocker size models for checking all audio and RF up to VHF. Simple to use, Battery operated. Oueput approx. I ke/s, 1.4V Harmonics up to VHF.
SE250B INJECTOR, Price 35/- p.p. 1/6 Matching Signal Tracer
$5 E 500$ Price $27 / 6$ p.p. I
- All parts in stock to build the integrated Circuits and other designs appearing in Practical Wireless and Electronics. Ask for quotations-see latest catalogue editions.

COMPONENTS
UK's LARGEST STOCKISTS - ASK FOR QUOTES SEE LATEST CATALOGUE-350 PAGES-PRICE 7/6, p.p. 2/-

p. 2/6. Leasher case 2 a/6
 HENRY'S FAMOUS CATALOGUES-SEE BACK COVER FOR DETAILS

GARRARD TURNTABLES

\section*{GOLDRING-BSR—GARRARD
 ALWAYS EXTRA BARGAINS FOR ROAL STORE

Cartridge Model	Less Cartridge	9TAHC Diam.	AT21 or	AT26	AT		G800	$\begin{aligned} & J 2203 \\ & 8005 E^{-1} \end{aligned}$	Cs91E Ceramic
5825 M	$11{ }^{\text {c }}$ \% ${ }^{\text {d }}$	${ }_{13}{ }^{1} 12 \begin{array}{ll}12\end{array}$	${ }_{15}{ }^{\circ} \mathrm{O}$	${ }_{10} 0^{5} 50$	${ }_{16} 16$	${ }_{0}^{\text {d }}$	$\begin{array}{lll} L_{21}^{2} & 0 & d \\ 0 \end{array}$	${ }_{15} 15000$	${ }_{19}{ }^{\circ} \mathrm{o}$ d
AP75	17 is 0	15150	25100	2100	27.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	270	$\begin{array}{cc}21 & 17 \\ 70 & 6 \\ & 6\end{array}$	25 53 10
GL75P	46: 35	37 -	5310 4210	${ }_{40}^{60} 8000$	5510 4410	0	420	$\begin{array}{lll}70 & 0 & 0 \\ 59 & 0 & \\ 18\end{array}$	5310 4210
MA70	1210%	14100	20.0	17126		-	42	16100	20.
AT60 Mk II	1310	15150	2178	1900	18.	0^{0}		$17 \begin{array}{lll}12 & 6\end{array}$	21100
GL75	3308	$\begin{array}{lll}15 & 0 \\ 27 & 0\end{array}$	40100	$47{ }^{40} 10{ }^{00}$	4210 34	\%	40	$5780{ }^{57}{ }^{1}$	4010
SL758	3100	3300	3310	36100	4010	-	40	350	3810
SL958	39%	418	4610	53100°	4810	0	480	430	4610
SL658	1519	18:	2310	2180	2010 3210	${ }^{\circ}{ }^{*}$	25 30	19 15 4 0	2310 30

Plinth/covars Model $50,2625,3000,3500$, SP25 99/6, p.p. 6/-, (Note GL69P and GL75P complete
with plinth/cover). 2025, 3000, 3500, $5 P 25,5 L 65 \mathrm{~B}, \mathrm{SLT2B}$, $5 L 75 \mathrm{~B}, \mathrm{SL95B}$ Deluxe zype(state madel) E8.10.0. D.D. 7/6.

DISCOTHEQUE and Public Address Equipmant. Complete range in stock. 100 watt Discoamp/preamp \&is, 35 watt f35, 70 watt 650 . Also separate 70 watt power amplifier c35, preamplifier 22. All wish 4 inputi-full mixing, ecc.

Brand New Fully Guaranteed TRANSISTORS \＆DEVICES

1N4001	21	2N3711	$8 i 6$	AF118 12.8	BSYUG 51－	OA95	1：8
1N4002	9／8	2N3730	101－	AF124 8／－	BSX6\％6／－	OA20U	－
1 N 4003	$2 / 6$	2N3731	12／8	AF125 6／－	88Y95A 4i8	OAL0y	$8 \mathrm{f}=$
1N4004	8 －	2N3819	8 －	AF126 1／－	B8Y95 8／m	OA210	8j－
1N4005	$8 \cdot 6$	2N3820	18！6	AP12\％ $1 /-$	BTY42 18：6	OA21］	$8: 1$
1N4006	1）－	2N31823	1718	AF139 6－	BTY79／400R	OAZ：200	11／－
1N4007	Bf_{1}－	2N4058	5,8	AF178 9／6	351－	OAZ201	101－
1N4009	$1 / 6$	2N4061	4）－	AF181 816	BTY＇84 18：6	0Az902	$8 / 8$
1N4148	$1 / 9$	2N4286	81 －	AF186 9 9－	BTYBY 15\％	OAZ203	$8 / 6$
1N1785	101－	2N4288	8－	AF239 8j－	BEY10 $12: 6$	OA2204	6
$2 \mathrm{C210}$	12／6	2N4289	$8: 6$	AFY19 22／6	BUYII 18：6	OA2205	0
20240	50／6	2N4290	$8{ }^{1 /-}$	AFZ11 8／－	BYion $8 / 6$	OAZ206	$8 / 0$
$2 \mathrm{G301}$	1）－	2N4291	81－	AFZ13 10i－	BYi03－6	OAZ207	$0 / 6$
29302	$4 / 6$	2N429\％	8！－	ASY26 $\quad 8,8$	EY114 8／－	OAZ208	$8 / 6$
20303	$51-$	40361	12\％	A8Y27 $7 / 6$	Hy129 5／－	OAZ209	018
$2 \mathrm{Z306}$	$7 / 6$	40862	18，8	${ }^{\text {A8Y2 }}$	BYX르리600	OAZ210	（
29308	$7 / 6$	28001	101\％	ASY29 0\％－	518	OAZ211	$0 / 0$
20309 203398	$8 /-$ $8 /-$	29002 28003	$10 / 8$	$\begin{array}{ll}\text { AgYab } \\ \text { ASY50 } & 8 /- \\ \text { A }\end{array}$	BYZto 10i－	OAZ212	．
$\begin{aligned} & 20339 \mathrm{~A} \\ & 2 \mathrm{G} 371 \end{aligned}$	$8 / 8$	28003 28004	9；8	$\begin{array}{ll}\text { ASY50 } & \text { a } \\ \text { A8X } 61 & 8 / 6\end{array}$	BYZ11 0j－	OAZ213 0.2222	，
$2 \mathrm{G374}$	5／6	25005	$151-$	A8Y67 9／6	BYZI＇3 8j－	OAzig2	71
29981	$81-$	25012	261－	A8Y83 6\％－	$\begin{array}{ll}\text { BYZ13，} \\ \text { BYZ15 } & \text { g0／－} \\ \text { c－}\end{array}$	OAZ224	$7 / 8$
$2 \mathrm{G882}$	61－	28012A	29／8	A8186 6ig		0AZ225	$8 / 6$
29378A	$4 / 6$	28013	$201-$	A8Z21 8／6		OAZ228	716
29883	81.	2S013A	251－	A8Z23 201～		OAZ229	
29904	4／8	23017	1 bj	AUY10 10／B	BCY8BCdV7	O．AZ231	016
29308	51－	28018	17，6	AC101 80\％	B2iost 1 －	UAZ234	$7!6$
$2 \mathrm{2N404}$	4／6	28020	801－	B3M＋19：8	BZY88C5Vi	0 0．2238	9.6
2N456	15）－	28024	$501-$	BA110 6／－	4；	0.42241	8
2N458	2010	28025	601－	BAY31	BZY88C3げ1	OAZ242	$1 / 6$
2N063	018	23026	$1001-$	BC107 8／－	4／－	OAZ244	$1 / 8$
2N599	1216	28084	12／6	BC108 219	C8v＇r	OAZ245	318
2N601	816	29036 28102	251－	$\begin{array}{ll}\mathrm{BC109} & 8 / \\ \mathrm{BCl13} & \text { \％－}\end{array}$	4／－	OAZ246	4
2N697	5	28103	12\％	$\begin{array}{ll}\text { BC113 } & \text {－} \\ \text { BC1 }\end{array}$	BZY88C7V\％	OAZ247 0.8229	4
2N688	8.6	28104	1218	BC118 $\quad 76$	－	OAZ290	$7 / 4$
2N706	118	28131	$7 / 8$	BC134 718	HZY88C8	OAZ291	7／0
2N706A	28	29301	$0 \cdot$	BC135 6\％		OAZ293	710
2N707	$12 / 6$	28302	716	BC136 7／－		OC1B	101
2N708	81	28303	1016	BC137 8\％		0 Cl 18	$7 / 8$
2N711	$7 / 6$	－88304	12，6	BC138 BCY $8 /-$ 18	BZY＇88552 4	OC20	10,6
2N721	111－	29320	9f－	BCY31 8／8	BZY94CIO 4／－	$\mathrm{OCP2}^{2}$	8%
$2 N 743$	4）－	28321	$6{ }^{1}-$	BCY32 10\％	BZY94C11 4／－	Oc23	1216
2N744	8	28322	$7 / 6$	BCY3 5－	BZY94C12 4／－	OCas	7 7\％
2N753	5 －	28323	101－	BCYB4 8／－	BZI94Cl5 4／－	OC38	7,
2N865	$12 / 8$	28324	12%	BCY38 7／－	BZI94C16 4，	OCH^{2}	12，
2＊914	4／8	29501	$8 / 8$	BCY39 8／8	CP404 12／0	OCAD	12%
2N918	3／6	28502	$8 / 8$	BCY40 101－	CR81／05 5／－	Ocas	10%
2\％918	$7 / 8$	28503	818	BCY4 ${ }^{\text {Bja }}$	CRS1／E0 5！－	OC36	$12 / 8$
2 N 919	41－	28512	$9 / 8$	BCY43 51－	CRS1／20 7／6	OCA1	6\％
2N920	$51-$	29701	8.6	BCE70 \％－	CRS1／30 8j－	OC42	01
2N922	$8 / 8$	28702	11.	$\mathrm{BCZ11} \quad 716$	CR81／35 \quad 日／6	OC43	81
2 N 930	${ }^{76}$	28724	60 －	$8 \mathrm{Cl147}$ 9／9	CR91／40 9／6	OC44	4 4－
2N1090	6／8	29731	$8{ }^{818}$	$\begin{array}{ll}\mathrm{BC148} \\ 8 \mathrm{Cl} 149 & \text { 2：9 }\end{array}$	CRSS\％ $01-$	OC44M	1）－
$\begin{aligned} & \text { 2N1091 } \\ & 2 N 1131 \end{aligned}$	6／8	28732 28733	8／6 818	$\begin{array}{ll}\text { BC149 } & \text { di－} \\ \text { BFI5 } & \\ \text { B61 }\end{array}$	CRS3／10 6 6／－	${ }^{0} \mathrm{CA5}$	$8 / 6$
2N113\％	$81-$	25743	$50 \%-$	BFi82 $\quad 0 / 6$	$\begin{array}{ll}\text { CRS3／20 } & \text { \％} \\ \text { CRS3／30 } & 8: 6\end{array}$	OCA5M	
2X929	416	28745A	$801-$	BF194 316	CRS3／40 10\％	$0 \mathrm{OC46}$	0
2N1303	418	AA129	4／－	BP195 8／－	CRS400／40	OCs7	$18 /$
2N1304	61－	AA178	876	BTY79／100R	38， 0	OC58	$18 /$
2\＄1305	5 －	AAY11	$21-$	151－	$4{ }_{5}$	0.88 0.70 0.70	18／－
2N1308	8 \％－	AAY12	5）－	500R	6：	OC70	$8 /$
2N1307	8）－	AAZ12	4 －	15：－	CRN050025	OC72	8
2N1308	$8 /-$	AAZ13	$2 / 6$	BD119 12／6	15／－	0C72	
2N1309	61－	AAZ17	$21-$	BD124 12／6	33D006 $\quad 3 / 8$	OC73	
2×1420	18.6	AC126	EF－	BEN3000 5／－	DD058 6\％	$0 C 75$ 0.75	
2N1483	9 j	AC127	518	BF115 5／－	DD100 12：0	0c75	5
2N1613	17／6	${ }^{\text {AC127\％}}$	$12 / 8$	BF154 8－	DD226A 7：6	$0 ¢ 76$ 0077	$8 /$
2N2147	17／6	$\mathrm{ACl}^{\text {c }}$	51－	BF158 8］－	DD262A ${ }^{\text {DK }}$	0 C 78	－
2N8160	15）－	${ }^{\text {ACl }} 54$	$81-$	BF158 12／－	DK110 1／6	0c78	2
$2 N 2287$	25／－	ACl69	$8{ }^{1}$－	BF163 8！－	DT3200 76	OC78 OC79	4%
2 N 2297	9，6	${ }^{\text {AC153 }}$	${ }^{4} 1-$	${ }^{\text {BF167 }}$	F8T1／1	OC79 $0 \mathrm{OC81}$	48
2N2648	$10 / 8$	AC176 AC187	$51-$	$\begin{array}{ll}\text { BF173 } & 8 / 4 \\ \text { BF180 } & 7 / 6\end{array}$	$\begin{array}{ll}\text { F8T2\％0 } & 3 / 6 \\ \text { FST2／1 } & 8 / 5\end{array}$	$0 \mathrm{C81D}$	
2N2784	101－	AC188	d－	BPI81 76	F8T3／0 8i－	OC81M	51
2×2904	8，6	ACY 17	8^{\prime}－	BFX30 8／－	FST3／1 \％－	OC81DIf	8 \％
2N2905	101－	ACY18	4／－	BFXB8 8／－	FSI3／8 6／m	0C812	76
2N2925	4）－	ACY19	$51-$	BFYY7 8i－	FST3／05 AF	0 O 82	$51-$
2 N 2926	$2 / 8$	ACY20	4）－	BFY18 5／	8 ）－	0C82D	9／－
2N3011	718	ACY21	$4 / 8$	BFY19 5／－	（iET10\％86－	$0 \mathrm{OC8}$	81－
2N3053	5 －	ACY29	810	BFY ${ }^{\text {a }}$ 22；6	（\％ET103 4，6	OC84	$8 /$
2N3054	$12 / 6$	ACY28	816	BPY50 6／－	MPF102 $\quad 8 ; 6$	0C123	10\％
2N3055	151－	ACY34	4 1－	BFY51 4i6	MPE103 7／－	00123	10／－
2×3133	6）－	ACY36	$5 /$	BFY 5 5 $51-$	MPF104 7／8	OC139	$5 /-$
2स9136	$6{ }^{6}-$	ACY39	$8: 6$	BFY63 4i－	MPF＇105 8：－	0 Cl 10	76
2N3142	$7{ }^{18}$	ACY40	$8 /$	BFX64 8，6	OA5 3！－	$0 \mathrm{OLs1}$	15；－
2N3238	16／－	AD140	11／－	BLY10 80／－	OAF 4t－	OC169	61）
2143233	150－	AD149	12／6	BLEll $22 / 6$	OA9 8－	OClio	6／－
2N3236	301－	AD161	76	BPY10 18；6	0.110 （i－	$0 \mathrm{Cl17}$	6－
2N3228	201－	AD169	$7 / 6$	BSX20 4／－	0．4is ह／－	OC200	6）
2N3528	916	ADT140	$101-$	38x21 6i－	OATO 21－	0 C 201	$9 / 8$
2N3702	316	ADZ11	$24 / 6$	39876 41－	0.171 21－	OC2012	12.8
2×3708	$3 \cdot 6$	ADZ12	20.6	BSY27 il－	OA73 81－	OC203	2／8
2NS704	4 4－	AEY11	101－	B8Y28 5／－	OA74 21－	ac204	8）－
2N3705	$8 / 8$	AEY1\％	12／6	BSY29 5／－	OA79 2／－	OC205	12／6
2N3707	$4 / 1$	AF102	$151-$	BSY50 61－	0181 2／－	06206	15：－
2さ3709	$8 / 8$	AF114	$8 ; 6$	BSY51 8\％－	0．485 $2 / 6$	00207	15／－
2N3710	3）－	AF115	6：	BSY53 51－	0A89 4／－	0CP71	19／6
2\＃3135	${ }^{81}$－	AF116	$8 / 8$	ESY64 5i－	OA90 2／－	O\＃PriL	0；6
2N3794	2／6	AF117	B／	B\＄Y65 5i－	$0 \mathrm{A01} \mathrm{1/6}$	ORP60	810

Send for Free Copy of 1970 Transistor List（36）of a 1，000 Types Today！ DHgCOURTS： 10% on $12+$ ．INTEGRATED CLRCUITS

 wivirs nian

Naw Book ieleases

POWER ENGINEERING USING THYRISTORS Part 1．Techniques of Thyristor Power Control

A new book to bridge the gap between electrical power engineering and electronics． Including postage 32／－

Data Book 1970

Gives Mullard abridged data on valves，picture tubes，semiconductors and components used in consumer electronics．
Paper bound．Including postage 4／9

Transistor Audio \＆ Radio Circuits

For radio receivers，radiograms，record players， tape recorders，hi－fi equipment．
Over 200 pages packed with the most up to date information．
Bound in cloth．Including postage 32／－

Also available：

COLOUR TELEVISION A background to Colour－ Tube adjustments for the Service Engineer

Correct adjustment of colour purity and conver－ gence is essential for a high quality colour picture． Bound in paper boards．Illustrations in colour． Including postage 19／－

ELECTRONIC COUNTING： Circuits ．Techniques－Devices

The increasing use of mechanization and auto－ mation in factories has given rise to an increased interest in counting．This present book is intended to help engineers to use electronics to solve their counting problems as simply or as cheaply as possible．
220 pages fully illustrated．With diagrams． Including postage 29／－

DIOTRAN SALES P.O.EBX 5 WARE HERTS TEL.: WARE 344

S1L. G.P. DIODES	
300 mW , 30	10/-
40 JV (Min.) 100	30/2
Sub-Min. 500	55
Fully Tesred 1,000	49
Ideal for Organ Builders.	

ORDER PLEASE, GIRO ORDER PLEASE, GIRO No. 30-102
OVERSEAS QUOTATIONS BY RETURN SHIPMENTS TO ANYWHERE IN THE
 Al to A7 Guaranmeed 80% Good usable Transistors ideal for low cost production work and experimental use. A8 to AlO are all perfect devices, factory tested, no open or shorz circuic Transistors in these tots,

1/6 TESTED TRANSISTORS 1/6

	SHLICO	R	16 EACH	-
BCIO日	2N696	2 N 1132	2N2220	25733
BC109	2N697	2 N1613	2N3707	2N3391
BFY50	2N706	2N1711	2N3711	TIS44
BFY51	2N708	2 N 2904	$2 \mathrm{S102}$	2N2906
BFX84	2 N 929	2N2905	25103	2N2907
BFX86	2N930	2N2924	25104	2N2696
BFX88	2Nil3l	2N2926	25732	2N3702

From Manufacture'rs" Over-runs-Unmarked Plastic and Metal cases. Devices similar to above Nos.

BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. TYDE TIS 43 and BEN 3000 and replacement for 2N2646. Full data available. LOWEST PRICE AVAILABLE ANYWHERE. 100 off $4 /=$ each $=620 ; 500$ off $3 / 6$ each $=$ CB7, $10 ; 1,000$ off $3 /=$ each $=$
C 150 . Sample devices $7 i$ - each on request.

HIGH QUALITY SILICON PLANAR DIODES. SUB-吽NIATURE DO. 7 Glass Type, suitable replacements for OA200, OA202, BAY38, 15130 , 15940 . 200,000 20 clear

SILICON PLANAR PLASTIC TRANSISTORS. 2N3708A VaB30 Hfe 20-60. All marked, fully tested, and guaranceed, 1 off $1 / 6$ each; 100 of 10 d . each; 500 off 9 d , each: 1,000 off $7 \frac{1}{2} d$. each.

OA90 GERM, DIODES 30PW 45MA DO-7 GLASS. 30,000 Available New and Coded. Price 63 per 100 . Q1I per 500. E17 per 1,000 pieces. Once soid sannor be repeared.

FULLY TESTED DEVICES AND QUALITY GUARANTEED-SURPLUS TO REGUIREMENTS OA202 Silicon Diode. Fully Caded.
150 PIV 250 mA Qry. Price $£ 30$ per 1,000 pieces.
02 A00 Silicon Diode. Fully Coded.
50 PiV 250 mA . Qry. Price $\mathbf{6} 25$ per $1,000$.
BY 100 SIL. RECT'S 800 PIV 550 mA .
1-49 2/6 each; 50-99 $2 / 3$ each; $100-9992$, each; 1,000 up
1/10 each. Fully Codied. Ist Oloy. 1/10 each. Fully Coded. Ist Qlity.

PLASTIC PNP SILICON TRANSISTORS. Manufacturers' seconds from 2N3702-3 family. Ideal cheap trans. for manufacturing, ete. $\mathbf{8 8 , 0 , 0}$ - $\$ 00$, $\$ 13,10,0-$ 1,000 pieces.
PLASTIC NPN SILICON TRANSISTORS, Manufacsurers' seconds from 2N3707-37!1 family. Ideal cheap srans. for manufacturing, etc. $67.10 .0-500$, $\{12.0 .0$ - 1,000 picces.
TO-18 METAL CAN PNP SILICON PLANAR TRANS. Hish quality. 99% good. Type similiar so 2N2906-7, BCI86-7 BCY70-1-2, $69 \operatorname{per} 500$, 115 per 1,000 pieces',
TOP HAT RECTIFIERS. All good. No short or open circuit devices. Voltage range $25-400$ PiV, 750 mA . \& 3 per 100 , E12.10.0 per 500.

GEAM. PNP AND NPN TRANSISTORS FULLY ACI25TED, UNMARKED SIMILAR TOI/6 EACH $\begin{array}{llllll}\text { ACI25 } & \text { ACY22 } & \text { ACY36 NKT677 OCBI } \\ \text { ACl26 } & \text { ACY27 } & \text { NKTI41 NKTl3 }\end{array}$ $\begin{array}{llllll}\text { ACl26 } & \text { ACY27 } & \text { NKTI41 } & \text { NKT713 } & \text { OCB2 } & 2 G 382 \\ \text { ACi27 } & \text { ACY28 } & \text { NKTI42 } & \text { NKT773 } & 2 G 301 & 2 G 399 A\end{array}$ $\begin{array}{llllll}\text { ACi27 } & \text { ACY28 } & \text { NKT142 } & \text { NKT773 } & 2 G 301 & 2 G 399 A \\ \text { ACI28 } & \text { ACY29 } & \text { NKT212 } & \text { OC44 } & 2 G 302 & - \\ \text { ACI30 } & \text { ACY30 } & \text { NKT213 } & \text { OC45 } & 2 G 303 & \end{array}$ $\begin{array}{lllllr}\text { ACI30 } & \text { ACY30 } & \text { NKT213 } & \text { OC45 } & 2 G 303 & \\ \text { ACY19 } & \text { ACY31 } & \text { NKT214 } & \text { OC71 } & 2 G 308 & 1 / 6 \\ \text { ACY20 } & \text { ACY34 } & \text { NKT215 } & \text { OC72 } & 2 G 371 & \text { eaCh } \\ \text { ACY21 } & \text { ACY35 } & \text { NKT271 } & \text { OC75 } & 2 G 374 & \end{array}$ POWER TRANSISTORS

TRANSISTOR EQVT. BOOK

2,500 cross references of transistors-British, European, Amierican and Japanese. A must for every transistor user. Distributed by DIOTRAN SALES. $15 /=$ EACH.

TEXAS 20371 A/B
Eqve. OC71 Germ. Gen. Purpose Trans.
$1-99$
$100-499$
$100-499$
$500-999$
$500-999$
1000 up
1000 up \quad. 9 . $1 /$
All Brand New and
Caded.

Vast mixed lot of subminiature glars diodes. Comprising of Silicon, Germ., Point Contact and Gold Bonded typer pius some Zeners, 500,000 available at Lowest of Low Price. 1,000 pieces $£ 3.0 .0,5,000$ pieces
$\mathbf{8} 13,10.0 .10,000$ pieces $\leqslant 23$. \& 13.10 .0 . 10,000 pieces 823 .

Peerless

 High Fidelity

 High Fidelity Loudspeaker Kit Loudspeaker Kit Systems for the Systems for the Home Constructor

 Home Constructor}

KIT 28
Max. Power Input: 10 wasts. Frequency Range: $50-18,000 \mathrm{~Hz}$ in 0.57 cu.ft cabinet. Tweeser: MT 25 HFC
Cross-over Frequency: $4,000 \mathrm{~Hz}$.
Dalivered with eomponents for dividing network and drawing for cabinet.
KIT 3-15
Max, Power inpus: 25 wates.
Frequency Rango: $40-18,000 \mathrm{~Hz}$ in $3 \frac{1}{2}$ eu.fe cabines.
Moorer: 550 MAC
Tweeter: MT 20 HFC .
Cross-over Frequencies: 750 Hz and $4,000 \mathrm{~Hz}$
Delivered with ready-wired cross-over network and cabinet leaflet.
KIT 3-25
Max. Power Input: 15 wates.
Frequency Range: $45-18.000 \mathrm{~Hz}$ in 1.06 cu.it cabinet.
Woofer: $\mathrm{Fa5} \mathrm{~W}$
Mid-range: GT 50 MRC.
Cross-over Frequencies: 750 Hz and $4,000 \mathrm{~Hz}$
Delivered with components for dividing network and eabinet leaflee.

KIT 20-2

Max. Power Inpue: 30 wacts.

Tweoter: MT 225 HFC
Crasteover Frequenty: $2,500 \mathrm{~Hz}$.
Delivered wizh ready-wired cross-over network and sabinet handbook.
Price: $\leqslant 12,12,6$ incl, $23 x$.

Peerless Fabrikkerne \mathbf{A} / S have over 35 years of experience in acoustics and they are today the lartest loudspeaker factory in Scandiazia.

Kit 2-8
To: P. F. A. R. Helme, Depe. PE6, Summerbridge, Harrogate, Yorks. (sole U.K. distributors)

Please send me details on che Peerless kit syseemi I
| Name \& Address
| ... |
|…..

ㅂI

FULLY TESTED AND MARKED

AC107	3／－	OC170
ACl26	216	0 Cl 17
AC127	316	OC200
ACl28	2／6	OC201
AC176	51－	26301
ACY17	31－	2 G 303
AF114	4／7	2N711
AFIIS	3／6	$2 \mathrm{~N} 1302-3$
AFI 16	3／6	$2 \mathrm{~N} 1304-5$
AFIt7	3／6	2 N 13068
AF239	12／6	2N130e－9
AF186	10\％	2N3844A
AF139	101－	Power
BFY50	4／m	Tranalistort
BSY25	7／6	OC20
ESY26	31－	OC23
BSY27	3／－	$0 \subset 25$
B5Y28	1／－	OC26
B5Y29	$3 / \mathrm{m}$	$\bigcirc{ }^{\circ} \mathrm{C} 28$
BSY9SA	3／－	OC35
OC41	$2 / 6$	OC36
OC44	2／6	AD149
OC45	2／6	AUYIO
0671	$2 / 6$	2 SO 34
OC72	216	2N3055
OC73	316	Dieden
OC8I	2／6	AAY42
OCld	$2 / 6$	OA95
OC13		OA79
0 OCl 39	$2 / 6$	OAsI
OCl 40	3／6	1N914

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10／－WITH ORDERS OVER I_{4}

SUPPUUS INTEERATED CIRCUTTS

These are brand new genuine surplus stocks， marked and guaranseed to full makers＇specification and not re－marked rejects．
NE806A Dual 4 I／P Expander TiTL NE808A Single 8 UP Nand Gate TTL NE日16A Dual 4 I／P Nand Gate TTL NEB240A Duai 4 I／P Exclusive OR Gate TTL NE655A Dual 4 Power Gate TTL NE870A Triple 3 I／P Nand TTL NEB8OA Quad 2 Nand TTL
SP616A Dual 4 Nand Gate DTL

$$
\begin{aligned}
& \text { SP631A Quad } 21 / P \text { Gate Expande } \\
& \text { SP670A Tribie } 3 \text { Nand Gate DT }
\end{aligned}
$$ SP670A Triple 3 Nand Gate DTL SPB06A Dual I／P Expander TTL SPQ08A Single 8 UP Nand Gate IT SP日16A Dual $41 / P$ Nand Gate TTL SPB40A D．C．Cill Exelusive OR Gate IT SPB55A Dual 4 Power Gate TTL SP970A Triple 3 I／P Nand TTL \＄P980A Quad 2 I／P Nand TTL NE500K Video Amplifier NE501K Videa Amplifier 40 MHz NEB063 Dual $41 / \mathrm{P}$ Expander TTL NE808！Single $8 / / \mathrm{P}$ Nand Gate TTL NEBis！Dual $41 / P$ Nand Gate TTL NE825！D．C．Clocked JK Flip－Flop TTL 17 NE8401 Dual $41 / P$ Exclusive OR Gace TTL 7 ！ NE日55J Dual 4 Power Driver TTL NE8701 Triple 3 IIP Nand TTL NE8BOS Quad 2 IP Nand T $\begin{array}{ll}\text { ST620A } & \text { J－K Flip Flop DTL } \\ \text { ST659A } & \text { Dual } 4 \text { BufferfDriver DTL }\end{array}$ ST600A Quad 2 Nand DTL

Suffix $A=$ DIP 14 lead；K＝10 lead TO5；$J=$ Fiat pack．

LOOK ！
 TRANSISTORS
 ONLY 6d EACH

 TYPE A PNP SILICON A ALLOY SPEC：－ ICER AT YCE $=20 \%$ ImA MAX．HFE 15－100
THESE ARE OF THE 25300 TYPE WHICH IS A DIRECT EOUIVALENT TO THE OC200／205 RANGE

PNP SILICON PLASTIC ENCAPSULATION SPEC：－ ICER AT YCE＝IOV ImA MAX HFE 10－200 THESE ARE OF THE 2N3702／3 AND 2N4059／62 RANGE

PNP GERMANIUM FULLY MARKED AND TESTED．

NEW TESTED AND GUARANTITEED PAKS

32		Bateri	

B77	2		10／－
881	10	Reed 5witches mixed types large and small	10
B69	2	5SP5 Light Sensitive Cells． Light Res． 400 日 Dark IMn	1
\％ 91	8	NKTIIB3／164 PNP Germ．TO entivalent to OC 44, OC45	01
\％92	4	NPN．Sil．Trana A ${ }_{3}^{B 60 \mathrm{~mW}} \mathrm{~F}$	10／－
893	5	GETI3 Trans equiv．	1
¢94	6	NPN Sil．Planar Epitaxial 	01
896	5	600 mA .200 MHz	0／m
898	10	XBII2 and XB102 equiv． $\mathrm{ACl} 126, ~ A C 156, ~ O C 61 / 2, ~$ OC71／2，NKT271，	10／
899	20	Capacitors，Elecerolytics paper，silver mica，etc，pos packing，this Pak＇ $2 / 6$	
H4		Mixed Resistors．Pout and Packing 21 －	－
H7	40	Wirewound types and val	01

RETURN OF THE UNBEATABLE P．I PAK． NOW GREATER VALUE THAN EVER
FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS，APPROX． 170．WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRAN－ SISTORS PNP AND NPN，AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS．IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA－ TION ON THE TRANSISTORS．
PL\＆ASE ASK FOR PAK P．I ONLY $10 /=$ 2／－P．\＆P．on this Pak．

Make a Rev．Counter for your Car．The ＇TACHO BLOCK＇．This encapsulated block will turn any 0－1mA meter into a linear and accurate rev．
counter for any car．
－ $1 /$－each
FREE CATALOGUE AND LISTS for：－

ZENER DIODES TRANSISTORS，RECTIFIERS FULL PRE－PAK LISTS \＆SUBSTITUTION CHART

MINIMUM ORDER 10／．CASH WITH ORDEf PLEASE．Add $1 /$－post and packing per order．OVERSEAS ADD EXTRA FOR AIRMAIL．

P．O．RELAYS

Various Contacts and Coil Resistances．No individual selection．Post \＆Packing 5／

FOR $1 /=$

T FLASHERS Heavy duty llgbt
Ranher cmplay a condenser discharge prineiple operatlng on electro mechanical relay, (A_{s} inset.) Housed in strong plantle case. Flash. lng rate between
fol 120 per ralpute. 12 volt DC DCer sinute.
 nf orlginal coet. $8 / 6$ earh. (3 tor $37 / 6$. 1 , R' P. 4 /6.)

CLASS D WAVEMETERS

crualal controllew heteru (ing ingolal controlled heteru-

UNR-30 4-8AND COMHUNICATION

(overing ó0 Keje-an Mc/m, lnworpdrates BFO. Buile-jn theaker ank phone jack. Metal cabinet. Operatlon 2220 Inntrumbons.

TRIO TR-310 EEW AMATEUR BAND
TRIO JR-GIO EXW AIATEUR BAND
10-80 METRE RECEIVER. In 10-80
$677,10.0$.

Lafayeite solid state habeo recelver SBAND AM/CW/SSB AZATEUR ARD SHORT WA T $150 \mathrm{kO} / \mathrm{s}-100 \mathrm{rc} / \mathrm{s}$ and $550 \mathrm{Kc} / \mathrm{l}-30 \mathrm{Mcjz}$

 EXCEPTIONAL VALUE. 245. Catr, 10;- 8.A.E. for full dietalis.

TRIO COMMUNICATION

 RECEIVER MODEL 9R-59DE 4 band receiver corering $650 \mathrm{Ke} / \mathrm{s}$ to $80 \mathrm{Mc/g}$. 40 and 80 netres. 8 valve plus 7 dilode clrcule. $t / 8$ ohm output and phone jeck. 8 sBB -CW © ANL - Yariable BFO o meler sep. bandepread Varlable RF and AF gain controis. $118 / 260 \mathrm{~V}$
A.C. Mains. Beautifully vieelgned. \$ize: $7 \times 15 \times$ 10in. With instruction mangal and serdice data. 842 Carrlage paid
OL'R PRICE 83.16 .0 if purchased with above recelver.

TRIO TR-5008E 10-80 Meits
AMATEUR RECETVER 805
TRIO TS 510 AMCATEUR TRARSCEIVER
with speaker and main P.B.U, 8180
UR-IA SOLID STATE ROMNUHGATIOK RECEIVER
4 bands vovering 850 K c/a-30 utef/ con-
tinuous. special featares are uec of FET thuous. Special features are uec of FET
tranaistorn. \& meler, bulle in mperker and telescopic nerial, varlable BFO for B8B receptioh, noieo lfuilter, banukpreasl control, вenuttivity control. Ontput fur low finpedance headphones. Operation 2201250 vole A.C. or 12 volt D.C. size $122^{*} \times 47^{4} \times 7^{\prime \prime}$. Excellent
 value. ONLY 蛙, Catr, 7/6

LAPAYETTE EA. 800 G-BAKD AMATEUR RECEIVER. 257,10,0. Crtr, Paid.

RCA COMMUNICATION RECEIVER AR88D
Lateat releuBe by minigtry BRAND NEW in original eases. $110-250 \mathrm{~V}$ a.c. operathon. Frequency in 8 Bamis. 835 Ke e/s-32Mc/s continuous. Output impedance $2 \cdot 5-600$ ohms, Incorporating crytal filter, nolse limiter, variable BFO, variable selectivity, elc. Price 885 . Carr, E4.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER
A completely new iratisiftorised revelver cuvering 15:2-174 Mefg. Fully tureable or cryatal controleed
inol eupphied; for Axeul frequency operation. Incorporates 4 INTEGRATED CIRCLITS. Buil in epraker arvi ilsurninated dial. Squeleh and volnine controls. Tape recorder output. 75Ω nerlal

TELETON MODEL CR $10 T$ AM/FM STEREO TUNER AMPLIFIER

new notel from Teleton. 31 bolid state devices, $4+4$ watt output. luputa for
exrarnic/eryetal eartridge. Frequency range curarmic/eryetal eartridge. Freguency range
AM $540-1800 \mathrm{KHzFM} 89-108 \mathrm{MHz}$. AutoIumatic FME stereo reception. Sterco futicator. Iutic Fis stereo reception, Sterco huticator.
 Stereo headphone socket. Size: 13s***3 -91- approx. Price $\mathbf{3 4}$. Carr. 7/6.

$50 \mu A . .$.
$60-0.60 \mu \mathrm{~A}$.
$100 \mu \mathrm{~A} .$. $100 \mu \mathrm{~A}+\cdots \mathrm{A}$ 200 HA 500 16 A

POWER RHEOSTATS

High qualily ceramic consetruction. Windings embedded in vitreout enamel. Heary duty brush miper. Continuous ratlng. Wide range
ex-stock Sinnle hole Axing, tin, dia, hafis, Bubk quanilies available, ex-stock sinkle hole nxing, in, dia. Ahails, Butk quanilies available 25 WATF. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms, 14,6. 1. d P. $1,6$.

CRYSTAL CALIBRATOAS No. 16

T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER

10 meg. input 10 ranges

 R.M.S. Decibels suppled brand $+\overline{\mathrm{s} O d B}$. complete with leads and | iustructions. | $\begin{array}{ll}\text { Operation } \\ 230 \mathrm{~V} \\ \text { n.c. } & \mathbf{2 1 7}, 10.0 .\end{array}$ |
| :--- | :--- |

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS Frequency 0.20 Kcjs on a ranges. Oulpur 500 B or 3 k B . Operation 200,200 . A.C. Supplied in perfect order. 812.10 .0 . Carr. 101-.
TE-65 VALVE VOLTMETER

High quality instrument with 28 ranges. D.e. volte
$1.5 \sim 1,600 \mathrm{~V}$. A.c. volte ${ }^{1.5 \sim 1,5-1,600 \mathrm{~V}, ~ A . c . ~ V o l t a ~}$ up to 1,000 meegobarar.
 Complete with probe and instructions. 81710.0 . P. \& P. $6 \mathrm{~F}^{-}$. Additional Prober avaliable: R.F $35 j-$ H.V. 42/6.
COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
D.c. coupled. Batad width 1ke/g. Perfect order. 225. Carr. 301-

AM/FM SIGNAL GENERATORS

 oscilator Teat No. precirion instru. ment made for the ministry by Alrmec. Frequency cover-
age $20-803$, $1 \mathrm{~B}, \mathrm{AM}$. age $20-803 \mathrm{Kc} / \mathrm{g}, \mathrm{AM}$
C.W. FM,
Incor. porates precisiou allal, letel meter, preclaton
 $12 \times 84 \times 914$. Supplied in brand new condition couptete with sill connectora fully teatelt. 145.

PLESSEY SL 403A

EDDYSTONE VEP RECEIVERS MODEL
770R. 19-165 Mc/s. Excelleut condtion. 2160
TRE-10A Tranintorived
 Signal Generator, δ rangeo
$400 \mathrm{kHz}-30 \mathrm{mHz}$. An $500 \mathrm{kHz-30} \mathrm{mLHz}$. An
inexpenive instrument for the handyman. Operhor the handyman. Oper.
ates on 9 v batitery. Wha,
easy to tead scale. ${ }^{\text {easy }} \mathrm{kO}$ read sate. 800 kHz modalation.
$5 \overline{\mathrm{k}} \times 56 \times 31 \mathrm{c}$ Complete
with instructions and

HOSIDEN DH-02S STEREO HEADPHONES Wonderful value aint excellent performance com heul bancl. \& obsa linupedance.
$10-12,000$ epr.
Complete with teal
and stereo jack plug

ONLY 476.

P.\&P. 2 , 1 .

AUTO TRANSFORMERS
$0115 / 230 \mathrm{v}$. Step up or step down. Fulls shrouded.

G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 A.F. ging wave Square wava
 P/P600 23.8 V: P/E Les cital pirpose meter to monitior incurpor out \$98.10.0.

TE-20D RF SIGNAL GENERATOR
 Asmal generator cover ng $120 \mathrm{ke} / 8$ to 500 Me] on 6 bande. Directiy BF oulput. or calibratlop socke -10V A.c. Size $140 \times$ $15 \times 170 \mathrm{~mm}$. Brand 15. With instruct fons

TY7 AUDIO SIGNAL
Sine Wiave ? 0 c 多 io $200 \mathrm{kc} / \mathrm{B}$. Square Wave
20 c 's 10 nokcja, High und law tmpedance ontput. Output rariable up to bolte, tyo: 240 rolts AM, Sise $310 x$
150×120 man, Brani new wilh instructions.
816. Carr, $\overline{8}$. 6.

YARCONI TFL42E DISTO 2 TION FACTOB METERS. Escell
LAFAYETTE TE46 RESISTANCE

Cravr. 7 is.
ADVANCE TEST EQUIPMENT Brand new and boxed in original sealed cartons J1B, AUDIDAIGIAZGENEZATOB $15 \mathrm{e} / \mathrm{a}$ to $60 \mathrm{Kc} / \mathrm{s}$, Sine wnse. Output 600 ohms or 5 ohms. \$30.0.0.
 $100 \mathrm{Ke} / \mathrm{s}$ to $1,009 \mathrm{Mc} / \mathrm{B}$. a.c. 10 mV to 3 F D.c. 10 mV to $3 V$, Current $0.01 \mathrm{\mu A}$ to 0.3 mat 85.0 .
TII8, TRANSI8TOR TEBTER, Full range of faclities for testing PNP or N
in or out of circuit. 337.10 .0 .
Carriage 10j-per Item.
TO. 3 PORTABLE OSCILLOSCOPE - 3ib. tube. Y amp. Sensit

 X amp. nensitivity 0.8 y . P.p/CM, Bandwidth 1.5 cps
-800 KHz Input Imp . ${ }^{2}$ -800 KHz Input Imp. theg 0 20pF. Tlme base.
5 rangea $10 \mathrm{cps}-\mathrm{s} 00 \mathrm{KHz}$. 6 rangea $10 \mathrm{cps}-\$ 00 \mathrm{KHz}$.
gyachronlzat Synchronlzation, Internalf external, Illuminated scalo $140 \times 915 \times 330$ mim, Weight new wh bandbook, AB7.10.0. Carf, 10/-

TEIL1.

DROADE

 ARETETUATOVariable $0-\frac{1}{2} 11 \mathrm{~dB}$, Cons nections. Con
 pections, 6000 range ${ }^{2}(0-1 d B \times 10)^{T}+(1 d 3 \times 10)$ $+10+20+80+40 \mathrm{~dB}$. Frequency: di.c. to $200 \mathrm{kHz}\langle-3 \mathrm{~dB}\}$. Aecuracy: 0.05 dB . +indtention $\mathrm{dB} \times 0.01$. Maximum input leas than 4 W (50 V). Bullt in 690 o load realstance whin interna jexternal switcb. Brand new es7.20.0. P. \& P. 5i-

AVOMETER MOVEMENTS

Spare morements for Model 8 or 9 . (Fitted With Model 9 scale) or basio for any multi-
meter. Brand New and Boxed $60 / 6$. P.\&P. $3 / 0$.

latesitThe latest editan. giving fut
details of a cormprehensive details of e comprehensive
tange of HI FI EQU|PMENT: COMPONENTS, IEST EQUIP: MENT ary COMAUMIGATHNS
EQUIPMENT. pages, fully 230 irated ard dotait. ing thousands of: items - many
bargain prices. bargain prices.
FREE DISCOUN FAEE DISCOUN
COUPONS VALUE TOJ-

SEND NOW-ONLY $7 / 6$ P\&PII

4th Edition now ready-send for your copy nowl

GARRARD

FULL CURZEAT RAEGE OFFERED, BRAFD NFW AFD GUARATTEED ATYANTASTIC \&AVILGS
1025 нtereu 47.18 .8 \& 475 te25.18.6

 $\begin{array}{lllll}\text { ELL5 } & 211.18 .8 & 401 & 218.0 .0\end{array}$ SL65B
BLF2B
$\begin{array}{ll}\text { AFTV } & \text { 245. } 0.0 \\ \text { Carriege } & \text { 210.18.6 }\end{array}$
Carriage 7/6 extra ewh tuen
TEAK RLINTHS AND PERSPEX COVERG

. For SPP5, SL85, SLL55, $3000,2025 \mathrm{~T} / \mathrm{C}_{4} 202 \mathrm{~K}, 1000$. 14.10.0
8. For APT5, SLifs, sL98. 25.19.6
8. For \&Pisa etc. to operate with lid Ia pluce e5.18.8

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
 19 traxulsters, 8 clodes, 1HF music power, 20W nt 8 n . Fesponse $30-20,000 \pm$ 3dB nt 1W, Dls. tortion 1% or lers. luputs 3inV and 250 mV , trols. Treble ant bass control. Stereo phone jack. Brushed aluminiunt, goll anoulised extrujed front
panel with coniplementary metal case. Size 101 panel with complementars metal case, Size 101
$39 / 16$ / $713 / 13 \mathrm{in}$. Operation $115 / 230 \mathrm{~S}_{\text {. }}$ 424. Currjage $/ 6$

MULTIMETERS for EVERY purpose!

TE-51. TEW $20,000 \mathrm{R}$ FOLT MULTIMETEE with
Dverload protection and
inleror Ecaic. $0 / 6 ; 60 / 120$ inlrror ecale. 0/6;60/120
$3,200 \mathrm{y}$ a.c. $0 / 3 / 30 / 60 / 300$ $600 / 3,000 \%$ t.c. $0 \cdot 60 \mu \mathrm{~A} / 1 \mathrm{I}$ 1300 mA d.c. $0 / 60 \mathrm{~K} / 6 \mathrm{nleg}$ ohm, 98, ©, P, \& P. 2/8.

MODEL AS-100D 100K a /VOLT.

100 D
5 n.
Bult mirror seale. Bultt-
in meter protection. in meter protection.
$0 / 3 / 12 / 60 / 120 i$
$300 / 600$
 600 V a.c. $0 / 10 \mu \mathrm{al} /$
$6 / 603003 \mathrm{~A} / 12$ $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{mp}$ $200 \mathrm{M} \Omega \quad=20 \quad t$ $\begin{array}{ll}+17 \mathrm{~dB}, & \mathbf{2 1 2 . 1 0 . 0} \\ \mathrm{P} .8 \mathrm{P} .3: 6 .\end{array}$

MODEL TE-00 50.000 O.P.V. MIRROR SOALE OFERLOAD PROTECTIOF $0 / 3 / 12,60 / 300 / 600 / 1,200 \mathrm{~V}$
4.e. $0 / 6 / 30 / 129 / 300 / 1,200 \mathrm{~V}$ di.c. $0.03 / 6 / 60 / 600 \mathrm{MA}$ d.c. $16 k n / 180 \mathrm{k} \mathrm{a} / 2 \cdot 6 / 16 \mathrm{Ma}$.

MODEL TE-70. 30,000 O.P.F. 0/3/15/80/300 $600 / 1.200 \mathrm{~V}$. d.c. $0 / 6$
$30 / 120 / 600 / 1,200 \mathrm{~V}$ 2.c. $0 / 80 / \mathrm{sA}$ / $8 / 30$
300 mA . $0 / 16 \mathrm{~K} / 260 \mathrm{~K}$ 1.6 M 16megohm 5.10.0, P. \& P. 3\%.

MODEL PT-3f 1.000 O.P.V.0110 50 (250 / 500) $1,000 \mathrm{~V}$ R.c. and
d.c. 0/1/100/500

MODEL TE-10A. YOK $\frac{1}{2}$ Volt \quad K/2 $5 / 50 / 250 / 500 / 2,500$ 1,000v. ms puberns. 4.ce $0 / 6 \mathrm{KK} / 5$ megohnt. -20 to +29 dB .
$10-0,100$ mfd. to $0.100-0.1$ mifl. 69:8. P. \& P. 2; 4.

MODEL TE 80. 20,000

 $0,6 \mathrm{~K} / 60 / \mathrm{K} / 300$
$24.17 .6, \mathrm{P}, \&$

$\begin{array}{lll}\text { MODEL } & \text { TEI2. } & 20.000 \\ \text { O.P.1. } & 0.0 \cdot 6 \cdot 30120+600\end{array}$ | $0, P .1$ | $0,0 \cdot 6,30 / 120 / 600$ |
| ---: | ---: |
| 1,200 | $3,000 / 6,000 \mathrm{~V}$ |
| $1 . \mathrm{c}$ | | $1 / 6 / 30 / 120 / 600 / 12,200 \mathrm{~V}^{-}$A.c.

$0 / 60 \mu \mathrm{~N} / 6 / 50 / 600 \mathrm{M}$.
 ©5.19.B. P. \& $\mathrm{P} .3,6, \mathrm{MFD}$ LAFAYETTE 7 Range

\star TRANSISTORISED FM TUNER $\star \underset{\text { TRANSISTOR }}{ }$
 HIGH QUALITYY
 Double. stagea. Double tuned dls. criminator. Ample. output to feed most
amplifers.
Operales on 9 V battery. Coverage $88-308 \mathrm{Mc} / \mathrm{s}$. Ready boil ready for use. Fantastic value for money, 28.7.6. P. \& P. 2//6.

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amaziagly long distances. Separate call 2 -wire connection. 1000's of applicationa. Beautifully finisbed in ebony. Supplied complete with tatteries and *8.19.6. P. \& P. $3 / 6$.

SIMCLAIR EQUIPMENT

Prolect 60 range of new modela now in atock

8 tereo 80
PZ5 Pownt Unit 29.10 .0 Zzs Power Supply 8 Power Supply 27.10 .8 Q1. spezkers 28.10.0

spectal paceage orger

2×280 Amplifers, Stere 60 and PZ5 Power Supply 210 Carr. $7 / 6$ or with 2 Q18 Speakers ± 35 Carr. $7 / 4$ Speakers SINCLAIR IC/10 IN STOCK $89 / 6$ 2000 Amplifer tes.10.0. Carr. 7/6
Neoteric Amplifler 242.10 .0 . Carr. 7

PEAK SOUND PRODUCTS

Full rango of Amplifiers, Kits, 出peakers io
Fultrango of Amplifiers, Kits, speakers io
ECHO HS-60G STEREO
HEADPHONES

HOSIDEN OHO4S 2-WAY STEREO

HEADSETS Each hendphone con-
lains is 3 tin
wooter

 cable and stereo plug.

RECORDING HEADS

COSMOCORD D-track heads. Jtigh
 High imp, recordiplayback 6sin Low Imip. erase 20 :
RACAL MA. 188 TRANSISTORISED DIVERGITY 8WITCE. Brand New Condition 215 . ITY 8Wirck. Branil tew Cohdrtion 215.

AMERICAN TAPE
First graike quatity American tapee. Brand new Blacount on quantities.
$\$ 1 \mathrm{in}$ 600ft. T.P. nylar 3in. 600ft, T. P. Mylar
5 im . 600 fL At. plastle 5 in. 000 tt , I. P. acetate: sin, $1,200 \mathrm{t}$. D.P. mylar 5 Sin, 1,200ft. I.F. acetate 5 In. 1.200st. L.P. mylar .
 in. 1 ,2001t. stet. acelate. 7in. 1,800ft. . L. P. acetate 7in. 1,.300 ft. L. P. mylar
 Postage $2 /-$ - Over $\kappa 3$ post pail.

TAPE CASSETTES

C60 $60 \mathrm{ntin} \quad 8 / 83 \mathrm{trt} 24 / \mathrm{B}$
C90 90 nin
$\mathrm{C} 120120 \mathrm{~min} 15 /-3$ for $38 / 6$
Casselte Head Cleaner 11/3. All Post Extra.

PRACTICAL!

 VISUAL! Nhe the EXCITING!
a new 4-way method of mastering

ELECTRONICS by doing - and - seeing

4
CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING

\author{

- VALVE EXPERIMENTS
 TRANSISTOR EXPERIMENTS
 AMPLIFIERS
 - OSCILLATORS
 - SIGNAL TRACER
}
PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT BASIC RADIO RECEIVER
ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
A.C. EXPERIMENTS
D.C. EXPERIMENTS SIMPLE COUNTER
TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronic's by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

POSTNOW
for
BROCHURE
I
or write if you prefer not to cut page
I

VOL. 6 No. 6 June 1970 PRACTICAL
 ELECTRONICS

Editor F. E. BENNETT Assistant Editor M. A. COLWELL Editorial Assistants D. BARRINGTON G. GODBOLD M. KENWARD Art Editor J. D. POUNTNEY Technical Illustrators J. A. HADLEY P. A. LOATES Advertisement Manager D. W. B. Tilleard

A HOBBY FOR ALL

WHILE electronic design and construction is an absorbing and stimulating hobby in itself, the end product can be the means for widening the scope of other leisure activities and making these even more attractive and rewarding than before.

There are indeed good grounds for suggesting that electronics is destined to become a hobby for all hobbyists. Already it penetrates into a multitude of other pastimes and casts its influence upon various areas of recreation that would not ordinarily be considered as having any natural affinity with this technology. In fact it is difficult to think of a pastime which cannot in some way or another make use of electronics.

The list of electronic gadgets employed as ancillary, if not essential, aids to other hobbies is already large. And further additions will continue to be made to this list - not least in relation to outdoor activities, which loom large in our thoughts this time of the year. Outdoor recreative pursuits as varied and diverse as, for example, motoring, boating, camping, photography, archaeology, rifle shooting, fishing, and model control all stand to gain from the exploitation of modern electronic developments.

The compact size of many electronic units and their capability of operating from small dry batteries, or car batteries, endow them with characteristics especially favourable for the "outdoor life". (Those who believe the transistor radio receiver to be the principal contribution made by semiconductor technology to the happiness and enjoyment of the citizen-at-large need to be corrected on this point!) In a quiet unobtrusive manner electronics can perform many useful functions in outdoor activities without despoiling in any way the natural scene.

It is hardly necessary to mention that opportunities for innovation in the application of circuitry are limitless. When spurred along by the special requirements of some other hobby or interest, the mind is likely to be exceedingly productive in ideas.

This is a two-way traffic. Electronics is constantly being explored in the search for solutions to novel problems. The solution of one problem.generally leads to further ideas concerning applications in other fields and so the total overall effect arising from some humble requirement is never predictable. The general utility of electroniçs is thereby expanded, while countless different recreative pursuits are enlivened or enhanced in some manner by contributions electronics alone can provide. In terms of the individual constructor, the satisfaction derived from his own handiwork is twofold, and lasting.

THIS MONTH

CONSTRUCTIONAL PROIECTSSOUND.TRIGGER FORPHOTO-FLASH448
TRANSISTOR D.C. MULTIMETER 460
FLASHING LIGHT SHOW 474
MODEL TRAIN CONTROLLER 485
P.E. COMMUNICATIONS RECEIVER-9 490
SPECIAL SERIES
DEMONSTRATION SWITCHING CIRCUITS-7 457
GENERAL FEATURES
SOUNDS INCREDIBLE 452
BEGINNERS
THIS WAY TO ELECTRONICS-3468
NEWS AND COMMENT
EDITORIAL 447
POINTS ARISING 459
SPACEWATCH 473
NEWS BRIEFS 479, 498
REPORT FROM AUSTRALIA 480
PROSPECTS FOR THE INDUSTRY 482
READOUT 497

Our July issue will be published on Monday, June 15

[^0]
Abstract

FROM the response to earlier articles on electronic aids for the amateur photographer, it is obvious that a large number of readers are interested in both subjects. This is not surprising as the photographer of today relies largely on mechanical and electronic skills for the high standard of his end product.

Impact photography, as shown in photographs in this article, relies very much on electronic circuitry to get the striking effects required.

Find out now how you can make a . . .

Afew years ago the problem of recording impact phenomena was considered to be a laboratory project using specialised equipment, but thanks to the availability of thyristors and inexpensive silicon planar transistors, this is no longer the case.

This easily constructed self-contained synchroniser unit can be built for about $£ 3$ and enables the photographer to fire his electronic photo flash by the sound emitted at the instant of impact. To obtain this synchronisation, the positive side of the electronic flash trigger lead is connected to the anode of a thyristor and the negative side to its cathode. The impact sound is picked up by a miniature crystal microphone insert, amplified by the multistage silicon planar amplifier, converted to a rectified pulse which in turn fires the thyristor and operates the flash gun.

SOUND TRIGGERING

The low priced resin encapsulated silicon planar transistor type 2N2926 is chosen for the synchroniser as it possesses a low noise factor and is obtainable in the high $h_{\text {re }}$ ratings desirable for the early stages. The first three stages provide a high voltage gain at a total supply current of less than one milliamp.

It is possible to couple the base of a silicon transistor directly to the collector of the previous stage as the working base-emitter voltage ($V_{B E}$) of a silicon transistor is of the order of 0.6 V . These devices will function with a base voltage equivalent to, or even higher than, their collector voltage.

The amplifier is quite stable with the components specified, d.c. feedback being effected over R2 and VR1. The simplest form of gain control is to bi-pass the a.c. component via Cl to the negative rail. This also ensures that no d.c. changes occur if adjustments are made in sensitivity with the equipment switched on, which could result in spurious operation of the flash unit.

The amplified signal across the collector load of TR3 is applied via C2 to the unbiased transistor TR4 where rectification takes place and feeds a pulse of current via the gate and cathode of the thyristor SCR1. Provided correct polarity exists across this device from the photo flash, it switches on and the flash is fired. The thyristor is automatically reset after firing as, during conduction, the trigger coil voltage is reduced to zero.

CONSTRUCTION

The circuit is constructed on a $2 \frac{1}{2}$ in $\times \operatorname{lin} 0.15$ in matrix Veroboard. Fig. 2 shows the underside of this board and it will be seen that six breaks have to be made in the copper foil strips in the positions shown. This can readily be undertaken with the aid of a spotface cutter or $\frac{1}{8}$ in drill. A sharp knife can be used but care must be taken not to damage the adjacent copper strips.
 R. Fletcher

Fig. I. Circuit diagram of the trigger unit

Fig. 2. Underside of the board showing breaks in the copper strips

It will be seen that each hole in the board is code numbered and the ones used for a soldered connection have been blacked in.

After preparing the board, it is turned over and the components are mounted on its face as illustrated by Fig. 3. It may be necessary to solder wires on to the tags of the pre-set skeleton potentiometer VR1 if they do not coincide with the holes specified for its fixing. A short jumper lead is connected from its slider tag to hole $9 D$. The strap between holes $16 D$ and $16 G$ completes the negative rail connection of Cl .

It is advisable to fit a short length of thin sleeving on the centre (collector) leads of the transistors, especially in the case of TR2 and TR4 where the sequence of lead connections is different from the $e-c-b$ sequence from the transistor.

External connections can be made after the components have been mounted and soldered on the board. Usually one lead of the crystal microphone insert is connected to its metal case (black on the type specified). This should be soldered to the negative rail, i.e. strip G. The battery connections are self explanatory, the positive on A and negative on G, wired via the on-off switch.

CONNECTION TO FLASH GUN

The seven-feet long flash extension lead calls for comment, as this must be correctly connected polarity wise. First, trim off the connector not required for coupling to the flash unit, a few inches from the end of the cable and bare the two centre conductors. Connect the other end of the lead to the electronic flash unit and switch on,

COMPONENTS . .

Resistors

R1	$150 \mathrm{k} \Omega$	R3	$150 \mathrm{k} \Omega$
R2	$1 \mathrm{M} \Omega$	R4	$12 \mathrm{k} \Omega$

All $5 \%, \frac{1}{4}$ watt carbon

Potentiometer

VRI $250 \mathrm{k} \Omega$ carbon skeleton preset
Capacitors
C1, C2 $0.1 \mu \mathrm{~F}$ polyester (2 off)
Transistors
TRI, TR2 2N2926 (Green) (2 off)
TR3, TR4 2N2926 (Yellow) (2 off)
Thyristor
SCRI CRS $1 / 40$

Switch

St Double pole, on-off, slide switch

Microphone

XI $\frac{3}{4}$ in crystal insert
Battery
BYI 9 V (type PP3)

Miscellaneous

Veroboard 0.15 in , matrix $2 \frac{1}{2} \mathrm{in} \times \mathrm{lin}$ Battery connector
Flash extension lead 7 feet Plastics Box $4 \frac{3}{6}$ in $\times 3$ in $\times 1 \frac{1}{4}$ in

Fig. 3. Components assembled on the top of the board

With the aid of a voltmeter switched to the 250 volt range ascertain the polarity of the bared conductors. Be prepared to disconnect the meter quickly if reverse polarity is indicated. The measured voltage will vary with different flash units, but the object of the exercise is only to check polarity. The positive lead must be connected to foil strip 16 C (anode of thyristor) and negative lead to $16 E$.

Most modern flash units have the positive side of the trigger coil primary wired to the centre of the connector but it is as well to check. Actually a reversed connection will not damage the semiconductors in the synchroniser, but of course the thyristor would fail to conduct.

On completion of the wiring, the unit should be checked for any obvious errors, dry joints, or bridging contacts between the foil strips. If all is well, VRi should be set to mid-position and a milliameter connected in series with one of the battery leads before connecting to the 9 V battery.
on-off switch and crystal microphone insert together with the completed unit board. The simplest method of securing the various items is with strips of $\frac{3}{8}$ in expanded polystyrene ceiling tile as shown.
A $\frac{1}{4}$ in hole is drilled in the end of the plastics box to coincide with the aperture in the face of the crystal microphone insert. The miniature slide switch is secured at the opposite end by two 8B.A. countersunk screws, after a slot has been filed for the knob.

SEQUENCE OF OPERATION

The photographs must be taken in the dark using the open shutter flash technique. If a slow speed film is used, a dark room safe light may be utilised to assist the operator. This technique is recommended as the use of say a 50 A.S.A. film facilitates the production of needle sharp enlargements and allows a normal powered flash gun to be placed reasonably close to the subject.

Fig. 4. Layout and wiring of complete trigger unit

TESTING AND SETTING UP

The unit should now be switched on; the meter should indicate a battery drain of between 0.75 mA and 1 mA . A sharp whistle a foot or so from the microphone should result in a perceptable increase in supply current. If these tests are satisfactory the meter may be withdrawn and battery connected in the normal manner.
The switched-on photo flash may now be connected to the synchroniser via the extension cord and connector. If the hands are now clapped, or fingers snapped within a few feet of the microphone the flash unit should fire.

Adjustment of the preset control VR1 will prodice a wide range of sensitivity and on maximum gain the trigger unit can be set to fire the flash at the drop of a pin. The completed unit can now be suitably housed in a container of the constructor's choice.

A $4 \frac{3}{4} \mathrm{in} \times 3 \mathrm{in} \times 1 \frac{1}{4} \mathrm{in}$ plastics box as specified in the components list would be quite suitable and easily obtainable. Fig. 4 illustrates the position of the

The sequence of operations is as follows:

1. Set up camera (on "bulb" position) and subject, together with flash gun as for a normal flash exposure.
2. Connect synchroniser to flash gun, switch on synchroniser and then the flash unit.
3. Turn off main lights leaving only the "safe" light on.
4. Open camera shutter, preferably with cable release and hold open.
5. Commence action which will create impact sound. Flash will operate on impact.
6. Close camera shutter.
7. Turn on main lights.

The synchroniser is very sensitive to sound and its gain can be preset to reduce to a minimum false firing by extraneous noise but respond reliably to the impact sound. Sound travels at approximately 1,100 feet per second thus the delay in firing the photo flash can be adjusted by placing the unit one foot away from the subject for every ito second delay required.

For more ambitious results, two or more flash units can be fired by separate synchronisers placed at predetermined distances from the subject to give a superimposed sequence of events or stroboscopic effect.

SPURIOUS FLASH

If it is desired to avoid spurious flashes when setting up the equipment the following sequence should be followed:

1. Switch on synchroniser unit.
2. Connect to flash gun.
3. Switch on flash gun.

The reason being that the surge current that occurs on switching on the synchroniser is sufficient to fire the thyristor. Also, if the photo flash is switched on before connection to the synchroniser, the depletion capacitance of the thyristor may be sufficient to draw a pulse of current from the trigger circuit large enough to fire the flash. After connection, however, the equipment may
reduce the flash duration to as little as sotoo second, but at a very much reduced power output.

A revised guide number can easily be obtained for this reduced output, by making a test film and recording a range of apertures and distances. The distance in feet between the flash gun and object, multiplied by the stop setting that produced the best negative, is the new guide number.

It is emphasised that the above modification is only required for exceptional use and the photographs submitted by the author were all taken with an unmodified commercial flash gun.

A typical example of speed of operation iss shown in the "striking match" photograph. As soon as the match starts to move, the flash gun fires. The continued motion of the flame is registered even though the match appears to be still on the box, because the aperture is still open and light from the match photographed on the film.

howing a burst bolloon (left), striking match (centre), smashed bulb (right)
be recycled as many times as desired and the flash will only be fired on receipt of sound pick-up of sufficient amplitude.

VARYING FLASH TIME

The average duration of flash from a modern general purpose electronic flash unit is of the order of tove second or a little less, according to the operating voltage used to charge its main electrolytic storage capacitor and power output of the flash unit in joules.

The larger the capacitance of this electrolytic the larger will be the output ($\frac{1}{2} C V^{2}$) in joules, but at a cost of increased duration of flash. If the same output is maintained by using a lower capacitance operating at a higher voltage, then the duration of flash is reduced,

If a real "freezer" flash is required for "stopping" very high speed phenomena, we can use these principles to modify an existing flash unit. The simplest approach is to replace temporarily the existing main storage capacitor with an ordinary smoothing capacitor of $16 \mu \mathrm{~F}$ or $32 \mu \mathrm{~F}$ of correct working voltage. This will

The "burst balloon" also shows some movement of the balloon during collapse.

Several other examples of application can be tried with some success. Any form of impact, crash. or explosion can be photographed using this technique in dark conditions.

THis, the second and last part, will describe special editing techniques and effects used in the BBC Radiophone Workshop.

EDITING TECHNIQUES

Tape, being such a flexible medium, contributes the major facility to the manipulation and treatment of sound. Even the most simple and most basic operation, editing, can be applied in other ways than just sticking pieces of recorded tape together.

Let us take an example: Suppose a note from an electronic organ has been recorded; it can be represented as in Fig. 3a. It can be joined up to the leader tape as in Fig. 36 but, due to the usual oblique splicing, there will be a momentary tape hiss before the note sounds. This is due to the unrecorded piece of tape marked x. If the splice cuts into the sound to prevent this a false "attack" is put on to the note, and it sounds as if it has been rapidly faded in Fig. 3c.

To make sure of obtaining the true sound the tape must be spliced to approximate to the original note attack, i.e. by making almost a right-angle cut. Perfect right-angle cuts in the tape are liable to produce a click on replay with a perfectly aligned replay head azimuth,

(a$)$
Fig. 3. Special editing to avoid hiss and artificial
so it is practicable to use a near vertical cut to achicve the effect required without too much risk of this occurring (Fig. 3d).

Many different musical instruments sound almost identical when their characteristic starting transients, which in fact identify the instrument to us, are removed intentionally or otherwise.

With the use of an exaggerated angle of cut, spread over two editing blocks (Fig. 3e), the cut in the tape is much nearer to being parallel to the tape edge, so that a very long cross fade of sounds can be achieved without mixing. It takes plenty of patience and care to make these cuts well, but is shows how editing can be creative as well as remedial.

TAPE LOOPS

Remaining with tape for a moment, a valuable asset used to study sounds, and to aid investigation of their properties, is the tape loop.

Many signature tunes made in the Radiophonic Workshop are constructed from a single sound source. For example, suppose an empty wine bottle is struck with the palm of the hand over the mouth of the bottle, and the sound recorded. Then suppose a tape loop is made from this recording. This basic sound tone can be replayed at different speeds to make up a musical scale of "notes", without constantly rewinding the tape for each note selection.
Similarly, having a constant running loop enables filtering to be selected at leisure. This useful dodge makes it easier to construct or compose background music from two or three running loops. Each loop can be brought in at any time and made synchronous, or otherwise, by adjusting loop Iengths or starting times.

MUSIC CONSTRUCTION

Signature tunes are usually constructed in a standard manner. A melody line, a bass line and harmony, and decorations are patiently built up separately. Then all three tracks are played in synchronism, using the three standard tape mathines while the mixture is recorded on a fourth.

Each music line is built up note by note, and the tempo, in terms of crotchets to a bar, is transposed to read 1 crotchet $=x$ inches of tape. Each note must be recorded at precisely the right level and carefully given the right attack by editing, as described earlier: any timed leaders are also inserted.

Before playing with the other two similarly constructed sound tracks, each track may be treated with filters or echo, to give it the desired sound quality and aural perspective. Sometimes it is preferable to add echo when all tracks are heard together; the degree of treatment on one of the tracks may have been misjudged and perhaps quite inaudible against the other two.

It may be thought that this is a long-winded way of doing things, when perhaps multi-track tapes could be used? However, the Radiophonic Workshop have found that it is easier to keep sound tracks separate, both physically and electronically. In this way, each component sound can be fully controlled. If the result is not satisfactory after a final mix, it is easier to correct individual faults on a separate tape, than on one track out of four, or even eight, on a single wide tape.

PROBLEMS WITH PURE TONES

Throughout the Workshop's history of sound manipulation, of all the sounds handled the most difficult to process were those from the signal generators, particularly the sine waveforms. These are practically unmixable, using the conventional stud faders, as each step is immediately noticeable on the pure tones. With more complex waveforms, the effect is not so apparent.
This problem was overcome by the development of a noiseless fader, which worked by means of a photoelectric cell arrangement. Figs. 4 a and 4 b show how these operate.
Opening or closing the fader alters the brilliance of a lamp, which in turn alters the resistance of a photo-cell in the programme circuit. Any "steps" due to the stud fader are absorbed by the filament of the lamp, and not noticed in the sound output. To achieve some sort of standard, the lamp voltage is adjusted so that, with the fader closed, the lamp filament just glows.

This principle has been extended, and provides a means by which one sound can amplitude modulate another; the modulating sound is used to vary the lamp brilliance.

Another problem, also encountered when using tones, is that it is very difficult to edit or switch the tones without getting a click. Therefore, to get a uniform start to oscillator notes, a small keying unit is employed; depressing a note on the keyboard, results in a rapid fade up of the oscillator output, in about 10 ms .

A further development provided networks to vary this "attack" time, and also the decay time, so that "shape" could be given to the output of the signal generator. This hides the fact that the signal generators do not all start from the same part of the frequency cycle when initially switched on. Synchronised waveforms are achieved by using a single oscillator with multiplying or dividing networks.

Let us now continue into the treatment of sound by means of more sophisticated equipment.

NON-STANDARD EQUIPMENT

At first sight the jackfields associated with the control desk seem quite unmanageable, but it must be remembered that each programme chain is similar, i.e. sound source \rightarrow amplifier (if necessary) \rightarrow filter \rightarrow fader,
and most of the connecting cord arrangements are merely repetitions for different channels.

The reason for not tidying up on these arrangements is that access to every point in each programme chain is very desirable, from the creative point of view, as well as the maintenance one. For instance, a tape delay system can be inserted into an echo circuit, and various filters, especially the non-standard types which are used as and when the occasion demands, are plugged into various positions in the chain.
A point worth making here: whilst not upsetting the programme and effects set-up, any part of it can be checked, and usually is. However, the creator's ear is the final judge of performance-not the programme meter.
The special filters are used in isolated cases and, because they are limited in number, are used in conjunction with "group switching". Every sound source on arrival at the control desk, has a choice of routes: independent, group 2 or group 3. In the independent mode, only filters normally associated with particular sound source are operable. Groups 2 and 3 may well have a different filter associated with each, although when switched to a group, the sound source retains its original filter.

For instance, the filter normally associated with one particular source, may not be capable of giving the desired effect. By selecting another group, another filter may be tried. Furthermore, a large number of sources all requiring similar filter settings can all be switched to one group, and one filter will suffice.

Most of the foregoing has been normal studio practice, but a number of special devices have evolved, to assist the sound manipulator.

TAPE LOOP STAND

Starting with the simplest, the tape loop stand enables loops of any length to be played, and has a spring tensioned guide to maintain tape tension. It is usually placed in front of the associated tape machine, whilst there is a miniature version that is used on the tape deck itself when playing very small loops.

For very long loops, it can be advantageous to use another tape machine to help pull the loop round. In some cases, it can divert the tape path to avoid obstructions such as room pillars and equipment.
It often occurs that an interrupted signal is required. One way of achieving this effect is to make up a tape loop made up of alternate tape and leader sections; the sound is recorded on to, and simultaneously played back from this loop. The length and frequency of interruption depends upon the size of the segments of tape and leader, and on tape speed.
Another method of interrupting a sound is by means of a relay unit, to switch sound on and off. Refinements on this principle include a control to vary the operating speed of the relay, and the length of the pause. An additional input is provided to enable other sounds to be injected into the pause.

RING MODULATOR

Still on the subject of interruptions, a device much heard of these days in electronic music concerts, is the ring modulator. This consists of a network of rectifiers and two centre tapped transformers (Fig. 5).

Any sound fed into input 1 can be modulated by another sound applied at input 2 . A certain amount of breakthrough of the modulating frequency can be experienced, but, by using a field effect transistor, this problem has been overcome.

An ingenious, but rather clumsy, form of vibrato, has been achieved by means of a separate replay head moving to and fro against the tape. It is moved by a system of cranks linked to an old gramophone motor. A more sophisticated method used today is a rotary scanner with an associated delay line. It is also possible, using this device, to feed the stators of the scanner with a number of different sounds; the rotating pick-up samples each in turn, producing a pattern of sounds.

HOWL ROUND STABILISER

A piece of equipment used to stabilise public address systems and prevent "howl round" between microphone and speakers, has proved to be very useful to the sound creator. The stabiliser raises or lowers the frequency of sounds fed to it by a few hertz. When the output is mixed with the original sound a low beat frequency is heard, being the difference in frequency between the two sounds.
This stabiliser can be inserted into a feedback circuit, so that any sound subjected to the treatment will get higher and higher, or lower and lower, in pitch, depending on the setting of the system.

Phasing or "skying", another technique in fashion in pop music, can be achieved using two tape machines recording, and simultaneously replaying, the same sound. (The machines must not be connected to their own inputs). If one of the machines is made to run slightly slower than the other, by simply keeping a thumb on the left hand spool, the slight speed difference causes a slight difference in time between the outputs, and frequency cancellation occurs. This effect can also be achieved with two pre-recordings of the same sound.
There is nothing especially created in the line of apparatus to give the Radiophonic Workshop any extra special techniques. It is fair to say that most of the equipment is standard to normal professional sound studios, the only difference is in the imaginative way, unorthodox if you like, that the equipment is used.

FILM EQUIPMENT

A large part of the Workshop's output is for television, and of this a good proportion is for films. The latest additions to the equipment list are, a film viewing desk, a 16 mm magnetic recorder and a synchronising machine. This means that a sound sequence can be tailor made to fit the film sequences, as all the sounds can be transferred to sprocketed tape and laid against the film to ensure accurate synchronisation.

TARIABLE VOLTAGE TRALISFOBUERS
 LIGHT SENSITIVE SWITCH
 INPUT $230 / 240 \mathrm{~V}$. A.C. $50 / 60-$

Kic of parts, including ORP12 Cad Tramsulphide Photocell, Relay volt D.C. op. price 25/-plus $2 / 6$ P. \& P. ORP 12 including circuit, 12/6 each, Post Paid.
A.C. MAINS MODEL. Incorporates Mains Transformer, Rectifier and special relay with $2 \times 5 \mathrm{amp}$ mains c / o contac Price inc, circuit $47 / 6$ plus $2 / 6$ P. \& P.
LIGHT SOURCE AND PHOTO CELL MOUNTING II Precision engineered lighs source with adjustable lens assembly and ventilated -3 , lamp housing, to take MBC bulb. Separate
photo cell mounting assembly for ORP, 12 photo cell mounting assembly for ORP. I fixing. Price per pair $\mathbf{6 2 , 1 5 . 0}$. P. \& P. $3 / 6$.
UNISELECTOR SWITCHES NEW
4 Bank 25 Way 24 V d.c

6 Bank 25 Way $24 V$ d.c. 66.10 .0 , p.p. $2,6$.
RELAYS New SIEMENS, turb relays at COMPETITIVE PRICES Coil Working Contacts Price

$9-12$ volt de. 2 clo 500 MA conta

 Size ${ }^{\prime}$, $\frac{7}{B}$ 六 in. Price $11 / 6$ pose paid. ohm coil. Size $1:$ is \because M. An. contacts. $3 / 6$. Post paid.12-24V. D.C. RELAY
2 cio 3 amp. contacts 400 ohm coil. NEW

230 VOLT AC RELAY LONDEX 4 c:o

3 amp contacts. 186 inc . base, post paid.
BURGESS MICRO SWITCH

FOOT SWITCH
5 etc. 250 V
Price $17 / 6$ plus $2 / 6$ P. \& P.

VARIABLE L.T. SUPPLY UNIT
INPUT

Fully isolated. Fitted in robust metal with Voltmeter, Ammecer, Panel Indicator Ideally suited for Lab. or Industrial use $\$ 58$ plus 40/-P. \&

DOUBLE WOUND

VARIABLE TRANSFORMER
Fully isolated, low tension Secondary winding YAput $230 V$ a.c. OUTPUT CONTINUUOSLY $0-36 \mathrm{~V}$ at 5 amp , 19.12.6. P. \& P, 8/6.
0-36V at 20 amp, $221,0.0$, P, \& P, $15 /$
These fully shrouded Transformers, are ideatly suited for Educational, Industrial and Lab-

OUTPUT VARIABLE $0-260 \mathrm{v}$. BRAND NEW
Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp . from stock. SHROUDED TYPE
1 amp, 65. 10. $0 . \quad 2.5$ amps. 66. 15. 0.5 amps, 59 . 15.0 . 66. 15.0.
8 amps, $£ 14.10 .0$. 10 amps,
 15 amps, $125,0.0 .20$ amps, 637. 0. 0. 37.5 amps, $672,0.0$. 50 amps, 192.0 . 0 .

50
AMPS

OPEN TYPE (Panel Mounting)

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube, Solid state timing and trigger ing circuit. 230/250v, A.C. operation.
EXPERIMENTERS' ECONOMY KIT
Ito 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijunction Xenon Tube and in
NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tir
printed circuit, New trigger coil, plastic thyrist
Speed adjustable l-B0 f.p.s. Price 9 gns. 7i' P. \& P.
HY-LYGHT STROBE
This strobe has been designed and produced in response.
to wide public demand, for use in large rooms, halls and the phozographic field, and utilizes a silica plugain tube for longer life expectancy, printed circuit for easy
assembly, also a speciat rrigger coil and output capacitor, Speed adjustable 0-30 F.p.s. Lighr outpus approx. 1 joules. P-inch POLISHED REFLECTOR
Ideally suited for above Scrobe kits. Price 10, 6. P. \& P. 2:6
100 WATT PONER RHEOSTATS INEWI
I AVALLABLE IN THE FOLLOWINB VALUES
$10 \mathrm{hm}, 10 \mathrm{a} \cdot \mathrm{i} 5 \mathrm{ohm}, 4.7 \mathrm{a}$; $10 \mathrm{ohm}, 3 \mathrm{a}$
250 ohm .7 a. $500 \mathrm{ohm}, 45 \mathrm{O}, 1 \mathrm{Koh}$,
280 mA ; $1 \cdot 5 \mathrm{Kohm}, 230 \mathrm{~mA} ; 2 \cdot 5 \mathrm{Kohm}, 2$ $200 \mathrm{~mA} ; 15$ Kohm, $25 \mathrm{~mA} ; 25 \mathrm{Kohm} .2$ a.; 5 Kohm, 140 mA. Diameter 3 in. Shaft length ${ }^{6} \mathrm{in}$., dia, 15 in . All at $27 / 6$ each. P. \& P. I/6:/6/25/50/100/250/500/1/1-5/2.5/5 Kohm All at 21/(each. P. \& P. 1/6.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2.5 \mathrm{Kohm}$. All at I4/6 each. P, \& P. I/6. counter (non-resettable). i8/6, P. \& P. $1 / 6$. . wid MOTORIZED SWITCHING UNIT (EX-W.D.) Powerful precision made Ex-.W.D.
I2VD.C. reversible motor, drives multiple gear train with outpur approx. A r.p.m, and 5 r.p.m
Priee 25.-, Plus $4: 6$ P. \& P.

SOLID STATE INTERVAL TIMER

24-30V D.C. operation Stabilised unifunction in metal core. Timing interval adjustable

 from a fraction of a second to several minutesby means of external resistor or pot, By by means of external resistor or pot, By adding a 24 V Relay many other complex timing Functions are possible.
Price: 16.6 incl. circuit. P. \&p.2:6. Suitable relay 10 i- post paid. PARVALUX TYPE SD19 230/250 VOLTS A.C. REVERSIBLE GEARED MOTOR
30 r.p.m. 401b. ins. Position of drive
spindle adjustabie so 3 differens angles. Mounted on substantial cast alumi. niumbase. Ex-equipmens. Tested and in first class running order. A really powerful
motor offered at a fraction of makers
\qquad
INS ULATED TERMINALS
Available in red, white, yellow, black, blue
and green. New Price $2 /-$ each. PANEL METERS AT BARGAIN PRICES
A.C. AMMETERS 0-1, 0-5, 0-10,0-15,0-20 amp. F.R. $2 \frac{1}{5} \mathrm{in}$. dia. ALL AT $21 /-E A C H$.
A.C. VOLTMETERS $0-24 \mathrm{iV}, 0-50 V_{1} 0-150$ M.I. $2 \frac{1}{2} \mathrm{in}$. Flush
round. ALL. AT 21/-EACH. P. \& P, extra.
$0-300 \mathrm{~V}$ a.c, Recc. M-Coil $2 \frac{1}{2}$ in. $29 /-$.
$0-300 \mathrm{~V}$ a.c. Recc. M-Coil $2 \frac{1}{2}$ in. 29/-

SERVICE TRADING CO

All Mail Orders-Alsa Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY

Personal callers only 9 LITTLE NEWPORT \$T. LONDON, W.C.2. Tel. GER 0576

AUDIO EFFECTS

5 SHAW LANE, HALIFAX, YORKS.
Buy with confidence and obtain the right rebalts. Refunds wlthout question if any of our products fall to give 100% matjufaction.
AMATEDR BANDE ALL TRARBISTOR
GEPERHET RECEIVEB KIT, No fuBs, no drilling. Just fit the components on our printed oircult. Slow Motion tuning. Simple IF alignment. Perrpex front panel. Puah pull AF amp dylves your $8-15$ ohm apeaker. Amp can be ubed separately. Deaigned to
accept a BFO slgaal. Tres Denco plug in coits $\begin{array}{ll}2 \mathrm{~T} .0 .8 \text { to } 1.54 \mathrm{Mhz} & 3 \mathrm{~T} . \\ 2.67 \\ \text { to } 5.3 \mathrm{Mhz}\end{array}$
 Range $3 T$ normaliy gupplled with kit. Usea 9 Volt battery. Resy step by step instructionn. Complete
Kit. $\$ 8.19 .6$ plut $8 / 6$ P.P. \& Ins. Extra ranges Kit. \$8,19.6 plus $0 / 6$ P.P. \& Ins. Extra ranges 18/- per range.
POWER CONTROLEER. Power at your finger tips. Not merely half wave control but full wave. A single variable control given zero to full power. Usen iatest 15 smp 3 kW triad and eppeolal triggering
device. Ideal for all typea of lighting, fres, motors device. Ideal for all typea of lighting, fres, motors, drills, etc. Complete with box, power socket, t1ons $£ 8.9 .6$. Ready built 29.4 .6 plus $6 / 6$ P. P. \& Ins, REGERAERATION AMPLIFIER. Seif contained transistorlsed, battery operated. An entirely Normally, oound reprodnction from a seprode eource, has a flat one dimengjonal effect. With this unit, proper sound telay through reverberation, tones, are created with a truly third dimerision for conect hall origiasity- two controls adjust volume and reverberation. Simply plug microphone, guitar. etc., in, and the output into your amplifier. Supplled
 10.4.0. P. P. \& Ins. 6/

FOX BWITCEX, This sound operated awitch in jeleal for moblle TX work, tape recorder switching, etc, You speak, it switches. High and medlum imp, inputs. AF take ofl point. Drivez your 12 rolt heady built, tested and guaranteed. 08/8, plua MEXRONOME UFIT. Variable beat. Listen whlle you play and keep in time. Beslly bullt, pocket
size with permonal mins earphone. In kit form $27 / 5$, aize with permonal mini earphone. In kit forme $27 / 6$, white polythene crae, $87 / 8$ poet paid.
MORBE OSCHELATOR. PC board, trantalors, high stab, components, battery carrier, ear piece. Adjust
able tone. Juat atlach your key, Driven phones or opeaker. In klt form $17 / 8$ ponit pald. Ready brilt In aimilar case as above $25 /-$ pont paid.
8TRAKGET FROM TEE PREB8, Latent Mullard manual: Audio Amps, FY tuners, Stereo decoder, Receiver circuits, Hi Ft, Tape, etc., efc, $82 / 0$ poai pald.
JV\& ARRIVRD IE ETOCX, Texas transistors. Complementary symmetrg. Driver, NPN, PNP output. The eet of three ONLY $6 / 6$ pobt paid. Free lists with every order. For tiats onty send $1 / 6$
(deduetible from Arst order). (dedwelible jrom frat order).

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTORRADIO, RECORD PLAYER, TAPERECORDER, RADIO, RECORD PLAYER, TAPERECORDER,
AMPLIFIER, etc. Types available: $6 v, 9 v, 12 v$,
 $9 y+9 v ; 6 v+6 v ;$ or $41 v+41 v$ (two separate outputs) $42: 6$ each. P. \& P. 2!9. Please state output required. All the above unics are completely isolated from mains by double
wound transformer ensuring 100°, safety.
R.C.S. PRODUCTS (RADIO) LTD
(Dept. P.E.\}, 3l Oliver Rowd, London, E, I7

PLEASE MENTION

PRACTICAL ELECTRONICS
WHEN REPLYING TO

BINARY DIVIDER
 By B. Pounder

state. In so doing, Q3 changes from " 1 " to " 0 " so it has no effect on binary 4. These changes are illustrated in Table 7.1 which shows a state 8^{\prime} immediately following state 8.

On receipt of the trigger pulse number 9 , all the \mathbf{Q} outputs are " 0 "s and all the \bar{Q} outputs are " 1 "s, so the system is returned to its initial state by trigger pulse 10 and ready to repeat its output sequence over the receipt of another ten pulses. Because the circuit reverts to its initial state every ten trigger pulses, it can be used as a decade divider. Two such cascades divide by 100 , three by 1,000 , and so on.

Note that in order for the decade dividers to operate satisfactorily, there must be a time delay built into the feedback loops in order that state 8 is set up before the feedback pulses arrive at T2 and T3 to cause switching to state 8^{\prime}.

Fig. 7.2. Circuit of two stage binary counter with T-Dec connections. Two of these can be built on one board
묘

D1 to Dis All 0481
TRANSISTORS
RI TO TR15

Flg. 7.3. Block diagram of a decade divider

Fig. 7.5. NAND goting circuit used in the decade divider

BINARY DEMONSTRATION CIRCUIT

A circuit for a 9 V emitter-coupled two-stage binary counter with lamp bulb indication is shown in Fig. 7.2. This can be built on half a T-Dec as shown, with the similar layout to that in Fig. 6.4. Two circuits can then be built on one T-Dec. Component values are calculated according to the design procedure given previously.

If the bulb driver transistors are TOS-canned types capable of dissipating a few hundred milliwatts, the base current resistors can be made large enough to under-run the bulbs. If necessary, a 56 ohm resistor could be included in series with each of the bulbs.

DECADE DIVIDER

As can be seen from the block diagram of Fig. 7.3, the decade divider is a complex system and would need about six S-Decs for a neat assembly. However, it can easily be accommodated on two μ-Decs. A μ-Dec layout is shown in Fig. 7.4 on the previous page.

Referring to Fig. 7.4, the relaxation oscillator output from TR10 is indicated by means of a 6 V bulb and is fed into four binaries in cascade. The oscillator, lamp driver, the first two binaries and feedback amplifiers TR13 and TR 14 are assembled on one of the μ-Decs. The other two binaries are assembled in exactly the same way, proceeding from left to right across the board and using corresponding socket connections.

The second Dec takes the third and fourth binaries and the decimal indicator lamp driver TR15.

On receipt of the eighth input pulse, stage Q4 turns from on to off so its collector voltage rises as a "step", which is differentiated by the CR coupling between Q4 and the feedback amplifiers. Thus negative-going spikes appear at the collectors of these stages. The spikes are fed-back directly to the collectors of $\overline{\mathrm{Q}} 2$ and Q3 in order to switch off stages Q2 and Q3, and achieve the 8^{\prime} state shown in Table 7.1.

The NAND circuit is used to provide a visual indication whenever all the $\overline{\mathrm{Q}}$ outputs are at the supply voltage, so operates at a frequency of one tenth that of the relaxation oscillator. The operation is as follows.

If any one or more of the input diodes D1, DS, D9, and D13 shown in Fig. 7.5 is at zero potential, it or they will conduct through R_{b} so that the potential at point X will be V_{f}, the diode forward bias voltage drop. Now \mathbf{X} is connected to the bottom rail via D19 and the base-emitter junction of the transistor. Hence the base current will be negligible and the transistor essentially cut-off.

However, when all the input diodes are at the supply voltage, none will conduct since they are all reverse biased. Hence D19 will conduct through R_{b} and the transistor turns on. The system should be assembled in stages and each stage tested before proceeding to the next.
First, the operation of the relaxation oscillator can be checked by means of its bulb driver circuit. The same buib circuit can be coupled to the output of each binary as they are assembled in turn to check their operation by seeking an indication of successive division by two of the train of input pulses.

Note that this and other circuits, which consist of a cascade of binaries, will not operate satisfactorily unless a very low impedance power supply is used. A half exhausted battery will not be good enough!

MINIATURE CONVERTER (April 1970)
The Mullard pot core used in the minature converter consists of the following parts:

FX2243 Ferfoxcube pot cores (2 off)
DT2206 single section coil former (1 off)
The above numbers and quantities must be quoted when ordecing not just FX2243 as given in the components list,

transistor (Daca MOLTRMNETER

Avalve voltmeter, or a transistorised version, such as the multimeter described here, has an increased power sensitivity that gives it a useful role in circuit testing.

In the transistorised d.c. multimeter, the sensitivity of a moving-coil milliammeter is increased up to 100,000 times by preceding it with a solid-state amplifier, and at the same time the moving-coil meter is protected against overload. The amplifier uses silicon planar transistors throughout, and has an input current of picoamps.

Silicon planar transistors are less affected by temperature than field-effect transistors-the nearest solid-state counterpart to valves-and are more uniformly matched in their temperature variation. The completed instrument has a temperature drift of something like 15 microvolts per degree centigrade, making measurement possible in the millivolt and nanoampere region.

RANGES

One advantage of the large number of ranges (as listed in Table 1) is that most readings can be taken on

the upper half of the scale, and this enables measurements to be made with a more consistent accuracy. Only a single scale is available for all ranges, but the basic ranges increase in powers of ten, and the multiplying factors are $0.2,0.5,1,2$ and 5 , so that only doubling or halving the reading is required on ranges where the factor is not unity.

The scale of the meter is marked in even digits only, and these become consecutive when halved. Separate scales would be better, but it is not too awkward to halve or double the readings.

Direct currents and voltages can be measured on a total of 40 different ranges. There are also 18 superfluous ranges, shown in white panels in Table 1, differing only in impedance, that are not included in the total of 40 . On ranges of from 0.2 volt to 500 volts f.s.d., an input impedance of 20 megohms is obtainable; sufficiently high not to disturb conditions in almost all circuits. On lower ranges, the input impedance reduces to 2 megohms, and on the millivolt ranges to 200 kilohms.

Ranges of current are also included, and extend down to 10 nanoamperes f.s.d., using the 2 millivolt range for the purpose.

VARIATIONS AND APPLICATIONS

The analogue testmeter is intended as a d.c. instrument, but an external adaptor for a.c. measurement could be added, using diodes or a thermocouple; a calibration curve might then be required.

Resistances can be measured over a very wide range using an external battery and potentiometer. Although there is no ohmmeter scale, the input resistance increases in steps of ten times on the current ranges from 0.1 ohm to 10 kilohms, and then on the voltage ranges from 200 kilohms to 20 megohms. Mid-scale readings of from 0.1 ohm to 20 megohms should therefore be obtainable, and insulation resistance could be measured with suitable circuit arrangements.

As a high-impedance millivoltmeter, the analogue testmeter can be used as a null detector to compare resistances accurately in a bridge circuit, and this method was used in making the 0.1 ohm resistance for the 100 mA range (R 27).

INPUT/OUTPUT RATIO

A meter amplifier must include some form of feedback loop. Precision amplification depends upon feedback and is closely equal to the feedback ratio. The amplification without feedback is much greater, and is utilised in reducing the error margin. Feedback, applied over the amplifier is thus able to establish a definite ratio between input and output. The accuracy of this relationship can be tested by switching the milliammeter between the output and input circuits, with resistances included to keep the loading on the input source unchanged.

Table I. MULTIMETER RANGES

RANGE SWITCHES SI S2	FULL SCALE DEFLECTION ON EACH RANGE (Accuracy-within $\pm 5 \%$ on all ranges) 0.5					INPUT IMPEDANCE
100 V	20 V	50 V	100 V	200 V	500 V	$20.2 \mathrm{M} \Omega$
10 V	2 V	5 V	10 V	20 V	50 V	$20 \mathrm{M} \Omega$
IV	200 mV	500 mV	IV	2 V	5 V	$20 \mathrm{M} \Omega$
100 mV	20 mV	50 mV	100 mV	200 mV	500 mV	$2 \mathrm{M} \Omega$
10 mV	$\left\{\begin{array}{c}2 m V \\ 10 \mathrm{ma}\end{array}\right\}$	5 mV	$\{10 \mathrm{mV}$ \}	20 mV \}	50 mV	$200 \mathrm{k} \Omega$
$1 \mu \mathrm{~A}$	$0.2 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	$1 \mu A$	$2 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mathrm{k} \Omega$
$10 \mu \mathrm{~A}$	$2 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	Ik Ω
$100 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$	$500 \mu \mathrm{~A}$	100Ω
1 mA	$200 \mu \mathrm{~A}$	$500 \mu \mathrm{~A}$	$\operatorname{lm} A$	2 mA	5 mA	10Ω
10 mA	2 mA	5 mA	10 mA	20 mA	50 mA	1Ω
100 mA	20 mA	50 mA	100 mA	200 mA	500 mA	0.18

BASIC ARRANGEMENT

A simplified diagram, Fig. ${ }^{1}$ la, shows the basic feedback arrangement. Actually the differential arrangement of Fig. bb is used in the analogue testmeter. This is completely symmetrical, and if only half is considered, the action is similar to Fig. 1a.

Corresponding to the large current amplification in the feedback loop, the input current to the amplifier is extremely small, and most of the current from the input terminal, through R_{i}, will flow past the input of the amplifier to become feedback current in the feedback resistor, R_{f}. This is equivalent to subtracting the feedback current from the input current to leave a small amplifier input. The output current in R_{L} is a multiple of the current from the input terminal, nearly equal to $R_{\mathrm{r}} / R_{\mathrm{L}}$.

In terms of voltages, the action is like tipping a balance; as one end goes up, the other end comes down, and similarly a voltage at the input produces a voltage of opposite polarity at the output. The amplifier input voltage is automatically reduced to bring it nearly to the fulcrum or zero position, although always short of zero by a small residual that is amplified to give the output. The input and output voltages will be in the ratio $R_{\mathrm{i}} / R_{\mathrm{f}}$, and the input impedance will be R_{1}.

In Fig. 1b, two of the Fig. la systems are, in effect, combined in a push-pull version, and the action is like two balances tipping equally in opposite directions at the same time.

CIRCUIT DESIGN

In the version of Fig. 1b, with a direct-coupled amplifier, feedback is applied symmetrically. There is a doubled input impedance, and both terminals are floating. To fix the potential of one terminal would unbalance the feedback and considerably increase drift. Offset is much less of a problem when the system is completely symmetrical, both terminals tending to remain at the same zero-signal potential. 'The effects of stray capacitances also tend to cancel.

A differential output stage overcomes any uncertainty about the value of R_{f}. Intermediate stages of this type also have advantages, and a differential input stage is essential to overcome offset and temperature drift.

Each stage in the amplifier thus consists of a pair of transistors, and by making the impedance in the emitter
circuit as large as, or preferably much larger than, the collector load impedances, amplification of commonmode inputs can be avoided. A third transistor can be added in the emitter circuit of a differential stage to act as a high effective impedance, or constant current generator, keeping the total collector current constant. This gives a high common mode rejection ratio and makes the stage largely independent of voltage levels elsewhere in the amplifier, although still sensitive to differential inputs.

AMPLIFIER OPERATION

The amplifier is formed of three differential stages, together with emitter-followers. A configuration of five $n p n$ transistors is repeated, and between these two

Fig. 1. Principle of the transistorised d.c. multimeter. (a) Basic arrangement of an inverting d.c. amplifier as a current or voltage follower. (b) Differential system incorporating a fully differentlal d.c. amplifer

Completed amplifier board with connecting wires attached

sections, a $p n p$ stage is included (see Fig. 2) to reverse the stage by stage increase in voltage levels that usually occurs in a direct coupled amplifier, enabling d.c. feedback to be more readily applied between the output and input. In the $n p n$ configurations, the small amplification round the minor stabilising loop, helps to fix the voltage levels, and improves the symmetrical response to signals.

Amplification is only required at a low frequency, making it easier to achieve a very high amplification. The bandwidth is restricted to exclude mains frequency by including capacitors in the feedback network. Phase shift in the rest of the amplifier could produce oscillation, and to prevent this, two networks, each consisting of a 100 ohm resistor in series with $1,000 \mathrm{pF}$ capacitor, are connected from the emitters of the output stage to the bases of tite preceding stage. These effectively suppress oscillation at a low radio frequency, but v.h.f. oscillation can still occur, and must be prevented by connecting an additional capacitor of $10,000 \mathrm{pF}$ between the collectors of the pnp stage.

VOLTAGE LEVEL VARIATION

Some variation in voltage levels is to be expected every time an amplifier is constructed because of component tolerances. The ratios of resistances associated with the constant-current stages will have the main effect, but the variations will not be amplified in successive stages because of the high common-mode rejection in the amplifier stages.

A diode in the second constant-current stage is for temperature compensation, to avoid a small shift in voltage level with temperature which would be passed back to the input of the amplifier. The diode adds slightly to the tolerance spreads in the amplifier.

A transistorised voltmeter will not check voltage levels in its own amplifier because of feedback effects. A simple form of high-impedance voltmeter will enable approximate checks to be made on amplifier conditions.

AMPLIFIER PANEL

The amplifier panel is shown in Fig. 3, and consists of 0.15 inch pitch veroboard.

An insulated backing sheet of thin material is fitted behind the amplifier panel, separated from it by the thickness of the 2 B.A. nuts on the milliammeter terminals. This is intended to provide some additional insulation between the amplifier and the neon mains indicator situated under the amplifier board.

The holes for the 2 B.A. meter terminals are carefully positioned as shown in Fig. 3. Two of the perforations on the Veroboard are drilled to take the 8 B.A. bolts that hold the small heat sink in position.

The positions of the breaks in the copper strips are shown in Fig. 3. Additional links are of 24 s.w.g. tinned copper wire,this gauge is thin enough to enable two links to be inserted in the same hole when necessary; the longer links should preferably be sleeved.

Veropins inserted into the amplifier board serve as soldering points for external connections. Those for - the 0.15 inch pitch Veroboard are of larger diameter than those for the 0.1 inch pitch Veroboard that is incorporated in the range-switching assembly detailed later. The veropins are put in on the component side, soldered to the copper strips on the other side, and clipped short so that they do not project into the backing sheet.

TRANSISTORS

There are altogether a dozen transistors on the amplifier board, all of TO18 construction. Two of the transistors, TRS and TR6, are pnp types (BCI79) and should be kept carefully separate from the others which are all of the $n p n$ type (BC109).

The two pnp transistors form the intermediate voltage amplifying stage, and provide a convenient means of

COMPONENTS ...

AMPLIFIER

Resistors

R28	$220 \mathrm{k} \Omega$
R29	$220 \mathrm{k} \Omega$
R30	$330 \mathrm{k} \Omega$
R31	$330 \mathrm{k} \Omega$
R32	75Ω
R33	$120 \mathrm{k} \Omega$
R34	$10 \mathrm{k} \Omega$
R35	$22 \mathrm{k} \Omega$
R36	$22 \mathrm{k} \Omega$
R37	$10 \mathrm{k} \Omega$
R38	$18 \mathrm{k} \Omega$
R39	$18 \mathrm{k} \Omega$
R40	$6.8 \mathrm{k} \Omega$
R41	$6.8 \mathrm{k} \Omega$
R42	680Ω
R43	100Ω
R44	100Ω
R45	$1.2 \mathrm{k} \Omega$
R46	$3.3 \mathrm{k} \Omega$
R47	$3.3 \mathrm{k} \Omega$
R48	470Ω

All $\pm 5 \% \frac{1}{2} W$ carbon film
Pin numbers on the lead-out wires will be explained in the final wiring diagram

Fig. 3. Amplifler panel layaut and wiring

Capacitors

$\mathrm{Cl} 0.1 \mu \mathrm{~F}$ polyester
C2 $0.1 \mu \mathrm{~F}$ polyester
C3 1,000pF ceramic
C4 $10,000 \mathrm{pF}$ polyester
C5 $1,000 \mathrm{pF}$ ceramic
C6 $1,000 \mathrm{pF}$ ceramic

Semiconductors

DI-3 IN4148 (3 off)
TRI-4 BCIO9 (4 off)
TR5-6 BC 179 (2 off)
TR7-12 BC 109 (6 off)

Miscellaneous

Veroboard $4 \frac{5}{8} \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}$, 0.15 in matrix

Veropins
Heatsink $2 \times$ TOI 8 (Redpoint 18DC/HA)
S.R.B.P. $4 \frac{3}{8} i n \times 3 \frac{3}{4} i n$ (backing panel)

13 ELECTRONIC BROKERS

MOTORS

HIGH PRECISION MAINS MOTOR ${ }_{3,000}^{220 \mathrm{~V}} 80 \mathrm{~Hz}$ h.p. continuousiy rated. tug Model KA Bo JFB. Sultable for cupstan motor. 8ize 8in long, 4lla diameter with 6 in d dameter flange and 4 fixing holes. These motors are Capacitor Start, Capecitor Run, supplied leas Capacitor. 24.10.0. each. 81.0 .0. P. \& P.

SHADED POLE MOTORS 120 V 50 Hz Precisflon made as uned in record decks and
 applications. 20/-each.

PRECISION MOTOAS by PULLIM
 P. \& P. $\overline{5} / \mathbf{F}$

FIGH QUALITY D.C. MOTORS
FACTRIC. $6 \cdot 3 \mathrm{~V}$ with 4011 ratlo gearboy, torque e 2 bolst 6 6.3V with $800 / 11$ ratio

HYSTERESIS REVERSIBLE MOTOR
Incorporating two coilia. Each coil when energised will produce opposite rotation of each. P. \& P. 3/-

LOW TORQUE
Ideal for instrument chart drives. Extremely cas whete amblent nolgo levels are low. High starting torque enables relative blgh inerths loads to be driven up to 80 Zjln , Available in the Sollowing speeds and ranges: 240 V 50 Hz ,
 $1 / 45$.p.m., 1/12 r.p.m., $/ 30$ r.p.m.

HYSTERESIS CLUTCH MOTOR
 Wita integral ciutch allow lag the motar to drop out of engagement with the gear train, thereby facilitating easy resetting when asg in timers or in con:
apting. 6 oz torque at Junction with a ligbt spring. 6 oz torque a 240 V 50Hz. $1 / 12$ r.p.m., $1 / 10$ r.p.m.

 f r,p.m. 24V 30 Hz , 1/20 r.p.m., 4 r.p.m 25/- each. P. \& P. $8 /-$

D.C. MOTORS

Slmilar to above type MD 83. 28v 1/20 r.p.m., 1/60 r.p.m., 1 r.p.n. 12 V
 $1 / 20$
$1 / 22$
$8 /-$.

SYNCHRONOUS MOTORS

$200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$. New condition, ex. equipment. S-1 RPH. Self staritng, complete

SINGLE SPEED TAPE DECK

$\frac{1}{2}$ in tape, takes 7in spools, 1 inn per sec. 8 motors, tacllity for remote control operation. Record/replay heada Fith exparate erase hend plus fast erame facility, Ex.equipment.
4.18.6.
F.

LOW COST ELECTRONIC \& SCIENTIFIC

 EQUIPMENT AND COMPONENTS

A quality fustrunetut capable of menauring A.C. and D.C. voltage and current, resistance plus power output.
Ranges: D.C. voltage $20 \mathrm{miV}-10,000 \mathrm{~V}$. D.O. current 100 u A-25A. A.C. Foltage $100 \mathrm{mF}-2507$.A.C. Current 10u-A-25A, Fesishance $\mathbf{~ P o w e r ~ o u t p u t ~} 50 \mu \mathrm{~W}-5 \mathrm{~W}$. Supply voltage $110 / 200 / 2580 \mathrm{~Hz}$
Complete with lead and probe for RF mengurement up to 250 M Hz 285. P. \& P. R

AULTI-RANGE TR

OLTMETER 1063

Emploging sllicon planar F.E.T.s. Wide frequency band $0 \cdot 300 \mathrm{MHz}$ vaing HPY 063 . Foltage Range $0-30 \mathrm{KV}$. Centre aero on D.C. ranges for cifferential circult applicatlon. Input Resistance 1 Mohmf Vol F.8.D. Spectal Price $248,10.0$ each Carrlage 2L.10.0.

METERS

MHllammeter. A.C.jD C. 100MA and 200MA FSD Cambridge 47520j4 Electro dynamic 205
Prectaion Voltmeter. A.C./D.C. A-70V 0-160V: $0-300 \mathrm{~V}$ Sangamo Wenton 8.92.1-6 835
E.I.L. Model 44 .ter. V.I.R.W. Wratt \& bsorptlon Meter. Mareoni CT44 200 UW-6W A.F Micre Voltmeter. Bymat
 TF ${ }^{6}$ B6B
Wlde Banil
31
SET OF MEASURING INSTRUMENT

Specification Type: Moving Coil D.C. Kanges: $0-76$ ta $10-3 V_{0} 3-15-150 \mathrm{~V}$ $3-160-450 \mathrm{~V}, 0.3-0.75 \mathrm{~A}_{1} 1 \cdot 0-7.5 \mathrm{~A}, 15-30 \mathrm{~A}$
Scale Lensth: 82 mm . Aceuracy: $\mathrm{I} \cdot 0 \% \mathrm{l}$ scale LeDgth: $82 m m$. Accuracy: 1.0%
8hunts: $1.0 .3=0.75$ amps, $2,1.5-7.5$ ampa 8. 15-30 smupy. Case: Moukded plattc. Carrying Case; Stove enamelled metal. List price 230. Our price e5.19.8. P. \& \mathbf{P} MIRROR BCALRD. These new instrumenta are offered complete as
BINGLY © 8.10 .0 .
HIGH VALUE DECADE RESISTANCE BOX

Rangea from
0.01 Ma io 211 m g. Accuracy 0.05% Maximum Power Ratlog $0.1 W$ per step
Price AE\&,10.0. $P, \& P, \& 1.0 .0$.

PORTABLE WHEATSTONE BRIDGE

 8peciffeation. Type: Moving Coll Gsly meter. Kanges: 1.0 .05 to 5 ohms. 2. $0-5$ to 50 olmas. 3. 5 to 500 obms. 4. 50 to 5,000 ohms. 5.500 to $50,000 \mathrm{ohms}$. Bcsles: Bwitched. Sildewire: 0.5 to 60 . Galvanometer gcale $10-0-10$. Cage: Moulded plastic. Internsi Source: 4 V Dry battery; Dimensiona: $200 \times 110 \mathrm{x}$ Our price 29.19.6.OSCILLOSCOPES

Cossor 1035

 Cossor 1049 Farze Hill 0100 Furze Hill 0110 Furze Hill 1684B Alrmec 249 Alrmec 723 ... 3olikrtran CDS18 HIGH GRADE COMPONENTS TACHONETERS Portable hand preciatoninstrumenta by Sraiths, Incorporating 4 raschanically selected rangea of $500,1,000$, 5,000 and 50,000 r.p.m. Withln 2% accuracy, gupplied With accessories and carrying
case. A neat and compact case. A neat and compmet \& 18.10 .6 .

MJNIATURE DIGITAL DISPLAY

Operabes on a rear projection $6-3$ pilot lamp. The lamp projects the corres. pronditg digit on the condensing ens a projector leny, on to the viewing sereen at In width, 3 in deep. 1 学in abgh. Weight 3ioz, Character size tin high, $0 \cdot 3$ with 8 right hand decimal point and degree. Llst price 6 gns . Our price 48/0. I. \boldsymbol{z}.

EAC DIGIVISOR Mk. \| DIGITAL READ-OUY DISPLAY Idealy auttable for un In conjunctlon with transingtorised decade counting devieet. The DIGI*
visor incorparates which moves a translucent acale through an
 optical mystem and the reaultant single plane Image is projected on a screen. The tranalucent seale is made to repre-
sent digits $0-9$. Specifications: $8-3 \mathrm{~V} 250$ sent digite $0-9$. 8pecifications: 6-3V 250
microamp. Image height Iin. Size 4 microamp. Image height ing, Blize 4

MINIATURE MOVING COIL

RELAY SII5

By gangamo Weston, suitabie for D.C. clrcuit. A high sensitivity relay
more sensitive than the more bensltive than the Single Coil Kiesiotance List price \&4.10. Our price $80 \mathrm{j}^{-}-\mathbf{P}$, \& $\mathbf{P}, 3 \mathrm{j}=$

ELECTRO MAGNETIC

 COUNTERSlow impulse cornter of 10 impalisea per
necond. $/ 6$, P. \& P, 3

6 DIGIT ELECTRICAL IMPULSE COUNTER with electricel and mechanical reset cornler driven by 110 V DC 4400
ohms call. Reset 110 V DC 800 nmm coll. Housed la plastic-alloy cme. The nulta can He interiocked with each other to give vertical or horizontal dloplays. Frice 79/6.

LNEAR THYRISTOR CONTROLLED

 LIGHT DIAMER lights, etc. Pits into ofandard 2 in conduit

New complete telephone dlal assembliem Clear perspex dlal - no markings $\mathbf{x O / -}$ each, $P, \boldsymbol{L}^{2}, 51$.

VEEDER ROOT 6 DIGIT COUNTER

Gutable for counting all kinds of production runs, bueiness machine operatlon Mechanicaly driven, Remet type Ka iss. dition. Special price $95 /-$ plon $5 /-$ P. \& P.

POCKET CALCULATOR

 Bave time and molve all your maltiplication, diviolon, percenange, cube Easy to une pocitet calena Easy to une pocret catu-lator with no erroza, Invaluable dalty ald, vaiuable lase a liffetime, offered complete in black wrallet with fall instruc-
tions, 31 in diam. $12 / 6$ thons, 3 in diam. 12/6 exch, $8.8 .1 / 6$.

NUMICATORS

Cold cathode gas fllled in Hine $0-9$ digital display tubes. Long life expectancy. Minlmum ntriking voltage 180V. Side reading each. P. P. $2 j 6$. Type NI 1. End reading. Price sl each, P. \& P. 2/G.

DOUBLE FADERS
1,000 ohm cach bank wire wound, paraliel connection to give 500 ohm . 3W. Ideal for audio and control circults. Ex Independent tracica, Ex egnipment but is 8.18 .6 , each. P, \& $P_{+} 7 / 8$.

TELEPHONE DIALS

Brand new $10 / 6$ each. P. \& P. 2/6.
new infra red tubular quarti LAMPS

E

250V, 1,440W. Length 12 in , in dia. 16jP. \& P. 5%. Suitable for beat applications such as baking ovens and Indirect heating

Right angled gear boxes

Gear boxes give a drlve ratio of $2 \cdot 3: 1$ at right angles to the input. Driveable thrangh the 1/p abaft only; Dlmensiona 41π whe $\times 31 \ln$ deep \times ifln blgh. 741 , With pulley and ball race

SOLENOIDS

High quality solidly comatracted solenolds. Actusted by 48 V 300 a coll. Overall length

INDICATOR LAMPS

Panel-mountligg. Varions colours and types. Fres to tesi faclily. Prises from

TEGHNCAL TRAINIIG in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.t.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

 IEW SELF-BUILD RADIO COURSESLearn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. pro-fessional-type valve volt meter-all under expert tuition. Transistor Portable available as sepparate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

PLESSEY SL403 INTEGRATED CIRCUIT AMPLIFIERS 46/- each

PLESSEY SL702C INTEGRATED CIRCUIT AMPLIFIERS 21/- each

CARBON FILM RESISTORS 19/- per 100; 1/4 per 5

Mullard \& Erie components at competitive prices. All components brand new and guaranteed. Return of post service. Complete list of components free with each order. For list only send $1 /$ in stamps.

SPECIALIST ELECTRONICS CO.
 26 York Road, Crosby, Liverpool 23 5TS

CTover for Bomponentis

SILTCON THANSUTOR\& FOR HIGE QUALITY EOUHMEST

B0107	8,8	BD123	24/8	TIP32A	281-	2N3055	1579
BC108	81-	BDY20	24/3	TIS44	1/0	2:3702	$2 / 8$
2Cl09	$8 / 8$	BF184	$7 / 6$	T1549	2/6	2N3703	88
BClibs	$7 / 8$	BF194	7/-	TIS50	$3 / 8$	2 N 3704	3/9
HC182L	$8 / 8$	BFX29	10/4	2 N 696	$4 / 8$	2N3705	8/4
BC183L.	$2 / 5$	BFX84	818	2N687	$51-$	2N3707	4/\%
BC184L	312	BFX85	$8: 8$	2N706	818	2N3708	2/5
BC\%127.	810	BEY50	6/-	2N1132	1019	2N3819	8/-
BC213]	8/8	BFY51	1/6	2N2906	13/	2N3820	18/8
BC214L	4/2	BFY\$2	$8 /$	2N2924	4/4	2N3826	6/12
BCX70	5/4	BSY9бA	8/12	2N2928	$5 / 3$	2 N 4058	$4 / 0$
BCY71	10/4	MJ ${ }^{\text {d }}$	2718	2N2928	$8{ }^{1-}$	2N4059	$8 / 6$
BCY72	$4 / 6$	2 CJ 491	82/11	2N3058	6,8	235457	919
ED121	17/8	TIP31A	1710				

1 WATC AMPLLFHB MODULE TYPE PCM1
Thin ampllieer unit is a printed circuit module incorporating the popular and well tried PA2st i.c. ampliter. The unit is a complete ALDIO AMPLIFIER and requires дo external componente, you simply connect an 18 voit power supply ad a 15 or 10 ohrn apeaker or head phose, evea the supply amoothing capacitor and the output capacitor are included! The overall dimensions, facluding

This unlt 18 avallable est only $86 /-$ net complete with descriptive leaflet or 70/net per paitr. Send for irec leafet,

ELECTRONTC COMPONEXTS IF THE WEST MTDLAND
A wide range of components are available from stock for CAYEERs, including the following:

REATETORS (includes $6 \% \frac{1}{2}$ watt, High otabs at only 2 d . each in $100+$ quantitjes of MIXED values of your choice in the E12 seried from 10 ohm to 10 Mohm). CAPACMORE (includes Polyesters, polyatyrene, metalilsed film, miniature electrolytice, bilver micas). BEMICONDUOTOR\& (includes Integrated circuite, tranajetors, dlodes, reetifiers)
PLCS ALL the notul cormponents euch as pluge and sockete, pote, Veroboard,
.
WE ARE AK INTERNATIONAL EECTHIER GEMICOKDUCTOR CENTRE Msil order, I/6 P. \& P. per order ioland, Overseas at cost, min, 10;- Open $9.00 \mathrm{a.m}$, to $12.50 \mathrm{p} . \mathrm{m}$. $2.00 \mathrm{p} . \mathrm{m}$, to $\mathbf{5 . 0 0 \mathrm { p } . \mathrm { m } \text { . Weckdass. } 9 . 0 0 \mathrm { p } . \mathrm { m } \text { . to } 1 2 . 5 0 ~}$ p.m. Saturdass.

Please note, we wilt be closed for annual holioning from June 1 to June ff incluslye.

The

STONE LANE K\&NVER STOURBRIDGE WORCS Ttalenhuim KINVER 2099

AMAZING MINI•DRILL

Indispensable for precision dritling. grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power Completely portable power from $4 \frac{1}{2}$ volt externai
battery, So much more battery, So much more
scope with MJNl-DRILL. scope with MINI-DRILL.
Super Kit (extra power, inSuper Kit (extra power, in-
rerchangeable chuck) $79 / 6$ cerchangeable chuck) $79 / 6$ p.p. $2 / 6$.

De Luxe Professional Kit with 17 tools $130 /$ p.p. 4/6.
Money Ref, Guarantee.

STABILISER BOARD

COMPONENTS ...

STABILISER

Resistors

R49 $2.2 \mathrm{k} \Omega$	$R 528.2 \mathrm{k} \Omega$
R50 $6.8 \mathrm{k} \Omega$	$R 5310 \mathrm{k} \Omega$
R5I $1.5 \mathrm{k} \Omega$	$R 54100 \Omega$

All $\pm 5 \% \frac{1}{2} \mathrm{~W}$ carbon film

Capacitors

C7 $80 \mu \mathrm{~F}$ elect. 25 V
C8 $80 \mu \mathrm{~F}$ elect. 25 V

Semiconductors

TR13, 14 BC 109 (2 off)
TR15 BC 107
D4 ZF9.1
D5, 6 IN 4003 (2 off)

Miscellaneous

Veroboard $3 \frac{3}{4}$ in $\times 2 \frac{1}{2} \mathrm{in}, 0.15$ in matrix Veropins
S.R.B.P. board $3 \frac{3}{4}$ in $\times 2 \frac{1}{2}$ in (backing board)

Fig. 4. Stabiliser board layout and wiring
bringing down the output to the same voltage level as the input, without introducing potential dividers or zener diodes.

In a feedback amplifier, temperature variation in the base-emitter potential of the input transistors is likely to be the only significant temperature variation causing drift, and its effect can easily be reduced by making the input circuit of high impedance, and by using a differential pair of transistors. There is considerable uniformity as regards the base-emitter temperature characteristic, so unmatched transistors can be used in differential stages. It is probably worthwhile, however, to sort out the BC109 transistors into pairs, and to use the best matched pair for the input stage. The transistors should be from the same production batch, and can be matched in β at a current of about $10 \mu \mathrm{~A}$. Transistors matched at 1 mA may not be so well matched at a lower current.

HEAT SINK

Very constant conditions are maintained in the input stage, and the completed instrument has a sufficiently stable zero even on the 2 millivolt range. If the temperature characteristics of TR1 and TR2 are not alike, a rise in junction temperature will produce unequal effects, and drift will occur from switching on. However, the dissipation is very small, as the collector current is only 10 microamperes, and this should help to reduce the initial drift. Short term drift is very undesirable, as it can occur during a measurement. Long term drift takes place through changes in room temperature, and will be about $15 \mu \mathrm{~V}$ per degree Centigrade.

If the two transistors were mounted separately, a slight difference in heating would cause a shift of zero
position on the meter. It is necessary, therefore, to equalise the temperatures by mounting them close together in a heat sink.

Before insertion, the transistors should be turned so that the leads are in the correct position to pass through the perforations on the amplifier board. Both transistors require the same orientation, with the small lugs parallel, and with the base lead of each transistor on the centre line of the heat sink.

The heat sink is raised sufficiently from the amplifier board to allow for the spread of the transistor leads. A small piece of insulating material serves as a spacer.

STABILISER

It is just as necessary to overcome drift due to mains voltage variation, and this can be done by stabilising the 12 volt supply with a three transistor circuit (TR13 to 15 in Fig. 2). A high degree of stabilisation can easily be achieved, since the amplifier requires only a few milliamperes of current.

Positions of the components on the stabiliser board is shown in Fig. 4, this also shows the breaks in the copper strips. The two electrolytic capacitors are mounted centrally.

The finished board is mounted vertically at the side of the amplifier nearest to the miniature mains transformer T1, by means of an aluminium bracket to which it is fastened by 6 B.A. boits. These also pass through the insulated backing piece from which it is spaced by insulating washers, case details and board positioning will be given later.

Next month: Further construction details

THE ancestry of many electronic circuits in common use today can be traced back to the invention of the thermionic triode by Lee de Forest in 1907. For example, Eccles and Jordan published the circuit of a "two-state" or bistable electronic switch in 1919, which was based on the triode, and this circuit later became the building brick of modern digital computers. The important thing about de Forest's invention was that it introduced for the first time the active principle of amplification to circuit design.

When transistors began to appear in quantity after 1950, they were initially regarded merely as substitutes for the thermionic triode, and old circuits were adapted to accommodate them. However, increasing knowledge of semiconductor principles soon led to the development of new devices and circuits, which bear little resemblance to those of the triode.

THERMIONIC TRIODE

A basic triode consists of a thin wire filament (cathode), a wire grid, and a metal plate (anode), all contained in a vacuum, see Fig. 3.1. Electrons are thrown off by the vibrating atoms of the heated filament and travel across the vacuum space towards the positively charged anode, thus forming an electric current. There can be no flow in the other direction because the anode does not emit electrons, and there are no other current carriers present in the vacuum.

The function of the grid is to control the electron flow to the anode, and it exerts a large influence on the electrons because it is close to the filament. Thus, a small voltage change on the grid results in a large current change at the anode.

A resistor placed externally, in series with the anode connection, will convert a change of anode current into a change of anode voltage. Thus a small change in grid input voltage results in an amplified change in anode voltage. The valve acts as an amplifier.

TRANSISTOR ACTION

It was explained in Part 2 that a diode is formed by the combination of p and n type semiconductor

Fig, 3.la. Working principle of a thermionic triode

Fig. 3.Ib. Physical construction of a triode valve

materials. If a "sandwich" is made with two n type materials on the outside and a p type filling or central layer, this will obviously give two diodes back to back, as shown in Fig. 3.2a. Similarly when the materials are arranged in a sandwich of pnp, but the diodes will then be the opposite way round, as in Fig. 3.2b.

Both devices of Fig. 3.2 are incapable of conducting a significant current between the terminals marked emitter and collector when the base terminal is unconnected because one of the diodes will always be reverse biased, and act as an insulator.
Suppose now that the central semiconductor layer is made very thin, typically less than one thousandth of an inch, and the sandwich layers are doped with differing amounts of impurity atoms.

The diode junctions will be physically so close that they will tend to interact with each other, and variation of doping levels will cause an unbalance in the combining of electrons with holes. This is the basis of transistor action, where the current passed through one diode influences the current flowing through the other.

BIASING

Fig. 3.3a shows the three layers of an npn transistor, an n-type collector material with a normal doping of free electrons, a thin p-type central layer forming the base which is lightly doped with just a few holes, and a heavily doped n-type emitter containing a large number of free electrons.

Fig. 3.2a. NPN transistor shown in block form (left); theoretical circuit (centre); circuit symbol (right)

Fig. 3.2b. PNP transistor shown in block form (left); theoretical circuit (centre); circuit symbol (right)

Fig. 3.2c. Cross-section Fig. 3.2d. Cross-section view through a germanium view through a silicon alloy pnp transistor

Fig. 3.3a. Different impurity doping levels in a transistor sandwich

Fig. 3.3c. Free electrons move into collector insulator region when emitter junction is forward biased

Fig. 3.3b. Two insulator regions formed in an unconnected transistor

Fig. 3.3d. With base and collector bias, more electrons are carried across the collector junction than are passed through the base bias battery, thus giving amplification of the base current

Way To liectronics

COMMON EMITTER

COMMON COLLECTOR

COMMON BASE

Fig. 3.4a. The three transistor configurations connected as current amplifers

Fig. 3.4b. The three transistor configurations connected as voltage amplifiers

When the three layers are merged, free electrons and holes combine to form two insulator or depletion regions; one at the junction between base and collector, the other at the base-emitter junction (Fig. 3.3b).
If a base bias battery is now connected across the base and emitter, as in Fig. 3.3c, with a variable resistor in series to adjust the level of base current, the emitter diode will be forward biased. The emitter insulator region therefore disappears, and electrons will flow by the mechanism of filling and leaving holes.

However, the emitter has many free electrons, while the base material has only a few holes. So, while some electrons from the emitter are kept busy filling holes, others will be swept along by the current to find no holes vacant. These uncommitted electrons tend to repel each other, and quickly diffuse throughout the base material, into the region of the collector junction insulator.

It will be remembered that a diode insulator can only exist as such when there are holes on one side of the junction and free electrons on the other. The presence of free electrons instead of holes in the vicinity of the collector junction tends to "spoil" the diode insulator, and thus converts the junction into a conductor.

AMPLIFICATION

When a battery is coupled to the collector and emitter terminals (Fig. 3.3d) the uncommitted electrons from the emitter proceed to flow across the collector junction, under the influence of a positive charge, thus creating a collector current.

Any increase of base bias current will cause a corresponding increase of collector current, but because
the base material is very thin, more electrons tend to find their way to the collector material than are "used up" by the base bias. This is called current gain or amplification. If 50 electrons cross the collector junction for every one taken by the base current, the gain of the transistor will be 50 .

A $p n p$ transistor functions in much the same way, except that the role of free electrons and holes is exchanged, and base and collector supply polarities are reversed. The arrowheads in the transistor symbols of Fig. 3.2 indicate the direction of "conventional" flow, not electron flow. (See Part 1 for explanations.)

THREE CONFIGURATIONS

A transistor is primarily a current amplifying device, but a current flowing through a resistance will give rise to a voltage drop across that resistance ($V=I \times R$). Therefore, a transistor can be considered as a voltage amplifier when the internal resistances of the device, and the values of external resistors connected to it, are taken into account.

There are three main ways in which a transistor can be employed to amplify small currents or voltages, in circuits termed "common emitter", "common collector", and "common base". Table 3.1 lists the main features of each configuration, and the circuits appear in Fig. 3.4 under the headings current and voltage amplifiers. For the sake of clarity, base biasing has been omitted and will be dealt with later.

IMPEDANCE MATCHING

Although an amplifier is energised by a d.c. supply, it is used to increase the voltage or current from a

Table 3.1. TRANSISTOR AMPLIFIER CHARACTERISTICS

| Configuration | Common
 emitter | Common |
| :--- | :---: | :---: | :---: |
| collector | Common | |
| base | | |

Table 3.2.
ABBREVIATIONS USED IN THIS ARTICLE

$V_{C C}$	Collector bias battery voitage
V_{1}	Input signal voltage
V_{0}	Output signal voltage
Z_{i}	Input impedance of transistor circuit
Z_{L}	Impedance of load applied to output terminals
Z_{0}	Output impedance of transistor circuit
Z_{S}	Impedance of signal source or generator
R_{L}	D.C. resistance of applied load
R_{S}	D.C. resistance of signal source
V	Volcage
$/$	Current
R	Resistance

Fig. 3.5a. Common emitter a.c. amplifler without base blas. The transistor only amplifies alternate positive half-cyeles and inverts the waveform

Fig. 3.5b. Common emitter a.c. amplifier with base bias and coupling capacitors. The transistor amplifles the complete sine wave and inverts it
separate a.c. or d.c. source which is connected to its input terminals. Such a source will have a certain known internal resistance.

If the source is d.c., its resistance is of value R_{8}; if the source is a.c., its resistive effect has to take into account variations according to the inductive and/or capacitive components of the source. In this case, the combined resistive effect is called impedance and is denoted by to the symbol $Z_{\text {s }}$.

Similarly, the load applied to the output can be a pure resistance and is termed R_{L}, or in the case of inductive and/or capacitive loads applied to a.c. is termed Z_{L}.

For simplification, the source and load are considered in Fig. 3.4 as impedances Z_{s} and Z_{L} so that they can apply to d.c. or a.c. If a d.c. source is applied, then $Z_{\mathrm{g}}=R_{\mathrm{g}}$ and $Z_{\mathrm{L}}=R_{\mathrm{L}}$.
It would be natural to assume that the input and output impedances of the amplifier itself would be the same as the internal resistances of the transistor, plus the values of any external resistors, but this is not so. The existence of amplification in a transistor circuit has the effect of modifying real resistive values to give an "apparent" value of input and output impedance denoted by dotted lines in the circuits of Fig. 3.4 and marked Z_{1} and Z_{0} respectively. If the amplifier is to work efficiently it should be "matched" to the source and load impedance, i.e., $\boldsymbol{Z}_{\mathrm{B}}$ should be nearly the same as Z_{1}, and Z_{L} should be approximately equal to Z_{0}.

With the exception of the common emitter amplifier of Fig. 3.4b, all the circuits in Fig. 3.4 will give an output which increases as the input increases. In the case of the common emitter voltage amplifier, however, the output voltage is at maximum when the input
voltage is at minimum, and decreases as the input voltage increases. The term for this is "phase inversion'.

UNBIASED BASE

If the circuits in Fig. 3.4 are made up without base biasing, they will be found to amplify only input currents or voltages of single polarity. For example, the common emitter circuit of Fig. 3.4 b will accept and amplify positive input voltages, but will ignore negative input voltages.

When the input voltage is zero or negative there will be no collector current, therefore the output voltage will be maximum and equal to almost the full battery voltage, $V_{\text {cc. }}$ It follows that the output can only vary between $V_{\text {ce }}$ and zero in response to a positive input voltage.

Fig. 3.5 a shows what happens when an unbiased common emitter amplifier handles an a.c. signal. Positive half-cycles are amplified and appear at the output upside-down (phase inversion), but negative half-cycles at the input produce no change of output. How then can a complete a.c. cycle be amplified?

BASE BIAS

The following measures are taken to convert the unbiased amplifier into an a.c. amplifier. Firstly, the transistor base is supplied with d.c. bias from the battery positive terminal via R1, see Fig. 3.5b.

This base current is amplified by the transistor to yield a collector current (since the emitter is common to both circuits) which causes about half the total battery voltage to appear across R2 and the other half across

Fig. 3.6a. Base current blas with d.c. negotive feedback

Fig. 3.6b. Base voltage bias provided by a potential divider

Fig. 3.6c. Base voltage bias with d.c. negative feedback and a.c. decoupling copacitor

the output terminals. So, on receipt of a signal, the output voltage can now either increase or decrease about the mean value of $\frac{1}{2} V_{\text {ce. }}$.
Having established d.c. bias values, it is important to ensure that they will not be disturbed when an external circuit is connected to the amplifier input or output. A capacitor has the property of preventing a flow of d.c., but will "pass" an a.c. signal.

Capacitors Cl and C 2 are therefore placed in series with the input and output terminals, and the amplifier will now respond to a.c. signals, with positive and negative half cycles appearing at the output, as depicted in Fig. 3.5b.

D.C. STABILITY

A single resistor R1 is used to set the d.c. operating conditions of the amplifier in Fig. 3.5b, but this simple method of biasing has two disadvantages. The value of R1 must be altered to suit individual transistors of slightly different current gain. The circuit is also sensitive to changes of temperature. It will be remembered from Part 2 that the resistance of a semiconductor decreases with rising temperature, and tiny changes of base current are, of course, amplified.

If RI is connected to the collector terminal, instead of the positive battery terminal, as shown in Fig. 3.6a, d.c. stability is improved. As ambient temperature increases so does base and collector currents, but the voltage at the collector falls, thus counteracting an increase of base current and nullifying the effects of temperature.

The circuit will now accept transistors of differing gain without the need for adjusting the value of R1. Unfortunately, these improvements are obtained at the expense of amplification. The phase inverted output at the collector is fed back via RI to the base, and is subtracted from the input; this is called negative feedback.

VOLTAGE DIVIDER

A prefered method of biasing is where two resistors, R1 and R2 (Fig. 3.6b) form a voltage divider across the battery, from which the base of the transistor is supplied with a voltage bias. The d.c. operating conditions of the circuit in Fig. 3.6b are moderately stable, but can be much improved if a small amount of amplification is sacrificed in the form of negative feedback.

Instead of taking feedback from the collector, a similar result can be achieved if a low value resistor, R4 is inserted in series with the emitter, as in Fig. 3.6c.

To avoid loss of amplification of an a.c. signal (Fig. 3.6c is shown as an a.c. amplifier) R4 can be bypassed by a capacitor C 3 , without affecting the d.c. stability of the circuit. Thus, R4 limits the d.c. current for stability, while C 3 acts as a short for a.c. and infinitely high parallel resistance path to d.c.

TRANSISTOR OSCILLATOR

An amplifier can be made to oscillate by the application of positive feedback. In the circuit in Fig. 3.7, the common emitter amplifier feeds a phase inverted signal to a network of resistors and capacitors. The network has the property of causing a phase inversion only at one particular a.c. frequency. Two successive phase inversions cancel out to leave a non-inverted or in-phase signal, which, when fed back to the amplifier input, reinforces the input signal and causes a build-up of oscillations. The output from the oscillator is sinusoidal, with the same waveform as mains supplies, and is derived from the laws of circular motion.

Next month we shall be looking at more oscillators, and will go on to pulse and switching circuits.

MARS PROGRAMME FOR THE 1970's

In 1971 two spacecraft will be launched towards Mars and go into orbit around the planet. The orbiting vehicles will each weigh about a ton and will be equipped with special survey cameras and other instruments. They will map about 70 per cent of the surface of Mars and record the changes that appear to be of a seasonal nature. It is expected that continuous information will be relayed back to earth during the three month operational period for which these vehicles have been designed.

Though identical instrumentation will be carried by these two spacecraft, their missions will differ. Both will carry television cameras in pairs, one camera will have a 50 mm lens for wide angle coverage and the second will have a telephoto lens of 500 mm for detailed survey.

The first of the vehicles to arrive in the vicinity of the planet will be Mariner 8. Its mission is the overall reconnaisance and systematic photographing of the surface. The area covered will be from 60 degrees south latitude to 40 degrees north latitude during a 90 day period. The spacecraft will orbit the planet every 12 hours in an elliptical orbit which will range from 1,000 to 10,500 miles.

Mariner 9 will follow and will be inserted in a much more elongated orbit, with a perigee of 1,000 miles and an apogee of 27,000 miles. It will pass over the same area of the planet's surface every fourth day.

The cameras on the Mariner 9 craft will record the darkening of the surface which has been observed to coincide with seasonal changes. The latest opinions among planetary astronomers do not favour the theory that these changes are due to vegetation, though no specific suggestions have been made as to what the changes might be.

MARS ENVIRONMENT

However, opinion is unanimous that the environment is hostile to man, being frigid and desolate. No water, or life sustaining oxygen has been detected on the surface. The ice caps are composed mainly of carbon dioxide frost. The atmosphere is mostly very thin carbon dioxide gas with perhaps a trace of water present.

Mars resembles the Moon and the Earth yet has its own particular character. The surface is marked with thousands of craters large and small like the moon, but it also shows large features like the continents on the earth. The altitude variations of various features are of the order of 40,000 feet. There are other features which show folds of jumbled and jagged rock formations unlike the moon or the earth.

The two spacecraft will continue to orbit Mars for about 17 years after their scheduled mission is completed.

VIKING EXPLORERS

The dual mission of Mariners 8 and 9 will be followed in 1975 by the Viking series of spacecraft. They will also orbit Mars but will release landing craft to the surface which will make observations and relay the information back to earth via the orbiting mother craft. It is hoped that these experiments will settle once and for all the question of the existence of life in any form on Mars.

The next step after this will be the landing of men on the surface of the planet, marking the second major step in the exploration of the solar system.

MOONGLOW

The moon is bathed in the solar wind and as there is no atmosphere there is a constant blizzard of particles from the sun. These are thought to be the cause of moonglow, as the actual surface of the moon is dark and it is not possible for the moon light to be due to mere reflection from the surface.

The Apollo 11 crew exposed a thin sheet of aluminium for 77 minutes while they were on the moon's surface and it now seems that the moon is being bombarded by something of the order of 63 million atoms of helium per square metre per second. This enormous flux forms a kind of haze and reflects the sunlight. The particles do not seem to be affected by any electromagnetic forces, if such should exist on the moon.

NATO-ONE SATELLITE

The first North Atlantic Treaty Organisation satellite was put into orbit in March and is being financed by the participating members of NATO. The satellite is in a geosynchronous orbit (22,000 miles plus) over the Eastern Atlantic.

The satellite project costing some 50 million dollars consists of two satellites and 12 terminal stations. The satellites are built in the USA but the terminals are being constructed by the member countries. Extensive tests on the satellites prior to handing over to NATO was
carried out by the Research Establishment at Christchurch, England.

All operations are controlled from the satellite communications centre (SATCOM) at the NATO headquarters in Belgium. When the network is completed in 1971 it will be used exclusively by NATO. This will facilitate communications by voice and telegraphy between member governments, and between their representatives at Brussels and leaders at home.

Eight of the terminals will be ready by the end of 1970, two more in early 1971 and the last two by the middle of 1971.

France, Luxembourg and Iceland will not have terminals but will have facilities for "tying in" to the network.

SKYNET CONSCRIPTED

The Royal Navy has its own waveband on the Skynel system and has found that its value to them justifies a call for their own satellite in phase two of the project.

The Navy operate with the smallest transmitting and receiving terminal in service, using 2 metre dishes (two to each ship), and consequently the power from the satellite has to be stepped up to obtain adequate signal strength. In order to avoid swamping by the large dishes with a bandwidth of 20 MHz the small dishes have a bandwidth of 2 MHz and the power is split equally between the pathways.

The modulation system used by Skynet is wideband digital and therefore speech has to be digitised. This must then be put through a teleprinter or de-modulated and transformed into speech again.

There are three possible modulation systems using Pulse Code, Delta and Vocoder techniques. Pulse Code Modulation (PCM) systems give high quality speech reproduction but is expensive and complex because the required digitation is 64,000 bits per second. The second possible method, Dela Modulation has the advantage of being simple and can give medium speech quality with 16 to 20 bits per second. The third system is also expensive and complicated, but gives acceptable speech quality using Vocoder-synthesiser techniques. There is also the advantage that it may be possible to link this with computers.

A thyristor is basically a silicon rectifier which only conducts in the forward drection when a small voltage in the order of a few volts is applied to a third terminal called the gate or trigger. Once the thyristor is conducting, the gate voltage can be removed and the thyristor will hold itself on until the current is stopped. The reverse characteristic of the device is the same as for a normal silicon rectifier.
It can be seen that when the thyristor is turned off, the switched circuit is in effect open circuit between A and B. However, when the thyristor is triggered (turned on) the circuit becomes, in effect, a short circuit between A and B.
It should be pointed out that if an a.c. signal is applied to the circuit, as is of c , urse the case, then the trigger pulse has to be re-applied with every half cycle, as the current through the thyr, stor drops downtozero between each half cycle.

Hence, by connecting ihe switch circuit in series with a mains bulb, it can turn the bulb on and off by means of a small trigger voltag. It is, however, more convenient, as will be seen laier, to put the mains bulbs in series with the thyristor it: elf as in Fig. 2.
This has no effect on the light output of the bulbs as it simply means they are receiving a full wave rectified mains supply insteid of an a.c. mains supply.

TRIGGERING

According to the type of thyristor used, a trigger voltage in the order of 3 volts. at 20 mA , relative to the cathode, is required. It was found that the thyristor used could be triggered directly' by connecting it across a loudspeaker. However, the lights only stayed on for the duration of each loud sound and they tended to be rather erratic when the music contained loud vocal

Fig. I. Thyristor switching circuit
work. Also the gate current drawn by the thyristor was sufficient to cause a slight crackling sound from the loudspeaker as the device switched on and off. Furthermore, the continuous switching caused slight radio interference and rather reduced the life of the bulbs.

It was therefore decided to incorporate a monostable between the signal source and the thyristor in order to hold the lights on for a certain period before letting them turn off again. This has the effect of making the lights switch on and off more rythmically, and it is also more kind to the bulbs and suppresses radio interference.

MONOSTABLE

The overall circuit diagram is shown in Fig. 2.
When the monostable is in its stable state, TR2 is on and TR1 off. A negative trigger pulse of sufficient magnitude applied to the base of TR1 will turn it on and its collector voltage will drop towards zero volts. This voltage change is transmitted via C2 to the base of TR2, turning TR2 off. Transistor TR2 then remains off until C2 has charged up, via R5/VR2, to a voltage sufficient to turn it on again; when this happens the circuit reverts back to its stable state.

TRIGGER TRANSISTOR

An output is taken from the collector of TR2 and fed via the trigger transistor TR3 to the gate of the thyristor. The purpose of TR3 is to act as a power amplifier to switch the thyristor, which otherwise may upset the working of the monostable.

When the monostable is in its stable state with TR2 on, TR3 is turned off and hence the gate of the thyristor is at the same potential as the cathode. When the monostable changes state TR3 is turned on and the gate of the thyristor is connected via R 8 to the positive supply thus triggering it and turning the lamps on.

CONTROLS

It has already been pointed out that the "on time" of the monostable and hence that of the lights is decided by the time constant $C_{2}\left(R_{5}+R_{\mathrm{VR}_{2}}\right)$. By making

It should be noted that the flashing light display described in this article could produce an effect, on a few people, that may cause fainting. This ustally only occurs when high power flashing lights are used for long periods in conditions of lo V ambient light.
$C_{2}=200 \mu \mathrm{~F}, R_{3}=560$ ohms and $R_{V R_{2}}=2$ kilohms the on time of the lights can be varied between 0.112 and 0.512 seconds which has been found to be an adequate range. Potentiometer VR2 is called the "mood" control as it determines the length of the flashes and is adjusted to suit the mood of the music.
It is also very easy to convert the monostable into an astable multivibrator and this is achieved by SI. When S1 is closed the circuit is free running and hence the lights are continuously switched on and off like a slow running stroboscope. With St in this position, R11 is replaced by a $200 \mu \mathrm{~F}$ capacitor (C3) and also RI is taken to the 0 V supply line instead of the +8 V supply line, thus converting the circuit to a multivibrator. When SI is in the trigger position, the monostable operates normally, being triggered from the audio signal.

A test button $\$ 2$ is provided to apply'a trigger pulse to the monostable in order to test the unit. This is not essential and can be left out.

The other controls are the on/off switch (S3) and the sensitivity control (VR1), both of which are selfexplanatory. The best way to set the sensitivity control is described later in the article.

TRANSFORMER DETAILS

It should be realised that the whole of the circuit is at approximately 240 volts d.c. below earth due to the action of the rectifier circuit, and hence the circuit must. be connected to the signal source via an isolating transformer. The transformer used should have a winding ratio of about 1:1, and the breakdown voltage between windings must be greater than 500 volts.

Probably the best transformer to use would be a speaker isolating transformer which is made for just this type of job. However, speaker transformers tend to be unnecessarily bulky and expensive due to the power and frequency requirements. If a transformer of this type is used the case would have to be enlarged to accommodate it. A mains isolation transformer could also be used but may also be rather large and possibly expensive.

The prototype unit used a government surplus transformer that measured $1 \frac{1}{4} \times 1$ in $\times \operatorname{lin}$ having a winding to winding and winding to case insulation of 500 megohms, measured at 1,000 volts. The transformer has a winding ratio of 2 to 1 and is a miniature valve interstage transformer; it is housed in a metal case and has insulated ceramic stand off terminals.

If a transformer with a slight step-up ratio is used, it should be connected so t^{\prime} tat it steps up the signal coming into the circuit.

The output from the tra nsformer is passed via VR1 and a diode to the base of TR1. The diode ensures that only negative pulses are applied to the base of TR1, otherwise the mo oostable would be switched back to its stable state piematurely by positive pulses.

POWER SUPPLY

It was decided to derive the power supply for the monostable and trigger transistor from the mains supply rather than from bat eries for two reasons. Firstly, because the transiste s require a fairly large current, and secondly because a rectified mains supply was already present in the circuit. This brings us to the reason for putting the mains bulbs in series with the thyristor. By doing this the voltage appearing between the points X and Y in Fig. 2 is always the full wave rectified mains voltage irrespective of whether the thyristor is on or off. If the bulbs were put in series with the complete switch then when the thyristor was on the rectified voltage would drop to almost zero.

The rectified voltage is applied via a 4.7 kilohm 10 watt dropping resistor to an 8 volt Zener diode giving a stabilised 8 volt supply to power the transistor circuitry. A $200 \mu \mathrm{~F}$ capacitor is connected across the Zener diode and this provides adequate smoothing. The circuit draws approximately 15 mA in the off state and 35 mA in the on state, the extra current in the on state being the trigger current in the thyristor.

VOLTAGE DROPPER

The mean d.c. value of the rectified mains voltage appearing between X and Y was measured to be 210 volts. Hence the voltage drop across R10-the 4.7 kilohm dropping resistor-has to be 202 volts, which means a current of 43 mA must flow through R10. Hence the Zener diode has to pass 28 mA when the circuit is in the off state. A Zener diode with at least 50 mA rating should therefore be chosen.

If a Zener diode with a current rating appreciably higher that 50 mA is used, then some or all of the dropping resistance R10 can be replaced by a small mains bulb. This replacement resistance depends on the surge rating of the Zener, because a bulb passes a large surge current when it is switched on as the cold resistance of the filament is lower than the hot resistance. By leaving some resistance in series with the bulb the surge is reduced. An example of the calculation for a series resistor and lamp is as follows.

The hot resistance of a 15 watt mains bulb is given by

$$
R=\frac{V^{2}}{W}=\frac{240^{2}}{15}=3.9 \text { kilo月ms }
$$

We want the total resistance to be approximately 4.7 kilohms. Therefore the series resistance should be 1 kilohm.
A reasonable assumption for the cold resistance of the bulb is 1.5 kilohms (bearing in mind that the current will never reach the value given by the cold resistance, owing to the filament heating up). Hence current surge will be approximately 100 mA .

Thus we need a Zener diode with a surge rating of 100 mA if a 15 watt bulb in series with a 1 kilohm resistor (of 2.5 watts rating) is used as a voltage dropper.

Fig. 4. Layout and wiring of the monostable Yeroboard panel

This arrangement is convenient because one can obtain coloured miniature bulbs of 15 watts rating for mains indicator use.

CONSTRUCTIONAL DETAILS

The unit should be constructed in a totally enclosed, 6 in $\times 4$ in $\times 2 \frac{1}{2}$ in, aluminium case. The drilling details for the case are given in Fig. 3. These can, of course, be altered in order to suit particular components, but it is felt that the layout shown can be used with most parts and enables the unit to be fitted into the smallest box possible, yet leaves it very easy to work on any particular part of the circuit.

In the prototype unit most of the electronics, including the thyristor and rectifiers, were fitted on two plug-in printed circuit boards; Veroboard can just as well be used and wiring details for Veroboard panels are shown in Figs. 4 and 5.
It should be pointed out that if the thyristor and rectifiers are to be used at anything near their full rating, then they should be mounted on heatsinks. The prototype unit used 3 amp rectifiers and thyristor and is capable of switching 300 watts for several hours continuously. This, however, tends to make the rectifiers rather hot and it is suggested that 200 watts is taken as maximum if the rectifiers are mounted on a printed circuit board; 200 watts is ample for most domestic rooms.

PLUG-IN BOARDS

Having all the circuitry on plug-in boards makes construction easy, enables two layers of components to be fitted in the case, and facilitates easy servicing. The bottom board contains the monostable, and the top board (looking from underneath) hoises the trigger and switch circuit. The transistors used can be almost any low power, pnp switching transistor capable of passing 25 mA . Great care should be taken in assembling the thyristor and rectifier board as some of the

Fig. 5. Layout and wiring of the switching and trigger Veroboard panel

Fig. 6. 'Component layout and wiring of the chassis mounted components

COMPONENTS . . .

Resistors

RI	$2.2 \mathrm{k} \Omega$	R7 $1.5 \mathrm{k} \Omega$	
R2	$4.7 \mathrm{k} \Omega$	R8	$1 \mathrm{k} \Omega$
R3	$470 \mathrm{k} \Omega$	R9 100Ω	
R4	560Ω	R10 $4.7 \mathrm{k} \Omega 10 \mathrm{~W}$ wire wound	
R5	560Ω	RII $4.7 \mathrm{k} \Omega$	
R6	560Ω	All $\pm 10 \%$, $\frac{1}{4} \mathrm{~W}$ carbon, except R 10	

Potentiometers

VRI	$5 \mathrm{k} \Omega$	log.
VR2	$2 \mathrm{k} \Omega$	linear

Capacitors

CI IuF elect. 10 V
C2 200μ F elect. 10 V
C3 $200 \mu \mathrm{~F}$ elect. 10 V
C4 $200 \mu \mathrm{~F}$ elect. 10 V
C5 0.1 LF paper 450 V

Semiconductors

DI OA81
D2-5 400 p.i.v. 3 amp silicon rectifiers (4 off)
D6 Zener diode 6 to 12 V 50 mA (see text)
TRI-3. OC76 or equivalent (3 off)
SCRI 400 p.i.v. 3 amp thyristor

Switches

SI D.P.D.T. toggle
 S2 S.P.S.T. pushbutton
 S3 D.P.D.T. toggle

Miscellaneous

TI Transformer (G. W. Smith, see text)
LPI 6 V 40 mA pilot lamp and holder
SKI jack socket
SK2 2 pin mains socket
Control knobs (2 off)
Case (see text)
Veroboard $2 \frac{1}{2}$ in $\times 3 \frac{3}{4} \mathrm{in}, 0.15 \mathrm{in}$ matrix (2 off)
Connectors, edge type for Veroboard 16 way (2 off)
strips carry mains voltages. The connections to the studs of the thyristor and rectifiersare made by the copper strips clamped under the studs. All the copper strips are blanked off at the end of the rectifier section of the board, apart from those actually carrying connections to the pins. This reduces the possibility of accidental shorts. The letters by the pins on the board correspond to various points of the circuit marked in Figs. 2 and 6.

If it is decided to mount the thyristor and rectifiers on heatsinks then it is suggested that the heatsinks are mounted on the chassis (with suitable insulation of course) in place of the bottom board, and the monostable and trigger stage (i.e. all the transistor circuitry) are mounted on the top board.

LAYOUT AND WIRING

The layout and wiring details of the unit are shown in Fig. 6. The wires from the switches and other components mounted on the chassis to the Veroboard sockets are best soldered to the sockets before they are fixed inside the chassis. If the wires are laced together to form a loom, it makes the construction much neater and also enables the sockets to be easily removed from the chassis if necessary. The sockets are in fact sold as Veroboard edge connectors and accept standard Veroboard. They can be mounted on a small right-angled bracket similar to that shown in Fig. 6.
The pilot light (if a resistor is used to drop the voltage for the 8 V supply) is a standard 6 V 40 mA bulb and is wired in series with the dropping resistor R10. The size of hole required for the pilot light obviously depends on the type of holder used and hence no dimension has been put on Fig. 3. The four holes in the chassis next to the pilot light are ventilation holes to dissipate the heat from R10.

A three core mains lead must be used to supply the unit, and the chassis must be earthed by connecting the earth lead to a solder tag.

ADDITIONAL LIGHTING

By wiring one or more bulbs in parallel with the thyristor the unit can be made to alternate the light between two bulbs, or sets of bulbs, i.e. instead of just one set of bulbs that are either on or off, two sets of bulbs varying between set 1 on, set 2 off, and set 2 on, set 1 off are displayed. The relative brightness of the two sets of bulbs can be altered by varying the number of bulbs in each set.

If one 60 W bulb is wired in parallel with the thyristor and two 60W bulbs, paralleled together, are put in the normal position in series with the thyristor, then when the thyristor is off, the single bulb will be almost full on and the pair of bulbs almost off. When the thyristor is on then the single bulb will go off and the pair on.
If just one 60 W bulb is put in series and one in parallel with the thyristor, then when the thyristor is off both bulbs will be half on. When the thyristor is on, the bulb in parallel will be off and the one in series on; this gives a softer effect than the previous system.

The whole system can, of course, be made brighter by increasing the ratings of all the bulbs but keeping them in the same configuration, bearing in mind the limitations previously discussed.

SETTING UP

The idea is to set the sensitivity control so that the unit just triggers in the loudest peaks of the music, which is normally the drum beat. The mood control, which varies the "on" time of the lights has to be adjusted to suit the type of music and the effect required, e.g. for slower, relaxing music the most soothing lighting is required and this is obtained by setting the mood control to give the longest "on" time which means the lights flash slowly. If the mood control is set for a shorter "on" time with" the same music, it will be found that the lights will flash more regularly, probably giving two flashes to every one before.
For faster music, it is necessary to decrease the "on" time in order to get the lights to flash on each beat.
For a really "progressive" or high impact effect the "on" time wants to be made a minimum and the sensitivity turned up a little above the triggering position. This makes the lights follow the notes rather than the beat of the music.

SOUNDS INCREDIBLE

continued from page 454
The Radiophonic Workshop, being a service department within the BBC , very rarely has time or opportunity to create electronic music as an original, and complete art form. However, collaboration with "outside" composers have resulted in public performances, and recently the Workshop has released an LP of a selection of its work. (BBC Radiophonic Music-Radio Enterprises REC 25M.)

A facet recently added, is the dimension of stereo. Various productions have used Radiophonic sounds in stereo, from the total radio production "Rus" to the cockan'bull tale "The Shagbut, the Minikin and the Flemish Clacket". Another offering from the same stable was "The Shadow of Napoleon".

Various innovations such as synthesisers are likely to be used in future. Such apparatus would provide more original sounds but, as has been found with electronic organs, constant use breeds not only contempt, but instant recognition. It may be that the treatments achieved by means of a synthesiser, will be more important than the sounds produced by it.

IMPROVEMENTS

As more and more new equipment becomes available, technical quality continues to improve. Recording tape has increased coercivity, this is important in sound manipulation, as the number of times a tape can be copied and recopied is limited, without the sound quality seriously deteriorating. With modern tape, higher levels can be recorded without distortion, and a higher signal/noise ratio is maintained.

The only thing that seems incapable of improvement, is the humble razor blade (well, not in the way it is used in the Workshop), unless anyone can produce a plastic, non-magnetic one that cuts tape just as well as the steel ones.
This then, is the continuing story of the BBC Radiophonic Workshop, for whilst the fertile minds of the programme authors continue to demand special sound, and music, the Workshop must continue to supply them.

NEWS BRIEFS

Liquid Crystals

THE first reported multi-coloured displays using a scientists at Marconi, during development work which
promises new types of electronically controlled information displays and optical devices at low cost. "Liquid frystal" is a class of liquids with a regular, crystal-like structure, some of which change their appearance when a voltage is applied. They might one day be used in television screens thin enough to hang on a wall, but immediate practical uses are in data readouts for control panels, animated labelling for keyboard buttons, and see-through map, displays which pilots and drivers can read "head-up" without losing sight of the view ahead.

Practical display panels, using "liquid crystal", which operate at room temperature and have no moving parts, have already been made in the Research Division of The Marconi Company. These panels are normally transparent, but words or other information appear in white when a low voltage is applied to the panel.

Report from AUSTRALIA

 EY D.F. MOODYTHirty-six miles out of Canberra, and set in a natural depression circled by mountains, is the Orroral Space Tracking Station. There are three tracking stations situated at a similar distance from the National Capital-a deep space tracking station at Tidbinbilla, another at Honeysuckle Creek and the Orroral which is the largest of the three. Orroral is committed to a 24 -hour sky watch and it monitors many of the U.S. scientific space probes during their periods of masking from the U.S.A.

Signals are received via four antennae, the largest one of which is an 85 ft 260 ton steerable dish. The signal is recorded on tape on one of four stations, or may be sent live via a p.c.m. line direct to the Goddard Space Flight Center in the U.S.A.

Although the Orroral is not involved in manned space flight missions; they handle a great variety of mundane scientific work. Some of the more wellknown scientific probes with which Orroral has been involved are OAO (Orbital Astronomical Observatory), IMP and NIMBUS.

Two antennae are used for the transmission of command signals to switch the satellite on and off before and after its scheduled relay activity. For this type of work a standard and accurate time system is absolutely important. Three G.M.T. time standards are maintained at Orroral and frequent cross-checks are made with other installations not only in Australia but also overseas.
The station is staffed and run by an Australian Company under contract from NASA; which has a capital investment in Australia of over 60 million dollars, making Australia one of the world's leaders in this type of space work.

AMATEURS OSCAR 5

The fifth satellite in the OSCAR series, AustralisOscar 5, was launched by an American rocket on January 15 this year. These satellites have one thing in common-they were designed and constructed by enthusiasts, and in fact OSCAR stands for Orbiting Satellite Carrying Amateur Radio.
Australis-Oscar 5 was the first amateur satellite NASA have launched and adopted an almost circular orbit 1,000 miles up. The rocket also put a weather satellite into orbit. Australis-Oscar 5 has two radio transmitters, one at 29.450 MHz and the other at 144.050 MHz . There is also a command receiver which was used to operate the 29.450 MHz transmitter while the satellite is orbiting, and gave amateur radio operators experience in the ground control of satellites.
The satellite contains a bar magnet that stabilises the satellite by aligning it with the earth's magnetic field and so allow signals to be received from it free of spin. Three light intensity sensers sent back information so that the effectiveness of the stabilisation system can be determined. In addition to this the skin temperature, the inside temperature, and the battery voltage and current will be monitored. The signals were received at
ground stations in Australia, New Zealand, the U.K. and the U.S.A.

Australian enthusiasts hope that the experience gained from Australis-Oscar 5 will be invaluable for their next venture, which is already on the drawing board, and is planned for launching within one and a half years. The electronics in this satellite will be designed and built by Australian enthusiasts but will be assembled, packaged and powered by a group of American amateurs. This effort will result in a multichannel communications satellite which will bounce messages between amateur radio operators around the world.

DOWN TO EARTH

Or to be more specific "Under a Mountain".
It is strange that many people who have not been to Australia think of it as a place that is completely flat, dusty and dry and full of flies. Well the last three items may be true but that it is completely flat is a falsehood. The vast areas of Australia are flat, but there are also fine mountain ranges of which the "Great Divide" is probably the most well known. The Snowy Mountains in this range boasts the highest point in AustraliaMt. Kosciusko at 7,300ft which manages to keep snow most of the year.

It is in this area where the Snowy Mountains Authority undertook their Hydroelectric Scheme-the largest engineering project in Australia, and one of the largest in the world. It involves eight major dams, 100 miles of tunnels and 10 power stations supplying power to Victoria and New South Wales.

The whole scheme is almost too gigantic to envisage, and in fact the roads servicing the work areas take two to three days to explore in a car. One of the most impressive undertakings is the Tumut One Power Station. Although the power station is of modest output (four 80 kW generators) it does have a rather peculiar location-1,200ft inside a mountain! That is $1,200 \mathrm{ft}$ under the surface, and $1,100 \mathrm{ft}$ from the side. The entrance is a modest opening in the mountainside which introduces you to a half-mile long descent leading to the generating and control room. This huge hall, cut out of solid rock, houses the four generators, transformers and water pipes.
Each generator swallows 6,000 gallons of water every second from the Tumut River to produce 80 kW of power at 12.5 kV (which is then transformed up to 330 kV for transmission).

Being down in that hall, one experiences considerable excitement. The uniform but pleasant coolness, the hum of machinery, the banks of control lights and meters, and the feeling of being surrounded by millions of tons of rock. Also one was aware of the feeling of getting something for nothing. Unfortunately this last point is naturally not true as, apart from the machine maintenance, one has to pay for being so far undergı ound to the tune of pumping out 250,000 gallons of seepage water from the station every day.

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW/ roamer eight mk 1 WITH VARIABLE TONE CONTROL

7 Tunable Wavebands: Medium Wive 3, Medium Wave 2, Long Wave, B.W.1, B.W.2, S.W.3, and Trawler Band. Bult in ferrite rod aerial for Medum and Long Wavea, s oction 22 in chrome plated teleacoplc aerlal for Short Wavea can be angled and rotated for maximum performance.
 Eistora plis S dlodes. Famoun make 7×4 In epeaker. Air spaced ganged tuming condenser. On/ot witch volume control. Wave change aritch and tuning control. Attractive case in tich cheatnut hhade with gold blocking. glze $9 \times 7 \times 4$ in spprox. Fasy to follow inatructions and diagrams make the Roamer Eight a pleasure to bulld. Parto price list and easy bulld plans $\delta /=$ (FREE with parts).

P. \& P

Total bullding costs 7/6

roamer seven mk IV

7 FULLY TUNABLES WAVE BANDS-M.W.1, M.W.2, L.W. G.W.1, 8.W.2, 8.W.a and Trawler Band. Exera Medium waveband providea easler tuming of Radio rod aerial for Medium and Iony rod aerial for Medium nind Long
Waves. 6 Section 22 in chrome plated telecoopic serinl for Short Wivescan be angled and rotated for peal8.W. listening. Bocket for Car Aerial.

Powerful push-pull output. Ttransietors and two ilfodes
Including Micro-Alloy B.E. Tranalstors. Famous make
$7 \times 4 \operatorname{in}$ P.M. speaker. Alr qpaced ganged tuning condenser. Volume/on/ofis control, wave change owitchea and tuning control. Atractive case with carrying handle, Silze $9 \times 7 \times$ fin approx. Eass to Zollow Instructions and diagrams mako the Roamer 7 a
pleagure to builto Parta price list and easy build plang $3 /-(F R E B$ with parts). pleasure to build. Parta price list and easy bulld plens $3 /-$ ($P R E E$ with parts).

Total building costs

£5.19.6
 P. \& P. Pernonal Earplece with swluhed socket 7/6 lor private ligtentig, 51-extre.

pocket five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND
PORTABLE
WITH SPEAKER
Attractive black and gold case. Blze $51 \times 11 \times$ bilin. Tunable over both Yedium and Koug Wave with extended M.W. band for easler tuning of
 diodes, 日upersensitive Ierrite rod aerial. Ane tone price list $1 / 6$ (PREE with parta).

Total building costs

 4.4/ © P. \& P.
NEW!

transeight

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractlve case in black with Atiractlve case in black with
red grile and cream knobsans diat with polihhed brase inserts. size $\theta \times 5 \frac{1}{2} \times 21 \mathrm{ln}$. approx. Tunable on Medium and Long
Waven, 3 ghort Waves and Trawier Band.
Renostive ferrite rod aerial for M.W. and L.W. Telencople aerial for short Waves. 8 mproved type transistores plua 3 dlodes. Push-pull output. Ample power to derise \& larger apeaker. Parta price list and eaby buld plana 5 - (FREN with parta).
Total bullding costs

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractlve case with red apealier grille. Size 64
 ferrite rod aerial, tuning condenser
fine tone moving coll eppeaker also Fentrol, With we moving coil eppenker also Personal Karplece boijd plans and parte price lint 1/6 (FREE With parts).

Total building costs 47/6 P. \& B / P

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367
I enclose £. please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN
TRANSEIGHT	\square	POCKET FIVE
TRANSONA FIVE	\square	ROAMER SIX

Parts price list and plans for.
Name.
Address.

PROSPECTS for the ELECTRONICS INDUSTRY

BACKGROUND TO THE INDUSTRY

Because electronics is a set of industrial techniques and not a group of products, the industry cannot be defined precisely. For the purposes of this assessment, its coverage is defined as in the table below.

Short title	Sector
Scientific and industrial instruments and systems	Capital equipment
Telephone and telegraph apparatus	Telecommunications
and equipment	equipment
Radio and electronic components Other broadcast receiving and sound reproducing equipment	Components
Electronic computers Radio, radar and electronic capital goods	Capital equipment
Capital equipment	

Defined in this way, the industry accounts for about four per cent of the output of all manufacturing industry, and employs about six per cent of its labour force. In the context of the engineering and electrical industry groups, electronics accounts for about one-sixth of the output, one fifth of the imports and one seventh of the exports of the group.

The industry is concentrated in the South-East, but in recent years much of its growth has been in the development areas, particularly in Scotland.

The U.K. electronics industry is believed to be the fourth largest in the World behind the U.S., Japan and West Germany, and is slightly larger than that of France. (Production in the U.S. is approximately four times as great as that in the other four countries combined.) A number of smaller countries including Holland, Italy, Sweden and Switzerland-provide strong competition in individual product groups. The market for electronic products is international in all but a few cases, and is becoming increasingly international in character. As a result, competition is generally severe.

THE above paragraphs are taken from the opening section of an Industrial Report by the Electronics Economic Development Committee. This Report, published last March, is an assessment of the prospects of the electronics industry up to 1972.

The principal task, states the Report, is to improve the efficiency of industry and commerce in the U.K., by making and marketing the systems and devices which will enable higher productivity to be achieved. "There is virtually no area of repetitive industrial action which cannot be automated through the application of electronic technology." In this way, electronics can contribute greatly to the balance of payments.

AREAS FOR GROWTH

The Report forecasts a growth rate of nine to eleven per cent per year, in the period up to 1972 . This represents a growth rate of about three times the average for manufacturing as a whole.
About a third of the U.K. market is in the public sector, where the emphasis is shifting away from defence, hitherto the industry's major pre-occupation. A further forty per cent of the market is in private industry and commerce, and the remainder is in the consumer sector.

The Report draws attention to certain areas of opportunity: these include computers, industrial automation,
telecommunications and data transmission, and microelectronics. Other areas, which may well become major growth points of the future are medical and educational applications, and marine technology.

CAPITAL AND MANPOWER

Success in the future depends upon greater financial resources. Considerable sums have to be provided for innovation, because of the pace of technological advance.

But while the chief limiting factor in the forecast period is likely to be capital, in certain areas the shortage of skilled labour threatens to become a major constraint after 1972. The electronics industry is a major user of qualified manpower. Its R and D effort is approximately five times as important in relation to capital expenditure as the average for manufacturing industry.

The main areas of manpower shortage are expected to be production and systems engineers and computer "software" personnel. This is likely to be a growing problem as the industry becomes more "systems orientated"

EDUCATION AND TRAINING

A working group has been appointed to examine problems bearing on the "match" between the output of the whole education sector and the requirements of the electronics industry. The EDC attaches great importance to the promotion of a more enlightened attitude towards industrial training.

The EDC welcomes the recommendations of educational bodies for the training of professional engineers, and waits with interest details of the proposals covering technician engineers and other technical support staff.
Available evidence suggests that manpower is not used effectively; in particular, that qualified scientists, engineers and technologists are employed on work which should be delegated to other technical support staff.

Finally, the EDC considers that the industry could do much more to improve its image with school leavers. Schools could benefit from more practical assistance from industry, and the importance of projects for arousing and maintaining children's interest in electronics is stressed.
Industrial Report on the Economic Assessment to 1972 by the Electronics EDC, obtainoble from NEDO, Millbonk Tower, London, S.W.I.

PRACTICAL ELECTRONICS

INDEX
An index for volume five (January 1969 to December 1969) is now available price Is 6 d inclusive of postage.
Orders for copies of the Index only should be addressed to the Post Sales Department, IPC Magazines Ltd., Cariton House, 66, Gt. Queen Street, London, W.C.2.

BINDERS

Easl-binders with a special pocket for storing blueprints and data sheets, etc., are available price 155 Od inclusive of postage.
State required volume, e.g., Vol. 1, 2, 6.
Orders for Binders and Indexes should be addressed to the Binding Department.

Mainline set the NHW standard in amplifiers

Mainline 70ABD

The 70ABD is a fully integrated Preamplifier and Power Amplifier to the specifications of the Pre-4 and 70AB. Size 63 $\frac{3}{4}^{n} \times 15 \frac{1}{2}{ }^{*} \times 4 \frac{3^{\prime \prime}}{4}$.

Recommended Retail Price £64.0.0.

Mainline 70AB power amplifier

The MAINLINE TOAB is a high fidelity power amplifier, which is in every respect one of the finest units available on the market today. regardless of price. One of the main features of this remarkable amplifier is its elaborate protection against short and open circuit, and we can guarantee that it is virtually indestructible. Allied to this is the very high power output (70 watts RMS) a frequency range that is superb, and distortion well below 1% even at full output. The unit is suitable for use in discotheques, groups, P.A., etc., or anywhere that high quality, high output is required. Coupled to our Pre-4 Control Unit the results are quite remarkable. The Mainline 70 AB main amplifier can be used with any other good quality control unit.

Spocification

POWER OUTPUT 70 watts RMS $\pm 1 \mathrm{db}$ at
B OHMS.

SIGHAL/NDISE RATID-70 db at full output. HARMONIC DISTORTION less than 5% at full output.

INPUT SENSITIVITY 700 mV at $20-30 \mathrm{~K}$
ohms.

A.C. FUSE 1.5 amps (8ritish Standard).

Aecommended Retall Price £35.0.0.

5 stops you paying through the nose for your components

Build the NEW Mainline Audio Amplifier Kits-up to 70 watts

The resuits of the combined resources of SGS and RCA, these Universal Quasi Complementary Symmetry Amplifier kits use rugged NPN Hometaxial base output transistors and provide full power to bevond 20 KHz
The all silicon circuit with nine transistors and eleven diodes provides outstanding performance for the most stringent requirements of Hi -fi equipment manufacturers.

Each kit is supplied complete with all semiconductors, resistors, capacitors, P.C. board and heat sink.

70A \qquad E10. 10.0 .
Any two will make an
outstanding stereo equipment.

Mainline Pre-4 mixer pre-amp control unit £24.0.0

Mainline Pre-4 mixer pre-amp control unit

The MAINLINE Pre-4 is a high quality control unit, which has been designed specifically for use where mixing facilities are essential, and features many facilities not normally found on control units of this type.
The unit has four individual inputs each with its own gain control, plus separate bass, treble and master volume controls, for versatility in use. Inputs 3 and 4 are duplicated on the back panel so that if the unit is panel mounted the two auxiliary inputs (which are suitable for P.U. Tuners, Tape-recorders, etc.) may be connected from the rear. As the Pre-4 is self-powered it can be used with any other Power Amplifier, but has been designed basically as the control unit for our MAINLINE TOAB Amplifier Module.

Specification

INPUTS VOL. 188 mV at 5 aK OHM (mic). VOL. 28 mV at 50 K OHMS (mic). VOL. 350 mV at 500 K DHMS (aux). VOL. 450 mV at 590 X OHMS (zux). 50 OH and 60 O 0 HM Mic inputs may be ordered al E 2.0 .0 . extra get liput.
1 of 2 meg OHM aux inguts may be ardered at no extra cosst.
FFEQUENCY RESPQRSE 30-20,000 HZ立 3 dh.

SIGnal/fincise ratio Better than - 65 db . MARMONIC DISTORTION Less than F\% at 1 vott.
BASS Continuously variable 20 dh at 100 HZ . TREBLE Continuously variable 30 dh at 10 KHz . SIZE 12 2 " $^{65^{-} \times 4 \text { k }^{\prime \prime}}$
CUT OUT RERUIRED $11 \frac{1}{2}$ " $\times 5$ ".
FUSE 68 ma internally mounted.
Recommended Retail Price $£ 24.0 .0$

You could be paying too much for your semiconductors and electronic components. One sure way of saving money is to buy RCA, IR, SGS. Emihus, Semitron, Keyswitch, Plessey, Morganite, Litesold devices (together with manufacturers' application data) direct from us.

For example :PLESSEY SL403A

 As described in Practical Efectronics

Integrated Circuit (Dual in Line Package) Audio Amplifier incorporating its own Pre-Amplifier. A Class A-B Power Amplifier stage capable of delivering up to 3.5 Watts RMS. The SL403A can be used to form the basis of a simple Audio Amplifier using a minimum of external components. Complete with Data Sheet. 44/-each.

TO: MAINLINE ELECTRONICS LIMITED, THAMES AVENUE, WINDSOR, BERKSHIRE.
 Please send me
 .Mainline Pre-4 mixer pre-amps control unit(s) $\square \square$
 Please send me Mainline 70AB power amplifier(s) \square
 Please send me ,......- Mainline 70ABD integrated pre-amp and
 I am interested in Amp Mainline Audio Amplifier kits.
 Please send me kits $\square \quad$ Please send further data \square
 Please send me your price-list guide. I enclose 5/- \square
 Cash or cheques with orders please.
 I would Jike further data on pre-amplifier and power supply kits befors l order, \square
 Name
 Address

MINIATURE

WAFER SWITCMES
3 pole, a way-4 pole, "3 way pole, 4 way- 3 pote, 4 way- 2 pole each, sef-inzer, your assortment.

MICRO SWITCH
5 amp, changeover condicti, $1 / 9$ ghis
each, $18 /-$ toz. 10 anap. mndel i/-

CONSTRUCTORS PARCEL

1. Plessey miniature "? gang tuning conidenser 2. Ferrite stab acrial with coils to muit the above tuntng condenser. 8. Clicult diagram giving al component values for 6 transibtor circult covering Iull medium wave ant the long whye band around radio 2 . The three lem for only $7 / 6$ Which

10 AMF 24Y BATTERY CHARGER

ldeal uit for garage, boat ftat kn , ete., ses.10.0 ewch plus carringe anil cort,

BEHIND THE EAR DEAF-AID

Made by ${ }^{\text {a }}$ very famous maker. Thorougbly Guaranteed 6 monthn. Regular prlce around \& Our price 810 .

ISOLATION TRANSFORMERS

 200-250 MAINSA must tI you work on malns equipment. Preventa Inpus and output separately damp conditions.

SLOW MOTION DRFVES

For coupling to tuntang condensers, etc. One end grub screws. grice end fis to a jin shaft with
LARGE PANEL MOUNTING MOVING COIL METERS
gize 8 In 4 in Centre zerg $200-0.200$ macre amp. made by Rangmo Wieston. Regular price probably 29 . Ont price 59/6, Ditin hut $100 \cdot 0-100$

A.C. AMMETER

O-5 ampe. fush maunting-moving irin. Ex equipment hut guaranteed perfect ge/b.

CIRCUIT BOARDS

Heavy copper on $3 / 32$ paxolin theet lefeal for making power pack, ett., as sheet is very atrong and thick enough in allow copper to be cut away
with hackeaw blade. oin. $8 \mathrm{in} 1 / 6$ each with hackeaw hla

6kVA AUTO.TRANSFORMER

In ventilated shet steel casc-tappet $110 \mathrm{~V}-120 \mathrm{~V}-200 \mathrm{~V}-230 \mathrm{~V}$. Ex-equipment guaranteed perfect 210.10 .0 tarrlage at cont

PP3 BATTERY

ELIMINATOR

Run your mmall tranifistur radio from the maina-fut! wave circult. Made up ready adjustable high or low current镌/6 each.

REED SWITCHES
Glasa encasel, awluhes operated by external magnet-gold weided contacth. We can now offer 3 types:
Mintature
Mintature. Itn lung approximutely sin dlu-
meter. Will make and break up in tin in an meier. Will make and break up io
volta. Prjce $8 / 6$ each, $84 /$ - dozen.
8tandurd. 2 in long : Bin liameler. Thin will break currenth of th th 1 A , voltagea ut to 250 volt... Price $2 /$-each, $18 /$-jer dnzen.
 fattened out, so that it can lo ftted Into a
mmaller space or a larger guantity inay be nackesl

 Price of-each. $s 8$ jer dozen.

0.005 mFd TUNING

CONDENSER
Proverl flealgn, Idead for atritight or

SUB.MINIATURE MOVING COIL

 MICROPHONE
as uted in behind the ear deaf aids

Acts also Re carphone size onty in in in 1 in,
Regular price probably 23 or noore. Our price $10 / 6$.
Regular price probably 23 or noore. Our price $10 / 6$.
Vote thesc are ex-equipment but if not in perfect Note these are ex-equipment but if not
working oruler they will be exchanged.

A PARCEL OF INTEGRATED CIRCUITS MADE BY

 THE FAMOUS PLESSEY COMPANYNEED A SPECIAL SWITCH?
Double Leaf Contact

50-Way Connector Biock

 apablet inlet anil outlet realgried tor ease wit Hection. Alen, each \#ay has 2 test bockets and a disconnecting plug. Itleal for inserilng ammeter or other device without hreakibg citcult, offered at $09 / 6$ caeh, witch is only a fraction on the regulat Under-fioor Heating Cable
2001t lensthe, suitatile for disaipating 1,000 watt at 80 volt. Join three in series to 1 . 440 volt nains operaled element of 3 kW . Price 80/- per lenglh, $4 / 6$ post on any quantity
Heavy suty $23 / 36$, aycrage length 831 10/- per Papst Motors
Eet. 1/401h h.p. Mate for $110-1200$ volt working, ideally ougether oft our slandard 240 yolt mainm. sta extremely aulet rumping
 and reveraible, 30 - each.

Instrument Knobs in dia. head with in shank
for flatted fin ppindle, Od each, $8 /-$ dozen. Ditto but Midget Output Trans-
 former
 impedance 450 S . Connectfors by) fing lead. 4; 4 each, Midget Output Transformer
 $6 / 6$ each, 28 doard connection Tuning Condenser Tuning Condenser 80 setion 200 pf ose sectlon $\begin{array}{cccc}\text { FX } & \text { rf } & \text { rection } & 9.5 \text { pi osc } \\ \text { gection } & 11.2 & \text { nf-integral }\end{array}$ Blow-motion drive. 9:6 each.
 ineartion of meter without dirconnedion: cable Inlets firmly hold one hair wire on up to four

DRILL

CONTROLLER
Electronically changets opeed from approximately 10 reva. to at all zpeeds fy power ${ }_{\text {tip }}$ control includee all parts, case.
 ELECTRIC CLOEK

WITH 25 AMP

SWITCH,
Made by' Smith's, theae units are has Itted to many top quality clock is mains driven and fro quency controlled so it is ex iremely accurate. The two emall riaie enable switch on and off tinies $t 0$ be accurately ret. Iffea
for awitching on tape recordere. for awitching on tape recordere. Offerel at unty unly $89 / 8$, less than the value of thew and untuen poot and insurance $2 / 8$

MAINS TRANSISTOR POWER

PACK
 PRCK

Designet is operute tramsiator sets and Amplifiers. Aljusiable output 67. OV, 12 volt for an to 500 mA (clase B worklng). Takes the place of any PP7. PPO , ing batterien: Xit comprises: majns tranaformer rectifer, smoothing and load realotor, tandengers and inatructions. Real anlp at only 18:6, plus $3 / 5$ postage.

[^1]MODEL train controllers of conventional design, using a rheostat, suffer poor performance under variable load conditions. Ideally, an electronic stabilised controller with overload protection must be used for best performance.

The unit described in this article is simple to operate, has smooth control of output, and also has some degree of overload protection.

The circuit (Fig. 1) follows the usual pattern for stabilised power supplies, but has a polarity reversing switch and thyristor overload cut-out circuit.

STABILISER

The mains transformer T1 must be an isolated double wound type for safety reasons. The secondary winding should supply 9 V a.c. to the bridge rectifier D1-4 to convert the a.c. to d.c. Smoothing is carried out by Cl before passing to the regulation circuit.

This section consists mainly of a voltage stabiliser TR1-2 and the overload detector TR3. Stabiliser transistors TR1 and TR2 operate as a super-alpha or Darlington pair to reduce the output impedance of the circuit. The base current is supplied by the voltage divider chain R1, VR1, and R2 and is set by the control VR1.

Since this current is to be varied to supply variable output voltage, a Zener diode should not be used. Instead a thyristor SCR1 is inserted to cut off the stabiliser transistors when the line is overloaded or accidentally short-circuited.

OVERLOAD DETECTOR

A heavy increase in current on the line causes the voltage across resistor R5 to increase to such an extent that TR3 will switch on. Collector current will then flow, part of which is picked off to trigger the thyristor.

In the prototype, the voltage across R5 was in excess of 0.6 V for triggering. The resistance of R 5 will be determined by the normal running load current, using Ohm's Law: $R_{5}=0.6 / \mathrm{L}$. This current can be measured by using the high range of a multimeter, under normal working conditions, in series with the output positive line (S 3 b wiper).
To keep thermal drift and leakage current to a minimum for reliable operation, TR3 should be a silicon transistor; a pnp type is used for convenience in this circuit.

Visual warning of overload is given by the indicator lamp LP2 which should be rated at 12 V or more. If a lower voltage bulb is used a series resistor must be

Fig. 1. Circuit diagram of the complete controller

FIG. 2. CONSTRUCTIONAL DETAILS


```
Resistors
    R1 470\Omega
    R2 330\Omega
    R3 15k\Omega
    R4 See text
    R5 Wirewound (see text)
```

Potentiometer
VRI ik Ω wirewound

Capacitor

CI $500 \mu \mathrm{~F}$ elect. 25 V
Transistors
$\begin{array}{ll}\text { TR1 } & \text { OC35 } \\ \text { TR2 } & \text { ACY19 } \\ \text { TR3 } & \text { OC201 }\end{array}$
Diodes and Thyristors
DI-4 18V 2A (S.T.C. type FSL I733A bridge
selenium rectifier)
D5
OA81
SCRI CRSI/05 (S.T.C.)
Transformer
TI Mains primary winding, 9V 3 A secondary (S.T.C.)

Lamps

LPI, LP2 12V 0.75W l.e.s. (2 off)

Switches

SI Double pole, on/off, toggle
S2 Push to break, press button
S3 Double pole, changeover toggle

Miscellaneous

FSI Fuseholder and 2A fuse
Component tag board
Wood for case
Aluminium or copper sheet $\frac{1}{16}$ in. or 18 s.w.g. for heat sink
S.T.C. components available from Electroniques (S.T.C.) Ltd.

STEPHENS ELECTRONICS

90% B,V.A. boxed supplied normal guarantee or our own brand with 1 year's guarantee. Add $6 d$. per valve on orders under 6 otherwise free Post and Packing.

Acos CARTRIDGES

GP91-1-Medium output Mono Crystal, 21/- inc. P. Tax GP91-3sc-High output Mono Crystal (TC8H, TC8M, BSR X3H, X3M), 21 /- inc. P. Tax.
GP93-1-Stereophonic Crystal, $24 / 9 \mathrm{inc}$. P. Tax.
GP94-1-Stereophonic Ceramic, 31/-inc. P. Tax.
GP95-1-Stereophonic Crystal, $24 / 9$ inc. P. Tax.
GP96-1-Stereophonic Ceramic, $31 / 6$ inc. P. Tax.

CATHODE RAY TUBES

Rebuilt-Twin Panel: 17in, £4.0.0; 19in, £4.10.0; 21іл, £5.10.0; $23 \mathrm{in}, \boldsymbol{£ 6 . 0 . 0}$; $19 \mathrm{in}, £ 7.15 .0 ; 23 \mathrm{in}, £ 10.19 .6$.
New-Twin Panel: 17in, £5.19.6; 19in, £6.19.6; 21in, £7.19.6; 23in, £9.10.0; 19in, £9.10.0; 23in, £12.10.0. Panorama: $19 \mathrm{in}, £ 8.10 .0 ; 23 \mathrm{in}, £ 11.10 .0$.

All types of tubes in stock. Carriage and insurance 15/-.

STYLII

TC8, GC2, GP59, GC8, DC284, Stereo 105, 106, 208, 2/- each (individually boxed): ST3/5, ST8/9, 9TA, 9TA/HC, GP91, $8 /$, Dlamond.

Post and Packing 5d. per item for ofder under 24.

SEMICONDUCTORS

BY127	$2 / 6$	AC107	$3 /-$	AD149	$7 / 6$
AC127	$2 / 6$	AC128	$2 / 6$	OC4/5	$2 / 6$
AF117	$3 /-$	BC107	$5 / 6$	OC74	$2 / 6$
AF181	$5 / 6$	BC108	$5 / 6$	OC81	$2 / 6$
BF181	$5 / 6$	BC109	$5 / 6$	OC81D	$2 / 6$

OA79, OA81, OA91, OA95, OA200, OA202, $1 / 6$.
Add 5d, per item for Post and Packing for orders under 24 pieces.

TAPES

$\operatorname{3in}$ L.P., 5/6; 4 in L,P., 8/6.
Standard Play: 600ft, $5 \mathrm{im}, 8 / 6 ; 900 \mathrm{ft}, 5 \frac{1}{2} \mathrm{in}, 10 / 6 ; 1,200 \mathrm{ft}, 7 \mathrm{in}$, 12/6.
 18/-.
Double Play: 1,200ft, 5in, 16/-; 1,800ft, 5: in, 19/-; 2,400ft, 7in, 28/-.
Philips type Cassetts (in plastic library pack): C60, 10/6: C90, 12/6; C120, $19 / 6$. Post and Packing $1 / 6$ on all orders.

STEPHENS ELECTRONICS
 P.O. Box 26
 Aylesbury, Bucks

Complete stereo system - £29.10.0

The new Duo generaf-purpose 2-way speaker system is beautifully finished in polished teak vencer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally
Type 1 SPECIFICATION:
Impedance 8,8 or 15 ohms (state requirement), high fiux $6^{\circ} \times 4^{\circ}$ speaker and $2 f^{*}$ tweeter. Teak finish $12 * 6 \frac{2}{2}$ \%". 4 guineas each. 7/6d. p. \& p. Type 2 as type 1. Size $17 t^{\prime \prime} 10 y^{\circ} 6 z^{\circ}$ tncorporating $10 \frac{\xi^{\prime}}{} \times 6 x^{\circ}$ speaker and $2 \frac{1}{2}^{*}$ high frequency speaker. 3 ohms impedance $\mathbf{E 6} .6 .0$ plus $15-\mathrm{n} . \& \mathrm{p}$
Garrard Changers from £7.13.6d, p. \& p. 7/6d.
Cover and Teak finish Plinth E4.15.0d. 7/Ed. p. © p.
Integrated Transistor Stereo Amplifise
£9.10.0 plus $7 / 6 \mathrm{~d} . \mathrm{p} .6 \mathrm{p}$.
The Duetto is a good quality amplifier, attractively atyled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION
R.M.S. power output: 3 watis per channet into 10 ohms speakers
iNPUT SENSITIVITY: Suitable for madium or high. output crystal cartridges and tuners. Ctoss-talk better then 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS: 4 -position selector switch (2 pos, mono and 2 pos. stereo) dual ganged volume control.

TONE CONTRO
balance control.
 Inputs: (1j for mike (10 mV). Input (2) for ram, radio (250mil) individual bass and treble control. Tronsistors: 4 silicion and chree germanium. Mains input: 2201250 voles. Size: $10 \ddagger \times 4 \times 2$ kin. Mk. 145.15 .0 plus $7 / 6 \mathrm{P}$. \& P . Less teak finished case.

THE ELEGANT SEVEN Mk. III (350 mW Output)

7-transistor fully tunable M.W.W.W. Superbet portable. Set of parts, Complete with all components, including ready etched and drilled printed circuit board-back printed for fool-
proof construckion. MAINS POWER PACK KIT: 9/6 extra.
Price $\$ 5,5,0$ Plus P, \& P. 7,6
Circuit 2;6. Free wish parcs.

THE DORSET (600 mW Output)
7-transistor fully tunable M.W.-L.W. Suparhet portable with baby alarm facility. Sec of parts. niques makes this simple to build. Sizes:

THE RELIANT Mk, II SOLID STATE
GENERALPURPOSEAMPLIFIER
£6. 16.0 Plus P. \& P. 7.6 In toak finished case
SPECIFICATION: Outpur: 10 watts into ${ }^{3}$ ohms speaker.各

$$
1
$$

eq
of

Complece
Complece stereo systems comprising BALFOUR 4 speed auto player with stereo head, 2 DUO speaker systems size $12 \times 6 \frac{1}{2} \times 54$
and the DUETTO stereo amplifier. All above items £25 Plus P. \& P. 62

NEW COMPLETE HI-FI STEREO SYSTEM E4I

Comprising SP 25 Garrard Mk, II with diamond stereo cartridge or 2025 TC, Viscount amplifier Mk. I, Two cype 2 speakers, Plinch andicover, \&41 plus P, \& P. C2. 10
50 WATT AMPLIFIER A.C. Mains $\mathbf{2 0 0 - 2 5 0 V}$

Price $£ 28.10 .0$
Plus 20:- P. \& P.

An extremely reliable general purpose valve amplifier. Its rugged construesion yer space age styling and design makes it by far the best value for money 3 electronically mixed channels, with 2 inpues per channel, enables the use of 6 separate instruments at the same sime. The volume conerols for each channal are located directly above the corres. ponding input sockets. SENSITIVIT IES ANDINPUT IMPEOANCES. Channels 1824 mV as 470K. These 2 channels (4 inpurs) are suitable for microphone or guitars. Channels 3 \&
4300 mV at m . Suitable for most high outpur instruments (gram, zuner, organ etc.). Inque sensitivity relative to low ourput. TONE CONTROLS ARE COMMMON TO ALE INPUTS. Bass Boose +12 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Base Cut -13 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Trable Eoost
 controls central -3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and $20 \mathrm{KHz/s}$. $3 p e e c h$ and music 50 watts rms. 100 watts poak. For sustained music 45 wates rms.
90 wates peak. For sinc wave 38.5 watts rms. Nearly 80 wates peak. Total distorkion 90 wates peak. For sinc wave 38.5 watts rms. Nearly 80 watts peak. Total aistorkion
at rated output 3.2% at $1 \mathrm{KHz} / \mathrm{s}$. Total disoreion at 20 wate 0.15% at 1 KHz .
 GOdB. MAINS VOLTAGES, Adjustable from 200-250V. A.C. 50-60Hz/s. A protective fuse is located at the rear of unir. Outpur impedance 3. 8 and 15 ohms
£5.5.0 Plus P. \& P. 7;6. Circuit 2/6. Free with parts.

> The Viscount INTEGRATED HIGH FIDELITY TRANSISTOR STEREO AMPLIFER £14.5.0

Plus P. \& P. $7 / 6$
SPECIFsCATION: Output: 10 watts per channel inso 3 to ohms speakers (20 wates monoral). Inpul: Goposition rotary seleccor swirch (3 pos, mono and 3 pos. stereo). P.U., Tuner, Tape and Tape Rec, out. Sensi2dB. All inputs is. Separare bass and ereble controls. Treble I3dB life and ut [at 15 KHz] Bass: ISdB lift and 25 dB cus [ar 60 Hz]. Volume Conerols: eparate for each channel. A.C. Moins input: $200-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$. Size: $12 \frac{1}{7} \times 6 \mathrm{in}$ Viscount Mark il case. Buite and tested. P. \& P. $7 / 6$, equalised for masmetic piek ups. Suitable for cartridges with minimum output $14 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at Ikc. inpue Impedance 47 k . $15 \mathrm{gns}, \mathrm{plus} 7 / 6 \mathrm{P}$. \& . P.

SPECIAL OFFER

Y COMPONENTS (ACTON) LTD.
RADIO \& TV COMPONENTS (ACTON) LTD.
Post orders to:-21d High Street, Acton, London, W. 3
Also at 323 Edgware Road, London, W. 2
Goods not despatched outside U.K.
Terms C.W.O.
Alt Enquiries S.A.E.

inserted to prevent the lamp from blowing. The current rating of the lamp should be as low as possible so as not to interfere with the stabiliser cut-off function.

Once the overload is indicated, the offending load should be removed before resetting the circuit again for normal operation. Switch S2 is a push button "break" switch for resetting, and temporarily cuts the supply to TR3 and SCRI.

POLARITY REVERSAL

The output is taken from TR1 emitter (negative) and TR3 base (positive) to a double-pole changeover switch S3a and S3b. This provides simple polarity changeover facilities for train reversing. The switch and output terminals should be clearly labelled to show the polarity for forward and reverse, but it is not good practice to change direction at full speed. Speed reduction should be arranged first by careful use of control VR1.

CONSTRUCTION

Constructional details (Fig. 2) are given here for guidance but there is no reason why this cannot be altered to the constructor's choice.

Since R5 is likely to be a very low value (about 0.5 ohm), it is best to make this component from eureka or nickel chrome wire and trim the length of wire used according to the results of the voltage measurement described earlier. The thickness of the wire is determined by the absolute maximum load current likely to be encountered under normal conditions. Details of this and the length of wire required can be found in standard wire tables in many reference books. (As an approximate guide, 20 in of 24 s.w.g. Eureka wire will be one ohm); 15 yards of $24 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. copper wire will about 1 ohm).) If the wire is insulated it can be wound on a plastics or cardboard former.

Resistor R4 is selected to limit the current required to trigger the thyristor within the maker's recommendations; this current should be at least 10 mA .

All components can be mounted on perforated s.r.b.p. or printed circuit board except TR1, which should be mounted on a heat sink.

P.E.MARKSMAN

The Marksman is a completely safe photo electric rifie range or target system that can be used for target practice - with scoring-or as an addition to children's games. Inexpensive, realistic, simple to build and use.

A novel effects unit for electronic guitars and organs. Provides both automatic and 'single-shot' frequency variation with any note played, producing a new dimension in sound colouration.

Commencing a New SPECIAL SERIES "MAKING THE MOST OF LOGIC I.C's'

emanent

ELECTRONICS

July issue on sale June 15

P.E.WIDEBAMD H.E. COMWDNIEATOOUS REEEVER

By R.HIRST s.t.c. เто.

PART NINE

LOCAL OSCILLATOR

HAving described the construction of the three modules that make up the Local Oscillator last month, we must now set them up before installing them in the chassis and completing the final wiring up.

SETTING UP INSTRUCTIONS

Equipment required

(a) Counter having a range of 2 MHz to 70 MHz .
(b) Power Supply to give 24 volts at 100 mA .
(c) Valve voltmeter covering the range 2 MHz to 70 MHz with a sensitivity of 10 mV at not less than 1 kilohm impedance.

PROCEDURE

Variable Oscillator Module

Short PL1/e to PLI/f and apply a positive voltage of 24 volts to PL1/f and the negative of the power supply to earth. Check all the potentials at the base, collector and emitter of the transistors to ensure that they correspond with those indicated in Table 9.1. If these voltages are correct adjust VC1 for maximum capacity (capacitor vanes fully meshed) and connect a counter to SKI. Adjust each coil in turn, starting with L1 so that the output frequencies correspond with those indicated in Table 9.2. To do this the link between PLI/e and f must be removed and each pin shorted to PLI/f in turn.

Crystal Oscillator Module

Apply a positive voltage of 24 V to the correct terminal and the negative of the power supply to the earth terminal. Check all the potentials at the base, collector and emitter of all the transistors to ensure that they correspond with those indicated in Table 9.1. If these voltages are correct replace the crystal with the capacitor resistor network shown in Fig. 4.4a. Connect the counter to the output socket, SK2 and adjust the frequency with L6 to read 34 MHz as near as

Table 9.I. D.C. VOLTAGES

Stage	Base	Collector	Emitter
TR1	3 V	7.7 V	2.3 V
TR2	5 V	10.4 V	4.4 V
TR3	1.25 V	4.5 V	0.5 V
TR4	4.5 V	7 V	3.8 V
TR5	7 V	9 V	6.1 V
TR6	4.8 V	15 V	4.2 V
TR7	6.5 V	15 V	5.8 V
TR8	4.1 V	13 V	3.4 V
TR9	13 V	8.3 V	0.5 V
TR10	8.3 V	16.5 V	7.5 V

possible. Reconnect the crystal, removing the resistor capacitor network, and check the output frequency. Adjust the capacitor VC2 until the output frequency is as near 34 MHz as possible. Finally, the output voltage at SK2 should be checked with a valve voltmeter to ensure that the output is approximately 0.5 volts at 34 MHz when terminated in a 50 ohm load.

Mixer Module and High Pass Filter

Apply a positive voltage of 24 volts to the correct terminal and the negative of the power supply to the earth terminal. Check all the potentials at the base, collector and emitter of all the transistors to ensure that they correspond with those indicated in Table 9.1. If these are correct, inject a signal at 34 MHz into Cl 4 and adjust L7 and L8 for minimum signal at the output socket SK 3 by connecting a valve voltmeter across the output. These adjustments should be carried out two

BSR 4－SPEED SUPERSLIM

 MODEL UA25 RECORD CHANGER
Anto or Manasi．A blgh quality nnit bsched by BSE guarantoe，\＆ise ISt \times
11tin．Above
helow 2iin As
 B8Z ITA70 Stereo／Mong Tranaription $\mathbf{1} 12.19 .6$ BEE Minichanger UA50 Stereol Mono
Five 18×8310 A0 $200 / 950 \mathrm{y}$ Post $5 / 8$
£7．19．6
GARRARD YLAYERS with Sonotone 日TA Cartridges， 20 in If $514,10.6$. ATBO My II E14．19．6．Model 8000 sis．18．0，Pott $5 / 8$ ， BECORD PLAYER PORTABLE CABRERT
RC8 DE－LUEES S WATT AMPLIPIER．Ready mode and teated，A \＆－stage unit raing triode pentode valvo，giving 8 watts ortput，Tone and volume controls，Irolatad majni
 erzso．Frequency resporse $50-18,000 \mathrm{cps}$
$89 / 6$
ORMADD TBAKWOOD BASE WBI
GABRARD TEAKWOOD BASE WB．1．Resdr
cut out lor mountiog 1025， 3000 ，SR25，AT80，ete．
$77 / 6$ GARRARD PLASTIC OOVER SPC 1 OP WB
$77 / 6$
FinI Plez－DP ARM，Completo with mono cartridze $28 / 6$ ，
FMI JUNIOR 4 SPEED RECORD PLAYER
Maint operated motor，tarndable and pick up
complete，Post $\overline{6} / 6$ ．
HI－FI PYCK UP CARTRIDGE8
GP04 EN1 GP93 45／－；GF91 80／न；GP62 1016，$\triangle 008$ L．P_{0} only 10／6．An statiata 共xing complets with itylul．

CRYSTAL MIKE INSERTS
17＂dis．6／6．ACOs 1！＂din，12／6．8M3， 1 ＂dis， $9 / 6$
PORTABLE AMPLIFIER
Portnbla minja．a，syatom，
Parties，or as a gaby Alsm，Intercom，Tole phone or Record Plager Ampilifer，ote．Attractive rovine corered cablaet， powerival $7 \times$ lin．spetker and fonr tranistor ona water power ampliter．Jsey PP9 battery． fall makert enarsatee
 World inmour make

WEYRAD P50－TRANSISTOR COILS AAgW Fortito Aerial ．．12／6 Spare Cores ．．．． Onc．P50／1AC ．．．．．．．．．5／4 Driver Trans．ZFDT4 I．P5012cc 47 Zrd I．F．P50／8CD P51／2 or P51／2 ．6／＝J．B．Taning Gang 5／2 Weyrad Bookiet Telescopic Aerisla Gin．to 29 in ． Fertito Ro Ferzita E

VOLUME CONTROLS 80 omm Coax 8d．yd．

6 Long pindiel．Midgat give AREAXIALAIR 8PACXD

VEROHOARD O．15 MATRX

 ALUMMIUM FAGELS $18 \mathrm{~s} . \mathrm{w} . \mathrm{G}, 12 \times 18 \mathrm{im} .6 / 6 ; 14 \times 8 \mathrm{in}$ ． 6／6： $18 \times 8 \mathrm{Am}, 4 / 6 ; 10 \times 7 \mathrm{in}, 3 / 6 ; 8 \times 6 \mathrm{in}_{2} 2 / 6 ; 6 \times 4 \mathrm{in}, 1 / 8$ ． IJinch DLAMETER WAVE－CEASGE SWINLEES 2 p．2－푤․

 $8 \mathrm{p}, 6$－way． $3 \mathrm{p}, 4$－way， $4 \mathrm{p}, 3$－way， 6 p .2 －way．$\frac{1}{2}$ walor $18 / \%$ ， TOGGLS 8wITCHEs，sp．2／6；\＆p．dt．3／6；dp．8／0；dg，dt．4／6

ALL PURPOSE HEADPHONES E．R．HRADPHONEA 2000 ohmi 8uper Sennitiva LOW RESISTARCE HEADPEOKES S－5 ohma，
DE LUXE PADDED ETEREO PEONES 8 ohms
＂THE INBTANT＂
BULK TAPE
ERABER AND
RECORDING
HEAD
DEMARHETIBER

ALL PURPOSE TBANEISTOR
PZE AMPLIFIBR BRITISE MADE
 $\begin{array}{ll}\text { or trantitior equipment，Full inutractions．} \\ \text { Brand new．Guaranteed．Detailu E．A．E．} & \text { each }\end{array}$ WEW TUBULAR ELECREROLYTIOS 28W TV \qquad

 CA気TYPEB $18+18 / 500 \mathrm{~V}$
$0+50 / 850 \mathrm{~V}$ $2 / 250 \mathrm{y}$
$4 / 350 \mathrm{y}$ $4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$ $18 / 450 \mathrm{~V}$
$38 / 4507$ $25 / 95 \%$ 500 ；85 $8+8 / 450 \mathrm{y}$
$8+16 / 450$ 50 V
 sUB－MIS．ELECTROLYTICS．1，2，5，5， $9,18,25,80,80.100$ ， 800 mP 16 V 2／－； $500,1000 \mathrm{mF} 18 \mathrm{~F}$ 3／6： 2000 mF 95 F ，7－ CERAMId， 1 pF to 0.01 mP ， 8 d ，Silver Mice 8 to 5000 p PAPER 850Y－0．1 9d， $0.52 / 0 ; 1$ mF $3 /-5 \operatorname{smF} 100 \mathrm{~V}$ 8 $500 \mathrm{~V}=0.001$ to 0.05 od； $0.11 /-0.251 / 6 ; 0.47 \mathrm{~B} /$ $1,000 \mathrm{~V}-0.001,0.0029,0.0947,0.01,0.02,1 / 0 ; 0.047,0.1,2 / 6$ ． sILVEAR MICA，Close tolaranca 1% \％． $5-500 \mathrm{pF} 1 /-580-2,200 \mathrm{pz}$ 9／－：2，700－5，600pP 8／6；6，800pF－0－01，mid 6／o；eteh． TWIN GANG．＂00－0＂ $208 \mathrm{pF}+176 \mathrm{pF}$ ， $11 /=; 865 \mathrm{pF}$ ，minis tare $11 /=500 \mathrm{pF}$ standard with trimmers， $15 /-500 \mathrm{pF}$

 SHORT WAVE，Singls 10 pF ， 25 pF ， $50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ ， $100 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6 \mathrm{esch}$.
SUNIFG，Bolid dielootric． $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{p} 7,7 / \mathrm{mach}$ ， $100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 6 ; 250 \mathrm{pF}, 1 / 8 ; 800 \mathrm{pF} .750 \mathrm{pF}, 2 /=; 1000 \mathrm{pF}, 8: 6$ RECTHIERS CONTACT COOLED JWNW 60 m A $7 / 6$ ； $85 \mathrm{~mA} 8 / 6$ ，SILICOA BYZ18 6／－；BY100 10／－
Fill wave iridge $75 \mathrm{~mA} 10 / \mathrm{F}$ ； $150 \mathrm{~mA} 10 / 6$ ；TV rects． $10 / \%$ KEON PANEL IHDICATORS 250\％．AC／DC Red，Amber $\$ /$ RESISTORS．Preferred valuell， 10 ohms to 10 meg
 FIGE STABILITY．W． $1 \% 10$ ohms to 10 meg． $2 /-$ Ditto 5% ．Prelerred vilues 10 ohms to 22 meg． $6 d$.
WIRE－WOUND RESISTORS 5 watt， 10 wath， 15 wat
Q MAX CHASSIS CUTTER
Complete：a die，sp punch，an Alten serem and kay

 TRANSIETOR MAENS ROWER PACKS，FULL WAVE 9 volt 500 mA ． 8 igo $4 \frac{1}{4} \times 23 \times 2 \mathrm{in}$ Metal ches． $49 / 6$

MAINS TRANSFORMERS

250－0－250 $50 \mathrm{xaA}, 6.8$ v． 2 smps ，centre tapped

 MINLATDRE $200 \mathrm{~F}, 20 \mathrm{~mA}, 4.8 \mathrm{~F}$ ．I $2.2 k \times 8 \times 1\} \mathrm{ta}$

 $8,8,9,10,12,15,18,24$
1 smpin $6,6,10,12,28,18,20,24,80,38,40,48,80,88$ AUTO TRANSFORMERS 0－115－230 Finpat／Output CHARERR TTRAMSFORNERS．INEIT 2001250% HEABGER TRANSFORMERR．Ingut $200 / 250$ FOL反 WAYE BRIDGE CEABGER RECIUTIURS： 6 or 12v．outputs， $1 \frac{1}{2} \mathrm{mmp} .8 / \mathrm{m} ; 2 \mathrm{amp} .11 / \mathrm{m} 4 \mathrm{amp} .17 /=$ COAXIAL PLDG 1／3，PANKL 8OOKENG 1／3．LTNE 8＇6 OUTLET BOXFS，SURFACE OR ELU8H 4／0．
BALANCED TWIN FEPDERS $1 /=$ Fin 80 ohms or 300 ohms ． 3ACK SOCKKES Std，open－ctreutit 2／b，closed circuit $4 / 6$ Chrome Laal sacket 7／6，Phono Plugs $1 / \mathrm{F}$ ，Phono Socket $1 /$－ 3ACK PLUGS Std，Chrome $8 / \circ$ ． 8.5 mm Chtome 218 DIN 80ckuras Chassia \＆－pin 10 on onio \＆Din

E．M．I． $13 \frac{1}{2} \times 8 \mathrm{in}$ ． LOUDSPEAKERS

With fared tweeter cons and cermmic
 45／－ Alsa with twin tweeters．Complete with eronsover， 8 or 8 or $1579 / 6$ ohmi． 10 wat Recomanonded Teat Cabinet is
8 ive $16 \times 10 \times 8$ in．

MINI－MODULE

 LOUDSPEAKER KIT
10 WATT 65／－CARRIAGE 5 －

Triple apeaker iytem combining on ready cut bampo． the chipboard 15 in ．$\times 81 \mathrm{in}$ ．Separate Baas，Middie beaty doty 5 in Bels Toolor unit har s low rezonanc cone．The Midogange unit is ipecially designed to add drive to the meldde reginfer and the tweater recreaten the top end of the murical mpeotrim．Total respona $20 \mathrm{~m}=15,000 \mathrm{cps}$ ．Fuli instructions for $30: 80$ ham TEAE VENERERED BOOKSHELTF ETCLOSURE $18 \times 10 \times 9$ in．Modern 8 candinavian $\quad 5$ Post $\% \%$

$30-14,500$ 0．p．15，18， doablo cone，wooler and treeter cone together with a BAKER cermile unsget aspembsy having a Aux denvity of 14,000 races and as fotel five of 145，000 Marswelis．Bars resomnnce 45 c．p．a．Bated 90 wafti．Toice coila 3 or 8 or 15 ohms．

Module 1dt，80－17，000 c．p．z with tweeter，croanover， Instructions．$\pm 10.19 .6$ BAKER＂GROUP SOUND＂SPEAKERR－POST YREE Group 25＇\quad Group 35＇${ }^{\prime}$ Group 50＇ 85 wats 6 gns ． $85 \mathrm{mats} 8 \frac{1}{2} \mathrm{gns}$ ． 50 wati 18 gns. TEAE HI－FI SPEARGR CABMETS．Fluted wood tront Yor 10 or 1 isin zound Londepestrer
Yor 18×8 in or 8 in round Lovdspeaker
（1）

Do Luzo Eorn TWeatetz 2－18 Kefz，15W，18 ohm of 8 or 15 ohm 10／B，opFeg ： 80 ohm， $24 \mathrm{im}, 8$ inn，dia．； 85 ohm， 8 fit，

5 in ．WOOFkR． 8 Watifemax． $20-10,000 \mathrm{opm} .8 \mathrm{or} 150 \mathrm{~mm}, 39 / 6$ ． ELAC 8 in，De Laxe Ceramic 8 ohm or 15 ohm $50 /=$ 8in LODDSPRAKER．TWIA CONE 15 ohm 35／－ RICEARD ALLAM 10 or 18in Twin ejne ot 15 ohm $39 / 6$ ． SPEAKEB COYERIMG MATERLALS．samplea Larke B．A．E．

Man power，amplifier and \＆Faive pro－amplifier．Silver groy facis panol．Voluma，treble，base controle．Fanction switch：Zadio，Tape 1．Tape 2，Wic，Gram LP，Gram 78.
 traniformer $00 \mathrm{ib}^{2}$ gegative featback． 10 watte smis， mono． 3 and 15 ohm output．Brand new，Guarsateed． SUPPLIED AT LOFIEST PRICES． LUSTRATED EAGLR CATALOGUA 5\％－Port Iree． BARGAIT AM MUNER，Medium Wave． 79／6 BARGAIR DE LUXE TAPE BPLICERR Cats， trms，foins lor editing and repairs．With 3 bladez 2216 BARGAIX 4 OBASNEL TRAESISTOA MXXR．Add
 miparate controle into singlo ontpat．© voll． BARGADX FM TUFER 88 －108 Me／a Bix Transintor． 9 volt．

 Puib－Pull Zeady built，with volume control．8p， －RADIO B00K8
Practical Transistor Recol
Practical zadio Innide ont Pocket Eadio
Redio Falve Gniat，Booky 8,3, or $4 \mathrm{es}, 5 /-$ Ho． $5 \mathrm{EA} .8 / \mathrm{m}$ T．Y．Favit Finsing 405／EE5 lines．
Shortwave Traturintor Rocelvara．
Tranristor Communication Bets．
Sub－Miniature Trangietor Receivern
Wireless Worlil Badio Valva Data．
Intarnationelenistor ciremits for Radfo Controlled Modele Trangistor circpits for Redfo controliod inodals，
Inch MOVING COIL METERS BRITISH MADE

MAINS ELECTRIC MOTORS
 inty 4 pole 60 mA ．8pindle $\frac{1}{2} \times 8 / 20$ ．

20 SOLID STATE
 PROJEGTS FOR THE HOME

by R.. M. Marston

18/-
Postage I/-

POWER ENGINEERING USING THYRISTORS VOL. 1 , by Mullard. 30/-. Postage 1/-
TRANSISTOR AUDIO AND RADIO CIRCUITS, by Mullard, 30/-. Postage 1/-. DIGITAL COMPUTER BASICS, by Bureau of Naval Personnel. $19 /$. Postage 1/-.
PAL-D COLOUR RECEJVER QUESTIONS \& ANSWERS, by K. J. Bohlman. 13/6. Postage $1 /$-.
PRACTICAL INTEGRATED CIRCUITS, by A. J. McEvoy and MiNamara. 18/=. Postage $1 / \mathrm{F}$.
TRANSISTOR MANUAL, by General Electric Company. 21/-. Postage I/6.
RADIO COMMUNICATION HAND. - BOOK, by R.S.G.B. 63/-. Postage 4/6.

SOLID STATE HOBBY CIRCUITS MANUAL, by R.C.A. 17/6. Poscage $1 /=$ VHF-UHF MANUAL, by G. R. jessop. 21/-, Postage $1 / 6$.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Booke

19-2I PRAED STREET LONDON, W. 2
Phone: PADdington 4185 Closed Saturday I p.m.

DIMMASWITCH

\square
0
This is an attractive dimmer unit which fits in place of the normal wall light switch. The mounting plate is ivory to match modern fittings and the control knob is in bright chrome. An ON/OFF switch is incorporated to control up to 500 watts at mains voltages from $200-250$ volts, 50 Hz .
These are normally sold at $\mathbf{E 4} 19 \mathrm{~s} .6 \mathrm{~d}$.our price is $£ 35 \mathrm{~s}$. We also offer at £2 15s. a complete kit of parts with simple instructions enabling you to build this dimmer yourself.
The circuit uses the iatest miniature RCA triac and new diac triggering device to give complete reliability. Radio interference suppression is included.

DEXTER \& COMPANY

ULVER HOUSE, 19 K!NG STREET CHESTER CHI 2AH Chester 25883

1,750 COMPONENTS

 FOR 65/~? ?YES, QUITE TRUE, READ ON

BUNPER BARQAIN PARCEL

We guarantee that this parcel contains at least 1,750 components. Short-leaded on panels, including a minimum of 350 translstors (mainly NPN and PNP germanium, audio and switehing types data supplled). The rest of the parcel is made up with: Resistors 5% or hetter (including some 1%) malnly nietal oxide, carbon film, and composition types. Malnly and watt t diodes, minfature silicon types OAG0, OA91, OA95, 1S130, etc. ... capacitors including tantalum, electrolytics, ceramies and polyesters . . . inductors, a selection of values . . . also the odd transformer trimpot, ete., ptc. . . These are all mintature, up to date, professlonal, top quality components. Don't mlss thls, one of our best offers yet: Prlce, 85/-. Post and packing $8 / 6$ - CV.K. New Zealand 20 - post and packing. Iimited stocks only.
KEYTRONICS, P.E.
52 Earls Court Rd., London, W. 8 TB1. 01-478 8499
MAIL ORDER ONLY. Retail and Trade supplied. Export enquiries particularly welcome.
BY RETURN
SERVICE
S.A.E. FOR LIST

OF OTHER GOODS

the BIG one

350 pages
 8,000
 components
 1,500
 illustrations

The HOME RADIO CATALOGUE is the complete answer to the problem of tracking down components. This Catalogue, one of the largest ever compiled, is a must if you are interested in Radio and Electronics. With each catalogue is a Book Mark giving Electronic Abbreviations, an Order Form and Addressed Envelope. All for only 12/6 ($8 / 6$ plus 4/- Post, Packing and Insurance). In addition every catalogue contains 6 vouchers, each worth $1 /$ when used as indicated.

And for users of our catalogue . . .

a CREDIT ACCOUNT SERVICE to simplify and speed up your orders
You can now order components just by picking up a telephone any time of day ornight, Sundays included! No need to bother with postal orders, cheques, registering envelopes every time you order. Pre-paid envelopes and order forms are provided and only one payment is required each month. So simple- 8,000 items as near to you as your telephone. Write for details or 'phone 01-648 8422.

Fig. 9.1. Local oscillator chassis details

Fig. 9.2. Front panel cutting and drilling details

Fig. 9.3. Local oscillator inter-module wiring
or three times as there will be some interaction between the two coils and each successive adjustment should improve the rejection. When this module is finally connected into the chassis assembly the following procedure should be carried out.

Connect the inputs to SK1 and SK2 and then reduce or increase C14 until the output signal, measured with a valve voltmeter across SK3, terminated in a 50 ohm load, is 1 dB less than the maximum attainable. This is best carried out when the variable oscillator module is set to 30 MHz . Leaving the valve voltmeter connected across SK3, swing the variable oscillator over its full frequency range from 2 MHz to 30 MHz and ensure that the output voltage at SK3 is not less than 0.4 volts or more than 0.8 volts. If the level is too high introduce a resistor (R19) into the base circuit of TR7 until the signal level at $30 \mathrm{MHz}-2 \mathrm{MHz}$ on the dial-measured across the output socket SK3 is 0.8 volts. If the level of the signal across SK3 at $64 \mathrm{MHz}-30 \mathrm{MHz}$ on the dial-is less than 0:4 volts, introduce C32 and adjust the value until the output at 64 MHz is 0.4 volts. Recheck the output at 36 MHz to ensure that this has not increased to more than 0.8 volts.

COMPONENTS . . .

LOCAL OSCILLATOR

VRI 100Ω wirewound potentiometer
SI 5 way single pole wafer switch Eddystone dial assembly No. 898 Insulated flexible spindle connector Imhoff cabinet and chassis type 1690C and BC5II Knobs to match receiver unit (2 off) Coaxial plugs (3 off) Coaxial lead

CHASSIS ASSEMBLY

Details for the cutting and drilling of the chassis unit and front panel are shown in Figs. 9.1 and 9.2. The modules are arranged and wired up as shown in Fig. 9.3.

The wiring to the range switch should be kept clear of the chassis and stiff wire should be used to ensure that these wires remain in position. The mixer module, on the underside of the chassis, is also mounted about half an inch away from the chassis, to avoid the introduction of stray capacity due to the proximity of the chassis acting as an earth return. As previously indicated, if it is found to be advantageous to use the 24 volt supply from the main receiver, it will be necessary to fit a two pin plug and socket arrangement to the receiver and the oscillator unit. This had not been included in the diagrams as some constructors may wish to use the local oscillator unit as a signal generator or, if they have an oscillator of the required frequency range, use that as the signal source for the main receiver.

MAIN CHASSIS SETTING UP

Having mounted all the modules and components, the pointer on the dial should be set to the extreme left. The vanes of the capacitor VCl should be fully meshed and the flexible link connecting the dial assembly to the spindle of VCl should be locked. It may be desirable to put a counter on the output of the variable oscillator module during this adjustment to ensure that when VCl is fully meshed the frequencies on each range, with the dial pointer at zero, correspond to those indicated in Table 9.2. It must be remembered that the frequencies coming out of the output socket on the main chassis are 34 MHz higher than those coming out of the variable oscillator module or indicated on the dial, in other words the frequency is offset by the value of the first i.f.

Next month: a.g.c. unit and dial calibration

Table 9.2. FREQUENCIES CORRESPONDING TO MAXIMUM VALUE OF VCI

Range	Frequency
A	2 MHz
B	3.2 MHz
C	5.0 MHz
D	8.5 MHz
E	16 MHz

Never Built a Kit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

Stereo Record Player
Exciting Sound - Budget Price Kit: K/SRP-I

Carr. 11/-

Economy SW Receiver
World-wide Reception I to 30 MHz plus $550-1620 \mathrm{KHz}$ Kit: K/GR-64 - \quad E24.16.0 Carr. 9/-

Kit: K/SEVERN - $£ 18.18 .0$ Carr. 5/-

For D.I.Y. Car Mechanics Kit: K/ID-29 - - CI7.8.0 Carr. 5/-

Deluxe Car Radio

Heathkit Value-Powerful Output Kit: K/CR-1 (speakers) $\underset{\text { Less }}{\text { Le.12.0 }}$ Carr. 5/-

Portable ' VVM '

For Hobbyists - Householders

Kit: K/IM-17 - - $£ 14.8 .0$ Carr. 6/-

Aircraft Monitor
Receiver Kit: K/GR-98 . . . E27.12.0 Carr. 5.

' Ambassador ' Speaker	
	Luxury Looks $\mathrm{Hi}-\mathrm{Fi}$ Sound
$\begin{gathered} \text { Kit: } \mathrm{K} /(\mathrm{AMB})= \\ \text { Carr. } 15 /- \end{gathered}$	£29.16.0

Many more kits to choose from in the 1970 Catalogue

[^2]

RBadout
 A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles pubiished in the magazine. Technical queries cannot be dealt with on the telephone.

There will then be management papers coupled with ability to show professional levels of responsibility for Corporate Membership, by which time he has demonstrated quite clearly that he is professionally an engineer, whether "chartered" or not.

L. T. Griffith,
Secretary,
The Society of Engineers,
London, S.W.1.

First class

Sir-What a practical and useful article was that by S. J. Holmes in the April issue on a "Miniature Converter", but without taking up much more of your valuable space he could have been so much more helpful.

While accepting his remarks concerning the desirability of a d.c. output, two classes of people come to mind. One who would be prepared to accept bigger transformers for the advantage of having an output of 50 Hz (some appliances must have a.c.). The second, probably much larger, who know that the best way to run a fluorescent tube is at about 10 kHz .

Information on how to vary the frequency, plus any modifications in wiring the transformer would have extended the usefulness of the article considerably.

Nevertheless, thank you for the very high standard of the magazine.
I. D. Phillips,

Pershore,
Worcestershire.

Electronics club

Sir-We feel that the following information will be of interest to readers of Practical Electronics and we would be grateful if you could give it some coverage in your magazine.

A number of radio societies in the North East have formed a federation known as The North East Amateur Radio Group (N.E.A.R.G.). The purpose of the group is to promote a series of bi-monthly lectures and to publish a newsletter approximately five times a year, free to members. The first meeting, held on March 20th in Durham City, covered the subject of "Aerials". A lecture was given by Mr F. W. V. Ritson G5RI with a very good practical demonstration.

All readers in the North East are cordially invited to attend any meeting, but please if you are coming contact:

Mr. J. Melvin G3L1V, 5 Lancashire Drive, Belmont, Durham, enclosing a stamped addressed envelope for further details.
L. G. Rix G3X5W,
N.E.A.R.G.

Rigatout-
 A SELECTION FROM OUR POSTBAG

Fucts of life

Sir-May I, a tyro from the earliest days of the "cat whisker", put in a plea on behalf of newcomers in the field of solid-state for the home constructor.

At the height of the "thermionic" period, it became abundantly clear to any rational mind, that great complexity covered any comprehensive list of available valves, by reason of the codes used for the identity of individual types. The virtual absence of a co-ordinated system has resulted in near impossibility for the less informed, intending user to make a ready choice.

Since we have now entered the same conditions with solid state devices, is it to be assumed "the point of no return" is already past?
If the manufacturers hold a jealous regard for some commercial advantage maintained in the present illogical arrangement, surely, it is not beyond honest imagination to retain two or three letters as a prefix to an otherwise universally recognised form of classification, Granting that comparisons are odious, consider the position where purchase of a 60 watt light bulb necessitated one's familiarity with the maker's exclusive marking.

Returning to the "good old days"; enclosed in the carton containing a
valve, there used to be a tiny slip of paper, bearing the relevant "facts of life" concerning the valve, for the guidance of the immature purchaser. - Not now brother, not any more.
F.e.t.'s and tunnel diodes must be for the erudite, and of course, readers of P.E. I for one gained a ready appreciation of the enigmatic "holes" in transistors from its helpful pages. Many thanks.

Percy Ashdown,
Lymm,
Cheshire.

Tape stop-foil

Sir-With reference to Mr A. S. Henderson's letter to "Readout" (March P.E.) concerning Mr Price's Tape Stop-Foil device, might I suggest that Mr Henderson consults one or two tape recorder circuits. I believe that he will find that most record/playback heads are wired with a large resistance in series with them before connection to coupling capacitors, which would make the current flow through the head during switch on/switch off insufficient to impart much permanent magnetism to the head.
Besides which, the currents through the heads during switch on and switch off are equal and in opposite directions and thus the magnetisation during switch off would be cancelled out by an equal and opposite magnetisation produced during switch on. Thus, provided that the tape recorder is reconnected to the mains by the same method as it was disconnected, no damage to the heads should ensue.

Of course, it is inevitable that after a considerable period of time tape
heads subjected frequently to this kind of treatment will become noticeably magnetised, but this does not prevent the use of the stop-foil device as regular demagnetisation of the heads of hi fi tape recorders is now considered part of standard maintenance.
M. Bolton,

Bury St. Edmunds,
Suffolk.

Heavy fall

Sir-l was very interested in your article for the "Electronic Rain Gauge" (see February issue), and decided to construct it for our local Youth Activities Centre's electronic metrological station.

But there was one problem with which I had great difficulty in solving. I constructed the liquid metering module, and started to test it. The problem was that when the bucket tipped, surface tension held a lot of water in the bucket so resulting in extra weight for the other side to tip.

I have been taught at school that to reduce surface tension, detergent has to be mixed in, but knowing that it doesn't rain detergentised water I had to think of something else. I thought about a chrome bucket, but then I found that by smearing a thin coat of silicone grease in the bucket, it cured all my problems.
I thought other readers might have had this problem and would be glad of a solution.
1 enjoy your magazine very much and still continue to buy it and patronise your advertisers.
J. Marsh,

Weymbuth.

NEWS BRIEFS

New Leaflet on Metric Units

Anew leaffet "Going Metric-Everyday Units" is now available free from the Metrication Board. The leaflet sets out the more common metric units and correct symbols for 14 everyday quantities including length, area, capacity, temperature and weight.
In the United Kingdom the basis for the metric system, now coming into use, is the International System of Units, known in all countries by the abbreviation SI. The units contained within this system are sufficient for all present needs of technology, science, industry, commerce and daily life.
Copies of the leaflet can be obtained from Information Division, Dept. 4, Metrication Board, 22 Kingsway, London, W.C. 2.

Home Entertainment in 1980

ASTAINLESS steel console housing a colour television, with remote screen, a radio receiver, tape recorder and a record player, all with stereo reproduction has recently
been displayed by the British Radio Corporation. The console was designed by Eric Marshall Associates for British Radio Corporation and consists of two 18 in turntables at each end, one for record reproduction and one for radio or TV tuning. The tape recorder is housed in the centre of the console, has 7 in reels and a facility for slotting in cassettes.

The photograph shows the console, TV screen and one spherical speaker-a future project for Practical Electronics!

PREMIER STEREO SYSTEM "ONE" Consists of an all transistor stereo amplifier. Garrard 2025 T/C auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The to transistor amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls: Bass, Treble, Volume, Balance, Selector. Power on/off, stereo/mono switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$. high (Amplifier available separately if required $£ 14.19 .6$. Carr, 7/6).

PREMIER STEREO SYSTEM "TWO"

As system "ONE" above but with Garrard \$P25.
PREMIER
PRICE $\quad 45$ Gns. Carr-

A unall but powertal amplifier designed for atereo hi-f reproduction. 10 watts per channel musio power. Inputs for Gram (Maknetic and Crystal). Tuner and Auxiliary. Tape Record output. Coutrols: Volunte, Balance, Bass, Treble, Sterea/Mfono slide switch. Stereo headphone socket. Attractive olled walmut cabinet with bruahed aluminlum front panet. Liet Price es98,7.0. OUR
PRICE $\quad 22$ Gins. P \& P.

PREMIER STEREO SYSTEM "FOUR"

Teleton SAQ203E Amplifier (as above) Garrand B825
Bhure M3D
Teak baso and cover
Falr of El-Fil Enclosures fitted E.M.I Speakers
Total cost it purchased separately premer 65 GNS. PRICE

VERITAS V-149 MIXER
Battery operated 4 -channel audio miser providing four separate inputs. Size 6×8
microphone
low
 micsophone with traneformer,
raito, tape, etc. Max. inpui
l. fV , max, 1. VV, max, output $2 \cdot 5 \mathrm{~V}$, gain
QdB. standard jack plug socket inpuls, phonoplugs output. Attractive teak wood grain finish case. Mono $59 / 6$ sureceo
zodel
$69 / 6$

811.2.0
21.18 .6
8.19 .6 \$5.10.6

2路6.5.0 378.18 .0 Carf. 35/=

ALBA UAIOOD ALL TRANSISTOR STEREO TUNER AMPLIFIER

Covers Loug, Medium and Short Waves plas VHF/FM with bullt in stereo decoder sud A.F.C. Outpat is watts $5.71 .8, ~ p e r ~ c h a n n e t ~ i n t o ~$
8
0.3%). Response $20 H z-20 \mathrm{kHz}$, Inputy for Magnetic and ceramic p.u, and Tape. Tape ontlet socket. Tuning, Volume, Bass, Treble and Balance controle. Pugh button selector, Blsck leatherette top, teak eads and branhed alumintinm front panel.
PREMIER
PRICE
£67.11.6 $\underset{\substack{\text { carrf } \\ 1216}}{ }$

PREMIER STEREO SYSTEM
 Alba VA100D Tuner/Aupiffler Garrard SP2
 Sture M3D
 Teak base and cover Pair of $\overline{\text { If}}$-Fi Enclosures fieted
 E.M.J. Speakers
 Total cost if purchased separatels
 $$
\begin{aligned} & \text { PREMIIER } \\ & \text { PRAEE } \\ & \text { Pll } \end{aligned}
$$

 Ello

 Ello

 G5r:

 G5r:}
'VERITAS' V-313 TAPE HEAD DEFLUXER

 A matit for all tape wera Tape heady become per-
mapently magnetized with constant use; this leads to
background nolse that prevents perfect
recordlogs. Simply applied to recording $34 / 6$ head the V313 leaves head free of mag- P. \& P, $1 / 6$ netism. Cleans any tape head in seconde.

"VERITONE" RECORDING TAPE

SPECLALLY MAKGFACTURED IE USA, FRON EXTRA STRODG FREXEREETCEEO TENSILISED to ensure the most permanent base. Highly reaistant, to breakage, anolature, heat, cold or humidity. High polimbed aplice free Animh. Smooth IPS s $^{\circ} 250^{\circ}$ P.Y.C. $5 / 6$ IPG $\$ 1^{\circ} 1800^{\circ}$ P.V.C. \quad 12/B

 Poat and Packing $3^{* *} 1 /-\overline{5}^{*}$, 所 $1 / \sigma_{1}, 7^{\pi} 2 /-$, (\$ reele and over Poat Free.)
"NOVA" 505 STEREO AMPLIFIER

A superbs stereo amplifier offering every facility for the hi-fi enthusiast. Output 5 watts per channel. Frequency reaponse $40-20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Ivputs for radio, \mathbf{P}. U, Ceramic, P. W. MagnetIc Tape. Separate vass and treble controls, Yolume and Balnace controls, Mono Stereo
Switch. Also features headphone socket and taps output. Teak case with attractlve flluminnted front panel. Size 14) $89 \frac{1}{2} \times 8$ in. A.C. $200 / 250 \%$.

WONDRRFUL VALUE
${ }_{\text {AT }}^{\text {oxit }} 18$ Gns. Carr.

PREMIER STEREO SYSTEM "THREE"

Nova 505 Amplifier (as above) Garrard 8F25
Sonotone 9TAHCD
Teak base and cover
Pair of EET-Fi Enclosures fitted E.M.I Speakers

Total coat if purchased separately
Pemmer 55 GNS. $18,18.0$ 211.19 .6 55.10 .0 828.5.0 865.7.6 Carr. PRICE 35 EIN. 35%
 Complete with battery and 501t connecting Wrey call bygtem. Ideal for boene, office, iactory, etc. $65 /=\underset{4 / \rightarrow}{\mathbf{P}, \$ \text {. }}$

TAPE CASSETTES $660\binom{60}{\min } \quad 7 /$. C90 $\binom{0}{$ min }\quad I2/6
 P TEREEE FOR B1/P. \& P. 1/-

CASSETTE HEAD CLEANER Removel unwanted deponita
from delicate tape headn. Fits all caasetie recorders.

RADIO GOISTRTUCTOR

FREE CUT-OUT ART SUPPLEMENT of WORKSHOP PLANS

Full Working Diagrams including Printed Circuit Board Layout

SOLID-STATE DISTORTION METER

Copies may also be obtained direct from the Publishers-4/- including postage.
Published by:
DATA PUBLICATIONS. LTD., 57 MAIDA VALE, LONDON, W.9.

MAY ISSUE

 ON SALE NOW 3/6
OTHER CONSTRUCTIONAL PROJECTS

 INCLUDEC.R.O. Beam Switching Unit Electronic Siren Module

- Neon-L.D.R. A.F. Oscillator

NEW SERIES "UNDERSTANDING TAPE RECORDING" PLUS

* EXCLUSIVE MOTORING * OFFER
(Maserati Air Horns, etc.)

ELEGTROVALUE

Everything brand new and to specification - Large stocks - Good service

RESISTORS

CODES: $C=$ carbon fim, high stabilizy, low noise. $M O=$ metal oxide, Electrosil TR5, ulsra low VALUES: E12 denotes E24 denotes series: as E12 plus $1 \cdot 1,1.3,1 \cdot 6,2,2 \cdot 4,3,3 \cdot 6,4 \cdot 3,5 \cdot 1,6 \cdot 2,7 \cdot 5,9 \cdot 1$ and their decades. Prices are in pence each for quantities of same ohmic value and power rating, not mixed volues. (Ignore fractions of one penny on total resistor order.)

CARBON TRACK POTENTIOMETERS: Long plastic spindles.	Double wiper ensures minimum noise level.
Single gang linear: $220 \Omega, 470 \mathrm{n}$. $1 \mathrm{k} \Omega$, etc. to $2 \cdot 2 \mathrm{M} \Omega$	Dual gang linear: $4 k \Omega, 10 k \Omega, 22 k \Omega$, etc. co IMR
Single gang log; $4 k \Omega$, $10 \mathrm{k} \Omega, 22 k \Omega$, etc, to $2 \cdot 2 \mathrm{MI}$	Dual gang log: 1k $\AA, 10 k \Omega, 22 k \Omega$, etc, to $2 \mathrm{M} 2 \Omega$
Any type wich $\frac{1}{3}$ amp double pole mains switch: extra a/.	

> 30 WATT BAILEY AMPLIFIER COMPONENTS
> Transistors for one channel E7.5.6. list, with 10% discount only E6.11.0. Transistors for two ehannels £14.17.6. list, with $\$ 5 \%$ discount $\mathbb{1} 12,7,5$. Capacitors and/resistors for one channel list 42 . Printed of sterea, subject to discount. Complete regulated power supply kis es.5. subject to discount. Further details on application.
> SINCLAIR ICIO Incegrated Circuit Amplifier and Preamplifier. This rernarkable monolichic integrated circuit amplifier and pre-amp is now available from srock. The the first of its kind ever. It is d.c. coupled and applicable to an unusually wide range of uses as detailed in the manual provided with it. As advertised post free $59 / 6$ net.
> Also all other produces as advercised.

S-DoC's pur an end to "birdsnesting"t. Com ponents just plug in. Saves valuable time. $30 / 6$ post free Compact T-DeC increased capacicy only $50 j$ - poss free. Full range stocked.

MEDIUM ELECTROLYTICS. Axial leads: Values ($\mu \mathrm{F} / \mathrm{F} / \mathrm{V}$); $50 / 50$ 2/-: $100 / 25$ 2/-: $100 / 50$ 2/6;

PEAK SOUND ENGLEFIELD KITS

 Build it $12+12$ or$25+25$.
Brilliant new $25+25$, Bry + ynilable in
two forms: STEREO is WATTS PER CHANNEI kit form with complete amplifier and pre-amplifier modules kit orm with complere amplifier and pre-amplifier modules and power supply. Output per channel inco $15 \mathrm{~B}-12 \mathrm{~W}$
R.M.S. Price EJ8.9.0. nec. STEREO 25 WATTS PER CHANNEL. As above but output per channel ineo 15 n -25W R.M.S. Price 658.t5.0. net. Brief specification: Toral harmonic distorcion 0.1%.
Inpuks: Magnetic, Ceramic, Tape, Radio, Signal to noise Ptios: Better than $60 d B$ alf inputs.
Oftoad factor 2BdB all channels.
ENGLEFIELD CABINET 80 house eisher above assemblies (as illustrated) $\mathbf{\$ 0 . 0 , 0}$ net. Other peok sound products as advertised.

NEW PLESSEY INTEGRATED CIRCUIT POWER ABV power supply. Sensiciviry 20 MV into 20 Mg . 3 W into 7.5-1 Application dara wich swo or more. P.E., Nov, 69. Stereo Amplifier kis less metalwork fil.is.2 net complete.

LARGE CAPACITORS, All new stock. High ripple current types: $2,000 \mu \mathrm{~F} 25 \mathrm{~V} 7 / 4: 2,000 \mu \mathrm{~F}$ $50 \mathrm{~V} 01 / 4 ; 5,000_{\mu \lambda} \mathrm{F} 25 \mathrm{~V} 12 / 6: 5,000 \mu \mathrm{~F} 50 \mathrm{~V} 21 / 1 \mathrm{I}$;
$1.000 \mu \mathrm{~F}: 00 \mathrm{~V} 16 / 3 ; 2,000 \mu \mathrm{~F} 100 \mathrm{~V} 28,9: 5,000 \mu \mathrm{~F}$ $1,000 \mu \mathrm{~F} 100 \mathrm{~V} 16 / 3 ; 2,000 \mu \mathrm{~F} 100 \mathrm{~V} 28 ; 9 ; 5,000 \mu \mathrm{~F}$
$70 \mathrm{~V} 361-5,000 \mu \mathrm{~F} 100 \mathrm{~V} 58 / 3 ; 1,000 \mu \mathrm{~F} 50 \mathrm{~V} 8 / 2$ $2,500 \mu \mathrm{~F}$ 64V $15 / 5 ; 2,500 \mu \mathrm{~F} 70 \mathrm{~V} 19 / 6$.

BARGAINS
 IN NEW TRANSISTORS

All power types supplied with free insulating sets

2N696	$5 / 6$	2NS192	$25{ }^{\text {i }}$
2N697	5/6	2N5195	29/3
2N706	2/9	40361	12/6
$2 \mathrm{~N} / 132$	9/9	403612	16/-
2N1302	4/-	ACl26	6/6
2 N 1303	4/-	ACl27	6/-
2 N 1304	4/6	ACl28	61.
2N1305	4/6	AC176	11.
2 N 1306	6/9	ACY22	3/9
2N1307	619	ACY40	4/-
2N1308	$8 / 9$	AD140	191-
2N1309	8/9	AD149	17/6
2 N 1613	6/-	ADi61)	16/-pr.
2 N 1711	$7 / 4$	AD162)	16,-pr.
2N22:8	$10 / 6$	AFI 18	16/6
2N2147	$18 / 9$	AFI24	$7 / 6$
2N2369A	6/9	AF127	$7!-$
2N2646	10/9	BA102	$91-$
2N2924	1/3	BC107	2/9
2N2925	5/3	8 C108	$2 / 6$
2N2926R	$2 / 6$	BC109	2/9
2N29260	2/3	BC147	4/3
2N2926Y	2/3	BCI48	3/3
2N2926G	2/3	BC149	4/3
2N3053	5/6	BC153	101
2N3054	14/3	BC_{8154}	$11 / 5$
2N3055	16/6	BC157 BC158	$3 / 9$ $3 / 6$
2N3391A	5/6	BCis9	3/9
2N3702	3/6	BC167	2/6
2N3703	3/3	BC168	2/3
2 N 3704	3/9	BC169	2/6
2N3705	$3 / 5$	BC177	$6 / 3$
2N3706	3/3	BC178	5/8
2N3707	$4 /$.	BC179	6)-
2N3708	3/-	8 Cl 121	$18 /$
2N3709	3/-	8 B 123	24/3
2N3710	3/3	BFI78	10/6
2N3711	3/11	BF×29	10/9
2N3904	7/6	BFX85	8/3
2N3906	7/6	$8 \mathrm{X} \times 88$	7/9
2N3731	23/-	BFY50	1/6
2N4058	5/3	BFY51	$4 / 3$
2N3325	10/9	85×20	$3 / 9$
2N3794	3/3	M1480	21/-
2N4286	3/3	MJ481	27/-
2N4289	3/3	MJ491	30/-
2N4291	3/3	P346A	$5 / 9$
2N4292	$3 / 3$	IN4001	$4 / 2$
2N4410	4/9	IN4005	8/-

MULLARD SUB-MIN ELEC* TKOLYTICS C426 RANGE. Price $1 / 3$ each. Axial leads, Values (μ FiV): $0.64 / 64: 1 / 40 ; 1.6 / 25 ; 2.5 / 16 ; 2.5164 ;$ 4/10:4/40;5/6i; $6.4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 1 / 40 ;$ 10/2.5; 1016: 10/64; 12.5/25; $16 / 40$; 20115: 20/64; 25/6:4; 25/25; $32 / 4 ;$ $\begin{array}{cccc:}32 / 10 ; & 32 / 40 ; & 32 / 64: & 40 / 16: \\ 50 / 6.4: & 50 / 25 ; & 50 / 40, & 54 / 4: \\ 541 / 5 ;\end{array}$
 $125 / 10: 125 / 16 ; 160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10$: 250/4; 320/2.5; 320/6.4; 400/4; $500 / 2 \cdot 5$.

WAVECHANGE SWITCHES: IP 12W: 2P $6 \mathrm{~W}: 3 \mathrm{P}$ 4W: ${ }^{4 P} 3 \mathrm{~W}$ lont double pole double shrow, 1/- each.

CARBON SKELETON PRESETS. Small high qualiey, type PR: $1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 4 \mathrm{k} \Omega$, $10 \mathrm{k} \Omega$, $22 \mathrm{k} \Omega$.
 IM $\mathrm{I}, 2 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{Mn}$ versical or horizontal mounting, I/- each.

Available now! The new Mullard data book for 1970

Quick! get up-to-date with the latest information about Mullard semiconductors, valves, television picture tubes and components.

For easy flick-through location each section of this pocket-sized data book is colour-coded

BI-PAK =LOW COST I.C's

BI-PAK Bemiconductors now effer you the largest and nowt popular range of L.C's arailable at these axclubive 20 W mantacturers' ${ }^{2}$ giseificalions. Dust intline plastle 14 and 16 pla mackares.

BI-PAK

OITER FIO.
$\mathrm{BP} 00=8 \mathrm{~N} 7400 \mathrm{~N}$ BP01 - 8 NF 401 N
$\mathrm{BP} 04=8 \mathrm{~N} 7404 \mathrm{~N}$ BP10 = 9N7410N $\mathrm{BF} 20=\mathrm{BN} 7420 \mathrm{~N}$ BP80 $=5 \mathrm{~N} 7430 \mathrm{~N}$ BP4045N7440N BP41 = 8NT441A

BP42 $=$ BN7442N BP50 = FNT7450N

BP58 $=8 \mathrm{SN}^{5} 453 \mathrm{~N}$
BP60 $=8 N 7460 \mathrm{~N}$ $\mathrm{BP70}=8 \mathrm{~N} 7470 \mathrm{~N}$ BP72 = $5 \mathrm{NF7472N}$ BP73 $=$ SNT473N BP74 = 8N7474N BPF5 =8N7475N BP75 - 8×74 ²
 BP90-8N7490~ BP99 $=8 \mathrm{~N} 7492 \mathrm{~N}$ BP98 - SNE493N BP94 $=8 \mathrm{SN} 7494 \mathrm{~N}$ BP95 - 8N7490S BP96 = SN7496N

Demeription
Quad 2-Ingut NAND (fiATE Quad $\frac{2}{-1 n p u k}$ NAND Gate- OPEN: COLLECTOR
HEX LNYERTER
Triple 3-Inpat NAND GATE Dual 4-foput NAND GATE Single 8-Input NAND GATE Dual 4-Input BITFFER OATE BCD to decimal decorler and NIT Drfrer
BCD to decinual decode (TTL O/P).. Dual 2-Imput AND/OR/SOT AATE -expandable
single 8-Input AND/OR/XIOT GATE-expandab Ale
Duai 4-Input-expandable Single JK YHip-Flop-edge triggered Single Master Slave JK Flìp-fiop Dnal Yasler Blave JK Yilp-flop Dral D Fi!p-flop
Quad Bistable Latch
Dual Saster slave Filp-fiop with preget and clear
Four Bít Binary Adder
BCD Decade Counter
Divide by 124 Bit binary exumter Divide by 164 Bit binary counter. . Deal Entry 4 Blt Shift Register 4 Bit Cp-Down Shift Register万 BIt shift register,

Price and aty, prices $1-24 \quad 45-99 \quad 100$ uy

6/6	B/0	4/6
6/6	8/6	$4 / 6$
$0 / 8$	8.8	$4 / 6$
6; 6	8.6	$4 / 8$
$8 \cdot$	$8 / 6$	4/6
$0 \cdot 6$	$5 / 8$	$4 / 6$
818	8/6	4 4,8
20/6	$201-$	17/0
22:6	20:-	27/6
9/6	$5{ }^{5} 6$	4/6
	$8 / 6$	4;6
6/8	5/6	4/6
g/-	8/-	${ }^{7} 1$
81-	$8 /$	71-
101-	\%	$8: 8$
101-	1-	8/6
11)-	10:-	8:6
11/-	10:-	9/6
28/-	22:8	201-
22/0	201-	17/6
28/4	20 -	$17 / 6$
22/6	201-	$17 / 0$
22/6	801-	17\%
2\%	80/ -	17/6
24/-	21/-	18/6

BRAMD HEW, FOLE TO XAYDFACTURERS' 8PECHICATTOX

Price each $1-24$ 25-90 100 up BP7tg Operational Anpliter, dual-in-lime 14 pin pack age - 8N72709 and aimilar to MIC709 and 2LDD700C. $10 / 6 \quad \mathrm{~B} /-\quad 8 /-$
This da a high performance operationsl amplffer with high fmpeslance differentia impets and low impedance output.

INTEGRATED CIRCUITS

Nanutacturera" "Fall outs"-out of epec. fierlues lncluding funcllonal wite and part unctional but classed as out of spec. from the manulactorers very. rigid specilications. Ideal for learning about I.C's and experimental worls, on testing, some n lll be found perfect.
PAE Yo.

CZC01 $=5 \times 7401 \mathrm{~N} \quad \ldots \quad 10 /-\quad$ UTCB $=5 \times 7453$.
UIC10 $=5 \times 7410 \mathrm{~N} \quad \ldots \quad 10 /-\quad$ UIC72 $=0 \% 7472$.
$\mathrm{UIO20}=5 \times 7420 \mathrm{~N} \quad$ 20/ \quad UIC74 $=0 \times 7474$. UICSO $=5 \times 7430 \mathrm{~N} \quad . \quad$ 10f \quad UICT $=5 \times 7475$. UTC10 $=6 \times 7440 \mathrm{~N} \quad . \quad 10 / \sim \quad$ UICPO $=5 \times 7490$. CICA1 $=5 \times 7411$ AN $\quad 10 /-\quad$ CICXI $=20 \times$ ast'd. Tu's.. $20!$ Packs cannot be split but 20 assorted pleces (out $m(x)$ Is avallable as PAK CilCX1. Evers PAK carries our BI-PAK flatisfaction or monty back GUARANTEE.

MOTOROLA DIGITAL I.C's

MDTL dual in-line package.
Type MCs44P expandable dual 4 -Juput NANI) Power Gate Trpe MC840P Clockell Flip-fion

FCLL DARA \&ETPPLIED WITH US2TS

Duta la available for the 8S74N series of Integrated circuitg in booklet formu, wrice 2;6, Ptease send all ordery direct to our warehouse and despatch department.

BI-PAK SEMICONDUCTORS

P.O. BOX 6, WARE, HERTS.

Postage and pucking add 1/-. Overaens add extra for Airmall. Minimum order 20/-. Cach with order please

VALUE ALL
 THE
 WAY

Power Trang. OC30 100Y
0 A202 811 , Dlodes Sub-min..
Low Note Trans. NPN 2N920190.
811. Trane, NPN TCB 100 zT86

OA81 Dithlea.
0 OC72 Transiotors
4 Oc77 Transintore
4 Ell. Recta $400 \mathrm{PIV} \mathbf{8 0 0} \mathrm{nis}$ 5 GECS84 Trane. Equt. OC4 5 GET883 Trans. EqVt. OC45;
2 2N708 sil. Trans. 300Mc/6 \&ip 3 Grsi LF Low Nolse Germ Tran 6 TN914 Sil. Dlodes is PTV 75 mA 6 IN914 Sil, Dlodes is PIV 7imA 8 OA95 Germ, Diodea Rub-min. IN 69 8 OA95 Germ, Dlodea 8ub-min. INO 2 OC22 Power Trans, ferm. 0 O 25 Power Trane, ferm 4 AC128 Trans. PNP High GalB 4 AC127/128 Comp. puir PNP/NPS 2N1s07 PNP Bwitching Trans. CGA2H Germ. Diodee Envt. OATi 3 A F116 Type Trans.
2 Assorted Cerm. Dlodes Marked 4 AC126 Germ. PNP Trans.
4 Sillicon Recte.
3 AF117 Trane.
7 Oc81 Type Tra
3 OC1I Trans.
5 2 N 2926 8M. Epox Trans
z Oc71 Type Trans.
229701 Sil. Trans. Texas
2 10 A 600 PIV siL Rects. $1 \$ 10 \mathrm{~B}$ 3 BC108 Sil. NPN High Gain Trans 12 Ng 10 NPN Sil. Trana, VOB 100. ${ }_{3} 1000 \mathrm{PIV}$ gil. Rect. $1 \cdot 5 \mathrm{~A}$ R03310 3 OC200 Bll, Xrana.
2 GPT880 Low Noise (ierm. Trans. AF139 PNP High Freq. Trans.
 3 Madt 82 MAT100 \& 2MAT120
3 Madt's 2 MLAT101 \& 1 MATI 21 4 Madt's 2 Matiol

2N8906 sil. PNP Trans. M,
Sin, Power Recte. BYZ 13
su. Powes Trans. NPN 100 Mc
2×1132 PN1 Epllaxial Plasar sii

i Trapunction Trane. 2N2646 2 81 . Trank, 200 Mcjs 60 Vcb ZTB $3 / 54$ 20 NKT Trans.
 8 BY100 Trpe sil.
25 sill and Germ.

SEMICONDUCTORS FOR "P.E." $50 \div$ 50AMP

type	FACH	TYPE	EACH
2×1613	4:6	15914	1/-
2×5055	1216	OA200	-
2N3703	3)-	EFXOI	3/8
2N3\%04	3:6	BYZ13	4/8
2N3704	$8: 9$	40362	14/-
2N8819	8/-	22V11	$3 / 8$

GIRO No. 388-7006
BL-PAK

500 CHESHAM HOUSE
150 REGENT STREET LONDON, W.I

KING OF THE PAKS

AD161 : צPs ADI62 1 P
MATCEED COMPLEMENTAEI PAIRS TRANSIETORS
For mains driven autpat stages of Ampitae
OUR LOWEST PRIC OF L8/B PER RARR
HIGK POWER BILIBISTORS. TO-3. FFRRANTI ZT14R7

CEAU TT. 1W/ce
$\begin{array}{ll}\text { VEB8 } & \text { JFE } 02.75 \mathrm{~W} \\ \text { hFE15-45 }\end{array}$
PRICF, 15J- FACH
2H3 555 POW8R WTR
OL'R PRICE $18 / 6$ EACH
FULL RANGE OF ZEFER DIODES VOLTAGE RAYOE 2-16Y. 400 mV Hat) $8 / 8 \mathrm{ea}$ stur) $\$ /$ markei

BRAYD HEW TEXAS

 GBRM, TRAFSERTORS Coded and GasranteedU29 101 amp SCR's T0-5 can up to 600 PIV CRS1/25-600.
V'31 20 Ail. Planar NPN trans. low nolee Amp 2N3707.
U3g 25 Zener diodes 400 mW D07 case mixed Volta, S-18.
g3 15 Plastic case 1 amp sulicon rectiflers 1 N 4000 geries.
$\overline{\mathrm{T} 34} 30$ 81. PNP atioy trans. TO-5 BCY 6 , $28302!4$
35.25 Sil. Planar trans. PNP TO-18 2N $2906 . . .$.
s0 sil, alloy trans, 80-2 PNP, OC200 2s322.
20 Fant Switching 8il, teans. NPN, 400Mcis 2N3011
C39 30 RF Germ. PN P trans. 2N130\$/5 TO-5
U40 10 Dual trans. 6 leoul TO-5 2N2060
T41 25 RF Germ. trans. TO-1 OC45 NKT72.
U42 10 VHF Germi PNP trans. T0-1 NKT667 AF117 10 !

Code
the P
NEW LOW PRICE TESTED S.C.R.'s

	case)		саяе)	cas	-	
PTV	cach	Pach	cac	pach		
50	4:6	5 /-	9.6	$10 / 6$	23	201-
100	8:-	8.8	10,6	12.6	00	88.-
200	$7 /$	7:6	11;6	15,-	100	28:-
400	$8 / 6$	9:6	13:6	18,6	100	32/-
600	10/8	11/6	15:8	25:-	. 500	95:
800	12:8	19:-	18:-	80:-	000	80/-

200 V 10:- 600 V 15i- $800 \mathrm{~V} 20:-$

TRANGISTOR EQYT. AMD SPECLFICATIOR BOOK. (German Publication) A complete Erozs reference and equitaient American ant Japaneee Tranelstors. Exclosive to BI-PAK. 16/- sach.

PRINTED CIRCUTS

EX-COMPUTER

Packed with semiconductors tind cemr. 30 trans and 30 ditodes. 10/-. Plus $\mathrm{O} /-\mathrm{P}, \mathrm{\& P}$.

PLEAGE MOTE. Increased Postai Charges to our Cubtomer and enable us to keep our *'By Return Postat servica" which fa gecond to none, we have re-organised and Etreamlined our Deapateh Order Department and we now requeat jou to send all your orders together with your remittance, तlirect to nur Warehouge and BI-RAK 8RMICOXDJCTORS, Despatch Dept., P,O. BOX 6, WARE, HEA, Tg . Postage and packing ntill 1/- per nriler. Minimum

PHOTO TRANS.
OCPil Tspe, 8:6

INTEGRATED CIRCUITS
B1-PAK KONOLTTHIC ATPLITEX

BPr09C, Operational amp Bifier, 15 /- each. BP701C, Operatlonal ampliflef (with Zener BP702C, Operational amp lither (with tirect out* put), $18: 8$ each. fler, 18 Whe hanit smpllBPס21, Jogarithule wide band amp., 14! each. BP20/C, General parpose emplifier (TO-5 B lead 2g, each. 1.C. Operational Rype 701C. Ifeal for P.E Prolects. 8 Lead T0. 5 case Onr price $12 / 6$ each 5 oftlil- each. Large Qty

IC AMPLIFIER

Trent ical encaproulation and pin configuration to the and IC40s, Each eircult incorporntes a pre-imp and claks A.B. Power amp stage capable of delivering up to
3 watts $\mathbf{H y s}$. Fully teated and guarinnteenl. Supplied amplete with circuitdetaiba and tata, CODED BP,1010. OIR JOWEST PRICE

OTEER MOXOLITHIC

 DEVICESD13D1 51Hcon I"nilateral Bwitch $10 /=$ each.
Silicon Planar, mono-
integratell thhie integrateel circult haviag thyristor electrical
 "Tener" thicite between
gate anol cathorle. Full gate annl cathote. Fuil
data anul application circults availatile on regu BTUL KICROROGLC
 temp, range 15 ,
UL90n, Ruffer, 9.9 each. CIglt, Dual tro-input L293 J-K-flip-ffng, 13)= Complete data and circuits Failable Fairchlld Inooklet form priced 1 ' 6 .

MULLARD $1 . C$

 44243, Operatianal amplifier, $70 /=$ each. Atzo3, hnear $A F$ ampll-fier, $16 / 0$ each. HA2293, General Aat293, Generni purpose
aroplifier, gl: $=$ ench.

CA3020 ECA (U.B.A.
LIBEAR ITTEGRATEO CLRCUTKS andio Po

BYYAK MOMOHAHEC (10 lead TO-5) BP305A, G-Input INT RP314, $9: 8$ each. BP3lü, Dual 3-Inpnt YOR gale, g! each. NOR gate (expandahble) P3ㄹ․ 4, J-K-Binary of ment, $11 / 6$ each

YATES ELECTRONICS (FLITWICK) LTD.

RESISTORS

High stability carbon film. Very low noise. 0.5 watt 5% 4.7Ω to $2.2 \mathrm{M} \Omega$ 2d each. 0.5 watt $10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega$ 2d each. 2 watt $20 \% 100 \Omega$ to $100 \mathrm{k} \Omega 10 \mathrm{~d}$ each.

DEVELOPMENT PACK

0.5 watt 5% resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$

325 resistors E12 series 50/-
650 resistors E24 series 100/-.
4 WATT WIRE WOUND RESISTORS $1 / 6$ each.
$10 \% 1 \cdot 0,1 \cdot 8,2 \cdot 7,3 \cdot 3,3 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 8,8 \cdot 2$ ohms.
$5 \% 10,15,20,25,39,50,100,200$ ohms.
MULLARD POLYESTER CAPACITORS $\pm 10 \%$ $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}$, 6d. $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 10 \mathrm{~d}$. $0.33 \mu \mathrm{~F}, 1 / 3$. $0.47 \mu \mathrm{~F}, 1 / 6$. $0.68 \mu \mathrm{~F}, 2 / 3$. $1.0 \mu \mathrm{~F}, 2 / 6$.
250 V : P.C. mounting miniature $\pm 20 \%$: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$, $0.022 \mu \mathrm{~F}, 7 \mathrm{~d}, \quad 0.033 \mu \mathrm{~F}, \quad 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, \mathrm{I} / \mathrm{F}, \quad 0.33 \mu \mathrm{~F}, \mathrm{I} / 4$.

MYLAR FILM CAPACITORS

$100 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .05 \mu \mathrm{~F}$, $0.1 \mu \mathrm{~F}, 8 \mathrm{~d}$,
CAPACITOR DEVELOPMENT PACK
Selection of ceramic and polyester capacitors 100 pF to $1 \cdot 0 \mu \mathrm{~F}$. Total 100 capacitors, $\pm 2.18 .0$.

MINIATURE ELECTROLYTIC CAPACITORS

($-10 \%+50 \%$)

$50 \mu \mathrm{~F}$	6 V	$10 \mu \mathrm{~F}$	10 V	$125 \mu \mathrm{~F}$	10 V	$40 \mu \mathrm{~F}$	16 V	$8 \mu \mathrm{~F}$	40 V
$100 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$200 \mu \mathrm{~F}$	10 V	$6-4 \mu \mathrm{~F}$	25 V	$16 \mu \mathrm{~F}$	40 V
$200 \mu \mathrm{~F}$	6 V	$20 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$10 \mu \mathrm{~F}$	25 V	$50 \mu \mathrm{~F}$	40 V
$320 \mu \mathrm{~F}$	6 V	$25 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	15 V	$16 \mu \mathrm{~F}$	25 V	$10 \mu \mathrm{~F}$	64 V
$6.4 \mu \mathrm{~F}$	10 V	$64 \mu \mathrm{~F}$	10 V	$25 \mu \mathrm{~F}$	15 V	$25 \mu \mathrm{~F}$	25 V	$2.5 \mu \mathrm{~F}$	64 V

1/6 each
$250 \mu \mathrm{~F} \quad 12 \mathrm{~V}, 100 \mu \mathrm{~F}$ 40V $1 / 6$. $1000 \mu \mathrm{~F} 25$ volt $6 / \mathrm{F} .2500 \mu \mathrm{~F}$ $25 \mathrm{~V} 9 /=.500 \mu \mathrm{~F} 50$ volts $5 / \mathrm{o} . \quad 1000 \mu \mathrm{~F} 50$ volt $8 / \mathrm{m}$

CERAMIC DISC CAPACITORS

100 pF ; $150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 330 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}$, $1000 \mathrm{pF}, 2000 \mathrm{pF}, 5000 \mathrm{pF}$, $10,000 \mathrm{pF}$, 5 d each.
0.02μ F 800 volt 8 d each.
GANGED STEREO POTENTIOMETERS
$\frac{1}{2}$ watt carbon track $5 \mathrm{k} \Omega+5 \mathrm{k} \Omega$ to $1 M \Omega+1 M \Omega$ log or linear, 8/- each.

SKELETON PRE-SET POTENTIOMETERS

Linear: $100,250,500$ ohms and decades to 5 M ohm $\pm 20 \%$ $\leqslant 250 \mathrm{k} \Omega, \pm 30 \%,-250 \mathrm{k} \Omega$. Horizental or vertical P.C. mounting (0.1 matrix).
Miniature 0.3 watt $1 / 0$ each.
Sub-miniature 0.1 watt 10 d each.

TRANSISTOAS

BC107, 3/6. BC108, 3/-. BCI09, 3/6. BFY50, 4/6. BSY56, $6 /{ }^{2}$. $2 \mathrm{~N} 3055,16 / \mathrm{F} .2 \mathrm{~N} 3703,3 / 3.2 \mathrm{~N} 3705,3 / 5$. 2N37II, 3/11. 2N4901, 30/. TAA263 3 stage d.c. coupled amplifier d.c. -600 kHz . Output $10 \mathrm{~mW} 150 \Omega, 15 / \mathrm{H}_{\text {. }}$ TAA 320 M.O.S.T. input followed by a bi-polar transistor, 13/-.
DIODES-OA85, OA9I, I/6 each.

SILICON RECTIFIERS

BY236 $800 \mathrm{~V} 0.8 \mathrm{amp} 3 /-$ each.
BY237 1250V $0.8 \mathrm{amp} 3 / 6$ each.
VEROBOARD

0.15 Matrix	0.1 Matrix
$3 / 3$	$3 / 6$
$3 / 9$	$4 / 3$
$3 / 9$	$3 / 9$
$5 / 3$	$5 / 3$
$14 / 6$	7
$9 / 6$	$9 / 6$
$3 /-$	$3 / 6$
$7 / 3$	$7 / 3$

$2 \frac{1}{2} \times 3 \frac{3}{4}$
$2 \frac{1}{2} \times 5$
$3 \frac{3}{2} \times 37$
$3 \frac{3}{2} \times 5$
$\times 5$
$17 \times 3 \frac{3}{2}$
Pin insertion tool
Pkt. 36 pins
Spot face cutter

ROTARY SWITCHES

1P12W, $2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}, 4 / 6$.

GRADUATED DIALS

For use with potentiometers, selector switches, etc., 3/3.
C.W.O. plonse. I/6 post and packing on orders under 1 I.

Export Enquiries walcome
YATES ELECTRONICS (FLITWICK) LTD. 29 LYALL CLOSE, FLITWICK, BEDS.

Colbert Pana-Vise work positioners are specifically designed to quickly and easily achleve the most convenient, comfortable and time-saving work position.

Available with vacuum clamp or screw-on base.
They can be rotated, tipped, tilted, angled, elevated, lowered.

The required work position is firmly secured with a patented one-knob control, a unique feature of Colbert Positioners.

A series of special holders is avallable for various types of work.

Full detalis available on request.

Distributors:

SPECIAL PRODUCTS DISTRIBUTORS LTD.
8I Plecadilly, London, W.I.
Tel. 01.6299556 Cables: Speciprod London
(Made in U.S.A.)

THE WILSIC Mk II REVERBERATION UNIT KIT

A new, all silicon version of our self-contained, 6 eransistor, reverberation chamber to which microphones, instruments, tuners or tape recorders may be connected for added dimen* sional effect. The output is suitable for most amplifiers and the unit is especially suitable for use with electronic organs. A ready-built spring and transducer assembly is used. ($58 / 11$ if bought separately).
Complete easy-to-build kir, with constructional notes and circuits: 87.10 .0 . Pre-drilled and printed case 34/- extra. All parts available separately. Send $1 /-$ for circuit and construction details.
THE IMPROVED WILSIC
SIGNAL INJECTOR. NOW allsilicon eircuit for extra high frrequency harmonics. Light and compact, measuring only $\left.33^{* \prime}\right) \overbrace{}^{5}$ (excluding probe). Price ready for use, including battery $32 / 6$ post free.

THE WILSIC WAH-WAH PEDAL KIT

SELECTIVE AMPLIFIER MODULE. The basis of che WahWah pedal. Kit contains all the components to build a 2 -transistor circuic module, also the sockets, control, etc., required for she constructor to assemble his own design, $35 / \mathrm{o}$
constructor to assemble his own des.
FOOT VOLUME CONTROL PEDAL. Foos pedal unir in very strong fawn plastic. Fitted with output lead and plug for connection to guitar amplifier. May be used for volume control or converted to Wah-Wah by adding che module.
Pedal unit only $\mathbf{E 5} \mathbf{1} \mathbf{1 2 . 6}$.
Complete kit for Wah-Wah pedal $\mathbf{\text { E7.0.0. }}$
All post free.
Send 1/6 for our catalogue of components, testmeters, musical electronics and more details of the above items.

Callers welcome.

WILSIC ELECTRONICS LIMITED 6 COPLEY ROAD, DONCASTER, YORKSHIRE

Telephone
 01-452 0161/2/3 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 HRs. 9-5.30 Mon-Sat

RADIO.CONTROLLED MODELS - COMPUTERS - ELECTRONIC ORGANS -HI-FI
 Make them yourself with the help of Pitman and Museum Press

RADIO-CONTROLLED MODELS

R. H. Warring

Provides complete information on radio control as applied to model aircraft, boats and land vehicles. "This well-documented and illustrated handbook will be of great service to the serious modeller." Boys Own Paper.
18s. (90p) net

COMPUTERS FOR THE AMATEUR CONSTRUCTOR

R. H. Warring

How to make a simple working model computer for as little as four or five pounds, Once it is appreciated that the amazing performance of a computer reduces to a mere basic function, it becomes a subject for the amateur constructor.
25s. ($\mathbf{(1 \cdot 2 5)}$ net
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR
Second Edition by Alan Douglas
For the first time, this book presents not only a detailed design for a full-scale argan, but a complete explanation of everything to do with transistorised organs.
20s. ($£ 1 \cdot 00$) net

PICK-UPS: THE KEY TO HI-FI

J. Walton

A second revised edition introducing material dealing with pick-up "compatibility." Hi-fi news said of the first edition, "It can be highly recommended as a first class introduction to the subject of high-quality record reproduction."
15s. (75p) net
PITMAN PUBLISHING
39 Parker Street, London, W.C. 2

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

READERS RADIO (P.E.)
BE TORQUAY GARDENB, REDBRIDGE, ILFORD, E88EX.

Tel. O1-550 7441
Poatage on 1 valve 9d, extra. On 2 valven or more, postage 6d. per valve extra. Any Parcel Invured against Damage in Tranalt 6d. extra.

LARGE MU

WITH ALL THESE FEATURES

* 20,000 ohmivolt \nrightarrow Overload pr
t Mirror Scale \star Free batteries
t D.C. volss: $0.6,3,12,30,120,300$.
t D.C. voles: $0.6,3,12,30,1$
t A.C. voles: $3,30,120,600$.
* D.C. amps: $50 \mu \mathrm{~A}, 600 \mu \mathrm{~A}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$.
\star Resistance: $10 \mathrm{k}, 100 \mathrm{k}$, 1 meg. 10 megs. Half
scale reading: $60 \mathrm{n}, 600 \mathrm{n}, 6000 \mathrm{n}, 60 \mathrm{nK}$
* Decibels: -20 to +46 db .
* Size: 6 4t 6 2t.

Money back if not delighted

ONLY SPECIAL 'GOSUUT' CUTTER \& SHAPER
p. \&p.3.- OFFEF

The easy way to cue \& shape metals, plastics,
 for different uses, Never need re-sharpening, Lise price $37: 6$
OUR PRICE ONLY 28: 6, p. \& p. $2: 6$.
Dept. PEG, 31 Albert Rd., Hendon, London, N.W. 4

MONO TRANSISTOR AMPLIFIER
 pair．Oatput transformer coupled to 3 ohm and I5 ohm apeaker eockets．Standard phono input nockets．Full wave bridge rectiter power bupply for a．c．mains 200 2helector for PU1，PVi2，tape，radio．The H8L． 700 it atrongly constructed on rigid vteel chassin bronze hammere enamel finlsh，size $91 \times 6 \times 4 t$ in， htgh.
Sepaltivtty－PU $1-50 \mathrm{~m} / \mathrm{v}_{\mathrm{g}} 56 \mathrm{~K}$ input Impelance． PV2－ $110 \mathrm{~m} / \mathrm{v}, 1$ meg input impedance．
Tape－ $110 \mathrm{ma} / \mathrm{v}, 1$ meg input impedance． Radio－ $110 \mathrm{~m} / \mathrm{v}, 1$ meg ingut impedanc Output power meanured at IKc－6．2 watta RMS into 3 ohms，$\$ 8$ watta RM8 into 15 ohm．Overall frequency responde $30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kofac}$ Continuously variable tone controls：Basa，+8 db to -12 db at $100 \mathrm{c} / \mathrm{l}$ ．Treble，
+10 db to -10 db at 10 Kcin The H8L． 700 has been designed for true high fldellty The H8L． 700 has been deaj gned for true high fideity reprodsction from radio tumer，gramophone deck and cope
recorder preamp．Supplied ready built and tested，com－ recorder preamp，
plete with mnobs，attractive anodised aluminium front
escutcheon panel，lone apindles（cant be out to suit your escutcheon panel，long spindles（cant be out oo suit your tratructlens．
OUZ gPECLLL PRICE $\mathbf{£ 7}$ ．19．6．

LOUDBPEAKRE BARGANG

$5 \mathrm{in} 3 \mathrm{ohm} 16\}-P$. \＆$P, 3 /-, 7 \times 4 \ln 9 \mathrm{ohm} 81 / \bar{P}, P$ \＆P ．
 $13 \ddagger \times 8 \mathrm{in} 8$ ohm with high fux ceramio magnet $48 /=$ （16 ohm $45 /-\}_{,}$P．\＆P．6／－．E．M．I． $13 \times 8 \mathrm{tn}, 3$ or 15 obm
With two inbult twetere and crossover network 4 gns， With two
P．\＆
P． 6 J
日RAND METF． 12 in 15 FW H／D Speakeri， 3 or 15 ohm． Current production by well－known Britloh maker．Now with HIthx ceramilo ferrobar magget amembly $85,10.0$ ，
 ble is 3 or $8 \mathrm{ohm} 15 / \mathrm{each}$ ； 15 ohm 18／6 each，P．\＆P．2／6．

12la＂RA＂TWII COFA LOUDAPEAKEX 10 watte peak handiling． 3 or 15 ohm ， $87 / 6, P+\& P$

BATATCED ARYATURE EARPMORTS

approx． 70 ohmimpedance，can bo used aa ultra sengitive GRYGTAL IIKiss．High linp．for deak or hand use， High sensitivity．18／0，P．\＆P．1／6
HIGF IGPEDA畀E CRYETAL ETICK MIESS．OUR
 senalivity． $8 / 8 / 6$ ．P．\＆P． $2 / 6$ ．

 6：1 Integral glow motion，Sultable for nominal $470 \mathrm{kc} / \mathrm{s}$
i．F．Slze approx， $2 \times 1 \times 1 \mathrm{f}$ ．Ondy $8 / 6$ ．F．\＆P． $2 / 6$ ．

HONSTWRKL Yictog WITCEES \＆／P．C／O，Push－button

 angled and rotated in any drection． 12 sectlon Heavy Chrome．Kxtends from 7° to approx． 58^{*} ．Maximum diameter fr．10／－esch．P．\＆P．1／6．faection LacqueredBrase．Extends from 6^{*} to approx， 221° ．Maxinum Brase，Extends from
dimpleter $\mathbf{1}^{\prime \prime}$ ． $6 /=$ each．

TRANSFORMER BARGAIMSI
 Giving 13 slternatives，Frimary：0－210－240V．Becon－ dary combinations： $0-\sigma-10-16-20-260-30-30-40-60 \mathrm{~V}$ bald Wave at 1 amp or $10-0-10,20 \cdot 0-20,30-0-30 V$ ．at 2 minp

 Prl， $200 / 240 \mathrm{~V}$. Sec． $9.0-9$ at 800 mA ． $11 / \mathrm{m}, \mathbf{P}_{\mathrm{P}}$ \＆ $\mathrm{P}, 2 / \mathrm{B}$.
 Tapped Prlnary $200-220-240 \mathrm{~V}$ ．Bec． $21 \cdot 8 \mathrm{~V}$ at 500 m A ． 1＋6．P ．\＆P． $2 / 6$ ．
 input．Nominal output for 6 or 12 V ．batterjes 3 ampa．
slze approx． $3 \times 2 t \times 2 \mathrm{fa}$ ．Brand Nev．Price $81 / \mathrm{c}$ ．

Open all day Saturday
Early closing Wed． 1 p．m．
 $\underset{\text { Tube }}{4} \mathbf{S}$

SPECIAL OFFER！！

Your opportanity to aceuire a arst olsm R1－FI LOUD－
 Beatitaly made task finh onclosure mith moit attreetive Tratit tront gite 1
 Power handiling 10 with．Availsble 8 or 15 obm impedance．

TRANSISTOR STEREO $8+8$ MK II Yow nulog sitcon Transistiors to Areat five stages on each chanoel teanalting in even lower noline level with improved
 Uses 14 transpetoris glviog 8 watta pris pull outpur per channel（18W mono）．Integrated prearnp，with Rass，
 Ceramic or cryoin tarthiget．
 atiractive tront panel，knobe，whre，solder，vutte，bolts－ no extras to buy．SImple step by tuep inatructions enable any coustruetor to butild an amplitier to be proud of Briet speciication：Freq．reaponae \pm 8dB．20－20，000of／9． Basse boost approx．to +12 ldB ．Treble cut approx．to $-18 d B$ ．Negative feedback 1 Bdi over mata amp． Power requirementa 25 at at 0.6 amp ．
PRICES
RICES：AMPLIFIER KIT 810.10 .0 ；POWER PACK Aloo avaliable STEREO $10+10$ ．As above but 10 wntte
 PACK KIT E 3.10 .0 ．
Circuit diagram，convtruction details and parts lat（free Wlth k（t） $1 / \mathrm{d}$ ．（S．A．E．）．

GRNREAL PURPOEE HIQH RTABIIITY TRAY
gISTOB PRE－AMPLIFIER．For P．U．Tape，Mike，
Guitar，etc．，and guitable for use with valve or Battery supply or direct from H．T，line 200／300V Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$ ．Gain 26 dB ． Bolld encapanlation size $1!\times 14 \times$ Iin，Brand new－
complete with instruetions．

SPECLAL PURCEASE！
AMI \＆APEED PLAYER Heavy 81 in．metal turntable． Lov tutter performance $200{ }^{250}$ 250 V bladed motor（90 V
tap）．Complete whth lateat tap）．Complete with lateak
type lightweight plek－up arm type lightweight plek－up arm
nod mono cartridge with too Btylti for 1 LP／78．
$68 /=$. P．$\&$ P． $6 / 6$.

QUALITY RECORD PLAYER AYPLIFIERR KK II A top－quality record plager amplifier eraplosigg heavy
duty double wound maine translormer，ECCB3，ELSA4， duty double Found maine transtormer，ECC83，ELs4， Complete with outpot trandiormer matched for 3 ohm Complete with outpot traneiormer matched PRICA $75 /=$, P．\＆P． $6 / \%$ ．ALEO AYAILABLLE mounted on board with output transformer and speaker ready to

 sjun．ahove．Wint take above amplifier and any B．8．R，or GARRARD changer or Single Player（ercept AT60 and
SP2a）．Size $18 \times 15 \times 8$ in．PRICE 78,6, P，\＆P． $9 / 6$ ．

AEPLTHIERE AODIO 125 Dealgned sor Hi－Fi seproduc lon of record．A．C．Mains operation．Ready ballt on
plated heary gauge metal

 4．1． h．Incorporates ECC83，
EL84，EZ80 VBlves．Heavy EL84，EZ80 valres．Heavy
duts，double wound malns transformet and output tranh－ tranmermet matched for 3 ohm speaker．Separale volume contror and now with mprored Wide ragage tone controls glving basd and trebits．Front．
cut．Negative feedhack lime．Output 4$\}$ watts． cut．Negative feechack inde．Oniput iended for remote mounting of controle．Complete with kopos，valven，etc．， wired and teated for only 44.15 .0 ．P．\＆P． $6 / \mathrm{F}$

HEL＂FOUR＂AYPLIFIERR ETT，BImilar in appearance to Ha3d above but employs entirely different and advanced

HARVERSON＇S SUPER MONO AMPLIFIER

 A super quallty gram amplifer using a double woond maing tranuformer，EZ80 rectifier and ECL82 triode pentode valve ag audfo araplifier and power outprat stage．Impedance 3 ohms．Output approx． $3 \cdot 5$ waits．Volume and tone controll．Chaspip pize only 7 h ．Whde $\times 3$ inn．deep 6 in ．High overall．AC matne $200 / 240 \mathrm{~V}$ ，supppled absolately Brand New completely wred and tested with valves nail good gquality output transformer．FEW ONL
$\begin{array}{ll}\text { OUR Bock botton } 55 /= \\ \text { BAROAIE PRIGS } & 55 /=\end{array}$

DE LUXE STEREO AMPLIFJER

 are provited for bass and treble control，glving bzse and treble bonst and cut．A dual volume control is used． Balance of the left and right hand channels can be adjusted by means of a separate＂balance＂control fitted at the rear of the chassig．Input zensitilvity le approxi． mately $300 \mathrm{mo} / \mathrm{V}$ for full peak output of 4 watto per channel （ 8 watu mono），Into 3 obma speakers．Full negative feedbrok in a carefuls calcuistod eireait，aliows high Folume levels to be used with negigible diatortion
Supplied complete with knobs，chansig size 11 jl ．W $\times 4 \mathrm{in}, \boldsymbol{x}$ Supplied complete with knobs，chassisgize ina．Wxitn．x．

A－SPEED RECORD PLAYER BARGAIKS
Mainu modefir．All brand now in maker＇s packing．
 With lateat mono compatible cartridge 20.19 .6 ．Carr $6 / 6$ ． LATEST GARRARD MODEI LATEST GARRARD KODELS．All Gyper aralisble 102s， 2025，8FR5，8000，AT80 ete．8end 8．A．E．Ror Latent Prices PLIMTR UNIT8 cut out for darrard Models 1025， 20215 2000． $3000, ~ A T 60, ~ B P 25$.
OLX PRICE 5 gns，complete．P．\＆P． $8 / \mathrm{A}$ ．

LATEST ACOS OP91／1BC Xono Compstible Cartridge with $80 /=$ P．\＆$P, 1 / 6$ ． sonotorg 2589 High output stereo Cartridge． mount ing bracket．Lifit Prtee 48／7．
SOMOTONE 日TAHC compatlbie Stereo Cartrldge with
 RPLLP／Stereol79，32／6．P．\＆P．2］． or steren records on mono equipraed 30% HIGR GAIE 4 TRAMETSTOR PRINTED CIBCEI
AXPLITER KIT Typo 2A1
Cypeak out
of 1f खatte．
－All matio－
dard Britigh
comsponents．
componente
printed circuit panel aize on

Gencrous bize Driver and Output Trabigformers．
 nd matched pair of ACl28 o／p）．－ 9 volt operatlon． －Everything supplied，wiro，batery clipg，aolder cto． －Comprehenslve esay to follow hastractions and circult
 SPECIAL PRICS
tested， $58 / 6$ ．P．A P

0／14 WATT EI－FI
A）IPLIFIER KIT A．styliahly finikhed with an output of 14 Fattr from 2 EL．s48 in puah－pull． of both muaic and speech，with negli－ gible hum，Separate Inputs for mike and gram allow records and announcemest
 o Pully shrovided eection wound output transtormer to match－150 apeaker and 2 independent volume controla， and beparate base and treble controls are provided giving
good lifl and cut．Vaiveline－up 2 EL 848, ECCB3，EF80 and F：Z：80 rectifer．Simple instruction hooklet $2 ; 6$（Free with parta）．All parts mold meparataly，ONLY 17，0，6．9．\＆P．8／6． Also available ready built and tested complete with atd． imput socketo，89．5．0．P．\＆P．8／6．
BRAND EEW TRATBIRTOR BARGADFS．GET 15

 Bet of Muilard 6 trangistors
matched patr AC128 $26 j^{-;}$ORPIS Cudmium Bulphide matched parr and
Cell 10／8．All poat free．
FITATR AND BRXDE gPRAEERS AKD CABLKGT FABRICS app．Biln．Wide．Usually $35 /-$ yd．，our price 16／－ yd．length．P． $\begin{gathered}\text { P．} 2 / 6 \text {（min．} 1 \text { yd．）．B．A．E．for samplos．}\end{gathered}$

HARVERSON SURPLUS CO．LTD． 170 HIGH ST．，MERTON，LONDON，S．W．I9 Tel．01－540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
（Please write clearly） PLEA日E MOTE：P．$£$ P．CHAROES QUOTKD APPYYTO D．E．OTLY． P．AP OX OVERSEAS ORDTRI CHARQED EKTMA．

Practical Electronics Classified Advertisements

RATES: $1 / 6$ per word (minimum 12 words). Box No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classifled Advertisement Manager, "Practical Electronics " IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS

BUILD IT in a DEWBOX quality cabivet $2 \mathrm{in} \times 2 \operatorname{lin} \times$ any length. DEil LTD. Rllagwood Koad, Ferndown, loorset. S.A.E. for leaflet. Write now-right now.
gOUND SWITCH (Feb.) printed circuit with data) sheet, $12 /$. Rhythm Generator (Nov/ Dec. 88 printed ctrcuit with full data, $29 / 6$. Both inc. P.P. Send C.W.O. to a LMARY DESIGNS, 12 Lattimore Road, Wheathampstead, Herts.

PARAPHY8ICAL LABORATORY, DOwnton, Whits, Teleklnesis, Magazines. Send S.A.E. for list. Samples 20/-.

TOP TRANSISTORS

ACY22	$1 / 9$	OC45	$1 / 9$	ZTX300	$1 / 9$
BC108	$1 / 9$	OC71	$1 / 9$	$2 N 706$	$1 / 9$
BFY5	$1 / 9$	OC201	$1 / 9$	$2 N 2926$	$1 / 9$
BFY52	$1 / 9$	OC202	$1 / 9$	$2 N 3708$	$1 / 9$
All the above zypes are available at	16				
for 21.	Brand	New.	Individually Tested.		

ANTEX SOLDER IRON

Because of the lightweight construction and high efficiency nickel plated bit, this powerful 15 wart iron takes the slog out of soldering. Special low price. Model CN240 volts.

ACT NOW 29/1I

MONEY BACK GUARANTEE P. \& P. I\%
J. M. KING (Y), 17 Buckridge

Portpool Lane, London, E.C. J

MORE ROBOTS

Synchetic Animals with "BRAINS" of their own. The LATEST range of projects include: an electronic "animal' which "LEARNS", and an Electro Chémical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE YOU are a transmitter/receiver which has quire a useful range and RADIATES WITHOUT USING R.F. also TEN new projects, one of which is an electronic dice machine, HOSTS OF EASY-TO-CONSTRUCT projects, for anyone with a basic knowledge of Electronics. DON'T WAIT. SEND 3/for your list-NOW!
To: ‘BOFFIN PROJECTS' 4 CUNLIFFE ROAD
STONELEIGH. EWELL, SURREY Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

PHOTO ELECTRIC SWITCH KIT Light cell transistor, relay erc. Elegant case in hammer blue 54* $\times 27^{*} \times 44^{*}$ fitted with light hood, ideal counter alarm, dawn/dusk switch,
ete, 35 /-pose paid.

6 OR 12 VOLT

FLUORESCENT LIGHTS
12 ins. \& Watt tube ample light for caravan, tent, etc. Fully transistorised, low battery drain Unbeatable at $65 / 6$ or in kitform 57/6
4 WATT GRAM AMPS.

Volume and tone controls, mains operation,
3 output, new and boxed
$\mathbf{S A L O P}$ ELECTRONICS
Sallers welcome
23 WYST Cop
23 Whid
Shrowbury, Shropshire

MISCELLANEOUS (continued)

Abstract

BERVICE FOR THE AMATEUR ELECTRONIC ENTHUSIABT. ATe you building equipment requiring a transformer? If so send for an immediate quotation, or s.a.e. for our comprehensive price list. Also avaliable on request enamelled copper wire price list. BANNER TRANSFORMERS, 84 Old Lansdowne ld., West Didsbury, Manchester, 20.

CLEARING LABORATORY, SCOPPS, V.T.Y.M'S, V.0.M's, H.S. recorders, transcription turntables, - electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, brldges, spectrum analysers, voltage regulators, sig.gens, M / C relass, components, etc. Lower Jeeding 236.
CABTLE LABORATORIES. Semiconductors, printed circhits, etc. Special offers for this month only. os in glass fibre copper laminate 6d per square inch, S.R.B.B. copper laminnte 2 d d per square inch. A stamp brings full lists. STAPLETON CLOSE, Highworth, Wilts.
P.C. BOARD, $19 \times 7{ }^{2} \times \frac{1}{8}$ In, $2 / 9$ each; $13 \times 58 \times 1$ in, $1 / 6$ each. Reed switches 1A, 250 V . Tested 2 - each. Miniature Type AL'LTER, 41 Bromholm lload, Abbey Wood, London, W.E.2.
mUsical miracles! Drum, Cymbals, whawas and Fuzz modules. New unique effects units, Percussion, etc. Goorl waa-waa kits 49/-. Famons "Mister Bassman" bass pedal unit. Also bargain components list of reed switches, etc. Send S.A.E. NOW! D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

SERVICE SHEETS

LARGE SUPPLIER OF SERVICE SHEETS

T.Y., RADIO, Trausisisors, tapes, car rados

5/- EACH. MANUALS FROM 10/(Uncrossed P.O.'s please, original returned if service sheets not available.) FREE TV FAULT TRACING CHART OR TV LIST ON REQUEST WITH ORDER
C. CARANNA

71 BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

SERVICE SHEETS (continued)

SERVICE 8HEET8, Radio, TV, etc., 8,000 models. List 2/-. S.A.E. enquiries. TELRAY 11 Mandland llank, Preston.

8ERVICE 8HEET8 (1925-1970) for Televisions

 Radios, Transistors, Tapo lecorders, kecord Players, etc., by return post, with free FaultFinding Guide. Prices from $1 /-$. Over 8,000 models available. Catalogue 2/6. Please sead S.A.E. with all orders/enquiries. HAMLTON RADIO, 54 London Road, Bexhill, Sussex.RADIO TELEVISION, over 8,000 Mlodels. JOHN GILBERT TELEVISION, ib Shepherds Bush Rd., London, W.6. SHE 8441.

ELECTRICAL

240 ELECTRICITY ANYWHERE

BEST EVER 200/240 VOLT "MABNS"
SUPPLYFROM IZVOLTCARBATTERY
Exelusive World Scoop Purchase. The fabulous Mk. $2 D$ American Heavy Duty Dynamotor giving the most Brilliant 200/240 volt perforf mance of all time. Marvellous for Telovision. Drills, Power Tools, Mains Lighting, AC Fhuorescent Lighting and all 200/240 vols Universal AC/DC mains equipment. Made at tremendous cost for U.S.A. Gove, by DelcoRemy. This magnificent machino is unobtaine Onjly \& $4.19 .6+10 / 6$ postage. C.O.D with Oniy puasure, refund guarantes. Please send S.A.E. for illuserated details.
Dapt. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade
ELACKPOOL, Lmncashire

HI-FJ EQUIPMENT

SHURE MAGNETIC GARTRIDGES, manufacturer's pack, brapl new, post free, 3\{3DM \&4.19.6; M44/5/7 $£ 7.10 .0 ;$; M4E e8.17.6; प5515 29.17.6: 3T75/6 Type 2 or M175G Type 2 £12.5.0; M75EJ \&15.15.0; M75E Type 2 ع16.10.0; foldring G800 27.17.6; Garrard SP25 \$10.17.6; AP75 \$16.10.0. P. \& P. 7/6. Complete Hi-Fi Stereo System Normally 57 gns. Our price 39 gns. ${ }^{2}$ \& $P^{2} \cdot 27 / 6$. MAYWA RE \& CO., 38 Achilles Road, London, S.W.6. Mail Order Only.

COURSES

NEWCASTLE UPON TYNE POLYTECHNIC
 Department of Physics and Physical Electronics

The following courses will be offered during the session 1970-71

B.Sc. (Honours and Ordinary) in Physical Electronics

A four year "thick sandwich" "ourse $($ i.e., three years full-time in College and one year in Industry) leading to the above qualification is open to both college-based and industrybased students. Indussrial sponsorship may be obtrained for suitably qualified students. Entry qualifications include two appropriate "A" levelis, or an appropriate O.N.C. or O.N.D.

M.Sc. in Advanced Experimental Physics (Full-time or Part-time)

A twelve month full-time or three year part-time course commencing in October, 1970. Optional subjects of study include Semi-conductor Device Physics and Electrical Properties of Thin Films.

Further information may be obtained from the Head of Department of Physics and Physical Electronics, Newcastle upon Tyne Polytechnic, Ellison 8uilding, Ellison Place, Newcastle upon Tyne, NEI BST. (Ref. AI7O)

SITUATIONS VACANT

TELENG

MANUFACTURER OF COMMUNAL AERIAL AMD TELEVISION EQUIPMENT

Due to reorganisation and expansion at their new premises, vacancies exist for the following laboratory staff:

WIREMEN, LABORATORY ASSISTANTS MECHANICAL DESIGN DRAUGHTSMEN JUNIOR, INTERMEDIATE \& SENIOR ENGINEERS

for interesting original work on high frequency transistor amplifiers and passive networks. Interest and initiative are as important as recognised academic qualifications. Training can be given to applicants without previous laboratory experience.
Telephone, write or call now for an interview: Miss S. Holden, Personnel Officer, TELENG LTD., Arisdale Avenue, South Ockendon.
Tel.: South Ockendon 3447. Ext. 52.
Please quote ref, no. TT. 2

YOUNG ELECTRONIC TEGHNICBAN required

 to fill a post in a newly established research workshop. Duties will include maintenance of a wide range of apparatus used in biologleal research, also design and construction of units as required by the scientific staff. Salary depending on experience and qualifleations in the range $£ 1,030-£ 1,550$ p.a. Apply to the Secretary, INSTITLTE FOR RESEARCH ON ANIMAL DISEASES, Compton, Nr. Newbury, Berks., quoting Keference No. 116 and glving the names of two referees.A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Gullds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Whle range of Home Study Courses in Electronics, Computers, Jadio, T.V., etc. 132-page Guide-FREE. Please giate sablect of interest, BRITISH INSTITUTE OF ENGINEFRING TECHNOLOGY (Dept. 124K), A dermaston Court, Aldermaston Berks.

APPOINTMENTS

CAREERS in SCIENCE and ENGINEERING

Exciting and rewarding opportunities in these fields are almost unlimited. Write now for details of the following courses offered by:

BOURNEMOUTH COLLEGE OF TECHNOLOGY

UNIVERSITY OF LONDON EXTERNAL DEGREES
B.Sc. General (Hons.) Mathematics, Physics, Chemistry, Botany, Zoology, Statistics
B.Sc. (Eng.) (Hons.)-Electrical (including Electronics)
These courses are suitable for both men and women.
Study by the sea in Britaln's foremost international and cultural resort.
For prospectus apply to:
The Principal, Room 69
College of Technology
Lansdowne
Bournemouth BHI 3JJ
Tel.: Bournemouth 20844

EDUGATIONAL

ENGINEERS. A technical cerlificate or qualifteation will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.) City \& Guilds, A.M.I.M.I., (Mech. \& Elec.), City \& Guilds, A.M. Conr.s, in all branches of Engineering-Mech., Flec., Auto, Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FRiEE 132-page guide. BRTTISH INSTITUTE OF ENGITEERING TECITNOLOGX (Dent, 125K), Aldermaston' Court, Aldermaston, Berks.

RAD10 OFFICER8 see the world. Seagoing and shore appointments. Trainee vacancies during 1970. Grants available. Day and Boarding students. Stamp for prospectus. WIRELESS COLLEGE, Colwyn Bay, Wales.

BOOKS AND PUBLICATION8

SURPLUS HANDBOOKS
 19 set Circuit and Notes 7/-P.P. 9d |155 set Circuit and Notes 7/-P.P. 9d H.R.O. Techinical Instructions 38 set Technical fnstructions.. 46 set Warking Instructions. . 88 set Technical Instructions. BC. 221 Circuit and Notes. Wavemeter 61 P.P. 9d Wavemeter Class D Tech. Instr 6/-P.P. 9d 18 set Circuit and Notes 8C. 1000 (31 set) Circuit \& Notes 6/-P.P. 9d CR. $100 /$ B. 28 Circuit and Notes $10 / 6$ P.P. I/R. 107 Circuic and Notes......... $7 / 6$ P.P. 9 d A.R.8BD. Instruction Manual. ... 1B/6 P.P. 9d 62 set Circuit and Notes...... . 7/- P.P. 9d 52 set Sender \& Receiver Circuits 8/-post free Circuit Diagrams $5 / 6$ each post free R.1116/A, R.1224/A, R.135S, R.F. 24, 25, \& 26 A.1134, T. 1154 , CR.300, BC.342. BC. 312. BC. 348 J. E.M.P. BC. 624.22 set.
 Colour Code Indicator 2/6 P.P. 6d.
 S.A.E. with all enquiries please
 Postage rates apply to U.K. only.
 Mail order only to:
 Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

EDUCATIONAL (continued)

QET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.F.R.E., R.T.E.B., City \& Guilds, Fadio, T/V, Telecoms., etc. For FREE 100page book, write Dept. 856K, CHAMBERS COLLEGE, College House, 29.31 Wrights Lane, Kensington, London, W.8.

First-class opportunities in Radio and Electronics await the ICS trained man. Let I C S train YOU for a well-paid post in this expanding fieid. ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radiol TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

- C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS EXAMINATION.
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students coached until surcessful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how 1 CS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronies will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

International Correspondence Schools
(Dept. 152), Intertext House, Stewarts Road.
London, S.W.8.
NAME
Block Capitals Please

ADDRESS

REGEIVERS AND COMPONENTS

EX COMPUTER PRINTED CIRCUIT PANELS $2^{2} 4^{*}$ packed with, semiconductors and top quality resistors, capacitors, diodes, exc. Our price, 10 boards $10 / \mathrm{F}$. P, \& P. 1/6. With a guaranteed minimum of 35 transistors. Transistor Oata included

SPECIAL BARGAIN PACK, 25 boards for E1. P. \& P. 3/6. With-a guaranteed minimum of 85 transistors. Transistor Data included.
PANELS with 2 power transistors sim. to OC28 on each board plus components. 2 boards (4 X OC28) 10/\%. P. \& P. I/6d.
9 OA5, 3 OAl0, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET872, 3 GET B72B, I GET875. All long leaded on panels
4 for $20 / \mathrm{F}$. P. \& P. $5 /$.
EX COMPUTER "MEMORY" CORE STORE PLANES

$$
\begin{aligned}
160 \text { BITS \&I } & \text { P. \& P. 2/- } \\
4000 \text { BITS \&4 } & \text { P. \& P. 4/- } \\
10000 \text { BITS } \& 8 & \text { P. \& P. } 8 /-
\end{aligned}
$$

250
 MIXED RESISTORS
 $\frac{1}{4} \& \frac{1}{2}$ Watt
 12/6

DIODES EXEAPT.

10 Amp 150 PIV 4 for $10 /$.
20 Amp 150 PIV
4 for 1
35 Amp 150 PIV
4 for 45/-

EXTRACTOR/BLOWER

FANS (Papst)
100 c.f.m. $4^{*} \times 4 \frac{1}{2}$
2800 r.p.m.
50/- ea. P. \& P. 5/-

RELAY OFFER

Single Pole Changeover Silver Contacts $2^{\circ} \times 6^{\circ} \times 7^{\circ}, 2.5 \mathrm{KK} \Omega$ Coil Operates on 25 co 50V, 8 for $10 /-$ P. \& P. $1 / 6$.

LT/STEP DOWN TRANSFORMER
Pri. 0-200-215-245V., Sec. $10-10-25 \mathrm{~V} 4 \mathrm{~A}$,
Sec. $20-115 \mathrm{~V}$ 2A, 30/., P. \& P. 6/-.
Quantity available.

I2V 4A POWER SUPPLY

Extremely well made by Frako GmbH in West Germany, with constant voltage mains transformer, tapped input from 115 V to 240 V . Full wave rectification and capacitor smoothing. Size $9^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime}$. Weighe II lbs. These units are brand new, unused and fully guaranteed. Makers' price believed to be around $\mathbf{t 8 0}$.
OUR PRICE £9.10:0
150
High Scabs $\frac{1}{4}, \frac{1}{2}$ and 1 Watr. 5% and Bezter

12/6

LARGE CAPACITY

ELECTROLYTICS
$1,500 \mathrm{mfd} 150 \mathrm{~V}$.
$4,000 \mathrm{mid} 72 \mathrm{~V}$
$5,000 \mathrm{mfd} 36 \mathrm{~V}$
$16,000 \mathrm{mfd} 12 \mathrm{~V}$
$7 / 6$ each
\& 3.10 .0 doz . P. \& P. 1o/-
EXTENSION
TELEPHONES
$19 / 6 \mathrm{ea}{ }^{\mathrm{P} . \mathrm{p}_{5 / \mathrm{L}}^{\mathrm{p}}} \mathrm{p}$.

These phones ara-extensions and do not contain bells.

KEYTRONIOS

为

WAREMOUSE AND DISPATCH

BRAKD NEW ELECTROLYTIC8 $15 / 16 \mathrm{~V} 0.5$, $1,2,5,8,10,20,30,40,50,100 \mathrm{mF}, 8.5 \mathrm{~d}$. Resistors 5\% E12 series Carbon Film $\frac{1}{}$ watt, 10 ohms to 1 megohm 1.5d. Wirewound 5 watt ohms to 15,000 ohms 10 d . Postage 1 - per order. THE O.R. SUPPLY CO., 127 Chesterfleld Road, Sheffeld, S8 ORX.

TOP PRICES PAID
for new valves and components
Write:
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

AUDIO8CAN-HI-FI lotadspeaker systems for the home constructor, cabinet kits, new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding and all necessary components. Free speaker fabric samples on request. Send 9 d in stamps to AUDIONCAN, Dept. PE, 4 Princes Square, Harrogate, Yorks.

R \& R RADIO

51 Burnley Road, Rawfenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

EBF80	3/-	PCC84	3/-	PY8I	1/6
EBF89	3/6	PC.FBO	3/-	PY82	$31-$
ECCEz	3/-	PCF82	3/6	U191	$4 / 6$
ECL80	3/-	PCL82	4/-	6 F 23	5/-
EF80	1/6	PCLE3	41-	3055	$2 / 6$
EF85	3/-	PL36	SH-	30 L 15	5/-
EY86	4/-	PLB1	4/-	30 Pl 12	4/6
EZ10	4/6	PL83	4/-	30 Cl 15	$5 /-$
EBCA1	4/6	PY33	5/-	50 CDG	7/6

POST. ONE VALVE 9d. TWOTO SIX 6d.
OVER SIX POST PAID.

[^3]
SIILCON TRANISITORS 1,000,000 FOR SALE

Clearance of pnp Siticon Alloy Transiscors from the 25300 (TO-5) and 25320 (SO-2) range and similar to the OC200-205 and 8 CY $30-34$ series. Available only from us at a fraction of the manufacturing cost. All these devices would normally beg subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amoteur Electronics, Radio Hams and for experimental use in Schools, Colleges and industry.
Supplied uncoded (no warraney by the manufacturers). But our assurance given that a minimum of 80% will be found co be good usable Silicon Alloy Transistors. good usable silicon Alloy $\begin{aligned} & \text { Please state preference of type, i.e., TO-5 }\end{aligned}$ 25300 or SO-2 25320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- 11 15s. (plus p. \& p. 3s.)
500 off-E2 10 s . (plus p. \& p. $3 \mathrm{~s}, 6 \mathrm{~d}$.)
1,000 off- $\& 4$ (plus p. \& p. 5s.)
10,000 off- 635 (plus p. \& p. ils.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, chequies, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts.
Tel.: WARE 3442

JEF ELECTRONICS

NEW FULL SPECIFICATION DEVICES Integrated Circuits complete with date: GE PA230 Audio Preamplifier 18/6 GE PA234 IW Audio Amplifier $17 / 6^{\circ}$ GE PA237 2W Audio Amplifier $32 / 6$. 42 / MEL II Photo Darlington Amp. $9 / 6$ Connectors for GE I.C. 7 \%
High Quality low cost transistors:
GE 2N5172 non $200 \mathrm{~mW} 1 / 9$
ME 0412 pnd $200 \mathrm{~mW} 3 / 9$
TI $2 \mathrm{~N} 4059 \mathrm{pmp} 250 \mathrm{~mW} 3 / 6$
MUL BFX86 npn $800 \mathrm{~mW} 6 \%$
MUL BDI 24 npn $15 \mathrm{~W} 14 / 6$
Triacs for full wave power
RCA 40593 Trigeor Diode 5/3
Plastic rectifiers for power supplies:
IN 48201.5 A 400 V Si Recrifier $2 / 6$
W005 IA SOV full wave bridge Si $7 / 6$
PD 10 2A 400 V full wave bridge $5 \mathrm{i} / \mathrm{I} /$ /-
C.W.O. P. ©P. $1 /$ - per arder. YORK SOUSE, 12 YORK DRIYE GRAPPENHALL, WARRIKGTDH, LAMES, Nail Order Only

PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned completo with layout drawing.
 EXAMPLES
 Marine.Tachometer (May 1970) 5/- ea. Musical Seave (May 1970) B/: ea,
 Waa-Waa pedal Yol 4 No. 7 2/9d. ea. Audio 5ig. Gen. (Sine and Square on one board) Vol 5 No. 10 8i6d, ea.
 S.A.E, For List. Trade enquiries welcomed.
 P.H. ELECTRON:ICS Industrial Estate,
 Sandwich, Kant. Tel. 2517.

NEW MODEL Y.H.F. KIT MK2
Our latest Kit, improved destgn and performance plus extra Amplifier Stage, receives Alrcraft, Amateurs, Moblle, Radio 2, 3, 4, etc.
This novel little set will give you endiess hours of pleasure and can be bullt in one evening. powered by 9 volt bulte in Jack Socket for use with Earphones or Amplifier.

Oniy 68/- P, \& P. Free U.K. oniy
Postal Orders, Cheques to:
Gatlenn Tradthe Co., 298 A Lodge Lane
Romford, Essex

E.M.C. Products

22 Norwich Road, Bournemouth SPECIAL OFFER! 70 walts R.M.S. DRAKD NEW!
"Mainline 70A" "amplifiers bult and tested with power supply all on chassis $12 t^{\circ} \times 5 z^{\circ} \times 51^{\circ} 110 \mathrm{vi} 240 \mathrm{v}$, 830.0 .0 . Preamp for above 5 mV , sensitivlty volume, bass, treble controls. All electronic parts insluded. Partially assembled with futh instructions to fit and assemble to above amplifier. Ideal for H1-F, Disco, P.A., Gultar, etc. E3.12.6, tncluding P.P. S.A.E. for further information and anclllary parts, speakers, etc.
Terms: Cash with order, Post Pald. Guaranteed by retum service.

FOR SALE

NEW GATALOELE NO. 18 , containing credit vonchers value $10 /$, now available. Manufaeturers new and surplus electronic and mechanical components, price $4 / 6$, post free. ARTIL'R SALLIS RADIO CONTROL LTD. 28 Gardner'Street, Brighton, Sussex.
TAPE RECORDER by Roberts of Los Angeles. Professional, Type 400, Mint Condition, Virtually Unused, Margain- 2100 . Box No. 29.
P.E. from Noy. '64 to Apr. ' 70 all bar 12 issues. Offers? DAVID ELIIS, The Retreat, Market Laュe, Linton, Cambridge.

MAR

FACT NOT FICHION. II you start RIGHT yon will he readiug mateur and commercial Morse withlu a tnonth (norinal progress to be expected). Uning seienalfcally prepareil 3 -speed recorits you antonantically learn to recnglise the code RHYTAM Without translatiog. You can't hesp it, ita as enay a For detaila snd course C.O.D. ring S.T.D. 01-660 2898 or gend 8d. stamp for explanatory booklet to
OSHSC (Box 19), 45 (GREEN LANE, PURLEY, BURREY

WANTED

CABH PAID for New Valves. Payment by return. WILLLOW VALE ELECTRONICS, 4 The Broadway, Hanwell, London, W.7. 01-567 5400/2971.

NEW RAMGE U..I.F. TV AERIMLS

All U.H.F. aerials now firted with titing bracket and 4 element grid relectors.

Lort Mounting Arrays, 7 element, 40.-: 11 element, $178 ; 14$ element, 35 of is element, 62, 6. Wall Mounting with Craniked Arm, 7 element, $60,-$ - 11 element, $87.6 ; 14$ element, 75i-; 18 element, 89.6. Mast Mounting with 21 n . clamp. 7 element, $42.6 ; 11$ element, $53 . i-1$ 14 element, $6 \pm:-\frac{18}{} 18$ element, 70% Chimney Mounting Arrasif, complete; 7 element, 22 6; 11 element, $80 ;-114$ element, $88 ; 6 ;$ is elemenr: 25- Complete assembly instructions win every amps from 75 :- . State clearty channel number required on all orders.

COMBINED BECL-1TV-BRC2 AERIALS $1+3+9,70,1+5+9,80=1+5+14,90$. ting only.
F.M. (Band 2) Loft S D, 178, "H", 35. ${ }^{3} 3$ element, ${ }^{57}$.6. External unlts avallable, Co-ax. cable, \&A, yd, Co-ax. plugs 1 6. Outlet boxes, ${ }^{3}$. P. \& P. 6/6. Send 6d, stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY

X.V.A. ELECTRONICS (Dept. P.E.)
 40-41 Monarch Parade London Road, Mitcham, Surrey $01-6484884$

tion problems with this 4-ILation Tranditor Intercom eyetem (1 master and 8 subs), in de-lars plastic cabinets for deelr or wall monntiog. Call/tailk/listen from Mastor to Eubs and Sabs to Master. Ideally syitable for Bualness, Surgery, Schools, Hospita, Ofice and Home. Operates Complete with 8 connectlng wires each $66 i t^{\prime}$. and otber accessories, P. \& P. $7 / 6$.

MAINS INTERCOM

Ko batteries-no wires. Just plug in the maina for instant two-way, loud and clear communication. On/onf gwitch and valume control w
Price E11.19.6. P. \& P. $8 / 6$ extra.
TiTsicom/BATYALARM

Same as 4-Station Intercom for twowray Instant
communication. Ideal as Baby Alarm and Door Phone. Completo with f6it. condecting vire. Battery 2/6. 声. \& P, $4 / 6$.

Tronsistor TELEPHONE AMFLIFIER
59/6
Why not boont
clency with thig incredible De-Luxe Trelephone AmpitAer, Tako down long telephone messages or coaver without holding the handeet. A usefal office ald. Onf off switch. Volume control, Baticry 2 'B extra. P. \& P 8/6. Full price refunded if not satistied in 7 days.

WEST LONDOH DIRECP SUPPLEES (PEA
108 KEASLKGTOX KIGE STRRET, LOKDON, w. 8

Three channel Colour-Organ operates from output of record player, tape recorder, amplifier, ete., requires typically 4 V r.m.s. input drive voltage, derived direct from amplifier output or across speakers.

Converts the audio frequency signals into a chreencoloured light display, the colour depending on the frequency of the signal and the intensity, on the loudness of the audio source.

Uses latest full wave triag circuitry and incorporates signal input level and minimum ambient light level conerols on each channel. ambient light level concrols on each channel.
Will drive up to 1.5 kW per channel at 240 V Will
Complete printed-cireuir board assembly, builc and tested. Size $8 \frac{1}{4}$ in $\times 6 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$. l4gns plus 10/-carriage.

SUPER "FUZZ" UNIT, Connects between guitar and amplifier, Operates from 9 V battery. Complete printed-circuit board assembly. buile and tested. Size 3 fin $\times 2$ tin $\times i \operatorname{in}$. $65 / \%$ plus $2 / 6$ carriage.
"WAA.WAA" UNIT, Connects between guitar and amplifier. Operates from 9 V battery. Complete printed-circuit board assembly, buile and cested. Size $3 \frac{1}{3}$ in, $2 \frac{1}{1}$ in (
CREATE "PHASE" on your tape recordings, records, etc., unique electronic circuitry enables you co create "phase" at the turn of a knob, Just connect between pre-amp. and power-amp.
This is not waz-waz, white-noise or swish but genuine phase-shift created electronically. Input and output impedances match to $10-50 \mathrm{k} \Omega$. Operates from 9 V battery. Complete printed-circuic assembly, buitr and tested,
Size 4 in $\times 2 \frac{1}{2}$ in ≈ 1 láin. 65/. plus $2 / 6$ carriage.
"AUTO.WAA". The basic "waa-waa" type amplifier concept has been made more sophisticated by automatically generating this effect with an oscillator. This removes the need for a potentiometer or foot pedal and replaces this with two controls to alter the repetition rate and duty cycle of the oscillator.
This unit can be connected becween a guitar and an amplifier to provide continuous "waa-waz" effect or becween an organ keyboard and amplifier. To provide an effect similar to a "Leslie" speaker with variable speed from chorale to fast rate. Operates from $2 \times 9 \mathrm{~V}$ batteries. Complete printedfrom $2 x 9 V$ batteries. Complete printedcircuit \quad assembly
$4 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in $\times: 1 \frac{1}{\frac{1}{2}}$. $\& 5$ plus $2 / 6$ carriage.

Trade Enquiries Invited Mail Order Only

DABAR ELECTRONIC PRODUCTS

98a LICHFIELD STREET, WALSALL, STAFFS.

R.S.T. VALVE MAIL ORDER CO.

BLACKWOOD HALL, WELLFIELD RD., S.W. 16
SPECIAL EXPRESS MAIL ORDER SERVICE

1N21	$3 / 6$	28908	91-	BCY54
1N218	6)-	28501	61-	BCY 60
1N28	4%	28708	$12 / 8$	BCY70
IN85	17/6	83143	19]-	BCZ11
1N208	101-	A18759	4)-	BD121
1N206	10\%-	AAI20	8)-	BD123
1N645	8)-	AAE12	376	BD124
1N725A	4/-	AAZ13	$3 / \rightarrow$	BDY11
124007	4/6	AC107	$8 / 6$	BFII6
18021	4)-	AC126	4)-	BPI17
18113	81-	AC127	b1-	BF167
18130	$2 / 6$	ACl28	4/6	BF178
18181	$2 / 6$	AC129	$7 / 6$	BF181
20220	12/6	AC187	11/-	BF184
2 C 240	816	AC188	11/-	BF180
29301	\$/6	ACY17	4/8	BF194
2G306	$81-$	ACY15	4 ${ }^{1}$	BF195
298718	$1 /-$	ACY19	55	BF196
20381A	-4/6	ACY20	61-	BF197
2 C 408	10\%	ACY21	$4 / 6$	BFX12
$2 \mathrm{G414}$	6\%-	ACY22	41-	BFX13
$2 \mathrm{G417}$	61-	ACY27	\$1-	BFX 29
2 N 214	$8 / 6$	ACY28	4)-	BFX 30
2N 104	6\%-	ACY39	12/6	BFX 35
2N247	$0 / 6$	ACY40		BFX48
2N697	4/-	ACY41	B-	BFX44
2N698	$4 / 6$	ACY44	$7 / 6$	BFX6
2N706	s/-	AD140	81-	BFX88A
2N706A	816	AD148	121-	BEX85
2N708	51-	AD150	151-	BFX88
2 NT 09	12/6	AD161	7/6	BrX87
2*711	$7 / 6$	AD162	7/-	BFX88
2N987	1016	AF106	$10 / 6$	EFY20
2N1090	$0 / 6$	AP114	$5 /-$	BFY22
2N1091	8/6	AFL15	$5 / 9$	BFY34
2 N 1131	8/6	AF116	$4 / 6$	BFY41
2N1132	7/6	AF117	416	BFY43
2N1302	$4{ }_{1}$	AFI18	121-	BFYs0
2N1303	$4 / 3$	AF119	4/-	BFY51
2N1306	$4 / 9$	AF124	8 -	BFYS8
2\$1305	81	AF128	$5 /-$	BPY77
2N1308	8 8-	AF126	$5 / 6$	BFY90
2N1307	81	AF127	$4 / 6$	B8X27
2स130B	8)-	AP189	$7 / 6$	B8X 60
2N1309	6/7	AF178	$12 / 8$	B9X61
2N1420	$7 / 3$	AF179	11/-	BSY26
2N1507	516	AF180.	121-	38Y27
2N1526	$7 / 6$	AP181	81-	BSY51
2 N 1909	$45 /$	AF186	117-	BSY78
2 N 2147	16/6	AFY18	$22 / 6$	B8Y79
2N2148	121-	AFZ11	$61 /$	B8Y82
2N2168	14j-	AF212	8/6	B8Y83

TERMS
c.w.o. no C.O.D

OPEN DAILY TO CALLERS
no C.O. Mon.-Sat. 9 a.m.-5.30 p.m. Closed Sat. I. 30 p.m.-2.30 p.m. Tel, 01-769 0199/1649

FIVE ENCAPSULATED CIRCUITS at less than \mathbb{E} I each! NEWBURY ENCAPSULATED CIRCUITS
No external bias networks needed - no large output capacitors! BRAND NEW FULLY GUARANTEED AND TESTED MODULES
POWER AMPLIFIER MODULE $19 / 6$
Type 3 TI
Ideal for intercoms, baby nlarnas, record-playere,
etc, $2-12 V$ operation.

ORGAN MODULE

17/6
Type stiv
Will make the ideal basin for either monophonic locking in to the correct frequency. Will drive a loudspeaker or can be fed into tone clrcuite,
amplifiera, etc.
MULTL-PURPOSE PRE-AMPLIFIER 19/6

Type 3 T0

For use with the 3T1, or as an impedance nintcher, high gain pre-amp, headphone amplifer, ete. it preamplifer ustog the reçalifite feedback loops.

DUAL-VOLTAGE PRE-AMPLIFIER 17/6

Type iro
Far horeasing the input sensitivity of low gain tactor makes operatlon direst A high gmoothing possible.

TACHOMETER MODULE
 18/9

$\mathrm{T}_{\text {ype }}$ 2TN
For 4 or 6 cylunder, 6 or $12 v$ positive or negative to 1 mA meters on 12 V and $200-500$ microamp meters on 6 Y . Buitable meters from $57 / 6$. This module will provide Inear readings up to 10,000 r.p.m. If your car can provide the signal!

20 WATTS (RMS) AMPLIFIER

40 watte Pk .) $20 \mathrm{~Hz}-40 \mathrm{kEz} \pm 2 \mathrm{~dB}$, taea lateat R.C.A. piaatte devices

500 mW maxamum outpui,
200 mW lor less than 5,
distortion. Power galn 50 d .
Input 40 mV into 400 ohm
$3-15$ ohme load. Frequenc
responae $35-45,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$.

Frequency range $30-6000 \mathrm{~Hz}$ Power into 80 ohms loudspeaker lowim. 9 V operation.

Input impedance and gain fully varjable up to 50 Cl kllohms and 40dB. Ontput impedance ato 15 . Wlil deliver 30 mv responge $20-35,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ Supply roltage B-24V. Noise level -60 dB .

Gain 20-26dB. Input impedance 50 klfohms. Frequence reaponse $30-45,000 \mathrm{~Hz}$ 土 2 dB . 8 gupply voltages $9-24$ and 200-500.

Please send G.A.J. with enquiries.

SEWRURY BOUND
EQUIPMENF,
21 Lancastor Court,
Lancenter Ave, Erondon, 8.E.87 Cash with order plua $1 /-$ p. \& p. P.O.s. Quantity discounts Callert by appointment.

Spray. No stove baking requirad. Harmmers azallable in grey, blue, fold bronze. Modern £gthell Black Wrinkle \{Crackle) all al $\$ \$ / 11$ at our Curable, heat and water resistant Betack Matt finish fil axa. self-ipray cans only) I 3j\# carrage paid.
SPECLAA OfFER:TaA plus optional zraniferable snap-an srigger handle
(value $\$ /-$) for $18 / h_{1}$ (arrizge patd. Choice of the rell-spray plain colours
and pritmer (Motor car quality aiso avallable
Pleate antiote cheque or crosses PO.
DEPT: K/4; YUKAN, 307a, EDGWARE RORD, LONDON, W. 2.
We supply many Govarnment Oepart ments. Municipal Authoritie
and Leading Endustrias Oreanisations-We can aupply yous too.

BAKER 12in. MAJOR £8
The remarkable quality and performance of the "Major" makes possible truly rilliant and rich sound from a single oudspeaker. It recreates the entire musieal spectrum from 30 to 14,500 c.p.s The unit consists of the latest double cone, woofer and tweeter cone together with a special Baker CERAMIC magnet assembly having a flux density of 14,000 gauss and a cotal flux of 145,000 Maxwells. Bass resonance 45 c.p.s For Hi-Fi or P,A. Rated 20 wats. Voice coils available 3 or B or 15 ohms Major Module 30-17,000. eps with tweeter, crossover, bafflo $\mathbf{S} 10.19 .6$
$19: 12 l i n$ andinstructions,

Sond ad 5tamp for
Furlhet Delails
Baker Reproducers Lid
Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-f665

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new 'ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Enginecting industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics-Practical Electronics - Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG. Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.-Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theoretic Courses for beginners in Electronics, Radio, T.V., Etc., A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam. R.T.E.B. Certificate
P.M.G. Certificate

Practical Electronics
Electronics Engineering Practical Radio
Radio \& Television Servicing Automation

INCLUDING TOOLS
The specialist Electronics Division of B.I.E.T NOW offers you a real laboratory training at home with practical equipment. Ask for details.

You are bound to benefit from reading '"ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

STESTHW Ement

सानTr

 - लulrmant cintras

NEW CATALOOUE REPRINT

350 PAGES FULLY DETAILED AND ILLUSTRATED. COMPONENTS \& EQUIPMENTAUDIO/HIGH FIDELITY.
Complete with $5 \times 2 /$ - Discount vouchers for use with picture.

PRICE 7/6 p.p. 2/-

LITY 4 TRACK TAPE RECORDER To get the best out of your MAGNAVOX
DECK, you need a MARTIN RECORDAKIT.

BUILD THIS VHF FM TUNER 5 MULLARDTRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH. PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION. MONO \& STEREO. A popular VHF FM Tuner for quality and reception of mo and stereo. sound. All parts sold separately.
PARTS TOTAL COST $£ 6196$ DECODER $£ 5196$ ASK FOR BROCHURE No. 3 (FOR STEREO)

HENELEC 5-5 STEREO AMPLIFIER

Excellent low priced British designed Stereo 16 Amplifier for use with Record Decks. Tuners. 16 transistor mains operated. Output $5+5$ and wood finish. size 13 in $\times 3$ in $\times 6$ in. PRICE \&13 100 pp. $7 / 6$ Complete Stereo System 5-5.
Garrard 2025 TC or 3000 LM with 9 TAHC Diam. Ceramic cartridge, 5-5 Amplifier, Plinth
 $\times 7 *$
\times Usual DECK, you need a MARTIN RECORDAKIT. This comprises a special high quality ${ }^{6}$ valve amplifier and pre-amplifier which comes to you assembled on its printed making a superb Tape Recorder You need makiexperience or technical skill to bring this about. THE INSTRUCTIONS MANUAL MAKES BUILDING EASY, AND SUCCESS IS ASSURED. Kit comprises Deck, Amplifer, 7 in. 1200 ft tape, and spare spool.
ASK FOR BROCHURE 6. TODAYS VALUE E60.
PRICE 39 gns. pp. 22/6. NOTHING ELSE TO BUY
AMPLIFIERS IN STOCK

- PAD 7 watt

MPA12 312 watt
$\begin{array}{lll}f 3 & 12 \\ f 4 & 6 \\ f 4 & 0\end{array}$
MPA12 15 12 watt $f 550$

- Ma7 7 watt Amp $£ 8100$ MA66 Stereo Amp
$\begin{array}{llll}\text { - Preamp } \\ \text { - PA25 } 25 \text { watt } & £ 1610 \\ 10 \\ 10\end{array}$
- PA50 50 watt $\begin{array}{ll}\text { watt } \\ \text { e9 } \\ 10 & 0 \\ 0\end{array}$
- Leaflets available on repuest.

SINCLAIR STEREO 60 Two Z30, PZ5 and Stereo 60 (usually £23.18.0) PRICE $\mathcal{L} 9$

ADD $£ 2$ for PZ6 in place of PZ5).

MONO STEREO UNIT EQUIPMENT

Mono or Stereo Audio equipment developed from Dinsdale Mk. Il-each unit or system will compare favourably, with much higher prices. from E1| 126 to $£ 38176$
rom $£ 11126$ to $£ 38176$
THE FINEST VALUE IN LOW COST HIGH FIDELITY - CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE YOURSELF POUNDS. 7,12 and 25 WATT AMPLIFIERS, STEREO AND MONO PREAMPLIFIERS AND MODULES.
C SEND FOR BROCHURES No. 12/14
21 TODAY!

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED - A CATALOGUE IS A MUST!

also see earlier pages for more ads.

HI-FI equipment to suit EVERYPOOKIT

Demonstrations,

* Credit Terms (CALLERS) For Purchases at $\begin{gathered}\text { Pras Branch only } \\ \text { ONLY }\end{gathered}$ From $\mathbf{3 0 \%}$ * VISIT OUR HI-FI CENTRE AT 309 EDGWARE ROAD, for all leading makes of-AMPLIFIERS, TUNERS, DECKS, SPEAKERS, MICROPHONES, TEST EQUIPMENT. ALL WITH DISCOUNTS-IT WILL PAY YOU TO STOCK LIST 16/17.

SILICON POWER AMPLIFIERS

WITH DIRECT COUPLED, SYMMETRICAL OUTPUT

- HENELEC 'PA25' POWER AMPLIFIER

This silicon design from Henry's Radio uses complementary transistors in the symmetrical output stage direct coupled to a loudspeaker of 8 ohms impedance or higher. Power output is 25 watts RMS with an 8 ohms load or 12 watts for 15 ohms, over a frequency range of $15 \mathrm{~Hz}-25 \mathrm{kHz} 3 \mathrm{~dB}$. Cool running is assured by the use of generously dimensioned black anodised
heatsinks. Input 700 mV 15 K ohm.
Price $£ 7100$

- HENELEC 'PA50' POWER AMPLIFIER

Basically similar to the 'PA25' the 'PA50' will deliver 50 watts RMS to a 3-4 ohm load. Exera power is handled by compiementary triplet circuits extra heatsinking the 'PA50' runs as cool as the 'PA25'.

* HENELEC MU442 POWER SUPPLY

Designed to run one or two 'PA25's' or one 'PA50' the MU422 connects to the amplifiers by means of plug-on harnesses. No soldering is required to connect up the system. Audio input plug and speaker plug go to the panel
of the MU422.

* SEND FOR FREE BROCHURES No.: 24/25

Transistors, integrated circuits, test equipment, Garrard and Goldring turntables all at special save money prices-See our adverts on earlier pages ${ }^{2}{ }^{\text {this }} 16$ Page Testgear Catalogue Ref 'T'/33 $15\left[\begin{array}{l}16 \text { Page Testgear Catalogue Ref 'T'/33 } \\ 10 \text { Page Record Player Decks List Ref } 16 / 17\end{array}\right.$ Semiconductor Price List Ref. 36.

ELECTRONIC ORGANS

CALL IN and SEE THE NEW MODELS!

1) MODERN ALL BRITISH TRANSIS TORISED DESIGNS AVAILABLE AS KITS OR READY BUILT

1 TEAK OR WALNUT VENEER
49 NOTE, 61 NOTE SINGLE MANUAL
DESIGNS ALSO TWO MANUAL 49 NOTE
K KITS AVAILABLE IN SECTIONS AS

1. HP and CREDIT SALE FACILITIES

FREE
 6 page organ brochure covering organs in kit form and ready built-write or phone to ORGAN DEPT. Ask for Peter Elvins.

High Fidelity and Audio Centre 309 EDGWARE ROAD, Telephone: 01-7236963 Open all day Saturday.

[^0]: © IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 45s.
 Editorial and advertisement offices: Fleetway House, Farringion Sc., London, E.C.4. Phone 01-236 8080

[^1]: Whare jrostage ia not stated then orders Over $2 \overline{5}$ are poot free. Below $\& 5$ aull $1 / 9$. Semicomaluctors add $1 /=$ poat. Over \&1 posit free. H.A.E. with enquiries please,

[^2]: -丸 Please rush me a copy of your Free Catalogue
 \qquad
 \qquad

[^3]: Free and illustrated lists of all types of Hi-fi equipment: Tuners, Amps, etc. Electronic equipment, components and gadgets atc lowest prices, from: Albion Electronics Supplies, D/4, 16 Albion Road, Birchington, Kemt.

