PRACTICAL
ELECTRONICS

.........WITH THIS PULSED LIGHT BEAM TRANSMITTER AND PHOTO-ELECTRIC RECEIVER

also inside:
 the GHiDNATDIIE

GQUND OPERATEP

 LIGHT DIGPLAY

ORGAN BUIIDERS:
IILICON N.P.N. TRANSISTORS SUITABLE FOR USE IN DIVIDER CIRCUITS-1/6 each or £5 per 100.
UNMARKED TRANSISTORS (tested) similar to:
2N753 $1 / 6$, BSY28 $1 / 6$, BSY65 1/6, OC44 1/6, OC71 1/-OC72 $1 /-1$.
ORPI? CADHIUI SULPHIDE LIGHT-SENSITIVE RESISTORS 9/- each.

GIANT-SIZE SELENIUM SOLAR CELLS-PRODECE UP TO 6mA AT 6 VOLTS FROM DAYLIGIIT! 67 mm . diameter $10 /$. each. 50 mm . $\times 37 \mathrm{~mm}$.. 2 for $10 /=$
MULLARD POLYESTEL CAPACITORS FAR BELOW COST PRICE! $0.001 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} .0 .0015 \mu \mathrm{~F} 400 \mathrm{~V}$ 3d., $0.0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.0022 \mu \mathrm{~F}$ $400 \mathrm{~V} 3 \mathrm{~d} ., 0 \cdot 01 \mu \mathrm{~F}^{2} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.15 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0 \cdot 22 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0 \cdot 27 \mu \mathrm{~F}^{2} 160 \mathrm{~V}$ 6d., $1 \mu \mathrm{Fr} 120 \mathrm{~V} 1 / *$
RECORD PLAYER CARTRIDGES. COMPLETE WITI NEEDLES GP67/2 Mono 15/-, GP91/3 Compatible £1, GP93/1 Crystal Stereo 25/-, GP94/1 Ceramic 30/-.
TRANSISTORISED SIGNAL INJECTOR KIT 10/-
SIGNAL TRACER KIT 10\%. CAR REV. COUNTER KIT 10/.,
VEROBOARD

 $5 \times 2 \frac{1}{2} 0.15$ matrix $3 / 11$ 3造 $22^{\prime \prime} 0.1$ matrix $14 / 8$
Spot Face Cutter $7 / 6$. Pin Insert Tool 9/6. Terminal Pins $3 / 6$ for 36 Special Offer! Spot Face Cutter and 521×1 boards........... $9 / 9$ only
PAPER CONDENSERS, Mixed bags $0.001 \mu \mathrm{~F}$ to $\cdot 5 \mu \mathrm{~F}$, $12 / 6$ per 100 . SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $\mathbf{1 0} / \cdot$ per 100.
RESISTORS. Mixed types and values. $\frac{1}{4}$ to 1 watt, $6 / 6$ per $100.55 /$-per ,000. Wire-wound resistors. 1 watt to 10 watts. Mixed values. 20 for $10 /$ TRANSISTORS. Mixed, unmarked, mainly O.K. ri/6 for 50.
12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF YORMAL PRICE.
8 Watt 12° tube. Reflector type £2.19.6. 15 watt 18° Batten type es.19.6. FOR VERY LITTLE CURRENT! or very lifile Current

LECTROLYTIC CONDENSERS							
$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$10 \mu \mathrm{~F}$	25 volt	$64 \mu F$	9 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	9 volt
1上F	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt
$1.25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F}$	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	25.12 F	25 volt	$400 \mu \mathrm{~F}$	6.4 volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	Allat	each.
$2.5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	20 a	orted
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	(our se	lection)
$3.2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	2.5 volt	10	

Orders by post to:
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH,

Please include suitable amount to cover post and packing. Minimum order $10 /$. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

spetarlopted camand $A P{ }^{2}$

WITH AD-76K STEREO MAGNETIC
CARTRIDGE
AP75 3 epeed single play deck with Synchro-Lab motor-offered with the cartridge

$\underset{\text { PRICE }}{\operatorname{LASKY}} \mathrm{E} 21.0 .0$

Post

AUTOCEANGERS 1025 less cartridge 1025 with GCM21 mono cartridge with"GCM2i mono
 cartridge SL85 less cartridge
AT 80 Mk . II less cartridge SL.75 less cartridge
A70 Mr. II less cartridge B.S.E.OA-47 less cartridge
$\begin{array}{lllll}8 & 9 & 6 & \text { SIFGLE PLAYERS }\end{array}$
$\begin{array}{lll}86 & 9 & 8\end{array}$
$8618 \quad 6$
87186
411196

| $E 11419$ | 6 |
| :--- | :--- | :--- |
| 15 | 0 |

$\$ 14100$
$\begin{array}{rrr}288 & 10 & 0 \\ \text { e35 } & 0 & 0\end{array}$
$\begin{array}{lll}235 & 0 & 0 \\ 813 & 19 & 6\end{array}$
-556
$-\quad 8$
SPC1 £3.5.0; $\$ P C 4$ Mk. JI \&A. 6. 6.
Postage on all above 5/-extra

TEST IIETERS TMK

20,000 O.P.Y. Multitester Lor the amateur or profes. sional. Features mirror scale and wood grain finish front panel. SPEC: DC/V ranges: $0 \cdot 6,3,12,30,120,600 \mathrm{~V}$ at $20 \mathrm{~K} /$ O.P.V. AC/V ranges: $3,30,120,600 \mathrm{at} \mathrm{K} / \mathrm{O} . \mathrm{P} .7$. $100 \mathrm{~K}, 13$ and 10 M ohms end scale $(65,650,6.5 \mathrm{~K}$ and 65 K ohms centre scale). Decibels: -20 to +57 dB in four ranges. Operates on $2 \times 1 \cdot 5 \mathrm{~V}$ U7 type batteries.
 and instructions.

LASKY'S PRICE
 £7.19.6

TTC Model C-1000

A really tiny 1,000 O.P.Y. pocket multi-tester with "big" meter performance. Precision 2 jewel meter movement. Hand calibrated to $\frac{1}{ \pm} \%$ accuracy on full scale of DC
ranges, 4% on AC ranges. $2 \frac{1}{3}$ in. square meter. SPECfFICATIONS: AC/V ranges: $0-10,50,250,1,000 \mathrm{~V}$ at. 1K/O.P.V. AC/V ranges: $0-10,50,250,100 \mathrm{~V}$ at $1 \mathrm{~K} / \mathrm{O}$.P.V. DC current: $0-1-100 \mathrm{~mA}$. Resistance: $0-150 \mathrm{~K} / \mathrm{ohms}$ (3,000 ohms centre scale). Decibels: - 10 to +22 dB . Operates on one penlight cell. Two colour buft/green case-size only $3 \frac{1}{2} \times 2 \frac{1}{2} \times 1$ in. Click stop range selection switch. Ohms zero adjustment. Complete with test leads, battery and ins.

LASKY'S PRICE
 39/6
 Post 2/6

Branches

207 EDGWARE ROAD, LONDON, W. 2
Tel: 01-723 3271 Open all day 9 a.m 6 pm. Monday to Saturday 33 TOTIENHAM CT. RD., LONDON. W. 1 Open all day. 9 am $6 \mathrm{p} . \mathrm{m}$. Mondây to Saturday 152/3 FLEET STREET, LONDON, E.C. 4

Têl: 01-636 2605 Open all day Thursday eaily closing 1 pm Saturday

EXCLISIUE FIRST PRESENTING THE IC-403 INTEGRATED CIRCUIT AMPLIFIER MODULE AVAILABLE NOW!

Originally developed for computer and space projects these tiny modules-size only $25 \times 10 \times 5$ millimetres-represent the most amazing breakthrough in circuit design since the introduction of the transistor. The actual circuit-no bigger than a pinhead-is encapsulated in solid plastic fused with the heatsink and connecting pins to make an almost indestructible unit. The IC-403 is an integrated power and pre-amplifier requiring only the addition of tone and folume controls, power source and speaker to form a complete audio amplifier of $3 W$ output. There are many applicat, ins miniature P.A. and audio amplifters, intercoms, electronic organs, tape recorders, etc., etc.
Ampliterg, intercoms, electronic organs, tape recorcers, etc., etc. $3 W$ from 250 mV input. Frequency response 20 Hz to $80 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Power amp. distortion 0.3% (at 1 W , Frequency response 20 Hz to ${ }^{80 \mathrm{KHz} \pm} \mathrm{HaB}$. Pain 26 dB . Max, operating roitage 21 V . Min. Operating load 7.5 ohms. Noise level - 75 dB . Pre-amp. input imp. $23 / \mathrm{obms}$. Pre-amp, and power amp. D.C. input current 50 mA .
THE IC-403 IS AVAILABLE FROM STOCK EXCLUSIVELY FROM LASKY'S -COMP. WITH INS.DATA AND SUGGESTED CIRCUIT APPLICATIONS

> LASKY'S ONLY PRICE ON/6

Post 2/6
PORTRBLE PLERSURE BATTERY/MAINS MW-LW BRIEFCASE RADIOGRAM THE NRP-840
A portable radiogram of ultra slim "brief*
case" proportions. Yery smart inpact case proportions. finish. The NRP. 840 operates on 220/240V AC mains with built-in AC con-
yerter or $6 \times 11 \mathrm{~V}$ (U2 type) batteries. The yerter or $6 \times 1 \frac{1}{2}$ V (U2 type) batteries. The
radio section covers fuil AMI (medium radio section covers $5,400 \cdot 1,600 \mathrm{Kc} / \mathrm{s}$ and Long wave $150-370 \mathrm{Kc} / \mathrm{s}$. MW reception through an internal ferrite aerial plus 7 section telescopic antenna for LW. The gram
section has three speeds 33 , 45 and 78 rpm , Which are easily selected on a rotary control. Plays all sizes of records, 7, 10
and 12in. Lightweight spring loaded pickand 12 in . Lightweight spring loaded pickmaticalls switches turntable off when in rest position. Supplied complete with mains lead, centre spindle adaptor, batteries and instructions. The idenl unit for your summer pleasure anywhere, anytime. Size: $13 \times 9 \frac{1}{\times} \times 3$ ins. Avainble
in black or red; please specify when ordering.

LASKY'S

PRICE
£21.0.0
Post 5:-

GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL
16 colour pares in incte $16 \times 11 \mathrm{in}$. format packed with 1,000 's of items from our vast stocks. Hi-Fi, Radio, Electronics, Test equipment, components, etc., etc. Send 1/- for post only and inclusion on our regular mailing list.

High Fidelity Audio Centres
 42-45 TOTENHAM CI. RD., LONDON. W. 1 Tel. 01:580 2573

Open all day $9 \mathrm{a} . \mathrm{m}=6 \mathrm{pm}$ Monday to Satưrday
118 EDGWARE ROAD. LONDON. W. 2
Tel. 01-723 9789
Open all day Saturday early closing 1 pm Thursdav

a complete stereo system for 28 gns!

The new Duo general purpose two way system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally. SPECIFICAand $2 \frac{1}{2}$ in tweeter. Teak finish $i 2 \times 6 \times 5 \times 5 \frac{3}{2}$ in. 4 guineas 7/6. Garrard Changers from E7.19.6, P. \& P. 7/6. Cover and Teak finish

THE DUETTO

9 GNS

Integrated Transistor Stereo Amplifier

- $7 / 6$ P. \& P.

The Duetto is a good looking quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more. SPECIFICATION: R.M.S. power output: 3 watts per channel into 10 ohms speakers. Input Sensitivity: Suitable for
medium or high output crystal cartridges and zuners. Crosstalk better than 30 dB at JK / K. Controls: 4-position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control. Tone Control: Treble lift and cut, Separate on/off switch. A preset balance control.

THE
 RELIANT

Solid State General Purpose Amplifier
$6 \frac{1}{2}$ GNS
$+7 / 6$ P. \& P

SPECIFICATION: Output: 10 watts into a 3 ohms speaker. Inputs: (1) for mike (10 m.v.). Input (2) for gram, radio ($250 \mathrm{~m} . \mathrm{v}$.) individual bass and treble control. Transistors: 4 silicon and three germanium. Mains input: $220 / 250$ volts. Size $10 \frac{1}{4} \times-4 \frac{3}{4} \times 2 \frac{1}{2}$ in. Price: $6 \frac{1}{2}$ guineas in teak finished case. Less teak case $5 \frac{1}{2}$ guineas. P. \& P. $7 / 6$. Mike to Suit: (Crystal) $12 / 6+1 / 6$ P. \& P. 8×5 in speaker $14 / 6+3 /-$ P. \& P.

THE VISCOUNT

131 $\frac{1}{2}$ GNS
Integrated. High Fidelity Transistor Stereo Amplifier
SPECIFICATIONS: Output: 10 watts per channel into 3 to 4 ohms speakers (20 watts monoral). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. Sensitivities: All lnputs 100 mV into 1.8 M ohm. Frequency response: 40 Hz 20 KHz 2 db . Tone controls: Separate bass and treble controls. TREBLE 13 db lift and cut at 15 KHz . BASS 15 db lift and 25 db cut at 60 Hz . Volume controls: Separate for each channel. A.C. mains input: $200-240 \mathrm{~V}$. $50-60 \mathrm{~Hz}$, Size: $12 \frac{1}{2} \times 6 \times 2 \mathrm{tin}$ in reak finished case. Built and tested. P. \& P. 7/6.

Goods not despatched outside U.K. Terms C.W.O. All enquiries s.a.e.
RADIO \& TV COMPONENTS (ACTON) LTD. 2Id High Street, Acton, London, W. 3
Orders by post to our Acton address please, also at 323 Edgware Road London, W. 2
G.E. Type PA 230 LOW LEVEL AMPLIFIER

G.E. Type PA234 I WATT AUDIO AMPLIFIER

RCA Type CA3020 $\frac{1}{2}$ WATT WIDE-BAND AMPLIFIER
RCA Type CA3035 ULTRA HIGH GAIN AMPLIFIER
MULLARD Type TAA 263 A.F. AMPLIFIER
$23 /-$
$30 / \mathrm{m}$

IFIER 32/-
MULLARD TYpe TAA 320 MOS FET WITH BIPOLAR
G.E. Type 2 N5302 DARLINGTON PAIR

13/5
G.E. TYpe DI3TI PROGRAMMABLE UNIJUNCTION

Add $/ /$-each to the above for data sheets, if required. Data sheets only $1 / 6$ each, post free.

Selection from our range of STOCK transistors

ACY18	$4 / 5$	BCI84L	$3 / 2$	T1S50	$3 / 9$	$2 N 2924$	$4 / 4$
ACY19	$5 / 3$	BC212L	$3 / 9$	$2 N 696$	$4 / 9$	$2 N 2926$	$3 /-$
ACY20	$4 / 6$	BC213L	$3 / 9$	$2 N 697$	$5 /-$	$2 N 3053$	$6 / 8$
ACY21	$4 / 11$	BC214L	$4 /-$	$2 N 706$	$3 / 3$	$2 N 3055$	$19 / 6$
ACY22	$2 / 10$	BCY70	$5 / 4$	$2 N 1132$	$10 / 9$	$2 N 3702$	$3 / 6$
ASY26	$6 / 2$	$8 C Y 71$	$10 / 4$	$2 N 1302$	$3 / 11$	$2 N 3703$	$3 / 3$
ASY27	$8 /-$	BCY72	$4 / 6$	$2 N 1303$	$3 / 11$	$2 N 3704$	$3 / 9$
ASY28	$6 / 2$	BDI21	$18 /-$	$2 N 1304$	$5 /-$	$2 N 3705$	$3 / 4$
ASY29	$8 /-$	BFY50	$5 /-$	$2 N 1305$	$5 /-$	$2 N 3707$	$4 /-$
BCIO7	$3 / 3$	BFY51	$4 / 6$	$2 N 1306$	$6 / 5$	$2 N 3708$	$2 / 5$
BC108	$3 /-$	BFY52	$5 /-$	$2 N 1307$	$6 / 5$	$2 N 3819$	$9 /-$
BC109	$3 / 3$	BSYY95A	$3 / 11$	$2 N 1308$	$9 / 6$	$2 N 3820$	$18 / 9$
BC182L	$3 / 2$	TIS44	$1 / 9$	$2 N 1309$	$9 / 6$	$2 N 4058$	$4 / 6$
BCI83L	$2 / 5$	TIS49	$2 / 6$	$2 N 2906$	$13 /-$	$2 N 4059$	$3 / 5$

Send $2 /-$ now for our new Components Catalogue packed with derails of a host of componerits available by return.
We stock a wide range of international Rectifier products (including Transistors, Solar Cells, Rectifiers, Zener Diodes, SCRs, etc.) plus professional quality high stability Carbon Film Resistors, Capacitors, Plugs and Sockets, Veroboard,

ALL components offered are brand new and guaranteed to conform to the manufacturer's published specifications.
Cash Discounts: Order over $£ 5-10 \%$; order over $£ 10-15 \%$.
Cash with order please. Post and Packing (U.K, and Ireland) I/6. Overseas Orders Welcome. (Carriage at cost.)

KINVER ELECTRONICS LTD.

stone Lane, kinver, stourbridge, worcs.

New Edition-Now Out

Thinking of High Fidelity-first read Goodmans 28 page High Fidelity Manual. It contains interesting articles on Stereo; an Introduction to High Fidelity; Stage-built systems ; as well as full details of Goodmans High Fidelity audio products.

Send for your free copy

Please send me a free copy of Goodmans Manual
Name
Address
Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tel: 01-902 1200

COMPLETE STEREO SUSTIM FOR ONLY

The Premier Stereo System consists of an all transistor stereo amplifier, Garrard'Model 2025 auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker sysing. Absolutely complete and supplied ready to plug in and play. The 10 transistor Amplifer has an output offere wate for pick up, tape and tuner also tape output socket. Controls: Bass, Treble, Volume, Selector. Pow aluminium front panel. Black metal case with teakwood ends; Size $12^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{}$ high (Amplifler avaliable separately if required fillis.6. Garr. 7/6)

WIDE RANGE OF HI-FI STEREO EQUIPMENT ON DEMONSTRATION
All leading makes avallable including Rogers Armatrong Dulci. Wharfedale, Goodmans, foldring, Shure, etc. etc

GARRARD RECORD UNITS

1025 Stereo/Mono cart. $\quad 87.18 .8$

88.19 .8 Teak Plinth with $\begin{array}{ll:l}\text { Carriage } 7 / 6 \text { extra } & \text { e9.19.6: perspex cover as } \\ \text { above } £ 5.10 .0 \text {. }\end{array}$ | AT60 MKII less cart. | \&18.19.8 | Carr. $6 / 6$ extra. |
| ---: | ---: | ---: | SP25 MKII less cart.

\&11.19.8
AP75 less cart. \quad 19.0.0 Teak Plinth with SL75 less cart. $\quad 29.0 .0\}_{27.10 .0}^{\text {perspex carr. } 7 / 6 \mathrm{ex}}$ SL95 less cart. \&38.10.0. Carriage 10/- extra

GOLDRING RECORD UNITS

GL68 less cart. £29:7.0. GL75 less cart. $£ 35.15 .5$ Carriage 10/• extra.

> PICK-UP CARTRIDGES at money-saving prices Special offer of Shure Stereo Cartridges Look at our special prices

M3D list $\mathbf{8 , 1 0 . 6}$
$\mathrm{M44} \mathrm{C}$ list $\mathbf{2 1 2 . 1 9 . 5}$
M44E list 217.18 .4
M55 list $220.15,1$
M75-6 list 417.8 .4 .
M75E list 225.18 .10
Post and Packing $1 / 6$ each.
B. \& O.SPI (Stereo)
B. \& O. SP1 (Stereo) ".......

SONOTONE 9TAHC/Diamond (Stereo)
ACos GP91/1SC (Mono compatible)
ACOS GP93-1 (Stereo).
ACOS GP94-1 (Sterec)
B.S.R. X3M (Mono compatible)
B.S.R. X3H (Mono compa
RONETTE 105 (Stereo)

Premier price 86.19 .6

RONETTE 105 (Stereo)
Premier price £11.11.0 2

Al complete with mounting brackets and ingtructions Post and Packing $1 / 6$ each.

"PREMIER"
 TAPE CASSETTES

C60 ($\left.\begin{array}{c}60 \\ \min .\end{array}\right) \quad 10 / 6$ C90 (90) (15/CI $20\left(\begin{array}{l}\binom{\text { min }}{\text { min }} \quad 20 /-~\end{array}\right.$

P. \& P. 1/-.

CASSETTE HEAD
CLEANER
Removes unwanted deposits from delicate tape heads.

HI-FI STEREO
HEADPEONES
Deaigned to the highest possible standard.
Fitted 2 per $^{\circ}$ speaker units Fitted 21" speaker units
with soft padded ear muffs. Adjustable headband. 8 ohm impedance. Complete Fith 6 ft . lead and stereo jack plug. $59 / 6 \underset{5 / \text { P. }}{ } \mathrm{P}$.
MONO HEADPHONES 2000 nhm $14 / 6$ P. \& P. 2/6. STEREOSTETHOSCOPE SET TOW imp, 25/-P.\& P. 2/*. MOYO STETHOSCOPE SET LOW Imp. 10/B P. \& P. 2/-

"PREMIER" SPEAKER

 SYSTEMSpecially designed olled teak cabinet Fith FYnair iront. Size $12{ }^{\circ}{ }^{\circ}$ EMI 8 ohm Bass speaker with rolled surround and matching $3^{* *}$ EM tweeter. Fully 67.19.6. Carr. lagged.

MULTI TESTERS

MODEL DI4. A really versatile instrument that makes a handy pocket size tool. Measures AC or DC voltage in three ranges of $0-15-100,000$ ohms. Current $0-150 \mathrm{~mA}$ D.C. Size only: $3 \frac{s}{8} \times 2 i \times 1 \mathrm{sin}$. Complete with battery, teat leads and instructions. $49 / 6 \begin{aligned} & \text { P. \& } \\ & 216 .\end{aligned}$

POCKET SIZE MODEL. With wideangle, jewelled meter movement, ceramic
long-Hife, low-loss switching, tough impact resisting case. Sensitivity 20,000 ohms/ voit D.C. 10,000 ohms, rolt A. 18 Rangef; $0 \cdot 5-25 \cdot 50-250-500-2500$ volts 0.50 uA- $2.5 \mathrm{~mA}-250 \mathrm{mADC}$. 0.6000 ohms6 megohms, $10 u$ uf-0.001 mfd-1 mid. -20 to +22 dB . Complete battery, test lead and $\begin{aligned} & \text { linstructions } \\ & \text { la.19.6 } 6 \text { P. \& P. } 3 / 6 .\end{aligned}$

WELLER SOLDERING TOOLS

MONO GRAM AMPLIFIER
$2!$ watts output. Uses EL84 vaire, double wound mains transformer. Ideal for use with any record deck. Volume/ onfoff and toze controls on flying leads. Output impedance 3 ohms. Size overall 51
ONLY 69/6. P. \& P. $5 /-$

JULIETTE NA. 50185 BAND 18 TRANSISTOR MAINS/BATTERY RADIO Covers AM $540-1600 \mathrm{Kc} / \mathrm{s}$. Marine
$1-6.4 \cdot 6 \mathrm{Mc} / \mathrm{s}$, $\mathrm{FM} ~$
$88-108 \mathrm{Mc} / \mathrm{s}$. VHF $1-6-4.6 \mathrm{Mc} / \mathrm{s}, \mathrm{FM} 88-108 \mathrm{Mc} / \mathrm{s}$. VHF 108-134Mc/8. PB 148-1743c/8. Ferrite bar aerial for AM/MB. Telescopic aerial for FMitates on AC 250 V or D.C. br four 1.5 V hatteries. Size: 9.C. by four 1.5
$\underset{\text { PREMIER }}{\text { PRICE }}$
33
P. \& P.

TWO STATION TRANSISTOR

 Complete with battery and 50 ft. connecting wire. Compact size, two way call system. Ideal for home, office, factory,

FOUR STATION INTERCOM, Master unit and 3 slave Ideal for office and home. Complete with battery and Ideal for office and home. Complet.
connecting wire $\$ 7.18 .6$ P. \& P. $5 / 6$.

"VERITONE" RECORDING TAPE

SPECLALLY manUfactured in o.s.a. from extra strona preSTRETCEED MATERIAL. THE QUALITY IS UNEQUALLED.

TENSILISED to ensure the most permanent base. Highly resistant to breakage, molsture, heat, cold or humidity. High polished splice free finish. Smooth output throughout the entire audio range. Double wrapped-attractively boxed.

LP3	3*	250	P.V.C.	$5 / 6$	DT6	5:"	1800°	POLYESTER	22/6
TT3	8	$450{ }^{\prime}$	POLYESTER	7/6	TTB	$5{ }^{3 *}$	2400^{\prime}	POLYESTER	37/6
DT3	3t*	600^{\prime}	POLYESTRR	11/6	SP7	7	1200^{\prime}	POLYESTER	12/6
SP5	5	600^{\prime}	P.V.C.	8/6	LP\%	7^{7}	1800^{\prime}	P.V.C.	15/-
LP5	5	800	P.v.0.	101-	DT7	$7 *$		POLYESTER	251-
DT5	5	1200	POLYESTER	10/-	TT7	$7{ }^{-}$	3600°	FOLYESTER	50/-

Post and Packing $3^{*} 1 /-5^{\sim}, 52^{*} 1 / 6,7^{*} 2 /-$ (3 reels and over Post Free.)
Z.12- for all you want from any
amplifier

Q. 14 - the unique loudspeaker

реи!!!о рие sן!пәјеи м м design techniques have been used to produce speaker of
fantastic quality at a most attractive price. Experts and reviewers have enthusiastically endorsed its performance. The shape and size of the Q. 14 make
it far more adaptable to its environment than is the case with conventionally styled speakers so that it is much easier to position this speaker in heard. The Sinclair Q. 14 has a substantially flat frequency

DE LUXE STEREO AMPLIFIER

1. EZ80 as full wave rectifer. Two dual potentiometes. are provided for bass and treble control, giving bass and Balance of the left and right hand channels can be adjusted by means of a separnte "balance" control fitted at the rear of the chrssis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per channel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Overall height including valves jin, Remdy built and Overait height including valveß oinh, Remaly built and
tested to a high standard. Price 8 gns. P. \& P. $8 /-$.

TRANSISTOR STEREO 8 + 8 MK II
Now using Silicon Transistors in first five stages on each channel resulting in even lower noise level with improced sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Lees 14 transistors giving 8 walts push pull output per Crannel and Volume controls. Suitable for use with Ceramic or Crrstal cartridiges. Output stage for any speakers from 3 to 15 ohms. Compact design, all parts upplied including urilled nietal wort Cir. ttractive front panel, knobs, wire, solider, nuts, boltsno extras to buy. Simple step by step instrnctiops enable any constructor to build an amplifier to be proud of. Bass boost approx. to +12 dB . Treble cut approx. to $-163 B$. Negative feedback 18 dB over Hain amp. Power requirements 25 at 0.6 mp . ; POWER PACK KIT ES, 0.0 CABIXET 23.0 .0 . All Post Free. KIT e3.0.0; CABINET 3.0 .0 . An Post Fres with kit) 1/6. (S.A.E.) (ith kit) 1 .

SPECIAL PURCHASE:
 E.M.1. 4-SPEED PLAYER Heavy 8 in. metal turntable.
Low futter performance $200 /$ Low futter performance $200 /$
250 ghated motor 250 V ghaled motor (90 V
tap). Complete with latest tap). Complete with latest
type lightweight pick-up arm
and mono cartridge with tion and mono cartridge with t/o
stylii for IPP/78. ONLY stylii for $\mathrm{I} P / 78$.
$63 / \mathrm{F}$.
P. \& P. $6 / 6$.

4-SPEED RECORD PLAYER BARGARS
Maing models, All brand new in maker's packing. B.S.R. DA25 with latest mono compatible cart.

LATEST GARRARD MODELS. All types available 1025, 2025, SPE5, 3000 , AT60 etc. Send S.A.E. for Latest Prices PLINTH UNITS cut out ior (iarrard Models 1025, 2025, 2000,3000, AT60, SP25. With rigid perspex cover. OUR
PRICE 5 gns, complete. P. \& P. $8 / 6$.

SOKOTONE 9TAHC
compatilie Steren Cartrilge with diamnnl stylus $50 / \mathrm{F}$. \& P. $2 /$. EP/LP/Stereo/78. 32/6. P. \& P. 2/. EP/LP/;8 mono or stereo records on mono equipment. 30/-. P. \& P. 2/. FEW ONLY! ACOS HIGH-G
LP. Only 10/-. P. \& P, 2/-

HIGH GAIN 4 TRANSISTOR AMPLIFIER KIT

'ype TAl

Peak output in excess All stan. dard British components. - Built on
rinted circuil panel size $6 \quad: \quad 3 \mathrm{i}$

- Gienerous size Driver and Out put Transiormers. Output transformer tapped for 3 ohm and 15 ohm and matched pair of AC128 o/p). 9 rolt operation. - Everything supplied, wire, battery clips, soliler, ete. - Comprehensive easy to follow instructions ant circuit liagrami 2/6 (Free with Kit). All parts sold separately. SPECLAL PRICE 45/m, P, \& P, 3/= Also ready built and tested, 52/6. P. \& P. 3

3-VALYE ADDIO AMPLIFIER MODEL HA34 Designed for Mi-Fi reproducoperation. Ready built on plated henvy gauge metal chassis, size $\overline{1} 1 \mathrm{in}$ K. 44 in . d. \times 43 in . h. Incorporates ECC83,
EL84, EZ80 valves. Heavy EL84, EZ80 valves. Heay
duty, double wound mains transformer and output transformer matched for 3 ohm speraker, separate 13ass, Treble and volume controls. Nega-
tive feedback line. Output $4 \frac{1}{y}$ सattg. Front panel can be tive feedback line, Output $4 x$ Watts, Front panel can be controls. Complete with knobs, valves, etc., wired and testerl for only £4.5.0. P. \& P. 6/

10/14 WATT HI-FI AMPLIPIER KIT A stshishly finished monaural amplifier with an output of ELS4s in push-pull Super reproduction of both music and speech, with negli- gible hum. Separate inputs for mike and

 gram allow recordsand announcements
 to follow each other. Fully shrouded
 match $3-15 \Omega$ speaker and 2 independent trolume controls, and separate bass and treble eontrols are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet. 2/6 (Free with parta). All parts sold separately. ONLY \&7.9.6. P. \& P. $8 / 6$.
Also available readr built and tested complete with std. Also arvallable ready built and tested complete with std.
input sockets, 58.5 .0 . P. \& P. $8 / 6$.

BRAND NEW 3 OHM LOUDSPEAXERS
Sin.14/-; $6 \frac{1}{2} \mathrm{in}$. 18/6; 8ip.2\%/-; 7×4 in. 18/8; $10 \times 6 \mathrm{in} .27 / 6$. E.M.1. 8 : Sin. with high flux magnet 21/-. E.M.I. $13 \frac{1}{2} \times$
Sin. with high fux ceramic magnet $42 /$ (15 ohm $45 / \mathrm{m})$ E,M.I. $13: 8$ in. with two inhuilt t weeters and crossover network. 3 or 15 ohms 4 gns . P. \& P. $5 \mathrm{in} .2 / \mathrm{F}, 6 \frac{1}{2} \& 8 \mathrm{in}$. $2 / 6$, $10 \& 12 \mathrm{in}$. $3 / 6$ per speaker.
BRAND NEW, 12in. 15 W H/D Speakers, 3 or 15 ohms. By well-known British maker. Now with Hi Flux ceramic ferrobar magnet assembly. $\mathbf{2 5 1 0 . 0}$. P. \& P. 5/: Guitar Models: 25w. $88 ; 35 \%$. \&
E,M.I. 8 in. HEAVY DUTY TWEETERS. Powerful ceramic magnet, Arallable in 3 .or 8 ohms 15/- each; 15 ohms 18/6 each. P. \& P. $2 / 6$.

VYYAIR AND REXINE SPEAKERS AND CABLKET FABRICS app. 54 in . wide. Vsually $35 /$ yd., our price 18/6 yd. length. P. \& P. $2 / 6$ (min. 1 Fa.). S.A.E. for samples.
A. really high fldelity mon-
aural amplifier Fith pertormince characteristics to suit the most discriminating listener. 6 tranBigtor circuit
with integrated preamplifier assembled special printer sub panel.
 sub161-ADII62 operating in
symmetrical complementary
pair. Output transformer coupleal to 3 ohm and $1 \overline{5}$ ohm speaker sockets. Standard phono input sockets. Full Fave brige rectike poble, rolumefonioff. Function 240r. Controls, bass, tres, radio. The HSL. 700 is stronsly constructed on rigid ateel chassis bronze hammer enamel finish, size $9 \frac{1}{x}<35<4 \frac{1}{2} \mathrm{in}$. high.
Pertormance figures :
Sensitivity-PU1-50m/v,

Tape- $110 \mathrm{~m} / \mathrm{y}, 1 \mathrm{meg}$ input impedance
Radio- $110 \mathrm{~m} / \mathrm{v}$, 1 meg input impedance
Output power measured at $1 \mathrm{Kc}-6.2$ watts RMS into 3 obms, 5.8 watts RMS into 15 ohm . Overall frequency
 +10 db to -10 db at $10 \mathrm{Kc} / \mathrm{s}$.
The HSL. 700 has been designed for true high fidelity reproduction from radio tuner, gramophone deck and tape recorder pre amp but is also capable of being used in conjunction with a guitar by connecting to PU1 socket and the peak output power will then be in the region of 15 watts.
Supplied ready built and tested, complete with knobs,
attractive anodised aluminium front escutcheon panel, long attractive anodised aluminium front escutcheon panel,
spindles (can be cut to suit your housing requirements) full circuit diagrami and operating instructions.
OUR SPECIAL PRICE 57.19 .6 . P. \& P. $7 / 6$.
HIGH TMPEDANCE CRXSTAL STICK MXES, OUR PRICE 21/-, P. \& P. 1/6. P. \& P. $1 / 6$.

QUALITY RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifier employing heavy duty double wound mains transformer, ECc83, ELS EZ80 valves. separate Bass, Treble and $\begin{gathered}\text { andelume control } \\ \text { Comple output transformer matched for } 3 \text { ohn }\end{gathered}$ speaker. Size fin. W. $\times 3$ d, $\because 6 \mathrm{~h}$. Ready built and tested. PRICE $75 /-$ P. ${ }^{6}$ P. $6 /$ -
ALSO AYAILABLE transformer and speaker ready to fit into cabinet below PRICE 97/6. P. \& P. 7/6.
DE LUXE QUALITY PORTABLE R/P CABMET ME II Uncut motor board size $144 \times 12 \mathrm{in}$, clearance 2 in. below
5 in. abore. Will take above amplifer and any B.S.R. or 5 in. abore. Will take above amplifer and any B.S.R. of
GARRARD changer or Single Player (except AT60 and SP2t). Size $18 \times 15 \times 8 \mathrm{in}$. PRICE 79/6. P. \& P. $9 / 6$.
KAINS TRAMSFORMER, Primary $200-240 \mathrm{Y}$ two separate $\frac{1}{4}$ wave secondaries giving approx. 16 V at 1 amp and 20 y at 1.2 amp ; secs. can be connected in series for 36 V at 1 '3 amp. Ideal for trangistor powe supplies. Drop through mounting. Stack size $29 \times 3 \frac{1}{3}$ TAINS TRANSPORM
Prins TRANSFORMER, For transistor power supplies Pri. 200/240V. Sec. 9-0-9 at 500 mA . $11 /=$. P. \& P. $2 / 6$ Pri. 200/240V. Sec, 10-0-10 at 2 amp . 27/8. P. \& P. 3/6 MATCHED PAIR OF 2 WATT TRANSISTOR DRIVER AKD OUTPUT TRAFSFORMERS, Stack size $1 \frac{1}{z} \times 1 \frac{1}{2} \%$ 3 in . Output trans, tapped
$10 /-$ pair plus $2 \%-$ P. \& .

Open all day Saturday
Early closing Wed. 1 p.m. Afere minules from South limbledon Tube Station

HARVERSON SURPLUS CO. LTD.

170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. $01-5403985$
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE ROTE:P. EP.CBAROES QDOTED APPLY TO U. S . ONLY. P. \& P. ON OVERSEAS ORDERS
CHARGED EXTRA.

PLEASE MENTION PRACTICAL ELECTRONICS
 When Replying to Advertisements

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTORRADIO RECORD PLAYER TAPE RECORDER, AMPLIFIER, etc. Types available: 9v; 7iv; 6 v ;

 output required. Ali the above units are completely isolated from mains by double ound transformer ensuring 100%
R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E.), 31 Olivar Road, Landon. E. 17

FULLY TESTED AND MARKED

${ }_{\text {A }}$	$3 / 2$	OC170	3/-
	2/6	OC171	$3 / 6$
${ }_{\text {ACl }}{ }^{\text {A } 128}$	$2 / 6$	OC201	$7 /$
	3-1-	${ }_{2}^{26301}$	$2 / 6$
AFI14	4/-	2 N 711	10/-
AFIIS	$3 / 6$	2 N 1302.3	4/-
AFI16	3/6	2 N 1304.5	5-
AFII7	$3 / 6$ $2 / 6$	2N1306-7	8/-
AF239	${ }_{10 / 2}^{12 / 6}$	${ }_{2}{ }^{2} \mathbf{N} 38448$	${ }_{5}^{6 /-}$
AFI39	10 --	Power	
BFY50	4 -	Transistors	
BSY25		\bigcirc	10,-
- ${ }^{\text {BSY27 }}$	$3{ }^{3 /-}$	$\bigcirc{ }^{\circ} \mathrm{C} 25$	
BSY28	3/-	$\bigcirc{ }^{\circ} 26$	5/-
BSY29	3/-	OC28	
-85954	${ }^{3 / 6}$	\bigcirc	${ }_{7}^{516}$
OC44	$2 / 16$	AD149	$101-$
0 C 45	215 216 2	A ${ }^{\text {N }} \mathbf{}$	${ }_{15}{ }^{3}-$
$\bigcirc{ }^{\circ} \mathrm{C} 72$	$2 / 6$	Diodes	
$0 \mathrm{C73}$	3/6	AAY42	-
${ }^{\text {OC81 }}$	$2{ }^{2 / 6}$	OA95	
${ }^{\circ} \mathrm{CB3}$	4	- A79	19
$\begin{array}{r}\text { Oc139 } \\ \bigcirc \mathrm{OCl} \\ \mathrm{O} \\ \hline\end{array}$	3/68	OA81	$1 / 1 / 6$

들

PACKS OF YOUR OWN CHOICE UPTO THE VALUE OF 10/- WITH ORDERS OVER E_{4}

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, a large
81 , etc.

PRICE 45 PER 1000
POST \& PACKING 4/6 U.K.

XB PAK

silicon TO-18 CAN type transistors NPN/PNP mixed lots with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE 55.5 .0 PER 500
PRICE EIO PER 1000
POST \& PACKING $2 / 6$ U.K.

XC PAK

Silicon diodes miniature slass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DK10, etc.

PRICE \& PER 1000
POST \& PACKING $2 / 6$ U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT be less than the minimum amounts QUOTED PER PACK.

\section*{TRANSISTORS
 SILICON
 PLANAR
 onNLY 1/- EACH All these types available
 | 2N929 | 2N706 | 2S131 | 2S103 | 2N696 | 2N1613 | 2S733 | BFY 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2S501 | 2N706A | 2S512 | 2S104 | 2N697 | 2N1711 | 2N726 | $2 \mathrm{S731}$ |}

All tested and guaranteed for gain and leakage-unmarked.
Hanufacturers' fall outs from the new PRE-PAK range.

NEW UNMARKED UNTESTED PAKS
B78 $\quad 12 \begin{aligned} & \text { Intergrated Circuits, Data } \\ & \text { and Circuits of types, }\end{aligned} \quad$ 10/=
and circuits of types,

PRE-PAK.N.605 POWER
TRANSISTOR EQUIVALENT $/$ /= Q2Ch
TO NKT3OI-2-3-4
COMPLIMENTARY SET
NPNIPNP GERM, TRANS. $/ 8$ DRİ:

NEW TESTED AND GUARANTEED PAKS

B2	4	Photo Cells, Sun Bateries inc. Book of Instructions	10/\%
$\overline{\text { B77 }}$	2	ADI61-ADI62 NPN/PNP Trans. Comp. Ousput. Pair	10/
879	4	IN4007 Sil. Rec. Diodes 1000 P.I.V. I amp. Miniature	10/
B81	10	Reed Switches comp. with Coils and Magnets	10\%
885	24	Integrated Circuits on Panels. Data supplied with orders	10/-
E89	2	5SP5 Light Sensitive Cells. Light Res. 400Ω Dark IM Ω	10/-
890	10	Latest Type Reed Switches. Green Glass GPO rype	10/m
891	8	NKT163/164 PNP Germ. TO-5 equivalent to OC44, OC45	10/
892	4	NPN. Sil. Trans. AO6= $\mathrm{BSX} 2 \mathrm{O}, 2 \mathrm{~N} 2369500 \mathrm{MHz}$. 360 mW	10/m
893	5	GETII3 Trans. equiv. to ACY17-21 PNP Germ.	0/=
B94	6	NPN Sil. Planar Epitaxial Trans. CS 4 similar to BSY38 or BC108	10/=
896	5	2N3I36 PNP 5il. Trans. TO-18, HFE 100-300 I.C. 500 mA .200 MHz	0/-
B98	10	$X B 112$ and $X B 102$ equiv, to AC126, AC156, OC81/2, OC71/2, NKT27।, etc.	10/=

RETURN OF THE UNBEATABLE P.I PAK. NOW GREATER VALUE THAN EVER
FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS, APPROX. 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRANSISTORS PNP AND NPN. AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMA. TION ON THE TRANSISTORS.
please ask for pak P. 1 only $10 /$ 2/- P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a tinear and accurate rev.
counter for any car.
State 4 or 6 cylinder. $I 0$ each
FREE CATALOGUE AND LISTS for: -

ZENER DIODES

TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS
\square DEPT. A. 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX Ex-rigrak HTO TELEPHONE: SOUTHEND (0702) 46344

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chenicals, Etching Manual, Infra-Red Phototransistir. Latching Relay, 2 Transistors, Condensers, Resistors, Gain Control, Terninal Block, modifed for modgrated-light operation.

PHOTOELECTRIC KIT 39/6
Postage and Pacir. 2/6 (UK) Commonwealth SURFACE MAIL 3/6 AIR MAIL $£ 1.0 .0$ Australis, New Zealand S. Africa, Canada and U.S.A. Also Essential Data Circults and Plans for Building 10 Advanced Designe

INVISIBLE BEAM OPTICAL KIT

Everytbing needed (except plywood) for building: I Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door openers, etc.
anp lamp holder, building plans, performance data, etc. Price 19/6. Postage and Pack信
LONG RANGE INYISIBLE BEAM OPTICAL KIT
CONTENTS: AB above. Twice the range of standard kit. Larger Lenses, Filter, etc. Price 29/6. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Countef, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototrangistor, 3 Transistors, Chassis, Plastic Case, Reslistors, Screws, etc. Full Size Plans, Instrictions, Data Sheet " 10 Advanced Price 19/6. Postagn
(U.K.). Commonwealth 2/: Air Mail $4 /$

JUNIOR OPTICAL KIT
CONTEATS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to hulld 1 miniature inviisible beam profector and photocell receiver for use with Junior Photoelectric Kit.
Price 10/8. Post and Pack.
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealth: Surface Mail $2 /$; Air Mail 4/-

YORK ELECTRICS

 333 YORK ROAD, LONDON, S.W. 11Send a S.A.E. Jor full details, a brief descriplition and Photographs of all Kits and all 52 Radio, Electronic and Photoelectric Projects Assembted.

PARKERS SHEET METAL FOLDING MACHINES heavy vice MODELS
With Bevelled Former Barz

No. I. Capacity 18 gauge mild steel $\times 36 i n$, wide $. . . \quad . . . \quad .$.
Carr. free
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide $. . . \quad . .$.
No. 3. Capacity 16 gauge mild steel x 18in. wide $\cdots \cdots \cdots . .$. Also new bench modefs. Capacities $48 \mathrm{in}, \times 18$ gauge $\varepsilon 40$. 36 in . $\dddot{x} 18$ gauge E27.10.0. $24 \mathrm{in} . \times 16$ zauge 26.10 .0 . Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36in. model, $5 / 6$ per ft . Other models $3 / 6$. The two smaller models will form fianges. As supplied to Government Departments, Universities, Hospitals. One year's zuarantee. Money refunded if not satisfied. Send for details.
A. B. PARKER, Folding Machine Worts, Upper George St., Heckmondwike, Yorks. Heckmondwine 3997

OMICRON ELECTRONICS

Authorized International Rectifier Semiconductor Centre: Send for Free List Unijunction Transistors: 2N2160, Cir-Kit Pack with Paxolin Board, High Outpur silicon Solar Celts as etc., 12/-
High Output silicon Solar Cells as
used in space vehicles: $+\frac{10}{} \mathrm{~V}$ (2 50 mA used in space vehicles: $\frac{1}{2} \mathrm{~V}$ (3) 50 mA
from bright sunlight, $26 / 6$. These will drive Solar Motor, 28/-. These 5 kel Resets (Vert.): $5 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}$,
$220 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}, 2 \cdot 2 \mathrm{M}, 1 / 4$ each. R.C.A. Integrated Circuits-CA3020, 26/-. CA $3018,22 /$. CA3014, 25/-. CA3012, 20/-
Cir-Kit Copper Strip, tin wide, $1 / 41$ ir-kit Copper Strip, tin wide, $1 / 11$ Cassette Tapes: C.60-1216. C. 90
Professional quality Tudor Tape at fantastic low prices
Boards 0.1 matrix, 5 in $\times 3$ 亲 $\mathrm{n}, 3 / 9$
Dee-Gee professional quality 25 W Doldering lrons, 17/6.
B.S.R. Mono/Stereo X3H Compatible Cartridges, 36/-.
Sinclair Products: Z12 amp, 89/6
Micromatic Kit, 49/6; Stereo 25
9.19.6; Q14, £7.19.6.

Fully Retracting and Locking Car Aerials, 30/-

$\begin{array}{cc}900 \mathrm{ft} & 13 /- \\ 1,200 \mathrm{ft} & 15 / 9\end{array}$
$\begin{array}{ll}1,200 \mathrm{ft} & 15 / 9 \\ 1600 \mathrm{f} & 16 / 9\end{array}$
c $16 / 9$
dd $1 / 6$ P. \& P.
P \& P
C.W.O. Please. Add 16 P. \& P.
OMICRON ELECTRONICS

172 Baslow Road, Totley, Sheffield S17 4DR
 standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects.
type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.
What readers say
"I am highly delighted with the books; I didn't knozo a complicated subject could be so easily presented."
J. K., Earlsfield.
"I am pleased to say how understandable, your books are. I have now quite a sound knowledge of Electronics."
P. S., Southgate.
"I know your Manuals will prove invaluable for my trainng and J. L., S. Shields.

A TECH-PRESS PUBLICATION

 To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR 27 HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/-followed by 3 fortnightly payments of $20-$ each. BASIC ELECTRONICS 90/-. Cash Price or Down Payment of $20 /$ - followed by 4 fortnighty payments of $20 /-$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS.
Thesser electronic components ity

B6107/8/gMPM $/ 8 / 8$	
$2 \mathrm{N3O} 19$ Teus	8/
$2 N 2646$, wirion	10/

CRS3/40AF
STC Slicear hmayghe
THYRISTOR \&OPPVI 3i 12/6
$25+11 /-100+10 / 3$

TD716 puwat $12 /-$

BF180 MULLARD VHF 6
$2 N 3055115$ พ月T
PDHER SLLICOM XPM
$25+13 / 109+11 /-$
2N2926 popluse $2 /=$

LINEAR AMP.IG'S

CA3020 $\frac{1}{\ddagger}$ wats output 9 volt supply3066
(price includes free circuit for Guitar/PA Amplifier!!) TAA263 Tiny Mullard linear only 17/6-data on request CA3012 Wide band with bultr in regularion........27/6 CA3014 ${ }^{3}$ stage 2mp. with
Darlington output … $32 / 6$ SL701 Plessey lin. amp. for PE circuits

ULTRASONIG TRANSDURERS

Operaze at $40 \mathrm{kc} / \mathrm{s}$. Can be used for remote consrol sys-
tems without cables or electems without cables or sele-
tronic links. Type 1404 transtroner
ducers can
can receive.
FREE; With each pair our complete cransmitur and receiver eircuit.
PRICE $\mathbf{E 5 . 1 8 . 0}$ Pair (sold only in pzirs)

CHEAPEST EVEF GOLID-STATE SALE

 Sillicon Pranar Tranistars. TO.18 case NPN 2nd RNP mixed.
 O sinimum som jood

 50 Mieded ulloy difinsed Trnaisitors." "Mat' type) Nor istros ör

 26 mintimum $80 \%{ }^{20} 8$ zed Toney refunded rinot tuisifid. All thov pack poit free

 BOOKS FROM STOCK "Geners Electric Transistor Manual", 660 pages of data and "RCA Transistor Manual", S54 pages inciudes SCR circuits 28/"Designers Gulde to British Transistors". Exceelent data book liste over 1,000 common typers plus computer selected substitu(ADD 2;6 POST \& PACKING FOR ALL BOOKS)
Sigral neons for many typer of elrcult sype " N "
Price $1 / 6$ each or 16 - dozen
tercial equip. Sure Type 100 OC35, ete. As used in comp Mercial equipment CHAPE
$6 \times 4 \times 2$ in with reinforced corners $6 / 9$ each (P. \& P. P/ $/ 6$) Ally panel to fit. $1 / 6$. Paxolin panel to fit, $2 /$. M
sizes in stock up to $12 \times 8 \times 2$ tin (see catalogue)

X-LINE

SILICON REGTIFERS \boldsymbol{X}

THYRISTORS•SCRS X

ZEMER DIODES

童

SOLAR CELLS
B2M 0.2-0.4 volts @ 2 mA Selenlum type …………… $12 / 6$ B3M 0.2-0.4 volts (a) $1+2 \frac{1}{\mathrm{t}} \mathrm{mA}$ Selenium type SIM 0.3-0.4 volss @ 10.16 mA Silicon SOLAR DRIVE MOTOR EP50A Runs from sunlighr activiry on S4M cells (above)..... 39/6 PHOTOCONDUCTIVE CELL CS120 20V0.4 watt dark Res solar cell kits
DDI 190 Contains 4 Selenium photocells and free 24 page 911 Super asortment of 7 cells, 3 Selenlum, 2 Silicon and

TRANSISTOR KITS

DDi80 Contains 2 audio and I RF transistor plus free

SILICON RECTIFIER KITS

DD175 Contains 4100 plv t amp diodes DDI76 Contains 2200 pir $\frac{\mathrm{amp}}{}$ diode ALL INCLUDE FREE 24 PAGE MANUAL

ZENER DIODES

Avalable in the following voltages with a dissipation of Watt and ter interesting promets.
$3.9 \mathrm{~V}, 4.7 \mathrm{~V}, 5.6 \mathrm{~V}, 6.8 \mathrm{~V}, 8.2 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V}, 22 \mathrm{~V}, 27 \mathrm{~V}$. ALL ONE PRICE:

ZENER KIT

OD170 Bargain pack-contains 5 popular I watt diodes plus free

TRANSISTOR SUBSTITUTION

Our TROI-C to TRIO-C range are universal replacements for ov 700 JEDEC (2N \longrightarrow) types. Prices in our FREE Catalogue. INTERESTING DEVICES IN OUR CATALOGUE.
mu COMPONENTS -1F
RESISTORS \ddagger OR \& WATT 5\% LOW NOISE CARBON
 ,
 vailable in sub-mintiaure or stundard size, horizonrat oo

 ARGAIN PACK of 36 wquare inches will good size pleces only
 VEROFINS for O.15in 36 pieces 3 i-

1 must
Fot reime

LST. 7 COPTFOLD ROA ESSEX
Prices quoted are current $2 z$ rime of roing to
press and may be subject to ratizizion. Semi-

HEW CATALOGUE

Nearly 200 pages giving full details of a comprehensive range of COMPONENTS, TEST EQUIPMENT, COMMUNICATION EQUIPMENT AND HI-FI EQUIPMENT.
Each section greatly enlarged and fully illustrated. Thousands of items many at bargain prices. VALUE 10%
SENO NOW-ONGY 76 PEPY.

GARRARD

FULL CURRENT RANGE OFFERED, BRAND NEW AND GUARANTEED ATEANTASTIC SAYINGS
\$RP22 Mono £6.10.0 *SP25 MKII £11.19.6 SRP22 Stereo £6.19.6 *SL55. - 1025 Stereo 87.15 .0 AT603KII 2025 Stereo $£ 7.19 .6$ SL6
2025T/C APT
Mono/Stereo £8.17.6
401

Rases $£ 3.19 .6$. Perspex covers $£ 3.10 .0$. Special offer base and cover available for these ases 23.19 .6 . Perspex covers $£ 3.10 .0$. Special offer base and cover

TYPE 13A DOUBLE BEAM OSCILLOSCOPES

pose D/B oscilloscope. $\begin{array}{cccc}\text { T. B. } & 2 & \text { cis-750 } & \mathrm{kc} / \mathrm{s} \\ \text { Bandwich } & 5.5 & \mathrm{Mc} / \mathrm{s}\end{array}$ Sensitivity $33 \mathrm{mv} / \mathrm{CM}$ Operating voltage o/I10)
$200 / 250 \mathrm{~F}$. ace. supplies $200 / 250$. a.c. supplied
in excellent working conlition. £22.10.0. Or con plete with all accessories,
wrobe, leads, lih, ete 225. Cariage $301-$
B. 40 RECEIVERS ADMIRALTY B. 40 RECEIVERS Releatsed by the Ministry. High Mantity
10 valve receiver manufactured by Murphy Coverage in 5 hamis $650 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. I.F. $500 \mathrm{kc} / \mathrm{s}$. Incorporates

LaFAYETTE SOLID STATE HAGOO RECEIVER

 5 BAND AM/CW/SSB AMATEUR AND SEORT WAVE $150 \mathrm{kc} / \mathrm{s}-400 \mathrm{kc} / \mathrm{s}$ and $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ FE T front end 2 mechanical filters Fuge Bandspread 230 V a.c. $/ 12 \mathrm{~V}$ d.c. neg. earth operstion RF gain control. Size 15 in 93in×
8tin. Weight 18 lb. EXCEPTIONAL VALUE E45. Carr. 10/-. S.A.E. for inll details.
LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER
A completely new transistorisel receiver covering (not supplied) Fully tuneable or crystal controlled (not supplied) for fixed frequency operation. In-
corporates 4 1NTEGRATED CLRCEITS. Built in speater and ilfuninated dial. Squelch and rol ume controls. Tape recorter output. i5 and volimput. Healphone jack. Operation 230 V . Aeria

Variable Votiage ThANBFORMEHS

High quellity construction. Input 230 V゙ $50-60$ cycles
Output full wriable from 0.2 ho Y . Bulk quantities available

ing condition $£ 22.10 .0$. (arr $30 /$ With
 rersina
Carr. 30 :-

R209 MK II
COMMUNICATION RECEIVER 11 valve high grame comanunication receiver suitable for tropical use. $1.20 \mathrm{Mc} / \mathrm{s}$ on 4 bands.
AM/CW/FM operation. 11 corporaterprecision vermier driver, Bfo. Acriak trinumer, internal

pnwer sup-
p / y, plien int conilitiom, fully tester

£15

ADVANCE TEST EQUIPMENT
Brand new and boxed in original sealed
YM 78 valve varfocs.
VALYE VOLTMETER R.F. measuremeasurements up to 100 V with ceurecy of 20° d.c. range 300 MV 01 kV a.c. range 300 MV to 300 V RMS. Resistance $02-500 \mathrm{M} \Omega$
VM. 78 A.C. MILLIVOLT METER. Transistorised $1 \mathrm{MV}-300 \mathrm{~V}$. Frequency $1 \mathrm{c} / \mathrm{s}$

VM. 79 UHE MILLIVOLT METER. TPABistorised. A.c. range $10 \mathrm{MV}-3 \mathrm{~V}$. D.c. current range $0.01 \mu / \mathrm{A}-0.3 \mathrm{MA}$. Resistance 1 ohm- 10 megohms. Pzice $£ 125$
AUDIO SIGNAL GENERATOR. Price $£ 30$.
JIB AUDIO
$5 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$. Price $£ 30$
per Y1B except GENERATOR. As
TTIS TRANSISTOR TESTER. £37.10.0 Carrisge 10 - per item.
SOLARTRON MONITOR OSCILLOSCOPE TYPE 101

> An extretucly high quality oscilloscope with tume hase of $10 \mu /$ sec to $20 \mathrm{~m} / \mathrm{sec}$. Internall y $200 / 2505$. supplijed in excellent condition with calles, wrole, ete., as received from Ministry. \&8.19.6, carriage 30!-

CLEAR PLASTIC PANEL METERS

 hindew portable tringe off 1:11100. 6 Janges $+1 \%$. Bridge voltage $1,000 \mathrm{cps}$. Operaten from 9 volts. $100 \mu \mathrm{~A}$ Meter indication. Attractive 2 tone metal

TE-65 VALVE VOLTMETER

High quality instrument with 28 ranges. D.c. volts $1 \cdot 5-1,500 \mathrm{~V}^{\circ}$. Resistance up in 1,000 megohms. $220 / 240$ a.c. operation. instructions. instructions.
$\mathrm{P} . \& \mathrm{P}, 6 / 7.10 .0$. Probes avatilable: R.F $35 / \mathrm{F}$. H.V. $42 / 8$.

NOW OPEN IN EDGWARE ROAD

Our new walk around shop is now open at 311 Edgware Road fully stock with Ell Ei-Fi, Commanicstion and Test Equipment. Call into your nearest shop-

TE-16A Transistorised
 SignalGenerator. 5 ranges $400 \mathrm{kHz}-30 \mathrm{mHz}$. An
inexpensive instrument inexpensive instrument
for the handyman. Operates on 9 v battery. Wide, easy to read scale.
800 kHz modulation. 5f $\times 57 \times 3$ inn. Complete leads instructions and MODEL ZQM TRANSISTOR CHECKER checking on A, B and Ico. Equally adaptable checking dioues, etc.
Spee.: A: $0.7-0.9967$. $\begin{array}{lll}\text { Spec.: A: } & 0 \cdot 7-0.9967 . \\ \text { B: } & \overline{5}-200 . & \text { Ico: } \\ \text { micromps } & 0-50 \\ \text { R } & 0-5 & \text { mat. }\end{array}$ Resistance for diodie omplete u tions, battery and leati, £5.19.6. P. \& P. 2/6 TE-20RF SIGNAL GENERATOR

Brand New $£ 17.10 .0$.
Carr. $7 / 6$.

9 a.m. 20 6p.m. Mon. to
Sat. (Edgware Road ${ }^{\frac{1}{2}}$ day Thurs.)
supplied.

RACAL RA-17

First ministry release of these worlu lamous conhuunication receivers. Frequency range $500 \mathrm{Kc} / 8-30 \mathrm{3c} / \mathrm{s}$. Available n excellent condition fully lested an suaranteed. 8150 Carr 40

CLASS D WAVEMETERS

 Acrystal controlled hetero $\begin{array}{ll}\text { covering frequency } \\ \mathbf{1 - 7 - 8} & \mathrm{Mc} / \mathrm{s} .\end{array}$ Operation on 6 V d.c. Ideal for amateur use. Avallable ingood used condition. $\mathbf{5 5 , 1 9 , 6 , ~ C a r r . ~ 7 / 6 . ~}$ Or brand new with acces. sories. $£ 7.19 .6$. Carr. $/ / 6$.

CLASS D WAVEMETERS No. 2 Crystal controlled. 1.2-19 Mc/s, Mains calibration charts. Excellent comulition.玉12.10.0. Carr. 30/

MARCONI CT44

 TF956 AF ABSORPTION ABSORPTION$1 \mu /$ watt to 6 watts. \&20. Carr. 20

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0.20 \mathrm{Kc} / \mathrm{s}$ on 2 ranges. Output 500Ω or $5 \mathrm{k} \Omega$. Operation $212 / 10 /$. Garr Supp
$10 /-$

AVOMETERS
Supplied in excellent condition fully tested and checked. Complete rith prods, leads and instructions. Model 17A \&9.19.6 P. \& P. 7/6.

SOLARTRON CD. 1016 OSCILLOSCOPE

AM/FM SIGNAL GENERATORS

Oscilator Teat Jo. A high quality precision instru-
ment made for the ministry by Airmec. requency cover: C.W./FM. Incorprates urecisiondial, level meter, prectsion attenuator $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Operation froml 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{Y}$ a.c. Size $12 \times 8 \frac{1}{2} \times 9 \mathrm{in}$. Supplied in branul new fulls tested. $£ 45$. Carr. 20/-

GEARED MAINS MOTORS Paralux type SD19 $230 / 250 \mathrm{~V}$ a.c. Reversible. 30 RPM. 40 lb in. Complete ${ }_{\text {99/6. }}^{\text {with }}$. Carr 10

SINCLAIR EQUIPMENT
Z12 12 watt amplifier, 89:6 PZ4 Power Supply Unit 89/6 Stereo 25 Preamp., £9.19.6 Q14 Speakers, $£ 7.10 .6$ 49/6. Built 59/6 ALL POST PAID

SPECIAL OFFER
Two Z12 Amps., PZ4 Power Supply, Stereo 25 Preamplifier 522 , with two Q14 speakers, 537.

NEW SINCLAIR 2000 SYSTEM

35 watt Integrated Amplifier £29. Carr. 5/-

ECHO HS-606 STEREO

HEADPHONES

Wonderfully comfortable. Light-
weight aijustable weight aijustable
vinyl headband. vinyt head. cable and
6 ft. and
stereo jack plug. stereo jack plug.
$25-17,000$ eps. 8 ohm imp. 67/6

UNR-30 4-BAND COMMUNICATION RECEIVER
Covering $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built-in spenker and phone jack. Metal cabinet. Operation $220 /$ 240 V . a.c. Supplied brand new, guaranteed
instructions.
Carr, $10 \quad 13$ ghs

TRIO COMMUNICATION

 RECEIVER MODEL 9R-59DE4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{\beta}$. continuous and electrical bandspread on $10,10,20$. $4 / 8$ ohm output and phone jack. SSB-CW - ANL - Variable BFO of S meter - Sep. bandspread dial $1 \mathrm{~F} 445 \mathrm{Kc} / \mathrm{s}$ Audio output 1.5 W . Fariable RF and AF gain controls. $115 / 2$ ão A.C. Mains. Beautifully designed. Sis

10in. Winh instruction nazual aud service data.
T42.10.0. earriage paid
COMMONICATION TYPE HEADPHONES. Sormaly
$£ 5.19 .6$.
thabove re \qquad
TRIO JR-500SE $10-80$ METRE AMATEUR COMMUNICATION RECEIVER IN STOCK £69

HAMMARLUND SP600JX

 COMMUNICATION RECEIVER High quality professional dual conversion communication receivers. Few available again in this country at a reasonable price. Frequency range $540 \mathrm{Kc} / \mathrm{s}-\overline{\text { ond }} 4 \mathrm{Mc} / \mathrm{s}$ in 6 bands, variable tuning or 6 channel crystal contronal 2.5 watt output into 600 ohms. Iuput 10 valve circuit incotporating: Xtal filter, B.F.O., A.N.L Stal calibrator, \& meter etc. Size 19 \& 12 : 22 in and checked. $£ 100$ each.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
 19 transistors, 8 diodes, IHF music power, 30 W
at 8Ω. Response $30-20,000 \pm 2118$ at $1 \mathrm{~W}, \mathrm{Dis}$ ortion 1% or less, Inputs $3 n \mathrm{~m}$ and 250 mVV . Output $3-16 \Omega$. Separate L and R volume controls. Treble ant bass control, Stereo phone jack. Brushed aluminula, gold anodised case. Size 101

MARCONI TEST EQUIPMENT

EX-MIEITARY RECONDITIONED. TF 144G STANDARD SIGNAL GENERATORS, $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, OSCILLATOR
T.F. 195M. BEAT FREQUEXCY OSCILLATOR $-40 \mathrm{Ke} / \mathrm{s}, 200 / 250 \mathrm{Y}$ a.c. $£ 20$. carr, $30 /-$. TF, 142 E .
Distortion Factor Mreter, $£ 20$. carr. 20/-. All above offered in excellent condition fully
 tested and checkel. TF, 1100 VALVE VOLT-
METER, Brand New, £50. T.F. 1267 TRANS- F . Whle Band Millivolt Meter, $\mathbf{8 5 0}$.

MULTIMETERS for EVERY purposel

 $10 \mathrm{M} \Omega$. -10 to 49 -4dB £18.18.0.P. \& P. $5 /-$

MODEL TEE-90 50,000 O.P.V. MIRROR SCALE O/S/12/60/300/600/1,200 0/3/12/60/300 $0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{Y}$ d.c. $0 \cdot 03 / 6 / 60 / 600 \mathrm{MA}$ d.c $16 \mathrm{k} \Omega / 160 \mathrm{k} \Omega / 1-6 / 16 \mathrm{M} \Omega$. P. 20 to $+63 \mathrm{lB} . \quad £ 7.10 .0$ P. 20 to

MODEL TE-70, 30,000 O.P.V. 0/3/15/60/300/ $600 / 1,200 \mathrm{~V} . \mathrm{d.c} 0 /$. $30 / 120 / 600 / 1,200 \mathrm{~V}$. $300 \mathrm{~mA} 0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ 1.6M 16 megohn . 85.10.0. P. \& P. 3/

MODEL PT-34 $1,000 \mathrm{O}$.P. FV.0/10 $50 / 250 / 500$
$1,000 \mathrm{~V}^{\text {a.c. and }}$ d.c. \quad d.1/100/500 $0 / 100$ K \& 39/8. P. \& P.
 TE-800 $20,000 \Omega$
VOLT GIANT
MULTMETER Min. full view meter. 2 colour seale, orerload
protection. $0 / 2.5 / 10 /$ protection. $0 / 2.5 / 10 /$
$250 / 1,000 / 5,000 \mathrm{~V}$ a.c. $0 / 25 / 12.5 / 10 / 50$ $\begin{array}{lll}0 / 25 / 12.5 / 10 / 50 \\ 250 / 1,000 / 5,000 \mathrm{~V} \\ 1 . c .0 \\ 1 & 50 \mu A / 110\end{array}$ 1.c. 500 mA 10 A
$10 \mathrm{c}, 20 \mathrm{~K} / 200 \mathrm{~K} / 20$
$\mathrm{M} \Omega . £ 15 . \mathrm{P} .8 \mathrm{P} .5 / \mathrm{F}$

LAFAYETTE

 Ohms 0.15 Meg Ω dB. -20 to +81 dB . (12rr./3/0 PROFESSIONAE 20,000 O.P.V.

LAB. TESTER

Automatic overload protection, mir-
ror scale. Hanges: $1 / 10$ $50 / 250 / 500 /$
$0-500 \mu \mathrm{~A}$ 1,000 volts, d.c. athat a.c $0 / 20 \mathrm{~K}, 200 \mathrm{~K}$ 2 megohm. Decibels: -20 to +22 lB , \&5.19.6. P. \& P. 2/6.
MODEL TE 80. 20,000 O.P.V. O.P.10/50!100/500 1,000V. a.c. 0/5/25/50 $250 / 500 / 1,000 \mathrm{~V}$ d.c $0.5 \mu \mathrm{~A}$.
$0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$. 44.17.6. P. \& P. 3/.

MODEL TE12, 20,000 O.P.F: 0/0.6/30/120/600/ $1,600 / 30 / 120 / 600 / 1200 \mathrm{~V}$ a.c. $1 / 6 / 30 / 120 / 600 / 60 / 600 \mathrm{Ma}$. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{me} / 60$. Megohn 50 PF .2 NFD 55,19.6. P. \& P. $3 / 6$.

TO-2 PORTABLE OSCILLOSCOPE

 book | 22,10.0. Carr. $101-$ |
| :--- |

FIELD TELEPYORES TYPE L Generator ringiog, metal cases. Operates Ironn two $1-5 \%$ batterjes (not bupplied). Carr. 10/-

T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges: | -01 |
| :--- | :--- | :--- | :--- |
| $3 / 10 / 30 / 100 / 300 \%$ | R.M.S. $4 \mathrm{c} / \mathrm{s}-1.23 \mathrm{Kc} / \mathrm{s}$.

Decibels -40 to +50 dB . Decibels -40 to +50 dB .
Supplied brand nex complete with leads and $\begin{array}{cc}\text { instructions. } & \text { Operation } \\ \text { en7.10.0. }\end{array}$ 230 V
Carr .5

AUTO TRANSFORMERS

0/115/230v. step

Fully shrouted.
150 W, 1.12.6, P, \& P 3.6
300 W. 22.7 .6, P. \& P. P. $3 / 6$
${ }^{500}$ W.

TE22 SINE SQUARE WAVE AUDIO GENERATORS

 600 n range $(0 \cdot 1 \mathrm{UB}: 10)+(1 \mathrm{AB} \times 10)$ $+10+20+30+401 \mathrm{lB}$. Frequener:
 $0.05 d \mathrm{~B}$. +indeation W^{2} (50 V). Built in 600Ω load registance with internal external switch. Branul new 827.10 .0 . P. \& P. $5 /-$

TE-20D RF SIGNAL GENERATOR
 $120 \mathrm{Kc} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$ ol 6 bands. Directly cali-
brated. Variable R.F.atbrated. Virinble R.F.at
temantor, audio output temuntor, abdio output tion. 220/240V. A.C. Brand new with instruc tions, 815 . Carr. $7 / 6$.
Nize $140 \times 215 \div 170 \mathrm{~mm}$.

TY75 AUDIO SIGNAL GENERATOR Sine Ware $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. High $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. High output. Output variable up to 6 volts. Size 210 © 150 . 120 mm . Brand new with instruct
E16. Carr. $7 / 6$.

Full range of all components Valves semi-conductors Tcst equipment Receivers
G. W. SMITH \& CO (RADIO) LTD.

Also see oppos. page

OUTSIDE-" the lot

On the outside, Avometers haven't changed much over the years. But inside every genuine Avometer - right across the range from pocketsize Multiminors to 0.3% Precision Avometers - you'll find the up-to-date guts of the most famous multimeters in the world. Outside - the same familiar functional case and knobs you grew up on. Inside-the state-of-the-art circuitry you'd expect from the world leader. Inside and outmultimeters to meet every laboratory, test and servicing requirement.

Full details and specifications in the Avo Short Form Catalogue.
Avo Limited, Avocet House, Dover, Kent;
Telephone: Dover 2626; telex 96283

A PLACE IN THE QUEUE

Atantalising profusion of new type semiconductors and other kind of circuit devices flow steadily from the component manufacturers. Tantalising, that is, to the amateur who reads accounts of these products and their capabilities, and likely effects upon future developments in electronic circuit design, but realises they are not likely to come his way for a long while, if indeed at all.

The recipients of these new products are of course the electronic equipment makers. The more exciting and trend-setting components usually are initially earmarked for the requirements of the armed forces (who, more often than not, have financed the original R and D work); then come the industrial users, and finally the mass consumer product market.

How does the amateur fare in this progressive dissemination of the latest advances in component technology? He has no officially recognised place in the queue, that much is obvious. But on the other hand a limited range of these devices do eventually find their way onto the retail market as branded items, often primarily intended as service replacements for the trade. An even wider variety of devices make their due appearance as unmarked "surplus" components. The manner of their distribution is somewhat devious, the name of the maker frequently not known and type number obscure. Availability of these supplies is fortuitous and dependent upon the caprices of mass production methods and professional user demand. Still to the amateur they are valuable, if not essential; and they are generally remarkably cheap.
Unfortunately, however, this has lead to the amateur being stigmatised in some quarters as just a user of surplus components, with the inference that sub-standard or, at least, untested parts are good enough for him always-and for all purposes. This is unfair as a generalisation, and is demonstrably entirely untrue in very many cases. This kind of misrepresentation has harmed the image of the private enthusiast, and perhaps its most serious effect has been the obscuring of genuine contributions made by individuals towards extending the general usefulness of electronics for the ordinary person in every day life. Ideas of amateur origin have been adopted commercially on more than a few occasions, it is well to remember.

The component manufacturers could well ponder this and consider whether a wider range of their products could not be made available-via distributors-to the amateur fraternity. It must be in their interest to help sustain a body of individuals who are in tune with developing technology, although so often barred from useful active experimental work because of non-availability of vital parts.
F. E. Bennet--Editor
CONSTRUCTIONAL PROJECTS
OPTICAL REMOTE CONTROLLER 494
P.E. ORGAN-3 508
SERIES VOLTAGE REGULATOR 521
CHROMATONE 535
SPECIAL SERIES
COLD CATHODE TUBES—3 514
OPERATIONAL AMPLIFIERS-2 527
GENERAL FEATURES
INGENUITY UNLIMITED 505
NEWS AND COMMENT
EDITORIAL 493
SPACEWATCH 502
MARKET PLACE 519
BOOK REVIEWS 520
MEETINGS 520
REPORT FROM AUSTRALIA 524
NEWS BRIEFS 523, 532
READOUT 544

[^0]

APERSON watching television, who is comfortably planted in a soft armchair, may be temporarily subjected to a sudden blast of energetic music. A possible cure for such a condition is to climb out of the armchair and adjust the television volume control, whereupon he might find himself straining forward to catch the whispered words of a particularly interesting but softly spoken personality.
Another case occurs where the discriminating viewer requires his picture to be as crisp as a good photograph, with correct contrast settings. As most television sets have inadequate black-level correction, a picture adjusted for a bright daylight scene will consist of pure white patches on a featureless black background when the shot changes to a night scene.

Clearly, some form of remote control is called for, which allows fine and continuous adjustment of a control within the set, without the inconvenience of a bulky screened cable draped across the room.
The optical remote controller described here uses a beam of modulated light, in place of interconnecting wires, to achieve a continuously variable and almost linear adjustment of a potentiometer setting in a remote receiver or instrument, situated at distances of up to 30 ft away.

Although there are many possible applications for such a control, when it is used with a television set, the sound level can be increased, diminished, or turned off altogether, merely by rotating the knob on the transmitter or operating a switch.

Fig. I. Block diagram of the optical remote controller with transmission waveforms

Strong background lighting, whether from sunlight or from high powered mains bulbs, does not affect the operation of the controller.

HOW IT WORKS

The block diagram in Fig. 1 illustrates the sequence of operations. A square wave (A) is obtained from an astable multivibrator, which has a repetition frequency of about 25 Hz , and a variable on-off or mark/space ratio controlled by potentiometer VR1
The transmitter amplifier increases the amplitude of the waveform (B) to a level sufficient to drive a low consumption torch bulb. The bulb is mounted in a suitable reflector to throw a beam of light towards the receiver. Tungsten filament bulbs possess considerable thermal inertia, apparent even at 25 Hz , and the original steep-sided square wave is degraded into the form of an exponential sawtooth.

Although the modulated light waveform (C) differs from the command signal, it still carries the necessary information. When shown on an oscilloscope, the relative positions of the peak and trough of the sawtooth will shift in sympathy with the on-off ratio of the square wave input signal, demonstrated by the diagram in Fig. 2.

Passing to the receiver (Fig. 1), a lens is used to focus light from the distant transmitter on to the sensitive area of a phototransistor. Signal (D) appears at the collector of the phototransistor and is amplified (E) to give reliable switching of a sensitive Schmitt trigger circuit.
The Schmitt performs the useful function of converting the sawtooth back to a square wave (F) closely resembling the multivibrator output in the transmitter. Once again, the signal is amplified to drive a torch bulb (G), but this time rectification and smoothing takes place so that the signal is converted to d.c.
Thus, the brightness of the receiver bulb will correspond to the mean d.c. level of (G), determined by the VR1 setting in the transmitter, and is virtually unaffected by distance of receiver from transmitter.
Finally, a light dependent resistor is arranged to pick up light from the receiver bulb and translate this to a resistance value. The l.d.r. forms one arm of a potentiometer so that the position of the sliding contact on VR1 in the transmitter is reproduced by the l.d.r. at the receiver output.

TRANSMITTER CIRCUIT

The transmitter circuit is given in Fig. 3. TR1 and TR2 form an astable multivibrator, with on-off timing set by $\mathrm{C} 1, \mathrm{C} 2$, and base bias resistors R2 and R3 in conjunction with VR1. Potentiometer VR1 serves to alter the base resistance in an equal and opposite manner and thus determines the on-off ratio of the multivibrator square wave output, without affecting repetition frequency.
The signal is then passed via limiting resistor R5 and capacitor C3 to the Darlington pair TR3, TR4. The transmitter bulb forms the collector load of TR4. D1 helps to ensure a clean switching waveform at all input levels.
As the supply voltage is only 6 V , and the bulb load resistance increases with current flow, additional protection against thermal runaway is not required.

When operating, the light output from the transmitter bulb will increase or diminish, depending on the setting of VR1, but the output signal does not change very much.

Fig. 2. Waveforms of bulb input and light output in synchronism

The transmitter case opened

Fig. 3. Circuit diagram of the transmitter
It is important to distinguish between visible mean light level and the actual swing or change in output per cycle. The former is akin to a steady d.c. state and the latter may be likened to a.c.
The human eye is a poor instrument for measuring modulated light. However, as the working frequency is only 25 Hz , there will be a noticeable flicker, but as only a dim light is radiated the effect will not be distracting.

With the battery specified, over 100 hours operation at the rate of four hours per day will be achieved. As an alternative, a small 6 V motorcycle accumulator could be used.

Fig. 5. Method of mounting torch head reflector after cutting from the torch body

Capacitors

CI $\quad \mu \mathrm{F}$ polyester 60 V
C2 $\mu \mathrm{F}$ polyester 60V
C3 $10 \mu \mathrm{~F}$ elect. 6 V
Transistors
TRI, TR2, TR3 OC7I (3 off)
TR4 OC8I or NKT27I

Diode

DI OA8I

Lamp

LPI 6V 0.06A m.e.s. bulb

Switch

SI Single pole on-off toggle

Battery

BYI 6V Type 996

Miscellaneous

Torch reflector assembly,
Knob, s.r.b.p. panel, $\frac{1}{4}$ in plywood

Fig. 6. Component layout and wiring of the transmitter

TRANSMITTER CONSTRUCTION

The transmitter box is made up as shown in Fig. 4, from $\frac{1}{4}$ in plywood, with all joints epoxy resin glued. The rear cover can be provided with fabric or metal hinges and a fastener, to allow quick access for battery replacement. VR1 and S1 are mounted on the top face of the box; $S 1$ is positioned as an end stop to prevent the battery sliding forward when the transmitter box is tipped.
The front cover, combining circuit panel and reflector unit, is made a tight push fit in the end of the transmitter box by means of a wooden flange constructed of $\frac{1}{2}$ in strips of thin plywood, this also acting as a mount for the circuit panel.
Reflector details are given in Fig. 5. A $2 \frac{1}{2}$ in reflector assembly can be cut from the body of an inexpensive or old torch; the neck of the reflector housing is also cut, to make bend-over tabs.
The original reflector had a pre-focus bulb holder; packing was introduced to reduce the diameter of the holder so that m.e.s. bulb could be fitted. The bulb was held secure by the plastic threaded ring provided with the torch. If the reflector tends to revolve in its hole in the front cover, a dab of glue under the tabs will make it firm.

TRANSMITTER CIRCUIT PANEL

As there are no crossovers, the underside wiring diagram in Fig. 6 can be traced if an etched circuit panel is required. Alternatively, the transmitter circuit panel may be drilled and wired underneath with short lengths of single strand tinned copper wire. Also in Fig. 6 is the component layout diagram, including colour coded wiring from panel to S1, VR1, and LP1.

When the panel is completed, it should be tested, by connecting to LP1, VR1, S1, and to a 6 V battery with a milliammeter temporarily in the negative lead. Current consumption will be found to vary as VR1 is rotated, but should not exceed 70 mA .

The flicker rate, best observed out of the corner of one eye, should remain constant at all settings of VR1, irrespective of bulb brightness. The position of the bulb in the reflector is adjusted to throw an even patch of light, approximately 9 in diameter, at a distance of roughly 9 feet.

RECEIVER CIRCUIT

A phototransistor is used in the receiver circuit of Fig. 7, to pick up the modulated light signal from the transmitter, but there is scope for experiment with other light sensitive devices. An 1.d.r., such as the ORP60, can be wired in place of TR1 without further modification.

Although results will be inferior, both with regards to effective range and change of receiver output resistance, due to the lower sensitivity and slower time response of the ORP60, these disadvantages can be set against the higher cost of an OCP71.
A silicon photodiode was also tried, this time feeding straight into C2 with R1 omitted from the circuit. This gave a good time response but range was still poor. All the devices mentioned have a spectral response extending into the infra-red region and are a suitable match to a filament bulb.

Considering the circuit in Fig. 7, and bearing in mind the earlier diagram (Fig. 1) with its waveform sequence, TR2 amplifies the sawtooth signal from the collector of TR1, and passes it, via C3, to the input of Schmitt trigger TR3, and TR4. VR1 presets the Schmitt trigger level, and R4 might need some individual adjustment to bring the trigger level within the range covered by VR1.
The Schmitt itself is a sensitive version, responding to an r.m.s. input of less than 75 millivolts. Zener diode D1 is included to ensure stable operation over long periods, where fluctuations of supply voltage might interfere with VR1 trigger level setting.
With VR1 set to just bias TR3 off, TR4 is hard on, thus holding down the base of TR 5 so that the bulb just glows dimly or not at all. VR2 adjusts the working point of TR6 and the current flowing through the bulb under static conditions.

On receipt of a signal, the Schmitt commences to switch, and feeds negative going pulses to the base of TR5, tending to switch TR 5 on, depending on the on-off ratio of the command signal. Hence, the bulb will tend to glow more brightly while C4 acts to smooth signal pulsations, to prevent them being passed on to the 1.d.r.

It will be seen that TR 5 not only amplifies but also rectifies, and the bulb, coupled only by light to the I.d.r., provides a smooth, analogue function with no unwanted interaction. The l.d.r. resistance is wholly dependent on bulb brightness which, in turn, is determined by the signal from the transmitter.

Fig. 7. Circuit diagram of the receiver

RECEIVER

Fig. 8. Component panel mounted inside the receiver case

FRONT MOULDING GLJED TO BODY

TINPLATE, PLASTIC, OR GUMMED PAPER TUBE BODY

CUT-OUT FOR VRI,
VR2 ADJUSTMENT,
PAXOLIN LENS MOUNT GLUED TO INTERIOR OF TUBE BODY

TAKE CIRCUIT PANEL

Fig. 9. Construction of the receiver case

PVC MOULDING MADE FROM mains cable outer covering

Wire to corresponding numbers on circuit panel

Fig. 10. Component layout and wiring of the receiver

The completed receiver panel

RECEIVER CONSTRUCTION

It is assumed that the receiver will take its supply from the equipment it controls, the requirement being a nominal 12 volts at about 50 mA . Without a power pack, a compact form of construction can be used, and the receiver will be small and inconspicuous.

Fig. 8 gives a cross-section view of the receiver, while Fig. 9 shows the receiver case constructional details. The receiver panel slides along two runners made of p.v.c. taken from a short length of 5 A house wiring cable; this ensures positive location and ease of focusing.

The lens is a "bull's eye lantern" type, with a short focal length. If other types are available, their focal length can be checked by focusing the image of a window upon a wall and noting the distance of the lens from the wall.

Obviously, the purpose of the lens is to focus a sharp image of the distant light source upon the sensitive area of the phototransistor. This is similar in effect to the use of a highly directional aerial in a radio receiver, increasing gain and reducing off-axis interference. For short ranges (not more than 9 ft) the lens can be dispensed with, but the phototransistor must be hooded against stray light from mains bulbs.
The receiver tube body can be fashioned in several ways, the simplest being from stout gummed paper covered with self-adhesive plastic, but metal or some form of plastic moulding will obviously be much more durable. A circular hole is cut in the lens mount slightly smaller than the lens itself, the lens and mount being glued inside the tube body as shown.
P.V.C. cable covering is again used for the trim at the front of receiver box; this is glued in place. The rear cover is not glued to the tube body but is made a push fit, to facilitate easy removal and positioning of the circuit panel. Two holes are drilled in the paxolin part of the rear cover to take screened output cable and twisted supply leads.

RECEIVER CIRCUIT PANEL

The receiver panel construction follows the same lines as the transmitter panel, being either etched copper or wired underneath (Fig. 10). VR1 and VR2 preset potentiometers can be mounted, as shown, on a small aluminium bracket.
The lamp and 1.d.r. assembly requires some explanation. A short length of thin rubber tubing, sometimes found on old capacitors, is pushed over the bulb to
exclude ambient light. After insulated sleeving is put on the 1.d.r. leads, the 1.d.r. is pushed into the other end of the rubber tube to make contact with the bulb.
A small clip, made from a piece of scrap aluminium, clamps the rubber tube around the l.d.r. leads and makes a lightproof seal. The clip is squeezed in place with a pair of pliers. Tinned copper wires are soldered to the body and centre contact of the bulb and are pushed through the circuit panel to hold the bulb-l.d.r. unit in place. The l.d.r. leads are terminated in a similar manner. As the bulb is very much underrun it is unlikely that it will ever need replacing until the glass becomes black with age.

TESTS AND ALIGNMENT

When completed, the receiver panel can be tested in daylight, with a precautionary milliammeter connected in the negative supply lead. It is convenient to use a 12 V battery for initial testing:

Connect an ohmmeter to the l.d.r. output terminals, and set VR2 near minimum resistance. Try the effect of rotating VRI; a position should be found where the circuit panel current consumption suddenly jumps up, and the ohmmeter pointer swings to indicate a low value of resistance.

Reset VR1 to just below this trigger point and VR2 so that the ohmmeter reads about 1 megohm. If it is

The receiver mounted on a television set

Fig. Il. Graph showing output controlled resistance for angular rotation of the transmitter control

Fig. 12. Suitable power supply for controller receiver
found that nothing happens when VR1 is trimmed, adjust the value of R4.

Next, switch on the transmitter and point its beam at the phototransistor. The ohmmeter should show a resistance decrease. Rotate the transmitter control and observe the ohmmeter readings. Look for a smooth response and a minimum resistance of around 10 kilohms at the extreme setting of the transmitter control.

If all is well it will be found possible to set the rezeiver output for any value between, say, 10 kilohms and 100 kilohms from the transmitter.

At very short ranges the phototransistor may become saturated with light from the transmitter, especially when a lens is fitted, and this will diminish the coverage of output resistance swing. Depending on the required application and working range, VR1 and VR2 settings will determine the output characteristic.

As a guide, VR2 in the minimum resistance position will yield low values of output resistance to suit the low input impedance of transistor circuits. The high resistance position will give values suited to valve circuits, up to several megohms. VR1, once correctly adjusted, should not need readjustment, but this control is mainly responsible for high sensitivity with long range working.

OUTPUT CHARACTERISTIC

The graph in Fig. 11 gives a typical receiver output response. The dashed line shows the change of 1.d.r. resistance plotted against angular rotation of the

Fig. 14. Connections to volume control
transmitter control, and is seen to range from about 2 megohms to 8 kilohms. The solid line indicates the departure from true linearity with the l.d.r. connected in series with a 10 kilohm fixed resistor, as a potentiometer.

Although there is some flattening at both ends of the curve, the mid-position of rotation of the transmitter control yields a straight line very close to the ideal.

The lowest attainable 1.d.r. output resistance will be slightly less than 1 kilohm, and the maximum resistance above 20 megohms, a range sufficiently large to control almost any apparatus function.

POWER SUPPLY

As the controller receiver has to draw its supply from the equipment it controls, arrangements must be made to secure a source of smoothed d.c. when operating mains powered equipment; a suitable circuit is shown in Fig. 12.

The method of obtaining low voltage a.c., prior to rectification and smoothing, will depend on the nature of the controlled equipment. Tappings can be taken from valve heater chains, and heater transformers, but if any doubt exists it is better to use a small 12 V a.c. transformer, and rectifier, which can be fitted to a panel, along with the other components shown in Fig. 12. This power pack can be installed in a vacant corner of the controlled equipment.

The 200 ohm variable resistor serves the double purpose of smoothing resistor and output voltage adjuster.

Fig. 15. Preferred connection to brightness control. SWITCH OFF MAINS SUPPLY WHILE CONNECTING AND BEWARE OF CHARGED CAPACITORS

Fig. 16a. Remote controlled power supply

Fig. 16b. Remote motor speed control

SOME APPLICATIONS

Taking first the example of remote control of television or radio sound, crocodile clips can be fitted to the receiver l.d.r. screened lead, to facilitate a temporary connection to the television volume control (Fig. 13). This avoids making any permanent alterations to the television or radio set. The clips can be quickly removed at any time, but make sure there is no risk of accidentally shorting.

When the intention is to install the controller as a permanent fixture, soldered joints are obviously to be preferred. Three different ways of connecting the l.d.r. to a typical audio output stage are shown in Fig. 14.

With the l.d.r. at point (a), in series with the input wire to the volume control, the signal may be fully attenuated. In position (b) the l.d.r. allows almost full control of volume, from a whisper to nearly maximum sound output, if the potentiometer in the set is initially set so that its slider is near the earthed end of the track.

The arrangement (c) works in reverse, that is, when - the transmitter control is rotated towards the maximum position, the sound level will decrease.

The advantage with (b) and (c) connections is that the volume control can be used normally when the controller is inoperative, without disconnecting or shorting across the controller receiver output.

Fig. 15 gives a representative television brightness circuit; the important point to watch here is that the maximum dissipation of the l.d.r. is not exceeded. In
the case of the ORP12, absolute maximum ratings of 110 V peak and 200 mW are laid down by the manufacturer. About the only possible place for the l.d.r., therefore, is in series with the "live" lead to the brightness potentiometer, with a 200 kilohm limiting resistor placed in parallel with the 1.d.r. (Fig. 15).

Preliminary checks should be made to see that the h.t. rail voltage is not more than, say, 290 V , and the current to the brightness control does not exceed about 1 mA . Since the ORP12 is commonly used where a television set already has an automatic brightness control, the manufacturer's circuits could be obtained as a guide to necessary modifications.

If automatic brightness is present in the receiver, it is a simple matter to connect the controller l.d.r. output leads in place of the existing l.d.r. terminals within the set. Remote volume control in transistor equipment would follow similar lines as with valve equipment.

The relatively low dissipation of the controller receiver output can be enhanced by using the l.d.r. to bias a power transistor. Two circuits are given in Fig. 16.

In the first case (Fig. 16a) an OC26 in series with a 15 V maximum d.c. supply will permit remote control of output from 0 to 15 V and 0 to 1 A , depending on the load. Such a supply could form the basis of control of a wide range of devices or equipment.

In Fig. 16b an OC26 is again used for electric motor speed control and might be suitable for models, tape drives, and servo applications. With both circuits, the controller receiver can draw its supply from the common d.c. source, if this is 12 V .

Proportional opto-electronic control of a servo, where the servo output shaft faithfully follows movement of the transmitter potentiometer spindle, is quite feasible, but such circuits are necessarily more complicated and are beyond the scope of this article.

FINAL SETTING-UP

If the controller receiver has a "bull's eye" lens, transmitter to receiver optical alignment can "be observed visually, because the lens will act as a "cat"s eye" reflector. Alignment is generally not critical, except at extreme range limits. It is sufficient, in most cases, for some light from the transmitter to fall on the phototransistor.

It is surprising, when working with modulated light, what small intensities are required for efficient operation. The procedure to adopt with final settingup is as follows.
Align transmitter and receiver, set transmitter control to mid-way position and adjust VR2 in the controller receiver to obtain desired average sound volume. If VR1 in the receiver has been trimmed correctly, it should be possible to adjust the sound level from the transmitter.
Depending on how the I.d.r. is connected, the sound level may not quite drop to zero when the transmitter control is rotated to minimum, but it should be found that turning off the transmitter switch will cause a sharp reduction of the remaining sound.

If desired, the transmitter box can be mounted on a heavy base, by means of a locking ball-joint (such as is used with a camera tripod) to allow convenient optical alignment of the transmitter beam. Normally, though, a small table of suitable height will serve, or else the transmitter box can be clipped or fixed to the arm of a chair. Much will depend on the intended application and room layouts.

APOLLO 11

Now that the final stage of the first Apollo programme reaches its climax with astronauts Neil Armstrong, Michael Collins and Edwin Adrian making ready for man's first landing on the Moon, a dream comes true. It is a far cry from Leonardo Da Vinci to the Apollo's lunar module and its complex back up systems.

The motivation for the ambition is still the same, to know more and more about man's environment. There will be many who have waited for this moment since schooldays as well as many who are still enjoying (or enduring) schooldays, when on July 16 the tall assembly from the Saturn 5 rocket to the moon ship has its final moments of count-down. The work of its preparation on the site which began about the middle of April will again demonstrate the extent of technology's advancement.

ERAEEWATEH By Frank W. Hyde

It is planned that Armstrong and Aldrin the two astronauts chosen for the actual landing on the moon will spend about 22 hours performing their allotted tasks such as gathering moon-dust and samples of rock for analysis back on earth. In the meantime Collins will be circling the moon while waiting for the two "first men on the moon" to rejoin him for the journey back to earth. The first man in fact to set foot on the moon will be Armstrong and he will pass back to Aldrin, in the moon lander, a sackful of lunar dirt. This will make certain that even if the stay has to be cut short for any reason there will at least be a sample brought back.

There are indeed a number of problems involved, even in gathering samples, for the survival packs which the astronauts wear on their backs make them top heavy. Though the lunar gravity is but one sixth of that of the earth a fall could be dangerous. For this reason long tongs are to be used so that it will not be necessary for the astronauts to bend down. The setting up of the other equipment will require a hoist system for unloading as well as loading the mooncraft.

Among the experiments to be set up will be the solar wind probe, seismic unit, radioisotope thermal electric generator, superthermal ion detector, magnetometer and the central station for passing back to earth continuous information via the radio link set up. The unit is expected to continue to send back information for at least a year. Thus the time that the astronauts spend on the moon will be fully
occupied particularly if they are to attempt television pictures for transmission direct to earth.
The final touch down of the lunar module will come after the physical contact of the four foot long "cat's whiskers" (attached to the landing legs) with the surface of the moon which will result in the shutting off of the motor. The module will then drop under lunar gravity. The sequence of operation after separation from the command module is that the main motor between the landing legs is used to control the descent and is fired for brief periods to keep the craft on the correct course. This will bring the craft to within 500 feet of the surface of the moon and about 1,200 feet from the landing site. The speed at this point will be about 40 miles an hour forward and about 10 miles an hour downwards.
The crew will have two minutes or thereabouts to select the final landing site. The final control is then brought into operation by rockets at the four corners of the module to slow the descent to about 5 feet per second. After completing the tasks allotted the upper section of the lunar module will use its ascent engine to return to lunar orbit. This part of the mission will be computer controlled but the actual docking with the command unit will be manual. After transfer to the command module of men and materials the lunar module will be jettisoned and the three astronauts will begin the return journey to Earth. There are two "launch windows" for Apollo 11 the first is July 15 to 22 and, if this is missed for any reason, another is available between August 13 and 21.

FUTURE MOON LANDINGS

There are to be nine future moon landings the final landing being sometime in 1972. They will be launched at the rate of two or three a year. The crew for Apollo 12 have already been named and are all naval officers. Charles Conrad, Richard Gordon (these two are already veterans for they were both in Gemini crews) and Alan Bean, the third man for Apollo 12 who is new to spaceffight missions. Conrad and Bean will land on the moon and spend about five hours there.

Though the actual landing site is not yet fixed it is not likely to be the same as Apollo 11. It is expected that a larger load of apparatus will be landed on the trip. Subsequent trips will take equipment to different points along the moon's equator and the lowlands and highlands will be explored.

NEW ORBITING OBSERVATORY

A Nimbus weather observatory has been launched which will enable more accurate weather predictions to be made up to two weeks in advance. The Nimbus, the most advanced weather craft so far built, is a butterfly shaped satellite which weighs 612 kilograms and is in an orbit which varies from 675 to 703 miles from earth. Its orbital time is 107.5 minutes. It is ten feet tall and is powered by solar panels and two new nuclear powered generators known as SNAP 19. These represent the first use of nuclear energy in space for civilian purposes.

In addition to the infra red sensors essential to weather forecasting Nimbus has very advanced television cameras which can take day or night pictures of cloud formations around the world. It will measure for the first time the atmosphere's temperature from ground to space, and also for the first time be able to interrogate other weather data gathering instruments such as ocean buoys, balloons, aeroplanes and ships and relay these data for processing.

Nimbus will take part in a large experiment by the U.S.A. known as BOMEX. Its object is to understand how the Sun features in the control of weather by the amount of water lifted from the oceans and distributed by wind currents round the world. An area of nearly 100 square miles east of Barbados will be explored by ten oceanographic ships, 24 aircraft, and dozens of balloons and buoys. The manpower will include some 1,500 scientists. The experiment is to last from May to July.

Included in the Nimbus tasks is one to track elk in Yellowstone Park. The animal carries a two-way radio round its neck.

IONXIPRACTICAL! VISUAL! Nra Ha

 a new 4-way method of mastering ELECTRONICs by doing - and - seeing ...
1

 OWN and HANDLE a

 complete range of presentday ELECTRONIC PARTS and COMPONENTS

$2>$ BUILD and USE

a modern and professional CATHODE RAY OSCILLOSCOPE
 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

\author{

- VALVE EXPERIMENTS
 TRANSISTOR EXPERIMENTS
 AMPLIFIERS
 - OSCILLATORS
 - SIGNAL TRACER
}

PHOTO ELECTRIC CIRCUIT
COMPUTER CIRCUIT
BASIC RADIO RECEIVER
ELECTRONIC SWITCH
SIMPLE TRANSMITTER
A.C. EXPERIMENTS D.C. EXPERIMENTS SIMPLE COUNTER TIME DELAY CIRCUIT - SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

POST NOW for
BROCHURE

VARIABLE VOLTAGE TBAUSFORUTERS

INPUT $230 / 240 \mathrm{v}$. A.C. $50 / 60-$
OUTPUT VARIABLE $0-260 \mathrm{v}$. BRAND NEW
Keenest prices in the country. All Types (and Spares) from SHROUDED TYPE SHROUDED TYPE

 $12 \mathrm{amps}, \pm 21.0 .0$. 15 amps, E25. O. O. 20 amps, E37. O. 0. 37.5 amps , £72. 0. 0.50 amps , E92. 0.0 .
OPEN TYPPE (Panel Mounting) amp, E3. 10. 0. 1 amp, E5. 10. 0 . $2 \frac{1}{2}$ amps, $\mathrm{E6} .12 .6$.
PORTABLE TYPE
PORTABLE TYPE 1.5 amp . portable fitted metal case, f9. 5.0 .

L.T. TRANSFORMERS All primaries

Type No. Sec. Taps

I $30,32,34,36 \mathrm{v}$. at 5 amps .
$230,40,50 \mathrm{v}$. at 5 amps .
3 10, $17,18 \mathrm{v}$. at 10 amps .
4 6, 12 v . at 20 amps.
5 17, $18,20 \mathrm{v}$. at 20 amps .
6 6, 12, 20 v . at 20 amps.
724 v . at 10 amps.
4, 6, 24, 32 v. at 12 amps.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuic. $230 / 250 \mathrm{v}$. A.C. operation. ECONOMY KIT. Flash rate 1-36 flash per second. All components including Unijunction, thyristor, tube and circuit. $65 / 5 / 0$ plus $3 / 6$ P. \& P. INDUSTRIAL KIT. Flash rate $1-80$ f.p.s. Ideally suitable for schools, laboratories, etc. Incorporates double wound transformer which isolates both tube and timing eireuit from mains. Stabilized timing circuir and high power tube. $£ 8 / 8 / 0$ plus 6/- P. \& P.

NEW MODEL

HIGH FREQUENCY
TRANSISTORISED MORSE OSCILLATOR
Adjustable tone control. Fitted with moving coil speaker, also earpiece for personal monitoring. Complete with morse key. $45 /-$ plus $3 / 6$ P. \& P

DRY REED SWITCHES

2×1 amp Dry Reeds (makes contacts). Mounted in 870 ohm 9-18 v. coil. Size $3^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$. New. Price $8 / 6$ per pair. Post Paid. Six of the above mentioned units (12 Reeds). Fitted in metal box. Size $4^{\prime \prime} \times 3 \frac{1}{4 \prime \prime}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$.
Mig. by Elliott Bros. New. $45 /+$ each. Post Paid. BODINE TYPE N.C.I GEARED MOTOR (Type I) 71 r.p.m. Torque lolb, inch.
Reversible. $1 / 70 \mathrm{ch}$ h.p., 50 cycle, 38 amp . (Type 2) 28 r.p.m. Torque 2016 . inch. The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor 115 V . A.C. Supplied complete with transformer for 230 240v. A.C. input. Price, either type \&2. 17. 6 plus $6 / 6$
P. \& P. or less transformer $£ 2.2$. 6 plus $4 / 6$ P. \& P.

SPEEDIVAC HIGH VOLTAGE

HIGH FREQUENCY GENERATOR
Input 1001110 volts or $200 / 250$ volts ACIDC. Output 19 KV variable. Ideal for zesting insulation, vacuum, leakage path, gas discharge lamps, neon, etc. A useful ozone and HF supply,
Manufactured by Edwards High Vacuum Led. Brand niew in Manuactured by Edwards High Vacuum Led. Brand new in
maker's polished wooden carrying case. Offered at fraction of makar's price. $£ 10.0 .0$ plus $7 / 6 \mathrm{~d}$, P . \& P .
CT82 NOISE GENERATOR
Ideal for alignment of ali types of communication audio output meter and mains power supply.
$100 \mathrm{Ke} / \mathrm{s}$ to $160 \mathrm{Mc} / \mathrm{s}$ Frequency range 43 anige to 20 db .
ange to 20 b .
n rugged alloy case with instructions for use. Offered untested but in exsellent condition, less mains lead. Ei/19/6, P. \& P. $10 / \mathrm{F}$.

LIGHT SENSITIVE SWITCH
Kit of parts, including ORPI Cad-
mium Sulphide Photocel!, Relay,
vole D.C. op. price 25/- plus $2 / 6$
P. \& P. ORP 12 including circuit,

10/6 each, plus I/-P. \& P.
A.C. MAINS MODEL Incorporates

Mains Transformer, Rectifier and special relay with 3,5 amp mains c/o contacts. Price inc. circuit $47 / 6$ plus $2 / 6$ P. \& P.

LIGHT SOURCE AND PHOTO

CELL MOUNTING
Precision engineered
light source with focusible lens assembly and ventilated
lamp housing, to take MBC bult separa photo cell mounting assembly for ORP or similar cell. Both units are single hole fixing. Price per pair $£ 2.15,0$, P. \& P. 3/6.
UNISELECTOR SWITCHES

N E W

4 Bank 25 Way 24 v. D.C.
operation $£ 5.17 .6$ plus $2 / 6$ P. \& P
8 Bank 25 Way 24 v. D.C. operation
£7.12.6 plus 4/6 P. \& ?
MINIATURE UNISELECTOR SWITCH Ex-Equipment
3 banks of 11 positions plus homing bank. 40 ohm coil.
Tested, 22/6, plus $2 / 6$ P. \& P.

DEMONSTRATION

 TRANSFORMER(STENZYL TYPE) Two separate removable
soils tapped at 0.110 .220 soils tapped at 0.110 .220
volts, and 6 . 12.36 volts respectively. A composire apparatus designed for class demonstration. Electro magnetic induction, jumping ring, induction lamp, relationship between field intensity and ampere turns, induction melting, are just a few of the possible experiments. New modified model. $£ 14.10 .0$, P. \& P. $10 /-$

RELAYS

Bulk purchase enables us to offer the following new SIEMENS, PLESSEY, ete, miniature plugin relays complete
with base, at highly COMPETITIVE With bas
PRICES

'AVO' MODEL 48A

Ex-Admiralty in good condition with instrueand 480 Amp. A.C. Transformer for 60 Amp and 240 Amp . Multiplier for 3600 volt Cmp . plete outfir in ficted case. $\mathbf{E 1 5 / 0 1 0 , ~ P , ~ \& ~ P . ~ I O / - . ~}$

INSULATED TERMINALS

Available in red, white, yellow

 New $17 /=$ per dor. $2 / \cdot \mathrm{P}$. \& P.
A.C. CONTACTOR

2 make +2 break (or, 2 $230 / 240 \mathrm{~V}$. A.C. operation. Brand new. Price $22 / 6$ plus $1 / 6$ P. \& P.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 995 I560 SHOWROOM NOW OPEN

CLOSED SATURDAY

Personal callers only
9 LITTLE NEWPORT ST, LONDON, W.C.2. Tel. GER 0576

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Thrther thought. ing to its merit.

SIMPLE GUITAR TREBLE BOOSTER

A^{s}S some readers may know a basic treble boost unit consists of a preamplifier inserted between the guitar and amplifier which incorporates a high pass filter. This filter raises the response of the preamplifier to the harmonics of the guitar signal, producing a much higher pitched note.
Connecting the guitar straight through to the amplifier gives a rather flat sound lacking in the verve and impact sought by lead guitarists.
The primary windings of a valve output transformer are used as the filter in this design (the secondary winding not being used), see Fig. 1. The primary windings are connected across the input of the preamplifier., At low frequencies the impedance offered by the transformer is quite small and thus these notes are shorted to "earth" and not amplified. At high frequencies the impedance is large and the input signal is only slightly attenuated before amplification.

The capacitor Cl serves as a d.c. blocking capacitor preventing the transformer windings shorting the base of the transistor TR1 to the negative supply line.

Any high gain npn silicon transistor may be used for TR1, suitable types being BC108, 2N1711, and 2N2926.
In the present design no control to regulate the amount of treble boost has been incorporated as this was thought unnecessary. If a control is required then a potentiometer, with a value of approximately $25 \mathrm{k} \Omega$, should be connected between point (a) and (b) in Fig. 1.

The preamplifier may be housed in its own case or built into the existing guitar amplifier. The type of battery used in the prototype was a PP3 type and should last for 100 hours depending on use.

S. J. Price,

Bristol.

VARIABLE WAA-WAA

would firstly like to recommend the excellent
Waa-Waa Pedal circuit designed by B. H. Baily in Practical Electronics July 1968 issue. For anyone making this device I would like to suggest a useful addition.
By using the low frequency oscillator shown in Fig. 2, a continuous "waa-waa" effect can be produced at any desired speed.

The pedal controlled potentiometer VR2 in Mr. Baily's circuit is replaced by an $n p n$ silicon transistor, TR2, with its emitter connected to the negative line and its collector to the junction of C 4 and C 5 . The base is connected to the output of the oscillator via a fixed $500 \mathrm{k} \Omega$ resistor, R10, and a $1 \mathrm{M} \Omega$ potentiometer (linear), VR3, which varies the effect from a "twangy" to a mellow "waa-waa". The capacitor C7 cuts out thump from the oscillator.

Component values are not critical and TR3 and TR4 can be almost any npn type, e.g., 2N1302. The transistor type for TR2 is more critical and a silicon type should be used, as the leakage current must be very small. If no meter is available to select a transistor with low leakage, complete the rest of the circuit first and then try several transistors to get best performance. Two types found suitable were BSY27 and BSY38.

The potentiometer VR4 varies the oscillator frequency from about 1 to 8 Hz . It is connected so that it is turned fully anti-clockwise for minimum resistance, which then gives approximately linear frequency control.

The connections from C 10 and C 8 to C 9 must be as direct as possible and not by wires longer than 2 in .
M. P. R. Hamer,

Bath.

Fig. I. Guitar treble booster circuit

Fig. 2. Circuit diagram for variable "waa-waa" sound effect

AREMARK made by the author of the Sound Operated Switch, March 1969 issue, spurred me into experimentation, and I have "developed" an advanced type of electronic candle.

In the circuit the base of TR5 is connected to the collector of TR4, so that with no input the bulb LP1 is on; when a signal is applied at the input the bulb is extinguished.

The original connection between TR5 collector and the negative supply is broken, and another NKT277 transistor (TR6) and a phototransistor (TR7) is inserted between these points as shown in Fig. 3.
The input transducer for the switch is a 200 ohm moving coil earpiece insert. The phototransistor TR7 is concealed behind the bulb, making sure that light can pass from the bulb to TR7 emitter.

When a lighted match or lighter is held near LP1 the light from the match falls on TR7 causing it to conduct, making TR6 base go more negative and causing it to conduct. If the ambient noise level is not too great TR5 will also be conducting and LPI will light up. The light from this will fall on TR7 thus forming positive feedback and LP1 will stay alight when the match is removed.
To extinguish the bulb it is only necessary to blow on it, blowing on the input transducer at the same time.

Fig. 3. Sound operated electronic candle
This will cause TR5 to switch off, extinguishing the bulb and thus interrupting the light to TR7 which remains off when the blowing is stopped.
Potentiometer VR1 should be adjusted so that ambient noise will not operate the switch. Also, TR7 should be positioned so that only light from the bulb, or match, will fall on the bulb. If the bulb still persists in lighting up when it is not intended to, a resistor should be placed between TR6 base and TR7 emitter.
T. J. Coombs,
Liss,
Hampshire.

PRINTED CIRCUITS

Underside view of a printed board for a 5 watt amplifier

OSCILLOSCOPE PRE-AMPLIFIER

AN additional $\times 10$ on the y-scale of an oscilloscope is often desirable and the circuit in Fig. 4 was developed to fill this need. Noise is sufficiently low not to blur the trace and the frequency response is 50 Hz to $9 \mathrm{MHz} \pm 0.5 \mathrm{~dB}$, wide enough for most low cost oscilloscopes.
The input impedance is $6 \mathrm{k} \Omega$ at 1 kHz and the maximum input signal is 0.5 V peak to peak. The output impedance is 600Ω. The pre-amplifier gives a gain of $20 \mathrm{~dB}(\times 10)$ and current drain is 8 mA .

The rise time t_{r} is $\simeq 34 \mathrm{~ns}$ and the delay time t_{d} is \simeq 15 ns .

K. J. Matthews,
 Seaford, Sussex.

Uite a lot has been written recently about the awkward or risky techniques for making printed circuits. I have evolved a safe, simple and non messy method, using no paints or chemicals.

Once the chosen circuit wiring has been planned it should be drawn full scale on graph paper and taped to the copper side of the laminate board. Cut along the lines with a sharp knife to mark the copper and mark in the holes to be drilled. Remove the paper and now cut right through the copper foil. Next prise up the corner of each unwanted piece of copper and peel from the board.

Before drilling the holes, any rough edges of copper should be smoothed down. Once all drilling is completed the board is ready for soldering.

With a little care, strips of copper only $\frac{1}{8} \mathrm{~mm}$ wide can be removed, so the circuits can be really compact.

I have used this method successfully several times, the most complex circuit so far being a seven transistor 5 watt amplifier built on a board measuring $\operatorname{Sin} \times 3$ in, see photograph.
J. Magee, Glasgow, S. 2.

Fig. 4. Circuit diagram of the 20 dB oscilloscope preamplifier

SOLDERING INSTRUMENTS

Have a look at your present soldering irons. Are they really giving you the performance and service you're paying for? Is there really a model suitable for your size of work? Or are you making do with a tiny bit in a big iron? Or vice versa? Do they have the cool, comfortable feel, the elegance, of a LITESOLD? Drop one on a concrete floor, does it survive? Can you easily and cheaply replace the bits? Can you service it yourself? Are the models you want available for any voltage? Are they listed at 32 shillings or so each, with discounts for quantity?

Yes? Then we must be preaching to the converted, for you are surely a LITESOLD user already.

Well, if you are, or even if you're not, you may be interested in the new PHILIPS ELECTROLYTICALLY IRON COATED BITS. They last up to 75 times longer than copper, and are a big advance on all previous iron coatings,

Please ask for colour catalogue Ll37

LIBHT SOLDERNG DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Tel. 01-688 8589 \& 4559

are specified by

PRACIICAL ELECTRONICS

for their

EIECTRONIC ORGAN

Supplies are available from these FERRANTI Distributors:

EDMUNDSONS ELECTRONICS LTD., 60-74 Market Parade, Rye Lane, Peckham, LONDON S.E. 15.
Tel: 01-639 9731. Telex: 887212.
SEMICOMPS LIMITED,
Station Wharf Road, Alperton, Middlesex.
Tel: 01-903 3161. Telex: 935243.
WEL COMPONENTS LTD.,
5 Loverock Road, READING, Berks.
Tel: 0734-40616. Telex: 84529.
MIDLANDS COVENTRY FACTORS LTD.,
Coronet House, Upper Well St., COVENTRY.
Tel: 020321051.
SWIFT-HARDMANS,
Swift House, Bryan Street, Hanley,
STOKE-ON-TRENT, Staffs.
Tel: 0782-23785. Telex: 36297.
NORTH
SWIFT-HARDMANS,
P.O. Box 23, Hardale House, Baillie Street, ROCHDALE, Lancs.
Tel: 0706-47411. Telex: 63237.
SCOTLAND SEMICOMPS NORTHERN LIMITED,
Pinnacle Hill Estate, KELSO, Roxburghshire.
Tel: Kelso 2369. Telex: 72192.

Peorean - PART 3

By Alan Douglas, Sen. Mem. I.E.E.E.

LAST month we completed the 12 oscillator units; now we go on to tackling the frequency dividers which will provide the rest of the pitches necessary, by division of the oscillator frequency in octave submultiples.

METHOD OF DIVISION

In Fig. 3.1 is given the block diagram of an oscillator and divider unit which shows how the note of B is successively divided to produce octave frequencies over seven stages of division.

The circuit of a divider unit is shown in Fig. 3.2. This consists of seven similar bistable generators which are in effect triggered switches; for if we consider the first divider, an incoming synchronising pulse from the
oscillator unit causes the circuit to change from one state to the other, that is one side fully conducting, the other side cut off.

One complete cycle of the bistable circuit occurs for every two input pulses so that the pulse repetition frequency of the output from either of the collectors is thus half that of the input frequency so that division by two has taken place, so producing the octave below the generator frequency which is taken off via C4 for subsequent routing to the manual contact assembly.

Each bistable stage continues this $2: 1$ square wave division as the synchronising pulses are maintained down the chain with the result that seven additional octave notes are generated in addition to the basic oscillator product.

Fig. 3.I. Block diagram of an oselllator and divider showing how the note of B is divided into octave submultiples

Fig. 3.2. Circuit diagram of a divider unit

DIVIDERS AND KEYBOARD WIRING

This series is expected to extend to 12 parts. Total cost of material for the organ is likely to be around $£ 250$

PRI NTED BOARDS

Since the divider units are repetitive in their bistable complement, the choice of printed boards is an obvious one for a standardised assembly, as all component parts will fit in the same way on each board. Other advantages are the reduced risk of crosstalk and economy in the use of solder, a point sometimes overlooked.

Fig. 3.4 shows the etching and drilling layout for part of one divider board. Since the copper patterns for all seven stages are identical, only a section of the complete board is shown. However, a complete etched board is shown in the photograph.
For those constructors who do not fancy the prospect of etching boards, these can be obtained ready drilled from Mecelex Ltd., Whycliffe Mills, High Church Street, New Basford, Nottingham.

COMPONENT MOUNTING

In Fig. 3.3 is given the component layout for three bistables on the board section. Since the component assembly pattern for each stage is identical, with the exception of some of the output capacitors, the mounting and soldering of components can be swiftly completed.

The accompanying photographs show a completely assembled board. Note here that one of the leads of the output capacitors is left to protrude for $\frac{1}{4}$ in of its length. This is to provide an anchorage for equalising resistors which will be attached later.

TESTING THE DIVIDERS

Last month we checked the oscillators with a $30,000 \mathrm{pF}$ capacitor across each of the coils. Now using one of these rough tuned oscillators we can check each divider in turn, taking the output from one stage at a time through a 100 kilohm resistor into a small amplifier and loudspeaker or high impedance headphones, which, of course, do not require the attenuating resistor.

If an oscilloscope is available the waveforms can be examined directly.
In making these functional checks the +15 V supply from P.S.U. 1 will feed both the oscillator and dividers. As an additional aid to smoothing a $1,000 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic capacitor should be connected across the supply line and it is as well to retain this when assembling the tone generation system in the console.

Fig. 3.3. Component layout on top side of divider board. Three stages are shown; the complete board can be seen in photo at the bottom of the page

Fig. 3.4 (below). Printed circuit for divider unit board. Three stages only are shown full size, the pattern being repeated to cover seven stages in all. See photograph below
+ve RAIL

COMPONENTS . . .

DIVIDER UNIT (12 REQUIRED)
Resistors

RI	$22 \mathrm{k} \Omega$	R14	$18 \mathrm{k} \Omega$	R27	$2.2 \mathrm{k} \Omega$
R2	$18 \mathrm{k} \Omega$	R15	$2 \cdot 2 \mathrm{k} \Omega$	R28	$18 \mathrm{k} \Omega$
R3	$2 \cdot 2 \mathrm{k} \Omega$	R16	$2 \cdot 2 \mathrm{k} \Omega$	R29	$2.2 \mathrm{k} \Omega$
R4	$18 \mathrm{k} \Omega$	R17	$18 \mathrm{k} \Omega$	R30	$18 \mathrm{k} \Omega$
R5	$2.2 \mathrm{k} \Omega$	R18	$2 \cdot 2 \mathrm{k} \Omega$	R31	$2 \cdot 2 \mathrm{k} \Omega$
R6	$2.2 \mathrm{k} \Omega$	R19	$18 \mathrm{k} \Omega$	R32	$68 \mathrm{k} \Omega$
R7	$18 \mathrm{k} \Omega$	R20	$2 \cdot 2 \mathrm{k} \Omega$	R33	$2 \cdot 2 \mathrm{k} \Omega$
R8	$2.2 \mathrm{k} \Omega$	R21	$2 \cdot 2 \mathrm{k} \Omega$	R34	$18 \mathrm{k} \Omega$
R9	$18 \mathrm{k} \Omega$	R22	$18 \mathrm{k} \Omega$	R35	$2 \cdot 2 \mathrm{k} \Omega$
R10	$2 \cdot 2 \mathrm{k} \Omega$	R23	$2 \cdot 2 \mathrm{k} \Omega$	R36	$100 \mathrm{k} \Omega$
RII	$2 \cdot 2 \mathrm{k} \Omega$	R24	$18 \mathrm{k} \Omega$	R37	$18 \mathrm{k} \Omega$
R12	$18 \mathrm{k} \Omega$	R25	$2 \cdot 2 \mathrm{k} \Omega$	R38	$2 \cdot 2 \mathrm{k} \Omega$
R13	$2 \cdot 2 \mathrm{k} \Omega$	R26	$39 \mathrm{k} \Omega$		

Transistors
TRI-TR14 ZTX300 (Ferranti) (14 off)

Capacitors

Cl	4,700pF	C18	4,700
C2	$1,000 \mathrm{pF}$	C19	$0.1 \mu \mathrm{~F}$ polyest
C3	4,700pF	C20	4,700pF
C4	$0.01 \mu \mathrm{~F}$ polyester	C21	4,700pF
C5	$4,700 \mathrm{pF}$	C22	$1,000 \mathrm{pF}$
C6	4,700pF	C23	4,700pF
C7	1.000pF	C24	$0.1 \mu \mathrm{~F}$ polyester
C8	4,700pF	C25	4,700pF
C9	$0.01 \mu \mathrm{~F}$ polyester	C26	$4,700 \mathrm{pF}$
C10	$4,700 \mathrm{pF}$	C27	$1,000 \mathrm{pF}$
CII	4,700pF	C28	$4,700 \mathrm{pF}$
Cl 2	1,000pF	C29	$0.1 \mu \mathrm{~F}$ polyester
Cl^{1}	4,700pF	C30	4,700pF
C14	0.14 F polyester	C31	4,700pF
C15	4,700pF	C32	$1,000 \mathrm{pF}$
C16	4,700 pF	C33	4,700pF
C17	1,000pF	C34	$0 \cdot 1 \mu \mathrm{~F}$ polyester

Miscellaneous
Copper clad board $14 \frac{1}{2}$ in $\times 1 \frac{7}{8} \mathrm{in}$. Stranded core single p.v.c. wire in colours as required
Material for board retaining bars (see text)

If any one of the bistables fails to divide, it is almost certainly a faulty transistor which needs to be replaced.

BOARD RETAINING BARS

The long narrow shape of the divider boards was decided on because there is a convenient place for the 12 sets on the left-hand side of the console kneeboard which isolates them from possible power line effects.
Referring to the rear view photograph of the console given in last month's article, it will be seen that these boards are held in place by four slotted hardwood bars. Details of two bars with a pair of boards in position are given in Fig. 3.5 .
The two bars " b ", should be attached to the kneeboard by way of the fixing screw and separated by a distance of $13 \frac{1}{1}$ in (measured from inner edge of bars). Using a ${ }^{\frac{7}{64} \text { in }}$ drill, pilot holes can be made for screwing in the $3 \frac{1}{2}$ in lengths of 2B.A. brass rod. Bars "a" are drilled to just clear the threads of the rods so that these are a push fit. The retaining nuts can be loosely threaded on at this point, but the boards should not be positioned as some further wiring has to be done.

EQUALISING RESISTORS

Now, in all bistable systems the lower notes tend to be louder than the upper ones. The dividers amplify as well as divide, at least they pass through the condition when they amplify during the switching period. So we have to reduce the lower octaves somewhat to prevent the sound from being bass heavy.

With individual contacts and precious metal busbars, it is easy to cut the bars and introduce resistors as required. But with the flat graphited bars used in the Harmonics keyswitches, it is not so easy and the method of holding the bars in slotted plastic blocks does not encourage much alteration, so we add equalising resistors to some of the divider outlet capacitors as follows:

> S: The seventh octave outlets, 100 kilohms. 68 kilohms. The sixth octave outlets, $\quad 39$ kilohms. The fifth octave outlets,

All of these being $\frac{1}{2}$ watt, 10% types.
In addition, there might be one or two other dividers which tend to be too loud and may need the odd resistor of values in the range 27,33 or 39 kilohms, to equalise. This cannot be predicted and might not occur.

COLOUR CODED OUTLETS

Naturally with so many tone outlets to consider, we must adopt a colour coding system, and this can be based on the international resistor colour code.
The wiring colour code that will apply to each oscillator and divider board is as follows:

Generator output F	black
brown	
2t octave	brove
2nd octave	red
3rd octave	orange
4th octave	yellow
5th octave	green
6th octave	mauve
7th octave	white.

Fig. 3.5. Retaining bars " a " and " b " for divider boards Note signs are added to bar "a", to aid in board identification when oscillators are tuned

It is important, when making up the cable forms, to keep each set together in a bunch and tie a small label to each bunch with its note sign, otherwise they will all look the same and will have to be sorted out all over again.

MOUNTING OF OSCILLATORS

To ascertain the correct lengths of the black leads from the oscillator outputs F to the keyboard, these oscillator units should now be mounted in their final position.

Underside of divider board showing soldered connection. Note protruding output capacitor wires to which equalising resistors are attached where required

First make up a wood shelf 2 in $\times 4$ in $\times \frac{1}{4}$ in. This should then be fixed to the rear keyboard support rail using angle brackets (see photograph below). Six oscillators are attached to the shelf by screws. The remaining six are angularly disposed along the console side, to the fore of the divider bars.

TONE ROUTING

To connect the tone sources to the keyboards involves three processes. Firstly connect the dividers to the upper keyboard; then connect from the upper to the lower one; and finally connect again to the upper one to extract the pedal notes which run from 32.7 Hz to $349 \cdot 2 \mathrm{~Hz}$.
Fig. 3.6 gives the frequency breakdown of the tone generation system. It will be noted that the highest frequency is B at $7,902 \mathrm{~Hz}$. Since there are 12 notes in the octave, we cannot divide 12 into 61 to include top C, and as this note is rarely used it is thought better to ensure generation of bottom C 32.7 Hz which is often required.

PITCH PAD WIRING

If we refer to Fig. 2.1 showing the printed circuit of the upper contact assembly, we can see the 16 ft wiring pads starting at bottom C on the lower extreme left of
the board. The first octave here has no coupler connections to the 8 ft row, so we start by taking the white wire from the C divider and soldering it to the extreme left-hand pad. Then we take the white wire from the C sharp divider and solder it to the C sharp pad next to the C; and so on using all the white wires from the different dividers.
When we get to B, we start again with the mauve wire from the C divider, then the mauve wire from the C sharp divider and so on.
Eventually we come to the end of the 16 ft pitch row of pads and at this point we go back one octave and solder to the 8 ft pads above.
When we come to the end of the 8 ft we again go back one octave and use the 4 ft pads. In the end we find we have wires left over for the 2 ft pads and if all that has gone before is correctly carried out, all of these remaining wires will be black.
Considerable care should be exercised in soldering to these printed circuit boards and only resin as a flux can be used. Excessive heat will affect the bond between the copper and the laminate, so make sure the iron is hot and complete the joints quickly.
If further clarification of this wiring is required, a diagram of a complete printed board can be obtained by purchasers of the manual contact assemblies from Harmonics Ltd.

Oseillators and dividers shown wired and in position. Note equalising resistors on divider board underside.

This shows how the complete tone generation system is evolved from the 12 fundamental frequency oscillators. These frequencies are divided down in their octave sub-multiples through the J2, seven octave dividers each of these being identified by their preceding note sign B, A sharp, etc. The frequencies given in Hertz are only to one place of decimals, the lowest being 32.7 Hz and the highest $7,902 \mathrm{~Hz}$, these constituting the frequency limits of the organ.
The pedal frequency range extends from 32.7 Hz to $349 \cdot 2 \mathrm{~Hz}$.
When wiring from the dividers to the printed circuits of the manual contact assemblies, this chart should be used.

BUSBAR OUTLETS

The tone signals fed into the upper manual are automatically distributed to the proper busbars by the printed wiring.

The busbar outlets are coloured: blue for 16 ft , grey for 8 ft , yellow for 4 ft and red for 2 ft . There is also a black earth wire at each end which is most important.

WIRING TO LOWER MANUAL

Now, the problem is to cross connect the upper tone inlets to those of the lower manual. This is in fact easy, since it merely means looping across from A to A, B to B, etc., along the whole keyboard. For this we need stranded core single p.v.c. wires in the following colours:

C	black	F sharp	light blue
C sharp	brown	G	dark blue
D	red	G sharp	mauve
D sharp	orange	A	grey
E	yellow	A sharp	white
F	green	B	pink.

Attach about a foot of each colour to the lower manual pads using the upper manual printed circuit board as a guide. These wires are now brought out past the springs at the rear. If the lower keyboard is placed in position and the top one laid on its back, connections to the latter can be easily made.

There are two busbar pitch outlets; 8 ft and 4 ft , the wires being identified by the colours: grey for 8 ft , yellow for 4 ft and black for earth.

PEDAL CABLES

Before putting the upper keyboard back on its supports the pedal cables must be attached. There is a
small problem here because we must only attach as many wires as there are pedal key contacts.

If the full 30 wires were soldered on and it was decided to use a short compass pedalboard of 13 notes, the wires not used would certainly pick up hum and noise. We will assume, however, that the full 30 notes are to be used and here once more we need the 12 core cable.

The wire lengths to be used should be in the order of 3 ft to span from the keyboard to the pedal plug position.

WIRING TO UPPER MANUAL

There are two and a half octaves of pedal notes at 16 ft pitch plus one extra at 8 ft ; but as the tone networks are different for each of these, they must be wired separately.

For the 3016 ft notes we go back to the 16 ft wiring pads of the upper contact assembly (see Fig. 2.1). Using the 12 note colour code as before, connect a black lead to the extreme lower left 16 ft pad, then brown to the pad adjacent and so on until all 30 wires are connected.

For the 8 ft notes we do exactly the same but starting one octave higher up, that is the 13 th pad along on the 16 ft row or the second C from the left.

At this point, if all soldering is secure both keyboards can be screwed into position on the support rails. Be sure none of the busbar outlet wires are trapped between the keyboards and their wooden supports or that the switch plungers do not catch on any of the wiring and fail to return.

Next month we start construction of the amplifier and power supply units.

To be continued

COLD CATHODE TUBES

 By J.B.Dance m.sc. TRIGGER TUBESCOLD cathode trigger tubes are basically very similar to cold cathode diodes, but contain an additional electrode known as the trigger or starter. This electrode can be used to initiate a discharge between the main anode and the cathode, but once the main discharge has started, it will not be affected by any variations of the trigger electrode potential. The main discharge can be extinguished only by a reduction of the main anode to cathode potential. The symbol for the trigger tube is shown in Fig. 3.1.
A trigger tube may be considered as a double diode, the trigger being one of the anodes and the cathode being common to both anodes. The trigger to cathode gap and the main anode to cathode gap each have their own striking and maintaining voltages, those for the trigger electrode normally being much lower than those for the main anode, since the trigger to cathode gap is much smaller than the main anode to cathode spacing.
Trigger tubes can replace valves and transistors in many types of switching circuit, but cannot operate at such high speeds. The trigger electrode is used as a high impedance input electrode; whilst its function is to initiate conduction, it has no, effect on the main gap current of a conducting tube.
In many circuits trigger tubes are operated with a main anode voltage greater than the main anode maintaining voltage but less than the main anode striking voltage. No main gap current will therefore flow at first.

If, however, the potential of the trigger electrode is now increased, the trigger to cathode gap will strike as soon as the potential across it reaches the trigger striking voltage.

The ions formed in the trigger discharge are so numerous that a space charge of positive ions is formed in the region of the cathode and this results in the main gap striking voltage being lowered almost to the maintaining voltage of this gap. The main gap therefore strikes, since the potential applied across it is greater than its maintaining voltage.
Some trigger tubes have twin trigger electrodes. In such tubes conduction in the main gap can be initiated by a discharge from either trigger to the cathode. Such tubes are used in reversible counting circuits which will either add or subtract and in other circuits where two isolated inputs are required.

RELAY OPERATION

A circuit designed by Ericsson. Telephones for the operation of a relay, from an input which cannot supply much power, is shown in Fig. 3.2. The tube employs a priming anode to ensure prompt striking; it is connected to the 10 megohm resistor in the circuit shown. The electrode connected to the junction of R4 and R5 is a shield anode; tubes employing a shield anode can control more power, since a higher anode voltage can be employed before the trigger electrode loses control.

The Elesta ER2IA trigger tube

for a.c. operation

Fig. 3.1. Grophical symbol for a cold cathode trigger tube

Fig. 3.2 The trigger tube used to operate a relay

In the circuit in Fig. 3.2, the alternating mains supply voltage is half wave rectified and is applied to the circuit without being smoothed so that conduction in the trigger tube will cease when the power supply voltage falls towards the end of a half cycle. If a smoothed power supply voltage is used, some means of extinguishing the discharge in the tube would be needed, since the charged smoothing capacitors would tend to hold the tube on.

When the input potential is raised above the trigger striking voltage, the trigger gap strikes and the main gap will also pass a current as soon as a positive going half cycle of the power supply reaches the anode. The relay therefore closes if the input potential exceeds the trigger striking voltage of $123 \cdot 5 \pm 2 \cdot 5 \mathrm{~V}$. The capacitor connected across the relay keeps the latter energised during the half cycles when the tube is non-conducting; it therefore prevents the relay from "chattering".
since the relay contacts RLA1 are now open. However, when the level does reach the upper contact, the trigger voltage will fall and the relay will be de-energised. This will result in the pump which is forcing more liquid into the tank ceasing to function. The contacts close again and the level must now fall below the level of the tip of the lower probe before the motor is switched on again.

It can be seen that the use of the two contacts at different levels prevents the pump from being switched on and off too frequently as the level changes slightly.

TIMING CIRCUITS

A timing circuit will cause a relay to operate or produce an output pulse at a certain preset time after an input pulse has been applied to the circuit. The timing interval may range from a small fraction of a second to many hours. Such circuits are widely used in industrial

The Cerberus GR44 trigger tube; this tube has twin trigger electrodes and a priming anode

Fig. 3.4. A basic timer circuit

LEVEL CONTROL

The application of the circuit in Fig. 3.2 to the control of liquid levels in a metal tank may be illustrated by the circuit in Fig. 3.3. The liquid must have at least a limited conductivity.

The relay contacts RLAl are closed when the relay is not energised. The 10 megohm resistor forms a potential divider with the resistance of the liquid between the probes and the tank. If the conductivity of the liquid is adequate to ensure that the resistance between the probes and the tank is much less than 10 megohms, the trigger electrode voltage will be only a little above the cathode potential and the tube will not pass a current. The relay will therefore remain de-energised.

When liquid is taken from the tank and the level falls below that of the tips of both probes, the latter will no longer be in contact with the liquid. The trigger voltage will therefore rise and the tube will fire, the main gap conducting in the half cycles when the anode is positive with respect to the cathode. The relay therefore operates and contacts RLA1 open. The relay may be used to switch on an electric motor (by means of an additional pair of relay contacts RLA2) which pumps more liquid into the tank.

When the liquid rises, the circuit will not be affected until the level reaches that of the tip of the upper probe,
automation systems, but are also useful as photographic timers in the home.

Trigger tube timing circuits depend on the time taken for a capacitor to charge through a resistance for their operation. The basic circuit is shown in Fig. 3.4: When a voltage V is applied to the resistor R1 by the closure of the switch Sl , the capacitor C 1 begins to charge. The tube fires when the voltage across C becomes equal to the striking voltage of the tube used.

The capacitor charges exponentially from zero to the voltage V. It can be shown that the voltage V_{c} across the capacitor at a time t after the application of the voltage V is given by the equation:

$$
V_{\mathrm{e}}=V\left(1-e^{-t / R C}\right)
$$

The tube will fire when the voltage V_{c} becomes equal to the trigger striking voltage, $V_{s}{ }^{\prime}$. This occurs after a time t where

$$
t=R C \log _{e}\left\{\frac{V}{V-V_{\mathbf{s}}^{\prime}}\right\}
$$

The product $R C$ is known as the time constant of the circuit; R is in megohms and C is in microfarads.

A simple timing circuit designed by Ericsson Telephones is shown in Fig. 3.5. A stabilised source of

Fig. 3.5. Simple timer using a relay that operates at 4.5 mA
voltage is used to supply the trigger resistor and capacitor to prevent mains voltage variations from affecting the duration of the timing intervals. When the mains voltage is first applied to the circuit, the capacitor C1 begins to charge through the resistor R4. After a time equal to $1 \cdot 28 R C$ seconds the tube will fire and the relay will close.
Contacts RLA2 close and discharge C 1 via the 1 kilohm resistor and contacts RLA1 close so that the relay energising current no longer flows through the trigger tube. The circuit will be reset and the relay de-energised when the reset switch S1 is opened or when the mains supply is interrupted. The electrode
connected to the 10 megohm resistor is a priming anode.
A more sophisticated version of this timer, which will provide a wide range of time intervals, is shown in Fig. 3.6. The circuit is basically similar to that in Fig. 3.5, but the time interval may be pre-selected by means of a six-position switch S1 together with the twoposition switch S2 and the potentiometer VR1 connected to S1. The approximate time intervals obtained are shown in Fig. 3.6, but these will be affected by component tolerances.
The principle of operation is the same as that of the circuit in Fig. 3.5. The circuit in Fig. 3.6 may be supplied from a source of alternating voltage in the range 200 to 225 volts if the 1.2 kilohm resistor in the h.t. line is shorted out.
This circuit can be used in a photographic enlarger timer (Fig. 3.7). The contacts marked RLA3 are an additional set of normally closed contacts on the relay of the Fig. 3.6 circuit. When the photographer is ready to commence the exposure, he closes the switch S4 and the enlarger lamp is illuminated. This action also applies the mains voltage to the timer circuit. After the pre-set time interval, the relay is energised and contacts RLA3 open, thus ending the exposure.
It is now only necessary to open the switch S4 in order to prepare the equipment for use again.

LIGHT OPERATED RELAY

The circuit in Fig. 3.8 (published by the Cerberus Company) enables the relay to be energised when a beam of light falls on the cadmium sulphide photoconductive cell X1. The GR16 trigger tube is designed for operation from either a.c. or d.c., therefore no rectifier is required in the power supply line. The tube has an internal shield electrode which should be biased appropriately.

Fig. 3.6. A more comprehensive timer with range switches. The value of RIO is equal to 4 kilohms minus the relay resistance. The relay must operate at a current of less than 13 mA

Table 3.1

Switch position	Time (seconds)		Switch position	Time (seconds)	
	Cl	C 2			
1	1.0	10		Cl	C 2
2	1.5	15	4	3.1	31
3	2.1	21	5	4.8	48
		6	7.0	70	

Fig. 3.7. The circuit in Fig. 3.6 can be used with a photographic enlarger

When no light falls on the photoconductive cell, its resistance will be high compared with the resistor R1, therefore the potential of the trigger electrode is not very different from the cathode potential. If a beam of light falls onto the photocell, the resistance of the cell falls from some megohms to a much lower value (typically, a few hundreds of ohms). The voltage drop is now occurring mainly across the resistor R1, so a relatively high voltage is applied to the trigger electrode. The tube therefore fires on those half cycles of the mains potential which result in the anode being positive. If the light beam is now removed, the trigger tube no longer fires.
The optimum value of the resistor R1 depends on the sensitivity required and on the type of photoconductive cell being employed. Typical values for R1 are within the range 470 kilohms to 2.7 megohms. The relay used contains a number of shorted turns so that it can be operated from a pulsed current without chattering.

There is a difference between the light intensities at which the relay is just de-energised as the light intensity slowly falls and that at which it will be just energised as the light intensity rises again. This has the advantage that it prevents the circuit from repeatedly switching itself on and off if there are some relatively small alterations of the light intensity. Such repeated switching would be undesirable if the unit were used to control street lighting or to switch the lighting on in an office.

Fig. 3.8. Trigger tube can also be used in light sensitive circuits

Fig. 3.9. An electric fence high voltoge supply

If a circuit is required in which the relay will open when the photocell is in darkness, it is only necessary to interchange the resistor RI and the photocell, the 100 kilohm resistor R 2 being omitted. As in the case of the circuit of Fig. 3.8, there will be a switching interval between the light intensity at which the relay is energised and that at which it will be de-energised.

ELECTRIC FENCE CIRCUITS

A simple electric fence circuit using a high current cold cathode diode was discussed last month. A further circuit using a trigger tube (designed by the Philips Company) is shown in Fig. 3.9. A single pulse is applied to the electric fence when an animal touches it.

No current is taken from the power supply except during the time an animal is in contact with the fence. If the insulation of the fence with respect to earth is good (over ten megohms), two small $62 \frac{1}{2}$ volt batteries will last at least one season, since the time for which current is being taken from the batteries is a very small fraction of the total operating time. The circuit uses the Philips/Mullard 5823 cold cathode trigger tube which contains a coated cathode; an equivalent type is the Z900T.

In the circuit in Fig. 3.9, a relay with two pairs of normally open contacts (RLAI and RLA2) and one pair of normally closed contacts (RLA3) is required. The transformer is a valve output transformer.

When a resistance (normally that of an animal) is placed between the fence and earth, a current flows from the battery through this resistance and returns to the battery via resistor R4. The voltage thus developed across the latter resistance adds to that already present at the trigger electrode of V1 and causes the tube to fire. This causes Cl to discharge and a current passes through the relay. The contacts RLA1 and RLA2 therefore close, whilst contacts RLA3 open. Capacitor C3 discharges through the primary winding of transformer T1 and contacts RLA1, thus resulting in the generation of a pulse of about 2,800 volts across the secondary winding; it is this pulse which is applied to the fence.
The tube ceases to conduct after a period of about 3 milliseconds and the relay is de-energised. The contacts then return to their quiescent position and the capacitors are charged via the appropriate resistors.

It is recommended that the insulation resistance between the fence and earth should be at least-six megohms, since both the battery life and the pulse frequency are affected by inadequate insulation. If the insulation resistance is smaller than this recommended value, it may be necessary to reduce the value of R1 to prevent the circuit from operating continuously even if no animal is in contact with the fence.

COUNTING CIRCUITS

Trigger tubes can be used for counting electrical pulses. Counting circuits are widely used in industry (for example, for counting the number of articles coming off a production line), in electronic instruments such as digital voltmeters and in instruments used in nuclear physics. However, the use of trigger tubes for counting is now less common than it was some years ago.

The most common type of trigger tube counting circuit employs a ring of ten trigger tubes, one of the tubes conducting at any one time. The tube which is conducting emits a red glow and this indicates the number of pulses which have been counted by the

The Minerva ionisation chamber smoke detector. This unit is mounted on the ceiling and gives early warning of fire. A trigger tube is employed to operate a relay
circuit. If the zero tube is initially glowing and an input pulse is received by the circuit, the succeeding tube will fire (thus indicating that the circuit has made one count); the previously glowing zero tube will then be extinguished. The next pulse will result in the tube which indicates the digit two glowing.

This process continues, the glow passing step by step around the ring of tubes until, at the tenth pulse, the zero tube again conducts. At this instant an output pulse is provided which can be fed to another group of ten tubes which counts the number of tens. This latter group of ten tubes will provide an output pulse for each hundred pulses applied to the first ring. Thus forty tubes (four rings of ten tubes in each) can be used to count up to 9,999 .

Other types of trigger tube counting circuit have also been used, including binary systems and the so-called biquinary counters which employ a ring of five combined with a ring of two; in the latter system a scale of ten can be constructed using only seven trigger tubes.

OTHER USES

Trigger tubes are used for a wide variety of other purposes. They may, for example, be used in a type of voltage stabilising circuit, which provides a stabilisation of a few per cent at output currents of up to some tens of milliamps. They are also widely used in industrial automation. A particularly interesting use of a special electrometer low current trigger tube is in ionisation smoke detectors. These detectors, which are normally ceiling mounted, will give an early warning of invisible smoke particles before a fire has done an appreciable amount of damage. They are widely used for protecting computers, nuclear reactors, and art treasures.

Next month: Arc discharge tubes

A new design based on a split phase circuit. This provides a higher degree of accuracy than more conventional instruments based on the Wheatstone bridge. A valuable asset for the chemistry laboratory.

SPRING LINE REVERBERATION UNIT

Simulate iarge hall effects for instruments and sound recording. Make this reverberation unit to add a new dimension to guitars, taped music, radio, or records.

FOR THESE ITEMS AND MANY OTHER IMPORTANT FEATURES ORDER THE AUGUST ISSUE OF

angitititanics

ON SALE MONDAY JULY 14 PRICE 3/-

TRTHEIPLACE

 Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where full address is glven, enquiries and orders should then be made direct tn the firm concerned.
PHOTO WATCHDOG

Now that the holiday period has begun, many readers will be thinking of ways of making their homes secure during their vacation. One of the more obvious methods is to convince the would-be intruder that the house is occupied, and so deter his intrusion.
A photo-electric switch particularly suitable for deterring burglars is now being produced by Andrew Stephens (1947) Co., 61 Dickson Road, Blackpool, Lancashire. This switch operates from a.c. mains and can handle up to 6 amps. The switch automatically switches any lights on at night and off at daybreak, so creating the impression that the house is occupied at all times, particularly during the evenings when the intruder is most likely to pay a visit.

The circuitry is contained in a weatherproof housing with a fixing bracket and consists of a highly sensitive photocell and a specially designed bimetal relay.

The switch can be used on any landing or porch, in the garage, as a child's nightlight, and possibly used for automatically switching on a small electric fire (1 kW) in a bedroom.

SHORT-CIRCUIT DETECTOR

Detecting and localising shortcircuits in any cable form is always a bugbear that causes time consuming delays in servicing work, and any apparatus that eases this problem is always to be welcomed. To help relieve this problem I.T.T. Modular Electronics Division (formerly known as S.T.C.) is now marketing a Swiss short-circuit detector in the U.K.

It is claimed that the detector localises short-circuits rapidly and enables these particular faulty cables to be identified from among many others. Also, it is claimed that concealed cable runs, in pairs, can be traced in concrete to a depth of 30 cm .
The detector comprising a probe, transistor amplifier and headphones, operates in conjunction with a transistor oscillator generating a fixed frequency of approximately $1,400 \mathrm{~Hz}$. The oscillator is attached to the cable run; the probe is then moved along the cable, being kept as close as possible and with its axis in the direction of the magnetic field, detecting the oscillator output tone in
a pair of headphones. When the short-circuit is reached the tone falls away to practically zero, indicating the point of failure in the cable.

Two output voltages are available from the oscillator, for use as determined by the nature of the short circuit path. The loudness of the tone in the headphones can be adjusted to suit aural conditions.

The I.T.T. short circuit detector costs $£ 25 \mathrm{17s} 6 \mathrm{~d}$; the oscillator can be provided as an extra at $£ 12 \quad 12 \mathrm{~s}$. Both units are available through I.T.T. Electronic Services, Edinburgh Way, Harlow, Essex.

CONNECTORS

The 159 series of multi-way connectors from Painton Co. Ltd., has now been modified and redesigned to give better and more robust working. The solder tag connections have been modified and the mouldings improved to give greater resistance to any displacement due to vibrations.

The connectors are manufactured with 7 to 71 poles and a descriptive leaflet number PS 10 is available from Painton Co. Ltd., Kingsthorpe, Northampton.

One of the ideal applications for these connectors will be to connect the P.E. Organ foot pedals to the main console.

SWITCH KIT

Intended mainly for engineers, but ideal for experimenters and educational laboratories is the Print Switch kit from Plessey. Practically any multiple arrangement of rotary switching can be set-up, and preproduction samples made in a very short period of time.
The switch consists of a special printed circuit wafer, lightweight
rotor, precious metal faced contacts and an arrangement of dual compression springs and rollers for indexing. The printed circuit wafer allows numerous switch configurations to be obtained by simply removing any unwanted interconnections with a special hand tool, provided with the kit. Contacts press-fit into the moulded rotor in one of 12 switch positions, the assembly being attached to the board by a retainer. Side plates up to 10 in depth are available and will accommodate wafers at multiples of 0.2 in pitches.

The kit is packaged in a case with full instructions and cost approximately $£ 35$. Further details of the PrintSwitch kit can be obtained from Plessey Co. Ltd., Professional Components Division, Abbey Works, Titchfield, Hampshire.

NEW ADDRESSES

The well-known component specialists Home Radio have moved into larger premises just a short distance their from original shop in Mitcham. The name of the business has at the same time been changed to Home Radio (Components) Ltd.
With more space at their disposal, an even larger range of components can now be stocked and no doubt this expansion will be reflected in the next issue of their catalogue. Personal shoppers and mail order shoppers should note the new address: Home Radio (Components) Ltd., 234-240, London Road, Mitcham, Surrey.

Another company which has also moved house due to recent expansion is S.D.C. Products (Electronics) Ltd. All future orders for their well-known "breadboard" systems should now be addressed to S.D.C. Electronics (Sales) Ltd., 34, Arkwright, Astmoor Industrial Estate, Runcorn, Cheshire.

Painton multi-way connectors

Photo-electric switch made by Andrew Stephens

PrintSwitch from Plessey Components Division

I.T.T. Oscillator and short-circuit detector

VHF-UHF MANUAL

By G. R. Jessop, C.Eng., MIERE, G6JP Published by the Radio Society of Great Britain 244 pages, $9 \frac{1}{4}$ in $\times 6 \frac{1}{2}$ in. Price $21 s$

THE interest of amateur radio enthusiasts in the v.h.f. and u.h.f. fields is ever growing and, with the increasing "overcrowding" of the lower frequency bands, this trend is very likely to continue.

Much of the equipment employed by amateur operators using these bands is home constructed and this book has been published with the intention of giving "a wide range of material for each of the bands, so the constructor has a selection of designs from which to choose-together with a suitable amount of basic information on general matters."
The result is a concisely written manual which covers a wide range of basic information such as; propagation and the effects of weather; details of equipment for mobile users; single sideband equipment; a comprehensive chapter on various aerials, giving polar diagrams, discussing feeders, impedance matching and giving constructional details.
The final chapter is entitled "Aerial Test Gear and Accessories" and comprises such items as reflectometers, power meters, grid dip oscillators and power supplies.
Both transistor, valve and hybrid circuits of transmitters and receivers are given and layout diagrams and photographs of equipment are shown.

In all a manual that no operative v.h.f. or u.h.f. amateur should be without-a worthy addition to the range of RSGB publications.

POPULAR ELECTRONICS AND COMPUTERS

By F. G. Rayer, A.I.E.R.E.
Published by Arco Publications Ltd.
190 pages, $8 \frac{3}{4} \mathrm{in} . \times 5 \frac{1}{2} \mathrm{in}$. Price 36 s

THE choice of title for this book is perhaps unfortunate, because the only part describing computers is chapter nine (16 pages), and even then in such condensed elementary detail to be hardly worth advertising in the title at all.
A larger part is devoted to radio in its many facets, about which the author is best known. Indeed, he has written other books on this subject.
No newcomer to electronics can complain of a lack of books on basic theory, and it is becoming all too common for electronics and radio books to be prefaced by several chapters of the same kind of details, from atoms to amplifiers, from electrons to a.c. theory. This one does not deviate from this course, and one is led to ask how much are we really getting for our money on popular electronic circuits and computers.
All the more puzzling is the cramming of a wide range of subjects in only 190 pages, none of which is really given justice in its description. Had the first 72 pages of basics been dropped, the space could have been more usefully spent on more satisfying descriptions of the other subjects, not least being the computer section.
м.A.c.

INSTITUTION OF PHYSICS AND THE PHYSICAL SOCIETY

LONDON

July 2-4. Conference on Lasers In Medicine, Chairman Prof. O. S. Heavens, at The Medical School of Middlesex Hospital, London, W.1.
Further details, time of conference and registration forms available from The Meetings Officer, 47, Belgrave Square,
London, S.W.1.

SOCIETY OF ELECTRONIC AND RADIO TECHNICIANS

EVESHAM
July 4-7. Symposium on Maintenance In Electronics at Wood Norton Hall, Evesham.
The inclusive charge for this residential symposium is fifteen guineas for members and nineteen guineas for nonmembers. Further details and registration forms are available from the Secretary, Faraday House, 8-10, Charing Cross Road, London, W.C.2.

LONDON RADIO CONTROLLED MODELS SOCIETY
 LONDON

July 10, 7.30 p.m. General Discussion, at The Two Chairman, Dartmouth Street, London, S.W.1.
Further detail's from the Secretary, H. C. Farley, 24, Dacre Crescent, Kimpton, Hitchin, Herts.

INSTITUTION OF ELECTRICAL ENGINEERS

WARWICK
July 8-10. Conference on Measurement Education, at University of Warwick.
Further details, time of conference and registration forms available from The Secretary, I.E.E., Savoy Place, London, W.C. 2 .

MULLARD MEETINGS

The 1969/70 season of Mullard meetings for the radio and television trade opened at Southampton on May 5. This year's talk is devoted to integrated circuitry. Between now and the end of April 1970 it will be given at 76 centres in the U.K.

Apart from members of the retail trade, these meetings are attended by representatives of many other branches of the electronics industry, students from technical colleges, and also amateurs who are interested in the latest technical developments.
The programme for June and July is as follows:
June 17. Five Bridges Hotel, Gateshead, Durham.
18. County Hotel, Carlisle, Cumberland.
23. Grosvenor Restaurant, Glasgow.
25. George Hotel, Edinburgh.

July 1. City Cafe, Londonderry, N. Ireland.
3. The King George VI Youth Centre, Belfast, N. Ireland.
9. Dolphin Hotel, Swansea.
10. Park Hotel, Cardiff.

All meetings commence at $7.45 \mathrm{p} . \mathrm{m}$. and readers wishing to attend any of these meetings should apply for tickets to Mr Ian Nicholson, Films and Lectures Organisation, Mullard Ltd., Mullard House, Torrington Place, London,
W.C.1.

THIs unit gives a stabilised output voltage from an unstabilised input. The output can be varied between approximately 7 and 12 volts, at currents up to approximately 400 mA , or up to 1 A if the output transistor is mounted on a heat sink.

The unit may be used on its own, or made up into a bench mounted variable voltage stabilised supply, or it may be built into additional equipment, such as test gear. As well as giving a stabilised output, the unit acts as a smoothing circuit, giving a considerable reduction in ripple from the unstabilised input.

BASIS OF OPERATION

When discussing voltage regulators, it is advisable to lead up to the final circuit in a number of progressive stages, and this approach will be adopted here.

A very simple form of voltage stabiliser is shown in Fig. 1a. Here, the circuit consists simply of a limiting resistor (R1) wired in series with a Zener diode (D1). The unstabilised input is applied across this combination, and the stabilised output is taken from across the zener diode.

This circuit has a number of applications, but suffers from severe disadvantages: the output power is very limited (unless large-and expensive-Zener diodes are
used); the output voltage is not variable; the output voltage varies (by a small amount) with changes in input voltage.

Fig. 1b shows an improvement on this basic circuit. Here, TR1 is wired as an emitter follower, with its base fed from the stabilised Zener diode output. The emitter of an emitter follower tends to "follow" very closely the voltage on its base; thus, the voltage on the emitter of TR1 tends to remain almost the same as that across the Zener diode, irrespective of the current flowing in TR 1 emitter. R_{z}, in the emitter of TR1, represents the output load seen by this regulator.

This circuit has the advantage that the output power is handled by TR1, and negligible power need be handled by the Zener diode DI. Disadvantages are: the output voltage is not variable; the transistor has an output impedance of several ohms, so that the output voltage will vary by a certain amount with the output current; and the output voltage is not fully stabilised.

This improved circuit can be made to give a variable output voltage by wiring a variable resistor (VR1) across the Zener diode, as in Fig. 1c, and connecting the base of TR1 to the moving arm of VR1. The main disadvantage of this modified circuit is that the output impedance is still quite high.

Fig. Id. Series regulator using a super-alpha pair

Fig. Ie. Block diagram of a feedback system for voltage regulation

SUPER-ALPHA PAIR

The next step in circuit development is shown in Fig. 1d. Here, the single transistor of the earlier figures has been replaced by two transistors, TR1 and TR2, connected as a super-alpha pair. This simple modification results in a circuit that has a very low output impedance, and thus good voltage regulation; the output voltage is fully variable.

Of the two transistors, TR2 handles the major part of the output power, TR1 handling only a small fraction of the total output. As it stands, this circuit makes a very useful bench mounted variable voltage stabilised supply.

It should be noted, however, that the output is not fully stabilised, there still being some small variation in output voltage with load, and a fair degree of change in output voltage (possibly 1 per cent) for a large (say 10 per cent) change in the input voltage. To overcome these snags, a negative feedback circuit needs to be introduced to this series controlled unit.
The method of feedback is best understood with reference to the block diagram, Fig. Ie. Here, a

Fig. 2. Complete circuit diagram of the series voltage
regulator
sample of the output voltage is compared with the reference voltage, and the difference between the two is fed to the series control circuit via an amplifier. In this way, any change in the output voltage, irrespective of the cause, is fully countered.

THE SERIES VOLTAGE REGULATOR CIRCUIT

The full circuit diagram of the series voltage regulator is shown in Fig. 2. TR2 and TR3 are the super-alpha pair series control transistors, connected in the emitter follower mode. The base of TR2 is fed from the collector of TR1, to which it is direct coupled.
The sample voltage is obtained from VR1 via R3 and R4, which are connected in series across the output of the unit, and this sample voltage is fed to the base of TR1. The reference voltage is obtained from the Zener diode, D1, which is fed directly to the emitter of TR1. This Zener voltage is derived, via R2, from the output of the unit; thus, the reference voltage is unaffected by variations in the unstabilised input voltage. TR1 is connected as a common emitter amplifier, with collector load R1.

When operating, the sample voltage is compared with the reference voltage in TR1; if the sample voltage has become more negative, the collector current of TR1 will increase and hence the voltage drop across R1 will increase, making TR1 collector (and TR2 base and TR3 emitter) go less negative (more positive). The change in output voltage is thus countered.
Ripple is reduced in a similar way, but in this case the a.c. from the output is fed as a sample directly to the base of TR1 via C2, but the a.c. is prevented from affecting the reference voltage by Cl -the decoupling capacitor across the Zener diode.

Any ripple that still remains in the output is further reduced by C3. R5 acts as a permanent output load, ensuring that the output voltage remains constant between no load and full load operating conditions.

CONSTRUCTION

Start construction by cutting the Veroboard panel to size and break the copper strips as shown in Fig. 3.
Commence assembly by securing the solder tag to the NKT405 power transistor and the transistor to the

Fig. 3. Layout and wiring details of the Veroboard
board with two short 4B.A. screws and nuts, then solder the transistor in place on the panel. Finally, solder the rest of the components in place, taking care to assemble the capacitors and the Zener diode with the correct polarity.

VARIATIONS OF THE CIRCUIT

The power handling capabilities of the unit when built on the Veroboard panel are limited; with the output voltage set at 12 V , currents of 400 mA can be handied, while at 8 V only approximately 250 mA can be passed.
If greater power than this is required, TR3 should be mounted on a suitable heat sink, using the insulating bushes and washer that are supplied with the power transistor. The size of the heat sink is not critical, and as a general guide to the experimenter, it can be said that as long as the power transistor does not get more than

COMPONENTS . . .

Resistors
RI $3.3 \mathrm{k} \Omega$
R2 $1.8 \mathrm{k} \Omega$
R3 22Ω
R4 $6.8 \mathrm{k} \Omega$
R5 Ik $\Omega \frac{1}{4} \mathrm{~W}$ to 220Ω IW (see text)
All $\pm 10 \%, \frac{1}{4} \mathrm{~W}$ carbon except where stated
Potentiometer
VRI $5 \mathrm{k} \Omega$ skeleton pre-set
Capacitors
CI $50 \mu \mathrm{~F}$ elect. 15 V
C2 $16 \mu \mathrm{~F}$ elect. 15 V
C3 $50 \mu \mathrm{~F}$ elect. 15 V
Semiconductors
TRI NKT277
TR2 NKT277
TR3 NKT405
DI Any 6.8V Zener diode
Miscellaneous
Veroboard
4B.A. fixings
P.V.C. covered wire

Fig. 4. Circuit of a suitable power supply for use with the series voltage regulator
just slightly warm under any given set of operating conditions, the design is satisfactory. Using a heat sink of about $7 \mathrm{in} \times 7 \mathrm{in}$, currents up to 1 A can be handled.

If the unit is to be used under constantly loaded conditions, R5 can be left out of the circuit. When the regulator is to be used only occasionally as a general purpose power supply under variable load conditions, R5 can be made 1 kilohm. If the unit is to be made into a general purpose bench mounted power supply, R5 should be made 220 ohms or less.

USING THE REGULATOR

The unit is perfectly simple to use, it being necessary merely to connect an unstabilised 18 V supply to the input and take the stabilised output from the lead connected to TR 3 emitter.
The input voltage is in no way critical, as long as it is a few volts greater than the required stabilised voltage. The input voltage does not have to be particularly well smoothed.
As a safety precaution, a fuse should be inserted in the unstabilised supply circuit. The fuse should be 500 mA maximum if the power transistor is to be mounted on the Veroboard panel, and 1A if TR1 is to be mounted on a heat sink. A suitable circuit for the unstabilised power supply is shown in Fig. 4.

Fifteenth International V.H.F.-U.H.F.F. Convention

The fifteenth V.H.F.-U.H.F. Convention was held on April 26 at the Winning Post Hotel, Whitton. The Convention, organised by the RSGB, was attended by some 260 members-a slight increase on last year's attendance.

An exhibition of home constructed equipment was the centre-piece in the "display" hall and this was surrounded by various commercial firms' stands and a selection of RSGB publications which included the new V.H.F.-U.H.F. Manual (see Book Reviews).

During the afternoon some seven lectures were held in rooms adjoining the display and later in the evening the convention dinner was served in the largest of the rooms. During the after-dinner speeches, members of the RSGB were urged by Colonel I. St. Q., Severin O.B.E., of the Cabinet Office, to "use or loose" those frequency bands allotted them by the GPO. The Convention closed with the presentation of the V.H.F. Committee Cup to Mr D. Dall G5AHK for his entry in the amateur constructed equipment display, and the G5RV Trophy to Mr R. Ham BRSI5744.

Transtucer Equipment for N.A.S.A.

The National Aeronautical Space Administration have recently ordered 40 channels of transducer equipment from the Wayne Kerr Corporation in the U.S.A.
The system is positioned in the instrument capsule of the Saturn Rocket being used in the Apollo programme and will measure the position of vital components to within a few millionths of an inch. The eight measurement channels will relay vital mechanical information back to earth whilst the rocket is in orbital flight.

Design Awards Presented Aboard OEZ

$H^{\text {is R Royal Highness The Prince Philip, Duke of Edin- }}$ burgh, presented the 1969 Council of Industrial Design Awards, together with his own prize for Elegant Design, on board the new Cunard Queen Elizabeth 2 at Southampton on Thursday, May 29.
The, photograph below shows a "Vision Comparascope", made by Vision Engineering Ltd., being used for inspecting a printed circuit panel. The Comparascope is the winner of this year's Capital Goods Section and is designed to compare the object to be checked with a master. Images of the two objects (that being checked and the master) are accurately superimposed on one another in such a way that the operator sees in sequence the master object and the object being checked. Thus any difference between the two "winks" at the operator as it appears and
disappears disappears.

Report from AUSTRALIA
 EY D.F.MOODY

Wно wants to be taught by T.V.? I must admit that the thought does not appeal to me at all. I remember my school days with a sort of "glow"-that warm, learned feeling when staying behind to talk over a particularly interesting topic, with the chalk dust lingering in the air. Where would all this be with teaching machines and educational television?

OUTBACK RADIO

The facts are though that here in Australia, and all over the world, there is a growing teacher shortage, classes are getting bigger and more unmanageable, and educational authorities are looking to electronics to solve their problems for them. I gather that it will not be long now before all the colleges of London University will be hooked up into a common closed circuit television network.

In Australia, remoteness rather than overcrowding is more of a problem, and this is overcome by the use of radio as much as possible. For example the University of New South Wales has recently begun transmitting lecture material through its own radio station to registered students in remote areas. Of course, the "outback" has had a radio system operating for over thirty years now. The system-The Royal Flying Doctor Service - is wellknown, and covers an area of over $1 \frac{1}{2}$ million square miles and, from fourteen base stations, provides the isolated communities of this area with a medical, educational and social service.

Probably the medical service is the more commonly known one outside of Australia. The Darwin radio station, for example, transmits medical schedules twice each day. In these "medical skeds", a doctor prescribes treatments to patients scattered over thousands of square miles, with aircraft standing by to bring to hospital those too ill for distant treatment.

The New South Wales radio telescope, one of many situated throughout Australia, used for satellite tracking and space communications

There are nearly 6,000 homestead transceivers and, in communities where it is not possible or desirable for children to be sent away to school, these sets are used in the so-called "Schools of the Air". A typical set up is with about seventy transceivers hooked up together through a base station. Thus the teacher at the base station is able to talk to all the seventy or more children at once, and they are able to talk back, both to the teacher and to one another. These radio lessons are also supplemented by correspondence courses.
These transceivers (which are locally known as "pedal radio" from the early form of set which was powered by a pedal) also provide isolated homesteads with some form of community life, with such organised activities as "Brownies of the Air", and a daily "galah" or gossip session for the womenfolk.

Although this network is of vital importance to the lives of the outback inhabitants, it is only a drop in the ocean compared with the other uses of the radio spectrum. But surely it would be most satisfying to Marconi's ghost to find that here true use is being made of radio communication for the benefit of man. I don't know what he would think if the use of his invention was solely limited to supplying entertainment for the over indulged masses.

SPACE IN AUSTRALIA?

Sure there is space in Australia! It is some 20 times the area of the U.K. and has only 20 per cent of the population.
However, the sort of space I'm referring to is deep space, and it may not be realised that Australia has a growing interest in this activity. Apart from the planned radio-telescope, which will be one of the largest in the world, Australia has six NASA space-tracking and communication stations, which places her second only to the United States.
Concerned mainly with tracking, reception, and command signalling of satellites and deep-space probes, these stations provide NASA with essential elements of their world wide Space Tracking and Data Acquisition Network (STADAN). They are staffed by Australians, and require a total of 800 engineers, technicians and supporting staff.
Why is Australia so interested in satellite technology? Because it holds the solution for providing Australia with high capacity international telephone and television links, and for providing the sparsely populated areas with a television service, when direct transmission from satellites to home receivers becomes a practical proposition. It would then be possible to provide an educational television service to everyone in Australia, no matter where they lived.
Who would want to be taught by television? I guess I would.

ELECTRONIC COMPONENTS AND EQUIPMENT

- NEW RECOMMENDED LINES AT VALUE FOR MONEY PRICES •

* QUALITY PANEL METERS

 ${ }_{38}$ (D.C. RANGES) 38 Series. Faie size $42 \times 42 \mathrm{~mm}$ (15 in $\times 1+i \operatorname{in}$). $50 \mu \mathrm{~A}, 37 / 6 ; 100 \mu \mathrm{~A}, 35 /-$; $200 \mu \mathrm{~A}, 32 / 6 ; 500 \mu \mathrm{~A}, 27 / 6 ; 1 \mathrm{~mA}, 5 \mathrm{~mA}$, $10 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 25 /-$ each: $10 \mathrm{~V}, 20 \mathrm{~V}, 50 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}$ and 500 V 25/- each; 1 A and $5 \mathrm{~A}, 25 /-$ each. " Smeter, ImA, 29/6. VAm meter, $37 / 6$. meter, $1 \mathrm{~mA}, 29 / 6$. VAm meter, $37 / 6$. (3 寻 $\therefore 3 \mathrm{ifin}$), $50 \mu \mathrm{~A}, 62 / 6 ; 100 \mu \mathrm{~A}, 52 / 6$; $200 \mu \mathrm{~A}, 47 / 6 ; 500 \mu \mathrm{~A}, 45 \mathrm{j}-1 \mathrm{~mA}, 5 \mathrm{~mA}$ $10 \mathrm{~mA}, 500 \mathrm{~mA}, 37 / 6$ each. " S " meter, $1 \mathrm{~mA}, 42 / 6$. Other ranges and sizes available.
Complete list on request.

50,000 OHMS PER VOLT MULTIMETER

* SINEISQUARE WAVEAUDIO GENERATOR

 Provides audio output on 4 bands. Sine wave $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{ke} / \mathrm{s}$, output up to 7 Vsquare wave $60 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$, 7 Y p-p square wave $60 \mathrm{c} / \mathrm{s} \%$ to Output impedance Ik Ω. Variable output amplitude control. supplied with leads and instructions. A.C
mains operated.
TE22, Price E 16.10 .0 , carriage, ete., 10 I -.

* YACUUM TUBE VOLT METER Features low price for such an instrument. Large Sin full view scaled meter. 28 ranges. D.C. volts $15 / 50 / 150 / 500 / 1500$ r.m.s.; $\quad 0 / 1 \cdot 4 / 4 / 14 / 40 / 140 / 400$ $1400 / 4000 \mathrm{p}$-p. Resistance: $\mathrm{R} \times 10-100-1 \mathrm{k}-$ $10 \mathrm{k}-100 \mathrm{k}-1 \mathrm{~m}-10 \mathrm{~m}$. Range 0.2 ohm to 1000 Mg . dB scales: -10 to +65 dB . Complete with
instructions and leads. H.V. Probe, $50 /$. R.F. instructions
Probe, $42 / 6$.
Model TE65, Price £17.10.0, p.p. 7/6.

Popular model but with extra scale. Range 20,000 ohms per
volt. $0 / 5 / 25 / 50 / 250 / 500 / 2500 \mathrm{~V}$ volt. $0 / 15 / 55 / 50 / 250 / 500 / 2500 \mathrm{~V}$ d.c., o/ $10 / 50 / 100 / 500 / 1000 \mathrm{~V}$ a.c.
$0 / 50 \mu \mathrm{~A}, 0 / 2 \frac{1}{2} / 250 \mathrm{~mA}$. Resistance $0-6 \mathrm{k} \Omega$ and $6 \mathrm{M} \Omega$. Also dB scales or capacitance. 200 H, Price
Price $15 /-$.

* TRANSISTOR POWER $12 \mathrm{~W}, 3$ Ohm 100 mV input 24 V supply. Model MPA12/3, E4,10.0. P.p. $3 / 1-16$ ohm, 100 mV input, 40 V
12W,
supply. Model MPA12/15, f5.5.0, P.p. ${ }^{35 /-}$ 8-16 ohm, 180 mV input, $50 / 60 \mathrm{~V}$ supply. Model MPA25, E7.10.0, P.p. $4 / 6$ Powar supplies
$24-40 \mathrm{~V}, \mathrm{po}$ $97 / 6$, p.P. $1 /-$.
Model PAT 7 W O/P. 7 miV input, operates $12-18 \mathrm{~V}$. Price 72/6, p.p. 21-.

Henry's 320 page Catalogue has over 6,500 stock items. If you read this magazine and have not obtained one, you should-it will save you a lot of money as Henry's stock most things you require in components and equipment at low prices.

* EXPERIMENTER'S MODULE
 new STC time delay Adiustable 3-15 recs. $9-12 \mathrm{~V}$ operated. supplied complete with suggested used circuits, STC Module Price $35 /$
\star CHASSIS PUNCH KIT

Complete kit with punches $\frac{1}{2} \mathrm{in}$, $\frac{5}{6} \mathrm{in}, \frac{3}{3} \mathrm{in}$, lin, Itin for metal, plastics, erc., up to 16 gauge. Price $50 /=$, p.p. $4 / 6$.

* SWR

ALIGNMENT METER
ideal for all transmitter alignment. Built-in field strength meter
$100 \mu \mathrm{~A}$. Complete. Ready to use. SWR Reacy $1: 1$ to $1: 3$.

SWR-3, Price $69 / 6$, p.p. 2/6.
\star TRANSISTORISED

2-station, 63.10.0; 3-station, 85.13 .0 ; 4-station, 66.12 .6 . Mains operated. 2-station, uses no wires L 1 I.19.6. Front Door Intercom 90/-.

Did you know we stock ever $h, 000$ Transistors and Devices? Ask for Latest FREE List (No. 36)

大 MAKE YOUR OWN PRINTED

Supplied complete with copper boards Templates for shapes, all necessary fluids and pastes. Easy to use. Box forms dishes. Price 17/6, p.p. 2/-.

* BUILD THIS MW,LW TUNER

Complete high quality superhet tuner. Built-in ferrite rod. Battery operated, construetion, 3 transistors plus diode. To Build, 79/6, P.p. $2 / 6$.

CATALOGUE

320 pages with $10 /$ - Discount
Vouchers. Price 7/6, p.p. 2/-

- SALES ASSISTANTS WANTED

FOLLOW THE LEADERS

RTRNG STEE

 QUALITY-TESTED PAKS2 Drift Trans. 2सi225 Germ. PWP $100 \mathrm{Mc} / \mathrm{s}$.
6 Matched Trans, OC44/45/81/81D.
6 Red Spot AF Trans. PNP
5 Silicon Rects. 3 A $100 \cdot 400$ PIV
210 A Silicon Reets. 100 PIV
2 OC140 Trans, NPN Switching
12 A SCR 100 PIV
Sil. Trans. 23303 PNP
4 Zener Diodes 250 mW 3-12V 3 200Mc/6. Sil. Trans. NPN BSY26/27 4 Zener Diodes 400mW 33V 5\% To 2 Power Transistora 100261 OC35 5 Power Transistors 1 OC2 261 OC3 40 C 75 Transistors Mullard Type 1 Power Trans. OC20 100V
OA202 Sil. Diodes Sub-min. Marked 2 Low Noise Trans, NPN 2N929/30 1 Sil. Trans, NPN VCB 100 ZT86 8 OA81 Diodes.
40 O 77 Transistors
4 Sil. Rects. 400 PIV 500 mA
5 GET884 Trans. Eqrt. OC44
5 GET883 Trans. Eqvt. OC4
2 2N708 Sil. Trans. 300Me/s. NPN
3 GT41/45 Germ. Trans. PNP....
3 GT31 LF Low Noise PNP Trans.
6 IN814 Sil. Diodes 75 PIV 75 mA 8 OA95 Germ. Diodes Sub-min. IN69 2 OC22 Power Trans. Germ.
20 O25 Power Trans. Germ.
4 OC72 Trans.
4 AC128 Trans. PNP High Gain...
2 Ad127/128 Comp. pair PNP/NRN
3 2N1307 PNP Switching Trans.
10 CG62H Germ. Diodes Eqrt. OA7

ㄹR틀 One $10 /$-Fack of your own

 value ef or over.12 Assorted Germ. Diodes Marked 4 AO126 Germ. PNP Tran
4 Silicon Rects. 100 PIV 750 mA 7 OC81 Type Tra
300171 Trans.
5 2N2926 Sil. Epoxy Trans. 7 0C71 Tppe Trans.
2 2S701 Sil. Trans, Texas NPN. 2 10A 600 PIV Sil. Reacts. IS45R 1 2N910 NPN Sil. Trans, VCB100 1000 PIY Sil. Rect. 1.5A R53310 3 BSY95A. Sil. Trans. NPN 200Mc/s.. 3 OC200 Sil. Trans.
2 Sil. Power Rects. BY̌Zi 3
Sil. Power Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$ TK201A
Zener Diodes 3-15V Sub-min. 1 2N1132 PNP Epitanial Planar Sil 4 Germ. Power Trans. Equt. OC 1 Unijunction Trans. 2N2646. 2 Sil. Trans, $200 \mathrm{Mc} / \mathrm{s}$. 60Vcb ZT83/84 1 Sil. Planar Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$ BSY25
${ }_{2}$ Unijunction Trans. 2 N 2160 TO-5 2 Sil. Rects. 5A 500 PIV Stud Type 2 Germ Power Trans. OC28/29 1 Tunnel Diode AEYII 1050Mc/s $22 \mathrm{~N}_{2} 712$ Sil. Epory Planar HFE225 ${ }_{25}$ BY 100 Type Sil. Rects. and Germ. Trans. Mixed. ail marked, New
GET880 Low Noige Germ. Trans.
1 AFI39 PNP Hígh Freq. Trans. 4 Madt's 2 MAT100 \& 2 MAT120 3 Madt's 2 MAT100 \& 2 MAT10120 1 MAT121 4 OC44 Germ. Trans. AF
3 AO127 NPN Germ. Trans.
CADMITM Sil PNP Trans. Motorola CADMIUM CELLS
ORP60 ORP61.
MANY

NEW PAK ITEMS

FULL RANGE OF ZENER DIODES

VOLTACE RANGE 2-16Y.
400 mW (D0.7 Case)
10W (TOp-Hat)
2/6 esch state voltage required. Full range eqrt to $O A Z$ Mullard Type Z. Range of STC. TR. Teras and LN types.

TRANSISTOR EQVT, BOOK

52 pages of cross references for trans. and diodes types include British, European, American and Japanese. Specially imported by BI.PAK

2N2060 NPN. SIL. DUAL TRANSISTOR CODE D1699 TEXAS. OUR PRICE 5s. EACH.
GERN. RECTIFIER SINGLE.PHASE BRIDGE MULLARD TYPE GEX54I-BIPI, OUTPUT VLTS 48V, OUTPUT I.C 5A. LIST PRICE 58s. OUR PRICE 12/6d. EACH. SILICON NPN 120V Nixie DRIVER TRANS. SIM. C407, BSX21 and 2NI893, TO-5 CAN. OUR PRICE 3/6d. EACH, 25 OFF 3s. EACH.
SILICON UNILATERAL SWITCH. A Silicon Planer monolithic integrated circuit having thyristor electrical characteristics with an anode gate and a built in Zener between gate and cathode. Type DI3DI 10s. each. Full data and application circuits available.
NPN DIFFUSED SILICON PHOTO-DUO-DIODE TYPE IS70! (2N2175) for Tape Readour, high switching and measurement indicators, $50 \mathrm{~V}, 250 \mathrm{~mW}$. OUR PRICE. 10 s . EACH, 50 OR OVER 8/6d. EACH, FULL DETAILS.
KING OF THE PAKS Unequalled Value and Quality SUPER PAVS NEW BI-PAK UNTESTED SEMICONDUCTORS

-	
-	
-	
-	
-	
-	
-	

Pak No
U1

U2	60 Mixed Germanium Transistors AF/RF
U3	75 Germanium Gold Bonded Diodes sim, OA5, OA47
L4	Germanium Transistors like OC81, AC128
U5	200 mA Sub-min. Sil. Diodes
U6	40 Silicon Planar Transistors NPN sim. BSY95A, 2N706
U7	16 Silicon Rectifers Top-Hat 750 man up to 1000V
U8	Sil. Planar Diodes 250mA OA/200/202
U9	Mixed Volts 1 watt Zener Diodes
U11	30 PNP Silicon Planar Transistors To-
U12	Silicon Rectiflers EROXY BXI26/127
U13	PIPP-NPN Sil. Transistors 0 C 200 \& 25104
U14	150 Mrixed Silicon and Germanium Diodes
15	NPN Silicon Planar Transistors T0-5 sim. 2
16	10 3-Amp Silicon Rectifers Stud Type up to 1000 PIV
$\mathrm{U17}$	30 Germanium PNP AF Transistors TO-5 like ACY 17-22
18	6-Amp Silicon Rectifiers BYZ13 Type up to 600 PIV
019	Silicon NPN Trangistors like BC1
20	$121.5-\mathrm{amp}$ Silicon Rectifiers Top-Hat up to
21	30 A.F. Germanium alloy Transistors 2G300 Series
22	10 1-amp Glass Min. Silicon Rectifiers High Volts
23	30 Madt's like Mat Series PNP Transiators
24,	20 Germanium 1 -amp Rectifiers GJM up to 300 PIV
	25 30031c/s NPN Silicon Transistors 2 N 708 , BSY
26	30 Fast Switching Silicon Diodes like IN914 Mic
28	Experimentera' Assortment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, ete., 8 Assorted Pieces............ . .
229	101 amp SCR's T0-5 can up to 600 PIV CRSI/ $25-600$
U30	15 Plastic Silicon Planar trans. NPN 2N2924-2N2926
31	20 Sil Planar NPN trans. low noise Amp $2 \times$
332	25 Zener diodes 400 mW D07 case mixed Vits. 3

Code Nos. mentioned above are given as a guide to the type of

ADI61 xpx ADI62 fyp MATCHED COMPLEMENTARY TRANSISTOR
For mains driyen output stages of Ampliflers and Radio receivers. PER PAYR

NEW SIITCON RECTIFIERS TESTED
 PIV 40

5010 d	$1 /-$	$1 / 6$	$2 / 9$	$4 / 3$
$1001 /-3$	$1 / 3$	$2 / 6$	$3 / 3$	$4 / 6$
$2001 / 3$	$1 / 9$	$2 / 6$	$4 /-$	$4 / 9$
$300-$	$2 / 8$	$3 / 8$	$4 / 6$	$8 / 6$
$4002 /-$	$2 / 6$	$4 /-$	$5 / 6$	$7 / 6$
500	$3 /-$	-	$8 /-$	$8 / 6$
$6002 / 9$	$3 / 3$	$4 / 3$	$8 / 9$	$8 /$
$800-$	$3 / 6$	$4 / 9$	$7 / 6$	$11 /$
$1,000-$	$5 /-$	$6 /-$	$8 / 3$	$12 / 6$
$1,200-$	$6 / 6$	$7 / 6$	$11 / 6$	$15 /$

PLEASE NOTE, To ayoid any further Increased Postal Charges to our Customers and enable us to keep our "By Return Postal service" which is second to none, we have re-organized and streamlined our Despatch Order Department and we now request you to send all your orders together with your remittance, direct to our Warehouse and Despatch Department postal addrcss: BI-PAK SEMTCONDUCTORS, Despstch Dept., F.O. BOX 6 WARE, HERTS. Postage and packing still $1 /-$ per order. Minimum

HIGH POWER SILICON PLANAR TRANSISTORS
TEXAS 25034 NPK TO-3. YCB100 lc 4A tT. $15 \mathrm{M} / \mathrm{cs}$ FCE100 Ptot. 40W
VEB8 hFE(min.)
Price
$15 /-$ eac

304 $9 / 6$

order 10

2 N
2 N
MP
$\mathbf{0 C}$

FET'S

$10 /-$
$25 /-$

Eqvt. TIS43. BENY 3000 7/6 EACH
25-99 5/- 100 UP 4/

INTEGRATED CIRCUITS

 I.C. Operational Ampliter with Zener output. Type 701C. Ideal for P.E. Projects. 8 Lead TO-5 caseFull data
Our price $12 / 6$ each 5 ofl 11/-each. Large Qts Prices quoted for
FAIRCEILD EPOXY TO-5 8 Lead $\mu \mathrm{L} 900$ Buffer
L914 Bumer 10/6 LL923 J.K.Flip-Flop.... 10/6 IC. Data Circuits, etc. . $1 / 6$ MULLARD I.C. AMPLIFIERS TAA243 ORP. Amp. . 701 TAA263 Min AF Amp: 18/-
TAA293 G.P. Amp
RCA CA3020 A10 RCA CA3020 Audio

PRINTED CIRCUITS

EX-COMPUTER
Packed with semicondiuc-
tors and components, 10 ooards give a guaranteed 30 rice 10 boards 10/-. Plus 2/-P. \& \mathbf{P}.
FULL LOW COST LIST OF
ALL SEMICONDUCTORS REQD. FOR P.E. ORGAN AFAILABLE OH REQUEST

SIL. G.P. DIODES
$300 \mathrm{~mW} \quad 30 \ldots 10$ 25PIV(Min.) $100 \ldots . .25 /-$ Fully Tested $1,000 \ldots$.... 85 Ideal for Organ Builders.

EXPERIMENTS WITH THE OPERATIONAL AMPLIFIER

By G.K.FAIRFIELD

Part 2 Measuring small currents and voltages, waveform generators

LAST month's article discussed the theory of the operational amplifier and suggested a few uses of the device concerned with the measurement of component values. Due to its very high input impedance the operational amplifier can also be adapted for the measurement of very small currents and voltages.

MICROVOLT/MICROAMP D.C. METER

The d.c. measuring circuit is given in Fig. 2.1. For high accuracy the two resistors R1 and R2 should be high stability types having an accuracy of ± 1 per cent.

With input circuit A the instrument behaves as a millivolt meter having a full scale sensitivity of $\pm 3 \mathrm{mV}$ The sensitivity can be decreased by a suitable setting of potentiometer VR1.
Since a standing d.c. is often superimposed on small changes of voltages we require to measure then a backing-off potentiometer VR3 is included. This allows a very small current $\pm i$ to be applied to the summing junction of the amplifier via a high resistance R3 which will be sufficient to back off any small d.c. present at the input terminals.

Where the operational amplifier used is itself subject to a small voltage offset, or d.c. drift, then the adjustment of VR3 will enable this to be compensated. The positive and negative supplies (which are not at all critical) can be obtained from the operational amplifier power supply.

For use as a microammeter, input circuit B is used. This permits full-scale measurements of $0-30 \mathrm{~m} \mu \mathrm{~A}$ at its maximum sensitivity. This circuit requires rather more components than those discussed last month, but its construction is considerably quicker than its conventional counterpart for this order of sensitivity.

Of course, when measuring such small electrical values it is necessary to avoid 50 Hz mains pick-up at the input. Consequently screened leads are recommended up to the input of the amplifier including the leads to the input attenuators.

OSCILLOSCOPE ACCESSORIES

Accurate mixing of several signals can be made using an operational amplifier with several input resistors as shown in Fig. 2.2. This technique is useful to determine the time coincidence of two waveforms, such as the incidence of a repetitive fault in the television scanning circuit, and to show its relationship with its synchronising waveform.

The identification of the separate waveforms, when they are added together in this way, is facilitated if one of these is made negative so that the output of the operational amplifier represents the difference and not the sum of the two waveforms.

With triggered oscilloscopes it is often required to commence the scan at a time when a waveform reaches a pre-determined voltage value. Assuming that the

Fig. 2.I. D.C. meter for measuring microvolts and microamps

Fig. 2.2. Oscilloscope mixer amplifier circuit
oscilloscope needs a positive trigger pulse (which is generally the case) then the circuit to achieve this is given in Fig. 2.3.

As long as V_{1} is very much greater than V_{2} then the output of the operational amplifier is negative and the 'scope is not triggered. As soon as the trigger voltage V_{2} reaches the value set by V_{1} then a positive output level is obtained

By using an operational amplifier with no feedback resistance as shown then its high gain will cause a very sharp transition between negative and positive output voltages to be obtained. This will provide a very definite triggering level for the oscilloscope.

TIMING DELAY CIRCUIT

A time delay circuit is often required in electronic equipment-a common example is a photographic process timer to fix the period of exposure during the printing process. Once again an operational amplifier can be made very quickly into a time delay circuit. In addition to the amplifier, a fixed resistor, a capacitor, a potentiometer, a low current relay and a starting switch (which may be included in the photographic or other equipment are required). The very simple circuit is shown in Fig. 2.4.

The potentiometer VR1 is set at the delay value required. Switch S1 is then opened and the capacitor C 1 is charged from the operational amplifier power supply at a rate determined by the value of $R_{1} C_{1}$ and the setting of potentiometer VR1. After a given time t the

Fig. 2.3. Oscilloscope trigger circuit

Fig. 2.4. Time delay circuit

Fig. 2.5. Waveform squaring circuit
operating voltage for the relay is reached and its contacts are closed to control the desired apparatus. The time delay is given by

$$
t=R_{1} C_{1} \frac{V_{\mathrm{r}}}{V_{\mathrm{s}}} \text { seconds }
$$

In order to obtain some practical delay figures, let us assume that a 50 V relay is available. The actual voltage is not important providing the current it draws does not impose too great a load on the operational amplifier. Generally the amplifier will be able to supply a current of about 10 to 20 mA .

With Cl fixed at $1 \mu \mathrm{~F}$ (paper) and $\mathrm{R} 11 \mathrm{M} \Omega$, then the rate of rise of voltage across the relay will be 10 V per second with the potentiometer set at maximum. Therefore the minimum delay will be $50 / 10=5$ seconds .
As the setting of VR1 is reduced then the delay is lengthened up to a maximum of about 250 seconds. The longest delay obtainable will depend on the stability of the amplifier and the leakage of the capacitor. Table 2.1 shows how the time delay range varies with the time constant ($R_{1} C_{1}$ value).

Table 2.1: TIME DELAY VALUES

Delay range (seconds)	RI	CI
$0.5-25$	$100 \mathrm{k} \Omega$	$\mid \mu \mathrm{F}$
$5-250$	$1 \mathrm{M} \Omega$	$1 \mu \mathrm{~F}$
$50-2,500$	$1 \mathrm{M} \Omega$	$10 \mu \mathrm{~F}$

Mathematically we can describe this circuit as an integrator.
Again assuming

$$
i_{\mathrm{i}}=0
$$

then

$$
i_{\mathrm{s}}=V_{\mathrm{s}} / R_{1} \quad(\text { see } \cdot \text { Part } 1)
$$

The output voltage developed across Cl as a result o its charge Q is:

$$
V_{0}=\frac{Q}{C_{1}}=\frac{1}{C} i_{\mathrm{s}} \mathrm{~d} t
$$

Substituting for i_{s} we obtain

$$
V_{0}=\frac{1}{R_{1} C_{1}} V_{\mathrm{s}} \mathrm{~d} t
$$

Differentiating

$$
\frac{\mathrm{d} V_{0}}{\mathrm{~d} t}=\frac{V_{\mathrm{s}}}{R_{1} C_{1}}
$$

Thus the delay t, for a given relay voltage V_{0} is

$$
t=\frac{V_{0}}{V_{\mathrm{s}} / R_{1} C_{1}}
$$

SQUARER

The operational amplifier can permit a number of interesting waveform generators to be constructed which are useful for triggering or experimental work.

Let us consider first the squaring of the output of a sine wave oscillator. For this we need two germanium or silicon diodes, a fixed resistor, two potentiometers and the operational amplifier. The circuit is given in Fig. 2.5.

DE LUXE PLAYERS

portable cabinet asillus toted．To An atandar $75 /-$ RCS AMPLIFIER 3 WHATT Resdy made and tested． This is a 2－stage unit using a conpleđ valve，giving 3 watts ontpu
into 33 ohm into 3 ohm
loudspeaker． Tone sud volume chassis with knobs．Supplied with loudspeaker and valve UCL82
 sensitivity 200 mV ． $59 / 6$

SINGLE PLAYERS MONO AUTOCHANGERS MONO
 Garrard SP25 MkII £14．19．6 \quad UA70 Transcription £13．19．6 All fited LP／78 stylii and pickap cartridge complete． stereo／mono piciraps 20／－extra except 3000.
GARRARD TEAKWOOD BASE WB．1．Ready 65／ GARRARD PLASTIC COFER SPC．I for WB． 1 BASE．Darable tinted attractive appearance．

DE LUXE STEREO GRAM CHASSIS V．H．F．MW，SW $18-50 \mathrm{~m}$ ．SW $60-180 \mathrm{~m}$ ．Magic eye，push battons． $\mathbf{2} 2.10$ 6 valve plus rect．Size 15
British Made．Details S．A．E
PICX－UP ARM Complete with ACOS LP－78 GP67 Stylii 29／6： PICXL GP 87 17／6；Stereo Ceramic 35／－．Powerpoint 5615 ； CRYSTAL MIKE INSERTS

PORTABLE TRANSISTOR
AMPLIFIER PLUS
DYNAMIC MICROPHONE
A selif－contained fully
Many uses－itieal for
Parties，or as a Baby hone or Record，Tele－ mplifier，etc．Attractive rexine
covered cabinet，size $12 \times 9 \times 4$ in，with
owerfal $7 \times 4 \mathrm{in}$ ．speaker and four transistor one watt ower amplifer plas alirs sensitive microphone．Uses PP9 battery．Brand new in Makers carton with ind makers

WEYRAD P50－TRANSISTOR COILS

 ith car aerial con
F．P50／2CC $470 \mathrm{kc} / \mathrm{s}$ ．．5／7 T．8． 3rd I．F．P50i8CC ．．．．．．．6\％Weyrad BookTet
Telescopic Chrome Aerials 6in，extends to 23in．
VOLUME CONTROLS 800hm Coax 8d．yd．$_{\text {8 }}$ Long spindles．Midget Size
5 K ，ohmitish andialite
2 Meg．LOG or AERAXIAL－AIR SPAGED

STEREO L／S 10；6，D．P．14／8 FRINGE LOW LOSS／／6 dge 3K．S．Y．tzanmistor，5／－．idea！ 625 lines yo． POTS．T．Y．Type．Values STANDARD SIZE POTS．	10 ohms to 30 K, ，
LONG SPINDLE	

VEROBOARD 0－15 MATRIX
Sin， $3 / 8.21 \times 3$ in． $3 / 2,3 i \times 33 \mathrm{in} .3 / 8,38 \times 5 \mathrm{in}, 5: 2$
INS 36 per packet $3 / 4$ FACE CUTTERS $7 / 6$ ． 16 Fig
R．B．P．Board 0.15 MATRIX 24 in ．Wide Bd．per lin．， 37 in ． wide gd．per lin．；Sin．Wide $1 /-$ per lin．（up to 17 in ．）
BLANK ALUMTNIUM CEASSIS． 18 8．w．g．${ }^{2!} \mathrm{in}$ ．sides，
 ALUMDIVOM PAEELS 18 s．ซ．g． $12 \times 12 \mathrm{in} .6 / 6 ; 14 \times 8 \mathrm{in}$ ．
Q MAX CHASSIS CUTTER in． 10 mpmpete：a

＇SONOCOLOR＇CINE RECORDING TAPE 5^{5} reel， 800° with LP strobe markings．also cine light
 Tape Spools 2／6．Tape Splicer 5／－．Leader Tape 4／6． ＂THE IN8TANT＂

BULK TAPE

ERABER AND
REGORDING
HEAD
DEMAGNETISER
2001250

BARGAIN STEREO／MONO SYSTEM
Attractive Slim PLAYER CABINET with B．S．R．Stereo Autochanger 2 +4 AnPLIFIER and TWO matched 81 in．LOUDSPEAKERS．Carr， 10,6 £19．19．6

NEW TUBULAR ELECTROLYTICS CAN TXPES \begin{tabular}{lll|ll|llr}
$2 / 350 \mathrm{~V}$ \& $2 / 3$ \& $100 / 25 \mathrm{~V}$ \& \ldots \& $2 /-$ \& $8 / 600 \mathrm{~V}$ \&. \& $9 / 6$

$4 / 350 \mathrm{~V}$ \& \cdots \& $2 / 3$ \& $250 / 25 \mathrm{~V}$ \& $2 / 6$ \& $16 / 600 \mathrm{~V}$ \& 2.0 \& $12 / 6$

$8 / 450 \mathrm{~V}$ \& \ldots \& $2 / 3$ \& $500 / 25 \mathrm{~V}$ \&. \& $4 /-$ \& $16+16 / 500 \mathrm{~V}$ \& $7 / 6$

$4 / 350 \mathrm{~V}$ \& \cdots \& $2 / 3$ \& $250 / 25 \mathrm{~V}$ \& $-2 / 6$ \& $16 / 600 \mathrm{~V}$ \& $12 / 6$

$8 / 450 \mathrm{~V}$ \& \cdots \& $2 / 3$ \& $500 / 25 \mathrm{~V}$ \& $4 /-$ \& $16+16 / 500 \mathrm{~V}$ \& $7 / 6$

$16 / 450 \mathrm{~V}$ \& \cdots \& $3 /-$ \& $8+8 / 450 \mathrm{~V}$ \& $3 / 6$ \& $32+32 / 250 \mathrm{~V}$ \& $3 / 6$

$32 / 450 \mathrm{~V}$ \& \cdots \& $3 / \mathrm{g}$ \& $8+16 / 450 \mathrm{~V}$ \& $3 / 9$ \& $50+50 / 350 \mathrm{~V}$ \& $7 /-$
\end{tabular} 2／450Y $25 / 25 \mathrm{~V} \cdots \frac{1 / 9}{} \quad 16+16 / 450 \mathrm{~V} 4 / 9$ $\begin{array}{llll}50 / 50 \mathrm{~V} & 2 /-\quad 32+32 / 350 \mathrm{~V} & 4 / 6 & 32+32+32 / 3507.8 / 6\end{array}$

 CERAMIC， $500 \mathrm{~V}^{1 \mathrm{pF}}$ to $0.01 \mathrm{mF}, 9 \mathrm{~d}$ ．Discs
PAPER 350V－0．19d，0．5 2／6；1mF 3／－；2mF 150V $3 /$ $500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 / ; 0.201,0,1 / 6 ; 0.047,0.1,2 / 6$ ， SILVER MICA．Close tolerance $1 \% .5-500 \mathrm{pF} 1 /=; 580-2,200 \mathrm{pF}$ $2 /-; 2,700-5,600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-0.01$, midd $6 /-\mathrm{esch}$
TWM GANG．＂0－0＂ $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 6 ; 365 \mathrm{pF}$ ，minis－ ure $10 / \mathrm{F} ; 500 \mathrm{pF}$ standard with trimmers， $12 / 6 ; 500 \mathrm{pF}$ midget less trimmers， $7 / 6 ; 500 \mathrm{pF}$ slow motion，standard $9 /-$ small 3－gang 500 pF 19／6．Single＂0＂365ps 7／6，Twin 10／6． SHORT WAVE．Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ ， $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each．
TUNNG．Solid dielectric． $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ each． TRIMMERS．Compression $30,50, ~$
$150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 1 / 8 ; 1000 \mathrm{pF}, 2 / 6$ ．

250 V RECTIFIERS．Selenium $\frac{1}{3}$ wave $100 \mathrm{~mA} 5 /-$ BY100 10：－ CONTACT COOLED Wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$ ． Full wave Bridge 75mA 10／－： 150 mA 19／6；TV
RESISTORS．Preferred values， 10 ohms to 10 meg．
 Ditto 5% ．Preferred values 10 ohms to 22 meg meg．， $2 /$ 5 watt $\quad 0.5$ to 8.2 ohm 3 F ．meg．， 9 d ．
10 watt WIRE－WOUND RESISTORS
15 watt $\int 10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3$
10K， $15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3-$

VALYE HOLDERS，9d．；CERAMIC 1／＝；CANS 1／－
BRAND NEW TRANSISTORS 6／－each 0C71，0072，0C81，0C44，0045，0C171，OC170，AF117． MAT 100 7／9；MAT 101 8／6；MAT 120 7／9；MAT $1218 / 6$ TT45．Push Pull Drive， $9: 1$ CT，6／－．TT46 Optpat，CT8：1 B／－ TT49．Interstage， $4 \cdot 5: 1,6 /-;$ TT52 output 30 ohms， $20: 1,6 /$ TT23／4 PALR 10 watt Amp．Transformers and circuit 45／－．
TRANSISTOR MAINS POWER PACKS．FULL WAVE
volt 500 mA ．Size $4 . \times 2 . \times 2 i n$. Metal case． $49 / 6$
 Crackle inish．Output terminals．On／of switch．
Halt Wave 9 volt 50 ma．Size $2 \frac{1}{2} \times 1$ in．Snap terminals 32,6
 pith Heter，Supplies $6-9-127$ ．lamp D．C．

MAINS TRANSFORMERS

51－each 250－0－250 $50 \mathrm{~mA}, 6.3$ v． 2 amps，centre tapped \quad 8． $39 / 6$

 MIDGET 220 ₹． $45 \mathrm{~mA} ., 6.3$ マ． $2 \mathrm{~g} .23 \times 21 \times 2 \mathrm{in}$. HEATER TRANS．B．3 $\nabla .1, \frac{1}{2}, 8 / 6 ; 8.3 \nabla .4 \mathrm{a}$ ．
 $6,8,9,10,12,15,18,24$ and 307 ．at $28, \cdots, \ldots, 30,30 /-$ AUTO TRANSFORMERS $0-115-230$ ．Input／Output 60w．18／6；150w． $30 / \because ; 500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w} .175 /$
COAXIAL PLUG 1／3，PANEL SOCKETS 1／3．LINE 2／－ UULET BOXES．SURFACE OR FLUSH 4／6 BALANCED TWIN FEEDERS $1 /-$ 5d． 80 ohms or 300 ohms． Chrome Lead Socket \％／6．Phono Plags 1／－．Phono Socket $1 /$ JACE PLUGS Std．Chrome 3／－； 3.5 mm Chrome $2 / 6$ ．DIN SOCKETS Chassis 3 －pin 1／6；5－pin 2－．DUN SOCEETS Lead 3－pin 3／6；5－pin 5\％－p DIN PLUGS 3－pin $3 / 6$ ； 5 －pin $5 /-$ ． WAVE－CHANGE SWITCHES WITH LONG SPINDLES． 2 p． 2 －way，or 2 p .6 －way，or 3 p .4 －Way $4 / 6$ each． 1 p． 12 －way，or 4 p． 2 －way，or 4 D． 3 －way， $4 / 6$ each．
Wavechange＂MAKITS＂1．p． 12 －way， 2 p． $6-$ way， 3 p． 4 －way， Wavechange＂MAKITS＂1 p．12－way， 2 p． 6 －way， 3 p． 4 －way，
4 p． 3 －way， 6 p．2－wsy． 1 waler 12／－， 2 wafer $17 /-.3$ wafer 22／－

MINI－MODULE LOUDSPEAKER KIT

 10 Watt 55／－carr． 5 ：Triple speaker system combining on ready ant baffe． $\frac{1}{3}$ in．chipboard 15 in．$x 8 \frac{2}{2 n}$ ．Separate Bass，Middle and Treble loudspeakers and crossover condenses．The hesyy duty 5 in．Bgss Wooler unit has a low resonance cone，the mive to the mide register and the tweeter recreates the top end of the musical spectram．Total response $20 \mathrm{~F} 15,000 \mathrm{cps}$ ．Fall instructions for 3 or 8 obm ． TEAK VENEERED BOOKSHELF ENCLOSURE． $\begin{array}{ll}172 \\ \text { degigned } & \text { for mini－Module above，}\end{array}$ E5． 10.0 extra

BAKER I2in．＂SUPERB＂ LOUDSPEAKER

Suitable for all Hi－Fi Systems．

 Provides rich clear reproduction of the deepest bass and remark－ able effiency in the apper register．Response 20－17，000 with special＂Ferrobs＂ceramic magnet．Flux density 16,500 ganss．Bess resonarce $92-26$ ps． 20 watts rating．Voice coil 8 ohms or 15 ohms．

8－page En

LOUDSPEAKER CABINET WADDING 18 in wide， $2 / 6 \mathrm{ft}$ BAEER＂GROUP SOUND＂SPEAKERS－POST FREE Group 25＇＇Group 35＇＇Group 50

ALL MODELS＂BAKER SPEAKERS＂IN STOCK
Super Cone Tweeter 2 in square， $8-17 \mathrm{kc} / \mathrm{s}$ ． $10 \mathrm{~W} 17 / 6$ Quality Horn wweeters $2-18 \mathrm{Ec} / \mathrm{s}^{2} \mathrm{Win} 3 \mathrm{in} 4 \mathrm{in} 5 \mathrm{in} 7 \times 4 \mathrm{in}$
 176 each； $6=1 \mathrm{n} 22,8 ; 8$ ， 80
E．M．I．Doable Cone $18 \frac{1}{2} \times 8 \mathrm{in}, 3$ or 15 ohm models， $45 /-$ or E．w．I．Doable Cone $1 \mathrm{w}_{2} \times 8$ in，
SPECLAL OFFER： $8 \mathrm{ohm}, 2 \mathrm{ilin} ; 6 \times 4 \mathrm{in} ; 80$ ohm， $2 \mathrm{ilin}, 2 \mathrm{inn}$ $15 / 6$ EACH
8 in LOUDSPEAKER UNITS 3 ohm $27 / 6 ; 15 \mathrm{ohm} 30 /-$ 8 in ．De Luye Ceramic 3 ohm $45 /-; 15 \mathrm{hm} 50 /-$ 8in LOUDSPEAKER．TWIT CONE 3 ohm 35
5 in ．WOOFER． 8 watts max． $20-10,000 \mathrm{cps} .8$ or $15 \mathrm{chm} .39 / 6$. OUTPUT TRANS．EL84 eto． $4 / 8 ;$ MKE TRANS． $50: 13 / 9$.
SPEAKER FRET VARIOUS TYGAN SAMPLES．Send S．A．E．

ALL PURPOSE HEADPHONES H．R．HEADPHONES 2000 ohms Super Sensitive
LOW RESISTANCE HEADPHONES 3 －5 ohms．． DE LUXE PADDED STEREO PHONES 8 ohms

MINETTE

AMPLIFIER

A．c．Mains Iranstormer Chassis size $7 \times 3 \times \times 4$ in EZ80．Quality output ohm．With engraved fas
 $\begin{array}{ll}\text { cia，valves，knobs，volume and tone controis，} & 69 / 6 \\ \text { vired and tested．} 12 \text { month guarantee．Posk } 5 / 6\end{array}$

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICES45－PAGE EAGLE CATALOGUE $5 /-$ ．Post free． BARGAIN AM TUNER．Hediam Wave． $79 / 6$ BARGAIN DE LUXE TAPE SPLICER Cuts，
trims，joins for editing and repairs．With 3 blades，
$17 / 6$ BARGAIN 4 CHANNEL TRANSISTOR MLXER．Add musical highlights and sound effects to recoraings． $50 / 6$ mix Mierophone，zecords，tape and tuner with
separate controls into single output． 9 volt． 59／6

BARGAIN FM TUNER 88－108 Mc／s Six Transistor，Ready BARGALN FM TUNER 88－108 Mc，S Six Trangistor，Resay
built．Printed Circuit．Cslibrated sitde dial 66.19 .6 BARGAIN 3 WATT AMPLIFIER． 4 Transistor $69 / 6$
Push－Pull Ready built，with volume control． 98.大 RADIO BOOKS $大$（Postage 9d．）

Practical Transistor Receiver

Practical Transisal Stereo Handbook
Practeal stereo Handionk Focket Redio
High Fidelity Speaker Enclosures and Plans
Radio Valve Guide，Books $1,2,3$ ，or 4 es． $5 /-$ No． 5 ea ． Practical Radio Inside Out．．
Shortwave Transistor Receivers
Transistor Communication Sets ．．．．．．．．．．．．
Modern Transistor Circuits for Begis
Sab－Winiatare Transisior Receivers
Sub－niniature Transisior Receiver
At a glance valve equivalents．
Falves，Transistors，Diodes equivalents manual Receive foreign T．V．programmes by simple modifications5／ Transistor Circuits Radio－Controlled Models
MANUFACTURERS SURPLUS！
TAPE RECORDER GASE．Red／Cream or
Grey 2 －tone．Rexine covered．Size $15 \times 12 \times 5$ in．POST FREE POCKET MOVING COIL MULTIMETER． $49 / 6$ $0-1,000$ A．C．／D．C．ohms 0 to 100 k ，etc． $49 / 6$
SUPERIOR MOVING COIL MULTMETER $99 / 6$

BRAND NEW QUALITY
EXTENSION LOUDSPEAKER
Handsome plastic cabinet，201t．lead and
daptors．For any radio，intercom，tape

RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD，WEST CROYDON
 List $/ /=$ ．Written guarantee with every purchase．（Export：Remit cash and extra postage．）Buses $/ 33,68$ pass door．S．R．Stn．Selhurst．Tel．01－684 1685

EX-COMPUTER PANELS I.B.M. Size
 $\frac{1}{3}$ million already Sold out to the Trade. 70,000 only left at our Ridiculous Price of \&3 per 100 panels or $£ 28$ per 1,000 panels. Plus carriage $6 /$ per 100 panels.

Post and Packing costs are continually rising. ORDER PLEASE
OYERSEAS QUOTATIONS BY RETURN SHIPMENTS TO ANYWHERE IN THE WORLD

Metal eases. Devices similar to above Nos.
GERM. PNP AND NPN TRANSISTORS FULLY TESTED, UNMARKED SIM1LARTO $1 / 6$ EACH $\begin{array}{llllll}A C 126 & \text { ACY22 } & \text { ACY36 NKT677 OC81 } & 2 G 381 \\ \text { AKTI41 NKT7I3 } & \text { OC82 } & 2 G 382\end{array}$ ACl27 ACY28 NKTI42 NKT773 2G301 2G399A $\begin{array}{lllll}\text { AC128 } & \text { ACY28 } & \text { NKT142 } & \text { NKT773 } & \text { 2G301 } \\ \text { NKT212 } & \text { OC44 } & 2 G 302\end{array}$

ACi30		NKT213		
ACYI9	ACY31	NKT214	OC71	2G308

ACY20 ACY34 NKT215 OC72 2G371
ACY21 ACY35 NKT271 OC75 2 G374 each

POWER TRANSISTORS

TRANSISTOR EQVT. BOOK

2.500 cross references of transistors-British, European, Exelusively distributed by DiOTRAN SALES. I5/- EACH.

Vast mixed lot of subminiature
glass diodes. Comprising of Silicon, Germ., Point Contact and Gold Bonded types plus some Zeners. 500,000 ayailable at Lowest of Low Price. 1,000 pieces $£ 3.0 .0 .5,000$ pieces
$£ 13.10 .0$. $£ 13.10 .0$. 10,000 pieces $£ 23$.
|

Sub-Min. Plastic

1 Amp Sil. Rect.
 Type No. PIV Rect.

Type No. Ply Each
IN4001 50 1/3
$\begin{array}{lrl}1 N 4001 & 50 & . . \\ 1 & 1 / 3 \\ 1 N 4002 & 100 & \cdots\end{array}$
IN4003 200
NN4004 400
IN4005 600

IN4006 | N4007 | 1,000 | \cdots | $3 / 9$ |
| :--- | :--- | :--- | :--- |

TTL IC's 4/- EACH

DUAL INLINE 14.16 PIN PLUG IN PACKAGE.
MANUFACTURERS' OUT OF ALL GOOD FUNCTIONAL UNITS. data available.
Part No.
SN7400N-Quadruple 2-input Positive SN749IN-Quadruple 2 -input NAND
SN7410N-Triple 3 -input Positive NAND SN7420N-Gual 4
SNT430N Gate
SN7430N-8inpat Positive NAND Gate SN7450N- Power" Gate SN745IN- with Expander Inputs SN7472N-Master-slave J-K Flip-flop SN7473N-Dual Master-slave J-K Flip-flop SN7474N=Dual Lateh
SN7483N-Quad high speed full adder
SN7490N-Decode counter
order as code no. shown above ALL ONE PRICE 4/- EACH.

Qcy.	Qty.	Qty.
Price	Price	Price
500	1,000	10,000
$£ 15$	$£ 25$	$£ 200$
$£ 3$	$£ 5$	$£ 40$
$£ 3$	$£ 5$	$£ 40$
$£ 4.10$	$£ 7.10$	$£ 60$
$£ 4.10$	$£ 7.10$	$£ 60$
$£ 15$	$£ 25$	$£ 200$
$£ 2.10$	$£ 4$	$£ 32$
$£ 7.10$	$£ 12.10$	$£ 100$
$£ 7.10$	$£ 12.10$	$£ 100$
$£ 7.10$	$£ 12.10$	$£ 100$

 \title{ \section*{ mur sits tile staidial}

 mur sits tile staidial}}

Used and acclaimed by:SCIENTISTS ENGINEERS TECHNICIANS TEACHERS \& STUDENTS

Of course no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest in the world of Radio and Electronics-ready for the next printing.

This edition of the Home Radio Catalogue is the result of eleven years of careful selecting, compiling and indexing. It is the finest, most comprehensive we have ever produced-it has 330 pages, over 8,000 items listed and over 1,500 illustrations. It is a must for anyone interested in radio and electronics. With each catalogue we supply a 30 -page Price Supplement, a Book Mark giving Electronic Abbreviations, an Order Form, and 6 vouchers each worth $1 /$-when used as directed. All this for only $8 / 6$ plus $3 / 6$ post, packing and insurance. Send the attached coupon today, with your cheque or P.O. for $12 /$-.

Please write Name and Address in block capitals
NAME
ADDRESS

Home Radio (Components) Ltd., Dept. PE, 234-240 London Rd., Mitcham, Surrey, CR43HD

Fig. 2.6. Sawtooth waveform generator

Fig. 2.8. Triangular waveform generator

Fig. 2.7. Pulse generator

Fig. 2.9. Input and output waveform for the circuit in Fig. 2.8. Input waveform is shown left (A), and output waveform from amplifier is shown right (B)

The two potentiometers are set to give the required amplitude of the square waveform. The input sinusoidal waveform must have an amplitude greater than this.

The action of the diodes effectively prevents the output from becoming greater in amplitude than the setting of the potentiometers, since when either diode conducts, a low feedback resistance (actually the forward impedance of the diode) is shunted across the operational amplifier. As shown by the equation for gain derived in Part 1, the overall gain falls to a very low value indeed.

If a symmetrical waveform is not required it is easy to arrange either a positive or negative going square wave to be produced by setting one of the potentiometers to zero.

This same circuit could also be used to clamp a given incoming signal to a particular level set by VR1 or VR2.

SAWTOOTH WAVEFORM

To generate a free-running sawtooth waveform a capacitor, resistor, and a low current relay can be connected to the operational amplifier to form the circuit given in Fig. 2.6.
The operational amplifier with its feedback forms an integrator circuit and the value of the time constant determines the frequency of the sawtooth waveform, given by

$$
f=\frac{V_{\mathrm{r}}}{V_{\mathrm{s}} C_{1} R_{1}} \mathrm{~Hz}
$$

where R_{I} is in megohms, C_{1} in microfarads, and the input V_{s} and relay V_{r} voltages are in volts.

When a negative voltage V_{s} is applied to the input of the circuit, capacitor C_{1} begins to charge through the input resistance R_{1}. As it does so the voltage across the capacitor begins to increase and the feedback action works to slow down the rate of charge.

Consequently, instead of a non-linear (strictly speaking, an exponential) voltage change appearing across the capacitor, and hence the amplifier output, a very linear rise of voltage is obtained. This is because the reduction of charging current exactly cancels out the non-linearity.
When the output voltage reaches the relay operating voltage then the capacitor is short-circuited by the action of the relay contacts and the cycle repeats once more, when the voltage across the capacitor becomes zero again.
The highest frequency of operation is limited, of course, by the speed of response of the relay. Modern relays are capable of operating in as little as one millisecond so that frequencies of several hundred hertz can be generated in this way.

PULSE CIRCUIT

This sawtooth generator circuit is very adaptable and with the additional pair of contacts on the relay the same circuit can be made to provide a series of narrow pulses, one each time the relay is momentarily operated, and of amplitude V_{p} volts, at the output (see Fig. 2.7). The fixed d.c. supply is switched by contacts RLA2.

TRIANGULAR WAVEFORM

The integrator circuit can be used to provide a triangular output waveform from almost any shape of input signal. The circuit is given in Fig. 2.8.

The input signal is applied to a low current relay shown in the diagram. This relay will be operated when the input signal exceeds the operating voltage of the relay.

A changeover pair of contacts are required to change the input voltage to the integrator from positive to negative whenever the relay is energised. Consequently the capacitor is alternatively charged in opposite directions as the relay changes. This results in a linear rise and a linear fall of voltage at the output as described in the previous section.

If the input signal is twice the amplitude of the relay operating voltage then a symmetrical triangular waveform is generated as shown in Fig. 2.8. The amplitude of the triangle is set by potentiometer VRI since this controls the rate of rise of the charge applied to the capacitor.

The waveform of the signal input voltage operating the relay is unimportant as long as it is able to exceed the relay operating voltage during some part of its voltage excursion. A 50 Hz signal from the mains would be quite adequate and result in a triangular waveform of this frequency. A number of different input waveforms are shown in Fig. 2.9 with their resulting triangular output waveforms.
Next month: Further applications and operational amplifier circuit design.

NEWS BRIEFS

The Late John Clarricaats, D.B.E., G6CL

Awell-known personality in the radio amateur world, John Clarricoats, joined the Radio Society of Great Britain in 1925, was elected honorary secretary in 1930 and became the full-time secretary in 1932, a post which he held until his retirement in 1963. He died March 1969.

During his term as secretary "Clarry", as he was known by his many friends, was greatly in demand as a guest speaker at local RSGB group functions. He also did much to explain the purpose of the amateur radio movement to the general public and served on numerous bodies including the IARU. He was awarded the O.B.E. in 1955 and was elected an honorary member of the RSGB in 1963.

Mains Colour Code Changes

ON July 1 the colour coding of three-core mains cables is to be changed to comply with the new International Standard. The present coding of green for earth, black for neutral, and red for live on a.c. mains will become:

LIVE-Brown

NEUTRAL-Blue

EARTH-Yellow and green stripes
In spite of what many consider to be an illogical move, there are reasons for the new choice. The new earth colours can be picked out easily in poor light or by the colour blind; the other two are sufficiently separated in the colour spectrum for one to be lighter than the other.

It is also claimed that blue and brown are the only colours which do not fade when impregnated in p.v.c. and are also cheap.

It is expected that by Spring 1970 it will be illegal to sell appliances with the old colour coded cables, although this has yet to be established.

Computer Controlled Telephone Exchange

ACOMPUTER-CONTROLLED telephone exchange system, believed to be unique anywhere in the world, is being developed by Plessey Telecommunications Group under a multi-million pound programme spread over the next few years.
Other computerised or stored programme control (SPC) systems under development are based on a massive centralised processor-similar to a computer-which
signals instructions to the telephone switching equipment. This method can increase costs substantially when, in order to guard against breakdown, a second or even a third standby processor needs to be installed.

Plessey plans to overcome these problems by introducing a system incorporating a plurality of smaller processors which will not only reduce capital cost but will also make the system more flexible and easier to extend.

Radar Systems

TWo NEW Plessey radar systems have been introduced recently. They are the WF44-an advanced meteorological radar-and the AR-5-a 23 cm air surveillance system.

Orders for the type WF44 have been placed by the Australian Department of Supply for use by the Commonwealth Bureau of Meteorology, Melbourne.

The new radar is designed to operate in both windfinding and weather-watching roles.

Two type AR-5 radars have been ordered by the Board of Trade for installation at Burrington, Devon, the key West Country station in the chain providing en route cover for the UK's national air traffic control system.

The AR-5 can provide range cover of 200 nautical miles or more and height cover up to 80,000 feet. Shown below is a photograph taken from the screen of the prototype AR-5 installed at Plessey Radar's test and demonstration site at Cowes, Isle of Wight. The white circle encluses Concorde 002 during its maiden flight.

NEW PRICES ON NEW COMPONENTS

RESISTORS
High stability, carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm): Body; $\frac{1}{4} \mathrm{~W} ; 8 \therefore 2.8$
Leads;
1
$\frac{1}{2} W ; 10 \therefore 2 \cdot 8$
35
Leads;
egohms (E12 Renard Series)
10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series) 5% ranges; 4.7 Ohms to

Prices	10%	each	10 off	25 off	100 off
\cdots	10\%	each	1/6	3/3	10/4
\cdots W	10\%		119	3/8	11/8
LW	5\%	21 ${ }^{2} \mathrm{~d}$	$1 / 9$	$3 / 8$	11/7
- W	10\%	$2 \frac{1}{2} d$ $3 d$	21	$4{ }^{-}$	12/10

CAPACITORS
Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads.
resin encapsulation 100% tolerance.

22,000 ... film, Tubular, Äxial leads. Professional Grade. Hard Epoxy Polystyrene film, Tubular, Axial leads
Resin encapsulation. rolerance. 100 Volt Working

POTENTIOMETERS (Carbon)

Miniature fully enclosed, rear tags, carbon brush wiper. Long life, low noise. Body dia in. Spindle, lin. $X \frac{1}{d} \mathrm{in} . \frac{1}{4} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. $20 \% \frac{1}{4} M$, $+30 \%$. $\frac{1}{4} \mathrm{M} \mathrm{Lin}$.100 Ohms to 10 Megohms, Log. 5 Kohms to 5 Megohms $\begin{array}{lllll}\stackrel{\rightharpoonup}{2} \\ \text { Prices-per ohmic value. } & \quad \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { of } \\ & 2 / 3 & 20 /- & 45 / 10 & 186 / 8\end{array}$

GANGED STEREO POTENTIOMETERS (Carbon)
$\frac{1}{2}$ at $70^{\circ} \mathrm{C}$. Long Spindle.
-ogarithmic and Linear: $5 \mathrm{k}+5 \mathrm{k}$ to $\mathrm{IM}+\underset{\text { each }}{1 \mathrm{M}}$. 10 off $\quad 25$ off $\quad 100$ off

SKELETON PRE-SET POTENTIOMETERS (Carbon)

SKELETON PRE-SEs suitable for printed circuit boards of O.lin. P.C.M 100 Ohms to 5 Megohms (Linear only).
Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \quad \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ above $\frac{1}{4} \mathrm{M}$. Horizontal Miniature: $0.3 W$. at M.) or Vertical (0.4 in . $\times 0.2 \mathrm{in}$. P.C.M.).

$\begin{array}{lll}\text { Subminiature: } 0.1 \mathrm{~W} \text { at } 70^{\circ} \mathrm{C} . & \pm 20 \% \text { below } 2.5 \mathrm{M} \\ \text { Prices-per ohmic value } & 10 \text { off } 25 \text { off. } & 100 \text { off }\end{array}$
Prices-per ohmic value
Miniature (0.3 W)
Subminiature (0.1 W) \ldots
$\begin{array}{ccc}\text { each } & 10 \text { off } & 25 \text { off } \\ 1 /- & 8 / 9 & 18 / 9\end{array}$
lod $7 / 1 \quad 14 / 7 \quad 46 / 8$

JACK PLUG

in. Type P1 Standard. Screened. Heavily chromed
in. Type PIP SI. Side-entry version of type PI
in. Type SE/PI. Standard. Unscreened. Unbreakable moulded cover.
int. Type P2. Tip-Ring-Sleeve Stereo version of Type P1.
in. Type P3. Tip-Ring-Sleeve Stereo version of Type P2.
3.5 mm Type P5. Standard. Sereened. Aluminium cover.
3.5 mm Type P5. Standard. Screened. Al Unbreakable moulded cover 3.5 mm Type P6. Standard. Unsereened. each 10 off 25 off 100 off Prices-

	each	$26 / 8$	$62 / 6$	$233 / 4$
P1.	$3 /-$	$26 / 8$	$66 / 8$	$280 /-$
SE/P.	$3 / 6$	$30 / 10$	$54 / 2$	$200 /-$
P2.	$2 / 6$	$23 / 4$	$137 / 6$	$500 /-$
P3.	$6 / 6$	$60 /-$	$127 / 6$	$455 /-$
P4.	$6 / 2$	$56 / 6$	$43 / 9$	$158 / 4$
P5.	$2 / 2$	$19 / 2$	$4 / 4$	
P6.	$1 / 8$	$15 /-$	$33 / 4$	$116 / 8$

JACK SOCKETS
in. Type S3. Stereo version for use with P3 or P4 plugs.
in. Type 5.5. Standard. Moulded body. Chrome insert.
3.5 mm Type $\$.6$. Standard. Moulded body. Chrome insert.

Available with make or break contacts on Tip, Ring and Sleeve. 100 off 25 off 100 off

Available with make or break conch	each	10 off	25 off	100 off
Prices-	$3 / 3$	$30 /-$	$68 / 9$	$250 /-$
	$\$ 3$	$2 / 9$	$25 /-$	$56 / 8$
	$S 5$	$1 / 6$	$13 / 4$	$33 / 4$
	$\$ 6$	$100 /-$		

ELECTROLYTIC CAPACITORS (Mullard). - 10% to $+50 \%$.

Subminiature (all value					
4 V (8	32	64	125	250	420
$6.4 \mathrm{~V} \quad 6.4$	25	50	100	125	200
10 V	16	32	40	80	125
16 V 2.5	10	12.5	25	50	80
25 V -1.6	6.4	12.5	16	32	50
40 V	2.5	8	10	20	32
$64 \mathrm{~V} \quad 0.64$	113	1/2	1/-	$1 / 1$	1/2
Price 1/4	1/3	1/2	1/-		
Small (all values in $\mu \mathrm{F}$)				2,000	3,200
4 V	800 640	1,000		1,600	2,500
6.4 V	640	1,640		1,000	1,600
10 V	450	400		640	1,000
16 V	250	250		400	640
25 V	100	160		250	400
40 V	64	100		160	250
64 V	116	2/.		2/6	3 J

POLYESTER CAPACITORS (Mullard) 7d. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$ Tubular, 10\%, 160V: 0.01, 0 , $0.022 \mu, 7 \mathrm{~F}, / 3 \quad 0.47 \mu \mathrm{~F}, ~ / 16 . \quad 0.68 \mu \mathrm{~F}$ $0.1 \mu \mathrm{~F} 9 \mathrm{~d} .0 .3 \mathrm{\mu F}$, Ild. $\quad 0.22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, 16 . \quad 0.68 \mu \mathrm{~F}$, 2/3. $\quad \mathrm{I}_{\mu} \mathrm{F}, 2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} ., 6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$, 7d. $0.033 \mu \mathrm{~F}$, 8d. $0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}$, ild. $0.15 \mu \mathrm{~F}, \mathrm{I} / 2 . \quad 0.22 \mu \mathrm{~F}$, $1 / 6 . \quad 0.33 / / \mathrm{F}, 2 / 3 . \quad 0.47 / i \mathrm{~F}, 2 / 8$.
Modular, metallised. P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}$, 7d. 0.033 0.047 $\mu \mathrm{F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 \mathrm{Id} .0 .22 \mu \mathrm{~F}, 1 /=0.33 \mu \mathrm{~F}, 1 / 5$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$,
$0.47 \mu \mathrm{~F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 9$.
SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81, OC8ID, OC82D, $2 /-$. OC70, OC72, $2 / 3$. AC107, OC75, OCI70, OC171, $\begin{array}{llll}2 / 6 . & A F 115, ~ A F I 16, ~ A F 117 . ~ A C Y 19, ~ A C Y 21, ~ 3 / 3 . ~ O C 140, ~ & 4 / 3 . \\ 5 /-. ~ O C 139,5 / 3 . ~ O C 25,7 /-. ~ O C 35, ~ 8 /-. ~ O C 23, ~ O C 28, ~ 8 / 3 . ~\end{array}$
 P.I.V., 3/3. 1,250 P.I.V., 3/9. $1,500 \mathrm{P} .1 . \mathrm{V} ., 4 / \mathrm{i}(0.75 \mathrm{~A}): 200 \mathrm{P} .1 . \mathrm{V} ., 1 / 6$. 400 P.I.V., 2/-. 800 P.l.V., 3/3. (6A): 200 P.I.V., 3/-. 400 P.I.V., $4 /-$. 600 P.l.V., 5/-. 800 P.l.V., 6/-.
SWITCHES (Chrome finish, Silver contacts): 3 A 250V, 6A 125 V . Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/=. DP/ST, 4/6. DP/DT,5/=
ROTARY SWITCHES (Wafer)
High quality. Rear tags. Longspindle, $\frac{1}{4}^{\prime \prime}$ Dia.
high quality. Rear tags. $2 \mathrm{p} / 6 \mathrm{w}, 3 \mathrm{p} / 4 \mathrm{w}, 4 \mathrm{p} / 3 \mathrm{w}, 2 \mathrm{p} / 3 \mathrm{w}$.
prices- 2p/6w, $3 p / 4 w$ each 25 off 10 off 100 off All Types

R/6 (Vero).
PRINTED CIRCUIT BOARD (Vero). $\times 2 \frac{1}{2} \mathrm{in}, 3 / 11$. $3 \frac{3}{4} \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}, 3 / 11$. 0.15 in Matrix:
$\sin \times 3 \frac{7}{4}$ in, $5 / 6$.
0.1 Matrix: $3 \frac{3}{4}$ in $\times 2 \frac{1}{2} \mathrm{in}, 4 /-5 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 4 / 6$. $3 \frac{3}{4} \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}, 4 / 6.5 \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}$, 5/3.

Send S.A.E. for January, 1969 Catalogue
(Visit us - at our new Mail Order, Wholesale \& Retail Premises) MINIMUM ORDER VALUE 5/- C.W.O. Post and Packing $1 / 6$

Trainfortomorrow's world in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 3rd Sept.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept.PE 1),.34a Hereford Road, London, W. 2

 Please send, without obligation, details of the Full-time Course in Radio and Television.NAME
ADDRESS

R.S.T, VALVE MAIL ORDER CO.
 BLACKWOOD HALL, WELLFIELD RD., S.W. 16 Special 24 Hour Mail Order Service

ARECENT series in this magazine (${ }^{*}$ Sound Light and Colour) described several lighting effects that can be used in conjunction with music either to intensify or complement the listeners' enjoyment. One such system used audio signals from the music to control the intensity of coloured lamps mounted on a display panel.

The Chromatone works on exactly the same principle but instead of using transistors to drive low voltage bulbs, thyristors are used to operate mains driven bulbs allowing up to 750 watts of light power on each colour channel. The unit to be described has three colow channels thus, when loaded to capacity, can detive more than 2 kilowatts of light power - more than sufficient to light even the largest domestic room and many medium sized clubs.
The unit is highly compact and portable as well as being yersatile on its input requirements; lit will oper̂âte effectively from small transistor radios, hi-f record players, commercial tape recorders, electric guitars and electronic organs. Being portable it is admirably suited to "pop" groups who wish to augment their music with constantly changing floodlights.

OVERALL SYSTEM

Fig. 1 shows the full circuitry of the equipment which is most logically divided into three sections:
(1) A matching preamplifier having a low impedance input which allows the unit to operate from any extension speaker terminals from 3 to 15 ohms without applying load to the existing speakers in circuit.
(2) A simple $R C$ tone separator citcuit roughly splitting the input signal into three channelslow, middle and high frequencies.
(3) Three identical but separate integrators and thyristor firing circuits.
The thyristors specified have peak voltage ratings of 400 volts and can supply up to 3 amps each. They are

used to drive conventional tungsten filament bulbs and, as the circuit stands, are not suited to running fluorescent lamps. As the controlled lamps are constantly switching on and off it is suggested that normal domestic bulbs be used and special purpose high power lamps such as photo-floods or quartz iodine bulbs avoided. Any number of lamps can be wired in parallel on each channel provided the total potver does not exceed 750 watts per channel.

CIRCUIT DESCRIPTION

The circuity ised is ratherunconventional and for this reason it is important that the constructor reads this section carefuly before embarking on any work (by so doing he will probably save himself, much time and trouble).

In order to fire the thyristors it is necessary for the whole of the tone separator integrator and firing circuits to be strapped to the "neutral" side of the mains. At the same timeff is absolutely essential that the input circuit be isolated and capable of being earthed for safety reasons isolation/is provided by a consentional 3 ohm valve output transformer (T2) con-
nected so that its 3 ohm winding forms the collector load of TR 1 (Fig. 1). As the common emitter line of the firing circuit cannot be connected to the earth line of the preamplifier, two separate power supplies must be used.

The power requirements for the preamplifier are comparatively crude and are provided by T3-a 6.3 V heater transformer-through a low voltage silicon diode D2. First order smoothing is provided by C1. The input signal from an extension speaker socket is applied to the base of TR1 through a 25 ohm gain control. By normal audio standards this stage produces considerable distortion but this is of no detriment to the final effect, therefore it was decided to keep this stage as simple as possible. To ensure safety in operation it is essential to earth the emitter line of the preamplifier.
Tone separation is obtained very simply by three separate gain controls each of which has a crude filter circuit. The controls adjust the amount of signal applie to each filter which provide top cut (for bass), top clt and middle pass (for the mid-audio frequencies) and tof pass for the higher frequencies. Accurate frequency separation is not possible with this simple layout and there is considerable overlap between the
channels, but in order to keep the size, weight and cost low it was felt desirable to omit inductive tuning.
Experimenters might like to substitute their own tone circuits which could be of the $L C$ type described in the Sound Light and Colour series. If LC tuning is attempted it should be pointed out that the inductance of the isolating transformer will significantly alter the characteristics of subsequent filters. In practice the overlap of frequencies did not prove as great a disadvantage as one might imagine owing to the fact that each channel's sensitivity can be set independently by VR2, 3, and 4, thus compensating to a large extent for this defect.
The output from each filter is applied to the base of a transistor (TR2, 3 and 4 respectively) in each of three thyristor firing circuits shown in Fig. 1.

INTEGRATOR CIRCUIT

It is worth describing the circuit of the integrator in a little more detail because the transistors are used in a rather unconventional fashion. Fig. 2 shows a single integrator connected to the trigger of a thyristor (SCR1).
To make a thyristor fire, the trigger electrode must be driven approximately 3 volts positive with respect to the

Fig. I. The complete circuit diagram of the Chromatone

LIND:AIR
 See our vast range of Electronic Components at our new
 Component Centre 25 Tottenham Court Road
 Battery Eliminator Enable transistor equipment ted from AC mains. $6 / 9 /$ 12 V output selector 5 witch and on/off switch. Case size $4 \times 2 i \times 2 \mathrm{in}$. complete with mains. $59 / 6$ P. \& P. $3 / 6$.
 EAFPARD DECKS

SRP22 less cartridge
1025 Stereo/Mono with cart.
2025 Stereo/Mono with cart.
3000S Stereo/Mono with cart.
3000 D Stereo/Mono with cart.
SP25 less cartridge.
SP25 with Decca Derant cart.
SL55 less cartridge
SI 65 less cartridge
Covers for above.
Bases for above
AP75 less cartridge
SL75 less cartridge
SL95 less cartridge
Bnses for above

SP25 less cart., Fith base $£ 18.10 .0$ P. \& P. Decks 12/6, Cover $4 /$
"HI-TEN" LOUDSPEAKER.
British made full range 10 in . unit handles response: $40-10,000 \mathrm{cps}$. Imp: 15Ω. Flux density: 10,000 lines. $49 / 6$. P.\&P. $4 / 6$. TIC.C1001 MULTITESTER in leather case.

20,000 opv. AC volts
$10,50,250,1,000 \mathrm{~V}$.
DC volts $5-25,125$.
 $500,2,500 \mathrm{~V}, \mathrm{D} . \mathrm{C} . \mathrm{Cur}$ rent $0-50 \mu A, 0-250 \mathrm{~mA}$
Resistance $0-60 \mathrm{~K}, 0-6$ Resistance $0-60 \mathrm{~K}, 0-6$
Megohm.
Decibels Megohm. Decibels
-20 to +22 dB . Size of meter 4$\} \times 3: \times 1 \mathrm{i}$
$85 /-$ P. $\&$ P. $3 / 6$.

SOLDERIFG GUN. Conifortable grip shaped $3 \frac{1 \mathrm{in} \text {. bit to mini- }}{}$ mise wear. Light beam is automatically directed on
to end of bit when ON/OFF to end of bit when ON/OFF trigger is in use. $\quad 230-250$ volts. 8

"ADASTRA" SOLDERIFG IRON.

 30 watt. Employs prokective cover as a handle. AC $230 / 250 \mathrm{~V}$lead.
$12 / 6$.

NEW-VHF AIRORAFT BAND COSVERTOR. When placed within lin. of a MW band radio full coverage of VHF Air-
craft Band $108-135 \mathrm{Mc} / \mathrm{s}$. can be obtained. All transistor, 9 V battery operation. Fully tunable
18 in. $\times 7$ section telescopic aerial. Size 4×29

STERED AMPLIFIERS

DULCI STEREO AMPLIFIER MODEL 207
8 watts per channel. Integrated high fidelity ransistor Stereo amplifier. An attractiv ree standing unit with provision for mounting in equipment cabinet. Finish Dark Grey vingl simulated leather grain. Front panel satin alloy. Specification: Sensitivity, Radio/Tape 100 mV jnto 1 Mohm . Phono 100 mV into 1 Mohm . 3 position selector on front panel. Frequency response: $40 \mathrm{c} / 8$ to $1 \mathrm{kc} / \mathrm{s}$, 2 cc . Function sritch (1) Plus P \& P 9/-. Plus P. \& P. 9/
 IfIOMTIC-10 INTEGRATED $0.4 \times 0.2 \mathrm{in}$. A true bi-fi ampliffer complete with manual giving details of a wide range of applications and instructions. Guaran-
teed 5 jears ONLY $59 / 6$. P. \& P. $1 / 6$.
SPECIAL PURCHASE!

DE-LUXE STEREO

With soft rubber earpieces. Impedance 8 -16 ohms. Frequency
response $23-13,000 \mathrm{cps}$. With lead and stereo only 59/6. P. \& P. $3 / 6$. NEW STEREO/MONO HEW STEREO, SDH-7. Soft rubber
earpleces with slide switch for monol stereo histening and ind. vol. controls. Impedance 8-16 ohm
Freq. response $25-$ Freq. response
$15,000 \mathrm{cps}$. With lead
and stereo plug.
£6.6.0. P. \& P. $3 / 6$.

Solderless breadboard panels. reliable component counections. Single DeCs. One S-DeC with Control Pancl, Jig and Accessories for solderless ${ }^{\circ}$ conrections to controls, etc., with bookle - Projects on S-Dect giving construction details for a variet P. © PeC KIT. Four S-DeCs wh tho Control Panels, Jigs and Accessories and the bookPat "Projects on S-DeC" all contained in a strong attractive plastic case. Ideal for the
professional user.
E5.17.6.
\mathbf{P}.

HITDNE RECDRDINE TAPE

BRITISH MADE TOP QUALITY

J 1001
J 1002
1002

J 1002
J 1003 J1004 $\mathfrak{J} 1005$ $J 1006$
$J 1007$ J1008 J1009
J1010

1311. PHONO PRE AMPLIFIER PRE Size $2 \times 1 \times 7 \mathrm{in}$. Built-in R.I.A.A. characteristics enabling low
output magnetic output magnetic
pick-up cartridges to be amplified up
to 1 volt. Input $100 \mathrm{Kohm:} \mathrm{Gain} 28 \mathrm{~dB}$: Max. output 3V: Max. input 50 mV . Dis
9-12Y. 29/6. P. \& P. 2/-. Enables a low output microphone to be used with an amplifier or radio. Input imp. 100Kohms: Gain 28dB: Max. output 3V: Max. input 50 mV : Distortion 0.15% (at Power supply 0 -12V. 29/6. P. \& P. 2/E.1318. DUAL LAMP FLASHER. A switch module for electronically atternating two miniature bulbs, $6 \mathrm{~V}, 100-200 \mathrm{mV}$. Ideal for models, toy boats and planes, displays, warning and security devices, communication sigaals, etc. Flasher time Bec: Power supply 6V DC: Current I50mA E.1315. ELECTRONIC ORGAN TONE E.1315. ELECTRONIC ORGAN TONE
OSCLLATOR. Used in conjunction with an OSCILLATOR. Used in conjunction with an
organ keyboard, variable resistances and a 9 volt power supply, this module acts as the oscillator unit for an electronic organ. Tonc Frequency: $200-1,000 \mathrm{~Hz}:$ Ontpit
80 mW : Current $15 \mathrm{~mA} .25 / \mathrm{P}$ \& P. 2/-.

Hitane

 TOP Mumir Recondive tif
$\begin{array}{ll}\text { Long Play PlC } & 225 \mathrm{ft} \\ & 50 / 6\end{array}$
 Triple Play Poly Long Play PVC

Double Play Double Play Poly
Long Play PVC Double Play Poly Standard Play P Long Play PV Double Play Poly 9000
1200 1200 ft
1200 ft
1800 ft C 1800 ft 1200 ft 2400 ft $3600 \mathrm{ft} 50 /$ 50/- P. \& P. 2/6

$\square F \sqrt{\square}$ D) J ES

E.1314. POWER AMPLIFIER. When used
in conjunction with E. 1311 , E. 1312 ani E. 1313 units this amplifier module produces about 30 mh), without necessity for an output transformer. Input inp. 1,000 ohms: Gain 20dB: Output 300 mW Distortion 3% (at 200 mW output level). Freg. res. $50 \mathrm{~Hz}-10 \mathrm{KHz}$. Power supply $9 V^{\circ}$, Current 20 mA at no signal, 80 mA at ma outpnt. 29/6. P. \& P. 2/-
E.1317. MINIATURE MORSE TRANSMITTER. Will transmit to any adjacent AM Receiver, also makes a useful oscillator for trouble shooting. Audio tone $400 \mathrm{c} / \mathrm{s}$. Radio frequency range $400 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. Power supply 9 Y DC. Current 30 mA .
$25 / \mathrm{F}$. P.
P. $2 / \mathrm{F}$. E.1312. TAPE PRE-AMPLIFIER. Incorporating N.A.R.T.B. curve characteristics, this amplifies tape head signals up to 1 volt within the frequency range of 30 Hz -
15 KHz . Input imp. 100 Kohm : Gain 25 dB : Max. output 2V: Max. input 50 mV ; Distortion 0.15% (at IV level): Power supply 9-12 volts. 29/6. P. \& P. 2/-
E.1316. MORSE CODE OSCILLATOR. transistorised morse code oscillator(buzzer) to be used in conjunction with an operating key, Suitable for direct connection to a loudspeaker. Tone freq. 400 Hz : Power output 80 mW W Power supply
Current 45 mA.
$25 /-$ P. \& P. $2 /-$

Visit our Brand New Hi-Fi Demonstration Room, Tape Bar, Scientific Show of Microscopes, Binoculars, Telescopes also Watches at 18 Totteriham Court Road

COMPACT 2-WAY IRTERCOMS

For table or wall mounting. Smart two tone grey cases size $3 \frac{1}{2} \times 1 \frac{1}{2} \times 2 \mathrm{in}$. Complete P. \& P. 3/6.

MAINS KEYNECTOR

One mains "Keynector" instantly and safely connects electrical appliances to mains supply without the use of a plug. A number of appliances may be used
simultaneously un to the full 13 amp rating of this device. A red light glows when "live". The "Keynector" is fused and has its own robust switch which is interlockel to prevent connections when Invaluable 10 haudymen, servicemen,

demons

NEW TRANSISTOR

 CHECKER.For measuring alpha, beta and Ico, factors of transistors also for chech ing germanium and siodes. Internal 9 y battery. Wide reating $7 \times 41 \times 31$ in. Ranges Alphis $0 \cdot \frac{7}{7}-0.9967$ R Beta $0-300$; Ico $0-50-5,000 \mathrm{~A}$. Diode test: forward and reverse internat resistance. Resistances 200 ohm-1 megohm. Complete with connectors and
SHIRA 62D MULTLTESTER 20,000 O.p.v. DC voltage: $5-25-50-250-$ $500-2 \cdot 5 \mathrm{~K}$
rolt $)$. 20,000 ohms peltage: $10-50$ $100-5001000$ volts (10,000 ohms per volt). DC CuF20mA. Resistance: 0.6 K . 0.6 Mg (300 ohm and 30 K
 t centre scale), Capacitance: 10 pt to 001 mifd, $-001 \mu \mathrm{f}$ to $1 \mu \mathrm{~F}$. Decibels: -20 to +221 B . Nize $4 \frac{1}{2} \times 34 \times 1 \mathrm{in}$. Complete with Case 77/- P, 衤P

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-FULL AFTER SALES SERVICE!

ThE MAESNIFICENT 7 Seven Waveband PORTABLE

[^1]

$\begin{gathered}\text { POCKET FIVE } \\ \text { MED. } \\ \text { TRA LORG FAYES AND }\end{gathered}$
TRAWLER BAND to approx. 50
metres. WITH SPEARER AND
EARPPECEE 5 transietors and 2
$\begin{aligned} & \text { diodes, ferrite rod aerial, tuning } \\ & \text { condenser, moving coilspeakier, etc. }\end{aligned}$
Costz $44 / 6$. ${ }^{2}$ P. \&: P. P . $3 / 6$. . Plans
and Parts list $1 / 6$ (free with parts).
TRARSONA FIVE
MED AND LONGAND TRAWLER

RADIO EXCHANGELTD

DEPT. PE7, Gla HIGH STREET, EEFFFROD. 023452387 Callers side entrance Stylo Shoe Shop. Open 10-1, 2,30-4.30 Monday • Friday 9.12.30 Saturday

Keep thase Contacts CLEAN by using a DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification

Manufactured in France British Patents applied for

- Grain size 200 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial relays and switehing equipment, etc.
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive. Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD. 81 Piccadilly, London, W.1. Phone: (01) 6299556
As supplied to the War Office, U.K.A.E.A., Electricity Generating Boards, British Railmays and other public authosities; also to leading electronic and indusitial users throughoul the
United Kingdom.

VARI-STAT

THERMOSTATIC
SOLDERING IRON

HIGH PRODUCTION MINIATURE MODEL D. 50 WATT

Weight
Heating time 50 seconds
Bit Sizes .. $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$
Nickel or Iron Plated
Voltage .. 250 to 12 volts
Price

HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT

Weight .. 6 oz .
Heating time 1 min .45 sec .
Bit Sizes
Nickel or Iron Plated
Voltage
250 to 24 volts
Price
87/6

OTHER VARI-STAT IRONS:

Miniature Model M 50 watt Push-in Bits 1/32", $1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}$
Instrument Model B 70 watt Bit Size 11/64"
Industrial Model I 500 watt Bit Size $5 / 8^{\prime \prime}$
CARDROSS ENGINEERING CO. LTD.
Woodyard Road, Dumbarton
Phone: Dumbarton 2655

Fig. 2. Circuit of a single integrator connected to the trigger of a thyristor
anode, and the driving source must be capable of delivering at least 20 mA into the trigger. Once triggered the thyristor will continue to conduct as long as it is passing a current in excess of its holding current (about 25 mA) between its anode and cathode. As soon as this holding current falls below the threshold the thyristor will turn off and will not conduct again unless the triggering condition is repeated.

When operating on 50 Hz mains the applied voltage passes through zero 100 times a second, and hence, to keep the thyristor conducting, it is necessary to retrigger for every cycle (if we were using a full wave bridge it would be necessary to trigger every half cycle).

Triggering therefore has to occur in synchronism with the applied voltage and in normal lamp dimmer circuits this is carried out by applying a small proportion of the applied voltage to the trigger.
Conventional dimming is obtained by changing the phase of the trigger voltage relative to the applied voltage so that the thyristor will fire during a comparatively short period of the half cycle. Phase shift is obtained in a manually operated lamp dimmer by adjusting the value of a resistor in an $R C$ circuit.
Referring now to Fig. 2, we have replaced the variable resistor in the manual system with a transistor (TR1). Because the trigger of the thyristor must receive a synchronous 50 Hz pulse, it is necessary to power the transistor with single wave rectified un-smoothed a.c. supplied by T1 through D1. Although the circuit is live to mains, the voltages across the circuit never exceed the 6.3 V supplied by T 1 .
The voltage across R1 and collector/emitter of TR1 oscillates between 0 and 6.3 V in exact phase relationship with the full 230 V across the thyristor and the lamp. This phase relationship can only be obtained if the correct end of the secondary winding of T1 is linked to the live mains line-if the link was made to the wrong end the power to the drive circuit would be 180 degrees out of phase.
With no signal applied to the base of TR1 the transistor is effectively a very high resistance and the potential difference across R1 at any part of a half cycle is zero, thus the trigger to anode voltage of the thyristor is also zero. If a negative going signal is applied to the base the collector/emitter resistance of TR 1 falis roughly in proportion to the amplitude of the applied signal and C1 starts to charge through TR1 towards the voltage set by the potential divider formed by TR1 and R2. It will take a finite time for Cl to charge and this is again dependent on the instantaneous: resistance of TR1 and on the value of the capacitor.

Fig. 3. Circuit board layout and wiring details

The values of C1 and R1 have been chosen so that the average integration time for the capacitor to charge to 3 volts is approximately 5 milliseconds. This naturally has considerable dependence on the input signal and has been taken into account, so that, with the master gain control (VR1) set midway, an input signal from a medium volume loudspeaker will operate the unit correctly.

With an average integration time set for $5 \mathrm{~ms}, \mathrm{C} 1$ will reach 3 V approximately half way through a half cycle; when this moment is reached the thyristor fires thus lighting the lamp for the remainder of that half cycle. If the input signal increases in amplitude the integration time becomes less, and the thyristor will fire earlier thus
passing more energy to the lamp and effectively increasing its brightness; for lower level audio signals the converse happens.

CONSTRUCTIONAL DETAILS

All components are readily available, and there are no critical values. The power transformers are conventional 6.3 V heater types. The only point to watch is that the isolating transformer T2 will really isolate; hence it is best to use one that has been designed for use in valve circuits.

The unit is housed in a die cast box measuring $8 \frac{3}{4}$ in $\times 5 \frac{3}{4}$ in $\times 2 \frac{3}{16}$ in. The transformers used conveniently mount along one side of the box and all four gain controls are mounted on the opposite side. The main circuitry of the pre-amplifier and integrators is carried on a single piece of Veroboard (Fig. 3) which is held in the pre-cast slots of the box. Because of the small number of components the tone circuits are suspended from the terminals of the control potentiometers (Fig. 4). Layout is not at all critical and

The circuit board showing mounting of components and flying leads

COMPONENTS . . .

Resistors
RI $56 \mathrm{k} \Omega$
R2 330Ω
R3 $1 \mathrm{k} \Omega$
R4 $56 \mathrm{k} \Omega$
R5 330Ω
R6 $1 k \Omega$
R7 $56 \mathrm{k} \Omega$
R8 330Ω
R9 $1 \mathrm{k} \Omega$
All $\pm 10 \%, \frac{1}{2} W$ carbon
Potentiometers
VRI 25 Ω, $3 W$ wirewound VR2, 3, $410 \mathrm{k} \Omega \log$ (3 off)

Capacitors

CI $1,000 \mu \mathrm{~F}$ elect. 15 V
C2 $100 \mu \mathrm{~F}$ elect. 15 V
C3 $100 \mu \mathrm{~F}$ elect. 15 V
C4 $1 \mu \mathrm{Felect}$. 15 V
C5 $5 \mu \mathrm{~F}$ elect. 15 V
C6 $1 \mu \mathrm{~F}$ elect. 15 V
C7 $100 \mu \mathrm{~F}$ elect. 15 V
C8 $2 \mu \mathrm{~F}$ elect. 15 V

Semiconductors

DI, 2 GJ7M (or any 15 p.i.v., IA silicon rectifier) (2 off)
D3, 4, 5 OA91 (3 off)
TRI OC26
TR2, 3, 4 OC83 (3 off)
SCRI, 2, 3 CRS3/40AF (3A, 400 p.i.v.) (3 off)

Transformers
TI, 3 Mains transformer, $\sec 6.3 \mathrm{~V}$ at IA (2 off)
T2 Midget choke type (Radiospares) or any 3Ω valye output transformer

Miscellaneous
SKI jack socket
Die cast box ($8 \frac{3}{4}$ in $\times 5 \frac{3}{4}$ in $\times 2 \frac{3}{16}$ in)
Bayonet bulb holders (3 off)
Control knobs (4 off)
Veroboard
Mains lead
Grommets
4B.A. fixings

RADIO STETHOSCOPE
Eaniest way to find isul-traces signal fomaeria fault. Use it on Radio. TV, amplifer, anything-complete kit comprises two special traneistors and all parts including probe tube and crystal set instead of earpiece 11/-extra-post and ins. $2 / 9$.

MINIATURE

WAFER SWITCHES

P2 pole, 2 way- 4 pole, 2 way4 pole, 3 way- 4 pole, 3 way- 2 pole, 4 way- 2 pole, 6 way -1 pole, 12 way. All at $3 / 6$ each 36/-dozen, your assortment

WATERPROOF HEATING ELEMENT 26 yards length 70W. Self-regulating temperature control. $10 /-$ pest free.

BATTERY CHARGER FOR NICADS This is in plastic case, size $5 \times 4 \times 3 \mathrm{in}$. approx. All wired up with 3 core output lead and 3 core mains input lead. Contains mains trangformer with 40 v 250 mA secondary and standard $200 / 240$ primary. Also contains full wave bridge rectifier, neon indicator, wired up with resistors to charge 2 50 mA and 25 mA respectively. Batteries up to 30 volts may be charged. Price $39 / 6$ each, plus $3 / 6$ postage and insurance.
MAINS TRANSFORMER SNIP Making a power pack for
amplifer or other equipment? These transform ers have normal mains primaries (230/40r.) and types (1) 12 v .500 m at types (1) 12 v .500 mA
$8 / 6 ;$ (2) 15 v .500 mA

11PP3 ELIMINATOR. Play yuur pocket radio from the mainsl Save ss. Complete component kit comprises 4 rectifiers-maing dropper resistances, smoothing condenser and instruc tions, only 6/6 plus 1/-post.
WIDE ANGLE LENS FOR CLOSED CIRCUIT TV
16 mm . Made by the Swiss company, Kern Paillard. Yгar $1: 2.8 f=75 \mathrm{~mm}$. Brand new in leather
is8, which is less than half current list price.

TIMED SWITCH OR MEMORY JOGGER

 It you are the forgettul type this can save you embarrassment. Pre-zettabor so can be ueed in car or anywhere independently of the mains. Switch rated at 15A, 250 V can control any type of alarm, $29 / 6 \mathrm{~d}$. less than haliprice. Brand new and unused.

KETTLE ELEMENT
$230 / 240 \mathrm{~V} \quad 1500 \begin{gathered}\text { watt. }\end{gathered}$ Made by Best for kettes
with is in. dia. bole including: Best, Besco,
Chalfont, Davidson, DimChalfont, Davidson, Dimplex, Grafton, Hawkins,
Monogram, Pifco, Revo, Jurymaid, Mirroware, Monogram, Our price 15/Towen, Swant

QUICK CUPPA Mini Immersion Heater, 350%. $200 / 240 \%$. Boils full cup in about
two minutes. Use any socket or tamp holder. Have at bedside for tea, baby's food, etc. 19/6,
post and insurance $1 / 6$. 12v. car post and insurance
MAINS TRANSISTOR POWER PACK Designed to operate transistor sets and amplifers. 500 mA (Class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7, PP9, and others. Kit comprises: mains transformer rectifier, smoothing and load resistor, condensers and instruc
$16 / 6$, plus $3 / 6$ postage.

16 RPM GEARED MOTOR

 Made by Smith's Electrics, these are almost silent runing, butare very pown to 240 V , mains and the final shaft speed is $16 \mathrm{r} . \mathrm{p} . \mathrm{m} .15 /-$. Post $\&$ ins. $2 / 9$.
REED SWITCH

Suitable for dozens of diferent applications, Ruch as burglar alarms, concased switches which can be operated by a passing permanent magnet coil. A special buy enables ns to offer these a $2 / 6$ each, or $24 /-$ a dozen. Suitable nagnets are
$1 /=$ each.

ELECTRIC TIME SWITCH
Made the these are AC mains operated, NOT LLOCEWORK. Ideal for mounting on rack or shelf or can be built into box with 13A socket. 2 completely adjustable time periods per 24 hours, 5 amp changeorer contacts will switch circuit on or oft during ther periods. $59 / 8$, pos
contacts $105-$ pais.

NICAD RECHARGEABLE CELLS
3.6Y 500 m - size 11×1 inin. dia. type ret. DKZ500 really powerful will deliver 1 amp for $\frac{1}{\text { hour. Regular price } 32 / 6}$ our price $17 / 6$ each. New and guaranteed. other voitages and
single cell $1 \cdot 2 \mathrm{~V}$ 6!6. 5 cell $6 \mathrm{~V} 29 / 6$. 9 cell $10^{\circ} 8 \mathrm{~V} 47 / 8$.

single cell $1 \cdot 2 \mathrm{~V}$ bi6. 5 cell $6 \mathrm{~V} 29 / 6.9 \mathrm{c}$

DRILL CONTROLLER
Electronically changes speed
 mum. Funimately power at ali speeds by finger-tip control. Kit includes inl parts, case, everthing and $18 / 6$ plus $2 / 6$ post and insurance. Or
29/e, plus $2 / 6$ post.

THIS MONTH'S SNIP

DEAC RECHARGEABLE BATTERY

1-2V-2000 $\mathrm{mA} / \mathrm{hr}$. type (2000 DKZ). Size 2in. dia, \times in. thick approx. Tremendously powerful, will deliver 4 amp for 1 hour. Regular price over $£ 2$ mendously powerful, will

REPAIRABLE RADIOS
7 transistor Key chain Radio in very pretty case, size $2 \frac{7}{2} \times 2 \frac{1}{2} \times 1$ in. - -omplete with soft le
zipped bas. Specification:- Circuit: 7 transiipped bag. Specification:- Frequency range: 530 to $1600 \mathrm{Kc} / \mathrm{s}$. Sensitivity: $5 \mathrm{mv} / \mathrm{m}$. Intermediate frequency: $465 \mathrm{Kc} / \mathrm{g}$, or 455 Kc/s. Power output: 40 mW . Antenna: ferrite rod
net type.

net type.

These radios require attention. Circult diagran is not arailable. Price only $17 / 6$ each plus
post and insurance. 4 radios $£ 3$ post free.

LAST CHANCE FOR THIS BARGAIN

CASSETTE LOADED

 DICTATING MACHINEfor only $99 / 6$
Battery operated and with all accescories, Really fantastic offer a Britizh made \&31 outfit for only 44.18.6, brilliantly designed for speed and efficiency-casette
takes normal spools, drops in and takes normal spools, drops in and out for easy loading-ans accessories include: stethoscopic earpiece-crystal 19.6 plus $7 / 6$ post and insurance microphone has on/off switch-telephone pick-up olus $7 / 6$ post and insurance REPEATABLE OFFER-SEND TOSt

THERMOSTAT WITH PROBE This has a sensor attached to a 15 A switch by a 14 in . leagth of flexible capillary tubing --control range is $20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ so it is suitable to control soil heating and liquid heating especially when in buckets or portable vessels as the sensor can be raised out and lowered into the vessel. This thermostat could also be used bell or other alarm when critical temp. is reached bell or other alarm when critical temp. is reachedin sustion or if liquid is being heated by gas or others means not controllable by the switch. Pore Made by the f
insurance $2 / 9$.

MOTORISED CAM SWITCH

Made by the famous meter company Chamberlain and Hookham, these have a normal mains $200-240 \mathrm{~V}$ motor which drives a ratchet mechanism so geared to give one ratchet action per minute on a whee! withe in one bour. The cam operates 8 switches (6 changeover and 2 on/ofi thus 480 operates 8 switches hour are possibie). Contacts, rated at 15 amps hare been eet for certain switch combinations but can. no doubt, be altered to suit a special job. Also orther extends wafers or devices cance at $47 / 6$, p. \& ins. $4 / 6$.

HI FI BARGAIN

FULL FI 12 IRCH LOUDSPEAKER. This is undoubtedly one of the finest loudspeakers that the have ever ofrered produced by one of the country's most famous makers. .f has a die-cast metal frame antar and public address. Hi-Fi load and Rhythm Guitir and public aderess. Flux Density 11,00 gaus- R.M.S. Cone Moulded forePower Handing 15 watts c . p.s.-specify 8 or 15 ohmsMain resonance 60 c.p.s.-Chassis Diam. $12 \mathrm{in},-128 \mathrm{in}$. over mounting lugs -Baffle hole 11 in. Diam.- Mounting holes 4, holes-1 in. diam. on pltch circle $11 \frac{1 \mathrm{in}}{\mathrm{i}}$, diam.-Orerall height 51 in . A $£ 6$ speaker offered for only $£ 8.9 .6$ plus
p. \& p . Don't miss this offer. 15in. 80 watt $£ 7.19 .6$.

ELECTRONICS (CROYDON) LTD

Dept PE, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon Trpe "B" 15 amp. This is a 17 in . long rod type made by this from $\overline{50-550^{\circ} \mathrm{F} \text {. Internal screw }}$ alters the setting so this could be adjustable over 30° to $1000^{\circ} \mathrm{F}$. Suitable for controlling furnace, oven
heater or to make flame-stat or fire alarm. $8 / 6$ plus $2 / 6$ post and insurance. Type "D". We call this the Ice-stat as it cuts in and out at around freezing point, $2 / 3$ amps. Has many uses one of which would be to keep the loit pipes from freezing, if a length of our blanket wire (16 yds. $10 / \mathrm{F}$) is wound round the pipes. T. \& " P . F ". This is standard refrigerator thermostat. Spindle adjustments cover norm
tor temperature. 7/6, plus 1/-post. Type "F"". Glass eucased for contring inse tankz, vate or liquid-parthermostat is held (balf aubmerged) by rubber sucker or wire clip-ideal for fish tanksrevelopers and chemical baths of all types. Adjustable over range 50° to $150^{\circ} \mathrm{F}$. Price 18/-, plus $2 /-$ post and insurance.

Where postage is not stated then orders over $£ 3$ are post free. Below $£ 3$ add $9 / 9$. Semi-conductors add $1 /-$ post. Over post free. S.A.E. with enquiries please.

MAINS MOTOR Precibion made - as and tape recordersdeal also for extractor fans, blower, heater, etc. New and perfect, Solp at 9/6. Postage for firat one then $1 /$ for each one
ordered. 12 and over post free.

SNIPERSCOPE

 Famous war-time "cat's eye" used dark. This is an infra-red image conferter cell with a which caesium arceen which lights up (lik a cathode ray tube when the electrons when the electrons infra-red strike it. A gotden opportunity for some will be supplied with cells, if requested.

ACFAN
Small but very powerful mains motor with 6 in. blades. Ideal for cooling equiptor. Sllent but very fflcient. 17/6, post 4/6. Mounts from back or front with 4BA .screw

FLUORESCENT CONTROL KITS Each kit comprises seven terns-Choke, 2 tube ends, starter, structions. Suitable for normal With wiring instruct the new "Grolux'" tubes for fish tanks and indoor plants. Chokes are supergilent, mostly resin filled. Kit A- $15 \cdot 20 \%$. 19/8. Kit B-30-40 w. 18/6. Kit C- $80 \mathrm{~W} .19 / 6$. Kit E 65 w. 19/8. Kit MF1 is for 6 in., 91 n . and 22in. miniature tubes, 19/B. Postage on kits A and B $4 / 6$ for one or two kits and $E 4 / 6$ on first two kits ordered. Kits C, D and kit then $3 / 6$ for each kit ordered. Kit MF 13/6 kit then $\begin{aligned} & \text { on first kit then } 3 / 6 \text { on each two kits ordered. }\end{aligned}$

TELESCOPIC
AERIAL
for portable, car radio
ted-six sections, extends from
serew. $7 / 6$.
MOVING COIL METER BARGAIN Panel meters are always being needed and they are folly costly when youl hare to buy the ofier: 2 in . -so you sio fld noving coil flush mounting meters only is. is each but if you don't want them for R.F. then all you baye to do is to remove the thermocouple and you will have a $2-3 \mathrm{~mA}$ meter which you can make into almost anything by adding shunts or series resistor. New and unuged.

MINIATURE RELAY
American make-630 ohm coll $20-30$ volt operaAmerican make- 630 ohm coll $20-30$, $48 /-$ doz.

THERMOSTATS
Type "A" 15 amp. for controlling room heaters, greenhouses, airing cupboard. Has epindie for pointer knobs. Quickly adjustable from mounting, $9 / 6$ plus $1 /-$ post. Sultable box for wall mounthg

BUILD THIS BRILLIANT "PRACTICAL WIRELESS"
 INTEGRATED STEREO HI-FI ASSEMBLY WITH APPROVED PEAK SOUND UNITS

THE

PW DOUBLE 12

- SIMPLE UNIT CONSTRUCTION
- 12 WATTS INTO 15 OHMS PER CHANNEL
- PEAK SOUND "CIR-KIT"' MAKES IT POSSIBLE

PRACTICAL WIRELESS show with their brilliant DOUBLE 12 integrated hi-fi stereo amplifier how you can enjoy superb audio quality for very modest outlay and PEAK SOUND are proud that so much of their equipment is designer-approved for it. Based on the ingenious Peak Sound circuit board connecting strip, "Cir-Kit", this unique amplifier incorporates other Peak Sound products too. The powerful PW Double 12 includes built-in power pack and high overload factor on all inputs. Provision is made for magnetic and ceramic p.u. inputs and radio/aux. Output is 12 watts RMS into 15Ω per channel. Everything is contained in the teak finished cabinet. .. and if you want economy with perfection use your P.W. Double 12 with a pair of Peak Sound "Baxandall" speakers.

TOP LINE HI-FI COSTS LESS THIS WAY

These are the items you need to build the PW Double 12-
"Cir-Kit"
Pre-amp and tone control kits
4130
Matrix boards
Power Amplifier Kits
Power supply
Cabinet kit
5 Controls as specified
150
8110
4100

2	12	6
2	0	0
$\cos T$	H	H

TOTAL COST LUU.U.0
Metal work (make or buy), knobs, plugs and sockets, firses, etc. allow £3.0.0. From your local dealer.
PEAK SOUND ES-10-15 BAXANDALL HI-FI SPEAKER with special equalising circuitry and cabinet $£ 11.5 .0$ (inc. P.T.) (Carr. 12/6).

Go to your
Dealer now

For your authentic approved P.W. Double 12 Kits. In case of difficulty send direct giving name of your usual supplier. TRADE ENQUIRIES INVITED

32 ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY Telephone: EGHAM 5316

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.
MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.
Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servomechanisms, Computer'Engineering, Numerical Control Electronics, etc.
EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS ELECTRONIC SERVICING
R.T.E.B. RADIO/TV SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
p.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Build your own radio, transistor portable, and professlonal-type test insiruments with an ICS Practical Radio and Electronics Course. Everything simply explalned and easy to handle. All components and tools supplied. For detalls post coupon below.

Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY
I.C.S., Dept. 151, INTERTEXT HOUSE,

STEWARTS ROAD, LONDON, S.W.8
NAME
ADDRESS

OCCUPATION AGE $\quad 7 / 69$
INTERNATIONAL CORRISPONDENCE SCHOOLS

readers could use any type of enclosure provided it can be adequately earthed or similarly protected in case the insulation of T2 should break down.
Output connections to the three lamp channels are provided by flying leads terminated with standard bayonet bulb sockets. Panel mounting sockets could be used if desired, but should be capable of carrying 230 V at 3A. The prototype was designed to run from a fused 13A plug, and therefore an integral fuse was omitted; for safety's sake a built-in fuse must be fitted if the unit is to be used without a fused plug.
No details of fixing holes are given as these will vary according to the types of component used by the constructor. Work should begin by drilling all holes in the box, and grommets inserted in all those holes carrying inlet or outlet leads. All components should then be wired in to the Veroboard as shown in Fig. 3. The final stage of assembly is to wire up the transformers and gain controls to the Veroboard (Figs. 4 and 5). When connecting the transformers, try to ensure that the linked ends of primary and secondary of T1 are both "starts"; this will ensure that phasing is correct.

OPERATION

When the wiring is complete, connect the input jack socket (SK1) to the extension speaker terminals of a record player or radio, plug three different coloured lamps into the bayonet sockets (it is suggested that red be used with the low frequency circuit, green for the middle, and blue for the high). Tuirn all gain controls to minimum and plug the unit into the mains. None of the lamps should light under this condition. Next set
correspondents wishing a reply must enclose a stamped addressed envelope

I.C.'s for the public

Sir-As suppliers of integrated circuits advertising in Practical Electronics, we were somewhat disconcerted to read the letter from Mr Robson (Readout, May 1969) expressing his opinion that i.c.'s are not for the public at large. We note that Mr Robson offers no reasons for his "down" on i.c."s and we would be interested to read his other letter to which he refers.

It has been our experience that i.c.'s are indeed for the public as evidenced by the fact that we find people who have bought them frequently come back for more. Surely, from the experimenter's point of view, the i.c. is no more nor less than just another semiconductor, but admittedly a much more sophisticated one than a single transistor for example.

Most manufacturers produce comprehensive data sheets which include a circuit diagram of the device, and often examples of applications, giving the average enthusiast all the information he needs for many hours of experimenting.
D. E. Johnston, Director,
Kinver Electronics Ltd., Stourbridge.

Cost of i.c.'s

Sir-I was surprised to find in the May edition of Practical ElecTronics two letters objecting to integrated circuits. Labelling the letter concerning the radio repairing a problem relating to "I.C." even if the latter was in inverted commas is a bit unfair. The use of the word module in the letter suggests that either a hybrid circuit was used or simply normal circuitry enclosed in some impregnable material such as Araldite. As an engineer working on the circuit development of integrated circuits, I can say that to the best of my knowledge the average cost of an integrated circuit for a radio is certainly not in the
region of pounds trade price. Such a circuit contains all the circuit functions of a radio, bar the decoupling capacitors and passive tuning components. I.C.'s for the domestic market, like present transistors, are almost certain to be plastics or ceramic encapsulated by all manufacturers; the most likely configuration is the dual in line package, which should be easily removable with the help of a specially shaped soldering bit-a matter of half a minute's work?

I would be interested to see Mr James Robson's objections to i.c.'s. All i.c. circuits can of course be implemented in ordinary discrete circuitry, but i.c.'s I would think are far easier to use and make the whole system much neater. I have for instance just made a system that produces a 1.5 volt "ramp" formed of 512 discrete steps. This required only three, ten lead TO5 cans and about 20 resistors. Each TO5 can is the equivalent of three clockable flipflops plus an and gate. I admit that at the present time it is probably cheaper for the amateur to build such a system of discrete components, but I would suggest that within the next few years, i.c.'s will make it possible for the ambitious person to build himself a desk top calculator (probably to be used more by his children for homework) a project a little daunting in discrete components.

. . and electronic dice

I also have a suggestion for Mr Brian Dellow regarding an electronic dice. The difficulty here as I see it is the production of a random sequence. A pseudo-random sequence could be produced entirely digitally, but the system would be rather complex in order to beat people with exceptionally good memories. An alternative would be to use an analogue source of noise, such as a noisy transistor, amplify the noise, filter it and feed the filtered signal onto the input of a squaring stage to produce a pulse output. The output could then be decoded serially to produce a decimal number from a binary sequence, or perhaps three filters of different values could be used to produce a
parallel output. The outputs could be decoded with a simple diode matrix and fed to six bulbs via amplifiers.
P. Cranswick, Swindon, Wilts.

Electronics instructor !

Sir-Our Youth Club is most interested to make contact with amateur electronics clubs and enthusiasts in this area in order to form a section within the Club.

Our members have recently indicated a great deal of interest in forming their own group to build radio and electronic systems but, of course, they desire to receive instruction from a person who has experience and knowledge of this sort of interest.

I would be most grateful if you were able to give me contacts who would be able to help us in this present situation.

Brian Gouldman, Youth Leader,
Liverpool Jewish Youth Centre, Harold House, Dunbabin Road,
Liverpool L15 6XL.

Electronic club wanted

Sir-I have been asked for names and addresses of any local clubs or societies concerned with do-it-yourself electronics. I shall be grateful for any help you can give.

Ealing Borough Librarian,
Technical Library,
Acton Library,
High Street,
London, W. 3 .
r- - NOTICE - - 7
ARSENIDE DIODES GO UP
With reference to an editorial note in Readout last April, Messrs Proops Bros. inform us that the current price of the gallium arsenide light source type MGA100 is 35 s . This is an increase of $656 d$ on the advertised price prior to December last and which we unsuspectingly quoted. We are also asked to state that the MGA100 is a new production item.
Thus dashed for the moment, it seems, is the earnest hope expressed on that occasion for an early downward trend in the cost of infra-red devices.-Ed.

OLRUS ELECTRONICS LTD

As we have had a number of complaints concerning the service provided by this Company, readers are asked to get in touch with me before dealing with it.

These HEATHKIT Test-Twins are really Going Places!

Portable In-Circuit Transistor Tester IT-18

Has all the facilities needed for fast in-circuit transistor/diode testing and it costs just a fraction of many other brands.
Rugged polypropylene case and lead storage compartment.

Portable Solid-State VYM, IM-17
$4 \mathrm{AC}, \mathrm{DC}$ voltage ranges. 4 ohm ranges.
Rugged case with lead storage compartment.
Battery powered to work anywhere. A must for the engineer, hobbyist, etc.

KIT PRICE ONLY $£ 12-18-0$ EACH Carr. 6/-extra.

IM-I7

MANY MORE MODELS, TEST INSTRUMENTS, HIFI, RADIOS, ETC., in the FREE CATALOGUE.
Send for your copy today. . .

DAYSTROM LTD.

Dept. PE-7, GLOUCESTER GL2 6EE. Telex 43216

Name
Address

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12V) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-.
Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers' carton $49 / 6$ plus $2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP 91-3 stereo compatible cartridges, new in sealed manufacturers' cartons $22 / 6$ plus 2/6 p/p.

BASF TAPE 25% OfF

\sin 600ft. 14/- 900ft. 19/- 1200ft.30/5ain 900ft. 19/- 1200ft. 24/- 1800ft. 39/7in 1200ft.24/- 1800ft35/- 2400ft.57/-

P/P 2/- per reel-over £5 FREE

HI.FI SPEAKER
K12TC-12in 12 watt
Offers an exceptionally smooth and extended response, with very low level of distortion from the specially designed twin diaphragms.
Frequency Response: $30-16,000 \mathrm{~Hz}$. Impedance: $15-160 \mathrm{Hm}$
$\begin{array}{cc}\text { OUR SPECIAL PRICE } & 97 / 6 \\ \text { PLUSP/P 6/6 } & 9 / 6\end{array}$
BARGAIN - Speakers, Hi-Fi The Baker Selhurst Stalwart. 12in round, 15 watt rating, 12,000 lines gauss, 15 ohms , response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium chassis. Our price f5.9.6. p/p 6/6

DULCI HI-FI UNITS
The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price.
Amplifiers: 207 and 207M. Tuners: FMT7 and FMT7s.
SEND NOW FOR FULL DETAILS
TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus. Frequency response 20$20,000 \mathrm{c} / \mathrm{s}$ output, 7 mV tracking pressure 2 grammes $\pm 0.5 \mathrm{grm}$. Fully guaranteed. Price 85/- p/p free.

- Bargain-Changer decks at lowest prices ever
Beautiful teak 1025 £8.0.0
plinth and $2025 \quad £ 8.10 .6$
$\begin{array}{llr}\text { perspex } & \text { 2025 } & \text { £8.10.6 } \\ \text { cover to suit } & \text { AT60 Mk. } 11 & £\{2.19 .6\end{array}$
these units SP25 Mk. 11 £12.0.0
5 Gns. P/P
Free
3500 with Son 9TA.HC diam.
cart. £10.19.6
Add 10/- p/p for each Garrard unit SPEAKER ENCLOSURES
Type: INFINITE BAFFLE
Model 8: 8in plus 3 in tweeter
Model 138: 13 in $\times 8$ in EMI
Both £4.19.6 each
Model 1012: 10in or 12in, plus 4in tweeter £7.19.6
All enclosures are in oiled teak, fully built.
Please add $8 /-p / p$ on each enclosure
- BARGAIN - Speakers, Hi-Fi The Baker Selhurst Guitar Group 25, 12in round, 25 watt rating, 12,000 gauss, 15 ohms, response $30-10,000 \mathrm{c} / \mathrm{s}$, solid aluminium chassis, heavy duty cone. aluminime enassis, heavy 0 p $6 / 6$

The greatest HI-FI Budget system today can't be beaten-price or quality anywhere -look at these great features-then compare.
Teleton F2000 tuner amp. AM-FM with multiplex decoder and A.F.C. $-2 \times 5 \mathrm{~W}$ channels R.M.S. Bass Volume Trebie Balance controls, a truly outstanding unit
Garrard SP 25 Mk II Transcription deck
Teleton SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridge
Plinth and Perspex cover
Exclusively offered by WALDON at the remarkably low price of 63 gns.

E.M.I. HI-FI SPEAKERS

SET 450: 13×8 with two built-in tweeters and cross-over unit. Our Price 69/6. 3 or 15 ohm , $10 \mathrm{~W}, 40-13,000 \mathrm{~Hz}$.
SET 850: $6 \frac{1}{2}$ in bass plus $3 \frac{3}{4}$ in tweeter and crossover unit. $80 \mathrm{hm}, 10 \mathrm{~W}, 65-20,000 \mathrm{~Hz}, 79 / 6$.
SET 250: 5 in heavy duty bass plus 3 in tweeter and cross-over unit. $80 \mathrm{hm}, 6 \mathrm{~W}, 80-20,000 \mathrm{~Hz}, 65 /-$ Add $5 / 6 \mathrm{p} / \mathrm{p}$ for each speaker set

WALDON ELECTRONICS, Atlas House, Chorley Old Rd., Bolton. Bolton 45628

VALVES
 SAME DAY SERVICE NEW！TESTED！GUARANTEED！

OZ4	4／6	20F2 13／6	DK96 7／	41 10；6	12／8	84	7／9
1A7GT	716	20P3 11／9	DL35 5！－	EL84 4／9	PEN36C15／－	UCC85	6／8
1H5GT	$7 / 3$	20P4 18／6	DL92 5／9	EL90 5i－	PFL20012／6	COFs0	8／3
1NSGT	$7 / 8$	25L6GT 5／－	DL94 8／－	EMs0 5／9	PL36 9，9	CeH42	9／9
1R5	$5 / 9$	25U4GT11／6	DL．96 7\％－	E．181 6／9	PL81 7／3	UCH81	6／9
195	$4 / 3$	30 Cl 1819	DY86 $5 / 9$	EM84 6／6	P182 7／－	CCL82	7／8
4	$2 \prime 8$	$30 \mathrm{C15} 1818$	DY87 5／9	EM8 $7 / 6$	PL83 7／－	CCL83	11／6
3S4	$5 / 8$	$30 \mathrm{Cl} 7^{18 /-}$	EABC80 6／6	EY51 7／3	PL84 8：8	UF41	10／6
3V4	B／－	30 C 18 11／8	E．AF42 8：9	EY86 8／6	PL500 13／－	UF80	7－
5U4G	$4 / 6$	$30 \mathrm{~F} 516 \%$	EB91 2／3	E240 7／6	PL504 $13 / 6$	UF85	8／9
5Y3GT	$5 / 9$	$30 \mathrm{FL} 113 / 8$	EBC33 8／6	ER41 7／6	PL508 23：6	CF89	6／9
6Z4G	$7 / 6$	30FL12 14／6	EBC4I 8／3	E280 4／6	PL802 14：6	ULA1	10／6
$6 / 30 \mathrm{~L} 2$	12／6	30 FL 14 12／－	EBF80 8：	EZZ81 4；9	PM84 7／9	CL44	201－
6 6L5	2：3	30 L 1816	EBF89 63	GZ32 8／9	PX25 10，6	LL84	71
6AM6	$3 / 6$	$30 \mathrm{L1} 15$ 14／－	ECC＇81 48	KT32 5：－	PY31 5；6	L3184	71－
6AQ5	$4 / 9$	$30 \mathrm{L17} 15 / 6$	ECC＇32 49	KT6］8：8	PY32 10！－	EY41	8／3
6AT6	4）－	30 P 4 12／－	ECC83 7－	KT66 16／－	PY33 10／－	CY85	519
6BA6	$4 / 6$	30P12 1319	ECC84 5	ME140015－	PY81 5／3	YP4B	101－
68E6	48	$30 \mathrm{P19} 121-$	ECC85 5：9	N78 14，9	$\begin{array}{ll}\text { PY82 } & 5 / 3\end{array}$	－P13	21／－
6BJ6	$7 / \mathrm{m}$	$30 \mathrm{PL1} 13 / 9$	F．CC80412：6	PABCSO 7／－	PY83 5／9	2r	3／6
6BW6	18／－	30PL．13 15／8	ECF80 71－	PCS6 10／3	PY88 6／3	${ }^{\text {AClO }}$	$3 / 6$
${ }_{6}^{6 F 13}$	3／6	$30 \mathrm{PL} 1415 ; 6$	ECF82 6：9	$\begin{array}{ll}\text { PCOS } & 10 / 3\end{array}$	PY800 7；6	ACl2t	$2 /-$
$6 \mathrm{Fl4}$	9／－	35L6GT 81－	ECH35 8！－	$\begin{array}{ll}\text { PC96 } & 8 / 6\end{array}$	PY801 B／8	ADI40	7／6
6 F 23	14／3	35 W 4 4／6	ECH42 10：6	PC9\％8：6	R19 6／8	AF102	18／－
6K7G	216	35Z4GT 5i－	ECH81 5／8	PC900 8／3	R20 12：6	AF115	8！－
6K8G	4／3	6063 12／6	ECH84 76	PCC84 818	TH21¢：9／8	AF116	31－
6 L18	6／－	AC／VP210／－	ECL80 619	PCC85 6：6	C25 13／－	AF117	$8 / 3$
6 V 6 GT	6／6	AZ31 8／－	ECL82 8，8	PCC88 8／8	$\underline{426}$	AF124	$7 / 6$
6 X 4	4／3	B729 12／6	ECL83 9／－	PCC89 10／6	C゙4 13／6	AF125	$8 / 8$
6X5GT	$5 / 9$	CCH35 10／－	ECL86 8，3	PCC180 $11 / 6$	L49 18／6	AF126	${ }^{71}$
$7 \mathrm{B6}$	10／9	CL33 18／6	EF37A 8／6	PCF80 6／6	C52 4／6	A＊127	$3 / 6$
${ }_{7}^{7} \mathrm{~B}_{7}$	71	CY31 6／8	EF39 498	PCF82 6／6	上78 4／3	OC26	\％
7 76	$8 / 9$	DAC32 $7 / 3$	EF41 10／9	PCF86 9／8	T197 12／6	0 C 44	$2 / 3$
7 Y	$6 / 6$	DAF91 4／3	EF80 $4 / 9$	PCF800 13／6	U301 13／6	OC45	$2 / 8$
10FI	15／－	DAF96 6／6	EF85 6／－	PCF801 $7 /$	C801 19／6	OC71	216
$10 \mathrm{P13}$	15／6	DF33 $7 / 8$	EFP8；6／3	PCF802 9／8	UABC80 8／9	OC72	$2 / 6$
12AH8	$23 /-$	DF9］2／9	EF89 5／3	PCE805 $11 / 6$	UAF42 $8 / 6$	0075	$2 / 6$
$12 \mathrm{AT7}$	4／9	DF9G 6／6	EF9］3／6	PCF80812／－	UR41 $6 / 6$	OC81	2／3
12AU6	4／9	DH7\％ $4 /-$	EF183 6／－	PCL82 7／－	UBC41 8／6	0C810	2／3
12 Ad 7	4／9	DH81 10／9	EF184 5，9	PCL83 9－－	UBC81 $71-$	0cs2	2／3
12AX 7	7／8	$\begin{array}{ll}\text { DK32 } & 7 / 8 \\ \text { DK91 } & 5 / 9\end{array}$	$\begin{array}{ll}\text { EH90 } & 6 / 3 \\ \text { EL33 } & 8 / 9\end{array}$	$\begin{array}{ll}\text { PCL84 } & 7 / 6 \\ \text { PCLS } & 9 /-\end{array}$	UBF80 $6 /-$	OC8	$2 \cdot 3$
19BG6G1	17／6	DK92 9／3	EL34 10／3	$\begin{array}{ll}\text { PCL86 } & 8: 6\end{array}$	LC92 5／－	0C170	2／6

READERS RADIO（P．E．） 85 TORQUAY GARDENS，REDBRIDGE，ILFORD， ESSEX．

MARTIN IS HIGH－FIDELITY

The first and still the most satisfactory unit assembly system

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated module－ type units for simple assembly into reasonably priced high fidelity systems． Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day， completely justifying our claims for years of trouble－free service．No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification．

AMPLIFIER SYSTEMS

units include：
를 5 －stage input selector
E Pre－amp tone controls
－ 10 watt amp．（ 3 ohms ）
E 10 watt amp．（ 15 ohms）
－Mains power supply
回 F．M．Tuner
Trade enquiries invited
154／5 HIGH 8TREET，BRENTFORD MIDDLEsEX．
／SLeworth 1／61／2

When new units are introduced，they are designed for adding to those pro－ duced so far，making it easy and economical to extend arid improve your existing Martin Audiokit set－up． Anyone can assemble Martin equip－ ment with ease and the fore－knowledge that when finished，he will be possessed of a true hi－fil assembly of the very best kind which looks and sounds completely professional in every way－and MARTIN AUDIO－ KITS remain as ever，the units that have true add－on－ability．

TUNERS • RECORDERS

MARTIN ELECTRONICS

154 High Street，Brentford，Middlesex
Please send Recordakit／F．M．Tuner／Audiokit Hi－Fi Leaflets．（Strike out items not wanted）

Name
Address ．．

S.E.S: YOUR

196 Regent Road, SALFORD 5, Lancashire TELEPHONE 061-8725187

(Member of the Harrop Industrial Group)
C.W.O. please

I/-p. \& p. for orders of components under \& 1
Orders of Lektrokit: 2/- handling charge on orders under $£$ 5/- handling charge on orders under $£ 5$

RESISTORS: All brand new, Hi-Sab, low noise, 5% zol. carbon film. RESISTORS: All brand new, Hi-sab,
1W EI2 series 4.7 ohm to 10 M , 2 d . each or $15 /-\mathrm{per} 100$ of one value. 1 W
E24 series 4.7 ohm to 10 M , 2 d . each or $15 /-\mathrm{per} 100$ of one value. $\frac{1}{2} \mathrm{~W} 12$
 series $\mathbf{t o l}$.), 3 d . each. 3 W -wirewound -0.5 ohm to 12 ohm, $1 / 6$ each. 5 W -tirewound- 15 ohm to $8-2 \mathrm{kohm}, 1 / 9$ each. S.E.S. Pre-Pack gives you 5 off each, 5% resistors from 4.7 ohm to $1 M$ either or ${ }^{\frac{1}{2}}$ watt. 5%, E12 series Yalues (Eil2)-ONLY E2 12 s . 6 d .
10 ohm to $100 \mathrm{kohm}, 2 \mathrm{~d}$, each.
10 ohm to 100 kohm , 2d, eaeh.
PRE-SETS: Min. skeleton carbon track, low noise with good stability;
Values-Lin: $1 \mathrm{k}, \mathbf{2} .5 \mathrm{k}, 5 \mathrm{k}$, etc., to 5 M ; Loz: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc., co 1 Mohm ,
Values-Lin: Ik, $2.5 \mathrm{k}, 5 \mathrm{k}$, ete., to Lin; traek. Ik, $2.5 \mathrm{k}, 5 \mathrm{k}$, , etc., to 5 M , only
only 10 d , each. Sub-Min skelecon Lin 9 d. each. Slider pre-sets wirewound $\frac{1}{2} \mathrm{ks}$ rating 10 hm to $30 \mathrm{k}, 3 / 9$.
3 W wirewound fully enclosed Lin. tracks. 10 oh
POTENTIOMETERS: Min, enclosed, carbon track and wioer contact only 2/6; Values-Lin: $1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$, erc., to 10 M ; Log: 5 k , $10 \mathrm{k}, 25 \mathrm{k}$, etc. to 5 Mohm . Min. With double-gk, $5 \mathrm{k}, 10 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}$. 3W wirewound Lin. tracks 50 ohm to $100 \mathrm{kohm}, 7 / 4$ each.
CAPACITORS: New genuine Mullard Electrolytics

CAPACIT		New			lard El	ectro				
6.4 V	$6 \cdot 4$		50			200	${ }_{4} 640$	$\begin{array}{r}1.000 \\ \hline 640\end{array}$	$1,600$	2,500
10V	4	16	32		125	125	250	400	640	1,000
15 y	1.5	6.4	12.5	24	50	80	160	250	400	640
40 V			星	16	32	50	100	160	250	400
64 V	0.64	2.5	5		20	32	$1 / 3$	100	$1 / 9$	$2 / 6$
Prices: 1/-									Multi ples)	
25V	800	1,250	2,00		4,000	6,400		500V	${ }_{16-16 \mu}^{8-8}$	7
40 V	500	800	1,250		1,500	2.500		350 V	32-32 $\mu \mathrm{F}$	
64 V	${ }_{5}^{32}$	616	8	-	12/6	15/-		350 V	50-50 $\mu \mathrm{F}$	

> (all values in Microfarads) Mullard Miniature Metallised Polyester 250V. 0 . $0.047,0.068 \mu$ F, 6d. each. $0.1,0.15,0.22 \mu \mathrm{~F}, 7 \mathrm{~d}$. each. $0.0022,0.0033,0.0047$, Mullard polyester film and foil 0.0068 , etc., to $0.033 \mu \mathrm{~F}$, 6 d , each. 0.047 to $0.1 \mu \mathrm{~F}$, 8 d . each. $0.15 \mu \mathrm{~F}$, 10 d . 0.0068 , etc.; to. $0.33 \mu \mathrm{~F}, 1 / 6 . \quad 0.47 \mu \mathrm{~F}, 1 / 9$.

Dise Ceramies (Erie) $500 \mathrm{~V}, \mathrm{I}, 000$, $4,700 \mathrm{pF}$, 5 d . each. Silver Micas 1% tol. Disc 2.2 pF to 820 pF , $1 /$ - each. Polystyrene $160 \mathrm{~V}, 100-1,000 \mathrm{pF}$, 5 d . each. ** NoW-Bead Tantalums (polarised) $35 \mathrm{~V}, 0 \cdot 47$, 0.68 , $1 \mu \mathrm{~F}, 2 / 6$ each. $2 \cdot 2$, 3.3, $4.7,6.8 \mu \mathrm{~F}, 3 / 4$ each. $20 \mathrm{~V} 10 \mu \mathrm{~F}, 15 \mathrm{~V} 22 \mu \mathrm{~F}, 10 \mathrm{~V} 33 \mu \mathrm{~F}$, $6 \mathrm{~V} 47 \mu \mathrm{~F}, 3 / 9$ each. Low Voltage Disc Ceramics 20V-0.01, $0.022,002,0$ Midget Tubular Ceramics- $0.002,0.003 \mathrm{~F}$, iod. each.
$1 / 3$ each. Midget Tubuiar Ceramics-and Unused
SEMICONDUCTORS: All New and Unusid
SEMICONDUCTORS: All New and Unused
Mullard; OA5, $4 / 6 ;$ OABI 3/4; OA2022/3; OC71 $4 /$ OC72 4/6; OC44 7/9;

 Silicon Rectifiers- $(0.5 \mathrm{~A}) 400$ piv $2 / 9 ; 880$ piV $3 /-$; 1,500 piv $3 / 6 ; 1,500$ piv

 3/3; $2 N 3643$ 8/6; 2N3794, 2N4289 4/- each; 1N4148 I/6.
SWITCHES: 100 series-SPST 3/8; SPDT 3/11; DPST 4/6; DPDT 4/8. 400 series SPST 3/2; SPDT 3/6: SPDT (with centre position) 3/8. Series 500-push-to-make or push-to-break 3/1, each (push buttons available in white. red, black, green). Side Switch ${ }^{\text {giniat }}$. Make-Sware
PLUGS AND SOCKETS: Min. Plugs (black or red) bd. Min. Sockets to fit 7d. Banana Plugs (black or red) 9d, 4mm Sockets to fit (black, red, green) 9d. Co-Ax Plugs $1 / 2$. Co-Ax Sockets 11 d . Sub-Min Jack Plugs and

WIRE: Min. Stranded (available in 10 colours) 3d. yd. Solid Core 3d. yd. $14 / 0 \cdot 0076 \mathrm{in}$. Stranded Cabl yd. Co .
CAPS Min Wire Ended Neons 2/-; Panel Neon Indicator 6/4; Pilot LAMPS: Min. Wire Ended Neons $2 /-;$ Panel Neon In
Light +12 V bulb $8 /-$: Min. Flange Light +12 V bulb $\mathrm{II} /-$.
Light +12 V bulb $8 /-$: Min. Flange Light +124015 W mains operated, smafl, SOLDERING IRONS: A.N.T.E.X. CN240 15 W mains, operated, smatl,
32/6. E240 20 W mains operated, specially shaped handle, $35 /-$ Spare bits 32/5. E240 20 W mains operated, specially shaped handle, $35 /-$. Spare bits
and elements available. Also stands for above irons, $11 / 6$ each.. ${ }^{*++}$ NOWand elements available. Also stands for acove irors,
SOLDER by Multicore-at Reduced Prices to Everyone! Size A-Approx. SOLDER by Multicore- at Reduced Prices to
20 ft coil $60 / 40$ Aloy 22 seome! s, w. B . in dispenser.
Recommed retail price
 individually pracked. Recommended retail price $15 /-$ OUR PRICE $12 / 6$. BIB Wire strippers: strips insulation without nicking wire. Recommended BIB Wire strippers: stril price $4 / 6$, OUR PREE $4 /$-.
ret
LEKTROKIT: Chassis construction system-the professional look to a home construction. Parts to build a chassis $8 \frac{8}{2} \times 4 \frac{13}{}$ in. -2 chassis rails $1 / 10$ eath. 2 side plates $4 / 4$ each. Front panel (covered in crack-proof painc) $\begin{aligned} & \text { Perforated cover } \\ & \text { available each } 42\end{aligned} \times 4 \mathrm{in}$. -Thus 2 boards fir above chassis. Plain perforated availabiu each ${ }^{2}$ ald $2 / 2$. Aluminium board drilled for 6 valveholders 87 G , B8A, B9A, 2/6. Aluminium board drilled for 2 valveholders internationa octai, UX4, ett., $2 / 4$. 0.1 lin . perforated grid SRBP board, $2 / 9$. Veroboards
0.1 in . and $0.2 \mathrm{in}, 6 / 6$ each. Cloverleaf aluminium board $6 / \mathrm{m}$. (Cloverleaf 0.1 in , and $0.2 \mathrm{in} 6 /$.6 each. Cloverleaf aluminium boa
lead throughs 6 d . each. Pins for SRBP board $4 / 6100$.)

For full details of all our stocks send $3 / 6$ for our bright explanatory 120 page catalogue, or 6 d . stamp for Data Sheets.

prepare now for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.
CREI Study Programmes are directly relaied to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now - enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:

Electronic Engineering Technology * Industrial Electronics for Automation *Computer SystemsTechnology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering 米 City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

$\overline{C R E I}$
 CREI (London), Walpole House, 173-176 Sloane Street, London S.W.1.
 A Subsidiary of McGraw-Hill Inc.

Post this coupon today for a better future

Practical Electronics Clussified Advertisements

SERVICE SHEETS

RADIO TELEVISION, over 8,000 Models. JOHN GILBERT TELEVISION, ib Shepherds Bush Rd., London, W.6. SHE 8441.

8ERVIGE SHEETS, Radio, TV, 5,000 models. List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

LARGE SUPPLIER OF

SERVICE SHEETS

T.V., RADIO, TRANSISTORS, TAPES, ETC. Only $5 /-$ each, plus LARGE S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)
FREE TV FAULT TRACING CHART OR TV
CIST ON REQUEST
C. CARANNA
$7 I$ BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

SERVICE SHEETS (1925-69) for televisions, radios, transistors, tape recorders, record players, etc., by return post, with free faultflading guide. Prices from $1 /-$ Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

FOR SALE

26,000 IN VOUCHERS GIVEN AWAY. See free Cat. for details. Tools, Materials, Mechanical, Electrical, thousands of interesting items. WHISTON, Dept. PVE, New Mills, Stockport SK12 4 HL

LOUDSPEAKERS, 3^{*} Elac, 15 ohms, $12 / 6$ post free. CROWBOROUGH ELECTRONICS, 3 Rotherhill Road, Crowborough, Sussex.

DOUBLE BEAM OSCILLOSCOPE Telequipment D43, two Type A plug-in amplifiers- 880 o.n.o. OSCILLATOR Yenner TSA625/2, 1 MHz sine and Square- 825 o.n.o.
POWER SUPPLY International Electronics, $0-50 \mathrm{~V}, 0.5 \mathrm{~A}$ protected- $\mathbf{8 2 0}$ o.n.o.
All in excellent condition. Write or phoneAll in excellent condition. Write or phoneSALMON, Old Rectory, Fittlew
borough, Sussex
(Fittleworth 306).

SOLARTRON CD513 Oscilloscope. Plus handbook. In perfect working order. 845 or near offer. I'hone 01-883 3295 .

MORSE MADE !!

FACI NOT FICTION. If you start RRIGFIT you will be reading amateur and commercial Morse Within a month (normal progress to be expected). Using suientifically prepared 3 -speed records you automatically learn to recognise the code RHYTHM warning a tune. 18 W.P.M. in 4 weeks guarinteed. For details and course C.O.D. rine S.T.D. 01-660 2896 or send 8d. stamp for explanatory booklet to: G3HSC (Bor 19), 45 GREEN LANE, PURLEY, SURRET

miscellaneous

BUILD IT in a DEWBOX quality cabinet 2in $\times 2 \frac{1}{2}$ in x any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

RATES: 1/3 per word (minimum 12 words). Box No. 1/6 extra.
Advertisements must be prepaida nd addressed to Advertisement Manager, "Practical Electronics"
IPC MAGAZINES LTD.,
Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS (continued)

4 WATT GRAM AMPS.

Volume and tone controls, mains operation, 3Ω output, new and boxed $65 /=$ POST big bargain parcels only OF COMPONENTS 10/SALOP ELECTRONICS POST PAID 23 Wyle Cop
Shrewsbury,

Shropshire S.A.E. for lists

4 BISTABLES-10/-, 1% RESISTORS-8d. each. Semicondtctors, Condensers, etc. S.A.E. Lists and circuits. C. L. BROOKER, 262 Hornsey Road, Holloway, London, N. 7.

ROBOTS

Syntheric Animals with "BRAINS" of their own. The NEW range of projects include: an electronic 'animal' which "LEARNS" an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which "recognizes" itself, also a machine which recognizes itself, and an electronic dog whistle, etc., etc.
HOSTS. OF EASY-TO-CONSTRUCT' projects, for anyone with a basic knowledge of Electronics.
SEND $2 / 6$ for your list-NOW!
TO: 'BOFFIN PROJECTS'
incorporating
BIONIC DESIGNS, 4 CUNLIFFE RD
STONELEIGH, EWELL, SURREY
Designed by GERRY BROWN and
JOHN SALMON and presented on T.V.

ETCHED PRINTED CIRGUIT BOARD KITS. Full instructions. 19/6, c.w.o. CIRCUITETCH, 12 Cambridge Rd., St. Albans, Herts.

MAKING AN ORGAN

We can save you $£ £ \notin s$
We have ocquired the bulk orgon stores from a leading British manufacturer. Stocks too numerous to list in full. Examples

PLAIN STOP TABS
ENGRAVED STOP TABS from
GENERATOR P.C. BOARDS from
AMPLIFIER P.C. BOARDS from $1 / 6$
$2 / 6$
$5 /-$
$5 / 0$ SPEAKERS, KEYBOARDS, CABINETS, PEDALS, FOOTSWITCHES, MOTORS, TRANSFORMERS', CAPACITORS, ETC., ETC.
Every thing you want to build : organs, amplifiers, "Leslie" cabinets...
S.A.E. for full price list.
E.M.C. (Dept. P.E.I), 104 ASHLEY

ROAD, PARKSTONE, POOLE, DORSET
TRADE ENQUIRIES INVITED

MISCELLANEOUS
 (continued)

MUSICAL MIRAGLES. Send S.A.E. for details of Rhythm Modules, Versatile Bass-pedal unit, self-contained with unique effects, kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters 25/post paid. HURRY! D.E.W. LTD. 254 Ringwood Road, Ferndown, Dorset.

PROFESSIONALLY MADE CONTROL PANELS from 4d. sq. in. 16/18 gauge aluminium, cut, drilled, spray painted and legend. Send full size drawing for quotation. C. S. CONDUIT, 7 Millbrook, Salisbury, Wilts.

UFO DETECTOR CIRCUITS, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes
1155 set Circuit and Notes H.R.O. Technical Instruction 38 set Technical Instructions. 46 set Working instructions. 88 set Technical Instructions BC. 221 Circuit and Notes. Wavemeter Class D Tech. Instr I8 set Circuit and Notes BC. 1000 (31 set) Circuir \& Nores CR.100/B.28 Circuit and Notes 10/6 P.P. R. 107 Circuit and Notes......... 7/-P.P. 6d A.R.88D. Instruction Manual.... 18/-P.P. 6 d 62 set Circuit and Notes6/6 P.P 6d 52 set Sender \& Receiver Circuits 7/6. post free Circuit Diagrams-5/- each post free. R.1116/A, R.1224/A, R.1355, R.F. 24, 25, \& 26. A.l134, T.lis4, CR.300, BC.342. BC.312. BC.348.J.E.M.P. BC.624. 22 set.
Resistor Colour Code Indicator... 2/6 P.P. 6 d S.A.E. with all enquiries please.

Postage rates apply to U.K. only
Mail order only to:
Instructional Handbook Supplies
Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8
 This useful Handbook gives detailed information and circuit diagrams for British and American and Test Equipment, etc.i also contained are some suggested modification details and ima provements for the equipment. Incorporated in this revised edition is a surplus/commercial cross referenced valve and transistor guide. This book is invaluable to radio enthusiasts, radio clubs, universities and laboratories. The plus 5/- P. \& P., C.O.D. a pleasure, is obtainable fromus at

Dept. P.E., 24 Stansfield Chambers
S.A.E with all enquiries, please. Extra
S.A.E. with all enquiries, please. Extra postage information on most surplus equipment now available.

EDUCATIONAL

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. City \& Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE House, Stewarts Road, London, S.W.8.

EDUCATIONAL (continued) RADARTHEORY\& MAINTENANCE TELECOMMUNICATIONS This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:-
The Secretary, London Electronics College, 20 Penywern Road, Earis Court, London, S.W.5.

Tel. 01-373 8721

ENGINEERS. A technical certificate or qualification will bring you security and much qualification will Eling yd adv. private postal better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E.2 A.M.N.E.
(Nech. \& Elec.), City \& Guilds, A.M.T.M.I., (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B. and G.C.E. exams. Diploma courses
in all branches of Engineering-Mech., Elec., in all branches of Engineering-Mech., Elec., Draughts., Building, etc. For full details write for FREE 132-page guide. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

GET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equip-low-cost Postal Training, complete whe, ment. A.M.I.E.R.E., R.T.E.B., City REG 100 , page book, write Dept. 856 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.i.

TECHNICAL TRAINING in Radio, TV \& TECHNTICS thro' world-famous ICS. For Electronics thro worl-samy courses write: details of proven home-study courses write: ICS, Dept. 561, Inte
Road, London, S.W.8.

SITUATIONS VACANT

RADIO TECHNICIANS VACANCIES TO BE FILLED BY OCTOBER 1969

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of electro-mechanical equipment will be an advantage.

Pay according to age, e.g. at 19 $£ 869$ at 25 - $£ 1,130$ (highest age pay on entry) rising by four annual increments to $£ 1,304$.

Prospects of promotion to grades in salary range $£ 1,217-£ 2,038$. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
Recruitment Officer (RT/54)
Government Communications Headquarters Oakley, Priors Road
Cheltenham, Glos. GL52 5AJ

REGEIVERS AND COMPONENTS

TRANSISTORISED REVERBERATION

Six transistor circuit, all components £7.10.0. post free. (Case 34/- extra, P. \& P. $2 / 6$). Circuit and construction details $1 /$ (free with kit).
TRANSISTORISED SIGNAL INJECTOR 19/6 P. \& P. 1/6. Catalogue of components etc. $\underset{1}{\mathrm{P} .} \mathrm{H}$ \& P. Wilsic Electronics Ltd, 6 Copley Road, 1/-. Wilsic Electr.

GARBON FILM RESISTORS, $13 /$ - per 100. S.a.e. for component catalogue. SR NICS, 11 Ros CR0 3DN. 01-684 0402.

SITUATIONS VACANT (continued)

A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T. . $_{\text {., }}$ etc. 132 -page Guide- FREE^{2}. Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHFOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

RECEIVERS AND COMPONENTS

R\&R RADIO

51 Burnley Road, Rawtenstall
 Rossendale, Lancs

Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

BF80	3/-	E8C41	4/6	PY33	5/-
EBF89	$3 / 6$	PCC84	3/-	PY81	$3 / 6$
ECC82	3/6	PCF80	3/-	PY82	31-
ECL80	3/-	PCF82	$3 / 6$	U191	$4 / 6$
EF80	$1 / 6$	PCL82	4/-	$6 F 23$	5/-
EF85	3/-	PCL83	4/-	30F5	$2 / 6$
EY86	4/.	PL36	5/-	30 LI 15	51-
EL41	5/-	PL8I	4/-	30 P 12	4/6
EZ40	4/6	PL83	4/-	30 Cl 15	5/-
POST. ONE VALVE 9d. TWO TO S1X6d.					
OVERSIX POST PAID.					

ULTRASONIC TRANSDUCERS. Ideal remote control door alarms, etc. Operating frequency $40 \pm 1 \mathrm{Kc} / \mathrm{s}$ beam width @) 3dB Points 60°. 2 for 55/- or 30/- each. Post free. Circuit diagram available if required. THE DIA MOND STYLUS CO. LTD., Colwyn Bay, North Wales.

BRAND NEW ELEGTROLYTICS. 15 Volt, 0.5. $1,2,5,6,8,10,15,20,30,40,50,100,200$
 S80RN.

8ILICON PLANAR TRANSISTORS. 100% tested and full spec. supplied with orders. NPN types for organ projects, 25 for $£ 1$. PNP types sim. to 2 N3702 and germanium sim. to ACY22, 50 for 21. Post free. WESTEK, P.O. Box 7, Rick mansworth, Herts.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man. Let IC S train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multi-
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of $1 \mathrm{C} S$ courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

COMPONENTS

Samples from our catalogue:- Geared motors $300 \mathrm{rpm}-1 \mathrm{r} / 24 \mathrm{H}$ from $7 / \mathrm{s}, 15 \mathrm{v}$. 300 mw . Zeners 3/-, 10K + 10K 2\% 3", ganged pots 20/-, 220 ohm 200 watt resistors $7 / 6$, 6 d . stamp for catalogue.

F. HOLFORD \& CO.

6 Imperial Square, Cheltenham

TAPE HEADS

 $\underset{4}{\text { BSR MAARE }} \mathbf{~ T R A C K}$ ${ }_{4-\text { TRACK }}^{\text {MED. }}$ IMP. $\quad 45 /=$ bogen erase
 4-TRACE
COSMOCORD ERASE REUTER - collaro

TRANSISTORISED FM TUNER
6 TRANSISTOR HIGH QU
6 TRANSISTOR HIGH QUALITY TUNER. SIZE ONLY $6 \mathrm{fn} \times 4 \mathrm{in} \times 2 \operatorname{lin} 3$ I.F. stages. Double
tuned discriminator. Ample output to feed most tuned discriminator. Ampie output to feed most anipiners. \quad Ready built ready for
use. Fantastic value for money SUB-MIN. TRANSISTOR LW/MW/FM TUNER Similar to above. Complete with aerial, ≤ 14
tuners, dial and instructions TUNER DULCI FMTTS STEREO $\mathbf{2 3}$ COMPACT TRANSISTOR FM TUNER
Oiled Walnut cabinet, brushed gold front
panel, vertical styling, internal batteries 9.19 .6 FM MULTIPLEX STEREO ADAPTOR
Printed circuit biscuit, 4 trans. 6
diodes ${ }^{\text {gy with full instructions }}$ \&4.19.6 $\frac{\text { diodes ?V with full instructions }}{\text { LOUDSPEAKERS }}$

watt PEAK 15 or $35 /=\left\lvert\, \begin{array}{ll}\text { GUITAR SPEAKER } \\ 3 \text { ohm } \\ 25-13 \mathrm{~K}\end{array}\right.$
5.7 .0

 RELAYS ${ }_{12}^{4}$ pole changeover. ideal for models. $10 /=$
 CROSSOVER NETWORK

14/-
REFLEX CONE TYPE MOLTMMETERS 32/= WATERPROOF SPKR.
5 watt, 3 ohm. $300-$
$16,000 \mathrm{c} / \mathrm{s}$ PA

CHARGER

SUPER SILICON RECT. T.V., etc., 1,200 PIV soman, 5:-7: or complete with instr. resistor, comfenser, $68: 400$ PIV HW 64
$6 A, 6 /-$. BY 00 type, 6 for $10 j$
Jamper lead 6' Croc clips to Phono plag $\quad 7 / 6$ and Std. Jack Adaptor
AD140 8/6
BC108 $3 / 6$ NKT226 5 $0 \mathrm{C} 2005 / 6$ AF186 11/6 NKT2135/6 OC45 $3 / 6$ OA911/6 GET103-113-116-118-119-887-889-890-896-7-8

CEANGER DECKS

$\begin{array}{ll}\text { UA25 BSR with template, Mono- } & \text { List } 86,19.6 \\ \text { UA25 BSR with template, Stereo. } & \text { List } £ 7.9 .6\end{array}$ A 1025 Garrard with temiplate, Mono. List £7.17.6 PLINTH in simulated teak. Complete with $£ 415.0$ Clearview rigid perspex cover for
\mathbf{P} / \mathbf{P} on Decks, Plinth and Cover $7 / 6$
SWITCH ROTARY RECIPROCATING 4
Position, 15amp. Single hole fixing, with $\mathbf{5 / 6}$ Position, 15amp. Single hole fixing. with 5/6 C60 CASSETTE 10/3. C90 14/3. 3 Post free Stamped envelope for full selection and bargain offers in MULTIMETERS, RADIOS, BABY ALARMS, INTERCOMS, WALKIE-TALKIES, RECTIFIERS, SINCLAIR, DULCI, AND EAGLE Lists. VNDER £1-P. \& P. 6ri., £1 to £3-1/6.
over £3-2/6. C.O.D. $3 / 6$. MAMLORDER ONLY,

DURHAM SUPPLIES

 367 KENSINGTON Street BRADFORD 8, YORKSHIRE
RECEIVERS AND COMPONENTS

 (continued)RECEIVER PANELS MW/LW. Size $8 \times 3 \mathrm{in}$. Six fratt output, contains all resistors, capacitors, I.F. transformers, osc. coil and transistors bud will requìre ferrite aerial, tuning capacitor, wavechange switch, and volume control, supplied with connecting data, as brand new, made by famous British manu32/6 post paid.
TUNING CAPACITORS (Brand new and boxed).
$345 \mathrm{pF}+165 \mathrm{pF}$ with two 20 pF sections for F.M. $345 \mathrm{pF}+165 \mathrm{pF}$ with two 20 pF sections for F.M. tuner, size $2 \ddagger \times 2 \times 1 \$ \mathrm{in}$. ONLY 4.6 each or $8 /-$ for F.M. tuner, size $2 \frac{1}{} \times 1 \ddagger \times 1 / \mathrm{in}$. ONLY $4 / 6$ each or 8/- for two.
VOLUME CONTROLS. 5k log. With S.P. Bwitch, in dia. spinde. 2/-ea. (деw)
DISC CERAMIC CAPAGITORS. $0.02 \mathrm{mF} 500 \mathrm{v} \cdot \mathrm{m}$. wire ended, $1,800 \mathrm{pF} 1,000 \mathrm{v}, \mathrm{w}$, wire ended, 0.047 mF viw. Pa, 1,100 , 1,00 .
Thyristors. 400 P.I.V. at 5 amp . ideal for drill
speed controls. $12 / 6$ each. TRANSISTORS. GT45B equiv. to OC45, OC71, etc. (BRAND NEW marked). 1/3 each, 12 $/$ - doz. TRANSFORMERS. 250 V a.c. input, 22 volts at 1 amp. output. $11 /-$ post paid.
TAG STRIPS. 43 in long with 9 insulated tags and 2 earth tags. 4d, each, 3/- doz.
MIXED BAG. Silver mica and ceramic capacitors, approx. 150 items 10/-bag. Approx. 250 for 15/-. SX633 SILICON DIODES. Cnmarked 300 P.I.V. at amp. tested 9d. each,
ELECTROLYTICS. $32+32 \mathrm{mF} 250$ ₹.w. $2 /$ - each. TRANSISTOR. Single tuned $470 \mathrm{Kc} / \mathrm{s}$ I.F. transformers, $1 / 6$ each, 4 for $5 /-$
 high, some 2 in high, $2 /$ - each.
HUNTS. $-25 \mathrm{mFF} .350 \mathrm{v} . \mathrm{w} .7 \times \frac{1}{2} \mathrm{in}$, brand new, wire
ended, 6 d. each, $4 /-$ doz. Hed, ad. each, 4/-doz.
TELEVISION mains dropper resistors-send for tested, ex-equipment, $4 / 6$ each.
ALL ITEMS PLUS $1 / 6$ POSTAGE UNLESS
\qquad

A. J. H. ELECTRONICS 59 WAVERLEY ROAD, THE KENT RUGBY, WARWICKSHIRE RUGBY 71066

WE ARE BREAKNGG UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT
PANELS $2 i n \times 4 i n$ packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards $10 /-$, P. \& P. 2/-. With a guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK. 25 boards for $f 1$. P. \& P. $3 / 6.10$ With a guaranteed minimum of 85
transistors. 100 boards $65 /=$ P. \& P. 6/6. With a transistors. guaranteed minimum of 350 transistors,
PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards (4×0 O28)
TRIM POTS. on $2 \mathrm{in} \times 4$ in boards +other components. $100 \Omega, 500 \Omega, 15 \mathrm{~K} ., 20 \mathrm{~K}$. State require-
ments, Sboards GERMANIUM TOSI
NPN GERMANIUM TOSI WATT POWER TRANSISTORS on small heat sink, on $2 \mathrm{in} \times 4 \mathrm{in}$ panel. 5 for 10/.. P. \& P. 2!-.
POWER TRANSISTORS
POWER TRANSISTORS sim. to 2NI74 ex eqpe.,
4 for $10 \% . \mathrm{P} . \& \mathrm{P} .2 \%$. 4 for 10/\%. P. \& P. $2 /-$
ABOVE on Finned Heat Sink (IOD). 4 for EI .
P. \& P. $5 /$.
P. \& P. 5/-.

ORGAN BUILDERS' SPECIAL 300 TOI 8 TRANSISTORS + 200 SI DIODE GATES O panels. 44. P. \& P. 6/-.
OVERLOAD CUT OUTS. Panel mounting in the following values...5/- each. $2,3,4,7,10 \mathrm{amp}$. P. \& P. 1/-

MINIATURE GLASS NEONS, $12 / 6 \mathrm{doz}$. P. \& P. 1/-.
Ex-Compurer "MEMORY" FERRITE CORE

STORES. 4,000 bits per plane, $25 /=+3 /=$ P. \& P. | PAPST FANS. Powerful Extractor/Blower fans. |
| :--- |
| $230 / 250 \mathrm{~V}$ |
| 100 | each.

LARGE CAPACITY ELECTROLYTICS
Ainn, 2 in diam. Screw terminals.
$4,000 \mathrm{mF}$ - each $+1 / 6$ each 72 V \&.c. wkg.
$\begin{array}{ll}10,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } w k g . \\ 6,600 \mathrm{mF} & 45 \mathrm{~V} \text { d.c. } w k g . \\ 16,000 \mathrm{mF} & 25 \mathrm{~d} \text { d.c. } w k g . \\ 25,000 \mathrm{mF} & 12 \mathrm{~V} \text { d.c. wkg. }\end{array}$
KEYTRONICS, 52 Earls Court Road
London, W. 8.
Mail order only

RECEIVERS AND GOMPONENTS
(continued)

TRANSISTOR PANELS

INTEGRATED CCT'S TAKEN FROM PANELS
$\begin{array}{lll}\text { A QQuad } 2 \| P \text { Gate } & 5 /- & \text { With Circuit } \\ \text { B-Dual } 4 / / P \text { Gate } & 5 /- & \text { and Pin }\end{array}$ C-Dual 2 Level Gate D-Dual "D" Flip Flop - Single Gate 5ost Paid EX GOVMT. RECEIVER R. 209 covering
$I-20 \mathrm{mc} / \mathrm{s} 12 V$ D.C. Input fl5 Post Paid (Tested).
50 VARIOUS TRANSISTORS on Panels 15/- Post Paid
$20-0 C 45$
$20-0<76$
$40-T K 28 c$
. $\mathbf{E l}$
npn transiscors, Diodes and res., 22/6 Post Paid.
COMPUTER PANELS WITH SEMI-
CONDUCTORS. Postage 6d per panel
$8 / 6$

-ASZ20 + I-T2040 + 27 Diodes
$4-\mathrm{OC} 42+6-\mathrm{GET} 875$
2 -OC170 + Diodes
$2-\mathrm{OCl} 70+1$ 1-2G306
5 -OC23

+ 15 -OA10
$6-2 N 388+2-2 G 403+2-T 2040$
-OC36 + 8-GETIO3 + 4-ZS31A
8-ASZ20 + 80 Diodes
9-SB240 + 15-OA91
$12-2 G 106+24$-OA47
$8-0 C 72+84$ Diodes
$6-O C 44$
$6-2 N 388$
8-OC76 + 8-OA10
$12-2 N 388$ (V405A) 550 mcis PNP + 22
Diodes
${ }^{36-O A 5}$ 6-GT872 + B-OA 10
2-ASZ20 + 80 Diodes
$4-$ GEIB72 + 8-OA10
$2-0 \mathrm{C} 42+\mathrm{B}-\mathrm{OA} 47$.
2-GET872+4-OA10+RF Chokes 3 for 10/-

CESTCARDS. 6 transistors 20 for $20 /$ -
TEST CARDS. 6 transistors 20 for $20 /-$
ELECTROLYTICS $25,000 ~ 12 \mathrm{~V}, 16,000$
 $60 \mathrm{~V}, 3,000$ @ $80 \mathrm{~V}, 2,000$ (33) $50 \mathrm{~V}, 1,200$ (3) 180 V ,
ZENER DIODES-2.4, 2.7. $3 \cdot 6,4.75,5 \cdot 25$, $5.75,6.2,6.8,7.5,13,15,16,18,20,27,30,33$ POLYSTYRENE CAPACITORS, $125 \mathrm{~V}, 18$; $22,120,220,270,330,390,560,820,1,000,1,200$, $1,800,2,200,2,700,3,300,3,900,4,700,5,600$,
6,800,
$8,200, ~ 0.01, ~ 0.012,0.015,2,6$ $6,800,8,200,0.01,0.012,0.015,2 / 6 \mathrm{doz}$. Post/ Packing,
ing $2-O$ NEW BOXED CHASSIS containPostage $1 / 6$ NEW CROSS RADIO

6 OLDHAM ROAD, MANCHESTER 4

TAPE REGORDERS

TAPES TO DISC-using finest professional equipment- 45 r.p.m. 22/-. S.A.E. leaflet, DEROY, High Bank, Hawk Street, Carnforth. Lancs.

ELECTRICAL

SESTEVER 200/240 VOLT "MAINS"
Exclusive World Scoop Purchase. The fabulous Mk.2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Brilliant 200/240 volt perfor' mance of all time. Marvellous for Television, Drills, Power Tools, Mains Lighting, AC Fluoreseent Lighting and all 200/240 volt Universal AC/DC mains equipment. Made at Remy. This magnificent machine is unobtain. Remy. This magnificent machine is unobtain. able elsewhere. 8 rand New and Fully Tested.
Only $\pm 4.19 .6+10 / 6$ postage. C.O.D. with pleasure, refund guarantee. Please send S.A.E. for illustrated details.
Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade
BLACKPOOL, Lancashire BLACKPOOL, Lancashire

ELECTRICAL (continued)

 Intere to to thindila of BANDREC. Aircrait, ellots, Also Civil Depts., Fire and Arports at work. Also Civil Depte., Fire sid
Ambulance services. Gas and Electricity Ambulance services. Gas 2 and Electricity Gepts. super reception within the range of all transmissions. A fully transistorised recelver covering $97-147 \mathrm{~m} / \mathrm{B}$ VIIF broadcasts. Robust attractive 2 -tone finlahed metal cabinet size approx. $7 \times 4 \times 4$ in. Operates from a 9 volt internal battery. Speaker or earphone output plus chrome telescopic aerial. Only $£ 8.19 .6$. Carr, and insurance
10/6. CWO or COD. gURPLUS BARGAENS
HEAYY DUTY ACCUMULATORS
Type 1 (6 volt) 40 AF . In metal cabinet. Size approx. $10 \times 9 \times 5 \mathrm{in}$. Complete with output oocket, carrying strap. Brand new and unused. Worthance 15/-.
Type 2 (6 volt) 16A.A. In aturdy wooden cablnet with carrying strap. Worth $£ 7$ each. Brand new and boxed, only $82 / 6$ each, p. \& p. 12/6.
FIELD TELEPHONES
Type F. Housed in a portable wooden case. Ideal for indoor/outdoor communication up to 10 miles. Absolutely brand new. Price only 20.19 .6 per pair.
carrlage and insurance $15 /-$. carriage and insurance $15 /$
198 St Headphones and Mike. Not new
order. Only $7 / 6$ per set. p. \& p. $4 / 6$.
order. Only $7 / 6$ per set. p. \& p. $4 / 6$.
$3 / 6$ (heayy duty, ideal for P.A. work) $6 / 6$ each, p. \& p. High Quality moving coil headphozes and hand microphone. Brand new, only $25 /-$ p. \& p. $5 /$. Suitable for most applications (cost approx. £3 per pair).

ALR/SEATRANS/REC.

Compact VHF Trans./Rec. Fits in the pocket. Conslats of Mike/Speaker, amplifier, aerial,
transmitter and receiver. Were made to raperate up to 100 miles depending on terrain. operates from dry batteries. Completely eelfcontained. Cost Gort, over $£ 50$ each. Regulations state must not be operated in UK so please mention "For Dismantling purposes owne only" when ordering. Price 22.10 .0
each, p. \& p. 10 J . Two gets for each, p. \& p. 10/-. Two sets for
\&5.0.0, post free. Four sets 88 , \&5.0.0, post free. Four sets ${ }^{\text {is, }}$,
carriage free. Bulk sale of 10 seta carriage free. Bulk sale earriage 21. Export enquirles El6, car
infited.

PRECISION PANEL METERS
Brand remb, boxed and fully guaranteed. With fixlag nuts and bolts. Size approx. 3kin square. $0-500$ volts FSD. As used by leading laboratories. Ex-stock, only $85 /-$ p. \& p. $5 /-$. Two for 38 , post free. HEAVY DUTY POWER SUPPLY UNITS Bulk Purchase. Famous manufacture. Must have coat nearly 540 each. Input $200 / 250$ volts $50 \mathrm{c} / \mathrm{s}$ a.c. Output 250 rolts d.c. at approx. $17 \mathrm{~mm} . a .6 \cdot 3 / 12$ rolts at approx. 4 amps a.c. Robust metal rack mounting
cabinet, gize approx. $19 \times 15 \times 8 \mathrm{in}$. Frice only $85 /-$, cabinet, bize approx. $19 \times 10 \times$ An. Frits are fully fused and metered.
SMOOTHING UNITS (care your hum problems) Beautifully made pieces of equpment. 12 volts or 24 volts d.c. Input gives a fully smoothed fully regulated d.c. output. Worth $£ 30$ each. Robust metal cablnet with provision for standby battery. Brand new in maker's cartons. Price $85 /-$, p. \& p. $15 /-$.

New walk-round scientiflc store now open st 38 Bridgend, Meadow Lane, Leeds 1. Open weekdays 9 a.m.-6 p.m. Plus all day Saturday. All tems avallable for inspection and demonstration.
 transformers at these rtdiculously low prices. Made by a famous manufacturer and fully teated and guaranteed. Charger Translormbrs. 0-9-15V 2A. $9 / 6$ each, p . \& p. 2/6. Two for $17 / 6$ postiree. Transistor Fower Pack Types. 6.3V at 2A, 7/6 each, p. \& p. $2 / 6$. 12 V at 2A, 12/6 each. p. is p. $2 / 6$.

GLOBE SCIENTIFIC LTD
DEPT. P.E., 24 CAFOODS YARD,
MIE STREET, MARSE LANE, LEEDS 9
Callers felcome for a demonstration

TRANSISTOR SUBSSTITTOON HAMBOOK

AMERICAN, JAPANESE, BRITISH, ETC. NEW 9th EDITION. 16/. P. \& P. $1 / 6$

49 EASY TRANSISTOR PROJECTS by Brown. 16/.. P. \& P. $1 / 3$.
F.E.T. PRINCIPLES AND PROJECTS by Noll. $42 /-$. P. \& P. $1 / 6$.
INDUSTRIALTRANSISTOR CIRCUITS by Lytel. 24/-. P. \& P. 1/6. 101 EASY AUDIO PROJECTS by Brown. 28/. P. \& P. 1/6.
ELECTRONIC MUSICAL INSTRUMENT MANUAL by Douglas. 55/-. P. \& P. $2 /=$.

PRINCIPLES OF TRANSISTOR CIRCUITS new 4th ed. by Amos. 25/-. P. \& P. $1 / 6$.
R.C.A. HOBBY CIRCUITS MANUAL. 17/6. P.\& P. 1/6.
SILICON CONTROLLED RECTIFIERS by Lytel. 21/.. P. \& P. 1/6.
AUDIO AMPLIFIERS by Data. 10/6. P. \& P. 1/-.

ELECTRONIC NOVELTY DESIGNS by Kampel. 8/6. P. \& P. I/-
TRANSISTOR CIRCUITS FOR RADIO CONTROLLED MODELS by Boys. 7/6. P. \& P. I/-.

UNIVERSAL BOOK CO.

I2 LIttle newport st., LONDON, W.C. 2 (Leicester.Square Tube Station)

CRESCENT RADIO LTD.

(electronic component specialists)
For all regular components try
Green, N. 22
For surplus components and equipment try
II Mayes Road, Wood Green, N. 22
$\begin{array}{ll}\text { Printed circuit board, } 8 \times 6 \mathrm{in} & 2 / \text { each } \\ \text { Zener diade } 8.2 \text { volt, } 400 \mathrm{~mW} & 2 / 6 \text { each }\end{array}$
Transistors, diodes
Transistors, diodes, resistors, capasitors and various components anf mounted on com15 for 20/-
12 volt, 9,000 MODEL MOTOR
12 volt, 9,000 r.p.m., 400 mA
TRANSISTORS \& DIODES

BARGAIN PACK
50 unmarked and untested transis-
pack per
SILICON DIODE RECTIFIERS
750mA, 800p.i.v.
COMPONENT BARGAINS
D.P. rotary ON/OFF mains $2 /$-each
switches

Car fuseholders complete with lead and tages

2/-each
Low impedance transistor earpiece $1 / 3$ each
$\begin{array}{ll}\text { Low impedance transistor earpiece } & 1 / 6 \text { each } \\ \text { Slab aerial transistor type } & 2 / 9 \text { each }\end{array}$
$\begin{array}{ll}\text { Slab aerial transistor type } & 2 / 6 \text { each } \\ \text { LA3 type pot core } 45 \mathrm{mh} & 4 / 6 \text { each }\end{array}$
24in. transistor loudspeaker
80 ohm
Rev counters (tape recorder type)
$5 / 6$ each
$5 /-$ each
CASSETTES
C60
C90
$12 / 6$ each
$18 / 6$ each
Wich our new premises in Maycs Road we can now offer an even wider selection of components for the home constructor and enthusiast.
POSTAGE WITH ORDER PLEASE; P.S.
Our new catalogue is now avallable at $/ / 6$ per copy 4-Station Transiator Intercom aystern (1 mastes and 3 Subs), in de-luxe plastic cabinets for desk or mall mounting. Call/taliz/histen from Master to Subs and Sabs to Master. Ideally suitable for Business, Surgery, Schools, Hospita, Offce and Home. Operates Complete with 3 connecting wires each 66 ft . and Complete with 3 connecting wir
other accessories. P. \& P. 7/6.

MAINS INTERCOM
No bafterieg-no wires. Just plug in the mains for instant two-way, loud and clear communication.
On/off switch and volume control. Price 12 gms.

Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with
Battery $2 / 6$. P. \& P. $4 / 6$.

ciency with this incredible De-Luxe Telephone AmpliGer. Take down long telephone messages or converse fithout holding the handset. A uselul ofr smitch.

WEST LONDON DIRECT SUPPLIES (PE/8)
169 KENSINGTOK HIGH STREET, LONDORWW. 8

NEW RANGE BBC 2 AERALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.
Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, $4 b / 14$ element, 52/6. 18 element, $60 /$-. Wail Mounting with cranked 14 element, 7. element, 60/-. 11 element, $67 /$ elounting with in. 1 lamp. 7 element $42 / 6$; 11 element, 55%; 14 element, $62 /-$; 18 element, $20 /$. Chimney Mounting Arrays, Complete, 7 element, 72/6; 11 element, $80 / \mathrm{F}$; 14 element, $87 / 6 ; 18$ element; $95 /$. Complete assembly instructions with every unit. Low Loss Cable, $1 / 6$ yd. Channe amps from $75 /$ -

BBC•ITV AERIALS

BBC (Band 1). Telescoplc
 loft, 25/- Extemal S/D, 30/=. HVV (Band 3). 3 etement loft array, 301-. 5 element, $401-$. 7 element, $50 /-$ Wall mounting, 3 element, 47/6. 5 element, 52/6. Combined BBCIITV. Loft $1+3$, 40/-; $1+5,50 /-;, 1+7$, $1+5,67 / 6$; Chimney $1+3,67 / 6$; $1+5,75)$
VHFF transistor pre-amps, COMBINED BBCL-ITV-BBCZ AERYALS $\begin{array}{ll}1+3+9,70 /: \quad 1+5+9,80-\% & 1+5+14, \text { sol-. } \\ 1+7+14,100, \quad \text { Loft mounting only. Spectal }\end{array}$ leaflet available.
F.M. (Band 2). Loft S/D, 15J-, "H", 32/8, 3 element, 55/-. External units avallable. Co-ax cable, 8d. yd, Co-ax. plugs, 1/4. Outlet boxes, 5/Dipiexer Crossover Boxes, 13/6. C.W.O. or C.O.D. P. \&P. $6 / \%$. Send 6 U . stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)

40-41 Monarch Parade
London Road, Mitcham, Surrey
$01-6484884$

ELECTROVALUE

EYERYTHING BRAND NEW AND TO SPEC. NO SURPLUS

SPECIALIST
 SUPPLIERS OF TRANSISTORS

IN TYPES TO SUIT ALMOST ALL APPLICATIONS - COMPETITIVE PRICES

- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE Our latest 1969 catalogue is packed with up-to-the-minute items and invaluable information. Send $1 / 6$ for your copy now.
- DISCOUNTS 10% on orders for components for £3 or more. 15% on orders for components for ± 10 or more.
- POSTAGE on orders for $£ 1$, add $1 /$. FREE on orders for $£ 1$ or over. Overseas orders welcome-Carriage charged at cost.

(DEPT. PE), 32a ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY Telephone: Egham 5533 (STD 0784-3)

| 2in. GSUPERB" $\mathrm{E} \mid 5$

The exceptional quality and performance of the "Superb" brings truly exceptional sound from a single loudspeaker, recreating the musical spectrum virtually flat recreating the musical spectrum virtually flat
$\pm 5 \mathrm{db} .20$ to $17,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The unit consists $\frac{1}{5} 5 d$. 20 to 17,000 c.p.s. The unit consists tweeter cone together with a massive Baker tweeter cone together with a massive Baker
"FERROBA" magnet assembly having a flux density of 16,500 gauss and a total flux of 176,000 Maxwells. Bass resonance 22-26 e.p.s. Rated 20 watts. Voice coils available 8 or 15 ohms. Suitable for all High Fidelity Systems. A high quality loudspeaker providing elear reproduction of the deepest bass and highest treble.

VALUABIE NEW HANDBOOK Fh F TOAMBIIIOUS
 Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES'" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tech.Frequency Modulation Transistors.
FLECTRICAL ING.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.- Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG. Advanced Radio - General Radio-Radio \& TV Servicing - TV Lngineering - Tclecommunications - Sound Recording -- Automation Practical Radio - Radio Amatetrs' Examination. MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. ance Eng. - Desige - Sheet Press Tool Design Welding Mctal Work - Welding -
Eng. Pattern Making Eng. Pattcrn Making --Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.Goneral Auto. Eng. - Auto. General Anto. Eng.- Antio.
 Auto. Diescl Maintriance -
Auto. Electrical EquipmenAuto. Elcctrical Etuip
Garge Managenent.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRU. MENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.ERE B.M.S.E. A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.M.O. A MIEX A.RIC.S., M.R.S.H., A.M.I.E.D., A.M.I.MUN.E., C.ENG., AITY \& GUILDS, GEN. CERT. OF EDÜCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

 ing job. easily.
THIS BOOK TELLS YOU

大 HOW to get a better paid, more interest-

* HOW to qualify for rapid promotion.
* HOW to put some letters after your nome and become a key man ... quickly and
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT
Basic Practical and Theore tic Courses for beginners in Electronics, Radio,T.V., Elc. A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam
R.T.E.B. Certificate
P.M.G. Certificate

Pratical Electronics
Electronics Engineering Practital Radio
Radio \& Television Servicing Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

The specialist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with practical equipment. Ask for details.

в.I.E.T.

POST COUPON NOW!
TO B.I.E.T., 316A ALDERMASTON COURT,
ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

[^0]: All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, IPC Magazines Ltd., Tower Ail correspondence intended for the L, W.G.2. Advertisement Offices: PRACTICAL ELECTRONICS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C.4. Phone: $01-2368080$.
 Furringion Street, London, E.C.4. Phone; (including postage for one year, to any part of the world, 42s. (C) IPC Magazines Ltd., 1969. Copyright in all drawings, photoSubscription Rates inciuding postage Ior one year, graphs and articles published in and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^1]: 7 FULLY TUNABLE WAVE BANDS-MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band. Extra Medium waveband provides easier tuning of Radio Luxembourg, etc. Built in ferrite rod aerial for Medium and Long Waves. 5 Section 22 in chrome plated telescopic aerial for Short Waves-can be angled and rotated for peak S.W. listening. Socket for Car Aerial. Powerful push-pull output. ${ }^{7} \times$ transistors and two diodes including Micro-Alloy R R.F.
 Transistors. Famous make 7 Transistors. Famous make 7×4 in P.M. speaker. Air, spaced ganged tuning condenser. handle. Size $9 \times 7 \times 4$ in approx. First grade Totalubuilding costs Parts price list and components. Easy to follow instructions and Total building costs Parts price list and diagrams make the Roamer 7 a pleasure to build. 2 . $7 / 6$. ${ }^{2}$ (FREE with parts). Personal Earpiece with switched socket for private listening, $5 /-\mathrm{extra}$.

