practical
 = = ctrances

 JANLIARY 1970THREE SHILLINGS

ADCOLA

THE RELIABLE

 SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET
ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4 01-622 0291/3

8TEREOGRAM CABINET $£ 19$
An elogant 8tereogram Cabinat in modern Veneared Mahogany and eloth covered Front Panal
black leatherette side panels
Dimensions: $52^{\prime \prime} \times 17 \frac{1^{\prime \prime}}{} \times 12^{\prime \prime}$. Speaker positions for Twin $10^{\prime \prime} \times 5^{\prime \prime}$ Speakers

SPEAKERS 6/6
$2^{\prime \prime}-75 \Omega$. $2 \frac{1}{2}$ " -35Ω. P. \& P. 2/6.
ACOS MICS. 35 /- STANDARD
STICK MIC. 2gns. P. \& P. 3/6.
ASSORTED CONDENSERS
$10 /-$ for 50. P. \& P. $7 / 6$.
ASSORTED RESISTORS
10/- for 50. P. \& P. 4/6.
ASSORTED CONTROLS
$10 /-$ for 25 . P. \& P. $7 / 6$.
TRANSISTORS
MULLARD MATCHED
OUTPUT KIT
9/- OC8ID-2 OC8I's.
P. \& P. FREE.

FERRITE RODS $3 / 6$

$6^{\prime \prime}, 8^{\prime \prime} \times \frac{z^{\prime \prime}}{}$ complete with LW/MW COILS. P. \& P. FREE.

I7in.-£11. 10.0 carr. $30 /$. 19in. SLIM-LINE FERGUSON 24 gns.
TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE ILLUSTRATED LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS SIZES AND PRICES DEMONSTRATIONS DAILY

RECORD PLAYER CABINET 49/6.
Cloth covered. Size $16 i^{\prime \prime} \times 141^{\prime \prime} \times 8^{\prime \prime}$ Takes any modern autochanger. P. \& P. 7/6.

SINGLE PLAYER CABINETS
IS/6. P. \& P. 7/6.
TRANSISTOR CASES 19/6. Cloth covered, many colours Similar cases in plastic $7 / 6$ P. 3/6

TWO-YEAR GUARANTEED REGUNNED TUBES
$70^{\circ} \& 90^{\circ} 14 \mathrm{in}$. $69 / 6$, $17 \mathrm{in} .-$
99in, \& 21 in - $996.160^{\circ} 17 \mathrm{in}$. bin. \& 2lin.-99/6. 23° (not Bowls. Carr. 10/6. Exchanged

DUKE \& CO. (LONDON) LTD. $621 / 3$ Romford Road, Manor Park, E.12 Phone 01-478 6001-2-3

Stamp for Free List.

INVISIBLE BEAM OPTICAL KIT

Everything needed (except piywood) lor buliding: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Countera, Door Openers, etc.
CONTENTB: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Infra-red filter, projector lamp holder, bullding plans, performance data, etc. Price 10/6. Postage and Pack.
1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail 8/-
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kit. Larger Lenses, Filter, etc. Price 29/6. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/6. Alr Mall 10/.
JUNIOR PHOTOELECTRIC KIT
Versatile lovisible-beam, Relay-less, Steady-light Photo-Switch, Burgiar Alarm, Door Opener, Counter, etc., for the Experimenter.
Contents: Inira-Red senaitive Phototranslator, 3 Transiators, Chassis, Plastic Case, Resiotort, Screws, etc. Full Size Plang, Instructions, Data Sheet " 10 Advanced

Price 10/6. Postage and Pack. $1 / 6$ (U.K.). Commonwealth $2 /-$: Air Mail 4i/.
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenseg, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to bulld 1 miniature Invisible beam projector and photocell recelver tor use with Junior Photoelectric Kit
Price 10/6. Post and Pack. $1 / 6$ (U.K.). Commonwealth: Surtace Mail2/; Air Mail 4/.
YORK ELECTRICS
333 YORK ROAD, LONDON, S.W. 11
send a S.A.E. for full detalls, a brief description and Photographs of all Kits and all 30 Radio, Eleetronie and Photoeleetrie Projeets Assembled.

10 WATT MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The mostimportant are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required for producing monolithic 1.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. It also enables us to cover every IC-10 with the Sinclair guarantee of reliability.

- SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response $\quad 5 \mathrm{~Hz}$ to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total harmonic distortion Less than 1% at full output. Load impedance 3 to 15 ohms. Power gain $110 \mathrm{~dB}(100,000,000,000$ times) total. Supply voltage 8 to 18 volts.
Supply voltage
$1 \times 0.4 \times 0.2$ inches.
Sensitivity
Input impedance
Adjustable externally up to
2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR with IC. 10 manual and 5 year guarantee

2.30

THE WORLD'S LOWEST DISTORTION HIGH FIDELITY AMPLIFIER.

For four years, the Sinclair $Z .12$ dominated the constructor world, being the best selling unit of its kind this side of the Atlantic. Excellent as it was, the new Sinclair Z.30 is still better. Half the size of the $\mathrm{Z.12}$, it has more than twice the power, very much greater gain and a level of distortion 50 times lower. This incredible figure results from using over 60 dB of negative feed back with a constant current load to the driver stage obtained by incorporating a two transistor circuit in place of the more usual bootstrapping. 9 silicon epitaxial planar transistors are used to provide enormous power; up to 20 watts RMS sine wave (40 watts peak). The circuitry of this marvellous amplifier allows it to be operated from any voltage from 8 to 35 to perfection. At all output levels, distortion is only 0.02%. This puts true laboratory standards into the hands of every user of a 2.30 . Two Z.30s and a new Stereo Sixty will make a stereo assembly of such perfection that it could not be bettered in its class no matter how much you spent. But the Z .30 has an enormous variety of applications, particularly where quality, precision and reliability are essential. It can also be used entirely on its own as an amplifier for an efficient economy record player.

APPLICATIONS

Hi-fi amplifier; car radio amplifier; record player amplifier fed directly from pick-up; intercom; electronic music and instruments; P.A.; laboratory work, etc. Full details for these and many other applications are given in the manual supplied with the Z.30.

SPECIFICATIONS

Power output-15 watts R.M.S. into 8 ohms using a 35 V supply: 20 watts R.M.S. into 3 ohms using a 30 V supply.

Output-Class AB.
Frequency response -30 to $300,000 \mathrm{~Hz}$ 1 dB .

Distortion-0.02\% total harmonic distortion at full output into 8 ohms and at all lower output leveis.

Signal-to-noise ratio-better than 70dB unweighted.
Input sensitivity- 250 mV into $100 \mathrm{k} \Omega$.
Damping factor >500.
Loudspeaker impedances- 3 to 15 ohms.
Power requirements-From 8 to 35 V d.c. (The Z.30 will operate ideally from batteries if required.)
Size- $3 \frac{1}{2} \because 2 \frac{1}{2} \times \frac{1}{2}$ inches.

Built, tested and guaranteed, with circuits and instructions manual

Curves to show bass and treble cut and boost

Ready built, tested and guaranteed with instructions

£9.19.6

This attractive and completely new unit is intended for use with two new Z. 30 amplifiers to provide the finest possible standards of stereo reproduc tion. Four press buttons and four rotary controls are used to provide on-off three input selectors and Volume, Bass cut/boost, Treble cut/boost and Stereo balance. The on-off button also switches the power amplifiers. The front panel in brushed aluminium is flush mounted to the cabinet front, it being necessary only to drill holes to accommodate the controls. Rear adjustable brackets hold the chassis tight to the cabinet. The very latest ganged rotary controls are used to afford compactness and extra long working life free from noise.
The Stereo-60 may also be used with 2 1C-10's or any other high performance amplifiers.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV Magnetic Pickup-3mV: correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}$; 20 to 25,000 Hz . Ceramic Pickup-up to 3 mV : Auxiliary-up to 3 mV .
- Output-1 volt.
-Signal-to-noise ratio-better than 70 dB .

PZ. 5 POWER SUPPLY UNIT

A new heavy duty mains power supply unit designed specially to drive two Z.30s and a Stereo Sixty. New compact design.
For $A C$ Mains, $200-240 \mathrm{~V} / 50 \mathrm{~Hz}$, $=4.19 .6$
USE THIS COUPON FOR Z.30, STEREO 60 AND P.Z.5.
Q. 16 LOUDSPEAKER AND MICROMATIC ON NEXT PAGE

TO: SINCLAIR RADIONICS LTD. 22 NEWMARKET RD. CAMBRIDGE Please send

For which / enclose cash/cheque
money order

SINCLAIR Q. 16 new elegance in an outstanding loudspeaker

All the superb features which went to make the Sinclair Q. 14 have been incorporated in the new Q. 16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successfuldeparture from conventional design, the new Q. 16 presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The Q. 16 is compact and slim. Its new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of Q. 16 s in stereo and marvel at the standards of quality and clarity they give.

The Q. 16 will handle loading up to 14 watts R.M.S. and presents an 8 ohm impedance to the amplifier output. Frequency response extends from 60 to $16,000 \mathrm{~Hz}$. with exceptional smoothness. A specially designed driver system is used in a sealed and contoured pressure chamber to ensure good transient response at all frequencies. Size: $9 \frac{3}{4}{ }^{\prime \prime}$ square $\times 4 \frac{3}{4}{ }^{\prime \prime}$ deep from front to back.

£8.19.6

Post fret

SINCLAIR MICROMATIC The worts mest stcecess. ful miniature radio

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separaticn much easier than with many larger sets. The plug-in magnetic earpiece which matches exactly with the output provides wonderful standards of reproduction. Everything including the batteries is contained within the attractively designed case. Whether you . build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

SINCLAIR GENERAL GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are available to all Sinclair customers.

SINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD

CAMBRIDGE Tel. 022352731

Get a Goodmans Manual today
 From cover to cover ... packed with fascinating articles on Stereo; a

 beginners guide to High Fidelity: Stage-built Systems: complete details of Goodmans High Fidelity 'Audio products. 28 pages you can't afford to miss . . . and it's yours FREPlease send me a free copy Name

Address
PEI/70
Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tel : 01-9021200

SEND NOW for your
FREE

CALENDAR DIARY SECTION DECIMAL COIN TABLE DATA SHEETS

These are all included in our
1970 ENLARGED CATALOGUE
RESERVE your copy now for despatch early in January Write to:
W.E.C. LTD. (E)

74 THE STREET, ASHTEAD, SURREY
A new catalogue will be sent to Readers in possession of our 1969 catalogue.

The most accurate pocket size GALCULATOR
 in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send 82/6 for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.

CARBIC LTD. (Dept. PE20)
54 Dundonald Road, London, S.W. 19
COMPONENTS CATALOGUE-2/-, Post F'ree ([uland) P. \& I'. $1 / 6$ inland, overseas at cost (min. 10/-). Cash with order please, discounta may be deducted as folluws order over $£ 5-10 \%$; order over $£ 10-15 \%$. Trade orders-net 30 days. Please send S.A.E. With enquiries. Caller: Welcome. Open 9.00 a. $1 \mathrm{~m} .10 .12 .50 \mathrm{p} . \mathrm{m}$ 2.00 p.nt. 105.00 p.m. Weekdays and saturday Mornings 9.00 a .m. to $12.50 \mathrm{p} . \mathrm{m}$.

LFHROMIESILD | STONE LANE KINVER |
| :--- |
| STOURBRIDGE WORCS |
| Telephone: KINVER 2O99 |

Complete stereo system - £29.10.0

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. it is ideal for wall or shelf mounting either upright or horizontally.
Type 1 SPECIFICATION:-
Impedance 10 ohms. It incorporates Goodmans high flux $6^{*} \times 4^{*}$ speaker and 21" tweeter. Teak finish $12^{\prime \prime} \times 6 \frac{2}{}{ }^{\prime \prime} \times 5 \frac{3}{4} " .4$ guineas each. 7/6d. p. © p
 bass unit and $2 \frac{1}{4}$ " weeter. 3 oh'ms impedance $5 \frac{1}{2}$ guineas plus $15 /-\mathrm{p}$. \& p. 7/6d. p. © p.
Garrard Changers from [7.19.6d. p. © p. 7/6d
Cover and Teak finish Plinth E4.15.0d: 7/6d. p. \& p.

- \because Oedo integrated Transistor StereóAimplifier
$£ 9.10 .0$

The Duetto is a good quality amplifier, attractivaly stylad and finished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION.
R.M.S. power output: 3 watts per channel into 10 ohms speakers

INPUT SENSITIVITY: Suitable for medium or high output crysta cartridges and tuners. Cross-taik better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS: 4 -position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
TONE CONTROL: Treble lift and cut. Separate on/oif sevitch. A preset balance control.

THE ELEGANT SEVEN

Mk. III (350 mW Output)
7-transistor fully tunable M.W.-L.W. Superhet portable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board-back printed for foolprool construction. MAINS POWER PACK
Price $£ 4.9 .6$
Plus P. \& P. 7/6.
Circuit 2/6. Free with parts.

The Viscount INTEGRATED HIGH FIDELITY TRANSISTOR STEREO AMPLIFER El4.5.0

Plus P. \& P. 7/6
SPECIFICATION: Output: 10 watts per channel into 3 to 4 ohms speakers (20 watts monoral). input: 6-position rotary selector switch (3 pos mono and 3 pos. stereo). P.U., Tuner, Tape and Tape Rec. out. Sensitivities: All inputs 100 mV inco 1.8 M ohm. Frequency Response: $40 \mathrm{~Hz}-20 \mathrm{~K} \mathrm{H}_{3}$ $\pm 2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls. Treble I3dB lift and cut [at 15 KHz . Bass: 15 dB lift and 25 dB cut [at 60 Hz]. Volume Controls Separate for each channel. A.C. Moins input: $200-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$. Size: $12 \frac{1}{2} \times 6 \mathrm{in}$ $\times 2$ in teak-finished case. Buitt and tested. P
Viscount Mark for use with magnetic pick ups specification as above. Fully equalised for magnetic pick ups. Suitable for cartridges with minimum outputs
of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at Ikc. Inputimpedance 47 K . 15 gns , plus $7 / 6 \mathrm{P} . \& \mathrm{P}$.

SPECIAL OFFER

Complete stereo systems comprising BALFOUR 4 speed auto player with stereo head, 2 DUO speaker systems size $12 \times 6 \frac{3}{4} \times 5 \frac{3}{4}$ in. Plinth (less cover) and the DUETTO stereo amplifier. All above items
$\mathbf{6 2 0}$ Plus P. \& P. 20/-

NEW COMPLETE HI-FI STEREO SYSTEM $£ 39$

Comprising SP 25 Garrard Mk. II with diamond stereo cartridge, Viscount ampli fier Mk. I, Two type 2 speakers, Plinth and cover, $£ 39$ plus $\mathbb{2}$ P. \& P.

THE DORSET

(600 mW Output)
万-transistor fully tunable M.W.-L.W. Super het portable with baby alarm facility. Set of parts The latest modulated and pre-alignment techniques makes this simple to build. Sizes MAINS POWER PACK KIT: $9 / 6$ extra.
Price $\mathbf{6 5 . 5 . 0}^{\text {Plus P. \& P. 7/6 }}$

Circuit 2/6. Free with parts

QUALITY MAINS TRANSFORMER
Input 250 V OUTPUT (All RMS values) 4 windings of 11.5 V connected in series total 46 V at 4.5 amps (conservatively rated). The following combinations may be used. 1. 23-0-23V;2,46V. Both of these above voltages are commonly used in medium to high powered transistor amplifiers, power supplies, etc.

Price 35/- Plus P. \& P. 7/6

Also see opposite page

PastinTs

LASKY'S EXCLUSIVE TMK METER KITS

Theae two meter kits by TMK offer the unique opportunity of builifing a really first-class preciaion multimeter at a worthwhile saving in cost. The cabinets are suppliad with the neter acale and movenent mountel in positlon; the Model 200 also has the range selector in position. The highest quality in components and 1% tolerance resistors are used hroughout. Both ofier professional standarita of accuracy. Nupplied complete with full onstructional, circuit and operating instructions.
H11 $14211 \begin{aligned} & 00,000 \text { O.P.V. Multimeter. } \\ & \text { Features } 24\end{aligned}$ Large 3 , 2ín meter. Full scale accuracy : wCF and current:
 or trinhlator ciralt measurements. BPECIFICATION

- DCV: 0-0-6-6-30-1:0-600-1,200V at $20 \mathrm{~K} / \mathrm{OPV}$. ACV $0-6-30-120-600-1,200 \mathrm{~V}$ at $10 \mathrm{~K} / \mathrm{OPV}$. OC Current: $0-0-6$ ti - $60-600 \mathrm{~mA}$. Resiatance: $0-10 \mathrm{~K}-100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M} / \mathrm{ohms}$ 158-580-5.8K-58K at mid-gcale). Capacitance: 0-002-0.2u (AC bV range). Decibels -20 to +63 dB . Output: 0 . O5ut

LASKY'S PRICE 85/-

Post $3 / 6$

lisea an ellisely new range selection mechanism which permits the use of a really barge meter in a more compact cabinet. The range selected is clearly indicated on the actual meter face. High speed rotary range selection knob; also features polarity reversal แeaturement ranges. measurement ranges.
8PECIFICATION DCV; $0-0 \cdot 20-2 \cdot 0-10-50-250$ $1,000 \mathrm{~V}$ at $15 \mathrm{~K} / \mathrm{OPV}$, 0-0.125-1•25-5.0-25-
 $250-1,000 \mathrm{~V}$ at $2.5 \mathrm{~K} / \mathrm{OPV} 0-1 \cdot 5-5-95-125$ 000 at $5 \mathrm{~K} / \mathrm{OPV}$. DCuA: $0-25 \mathrm{uA}$ at 105 niA
 Amps: $0-5 \mathrm{~A}$ at $125 \mathrm{mV} ; 0-10 \mathrm{~A}$ at 250 mV Resistance: $0-10 \mathrm{M} / \mathrm{ohm}$. Output: Capacitor $(0 \cdot 1 u F, 400 \mathrm{~V} w)$ in series with $A C V$ ranges. Decibels: -20 to +81.5 db . Operates on two $1.5 V$ batts. Black bakelite cabinct, gize ,

LASKY'S PRICE

$£ 10.10 .0$ Post 5 /-

Garrard

SL. 55

4-speed autochanger with stereo cartridge

${ }_{\text {PRICE }}^{\text {LASKY'S }} \mathrm{E} 11.19 .6$
Complete with AD76E MaGNETIC CARTRIDGE $210,9.6$

AUTOCEARGERS

1025 less cartridge
1025 with GCM 21 mono cart ridge (Stereo Compat). 2026TC with 9TA stereo diamond cartridge SLA5B less cartridge AT00 Mk. II less cartrilge SL75 less cartridge 8L95 less cartridge A70 Mk. II less cartridge
8.8.8. DA-47 less cartridge

288 2810 48178 $21510 \quad 6$ 41850 248 100 23500 213196 2596 Postage on all

GLGLE PLAYERE

AP75 with AD76K magnetic cartrldge AP76 leas cartridge 8P. 25 Mk . II less cartridge sRPRe Mains model less cart sRPRe Battery model less 27 168 TRAN8CRIPTION DECK $401 \quad 228100$ GARRARD BASES:
WB1 83. 6. 11 ; WB4 Mk. II 25.8. 11 W85 25.8. 11.
CLEARVIEW PERAPEX COVERS: 8PCl 23.5.0 BPC4 Mk. II 84. 6. 6.
$\$ 2100$ 818100 81810
81118 861810 6 12 10 216 11

DEASHI ROMRD RTS EXPERIMENTAL AND EDUCATIONAL CIRCUIT SYSTEM

The DEASHI BOARD syatem enables the young experimenter and electronles hobbyist to proluce in wade range of trangistor circuitn wit honereasing soldenting or the use of at tools att all! liakically use of any comprises a slot ted circuit bond into which yling-in components and britige pieces are set to produce uu to 30 different cincuits. The cont ponents are encapsulated in transparent plastic blocks bearing the appropriate circuit symbol and volue thus enabling even the complete novice to visually, srasp only a few monents after DENSHI BOARD KITS comes complete with an 80 pege masual of circuits sad data. manuais are -Reluadable if you purchase kit. DENSHI BOARD KIT SR-I Base
 carious brilge nal contacting pieces This kit permita the building of 16 batic circuite

LASKY'S PRICE £4.19.6 Post $3 / 6$

DENSHI KIT SR-2A as SR-IA with these additional parts:

2sB transistor for AF; 2 resibtors; i capacitor; crjetal macrophone; test probes electrode; additional connect ing pleces; 9 Vbattery. This nit permits the baiddine of 30 circait

LASKY'S PRICE \&7.2.6 Post 3/6

SPECIAL HI-FI OFFER AD-86K
 STEREO
 MAGNETIC CARTRIDGE

The famous AUDIO DEVELOPMENT AD-80K high compliance stereo magnetic cartrkige now at our 'ail time low ypuecial price oners you the opportunity of obtaining aford. Brief Spec: Dianomd L.P. of ylus Compliance $10 \times 10^{-6} \mathrm{~cm} /$ dyne. Frequency response $20-20 \mathrm{KHz}$ Channel separation 2 §dB. Output 5 mV . Tracking pressure 3 gm 士 0.5 gm . Standard $\frac{1}{2}$ in mounting. (Re placement stylus available.) Don't miles thls great chance.
 List Price 86.8.6.

SPECIAL PRICE 69/6 ${ }_{\substack{\text { Past } \\ 2 / 6}}$ Replacement diamond sty lus EN30s 89/6.

SKYRIUER IIKII

COMMUNICATION RECEIVER
ohort kiave receiver, exclusive to Lasky's, at it real economs one each GBE6, 6BA6, 6AV' 6 and tiAR5 ralves, give highly sensitive reception and powertul қain, Switch selected SW requency range corer: 1.5 to
$30 \mathrm{Mc} / \mathrm{s}$ jo three separate spread ranges and full AM medlum waveband cover in one range $550-1,600 \mathrm{Kc} / \mathrm{s}$. Relluctlon Irive tuning with hair llne curgor. ('ont ruls include volume un/off Bro, Band uelechor. Power on indicator lanp. External antenna connections and mains fuse at rear. Internal speaker plus standari 5 mm jack socket for phones on front. For $220 / 240 \mathrm{a}$ a.c. Mains operation. Atrong metal cabinet finished in grey crackle with anodlged sitrer front panei. Size $9!\quad 5: \quad 5!$ in. Complete
with mains lead anal full ingtructions.

LASKY'S	(1)-3
PRICE	2 J. Un0

[^0]
Eanstry's

NEW
 FOSTER
 "Criterion" Mk II

2 SPEAKER TWO WAY BOOK. SHELF SPEAKER SYSTEM Another high ylanlity sub-miniature book Mk 11 is a Bealed intinite baftic type enclosur using b!in hass/nhtr-range wooler with ollelf cloth edge anil a weeter. The compace cablnet is constructed dits laminate with handsome oiled ualmut eneer himish and black woven aconstic gataze ront panel with satin chronte edge ingert Power hauding 10 y tange $90 \cdot 20,0001 / z$ HF crnssover firew tas connections at rear. Size loi it fitin. The perior matnce of the "Criterjun" is superior to many larger and more expensive units amo it Lasky's evelusive price atters :bsolutely ul. tiole rilue

TTC MODEL C-1000

really tiny 1,000 O.P.V. pocket multi-tester with " big' merformance. Precision '3 jewel meter movement. Hand cali square meter. $\mathcal{P P E C I F I C A T I O N G A C / V}$ ranges: 0 -10, 50, 550 hhres (3,000 ohns centre geate). Deciliels: -10 to + ?edB. operaterit on one penlight cell. Two colour buff/green ciase-size only adjustment. Complete with teat lewif, battery and justructions adjustment, Com with circuit dath.

LASKY'S PRICE 39/6

TTC MODEL C-1051

0,000 0. P^{P} V. pocket multimeter with mirrur fixceptionally large easy to read meter with D'Arsonsal moversent. Colour coleal scates. Single positice click-in, recessed selection sujtch for all ringes. Ohma zero itdjustment. Range
 hame/V. 1). (c. valts: $0-3 \cdot 15-150-300-1 \cdot 3 \mathrm{KV}$ at urrent: $0-50 / 4-300 \mathrm{~mA}$. Decibels: -20.1B to tandard of accuracy on all ranges. Exses one resigtant phastic cablnet-size ongly ises one if pulight battery strong impaut Complete with test leads and battery, Original list price 5 gna

LASKY'S PRICE 75/-

Post $2 / 6$

TMK PL-436

0,000 O.P. S. Muhtitester for the andeleur wr prolen

 Resistance: $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ anl 10 M ohns end scale $65,650,6.5 \mathrm{~K}$ and 65 K ohms centre scale). Decibels:
 with test leals, batteries and instructions.

LASKY'S PRICE £6.19.6

SCOOP!

6 TRANSISTOR TWO WAVEBAND RADIO RECEIVER

THE Astrad ORION

Made w the highest space-age standards - this remarkable microa
$\times 5 / 16$ in. yet it contains 6 transistoris
and other components
hoto etched conents combined in

photo etched circuit, only ix
huning capacitor, ferrite rod aterial, battery, wave band selection switch ete. Output to a high impedance crystal earpiece, giving ample volume (automatically adjusted) and clear $150 \mathrm{kc} / \mathrm{s}$ to $408 \mathrm{kc} / \mathrm{spe}$. Senaitivity: 35 MY milx. Select trity- 10 kdB (at $30 \mathrm{kc} / \mathrm{s}$ dc-tuning). Power source: $1 \quad 14 \mathrm{~V}$ Mercury battery.
The Orion is supplied fully built anil tested complete with battery, left and right fitting earphonc supports and attractive black and ivory plastic presentation/carrying case matching the Orion) sever miss your favourite music, sport, news-lhe or others.

uskrs ONC $3916=$ PRICE ONLY $396=$

NOTE: The battery we supply with the Orion is a rechargeable type. Charger units are vailable enabling yon to re-charge the battery from AC Mains 220/240V supply.
PRICE 19/6 extra. Post free with radio-otherwise 2/-

MIDLAND Model 10-502 VHF

 AIRCRAFT BAND CONVERTER with any standard AM or FM batio coverins 535 to $14305 \mathrm{Kc} / \mathrm{s}, 88$ to $108 \mathrm{Mc} / \mathrm{s}$ respectively, with 110 electrical consersion or connec
 uned over 110 to $135 \mathrm{Mc} / 8$ which covers the whole itirerift com humications band. Volune and reception effectiveness is adjuste ng the sul. controls of ene host farvourathe prosition and batanc suattly flesigned black plastic cabluet with brusheal metal fron

LASKY'S PRICE 79/6
Post Free

Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers' carton $49 / 6$ plus $2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP 91-3 stero compatible cartridges, new in sealed manufacturers cartons $22 / 6$ plus $2 / 6 \mathrm{p} / \mathrm{p}$.

BASF TAPE 25\% off

$\sin 600 \mathrm{ft}$. 14/- 900ft. 19/-1200ft. 30/5 론 in 900 ft . $19 /-\quad 1200 \mathrm{ft} .24 /-1800 \mathrm{ft}$. 39/7in 1200ft. 24/- 1800ft. 35/-2400ft. 57/P/P 2/- per reel-over £5 FREE

SPECIAL PURCHASE

12in I5watt HI-FI LOUDSPEAKERS

Made by famous British manufacturer to very high standards, heavy duty cast chassis, twin cone construction, smooth extended range, with very low level of distortion.-Response $35-17,500 \mathrm{~Hz}$.-impedance 15 ohms-flux, 11,000 gauss.
WALDON
PRICE $97 / 6$ each plus 6/6 P. \& P
E.M.I. HI-FI SPEAKERS

SET 450: $13: \cdot 8$ with two built-in tweeters and cross-over unit. Our Price 69/6. 3 or $15 \mathrm{ohm}, 10 \mathrm{~W}, 40-13,000 \mathrm{~Hz}$.
SET 850: $6 \frac{1}{2}$ in bass plus 3 3in tweeter and cross-over unit. 8 ohm, $10 \mathrm{~W}, 65-20,000 \mathrm{~Hz}$. 79/6.
SET 250: 5in heavy dut:' bass plus 3 in tweeter and cross-over unit. 8 ohm, 6W $80-20,000 \mathrm{~Hz} .65 /-$

Add 5/6 p/p for each speaker set.

TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus. Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$ output 7 mV tracking pressure 2 grammes \pm 0.5 grm . Fully guaranteed. Price 85/- p/p free.

GARRARD UNITS

SP25 Mk. II

AP75
SL65
*3500

f	s	d
11	9	6
17	19	6
14	9	6
11	9	6

*Denotes including Sonotone 9TA-
Stereo/Diamond Cartridge. Elegantly styled plinth and cover to suit the above units From 5 gns. Please add $10 /-\mathrm{p} / \mathrm{p}$ each on all above items.

SPEAKER ENCLOSURES

Designed to accept the full range of E.M.I. Ioudspeakers. Beautifully styled in teak.

Prices from 89/6 each.

25 WATT GROUP SPEAKERS
Guitar group 25. 12 in round, heavy duty cone, with solid aluminium chassis, 15 ohms imp. 12,000 gauss. Response $30-10,000 \mathrm{c} / \mathrm{s}$. OUR SPECIAL PRICE
£.5.9.6
plus 6/6 P. \& P.

The greatest budget system available todaymcan't be beaten-price or quality anywhere-look at these great featuresthen compare:
Teleton FZ000 Mk. II. Tuner amp. Latest version with all the new features. Tuning indi-cator-fused circuit protection, AM-FM fitted multiplex, A.F.C. 2 . 5 watts per channel. A truly outstanding unit
£ $s d$
Garrard 3500 (Auto/single). Latest in the great new Garrard range, provides facilities and controls that are usually found only on much more expensive units

13110
Teleton SA1003 matching speaker systems
$10 \quad 0 \quad 0$
Sonotone 9TA stereo cartridge with diamond styli-a perfect match
Plinth/Cover elegantly styled Plugs and Leads all supplied Normal Retail Price

420 Exclusively offered by WALDON
at the remarkably low price of
$\mathbf{3}$
g All items may be purchased separately.

WALDON ELECTRONICS, 707 Blackburn Road, Bolton, Lancs. Bolton 54280

AUDIO EFFECTS

5 SHAW LANE HALIFAX YORKS
Buy with contidence and obstain the right reqults Kefinds without question if any of our product fail to give 100% satisfaction.
REVERBERATION AMPLIFIER. Selt-contained transistorised battery operated. An entirely differ ent approach to sound reproduction. Normally sound reproduction from a single soure has a flat one-dimenwinal effect. With this unit prope createl with a truly third dinension for coneert ball uriginaljty. Two controls adjust volume and reverheration. simply plug micropbone, guitar etc. in ind the out put into vour amplifier. Supplied in a beautiful walnut cabinet. $7!\times 3 \times 4 \frac{\mathrm{in}}{}$ E10.4.0. P.P. \& [ris. 6/-

POWER CONTROL LER. Power at your finger tips. Not merely half wave control but full wave. A single variable control gives
zero to full $\begin{array}{lll}\text { zero to full } \\ \text { loses latest } & \text { power. } \\ \text { l5amp }\end{array}$ lses latest 15 amp triggering device. Ideal for all types of light ing, fires, motors, drills, etc. Complete with box, power sociket, cables, eic. In kit form with easy to follow instructions e8.9.6. Ready built 29.4 .6 plus $5 / 6$ P.P. \& Ins.
VOX SWITCH. This sound operated switch is ideal for mobile TX work, tape recorder switching, etc You speak, it switches. High and medrum imp. inputs. AF take of point. Drives your 12 volt relay. in kit form uith full instructions, $42 / 6$ Read \mathbf{P}. \mathbf{P}.
METRONOME UNIT. Variable beat. Listen while you play and keep in time. Easily built, pocke size with personal mini earphone. In kit form 27/6 post paid. Ready built in an attractive black and white polythene case $37 / 6$ post paid.
MORSE OSCILLATOR. PC board, translktors, high stab: components, battery carrier, ear piece Alljustable tone. Just attach your key. Drives phones or speakers. In kit form $17 / 6$ post paid. Ready built in similar case as above, $25 /$ - poet paid JUST ARRIVED IN STOCE. Texas trangistors. Complementary symmetry. Driver, NPN, PN output. The Free lists with every order. For lists only send $1 / 6$ (deductable from first order).

CRESCENT RADIO LTD.

(electronic component specialists)
For all regular components iry
40 Mayes Road, Wood Green, N. 22
For surplus components and equipment try II Mayes Road, Wood Green, N. 22

BARGAIN COMPUTER BOARDS
Assorted Components mounted on boards all with long tags. Ideal for breaking down and experimenting with. Take advantage of bulk purchase
I Board 2/- each 20 Boards 201-

PRINTED CIRCUIT BOARD
8×6 inch One Sided Board .. 2/- each
TRANSISTOR RADIO PANEL Incomplete Min. Radio Panel; I.F.T.s: Transistors; Resistors: Capacitors; All for 2/-per panel.

COMPONENT BARGAINS
S.P. Flick Toggle Switch, 2 in. Dolly 250 V 2 amp. Toggle Switch

3/6 each 4 Pin Transistor Holders

1/6 each
lin. Spun Aluminıum Knobs, tin
Spindie Transistor
2/6 each
OC19 Power Transistor
Low Impedance Transistor Earpiece
2 tin Bohm Loudspeaker
5/- each 1/6 each Continental Razor Adaptor Kit
100 mF 6 V d.c. Transistor Capacitor 500 mF 6 V d.c. Transistor Capacitor $6,800 \mathrm{pF}$ Mullard Capaciror 400 V d.c.

1/- each
We have large stock of
Veroboard; Valves; Transistors: Loud-
speakers; Auto-Changers; Recording Tape;
Cable; Hi Fi
Send $1 / 6 d$ for Our Cotologue
Postage with order please
Pend lod for Our Cotoloue
Postage with order please

The International Sound of the 70's

IS THE HEATHKIT 'COMPACTS'

 AND LOUDSPEAKERSThe Fabulous Stereo "Compacts", Models AD-17 and AD-27 are setting the pace in hi-fi for the 1970s. They offer outstanding value and performance.
The AD-17 comprises a BSR MA-65 turntable/ Shure M44-MB magnetic cartridge and a 10 watt (R.M.S.) per channel stereo amplifier-all mounted on a teak or walnut plinth. Total kit price, £54. carr. 13/-.
The AD-27 is similar but uses the MA-70 turntable and includes an F.M. stereo tuner. In this case the "plinth" is better described as a small cabinet. It has the additional feature of a "roller shutter" lid and is available in teak or walnut. Total kit price, £82. Carr. 13/-

Heathkit offer many excellent loudspeaker systems. The new "Ambassador" Hi-Fi Loudspeaker is winning many friends. Its cabinet is supplied ready assembled and finished in selected teak or walnut veneers to harmonise with other current Heathkit hi-fi equipment. It uses three loudspeaker units, a 12 in bass, 5 in mid range and a 1 in dome pressure tweeter. Excellent value at £29.16.0. Carr. 15/-.

The complete Heathkit $\mathrm{Hi}-\mathrm{Fi}$ range of stereo amplifiers, tuner/amplifiers, F.M. tuners, stereo "compacts", loudspeaker systems and ancillary hi-fi equipment are all described and illustrated, many in full colour, in a wonderful free catalogue.

Send for the FREE Catalogue

 and see for yourself... Today!

LIND:AIR OPTRONICS LTD

Overloral protection. 20.000 opr. $A C$ volte
$10,50,250,1,000 \mathrm{~V}$ DC volts 8 . 25,125 DC volts 2,500 v. D.C. Current $0-50 \mu A, 0-250 \mathrm{~mA}$ Resistance $0-60 \mathrm{~K}, 0-6$ Megohm. Decibels $-20 t_{0}+22 \mathrm{~dB}$. Size of meter $44 \times 3 \$ \times 1 \mathrm{in}$.
$85 /-\mathrm{T}, \mathrm{P} .3 / 6$. 85

SHIRA 62D MULTITESTER 20,000 O.D.
DC' voltage: $5 \cdot 25 \cdot 50 \cdot 250$ $500-2.5 \mathrm{~K}$ (20,000 oh me yel volt). AC Voltage: $10 \cdot 50-$
$100-5001000$ volts (10.000 ohtme per volt). DC Curremt: $0-50 \mu \mathrm{~A}, 0-2.511 . \mathrm{A}, 0$ $0-6 \mathrm{Mg}$ (300 ohm and 30 K
 at centre scale). ('apacltane

s-Dec bread
BoARD

Nolderless breadbuatd panels,
reliable rolunonent connections.
Pingle DeCs. One S -DeC with Contrul ronnections to controls, ete., with hooklet 'Projects on S.DeC" giving construction detaile for a variety of circuits. 28/6. P. \& P. $2 / \mathrm{s}$.

4-Dec'KIT. Fund S-Dec's wht two Control Panels, Jigs and Accessories and the hook let "Projects on S-DeC"' all contained in a
etrong att ractive phastic case. Iteal for the

GAFPAMD DECKS

$\$ \mathrm{HP} 22$ less cartritge
1025 Sterco Mono wi 1025 Stereo/Mono with catt 2025 Stereo/Mono with cart. 30008 stereo Mono wth cart SP25 less cartriuge SP25 less cartridge
sP25 with Decca sL55 legs cartriuge \$L55 with Decca De SL65 jess cartridge Covers for athove
Bages for above Bases for above
4p75 less cartridg SLi5 less cartridge SL95 less cartridge Bases for above
SP25 less cart., with base PP 25 less cart., Hith bate ... $£ 13100$ Cover 4/b, laase $4 / 6$

SPECIAL OFFER!
Sonotone 9TAKC Stereo Cartridge with
diamont gtyli. Normal retail price 4 fits. Wiamont styli. Normal retail price 4 gits.
Our Price $55 /-P^{2}, \& 1^{2} .1 / 6$. MODEL MAKER'S MOTOR MODEL MAKER'S MOTOR
No. $15 R \mathrm{RN}$ V Voltage 11.5 s . Iurrent 400 ma . Torque
12 g an Boly size

 to
simall hodels and
tose. $5 / 8$ each. $15-$ P. A P A $9 V$ d.c. Gram deck replacement motor. Shaft in long $3 / 39$ in. $17 / 6 . \mathrm{P} . \& \mathrm{P}$
$2 / \rightarrow$ Two for 30

SPECIAL LIND-AIR OFFER!

teleton SAQ203 TRANSISTOR STEREO AMPLIFIER

MAINS KEYNECTOR SAVES TIME—SAFELY!

One mains "Keynector" instantly and safely connects electrical appliances to malims supply without the use of a plug. A number of applitnces may be used rating of this device. rating of this terice. A red light glows
when "live". The "kernector" is fured and has it own olung switch ahich is interiocked to prevent connections when "iive".

VHF AIRCRAFT BAND CONVERTOR.
When placed within 1 in . coverage of VHF Air craft Band 108-135Mc/s can be obtained. transistor, $\begin{gathered}9 y \\ \text { operation. buttery } \\ \text { tunable }\end{gathered}$ $18 p$ in. <7 section telescopic aterial. Size $4 \times 2 \%$ SINCLAIR IC-10 INTEGRATED CIRC UIT

10 watt Amplifier size onts 1 0.211 . A true hiff amplifier complete of applications that instructions. Ginaran teed 5 yeare. ONLY 58/6. P. F P. 1/6.

SPECIAL TRANSFORMER FOR OPERATING SINCLAIR IC-10 from A.C. mains P. 230250 . Outpit 13 V at 0.5 ampe. 12/6

SINCLAIR PROJECT 60
An attractive alternative for the enthusias prepared to assemble these excellent modules to make a stereo assembly Z. 30 94W Power Amplitier 89/6 it required). Stereo Sixty Control/Pre amplifer 89.10 .6 . PZ. 5 l'ower Supply conmpete with instructions manual and templates for plinth mountiug

Battery
Eliminator Eliminator transistor cquip ment to be operiated from AC
nalaing. $6 / 9$ / inains. $6 / 9 /$
12 V output selector switeh and onfori switch. $100 \mathrm{~mA} A$ Case size $4 \times 2 z \times 2 \mathrm{jn}$. Complete with tions. $58 / 6$. P. \& P. $3 / \mathrm{f}$

DE-LUXE STEREO HEADPHONES

With soft rubbe earpleces. Impedance \%.160hns. Frequency response $23-13,000 \mathrm{cps}$
With leal and steran
plug.
Only 5
plug.
nil ster P. ${ }^{2}$ P. $3 / 6$

LIND.AIR OPTRONICS LTD

See our vast range of Electronic Components and Accessories at our enlarged Component Centre 25 Tottenham Court Road

TRANSISTOR MODULES

E.1312. TAPE PRE-AMPLIFIER. Inco porating S.A.R.T.B. curve chatracterist jes this amplities tipe head signats up to 1 volt
within the frequency range of 30 H 2 within the frequency range of $30 \mathrm{~Hz} 2-$
15 KHz . Input imp. 100 kohnl 15 KHz . Infut imp. 100 Kohnu dian D5dB $9-1 \geqslant$ volts. $28 / 6$. $I, N P$. $2 /$. E.1316. MORSE CODE OSCILLATOR.
transistorised morme corle oscillator buzcer to be usel in cunjunction with an operatith key. Suitable for direct connection to :
loudopeaker. Toue frey. 400 Hz : Poner output 80wW: fower supply Current 45mA. 25/-. P. © P.

MINIATURE SOLDERING IRON British fuade and degigned for use with transistor circuitry but ideal for many ther uses. A.C. 240 V , 18 W . Length P. \& P, $2 /$

Visit our Brand New Hi-Fi Demonstration Room Tape, Record Bar and Scientific Show of Microscopes, Binoculars, Telescopes and Watches at 18/19 Tottenham Court Road

BIG SOUND

AT LOW COST!

6 watts r.m.s. per channel. Controls:
Bass, Treble, Volume, Balance, Function selector. Mono/Stereo switch. Tape record outlet. Inputs for Tape replay/Tuner. Headphone
facility. Beautiful teak case with matched loudspeakers
Garrard Autochanger unit fitted Stereo Cartridge. Sizes: Plinth
$16 \frac{1}{4}{ }^{\prime \prime} \times 14^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{2}$ Speakers $12 \frac{1^{\prime \prime}}{} \times 6^{n} \times 8^{\prime \prime}$
Exclusive

See and hear the Lind-Air Audifo "Compact" now at London's Newest Hi Fi Store - All leading names in stock plus Expert Advice, Hi Fi and T.V. Demonstrations, Part Exchanges, Mail Order and Export Sales.
COMPACT 2-WAY INTERCOMS

HI-TONE RECORDING TAPE
bRitish made top quality

Loug l^{\prime} ay Pre	2251 t	5/6		
Triple Play Poly	tiourt	$10 / 6$	P \& P 1 2	
Long Play PV'C	9000 t	10	P. s I 1/8	
Double Paty Poly	1200 ft	15 -	P \& 1 1/x	
Long Play P'C	12001 t	12/6	P^{2} \& Pr ${ }^{\text {P }}$	It Rexa
Double Platy Iooly	18001 t	$22 / 6$	P \& P P^{2}	(
Stathard Play Pro	12001 t	$12 / 8$	P. 犬 $\mathrm{P}^{\text {a }}$	
Long Play Pre	1800 ft	$17 / 6$		
Double P]ay Poly	24001 t	25 -	r^{3}. AP. $\mathrm{P}^{\prime \prime \prime}$	
Priple Play Pisly	$36001 t$	50	P. A F. 2 ¢	

18/19, 25 \& 53 TOTTENHAM CT. ROAD, LONDON W.1. Telephone: 01-580 2255/4532/7679
Shops open 9-6 pm. Monday to Saturday. Thursday until 7 pm.

Wow! a fast easy way TO LEARN BASIC RADIO and Electronics

*Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can Icarn basic Radio and Electronics at home--the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build ... and enjoy every noment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.
You LEARN-but it's as fascinating as a hobby, Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as renarding and interesting as any hobby. It could be the springloard for a career in Radio and Electronics or provide a greht new, sparetime interest.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 164 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you fill details and a 164 -page book -'ENGINEERING OP-PORTUNITIES'-.Free and without any obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept. 371B, Aldermaston Court, Aldermaston, Berkshire.

Colbert Pana-Vise work positioners are specifically designed to quickly and easily achieve the most convenient, comfortable and time-saving work position.

Available with vacuum clamp or screw-on base.
They can be rotated, tipped, tilted, angled, elevated, lowered.

The required work position is firmly secured with a patented one-knob control, a unique feature of Colbert Positioners.

A series of special holders is available for various types of work.

Full details available on request

Distributors

SPECIAL PRODUCTS DISTRIBUTORS LTD.
8। Piccadilly, London, W.I. Tel. O1-6299556 Cables: Speciprod London (Made in U.S.A.)

NEW COMPONENTS

 by return of post
RESISTORS

High stability carbon film. Very low noise. 0.5 wate $5 \% 4.7$ ohms to $2.2 \mathrm{M} \Omega$
2d each. 0.5 watt $10 \% 4.7$ ohms to $10 \mathrm{M} \Omega$ 2d each.
DEVELOPMENT PACK
0.5 watt 5% resistors $50 /$. 325 resistors 5 off each value, 4.7 ohms to IM Ω (E12 series).
4 WATT WIRE WOUND RESISTORS $1 / 6$ each
$10 \% 1 \cdot 0,1 \cdot 8,2 \cdot 7,3 \cdot 3,3 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 0,6 \cdot 8.8 \cdot 2 \mathrm{ohms}$.
5% io, is, $20,25,50,100$ ohms.
MULLARD POLYESTER CAPACITORS 10%
400 V : $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 6 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 0.063 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 8 \mathrm{~d}$.
$100 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, \mathrm{od}, 0 . \mathrm{F} / \mathrm{LF}, 0.15 \mu \mathrm{~F}$ $0.22 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .33 \mu \mathrm{~F}, 1 /-0.47 \mu \mathrm{~F}, 1 / 4,0.68 \mu \mathrm{~F}, 2 /-, 1.0 \mu \mathrm{~F}, 2 / 6$.
250 V . F . mounting miniature $\pm 20 \%$. $0.01 \mu \mathrm{~F}, 0.015 / 4 \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}$,
MINIATUAE ELECTROLYTIC CAPAC

$\begin{gathered} \operatorname{MiNI} \\ 50 \mu \mathrm{~F} \end{gathered}$	$6.4 V$	$10 \mu \mathrm{~F}$	10V	125 $\mu \mathrm{F}$	10 V	$40 \mu \mathrm{~F}$	$16{ }^{\circ}$	8%	
$100 \mu \mathrm{~F}$	$6.4 V$	$16 \mu \mathrm{~F}$	lov	200 $\mu \mathrm{F}$	IOV	$6.4 \mu \mathrm{~F}$	25V	$16 \mu \mathrm{~F}$	40
$200 \mu \mathrm{~F}$	$6.4 V$	20 $\mu \mathrm{F}$	Iov	$10 \mu \mathrm{~F}$	15 V	$10 \mu \mathrm{~F}$	25 V	50 $\mu \mathrm{F}$	40 V
$320 \mu \mathrm{~F}$	6.4 V	25 $\mu \mathrm{F}$	Iov	$16 \mu \mathrm{~F}$	15 V	$16 \mu \mathrm{~F}$	25 V	$10 \mu \mathrm{~F}$	64
$6.4 \mu \mathrm{~F}$	10 V	$64 \mu \mathrm{~F}$	IOV	$25 \mu \mathrm{~F}$	15 V	$25 / 4 \mathrm{~F}$	25 V	20/ F	64

$250 \mu \mathrm{~F} / 6 \mathrm{~V}$ I/6. $100 \mu \mathrm{~F} 40 \mathrm{~V}$ I/3. ach, $10 / 6 \mathrm{doz}$.
CERAMIC DISC CAPACITORS
$100 \mathrm{pF}, 270 \mathrm{pF}, 470 \mathrm{pF}$ 680pF 5 d Rach
$0.02 \mu \mathrm{~F}^{2}, 800 \mathrm{~V}$, 8d each.
SKELETON PRE-SET POTENTIOMETERS
Miniature linear 100, 250, 500 ohms and decades to 1 Ms .
0.3 watt $+20 \%<250 \mathrm{k} \Omega+30 \%>250 \mathrm{k} \Omega$

Horizontal or vertical P.C. mounting (0.1 matrix) $1 /$ each.
DIODES-OAB5, OA91, $1 / 6$ each
SILICON RECTIFIERS
BY236 800V 0.8 amp $3 /$ each.
BY237 1250 V 0.8 amp $3 / 6$ each.
VEROBOARD
0.1 matrix: $2 \frac{1}{3} \times 3 \frac{3}{3} / 6,3 \frac{3}{3} \times 3 \frac{4}{2} / 3,5 \times 2 \frac{1}{2} 4 / 3,5 \times 3 \frac{2}{2} / 3$.
0.15 matrix. $2 \times \times 373 / 3$ 32 $\times 37319,5 \times 213 / 5 \times 325 / 3 ;$

Spot Face Cutter 7/6. Terminal Pins 36 for 3 /.
C.W.O. please. I/- post and packing on orders under fI.

Export Enquiries welcome
YATES ELECTRONICS (FLITWICK) LTD. 29 LYALL CLOSE, FLITWICK, BEDS.

COMPLEFE STEREO SISTEM

FOR ONLY

39aws CARRIAGE 35／－

The Premier stereo system consists oi an all mansistor stereo amplitier，cianard Model 202 b anto／manual record phayer unit filted stereo／mono cartridge and monnted in teak finish plinth with persper corer and two matching teak finish londspeaker systems．Absolutely complete and supplied ready to plag in and play．The 10 transistor Amplifier has an output of 5 watts per channel with inputs for pick－up，tape and tuner also tape output socket Controls：Bass，Treble，Volume，Balance，Selector．Power on／off，stereo／mono swith．Brushed aluminimm front panel．Black metal case with teakwood ends Size $12^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1}{2}$＂high（Amplifier arailable separately if requited $£ 14.19 .6$ ．Carr．i／6）

SPECIAL STEREO CARTRIDGES MaD $\frac{\text { SHORE }}{28.10 .6}$ Premier Price 86.18 .8

 M7S－6 List \＆17．8．4．Premier Price £13．19．6 M75E List $£ 25.18 .10$ ．Premier Price $£ 21.0 .0$

AODIO－TECHNICA
AT7S stereo List E22，0．0 Our Price 215.0 .0 AT7X Elliptical List $£ 25.0 .0$ Our Price $£ 18.0$

WIDE RANGE OF HI－FI STEREO EQUIPMENT ON DEMONSTRATION All leading makes available including Rogers，Armstrong Dulci，Whartedale，Goodnians，Goldring，Shure，etc．etc．

E．M．I． $13 \times 8 \mathrm{in}$
HI－FI SPEAKERS Fitted two 2 inin tweters and crossover network．Impedance
3 ± 15 ohnis．Handling capacity tow．Brand new．日9／B．P ．
 TEAK FINISHED CABINET Size $17 \frac{1}{2} \times 10$ itin．Ideal for p．\＆P． 7 有

HI－FI STEREO

 HEADPHONESDesigned to the higheat possible atandard．Fitted yoft padded ear muffs． soft padded ear muffs． 8 ohm impedance．Com plete with 6 ft lead and stereo jack plug． $59 / 6{ }^{\text {P }}$

MONO HEADPHONES 2,000 ohm 14／6 P．\＆P．2／6． STEREOSTETHOSCOPE SET Low imp．25／－P．\＆P． $2 /$ ． MONO STETHOSCOPE SET LOW imp． $10 / 6$ I．\＆P． $2 /$
 and Balance Controls．Mono／Stereo Switch．Also features headithone socket and tape output．Teak ease with attrae－ tive illuminated front panel．Size $14 \frac{1}{2}$

WONDERPOL VAEDE ${ }_{\text {ATLY }} 25 \mathrm{~g}$ ISS． Carr
＇NOVA＇ 5 WATTS PER CHANNEL STEREO AMPLIFIER． Specification as above．A18．18．0．Carr．10／．

\＆ 5 ！ Premier stereo System $\begin{aligned} & \text { ith＂Nova＂} 10 \text { wat stereo } \\ & \text { Amplifier as above．} 45 \text { Gns．Carr．} 3 \overline{5} /-.\end{aligned}$ pensator，otylus Complete with Steren／ Mono Cartridge．
Original Price 517.17
OLIR PRICE 12 gns．Carr 10／6

PICK－UP CARTRIDGES
at money baving prices GOLDRING（i800（stereo）
GONOTONE 9TAHC＇D（Stereo） acos GP91／18C（Mono compatibil ACOS GP93－1（stereo） ACOS（1P94（Stereo）
B S R X 3M（Mono conpatule） BSR X3H（Mono compatilile） RONETTE 105 （Stereo） RONETTE 106 （Stereo） All coraplete with mounting brachets and
 28.19 .6
68.18 .0 28.18 .0
21.13 .6 21． 8.7 42.14 .8 81.16 .8
81.18 .6 21.16 .0
21.16 .0
 SIZE MOLTI TESTER With wide． angle，jewelled meter morenient，ceramic long－hife，low•loss awitching，tough impact
resiating case．Sensitivity 20,000 ohms volt d．c． 10,000 ohms／rolt a． 19 Ranges： $0-5-25-50-250-500-2,500$ volts
 megohms， $10 \mu \mu \mathrm{~F} \cdot 0001 \mathrm{mF}-1 \mathrm{mF}$ ． $-2010+22 \mathrm{~dB}$ ．Complete battery，tent lead and
instructions． $\quad £ 4.19 .6 \quad \begin{gathered}\text { P．＊} \\ 3 / 6\end{gathered}$

\qquad
TWO STATION TRANSISTOR
INTERCOMS．
\qquad and joft contatting way call system．Ideal for home，office，factory etc $65-\mathrm{P} \&$

郎 78
58
$\square=3$ FOUR STATION INTERCOM．Master ulit and 3 aiaves． Ideal for offlee and home．Complete with batter and

＂VERITONE＂RECORDING TAPE

SPECLALLY MANOFACTURED IN U．S．A．FROM EXTRA STRONG PRE－STRETCHED MATERIAL．THE QUALITY IS UNEQUALLED， TENSILISED to evoure the most permanent base．Highly resist ant to break． age，moisture，heat，cold or humidity．High polished splice íree flmish．Smooth $\begin{array}{lllllllll}\text { LP3 } & 3^{-} & 250^{\circ} & \text { P．V．C．} & 5 / 6 & \text { LP6 } & 53^{\prime} & 1200^{\circ} & \text { P．V．C．}\end{array} \quad 12 / 6$
 $\begin{array}{lllllllll}\text { DT3 } 3 L^{\prime} & 600^{\prime} & \text { POLYESTER } & 11 / 6 & \text { TT8 } & 9^{\prime \prime} & 2400^{\prime} & \text { POLYESTER } & 37 / 6 \\ \text { SP5 } & 5^{\prime} & 600^{\prime} & \text { P．V．C．} & 8 / 6 & \text { SP7 } & 7^{\prime \prime} & 1200^{\prime} & \text { P．V．C，} \\ \text { TP5 } & 12 / 6\end{array}$
 TAPE BPOOLS $3^{*} 1 /-5^{*}, 53^{\prime}, 7^{+1} 1 / 9$ ．TAPE CASES $5^{*}, 7^{*} 2 / 8$ ． Poat and Packing $3^{+} 1 /-, 5^{*}, 52^{*} 1 / 6,7^{* 2 /-.} \quad(3$ reels and orer Port Free．）
＂PREMIER＂TAPE CASSETTES

 CI20 $\binom{120}{$ min }$\quad 17 / 6$

CASSETTE HEAD CLEANER Remores unwanked deposita Fits all cassette rpcorders． II／6

. . . or any day you please (Sundays included)—any time of day or night. Your message will be received loud and clear. Even if we are not there "live" at the other end of the line, our telephone recording machine will take your message for us to deal with as soon as we are back on the job. If your message is a fat order we'll be delighted. If it's just a teeny weeny order we'll still be delighted.

This "order-by-phone" facility is just one of the many advantages offered by our new CREDIT ACCOUNT SERVICE. Here are a few more advantages-
Order forms and prepaid envelopes are provided, so if you want to order by post, you don't even have to find a stamp. To settle your account you need only one cheque, postal order or money order per month. Normally on credit accounts there is a minimum invoice of $30 /-$, but we stipulate no minimum.

Of course, this Credit Account Service is available only if you are already using our catalogue for ordering components, but after you have been in the service for 12 months we regularly send you an up-to-date catalogue FREE of charge.
Like to know more about this trouble-saving, money-saving service? Then drop us a line or give us a ring, 01-648 8422.

You should certainly have an up-to-date copy of the Home Radio Catalogue even if you do not intend to use our Credit Account Service. It's a must for every Radio and Electronics enthusiast. It has 350 pages and lists 8,000 com. ponents, over l,500 of them illustrated. Moreover, it contains 6 vouchers, each worth $1 /$ - when used as indicated. Give yourself a Christmas present this year. Post the coupon with 12/- (8/6 plus 3/6 post and packing) and we'll send your catalogue by return of post.

DISPELLING THE MYSTIQUE

CURRENT affairs commentators make free with colourful phrases concerning "this age of electronics." These evocative declamations are apt, and correct. Yet there are signs that some of the original lustre has worn off the image this well exposed branch of contemporary technology conjures up in the public's mind. While without a doubt a mystical aura still surrounds the subject, following upon many demonstrations of its efficiency and versatility in providing all manner of services in everyday life, electronics seems to have become accepted as the modern marvel-with an answer to most of the problems encountered in this increasingly complicated and highly organised world. News of further striking technical advances tends to be received passively, as though the public has been conditioned to expect these as perfectly natural happenings-though the manner in which they are achieved is not understood. The wonderment of the early days has given way to quiet respect.
This general deference to a rather mysterious power contrasts with the easy familiarity which has been developed by technically inclined individuals towards electronics. To the uninitiated it may seem hard to believe, but without question electronics is an ideal and convenient subject for private study and experimentation. It is certainly not a subject to shrink from in fear and bewilderment-despite its formidable attributes. The swing over to solid state and the ensuing miniaturisation are, of course, factors of immense practical advantage and have been quickly recognised by enthusiasts from all walks of life. The component supply situation, apart from occasional difficulties with particular "special" items. is good and many of the latest circuit devices soon emerge onto the retail market.
Thus while electronics has been making phenomenal progress and extending its influence into all areas of modern life, the know-how has not remained a closed book to all except the professionals. It is open for any private person to explore and so experience at first hand much of the evolution in components and circuit design which is a continuing process in the industry.
From active home work develops a new and fuller appreciation of the potentialities of electronics. The informed amateur is not likely to be bamboozled by mere words and phrases. He knows the universality of electronics and sees the future even more dominated by this technology. But with knowledge based upon personal involvement he can also cut the "monster" down to size; to flip-flops, gates, linear amplifiers, phase inverters, and all-the very circuit "bricks" he makes and uses himself.
F.E.B.
THIS MONTH
COWSTRUCTIONAL PROIECTS
METAL DETECTOR 24
HI FI STEREO AMPLIFIER 35
P.E. COMMUNICATIONS RECEIVER-4 46
P.E. ORGAN-9 52
EDUCATED EMMA 62
SPECIAL SERIES
DEMONSTRATION SWITCHING CIRCUITS-2

GENERAL FEATURES

THYRISTORS AND THE EXPERIMENTER18
NEWS AND COMMENT
EDITORIAL 17
SPACEWATCH 32
NEWS BRIEFS 50, 58
POINTS ARISING 50
BOOK REVIEWS 51
REPORT FROM AMERICA 61
MARKET PLACE 77
READOUT 78

[^1]

Abstract

Of all the semiconductor devices which have become generally available to the home experimenter, surely the silicon controlled rectifier (s.c.r.), or thyristor, is one of the most useful, and, at the same time, least appreciated. Transistors of course have wide application, but what follows will show that thyristors are capable of a multitude of uses, often at currents and voltages-and hence power levelswell out of reach of transistor circuitry.

FIRST a mention of how one of the names for these devices, the thyristor, is derived. It comes from THYRatron transISTOR, and those readers who are familiar with the thyratron or gas filled valve will recognise much of the properties of the thyristor. A proper understanding of these properties is vital to a full appreciation of the circuits which follow, and it is worthwhile to set down here three basic characteristics.

BASIC CHARACTERISTICS

1. A thyristor will conduct in only one direction, and when doing so behaves very much as an ordinary silicon diode; that is, it exhibits a low resistance and hence dissipates little power.
2. However, in order to conduct it is not sufficient that the anode be made positive. For conduction to take place, a third electrode, the "gate" (corresponding to the grid of a thyration) must be made slightly positive with respect to the cathode. The power needed to do this is only a small fraction, a very small fraction, of the power it is possible to control, and it is this property that can be exploited so well in thyristor circuitry.
3. Even with this positive voltage removed from the gate, the thyristor continues to pass current (as
mentioned in 1 'above) provided the value of this current does not fall below a certain, small, value, known as the holding current. A typical holding current for a 3A thyristor is 30 mA . Should this fall in current take place, the thyristor will "block", the current will fall to zero and the re-application of a positive gate voltage will be required for conduction to start again.

PHYSICAL DETAILS

Thyristors are available with voltage ratings up to 1,200 volts and current ratings up to 250 A -although it is not suggested that home experimenters should use such high power types! Devices of 400 V rating will be suitable for mains use and lower voltage ratings such as 50 V to 100 V are satisfactory for battery driven equipment.

The physical construction of a thyristor varies of course with the voltage and current it is able to handle, and the more usual outlines and connections are as shown in Fig. 1. Also depicted is the circuit symbol for this device.

Construction (a) is used for lower current devices, say up to 2 A , while higher ratings usually employ one of the other forms. Most popular is perhaps stud
mounting (b), since it requires only a single hole to be made; (d) is of more recent origin, with thyristors of plastic encapsulation now being made.

TWO MAIN GROUPS OF CIRCUITS

The three important properties mentioned earlier lead to an abundance of thyristor circuits, and it will be convenient to classify these circuits into two broad groups:

1. Circuits using d.c. supplies, such as a solid state relay, flashers, and battery chargers.
2. Circuits using a.c. supplies, such as lamp dimmers, motor speed controllers (already described in Practical Electronics), temperature control, and mains lamp flashers.

In all the circuits which follow component values given are not necessarily optimum, but have been selected to show the principles involved

Thyristors have large spreads in their detailed characteristics, notably gate current required for turn on, which varies with temperature, and it may be found that slight alterations in some resistor values will be required.

However, unmarked devices, advertised in Practical Electronics, as well as manufacturers' type numbered products should all work well and experimenters can proceed with confidence. Thyristors are tolerant devices (provided ratings are not exceeded of course) and will be found to be easy to use in the circuits to be given.

A SIMPLE THYRISTOR CIRCUIT

The simplest circuit which finds practical use is shown in Fig. 2. The load can be a lamp or a relay; nothing sophisticated is needed for the positive pulse shown at the gate, indeed a resistor momentarily connected to the positive supply will switch on the thyristor.

Uses for this simplest of all circuits are remote operation of a lamp where switch-on at a distance is needed and voltage drop in the lamp cable could be troublesome, for only the small gate current will be required to flow to the remote switching point, and then

Fig. 2. Simple load switching circuit

Fig. 3. Use of a relay in lieu of a buzzer
only for a few milliseconds or less. The resistor R1, which should be about 1 kilohm, is required to ensure that the thyristor does not switch on spuriously, especially at higher temperatures.

Typical connections for a 100 V thyristor are as shown, and almost any device of that rating capable of carrying IA will work well, controlling, say, a 12 watt lamp. The diode D1 across the load removes any high voltage transients present when the current changes, which could damage the thyristor.

The load in Fig. 2 could be a buzzer or bell, and the self-interrupted nature of the current through it will ensure that when the gate circuit is opened, buzzer operation ceases. Should operation of a buzzer be required from a distance, this will enable a lighter gauge cable to be used to the operating push or switch, so recouping the cost of the thyristor. If desired, a relay with a normally closed contact wired as shown in Fig. 3 can be substituted for the buzzer.

SWITCHING OFF ARRANGEMENT

To switch off the current in the load of Fig. 2 it is easiest to break the supply; however a useful alternative is given in Fig. 4. With the thyristor conducting and hence with its anode at only a volt or so positive, Cl charges to almost 12 volts. Closure of the switch earths the right-hand side of Cl , and since the charge on Cl is unable to change instantaneously, the left-hand side of Cl , and hence the thyristor anode, will be at about. -11 V ; this switches off the thyristor.

A drawback of this circuit is that if the switch is left closed, Cl charges through the load with the opposite polarity, and hence an ordinary electrolytic cannot be used.

It is possible to use a second thyristor in place of the switch, and since it is called upon to pass only the current through R3 it can be a low current rating device, which will be both more sensitive and cheaper.

Fig. 4. A method of switching off a thyristor

Fig. 5. A "d.c. controller developed from the basic circuit of Fig. 2

Fig. 6. Controlled battery charging

EFFICIENT MOTOR CONTROLLER

An application of this circuit which should be of interest to model control enthusiasts is given in Fig. 5.

The load is energised when $S 1$ is closed and $S 2$ opened, and de-energised when S 1 is opened and S 2 closed. If S1 and S2 are the contacts of a pair of reed relays in the collectors of a multivibrator running 'at, say, 200 Hz , variation of the mark-space ratio will alter the mean current in the load, which could be a drive motor.

This is a very efficient controller for d.c. to run motors, lamps, etc.- there is little power wasted in dropper resistors and the use of lightly loaded reed relays ensures long life and reliability.

The control of high current d.c. supplies is thus possible where the use of a series transistor would be difficult or expensive. This circuit forms the basis of control used in fork lift trucks and in experimental electric cars.

BATTERY CHARGERS

The very name "silicon controlled rectifiers" would" lead one to believe that such units as battery chargers could have their charging rate controlled, and such is the case. It is possible to arrange for the charger to be cutoff when a pre-set battery voltage is reached, so that over-charging is impossible. A typical circuit is given in Fig. 6, and is admittedly somewhat complex in appearance, although straightforward in operation.

With a discharged battery, each half-cycle of mains input delivers current to the battery via SCR1 since it is turned on at its gate via R1 and the diode. As charging proceeds, battery voltage rises until the potential at VRI slider exceeds the Zener voltage of D4, so causing it to conduct. Its anode therefore goes positive, so switching on SCR2 (this latter thyristor is not required to carry charging current and can thus have a low current rating, which implies that its gate triggering will be more sensitive-an advantage here as it was in connection with the circuit of Fig. 4.)

Further charging, giving rising battery voltage, means that the point in the half-cycle at which SCR2 conducts will become earlier and earlier, until eventually it takes place before SCRI has had a chance to turn on. With SCR 2 conducting, the junction R1/R2 is only just above earth, so that SCR1 is unable to switch on; thus charging ceases. The battery voltage at which this occurs is set by VR1.

Should battery voltage fall, charging will re-start, so making the circuit suitable for those uses where a battery is called upon to provide high rate, intermittent, short discharges and is left across the charger continuously. Use of the circuit of Fig. 6 will permit a smaller battery to be employed (overcharging would be more harmful to a small battery).

CONTROL OF A.C. SUPPLIES

All the circuits mentioned up to this point have controlled d.c. supplies, but it is in the field of a.c. control that thyristors are perhaps most attractive.

There are two different methods for operating a thyristor in a.c. circuits, these are known as "phase shift" and "burst fire" operation.

In phase shift the thyristor conducts for a certain period during every positive half cycle. The point on the positive-going waveform at which conduction commences is the controllable factor, and the amount of power passed through the load is varied accordingly.

In burst-fire control the thyristor switching cycle is longer, and trains of "whole" pulses are passed. The
mark-space ratio determines the length of these trains of pulses, and so the amount of power consumed in the load.

Phase shift is the easier method so far as the circuitry is concerned; it does, however, have certain disadvantages, as will be pointed out in due course. Its use is therefore best confined to low power functions, such as light control.

LAMP DIMMING

Starting with domestic lamp dimming; perhaps the only advantage of the gaslight of former decades over present electric lamps was the ease with which the intensity could be readily adjusted! Now, the availability of cheap thyristors has changed the picture dramatically.

If only slight dimming of, say, a 100 watt lamp to the equivalent of a 60 watt lamp is required, then the circuit could hardly be simpler-see Fig. 7.

half wave control

When the line is more negative than the neutral, diode D1 conducts and supplies current to the lamp. On the other half-cycle, with line more positive than neutral, the thyristor conducts, starting at a time - depending on the setting of VR1. This resistor and capacitor Cl give a retarded phase shift to the gate voltage, so that as VRI increases, the shift increases, so delaying turn on of SCRI in alternate half-cycles. The diode D2 prevents the thyristor gate from going more
negative than the cathode during the half-cycles when Di conducts. As the waveforms in Fig. 8 show. delayed turn on of the thyristor gives reduced power in the load.

The circuit is not critical of the type of thyristors and diodes used. Unmarked devices of 400 V rating as well as Mullard BTY $79-400 \mathrm{R}$ have worked well: DI should be rated at 400 V p.i.v. and be capable of carrying 0.5A for lamps up to 200 walts, though D2 need only be of 100 V working and of lower current capacity, say 100 mA .

With the circuit shown a useful reduction in light output is obtained with VRI at maximum resistance. but of course no more than a 90 degree phase shift can be provided by a simple RC network. If DI is switched out, control down to lower lamp brilliance is possible. but since only alternate half-cycles of the 50 Hz mains are thereby being used, there is an annoying flicker from the lamp.

FULL WAVE CONTROL

With slightly more complexity and expense, full smooth control from full brilliance doun to zero output is possible and two circuits for this are given. Each shows a different approach to the problem, which is not perhaps surprising since one circuit is that due to Messrs. SGS UK Ltd. while the other originated with S.T.C. Ltd.

Basically, what is required is a means of controlling both half-cycles of the 50 Hz mains logether, in one

Fig. 7. Simple lamp dimmer-half wave control

SCR1, SCR2 BTX60 OR SIMILAR (400V 3A SUITABLE)
D1.02 EC402 OR SIMILAR (50 V 100mA SUITABLE)
Fig. 9. Lamp dimmer-full wave control (SGS UK Ltd.)

mains input voltage

OUTPUT VOLTAGE
no POWER is applied to the load in the shaded area
I.E. BEFORE THE THYRISTOR CONDUCTS

Fig. 8. These waveforms show how the thyristor controls the power in the load with the phase-shift method of operation

SCR CRS30/40AF OR SImilar (400V 3A SUITABLE)
01-04 400V 1A EACH TR1,TR2 SEE TEXT
Fig. 10. Lamp dimmer-full wave control (S.T.C. Led.)
smooth operation. This is done in one case by using two thyristors, each exercising control on alternate half-cycles, while in the other a full wave bridge rectifier is used to enable one thyristor to control both half-cycles.

Circuits are given in Fig. 9 and Fig. 10.

TWO-THYRISTOR CIRCUIT

Dealing with the SGS circuit first, consider that part above the dotted line and including the variable resistor VRI. Positive going half-cycles at DI anode are shifted in phase by VRI and C4, but here extra phase shift is added by R4 and C3, so giving control of SCRI gate firing over the whole half-cycle instead of a maximum of 90 degrees as previously described.

On the other half-cycle the remainder of the circuit behaves in a similar manner, using VRI as phase shift control, and smooth variation of lamp brilliance is given from full brilliance to zero output.

SINGLE-THYRISTOR CIRCUIT

Turning now to the circuit from S.T.C. (Fig. 10), it will be seen that only one thyristor is used, together with a full wave bridge rectifier to supply only positive voltages to the anode.

If we imagine the thyristor already to be conducting, the output of the bridge will be short circuited, but with the lamp in series with the mains input it will drop nearly all the applied voltage and be at full brilliance. Variable delay of thyristor conduction in each halfcycle will give control of lamp brilliance; this control is achieved by charging C2 through R2 and VRI.

When the voltage across C2 and hence at TR2 emitter exceeds that at its base by more than about 0.6 V , TR2 conducts, so passing current to TR1 base and this complementary pair of transistors rapidly turns to a state of conduction. Thus the positive voltage on C2 is suddenly applied to the thyristor gate, so switching it on. The point in the half-cycle at which it does so is set by the time taken for C2 to charge to the required voltage, through VRI. Once again, very smooth control of lamp brilliance is given.

DUPLICATE CIRCUITS

A variation of this particular circuit (Fig. 10) is to put the lamp at X, in the anode of the thyristor and apply the mains direct to the bridge. This will give d.c. in the lamp, but this is of no consequence. However, what is interesting is that duplicate thyristors, each with their own control circuits, can be run from the same bridge rectifier, each thyristor having a lamp (or other load) in its anode circuit.

By this means a multitude of lamps, for theatrical work, shop window displays and so on can very easily be controlled, independently. The bridge must of course be of adequate rating, that is, be capable of carrying the total lamp current with all lamps at maximum brilliance.

Besides the thyristors quoted in the circuits, unmarked devices have proved successful in both cases, although some slight adjustment of resistor or capacitor values may be called for to obtain full control.

The transistors used should be silicon for low leakage, and a variety of types will function wellBSY95A, 2N929, 2N3704, BSY27 for the npn; the OC200 series and 2 N3702 for the pnp have all proved suitable.

RADIO INTERFERENCE

One important point which should be mentioned here is the question of radio interference. Since thyristors by their very nature switch on rapidly, many harmonics are produced and these may give rise to interference, especially if a controller is run from the same mains socket outlet as a television or radio, on which a pronounced 50 or 100 Hz buzz will be heard.

Some form of suppression is required, and that depicted in Fig. 10 is typical, where Ll and Cl act as a filter, is an example of what could be used.

The construction of controllers and similar devices using circuits such as described here is best carried out in metal boxes which can be earthed, thereby reducing the radiation of interference, as well as giving greater safety.

AUTOMATIC LIGHTING CONTROL

Continuous control of lamp output has a multitude of uses-porch lights can be run dimmed, to be turned up when needed, lights can be turned down for watching television, or for parties, and photographers will be able to control studio lighting and enlarger lamps. Extra lamp life is a useful by-product of under running of course.

Fig. II. Automatic Light control modification to circuit given in Fig. 10

Automatic control of lamp brilliance, depending on the level of ambient lighting, so that lights come on at dusk for example, is a desirable feature, and a modification to the circuit of Fig. 10 to carry this out is given in Fig. 11.

With VR1 set for low light output and the light dependent resistor (LDR) at minimum resistance, say 10 kilohm, the transistor TR 3 will be cut off, that is it will present a high resistance between collector and emitter and hence it will hardly shunt VR1. As the LDR resistance increases up to about 300 kilohm or more with reduction in light level, the transistor conducts and shunts VR1, hence switching on the thyristor earlier in each half-cycle and turning up the lights. A suitable LDR would be cadmium sulphide (CdS) type; the transistor can be any ordinary silicon npn type, such as a BSY 95A.

Circuits for switching on lights as the ambient light level falls have appeared in Practical Electronics before, but that given above has the twin advantages of gradual turn on as daylight falls and of being contactless -previous circuits have usually used relays.

Fig. 12. Lamp flasher circuit using the burst-fire method of control

HEATING CONTROL

Similarly, the LDR could be replaced by a temperature dependent resistor, or thermistor; the temperature of aquaria, chemical solutions and so on will then be governed very efficiently. With a suitable thyristor and diodes, control of electric room heating is possible.

Remember that each kilowatt to be controlled will pass just over 4A through the thyristor and half that amount through each bridge diode; adequate surge rating is called for when switching on cold heating elements. The higher power thyristors, say 10A and upwards, may require larger gate currents than that given by the circuits here.

The circuits so far described use the "phase-shift" method of thyristor operation. The next circuit introduces a form of "burst-fire" control.

FLASHING CIRCUITS

Continuing with a.c. circuits, that of Fig. 12 will provide flashes lasting about a quarter of a second, with a repetition rate determined by the setting of the $25 \mathrm{k} \Omega \Omega$ potentiometer VR1. With the values and thyristor shown, this can be varied from one flash every second

Fig. 13. Flasher circuit adopted for temperature control
to one every five seconds: A lowar value for R3, say 4.7 megohms will quicken the rate of flashing; .an increase in the value of $C 2$, say to $1 \mu \mathrm{~F}$, will slow the rate to about one flash every nine seconds.

Flashes lasting longer than the quarter-second noted above will be obtained if Cl is increased, say to $64 \mu \mathrm{~F}$. With the potentiometer slider at the lower end a flash of about 0.6 second alternating with a space of 0.5 . second gives an effective display, useful for warning lights and so on.

The use of a transistor TR1 in the gate lead of the thyristor is worthy of a mention. Connected as shown (Fig. 12), with its emitter left disconnected, very little current, certainly less than $10 \mu \mathrm{~A}$, will flow to the thyristor gate as long as the voltage across the collectorbase junction is fairly small. This low level of current is insufficient to switch on the thyristor.

As C2 charges, this collector-base voltage rises until avalanche breakdown occurs, at around an applied voltage of 30 to 35 volts, when the transistor conducts suddenly and connects $C 2$, charged to that potential, to the thyristor gate. The thyristor immediately conducts, discharging $C 2$ for the cycle to repeat. The 100 ohm resistor R4 limits the current through the transistor.

No damage or change of important characteristic has been noted in this transistor, which may, in any case, be an inexpensive silicon $n p n$ such as a BSY 95A. The thyristor quoted is a BTY 79400R; an unmarked 400 V 3 A device worked also but various samples gave slightly varying repetition rates.

TEMPERATURE CONTROL

A use for this circuit, besides the obvious one of a flashing light for display purposes and so on-without moving parts and exposed contacts of course-is the possibility of close temperature control; see Fig. 13.

Replace the 22 kilohm (R2) resistor by a suitable negative temperature coefficient resistor, placed in the environment to be controlled, say an aquarium. With the water cold, the NTC resistor will have a large resistance, and the repetition rate of the thyristor firing will be high. The thyristor load is, of course, the aquarium heater. As the water warms, the NTC resistor will decrease in value and the repetition rate will accordingly fall, so passing, averaged over some seconds, less heat to the water.

Control of water temperature is thus close and perhaps more important, rapid, since the set-up responds to NTC resistor changes immediately and continuous control is maintained. These are important improvements over an ordinary on-off thermostat, in aquaria, plating baths, photographic processing solutions and so on.

A disadvantage is that since the duty cycle of heating is no greater than say, 50 per cent, even at maximum heat output, a larger heating element' is needed. 'In the author's opinion, it is worth while to gain the advantages mentioned; a by-pass switch could put continuous heating on if required for rapid warm up from cold.

PHASE-SHIFT v. BURST-FIRE

The phase-shift method, as described in connection with circuits for lamp dimming, can give a certain amount of r.f. interference due to the rapid turn on of the thyristor sometime during each half-cycle of mains input, that is, at a rate of 100 Hz . The steps necessary continued on page 31

DETECTOR CIRCUIT

Two r.f. transistors are used in a heterodyne circuit (Fig. 1) with a further transistor as an audio amplifier. L 1 is the search coil, with collector and base tappings, and tuned by the fixed capacitor C4.

The second oscillator is built around a cored coil L2. The frequency is initially set by adjusting the core and trimmer VCI. The circuit can then be tuned over a narrow band by the manual control VC2.

The r.f. output from TR1 and TR2 is coupled to the detector D1 by small capacitances C2 and C7. TR3 provides audio amplification, with base bias secured by the rectified signal through DI.

The coils L1 and L2 are each tuned to about 550 kHz . When L1 and L2 are operating at the same frequency, no beat note is produced or heard in the phones. The presence of metal near the large search coil L1 detunes its frequency, producing a heterodyne beat heard in the phones. The change of frequency increases as the metal object is approaching the coil, and falls as the distance between coil and object grows larger again.

SENSITIVITY

For most sensitive results, VC2 is tuned so that a low audio tone is heard with no metal near Ll. The tone then changes when metal is approached. If both tuned circuits are set to exactly the same frequency to begin with, "pulling" of one circuit by the other reduces sensitivity. This effect can be made less serious by reducing the values of $C 2$ and $C 7$, but volume then becomes rather low. It is thus better to work with a constant tone.

The gain of the audio amplifier has no bearing on the range of detection, but boosts detector output to a suitable level. The single audio stage was found sufficient, using 4,000 ohm headphones.

ASSEMBLY

The detector is wired on an s.r.b.p. panel which should fit in a plastics box (Fig. 2), 7 in $\times 4 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in deep.

Top left-the search coil; top right-the headphones; bottom-the electronic detector

0.0005 mFd TUNING CONDENSER Proved design, ideal for atraight or
reflex circuith. $2 / 6$ each. $8 \% / \mathbf{d o z}$.

ELLIOT SEALED
CONTACT REED RELAY
Three circuits closed by 3 V or 100 MA . $9 / 6$ each
SLIM TUBULAR MICROPHONE For hand holding or frontal suepengion-level awitch-high impedance with lead and pluga fo casgette tape recorder but suitable for mosi
750 MICRO AMP MOVING COIL METER
2 !la ex.W.D. but brand new aud unued 19/6. HIGH CAPACITY ELECTROLYTICS Brand new, not ex equipment. $100 \mathrm{mF} 25 \mathrm{Y} 1 / 3$ each, 12/- doz:; $200 \mathrm{~m} / 25 \mathrm{~V} 1 / 6$ each, $15 / 0$ doz 500 mF 12 V 2/- each, 21.1 .0 doz.: $1,000 \mathrm{mF}$ 12V $3 /-$ each, 21.10 .0 doz.; $5.000 \mathrm{mF} 12 \mathrm{~V} 4 / 8$ each, 29.8.0 doz. i 10.000 mF 6V $5 / 9$ each, $\mathbf{8 3 . 0 . 0}$ doz.;
 $10 \vee 10 / 6$ each. 25.0 .0 doz.; $60,000 \mathrm{mF} 8 \mathrm{~V} 22 /-$ each, $210,0,0$ doz.; $70,000 \mathrm{mF} \quad 13 \mathrm{~V}$ 40/- eac

TOGGLE SWITCH
3 amp 250 V with fixing ring $1 / 6$ each 15 anl- doz.
3-CORE WATERPROOF FLEX
BA, $23 / 0076$ circular PVC covered als fitted to electric drills and most portable appliances, ideal extension lead. Regular price $1 / 6$ per yard, our price 79/6 for 100 yard coll. Post $6 / 6$.

5A, 3 PIN SWITCH
SOCKETS

In excellent opportunity to make that bench dis board you have needed or to stock up for future Jobs. This month we offer 6 British made (Hicraft) bakelite fluah mounting shuttered $5 \mathrm{~A} ~$ switch
socketa for only $10 /-$ plus $3 / 6$ post sockets for only $10 /$ - plus $3 / 6$ post and insurance. (20 boxes post (ree.)
BLACK LIGHT
G.E.C. tube for experlments and special lighting effects-40 watt $2 f t$ tubes only. $18 / 6$ each: holders and control gear 19/6, postage on single
item $4 / 6$ inc. insurance, or both ltems ordered item $4 / 6$ inc. insurance, or both
logether pontage $6 / 6$ inc. insurance.

DREAMLAND

CLOCK SWITCH

The wonderful DREAMLAND maing operated clock switch will automatically bwitch your blanket on and on each evening and you nil always have a wurm bed. It's luminous; you ful unit. An ideal gift. Can also control tape recorder, radio lamp etc., up to $\delta 00$ watts. 39/6 plun $3 / 6$ post and ins.

PROTECT VALUABLE DEVICES

FROM THERMAL RUM-AWAY OR OVERGEATING: Thytistors, Tectifters, transistora, tc., whtch use heat-8inks can easily be prolected. Simply make the contact thernostat part of the heat-sink. Motors and equipment eenerally, .can also be adequately protected by having thermostais in strategic spots oll

he casing. Our contact thermostat has 100 , F or with the range setting is between 80 to 800 deg. F. Price $10 / \%$.

Horstmann " Time and Set " Switch
(A 15 amp Bwitch.) Just the thing if you want to come home to a warm house without it costing you a fortune. You can delay the awitch on time of your electric Gres, etc., up to 14 bours from setting time or you can use the swien to give processing. Regular price probably around es. Special anip price 29/6. p. \& ins. $4 / 6$.

BATTERY OPERATED TAPE

 DECKWith Capstan control. This unit is extemely well made and measures approx. $6 \times 5 \times 2 \mathrm{in}$. leep. Has three plano key type controle for Record, Playback and Rewind. Motor io a special heavy duty type intended for opera. tion ofl $4 / 5$ volts. Supplied complete with 2 spools ready to install. Record, Replayhead is the sensitive M4 type intended for ube with transistor, amplifier. Price 79/6. Pott and insurance $4 / 6$

INSTRUMENT MOTORS WITH GEARBOX
Made by famous Smitha Company. Very poweful, although only quite amall. Overall dimensiona approx. $1 \ddagger$ in deep by 2 in dia. Avail-. able with the following epeeds.
-Reva. per 4, 6, 19 20 day; 2-8-12. Reva, per hour; 1, 2 , $4,6,12,20,30$. Reva, per minute; 1, 2, 3, 4, 6
$8,15,30,60,17 / 6$ each.

BLANKET SWITCH

Double pole with neon let
into side so luminous in dark,
use' with waterproof element platic case. $5 / 6$ each. 3 heat model $7 / 6$

PHOTO-ELECTRIC KIT
All parta to make light operated awitch/burglar alarm/counter, etc. Kit comprities printed circuit. Laminated Boarda and chemicale. Latching relay Inifa-red senaitive Photocello and Hood, 2 tran: sistors, cond., terminal blocik. Plastic case. Eatenthat data, circuita and P.C. chassia plans of 10 photo-electric devicea including auto. car parking light, modulated iight alarm, simple invialibe ray switch-counter-stray light alarm-warbling
 etc, etc. Only 39/6, plue $2 /$ post and insuraace. TELESCOPIC
AERIAL
for portable, car radlo
or tranamilter. Chrome pla7) to 47 in . Hole in bottom for $\mathbf{6 B A}$ вcrew. 7/6
M.W. SIGNAL GENERATOR

Complete kit an detcribed in November's intue 12/6 each.
80 OHM BALANCED ARMATURE EAR PIECE
Usabie as microphone or loudspeaker, 4/6 emch.
MINIATURE EAR PIECE
Ay uned with imported pocket raclios, $1 / 6$ emol.

Where postage is not stated then orders over $£ 3$ are post free. Helow C 3 add $2 / 9$. Semiconductors add $1 /$. post. Over \&1 post frec. S.A.E. with enquiries pleasc.

ELECTRONICS (CROYDON) LTD

Dept. PE, 266 London Road, Croydon CRO 2TH Also 102/3 Tamworth Road, Croydon

INTEGRATED CIRCUIT F.M. TUNER KIT

Dart Electronics has been appointed by General Avionics Limited as their U.K. distributor for their FM. Tuner kit, the first to use integrated circuits with pulse counting techniques developed by Marconi-Elliott Microelectronics.
The circuit has built-in automatic frequency control, and with the inherent stability of the integrated circuits, a reliable and easily set up circuit is offered to the home constructor in kit form. A resistively tuned version is in widespread use as an industrial radio system and is noted for its extreme reliability under continuous, unattended operation. The circuit employed effectively contains 44 transistors and, although the quantity of discrete components is fairly high, the entíre unit is built on a double-sided board measuring $133 \times 98.5 \mathrm{~mm}(3.875 \times 5.25 \mathrm{in})$. The Tuner can be run off a 12 V d.c. power supply or a combination of 6 and 12 V batteries.
All components are available BY POST ONLY from Dart Electronics at a special kit price of £9 19s 6d plus 5/- post and packaging.(U.K. \& N. Ireland) which includes selector switch and double-sided p.c. board ready drilled and tinned. The kit is complete with all necessary circuits and instructions.
Full assembly details, circuit diagram and parts list are also available separately from Dart Electronics at $2 / 6$ per copy and an article appeared in the June issue of the WIRELESS WORLD magazine.

P.O. BOX No. 47, WITHAM, ESSEX

Fig. I. The complete circuit diagram of the metal detector

COMPONENTS . . .

Resistors
Resistors
R1
R2
R
$10 \mathrm{k} \Omega$
R3
R4
2.7k Ω
R5
R6k
R6
$10 \mathrm{k} \Omega$
R7
$2.7 \mathrm{k} \Omega$
All $\pm 10 \%, \frac{1}{4} \mathrm{~W}$ carbon

Capacitors
CI $2,000 \mathrm{pF}$
C2 2 pF ceramic
C3 $0.01 \mu \mathrm{~F}$
C4 100 pF mica
C5 $50 \mu \mathrm{~F}$ elect. 12 V
C6 $2,000 \mathrm{pF}$
C7 2 pF ceramic
C8 $0.01 \mu \mathrm{~F}$
Variable capacitors
VCI 60 pF compression trimmer
VC2 15 pF air space variable control

Inductors

LI uses p.v.c. covered single core bell wire, about 20 yards (see text)
L2 uses 32 s.w.g. enam. copper wire, about 10 yards and a $\frac{1}{2}$ in or 10 mm coil former with dust iron core (see text)

Transistors and Diode
TRI, 2 OC44 or NKTI52 (2 off)
TR3 OC71 or NKT25I
DI OA79, OA8I, or similar

Miscellaneous

SI Single-pole. on-off toggle switch
XI Headphones, 4,000 Ω type
BYI Battery 4.5 V type 1289
Plastics box, perforated s.r.b.p. $6 \frac{1}{2} \times 4 \frac{1}{4}$ Tinned copper wire and p.v.c. covered flexible wire
Wood for detector sensor and handle (see text)

The wire ends of the components pass through small holes, and are soldered underneath to 24 s.w.g. wire connections. Insulation is placed on leads where necessary.

The 4.5 V battery is secured with cord or wire passed through holes in the component board. Leads are soldered on. Polarity must be correct.

The switch and VC2 are fitted after placing the wired panel in the box. Long leads for the search coil pass through a hole in the box end and are taped to the handle down to the search coil at the bottom.

The capacitors C2 and C7 can be 2 pF fixed ceramic types, or be made from thin insulated wire about $1 \frac{1}{2}$ in long and twisted together.

COIL WINDING

The oscillator coil L2 is wound from 32 s.w.g. enamelled wire on a $\frac{1}{2}$ in or 10 mm diameter former with an adjustable core. The winding begins at A, Fig. 2. This end will go to VCI and VC2, Fig. 2, after the coil is wound and mounted. For the first section, A to B , wind on 125 turns, in a compact pile. Make a loop of the wire about 3in long at B. Continue winding in a pile in the same direction for a further 45 turns, and make another loop at C (battery negative). A further 15 turns in the same direction finishes the coil; this end ${ }^{\circ}$ (point D) goes to $\mathrm{VC1}, \mathrm{VC} 2$ and C6.

Do not let the loops cause the coil windings to come loose. Turns are held with a little adhesive or wax. When firmly set the loops at A, B, C, and D are bared for about $\frac{1}{2}$ in and soldered to the appropriate junctions on the component board, or via the tags on the former if fitted.

Fig. 3. Construction details of the search coil. Make sure that the Terry clip fixings do not touch the wiring

SEARCH COIL

The search coil L1 is wound with thin single core bell wire and is 5 in in diameter. A temporary former of near this diameter is used to wind the coil, winding 10 turns from A to B. A loop is made at B and winding continues for another 12 turns to loop C. Wind four turns more, make loop D, then wind 15 turns more, and end at E. The ends and loops should be identified by coloured sleeving or other means. The insulation is removed for about $\frac{1}{2}$ in for connection to the long leads from the box.

The coil is removed from its temporary former, and bound with adhesive tape. It is attached by adhesive to a piece of 3 -ply wood about 6 in $\times 6$ in, Fig. 3. C4 is soldered to the ends of the coil at points A and E.

ASSEMBLY OF SEARCH COIL

A block of 1 in thick wood about 2 in $\times 3$ in is drilled at an angle to take a thick dowel or broom handle, Fig. 3. This is glued in place, and the block is glued to the centre of the plywood plate.

The detector can be fitted to the handle about 1 ft up the handle by means of two Terry clips bolted to the box. The search coil leads B, C and D (Fig. 2) are arranged to run down to the tappings, and are secured with tape or thread to the handle.

TARIIABLE VOLTAGE TRAHSFORWERS

NPUT 230/240v. A.C. 50/60-

 BRAND NEW All Types (and Spares) from $\frac{1}{2}$ to 50 amp. from stock. SHROUDED TYPE $1 \mathrm{amp}, f 5$. $10.0 . \quad 2.5 \mathrm{amps}$. f6. 15. $0 . \quad 5$ amps, 89 . 15 . 0 8 amps, 114.10 . 0.10 amps, £18. 10. 0. 12 amps, $£ 21.0 .0$ 15 amps, $£ 25.0$. 0.20 amps, £37. 0. 0. $37.5 \mathrm{amps}, £ 72$. 0.0 50 amps, $£ 92.0 .0$.OPEN TYPE (Panel Mounting)

STiOBE: STROBE! STROBE!

Build a Strobe Unit, using the lacest type Xenon white light flash tube. Solid state timing and trigger ing circuit. $230 / 250 \mathrm{v}$. A.C. operation.
EXPERIMENTERS' ECONOMY KIT
to 36 Flash per sec. All electronic components includ ing Veroboard S.C.R. Unijunction Xenon Tube and in

LS.s.0 plus 5)-P. \&
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New erigger coil, plastic thyristor HY-LYGHT STROBE
This strobe has been designed and produced in response to wide public demand, for use in large rooms, halls and the photographic fieli. It has four times the light output
at 30 f.p.s. and utilizes a silica plug-in tube for longer life expectancy, printed circuit for easy assembly, also a special trigger coil and output capacitor ${ }^{\text {Light }}$ output
approx. 4 joules. Price $£ 10.17 .6$. P. \& P. $7 / 6$.
7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 10/6. P. \& P. 2/6 or Post Paid with kits.
Several types of Flash Tubes available from stock

IOO WATT POWER RHEOSTATS (NEW)

AVAILABLE IN THE FOLLOWIHG VALUES:

$10 \mathrm{hm}, 10 \mathrm{a} . ; 5 \mathrm{ohm}, 4.7 \mathrm{a}$.; 10 ohm, $3 \mathrm{a}$. ; $25 \mathrm{ohm}, 2 \mathrm{a}$.; $50 \mathrm{ohm}, 1.4 \mathrm{a}: 100 \mathrm{ohm}, 1 \mathrm{a}$ $280 \mathrm{ohm}, 1.5 \mathrm{a} . ; 500$ ohm, $45 \mathrm{a} .: 1 \mathrm{Kohm}$ $280 \mathrm{~mA} ; 1 \cdot 5$ Kohm, $230 \mathrm{~mA} ; 2 \cdot 5 \mathrm{Kohm}, 2 \mathrm{a} ; 5$ Kohm, 140 mA . Diameter 31 in . Shaft length $\frac{?}{\text { inn., dia. }}$ 接 in . All at $27 / 6$ each. P. \& P. $1 / 6$.
50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{Kohm}$. All at $21 /$ each. P. \& P. 1/6.

$$
25 \text { WATT. } 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1.5 / 2.5 \mathrm{Kohm} \text {. All }
$$ at $14 / 6$ each. P. \& P. $1 / 6$.

 counter (non-resettable). Large Digit $12-18$ V D.C. MAGNETIC
COUNTER. 4 in drum calibrated $0-9$ Figures 1 itin high, in wide. Set of $1 \mathrm{~m}, \mathrm{lb}$; Ic/o contacts operated by drum cam. The units which can be used in multiples are ideally suited for bateh or lap recording or for the many purposes where large easily
read numerals are required. Price 18/6, BODINETYPEN.C.I GEARED MOTOR (Type 1) ${ }^{71}$ r.p.m. Torgue 101 b . inch.
Reversible. $1 / 70 \mathrm{th}$ h.p., 50 cycle, 38 amp . (Type 2) 28 r.p.m. Torque 201b. inch. Reversible, $1 / B 0$ th h.p., 50 cycle, -28 amp. The above two precision made U.S.A. motors
are offered in as new condition. Input voltage
of motor 115 v . A. .C. Supplited complete with transformer for P. \& P or A.C. input. Price, either type 12. 17. 6 plus $6 / 6$ P. \&P. or less transformer $\mathbf{2 . 2 . 6} 6$ plus $4 / 6$ P. \&
R.C.A. plastic triac 400 PIV 8 amp. Price 25/6 R.C.A. Diac for above, price 6/-. Prices include doto sheet ond circuit. G.E. P.U.T. D/3 Ti. 12/-, Texas F.E.T. 2N3819 7/6.

$\frac{\text { New plastic thyristor } 400 \text { PIV } 8 \text { amp. } 18 / 6 \text { inc }}{\text { All above prices plus } 1 / 6 \text { P. \& P. }}$

VAN DE GRAAF ELECTROSTATIC GENERATOR 230 V A.C. giving a potential of approx. $50,000 \mathrm{~V}$. complete including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstra*
cions. Price $\mathbf{2 7} 7.0$, plus $4 /$. P. \& P. L't. on req.

LIGHT SENSITIVE SWITCH
Kit of parts, including ORPI2 Cad-
mium Sulphide Photocell, Relay,
Transistor and Circuit, etc., 6-12
volt D.C. op. price 25/- plus $2 / 6$
P. \& P. ORP 12 including circuit,

10/6 each. plus 1/. P. \& P.
A.C. MAINS MODEL. Incorporates Mains Transformer, Rectifier and special relay with 25 amp mains c/o contacts. Price inc. circuit $47 / 6$ glus $2 / 6$ P. \& P. LIGHT SOURCEAND PHOTO CELL MOUNTING light source with focusible
lens assembly and ventilated lensassembly and ventilated
lamphousing, te t-ke MBC bulb. Separate photo cell mounting assembly for ORP. 12 - or similar cell. Both units are single hole ||fixing. Price per pair £2.15.0. P. \& P. 3/6.

RELAYS NEW SIEMENS,
ture relays at COMPETITIVE PRICES
Coil Workine Contacts Price

MINIATURE RELAYS

Size volt d.c. 2 c/o 500 M.A. con $30-36$ vod.c. 2 c/o 500 M.A. contacts. 3,200

$\overline{230}$ VOLT AC RELAY LONDEX $4 \mathrm{c} / \mathrm{o}$ 3 amp contacts. $18 / 6$ inc. base, post paid. RING TRANSFORMER

functional Versotile

Educational
This multi-purpose Auto
Transformer, with large
used as a Double wound be
currens Transformer wound
Currens Transformer, Auto Transformer. winding the required number of turns through the centre opening. E.g. Using the RT. 100 V.A. Model the output could be wound to give 8V. © $12 \frac{1}{2} \mathrm{a} .4 \mathrm{4V}$. © 25a., 2 V . Price: RT. 100 VA 3.18 turns per volt, $62.5 .0+$ $3 / 6 \mathrm{p}$. and p . RT, 300 VA 2.27 turns per volt. per volt 16 turns per volt, 66,10.0+6/6 p. and p.

S $\bar{A} \bar{W} \bar{W} A$ MULTI RANGE METERS
20,000 OPV, mirror scaled with overload protection. Ranges-d.c. volts: 100 mV , $0.5 \mathrm{~V}, 5 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}$: a.c. volts: $12.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}$; d.c current: $5 \mu \mathrm{~A}, 0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}$ 250 MA . Complete with battery and test probe. $\mathbf{~ 7} .5 .0$ post paid.

34R SILICON SOLAR CELL

$4 \times \cdot 5$ volt unit series
connected, output
in to $2 V$ at 20 mA
the efficiency of selenium. As used in power Earth Satellites, $45 / \mathrm{m}, \mathrm{P} . \&$ P. $1 / 6$

LT TRANSFORMERS

All primaries $220-240 \mathrm{~V}$

	Ne. Sec, Taps	Price	Corr.
1	30, 32, 34, 36 V at 5 A	¢4.5.0	6/-
2	$30,40,50 \mathrm{~V}$ at 5A	£6.5.0	$6 / 6$
3	$10,17,18 \mathrm{~V}$ at 10A	£4.10.0	4/6
4	$6,12 \mathrm{~V}$ at 20A	¢5.17.6	6/6
5	17, 18, 20V at 20A	£6.12.6	$6 / 6$
6	$6,12,20 \mathrm{~V}$ at 20A	¢6.5.0	7/6
7	24 V at 10A	$\pm 4.15 .0$	5/6
8	$4,6,24,32 \mathrm{~V}$ at 12 A	\$6.10.0	$6 / 6$

service trading co

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN

CLOSED SATURDAY

Personal callers only
9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel, GER 0576

NEW RAMGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, $45 / \mathrm{F} .14$ element, 52/6. 18 element. 60/- Wall Mounting with Cranked Arm, 7 element, 60/-. 11 element, 67/-. 14 element, 75/-. 18 element, 82/6. Mast Mounting with 2 in . clamp. 7 element. 42/6; 11 element, 55/-; 14 element, $62 /-; 18$ element, $70 / \mathrm{m}$. Chimney Mounting Arrays, Complete, 7 element, $72 / 6 ; 11$ element, $80 /-; 14$ element, $87 / 6 ; 18$ element;
$95 /=$ Complete assembly Instructions with every untt. Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps from 75%. State clearly channel number required on all orders.

BBC•ITV AERIALS

BBC (Band 1). Telescoplc
 loft, $25 / \%$ External S/D, 30/-. ITV (Band 3). 3 element loft array, 30/-. 5 element, 40/-. 7 element, $50 /-$. Wall mounting, 3 element Combined BBC/ITV. Loft $1+3$, $40 /-; 1+5,50 /-i \quad 1+7$,
$60 /=$ Wall mounting $1+3,57 / 6 ;$ $60 / *$ Wall mounting $1+3,57 / 6 ;$
$1+5,67 / 6 ;$ Chimney $1+3,67 / 6 ;$ VIF V/~ Transistor pre-amps,

COMBINED BBCL-ITV-BRC2 AERLALS $1+3+9,70 / \% \quad 1+5+9,80-1, \quad 1+5+14$, , $0 /$; leaflet
F.M. (Band \&) Loft S/D, 15/-, " H^{4}, 32/8, ${ }^{3}$ element, $55 /=$. External units avallable. Co-ax. cable, 8d. yd. Co-ax. plugs, 1/4. Outlet boxes, 5/Diplexer Crossover Boxes, 13/6. C.W.O. or C.O.D. P. \& P. $6 / \%$. Send 6 d . stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)

40-41 Monarch Parade
London Road, Mitcham, Surrey $01-6484884$

The complete detector unit ready for mounting on the handle and connecting to search coil

If it is required to dismantle the instrument for portability, the handle could be made a tight push fit into the block with a screw to secure it. Leads from the coil could terminate in a small 3 -pin plug to insert in a socket on the detector box. A jack could be used for headphones.

ADJUSTMENTS FOR CORRECT OPERATION

No results can be obtained until the two tuned circuits are operating on a near frequency. Adjusting $\mathrm{VC} 1, \mathrm{VC} 2$ and the core of E 2 throughout their full range should produce a heterodyne whistle in the phones. If so, adjust VC1 so that zero beat arises with VC2 about half closed. Rotating VC2 from this position, in either direction, should cause the tone to rise in pitch.
If no tone can be heard switch off and temporarily disconnect TR3, and use a meter to check battery current. This should change if C4 is shorted, or if VC2 is shorted. If there is no change in current when either of these tests is made, the appropriate oscillator is not working, and connections should be checked. When all is satisfactory reconnect TR3.

If both TR1 and TR2 are oscillating, but no tone is obtained, their frequencies are probably too fart apart. One way of checking this is to take a 300 pF variable capacitor, and temporarily connect it across L1 (A to E). If closing this capacitor enables a heterodyne to be produced, then the frequency of L1 is too high for L2 to match. This is corrected by increasing C4, or by reducing VC1, or having fewer turns or L2, or withdrawing the core, until VC1 and VC2 can be adjusted as described.
Should a heterodyne only be possible with extra capacitance across L2, then L2 is at too high a frequency. This can be overcome by reducing C4, or increasing the value of $\mathrm{VC1}$, or screwing the core of L 2 further in.
VC2 is best adjusted to give a low frequency tone in the headphones, and so that the frequency rises when LI approaches the metal sought. If the tone falls, passes through zero, then begins to rise, VC2 can be retuned to the other side of zero beat when no metal is near Ll.

THYRISTORS AND THE EXPERIMENTER continued from page 23

to reduce radiation have been noted earlier and should be followed for minimum interference on radio and television.

The burst-fire control method, however, switches power to the load at a much lower rate, say every second for $\frac{1}{2}$ second at a time, and hence the thyristor is required to switch on-load current that much less often. If additional circuitry is employed-rather too complex to include in the present article-then it is possible to arrange for the load to be both switched on and off at zero mains voltage, i.e. at almost zero load current, and in that case no interference can be generated.

OBJECTIONAL FLICKER

Although the potential interference level is much less using burst-fire, there is (of course!) a disadvantage. If used for lamp control there is a very pronounced, objectional ficker, although when used for the control of heaters this factor does not apply. Since heaters are generally of higher wattage, and so take more current than lamps, higher levels of interference would be generated using phase-shift control with them-hence the recommendation to use burst-fire when possible.

There is another objection to the use of the phaseshift method for high power control.

The phase-shift method introduces some distortion into the waveform of the electricity supply. If a number of high power devices were operating simultaneously in the same electricity supply area, this distortion could assume serious proportions, and affect other equipment connected to this area. For this reason, the Electricity Council recommends the use of the burst-fire method, except for low power devices such as light dimmers.

THE TRIAC

Before concluding, mention must be made of the Triac, which is equivalent to two thyristors in back-toback parallel. Control of a.c. is possible using a single Triac and no rectifiers, but such devices are dearer than the equivalent thyristors at present. However, they will obviously make their bow in the home construction field before long, and will lead to simplification of circuitry.

SCOPE FOR EXPERIMENT

Since such a variety of circuits have been quoted in this review (most of which have either been tested, or actually evolved, by the author) it has not been possible to give here constructional details for the building of units making use of them. Rather it is hoped that experimenters will be encouraged to try some of the circuits in the applications mentioned, and to think of many more uses besides-the "Ingenuity Unlimited" pages are open to all! Thyristors are very easy to use once their principles are understood.

It would be as well to conclude by re-stating three important points:

1. Do not exceed the rating of the device in useremember switch on surges, etc.
2. Provide adequate r.f. interference suppression such as an earthed metal case and/or a LC filter.
3. Remember that in applications involving mains, switch off before touching any of the exposed circuitry.

ESRO PROGRAMME

The satellite programme now finalised by the European Space Research Organisation consists of seven vehicles for the period 1969 to 1975. These are all scientific satellites. In addition to these there are several feasibility studies which will be undertaken by both the European Space Research and Technology Centre and industry through ESRO contracts.

These include a combined pure research and operational meteorological satellite for data collection and distribution. The pure research would be devoted to investigation of the lower atmosphere properties of winds and temperatures; the meteorological data would be collected and distributed in the usual way. The satellite would have a threeaxis stabilisation, one pointing to the
detect the emission of galactic and extra-galactic sources, two others will be sun pointing, and there will be a cosmic ray telescope to observe primary particles.

VACUUM TELESCOPE

At Sunspot in New Mexico a solar telescope of revolutionary design came into operation in October 1969. The telescope of the tower type was designed and built by the United States Air Force Cambridge Research Observatory at Sacremento Peak. Built at a cost of $\$ 3 \cdot 2$ million it is hoped that it will enable more precise measurements of solar activity and accurate forecasts of possible harmful radiations to be made. Thus astronauts' wellbeing will be safeguarded. It will also enable an assessment to be made regarding communications and allowances

centre of the earth and another along the flight path in addition to normal. Two versions may be made, one of 225 kg using Europa I for launch and a smaller version for Scout launch weighing 115 kg .

The research for these projects is being undertaken by Elliot Bros. with Fokker and Dornier. The equipment will include a basic radiometer, a scanning radiometer/photometer, an ultra-violet solar monitor, and a balloon interrogation system. The solar paddles for power supply will be moveable.

ULTRA-VIOLET

The Mercury fly-past probe has already been described. An ultraviolet astronomy satellite $U V A S$ may be part of the next major project. This vehicle is intended to be complementary to the NASA Orbiting Astronomical Observatories. One version is by the Culham Laboratory at Abingdon covering $U-V$ spectroscopy and another by Fiat using U-V mapping in place of spectroscopy.

TD-I which is scheduled to be launched by a Delta N in 1972 weighs about 450 kg . It is an astrophysics laboratory which will measure and analyse electromagnetic radion from the sun and other celestial objects. There are to be seven experiments. Four of these will scan the sky at a number of wavelengths to
made for the effect on the signals to and from spacecraft at great distances.

The tower is 39 meters in height and surrounds the tube of the telescope itself. The tube of the telescope is 98 metres in length, and the upper portion rotates to follow the sun's path. The optics are simplified by this method and are also out of reach of most of the turbulence arising from the ground.

MERCURY BEARING

The tube which weighs about 250 tons is three metres across at its widest point and floats on a mercury bearing near the top of the tower. The sun's rays enter through a quartz window 76 cm across and are reflected down the tower to the mirror (which is 45 metres below ground), then up to ground level to three spectroscopes. One of these is a new universal spectroscope specially to serve this telescope.

The unique feature of this telescope is the fact that the whole system is in a vacuum. The tube is kept frea of air turbulence and dust by this method. ln addition the tower itself is refrigerated to minimise the possible dancing of the image of the sun.

The observatory has a special interest in the study of the chromosphere of the sun. This is the highly
turbulent envelope thousands of kilometres deep from which there are eruptions of plasma and the ejections of matter and radiations which affect communications.

THE DENSITY OF PLUTO

It is only now that a more accurate estimate of the density of the most distant planet known in the solar system has been made, that the orbit of Neptune can be more accurately computed. Neptune was discovered in 1846 and has only completed about three-quarters of its orbit up till now.

The theories have all been based on an assumed value for density of Pluto. These have been based on the amount of the orbit of Neptune that has been observed. The two variables which are dependent on each other for their assessment are now again the subject of study.

Hitherto the mass of Pluto has been taken to be about 0.9 that of the earth. American astronomers at the United States Naval Observatory in Washington have suggested that it would be less complicated to assess the correst values if the mass of Pluto was adjusted to what is known now of Neptune's orbit. Accordingly they suggest that mass should be taken as 0.2 as this is the value that best fits the known facts.
The interesting thing about this suggestion is that whereas the earlier figure for the mass implies an extremely high density, the new suggestion requires a density of only 1.5 times that of the earth. This is much more plausible. Of course the whole problem will be solved in the year 2,000 when Neptune will have completed its orbit round the sun. This however may well be after probes have been in that vicinity and sent back direct information.

MORE PULSARS

Professor J. G. Davies has announced that two more pulsars have been found. As the Mark I telescope at Jodrell Bank is undergoing some modifications, it required to be pointed to the zenith without azimuth movement for about two months. The whole of this period was taken up with the study of pulsars.

In October the two mentioned were discovered by a technique developed by Professor Davies. This technique is to look for individual dispersed pulses rather than for pulses over a period. The two frequencies used are a few MHz separation at a frequency nominally 480 MHz . One advantage of the method is that it is sensitive to the many pulsars that do not show continuous trains of pulses. The two new ones found were more sporadic in their pulsations than the earlier pulsars found. At the date of the October discovery the total number of pulsars catalogued was 43.

There's Something for Everyone in the NEW HEATHKIT CATALOGUE!

- guttar practice AMPLIFIER

- AMBASSADOR SPEAKERS

- ELECTRONIC METRONOME

- alrcraft monitor receiver

- car radio
- TECHNICIANS LOW-COST 'VVM'

Look Valnetts newn frem

30

- STEREO

 RECORD PLAYER- D.I.Y. SPEAKER SETS
- GENERATORS
- d.I.Y. radiogram pack
- MANY OTHER MODELS tOO NUMEROUS TO MENTION

Leisure time takes on a new sparkle, a new interest when you add the creative fun you get from building a Heathkit model. Get the thrill of personal achievement when you switch on and realise that you've done something you doubted you could ever do. Your first step is FREE! just simply send for the latest Heathkit catalogue and see what a wide choice of models we offer. What ever your requirement, be it $\mathrm{Hi}-\mathrm{Fi}$, Audio, a Portable Radio, a Record Player, Amateur Radio, a SW Receiver, a Test Instrument or Educational Equipment . . . There is something for every one. And we are adding to our wide range continuously.

-station Tran tion problems with this 38 sbs), in de-luxe platic cabinets for deaster and mounting. Callic platic cabinets for de日k or wall Subs to Master. Ideally suitable for Business and gery, Schools, Hospital, offce and H Business, Suron one 9 V battery. On/ofi switch. Volume. Operates complete with 3 connecting wires each 66 ft and P. \& P. $7 / 6$.

MAINS INTERCOM
No batteries-ao wires. Just plug in the maine for ingtant two-way, loud and clear communication. P. EP. S/Gextra.

3 Gns
Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Battery 2/6. P. \& P. 4/6.

ciency with this incredible ve-Luxe Tolophone Amplifior. Take down long telephone messages or converge without holding the handset. A useful office aid. On/ 3/6. Full price refunded if not satiofied ex tra. P. \&

WEST LONDON DRRECT SUPPLIES (PE/3)
168 KENSINGTON HIGH STREET, LONDON, W. 8

By M. J. Gay Chief Circuit Engineer (Linear), Plessey Microelectronics

LAST month we completed the description of the two main amplifiers and their construction. Now we will describe the pre-amplifier circuit used to feed the amplifiers.

PRE-AMPLIFIERS

The pre-amplifier design uses two Plessey SL702C integrated circuit operational amplifiers per channel. The first amplifier provides amplification and equalisation for the various signal sources. The second amplifier provides further amplification and tone controls. Programme sources covered are crystal or ceramic pick-up, magnetic pick-up, tape replay and radio. The circuit diagram is shown in Fig. 11.

OPERATIONAL AMPLIFIER BIASING

Operational amplifiers, having differential input stages, normally need two supply lines. In the arrangement used here the SL702C generates its own "earth" reference at half supply voltage by means of decoupled d.c. feedback from the normal earth point. Fig. 10 shows the circuit diagram of the SL702C plus biasing arrangements. The amplifiers are operated on a 12 V supply.

EQUALISATION SECTION

For radio, tape and magnetic pick-up inputs the amplifier is used with series feedback but for crystal or ceramic pick-up inputs it is used with capacitive shunt feedback. The feedback network is selected by switch Sic and the appropriate input to the integrated circuit by switches Sla and Slb. The "tape" feedback network consists of R11 and C11. Resistor R11 must be chosen to suit the playback speeds as in Table 2. Magnetic pick-up compensation is obtained from the network R10, C9 and C10; C11 provides shunt feedback for use with ceramic pick-ups. For radio inputs the amplifier gain is reduced to just over unity.

Table 2. TAPE EQUALISATION

Speed (inches per second)	RII
3.75	$22 \mathrm{k} \Omega 2$
7.5	$10 \mathrm{k} \Omega 2$
15	$6.8 \mathrm{k} \Omega 2$

The use of capacitive shunt feedback when the amplifier is fed from a ceramic pick-up obviates the requirement for a very high input impedance. The pick-up capacitance and the feedback capacitor act as a see-saw about the amplifier's virtual earth input giving a constant gain down to very low frequencies. Furthermore the amplifier can readily handle the possibly very high outputs from ceramic or crystal pick-ups, when connected in this manner. With a 6.8 nF feedback capacitor (Cl1) the amplifier output will be typically seven times lower than the pick-up output. This brings the output near that obtained with other programme sources and ensures that good overload capability is maintained.

RUMBLE FILTER

A simple rumble filter is incorporated in the equalisation circuit by the inclusion of the network R7, R8, R9 and C7 across the feedback components. At low frequencies as C7 impedance rises, the transfer impedance of this network falls causing the amplifier gain to fall (R 8 damps the bridged T network resonance between R7, R9, C7 and C11 or C9 plus C10). With radio inputs, when the amplifier gain is set to a much lower level, the rumble filter is inoperative.

With radio, tape and magnetic pick-up inputs the input impedance of the amplifier is set at 47 kilohms by R3. A small (47 pF) capacitor (C3) is added to reduce the possibility of h.f. oscillation due to stray capacitance feedback into this impedance when the input is open circuit.

The operational amplifier is stabilised by capacitors C4 and C5 connected to its two compensation points.

TONE CONTROL SECTION

The main amplifier requires a low impedance drive to avoid upsetting the active filter characteristics. Therefore it is not possible to place an attenuator type tone control after the pre-amplifier. Noise considerations make it equally undesirable to place one after the equalisation stage. The tone controls are therefore incorporated into a feedback network around the second operational amplifier. The "Baxandall" arrangement is used since this has the considerable advantage of using linear potentiometers (other

Fig. 10. Biasing arrangements for the SL702C integrated circuit-voltages are nominal values

Fig. II. Circuit diagram and one channel of the pre-amplifier section of the hi fi stereo amplifier. Sl positions are: 1 Tape, 2 Radio, 3 Magnetic pick-up, 4 Ceramic pick-up

a new 4-way method of mastering ELECTRONICS by doing - and - seeing . . .

UNDERSTAND CIRCUIT DIAGRAMS

| 4 CARRY OUT OVER 40 EXPPERIMENTS ON BASIC ELECTRONIC |
| :--- | :--- | :--- |
| CIRCUITS AND SEE HOW THEY WORK |

[^2] chanponent numbers and wiring connections have been shown for and 2 connections are indicated by numbers $/$ to 8 on the board

1234567891012141618202224262830323436384042444648505254565860626466687072747678808284868890929496

arrangements require antilogarithmic potentiometers). The standard Baxandall see-saw gives a mid-band gain of unity which is too low for our requirements. An attenuator is therefore placed between the amplifier output and the feedback network to increase the overall mid-band gain to approximately five times.
The attenuation is varied by means of the potentiometer VR4 (Fig. 11) which provides the balance adjustment, and is connected between the two channels. This control gives a gain adjustment range of - 3 dB to +6 dB for each channel and thus compensates for balance errors up to 9 dB . The operational amplifier is stabilised by capacitors C 13 and C14.

PRE-AMPLIFIER CONSTRUCTION

The two pre-amplifiers were built on a $0 \cdot 1 \mathrm{in}$. matrix Veroboard shown in Fig. 12. Because the potentiometers used had bushes too short to enable the controls to be affixed to the Veroboard and a chassis, they were attached by floating leads. The constructional points made previously in this article should also be considered when building the pre-amplifier section.
The crosses shown on the underside of the Veroboard represent breaks in the copper strip and should be made before affixing the components; this also applies to Fig. 5 last month.

MECHANICAL CONSTRUCTION

The main amplifier boards and pre-amplifier board have been bracketed together as shown in Fig. 14. The assembly is mounted in a simple chassis which carries the controls and power supply components (Fig. 13). To allow adjustment of the speaker sensitivity balancing potentiometers. access holes are drilled in the chassis. Fig. 15.

Fig. 14. Circuit board assembly details

Fig. 15. Chassis details for the hi fi stereo amplifier. The front panel has been made removeable to enable wiring to the controls

PRE-AMPLIFIER PERFORMANCE

The response curves for the equalisation section are shown in Fig. 16. Fig. 17 shows the tone control characteristics. The sensitivities at the different settings are given in Table 3 (these are inputs required for 300 mV r.m.s. output with volume control at maximum.)

Table 3. INPUT SENSITIVITIES

The amplifier input impedance allows operation from tape heads of up to one Henry inductance. Typically half track heads of 100 mH generate around 2.5 mV at 1 kHz . If lower output heads are used then higher gain will be required. Referring to Fig. 11 this may be obtained by reducing R15 and VR4 (halving their value
doubles the gain). To maintain the l.f. response C15 and C20 must be proportionately increased. The other sensitivities are more than adequate; that quoted for ceramic p.u. is for units of 800 pF capacitance. The overload margin of the equalisation section is 30 dB at all settings.

DISTORTION

Distortion was measured for the equalisation section at 60 mV r.m.s. output (corresponding to full drive into the main amplifier) and at 600 mV r.m.s. output, and for the tone control section at 300 mV r.m.s. output (full drive into the main amplifier). Since the SL702C is an essentially linear amplifier and we have up to 40 dB negative feedback around it, we expect very low distortion; this is the case. The equalisation section generates less than 0.01 per cent distortion (even at

COMPONENTS. . .

PRE-AMPLIFIER and CHASSIS
All components except the potentiometers, C20, SI and Veroboard must be duplicated for channel B

Resistors

RI	$1.8 \mathrm{k} \Omega$ carbon
R2	$1.8 \mathrm{k} \Omega$ carbon
R3	$47 \mathrm{k} \Omega$ film
R4	470Ω film
R5	$1.2 k \Omega$ film
R6	$4.7 \mathrm{k} \Omega$ carbon
R7	$33 \mathrm{k} \Omega$ film
R8	$4.7 \mathrm{k} \Omega$ carbon
R9	$33 \mathrm{k} \Omega$ film
R10	$33 \mathrm{k} \Omega$ carbon
RII	see text, film
R12	$4.7 \mathrm{k} \Omega 2$ carbon
R13	$8.2 \mathrm{k} \Omega$ film
R14	$2 \cdot 7 \mathrm{k} \Omega$ film
R15	330Ω carbon
R16	$10 \mathrm{k} \Omega$ film
R17	$10 \mathrm{k} \Omega$ film
All \pm	0\%, $\frac{1}{8}$ or $\frac{1}{4}$ wa

Capacitors

Cl	$8 \mu \mathrm{~F}$ elect. 16 V
C2	$4 \mu \mathrm{~F}$ elect. 16 V
C3	47 pF silver mica
C4	47 nF polyester
C5	330 pF ceramic
C6	$125 \mu \mathrm{~F}$ elect. 16 V
C7	$1 \mu \mathrm{~F}$ polyester
C8	$4 \mu \mathrm{~F}$ elect. 16 V
C9	$2 \cdot 2 n F$ polystyrene
Cl0	10 nF polyester
Cll	6.8 nF polyester
CI2	$4 \mu \mathrm{~F}$ elect. 16 V
Cl3	47 nF polyester
Cl4	330 pF ceramic
Cl5	$250 \mu \mathrm{~F}$ elect. 16 V
C16	33 nF polyester
C17	33 nF polyester
C18	6.8 nF polyester

$\begin{array}{ll}\text { C19 } & 6.8 \mathrm{nF} \text { polyester } \\ \mathrm{C} 20 & 80 \mu \mathrm{~F} \text { elect. } 16 \mathrm{~V}\end{array}$
Potentiometers
VRI $5 \mathrm{k} \Omega$ tandem log
VR2 $100 \mathrm{k} \Omega$ tandem lin
VR3 $100 \mathrm{k} \Omega$ tandem lin
VR4 Ik Ω lin

Integrated circuits

ICl and IC2 SL702C Plessey (2 off) (available from S.D.S. Ltd., Hillsea Industrial Estate, Portsmouth)

Miscellaneous

SI 6-pole 4-way wafer switch
Veroboard 0.1 inch matrix 9.8 in $\times 2.3$ in
SKI, 2 and 3 double phono sockets (3 off)
16 s.w.g. aluminium $14 \frac{1}{2}$ in $\times 12 \mathrm{in}$

Fig. 16. Input equalisation characteristics of the preamplifier. These correspond to RIAA (BS 1928) characteristics

This shows the method of assembling the three component boards inside the chassis. The upper main amplifier board is separated from the chassis by four small spacers

Fig. 17. Tone control characteristics

600 mV r.m.s. output) except at very low frequencies in the "magnetic pick-up" and "tape"" positions where the feedback is much reduced. At 40 Hz for these settings, distortion reaches 0.1 per cent at 600 mV r.m.s. output. With tone controls level the tone control section generates less than 0.02 per cent distortion at 300 mV r.m.s. output.

NOISE

Noise measurement presents some problems as the noise spectrum is of course shaped according to the equalisation characteristics. For this reason a perceived signal to noise ratio was determined in this case. This is obtained by measuring the noise over the audio frequency band, then weighting the results according to the ear's sensitivity, before integrating to obtain the total effective noise power. Noise was measured with a 10 kilohm source for "radio", an 800 pF source for "ceramic p.u." and a 110 mH source for "magnetic p.u." and "tape"; these corresponding to real conditions. The results are shown in Table 4.

Table 4. NOISE LEVELS

	Ceramic Input Perceived			
Netic Noise	Radio	p.u.	p.u.	Tape
Reference Input	-83 dB	-85 dB	-64 dB	-62 dB

The noise levels shown in Table 4 are relative to the reference levels given which are the minimum required for 300 mV r.m.s. output (full drive to main amplifier). In most cases, the source output will be substantially larger than these levels, particularly in the case of magnetic pick-ups which typically give 20 mV r.m.s. peak music output (the high sensitivity is a by-product of the compensation required). In practice perceived noise levels will be around -90 dB for radio and ceramic p.u. inputs, around -80 dB for magnetic p.u. input and around -60 dB for tape input.

SETTING UP

Caution: the wipers of the speaker sensitivity balancing potentiometers connect to the SL403 main amplifier input and must not be shorted to earth; use only a non-metallic tool for adjustment.

To gain access for adjustment of the bias correction potentiometers, the lower main amplifier board is freed from the assembly; this is a once only adjustment. Again take care not to short the potentiometer wipers to earth.

Listening tests are very satisfactory; the performance of the equipment was found to be significantly better than the author's valve based high fidelity amplifier (a $0 \cdot 1$ per cent distortion 10 W system) which it now replaces.

Note: In the first part of this article the value of R21 was incorrectly given as $22 \mathrm{k} \Omega$, this should have been $12 \mathrm{k} \Omega$. Socket SK4 is not duplicated and RI, in Table 1, for the middle channel (250 Hz crossover) should be $39 \mathrm{k} \Omega$.

Also the equation referring to Fig. Ib should have read:

$$
\frac{V_{0}}{V_{i}}=\frac{-C_{1}}{C_{3}}\left[\frac{1}{1+\frac{1}{j \omega}\left(\frac{C_{1}+C_{2}+C_{3}}{C_{1} C_{3} R_{2}}\right)-\frac{1}{\omega^{2}}\left(\frac{1}{C_{2} C_{3} R_{1} R_{2}}\right)}\right]
$$

THE Schmitt trigger is an important circuit that appears frequently in electronic switching systems. The basic circuit (Fig. 2.1) consists of a two-stage directly coupled "amplifier" with positive feedback across the common emitter resistor R3.

To see how it works, consider first that the base of TR1 is connected to the common negative line so that TR1 is non-conducting. TR2 conducts, its base current being supplied by means of the potential divider network R1, R2, and R4. The voltage dropped across R3 by the emitter current of TR2 causes the emitter of TR1 to be positive with respect to the common line. The base-emitter junction of TRI is therefore reverse biased, so TR1 is held off.

Now if the base voltage of TR1 is gradually raised from its initial value of zero, a stage will be reached at which its value is just greater than the emitter voltage. TR1 will then begin to conduct, and as it does so, the increasing voltage drop across R1 will cause the collector voltage of TR1 to fall. The collector of TR 1 is connected to the base of TR2 via' a voltage divider network, therefore the base voltage on TR2 will drop and TR2 will conduct less heavily.

When the collector current of TR2 begins to fall, the voltage on the emitter falls (emitter follower action) increasing the potential difference between the base and emitter of TR1. Therefore, TR T conducts while TR2 current is reduced to cut-off.

REGENERATIVE ACTION

The circuit can be made regenerative; that is, it will react to an initial change (the increase in $V_{b_{1}}$ beyond the threshold value in this case) in such a way as to increase continuously the effects of that change. The process stops when no further change is possible; in this circuit, when TR1 is hard on and TR2 is off.
The reverse situation is also true. If $V_{b_{1}}$ is lowered from a value in excess of the threshold, a second threshold will be reached at which the circuit will revert to its initial condition. These two switching processes are exceedingly fast.
The property of the Schmitt trigger to react very rapidly to values of $V_{b_{1}}$ equal to two threshold values suggests two obvious applications:
(a) as a threshold sensitive switch or "level detector";
(b) as a shaping circuit to "square-off" an input voltage waveform of arbitrary shape.
These two applications are evident from an examination of typical input and output waveforms (Fig. 2.2.)

DESIGN CALCULATIONS

The Schmitt circuit design procedure is by no means as simple as it may appear at first sight and a full algebraic derivation of formulae from which design can be carried out is quite complex. However, it is possible to make some simplifying approximations from which useful results can be obtained.
Let us use the formulae to design a circuit which will provide a 6 V swing across R 5 on switching and a current of 10 mA in TR2 when it is conducting. Let $V_{1}=4$ volts and $V_{2}=3$ volts (Fig. 2.2).
(step 1)

$$
\begin{equation*}
R_{5}=6 \times \frac{1,000}{10}=600 \mathrm{ohms} \tag{step2}
\end{equation*}
$$

(A preferred value resistor of 560 ohms can be used.)

Fig. 2.1. Basic theoretical circuit of the Schmitt trigger

Fig. 2.2 Input and output waveforms for the Schmitt trigger showing the trigger voltages V_{1} and V_{2}

DESIGN STEPS

I. Decide upon values of the upper and lower thresholds V_{1} and V_{2} respectively, the output voltage swing V_{0} and the collector current $I_{c 2}$ of TR2.
2. Calculate $R_{5}=V_{0} \|_{c_{2}}$
3. Choose a value for $V_{C C}$. (This must be greater than V_{0}.)
4. Calculate $R_{1}+R_{2}+R_{4}=h_{\mathrm{FE}} V_{\mathrm{CC}} / 10 \times I_{\mathrm{c} 2}$.
5. Calculate $R_{4}=h_{F E} V_{1} / 10 \times I_{\mathrm{C} 2}$. (V_{1} is higher threshold.)
6. Calculate $R_{3}=\left(V_{1}-V_{\text {be }_{2}}\right) / I_{c_{2}}$.
7. Calculate $I_{c_{1}}=\left(V_{3}-V_{\text {be }}\right) / R_{3}$. $\quad\left(V_{2}\right.$ is lower threshold.)
8. Calculate $R_{1}=V_{C C}\left(1-\frac{V_{2}}{V_{1}}\right) / I_{\mathrm{c}}$.
9. Calculate $R_{2}=\left(R_{1}+R_{2}+R_{4}\right)-\left(R_{1}+R_{4}\right)$.
10. Check that $h_{F E} R_{3}>R_{4}\left(R_{1}+R_{2}\right) /\left(R_{1}+R_{2}+R_{4}\right)$.

Let $V_{\mathrm{CC}}=9 \mathrm{~V}(\operatorname{step} 3)$; this will be sufficient to supply an output voltage (V_{0}) of 6 volts and allow for a voltage drop across R 3 which will be catculated later.

$$
\begin{aligned}
R_{1}+R_{2}+R_{4} & =h_{\mathrm{FE}} V_{\mathrm{CC}} / 10 \times I_{\mathrm{C} 2} \\
& =20 \times 9 / 10 \times \frac{10}{1,000}
\end{aligned}
$$

$$
=1,800 \mathrm{ohms}
$$

(step 4)
assuming a worst case value for h_{FE} of 20 .

$$
\begin{aligned}
R_{4} & =h_{\mathrm{FE}} V_{1} / 10 \times I_{\mathrm{c} 2} \\
& =20 \times 4 / 10 \times \frac{10}{1,000} \\
& =800 \mathrm{ohms}
\end{aligned}
$$

$$
\text { (step } 5 \text {) }
$$

(A preferred value resistor of 820 ohms can be used.)

$$
\begin{aligned}
R_{3} & =\left(V_{1}-V_{\mathrm{be}_{2}}\right) / I_{\mathrm{c} 2} \\
& =(4-0 \cdot 6) / \frac{10}{1,000}
\end{aligned}
$$

$=340 \mathrm{ohms}$
(A preferred value resistor of 330 ohms can be used.)
The value of $V_{\text {be2 }}=0.6$ is based on the use of a silicon transistor for TR2.

$$
\begin{align*}
I_{\mathrm{C}_{1}} & =\left(V_{2}-V_{\mathrm{be}}\right) / R_{3} \\
& =(3-0.8) / 330 \\
& =6.67 \mathrm{~mA} \tag{step7}\\
R_{1} & =V_{\mathrm{CC}}\left(1-\frac{V_{2}}{V_{1}}\right) / I_{\mathrm{Cl}_{1}} \\
& =9\left(1-\frac{3}{4}\right) / \frac{6.67}{1,000} \\
& =337.5 \mathrm{ohms}
\end{align*}
$$

(step 8)
(A preferred value resistor of 330 ohms can be used.)

$$
\begin{align*}
R_{2} & =\left(R_{1}+R_{2}+R_{4}\right)-\left(R_{1}+R_{4}\right) \\
& =1,800-(340+800) \\
& =660 \text { ohms } \tag{step9}
\end{align*}
$$

(A preferred value resistor of 680 ohms can be used.)
The condition of step 10 (i.e. $h_{\mathrm{FE}} R_{3}$) is fulfilled.

ASSEMBLY AND OBSERVATIONS

The circuit can be assembled on S-Dec using the connections shown in Fig. 2.3; the switching operation can be observed with the aid of voltmeters. Note that unless the voltmeters have high resistances, their presence will affect the d.c. conditions of the circuit.

Several transistor types can be used; those suggested are the silicon $n p n 2$ N706 or ZTX300. The numbering in Fig. 2.3 applies for $n p n$ transistors with a lead sequence e-b-c. Devices such as the TIS50 or 2N2926 which have a b-c-e sequence may need a slightly different layout if the wires are not to be bent across each other.

Dynamic operation of the circuit can be observed if a signal generator is used to provide the input signal, while the output voltage waveform is observed on an oscilloscope. A 6 V mains transformer could be used to provide the input if required.

When applying a sinusoidal input, it is easy to cause reverse bias breakdown of the base-emitter junction of a silicon transistor. Just a few volts will often suffice.

Schmitt Trigger

Fig. 2.3. Schmitt trigger circuit with S-Dec hole numbers for npn transistors and other components

To safeguard against this breakdown, a safety diode should be connected in the input lead as shown in Fig. 2.4. Any small diode will be suitable.

The effect of the difference between the thresholds V_{1} and V_{2} is easy to observe if the output is connected to an oscilloscope.

CR CIRCUIT TRANSIENTS

Series CR circuits are frequently used to perform timing functions in switching circuits and are also to be found in the couplings between individual switching circuits. It is important to understand how they react to rectangular voltage waveforms.

A simple circuit for obtaining a close approximation to a rectangular voltage waveform is shown in Fig. 2.5. If the switch can be made to operate alternately between positions A and B, the voltage applied to the series combination of CI and RI has alternate values of E and zero volts.

When the switch is at A, Cl and RI share the total voltage E supplied from the battery. Thus $E=V_{\mathrm{C}}+V_{\mathrm{R}}$. The battery charges capacitor Cl through resistor R1. As the capacitor becomes fully charged, the charging voltage reduces to near zero.

The initial value of the charging current is approximately E / R_{1} from Ohm's Law, but reduces as the voltage charge on the capacitor opposes the applied voltage.

Now the voltage across $\mathrm{R} 1\left(V_{\mathrm{R}}\right)$ is always equal to $I \times R_{1}$ from Ohm's Law. Hence V_{R} has an initial value equal to E and a final value of zero some time after switching to A. It is easily shown that the relation between V_{R} and time t is

$$
V_{\mathrm{R}}=E \cdot e^{-t / C R}
$$

This is illustrated by the section of the curve marked AP in Fig. 2.6.

Now because V_{R} and V_{C} must always add up to E,
the capacitor voltage V_{C} must be as shown. Its equation is

$$
V_{\mathrm{C}}=E-V_{\mathrm{R}}=E\left(1-e^{-/ / C R}\right)
$$

If the switch connection is made to B when Cl has become fully charged, Cl will discharge through R1, the current now flowing in the reverse direction.

As more and more energy is dissipated in R1, the current (and therefore V_{R}) falls. V_{R} and V_{C} are now as shown on the sections of the curves beyond the point P, and are given mathematically by

$$
\begin{aligned}
& V_{\mathrm{R}}=-E e^{-t / C R} \\
& V_{\mathrm{C}}=+E e^{-/ / C R}
\end{aligned}
$$

The quantity $C R$, which appears in these formulae, is called the time constant of the circuit. Its significance is found by considering what happens after a time equal to $C R$ has elapsed after switching to either A or B . Substitution of $t=C R$ in the above formulae shows that 66 per cent of the total possible voltage changes occur during this time. Thus on first switching to A, the capacitor can be considered to be almost completely charged after a time interval equal to the time constant.

Note that if $C R$ is required in seconds, R must be in ohms and C in farads. Alternatively, R can be in megohms if C is in microfarads; for example,

$$
\begin{aligned}
& \text { if } C=1 \mu \mathrm{~F}, R=1 \mathrm{M} \Omega, C R=1 \mathrm{sec} \\
& \text { if } C=0.001 \mu \mathrm{~F}, R=10 \mathrm{k} \Omega, C R=10 \mu \mathrm{sec} .
\end{aligned}
$$

EXPERIMENTS

1. To demonstrate the above results using simple equipment it is easier to use a circuit with a long time constant. The resistance R will therefore be large, so it will be difficult to observe V_{R} using a moving coil voltmeter, the relatively low resistance of which will shunt R. The value of C will also be large.

If the voltmeter is connected across the capacitor to measure $V_{\mathbf{c}}$, the meter resistance and R together form a voltage divider across E so the circuit is altered sig-

nificantly. However, if a high resistance (say $20,000 \Omega$ per volt) voltmeter is available, it will be possible to demonstrate the voltages V_{C} and V_{R} if C is equal to $100 \mu \mathrm{~F}$, and R is equal to about 10 kilohms.

Note that the damping factor of the meter movement will mask a large part of the instantaneous changes indicated on Fig. 2.6. The meter should also be able to measure current to demonstrate the current-time relationship, if it is connected in series with the C and R. The circuit shown in Fig. 2.5 is easily assembled on an S-Dec "breadboard", a jumper lead being used in place of the switch.
2. The Schmitt circuit can be used as a source of a rectangular voltage waveform which can be applied to the CR circuit; the voltages V_{C} and V_{R} can be observed on an oscilloscope. A sine wave signal generator is required for the input to the Schmitt.

Apply a 1 kHz signal to the Schmitt, of sufficient amplitude to cause the circuit to trigger, and observe the output voltage waveform on an oscilloscope. Now note the effect of connecting the, CR circuit across the output as shown in Fig. 2.7. The time constant of this network is short, about 0.05 ms , so a series of positive and negative-going spikes will be observed on the 'scope.

If a diode is connected across the resistor, either the positive or the negative-going spikes can be suppressed, the diode acting as an effective low resistance shunt to a spike of the appropriate polarity. The Schmitt is now being used as a source of trigger spikes which occur at well defined intervals synchronised to the frequency of the input waveform.

The triggering point on the input waveform is determined by the value of the trigger level voltage V_{1}. If the voltage spikes are carefully examined, it will be noticed that the positive and negative-going time constants are not the same. Neither are the amplitudes of the spikes equal.

To be comtinued

In Part 1 last month the following corrections should be noted:

1. Page 921, third para. to read: "Calculate the voltage drop along R_{3} at saturation using Ohm's Law :.. "
2. Page 921 , under "Transistor operated as a switch", to read:
Thus

$$
V_{\mathrm{CC}}=V_{\mathrm{L}}+V_{\mathrm{CE}}
$$

But

$$
V_{\mathrm{L}}=I_{\mathrm{C}} R_{\mathrm{L}}
$$

3. Page 922, Fig. 1.9: Diode DI to be reversed.
4. Page 922, Fig. 1.10a: Diode D1 to be reversed; TR1 is on holes 52,57,62; TR2 on holes 24, 29, 34; TR3 on holes $39,44,48$.
5. Page 922, Fig. 1.10b: $I_{B_{3}}=0$ should read $I_{B_{3}}$.
6. Page 923, under "Light operated and circuit", fourth para. should read: "Typical voltage values are shown in Fig. 1.10b and c".
7. Page 923, eleven lines further down, should read: "Then $R_{3}=(6-0.4) / 5=1,100$ ohms."

IN

Possible applications are unlimited. They range from entertaining and amusing to serious, objective functions such as monitoring the occurence of some characteristic sound. A sensitivity threshold contral is Included.

Accurate measurement of rainfall with convenlence of indoor monitoring. Flow of water is "digitised" and electrical pulses produced which actuate a remotely sited metering unit.

PRACTICAL

ELECTRONICS

February issue on sale Thursday, January 15
ORDER YOUR COPY NOW!

P. .سIDEBANDH.

By R. HIRST s.т.с. เть. PART FOUR OSCILLATOR MODULES

THis part of the "Communications Receiver" will describe the construction of two modules; the 2nd Oscillator and the 3rd Oscillator units (see Fig. 1.4). Both these modules were briefly described in part one of this series.

The 2nd oscillator provides the switching signal for the second mixer. The crystal used is of the overtone variety and as indicated earlier in this series is incorporated in an emitter circuit. The small value of output capacity ($\mathrm{C} 42,4.7 \mathrm{pF}$) avoids damping the tuned circuit or introducing frequency pulling by the following stage (TR11).

CIRCUIT DESCRIPTION

Transistors TR11 and TR12 (Fig. 4.1) form a directly coupled amplifier which is inherently very temperature stable as the circuit tends to compensate for changes. This works in the following manner; assume that the base current of TRII increases as a result of a temperature rise, therefore the collector current of TRII will increase, causing the collector voltage to fall. As TR12 is an emitter follower the emitter voltage of TR12 will fall by a similar amount to the decrease in the collector voltage of TR11. This reduction in voltage consequently reduces the base current of TRII, via R48, and the collector voltage of TR11 starts to rise to offset the original fall. This obviously will apply in reverse if the temperature falls.

CRYSTAL TUNING

From the circuit diagram (Fig. 4.1) it is apparent that either a coil or a capacitor may be used in series with X1, both of which would be adjustable. If the correct
crystal is purchased, which will be a few cycles low in frequency, a 6 to 24 pF variable capacitor can be inserted and the frequency pulled up to precisely the correct value of 36 MHz . However, if the crystal is high in frequency it becomes necessary to introduce a coil to pull the frequency down to the required value.

The coil used will depend upon the amount by which the crystal is high in frequency however, if the crystal is nominally 36 MHz a coil of approximately 1.5 microhenries can be tried as a starting point. A coil similar to L 5 in the r.f. unit can be used if approximately 12 turns are removed. The final assembly will be adjustable but it may be necessary to add or remove turns to suit the crystal. It must be pointed out that if the correct crystal is obtained it will not be necessary to do anything other than to insert a 6 to 24 pF capacitor and adjust until the frequency is exactly 36 MHz plus or minus IHz.

The setting up instructions indicate that the crystal should be removed and a 39 ohm resistor with a 470 pF capacitor in series, should be inserted into the circuit at this point before adjusting L9. The reason for this is that it would be difficult to set the coil accurately with the crystal in circuit as the crystal would tend to indicate a constant frequency. If the coil is adjusted so that the free running frequency of the oscillator is accurate, the final circuit after the crystal has been re-inserted will be far more stable.

2ND OSCILLATOR CONSTRUCTION

The construction of this module should be undertaken in exactly the same way as has been described for previous modules. Points a and b shown on the

Fig. 4.I. Complete circuit diagrom of the 2 nd oscillator module

Second Oscillator Unit (36 MHz) module COMPONENTS . . .

NEOSID

19... $5 \frac{1}{4}$ TURNS OF 32 SWG SINGLE ENAMEL WIRE WOUND ANTICLOCKWISE WHEN VIEWED from underneath

CORE VIOLET

Fig. 4.3. Coil winding details
circuit diagram (Fig. 4.1) and on the construction diagram (Fig. 4.2) should be shorted temporarily during construction to facilitate initial d.c. checks on the circuit. The crystal XI should be wired up in such a way that it is easily removed for setting up purposes.

Coil winding details for L9 are given in Fig. 4.3.

SETTING UP INSTRUCTIONS

Equipment required:

(a) Power Supply, 24 V 50 mA .
(b) Valve Voltmeter capable of measuring 1 volt at 36 MHz .
(c) Counter capable of measuring 36 MHz plus or minus 250 Hz .

Fig. 4.2. Component layout and wiring of the 2nd oscillator module

Fig. 4.4. Circuit alterations for setting up: (a) to set up L9, (b) connection for the correct crystal, (c) connection for a crystal which is high in frequency

PROCEDURE

Apply a positive voltage of 24 V to the correct terminal (PL6/a) and the negative of the power supply to the earth terminal (PL6/b). Check all the potentials at the base, collector and emitter of all the transistors to ensure that they correspond with the levels given in Table 4.1. If these voltages are correct, replace the crystal with the resistor capacitor network shown in Fig. 4.4a. Connect the counter to output SK7 and adjust the frequency with L 9 to read 36 MHz as near as possible. Re-connect the crystal (removing the resistor capacitor network) and check the output frequency. If the frequency is lower than 36 MHz , connect a capacitor,
variable from 6 to 24 pF between points a and b as shown in Fig. 4.4b. Adjust this capacitor until the output frequency is as near 36 MHz as possible. If the frequency is too high then in place of the variable capacitor insert a coil similar to that described earlier in the text and adjust the coil until the frequency is 36 MHz (see Fig. 4.4c). As previously mentioned, if the correct crystal is purchased then it should only be necessary to insert the capacitor and adjust as indicated.

Finally the output voltage at SK7 should be checked with a valve voltmeter to ensure that the output is approximately 0.8 volts when terminated in a 50 ohm load.

THIRD OSCILLATOR

Third Oscillator Unit ($\mathbf{2 M H z}$) module

The Third Oscillator Unit (2 MHz), which was briefly described in part 1, provides the switching frequency for the last stage of frequency conversion. This oscillator uses two transistors with a 2.0 MHz fundamental crystal in series connection.

CIRCUIT DESCRIPTION

Two transistors have been used in this particular circuit (see Fig. 4.5) so that the loading effect of the crystal and its series network is not placed directly across the collector of TR23 (thus reducing the gain to such an extent as to damp the ability of the circuit to oscillate). Transistor TR23A presents a relatively high impedance to the collector of TR23, thus promoting gain in the first stage, and at the same time provides a low output impedance to feed the crystal network.
The crystal is used in its series mode whereby the short circuit characteristic of the crystal in this type of connection provides a short circuit to the positive feedback signal at the required frequency of 2.0 MHz . At either side of the operating frequency the crystal rapidly goes into a high impedance state thus effectively blocking the return path for positive feedback.

Transistor TR23 is operating in a grounded base configuration and the bias for both the transistors is developed by the potential divider comprising, R50 and R51. Capacitor C50 decouples the base to a.c. and has been placed on the underside of the board to keep the leads as short as possible. The crystal is pulled onto frequency by C51 which is in parallel with the larger fixed capacitor, C52.

The following pair of transistors, TR24 and TR25 form a directly coupled amplifier giving an output of approximately 1 volt at $2 \cdot 0 \mathrm{MHz}$ into a 50 ohm load. Transistor TR25 is run at rather a high emitter current to keep the distortion to within a reasonable level.

CONSTRUCTIONAL DETAILS

Once again this module is constructed on plain Veroboard (see Fig. 4.6) and, where possible the
component leads are used for wiring connections. There are no inductors in this module so construction can commence once all the components have been obtained. Capacitor C50 should be connected in such a way that it can be removed easily, if this proves necessary, during the setting up of this module.
An extra output socket (SK9) has been provided to enable the constructor to more easily set up the final receiver once the whole equipment has been built.

Fig. 4.5. Complete circuit diagram of the Third Oscillator Unit ($2 \mathbf{M H z}$)

Fig. 4.6. Component layout and wiring of the Third Oscillator module

Resistors

R50	$15 \mathrm{k} \Omega$	R54	$1.8 \mathrm{k} \Omega$	R58	100Ω
R5I	$8.2 \mathrm{k} \Omega$	R55	$1.2 \mathrm{k} \Omega$	R59	$56 \mathrm{k} \Omega$
R52	390Ω	R56	560Ω	R60	100Ω
R53	$1.2 \mathrm{k} \Omega$	R57	560Ω	R61	100Ω

All $\frac{1}{4} W$ to $\frac{1}{3} W$ high stability, carbon
Capacitors

50	$0.01 \mu \mathrm{~F}$ ceramic
C5I	6-24pF ceramic trimmer
C52	100 pF polystyrene $\mathbf{2}^{\circ}$
C53	$0.47 \mu \mathrm{~F}$ polystyrene
C54	$0.1 \mu \mathrm{~F}$ polyester
C55	120 pF polystyrene 2
C56	56 pF polystyrene 2°
C57	$0.47 \mu \mathrm{~F}$ polyester
C58	$0.1 \mu \mathrm{~F}$ polyester

Transistors

TR23	2N918
TR23A	2N918
TR24	2N918
TR25	2N3866

Miscellaneous

X2 $2 \cdot 0 \mathrm{MHz}$ series resonant crystal
SK8, 9 Coaxial output sockets (2 off)
PL7/a, b, c, d Insulated lead through connectors (4 off)
TO5 Heatsink
Veroboard $3 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}, 0 \cdot 1 \mathrm{in}$ grid

SETTING UP INSTRUCTIONS

Equipment required:

(a) Power Supply, 12 V at 60 mA .
(b) Valve voltmeter capable of measuring 1 volt at 2 MHz .
(c) Counter capable of measuring 2.0 MHz plus or minus 100 Hz .

PROCEDURE

Apply the correct potential across PL7/a and b, switch on and check that the voltages at the base, collector and emitter of all the transistors correspond to the levels indicated in Table 4.2. If these voltages are correct to within 10 per cent a 50 ohm resistor should be connected across SK8 and a valve voltmeter connected at this point to ensure that there is some output.

A counter can now be connected to SK9 and the frequency adjusted to 2.0 MHz , plus or minus 1 Hz , by C51. It may be necessary to slightly change the value of C50 if the crystal cannot be pulled up to the required frequency. This could happen if the correct crystal has not been used. It is not essential to use the crystal specified but if an unknown device is used it may well present problems and the values of C52 and R54 may have to be experimented with.

Once the circuit is oscillating at the required frequency the output voltage should be checked with the valve voltmeter to see that the level lies between 0.6 volts and 1.0 volt r.m.s.

Note: the panel sizes given under "You Will Need" in Fig. 2.I should be used, not those given in the diagram. In Fig. 2.4, R7 should be joined to TR3 emitter.

Next month: Details of the Sideband Filter Unit and the A.F. Unit

NEWS
 BRIEFS

Computerised Power

W Hen Hunterston " B ", the 1,250 megawatt nuclear power station being built for the South of Scotland Electricity Board, becomes operational in 1973, over 6,000 different points in its dual advanced gas cooled reactor (AGR) system will be monitored continuously by t wo Honeywell 316 computers working hand in hand

The $£ 300,000$ Data Logging and Monitoring System, developed by Honeywell in conjunction with The Nuclear Power Group Lid., will provide the station's operating staff with regular logs of all plant conditions and will instantly bring to their attention deviations from certain normal plant conditions.

The two computers of the system, using predetermined priority lists, will continually scan the gas outlets and thermocouples connected to each of the two reactors as well as a wide range of other parameters associated with the complete reactor/boiler/turbine system. As the reactor data is collected the computers will compare it with preset alarm limits and then, at the completion of each scan, print details on logging typewriters located in the station's control complex. If the values of particular monitoring points fall outside the corresponding alarm limits, the system will indicate the alarm condition by printing the relevant data in red.

Radar Alarm System

S horrock Security Systems Ltd., Blackburn, Lancashire, a subsidiary of Hawker Siddeley Dynamics, have introduced a new range of burglar and int ruder detection devices using microwave Doppler radar. Until recently the cost of generating microwaves made radar too expensive for most intruder detection systems. But recent research by the Royal Radar Establishment, and in Shorrock's own laboratories, has now developed a technique of using a Gunn Diode to produce microwaves from a six volt torch battery.

Using this system Shorrock's have produced a complete range of portable and fixed radar-operated equipment which can detect intruders at distances of up to 50 yards.

An important feature of these devices is that they can be programmed to differentiate between a human intruder and accidental happenings, such as the falling of packing cases or the blowing about of leaves or paper, and so prevent false alarms. Jamming devices only cause the equipment to give an alarm as does the wearing of antiradar clothing.

DOUBLE SIX (December 1969)

Resistor R15 was incorrectly marked in Fig. 1. Its value should be $56 \mathrm{k} \Omega$. Also the polarity of C 6 was shown incorrectly in all relevant diagrams-the negative side should be connected to the OV line.
Plug Connections (all plugs) shown in Fig. 4 should be reversed in order.

THE HI-FI AND TAPE RECORDER HANDBOOK
By Gordon J. King
Published by Newnes-Butterworth
304 pages, 9 in $\times 6 i n$. Price 40 s.

Since the author's earlier book The Practical Hi Fi Handbook went out of print, several of the chapters therein were extensively revised and up-dated for inclusion in this new volume. Much additional material is added to make this a valuable addition to the bookshelf.

The increased popularity of tape recording, from bird song to video recording, justifies fully the treatment given to the subject in this work; it must therefore include information on audio theory and circuitry generally used in hi fi equipment.

Some of the common problems in setting up, operating and fault finding in audio equipment are given extensive treatment to enable the tape recorder user to get the best from his equipment. Technical terms are explained and associated equipment, such as turntables and pick-ups, microphones, f.m. radio, and video are also covered, since the good tape recordist frequently has to rely on the efficiency of these ancillary items for first-class results.

Two useful appendices are given to explain amplifier performance specifications and list a wide range of test tapes and discs.

Readers with some knowledge of audio techniques and circuitry will find this book easy to follow; it is not intended as a tutorial text book but rather to help those already familiar with basic fundamentals who wish to graduate to quality recording.

> M.A.C.

SERVICING WITH THE OSCILLOSCOPE

By Gordon J. King
Published by Butterworth \& Co.' (Publishers) Ltd. 176 pages, $8 \frac{3}{4} \mathrm{in} .^{\circ} \times 5 \frac{1}{2} \mathrm{in}$. Price 38 s . Od.

Probably one of the most neglected instruments in the workshop, the oscilloscope, has now assumed a potent role as a servicing tool since the advent of colour television. With this renaissance has come the need for 'scopes with a laboratory specifigation specially tailored to encompass the broad video bandwidth and short pulse rise times found in modern television servicing.
In introducing the oscilloscope Mr King succinctly describes its function as "it takes a whole series of 'instantaneous' changes-a slice of time-and lays it before us as a diagram".

The concern with diagrams, or oscillograms to give them their correct term, is made apparent in the succeeding pages. From introductory chapters familiarising the reader with the fundamental features
and applications of the scope we are led into fault diagnoses by oscillogram analysis of video, synchronising and timebase waveforms. Typical circuit stages showing Y amplifier test points facilitate the rapid practical reproduction of those traces where servicing is intended.

It is in company with the sine/square wave signal generator and wobbulator that the oscilloscope assumes its most comprehensive service capability. With these, hum, distortion and response tests for both video and audio equipment can be carried out in addition to visual sweep alignment of i.f. stages.

Chapters embracing the use of these auxiliary instruments and the interpretation of the display patterns formed are adequately covered.

Whilst many of the waveforms found in monochrome television are present in colour sets, the latter do include circuits designed to process colour signals and control the unique three-gun tube. For a fuller understanding of the waveforms involved there is a chapter on the basic colour principles.

The final two chapters are concerned with stereo radio waveforms and the testing of audio equipment, In the latter we are shown how to use the "magic eye" to make meaningful-or should it be meaningless-the hi fi specification.

For anyone owning, or intending to purchase a 'scope, this book should prove a useful investment.
G.G.

TRANSISTOR AUDIO AND RADIO CIRCUITS Edited by A. Peters

Published by Mullard Limited
203 pages, $8 \frac{1}{2}$ in $\times 6$ in. Price 30 s .

Authoritative books of this kind giving basic design features and proven circuits are a valuable asset to any experimenter. One often finds Mullard circuits reproduced in technical books that are treated with respect and adopted in many practical projects.
In this book we have it all "from the horse's mouth", together with background details of the designs and the results of laboratory tests. It follows a similar style to Mullard's red paperback produced several years ago.

The important difference here is that fundamental transistor characteristics are excluded, since these are available from a multitude of other publications. The space is better used on the design criteria.
Since the publishers have got down to the business of printing complete circuit designs, one really wonders if the manufacturing techniques of transistors given in Chapter 1 is really appropriate.

The remainder is intended to help circuit designers and constructors who have some background knowledge of the subject and are able to adopt their own layout methods and know how to use test equipment.
A complete list of the designs shown would fill this page, so it will suffice to mention them in broad terms under audio amplifiers, i.f. and r.f. stages, a.m. and f.m., tape recorder circuits, mono and stereo control circuits, test equipment, charts, graphs, and nomograms. Components lists are provided with current manufacturers' names. Mullard have gone to some lengths to provide such a comprehensive book, the like of which will be hard to find elsewhere. To those interested in domestic equipment construction this will be money well spent.
M.A.C.

By Alan Douglas, Sen. Mem. I.E.E.E.

THIS MONTH we are concerned with the wiring of the pedalboard and the carpentry of the organ stool.

PEDALBOARD TYPE

The pedalboard used with the organ is the 30 note type D from Kimber-Allen Ltd. This model has full width concave and radiating short length pedals, curved toe and heel board and heel springing. It has the advantage of being a condensed form of full-sized pedalboard; here the reduction being in area, not in note compass.

PEDAL KEYING

As we key the pedal signals from the dividers directly with the foot, the 16 ft and 8 ft circuits are made up of simple single pole switches. The two are combined in one Kimber-Allen contact block type GB, there being one block to each key.

Fig. 9.1 shows how the depression of a pedal actuates the switches. The gold contacts are made with wipers which can also be bought from Kimber-Allen. These are type C.W.K.S. to suit the $\frac{1}{2}$ in contact assemblies.
Since a metallic contact must not be made, the turned over edge of the wiper has a $\frac{1}{2}$ in of plastic sleeving slotted and slipped over the end. This is then secured by a drop of Bostik or similar cement. Note in Fig. 9.1 the use of a No. 3 woodscrew to adjust the stroke of the wiper.
Fig. 9.2 shows the wiring of the contact blocks. Here the signal inputs originate from the 100 kilohm pedal resistors. These are then routed from the 16 ft and 8 ft sockets as described in Part Four, thence to the contact blocks via additional plugs and sockets.
The plain wires of the blocks are connected to the 16 ft and 8 ft busbars. The bent wires connect to the signal sources. When the contacts are individually keyed the signals are routed back by way of pins 31 and 32 of a pedal socket to the related tone forming circuits. These pins are shown in Fig. 4.1.

ADDITIONAL PLUGS AND SOCKETS

Before getting involved in the pedalboard wiring it is a good idea to first make up the cableforms for mating the pedalboard to the organ console. For this two 32 -way plugs and two 32 -way sockets are required, these being identical to those called up in Fig. 4.1. Each plug and socket is wired with 3 ft lengths of p.v.c. stranded wire, the order of connection given as in Fig. 4.1. When this is completed you should have two terminated looms for 16 ft and 8 ft pitches, one being shown in the photograph.

MOUNTING THE BLOCKS AND WIPERS

As our pedalboard is a proper radiating and concave one, the contacts when fixed must describe an arc of a circle. This means that some rigid form of backing
must be provided beneath the keys. To achieve this three lin by lin hardwood battens are fixed to the frame as shown in Fig. 9.3. Single screw fixing is possible at the toe end, but brackets are necessary at the heel.

To carry the contact blocks a strip of $\frac{1}{4} \mathrm{in}$ ply is screwed to the battens, this being supported at the frame side by small screwed wooden blocks. In the figure two strips are shown. Here, the lower one will provide a platform for sustain contacts if these are used. However, more about this aspect later.
The main blocks are cemented on with Bostik. When those are fixed we can attach the contact wipers, these being held to the keys by $\frac{3}{8}$ in No: 3 woodscrews Of course, the adjustment screw shown in Fig. 9.1 should also be included.

Prior to any wiring the tails of the blocks should be splayed out as this will facilitate later soldering.

WIRING THE BLOCKS

We are now in a position to connect wires to the contact tails. In the accompanying photograph of the pedalboard underside, the extreme left-hand pedal will produce the highest note; the extreme right that of the lowest note. Using the colour code of Fig. 4.1 and the specimen wiring diagram of Fig. 9.2 we can wire from the block tails for the 16 ft pitch moving from left to right at the pedal contacts. As the loom forms it should be supported at the ply strip with thin nylon cord.

With the 30 connections made and the loom gathered, holes can be drilled midway along the frame side for taking the wires through. Now the free ends are bared and connected to one of the 32 -wav plugs called up in the components list of Fig. 4.1. T. . is figure also gives the wiring order for the plug pin connections.

Cannon plug and socket wired to pedalboard loom

PEDALBOARD \& STOOL

Fig. 9.1. Contact block and wiper used in pedal note switching. Note the inclusion of the stroke adjusting woodscrew which makes for switching precision

Fig. 9.2. Four representative contact blocks with their tails wired. All 30 blocks should be wired in this fashion

Fig. 9.3. Underside of pedalboard, with keys removed, showing batten and strip frame in position. The upper transverse strip will carry the GB contact blocks, the lower strip the GJ blocks if sustain is required

PEDAL SUSTAIN CIRCUIT

COMPONENTS . . .
PEDAL SUSTAIN GATE
Resistors
RI $1 M \Omega$
R2 $22 M \Omega$
R3 $680 \mathrm{k} \Omega$
R4 $1.8 \mathrm{M} \Omega$
R5 $180 \mathrm{k} \Omega$
All 10%, $\frac{1}{2}$ watt carbon
Capacitors
$\mathrm{Cl} \quad 0.022 \mu \mathrm{~F}$ polyester
C2 $0.1 \mu \mathrm{~F}$ polyester
C3 $0.1 \mu \mathrm{~F}$ polyester
Diode
D1 OA210 (Mullard)

Fig. 9.4. Circuir for pedal sustain. All the pedalboard contacts of the G/blocks are connected in parallel

8FT CONTACT WIRING

For the 8 ft contact wiring the procedure is the same and when completed this loom can be also attached to the strip. Again these 30 wires terminate at a separate 32-way plug.

The two plugs can now be fixed to the frame sides with wood screws and stand-off bushes, making sure that the contacts are clear from the wood.

PEDAL SUSTAIN

It is quite easy to apply sustain because we are assuming that only one note at a time will be played;
hence only one sustain circuit for each pitch is required. The fact that only one note at a time is played means that we can have an electrical sustain with the advantage that the sustain time can be altered at will or removed altogether.

In using auxiliary circuits of this kind, it is usual to close one contact before the other. The normal 16 ft and 8 ft pair of contacts are closed, which applies the bias to the sustain device.

There is no convenient single pole organ contact on the market, but one side of the Kimber-Allen changeover contact type GJ is suitable. All we need is a

simple single pole switch, but it is an advantage to use the K-A parts because the point at which closure is made is so easily and accurately adjusted by the stroke setting screw of the wiper.

If we intend incorporating sustain then the GJ contacts and wipers should be attached, the former being cemented to the lower transverse ply strip. The sustain switches are wired in parallel. This is made clear in Fig. 9.4. When all solder connections are
made, the two free ends are terminated at pins 31 and 32 of the plug that has these pins vacant.

SUSTAIN CIRCUIT

In Fig. 9.4 is shown the sustain circuit. Two of these are required, one for the 16 ft pitch and one for the 8 ft . Since this is basically a gate it can be inserted before the pedal pre-amplifiers.

POWER SUPPLY FOR PEDAL SUSTAIN GATE

Fig. 9.5. Circuit of power supply required for pedal sustain gate. The additional voltage taps are for manual sustain. A gate for this will appear in a later article

COMPONENTS . . .

GATE POWER SUPPLY Resistors
RI $150 \Omega \frac{1}{2}$ watt
R2 500s I watt $250 \mu \mathrm{~F}$

Capacitors

C1	$1,500 \mu \mathrm{~F}$
C 2	100 V elect.
C	$1,500 \mu \mathrm{~F}$
C	500 V elect.
C	$500 \mu \mathrm{~F}$
C	20 V elect.
	$250 \mu \mathrm{~F}$
25 V elect.	

Diodes
 DI-D4 ISO2I (4 off)
 D5 OAZ213 Zener

Transformer
TI 20V-0-20V Rec
Transformer (Radiospares)

Fig. 9.6-ORGAN STOOL

FIXINC blocks clued and SCREWED ON $+$

SUPER BARGAIN STOCKTAKING SALE!!!

.Use the form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is "sold-out' when order received we shall substiture items of equal value.

COMPARE THESE PRICES

$\mathbf{2 5 \%}$ discount lots of 100 per type.
50% discount lots of 1,000 per type
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER!!!
P.N.P. Audio, Untested, ummarked. MAINLY O.K., $10 /-\mathrm{per} 100$. N.P.N. Silicon, R.F types, unmarked. ALL TESTED, 4/- ea; E2 doz. SILICON PLANAR TRANSISTORS. ALL TESTED. NO LEAKS OR Gain of
Gain of 20/50, 6d ea.; 50/100, 9d ea.; 100/200, 1/- ea.
Transistors similar to OCP71 (Light sensitive) 2/- ea.

GANGED STEREO POTS. 2SOK Ω. $2 / 6 \mathrm{ea}$.

 SKELETON PRESETS. Mixed. 6/- doz. VOLUME CONTROLS. $\frac{1}{2} M \Omega$, I M Ω, with D.P. switch, 2/- ea.TELEVISION REMOTE CONTROLS. Philips, contain 117 -way cable. double pot., 5 resistors, two condensers, $10 /-$ ea. (cost 63/3/-)

THIN CONNECTING WIRE
loyd 1/- $100 y d 7 / 6$. 1.000yd $50 /-$
CO-AXIALCABLE. Black. 6d yd, $£ 150$ yd.
CRYSTAL MIKES. 10/-ea.
THYRISTORS 400 V BTY79. $7 / 6$ ea. SCR5I (IOA), EI ea.
RECTIFIERS Latest type. All marked. 800 V peak. IA mean current type iN4006 2/6 ea., 24/-doz, $\mathbf{6 7} / 10 /-100$
S.T.C. $3 / 4(400 \mathrm{~V}), 2 / 6$ ea., 24/- doz, $67 / 10 /-100$

BYZ 13 or 19 (6A). 2/6 ea., 24/- dor, 67/10/- 100 .

RECORDING TAPE GIVE-AWAY!!!
ALL BRITISH MADE, BEST QUALITY. $5 \mathrm{in}, 600 \mathrm{ft}, 7 / 3 ; 5 \mathrm{in}$, $900 \mathrm{ft}, 9 /-: 7 \mathrm{in}, 1.200 \mathrm{ft}$. 12/-
3 in "odd-ends"-may be standard, long or double play-but minimum $150 \mathrm{ft}, 2 / 3$.
MAINS DROPPER TYPE RESISTORS. Hundreds of types from 0.7 ohm upwards. IW to 50W. A large percentage of these are Multi-tapped droppersfor radio/television. Owing to the huge variety these can only be offered "assorted", 10/- per doz.
GIANT SELENIUM SOLAR CELLS. Last few to clear at half price!
Circular, 67 mm diameter, $5 /-$ ea.; $50 \times 37 \mathrm{~mm}$, 3 for $10 /$-.

```
RECORD PLAYER CARTRIDGES TRANSISTORISEDSIGNALTRACERKIT IO/-
ACOS GP67/2,13/- (Mono)
    GP91/3, 20/- (Compatible)
    GP93/I, 25/- (Stereo)
    GP94/1, 30/-(Stereo, ceramic)
    GP93/| with diamond needle, 32/6
TRANSISTORISED FLUORESCENT LIGHTS. I2V.
8W 12in tube. Reflector type, 59/6
Complete with tube. Postage 3/-
TRANSISTORISED SIGNAL INJECTOR KIT IO/-
VERO-BOARD
2+\frac{1}{2}\times1\times0.15in,1/3
                                    17\times3*\times0.15in. 14/8
                                    3# \times2:}\times0.1\textrm{in,}4/
                                    34\times32}\times0.1\textrm{lin,4/2
                                    M}\times21\times0.1\mathrm{ in, 4/9
                                    $5\times21 }\times0.1\textrm{in,}4/
                                    32\times3# \times0.15in,3/11
                                    5 }\times2\frac{1}{2}\times0.15\textrm{in},3/1
                                    5\times34\times0.15in,5/6
                                    17\times2\frac{1}{2}\times0.15in,11/-
                                    Spot Face Curter 7/-. Pin Insert Tool, 9/6.
Terminal Pins, 3/6 for }3
Terminal Pins, 3/6 for 36.
```

The circuit functions as follows. A blocking voltage of +12 V charges the sustain capacitor C 2 through R3. With this charged it reverse biases the diode D1 through R2. The pedal signal can now pass.

When a pedal is depressed, -30 volts is applied to C2 through R5, charging it negatively. This voltage then passes through R5 to the diode DI, forward biasing it and allowing the signal to pass. When the key is released, the +12 volt input again charges C2 and blocks the signal off. If the sustain switch S 1 is opened, the resistor R 2 is introduced between the +12 volt input and C2 resulting in a long charging time, which in turn results in delayed reverse-biasing of the diode.

By selection of R2 we can get a sustain of up to about four seconds, and by shorting it out, we get instantaneous "speech". This is a very useful feature, especially if one's pedalling technique is lacking.
A small additional power supply is required to provide the necessary voltages and this is given in Fig. 9.5. For the sustain switch S1, one of the spare stop units can be used.

ORGAN STOOL

The most important requirement for an organ stool is absolute rigidity. To ensure this wedges were used to fix the stretcher as shown in Fig. 9.6. If the wedges were to work loose they can easily be tapped back tight with a mallet.
First the end pieces are cut to size from mahogany, the dimensions being given in the cutting list. Shoulders are then cut in the top corners of each piece, these being ${ }^{33}$ in by $\frac{7}{8}$ in. These eventually contain the ends of the side rails.
A $2 \frac{1}{1}$ in by $\frac{7}{8}$ in mortise is then cut at the centre of the width and $6 \frac{1}{4}$ in up from the bottom of both end pieces. This last dimension is most important as the stretcher when in position in the mortise must be clear of the pedalboard.

Next the two side rails are cut to length. Then two $\frac{1}{4}$ in diameter countersunk holes are drilled $\frac{-}{16}$ in from each end through the thickness of the timber. With these rails completed, the third rail or stretcher is tackled. This is longer than the other rail as its tenons will have to protrude through the end pieces. Dimensions for making the tenons are shown in Fig. 9.6.
The feet and the seat can now be cut to size. In completing these a $\frac{3}{4}$ in chamfer at 45 degrees was made at the edges.
To hold the seat in position, screw blocks are cut, glued and then screwed in position. With the seat glued and the feet attached the stool can be finally rubbed down with glass paper.

FINISHING

As a decorative surround, black plastic laminate can be glued at the stool side.

The feet are painted black and the remaining wood surface is given two coats of matt polyurethane varnish.

CORRECTIONS PART-7 (November 1969)

Note: In Fig. 7.2, page 832, the resistor at 27B/27D should read R3; the resistor at $29 B / 29 \mathrm{C}$ is R 5 ; the resistor at $29 \mathrm{D} / 29 \mathrm{H}$ should read R4. In Fig. 7.3 there should be a break in the copper strip at hole $16 F$.

Next month we will commence construction of the loudspeaker enclosure and final organ tuning.

NEWS
 BRIEFS

Faraday Lectures

The forty-first in the series of Faraday Lectures arranged by the Institution of Electrical Engineers are being given by Mr J. H. H. Merriman on the subject "People, Communications and Engineering". Mr Merriman is the Senior Director (Development) with the Post Office and is also member for technology on the board of the Post Office Corporation. Deputy lecturer is Mr C. A. May, Staff Engineer in Post Office Telecommunications Development Department.

The Lecture is being given in 13 towns in the British Isles; the first was at Rugby, followed by Southampton and Bristol. Other venues will be as listed below.

The Faraday Lecture series spotlights various aspects of modern electrical and electronic science and technology in straightforward language for the general public. Special presentations for students are being arranged at all towns on the tour. Members of the public are admitted by ticket, free of charge, to these lectures.

Venues

Nottingham, Albert Hall: January 13
Stoke-on-Trent, Victoria Hall, Hanley; January 15
Liverpool, Philharmonic Hall ; January 29
Sheffield, City Hall; February 10
Cardiff, Sophia Gardens; February 17
London, Central Hall, Westminster, February 19-20
Newcastle, City Hall ; March 17
Edinburgh, Usher Hall; March 19
Dublin, Royal Dublin Society Hall; April 15
Belfast, William Whitla Hall ; April 17
Tickets are available from various area organisers; the names of these organisers can be obtained from the Institution of Electrical Engineers, Savoy Place, W.C.2.

Flying Laboratories

Two "flying laboratories" went into service recently with the Board of Trade Civil Aviation Flying Unit. They are HS748 aircraft which have been fitted with the latest flight inspection equipment. This equipment will be used to check to high standards of accuracy the ground navigational aids used by civil aircraft. The use of these aids is a major contribution to safety in the air, particularly in poor weather conditions. The growth of air traffic demands more aids to navigation, to ensure that aircraft maintain regularity and correct separation.

Accepting the aircraft from Hawker Siddeley Aviation at Stansted Airport, Mr Goronwy Roberts, M.P., Minister of State, Board of Trade, said the work of the Unit was vital in the cause of air safety. The new aircraft will be used to commission and periodically check, radar and radio aids to air navigation. He instanced the increasing number of instrument landing systems being installed at United Kingdom airports to meet the latest developments in automatic approach and landing, in which Britain probably led the world.

Microcircuit Film

$\mathrm{M}^{\text {uil Lard have added a new } 24 \text { minule colour film called }}$ "Something Big in Microcircuits" to their library (available to interested persons from Mullard Film Library, 269 Kingston Road, Merton Park, London, S.W.19).

The film begins with a look at a typical integrated circuit and goes on to show the basic processes of manufacture of the I.C. A detailed account of actual manufacture is then shown and the film finishes with a reminder that microelectronic design and manufacture is a constantly and rapidly changing process, and although the film shows the basis of microcircuit manufacture, the actual processes used may soon be out-dated.

peak sound $\boldsymbol{\Delta}$ englefield

Proved-performance high fidelity with specification guarantee

The Peak Sound Englefield is a new system which assembles from laboratory designed modules to provide a cost-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units, you can own one of the best high fidelity instruments you have ever heard or seen and all for a cost of about $£ 38$. The assembly is supplied complete down to the necessary connecting wires supplied colour coded, cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the $12+12$ watt system similar to that published in Practica/ Wireless, or the $25+25$ watt system as approved for the Hi-FiNews Twin Twenty by Reg Williamson. Go to your stockist and ask to see and hear Peak Sound equipment now or send for details.
Matching F.M. Tuners will be available very shortly.

and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as pub/ished by them and that these are written in the same terms as used in equipment reviews appearing in this and other leading British hi-fijournals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean powers are quoted at continuous sine wave power in term
Square values (R. M. S.) into stated loads at stated frequencies.

THE SPECIFICATION

Using two Peak Sound PA. 12-15's, driven simultaneously at 1 KHz from 240 V . mains supply. Output per channel: 11 watts into $15 \Omega 2: 14$ watts into 8Ω (see spec. guarantee).
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into 15 s - 0.1%.
Input sensitivities: Mag. PU. 3.5 mV . R.I.A.A. equalized into $68 \mathrm{~K} \Omega$: Tape, 100 mV linear into 100 K s: Radio, 100 mV linear into 100 Ks .
Overload factor: 29 dB on all input channels.
Signal/noise ratio: -65 dB on all inputs. Vol. control at max.
Controls: Volume, Treble, Bass, Low-pass Filter. Mono/Stereo: On/off; Balance.

THE MODULES

Englefield Amplifier Cabinet with front panel, knobs, sockets, cut and stripped wire, fuses, edge connectors, etc.
£6 $0 \quad 0$
Two PA. 12-15 power amp. built modules
£11 190
SCU/400 Pre-amp/Controlmodule, built
£15 150
PS/45 Power Supply kit........ £4 10 0
f38 $4 \quad 0$

[^3]Go to your Stockigt Peak Sound products are alrewis Go to yble from dealers in many parts if your own local stockist is not yet ready with the Peak Sound items you requlre, please send direct together with your supplier's name and address and your requirements will be dealt with without ielay.

TRADE ENQUIRIES INVITED
PEAK SDUNO (HARROW) LTD.,
32 St. Jude's Road, Englefield Green.
Egham, Surrey
Telephone: EGHAM 5316

NEW-TEST EQUIPMENT PEN RECORDERS
Pen-Elliott
Pen-Eliott
Portahle Sirgie
Electrical New
Quick responine recorler QU/RD
15 D 2 pen
ELLIOTT single pen 5 mA Fsi
clockwork driven
NEW- 5 in. CHART
PEN RECORDER
JY| OOA-2
High
single pen recor der with $0-10 \mathrm{ml}$
leflection. Chart apeed I in per apeed I in per mith. and lti in yer hour. 230V 50Zz. Full opecification available on request. $\mathbf{8 6 9 . 1 0 . 0 .} \mathbf{P}$ \& P. $30 /-$.

PORTABLE WHEATSTONE BRIDGE to $50,000 \Omega$. ع9.19.6. P. .

MUTUAL INDUCTANCE

BOX
${ }_{11}^{1-1 m H z}$
diviniongs.
eq8. 10.0
£28.10.0.
E1.0.0.
HIGH VALUE DECADE RESISTANCE
BOX

Ranges from
Maxinum Power Ratipg 0.10 . 00° stell. Price 282.10.0. P. \& P P. $\mathbf{E 1} 1.0 .0$.

MUTUAL INDUCTANCE COIL
 curren
Full specification available on request.

SET OF MEASURING INSTRUMENTS

specification Type: Moving Coil D.C. $3-150-450 \mathrm{~V}, 0 \cdot 3-0 \div 5 \mathrm{~A}, 1 \cdot 5-7 \cdot 5 \mathrm{~A}, 15-30 \mathrm{~A}$, Scale Length: 82 mm , A ccuracy: 1.0%.
Shunts: $1.0 .3-0.75 \mathrm{amps} .2 .1 .5-7.5$ amps. 3. 15-30 amps, Case: Moulded plastic. Carying Cise: Stove enamelled metal.
List price $£ 30$. Our price $\mathbf{8 8 . 1 9 . 6 . P . \&}$.
List
$30 /$.

DECODER WITH 4 and 5 DIGIT READ.
OUT
Can be used to conatruct frequency counter or Digital Yoltmeter: Consists of NOR
gates with amplifiers to drive digital gates with amplifters to drive digital
display. 4 digit, ilo.10.0.; 5 digit, $\mathbf{2 2 5 . 0 . 0}$. P. \& P. £2.0.0.

MULLARD MATRIX CORE
 STORE STACKS

LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT AND COMPONENTS

HYSTERESIS CLUTCH MOTOR

the motor cluteh allowof engagement with out gear train, thereby facilitat.
ing easy resetting when
junction with a light sprige. 6 oz or in con at

DISPLAY projection 6.3 pilot lamp. The lamp pronding the corresponding digit on through a projector lens, on to the the
viewing sereen at the front of the nuit.
 0.9 with 8 right hand decimal point and degree, List price tigns. Our price $\mathbf{4 9 / 6}$.
\mathbf{P}. \& P. EAC DIGIVISOR Mk. II DIGITAL READ-OUT DISPLAY Ideally suitable for use
in conjunction with transistorised decade count\log devices. The DIGIVISOR incorporates a
moving coil rovement moving coil movement
which moves a transucent acale through an
optical system and
 ptical system and the resultatit single The translucent scale is made to sepre. sent digite $0-9$. Specifications: $6 \cdot 3 \mathrm{~V}^{2} 250$ microamp. lmage height in. Size 4
$9 / 16 \times 2 \quad 39 / 64 \times 1 /$ in. Our price $3!\mathrm{gns}$ List price $8 \frac{1}{2}$ gns.
MINIATURE MOVING COIL


```
RELAY SIIS
```

By Sangamo Weston, A high sensitivity relay more sensitive than the Single Coil Resistance Liat price 24.10. Our price 20

ELECTRO

 MAGNETIC COUNTER Slow impulse counter of 10 impulses per

6 DIGIT ELECTRICAL IMPULSE COUNTER with electrical and mechanieal reset counter driven by 110 V DC 4400
ohnms coil. Reset 110 V DC 800 ohms coil. Housed in plastic-alloy case. The units cin be Interlocked with each other to give
vertical or
P. \& P. $5 /$.

REPEAT CYCLE TIMERS These timers repeat a ae cycle of switching opera- thons via a cam and micro switch, for an long Single Cam RB 2lin

 min, 6 min , cycles at 45 RD 22 in 1 min, 2 min. Тнын Cam 4 min, and 5 at 4 Cam RD 24 in RD 26 in 1 min, y min, 3 min, 4 min, min cyeles at $95 /-8$ Cam RD $28 i$ 1 min, $2 \mathrm{~min}, 3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min}$, eycles at$115 /-$. All plus P. \& P. $5 /-$.

AVO SIGNAL GENERATOR
Frequency Range $50 \mathrm{kc} / \mathrm{s}-80 \mathrm{Mc} / \mathrm{s}$. Output 0.5 Y . Price 215. Carriage $£ 1.10$

Lou obly safety meter 12 mh b ohime must be limited. W/S and P/E., $£ 12,10.0$

ADYANCE TRANSISTORISED DC POWER UNITS

LEDEX ROTARY SWITCHES (New)
N.S.F, wafer switches driven by 24 or
$48 \mathrm{~V}^{\text {d.c. motor. Iteal where switching }}$ is to be controlled by a signal pulse. Following sizes avialable: $2 \mathrm{E}-3$ wafers, wafer, 1 pole, 12 pole per wafer. 35 $3 \mathrm{E}-\mathrm{Tan} l \mathrm{~m}$ Drive 12 wafers-70/P. \& P. \quad (win mounted $\$$ water Ex Equig

DC TACHO GENERATOR

11 Miscl. Size 11.800 cycles, 11
SERVO MOTORS
11M. 10EZ. Sizel1. 400 cycles. Ref/Control: 12.10.0. Torque 20 oz per ineh, Speen 3.600 Size 18. 400 cyclea, $115 / 11 \overline{\mathrm{~J}}, 2.3 \mathrm{~s}$ oz per SYNCHRO TORQUE TX

SYNCHRO CONTROLTX/TRANSFORMER $15 \mathrm{CX} / \mathrm{CT} 4$ SL. 400 eycles. Ref/Control
\star HIGH PRECISION \star FULLY STABILISED COLTAGE POWER SUPPLIES

incorporating

* O.C.R. Panel for over loal projection. WITH MANUALS RESET button. RIPPLE belter, better than 3000: CHOKE OF CAFACITOR transistorised
$120 / 130 \mathrm{~V}$ A.C. INPITT. $120 / 130 \mathrm{~V}$ A.C. INP1'T. Available in
sy 12 amy
6V 12 amp
6V 16 amp
6 V 16 amp
12 V 8 amp
12v 16 amp
125 \%2 amp
24 V 4 amp
30 y 8 amp
Ex-equipme

\qquad
POCKET CALCULATOR
Sowe maltiplication, this
your mult sion, percentitige, cub Easy to uge pot problems lator with pocket cislen valuable
should
should last a lifetime wallet with full instruc
tions, 3 tin diam. 12/6

I quality instranment capable oi measuring resistance plis power output. Ranges: D.C. roltage $250 \mathrm{mV}-10,000 \mathrm{~V}^{-}$ D.C. eurrent $100 \mathrm{ut}-25 \mathrm{~A}$, A.C oltage $100 \mathrm{mV}-250 \mathrm{~V}$. A.C. curren 10u-i-25A. Resiatance $0-100 \mathrm{M} \Omega$ Power output $50 \mu \mathrm{~V}$ - 5 W. Supply
omolata with leat and vob

Complete with leat and probe for RF mensurement up to $0^{5} 0 \mathrm{M} \mathrm{Hz}$ £25. P. \& P. \&1

METERS

Milliammeter. A.C./Dr, 100MA and dymatuic 285
Precision Voltmeter. A.C./D.C. 0-5.5V -150 V : $0-300 \mathrm{~V}$ sangano Weston Precision Multion
E.I.L. Model 44................ 15 , 0 CT44 $200 \mathrm{CW}-6 \mathrm{~W}$. Marconi ess. 0.0 A.F Micro Voltmeter. Dyma TF8.F.
T. TF886B arconi TR13: Milinolmeter-

POTENTIOMETERS

Precision-Tinsley ${ }^{2} 200 \mathrm{c}$.
Precision Vernier
Pot.-Cham 255. 0.0

OSCILLOSCOPES

Cossor $103 \overline{5}$
Cossor 1049 Mk . III
225.0 .0

Solartion CD513.2, CD523s on
LF and Servos, Long Persistent
Solartron ID55-Pulse anl
Radar Fiela
£49.10.0
Solartron CDills.2-Double
Beam DC
Beam DC.F Meg.
Hullard Liol, 3 Double Beam... Furzehill $0 \cdot 100$
Furzehill $0 \cdot 100$
E25. 0.0
$\quad \begin{aligned} & 219.10 .0\end{aligned}$
PHILiPS 3230 D.B. $0-10 \mathrm{MHz}$
SOLATRON Portable D.B. 104
VEEDER ROOT 6 DIGIT COUNT $\mathbf{8 8 0 . 0 . 0}$
Suita ROO 6 DIGIT COUNTER duction runs, busines machine operation Mechanically ilrisen. Reset type Ka 1337 ,
manual knob. Ex-equet mannal knou. Ex-equipt. but new con-
dition. Special price 25/-phes 3 - P. \& P .

OSCILLATORS

Automic L.F. Sweep Oseillator
Dawe 444C New
W89.10.0
Wide Band Oseillator Dawe
400 C 235.10.0

CONTINUOUS TAPE CASSETTE
uitable ior sleeping grammes, Programhing machinc tools, eplay recort head and eparatc er track

SINGLE SPEED TAPE DECK

Diven by buov 00 Hz fower supply. Sped notors, record replay heads with separate

MEMORY CORE STORES
 ing computer at ore or holding iniormation
MINIATURE SQUARE COUNTER 6 DIGIT
adds 1 count for each :3; moveruent oi
shaft $9 / 8+2 / 6 \mathrm{P}$. P .

Report from AMERICA BY L.HUGGARD B.Sc.

... HAMFEST ... AND VARACTORS ...

A"Hamfest" in the United States is a get together of radio amateurs to trade equipment and parts, and of course to consume beer. The Cincinnati "Hamfest" is a traditional happening which has been growing successfully for over 30 years, as the 20 year holder of the presidency happily assured me. By mid afternoon the previous year's gate of just over 2,000 had been comfortably exceeded.

It is organised by the Greater Cincinnati Amateur Radio Association who charge five dollars admission, extracted under a large sign saying "Flea Market!" The admission ticket is a passport to unlimited free beer, two substantial picnic meals and various other snacks, and the ticket number is entered in the hourly prize draws throughout the day.

OPEN MARKET

The wheeling and dealing is conducted by the amateurs round the open boots of their cars packed into a picnic ground taken over for the day, on the outskirts of the city. Here the unwanted junk of the previous year, bearing a hoped for price with occasionally an exhortation to "Fight Poverty, Buy Something" competes with the somewhat more professionally displayed wares of the Government surplus and surplus components dealers, whilst some new equipment manufacturers trade from the grandeur of the bad weather shelter.

The goodies on display defy cataloguing, and ranged in price from thousand dollar brand new transmitter receivers with digit frequency readout to new transistors at two cents each. There were amateur built pieces of equipment. There were old scopes with indignant spiders busily repairing their disturbed webs amongst the tubes. There were early post World War One service radio equipment and even older devices.

There were cameras, lenses, air-compressors, clarinets, trumpets, and all sorts of pickings with knobs and without. Best of all were the boxes of pure junk, fitting accompaniment to another paper carton of free beer

No matter what one wanted, in the dark corner under the spare wheel of some car, there it would be.

FUN AND GAMES

For the more frivolous there were "hunt the transmitter" games, but to play it was best to have remembered to bring a 440 MHz receiver; the lazy alternative was to go and lie in the sun and watch the demonstration radio controlled model planes shave the trees.

The man in the flamingo pink cap just had to be an Englishman. He was. Now after nine years in this country a company vice president and operator of station WA8QXU, which he assured me could be heard in Britain.

The prize draw in the late afternoon was the final adrenalin raiser, after which for many inexperienced salesmen came the awful decision, to dump it or try and sneak it back past the wife's eagle eye to the basement for another year.

VARIABLE CAPACITANCE DIODES

For many applications the mechanical variable capacitor is doomed to extinction. Those splendid rows of shining plates on ball bearing spindles, so much a part of radio, will disappear, to be replaced by the Variable Capacitance Diode or "Varactor".

Plastic encapsulated varactors are now being introduced at consumer prices. High capacitance devices which could be substituted for a couple of hundred puffs tuning capacitor are still relatively more costly. Prices are coming down and this state is unlikely to last.

The capacitance effect in the diode is due to the depletion layer formed at the junction of the p and n type materials forming it. The depletion layer can be looked upon as an electrically neutral area, exhibiting a high resistance because of the lack of conduction carriers.
The diode thus resembles a simple parallel plate capacitor, the p type material being one plate and the n type the other, separated by the dielectric, the depletion layer. The width of the depletion layer, and thus the distance apart of the "plates" can be varied by varying a reverse bias voltage applied across the junction.

Varactors can be obtained with nominal capacitances of up to 250 pF and a tuning range of ten-to-one. These are more expensive than lower values with reduced range.

TUNING RATIO

The tuning ratio is the ratio of the capacitance at the lower reverse bias voltage to that at the upper reverse bias voltage.

$$
\text { TR (tuning ratio) } \stackrel{C_{2}}{=} \frac{C_{10}}{C_{10}}
$$

where $C_{2}=$ Capacitance at 2 V reverse bias.
and $C_{10}=$ Capacitance at 10 V reverse bias.
The reverse voltage cannot be increased indefinitely or the junction will break down at too high a value.

A PRACTICAL EXAMPLE

A typical tuning application is shown in Fig. 1. Note that the inductor L is in parallel with the series combination of C and C_{d}, where C_{d} is the varactor capacitance.
C is made very much larger than C_{d} so that its effect on the resonant frequency of the circuit is negligible and that frequency is given by

$$
f=\frac{1}{2 \pi \sqrt{L C_{\mathrm{d}}}}
$$

Fig. I. Note that diode is reverse biosed by potentiometer VR
C blocks the bias voltage from the coil, which would otherwise provide a low resistance path for bias currents, reducing the voltage across the varactor. $V R$ can be large, about 470 kilohms, so that the bias circuit loading of the tuned circuit is small.

The reverse resistance of the diode is large and virtually the whole of the voltage picked off the potentiometer $V R$ appears across the tuning diode. The circuit is thus tuned by varying the setting of the potentiometer. There is one snag, the maximum signal appearing across the tuned circuit must be much smaller than the minimum bias voltage applied to the diode or serious intermodulation distortion will resuit.
An obvious use for such a circuit is to permit tuning by remote control, and the ingenious can carry on from there.

This article is an extension of the EMMA project published in the March and April 1969 Practical Electronics. It is expected that readers wishing to add EMMA's new capability will be familiar with the previous

SINCE the formative weeks following EMMA's rather difficult birth back in March she has, as we would have expected, already come of age. Indeed, she now exhibits a kind of self-preservation awareness which encourages her to perform simple work tasks for a living. More accurately, given the right situation EMMA really "wants" to work because to do so is now part of her make-up and she can learn that quite often this will pay-off.

In order to embody this new faculty EMMA's shape has filled out just a little with an additional circuit board. However, the modifications to her existing systems are not unduly complicated and the keen Bionics constructor will probably be overjoyed to know that at last he can have a semi-intelligent "animal".

ANATOMICAL CHANGES

To encourage EMMA to work in return for reward requires a few extra circuit blocks and if the reader refers to Fig. 1, a clear impression of the technique will be gained.
The philosophy behind the original scheme for EMMA has not been changed drastically, but there are now included such items as a Schmitt trigger which monitors the supply voltage level and of course the inevitable learning circuit with which by now we must all be familiar. This embodies a pair of monostables, one (the extension monostable) having a duration of 20 seconds and the other (the differential monostable) a period of 1 second.
articles; the component numbering is carried on from the earlier circuits and reference is made to diagrams in the March and April 1969 issues. We regret that we are no longer able to supply copies of these issues.

As usual there are also included an and gate and a summer with its attendant learnt threshold Schmitt which triggers upon the summer level reaching some pre-determined value.

DESIGN PHILOSOPHY

Now it is intended that EMMA should learn to work, so this implies that she must additionally have a need to work in the first place. If a situation is made sufficiently attractive she will be prepared to do some simple chore provided she has a previous memory of being rewarded.

These requirements are largely accommodated by deliberately reducing EMMA's muscle control supply for short periods. This makes her hypersensitive to loads during which she is encouraged to carry a heavy book or similar object.

Periodically we may give her some "reward" by returning the supply to normal so that she realises that we intend to pay her when the work has been done.

We achieve all this in a somewhat synthetic way by switching out one of the cells forming part of the forward drive supply battery. Thus during conditioning her supply for the forward mode is a little less than 3 volts unless we provide a reward, in which case it rises to about $4 \cdot 5 \mathrm{~V}$.

Complete "Educated EMMA", now with three circuit board's

The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus,Semitron,Keyswitch, Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us at manufacturers' prices e.g. IN9141/3d. \square IN916 1/11d. \square 2N697 4/5d. \square 2N706 2/3d. \square 2N706A 2/9d. $\square 2 N 929$ 5/8d. $\square 2 N 1613$ 4/8d. \square 2N3011 9/1d. \square 2N3053 6/2d. \square 2N3055 15/9d. \square 3N140 15/3d. \square BFY50 4/8d. \square BFY5l 3/9d. \square BSY27 18/BSY95A 3/3d. \square C407 4/6d. \square CA3012 18/3d. \square CA3014 25/6d. \square CA3020 25/9d. OA200 1/9d. \square OA202 1/11d.

Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

The result of the combined resources of SGS $\mathbf{1 2 A}$
and RCA, these quasi circuits set new standards $25 \boldsymbol{A}$ in quality and performance. Each kit is complete with circuit diagram, all semiconductors, resistors, capacitors and printed circuit board.

40月
70月 equipment.

DE LUXE PLAYERS

PORTABLECABINET Asillus trated. To At tandard $75 /-2$
player or antochanger. RCS AMPLIFIER 3 WA Ready made and tested This in a 2-stege unit using a triode pentode condenser coupled ralve, giving inatt outpn
into a 3 ohm into a 3 ohm
oudapesker.
Tone and rolume panel, supplied with panobs, londipeaker end velver UCL8R, UY85. Frequency response $50-12,000 \mathrm{cpl}$. Sennitivity 800 mV 59/6
gIMGLE PLAYERS MONO GMI Junior Mains e9.19.6 Garrard SRP22 ... 86.19 .6 Garrard SPR HkII E12.19.6

GARRARD TEAKWOOD BABE WB. 1 , Ready保 GARRARD PLARTIC COVER SPC. 1 for WB. 1
BASE. Durable tinted attractive appearance.

E,Y,I. PICK-TP ARM, Complete with mono cartridge 29/6 xTAL GP67 17/6; Sterso Ceramic 35/-. ACOS LP only 10/6 CRYSTAL MIKE INSERTS
1j" die. 6/6: ACOS $1 t^{*}$ die. 18/6. BM3, 1^{*} dia. $0 / 6$
QUALITY RIBBON MKE WITH GOOSENECK CRYBTAL HAND HIKE, HIGH OUTPUT 12/6
PORTABLE TRANSISTOR

AMPLIFIER PLUS

DYMAMIC MICROPHONE
A self-contained Enlly portable mini p.a, Byatom. Many nies - ideal for Partias, or as a Baby Aharm, Intercom, TeleAmpllfer, ote. Attractive rexine covored cabinet, wise $12 \times 8 \times 4 \mathrm{in}$, with
powerful $7 \times 4 i n$. speaker and four traniintor one patt power amplifer plus ultra senaitive microphone, Uset PP9 battery. Brand now In Maker
anrton with fall mekers

WEYRAD P50 - TRANSISTOR COILS RA2W 6 In. Ferrite Aerial Spare Cores lec. P50/1AC I.F. P50/8cc $470 \mathrm{kc} / \mathrm{s}$.. 5/7 J.B. Tuning Gang Prd I.F. P50/8CC 6/- | Weyrad Booklot Telescopic Chrome Aeriale 6in, extends to 23in, 5/a Ferrite Roda Only $8 \times$ lin. 4/e. $6 \times$ in. 5
VOLUMECONTROLS $\mathbf{8 0}^{\mathrm{obm}}$ Coax 8d, yd. Lone spindles. Midget sise BRITISH AERLALITE 5 K , ohms to 2 Meg. LOG or AERAXIAL-AIR BPACED

 WIRE-WOUND 8-WATT POTS. WIRE-WOUND 3-WATT Y. Vines 10 a to 30 K . Knob. STARDARD 8IZE POTS $\begin{array}{ll}\text { Valnes } 10 \Omega \text { to } 30 \mathrm{~K} ., 4 / 6 & \text { LONG 8PINDLE } \\ \text { Cgrbon } 30 \mathrm{~K} \text { to } 2 \mathrm{meg} . & 10 \text { OHMS to } 100 \mathrm{~K} .\end{array}$ 21 Vin. 3/8. $21 \times 3!\mathrm{in}, 3 / 2.32 \times 81 \mathrm{in} .3 / 8$
 EDGE CONKECTORs 18 way $5 /-$; 24 way $7 / 6$.
8.B.B.P. Bos 0.15 MATRIX Xtin. Wide Bd, per lin.,

BLANK ALUMINIUM CHASSIS. $18 \mathrm{~g} . \mathrm{W} . \mathrm{B} .21 \mathrm{in}$. Ides,

Q MAX CHASSIS CUTTER

in. Complote: a die, a punch, an Allen screw and key $17 / 8$
 lifinch DIAMETER WAVE-CHANGE BWITCEES 2 p .2 -way, or 2 p .6 -way, or 3 p. 4 -way $4 / 6$ each. 1 p . 12 -why, or $4 \mathrm{p} .2-$ way, or 4 p .3 -way, $4 / 6$ esch. 1 inch DIAMETEE Wrvechange "HAKITS" 1 p. 12-way, 2 p. 6-way, 8 p. 4-way, 4 p. 3 -way, 6 p. 2-way, 1 wafor 12/-, 2
 ALL PURPOSE HEADPHONES H.R. HEADPEONEXS 2000 ohma Super Sendive LOW RESIBTANCE HEADPEONES $3-5$ ohms.
DE LOXE PADDED STEREO PHONES 8 ohms
"THE IN8TANT"
BULK TAPE
ERABER AND
REGORDING HEAD

DEMAGNETI8ER

800/850

BARGAIN STEREO/MONO SYSTEM Attractive Slim PLAYER CABLIET with B.S.R. Storoo Autochanger, 3 VALVE \&TEREO AMPLIFLER, two 61 in.
LOUDBPEAKPRS. (Only 4 pairs of wires to join). Carr. 10/6. S.A.E. Ior detaile. $f 19.19 .6$ MEW TUBULAR ELECTROLYTICS CAN TYPES
 4/850V

$$
\begin{aligned}
& \text { CR } \\
& \hline 600 \mathrm{~V} \\
& \hline \text { U }
\end{aligned}
$$

$$
16 / 600 \mathrm{~V}
$$ $8 / 450 \mathrm{~V}$

$16 / 450 \mathrm{~V}$

$$
16+18 / 500
$$ $16 / 450 \mathrm{~V}$

$32 / 450 \mathrm{~V}$ $32 / 450 \mathrm{~V}$
$85 / 25 \mathrm{~V}$

$$
50+50 / 3501
$$ $25 / 25 \mathrm{~V}$

$50 / 50 \mathrm{Y}$ $9 / 6$
$18 / 6$
$7 / 6$

$7 / 6$ | $2 /-$ | $16+16 / 450 \mathrm{~V}$ | $4 / 8$ | $82+82+32 / 350 \mathrm{v}$. |
| :--- | :--- | :--- | :--- |
| $8 / 8 / 6$ | | | | SDB-MIN. ELECTROLYTICS. $1,2,4,5,8,16,25,30,50,100$ 250 mF 15 V 2/-; $500,1000 \mathrm{mP} 12 \mathrm{~V} 3 / 6 ; 2000 \mathrm{mF} 25 \mathrm{~V} 7 /$ CERAMAIC, 500 V 1 pF to 0.01 mF , 9 d .

PAPER 350V-0.1 $8 \mathrm{~d}, 0.58 / 6 ; 1 \mathrm{mF} 3 /-; 2 \mathrm{mP} 150 \mathrm{~V} 3 /$ $500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-: 0.251 / 6 ; 0.53 /$ $1,000 \mathrm{~V}-0.001,0.0022,0.0047,0-01,0.02,1 / 6 ; 0.047,0.1,2 / 6$ SILVER MICA, Clove tolerance $1 \%, 5-500 \mathrm{pF} 1 / \sim ; 560-8,200 \mathrm{pF}$ TWIN GANG. "0,0" 808 p . TWIN GANG. "00-0" $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 6 ; 365 \mathrm{pF}$, minia ture 10/6; 500 pF standard with trimmers, $12 / 6 ; 500 \mathrm{pF}$ midget leas trimmerg, $7 / 6$; soupF slow motion, Itandard $8 /-$ SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ $60 \mathrm{pF}, 600 \mathrm{pF}, 10 / 6$ esch $10 \mathrm{pr}, 25 \mathrm{p}$ TUNING. Solid dielectric
TRIMMERS. Comprension ps, $300 \mathrm{pF}, 500 \mathrm{pF}, 7 /$ e each. $\begin{array}{ll}150 \mathrm{pF} .1 / 3 ; & 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 1 / 8 ; 1000 \mathrm{pF}, 2 / 6 \text {. }\end{array}$ RECTIFIERS CONTACT COOLED ! wave 60mA नi/6; 85mA 9/6, SILICON BYZ13 8/-; BY100 10/-
Full wave Bridge 75mA 10/-: 150 mA 19/6; TV rects, $10 /-$ GEON PANEL INDICATORS 250v, AC/DC Red, Amber $4 / 6$. RESISTORS. Preferred values, 100 hms to 10 meg .
 HIGH STABILITY, 分 w. $1 \% 10$ ohm: to 10 meg., $2 /-$ Ditto 5%. Preferred valnea 10 ohms to 22 meg., 8 d . WIEE-WOUKD RESISTORS 5 watt, 10 watt, 15 wett, 10 ohms to 100K. $2 /$-each; 8 watt. 0.5 ohm to 8.2 ohms. $2 /$ BRAND NEW TRA HSISTORS 6/- EACH, MAT 100 7/9; MAT $1018 / 6 ;$ MAT 120 7/9; MAT $1218 / 6$ REPANCO TRANSIGTOR TRANSFORMERS, TT45. Push Pull Drive, $9: 1 \mathrm{CT}, 6 / \mathrm{c}$. TT46 Ontput, CT8:1 6 TT49. Interatake, $4-5: 1,6 /-;$ TT52 output 3 ohmi, $20: 1,6 /-$
TTR8/4 PARR 10 watt Amp. Translormers and circuit $35 /-$.
TRANSIETOR MAINS POWER PACKS. FULL WAVE 9 volt 500 mA . Size $4 \ddagger \times 2 \ddagger \times 2 i n . \quad$ Hetal case, $49 / 6$ Hali Ware 9 volt 50 mA . Bire 91×1 in. 8 nap torminale 39

MAINS TRANSFORMERS

$250-0-25050 \mathrm{~mA} .6 .3 \mathrm{\nabla} .2 \mathrm{smps}$, centro ts pped $19 / 6$ $350-0-35080 \mathrm{~mA}, 6.3$ ₹. $3.5 \mathrm{a}, 6.3 \mathrm{v}, 1 \mathrm{a}$, or $5 \mathrm{~F} .2 \mathrm{~s}, 30 /$

 $8,8,9,10,12,10,18,24$ and 30 . at 2 a. $\cdots \cdots \cdots, 30 /$ I amp. $6,8,10,12,16,18,80,24,30,36,40,48.60,381-1$ $60 \mathrm{w} .18 / 6$; 150w. $30 /=500 \mathrm{w}$. $92 / 6 ; 1000 \mathrm{w}$. Inpul/Output CHABGER TRANSFORMERS. P.\&P, $5 /=$ Input 200 or 6 or 12 F, , 1 amp.. $17 / 6$; 2 amp. $21 / \mathrm{m}$; 4 amp., $30 /-$ FULL WAVE BRIDGE CEARGER RECTIFIERS: 6 or 12v. outputs. $1 \frac{1}{2}$ aimp. $8 / 9 ; 2 \mathrm{amp}, 11 / 3 ; 4 \mathrm{amp}, 17 / 6$. COAXIAL PLDG 1/3, PANEL SOCKETS 1/3, LINE 2/-. OUTLET BOXES. SURPACE OR FLOSH 4/6.
BALARCED TWIN FEEDERS 1/- yd. 80 ohms or 300 ohms. JACK 80CKET 8td. open-circuit 2/6, closed circuit 4/6; JACK PLUGS Std. Chrome $3 /-: 3.5 \mathrm{~mm}$ Chrome $8 / 6$. DIM SOCKETS Chasisis 8 -pin 1/6; 5-pin 2/-. DLF SOCEETS Lead $3-$ pin $3 / 6 ; 5-$ pin $5 /-$ DIN PLUGS $3-\operatorname{pin} 3 / 8 ; 5-\operatorname{pin} 5 / \%$
VALVE HOLDERS. 9d.; CERAMIC $1 /-$ CARS $1 /-$

T.S.L. LOUDSPEAKER CROSSOVER HLP2.
2-way croseover for 8 or 15 ohm apeakera and tweeters. ade to ell OUR PR $\begin{array}{ll}\text { Made to mell } & \text { OUR PRICE } 22 / 6 \\ \text { at } 42 /=. & \text { Post } 2 / 6 .\end{array}$

Tape Spools 2/6. Tape Splicer 5/-. Leader Tape 4/6. Renter Tape Heads for Collaro models 2 track $21 /-$ pair PHOTO-ELECTBIC RELAY 8YBTEM. 240v, A.C, For counting. door aignals, alarms, etc. $\quad \mathbf{L} \mid 2$ POST

MINI-MODULE LOUDSPEAKER KIT
 10 watt 55/- carriage 5/-

Triple speaker syatom combining on resiy cut baffie. 3 in. chipboard $15 \mathrm{in} . \times 8 t \mathrm{in}$. Separato Bass, Middle and Troble loudspenkers and crossover condenser. The cone. The Mid-Range nuilt is apecially designed to sid drive to the middie register and the tweetor recresten the top end of the musical Epectrnm, Total response $20-15,000 \mathrm{cps}$. Pull ingtractions for 8 or 8 ohm TEAK VENERBED BOOKSEELF ENCLOSURE

BAKER MAJOR £8

30-14,500 c.p.i., $\mathrm{Hi} i-\mathrm{Fi}$ donble cone, woofer and tweetor cone together with a BAKER ceramic mernet assembly having a fur denalty of 14,000 ganan and a total finx of 145,000 Mexwellh. Bast 20 wance 45 c.p.s. Rated arailable 8 or 8 or 15 ohme. Price C8, or Module kit, $80-17,000$ c.p.s. with tweeter, crominer, befie and
instructione LOUDSPEAKER CABIHET WADDING 18in wide, $8 / 61 \mathrm{in}$ (BAKER " GROUP SOUND" SPEAKERS-- POST FREE 'Group 25' 'Group 35' 'Group 50

ALL MODELS "BAKER SPEAKERS" IT STOCK
Goodmana Twetter 81 in 8 ohm $85 /-$, EMI 2 2 in 8 ohm $17 / 6$ Horn Tweeters 2-18kc/s, 10 W 15 ohm 29/6. Grossover $18 / 6$ LOUDSPEAKERS P.M. 3 OHMS, $23 \mathrm{in}, 8 \mathrm{in}, 4 \mathrm{in}, 5 \mathrm{in}, 5 \times 24 \mathrm{in}$ $7 \times 4 \mathrm{in} .17 / 6$ each; $61 \ln 22 / 6 ; 8 \times 5 \mathrm{in}, 21 /-; 8 \times 21 \mathrm{in} 21 /-$ E.M.I. Donble Cone $181 \times 8 \mathrm{in}, 3$ or 15 ohm 10 what $48 / 6$. DITTO twin tweetert and X/over 8 or 8 or 15 ohm 10 wat $78 / 6$ CEAK EIIFT BPEAKER ENCLOSURES, Fluted front for 10 or 12 in dia. Londapes cer 28.10 .0
For $18 \times 8 \operatorname{in}$ or 8 in ronnd Londigeaker $44,14,6$,
For $10 \times$ Bin or $6 i n$ round Londspeazer 23.16 .6 .
SPECIAL OFFER: $8 \mathrm{ohm}, 2 \mathrm{in} ; 6 \times 4 \mathrm{in} ; 80 \mathrm{ohm} .2 \mathrm{in}, 2 \mathrm{in}$. $15 / 6$ EACH 25 ohm, $6 \times 4 \ln : 85 \mathrm{ohm}, 8 \mathrm{nn}$ 15 TYPE $15 \mathrm{ohm}, 7 \times 4 \mathrm{in} .88 \times 51 \mathrm{n}$. LAC 8 in, De Luxe Ceramic 3 ohm 45/-; 15 ohm $50 /-$ In LOUDSPEAEER. TWIN CONE 8 ohm $35 /-$
In. WOOFER, 8 watts maz. $80-10,000 \mathrm{cps}, 8$ or 15 ohm. $89 / 6$. UTPUT TRANS. ELS eto. $4 / 6$; MIEE TRARS. $60: 13 / 9$.

Main power, amplifer and 2 valve pre-amplifer. Bilver grey facia pauel. Volume, treble, bate controle. Function witch: Radio, Tape 1, Tape 2, Mic, Gram LP, Gram 78, Tape output tocket. Valves: 2 . EL84, $3 \times$ EF88,
$1 \times$ ECC83, $1 \times$ EZ8I, Ultra linesr Parmozo output transformer 20 db negitiviradnear Parmozo output trani tormer,
3 and 15 ohm outpat. Brand new. Guaranteed.

ALL EAGLE PRODUCTS
 GUPPLIED AT LOWEST PRICES

BARGAIN AM TUNER. Medium
Transistor Superhet. Forrite aerial.
Q volt. BARGALI DE LDXE TAPESPLICER Cnta,
trima, joins for editing and repairs. With 8 blades. $17 / 6$ BARGAIM 4 CEAMMEL TRANSISTOR MIXER. Add musical highlights and sonnd effects to recordinge. Will mix Microphone, records, tape and taner with
separate controls into single outpat, 9 volt.

BARGAIN FM TUHER 88-108 Mc/s Six Tranator, Ready built. Prlnted Circnit. Callbratod slide dial $\quad \mathbf{6 . 1 9 . 6}$
tuning. 8 ize $6 \times 4 \times 2$ in 9 volt. BARGAIN 3 WATT AMPLIFIER. 4 Tranaiator $69 / 6$
Push-Pull Ready built, with volume control. 9v. $69 / 2$ \star RADIO BOOKs \star (Postage 9d.)
Practicsl Transiator Recoivers
Practical Radio Inide Ont
Supertencitive Transintor Pocket Radio
Radio Valve Gulde, Booke 1, 2. 3, or 4 ea, $5 /-\mathrm{Fo} .5 \mathrm{~cm}$. 6 T.V. Fealt Finding 405/825 lines Trantwave Transistor Rocelvers
Modern Trantiator Circnits for Beginner
Snb-Miniature Tranaisior Raceivera
Wireless World Radio Valve Data...
International Redio Stations Gride
Receive foreign T.V. programmen by simple modifackions5/
Vives, Tranzistori and Diodos equivalents Manual... $10 / 6$
MANUFACTURERS' SURPLUS!
Grey 2-tone. Rexine covered, Sise $15 \times 12 \times 5 \|$ in. POST FREE
BRAND NEW QUALITY
EXTENSION LOUDSPEAKER
Handsome plastic cabinet, ROft. Lead and

Minimum Post and Pocking 2/6. RETURN OF POST DESPATCH. HI-FI STOCKISTS, CUSTOMERS FREE CAR PARK, CALLERS WELCOME.
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAL, WEST CROYDON
Written guarantee with every purchase. (Export: Remit cash and extra postage.) Buses 133 Monday to Friday 9-6 (Wods door. S.R. Stn. Selhurst. Tim., Sat. $01-684$ p.m.) 1665

Fig. 1. Block diagram of EMMA; the new sections are enclosed in the broken lines
 trigger the supply level Schmitt thereby causing the differential monostable to fire.

Assuming just prior to this that a physical load has been applied then the load monitoring section will have previously fired the extension monostable. As a result, and provided the differential monostable fires during the time the extension monostable is in the quasi-stable condition, the and gate will be enabled and consequently the summer output level will begin to rise.

If we repeat the process a number of times the existence of the reward can obviously become significant because the increasing level from the summer will ultimately reach a point where the learnt threshold Schmitt fires.

Immediately this occurs the work-load acceptance circuit will raise the threshold of the load monitoring system allowing EMMA to tolerate greater loads, indeed, the very same kind of loads she would accept were her supply to be at a normal level. However, she has at this stage learnt to understand that her supply will return to normal and so she "soldiers on" in the knowledge that all will be well.

Nevertheless, if we decide to stop rewarding EMMA her memory for the "good life" will gradually diminish as the summer level falls, until a point is reached where the load will no longer be tolerated. At such times she will "twist and turn", being thoroughly intractable as
her normal reflexes take over and the avoidance system goes into operation.

Like any real creature EMMA, given the opportunity, can improve her chances for continued existence by taking advantage of certain situations. Thus she can adapt herself to doing a small task if it promises some form of payment and just as easily give the job up if not adequately reimbursed.

CIRCUIT IMPROVEMENTS AND MODIFICATIONS

In her existing form EMMA will normally function quite satisfactorily and so if it is not intended to add the new circuitry her "neurology" can be left as it is. Nevertheless, there are certain improvements that can be made and certain modifications that must be attended to before adding the learning system.

The changes are all extremely simple and so will be indicated in relation to the existing circuit diagrams for the reflex and muscle control sections discussed in the March and April issues of P.E. The relevant areas of discussion are in Figs. 2 and 5, in the March and April 1969 issues respectively.

TRANSIENT DAMPING CIRCUIT

In this circuit (Fig. 2, March 1969) a diode must be added (cathode end to base of TR21) in series with R51 to ensure that the voltage across C15 is entirely attributable to the output from the load monitoring system. Otherwise C15. can charge via VR2 and R49. Resistor R49 must be reduced to 470 ohms. Fig. 2 (above) shows the relevant section of the circuit.

LOW THRESHOLD SCHMITT

The resistor R40 must be removed and replaced with a diode (Fig. 2), its cathode being taken to the -4.5 V rail of the " A " power supply. This modification results in there being an almost constant potential between TR18 and TR21 emitters and the negative rail. As a consequence the backlash of the Schmitt is
effectively reduced to zero with the result that it comes on and goes off almost at the same point.
A connection from the low threshold circuit must also be taken from the collector of TR18; this can take the form of a short piece of insulated wire and may be coiled back out of the way until it is called upon to connect the reflex circuitry with the extension monostable discussed later.

MUSCLE CONTROL SYSTEM

In earlier articles we discussed the problem of motor noise; the "hash" was reduced using a pair of capacitors C17 and C18, across the motors (Fig. 5, April 1969). An improvement has now been embodied which really minimises the problem. This involves using a pair of 6 V Zener diodes connected back-to-back (as shown in

Fig. 3. Alterations to motor control and load sensing circuits (page 276, April 1969)

Don't read on unless you re feeling really strong. This book will start you on a mad, crazy spending spree. It's got everything, but everything for the do-it-yourself radio and hi-fi man.
Everything from a vast range of electronic components available to the home electronics constructor, to, a complete range of equipment for the radio "ham" What's the book?
The Electroniques Constructor's Catalogue.
Only the most exciting, mouth-watering items are there. Carefully placed in 6 sections for easy reference. And backed by truly efficient sales service
So if you order any of the vast selection of goods, yQu're sure to get it pretty soon.

All you have to pay for this great big hunk of temptation is $13 /$ - (including packaging and postage)

Sofillin the coupon now. Ifyoudare.

Enclose PO /cheque for 13 - made out to:
Electroniques (proprietors Standard Telephones and Cables Limited), Edinturgh Way, Harlow. Essex. Telephone: Harlow 26811.
Name
Address
P.E. 1

Listen!

EEMIEFOTIT

EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.
These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening Ievels.
They have many exclusive features. The range includes the unique 950 system with a 19 inches $\times 14$ inches bass unit, power output 50 watts R.M.S.

Send for literature and price lists to.

EMI SOUND PRODUCTS LTD., HAYES, MIDDX. TEL: 01-573.3888 EXT. 667

techincal traning in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

 NEW
SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. pro-fessional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

INTERNATIONAL

CORRESPONDENCE SCHOOLS

Dept. I5I, Intertext House, Stewarts Rd., London, S.W. 8
Please send me the ICS prospectus-free and without obllgation.
(state Subject or Exam.)

NAME
ADDRESS

INTERMATIONAL CORRESPONDENCE SCHOOLS

'Fig. 4. Circuit diagram of the new "B" power supply and switch wiring

Fig. 3) across each motor. Noise spikes of either polarity and in excess of the Zener voltage of one diode and the forward voltage drop of the other are thus suppressed.

Additional diodes (D12 and D13) are connected in series with R61 and R63 (cathodes to the bases of TR 28 and TR32 respectively) and also D14 in series with R66 (anode to collector of TR33). These are included to prevent any paths between the supply being monitored (the "forward" half of this supply) and the supply which feeds the monitoring circuit ("A" supply).

For similar reasons the load monitoring circuit is now not run from the " A " supply and suitable arrangements must be made to reconnect R 64 and R 66 to the negative rail of the "A" supply. The resistor R65 must go to the positive rail of the "A" supply and is shunted with the series combination R69, VR4, and TR34 (Fig. 3) which constitutes the work load acceptance circuit.

"B" POWER SUPPLY

The forward-mode battery (type 126) of the "B" supply requires a small modification so that either 3 V or 4.5 V may be obtained. This entails carefully opening the paper flap at the top of the battery with a razor blade and taking a connection from the 3 V tapping (i.e. one cell down from the positive side of the battery). The 4.5 V and 3 V outputs thus obtained are then taken to a double pole changeover microswitch (Fig. 4) so that in use EMMA's forward operation can be obtained from either normal or reduced supplies.

This completes the various modifications to the existing hardware and we are now in a position to concentrate on the learning system, also to the way in which it interconnects with the rest of EMMA's person (see Fig. 5).

SUPPLY LEVEL MONITORING

This circuit comprises a Schmitt trigger which is similar in form to the type mentioned earlier (i.e. it has extremely little backlash) and has its input connected via R71 to VR5 which goes to the positive rail of the "B" supply. Adjustment of VR5 sets the threshold at which the Schmitt fires; generally this need only be just at the " B " supply level and no lower.

The capacitor between TR35 base and the negative rail of the "A" supply prevents transients switching the Schmitt.

Once set-up the Schmitt trigger will switch whenever the voltage at the positive rail of the " B " supply falls below normal (influenced by operation of the microswitch). Hence TR35 will turn off and TR 36 will come on with the result that TR37 will cease to conduct. With TR37 collector positive TR34 will turn off and consequently EMMA will be extra sensitive to loads.
When the supply is returned to normal TR35 will again turn on and TR 36 will turn off. At this time the positive voltage at TR36 collector will be passed to the differential monostable causing it to fire. Simultaneously, TR37 will turn on again thereby raising the load threshold.

DIFFERENTIAL AND EXTENSION MONOSTABLES

Both monostables are a little unconventional in that they each use extra transistors forming the Darlington pairs TR38, TR39 and TR44, TR45. These provide higher gain and hence permit larger timing resistors to be used.

Diodes D22 and D23 provide a fair degree of noise immunity and so prevent the monostables from triggering prematurely if any short-term voltage drop occurs on the "A" supply. Under such conditions D22 and D23 are reverse biased and the associated capacitor (C21 or C22) effectively bridges the interval during a voltage drop "holding-up" the collector of the transistor that is turned off.

The extension monostable is triggered from the load threshold Schmitt and fires whenever the load exceeds a certain level. As mentioned earlier the differential monostable triggers whenever the positive end of the " B " supply is returned to normal.

COINCIDENCE GATE

The coincidence (AND) gate comprises TR41 and TR42. Assuming a sufficiently heavy load has been applied to EMMA then the extension monostable will have fired hence turning off TR42.

If during the 20 second period of the extension monostable the positive rail of the " B " supply has been returned from low to normal then the differential monostable will be triggered.

View of "Educated EMMA" showing the position of the new circuit board

QUALITY COMPONENTS AND EQUIPMENT

* 50,000 OHMS PER VOLT HULTIMETER Recommended quality
imstrument with miry
rer scale and overloud or seale and overload
potection $0 / 0.3 / 31 / 21$
$601 / 120 / 300 / 1600 / 1200 \mathrm{~V}$ 8.150
1151
1511
6
 AFl 05 Price 88.10 .0 p.p. $2 / 6$ Lesther case 28/6

 Provides audio ourpur on 4 bands.
Sine wave $20 \mathrm{c} / \mathrm{s}$ to 200 ke is. output
 2%. Output impedance ik!2
Variateouputamplitude control
Supplied with teads and imstruc. tions, A.C. mains operated.
TE22 Price $\mathbf{~} 16.10 .0$.

RC AUDIO GENERATOR
Weinbridge RC Audivoscillator Weinbridge RC Audio oscillator
teaturng tour overlapping
scales covering $18 \mathrm{c} / \mathrm{s}$ to 200

Handibool

Features low
ment. Larte 11 view saled mezer.
Itt: $0 / 1 / 5 / 15 / 50 / 150$. dis scales: -10
ro +658 Com
plete with in. MODEL TE65 f17.10.0 p.p. $7 / 6$ HV Probe 50/ R.F. Probe 42/6

* $\mathbf{2 0 , 0 0 0}$ OHMS PER VOLT MULTIMETER
Popular model bue with extra ${ }^{2}$ cale
range. 20.000 ohms per vole. $0 / 5 / 25 / 50$
$250 / 500 / 2500 \mathrm{~V}$ de

SE101A Price E8 150
* FIELD STRENGTH METER 5 Ranges $1-250 \mathrm{mc} / \mathrm{s}$. Fitted $200,1 \mathrm{~A}$
meter. Earphone output. Calibrated
tuning scales. tuning scales. Price $72 / 6$ pp.2/-
FL30HA Also non-calibrated type peaking F/S
meter. \quad FSI Price $45 /-\quad$ pp. $2 / 6$

 Wires) mains operated, 411.19 .6 . * SIGNAL INJECTOR

New model for esormines

 checking all audio and RF up to VHF. simple to use. Battery operated. Output approx. Ikc/s, 1.4 V Pp. Harmonics up to VHF.PE 250 B . SE250B Price 35/- p.p. 1/6 *MATCHING SIGNAL TRACER
SE 500

Model 200H (Leather case. Price 15/- pp.2/-)
 1000 V A.c. $0 / 50,1$
$0 / 24,250 \mathrm{~m}$
ance $0-6 \mathrm{k} \Omega$
 or cap acitance.

* PORTABLE OSCILLOSCOPE

\qquad

PORTABLE

 GEIGER COUNTERS

DOSIMETER POCKET-TYPE 0-50r 12/6

		NOMBREX TRANSISTORISED Test Equipment			
			ICE		eaflet
		[a	d.	No.
293	RF. Gen.	21	0	0	35
29x	Xual rament	29	10	0	35
30	Audio Generator	19		0	24
34	R.F. Genaraior	12		0	25
32	C. R Bridge	10	10	0	28
33	Inductance Bridot	20	0	0	29

COMPONENTS UK's largest supplier of components. EVERYTHING YOU NEED

\section*{| $8-2$ |
| :--- |
| $60 \cdot$ |
| 000 |
 }

Terrific offer of brand new STC time delay Adjustable $3-15$ recs.
$9-12 \mathrm{~V}$
operated. Supplied complete
with suggested uses circuits STC Modula
Prica $3 \mathrm{~F} / \mathrm{F}$.

9VOLT 100 m
STABILISED SUPPLY
 PRICE 45/. p.p. 2/6.

Transistors Huge quantities instock for Industrial usersWrial Price List Includes all Types of Semiconductor Device.
K SWR ALIGNMENT
METER

303' Components/Equipment/Organ Parts also MAIL ORDER DEPT. 01-723-1008/9
'309' Test Gear/High Fidelity etc. 01-7236963

MONO TRANSISTOR AMPLIFIER A really high
fluelity mon-
aural amplifier
with perfor-
mance charac-
teristice to suit
the most dis-
criminating lis.
tener. 6 tran.
sistor circuit
withintegraterl
preamplifier
assembled onn
special printed
sub panel.
ADi61-ADlit2 operating symutetrical complementa
pair. Output transformer coupled to 3 ohm and 15 ohin speaker sockets. Standard phono input sockets. F'ull
wave bridge rectifer power supply for a.c. Hains $200-$ wave bridge rectifler yower supply for a.c. Hains $200-$ 240v, Controls: bass, treble. volume/on/offi. Function
selector for PU1. P'L2, tape, radio. The HSL. 700 in selector for PU1. P'L2, tape, radio. The HSL. 700 is
strongly constructer ou rigid ateel chatsja brotas hammer enamel finish, i ize $9 k \quad \overline{5} \quad 4 \frac{1}{2} \mathrm{in}$. high.

Sensitivity-PU1-50m/v,56K input impedance
Pl'2-110m/v, 1 meg input impetance.
Tape- $110 \mathrm{~m} / \mathrm{s}, 1 \mathrm{l}$ meg input impedance. Radio- $110 \mathrm{~m} / \mathrm{k}$, meg input fupedanc
Output porer measured at $\mathbf{j K c}-6 \cdot 2$ watts RMS int 3 ohtis, $5-8$ watts RMS into 15 ohis. Overall frequencs $\begin{array}{cc}\text { response } \\ \text { controls: } & 30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{s}: \text { Continuously variable tone } \\ \text { Bass }\end{array}+8 \mathrm{lb}$ to $-12 d \mathrm{~b}$, +10 db to -10 db at $10 \mathrm{Kc} / \mathrm{s}$
The HSL. 700 has lieen designed for true high tidelity reproduction from radio tuner, gramophone deck and tape ecorder preamp. Supplied ready buit and tented, comescutcheon panel, long spindles (can be cut to suit your housing requirements) full circuit diagratut to suit your
instructions.
OUR SPECIAL PRICE $\mathbf{1} .19 .6$.
LOUDSPEAKER BARGAINS
$\sin 3$ ohm 18/-, P. \& P. 3/-. $7 \times 4 \ln 3$ ohm 21/, $P \& \&$ $4 /-10 \times 6$ in 3 ohm 27/6, P. \& P. 8/- E.M.I. $8 \times 5 \mathrm{in}$ $13 \frac{1}{x} \times 8$ in 3 ohn with mighet 21/w, P. \& P. 4/-. E.M.I (15 ohm $45 /-$), P. \&P. $6 /-$ E.M.1. $13 \times 8 \mathrm{in}, 3$ or 15 ohm with two inbullt tweeters and crobsover network 4 gns BRAND NEW.

12 in 15 w H/D speakers, 3 or 15 ohm Current production by well-known British maker. Now Current production by well-known British maker. Now
with Hiffux ceramic ferrobar magnet assembly P. \& P. $7 / 6$. Guitar models: $25 w \$ 26.0 .0$. $35 \mathrm{w} ~ \$ 8.0 .0$, ceramic magnet. Available in 3 or 8 ohm $15 /=$ each 15 ohnt 18/6 each. P. \& P. 2/6.
12in "RA" TWIN COHE LOUDSPAKER. 10 watt peak bandling. 3 or 15 ohn, $37 / 6, P$.
35 OHM SPEAKER8
3 in 14/-, P. \& P 2/6; 7×4 in 21/- P \& 1 80 orm moving COIL BPEAKERS. High Flux Magnet

STEPICELAL OFFER

Hi-Fi Celestion Sperirer Unit. Sise $6 \times 4 i n$. Powerlal
11,000 line magnot with apecially treated cone gur-
round. $10-12$ ohm impedance. Few only at $20 / \mathrm{m}$ round. $10-1$
P. \& P. $3 / 6$.

QUALITY PORTABLE TAPE RECORDER CABE Brand new. Beautifuly made. Only 49/6, P. \& P. $8 / 6$ CRYstal mikes. High imp. for
HIGH IMPEDANCE CRYSTAL STICE MIKES, OUR PRICE 21/-. P. \& P. 1/6.
HIGH IMPEDANCE DYNAMIC STICK MLKES. Higb sensitivity. 39/6. P. \& P. 2/6.
PYE MICROSWITCEES 8/P. C/O. Lever roller action Rating 250 v . AC at 5 amps. Size approx. $1^{\prime \prime} \times 1^{*} \times x^{*}$ 4/- each. P. \& P $1 /-(6$ or more posi free).
HONEYWELL MICROSWITCHES S/P. C/O
HONETWELL HICROSWITCHES 8/P.C/O. Push-button
 TELESCOPIC AERIALS WITE SWIVEL JOINT. CAN be angled atul rotated in any direction. 12 section Heavy Chrome. Extende from $7^{\prime \prime}$ to approx. 56°. Maximum Brase. Extemds from 6^{*} to P. $1 / 6$. 6 gection Lacquered
 GRAND 13 alternativer. Primary: $0-210-240 \mathrm{~V}$. Secon. dary conibinatione: $0-5-10-15-200-25-30-35-40-60 \mathrm{~V}$ half wave at 1 amp or $10-0-10,20-0 \cdot 20,30-0-30 \mathrm{~V}$. at 2 amps
ful! wave. Size $31 \mathrm{~nL} \quad 3!\mathrm{inW} \quad 3 \mathrm{inD}$. Price $32 / 8$. MANS TRANSPORMER. For transistor power supplies. Pri. $200 / 240$ V. Sec. $90-9$ at 500 mA . $11 /$. P. \& P. $2 / 6$ Pi. 200/240V. Sec. $12-0-12$ at 1 amp . 14/6. P. \& P. 2/6 Pri. 200/240V. Sec. $10-0-10$ at 2 amp . 87/6. P. \& P. 3/6. Tapped frimary $200-220-240 \mathrm{~V}$. Sec. 21.5 V at 500 mA . RAND NEW
BRAND NEW HAMS TRAKSFORMERS for Bridge Rectifler. Pri. 240 v . AC Sec. 240 v . at 50 mA and 6.3 v . at (Special quotations for quantitien.) $10 / 6$. P. \& P. $3 / 6$ BRAND NEW: PARMEKO MALNS TRANSPORMERS. rimary $110 \mathrm{v}-250 \mathrm{v}$. secondary $330-0-330 \mathrm{v} .100 \mathrm{~mA}$ and ervatively rated. Fully 2 amps and $6.3 v$, at 1 amp. Con suitable for vertical or drop through mounting. Overall size $41 \times 3 \mathrm{i} \times 3$ in. Weight 8 lb . Limited number only at
$37 / 8$. P. P. $8 / \mathrm{F}$.

SPECIAL OFFER!!

Your opportunity to acquire a first clas EI-PI LOUDSPEAKER 8YSTEM at an extremely moderate price!
Beartifully made teak flizh oncloare with mont ttractive Tygan front. Sise 18!" high < $10!{ }^{\circ}$ "wide " $6^{\prime \prime}$ deep. Fitied with E.M.I. Ceramic Magnet 18^{*} Power hait, wo Power handling 10 wakts. Available. 3 or 15 ohm
OUR PRICE WHILE LIMITED 8 GUS. Carria

TRANSISTOR STEREO $8+8$ MK II

 Now using silicon Transistors in flrot five stages on each channel resuiting in even lower noiae level with improved senaitivity. A really first-class Hi-Fi Stereo Amplifier Kit Uses 14 iransiators giving 8 watts push pull output per channel (16 W mono). Integrated pre-amp. with Bass, Treble and Volunie controls. Suitable for tiae with Ceramic or Crystal cartridges. Output stage for any speakers troun 3 to 15 ohms. Compact design, all parts upplied including drilled metal work. Cir-Kit poard teractive front panel, knols, wire, solder, nuts, boltsany constructor to build an ing step infer to be proud of Brief speeifleatlon: Freg. reaponae 3318 . 20-20,000c/a -16 dB . Negative feellback 18 i is over main amp. Power requiremente 25 V at 0.6 amp
PRICES: AMPLIFIER KIT 10.10 .0 ; POWER PACK KIT 83.0 .0 ; CA BINET 83.0 .0 . All Post Free
Aso a vailable 8TEREO $10+10$. As above but 10 witte Per channel. PRICES: AMPLIFIER KIT 112. POWER PACK KIT Ł3.10.0.
Circuit diagram, construction detaila and parts liat (free
Omcial Itocki
PEAE SOCND HII-FT EQUIPMENT
P.W. DODBLE 12 STEREO AMPLIFIER as featured

In Practical Wireless April, May and June issues. Component pack as specifled. Total cost 283.5 .6 plus P. d P. $11 / /$. (Excluding metaluork, knobs, plugg and sockets and fuses.)

SPECLAL PORCEASE!
E.M.I, 4-8PEED PLAYER Heavy 81 in . metal turntable Low flutter performance $200 /$
250 V shaded motor tap). Conplete with latest tap. Contplete Fith lates and mono cartridge with t/o

QUALITY RECORD PLAYER AMPLIFIER ME II

top-quality record player ampliffer employing heav duty double uound mains transformer, ECC83, EL84 complete with output Complete with output transiormer matched for 3 ohm peaker. Size 7in. u. . $6 /=$ ALSO AVAILABLE mounted noard with output transformer and speaker ready to at into cabinet below, PRICE 97/6. P. \& P. 7/6. DE LUAE QUALIY PORTABLE R/P CABINET MK II in. above. Will take alme amplifier and any B.S.R. or GARRARD changer or Single Player (except AT60 and SP25). Size $18 \times 15 \times 8$ in. PRICE 79/6. P. \& P. $9 / 6$.

3-VALVE ADDIO
PLIFIER HAS4 II AMPLIFIER HA34 MX II
Designed for Hi-Fi reproducDesigned for Hi-Fi reproduc-
tion of records. A.C. Mains tion of records. A.C. Mains
operation. Ready bullt on operation. Ready buit on chassis, aize 7 in w. $\times 4 \ln . \mathrm{d} . \times$ 4 in. h. Incorporates ECC83, duty, double wound mains duty, touble wound mains
transformer and output transfrantiormer and output trans-
fontrol and now for 3 ohm iniproved speaker. Separiate volume control and now with iniproved
wide range tone controls giving baes and treble lift and wide range tone controls giving bass and treble lift and
cut. Negative feedhack line. Output $4 \frac{1}{2}$ watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs

HSL "FOOR", AMPLIFIER KIT. Sindar in appearance to HA34 above but employs entirely different and advanced BRAND NEW TRANSISTOR BARGAIN8 GET IS (Matched Palr) 15/-; VI6/10p, 10/-; 0C71 $5 /-$ OC76 $6 /-$ AF117 3/6; 2G339 (NPN) 8/
Set of Muilard 6 transistors OC44, :-OC45, 1 C 128 D , matched palr AC128 25/-; ORPIO Cadminm sulphide Cell 10/6. All post free
FYMAIR AND REXIME SPEAKERS AMD CABINET FABRICS app. 54 In . wide. Usualiy $35 /$-yd., our price $15 /-$
yd. leagth. P. \& P. $2 / 6$ (min. 1 yd.). \&.A.E. for POWERTVL COMPACT MOTOR G. Gov Ramples. POWERFUL COMPACT MOTOR for 6.9y. Battery aperation approx. "GranA. Made originally for "Staar

DE LUXE STEREO AMPLIFIER

LCL86 Triode
Pentodes. 1 - EZ80 as full wave rectifer. Two dual potentiometers are provided for bass and treble control, giving bass and treble boogt and cut. A dual volunie control is usent. adjusted by means of a separate 'balance" control fitted at the rear of the chassis. Input rensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per chanuel (8 water mono), into 3 ohm speakers. Puil negative feedback in a carefully catculated circuit, allows high volune levels to be used with negligible distortion. supplled complete with knobs, chasais aize $11 \mathrm{in} . w \times 4 \mathrm{in}$. x. Orerall hefght inclucling valvee sin. Realy built anil teaterl to a high atandard. Price 8 ran. P. A P. 8/

4-SPEED RECORD- PLAYER BARGAITS Mains models. All brand new in maker's packing. B.8.R. DA25 with latent mono compatible cart.
All plan Carriago and Packing $6 / 6$.

LATEST GARRARD MODELS. All types available 1005. 2025, SPRE, 3000, AT60 etc. Send S.A.E. Ior Lateat Prices: PLINTH UNITS cut out for Clarrard Models 1025, 2025, OUR PRICE 6 gni. complete. I'. \& P. 8/6.

SONOTONE 9TAHC compatible stereo ('artridge with diamond etylus 60/-, P. \& P. 2
LATEST RONETTE T/O 8 tereo Compatible Cartridge for EP/LP/Ster eo/78. 32 6. P. \& P. 2/:
EATEST R ONETTE T/O Mono Compatible Cartridge for EP/LP/78 mono or sterco records on mono equipment

HIGH GAIN 4 TRANBISTOR

PRINTED CRRCUI
AMPLIFIER EIT
Type TAI
put in exces

- All stan-
dard British
components.
printed circult panel aize $6 \times 3 i$
- Generous size Driver and Output Trangformers. - Output transformer tapped for 3 ohm and 15 ohm and matched pair of AC128 14 or or Mullard AC 128 D and matched pair of AC128 o/p). 9 volt operation - Comprehenslve easy to tollow instructions and circuit djagrain $2 / 8$ (Free with KIt). All parts eold eeparately SPECLAL PRICE 45/\%. P. \& P. $3 / 1$. Aiso ready built am tented, 52/6. P. \& P. $3 /$.

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gram amplifier uning a double wound pentode ralormer, EZ80 rectifier and ECL82 trlode Impedance 3 abms a amplifer and power output stige and tone controls. Chassis size oply 7 in wide $x 3$ in. deep Sin. high overall. AC malns $200 / 240 \mathrm{~V}$. Supplied absolutel good quality completely pired anil tested with val

Open all day Saturday Early closing Wed. 1 p.m.

A few minute

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01.540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQURIES
(Please write clearly)

Fig. 6. Component layout and wiring for the new board: (a) component side, (b) copper side showing breaks in the copper strips

Transistor TR4l will also turn off, and the common collector point of TR41, TR42 will go positive for a time, essentially determined by the period of the differential monostable, i.e. one second or less if the extension monostable is close to the end of its quasi stable state. The output from the coincidence gate is taken to the summation circuit.

SUMMATION CIRCUIT AND "LEARNT" THRESHOLD

As implied by its designation, the summation circuit adds or integrates the output pulses from the coincidence gate and comprises TR48 and its associated components. Capacitor C24 and R94 provide a timeconstant sufficiently long to ensure that the maximum summation limit extends to accepting greater than 15 input pulses.

Unwanted discharge of the capacitor is minimised by inclusion of D27 and by the very high input impedance presented by TR 48 which is an f.e.t. Initially TR48 will be conducting, but as pulses from the coincidence gate gradually charge C24 so the voltage at TR48 source will climb towards the positive rail.
At some level of summation, dependent upon where VR6 has been set, the learnt threshold Schmitt will switch causing TR 37 to turn on. This condition will remain until the level on C24 drops below the point necessary to maintain the Schmitt in the triggered state.

However, due to the reasons discussed earlier this will take a fair time and consequently TR37 will remain on to ensure that EMMA accepts higher loads at low supply levels. Of course, if this state of affairs is not reinforced periodically by giving EMMA a short rise in her " B " supply level then the voltage across C24 will gradually decay to a point where the load threshold drops again.

CIRCUIT BOARD CONSTRUCTION

The method for layout and wiring of the learning system circuit board is shown in Figs. 6a and 6b. Depending on the potentiometers used the veroboard may require some drilling, however, all other components are mounted by way of their individual leads. The board itself is attached to the existing reflex board by $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire soldered to its four corners.

Underside view of EMMA showing the new circuit board

It is important to note that all necessary breaks in the copper strip should be made prior to mounting the various components.. Care should be taken to ensure that the complete width of the copper has been removed at each break.

Always mount transistors and diodes last and be sure not to keep them in contact with the soldering iron longer than necessary.

CHECKOUT

When the work on the circuit board has been completed it should be carefully examined to make sure that no dry joints or solder bridge-overs exist and that all components are carefully connected. It can now be inter-connected with the remainder of EMMA's a natomy.

Set EMMA's muscle control and the reflex system switches on. Connect a meter between the zero point of the supply batteries and the positive rail of the " B " supply to ensure that the level is approximately 4.5 V . Operate the microswitch and check that this level falls to 3 V . Release the microswitch and disconnect the meter. Inhibit EMMA's random generator circuit by turning the associated Schmitt permanently on through the use of VR1. Ensure that both motors are running.

SUPPLY LEVEL SCHMITT

Place EMMA on the ground and adjust VR2 so that she will carry a relatively heavy load, but goes into the avoidance reaction up.on bumping into an obstacle.

Return EMMA to the work bench and with the meter connected between the collector of TR36 and the negative rail of the "A" supply, adjust VR5 until the supply level Schmitt just triggers, evidenced by the meter reading almost rail potential. Operate the microswitch and ensure that the meter reading drops to near zero level; if not, re-adjust the Schmitt. Disconnect. the meter.

Now place EMMA back on the ground and replace the load. Ensure that, as before, the avoidance reaction does not occur unless she meets with an obstruction. Operate the microswitch and check that both EMMA's speed is reduced and that she immediately goes into the avoidance mode. If she is functioning correctly return EMMA once more to the table.

DIFFERENTIAL AND EXTENSION MONOSTABLE

Connect the meter between the common collector point of TR41, TR42 and the negative rail of the " A " supply; there should be an almost zero reading.
Now simulate a load by stalling the road wheels and, shortly following this, operate the microswitch. There should be a reading of almost rail potential. If not, check that the differential and extension monostables are functioning-the meter connected to either TR40 or TR43 collector will establish this following triggering.
Transfer the meter to the source of TR48. Momentarily short out C24 when the meter reading should be approximately IV. Trigger the extension monostable, as before, and operate the microswitch every couple of seconds or so. Ensure that there is a gradual increase in the meter reading.
Note that it may be necessary to re-trigger the extension monostable because its time period could have elapsed during this check. Momentarily short out C24 again and check that the meter reading falls once more to about IV.

LEARNT THRESHOLD SCHMITT

Connect the meter now to the collector of TR46 and set VR6 wiper about midway. The reading on the meter should be near zero. Operate the microswitch occasionally and apply a simulated load from time to time. Ultimately the meter will indicate that the learnt threshold Schmitt has triggered.
Naturally, it is a matter of choice as to the point in the summation curve where one wants this Schmitt to trigger, but a sensible arrangement would be to have the summer integrate about ten or eleven pulses before this occurs. It is simple to control this factor by varying the setting of VR6.

FINAL CHECK

If everything checks out remove the meter and short out C24 again to make sure EMMA forgets all about our unbridled inquisition of her internal parts. Set EMMA down on the floor once more and make this final check!

Place a fairly heavy book on EMMA's back and operate the microswitch periodically. After a time (that will probably seem like an eternity) EMMA will carry the load under reduced power supply conditions. The easiest way to maintain the low supply state for a while is to clip a clothes peg across the microswitch and so hold the operating button depressed.

Remember that EMMA's batteries don't last forever, so do start off with fresh ones. A heavily loaded supply on its "last legs" may make it virtually impossible to set up the monitoring circuits for reliable operation.

FINAL EMMA

You may have every reason to say "All this just to have a heap of electronics and metalwork behave in this odd fashion." But that is the very point, it is just a heap of electronics and metalwork-not a living creature! Crude though she may be EMMA definitely shows certain preferences and can learn that some actions are worth the trouble while others are not.

To demonstrate that a machine can have a kind of self preservation awareness, we have cheated a little by playing around with the power supplies used. The reason though is valid because had we employed, say, re-chargeable nickel cadmium cells it would have been virtually impossible to see EMMA exhibit this new ability.

However, there is no reason why a keen Bionies man should not attempt an even more ambitious scheme-after all there is a machine in existence which can go and plug itself into the nearest 13 amp socket

It's only a year since we launched the record selling S54

Now we introduce the S54A....

... a a single beam oscilloscope with a sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ at 10 MHz bandwidth

The S54A is an all solid state oscilloscope developed from the S54. Smartly styled yet ruggedly built, the S54A has a wide application in field work, in the laboratory and in production line testing. Look at the features

* 10 MH : Eandwidth at $10 \mathrm{mV} / \mathrm{cm}$
* All Solid State Design
* Small Size - Light Weight
* FET Irputs

At $£ 120$ you will find no other oscilloscope of its type which offers such features at such low cost Write or phore for full specification NOW!!!!

> * Versatile Triggering including T.V. Line and Frame Sync.
> * $6 \times 10 \mathrm{~cm}$. Viewing Area
> * Built-in Voltage Calibrator.

TelequipmenT

Telequipment Limited, 313 Chase Road, Southgate, London, N.14. Telephone: 01-882 1166. Telex: 262004
A member of the Tektronix Group. For Overseas enquiries write to: Tektronix Ltd., P.O. Box 48, Guernsey, C.I

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mk 1 WITH VARIABLE TONE CONTROL

7 Tunable Wavebands: Medium Wave 1, Medium Wave 2, Long Wave, s.W.1, s.W.: B.W. 3. and Trawler Band. Built in ferrite rod aerial for Medium and Long Wayes. s section 22in chrome plated telescopic aerial for Short Waves can be angled and rotated for maximum performance. Selectivity switch. Switched earpiece socket complete with far car aerial. Tape record wocket. sistors plus 3 diodes. Famous make 7×4 in speaker. Air spaced ganged tuning condenger. On/of bwitch volume control. Wave change switch and tuning control. Attractive case in rich chestnut ohade with gold blocking. Bize $9 \times 7 \times 4$ in approx. Easy to follow instructions and diagrams make the Roamer Eight a pleasure to build. Parte price list and easy bulld plans $\mathbf{5} /-$ (FREE
with parts). with parts).

roamer seven mk IV

F FULLV TUNABLE WAVE BANDS-M.W.1, M.W.2, L.W. B.W.1, S.W.2, S.W.3 and Trawler Band. Extra Medium waveband provides easier tuning of Radio Luxembourg, etc. Built in lerrite Wayea. 6 Section 22 in chrome plated telescopic aerial for short Wavescan be angled and rotated for peak 8.W. listening. Socket for Car Aerial.

Powerful push-pull output. 7 transiators and two iliodes
including Micro-Alloy R.F. Tranaistors. Famous make
7×4 in P.M. sieaker. Air apaced
$7 \times 4 \mathrm{in}$ P.M. speaker. Air spaced garged tuning conclenser. Volume/on/off control, Wave change awitches and tuning control. Attractive case with carrying handle. Bize pleasure to bulld. Parts price ligt and eagy build pland diagrams make the Roamer 7 a

Total building costs
$\propto 5.19 .6$
P. \& P
7/6 for private lietening, $5 /$-extra.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractive black and gold case. Bize 51×14 ${ }^{5}$ in in. Tunable over both Medium and Long Wavee
 dlodes, supersensitive ferrite rod aerlal, fine tone moving coil speaker, aiso Personal Earpiece with awitched aocket for private listening. Easy bulld plans and parts price list 1/6 (FREE with parts).

Total building costs 44/8 8 $\begin{gathered}\text { P. \& } P \\ 3 / 6\end{gathered}$

1 in. Tunable on Medium and Long Waves, two lin. Tunable on Medium and Long Waves, two
Bhort Waves, Trawler Band plus an extra M.W. band for easber tuning of Luxembourg, etc. Sensitive Waves. 8 stages- 6 tranaigtors and 2 diodes including Micro-Alloy R.F. Transistors, etc. (Carrying strap 1/6 extra). Easy bulld plans and parta price list $2 /-$ (PAEE with parts).
\qquad $7 \otimes / 8$ P. \& P.

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.

NEW!

transeight

SIX WA VEBAND PORTABLE WITH 3in, SPEAKER
Atiractive case in black with red grille and cream knobs and dial with polished brase applox. Tunable on Medi
approx. Tunabie on Medium and Long
Sensitive fer rite rod aerial for M.W. and L.W. Telescopic aerial for short Wav 8 improved type transistors plus 3 diodes. Push-pull output. drive a larger speaker. Parta price list and easy build plans $5 /-$ (FREE with parts).
Total building costs
\& $8 / 8$ P. \& P. $\begin{gathered}\text { Earpiece with awitched socket for private } \\ 5 / 6\end{gathered}$

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND
PORTABLE
WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. Size to itin $\times 1$ tin. 7 stages- 5 tranzistors and 2 diodes ferite rod aerial, tuning condenser, volume control. fine tone moving coil speaker aiso Personal Earpiece. Total building costs build plans and parts price list listening. Easy build plans and parts price llet $1 / 6$ (FREE with
parts).
 $47 / 6^{\text {P. } 2 \text { s. }, ~}$

RADIO EXCHANGE LTD

61a, HIGH STREET, BEDFORD. Tel. 023452367 l enclose $£$ please send items marked

ROAMER EIGHT	\square	ROAMER SEVEN
TRANSEIGHT	\square	POCKET FIVE
TRANSONA FIVE	\square	ROAMER SIX

Parts price list and plans for
Name
Address

market PLate

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given. enquiries and orders should then be made direct to the firm concerned.

TURNTABLE KIT

Something new for the audio fan is the Connoisseur BDI belt drive turntable kit from A. R. Sugden \& Co. (Engineering) Ltd., Market Street, Brighouse, Yorkshire.

It is claimed the kit can be assembled by the constructor within the hour and the only tools required are a small screwdriver, a pair of pliers and a spanner. No soldering is necessary.

The turntable operates at 33 f and 45 r.p.m. and the use of a belt drive system is claimed to reduce vibration and transmission noise to a minimum. The turntable is of non-ferrous aluminium casting and speed change

Multi-Mini Twin from Coventry Movement
is carried out manually by shifting the belt on the pulley, eliminating mechanical linkages.

The turntable works from the mains, $200 / 240 \mathrm{~V}$ a.c., and the rumble is claimed at -60 dB when referred to a velocity of $70 \mathrm{~cm} / \mathrm{sec}$ at 1 kHz . Hum level is -80 dB and wow and flutter is less than 0.1 per cent. The motor used is a slow speed synchronous type running at 375 r.p.m. at 50 Hz .

The price of the BDI kit is $£ 9$ 9s plus tax. A plinth, dust cover lid and a SAU 2 pick-up arm is available as extras.

UNIVERSAL VICE

Recently we mentioned a workshop base and workholder; now we have received brief details of a
universal two-in-one vice and base.
Called the Multi-Mini Twin, it features two sets of adjustable jaws, which can be set to any angle up to 360 degrees. The advantage of this arrangement is that any two separate components can be held in any desired position. It should be invaluable for the home workshop as a drilling jig, clamp for gluing or soldering, or as a table-top camera tripod.

Full details of the Multi-Mini Twin (price f5 18s) and a standard
tors, transistors, lamp, and light dependent resistor are mounted on a plastics base with threaded brass fixing pillars. Also included is an earphone, ferrite cored coil, nuts, bolts, washers and box spanner.

All experiments when completed are working models and projects include a transistor radio, burglar alarm, morse code practice oscillator, etc.
The Radionic $\times 30$ retails for £7 19s 6d, including tax, and is available from electrical shops and some toy departments of large stores.

Connoisseur BDI turntable kit marketed by A. R. Sugden \& Co.

Multi-Mini can be obtained from The Coventry Movement Co., Lid., Burnsall Road, Coventry.

CONSTRUCTION KIT

A series of 30 experiments aimed at gradually increasing the beginner's understanding of radio and electronic circuits is contained in the Radionic X30 constructional kit from Radionic Products.

The kit consists of a special printed circuit board and a complete instructional manual for all projects; plus a section on fundamentals of electricity and electronics. The resistors, capaci-

PRINTED CIRCUITS

Many readers may be interested to learn that P.H. Electronics are now producing printed circuit boards of some of the past constructional articles published in Practical Elfctronics.

The board is drilled and roller tinned and an instruction sheet is also included. The instruction sheet contains only minimum information and purchasers of boards are referred to the relevant issue of the magazine.

Further details of the boards available and prices can be obtained from P.H. Electronics, Sandwich Industrial Estate, Sandwich, Kent.

Radionic Products $\times 30$ construction kit

 A SELECTION FROM OUR POSTBAG

Correspondents wishing to have a reply must enclose a stamped addressed envelope. We regret we are unable to guarantee a reply on matters not relating to articles published in the magazine. Technical queries cannot be dealt with on the telephone.

Component supermarket

Sir-As many readers will have noticed, the Mecca of London based enthusiasts, Tottenham Court Road, has recently become the home of showrooms for expensive ready-made gear, several cinemas showing "adult" films and an avant-garde theatre. While not wishing to decry these innovations, the inevitable long term result of Tottenham Court Road becoming a part of "swinging" London will be a rise in property values, which will drive away and disperse the component shops.

This is a threat, but also a challenge. After all, is there any real reason why an electronics supermarket, with stands from all the main suppliers, couldn't be established? Maybe under the trilateral leadership of the electronics magazines, the learned societies and commercial interests.

It may sound like an impossible dream now, but if such a venture could be established, not only would it prove highly lucrative but, by encouraging our vital hobby, the electronics industry and also the whole nation would gain through an increased awareness of electronics.
S. H. Hertz,
London, N.3.

We suspect there will be some disagreement concerning the actual location of the component seekers. "mecca". Some enthusiasts might plump for Lisle street!-Ed.

Liquid etchant

Sir-Several younger constructors have asked me from time to time what the liquid is that is used to etch printed circuits; often they have bought a printed circuit kit, and the etchant is used up first.

A recent article described an excellent solution made up of several fluids, one of which was dilute hydrochloric acid. This solution was in fact the classical circuit etchant, but I now find that in some areas chemists will not sell dilute acid to younger persons, or do not stock it in any case.
I feel, therefore, that it may be of
value to tell them through your columns that there is a very good etchant available through any chemist, under the pharmacist's name of Liquor Ferri Perchloridi. The British Drug House sells this in convenient 500 ml bottles, for a few shillings.

There are two points to watch. however; the first is that it makes an excellent dye for clothing. The second is that, diluted with water, it is sometimes used as an "iron tonic", and the buyer must therefore be careful to obtain the concentrated variety (ask for "fort"), and to keep it well away from any medicine cupboards.

The compound formed with copper is a heavy black precipitate, and it is therefore necessary to agitate the circuit panel in the solution for up to 10 minutes to ensure even etching.

J. Anderson,
 Macclesfield,
 Cheshire.

There is another point that should be remembered: this solution contains an appreciable amount of acid and so should be handled with care. In particular, it must NOT be poured down the sink, especially if the plumbing is copper.-Ed.

Too ambitious?

Sir--Since the August issue of Practical Elfetronics was published 1 have felt that your magazine has been catering for the more ambitious of your readers, and is paying little attention to the man with a limited amount of time and money. This has been verified by the list of constructional projects in the November 1969 issue. All these projects (except perhaps the I.C. Basic Amplifier) are costly and time consuming.
Bring back ones like the Homecom, the Electronic Stockmarket or the beginner's projects!
E. W. Lawson, Glasgow.
We have a very wide readership, and interests vary considerably. Certainly you can expect to see more basic projects in the future, and articles specially designed for the beginner will be featured from time to time.-Ed.

Nematic crystals

Sir-I was pleased to find an article on Conductive Glass by F. J. Stone in your November issue. It must be very many years since I came across a really constructive project such as this (do-it-yourself is so cut and dried these days), and it is quite a thrill to get back to something requiring dexterity and luck for a sense of achievement.

The Variable Transparency windou is particularly interesting, and I should like to construct one as a project with a group of the Merton Science Society. Unfortunately, Mr Stone does not tell us how to make a nematic liquid or how high a potential must be applied across a $\frac{1}{4}$ in thickness of liquid. Perhaps you could get him to pass on this vital information.

By the way, according to the precautions which he quite rightly warns us about, he says that tin is poisonous, but surely tin is harmless otherwise how is it that all our food is kept in tin cans?

George E. Dunning,

Abstract

Morden,

Surrey.
The only nematic liquid crystal known to me is one referred to in the October 31, 1968 edition of the New Scientist, page 260, "Trends and Discoveries"," Lining up Dye Molecules to Switch Light Colours"', which effect I referred to in my article. This uses methyl red dye in a 0.1 to 1.0 per cent (by weight) solution in the host liquid crystal, P-N Butoxy Benzoic Acid, with the glass plates about 12 micrometres apart.

The above named liquid is, as 1 expect most others are, not so readily available. It is one thing to know the name of a substance, but it is another thing altogether to obtain it. There are more liquids in this general group which exhibit this or similar effects. I am sorry I cannot provide any further information regarding the availability of nematic liquid crystals.-F.J.S.

Glass centre

Sir-I was most interested to read F. J. Stone's article on Conductive Glass in November 1969 Practical Electronics, but do not feel I can cope with the experiment of making my own.
Do you think if I advertised in your miscellaneous column a supplier could be found?
When 1 enquired at the "glass centre" at the Building Exhibition, noone appeared to have a clue. According to Stone's article, the Russians appear to have it, so where are we in this research?

Perhaps I have not done enough reading outside electronics and Pilkington and Triplex have the answer.

Leslie D. E. Light, G3KDL,
Wembley,
Middlesex.

2kW FAN HEATER Three poition switching to guit changes in the weather \$witch up for full heater (2 ! kW), switch down for half heat ($1 \| \mathrm{kW}$), switch central blows cold for mummer cooling a auto control and esfety act out. Complete kit 8315.0 Post and ins. $7 / 6$ or made up Post and ins. $7 / 6$ or made up

FLUORESCENT CONTROL KITS Each kit comprises seven items-Choke, 2 tube
 with wiring instructions. suitable for normal fuorescent tubes or the new. Chokes are supersilent, moatly resin filled. Kit A-15-20w. 19/6. Kit B-30-40w. 19/6. Kit C- 80w. 19/6. Kit E $-65 \mathrm{w} .19 / 6$. Kit MFl is for 6 in . 9 in . and 12 in . miniature tubes, 19/6. Postage on Kit \boldsymbol{A} and \mathbf{B} 4/6 for one or two kits then $4 / 6$ for each two kite ordered. Kita C, D and E $4 / 6$ on flrst kit then $3 / 6$ for each kit ordered. Kit MF1 $3 / 6$ on first
kit then $3 / 6$ on each two kits ordered.

BECKASTAT

This is an instant ther mostat, simply plug your appliance into it and its lead into wal plug. Adjuatable set ting for normal ai temperatures.
loading. Will save its
Poat and insurance $2 / 9$

REED SWITCHES
Glass encased, switches operated by external magnet-gold welted contacta. We can now offer
Miniature. 1 in . long \times approximately $\ddagger \mathrm{in}$. diameter Will make and break up to \ddagger amp up to 300 volt Price 2/6 each. 24/- dozen.
8 tandard 2 in . long $\times 3 / 16 \mathrm{in}$. diameter. This will break currents of up to 1 amp , voltages up to 250 volts. Price $9 /$ each. 18/-per dozen.
Fist. Flat type, 2 in . long, juat over $1 / 16 \mathrm{in}$. thick, approximately tin, wide. The Standard Type fattened out, so.that it can be fited into a smaller space or a larger quantity may be packed into a
square solenoid. Rating $1 \mathrm{amp}, 200$ volts. Price $6 /-$ each. \& per dozen.
Small ceramic magnets to operate these reed switches $1 / 8$ each. 12/-dozen.

15 Amp FOOT SWITCH

suitable for Sewing Machine Motor, Drilling Machine or in fact to witch any job where 250 volts Pre

3 DIGIT COUNTER. For Tape Recorder or other application, re-settable by

TRANSDUCER

Made by Acos, reference No 1.D, 1001 . For measuring vibra tion, etc., to be used in conlar price 65 . Our price 49/6. Brand new and unued.

ISOLATION SWITCH 20 Amp D.P. 250 volte. Ideal to control Water Heater or any other appliance. Neon indicator showa when current is on, 4/6. 48/ \rightarrow per dozen.

LIGHT CELL.
Almost zero resiatant in Bunlight increases to 10 K . Ohms in dark or dull light resin sealed. Size approx. lin. dia. by tin. thick Rated at 500 MW , wire ended. $8 / 8$ with circult.

FLEX BARGAINS

Screened 8 Core Flex. Each core 14.0076 Copper PVC insulated and coloured, the cores laid together and metal bralded overall. Price 20.15.
15 Amp 3 Core N゙on-kink Flex. 70/0076 insulated coloured cores, protected by tough rubber sheath. then black cotton braided with white tracer. A normal domestic flex ars fittel to 3 kw . fires Regular price $3 / 6$ per yd. 50 yd . coil 24.10 .0 , or cut to your length $2 / 6$ per yard
10 Amp 8 Core Non-kink Fles. As above but corea are 28/0076 Copper. Normal price $2 / 6$ per $y \mathrm{~d}$. 100 yd . coil 87.10 .0 , or cut to your length $1 / 9 \mathrm{yd}$ ${ }_{23} / 0076$ as used for Vacuum Cleaners, Electric Blanketa, etc. $39 / 6100 \mathrm{yd}$. coil.
28/0078 Triple Core P.V.C. covered, circular, normally sold at $1 / 6$ yd. Our price 100 yd . coil \$8:19.6. Post and Insurance 6/6.

12 VOLT SOLENOID For energizing Reed Switches etc., size approx. lin. long by lin. diameter. Hole through Solenoid approx. Ain. 8/6 each.
'GLADIATOR' 2 WAVE BAND TRANSISTOR RADIO 7 transistor, 2 wave band (medium and long) pocket radio with carrying handle and ear plug. These radios use a 1 errite slab aerial ani moving coil speaker. Completely built up ready to play. Offered at less than Importers price due to bankrupt purchase. A remark. able bargain. 89/6 plua $3 / 6$ post and ingurance

MINIATURE EXTRACTOR FAN
Beautifully made by famous German Company. PAPST Ayatem, 230/240 A.C. Mains operated, gize 3 in in. <3 in. uin. Maste for instrument cooling b̧ut ideal to incorporate in a cooker hoot, etc. 85/-

BUY TIME SLOT METERS
If you hire out equipment such as TV aeto by the hour then 8 d. an hour, $1 /$ - an hour and $1 / 6$ an hour. We have 3 types, by the lamous Weston Company. Price i3.19.6. postage and 2 insurance $\mathrm{f} / 6$.

DISTRIBUTION PANELS
Just what you need for work bench or lab. standard 13 amp fused plugs. Supplied complete with 6 feet of heavy cable and 13 amp plug. Similar advertiged at $\& 5$. Our price $89 / 6$ in kit form $+4 / 6 \mathrm{P}$. \& I. or 45/- + 4/6 P. \& I. mired up.
 24 HOUR TIME SWITCH Mains operated. Adjustable Contacts give on/off per 24 hours. Contacta rated 20 amps, repeating mechaniam so ideal for shop window control, or to日witch hall lights (anti-burglar precaution) while you are on hollday, Made by the famous Smiths and insurance, a real snlp which should not be and ins
missed.

(20

DOUBLE ENDED MAINS MOTOR

On feet with holes for acrew-down fixing. To drive models, oven, blower heater, etc. $10 /$ - each, plus $\$ / 6$ post and insurance. 6 or more post free.

NSTRUMENT MOTOR WITH GEAR BOX Made by the famous 8 miths Company. Thls motor operates from $20-26$ voles 50 c.p.s. or from higher voltages through transformers or rebistors: frt has an -gear train in pergpex gear box final ghaft speed is
rev. per hour. Approximate dimensions, motor
 1 in . $x 1 \mathrm{in}$. diameter. gear box $1 \mathrm{in} . \times 21 \mathrm{in}$.
 missed. diameter. Although only 2 watt motor this is reaily powerful and impossible to stop by hand. $85 /$. Mains operated and available with final speeds 1 R.P.M., 4 R.P.M., 30 R.P.M., 60 R.P.M., 1 rev. per hour $35 /=$

1 WATT AMPLIFIER \& PREAMP
5 transistors-highly efficient, made for use With tapehead 04 but equally suitable for
microphone or pick up-limited quantity $89 / 6$. Full circult diag. Also shows tape controls $5 /-$.

VARYLITE

(1)Will dim incandeacent lighting up to 600 watts from full brilliance to out. Fitted on M.K. flush plate, same size and fixing as etandard wall switch so may be fitted in place of this, or mount on surface. Price complete in heavy plastic box with control knob \$8.19.6.

HI-FI BARGAIN

FULL P1 12 IncH LOUDSPEAKER. This is undoubtedly ne of the finest loudspeakers that we have ever oflered, produced by one of the country's most famous makers. It has a le-cast metal frame and ls strongly recommended for $\mathrm{Hi} \cdot \mathrm{Fi}$ ond and Rhythm Guitar and public address.
Fowx Density 11,000 gauss-Total Flux 44,000 MaxwellsPower Handing $30-1000$ watts R.m.8. Cone Moulded fibre-Freq. onance 60 c.p.e. Chassis Diarn. 12in. 12 ifin. over mounting lugs-Bafthe hole 11 in. Dian.-Mounting holes 4 , holes tin. diain. on pitch circle $11 \geqslant \mathrm{in}$. diam. Overall heigh 5 in. A \& 8 speaker offered for only 43.9 .6 plus $7 / 6 \mathrm{p}$. \& p . Don't miss this offer. 15 in . 30 watt 87.19 .6 . 18 in . 100 watt 284.10 .

5 kW PORTABLE HEATER

 For workshop--stores-greenhouse, etc. U'ses twinbalanced motors for silent operation and reliability. three poaition Bwitch gives "max. heat," "half heat", and "blow cold". A really fine heater. Price 80.10 .6 , plus $10 / 6$ post and insurance.

SPRING COIL LEADS 38 fitted to telephones,
4 ecre $2 / 6$ each, 3 core $2 /$ PANEL LAMPS In neat plastic cases, avrilable in several voltages as follows: $4 \mathrm{v}, 6 \mathrm{v}$. $14 \mathrm{v.} ,24 \mathrm{v} ., 36 \mathrm{~F} ., 48 \mathrm{v},{ }^{2} 60 \mathrm{v} ., 110 \mathrm{v}$. fitted with lanips. 110 p . and abore fitted with lanlps. 110\%. and above
are neons. Price $3 /-$ each. 30/- dozen.
APPLIANCE THERMOSTAT
This is a akeleton Type control intended for bullding into oven, for baking, curing, pottery etc. 2 models, one preset for acrewdriver control. The other has a shaft for knob control. Approxi mate operating temperature. Note only high emperature insulation used in these state Price 12/6 each.

Where postage is not stated then orders over 83 are poat free. Below 53 add $2 / 9$. Semiconductors ndd $1 /-$ post. Over $£ 1$ post free. S.A.E. with enquiriez piease.

ELECTRONIC.S (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CRO 2TH

T FLASHERS Heavy duty light flasher employs it condenser discharge
principle operating on electro mechanical relas. (As inset.)
Housed in strong Housed in strong
plastic cabe. Flabbplastic cabe. Flabb-60-120 per minute. hon. Maxinum load 6 amps. Size $211 / 16^{\prime \prime}$ of original cost. $8 / 6$ eanh. P. A P. D/f (3 for $17 / 6$. P. \& P. $4 / 6$.)

R209 MK II COMMUNICATION RECEIVER 11 valve high grade commmaniation receiver suitable for tropical use, $1 \cdot 20$ Me/\& oll
thande. AM/CWM netation. Mincorpor ates precision vernier driver, Bro. Aerial rimmer, inter-
 nal speaker and ternal nower supply. Sup. plied in exces lent condition,
fally tested and lully tester
£15
TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent general purT.13. $\because \mathrm{c} / \mathrm{s}-750 \mathrm{kc} / \mathrm{s}$ Bandwidih $5 \cdot 5$ Me/s
 $200 / 250 \mathrm{Y}$ a.c. Supplied in excellent working conilition. 222.10 .0 or com1 lete with all accessories, probe, lends, lin1,
e25. Carriage $30_{5}-$.
MARCONI CT44 TF956 AF ABSORPTION WATTMETER
1μ watt to 6 watte 220. Carr. 20;

SOLARTRON CD. 1016 OSCILLOSCOPE Double beam. el.c. To $5 \mathrm{Mc} / \mathrm{s}$. Excellent

CLASS D WAVEMETERS

 lyne frequency meter covering
Operation
on 64
Me/s. Operation on 6y al.c.
Ideal for ansateur use. Ideal for amateur use.
Arailable in good used condition. $25,19.6$. Carr. 7/6, or brand new with acces.

sorke. 27.19.6. Carr. 7/0

CLASS D WAVEMETERS No. 2 Crystal controlled. $1 \cdot 2-19$ Me/8. Mains or $12 \sqrt{\prime}$ d.r operation, (complete with calibration charts. Excelient condition.
s12.10.0. Carr. $30 /-$.

TO-2 PORTABLE
OSCILLOSCOPE A general purpose luw cost economy obcilloacope for everyday use.
Y amp. Bandwidth \because ces-1 mez. Bandwidth
 Illuminated scale,
tube. 115
180 930 mm . Weight 81 b P20/240 V a.c. Bupplied
 hrand new with bind

SOLARTROH CD. 7IIS.2 OSCILLOSCOPES Double hean. D.c'.
ariler. 285. (itrr. 50 -

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

 nem portable bridge offering excellent ringe and cost. Ranges: R. 6 Ranger $\pm 1 \%$. L. 1 HHY- ${ }^{1} 111$ Range - "u. TI'RNis RATIO $1: 1 / 1000-$ 1:1100. 6 Ranges 10 . Bringe voltage at Keter indication. Attractive 2 tone metal ca@e. \$ize it $: 55$. 2 in . 200. P. \& P. $5 /-$.

UNR-30 4-BAND COMMUNIEATION

RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$, Iucorporates BFO. Built-in
Bpeaker and phone jack. Metal cabinet. Operation $220 /$ peaker and phone jack. Metal cabinet. Operation $220 /$
atc. Supplical hranal new, guaranteed with inatructiona

Supplied hranal new, guar

Carr. $7 / 6$
TRIO JR-310 NEW AMATEUR BAND 10-80 METRE RECEIVER. In tock. 877,10.0.

Lafayeite solio state hagoo recelver
13 gns.
 5 BAND AM/CW/SgB AMATEUR AED SHORT
WAVE $150 \mathrm{zc} / \mathrm{s}-400 \mathrm{kc} / \mathrm{I}$ and $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{me} / \mathrm{c}$

 EXCEPTIONAL VALUE. \&45. Carr. 10/•, B.A.E. for full details.

TRIO COMMUNICATION

RECEIVER MODEL 9R-59DE
4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. continuous and electrical bandspreail on $10,15,20$, $4 / 8$ ohm output and phone jack. SSB-CW 7 diode ANL Variable BFO $\$$ meter © Sep. bandspread dial $1 \mathrm{~F} ~ 445 \mathrm{Kc} / \mathrm{s}$. Audlo output 1.5 W . Fariable RF and AF gain controls. $115 / 250 \mathrm{~V}$ A.C. Mains. Beautifuily designed. Slze: 7 - 15 10in. With instruction manual and service data. 248 Carrigge paid
TRIO COMMONICATION TYPE HEADPHONES Normally 45.19 .6.
OTR PRICE 8.15 .0 if purchased with above recelver

LAFAYETTE HA. 800 SOLID STATE

AMATEUR COMMUNICATION RECEIVER
SiX BANDS 3.5-4, 7-7.3, 14-14.35, 21.45 $28-29.7,50-54 \mathrm{Mc} / \mathrm{s}$
Dual conversion on all bands.
mechanical niters. l'roluct letector. $4.5 \mathrm{Kk} / \mathrm{s}$ B.F.O. 100 he's cryat culibetor. , harinble Huge slide rule dlial. Operation 230, AC meter. DC. Size $15^{* *} 93^{\circ} 8 \mathbf{N}^{* *}$. Complete with inatruc($100 \mathrm{Kc} / \mathrm{s}$ Crystal $39 /$ paid.

		CRYSTAL CALIBRATORS No. 10 Small portable cryatal controlled wavemeter. Size $7^{*} \times 71^{*} \times 4^{*}$. Frequency range $500 \mathrm{Kc} / \mathrm{s}$. $10 \mathrm{Mc} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{e}$ on harmonies). Calibrated dial. Power re. quirements 300 V.D.C. 15 mA and 12 V.D.c. 0.3A. Excellent condition. 89/8. Carr. 7/6.			

RCA COMMUNICATION

 RECEIVER AR88DLatest release by ministry BRAND NEW in original cases. $110-250 \mathrm{~V}$ a.c. operation. FreOutput impedance $2 \cdot 5-600$ obma. Incorporating cryatal filter, noise limiter, variable BFO, variable selectivity, etc. Price 887.10 .0 . Carr. $\& 2$.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new transistorised recelver covering
$151-174$ Me/s. Fully tuneable or crystal controlled (not supplied) for fixed frequency operation. Incorporates 4 INTEGRATED CIRCLITS. Built in speaker and illuminated dial., Squelch and volunue controls. Tape recorder output. 750 aerial input. Healyhone jack. Operation 230 V . A.C.

POWER RHEOSTATS

High quality ceramic construction. Windinge embedded in vitreous enamel. Heary duty brush winer. Continuous rating. Wide range ex-stock Single hole flxing, IIn. dia, shafte. Bulk quantities available.
25 WATT, $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 onn 50 WATT, $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms, 14/8. P. \& P. 1/6 100 WATT. $\quad 1 / 6 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or $2,500 \mathrm{ohme}, 87 / 6$. P. \& P. $1 / 6$.

Spare movements for Model 8 or 9 . (Fitted meter. Brand New and Boxed $89 / 6 \mathrm{P}$. \& $\mathrm{P} .3 / 6$. AVO 48A. Perfect order with set of ghunts and resistances. 212.10 .0 . P. \& P. $7 / 6$. T.E. 40

HIGH SENSITIVITY

 A.C. VOLTMETER 10 neg. input 10 ranges: $3 / 10 / 30 / 100 / 300 \%$ Supplied - brand new complete with leads and instructious. Operation $\begin{array}{lr}\text { instructions. } & \text { Operation } \\ \text { g30V f.c. } & 217,10.0 .\end{array}$ Carr. 5/-.

LELAND MODEL 27 BEAT

 FREQUENCY OSCILLATORS Frequency $0 \cdot 20 \mathrm{Kc} / \mathrm{s}$ on 2 ranges. Output 500Ω or $5 k \Omega$. Operation $200 / 250 \mathrm{~V}$. A.C. Supplied10/-.

TE-65 VALVE VOLTMETER

High quality Instrument With 28 ranges. D.c. volt
$1.5-1,500 \mathrm{v}$. $1.5-1,500 \mathrm{~V}$. A.c. volts
$1.5-1,500 \mathrm{~V}$, Resistance up to 1,000 megohms. $220 / 240 \mathrm{~V}$ a.c. operation. Complete aith probe and instructions. \&17.10.0. P. \& P. 6/- Iddtional Probes available:
$35 /=$ H.V. $48 / 8$.
COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES D.c. coupled. Band width ke / s. Perfect order. 225. Carr. 30
AM/FM SIGNAL GENERATORS

\qquad Osellator Test No.
2. A high qually 2. A high quality ment made for the minlatry by Alrmec. Frequency corer*
age $20-80 \mathrm{Mc} / \mathrm{s} . \mathrm{AM}$ age $20-80 \mathrm{Mc} / \mathrm{s}$. AM
C.W./FM. porates precision dial, level nieter, precision 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{~V}$ acc. $81 z \mathrm{z}$ $12 \times 81 \times 9 \mathrm{in}$. Supplied in brand new condition complete with all connectors fully tested. 245. Carr. 20/-.
HAMMARLDTD SP600J COMMUNICATION RECEIVER. $540 \mathrm{Kc} / \mathrm{s}-54 \mathrm{Mc} / \mathrm{s}$ in 6 bande FEW ONLY! $\$ 100$.
EDDYSTOIE FHF 'RECEIVERS MODEL 770R. $19-165 \mathrm{Mc} / \mathrm{s}$. Excellent condition. 8150 .

TE-16A Transintorised Signal Genorator. 5 rangen
$400 \mathrm{kHz}-30 \mathrm{mHz}$. An inexpensive instrument for the handyman. Operates on 9 v battery. Wide, easy to read scale.
800 kHz modulation
 $5\{\times 5\} \times 314$. Complete With instructions and
FIELD TELEPHONES TYPE L
Generator ringing, metal cases. Operatee from two 1.5 v . batteries (not supplied) Excellent condition. 84.10 .0 per pair Carr. 10

AUTO TRANSFORMERS
ahrouded.

150 W .	82.2.6, P. \& P. $3 / 6$
300 W .	E8.19.6. P. \& P. 4/6
500 W .	\$4.10.0, P. \& P. $6 / 6$
1,000 W.	86.10.0, P. \& P. $7 / 6$
1,500 W.	87.10.6. P. \& P. 8/6

,500 W. E16.10.0, P. \& P. $20 /$
G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

ARF-100 COMBINED AF-RF

SEND NOW-ONLY 7/6 P\&P\%.

GARRARD

fULL CURRENT RANGE OFFERED, BRAND NEW AND GUARANTEED AT FANTABTIC savings

\qquad

* 1025 Mono
- 1025 Stereo
*2025 Stere
 - $2025 \mathrm{~T} / \mathrm{C}$ - Mono/Stereo * 3000 Stereo f8.19.6
7 $7 / 6$ ex er extra any model. WB

 211.19 .6
812.10 .0 models at $\mathbf{2 4 . 1 5 . 0 \text { . Carr. } 5 / - \text { . Full range of Garard atcessories available. }}$

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

$$
19 \text { transistors, \& liodes, } 1 \mathrm{HF} \text {, music power, } 30 \mathrm{~W}
$$ at 8Ω. Resporse $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W , Dis. tortion 1% or legs. Inputs 3 mV and 250 mV . Output $3-16 \Omega$. Separate L and R volume controls. Treble and base control. Stereo phone hack, Brushed al uminium, gold anodised extruded fron

pancl with complementary metal case. Size 104 panel with complementary metal case. size
$30 / 16 \times 713 / 16 \mathrm{in}$. Operation $115 / 230 \mathrm{~V}$. A e28. Cartage $7 / 6$.

MULTIMETERS for EVERY purposel

ADVANCE TEST EQUIPMENT Brand new and bored in origingl sealed cartont. VH. 76 VALVE VOLTMETER R.F. measurements in excess of $100 \mathrm{Mc} / \mathrm{g}$ and d.c. measurements up to 100 V with accurscy of $\pm 2 \%$ d.c. range 300 MV to 1 kV a.c. range 300 MV to 300 RMS. Res UHF MILLIVOLT METER. TranD.c. current range $0.01 \mu / \mathrm{A}-0.3 \mathrm{MA}$ Resistance 1 ohm-10 megohm.

$$
\begin{aligned}
& \text { Resiatance } \\
& \text { Price } 125 \text {, }
\end{aligned}
$$

H1B AODIO SIGNAL GENERATOR, $15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$. 日ine or square wave Price 230
J1B AODIO SIGNAL GENERATOR. TT18 TRANSISTOR TESTER. $\begin{aligned} & \text { Cartiage 10/- per item. }\end{aligned}$ MODEL ZQM TRANSISTOR CHECKER It has the fullest capacity for checking adaptabl

$\begin{array}{lll}\text { Bpec. } & \text { A: } & 0.7-0.9967 . \\ \text { B: } & \text { Ico: } & 0-50\end{array}$

microamps 0-5 mA.
$200 \Omega-1 \mathrm{M} \Omega$. Supplie
tions battery instr

\section*{TE111.
 RESISTANCE
 ATTENOATOR | Varjable |
| :--- |
| $0-111 \mathrm{~dB}$ | nectiona.}

balanced T Th 600Ω range $(0.1 \mathrm{~dB}: 10)+(1 \mathrm{~dB}: 10)$ $+10+20+30+40 \mathrm{~dB}$. Frequency $0.05 d B$. + indication $d B$. 0.01 . Maximum input less than 4 W (50 V). Built in
$\mathbf{6 0 0} \Omega$ load resistance with internal/external switch. Brand new $287,10.0$.
SOLARTRON MONITOR OSCILLOSCOPE TYPE 101 An extremely high quality oscilloscope
with time base of $10 \mu / \mathrm{sec}$ to $00 \mathrm{~m} / \mathrm{sec}$. Internal Y amplifier. Separate mains power supply $200 / 250 \mathrm{~V}$. Supplied in ex cellent condition with cables. probe, etc., as
 TE-51. NEW 20.0000.
VOLT MULTMETER VOLT MOLTMETER with
overload protection and mirror scale. $0 / 6 / 60 / 120 /$
$1,200 \mathrm{~V}$ a.c. $0 / 3 / 30 / 80 / 300 /$

MODEL AS-100D.
100K Ω VOLT. 100K Ω /VOLT AS-100D
Sin
Ruil in mieter protection. $300 / 600 / 1.200 \mathrm{v}$ d.c. $0 / 6 / 30 / 120 / 300 /$
600 V 600 F ac. $0 / 10 \mu \mathrm{~A} /$
$6 / 60 / 300 \mathrm{MA} / 12 \mathrm{Amp}$. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$
200 Mg . $\begin{array}{ll}+17 \mathrm{~dB} . & 212.10 .0 .\end{array}$

MODEL TE-90 $\quad 50.000$ O.P,V. MIRROR SCALE OVERLOAD PROTECTION 0/3/12/60/300/600/1,200 d.c. $0 / 6 / 30 / 120 / 300 / 1.200 \mathrm{~V}$ $16 \mathrm{k} \Omega / 160 \mathrm{k} \Omega / 1 \cdot 6 / 16 \mathrm{M} \Omega$ p^{20} to +69dB. \quad 27.10.0.

MODEL TE-70. 30,000 O.P.V. 0/3/15/60/300 $600 / 1,200 \mathrm{v} . \mathrm{d} . \mathrm{c} .016$
$30 / 120 / 600 / 1,200 \mathrm{~V}$ $\begin{array}{lll}30 / 120 / 600 & 1,200 \\ \text { a.c. } 0 / 30 \mu A & 3 / 30\end{array}$ 300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $1.6 \mathrm{M} \quad 16 \mathrm{megohm}$

MODEL TE12 20.000 | O.P.V. | $0 / 0.6 / 30 / 120 / 600 /$ |
| :--- | ---: |
| 1,200 | $3,000 / 6,000 \mathrm{y}$ | $1,200 / 3,000 / 6,000 \mathrm{~V}$ d.c. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$. $\begin{array}{lll}0 & 6 \mathrm{~K} & 600 \mathrm{~K} \\ \mathrm{Megohm} & 50 \mathrm{PF} . & 2 \mathrm{MFD} \\ \mathrm{Ma}\end{array}$ $\begin{array}{ll}\text { Megohnt } \\ £ 5.10 .6 . & \text { P. \& P. } 36 .\end{array}$

LAFAYETTE 57 Range Multimeter. Volts $125 \mathrm{~V}-1,000 \mathrm{y}$ 1,000V D.c. Current $25 \mu \mathrm{~A} \cdot 10$ Ainp.
Ohms .0 .15
$\mathrm{Meg} \Omega$

* TRANSISTORISED FM TUNER t
 HIGH QUALITY TUNER, SIZE
ONLY 6.4×2510.
 Double tuned discriminator. Ample
output to feed most amplifiers. Oper.
Ond
Ond amplifiers.
Oper-
overage 88-108
Mc/s. ates on 90 battery. Coverage $88-108$ mals.
Ready built ready for use. Fantagtic value formoney, e8.7.6. P. \& P. $2 / 1 /$
Stereo multiplex adaptors 99/G.
TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over umazingly:
long distances, separate call long distances. separate call and press to talk buttons,
2 -wire connection. 1000 's of applications. Beautifully finished in ebony. suppliea wall brackets.
\qquad 26.9.6. P. \&

SINCLAIR EQUIPMENT Z12 12 watt amplifier, 89/6
PZ4 Power supply Conit $89 / 6$ PZA Power Supply C'nit 89/6
Stereo 25 Preamp.. 29.19.6
 49/6. Built 59/6

NOW' IN STOCK 1C/10 $\quad 59 / 6$ SPECLAL OFFER
Two Z12 Aups., PZ4 Power Supuly, Stereo speakers, 837

NEW SIHCLAIR 2000 SYSTEM 35 watt Integrated Amplifier £28. ('arr. 5
Self powered 10 . Tuncr. f25. ('arr. 5

PEAK SOUND PRODUCTS

Full range of Amplifterk. Kity, Xpeakers in

HOSIDEN DHO4S 2-WAY STEREO

RECORDING HEADS
COSMOCORD track heads. Higb imp. record/playback 65/-. Low imp erase 20/-. MARRIOTT t-track heads erase 20/-. Post extra.

RACAL MA. 168 TRANSISTORISED DIVER SITY 8WITCH. Brand Nep Condition 215 Carr. 10:

AMERICAN TAPE
First grade quality American tapes. Bralw
new Diacount on quantities.

Postage - - Over $£ 3$ post paid.
MAXELL TAPE CASSETTES 60. 10/3: C90. 14/3; C120. 19/6. Poot ext

VALUE ALLTHE WAY

INTEGRATED CIRCUIT AMPLIFIER AS，USED IN P．E，＇PROJECTS ［hentical encibpulation athe
jin contiguration to the fullawing SLatio and 1C403．Wach ripeuit
incorporates a pre－ampand cliss A．B．I＇ower ：hmp stage capable of dedivering up to and guaranteed．supplied complete with circuit detaiis andidita CODED BF． 1010 ． O1R LONEST PRICE
25 －vach． 10 uf 21－each． BI－PAK MONOLITHIC （TO－5 8 lead） （TO－5 8 lead） lifter． 15 －each． PiolC，Operational aliay
titier（with
Zenes ont wat）， 128 each． 13P7020．Onemitional anp－
litier（with direct out－ litiet（with direct out－
put）， 128 each． Br＇s01，Wide hatal ammi－ fier 18－each．
RP52！，Logarithuic wite
band imp， 14 －ach BP2O／C，General purpose atuplther（TO－5 8 lead）． （voltage or
I．C．Operational atuplitler With Zener outjut．
Type 701C．Ideal for P．E． Projects．A Leall TO－5 case．
Our ritec $12 / 6$ each 5 off 11 －each．Large Qty OTHER MONOLITHIC
DEVICES DEVICES

11 t＇ 424, Zevo voltageswitch， $8 / 6$ each．

 This device is at monolithic 1．C．that acts as combinedthreabolit detector and threathol rintector and
triger cirnit for coutrol－ ling it tritac It is designed
to pulse the thrristor at．the loint of tero bunply voltage，and frequency when misell with resiative loade．
D13161 Dlabl Nilicon I Inilaterat ${ }_{4}^{\text {surtch } 10 /- \text { each．}}$ Silicon Ilanar． Athic integrated，circuit ha，ing thyristor electrical anode gate and a built－in
gate and eathorle．F＇ull
data and application cir－ cuite ：swaitable on tequest
FAIRCHILD（U．S．A．） INTEGRATED CIRCUIT Epoxy case $78-5$ leati temp，range $15^{3} \mathrm{C}$ ．to $55^{\circ} \mathrm{C}$ ．
［L 900 ，Juffer， $10 / 6$ each L914．Dual two－tiput －gate， $10 / 8 \mathrm{each}$
each J－K－tlip－flop，14／－
Complete datia and circusts for the Pairchild I．C．＇s
accailable in bonklet form

MULLARD I．
 AMPLIFIERS

TA A 43, Operation：
liter， 70 －each．
TAt2ts3，Linear AF anuli
Tier， 18 beach．
CA3020 RCA（U．S．A． LINEAR INTEGRATED CIRCUITS
tulde $30 /-$ eatch．
Owing to the mass of IC printed matter niten re
quired by cubtomers in quired by eustomers in
conthetion with the $1, C$＇s thenselven we itsk you to
help us jut the cost of
repruducing this literature by adding this literature
2s．towards satme．This is only neces－
Bary when a number of EqVt．
Any
ety．

ADI61
ADI 62
MATCHEN COMPLE－ OF GERM POWER TRANEISTORS． For mains driven out－
put stages of Amplifiers put atages of Amptifiers OH：LOwERT OLR LOWEST PRICH： OF 12／6 PER P．AIR
HIGH POWER SILI CON PLANAR TRAS $\begin{array}{ll}\text { SINTORS．TO－3 } \\ \text { TEXAS } & 25031\end{array}$
rClBlow le t
CELuH PLT． $15 \$ \mathrm{~S}$ ce
TEBS DEE
15／－each bo

FREE

One 10／－Fack of your own choice Iree with orders valued $£ 4$ or over．
 SlLICOS JHOTO－
DCODIOLD DT－O－DIOIDE TYPE
ISTO1（2N2175） Readout，high switching Readont，bigh switching
and measurentent indi－ cators， $50 \mathrm{y},{ }^{250 \mathrm{~mW}}$
O1 RPRICE $10 / \mathrm{EACH}$. 50 OR OVER $8 / 6$ EACH． FULL DETAILS．

$\frac{\text { testell }}{\text { LUCAS 35A SIL．RECTS }}$

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS

NEW BI－PAK UNTESTED SEMICONDUCTORS

60 Mixed Germanium Traneistors AF／RF
75 （iermanium（iold Bomled Diode日 sim．OA5，OA47 40 （iermaniun Transiators like OC8 1. ． $\mathrm{AC1} 28$ 60200 mA suh－min．sil．Diodes
40 Silicon Planar Tritheistore NPN bint．BSY95A，2N706 16 Silicon Rectitiers Top．Hat 750 mA up 101.000 V 50 sil．Planar Dioder 250 mA OA／200／202 $\overline{2} 0$ Mixed Voltel watt Zener Diodes

50 Mixed Silicen ath（iermanium Diodes

$10 \overline{3} \cdot$ thip silicon Rectitiers stul Type up to $1000 \overline{\mathrm{PI}}$ 30 flermanium PNP AF Transistors TO－5 like ACY 17－22
 30 ，illicon NP＇N Transistors like BC 108

30 Matt＇s like MaT seties PNP Transiutors
20 （iermaniun 1 －amp Rectifiers fiJM up to 300 PIV ．．．．．
$25300 \mathrm{MC} / \mathrm{s} \mathrm{NP}$ silicom Transiators 2 NT 08 ，BNY27 ．．．．． 10
30 Fhat Nwitching silicon Diodes like IN914 Micro－mlu．．．．． 10
Experimenters＇asoortment of Integrated Circuits，unt ested． Aates，Flip．Flops，Kegisters，etc．， 8 Assorted l＇ieces
 15 Plastle silicon Planar trans．N P＇S $2 \times 2924-2 N 2926$ 20 Nil．Plabar NPN trans．Jow aoise Aup $2 \times 3700^{\circ}$
25 Zenct dindes 400 mW D07 case tuixed Volts，3－18
5 Phatic case ！amp sificon rectifiers $1 \mathrm{~N} \mathbf{4 0 0 0}$ serie
30 wit PNI＇alloy trans．TO－5 BCYO6， $28302 / 4$
25 sil．Plamat 1 rans．PNP TO－ 182 N 290 ti．

30 Nil．alloy trans，SO－2 PNP，OC200 2 S 322.

30 RF Cierm．PN？trans． $2 \mathrm{~N} 1303 / 5 \mathrm{TO}-\mathrm{s}$
10 Dual trans． 6 lead $70-52 \mathrm{~N} 2060$
30 RF Germ．trans．TO－1 OC45 ふkTiz． 10 VHF Germ．PNP trans．TO I NKT0n

FULL RANGE OF ZENER DIODES voltage ranae 2－16V	FET＇S
400 mW （DO－7 Case）．．． $2 / 6$ each	
1－5W（Top－Hat）．．．．．3／6 each	PF105
ful3y tested $5^{\circ} \mathrm{o}$ tol and mar	T

SILICON HIGH VOLTAGE RECTIFIERS

11 Amp 3 kV（3mm PlV）．Stud
type with mying leads 16／－each
2N2060 NPN SIL DUAL TRANS． CODE DIRQS TEYAS，OUR 120 VCB NIXIE DRIVER TRAN－ SISTOR Sim．BSx21 © C407． CODED ND120． $1-243 / 6$ each CODED NI120． $1-243 / 3$
TO－5 NPS 25 up $3 /-$ eath．

PLEASE NOTE

hirther licreased Postal war thy our＂ustomers and enable us to
keep our
（13y Return Pustal gervice＇which is secont to none． we hare our Deapatch Order Depart nent and we now request yon to
sent all your orle together with send all your oriles toget her with
yon remit tance，direct to our Wirchouse and Despateh Dejart

Dept．，P．O．BOX 6，WARE

SIL．RECTS．TESTED

 $\begin{array}{lll}\text { PIV } 750 \mathrm{~mA} & 3 \mathrm{~A} & 10 \mathrm{~A} \\ 304\end{array}$
QUALITY－TESTED PAKS

6）Matched Trans．OC4 $4 / 45 / 81 / 81 \mathrm{I}$
16 White Spot RF Trans PY
6 White Spot RF Trans．PNP
5 silicon Rects 3 A $100-400 \mathrm{PI}$
210 A sllicon Rects． 100 PIV
20 Ot 140 Trans．S P N Switching
112 A SCR 100 PIV
3 Sil．Trane 28303 P
4 Zener Diodes 240 mW 3．12V
3 Zener Iiodes $1 \mathrm{~W} 33 \mathrm{~V} 5 \%$ Tol．
4 ligh Current Trans OC42 E，jV
2 Power Transistors ：OC20 1 OC35
5 Silicon Rects， 400 PIV 250 mi
OC75 Transistore
00 A 202 sil．Diodes 10 l

Nil．Trame．NPN VCB 100 7TRA
80481 Miorles
$40 \mathrm{OC72}$ Transistory
40 O 77 Transiators
40077 Transiators
4 Sil，Rects． 400 PIV $500 m 1$
5 GET884 Trame Eyt．OC44．
GET883 Trans．Equt OC45 2 2N708 sil．Trans． 300 Mc e NI 3 GT31 LF Low Noise（ierm
of IN914 Sil．Dioules $\bar{\circ} 5 \mathrm{PIV} 75 \mathrm{~m}$ 80495 Germ．Diotes Sub－nim．INtis 3 NPN（ierm．Trans．NKTis3 Eqjot． 2 OC22 I＇ower Trans．（ierm．．．．．． 2 OC25 Power Trans，Sierm． AC127 124 Conu．mir PN P／NP 2N1307 PNP Switching Trane． CG62H Germ．Diodes Equt．OA AF116 Type Trans．
Assorel（rerm．Dlotes Marked
Silicon Rects． 100 F＇T
HFllicon Rects． 100 PIV 750 m OC81 Type Tran＊．
$2 \mathrm{~N}_{2} 926$ Sil．Fpoxy Tlim
OCil Tyue Trans．
28701 sil．Trans．Texas
12 Colt Zener $400 n \mathrm{n}$
 fC10s Bil．NPN High fain I rank 1000 IV＇Sil．Rect 15 H R 53310 f1000 95 A sil．Traus．YPS 200 Mc OC200 sil Trans．
（：ET880 Lnw Noise dierm．Trate
AF139 PNP High Frey．Tratis．
NPN Trane． 1 ST141 \＆ 23 T 140 Madte \＆MATLOO \＆gMAT120 Madt＇s 2 MATlOL A 1 MATl＇2 OCHA \＆erm．Tralus．A
AC127 NPN tierm．Trang．． 2A3000 Nil PNPT Trans．M Sil．Power Tratne． X 际 100 Mc Tk201A．．．．．．．．．．．．．．．．．．．．．． 2A1132 INP Epitaxial Planar \＄ 2N69：Epitaxial Planar Trans．Sil Germ．Vower Trams．Euvt．OC1G Tniiunction Trans．2N284
sil．Trans． $200 \mathrm{Mc} / \mathrm{s}$ to Veb ZT83／8 Tunnel Diode AEY 111050 Mc 2N2719 Sil．Epoxy Plarar HFE 225
BY100 Tipe Sil．Rects． 5 Sil．Thpesil．Rects．
Sil．amd Cerm．Trans．Mixedl，all
market，New

2N4871 Maroriuncion $6^{\prime} / 9$
$25+5 / 9 \quad 100+4 / 9$
 $25+13^{\prime} . \quad 100+11^{\prime}$.

56CAY Gallium Arsenide
Infia-Red emitter
29/6 each. (Incl. data)
BC107/8/9
Planars
2'9
SL403 49'6
PLESSEP 3 WAT
SC41D GE Triac
400piv Gamp 37/6

Paxse Larger quantity prices (100 + and $1,00+$ + application.

BF180 MULLARD UHF	
AMPLIFIER	$6{ }^{\prime}$
$25+4 / 11$	100

2N2614 RCA

LOW NoISE AUOIO $4 / 9$
$25+4^{\prime} \cdot 100+3^{\prime} \cdot$
$\begin{array}{lr}\text { CRS3/40AF STC/ITI } \\ \text { Thyristor } & 12^{\prime} 6\end{array}$

2N2926 Low cost npn planar $\quad 2^{\prime}$. $25+1^{\prime \prime 8} \quad 100+1^{\prime} 6$

SIIICON RECTIFIERS x^{*}
 $\begin{array}{ccccc}\text { PIV } & 200 \mathrm{~mA} & 750 \mathrm{~mA} & 2 \mathrm{Amp} & 10 \mathrm{Amp} \\ 50 & 6 \mathrm{~d} & 1 /- & 2 / 3 & -\end{array}$ $\begin{array}{rllll}50 & 6 d & 1 /- & 2 / 3 & - \\ 100 & 9 \mathrm{~d} & 1 / 6 & 2 / 3 & 4 / 6 \\ 200 & 1 / 3 & 2 /- & 2 / 9 & 5 /-\end{array}$ $\begin{array}{lllll}100 & 1 / 3 & 2 /- & 2 / 9 & 5 /- \\ 200 & - & 2 / 6 & 4 /- & 8 /- \\ 400 & & 3 / 6 & 9 / 6\end{array}$ $\begin{array}{llll}600 & 3 /- & 4 / 6 & 9 / 6 \\ 800 & 3 / 9 & 5 /- & 11 / 3\end{array}$ 1000

ULTRASONIC TRANSDUCERS

THYRISTORS-SCRs

IIINIUNODUNS					
PIV	1 A	3 A	10 A	30 A	100 A
50	$7 / 6$	$9 /-$	$7 / 6$	$25 /-$	$20 /-$
100	-	$10 /-$	$10 /-$	$30 /-$	$22 /-$
200	$8 / 6$	-	$12 / 6$	$42 /-$	$35 /-$
300	-	$11 /-$	-	$51 /-$	-
400	$9 / 6$	$12 / 6$	$15 /-$	$60 /-$	$45 /-$
600	-	-	$20 /-$	$84 /-$	$120 /-$
800	-	-			

MAIL OROER OEPT. \& RETAIL SHOP:
LST, 7 Coptfold Road, Brentwood, Essex Telephone: 226470/1 (Sales Department) EXPORT ENQUIRIES PARTICULARLY WELCOME GIRD No. 388-3159

* A FEW EXAMPLES!
* QUANTITY DISCOUNTS!
\star GUARANTEED GOODS!
MODULES with instructions
ADASTRA Electric E1815 organ, 28/6; E1s18 Code osciliator, 22/6; E1817 Wireless code oncillator. 22/6; E1818 Daal lamp flasher, 22/6.

FANTASTICALLY POPULAR

- TAPE
\star
We offer you lully tenailised polyester/mylar and P.Y.C. tapel of identical quality hi-fl, wide range recording characteristics as top grade typen. Quality control manuacetate, sub-utanderd, jointed or cheap imports, coppers then AND PROVE IT YOURSELF.

	Standard Play				Long Play	
8 in .	150 ft .	2/3	\ldots	3 in	-	$2 / 8$
4 in .	300 ft .	4/6	...	4 in.	450 ft .	5/6
5 in .	600 ft	$7 / 6$...	51 n .	900¢t.	$10 / 6$
5 \%in.	9001 t .	$10 / 6$	\ldots	53in.	1,200ft.	$18 /$
7 in .	1,200t.	12/6	...	7 m .	1,800ft.	18/6
	Double Play				Triple Play	
3 in .	300 ft .	4/	\cdots	4in.	900ft.	13.
4 In .	600ft.	8/-	...	810.	1.8001t.	25/-
Sin.	1,200ft.	15/-		58in.	$\cdots, 4001 \mathrm{t}$.	34/-
5 sin .	1,8001t.	19/6		7 in ,	3,600it.	44/-
7osin,	$\xrightarrow{2}, 400 \mathrm{ft}$ - reel.	27/-		810	quadruple Play 6001t	

Post Free less 5% on three roels.
gasntity and Trade enquiries invited.
V.H.F. F.M. TUNER HEADS

GORLA. The ismous complete continentsl F.M. tuaing heart in dye cant case complete with ECC85 FERGOSOK. Ditto size 2 , 2 in, screened case EHRCORDER. Tape recorder, 4 transirtor complete $19 /-$
$17 / 6$ with tape mike, terrific valne …................ 5.19 .0 HOME ciguLe, TE188 signal Generator all wave, large size, super accuracy, big saving

AMPLIFIERS
SINCLAIR PACKAGE DEAL. 2 Z12 amps., PZ4 power supply, Stareo 20 pre-amp. $-\cdots . ~$ VALVE RECORD PLAYER. AMPLIFIERS. 4 W ${ }^{\text {E3.10.0 }}$ output with 2 valven DY85, UL84 RECEIVERS
AIWA. AR813 4-band large radio L/M/Sl/S2,

if gns. WIEN PILOT II. Aircralf/MW receiver 11 gns Sin. heavy peaker, car tocket- hargain ofier cases, (normal value approx, 25 gns.!!) delity, reaponse $20-20000 \mathrm{cps}$ tuning meter, high built-in power pack, attractive plinth, provinioned for multi-plex (RRP over 280) Super nitp 28 gne
BARGAIN PARCELS
OUR SELECTION
100 MIXED RFATME tandard carbon types, good qualit
00 MIXED COHDEI Hood quality iver mics, paper, listed at \& \& e's
00 MIXED HI-sTAB RESISTODS $5 \% 10$ ohms to 2 Merohms, range 10 , 10 to quality amps., meters, etc. 25 MIXED TAG BTRIPS. 2-way to l3-way, with foet 25 MIXED ELECTROLYTICS. H.T., bias and tranaintor types
CONFECTING WIRE. Coloured, PVC insulated, 5 coils of 25 ft . each.
TRANBISTOR KITB. (8tandard superhet seta)
NEWMARKET, 6 transintors and 1 diode complete,
conisting: mixer, 2 i.f's, detector. $1 \mathrm{~s} . \mathrm{m}$. and $2 \mathrm{P} / \mathrm{P}$
outputs Tmaker pack, onjy $\cdot \cdots$..................... tharmiator. Greatly reduced 15 MIXED BARGAIN PARCELS $t \rightarrow t$
selected from variable condensers, I.F. coils, loudipeakers plugs, tockets, knobs, potentiometers, condensers resistors, nuts, bolts, cabinet fittings, switches, valves, transiormers, lamps, complete p.c. boards, choken, rectifiers, transistors, etc., etc. OFFERED at a mall fraction of list ralue, DUE TO HEAVY DEMAND, we now pack them in several sizes-EE AMAZED!:-TRY OHE 17/6; 14lb. parcel (post 8/6), 29/-. 7lb. parcel (post 5/-),
FANTASTIC
FANTASTIC BARGAIN OFFER
PARCELS OF POTENTIOMETERS
Twenty Five mixed types, our selection. from ganged, presets, switched, un-switched, tandems, log. and lin,, at

CABINETS, CHASSIS
AUTOCHANGE RECORD PLAYER CABINETS (carriage 8/-)
SEAFIRLE. Size 17! $\quad 15!\quad 7$ in. standard litt-up Super stim, and itandard 2-knob amp. Colours: Grey green, mutiard, tangerine. Snip PERDIO. 8tarmaker de luxe, size $16 \times 15: \because 7$ in. as above, but bare, treble, vol., chrome trim........ Garrard record player or Big (piesee apecily)

POST 1/- NOW FOR "FIOG LST"
To TECHNFCAL TRADING CO., Park Crescent Place, Brighton
| Please send free "Flog list", without obligation, io |
| NAME
BLOCK CAPITALS PLEASE
| ADORESS
1.

TRADIIGAL
 BRIGHTON Tel. 28975
 SOUTHAMPTON ir ERit street MAIL ORDER
Devonian Court, Park Crescent Place,
Orighton (Tel. 880722) 24 hour Telephone C.O.D. Frder Recording service
Winest range of nudio equipment nnd clectronic Complete installation quotalions a speciality

POSTAGE: Add !lb., $1 /-1!1 \mathrm{lb} ., 2 / 6 ; 6 \mathrm{lb} ., 4 / 6 ; 10 \mathrm{lb} ., 6 / \mathrm{c}$

ORGAN BUILDERS!

Use our bistable dividers for your tone sources and cut your costs by more than half.
A small printed board with four complete transistor dividers will cost you only $18 / 6$ including postage so why pay more?

Removed from working equipment, each circuit is meticulously inspected and tested before dispatch.

Please look for our future advertisements which will appear in the Classified Section while stocks last.
Just send a S.A.E. for free details to:
Roger Allen
I3 Millways, Great Totham, Essex

BULD YOUR CIRCUTS
 on VEROBOARD

-the Universal Wiring Board_

obtainable from your local Retailer
Trade enquiries to:
NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad's Place, Gray's Inn Road, London, W.C. 1
Technical enquiries to
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

PARKERS SHEET METAL FOLDING MACHINES heavy vice MODELS
 With Bevelled Former Bart

No. 1. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$, wide
No. 2. Capacity is gauge midd steel \times 36in. wide $£ 14: 0.0$
No. 3. Capacity 16 gauge mild steel $\times 1$ Bin wide
68.0.0

Also Capacity 16 gauge mild steel \times lisin, wide $. . . \quad . . . \quad .$. 68.0.0 27.10.0. 24 in . $\times 16$ gauge 26.10 .0 Cariage $\times 18$ gauge 40 . $36 \mathrm{in} . \times 18$ gauge End folding attachmente for radio chasis Tray model, $5 / 6$ per f. Oeher models chassis. Tray and Box making for 36in. model, $5 / 6$ per ft. Other models $3 / 6$. The ewo smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One yoar'z guarantee. Money refunded if not totisfied. Send for details.
A. I. PARXER, Foldimg Marhine Worts, Upper George St., Heskmondwike, Yorks. Heckmondwike 3997

BRAND NEW
SEMICONDUCTORS \＆COMPONENTS
（Saturday callers only 5% Discount）

NN：：：NNEZ KZOくロZZZ ๗゙った 								
NWNN ज約出出出								
 बूनी								
 xxxxxxxxxxxx \qquad \qquad \qquad 								

Post \＆Packing 1／6d per order．Europe 5／－．Commonwealth（Air） $13 /-$
Send 6d．stamp for price list．
 $35 /-: 100-0.100 \mu \mathrm{~A}, 32 / 6: 5000-500 \mu \mathrm{~A}, 25 /-\mathrm{i}$ ， $1 \mathrm{MA}, 25 /-: 5 \mathrm{MA}$
 $500 \mathrm{~V}, 25$／－

SILICON RECTIFIERS									
PIV 50	100	200	400	600	800		1000		2000
1A $2 / 9$	3／－	3／3	3／6	$3 / 9$	$1 /$		4／6		
$3 \mathrm{~A} \quad 3 /-$			4／6		$6 /$				
${ }^{64}$－		5／－	6／6	7／6					
17A 8／－	12／6	$13 / 6$ $18 / 9$	$16 / 6$ $21 /-$	$16 / 6$ $21 /-$	19／6		$\begin{aligned} & 23 /- \\ & 32 / 6 \end{aligned}$		43／6
${ }^{\text {17A }}$－only ${ }^{-}$	$1{ }^{15 / 6}$	16	${ }_{\text {cic }}{ }^{1 /-}$						
DIODES \＆RECTIFIERS									
IN461 1／6	15130	2／6	BAX13	2／6	BYZ10	$9{ }^{\text {9／－}}$		OA73	219
IN914 $1 / 6$	15132	$2 / 6$	BAX 16	2／6	BYZII	7／6		OA79	1／9
［N916 1／6	15131	3／－	BAYI8	3／6	BYZ12	${ }^{6 / 6}$		OA81	$1 / 6$
｜N4007 $4 / 6$	AAll9	2／－	BAY31	1／6	BYZ13	5／－		OABS	$1 / 6$
15010 3／－	AAZ13	2／－	BAY3B	2／6	FST3／4	$4 / 6$		OA90	$1 / 6$
15021 4／－	AAZ15	$2 / 6$	BY100	4／6	FST3／8	6／－		OA91	$1 / 6$
｜ 5025 5／－	AAZ17	2／6	BY103	4／6	OA5	$2 / 6$		OA95	1／6
15113 3／－	BA100	2／－	BY122	716	OA9	2\％		OA182	$321 /$
｜S120 216	BA102	4／－	BY124	3／－	OA47	1／6		OA200	2／－
｜S｜2｜2／6	BAIIS	1／6	BYXIO	5／6	OA70	1／6		OA202	2 2／－
INTEGRATED CIRCUITS									

Data and application sheers $2 i-$
THYRISTORS

PIV	50	100	200	300	400
$1 A$	$5 /-$	$5 / 6$	$7 / 6$	$8 /-$	$9 / 6$
$3 A$	$6 /-$	$7 / 6$	$8 /-$	$9 /-$	$10 / 6$
$5 A$	-	$8 /-$	$9 /-$	$12 /$	$12 / 6$
$7 A$	-	$11 /-13 /-$	$14 /-$	$19 / 6$	
$25 A$	$27 / 6$	$30 /-$	$33 /-$	3716	
Also	$12 A$,	100	PIV，	$15 /-;$	600
PIV， $35 / 6$					

VEROBOARD

0.15
Motrix

HEAT SINKS

$4.8 \times 4 \times \operatorname{lin}$ Finned for Two
TO． 3 Trans．， $9 / 6.4 .8 \times 2 \times 1$ in Finned，for One TO． 3 Trans． 6／6．For SO－1， 6 d ．For TO－5， Finned．For TO－18， $1 /$－Finned．

CAPACITORS

A large and comprehensive range available：Electrolytic，
Polyester，
Ceramic． styrene，Silver Mica．Tantalum， Trimmers
Examples
$2.000 \mathrm{mF} 25 \mathrm{~V}, 8 / 6$
$2.500 \mathrm{mF} 50 \mathrm{~V}, 13 / 6$
$3.00 \mathrm{mF} 25 \mathrm{~V}, 1016$
$5.000 \mathrm{mF} 50 \mathrm{~V}, 19 / 6$

RESISTORS
Carbon Film

2 watt 10% ．I／－

WIRE－WOUND

2.5 watt 5%（up to 270 ohms 2.5 watt 5%
$2 /-$－ 5%（up to $25 \mathrm{k} \Omega$ only）， 10 Watt

POTENTIOMETERS

Carbon：Lin less switch，3／3． Log．and Lin．，with switch， $4 / 6$ Wire－wound Pots（ 3 W ）．6／6． Twin Ganged
and Lin．， $7 / 6$ ．

PRESETS
Miniature and Sub－miniature $(0.2 \mathrm{~W})$ ，Vertical and Horizontal， $1 / 6$.

THERMISTORS

Large range in stock from 11 ohm to $150 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ ．for quantity supplies to manufac－ quantity s

Telephone
01－452 0161／2／3 28 CRICKLEWOOD BROADWAY，LONDON，N．W． 2 HRS．9－5．30 Mon－Sat

clacomens

MODEL 15

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $3 / 64^{\prime \prime}$ (.047") to $3 / 16^{\prime \prime}$, including new non-wearing PERMATIPS.

- ULTRA.SMALL SIZE

Length $7 \mathbf{t}^{\prime \prime}$. Weight $\frac{1}{2} \mathrm{oz}$. Max, handle dia. 7/16".

- EXTRA-HIGH PERFORMANCE

 Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts - equals normal $30 / 40$ watt iron.
- ALL VOLTAGES

The ADAMIN range includes five other models ($5,8,12,18$ and 24 watts), Thermal strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue $A / 37$.

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Rd., Croydon, CR9 2LL

Telephone 01-688 8589 \& 4559

VALVES SAME DAY SERVICE	

SAVE TIMEMAKE MONEY with Practical Electrical Engineering
 This complete library of electrical know-how and

 practice will give you the knowledge which normally takes a lifetime to acquire. It will help you to understand the many branches of the electrical industry from installation, equipment, instruments, motors and machines, repair, maintenance and operation right through to the generation and distribution of electricity. 2,350 pagesover 2,000 photos and drawings. Examine this valuable set in your home. Post coupon now -- there's no obligation to buy.
Sent by post on 10 days FREETRIAL

prepare now for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.
CREI Study Programmes are directly relaied to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now - enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

CREI (London), Walpole House,
173-176 Sloane Street, London S.W.1.
A Subsidiary of McGraw-Hill Inc.
Post this coupon today for a better future

THERMOSTATIC SOLDERING IRON

HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT	
Weight	6 oz .
Heating time	1 min .45 sec .
Bit Sizes	3/16"', 1/4", 3/8", 7/16"
Nickel or Iron	Plated
Voltage	250 to 24 volts
Price	

OTHER VARI-STAT IRONS:

Miniature Model M 50 watt Push-in Bits 1/32" $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$
Instrument Model B 70 watt Bit Size 11/64"
Industrial Model I 500 watt Bit Size 5/8"
CARDROSS ENGINEERING CO. LTD.
Woodyard Road, Dumbarton Phone: Dumbarton 2655
 for fast, easy,
reliable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR. Ecomically packed for and electronic soldering. 90 ft . 18 gauge on plastic reel. Recommended retail price 15/-	THIN GAUGE SOLDER, ESSENTIAL FOR soldering small components and thin wires. High tin content, low melting point, $60 / 40$ alloy, 202 ft . - 22 gauge on plastic reel. Recommended retail price $15 /$ -
A RANGE OF SOLDERS IN HANDY DISPENSERS.	INVALUABLE FOR STAIPPING FLEX. THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER
REF. AlLOY SWG *Recommended Price	adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price 8/6

From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

불
 ar

FULLY TESTED AND MARKED

$A C 107$
$A C 1$

ACl 127
$A C 127$

ACl 128

AC176

ACYI7

AF114

AFF14
AF 115
AF 116
AF 117
$3 /-$
$2 / 6$

Cl 170
C
171

C200
OC 201
0 C 301
26301
2 N 711
2 N 711
$2 \mathrm{~N} \mid 302$
$2 \mathrm{~N} \mid 304-5$
$2 \mathrm{~N} \mid 306-7$
$2 \mathrm{Nl} 308-9$
Power
Power
Transistors
0.20
OCl_{2}
OC 25
OC 25
OC 26
0 Cl 28
0.35
OC 28
OC 28
OC 35
OC 36
OC36
AD149
AUY 10
2N3055
2N3055
Diodes
DAY42
Dioder
OA95
OA A70
OA79
OABI

FREE!

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER C 4

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP type transistors, equivalents to large part of the $O C$ range, i.e. $44,45,71,72$ l, etc.

POST \& PACKING 4/6 U.K
\times PA PAK
Silicon TO-18 CAN type transistors NPN/PNP mixed lots with equivalents to OC200-1, 2N706a BSY27/29, BSY95A

PRICE 4.5 .0 PER 500 PRICE 68 PER 1000
POST \& PACKING 2/6 U.K
XC PAK
Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200 OA202, BAY31-39 and DK10, ete.

PRICE E4.10.0 PER 1000
POST \& PACKING 2/6 U.K.

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK

LOOK !
 TRANSISTORS ONLY

TYPE A PNP SYLICON SPEC:ICER AT YCE $=20 \mathrm{~V}$ ImA MAX
HFE 15-100
THESE ARE OF THE 25300 TYPE WHICH IS A DIRECT EQUIVALENT TO

TYPE B SILICON PLAS encapsulation ICER AT VCE = 10 v ImA MAX
HFE 10-200
THESE ARE OF The 2N3702/3 AND 2N4059/62

PNP SPEC: RANGE
Alloy
-

SPEC

1/- EACH
TYPE C
NPN SILICON TO-18 CAN

ICER AT VCE-20v
ImA MAX
HFE 50-900
these are similar to THE BCIO8/109 TYPES

NEW UNMARKED UNTESTED PAKS

878	12	Intergrated Circuirs, D supplied with orders	
$\overline{8 \times 0}$	8	Dual Trans. Matched O/P	$0 /$
$\overline{882}$	10	$\begin{aligned} & \text { OC45 OCBID and } \\ & \text { OC日I Trans. Mullard } \end{aligned}$ glass type	10
883	200		
$\overline{884}$	100	Silicon Diodes DO-7 glass equiv. to OA200, OA 202	10
66	150	High qualiey Germ. Diodes. Min. glass type	10
B86	50	Sil. Diodes sub. min. iN9 14 and IN 916 types	10/
887	100	$\begin{aligned} & \text { Germ PNP Trans.equiv. equive } \\ & \text { to OC44. OC45, OCBI, } \end{aligned}$	
868	50	Sil. Trans. NPN, PNP. 2N706A, BSY95A, eıc.	10/-
860	10	7 Watt Zener Diodes Mixed Voltages	10
H5	16	IAmp. Plastic Diodes $50-1000$ Voles	
H6	40	250 mW W Zener Dio D0.7Min. Glass	

NEW TESTED AND GUARANTEED PAKS			
$\overline{\text { B2 }}$	4	Photo Cells, Sun Batteries inc. Book of Instructions	10/-
$\overline{877}$	2	AD161-AD162 NPN/PNP Trans. Comp. Output. Pair	10/-
879	4	IN4007 Sil. Rec. Diodes 1000 P.I.V. I amp. Miniature	10/-
881	10	Reed Switches, mixed cypes large and smali	10/-
8 899	2	5SP5 Light Sensitive Cells. Light Res. 400 g Dark IM	10/-
$\overline{891}$	8	NKT163/164 PNP Germ. TO-S equivalene to OC44, OC45	10/
892	4	NPN. Sil. Trans. AO6 $=$ $85 \times 20.2 \mathrm{~N} 2369500 \mathrm{MHz}$ 360 mW	10 -
$\overline{893}$	5	GETII3 Trans equiv. 10 ACYI7-21 PNP Germ.	10 -
$\overline{894}$	6	NPN Sil. Planar Epitaxial Trans. CS4 similar to BSY 38 or BCIOB	10 -
896	5	2N 3136 PNP Sil Trans. TO. 18 HFE $100-3001 . \mathrm{C}$ TO.18. HFE 100-3 600 mA .200 MHz	$10-$
$\widehat{898}$	10	XB 112 and $\times \mathrm{Bl} 102$ equiv. 10 AC126. ACI56. OC81/2 OC71/2. NKT271, ete.	10/-
899	200	Capacitors, Electrolytics paper, silver mica, etc. Post an packing, this Pak $2 / 6$	10/-
H_{4}	250	Mixed Resistors. Post and Packing 2l-	10/-

RETURN OF THE UNBEATABLE P.I PAK. NOW GREATER VALUE THAN EYER

FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS, APPROX 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRAN SISTORS PNP AND NPN. AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANEL5. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA TION ON THE TRANSISTORS
please ask for pak P.I only $10 /-$ 2/-P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
counter for any car.
20/-each
FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL

MULLARD DATA BOOK
Semiconductor and Valve Data and Equivalents.
Postage 6d.

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

S.E.S. COMPLETE SUPPLIER

196 Regent Road, SALFORD 5, Lancashire TELEPHONE 06I-872 5187

(Member of the Harrop Industrial Group)
C.W.O. please $\quad 1 /-$ p. a p.for orders of components under $\mathbb{C l}$ Orders of Lektrokit: 2/-handling charge on orders under El 5/- handling charge on orders under 65

RESISTORS: All brand new, Hi-Stab, low noise, 5% tol. carbon film. IW E12 series 4.7 ohm to $10 \mathrm{M}, 2 \mathrm{~d}$, each or $15 /-\mathrm{per} 100$ of one value. $\frac{1}{2} \mathrm{~W}$ E24 series 4.7 ohm to 10 M . 2d. each or $15 /$ - per 100 of one value. ${ }^{\frac{1}{2} \mathrm{~W}} \mathrm{E} 12$
series 2.2 ohm to 3.9 ohm . 8d. each. IW E12 series 10 ohm to 10 M . (10% series 2.2 ohm to 3.9 ohm, 8d. each. IW E12 series 10 ohm to 10 M . (10% tol.), 3d. each. 3 W -wirewound -0.5 ohm to 12 ohm, $1 / 6$ each. 5 W -wirewound- 15 ohm to $8.2 \mathrm{kohm}, 1 / 9$ each. S.E.S. Pre-Pack gives you 5 off values (Ei2)-ONLY E2 12s. 6d. *NOW-NW carbon film 5\%. El2 series 10 ohm to $100 k o h m, 2 \mathrm{~d}$. each.
PRE-SETS: Min. skeleton carbon track, low noise with good stability; Values-Lin: $1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$, etc., to 5 M ; Log: $5 \mathrm{k}, 10 \mathrm{k}, \mathbf{2 5 k}$, etc., to 1 Mohm ,
only 10 d , each. Sub-Min skeleton Lin. track: $1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$, etc., to 5 M , only only 10d. each. Sub-Min skeleton Lin. track: $1 \mathrm{k}, \mathbf{2} \cdot 5 \mathrm{k}, 5 \mathrm{k}$, etc., to 5 M , only 9 d , each. Slider pre-sets wirewound $\frac{1}{2} \mathrm{~W}$ rating Lin: 10 ohm ${ }^{2} 0$.
3 W wirewound fully enclosed Lin. tracks. 10 ohm to $30 \mathrm{k}, 3 / 9$.
POTENTIOMETERS: Min. enclosed, carbon track and wiper contact only $2 / 6$; Values-Lin: $1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$, etc., to 10 M ; Log: 5 k , $10 \mathrm{k}, 25 \mathrm{k}$, etc., to 5 Mohm . Min. with double-pole switch, insulated spindles only $5 / 6$. Values Lin. tracks 50 ohm to $100 k o h m, 7 / 4$ each.
CAPACITORS: New genuine Mullard Electrolytics

CAPACIT	RS	New E (Min.			ard	ectroly			all)	
6.4 V	6.4	25	50	100	200	320	640	1.000	1,600	2.500
10 V	4	16	32	64	125	200	400	640	1,000	1,600
16 V	2.5	10	20	40	80	125	250	400	640	1,000
25 V	1.6	6.4	12.5	24	50	80	160	250	400	640
40 V	1	4	8	16	32	50	100	160	250	400
64 V	0.64	$2 \cdot 5$	5	10	20	32	64	100	160	250
Prices: 1/-				10d	d. each		1/3	1/6	$1 / 9$	2/6
(Large) 2000 (Multiples)										
25V	800	1,250	2,000		4,000	6,400		500 V	8-8 $\mu \mathrm{F}$	6/6
40 V	500	800	1,250		2,500	4,000		500 V	$16-16 \mu \mathrm{~F}$	716
64V	320	500	800		1,600	2,500		350 V	$32-32 \mu \mathrm{~F}$	$7 / 3$
Prices:	5/-	$6 / 6$	8/-		12/6	151-		350 V	50-50/4F	$91-$

Mullard Miniature Metallised Polyester 250V. $0.01,0.015,0.022,0.033$, $0.047,0.068 \mu \mathrm{~F}, 6 \mathrm{~d}$. each. $0.1,0.15,0.22 \mu \mathrm{~F}, 7 \mathrm{~d}$. each.
Mullard Polyester Film and Foil 400 V . $0.001,0.0015,0.0022,0.0033,0.0047$ 0.0068 , etc., to $0.033 \mu \mathrm{~F}, 6 \mathrm{~d}$. each. 0.047 to $0.1 \mu \mathrm{~F}$, 8 d . each. $0.15 \mu \mathrm{~F}$, 10 d . $0.22 \mu \mathrm{~F}, \quad 1 /-\mathrm{t} .10 .33 \mu \mathrm{~F}, 1 / 6$, $\quad 0.47 \mu \mathrm{~F}, 1 / 9$.
Disc Ceramics (Erie) $500 \mathrm{~V}, 1,000,4,700 \mathrm{pF}$, 5d. each. 5 ilver Micas 1% tol. $500 \mathrm{~V}, 2 \cdot 2 \mathrm{pF}$ to $820 \mathrm{pF}, 1 /$ - each. Polysyrene. $160 \mathrm{~V}, 100-1,000 \mathrm{pF}, 5 \mathrm{~d}$. each.
4.0 NOW . Bead . *** NOW-Bead Tantalums (polarised) 35V, $0.47,0.68,1 \mu \mathrm{~F}, 2 / 6$ each. $2 \cdot 2$,
$3.3,4.7,6.8 \mu \mathrm{~F}, 3 / 4$ each. $20 \mathrm{~V} 10 \mu \mathrm{~F}, 15 \mathrm{~V} 22 \mu \mathrm{~F}, 10 \mathrm{~V} 33 \mu \mathrm{~F}, 6 \mathrm{~V} 47 \mu \mathrm{~F}, 3 / 9$ each. $3.3,4.7,6.8 \mu \mathrm{~F}_{6} 3 / 4$ each. 20V $10 \mu \mathrm{~F}, 15 \mathrm{~V} 22 \mu \mathrm{~F}, 10 \mathrm{~V} 33 \mu \mathrm{~F}, 6 \mathrm{~V} 47 \mu \mathrm{~F}, 3 / 9$ each.
Low Voltage Disc Ceramics $20 \mathrm{~V}-0.01,0.022,0.047 \mu \mathrm{~F}, 10 \mathrm{~d}$. each. $0.1,0.22$, Low voltage Disc Ceramics $20 \mathrm{~V}-0.01,0.022,0.047 \mu$ F, Midget Tubular Ceramics- $0.002,0.003 \mu \mathrm{~F}$, iod, each.
SEMICONDUCTORS: All New and Unused
Mullard; OA5, 4/6; OA81 3/4; OA202 2/3; OC71 4/-; OC724/6; OC44 7/9; OC45 6/-; BCIO7, $1093 / 9$ each; BCIOB 3/6; BFY51 4/6; MPF $1059 / 6$. Silicon Rectifiers-(0.5A) 400piv 2/9; 800pir 3/-: 1,500 piv 3/6: (1.2A) 400pir 6/-: 800pir $7 /-$; 1.500 pir $7 / 6$; (2.5 A) 400 pir $6 / 6$; 800pir $7 / 6$; 1,500 pir
$10 / 6$. 1.2 A and 2.5 A types are stud mounted-Anode). *NOW2N29243/6; 2N2926 (Brown or Red) 2/6, (Orange) 2/9, (Yellow) 3/-, (Green) 3/3; 2N3643 8/6; 2N3794, 2N42894/-each; IN4148i/6.
SWITCHES: 100 series_SPST 3/8; SPDT 3/1I; DPST 4/6; DPDT 4/8. 400 series 5P5T 3/2; 5PDT 3/6; 5PDT (with centre position) $3 / 8$. 5 eries $500-$ push-to-make or push-to-break $3 / / 1$, each (push buttons available in white ${ }^{\circ}$ push-to-make or push-to-break $3 / 11$ each (push buttons available in white
red, black, green). Slide 5 witch $3 / 4$; Wave Change switches $5 / 9$ each. red, black "preen). Sidee also available-Shafts $5 /-$; Wafers $5 / 4$ each.
PLUGS AND SOCKETS: Min. Plugs (black or red) 6d. Min. 5ockets to fit 7d. Banana Plugs (black or red) 9d. 4mm 5ockets to fit (black, red, green)
9d. Co-Ax Plugs $1 / 2$. Co-Ax Sockets IId. Sub-Min Jack Plugs and Sockets 9d. Co-Ax Plugs $1 / 2$. Co-Ax Sockets Id. Sub-Min Jack Plugs and Sockets 2/-each. Min. Jack Plugs and Sockets $3 /-$ each.
5 -way $3 /$. Recorder Sockets 3 -way $1 / 2,5-w a y ~ 1 / 4$.
WIRE: Min. Stranded (available in 10 colours) 3d. yd. Solid Core 3d. yd. $140-0076 \mathrm{in}$. Stranded 4d. yd. Min. Mains Lead $1 / 3$ yd. Min. Microphone cable $1 / 6$ yd. Co-Ax cable $1 / 3$ yd.
LAMPS: Min. Wire Ended Neons 2/-; Panel Neon Indicator 6/4; Pilot Light +12 V bulb $8 /-$; Min. Flange Light +12 V bulb $11 /-$.
SOLDERING IRONS: A.N.T.E.X. CN240 15W mains operated, small, 32/6. E240 20W mains operated, specially shaped handle, 35/-. 5pare bits and elements available. Also stands for above irons, il/6 each. ***NOWSOLDER by Multicore-at Reduced Prices to Everyone! Size A-Approx. 20 ft coil $60 / 40$ Alloy $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. in dispenser. Recommended retail price 3/-, OUR PRICE 2/9. Size B-Approx. 200ft reel 60/40 Alloy 22 s.w.g. individually packed. Recommended retail price 15/-. OUR PRICE I2/6 BIB Wire Strippers: strips insulation without nicking wire. Recommended retail price 4/6, OUR PRICE 4/-.
LEKTROKIT: Chassis construction system-the professional look to a home construction. Parts to build a chassis $8 / \times 4 \frac{1}{4} \mathrm{in} .-2$ chassis rails $1 / 10$ each 2 side plates $4 / 4$ each. Front panel (covered in crack-proof paint) $8 / 3$. Perforated cover 5/5, 2 plain covers $4 / 5$ each. 4 rubber feet 9 d. 7 boards available each it $\times 4 \mathrm{in}$. Thus 2 boards fit above chassis. Plain perforated B8A B9A $2 / 6$. Aluminium board drilled for 2 valveholders international B8A, B9A, 2/6. A/u. 0.lin. perforated grid 5RBP board, $2 / 9$ Veroboard
 lead throughs $6 d$, each. Pins for 5RBP board $4 / 6100$.)

For full details of all our stocks send $3 / 6$ for our bright explanatory 120 page catalogue, or 6 d . stamp for Data 5 heets.

The National Air Traffic Control Service of the Board of Trade, needs Radio Technicians to install and maintain the very latest electronic aids at Civil Airports. Air Traffic Control Centres. Radar Stations and specialist establishments. Vacancies exist in various parts of the United Kingdom.

This is responsible demanding work (for which you will get familiarısation training) involving communications, computers, radar and data extraction, automatic landing systems and closed-circuit television. It offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding fieid. If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now.

Salary from January 1 st 1970 is $£ 985$ (at 19) to $£ 1.295$ (at 25 or over): scale maximum $£ 1.500$ (higher rates at Heathrow), and some posts attract shift-duty payments. The annual leave aliowance is good and there is a non-contributory pension scheme for established staff.

[^4]Name.

Address
PE/B2
Not applicable to restdents outside the United Kingdom.

National Air Traffic Control Service

Practical Electronics Classified Advertisements

FOR SALE

8EEN MY CAT? 5,000 items. Mechanical and Electrical (iear, and materials. S.A.E. K. R. WHISTON, Iept. l'E, New Mills, stockport.

500 MORGANITE 100 KOHM EDGEWISE POTENTIOMETER8. TYpe 56 N White. Rrand new surplus to requirement. Price $\mathbf{E 5 0}$ for all 500 or $3 / 6 d$ each, postage paid. WILKINsON or sos, "f'arinya," Bell Lane, Nuthampstead. Rorston, Herts. Tel.: Barkway 5 abs

RECHARGEABLE NI-CAD CELL8. $1 \cdot \because \geqslant \mathrm{~V}$,
 3 refls in cuse $35 /-$: BT Y 9 400V 4.7 A SC'R
 Jainham, lasex.

MINIATURE DYNAMIC MICROPHONES. High impedance, size $\bar{\sim}$ Work as mini spakers, suit transistor cirenits, $7 / 6$ eacll. : 3 for $20 / \mathrm{-}$. Tristed, guaranteed. Ardente loks blgewise volume (ontrols, $3 / 6$ pach, is for $10 / \mathrm{F}$. DREW, 7 The (rescent, Southwick, suseres.

MORSE MADE ! !

FACT NOT FICTION. If you start RIGIIT you will be readiug amateur and commercial Morso Fithin a month (normal progresa to be expected). automatically learn to recognise the code HHYTHM without translating. You can't help it, it's ns easy at learning a tune. 18 W.P.M. in 4 weeks guarauteed.
For details and course C.O.D. ring S.T.D. 01-660 2896 or send 88. stamp for explanatory booklet to:
GSHSC (Box 19), 45 GREEN LARE, PURLEY, SURREY

SERVICE SHEETS

RADIO TELEVI8ION, over 8,000 Models. JOHN GILBER'T TELJVISION, 1b Shepherds Bush Kd., London, W. 6 . Sife $8+41$.

8ERVICE 8HEET8 (1925-69) for televisions, radios, transistors, tape recorders, record players, etc., $b y$ return post, with free faultfinding guide. Prices from $1 /$. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Joad, Bexhill, Nussex.

8ERVICE 8HEET8, Radio, TV, 5,000 nodels List $1 / 6$. S..A. Fi. encuiries. TELARAY, 11 Manmland Bank, Preston.

MISCELLANEOUS

HI-FI londspeaker systems for the lome constructor, cabinet kits, the new range of Peerless speakers, speaker kit systems and cross-over hetworks. BAF wadding, speaker faltic (samples on request) and all other neressary components. semd 5 din in stamps to: AlCDION(:AN, Dept. PE, 4 Princes Square, Harrogate, Forks.

MU8ICAL MIRACLE8. Send S.A.E. for details of Rhythm Modules, Versatile Bass-pedal unit, self-contained with unique effects, kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters $25 /-$ pust paid. HCRRV! D.E.W. LTD. 254 Ringwool Koad, Ferndowi, Dorset.

[^5]
Abstract

BATTERY ELIMINATORS The ideal way of running your TRANSISTOR AMPLIFIER, etc. Types available: $6 v, 9 y, 12 v$, I $8 v$ (single output) $39 / 6$ each. P. \& P. 2/9. $9 v+9 v ; 6 v+6 v$; or $41 v+4 i v$ (two separ outques) $42 / 6$ nach. P. \& P. $2 / 9$. Please state output required. All the above uniss are completely isolated from mains by double wound transformer ensuring 100° " safety. (Dep. P.E.E.), JI Oliver Road, London, E.

MISCELLANEOUS (continued)

PRACTICAL ELECTRONICS ORGAN. ('omplete set of capacitors and resistors as listed in ?nd article (June issue). Also 12 Vinkor inductors and $1 \underline{2}$ printed divider boards. All mew and unlosed. ('ont ower exo) Offers: (t. HlRST. 21 Westport Roadd, Cleethorpes. Lines. Humberston 3019.

MORE ROBOTS

Synthetic Animals with "BRAINS"' of their own. The LATEST range of projects include: an electronic 'animal' which "LEARNS", and an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE YOU are a transmitter/receiver which has quite are a transmitter/receiver which has quite
a useful range and RADIATES WITHOUT USING R.F. also TEN new projects, one of which is anelectronic dice machine. HOST5 OF EASY-TO-CONSTRUCT projects, for anyone with a basic knowledge of Electronics. DON'T WAIT. SEND $3 /-$ for your list-NOW!
To: 'BOFFIN PROJECTS' 4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY
Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

LONDON RADIO CONTROLLED MODELS SOCIETY

Meetings 2nd Thursday each month, 7.30 p.m. "The Two Chairmen", Dartmouth St., London, S.W.I. All aspects of Radio Controlled Models. Beginners and experts welcomed, come along, or phone 369-3568 or 907-6271 for more information.

PSYCHODELIC LIGHTING UNIT. A brand new design that adds a new dinmpision to musie. Ideal for use by pop groups and disco's. Ised
 in conjumetion with a recom player it can tura
a house party int modulates up to 1.5 kW of light and sensitivity is fully variable. Money hack if not "turned on' . Thry conle complete with instructions either as a kit or reads built and testerl. Kit form: 14 gns ; Built: 16 gns (inc. P/T). Send
 Avenue, Newcastle upon Tynt, 5 bit 5 Ns. For further details send s..A.E.

5\% RESISTORS 3d EACH

Extremely Reliable, Hi Stab. Carbon Film, $\frac{1}{2}$ Watt. All Values 10Ω to $1 \mathrm{M} \Omega$
$\begin{array}{llllll}\text { OC71 } & 1 / 9 & 2 N 2926 & 1 / 9 & O_{0} C 202 & 1 / 9 \\ \text { OC45 } & 1 / 9 & Z \mathrm{~T} \times 300 & 1 / 9 & \text { BC108 } & 1 / 9\end{array}$
All the above types are available at 16 for fl. Brand new, individually tested.
MONEY BACK GUARANTEE P. \& P.I/-
J. M. KING

I4 Acton Street, London, W.C.I

MISCELLANEOUS (continued)

ETCHED PRINTED GIRGUIT BOARD KITB. Full instructions. 19/6, c.w.o. CIRCLITETCH, 12 Cambridge Rd., St. Albans, Herts.

A CORNUCOPIA OF COMPONENTS! Scarce

 valves, selected TV ('omponents, Educational and l'rojects kits, Speakers and Cabinets, Transistors, Resistors and values, $\frac{1}{2}$ watt, $3 d$ each. State your requirements. S.A.E. for details. MAIL-MART, 6 Easthourne Road, Pevensey Bay, sirssex.NOTES ON U8E OF TV for Aircraft or ITFO Detection. Optical Detector Set and Instructions. $7 / 6$ each. RAbAR ELECTRONICS PlBLI('ITIONS, 1 stowmarket Road, Needham Market, Suffolk

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2 \frac{1}{2} \mathrm{in} \times$ any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

RADIO AND ELECTRONIC KITS

A88EMBLED, moderatp charges. N.A.E. with enquiries. (OLTHARD). Bun-Atha, Taynuilt, Argyll.

UNTESTED UNMARKED TRAN8I8TORS. Mixed Germ pup Types Equiv. OC', 44, 45, 71, 72, etc. 10-2/9, 50-12/6, post free. Limited stocks, D. G. l'ERRY, (iraymare, Lostwithiel, ('ornwall.

BARGAIN PACK. 200 assorted springs, nuts, washers, screws. Popular sizes 7/6, including postage. ("OHAVEN, Industrial Estate, Ripley, Derbyshire

LUMINOUS ZINC SULPHIDE, Stannous ('hloride for Electroluminescent Panels (November lpactical Electronics). Many other chemicals available. S.A.E. for list. K LDico, we hemerton koad, London, S.E.5. Mail Order Only.

SCRAP RF. HEATING AND TRANSMITTING VALVE8 winted. TY5-500, TY6-800, TYT-600, $1: W A 1500,3 J 202 \mathrm{E}$. May be interested in other types. trood price paid for valves still under vacuum. ELEOTRONIC HEAT CO. (01-654 $7172)$.

6 OR 12 VOLT
 FLUORESCENT LIGHTS

12 ins. 8 Watt tube ample light for caravan, tent, etc. Fully trarisistorised, low battery drain Unbeatable at $£ 2.19 .6$ or in kitform 50/-

4 WATT GRAM AMPS.

Volume and tone controls, mains operation

3S2 output, new and boxed	$65 /-$ POST
SALOP ELECTRONICS	Callers weicome
23 Wyle COP	
Shrewsbury, Shropshire	S.A.E. for lists

PHOTO ETCHED PRINTED CIRCUIT BOARDS for all P.E. Projects. Time lapse cine Novem ber 1909 6/6, P.E. Organ oscillator June 1969 5/0, send S.A.E. for full list. Your own circuit boards etched for 2d. per square inch, plus cuit boards etched for 2 da . per square inch, plus
postage. CASTLE LABORATORIES, 32 Stapostage, CASTLE LABORATOR
pleton C'lose, Highworth, Wilts.

EDUCATIONAL

RADIO \& TELEVISION SERVICING RADARTHEORY \& MAINTENANCE TELECOMMUNICATIONS

 This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:-The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5.

Tel. 01-373 8721

GET INTO ELECTRONIC8-big opportunities for trained men. Learn the practical way with low-cost Postal Trainiug, complete with equipment. A.M.J.L.R.E., R.T.E.B., City \& Guilds, Radio, 'T/V, Telecoms., eto. For F'REI' 100page book, write Dept. 856 K , CHANBERS COLLEGF, College House, 29-31 Wrights Lane, Kensington, London, W. S.

TECHNICAL TRAINING in Radiu, TV \& Electronies thro' world-famous I'CS. For details of proven lome-study courses write: ICS, Hept. 561, Intertext House, Stewarts Road, London, s.W. 8.

ENGINEER8. A technical certificate or qualiflcation will bring you security and much better pay. Lifem. and adv. private postal better may. Liem. and adv. private postal courses fur C.Eng., A.M.I.M.R.E.s A.M.S.E.
(Mech. \& Elec.), ('ity $\&$ (ivilds, A.M.M.M.I., (Mech. \& Elec.), (ity d (iuilds, A.M. M. M.I.,
A.I.O.H. and (i.C.E. exams. Diploma courses A.I.O.B. and (i.C.E. exams. Diploma courses
in all branches of Enginecring-Mech., Elec., in all branches of Enginecring-Mech., Elec.,
Auto, Electronics, Radio, Computers, Draughts., huilding, etc. For full details write for FREF 132-page guide. BRITISH INSTITUTE OH ENGISEERING TECHNOLOCi (Dept. 125 K), Aldermaston ('ourt, A ldermaston, lerks.

CITY \& GUILDS AND R.T.E.B. EXAM8 Specialised IC'S home-study course will consure success. For details of wide range of exam. and diploma courses in Radio, T.V. and Electronics, also new practical courses with kits, write to ICS (Dept. 57\%), lntertext House, stewarts Road, Lomom, S. W. W .

bOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes 1155 set Circuit and Notes H.R.O. Technical Instructions 38 set 7^{-}echnical Instructions. 46 set Working Instructions 88 set Technical Instructions BC. 221 Circuit and Notes Wavemeter Class D Tech. Instr 18 set Circuit and Notes BC. 1000 (31 set) Circuit \& Notes CR.100/B. 28 Circuit and Notes R. 107 Circuit and Notes. CR. $100 / B .28$ Circuit and Notes I0/-P.P. 9d
R. 107 Circuit and Notes........ 7/-P.P. 6d A.R.88D. Inscruction Manual. ... IB/-P.P. 6d 62 set Circuit and Notes

6/6 P.P. 6d 6/6 P.P. $6 d$ 5/6 P.P. 6d 5/6 P.P. 6d 5/6 P.P. 6d 5/6 P.P. 6d 7/-P.P. 6d 5/6 P.P. 6d 5/6 P.P. 6 d 5/6 P.P. 6d 516 P.P. 6d 2 set Circilit and Notes 6/6 P. 6 d 52 set Sender \& Receiver Circuits 7/6. post free Circuit Diagrams 5/- each post free. R. $1 / 16 /$ A, R.1224/A, R.1355, R.F. 24, $25, \& 26$. A.1134. T.I|54, CR.300. BC.342. BC. 312. BC. 348 , J.E.M.P. BC.624. 22 set. Colour Cnde Indicator

2/6 P.P. 6d
S.A.E. with all enquiries please. Postage rates apply to U.K. only

Mait order only to:
Instructional Handbook Supplies Depr. P.E., Talbot House, 28 Talbot Gardens Leeds 8

ELECTRICAL

240 ºu

 ELECTRICITY ANYWHEREBESTEVER 200/240 VOLT"MAINS" SUPPLYFROM 12 VOLT CAR BATTERY Exclusive World Scoop Purchase. The fabulous Mk.2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Brilliant 200/240 volt perfor mance of all time. Marvellous for Television, Drills, Power Tools, Mains Lighting, AC Fluorescent Lighting and all 200/240 volt Universal AC/DC mains equipment. Made at tremendous cost for U.S.A. Govt by Delco Remy. This magnificent machine is unobtainable elsewhere. Brand New and Fully Tested.
Only $4.19 .6+10 / 6$ postage. C.O.D. with pleasure, refund guarantee. Please send S.A.E. for illustrated details.
Dept. PE, STANFORD ELECTRONICS Rear Derby Road, North Promenade Berby Road, North Prome
BLACOL, Lancashire
A.M.I.E.R.E., A.M.S.E. (Elec.), City \boldsymbol{d} Guilds, G.C.E., ete., on "Satisfaction or Refund of Fee", terms. Wide range of Home Study Courses in Flectronics, Computers, Radio, T.V., etc. 132-page (iuide-FREE. Please state subject of interest. BRITISH INSTITUTH OF JNGINEERING TECHNOLOGY (Dept. $12+\mathrm{K}$), Aldermaston Court, Aldermaston .Berks.

TEGHNIGIAN required for general service and prototype work in connection with hi fi and radio cont rol systems. Interesting work. Write for appointment to TELERADIO ELEC' TRONICN, 325 Fore Street. Edumonton, S. 9.

HENRY'S RADIO LTD.

303 EDGWARE RD., LONDON, W. 2
HAVE THE FOLLOWING VACANCIES
IN THEIR ORGANISATION
SALES ASSISTANTS
Young man with good general knowledge of electronic components required for our retail sales Dept. Please Telephone 723-1008/9 Ext. I.
SALES ASSISTANTS HI-FI DEPT.
Young man with a good general knowledge of HIGH FIDELITY EQUIPMENT required for our retail HI-FI SALES DEPT. Please contact MR. STEVENS Telephone 723-6963

8KILLED OR SEMI-SKILLED ENGINEER required for service electronic department of large photographic importers. (ongenial conditions, interesting work, rood salary and L.V.'s. For appointment telephone 25:3-8031 Mr. Vassey.

First-class opportunities in Radio and Electronics await the IC S trained man. Let ICS train YOU for a well-paid post in this expanding field.
$I C S$ courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

- C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATE URS' EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL CORRESPONDENCE SCHOOLS
 A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

HOLIDAY FOR BOY8. $14 / 16$ years August 1970, specialising in engineering, electronics, photography. Taition and practical work photography. Tincluding karting. 11 days- $\mathbf{1 4 1 0 8}$. Write for including karting. 11 days- $£ 14108$. Write for free brochure;INTER-SC'HOOL ('HR ISTIAN
FELLOWSHIP, 47 Marylebone Lane, London, FELLOWS
W1M $6 A X$.

HOLIDAYS

Practical Electronics January 1970

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Testers, Test Technicians, Senior Test Technicians and Technician Engineers according to experience and qualifications. Our expanding production and servicing programme, geared to our recognised export achievement, provides security of employment combined with good prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at St Albans and Luton.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone for application forms to:

Mr. P. Elsip,
Personnel Officer,
Marconi Instruments Ltd,
Longacres, St. Albans, Herts.
Tel: St. Albans 59292

Member of GEC-Marconi Electronics

RECEIVER8 AND COMPONENT8

R \& R RADIO

51 Burnloy Road, Rawtenstall Rossendale, Lancs
Tol.: Rossendale 3152
VALVES BOXED, TESTED $\&$ GUARANTEED

BF80	$3 /-$	PCC84	$3 /-$	PY81	$3 / 6$
EBF89	$3 / 6$	PCF80	$3 /-$	PY82	$1 /-$
ECC82	$1 /-$	PCF82	$1 / 6$	U191	$4 / 6$
ECL80	$1 /-$	PCL82	$4 /-$	$6 F 23$	$5 /-$
EF80	$1 / 6$	PCL83	$4 /-$	$30 F 5$	$2 / 6$
EF85	$1 /-$	PL36	$5 /-$	$30 L 15$	$5 /-$
EY86	$4 /-$	PL81	$4 /-$	$30 P 12$	$4 / 6$
EX40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C D 8 G$	$7 / 6$

Transistor Audio Pack, 2G339A, 2G381A, 2G371B 10/- each post 6d.
POST, ONE VALVE9d. TWOTOSIX6d. OVER SIX POST PAID.

ARE YOU HAVING DIFFICULTY in obtaining the components you require? We specialise in the supply of many thousands of types. Send your requirements with S.A.E. for return post quotation. Also three 13 A scopes at $£ 1710 \mathrm{~s}$. E.A.R.. 10 Sycamore Avenue, Cattedown Plymouth, Devon.

> PRINTED CIRCUIT BOARDS for P.E. PROJECTS All boards drilled and roller tinned complete with layout drawing. EXAMPLES Waa-Waa pedal Vol 4 No. $72 / 9 d$ ea. Audio Sig. Gen. (Sine and Square on one board) Vol 5 No. 10 8/6d. ea. Mic. Mixer (3 Boards) Vol 5 No. 4 I2/ed Set. Stockmarket Vol 4 No. 12 . Central $5 . E$. 6/-d.ea. S.A.E. For List. Trade enquiries wersomed. ea. P.H. ELECTRONICS, Industrial Estate, Sandwich. Kent. Tel. 2517.

TO HELP THE HOME CONSTRUGTOR. Heathkit now make available our surplus Resistors, Capacitors, etc. at Bargain Prices. Send for lists. E. MOYLE, Daystrom Ltd., Crloucester.

TUNER DULCI PMTzs sTRREO 123 	
GUITAR, P.A., or HI-FI 	
(e)	
Takes 12^{*} or $10^{*}{ }^{*}$ speaker and a ${ }^{4}$ or 3^{*} Tweeter 	
ALABMS. INTERCOMS, WALKIETALKIESS, UNDER E1-1d P. Gol., \&I to £3-I DUR SUPPLIES 367 KENSINGTON STREET BRADFORD 8, YORKSHIRE	

[^6]Galleon Trading Co., 298A Lodge Lane, Romford, Easer

Single channel Radio Control at a price you can afford RADIO CONTROL PRODUCTS
 excellent range and performance TRANSMITTER－ RECEIVER－
 －Sub－miniature Wt 40 grms ．
 Crystal controlled tone Tx 12r．operation．Silicon ransistors．In smart case

Tx only £6－5－0
C．
－
SUITABLE FOR MODELS OF ALL KINDS
ONLY 610－10－0 COMPLETE
DIRECT FROM RADIO CONTROL PRODUCTS
38 FRANCHE ROAD
KIDDERMINSTER，WORCS

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS 2in $\times 4 i n$ packed with semi－ conductors and top quality resistors capacitors，diodes，etc．Our price， 10 boards 10／－．P．\＆P．2／－．With a guaranteed mini－

SPECIAL BARGAIN PACK． 25 boards for K．P．a P．3／6．With a guaranteed minimum of 85 transistors． 100 boards $55 /$－ P．\＆P．7／6．With a guaranteed minimum of 350 transistors
GIANT PANELS． $5 \frac{1}{2}$ in \times in，min． 20 cransistors， $9 \times 56 \mu \mathrm{H}$ incuctors，resistors diodes，etc． 3 for \＆1．P．\＆P．2／\％
As above，only 21 transistors， 70 diodes， 62 min．th．W resistors． 3 for 25／－，P．\＆P．2／－．

PANELS with 2 power transistors sim．to OC28 on each board＋components． 2 boards $(4 \times$ OC28） $10 /-\quad$ P．\＆P． $2 /-$
TRIM POTS．On $2 \mathrm{in} \times 4 \mathrm{in}$ boards＋Ta caps and other components．Idealfor organkey board tuning，etc． $100 \Omega, 500 \Omega$ ， $15 \mathrm{~K} ., 20 \mathrm{~K}$ State requirements． 5 boards 10／－．P，\＆P 2／
NPN GERMANIUM TOS 1 WATT sink，on 2 TRANSISTORS．On small heat 2／－．
POWER TRANSISTORS．Sim．to 2NI74 ex－eqt．On Finned Heat Sink（IOD）． 4 for 61. DIODES，Ex eqpt．，Silicon，I50 PIV， 10 amp 4 for 10% ． $150 \mathrm{PIV}, 20 \mathrm{amp} .4$ for El ．Post free．
OVERLOADCUT OUTS．Panel mount－ ing in the \＆ m ．$/$ \％
MINIATURE GLASS NEONS， $13 / 6$ doz＊ PAPST FANS．Powerful Extractor／Blower fans． $4 \frac{1}{2}{ }^{*} \cdot 4 \frac{1}{2} \quad 2 \sim$ ． $230 / 250 \mathrm{~V}$ ． $1 \mathrm{COc} . \mathrm{f} . \mathrm{m}$ ．， 2，800 r．p．m．50／－post free
MICRO SWITCHES．Miniature button type．10／－doz．P．\＆P．I／6．
NEW SPRAGUE． $0.22 ; \mathrm{FF}$ 250V small capaciors．5／－doz．P．\＆P．Hi－
NEW SPRAGUE ELECTROLYTICS． 4μ F l50V．5／－doz．P．\＆P．1／－
NON－POLAR TANTALUM CAPS LARGE CAPACITY ELECTROLYTICS． $4 \frac{1}{2}$ in， 2 in diam．Screw terminals
$\begin{array}{ll}7 / 6 \text { each post free．} & \\ 4,000 \mu \mathrm{~F} & 72 \mathrm{~V} \text { d．c．wkg．} \\ 10,000 \mu \mathrm{~F} & 25 \mathrm{~d} . c . w k g . \\ 25,000 \mu \mathrm{~F} & 12 \mathrm{~V} \text { d．c．wkg．}\end{array}$
$4 \frac{1}{2}$＂ $1 \frac{3}{2}$ ．Plessey $5.000 \mu \mathrm{~F} 55 \mathrm{~V}$ d．e．wkg 6i－each．41 $1 \frac{1}{2}$ serew terminals $2,500 \mu \mathrm{~F}$ $55 \vee$ d．c．wkg．6＇－each．
KEYTRONICS， 52 Earls Court Road
London，W．8．Mail order only Tel．01－4788499

PLA8TIC PLANAR8．BC183L，30V，300mW high gain， 5 for 10／－．STANIER， 74 Grange Road，Belmont，Durham．

TRANSISTOR PANELS

INTEGRATED CCT＇S TAKEN FROM PANELS

A－Ouad 2 liP Gate	5．	With Pi
B－Dual $41 / \mathrm{P}$ Gate	5／－	Connections
C－Dual 2 Leva	$5 /$	
Dual		

EX GOVMT．RECEIVER R． 209 covering I－ $20 \mathrm{me} / \mathrm{s} \mid 2 \dot{Y}$ D．C．Input $12,10,0$ Post Paid （Tested）．
50 VARIOUS TRANSISTORS On Panels 15／－Post Paid．
20－OC45
20 －OC76
COMPUTER PANELS with 40 sil．pnp or nentransistors．Diodes and res．，22／6 Post Paid．

COMPUTER PANELS WITH SEMI－ CONDUCTORS．Postage 6d per panel ${ }_{24-\text { OC4 }}^{8}$ or GET875 +24 OA81 $(V 405 A) 550 \mathrm{mc} / \mathrm{s}$ PNP $+\cdots 24$

$$
\begin{aligned}
& \text { 9—ASZ20 }+1 \text { TVO40 }+27 \text { Diodes } \\
& \text { 4-OC42 }+6 \text { GETB75 }+ \text { Diodes } .
\end{aligned}
$$

4－OC42＋6－GET875＋Diodes
$2-\mathrm{OC} 170+1-2 \mathrm{G} 306+\mathrm{OC} 42$
5－OC23＋ 15 －OA10
6 ＿ASZ21＋+15 Diodes
9－SB240 +18 －OA47
2 2G106＋ 24 Diodes

12 －A 1678 （V405A） $550 \mathrm{mc} / \mathrm{s} \mathrm{PNP}+22$
6－Diodes
6－GET872＋8－OAMO
4－OC42
12－ASZ20＋80 Diodes
4－GET872＋8－OAIO
2－OC42＋8－OAA47
2－OEA2 ${ }^{2}$ 2 +4 OA $410+$ RF Chokes 3 for
24 －Sil．h．f．Transistors

ELECTROLYTICS 25,000 （a，12V，16，000（G）

ZENER DIODES—2．4，2．7．3．6．4．75，6．2， $6 \cdot 8,7 \cdot 5,13,15,16,18,20,27,30,33$ volts． $3 / 6$ each，mostly 1 wat

POLYSTYRENE CAPACITORS． $125 \mathrm{~V}, 18$ ， $22,120,220,270,330,390,560,820,1,000,1,200$ ，800，2，200，2， 120018 ． 1500 ． l／－．

BRAND NEW BOXED CHASSIS contain ing 2－OC35，2－OC29 12 WW resistors 25／－ Postage $1 / 6$

NEW CROSS RADIO
6 OLDHAM ROAD，MANCHESTER 4

BRAND NEW ELEGTROLYTIC8，15／16V， 0.5 $1,2,5,6,8,10,15,20,30,40,50,100,200 \mathrm{mF}$ 8 d ．Mullard $25 \mathrm{~V}, 6 \cdot 4,12 \cdot 5,25,50,80 \mathrm{mF}$ ， 10d．Carton Film resistors fW 5\％E12 Series 10 ohms to 1 Megohm $1 / 6$ dozen．Minimum order 7／6．Postage $1 /-$ ．The C．R．SUPPLY CO． 127 Chesterfeld Road，sheffield，S8 0RN．

Stella Nine Range Cases

Manufactured in Black，Grey，Lagoon or Blue Stelvetite and finished in Plastic－ coated Steel，Morocco Finish with Aluminium end plates．Rubber feet are attached and there is a removable back plate．There is also a removable front panel in 18 s．w．g．Alloy．
Now all Aluminium surfaces are coated with a strippable plastic for protection during manufacture and transit．All edges are polished
list of PRICES AND SIZES which are made to fit Standard Alloy Chassis

Widh	Depth	4＊Height fi＊Hright				$\begin{gathered} \mathrm{T} \mathrm{i}^{*} \mathrm{He} \\ \mathrm{E} \text { R. } \end{gathered}$
		± 8.		\pm ¢．		
63^{6}	${ }_{41}{ }^{\prime}$	12	${ }_{8}$	15	0	18
$8{ }^{1}$	$3{ }^{\text {a }}$	15	0	10	0	
$83^{\prime \prime}$	64°	11	0	8	6	111
$10{ }^{\text {2 }}$	$7{ }^{\circ}$	18	8	115	6	118
$14{ }^{*}$	$3{ }^{\circ}$	11	0	18	8	111
12 ${ }^{\text {＂}}$	50°	18	0	114	0	117
124＊	$9{ }^{\text {a }}$－	118	0	23	0	
148＂	3%		0	111	${ }^{8}$	114
14：＊	$9 \mathrm{i}^{\circ}$	23	0	215	9	218
162＊	6i ${ }^{\text {＊}}$	118	8	$2{ }^{1}$	3	211
161^{*}	10：${ }^{-1}$	210	0	3	0	311

Discounts available on quantities．
CHASSIS in Aluminium．Standard Sizes， with Gusset Plates
Sizes to fit Cases．All $2 \frac{1^{\prime \prime}}{}$ Walls

$6^{*} \cdot 3^{*}$	5	B	10＊＊＊	${ }_{8}$	6	14＊ 3^{*}	${ }_{7}^{8 .}$	d．
$6^{\prime \prime} \cdot 4^{\prime \prime}$	5	8	12＂．3＊	6	9	$14^{-} 0^{-}$	14	
$8{ }^{8 *} \cdot 3^{-}$	6	6	1：3． 5 ＂	7	6	$15^{*} \cdot 6^{*}$	10	
	7	9	1ご．${ }^{\text {人＂}}$	10	9		16	

Chassis－Post 3s．Od．per order．
Discounts available on quantities．
E．R．NICHOLLS
Manufacturer of Electronic instrument Cases 46 LOWFIELD ROAD STOCKPORT • CHESHIRE Tel．061－480 2179

NEW DEVICES AT LOWEST PRICE8． （iED＇A230 Auclio Promplifier $18 / 6$ each

 brive．（irappenhall．Warringtom．Lancs Mail order Onty

P．C．BOARDS brand new but have cornere cut off a the request of the namitactuter．
P．C．1：Rectifier assembly with 4 shem hiosles

 1 R．F．choke， $4 / 6$ each．
P．C．2：Rectifier assembly with 4 silicor dwales

 P．C．3：？nt mixer units OA73 as mixer，APIl4 erystal oscillator with 11.155 MHz ，miniature wire ended erystal，fiETEA7 or equivalent an 455 I．F．atmp converts $10.7, \mathbf{1 H z}$ ， $1 . \mathrm{F}^{\circ}$ ．to 455 kliz with conkecting datia．used ex－equip． $12 / 8$.
 4 transistor electrolytics， 4 paper capacoturs， 18 1／0ith uatt resistors． 1 pot core．Bat．
New supply of receivet panels as previoush alvert－ isell at $32 / 6$ post palsh．send tor lust of other P．C boards，I．F．strips，R．F．unitg，momulatory，ete．
TUNING CAPACITORS $1: 5+125 p \mathbf{F}$ ，approc． 1 n ． cube，tum．spinme direct drive，only $3 / 6$（brathi new）． TAG STRIPS．Hin．long． 9 insulated tats and 2 earth targe box of approx．I4 new and unubed to clear it 15／－pust paid．
ELECTROLYTICS wan type） $3: \mu \mathbf{F}$ 45ds．w． $4 / 6$ pach POLYSTYRENE capmecitors $1,000 \mathrm{p} \mathrm{t}^{\prime}$ and $5,8100 \mathrm{\mu} \mathrm{~F}$ $30 \mathrm{c} . \mathrm{w}^{2} 5$ per cent tol． $2 / 6 \mathrm{dmz}$
trandormers to suit singie E（LNe，ete． TRANSISTOR 570 kHz ．single tunell l．f．trans．

fal Oriter Only

A．J．H．ELECTRONICS
59 WAVERLEY ROAD，THE KENT RUGBY，WARWICKSHIRE，RUGBY 71066

HIGH QUALTTY PLUG-IN MODULES

Using the latest silicon-planar devices
Ready built and post free

MI. Microphone $30 / 60$ n 50 dB . gain

M2. Microphone $600 \Omega 50 \mathrm{~dB}$. gain
50/-
M3. Mirron 50 K 50 Bain
Microphone $50 K \Omega 50 \mathrm{~dB}$. gain $\ldots . \ldots . \quad \ldots$
All above modules have a signal to noise ratio of -64 dB . and by switching a single resistor can be set to give 40, 50, or 60 dB . gain.
M4. Magnetic Pickup $1.5 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. RIAA.
M5. Magnetic Pickup $\mathbf{4 m V} / \mathrm{cm} / \mathrm{sec}$. RIAA
M6. Ceramic Pickup 100 mV RIAA.
M7. Tuner/Tape-Amp. 100 mV . Input impedance $\operatorname{IM} \Omega$ using F.E.T. input stage
M8. Hi-Level Pre-Amp IV. input impedance IM』
M9. Mixer, for mixing up to 10 channels into MIO. MI. to M9. all have $10 K \Omega$ output impedance
MIO. Line Amplifier, delivers up to 20dBM.
MII. Tape Replay. Switched equalisation for $17,3 \frac{7}{2}, 7 \frac{1}{2} \& 15 i p s, D . I . N$.

Type A for 100 mH . heads. Type B for 500 mH . Heads. (State type required when ordering)

60/-
M12. Power Supply for above modules.
If required all modules except $M / 2$. can be supplied on professional quality fibreglass material at an additional cost of $\$ /-$ per module. If this is required prefix module F/X when ordering, e.g. F/X MII B. Full connection details with each module.
Printed Circuit Edge Connectors for above modules 5/-
S.A.E. with all enquiries please. Mail order only.

DABAR ELECTRONIC PRODUCTS (Dept. 4) 98a, Lichfield Street

Walsall, Staffs.

BAKER MAJOR £8

The remarkablequality and performance of the "Major" makes possible truly brilliant and rich sound from a single loudspeaker. It recreates the entire musical spectrum from 30 to 14,500 c.p.s. The unit consists of the latest double cone, woofer and tweeter cone together with a special Baker magnet assembly Alcomax il having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Price E8, or Module as illustrated $30=17000$ c.p.s with as illustrated $30=17,000$ c.p.s. With weeter, crossover, baffle and instruc-
Baker Reproducers Ltd.
Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684 1665

DO GARAGE BILLS MAKE SENSE?

Get down to tackling those maintenance and repair jobs yourself. PRACTICAL MOTORIST shows you how do-it-yourself car care is the big economy in the long run Follow its expert guidance every month and you can get sweeter running, safer driving, worry-free performance all round-and save yourself some garage bills! Start the 'seventies right by placing a regular order.
practical
motorist
THE WIDEST READ MOTORING
MONTHLY THAT CUTS COSTS
JANUARY ISSUE OUT NOW $2 / 6$

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Enginecring industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.

Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.Frequency Modulation Transistors
ELECTRICAL ENG
Advanced Electrical Eng.General Electrical Eng. Installarions - Draughtsmonship - Illuminating Eng. Refrigeration - Elcm. Elec Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG
Advanced Civil Eng.Gencral Civil Eng. -- Municipal Eng. - Structural Eng - Sanitary Eng.—Road Eng - Hydranlics - Mining Water Supply - Petrol Tech

RADIO \& T.V. ENG

 Advanced Radio - General Radio-Radio \& TV Servicing - TV Ensinecring - Teleconmmunicatoms - Sound Recording -- Automation Practical Radio - Radio Amateurs' Examination. MECHANICAL ENG. Alvanced Mechanical Eng.Gen. Mtech. Eng.-Mainten-ance Eng. - Diesel Eng. -Press Tool Design - Sheet Meral Work - Welding Eng. Pattern Making Inspection - Droughtismanship, -Metallargy - Production Eng.
AUTOMOBILE ENG. Advanced Auromobile Eng.Gicneral Auro. Eng.--Auo. Maintermine - Repair Auto. Diesel Maintenance Auto. Electrical LiquipnomGarage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I.. A.R.I.B.A., A.I.O.B., A.MIIEX., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.IMun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316 A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting iob.
t HOW to qualify for rapid promotion.
* HOW to put some fetters ofter your name and become a key man. . . quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT
CAREER - GUIDANCE

PRACIICAL

- QuPMENT

Basic Practical and Theore. tis Courses for beginners in Electronies, Radio, T.V., Ele. A.M.I.E.R.E. City $\&$ Guilds Radio Amatelurs Exam. R.T.E.B. Certificate
P.M.G. Certilicale

Practical Electronies Electronics Enginecring Practical Radio

INCLUDING TOOLS
The specialist Electronics Division of B. I.E.T.

NOW offers vou a real lahoratory training af home with practical equipment. Ask for derails.
B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

POST COUPON NOW!
TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

THE B.I.E.T. IS THE LEADING INSTITUTE OF KTS KIND IN THE WORLD

GARRARD RECORD DECKS

All the latest modets BRAND NEW and guaranteed

 - 2025 STE AEO 2025 CIC OAMOND. OTAH.C-300 STEAEO 9TAH.C

AL 50 Mk .
AT
AT 60 K

40t
SL 75
SL 95
GL 75 Goldring
GL 75 p
ALSO IN STOCK - THORENS - LENC
 -Speciat offer base and cover available tor these models at $\mathrm{E4} .150$. Carriza 5 / Complete range or Carnidges ${ }^{\text {Puninhticovers. }}$
SENO FOA \& PGE BROCHURE $16 / 17$ TO

BUILD
YOURSELF QUALITY RADIO

 TOTAL COST E6.19.6. p.p. $4 / 6$.

TRANSISTDRS DIOOES RECTIFIERS WE HAVE THE MOST COMPREHENSIVE STOCK IN GREAT BRITAIN.
NEW 1969 LIST OF 1000 TYPES. NEW 1969 LIST OF 1000 TYPES
SEND FOR FREE COPY TODAY (LIST 36)
 can tultin your ordet from rock
For quanks iry quotalions seiephone
For quannity quotations teipphone
$101 \mid 7230401 \mathrm{E} \times \mathrm{A} .00(0114025223$.

HENELEC 5-5 STEREO AMPLIFIER

BUILD THIS VHF FM TUNER

 PARTS TOTAL COST f6.19.6. DEC.ODER f5 19.6.
ASK FOR LEAFLET No ASK FOR LEAFLET NO, 3 IHOR STEREOI

HENRY'S RADIO Fully Illustrated CATALOGUES

ALl types A		caven	B			
ALL TYPES			HI			
COMPONENTS	EEAI	-	${ }_{\text {FIDELITY }}$			
TEST						
EQUIPMENT			AUDIO			
	20,	ninaman	EOUIPMENT catalogue			
BUILT UNITS COMPREHENSIVE clear concise catalogues 						
 				$\begin{aligned} & \text { WHY NOT } \\ & \text { SEND } \\ & \text { AWAY } \\ & \text { TODAY! } \end{aligned}$		
er a	logue b	ICE 5/.				

AUDIO EQUIPMENT

 COMPLETE SYSTEMS AND MIXERS HITOM f11.12.6. to $£ 38.17 .6$. Lall units savalashe THE FINEST VALUE IN LDWT COST HIGH
FIOELTTY-CHOOSE ASYSTEM TO SUIT YOUR NEEDS ANO SAVE YOURSELF
POUNOS pounos

HIFFI equipment to suit EVKRYPOEXT

 EVEAYPOCKET. DETERAED TERMS AVALLABLE. TWO DEMONSTRATION ROOMS

ELECTRONIC ORGANS

Start builung for as little AS E10.
STAR FEATURES

INSTAUCTRONS. SAVES UP TO 50\% ON COMMERCIAL
EOUIVALENT. EVERYHINGSUPPLEO DOWNTOTHE LAST MEM. FULLATERSALESSERVICE \& ADVICE. we sre piover to Brints dessigns trom a single manual portabie a f99 THE MAYFAIR for light or etassical music
to a two manual twe octive delluxe model with OAK CONSOLE Iram 2285 for the selious mustician
These kits are the result of years of researchitind
deagn and offer the cest that is essentiat to good argan designs, coupled with excellent value ete withun the reach of mot pork els. No tecthnices will
or knowiedge is requi reat in construction, with the ad of the STEP BY STEP Illustrated manuals will produce an instrument that will be a delighe to own and use and will give veas of trouble froe enter tanmen: to the whole tamuly
SEND FORILLUSTRATEDBROCHURES 91011 TODAYY
When in LONOON. CALL IN SEE. HEAR PLAYFOR When in to
Yourself ENOON. CALL IN SEEE HEAG. PLAYFOR Ofgin Demonstration Room 1sf floor,
PRACTICAL ELECTRONICS ORGAN
weme organ Components

[^0]: - GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL 16 colour pages in large $16 \times 11 \mathrm{in}$. format packed with 1,000 's of items from our ratt stocks. Hi-Fi, Radio. Electronicb, Teat equipment, Components, etc., etc. Send $1 /$ - for post only and inclusion on our regular mailhg list. (5/- overseas)

[^1]: (C) IPC Magazines Limited 1970. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, 42 s . All correspondence intended for the Editor should be addressed to Tower House, Southampton $S_{t ., ~ L o n d o n, ~ W . C .2 . ~ P h o n e: ~ 01-836 ~ 4363 . ~ A d d r e s s ~ c o r r e s p o n d e n c e ~ r e g a r d i n g ~ a d v e r t i s e m e n t s ~ t o ~ A d v e r t i s i n g ~ M a n a g e r, ~}^{\text {. A }}$ Fleetway House, Farringdon St., London, E.C.4. Phone 01-236 8080

[^2]: To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME
 BLOCK CAPS
 ADDRESS
 PLEASE P.E. 1

[^3]: To Peak Sound, 32 St. Jude's Rd., Englefield Green, Egham, Surrey
 Details of Englefield systems, please and
 Name
 Address

[^4]: Complete this coupon for full detals and application form
 To: Mr. A, J. Edwards, C. Eng., M.I.E.E., M.I.E.R.E., Room 705, The Adelphi, John Adam Street, London WC2, marking your envelope 'Recrultment'

[^5]: UFO DETECTOR CIRCUIT8, data. 10 s . (refundable). Paraphysical Laboratory (UFO Ofservatory), Downton, Wilts.

[^6]: NEW VHF KIT
 Receives Television Sound, Ambulances, Alrcraft, Radio 2, 3 and 4 on VHF, ete.
 This novel little set will give you endless hours of plessure and can be built in one evening. The Kit comes with easy to follow ingtructions and circuit. Powered by for Battery. Complete with built in

 ONLY 57/-. P. \& P. FREE U.K. ONLY
 Postal Orders, Cheques to

