peAmilcAL
 = =ertr mice Si: PTEMBER 1969

ADCOLE

THE RELIABLE

 SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4
01-622 0291/3

ORGAN TRANSISTORS

2TX300	1/11	ZT1701	22/6	ZS170	$1 / 11$
ZTX302	3/-	ZT3055	20/6	0 O 28	19/-
ZT44	12/9	KR54	27/6	ACY^{10}	5/4
2T1613	7/9	KR 56	24/9	ACY22	\cdots. 4 /-
ZT1700	17/9	ZR 12	16/9	OAZ203	12)-

All above transistors direct from manufacturer.
Unmarked silicon planar transistors suitable for use in divid circuits:-1/6 each or $\mathbf{5 5}$ per 100 .

LIGHT-SENSITIVE DEVICES

GIANT-SIZE SELENIUM SOLAR CELLS--PRODUCE UP TO 6MA FROM DAYLIGHT! 67 mm diameter $10 /-{ }^{\circ}$ each. $50 \mathrm{~mm} x$ 37 mm . 2 for $\mathbf{1 0} /$-.
Transistors similar to OCP71 2/- each.
ORP12 CADMIUM SULPHIDE LIGHT-SENSITIVE RESISTORS
9/- each. Light-sensitive diodes 10 /- per dozen.

WIRE-WOUND RESISTORS

Mains dropper type. Up to 30 watts. Some multi-tapped. Fraction of normal price! 10 -- per dozen

MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE! $0.001 \mu \mathrm{~F} 400 \mathrm{~V}$ 3d., $0.0015 \mu \mathrm{~F} 400 \mathrm{~V}$ 3d., $0.0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d}$. $0.0022 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.15 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ $6 \mathrm{~d} ., 0 \cdot 27 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 1 \mu \mathrm{~F} 125 \mathrm{~V} 1 /-$.

RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES GP67/2 Mono 15/-, GP91/3 Compatible f1, GP93/1 Crystal Stereo 25/-, GP94/1 Ceramic 30/-

TRANSISTORISED SIGNAL INJECTOR KIT 10/SIGNAL TRACER KIT 10/-. CAR REV. COUNTER KIT 10/-

VEROBOARD

Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins 3/6 for 36. Special Offer! Spot Face Cutter and $52 \frac{1}{2} \times 1$ " boards..... $9 / 9$ only.

PAPER CONDENSERS. Mixed bags $0 \cdot 001 \mu \mathrm{~F}$ to $\cdot 5 \mu \mathrm{~F}, 12 / 6$ per 100 . SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /$ - per 100.
RESISTORS. Mixed types and values, $\frac{1}{4}$ to 1 watt. $6 / 6$ per 100 . 55/per 1,000 . Wire-wound resistors, 1 watt to 10 watts. Mixed values. 20 for 10 -
TRANSISTORS. Mixed, unmarked, mainly O.K. 7/6 for 50.

12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF NORMAL PRICE
8 Watt I $2^{\prime \prime}$ tube. Reflector type $£ 2$ 2.19.6. 15 watt $18^{\prime \prime}$ Batten type $£ 3.19 .6$. IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT

ELECTROLYTIC		CONDENSERS			25 volt	$64 \mu \mathrm{~F}$	9 volt
$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$10 \mu \mathrm{~F}$			
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F}$	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$400 \mu \mathrm{~F}$	6.4 volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	All at	/- each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	20 a	orted
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	(our	ection)
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	2.5 volt		/-.

Orders by post to:
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.

Please include suitable amount to cover post and packing. Minimum order 10/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 23I Alum Rock Road, Birmingham 8.

why the

- It's still an Avometer yet fits in the pocket/held easily in one hand

\square Has a d.c. sensitivity of 10,000 $/$ /V

Measures up to 25 kV and 25A with optional accessories

- Accuracy conforms to B.S.S. 89/54.

Get your own Multimeter today (complete with plastic case, leads, instruction booklet and a full year's guarantee) from your local supplier, or ask for details direct from Avo.

Avo Limited
Avocet House, Dover, Kent Telephone: Dover 2626
Telex: 96283

 Wond a fast easr war TO LEARN BASIC RADIO AND ELECTRONICS Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build . . and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

YOU'C and what's more YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.

You LEARN-but it's as

fascinating as a hobby.
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept. 371B, Aldermaston Court, Aldermaston, Berkshire.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set . . here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 132 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 132-page book -'ENGINEERING OP-PORTUNITIES'-Free and without any obligation.

To: B.I,E,T., Dept. 3716, ALDERMASTON COURT, ALDERMASTON, BERKS.
I would like to know more about your Practical Radio \& Electronics Course. Please send me full details and FREE 132-page book. name. address

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARAMTEED!

SETS 1R5, 185, 1T4, 3S4, 3V4, DAF91, DF91, DK91, DL92, DL94

Thinking of High Fidelity-first read Goodmans 28 page High Fidelity Manual. It contains interesting articles on Stereo ; an Introduction to High Fidelity; Stage-built systems; as well as full details of Goodmans High Fidelity audio products.

Send for your free copy

Please send me a free copy of Goodmans Manual
Name
Address

Axiom Works, Wembley, Middlesex. Tel: 01-902 1200

a complete stereo system for 28 gns!

81 GNS

P. \& P. 7/6

Specification: Sensitivities for 10 W output at 1 KHz . Tope hedd: 3 mV . at $3 \frac{1}{2}$ i.p.s.). Mag. P.U.: 2mV., Cer. .U.: 80 mV . Rodie: 100 mV . Aux.

 signal noise: $<-60 \mathrm{~dB}$. A.C. mains $200-250 \mathrm{~V}$. Size $12 \frac{1}{2}$ in long, 4 in deep 2tin high. Teak finished case.

$13 \frac{1}{2}$ GNS
$+7 / 6$ P. \&
Integrated High Fidelity Transistor Stereo Amplifier
sPECIFICATIONS: Output: IOW per chaninel into 3 to 4 ohms speaker (20W monoral). Input: 6 position rotary selector switch (3 pos. mono and 100 mV into i. BM ohm. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{db}$. Tone controls: Separate bass and treble controls. TREBLE 13db lift and cut [at 15 KHz]. BASS 15 db lift and 25db cut [at 60 Hz]. Volume controls Separate for each charinel. A.C. mains input: 200-240V. 50-60Hz. Size $12 \frac{1}{2} \times 6 \times 2 \frac{1}{2}$ in in teak finished case, Built and tested. P. \& P. $7 / 6$.
Viscount Mark II for use with magnetic pick-ups, specification as above. Fully equalised for magnetic pick-ups. Suitable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$, at 1 kc . Input impedance 47 k . 15 gns . $+7 / 6 \mathrm{P}$. \& P

SPECIAL OFFER!

Complete stereo systems comprising BALFOUR 4 speed auto player with stereo head, 2 duo speaker systems, size 12×6. $\times 5$, 19 Gnh (less cover) and
$+20 /-$ P. \& P.

THE DORSET (600 mW Output)
7-transistor fully tunable M.W.-L.W. superhet portable-with baby alarm facility, set of parts. The latest modulised and prild. Sizes: $12 \times 8 \times 3 \mathrm{in}$. MAINS POWER PACK KIT: $9 / 6$ extra.
Plus 7/6 P. \& P. Circuit 2/6 FREE WITH PARTS.
Price £5.5.0
THE ELEGANT SEVEN Mk. III (350 mW Output)
-.transistor fully tunable M.W.L-W. portable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board-back printed for foolproof construction.
MAINS POWER PACK KIT: $9 / 6$
Price £4.9.6 + 7/6 P.\& P
2/6 FREE WITH PARCTS.

50 WATT AMPLIFIER A.C. MAINS $200-250 \mathrm{~V}$

An extremely reliable zeneral purpose amplifier-with six electronically mixed inputs. Suitable for use with: mics, guitars, gram, tuner, organs, etc. Separate bass and treble controls. Output impedance 3, 8 and 15 ohms. Price27 GNS +20/-P.dP.

B.S.R. TD2 TAPE DECK

This tape deck takes 5 itin pools complete with two rack heads. Size $13 \frac{1}{4}$ in long by $8 \frac{3}{4}$ in wide.
£8.19.6 Plus $7 / 6$ p. \& P.

THREE-IN-ONE HI-FI 10 WATT SPEAKER A complete Loud Speaker system on one A complete Loud Speaker system on on magnet speakers with a low loss cross-over nerwork Peak handling power low Impedance 15 ohms. Flux density 11,000 gauss. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size $13 \frac{1}{2}$ in 8 in in $4 \frac{1}{2}$ in. By famous manufacturer List price E7. Our price $74 / 6$ plus 5/P. \& P. Similar speaker to the above minus tweeters in 3815 ohms $44 / 6+5 / 2$
P. \& P.

CYLDON 2 TRANSISTOR
U.H.F. TUNER. BRAND NEW. COMPLETE WITH CIRCUIT DIAGRAM Goods not despatched outside U.K. Terms C.W.O. All enquiries s.a.e. ALL ORDERS EY POST TO OUR ACTON ADDRESS
21d High Street, Acton, London, M. 3 also at 323 Edgware Road, LONdon, W. 2

the world's most advanced high-fidelity amplifier

This remarkable amplifier has been in production for some months, and now that we have caught up with the backlog of orders, we can supply the IC. 10 promptly. We wish to apologise for the delay in reaching full production, which was due to circumstances beyond our control. We hope that now you can purchase the $1 C .10$ without difficulty, you will enjoy to the full the great possibilities this unique Sinclair device offers.

The Sinclair IC. 10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 watts, is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.
Monolithic I.C.'s were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC. 10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal run-
away due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC. 10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC. 10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc.
The photographic masks required for producing monolithic I.C.'s are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC. 10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC. 10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

Specifications

Power Output

Frequency response Load impedance Power gain
Supply voltage
Size
Sensitivity
Input impedance

Less than 1% at full output.

10 watts peak, 5 watts R.M.S. continuous.
5 Hz to $100 \mathrm{kHz} \pm 1 \mathrm{~dB}$. 3 to 15 ohms
110 dB ($100,000,000,000$ times) total. 8 to 18 volts. $1 \times 0.4 \times 0.2$ inches. 5 mV .
Adjustable externally up to 2.5 M ohms for above sensitivity.

Circuit Description

The circuit diagram of the IC. 10 is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class $A B$ with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from cross-over distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

Applications

Each IC. 10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifier, radio receivers.
The transistors in the IC. 10 have cut off frequencies greater than 500 MHz so the preamp section can be used as an R.F. and I.F. amplifier making it possible to build complete radio receivers without any additional transistors.

SINCLAIR

The complete IC10 with the manual and 5 year guarantee costs just

Post free

SINCLAIR Z .12 12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP

12 watts R.M.S. continuous sine wave output

This is the recommended amplifier for those requiring greater power than that provided by the IC.10. This eight transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $\mathbf{Z} .12$ performs satisfactorily from a wide range of voltages and it can easily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $\mathbf{Z . 1 2}$ to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

Size-3in $\times 1$ it $\times 1$ ifin. Class B Ultralinear Output: Frequency response from 15 to $15,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$: Output suitable for loudspeakers from 3 to 15 ohms impedance. Two 3 ohm speakers may be used in parallel: Input 2 mV into 2 K ohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) Power requirements 6-20V d.c. from battery or PZ. 4 Mains Supply Unit. Ready built, tested and

89/6

 guaranteed.

SINCLAIR STEREO 25

De Luxe Pre-amp and Control Unit to use with Z. 12 Stereo assemblies. Switched inputs for PU (equalised to R.I.A.A. curve from 50 to $20,000 \mathrm{~Hz}$ $\pm 1 \mathrm{~dB})$, Radio and auxiliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/ Treble/Volume/Balance/Input are solid aluminium. Size- $6 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \frac{1}{2}$ in plus knobs. Built, tested and guaranteed.
£9.19.6

This fantastic little British pocket recelver is available in kit form to bulld for yourself or ready built, tested and guaranteed. Its range and selectivity must be experienced to be believed; its power and quality everything you could want. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier; in fact, you will find your Micromatic performing where other sets cannot be heard at all. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.

- High quality magnetic earplece
- Choice of many stations
- Plays anywhere

Kit with ear- $49 / 8$
piecee solder in ins
ond
tions. tions. $\quad+110$ P.T.
Built, tested and guaranteed.

Mallory Mercury Cells RM. 675 (2 reqrd.) each 2/9.

the most challenging loudspeaker design in years

It is more than a matter of saving money when you choose the Q.14. This is the loudspeaker that delights experts and critics alike for its fine forward quality, its clarity and exceptional adaptability. Designed on original lines and from unusual materials, the $Q .14$ will easity carry up to 14 watts and has very smooth response from 60 to $16,000 \mathrm{~Hz}$. Size-9zin square 43in deep, with matt black finish and solid aluminium bar embellishment. Input impedance--8 ohms.
The Q. 14 costs about a quarter of what you might expect to pay for a good stereo speaker system. A pair used with two Z.12s and the Stereo 25 will give you superb high fidelity to stand comparison with far costlier equipment.
Try the Q. 14 in your own home without delay. If t does not delight you, send it back and your money including cost of
£7.19.6 postage will be refunded in full.
$+2 / 11$ P.T. Surcharge
THE SINCLAIR Q. 14 LOUDSPEAKER has a seamless sealed acoustic pressure chamber contoured to ensure forward sounding presence and wide dispersal of sound. The driver unit employs a massive ceramic magnet, special cone suspension and aluminium speech coil resulting in brilliant transient response. The inputimpedance of 8 ohms makes the $\mathbf{Q . 1 4}$ particularly suitable for use with transistor amplifiers. It can be used as a bookshelf speaker, a corner reflect or flush mounted on any appropriate flat surface, etc.
GUARANTEE Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in fult at once and without question.
Full service facillies available to all purchasers.
ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12V) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-.

Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers carton $49 / 6$ plus $2 / 6$ p/p. Acos GP 91-1 and GP 91-3 stereo compatible cartridges, new in sealed manufacturers' cartons $22 / 6$ plus 2/6 p/p.

BASF TAPE 25\% off

Sin 600ft. 14/- 900ft. 19/- 1200ft.30/${ }^{5}$ 子in 900 ft . 19/- 1200ft. 24/- 1800ft.39/7in 1200ft.24/- 1800ft35/- 2400ft.57/-

P/P 2/- per reel-over £5 FREE

[^0]DULCI HI-FI UNITS
The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price.
Amplifiers: 207 and 207M. Tuners: FMT7 and FMT7s.
SEND NOW FOR FULL DETAILS
TRIO Stereo Moving Magnet Cart ridge Model AD76K. Diamond Stereo LP Stylus. Frequency response 20$20,000 \mathrm{c} / \mathrm{s}$ output. 7 mV tracking pressure 2 grammes $\pm 0.5 \mathrm{grm}$. Fully guaranteed. Price 85/- p/p free.

- Bargain-Changer decks at lowest prices ever

GARRARD
Beautiful teak 1025
£8.0.0
plinth and
perspex
these units AT60 Mk.
$\mathbf{£ 8 . 1 0 . 6}$
£12.19.6
£12.0.0
5 Gns. P/P
Free

3500 with Son 9TA.HC diam.

 cart.£10.19.6
Add 10/- p/p for each Garrard unit SPEAKER ENCLOSURES
Type: INFINITE BAFFLE
Model 8: 8in plus 3 in tweeter
Model 138: 13 in $\times 8$ in EMI
Both £4.19.6 each
Model 1012: 10in or 12in, plus 4 in tweeter £7.19.6
All enclosures are in oiled teak, fully built.
Please add $8 /-\mathrm{p} / \mathrm{p}$ on each enclosure - BARGAIM - Speakers, Hi-Fi The Baker Selhurst Guitar Group 25, 12in round, 25 watt rating, 12,000 gauss, 15 ohms, response $30-10,000 \mathrm{c} / \mathrm{s}$, solid aluminium chassis, heavy duty cone. Our price \&5.9.6. \quad p/p 6/6

The greatest HI-FI Budget system today can't be beaten-price or quality anywhere -look at these great features-then compare.
Teleton F2000 tuner amp.
AM-FM with multiplex decoder and A.F.C.- $2 \times 5 \mathrm{~W}$ channels R.M.S. Bass Volume Treble Balance controls, a truly outstanding unit
$\underset{43}{ } \quad$ s. d.
Garrard SP 25 Mk II Transcription deck
$15 \quad 11 \quad 11$
Teleton SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridge
Plinth and Perspex cover $\begin{array}{rrr}7 \quad 0 & 0\end{array}$
Exclusively offered by WALDON at the remarkably low price of $\mathbf{6 3}$ gns.

E.M.I. HI-FI SPEAKERS

SET 450: 13×8 with two built-in tweeters and cross-over unit. Our Price 69/6. 3 or 15 ohm, $10 \mathrm{~W}, 40-13,000 \mathrm{~Hz}$.
SET 850: $6 \frac{1}{2}$ in bass plus $3 \frac{3}{3}$ in tweeter and crossover unit. 8 ohm, 10W, $65-20,000 \mathrm{~Hz}$. $79 / 6$.
SET 250: 5in heavy duty bass plus 3 in tweeter and cross-over unit. $8 \mathrm{ohm}, 6 \mathrm{~W}, 80-20,000 \mathrm{~Hz} .65 /=$ Add $5 / 6 \mathrm{p} / \mathrm{p}$ for each speaker set

WALDON ELECTRONICS, 707 Blackburn Road, Bolton, Lancs. Bolton 54280

PARKERS SHEET METAL FOLDING MACHINES HEAVY VICE MODELS
Whth Bevelled Former Bart

No. I. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. wide
Carr. free
No. I. Capacity 18 gauge mild steel $\times 36$ in. wide $. . . \quad .$. ... 1440.0

No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide
No. 3. Captcity 16 gauge mild steel $\times 18$ in. wide
$\times 1$.

No. 3. Capscity 16 gauge mild steel $\times 18 \mathrm{in}$, wide
88.0.0 Also now bench models. Capacities 48in. $\times 18$ gauge tï0. $3 \ddot{3} \mathrm{in} . \dddot{x} 18$ gauge E27.10.0. 24 in . $\times 16$ gauge 26.10 .0 . Carriage free.
End folding ateachments for radio chassis. Tray and Box making for 36in. model, $5 / 6$ per $f t$. Other models $3 / 6$. The two smaller modela will form flanges. As supplied to Government Departments, Universities, Hospitals. One rear's Euaromtee. Money refunded if not sptisfied. Send for detoils.
A. B. Palker, Folking Medime Works, Upper George St., Heckmondwike, Yorks. Hechmendmike 3997

NEVER BUILT A KIT BEFORE?
 Why not build one of these?

Solid-State Stereo FM Tuner/ Amplifier, AR-17. 7 watts music power-per-channel. 28 transistor, 7 diode circuitry. 6 position source switch. Wonderful value and styling.
Kit K/AR-17 玉39.0.0. Carr. 11/-. Walnut or teak cabinet $£ 3.10 .0$. extra.

Solid-State VVM, IM-47. For the hobbyist. Tests home or car electrics, etc. 4 AC, 4 DC, 4 Res. ranges. Battery powered. Portable. Kit K/IM-17 £12.18.0. Carr. 6/-.

High performance Car Radio, Cr-1. 4 watts output will drive two speakers. 12 V pos. or 12 V neg. supply. Tastefully styled.
Kit K/CR-1 (less Spkr.) £12.12.0. Carr 5/-.
$8 \times 5 \mathrm{in}$. speaker £1.2.0. extra.

Hobby Tool Kit, TK-1. Excellent low cost set comprising:-Solon Soldering Iron, 1 pair diagonal cutters, 1 pair needle nosed pliers, 3 sizes of screw-driver. Only £2.4.0. Carr. paid.

Low-cost 4 Band Receiver, GR-64. Covers $1 \mathrm{MHz}-30 \mathrm{MHz}$ in 3 SW Bands. Plus $550 \mathrm{kHz}-1620 \mathrm{kHz}$ AM band. Features bandspread tuning. 5in. Speaker. Kit K/GR-64 £22.8.0. Carr. 9/-.

Low Cost Solid-State Mono Amplifier, AA-18. Theideal basic audio amplifier. 4 watts music power output. Gram, Tape or Radio inputs. Modern clean styling.
Kit K/AA-18 £11.10.0. Carr. 5/-.

Practical electronics the easy way!

Leisure time takes on a new sparkle, a new interest when you add the creative fun you get from building a Heathkit model. Get the thrill of personal achievement when you switch on and realise that you've done something you doubted you could ever do. Your first step is FREE! just simply send for the latest Heathkit catalogue and see what a wide choice of models we offer. What ever yoúr requirement, be it $\mathrm{Hi}-\mathrm{Fi}$, Audio, a Portable Radio, a Record Player, Amateur Radio, a SW Receiver, a Test Instrument or Educational Equipment . . . There is something for everyone. And we are adding to our wide range continuously. Get your Free catalogue today.

DAYSTROM LIMITED Gloucester GL2 6EE England Tel.: Glos. 29451 Telex 43216

a Long cool life

for your valuable components with the

\[\begin{array}{cl} S-DeC \& \begin{array}{l} Available as single packs with accessories and
control panel @ 29/6d or the DeCSTOR double
pack containing 2 S-DeCs, accessories, control
panel, all in a plastic storage container. Only 67 / 6 \mathrm{~d} .
A 4 DeC pack is available, only 117/6d. \end{array}
T-DeC \& \begin{array}{l} Now available to the amateur. 208 connection points.
38 independent junctions. Accommodates I.Cs using
standard carriers. Three times the capability for only
twice the price! Unit pack with control panel 50 /-\mathrm{d.} \end{array} \end{array} \]

μ-DeC Primarily for use with integrated circuits; further details on request.

T-DeCs, S-DeCs and Accessories are all obtainable

from leading suppliers throughout the U.K. In case of difficulty complete the coupon and mail without delay.

Post to:
S.D.C. Electronics (Sales) Ltd., 34, Arkwright, Astmoor Industrial Estate, Runcorn, Cheshire. Tel: Runcorn 5041

Please send me:

T-DeC Pack	S-DeC Single Pack
DeCSTOR Pack-DeC Pack

Tick here if you require further details of the μ-DeC l enclose PO/Cheque/Money Order value $£ /$ /d. Money refunded if not satisfied.
Name.
Address

MARTIN IS HIGH-FIDELITY
 satisfactory unit assembly system

ONLY FROM MARTIN
Cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amp for low output pick-ups. Escutcheon panels to suit the arrangement you choose. Tuner is styled to match.
start by sending for leaflets at once
MARTIN ELECTRONICS LTD.

Abstract

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated moduletype units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims for years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification.

AMPLIFIER SYSTEMS - TUNERS - RECORDERS

UNITS INCLUDE:

- 5-stage input selector
- Pre-amp tone controls
$\square 10$ watt amp. (3 ohms)
- 10 watt amp. (15 ohms)
- Mains power supply

E F.M. Tuner
Trade enquiries invited
154/5 HIGH BTREET, BREMTFORD
MGDDLESEX. ISL,

When new units are introduced, they are designed for adding to those produced so far, making it easy and economical to extend anid improve your existing Martin Audiokit set-up. Anyone can assemble Martin equipment with ease and the fore-knowledge that when finished, he will be possessed of a true hi-fi assembly of the very best kind which looks and sounds completely professional in every way-and MARTIN AUDIOKITS remain as ever, the units that have true add-on-ability.

MARTIN ELECTRONICS

154 High Street, Brentford, Middlesex
Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)
Name
Address \qquad

KONTAKT 60
FOR INACCESSIBLE CONTACTS-More than just a cleaner. KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordance with today's technology.
KONTAKT offers the following ad-vantages:-

1. Dissolves oxides and sulphides the safe way without attacking contact substances.
2. Contains carefully selected solvents which do not attack plastics whereas they do dissolve resinified contact greases and dirt.
3. Contains no silicone.
4. Contains a light lubricant in order to avoid the contact paths being corroded.
5. Prevents further oxidation setting in.
6. Prevents "creep" currents.

Because of these outstanding properties KONTAKT 60 is one of the best and most popular contact cleansing agents in the world.
Users include: Rolls Royce Ltd., C.E.G.B., South of Scotland Electricity Board, Trinity House Workshops, Kolster Brandes, Mulliard, Plessey Cos., etc.
OTHER KONTAKT PRODUCTS ARE:
70 Protective Lacquer 80 Special Siliconized Polish
72 Insulating Spray $\quad 100$ Antistatic Agent For Plastic
75 Cold Spray For Fault Location 101 Dehydration Fluid
Write for full details of above complete range of Kontakt products to:-
SPECIAL PRODUCTS DISTRIBUTORS Liccadilly, London, w.1
01-629 9556

Mainline Electronics is a new Service for users of electronic equipment and components in the field of experimental work.
Backed by one of Europe's leading Distributors and enjoying the support of the Industry, Mainline Electronics specialises in quality components from leading manufacturers. These products are characterised by excellent materials and workmanship, proved reliability and known performance. Service is the watchword of Mainline Electronics' activities. The company not only supplies the right components at the right price but, also supplies the necessary data through the data service published in the component guide.

Your Complete Professional Guide to Components and Prices
 Send today for Europe's finest, most up-to-date and most comprehensive Price List of Semi-conductors and associated components, with details of manufacturers full application data.
 Get this invaluable reference now - to RCA - IR-SGS Emihus - Semitron - CCL - Plessey Morganite - Litesold to name but a few.

A DOZEN OF THE BEST

⿹ㅡㄹ톱 C.O.L. ${ }^{\text {mim }}$ Y Morjun (efterviat HIVAC 工OR

RIMEMTIGN RELAVS

70Watts of Audio

Mainline introduce a trio of amplifiers the Mainline '12', Mainline '25', Mainline ' 70 '.
The design of these audio amplifiers was the result of SGS and RCA combining their tremendous resources to produce these quasi circuits.
Each Kit complete with circuit diagram contains all semiconductors - resistors - capacitors and printed circuit board.

Mainline 12A-£7.0.0.
Prices: Mainline 25A- 88.5 .0 .
Mainline 70A-£10.10.0.

Mainline Electronics Limited,
Thames Avenue, WINDSOR, Berkshire.

CAR LIGHT FLASHERS

flagy duty light flasher employs a condenser disoperating on electro mechanical
relay. (As inset.) relay. (As inset.)
Housed in atrong Housed in strong
plastic case Flastic case. Flashing
between peration. Maxi per minute. 12 volt Dize $211 / 1 \AA^{\prime \prime} \mathrm{dia}$. An^{*} Supplied brand new at a fraction of original cont. 6/6 each P. \& P. 2/6. (3 tor

R209 MK II COMMUNICATION RECEIVER 11 valve high grade communication receiver mitable for tropical use. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on 4 bands.
AM/CW/FM operation. Incorporatea precision vernier driver, BFO. Aerial trimmer, internal peaker and 12 V.e. internal $\begin{array}{ll}\text { power sup- } \\ \text { ply. } & \text { Sup- }\end{array}$ plied in excellent condition. and checked A!5
Carr. 20/-
TYPE 13A DOUBLE BEAM OSCILLOSCOPES
 An excellent general pur-
pose p/B oscilloscope.
T.B. $2 \quad \mathrm{c} / \mathrm{s}-750$

kc / s. $\begin{array}{lll}\text { T.B. } 2 & \mathrm{e} / \mathrm{s}-750 & \mathrm{kc} / \mathrm{s} . \\ \text { Bandwidth } & 5.5 & \mathrm{Mc} / \mathrm{s} .\end{array}$ | Bandwidth | 5.5 | Mc / s. |
| :--- | :--- | :--- |
| Sensitivity | 33 V | | Sensitivity

Operating
$33 \mathrm{mV} / \mathrm{CM}$. Operating voltage $0 / 110 /$
$200 / 250$ V. a.c. Supplied $200 / 250$ V. a.c. Supplied
in exceltent working conin exceltent working con-
dition. ese.10.0. Or comdition. 292.10 .0 . Or com-
plete with all accessories, plete with all accessories,
probe, leads, lid, etc. probe, Carriage $30 /$ /-.

MARCONI CT44/
ABSORPTION
WATTMETER
$1 \mu /$ watt to 6 watte. 220. Carr. 20/-

SOLARTRON CD. 1016 OSCILLOSCOPE Double beam. d.c. To $5 \mathrm{Mc} / \mathrm{s}$. Excellent condition. 555 each. Carr. $20 /-$. CLASS D WAVEMETERS

Acrystalcontrolled hetero-
dyne frequency meter
covering $1.7-8$
Mc/s. covering $1.7-8$
Operation on 6 V d.c. Ideal for on anateur use. Available in good used condition. 25.19.6. Carr. 7/6 Or brand new with acces-
sories. 87.19 .6 . Carr. $7 / 6$.
CLASS D WAVEMETERS No. 2 Crystal controlled. $1 \cdot 2-19 \mathrm{Mc} / \mathrm{g}$. Mains
or 12 V d.c. operation. Comer or 12 alibrtion oper calibration charts. Excellent condition.
\$12.10.0. Carr. 30/-.
TO-2 PORTABLE OSCILLOSCOPE
A general purpose low cost economy oscillo\mathbf{Y} ame everyday use. Y amp. Bandwidth
2 CPS-1 MHZ. Input 2 CPS-1 MHZ. Input
Imp. 2 meg 25
Illuminated sca Illuminated scale.
tube. 115
$\times 180$ in tube. 115 Weight 1808 ib . $220 / 240 \mathrm{~V}$ a.c. Bupplied brand new with hand-
book 5 eev.10.0. Carr. $10 /$.

SOLARTRON CD.711S.2 OSCJLLOSCOPES Double bean1. D.C. to 9Mc/a. Perfect order. 265. Carr. 50/-

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE bridge offering ex.
 cellent range exaccuracy at low cost. Ranges: R. $\begin{array}{ll}1 \mathrm{a}-11 \cdot 1 & \text { mega. } \\ \mathrm{f} \text { Ranger } \pm 1 \% .\end{array}$
 HENRYS 6 Ran-
gea -2%. 10 pF Ranges $\pm 2 \%$. TURNS RATIO $1: 1 / 1000$ 1:11100.6 Ranges $+1 \%$. Bridge voltage at $1,000 \mathrm{cps}$. Operated from 9 volts. $100 \mu \mathrm{~A}$. Meter indication. Attractive 2 tone metal

UNR-30 4-BAND COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporstes BFO. Built-in upeaker and phone jack. Metal cabinet. Operation $220 /$ 240V. a.c. Supplied brand new. guaranteed with instructions.

13 gns.

CMFAYETEE SOLA STATE MABN REAYE

a.c. 18 g d.e. meg. Carth opetation en ap saio control. Sife 1 Ein $\times 98$ in $\times 8$ tin. Weifint 181 b . for full detells.

trio communication

 RECEIVER MODEL 9R-59DE4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{a}$. continuous and electrical bandepread on $10,15,20$, 40 and 80 metres. 8 valve plun 7 diode circuit. 4/8 ohm output and phone jack. 88B-CW ANL. Variable BFO $\$$ meter Sep. bandspread dial $1 F 445 K \mathrm{Kc} / \mathrm{s}$ Audio output 1.5 W . A.C. Maips. Beautifully deaigned. Slze: $7 \times 15 \times$

10in. With instruction manual and service data. \$48.10.0. carriage paid TRIO COMPUNICATION TYPE READPEOERS. Normally 85.19 .6

TRIO JR-500SE 10-80 Metre AMATEUR RECEIVER
Covers all the amateur bands in 7 separate ranges and 5 diodes plua 8 cryatals: 2 transistor 500 ohm and $5,000 \mathrm{ohm}$ phone jack, Crystal controlled oscillator. Variable BFO, VFO.
AVC. ANL. S meter. SSB-CW. Standeby AVC. ANL. S meter. S8B-CW. Stand-by awitch. Special double gear dial drive with direct reading
down to 1 kHz . Remote control socket for con down to 1 kHz . Remote control socket for con-
nection to a transmitter. Audio output IW $115 / 250 \mathrm{~V}$ a.c. mains. Superb modern styling. Slze ervice data. with instruction manual and ervice data. 80t.10.0. Carr. Pald.

SPECIAL BONUS TRIO SP5D Hatching speaker Mato and TR10 H84

HAMMARLUND SP600JX

 COMMUNICATION RECEIVERHigh quality professional dual converslon communication receivers. Few avallable again in this country at a reasonable price. Frequency range $540 \mathrm{Kc} / \mathrm{s}-54 \mathrm{Mc} / \mathrm{s}$ in 2.5 watt output into 600 ohms . Input $110 / 230 \mathrm{~V}$ a c . 20 valve circuit incorporating: Xtal filter, B.F.O., A.N.L. Xtal calibrator, s meter etc. Size $19 \times 12 \times 22 i n$
 Liat 2520.) Offered in excellent condition fully teated and checked. 100 each.

rca communication RECEIVER AR88D

Latest release by ministry BRAND NEW in original cases. $110-250 \mathrm{~V}$ a.c. operation. Frequency in 6 Bands. $535 \mathrm{Kc} / \mathrm{a}-32 \mathrm{Mc} / \mathrm{s}$ continuous. Output impedance $2 \cdot 5-600$ ohmas. Incorporating cry日tal Alter, noise limiter, variable BFO, variable
selectivlty, etc. Price 887 io selectivlty, etc. Price $\mathbf{8 8 7}, \mathbf{1 0} 0$. Carr. $\mathbf{E 2}$.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

A completely new transistorised recelver covering
$152-174 \mathrm{Mc} / \mathrm{s}$. Fully tuneable or crystal controlled 152-174 Mc/a. Fully tuneable or crystal controlled (not supplied) for fixed frequency operation. In. corporates 4 INTEGRATED CIRCULIS. Built in speaker and illuminated dial. Squelch and volume controls. Tape recorder output. 750 aerial input. Keadphone jack. Operation $230 V$. A.C.
12V.

Variable Voltage TRANSF口inilif
Brand new, guaranteed and carriage paid.
Figh quality construction. Input 230 V $50-60$ cycles.
Output full variable from 0.260 V . Bulk quantities available.

$20 \mathrm{amp}-\mathrm{m}_{2} 0.0$.

AVOMETER MOVEMENTS

Spare movementa tor Model 8 or 9 . (Fitted meter. Brand New and Boxed $6 / 6 \mathrm{P}_{\mathrm{a}} \mathrm{P} 3 / 6$.

T.E. 40

HIGH SENSITIVITY A.C. YOLTMETER 10 meg. Input 10 ranges: $-01 / 003 / \cdot 1 / \cdot 3 / 1 / /$
$3 / 10 / 30 / 100 / 300 v /$ $3 / 10 / 30 / 100 / 300 \mathrm{~V}$.
R.S.S. R.M.S. $4 \mathrm{c} / \mathrm{s}. \mathrm{\cdot} \cdot 1.2 \mathrm{Me} / \mathrm{s}$.
Decibels -40 to +50 dB. Supplied brand new complete with leads and inatructions. Operation 230 V a.c. \$17.10.0.
 Carr. $5 /$-.

LELAND MODEL 27 BEAT FRERUENCY OSCILEATORS Frequency $0-20 \mathrm{Ke} / \mathrm{s}$ on 2 ranges. Output 500Ω or $\delta \mathrm{k} \Omega$. Operation $200 / 250 \mathrm{~V}$. A.C 10/-.

TE-65 VALVE VOLTMETER

High qualty instrument with 28 rangen. D.c. volts ${ }_{1}^{1.5-1,500 V}$. 500 V . A.c. volte up to 1,000 megohms. ${ }_{220}^{240} 10{ }^{2}$ a.c. meperatlon. Complete with probe and instructions. 817.10 .0 P. \& P. 6/: Additiona Prober a available: R.F 35/ $/$. H.V. 42/6.
COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES D.c. coupled. Band width lkc/s. Perfect order. E2er. Carr. 30/-

AM/FM SIGNAL GENERATORS

Oscillator Teat No. 2. A high quality ment made for the minitutry by Air:nec. Frequency cover. age $20-80 \mathrm{Mc} / \mathrm{s}$. AM C.W./FM. Incorporates precision dial, level meter, prectaion attenuator $1 \mu V \cdot 100 \mathrm{mV}$. Operation from 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. size $12 \times 8 i \times 91 \mathrm{n}$. Supplied in brand new condition complete with all connectort GEARED MAINS
GEARED MAINS MOTORS Paralux type SD19 230/250V a.c. Reversible. 30 RPM. 40 lb in . Complete 09/6. Carr 10/-

TE-16A Tranaidtoriosd SignalGontrator. 5 ranges $400 \mathrm{kHz-30} \mathrm{mHz}$. An inexpensive instrument for the handyman. Operates on 9 v battery. Wide, ${ }_{800}^{\text {easy }} \quad \mathrm{kHz}$ read acale. $5\} \times 5\} \times 31 \mathrm{n}$. Complete with
instructions
leads and leade. 27.19.4. P.\&P. 1/-.

FIELD TELSHRONES TYPE L

Tenerator ringing, metal caser. Operates from two 1.5 v , batterlen (not eupplied). Exxellent condition. 84.10.0. per pair. Carr. 10\%.

AUTO TRANSFORMERS
$0 / 115 / 230 \mathrm{v}$. Step up or step down. uly ghrouded.

300 W, 21.18.6, P. \& P. $3 / 6$

300 W.	$28.7 .6_{i}$
500 W	

$1,000 \mathrm{~W}$

$7,500 \mathrm{~W} . \mathbf{8 1 5 , 1 0 . 0 ,} \mathbf{P}$. \& P. $20 /-$
G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 A.F. SIHE WAVE Square 200,000
wave $/ 8$
20 30,000 c/s. $0 / \mathrm{s}$ HIGH IMP. $21 V$ P/P600 $3 \cdot 8 \mathrm{~V} . \mathrm{P} / \mathrm{P}$ TF $100 \mathrm{kc} / \mathrm{s} 300$ Mc/s. Variable R.F int/ext. modulation. Incorpor ate dual purpose meter to monitor AF out
put and $\%$ mod. on R.F. $220 / \mathbf{2 4 0} \mathrm{V}$ a.\& 880.0.0. Carr. $7 / 6$.

TE-20RF SIGNAL GENERATOR Accurate wide range signal generator cover
 ing $120 \quad \mathrm{kc} / \mathrm{s}-260$ Mc / s on 6 bands. Directly ealibrated variablc R.F. attenuator. Operation
$200 / 240 \mathrm{~V}$ a.c. 200/240V a. Brand new with in P. \& P. 7/6. S.A.E for details.
PEAK-SOUND PRODUCTS Full range of Amplifiers, Kits, Speakers in

TE22 SINE SQUARE WAVE AUDIO GENERATORS

ands. 816.10.0. Carr. 7/6. HARCONI TF142E DISTORTION FACTOR Excelient condin
Carr. 15
LAFAYETTE TE46 RESISTANCE. CAPACITY ANALYSER
$2 \mathrm{pF}-2,000 \mathrm{mfd}$
ohms-200
megohms. Also
checka impe-
dance, turns
ratio, insula-
ion, $200 / 250 \mathrm{~V}$

Brand IVew
Carr. $7 / 6$
ADVANCE TEST EQUIPMENT Brand new and boxed inoriginal sealed cartons, TM. 76 VALVE VOLTMETRR R. F. measturements in excess of $100 \mathrm{Mc} / \mathrm{s}$ and d.c. measurements up to 100 V with accuracy of $\pm 2 \%$ d.c. range 300 mV RMS Resistance $02-500 \mathrm{~ms}$.
VM,78 A.C. MILLIVOLT METER. Tranaistorised $1 \mathrm{MV}-300 \mathrm{~V}$, Frequency $1 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$. Price 2 os.
YM. 79 UEF MILLIVOLT METER. Transistorised. A.c. range 10MV-8V. D.c. current range $0.01 \mu / \mathbf{A}-0.8 \mathrm{MA}$ Resistance 1 ohm-10 megohms. Price $£ 125$
IUDIO SIGNAL GFNERATOR. $15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$. sine or square wave. Price
AUDIO SIGNAL GENERATOR. JEB AUDIO SIGHAL GEDERATOR, As per J1B except fitted with output meter. Price $\$ 85$.
TT18 TRANSISTOR TESTER. 237.10 .0 Carriage 10/- per item.
MODEL ZQM TRANSISTOR CHECKER It has the fullest capacity checking on A, B and Ic
Equally adaptable for checking adaptable tor Spec.: A: diodes, etc. $0.7-0.9967$. $\begin{array}{lll}\text { B: 5-200. } & \text { Ico: } & 0-50 \\ \text { microamps } & 0-5 & \mathrm{~mA}\end{array}$ microamps
Resistance
for diode $200 \Omega-1 \mathrm{M} \Omega$. Supplied tions, battery and lead. \&5.19.6. P. \& P. $2 / 6$ SONOTRONIC PORTABLE OSCILLOSCOPES Fx-govt. scope, general purpose; 3in. c.r.t. Mains operated. Fully tested and checked. 218.10 .0 . Carr. $7 / 6$. SOLATRON MONITOR OSCILLOSCORE TYPE 101
An extremely high quality oscilloscope with time base of $10 \mu / \mathrm{sec}$ to $20 \mathrm{~m} / \mathrm{sec}$. Internal Y amplifier. Separate mains power supply $200 / 250 \mathrm{~V}$. Supplied inex cellent condition with cables, probe, ete., as
received from Ministiy, $88.19 .6 . \mathrm{Carr}$. $30 /-$

HEW CATALOGUE
Nearly 200 pages giving full details of a comprehensive range
of COMPONENTS. TEST EQUIPMENT, COMMUNICATION EQUIPMENTAND HI-FI EQUIPMENT.
Each section greatly enlarged and fully illustrated. Thousands of fully illustrated. Thousands
items many at bargain prices. items many at bargain prices.
FREE DISCOUNT COUPONS YALUE 101
SEND NOW-ONLY 76 PEPY'.

GARRARD

FULL CURREST RARGE OFFERED, BRAND NEW AND GUARANTEED AT FANTASTIC sAVINGS

SRP22 Stereo 45.19 .6 *SL55 - 1025 Mono 87.10 .0 A 70 MKII \$19.10.0 +1025 Stereo \$7.15.0 * AT60MKII 2025 Stereo 87.19.6 © SL65 -2025T/C
Mono/Stereo $58.17 .6 \quad 401$ 3000 Stereo 89.19 .6 SL75 SP25 MKII \&ll.19,6 SL95

Carriage/insurance 7/6 extra any 20s. 0.0
Bases \$3.19.6. Perspex covers 48.10 .0 . Special offer base and cover available for the models at gitic.0. Carr. 5/-. Full range of Garrard accessories available.
LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 diodes, JHF music power, 30W at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at $1 W$. DisOutput $3-16 \Omega$. Separate L and R volume controls. Treble and bass control. Stereo phone jack. Brushed aluninium, gold anodised extruded front panel with complementary metal case. Size $10 t$ 39/16×7 $13 / 16 \mathrm{in}$. Operation $115 / 230 \mathrm{~V}$
e 28 . Carriage $7 / 6$.

MULTIMETERS for EVERY purposel

TE-51. MEW $20,000 \Omega$
FOLT MULTIGETER with VOLT MULTIBGTER with overload protection and
mirror seale. $0 / 6 / 60 / 120 /$ mirror scate.
$1,200 \mathrm{~V}$
a.c. $0 / 3 / 30 / 60 / 300 /$ $600 / 3,000 \mathrm{~V}$ d.c. $0.60 \mu \mathrm{~A} / 12$ 3nm. 92/6. P. \& P $2 / 6$

MODEL TE-80 50.000 O.PV, MIRROR SCALE OVERLOAD PROTECTION $0 / 3 / 12 / 60 / 300 / 600 / 1,200 \mathrm{~V}$
d.c. $0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{~V}$ d.c. $0 / 6 / 30 / 120 / 300 / 1,2001$ $16 \mathrm{k} \Omega / 160 \mathrm{k} \Omega / 1.6 / 16 \mathrm{MR}$.

MODEL TE-70. 30,000 O.P.V. $0 / 3 / 15 / 60 / 300 /$ $600 / 1,200 \mathrm{~V}$. d.c. $0 / 6$
$30 / 120 / 600 / 1200 \mathrm{~V}$ $\begin{array}{cccc}30 / 120 / 600 / 1,200 \mathrm{~V} \\ 3 & 0 / 30 \mu \mathrm{~A} & 3 / 30\end{array}$
 $1 \cdot 6 \mathrm{MA}$. . $16 \mathrm{~K} / 160 \mathrm{Km}$ \&5.10.0. P. \& P. 3/-.

MODEL PT-84 1,000 O.P.V.0/10 $50 / 250 / 500$
$1,000 \mathrm{Y}^{2}$ a.c. and d,000 $0 / 1 / 100 / 500$ $\begin{array}{ll}\text { d.c. } & 0 / 1 / 100 / 500 \\ \mathrm{~mA} & \text { d.c. } 0 / 100\end{array}$ Kの 39/6. P. \& P 1/6.

TE-900 $20,000 \Omega$ VOLT GIANT 6in. full view meter colour scale, overload protection. $0 / 2.5 / 10 /$
 $0 / 25 / 12 \cdot 5 / 10 / 50 /$
$250 / 1,000 / 5,000 \mathrm{~V}$ $\begin{array}{llll}250 & 1,000 & 5,000 \mathrm{~V} \\ \text { d.c. } 0 & 50 \mu \mathrm{~A} & 110\end{array}$ $\begin{array}{lll}100 & 500 \mathrm{ma} & 10 \mathrm{~A} \\ \text { 1.c. } 20 \mathrm{~K} & / 200 \mathrm{~K} & 20\end{array}$
 MODEL TE-10A. $20 \mathrm{k} \Omega /$ Volt, $\quad 5 / 25 / 50 / 250 / 500 / 2,500$
V, d.c. $10 / 50 / 100 / 500$ V, d.e. 10 a.c. $0 / 50 \mu \mathrm{H} / 2.5$ mA. $/ 250 \mathrm{~mA}$. l.c. $0 / 6 \mathrm{~K} / 6$ megohns. -20 to
$10-0,100 \mathrm{mfd}$ t
0 mid. 89/6. P. \& P. 2/6.
PROFESSIOMAL 20,000 O.P.V.

LAB. TESTER

Automatic overiond protection, mir | ror | scale. |
| :--- | :--- |
| Ranges: | $1 / 10$ | $50 / 250 / 500 /$ 1,000 volts, d.c. and a.c $0-500 \mu \mathrm{~A}$, ma, 250 mA . 20 to +22 dB \&5.19.6. P. \& P. 2/6

HODEL TE 80. 20,000 $0 / 10 / 50$ / $100 / 500 /$ $1,000 \mathrm{~V}$ a.c. $0 / 5 / 25 / 50$ 250 / $500 / 1,000 \mathrm{~V}$ d.e $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$ $0 / 6 K / 60 / \mathrm{K} / 600 \mathrm{~K} / 6$
\&4.17.6. P . P . 3 /-.

MODEL TEIE $\quad 20,000$
HODEL TE12. $\quad 20,000$ O.P.V $1,200 / 3,000 / 6,000 \mathrm{~V}$ de. $1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ a.c. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6$ meg. $/ 60$. Megohm $50 \mathrm{PF} .2^{2} \mathrm{MFD}$ Megonm
\$5.19.6. P. \& P. $3 / 6$.

$*$ TRANSISTORISED FM TUNER *
 TRANSISTOR HIGH QUALITY ONLY $6 \times 4 \times 2$ in ONLF. stagen Double tuned discrininator. Ample
output to feed most amplifiers. Oper ates on 9V battery. Coverage 88-108 Mc/s Ready built ready for use. Fantastic value for money. $\mathbf{8 6 . 7 . 6 , ~ P . ~ \& ~ P . ~} 2 / 6$.
Stereo multiplex adaptors $99 / 6$.

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Separate call and press to talk buttons,
2.wire connection. 1000^{\prime} of of 2-wire connection. 1000 's of applications. Beautifully fin-
ished in ebony. Supplied ished in ebony. Supplied complete with wall brackets.
$\mathbf{8 6 . 1 9 , 6}, \mathrm{P} . \& \mathrm{P}$

SINCLAIR EOUIPMENT
21812 watt amplifer, $89 / 6$ PZ4 Power Supply Cnit 80/6 Stereo 25 Preanip., 20.19.6 014 Speakers, 87.19 .6 Micrometic Radio Kit, 49/6. Built 59/6 ALL POST PAID

SPEOIAL OFFER

Two Z12 Amps., PZ4 Pow'er Supply, Stereo of Preamplifier e88, or with two 014 speakers, 837.

NEW SINCLAIR 2000 SYSTEM 35 watt Integrated Amplifier $£ 29$ Carr, 5 35 watt Integrated Amplifier 829 . Carr, 5;-
Self powered F, N. Tuner. 825 , Carr. $5 /$ -

ECHO HS-606 STEREO
HEADPHONES
Wonderfully com.
fortable. Lightweifht adjustable vinyl headband, 6ft. cable and stere
$25-17,000$ anck plug.
8

TE111.

DECADE RESISTANCE ATTENUATOR Variable range $0-111 \mathrm{BB}$. Cou-
balanced T aul Brilge T Impedance 600Ω range $(0.1 \mathrm{AB} \quad 10)+(1 \mathrm{lB} \quad 10)$ $+10+20+30+40$ il3. Frequency d.c. to $200 \mathrm{kHz}(-3 \mathrm{lB})$. Aceuracy: 0.051 B . +indication 1 B 0.01. Maximum input less than 4 W (50 V). Built in 600Ω lowl resistance with internal exterual switch. Brand new \$87.10.0. P. \& P. $\overline{5} /$.

RECORDING HEADS

Reuter 1 -track. As fitted to Collaro Mk. IV and Studio Decks. High inp. record play back, COSMOCORD \ddagger-track hends. High imp, record/plarback 65/-. Low imp. erase 201- MARRIOTT t-track heads. High imp. record/playback 65/-. Low imp. erase 801 -. Post extra.

AMERICAN TAPE
First grade quality American tapes. Brand new Discount on quantities. 3 in. 225 tt. L.P. acetate 34 in . 600 ft . T.P. nylar 5 in. 600 ft . $8 t \mathrm{~d}$. plastic 6in. 1,200ft. D.P. mylar 5in. 1,800ft. T.P. mylar 5 in. $1,200 \mathrm{ft}$. L.P. acetate 5 in. 1,200ft. L.P. mylar. 5 gin . $1,800 \mathrm{ft}$. D.P. mylar 51 in . 2,400ft. L.P. mylar 7 in . 1,200ft. std. acetate in. 1,8004 t. L.P. acetate 7in. 1,800tt. L.P. mylar $7 \mathrm{in} .2,400 \mathrm{ft}$. D.P. mylar in. 3,6001 t. T.P. mylar
Postage 2/-....... Over 23 post paid.
MAXELL TAPE CASSETTES C60.10/3; C90. 14/3; C120. 19/6. Post extra

Otatarmine

MODEL 15

EXTREME VERSATILITY

Range of 8 interchangeable bits, from $3 / 64^{\prime \prime}$ (.047") to $3 / 16^{\prime \prime}$, including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 t^{\prime \prime}$. Weight $\frac{1}{2}$ oz.
Max. handle dia. 7/16".

- EXTRA-HIGH PERFORMANCE Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts-equals normal $30 / 40$ watt iron.

- all voltages

The ADAMIN range includes five other models ($5,8,12,18$ and 24 watts), Thermal strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/37.

prepare now for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.

CREI Study Programmes are directly relaied to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now - enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:
Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering $*$ Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

CREI (London), Walpole House, 173-176 Sloane Street, London S.W.1. A Subsidiary of McGraw-Hill Inc.
Post this coupon today for a better future

FULLY TESTED AND MARKED

AC107	3/-	OC170	3/-
AC126	2/6	OC171	4!-
ACl27	$2 / 6$	OC200	$3 / 6$
ACl28	2/6	OC201	7/-
ACI76	51-	2G301	2/6
ACYI7	3/-	2G303	2/6
AFII4	4/-	2N711	10/-
AFIIS	3/6	2 N 1302 -3	4/-
AFII6	$3 / 6$	2 N 1304 -5	5/-
AFI 17	3/6	$2 N 1306-7$	6/-
AF239	$12 / 6$	2N1308-9	$8 /$
AF186	10/-	2N3844A	51-
AF139	101-	Power	
BFY50	4/-	Transistors	
BSY25	$7 / 6$	OC20	10/-
BSY26	31-	OC23	10j-
BSY27	$3 / 0$	OC25	8/-
BSY28	3/-	OC26	5/-
BSY29	3/-	OC28	$7 / 6$
BSY95A	$3 /-$	OC35	$5 /-$
$0 \mathrm{C41}$	$2 / 6$	OC36	$7 / 6$
OC44	$2 / 6$	ADI49	$101-$
OC45	$2 / 6$	AUY10	30/-
OC71	$2 / 6$	2N3055	151-
OC72	$2 / 6$	Diodes	
$\bigcirc{ }^{\circ} \mathrm{C} 73$	$3 / 6$	AAY42	2/-
$0 \mathrm{C81}$	$2 / 6$	OA95	$2 /-$
OC8ID	$2 / 6$	OA70	1/9
-C83	4/-	OA79	$1 / 9$
OC139	$2 / 6$	OA81	$1 / 9$
OCl 40	3/6	IN914	1/6

PACKS OF YOUR OWN CHOICE UP TO the value of 10/- WITH ORDERS OVER 84

TRY OUR X PAKS FOR UNEQUALLED VALUE

 XA PAKGermanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, sl, etc.

PRICE 5 PER 1000
POST \& PACKING 4/6 U.K.

xB PAK

silicen TO. 18 CAN type transisters NPN/PNP mixed lots with equivalents to OC200-1, 2N706a, BSY27/29, ESY95A.

$$
\text { PRICE } 4.5 .0 \text { PER } 500
$$

PRICE CA PER 1000
POST \& PACKING $2 / 6$ U.K.

XC PAK

Silicon diodes miniature siass types, finished black with pelarity marked. equivalents to OA200, OA202, BAY3I-39 and DKIO, ecc.

PRICE A4. 10.0 PER 1000 POST \& PACKING $2 / 6$ U.K.

ALL THE ABOVE UNTESTED PACKS HAVE AN AVEMAGE OF 75\% OR MORE GOOD SEMI. CONDUCTORS. FREE PACKS SUSPENOED WITH THESE OROERS. OROERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK

Huge Clearance of

UHF/VHF TUNER UNIT REJECTS

Stocks almost exhausted! Place your orders now : : ! FANTASTIC TRANSISTOR VALUE
TU. 2. CONTAINIME 2 AFIEG's \& 2 AFI78's. PRICE $10 /$ EACH UNIIT.
TU. 3. COMTANIIG 2 AFIEG's \& 2 AFI78's.
PLUS WAVEBAND SLIDER SWITCH.
PRIEE 12/6 EAEH UNJT.
$P \& P$
2/6d.
EACH UXIT
All the Units have many other components, e.g., Capacitors, Resistors, Coils, and Tuning Condensers, etc. ALL TUNER UNITS ARE SUPPLIED WITH CONNECTION DATA.

MEW UNMARKED UNTESTED PAKS			
		Intergrated Circuits, Data and Clircuits of sypes, supplied with orders	10/-
880	8		
B82	10	OC45. OC8IO and OC81'Trans. Mullard glass type	0/-
	200	Trans. manufacturer's re all types NPN, PNP. Sil Germ.	
884	100	Silicon Diodes DO.7 glass equiv. to OA200, OA202	1010
B66	150	High quality Germ Diodes. Min. glass type	10/-
B86	50	sil. Diodes sub. min. IN914 and iNgi6 types	0/-
B87	10		
886	50	sil. Trans. NPN. PNP. 2NuV06A. BSY95A, ecc.	0/-
$\overline{860}$	10	7 Wate Zener Diodes Mixed Voltages	
PRE-PAK. N. 605 POWER TRANSISTOR EQUIVALENT - - TO NKT301-2-3-4			
COMPLIMENTARY SETNPN/PNP GERM, TRANS. 2/SDAIT			

NEW TESTED AND GUARANTEED PAKS			
$\overline{31}$	4	Photo Cells, Sun Batteries inc. Book of Instructions	10/.
$\overline{15}$	5	ASY66 Bidirectional Trans. Simultaneous 2 way signal	10/-
B77	2	ADI61-AD162 NPN/PNP Trans. Comp. Output. Pair	10/-
$\overline{87}$	4	$\begin{aligned} & \text { IN4007 Sil. Rec. Diodes } \\ & 1000 \text { Pil.V. } 1 \text { amp. Miniature } \end{aligned}$	10/-
B81	10	Reed Switches, mixed types large and small	10\%
$\overline{609}$	2	5 SP5 Light Sensitive Cells. Light Res. 400Ω Dark 1 M Ω	10/-
891	8	NKT163/164 PNP Germ. TO-5 equivalent to OC44, OC45	101-
192	4	NPN. Sil. Trans. AO6= B5x 20.2 N 2369500 MHz, 360 mW	10/-
$\overline{\text { B93 }}$	5	GET113 Trans. equiv. to	10/-
$\overline{894}$	6	NPN Sil. Planar Epitaxial Trans. CS4 similar to BSY 38 or BCl 10 B	10/-
$\overline{896}$	5	600 mA . 200 MHz	10/-
$\overline{898}$	10	$\times 8112$ and $\times B 102$ equiv. to 	10/-
699	200	Capacitors, Electrolytics paper, silver mica, etc. Post packing, this Pak'2/6	0/-

RETURN OF THE UNBEATABLE P.I PAK. now greater value than ever

FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS, APPROX. 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRAN SISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PAMELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA. TION ON THE TRANSISTORS.
please ask for pak P.I only 10/= 2/- P. \& P. on this Pak

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
counter for any car.
10

- each
free catalogue and lists for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

> THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

DEPT. A. 222.224 WEST ROAD, WESTCLIFF.ON SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344

VOL. 5
 No. 9
 September 1969

FEELNG THE PULSE

A\mathbf{N} obsession with facts and figures threatens to become a national malaise. Like, for instance, those monthly balance of payments figures. Yet we are witnessing just the beginning of the deluge of data of all kinds we will have to contend with as the computer population continues its rapid rate of growth. For the computer, above all, has created a statistician's dream world.

In contrast to this perpetual "feeling of the pulse" is the occasional examination which, covering a longer period of time, is more meaningful in its revelations. Like the Annual Statistical Survey of the Electronic Industry published in July by the Electronics Economic Development Committee.

This survey shows that the gross output of the industry was valued at over $£ 1,000$ million, nineteen per cent above the 1967 level.

In the capital equipment sector, we read, the major growth was in the U.K. computer market. (From $£ 98$ million in 1967 to $£ 136$ million in 1968.) Unfortunately, the home based computer manufacturers could not keep pace with this demand, and a greater proportion of the market had to be supplied by imported equipment.

The survey suggests that the defence market, although of major importance, will decline in future yèars. Outstanding achievements have been made by firms producing and marketing radar and navigational aids, particularly in exports, which have increased 42 per cent in this group.

In other sectors of the industry the balance of trade is not always so good. In the case of consumer goods, imports have actually increased. This tendency is likely to continue, especially in view of the coming colour television on 625 lines.

Active components also show, on balance, a trade deficit. In spite of greatly expanded home production, imports rose by over 30 per cent. On the other hand, U.K. firms did export 32 per cent more than in the previous year.

Finally, in reading through the survey, it is satisfying to see the inclusion of amateur electronics in a chart showing the structure of the U.K. electronics industry.

Amateur electronics is indicated as one of the consumers ("domestic final demand") for (1) home produced components and (2) imported components. No values, it is stated, can be assigned to any of these different sections of the market. Perhaps this deficiency will be rectified on a later occasion. The figures should be interesting and instructive, for though relatively very small, the amateur share of the market is going to increase steadily in the future. At least that is our prediction-and made without the aid of a computer!
F. E. Bennett-Editor

CONSTRUCTIONAL PROJECTS

ANALOGUE SERVO SYSTEM642
CINE-TAPE SYNCHRONISER 660
P.E. ORGAN-5 668
INSULATION AND DIODE TEST SET 675
SPECIAL SERIES
MODEL RAILWAY LOGIC SYSTEMS—I 652
COLD CATHODE TUBES-4 685
GENERAL FEATURES
INGENUITY UNLIMITED 656
NEWS AND COMMENT
EDITORIAL 641
AUDIO TRENDS 648
SPACEWATCH 665
ELECTRONORAMA 666
NEWS BRIEFS 647, 682
MARKET PLACE 673
BOOK REVIEWS 694
Our October issue will be publlshed on Monday, September 15

[^1]
By A.R.Miller

MOst modellers who own single channel radio control equipment often require a unit to add to their existing system to make it more comprehensive. Simple units, consisting of a transmitter, receiver and an actuator are particularly popular because of their versatility and low price compared with complete proportional units. Various units have already been described in the past in this magazine, giving details of equipment for model control.
Model control receivers are often very critical in operation because of the high radio frequency used. This is the point at which most would-be constructors get in to difficulties, and in the end it is often cheaper t φ purchase ready-made equipment. Such equipment can be obtained for as little as ten pounds, compared with digital systems costing over one hundred pounds.

This article describes a cheap addition for a single channel system providing a function that compares favourably with far more complex systems. It utilises two servo amplifiers described in an article by Mr J. Tennant in the December 1967 issue of P.E. (unfortunately this issue is now unobtainable).

BASIC OPERATION OF THE SYSTEM

The only necessary modification to existing equipment is the addition of a pulser to the transmitter modulation system. The pulse frequency must be continuously variable between 3 and 10 pulses per second, with a centre frequency of 6 pulses per second. The mark to space ratio of these pulses must also be controllable.

A simple pulser suitable for this application may be constructed using an astable multivibrator as the pulse generating device, followed by an amplifying stage.

However a far better pulser can be made using a unijunction transistor sawtooth generator, followed by two stages to square off the waveform, and vary the mark to space ratio. The advantages of this type is that it is more stable in operation, and there is practically no interaction between controls.
The receiver used in the construction of this article must incorporate a relay-this is common in readymade receivers--for this reason the pulse rate use in this design is very low.
Conventional practice with this type of pulse system is to use a "Galloping Ghost". actuator, employing an electric motor driving a spring loaded gear system providing mechanical control. Although this method sounds good in theory, this type of actuator has a marked disadvantage; the power supplied by the electric motor is quite low, and therefore it can only be used for small models. The system described here uses feed-back servos and thus overcomes the low power problem.

DECODER

Variation of the mark to space ratio causes the relay (RLA1 in Fig. 1) to vary the brightness of the bulb LP1. This variation in brightness is received by the photocell X1 the resistance of which is correspondingly varied, thus controlling the bias applied to the base of TR6. The mark to space ratio servo amplifier consists of transistors TR6 to 10, which differentiate this bias and feed it to motor MO1. This motor is ganged to VR4 which varies the feed back to the amplifier, and hence the motor drives the servo to a position dictated by the bias.
The purpose of the lamps and photocells (LP1, 2 and X1, 2) might not seem obvious. However, as stated,
Fig. 1. The complete circuit diagram of the analogue servo system
this system does not use high frequency pulsing techniques. Consequently considerable smoothing of the input signal is necessary. Capacitance and resistance junctions were tried, but damped the movement of the servos to such an extent that they were practically inoperative. Eventually a system using lamps and bulbs was evolved and this is described here. It is surprisingly accurate, sensitive and reliable and, in comparison with other analogue circuits, it is also less complex. The two electrolytic capacitors C2 and C3 provide further smoothing of the input signal.

Bulbs do tend to consume a large amount of power, and this can be a problem when the supply is in the form of dry batteries; however, the bulbs used in the system are low wattage types so the power consumed is not too great. A resistor is incorporated in series with each bulb, to reduce the current so that the bulb glows dimly. At this point the power consumed is about 60 mA at 4 volts. The mark to space ratio is nominally

This shows all the modules necessary for a complete installation. They are : the receiver, the electronic servo control and the two servos
$50-50$, therefore the bulb is only on for half the time period; consequently power consumption is roughly halved. The system is therefore quite economical on power.

The purpose of D1 and D2 in series with LP1 is to prevent unwanted current flowing back through D3 and interfering with the operation of the rate decoder when the polarity of the relay is reversed. Diodes used for D1 and D2 in the prototype were subminiacure silicon types; almost any good small silicon diodes can be used.

RATE SERVO FUNCTION

The rate decoder provides the second servo function; this consists of a monostable multivibrator which provides a pulse independent of the mark to space ratio of RLA1. The time constant of this circuit is given by the equation $0 \cdot 7 . \mathrm{Cl}$.Rx seconds. Now the centre pulse rate frequency of the transmitter is 6 pulses per second, therefore if we time the monostable circuit to give a $\frac{1}{12}$ of a second pulse when the relay is connected, this will mean that TR3 is switched on for $\frac{1}{12}$ second, and switched off for $\frac{1}{12}$ of a second. This means that the
output from TR3 collector will have a mark to space ratio of 50-50.

It is a characteristic of a monostable circuit that the pulse output time is independent of the pulse input time, consequently the rate decoder will not respond to variations in mark to space ratio from the receiver relay (RLA1). If the pulse frequency of the transmitter is increased, then TR3 is switched on for a longer period than it is switched off. This will mean that the bulb LP2 will glow more brightly, and vice-versa if the pulse rate is decreased. Hence, variations in the light intensity of LP2 control the rate servo motor via X2 in a similar manner as that with the mark to space servo.

SERVOS

A useful start when constructing the electronics of the system is to have the servo motors already made up; this is because most of the decoder circuitry is set up using the servos as the standard. The servos used in

Fig. 2. Basic construction of the servo using a Mighty Midget motor
the prototype were constructed from "Mighty Midget" electric motors coupled through Ripmax 40/1 reduction worm gears to the feedback potentiometer and the final output drive, see Fig. 2. This motor which can be obtained from most model shops strikes a happy medium between reliability and cost-it could, at the time of writing be purchased for about $£ 1$.

The current drawn by the motor is quite small, and it will operate from a low voltage supply. Typical current ratings are 150 mA running, and 250 mA stalled; it is therefore within the capabilities of the amplifier output transistors. When purchased, the motor is complete with a $6 / 1$ nylon reduction gear already fixed. This gear has a countershaft speed of between 600 and 800 r.p.m., consequently, after the wormgear drive, the servo takes about 2 seconds to complete the full travel of 180 degrees.

CONSTRUCTIONAL DETAILS

Once the servos have been constructed and are running smoothly, construction of the electronics can begin. Details of the printed circuit boards for the unit are given in Figs. 3 and 4.

Two different wiring boards are used in the system, and when each has been etched and drilled, using a $\frac{1}{z z}$ inch drill, soldering work can begin. Due to the size of the lands on the board a soldering iron with a small bit is necessary. Multicore 22 gauge solder is preferable as this is much more convenient to work with. The printed wiring board for the servo amplifiers should be wired up first; this has two amplifiers on it side by side. Four resistors are used for each amplifier, and these should be soldered in first.
One channel should be selected, and the transistors for this channel soldered in. It may be necessary, before inserting the input transistor (TR6 or TR13) to solder in the signal input lead, this is made 6in long. When the transistors for one of the amplifiers have been inserted, then all the remaining leads for the amplifier are soldered to the board. A 50 kilohm potentiometer should now have its wiper connected to the signal input lead, and the two outside connections soldered to the positive and negative output leads.

The servo motor is then connected to the drive transistors and to the centre tap of two 4.5 V batteries or a $7 \cdot 2 \mathrm{~V}$ Deac pack. Next connect the positive and negative terminals of the battery pack to the appropriate points. When this has been done the servo should move to some point on its travel and stop in that position. If this happens, turning the 50 kilohm potentiometer should cause the servo motor to move to another position and stop again. If this does not happen disconnect the battery and try reversing the motor contacts.

Assuming the amplifier circuit is working correctly the potentiometer, motor and battery can be removed, and construction of the other channel can be carried out in a similar manner, testing the circuit by the same method. If it is noticed that either servo motor travels more quickly in one direction than in the other, then it may be that the output transistors are incorrectly matched. Transistors TR9, 10, 16 and 17 must be fitted with finned heat sinks.

Fig. 3. Layout and wiring of the servo amplifier board. The board is shown full size

Fig. 4. Layout and wiring of the decoder board. The board is shown full size

COMPONENTS

Resistors

R1	$47 \Omega \frac{1}{4} \mathrm{~W}$ (see text) R8	4.7k Ω	R13	$1 \mathrm{k} \Omega$
R2	$4.7 \mathrm{k} \Omega$ R9	$1 \mathrm{k} \Omega$	R14	$4.7 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$ R10	$4.7 \mathrm{k} \Omega$	R15	$4.7 \mathrm{k} \Omega$
R4	$4.7 \mathrm{k} \Omega \frac{1}{4} W \quad \mathrm{RII}$	$4.7 \mathrm{k} \Omega$	R16	$470 \Omega \frac{1}{4} \mathrm{~W}$
R5	$4.7 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$ R12	$4.7 \mathrm{k} \Omega$		470 ${ }_{4}$ W
R6	$33 \Omega \frac{1}{4} \mathrm{~W}$ (see text)			
R7	$4 \cdot 7 \mathrm{k}$ 』			

Potentiometers

VRI $10 \mathrm{k} \Omega$ carbon lin.
VR2 $10 \mathrm{k} \Omega$ skeleton preset
VR3 $50 \mathrm{k} \Omega$ (any linear potentiometer to find value of $R x$)
VR4 $10 \mathrm{k} \Omega$ carbon lin.
VR5 $10 \mathrm{k} \Omega$ skeleton preset
Capacitors
$\mathrm{Cl} 4 \mu \mathrm{~F}$ elect. 6 V

Semiconductors

DI, 2 OA200 (2 off, see text)
D3 OA81
XI, 2 RPY 28 light dependent resistor (2 off, Mullard)
TRI, 2, 8, 15 OC7I (4 off)
TR3 2G382
TR4, 11 OC202 (2 off)
TR5, 7, 12, 14 OCl4I (4 off)
TR6, $9,13,16$ OC84 (4 off)
TRIO, 17 2N697 (2 off)
Miscellaneous
MOI, 2 "Mighty Midget" motors and gears (two off-see text)
LPI, 2 6V, 0.1A bulbs (two off)
BYI, 2 Centre tapped 7.2V 500DKZ Deac. battery pack or two 4.5 V batteries (see text)
Copper clad s.r.b.p. board (1 ${ }^{3} \mathrm{in} \times 1 \mathrm{fin}, 2$ off)
22 s.w.g. aluminium for case ($5 \frac{3}{3}$ in $\times 5 \frac{1}{2}$ in)
Finned heat sinks (4 off)

DECODER CONSTRUCTION

Having established the operation of the servos; construction of the decoder can begin. After making sure that the printed circuit board is clean, solder in VR5, then transistor TR3 and so on proceeding down the side of the board to Rx. At the holes for this resistor two wires should be soldered in and connected to R16 and the 50 kilohm potentiometer which was used for setting up the servos (VR3).

After this has been done and all parts of the decoder are in place, the bulbs and photocells can be positioned. Start with LP2 and the photocell X2. The RPY28 is flat in structure, and the leadout wires protrude from the underside; these wires should be positioned in the appropriate holes at the end of the board, so that the centre of the photocell stands about half a centimetre above the board.

A piece of thin stout connecting wire is soldered to the body of the bulb LP2 and inserted through a hole in the board as shown. The glass part of the bulb should be vertically above the photocell, with the element above the centre of the photocell. A 33 ohm 4 watt resistor is soldered to the bulb, and to the circuit board (see Fig. 4). Do not insert LP1, D1, D2, VR5 or X1 yet. The necessary connecting wires can now be soldered in. Connect the relay of the receiver to VR1 wiper and to the positive end of the diode D3. Switch on the transmitter and start the receiver relay pulsing.

Connect a 7.2 volt Deac supply or two 4.5 volt dry batteries in series (whichever supply is to be used) to the respective supply rails of the decoder, noting the current that is flowing; it should be in the region of 50 mA , pulsing in time with the relay. If LP2 does not flash try adjusting the 50 kilohm potentiometer (VR3). If it still does not work, it may be that the load resistor in series with the bulb is too great in value. Remove the bulb and put a milliameter across the bulb connections; it should register about 40 mA at 4 volts. If there is no current, check over the circuit for faultscheck that the diode and supply polarity is correct.

As a last resort remove TR3, connect a voltmeter across the positions occupied by TR3 base and emitter, and check that there is a series of pulses of about 3 to 4 volts at this point. If this is happening then it may be that TR3 is defunct. If these pulses are not coming through then the monostable circuit is not workingcheck TR1 and 2. No trouble should in fact be encountered with this circuit as it is a simple one.

SETTING UP PROCEDURE

Assuming now that the decoder circuit is working correctly, set the transmitter control stick to its neutral position, then adjust the 50 kilohm potentiometer (VR3) until lamp LP2 appears to be on and off for equal periods; a more accurate value of this resistance (Rx) can be found by moving the mark to space control on the transmitter. Any variation of the mark to space control should not produce a perceptible variation in brightness of the bulb, however variation in pulse rate will have a marked effect in the brightness of the bulb.

If everything is operating correctly, potentiometer VR2 and photocell X1 may be soldered in. Another $\frac{1}{4}$ watt resistor is positioned in the hole next to VR5; the value in the prototype was found to be 47 ohms, although this may vary according to the characteristics of diodes D1 and D2. Diode D2 has its negative end connected to the board, and its positive end connected to R1. The leads of the diode and resistor are clipped

The electronics for the control system partially installed in the case
short, care being taken not to overheat the components during soldering. This done, diode D1 can be connected to the bulb at its negative end, and into the appropriate hole at its positive end. Connect the centre tap of the relay to the positive end of D1 and the normally open contact of the'relay to the negative supply rail; the normally closed contact is connected to diode D3.

Switch on the transmitter and receiver and both bulbs should start flashing. If LP1 does not flash, check that the diodes are connected correctly and also that there are no other wiring faults. If LP1 still does not flash, try decreasing the load resistor (R1); if this has no effect remove the bulb and check for voltage and current as before.

It may be that the forward resistance of the diodes is too high and there is not quite sufficient current to light the lamp, in which case the diodes will have to be substituted. If LP2 stops flashing when LP1 starts, this is due to the back resistance of the diodes D1 and 3 being too low. Again the diodes will have to be substituted.

Once the decoder circuit is working correctly it can be linked to the amplifiers constructed previously. Connect up the amplifier 1 input to the junction between VR5 and X2 and amplifier 2 input to the junction between VR2 and X1.

Adjust VR2 and VR5 to their centre positions but do not turn on the transmitter yet. Switch on the supply to the amplifiers and decoder; the lamps should not flash but the servo motors should both travel to a point and stop. If this happens, cover one of the photocells; this should cause the appropriate servo to move to a new position; when the covering is removed the servo should return to its original position. Repeat the procedure for the other unit.

Fig. 5. The case used to house the prototype unit. Servo output wires are led out of the two slots at the left hand side. The opposite single slot carries the supply leads and relay connections. All external connections should be protected from the case by suitable grommets

The transmitter can now be switched on. Once this is done the bulbs should flash as before. Cover both photocells and lights, so that the light from one bulb does not interfere with that from the other. Moving the mark to space control on the transmitter should produce a corresponding movement in the mark to space servo; if the movement is biased to one side, then the servo can be centred by VR2. (The load resistor in series with the bulb is varied until the bulb just glows.)

When the mark to space servo has been set up, the frequency servo can be aligned. VR5 should be used to centre the servo so that there is equal travel on either side of the centre frequency position. The 50 kilohm potentiometer (VR3), which is still in the circuit, is now adjusted more finely until there is no interference from the mark to space ratio control. This done, the potentiometer and R16 can be removed from the circuit, and their resistance value which gave this balance point measured; this can be done with an ordinary ohmmeter. A $\frac{1}{8}$ watt resistor (Rx) of this value is then inserted in place of potentiometer VR3 and R16.

All that remains is for the circuit to be tidied up, and a case, and cover for the bulbs and photocells made. Details of a case are given in Fig. 5; this should be made from 22 gauge aluminium insulated on the inside with a plastics covering material to protect against short circuits.
The lamp housing used in the prototype was made from celluloid. This was formed into a suitable shape, and glued with balsa cement. Two coats of black polystyrene paint were applied on the outside, and a coat of silver on the inside to provide a better reflective surface.

The weight of the complete system including the cases was found to be approximately 15 ounces.

Laser Light Strikes Moon

Shortly after the Apollo, 11 astronauts landed on the Moon, giant "pancakes" of laser light, two and a half miles across and ten feet thick, were arranged to strike their landing area and bounce off a special reflector in a scientific experiment designed to provide precise answers to age-old questions about the Moon.
The "pancakes" represent pulses of high-power laser light, one one-hundred-millionth (ten billionths) of a second in duration, fired from a rangefinder telescope on an Arizona mountain top-a rangefinder so precise it is able to measure the relative Earth to moon distance to within one and a half metres.

Dr. Renne S. Julian, senior scientist at Hughes Aircraft Company, California, which built the rangefinder system for the U.S. Air Force Cambridge Research Laboratories, said the ability to measure the range with such precision will provide valuable information about the lunar orbit, the moon's size, its true shape and its libration (rocking). It will also provide information about the mass distribution of the Earth and the movement of Earth land masses, or "continental drift".
The NASA retro-reflector placed on the Moon can be used by any country that wishes to use the device. It has been reported that Russia has a lunar rangefinder operating, and France and other countries are at work on similar devices.

Protected Instrumment Landing

$\mathrm{A}^{\text {Irfields in the United Kingdom will be the first to use }}$ the new CPILS (correlation protected instrument landing system) as a result of a development contract awarded to Plessey Radar by the Ministry of Technology. The new system-being developed from an idea originating at RAE-will greatly improve the operational reliability of aircraft instrument landing systems.
The equipment being developed is the ground and airborne equipment for a microwave glide-path system. This combines all the advantages of conventional ILS currently in use at airports throughout the world, with greater accuracy and complete freedom from interference and site effects.

Unlike other proposed instrument landing systems from the U.S.A., U.K. and France, this system is fully compatible with existing ILS and therefore more likely to succeed in world-wide exploitation. Existing flight-deck instrumentation can be used, the only changes necessary in the aircraft being the addition of a smaller antenna and a minor modification to the receiver.
CPILS will meet the needs of airports where full autoland facilities are required as well as those of less wellendowed airports where expense and siting difficulties preclude conventional ILS.

Degrees and the Practising Engineer

$W_{\text {qualification for }}^{\text {IL }}$ a qualification for professional engineers? Already there are ominous signs that this is so; for example there are efforts to hold the Higher National Diploma and Certificate to the "technician" level.

A determined fight against this tendency is being conducted by The Society of Engineers, as was announced by their President W. G. Taylor at a recent meeting. Other members of the Society also voiced their fears that many practising engineers would be excluded from any Register of Engineers that may be compiled in the future.

One industrialist has stated that students who have attained a good HNC turn out to be better than many, graduates after they have received one or two years' training in the laboratory. This view is believed to be fairly widely held in industry.

By F. C. Judd

During the few months prior to the Annual Audio Festival (this year in October and now called the International Audio and Photocine Fairs) news of anything really new or of special technical interest is usually pretty scarce.

It appears at the moment however, that unit hi fi systems will be very much in evidence at the forthcoming fair, but one wonders whether this idea is not really degenerating into a trend toward "glorified" radiograms. Already some unit systems comprising a radio tuner, an amplifier and a record player are being made available all in one box. The small bookshelf type loudspeakers classified as hi fi might just as well be included.

NEW AUDIO EXHIBITION ANNOUNCED

News has been released that a second hi fi exhibition is now to be staged and run by the Federation of British Audio Promotions Limited, at which only "top performance" hi fi audio equipment that performs to, or better than, a minimum acceptable standard will be displayed and demonstrated.

The exhibition is to be held in the Skyways Hotel near the London Heathrow Airport from April 23 to 26, 1970 , with the 23 rd strictly reserved for the trade and technical press only. Each exhibitor, who may be a British or foreign manufacturer or U.K. distributor of equipment made outside the U.K., will have an identical and completely sound-proofed room for demonstration purposes, with separate rooms for static displays of their products. Tickets will be made available to the public via hi fi dealers and various other sources.

An exhibition of hi fi equipment with an agreed minimum performance standard ("only the best in audio" quote the organisers) is a very good idea, but who is going to draw that very thin line between "acceptable" and "unacceptable"?

We have no performance standard in this country like the German DIN 45-500 for domestic audio equipment
which could be adopted. The German standard is generally regarded in this country as not quite good enough for strictly hi fi and is perhaps one good reason why a British standard should be established anyway.

Another and equally good reason is because the term "hi fi", which at one time really did mean high fidelity, is now freely used to describe the sound reproduction qualities of anything ranging from a cheap transistor radio to genuine top performance audio equipment. Meanwhile, the full range of fidelity audio equipment by British and foreign manufacturers will be displayed and demonstrated at the combined International Audio and Photocine Fairs at Olympia from October 16 to 22.

LOW NOISE TUNERS AND AMPLIFIERS

Audio manufacturers and particularly the Japanese are now using field effect transistors with (pardon the pun) considerable effect, especially in a.m./f.m. tuners.

A tuner of Japanese origin, which I had the opportunity of testing recently, featured f.e.t.'s in the r.f. stages with a very great reduction in noise level and increased sensitivity. Completely noise free stereo could be obtained with an indoor aerial some 20 miles from the London (Wrotham) transmitter. This is something I have not found possible with other tuners not using f.e.t.'s.

Goodmans "Music Suite" complete stereo system

With the help of modern low noise transistors, a signal-to-noise ratio of 60 dB or better is now fairly commonplace in top quality amplifiers and is the sort of figure that should be looked for, even with inputs for low sensitivity pick-up cartridges and tape heads which have a high degree of bass lift for equalisation.

One amplifier which performs quite well in this respect is the Nikko TRM 120 which has a rated output power of some 42 watts r.m.s. per channel or a combined music power from both channels of 120 watts. Not only is the output power genuine, but the amplifier also has a signal-to-noise ratio of around 60 dB for all inputs.

For those who want "life size" sound and really high fidelity performance, this is the amplifier. It retails at £95 (equivalent to about $16 /$ - per watt music power).

NEW LASKY'S SCOOP

THE WORLD'S BMALLEST 6 TRANSIBTOR TWO WAVEBAND RADIO RECEIVER FROM RUSSIA

THE ASTRAD ORION

Made to the highest Russian space-age standard -this remarkable micro-size set measures only $1 \mathrm{H} \times 1 \frac{1}{4} \times 5$ in in . yet it contains 6 transistors and other components comblned in a photo etched circult, only $\frac{1}{8} \times \frac{1}{3}$ in.; tuning capacitor, ferrite rod (or core) aerial, battery, wavehand selection, switch, etc. Output to a high im pedance, cryatal earpiece, giving ample volume (automatically adjusted) and clear tone. Brief tech. spec. Waveband coverage - Medium wave 525 to $1605 \mathrm{kc} / \mathrm{s}$, Long wave $150 \mathrm{kc} / \mathrm{s}$ to $\mathbf{4 0 8 k c} / \mathrm{s}$. Sensitivity: $\mathbf{3 5 m V}$ max. Selectivity 10 dB (at $30 \mathrm{kc} / \mathrm{s}$ de-tuning). Power consumption 4 mA max. Power sonrce: $1 \times 1.4 \mathrm{~V}$ Mercury battery (Mallory type RM625 or equivalent).

* HOTR: The battery we supply with the Orion is a rechargesble type. Charger nnita will shortly be available onabling you to rocharge the battery from AC maini 2e0/240V tupply. Price 19/6, post free if ordered now with radio-otherwise 2/-. If you parchate your charger now we will forward as soon as stoch arrive. The Orion is supplied fully built and tested complete with battery*, left and right fitting earphone aupports and attractive black and ivory plastic presentation/carrying case
(matchlag the Orion). Never miss your favourite music, sport, news-the Orion is an ideal gift for all, providing a constant source of enjoyment without disturbing others.

LASKY'S PRICE 39/6
Post $2 / 6$
Spare battery 3/6

LASKY'S PRICE £13.10.0 Post 5/-

LASKY'S PRICE £11.19.6

Post 5/-

AUTOCHAMGERS

10\% less cartridge
1025 with GCM21 nono cartridge (Stereo Compat) coaswe with GCM21 mono cartridge (Stereo Compat) 3L55 with J3006 stereo cartridge
Les less cartridge
aT00 Mk. II less cartridge $3 L 76$ leas cartridge HO5 lesa cartridge A70 Mk. II less cartridge B.e.R.DA-47 less cartridge

868 38196 . 27196 811196 $\$ 1415$ 21350 288100 285 0 218196 81819
85
\$5 86 SPCI 23.5 .0 ; $\$ P C 4 \mathrm{Mk}$. II 24. 6. 6.

sImGLE PLAYERS

AP75 with AD76K magnetic
cartridge 881 o 0 AP75 less cartridge 818100 SRP22 Mains model less cart-
 cartridge 261210

37153 (RAKTBCRIPTIOM DECKS 40128810 garbard bases:
WB1 48. 6. 11; WB4 Mk. II 25.8.11; CLEARVIEW PERSPEX COVERS:

DEnSHI board hits

 NEW EXPERIMENTAL AND EDUCATIONAL CIRCUIT SYSTEMThe DENSEI BOARD system enables the young experimenter and electronies hobbyist to produce a wide range of transistor circuits
of increasing sophisticationwithout soldering or the use of any Without soldering or the use of any comprises a siotted circuit board into which plug-in components and bridge pieces are set to produce up to 30 different circuits. The components are encapsulated in transparent plastic blocks bearing the appropriate circuit symbol and complete novice to visnaliy grasp the fundamentals of circuitry after only a few momenta study. In adition each DERSAI BOARD KIT comes complete with an 80 SIGNAL INJECTOR, SIGNAL TRACER, DENSHI BOARD KIT SR-IA comprises:
Base board; tuner block; 4 resistors; choke coil; transformer; 2SA transistor for RF 2 diodes; 3 capacitors; battery block; morse key; antenna lead; crybtal earphone various bridge and connecting pieces and 80 page nanual. This kit permits the building of 16 basie circuits.

LASKY'S PRICE £4.19.6

Post 3/6
DENSHI BOARD KIT SR-2A os SR-IA but with the following additional parts:
$28 B$ transistor for AF; 2 resistors; 1 capacitor; crystal microphone; test probes; electrode; additional connecting pieces; 9 Vbattery. Thin kit permita the building of 30 circuitr

LASKY'S PRICE £7.2.6 Post 3/6

EXCLUSIVE FIRST THE IC-403 INTEGRATED CIRCUIT AMPLIFIER MODULE AVAILABLE NOW!

These tiny modules-size only $25 \times 10 \times 5$ millimetres- $/ f 11] \mid l$
design since the introduetion of the tranaiator. The actual circuit-no bigger than a pin-head-is encapsulated in solid plastic fused with the heatsink and connecting pins to make an almost indestructible unit. The IC-403 is an integrated power and pre-amplifier requiring only the addition of tone and volume controls, power source and speaker to form a complete audio amplier or sw outpul. Originally dever compact aize is required, i.e. miniature P.A. and audio amplifiers, intercoms, electronie organs, tape recorders, etc. ete.
greciricatiol (ratinga at $20^{\circ} \mathrm{C}$): Output power typically 3W from 250 mI input. Frequency response 20 Hz to $80 \mathrm{KHz} \pm 3 \pi B$. Power amp. distortion 0.3% (at 1W, 400 Hz). Pre-amp. gain 24dB. Power amp. gain 26dB. Max operating voltage $21 V$, Min. operating load 7.5. Noise level -75 dB . Pre-amp. input imp. $2 \mathrm{~m} /$ ohms. Pre-rmp and power amp. D.C. input current 50N.A.

THE IC-403 IS AYAILABLE FROM STOCK EXCLUSIVELY FROM LASKY'S -COMP, WITH INS. DATA AND SUGGESTED CIRCUIT APPLICATIONS

LASKY'S PRICE 52/6 Post 2/6

- CET YOUR -
- GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL 16 colour pagea in large $16 \times 11 \mathrm{in}$. format packed with 1,000 's of items from our Send 1 - for post only and inclusion on our regular mailing list. (5 /-overseas) Send $1 /$ - for post only and inclusion on our regular mailing list. (5/-overseas)

DE LUXE STEREO AMPLIFIER (2) 1. EZZ0 ay full wave rectifier. Two dual potentiometera are provided for bass and treble control, giving baes and treble boost and cut. A dual volume control is used, Balance of the leit and right hand channele can be adjusted by means of a separate "balance" control fitted mately 300 m ' Y for full peak output of 4 watts per channel (8 watte inono), into 3 ohm apeakers. Full negative teedback in a carefully calculated circuit, allowa high volume levela to be used with negligible distortion. Supplied complete with knobs, chagsia size 1 Iin. $\mathbf{w} \times 4 \mathrm{in} . x$. Overall hetght including valves sin. Ready built and tested to a high atandard. Price 8 gns, P. di P. $8 /-$

TRANSISTOR STEREO 8 + 8 MK H
Now using silicon Tramaistors in first five stages on each channel resulting in even lower noise level with improred - ses 14 tranuistora giving 8 watts push pull output per channel (16W nono). Integrated pre-anio. with Bnes Treble and Volume controla. Suitable for use with Ceramic or Crystal cartridgen. Output stage for any syeakers froin 3 to 15 ohms . Conpact design, all part supplied including dritled metal work. Cir-Kit board, attractive front panel, knobs, wire, solder, nuts, boltano extran to buy. Simple step by atep intruct ons euable any constructor to build an amplifier to be proud of. Brief apecifleation: Freq. responge 34 B . 20-20,000c/a. -16 dB . Negative feedback 18 dB over main amp. Power requirements 25 V at 0.6 amb
PRICES: AMPLIFIER KIT $\operatorname{sio} 10.0$; POWER PACK KIT 88.0 .0 ; CABIN ET 88,0.0. All Post Free. Circuit diagram, cometruction detaila and parta liot (free with kit) 1/6. (B.A.E.).

APECLAL PURCEABE! E.E.I. 4-SPRLD PLAYER Heavy 8 zin. metal turntable. ${ }_{250} \mathrm{~L}$ F shated motor 2007 tap). Complete with latest type lightweight pick-up arm and mono cartridge with t/o styli for LP/78. ONLE $\begin{array}{ll}\text { stylii } & \text { for LP/78. } \\ 68 /=, & \text { P. } \& \text { P. } / 6 .\end{array}$

4-BPEED RECORD PLAYER BARGAIIS Maine moleis. An brand new in maker's packing. 18.6 All plus Carriage and Packing e/6.
LATEST GAREARD MODRLE. All typez available 1025 2025, 8 PRS, 8000 , AT60 atc. Send 8.A. L. Iop Latest Pricea! PLiATH WHIPA cut out for Garrawd Models 1025, 2005 OUR PRICE 5 gin. coniplete. P. \& P. 8/6.

801FOTONE 9TAFC compatible Stereo Cartridge with diamond atylus $50 /$, P. \& P. $2 /$. LATESP EP/LP/Stereo/78. 39/6, P. \& P. 2/•. EP/LPT BONETTE T/O Mono Compatible Certriage for $30 /-+P$. \& P ono or stereo records on mono equipment.
 LP. Oniy 10/e. P. \& P. 2\%
 speaker. separate volume control matched for 3 ohm wide range tone contmla giving bass and treble lift and cut. Xegative feedback line. Ontput 4I watta. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobe, valves, etc. wired and teated for nnly \&i.15.0. P. \& P. 6/\%
10/14 WATT HI-FI A atylishly finiohed monaural amplifler with an output of 14 watte from 2 ELs4s in push-pull. Super reproduction of both music and speech, with negligible hum. separate gram allow records and announcements to follow each other

Fulls ahrouded section round output transformer to match 3-150 speaker and 2 independent volume controbs, and separate base and treble controls are provided giving cood lift and cut. Valve line up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet 2/6 (Free with partes. All paris sold soparately. ONLI s7.9.6, P. \& P. 8/6. input eockets, \quad en.5.0. P. \& P. $8 / 6$

LOUDSPEAKIRE BARQAIIS

$5 i n .3$ ohm. 10/-. P. \& P. 3/. $7: 4$ in. 3 ohm. 21/ P \& P
 3 ohn. with high flux magnet $21 /=$. P. P. $4 / \%$ E.M.I.
 rith two inhuitt tweeters and crobsover network 4 gns P. \&P. $6 / \cdot$. BRAID IEW. 12 in . 15 W H/D speakers, 3 or 15 ohnus. Current production by well-known Britiak maker. $\mathbf{\text { with Hiflux ceramic ferrobar magnet assenbly }} \mathbf{1 0 . 0}$. with Hiflux ceramic ferrobar magnet nssenimy
P . \& P . $7 / 6$. Guitar models: 25 w . 88: 35 w . 88.8 .0 . P. \& P. 7/6. Guitar noder. 2veres. Poweriul ceramic magnet. Available in 3 or 8 ohms 15/- each; 15 ohms $18 / 8$ each. P. \& P. $2 / 6$.
18in. "RA" TWLI COETY LOUDSPEAKBR. 10 watts peak handling. 8 or 15 ohm. 37/6 P. \& P. $6 /$
3ifin. 14/-. P. \& P. $2 / 6$; 7 . 4 in . $21 /-$. P. \& P. 4/.
VYAAR ARD REETME RPEAXMES ATD CABIIET ABRICB npp. 54in. wide, (bilalis 35/- yt., our price 13/6 yd. length. P. \& P. $2 / 6$ (min. 1 ydv). \&.A.F. for namples.

NEW! HSL. 700 MONO TRANSISTOR AMPLIFIER

A really high Adelity monwith performance characteristics to mit the most discriminating lie-
tener. 6 trantener. 6 tran-
sistor
circuit sistor circuit
with integrated preamplifier preampinfier special printed sub panel. AD161-AD162
 symmetrical complementary pair. Out put transformer coupled to 3 chm and 15 ohm apeaket sockets. Standard phono input sockets. Full wave bridge rectifier power supply for a.e. mains $200-$ 240v. Controis: basa, treble, ralio. The HNL. 700 is selecigly constructed on rigid steel chassia bronze hanmer enamel finish, size $91 \cdot{ }^{-1} 5-4 \frac{1}{7} \mathrm{in}$. high.
Pertormance figures:

PC:2-110m/v, 1 meg input impeatance.
Tape- $110 \mathrm{~m} / \mathrm{s}, 1$ meg input impedance.
Radio- $110 \mathrm{~m} / \mathrm{v}$, 1 meg input impedance
Output power measured at $1 \mathrm{Kc}-6 \cdot 2$ watts RMS into 3 ohns, $\overline{5} \cdot 8$ watts RMS into 15 ohm- overailirequeacy
responae $30 \mathrm{c} / \mathrm{s}-\mathrm{JRKc} / \mathrm{B}$: Continnously variable tone
 +10 db to -10 rb at $10 \mathrm{Kc} / \mathrm{s}$.
The HAL. 700 has been designed for true high fidelity reproduction from radio tuner, gramophone deck and tape recorder pre amp but is almo capable of being used in conjunction with a gutar by connecting to PT1 socket and the peak ont put power will then be in the region of 15 watts.
Supplied ready built and teated, complete with knobs, attractive anodised aluminium front escutcheon panel, long apindles (can be cut to suit your housing requis
OUR BPECLAL PRICE 57.19 .6. P. \& P. $7 / 6$
HIGH IMPEDANCE CRYSTAL STICK MIKES. OUR
 CAEBP
P. \& P. $1 / 6$.

QUALITY RECORD PLAXER AMPLIFIER ME II A top-quality record player amplifier emploring heavy EZ80 valves. Separate Bass, Treble and Volume controla. Complete with output transformer matehed for 3 ohm mpeaker, Size 7in. Wi: 3 d . 6 h . Ready built and tented. PRICE 75/-. P. \& P. 6/. ALSO AVAILABLEA mounted on board with output tramsformer ani speaker ready to DE LUXE QUALITY PORTABLE RjP CABLIETME II tneut notor board bize $14 t \div 12 \mathrm{in}$. clearance 2 in, below s!in. above. Will take above anplifier anil any B.S.R. or SIn- above. Will take above ampliner ant any B.B.R. ond (M25). Size $18 \cdots 15 \cdot 8 \mathrm{in}$. PRICE 79/6, P. t P. $9 / 0$. BRAND HEW MULTI-RATIO MAIHS TRANEITORMTP Giving 13 alternatives. Primary:0-210-240v. Secondary connbinations: $0-5-10-15-20-25-30-35-40-60 \mathrm{y}$. hal full wave Size $3^{\prime \prime} h<31 \mathrm{w} \div 3^{*}$. Price $39 / 9$ \& P. $6 /-P$ finwave TRASRFORMER. Primary 200-240V to separate wave aecondaries giving approx. 16 V at 1 amp and 20V at $1 \cdot 2$ amp; secs. can be connected in series for 36V at 1.5 amp. Ideal for tramaintor powe supplies. Drop through mounting. Stack size 27×34 in. 15/- P \& P. $0 /$

 Pri. 200/240У. Sec. 12-0-12 at 1 amp. 14/6. P. \& P. 2/6
Pri. 200/240V. Sec. 10-0-10 at'2 annp. E/f. P. \& P. 3/6

Open all day Saturday
Early closing Wed. 1 pim.
A few minutes from Sowhth Wimbledom Tube Station

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01.540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE HOTE: P. \& P.CHAEGES QUOTLD APPLY TO UX. OLI P. \& P on OVERSEAS ORDER
CHARGEDETRA.

SEND S.A.E. FOR NEW STOCK LIST	WENTWORTH RADIO 104 SALISBURY ROAD HIGH BARNET				01-4493087	
ACY17 717	MATIOO	78	NKT213	${ }^{6 / 9}$	NKT274	${ }_{4}^{51}$
ACY18 ACY19	MAT01	$8 / 6$ $7 / 6$ $8 / 6$	NKT215	419	NKT177	519
ACY20 ACY21 AC12		8/6	NKT216	10/6	NKT405	14/6
ACY22 5i-	${ }_{2}$	5)	NKT219	$5 / 6$	NKT674F	61
AF16 ${ }^{\text {ACr }}$	2N697	${ }_{5}^{5 / 3}$	NKT229	${ }_{8 / 3}^{5 / 3}$	NKT7i3	8/3
	${ }_{\text {2N }}$	$3 / 3$	NKT240	$5 / 3$	NKW73	49
AFS29 BCIO7	2N708 2N709	11/989	(${ }_{\text {NKT241 }}$	3/-	NKT7919	59 666
${ }_{\text {BCl }}$	${ }_{2}^{2 N 14}$	\$998	-	13/68	NKT10319	
	${ }^{2} \mathbf{2 N 9 1 6}$	716	NKK244	4/3/3	NKT12389	10/6
OC44	${ }^{2} \mathrm{~N} 929$	7	NKT261	4/3	NKT13329	S-
OC70	2N930	${ }^{81} 8$	NKT262	$4 / 3$	CAREON	$t_{\text {Wast }}$
$\begin{array}{ll}\mathrm{OC71} & \\ \mathrm{OC72} & \\ \text { 2/3 }\end{array}$	- ${ }^{2} \mathrm{~N} 13132$	$12 / 9$	NKT264	4/3	VALVE	3 dd each
$\begin{array}{ll}\text { OC74 } & 3 / 9 \\ \text { OC75 } & \\ \text { O/9 }\end{array}$	-	86	NKT271	4/-	Holders	od and yd

ORGAN BUILDERS!

Use our bistable dividers for your tone sources and cut your costs by more than half.

A small printed board with four complete transistor dividers will cost you only $18 / 6$ including postage so why pay more?

Removed from working equipment, each circuit is meticulously inspected and tested before dispatch,
Just send a S.A.E. for free details to:
Roger Allen
13 Millways
Great Totham, Essex

Japonese Nikko TRM/20 stereo amplifier

Its U.K. distributors are Howland West Limited, 2 Park End, South Hill Park, London, N.W.3.

MUSIC SUITE

Those who are looking for something less powerful and much more compact may find the new Goodmans "Music Suite" more to their liking. This comprises three matching items which include the latest Goodmans 3000 integrated stereo tuner amplifier, their 3025 record player complete with pick-up arm and cartridge and a pair of 3005 loudspeakers all for $£ 1409 \mathrm{~s} 4 \mathrm{~d}$.

This hi fi system will be in the shops by the time this article appears in print and will be featured at the forthcoming "Audio and Photocine Fairs".

The tuner amplifier features include preset tuning and push button station selection, automatic frequency control, a built-in stereo decoder, 12 watts r.m.s. output power per channel, inputs for pick-up and tape, and a socket for stereo headphones with automatic speaker muting.

LOW DISTORTION POWER AMPLIFIER MODULES

Home constructors will be interested in the transistor power amplifier modules available from Welbrook Engineering and Electronics Limited. The makers claim a distortion level of not greater than 0.1 per cent at all output levels, which is achieved by a special Welbrook circuit design.

These power stage modules which are used in the Welbrook integrated stereo amplifiers, are rated for 15 watts r.m.s. into 8 ohms or 10 watts r.m.s. into 15 ohms and require an input signal of 100 mV for full output. Power requirements are 45 V at 0.7 A per
module. The Modules cost $£ 8$ each or two modules (for stereo) f 15 . Details from Welbrook Engineering and Electronics Limited, Brooks Street, Stockport, Cheshire.

RECORD PLAYER KIT

A kit of parts for building a record transcription unit should also prove attractive to construction minded hi fi enthusiasts. This is the Sugden kit for building their well-known Connoiseur BD1 record turntable which caters for $33 f$ and 45 r.p.m. discs and costs f11 13 s 5 d .

It will accommodate any of the popular pick-up arms and the only tools required for assembly are a screwdriver and pliers. Further details can be obtained from A. R. Sugden and Co. Ltd., Market Street, Brighouse, Yorks.

NEW TUNER AMPLIFIER

One final item is a new hi fi stereo tuner amplifier from Telefunken called the "Concertino". The tuñer section covers the v.h.f./f.m. and short, medium and long wave bands and features a pre-tuned station selection system, an electronic tuning indicator and stereo decoder.

The makers claim 22 watts music power (15 watts r.m.s.) per channel and an overall performance to the German DIN 45-500 standard. The amplifier caters for pick-up and tape inputs, and has a conventional active tone control system for bass and treble. Price $\mathfrak{f} 103 \mathrm{19s}$ Od. Distributed in the U.K. by A.E.G. (Great Britain) Limited, 27 Chancery Lane, London, W.C.2.

Telefunken "Concertino" stereo tuner amplifier

By P. GOODES

Model railway is just one of several examples in which logic switching circuits can be fully exploited. This is the first of a short series describing these circuits and how they can be usefully employed to take over much of the complex operations of a large scale model railway system

AMODEL railway layout can eventually reach a size and complexity where it is more than a full time job to keep all trains and ancillaries running smoothly. Naturally, an excess of automation can take all the fun out of the hobby from the modelling angle, so it is the intention of this series to present a system which would be acceptable to the model enthusiast and electronics gadgeteer alike.

All the ideas to be described make use of simple standard switching circuits. These circuits comprise the bistable, the monostable, a relay buffer, the inverter, the AND gate, the OR gate, the divider, the shift register, and a motor control amplifier. The circuits have been designed to be straightforward and reliable and to use the minimum variety of components in an attempt to keep the cost within reasonable limits.

Constructional details are deliberately omitted because the final form of construction will depend on the complexity of the system to be used. It is expected that anyone contemplating the making of a logic system will be able to use established methods (to choice) of modular construction.

LOGIC SWITCHING

A logic sequence in electronics may be considered as a series of switching functions to give a particular result for a particular set of input conditions and a predetermined set of operating instructions which are incorporated by the designer. Consider the circuit shown in Fig. 1.1a. The voltage across R may be either 12 V when S 1 is closed or zero when S 1 is open. Thus we have two definite states whereby we can answer the
statement "St is open" by "true" or "false". It is normal in logic circuitry to represent these two states by 1 and 0 on paper, and electronically they may be represented by "voltage" and "no voltage", positive or negative. This is purely arbitrary but in this discussion it has been decided that -12 V should be represented by 1 and zero represented by 0 . A transistor may be considered to have two definite states, first when it is fully conducting, i.e. the collector voltage is approximately zero, and the transistor is thus effectively a short circuit. The second state is when the transistor is cut off so that no current flows through the transistor and the collector voltage to all intents and purposes is equal to the supply voltage (see Fig. 1.1b).
This then forms the basic electronic switch and various operations may be performed by interconnecting these switches in different ways. Pulses are transmitted throughout the control circuit and the different elements prepared according to their characteristics, i.e. 1 or 0 .

Fig. I.Ia. Simple electrical switching circuit

Fig. l.Ib. Simple transistor switching circuit

LOGIC CIRCUIT SYMBOLS

A number of standard circuits are employed. A brief description of these circuits is given here.

BISTABLE CIRCUIT

The circuit in Fig. 1.2 comprises two switches with their inputs and outputs cross-connected. Assume TR1 is conducting (state 0) and TR2 is cut off (state 1) due to TR1 collector voltage being at 0 V (base-emitter junction is reverse biased). A negative trigger pulse applied to the base of TR2 causes it to start conducting and its collector voltage to rise. This rise is amplified and inverted by TR1 and fed back via C2 and R3 to assist the trigger in driving TR2 on. This regenerative effect finally results in the state where TRI is cut off (state 1) and TR2 is conducting hard (state 0). Thus on receipt of a trigger pulse the output at TR2 collector has changed from 1 to 0 and the output from TR1 collector has changed from 0 to 1 . The circuit will remain in this condition until a negative pulse is applied to the base of TR1 when the circuit will revert back to its original condition.

BINARY DIVIDER

The binary divider performs in a similar manner to the bistable described above, except that it may be triggered back and forth from a common pulse input. See Fig. 1.3. Diodes D1 and D2 perform the function of steering the positive spike of the differentiated input pulse to the transistor which is hard on, thereby cutting it off. Thus for every two pulses coming in, one comes out, i.e. the circuit has divided the incoming pulse train frequency by two.

MONOSTABLE CIRCUIT

The circuit in Fig. 1.4 may be used for generating a fairly accurate time delay or a pulse of a particular width. As can be seen the circuit is similar to the bistable, but one of the resistor coupling networks is replaced by a capacitor resistor network. Initially TR2 is conducting due to the base bias via R3, its collector voltage holding TR1 base sufficiently close to 0 V for TR1 to be cut off. A negative trigger pulse (1) applied to TR1 base causes a rise in voltage at its

Fig. I.4. Monostable with two ourputs

3-mput"anó gate

A	B	C	0
0	0	1	0
0	1	0	0
1	0	0	0
1	1	0	0
1	0	1	0
0	1	1	0
1	1	1	1
0	0	0	0

Fig. I.5. Three-input AND gate and logic table

A	B	C	0
0	0	1	1
0	1	0	1
1	0	0	1
1	1	0	1
1	0	1	1
0	1	1	1
1	1	1	1
0	0	0	0

Fig. 1.6. Three-input OR gate and logic table

Fig. 1.7. Relay buffer stage. RI may be replaced by a I $\mu \mathrm{F}$ capactior, for single shot buffer, RI to be short circuit when. used with AND gate
collector. This is coupled via C1 to TR2 base which amplifies and inverts, assisting in driving TR1 hard on; hence TR2 cuts off. Capacitor C 1 then discharges at a time constant $C_{1} R_{3}$, and TR2 base voltage falls until it starts conducting. The collector of TR2 rises, cutting off TR1; the initial state is reached once more and remains so until another trigger pulse is received.

AND GATE

The and gate for negative pulses is shown in Fig. 1.5. If any one input (A), (B) or (C) is at 0 V then its associated diode is forward biased (i.e. an effective short circuit) and output (D) assumes this potential of 0 V . However, if all three inputs are at a voltage of $-V$ volts, then each diode is reversed biased, representing a resistance of approximately 100 kilohms, and the output is approximately - V. An analogy may be drawn here to the simple circuit also shown in Fig. 1.5, where the output is negative only if all three switches are open. If any one is closed the output adopts 0 V . This may be represented by the $1-0$ notation bearing in mind that negative is represented by. 1 , and 0 V is represented by 0 .

OR GATE

The or gate is shown in Fig. 1.6. If any one input (A), (B) or (C) goes negative, then the output at (D) is negative. The output is at 0 V only if all inputs are at OV. Here again an analogy may be drawn to a simple switching circuit as shown and the results are drawn up in the associated table.

RELAY BUFFER

This is a simple amplifier (Fig. 1.7) with an emitter follower at the input to offer a fairly high input resistance to the rest of the circuit. The output is used to operate a 230Ω relay when the input is 1 . It may be turned into a single shot buffer by replacing R1 by a $0.33 \mu \mathrm{~F}$ capacitor, in which case the relay operates and then falls out even if the 1 is maintained at the input.

The single shot unit is used in many cases where the relay is employed to operate a "points" motor coil. "Points" motor coils tend to get rather hot when permanently connected to the supply.
The diode across the relay coil acts as a transient suppressor to protect the transistor.

RING OF THREE SCALER

The ring of three scaler (or shift register) shown in Fig. 1.8 performs a similar function to a bistable except that it has three stable states whereas the bistable has only two.

Any one transistor (say TR1) can be off, i.e. in state 1 and this holds the other two transistors hard on. Since TR1 collector is at about -12 V this means that diode D1 is forward biased via R10. When a 0 trigger is applied to the input line, D1 passes this to the capacitor C2. Diodes D2 and D3 do not conduct this pulse since they are reverse biased. Thus the 0 trigger is passed only to the base of TR2, cutting off TR2, causing TR1 and TR3 to conduct hard and biasing diode D2 ready for the next 0 pulse which will cut off TR3. Thus the impulses at the input cause each transistor in turn to adopt a 1 state.

The circuit may be used as a sequence counter or alternatively as a straightforward "divide-by-three" circuit.

The principle may be extended for use as a ring of five scaler by adding on transistors and inserting resistors to ensure that each base is connected to any collector via a resistor.

Fig. I.8. Ring of three scaler
The circuit may be triggered from independent sources. In this case the triggering circuitry, D1 to D3, R10 to R12, C1 to C3 may be omitted and each transistor is triggered via diodes connected in a similar manner to the rest.

MOTOR CONTROL AMPLIFIER

In the circuit shown in Fig. 1.9 when input (A) is at zero, TR1 is cut off with approximately -12 V on its collector. This causes TR2 and TR3 to be conducting hard and power to be applied to the motor. When a 1 input is applied to input (A), TR1 starts conducting hard causing TR2 and TR 3 to cut off; thus the motor stops. Diode D2 is included in the motor circuit and acts as a quench on the back end of the motor when it stops. Resistor R4 acts as a dummy load, when there is no motor to be run.
When a straightforward stop or start action is required, input (A) is used. When used in conjunction with a slow down circuit, input (B) is used.

The speed of the motor may be adjusted by varying the supply to the amplifier by means of the rheostat on the ordinary train controller. If a separate unregulated d.c. supply is used, a base biasing arrangement on TR1 will control the motor speed.

Transistor TR3 should be mounted on a small heatsink, and in the author's model a piece of aluminium $\frac{1}{16}$ in $\times 2 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in was found to suffice.

SLOW DOWN/SPEED UP

This circuit (Fig. 1.10) is basically a very simple version of the Miller integrator. It is controlled by some other circuit (e.g. monostable or bistable) and

Fig. I.II. Simple one transistor amplifier used as an inverter
generates a rather poor ramp voltage. Normally there is a 1 at the input which means that the collector is at 0 volts. When a 0 is applied at the input the transistor tries to cut off, but is slowed down by the feedback via C1. This causes the collector voltage to fall with a relationship to time. As the transistor cuts off, C2 charges via D1.

When the input returns to $1, \mathrm{Cl}$ discharges quickly and the collector of TR1 returns to 0 V . D1 is now reversed biased and C2 has to discharge via R3 in series with the input resistance of the motor control amplifier. Capacitors C 1 and C 2 are selected values depending on external circumstances, for example, length of train, length of isolated sections in the signalling system and so on. Remember that Cl will basically determine the slowing down rate of the train and C2 the speed-up time. The author used $25 \mu \mathrm{~F}$ for Cl and C 2 and a fairly realistic effect was obtained.

The circuit may be used also to stop a train in a station for a given length of time by triggering from a monostable with a time constant equivalent to the time required to stop in the station.

INVERTER

This is a very simple one transistor amplifier (Fig. 1.11). When the input is 1 , TRI conducts hard causing a 0 in the output. When the input goes to 0 , TR1 cuts off and a 1 output results. Thus where we did have a 1 we now have a 0 and vice versa. RI may alternatively be connected from the base to -12 V as in Fig. 1.12. A switch connected between base and 0 V will give a 0 output when open and a 1 output when closed.

Next month: Interlocking Signalling Systems

Fig. I.IO. Miller integrator used to slow down or speed up a motor

Fig. 1.12. Alternative bias and switching arrangement of the inverter

UNLIMITED:

A selection of readers* suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

STOCKS AND SHARES

enclose two ideas for giving an added interest to your recent article on an Electronic Stockmarket game published in the December 1968 issue.

Bank Raid Insurance

The first addition to the game is a simple timing circuit which is used as a bank raid insurance.

The time delay of the circuit shown in Fig. 1 is approximately 2 minutes, but this can be varied according to the value of capacitor C 1 which can be any value from $500 \mu \mathrm{~F}$ to $5,000 \mu \mathrm{~F}$ depending on how long the games usually last. The relay RLA can be any sensitive $8-9 \mathrm{~V}$ type with one set of make contacts.

The extra capacitor C2 and switch S3 shown dotted in the circuit diagram can be included to double the length of the insurance period if over three people are playing.

Fig. I. Circuit-diagram of the bank raid insurance

Fig. 2. The neon indicator arrangement for the electronic dice

Fig. 3. Switching circuit for the electronic dice
The rules for the insurance are quite simple, and upon throwing a three a player may, if he wishes, forfeit his turn to transact or transfer his cash to his bank and instead "buy" insurance by pressing S2 and starting the timer. This insurance lasts until the lamp is extinguished and then the player is again vulnerable to a bank raid. Only one player may use this insurance at one time.

Electronic Dice

The final addition to the game is a completely automatic electronic dice. The circuit is shown in Figs. 2 and 3 and when $S 1$ is pressed the neons light rapidly in turn for $2-8$ seconds. The "throw" lights up for approximately 2 seconds, then the circuit switches itself off.

The neon bulbs can be arranged in a hexagon in a space on the Stockmarket top, with the circuit components mounted on the underside or installed in a separate case.

The relays used in the dice are 12 V types with two sets of make and two break contacts. The neons are 65 V miniature glass types and an ideal supply is a transistor inverter which gives $80-100$ volts at approximately 5 milliamps or less, as the neons require very little power.

UNIJUNCTION SUBSTITUTE

Fig. I. Substitute for a unijunction transistor compared with the unijunction transistor symbol on the right

MANY experimenters have doubtless seen circuits which make use of a unijunction transistor (u.j.t.) and, not having a device of this type to hand, have fought shy of attempting to build this circuit.

A simple substitute for the unijunction transistor is shown in Fig. 1; the correspending connections are as indicated
Both transistors should be silicon, but the actual types used are not critical. I have had success with BSY95A, 2N929, 2 N 706 and BSY27 for TR1 and OC200 and OC202 for TR2.
When the emitter of TR1 is less positive than the base, neither transistor conducts, but when this emitter becomes more positive than the base 2, TR1 starts to conduct, so supplying current to TR2 base. This turns on TR2, which provides current for the base of TR1, causing TR1 to conduct harder. Very soon both transistors conduct heavily, and the impedance between emitter and base-1 falls to a low value, thereby reproducing the unijunction's characteristic.

Fig. 2. Simple unijunction oscillator circuit with a frequency of operation of $1 \mathbf{k H z}$

One of many applications of this substitute unijunction is in the oscillator circuit shown in Fig. 2, which has a frequency of operation of 1 kHz . Capacitor Cl charges via R1, until the unijunction fires, so rapidly discharging Cl . The cycle of operation then repeats.

Other uses are in timers and as trigger units for thyristors.
J. N. Watt, Camberley,

Surrey.

LIGHT METER

THe circuit in Fig. 1 was designed to detect the small colour change of various chemical indicators when responding to an extremely weak substance.

When the intensity of light in the vicinity of the OCP71 changes, the pitch of the output tone from the speaker also changes. The output tone is produced by the action of Cl charging through VR1 until it reaches a certain potential, when it then switches the unijunction "on" allowing the capacitor to discharge through the loudspeaker; this cycle of operations is then repeated.

Any change in the intensity of the light falling on the OCP71 gives a variation in its resistance which leaks away part of the accumulated charge present at C1 and alters the output tone pitch. The greater the light intensity the more current leaked away and the lower the output pitch. The light sensitivity of the circuit is controlled by potentiometer VR2.

To set up the circuit the OCP71 is disconnected and VR1 adjusted over its whole resistance range. At maximum resistance a slow clicking will be heard; as the resistance is decreased the clicking rate rises until a tone is heard; this continues to rise until it disappears when the unijunction is switched on and Cl is being permanently discharged. Slowly increase the resist-

Fig. I. Circuit diagram of the light meter and transistor wiring connection details
ance until a tone is once more heard and adjust the control for the highest pitch. Reconnect the OCP71 in the circuit and the instrument is ready for use. The base of the OCP71 is left disconnected.
According to lighting conditions and the setting of VR2, a tone may or may not be heard when the OCP71 is reconnected. In either case, this control should be adjusted for the lowest tone for maximum sensitivity in the lighting conditions present.

Clive Woods,
Leicester.

CNE PROJECTORS and vetat yrecorders onte perhaps two of the mosi common hobbyot equipments to be found in many hormes thece dhys, and it is frequently the case that the cine enthusiast likes to add sound effects of commentary to bis silient films.

When attempting to fin the tape recorder simul taneously with the projecor, problems of synctronism appear. All these cape tolerated to some degree (according to the natuis of the subject) but by the fitme the film reaches its endere lack of synchronism can be so bad as to spoil the ${ }^{3}$ ewing.
Several ideas on Whle synchronism have been published in several matazines, but most of those usint plain tape are not always acceptable. What is required is sonte positive rnegns of locking the tape speed precisely to film speed
Electronic control s of value in assisting this synchronisth one obvious cuotice being the flip-flop. Howewer, the circiit on its quid has certain limitations and in this article a more gotrate method is described which gives synchronisp of better than two frames in 200 feet of fitm

spho cretren that

Most movie frukers will already be familiar with the sprockyedrective thape known as "Cinetape". This Whateb in or tree types, but the one we are
 prict Mons 5 ghehes. With the necessary tape boporlar an, ciluplotraisistor circuitry; the tape can Pugtuctig te that zulses per second to act as ? contralor in preter

By G.M. FARRER

In this connection it must be mentioned that it is vital that the projector's normal running speed is in excess of 16 frames per second, as the synchroniser will only reduce the projector speed to sync. Fortunately the majority of projectors have a normal speed of 18 Trames.

PROIECTOR PULSES

It Is necessary to carry out certain modifications to the projector in order to use most synchronising devices ind this mit is no exception. Access must be gained to the interio of the projector so that the main motor whe can be locat . The other modification is the fiting of a pefr of contacts which will provide one pulse for cery frime of film. This is usually fairly easy to provide: die shutter operating shaft is generally the point usd to fit the contacts. These modifications will be described move toly laten
14wit obtalined the required pulses from the projecta they ant fed, together with the pulses fronu the tige recordet, fo the synchroniser, which then operates in the following manner.

A lamp situated close to the sprocketed tape, provides eyetgy to photptransistor TR1, The output triggers TR 2 mito conduction, TR2 and TR3 forming a Schmitt triged. The square wave output from TR3 is differentiated by C2 and R9 to give positive and negative pips at ke unction with DI. This ziode largely removes the positive going pips to switch op TR4.

Transistors TR4 and Che are mide ap as a floctlop so that, when TR 4 is on wis surf, A pegative mint. pulse appears at TR 5 eovector and switchics on 1 , 4

Although TR7 is normally in a non-conducting state, due to R19 being returned to a positive voltage, it is switched on by the negative pulse from TR6. Sufficient power is made available for TR7 to operate the reed relay RLA, its contacts providing a relative short circuit to the control resistor in the motor circuit.
Capacitor C5 is held charged through R16 and R17 until the contacts on the projector are closed to provide a rapid short circuit across C5 and R17. Now C5 discharges through R17 and feeds a negative going pip to TR 5 base by way of D2. This action is similar to that given by the Schmitt trigger, but by electromechanical means.

CONTROL CIRCUIT

The arrival of the pip at TR 5 base will switch on TR5 again and switch off TR6 and TR7. Consequently the relay coil is de-energised, the short circuit removed from the control resistor and the motor restored to its controlled speed.

The other components in the control circuit, L1, L2, C7, C8, and R20, act as a transient suppression circuit to minimise radio interference. The inductors L1 and L 2 have a sufficiently low d.c. resistance to be ignored in the control function.

It should now be seen that the tape pulse switches on the relay and the projector pulse switches it off again. This action continues all the time the unit is running, but if the projector speed increases slightly, the length of time that the relay holds on will be shorter due to the earlier arrival of the projector pulse.

If the projector speed drops then the reverse action takes place and thereby synchronism will be maintained. On the prototype, synchronism is held to less than two frames error in 200 feet of film.

The finished synchroniser incorporating transistor stages TR2 to TR7

Since the projector motor receives its power as a series of pulses, it is rather too much to expect a steady drive to be obtained unless the relay contacts have some partial by-pass. This is provided by resistor R21, which must have a power rating of about 10 watts as under some conditions a large proportion of the motor power is dissipated here.
The value of this resistor will be dependent to a large extent on the motor characteristics so that only a guide can be given. A probable figure will lie between 3 and 6 kilohms, but will need to be found by experiment.

Fig. I. Complete circuit of the synchroniser. LPI and TRI are mounted on the tape deck

Fig. 2. Component layout and underside wiring of Board I (Schmitt trigger) later fitted in the synchroniser box

Fig. 3. Component layout and underside wiring of Board 2 (flip-flop) later fitted in the synchroniser box

CORRECT OPERATION

An indication of correct operation is by listening for a steady ticking from the relay contacts, or by fitting temporarily, or even perhaps permanently, a small mains voltage neon lamp across the reed contacts to give a regular flashing when operation is correct.

The other resistor which may require adjustment is R3, whose nominal value is 15 kilohms. It may be found that this value is correct, but due to. gain spreads of transistors it may be necessary to choose a slightly higher or lower value here to obtain correct working of the Schmitt trigger circuit. In this connection an oscilloscope is very useful here.

If the collector of TR3 is monitored whilst the tape recorder is running with a length of "Cinetape", a good steady square wave at this point indicates a correct set up. Usually quite small changes in R3 (a potentiometer can be temporarily connected for this) have a

Interior of the synchroniser box showing the Schmitt trigger and flip-flop
great effect due to direct coupling of the circuit, so go slowly. Values of 10 and 20 kilohms should be the outside limits required here.

If an oscilloscope is not available, then proceed as follows. A high resistance test meter should be connected across R8, and the "Cinetape" drawn slowly past the light scanning head. Correct operation is now shown by a sharp rise and fall of meter reading as the light pulses reach the OCP71. Once again, proceed slowly with R3 changes.
When first testing this unit, it is most important to have a correctly aligned scanning head (OCP71 and associated lamp). Obtain correct operation of the Schmitt trigger circuit before attempting to connect the projector or set the value of R21.

PERFORATED BOARDS

The actual construction of the synchroniser should present no difficulty as it follows quite normal lines. Component layout and wiring diagrams for perforated boards are shown in Figs. 2, 3, 4 and 5. The layout is in no way critical.

The prototype was, in fact, built in three separate units while the reed unit is mounted inside the projector itself. This way, the mains connections are kept tidily in the projector, although a further switch had to be fitted to enable normal operation to be achieved.
The method used will be dictated to some extent, of course, by the space available inside the projector and also how far one wishes to go in this project.

RELAY

The relay coil was wound on a former made up from a length of s.r.b.p. or other insulated tubing (fairly thin walled) with two square end plates of the same material made up as shown in Fig. 6. The plates are secured with Araldite.

Fig. 4. Layout and wiring of components on the reed relay board, to be mourted in the projector

Fig. 5. Component layout and wiring of the switching unit (Board 3). This board may be made larger if desired to include the reed relay

Wind about 10,000 turns (or as many as needed to fill the bobbin) of 41 s.w.g.enamelled copper wire on to the former using a hand drill and long bolt. The coil former is fitted on to the bolt which is held in the drill chuck. If the gear ratio of the drill is determined first by counting the teeth on the gears, it is then easy to count the number of turns of the handle required to give approximately 10,000 turns of the chuck. Layer winding is not necessary but care must be taken not to allow turns to ride up and cause heaping of wire in one point. A layer of thin non-adhesive tape and thicker lead-out wires will prevent later damage to coil. The reed switch should slide comfortably into the coil centre with the end contacts protruding. These may be soldered to pins on the circuit board to hold the assembly in place.

PROJECTOR MODS

Coming now to the projector modifications, which is the most difficult part, it cannot be stressed too strongly

Typical set-up of projector, tope recorder and synchroniser

COMPONENTS. . . .

Resistors

esistors			
RI	47k Ω	R12	33k Ω
R2	$4.7 \mathrm{k} \Omega$	R13	$33 \mathrm{k} \Omega$
R3	15k Ω (see text)	R14	10k Ω
R4	$10 \mathrm{k} \Omega$	RI5	1.5k Ω
R5	330Ω	RIS	10k Ω
R6	27k Ω	R17	10k Ω
R7	$10 \mathrm{k} \Omega$	R18	lk Ω
R8	$4.7 \mathrm{k} \Omega$	R19	$1.2 \mathrm{k} \Omega$
R9	$10 \mathrm{k} \Omega$	R20	10Ω
RIO	1.5k Ω	R21	$3 \mathrm{k} \Omega$ to $6 \mathrm{k} \Omega$
RII	$10 \mathrm{k} \Omega$		IOW wirewound (see text)

Capacitors

Inductors
LI and L2 2 amp television suppressor chokes
Transjstors
TRI OCP7I phototransistor
TR2, 3, 4, 5 OC7I or OC75 (4 off)
TR6 OC77
TR7 OC8I
Diodes
DI, 2, 3 OA8I (3 off)
Reed Relay
RLA Coil wound from 41 s.w.g. wire (see text) Reed XS2 (Hivac) or type 2RSR (Radiospares) with normal open contacts

Miscellaneous
Jack plug and socket 2.5 mm
Mains plug and socket 2-pin (e.g. P345)
or 3-pin (e.g. Type P438) (Bulgin)
Perforated s.r.b.p. (see drawings)
Metal case
that great care must be taken with insulation here, as mains voltages will be present. Never work on the projector while it is connected to the mains supply.
First locate the main motor lead and cut it. This lead must supply the motor only and not be a common lead to motor and lamp. If in any doubt, it would be advisable to consult either your photographic dealer or the manufacturer for guidance.

Having located and cut the required lead, the two ends should be taken to a mains rating socket fitted in some convenient position on the projector. The size and shape of this socket will depend on the space available but two suggestions are given in the components list, one being flat, the other round.

It may also be convenient to fit the control resistor into the projector adjacent to this point, but if so, bear in mind that it can get very hot, so it needs plenty of room for ventilation. Two plugs could be obtained to fit this socket. One is used to connect to the synchroniser; the other is fitted with a shorting link so that it may be inserted in place of the control plug for normal operation.

The "pulse" contact is made from a piece of phosphor bronze strip and is insulated from the projector frame with a piece of s.r.b.p. This contact must not have any contact with the motor wiring, or case, or anything else except the 2.5 mm jack tip connection. The sleeve connection on the jack should be connected to a part of the projector frame that is in contact with the shaft used for the pulse contact. Details are shown in Fig. 7.

OTHER USEFUL HINTS

It was found very satisfactory to use a length of small diameter co-axial cable for the 2.5 mm jack plug connection to the synchroniser. The wires linking the motor with the reed relay control circuit should have thick insulation; mains cable would be suitable here.

The suppressor components should be fitted close to the reed relay to be most effective, so that these components will be in the synchroniser box if this is where the relay is fitted.
The tape recorder and synchroniser must, of necessity, be located close together, but the tape recorder and projector may be placed anywhere convenient, as the length of connection between them, within reason, does not affect the operation.

The prototype unit is powered by a small mains power supply unit, so the lamp supply was derived from. this by using the 12 volt negative and 8 volt positive lines. The 20 volts so produced were found to be sufficient for the 28 volt bulb used. This lamp must be run from a d.c. source. If a.c. is used, the fluctuations of brilliance at mains frequency would cause spurious pulses to appear at TR1 and affect the operation.
Exact details of photo-transistor and lamp assembly are not given as tape decks vary greatly in their design. A small plate to attach to the deck, upon which the lamp and OCP71 are assembled, can be made to individual requirements. Suggestions are shown in Figs. 8 and 9.
One small point about maintenance of consistent operation, which came to light during early tests: the slot in the OCP71 housing must be kept free of tape dust, otherwise erratic running of the projector will result. An occasional light brushing will keep it clean.
When the complete synchroniser is set up satisfactorily, it may be fitted into a case and connected up. Start marks should be made on both tape and film, which are lined up when subsequent runs are made. Projector and tape deck are then switched on simultaneously and should remain in synchronism as described earlier.

THEBEIRTH OF A NEW PLANET

The asteroid belt which circles the sun and lies between the orbits of Mars and Jupiter has been well studied over many years. It is made up of groups or families which lie in well-known orbits. One of these, the family Flora, has been studied very closely by Dr Alfven of the Royal Institute of Technology in Sweden. The individual members of this group have been very accurately
is available. This is the largest dish ever designed for orbiting vehicles.

MARTIAN ATMOSPHERE

At the McDonald Observatory of the University of Texas astronomers have obtained the first conclusive proof of water on Mars. The amount of water vapour measured was equivalent to a film of liquid water 0.05 mm thick in the southern hemisphere and about half that in the northern. Although the frozen caps

observed and it seems that the orbits of the three distinct sub groups that it comprises have a special significance. In each sub group the individual members each of the group have almost identical orbits.

Dr Alfven points out that this would not be possible if there had been an explosion of a large body, nor could it result from the focusing effect of Jupiter's gravitational field. This is at variance with the widely held view that the asteroids were the debris of a former planet. The structure of the asteroid belt as revealed by Alfven's work is incompatible with such a possibility. He now tends to support the view that it is possible that in fact the belt of units is a planet in the process of formation. This theory has many supporters now including Prof. Hoyle.

It is thought that the asteroids are an intermediate stage of planetary formation by the accretion of interstellar dust grains. This is of some significance since it is a means by which any star can collect a planetary system. It could mean that most of the stars which are like our sun will have planets like the solar system and doubtless some of them could be capable of supporting life as we know it.

A NEW AERIAL FOR SPACE VEHICLES

Goodyear Aerospace have developed an unusual type of aerial for use in space. It is a dish shaped reflector consisting of a number of hinged 'petals" framed with Bondolite. This is extremely light in weight though rigid and is formed of a honeycomb sandwich of aluminium. It can be folded up to about a quarter of its full size and can fit inside a vehicle nose cone in a similar manner to an umbrella. When it is opened in space an aerial of 30 feet in diameter
have been said to consist of carbon dioxide, this latest assessment indicates quite definitely that there is a considerable amount of water ice. The clouds sometimes seen also tend to confirm this view.

JUPITER AQUIRES MORE SATELLITES

In 1967 L . Wilson of the University of London Observatories and E. L. G. Bowell of the Meudon Observatory in France put forward the proposition that there was an undiscovered satellite associated with Jupiter

It is not always possible to devise a method of checking the calculations in matters of this kind. However the decametre radiation from Jupiter has provided one method of doing this. E, K. Bigg of the Radio Physics Observatory of Sydney applied a technique of record checking which he developed in 1964 with regard to the effect of the satellite " 10 " on the decametre radiations. He has found in the case of the predicted satellite of Wilson and Bowell a very significant correlation of a modulation period which must be regarded as confirmation of the existence of this thirteenth satellite. It is also significant that Bigg found evidence of another possible satellite in the records.

From this examination also he found a very strong confirmation of the effect of satellite " V " known as amalthea. This particular item is of special interest to the writer for in 1964 in discussions with Bigg about " 10 " the writer put forward the idea of the important influence on the radiation from Jupiter by amalthea. Later in a special interview with Patrick Moore in "The Sky at Night" programme the writer demonstrated the reasons for this influence. It is therefore gratifying to have confirmation of the hypothesis from such an important and independent source.

The success of this method of using the planet's own radiation will encourage more intense investigation of Saturn and Uranus for the decametric radiation.
At the moment there is no certainty of radiation in this region for these two planets, though there is some reason to believe that there is radiation from Saturn. If the decametric radiation can be detected then the same technique could be used for the confirmation of possible' satellites, not yet discovered but strongly suspected, at least in the case of Saturn.

GERMANY IN SPACE

An agreement between America and Germany in a joint space research programme has been signed by the two countries. There are two main projects of which Helios is the principle and most ambitious. There are to be two solar probes and each of these is to fly past the sun at a distance of approximately 50 million kilometres off the sun. There are to be ten experiments aboard each time.

The first of the probes which will weigh about 210 kg will be launched on January 4, 1974. This will be put into trans-solar orbit by an atlascentaur rocket provided by NASA. After travelling for 95 days the probe will pass within 0.3 astronomical units of the sun; it will then go behind the sun for 185 days and reach the limit of its path. Then returning toward the earth it will go into solar orbit.
Communications will be tested as never before in this event, for the probe will be twice the solar distance from control on the earth. The radiation to which the probe will be exposed in this circuit will be some ten times greater than that received on Earth and special precautions will be needed to protect instruments from the heat.

HELIOS DESIGN

There are two designs being prepared for Helios, one by ERNO Raumfahrttechnik GmbH in Bremen and one by Messerschmitt-Bolkow in Munich. It may be that the two designs will be combined when the tenders are finalised. Germany will be responsible for the development and control of the probe itself and for seven of the ten experiments aboard each. The other three experiments will come from Goddard Space Flight Center in a collaboration unit of American, Australian and Italian scientists.

The primary object of the probes is to provide new information about the processes on the sun by the study of the solar wind, cosmic radiation and cosmic dust as well as the electric and magnetic fields. There will also be study of the cosmic radiation from distant systems and the chemical composition of interplanetary dust and micrometeorites.

ELECTRONORAMA

Interplas '6s

Plastics are used for many electronic applications and some of these were displayed at the Interplas ' 69 exhibition recently. Many circuit boards and modules were displayed and an astounding variety of cabinets, front panels, switches, knobs and other ancillary electronic components.

Manufacture of plastics parts is a fast expanding business and electronics is in turn playing its part in automating machines and processes. Bipel injection moulding machines will be available with solid state controls after October 1 and all the Bipel injection machines displayed at Interplas were fitted with the system.

The photograph shows a technician using a test unit to check circuitry in the control console for an injection moulding machine. The control system uses Norbit logic control modules mounted on plug-in circuit cards. The modules are encapsulated in plastics.

BBC Mobile Colour TV Demonstration Unit

THE BBC's Mobile Colour Demonstration Unit with Tricia Madden, is touring the country this Summer, giving demonstrations of colour television at Holiday Camps and other venues where large captive audiences can be guaranteed. With the added "selling power" of BBC-1 and ITV programmes appearing in colour later this year, it is hoped that the demonstrations will help to push sales of colour sets.

The pictures show the unit with mast extended, and the interior of the vehicle. A comprehensive tool kit is carried to cope with all emergencies! The left-hand rack contains sound apparatus; in background are u.h.f. receivers, distribution amplifiers picture monitors and systems control panel. Right foreground: base of telescopic mast atop control box which houses servo motor.

Britain's First Conencrete T.V. Tower

BOTH B.B.C.-2 and I.T.A. u.h.f. Yorkshire transmissions will share the existing 300 ft B.B.C. aerial mast at Emley Moor in the autumn as an interim measure, until the completion of a new joint tower, 1,080 ft high, late in 1970. The new tower will be of self-supporting reinforced concrete of exponentially tapered section, similar in design (but much higher) to that built in South Africa in 1961.

The decision to adopt concrete construction, as opposed to steel, has resulted from research into erection time, cost and service coverage and has no bearing on the collapse of the old tubular steel mast in March. (The enquiry into this incident has not been completed; fatigue tests are being carried out on the metal structure.)

The new tower will carry all television channels for I.T.A. and B.B.C., and will serve as a G.P.O. microwave link. Outside broadcasts can also be picked up and redistributed via the microwave equipment room at 900 ft . Above this point a lattice steel construction $180 f$ high will be erected for carrying the transmitting aerials.

On completion, the 300 ft mast and the 675 ft Swedish mast will be dismantled.

A scale model of the new Emley Moor tower next to the existing steel masts (right). The G.P.O. microwave aerials are shown at about the "looft high" position on the tower

DVM to Data Logger

F°OR those laboratories and workshops that possess a digital voltmeter, Solartron Electronic Group have now produced a box that can convert it, with a readout device, to a data logger.

The Data Transfer Unit is the first device to convert the digital output from a digital voltmeter into a form that can be accepted by a teleprinter, digital printer typewriter or magnetic recorder for direct logging. Consequently the , user can go away and leave this set-up to take voltage readings for him, automatically, at any preset time interval, and write them down.

Reliability is inbuilt by using integrated circuits and flexible wiring cards with printed circuit fibre glass plug-in boards.

By Alan Douglas, Sen. Mem. I.E.e.e.

MaNY readers will know that a musical sound consists of a fundamental pitch note plus some harmonics or overtones. Harmonics are mathematically related frequencies; overtones, or partials are not so related. All can exist together.

BASIC VOICES

In most musical instruments, the harmonic texture, loudness, noise and other factors are constantly changing, even during the playing of a single note. But an organ is a sustained tone instrument, so the very complex factors associated with orchestral instruments are greatly simplified. It is for this reason that the organ is a poor imitator of orchestral instruments, and much more suited to the production of the sounds associated with simple pipes or tubes
The church or concert organ is really based on diapasons and flutes, with other stops to artificially introduce powerful harmonics.
The theatre organ is based on the tibia, which is merely an exaggerated flute. Although reed stops are provided on the larger organs, to produce more harmonics, there is more concentration on string-like sounds which are extremely rich in harmonics, but low in amplitude. The net combination of strings, tibias and flutes tends to sound rather tubby, but takes on a curiously liquid and attractive sound when modulated by a tremulant. In short, the less harmonic the sound, the more one depends on the tremulant-or vibrato, as it is commonly called on electronic instruments.

SQUARE WAVE LIMITATION

It is clear then that there is going to be some tonal limitation if we decide on a theatre organ type of specification, and this is further dependent on the kind of waveform supplied by the generators; for no one waveform will form all sounds equally well, unless it be a multiplicity of sine waves for additive synthesis. Multiple waveform generators are expensive, and appeal more to the professional organists than to the average home performer.

As we have said, this organ uses a single square waveform for all its effects, and so we must accept the limitations imposed. However, we have considered the case of the average house, where a larger and more powerful organ might not be welcome, whilst at the same time the limited resources of the very small organs would soon be exhausted. It is indeed very difficult to try and strike a balance and it is impossible to please everyone.
We said in Part One that if all the playing facilities were put in at the start, the way would be open for future modifications; and this is perhaps the best way to look at it.

The constructor will be able to make tonal alterations after a little experience is gained and a number of alternative tone circuits will be given later. After all, there are only four basic types of organ tones and the many dozens of variations are only in degree or pitch range. In saying this, we do not of course include percussion, sustain, reverberation, glide or rhythm circuits whieh are now popular.

SUBTRACTIVE FILTERS

It might be opportune here to expound a little on the principles underlying the various kinds of subtractive filter. Suppose that we have an initial waveform which contains 40 harmonics. Evidently this will mean many octaves in addition to the fundamental pitch. Of course, if they were pure octaves, then it would only make the sound very bright and perhaps shrill, but still a pure note. But in this band are many other frequencies, if the wave is square, and these will nearly all be odd harmonics. In Fig. 5.1 is shown a symmetrical square wave of the kind produced by the dividers. The accompanying graph illustrates the relative amplitudes, compared to the fundamental, of a representative number of constituent odd harmonics.

Fig. 5.1. Harmonic intensity of a symmetrical square wave. If the square wave is asymmetric the har-

The square wave itself is not an objectionable sound, but if more than one is combined, the harmonics can beat together and form sum and difference tones which are not concordant; and as we must be tuned to the equally tempered scale, there will be bound to be discords.

The presence of such discords has been proved to be only objectionable in certain kinds of sounds; in others, the discords actually heighten the effect-as in a trumpet stop in a pipe organ.

It is also found that if the fundamental pitch is removed, or greatly reduced in strength, that the harmonics do not sound so unpleasant. But in cases where the fundamental must predominate, as in flute tones, many harmonics produce discords. These are removed as far as possible by low pass filters. The tibia and diapason groups also require severe pruning of the upper harmonics. String-like tones require exactly the reverse, partial or complete removal of the foundation tones. All reed-like sounds are based on resonance methods, where a tuned LC circuit is excited first by its principal resonant frequency, and subsequently by harmonics of that frequency.

The width of the resonant band is controlled by the Q or sharpness of tuning of the circuits, which may be arranged to either accept or reject the resonance. So really all tone circuits are quite simple, and with adjustable L, C and R elements they can all be explored.

Fig. 5.2. Simple low pass RC fiter section with response curves showing effect of varying capacitance with fixed resistance

Fig. 5.3. Effect of varying low pass fiter time constamt on a square wave

LOW PASS FILTERS

A simple single stage low pass filter with its response for differing values of capacitance is shown in Fig. 5.2.

The time constant of the section shown is CR, and to ensure suppression of the higher harmonics at some point on the slope, CR must be at least five times greater than the time for the width of the incoming pulse. By varying this time constant, most conveniently done by adding sections of differing values to the first section, one can produce, from a square wave, effects as in Fig. 5.3. Note that the majority of the unwanted harmonics are brought down to a very low level.

However, this effect will clearly not be uniform over the whole keyboard and if complete harmonic suppression is required, then there must be several different time constants over the range of notes employed, since the frequency range exceeds $30: 1$.

But is complete suppression really desirable? Some say yes, some say no.

TAILORING THE HARMONICS

The author contends that traces of upper harmonics give character to even a flute tone, for whilst a pipe organ open metal flute is commonly fundamental and second harmonic, an orchestral flute can contain up to 8 harmonics-and few would deny that this latter is a more lively sound. Therefore in this organ we have allowed harmonics to appear in 16, 8,4 and 2 ft tones by careful grading of the time constants of the six low pass filter circuits used. Allied to this is the question of which is the most important part of the keyboard where the maximum effect is required? Here we subdue the bottom octave of the 16 ft tibia (a tibia is really only a powerful flute; in pipe organs it is made of wood which gives it a duller tone than metal); we also reduce the bottom of the 8 ft flutes but not so much, and the 4 ft and 2 ft registers are virtually untouched except for the very highest harmonics.

If one required a completely smooth and "sweet" sound from a flute, then one filter per octave would be the minimum number required. Some organs filter every five or six notes and a few of the larger ones filter on every single note. It is clear that it is quite easy to work out the time constants if the frequencies are accurately known.

IMPORTANCE OF BEING IN TUNE

In assuming the simple filters above, it is imperative that the organ be in tune. Very small departures from this condition bring about unpleasant results. This, by the way, is why we do not have a twelfth or 23 ft stop. Unless this is sinusoidal, it produces a rasping effect and to eliminate this, it has to be reduced in volume so that it cannot fulfil its function as a brightener at all. With a sine wave organ, it is a valuable stop; with a harmonically rich wave, the effect is better obtained from other stops.

Fig. 5.4. Simple high pass filter section which removes the lower frequencies and passes the higher ones.

Fig. 5.7. A more exact analysis of the French Horn formant where the figures above the ordinates indicate relative amplitudes

Fig. 5.8. Parallel resonant filter with shunted potentiometer, adjustment of which can both reduce the total response and broaden the resonance peak

Fig. 5.6. Formants for four orchestral instruments

Fig. 5.9. The effect of shunting the resonant LC circuit with increasing resistance. Curve I, the resistance is negligible: Curve 3 , the resistance has increased considerably with a broadening of the response curve

PITCH AMPLIFIERS

The low pass filters employed consist of from two to four cascaded sections having various time constants. Since every shunt capacitor has its charging time controlled by a series resistor, and of course there are antirobbing resistors as well in all the filters for this organ, there must be attenuation of the signal. Thus we apply a preamplifier for every pitch-but not every stop-and feed from the tone filters into a post amplifier (see Fig. 1.1). Incidentally, the output capacitors from these preamps are graded in some cases to further control the frequency pass band.

The tibias, 16, 8, 4 and 2 ft and the flutes 8 ft and 4 ft are the stops using the low pass filters. Nevertheless, they all sound slightly different and this is how it should be, though they are all flutes. The characteristics, therefore, of this class of sound are strong lower notes and weak upper harmonics. We can get a reasonable approximation to pipe tone from these circuits.

STRING TONES

The next most important sound is the organ string or viole tones. It must be admitted that even in the best pipe organs, these sounds are nothing like orchestral
strings. This is evident, as they must operate on a fixed wind pressure, whilst strings under the influence of a bow continually change in character.

These sounds are very attractive and useful, so we provide five of them. Since it has become standard practice to include string tones on the accompaniment manual, we find the high pass filter in use here.

HIGH PASS FILTERS

The action of the high pass network is the exact reverse of the flute filters; we want to take away the fundamental tones and leave a lot of harmonics, though at a reduced loudness. Fortunately, the ear does not attempt to analyse the structure of such complex sounds, so the problem is made easier and simple filters suffice; in fact, they are all single section filters.

Because of the low power involved, we simply rely on the extremely high reactance of the very small series capacitors, so that the filter becomes a capacitive attenuator, having values of megohms. The circuit is shown in Fig. 5.4 and the effect on a square wave in Fig. 5.5.
This filtering does perhaps make the extreme bass notes a little thin, but string filters are notoriously difficult and it is thought that the circuit values shown

Fig. 5.10. Series resonant circuit

Hz
Fig. 5.11. Typical response curve for series resonant circuit

Fig. 5.12. Central analysis of pipe organ trumpet
will satisfy most constructors. One can of course go to six pipe organs and hear six quite different qualities of string sound from stops of the same name. The great thing is to avoid what is commonly called a wiry sound. We have $16 \mathrm{ft}, 8 \mathrm{ft}$ and 4 ft strings on the solo manual, and 8 ft and 4 ft on the lower one.

This brings us to the final and most controversial kind of filters, the resonant circuits. These are widely employed in electronic organs to simulate reed or brass instrument kinds of sounds.

FORMANTS

It was found, during research into the sound producing mechanism of orchestral instruments in the latter part of the last century, that no matter what note was played on, say, an oboe, a French horn or a trumpet, a certain band of frequencies always appeared and this was called a formant. It is evident that if we produce a circuit which will resonate over the formant band, and add fundamental tones to it, we can imitate some of the instruments having this property.
To illustrate this, we show the formant bands for four instruments, the oboe, trumpet, trombone and French horn in Fig. 5.6. Fig. 5.7 gives a more detailed formant
analysis of the latter instrument. The numbers above the ordinates indicate relative amplitudes compared to the fundamental.

RESONANT CIRCUITS

A parallel-tuned circuit as shown in Fig. 5.8 will suffice for the resonant, or formant, band and this may be tuned by a capacitor as required. The coil should have a moderate Q, in the 20 to 100 range, because then the band can be broadened or narrowed by the variable resistor across it as in Fig. 5.9 and the sharpness or flatness of the formant can be reasonably imitated.

There are cases, however, when for special effects we want to take away a resonant band. For this a series resonant circuit is needed of the form shown in Fig. 5.10. In referring to the resonance curve of Fig. 5.11 it can be seen that the impedance falls to a relatively low value at the resonant frequency which means that the circuit functions as a selective shunt for a band of frequencies.

In the organ filter coils are wound on ferrite cores; this preveṇts any external field which would result in crosstalk and signal pickup in other parts of the tone circuits.

The Q value should not be too high, since the voltage across the coil at resonance is approximately Q times the impressed voltage. The capacitors to earth in circuits used for formants have values which not only tune the coils properly, but act as high-frequency shunts to earth for the higher harmonics which we do not want. But in fact there is some harmonic leakage which does not seem to impair the effect.

Spectral analysis of pipe organ reeds shows many harmonics outside those really required and the pipe is tuned to emphasise the fundamental; but still very many of the reed harmonics sound, as exemplified in Fig. 5.12, which is a spectral analysis of a pipe organ trumpet.
Next month we start the construction of the tone forming circuits.

Note: A few readers have experienced difficulty in aligning the Kimber-Allen keyboard with the Harmonics switch assemblies (see last month's article). If purchasing a Kimber-Allen keyboard, constructors are advised to make sure that a close match can be achieved. It may be necessary to cut slots to clear the dolly springs.

Instructions for using this constructional aid in a special feature article

AND THESE IMPORTANT FEATURES

P.E. WIDEBAND H.F. COMMUNICATIONS RECEIVER

PRACTICAL

An unconventional triple conversion design for single sideband and double sideband reception. Advanced techniques including "up conversion" are incorporated in this receiver which covers the frequency range 2 MHz to 28 MHz . A builtin crystal comparator ensures accurate alignment. Optional arrangements for local oscillator and other unusual features add to the versatility of this forward-looking design. It is eminently suited to the requirements of radio hams and others with a serious interest in high frequency communications.
The first article in this constructional series appears in the October issue.

AUDIO GENERATOR

An indispensable accessory for audio enthusiasts. Neat modern styling makes this unit a most suitable companion for the hi-fi equipment in the lounge, or an impressive addition to the workshop test gear. It is a self-contained battery operated instrument covering frequencies from 15 Hz to 200 kHz , with low distortion sine or square wave output through a calibrated attenuator.
The free sample of Cir-kit is adequate for building one of the two modules which make up the audio generator.

IMRRHET PLICE

lrems mentioned in this feature are usually available frem electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct tn the firm concerned.

TEST GEAR

Two new products are announced from Eagle Products. They are the EP100LN multimeter/transistor tester and a 30 kV probe, type number DC30.

Both items are particularly suitable for the service engineer and EP100LN features a 100,000 ohms per volt movement which combines with a special socket for quick transistor checks.

The brief technical specification for the multimeter is: d.c. volts 0.12 to 600 V f.s.d. in seven ranges; a.c. volts 6 to 600 V f.s.d. in four ranges; d.c. current $12 \mu \mathrm{~A}$ to 12 A f.s.d. in five ranges; resistance 10 kilohms to 10 megohms in three ranges; and a decibel range of -20 dB to +18 dB .

The range of the transistor tester is: $I_{c o} 0-12 \mu \mathrm{~A}$; $h_{\mathrm{fb}} 0-0.9965$; and h_{fe} 0-280.

The DC30 probe, for use with the EP100LN meter and other models, allows a range of up to 30 kV to be measured. It is ideally suited for colour television service work where correct e.h.t. voltages are very critical.

The price of the EP100LN is $£ 16$ 16s, the DC30 £3 10s and more details of all Eagle products can be obtained from B. Adler and Sons (Radio) Ltd., Coptic Street, London, W.C.1.

MUSICAL NOTES

Some months ago we mentioned the "Mister Bassman" musical accompaniment instrument from D.E.W. Ltd., Ringwood Road, Ferndown, Dorset.

This company is now producing an improved Mk II Model B2 that can be tuned to any key by a single knob, so that a player used to the key of C, for instance, can accompany a group playing in such awkward keys as E-flat, B-flat, etc. whilst still using his well-learned technique of footwork in C.

Apart from an 8 ft to 16 ft octave change footswitch there is another for foot-off sustain with a variable time range of 0.5 to 5 seconds.

The price of the Model B2 is $£ 37$ plus 10s carriage.

TOOLS

Two tools for the toolbox are the Bib Model 3 wire stripper and cutter and the "King Klik" riveting tool. Both these new models are claimed to be improved versions of previous models, and the King Klik riveter has just gained recognition from the Council of Industrial Design.

The new riveter is excellent for any chassis work, still required in certain cases, and can be used were only one surface is accessible. The tool works with a plier action and has a swivel turret to take $\frac{1}{8}$ in and $\frac{5}{32}$ in diameter rivets.

The "King Klik" riveter is available singularly or in kit form which includes back-up plates, rivets and an instruction leaflet from Riveting Systems Ltd., Todmorden, Lancs.

The only obvious difference between the Bib Model 3 and previous wire strippers is the cutting aperture setting arrangement. The aperture setting for different diameter wires is now simply adjusted by a sliding screw set in one of the handles.

Manufactured by Multicore Solders Ltd., each wire stripper is packed on an instruction card and the recommended retail price is 5 s 6 d .

FIBRE OPTICS

The advance of fibre optics is providing many solutions in industry to old problems, and in certain instances cuts manufacturing and maintenance costs by the elimination of bulbs, hardware and wiring.

A new company has been formed called Fibre Light, and they have been appointed as authorised distributors of "Teknis" continuous lengths of glass fibre optic noncoherent light guides, in quantities of less than $1,000 \mathrm{ft}$. The fibres are contained within a flexible p.v.c. sheath and the 0.013 in multi-fibre bundle is capable of transmitting light over distances of up to 12 ft .

The fibre can be used for piping light from one lamp to remote areas requiring illumination, or be used to influence a remotely mounted photocell of any changes of light intensity. There are numerous other applications and is already being used in cars, computers, security systems and liquid level sensing.

Obviously there are many other applications that will spring to the mind of the ingenious experimenter. An introductory 5 ft length is avail able from Fibre Light, Teknis House, Stoke Road, Guildford, Surrey, price 19s 6d including postage and packing.

FOR THE WORKSHOP

There are several interesting products this month worthy of consideration for the workshop or laboratory. The first of these is the new Speedread direct readout micrometer made by GKN Shardlow Metrology Ltd., Petre Street, Sheffield, S4 8LY.

Two versions are available, the Imperial measurement (inches) system and the Continental metric system. Each instrument is precision made and the precise measurement is shown numerically in windows on the barrel of the micrometer. A conventional vernier scale, for those who like doing it the hard way, is also incorporated to give measurements to finer limits.

At the moment the micrometers are available in size 0 in to 1 in (reading to 0.0001 in) and 0 to 25 mm (reading to 0.01 mm , equivalent to 0.0004 in).

Another measuring instrument that slide rule users will appreciate is the Otis King spiral slide rule marketed by Carbic Ltd., 54, Dundonald Road, London, S.W.19.

The instrument is in telescopic form and measures only 6 in in length when closed and 10 in fully extended. There are two models, K and L, for multiplication, division, and logarithms. Model K is for multiplication and division, while model L also gives logarithms enabling it to be used for roots and powers.

Both models cost $£ 42 \mathrm{~s} 6 \mathrm{~d}$ post free and a leather carrying case is available at 8 s 9 d extra.

Numerous times when working in the workshop the need to cut holes of various shapes and sizes in varying materials is reached and how best to tackle this problem has to be overcome.

Although we have not had the pleasure of trying the Adel nibbling tool being marketed by West Hyde Developments, this would seem to be a most suitable product for cutting holes in chassis and cabinet panels. Suitable for card, p.v.c., aluminium, copper and steel the Adel nibbling tool cuts almost any shaped hole and works on the punch and die principle, claimed not to distort or "wrinkle" the material.

The tool is easily operated by hand, will cut up to 16 gauge aluminium or 18 gauge steel and is priced at 59 s 6 d plus 3 s posting and packing. Spare punches cost 32 s 6 d plus 2 s 6 d posting and packing from West Hyde Developments Ltd., 30, High Street, Northwood, Middlesex.

Having enough mains power outlets is another problem for the workshop and Abbey Electrical Systems Ltd. produce a fairly large range of excellent distribution outlets for the workshop. Already completely wired and factory tested the 13A outlet Busboards, as they are called, are available in eight different combinations.

All units are completely insulated for maximum safety and fitted with a
mains indicator light. Intended for portable or static use the boards are claimed to be lightweight and virtually unbreakable under normal conditions of use.

Other uses for the mains outlet boards, apart from the workshop, are for offices, garages, public address systems and photographic studios.

More details and prices are available from Abbey Electrical Systems Ltd., 95, Victoria Street, St Albans, Herts.

COMPONENT BOXES

Storage space for components is always at a premium in any workshop and the new plastics storage cases from S. Leboff (Fobel) Ltd., Hyde House, The Hyde, Edgware Road, Colindale, N.W.9, should be a useful addition to any workshop.

Called Fobel "Storaboxes" they are available in three different sizes, each $5 \frac{1}{2}$ in long. The main feature of these boxes is that they can be interlocked side by side or one on top of
the other, enabling a combination of different sizes to be made up if required. The boxes can also be attached to a wall or shelf.

A single box and drawer with removable partition retails at 2 s 6 d , and a large box with two drawers subdivided by partitions retails at 8s 11 d .

WORKSHOP LIGHT

A new panoramic batten bulb holder has been announced by Rock Electrical Accessories Ltd. Called the Monolink this holder would be very useful in the workshop and can be tilted at an angle of 45 degrees in most directions via a ball and socket joint.

The base of the bulb holder also constitutes the ceiling rose and is simply wired up and screwed in place of the existing ceiling rose. Full details can be obtained from Rock Electrical Accessories Ltd., Rock Works, 6 Commerce Road, Brentford, Middlesex.

Monolink adjustable ceiling light from Rock Electrical Accessories

Interlocking storage boxes

 manufactured by S. Leboff (Fobel)

THIS circuit was developed to help check the characteristics of the "surplus untested" diodes that are at present remarkably cheap in bulk lots. The resulting test set can be used for a number of applica-tions-details are given in the text.

The components used are not costly and the prototype was built mainly from spare parts. By carrying out stage by stage tests during construction, the performance available from the particular components used can be checked.

The high voltage supply around which the test set has been designed has also proved useful as an e.h.t. generator for oscilloscopes and insulation testers. The basic principles involved in the design of this supply will be described first and then constructional details of the tester will be given. By following this method it is hoped that constructors will be able to understand the operation of the supply and thus be able to use the design for a wide variety of applications.

TRANSFORMER ACTION

If a sinusoidal supply is available, then a transformer will transform the supply up or down as required, the output voltage being sinusoidal in waveform. It is often forgoten though that it is the changing input current that produces the changing magnetic flux, and it is the rate of change of this flux that induces the voltage into the secondary winding (and into the primary as a back e.m.f.) from which the secondary current is available. Thus a sinusoidal waveform is not necessary to drive a voltage step-up transformer; a near square wave primary current will produce high secondary voltages and will also result in less power loss in the current switching device.
The waveforms shown in Fig. 1 give the comparison between part of a 50 Hz sine wave and a square wave changing in, say, 100 microseconds, by the same amount of current in a primary winding. The faster changing current induces the larger voltage in the secondary.
A simple transistor oscillator of the form shown in Fig. 2 will work quite well but has two distinct disadvantages. Firstly, the performance often varies enormously between use off load or with a loaded secondary because when off load the feedback is larger than when loaded, hence a promising secondary high voltage dies miserably when asked to supply more than a milliamp or two. Secondly, the switch, in this instance the transistor, is handling neither sine nor square wave but an unknown complex waveform that will give an unknown but probably low working efficiency. Because of these factors, a 100 per cent working design is difficult to achieve unless very tight specifications are maintained for all components.
The frequency of the supply determines the number of turns per volt required for a particular core cross section, so that if the frequency is increased above the lowest for which the transformer was designed, then so may the input voltage be increased in the same ratio. For example, a typical small valve output transformer, designed to handle down to approximately 80 Hz , has a ratio of about 80 to 1 and produces 2 to 3 volts to feed the loudspeaker speech coil.

Now if this transformer is fed at $5,000 \mathrm{~Hz}$ it will accept considerably higher voltages without saturating so that an input of up to 9 V may be applied to the primary (the winding that was the secondary when used

Fig. I (a). Half cycle of a 50 Hz sine wave current lasting 10ms. (b) Same change of curremt as in (a) lasting 0.1 ms . (c) Induced e.m.f. in coil ds a result of (a). (d) Induced e.m.f. In coll as a result of (b); approximately 40 times the amplitude of (c)

Fig. 2. A simple transistor oscillator

Fig. 3. Comparative volt drop for:
(a) $\sigma 200 \Omega, 500 \mu \mathrm{~A}$ meter
(b) a typical germanium junction
(c) a typical silicon Junction

Fig. 4. Example of a non-symmetrical a.c. wevaform

Fig. 5c. A seven stage voltage multiplier system with on off load voltage approximately seven times that obtained from the circuit of Fig. 5a. Diodes are reversed for a positive earth system
as an output transformer) giving 500 to 700 V at the secondary. Smoothing problems are also reduced at the higher frequencies, since where one would need a $10 \mu \mathrm{~F}$ reservoir capacitor for a 50 Hz rectifier system, $1 \mu \mathrm{~F}$ will have the same effect at 500 Hz and at $5,000 \mathrm{~Hz}$ only $0 \cdot 1 \mu \mathrm{~F}$ need be used; both capacitance and physical bulk are reduced.

TRANSISTORS

The transistor driving the transformer will have to handle the peak currents that are switched-possibly an ampere or more in spite of the average current being measured at a much lower value; also, the high back e.m.f. induced into the primary will be considerably higher than the low voltage supply used- -60 V has been measured at the collector during the switch-off period even though only a 5 V supply was being used. This means that there is a strong chance of collector-emitter breakdown if a low voltage transistor is used but if the supply voltage is increased slowly during testing then the start of breakdown is seen on the supply ammeter and the supply may be switched off or reduced before the transistor suffers permanently.

It is worth remembering that whilst conducting, a germanium junction diode or the base-emitter junction in a transistor will drop about 0.3 V (the barrier voltage) while silicon devices will drop from 0.6 V to 1.0 V .

With less voltage than this across the junction, the current flow through the junction will be effectively zero so that these voltage drops may be usefully employed (a) to identify the junction material, germanium or silicon; (b) to replace a low voltage Zener diode where the exact voltage is not critical; (c) to give a good indication of correct functioning of transistors in amplifiers (see Fig. 3).

RECTIFIER SYSTEMS

The half wave rectifier and reservoir capacitor action is well known, but a peculiarity of single ended oscillator fed transformers is that the secondary waveform will probably not be of equal amplitude above and below the electrical zero axis. Considering the waveform shown in Fig. 4 as the voltage at point " A " relative to the chassis in Fig. 5a, then the voltage stored on the reservoir capacitor Cl will be twice that obtained when the rectifier D1, or the secondary winding of T1, is reversed. This also accounts for disappointing results when using simple feedback oscillators of the type shown in Fig. 2.

The voltage doubler system is thus seen to "double" the voltage obtained from a half wave system only if the positive and negative peaks are of the same amplitude, otherwise the system might be better known as a peak to peak rectifier system (Fig. 5b), this being its real action.

For really high voltages of a kilovolt or more a voltage multiplier ladder is recommended so that a low d.c. supply and fairly low voltage components may be used to obtain the final high voltage at small cost.

VOLTAGE MULTIPLIER

Consider a succession of half cycles, preferably square wave, and starting with the "live" end of the transformer (Fig. 5c) as positive relative to the chassis.
(1) D2 conducts to charge C3 to the peak positive voltage.
(2) D3 conducts to charge C 4 to the sum of the winding peak negative voltage and the voltage stored on C3.

Front panel of the prototype, showing positioning of all switches, VRI, MI and the test terminals

Fig. 6. The basic oscillator circuit used in the final supply system. Tl supplies the voltage multiplier
(3) C3 is recharged via D2. The voltage stored on C 4 is lifted or pumped via D4 on to C5, which now has the peak to peak voltage stored on it.
(4) C4 is recharged via D3 to the peak to peak voltage. D5 is pumped so that C5 charges to the peak to peak voltage.
This continues for as long as you can afford to house the mounting heap of diodes and capacitors. The final result is that, apart from C3 which is charged to the positive going peak voltage, all other capacitors and diodes must withstand the peak to peak voltage (which may be fairly low) but a final voltage is obtained which is the sum of all the voltages stored on one of the stacks of capacitors.

The effective capacitance of the series arrangement of capacitors is smaller than each individual capacitance and all the output must be supplied by the stored charges, so do not hope for too large a current at, say, 2 kV . One milliamp at 2 kV represents a load of 2 W and the transformer must be able to transfer this amount of power, while the switching transistor will be handling a low voltage but proportionately high current peaks, allowing for an efficiency of between 25 and 40 per cent.

FINAL SUPPLY CIRCUIT

Transistors TR1 and TR2 (Fig. 6) are a conventional astable multivibrator circuit, guaranteed to oscillate if the transistors are half good and the components near to the suggested values. The output is not a true square wave, but TR2 collector is switching pretty rapidly between effectively zero and the full supply voltage. TR4 cannot be fed directly with this voltage swing because the base-emitter junction of TR4 would not allow TR2 collector to rise higher than about 0.3 V (for a germanium transistor TR4) and so the oscillation would be uncertain. TR4 is therefore fed from an emitter follower (TR3) and the 22 ohm emitter resistor R7 ensures that the leakage through TR4 is a minimum when TR3 is turned off.

Transistor TR4 would still clamp TR2 collector voltage to a low value via TR3 emitter-base junction, so a Zener diode, D1 is inserted. D1 may be either a low voltage Zener diode of about 1.5 V less than the d.c. supply used, or a suitable number of silicon diodes used in their forward conducting sense. The result is that TR4 base is not turned on until TR2 collector has risen by at least two or three volts towards the supply line voltage. If only a 1.5 V supply is used, omit D1.

Transistors TR1, TR2 and TR3 are pnp low-current types of 10 mA 10 V minimum ratings, either germanium or silicon as available; a wide range of cheap devices is suitable. TR4 is a power type, to handle up to 2A collector current and of as high a voltage rating as is cheaply available, say NKT406, OC28 or OC36.

Transformer T1 is a small valve output type, which should not be damaged since there may be up to a kilovolt between primary and secondary windings if the input voltage is increased too fast during testing The winding ratio is not particularly important, but the higher the ratio, then the fewer the stages of multiplication that will be needed for the final high voltage. The transformer used in the prototype had a ratio of 40 to 1 but much higher ratios can be used if cheaply available; a higher ratio would require fewer multiplier stages to attain the same voltage.

CONSTRUCTION AND TESTING

The TR1, TR2, TR3 circuit was constructed on perforated board as shown (Fig. 7), producing a simple layout of the components on the two sides, a tag board is equally suitable. Before joining TR4 base to R7, connect the circuit so far built to the d.c. supply and listen to the output across R7 with an earpiece, or check with an oscilloscope that the frequency is in the region of $5,000 \mathrm{~Hz}$ and squarish. A voltmeter across R7 should show the average voltage of 0.2 to 0.3 V , indicating a peak drive voltage for TR4 of twice that amount, assuming a nearly square waveform at this point.

The free air dissipation of TR4 will be about 1.5 W and so TR4 will need no heat sink unless an attempt is made to obtain a large output power. Thus the mounting of TR4 is simplified by bolting down to the circuit board; connect the base to R7. With the transformer secondary feeding a rectifier and capacitor only, and a voltmeter across the capacitor (as Fig. 5a), increase the d.c. supply in small steps. The voltmeter will show the peak voltage available, probably about 300 V from a supply of only a few volts, while an ammeter in the supply circuit will give warning of TR4 breakdown if the supply voltage is increased too far.

Fig. 7. Layout and wiring of the oscillator board. TR4 and Ti are mounted separately

Reverse the connections from the secondary winding of T 1 , switch on to the same voltage supply as before and note the d.c. voltage produced. This voltage will differ from that noted before and the sum of the two output voltages indicates the secondary peak to peak voltage induced for the particular d.c. input used.

There will probably be a healthy whistle (or even a shriek) coming from the core of the transformer; this is not dangerous and may be quietened by careful clamping, squeezing or waxing of the core.

Now build the voltage multiplier ladder network (Fig. 9) stage by stage; the size of board used will depend upon the size of the capacitors and upon the number of stages that prove to be needed. It is suggested that each time a stage of a capacitor and a diode is added, the resultant voltage is measured across a loading resistor that will draw a milliamp or two when connected between the chassis and the top of the latest capacitor to be added.

One faulty or leaky component causes the whole multiplier system to fail; do not forget to discharge each capacitor when you switch off during testing-the voltmeter will do for this-otherwise you will be reminded when you handle or go to modify the circuit. A bleeder resistor will be fitted finally, of course.

View of the rear of the prototype showing original positioning of components. Size of case and layout depend on the components used and the number of multiplier stages required

COMPONENTS

The resistors are 4 W types for the transistor circuit, but on the high voltage side of the circuit remember that there are maximum voltage ratings to observe as well as the wattage rating to calculate. For $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}$ and 1W resistors these maximum voltages are about 250,350 , 500 and 750 V respectively. If the normal carbon composition types are used, and the maximum voltage is exceeded for any length of time, you may expect the resistance to vary unpredictably.

The diodes are low current rating types, having a p.i.v. rating to suit the particular circuit, so one of the "bulk" suppliers is suggested, assuming that a diode tester is not already available to test the characteristics of cheaper diodes.

Capacitors must be new, or tested to above their final working voltage for zero leakage; it is well worth while checking carefully through the various advertisement pages in this magazine to compare the economics of using a few high voltage diodes and capacitors with a high ratio transformer (100 to 1), or using rather more lower voltage components, with a slightly lower ratio transformer, at less total cost (and possibly greater reliability).

TYPICAL EFFICIENCY

This will depend very much upon the individual components used; one circuit using a peak to peak rectifier system, was fed from 6 V and the following noted:

Input current 0.14 A Output 900 V into voltmeter ($20 \mu \mathrm{~A}$)
Input current $0 \cdot 19 \mathrm{~A}$ Output 600 V into $2 \mathrm{M} \Omega$ (0.3 mA)
Input current $0.28 \mathrm{~A} \quad \underset{\substack{\text { Output } \\(1.3 \mathrm{~mA})}}{ } 500 \mathrm{~V}$ into $390 \mathrm{k} \Omega$ (1.3 mA)
Another circuit with a seven stage multiplier, also fed from 6V:

Input current $0 \cdot 5 \mathrm{~A}$ Output $1,600 \mathrm{~V}$ into $3 \mathrm{M} \Omega$ (about 0.5 mA)

TEST SET CIRCUIT

A simplified block diagram and functions of the tester are shown in Fig. 8. The high voltage generator has already been described; the TR1, TR2, TR 3 circuit

Fig. 8a. Basic circuit of the insulation and dlode test set

Fig. 8b. Circult for low voltage checking
is fed from 6V immediately upon switching on, but TR4 is fed via a simple series regulator thus giving full control of the output from zero to maximum voltage.

Switches S1 and S4 (Fig. 8b) are used first for simple diode or continuity checks enabling open or short circuit diodes to be rejected and the diode polarity to be confirmed, since the cathode (+ve) end of the diode connected to the positive test terminal should show zero current. Only 1.5 V is used rather than the available 6 V so that low voltage Zener diodes are not rejected. S4 will have the full test voltage across it at all times but since it is switching negligible currents, a normal toggle or biased type should operate satisfactorily at up to about 2 kV . Any leakage will be seen on the meter, so this is self-checking.
The high voltage generator is energised by $\mathbf{S} 2$ as long as $\mathbf{S} 1$ is not operated; $\mathbf{S} 2$ must be spring biased to the OFF position so that there is no chance of accidentseven though the output current is limited. 'The voltmeter multiplier resistance is altered by S 3 which also shunts the test terminals with Zener diodes or small neons in the lower voltage positions to avoid damage to the meter (Fig. 9). The Zeners and neons are not necessary initially however, and may be added after the rest of the unit is working and available to test the characteristics of these safety devices.

* SEE COMPONENTS LIST

Fig. 9. The complete circuit diagram of the insulation and diode test set

Fig. 10. Graph showing the effect of adding RI2 (390Ω) to the $500 \mu \mathrm{~A}, 190 \Omega$ meter; " a "" without R12, " b "' with R12no alteration of first half of scale linearity

To switch the meter movement across either D12 or D13, S5 is incorporated. D12 and D13 are germanium junction types-OA5 were used in the prototype but a germanium transistor base-emitter junction would do as well. Inclusion of these diodes ensures that the circuits are never left open as the meter is switched over, yet the meter when connected across a diode, "robs" the diode of its turn-on voltage and so all the current flows through the meter alone (see Fig. 3). R12 was added to decrease the sensitivity of the meter at full scale and yet leave the low scale readings unaltered to show small

(1)MI IMSN?

```
Resistors
RI Ik \(\Omega\)
R2 \(10 \mathrm{k} \Omega\)
R3 10k \(\Omega\)
R4 Ik \(\Omega\)
RS Ik \(\Omega\)
R6 \(47 \Omega\)
R7 \(22 \Omega\)
R8 \(47 \mathrm{k} \Omega\) to \(100 \mathrm{k} \Omega\) (see text)
R9 \(100 \mathrm{k} \Omega \pm 2 \%, \frac{1}{2} \mathrm{~W}\)
R10 900k \(\Omega \pm 2 \%\) : \(\frac{1}{2} W\)
RII \(2 M \Omega \pm 2 \%, 4 W\)
R12 \(390 \Omega\) selected to suit meter and D13
R13 IM \(\pm 2 \%\), IW
All \(\pm 20 \% \cdot \frac{1}{4} W\) carbon except where stated
```


Potentiometer

VRI $500-1000 \Omega$ wirewound

Capacitors

Cl 0.01 μ F polystyrene
C2 $0.01 \mu \mathrm{~F}$ polystyrene
C3-9 $0.25 \mu \mathrm{~F}$ paper 600 V (7 off)

Semiconductors

DI Low voltage Zener (see text)
D2-8 600 V p.i.V. silicon miniature (7 off, see text)
D9-11 Zener diodes, total voltage $50-60 \mathrm{~V}$ (3 off)
D12, 13 OA5 germanium diode (2 off)
TRI, 2, 3 2N4285 or any low current pnp type
(3 off, see text)
TR4, 5 NKT406, OC28 or OC36 (2 off, see text)

Switches

\(\left.\begin{array}{ll}S1 \& DPDT biased

S2 \& SPST biased

S3 \& 2-pole 3-way

S4 \& DPDT biased

S5 \& SPDT biased\end{array}\right\}\)| toggle, yaxley or GPO |
| :--- |
| 1000 cype |

Miscellaneous

VI-Vx Neons, total striking voitage about 500 V
MI $500 \mu \mathrm{~A}$ moving coil meter
TI Small high ratio valve output transformer (see text)
BYI, 2 High power 1.5 V U2 battery (4 off)
SKI, 2 Insulated terminals (2 off, red and black)
SK3 Wander plug socket
Perforated s.r.b.p. board $2 \frac{3}{4}$ in $<1 \frac{3}{4}$ in
Laminated plastics board
Solder pins
Mounting pillars (4 off)
12 way tag strip (2 off)
Control knob
Metal case (size depends on components used)

COMPUTER MULTI-CORE CABLE 12 14/0076 copper cores, each one insulated by colourea P.V.C. then separately screened, the 12 metal braided cores laid together and P.V.C. covereut overam making ac cabie just unier dian. lia.

FLEX BARGAINS

CREEMED 3 CORE FLEX

Each core 14/0076 copper P.V.C. insulated aml coloured, the 3 cold logether and met

$70 / 0076$ insulated coloured cores, protected by tough rubber sheath, then black cotton braileil with white tracer. A normal domestic flex as fitted to 3 Kw . fires. Regular price $8 / 6$ per yd . 50 yil. coil. 4.10 or cut to your iength $2 / 6$ per yl . 10 AMP 3 CORE NOM-KMIK FLLEX
ls above but cores are $28 / 0076$ copper. Normal price $2 / 6$ per y ct. 100 yd conil $\mathbf{2 7 . 1 0}$ or ent to your length $1 / 9$ per yd.
As above, but 2 cores each $23 / 0076$ as usell for acuum cleaners, electric blankets, etc., $39 / 6$ $\mathbf{3 0 0 y d}$ coil.

15 Amp FOOT SWITCH
Suitable for sewing machine motor, drilling any job where both hands are to be left Iree. Rated at 13A, 250V. Price 22/6.

3 DIGIT COUNTER

For tape recorter or other application, re-settable by de pressing button. Price 8/6

TRANSDUCER

Made by ACOS, reference No. etc., to be used in conjunction with "'G., to be used in conjunction with price 49/6. Brand new and unused.
ISOLATION SWITCH
20 A D.P. 250 V . 1deal to control water heater or any other appliance. Neon adicator shows when current is on, $4 / 6$. 48/- per dozen.

LIGHT CELL

Almost zero resistant in sunlight increases to 10 K . ohms in dark or dull light, epoxy resin sealed. Size approx. lin. dia. by \ddagger in thick. Rated at 500 MW . wire ended $8 / 6$ with circuit

INSTRUMENT BUZZER

6-12V, adjuatable tone, a very neat metal caged
U.S.A. made unit approx. 11% in. thick. $6 / 6$ each.

12 VOLT SOLENOID
For energizing Reed Switches, ctc.,
size approx. 1 in. long by 1 in. size approx. 1 in. long by 1 in. diameter, Hole through solenoid approx. zin. 8/6 each. MINIATURE

WAFER SWITCHES

2 pole, 2 way 4 pole, 2 way3 pole, 3 way -4 pole, 3 way- 2
pole, 4 way- 3 pole, 4 way 2 polé, 6 way 1 pole, 12 way. All at $3 / 8$

WATERPROO HEATLAG 26 yards length 70W, Self-regulating
temperature control. 10/- post free.

AC FAN
Small but very
powerful mains motor with 5 ™ * blades. Ideal for cooling equiptor. Silent but very efficient. $17 / 6$, post 4/6. Mounts from back or front with 4BA screwe.

DRILL CONTROLLER Electronically OLLER changes speed from approximatel power at all speeds by. Finger power at all speeds by finger
tip control. Kit includes al parts, case, everything and full instructions $10 / 6$ plua $2 / 6$ post and
insurance. Or available nade up 29/6 plus $2 / 6$ post.

500W IMMERSION HEATER
For amall process tanks, etc., $200 / 240 \mathrm{~V}$ 43 in . into tank, $2!\mathrm{in}$. outside of tank dia, approx. 1 in., chrome plated 14/6. Post and ingurance 4/6.

COMBINATION DIAL SWITCH

3 eeparate settings of the dial are necessary before this can be switched on or off. Combinations can be changed as required. A useful suiteh for security or novelty. Con-
tacts rated at 1 A . $35 /=$ each.
ELECTRIC CLOCK WITH 20 AMP SWITCH Made by Smith's thege units are as fitted to
many top quality cookers to control the oven. The clock in maling drifen and frequency con-
trolled so it
ba extremely accurate. The two trolled so it he extremely accurate. The two
small dials enable awitch on and off times to be accurately set-alep on the left is another timer or alarm-this may be set in ninutes up to 4 hours. At the end of the period a bell will sound. Idesi for ewitching on tape recorderg. oniy $4 / \mathrm{t}$, lese than the yalue of the clock alon

onily $4 / \mathrm{F}$, less than the ya
\rightarrow post and inaurance $2 / 9$.

NICAD RECHARGEABLE BATTERIES

3.6 V 500 mA size $1 \frac{1}{4} \quad 13 \mathrm{in}$. lia, type ref, DKZ500 really powerful will deliver 1 anp for $:$ hour. Regular price $32 / 6$ our able, singlc cell $1-25$ b/6. 5 cell $6 V^{29 / 6}$. 10 cell $12 V^{65 \%}$

THIS MONTH'S SNIP

Horstmann "Time and Set" Switch

(A 15.4 switeh). Just the thing if you want to come home to a uamm house without it costing you a fortune. You can delay the switch on time of your electric fires, etc., up to 14 hours from setting time or you can use the switeh to give a hoost on period of up to 3 hours. Equally suitable to control procesging. Regutar price probably around 25. xpectial
snip price $89 / 6$, post and insurance $4 / \delta$.

MOTORISED CAM SWITCH

Madc by the famous meter company Chamberlain atnd Hookhant, these have a normat mains $200-240$ notor which action per minute on a wheel with 60 teeth thus a complete revolution of the cam takes place in one hour. The cam operates 8 switches (6 changeover and 2 on/ofir thus 480 circuit changes per hour are possible). Contacts, rated at 15 amps have been set for certain switch combinations but can, no doubt, be altered to suit a special job. Also other switch qafers or devices can be attached to the shaft which extenils approxinately one inch. 47/6, post and insurance 4/6

ع $\because\left[\begin{array}{llll} & \therefore & \therefore \\ \hline\end{array}\right.$

Just what you need for work bench or lab. 4 13 anp fued plugs. Supplied compete with 6 feet of heavy cable and 13 amp plug. Nimilar panels advertised at $\mathbf{5 5}$. Our price $39 / \mathbf{6}$, plus 3 , 6 pobt and insurance

G.E.C. 13A SOCKETS

Opportunity to re-equip your house or workshop, or if contractor, to stock up for future jobs. We offer bakelite 13A sockets for flush or surface noounting made by the YOU CAN HAVE A BOX OF 12 flush $t y p e 24 /-$, surface type $29 / 6$, post and insurance 4/6 (Gross or niore carr. free.)

HI FI BARGAIN

FULL FI 12-INCH LOUDBPEAEER. This is undoubtedly one of the finest loudspeakers that we have ever offered, produced by one of the country's nost famous makers. It has a die-cast metal frame and is strongly reconis Rhythm Guitar and public address.
Flux Density 11,000 gauss-- Total Flux 44,000 Maxwells Power Handling 15 watts R.M.S. Cone Moulded fibre-Freq. response $30-10,000$ c.p.s.-specify 3 or 15 ohnis-Main resonance 60 c.p.s.-Chassis diam. 12 in.-12ifin. over mounting luge-Bathe hole 11 in . diam-Mounting holes 4 , holes-in. diam. on pitch circle $11 \frac{\mathrm{in}}{\mathrm{i}}$. diam. Ovierall height 5 i in . A e . peaker offered for only ${ }_{3}, 9.8$ plus $7 / 6 \mathrm{p}$. \& p. Don't miss this

INDICATOR LAMP

Panel mounting, consists of newn resistor in leads for mains opera tion. $2 / 6$ each, $24 /=$ dozen.

12V BLOWER
Heavy duty motor wlth centrifugal blower coupled to one end. Ideal
for car heater. $12 / 6$ pluas $4 / 6$ post

RADIO STETHOSCOPE
Taslont way to fanlt fan-traces signal front aerial to apeaker-when signal stops you've found the fault. Lee it on Radio, TV plete kit, comprisen two -conplete kit compriges two special ransistors and all parts including probe tube and crystal earplece. $8 \cdot / 6-t w i n$ stetho extra-port and ins. 2/9.

MAINS TRANSISTOR POWER PACK
Designed to operate transistor seta and anplifiers. iljustable out put $6 v$. ., 9 ., 12 volta for up to of the following borking). Takes the place of any PP7 the following batteries: PP1, PP3, PP4, PP8 transformer rectitier, smoothing and load resistor condensers and instructions. Real snlp at only $10 / 6$ plus $3 / 6$ postage.

PROTECT VALUABLE DEVICES

From thermal run way or overheat ing. Thyriators, rec ifiers, ransistors etc., which use heat sinks can easily be mrotected; simply make the contact of the heat-bink Motors and equip ment generally can also be adequately protected
hy having thernootats in stra. tegic spots on the caing stra tegic spots on the casing. Our ontact thernostat has a calibrated dial for setting bet ween $90^{\circ}-190^{\circ} \mathrm{F}$. or with the dial reno. .ed rank

TELESCOPIC
AERIAL
for portable, car radio
ted-six transmitter. Chronie pla7! to 47 in . Hole in hotiom for fron

REED SWITCH

Whitable for dozens of different applications, such as burglar alarms, conveyor belt switching. These are simply glass encased switches which can be perater by a passing permanent magnet coll. A 24 dozen. suitahis magneta arc 1 each. $_{6}$

5A, 3 PIN SWITCH SOCKETS
An excellent opportunity to make that bench dis board you have needel or to stock up for future jobs. This month we ofter 6 Britioh
made (Hicraft) bakelite made (Hicraft) bakelite flush
mounting shuttered 5 A switch mounting shuttered 5A switch and insurance. (20 boves poet and
free.)

MOVING COIL METER BARGAIN Panel meters are always being needed and they are joily costly when you have to buy them in a hurry-so you should take advantage of this offer These are actually R.F. meters and cost about each but if you don't want them for R.F. then all you have to do ts to remove the thermocouple and you will have at 2-3 ma. meter which you can make into almost anything by adding shunts or
series resistor. New and unused.

MAINS MOTOR Precision made - as used in record decks and tape recordersIdeal alao for extractor fans, blower, heater, etc. New and perfect. 3/- for first one then 1/- for each one
ordered. 12 and
over poes fres over post free.

5 in $\times 5$ in PRINTED CIRCUIT BOARD Ideal for dozens of projects, Heavy copper on $\frac{1}{2}$ sheet, $1 / 6$ each or $16 /$-per dozen

HEAVY DUTY

MAINS TRANSFORMER
30V, 37A. Primary tapped 200/240 in 10V steps. A really beautiful "C' core transformer. Made by Parmeko, impregnated and varnlahed. Welght approx. 50 lb , size approx. 8 in . wide, 61 in . deep and 81 in. high. Metal frained for free standing and from Parmeko. Ex equipment but perfect from Parmeko, Fx equipment, but perfect. each, carriage paid.

[^2]
ELECTRONICS (CROYDON) LTD

Dept. PE, 266 London Road, Croydon CRO 2TH Also 102/3 Tamworth Rond, Croydon
leaks. Fig. 10 shows the effect of this resistor used with a $500 \mu \mathrm{~A}$ meter of 190 ohm internal resistance, but the effect will vary according to the particular diode and meter used.

The meter used was scaled 0-500 and so the voltage ranges chosen were 50,500 and $1,500 \mathrm{~V}$. A more sensitive meter movement would load the circuit less because of the higher value resistors used in the voltmeter circuit and would also show up leakage more readily; a less sensitive meter is not recommended for the same reasoning.

CONSTRUCTIONAL DETAILS

The high voltage unit can be built up on a sheet of laminated plastics-perforated board is as convenientwhile the meter, switches, voltage control and terminals are fitted to the front aluminium panel of the unit. The high voltage board (Fig. 11) is supported on pillars behind the front panel with all the interconnecting wires grouped together at one side so that the two parts may be "hinged" apart easily, without disconnecting, for testing or modification.

Do not try to miniaturise or cramp the layout; very close spacing could lead to unexpected leaks. Space should be found in the completed unit for a row of series connected high power U2 type cells so that the tester is self contained.

USE OF UNIT

Capacitor or insulation test: the chosen test voltage is applied; after allowing time for a capacitor to charge up, there should be zero leakage. An electrolytic capacitor may be expected to leak considerably and will not test satisfactorily with this tester since a ten minute forming period should be allowed first. If a current is indicated, the leakage resistance may be simply calculated from $R=$ test voltage/leak current. The 1 megohm resistor on the front panel is fitted because the final sub-circuits of electrical installations should have an insulation in excess of 1 megohm at 500 V and a direct comparison can be quickly made if meter accuracy is in doubt.

Zener diode test: using the low voltage range the test voltage is increased until 0.5 to 1.5 mA is indicated; the Zener breakdown voltage is now read from the meter by using S5, and it will be seen that this voltage will stay nearly constant as the current is varied from maximum to zero.
Rectifier diode test: increase the test voltage until leakage is indicated, then read off the test voltage. A rule of thumb for permissible leakage is to allow for one thousandth or 0.1 per cent of the forward current to leak at the maximum reverse voltage. If desired, a graph of leakage current against reverse voltage may be drawn to show the breakdown characteristics.

SAFETY

The maximum current available at the test terminals, under any conditions, is limited to 1.5 mA by R8; the normal body resistance, hand to hand, lies between 10,000 and about $50,000 \Omega$ so that the highest voltage that will be across a careless or accidental body should not exceed about 75 V . Adjust R8 so that 1.5 mA is the maximum available current. Never be careless with capacitors that have just been tested at a high voltage and not allowed time to discharge; the shock may not kill you, but by tripping over a stool you may easily break an arm or leg!

Earth Staticia Communicates

The first Earth station for satellite communication in the Middle East and Africa was officially opened at Bahrain on July 14. The inaugural telephone call was made by the Ruler of Bahrain, H.H. Sheikh Isa bin Sulman Al-Kalifa to H.R.H. the Duke of Edinburgh. Sheikh Isa made the call from the new Earth station before 300 guests. Prince Phillip received the call at Windsor Castle.

The station, owned and operated by Cable and Wireless Ltd., operates via the Intelsat III satellite stationed in orbit over the Indian Ocean and provides the States of the Arabian Gulf with direct links to the worldwide satellite system.

Bahrain is the third station to line up with the Indian Ocean satellite, following the U.K. and Japan. During the next 18 months Hong Kong, Germany, India, Indonesia, Italy, Kenya, Kuwait, Pakistan, Singapore and Spain are all expected to be using the satellite.

Computer Control

$N \begin{gathered}\text { owadays computers are being used to control many } \\ \text { processes and people. Two recently announced }\end{gathered}$ systems are a planned installation by Cable and Wireless to process passengers at Hong Kong's Kai Tak airport and an installation at the Port of New York Authority's $£ 250$ million World Trade Center (the world's highest building).

The Kai Tak system will help the processing of passengers, baggage and freight and will be especially useful when the "jumbo jets" come into service. Many other computerised control systems are already in operation around the world but this latest Cable and Wireless project will be different because it will offer individual and confidential processing to all airlines. The system will operate 24 hours a day and is planned to come into service in the autumn of 1970.
Costing nearly $£ 3$ millions, the installation at the World Trade Center is designed around a Honeywell DDP 516 real-time processor which will be linked to more than 6,500 sensors situated in and around the building. The computer which, in addition to its 16,384 word core memory, has a 196,000 word disc memory, will scan the sensors, extract the pertinent values and compare them with other variables or pre-set numerical limits. It will also make analyses of trends, efficiencies and operating profiles, taking into consideration, not only the conditions inside the World Trade Center, but also those outside the building at four different elevations. Monitoring temperature, humidity, wind direction and speed at these different points is necessary because the height of the building is such that it could be sunny on floor 110 but foggy at ground level!

Reconnaissance System Flown

The combined radar, infra-red linescan and camera pod designed by EMI Electronics for the Royal Air Force Phantom aircraft had its first flight trial recently.

The pod was attached below the belly of a trials Phantom which was flown from the Hawker Siddeley Aviation Ltd. airfield at Holme on Spalding Moor in Yorkshire.

The aircraft flew at 400 knots at low level and in excess of Mach 1.3 at medium level. No difficulty was experienced and further trials are now proceeding.

The revolutionary reconnaissance system will enter service with the R.A.F. early in 1971.

 69. 5. 0.
voltage
INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE 0-260v. GRAND NEW
Keenest prices in the country All Types (and Spares) from SHROUDED TYPE stock. SHROUDED TYPE
1 amp, 65. $10.0 . \quad 2.5 \mathrm{amps}$,
 t14. 10. 0. 10 amps, 188.10 . 0 . 12 amps, $£ 21$. 0. O. 15 amps, E25. 0. 0.20 amps E 37 . 0. 0 . 37.5 amps , $\mathbf{£ 7 2}$. 0. 0. $50^{\circ} \mathrm{amps}$, 37.5 amps,
$£ 92.0 .0$.

O92, ON TYPE (Panel Mounting) OPEN TYPE (Panel Mounting)
: amp, E3. 10.0 . I amp, E5. 10.0. 21 amps, 56.12 .6.
PORTABLE TYPE
1.5 amp. portable fitted metal case, Similar to above switch, etc. $59.5 \mathrm{~s}, \mathbf{0}$.

L.T. TRANSFORMERS All primaries

Type No. Sec. Taps Price Carr.
1 30, 32, 34, 36 v. at 5 amps.
$230,40,50 \mathrm{v}$. at 5 amps .
$10,17,18 \mathrm{v}$. at 10 amps.
$6,12 \mathrm{v}$. at 20 amps.
$17,18,20$ v. at 20 amps.
$6,12,20 \mathrm{v}$. at 20 amps .
24 v . at 10 amps.
4, 6, 24, 32 v. at 12 amps. Price Carr $\begin{array}{ll}\text { 64/5/0 } & 6 /- \\ 66 / 5 / 0 & 6 / 6\end{array}$ 64/10/0 4/6 65/17/6 $.66 / 12 / 6$. $66 / 12 / 6$. $66 / 5 / 0$ E4/15/0 E6/10/0 $6 / 6$

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest rype Xenon white light flash rube. Solid state timing and triggering circuit, $230 / 250 \mathrm{v}$. A.C. operation.

EXPERIMENTERS ECONOMY KIT

I to 36 Flash per sec. All electronic components inciud-
ing Veroboard S.C. ing Veroboard S.C.R. Unifunction Xenon Tube - in. structions $\mathbf{6 5 . 5 , 0}$ plus 5'- P. \& P.

NEW INDUSTRIAL KIT

Ideally suitabie for schools, laboratories.e.etc. Roller tin printed circuit. New trigger coif. plastic thyristor and
i-80f.p.s. Price 9 gns. $7 / 6$ P. \& P. HY-LYGHT STROBE
This strobe has been designed and produced in response to wide public demand, for use in large rooms, halis and the photographic field. It has four times the light oukput
at 30 f.p.s. and utilizes a silica plug-in cube for longer life expectancy, printed circuit for easy assembly, also a special trigger coil and output capacitor. Light output approx 4 joules. Price $\mathbb{1} 10.17 .6$. P. \& P. $7 / 6$.

IOD WATT POWER RHEOSTATS (NEW)

AVALABLE IH THE FOLLOWING VALUES
$1 \mathrm{ohm}, 10 \mathrm{a} \cdot ; 5 \mathrm{ohm}, 4.7 \mathrm{a} ; 10 \mathrm{ohm}, 3 \mathrm{a} . ;$
$25 \mathrm{ohm}, 2 \mathrm{a} ; 50 \mathrm{ohm}, 1.4 \mathrm{a} ; 100 \mathrm{ohm}, 1 \mathrm{a.;}$
$250 \mathrm{ohm}, .7 \mathrm{a} . ; 500 \mathrm{ohm}, .45 \mathrm{a} ; 1,000 \mathrm{ohm}$,
250 ohm, 7 a.; 500 ohm, 45 a.; 1,000 ohm,
$280 \mathrm{~mA} ; 1,500$ ohm, $230 \mathrm{~mA} ; 2,500$ ohm, 2
31 in . Shaft length ${ }_{3}$ in., dia. trin. All at $27 / 6$. Diameter P \& P. $1 / 6$.
50 WATT.
$1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, $21 /=$ P. \& P. 1/6
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, 14/6. P. \& P. 1/6.
PARVALUX TYPE SDI9 230/250-volts A.C. REVERSIBLE GEARED MOTOR.

30 r.p.m. 4016.ins. Position of drive Mounted on substantial cast aluminium base. Ex-equipment. Tested and in first class running order. A really powerful motor offered at a fraction of makers price. 6 GNS. P. \& P, 10 /
NICKEL CADMTUM BATTERY Sintered Cadmium Type $1.2 \vee, 7 A H$. Size: height 31 in., width 2 是 $\times 1.3$ in. Weight: approx. 13 oz. Ex-R.A.F.Tested. 12/6. P. \& P. 2/6. l.2 volt 35 AH $30 /-$ each plus $4 / \mathrm{L}$ P. i P

DRY REED SWITCHES

2 :- 1 amp Dry Reeds (makes contacts). Mounted in 870 ohm $9.18 v$. coil. Size $3^{\prime \prime}<3 \frac{1}{n}_{\prime \prime} \times \frac{1^{\prime \prime}}{2}$. New. Price $8 / 6$ per pair. Post Paid. Six of the above mentioned units (12 Reeds). Fitted in metal box. Size $4^{\prime \prime} \times 3 t^{\prime \prime}$
Mfg. by Elliott Bros. New. $45 /$ each. Post Paid.

M0.36 D.C. operation 2 clo. 500 MA con taets. $\mathbf{3 , 2 0 0} \Omega$ M. coil. Size only $1, \frac{1}{1}: 1$. $8 / 6$ post paid.
'AVO' MODEL 47A
Ex-Admiralty in good condition, complete with instructions, leads and case. \$9/19/6, P. \& P. 10% -

'AVO' MODEL 48A

Ex-Admiralty in good coridition with instruce tions, leads, plus D.C. Shunes for 120 Amp and 480 Amp . A.C. Transformer for 60 Amp . and 240 Amp. Muitiplier for 3600 volt. Complete outfit in fitted case. E15/0/0, P. \& P. $10 / \%$

INSULATED TERMINALS
Available in red, white, yellow
black, blue and green.
New 17/- per doz. $2 /-\mathrm{P}$. \& P.

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN

CLOSED SATURDAY

Personal callers only
9 LITTLE NEWPORT ST,
LONDON, W.C.2. Tel. GER 0576

TBAMSFORMERS LIGHT SENSITIVE SWITCH Kit of parts, including ORP12 Cad-
mium Sulphide Phococell, Relay, Transistor and Circuit, etc., 6-12 volt D.C. op. price 25/. plus 2/6 P. \& P. ORP 12 including circuit, $10 / 6$ each, plus I/-P. \& P.
A.C Each, plus T/-P. \& P. ins MODEL incorporates Mains Transformer, Reccifier and special relay with $3,5 \mathrm{amp}$ mains c/o contacts.
Price inc. circuit $47 / 6$ plus $2 / 6 \mathrm{P}$. P . Price inc. circuit $47 / 6$ plus 2/6 P. \& P.

LIGHTSOURCEAND PHOTO

CELL MOUNTING
Precision engineered Precision engineered
light source with focusible
lens assembly and ventilated
lamp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair E2.I5.0. P. \& P. 3/6. NEW MOOEL HIGH FREQUENCY TRANSISTORISED
MORSE OSCILLATOR
Adjustable tone control. Fitted with moving coil speaker, also earpiece for personal monitoring. Complete with morse key. 45/- plus 3/6 P. \& P
MINIATURE UNISELECTOR SWITCH
Ex-Equipment
3 banks of 11 positions plus
homing bank. 40 ohm coil.
24-36 V. D.C. operation.

demonstration

 TRANSFORMER(STENZYL TYPE)

Two separate removable coils tapped at 0.110 .220 volts, and 6.12.36 volts respectively. A comclass demonstration. Electro magnetic finduction, jumping ring, induction lamp, relationship between field intensity and ampere turns, induction melting, are just a few of the possible experiments. New
modified model. EI4.10.0, P. \& P. $10 / \mathrm{m}$

RELAYS

New SIEMENS, PLESSEY, etc, miniature plug in relays cemplete with base, athighly COMPETITIVEPRICES $\begin{array}{cc}\text { Coil } & \text { Working } \\ \Omega & \text { Voltage }\end{array}$

SEALED RELAYS
230 volt AC Coil. Three c/o 5 amp . contacts. $17 / 6 \mathrm{~d}$. post. paid. LONDEX $4 \mathrm{c} / \mathrm{o} 3 \mathrm{amp}$ paid. LONDEX $4 \mathrm{c} / \mathrm{o} 3 \mathrm{amp}$
contacts. $\quad \mathrm{a} / \mathrm{s}$ inc. base. post conta
paid.
paid. MINIATURE RELAYS

PRACTICAL

INTEGRATED CIRCUITS
Constructional projects in microelectronics for
the amateur experimenter by A. J. McEvoy \& L. McNamara 18/-

Postage I/-
RADIO AND TELEVISION SERVICING $1968-69$ MODELS, by J . Harris. $80 /$.. Postage $4 / 6$.
110 SEMICONDUCTOR PROJECTS 110 SEMICONDUCTOR PROJECTS
FOR THE HOME CONSTRUCTOR, by R. M. Marston. I8/-. Postage I/-. RADIO COMMUNICATION HAND. BOOK, by R.S.G.B. 63/. Postage 4/6. TRANSISTOR RADIO SERVICING MADE EASY, by Wayne Lemons. 20/-. Postage 1/-.
AMATEUR SSB RADIO GUIDE, by Harry D. Hooton. 30/-. Postage $1 / \mathrm{F}$ THE RADIO AMATEUR'S HAND. BOOK, by A.R.R.L. 45/-. Postage 4/6. THE HI-FI AND TAPE RECORDER HANDBOOK, by G. J. King. $40 /=$. Postage $1 / 6$.
SERVICING WITH THE OSCILLOSCOPE, by G. J. King. 28/-. Postage 1/CATALOGUE, $2 /$

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

4 STATION INTERCOM

Solve your commanica. - Station Trangistor Intercom system (1 master and 3 fuhn), in de-Iure plastic cabinets for desk or wall mounting. Call/talic/listen from Master to Subs and Erabs to Master. Ideally suitable for Buainess, Sur: gers, Schooly, Hoapital, Office and Home. Operates on one 9V battery. On/off switch. Volume conlrol. Complete with 3 connecting wires each 66 ft . and

MAIMB INTE
To batteries-no wires. Just plag in the mains for inmtant twoway, loud and clear commanication. On/off witch and volume control. Price 18 gnt

Same so 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door communication. Ideal as Baby Alarm and Door
Phone. Complete with 66ft. connectlag wire.
Battery 2/6. P. \& P, $4 / 6$.

59/6
Why not boost ciency with this incredible De-Luxe Telephone Amplifor. Take down long telephone measages or converse without holding the handset. A useful office aid. $O \mathrm{p}$ / ott mitich. Volume control. Battery 2/6 extra. P. \& P. 3/6. Full price refunded if not astiafied in 7 days. WEST LOMDON DIRECI SUPFLIES (PE/8) 169 EMASLETTON HIGH STREES, LOADON, W. 8

COLD CATHODE TUBES By J.B.Dance m.sc.

ARC DISCHARGE TUBES

Cold cathode gas filled glow trigger tubes and their circuits were discussed last month. However, there are a number of other types of gas filled device which can be switched to the conducting state by the application of a triggering pulse to a starter electrode. Some of these tubes operate in the glow discharge region, whilst others operate in the arc region where a much greater current flows.

ARC DISCHARGE TUBES

The flash tube operates in the arc discharge mode, but can be used only under pulsed conditions. Flash tubes are used in stroboscopes, electronic flash equipment for photography, and in doped crystal lasers.
Some of the tubes used for stroboscopic purposes have an internal triggering electrode, whereas the triggering electrode of most types of flash tubes designed for photographic and laser applications consists of a wire secured to the outside of the tube.
Another type of arc discharge tube is used as a protective device; when the potential between the trigger and cathode of such a tube becomes much higher than normal, the tube fires and this prevents the voltage surge from damaging other equipment.

FLASH TUBES

The operation of a flash tube involves the rapid discharge of a capacitor through the tube. The basic circuit is shown in Fig. 4.1. Both the main capacitor,

Fig. 4.I. A simple flash tube circuit
$\mathbf{C 1}$, and the triggering capacitor, $\mathbf{C 2}$, charge from the power supply through the resistor R1.

When they are adequately charged, switch S1 may be closed so that a pulse of current flows from C2 through the transformer winding. This results in a high potential (typically some kilovolts) being developed across the secondary winding of the transformer.

This high potential is applied to the external triggering electrode and distorts the electric field in the gas so much that ions are formed and the main discharge is initiated. The main capacitor, C 1 , then discharges through the flash tube.

The energy stored in this capacitor is $\frac{1}{2} C_{1} V^{2}$ where V is the potential across it. If the potential across Cl before the flash occurs is V_{1} and that after the flash is V_{2}, the energy given up by the capacitor is $\frac{1}{2} C\left(V_{1}{ }^{2}-V_{2}{ }^{2}\right)$. The efficiency of such tubes is quite high.

A photographic flash tube is normally filled with either argon or with a mixture of krypton and xenon, since these gas fillings produce a flash which has a spectral energy distribution very similar to that of daylight. Although this energy distribution actually changes with time (becoming more red towards the end of the flash), the overall distribution is very similar to that of daylight.

Fairly long tubes are normally used for photographic and laser work, since this enables a greater efficiency to be obtained. In order that a reasonably long tube can be manufactured in a comparatively compact form, flash tubes are often manufactured in the form of a helix or a U-shape.

The duration of the flash from a tube is typically of the order of one hundred microseconds for tubes operating at a few kilovolts, but is about a millisecond for low voltage tubes. If the inductance and resistance in series with a high voltage tube is reduced to the absolute minimum, flashes of less than ten microseconds can be obtained.

The amount of power which can be passed to a tube is limited. If an excessive amount of power is dissipated in a tube, gas may be evolved from the walls of the tube or some parts of the tube may be damaged. The tube may then fail to operate when a further trigger pulse is applied.

STROBOTRON

The electrode structure of a typical flash tube designed for stroboscopic purposes is shown in Fig. 4.2. This type of tube employs an internal triggering electrode, G1, which consists of a wire entering the cup shaped cathode, K . The anode is some distance away from the other electrodes.
A positive potential (about 100 volts) is applied to G2. If a suitable negative going pulse (about 40 to 100 volts) is then applied to G1, the tube will fire. The current rises rapidly to about 5 amps , but the discharge ceases when the anode to cathode voltage falls to about 20 volts, this being the potential required to maintain the arc discharge.
Tubes of this type are known as "Neostrons" (Ferranti) or "Strobotrons" (Sylvania).

The arc discharge tubes discussed above cannot be operated in such a way that a continuous current flows, since such a current would damage them permanently. Another type of triggered tube known as an "Arcotron" was developed by the Cerberus Company of Switzerland in 1961.

Arcotron tubes can pass a continuous current of a few amperes and can be used to replace hot cathode thyratron tubes or thyristors. However, it is understood that these tubes are no longer recommended for use in currently designed equipment and they will not therefore be discussed further. A special type of arc discharge tube is being manufactured by the Cerberus Company for use in the ignition system of Wankel rotary engines.

GLOW THYRATRON

The glow thyratron, developed a few years ago, is very similar to the common trigger tube, but the discharge is initiated by the controlled introduction of ions from an auxiliary discharge into the main gap. The auxiliary discharge takes place continuously when the tube is operational, the introduction of the ions being controlled by the potential applied to a grid.

Glow thyratrons have the advantage that they require a very much smaller control voltage than normal trigger tubes, but their input impedance is much smaller. They are therefore especially suitable for use with transistor circuits. Glow thyratrons have pure metal cathodes and therefore the tubes have close tolerances, a long life and are very reliable when correctly used.

The electrode structure of the glow thyratron is shown in Fig. 4.3. The auxiliary discharge takes place between the auxiliary cathode, denoted HK ("Hilfskathode"), and the main cathode K. The auxiliary cathode HK is normally connected via a current limiting resistor to a source of negative potential and the main cathode (which is usually at approximately earth potential) acts as the anode for the auxiliary discharge.

Some electrons from the auxiliary discharge penetrate through a hole in the cathode into the space between the latter and the grid, G. In this space the electric field strength is a function of both the grid and the anode voltages.

If the grid is sufficiently negative with respect to the cathode, the electrons passing through the hole in it are quickly decelerated and return to the cathode.

If, however, this negative grid voltage is reduced, the electrons are accelerated by the field from the anode (which, to some extent, penetrates through the holes in the grid). They therefore pass into the grid-anode space and create ions by the avalanche effect discussed in previous articles. A discharge is thus initiated between the main cathode and anode.

As in the case of the trigger tube, the glow thyratron is not affected by changes of grid potential once it has been switched to the conducting state. The anode voltage must be reduced in order to return the tube to the initial state where the main gap is non-conducting.

FIRING CHARACTERISTIC

The firing characteristic of a glow thyratron is shown in Fig. 4.4. This curve shows the conditions required for main gap conduction in a tube, through which an auxiliary discharge current of $160 \mu \mathrm{~A}$ is passing and which is being used in circuit with a 220 kilohm grid resistor. The curve does not apply once the main gap has been switched to conduction.

At points on the lower left parts of the graph the tube will not fire across the main gap. As the grid

Fig.4.3. Circuit symbol of a glow thyratron

Fig. 4.4. Typical firing characteristic of a glow thyratron

PICK-UP ARM Complete with E.M.I. LP-76 XTAL Stylii 29/6;
XTAL GP67 17/6; Stereo Coramic $35 /-$. Powerpoint $5615 /-$

CRYSTAL MIKE INSERTS

Hid
portable Transision
AMPLIFIER PLUS
DYHAMIC MICROPHOME
A zell-contained fally portable mini patioysfem. Parties, or as a Baby Alarm, Intercom, Telephone or Record Player Amplifer, etc. Atractive rexine
covered cabinet, size 12×9
covered cabinet, size $12 \times 9 \therefore 4$. 2 , with
poweriul $7 \because$ 4in. speaker and four transistor one watt power amplifier plas ultra senaitive microphone. Uses PP9 carton wind full makers'
guarantee. Worid tamous make.

WEYRAD P50 - TRANSISTOR COILS RA\&W 6 in. Ferrite Aerial Spare Cores with car aerial
Ose. P501AC
2/6 Driver Trans, LFDTA
3 rd I.F. P50/3CC

6/7	J.B, Tuaring Gang
6/- Weyrad Bootlet	

Telescopic Chrome Aerials 6in, extends to 28 in

VOLUME CONTROIS 800hm COAX 8d. yd. Long spindles. Midget size BRITISH AERIALITE | $5 K$. | ohms to $2 \mathrm{Meg} . ~ L O G ~ o r ~ A E R A X I A L-A I R ~ S P A C E D ~$ |
| :---: | :---: | :---: | :---: | STEREO L/S 10/6, D.P. $14 / 6$ FRINGE LOW LOSS $/ / 6$ WIRE-WOUKD 2-WATT POTg. WIRE-WOUND 3-WATT T.V. Type. Knurled Knob. STANDARD SIZE POTS

 EDGE CONNECTORS 16 wRy $5 /-: 24$ way $7 / 6$.
PINS 36 per paeket 3/4. FACE CUTTEES 7/6.
S.R.B.P. Board 0.15 MATRIX zin. wide 6d. per $1 \mathrm{in}, \mathrm{B}_{1}^{3} \mathrm{in}$.

BLANK ALUMINIUH CHASSIS, 18 s.w.\%. $\overline{21 \mathrm{in} .}$ sides,
 $5 / 6 ; 12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{Ft}, 3 / 6 ; 8 \times 6 \mathrm{in}, 2 / 6 ; 6 ; 4 \mathrm{in}, 116$

Q MAX CHASSIS CUTTER

Complete: a die, a punch, an Allen screw and key

 WAVE-CHALGE SWITCHES WITH LONG SPINDLES 2 p .9 -way, or $\& \mathrm{p} .6$-way, or 3 p. 4 -way $4 / 6$ each.
$1 \mathrm{p}$. . 12 -way, or 4 p .2 -way, or 4 p .3 -way, $4 / \mathrm{e}$ each
1 p. 12-way, or 4 p. 2 -way, or 4 p .3 -way, $4 / 8$ each.

ALL PURPOSE HEADPHONES
H.R. HEADPRONGS 2000 ohmat Super Senuitive
LOW RESISTANCE HEADPHOMES $8-5$ ohms.

DE LUEE PADDED 8IEREO PRONES 8 ohms
"THE INBTANT"
BULK TAPE
ERABERAND
REGORDING

HEAD

DERAGNETI\&ER

BARGAIN STEREO/MONO SYSTEM
Atractive stim PLAYER CABEEWT with B.S.R. Btereo 6. in. LOUDSPEAKERS. Carr. 10.6
(Only 4 pairs of wires to join).

NEW TUBDLAR ELECTROLYTICS CAN TYPES

\section*{$2 / 350 V^{2 / 2} \mid 100 / 25 \mathrm{~V} . .2,-$ 8,600V} | $2 / 350 V$ | \cdots | $2 / 3$ | $100 / 25 \mathrm{~V}$ | \cdots | $2,-$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $8 / 450 \mathrm{~V}$ | \cdots | $2 / 3$ | $250 / 25 \mathrm{~V}$ | \cdots | $2 / 6$ | $8 / 450 \mathrm{~V}$

$16 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$ $32 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$ $500 / 25 \mathrm{~V}$
$8+8 / 450 \mathrm{~V}$ $16 / 600 \mathrm{~V}$
$16+16 / 500 \mathrm{~V}$
$32+39 / 250 \mathrm{~V}$ $32+32 / 250 \mathrm{~V}$ $50+50 / 350 \mathrm{~V}$
$60+100 / 350 \mathrm{~V}$
 $\begin{array}{ll}50 / 50 V \\ 80 B m I N . ~ E L E C T R O L Y T L C S . ~ \\ 8 & 2,2,4,5,8,16,25,30,50,100\end{array}$ SUB-MIN. ELECTROLYTICS. $1,2,4,5,8,16,25,30,50,100$
$850 \mathrm{mF} 15 \mathrm{~V} 2 /-500$. $1000 \mathrm{mF} 12 \mathrm{~V} 3 ; 6 ; 2000 \mathrm{mF} 25 \mathrm{~V} 7 \mathrm{~m}$ CERAMIC. 500 V 1 pF to 0.01 mF , 9 d .
PAPER $350 \mathrm{~V}-0.1$ 8d, $0.52 / 6 ; 1 \mathrm{mF} 3:-; 2 \mathrm{mF} 150 \mathrm{~V} 3$
$500 \mathrm{~V}-0.001$ to $0.058 \mathrm{gd} ; 0.11 /-0.951 / 6 ; 0.53 /-$
1,000V-0.001, $0.0022,0.0047,0.01,002,1 / 6 ; 0.047,0.1,2,6$ SILVER MICA, Close tolerance 10 , $5-500 \mathrm{pF} 1 /-560-2,200 \mathrm{pF}$ $2 /-: 8,700-5,600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-0-01, \mathrm{mfd} 6 /-5$ each
TWIN GANG. $0-0.308 \mathrm{FF}+178 \mathrm{pF} 10 / 6 ; 365 \mathrm{p}$. TWIN GANG. "0-0" $208 \mathrm{pF}+178 \mathrm{pF}, 10 / 6 ; 365 \mathrm{pF}$, miniature 10:-: 500 pF standerd with trimmers, $12 / 6 ; 500 \mathrm{pF}$
 SHORT WAVE, Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6 \mathrm{each}$.
TUWNG. 8 olid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7$ - each. TRIMMERS. Compression $30,50, \quad 70 \mathrm{pF}, 1 /-$; 100 pF $150 \mathrm{pP} .1 / 3: 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{pF}, 2 / 6$. CONTACT COOLED ? wave 60mA 7/6; 85mA 9/6. BY 10010 . Full wave Bridge 75mA 10/-; 150mA 19/6; TV rects. 10^{\prime} REOA PANEL INDICATORS 850\%. AC/DC 8i6.
RESISTORS. Preferred values, 10 ohms to 10 meg.
 Ditto 5%. Preferred values 100 hms ta $\mathrm{E2} \mathrm{meg}$., 8 gd .
 15 watt $\int_{10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3 \text {, } 10}$
FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12 F , outputs. $1 \frac{1}{j} \mathrm{amp} .89 ; 2 \mathrm{a} ., 11 / 3 ; 4 \mathrm{a}, 17,6$.

BRAND NEW TRANSISTORS 6/- each 0C71, 0C72. 0C81, OC44, 0C45, 0C171, 00170, AF117
REPANCO TRAMSIBTOR TRANSFORMERS.

MAT $1007 / 9$; MAT $1018 / 6 ;$ MAT $1207 / 8$; MAT 1818,6 T449. Push Pull Drive, $9: 1$ CT, 8/-. TT46 Ontpat, CT8:1 6/TT23/4 PAIR 10 watt Amp. Transformers and circuit 35%;-

TRANSISTOR MAINS POWER PACKS. FULL WAVE $\begin{array}{cccc}9 \text { volt } 500 \mathrm{~mA} . & \text { Size } 4! \\ \text { Crachie finigh. } & \text { Output terminals. Metal case. On/of switch. } & 49 / 6\end{array}$ Halt Wave 9 volt 50 mA . Size 2 , 11 in. Snap terminals 32,6 9 volt 500mA. TRANSFORWER ONLY. 21 13 1 in. $10 / 6$ BENCH POWER PACK $280-250 \mathrm{v}$. A.C. Mains
with Meter. Supplies $6-9-18 v, 1$ amp D.C.

MAINS TRANSFORMERS

Pos
5/- each
$250-0-25050 \mathrm{~mA} .6 .8 \mathrm{v} .2 \mathrm{amps}$, centre tapped $\quad 19 / 6$ $250-0-25080 \mathrm{~mA} .6 .3$ v. 3.5 a. 6.3 v. 1 a, or 5∇ $350-0-35080 \mathrm{mA}$.6.3 v. 3.5 a. 6.3 च. 1 a, or 5 v. 2 a. 35 ।

 1 amp., $6,8,10,12,16,18,20,24,30,36,40.48,60,35 /-$
AUTO TRADSFORMERS $0-115-230$ v. Input/Outpot, A
$60 \mathrm{w} .18 / 6 ; 150 \mathrm{w} .30 /-; 500 \mathrm{w} .82!6 ; 1000 \mathrm{w} .195 /$

COAXIAL PLUG 1/3, PANEL SOCKETS 1'3. LINE 2: UTLET BOXES. SURFACE OR FLUSH 4/6.
JACK SOCKET Std, open-circuit 2/6. closed 300 ohms. chrome Lead Socket 7/6. Phono Plugg 1/-. Phono Sacket 1 JACE PLUGS 8td. Cbrome $3 /-; 3 \cdot 5 \mathrm{~mm}$ Ghrome $2 / 6$. DIN SOCKETS Chastis 3-pin 1/8; 5 -pin 2\% DM SOCKETS Lead 3 -pin $3 / 6$; 5 -pin 5/-. DII PLUGS 3 -pin $3 / 6$; 5 -pin 5/-.
 T.S.L. LO UDSPEAKER 2-way crossover for 8 or 15 ohm spenkers and tweeters. 3 phono input/ontput sockets.
$\begin{array}{cc}\text { Made to sell } & \text { OUR PRICE } 22 / 6 \\ \text { at 42 } & \text { Post } 2 / 6 .\end{array}$
Tape Spools 8/6. Tape Splicer 5/-. Leader Tape 4,6.
Reuter Tape Heads for Collaro models 2 track 21/- pair.

MINI-MODULE LOUDSPEAKER KIT

10 WATT 55/= CARRIAGE 5:-
Triple speaker system combining on ready cut baffe. 1 in. chipboard 15 in. . 83 in. Separate Bass, Middie
and Treble loudspeakers and crossover condeaser. The and Treble loudspeakers and crogsover condeaser. The heavy duty sin. Bass Woofer unit has a low resonance cone. The mid-Range nuil is specially designed to edd top end of the musical spectrum. Total response $20-15,000 \mathrm{cpe}$. Full inetructions for 3 or 8 ohm . TEAE VEKEERED BOOXSHELF ENCLOSURE
$16 \times 10 \times 9$ in. 8pecially
designed for Mini-Module above.

BAKER I2in. "SUPERB" LOUDSPEAKER

Suitable for all Ei-Yi Systems. Provides rich clear reproduction
of the deepest bass and remarkof the deepest basi and remarkable efficiency in the apper
register. Response $20-17,000$ register. Reaponse 20-17,000
cps. "Baker" double cone with special "Ferrobe" ceramic magnet. Flux density 16,500
ganss. Bas resonance $92-08$ cps, 20 watts rating. Voice coil 8 ohms or 15 ohms. E|5 Prest
48-page En
LOUDSPEAKER CABINET WADDIKG 18 in wide, $2 / 6 i t$ BAKER " GROUP SOUND " SPEAKERS-POST FREE 'Group 25' 'Group 35' 'Group 50
 ALL MODELS "BAKER EPEAKERS" IT ATOCK
Goodmana Tweeter 31 in $3 \mathrm{ohm} 85 / \mathrm{F}$, EMI 21 in 8 ohm $17 / 6$. Horn Tweeters $8-18 \mathrm{zc} / \mathrm{s}, 10 \mathrm{~F} 15$ ohm 29,6 . Croseover $16 / 8$ LOUDSPEAKERS P.M, 3 OHMS. $23 \mathrm{in}, 3 \mathrm{in}, 4 \mathrm{in}, 5 \mathrm{in}, 7$: 4 in . $17 / 6$ each; 81 in $22 / 6 ; 8$ Sin, $21 \cdot ; 8: 2 \frac{2}{2 i n} 21 /-;$
$30 /=10 \mathrm{in}$ or 12in. Double cone 3 or 15 ohm 39/8:
E.M.I. Double Cone $18!? 8 \mathrm{in}_{4} 8$ or 15 ohm models. 45 E.miL. Donble Cone $13,8 \mathrm{in}^{3}$ or 15 ohm models. 45 ,SPECIAL OFFER: 8 ohm, $21 \mathrm{in} ; 6 \div 4 \mathrm{in} ; 80 \mathrm{ohm}$. $21 \mathrm{in}, 21 \mathrm{in}$ $15 / 6 \frac{\mathrm{EACH}}{\mathrm{TYP}}$
Bin LOUDSPEAKER UNITS 3 ohm $27 / 6$; 15 ohm 30 '8 in. De Luxa Ceramic 3 ohm $45 /-; 15 \mathrm{hm} 10 /-$.
8 in LOUDSPEAKER. TWIT COIE $3 \mathrm{ohm} 35 /-$
5 in.'WOOFER. 8 wattsmax. $20-10,000$ epe. 8 or $150 \mathrm{jm} .39 / 6$ OUTPUT TRANS, EL84 etc, 4/6; MIKE TRAMS, $50: 18 / 9$. SPEAKER COVERING MATERIAL8. Samples Large S.A.E

Posi 7,6
Three Wavebands: \quad Five Valves: ECH81, EF89, Logg, Med., Short, Gram.
12 -month gugrantee. A.C. 200-250p. Ferrite Aerial 5 worte 3 ohm. Chassis 13 in. 7 in . 5 in dial tige
 Allgned calibrated. Chasgis isolated from maing 4 . 18
DE LUXE 8TEREO GRAM CHASSIS V.H.F., MW, SW $18-50 \mathrm{~m}, ~ \& W$
$60-180 \mathrm{~m}$. Magicege, push buttons, 822,10
6 valve plus rect. Size $15: 71$ 6in. high.

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICES.45-PAGE EAGLE CATALOGUE 5/-. Pont Iree. BARGAIN AM TUNER. Medium
Transistor Superhet. Ferrite aerisl. 9 volt. BARGAN DE LUXE TAPE SPLICER Cuts, 17/3 rims, joins for editing and repairs. With 3 blade BARGAIN 4 CHANNEL TRANSISTOR MIXER. Add
magieal highlights and sound effects to recordings. Will mix Microphone, records, tape and triner with separate controls into singie output. 9 volt.
BARGAIK FM TUNER 88-108 Mc/a Six Transistor. Ready
 BARGALI 3 WATT AMPLIFIER. 4 Transistor 69/6 \star RADIO BOOKS \star (Postage 9d.)
Practical Transistor Receivers
Practical Stereo Handbook
80persenvitive Transistor Pocket Radio
High Fidelity Speaker Enclosurea and Plans.
Radio Valve Guide, Bookg 1, 2, 3, or 4 ea. 5 - No .5 ea ,
T.V. Fa ult Finding 405;6e lines
Shortwave Transistor Receivers... Shortwave Transistor Receivers
Mransiztor Communication sels
Sad-Miniatars Transistor Receivers
Wireless World Radio Valve Data
At a glance valve equivalents PAL Colour T.V. by Mullard Receive foraign $\mathrm{T} . \mathrm{V}$. programmea by simple modifi.................18/6 Trangistor Circuits Radio-Controlled Models............ 7/6 MANUFACTURERS SURPLUS! 25/TAPE RECORDER CABDNET, Grey/Red or
Groy 2-tone. Rexine covered, Size $15 \times 12 \times 51 \mathrm{in}$, POST FREE POCKET MOVIXG COIL MOLTMETER. $49 / 6$ $0-1,000$ A.C./D.C. ohms 0 to 100 E , etc.
SUPERIOR MOVING COIL MOLTMETER
 $0-2-500 \mathrm{~F}$. D.C. 20,000 ohma per volt, $0-1,000$ r. A.C $\frac{\text { Ohms } 0 \text { to } 6 \text { meg. } 50 \text { Mjeroamps (} \mathrm{Fv}}{\text { BRAND NEW QUALITY }}$
EXTENSION LOUDSPEAKER Handsome plastic cabinet, 20tt. Lead and adaptors. For any radio, intercom, tape recorder. etc. 3 to 15 ohm
size: $71^{\prime \prime} \times 5 y^{*} \because 3^{*}$.
Post $2 / 6$

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., S.W. 16												
Spe		124 H	Hata,	,	Order	Service						
$\stackrel{\text { cicle }}{ }$	101-	1		${ }^{6 / 9} 12{ }^{12 \mathrm{AX} 7}$	$6 / 3{ }^{2 \mathrm{NA}}$	-						
${ }_{\text {Cry }}^{\text {Cr90 }}$												
${ }_{\text {D }}^{\text {D } 3 / 91}$												
${ }^{\text {DH7 }}$	仡		UY41	${ }_{5 / 6}^{8 / 6} \mathbf{2 0 8 5}$								
nue	${ }^{21 / 3}$											
DLS10	${ }_{1216}$		${ }^{\text {Z3319 }}$	30	181-28108	-						
${ }^{\text {DLSL }}$	${ }^{30} / 6$	${ }_{\text {PC }}$	${ }^{\text {OAP }}$	-302115		-						
	12/		07,									
${ }_{\text {E180\% }}$												
${ }^{\text {E1P20]C }}$		PENB4	IR5									
${ }_{\text {EPr91 }}$	3/-	PrL200 14/	3A5	${ }_{12 / 6}^{201655}$		$6 / 6$ NE						
		886	6×1			$3 / 6$						
EBF83 9 9-1PL500												
${ }^{\text {en }}$	${ }^{6,6}$											
	17/6	PY33		15, 1		N						
${ }_{\text {ECCC81 }}$	5	,	${ }_{6}$		${ }^{251}$ - 4 F1	$101-\mathrm{N}$						
		\%	6ALs	${ }_{3}^{3 / 6} / 1{ }^{15}$	${ }^{6} \mathbf{A F}$	12/8 12 NKT7778						
${ }_{\text {ECC}}$	${ }^{5 / 1}$	PY8	${ }_{6}$		${ }_{9} 96$	$17 / 6$						
	11/6		${ }^{\text {6A }}$		${ }^{\text {ARz }}$							
${ }_{\text {ECESP3 }}$	$8 / 6$	QQ	6a									
Q9, $105 /-$ 6B												
						13/6						
EF	${ }_{6 / 6}^{15 / 6}$			7		${ }^{9} 5$						
${ }_{\text {ELIS6 }}^{\text {Elo }}$					${ }_{176} 1$	710						
						15)						
${ }_{\text {ELL }}$												
				41820								
			${ }_{6}^{6}{ }^{787} 787$			/-						
						${ }^{1-}$						
Gz34												
${ }^{\text {KT } 21}$				${ }^{9 / 6} 2{ }^{2 N}$	${ }^{8 / 6}{ }^{\text {ase }}$	-0						
		${ }^{6} 12 \mathrm{l}$ 12A	${ }_{61}^{4 / 9}-2{ }^{2 N 1}$	${ }_{7}^{8 / 1 / G E T E}$	-1-0cin							
	${ }_{45}$		UCBE1 ${ }^{\text {a }}$		5/9 2N2068	20/-GET875	${ }_{6}$ - 0 O82					
Postage 6d. valve, transistors post free												
OPEN DAILY TO CALLERS 9 a.m. -5.30 p.m. No eariy closing C.W.O. No C.O.D. Tel. 01-7690199 \& 1649 SEMD SAAE. FOR FREE LUST OF 6,000 tVPES, valves and transistons												

VARI-STAT

THERMOSTATIC
 SOLDERING IRON

HIGH PRODUCTION MINIATURE MODEL D. 50 WATT
Weight .. 2 oz.
Heating time 50 seconds
Bir Sizes .. $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 12 volts
Price

OTHER VARI-STAT IRONS:
Miniature Model M 50 watt Push-in Bits $1 / 32^{\prime \prime}$, $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$
Instrument Model B 70 watt Bit Size 11/64"
Industrial Model I 500 watt Bit Size 5/8"

CARDROSS ENGINEERING CO. LTD.

Woodyard Road, Dumbarton
Phone: Dumbarton 2655

for fast, easy, rellable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

[^3]voltage is made less negative at an anode potential of between 200 and 450 volts, the tube will fire as the operating point on the graph crosses the curve.

It is also possible to fire the main gap by increasing the anode voltage, but this has little practical application the anode voltage, but this has little practical application. At positive grid voltages, the firing characteristic rises again somewhat, since the electrons tend to pass to the grid instead of to the anode.

There are some small tolerances in the actual position of the firing characteristic from tube to tube, variations of up to 1 volt in the grid potential required to fire the tube being permissible. Temperature effects on the firing characteristic are generally fairly small (less than 0.5 volt change in the grid potential at which firing occurs over the range -30 to +90 degrees C).

However, if the glow thyratron becomes hot due to a fairly large anode dissipation, the grid voltage must be reduced a little more than normally before the tube can

Fig. 4.5. A glow thyratron used to control a relay

Fig. 4.6. Delay circuit using the thyratron
be made to conduct again. The magnitude of the auxiliary current has little effect on the firing point. However, the flow of grid current results in the firing point being dependent on the value of the grid resistor used.

The glow thyratron has the advantage of a short ionisation time, partly because ions are always present in the tube from the auxiliary discharge. When the grid of the tube is switched suddenly from -10 volts to zero, the typical ionisation time lies between 0.5 microsecond, for an anode supply voltage of 400 , and 200 microseconds for an anode voltage of 200.

The deionisation time varies over a range of about 400 to 1,200 microseconds for anode currents of between 5 and 40 mA and supply voltages in the range 300 to 400 .
Some typical circuits published by the manufacturers of the glow thyratron are given below. The tube has been allocated the coding GT21.

RELAY CONTROL

The circuit in Fig. 4.5 may be used to operate a relay from a very sensitive pair of small contacts, which could not themselves pass the current required to operate the relay directly. Only a low voltage appears across the relay contacts and no sparking therefore occurs. Thus the amount of wear on the small contacts is negligible. Even if the contacts have a resistance of several thousand ohms, the circuit will function satisfactorily.

During the negative half cycles of the mains supply, a negative potential is applied to the tube anode, the diode D1 will conduct so that capacitor Cl becomes charged. During the next half cycle of the main supply voltage, when the anode of the tube is made positive with respect to the cathode, the grid is held negative with respect to the cathode by some of the charge from Cl which passes to C2. The tube does not therefore strike in the main gap.

Capacitor C 1 also supplies the current required by the auxiliary cathode HK via the $1 \cdot 2$ megohm current limiting resistor.

When the control contacts are closed, the grid potential becomes little different from that of the cathode potential owing to the resistance values employed. Thus the glow thyratron fires on the half cycles of the mains supply voltage during which its anode is positive.

The use of the alternating mains supply voltage in this way ensures that the tube is extinguished at the end of each half cycle and also eliminates the cost of a mains transformer. However, it must not be forgotten that one of the contacts is connected directly to one side of the mains. An isolating transformer must be used if the contacts are likely to be touched by a person or an earthed object.

The current passing through the relay consists of half-wave rectified pulses at the mains supply frequency. In order that the relay contacts shall not "chatter", the relay should contain a suitable number of shorted turns. Alternatively a capacitor of value about $1 \mu \mathrm{~F}$ may be connected across the relay to supply a current during the half cycles when the tube is not conducting.

The voltage across the open contacts cannot exceed 13 volts and the maximum current which passes through the contacts is $100 \mu \mathrm{~A}$. The open contacts should have an insulation resistance of not less than 0.5 megohm.

A DELAY CIRCUIT

A circuit for producing time delays is shown in Fig. 4.6. When the control contacts S1 are closed, capacitor Cl commences to charge via the resistor chain. When the potential across C1 is great enough, the glow thyratron tube fires on each half cycle of the mains supply voltage during which its anode is positive with respect to its cathode.
The time delay may be altered by changing the value of C1 or VR1, since this alters the time required for Cl to charge to the firing voltage. The contacts RLA1 are used to discharge capacitor Cl .
As in the case of the circuit in Fig. 4.5, the auxiliary cathode negative supply voltage and the quiescent negative grid potential are obtained by half-wave rectification of the mains supply by means of diode D2.

COINCIDENCE CIRCUIT

A simple coincidence circuit is shown in Fig. 4.7. The glow thyratron is in the non-conducting state if one or more of the inputs A, B or C is at zero volts with respect to the cathode, owing to the negative potential applied to the grid of the tube via R3. If, however, all of the inputs are at a positive potential of not less than 6 V (at input impedances of not more than 15 kilohms) the tube fires and the relay is energised.

This type of circuit may be used with a counting circuit to form a batch counter, which initiates an operation at any pre-determined number of counts.

PHOTOELECTRIC CONTROL

The circuit in Fig. 4.8 may be used when it is desired to energise a relay when the light falling on a photodiode increases above a certain level. As the light intensity falls, the circuit will cause the relay to be de-energised again. However, the circuit incorporates a "switching interval", that is the level of illumination at which the relay becomes de-energised is less than that at which it becomes energised. This avoids the possibility of the circuit repeatedly switching itself on and off as the level of illumination rises and falls by very small amounts.

The diode D1 ensures that the grid of the glow thyratron never becomes appreciably positive. The diode D2 provides a half wave rectified supply for the auxiliary cathode and the grid bias voltage to hold the tube in the non-conducting state.

In the circuit in Fig. 4.8, the photocell X1 has a high resistance when the level of illumination is low. A negative potential is therefore applied to the grid of the glow thyratron. When light falls onto the photocell, however, its resistance falls to a value which is much smaller than that of the 6.8 megohm resistor in series with it. Thus the voltage across the cell (and hence the grid to cathode voltage) becomes small and the tube fires.

The photodiode used should pass a dark current of not more than 25 microamps and when illuminated should pass not less than $50 \mu \mathrm{~A}$. Suitable diodes are the Texas H11 or the Siemens TP51 II. The diode D1 should have a peak inverse voltage rating of at least 50 volts and a maximum reverse current of $5 \mu \mathrm{~A}$. The Texas 1S130 or the Mullard OA200 are suitable. The diode D2 should have a peak inverse voltage rating of at least 700 volts and should be able to pass a forward current of 5 mA .

The relay should have a suitable number of shorted turns or alternatively a suitable capacitor must be placed across it. The switching interval may be eliminated by connecting the relay between points 1 and 2 and by short-circuiting the points 3 and 4 (Fig. 4.8).

If it is desired to use the circuit for switching at relatively high levels of illumination, R3 and R2 should be reduced in value.

ELECTRONIC TOUCH BUTTON

The GK11 electronic touch button is another unique type of trigger tube. It is operated by the touch of a person's finger on an external trigger electrode, which is attached to the outside of the tube. It may, for example, be used as a touch button for calling a lift.
When the appropriate touch button is touched, the tube is switched to the conducting state and remains illuminated until the anode to cathode voltage is reduced below the maintaining voltage for this gap which, in the case of a lift call button, would occur when the lift arrived at the floor in question. Touch buttons can also be used in various types of instruments.

The construction of the GK11 is shown in Fig. 4.9. The tube itself contains an internal anode and cathode, the trigger electrode being connected to the touch plate by means of a small spring.

A high resistivity transparent material such as polythene must be employed between the touch plate and the front mounting panel. The red glow from a conducting tube passes through this material which acts as a lens.

Fig. 4.7. Thyratron coincidence circuit

Fig. 4.8. The relay is energised when the photocell is illuminated

Fig. 4.9. Section of a touch button housing

```
Touch button type GKII
type GKII
```

INTEGRATED CIRCUITS
M-PAK MONOLTHETC 110 lead $\mathbf{7 0 - 5}$) BP905A, 6 -Input AND gate, $9 / 6$ eachs
BP314A, 7 Input
gate, $/ 1 /$ each. BPS15A, Dual each. 2-Input NOR gate, $9 / 6$ each.
BPS16A,
Dunal BPS16A, Dual 2-Input
NOR gate (expandable), p/beach.
BP320A. J-K-Binary element, 11/E emch.
BP332A, Dual 3 -Input OR
Et-PAE MOMONTHEC ATMHITtS
BP709C, Operational amp1ufer, 1 /peach
BP701C, Operational ampput), $18 / 6$ each.
Bput), 1 //8 each.
liner (with direct outpnt), 18/6 each.
BPb01. Wide band ampltfler, 18/- each.
BP521. Logarithmic wide band amp., 14/- each. BP210C. General parpose ampliner (TO-5 8 lead). (yoltage or current amp.), 18/8 each.
Lc. Operatlonal Amplifier
Tre 7010. IIdeal tor P.E. Projects. 8 Leal TO-5 case Full data.
Our price $12 / 6$ each 5 off $11 /$ - each. Large Qty. Pricen quoted tor.

ORHER MOMOLTIETC

 DEvicsBP424, Zero voltage nwitch, s/beach.
This device it a monolithic 1.C. that acts as combined trigger circultector and ling a triac. It is deaigned to pulee the gate of a nero supply voltage ond zero supply voltage, and trequency interterence when nsed with resietive loads.
D13D1
Bilicon Unilateral sivitch 10/-each.
Billicon Planar, monoithle integrated circout having thyribtor electrical characterisitics, but with an
anode gate and a built-in anode gate and a built-lin
".Zener"
diode
between gate and cathode. Full gate and cathode. Fuir cults avallable on request.
Farsozind (0, A.

Epory caee 7 .es
 UL000, Butter, $10 / \mathrm{s}$ each. UL914, Dual two-mput UL923 J-K-Alp-flop, 14/each.
Complete data and circuits for the Fairchild I.C.'s available in booklet form priced 1/b.

Mullard Lc.
TAA243, Operational amplister, 70/- each. TAA268, Lheach AF amplifier, $18 / 6$ each.
TAN293, General purpose amplifer, z1/- each.
casoen paA (0.8.A.)
LILAS Integinito
CDICUIM
${ }^{\text {Audion each }}$
Oring to the masa of 1.c.
printed matter often re: quired by customers in connection with the 1.C.: thernselven we ask you to help un in the cost of reproducing this literature bame. This la only neces. same. This
sary different sheet arare requirevi.
 P.I. Organ. Motal T0-18 Ant. Em .
ADI61 ${ }^{\text {PPN }}$ ADI62 pnp
MATCERD COMPLE. MENTARY PAIRB
OF GERM. POWER TRANEIBTORS.
For mains driven output stages of AmpHifiers and Radio receiver OUR LOWEST PRICE
OF 1/ $/ 6$ PER PA/R

HIGR POWER SILICON PLANAR TRAN gIsTORS TKXAR
TO-3.
vcBiom le 4 a fe ft. $15 \mathrm{~m} / \mathrm{La}$ hFEinin. 60 Price

15/- each

FREE

One 10/- Fack of your oriters valued frot with
samicoinduotor
(FOLDEP 2)
with introduction to basic circuita. regiotered tranisur and diode typen, full specifications. ing English, Dutch, Fiench, German, 8wedish, Epanish and 8wediah
1talian.
240 pages of semiconductor information. Price 28/6. Money re-
funded funded if not fully
satiafled satiaffed.
NPN DIFFURED RILICON PHOTO. DUO-DIODE TYPE I8701 (2N2175) for Tape
Readout, high awitching Readout, high awitching and measurement ind OUR PRICEIO/-EACH SO OR OVER $8 / E$ EACH, FULL DETAILS.

SUPER PAKS

new alpan unterio SEMICONDUCTONS

SIL. G.P. DIODES ${ }^{300 \mathrm{~mW}}{ }^{25 \mathrm{mIV}}$ (Min.) ${ }^{\mathbf{3 0}} \mathbf{1 0 0}$
Sub-MIn. ${ }_{500}$
Fuily Tested 1,000
Ideal for Organ Builders.

CABMIUM CELLS

ORP60 ORP61 8/- each ORP12 8/6
FULL RATEE OF zTHEP DIODEs FOLTAGE Paiter 2-167.
100 mW (D0 $\mathbf{- 7}$ Case)......e/6 each 10W (Top-Hat) $\cdots . .3 / 6$ each 10W ($80-10$ stud) $\cdots, \ldots, 8 /$ each All fully tested 5% tol. and marked atate voltage required

Teambleyol mqut. BOOK

52 pagen of crows references for trana, and diodea, types finclude Brition, European, American and Japaneee. Spectilly imported by
BI-PAK BI-PAK

10/- each

BRAND NEW TEXAS GERM. TRANSISTORS Coded and Guaranteed

Pak No.
$\begin{array}{lll}\text { T1 } & 82 G 3710 & \text { OC71 } \\ \text { T2 } & 82 G 374 & \text { OC75 }\end{array}$
T3. 8 2G3744A 0C81D
T5 8 2G382T
T6 $82 G 9444$
T7 8263454

T8	8	$2 G 378$
T9	y 24390	OC45

PRINTED CIRCUITS

EX-COMPUTER

Packed with semiconductore and componenta, 10 boards give a guarantes. Our price 10 boards $10 /$ Plus $2 /-\mathrm{P}$, \& \mathbf{P}.
 GEX541-B.P. OutputVIts type. Output I.C. 5A. Liat Price $58 /-$. Output IC. EA . List Price
OUR PRICE

2me0er IPI gIL. DUAL TRALIS. CODE D1699 TEXAS. OUR

120 VCB UIXIE DEIVER TRAFsiE108 Elm. B8X21 of C407. 2N1893 FULLY TESTED AND TO-5 NPN 25 up $8 /-$ each.

PLFA日E HOTI: To avoid any further Increased Poatal Chargea to our Customers and enable us to
keep our $\cdot{ }^{\text {By }}$ Return Postal keep our "By Return Postal we have re-organized and ztream: lined our Deapatch Order Depart. ment and we now request you to send all your orders together with your remittance, direct to our Warehouse and Dempatch Depart-
 Dept.; P.O. Box 6, Fint

$\begin{aligned} & \text { FET'S } \\ & \text { FN } 1819 \text {....... } 10 /-1 \end{aligned}$
OCP71 Type...

UNIJunction

UT46, Eqvi. ${ }^{2 \mathrm{~N} 2346,}$ Keqt. TIR43. BENS000 7/6 EACH
25-99 5/- 100 UP 4/-

TESTED SCR'S

${ }_{\substack{25 \\ 50}}$

SIL. NECTS. TESTED
P1V 750mA 3 A 10 A 30A

QUALITY-TESTED PAKS
6 Matched Trani. OC4/45/81/81D 30 Red Apot AF Trapa. PNP. 6 White 8pot RF Trane. PNP.
5 Glicen Rects. 3 A $100-100$ PIV
OCI 140 Irang. NPN Switchtr
112 A BCR 100 PIV
3 Gil. Tran, 2 8808 PNP
4 Zemer Dioden 240 mW 8-12V
$3200 \mathrm{Mc} / \mathrm{s}$ Sil. Trans, NPN Bs $\mathrm{Y} 26 / 27$
3 Zemer Bodea 1W 38v 5\% Tol.
4 High Current Trany, OC4 Eqvt.
2 Power Tranaletork 100281 OCas
5 Gillicon Reety, 400 PIY' 260 mA
1 Pover Trass $0 C$
OA202 Bit. Diodee Bnb-
2 Low Nome Trany. NPN 2N9a9/30
1 Sil. Trtan. NPN VCB 1002 2T86
8 OA81 Dlodes.
0 OC72 Trandiators
40077 Tramintors
4 Sil. Recta. 400 PIV 800 mis
5 GET884 Trans. Eqvt. OCA4.
6 GET888 Trane. Equt. OC45.
2 2N708 811. Trang, 300Me/s NPN IN914 8il Dioder 75 PTV 75 Tran
8 OA9s Germ. Dloden Sub-mila, 1Ne
NPN Germ, Trane NTT773 Pqut
20022 Power Trana. Germ.
20025 Power Trans. Germ,
AC128 Trana. PNP High Gain
4 AC127/128 Comp. palr PNP/NPN
2N1 1807 PNP Bwitchtng Trapo.
7 CG62H Germ. Dloden Eqvt. OA71
8 AF1 18 Type Trans.
Asported Germ. Diodes Marked
AC128 Germ. PNP Krane.
Sillicon Recte. 106
7 0c81 Type Trane.
3 OC171 Trans.
7 0C71 Type Trans.
28701 gill. Trang. Texas
210 A 600 PIV gh. Beeta. $189{ }^{\circ}{ }^{\circ}$
8 BC106 8il. NPN Hish Gatn Trama
10010 PIV GH RH. Trans. VCB 100
1000 PIV BH. Hect. 1.5 A R68sio AF
0 日GY05A 8il. Trans. NPN 200IC/4
GRT890 Law No
AF189 PNP Fing Freq. Trans
NPN Trang. 1 8T141 e 2sT140
Madt' 2 HAT100 \& 2MAT120
Madt'a 2 MAr101 e 1 MaT121
OC44 Germ. Trans. A
AC187 NPN Germ. Trade.
9N8906 gil. PNP Trane. Motorola
1 8il. Power Trads. NPN $1001 \mathrm{M} / \mathrm{c} / \mathrm{G}$.

1 2N1138 PNP Rpitarial Pianar
3 2N697 Epitax Elal Planar Trana, 81.
Germ. Power Trang. Eqvet. OC16
1 Unijunction Trana, 2N2618.
2 Sil. Trant 200Mc/s boveb $2 \dot{188} 3 / 84$ 1 Tunnel Diode AEY 111050 Mc/s 2 2N9712 81l. Epory Planar H FR225 25 811. and Germ. Trans. Mixed, al marked, New

techingal tratinng in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you tool Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. 8 G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio!T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW

SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. pro-fessional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics

NTERNATIONAL CORRESPONDENCE SCHOOIS

Dept. 15I, Intertext House, Stewarts Rd., London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME
ADDRESS

INTERMATIONAL CORRESPONDENCE SCHOOLS

SEMICONDUCTORS
BRAND NEW AND FULLY GUARANTEED

CIRCUITS

The basic circuit for the electronic touch button is shown in Fig. 4.10. The tube does not strike when nothing is touching the touch plate, since the rectified mains voltage is below the striking voltage of the main gap of the tube.

If a person's finger is placed on the touch plate, however, a capacitive current passes between the cathode and the touch plate. Enough ions are formed to initiate a discharge in the main gap and hence energise the relay. The tube can control an anode current of over 10 mA .

Fig. 4.10. The touch button controls a relay

Even if the person touching the touch plate is wearing gloves, the capacitance can exceed 5 pF ; this is quite adequate to cause the tube to fire. Any earthed object or any object with a large capacitance to earth can be used to cause the tube to strike.

Once the tube has fired, the touch plate will have no further effect. The anode voltage must be reduced in order to cause the tube to return to the non-conducting state. This may be accomplished by interrupting the anode current by a switch, by operating the tube from an alternating supply, or by extinguishing the tube with the aid of a second touch button (or other trigger tube) arranged in a bistable circuit. This last method is illustrated in Figs. 4.11 and 4.12.

TIME DELAY CIRCUIT

When the GKF11 assembly in Fig. 4.11 is touched, the relay will be energised and the GKF11 will glow for a predetermined time interval, after which the GR15 tube will ignite and the GKF11 will be extinguished. The relay may be used to carry out any desired operation.

When the GKF11 is touched and fired, a negative going pulse appears at its anode and is applied via C2 to the anode of the GR15 trigger tube. The latter is extinguished by the pulse. Contacts RLA1 are part of the relay and open when the relay is energised. Capacitor C 1 commences to charge via the resistor chain.

After the preset time interval, the potential across this capacitor is great enough to cause the GR15 tube to fire. A negative pulse appears at the anode of this tube and is applied to the anode of the GKF11 via C2. The GKF11 is thus extinguished, the relay de-energised, and the circuit returned to its initial state. Contacts RLA1 close so that C1 discharges through R3.

The time for which the relay is energised is determined by the charging time of capacitor C1. This depends on the value of C 1 and the setting of VR1. For a given value of C 1 , alteration of the resistor setting will change the time interval by a factor of up to ten. The time for which the relay is energised is given by the approximate formula:

$$
t=1 \cdot 1(0.47+R) C_{1}
$$

where R_{v} is the value of the variable resistor VR1 in megohms and C_{1} is in microfarads.

"ON/OFF" TOUCH CIRCUIT

The circuit in Fig. 4.12 is a bistable touch operated circuit, whereas that in Fig. 11 is a monostable one. When either of the touch button tubes in Fig. 4.12 is touched, that tube will conduct (if it is not already in the conducting state) and the other tube will be extinguished.

When the tube V1 is touched, the relay will be energised and will remain energised until the $V 2$ is touched. The state of the circuit is shown by the glow emitted from the tube which was touched last. When one tube is switched to the conducting state, a negative pulse is developed at its anode which is passed through the anode coupling capacitor to extinguish the other tube.

OTHER DEVICES

Many other types of triggered tube are available, including those for protecting equipment from high voltage surges. However, it is felt that the types discussed above are those of direct interest to the amateur experimenter.
Next month: Decade counting tubes

SOLDERING HANDBOOK
By B. M. Allen
Published by lliffe Books Ltd.
120 pages, $8 \frac{1}{2}$ in $\times 6$ in. Price 45 s .

THE AUTHOR of this "practical manual for industry and laboratory" is senior works chemist at Multicore Solders Ltd., and this immediately stamps the work with authority. This most comprehensive and up-to-date book on the subject of soldering is divided into three parts. Part One is intended for the operator and deals with making a joint. All the essentials are here in word and diagram, and to hammer home the vital points, these are spelt out in capitals at the end of each section. Part Two is intended for the designer and engineer and it enlarges on methods and materials (i.e. solders and fluxes) for particular jobs. Part Three comprises a collection of data concerning materials and specifications.

Soldering is a subject generally taken much for granted. Yet, seemingly, thousands of people must be guilty of adopting undesirable methods-quite unwittingly! For example: in dealing with electronic circuit assembly, and emphatic warning is given against the use of "side-cutters" when shortening wires after soldering. We are told that the pinching action of these cutters may seriously damage the component or weaken a soldered joint. The recommendation is that if wires must be cut after soldering, then cutters with a shearing action like the Bib stripper should be used. Perhaps this is aimed specifically at industrial operators. No doubt in vital apparatus destined for a trip into space, this question of shock or stress on wires or components, however minute, may be a very serious matter.

This example does illustrate the thoroughgoing techniques preached by this book. It sets out to describe the perfectionist approach. If the methods given are followed, then the overall reliability of electronic equipment must be greatly enhanced.
F.E.B.

THE ELECTRONIC MUSICAL INSTRUMENT MANUAL

By Alan Douglas

Published by Sir Isaac Pitman \& Sons Ltd. 372 pages, $8 \frac{3}{4}$ in $\times 5 \frac{1}{2}$ in. Price 55 s

APART from the theramin, no novelty instruments are contained in this handbook. It is really about electronic organs written by a man whose name is synonymous with this subject and who, of course, designed the P.E. Organ. Whilst this singularity of choice might belie the title, there is a very good reason, for it is in the electronic organ that we find the circuits of tonal synthesis of almost every instrument including the percussion family.

The first two chapters, which are short, deal appropriately enough with the physics of sound and music. From here on, the treatment is entirely electronic in the dissection and presentation of organ circuitry.

In common with most of the circuits in this handbook, practicality abounds. In the large chapter on the frequency generation, division and tone forming, there are many working examples, fully annotated, and featuring both valves and transistors as active elements. It might be added, besides the more conventional types of sine, square and sawtooth generators presented, there are the electromagnetic, electrostatic and photoelectric forms, all of which add up to a very comprehensive treatment of this fascinating subject.

In the subject of division, passive tone forming and amplification, the same liberality of example abounds, and in consequence the complete tyro will experience no qualms when attempting the copius chapter-Commercial Electronic Instruments, where complete console inset circuits, bearing such resounding pedigrees as Hammond, Wurlitzer and Baldwin are available for inspection, backed up by a very informative text.

A final chapter on experimental methods departs from the essentially commercial orientated subject matter, and presents the reader with some guidelines in experimental techniques, both in tone production and realisation.

The handbook is made complete with useful appendices, glossary and bibliography.
G.G.

QUESTIONS AND ANSWERS ON COLOUR TELEVISION

By J. A. Reddihough
Published by Newnes-Butterworths
108 pages, $6 \frac{3}{4} \mathrm{in} \times 4 \frac{3}{4} \mathrm{in}$. Price 10 s

F°OR THOSE about to embark on colour television servicing, or for the radio enthusiast wishing to broaden his knowledge, this pocket book is a valuable addition to the Newnes Q and A series. The contents are presented in easily understood terms with short explanations of colour derivation, separation, transmission reception, decoding and display.

It is adequately illustrated and has an index of terms, circuitry, and explanations. Difficulties in obtaining optimum colour resolution through convergence adjustments are described in a special chapter, with guidance on how one can set up the controls for best results.

A great deal of information is packed into this small book, none of which is superfluous to the knowledge required in understanding colour television.
M.A.C.

TAPE RECORDING YEAR BOOK-\%th edition

Published by Tape Recording Magazine 88 pages, $9 \frac{1}{4}$ in $\times 6$ in. Price los $6 d$

BEING limited to only one branch of electronics, this Yearbook contains 30 pages of details of tape equipments. The remainder of the space is devoted to articles written by well-known authors, the law in relation to recordings, details of competitions, table of tape playing times, glossary of terms, and lists of tape recording clubs and manufacturers.

 PRACTICAL!
 VISUAL!
 Nm $1 / n$ EXCITING!

a new 4-way method of mastering 틀ㅍNNMES by doing
 and seeing

3	READ and
DRAW and	
U N D E R S T A N D	
CIRCUIT DIAGRAMS	

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONICCIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . .		
- VALVE EXPERIMENTS	- PHOTO ELECTRIC CIRCUIT	- A.c. EXPERIMENTS
- transistor experiments	- Computer circuit	- D.C. EXPERIMENTS
- AMPLIFIERS	- basic radio receiver	- SIMPLE COUNTER
- oscillators	- ELECTRONIC SWITCH	- time delay circuit
- Signal tracer	- SIMPLE TRANSMITTER	- servicing procedures
This new style course will enable anyo no maths, and a minimum of theoryto test, service and maintain all types of	ne to really understand electronics by o previous knowledge 'required. It wil Electronic equipment, Radio and TV recain	modern, practical and visual methodalso enable anyone to understand how eivers. etc.

PTPPOST NOW	To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives
I I C BROCHURE	NAME... BLOCK CAPS
I or write if you prefer not to cut page	

BUILD YOURSELF A QUALITY TRANSISTOR RADIO－FULL AFTER SALES SERVICE！

ROAMER 7．

SEVEN WAVEBAND PORTABLE

7 FULLY TUNABLE WAVE BANDS－MW1，MW2，LW，SW1，SW2，SW3 and Trawler Band． Extra Medium waveband provides easier tuning of Radio Luxembourg，etc．Built in ferrite rod aerial for Medium and Long Waves． 5 Section 22in chrome plated telescopic aerial for rod aerial for Medium and leng waves． \mathbf{S} ，Section $\mathbf{2 2 i n}$ chrome plated telescopic aerial for Powerful push－pull output． 7 transistors and two diodes including Micro－Alloy R．F． Transistors．Famous make 7×4 in P．M．speaker．Air spaced ganged tuning condenser． Volumie／on／off control，wave change switches and tuning control．Attractive case with carrying handle．Size $9 \times 7 \%$ in approx．First grade Total buliding ooste Parts price list and components．Easy to follow instructions and 25.19 .68 .8 P．easy build plans 3／－ diagrams make the Roamer 7 a pleasure to build． 20.19 .6 7／8．（FREE with parts）．

Personal Earpiece with switched socket for private listening，5／－extra．

 MRD．ATD LOIG WAV畀．WITH
 6 transiators and 2 diodes．Pueh－ pull output，tuning condenger， 3 in speaker，and personal earplece with switched mocket for urivate listening． $61 \times 4 \div 2 \mathrm{in}$ ．Total Building Conts 80／6．P．\＆P．4／3． Plums and parts Hat 2／－（free with parts）．

traniol a five

MED．AID LOTA AMD TEAMLIA	
BAID	to approx． 50 metres
WITH SPEAK	
PJECE．	5 tramsistors and 2
dioden，ferrite rod serial，tuning	
condenser，volume control，moving	
3／9．	ns and Parta list 1／6（free

POOEST KV MD．and LOYG WAVEA ADD Teatimt BATD to approx． 50 metres．WITH SPEAKER AND AAPPIECE．tramsiators and 2 condenser，moving coll mpeaker，ete
 Coots 41／6．P．\＆P．3／6．Plans and Farts let 1／6（iree with parta）

THD． 10 Na ABD THAWLET BADD．${ }^{7}$ transiator：and 3 in speaker， $2 \quad$ n．F tages，puhh－pull output，etc． $7 \mathrm{x} \times 1 \times 1$ itin．Total Eailatioy Doety N／E，P．\＆P．4／6．Plani and parta list $2 /$（free with partu）．Permonal Earpiece with switched socket 10：private Hatenligg， $6 /-$ extra．

ROAME 野

 6 WAydmaide－ITVI，IVF， BAif． 6 transiatore and 2 difdea． Ferrite rod and teletcople aeriais． 3in speaker．Top grade com： popents．size $7 \frac{51}{} \times 1 \frac{1}{2} \mathrm{~m}$ ． podal Pinlate Donts ro／b．P．\＆ \mathbf{P} ． 4／6．Plans and parts liat 2／： （free with parts）．

NEW PRICES ON NEW COMPONENTS

RESISTORS

High stability, carbon film, low noise. Capless construction, molecular termination bonding.

Leads;

$$
\text { IW; } 10
$$

10% ranges; 100 hms to 10 Megohms (E12 Renard Series) 5% ranges; 4.7 Ohms to I Megohm (E24 Renard Series) Prices-perOhmic value.

$1 W W$	10%	each	10 off	25 off	100 off
$W W$	10%	2 d	$1 / 6$	$3 / 3$	$10 / 4$
$W W$	5%	$21 d$	$1 / 9$	$3 / 8$	$11 / 8$
$1 W$	10%	$21 / 8$	$1 / 9$	$3 / 8$	$11 / 7$
$1 W$	5%	$3 d$	$2 /-$	$4 /-$	$12 / 10$

CAPACITORS

Subminiature Polyester film. Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads. $\pm 100 \%$ tolerance.
Prices-per Capacitance value ($\mu \mathrm{F}$)
$0.001,0.002,0.005,0.01,0.02$

0.05	\cdots
0.1	\cdots
0.2	\cdots
0.5	\cdots

100 Volt Working.

Polystyrene film, Tubular, Axial lead
Prices-per 5% or ± 1 tolerance.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$)
10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, $82,100,120,180,220,270,330,390$. $470,560,680,820,1,000,1,500$ $2,200,3,300,4,700,5,600$
$6,600,8,200,10,000,15,000$
22,000.
Polystyrene film, Tubular, Axial leads. Professional Grade. Hard Epoxy Resin encapsulation.
Prices- $\pm 1 \%$ solerance.

$$
\pm 1 \% \text { colerance. }
$$

100 Volt Working.

POTENTIOMETERS (Carbon)
Miniature, fully enclosed, rear tags, carbon brush wiper. Long life, low noise. Body dia. İin. Spindle. lin. $<$ tin. $\ddagger W$ at $70^{\circ} \mathrm{C}$. $\pm 20 \%$ IM, $\pm 30 \%$. IM Lin. 100 Ohms to 10 Megohms, Log. 5 Kohms to 5 Megohms. $\begin{array}{llllll}\text { Prices-per ohmic value. } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 2 / 3 & 20 /- & 45 / 10 & 186 / 8\end{array}$

GANGED STEREO POTENTIOMETERS (Carbon)
W at $70^{\circ} \mathrm{C}$. Long Spindie.
Logarithmic and Linear: $5 \mathbf{k}+5 \mathbf{k}$ to $I M+I M$

| Prices per ohmic value | each 10 off
 $8 /-$ $70 /-$ | 25 off | 100 off |
| :---: | :---: | :---: | :---: | :---: |
| | $82 / 6$ | $575 /-$ | |

SKELETON PRE-SET POTENTIOMETERS (Carbon)
Hish quality pre-sets suitable for printed circuit boards of 0.1in. P.C.M.
104 Ohms to 5 Megohms (Linear oniy).
Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}_{1} \pm 30 \%$ above $\frac{1}{2} \mathrm{M}$. Horizontal (0.7in. $\times 0.4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0-2 \mathrm{in}$. P.C.M.).

Subminiature: 0.1 W at $70^{\circ} \mathrm{C}$. $\pm 20 \%$ below $2.5 \mathrm{M}, \pm 30 \%$ above.
Prices-per ohmic value

per ohmic value			each	10 off	25 off	100 off
Miniature $(0.3 W)$	\ldots	\cdots	$1 /-$	$8 / 9$	$18 / 9$	$66 / 8$
Subminiature (0.1 W)	$10 d$	$7 / 1$	$14 / 7$	$46 / 8$

JACK PEUGS
tin. Type PI. Standard. Screened. Heavily chromed.
tin. Type SE/PI. Side-enery version of type PI.
tin. Type P2. Standard. Unscreened. Unbreakable moulded cover
tin. Type P3. Tip-Ring-Sleeve Stereo version of Type P1.
$\frac{1}{2}$. Type P4. Tip-Ring-Sleeve Stereo version of Type P2.
3.5 mm Type P5. Standard. Screened. Aluminium cover
3.5 mm Type P6. Standard. Unscreened. Unbreakable moulded cover Prices-

	each	10 off	25 off	100 off
PI.	$3 /-$	$26 / 8$	$62 / 6$	$233 / 4$
SE/PI.	$3 / 6$	$30 / 10$	$66 / 8$	$280 /-$
P2.	$2 / 6$	$23 / 4$	$54 / 2$	$200 /-$
P3.	$6 / 6$	$60 /-$	$137 / 6$	$500 /-$
P4.	$6 / 2$	$56 / 6$	$127 / 6$	$455 /-$
PS.	$2 / 2$	$19 / 2$	$43 / 9$	$150 / 4$
P6.	$1 / 8$	$15 /-$	$33 / 4$	$116 / 8$

JACK SOCKETS
tin. Type S3. Stereo version for use with P3 or P4 pluss.
tin. Type S.S. Standard. Moulded body. Chrome inser
$\mathbf{3 . 5 m m}$ Type $\$.6$. Standard. Mouldea body. Chrome insert.
Available with make or break contacts on Tip, Ring and Sleeve.
Prices-

	each	10 off	25 off	100 off
$S 3$	$3 / 3$	$30 /-$	$68 / 9$	$250 /-$
$S 5$	$2 / 9$	$25 /-$	$56 / 8$	$216 / 8$
56	$1 / 6$	$13 / 4$	$33 / 4$	$100 /-$

ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$

$\begin{aligned} & \text { Subminizture (all vall } \\ & 4 \mathrm{~V} \end{aligned}$	$\mu 5)$ 32	64	125		250	400
$6.4 V V^{6} 6$	25	50	100		200	320
10 V	16	32	64		125	200
16 V 2.5	10	20	40		80	125
25 V	. 6.4	12.5	25		50	80
40 V I	- 4	8	16		32	50
64 V	$2 \cdot 5$	5	10		20	32
Price 1/4	$1 / 3$	1/2	1/-		1/1	1/2
Small (all values in $\mu \mathrm{F}$)						
4 V	800	1,250		2,000		3,200
6.4 V	640	1,000		1,600		2,500
10 V	400	640		1,000		1,600
16 V	250	400		640		1,000
25 V	160	250		400		640
40 V	100	160		250		400
64 V	64	100		160		250
Price	1/6	2/-		2/6		3/-

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mathrm{~F}, 8 \mathrm{~d} .0 .068$ $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}$, IId. $\quad 0.22 \mu \mathrm{~F}, \mathrm{I} /-. \quad 0.33 \mu \mathrm{~F}, \mathrm{I} / 3 . \quad 0.47 \mu \mathrm{~F}, \mathrm{I} / 6 . \quad 0.68 \mu \mathrm{~F}$, 2/3. 1μ F, 2/8.
400V: $1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.02 \mu \mathrm{~F}$, $7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}, \mathrm{I} \mathrm{Id} . \quad 0.15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}$, $1 / 6 . \quad 0.33 \mu \mathrm{~F}, 2 / 3$. $0-47 \mu \mathrm{~F}, 2 / 8$
Modular, metallised. P.C. mouncing, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.15 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, \mathrm{I} / \mathrm{s}$. $0.47 \mu \mathrm{~F}, 1 / 8$. $0.68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}$, $2 / 9$.
SEMICONDUCTORS: OA5, OABI, 1/9. OC44, OC45, OC71, OC81, OC8ID, OC82D, 2/-. OC70, OC72, 2/3. ACI07, OC75, OC170, OC171. 2/6. AFI15, AF116, AF117, ACY19, ACY21, 3/3. OC140, 4/3., OC200, 5/-. OC139, 5/3. OC25.7/-. OC35, 8/-. OC23, OC28, 8/3.

SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. I,500 P.I.V., 4/-. (0.75A): 200 P.I.V., I/6. 400 P.I.V., 2/-. 800 P.I.V., 3/3. (6A): 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.i.V., $57-.800$ P.I.V., $6 /-$.

SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125 V .
Push Buttons: Push-on or Push-off 5/-. Tozgle Switches: SP/ST, $3 / 6$. SP/DT, 3/9. SP/DT (with centre position) 4/=. DP/ST, 4/6. DP/DT, 5/:
ROTARY SWITCHES (Wafer)
Hish quality. Rear tass. Long spindle, $\ddagger^{\prime \prime}$ Dia.
$1 p / 12 w, 2 p / 6 w, 3 p / 4 w, 4 p / 3 w, 2 p / 3 w$.

| Prices- | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| All Types | | 10 off | 25 off | 100 off |
| | $48 / 4$ | $83 / 4$ | $203 / 4$ | |

PRINTED CIRCUIT BOARD (Vero).
 $\sin \times 3$ in. $5 / 6$.
 5/3.

Send S.A.E. for January, 1969 Catalogue

DUXFORD ELECTRONICS (PE)
 97/97A MILL ROAD, CAMBRIDEE

Telephone: CAMBRIDGE (0223) 63687
(Visit us - at our new Mail Order, Wholesale \& Retail Premises) MiNIMUM ORDER Yalue 5/
C.W.O.

Post and Packing 1/6

your corinima can

Enough power to reach $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in under ten seconds! How can she do it? Easy . . . when she's been fitted with a 3-litre V6 Ford Zodiac engine. And that simple conversion could cost you as little as one third of the price of a new big-engined baby.
Profit from our experience at PRACTICAL MOTORIST. After only a few minor body modifications, we successfully shoehorned this large-capacity power unit in with safety. Now she really knows her way about on our trafficpacked highways, and she's ready any time to get herself adapted for racing, rallying, hill climbing and sprints.
Read the two-part case-history of our compact " extra-delivery " V6 Cortina, starting in the September issue.

September issue OUT NOW: 2/6

ELECTROVALUE

EVERYTHING BRAND NEW AND TO SPEC. NO SURPLUS
SPECIALIST
SUPPLIERS OF TRANSISTORS
IN TYPES TO SUIT ALMOST ALL APPLICATIONS - COMPEIITIVE PRICES

- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE Our latest 1969 catalogue is packed with up-to-the-minute items and invaluable information. Send $1 / 6$ for your copy now.
- DISCOUNTS 10% on orders for components for £3 or more. 15% on orders for components for £ 10 or more.
- POSTAGE on orders for El , add $\mathrm{I} /$. . FREE on orders for fl or over. Overseas orders welcome-Carriage charged at cost.
ELECTRDVALUE
(DEPT. PE), 32: ST, JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY Telephone: Egham 5533 (STD 0784-3)

and work at the nerve centres of civil aviation

The National Air Traffic Control Service, a Department of the Board of Trade, needs Radio Technicians to install and maintain the very latest electronic aids at Civil Airports such as Heathrow. Gatwick and Stansted. Air Traffic Control Centres. Radar Stations and specialist establishments.

This is responsible demanding work (for which you will get familiarisation training) involving communications, computers, radar and data extraction, automatic landing systems and closed-circuit television and it offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now.

Starting salary is $£ 915$ at (19) to $£ 1.189$ (at 25 or over): scale maximum £ 1.372 (higher rates at Heathrow), and some posts attract shift-duty payments. From January 1970 these rates will be increased to $£ 985$. $f 1,295, £ 1.500$ respectively. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

[^4]Name.
\qquad

Not applicable to residents outside the United Kingdom.

Pructicul Electronics Classified Advertisements

miscellaneous

0.03	$\begin{aligned} & \text { ASS } \\ & \text { LIG } \\ & \text { DIA } \\ & \text { Win } \end{aligned}$		$\begin{aligned} & \text { FIBRI } \\ & \hline \mathbf{G} \\ & \text { P.VIB } \\ & \text { P. } \end{aligned}$	UID E BUN sLévi	OPTIC ES
5^{\prime}	10^{\prime}	15^{\prime}	25^{\prime}	50^{\prime}	STRICTLY
19/6	34/6	$47 / 6$	72/3	132/3	
FIBRELIGHT, Dept. PEA3I STOKE ROAD, GUILDFORD, SURREY					

PROSECT BUILDERs note-Having trouble obtaining special components? We will endeavour to supply ALL parts for your project, specials, e.g., coils, p.c. boards, etc., as well as standard items. SRY FLECTRONICS, 11 Rosedene Ave., Croydon, CRO 3DN 01.6840402 .

WANTED. Somebody to construct about three metal detectors. Possibility of further orders. Terms to be negotiated. Contact-CHAIT, Flat 6, 170 Highgate Rd., London, N.W.5. Gulliver 8395 .

ROBOTS

Synthecic Animals with "BRAINS" of their own. The NEW range of projects include: an electronic 'animal' which "LEARNS": an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which "recognizes" itself, and an electronic dog whistle, etc.. etc. and an electronic dog whiscle, ecti, jects, for anyone with a basic knowiedge lects, for anyo
of Electronics.
SEND $2 / 6$ for your list-NOW!
To: 'BOFFIN PROJECTS' incorporating
BIONIC DESIGNS, 4 CUNNLIFFE RD. STONELEIGH, EWELL, SURREY Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

> STATE OF THE ARTISTS LIST OF Comps and full data, applications on latest de uhr low noise N/FET, 2 N5245, $10 / \mathrm{ea}$. also Sprague 'UNICIRCUIT' ULN2IIAA, di.... for $\begin{aligned} & \text { FM/SSB det. } 60 \mathrm{db} \text { wdebnd amp/lim, etc. } \\ & \text { f1,10.6 ea. C.W.O. } 6 \text {. }\end{aligned}$

PROFESSIONALLY MADE CONTROL PANELS from 4d. sq. in. 16/18 gauge aluminium, cut drilled, spray painted and legend. Send full size drawing for quotation. C.S. CONDUIT, 7 Millbrook, Salisbury, Wilts.

6 OR 12 VOLT
 FLUORESCENT LIGHTS

12 ins. 8 Watt tube ample light for caravan, tent, etc. Fully transiatorised, low battery drain Unbeatable at \&2.19.6 or in kit form 50/m SALOP ELECTRONICS 88 wite Cop, Shrowibary.
S.A.E. for lists

HI-Fi loudspeaker systems for the home constructor, cabinet kits, the new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding, speaker fabric (samples on request) and all other necessary components. Send 5 d in stamps to AUDIOSCAN, Dept. PE, 4 Princes Square, Harrogate, Yorks.

> RATES : $1 / 3$ per word (minimum 12 words). Box No. $1 / 6$ extra. Advertisements must be prepaide nd addressed to Advertisement Manager,
> "Practical Electronics"
> IPC MAGAZINES LTD.,
> Fieelway House, Farringdon Street, London, E.C. 4

MISCELLANEOU8 (continued)

BRAND NEW. Sangamo Weston Domestic Time Switches, Model S. 302 , in maker's boxes. Normally 24.14. Special offer, without plug, $43+5 /-$ p. \& p. Hurry, only 40 available. E.P.H. Co., 17 Cambridge Road, Ellesmere Port, Wirral, Cheshire.

EUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ in \times any length. DEW LTD. Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

ETCHED PRINTED CIRCUIT BOARD KITS. Full instructions. 19/6, c.w.o. CIRCUITETCH, 12 Cambridge Rd., St. Albans, Herts.

Musical miracles. Send S.A.E. for details of Rhythm Modules, Versatile Bass-pedal unit, self-contained with unique effects, kits for selif-contained with unique effects, kits for
waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters $25 /-$ WaA-waa pedals. Also new $50 \mu A$ meters $26 /-$
post paid. HURTY! D.E.W. LTD. 254 Ringpost paid. HURRY! D.E.W.

UFO DETECTOR CIRCUITs, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

ELECTRONIC sOLITAIRE. Build this game from complete kit. Over 32,000 combinations Hours of intrigue, relaxing, challenging! Full kit and instructions 55/-. Educates in binary logic. D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

ONE OFF PRINTED CIRCUIT BOARDS. Cheaply made to customers' requirements. Send s.a.e. for details: D. R. MANN, 12 Randolph St., Nottm.

CLEARIMG LABORATORY, scopes, V.T.Y.M's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, M/C relays, components, etc. Lower Beeding 236.

SERVICE SHEETS

LARGE SUPPLIER

 OF SERVICE SHEETS
t.v., RMDO, transistors, thpes. cha moios

Only $5 /-$ each, plus LARGE S.A.E.
(Uncrossed P.O.'s please, returned If service sheets not available.) free tv fault tracing chart or tv

LIST ON REQUEST
C. CARANNA
$7 I$ BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

SERVIGE SHEET8

(continued)
8ERVICE 8HEET8 (1925-69) for televisions, radios, transistors, tape recorders, record players, etc., by return post, with free faultflaying guide. Prices from $1 /$-. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

GERYICE SHEETS, Radio, TV, 5,000 models, List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

RADIO TELEVISION, over 8,000 Modela. JOHN GILBERT TELEVISION, 1b Shopherds Bush Rd., London, W.6. SHE 8441.

FOR SALE

86,000 IN VOUCHER8 EIVEN AWAY. See free Cat. for details. Tools, Materials, Mechanical Electrical. thousands of interesting items. WHISTON, Dept. PVE, New Mils, Stockport SK12 4HL

MORSE MADE ! !

FACT NOT FICTION, It you start RIGHT you will be reading amateur and commercial Morte you will be reading amateur and commercial
Using scientifically propared 3 -speed records you automatically learn to recognise the code BHYTHY Without translating. You can't help It, it'a as easy as learnlag a tune. 18 W.P.M. in 4 weeks guaranteed. For details and course C.O.D. ring 8.T.D. 01-660 2606 or gend 8d. stamp for explanatory booklet to
GBESC (BOX 19), 45 GREEA LANE, PURLET, SUREET
WANTED ALL COPIE8 PRACTICAL ELECTRONIEs, any condition. List quantity, and price wanted. Box 21.
"PRACTICAL ELECTRONIC8", first to latest29. McGILL, 48 Shannon Rd., Hull, Yorkshire.
E.H.T. REGTIFIER8, K8/30 5/-. K3/50 7/6 K3/100 12/6. Oluf 6 kV 4/6. Power Rheostat L25W 5 ohms $10 /-$. Vib. pack $6 \mathrm{~V}-220 \mathrm{~V}$ 30/-. P. \& P. 1/6. S.A.E. for list ROURDON CAMPS, 41 Higher Compton Road, Plymouth, Devon. Tel. 075277974.

BOOKS AND PUBLICATION8

SURPLUS HANDBOOKS

19 set Circuit and Notes 6/6 P:P. $6 d$

 1155 set Circuit and Notes 6/6 P.P. $6 d$ H.R.O. Technical Instructions .. $5 / 6$ P.P. $6 d$ 38 zet Technical Instructions. . 38 set Technical instructions.46 set Working Instructions. 88 set Technical Instructions. . BC. 221 Circuir and Notes... . $7 /-$ P.P. $6 d$ BC. 221 Circuir and Notes $\ldots .$. 5/6 P.P. $6 d$ Wavemeter Class D Tech. Instr 5/6 P.P. $6 d$ 18 set Circuit and Notes BC. 1000 (31 set) Circuit \& Notes 5/6 P.P. $6 d$ CR.100/B. 28 Circuit and Notes 10/-P.P. 9d R. 107 Circuit and Notes...... A.R.88D. Instruction Manual.... 18/- P.P. $6 d$ 62 set Circuir and Notes $\ldots . . .6 / 6$ P.P $6 d$ 52 set Sender \& Receiver Circuits 7/6. post free Circuit Diagrams, $1 /-$ each post free.
R. $1116 / A$, R.1224/A, R.I355, R.F. 24, 25, \& 26.
 A. 1344, T.M.54, CR. $300, ~ B C .342$
BC. $348.1 . E . M . P . ~ B C .624 . ~$
2

Resistor Colour Code Indicator... 2/6 P.P. 6d S.A.E. with all enquiries please.

Postage rates apply to U.K. only.
Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds' 8
aET INTO ELECTRONIC8 - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.'F.E.B., City \& Guilds, mentio, T/V, Telecons., ete. For FREF 100page book, write Dept. 856 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.1.

GITY \& GUILDS AND R.T.E.B. EXAMS. Specialised ICS home-study course will ensure success. For details of wide range of exam. and diploma courses in Radio, T.V. and Electronics also new practical courses with kits, write to ICS (Dept. 577), Intertext House, Stewarts Road, London, S.W.8.

RADIO \& TELEVISION SERVICING RADARTHEORY\& MAINTENANCE TELECOMMUNICATIONS This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to :-
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5.

Tel. 01-373 8721

TEGHNIGAL TRAINING in Radio, TV \& Electronics thro' world-famous ICS. For details of proven home-study courses write: ICS, Dept. 561, Intertext House, Stewarts Road, London, S.W.8.

8ITUATION8 VACANT

A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-TREE. Please state stbject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124 K), Aldermaston Court, NOLOGY (Dept. 12
Aldermaston, Berks.

RADIO TECHNICIANS

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer " O " Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of electro-mechanical equipment will be an advantage.

Salary. Scale is from $£ 915$ at 19 to $\mathrm{fl}, 189$ at 25 (highest pay on entry) rising to $£ 1,372$. (These scales are being further increased at I.I.70). Posts are unestablished, but opportunities exist for establishment and also advancement to higher grades up to $\mathbb{E 2 , 1 4 5}$ with a few posts carrying still higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
Recruitment Officer (RT/54)
Government Communications Headquarters Oakley, Priors Road
Cheltenham, Glos. GL52 5AJ

ENGINEERS. A technical certiflcate or qualiffcation will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.J. A.I.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Elec., in all branches of Engineering-Mech., Elec., Draughts., Building, etc. For full details write for FREE 132-page guide. BRITISH INSTITUTE OH ENGINEERING TECHNOLOGY (Dept. 125 K), Aldermaston Court, Aldermaston, Berks.

TAPE RECORDERS

TAPEs TO DISC-using finest professional equipment-45 r.p.m. 22/-. S.A.E. leaflet DEROY, High Bank, Hawk Street, Carnforth. Lancs.

RECEEVER PARELS MW/LW, Size $8 \times 3 \mathrm{in}$. Six watt output, contains ali reaistors, capacitors, I.F. transtormers, osc. coil and transistors but will require ferrite aerial, tuning capacitor, wavechange switch, and volume controt, supplied with connecting data, as brand new, made by tamous British manufacturer, ONLY 32/6 post paid.
TUNING CAPACHTORS (Brand new and boxed). 345pF +165 pF with two 20pF sections for F.M. tuner, size $2 \xi \times 2 \times 1$ in. ONLY $4 / 6$ each or $8 /$ for two. $325 \mathrm{pF}+375 \mathrm{pF}$ with two 20 pF sections for F.M. tuner, size $2 t \times 1 \mathrm{f} \times 1 \mathrm{lin}$. ONLY $4 / 6$ each or 8/- for two.
VOLUME CONTROLS. $5 k$ log. with S.P. switch, $\#$ in dia. apindle. $2 /$ - each (new).
DISC CRRAMIC CAPACTIORS. $0.02 \mathrm{mF} 500 \mathrm{v} . \mathrm{w}$. wire ended, $1,800 \mathrm{pF} 1,000 \mathrm{v} . \mathrm{w}$. wire ended, 0.047 mF 30v.w. P.C. type, all 3/- doz.
Thyriators. 400 P.I.V. at a amp. ideal for drili speed controls. $12 / 8$ each.
TRAAMSISTORS. GT45B equiv. to OC45, OC71, ete. (BRAND NEW marked). $1 / 3$ each, 12)- doz.
TRAISFORMERS, 250 V a.c. input, 22 volts at 1 amp. output. 11/-post paid.
TAG STRIPS. 41 in long with 9 insulated tags and 2 earth tags. 4 d . each, $3 /-\mathrm{doz}$.
MIXED BAG. Silver mica and ceramic capacitors, approx. 150 items 10/-bag. Approx. 250 for 15/-. 8×633 SILICON DIODES. Unmarked 300 P.I.V. at ${ }^{4}$ amp. tested 9 d , each, $5 /-$ doz.
ELECTROLYTICS. $32+32 \mathrm{mF} 250 \mathrm{v} . \mathrm{w} .8 /-$ each. TRANSISTOR. Single tuned $470 \mathrm{Kc} / \mathrm{s}$ I.F. trang tormers, 1/6 each, 4 for 5/-.
VALVE. $465 \mathrm{Kc} / \mathrm{s}$ I.F. transtormers $18 \mathrm{sq} ., 1 \mathrm{in}$ high, some 2in high, 2/-each.
HOTTS. 25 mF . $350 \mathrm{v} . \mathrm{w}$. \& < in, brand new, wire ended, Bd. each, 4/- doz.
TELEVISION mains dropper resistors-send for iist. $12.7 \mathrm{Mc} / \mathrm{s}$ and $13.125 \mathrm{Mc} / \mathrm{s} \mathrm{HC6} / \mathrm{U}$ xtals. tested, ex-equipment, $4 / 6$ each.
ALL ITEMS PLUS $1 / 6$ POSTAGE UNLESS STATED. MAIL ORDER ONLY
A.E. FOR LISTS

A. J. H. ELECTRONICS
 59 WAYERLEY ROAD, THE KENT RUGBY, WARWICKSHIRE
 RUGBY 71066

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I C S trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. \% G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION
* P.M.g. CERTIFICATES IN RADIOTELEGRAPHY

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

RECEIVER8 AND COMPONENT8

(continued)

R \& R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

BF80	$3 /-$	PCCB4	$3 /-$	PY81	$3 / 6$
EBF89	$3 / 6$	PCFB0	$3 /-$	PY82	$3 /-$
ECCB2	$3 /-$	PCFB2	$3 / 6$	U191	$4 / 6$
ECL80	$3 /-$	PCLB2	$4 /-$	$6 F 23$	$5 /-$
EF80	$1 / 6$	PCLB3	$4 /-$	$30 F 5$	$2 / 6$
EF85	$3 /-$	PL36	$5 /-$	$30 L 15$	$5 /-$
EY86	$4 /-$	PLBI	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PLB3	$4 /-$	$30 C 15$	$5 /-$
EBC41	$4 / 6$	PY33	$5 /-$	$50 C D 6 G$	$7 / 6$

Transistor Audio Pack, 2G339A, 2G3B1A, 2G371B 10:- each post 6d.
POST, ONE VALVE 9d. TWOTOSIX 6d. OVER SIX POST PAID

TRANSISTORISED REVERBERATION

Six transistor circuit, all components £7.10.0. post free. (Case 34/- extra, P. \& P. 2/6). Círcuit and construction details $1 /$ (free with kit).
TRANSISTORISED SIGNAL INJECTOR 19/6 P. \& P. 1/6. Catalogue of components etc. 1/-. Wilsic Electronics Ltd, 6 Copley Road, Doncaster, Yorks.

```
TRANSISTOR PANELS
INTEGRATED CCT'S TAKEN FROM
PANEGLS
A - Quad 2I/P Gate 5/. With Circuit
C-Dual 41/P Gate 5/% and Pin
O二Dual 2 Level Gate 5/0 Connections
F-Single I/P Gare
/. Post Paid
EX GOVMT. RECEIVER R. }209\mathrm{ covering
1-20 mc/s 12V D.C. Input &12.i0.0 Post Paid
(Tested).
50 VARIOUS TRANSISTORS on Panels
15/- Post Paid.
20-OC45
20-OC76
<1
COMPUTER PANELS with 40 sil. pnp or
npn transistors,Diodes and res., 22/6 Post Paid.
COMPUTER PANELS WITH SEMI-
CONDUCTORS.. Postage 6d per panel
84-OC42 or GET875 + 24-OAB1
24_A1678 (V405A) }550\textrm{mc}/\textrm{s}\mathrm{ PNP +
    Diodes
```



```
    9-ASZ20 + 1-T2O40 + 27 Diodes
    2-OC42+6-GETB75 + Diodes
    2-OC170 + 1-2G306
    6-2N3BB + 2-2G403 + 2-T2040
    8-ASZ20 + B00 Diodes
    C-ASZ2I + 15-OA911
12-2G106 + 24 Diodes
    8-OC72 + + 24-OA10
    6-2N38B
12-2N3BB}+0-OA1
```



```
36-Diodes
6-GET872 + 8-OAD'O
4-G5Z20 + B0 Diodes
    4-2G106 + 8-OA10
    2-0C42+8-2N2410
    2-GETB72 + 4-OA
24-5it.h.f. Transistors
3-OC23+6-OA10+2, ETC.
TEST CARDS, 6 transistors 20 for 20/ ELECTROLYTICS 25,000 M \(12 \mathrm{~V}, 16,000\) a \(12 \mathrm{~V}, 15,000 @ 10 \mathrm{~V}, 10,000 @ 30 \mathrm{~V}, 4,000 @\) \(60 \mathrm{~V}, 3,000\) @ \(80 \mathrm{~V}, 2,000\) @ \(50 \mathrm{~V}, 1,200 @ 180 \mathrm{~V}\). /6 Post Paid.
ZENER DIODES-2.4, 2.7. 3.6. 4.75, 5.25, \(5 \cdot 75,6 \cdot 2,6 \cdot 8,7.5,13,15,16,18,20,27,30,33\) volts. \(3 / 6\) each, mostly I watt
POLYSTYRENE CAPACITORS. 125V, 18 , 22, \(120,220,270,330,390,560,820,1,000,1,200\) \(1,800,2,200,2,700,3,300,3,900,4,700,5,600\) 6,800, 8,200, 0.01, \(0.012,0.015,2 / 6\) dox. Post/
ERAND NEW BOXED CHASSIS containe ing 2-OC35, 2-OC29 12 WW resisters \(25 /-\) Postage \(1 / 6\)
NEW CROSS RADIO
6 OLDHAM ROAD, MANCHESTER 4
```

REGEIVER\& AND COMPONENTS
(continued)

TAPE HEADS

 bgr marr. 39/6 ${ }_{4}$ 4-TRACK OLETS ERABE ULTRACK 27/6 michigan rec./play
 TRANSIBTORIBED FM TUNER
6 TRANSISTOR HIGH QUALITY TUNER. 6 TRANSISTOR HIGH QUALITY TUNER. tuned discriminator. Ample output to feed most amplifiers. Operates on 9V battery. Coverage 88 -108Mc/s. Ready built ready for $\mathbf{~ 4 6 . 7 . 6}$
use. Fantastic value for money SUB-MIN. TRANSISTOR LW/MW/FM TUMER Similar to above. Complete with aerial, $\leq \| 4$ TUNER dulci patys stergo $\quad \mathbf{E 2 3}$
COMPAGT TRAMSIETOR EM TUMRR
Oiled Walnut cabinet, brushed gold front
panel, vertical styling, intermal bat teries
E. FI MULTIPLEX STEREO ADAPTOR Printed circnit biscuit, 4 trans. 6 \&4. 19.6
diodes 9 V with full ingtructions LOUDSPEAKERS
12" TWIN CONE 10 O $\mid 12^{*} 25$ watt, 15 ohm watt PEAK
whm

 or Amplifier, etc
4 pole changeover, ideal for models.

Horn typ 14/-
$3 \mathrm{kc} / \mathrm{s}, 16$ or 3 ohm
WOK

8UPER SILICON RECT. T.V., etc., 1.200 PIV $800 \mathrm{~mA}, 5 / 0 ;$
condenser, $\mathbf{8} / 6 ; 400$ PIV HW $6 \mathrm{FA}, 6 /-; 200$ PIV HW $6 \mathrm{~A}, 6 / \mathrm{e}$. BY100 type, 6 for $10 /=$.
Jumper lend 6°. Croc clips to Phono plug 7/6 and Sta. Jack Adapto
2N3638A $5 / \mathrm{m}$,
NCY28A 5/m, 2N3643 5/6, AC138 5/-, AC141 5/ACY20 3/8, ACY21 4/-, AD140 5/-, AF178 11/8,
 OAZ270 3/6, OC35 5/= OC45 $\% /=$ OC81D $9 / 3,0$ C82 $4 /-, 0 \mathrm{C} 2003 / 8$.
GET103-113-118-119-887-889-890-896-7-8 8/CRAMGER DECKS
UA25 BSR with template, Mono. List 28.19 .6 $\begin{array}{ll}\text { UA25 BSR with template, Mono. } & \text { List } 46.19 .6 \\ \text { UA25 BSR with template, Stereo. } & \text { List } 87.9 .6 \\ \text { 1025 Garrard with template, Mono. } & \text { Liat } 878\end{array}$ 1025 Garrard with template, Stereo. List E7,i7.6 PLINTH insimulated teak. Complete with $\mathbf{f 4} 15$; 0 P/P on Decks or Plinth and Cover $7 / 6$
SWITCH ROTARY RECIPROCATING 4
Position, 15amp. Single hole fixing, with $4 / 6$
C60 CASSETTE 10/3. C90 14/3. 3 Post free Stamped envelope for full selection and bargain ofters in MULTIMETERS, RADIOS, BABY ALARMS, INTERCOMS, WALKIE-TALKIRS Lists. UNDER \&1-P. \& P. 6d., \&1 to E3-1/6 Lists. UNDER £1-P. \& P. 6d., \&1 to £3-1/6

DURHAM SUPPLIES
 367 KENSINGTON BTREET
 BRADFORD 8, YORKBHIRE

INTEGRATED CIRCUIT8 at lowest price GE Type Pa234 1 Watt Audio Amplifier Few only at $17 / 6$ each inc. data $P . \&$ P. C.W.O. JEF ELECTRONICS, 12 York Drive, Grappenhall, Warrington, Lancs. Mail order only.

COMPONENTS

Samples from our catalogue:-Geared motors $300 \mathrm{rpm}-1 \mathrm{r} / 24 \mathrm{H}$ from $7 / 6,15 \mathrm{v}$. 300 mw . Zeners 3/-, 10K $+10 \mathrm{~K} 2 \% 3^{*}$ eanged pots 20/-, 220 ohm 200 watt resistors $7 / 6$, 6 d. stamp for catalogue.
F. HOLFORD \& CO.

6 imperial Square, Cheltenham

REGEIVERS AND COMPONENTS

(continued)
BRAND NEW MINIATURE ELEGTROLYTICB, 15/16 volt, $0 \cdot 5-200 \mathrm{mfds}$. 8/- dozen, $\frac{1}{6}$ watt 5% carbon film resistors, 10 ohms- 1 megohm $1 / 6$ dozen. Minimum order $7 / 6$ postage $1 /-$. The C.R. SUPPLY CO., 127 Chesterfleld Rd. Sheffield, $880 R N$.

NEW VHF KIT

Receives Television Sound, Ambulances, Aircraft, Redio 2,3 and 4 on VHF, etc
This novel little set will give you endless hours of pleasure and can be built in one evening. The Kit come with easy to follow instructions and circuit. Powered by 9v Battery. Complete with built in Jack Plug Bocket for use with Earphones or Amplifier

ONLY 57/-. P, \& P. FREE U.K. OALY Postal Orders, Cheques to
Galleon Trading Co., 298A Lodge Lane, Romford, Essex

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT conductors and to packed with semi capaciters, diodes, etc. Our price, 10 boards $10 /-$. P. \& P. 2/-. With a guaranteed mini mund of 35 transistors.
SPECIAL BARGAIN PACK. 25 boards for \&f. P. \& P. 3/6. With a guaranteed minimum of 85 transistors. 100 boards $85 / \infty$.
P. \& P. $7 / 6$. With a guaranteed minimum of 350 transistors.

GIANT PANELS. $5 \frac{1}{2}$ in $\times 4 \mathrm{in}, \min .20$ transistors, $9 \times 56 \mu \mathrm{H}$ induetors,
diodes, etc. 3 for $\& 1$. $\mathrm{P}, \mathrm{P}, 2 /=$, diades, ate. 3 for 2
PANELS with 2 power transistors sim. to OC2B on each board +components. 2 boards
$(4 \times O C 2 B) 10 /-. \quad$ P. $\&$ P. $2 / \%$.

TRIM POTS. On 2 in $\times 4$ in boards + Ta caps and other components. 100 g , 500Ω, 15 K ., 20K. State

NPN GERMANIUM TOS : WATT POWER TRANSISTORS, On smalt heat sink, on 2 in $\times 4$ in panel. 5 for $10 / m$. P. \& P. 2/-.
POWER TRANSISTORS. 5 im , to 2 Ni74 ex-eqt. On Finned Heat Sink (IOD). 4 for \&1.
P. \& P. 5/. P. \& P. 5/-

DIODES. Ex eqpt., Silicon, $150 \mathrm{PIV}, 10 \mathrm{amp}$ 4 for $10 /-\quad 150 \mathrm{PIV}, 20$ amp. 4 for El. Post

OVERLOAD CUT OUTS. Panel mount ing in the following values ... 5/- each. 2,3 ,

MINIATURE GLASS NEONS, 12/6 doz.
P. \&P. I/. P. \& P. 1/-.

PAPST FANS. Powerful Extractor/Blower fans. $230 / 250 \mathrm{~V}$. $100 \mathrm{c} . \mathrm{f} . \mathrm{m} ., 2,800 \mathrm{r} . \mathrm{p} . \mathrm{m}, 35 / \mathrm{F}$ \& P. each

MICRO SWITCHES. Miniature button type. 10/-doz. P. \& P. $1 / 6$.

TOGGLE SWITCHES LONG ARM. Ex eqpt., SPST $13 / 6$ doz., DPST $15 /$ - doz.
DPDT $22 / 6$ doz. P \& F , all types $2 /=$ doz

NEW SPRAGUE. $0.22 \mu \mathrm{~F}$ 250V small capacitors. 5/- doz. P. \& P. I/-
NEW SPRAGUE ELECTROLYTICS.
LARGE CAPACITY ELECTROLYTICS.
4in, 2 in diam. 5crew terminals.
$7 / 6$ post free.
4.000 mF
$10,000 \mathrm{mF}$
$72 V$
$25 V$
d.c. $w k g$.
$25,000 \mathrm{mF}$
12 V d.c. wkg.
KEYTRONICS, 52 Earls Court Road
London, w.8. Mail order only

[^5]
ELEGTRICAL

GRAND CLEARANCE SALE EVERTHMWG MUST 60

PRECISION METERS. Brand new and boxed, size 3 fin sq. Type $1,0-500 \mathrm{~V}$ FSD. Type 2, $0-150 \mathrm{~mA}$. Fully guaranteed. Moving coil movement.
List e3.5. Our price 30/- each, p.p. 2/6.
Two for 55/-, post free.
TANK AERIALS. Fully interlocking copper plated, one foot sections. Ideal for scooter aerials or for TX/RX work
Bix sections 4/6, p.p. 1/6. 12 sections for 10/-, post free.
RADIATION METERS. Pocket type. Brand new in maker's cartons. Only 9/6 each, p.p.1/6. Two for 17/6, post free.
STANDARD DESK TELEPHONES. Not new but working, Only 19/6 each, p.p. 5/-. Two for 35/-, carr. 5/-.
TELEPHONE DIALS. Only 6/-each Four for \&1, post free.

TELEPHONE EXCHANGES.

PMBX TYPE. Ex-GPO, in good condition and ready to use. Cord type, 812.10, carr. 50/-. Cordless type E15, carr, 15/-
8MOOTHING UNITS. Excellently made pieces of equipment. 12 V or 24 V d.c. input gives a fully smoothed, fully regulated d.c. output. Robust meta case. Brand new in maker's cartons. Price 55/-, p.p. 5/-.
MINIATURE $1 \frac{1}{2}$ in moving coil speakers. Only $3 / 6$ each, p.p. 1/-. 38/- per doz., post free.
HEAVY DUTY POWER SUPPLY UNITS. Famous manufacture. Input $200 / 250 \mathrm{~V} 50$ cycles a.c. Output 250 V d.c. at $175 \mathrm{~mA}, 6.3 \mathrm{~V} / 12 \mathrm{~V}$ at 4 amps Robust rack mounting cabinet. List E42, brand new and boxed, 59/6, carr. 10/-, TANNOY MIKES (heavy duty). Ideal for P.A. work. Complete with high quality moving coil headphones. Only 19/6 each, p.p. 5/-
MONSTER CONSTRUCTORS'
PARCEL. Two $1 \frac{1}{2}$ in dia. moving coil speakers. One 12V heavy duty DPDT switching.relay. Up to 20 amp switching plus many low current contacts. Twelve wire wound resistors. One brand new parachute complete with full cords. Over 100 sq . ft of silky material. One 5 ft whip aerial. Twelve electrolytic condensers. Twelve small plastic boxes suitable for containing your transistorised units. One telephone dial. One miniature 10 henry 60 mA smoothing choke. All for 35/carr. 5/-
PRINTED CIRCUIT TOP BAND SUPERHET CHASSIS. Uses standard components. Complete with circuit. Only 15/-, post free.
0-8-30V TRANSFORMERS. Mains input. Output at 4 amps. Only $9 / 6$ each, p.p. 2/6. Two for £1, post free. Fully guaranteed.
MINIATURISED
TRANSIS-
TORISED EFO UNIT. A miniature tunable B.F.O. unit that will enable your set to receive CW or SSB. Compact single hole fixing. This unit will fit anywhere. Ideal for all Ex-Govt Communication and Commercial Receivers. Complete with fitting instructlons. Only 3e/6, p.p. 2/6.

HGGOBE SCIENTIFIC LTD DETT. F.E.S8, BRIDGKRD, EnELD 1

BESTEYEA 200/240 VOLT "MAINS" UPPLY FROM 12 VOLT CARBATTENY Exclusive World Scoop Purchase. The fabulous Mk. 2 D Ameriean Heavy Duty Dynamotor Unlt with a Magsive 220 watt output and Eiving the most Brilliant $200 / 240$ volt perfon Mance of all time. Marvellous ior Television,
 Universal ACIDC mains equipment. Made at tremendous cost for U.S.A. Gove. by DelcoRemy. This magnificent machine is unobtainable else where. Brand New and Fully Tasted Only f4.19.6 + $10 / 6$ postage. C.O.D. with leasure, refund guarantee. Please send S.A.E. or illustrated details.
Dept. PE, STANFORD ELECTRONICS
Derby Road, North Promenede
BLCKPOOL, Lancathire

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTORRADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: $6 v, 9 v, 12 v$, $18 v$ (single output) $39 / 6$ each. P. a P. 2/9. $9 v+9 v ; 6 v+6 v ;$ or $41 v+41 v$ (two separate outquts) $42 / 6$ each. P. \& P. 2/9. Please state output required. All the above units are completely isolated from mains by double RCS PRODUCTS (品ADIO) LTD.
Dept. P.E.), 31 Oliver hoad, London, E.I7

GLASS FIBRE OPTIC

FLEXIBLE LIGHT PIPF now available in any length. $150+$ glass fibres in 0.080 in . diam. Pi, ictic sheath with 3 times lower Plastic fibre.
Used like wire but to convey light to remote or inaccessible positions for inspection, panel indicators, photo-electric and other applications.
Prices per ft. (Post free) Pricesper ft. (Post free) 1 - 9.
$50-249,3 / \mathrm{E}$. Enquiries $5 . A . E$.

SYSTEM 698 \& CO
IS BELL MD., EAST MOLESEY, SUAnEY

Buy with confidence and get results. Refund if not delighted.

RHYTHM GENERATOM. 29 silicon trano sistors and 119 diodes. Finger tip selection of seven instruments in mine basic rhythms in any sequence. Self contained in an attractive case $14 \times 13 \times 7 \mathrm{tin}$. Retails at over 674 . Our price
only $\mathbf{6 6 6 . 9 6 .}+10 / 6$ P. \& P. \& Ins. S.A.E. for only 466.9.6. +1016 illustrated leaflet.
REVEREERATION AMPLIFIEA. Self contained transistorised battery operated. An entirely different approach to sound reproduction. Normally sound reproduction from a single course has a flat one dimensional effect. verberation, tones are created with a truly third dimension for concert hall originality Two controls adjust volume and reverberation Simply plug microphone, guitar, etc., in and the output into your amplifier. Supplied in a beautiful walnut cabinet $7 \frac{4}{4} \times 3 \times 4 \frac{1}{2}$ in. Cl 0.4 .0 . P. \& P. \& ins. 6/-.

POWER CONTHOLLEA. Power at your finger tips. Not just half wave control but full wave. One variable control gives zero to full power. Uses latest 15 amp 3 kw triac and special triggering device. Complete with box, power socket, etc. Ideal for flood lights, fires motors, etc. In kit form \&6.9.6., ready built 29.4.6. $+5 / 6$
P. \& P .
YOX SWITCH KIT. This sound operated switch is ideal for mobile T.X. work tape recorder switch \& med. imp. inputs. Apeak it off point. Drives your 12 volt relay. $42 / 6$ P. \& Point. $2 / 6$.

METHONOME KIT. Variable beat listen whilst you play and keep in the groove. Easy to build, pocket si
25/- P. PR $2 / 6$
MORSE OSCILLATOR KIT. P.C. board transistors, high stab. components battery carrier, ear piece. Adj. tone. Just attach your
key. Drives phones or speaker. IS/6. P. \& P. key.
Free lists with every order. For lists only send

AUDIO EFFECTS
 5 SHAW LANE, HALIFAX

NEW RANGE BBC 2 AERIALS
All U.H.F, aerials now fitted with tilting bracket and 4 element grid reflectors.
Hoft Mounting Arrays, 7 element, $37 / 6$. i1 element, $45 /-14$ element, $52 / 5$. 18 element, 7 element, $60 /$. 11 element, Cranked Arm, 14 element, $75 /$ element, 18 element, $81 / 6$ ement, Mast Mountins with 2in. clamp. 7 element, Ma/6; 11 element, $5 / 5 /$; 14 element, $\% /-; 18$ element, 7\%/-. Chimmey Mounting Arrays, Complete, 7 element, Tz/6; 11 element, $80 /-i 14$ element, $87 j$; 18 element; S/-. Complete assembly instructions with every unit. Low Loss Cable, 1/t Yd. U.F.F. Pre-

BBC•ITV AERIALS
BBC (Band 1). Telescoplc
 " 4 H ", ${ }^{1}$, IYY (Band 3), 3 element loft 7 element, se/-. Wall mormitios, 3 element, $47 / 6$. 5 element, $32 /$. Combined BBCITIV. Loft
$1+3,4 /=; 1+5,5 /-; 1+7$,
 $1+5, y / 8 ;$ Chimney $1+3,67 /$
$1+5,75 /=$
yHis fransistor pre-amp

COMBINED BBC1-ITV-BBCR AERIALS
 $1+7+14$,
lealiet avaliable.
P.M. (Band 2) Loft S/D, 15/-, "H", st/t, ${ }^{3}$ cable, 8d. Yd. Co-ax. plues, 1/4. Outlet boxes, $5 /=$. cable, 8d, Yd, Co-ax. pluys, 1/4. Outlet boxes, $5 /=$ P. \& P. 6/の. Send 6d. stamps for illustrated llsts. CALLERS WELCOME OPEN ALL DAY SATURDAY
K.VA. ELEBTRONIES (Dept. P.E.) 40-41 Monarch Parade London Rond, Mitcham, Surrey $01-6484884$

```
CRESCENT RADIO LTD.
    (electronic component specialists)
                For all reguior components try
        40 Mayes Road, Wood Green, N. }2
        For surplus components ond equipment try
        II Mayes Road, Wood Green, N. }2
            COMPONENT BARGAINS
500K \Omega Log Pots with Good
    Spindle
OMFD 6 volt Miniature Type
68\Omega W/W.W watt Resistors...
Carpenter Polarized Relay No
5KODP. Transistor Pot . 10/- each
GMFD 3 volt Miniature Type ... 2/6 each
.047MFO }160\mathrm{ volt Mullard Type 4/6 per doz
O47MFOelay volt Mullard Type
O\mp@code{*/- each}
Pack of 50 Unmarked, Untested
Transistors Small Type Capaci-
500MFD 6 volt T'ransistor Capa-
    inch spun Aluminium Sran-
    dard Spindle Knob
        inch 25 \Omega Loudspeaker
2\frac{1}{2}
$/6 each
lol
4 Way Standard Connecting (... .. 6d.each
.047750 volt Capacizors .. .. 6d. each
MODEL MOTORS
    12 volt 9,000 RPM .. .. 4/6 each
```



```
        BARGAIN COMPUTEN BOARDS
Assorted Components mounted on boards all
with tong tags. Ideal for breaking down and
experimenting with. Take advantage
bulk purchase
    20 Boards 
a < 6 inch One Sided Board .. 2/- each
CASSETTES
                                    C: C60 .. 13/6 each
                                    C90 C120 .. 19/6 each
With our new premises in Mayes Road we can
now ofier an even wider selection of com-
ponents for the home constructor and
enthusiast
POSTAGE WITH ORDER PLEASE; P.S.
Our new catalogue is now available at I/6 per
copy
```


S.E. .am .mem

196 Regent Road, SALFORD 5, Lancashire

TELEPHONE 06|-872 5187

(Member of the Harrop Industrial Group)
C.W.O. please

I/- p. B p. for orders of compenents under $\mathbb{C l}$
Orders of Lektrokit: 2/- handling charge on orders under \&1 5/- handling charge on ordert under $\mathbf{4 5}$

REISTOns: All brand new, Hi-Stab, low noise, 5% tol. carbon film.

 coi., 3c. each. $3 W$-wirewound -0.5 ohm to. 12 ohm, $/ 16$ each. SW/ mach, 5% resistors from 4.7 ohm to $1 M$ either t or t wack gives you 5 of
 10 ohm to $100 k 0 h m, 2 d$, sech.
PRE-SETS: Min, skelecon carbon track, low noise with sood stability only 10d. each. Sub-Min skeiston Lin; Log: $5 k$, $10 k$, 25k, atc., to 1 Mohm, d. each. Sfidor presets wirewound w racing, $2 \cdot 5 \mathrm{k}$, ${ }^{5 k}$, etc., to 5 M , only 3 W wirewound fully enclosed Lin. cracks. Io ohm to $30 \mathrm{k}, 3 \mathrm{~h} \%$
POTENTIOMETEAS: Min. enclosed, carbon track and wiper contact only 2/6; Valuet-Lin: $1 \mathrm{k}, 2.5 \mathrm{k}$, 5 k , eze., to 10 M ; Log: 5 k , 10k, 25k, etc. to L-Lin: $25 k, 50 \mathrm{k}$, 100 k ; Log: $3 \mathrm{k}, 5 \mathrm{k}$, $10 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, \mathrm{im}, 2 \mathrm{M}$. 3 W wirewound Lin. tracks 50 ohm to $100 \mathrm{kohm}, 7 / 4$ each.
CAPACITORS: Newisenuine Mullard Electrelytic

Mullard Miniatura Merallised Polynater 250V. 0.01, 0.015, 0.022; 0.033. Mullard Poryester Film and Foil 40 , $0.22 \mu \mathrm{~F}, 7 \mathrm{~d}$. each.
Mujard Poryester Film and Foil 406V, $0.001,0.0015,0.0022,0.0033,0.0047$,
 Disc Ceramies (Erie) Scivy, $0.47 \mu \mathrm{~F}$, 1 D .
Spic, Coramics (Erie) $500 \mathrm{~V}, 1,000,4,700 \mathrm{pF}$, Sd. each. Silver Micas 1% vol.

 Low Voltage bise Ceramics $20 \mathrm{~V}=0.01,0.022$, $0-047 \mu \mathrm{~F}, \mathrm{j}, \mathrm{d}$. each. 0.1 , 0.22 , L/3 ench. Midset Tubular Ceramice $010.002,0.003 \mu \mathrm{~F}$, iod, each.
SEMICONDUCTORS: All New and Unused

 400piv $6 /-$; 800 piv $7 /-$; 1,500 piv $7 / 6 ;(2.5 \mathrm{~A}) 400$ piv $6 / 6 ; 500$ piv $3 / 6 ;$; 1.2 A)
 2 N 2924 3/6; 2N2926 (Brown or Red) $2 / 6$, (Orange) $2 / 9$, (Yellow) $3 / \mathrm{H}$. (Green) 3/3; 2N3643 e/6; 2N3794, 2N4289 4/-each; IN4148;16.
SWITCHES: 100 series_SPST 3/t; SPDT 3/II; DPST4/4; DPDT $4 / 4.400$ push-to-make or push-co-break $3 / 4$ each (push buttons suidable in white red, black, ireen). Slide Switeh $3 / 4$; Wave Change switehes in white Miniature "Maken-Switeh" also available-Shalts S/-; Wafers $5 / 4$ each.
PLUGS AND SOERETS: Min. Plugs (black or red) 6d. Min. Sockest to ft 7d. Banana Plugs (black or red) 9d, 4 mm Sockeks to fit (black, red, reent 2/- anch. Min. Jack. Plugs and Sockets $11 /$, Sub-Min Jack Pluys and Sockets S-way $3 /-$. Recorder Sockats Sockets, $3 /-$ each. Recorder Plugs 3 -way $2 / 7$
Wire: Min. Stranded (available in 10 coleurs) 3d.
$14 / 0-007 \mathrm{Gin}$. Stranded 4 d. yd. Hin. Mains Lead its. Solid Core 3d. yd. I4/0-0076in. Stranded dd. Yd. Mín. Majns Lead I/5 yd. Min. Microphone
cable I/6 yd. Co-Ax cable $/ / 3$ yd.
LaMPs: Min. Wire Ended Neons 2/-; Panel Neon Indicator 6/4; Pilot Light +12 V bulb $/-$; Min. Fiange Light +12 V bulb $/ / /=$.
3OLLDERING INONS: A.N.T.E.X, CN240 I5W mains operated, mall, and elements availabie. Also stands for above irons, $1 / 16$ each. Wpare bits SOLDER by Multicore, at Reduced Prices to Everyone! \$ize A-Approx. 20 ft coil $60 / 40$ Alloy 22 s.w.s. In dispenser. Recommended ratail price I/- OUR PRICE 2/9. Sixe Bmaprox. 20ite real CO/M0 Alioy 22 price
individually packed. Recemmanded retail price IS/-. OUR PRICE B/B Wira Strippers: trips insulation without nicking wire. Recommended
retall price $4 / 6$, OUR PRICE 4/-.
LERTHOKIT: Chassis construction sygtem--the professional look to a home conseruction. Parts to build a chasis of x 4in. -2 chastis rails $1 / 10$ each. 2 side plates $4 / 4$ each. Front panel (covered in erack-proof paint) $2 / 3$. Perforated cover $5 / 5.2$ plain covere $4 / 5$ tach. 4 rubber feet $\$$ s. 7 boards available each 4 t \times in. Thus 2 boards fit above chassis. Piain perforated asuminum board $2 / 2$. Aluminium board drilled for 6 valveholders B7G, BaA, 39A, 2/6. Aluminium board drilled for 2 valveholders international 0 otin, and 0.2 in . $6 / 6$ each. Cloverian grid SRBP board, $2 / \%$. Veroboards lead throughs 6d, each. Pins for SREP board $4 / 6 / 00$.) $6 / \mathrm{m}$. (Cloverleaf
por full detait of all our stocke send.a/s for our brisht
For full detaif of all our stocks send. $3 / 6$ for our bright explanatory 120 pase eatalogue, or 6d. stamp for Data Sheets.

Photoelectric kit

CO1FTMHNTS: 2 P.C. Chacale Boarda, Chemicala, Etching Manual, Infre-Bed Fhototrancietor. Latchine Belay, 2 Transtators, Condeners, Beanotora, Gain Control, Terminal Block, Riegant Ca, se, seromin, etc. In fact everything you need to build a Eteedy-Licht Photo-ipitci/CotmertBurglar Alarm, etc. (Project No. 1) whtch eman be moditied zor modulated-ilght operation.

Photoelectaic kit 39/6
Poatage and Pack, $2 / 6$ (UK) Commonwesllh: SURFACE MATL $8 / 6$ ATB MATL 81.0 .0 Anctralla, Now Eealand 5. Africa, Canada and U.S.A. Also Remential Date Oireutte and Plang for Building 10 Advanced Deaigne

INYISIBLE BEAM OPTICAL KIT

Frerything needed (axcept plywood) for ballding: 1 Inviaible-Beam Projector and 1 Pbotocoll Roodiver (au illuatrated). Suitable for all Photoeleotric Burgler Alarmo, CONTMBTMA: 2 lenees, 2 mirrort, 245 -degree wooden blockt, Infru-red filter prolectos
 1/6 (U.K.). Commonwealth: Surtace Mall 2/-; Atr Mall $8 /$.
LONG RANGE INYISIBLE BEAM OPTICAL RIT
CONTHNTH: As above. Twice the range of standard Lit. Langer Lenmea, Filter,

JUNIOR PHOTOELECTRIC KIT

Veratile Invialblo-beam, Belay-lees, Steady-light Photo-Iwitch, Burglar Alarm, Door Opener, Comiter, oto, for the Experimenter.
CONTRENTS: Infra-Red Senaltive Phototranatator, 3 Trapeitors, Chamis, Piuptle Cane, Rodetors, Screwt, etc. Full Size Plann, Inatructiong, Data fheet " 10 Advameed

JUNIOR OPTICAL KIT
 thing (except plywood) to build 1 miniture faviafble beam projactor asd photocell recetver for wee with Jumior Photoalectric Kit.

YORK ELECTRIC8

333 YORK ROAD, LONDON, S.W. 11

|2in. "SUPERB" \&15

The exceptional quality and performance of the "Superb" brings truly exceptional sound from a single loudspeaker, recreating the musical spectrum virtually flat $\pm 5 \mathrm{db} .20$ to $17,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The unit consists of the latest double cone, woofer and tweeter cone together with a massive Baker "FERROBA" magnet assembly having a flux density of 16,500 gauss and a total flux of 176,000 Maxwells. Bass resonance 22-26 c.p.s. Rated 20 watts. Voice coils available 8 or 15 ohms. Suitable forall High Fidelity Systems. A high quality loudspeaker providing clear reproduction of the deepest bass and highest treble.

Bensham Manor Hoad Passage, Thornton Heath, Surrey. ©1-6e4-1665

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new 'ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Enginecting industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics-Practical Electronics - Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmunship - Illuminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.-Road Eng. - Hydrawlics -- Mining Water Supply-Petrol Tech.

RADIO \& T.V. ENG. Advanced Radio - Gencral Radio-Radio \& TV Servicing - TV' Enginerring - Telecommunications - Sound Recording - Automation Practical Radio - Radio Amateturs' Examination.
MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. Press Tool Design - Sheet Metal Work -- Welding Metal Work -- Welding -
Eng. Pattern Making Eng. Pattcrn Making -- Metallurg $\boldsymbol{-}$ Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.General Auto. Eng. - Auto. Maintenance - Repair Auto. Diesel Maintenance -Auro. Electrical EquipmentGarage Managentent.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E.. A.M.I.P.E., A.M.I.M.J., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., A.I. B, A.M.EX. A.R.I.C.S., M.R.S.H. A.M.I.E.D., A.M.
CITY \& GUILDS, GEN. CERT. OF EDÜCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A AlDERMASton COURT, aldermaston, berkshre

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

TO B.I.E.T., 316A ALDERMASTON COURT, - ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, texam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

[^0]: HI-FI SPEAKER
 K12TC-12in 12 watt
 Offers an exceptionally smooth and extended response, with very low level of distortion from the specially designed twin diaphragms.
 Frequency Response: $\mathbf{3 0}-16,000 \mathrm{~Hz}$. Impedance: 15-160 Hm OUR SPECIAL PRICE

 PLUS P/P 6/6
 97/6

 - BARGAIN - Speakers, Hi-Fi The Baker Selhurst Stalwart. 12in round, 15 watt rating, 12,000 lines gauss, 15 ohms, response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium chassis. Our price £5,9.6. p/p 6/6 2

[^1]: () IPCMagazines Limited 1969. Copyright in all drawings, photographs and articles publshed in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
 protected, and reproduction or imitations in whoie or in partare expressiy iorbicien.
 We cannot, however, swarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
 Subacription Rates fnciuding postage for one year, to any part of the world, 32.
 All correspondence intended for the Editor mhould be addreseed to Tower House, Southampton St., London, W.C.2. Phone: Oi-836 4363.

 01-236848.

[^2]: Where postage is not stated then orders over 83 are pont free. Below 43 add $2 / 9$. Semiconductors add $1 /$ - post. Over $£ 1$ post free. S.A.E. with enquiries please.

[^3]: From Electrical and Hardware shops. It unobtainable write to
 Multicore Solders Ltd., Hemel Hempstead, Herts

[^4]: Complete this coupon for full derails and application form:
 To: A. J. Edwards, C. Eng., M.I.E.E., M.I.E.R.E., Room 705, The Adelphi,
 John Adam Street, London WC2, marking your envelope 'Recruitment'.

[^5]: ORGAN BUILDER8: $282,2 \cdot 2 k-1 \cdot 2 \mathrm{~d}, 28 /-;$ $170, \quad 18 \mathrm{k}-1 \cdot 2 \mathrm{~d}, \quad 17 /-; \quad 92, \quad 100 \mathrm{k}-1 \cdot 2 \mathrm{~d}, \quad 9 /-$ 253 4700pf. encap. polystyrene-11d, 232/-; 72, 0.1uf polyester- $5.5 \mathrm{~d}, 33 /-$; 12 Vinkors (LA2300)-7/-, 84/-. Available separately or $390 /-$ lot. All Mullard. L.E.C., 304 Avery Hill Road, London, S.E.9. Postage, Packing 2/6.

