

ADCOLA
 (Roge Trado Mark)

THE RELIABLE
SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET

ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD

 LONDON SW401-622 0291/3

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS On \& PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS Irom your SPARES BOX
 box Radiu. (3) I Buard for Wristwatell Ralic, etc. (4) Resist, (5) Rusist Solvent. (6) Etchant - (7) Cleanser/Degreaser (x) 16 -page Busklet P'rinted Circrits for tmateurs. Design Data Circuits, Chassis Plans, ete, for 40 TRANBISTORISED PROJECTS A very comprehensive selection of circuits to sint everyone's reduirements and constructional abitity. Many recently developed very efficient desigus published for the tirst time, including 10 new errcuits.

EXPERIMENTER'S
PRINTED CIRCUIT KIT

8/6

Portage \& Pack. 1/6 (UK) Commonwealth: slirface mall 2/AIR MAIL 8 fAustralia, New Zealand sumth Africa, Canada
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamme Louslspeaker. (4) (rystal Tuner with Audis) Ampinher. (5) Carrier Power Conversion Receiver. (6) Aplit-Lrat Sientralised Druble self-adjusting regeneration (Patent Pending). (9) Sular hattery Lomulspeaker Radio. The smallest 3 designs yet offered the Home Combructor anyuhere in the Worla. 3 summinature Ramo Receivers hasen on the Triftex circuit. Let us know if you know of a smaller decign publishen anywhere. (i0) postage stamp Radio. Hing Holio $70^{*} \times \cdot 70^{*} \times 55^{*}$ (13) Bacteriz-powered Radio. Kuns on sugar or breal. (14) Radio Contrut Toue Receiver (15) Transistor P P Ampliter (16) lnterconn. (17) 1-valve Amplifier. (18) Keliable Burglar Alarm. (19) Light-seeking Animal, Guited Missite, (20) Perpetual Motion Machine, (21) Metal Detector. (22) Transistor Tester. (23) Human Buly Habatun Detertor, (24) Man/Wonan Discriminator. (25) Signal Injector. (26) Pocket Trantedver (Liceme realured). (27) Constant
 Transmiter. (30) Timket Triple ketex Ratio. (31) Wigtaat Tansmiter, Wire-less Microphone. (32) Rain Alarm. (33) Ulirasonic switeh/Alarm. (34) Stereo Prearnplifier. (37) Ultrasonic Transmitter. (40) Thyristor Drill Speed Controller.

YORK ELECTRICS

335 BATTERSEA PARK ROAD, LONDON, S.W.II
send a s.A.E. for full detaits, a bricf description and Photographs of alt \boldsymbol{K} its and all

- ${ }^{2}$, Radio Electroniciond Photoelertric Prajects A twemteled

MONOLITHIC
 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed.simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The mostimportant are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response $\quad 5 \mathrm{~Hz}$ to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total harmonic distortion Less than 1% at full output. Load impedance 3 to 15 ohms.
Power gain $110 \mathrm{~dB}(100,000,000,000$ times $)$ total. Supply voltage $\quad 8$ to 18 volts. Size
Sensitivity
Input impedance
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to
2.5 M ohms

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: $\mathbf{1}$. The $\mathrm{Z}-30$ high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two $Z-30^{\prime}$ s, one Stereo- 60 and a PZ-5 or PZ-6. The power supplies differ in that the PZ-6 is stabilised whilst the $\mathrm{PZ}-5$ is not. This means that the former should be used where the highest possible continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low
efficiency are being used.
In view of the very high performance of an amplifier system built with Project 60 modules, the cost may seem surprisingly low. There are two reasons for this: Firstly. we are the largest producers of this type of module in Europe and we are able therefore to use highly efficient production methods. Secondly, you are not paying for a cabinet which you may not require anyway.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Project 60 modules have been carefully designed to fit easily into virtually every type of plinth or cabinet to provide a complete unit of great compactness. Only holes have to be drilled into the wood of the plinth and any slight slips here will be covered completely by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive filter unit, a stereo F.M. tuner and an even more powerfut amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.

Telephone: 022352731

Z.30 TWENTY WATT R.M.S. (40 WATT PEAK) HIGH FIDELITY POWER AMPLIFIER

The $Z .30$ is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The $Z .30$ is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a $Z .30$ to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the $Z .30$ are covered in the manual of circuits and instructions supplied with every $Z .30$ high fidelity power amplifier.

SPECIFICATIONS

Power output- 15 watts R.M.S. into 8 ohms using a 35 volt supoly: 20 watts R.M.S. into 3 ohms using a 30 volt supply.
Output-Class AB.
Frequency response:
Distortion:
Signal-to-noise ratio: Input sensitivity:
Damping factor:
Loudspeaker impedances
Power requirements
Size:
$3010300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
0.02% total harmonic distortion at full output into 8 ohms and at all lower output levels.
better than 70dB unweighted.
250 mV into 100 Kohms .
>500.
3 to 15 ohms.
From 8 to 35 V.d.c. (The $Z .30$ will operate ideally from bat-
teries if required.)
$3 \frac{1}{2} \times 2 t \times f$ inches.

APPLICATIONS

APPLICATIONS H1- $\ddagger 1$ amplitier: car radio amplifier; record player amplifier fed directly from
pick-up: intercom; electronic music and instruments: P.A.; laboratory work, etc. Full delails for these and many other applications are given in the manual supplied with the Z.30.

2.30

Built, tested and guaranteed, with circuits and instructions manual

STEREO SIXTY PREAMPLIFEE AND CONTROL UNIt

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 rarge but suitable tor use with any high quainy power amplifier. Again silicon epitaxial planar transıstors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV Magnetic Pickup - 3 mV : correct 10 RI.A.A. curve $=1 \mathrm{~dB} ; 20$ to 25.000 Hz . Ceramic Pickup-up to 3 mV : Auxiliaryup to 3 mV .
- Output-250mV
- Signal-to-noise ratio-better than 70dB.
- Channel matching-within 1 dB - Tone Controls-TREBLE + 15 to- 15 dB . at 10 KHz : BASS +15 to -15 dB at 100 Hz .
- Power consumption 5 mA
- Front panel-brushed aluminium with - Front panel-brushed black knobs and contro
- Size $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4 \mathrm{ins}$.

Ready for immediate instellation

SINCLAIR POWER SUPPLIES

PZ-5

35 volts stabilised-idealfor driving two Z.30's and a Stereo 60 when very low efficiency speakers are employed.

Price: $\mathbf{f 7}$. 19 s .6 d.

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will relund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will survice it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mall charged at cost.

SINCLAIR Q. 16

new elegance in an outstanding loudspeaker

All the superb features which went to make the Sinclair Q. 14 have been incorporated in the new Q. 16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successful departure from conventional design, the new Q. 16 presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The Q. 16 is compact and slim. Its new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of Q.16s in stereo and marvel at the standards of quality and clarity they give.

The Q. 16 will handle loading up to 14 watts R.M.S. and presents an 8 ohm impedance to the amplifier output. Frequency response extends from 60 to $16,000 \mathrm{~Hz}$. with exceptional smoothness. A specially designed driver system is used in a sealed and contoured pressure chamber to ensure good transient response at all frequencies. Size: $9 \frac{3}{4}{ }^{\prime \prime}$ square $\times 4 \frac{3}{4}{ }^{\prime \prime}$ deep from front to back.

£8.19.6

POST FREE

SINCLAIR MICROMATIC ${ }^{\text {The monts }}$ most success. ful miniature radio

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation much easier than with many larger sets. The plug-in magnetic earpiece which matches exactly with the output provides wonderful standards of reproduction. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

SINCLAIR GENERAL GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are available to all Sinclair customers.

(-circuits work first time. Build and learn aboutelectronics with these exciting kits
 Build a radio set in an evening with a Radionic radio kit. Construct a digital

 (4) computer that adds, subtracts, divices and multiplies. Make electronic music with the simple yet highly effective electronic organ.Special 'Radionic mounted' components require no soldering and can be used time and time again. You can build 26 circuits wi-h just onきkit. And you can learn as you build. Suitable for study towards G.C.E., City and Guilds, National Certificate, or even higher qualificatıons.
 Write to the address below for free details of Radionic radio and electronics construction kits.

Radionic Products Ltd
 St Lawrence House, Broad Street, Bristol BS 12 HF

YATES ELECTRONICS (FLITWICK)LTD.

RESISTORS

High stability carbon film. Very low noise. 0.5 watt 5% 4.7Ω to $2.2 \mathrm{M} \Omega 2 \mathrm{~d}$ each. 0.5 watt $10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega$ 2d each. 2 watt $20 \% 100 \Omega$ to $100 \mathrm{k} \Omega$ 10d each.
DEVELOPMENT PACK
0.5 watt 5% resistors 5 off each value 4.7Ω to IMS

325 resistors E12 series $50 /$-.
650 resistors E24 series 100%.
4 WATT WIRE WOUND RESISTORS I/6 each. $10 \% 1 \cdot 0,1.8,2 \cdot 7,3 \cdot 3,3 \cdot 9,4.7,5 \cdot 6,6 \cdot 0,6 \cdot 8,8 \cdot 2$ ohms. $5 \% 10,15,20,25,39,50,100,200$ ohms.
MULLARD POLYESTER CAPACITORS $\pm 10 \%$ 400V: $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}$, $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .047 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, \mathrm{Bd}$.
160V: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$, 6d. $\quad 0.1 \mu \mathrm{~F}, 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 8 \mathrm{~d}, \quad 0.33 \mu \mathrm{~F}, 1 /-. \quad 0.47 \mu \mathrm{~F}, \mathrm{I} / 4$. $0.68 \mu \mathrm{~F}, 2 /-\quad 1.0 \mu \mathrm{~F}, 2 / 6$.
250 V : P.C. mounting miniature $\pm 20 \%: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$, $0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .1 \mu \mathrm{~F}, 0.15 \mu \mathrm{~F}$, $0.22 \mu \mathrm{~F}, 7 \mathrm{~d}$.
CAPACITOR DEVELOPMENT PACK
Selection of ceramic and polyester capacitors 100 pF to $1.0 \mu \mathrm{~F}$. Total 100 capacitors, $\mathbf{2}$.18.0.
MINIATURE ELECTROLYTIC CAPACITORS
($-10 \%+50 \%$)

$50 \mu \mathrm{~F}$	6 V	$10 \mu \mathrm{~F}$	10 V	$125 \mu \mathrm{~F}$	10 V	$40 \mu \mathrm{~F}$	16 V	$8 \mu \mathrm{~F}$	40 V
$100 \mu \mathrm{~F}$	6 V	$16 \mu \mathrm{~F}$	10 V	$200 \mu \mathrm{~F}$	10 V	$64 \mu \mathrm{~F}$	25 V	$16 \mu \mathrm{~F}$	40 V
$200 \mu \mathrm{~F}$	6 V	$20 \mu \mathrm{~F}$	10 V	$10 \mu \mathrm{~F}$	12 V	$10 \mu \mathrm{~F}$	25 V	$50 \mu \mathrm{~F}$	40 V
$320 \mu \mathrm{~F}$	6 V	$25 \mu \mathrm{~F}$	10 V	$16 \mu \mathrm{~F}$	15 V	$16 \mu \mathrm{~F}$	25 V	$10 \mu \mathrm{~F}$	64 V
$6.4 \mu \mathrm{~F}$	10 V	$64 \mu \mathrm{~F}$	10 V	$25 \mu \mathrm{~F}$	15 V	$25 \mu \mathrm{~F}$	25 V	$2.5 \mu \mathrm{~F}$	64 V

$250 \mu \mathrm{~F} 12 \mathrm{~V}, 100 \mu \mathrm{~F} 40 \mathrm{~V}$ I/6. $1000 \mu \mathrm{~F} 25$ volt $6 /-.2500 \mu \mathrm{~F}$ $25 \mathrm{~V} 9 /-. \quad 500 \mu \mathrm{~F} 50$ volts $5 /-. \quad 1000 \mu \mathrm{~F} 50$ volt $8 /-$.
CERAMIC DISC CAPACITORS
$100 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}, 330 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}$, 1000pF, 2000pF, 5000pF, 5d each.
$0.02 \mu \mathrm{~F} 800$ volt 8 d each.
GANGED STEREO POTENTIOMETERS
$\frac{1}{2}$ watt carbon track $5 k \Omega+5 k \Omega$ to $I M \Omega+1 M \Omega \log$ or linear, 8/- each.

SKELETON PRE-SET POTENTIOMETERS

Linear: 100, 250, 500 ohms and decades to 5 M ohm $\pm 20 \% \leqslant 250 \mathrm{k} \Omega, \pm 30 \%,>250 \mathrm{k} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
Miniature 0.3 watt I/- each.
Sub-miniature 0.1 watt lod each.
TRANSISTORS
BC107, 3/6. BC108, 3/. BCl09, 3/6. BFY50, 4/6. BSY56, 6/-. 2N3055, 16/-. 2N3703, 3/3. 2N3705, 3/5. $2 \mathrm{~N} 3711,3 / 11$. $2 \mathrm{~N} 4901,30 /$-. TAA263 3 stage d.c. coupled amplifier d.c. -600 kHz . Output $10 \mathrm{~mW} 150 \Omega$, 15/-. TAA320 M.O.S.T. input followed by a bi-polar transistor, 13/.
DIODES-OA85, OA91, I/6 each.
SILICON RECTIFIERS
BY236 800V $0.8 \mathrm{amp} 3 /$ each.
BY237 $1250 \mathrm{~V} 0.8 \mathrm{amp} 3 / 6$ each.
VEROBOARD

	0.15 Matrix	0.1 Matrix
$2 \frac{1}{2} \times 3 \frac{3}{4}$	$3 / 3$	$3 / 6$
$2 \frac{1}{2} \times 5$	$4 / 9$	$3 / 3$
$3 \frac{3}{4} \times 3 \frac{3}{4}$	$3 / 9$	$5 / 3$
$3 \frac{3}{4} \times 5 \times 3 \frac{3}{4}$	$1 / 3$	$-7 / 6$
$17 \times 3 / 6$		
Pin insertion tool	$9 / 6$	$3 / 6$
Pkt. 36 pins	$3 /-$	$3 /=$
Spot face cutter	$7 / 3$	$7 / 3$

C.W.O. please. $1 / 6$ post and packing on orders under \mathbb{C}.

Export Enquiries welcome
YATES ELECTRONICS (FLITWICK) LTD. 29 LYALL CLOSE, FLITWICK, BEDS.

See us at SONEX '70, Skyway Hotel, 24th - 26th April

The famous B.D. 1 Turntable which operates at $33 \frac{1}{3}$ and 45 r.p.m. which is incorporating a flexible belt drive system, virtually eliminating vibration and transmission noise, is now available in kit form. So simple to construct-such a beautiful performance! Full details on request to:
A. R. SUGDEN \& CO. (Engineers) LTD.

Market Street, Brighouse, HD6 1DX, Yorks. Tel. 2142

INTEGRATED CIRCUITS
 AND
 MODULES

are some of the interesting components in our new 1970 catalogue

Write for your copy now

```
W.E.C. LTD. (AE)
```

74 The Street, Ashtead, Surrey

PSAGE \& PACKING 2/-ON ALL ORDERSUNDER\&1.0.0

RE-AN PRODUCTS | PIMITED |
| :---: |
| LIMRNHA ROAD |
| $\substack{\text { DURTFORD, KENT } \\ \text { DARTFORD } 20785}$ |

CRYSTAL MIKE INSERTS
$11^{\prime \prime}$ dia. 8/6. ACOS $1 i^{\prime \prime}$ dia. 12/6. BM3, 1^{ν} dia, 9,6
PORTABLE AMPLIFIER

Portable mini p.a. aystem. Many ules - ideal lor	
Parties, or as a Baby	
Alsrm, Intercom, Tele-	
phone or Record Player	
Amplifier, etc. Attractive	
bire 12×8 \% 4 in., with	
powerial $7 \times 4 \mathrm{in}$, speaker and four transistor one watt	
power amplifier. Uses PP9 ba Brand new in Makers' carton	
toll makers' guarantee.	
Worid Iamoul make.	
WEYRAD P50 - TRANSISTOR COILS	
RA2W Ferrite Aerial . $12 / 6$	Spare Cores
Osc. P50/1AC 5 /4	Driver Trans. LFDT4
I.F. P50/2CC $470 \mathrm{kc} / \mathrm{s}$. . $5 / 7$	Printed Circuit, PCAI
8rd I.F. P50/3CC 6/-	J.B. Tuning Geng . . . 10/6
P51/1, P51/25/7	Weyrad Bookle!
P\$1/3, $\mathrm{B}_{\text {/-; }}$ Telescopic Aerials	6 6 in , to 23in. ${ }^{\prime}$ -
Forrite Rod 8 fin. 4/-. 8	in. 5/-.

VOLUMECONTROLS 80 omm Coax 8d. yd. Loong zindales. Midege Size BRITISH AERIALITE

 WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WATT

 6.R.B.P. Board 0.15 MATRIX zlin. wide 6d, per 1 in .

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2 in. sides,
 ALUMINIUM PANELS 18 s.W.g. $12 \times 12 \mathrm{id} .8 / 6 ; 14$
$8 / 6 ; 12 \times 8 \mathrm{in} .4 / 6 ; 10 ; 7 \mathrm{in} .3 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 6$
$4 \mathrm{in} ., 1 / 6$. linch DIAMETER WAVE-CHANGE SWITCHES. $\begin{array}{llllll}2 & \text { p. 2-way, or } 2 & \text { p. } & \text { 6-way, or } & 3 & \text { p. } \\ 1 & 4 \text {-way } & 4 / 6 & \text { each. } \\ 1 & \text { p. } & 12 \text {-way, or } 4 & \text { p. } & 2 \text {-way, or } 4 & \text { p. } \\ 3 \text {-way } & 4 / 6 & \text { each. }\end{array}$
 2 p. 6 -way, 3 p. 4 -way, 4 p. 3 -way, 6 p. 2 -way. 1 wafer $12 /-$,
2 water $18 /-.3$ waler $24 /-4$ wafer $39 /-$, 5 wafer $36 /-$. TOGGLE SWITCHES, sp.2/6; sp. dt. 3/6: dp. 3/6; dp. dt. 4/6 ALL PURPOSE HEADPHONES H.R. KEADPHONES 2000 ohms Super Seusitiv
LOW RESISTANCE HEADPHONES $3-5$ ohms DE LUXE PADDED STEREO PHONES 8 ohms
"THE INSTANT
BULK
ERA8ER AND
RECORDING HEAD
DEMAGNETISER
200/250 च. A.C. Leallet S.A

ALL PURPOSE TRANSISTOR
PRE AMPLIFIER BRITISH MADE -12y. and 200-300v. D.C. operation. Size 1$]^{\prime \prime} 1 l^{\prime \prime}$ Response 15 c.p.s. 0 隹 or transistor equipment. Full instructions. $17 / 6$ each
Brand new. Guaranteed. NEW TUBULAR ELECTROLYTICS CAN TYPES $2 / 350 \mathrm{~V}$
$4 / 350 \mathrm{~V}$ $4 / 350 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$ $16 / 450 \mathrm{~V}$.
$32 / 450 \mathrm{~V}$ $32 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$

$50 / 50 \mathrm{~V}$ | $16+16 / 450 \mathrm{~V}$ | 4 | 32 | $32+32 / 350 \mathrm{v} .8$ |
| :--- | :--- | :--- | :--- |
| 2 | $32+32 / 350 \mathrm{~V}$ | 46 | $100+50+50 / 350 \mathrm{y} 9 /$ | SUB-MIN. ELECTROLYTICS. $1,2,4,5,8,18,25,30,50,100$ 250 mF 15V $2 /-: 500,1000 \mathrm{mF} 12 \mathrm{~V}$

CERAMC. 500 V 1 pF to $0.01 \mathrm{mF}, 9 \mathrm{~d}$.
PAPER 350V-0.1 9d, $0.52 / 6 ; 1 \mathrm{mF} 3-2 \mathrm{mF}$ 150V 3/$500 \mathrm{~V}-0.001$ to $0.05 \mathrm{Bd} ; 0.11 /=0.251 / 6 ; 0.53$
$1,000 \mathrm{~V}-0.001,00022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2,6$ SILVER MICA. Close tolerance $1^{1} \ldots .5-500 \mathrm{pF} 1 ;-560-2,200 \mathrm{pF}$ TWIN GANG. " $0-0$ " $208 \mathrm{pF}+176 \mathrm{pF}$ 10. 6 . 365 p . ure $106 ; 500 \mathrm{pF}$ standard with trimmers, $12 / \mathrm{B}$: miniamidget less trimmers, $7 / 6 ; 500 \mathrm{pF}$ slow motion, standard $9 /$ small 3-xang 500 pF 19 '6. Single " 0 " $365 \mathrm{pF} 7 / 6$. TWIN $10 ; 6$, SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each.
TUNING. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7$ - each. TRIMMERS. Compression $30,50,70 \mathrm{pF}, 1 /-; 100 \mathrm{pF}$ $150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 1,9 ; 1000 \mathrm{pF}, 2,8$. RECTIFIERS CONTACT COOLED : wave 60 mA \% \quad; $85 \mathrm{~mA} 9 / 6$. SILICON BYZ13 $8 /-$; BY100 10 '
Full wave Bridge roma 10;-:150gia 19, 6; TV rects. 10 NEON PANEL INDICATORS 250 v . AC/DC Red. Amber 46. RESISTORS. Preferred values, 10 ohms to 10 meg.
 HIGH STABILITY, w. $1 \% 10$ obms to 10 meg., $2 f$ Ditto 5 ? 0 . Preferred values 10 ohms to 22 meg, , 8 d . WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 10 ohms to 100K. 2;-each; 2! watt. 1 ohm to 8.2 ohms . $2 /-$ BRAND NEW TRANSISTORS 6:- EACH
MAT 10079 OC71. OC72, OC81, OC44, OC45. AF117. $1018 / 6$; MAT 12078 ; MAT 1218 6 REPANCO TRANSISTOR TRANSFORMERS. TT45. Push Pul! Drive, $9: 1$ CT, 6/-. TT46 Output, CT8:1, B' TT49. Interstage, $4 \cdot 5: 1,6 /-$: TT52 Output 3 ohms, $20: 1,6-$ TT23/4 PAIR 10 watt Amp. Transformers and circuit 35:TRANSISTOR MAINS POWER PACKS, FULL WAVE $\begin{array}{lll}9 \text { volt } 500 \mathrm{~mA} . & \text { Size } 4! & 2! \\ \text { Crackle finish. } & \text { Output terminals. Metal case. } & \text { On/oft switch. } 49 / 6\end{array}$ Half Wave 9 volt 50 mA . Size 2! 1 in. Snap terminals 32,6

MAINS TRANSFORMERS

$\begin{array}{ll}250-0-25050 \mathrm{~mA} .6 .3 \mathrm{v} .2 \mathrm{amps}, \text { centre tapped } & 19 / 6\end{array}$
 $350-0-350$
$300-0-300$ MINIATURE 200
HEATER TRANS

| Dito tapped sec. 1.4 | $\mathrm{v} ., 2,3,4,5,6.3$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GENER | 11 amp . | $15 / 6$ | $6.8,9,10,12,15,18,24$ and 30 т. at 2 a. $35 /-$ 1 amp, , $6,8,10,12,16,18,20.24,30,36,40,48,60.35 t-$ 60w. 18/6; 150 w . 35/-: 500 w . $95 /-\mathrm{E}$. Input/Outpu CHARGER TRANSFORMERS. Input 200/250v

 6 or 12v. outputs. 1! amp. 8/9; $2 \mathrm{amp} .11 / 3 ; 4 \mathrm{amp} .17 / 6$. COAXIAL PLUG 1/3, PANEL SOCKETS 1'3. LINE 3 '6. OUTLET BOXES. SURFACE OR FLUSH 4/6. BALANCED TWIN FEEDERS 1/- yd. 80 ohms or 300 ohms. Chrome Lead Socket 7 ' 6 . Phono Plugs 1 .- Phono Sacket 1 JACK PLUGS Str. Chrome $3 /-; 35 \mathrm{~mm}$ Chrome $2 / 6$. DIN SOCKETS Chassis 3 -pin $1 / 6 ; 5-$ pin 2;-. DIN SOCKETS Lead 3-pin 3/6: 5-pin 5/-. DIN PLUGS 3-pin 3;6; 5-pin 5/-
VALVE HOLDERS. 9d.; CERAMIC 1/-: CANS 1 !

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. LOUDSPEAKERS
With flared tweeter cone and ceramic magnet. 10 Watts.
Bass res. 45 - 60 eps.
Flux 10,000 gauss.
Speech coll, 3 or 15 hm .
 Recommended Teak Cs binet $94 / 6$
Size $16 \cdot 10$ 9in. Also with twin tweeters
3 or 8 or 15 ohms. 10 watt.

MINI-MODULE LOUDSPEAKER KIT

 10 Watt 65/- carriage 5.-Triple speaker system combining on ready cut baffe. in. chipboard 15 in. : 87 in. Separate Bass, Midale and Treble loudspeakers and crossover condenser. The eone. The Mid-Range unit is specially designed to add drive to the middle register and the tweeter recreates the top end of the musical spectrum. Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm . TEAK VENEERED BOOKSHELF ENCLOSURE. 16×10 : 9 in. Modern Scandinavian $94 / 6$ Posts/-
fluted Iront design for Mini-Module.
 MAJOR $£ 8$

30-14,500 c.p.s., 12 in

 double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly baving a fuxs density of 14,000 gaus 000 and 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coils 3 or 8 or 15 ohms.Module kit. 30-17,000 c.p.s. With tweeter, crossover, baffle and
instructions. BAKER "GROUP SOUND" SPEAKERS POST FREE 'Group 25' 'Group 35' 'Group 50
 TEAK HI-FI SPEAEER CABINETS. Fluted wood Iront. For 10 or 12 in round Loudspeaker For 13
For 10
8in or 8 in round Loudspeaker 88.10 .0.
$\$ 4.14 .6$. 3.16.6, LOUDSPEAKER CABINET WADDING $18 i n$ wide. $2 / 615$

Goodmans Tweeter 3 ! in 3 ohm $35 /$, EMI $2!$ in 8 ohm $17 / 6$ LOUDSPEAKERS P.M. 3 OHMS. 2 in 3 in , $4 \mathrm{in}, 5 \mathrm{Sin} 5 \times 3 \mathrm{in}$ 74 in $17 / 6$ each; 6 in $22 / 6$; 8×5 in, $21 /-8 \times 21$ in $21 /-$ $10 \quad 8 \mathrm{in} .30 /-; 10 \mathrm{in}$, or 12 in . Double cone 3 or $15 \mathrm{ohm} 39 / 6$. SPECIAL OFFER : $80 \mathrm{ohm} .2 \mathrm{lin}, 2 \not 2 \mathrm{in} .35 \mathrm{ohm}, 3 \mathrm{in} .25 \mathrm{hm}$ 15/6 ${ }_{\text {TYPE }}^{\text {EACH }}$
Bin LOUDSPEAKER UNITS 3 ohm 27/6; 15 ohm $30 /-$ ELAC 8 in. De Luxe Ceramic 3 ohm $45 /=15 \mathrm{ohm} 50 \%$ Sin LOUDSPEAKER. TWIN CONE 3 ohm $35 /-$ 5 in . WOOFER. 8 watts max. $20-10,000 \mathrm{cps}, 8$ or $15 \mathrm{ohm}, 39 / \mathrm{B}$. OUTPUT TRANS. EL84 efc. 4/6: MIKE TRANS. $50: 13 / 9$ SPEAKER COVERING MATERIALS. Samplea Large S.A.E.

Main power. amplifier and 2 valve pre-amplifier. Silver krey facia pane!. Volume, treble, bass controls. Function Tape output socket. Valves: 2 , EL84, 3 EF88 ECc83, 1 EZ81. Ultra linear Parmeko output transformer. 20 db nekative Ieedback, 10 watts rmz.
mono. 3 and 15 ohm output. Brand new. Guaranteed.

ALL EAGLE PRODUCTS

ILLUSTRATED EAGLE CATAEST PRICES

BARGAIN AM TUNER. Medium Wave.
Transistor Superhet. Ferrite aerial. 9 volt.
BARGAIN DE LUXE TAPE SPLICER Cuts,
trims, joing for editine and repairs. With 3 blades, $22 / 6$
EARGAIN 4 CHANNEL TRANSISTOR MIXER. Ad musical highlights and sound effects to recordinge. Wil]
mix Microphone, records, tspe and tuner with
$59 / 6$ mix Microphone, records, tspe and tuner with
separate controls into single output. 8 volt.

59/6
BARGAIN FM TUNER 88-108 Mc/a Six Transiator. 9 volt. Printed Circuit. Calibrated slide dial tuning.
Walnut Ca binet.
\&ize 70.0
$4 i n$. BARGAIN 3 WATT AMPLIFIER. 4 Transistor
Push-Pull Ready built, with volume control. 9 g. $\mathbf{6 9 / 6}$ \star RADIO BOOKs \star (Postage 9d.)
Practical Transistor Receivers
Practical Radio Inside Out
Supersensitive Transistor Pocket Radio
Radio Valve Guide, Books 1, 2. 3, or 4 ea. $5 /-$ No. 5 ea
Shortwave Transistor Receivers.
Transistor Communication Sets
Modern Transistor Circuits for Beginner
Sub-Miniature Transistor Receivers
Wireless World Radio Valve Data..
International Radio Stationa Guide
International Radio Stationa Guide
Transistor Circuits for Radio Controlled Models.

3 inch MOVING COIL METERS BRITISH MADE Various calibrations/movements, 500 Microsmp; $37 / 6$
1 Milliamp; $50-0-50$ Microsmp. etc, S.A.E. for list.

MAINS ELECTRIC MOTORS
 duty 4 pole 50 mA . Spindle ${ }^{2} 3 / 20$.

RADIO COMPONENT SPECIALISTS 337 WHITEHORE ROAD, WEST CROY CRONS

1,750 COMPONENTS
 FOR 65/- ? ?
 YES, QUITE TRUE,
 READ ON
 BUMPER BARGAIN PARCEL

Wre guaranter that this parcel contains at least $1, \overline{5} 50$ components. Short-leaded on panels, including a minimum of 350 transistors (mainly NPN and PSP gemanium, audio and switching types-
data supplied). The rest of the parcel is nade up with: Hesistors 5% or better (including some 1%) mainly metal oxide, carbon flim, and composition types. Mainly is and watt diodes, OA95, isiso, etc. . capacitors including tantalum. electrolytics. ceramics and polyesters... inductors, a selection of values . . also the odd transformer, trimpot, etc., etc.... These are all niniature. up to date, professional top quality components. Don't miss this, one of our best offers yet! Price. 65/=. Post and packing $6 / 6 \rightarrow$ V.K. New Zealand $20 /$ - post and packing. Limited

storkn ons

KEYTRONICS, P.E.
52 Earls Court Rd., London, W. 8 Tel. 01-478 8499
MAIL ORDER ONLY. Retail and Trade supplied. Export enquiries particularly welcome.
BY RETURN SERVICE
S.A.E. FOR LIST

OF OTHER GOODS

NEW RAMGE U.H.E. TV AERIALS

All U.H,F, aerials now fittel with tilting bracket and 4 element grid reflectors

Ioft Mounting Arrass: 7 element, 40 11 element, $476 ; 14$ element, $i=-i 18$ element, 6* 6. Wall Houmfing with Cranked Arm, 7 element, $60-; 11$ element, $676 ; 14$ element
 2in. clamp. 7 element, $426 ; 11$ element, $55-;$
14 element, $63-; 18$ element, 70 -. Chimnes 14 element, $63-\mathrm{z}$ is element, $70-$. Chimme it $6 ; 11$ element, $80,-14$ element, 87,$6 ; 15$ element i: 6; 11 element, $80,-114$ element, 87, $6 ; 18$ element unit. Low Loss crable, 16 yd . I'. M. F. Preanmp: from $\%$-. State clearly channel number reguired on all orders.

BBC . ITV AERIALS

BBBC (Band 1). Loft, : 2 External S D, $30-$ "H", Cray (Band 3). 3 element lot 7 element, j0 -. Wall mounting 3 element, 50 -. 5 element, dis combined 13BC IT V. Loft 1+3, $40 /-1+5,50 /-; 1+7$. $60-31+5,30-i, 8$ Chimney
$1+3, \% 0-: 1+5,80-$ Y11F transistor pre-amps,
 $1+3+9,70-1+5+9,80-1+5$
$1+7+14,100-$ Loft mounting only.
 cable, sid yd. Co-ax. pluss, it. Outlet boxes, $-=$ Diplexer Crossover Boxes, 176 . C. W.O. or C.O.D.
$\mathrm{P} . \& \mathrm{P} .6 / 6$. Send bul. stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.) 40-41 Monarch Parade London Road, Mitcham, Surrey 0!-648 4884 4-Station Tranuintor Intercom aystem (1 master and 3 Sabs), in de-luxe plastic cabinets for deek or wall mounting. Callitak/isten from Master to Suba and gary, Schools, Hospital, Office and Home. Operates on one 9 V battery. On/oft switch. Volume control. Complete with 3 connecting wires each 661t. and other accessories. P. \&P. 7/6.
MAINS INTERCOM
No batteries-no wires. Just plug in the mains for instant twoway, loud and clear communication
Onfoff awiteh and volune control with lock systen 1'rice \&11,19.8. P. F. P. 8/6 extra.

Satue as 4.Station futercom for iwoway iustant communieation. Ifleal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. $4 / 6$.

Why not boost ciency with this incredible De-Luxe Talephone Amplifig. Take down long telephone messages or converse Without holding the handset. A useful office aid. On/ $3 / 6$. Full price refunded if not satiotied in 7 days.

WEST LOKDON DIRECT SUPPLIES (PE/3) 160 KENSINGTON HIGH STREET, LONDON, W. 8

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

T Tunable Wavebands: Medium Wave], Medium Wave 2, Long Wave, 3.W.1, s.W.2, s.W.3, and Trawler Band. Built in territe rod aerial for Medium and Long Waves. 5 section 22 in chrome plated teleacopic aerial for Short Waves can be angled and rotated for maximum performance. Selectivity switch. Switched earpiece socket complete with earpiece for private listening socket. sistors plus 3 diodes. Famous make $\bar{\prime} \times 4 i n$ speaker. Air spaced ganged tuning condenger onfor switch volume contro!. Wave change awitch and tuning control. Attractive cage in rich chestnut shade with gold blocking. Size 9 i 4 in approx. Easy to follow inetructions and diagrama make the Roamer Eight a pleasure to buid. Parts price list and easy build plans 5/- (FREE with parte)

roamer seven mk IV

FULLL TCNABLE Waye BANDS-M.W.1. M.W.2, L.W... B.W.1, S.W.2, S.W. 3 and Tramler
Band, Band, Extra Medium waveband
provides easier
tuning of Radio provides easier tuning of Radio Luxembourg. ete, Built in ter rite rod aerial for Medium and Long
Wayeer. 5 Section $22 i n$ telescopic aerial for short Wave can lie angled and rotiteii for peak s. W. listening. Socket for Car Aerial Powerful push-pull output. Zatransistors amal two diodes inclading Micro-Alloy R.F". Transistors. Famous make
$7<4$ in P.M. speaker. Air spaced gangel tuning condenser. Volume/ou/off control, 9 ave change switches and tuning control. Attractive case with carrying handle. Size pleasure to build. parts price list and easy build plans $3 /-$ (FREE make the Roamer 7 a

Total building costs

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size 51×11 THinable over both Medium and Long Wav
with extended M.W. band with extended M.W. band for easier tuaing of
Luxembourg, etc. 7 stages - 5 transistora and diodes, supersensitive ferrite rod aerial, fine tone moving coil speaker, also Personal Earpiece with switched socket for private listening. Easy build plans and parta price liat 1/6 (FREE with parta).

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER

Attractive caae with gilt fittings Size
1tio. Tunable on Medium and Long Waves, two 1ifin. Tunable on Medium and Long Waves, two Short Waves, Trawler Band plus an extra M.W. band for easier tuning of Luxembourg, etc. Sensitive Waves 8 atazea- 6 transintors and 2 dor short cluding Micro-Alloy R.F. Transistors, etc. (Carrying strap 1/6 extra). Easy build plans and parts price list $2 /$ - (FREE with parta).

Total building costs $4.4 / 8 \begin{gathered}\text { P. \& } P \\ 3 / 6\end{gathered}$

Total building costs $78 / 8 \quad$ P. \& P.

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

NEW!

transeight
SIX WA VEBAND POFTABLE WITH 3in. SPEAKER
Attractive case in black with red grille and cream knobs and dial with polished bras insertu. Size $9 \times 5 \% \times 2 \mathrm{in}$. approx. Tunable on Mediun Waven, 3 Short Waves and Trawler Band
8 improved type transistore plus and L. W. Telescopie aerisl for sholt Waves drise a larger speaker. Parts price list aul Push-pull output. Ample power to drive a larger speaker. Parts price list aud easy build plane 5/- (FREE with
parts).

Total building costs Q8 \& P. \& P. $\begin{array}{cc}\text { Earplece Fith switched socket for private } \\ 5 / 6 & \begin{array}{l}\text { listening } 5 /- \text { extra. }\end{array}\end{array}$

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. Size $\mathrm{t}_{\mathrm{a}}^{1}$ $4 \frac{1}{2} \times 1$ in. 7 stages- 5 tranaistors and 2 diodes errite rod aerial, tuning condenser, volume contro fine tone moving coil speaker also Personal Earpiece, Total building costs With wwitched socket for private liatening. Easy build plans and parte price liat $1 / 6$ (FREE Fith
parta).

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367 I enclose £ please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN	
TRANSEIGHT	\square	POCKET FIVE	\square
TRANSONA FIVE	\square	ROAMER SIX	\square

Parts price list and plans for
Name
Address

CAR LIGHT FLASHERS Heavy duty light flasher employs a condenser discharge principle operating on electro ruechanical relay. (As inset.) Housed in strong plastic case. Flashing rate between
$60-120$ per minute $60-120$ per minute.
12 volt DC opera-
tion. Maximum load 6 amps. Size 2 11/16" dia. $\times 4^{*}$. Eupplied brand new at a fraction of original cost. 8/6 each. P. \& P. 2/6. (3 for 17/6. P. \& P. 4/6.)

CLASS D WAVEMETERS

 ran drae frequency meter (o 0 Operation on 6 V d.c Available in good used con. or brand new with accesCLASS D WAVEMETERS No. 2 Cryatal controled. 1-2-19 Mc/s. Mains or 125 d.c. operation. Complete with calibration charts. Excellent condition. 112.10.0. Carr. 30/-

R209 MK II COMMUNICATION RECEIVER
11 valre high grade communication receiver suitable for tropical use. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ ont 4
bands. AM/CW/FM operation. Incorpor. ates precision vernier Iliver, BFO. Aerial
 iial speater 12 speaker and ternal power plied in excellent condition, fully testell and checkert. f15 carr. zo

TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent general pur-
 pose D/B oscilloscope. $\begin{array}{lll}\text { T. B. } & \text { e/s-750 } & \mathrm{Kc} / \mathrm{s} . \\ \text { Bandwidth } & 5.5 & \mathrm{Mc} / \mathrm{s} .\end{array}$ Bandwivity $\quad 33 \mathrm{mV} / \mathrm{CM}$.
Operating voltage $0 / 110$ Operating voltage $0 / 110$
$200 / 250 \mathrm{~V}$. a.c. Supplied in excellent working conditlon. 229.10 .0 or complete with all accessories, probe, leads, lid, etc.
285, Carriage $30 /-$.

MARCONI CT44/

 TF956 AF ABSORPTION WATTMETER$1 \mu /$ watt to 6 watts.
280. Carr. 20/-.

GEARED MAINS MOTORS
 versible. 30 RPM . 40 lb in. Complete Excellent condition. 98/8. Carr. 10/.

TO-2 PORTABLE

OSCILLOSCOP
A general purpose low scope for oscilloscope for everyday use. Y amp. Bandwidth imp. 2 megn 25 P.F. Illuminated scale. 2 i . 230 mm . Weight 81 b . 230 mm . Weight 8ib. brand new with hand-

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

A new portable
bridge oflering excellent range and accuracy at \quad low
cost. Ranges:
R. cost. Ranget: R.
$1 \mathbf{1}-11 \cdot 1$
6 R Ranges $\pm 1 \%$.
L. $\mu \mathrm{H}-11$
HENRYS 6 Ran-
 Ranges $+2 \%$. TURNS RATIO $1: 1 / 1000{ }^{6}$ Itil100. 6 Ranges $\pm 1 \%$. Bridge voltage at 1,000 cps. Operated from 9 volts. $100 \mu \mathrm{~A}$. case. Size $7 \pm \times 5=2 \mathrm{in}$. 420 . P. $\$$ P. $5 /-$.

UNR-30 4-BAND COMMUNICATION

RECEIVER

Covering $560 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incor porates BFO. Built-in 240 V . a.c. Supplied brand new. guaranteed with $\begin{array}{ll}\text { instructions. Carr. 7/6 } & 13 \mathrm{gns.}\end{array}$
TRIO JR-310 HEW AMATEUR BAND 10-80 METRE RECEIVER. In stock.
877.10 .0 . 877.10.0.

LafaYette solip siate hagoo recelver 5 BAND AM/CW/S8B AMATEDR AND SHORT TET tront end 2 mechsnical flters Hishe Huge dial Product dotector Variable BFO Noiso imiter ${ }^{\text {anc. } / 12 \mathrm{~V}}$ d.c. meter earth 24 in Bandspread RF gain control. Size 15 in - 91 in $<81 \mathrm{in}$. Weight 181 b EXCEPTIONAL VALDE. $\mathbf{2 4 5}$. Carr. 10/- S.A.E. lor full details.

TRIO COMMUNICATION

 RECEIVER MODEL 9R-59DE 4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ 40 and 80 metres. 8 valve plus 7 diode circuit. $4 / 8$ ohm output and phone jack. SNB-CW - ANL - Variable BFO As meter sep. bantlspread lial IF $445 \mathrm{Kc} / \mathrm{s}$. Audio output 1.5 W . Yariable RF aud AF gain controls. $115 / 250 \mathrm{y}$A.C.Mains. Beautifully designed. Hize: $7 \div 15$
 TRIO COMMUNICATIOF TYPE HEADPHONES Norlually e5.18.6.
OUR PRICE $\$ 3.15 .0$ if purchased with ahove rece
TRIO IR-500SE 10-80 Metre
AMATEUR RECEIVER 269.10 .0
TRIO TS 510 AMATEOR TRAMSCEIVER
with speaker and mains P.S.
UR-IA SOLID STATE COMMUNCATION RECEIVER
4 bande covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{me} / \mathrm{s}$ conransistors, s meter, built in speaker and telescopic aerial, variable BFO for SSB reception, noise limiter, banulspread control, sensitivity control. Output for low imperlance headphones. Operation 2201240 volt A.C. or 12 volt D.C. Size $12 g^{\prime \prime} \times 44^{* *}$
value. ONLY 824 . Carr. $7 / 6$.

> LAFAYETTE HA. 800 --BAMD AMATEOR REEEIVER. 57.100. Carr. Paid.

RCA COMMUNICATION
RECEIVER AR88D
Latert release by ministry BRAND NEW in original cases. $110-250 \mathrm{~V}$ it.c. operatiou. Frequency in 6 Bands. $\quad 535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / 8$ continuous. Output impedance $2.5-600$ ohms. Incorporating selectivity, etc. Price 887.10 .0 . Carr. 22.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new transibtorised receiver covering not supplied) for fixed frequeney oryal controlled corporates 4 INTEGRATED CIRCUITS. Built in speaker and illuminated dial. Squelch and volume controle. Tape recorder output. 75 a aerial input. Headphone jack. Operation 230 V .
12 V . D.C. Neg. earth. $237,10.0$. Carr. 10 -

TELETON MODEL CR 10T AM/FM STEREO TUNER AMPLIFIER
 A new model from Teleton. 31 solid state
devices. $4+4$ watt output. Inputs for devices. $4+1$ watt output. Inputs for
ceramic/crystal cartridge. Frequency range AM $540-1600 \mathrm{KHz}$ FM $88-108 \mathrm{MHz}$. Automatic FM stereo reception. Stereo indicator. Controls: Tuning, function selector, Tone and R \& L volume controls. AFC switch. Stereo headphone socket. Size: 134" $\times 3 \frac{1}{2}$ $\times 91^{*}$ approx. Price 834 . Carr. 7/6.

	CLEAR PLASTIC PANEL METERS		
	First grade quality Moving Coil panel meters. Type MR 38P. $1^{21} /$ ssin square tronts.		
	1 mA $27 / 6$	100mA $27 / 6$	300V. D.C....27/6
	1-0-ImA27/6	150 mA $27 / 6$	500 V . D.C. . . $27 / 8$
	$2 \mathrm{~mA}27 / 6$	200 mA $27 / 6$	750 V, D.C. . . $27 / 6$
	5 mA27/8	300 mA $27 / 6$	15V. A.C. . . . $27 / 6$
	10mA $27 / 6$	300 mA $27 / 6$	50V. A.C . . . $27 / 6$
$50 \mu \mathrm{~A} ~ . ~ 40 /-~$	750 mA $27 / 6$	3Y. D.C.87/6	150V. A.C. . . $27 / 6$
50-0-50 1 A $87 / 6$	$1 \mathrm{amp}27 / 8$	10V. D.C. . . . $27 / 6$	300 V. A.C. . . $27 / 6$
$100 \mu \mathrm{~A}$. $87 / 6$	2 amp $27 / 6$	10V. D.C. . . . 276	500 V . A.C. . . $27 / 6$
100-0-100 $4 \mathrm{~A}858 /-$	5 amp $277 / 8$	20 V. D.C. . . . $27 / 8$	8 meter 1 ma . $38 /-$
200 1 A 36/-	$20 \mathrm{~mA}28 / 6$	100V. D.C. . . .27/6	VU meter.... 48/-
$500 \mu \mathrm{~A}$. $40 /-$.e. for leaflet

POWER RHEOSTATS

High quality ceramic construction. Windings embedded in vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide rajge ex-stock Bingle hole fixing, in. dia. Bhafts. Bulk quantities available
50 WATT, $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohmp, $14 / 6$. P. \& P. $1 / 6$. 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or 2,500 ohms, 27/6. P \& P. 1/6.

CRYSTAL. CALIBRATORS - No. 10
 small portable crystal Size $7^{\prime \prime} \times 75^{\prime \prime} \times 4^{\prime \prime}$. Frequency range $500 \mathrm{Kc} / \mathrm{s}$ $10 \mathrm{Mc} / 8$ (up to $30 \mathrm{Mc} / \mathrm{s}$ on barmonies). Calibrated dial. Power re quirements 300 V.D.C 15mA and 12 V.D.C dition. 88/B. Carr. $7 / 6$.

T.E. 40
 HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges: R.m.s. Decibels -40 to $\mathrm{to}^{4,3-1 \cdot 2 \mathrm{Mc} / \mathrm{s} .}$ supplied brand new complete with leads and instructions. Operation
 330 V a.c. 817.10 .0 .

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS Frequency $0.20 \mathrm{Kc} / \mathrm{s}$ on ${ }^{2}$ ranges. Output 500Ω or $5 k \Omega$. Operation $200 / 250 \mathrm{~V}$. A.C. supplied in perlect order. $£ 12.10 .0$.
10/-.
TE-65 VALVE VOLTMETER

High quality instrument
with 28 ratiges. D.c. volt with 28 ratrges. D.c. volts
$1.5-1.500 \mathrm{~V}$. A.c. volts $\begin{array}{lll}1.5-1.500 \mathrm{~V} & \text { Resistance } \\ \text { up to } 1,000 & \text { megohms. }\end{array}$ $\operatorname{up}_{22} 2 / \geq 40 \mathrm{v}^{1}$ a.c. operation. Complete with probe and instructions. $£ 17.10 .0$. P. \& P. 6/-. Additionai Probes available: R.F
$35 /-.11 . V .42 / 6$. II.V. 42/6

COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES
D.c. coupled. Band wi-
order. $\mathrm{xa5}$. Cart. $30 /$ -

AM/FM SIGNAL GENERATORS
 Oscillator Teat No. 2. A high quality precision
ment made
instru-
for the ment made for the
ministry by Airmec. ministry by Airmec. Frequency cover-
age $20-80 \mathrm{Mc} / \mathrm{s} . ~ A M$ age $20-80 \mathrm{Mc} / \mathrm{s} . \mathrm{AM}$ porates precision (ial), level meter, precision attenuator $1 \mu V-100 \mathrm{~m} V$. Operation from 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{~V}$ §.c. Size $12<81>9$ in. Supplied in brand new condition complete with all connectors fully tested. 245. Carr. 20/-

PLESSEY SL 403A

3 watt Integrated Amplifier Circuit
49/6 P'OST PAID
EDDYSTORE VHF RECEIVERS MODEL
EDDYSTONE VHF RECEIVERS MODEEL
770R. 19-165 Mc/s. Excellent condition. 8150

TE-16A Transistorised TE-16A Transistoriced $400 \mathrm{kHz}-30 \mathrm{mHz}$. An
inexpensive instrument inexpensive instrument
for the handyman, Operfor the handyman. Oper-
ateg on 9 v battery. Wide, ates on 9 r battery. Wide,
easy to read acale. easy
800
kHz real modulation. $51 \times 55 \times 315$. Complete with instructions ${ }^{\text {leads. }}$:7.19.6. P.\&P. 4/-.
hosiden dh-02S Stereo headphones Wonderful value ad excellent per formance combined. Adjustable head band. 8 chm ${ }^{2} \mathbf{i m p e d a n c e}$.
Complete with lead and atereo jack plug ONLY 47/8. ONLY $2 / 6$.
P. 4 P. $/ 6$.

$0 / 115$ AUTO TRANSFORMERS

ehrouded
150 W

$\begin{aligned} & 500 \mathrm{~W} . 24.10 .0 \text {, P. \& P. } 6 / 6 \\ & 1.000 \mathrm{~W} . \\ & 26.10 .0 \\ & \text { P. }\end{aligned}$
$1,500 \mathrm{~W} .57 .19 .6$, P. \& P. $8 / 6$
G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

ARF－100 COMBINED AF－RF SIGNAL GENERATOR
 A．F．SIME WAVE $\begin{array}{ll}20-200,000 & \mathrm{c} / \mathrm{s} \\ \text { Square } \\ 30,010 & \text { mave } \\ 20- \\ \text { 20－}\end{array}$

 $\mathrm{TF} 100 \mathrm{kc} / \mathrm{s}-300$ attenuation int／ext，modulation．Incorpor put and ourpoed on R．F monitor AF out ta2．10．0，Carr． 7 is
TE－20D RF SIGNAL GENERATOR

Accurate wide range signal generator cover－
ing $120 \mathrm{kc} / \mathrm{s}$ to $500 \mathrm{Mc} / \mathrm{s}$
 calibrated．ariable nutput，Xtal socket
 $215,170 \mathrm{~mm}$ ．Brand E15．（arr int ructions．

TY75AUDIO SIGNAL sine Wave $\because 00 / \mathrm{s}$ to $200 \mathrm{k} / \mathrm{s}$ ．Hquare Ware
$20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$ ．High output．Out put variable up to 6 volts． $220 / 240$ volts a．e．Hize 210 150 120mbu．Brathl new with instructions．

MARCONI TF142E DISTORTION FACTOR METERS．Excellent romition．Fitly tested．

ADVANCE TEST EQUIPMENT Brand new and boxedin original sealed cartons． JIB，AUDIOSIGNALGENERATOR． ohme or 5 ohms． $\mathbf{E 3 0 . 0} 0$ ．
VMフ日．UEFMILLIVOLTMETER $100 \mathrm{Kc} / \mathrm{s}$ to $1,000 \mathrm{Me} / \mathrm{s}$ ．a．c． 10 mV to 3 以े mA．Re
$\$ 125.0 .0$.
TTIS．TRANSISTOR TESTER．Full range of tacinties for testing PNP or
in or out of circuit． $\mathbf{\$ 3 7} .10 .0$ ．
Carriage 10／－per item．
 MODEL ZQM TRARSISTOR CHECEER
It bas the fullest capacity tor checking checking diodes，
B：5－200．A： 0 ． 7 －0．9967． $\begin{array}{lll}\text { microamps } & \text { Icc：} & 0-5 \\ 0-50 \\ \text { mA．}\end{array}$ Resiatance
 mplete with supplied tions，battery and lead．
ad． 25.19 .6 ． 1 DECADE RESISTANCE ATTEAUATOR Gariable range
 oections．
600Ω range \quad and Bridge T ．Impedance $+10+20+30+40 \mathrm{~dB}$ ．${ }^{2}$ ）${ }^{2}$ requenc d．c．to $200 \mathrm{kHz}(-3 \mathrm{~dB})$ ．Açurac． $0.051 B$＋indication dB：0．01．Maxi－ mum input less than $4 W$（ 50 V ）．Built in 6000 load resistance with internal／external
Bwitcb．Brand new $£ 27.10 .0 . ~ P . \& P .5 /-$.

> AVOMETER MOVEMENTS

Spare movements for Model 8 or 9 ．（Fitted with Model 9 scale）or basia for any multi－
meter．Brand New and Boxed $69 / 6$. P．\＆P． $3 / 6$ ．

SEND NOW－ONLY 716 P\＆PFF

GARRARD

PULL CURRENT RANGE OFFERED，BRAND NEW AND GUARANTEEDAT PANTASTI
SAVINGG SAVINGS

LAFAYETTE LA－224T TRANSISTOR STEREO AMPLIFIER

 £24．Carriage 7 7

MULTIMETERS for EVERY purposel

VOLST NEW 20，000 Ω VOLT MOLTIMETER with
 1.200 V a．c． $0 / 3: 306030$
$600 / 3,000 \mathrm{~V}$ ． $1 . \mathrm{c} .0 \cdot 60 \mathrm{~K} 1$ 1300mA d．c．0；60太／6 meg． ohym．92／6．P．\＆P．2／f．

MODEL TE－90 50,000 O．P．Y．MIRROR SCALE OVERLOAD PROTECTION

 P． 20 to $+6,4 \mathrm{~B}$ ．$£ 710.0$ ．
 TE－800 $20,000 \Omega$ MULTIMETER 6 in full view mete
protection． 012
$2500^{\prime} 1.000 / 5.0001$
$\begin{array}{ll}0 / 25 / 125,10,50 \\ 050 & 1000 \\ 0\end{array}$ $\begin{array}{cc:c}\text { A．e．} 0 / 50 \mu A & 110 \\ 100 & 500 \mathrm{na} & 11 \mathrm{H} \\ \text { l．c．} 20 \mathrm{~K} & 200 \mathrm{~K} & \end{array}$

MODEL TE－10A．$\because 0 \mathrm{k} \Omega$
 m． $1 . /: 50 \mathrm{~m}$

MODEL TE－70． 30.000 O．P．V． $0 / 3 / 15,60,300$
$600 / 1,200 \mathrm{~V}$, I．c． 06
$30 / 120 / 600.1 .200 \%$
 ace $0 / 30 \mu \mathrm{~A}$
300 mA ． $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ 1－6M 5.10 .0 fimegohil MODEL PT－34． $50 / 250 / 500 /$ $1,000 \mathrm{~V}$ a．c．and HA d．c $0 / 100$

 Mepohm
\＄5．19．6．

LAFAYETTTE
 $\mathrm{dB}-20$（b）+81 dB
＊TRANSISTORISED FM TUNER＊
 TRANSISTOR TRGANSISTOR
QUNER．
SIZE TUNER， $31 Z E$
ONLY $b=4 \times 24 \mathrm{in}$. ON l．F．stages．
Double tuned dis． Double tuned dis－
criminator．Ample autput to feed most implifiers．Oper－ ates on 9 V battery．Coverage $88-108 \mathrm{mc} / \mathrm{s}$ ． for money．26．7．8．P．\＆ 1 ＇．．2．f． Stereo multiplex andaptors 98；6．

TRANSISTORISED TWO－WAY TELEPHONE INTERCOM
Operative over amazingly and press to talk buttons g－wire connection． 1000 ＇s of applications．Beatutifully fin ished in ebony．Supplied complete with batteries and 86．19．6．P．$\&$

SINCLAIR EQUIPMENT

gPECLAL PACKAGE OFFER
Z30 A mplifiers．Stereo 60 and PZ5 Power upply $£ 18$ rarr． $7 / 6$ ne with 2×018
 NINCLAIR IC， 10 IN STOCK 59／6
3061 ，frmplifier $\$ 23.10 .0$ ．Carr．7／6
Corteric Amplifier \＆42．10．0，Carr．7／6
PEAK SOUND PRODUCTS

RECORDING HEADS COSMOCORD drack heads．High eratse 20，MARRIOTT－tratk heads． rine 20．Pent pastay back 65：－

RACAL MA． 168 TRANSISTORISED DIVER－ SITY SWITCR．Branl New（＇ondition $£ 15$

AMERICAN TAPE lirst grate quality American tapes．Brand

3 in 205it．L，P，as	6
3qin，b00it．T．P．mylar	10／－
5 in ． 600 ft ．st，plast ic	6
5 in ． 900 ft ．L．P．acetate	－
	15／－
3 Sin．I， 200 ft ．J．P．atcetate	126
Sinh 1，00it．L．P．my har	18
jim．1，500ft．I．P．mylar	22／8
	3816
Tin，1，200ft．std．acetate．	12／6
Tin．1．800ft．L．P．acetate	15
7in．1．900ft．L．P．maylar	20：
7in．2．400ft．D．P．mylitr	25
7in．3，600ft．T．P．mylar	
stage $2 /-$ ．Over $£ 3$	

TAPE CASSETTES

Top quality in quatic library hoxes．
C9090 min $12 / 83$ for $36 /-$
Cl20 120 min 15 － 3 for 43／6
assette Head Cleaner 11／3．All Poot Extr

PRACTICAL!

 VISUAL! Nn Mn EXCITING!
a new 4-way method of mastering ELECTRONICS by doing - and - seeing . . .

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC
CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

VALVE EXPERIMENTS	PHOTO ELECTRIC CIRCUIT	A.C. EXPERIMENTS
TRANSISTOR EXPERIMENTS	COMPUTER CIRCUIT	D.C. EXPERIMENTS
AMPLIFIERS	BASIC RADIO RECEIVER	SIMPLE COUNTER
OSCILLATORS	ELECTRONIC SWITCH	TIME DELAY CIRCUIT
SIGNAL TRACER	SIMPLE TRANSMITTER	SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives
NAME... BLOCK CAPS
ADDRESS
PLEASE P.E. 4

DOMESTC HELP

THE achievements of electronic technology have long been in evidence in every home. Products such as radio, television and hi-fi equipment are an essential part of modern life. Thus in the average household electronics is naturally enough associated first and foremost with entertainment. And there is little reason to suppose this will not always remain so.

This is not to deny that other quite distinctive and immensely important roles for electronic techniques will enter into the domestic scene in due course. Power control is very much a case in point. Electronic methods for controlling electric power have been in use in industrial equipment for a very considerable time, but only during the last six months or so have we seen the emergence, in any consequence, of electronically controlled domestic appliances. Now there are on the market a number of washing machines which incorporate electronic control, giving a smooth drum operation with several spin speeds, without the need for complex mechanical gear boxes.

The advantages of electronic power control are not restricted to washing machines, and we can expect flither penetration into the domestic appliance field by electronics. But only in the medium power range, it seems. Immediately one contemplates controlling loads of the order of kilowatts, technical and cost problems arise.

Washing machines (and other medium power appliances such as food mixers, and electric blankets, for instance) can operate satisfactorily with the phase shift method of thyristor operation. But if large loads, such as electric fires, were to employ this method a serious distortion of the mains supply waveform could occur. For this reason the Electricity Council has advised that where large loads are involved an alternative method known as burst-fire operation should be used.

Unfortunately, burst-fire operation is considered too complex and costly for domestic appliances. So the advantages in comfort and economy of a continuously variable heat control over step switching of elements will not be realised, not for a while at any rate.

Even the Gas Industry is coming to recognise the services electronic devices can offer. Already, electric ignition is in common use in gas ovens and fires. The introduction of natural gas poses some new problems, since it is more difficult to ignite by the normal glow coil. A high frequency spark generated by an electronic circuit may be the answer here.

In these behind the scene roles, electronics is giving valuable support to the basic but essential domestic services, and so demonstrating that it is truly a maid-of-all work, and that entertainment is only one of its functions in the home even if, inevitably, the more apparent and glamorous one.
F.E.B.

THIS MONTH

COUSTRUCTIONAL PROIECTSMINIATURE CONVERTER288
MAGIC EYE AUDIO SIGNAL INDICATOR 302
50 PLUS 50 HIGH POWER AMPLIFIER 318
P.E. COMMUNICATIONS RECEIVER-7 329
SPECIAL SERIES
BASIC RADAR PRINCIPLES—3 292
DEMONSTRATION SWITCHING CIRCUITS—5 298
GENERAL FEATURES
INGENUITY UNLIMITED 297
BEGINNERS
THIS WAY TO ELECTRONICS—|310
NEWS AND COMMENT
EDITORIAL 287
SPACEWATCH 291
NEWS BRIEFS 301
POINTS ARISING 301
ELECTRONORAMA 316
READOUT 338

EACH year the number of caravans, campers and boat *owners continues to grow. With this there is the need for a simple converter to enable electric shavers and other low power appliances-e.g. fluorescent tubes-to be run from a 12 V battery. The source of power is usually a car battery, producing an output from the converter of 240 volts. Ideally the 240 volts should be at 50 Hz a.c., but as will be seen later there are considerable advantages in making the output d.c.

There are a number of alternatives available for power conversion, namely: rotary converters, vibrator packs and transistorised converters. Rotary converters tend to be inefficient, noisy and large. Vibrator packs have reasonable efficiency but are noisy, bulky and often unreliable. The transistorised converter does not suffer from any of these disadvantages and, provided the power requirements are not excessive, can be physically quite small.

OPERATING FREQUENCY

The operating frequency of the converter governs the inductance requirements of the transformer for a given output power. The lower the frequency the higher the inductance and consequently a larger transformer is needed.

If 50 Hz operation is required the transformer must be fairly large and so it was decided to use a higher frequency and rectify the output to give 240 volts d.c. The d.c. output is suitable for most purposes as the majority of shavers are of the a.c./d.c. variety.

Using the transistors and transformer specified the maximum output power is governed by the peak current handling capacity of the ADI62 transistors (2 amps) and is about 23 watts with a 12 volt input. The use of larger transistors will increase the output power but this is unlikely to be necessary if the converter is to be used with electric shavers.

The no load current is about 200 mA compared with 2 amps for some rotary converters, giving an overall efficiency of approximately 90 per cent. Although the transistors are mounted on aluminium heat sinks their dissipation is low and they should not get hot during use; the same is true for the transformer.

CIRCUIT DESCRIPTION

The circuit (Fig. 1) is of the conventional saturating transformer with feedback type oscillator. As TR1 switches on it is held on by its feedback winding. The magnetising current builds up until a core saturation point is reached, reducing the drive to TRI. This starts to bring TR1 out of saturation, causing a reversal of drive, thus switching it off rapidly and switching TR2 on. The same process happens to TR2 until TR1 is again in saturation. R1 and R2 provide a small forward bias to ensure the oscillator starts under full load.
In order to avoid the need for two windings a bridge circuit '(D1 to D4) is used to provide the d.c. output. The smoothing capacitor need not be large because of the working frequency. A neon across the output indicates that the unit is functioning. In order to protect the transistors and the car battery in the event of a short circuit the unit is provided with fuses at both input and output. If the shaver takes a very heavy starting current it may be necessary to use anti-surge fuses, although standard $2 \cdot 5 \mathrm{~A}$ and 150 mA fuses should not blow under full output.

TRANSFORMER CONSTRUCTION

The operating frequency was chosen to be about 1.5 kHz , this enabled the primary to be reduced to 42 turns, centre tapped and wound on a 45 mm Mullard pot core type FX2243.

Fig. 1. Circuit diagram of the miniature converter

The complete converter with case removed showing the compact construction

Using 21 s.w.g. enamel copper covered wire the winding occupies two layers and so the ends and centre tap may be brought out from the slots in the side of the former. The feedback windings are another four turns centre tapped wound on top of the two primary layers: all windings are in the same direction. After winding. the primary and feedback layers should be varnished and allowed to dry before starting to wind the secondary.

A layer of insulation tape should be inserted between the primary and secondary. The secondary winding consists of 420 turns of $30 \mathrm{~s} . \mathrm{w} . g$. enamelled wire wound with insulating sleeving slipped over the start and finish of the winding. The secondary is then given a coat of varnish before a final insulation layer of tape.

The whole pot core assembly is clamped together with the heat sink and chassis by a 2B.A. screw through the centre. A Paxolin tag strip is fitted on one end of the pot core to serve as anchoring points for the transformer leads. A thin coat of varnish on the faces of the core before clamping together will stop any tendency the transformer may have to chatter when working.

METALWORK

The actual size of the converter may vary according to individual preferences, but it was decided here to reduce the size to a minimum. Cutting and drilling details for the case shown are given in Fig. 2. The transistors are first mounted on the heat sink, using insulating washers, and this is attached to the transformer. The transformer heat sink assembly is then screwed to the chassis by means of the 2 B.A. screw through the pot core (Fig. 3). The main purpose of the chassis is to keep the transformer and transistors in a firm position when they are in the case.

transistor heat sink

FRONT BACK \& TOP
Fig. 2. Chassis cutting and drilling details

Fig. 3. Layout and wiring of the miniature converter.
Transistors TRI and TR2 must be insulated from the chassis with mica washers and plastic bushes

COMPONENTS . . .

Resistors

R| 22Ω
R2 $1 \mathrm{k} \Omega$
R3 $150 \mathrm{k} \Omega$
All $\frac{1}{4}$ W, 10% carbon

Capacitor

$\mathrm{Cl} 8 \mu \mathrm{~F}$ elect. 350 V

Semiconductors

TRI, 2 ADI62 (2 off)
DI to 4 BYI27 or BY100 (4 off)

Miscellaneous

TI Mullard pot core FX2243 (Gurneys (Radio) Ltd.,
91 The Broadway, Southall, Middlesex)
FSI, $2 \quad 2.5 \mathrm{~A}$ and 150 mA miniature fuses and holders (2 off)
LPI miniature wire ended neon
SKI output socket to suit appliance
Aluminium 18 s.w.g., $7 \frac{1}{4}$ in $\times 8 \frac{3}{4}$ in
21 s.w.g. and 30 s.w.g. enamelled copper wire
Small tag strip
Grommet
Fixings

The case is formed by two interlocking " U " shaped pieces of aluminium. The top, front and back are made by bending a ${ }_{17}^{\frac{7}{8} \mathrm{in}}$ strip of aluminium as shown, with a $\frac{3}{8}$ in fold at each end to take the self tapping screws which secure the second " U " section. Before the top section is bent, holes should be drilled for the fuse holders, neon, grommet and output socket.

Once the components have been fixed to the case the chassis with pot core and transistors can be slotted into the " U " shaped top section. The remaining components may be mounted between the anchor points formed by the fuse holder and tag panel on the pot core. Two extra anchor points were found to be necessary and these were formed by two tags on the chassis.

If the self tapping screws are of the right length they will go through the bottom section together with the $\frac{3}{8}$ in folds and still have enough length to press against the chassis, clamping it in position. Finally, four rubber feet glued on to the unit will prevent the unit from scratching polished surfaces. A strip of rexine glued over the top "U" section before assembly will enhance the unit's appearance.

TESTING

Before the transistors are wired into the circuit their collectors (cases) should be checked with a meter to ensure that there is no short circuit to the heat sink. To avoid any possible shorts to the case when assembled the inner surfaces of the sides of the lower " U " section should be insulated with tape. Before switching on, the wiring should be checked, in particular the polarity of the diodes and smoothing capacitor, together with the polarity of the supply leads.
continued on page 294

APOLLO 13

The target area for the Apollo 13 moon landing is in a rugged cratered highland known as the "Fra Mauro" formation. It lies a little southwest of the moon's full disc as seen from the earth. The site landing point is just near the crater Fra Mauro (named after a disciple of Saint Benedict) which is about 37 miles wide. Its actual position is $17^{\circ} 36^{\prime}$ west longitude and $3^{\circ} 48^{\prime}$ south latitude. This position is about 110 miles from the Apollo 12 landing site.

The emphasis on this mission is scientific exploration. The astronauts James Lovell and Fred Haise will collect samples from a fairly wide area and also drill for samples. Similar core sampling tools to those employed on the Apollo 12 mission will be used.

Lunar experts are of the opinion that the Fra Mauro formation is an upheaval of lava rock from deep inside the moon itself. Thus any material collected could represent the lava that has flowed out in the area.

Basically the experiments carried on this mission will be the same as in the previous one, except that the magnetometer will be replaced by a heat flow experiment. It is planned to insert the measuring unit some 10 ft below the surface where it will record the change of temperature level between lunar day and night

SUB-LUNAR

It is thought in some quarters that because of the nature of the surface rock that there may not be any great change. If this is so, and the level is reasonably below that of the surface, it could mean that lunar colonies will be best located underground. As the emphasis is on scientific exploration, this area has been chosen because of the amount of new data that may be acquired about the interior of the moon.

Part of the Apollo 12 mission was to crash the lunar module on the surface. The module weighed $2 \cdot 5$ tons and impacted with a speed of 3,740 miles per hour. The reverberations forming the shock waves on this occasion lasted half an hour. This was a surprising result. It has been calculated that the shock waves penetrated about six niles into the moon.

As much of the top surface of the moon is thought to be made up of shattered structure and large volcanic blocks of rock, the Saturn third stage, which will be crashed to the surface on this mission, will be very interesting. The Saturn third stage weighs about 15 tons and will impact at about 5,700 miles per hour.

LONGER WORKING HOURS

The reports of the astronauts Bean and Conrad are very interesting. They say that they were able to work easily and comfortably on their moon

By Frank W. Hyde
mission. They did not tire quickly and could have undertaken more strenuous tasks. They worked easily and did not tire or get hot.

FIFTH "HAM" SATELLITE

Alustralis-Oscar 5 was launched with Itos for amateur use. It operates on two bands and was built by a group of amateur radio operators in Melbourne University. The craft weighs 391b; amateurs will be able to train in tracking techniques and conduct propagation experiments.

Four earlier satellites of a similar type, but built by an amateur group in California, have been launched previously and are used widely by "hams".

NEW MULTI-DISH RADIO TELESCOPE

Stanford University (California) is building one of the world's most advariced radio telescopes. It consists of five dishes each 60 ft in diameter arranged in a row with a length of some 675 ft . The proposed operation frequency is in the X -band. The wavelength which will be used to study special features of some of the radio sources is 3 cm .
This arrangement of dishes, with their 15,000 square feet of collecting area, will provide a higher sensitivity and better resolution at this point of the radio spectrum than any other telescope operating. Aligned exactly east and west, the dishes can be steered to give a precise beam of one minute of arc.

There will be another dish added to the east to complete the interferometer to give a width of 10 seconds of arc. Later it is hoped to have a mobile dish that can be arranged at right angles to the line and thus achieve a pencil beam. About 75 of the known quasars can be studied from this location.

WEATHER SATELLITE

The new world weather satellite, launched on January 23, is another step in the improvement of the accuracy of weather forecasting. Such forecasts are needed to make agriculture more productive, storms and hurricanes less destructive, and air and sea travel safer.

The new satellite, the first of a new series called lios (Improved Tiros Operational Satellite) is a box shaped spacecraft weighing 682 pounds. The first one is in an orbit of 798 nautical miles. As it is in a near polar orbit every part of the Earth can be viewed daily. It carries four television cameras for daytime pictures of cloud cover, and two infra-red cameras for night-time pictures. Thus the full coverage of the earth can be made every 12 hours.

The satellite also carries a solar proton counter, for monitoring sun flare activity, and a radiometer to measure the heat that the earth absorbs and radiates back into the atmosphere. The satellite was built by RCA Astro-Electronics of Princeton, New Jersey. It will be turned over to the Environmental Science Services Administration (ESSA) after its check out.

BASIC PRINCIPLES

PART THRE主 COHERENT PULSED RADAR

By A.FOQRD

THE doppler radar described last month consists in essence of a source which is amplified to form the transmitted signal and used as the local oscillator for the received signal. This system is sensitive to small changes in range since it measures the phase changes of the signal return, but it cannot give an absolute measurement of range. This phase sensitive detection is called a coherent system.

The pulsed radar on the other hand uses a noncoherent diode detection system which produces the envelope of the received pulse to give range measurement but little information on small changes of range. Combining the two systems would give information on both range and velocity simultaneously.

One possible arrangement would be to use a system similar to the c.w. system but to pulse the power amplifier. Another way is to use a conventional magnetron, but since this only operates for a short time and has a random starting phase from pulse to pulse, it cannot be used directly as the demodulator reference for the signals. Instead a system like that shown in Fig. 3.1 is used.

COHERENT LOCAL OSCILLATOR

The stable local oscillator output (STALO) is mixed with a sample of the magnetron pulse to produce a refeience pulse at i.f., which is amplified and used to phase lock a coherent local oscillator (COHO).

The "coho" is used as the reference c.w. signal source to mix the signal returns down to video. The sequence of events, controlled by the waveform generator, is as in Fig. 3.2.

The "coho" stops oscillating just before the transmitter fires; as the transmitter fires the i.f. sample is applied to the tank coil of the "coho" and the clamp released. The "coho" oscillations build up in phase with the i.f. sample, and are used as the reference for the phase sensitive detector (p.s.d.) which provides a coherently detected video signal output.

A fixed target will give a d.c. output level while a moving target will give a different amplitude output for each transmitted pulse, so that the doppler fre-
quency is sampled at the p.r.f. (Fig. 3.3). When these signals are displayed on an "A" 'scope they appear as in Fig. 3.4.

EXTRACTING DOPPLER INFORMATION

In practice an " A " 'scope would be used to determine the range of a target; the target could be gated out and its doppler frequency measured (Fig. 3.5). A variable delay gating pulse is moved in time until it encompasses the selected target.

The output from the gate is the peak of the signal and this is used to charge a capacitor in the "box car" pulse stretcher. This aids the filtering and detection process by eliminating the p.r.f. and its harmonics.

As it stands this doppler frequency output cannot indicate if the target is approaching or receding and the range information can only give this when the target has moved a considerable distance. An offset frequency can be added to the system to provide this information immediately (Fig. 3.6).

For this application the 45 MHz reference signal is offset by 300 Hz in a single-sideband suppressed carrier modulator before being applied to the p.s.d. For a fixed target the output from the p.s.d. is now 300 Hz , for an approaching target the output may be 310 Hz (10 Hz doppler) while for a receding target the output may be 290 Hz , so that the output is no longer ambiguous with direction.

To achieve a reasonable performance the "stalo" requires a stability of 1 part in 10^{8} and a specially stabilised klystron with a large cavity has to be used; "coho" stability needs only to be of the order of 1 part in 10^{6}.

For this system the transmitter locks an i.f. oscillator with coherent detection at i.f. One other possible system involves r.f. locking and r.f. detection.

MOVING TARGET INDICATION *

Since a non-coherent pulsed radar measures target range and angular position for each scan, moving targets are indicated by their change in position from scan to scan.

Fig. 3.1. Practical coherent pulsed radar system

envelope of doppler frequency

Fig. 3.3. Appearance of stream of received pulses

Fig. 3.4. "A"' 'scope display for coherent echoes

Some assistance in recognising moving targets can be provided by cancelling those echoes due to stationary targets, leaving the display clear of solid masses of "clutter" due to hills or buildings. However the desired moving target echo may have to compete with considerable clutter at a similar range, and the m.t.i. will only be partially effective.
For a coherent pulsed radar, where doppler information is available, the use of m.t.i. techniques enables the moving target signal to be extracted even if the unwanted clutter signal is 100 times greater than the target signal. M.T.I. is therefore more usefully applied to a coherent pulsed radar.
Since the permanent echoes remain constant from one sweep to the next, whilst the echoes from moving targets vary, subtraction of one sweep from the previous sweep should remove the permanent echoes but leave the moving targets (Fig. 3.7).

Fig. 3.2. Locking sequence for coherent radar system
-

Fig. 3.8. Blind and ambiguous speeds for a pulsed doppler radar

The receiver output is split into two, and one half is delayed by one pulse period and then subtracted from the other half. Possible delay methods include an ultrasonic delay line, or the "writing" of signals on a storage tube and "reading" them off after a delay of one pulse period.

BLIND AND AMBIGUOUS SPEEDS

For a coherent pulsed radar the doppler frequency is measured by discrete pulses (or samples) at the p.r.f. It is one of the axioms of sampling theory that at least two samples in a cycle are required in order to reconstruct a waveform.

If a radar has a p.r.f. of 1 kHz then doppler information can only be resolved unambiguously up to 500 Hz . This is shown in Fig. 3.8. Doppler frequencies of $1.5 \mathrm{kHz}, .2 .5 \mathrm{kHz}$, and so on, all appear as 500 Hz . Doppler frequencies of $400 \mathrm{~Hz}, 600 \mathrm{~Hz}, 1 \cdot 4 \mathrm{kHz}$, 1.6 kHz , and so on, all appear as 400 Hz . Any moving target whose doppler frequency happens to be a multiple of the p.r.f. ($1 \mathrm{kHz}, 2 \mathrm{kHz}$, etc.) will be rejected. For a 1 kHz p.r.f. and X -band the first blind speed will be 30 knots.

MINIATURE CONVERTER

continued from page 290

Transformer TI before installation, note the tag board to secure the ends of the windings

A meter may be connected across the output (on 250 volt d.c. range) to indicate oscillation, although there will usually be enough vibration in the transformer to show that the converter is working. If there is no output then the phase of the feed-back windings is wrong. The feedback windings may be reversed systematically, i.e. reverse TR1 base and retest; if still not working reverse TR2 base and retest; if the unit still refuses to start reverse TRI base again. This gives all four combinations.

Once the correct phasing has been found the converter should start under full load. With no load connected the standing current should be about 200 mA , while the on load current will, of course, be determined by the shaver used. If the unit is to be used in conjunction with fluorescent tubes the connections to the tube should be reversed from time to time in order to avoid discolouring at the ends.

Converter ready for use

2Watt and 3Watt Professional IC Audio Amplifiers now available

These Plessey general purpose integrated circuit audio amplifiers are being used by a number of major equipment manufacturers throughout the country.

Through large scale production Plessey can now make these devices available to home constructors at reasonable prices.

Each circuit incorporates a preamplifier and a class A-B power amplifier stage and needs only a minimum of external components.

Take a look at these specifications opposite!
These really outstanding Plessey IC audio amplifiers are immediately available off-the-shelf from our distributors listed below. Data application brochures (Price 1s. 9d. each) which include PC board layouts for mono and stereo amplifiers are obtainable from:

Farnell Electronic Components Ltd
Canal Rd, Leeds LS 12 2TU
Tel: Leeds 636311 Telex: 55147

Characteristic	SL402A	SL403A
Output power r.m.s.	2 W	3 W
Input impedance Preamplifier	$20 \mathrm{M} \Omega$	$20 \mathrm{M} \Omega$
\quad Main amplifier	$100 \mathrm{M} \Omega$	$100 \mathrm{M}!$
Distortion		
\quad Preamplifier	0.1%	0.1%
\quad Main amplifier	0.3%	0.3%
Frequency response		
\quad Lower-3dB point	20 Hz	20 Hz
\quad Upper-3dB point	30 kHz	30 kHz
Operating voltage	-14 V	-18 V
Min. operating load	7.5 sl	7.5Ω

SDS (Portsmouth) Ltd
Hillsea Industrial Estate, Hillsea, Portsmouth, Hants.
Tel : Portsmouth (0705) 62332 or 62180 Telex : 86114

A selection of readers' suggested sircuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

GUITAR PICK-UP SYSTEM

IKE most electric guitar pick-ups, this one is based on Faraday's first law of electromagnetic induction.
In this case the conductors are the steel strings of a guitar, and the magnetic field for each string is produced by several small bar magnets, placed close to them to give roughly equal fields around each string, see Fig. 1.

The magnitude of the e.m.f. produced is too small for most purposes (about 1 mV), and the output impedance is very low (less than 1 ohm). Since all the strings are connected in parallel, further amplification is therefore required. A conventional common emitter stage is used, Fig. 2, but with a transformer at the input, to match the strings to the amplifier. A 3 ohm loudspeaker transformer, used in the step-up mode, was found to work very well.

The transistor used was a 2 N 697 npn silicon, but almost any type would do, silicon or germanium, provided that the polarity of the main amplifier power supply matches that of this pre-amplifier.

Fig. I. Position of small bar magnets beneath guitar strings

Fig. 2. Circuit diagram for a simple pre-amplifier for the guitar pick-up system

Low noise resistors should be used in the base bias chain if the noise level proves unacceptably high. A volume control is also included so that the pre-amplifier can be fed direct into a guitar amplifier.

This system may be used with any steel stringed instrument, such as a violin or ukelele. It has the advantage that any feedback produced can easily be controlled by touching the particular string which is vibrating and damping it. A large range of bizarre effects can also be obtained by waving a powerful magnet around near the strings while they are being played.
S. Kravis, Chelmsford.

SOUND MIXER

THE circuit in Fig. 1 shows a simple mixer unit which is very adaptable. The balance control is used to fade out one signal, while another is simultaneously faded in. This gives a more professional touch than simply turning down one signal and then turning up the other, as well as being much simpler to use.

Another possible use is for mixing speech and music for entertainments at dances and parties.

As the mixer consists of only passive components, there is a considerable loss in signal, however, this can be remedied by using a simple audio amplifier. A suitable design incorporating the amplifier is shown opposite.

J. R. Morris, Chorley.

Fig. 1. Circuit diagram of the mixer and audio amplifier

BISTABLE MULTI

By B. Pounder

For the conditions shown in Fig. 5.1a, i.e. TRI is off and TR2 is on,

$$
\begin{array}{ll}
I_{\mathrm{R}_{1}}=I_{\mathrm{R}_{2}}+I_{\mathrm{C}_{1}} ; & I_{\mathrm{R}_{2}}=I_{\mathrm{b} 2}+I_{\mathrm{R}_{6}} \\
I_{\mathrm{R}_{4}}=I_{\mathrm{R}_{3}}+I_{\mathrm{c}_{2}} ; & I_{\mathrm{R}_{3}}=I_{\mathrm{b}_{1}}+I_{\mathrm{R}_{5}}
\end{array}
$$

Therefore $I_{\mathrm{R}_{2}}=\left(V_{\mathrm{CC}}-V_{\mathrm{bc}}\right) /\left(R_{1}+R_{2}\right)$
If $\quad R_{5}=R_{6} \gg R_{2}=R_{3}$
Then $\quad I_{\mathrm{R}_{2}} \gg I_{\mathrm{R}_{6}}$
and $\quad I_{\mathrm{R}_{2}} \simeq I_{\mathrm{b}_{2}}=I_{\mathrm{C} 2} / h_{\mathrm{FE}}$
Therefore $R_{1}+R_{2}=\left(V_{\text {Cr }}-V_{\mathrm{be}}\right) h_{\mathrm{F}_{\mathrm{FE}}} / /_{\mathrm{C}_{2}}$
From Fig. 5.1b

$$
V_{\mathrm{B}_{1}}=-V_{\mathrm{BH}_{3}}\left(\frac{R_{2}}{R_{2}^{-}} \frac{R_{6}^{-}}{+}\right)
$$

Let $V_{1_{1}}=0.5 \mathrm{~V}$ reverse bias to ensure that TRI is off, Substitution of this value gives

$$
R_{6}=R_{2}\left(2 V_{1313}-1\right)
$$

For satisfactory operation, it can be shown that the following condition must be fulfilled:

$$
R_{2}<h_{\mathrm{rE}} R_{1}
$$

Suppose we wish to demonstrate the circuit by making it switch a 180 ohm relay on and off on command by

Fig. 5.Ia. Theoretical circuit of the bistable multivibrator

Fig. 5.Ib.
Passive equivalent of switching TR2

Practical Electronics
April 1970

DESIGN STEPS (Fig. 5.1)

I. Choose $V_{c c}$ equal to the required output voltage swing. Choose $I_{c 2}$
2. Choose $V_{\text {BB }}$ to be between $V_{C C}$ and about $\left\{V_{C C}\right.$
3. Calculate $R_{1}=R_{4}=V_{C C} / l_{c 2}$
4. Calculate $R_{4}+R_{3}=\left(V_{\mathrm{CC}}-V_{\mathrm{Be}}\right) h_{\mathrm{FE}} / l_{\mathrm{C} 2}$ where h_{FE} can be taken as 20 or 30 and $V_{\text {be }}=0.3 V$ for germanium transistors and $V_{b e}=0.8 \mathrm{~V}$ for silicon transistors
5. Calculate $R_{2}=R_{3}=\left(R_{4}+R_{3}\right)-R_{4}$
6. Calculate $R_{5}=R_{8}=R_{3}\left(2 V_{B B}-1\right)$
7. Check that $R_{6} \gg R_{3}$
8. Check that $R_{3}<h_{\mathrm{FE}} R_{4}$
set and reset pulses. Following through the design procedure, we get the following results.

A 180 ohm relay usually operates at 6 V . Hence choose $V_{C c}=6 \mathrm{~V}$.
(step 1)
Also, $I_{C 2}=6 / 180=33 \mathrm{~mA}$ or 0.033 A .
Choose $V_{\mathrm{BB}}=6 \mathrm{~V}$ also.
(step 2)
$R_{4}=180$ ohms (given).
(step 3)
$R_{4}+R_{3}=(6-0.8) \times 20 / 0.033=3,100$ ohms
(step 4)
(We have assumed a silicon transistor is used with $h_{\mathrm{FE}(\mathrm{min})}=20$.)
$R_{3}=3,100-180=2,920$ ohms. Use preferred value $2.7 \mathrm{k} \Omega$. (step 5)
$R_{6}=2,700 \times(2 \times 6-1)=29,700$ ohms. Use preferred value $27 \mathrm{k} \Omega$.
(step 6)
Note that $R_{6} \cdot>R_{3}$.
(step 7)
Note that $R_{3}<h_{\mathrm{FE}} R_{\mathbf{4}}$.
(step 8)

BREADBOARDING

The circuit, with suggested S-Dec connections, is shown in Fig. 5.2. The diode shown in the circuit eliminates the possibility of damage to TR2 due to the back e.m.f. generated by the relay coil when the current through it is suddenly switched off. The trigger set and reset pulses are obtained by momentarily shortcircuiting the base and emitter leads of the on transistor to switch it off.

Alternative component values for the 5 mA meter circuit and the bulb circuit are as follows.

Fig. 5.2. Practical design of the bistable with S-Dec connections

Layout of components on S-Dec for basic bistable in Fig. 5.2

	Bulb Circuit	5 mA Circuit
R_{4}	$6 \mathrm{~V}, 100 \mathrm{~mA}$ bulb	$1 \cdot 2 \mathrm{k} \Omega$
R_{3}	$1 \cdot 1 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
R_{B}	$12 \mathrm{k} \Omega$	$220 \mathrm{k} \Omega$
V_{BB}	6 V	6 V
V_{CC}	6 V	6 V

If a relay is not at hand, the circuit can be demonstrated by connecting a voltmeter between the collector and emitter leads of one of the transistors. If this is done, it will be desirable to recalculate the circuit values to operate on a smaller collector current. say 5 mA .

Another possibility is to design the circuit with 6 V , 100 mA bulbs used as the collector resistors R1 and R4. Metal-canned transistors should be used in order to ensure safe operation at 100 mA collector current. Some transistors may require heat sinks if the collector current rating is close to the bulb current rating.

EMITTER-COUPLED BISTABLE

In the circuit shown in Fig. 5.3, the $V_{B B}$ power supply has been replaced by a resistor R 7 through which the emitter current of the on transistor flows. The voltage dropped by this current across R7 causes both emitters to be at a positive potential.

Thus if one of the transistor bases is maintained at or near zero potential, that transistor will be cut-off. The use of R7 to provide negative bias on the base is analogous to the use of a cathode bias resistor in a valve circuit which provides a negative bias on the grid.

The equations from which component values may be calculated are given in the "Design Steps" panel below.

TRIGGERING THE BISTABLE

There are many ways of triggering a bistable by the application of trigger pulses. However, most of the methods have one thing in common; the trigger pulse is applied in such a way as to turn the on transistor off rather than vice-versa. To turn the off transistor on requires that the trigger pulse is capable of overcoming the reverse bias which is holding the transistor off before it can proceed with the actual switching process.

For simplicity, only one trigger circuit will be used in this article. It utilises collector triggering since the trigger terminals are connected to the transistor collectors.

DESIGN STEPS (Fig. 5.3)

Step. I. Decide on required output voltage swing V_{0} and I_{2}
Step 2. Choose $V_{C C}$ and V_{e} from $V_{C C}-V_{e}=V_{0}$
Step 3. Calculate R_{4} from $R_{1}=\left(V_{C C}-V_{e}\right) / I_{c 2}$
Step 4. Calculate R_{2} from

$$
\left.\left.R_{2}=\left\{V_{\mathrm{CC}}-\left(V_{\mathrm{e}}-V_{\mathrm{DC}}\right) \frac{2 V_{\mathrm{e}}}{2 V_{\mathrm{e}}-1}\right\}\right\}_{\mathrm{FE}} / I_{\mathrm{C}_{2}}\right]
$$

Step 5. Check that $R_{2} \gg R_{4}$
Step 6. Calculate R_{6} from $R_{6}=\left(2 V_{e}-I\right) R_{2}$
Step 7. Calculate R_{7} from $R_{7}=V_{e} / I_{C_{2}}$
Remember, however, that the collectors in a bistable are connected to the bases of the other transistors via cross-coupling networks. Thus a trigger pulse applied to the collector of one transistor is directly coupled to the base of the other. The circuit is shown in Fig. 5.4a.

Suppose TR1 is off and TR2 is on. If a positivegoing step is applied to the SET terminal, it is transmitted to D1 and D2 and reverse biases D2. However, D1 will become forward biased so will allow Cl to discharge.

When the SET voltage is reduced as a step to zero, the voltage reduction will be transmitted to D1 and D2 and forward bias D2. A negative-going voltage is therefore applied to the base of TR2 which turns off.

Similarly, the circuit can be made to undergo another transition if a negative-going step is applied to the RESET terminal. Fig. 5.4 b shows part of the same circuit but with the diode D1 replaced by resistor R7. Having calculated the component values, it is worth while to check that the saturation collector current can be supplied.

DESIGN

The circuit is easily demonstrated by the use of $6 \mathrm{~V}, 100 \mathrm{~mA}$ bulbs in place of resistors R1 and R4. In this case, $V_{0}=6 \mathrm{~V}$ and $I_{\mathrm{c}_{2}}=100 \mathrm{~mA}$, so Step 1 is covered. Now proceed as follows.

Choose $V_{\mathrm{cc}}=9 \mathrm{~V}$, so $V_{\mathrm{e}}=9 \mathrm{~V}-6 \mathrm{~V}=3 \mathrm{~V}$. (step 2)
$R_{1}=R_{4}=(9-3) / 0 \cdot 1=60$ ohms

$$
\begin{align*}
& R_{2}=R_{3}=\left\{9-(3+0.8) \times \frac{6}{6-1}\right\} \times[20 / 0 \cdot 1] \tag{step3}\\
&=890 \text { ohms (step 4) }
\end{align*}
$$

(Used preferred value of 820Ω for R2)

Fig. 5.3. Theory of emitter-coupled bistable
$R_{2} \gg R_{4}$ as required.
(step 5)
$R_{5}=R_{6}=(6-1) \times 820=4,100$ ohms (use $3 \cdot 9 \mathrm{k} \Omega$)
$R_{7}=3 / 0 \cdot 1=30$ ohms (use preferred value 27Ω)
(step 7)
The calculations can be checked as follows:
Allowing for the voltage drop across R1 in TR1 under the conditions shown in Fig. 5.3.

$$
I_{\mathrm{R}_{1}}=\frac{V_{\mathrm{CC}}-V_{\mathrm{c}_{1}}}{R_{1}}=\frac{V_{\mathrm{c}_{1}}-\left(V_{\mathrm{e}}+V_{\mathrm{be}}\right)}{R_{2}}
$$

Hence $\left(9-V_{\mathrm{c}_{1}}\right) / 60=\left(V_{\mathrm{C}_{1}}-3 \cdot 8\right) / 820$
so $\quad V_{\mathrm{C}_{1}}=8.5 \mathrm{~V}$ approx.
and $\quad \boldsymbol{I}_{\mathrm{R}_{1}}=(9-3 \cdot 8) / 820=5 \mathrm{~mA}$ approx.
Also, $\quad I_{\mathrm{R}_{6}}=\frac{V_{\mathrm{e}}+V_{\mathrm{be}}}{R_{6}}=\frac{3.8}{3.9}=1 \mathrm{~mA}$ approx.
so

$$
I_{\mathrm{b}_{2}}=4 \mathrm{~mA}
$$

This base current is roughly 80 per cent of that

Fig. 5.4a. Trigger inputs to switch the bistable

Fig. 5.4b. Diode DI replaced by a resistor R7

Fig. 5.5. Practical circuit of the emitter-coupled bistable
required to saturate a transistor with $h_{\mathrm{Fe}}=20$ at $I_{\mathrm{c}}=100 \mathrm{~mA}$. If, as is likely to be the case, the transistors used have $h_{\text {Fe }}$ slightly in excess of 20 , the component values should be satisfactory.

Suggested circuit connections for S-DeC are shown in Fig. 5.5. Note that it is drawn for pnp transistors. ($N P N$ devices may be used if the supply polarities are reversed at holes 40 and 70 .) The transistors should be capable of operating at 100 mA collector current Germanium types such as the OC72 or OC83 will be suitable, but note that the calculation assumed a $V_{b c}$ value of 0.8 V for silicon types such as OC204.

It is left as an exercise to see what difference, if any, a substitution of 0.3 V makes to the component values when calculated for germanium types. As with the previous bistable example, triggering is achieved by shorting the base and emitter leads of the on transistor.

To be continued next month

Layout of components on S-Dec of emitter-coupled bistable

NEWS BRIEFS

Golden Jubilee

THE 50th anniversary of the founding of the Mullard company will be celebrated this year
It was in 1920 that Mr Stanley Mullard, born in 1883 and still a member of the Mullard Lid board, formed The Mullard Radio Valve Company Lid. - the first venture to bear his name. It occupied floor space rented from his former employers and its initial product was high-power transmitting valies

From this beginning the Mullard enterprise has developed into one of the UK's biggest electronic component companies. It employs around 17.000 people, over 1,200 of whom are qualitied scientists and engineers, in 14 production centres, laboratories. service depots and other ancillary establishments.

During jubilee year production capacity will be substantially expanded by the addition of three new plants at Thornaby (Teesside). Stockport and Bolton

New Number

The Institution of Electronic and Radio Engineers have recently changed their telephone number. The new number is $01-6372771$ (10 lines). Previous numbers have been discontinued.

Learning by Computer

Aspecial teaching aid, for various subjects for secondary, higher and vocational education, has been developed by ASEA. The system comprises a computer, typewriter, a high speed reader for punched tape and a television type display. Most classrooms are nowadays provided with television sets and these can be connected up to the systems. This means that several classes can study simultaneously the results presented on the screen in the form of, for example, curves oblained as the solution to a problem fed into the pre-programmed computer.

It is also possible to use these small computers in schools as terminals connected to a larger computer system. Teach-aid will therefore be developed so that it can be connected up to large computers of different types for performing calculations according to special programmes.

Certain computer programmes have in fact already been prepared by ASEA. These programmes are primarily intended for such subjects as mathematics, physics, theory of electricity and the theory of control systems. A programme library has also been established. The programmes can be adapted to the curricula laid down by the Boards of Education in different countries.

P.E. ORGAN (May '69 to Morch '70)

Parts for the Practical Electronics Organ as previously supplied by Kimber-Allen Ltd., should now be ordered from Henry's Radio Lid.. 303 Edgware Road, London. W. 12.

$\checkmark_{\text {magic eye }}$ aunio sitinal INOICATOR

By M.L.MICHAELIS m.a

This instrument is a form of audio voltmeter obviating the expense of a moving coil meter. It incorporates a simple audio amplifier with input gain control, driving a magic eye tuning indicator as display device. The green luminous sector of the magic eye vanishes to a simple vertical line for zero signal input. The apex angle of the luminous sector increases in proportion to the peak-to-peak amplitude of the applied audio signal.

The gain control and mains on/off switch are the only manual controls. The unit incorporates its own mains power supply and is thus very simple to operate and cheap to construct. The uses are manifold:

- As a signal tracer

- As a comparative a.f. voltmeter
- As a bridge balance indicator

In addition to full constructional details for the Magic Eye Audio Signal Indicator, this article describes a number of bridge circuits which may be used with this unit for various measurement purposes.

THE complete theoretical circuit of the magiceye bridge indicator appears in Fig. 1. The first section of the ECC83 double triode Vla operates as a conventional audio voltage amplifier which drives the second section of the same valve, VIb. This second triode operates as cathode follower to provide the low source impedance necessary for proper functioning of the d.c. restorer C6, D2, R11.

D.C. RESTORER

This d.c. restorer is necessary because the magic eye V2 must be driven with entirely negative-going signals, i.e. the luminous sector width is zero when the applied voltage between grid pin 1 and cathode of V 2 is zero, and the sector width increases in proportion to the negative voltage applied to the grid. A positive voltage applied to the grid produces no definite effect.
To satisfy these drive requirements of the magic eye V2, the d.c. restorer functions as follows. C6 charges via D2 to the peak positive amplitude of an arbitrary waveform appearing at VIb cathode pin 3. C6 attempts to discharge through R11, but the time constant C6.R11 is very long compared to the signal period. Thus a negative d.c. voltage appears across RII, equal to the peak positive amplitude of the signal waveform.

Whenever the signal waveform is momentarily at the peak positive value, this just overcomes the negative d.c. voltage across R11 and the net voltage applied to the grid of the magic eye V 2 is zero. At all other instants, the net voltage is negative, reaching its greatest negative value, now numerically equal to the peak-to-peak signal amplitude, when the signal waveform is momentarily at its negative peak. Thus the width of the luminous sector is proportional to the peak-to-peak amplitude of the applied signal, irrespective of the actual waveform.

Any d.c. component of the input signal is blocked by Cl , so that response is solely to the a.c. component. R1, R5 and R12 are grid stoppers to prevent parasitic oscillation on sharp transients of applied signals.

The circuit employs a valve amplifier, not a transistor amplifier, because the magic eye V2 already requires a valve-type power supply.

POWER SUPPLY

The h.t. power supply is derived from a half wave rectifier circuit. Any small silicon h.t. rectifier is

suitable for D1. The exact values of the electrolytics C3 to C5, and C7 are not critical.

Do not use mains transformer with a heater winding rated for much higher currents, although up to about 1.5A rating is usable. Higher ratings would mean that unduly high voltages are actually applied to the valve heaters at such low loading. If the available transformer does not possess a centre-tapped heater winding, connect two 5 kilohm resistors in series across the untapped heater winding and earth the centre junction of these resistors to chassis.

CONSTRUCTION

The prototype is housed in an instrument case
measuring 8.75 in by 5.75 in by $6 \cdot 25$ in deep. A shallow chassis bolted to the front panel carries most of the circuit components. The smaller components are wired between a pair of tag strips bolted to the underside of the chassis. Arrangement of the components and wiring is given in Fig. 2 and Fig. 3.

Items mounted directly on the front panel are the mains input plug PL1, mains switch Sl, gain control VR1, and the signal input socket SKI.

A small rectangle is cut out of the centre of the front panel and a piece of Perspex is fitted to the rear side to provide a window for viewing the magic eye tuning indicator. Cutting and drilling details are given in Fig. 4

Fig. I. Circuit diagram of the Magic Eye Audio Signal Indicator

COMPONENTS . . .

Resistors	Diodes	
R1 $22 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ R	DI	Silicon h.t. rectifier 750 V p.i.v. 100 mA
R2 $1.5 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W} \quad$ R9 $4.7 \mathrm{k} \Omega \mathrm{IW}$		BYX 10 (Mullard)
R4 10k 1 W R R11 $2.2 \mathrm{M} \Omega \frac{1}{2} \mathrm{~W}$	D2	Silicon junction diode 50V p.i.v. OA200
R5 $522 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ R12 $22 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$		(Mullard)
R6 $2.2 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ R13 $470 \mathrm{k} \Omega$ IW		
R7 10k Ω IW	Miscellaneous	
All carbon, $\pm 10 \%$		
Potentiometer		Mains panel connector 3 pin 5A, and cable socket (Bulgin SAl86I)
Capacitors	SKI	Coaxial socket, panel mounting
Capacitors GI $3 \cdot 3 \mu \mathrm{~F}$ microfoil 500 V - C5 $16 \mu \mathrm{~F}$ elect. 350 V	SI	Mains switch, d.p.s.t.
C2 $0.22 \mu \mathrm{~F}$ paper 500 V C6 $0 \cdot 15 \mu \mathrm{~F}$ paper 500 V C3 $8 \mu \mathrm{~F}$ elect. 350 V C7 $8 \mu \mathrm{~F}$ elect. 350 V	TI	Mains transformer. Secondaries: $2 ; 0 \mathrm{~V} 20 \mathrm{~mA}$; 6.3V 0.6A Elstone MTII (Home Radio)
C4 $8 \mu \mathrm{~F}$ elect. 350 V		B9A valveholders. Tag strips, one 14 way,
Valves		e 19-way. Grammets. Case $8 \frac{3}{4} \mathrm{im} \times 5 \frac{\mathrm{i}}{} \mathrm{in} x$
VI ECC83 double triode		in deep (Olson 26A). Aluminium for chassis,
V2 EM80 magic eye tuning indicator		rspex for window. Control knob.

Fig. 4. Front panel and chassis drilling details

Fig. 5. Outline and base connections of magic eye indicator type EM80

Never Built a Kit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

Stereo Record Player
Exciting Sound - Budget Price
Kit: K/SRP-I - - £27.6.0
Carr. 11/-

Economy SW Receiver
World-wide Reception I to 30 MHz plus $550-1620 \mathrm{KHz}$ Kit: K/GR-64 - - $£ 24.16 .0$ Carr. 9/-

‘SEVERN ’ AM /FM Radio

Beautiful Looks - Luxury Sound

Kit: K/SEVERN
E18.18.0 Carr. 5/-

For D.I.Y. Car Mechanics
Kit: K/ID-29
-
£17.8.0 Carr. 5/-

Deluxe Car Radio
Heathkit Value-Powerful Output
Kit: K/CR-I (speakers) $\left.\begin{array}{c}\text { Less }\end{array}\right)$ Carr. 5/-

Portable ' VVM '

For Hobbyists - Householders

Kit: K/IM-I7
£14.8.0
Carr. 6:-

Aircraft Monitor
Receiver
Kit: K/GR-98
£27.12.0
Carr. 5 .

QUALITY－TESTED PAKS
B Matched Trans OC44／45／81／811 20 Red Spot AF Trane．YNP
16 White spot RF Trans．PNP
5 sulicon Recte． 3 A $100-400$ P
210 A Silicon Rects． 100 PIV
112 A SCR 100 PI
$3200 \mathrm{Mc} / \mathrm{s}$ sil．Trans．Nl＇N Bsion
3 Zener Diodes i W $335^{\circ} 5 \%$ Tol．
4 High Current Trans．OC42 Equt
2 Power Transigtors 1 OC26 1 OC
2 Power Transiators 1 OC26 1 OC35
＊Silicon Rects， 400
4 Oci5 Transiators
1 Power Traps，OC20 100 y
100 a 202 sil．Dioded Sub－rin．．．．．
2 Low Noise Trans．NP＇N $2 \$ 429 / 30$
1 Low Trans NPN NCB 100 ZT86
8 OA81 Diorles
40 OC 2 Transistors
4 OC7 Transiators
4 Sil．Recta． 400 PIV 500 mA 5 （iET884 Trans．Eqvi．OC44．
5 GET883 Trane．Eqvi．OC45 5 GET883 Trana．Eqvi．OC45
2 2N708 nih．Trans $300 \mathrm{Mc} / \mathrm{S}$ NP 3 GT31 LF Low Noise（ierm Tran $\begin{array}{ll}6 & 1,591+\text { Sil．Dioles } 75 \text { PIV } 75 \mathrm{~mA} \\ 8 & 0495 \text { Germ．Wiodes Sub }\end{array}$ 3 NPN Germ．Tranes．NKTiz3 Eqve．
2 OCN Germ．Trans．NkTi，
4 AC128 Trans，PNP High Gain

3 2N1307 PN1 Hwitching Trans．．
${ }^{7}$ CG62H Germ．I）odes
2 Aseorted（lerm．Diodes Mar
4 ACl26 Germ．PNP Trans．
4 Silicon Recte． 100 PIV 750 m
3 AF117 Trans．
3 OC171 Trans．．．．
$62 N 2326$ sil．Epoxy
7 oc71 Type Trans
228701 Nif Trans．Texas
210 A 600 PlV Sil．Rects． 1545%
3 BCIOS sif．NPM High Cain Tran ${ }_{2} 1000$ PIV Sil．Rect． $1 \cdot 5$ A R 253310 ${ }_{2} 1000$ PIV Sil．Rect． $1 \cdot 5$ A 1253310.
$\begin{array}{ll}3 & \text { R．} 1995 \mathrm{~A} \text { Sil．Tran } \\ 3 & \text { Ocr } 200 \text { sil．Trans．}\end{array}$
2 Oc200 sil．Trins． ${ }_{3}$ AF139 PNP High Freq．Trans． 4 Madt＇e 2 MAT 100 \＆ 2 MATI20 3 Madt＇s 2 MAT101 \＆I MAT121
4 OC44 Cerm．Trans．AF．
3 AC127 NIN Gierin，Trans．
1 2N3906 sit．PNP Tratis．Motorola

TK201 A．
3 2N643 Enitaxial Planar Trans， S 4 （iemm．Power Trans．E3vt．OCIf
1 Injunction Trans． 2×20 an ．．．．
2 Sil．Trims． $200 \mathrm{Mc/a}$ 60Vch ZT83／84

 SEMICONDUCTORS FOR＂P．E．＂ $50-50 A M P$ ．

 BI－PAK

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI－PAK UNTESTED SEMICONDUCTORS

Sttisfact

Pak No
C1
120 Glass Sub－min．General Purpose Gernanium Dionte 60 Mixed Germanium Transistors AF／R！

40 \＆ermaniun Tramgistora like OC81．AC128 60200 mA Sul H －1nin．Sil．Djoules
40 Silicon I＇lanar Trankigtors N P＇sim．Bsi Y954．2NT0ti 16 sificon Kecthers Tup－Hat $\overline{50 m A}$ up to 1.000 V 50 Sil．Planar Diodes 250 mA OA／200／202
00 Mixen bith I watl Zener Dhotes
 30 PNP N P＇N Mil．Transistors OC 200 \＆ 2 s 104 50 Mixed shlicon ant Germantium Diodes

10 3－Amp Silicon Rectithers Stut Type up to 1000 P
 30 silicon NPN Transistors like BC 10 n
12 I－5－amp Nilicon Rectillers Top－llat up to $1,000 \mathrm{PI}$

30 Mall＇s like MAT Senses PNP Trandistors
20 Germanatn 1－atop Rectitiers（ $4,5 \mathrm{M}$ up to 300 PI

30 Fast Nwitching Nilicon Dlotes like IN： 14 Micro－mist．．
Experimenters＇Assortment of Integnated Citcuits，
fates，F＇ind－Fiops，Registers．etc．， 8 Assorted Pieces
$1 0 \longdiv { 1 \text { anp sClk＇s T0．5 can up to } 1 5 0 0 \text { P＇IV CRsi／25．600 } }$

25 Zener diodes 400 m ${ }^{2}$ b07 case mixed Volts， 3 －18
I5 Ilagtic ease 1 amp Silicon reclifiers iN 4000 serjes．
30 Kil ．PNP alloy trams TO－5 MCy $2 \mathrm{Cl}, 2 \mathrm{2k} 302 / 4$
25 Nil．Planar trame．PNP TO－18 2N290ti．
5 sil．Planar NP－trans．TO－5 BFY50／51／52
30 sil．alloy tans．NO－2 PNI，OC200 2×322
20 Fast switching sil．trins．NPN， $400 \mathrm{Me} / \mathrm{s} 2 \mathrm{~N} 301$
30 RF （ierm．PNP tratis． $2 \mathrm{~N} 1303 / 5 \mathrm{TO}-5$
10 Dual trans． 5 lewd TO－5 2 N2060
30 KF （ierm．trans．TO． 1 OC45 NKTち2

NEW LOW PRICE TESTED S．C．R．＇s						
	$\stackrel{1 \mathrm{~A}}{\mathrm{TO} .5}$	$\stackrel{3 \mathrm{~A}}{(\mathrm{TO}-6 \mathrm{ti}}$	$\begin{gathered} 7 \mathrm{~A} \\ \mathrm{TO} 48 \end{gathered}$			30.
	case）	（ase）	case）			
14゙	ench	each	each	eich	11	each
50	4／6	5 ／－	$9 / 6$	10／6	25	20
100	5／－	8／6	10／B	12／8	50	23
300	7／－	7／6	11／8	15／－	100	28
400	8／6	9／6	13／8	18／6	$\because 00$	32
1000	10／6	11／6	15／6	25 －	400	35.
800	12／8	14／－	18．	30 －	1800	80
2A POTTED BRIDGE RECTIFIERS． $200 \mathrm{~V} 10 /-$ ， 600 S 15／－，800 1 20						

$200 \mathrm{~V} 10 /-$ ， $600 \mathrm{SC} 15 /-, 800 \mathrm{Y} 20$
TRANSISTOR EQVT．AND SPECIFICATION BOOK．（Gieruan P＇ublication，A complete
cross reference and ennivalent trook for European，Anerican and Jatpanese Traugis． European，Americ：an and Jitpanese Trausi
tors．Exclubive to BI－PAK． $15 /$ each．

PRINTED CIRCUITS

EX－COMPUTER
Packel with semicomluctors and cons－ 30 trans，und 30 diocies．Our price 10 boards 30 tr
10

PLEASE NOTE

lncreasel Postal Charges to our Cusionther ant enable us to heep our＇ B, F Fet uru Postal service＂which is second to none，we hate
re－organised and streauling our Wespater re－organiged and streambued our Despateht
Order hepartment and we now request you Order hepartment and we mow request you
to send all your orders together with your remitance，direct to our Warehouse amd BI－PAK SEMCONDU＇CTORS，Despatch Dept．，P，O，BOX 6，WARE，HERTS．Postage and packing still $1 /-$ per order．Minithum

INTEGRATED CIRCUITS
BI－PAE MONOLITHIC AMPLIFIERS （TO－5 8 lead）
BPT09C，Oprerational amp． lifler， $15 /$ each． 13ProlC，Operational amp lifier（with Zener out put）， $12 / 6$ each．
ur 702 C ．Operat lonal amp By 702 C Operational amp．
lifier（with direct out－ put）， $12 / 6$ each．
put）， $12 / 6$ each．
B1＇sol，Wide hand ampli
fier， $18 /$－each．
10521，Logarithmic wic
I3［＇20／C，（ ${ }^{2}$ ，eneral pach．
amplitice（TO．5 8 lead）．
（voltage or current anap．），
12／8 each．
I．C．Operational Amplither with Zener output．
Type 701C．Ideal for P．E． Type 701C．Ideal for P．E Projects．
Finlidata．
Our price $12 / 6$ each 5 off $11 /$－each．Large Qt

AMPLIFIER FOR USE IN

 following：SLA0．2．3，IC10
and ICi03．Each cirenit incorporates a pre－amp and
class A．B．Jower amp atage capatble of delivering up to anat guaramteed．Supplied complete with circuit ictails athd data．CODED BP． 1010 OUK LOW＇EST PRICE
$30 /-$ eath． 10 up 25／－each． OTHER MONOLITHIC DEVICES
8／6 each．
This device is a monolithie
This device is a monolithie rigerer circuit for contral ling a triac．It is deaigned to pulse the gate of thyristor at the foint zero supply voltage．an therefore elinninte radio
frequeney
interference when waed with resistive
loads．

loads D 131

D131）Silkon I゙nilateral A Sxiteh 10）－each
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
FAIRCHILD U.S.A.

RTUL MICROLOGIC INTEGRATED CIRCUITS temp，ralige $15^{\circ} \mathrm{C}$ ，to $55^{\circ} \mathrm{C}$ ， ＋L901，Dual two－input Late， $9 / 9$ each． tLi23 J•V－11ip－flop，13／－
Complete data and circuits
for the fairchild IC．＇s for the F＇airchild I．C．＇s
available in hookiet form priced $1 / 6$ ．
MULLARD I．C． AMPLIFIERS

TA A243，Operational amp－

TAA2t3，linear AF ampli－
fier，15，θ each．
anplifer 21／－ench
ominer 21－each．
LINEAR INTEGRATED
CINEARIRCUITS
\qquad
CADMIUM CELLS
ORPI：2 $8 / 6$
ORPG0，ORP61 $8 /-$ cach

PHOTO TRANS．

ADI61 $x_{P x}$ ADI62 MATCIED COMPLE． MENTARI PAIRS TRANSISTORS．
For mains driven out－ put atages of Amplifters OIR LOWEST IJRJCE OF 12／6 PER 1．A／J HIGH POWER SILI COS PLANAR TRA
SISTORS．TO．3． FERRANTI ZT1487
vCB60 le 6 A （T． $1 \mathrm{M} / \mathrm{ca}$ $\begin{array}{ll}\text { VCE } 40 & \text { P＇tot．75W } \\ \text { VEB8 } & \text { hFEI5－45 }\end{array}$ I＇RJCE 15／－EACH
2 N 3055 POW WATT SIL $\frac{\text { OURPRICE } 12 / 6 \mathrm{EACH}}{\text { FULL RANGE OF }}$ FULL RER DIODES
ZOLEAGE RANGE 2－18V．${ }^{400 \mathrm{mV} \text {（DO．} 7}$ Case） $2 / 6$ ea． $10 W$（ro． 10
Hat
$3 / 8$ ea． Stuil） $5 /-$ eat Alt lully
testerl 5% tol．and
narked．State reltag marked．
required．
BRAND NEW TEXAS Coded and Guaranteed Poded and Garanteed
Eak No．
T1 8 2037LA OCT1

$\begin{array}{ll}\text { Tak No．} \\ \text { T1 } \\ \text { T } & 80\end{array}$

$\begin{array}{llll}\text { T4 } & 8 & 2 \mathrm{G3744} & \text { OC811 } \\ \mathrm{T} & 881 \mathrm{Cl} & \text { OC81 }\end{array}$

T5 8 24382T | OC8 | |
| :---: | :---: |
| TG | 8 |

$\begin{array}{cccc}\text { T6 } & 8 & 2(1344 A & \text { OC44 } \\ \text { T } 7 & 8 & 2 \mathrm{G} 345 \mathrm{~A} & \text { OC45 }\end{array}$

T10 8 ？G417 AF117̄
All 10／－each pack
2N2060 NPN SIL．DUAL
$\begin{array}{ll}\text { TRANS．} & \text { CODE D1699 } \\ \text { TEXAS．} & \text { Our price } 5 /-\end{array}$
120 VCB NIXIE DRIVER TRANSISTOR
FLLLY TESTE CODED NL120，1－243／6 each，To．5N．P．N． 25 up

Sit．trans．suitable for
r．E．Organ．Metal To－18
Eqrt．ZTX 300 1／－each．

FREE

One 10／．Fack of your own choice free with
orders valued $£ 4$ or over． $\begin{array}{lr}\text { NPN } & \text { DIFFUSED } \\ \text { SLLICON } & \text { PHOTO．}\end{array}$ DVO－DIODE TYPE Readout．high switching chtors． $50 \mathrm{~V}, 250 \mathrm{~mW}$ ． OURPRICE 10／－EACH， まULL DETAILS．

FET＇S

2N 3819	10／－
$\cdots \mathrm{N} 3820$	$25 /$
MPF105	8／－

$2 \mathrm{~N} 3814, \mathrm{Mb}$

． 2N3815，MPド102 $\begin{array}{llll}25-99 & 6 / 3 & \text { ench：} 100 \text { up } \\ 2 / 6\end{array}$ 5／8 each．Coded FEI9． | Fuse． |
| :--- |

BI－PAK DIGITAL CIRCUITS BP3054 lead TO－5） gate， $8 / 6$ each Bl314A，${ }^{7 \text {－Ivpu }}$
gate，$/ 6$ each．

PERFORMANCE

To express the sensitivity of this instrument, we may define three display sector sizes as follows:
(1) Smallest conveniently observable signal, equal to audio voltage required to double the residual width of luminous line for zero signal
(2) Half-size sector signal, equal to audio voltage required to produce a luminous sector angle equal to the angle of remaining dark sector.
(3) Full sector signal, equal to audio voltage required to extend the luminous sector over the entire screen, leaving only two very narrow dark lines.
The luminous sector angle increases in approximately linear proportion up to (3), beyond which point large further increases of signal amplitude cease to exert any appreciable effect.

With the gain control VR1 at maximum, the necessary peak-to-peak input signal amplitude was measured for the protolype to be:

> 20 mV for sector size (1)
> 300 mV for sector size (2)
> 600 mV for sector size (3)

These sensitivity figures were found to be valid without detectable changes for any frequency from 20 Hz to 20 kHz , sinewave or squarewave, thus presumably also for any arbitrary waveform as justified theoretically above.

To define the bandwidth, we adjust the input voltage at some medium frequency, e.g. 500 Hz , for full sector size according to (3), and then increase or decrease the signal frequency, without changing the signal amplitude, until half sector size is obtained according to (2), showing that the 6 dB points of the passband have been reached.

These 6 dB points were found to be dependent on waveform and gain control setting. The lower 6 dB point lies at one or two Hz for all normal waveforms and all settings of the gain control. With the gain control at maximum, the upper 6 dB point lies at about 65 kHz for waveforms approximating to sinusoidal, or at 120 kHz for waveforms approximating to square, whilst with the gain control at half-way setting, the 6 dB point lies at 20 kHz irrespective of waveform.

SIGNAL TRACING

Evidently the smallest conveniently detectable audio signal is some 5 mV r.m.s., so that the sensitivity of this unit is ample for signal tracing in all types of audio circuits right back to the anode or collector of the first stage following a microphone or tape deck input. Some form of pre-amplifier will be required for measuring the outputs of microphones or tape decks directly, but the sensitivity of the instrument as it stands is fully adequate for direct observations of the output from a crystal pick-up, most other kinds of pick-up, and a.m. or f.m. detectors.

Using an ordinary diode detector probe as found among standard oscilloscope accessories, the instrument can be used for tracing modulated i.f. and r.f. signals, right back to the aerial input circuit when using strong local stations or a signal generator. The choice of diode probe is in no way critical, any type made for a nominal oscilloscope input impedance of about $1 \mathrm{M} \Omega$ being suitable. The magic eye bridge indicator may be connected directly to the a.m. detector output or to the loudspeaker output as indicator for aligning superhets.

The maximum safely acceptable input signal amplitude is about 50 to 100 volts peak-to-peak, regardless of the gain control setting. The latter must of course be reduced accordingly for proper display of

Fig. 6. Interpretation of magic eye luminous display patterns
the larger voltages in this range. If still larger audio voltages must be examined, use a conventional 10:1 ratio oscilloscope probe obtainable from any dealer stocking oscilloscopes. The impedance rating should be about $1 \mathrm{M} \Omega$ oscilloscope input, but is not critical here. Voltages up to about 1 kV peak-to-peak can then be examined. The $10: 1$ probe is also necessary to reduce capacitive loading when tracing signals in very high impedance audio circuits, or in tuned circuits which are sensitive to detuning (electronic pulse circuits, TV scan circuits, etc.).

COMPARATIVE AUDIO VOLTAGE MEASUREMENTS

The sensitivity figures quoted in the section on performance enable rough assessments to be made of the peak-to-peak amplitude of any applied audio signal, from the gain control setting and observed sector size. It is possible to calibrate the gain control in terms of peak-to-peak signal amplitude required for half-sector size. The latter is readily observable by virtue of the symmetry present when the luminous and dark sectors possess equal angles. This generally permits ± 10 per cent accuracy, or better with care, in assessing a.f. signal amplitudes.

Still better comparative measurements are possible by using a small cable adapter fitted with a switch or push button to alternate between the audio signal and an adjustable 50 Hz signal from a mains transformer. The 50 Hz reference signal is varied until actuation of the switch or push button produces no change in the luminous sector size. The 50 Hz reference voltage can then be measured with an ordinary multimeter whose readings need only be correct at 50 Hz mains frequency.

USE AS BRIDGE BALANCE INDICATOR

This instrument is equally satisfactory as balance indicator for various types of conventional bridges for R, C and L measurements and for the novel type of split phase bridge for electrolyte conductivity measurements described in the August 1969 issue of Practical Electronics.

For signal tracing, including balance indication in conventional bridges and comparative audio voltage measurements, the number of voltage inverting amplifier stages in the unit would be immaterial, since the d.c.

Underside view of prototype unit

restorer always ensures display of the peak-to-peak value. However, the published split phase conductivity bridge delivers a train of positive half-cycles of a sinewave, whose peak equality is the balance criterion. It is undesirable to have the d.c. restorer diode conducting here, so these peaks must be the negative ones in the waveform applied to the d.c. restorer.

Consequently we need an odd number of voltage inverting amplifier stages-a single one in the present unit. As long as the split phase bridge is not balanced, we obtain two overlapping luminous sectors of different angles. These coincide to a single sector at balance. This balance criterion is quite sharp, although not nearly as sharp as with the described double bright-edge raster oscilloscope display in the cited article. When using the magic eye bridge indicator with the split phase bridge, do not turn up the gain control more than necessary. Quite a small luminous sector gives the sharpest assessment of sector coincidence (see inset sketches on Fig. 6).

For conventional bridges, the purpose of the balance indicator is merely to detect when no, or negligible, signal is present. At all other points of off balance for the bridge, an appreciable signal will be present and indicated as corresponding luminous sector. Thus good maximum sensitivity is required for a satisfactory balance indicator in a conventional bridge.

In this sense, the instrument here described is at least as good as sensitive headphones, and superior thereto because it does not require ambient silence, and visual assessments are clearer than aural ones. For normal operation in a conventional bridge, a low gain setting is used when still far off balance, turning up to maximum gain as the balance point is approached.

CONVENTIONAL BRIDGE TYPES

Fig. 7a shows the generalised four-arm bridge. The arms may be arbitrary impedances composed of R, C and L and designated Z_{1} to Z_{4}. The audio voltage source is applied across one diagonal, and the balance indicator is connected across the other diagonal. It is generally immaterial which diagonal is used for which purpose, so that if the impedances are arranged such that the bridge is balanced (no signal indicated by balance indicator), it is still balanced if the audio source and the balance indicator are interchanged.

THE WHEATSTONE BRIDGE

Fig. 7b shows the Wheatstone bridge, in which all four impedances are simple resistors. This sketch also shows convenient forms of connections for a practical set up, applying analogously for the other bridges, (c) to (e) too. T may be any small audio or intervalve type transformer. The ratio is not critical but should not be too great. If dealing with only low impedances in the bridge, connect the winding with the smaller number of turns across the bridge diagonal. If low and high impedances are encountered in the bridge, connect the largest winding across the bridge diagonal.

The audio source may be taken from a low voltage secondary winding of a mains transformer for the Wheatstone bridge, but for the other bridges, especially if the arms contain small C or L values, a higher frequency is preferable. Neither amplitude nor frequency are critical, so that if an audio signal generator'is not available, a radio or tape recorder is usable.
A single balance criterion, expressed in the two alternative forms shown, suffices for the Wheatstone bridge. In general, it is immaterial which one of the four resistors is the unknown one to be determined, which pair of the remaining three is selected in definite ratio to establish the range factor, and thus which fourth resistor is the calibrated variable one.

For example, R_{1} may be the unknown one, R_{4} a fixed standard resistor, R_{2} chosen as a decimal multiple or submultiple thereof to establish the range factor (switch to select various values of R_{2}), and R_{3} is the calibrated variable resistor.

OTHER DERIVATIVE BRIDGES

The possible variants of the general bridge of Fig. 7a are legion. We will select only three particularly useful ones for simple practical work, without making any claims to be comprehensive.

As soon as we introduce capacitors and inductances, we generally need two independent balance conditions which have to be satisfied simultaneously to obtain zero signal in the balance indicator diagonal. The reason for this is that resistive (R) and reactive (C and L) voltages or currents are in phase quadrature, thus vectorially independent and the bridge must be balanced separately for each quadrature component. Consequently two variable calibrated components must be mutually adjusted for balance, which considerably complicates the search for the true balance point.

THE DE-SAUTY BRIDGE

Fig. 7c shows the De-Sauty bridge for measuring capacitances. As long as the capacitors possess negligible leakage (time constants $C_{1} \cdot R_{1}$ and $C_{3} \cdot R_{3}$ very long compared to the period of the audio drive waveform), so that R_{1} and R_{3} may be neglected, this bridge degenerates to one with a single balance criterion. It is immaterial which capacitance arm contains the unknown capacitor. The other one then contains a switch selecting various accurate fixed capacitors to determine the range. One of the resistors is a fixed standard, the other one a variable resistor calibrated directly in capacitance values.

The bridge is extremely useful for making reasonably accurate checks of small capacitors from about $1,000 \mathrm{pF}$ up to tens of microfarads, using a 50 Hz source. Measurements are possible down to about 100 pF with higher audio frequencies, the lower limit being set by confusion due to stray capacitances which are generally about 30 pF in an arbitrarily set-up bridge. If the capacitor to be measured leaks, the second balance criterion with respect to R_{3} and R_{1} must be satisfied too.

THE MAXWELL BRIDGE

The Maxwell bridge shown in Fig. 7d is the counterpart of the De-Sauty bridge for inductances. It is unusual to find inductances with such a high L / R ratio that R_{1} and R_{3} may be neglected, so this bridge normally
does not degenerate to one with only a single balance criterion.

In a typical practical arrangement, L_{1} is the unknown inductance and R_{1} its own inherent d.c. resistance. A range switch selects various standard L_{3}, whose d.c. resistances are smaller than those of any unknown coils L_{1} likely to be encountered. $\quad R_{3}$ is a variable resistor for one balance criterion, R_{2} a variable resistor for the other balance criterion and R_{4} a fixed standard resistor. The practical difficulty with this bridge arrangement is that R_{2} and R_{3} have about the same effect on the balance point, so that mutual adjustment is difficult.

THE OWEN BRIDGE

The Owen bridge (shown in Fig. 7e), is easier to balance because R_{2} affects the balance point more strongly than R_{4}. Thus to establish balance, vary R_{2} until minimum signal is shown on the balance indicator, and then adjust R_{4} for zero signal (repeat for fine zero adjustment if necessary).

The bridge can be switched for L or C measurements. R_{1} may be a fixed standard resistor, C_{4} a fixed standard capacitor, R_{4} a variable resistor calibrated in inductance values and C_{3} various values selected by the range switch, for inductance measurements. The same range switch with the same C_{3} values can serve for capacitance measurements, whereby C_{4} is the unknown component and R_{2} is a variable resistor calibrated in capacitance values.

ELECTRONICS is not really new, it has
been growing up slowly for more than a hundred years. In 1835 Roschenschold published his discovery that an electric current would only flow in one direction through certain solids; he had unwittingly stumbled upon the solid-state or semiconductor diode, and a device for controlling the motion of electrons.

Dramatic progress in radio communications, from about 1900 onwards, tended to overshadow further developments in electronics, and the thermionic valve diverted attention away from solid-state devices.

Electronics really came into its own following the Second World War. There was an enormous proliferation of electronic devices, and semiconductors began to compete with valves.

It is only natural that electronics, like any other specialised subject, has slowly acquired a "language" of its own. However, with just a smattering of school science, and some fairly simple maths, the intelligent electronics tourist can soon pick up the patois and begin to appreciate at least some of the scenery. This series of articles is intended to satisfy a need for a "phrase book" and general guide to electronic theory.

The first part must essentially begin with basic electric currents and the influences of simple components to control these currents. Later parts will progress through more complex devices (using semiconducting materials) to functional circuits.

ELECTRICITY AND ELECTRONS

The general phenomena arising from a surplus or deficiency of electrons (negatively charged particles) in atoms is called static electricity. When electrons are made to drift from atom to atom, this constitutes an electric current.

A conductor is a body or substance which readily permits a flow of electrons, while an insulator is a body or substance which does not allow such a flow. More about electrical conduction later.

Electrons are far too small to be examined individually, and are too numerous to count, but an electric current can be studied by making use of its effects on components and materials.
Large populations of electrons in motion will cause appreciable heat to be developed in a poor conductor (a resistance), and will also generate a magnetic field. Heat and magnetism in turn can be made to deflect the pointers of measuring instruments. It then remains to find out what aspect of electron behaviour the instrument is actually measuring.

SIX BASIC QUANTITIES

The display panel opposite sets out the six basic quantities used to assess functions of electricity, with quantities in bold capitals and their associated units in bold small letters. Symbols appear inside brackets, and it is important not to confuse the symbol of a quantity with that of its measured unit.

RELATIONSHIPS

The electrical quantities listed can be arranged in a number of ways to tell us what is happening, and what is likely to happen in an electrical circuit. A very important set of relationships is given in Table 1.1.

To see just how these relationships work in practice, it is instructive to apply them to a simple circuit consisting of a car battery, a switch, and a resistor, which are linked together in series by copper conducting wires of negligible resistance, as in Fig. 1.1. (Resistance is a comparative term. All conductors will exhibit some resistance at normal temperatures, and all resistors are capable of conducting a certain amount of current.)

In Fig. 1.1, the resistance and heat liberated by the copper conducting wires is so small that it can be ignored, but a flow of electrons through the resistor will generate appreciable heat. Energy stored in the battery is almost completely transformed into heat by the resistor, so the circuit is really that of an energy converter.

If two or three electrical quantities in the circuit of Fig. 1.1a are known, it is possible to deduce from Table 1.1 all the remaining electrical quantities, and also predict the time when the battery will become exhausted.

To gain familiarity with the six basic quantities and their relationships, try working out with a pencil and paper what results will be obtained from the circuit in Fig. 1.la when the battery e.m.f. is 12 volts, the charge in the battery is 36,000 coulombs (the same thing as 10 amp -hours) and the value of the resistor is 12 ohms .

It should be possible to arrive at the following answers by taking any of the several paths of exploration offered by Table 1.1, and jointly consulting the list of quantities given earlier. Energy in the battery will be 432,000 joules, heat liberated by the resistor during the life of the battery 103,075 calories, flow of charge or current 1 amp , rate of energy dissipation or power 12 watts, and time taken for the battery to become exhausted 36,000 seconds or 10 hours.

RESISTANCE NETWORKS

A current can be increased or reduced by changing the value of resistance in a circuit. Indeed, the interrelationship of electrical quantities means that wholesale changes can be brought about, merely by adjusting a single quantity, such as resistance.

Looking again at the circuit in Fig. 1.1a, if two more 12 ohm resistors are wired in series with the first resistor (Fig. 1.Id) the resulting total resistance will be 36 ohms, the current will be reduced to $\frac{1}{3} \mathrm{amp}$, and the charge in the battery will last three times longer.

On the other hand, if these two extra 12 ohm resistors are wired in parallel with the first (Fig. 1.1d), the total resistance will be reduced to 4 ohms, current will be trebled to 3 amps , and time taken for the battery to discharge will be $3 \cdot 3$ hours.

If a selection of resistors were wired to a special switch, which connected them in series or parallel in the circuit in Fig. I.Ib, a whole range of heat outputs would be readily available, ranging from a great heat for a short time to a small heat over a long period, with intermediate steps, according to the resistance values and wiring arrangement.

Table 1.I: ELECTRICAL RELATIONSHIPS

CHARGE (Q). An amount of electricity. A surplus or deficiency of electrons. Practical unit the coulomb (C). A negative charge of 1 coulomb corresponds to an excess population of approximately six trillion (6×10^{18}) electrons.

CURRENT (I). The movement of electrons or CHARGE. Practical unit the ampere or amp (A). One amp is a flow of 1 coulomb per second.

ENERGY (W). The work done by a flow of electrons, in terms of heat, light, mechanical effort, etc. Practical unit the joule (J). One joule equals 0.2386 calories, or the work done by a force of 1 newton acting through a distance of 1 metre.

POWER (P). The rate of doing work or delivering ENERGY. Practical unit the watt (W). One watt is equal to 1 joule per second or 0.00134 horsepower.

RESISTANCE (R). Property of a material to resist or slow down a flow of electrons, and convert their kinetic energy into heat or light. Practical unit the ohm (Ω). A resistance of 1 ohm will dissipate 1 watt when a current of 1 amp passes through it.

ELECTROMOTIVE FORCE or E.M.F. (E), also called VOLTAGE and POTENTIAL (V). The force which moves electrons. Practical unit the volt (V). One volt is needed to push a current of 1 amp through a resistance of 1 ohm .

Quite often the practical units used to measure electricity are either too large or too small for the job in hand, and they have to be prefixed for multiples or sub-multiples of one thousand: see Table 1.2.

Table 1.2: UNIT PREFIXES

Prefix	Value
pico- $(\mu \mu$ or $p)$	One million millionth $\left(10^{-12}\right)$
nano- (n)	One thousand millionth $\left(10^{-9}\right)$
micro- (μ)	One millionth $\left(10^{-6}\right)$
milli- (ml)	One thousandth $\left(10^{-3}\right)$
kilo- (k)	One thousand times $\left(10^{3}\right)$
mega- (M)	One million times $\left(10^{6}\right)$
giga- G$)$	One thousand million times
	$\left(10^{9}\right)$
tera-(T)	One million million times
	$\left(10^{12}\right)$

Examples are: picofarad ($\mu \mu \mathrm{F}$ or pF), nanovolt $(\mathrm{nV}$), microamp ($\mu \mathrm{A}$), millihenry (mH), kilowatt (kW), and megohm ($M \Omega$).

FIG. 1.1. RESISTANCE

THE RESISTANCE OF ANY MATERIAL IS PROPORTIONAL TO THE RESISTIVITY FACTOR OF THE MATERIAL AND ITS LENGTH, AND INVERSELY PROPORTIONAL TO ITS CROSS-SECTIONAL AREA

Fig. 1.fa. A heavy duty battery sonnected in series with a switch and resistor. Electron flow is shown by the arrows. Conventional current flow, based on positively charged partieles, is in the opposite direction

Fig. I.Ib. The diagram in Fig. l.Ia can be redrown in simple terms using a symbol for each component and straight lines for wires. This is called a theoretical circuit diagram. The switch is shown normally open, or "off". The resistor could be replaced by a 12 V lamp to shaw that current flow is heating the filament when the switch is closed

Fig. I.Ic. This graph shows that when the switch is closed the e.m.f. ocrpss the resistor increases instently and remains at almest battery voltage until the switch is opened agoin

Fig. I.Id. The total resistance of ony number of resistors connected in SERIES is equal to the sum of each resistance odded together: $\boldsymbol{R}_{\text {TOTAL }}=R_{1}+R_{2}+R_{3}$, etc.

The total resistance of any number of resistors connected in PARALLEL is

$$
R_{\text {TOTAL }}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}, \text { etc. }}
$$

(All units in onms)

FIG. 1.2. VOLTAGE OR POTENTIAL DIVIDERS

Fig. 1.2a. Potential divider using two fixed value resistors in series. The output valtage available ocross one of these is $V_{0}=I \times R_{2}$. The current through the potential divider is $l=E_{\mathrm{b}} /\left(R_{1}+R_{2}\right)$ (E_{b} and V_{0} are in volts; I in amps; R_{1} and R_{2} ohms)

Fig. I.2b. Potential divider where the two fixed resistors are replaced by one resistor with a movable wiper arm to provide on output voltage V of ony omount between zero and the battery voltege. This component is called o potentiometer and is sometimes referred to as a rheostat, volume control, or variable reslstor

Fig. 1.2c. The output of the above two circuits is usually connected to a load of same kind which can be represented by a resistance R_{L}. The output voltage V_{0} ocross the lood will now be less than it was in Figs. 1.2 a and 1.2 b because R_{L} shunts R2.

$$
V_{0}=I_{2} \times R_{L}=I_{1} \times R_{2}
$$

(V_{0} is in volts: I_{1} and I_{2} in amps; R_{1}, R_{2}, and R_{L} in ohms)

CIRCUIT SYMBoLs

VARIABLE RESISTOR

(Preset screwdriver control)

(Knob control)

POTENTIOMETER

(Preset screwdriver control)

(Knob control)

FIG. 1.3. CAPACITANCE

THE CAPACITANCE BETWEEN TWO SETS OF PARALLEL METAL PLATES IS PROPORTIONAL TO THE AREA OF OVERLAP OF EACH PAIR OF PLATES, THE NUMBER OF PAIRS OF OVERLAPPING PLATES, AND THE DIELECTRIC CONSTANT OF THE INSULATING MATERIAL BETWEEN THE PLATES. IT IS INVERSELY PRO. PORTIONAL TO THE DISTANCE BETWEEN TWO PLATES

Fig. 1.3a. A battery connected in series with a switch, a current limiting resistor, and a capacitor. For simplicity the capacitor is shown with flat plates interleaved with a dark area of insulating material (or dielectric) between each pair

Fig. I.3b. The diagram in Fig. 1.3a cam be redrawn in simple terms using symbol for each component. The switch is shown normally "off"

Fig. 1.3c. This graph shows that when the switch is closed the voltage across the capacitor rises exponentially to almost the battery voltage while the current rises instantly and declines exponentially as the voltage rises

Fig. I.3d. The total capacitance of any number of copacitors in SERIES is
$C_{\text {Total }}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}, \text { etc. }}$

The total capacitance of a number of capacitors in PARALLEL is $C_{\text {total }}=C_{1}+C_{2}+C_{3}$, etc.

CIRCUIT SYMBOLS

FIXED VALUE CAPACITOR

VARIABLE CAPACITOR (Knob centrol)
VARIABLE CAPACITOR or TRIMMER (Preset screwdriver control)

POTENTIAL DIVIDER

Apart from series and parallel combinations, there is another important configuration called a potential or voltage divider, see Fig. 1.2. The potential divider is widely used for reducing or dividing voltages or currents by known amounts.

In Fig. 1.2a, the fixed divider network consists of two resistors wired in series across a battery, with an output taken from across one of these resistors. By calculating suitable values for R1 and R2, any voltage between zero and battery volts E_{b} can be made available.

A continuously variable adjustment between zero and E_{b} volts can be obtained if the divider has a sliding contact which moves along a resistance track; this arrangement is variously called a potentiometer, volume or gain control, variable resistor and so on, depending on the use to which it is put. The variable divider circuit is given in Fig. 1.2b.

In the examples given in Fig. 1.2a and 1.2b, the dividers reduce the e.m.f. to be supplied to the output (V_{0}), but until a load is connected, no current flows in the output wires. Current merely flows through RI and R2 and back to the battery. Most practical dividers usually end up having some sort of load on their outputs, which can be represented by a plain resistance, R_{L} in Fig. 1.2c

Even a voltage measuring instrument can take some current, and a heavier load, such as a flashlamp bulb, will place a considerable load on the divider output.

So, the current orminally passing through R 2 is now divided into I, and \boldsymbol{L}_{2} through R 2 and $R_{1, .}$. The output voltage V_{0} is also nodified and reduced, because the relationships between electrical quantities in the circuit of Fig. 1.2c must be maintained; reter again to the calculations for voltage, current, and resistance in Table 1.1 and the formulae in Fig. I.id

$$
V_{11}=I_{2} \times R_{1}=I_{1} \times R_{2}
$$

CAPACITANCE

It is appropriate now to add two more electrical quantities to the previous list, namely capacitance and inductance. The basic quantities again being in bold capitals and the measured units in bold small-hetters.

CAPACITAMCE (C). The property of two conductors, separated by an insulator, to store an electric charge. Practical unit the farad (F). One farac will store 1 coulomb on application of 1 volt.

INDUCTANCE (L). The property of a current carrying conductor to oppose a change of current, due to an associated magnetic field. Practical unit the henry (H). The amount of energy stored in the magnetic fiele associated with 1 henry is $\frac{1}{2}$ joule for a current of 1 amp .

FIG. 1.4. INDUCTANCE

 THE INDUCTANCE OF ANY COIL OF WIRE IS PROPORTIONAL TO THE SQUARE OF THE NUMBER OF TURNS OF WIRE, THE SQUARE OF THE MEAN DIAMETER OF THE COIL, THE LENGTH OF THE COIL, AND THE MAGNETIC QUALITIES OF THE CORE MATERIAL

Fig. I.4a. A battery connected in series with a switch, a resistor, and an inductor (or coil). The inductor usually consists of several turns of thin insulated wire, sometimes with a core of air or ferrous material

CIRCUIT SYMBOLS

FIXED INDUCTOR WITH
IRON CORE
FIXED INDUCTOR WITH
CORE OF FERRITE MIXTURE
VARIABLE INDUCTOR WITH

Fig. I.4b. The diagram in Fig. $1.4 a$ using symbols for components

Fig. I.4c. This graph shows that when the switch is closed the current through the coil rises exponentially, while the voltage rises instantly and declines exponentially as the voltage rises

4	12	13

Fig. 1.4 d . The total inductance of any number of inductors in SERIES is $L_{\text {TOTAL }}=L_{1}+L_{2}+L_{3}$, etc.

The total inductance of any number of inductors in PARALLEL is

$$
L_{\text {TOTAI }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}, \text { etc. }}
$$

In the circuit in Fig. 1.3a, the capacitor shown consists of two sets of interleaved metal plates A and B, each set being insulated from the other. The presence of an insulator prevents any significant flow of electrons between the two sets of plates, and yet the capacitor seems to conduct a current in certain circumstances.
To see how this can be, we will assume that the switch in Fig. 1.3a is off, leaving the resistor and plates B disconnected from the battery negative lerminal. Because plates A are wired directly to the battery positive terminal, they will be deficient in clectrons. For the purposes of this exercise we will also assume that plates B have been discharged and are in the same condition as plates A , with an electron deficiency.

When the switch is closed, electrons will rush through the resistor to the electron starved B plates, consequently power will be dissipated for only an instant in the resistor. The graph in Fig. I.3c shows that the current rises very rapidly to maximum as the switch is closed, then declines slowly as the concentration of electrons on plates B begins to build up (dotted line).
However, the e.m.f. across the capacitor works the opposite way, rising slowly from zero towards maximum (as shown by the solid line). Note that when the process has been completed, plates A are still deficient in clectrons, and there has been no actual flow of electrons through the insulator, but there was a short-lived current through the resistor.
After plates B have been fully charged with electrons, the capacitor is capable of delivering a charge to a resistor which may be connected across A and B. In many ways a capacitor behaves like a small battery.

INDUCTANCE

It has been established that there is a close relationship between electron motion and magnetic atraction. If a current flows through a wire a magnetic field is set up around that wire.
To make this magnetic fied of usetul magnitude. several wires are placed logether and all led with an e.m.f. The easiest way is to use one wire and wind it several times around a former. The greater the wire thickness and number of curns, the stronger will be the magnetic field and "inductance" of the coil.
A core of iron or other ferrous mixture can be placed inside the coil of wire to increase the inductance. This is shown in Fig. 1.4b.

However, the magnetic field can generate a small opposing current in the wire which will rapidly increase for an instant when the core is removed. The magnetic field collapses and generates an e.m.f. across the coil for a short time. The inductor opposes a change of current, and stores electrical energy

When the switch is closed in the circuit in Fig. 1.4a, the e.m.f. across the inductor builds up very rapidly to maximum before slowly declining, while current begins a slow growh from zero towards maximum. Clearly. the action of an inductance has points of similarity with that of a capacitance. Current and voltage wends for both can be compared by examining the graphs in Fig. 1.3c and Fig. 1.4c.

Part two next month will deal with the differences between electrical conduction in solids, liquids, and gases, and will also introduce that important semiconducting device-the diode.

SUPER BARGAIN STOCKTAKING SALE!!!

Use the form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is "sold-out" when order received we shall substitute items of equal value.

COMPARE THESE PRICES!!

No. \quad Price

Total:

25% discount lots of 100 per type.
50% discount lots of 1.000 per type.
TRANSISTOR BARGAIN: THEY CAN'T GET ANY CHEAPER!!! P.N.P. Audio, Untested, unmarked. MAINLY O.K., $10 /-$ per 100. P.P.P. Audio, Sntested, unmarkarked. ALL USABLE, 10/-per 50. POWER OUTPUT'(Similar OC35) ALL TESTED, 4/-ea: E2 doz. SILICON PLANAR TRANSISTORS. ALL TESTED. NO LEAKS OR Gain of $20 / 50$, 6d ea.; $50 / 100$, 9d ea.: $100 / 200,1 /$ - ea.

LIGHT SENSITIVE TRANSISTORS. 2/- each.
LIGHT SENSITIVE DIODES. Can be used to control any transistorised device. 1/-each. 75/-per 100. $\mathbf{2 5}$ per 1.000 .

THYRISTORS 400 V BTY79, $7 / 6$ ea. SCR5I (IOA), 61 ea.
RECTIFIERS Latest type. All marked. 800 V peak, IA mean current type IN4006

2/6 ea.. 24/-doz, $67 / 10 /-100$
S.T.C. $3 / 4(400 \mathrm{~V}), \quad 2 / 6$ ea., $24 /-$ doz, $\leqslant 7 / 10 /-100$ BYZ 13 or 19 (6A) $2 / 6 \mathrm{ea.} ,24 / \mathrm{-doz}$, $\mathrm{E7} / 10 / \mathrm{l} 100$
BY127, $2 / 6$ each. $24 /$-dozen. $\mathbf{4 7 / 1 0} /$-per 100 . 650 per 1,000
RECORDING TAPE GIVE-AWAY!
ALL BRITISH MADE, BEST Q 7in Long-play 16/3. 3in "Odd-ends" Minimum I Soft 2/3.
MAINS DROPPERTYPE RESISTORS. Hundreds of types from 0.7 ohm pwards. IW to 50 W . A large percentage of these are Multi-capped droppers or radiolcelevision. Owing to the huge variety these can only be offered "assorted". 10/-per dozen.
GIANT SELENIUM SOLAR CELLS. Last few to clear at half price Gircular. 67 mm diameter 5 !-each. 50 mm .37 mm . 3 for $10 /-$

SKELETON PRESETS. Mixed. 6/-dozen,
VOLUME CONTROLS. $\frac{1}{2} M \Omega, I M \Omega$, with D.P. switch. $5 k$ (no switch) ll 2/-
RECORD PLAYER AMPLIFIERS. All transistor. Complete with screened nput lead. volume conerol and speaker leads. This excellent unic also has buift smoothing components enabling same to be used direct c supply. Small number only. Cannot be repeated at this price: 30/- each
TRANSISTOR RADIOS. Fantastic bargain! Tremendous value! Superb quality sound from large speaker! Excellent sensitivity! Complete with earpiece, battery and plastic carrying case, all packed in a colourful presentation box. You would expect to pay $£ 5$-but our price due to huge purchase is CO-AXIAL CABLE. Semi-air spaced. 8d yd 60 yd rolls $30 /$-, plus $4 / 6$ postage.
CRYSTAL TAPE-RECORDER MIKES. 12/-each.
CRYSTALEARPIECES WITH PLUG. 5/- each.
MAGNETIC EARPIECES. No Plug. I/6each.
THIN CONNECTING WIRE: 10 yds $1 /-, 100$ yds $7 / 6,1,000$ yds $50 /-$.
RECORD PLAYER CARTRIDGES
ACOS GP67/2, 15/-(Mono)
GP991/3, 20/- (Compatible)
GP9913, 20/- (Stereo)
GP94/1, 30/- (Stereo. ceramic)
GP93/I with diamond needle, 32/6
GP94/I with diamond needle, 37/6
TRANSISTORISED FLUORESCENT LIGHTS. 12V.
8W 12 in tube, Reflector type, 59/6
15 W 18 in cube, Batten type, 79/6
Complete with tube. Postage 3/-
TRANSISTORISED SIGNAL INJECTOR KIT $10 /-$
TRANSISTORISED SIGNAL TRACER KIT IO/-
TRANSISTORISED REV. COUNTER (CAR) $10 /-$
(State Positive or Negative earth)
VERO-BOARD
$2 \frac{1}{2} \times 1 \times 0.15 \mathrm{in}, 1 / 3$
$3 \frac{1}{2} \times 2 \frac{1}{2} \times 0.15 \mathrm{in}_{1} 3 / 3$
$3 \frac{2}{4} \times 3 \mathrm{3} \times 0.15 \mathrm{in}, 3 / 11$
$5 \times 2 \frac{1}{2} \times 0.15 \mathrm{in}, 3 / 11$
$5 \times 2 \frac{2}{2} \times 0.15 \mathrm{in}, 3 / 11$
5×31
$500.15 \mathrm{in}, 5 / 6$
$17 \times 3 \frac{1}{2} \times 0.1 \sin , 14 / 8$
$17 \times 2 \frac{1}{2} \times 0.15 \mathrm{in}, 11 /-$
$3 \frac{2}{2} \times 2 \frac{1}{2} \times 0 . \mathrm{in}, 4 / 2$
$3 \frac{1}{2} \times 3 \times 0.1 \mathrm{in}, 4 / 9$

Terminal Pins, $3 / 6$ for 36
Spot Face Cucter and $52 \frac{1}{2} \times$ lin boards, $9 / 9$.
G. F. MILWARD - DRAYTON BASSETT - Nr. TAMWORTH, STAFFS - Phone TAMWORTH 2321

ELECTRONORAMA VISITS THE B B C NEWS COMPLEX

THE whole "news complex" occupies a six-floor spur built on to the Television Centre at White City.
The News installation includes studios, telecine and video-tape areas, a film processing section, film workshops, cutting rooms, and of course, newsrooms, offices, etc. The basement contains an underground car park for news operational vehicles.
The installation is primarily for the 625 -line 50 -field PAL colour standard but pictures can be originated on NTSC 525 -line 60 -field standards directly or via a converter.

Sub-Central Apparatus Room

On the first floor is the sub-central apparatus room in which the many communications facilities required by the News Service are controlled. This room has its own genlocking equipment and pulse generators as well as feeds from the main Television Centre pulse chains. It also supplies all technical areas in the Spur with sound, vision, pulses, and communications facilities, and also coordinates the output of news sources in the Spur with other areas in the Television Centre and with the external switching centres of the simultaneous broadcast network Facilities also exist for remote control of the camera at the Parliamentary Studio. The first photo (above) shows the control desk in the sub-central apparatus room.

Video-Tape and Film Processing

The third floor contains video-tape and film processing areas and the senior engineering offices.
A large Telecine area is on the fourth floor. This area is equipped with nine 16 mm colour machines, two of which are multiplexed to deal with 8 mm and super 8 mm film. There are also two 16 mm monochrome telecines.
One of the two telecine control desks is shown in the photo (right).
The electronic method of reviewing film is used.

The Studios

The sixth floor can be described as the output floor. In addition to a large newsroom it has two studios each equipped with four remotely-controlled Marconi colour cameras, see photo (above).

There are two large control rooms, one for each of the studios, separated from the studio by a glass partition. The control rooms are divided into raised islands, one of which is for the sound mixer and his disc and tape machines. The island is partially screened by glass which gives some acoustic isolation but enables the sound mixer to keep in touch with control-room operations, an essential requirement in constantly-changing News programmes.
Another island supports the editorial desk and on the floor level is the production section containing vision mixer, productions assistant, senior television engineer, and secretarial positions.
The remaining island houses the vision control and lighting console.
The vision control positions have full remote control of the studio cameras. There are in each studio four panels each enabling up to 20 pre-set camera shots to be adjusted after which information on these shots can be fed into a ferrite-core memory store in the vision apparatus.

Newsroom

The large Newsroom has communications facilities, teleprinters, and a permanently installed monochrome camera. In addition two colour cameras, one on remote control, can be installed in the Newsroom if required. The photo (left) shows newsreader facing vidicon "newsflash' camera.

Captions, either opacity or transparency, are originated in a special control room equipped with a monochrome micro scanner. This is used for inlaying the sub-titles in the "News Review for the Deaf" programme and includes a colour synthesiser enabling a two-tone monochrome caption to be reproduced in two colours.

1N last month's issue the first part of this article provided design details of the complete amplifier and component assembly and wiring of two amplifier boards.

In this second part the output stage sub-assemblies and power supply unit will be presented, as well as chassis layout and interwiring details.

OUTPUT TRANSISTORS

The output transistors TR13 and TR14 and R44, R45, R46 and C18, for both channels, are mounted on extruded aluminium heatsinks type 10D.

Prior to mounting the components, the heatsinks must be drilled as shown in Fig. 10 making sure that all burrs are removed afterwards. They should then be cleaned and sprayed with an aerosol matt black paint after first having masked the transistor mounting area.

The transistors are then bolted on with the appropriate insulating kits. To ensure a low thermal resistance, silicone grease should be smeared over the insulation washers.

RESISTOR WINDING

Resistors R44 and R45 are made by bifilar winding 25 in of $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. or 36 in of $28 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire over the body of any 1 watt resistor. This gives the required value of 0.14 ohms ± 5 per cent.

To secure these windings Araldite should be applied.
The component layout for the heatsinks of both channels is given in Fig. 11. Wiring details of these are given later.

THE POWER SUPPLY

The power supply is of a series regulated type, the circuit of which is shown in Fig. 12. A regulated supply is necessary to maintain the correct working voltage for the two power amplifiers and to prevent excessive intermodulation and hum which would otherwise occur at high output levels.
An added advantage of this circuit is that mains input voltage adjustment by transformer tappings is not necessary over a range of about ± 10 per cent of the nominal input voltage.
The specifications of the power supply are as follows: Output voltage

56 volts
Maximum continuous output current 5 amp Maximum peak output current

12 amp for duration of 5 milliseconds
The transformer provides a 50 volt output under no load conditions; this being rectified by the bridge D7-D10 and smoothed by C20. The voltage at this point attains 70 volts under no load conditions since C20 charges up to the peak value of the rectified input.

The series regulator transistor TR17, and TR 15 are in Darlington pair, emitter follower configuration, biased by R48.

DIFFERENTIAL AMPLIFIER

A differential amplifier, formed by TR16 and the associated components, senses any difference between the voltage on VR7 and the reference voltage across the series diodes D11 and D12. Output changes cause

Fig. 10. Drilling details for the type IOD heatsinks, three of which are required

TR16 to shunt R48 and reduce the voltage at the base of TR15 and hence stabilises the line voltage.

The pre-set potentiometer VR7 is used to set this voltage.

TRANSFORMER IMPEDANCE

The series regulator transistor would not be able to handle the high power dissipated if the transformer had a very low output impedance, since the voltage on C20 would maintain its value and produce a very large current. Thus it is necessary that the transformer should have an output impedance not less than 1.5 ohms. If it is less than this, a ballast resistor must be inserted in series with the winding to make up the difference. It should be rated at 25 watts per ohm used.

Fig. II. Component and wiring layout for the heatsink mounted output transistors and associated circuitry of amplifier B. The amplifier A heatsink assembly is identical. For this, thick wire routing is given in parentheses

If in any doubt as to the internal impedance of a particular transformer, the supplier should be consulted or the constructor should measure it for himself.

CAPACITOR RATING

The smoothing and reservoir capacitors C22 and C20, should each have a maximum ripple current rating of not less than 5 amps r.m.s. at 100 Hz at 25 degrees centigrade. Again any doubt should be resolved with the supplier.

Fig. 12. Circuit diagram of power supply C. Board mounted components are enclosed within dotted lines

* HADML MEATSEA REOUNED POR TRIS

Fig. 13. Component and wiring layout for power supply C

COMPONENTS . . .

POWER SUPPLY UNIT

Resistors

R48 330 $1 W$ R50 $8.2 \mathrm{k} \Omega \quad$ R52 $680 \Omega 2 \mathrm{~W}$
R49 $2.2 \mathrm{k} \Omega \quad \mathrm{R} 5 \mathrm{I} \quad 4.7 \mathrm{k} \Omega$
All $\frac{1}{2}$ watt, 10% carbon except where otherwise stated

Capacitors
C20 $4,000 \mu \mathrm{~F} 75 \mathrm{~V}$ elect. (see text)
C21 $400 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C22 $4,000 \mu \mathrm{~F} 60 \mathrm{~V}$ elect. (see text)
Transistors
TRI5 2N3055 TR16 2N1613 TRI7 2 N3055
Diodes
D7-D10 BYZ13 (Mullard) (4 off)
DII-D13 BZY96-C22 1.5W Zener diodes (3 off)
Switch
S2 Double pole mains on/off
Transformer
TI Mains transformer: pri. 0-240V; secondary 50 V at 6A. MTI07AT (G. W. Smith Ltd.)

Fuses

FSI 3A cartridge fuse and holders
$\left.\begin{array}{l}\text { FS2 } \\ \text { FS3 }\end{array}\right\}$ 3A cartridge fuses (2 off) and twin holder

Miscellaneous

Lektrokit chassis plate No. 4-LKI4I, 20 wiring pins, type IOD heatsink, TO5 radial heatsink, LPImains neon, Aluminium case $15 \mathrm{in} \times$ 7in $\times 9 \mathrm{in}$. Type Y (H. L. Smith \& Co. Led., 287/289 Edgeware Road, London, W.2). Rubber feet, knobs, 6B.A. $\times \frac{1}{2}$ in hexagon spacers (12 off), 2 chrome handles

Alternative capacitors up to $6,000 \mu \mathrm{~F}$ with working voltages up to 150 volts can be used providing they meet the ripple current requirement.

In order to provide the reference voltage a single 43 volt, 5 watt Zener diode may be used instead of the two, 22 volt 1.5 watt Zener diodes D11 and D12.

POWER SUPPLY BOARD

All the components in the power supply circuit except for the two large electrolytics, TR15 and TR 17 (and of course the transformer) are mounted on perforated s.r.b.p. board. Component layout and wiring are shown in Fig. 13.

* transistors are connected directly to heatsink

Fig. 14. Component and wiring for power supply transistors. The heatsink MUST be insulated from the chassis. Heatsink drilling details are given in Fig. 10

Fig. 15. Drilling detalls of the 18 s.w.g. aluminium sub-chassis plates X, Y and Z

Fig. 16 (below). Drilling. detcils for control panel

Interior view of amplifier with control panel removed
$-$

SUB-CHASSIS

The amplifier and power supply boards are mounted

The board should first be drilled to take the stud rectifiers D7-D10 and the 4B.A. bolt connection for feeding the anodes of D7 and D8 to the negative terminal of C20. The rectifiers can then be bolted on with their individual heatsinks made from $\frac{1}{8}$ in. L profile aluminium, $\frac{3}{4} \mathrm{in}$ by $\frac{3}{4} \mathrm{in}$. Connections to the cathodes are made with solder tags.

The resistors R48 and R52 get quite hot in use and should be mounted out of contact with the board.

POWER TRANSISTOR MOU.NTING

The two power transistors TR15 and TR17 are both directly bolted onto a type 10D heatsink. This ensures a low thermal resistance but means that the heatsink must be insulated from the chassis.

Heatsink drilling details are identical to those given in Fig. 10.

Transistor layout is given in Fig. 14. Wiring of these will be referred to later.
on an 18 s.w.g. aluminium plate using 6B.A., $\frac{1}{2}$ in hexagon spacers and bolts as seen in the photograph. Drilling details for this plate, marked X , are given in Fig. 15 together with the supporting end plates Y and Z .

MAIN CHASSIS ASSEMBLY

Before the main chassis assembly is commenced the control panel of the 15 in by 7 in by 9 in aluminium case (see components list) should be drilled as shown in Fig. 16. When this is done the components are mounted according to Fig. 18.

With this completed, the sub-chassis end plates are attached to the main chassis. Next the transformer and four large electrolytic capacitors are mounted.

It is important that the cases of these capacitors are insulated from the chassis; they are normally fitted with plastic sleeves which are sufficient.

In the prototype an aluminium plate and strap were used to retain C20 and C22.

Fig. 17. Sub-chassis plate X with sub-assemblies mounted. This must be attached to the end plates of Fig. 18 as indicated in the photograph above
 OA200 1/9d. \square OA202 1/11d.

Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

The result of the combined resources of SGS $\mathbf{1 2 A}$ and RCA, these quasi circuits set new standards $\mathbf{2 5 A}$ in quality and performance. Each kit is complete 40A with circuit diagram, all semiconductors, resistors, capacitors and printed circuit board

70A
£7. 0.0 .
£8. 5. 0 .
£9. 0.0 .
£10.10. 0 .
Any two will make an outstanding stereo equipment.

Ins hook sen you (दाइHITMin x Cisyl mad witidestict

Don't read on unless you're feeling really strong. This book will start you on a mad, crazy spending spree.
It's got everything, but everything for the do-it-yourself radio and hi-fi man.
Everything from a vast range of electronic components available to the home electronics constructor, to a complete range of equipment for the radio "ham" What's the book ?
The Electroniques Constructors Catalogue. Only the most exciting, mouth-watering items are there. Carefully placed in 6 sections for easy reference. And backed by truly efficient sales service.

All you have to pay for this great big hunk of temptation is $13 /$ - (including packaging and postage).
Enclose $\mathrm{PO} /$ cheque made out to:
Electroniques (proprietors Standard Telephones and Cables Limited), Edinburgh Way, Harlow, Essex. Telephone: Harlow 26811.
Name
Address

TRANSISTOR AUDIO AND RADIO CIRCUITS

for Radio Receivers, Radiograms, Record Players, Tape Recorders and Hi-Fi Equipment.
A Mullard Publication
$30 /-$
Postage I/-

CLOSED-CIRCUIT TV FOR ENGINEERS AND TECHNICIANS, by L. C. Showalter. 50/. Postage 1^{\prime}.
1970 WORLD RADIO - TV HAND. BOOK. 42/-. Postage $1 /$.
DIGITAL COMPUTER BASICS, by Bureau of Naval Personnel. 19/.. Postage Bure
$1 /-$.
MINIFLUX MANUAL, by Miniflux Electronics. 30/.. Postage $1 / 6$.
UNDERSTANDING AND USING UNIJUNCTION TRANSISTORS, by S. Hoberman. 24/-. Postage I/.

HI-FI YEAR BOOK 1970. 20/.. Postage $1 / 6$.
SCR MANUAL, by General Electric Company. 25/-. Postage $1 / 6$.
SIGNAL PROCESSING, MODULA. TION AND NOISE, by J. A. Betts. 42/.. Postage $1 / 6$.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and Amarican Tachnical Books |9-2| PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

DIMMASWITCH

3

This is an attractive dimmer unit which fits in place of the norma! wall light switch. The mounting plate is ivory to match modern fittings and the control knob is in bright chrome. An ON/OFF switch is incorporated to control up to 500 watts at mains voltages from $\mathbf{2 0 0 - 2 5 0}$ volts, 50 Hz .
These are normally sold at $\notin 419 \mathrm{~s}$. 6 d .our price is $\mathbf{6 3} 5 \mathrm{~s}$. We also offer at ©2 15s. a complete kit of parts with simple instructions enabling you to build this dimmer yourself.
The circuit uses the latest miniature RCA triac and new diac triggering device to give complete reliability. Radio interference suppression is included.

DEXTER \& COMPANY

 ULVER HOUSE, 19 KING STREET CHESTER CHI 2AHChesiter 25883

FOOTBALL POOL COMPUTER CIRCUIT amithrec other analogue circuite, 8/6.
digital computer clrcuit
A siuple digital Adder/Subtractor using ywitches and lamps only: A fascinating demonstration of Binary arithmetic. Full clreult, wiring diagram
and noteg on the Binary aystem, $2 / 6$. and notes on the Binary system, $\mathbf{2} / 6$.
NOUGETS AND CROSSES MACHINE CLRCUIT. L'ses standard niniature switches and lamps only. This machine cannot be beaten. Full circuit, wiring diagram and instructions, $\mathbf{8 / B}$.
$1^{\circ} \mathrm{o}$ Eigh Stability Reasiators
I watt $1^{\circ} \mathrm{j}$, 8/- each. Full range 10 ohmis to 10 Megat Stock List arailable.
1^{10} U Wirewound Resintor:
$1{ }^{\circ} 1$ watt, 1 obm to $5 \mathrm{~K}, 3 / 3$; to $\because 0 \mathrm{~K}, 4 / 6: 10$: add 3 d . Your value wound to order.
200 Asgorted 2 watt Resistors, 1% to 20 !., 15i-.
PLANET INSTRUMENT CO. 25 (E) dominion avenue, leeds 7

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO. RECORO PLAYER, TAPE RECORDER, AMPLIFIER, etc, Types available: $\mathbf{6 v}, 9 \mathrm{~V}, 12 \mathrm{~V}$, $9 v+9 v ; 6 v+6 v$; or $4 i v+4 i v$ (two separate outputs) 42,6 each. P. \& P. 2/9. Please state oupput required. All the above units are completely isolated from mains by double wound transformer ensuring $100^{\prime \prime}$ safety.
R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E.), 31 Oliver Road, London, E. 17

PLEASE MENTION

PRACTICAL ELECTRONICS

WHEN REPLYING TO

ADVERTISEMENTS

MOUNTING THE HEATSINKS

The amplifier heatsinks are mounted inside the back panel. Since the transistors are insulated they are connected directly.

Before mounting the power supply heatsink, flying leads should be attached as shown in Fig. 13. These leads are drawn through the centre hole of end plate Y and the heatsink attached using 4B.A. nylon bolts and insulating washers.

The small components of the main chassis back panel should now be attached and the underside rubber feet bolted on.

WIRING UP

Initial wiring should be carried out according to Fig. 18. It should be noted that all thick unshaded wires are $40 \cdot 0076$ in p.v.c. insulated which are necessary for carrying the high output circuit.

Flying leads from the front control panel should be gin long as they will all terminate at the upper plate of the sub-chassis. The power supply and amplifier boards mounted on this plate are shown in outline in Fig. 17.

The plate should now be connected to plates X and Y in the sense indicated and wires attached to the pins as shown. With soldering completed the wiring should be tidied up by tying in cableforms with nylon cord. This will ensure reliability.

TEST AND SETTING UP PROCEDURE

Extreme care should be taken when making tests as an accidental short circuit across the power supply will result in the instantaneous destruction of TR17. A short elsewhere might cause even more expensive damage to the amplifier circuitry.

First remove FS2 and FS3, then proceed as follows:
(1) Switch on and measure the potential at the collector of TRI7 collector; this should be about +70 volts.
(2) Set the voltage on pin Al of the power supply board to +56 volts by adjusting potentiometer VR7.
(3) Check the +22 volt output at either pins Gl or M1.
(4) Switch off and connect a 100 ohm, 5 per cent, 5 watt resistor across the terminals of FS2 fuse socket. Across this connect the multimeter set to a high voltage range. Now check that the volume and quiescent current controls of amplifier A are turned fully anti-clockwise.
(5) Switch on and wait a few minutes for the coupling capacitors to charge. Set the multimeter to a lower range after the voltage drops to zero, then set VR6 for a reading of 1.5 volts.

This represents a quiescent current through the output transistors of about 12 mA .
(6) Switch off and remove test resistor from FS2 socket, and replace fuse.

Switch on and set the centre coil voltage, measured at pin A 16 on amplifier A board, to 28 volts, by adjusting the pre-set potentiometer VR5.
(7) Repeat operations (4), (5) and (6) for amplifier B.

With the satisfactory completion of these tests. the amplifier is now ready for use.

LOUDSPEAKER ARRANGEMENTS

In order to obtain the maximum power it is necessary that the amplifier be correctly loaded. This can be done by using parallel and series arrangements of loudspeakers as shown in Fig. 19, or a suitably rated matching transformer to obtain the required load impedance of 5 ohms.

When using horn type speakers, the bass control must be turned down to restrict the bandwidth at low frequencies. If this is not done, damage may be caused to the pressure units.

The concluding article will include a voltage table and a fault finding schedule.

Fig. 19. Some possible loudspeaker arrangements for each channel.
Impedances "looking in" are indicated:
(a) 3 speakers, each of 15 ohms and rated at 20 or 25 W .
(b) 6 speakers, each of 7.5-8 ohms and rated at 10 or 12 W .
(c) 12 speakers, each of 15 ohms and rated at 5-6W.
(d) 2 speakers, each of 3 ohms and rated at 20-25W.
The speakers should be phased as shown by the positive and negative signs

$य \Rightarrow$ [尼
G 18 watts. Fitted 3/32" bit for miniature work on production lines. In terchange able spare bits, $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ available. For 240, 220 or 110 volts. 32/6.

E20 watts, Fitted with 1/4" bit
Interchangeable spare bits $3 / 32^{\prime \prime}$. $1 / 8^{\prime \prime}$ 。 3/16" available. For 240, 220, 110 volts. From 35/-

ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bil.
Interchangeable bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ available. Ideal for high speed production lines. For 240, 220, 110, 24 of 12 volis. Frum 35/.

F 40 watts. Fitted $5 / 16^{\circ}$ bit.
Interchangeable bits $1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ available, Very high temperature Iron. For 240, 220, 110, 24 or 20 volts. From 42/6 Spare bits and elements for all models and voltages immediately available from stock

This kit-in a rigid plastic "tool-box" - contains
Model CN 15 wats miniature iso warts miniature iron, firted TV" bit. Interchangeable spare bit's H^{2} ". $\frac{1}{3}{ }^{n}$

- Reel of resin.cored solder
- Felt cleaning pad
- Stand for soldering iran

Model CN 240/2
15 watts - 240 volts
Fitted with nicke! plated bit ($3 / 32^{\circ}$) and in handy transparent pack. From Electrical and Radio Shops or sehd cash to Antex.
$\square \square \square \square \square \square \square \square \square$
$\operatorname{Aan}(\mathrm{C}=(\mathrm{E}=(\mathrm{x})$
PFECISION MINIATURE SOLDERING IRONS
Antex, Marflower House. Plymouth, Devon.
Telephone: Plymouth 67377/8.
Telex: 45296. Giro No. 2581000Please send me the Antex colour cataloguePlease send me the following irons Quantity Model Bit Size Volts Price

I enclose cheque/P.O./cash value

NAME
ADDRESS

DOOR INTERCOM

 Know who is calltug aul speakon them without leavilus beil to them without leaving beit,
or chair. Outhit comprizen of chair. Outhe compriser button, connectors and matater iuter-com. Nimply plugs together. Originally solla at $£ 10$. Special snip price 49/6, ph 3/6 postage.

5A, 3 PIN SWITCH

 SOCKETS An exceilent opportunity do make that belch olis boaril you haveneeded of to stock up for future jobs. This month we offer " British made (Hicraft) takelite Huah. mountink shuttered $\overline{5} A$ switch suckets for maly $10 /-$ plus $3 / 6$ post athl insurance. $1: 0$ hoxes pinst free.)
TELESCOPIC AERIAL
for portable. lar radia or tranamitter. Throme pla-
ted-six sections, extends from 7. to 4inis Hocle in tottom for from F. . ${ }^{\text {gerew. }}$ g/.

PHILIPS TRIMMER
0.30 pf an ofd deeign but Which nas nevere been bettered.

PP3 BATTERY ELIMINATOR

Run your ginall transistor radio from the maing-iul white circuit -mad
up ready to wire into your set anu
adjugtable hirb or low current. adjustable hikb or lew current DRILL

ORILL CONTROLLER Electronlcally changes apeed ronx approx Full power at oll peeds by Hiager-tip control. Kit inclutles all parta, case. everything and full Instructions. 19/6 plus $2 / 6$ post and insurance.. Made up
model $37 / 6$ plua
p. \& p. p. \& p .

TOGGLE SWITCH 3 amp $250 \mathrm{~V}_{\text {with }}$ fixing ring. 1/6 ach 16/-sloz

230 VOLT SOLENOID

13 AMP FUSED SWITCH Made by (i.E.C. For commeethay water heater etc., into 13 amp ring
main. Flush type $8 / 6$ each $20 /-$ doz. Metal boxes for wurfice
MICRO SWITCH

each or 21/-doz.
ISOLATION SWITCH
30 ainp. D.P. 250V. Itleal to control water heater or any other when current is on. 4/6. 48/- per When
dozen.

SUPPRESSOR CONDENSER TCC $0 \cdot 1$ mft. 250V a.c. working meta!
cused with fixing lug, $1 / 9$ eich 18!cused

15/20 AMP CONNECTORS Polyt heue Ingulated $10-w: 1 y$
atrit. $2 / 6$ each $24 /-1 / 0 z$.

MAINS MOTOR Preclsion made-a used in record tlecks amd tape recondersfan, blower, heaters ete. New and perfect. snip at $9 / 6$. Portage
$3 /-$ for first one then 1/- for each one ordered. 19 and
0.0005 mFd TUNING CONDENSER
Proved design, ideal for strajght is
grov
250V a.c. working condensers for power factor

3 amp battery charger kit comprises vopper backed circuit boari, 3 amp maine transformer. 29/6 ine. wiring diagrath, post $\$$ itse, $4 / \mathrm{C}$.

VARIAC CONTROLLERS

With these you lan vary the voltage applien tuy your , ircuit from zerit to full mains without generating undue heat. Onte chbvious ipplication therefore ia to aim light. ins. We nifur a range of thege, ex-equipment but little
usell and in every way its good as new, Any not so, will usel anm in every way it good as new. Any not so, will

HOUR COUNTERS

It gou wish to know hur long your equipment bat been switched on then this is what you neel. Counte running time up to 999 hours. $50 \mathrm{c} / \mathrm{s}$ mains opera-
tion. $49 / 8$ ghtus $3 / 6$ post anil insurance. Renettable type $89 / 6$ plus $3 / 6 \mathrm{p}$. i .

24 HOUR TIME SWITCH
Maims operated. Adjustable Contacts give "? oniofis fer "4 hours. Contacts rated 15 ampe, repeating mechaniem sonti-burglar precaution while you are on holiflay. (anti-burglar precaution) white company. This ruonth Mnly s9/6 with Perspex cover, plus $3 / 6$ postage and inguance, a real snip which shoulit not be migsed,

DISTRIBUTION PANELS
Juat what you neeil for work bench or 1 ab . is amp sockets and on ofl suiten with neon warning light In metal box. Takes gtandaril 13 mmp fused plugs. Supplied!
complete with 7 feet of heave cable. $38 / 8$ wired up, ready to work plus $4 / 6$ coluplete with \bar{i} feet
pust and insurance.

1 WATT AMPLIFIER \& PREAMP
5 transiators-bighly efficient, made for use with tapeheat ti4 but equally suitable for nicrophone or pick up-limited quantity $89 / 6$.

VARYLITE

Will dim iucamlegcent lighting up to 600 watts from full brillinuce to out. Fitted on M.K, flush plate, same size and fixing as standar, wall switch so may be fitted in place of this, plastic box with control knob $\$ 3.19 .6$.

MINIATURE EXTRACTOR FAN

Beautifully made by famous German Company. PAPsT Byatem, $230 / 240$ A.C. Mains operated, size 3 in, $\therefore 3$ inin. in. Made for instrument cooling but ikeal to incorporate in a conker hoot, ete. 85/-.

STANDARD WAFER SWITCHES
standard Size $1 \frac{1}{2}$ wafer-gilver plated 5 aimp
contact standard fin gpingle 2 in long-with contact standard ting washer athl nut.

Poles	2 way	3 w:y	4 way	5 way	6 wity	8 waty	10 way	way
1 pole	6i/f	6/6	$6 / 6$	6/6	n/t	6/6	6/6	9/6
\triangle poleg	$6 / 6$	H/6	$6 / 6$	6/6	6/4	$6 / 6$	10/6	10/6
3 poles	6i/6	b/6	6/6	5/6	10/6	1016	14/6	14/6
4 poles	ij/i	6i/6	B/6	$10 / 6$	10/f	10/6	18/6	18/6
5 poles	6/6	fi/h	10/6	10/5	14/6	14/6	202/6	$22 / 6$
${ }^{15}$ poles	6/6	10%	10/6	10/6	14/f	14/6	28/6	-6/6
7 poles	1/6	1016	10/6	14/4	$18 / 6$	18/6	$30 / 6$	$30 / 16$
${ }^{4}$ poles	10/6	10/i	10/6	14/6	18/6	$18 / 6$	$34 / 6$	34/6
9 poles	10/6	1016	14/6	14/6		2边	$38 / 16$	$38 / 6$
10 poles	10/4i	10/t	14/6	18,6	12914	-2 $/ 4$	$42 / 6$	$4 \times / 6$
11 pules	10/6.	14/6	14/6	18/6	$2 \mathrm{~d} / \mathrm{h}$	26/6	46/4i	46/6
12 poles	10/6	14!6	14/6	181]	$26 / 5$	$\underline{L} / 6 / 5$	50/3	50/6

15, 30 \& 100 WATT HI FI SPEAKERS FULL FI 12 IIKCH LOUDSPEAKER. This is undoubtedly duced by fine of the countres that we have evenchered, pro-lie-cast metal frame and is strongly recommented for Hi Fi load and Rhythm Guitar and public address.
Flux Density 11,000 gause-Total Flux 44,000 MaxwellsPower Handling 15 wat ts R.M.s. Cone Moulded fibre-Fredfresponse $30-10,000$ c.p.s.- specify 3 or 15 ohms-Mains resonance 60 c.p.s.-Chassig Diqun. 1.in-1Nin over mounting lugs-Baffie hole 11 in dianh-Mounting holes 4 . holes 51in. A \$t speaker ortered for only 88.19 .6 plus $7 / 6 \mathrm{p}$, \& p Don't miss this offer. 15 in 05 watt 87.18 .618 in 100 watt 819.10 .0 .

3kW TANGENTIAL HEATER UNIT

This heater unit is the very latest running, is as fitted in Hoover and 1 lower heaters costing 515 aud more. We hate a few ovly. comprises Hotor, impeller, $2 k W$ element and 1 kW element allowing switching 1,0 and 3kW and with thermal sifety cot-out. Can be fittert into any metal switeh, 79;6. Postige inul insuratice

MINIATURE

WAFER SWITCHES

\because pole, "3 way-4 pole, "2 way-2 pole, 4 way- 3 pole, 4 way- 2 pole (i) way- 1 pole, 12 way. All at $2 / 6$ WATERPROOF HEATIFG 66 yards length 70 W . Self.regulating $\{$ temperature control. 10/-post free.

BLANKET SWITCH Double pole with neon let into site so haminous in tark useal for tark ronn light or
use with waterpronf plement, plast ie calse 5 '8 ench. 3 heat monlel 7

COPPER CLAD ELEMENT

$1250 \mathrm{~W}-4$ fit long but bent to I° shape, ideal for overhead heater-just mount reflector above $12 / 6$ each, plus $4 / 6$ post. 86 doz. post pail.

HEAT \& LIGHT LAMP

 \#7W internally mirrored bulb, with b.c. end for plugging into limp haliter. 19/8 each plus $4 / 6$ post and insuranef.TUBULAR HEAT \& LIGHT LAMP Philips $300 \mathrm{~W} 29 / 6$ plus $4 / 6$ post and insurance.

ELECTRIC CLOCK

 WITH 25 AMP SWITCH Made by kimith* 8 , these units are as fitted to mamy top quatity cookers to control the oven, The clock is mains driten and frequency controlled so it is ex. tremely accurate. The two sinall dials enable switch on and ontimes to be accurately set. Ideal
 imes to be accurately set. Ide fraction of the regular price-new and at only a 39/6, less than the wilne of the clock alone- port and insurance $2 / 9$.

THERMOSTATS

Type "A" 15 amp. foi controlling roon heaters greenhouses, airing cupboart. Has spindle for pointer 9/8.plus 1 - post. Suit
Type " B " 13 amp. This is a 17 iln . long roul type
 this famots sunvic c-r. Spindle aljusta this from $50-5000 \mathrm{~F}$. lutermalseren alters the setting so this contit be
anjistable over 30° to $1000^{\circ} \mathrm{F}$. Suitable for controlling furnace, oven,
kiln, immersion
lienter or to make flame-gtat or fre alarm. $8 / 8$ plus $9 / 6$ post and insurance Type "D". We call this the Ice-stat as it cuts in and out at around freezing point. of amps. Has many uses one of which would be to keep the loit pipes fron freezing, if a length of our banket wire (16 sil 10/-) is wound roum the pipes. 7/6. P. \& P. 1/Type " E ". This is stambaril refrigerator therno stat. Spinille aljustments cover normal refrigera for temperature. $7 / 6$. plus $1 /-$ post.
Type "F". (ilass encase 1 for controlling the temp, of sinks - andiculars is held (half submergei) by rublee sucker or wire clip-ideal for tigh tanksdevelopers and chemival baths of all types. Allustable over range 50 to 150 F . Price $18 /-$

RADIO STETHOSCOPE

Easient way to fault ind-traces signal from aerial to speaker-whelt signal stops you've found the amplifier, anything - complete ransistors and all parts inclu transistors and all parts inclu. ling probe tube nind crystal earplece. $28 / 6$-twin stetho-
net insteal of earpiece 11^{\prime} evtra post and ins. 2!9,

BECKASTAT

This is an instant ther mostat, simply plug your appliance into and its lead Into wall ting for normal ai temperatures. 13. loading. Will save its cost in a season. 19/6.

MAINS TRANSFORMER SNIP

Making a power patck for amplifier or other equipment? These tramstormers have turmat mans primaties ($230 /$
$-40 V^{\prime}$) ind joblated secondiries two types (1) 1!y 500 mi it 8/6: (2) $15 V^{500} \mathbf{m} .1$ at $8 / 6$.

[^0]The Main Chassis Assembly is the interconnecting and control unit for all the modules described earlier in this series of articles and brings together the following assemblies to form the overall receiver:
(a) The R.F. Module
(b) The First I.F. Module
(c) The Sideband Filter Module
(d) The Second Oscillator Module (36 MHz)
(e) The A.F. Module
(f) The Third Oscillator Module (2 MHz)
(g) The Power Supply Unit
(h) The Power Supply Board
(i) The R.F. Attenuator

p...wiobbandi.

By R.HIRST s.t.c. ttd. PART SEVEN

MAIN CHASSIS ASSEMBLY

The main cable form running underneath the chassis assembly distributes the positive 24 volt supply, the positive 12 volt supply and the negative 12 volt supply to the appropriate units. Also in this cable form are the control wires which link up with the controls mounted on the front panel. The front panel presents all the manual controls and visual indication of the signal strength and audio levels. The output socket is also mounted on this front panel for easy access.

CONTROLS

There are three manual controls which alter the gain of the various portions of the overall receiver. The "R.F. Gain" (VR1) controls the level of the input signal which is fed to the R.F. Unit and applies a d.c. voltage to the R.F. Attenuator. This d.c. voltage varies in level depending upon the setting of the control.

The "Audio" control (VR2) controls the audio output level at the output socket. The final control marked "Carrier" (VR3) controls the gain of two stages in the i.f. amplifiers. All three of these controls reduce the sensitivity of the receiver when they are set in the fully anti-clockwise position.

MECHANICAL ASSEMBLY

The main chassis unit consists of an Imhoff BC 511 chassis and a 1690 C cabinet and front panel. Holes are drilled in the chassis and front panel as indicated in the appropriate diagrams (Figs. 7.1 and 7.2). The meters and controls can then be mounted on the front panel and the panel bolted to the main chassis. The Power Supply Unit and the Power Supply Board should be fixed to the main chassis and all the front panel wiring put in at this stage (Fig. 7.3 is the interconnection circuit diagram for the main chassis), otherwise it will
be difficult to wire up the controls once the modules have been mounted. A wiring diagram for components mounted on the front panel is shown in Fig. 7.4.

At this stage the R.F. Attenuator and the separate smoothing capacitor Cll4 should be fitted, both of which are located underneath the main chassis. The Main Chassis Assembly is now ready to receive the modules each of which is held in position with two screws accessible from underneath the chassis. Individual earth tags should be mounted under one of these fixing screws to ensure that the units are earthed at these points. The earth pin of the modules are connected to their respective earth tag. A wiring diagram for the module interconnection is shown in Fig. 7.5. An important point to note is that in the case of the A.F. Module, the screened lead going to the output socket should under no circumstances be earthed, as this carries the supply for the A.F. Module.

WIRING

All the connecting leads should be kept as short as possible, and where the chokes L12 and L13 are fitted (Fig. 7.5.) they should be placed as close as possible to the a.g.c. pins of the first and second units. These chokes in conjunction with Cl 30 and Cl 31 give further decoupling to the d.c. control line which adjusts the basic gain of the receiver.

It may well be, if the wiring of the modules and receiver has departed from the specified layout, prudent to run two separate leads from the slider of the "Carrier" control VR3, one to the R.F. Module and the other to the First I.F. Module, using screened lead and thus avoiding any stray pickup. This point to the receiver is very sensitive and is prone to picking up any strong R.F. signal that may be floating around the set,

Fig. 7.1. Chassis drilling details. Positions for holes not dimensioned must be taken from the relevant components

Fig. 7.2. Front panel drilling details

MONO TRANSISTOR AMPLIFIER A really high nidelity monaural amplifer with performance charac. teriatle to suit the most din-
criminating liscriminating lis-
tener. 6 trantener. 6 tran-
siator circuit with integrated preanipitiflet preanipler on speclal printed pub panel. AD181-AD162 operating in
Bymnietrical complententary pair. Output transfornier coupled to 3 ohm and 10 ohm speaker sockets. Standard phono input sockets. Full wave bridge rectlfier power supply for a.c. maine 200240v. Controls: hass, treble, volunie/on/off. Function selector for PL1, Pli2, tape, radio. The HBL, 00 is enamel finlah, aize $91-5<4 i \mathrm{in}$. high.
Seneitivity-PU1-50m/v. 56 K input impedance.
PU'2-110m/r, 1 neg input impedance.
Tape- $110 \mathrm{n} / \mathrm{v}, 1$ meg input impedance.
Radio- $110 \mathrm{~m} / \mathrm{v}, 1$ meg input itmpedance.
Output power measured at $1 \mathrm{Kc}-6.2$ watts RMs into 3 ohma, 5.8 watta RMS into 15 ohm. Overall frequency response $30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{6}$: Continuously varlable tone controls: Base, +8 clb to -12 db at $100 \mathrm{c} / \mathrm{s}$. Treble, +10 db to -10 db at $10 \mathrm{Kc} / \mathrm{s}$.
The HBL. 700 has been designell for true high tidelity reproduction from radio tuner, gramophone deck and tape recorder preamp. Supplied ready bant and testen, complete with knobs, attractive anodiaen aluminumi front housing requirements) full circuit diagram and operating instructions.
OUR BPICLAL PRICE
S7.19.6. P. \& P. $7 / 6$.

LOUDBPEAKER BARGAIMS

$5 \ln 3 \mathrm{ohm} 16 / \mathrm{F}$, P. \& P. 3/-.
4/-. $10 \times 6 \ln 3$ ohm $27 / 6$, P. \& P. $6 /=$ E.M.i. 8 \& $8 \sin$ 3 ohnu with high flux magnet $88 /-$, P. \& P. 4/-. E.M.I. $13) \times 8 \mathrm{in} 3$ ohmi with high flux ceranic magnet $42 /-$,
$(15$ ohn $45 /=)$, P. ${ }^{\text {P. } 6 /- \text {. E.M.I. } 13 \times 8 i n, 3 \text { or } 15 \text { ohtil }}$ with two inbulit tweeters and crossover network 4 gns, P. \& P. $6 / \mathrm{F}$.

ERAID HEW. 12 in 15 w H/D Speakers, 3 or 16 ohm. Current production by well-known Britioh maker. Now
 E.M.I. Sjin HEAVI DUTY TWEETERE. Powerful ceramic magnet. Arailable in
15 ohm $18 / 6$ each. P. $\$ P .2 / 6$.

18in "RA" TWIM CONL LOUDgPEAKAR 10 watts peak handlling. 3 or 15 ohms, 87/8, P. \& P. 6. 35 ORI EPRAXERS
3tin 14/\%, P. \& P. $2 / 6 ; 7 \ln 21 / \%$ P. \& P. 4/80 OHR MOVING CORL BPEAKERS
High Flur May armature EabPHort
BALAICED ARMATURE EABPHONR Approx. 70 ohm impedance. Can be used as ultra sensitive nike or apeaker. ONLY 8/6. P. \& P. $1 / 6$
CRYTAL MIKEs. High imp. for desk or hand use. High sensitivity $+18 / 6$. P. \& P. 1/6.
HIGH IITPRDAMCE CRYBTAL STICE MIERS. OUR PRICE 21/F. P. \& P. J/6.
HHGH MPEDAYCE DYRAMC STICE MIKES. High sensitivity. $89 / 6$. P. \& P. 2/6. PIE MICROSWITCHES \$/P. C/e. Lever roller action. Rating $250 v$. AC at 5 amps. Bize approx.
t/- each. P. A P. $1 /-(6$ or more post f ree $)$.
HONET WELL MCROS WITCHES $8 / P . C / 0$. Push-bution

THLEECOPIC AERIALS WITE SWIVEL JOINT. Can be

 angled and rotated in any direction. 12 section Heavy Chrome. Extends from $7^{\prime \prime}$ to rppron. $56^{\prime \prime}$. Maximurn Brash. Extends front 6* to appros. 22: Maximumi
diameter \mathbf{t}^{*}. $5 /-$ each. P. \& P. $1 /-$.

TRANSFORMER BARGAINS!吾RAMD HEW TULTI-RATIO MAIIS TRAYRFORYRRS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{~N}$, Aecondary combinations: $0-5 \cdot 10-10-20-25-30 \cdot 35-40-60 \mathrm{~V}$ half
 full wave.
P. \& P. $8 /-$.
CAIME TRAMgFORMER, For tranmibtor power aupplies. Pri. 200/240V. Sec. 9-0-9 at 500 mA . $11 / /$, P. $\&$ P. $2 / 6$. Pri. 200/240V. Nec. $12-0-12$ at $1 \mathrm{amp} .14 / 6$. P. \& P. $2 / 6$.
Pri. 200/240Y, Hec. $10-0-10$ at 2 amp. 27/6. P. \& P. 3/6. Pri. $200 / 240$, sec. $10-0-10$ at 2 amp . $27 / 6 \mathrm{~F}$. a P . $3 / 6$.
Tapped Primary $200-220-240 \mathrm{~V}$. Sec. 21.5 V at 500 mA . Tapped Primary 9
L/6.
P. $9 / 6$.
BRAMD HEW! PARMEKO MAMS TRANSFORMERS. Primary $110 \mathrm{v}-250 \mathrm{v}$. Secondary $330-0-330 \mathrm{v}$. 100 mA and 6.3v. at 2 ampe, $6.3 v$. at 2 ampa and 6.3 v . at 1 amp. Conservatively rated. Fully impregnated Electrostatic acreen. size $41 \times 3: \times 3 \pm i n$. Weight 8 ib . Limited number only at

SPECIAL OFFER!!

Your opportunity to acquire a first elass HI-FI LODD8PEAKER 8YSTEM at an extremely moderate price : Beautifully made teak finish encloure with moat attractive Tygan fronk. Size $16{ }^{\circ}$ high $10{ }^{\circ}$ "wide 8. barg unit, two H.F. tweeter units and crossover.
Power handing 10 wats. Available 3 or 15 ohm Power hand
OOR FRICE WHILE LIMITED 8 GIS. Carriage 8TOCES LAST

TRANSISTOR STEREO 8 + 8 MK II Now ualng Silicon Transistors in first tive stages on ench channel resulting in even lower noike level with improved sensitivity. A really first-clags Hi-Fi Stereo Amplifier Kit.
Uses 14 iransistors giving 8 watts pi fiz pull outpui per Uses 14 transistors giving 8 watte plia pull outpuit per
channel (16 W mono). Integrated pre-amp. with Bass,
 Treble amb
Ceramic or
Crybtal cartridges. Output stage for any gueakers from 3 to 15 ohns. Compact design, all parts supplied including viriled metal work. Cir-Kit board, attractive front panel, knobs, wire, solder, nuts, bolta110 extras to buy. Simple step by atep instructions enable any constructor to build an anspiffler to be proud of. Brief specification: Freq. responge $\pm 3 \mathrm{~dB}$. 2J-20,000c/s. Hass boost approx. to $+12 d \mathrm{~B}$. Treble cut approx. to -lbdB. Negative feedback 18 dB over main amp. PRICES: AMPLIFIER KIT E10.10.0; POWER PACK KIT 83.0.0; CABINET Es.0.0. All Post Free.
Aloo avallable STEREO $10+10$. As above but 10 watts Also avallable STEREO $10+10$. As above but 10 watts
per channel. PRICRS: AMPLIFIER KIT \&12. POWER per channel. PRICE
PACK KIT $\mathbf{~ 2 3 . 1 0 . 0 . ~}$
Circuit diagram, construction detaila and jarte liat (free With kit) 1/6. (B.A.E.).

Omeial atockiats of all

PEAK 8OUID HI-FI RQUIPMENT
P. W. DOUBLE 12 ETRREO AMPLIFIER as featured P. Wr. DOUBLE 18 in Practical Wireless April, May and June 1909 iseues. In Practical wircless Apri, May an
Component pick as speciftel. Total cost 828.5 .8 plus and sockets and fuses.)

SPECIAL PURG E.M.I. 4-RPEED PLAYER Heavy 87 in. metal turntable.
Law thut Low flutter performance 200
250 shaded motor 90 tip). complete with latest type lightweight pick-up arm and mono cartridge with t/o

QUALITY RECORD PLAYER AMPLIPIER ME II A top-quality record player amplifer employing heavy duty double Wound mains transiormer, ECc83, EL84, Complete with output transformer matched for 3 ohin apeaker. \&ize 7 in . w. 3 ll . 6 h . Ready built anil tested. PRICE 75/-. P. \& P. 6/\% ALSO AVAILABLE mounted on board with output transformer and speaker ready to fit into cabinet below. PRICE 97/8. P. \& P. T/6. DE LOXE QUALITY PORTABLE R/P CABIRET ME II loneut motor board size $14 \ddagger \times 12 \mathrm{~h}$., clearance 2 in. below, bin. above. Will take above amplifier and any B.S.R. or GARRARD changer or Single Player (except AT60 and
SP20). Size $18 \times 15 \times$ Bin. PRICE $79 / 6$. P. \& P. $9 / 6$.

3-VALVE AUDIO

AMPLIFIER HAB4 ME II Designed for Ki-Fi reproduction of records. A.C. Mains operation. Kealy built on plated heavy gauge metal chassis, size 71 in $w .=41 \mathrm{n} . \mathrm{d}, \times$
4 in. h. Incorporates ECCB3, 41 in . h . Incorporates ECCB3, EL84, EZ80 valves. Heary
duty, double wound maing duty, double wound maing
transformer and output transtransformer and output trans-
former matched for 3 ohm speaker. Separate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output $4!$ watts. F'ront panel can be detached and leads extended for remote mounting of controls. Complete with knobs,
wired and teated for only \&4.15.0. P. \& P. 6/-.

HSL "POUR" AMPLIFIER KIT. Similar In appearance to HA34 above but employe entirely different and advanced clicultry. Complete set of parts, ete. 79/6. P. \& P. 6/-.
BRAMD NEW TRAMSIBTOR BARGAIMg. GET 15 (Matched Pair) 15/-; V15/10p, 10/-; OC7I $5 /-$; OC76 6/-; Matched Pair)
AFII7 $8 / 6 ; 2 \mathrm{G3} 9$ (NPN) $8 /-\mathrm{F}$
Aet of Muliard 6 transistors OC44, 2-OC45, AC128D, matched pair ACl28 25/-; ORP1: Culmiun Sulphide Cell 10/6. All post free.
VYMAIR AND REXITE SPEAKERS AND CABLIET FABRICg app, $54 i \mathrm{in}$. Wide, Usually $35 /-y d$., our price $25 /-$ yd. length. P. s P. $2 / 6$ (min. 15 s.$)$, S.A.E. for sample
POWERFUL COMPACT MOTOR for 6.9 v . Battery operation approx. 25 mA . Made originally for "Stair"
and "Greencoat" record player decka. Built in constant

DE LUXE STEREO AMPLIFIER

Valve line $u p:-2 \%$
ECLS 6 Triode
Pentode: EZ80 as full wave rectifter. Two dinl potentioneters are provided for bass and treble controh, givhng bass and
treble boost and cut. A dual volutne control is used. Breble boost and cut. A dual volume control is used.
Balance of the left and right hand channels can be Balance of the left and right hand channels can be
ad means of a separate "bsance" control fitted at the rear of the chassis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{V}$ for full peak output of 4 wat ta per channel (8 watts mono), Into 3 uhn speakers. Ful! negative feedback in a carefully calculated circuit, allow high volume levels to be used with negligible distortion. Suppliet complete with knobs, chassig size 11 in . $w \times 4 \mathrm{in}$. x. Overall height including valves 5in. Ready built and teated to a high standard. Price \mathbf{B}^{8} gat. P. \& P. 8/-

4-SPEED RECORD PLATER BARGAIKS
Maing models. All brand new in maker's packing. 25 with latest mono compatible cart
All plus Carriage and Packing $8 / 6$.
LATEST GARRARD MODELS. All typen available 1025 2025, SP25, 3000. AT80 etc. Send S.A.E. Ior Latent Prices PLIFTH UIITS cut out for tiarrard Models 1025, 2025 2000, 3000 , AT60, AP2J. With transparent p
OUR PRICE 5 gis, complete. F. \& P. $8 / 6$,
sONOTONE 8TARC compatible
diamond stylus $50 /-$ P. \& P. 2/-. Compatible Cartridge for
LATEST EP/LP/Btereo/78. 32/8. P. \& P. 2/-
LATEST RONETTE T/O Mono Cempatible Cartridge for P/LP $30 /-$ P. \& P. $2 /$

Generous size Driver sind. - Output transformer tapped for 3 ohm and 15 ohm speakers. Transintors (GET 114 or 11 Mullard AC 1288 and matched pair of ACl12R o/p). 9 volt operation - Everything supplied, wire, battery cllps, solder, etc Comprehenaive easy to 1 ollow instrnctions and circuly SPECIAL PRICE 45/*. P. \& P. 3/. Also ready built and testell, 52/6, P. \& P. 3/:.

HARVERSON'S SUPER MONO AMPLIFIER

A super quality gram amplifier using a double wound
mains trangformer, EZ80 rectifier and ECLB
triode pentode vaive at audio aniplifer and power out put atage Impedance 3 ohms. Output approx. 3.5 wat tos. Volume and tone controls. Chassia size only in, wide \times 3in, deep ${ }^{2}$ 6in. high overall. AC malris 200/240 suppled absolutely good quallty output transformer. FEW ONLY:

Open all day Saturday
Early closing Wed. 1 p.m.
A ferw minuten
Tube Station

170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01-540 3985
SEND STAMPED ADDRESSED ENV ELOPE WITH ALL ENQUIRIES
(Please write clearly) PLLEASE MOTE: P. AP. CRARGES

CrIEGETI 11840 MAYES RD. N. 22888-3206
 MAIL ORDER DEPT. No. 11 MAYES RD.

TWO WAY INTER-PHONE

TELETON TYPE NM. 33 MAGNETIC CARTRIDGE Stereo with diamond styli. This ever popular cartridge now at 7 mil: Frequency Separation 20, db at 10 kHz .

89/6 Plus $1 / 6$ P. \& \mathbf{P}
SONOTONE 9TAHC Ceranicic cartridge diamond st y-lus $47 / 6$ Plus $2 / 6 \mathrm{P} . \& \mathrm{P}$

EMI LOUDSPEAKER 450 10 watte. 13 in , $\sin +\mathrm{two} 2 \cdot 2 \mathrm{l}$ in Weeters and crossover. All wired popular 450 . In 3se. This ever 65

- Plus $7 / 6 \mathrm{P}$. \& P .

EMI Loudspeaker Set 350 20 watts. $20.20 \mathrm{k} / \mathrm{c}$. 8 and 15 ohms. £6-19-6 plus 7/6 P. \& P.

CRESCENT CASSETTES Top quality cassettes at unbeatable prices (complete with standard storage case): C60, 9 ' $90,14 /-$; (120, 19/-. Please note the J. \& P. on the cassettes is FREE . CASSETTE HEAD CLEANER COMPONENTS CORNER (Pleise me. pustage with urder) 8in bin. One sided printel circuit boarl 4 pin ty pe rectiners 800 p.i-․ $630 \mathrm{M} / \mathrm{A}$ - pin so chasistor holders 24 in 8 ohm loulspeatikers Send $3 /$ for our Conmonent Coitalogue and Flog Lists

HOME RADOO (Conponenems) LTD., Dept. PE, 234-240 London Road, Wiicham, CR4 3H0. Phone 01-648 8422 Hat
HARD way?

We're making life

 EASY forWe've never seen the sense in wasting time and energy tramping round the shops trying to locate components for radio and electronic projects-especially when the British weather turns it into a battle worse than a lone journey when Ane Brctica! That's why we issue the Home Radio Components Cataacross Antarctica! many years has enabled thousands of enthusiasts to order by post. We've built up a mail-order service which for speed and efficiency is second to none. But recently we've gone a step further in making life easy for you. Now you need not even walk round to the post box. With our Credit Account Service you can just telephone-any time of day or night, week-ends included! If your call comes out of shop hours a recording machine takes your message for us to deal with when we open next day. machine takes your message for us to deal with when we open next day.
For full details just drop us a line or 'phone 01-648 8422 . After you have availed yourself of the service for 12 months we regularly send an up-to-dare catalogue-FREE.

If you've not already got a Home Radio Catalogue, send the coupon with cheque or P.O. for $12 /-(8 / 6$ plus $3 / 6$ P. \& P.). Even if you don't intend to use our Credit Account Service you certainly need the catalogue - it has 350 pages. lists over 8,000 components and has over 1,500 illustrations!

Fig. 7.3. Module and control interconnection circuit for the receiver main chassis
so care should be taken in keeping any leads that may be associated with the Seond and Third Oscillator Modules well away from this area. Interconnections between the various sockets on the modules are shown in Fig. 7.6.

SETTING UP INSTRUCTIONS

Equipment required

(a) Multimeter
(b) Signal Generator with an output of 2 MHz to 30 MHz and a stability of better than 2 parts in 10^{6}
giving an output of at least 1 millivolt into 50 ohms.
(c) Signal Generator or Single Spot Oscillator having a range of 36 MHz to 64 MHz with a stability of better than I part in 10^{6} giving an output of at least 0.7 volts into 50 ohms.

PROCEDURE

Before switching on the main chassis of the receiver, check all connections to see that they are correct. Once assured that the receiver is wired up correctly, switch on and check the d.c. levels at the appropriate

Fig. 7.4. Control and meter wiring diagram

Fig. 7.5. Module wiring diagram
points to see that they correspond with those given in Table 7.1. Once these are correct proceed as follows:

Set the "Audio" control to 6 and the "R.F. Gain" and "Carrier" controls to maximum sensitivity condition (i.e. fully clockwise). Apply the local oscillator signal set to 36 MHz , at a level of 0.7 volts, to SK2 on the R.F. Module. Inject a signal into the aerial socket SK1 at a level of 1 millivolt; with the frequency at 2.001 MHz a 1 kHz tone should be heard at the output. Both the generators should be set to within 10 Hz of the specified frequency. If some warbling is heard it

Table 7.1.
MAIN CHASSIS D.C. VOLTAGES

Connection	Voltage	Connection	Voltage
PL4 (a)	$+24 \mathrm{~V}$	PL7 (a)	OV
(b)	Earth	(b)	Earth
(c)	+12V	(c)	$+12 \mathrm{~V}$
(d)	Variable	(d)	OV
PL5 (a)	OV	PL8 (a)	Audio
(b)	Earth	(b)	Earth
(c)	+12V	(c)	$+12 \mathrm{~V}$
(d)	Variable	(d)	OV
	+24V		Audio
(b)	Earth	(b)	Earth
(c)	OV	(c)	$-12 V$
(d)	OV	(d)	

could well be that the generators are not stable enough or have not had time to warm up to their correct operating characteristics.

Reduce the level of the 2.001 MHz signal to 10 microvolts and adjust VR4 for maximum audio gain as indicated on the front panel V.U. meter (M1). It may be necessary to reduce the "Audio" control during this operation to keep the pointer within the confines of the scale. Having adjusted VR4, set the "Audio" control back to 6 and increase the 2.001 MHz aerial input signal level to 100 microvolts. Adjust VR5 so that the S meter (M2) reads 9 dB . These last two adjustments must be made with the "Carrier" control in it's fully clock wise condition.

Connect SK1 to the R.F. Attenuator unit and put the input signal at a level of 10 microvolts into SK 12, with the signal set at 2.001 MHz . The audio output should not be less than -6 dB on the V.U. meter. To produce 1 milliwatt in the earphones when the V.U. meter reads 0 dB , the earphones should be 1 kilohm impedance; under no circumstances should a load of less than 15 ohms be placed across the output socket SK13.

Next month: First Oscillator Unit

Fig. 7.6. Interconnection of coaxial sockets on the modules

GOMPDNENS...

Resistors	
R130	$100 \Omega \frac{1}{4} \mathrm{~W}$ carbon
R131	$3.9 \mathrm{k} \Omega$ IW wirewound
Capacitors	
C130	$0.47 \mu \mathrm{~F}$ polyester
C131	$0.47 \mu \mathrm{~F}$ polyester
C132	$1 \mu \mathrm{~F}$ polyester
Variable Resistors	
	$5 \mathrm{k} \Omega$ linear
VR3	$1 \mathrm{k} \Omega$ linear
VR4	100Ω skeleton preset
VR5	$50 \mathrm{k} \Omega$ skeleton preset
Miscellaneous	
LI2, $13680 \mu \mathrm{H}$ choke (Painton 2 off)	
M1 VU meter MR45P ($-20 / 0+3 \mathrm{VU}$)	
M2 S meter MR45P (50-9+40dB)	
SK12 coaxial aerial socket	
SK13 socket to suit earphones	
Main chassis, ind front panel, Imhoff 1690C	
3 knobs	
Coaxial wire	
Coaxial plugs (12 off)	
Earth ta	ags and fixings

ELEOTRO/ALUE

\section*{Everything brand new and to specification • Large stocks • Good service
 RESISTORS
 | Code | Power | Tolerance | Range | Values available | 1809 | 10 to 99 | 100 up |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ${ }_{2}^{3} \mathrm{~W}$ | 5\% | $100 \Omega-220 \mathrm{k} \Omega$ | E12 | 18d | 16 d | 15 d |
| C | W | 5\% | $4.7 \Omega-330 \mathrm{k} \Omega$ | E24 | 2.5 d | 2d | 175 d |
| C | +W | 10\% | $4 \cdot 7 \Omega-10 \mathrm{M} \Omega$ | E12 | 2.5d | 2d | 1.75 d |
| C | +W | 5\% | $4.7 \Omega-10 \mathrm{M} \Omega$ | E24 | 3 d | 2.5 d | $2 \cdot 25 d$ |
| MO | W | 2\% | $18 \Omega-1 M \Omega$ | E24 | 9 d | 8 d | 7 d |
| C | iw | 10\% | $4.7 \Omega-10 \mathrm{M} \Omega$ | E12 | 6d | 5d | 4 d |
| WW | IW | 10\% $\pm 20 \Omega$ | $0 \cdot 22 \Omega-3 \cdot 3 \Omega$ | El2 | 15 d a | quantities | |
| WW | 3W | 5\% | $12 \Omega-10 \mathrm{k} \Omega$ | E12 | 15 d | quantities | |
| WW | 7W | 5\% | 128-10k 11 | E12 | 15 d all | quantities | |

CODES: $C=$ carbon film. high stability, low noise. $M O=$ metal oxide. Electrosil TRS. ultra low noise. WW $=$ wire wound, Plessey. $1,1.1 .2,2.2,2.7,3.3,3.9,4.7,5.6,6.8,8.2$ and their decades E24 denotes series: as E12 plus $1.1,1.3,1.6,2,2.4,3,3.6,4.3,5.1,6.2,7.5,9.1$ and their decades Prices are in pence each for quantities of same ohmic value and power rating, not mixed values. (Ignore fract ions of one penny on cotal resistor order.)

COLYERN 3 watt wire-wound potentiometers: $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega$, Ik $\Omega, 1.5 k \Omega, 2.5 k \Omega, 5 k \Omega, 10 k \Omega, 15 k \Omega, 25 k \Omega, 50 k \Omega$. Price only $5 / 6$ each.

CARBON TRACK POTENTIOMETERS: Double wiper ensures minimum noise level Long plastic spindles
Single gang linear: $220 \Omega, 470 \Omega$, Ik Ω, etc. to each Single gang linear: $220 \Omega, 470 \Omega$, Ik Ω, ets. to $2 / 6$
$2-2 M \Omega$ $\operatorname{Sing}_{2-2 M \Omega}^{2-2 M}$ gang log: $4 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$, etc. to $2 / 6$
$2 / 8$ Any type with $\frac{1}{2}$ amp double pole mains

Dual gang linear: $4 k \Omega, 10 k \Omega, 22 k \Omega$ erc each IM Ω gang inear: $4 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$, etc. to $8 / 6$ Dual gang log: $4 k \Omega$, iok $\Omega, 22 k \Omega$, etc to $\begin{array}{ll}2 M 2 \Omega \\ \text { og/Anti-log: } 10 k \Omega .47 \mathrm{k} \Omega, \mathrm{i} M \Omega \operatorname{lily} \text { only } & 8 / 6 \\ 8 / 6\end{array}$

FETS n-channel. Low cost general
purpose $2 N 5163,25 \mathrm{~V}$ only purpose 2N5163. 25V, only 5/8/6. Mocorola 2 N5459 (MPFIO5) $8 / 9$ each.

NEW PLESSEY INTEGRATED CIRCUIT POWER
 7.5 . A Application data with two or more. P.E., Nov. 69 $7.5 \cdot \Omega$ Applifation data with two or more. P.E., Nov, 69
Stereo Amplifier kit less metalwork $£ 11.18 .2$ net complete.

30 WATT BAILEY AMPLIFIER COMPONENTS

Transistors for one channel $\mathbf{6 7 . 5 . 6}$. list, with $\mathbf{1 0 \%}$ discount only 66.11.0. Transistors for two channels 614.17.6. list, with 15% discount $\mathbb{1 2 . 7 . 5}$. Capasitors and/resiscors for onechannel list ©2. Printed or stereo, subject to discounc. Complete regulated power supply kit 49,5 , subject to discount Further details on application.

CARBON SKELETON PRESETS. Small high quality, type PR $1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, \quad 4 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$, $\begin{array}{cc}1 \mathrm{k} \Omega, & 2 \mathrm{k} \Omega, \quad 4 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, \\ 47 \mathrm{k} \Omega, & 22 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega, & 220 \mathrm{k} \Omega, \\ 470 \mathrm{k} \Omega\end{array}$ $47 \mathrm{k} \Omega, 2 \mathrm{M} 100 \mathrm{k} \Omega, 220 \mathrm{k} \Omega$, $470 \mathrm{k} \Omega 2$
$1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$ vertical or horizontal mounting, l/-each.

LARGE CAPACITORS. All new stock. High ripple current types: $2.000 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ 7/4: $2,000 \mu \mathrm{~F}$
$50 \mathrm{~V} 11 / 4.5000 \mu \mathrm{~F} 25 \mathrm{~V}$ i2/6 $5000 \mu \mathrm{~F} 50 \mathrm{~V} 21 / 11$. $50 \mathrm{~V} 11 / 4: 5,000 \mu \mathrm{~F} 25 \mathrm{~V} 12 / 6 ; 5,000 \mu \mathrm{~F} 50 \mathrm{~V} 21 / 11$
$1.000 \mu \mathrm{~F} / 00 \mathrm{~V} 16 / 3.2000 \mu \mathrm{~F} 100 \mathrm{~V} 28 / 9$. $5000 \mu \mathrm{~F}$ $1.000 \mu \mathrm{~F}$. $500 \mathrm{~V} 16 / 3: 2,000 \mu \mathrm{~F} / 00 \mathrm{~V} 28 / 9 ; 5.000 \mu \mathrm{~F}$ $70 \mathrm{~V} 36 /-: 5,000 \mu \mathrm{~F} 100 \mathrm{~V} 58 / 3$: $1,000 \mu \mathrm{~F}$ 50V $8 / 2$
$2,500 \mu \mathrm{~F} 64 \mathrm{~V} 15 / 5: 2,500 \mu \mathrm{~F} 70 \mathrm{~V}$ 19/6.

MEDIUM ELECTROLYTICS. Axial leads: Values ($\mu \mathrm{K} / \mathrm{V}$): 50/50 2/-; $100 / 25$ 2/-; $100 / 50 \quad 2 / 6$; $250 / 252 / 6 ; 250 / 503 / 9 ; 500 / 251 / 9 ; 1,000 / 103 /-500 / 504 / 6 ; 1,000 / 254 / 6 ; 1,000 / 506 /-\quad 2,000 / 25 \quad 6 /-$ Small elecrolyrics, axial leads: $5 / 10,10 / 10,25 / 10,50 / 10,1 /$-each; $25 / 25,47 / 25,100 / 10,220 / 10,1 / 3$ each

PEAK SOUND ENGLEFIELD KITS
Build it $12+12$ or
$25+25$
$25+25$. Brilliant new
styling and available in kit form with complece amplifier and pre-amplifier NEL. In and power supply. Outpur per channel into $150-12 \mathrm{~W}$ R.M.S. Price $\mathrm{E}_{18.9 .0 \text { net. STEREO } 25 \text { WATTS PER }}$ CHANNEL. As above but output per channel into 15Ω -25W R.M.S. Price E58.15.0. net. Brief specification Total harmonic distortion 0.1%.
Inputs: Magnetic, Ceramic, Tape, Radio, Signal to noise ratios: Better than 60dB all inputs. O/Load factor 28 dB all channels.
ENGLEFIELD CABINET to house either above assemblies (as illustrated) $\mathbf{6 5 . 0 . 0}$. net. Other peak sound products as advertised
 MULLARD SUB-MIN ELEC. $1 / 3$ each. Axial leads, Values ($\mu \mathrm{F} / \mathrm{V}$) $0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16 ; 2.5 / 64$: $4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40$; $\begin{array}{lll:l}10 / 25 ; & 10 / 16 ; & 10 / 64 ; & 125 / 25: \\ 16 / 40 \text {; }\end{array}$ $\begin{array}{llll}20 / 16 ; & 20 / 64 ; & 25 / 64 ; & 25 / 25 ; \\ 32 / 10 ; & 32 / 4 ;\end{array}$ $\begin{array}{cccc:}32 / 10 ; & 32 / 40: & 32 / 64: & 40 / 16: \\ 50 / 6 \cdot 4 & 50 / 25 ; & 50 / 40 & 64 / 4: \\ 30 / 2: & 64 / 10:\end{array}$ $\begin{array}{llll}50 / 6 \cdot 4 ; & 50 / 25 ; & 50 / 40 ; & 64 / 4 ; \\ 80 / 2 \cdot 5 ; & 80 / 16 ; & 80 / 25 ; & 100 / 6 \cdot 4 ; \\ 125 / 4 ;\end{array}$ $\begin{array}{lll}80 / 2 \cdot 5 ; & 80 / 16 ; & 80 / 25 ; \\ 125 / 10 ; & 125 / 16 ; & 160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ;\end{array}$ $250 / 4 ; 320 / 2.5 ; 320 / 6 \cdot 4 ; 400 / 4 ; 500 / 2 \cdot 5$.

WAVECHANGE SWITCHES: IP 12W: 2P $6 \mathrm{~W}: 3 P 4 W$: $4 P 3 W$ long spindles, $4 / 9$ each. Slider switches
double pole double throw, $3 /-$ each.

BARGAINS IN NEW TRANSISTORS

All power types supplied with free insulating sets

2N696	$5 / 6$	2N5192	25 /-
2N697	5/6	2N5195	29/3
2N706	2/9	4036	12/6
2 NI 132	9/9	403612	16/-
2 NI 302	$4 /-$	ACI26	6/6
2 Ni 303	4/6	ACl27	6/-
2 NI 304	4/6	ACl28	6/-
2 N 1305	4/6	ACI76	11/-
$2 \mathrm{~N} / 306$	6/9	ACY22	3/9
2 N 1307	6/9	ACY40	4/-
2 NI 308	$8 / 9$	ADI40	19/-
2 N 309	$8 / 9$	ADI49	17/6
$2 \mathrm{Nl613}$	6/-	AD161)	16/-pr.
2NI711	7/4	AD162\}	16/-pr.
2N2218	10/6	AFII3	16/6
2 N 2147	18/9	AFI24	7/6
2N2369A	6/9	AFI27	7/-
2N2646	$10 / 9$	BA102	9/-
2N2924	4/3	BC107	2/9
$2 N_{2925}$	5/3	BCl08	2/6
2N2926R	2/6	BC109	2/9
2N29260	2/3	BC147	4/3
2N2926Y	$2 / 3$	BC148	3/3
2N2926G	2/3	BCI49	4/3
2N3053	5/6	BCI53	10/-
2N3054	14/3	BC154	11/-
2N3055	$16 / 6$	$\mathrm{BC157}$ $\mathrm{BC158}$	$3 / 9$ $3 / 6$
2N3391A	$5 / 6$	BC159	3/9
2N3702	3/6	BC167	2/6
2N3703	3/3	BC168	2/3
2N3704	3/9	BC169	2/6
2N3705	3/5	BC177	6/3
2N3706	3/3	BC178	5/8
2N3707	4/-	BC179	6/-
2N3708	3/-	BD121	18/-
2N3709	3 -	BD123	24/3
2N3710	3/3	BFI78	10/6
2N3711	3/11	BF×29	10/9
2N3904	7/6	BFX85	8/3
2N39086	7/6	BFX88	7/9
2N3731	$23 /-$	BFY50	4/6
2N4058	5/3	BFY51	4/3
2N3325	10/9	BS $\times 20$	3/9
2N3794	3/3	MJ480	21/-
2N4286	$3 / 3$	M1481	27/-
2N4289	3/3	MJ491	30/-
2N4291	3/3	P346A	5/9
2N4292	3/3	IN400\|	4/2
2N4410	$4 / 9$	IN4005	8/-

MAIN LINE AMPLIFIER KITS, as advertised
Prices net. Authorised dealer

COMPONENTS DISCOUNTS

10% on orders for components for $£ 5$ or more. N\% on orders for components for f 15 or more

POSTAGE AND PACKING
Free on orders over
Please add 16 il unde
Overseas orders welcome: carriage charged at cost.

TEAKNIOAL TBAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful NEW

SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. pro-fessional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

VALVES

SAME DAY SERVICE
NEW! TESTED! GUARANTEED!

Set of 4 for 18/6. DAF96, DF96, DK96, DL9t, 4 for $27 / \rightarrow$

	1	7/3	91		184		82	-	1	-
1A7GT	7/6	128N7GT6/6	13K92	$8 / 6$	EH90	8/3	PCL83	10\%	1BF80	5/9
1H5GT	7/8	19EG6G17/6	1) 96	$7 / 5$	EL33	$9 / 9$	PCL84	$7 / 6$	UBF89	6/9
INSGT	$7 / 9$	$20 \mathrm{~F}^{2}$ 13/6	DL35	510	E134	$9 / 6$	${ }^{1} \mathrm{CL}$ 8	$9 /-$	UC92	,
1R5	5/9	$20 \mathrm{P3} 11!9$	1)L92	3/9	EL41	11/-	PCL8t	$8 / 3$	7CC84	71
185	4/3	$20 \mathrm{P}^{4} \quad 18 / 8$	DL94	$8 / 9$	EL84	$4 / 9$	PENA	12/6	$1 \mathrm{UCC85}$	7/8
1T4	9/9	25L6¢T 5/-	DL96	$7 / 8$	EL90	416	PFL200	11/9	CCF80	7/8
384	$5 / 9$	25U4GT11/6	IVY86	5/9	EL500	$12 / 6$	PL36	$9 / 9$	CCH42	12/-
9V4	8/8	$\begin{array}{ll}30 \mathrm{Cl} & 6 / 6\end{array}$	19887	$5 / 9$	EM80	$7 / 6$	PLB1	$8 / 9$	UCH8	6,8
SY30T	5/9	30 Cl 15 13/-	EABC8	8/6	EM81	$7 / 8$	PL8IA	819	UCCLA2	710
$8 \mathrm{C4G}$	$7 / 6$	30 Cl 17 16/-	EAF42	$101-$	EM84	$8 / 8$	PLA2	$8 / 8$	UCL	11/9
8/30L2	12/-	$30 \mathrm{Cl18} 14 /-$	EB91	8/3	FM87	$7 / 6$	PL83	$8 / 6$	UF4	10/6
6ALO	2/3	30 Fs 16/-	EBC33	$81 /$	EY51	719	PL84	8/6	UF80	$7 / 7$
6AM6	2/8	$30 \mathrm{FL1} 1819$	EBC41	9/8	EY86	$6 / 6$	L84	$6 / 6$	UF85	$6 / 9$
6AQ8	4/6	30FL.1214/6	EHF80	610	EZ40	$81-$		18/6	UF39	$0 / 9$
8AT6	4/-	30FL14 14/9	EBFAS	8/8	EZ41	8:-	508	28/6	UL41	$10 / 8$
6AU6	$4 / 6$	30 L 1 6/6	ECC81	$8 / 9$	EZ80	$4 / 6$	508	$28 / 6$	CL44	201-
68A6	4/6	$30 \mathrm{~L} 1515 /-$	ECC82	$4 / 0$	EZ81	$4 / 9$	PM84	6	1L84	71
6BE6	4/9	$30 \mathrm{L17} 15 / 6$	ECC83	7/-	OZ32	810			LM84	6/6
68J6	8/6	30P4 12,	Ecc8s	\%	0234	$9 / 9$	P	10.-	194	7/8
6BW6	18/-	$30 \mathrm{P} 12 \quad 18 / 0$	ECC91	3/-	KT61	$0 / 0$	PY33	10/7	UY85	518
6F13	$3 / 6$	30P19 12/-	FCC80	$2 /-$	KT66	$18 / 8$	PY81	$5 / 8$	$\underset{\sim}{\mathrm{Y}} \mathrm{P} 4 \mathrm{H}$	10/-
6F14	$91-$	30PL1 18/0	ECF80	818	N78	17/6	PY82	$5 / 8$	W119	717
$6 \mathrm{CF}^{3}$	14/3	30PL13 15/6	ECF82	$5 / 8$	PABC'80	7/-	PY83	$8 / 9$	277	$2 / 9$
6 F 25	13/-	30PL14 16/6	ECH35	61-	PC86	10/8	PY88	69	AC107	$8 / 6$
6 J 9	$8 / 1-$	35L6GT 8/8	ECH42	13/6	PC88	$10 / 8$	PY800	776	$\mathrm{ACl}^{\text {c }} 7$	$2 / 6$
6K7G	$2 / 6$	35 W 4 t	ECH81	5/8	PC96	$8 / 6$	${ }^{\text {PY8 }}$	81	AD140	716
8K80	$2 / 9$	35Z4GT 5/-	ECH83	8/3	${ }^{\text {PC97 }}$	$8 / 6$			AF115	
6 L 18	6/-	$606312 / 6$	ECH84	716	PC900	$7 / 8$			AF116	-
GEN7GT	4/3	AC/VP210/-	ECLS0	$71-$	PCC84	8/8	${ }^{1} 25$	18/-	AF.117	-
64'60	$8 / 8$	AZ31 9/8	ECL82	$8 / 9$	PCCs 5	6/-	I'26	12/-	AF125	3/6
6 VGGT	$8 / 0$	8729 12/6	ECL83	$8 / 8$	PCC88	81	U47	18/6	AF127	$8 / 6$
6×4	4/3	CCH35 13/6	ECL86	$8 /-$	PCC89	10/8	U49	18/6	OC24;	$5 / 6$
$6 \times 56 \mathrm{~T}$	5/8	CLa3 18/6	EF37A	8/6	PCC189	11/6	V7\%	4/3	OC44	2/8
787	7/-	CY31 618	EF39	$4 / 9$	PCF80	8/6	-191	12/6	OC45	$2 / 8$
$7 \mathrm{C6}$	0/9	DAC32 78	EF41	1019	PCF82	8/6	1.193	816	OC71	$2 / 6$
10FI	14/-	DAF91 $1 / 8$	EF80	4/6	PCF86	18/-	${ }^{1} 2051$	14/6	0 C 2	210
10F18	$7 /$	DAF96 $7 / 8$	EF85	$6 / 8$	PCF200	13/8	U301	10;6	OC75	2/6
10P13	12/-	DF33 719	EF86	$6 / 8$	PCF800	18/6	U329	14/6	OC81	2/8
12AT7	319	DF91 ${ }^{\text {D/9 }}$	EF89	$5 / 8$	PCF801	$8 / 8$	'801	19/6	OC81)	2/8
12AU6	4/9	DF96 7/3	EF91	219	PCF802	91-	VABC80	80/6	OC'82	2/3
12AU7	$4 / 9$	DH7\% 4/-	EF94	$4 / 6$	PCF805	14/-	UAF42	10/3	OC821	$2 / 6$
12AX 7	$4!0$	7/8	183	3/0	PCF808	14/0	B41	6	-	
8\& TORQUAY GARDENB, REDBRIDGE, ILFORD, Es8EX. Tel. 01-8507441										
Poatage on 1 valve 9d. extra. On 2 valver or more, postage 6 d . per valve extra. Any Parcel Iusured against Damage in Transit 6d. extra.										

A novelty single octave electronic musical instrument for learning rudimentary tonic sol-fa. This compact melody maker is selfcontained and is simple to play using a touch probe. An instrument that will appeal to young and old both for novelty and some serious applications.

MARINE TACHOMETER

A tachometer for the boat enthusiast. This instrument has been designed for 2 stroke outboard motors and will accurately indicate the r.p.m. of the outboard. Its use will prevent "cavitation"-saving petrol-and safeguard the engine.

CAR CONVERSION FOR TOWING

This article describes the electrical conversion of a car for towing and gives constructional details of an electronic device to repeat indicator signals on the tow. A warning light system is also given and the two units can be used on any 12 V car system.

Plus-of course PART 2
 "THIS WAY TO ELECTRONICS"

Riadiout
 A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Unqualified success . . .

Sir-I was most interested in the letter from Mr E. A. Bromfield (P.E: February 1970) headed "Academic Barrier".

I have been in various branches of the Electronics Industry since the year 1920 and have four inventions to my credit. Two were applicable only to the guided weapons work upon which I was engaged and were put on the secret list. They ware manufactured and used by my employers. The other two, the Fairey Safety Ohmmeter and the Fairey Voltage Detection Meter have been used widely all over the World and in respect of which Royal Letters Patent were granted.

In view of this, I certainly consider that I am entitled to be classed as an engineer even though I do not hold a degree.

It would be most interesting to hear Mr Bromfield's opinion on this matter.

J. C. Baker, Bristol.

of trained engineers

Sir-Your editorial on the "NonRegistered Engineer" and your reply to Mr Bromfield's letter on this subject, tempt me to make a few observations of my own.

The main theme of your argument is, that the fairly large body of nonqualified engineers make a really worthwhile contribution in the sphere of original invention. In the first place, how many people in the engineering industry are required to be technical innovators? Not many.

Also, if the record of inventions of the non-qualified engineers are placed alongside those of the qualified research workers, I fail to see how anyone can describe the contribution of the former as significant.
I share your concern that it is grossly unfair to attempt to dismiss the existing non-qualified engineer
who is probably doing exactly all that is required of him at present. But at some future date, I cannot see why all engineers shouldn't be expected to be qualified.

After all, an academic qualification has no destructive properties, but leaves the inventive mind still inventive but with a useful grasp of analytical methods with which to probe and prove the limitations inherent in any idea. This is usually noticeably lacking in semi-professional inventions.

As for your point of view that some people do not wish to be, or cannot attempt to become qualified, I have very little sympathy. In the case of personal hardships involved in becoming qualified, I would put my own record against anyones, and I have as little sympathy for someone who doesn't wish to become qualified as I do for an athlete who doesn't wish to train.
In any field of human endeavour the introduction of a basic training programme has always improved performance, not diminished it. Did England win the Jules Rimet trophy by simply "having a bash?"
M. A. Stewart, Dundee.

Bad taste !

Sir-It is with reluctance that I feel obliged to write to an excellent magazine with a complaint.

In the February 1970 issue the critic of Roland Worcester's book "Electronics" displays remarkably bad taste by questioning the validity of the claim that this author is an authority in the field of electronics. Could it be that the critic feels he is a greater authority? Strangely, he does not add his full name after the critique but merely the initials "M.K."-a pseudonym. Using M.K.'s own argument, one is led to wonder whether he is in fact qualified to make criticisms of the book. A book which, though it doubtless has its faults, is excellent value for money and attempts to cover a much wider field than any comparable work.

Stephen J. Waller, Belvedere,

Kent.

Your Throw

Sir-After 1 built my Stockmarket game, I constructed a very simple, relatively inexpensive electronic die. Perhaps your readers would be interested in the circuit.

1 used a Raytheon CK8754 Datavue numerical indicator tube ($\$ 5.60$) operated by a simple halfwave power supply and a 24 position rotary switch. Incidentally, a Burroughs B5440 or a National NL840 tube could have been used just as well; they are all about the same. I am sure that there are comparable readout tubes available in England.

I removed the detent (click-stop) mechanism from the rotary switch so that it rotates continuously with little friction. On the shaft of the switch I installed a tuner type flywheel to provide coasting inertia. A suitable flywheel is available from Electroniques, Edinburgh Way, Harlow, Essex, catalogue number 4522. The switch shaft is also fitted with a large knob.

Every four contacts on the 24 position switch are connected to one of the cathodes of the numeral indicator tube. For example, the first four switch contacts go to the number 1 cathode. The next four switch contacts are wired to the number 2 cathode on the tube, and so on.

To use this electric die, all I do is spin the switch shaft and the flywheel causes the switch to spin to a random stop after a few rotations. The result is that a number from 1 to 6 is illuminated in the readout tube. The number is random of course, depending on how fast the switch is spun, etc. The switch should be the shorting (make-before-break) type. This type of switch results in a more positive change.

I mounted the whole thing in a $5 \times 3 \times 2$ in metal box. This electro-mechanical approach is the cheapest way to have an electronic die. Using the driver-decoder circuits made for these readout tubes was out of the question because of their cost and complexity.

Ken Greenberg, Chicago, U.S.A.

Since the Electronic Stockmarket Game was published many ideas for a dice (or "die" as some prefer to call it) have been received. Some, like the example described above, are semi-electronic, and others are entirely electronic. We hope shorly to publish full details of a few of these all electronic dice designs.

Although it is not possible to publish all ideas submitted, (a certain amount of similarity or duplication inevitably occurs) we do thank all those who sent in their ideas on this subject.-Ed.

COMPLELE STEREO SISTEM

FOR ONLY

The Premier Stereo System "ONE" consists of an all transistor stereo amplifier, Garrard $2025 \mathrm{~T} / \mathrm{C}$ auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolntely complete and supplied ready to plug in and play. The 10 transistor Amplitier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket Controls: Bass, Treble, Yolume, Balance, Selector. Power ou/otf, stereo/mono switch. Brushed alumininm front panel. Black metal case with tenkwood ends Size $12^{\prime \prime} \times 52^{\prime \prime} \times 3 \frac{1}{2}$ high (Amplifier available separately if required $£ 14.19 .6$. Carr. 7/6)

TELETON SA0203E STEREO AMPLIFIER

A small but powerful amplifier lesigned for stereo hi-ft reproators and diodes. 10 watts per channel music power. Inputs for Gram (Magnetic and Crystal), Tuner and Auxiliary. Tape Record output. Controle: Volume, Balance, Bass, Treble.
Stereo/Mono ollde switch. Stereo Stereo/Mono sllde switch. Stereo OUR 22 GNS. P. \& P. oiled wahut cabrinet with brushed aluminium

"NOVA" 505 TRANSISTOR STEREO AMPLIFIER A superb stereo ampli fler offering every facility for the hi-fl enthusiast. Output 6 watts per channel. Frequency response $40-20,000 \mathrm{~Hz}$ Inputa for Radio, P.U

Separate bass and treble cope and Balance Controls. Mono/Stereo Switch. Also leatures healphone socket and tape output. Teak case with attractive illuminated front panel. Size $14 \frac{1}{4}$ $9 \frac{2}{2} \times 3 \frac{1}{8}$ in., a.c. $200 / 250 \mathrm{~V}$.

WONDERFDL VALUE ${ }_{\text {ancy }}^{\text {at }} 18 \mathrm{gnS}$. Carr

"VERITONE" RECORDING TAPE SPECLALLY MANOFACTURED IN U.SA. FROM EXTRA STRONG
PRE-STRETCHED MATERLAL. THE QUALITY IS UNEQUALLED TENBILISED to enbure the most permanent base. Highly resistant to break age, moisture, heat, cold or humidity. High polished splice free finish. Smooth $\begin{array}{llllllll}\text { LP3 } & 3^{\prime \prime} & 250^{\prime} & \text { P.Y.C. } & 5 / 6 & \text { L.P } 8 & 53^{* \prime} & 1200^{\circ} \\ \text { LP.V.C. } & 12 / 8\end{array}$
 $\begin{array}{llllllll}\text { DT3 } & 32^{*} & 600^{\circ} & \text { POLYESTER } & 11 / 6 & \text { TTB } & 50^{\prime \prime} & 2400^{\prime} \\ \text { POLYESTER } & 37 / 6 \\ \text { SP5 } & 5^{\circ} & 600^{\circ} & \text { P.V.C. } & 8 / 6 & \text { SP7 } & 7^{*} & 1200^{\circ} \\ \text { P.V.C. } & 12 / 6\end{array}$ $\begin{array}{lllllllll}\text { SPS } & 5^{\circ} & 600^{\circ} & \text { P.V.C. } & 8 / 6 & \text { SP7 } & 7^{*} & 1200^{\circ} & \text { P.V.C. } \\ \text { LP5 } & 5^{\circ} & 900^{\prime} & \text { P.V.C. } & 10 / & \text { DT7 } & 7^{*} & 2400^{\prime} & \text { POLYESTER } \\ \text { DT5 } & 5^{\circ} & 1200^{\prime} & \text { POLYFSTER } & 15 /- & \text { TT7 } & 7^{*} & 3600^{\prime} & \text { POLYESTER }\end{array}$ DT5 5 1200 POLYESTER 15/- TT7 7* 3600' POLYESTER 50 TAPE 8POOLS $3^{*} 1 /-, 5^{n}, 5^{3 \prime}, 7^{*} 1 / \theta$. TAPE CASES $5^{*}, 7^{*} 2 / 6$. Post and Packing $3^{*} 1 /-, 5^{*}, 5^{* *} 1 / 6,5^{*} 2 /-$. (3 reels and over Post Free.)

PREMER STEREO SYSTEM "THREE"
Nova 505 Amplifier (as arove) 818.18 .0 Garard SP25 811.19 .6
Nonotone 9TAHCD 22.15 .0

Teak lase and cover $\mathbf{2 5 . 1 0 . 0}$
Pair of 3-Unit Hi-Fi Enclosures fitted E.M.I.
Speakers
226.5.0
$\underline{ }$
$\underset{\text { PREMIER }}{\text { PRICE }} 55$ GN.

TWO STATIOR

 TRAMSISTORInTERCOMS
Complete with batters
and 50 ft connecting and 50 ft connecting wire Compact size, two way call system. Ideal for $65 /-\quad P . \&$

FOUR STATION INTERCOM. Master unit and 3 slaves Ideal for office and bome. Complete with battery and
connecting wire $£ 7.19 .6$. P. \& P $5 / 6$.

TAPE CASSETTES

C60 ${ }^{60}$

7/6
 $\mathrm{Cl} 20\left(\begin{array}{l}\text { (120 } \\ \text { min }\end{array} \quad 17 / 6\right.$ THREE FOR 31 -
P. \& P .1

CASSETTE HEAD
CLEANER
Removes unwanted jeposito fronn delicate tape beads.
Fits nil fassette $11 / 6_{1-}$

Complete stereo system - £29.10.0

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak voneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally
Type 1 SPECIFICATION:-
Impedance 10 ohms. It incorporates Goodmans high flux $6^{*} \times 4^{\prime \prime}$ speaker and $21^{\prime \prime}$ tweeter. Teak finish $12^{\prime \prime} \times 63^{\prime \prime} \times 52^{\prime \prime} .4$ guineas each. $7 / 6 \mathrm{~d} . \mathrm{p} . \mathrm{E}^{2} \mathrm{p}$. Type 2 as type 1. Size $17 \frac{1^{*}}{}{ }^{*} \times 10 \frac{7}{2}^{*} \times 6 \frac{1}{*}^{*}$, Incorporating $10 \frac{t^{*}}{} \times 6 \times 6 t^{*}$

Garrard Changers from E7.19.6d. p. 8 p. 7/6d
Cover and Teak tinish Plinth E4.15.0d. 7/6d. p. \& p.

£9.10.0

The Duetto is a good quality amplifier, attractivaly styled and finished. It gives superb reproduction previousiy associated with amplifiers costing far more.
SPECIFICATION:-
R.M.S. power output: $\mathbf{3}$ watts per channel into 10 ohms speakers.

INPUT SENSITIVITY: Suitable for medium or high output crystal cartridges and tuners. Cross-talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$
CONTROLS: 4 -position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
TONE CONTROL: Treble lift and cut. Separate on/olf swirch. A preset balance control.

The Classic

Teak finished case 69
Plus P. \& P. $7 / 6$ s.) $\mathrm{Mag} . \mathrm{P} . \mathrm{U} .: 2 \mathrm{mV}$. Cer.P.U. 80 mV . Tuner: 100 mV Aux. 100 mV . Tape/Rec. Output. Equalisacion for each input is correct to within $+2 d B$ (R.I.A.A.) from $20 \mathrm{~Hz}_{\text {to }}$ to 20 KHz Tone Control Range: Bass: 13 dB at 60 Hz . Treble: $\pm 14 \mathrm{~dB}$ at 15 KHz . Total Distortion: (for 10 watt output) $<1.5 \%$ Signal, Noise: $<-60 d B$. A.
$200-250 \mathrm{~V}$. Size $12 \frac{1}{2}$ in long, $4 \frac{1}{2}$ in deep, 2 in high. Built and tested. gram radio (250 mV) individual bass and treble control Transistors: 4 silicon and three germanium. Mains input: $220 / 250$ voles. Size: $10 \frac{1}{4}$ 42
case.

THE ELEGANT SEVEN Mk. III (350 mW Output)

7-transistor fully tunable M.W.-L.W. Superhet portable. Set of parts. Complete with all printed circuit board-back printed for fool-

Price $£ 5.5 .0$ Plus P. \& P. 7.6

The Viscount INTEGRATED HIGH FIDELITY TRANSISTOR STEREO AMPLIFER £ 14.5 .0

4 ohms speakers (20 WPCIFICATION: Output: 10 watts per channel into 3 to

SPECIFICATION at 1 KHz into 3 ohms Tape Head 3 mV (ar 3 m

THE RELIANT Mk. II SOLID STATE GENERAL PURPOSE AMPLIFIER
66.16.0 Plus P. \& P. 76 In teak finished case
SPECIFICATION: OvtDut: 10 inputs: (1) for mike (10 mV). ohms speaker

E5.5.0 Plus P. \& P. 7/6 Circuit 2;6. Free with parts. (3 pos, mono and 3 pos. stereo). P.U., Tuner. Tape and Tape Rec. out. Sensitivities: All inputs 100 mV into 1.8 M ohm. Frequency Response $40 \mathrm{~Hz}-20 \mathrm{KH}$ $\pm 2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls. Treble 13 dB lift and cut [at 15 KHz]. Bass: 15 dB lift and 25 dB cut [at 60 Hz]. Volume Controls. Separate for each channel. A.C. Moins Input: $200-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$. Size $12 \frac{1}{7} \quad 6 \mathrm{in}$ Viscount Mark 2 for case. Built and tested. P. \& P. 7.16 .
equalised for magneric pick ups. Suicable for cartridges wation as above. Fully equalised for magneric Dick ups. Sulcable for cartridges with minimum outputs
of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$ at kc . Input Impedance 47 k . 15 gns . plus $7 / 6 \mathrm{P}$. \& P.

SPECIAL OFFER

Complece stereo systems comprising BALFOUR 4 speed auto player with stereo head, 2 DUO speaker systems size $12 \times 6 \frac{7}{i} \times 5 \frac{1}{2}$ in. Plinch (less cover) $£ 25$ Plus P. \& P. $£ 2$
NEW COMPLETE HI-FI STEREO SYSTEM E4.
Comprising SP 25 Garrard Mk. II with diamond stereo cartridge or 2025 TC, VisCount amplifier Mk. 1, Two cype 2 speakers. Plinch and cover. 641 pius 52.10 P \& P
50 WATT AMPLIFIER A.C. Mains 200-250V

Price $\mathbf{E 2 8 . 1 0 . 0}$ Plus 20/- P. \& P An extremely reliable general purpose yer spamplifier. Its rugged construction yet space age styling and design makes TECHNICALSPECIFICATIONS 3 electronically mixed channels, with 2 inpurs per channel, enables the use of 6 separate inscruments ar the same cime The volume conerols for each channe are located directly above the corresponding input sockers. SENSITIVIT Channels i \& 24 mV at 470 K . These 2 channels (4 inpurs) are suitable for microphone or guitars. Channels 3 \&
4300 mV at 1 m . Suitable for most high output instruments (gram, tuner, organ etc.). Input sensitivity relative to low output. TONE CONTROLS ARE COMMON TO ALL INPUTS
 controls central -3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and $20 \mathrm{KHz} / \mathrm{s}$. POWER OUTPUT. For speech and music 50 wacts rms. 100 watts peak. For sustained music 45 watts rms. 90 watts peak. For sinc wave 38.5 watts rms. Nearly 80 watts peak. Tocal distortion at rated output 32% at $1 \mathrm{KHz} / \mathrm{s}$. Total distortion at 20 watts 015% at $1 \mathrm{KHz} / \mathrm{s}$ Output to match into 8 or 15 ohms speaker system. NEGATIVE FEED BACK $20 d B$ at $1 \mathrm{KHz} / \mathrm{s}$. SIGNAL TO NOISE RATIO 60 dB . MAINS VOLTAGES Adjustable from $200-250 \mathrm{~V}$. A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the
rear of unit. Outpuc impedance 3,8 and 15 ohms.

RADIO \& TV COMPONENTS (ACTON) LTD.

Post orders to:-2Id High Street, Acton, London, W. 3

Also at 323 Edgware Road, London, W. 2

Goods not déspatched outside U.K.
Terms C.W.O
All Enquiries S.A.E.

HENRY'S FAMOUS CATALOGUES-SEE BACK COVER FOR DETAILS

H1FFI equipment to suit SVERYPOAKI

Demonstrations
quotations FREE
VISIT OUR HIFI CENTREAT 309 EDGWARE ROAD, ror all leading makes Of-AMPLIFIERS. TUNERS. DECKS. SPEAKERS, MICROPRONES. TES VISIT. AUDIO SYSTEMS $640-E 300$ TO SUIT. SEND FOR BROCHURE $16 / 17$.

ELECTRONIC ORGANS

- MODERN ALL BRITISH TRANSIS. TORISED DESIGNS AVAILABLE AS KITS OR READY BUILT
- TEAK VENEERED CABINETS FOR - all models
- 99 NOTE, 61 NOTE SINGLE MANUAL DESIGN
NOTE
- Kits available in sections as

H HP and CREDIT SALE facilities
When in London call in and try for yourself REE 16 -page organ brochure covering organs in kit form and ready built-write or phone to ORGAN DEPT. Ask for Peter Elvins.

Brand New Fully Guaranteed TRANSISTORS \＆DEVICES

1N4001	2j－	2N3711	3／6	AF118 12／b	BsY 66	OA95	$1 / 6$
1 N 4002	$2 / 8$	2N 3730	101－	AF124 6／－	BSY67 5／－	OA200	1／9
1N4003	$2 / 6$	2N3731	12／6	AF＇125 5／m	BSY95． $4 / 6$	OA20：	1－
1N4004	$3_{\text {／}}$－	2N3819	8 ／－	AF126 4／－	BSY95 3／－	OA210	6／－
1N4005	3.6	－N38：0	$18 / 6$	AF127 4／－	BTY4ㄹ．18／6	OAO11	9／6
1 N 4006	，	－$\times 3823$	17／6	AF＇139 6\％－	13TY\％！400R	OAZ：00	11－
1N4007	$51-$	2S4054	516	AP178 9／6	35／－	OAZ：01	10 －
1N4009	$1 / 6$	2N4061	4：－	A10181 8／6	Втצк4 $12 / 6$	OAZ202	$8 / 6$
1N4148	1／9	2 N 4286	3／－	A F＇ısis	13TY8 15／－	OAZ203	$8 / 6$
1N4785	10．－	2 N 428 sc		AF239	BC「10 12／6	0AZ204	8／8
2G210	12／6	2 N 428 y	$3 / 6$	Alvis 22／6	buylt 18／6	OAZ 205	$8 / 6$
$2(1240$	49 ／ 6		3／－	AFZll 81－	BY＇100 3／6	OAz20f	$8 / 6$
26301	4	$2 \mathrm{~N}+291$	3－	AFZ12 101－	13103 4／8	Oazeot	9／6
2G302	$4 / 6$	$2 \mathrm{~N}+292$	3／－	AsYeg 8／6	BY114 5／－＇	OAZ20	$8 / 6$
2 a 303	5	40351	12	A $\times 127$ 7／6	BY1－2 5	OAZ209	$8 / 6$
2 C 306	76	4036：2	$13 / 6$	Asyos 6／6	IS $\mathrm{X} \times 2=2600$	0 AZ210	${ }^{6 / 6}$
2 C 308	76	25001	10	AsYe9 61－	5／3	OAZ211	$\boldsymbol{e} / 6$
2 c 309		$2500 \pm$	10,6	Asy3i ${ }^{5 /-}$	BYZIO 10－	OAZ212	$6 / 6$
263393	－	25003	${ }_{9}^{96}$	ASY5\％3／6	BYZ11 9／－	OAZ213	$9 / 6$
26371		28004	${ }_{9}^{9 / 6}$	ASY51 8／－	BYZ1：	OAZ222	$9 / 6$
20374	$5 \cdot 6$	＂8005	15 －	AsY67 9／6	BYZ13	OAZ223	$7 / 6$
$2 \mathrm{G381}$	5 －	25012	$251-$	AsyR3	BYZ15 201－	0 AzP 24	$7 / 6$
20385	6 －	25010	$22 / 6$	A以Y\％${ }^{\text {A／6 }}$	BYZ16 12／6	OAZ225	$7 / 6$
${ }^{2} 2637881$	46	2s013	20 －	$\begin{array}{lr} \text { ASR2I } & 8 / 6 \\ 20 ; \end{array}$		OAZ228	$7 / 6$ $9 / 6$
298383 261304	4.6	－	25i－	$\begin{array}{ll} \text { AnZ:3 } & 20 /- \\ \text { AUY10 } & 19 / 6 \end{array}$	4	$\begin{aligned} & \text { 0AZ229 } \\ & \text { OAZ } 231 \end{aligned}$	$9 / 6$ $9 / 6$
${ }_{2} \mathrm{C}_{3} 305$		－25018	17／6	At＇101 30\％	BZ	0 AZ234	7／6
2 N 404	46	25029	50，－	в3м 18／6	13%	oaze38	$9 / 6$
2N 4511	15 －	24024	50	$13 \mathrm{Al10} 5$	4／－	OAZ241	4／6
2 N 45 K	20	$250 \cdot 25$	60－	BAY31 2\％	ни\％	OAZZ42	4／6
2 N 503	96	28026	100．－	${ }^{313 C 107} \quad 3 /-$	4／－	OAZ244	$4 / 6$
2 N 594	12／6	28034	12,8	BCl0 $2 / 8$		OAZ245	$4 / 6$
2N601	${ }^{3} 16$	2：5036	25：－	BC109 3／－	13／1830 ${ }^{\text {／－}}$	OAZO46	4／6
2N696	46	25102	10	3C13 8／－		OAZ247	$4 / 8$
2N697	5.	2 2103	$12 / 8$	BCIItio 8i－	4；－	$0 \mathrm{AZ272}$	${ }_{7 / 6}$
$2 N 698$ 2 N 70 s	8.6 16	－	1216	$\begin{array}{ll}\mathrm{BC118} & 7 / 6 \\ \text { 16C134 } & 7 / 8\end{array}$	$:$	$\text { OAZ } 290$	$7 / 6$ $7 / 6$
$\begin{aligned} & 2 N 706 \\ & 2 N 706 \end{aligned}$	${ }_{2}^{16}$	$\begin{aligned} & 2 \times 131 \\ & 2 \times 301 \end{aligned}$	$7 / 6$ $8 /-$	BCl 34 BC 135 $7 / 6$ $1 /-$	4／－	$\begin{aligned} & \text { OAZ:91 } \\ & \text { OAZ } 29= \end{aligned}$	$7 / 6$ $7 / 6$
2 N 707	12.6	2，302	7／6	BC13\％ 7		OCIG	101－
2＊76x	，	24303	10.	BC137 8！		OC19	$7 / 6$
2 N 711	${ }_{7} 6$	－2804	$12 / 6$	BC13\％	BZY886v？	OC20	10／6
－2711	${ }_{11}^{76}$	28305	15	18CY30） $5 / 6$		OC 22	9／6
20721	11	$\cdots 8320$	9	BCy31 8／6	$13 \mathrm{ZY44c11} 4$ 4／－	OC23	12／6
2×743	4	25321	6／－	BCy3：101－		OC：24	12／6
2 N 744		－233：	$7 / 6$	18Cy 38 5／－		OC：	7／6
2 N 70.3	5	25323	10／－	BCY34 ${ }^{61}$	BZI：94C15 4 BZy94C16 4		7／6
2N865	$12 / 6$	$2 \times 3 \div 4$	12／6	BCy3	13ZY94C16 4	OC28	$12 / 6$
2 N 914	4.6	2501	$8 / 6$	BCY39 8／6	CP404 12：6	OC29	12／6
2 N 916	46	－5502	${ }_{8}^{8 / 6}$	1 BCY 40 10／－	CRsi／05 5／－	$0 \mathrm{C35}$	$101-$
2v91\％	76	25003	96	BCY4：5／－	CRS1／10	OC3t	$12 / 6$
2×919	4	2 S 512	$9 / 6$	bey 43 51－	CRS1／20 7／6	OC41	
2N92f	5	2s701	$8 / 6$	BCY70 4／－	CRsi／30 8－	OC4：	
2×922	86	2570．2	11－	BC／217 7／6	CRS1／35 8／6	OC43	
2×930	76	$\because 5 \mathrm{sid}$	50	BC147 $\quad 39$	CRsil40 0／6	OC44	4－1－1－1
2 N 1090		25731	86	BClar $2 / 9$	CRA3／05 6		
－ N 1091	86	2s732	86	BC143 ${ }^{\text {B／－}}$	CR＞3 $10 \quad 6$	OC45	
2N1131		$\bigcirc 8733$	${ }^{9 / 6}$	$18 \mathrm{Fl52}$	CRs3／20 76	OC45	${ }_{8}^{6}$
－$\times 113$		－ 2743	50	$\begin{array}{ll}\mathrm{BF} 18.2 \\ \mathrm{P}^{1} 194 & 6 / 6 \\ 3 / 6\end{array}$	$\begin{array}{cc}\text {（Rs } 3 / 30 & 88\end{array}$	OC4ti	
2 N 929	4.8	$\because 57451$	30	BF＇194 ${ }^{3 / 6}$	CRs3／40 10－－	OC57	5／8 12
－N130：3	${ }_{5}^{4} 5$	A1129		${ }_{\text {BPIGO}}^{3}$	（CRK400／40	$0 \mathrm{OC58}$	
－2N1304	5 －	\A178	88	100 R 15	2025 39／6	OC59	
$\begin{aligned} & 2 \mathrm{~N} 1305 \\ & 2 \mathrm{~K} 130 \mathrm{f} \end{aligned}$		AAY11		15／－	025 A	OC70	3－－
$\begin{aligned} & \because N 1304 \\ & =N 1304 \end{aligned}$		A112	5	${ }^{15} /{ }^{\text {／}}$		OC71	3 －
2N1304		A AZ13	$2 / 6$	BD119 12／6		0C72	5
2N1309	5.	AAZ17		$\begin{array}{ll}\text { BD1：2 } & 12 / 6\end{array}$	1） 00018	OCF^{0}	B －
2 N 1420	186	AC126	$5{ }^{\prime}-$	BEN3000 $5 /-$	D L05\％6／－	OC74	5
2N1483	96	AC127	516	${ }^{\text {BFP15 }}$ 5／－	DD190 12／6	0075 0×76	
2×1613	5	ACL2\％Z	$12 / 6$	13F154 8／－	DD224A 7／6	OC76	8
2×214	176	Aclis	5 －	BF15世 6／－	DD26：A $\quad 39$	${ }^{0} \mathrm{OC77}$	
2N：160	15－	AC154		13F109 121－	DK110 1\％		5 －
2 N 22 es	25－	AC169	3	BF163 8	DT3200 7／8	OC74 OC79	$2 / 8$ $4 / 8$
2 N 2297	${ }_{7} 6$	AC153	4／－	BF167 5／－	FST1／1	OC79	
2N：4m4	76	AC176		BF173 6／－	FTe\％ 316	0.81 0.8811	5／－
2 N 264 ti	10／6	ACls：	5 －－	BF＇180 7／6	ExTe／1 3／－	OC819	4／－
2 x 2904	$8 / 6$	ACY17	8）	BFX30 8／－	Fst3／1 4／－	0C810．	3／－
2 N 2905	10	ACE14	4	BFX88 5／－	FwT3／8 ${ }^{6}$	OC812	7／6
2 N 2925	2	ACS 19	，	BFY17 6－	FsT3，05 AF	0082 $0(820$	5 ／－
2 N 2926	${ }_{7} 26$	ACY 20	4／－	BFY1M BFY19 $5 /-$ 1	（ ETT10：8		3／－
$\bigcirc \times 3054$	12／6	ACY2． ACY	$3 / 6$ $3 / 6$	BFY 12 BFY50 $12 / 8$ 1	$\begin{array}{ll}\text { CEET103 } & \text { 9／8 } \\ \text { MPF102 } & 8 / 6\end{array}$	OC12	10
2N3055	151－	Acy ${ }^{\text {d }}$	4／－	BFY51 4／8	MPF103 7／－	OC123	10／－
－N3133	B	ACYas	$5 /-$	BFY5：2 5i－	MPF104 7／8	OC139	5／－
2N3135	6 －	ACY\％	$9 / 6$	BFY53 4／－	MPF105 8／－	OC140	7／8
2N3142	$7 / 6$	ACY40	$3 /-$	BFY64 8／8	0．5 3／－	OC141	15／－
2N323：	15／－	AD140	11／－	BLY10 20／－	OAT 4／	OC169	
2，3：33	15／	ADI49	12／6	BLY＇1 $22 / 8$	OA9 3－	OC170	5－
2N3235	30／－	AD161	7／6	BPY10 18／6	0 Al0 4	OC171	
2N32P\％	10	Abl62	$7 / 6$	88×20 4／－	OA47 2	OC200	5,
2N3524	9／6	ADT140	10／－	Bsx： $51-$	OA70 2	OC201	9／6
2N3702	$3 / 6$	ADZ11	24／6	Bsx76 4／－	0 A71 2	OC202	12／6
2N3703	$3 / 6$	ADZ1：	$29 / 6$	B． $\mathrm{S}^{2} 274$	OA73 2	OC203	7／6
2N3704	，	AEY11	10／－	Bryer 5i－	OA74 2	OC204	8 －
2， 3705	$3 / 6$	AEY 1？	12／6	B．Y\％ 29	OA79 2／－	OC205	12／6
2N3707		AFI0：	$15 /$	ВВงบ5 5／－	OA81 2／－	OC20t	15／－
2N3709	$3 / 8$	AF114	6／8	B4Y51 5／－	OA85 $\quad 2 / 6$	$\mathrm{OC20}^{-1}$	15／－
2N3750	3	AF゙15	6／－	Bsi53 5／－	OA86 4／－	OCP71	10／6
2N3135	6 －	AF＇116	6／6	BSY64 5－	OA90 2／－	ORP12	9／6
2）3794	$2 / 6$	AF＇117	$5 /-$		OA91 1／6	ORP	8／－

Wow！a fast easy way

 TO LEARN BASIC RADIO and ELECTRONICS＊
Build as you learn with the exciting new TECHNATRON Outfit！No mathematics． No soldering－but you learn the practical way． Now you can learn basic Radio and Electronics at home－the fash．modern way．Youcan give yourself the essential technical ＂hnow－how＂sooner than you would have thought nossible－ read circuits，assemble standard components，experiment． build ．．and enjoy encry moment of it．B．1．E．T：Simplified Study Method and the remarkable new TECHNATRON Self－ Build Outfit take the mystery out of the subject－make learn－ ing cas．cund interesting．
Even if you don＇t know the first thing about Radio now， you＇ll build your own Radio set within a month or so！
and what＇s more． YOULL UNDERSTAND ixactly what you ARE DOING．The Tech－ mation Outfit contains cevery－ thing you need．from tools to trancivers．．．enena areatile Multimeter which＂ue teach you how to us．You noed only a little of your spare time，the cont is surprising！y low and the lee may he paid by convenient monthly instal ments．You can wise the equipment again and again－ and it remanns your onn property
You LEARN－but it＇s as fascinating as a hobby．
Among many onther interent－ set you build－and it sa good onc－is really a bontu：this is liryt and lian at tenchine Course．But the training is ats rewarding and interesting as any hobty．It could be the apringhoard for at career in Radio and Lilectronic or prowide a great new，spare－ tume interest．

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept．371B，Aldermaston Court， Aldermaston，Berkshire．

A 14－year－old could under－ stand and benctit from this Course－but it teaches the real thing．Bite－size lessons－ wondertially dear and casy to understand，pratical projects from a hurglar－ilarm to a sophisticated Radio set
here＂s your chance to master basic Rado and Electronics． even if you thmk you＇re a non－technicall type．And，if you want to carry on to more adsaneed work．B．t．E．T．has a the range of Courses up to A．M．I．L．R．I：and City and Guilds standards．
Send now for free Int－page book． L．ike to know more about thin intriguing new way to learn Radio and Flectronics？Fill in the coupon and post it today．We＇ll send you full details and a 164－paige book －ENGINEERING OP－ PORTUNITIFS＇－Free and ＂ithout any obligation．

FULLY TESTED AND MARKED

AC107	3/-	OCI70	3/-
ACl26	216	OC171	41-
AC127	$3 / 6$	OC200	3/6
ACI28	$2 / 6$	OC201	7/-
AC176	$5:-$	2G301	2/6
ACY17	3/-	2G303	2/6
AFII4	4/-	2N711	10/-
AFII5	$3 / 6$	2NI302-3	4/-
AFII6	3/6	2N1304-5	5/-
AFII7	3/6	2N1306-7	6/-
AF239	12/6	2NI308-9	$8 /-$
AFI86	10/-	2N3844A	5 -
AFl39	10/-	Power	
BFY50	4/-	Transistors	
BSY25	7/6	OC20	10:-
BSY26	3/-	OC23	10/-
BSY27	3/-	OC25	8/-
BSY28	3/-	OC26	5/-
BSY29	3/-	OC28	7/6
BSY95A	3/-	OC35	5/-
OC41	2/6	OC36	7/6
OC44	2/6	ADI 49	10 j
OC45	$2 / 6$	AUYIO	30/-
OC71	2/6	2S034	$10^{\prime /}$
OC72	2/6	2N3055	15i-
0 O 73	3/6	Diodes	
OC8I	2/6	AAY42	2/-
OC8IL	2/6	OA95	2/-
OC83	4/-	OA79	1/9
OC139	2/6	OA8I	1/9
OCI40	3/6	IN914	1/6

FREE:
PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/. WITH ORDERS OVER $\subset 4$

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP typetransistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81 etc.

PRICE ES PER 1000
POST \& PACKING 4/6 U.K.

XB PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-I, 2N706a, BSY27/29, BSY95A

PRICE E4.5.0 PER 500
PRICE 18 PER 1000
POST \& PACKING 2/6 U.K.

XC PAK

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200. OA202, BAY31-39 and DK10, etc.

PRICE E4.10.0 PER 1000
POST \& PACKING 2/6 U.K.

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS, ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK

LOOK !

 PNP SILICON A ALLOY SPEC ICER AT VCE $=20 \mathrm{~V}$ 1 mA MAX.HFE 15-100
THESE ARE OF THE 25300 TYPE WHICH IS A DIRECT EQUIVALENT TO THE OC200/205 RANGE

TRANSISTORS

TYPE B
 PNP SILICON PLASTIC

 ENCAPSULATION
SPEC

ICER AT $V C E=10 \mathrm{~V}$ 1 mA MAX
HFE $10-200$
THESE ARE OF THE 2N3702/3 AND 2N4059/62 RANGE

ONLY 6d EACH

PNP GERMANIUM FULIY MARKED AND TESTED.

W	TEST	SED AND GUARANTEED	PAKS
B2	4	Photo Cells, Sun Batteries. 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA .	10/-
877	2	AD161-AD162 NPN/PNF Trans. Comp. Output. Pair	10/=
881	10	Reed Switches, mixed types large and small	10/-
889	2	5SP5 Light Sensitive Cells. Light Res. 400Ω Dark 1 M Ω	10/-
891	8	NKT163/164 PNP Germ. TO equivalent to OC44, OC45	O/-
$\overline{892}$	4	NPN. Sil. Trans. AO6 $=$. BS $\times 20$. 2 N 2369500 MH , 360 mW	10
893	5	GETII 13 Trans. equiv. to ACYIT-2I PNP Germ.	10/-
894	6	NPN Sil. Planar Epitaxial Trans. CSA similar	$10 /$
$\overline{896}$	5	2N3136 PNP Sil. Trans. TO-18. HFE $100-3001 \mathrm{C}$. 600 mA .200 MHz	$10 /$
$\overline{898}$	10	XB112 and XBto2 equiv, to AC126. AC156, OCB1/2. OC712. NKT271. etc.	
899	200	Capacitors, Electrolytics paper. siver mica, etc. packing. this Pak 26	
H_{4}	250	Mixed Resistors. Post and Packing 2 .	
H7	40		

RETURN OF THE UNBEATABLE P.I PAK. nOW GREATER VALUE THAN EVER
fULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS. APPROX 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRAN. SISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFERS MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION, CHART SUPPLIED TO GIVE SOME INFORMA. TIOA ON THE TRANSISTORS.
please ask for pak P.I only $10 /-$ 2/- P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev counter for any car.

FREE CATALOGUE AND LISTS
for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1 /- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.
P.O. RELAYS

Various Contacts and Coil Resistances. No individual selection. Post \& Packing 5/. 20/=

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS
 TELEPHONE: SOUTHEND (0702) 46344

R．S．T．Valve mail order co．

BLACKWOOD HALL，WELLFIELD RD．，S．W． 16
SPECIAL EXPRESS MAIL ORDER SERVICE

1N21	3／6	28308	$9 / 1$	BCY54	7／3	GET 116		OC\％ 20	201－
1N21H	51－	28501	51－	BCY 60	19／－	GET 118	4／－	OC2\％	8／－
1N23	4／－	24803	12／6	BCy 70	61－	GET 119	4／－	OC23	$8 / 6$
1N86	17／6	3N143	191－	BCZ11	6）－	（ EET ${ }^{\text {ctig }}$	9／6	0 C 24	$91-$
1N263	10／－	A13759	$4 /-$	BDIz	191－	GET587	$8 / 6$	OC25	7／6
1N256	10／－	AA129	31－	BDI23	$22 / 6$	（iET8723	6／－	$\mathrm{OCP}^{6} 6$	6／－
1N645	5／－	AAZ12	$3 / 6$	BD124	121－	GET873	$3{ }^{3}-$	OCP^{28}	12／6
$1 N 728 \mathrm{~A}$	4／－	AAZ13	$31-$	BDY11	316	GET875	6／－	OC29	14／6
$\text { IN } 4007$	4／6	AClO°	$5 / 6$	BF115	$5 / 6$	GET880	$8 / 8$	OC30	$81-$
18021	4／－	$\mathrm{ACl}^{\text {Cl }} 6$	4／－	BF117	10／－	（iET882	6／－	OC35	6／3
18113	$3 /-$	AC12	$5 /-$	BF167	$6 / 6$	GET8A5	$101-$	OC36	8／6
15130	$2 / 6$	AC128	4／6	BF173	$7 / 3$	GEX35	4／6	$0 C 38$	10／3
18131	2／6	$\mathrm{ACl29}^{\text {a }}$	716	BF181	$61-$	GEX44	1／6	$0 \mathrm{OC4}$	$4 / 6$
2G220	12／6	AC187	111－	BF184	76	GEX941	4／－	OC42	$51-$
2 Q 240	$3 / 6$	${ }^{\text {ACLIS }}$	$11 /-$	BFIR5	$61-$	GJ3M	${ }_{7}^{1 / 6}$	$0 \mathrm{C43}$	91－
$2 G 301$	$3 / 6$	ACY17	4／6	BF194	613	GJ4M	$7 / 6$	OC44	－
2G306	8／－	ACY18	4／－	BF195	$5 / 6$	GJSM	7／6	0 C 45	3／3
2G371B	4／－	ACY19	$5:-$	BF196	$5 / 6$	HG1003	101－	0 C 46	$3 /-$
2G381A	4／6	ACY40	${ }_{4!} / 6$	BF19\％	$5 / 6$	MAT100	$61 /$	OCs8	$12 / 6$
$2 \mathrm{C403}$	$101-$	ACY21	4／6	$\underset{\text { BrX }}{ }$	$5 / 6$	MAT101	$8 / 3$	0 Cs 9	17／－
$2 \mathrm{C414}$	6／－	ACY：	51－	BrX 13	$8 / 6$	MATI20	$5 / 9$	OC70	3／6
$2 \mathrm{C4} 47$	$8 /-$	ACX2\％ ACY	5．－	BFX29	121－	MATl21	61－	0 OC 1	3／－
2N214	$8 / 6$	ACY2 ACY 39	10／6	BFX30	816	MJ420	2 20	OC32	$41-$
2N404	6／－	ACY 39 ACY 40	$12 / 6$ $4 /-$	Br゙ス35	$19 / 6$ $8 / 3$	MJ421	$22 /-$	$0 \mathrm{OC3}$	7／8
2N24	$9 / 6$ $4 /-$	ACY40	$4 /-$ $8 /-$	$\mathrm{BFX}^{\text {BFX }} 4$	$8 / 3$ $8 / 3$	NKT129	6／－	OC74	4／6
2N697	4／6	ACY41	816	BFX44	$\begin{array}{r}8 / 3 \\ 131- \\ \hline\end{array}$	NKT135	$5 / 3$	$0{ }^{0} 985$	$4 / 6$ $4 / 6$
2N698	4／6	ACY44	$8 / 6$	${ }_{\text {BFX }}^{\text {B88 }}$	$13 /-$	NKT ${ }^{10} 10$	6／－	OC76	3／6－
2N706	3：－	AD140	N1－	$\begin{aligned} & \text { BFX } 68 \mathrm{~A} \\ & \mathrm{BFX} 85 \end{aligned}$	$13 / 6$	NKT2l］	6／6	OC7\％	8／－
2N7064	$3 / 6$	AD149	121－	HFX85 BFX86 Br	${ }_{10 / 6}^{10 / 6}$	NKT21＂	$5 / 4$	0 CJ 8	31－
2N708	4／－	AD150 AD161	151－		$9 / 6$ $9 / 6$	NKT213	614	OC78D	3／3
2N709	12／6	AD161	$7 / 6$ $7 /-$	BFX8 BPX	$9 / 6$ $5 /-$	NKT214	4／4	OC79	$51-$
2N711 2N984	$7 / 6$ $10 / 6$	AD16： AF10	10／6	BPX88 Bry	5／－	NKT216	4／6 6	OC81	4／－
2N1090	6，6	AF114	5 5：	BFY：1	$8 / 6$	NKT2 ${ }^{\text {N }}$	8／4	OC81D	3／－
2N109］	6／6	AFl15	$51-$	BFY24	91.	NKT218	22／6	OC81DM	31－
2N1131	$8 / 6$	AFl16	4／6	BFY41	$9 / 6$	NKT219	6／6	OC81M	b1－
2N1132	$7 / 6$	AF117	4／6	BPY43	12／6	NKT421	$5 / 6$	0 CB 2	31－
2N1302	4／－	AF118	121－	Bry 50	5／－	NKT293	$6 / 6$	0C82D	$31-$
2N1303	4／3	AF119	4／－	Bry51	6／－	N KT224	4／9	OC83	4／6
2N1304	4／9	AF124	$51-$	BFy 53	5／6	N KT²\％	4／9	OC84	4／9
2N1305	$51-$	AF125	$51-$	BFY7	12／－	NKT227	$5 / 6$	OC114	7／6
2N1306	b／－	AF126	$51-$	BFY90	$12 / 6$	NKTせ29	5／9	OC122	12／6
2N1307	$51-$	AF127	$4 / 6$	B8X27	$10 /-$	NKT237	719	$0 \mathrm{OC123}$	$4 / 4$
2N1308	$61-$	AF139	$7 / 6$	BSX60	$18 / 6$	NKT238	$5 / 9$	OC139	$7 / 6$
2N1309	6）－	AF17\％	$13 / 6$	Brx 61	12／－	NKT240	6／6	$0 \mathrm{OC140}$	$6 / 8$
2N1420	7／3	AF179	$11 /-$	B Y Y 26	$3 / 6$	NKT241	$6 / 6$	OC141	12／3
2N1507	$5 / 6$	AF180	121－	B8Y2	4／－	NKT251	$4 / 9$	OC169	$61-$
2N1626	7／6	AF181	$\stackrel{8}{1 /}$	BSY 51	$101 /$	NKT261	$4 / 6$	0 Cl 170	$5 / 6$
2N1909	451－	AF186	11／－	BSY78	9／3	NKT274	419	0C171	61－
2N214	16／6	AFY19	$22 / 6$	B8Y79	9／3	NKT275	$5 /-$	OC179	$31-$
2N2148	12／－		$6 / 6$	BSY82	101－	NKT277	4／0	OC200	5／6
2N2160	14／－	AFZ12	6／6	BSY83	11／－	NKT403	$9 / 9$	OC201	$8 / 6$
2N2193	B／6	A8Y26	6／6	B8Y84	121－	NKT404	12／6	OC202	$8 / 6$
2N2285	20／6	ASY2\％	－16	B8Y95a	$3 / 6$	NKT678	61－	$0 \mathrm{OC}^{2} 03$	61－
2N2297	6／－	A8Y28	${ }_{5} / 3$	BY100	4／6	NKTil3	$7 / 6$	$0 \mathrm{OC204}$	$5 / 6$
2N2369A	5 $/-$	AsY29	$31-$	BY213	$5 /-$	NKT733	$6{ }^{1}-$	OC205	$1-$
2N2410	10／6	AsY36	$5 / 6$	BYZ11	$51-$	NKTiテ	7／6	OC206	14／6
2N2411	6／6	ABY50	31－	BYZ11N	716	NKT80113		0 C 207	7／6
2N241\％	6／6	A8Y51	716	BYZ12	81／－		$20 /-$	$0 \mathrm{C4} 50$	6\％
2 N 2483	$5 / 6$	AsY53	$4 / 9$	BYZ14	$27 / 6$	078H	$7 / 6$	0 C 470	－
2N2484	$5 / 6$	ABY54	4／9	BYZ15	$351-$	OA5	$3 / 6$	0 CPF 71	$201-$
2N2646	11／6	AsY65	$6{ }^{6}-$	BYZ16	17／6	OA10	3／－	PS144	4－
2N2696	6／3	AsY62	${ }_{81}^{51}$	C111	13／－	OA4：	$2 /-$	819 T	6／－
2N2865	12／－	Asy 86	6／6	C20A	12／6	OA70	1／6	$\mathrm{SAC4O}^{\text {8 }}$	81－
2 N 2904	7／6	A8Z17	13／6	CRS1／05	5／－	OAFI	21－	SFT308	－／6
2N2904．	$8 /-$		$7 / 3$	$\mathrm{CSA}_{4} \mathrm{~B}$	37／6	OA73	$21-$		$7 / 6$
2N2906	$8 /-$	AsZ21 AsZ 23	$3 / 6$ $19 / 6$	Csion	67／6	OA74	4／－	8J032F	$7 / 6$ 5／－
2 N 2907	7／6	ASZ23 ATY 10	$19 / 6$ $19 / 6$	CV101	51－	$0 \mathrm{OA74}$	1／9	8T722A $8 T 7231$	$\stackrel{51-}{12 / 6}$
2 N 2926	3／－	$\mathrm{Aly}^{\text {BCi }}$	19／6	CY253	$201-$	OA81	1／6	8T7231 $\mathbf{R X 6 8}$	$12 / 6$ $4 /-$
2 N 2924	4／6	$\underset{\mathrm{BC1}}{ } \mathrm{BC1}^{\text {a }}$	$3 / 6$ $3 / 6$	CV2154	$32 / 6$	OA85	1／6	8X680H	4／6
2N3014	7／6	${ }_{\text {BC10 }}{ }^{\text {BC10 }}$	$3 / 6$	CV2155	$32 / 6$	OA86	4／6	8×631	7／6 $7 / 6$
2N3054	$11 / 5$		$3 / 6$ $6 / 3$	CV2479 CV2923	$10 / 6$ $4 / 6$	O．A90 OA9］	1／6	SX631Le	10\％
2N3055	14／6	$\underset{\text { BC113 }}{\text { BC15 }}$	$6 / 3$ $6 / 6$	${ }^{\text {CV＇2923 }}$	$4 / 6$ $3 /-$	OA9］ OA95	$1 / 6$ $3 / 6$	8X631EC 8X680T	10／－
2N3705 2N3706	$4 / 76$	BC116	11／6	CV4074	$3 / 6$	OA200	$2 /-$	8X634WK	$81-$
2N3707	4／－	BC118	6／6	Cril04	N01－	OA20＊		8X753	15／－
2N3708	4／－	$\underset{\mathrm{BC}}{\mathrm{BC} 121}$	$41-$	CV7109	$751-$	0.4210	6／6	SZ33C	121－
2N3709	4／－	BC122	$41-$	CV7183	$301-$	OA2 11	10／－	V15／10P	15／－
2N3710	4／－	BC125	$13 / 6$	CV7312	10\％	OAZ200	11／－	V15／30P	151－
2N3819	$8 /-$	BC126	131－	Cv7324	101－	OAZ201	10／－	V30／201P	$9 / 6$
2 N 3820	20／－	BC140	11 －	CV7341	6／－	OAZ20：	7／6	XA122	$6{ }^{6}$
2N3823	$17 /-$	BC145	151－	C1734	4／－	OAZ203	$8 /-$	XA124	4／－
2N3900	10／6	${ }_{\text {BC14 }}$	419	$\mathrm{CVF}^{\text {c }} 36 \mathrm{l}$	12／6	OAZ204	8／－	$\times \mathrm{Al49}$	$5 /-$
2 N 3900 A	11／－	BC149	410	D246	56	OAZ20\％	$10 /-$	XA143	5／－
$2 \mathrm{N6027}$	10／6	${ }_{\text {BC15 }}$	4／－	DD00	$8 / 6$ $8 /-$	OAz208	$6 / 8$ $6 / 6$	XA152	$5 / 6$ $8 / 6$
2N5028	11／6	BC160	12／6	DD00	$7 / 6$	OAZ922	$9 / 6$	XB101	$8 / 6$
2NB307	7／6	BCY31	6\％	GD3	616	OAZ2\％ 4	$9 / 6$	XB121	816
2N6308	${ }_{1}^{7 / 6}$	BCY 32	716	GD4	$71-$	OAZ941	7／6	XK505	$5 /-$
${ }_{29}{ }^{\text {NS309 }}$	$11 /-$	BCY 33	$81-$	GD5	6／6	OAZ242	$4 / 6$	XK518	6／－
23005	14／－	BCY34	51－	GD6	81－	OAZ246	4／6	Z2A89CR	5／－
28013	15／－	BCY 38	5／6	GDB	$51-$	OAZ290	$91-$	ZR24	12／6
28013A	16／6	BCY39	71－	GET102	51－	0 Cl 16	15／－	ZS32A	6／－
28301	12／6	BCY 40	$7 / 6$	GET113	31－	OC16T	16／6	ZT21	61－
28304	9／－	BCY42	3 1－	GET114	4！－	0 Cl 19	$8 / 6$	ZT43	5／－

TRANSISTORS（POSTAGE，PACKING \＆INSURANCE）I／3 PER ORDER
SEND S．A．E．FOR LIST OF 3，000 TYPES－ VALVES，TUBES AND TRANSISTORS

[^1]

MARCONI CR $150 / 2$ double Superher receiver, $1.5-22 \mathrm{Mc} / \mathrm{s}$, AM/CW SSB operation Xtal Filter, BFO fast/slow motion tuning " S " Meter, etc. Good condition. Tested and working. Separate power pack required.
R209 RECEIVER, AM/CW/FM, I-20Mc/s, Four bands, Vernier tuning. 12 V d.c. inpur. Tested and working. \quad El3.10.0. P.P. fi COMPUTER BOARDS. Min. 30 transistors and diodes and res. etc. 10 boards, $10 /-$ and P.P. 2/6; 25 boards 22/6 and 4/6 P.P.
HEADPHONES. Chamois padded, low impedance. Moving coil, magnetic microphone, new ex W.D., rare type, limited stock.

25/- per pair and 3/6 P.P.
AERIALS, new condition, extending to llft fully open: whip type, 12/6 and P.P. 3/6. Whip aerials, 12 ft collapsible eype, used condition.
$10 /$ and P.P. 3/6. Bases for above 5/- and 2/6 P.P. BARGAIN PARCELS. 14 lb . 29/., 6/6 P.P.; 28/b. 55/-, $12 / 6$ P.P.; $56 / \mathrm{lb}$. 90/-, 25/- P.P. Contain Pots., Res., Valves, Diodes, Tagboards, Chassis, Valveholders, etc. Good value saves fiff. LUCKY DIP SERVICE. FURZEHILL BEAT FREQUENCY OSCILLATOR. 0 - $10 \mathrm{kc} / \mathrm{s}$, $110-250 \mathrm{~V}$. Good condition, complete with spares. $\mathbf{5 5 . 1 0 . 0}$ and 25/- P.P. VHF RECEIVER TYPE 7I5, less crystal $60100 \mathrm{Mc} / \mathrm{s}$, can be operated on 2 or 4 metres or made tunable $12 V$ inpur, not cested, complete with valves and speaker. VIBRATOR POWER SUPPLY TYPE 69 by BCC for 69 T/R. Small compact 12 V input gives 250 V d.c. at 80 mA and 12 V output. Good condition. $25 /-$ and $7 / 6$ P.P. MOBILE POWER UNITS by PYE for the CI2 T/R. Power output is 400 V d.c. at 140 mA and 300 V d.c. at 100 mA . Good condition.
63.10 .0 and $\& 1$ P.P.

INSULATION TESTERS. Bench or fieldwork; speed clutch; new condition, complete with leather case, $500 \mathrm{~V}, 500 \mathrm{M} \Omega$. 220 and $12 / 6$ P.P. Also $1,000 \mathrm{~V}$, $1,000 \mathrm{M} \Omega$ with case. 623 and $12 / 6$ P.P.
CRYSTALS AS NEW. Ho6U 5,345; 5,$055 ; 5,030 ; 5,005 ; 4,945$; 4,875; 4,840; 4,795; 4,580; 4,660; 4,520; 4,510; 2,300; 2,295 kc/s and $10 \times 1465 \mathrm{kc} / \mathrm{s}$. All at $10 /$ and $1 / 6$ P.P. METERS/MOVING COIL EX EQUIPMENT. Good condition:all from $0=10 \mathrm{~mA}, 30 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}$. All $2 \frac{1}{2}$. round

10/- each and 5/- P.P.
from $0-1 \mathrm{~mA}, 5 \mathrm{~mA}, 15 \mathrm{amp}$ d.c., 20 amp d.c., 40 amp d.c. All 2 in .
round.
SCOOP PURCHASE OF BRAND NEW CARBON RESIS-
TORS. 10% Tolerance t and $\frac{1}{2}$ Watt. Preferred values in packets of 10. Our price $10 /$ per 100 , $19 /$-per 200, 27/-per 300,500 at 42/6. Our selection. P.P. $1 / 6$ per 100 and 6 d . per 100.

A. H. THACKER

Radio Dept.
HIGH ST., CHESLYN HAY, Nr. WALSALL, STAFFS.

You need not worry about the painful and lingering minor burns that occur from time to time in leisure pursuits if you keep BURNEZE close to hand. This unique new scientific aerosol cools and a naesthetizes. BURNEZE takes the heat out of a burn in just 8 seconds, then controls the blistering and pain that steal skill from nimble fingers. Be well-equipped - buy BURNEZE, from chemists.

Potter \& Clarke Ltd Croydon CR9 3LP

There is scope, variety and responsibility as a RADIO TECHNICIAN in Air Traffic Control

Join the National Air Traffic Control Service of the Board of Trade as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.

Entrance qualifications: you should be 19 or over with at least one vear's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in telecommunications.

Once appointed and given famıliarısatıon training, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction. automatic landing systems, communications and closed-circuit television. Work is based on Civil Airports, Air Traffic Control Centres, Radar Stations and specialist establishments. Vacancies exist in various parts of the Unıted Kıngdom.

Salary: $£ 985$ (at 19) to $£ 1,295$ (at 25 or over); scale maxımum $£ 1,500$ (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

[^2]
Practical Electronics Classified Advertisements

RATES: $1 / 6$ per word (minimum 12 words), Box No. $1 / 6$ extra. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS

MORE ROBOTS

Synthetic Animals with "BRAINS" of their own. The LATEST range of projects own. The an electronic 'animal which "LEARNS"", and an Electro Chemical device "LEARNS", and an Electro Chemical device
capable of " REPRODUCING" itself! capable of "REPRODUCING" itself!
Other projects SURE TO INTRIGUEYOU are a transmitter/receiver which has quite a useful range and RADIATES WITHOUT USING R.F. also TEN new projects, one of which is an electronic dice machine. HOSTS OF EASY-TO-CONSTRUCT projects, for anyone with a basic knowledge proiects,
of Electronics. DON'T WAIT. SEND 3/of Electronics. NOW
To: ‘BOFFIN PROJECTS’ 4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY
Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

IMPORTANT ANNOUNGEMENT to home constructors in the south. E.M.C. Components have just opened a components shop where a wide range of organ, amplification, etc., parts are avalable at a fraction of normal cost. Example-generators 6 octase at 83 each plus other wonderful bargatins for the Home ('onstructor. (allers welcome 734A ('hristchureh Road, Bosconbe, Bournemouth. Tel. Bomrmemouth 37451 .

MUsical miracles. send S.A.E. for details of Rhythm Modules, Versatile Bass-pedal unit, self-coutained with unigue effects, kits for wan-waa pedals. Also new $50 \mu \mathrm{~A}$ meters 25/pust paid. HUliRY! D.E.W. LTD. 254 Ringwoor Road, Firndown, Dorset.

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, H.S. recorders. transeription turntables, electronic testmeters, calibration units, P.s. 1° 's, pulse penerators, D. (C. nullpotentioneters. bridges. spectrum analysers, roltage regulators, sig-gens. $3 / / \mathrm{C}$ relays, components, etc. lower Beeding 236 .

A CORNUCOPIA OF COMPONENTS: Ncarce valves, selected TY commonents, speakers and cabinets. ('omputer panels-long leads, NOT printed circuits. Transistors, resistors-newand recovered. state your remirements. S.A.E. for details MAll-MART, © Leastbourne Road, Develisey Bay, Sussex.

JOURNAL OF PARAPHY8ICs. Russian experiments: Telekinesis ("mind-over-matter'); brainwaves actuate electronic relays; transistor VFO detectors; flnger-vision; hyperspace; time-reversall tachyons ("Faster than light"), time-reversal: tachyous ("Faster than light"),
etc. S.A.E. for list. 20s. for luck issues. Paraphysical Laburatory, bownton, Wilts.

> TOP TRANSISTORS
> High Stability, $5^{\prime \prime}{ }^{\frac{1}{2} \text { Watt Resistors, } 12 / 6 \text { for } 50 . ~}$ $\begin{array}{llllll} & 10 \Omega & \text { to } M \Omega & \text { your selection. } \\ \text { ACY22 } & 1 / 9 & O C 45 & 1 / 9 & Z T \times 300 & 1 / 9 \\ \text { BC108 } & 1 / 9 & O C 71 & 1 / 9 & 2 N 2926 & 1 / 9 \\ \text { BFY52 } & 1 / 9 & O C 201 & 1 / 9 & 2 N 3708 & 1 / 9\end{array}$ All the above types are available at 16 for El Brand New. Individually Tested. MONEY BACK GUARANTEE
> P. \& P. I/J. M. KING (E)

> 14 Acton Street, London, W.C.I

MISCELLANEOUS (continued)

CONSTRUCTORS' BARGAIN PACK NO. 2 f derm. PNP transistors (equiv. OC 44, 45, 71, 72,
81 , etc.), 6 sil. diodes (equiv. $\mathrm{OA} 200,0 \mathrm{O}=02$, etc.) 3 , 81, etc.), 6 sil. dodes (equiv. OA2 $00,0 A 202$, etc.), 3
ex-computer panels (dozens of useful components), ex-computer panels (dozens of usetul components),
50 mixed resistors, 35 mixed capacitors. ALL ComPONENTS FULIF GUARANTEEI. Real value at $17 / 8$ plas $2 / 6$ P.P.
BRAND NEW HEADPHONES
Complete with heary duty hand-mike. (iive-away
at $15 /$-plus $5 /-\mathrm{H}^{5} \cdot \mathrm{P}^{2}$
6 for $8 /$-post free, 12 for $10 /$-post free.
6 for $8 /-$ post free, 12 for $10 /-$ post free.
POCKET TYPE RADIATION METERS
Brant new, in manufacturer's carton $7 / 6$ plus $1 / 6$
Brant Tew, , for manumacturer
P.P. Two post free.
CARBON MICROPHONE INSERTS 3 for $3 /$-plus $1 /$ P.P. 6 for $6 /$-pist free. J: for $10 /-$ post free. POTENTIOMETERS. (Good quality: wā̃ Kohms and 1 Megohm. State values required with order. 3 for 3 - post free, if for $5 /-$ post free, 12 for $10 /-$
post free.
MEPPEN.WALTER MAIL ORDER
12 Gledhow Park Drive, Leeds LS7 4JR
BUILD IT in a JWWMOX quatity eabinet 2in \times 2tin \times any length. I)EW ITTJ. Ikingwood Joad, Fermdown, Iborset. S.A.E. for leatlet. Write now-right now.

ELECTRONIC mutipment designed and built to your specitication. Write stating full recuile ments. Box No. $\frac{1}{-}$.

LIGHT GUIDES

$0.031^{\prime \prime}$ AND 0.063" DIA. TOTAL GLASS FIBRE OPTICLIGHT GUIDES WITHIN A PVC SLEEVE
 STRICTLY C.W.O.
FIBRE LIGHT, Dept. P.E.D.
31 STOKEROAD, GUILDFORD, SURREY

SERVICE SHEETS

LARGE SUPPLIER OF
 SERVICE SHEETS
 t. U., radio, transistors, thaps, car radios
 Only $10 /$-each, plus LARGE S.A.E.
 (Uncrossed P.O.'s please, returned
 if service sheets not available.)
 free tv fault tracing chart or ty C. CAREQUEST
 ORT PARK, LONDON, N.W.II MAIL ORDER ONLY

SERVICE SHEETS. Rudio, TV, etc, X,000 models. List 2/-. i.A.L. emelurifs. TEJARAY, 11 Maudland Bank, Preston.
8ERVICESHEETS ($1925-1970$) for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free FaultFinding duide. Prices from 1/-. Over 8,000 models available. ('atalogue $2 / 6$. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

SERVICE SHEETS (continued)
RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W.6. SHE 8441.

ELECTRICAL

240

 ELECTRICITY 2 客 ANYEESTEVER 200/240 VOLT "'MAINS" SUPPLY FROM 12 VOLT CARBATTERY Exclusive World Scoop Purchase. The fabulous Mk.2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Brilliant $200 / 240$ volt perforf mance of all sime. Marvellous for Television. Drills, Power Tools, Mains Lighting, AC Fluorescent Lighting and all $200 / 240$ volt Universal AC/DC mains equipment. Made at tremendous cost for U.S.A, Govt, by DelcoRemy. This magnificent machine is unobtainable elsewhere. Brand New and Fully Tested.
Only E4.19.6 + $10 / 6$ postage. C.O.D. with Only $4.19 .6+10 / 6$ postage. C.O.D. With for illustrated details.
Dept. PE, STANFORD ELECTRONICS Rear Derby Road, North Promenade BLACKPOÓL, Lancashire

HI-FI EQUIPMENT

RELIABLE GUIDE to best value in Hi-Fi. Audio Supply's seventy-five-page illustrated catalogue (6/6), 18 Blenheim Road, London, W.4.

AERIALS

WORLD RECORD Winning Aerial. JoystickThe Stick that does the Trick! All Bands MW, sw. $7 \mathrm{ft} 6 \mathrm{im1}$ long. Free Brochure: PARTRIDGE ELECTRONICS (PE) L'TD., Broadstairs, Kent.

FOR SALE

8EEN MY CAT 7 5,000 items. Mechanical and Electrical (iear, and materials. S.A.E. K. R. WHISTON, Dept. PE, New Mills, stockport.

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

EBF80	$3 /-$	PCC84	$3 /-$	PY81	$3 / 6$
EBF89	$3 / 6$	PCF80	$1 /-$	PY82	$3 /-$
ECC82	$3 /-$	PCF82	$3 / 6$	$U 191$	$4 / 6$
ECL80	$3 /-$	PCLL8	$4 /-$	$6 F 23$	$5 /-$
EF80	$1 / 6$	PCL83	$4 /-$	$30 F 5$	$2 / 6$
E85	$3 /-$	PL36	$5 /-$	$30 L 15$	$5 /-$
EYB6	$4 /-$	PL81	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C D 6 G$	$7 / 6$

POST, ONE VALVE9d. TWO TO SIX 6d. OVER SIX POST PAID.

THYRI8TOR8. N('R 3/40 400V $3 \mathrm{amp}, 8 / 6$. BY'100 3/- post free. All new Branded. Quantity discount. 1 Old shoreham IRoad, Southwick, six

MORSE $\begin{gathered}\text { MADE ! } \\ \text { EASY }\end{gathered}$

FACTR NOT FICTION. If you start RIGIIT you will he reading alnateur and comurerial Morso
within a month (momal progress to be expected). wlehin a month (normal progress to be expected). Using asientifcally prepared 3 -speed recorda you automatically learn to recogtise the cone RHYTHM without translating. You can't help it, it's as ensy as For details and course C.O.D. ring S.T.D. 01.660

For details and course C.O.D. ring S.T.D. $01-6602896$ G3H8C (BOX 19), 45 GREEN LAFE, PURLEY, SURREY

SILICON TRANSITORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the $25300(\mathrm{TO}-5)$ and $2 S 320$ (SO-2) range and similar to the OC200-205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject co re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools. Colleges and Industry.

Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors Please state preference of type, i.e., TO-S 25300 or SO-2 25320.

Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off-E1 15 s . (plus p. \& p. 3s.)
500 off-t2 10s. (plus p. \& p. 3s. 6d.)
1,000 off $\in 4$ (plus p. \& p. 5 s .)
10,000 off $\leqslant 35$ (plus p. \& p. ||s.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts. Tel.: WARE 3442

BOOK8 AND PUBLICATION8

SURPLUS HANDBOOKS

19 set Circuit and Notes 1155 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical Instructions. 46 set Working Instructions 88 set Technical Instructions. BC. 221 Circuit and Notes. Wavemeter Class D Tech. Insir 18 set Circuit and Notes

16 P.P. $6 d$ 6/6 P.P. 6d 5/6 P.P. 6d 5/6 P.P. 6d $5 / 6$ P.P. 60 5/6 P.P. 6d 7/- P.P. 6d 5/6 P.P. 6d $5 / 6$ P.P. $6 d$
$5 / 6$ P.P. BC. 1000 (31 set) Circuit \& Notes 5/6 P.P. 6d CR.100/B. 28 Circuit and Notes 10/-P.P.9d R. 107 Circuit and Notes........ 7/-P.P. 6d A.R.88D. Instruction Manual 18/- P.P. 6d 62 set Circuit and Notes

6/6 P.P 6d
52 set $\operatorname{Sender} \&$ Receiver Circuits $7 / 6$. post free Circuit Diagrams 5/- each post free R, ll $6 / A$ R $1224 / A, R, 1355$, R F $24,25, \& 26$ R.116/A, R. 154 , R.1355, R.F. 24, 25, \& 26 A.134. F.M.P. BC. 624.22 set. 2 . 2 BC. 312. Colour Code Indicator
S.A.E. with all enquiries please.

Postage rates apply to U.K. only.
Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbot House. 28 Talbot Gardens Leeds 8

EDUCATIONAL

OET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms., etc. For FREE 100page book, write Dept. 856 K , CHAMBERS OOLLEGE, College House, 29-31 Wrights Lane, Kensington, London, W.8.

RADIO OFFICER\& see the world. sea golng and shore appointments. Trainee vacancies during 1970. Grants avatable. Day and Hoarding students. stamp for prospectus. WIRELESS COLLEGE, Colwyn Bay, Wales.

ENGINEER8. A technical crotitrate or qualitieation will hrimg you sercurity and mumb better pay. Ridmin. and arly, private posta courses for (: bine f. M. L.E.R.E. A. D.S.E (Mech. \& Elec.), (ity d fisilds, A.M.I.M.I. A.1.O.13, and fi.f. A. exalns. Diploma pourses in all brancles of bonsineerime-Mech., biler Auto, Filectronios, Radio, computers, Dramphts., Building, ete. For full details write for FREF I32-page ruide. BRITISH INSTITTVE OF ENGINEERING TECH. NOLA(i) (Dept. 125 K), Aldermaston Comrt, Aldermaston, lierks

SITUATIONS VACANT

ELECTRONIC8 OFFICER required to run ('. S.T.Y. and Autlio teretion of the Department of Audio-Visual ('ommunication, British Medical Association. He will be required to give information innd advier on equipment to medical teachers. His responsihilities will inchude establishing contact with mamufacturers, ordering equipment and materials, maintaining, modifying and operating equipment for demonstration and experimental purposes. Applicants should be able to prosent evidence of formal trainime, and practical experience will be essential. The starting salary will be up to $£ 1,550$ p.a. aceording to qualifiea tions and experience. Write brietfy, in the first instanee, stating age, education, qualifleations and x xperience to the director, Dewartment of Aulio- Y'ixual ('ommmnications, THE BRITISH MEDICAI, ASNOCIATION, B.M.A. Houst Tavistock Square, London, W.C'. 1.
A.M.I.K.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., etc. on "Satisfaction or Refund of J'ee" terms. W'ile range of Home Study Conrses in Electronics, Computers, Kadio, T.V., etc. 132-page finide-ridilis. Please state subject of interest. BRITISH INSTITUTE OF ENGINBFIRING TECH NOLOAY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.
hOLIDAY FOR BOY8. 14/16 years, August 1970, specialising in engineering, electronics, photography. Tuition and practical work including karting. 11 days- 1410 s . Write for free brochure: INTER-SCHOOL CHRISTIAN FELLOWSHIP, 47 Marylebone Lane, London, WELLOWS 6 .

APPOINTMENTS

TECHNICAL OFFICER

Home Office Police Scientific Development Group
Unestablished vacancy for a Technical Officer Grade III with knowledge and experience of workshop practice and electronic equipment. The successful candidate will work in the equipment section, which is concerned with assessment, trials and development of a wide range of equipment for police use, and will carry out construction, modification and test work in co-operation with police officers.
The post is based initially in Central London, but the section will move to Sandridge, near St. Albans, later in the year

Qualifications: Ordinary National Certificate or evidence of an equiva lent standard of technical education, together with a five-year apprenticeship and at least three years' practical experience.
Salary: $£ 1,355$ (age 25) $\rightarrow\{1,485$ (age 28 or over on appointment)- $£ 1,675$. Applications should be made to the Principal Establishment Officer (T,O.), Room 324, Home Office, Whitehall, London, S.W.I by 31st March, 1970.

ILCS
 Established 1891
 TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I C S trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.

- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students coached until successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIOMAL

CORRESPOHDENCE

Schools

A WHOLE WORLD OF KNOWLEDGE
AWAITS YOU !

International Correspondence Schools
(Dept. 152). Intertext House, Stewarts Road,
London, S.W.8.
NAME
Block Capitals Please

ADDRESS

BRAND NEW ELECTROLYTIC8, $15 / 16 \mathrm{~V}$ $0 \cdot 5,1,2.5 . x^{2}, 10,20,30,40,50,100,200 \mathrm{mF}, 8 \mathrm{~d}$. Carbon film resistors il $\mathrm{b}^{\circ} \mathrm{o}$ Lig Neries, 10 ohms to 1 Megohm $1 / 6$ dozen. Wirewound 5W 5" "E12. Series, 15 ohms to 15 Kilohms 10 d. Mullatl KPV5M photocells 6/6d. Minimum
 CO. 12' 'hesterffeld load, shettield, S8 0 KN

MULLARD RESISTORS

High stability, very low noise, carbon film construction. E12 series 4E7-IM
Prices-per ohmic value.
$\begin{array}{lllll} \\ 0.33 W 5{ }^{\circ} & \text { each } & 10 & 100 & 1,000 \\ 1 \frac{1}{2} d & 1 / 2 & 10 / 6 & 97 / 6\end{array}$ C.W.O. Postage and packing 1/- per order L. M. Jones

33 Birkhall Road, LONDON, S.E. 6

TO HELP THE HOME CONSTRUCTOR. Heathkit mow make available our surplus Resistors, (aparitors. ete. at Bargain Prices. Send for lists. Bi. MOVLE, baystrom Ltd., ciloucester

> EX COMPUTER PRINTED CIRCUIT PANELS 2 in 4 in packed with semi$\begin{aligned} & \text { conductors and top quality, resistors } \\ & \text { capacitors, diodes, etc. } 0 \text { our orice, } 10 \text { boards }\end{aligned}$ $\begin{gathered}\text { capacitors, diodes, etc. } \\ 10 \% \text {. }\end{gathered}$ mum of 35 transistors. Data on transistors included.
> SPECIAL BARGAIN PACK. 25 boards for f1. P. \& P. 3/6. With guaranteed minimum of 85 transistors. Data on tran
> sistors included
> PANELS with 2 power transistors sim. to OC28 on each board + components. 2 board
> 9 OA5, 3 OAIO, 3 Por Cores, 26 Resistors, 14 Capacitors, 3 GET 872, ${ }^{3}$ GET B728,

> LARGE CAPACITY ELECTROLYTICS. 16000 MFD $12 V$ \} $7 / 6$ each. P \& P. $1 / 6$.
> or $\{310$ per doz. Carr. 101

160 bits $41 . \quad$ P. \& P. 2/. Ideal for 10000 bits \&8. P. \& P. 8/-. demonstrations

BARGAIN RELAY OFFER
Single pole changeover silver contacts. 25 V
KEYTRONICS
MAIL ORDER ONLY 52 EARLS COURT ROAD LONDON, W. 8 OI-478 8499

RECEIVER8 AND COMPONENT8
(continued)

SL 402A and SL 403A

Before you buy these excellent I,C. Audio Amplifiers iet us quote you a price for your quantity. If you require one or one thousand we assure you it will be worthwhile sending a
S.W.A. (Components), 13 Millways, Great Totham, Essex.
Send 2/6 for full details and application Brochure (post free).

Build the Prac. Electronics (Vol. 4/1:-12)

RHYTHM GENERATOR

Fabulous withelectronic organ or guitar. 5 sounds and 12 rhythms, each in choice of 3 percussion patterns. For simpler and neater construction use our undrilled PRINTED tions. Price $29 / 6$.
C.W.O. inc. U.K. postage from:

ALMARY DESIGN 12 Lattimore Road,

JEF ELECTRONICS

NEW FULL SPECIFICATION DEVICES
Integrated Circuits complete with data: GE PA230 Audio Preamplifier $18 / 6$
GE PA234 IW Audio Amplifier 17/6
GE PA237 2W Audio Amplifier 32/6
Plessey SL402A Preamp and $2 W$ Amp 42/-
MEL II Photo Darlington Amp 9/6
High quality low cost transistors:
GE 2 NS 172 NPN $200 \mathrm{~mW} 1 / 9$
ME 0412 PNP $200 \mathrm{~mW} 3 / 9$
TI 2N4059 PNP 250 mW 3/6
MUL BFX86 NPN 800 mW 6/-
MUL BDI 24 NPN 15 W 12/=
$52 N 3055$ NPN $115 W 14 / 6$
Triacs for full wave power control: RCA 406698 8A $400 \mathrm{~V} 24 /-$
RCA 40583 Trigger Diode 5/3.
Plastic rectifiers for power supplies IN 4820 |.5A 400 V Si Rectifier $2 / 6$ W005 I A 50 V full wave bridge $\$ \mathrm{Si} 7 / 6$ PD40 2A 400 V full wave bridge $\mathrm{Si} 15 /-$ C.W.O.P. \&P. 1/- per order. YORK HOUSE, 12 YORK DRIVE GRAPPENHALL, WARRINGTON, LANCS. Mail Order Only

RECEIVERS AND COMPONENTS
(continued)

E M C HOLDINGS \& PRODUCTS

Euilding Your Own Organ, Amplifter ote. Stop tabs, rocker tabs (plain) 1/6 each. Bargain pack, 24 rocker or tab type $30 /-$. Nylon T. Plece for retaining Kimber-Allen contact blocks. 1 required for two contacts, sample 1 - each. Quantity discounts, e.g., 5)- for type switch, toz Jack pluys, heavy duty plugs, 1/-each, virtually unbreakable. British made, 3 /-each, $38 /$ doz. Jack socketa, open type, $2 / 2$ each, $24 /-$ doz Recess plates for above sockets, black nylon Designed to allow flush mounting on exterio: cabinet. Also suitable for lanps, switches, etc., $1 /-$ each, 10/- lloz. Heavy duty foot switch, die cast body, single pole complete with rubber actuator and bass plate, $18 / 6$ each. Polystyrene capacitore resistors 4.5 W 1/, $1 / \mathrm{each}$. 10 - ohm tormer suitable for Mullarel 3 W anpliffer $12 / 6$ each Including circuit for amplifier. Superb ofter 12 in Goodman
70 Hz , bass resonance, 15 ohm speech coil, 20 w R.M.S., 27.19.6.

Terms. Cash with orler and $2 /-$ in the f for postage ancl packing. Orilerg over $\epsilon 5$ post free,
E.M.C., Dept. P.E.2, 22

Bournemouth BH2 SQZ Callers only at our new Components shop at 34A, Christchurch Road, Boscombe, S.A.E. for latest Price Lista of Organ and Electronic Components.

RECEIVERS AND COMPONENTS
(continued)
AUDIOSCAN-HI-FI Ioudspeaker sisteme for the home const ructor, cabiupt kits. new range of leerless spakers. speaker kit systems and cross-over networks. BAF wadding and all necessary romponents. Frep speaker fahric samples on request. semp 9d in stamps to:
 Harrogate. Yorks.

CASTLE LABORATORIES PRINTED CIRCUITS. All boards previonsly advertised still available. servomplifier for september 1969 Radio cont rol 7/6. Trade inguiries invited Gemienthuctors. All new and to speciffeation. BC'107, 3/-; Be'10x, 2/9: Be'109, 3/-: 2N706, 2/9: 2N 2926í, 2/6: 2N:370×, 2/6. Stamp brings full list. 32 stapleton close. Highworth, Wilts.

ELECTROLYTIC CAPACITORS AND CARBON RESISTORS AT NEAR MANUFACTURERS' PRICES (e.g. 1 watt 10%, five for $1 /-)$. Nend 6d stamp for complete list to: Road, (rosby, Liverpool 23.

WANTED

CASH PAID for New Valves. Payment hy return. WILDOW VALE ELE FTRONIGX,
4 The Brondway, Hanwell. London W -$01-5675400 / 2971$

AUDIO EFFECTS
 5 SHAW LANE, HALIFAX, YORKS.

Buy with confidence and nhtain the right reaults. Refunds without question if
fail to give 100° satisfaction
AMATEUR BANDS ALL TRANSISTOR
SUPERHET RECEIVER KIT. Ni, fus, no drilling. Just fit the componente on our printend circuit. slow Motion tuning, Simple If alignment. Perspex front jamel. Yush pull AF amp drives your ${ }^{8}-15$ nhm
speaker. Amp can be used separrately. Designed to

2 T.	0.5	to 1.54 Mhz	3 T.
4 T .67 to	5.3	1.3 Mhz	

Kit. 28.19 .6 plus $5 / 6$ P.P. \& Ins. Extra ratues 12/- per range.
POWER CONTROLLER. Power at your finger tips. Not merely half wave control but full wave. A single variable crintrol givea zero to full power. tbes latest 15 amp ak triac and spectal triggering device. lteal Cor ally tyes of highting, fires, motnrs,
drills, etc. Complete with box, power sonket, cables, etc. In kit form with easy to follow inatrinc. tions e8.8.6. Ready built 89.4 .6 pluas 5/6 F'. P. \& Ine. REVERBERATIOX AMPLIFIER. Melf contained transistorised, battery operated. Au entirely
different approach to Bound
reproduction. Normally, sound reprotuction from a single source, has a flat one dimensional effect. With this unit, proper sound delay through reverberation, tonem, are created with a truly thard dimension for concert hall originality. Two controts adjust volume and
reverheration. simply plug microphone, guitar reverheration. Simply plug microphone, guitar, in a beautiful wammt cabinet 7 in in 3in . 4 in. in a beautiful wammt
\&10.4.0. P. P. \& Ins. $6 /-$
VOX SWITCH. This sound nperated switch in ifleal for mobile TX work, tape recorder awitching, pte. Iou speak, it switches. High and mediunt imp.
inputs. AF take off point. Isrives your 12 volt relay. In kit form with full instructionk $42 / 8$. Ready built, tested amd guaranteed. 62/6, plus METRONOME UNIT. Variable beat. Listen while you play and keen in time. Easily built, pocket post paid. Ready built in an attractive black and white polythene case, $37 / 6$ port paid
MORSE OSCILLATOR. PC board, transiators, high etab. components, battery carrier, ear piece. Adjust. able tone. Juat attach your key. I) rives phones or speaker. In kit form $17 / 6$ posi paich. Realy built matar cane as above 26;-post pain GTRAIGHT FROM THE PRESS. Latest Mullard manual: Audio Amps, FM tuners, Stereo decoler,
Receiver circuits. Hi Fi, Tape, ete.. eIc. $32 / 6$ pont paid.
JUST ARRIVED IN STOCK. Texas transiators. Complementary bymmetry. Driver, NPN, INP output. The get on three ONLI $6 / 6$ jont pain Free lists with every order. For liaks only send 1/6 (deducitile from first order)

UARIABLE VOLTAGE TRANSFORWERS

LIGHT SENSITIVE SWITCH
Kit of parts, including ORPI2 Cadmium Sulphide Photocell, Relay volt D.C. Op. price $25 /$ plus $2 / 6$ volt D.C. OP. Price $25 /-$ plus $2 / 6$
P \& P ORP 12 including circuit P. \& P. ORP 12 includ
$12 / 6$ each, Post Paid 12/6 each, Post Paid.
A.C. MAINS MOD Mains Transformer. Rec.. Incorporate relay with 25 am. Rectifier and special Price inc. circuit $47 / 6$ plus $2 / 6 \mathrm{P}$. \& P . LIGHT SOURCE AND PHOTO
 light source with focusible
lens assembly and ventilated lamphousing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole
 NEW
4 Bank 25 Way 24 V d.c.
operation $55.17 .6, \mathrm{P}$ \& P
6 Bank 25 Way 24 V d.c. 66.10 .0 , p.p. $2 / 6$ 8 Bank 25 Way 24 V d.c. operation E7.12.6 plus $4 / 6 \mathrm{P}$. \& P.

RELAYS New SEMENS,

ture relays at COMPETITIVE PRICES Coil Working Contacts Price

MINIATURE RELAYS

$9-12$ volt d.c. 2 elo 500 M.A. contacts.

 $30-36 \mathrm{v}$ d.c. $2 \mathrm{c} / 0500 \mathrm{M} . \mathrm{A}$. contacts. 3.200 - 230 VOLT AC RELAY LONDEX $4 \mathrm{c} / \mathrm{c}$ $\square \overbrace{}^{3}=\frac{1}{3}$ RANGE METERS20.000 OPV Mirror protection. Manges de volts: 100 mV protection. Ranges-d.c. volts: 100 mV $\begin{array}{llll}0.5 \mathrm{~V}, & 5 \mathrm{~V}, & 250 \mathrm{~V}, & 1,000 \mathrm{~V} ; \\ 2.5 \mathrm{~V}, & 10 \mathrm{~V}, & 50 \mathrm{~V}, & 250 \mathrm{~V}, \\ 1,000 \mathrm{~V}\end{array}$ current: $5_{1 / 1 \mathrm{~A},} 0.5 \mathrm{MA}$, 5 MA , 50 MA 250 MA . Complete with battery and tes probe. $£ 7.5 .0$ post paid. DEMONSTRATION TRANSFORMER (STENZYL TYPE) - Two separate removable vols tapped at $0,110,220$ volts and 6, 12, 36 volts
respectively. A composite apparatus designed for class demonstration. Electro magnetic induction, jumping ring, induction lamp, relationship between field intensity and ampere turns, induction melting, are jus modified model. E14.10.0, P. \& P. IO/-

LT TRANSFORMERS All primaries 220-240V
Type No. Sec. Taps Price Carr. $\begin{array}{lllll} & 30,32,34,36 \vee & \text { at } 5 \mathrm{~A} & \ldots & £ 4.13 .6 \\ 6 /-\end{array}$ $30,40,50 \mathrm{~V}$ at 5 A. $10,17,18 \mathrm{~V}$ at 10 A $6,12 \mathrm{~V}$ at 20 A $17,18,20 \mathrm{~V}$ at 20 A $6,12,20 \mathrm{~V}$ at 20 A 24 V at 10 A . $94,6,24,32 \mathrm{~V}$ at 12 A

INPUT $230 / 240$ v. A.C. $50 / 60-$ OUTPUT VAR
Keenest prices in the country All Types (and Spares) from $\frac{1}{2}$ to 50 amp . from stock. SHROUDED TYPE
I amp, ©5. 10. 0. 2.5 amps, 66. 15. 0 . 5 amps, 19. 15. 0 . 8 amps, $14 . \mathrm{J}$. $0 . \mathrm{C} 10 \mathrm{amps}$. £18. 10. 0 . 12 amps, 121 . 0 . 0 . $f 18.10 .0$. 12 amps, 121.0 .0.
15 amps, 125.0 .0 . 20 amps,〔37. 0. 0. 37.5 amps, 172 . 0 . 0 . 50 amps, 692.0 . 0.
OPEN TYPE (Panel Mounting)

STROBE! STROBE! STROBE!

- Build a Strobe Unis, using the latest type Xenoir white light flash tube. Solid state timing and triggering circuit. $230 / 250 v$. A.C. operation
EXPERIMENTERS' ECONOMY KIT
to 36 Flash persec. All electronic componenes includ structions $\mathbf{4 5 . 5 . 0}$ plus 5/- P. \& P.
NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, ete. Roller tin printed circuit. New trigger coil, plastic thyristor HY-LYGHT STROBE
This strobe has been designed and produced in response to wide public demand, for use in large rooms, halts and at 30 f.p.s. and utilizes a silica plug-in tube for longer life expectancy, printed circuit for easy assembly, also a special srigger coil and output capacitor. Light output approx. 4 joules. Price 610.17 .6 . P. \& P. 7/6.
7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 10/6. P. \& P. 2/6

100 WATT POWER RHEOSTATS (NEW)

AVALLABLE IV THE FOLLOWING VALUES
1 ohm, $10 \mathrm{a} \cdot ; 5 \mathrm{ohm}, 4.7 \mathrm{a} ; 10 \mathrm{ohm}, 3 \mathrm{a}$.
25 ohm, $2 \mathrm{a} ; 50$ ohm, $1.4 \mathrm{a} ; 100$ ohm, I
250 ohm, $7 \mathrm{a} .500 \mathrm{ohm}, 45 \mathrm{a} .1 \mathrm{Kohm}$,
280 mA ; $1.5 \mathrm{Kohm}, 230 \mathrm{~mA} ; 2.5 \mathrm{Kohm}, 2 \mathrm{a} \cdot \mathbf{5}$ Kohm, 140 mA . Diameter $3 \ddagger \mathrm{in}$. Shaft length l in., dia. 部in. All at $27 / 6$ each. P. \& P. $1 / 6$.
50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{Kohm}$. 50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{Kohm}$
AII at $21 /$ each. P \& P. $1 / 6$.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 \mathrm{Kohm}$. AII 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1.5 / 2.5 \mathrm{Kohm}$. All 2t $14 / 6$ each. $\frac{\text { P }}{2}$ \& P. $1 / 6$
. 50 cycle, 5 -figur counter (non-resettable). $18 / 6 . \mathrm{P} . \&$
MOTORIZED SWITCHING UNIT (EX-W.D.)
 \section*{Powerful precision made Ex-W.D,
$12 \vee$ D.C. reversible motor, drives
 \section*{Powerful precision made Ex-W.D,
$12 \vee$ D.C. reversible motor, drives
 multiple gear train with output
 Tce 25. EX.W. D. MINIATUREBLOWER UNIT}

BODINE TYPE N.C.I. GEARED MOTOR
(Type I) 71 r.p.m. Torque lOlb. inch.
Reversible. 1/70th h.p., 50 cycle, 38 amp. (Type 2) 28 r.p.m. Torque
2016. inch. Reversible. 1/80th h. p.,
made U.S.A. motors are offered in 'as new' condition. made U.S.A. motors are offered in 'as new' condition. Input
voltage of motor 115 V a.c. Supplied complere wirh trans voltage of motor 115 V a.c. Supplied complete with trans-
former for $230 / 240 \mathrm{~V}$ a.c. input. Price, either type $\mathbf{f 3} 3.0$ plus $6 / 6$ P. \& P. or less transformer $£ 2.2 .6$ plus $4 / 6$ P. a P R.C.A. PLASTIC TRIAC 400 PIV 8 amp. Price 256 R.C.A. Diac for above, price 6/-. Prices include dota sheet and c+rcuit A.C.A. 40432 Triac and Diac in TO5 can, 6, amp 35/.
G.E. P.U.T. DI3 TI, 12/-. TEXAS F.E.T. 2N38197/6.

All above prices plus $1 / 6$ P. \& P
INSULATION TESTERS (NEW)
Test to I.E.E. Spec. Rugged metal con struction, suitable for bench or field
L. 8 in ., W. 4 in. H. Bin^{2}. weight 6ib. 500 VOLTS, $500 \mathrm{M} \Omega, £ 28$ carr. paid.
1000 VOLTS I 000 MO , 34 carr paid

SERVICE
 trading
 CO

All Mail Orders-Also Callers-Ample Parking Space Dept. P.E. 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY

Personal callers only - LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

MARCH ISSUE RADIO COISTTUUGTOR

"DISCOVERY" - BEGINNER'S RECEIVER

Written especially for the beginner, this 2 -valve, 4-stage design - ECC83, ECL82-has an integral power supply (BY100 silicon rectifier) and features a grounded-grid input stage. An efficient reaction circuit with absence of "dead spots" is a feature of the design. Coverage is from 30 to 1.7 MHz (approx), also the medium wave-band.

FREE

A four-page art paper cut-out colour supplement featuring Workshop Plans, Circuit, Point-to-Point Wiring Diagram and Testing Tables for this receiver.

PLUS

\star
 SPECIAL WORKSHOP EQUIPMENT OFFER

OTHER CONSTRUCTIONAL PROJECTS DATA SHEET 36 SUPPORTING FEATURES

THE

RADO MOMSTRIUTTOR

ON SALE NOW 3/-

Copies may also be obtained direct from the Publishers-3s.6d. including postage. Published by:

DATA PUBLICATIONS LTD. 57 MAIDA VALE, LONDON, W. 9

PSYCHODELC LIGHTING UNIT

3 Channel Colour - Organ; Operates from output of record player, tape recorder, etc. Drives up to 1.5 Kw . at 240 volts a.c. per channel. Suitable for the home or discotheque. Complete printed circuit assembly, built and tested. 14 gns. plus 10/- carriage. Higher power units available on request.

Create 'PHASE' on your tape recordings, records, etc. Unique electronic circuitry enables you to create 'phase' effect at the turn of a knob. Complete printed circuit assembly built and tested. 65/. plus 2/6 carriage. Battery operated.

SUPER 'FUZZ' UNIT, suitable for electric guitars, etc. Complete printed circuit assembly built and tested. Battery operated. 65/- plus 2/6 carriage.
S.A.E. with all enquiries. Mail order only.

Dabar Electronic Products

 98a, Lichfield Street Walsall, Staffs.

MERLIN SUPPLY CO.
Dept. PE4D, Nailsea, Bristol BSI9 2LP

BAKER 12in. MAJOR £8

The remarkable quality and performance of the "Major" makes possible truly brilliant and rich sound from a single oudspeaker. It recreates the entire musical spectrum from 30 to $14,500 \mathrm{c}$.ps The unit consists of the latest double ore, woofer and weeter cone coserher with a special Baker masnet assembly Alcomax il baving magnet assembly 4,000 gauss and a retal flux density of ,000 gauss and a cotal flux of 145,000 Maxwells. Bass resonance 45 c.p.s. or Hi-FI or P.A. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Major Module $30-17,000 \mathrm{eps}$ with tweeter, crossover, baffle
19 I 12.19 .6
Baker Reproducers Lid Further Details
$01-684.1665$

Valuabil new handoook FhE ENGINERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.

Adranced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.Frequency Modulation Transistors.
fLECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Dratghissmatrship - Mlluminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Mumicipal Eng. - Siructural Eng. -Sanitary Eng.-Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG Advanced Radio - Gencial Radio-Radio \& TV Servicing - TV Lingincering - Tclecommumications - Somnd Recording - Automation Practical Radio - Radio Amatcurs' Examination. MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mech. Eng.-Maintenance Eng. - Dicsel Eng. Press Tool Design - Shect Mctal Woik -- Welding Eng. Pattern Making -Inspection- Diaughtsmanship Eugetallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.General Ahto. Eng. - Ahto. Maintemance - Repair Auto. Diesel Maimemance Aulo. Electrical EquipmentGarage Management.

We have a wide range of COURSES In OTHER SUbIECTS InCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

THIS BOOK TELLS YOU

* HOW to get a better poid, more interesting iob.
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man .. . quickly and easily.
t HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT
CAREER - GUIDANCE
PRACTICAL INCLUDING EQUIPMENT
Basic Practical and Theorelic Courses for beginners in Electronics, Radio, T.V., Etc. A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam R.I.E.B. Certificale
P.M.G. Certificate Practisal Elestronics Electronics Engineering Practical Radio Radio \& Television Servicing Automation TOOLS
The specialist Elecronics Division of B.I.E.T.
vOW offers lou a real laboratory training at home with practical equipment. Ask for details. B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E.. A.M.I.P.E, A.M.I.M.I., A.R.I.B.A. A.I.O.B., A.M.I.Ex., A.R.I'C.S., M.R.S.H., A.M.I.E.D., A.M.I.MUN.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

[^0]: Where pustage is not state.l then orders uver 23 are post free. Below es ald $\% / 9$,
 Semiconductors ady post free. N.A.E. with enquiries please

[^1]: TERMS
 C．W．O．Mon．－Sat． 9 a．m．－5．30 p．m．Closed Sat． 1.30 p．m．-2.30 p．m．
 no C．O．D． Tel．01．7690199／1649

[^2]: Send this coupon for full detaıls and applıcation form
 To: A.J. Edwards, C.Eng., M.I.E.E., M.I.E.R.E.. Room 705,
 The Adelphi, John Adam Street, London WC2
 marking your envelope Recruitment.'
 Name.
 Address
 Notapplicable to residents outside the United Kıngdom. PE/A4

