PRACTICAL

ADCOLA

THE RELIABLE

 SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4

8TEREOGRAM CABINET £19 An elegant stereogram Cabinet in odern Veneered mahogany and cloth covered Front Pana
BLACK LEATHERETTE SIDE PANELS
Dimensions: $52^{\prime \prime} \times 17 \frac{1}{2 "}^{\prime \prime} \times 12^{\prime \prime}$. Speaker positions for Twin $10^{n} \times 5^{*}$ Speakers

SPEAKERS $6 / 6$
$2^{\prime \prime}-75 \Omega .2 \frac{1_{2}^{\prime \prime}}{2}-35 \Omega$. P. \& P. 2/6.
ACOS MICS. $35 /-$ STANDARD
STICK MIC. 2gns. P. \& P. 3/6. ASSORTED CONDENSERS

10/- for 50. P. \& P. 7/6. ASSORTED RESISTORS

10/- for 50. P. \& P. 4/6.
ASSORTED CONTROLS
$10 /$ for 25 . P. \& P. $7 / 6$.
TRANSISTORS
MULLARD MATCHED
OUTPUT KIT
9/- OC8ID-2 OC8I's. P. \& P. FREE.

FERRITE RODS $3 / 6$
$6^{\prime \prime}, 8^{\prime \prime} \times \frac{3^{\prime \prime}}{}$ complete with LW/MW COILS. P. \& P. FREE.

17 in .-£ 11.10 .0 carr. 30 19in. SLIM-LINE FERGUSON 24 gns. two-year guarantee ex-rental televisions

FREE ILLUSTRATED LIST OF TELEVISIONS
$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS SIZES AND PRICES DEMONSTRATIONS DAILY

RECORD PLAYER CABINET

 Cloth covered Sife Takes any modern aut P.\& P. $7 / 6$.SINGLE PLAYER CABINETS 15/6. P. \& P. 7/6.
TRANSISTOR CASES 19/6. Size $9 \frac{1}{2} \times 6{ }^{1} \times{ }^{\prime}$ Similar eases in plastic $7 / 6$.

TWO-YEAR GUARANTEED REGUNNED TUBES 70° \& $90^{\circ} 14 \mathrm{in}$. $69 / 6$, $17 \mathrm{in} .-$ 89/6, $21 \mathrm{in} .99 / 6$. 110° ilin., bonded)-119/6. Exchanged Bowls. Carr. 10/6.

PRINTED CIRCUIT KIT

BOILD 40 INTERESTING PROJECTS On a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS IFom your SPARES BOX
 box Radio. (3) 1 Buard for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16-page Broklet Printed Circuis for Amaleurs. O) Mimiature Radio Dias Sw/ wh/w. Also free with each kit. (10) Essential Design Data, Circuits, Chassis Plans, etc, for 40 TRANSISTORISED PROXECTS. constructional ability. Many recently developed very efficient designs published for the tirst time, including 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT

8/6

Pootage \& Pack. I/6 (LKK) Commonwealth: SURFACE MAIL 2/AIR MAIL 8/-
Australia, Sew Zealand South Africa, Canada.
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio mplifier. (a) Carrier Power Conversion Recener. (6) Split-Load - Teutralised Double Refex. (8) Hatchbox or Photocell Ralio. (8) TRI-FLEXON" Triple Reflex with Ch-adjustiog regeneration (Paten Pender (9) Sollar Battery Lounspeaker Radio Subminiature Raio Pecers laved "Triftor" f you know of a smaller design published anywhere. (10) Postage Stamp Radio ize only $1 \cdot 62^{\prime \prime} \times 95^{*} \times \cdot 25^{\circ}$. (11) Wristwatch Radio $1 \cdot 15^{\prime \prime} \times-80^{\prime \prime} \times \cdot 55^{*}$. (12) Ring Radio $70^{\prime \prime} \times 70^{\circ} \times$-5. . (13) Bacteria-powered Radio. Runs on sugar or read. (14) Radio Control Tone Receiver. (15) Transistor P/P Amplitier. (16) Inter com. (17) -valve Amplifier. (18) Reliable Burgiar Alarm. (19) Light-Seeking Animal, uided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transisto (25) Signal Injector (26) Racket Tranetector. (24) Man/Woman Discriminator Volume Intercom. (28) Remote Control of Models by Induction (29) Iuductive-Loop Transmitter. (30) Pocket Triple Reflex Rallio. (31) Wristwatch Transmitter/Wire-less Microphone. (32) Wire-less Door Bell. (33) Litrasonic Switch/Alarm. (34) Stereo Preampliner. (35) Quanty stereo Push-Pul Ampliner. (36) Light-Beam Telephone Photophone ${ }^{(37}$) Light-Bearm Transmitter. (33) Silent TV Sound Adaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed Controller

YORK ELECTRICS

SPECIALIST RELAYS

SCHRACK 4 POLE 12 WAY

This stepping relay inches one step per pulse of the coil, contacts are provided for continuous atepping and 2 pole cbangeover at ponition " 6 ". Uses include programming Christmas tree intions,
gelection of stations on multiway intercom systems (using standard 2 way intercoms), Serro steering of radio control models. Antomatic operation of model railways, etc.
Type RT 319600 OR Type RT 819120
$60 \mathrm{~F}=2 \mathrm{~W}$ coil
LASKY'S PRICE

Post 2/6

THORN PYGMY PLUG-IN RELAY

A miniature 8 pin plug-in relay with 10 A double changeover con figuration. Mains operated coil spitched for internal powered remote mains switching, using one contact as a latch to hold the relay in until he external circuit ts broken. Coll resistance $82 \mathrm{~K} /$ ohms, $200-240 \mathrm{~V}$ AC/DC operation.
LASKY'S PRICE $12 / 6$
Post 12/6

AEI MINIATURE RELAY

A miniature shrouded 3 pole "make" relay of the chassis mounting type, DC coil resistance $900 \Omega 24 V$ operation. Uselul for remote Audio switching circuits, control systems, using low voltage and current, controlling smal DC motors and pllot lights, etc., and any application switching thre
circuits from one switch.
LASKY'S PRICE
8/6
Post 1/6

TTC Model

 A-l005 FM TUNER CHASSIS1,000's sold of this highly sensitive FM tuner-

fully tunable-range 88 to $108 \mathrm{Mc} / \mathrm{s}$. Completely
wired on printed circuit $10.3 \mathrm{Mc} / \mathrm{B}$ IF. 6 transistors and 3 diodes. Slow motion tuning drive Size $6 \frac{1}{4} \times 4 \times 2 \&$ in. Operates from any $9 v$ d.c. source. Full data and circuit supplied.

LASKY'S PRICE E6.19.6

 Post 3/6
ADD MULTIPLEX TO THE MODEL A. 1005

Fou can enfoy stereo sound yith the Model A-1005 FM Tuner above by adding the TIC Model A-1005M Multiplex Adaptor. Brief Specification: MPX input sensitivity 100 mv . Output $130 \mathrm{~m} \%$. Self powered by a 9 batery. 4tranaisor and LASKY'S PRICE 99/6

Post $3 / 6$
TTC Model A-1007 AM TUNER
 high output clicuit, fuliy assembled and tested on printed circuit board. Lses variable condenser and oscillator converter. Power is taken from any
ouitable amplifier using a $9 V$ d.c. gupply. Ferrite rod aerlal. Size $4 \times 2 t \times 1$ in (ex. tuning suitable amplifier using a $9 V$ d.c. gupply. Ferr
control). Complete with full data and circuit.

LASKY'S PRICE
 69/6

Post $3 / 6$

Branches
207 EDGWARE ROAD, LONDON, W. 2
Open all dey, 9 a.m -6 p.m. Monday to Saturday 33 TOTIENHAM ET. BD., LONDON, W. 1 Open all day 9 a.m- -6 p.m. Monday to Sàurday 152/3 FLEET STREET,LONDON, E.C. 4 Open all day Thursday, eaily closing 1 pm Saturday
 Mk II COMMUNICATIONS RECEIVER

A completely new Ahort wave receiver exclusive to Lasky' s, at a real economy price. Four valve line up ubing one each
$6 \mathrm{BE} 6,6 \mathrm{AB}, 6 \mathrm{Y} 6$ and 6ARs valves, and 6ARS valves,
gives highly sensitive gives highly sensitive
reception and powerful gain. Switch selected SW frequency range cover: 1.5 to $30 \mathrm{Mc} / \mathrm{s}$ in three separate bandspread ranges and full AM medium waveband cover in one range $550-1,600 \mathrm{ke} / \mathrm{s}$. Vernier reduction drive tuning with fine hair line carsor. Controls include volume on/off. BFO. Band aelector. Power on speaker plus standard 5 mm jack socket for phones on front. For $220 / 240 \mathrm{~V}$ a.c. mains operation. Strong metal cabinet finished in grey crackle with anodised silver front panel. Size $9 \frac{1}{x} \times 5 \frac{3}{3} \times 5 \mathrm{in}$. Complete with mains lead and full instructions. Previously listed al \$17.15.0. (A credit note for the difference in price will be given to customers who purchaged this unit at the original price after Jan. 1st '69, on presentation of receipt).

LASKY'S PRICE
 £13.13.0

$\underset{\substack{\text { Post } \\ 5 /-}}{ }$

TCC G-1120

HEADPHONE/BOOM

 MICROPHONE SETThis lightweight headphone and boom microphone assembly is especially suitable for TV camera crews, communlcations equipment, language labs. recording studios, ett. The fully adjustable headset is extremely comfortable to wear for long periods. cables to be used without any gignal loss. Used with a Tape Recorder thil assembly will provide constant monitoring. Figh quality opecification and superb finish at a price you can afford.
Headiet spec.: Dynamic, impedance 16 ohms.

Frequency res. $20-14-1000 \mathrm{~Hz}$ Input 200 mW . Cord length $59 i n$ with jack plug fitted. Mic.

 Post 2/6

BUDGET PRICED CASSETTES

"OVERTURE" High quality cassettes from the U.S.A. C. $60-10 / 6 \quad$ C.90-15/- C.120-20/=

Poast $1 /$ each. 4 and over Post F ree. Special quotes for quantities.
GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL
 Electronice, Test equipment.
Send $1 / 6$ for post only and faclusion on our regular mailing list
 High Fidelity Audio Centres
42-45 TOTIENHAM CT. RDD., LONDON, W. 1 Tel.: 01-580 2573 Open all day, 9 a:m -6 p.m. Monday to Sarurday

118 EDGWARE ROAD, LONDON. W. 2 Tel.: 01-723 9789 Open all day Saturday, eaty closing 1 p.m. Thurisday

prepare now for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.
CREI Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now-enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:

Electronic Engineering Technology * Industrial Electronics for Automation *Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

$\overline{C R E I}$

CREI (London), Walpole House,
173-176 Sloane Street, London S.W.1.
A Subsidiary of McGraw-Hill Inc.
Post this coupon today for a better future

The Premier Steren System consists of an all transistor stereo amplifer, Garrard Model 2025 auto/manual record player unit fitted stereofmono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker ssstems. Absolutely complete and supplied ready to plug in and play. The 10 transistor Amplifer has an output front panel. Black metal case with teakwood ends: Size $12^{\prime \prime} \times 5 \frac{1}{2}^{*} \times 31^{1^{\prime \prime}}$ high (Amplifer available separately if required $\mathbf{2 1 4 . 1 9 . 6 \text { . Carr. 7/6). }}$

GARRARD RECORD UNITS

1025 Stereo/Mono cart. 57.19 .6 ,

 3000 with 9 TABCD Carriage 7\% extra SP25 MKII less cart.
$\begin{array}{lll}\text { AP75 } & \begin{array}{l}\text { less cart. } \\ \text { Al. } \\ \text { less cart. }\end{array} & \left.\begin{array}{l}\text { £ } 19.0 .0 \\ \text { £29.0.0 }\end{array}\right\} \text { peak Plinth with }\end{array}$ £13.19.6 Carr. $6 / 6$ extr. $£ 11.19 .6$

$£ 11.19 .6$ L95 less cost $£ 38.10 .0$ E29.0.0 $\int_{\text {£7.10.0. Carr. } 7 / 6}$ GOLDRING RECORD UNITS GL68 less cart. 222.7 .0 , GL75 less cart. 235.15 .5 . Cartiage 10/- extra.

PICK-UP CARTRIDGES

SHIURE M3D (Stereo)
 B.8.0. SP1 (Stereo)

PICKERING V15/AC2 (stereo)
30工OTOXE 9TAHC/Diamond (Stereo)
ACOS GP93-1 (Stereo)
ACOS GP94-1 (Stereo)
B.S.R. X3M (Mono compatible)
B.S.R. $\times 3 \mathrm{H}$ (Mono compatible)

RONETTE 105 (Stereo)
RONETTE 106 (Stereo)
 All complete with mounting
Post and Packing 1/6 each.

WELLER SOLDERING TOOLS

 "Expert" Solder Gun Saves time and simplifies soldering in the home and service dept. Two position trigger gives instant dual heat. 100140 watt. 240 volt A.C. 67/8 P. \& P. 2/-. "Marksman" conventional ${ }^{3} / 16$ " pencll bit. Ideal for regular bench use and all those jobs around the home. 25 watts.

'PREMIER'

TAPE CASSETTES
${ }_{60}^{\text {com min. }}$ Type $10 / 6$ ${ }_{90}^{\text {c90 }}{ }^{90}$ min. Tye $15 /-$ C120 Type
120 min.
20/P. \& P. 17

Cassette head
CLEANER
Removes unwanted deposits from delicate tape heads Fits all cassette recorders 15/-P. \& P. 1/-

MULTI TESTERS

MODEL D14. A really versatile instrument that makes a handy pocket size tool. Measures AC or DC voltage in thrree
ranges of $0-15-150-1000$ volts. Resistance ranges of 0-15-150-1000 volts. Resistance
$0-100,000$ ohms. Current $0-150 \mathrm{~mA}$ D.C
 Size only: $3 \frac{3}{3} \times 2 \frac{1}{2} \times$ inin. Complete
battery, test leads and instructions $49 / 6$. battery, test leads and instructions 49/6.
P. $\&$ P.
$2 / 6$. P. POCEET SIZE MODEL. With wideangle, jewelled meter movement, ceramic long-hire, lowt-loss switching, tough impact
resisting case. Sensitivity 20,000 ohms volt D.C. 10,000 ohms/volt A.C. 19 Ranges: $0.5-525-50-250-500-2500$ volts nC. $0.10-50-100-500-1000$ volts AC. 6 megobms, 100 uff -0.001 mid -1 mfd. ${ }_{-20}^{6}$ mo to +22 dB . Complete battery, test lead and instructions. 24.19.6. P. \& P. 3/6.

"VERITONE" RECORDING TAPE

SPECIALLY MANUFACTURED IN U.S.A. FROM EXTRA STRONG PRE-STRETCHED MATERIAL. THE QUALITY IS UNEQUALLED. TENSILISED to ensure the most permanent base. Highly resistant to breakage, moisture, heat, cold or humidity. High polished splice free finish. Smooth LP3 $3^{\prime \prime} 250^{\circ}$ P.V.C. $\quad 5 / 6$ DT6 $53^{* *} 1800^{\circ}$ POLYESTER 22/6
 DT3 $3 \frac{1}{*}^{\circ} 600^{\circ}$ POLYESTER $11 / 6$ SP7 $7^{* \prime} 1200^{\circ}$ POLYESTER 12/6 $\begin{array}{lllllll}\text { SP5 } 5^{*} & 600^{\circ} & \text { P.V.C. } & 8 / 6 & \text { LP7 } 7 * & 1800^{\circ} \text { P.V.C. } & 15 /-1\end{array}$
 DT5 5^{*} 1200 POLYESTER 15/- TT7 $7^{*} 3600^{\circ}$ POLYESTER 50/LP6 5: ${ }^{3}$ 1200' P.V.C. $\quad 12 / 8$
TAPE SPOOLS $3^{*} 1 /-5^{*}, 53^{*}, 7^{*} 1 / 9$. TAPE CASES $5^{*}, 5^{* *}, 7^{*} 2 / 6$. Post and Packing $3^{*} 1 /-, 5^{*}, 5_{3}^{* *} 1 / 6,7^{*} 2 /-$. (3 reels and over Post Free).

WIDE RANGE OF HI-FI STEREO
EQUIPMENT ON DEMONSTRATION
All leating makes availarie inctuding Rogers, , rmatrong,
Dulci, Wharfedale, Goodmans, Goldring. Shure, etc. etc. SPECIAL OFFER
BALFOUR
"PRincess"
4 Speed Autochanger fitted Acos Mono Compatible cartridge. Complete with TEAK BASE. ONLX £5.19.6. Carr

MONO GRAM AMPLIFIER

21 watts output. Uses EL84 valve, double wound mains ransiormer. Ideal for use with any record deck. Yolume)
 ONLY 49/B. P. \& P.55-

JULIETTE NA. 50185 BAND 18 TRANSISTOR MAINS/BATTERY RADIO

 108-1343c/s. PB 148-17434c/s. Ferrite bar arial
aerial for
FM/VMF/PB. Speaker. Operates on AC 250 . or

FOUR STATION INTERCOM. Master unit and 3 slaves Ideal for office and home. Complete with battery and connecting wire $\mathbf{\Sigma}^{7.19 .6 ~ P . ~ \& ~ P . ~} 5 / 6$.

$Z .12$ - for all you want from any
amplifier The $Z .12$ is a most versatile integrated a car battery or the PZ.4 are eminently amplifier and pre-amp in which power, suitable, giving much wider than usual
compactness and true high-fidelity
scope in the applications to which the compactness and true high-fidelity scope in the applications to which the
standards are combined within a unit of
Z. 12 may be put. As well as hi-fl, these very modest price. The most widely used include systems for P.A. electronic $\begin{array}{ll}\text { unit of its kind in the world, the Z. } 12 \text { has } & \text { guitars, organs, intercom systems, } \\ \text { an output of } 12 W \text { R.M.S. continuous sine } \\ \text { laboratory, education or industry. You }\end{array}$ an output of 12 W R.M.S. continuous sine laboratory, education or industry. You
wave (24 W peak) or 15 W music power will find the $Z .12$ in use in such instances wave (24 W peak) or 15 W music power will find the Z .12 in use in such instances
(30 W speak). It has Class B ultralinear again and again. The Sinclair Z.12 is output which can be fed into any loud- supplied ready built, tested and $\begin{array}{ll}\text { speakerf from } 3 \text { to } 15 \text { ohms. (Two } 3 \text { ohm } & \text { guaranteed, complete with manual of } \\ \text { speakers can be used in parallel.) } \\ \text { circuits and instructions for matching it }\end{array}$ quency response- 15 to $50,000 \mathrm{~Hz}$. 1 dB ; to your precise requirements. Two may $\begin{array}{ll}\text { input sensitivity }-2 \mathrm{mV} \text { into } 2 \mathrm{~K} / \text { ohms. } & \begin{array}{l}\text { be used in stereo when, with the Stereo } \\ \text { The } Z .12 \text { will operate from any power } \\ 25 \text { and } P Z .4 \text { together with two Q. } 14 \mathrm{~s} \text {, you }\end{array}\end{array}$ will have an ideal high fidelity assembly.

$81 / 6$

GEATRONIX LIMITED

EDUCATIONAL ELECTRONIC EQUIPMENT

NORKIT JUNIOR
£8.16.0
(as shown)

NORKIT SENIOR

£17.12.0
Handbooks supplied for each kit or available separately

6/- each

LOGIC DEMONSTRATION UNIT TXPE LDU. 1

A new teaching aid for rapidly setting up and demonstrating logic circuits. Stackable patching leads are used to interconnect logic symbols on a mimic diagram. The symbols are connected to appropriate components inside the unit. Switches and pushbuttons are provided to simulate input conditions and outputs are indicated by lamps and an audible alarm.

£68.0.0

GEATRONIX LTD., 28 REDSTOCK RD., SOUTHEND-ON-SEA, ESSEX

You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects.
type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY
"I am highly delighted with the books; I didn't know a complicated subject could be so easily presented."
J. K., Earisfield.
"I am pleased to say how understandable, your books are. I have now quite a sound knowledge of Electronics."
P. S., Southgate.
"I know your Manuals will prove invaluable for my trainnng and career as a zechnician."
J. L., S. Shields

A TECH-PRESS PUBLICATION
POST NOW FOR THIS OFFER!!

TO The SELRAY BOOX CO, 60 HAYES HILL, HAYES, BROMLEY, KENT BR 2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price or Down Payment of 20/- followed by 3 ELECTnightly payments of 20 - each BASIC ELECTRONICS 90/- Cow fortnightly payments of 20 - each. BASIC ELECTRONICS $90 /-$ Cash Price or Down Payment of $20 /$ - followed by 4 fortnightly payments of 20/-
each. This offer applies to UNITED KINGDOM ONLY. Overseas each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature (If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULI, POSTAL.
ADDRESS

Build yourself a quality transistor radio

backed by our after sales service!

roamer seven mk iv
 SEVEN WAVEBAND PORTABLE SEVEN TUNABLE WAVEBANDSMW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive black and gold case. Size $5 \frac{1}{2} \times 1 \frac{1}{5}$ 3 in . Tunable over both Mediun and Long
Waves with extended M.W. band for eagier tuning of Luxembourg etc. All first grade comtuning of Luxembourg. etc. All first grade com-
ponents-
7 stages- 5 trangistors and 2 diodes, supersensitive ferrite rod aerial, fine tone moring coil speaker, also Personal Earpiece with switched socket ior private listening. Easy build plans and parts price list, 1/6 (FREE with parts).

Total building costs $4=4-/ 8 \mathrm{P} . \underset{3 / 6}{\&} \mathrm{P}$.

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive case with red speaker grille. Size $6 \frac{1}{x} \times$ 44×1 in. 7 stages -5 transistors and 2 diodes, control rod aerial, tuning condenser, volume Pergonal fine tone moving coll speaker also Hitening. All first grade components. Easy build plans and parts price liet 1/6 (FREE with parts).

Total building costs
47/ $8 \begin{aligned} & \text { P. \& } P \text { P. } \\ & 3 / 9\end{aligned}$
pas and pare

uper seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case size $7 \frac{71}{1} \times 5 \frac{1}{2} \times 1 \frac{1}{1}$ in. with gilt Attings. The ideal radio for home, or outdoors. Covers Medium and Long Waves and Trawler Band. Special circuit incorporating 2 R.F. Stages, push pull output, fertite rod aerial, 7 transistors and 2 diodes, 3 in . speaker (will drive larger speaker) and all first grade components. Easy build plans and parts. Price list $2 /$ - (FREE with for private listening 5)- extra.)

Total building costs
(8) $\quad \mathrm{F}_{4 / 6}^{\text {\& }} \mathrm{P}$.

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt fittings, size $7 \frac{1}{2} \times 5 \frac{1}{2}$ 1inin. Tunable on Medium and Long waves, two mhort waves, Trawler band plus an extra M.W. band for easier tuning of Luxembourg, etc. SenaiShort waves. All top grade components. 8 stazes -6 transistors and 2 diodes including Micro-Alloy R.F. Traneistors, etc. (Carrying gtrap $1 / 6$ extra.) Easy build plans and parte price list 2/-(FREE with parts)

Total building costs $7 \otimes /$ P P. \& P.

- Callers side entrance Stylo Shoe Shop.
- Open 10-1, 2.30-4.30 Mon.-Fri. 9-12.30 Sat.

Extra M.W. band for Built-in ferrite rod aerial for Mediun and Long Waves
 rotated for peak S.W. listening, Socket for Car Aerial. Powerful puah-pull output. 7 transistors and two diodes incluting Micro-Alloy R.F. Tranistors. Fanous make $7 \times 4 \mathrm{in}$. P.M. speaker for rich-tone volume. Air spaced ganged tuning condenser. Volume/on/off control, wave change switches and tuning control. Attractive case with carrying handle. Size $9 \times 7 \times 4 \mathrm{in}$. approx. First-grade components. Easy to follow instruetions and diagrams make the Roamer 7 a pleasure to buikt.

Total building costs
9 P P. \& P. Personal Earpiece With switchet socket 7/6 for private listening 5/- extra.

Parts price list and easy build plans $3 /$ (Free with parts).

NEW LOOK

melody six

8 stages- 6 transistors and 2 diodes. covers Medium and Long Waves. Top quality $3 \frac{1}{\mathrm{i}}$. Loudspeaker for quality output and also with Persona! private listening. Two R.F. Stages for extra boost. High " \mathbf{Q} ". Ferrite Rod Aerial. Push-pull output. Handgone pocket size case with gilt fittings. Size $6 \frac{1}{2} \times 4 \times 2$ in. Easy build plans and parts price list 2!- (FREE with parts).

Total building costs

- $8 / 8$ P. \& P.

RADIO EXCHANGELTD

61 HIGH STREET, BEDFORD. Tel. 023452367
I enclose £.......................... please send items marked
ROAMER SEVEN \square ROAMER SIX
TRANSONA FIVE \square SUPER SEVEN
POCKET FIVE \square MELODY SIX \square
Parts price list and plans for.
Name..
Address.
P.E.6669
R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., S.W. 16 Special 24 Hour Mail Order Service

OMICRON ELECTRONICS

Authorized International Rectifier Semiconductor Centre:- Send for Free List
Unijunetion Transistors: 2N2160, $\left\lvert\, \begin{aligned} & \text { Cir-Kit Pack with Paxolin Board, } \\ & \text { etc. } 12 /- \text {. }\end{aligned}\right.$
High Output Silicon Solar Cells as used in space vehicles: $16 / 6$ (3) 50 mA rom brighe sunilite 2816 Skel Resets (Vert.): 5 k , 10k, 100 k , $220 \mathrm{k}, 50 \mathrm{Ck}, 1 \mathrm{M}, 2 \mathrm{M}, 2 \cdot 2 \mathrm{M}, 1 / 4$ each. R.C.A. Integrated Circuits-CA3020,
$26 /-\quad$ CA3018, $22 /-$.
CA3014, $25 /-$. CA3012, 201-.
S-Dec Circuit Board, 29/6.
Cir-Kit Copper Strip, $\frac{1}{3}$ in wide, $1 / 11$
Cir-Kit Copper Strip, $\frac{1}{3}$ in wide, $1 / 11$
per eard. etc., 12/-
Boards 0.1 matrix, 5 in $\times 3 \frac{3}{2} i n, 3 / 9$ Dee-Gee professional quality 25 W Soldering Jrons, $17 / 6$.
B.S.R. Mono/Stereo X3H Compatible Cartridges, 36/-
Sinclair Products: Z12 amp, $89 / 6$ Mieromatic Kit, 49/6; Stereo 25, 9.19.6; Q14, £7.19.6. Fully Retracting and Locking Car Aerials, $30 /-$
Professional quàlity Tudor Tape at fantastic low prices.

OMICRON ELECTRONICS
172 Baslow Road, Totley, Sheffield S17 4DR

```
E TYPe PAOZ4INEAR INTEGRATED CIRCUITS
Single supply line, 22 ohm load, dual-in-line package.
G.E. Type PA230 LOW LEVEL AMPLIFIER
Single supply line, audio pre-amplifier in dual-in-line package
Very popular Watt amplifier, DC to video, Motor control etc.
3 amplifiers in I TO.5 (multilead) can, overall gain over 1,000,000 times 30/-
G.E.Type 2N5306 DARLINGTON PAIR (1/6
2 transistors in one package connected as Darlington pair.
amps!!). ideal as low level, low noise inpur stage for pre-amps or low
tevel switch. fT = 60MHz
MULLARD TYpe TAA3IO LOW NOISE AUDIO
intended as a record and playback amplifier in tape recorders

Add I!- each for data sheets if required. Data sheets only I/6 each post free TEXAS SILECT TRANSISTORS (SILICON)




\(\begin{array}{lll}2 N 3705,30 V, ~ & 800 \mathrm{~mA}, \beta=50-150 & 3 / 4 \\ \text { PNP Fast switch }\end{array}\)






P Channel FET
2 N 3820 , 20 V
\(18 / 9\)
Send \(2 /\) - now for brand new Components Catalogue packed with details of professional components at prices you can afford.
POST \& PACKING-1/6 CASH WITH ORDER PLEASE
KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

\section*{PHOTOCELL LIEHTING CONTROL UNIT ‘ON’ AT DUSK ‘OFF' AT DAWN}

BETTER THAN A TIME SWITCH — ADAPTS AUTOMATICALLY TO DAYLIGHT YARD/GARAGE LIGHT. HOUSE BURGLARY DETERRENT. SHOP WINDOW DISPLAY. ADVERT SIGNS. STREET/OFFICE/FACTORY LIGHTING. CHILD'S NIGHT LIGHT. IOI USES. SIMPLE BRACKET FITTING. WIRED IN 5 MINS. INDOORIOUTDOOR USE, RUGGED/ FOR MAXIMUM EFFICIENCY. THOUSANDS OF DELIGHTED USERS. 12 MONTH GUARANTEE. SEND NOW TO:-

61 DICKSON ROAD, BLACKPOOL 1. TEL. 0253-23755


TYPE 13A DOUBLE BEAM OSCILLOSCOPES


An excellent general purpose D/B oscilloscope. \(\begin{array}{ccc}\text { T.B. } 2 & \mathrm{c} / \mathrm{s}-750 & \mathrm{kc} / \mathrm{s} \\ \text { Bandwidth } \\ 5-5 & \mathrm{Mc} / \mathrm{s} .\end{array}\) \(\begin{array}{cc}\text { Bandwidth } & 5-5 \mathrm{Mc} / \mathrm{B} . \\ \text { Sensitivity } & 33 \mathrm{mV} / \mathrm{CM}\end{array}\) Sensitivity
Operating voltage \(0 / 110 /\) 200/250 V. a.c. Supplied in excellent working condition. 822.10.0. Or complete with all accessories, probe, leads, lid, etc.
£25, Carriage \(30 /-\).
ADMIRALTY B. 40 RECEIVERS Released by the Ministry. High quality 10 valve reeiver manuiactured by Murphy.
Coverage in 5 bands \(650 \mathrm{kc} / \mathrm{s}-30\) Mc/s. I.F. Coverage in 5 bands \(650 \mathrm{kc} / \mathrm{s}-30\) Mc/s. IF.
\(500 \mathrm{kc} / \mathrm{s}\). Incorporates
 R.F. and 3 I. stages, band-pass filter,
poise limiter, crystal controllediP.F.O., calibrator. O/F output,
etc. Built-in speaker output for phones Operation \(150 / 230\)
a.c. Size 191 16ia. Weight 1141 lb . ing condition. £22.10.0. Carr. 30/-. With circuit. diagrans. Also available B.4I L.F.
version of above. \(15 \mathrm{ke} / \mathrm{s}-700 \mathrm{ke} / \mathrm{s}\). \(£ 17,10.0\). Carr. \(30 /\)

R209 MK II
COMMUNICATION RECEIVER 11 valve high grale communication recei ver
suitable for tropical uze. \(T\) - 20 Mc/
on 4 bands. AM/CW/FM opration. Incorporates precision rernier uriver, BFO. Aerian trimher, internal
spabker aud 12 V u,e, internal power supply. Supplied in excellent condition, fully tested and checked.

£12.10.0

\section*{ADVANCE}

TEST EQUIPMENT
Brand new and boxed in original sealed
VM. 76 VALVE Cartons.
R. F. messurements in excess of ments up to 100 M with accuracy of \(\pm 2 \%\) d.c. range 300 WY to 300 V a.c. range zistance \(02-500 \mathrm{M} \Omega\).
VM. 78
A.C. MILLIVOLT METER Transistorised 1 MV-300Y Prequency \(1 \mathrm{c} / \mathrm{s}\) to \(1 \mathrm{Mc} / \mathrm{s}\).
FM. 79
UHF MILLITVOLT METER
 \(0.01 \mu / \mathrm{A}-0.3 \mathrm{MA}\). Resistance 1 ohm-10 megohms. Price 1125 \(15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}\). sine or square Warve. Price £30. ADDIO SIGTAL GENERATOR \(15 \mathrm{c} / \mathrm{s}-50 \mathrm{ke} / \mathrm{s}\). Price \(玉 30\).
J2B AUDIO STGTAL GENERATOR As per J18 except fitted with outpat meter. Tice \(E 35\)
TTIS TRANSISTOR TESTER
E37.10.0
Carriage 10/- per item.


\section*{AVOMETERS}

Supplied in excel lent condition fully tested and checked. Complete with prods, leads and instructions. Model 47A \&9.19.6 P. \& P. 7/6.

UNR-30 4-BAND COMMUNICATION RECEIVER
Covering \(550 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\). Incorporates BFO. Built-lin speaker and phone jack. Metal cabinet. Operation 220 240 V . a.c. Supplied brand new, guaranteed with instructions.


Brand new, guaranteed and carriage paid,
High quality construction. Input \(230 \mathrm{~V} 50-60 \mathrm{cycles}\) Ontput full variable from 0.260 V . Bulk quantities available.

20 amp. -837.0 .0 .

 Ranges \(\pm 2 \%\). TURNS RATIO 1:1/10001:11100. 6 Ranges \(\pm 1 \%\). Bridge voltage at \(1,000 \mathrm{cpg}\). Operated from 9 volts. \(100 \mu \mathrm{~A}\). Meter indication. Attractive 2 tone meta

\section*{CLASS D WAVEMETERS}

Mon dync frequency meter

\section*{GARRARD}

FULL CUREENT RANGE OFFERED, BRAMD HEW AKD GUARAKTEED AT FANTASTIO SAVIRGB
SRP22 Mono \(\mathbf{5 6 . 1 0 . 0}\) *SP25 MKII \(\quad\) :11.19.6

 1025 Stereo \(\begin{array}{lll}\text { 87.19.6 } & \text {-SL65 } & \text { ELI } \\ \text { E14.14.0 }\end{array}\) \(2025 \mathrm{~T} / \mathrm{C}\) 27.19.0 AP75
\(\begin{array}{llll}\text { Mono/Stereo } & \text { f8.17. } & \text { 401 } \\ \text { B0000 Stereo } & \text { E9.18.8 } & \text { SL75 }\end{array}\)
\&17.7.7.
\&29.
82.0 Carriage innsurance 7/6 extra any model. WB4
Bases 53.19 .6 . Perspex covers 23.10 .0 . "Special offer base and cover available for these models at 44.15 .0 . Carr. \(5 /-\). Full range of Carrard accessories available.

\section*{NOW OPEN IN EDGWARE ROAD}

Our new walk around shop is now open at 311 Edgware Road, fully stocked
with all Hi-Fi, Communication and Test Equ!pment. Call into your nearest shopEdgware Road for all Equipment-Lisle Street for all Equipment and Componentz.
 \(\mathrm{D}_{6}\) FM TRANER \(\rightarrow\) 6 TRANSISTOR
HIGH QUALTY
TUNER, SIZE
OUT \(6 \times 4 \times 2 \mathrm{jin}\) TUNER, \(6 \times 4 \times 2 \mathrm{in}\). I.F. Btages.
Double tuned dis. crininator. Ample output to feed most amplifiers. Operates on 9 V battery. Coverage \(88-108 \mathrm{Mc} / 8\). Ready built ready for use. Fantastic value


LAFAYETTE SOLID STATE HAGOO RECEIVER 5 BAND AM/CW/SSB AMATEDR AKD SHORT WAVE \(150 \mathrm{kc} / \mathrm{s}-400 \mathrm{kc} / \mathrm{s}\) sind \(550 \mathrm{kc} / \mathrm{s}-30 \mathrm{Hc} / \mathrm{m}\) dial Product detector © Crystal calibrator Yariable BFO Noize limiter os meter - 24 in Bandspread - \(230 \vee\) a.c. \(112 \nabla\) d.c. reg. earth


Tamiable Voliage Tiluminith mers)
 for money. \&8.7.6. P. \& P.
Stereo multiplex adaptors 906 .

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Separate cal and press to tiak buttona
2 -wire connection. \(1000^{\circ}\) of applications. Beautifully finished in ebony. Supplied complete with batteries and wall brackets.
£8.19.6. P. \& P. 3/6.
 NEW MODEL 500. 30,000 O.P.V. with overlosd \(0 /-5 / 2 \cdot 5 / 10 / 25 / 100\) ) \(250 / 500 / 1,000\) V d.c. \(0 / 2 \cdot 5 /\) \(10 / 25 / 100 / 250 / 500 /\) \(1,000 \mathrm{~V}\). a.c. \(0 / 50 \mu \mathrm{~A} / 5 / 501\) \(\begin{array}{ll}500 \mathrm{~mA} \\ 0 / 60 \mathrm{~K} / 6 & 12 \mathrm{meg} / 60 \mathrm{mp} \text { Meg } \Omega .\end{array}\) e8.17.6. Post pald
MODEL TE-10A, 20 knV
\(5 / 25 / 50 / 250 / 500 / 2,500 \mathrm{~V}\) d.c. \(5 / 25 / 50 / 250 / 500 / 2,500 \mathrm{~V}\)
\(10 / 50 / 100 / 500 / 1,000 \mathrm{~V}\) a.c. 0/50/AA/2-5 mA/250 mA d.c. \(0 / 6 \mathrm{~K} / 6\) meg. ohm. - 20 to \(+22 \mathrm{~dB}\)
 RRANSISTOR CHECEER It has the fullest capacity for Equally adaptable for checking diodes, etc. Spec.: A: B: 5-200.
microamps Resistance for mis. \(200 \Omega-1\) M \(\Omega\). Supplied
complete with instruc
tions, battery and lead, £5.18.6. P. \& P. 2/6


LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 diodes. IHF music power 1 W. Distortion 10 Res. \(30-20,000 \pm 2 \mathrm{~dB}\) at 250 MY. Output: 3-16 ohms. Separate L and R. volume controls. Treble and bass control. Stereo phone jack. Brushed aluminium, gold-anodised extruded front panel with
 828. Carr, \(7 / 6\).


Solve your communica. 4-Station irensistor Intercom system (1 master and 3 8ubs), in de-Inxe plastic cabinets for desk or wall mounting. Call/talk/listen from Mester to Subs and subs to Master. Ideally suitable for Business, Surgery, Schools, Hospital, Office and Home. Operates on one 9V battery. On/oft switch. Volume control. Complete with 3 connecting wires each 66 ft , and other accessories. P. \& P. 7/6

MAINS INTERCOM
Ko bstteries-no wires. Just plug in the mains for instant troo-may, loud and clear communication. PR Nos.


65/-
Same as 4-Station Intercom for twoway instant communication. Ideal as Baby Llarm and Door Phone. Complete with 66it. connecting wire.
 ciency with this incredible De-Luxe Telephone Amplifler. Take down long telephone messages or converse
Fithout holding the handset. \(A\) useful office aid. On/ Fithout holding the handset. A useful ofice aid. On/ 3/6. Full price refunded if not satisfied in 7 dass. WEST LONDON DIRECT SUPPLIES (PE/3)
I6日 KENSITGTON EIGE STREET, LONDON, W

\section*{RADIO COMMUNICATIONS HANDBOOK}
by R.S.G.B. 63/- P. \& P. 4/6
USING SCOPES IN TRANSISTOR CIRCUITS by Middleton. 32/-. P. \& P. 1/9.
TRANSISTOR T.V. TRAINING COURSE by Middleton. 35/.. P. \& P. 1/9.
AM-FM-TV ALIGNMENT by Middecon. 30/-. P. \& P. \(1 / 6\)
49 EASY TRANSISTOR PROJECTS by Brown. 16/-, P. \& P. 1/3.
PRACTICAL OSCILLOSCOPE
HANDBOOK by Turner. 25/-. P. \& P. \(1 / 6\).
PRINCIPLES OF TRANSISTOR CIRCUITS new 4th ed. by Amos. 25/P. \& P. \(1 / 6\).

COMPUTERS SELF TAUGHT BY EXPERIMENTS by Brayton. 30/P. \& P. 1/6.

ELECTRONIC MUSICAL INSTRU. MENT MANUAL by Douglas. 55/P:\& P. 2/-.
AMATEUR RADIO ANTENNAS by Hooten. 351-. P. \& P. 1/6.
ELECTRONIC NOVELTY DESIGNS by Kampel. 8/6. P. \& P. I/-
HI-FI YEAR BOOK 1969 ED. 15/P. \& P. \(1 / 9\).

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

NEW RAMGE BBC 2 AERIALS
All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Loft Mounting Arrays, 7 element, \(37 / 6\), 11 element, 45,- 14 element, 525. 18 element, 7 element, \(60 / \mathrm{F}\). 11 element, \(67 /\). 14 element, 5/-. 18 element, 82/6. Mast Mounting with 14 element, 621-: 18 element \(70 \%\) Chimney Mounting Arrays, Complete, 7 element, 72/6; 11 element, \(80 /-\); 14 element, 87/6; 18 element; , \(/=\). Complete assembly instructions fith every il. Low Loss Cable, \(1 / 6\) yd. U.H.F, Prerequired on all orders.

\section*{BBC • ITV AERIALS}


BBC (Band 1). Telescopis " H ", 22.15 .0 .
ITV (Band 3), 3 element loft ITY (Band 3), 3 element loft 7 element, \(501-\). Wail mounting, 3 element, 47/6. 5 element, 52/6. Combined BBC/ITV. Loft
 \(1+5,67 / 6 ;\) Chimney \(1+3,67 / 6 ;\)
\(1+5,75 /-\). VERE transistor pre-amps,

COMBINED BBC1-TTV-BBC2 AERLALS \(+3+9,70 \% \quad 1+5+9,80 \%, \quad 1+5+14,50 \%\). \(1+7+14,100 /=\). Loft mounting only. Spechal
F.M. (Band 2). Loft S/D, 15/-, "H", 32/8, 3 lement, 55/- External units available. Co-ax.
 CALLERS WELCOME
OPEN ALL DAY SATURDAY

\section*{K.V.A. ELEGTRONIGS (Dept. P.E.) \\ 40-41 Monarch Parade London Road, Mitcham, Surrey 01.6484884}

\section*{DIOTRAN \\ SALES \\ P.O. BOX 5 WARE, HERTS TEL.: WARE 3442}

EX-COMPUTER PANELS I.B.M.
\(2 \mathrm{in} . \mathrm{x} 4 \mathrm{in}\), with TRANSISTORS, \(2 \mathrm{in}, x 4 \mathrm{in}\), with TRANSISTORS, DIODES, RESISTORS, CAPACITORS, etc. Over \(\frac{1}{3}\) million already Sold out to the Trade. c3 per 100 panels or \(£ 28\) per 1,000 panels. Plus earriage, charged extra at cost.

Post and Packing costs are continually rising
Please add \(1 /=\) towards same. CASH WITH ORDER PLEASE
OVERSEAS QUOTATIONS BY RETURN SHIPMENTS TO ANYWHERE INTGRN SHIPME
WORLD

OVER 3 MILLION SILICON ALLOY \& GERM. TRANSISTORS AVAILABLE

\section*{MANUFACTURERS' END OF}
\begin{tabular}{|c|c|c|c|c|}
\hline  & Pr & Qry. & Qry. & Qty. \\
\hline pean & & & Price & \\
\hline \[
\begin{gathered}
\text { Gel } \\
\hline
\end{gathered}
\] & \[
\mathrm{f} 3 .
\] &  & 1.000
\(\pm 25\) & 10,000 \\
\hline A2. Germ. A.F. T0-5 & El & 63 & \(\pm 25\) & ¢ 200 \\
\hline A3. Germ. A.F. TO-1 & E 1 & E 3 & 45 & E40 \\
\hline A4. Germ. R.F. TG-1 & £1.10 & 64.10 & 67. 10 & £60 \\
\hline A5. Germ. R.F. T0.5 & \(\pm 1.10\) & ¢ 4.10 & 67.10 & £60 \\
\hline A6. Germ. V.H.F. T0.I & £3.10 & E15 & 625 & E200 \\
\hline ixed Germ.A.F. & 15/- & E2.10 & ¢ 4 & E 32 \\
\hline 8. Germ. A.F. 2G300 & E2 & £7.10 & E12.10 & \$100 \\
\hline A9. Sil. Alloy P.N.P. T0-5 & \(\underline{\text { E } 2}\) & E7.10 & £12.10 & \(\pm 100\) \\
\hline Al to AT Guaranteed & 80 & & , & 8 \\
\hline
\end{tabular} NO OPEN OR SHORTS-ALL GOOD TRANS.
TEXAS SILICON ALLOY TRANSISTORS
\(\begin{array}{ll}25302 & \text { Eqvt. OC200 VcB40 Hfe 15-50 } \\ 2 \$ 303 & 1-49 \text { off } 3 / 6 \text { each }\end{array}\) 2 S 304 OC202 Vc815 Hfe 45-120 100 off \(3 / 6\) each ALL BRẢND NEW, FULLY GUARANTEED \& MARKED. HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO-7 Glass Type, suitable replacements for OA200, OA202, BAY38, ISI 30 , IS940. 200,000 to clear
at 44 per 1,000 pieces. GUARANTEED \(80 \%\) GOOD at 54 per 1,000 pieces. GUARANTEED \(80 \%\) GOOD. 2N3708A VCBIO Hfe \(20-60\). All marked TRANSISTORS. guaranteed. 1 off \(1 / 6\) each; 100 off 10 d . each: 500 off 9 d . each; 1,000 off \(7 \frac{1}{2} \mathrm{~d}\). each.
TO-18 METAL CAN SILICON PLANAR TRANSISTORS. VERY HIGH QUALITY 99\% good. Type 2N706 FULLY TESTED DEVICESAND

\section*{QUALITYGUARANTEED-SURPLUS} OA202 Silicon REQUIREMENTS
 ORPI2 Cadmium Sulphide Cell 1.000 up \(5 / 6\) each; 2597 Made each; \(100-9996 /\) each; BY 100 SIL. RECT'S 800 PIV 550 mA
-49 \(2 / 6\) each; \(50-992 / 3\) each; \(100-9992 /\) e each 1,000 up 1/10 each. Fully Coded. Ist Qlty.

THYRISTORS (S.C.R's), FULLY TO-5 CASE

\section*{Type No.}
\(2 N 1595\)
\(2 N 1596\)
\(2 N 1597\)
2 N1597
2N1599
\(8 T \times 30-500\)
\(8 T \times 30-600\)

\section*{O. 46 CASE (STUD) \\ Type No. \\ 2 N 1771
2 N 1772 \\ \(2 N 1772\)
\(2 N 1774\) \\ 2Ni774
2Ni776 \\ 2Ni777 \\ 2N1778 \\ 2N2619 \\ BTY79-150 \\ BTY79-400}

TO-48 CASE (STUD)
Type No.
2N682
2N683
2N683
2N685
2N685
2N687
2N687
2N688
2N688
\(2 N 689\)
2N689
2N690
2N691
2N69J
2N692


1/ each TESTED TRANSISTORS 1/BCl 108
BCl
8 FY 50 BC109
BFY50
\(8 F Y 51\)
BFX84
BFX86
BFX88
each SNE PRICEONLYPNP. NPN. each

SHLCON PLANAR I/-EACH.
\begin{tabular}{llll} 
2N696 & 2N1132 & 2N2220 & 2S733 \\
2N697 & 2N1613 & 2N3707 & 2N3391 \\
2N706 & 2N1711 & 2N3711 & T1S44 \\
2N708 & 2N29044 & 2S102 & 2N2906 \\
2N929 & 2N2905 & \(2 S 103\) & 2N2907
\end{tabular} Metal cases.

GERM. PNP AND NPN TRANSISTORS FULLY ACI25 TESTED, UNMARKED \(1 / 6\) EACH
\begin{tabular}{llllll} 
ACl25 & ACY22 & ACY36 & NKT677 & OC81 & \(2 G 381\) \\
ACl26 & ACY27 & NKT141 & NKT713 & OC82 & \(2 G 382\)
\end{tabular}
\begin{tabular}{llllll} 
ACl26 & ACY27 & NKT141 & NKT713 & OC81 & \(2 G 381\) \\
ACl27 & ACY28 & NKT142 & NKT773 & \(2 G 301\) & \(2 G 382\) \\
ACI28 & ACY29 & NKT212 & OC44 & \(2 G 302\) &
\end{tabular}
\(A C 128\)
\(A C 130\)
AC
\(A C Y\)
\(A C Y\)
\(\begin{array}{lllll}\text { ACY19 ACY3I NKT214 OC71 } & \text { AG308 } \\ \text { ACY20 ACY34 } & \text { NKT215 } & \text { OC72 } & 2 G 371 & 1 / 6\end{array}\)
ACY21 ACY35 NKT271 OC75 2G374 each
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{POWER TRANSISTORS} \\
\hline \begin{tabular}{l} 
OC25 \\
\hline 826
\end{tabular} & OC35 & NKT403 & AsZ17 & \\
\hline & & NKT & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Manufacturers' Surplus Germ. A.F. \({ }^{\text {a }}\) (13029}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
TRANSISTOR EQVT. BOOK \\
2,500 cross references of transistors-British, European American and Japanese. A must for every transistor user
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Sub. Min. Plastic
Amp Sil, Rect.
Type No. PIV
IN 4001
IN4001
iN4002
N
IN4002
IN 4003
\(\begin{array}{ll}N 4003 & 200 \\ N 4004 & 400\end{array}\)
\(\begin{array}{ll}\text { N4404 } \\ N & 400 \\ N\end{array}\)
N4006 800
IN4007 1.000

Vast mixed lot of subminiature glass diodes. Comprizing of Silicon, Germ., Point Contact and
500,000 available at Lowest of Low Price. 500,000 available at Lowest of Low Price.
1,000 pieces \(£ 3.0 .0\). 5,000 pieces \(£ 13.10 .0\). 10,000 pieces \(\mathbf{E} 23\).

\section*{but you can own a circuit tester for under fib}

THE HEATHKIT TEST TWINS are now available at just a fraction of the price of comparable models. How come? Because we have eliminated our assembly costs by giving YOU the satisfaction of building your own equipment.

\section*{HEATHKIT IT-18 PORTABLE IN-CIRCUIT TRANSISTOR TESTER}

Heath engineers have brought about a breakthrough in transistor servicing. They have taken the high cost of transistor testers and brought them down to earth. The IT-18 has all the facilities you need for fast, in-circuit transistor testing.

\section*{HEATHKIT IM-17 PORTABLE SOLID STATE VOLT-OHM METER}

Transistorised 'valve-voltmeter' with an 11 meg-ohm input impedance. Battery powered to work anywhere. Features zero-adjust controls, a DC polarity reversing switch to eliminate switching leads, plus continuous rotation 12 position function switch.

Full specifications of these and many other units will be found in our 1969 catalogue - it's yours for the asking.


\title{
S.E.S. YOUR \(\begin{aligned} & \text { YOMPLETE SUPPLIER }\end{aligned}\)
}

\author{
196 Regent Road, SALFORD 5, Lancashire TELEPHONE 061-872 5187
}
(Member of the Harrop Industrial Group)
C.W.O. please 1/- p. \& p. for orders of components under fl Orders of Lektrokit: 2/-handling charge on orders under Cl 5/- handling charge on orders under \(\in 5\)

RESISTORS: All brand new, Hi-Stab, low noise, \(5 \%\) tol. carbon film. E24 series 4.7 ohm to 10 M , 2d. each or \(15 /\) per 100 of one value. \(\frac{1}{2}\). \({ }^{2} 12\) series 2.2 ohm to 3.9 ohm , 8 d . each. IW EI2 series 10 ohm to 10 M . \({ }^{\frac{2}{2}}(10 \%\) tol.), 3d, each. 3 W -wirewound -0.5 ohm to \(12 \mathrm{ohm}, \mathrm{l} / 6\) each. 5 W -wirewound- 15 ohm to \(8-2 \mathrm{kohm}, 1 / 9\) each. S.E.S. Pre-Pack gives you 5 off each, \(5 \%\) resistors from 4.7 ohm to iM either \(\div\) or \(\frac{1}{2}\) watt. 65 different Yalues (E12)-ONLY 6212 s .6 d . ***NOW-IW carbon film \(5 \%\). E12 series
10 ohm to \(100 \mathrm{kohm}, 2 \mathrm{~d}\). each. ohm to 100kohm, 2d. each.
PRE-SETS: Min, skeleton carbon track, low noise with good stability; Values-Lin: \(1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}\), etc., to 5 M ; Log: \(5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}\), etc., to 1 Mohm,
only IOd, each. Sub-Min skeleton Lin. track: \(1 \mathrm{k}, 2.5 \mathrm{k}\), 5 k , etc., to 5 M , only only lod, each. Sub-Min skeleton Lin. track: \(1 \mathrm{k}, 2.5 \mathrm{k}\). 5 k , etc., to 5 M , only
9d. each. Slider pre-sets wirewound a , rating Lin: 10 ohm to \(5 \mathrm{k}, 2 / 3\) each. \(3 W\) wirewound fully enclosed Lin. tracks. 100 ohm to \(30 \mathrm{k}, 3 / 9\).
POTENTIOMETERS: Min. enclosed, carbon track and wiper contact only \(2 / 6 ;\) Values-Lin: \(1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}\), etc., to 10 M : Log: \(5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}\), etc., to
 Lin. tracks 50 ohm to 100 koh , \(3 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}\). 3 W wirewound
CAPACITORS: New genuine Mullard Electrolytics


Mullard Miniature Metallised Polyester 250V. 0.01, \(0.015,0.022,0.033\), Mullard Polyester. Film and Foil 400 V . \(22 \mu\) F. 7 Cd, each. \(0.0015,0.0022,0.0033,0.0047\),
 -2 \(\mu\) C ramics \(3 \mu \mathrm{~F}, 16.0 .47 \mathrm{~F}, 319\).
500V, 2-2pF to 820pF, 1/- each. ** NOW-Bead Tantalums (polarised) \(35 \mathrm{~V}, 0.4700 .68,1,000 \mathrm{pF}\), 5d, each. \(3 \cdot 3,4.7,6 \cdot 8 \mu \mathrm{~F}, 3 / 4\) each. \(20 \mathrm{~V} 10 \mu \mathrm{~F}, 15 \mathrm{~V} 22 \mu \mathrm{~F}\), \(1 \mathrm{IOV}^{\circ} 33 \mu \mathrm{~F}, 6 \mathrm{~V}, 47 \mu \mathrm{~F}, 3 / 9\) ea. \({ }^{2 / 6}\), Low Voltage Dise Ceramics \(20 \mathrm{~V}-0.01,0.022,0.047 \mu \mathrm{~F}, \mathrm{O}, \mathrm{d}\). each. 0.1,
0.22, \(1 / 3\) each. Midget Tubular Ceramics- \(0.002,0.003 \mu \mathrm{~F}\), 10 d , each.
SEMICONDUCTORS: All New and Unused
Mulard; OA5,4/6; OA81 3/4; OA2022/3, OC71 4/-: OC72 4/6; OC44 7/9; OC45 6/- BCIO7, 109 3/9 each; BC108 3/6; BFY51 4/6; MPF \(1059 / 6\). Silicon Reerifiers- \((0.5 A\) ) 400 piv \(2 / 9 ; 800\) piv \(3 /\)-; 1,500 piv \(3 / 6\); ( 1.2 A ) 400piv 6/-; 800piv 7/-: 1,500piv 7/6; (2.5A) 400piv 6/6; 800piv 7/6; 1,500piv \(2 \mathrm{~N} 29243 / 6 \mathrm{~A}\) and 2.5 A types are stud meunted-Anode). ***NOW-


SWITCHES: 100 series-SPST 3/8; SPDT 3/II; DPST 4/6; DPDT 4/8. 400 series SPST 3/2; SPDT 3/6; SPDT (with centre position) 3/8. Series \(500-\) push-to-make or push-to-break \(3 / 11\) each (push buttons available in white Miniarure "Maka-Switch" also available-Shafts \(5 /-\); Wafers \(5 / 4\) each. each.
PLUGS AND SOCKETS: Min. Plugs (black or red) Gd. Min. Socke
7d. Eanana Pluss (black or red) 9 d. 9 d . Conana plugs (black or red) 9 d . 4 mm Sockets to fit (black, red, green) \(2 /-\) each. Min. Jack Plugs and Sockers 1 ia . Sub-Min Jack Plugs and Socket 5 -way 3/-. Recorder Sockets 3 -way 1/2,5-way i Recorder Plugs 3-way 2/7
WIRE: Min. Stranded (available in 10 colours) 3d, yd. Solid Core 3d. yd.
14/0.0076in. Stranded 4d. yd. Min. Mains Lead i/3 yd. Min. Mierophone cable \(1 / 6\) yd. Stranded Cod. yd. Min. Mains Lead \(1 / 3 \mathrm{yd}\). Min. Mierophone
LAMPS: Min. Wire Ended Neons \(2 /-\); Panel Neon Indicator 6/4; Pilot
Light +12 V bulb \(8 /-\) : Min. Flange Light +12 V bulb \(11 /-\). Light +12 V bulb \(8 /-\) : Min. Flange Light +12 V bulb \(11 /-\).
SOLDERING IRONS: A.N.T.E.X. CN240 I5W mains operated, small, 32/6. E240 20W mains operated, specially shaped handle, 35/-. Spare bits and elements available. Also stands for above irons, \(11 / 6\) each. **PNOW-
SOLDER by Multicore-at Reduced prices to 20 coil \(60 / 40\) Alloy 22 s.w.z. in dispenser. Recome! Size A-Approx. 3-- OUR PRICE \(2 / 9\). Size B-APProx. 200 ft reel \(60 / 40\) dil retail price indiv Wire Stracked. Recommended retail price \(15 / \mathrm{m}\), OUR PRICE \(12 / 6^{2}\) : retail price \(4 / 6\), OUR PRRICE \(4 /-\). LEKTROKIT: Ch
construction. Parts to build a chassis 8 tem-the profersional look to a home
 available each \(4 \frac{1}{2} \times 4 \mathrm{in}\). Plain covers \(2 / 5\) each. 4 rubber feet 9 d , 7 boards aluminium board 2/2. Aluminium board drilled for 6 . valveholders \(87 G\) B8A, B9A, 2/6. Aluminium board drilled for 2 valveholders inters 87 G , octal, UX4, etc., 2/4. 0.1 in , perforated grid SRBP board, \(2 / 1\) international 0.1 in . and \(0.2 \mathrm{in}\). . \(6 / 6\) each. Clovelieaf sluminium board \(6 /-\). (Cloverleaf
lead throughs 6 d . each. Pins for SREP board \(4 / 6100\) ) lead throughs 6d. each. Pins for SRBP board 4/6 100.)
For full details of all our stocks send \(3 / 6\) for our bright explanatory 120 page catalogue, or 6d. stamp for Data Sheets.

\section*{ELECTROVALUE}

EVERYTHING BRAND NEW AND TO SPEC. NO SURPLUS

\section*{SPECIALIST SUPPLIERS OF TRANSISTORS}

IN TYPES TO SUIT ALMOST ALL APPLICATIONS - COMPETITIVE PRICES
- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE Our latest 1969 catalogue is packed with up-to-the-minute items and invaluable information. Send \(1 / 6\) for your copy now.
- DISCOUNTS \(10 \%\) on orders for components for £3 or more. \(15 \%\) on orders for components for \(\ddagger 10\) or more.
- POSTAGE on orders for \(£ 1\), add \(1 /\). FREE on orders for fl or over. Overseas orders welcome-Carriage charged at cost.

\section*{electinovalue}
(DEPT. PE), 32a ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY Telephone: Egham 5533 (STD 0784-3)


AMAZING MINI•DRILL


Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping Precision power for the enthusiast. Shockproof Completely portable power from \(4 \frac{1}{2}\) volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 79/6 p.p. \(2 / 6\).

De Luxe Professional Kit with 17 tools 130/- p.p. \(4 / 6\).
Money Ref. Guarantee.


Dept. PE6D, Nailsea, Bristol BSI9 2LP

\section*{The most accurate pocket size CALCULATOR in the world}

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send \(82 / 6\) for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE23) 54 Dundonald Road, London, S.W. 19

\section*{NEW! HSL. 700 MONO} TRANSISTOR AMPLIFIER
A really high
fidelity monaural amplifier with performance charac-
teristica to suit teriatics to
the most dis-
dis criminating listener. 6 transistor circuit with integrated preamplifier
assembled on assembled on
special printed sub panel.


AD161-AD162 operating in
pair. Output transformer coupled to 3 ohnt and 15 hm pair. Output transermer Standard phono input sockets. Full speaker sockets.
wave bridge rectifier power supply for a.c. mains \(200-\) Wave Coutrols: bass, treble, volume/on/off. Function selector for PU1. PL2, tape, radio. The HSL, 700 is
strongly constructed on rigid steel chassis bronze hammer strongly constructed on rigid steel chas
enamel finish,
size \(94 \times 5 \times 41 \mathrm{in}\). high.
Performance figures:
Sensitivity-PU1- \(50 \mathrm{~m} / \mathrm{s}\)
56 K input impedance.
PL2- \(110 \mathrm{~m} / \mathrm{v}, 1\) meg input impedace.
Tape- \(110 \mathrm{~m} / \mathrm{v}, 1\) meg input impedance
Tape- \(110 \mathrm{~m} / \mathrm{v}, 1\) meg input impedance.
Radio- \(110 \mathrm{~m} / \mathrm{y}, 1\) meg input impedance.
Output power measured at \(1 \mathrm{Kc}-6.2\) watts RMS into 3 Ohtput power measured at 15 k watts RMS into 15 ohm . Overall frequency response \(30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{s}\) : Continuously variable tone controls: Bass +8 db to -12 db at \(100 \mathrm{c} / \mathrm{s}\). Treble +10 db to -10 db at \(10 \mathrm{Kc} / \mathrm{s}\).
The HSL. 700 has been designed for true high fidelity reproduction from radio tuner, gramophone deck and tape recorder pre amp but is also capable of being used in
conjunction with a guitar by connecting to PU1 socket conjunction with a guitar by connecting to per bocket
and the peake output power will then be in the region of 15 watts.
Supplied complete with knobs, attractive anodised aluminium front escutcheon panel, long spindles (can be cut to suit your housing requirements) full circuit
diagram and operating instructions. Limited number. OUR SPECIAL PRICE \(\notin 7.19 .6\).

\section*{BRAND NEW 3 OHM LOUDSPEAKERS}
\(5 \mathrm{in} .14 /-; 61 \mathrm{in} .18 / 6 ; 8 \mathrm{in} .27 /-; 7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{in} .27 / 6\), E.M.L \(8 \times 5 \mathrm{in} . \mathrm{F}^{\text {with }}\) high fux magnet \(21 /-\). E.M.I. \(13 \frac{1}{2} \times\)
8in. with high flux ceramic magnet \(42 /-(15\) ohm \(45 /-)\). E.M.I. \(13 \times 8\) in. with two inbuilt tweeters and crossover network. 3 or 15 ohms 4 gns. P. \& P. \(5 \mathrm{in} .2 /-, 61\) \& \(8 \mathrm{in} .2 / 6\),
\(10 \& 12 \mathrm{in}, 3 / 6\) per speaker. 10 \& \(12 \mathrm{in} .3 / 6\) per speaker. BRAND NEW. 12 in . 15 W H \(/ \mathrm{D}\) Speakers.
By well-known British maker. Now with Hi Flux ceramic By well-known British maker. Now with Hi Fiur ceramic
ferrobar magnet assembly. 5 s.10.0. P. \& P. 5/., Guitar
 E.M.I. 3 In. HEAYY DUTY TWEETERS. Powérful cera-
nic niagnet. Available in 3 or 8 ohms 15 ;- each ; 15 ohns 18/8 each. P. \& P. \(2 / 6\). 12in, "RA" TWIN CONE LOUDSPEAKE
3!in. 12/6; \(7 \times 4 \mathrm{in} .21 /=\). P. \& P. 2/- per speaker.
LATEST COLLARO MAGXAYOX 363 STEREO TAPE DEEE. Three speeds 4 track, takes up to 7 in . spools. GUALITY PORTABLE TAPE RECORDER CASE. Brand new. Beautifuly made. Ontid 49/6. P. \& P. P, 8/6. Dqal Purpose Brlk Tape Eraser and Tape Head Demagaetiser \(35 /\).. P. dP. P. \(3 /\). High iup. for desk or hand use.
CRYSTAL MIKES. High sensitivity, 18/6. P. \& P. \(1 / 6\).
 CARBON
P. \& P. \(1 / 6\).

NEW S.T.C. TYPE 25 MINIATURE RELAYS 48 rolt. \({ }^{4}\) \&/p, e/0 contacts. 1 amp rating. Coil 8/6 each. P . \& P. \(1 / 6\).

SPECIAL OFFER: PLESSEY TYPE 29 TWIN TUNING GANG. \(400 \mathrm{pF}+146 \mathrm{pF}\). Fitted with trimniers and 5:1 integral slow motion. Suitable for nominal \(470 \mathrm{kc} / \mathrm{s}\)
I.F. Size approx. \(2 \times 1 \times 1 /\) in. Only \(8 / 6\). \(P\). \& \(P\). \(2 / 6\).

MAINS TRAFSFORMER. Primary 200-240V two separate \(\%\) Wave secondaries giving approx. 16 at at
1 amp and 20 Y at 1.2 amp; secs. can be connected in \({ }_{\text {series }} 1\) or 36 V at 1.5 amp . Ideal for transistor power supplies. Drop through mounting. Stack size \(2 * \times 3 \frac{1}{4}\) Zin. \(15 \%\). P. 8 P. \(6 / 1\).
MAINS TRAFSFORMER. For transistor power supplies. Pri. 200/240V. Sec. \(9-0-9\) at 500 mA . \(11 /\). P. \& P. \(2 / 6\). Pri. 200,240V. Sec. \(12-0-12\) at 1 amp. 14/6. P. \& P. \(2 / 6\).
Pri. 200/240Y. Sec. \(10-0-10\) at 2 amp. 27/6. P. \& P. \(3 / 6\). MATCEED PATR OF 21 WATT TRANSISTOR DRIVER fin. Output trans. tapped for 3 ohm and 15 ohm output.
ioj- pair plus \(2 \%-\mathrm{P}\). \&P.

\section*{HIGE GRADE COPPER LAMINATE BOARDS}

\section*{TRANSISTOR STEREO \(8+8\) MK II}

Now using siticon Transistors in first five stages on eact channel resulting in even lower noise level with improred sensitivity. A really firt-class Hi-Fi stere Amphner Kit Uses 14 transistors giving 8 watts push pull output per channel ( 16 W mono). Integrated pre-amp. with Bass, Treble and Volume controls. Suitable for use with Ceramic or crystal carcises. Ont design, all parts speakled including drilled metal work. Cir-K it board,
supplied attractive front panel, knobs, wire, solder, nuts, bolteyo extras to buy. Simple step by step instructions enable any constructor to build an ampiffer to be proud of. Briet specification: Freq. response \(\pm 3 \mathrm{~dB} .20-20,000 \mathrm{c} / \mathrm{s}\). Bass boost approx. to +12 dB . Treble cut approx. to -16 dB . Negative feedback 18 dB over main amp. Power requirements 25 V at 0.6 anp.
PRICES: AMPLIFIER KIT 210.10 .0 ; POWER PACK PRICES: AMPLIFIER KIT EA. AI Post Free. Circuit diagram, construction details and parts list (free with kit) 1/6. (S.A.E.).

\section*{Official stockists of all}

PEAK SOUND HI-FI EQUUPMENT zacluding the
P.W. DOUBLE 12 STEREO AMPLIFIER
as featured in Practical Wireless, April, May and June issues.
Component pack as specified.
2 Spools of "Cir-Kit"
2 Pre-amp and tone control kits
\({ }^{4}\) 3ini. \(\times\) 2in. "Cir-Kit" matrix
2 Boards Sin. \(\times 3 \neq 3 \mathrm{in}\).
2 PA. \(12-15\) Power Amp Kits
\({ }_{2}\) Heat Sink assernblies
\({ }_{2}^{2}\) Heat Sink assernblies
1 Pack-flat asrormosia teak finished cablnet kit 5 Controls as specified

Totsl cost \(£ 2\)
Plus P. £23. 5.6
Excluding metal work, knobs, plugs and sockets and fuses)

EPPECLAL PURCHASE:
 Heary 8 in in. metal turntable. \({ }_{250}^{\text {Low fitter perfornance }} \mathbf{V}\) shaded motor 90 V tap). Complete with latest type lightreight pick-up arm and mono cartridge with t/o
stylii for \(1 P / 78\) OXLY

QUALITY RECORD PLAYER AMPLIFIER MK II A top-quality record player amplifer emploving heary, duty double wound mains transformer, ECC83, EL84,
EZ80 valves. Separate Bass, Treble and Volume controls. Complete speaker. Size 7in.w. \(\times 3 \mathrm{~d} . \times 6 \mathrm{~h}\). Ready buill and tested.
ALSO AVAILABLE mounted on board with output ransformer and speaker ready to fit into cabinet below. DE LUXE QUALITX PORTABLE R/P CABINET MK II Encut motor board size \(144 \times 12 \mathrm{in}\)., clearance 2 in . ©elow, 5 in. above. Will take above amplifier and any B.S.R. or GARRARD changer or Single Player (except AT60 and
SP25). Size \(18 \times 15 \times 8 \mathrm{in}\).
 full circuit diagram of tuner head. Another special bulk purchase enables us to offer these at \(27 / 8\) each. P. \& P. \(3 /-\). GORLER F.M. TUNER HEAD, \(88-1003 \mathrm{Kc} / \mathrm{s} .10 .7 \mathrm{Mc} / \mathrm{s}\).

AMPLIFIER VE AUDIO
AMPLIFIER MODEL HA34 Designed for Hi-Fi reproduc'operation. Ready built on plated heavy gauge metal
chassis, size 71 in \(\mathrm{m}_{\text {. }} \times 4 \mathrm{in}\). d. \(\times\) \({ }_{4} 4 \frac{1}{2}\) in. h . Incorporates ECC83, EL84, EZ80 valves. Heary tuty, double wound mains
transformer and output trans-
 tive feedback line. Output, 41 watts. Front panel can be detached and leads extended for remote mounting of
controls. Complete with knobs, valves, etc., wired and controls. Complete with knobs, valves, etc., wired and

HSL "FOUR" AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely difierent and advanced BRAKD NEW TRANSISTOR BARGAINS. GET 15 (Matched Pair) 15/-; V15/10p, 10/-; 0C715/-; 0C766/-; AF117 \(3 / 8,2 \mathrm{G} 339\) (NPN) \(3 / \mathrm{F}\)
Set of Mullard 6 transistors
OC44, \(2-0 C 45, ~ A C 128 D, ~\) matched pair ACl28 25/;; ORP12 Cadmium Sulphide
Cell 10/B. All post free.

\section*{DE LUXE STEREO AMPLIFIER}
\[
\begin{aligned}
& \text { with negligible hum. } \\
& \text { Valve jine up:-2. }
\end{aligned}
\]
\(1 \times\) EZ80 as full wave rectifier. Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and right havd channels can be adjusted by means of a separate "balance" control fitted at the rear of the chassis. Input sensitivity is approximately \(300 \mathrm{~m} / \mathrm{v}\) for full peak output of 4 watts per channel 8 watts mono), into 3 ohm speakers. Full negative leedback in a carefully calculated circui, allows high Supplied levels to Overall height including valves 5 in . Ready built and lested to a high standard. Price 8 gas P. \& P. 8/

4-SPEED RECORD PLAYER BARGAIMS Mrins models. All brand new in makes's packing. mounted pick-up arm and mono cartridge. ..... \(\quad\). 5.5.0 B.S.R. UARS with latest mono compatible cart.
45.5.0
£6.18.8 All plus Carrigge and Packing b;6.
LATEST GARRARD MODELS. All tyges available 1025, 2025, SP25, 3000, AT00 etc. Send S.A.E. for Latest Prices! PLINTE UNITS cut out for (darrard Modele 1025, 2025. 2000,3000 , AT60, SP25. With rigid perspex cover. OUR

\section*{SONOTONE GTAEC} diamond stylug 50/- P. \& P. \(2 /-\) Compatible Cartridge for EP/LP/Stereo/78. \(32: 6\) P. P. \& P. \(2 /\).
no or to mono compatible Cartridge for艮有 FEW ONLY: AcOS EIGE-G Mono Cartridge for EP and


\section*{-}

Generous size Driver and Output Transformers - Output transformer tapped for 3 ohm and 15 ohm and matched pair of ACl28 o/p). 9 volt operation. - Everything supplied, wire, battery clips, solder, ete. - Comprehensive easy to follor instructions and circuit diagram \(2 / 6\) (Free with Kit). All parts sold separately.
SPECIAL PRICE 45/-, P. \& P. 3/.. Also ready built and tested, 52/6. P. \& P.

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gram amplifer using it double wound mains transformer, EZSO rectifier and ECL82 triode pentode vatve as audio ampliner and power output stage. and tone controls. Chassis size only 7 in . wide \(\times 3\) in. deep 6 in . high overall. AC mains 200240 V . Supplied absolutely Brand New completely wired and tested with valves and good quality output transformer. FEW ONLY.
\(\begin{aligned} & \text { ODR ROCK BOTTOM } \\ & \text { BARGAIN PRICE }\end{aligned} 49 / 6 \quad\) P.\&P.


Fully shrouded section wound output transformer to match \(3-15 \Omega\) speaker and 2 independent volume controls, and separate bass and treble controls are provided giving EZ80 rit and cut. Valve line-up 2 EL84s, EC83, EF 6 with parte). All parts sold separately, ONLY \&7.8.6. P, \& P. 8/6. Also available ready built and tested complete with std. Also available ready built and te
input sockets, s9.5.0. P. \& P. \(8 / 6\).

Open all day Saturday Early closing Wed. 1 p.m.
\({ }_{4}\) fero minutex from South Windledon
rube Station

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W. 19
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QTOTED APPLY TO J.E. OHLY. cianged extra.


\section*{Home Rado CATALOGUE}

Its the finest, most comprehensive Catalogue we have ever produced-this latest edition. It has 330 pages, over 8,000 items listed, over 1,500 of them illustrated. Everything for the keen constructor-including tools and test gear. With each Catalogue we supply a 30-page Price Supplement, a bookmark giving electronic abbreviations, and an order form. All for only \(8 / 6 \mathrm{~d}\) plus \(3 / 6 \mathrm{~d}\) post, packing and insurance. Moreover, every catalogue contains 6 vouchers, each worth \(1 /-\) when used as directed.

POST THIS COUPON NOW with cheque or P.O. for 12/-

The Price of 12/- applies only to catalogues purchased by customers residing in U.K.


MAIL ORDER

AVERY large number of constructors, possibly the majority, depend upon mail order for their components. Outside London and a few other large centres, facilities for personal shopping rarely exist. It must be acknowledged that the present day large scale amateur constructional activity is sustained in the main by the suppliers who provide this service through the post. Electronics enthusiasts in the more remote parts of the United Kingdom in particular have cause to be grateful for this development in retail distribution methods. The reader in Wick or St. Davids, for example, has access to precisely the same great range of components as the reader in the suburbs of London. This is only just and fair, for the individual living in a sparsely populated area is likely to be even closer wedded to his hobby than the person who suffers from a surfeit of counter attractions in town or city.

The mail order system has its own inherent weaknesses and because of certain shortcomings, this service is often a mixed blessing to those who are entirely dependent upon it for their component needs. From readers' correspondence, a number of points of criticism emerge. A frequent complaint is the impossibility of obtaining all requirements for one particular project from a single supplier. The need to write to several firms is time consuming and the project may remain uncompleted for a long while-maybe all for the want of a single item. This is exasperating to say the least; more seriously, it may cool the reader's enthusiasm for the hobby. Often a complaint of this nature is coupled with the suggestion that mail order suppliers should be encouraged to make up complete kits of parts for constructional projects published in this magazine.

We have every sympathy for readers who suffer this kind of frustration but we are also aware of the problems of the retail trade. The huge variety of electronic components on the market today is quite staggering. The average retailer can only stock a limited range of items and generally some form of specialisation is adopted which has economic advantages to both seller and purchaser. Regarding complete kits, even where an extensive range of components is stocked, it would not be a viable business proposition to make up kits for every design published. True, the more popular projects certainly seem to offer a lucrative business but the retailer would, by and large, have to back his own hunches for it is impossible to forecast the demand any particular design will arouse.
F. E. Bennett-Editor

\section*{CONSTRUCTIONAL PROIECTS}
STROBOSCOPE ..... 416
LINEAR SCALE OHMMETER ..... 427
P.E. ORGAN-2 ..... 440
PHOTOGRAPHIC ENLARGER EXPOSURE METER ..... 450
SPECIAL SERIES
OPERATIONAL AMPLIFIERS-1 ..... 421
COLD CATHODE TUBES-2 ..... 435
GENERAL FEATURES
OPTICAL CHARACTER RECOGNITION ..... 454
AN INTERNATIONAL
TECHNICAL LANGUAGE ..... 461
INGENUITY UNLIMITED ..... 465
NEWS AND COMMENT
EDITORIAL ..... 415
SPACEWATCH ..... 424
MARKET PLACE ..... 439
ELECTRONORAMA ..... 448
A.P.A.E. EXHIBITION ..... 453
NEWS BRIEFS ..... 458
POINTS ARISING ..... 458
LABEX EXHIBITION ..... 462
PHYSICS EXHIBITION ..... 469
READOUT ..... 470

\footnotetext{
All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELECTRONICS, IPC Magazines Ltd., FIeetway House, Farringdon Street, London, E.C.4. Phone: 01-236 8080.
Subscription Rates including postage for one year, to any part of the world, 42s. © IPC Magazines Ltd., 1969. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden,
}

THE stroboscope is basically a flashing light, the frequency of which may be varied from a few flashes per second to several hundred per second. If a rotating or vibrating object is viewed by this flashing light, and the flash frequency is adjusted until it coincides with the speed of rotation or vibration, then the object will appear stationary (the object will also appear stationary if the frequency of the flashes is a sub-multiple of the speed of rotation).

The complete unit consists of the four basic sections described below.

\section*{FLASH TUBE AND ASSOCIATED CIRCUITRY}

The flash tube (V1) is an NSP2 type which is capable of flashing at a maximum frequency of 250 Hz . The tube is gas filled and has four electrodes; the anode, the cathode and two grids or trigger electrodes.

If a voltage of between 220 and 380 volts is applied between cathode and anode, and a suitable voltage pulse is applied across the trigger electrodes, some of the gas in the tube is ionised and-conducts. This conduction triggers off a discharge between the cathode and the anode, and the tube emits a flash of light.

In the circuit described here, trigger 2 (Pin 4) is held about 50 V positive with respect to earth by the potential divider formed by R7 and R8; trigger 1 (Pin 5) is at earth potential. When it is required to fire the tube, trigger 1 is made negative with respect to earth, and when it is more than 50 V negative, the tube will fire.

Complete stroboscope showing flash head and front panel layout


To supply the large amount of energy required for the flash, it is necessary to connect a capacitor (C10 to C15) across the tube between cathode and anode. Between flashes this capacitor charges up to supply potential, and during the flash it is rapidly discharged through the tube releasing all the stored energy in a very short period.

Although paper capacitors are recommended for the discharge capacitors, the author has successfully used polyester types. However, it is not known if polyester capacitors will last as long as paper ones but they have the advantage of smaller size for the same capacitance; the final choice of type is left to the constructor.

\section*{TRIGGER CIRCUIT}

The trigger circuit consists of the capacitor C9, two resistors (R5 and R6) and the thyristor SCR1. The capacitor charges to supply potential through R5 and R6 between flashes. This means that, when C9 is fully charged, point " \(x\) " in Fig. 1 is positive with respect to point " \(y\) " which is at earth potential, since there is virtually no current flow through R6. When the thyristor is triggered it becomes a short circuit and earths point " \(x\) ". At this instant, point " \(y\) " is negative with respect to earth, C9 then discharges through R6. This fulfils the trigger requirements for the tube, as stated earlier, and hence the tube fires.

Once the thyristor has been turned on, it will not turn off until the current flowing through it falls below a value known as the holding current. As soon as C9 has discharged the only current which will flow through the thyristor is from the h.t. line through R5, therefore R5 must have a high enough resistance to limit the current to below the thyristor's holding current.

\section*{DESIGN POINTS}

When the holding current is known, R5 may be easily calculated from Ohm's law. If the holding current for the thyristor used is not known, R5 can be calculated by the following method.

Connect a voltmeter across SCR1 as shown in Fig. 2 (making R5, 6 kilohms). With the h.t. on, the full supply volts should appear across the thyristor. The gate of the thyristor should now be made about 4 V positive with respect to the cathode. This may be conveniently arranged by connecting a battery between the gate and the cathode (Fig. 2).

When the gate is made positive, the voltage across the thyristor should fall, almost to zero, showing that the thyristor has turned on. Removing the voltage on the


Fig. I. Circuit diagram of the stroboscope not showing the power supply
gate, should cause the voltage across the thyristor to return to the supply voltage, showing that it has turned off.

If the voltage does not reappear, the current through the thyristor is above the holding current, and R5 should be increased to the next preferred value. The above procedure is then repeated until the thyristor turns off as soon as the gate voltage is removed.

The thyristor specified requires about 50 mA holding current, therefore R5 is made 6.8 kilohms, limiting the current to 44 mA . The dissipation in R5 at 44 mA is about 13 watts, therefore R 5 must be at least a. 10 W resistor (maximum current is only passed for part of each cycle).

Because C9 is charged through R5 and R6, the sum of these resistors must not be too great, or C9 will not charge fully at higher flashing rates. The maximum flashing rate is 250 Hz (limited by the tube), therefore the shortest period of time in which C9 must charge will be four milliseconds, hence the maximum value of R5 + R6 is 40 kilohms ( R 6 is 10 kilohms, so that R5 + R6 will be 16.8 kilohms-well within the limit).

\section*{PULSE GENERATOR}

In order to turn the thyristor on, some form of pulse generator is required. There are certain conditions which the pulse generator must meet. These are:
(1) A pulse greater than 3 V is required, as this is the minimum gate turn-on voltage for the thyristor specified.
(2) The pulse should be a positive spike with a very short rise-time, in order to trigger the thyristor reliably.
(3) The pulse generator must be stable at any frequency.
(4) The generator must supply pulses over a. range of frequencies from 10 Hz to 250 Hz .

One form of pulse generator which meets all of these conditions is the unijunction transistor oscillator (Fig. 1); it also has the advantage of simplicity.

When a voltage is applied to the oscillator, one of the capacitors C3 to C6 (depending upon the position of switch S2), begins to charge through R3 and VR1 causing the voltage on the emitter of the unijunction to rise until, at a certain voltage, the unijunction fires.

Fig. 2. Set up for finding the value of R5


The capacitor then discharges through R4, producing a very fast pulse at the gate of the thyristor which turns it on.

The pulse generator gives the necessary frequency coverage in four ranges, 10 Hz to \(25 \mathrm{~Hz}, 20 \mathrm{~Hz}\) to 55 Hz , 50 Hz to 110 Hz , and 100 Hz to 250 Hz . The ranges are selected by switching the charging capacitor; frequency adjustment over each range is achieved by VR1. The range switch ( S 2 ) is a three pole switch; one pole switches the frequency range capacitors C 3 to C 6 and the other two poles switch the discharge capacitors C11 to C15.

\section*{EXTERNAL TRIGGERING}

The unit may be triggered externally thus enabling it to be synchronised with a rotating or vibrating object. This is particularly useful for observation of rotating machinery not having a constant speed. External triggering also enables the unit to be used for timing car ignition systems.

Socket SK3 is provided for trigger inputs and switch S3 selects internal or external triggering. With the switch in the external position, two triggering circuits are obtainable.

By shorting connections " \(b\) " and "c" on SK3 a low voltage pulse applied between " \(a\) " and earth will turn on the unijunction and trigger the thyristor in the normal manner. The second triggering method is to apply a pulse directly to the gate of the thyristor via connection " c " on SK3. In this case the pulse must be greater than the minimum triggering voltage of the


Fig. 3. Power supply circuit for the stroboscope


Fig. 4. Component layout and wiring of board "A"


Fig. 5. Component layout and wiring of board "B"
thyristor ( 3 V for the thyristor specified) and should have a fast rise time in order to trigger the thyristor reliably.

\section*{POWER SUPPLY}

The h.t. supply (Fig. 3) is obtained by half-wave rectification of the 250 V a.c. from the transformer by the rectifier D1-Cl provides some smoothing.

The low voltage required for the pulse generator is obtained by bridge rectification of the 6.3 volt heater supply from the transformer (T1) and, with smoothing provided by C 2 , this gives 9 V d.c. Very little current is

\section*{COMPONENTS . . .}

\section*{Resistors}
\begin{tabular}{ll} 
R1 & \(3 \cdot 3 \mathrm{k} \Omega\) \\
R2 & 270 W wirewound \\
R3 & \(470 \mathrm{k} \Omega\) \\
R4 & \(2 \cdot 2 \mathrm{k} \Omega\) \\
R5 & \(6 \cdot 8 \mathrm{k} \Omega\) \\
R6 & \(10 \mathrm{k} \Omega\) \\
R7 & \(56 \mathrm{k} \Omega\) \\
R8 & \(\frac{1}{2} \mathrm{~W}\) \\
R & \(10 \mathrm{k} \Omega\) \\
All & \(\frac{1}{2} \mathrm{~W}\) \\
All & \(10 \%, \frac{1}{4} \mathrm{~W}\) carbon except where stated
\end{tabular}

Potentiometer
VRI \(500 \mathrm{k} \Omega\) linear

\section*{Capacitors}
\begin{tabular}{|c|c|}
\hline Cl & \(8 \mu \mathrm{Felect}\). \\
\hline C2 & \(100 \mu \mathrm{~F}\) elect. 15 V \\
\hline C3 & \(0.01 \mu \mathrm{~F} 12 \mathrm{~V}\) \\
\hline C4 & \(0.022 \mu \mathrm{~F} \mathrm{I2V}\) \\
\hline C5 & \(0.068 \mu \mathrm{~F} 12 \mathrm{~V}\) \\
\hline C6 & \(0.22 \mu \mathrm{~F} 12 \mathrm{~V}\) \\
\hline C7 & \(0.1 \mu \mathrm{~F} 12 \mathrm{~V}\) \\
\hline C8 & \(0 \cdot 1 \mu \mathrm{~F} 12 \mathrm{~V}\) \\
\hline C9 & \(0.01 \mu \mathrm{~F} 400 \mathrm{~V}\) \\
\hline C10 & \(0.47 \mu \mathrm{~F}\) \\
\hline CII & \(1 \mu \mathrm{~F}\) \\
\hline \(\mathrm{Cl}_{\mathrm{C}}^{\mathrm{C}} 13\) &  \\
\hline C14 & \(0.47 \mu \mathrm{~F}\) \\
\hline C15 & \(0.47 \mu \mathrm{~F})\) \\
\hline
\end{tabular}

\section*{Semiconductors}

TRI TIS43 unijunction transistor
SCRI CRSI/40 400 p.i.v. |A thyristor
DI BYIOO
D2-D5 OA200 or OA202 (4 off)

\section*{Switches}

> S1 2 pole on/off toggle
> S2 Maka Switch shaft unit and 3 pole, 4 way wafer
> S3 2 pole change-over toggle

Transformer
TI Mains primary; secondary 250 V at 25 mA and \(6.3 \mathrm{~V}, 1 \cdot 2 \mathrm{~A}\) (Radiospares)

Flash Tube
VI NSP2 flash tube (Ferranti)

\section*{Sockets}

SKI Mains plug and socket (Bulgin type P429)
SK2 3 pin DIN socket
SK3 3 pin DIN socket
SK4 Mains plug and socket (Bulgin type P429)

\section*{Miscellaneous}
6.3 V panel lamp and holder

250 mA fuse and holder
Veroboard- 0.15 in pitch, \(4 \frac{1}{2}\) in \(\times 8\) in (see Figs. 4 and 5)
Case (see text)
Four mounting pillars ( \(1 \frac{1}{4}\) in \(\times \frac{1}{4}\) in diameter)
required by the pulse generator (of the order of 2 mA ), so almost any diodes will suffice for the bridge rectifier (D2 to D5).

\section*{CONSTRUCTION}

The unit is built on two pieces of veroboard; the low voltage supply components, pulse generator and trigger circuit on one board, and the h.t. supply components and the discharge capacitors (C10 to C15) on the other board. Layout of each board is shown in Figs. 4 and 5, the connections to the boards being made as shown.

The unit is housed in a case measuring 9 in \(\times 6\) in \(\times\) 5 in, the boards are mounted upright beside the mains transformer as shown in the photograph and Fig. 6.

Board " \(A\) " is fixed to the chassis by the two mounting brackets; board " \(B\) " is then attached to board " \(A\) " by four pillars. Both boards must be mounted well clear of all other components and the chassis.

The flash tube can be housed in a torch case or a special holder can be made up. The international octal base used for the NSP2 tube is mounted behind the reflector which must be cut away to clear the tube. If a special holder is made, an old car headlamp reflector can be used (it must be the old type-not a modern sealed beam unit).

Resistors R7 and R8 are mounted on the base and a three core mains lead and Bulgin plug connect the flash unit to SK4. Care must be taken to prevent any of the base connections from shorting to each other or the case.

Interior view of unit showing component layout. See Fig. 6



Fig. 6. Layout and wiring diagram of the complete stroboscope. Boards " \(A\) " and " \(B\) " and transformer Tl are shown removed for clarlty

Wiring between components mounted on the case and the boards (" \(A\) " and " \(B\) ") is given in Fig: 6 . No drilling details are given as these depend on the size and shape of the case and the components used. A suggested layout is shown (Fig. 6).

Wiring can be tidied up after construction by lacing wires coming from the boards into two looms and wires from the front panel and transformer into a third loom.

A socket is provided on the case for connecting a frequency meter, to measure accurately the frequency of flashing. The signal for the frequency meter is taken from b1 of the unijunction via a capacitor (C7) to SK2.

\section*{CALIBRATION}

The unit may be calibrated in several ways; the easiest is to connect a frequency meter to SK2. The meter will then give a direct reading of the flash rate, and VR1 can be calibrated (see photograph).

If an oscilloscope is available with a calibrated timebase, this may be connected in place of the frequency meter and the number of pulses displayed on the screen will give an indication of the frequency.

Another method makes use of a calibrated audio


Photograph of board "A" showing the mounting brackets and position of components
oscillator and an amplifier. If the oscillator is connected to the amplifier and loudspeaker, the loudspeaker can be observed by the light of the stroboscope. When the frequency of the signal from the oscillator coincides with the flash rate of the stroboscope; the cone will appear stationary; thus VR1 can be calibrated. Care must be taken with this method to ensure that the oscillator is not running at a multiple of the stroboscope frequency-the cone will also appear stationary if this happens.

It is best to start at the slowest flash rate which is about 10 flashes per second and synchronise the oscillator. If the oscillator is now kept in step with the stroboscope, the stroboscope can be calibrated without difficulty.

These are just a few methods of calibration; no doubt others will suggest themselves quite readily. Of course, if a frequency meter is always available, it may be used in conjunction with the stroboscope to give a continuous indication of frequency and thus eliminate the need to calibrate VR1.

When making a rotating object appear stationary with this instrument, it is very easy to forget that it is rotating, therefore great care should be taken when using the stroboscope, especially with powerful machinery.


Set up for calibrating the stroboscope using a frequency
meter-see text

\title{
EXPERIMENTS WITH THE OPERATIONAL AMPLIFIER
}

\author{
By G.K.FAIRFIELD
}

\begin{abstract}
The first of three articles dealing with this versatile type of amplifier and the many uses to which it may be put in measurement, test and general experimental work.
\end{abstract}

DURING experimental work, it is often required to make many different measurements of component values and circuit performance. The acquisition of individual bridges and meters to measure all of these can be a very expensive process. An alternative approach, suggested in this article, is to construct a circuit to do each job as it arises and take the circuit to pieces when it is no longer required.
This does not sound a. very practical proposition and in the past this would have involved careful design and construction, together with the necessary calibration procedures probably not available to the experimenter. With the advent of the operational amplifier this situation has changed and it is now quite feasible to construct, for example, an accurate inductance meter in less than half an hour, provided an a.c. meter, a source of alternating current (for example, 50 Hz mains voltage) and an operational amplifier are available.

Before beginning to describe the many uses to which this interesting device can be put, it will probably be necessary to explain to many readers what is meant by an operational amplifier.

\section*{WHAT IS AN OPERATIONAL AMPLIFIER?}

The operational amplifier was originally developed during the 1940's for use in high accuracy analogue computers. It is basically a d.c. amplifier having a very large gain and it is always used with components added to give a large amount of negative feedback around the circuit. To understand the basic function of an operational amplifier, consider the block schematic diagram in Fig. 1.1 and carry out a few simple calculations on it.

The d.c. amplifier shown in the diagram always consists of an odd number of amplifying stages so as to provide an inverted signal at its output terminals. We can therefore state that its gain is \(-A=-V_{0} / V_{\mathrm{i}}\).

The two elements \(Z_{i}\) and \(Z_{f}\) are added to provide negative feedback. The input element has an impedance \(Z_{\mathrm{i}}\) and the feedback element has an impedance \(Z\). We can see from the diagram that the input signal current to the amplifier, \(i_{i}\), is the sum of the current through the feedback network, \(i_{i b}\), and that through the input element, \(i_{\mathrm{s}}\).
\[
i_{\mathrm{i}}=i_{\mathrm{rb}}+i_{\mathrm{s}}
\]

Now if the voltages at the input and output of the whole network are \(\nu_{s}\) and \(\nu_{0}\), as shown, and the actual voltage at the amplifier input as \(v_{i}\), then using Ohm's Law:
\[
i_{i}=i_{\mathrm{Ib}}+i_{\mathrm{s}}=\frac{v_{\mathrm{o}}-v_{\mathrm{i}}}{Z_{\mathrm{f}}}+\frac{v_{\mathrm{s}}-v_{\mathrm{i}}}{Z_{\mathrm{i}}}
\]

The design of the d.c. amplifier (assumed in Fig. 1.1) is such that it has a very high input impedance so that its grid (or base in the case of a transistor amplifier)

current \(i_{\mathrm{i}}\) is very small indeed-in practice just a few millimicroamps. Consequently we can afford to ignore this in the calculation and put \(i_{\mathrm{i}}\) as zero which simplifies the above equation to
\[
\frac{v_{0}-v_{i}}{Z_{\mathrm{f}}}+\frac{v_{\mathrm{s}}-v_{\mathrm{i}}}{Z_{\mathrm{i}}}=0
\]

Substituting for \(v_{i}\), and the output voltage \(v_{o}\) divided by the amplifier gain \(-A\),
\[
\frac{v_{0}+\frac{v_{0}}{A}}{Z_{\mathrm{i}}}+\frac{v_{\mathrm{s}}+\frac{v_{0}}{A}}{Z_{\mathrm{i}}}=0
\]
and since \(A\) is very large, usually several tens of thousands or more, the value of \(v_{0} / A\) is very small compared with \(v_{o}\) or \(v_{s}\) and can also he neglected.

Consequently we can write a much simplified equation
\[
\frac{\nu_{o}}{Z_{\mathrm{i}}}+\frac{\nu_{\mathrm{s}}}{Z_{\mathrm{i}}}=0
\]
or by rearrangement
\[
\frac{\nu_{\mathrm{o}}}{v_{\mathrm{s}}}=-\frac{Z_{\mathrm{i}}}{Z_{\mathrm{i}}}
\]

This is the fundamental and very important relationship of an operational amplifier and shows that the input/output gain of the device depends entirely on the ratio of \(Z_{\mathrm{i}} / Z_{i}\) and will not be affected by the internal characteristics of the amplifier itself.
Thus the transistors or valves used in the amplifier can deteriorate, or applied h.t. voltage fall off considerably, before any change in the gain of an operational amplifier is observed. This, of course, assumes that \(Z_{\mathrm{f}} / Z_{\mathrm{i}}\) does not become very large (less than 100) which is always the case with a practical amplifier.

As a consequence of this relationship we can, by suitable choice of components for \(Z_{\mathrm{i}}\) and \(Z_{\mathrm{f}}\), make the gain of the amplifier vary in strict accordance with these impedance values. It is this fact which is made use of in the various measuring circuits to be described in the following pages.

\section*{AN INDUCTANCE METER}

By using such an amplifier (a few typical designs are described later) we now have an accurate device with which to measure a number of electrical values.

Consider first the measurement of inductance. The circuit is shown in Fig. 1.2. Here \(Z_{i}\) is a pure resistance, of value \(R_{\mathrm{i}}\) ohms, and the feedback network is an unknown inductance, value \(L\) henries. To measure its

value, set the input alternating voltage at a suitable frequency and measure the output voltage on an r.m.s. reading a.c. voltmeter.
The inductance value is given as
\[
L=\frac{v_{0} R_{i}}{2 \pi f v_{\mathrm{s}}} \text { henries }
\]

If a signal generator is available the frequency can be set to, say, 800 Hz , and \(v_{\mathrm{s}}\) as 4 volts which simplifies reading the inductance value off the meter scale.
The meter shows the direct-reading in inductance, where 1 volt a.c. represents \(0.05 \mathrm{H}, 0.5 \mathrm{H}\), or 5 H depending on the value of \(R\) chosen.
This will be made clear in the table given below which shows the inductance range available for different values of \(R_{\mathrm{i}}\).

Table I.I: INDUCTANCE RANGES ON METER
\begin{tabular}{lcc}
\hline \begin{tabular}{l} 
L-range \\
f.s.d. (henries)
\end{tabular} & \(R_{1}\) (ohms) & \(v_{0}\) (volts) \\
\hline \(0-0.5\) & 1,000 & \(0-10\) \\
\(0-5.0\) & 10,000 & \(0-10\) \\
\(0-50.0\) & 100,000 & \(0-10\) \\
\hline
\end{tabular}

If a signal generator is not available a 50 Hz voltage from the low voltage secondary of a mains transformer can be used. This is, in any case, more convenient for larger values of inductance (say greater than 1 H ).

If we choose 6.3 V r.m.s. from a transformer secondary winding then the selection of suitable values of \(R_{\mathrm{i}}\) will again enable a simple-to-read meter scale relationship to be obtained (see Table 1.1).
If smaller values of inductance are required to be measured then a signal generator must be used and the frequency set at 8 kHz , when the inductance ranges in Table 1 will be divided by 10 .
Mathematically inclined readers may be interested in how the equation for inductance value was derived.
If the grid current, \(i_{i}\) of the operational amplifier is very small, and tends to zero, then the input current from the signal generator ( \(i_{\text {s }}\) ) passes through \(R_{1}\) and \(L\) in series and we can write for this current,
\[
\begin{aligned}
& i_{\mathrm{s}}=\frac{v_{\mathrm{s}}}{R_{\mathrm{i}}} \\
& v_{\mathrm{s}}=v_{\mathrm{s}(\max )} \sin \omega t
\end{aligned}
\]
where \(v_{\mathrm{s}(\text { max })}\) is the maximum value of \(v_{\mathrm{s}}\) and \(\omega\) is \(2 \pi\) times frequency \(f\). The output voltage developed across \(L\) is
\[
v_{0}=L\left(\frac{\mathrm{~d} i_{\mathrm{s}}}{\mathrm{~d} t}\right)
\]

Substituting for \(i_{\mathrm{s}}\) and evaluating we have,
\[
v_{0}=L\left(\frac{v_{\mathrm{s}(\max )}}{R_{\mathrm{i}}}\right) \omega \cos \omega t
\]
which gives by rearrangement (ignoring the phase shift),
\[
L=\frac{v_{0} R_{\mathrm{i}}}{2 \pi f v_{\mathrm{s}}}
\]

The point to note is that the circuit performs the mathematical operation of differentiation and this gives one reason why operational amplifiers are extremely valuable in analogue computer operation.

\section*{A CAPACITANCE METER}

Exactly the same arrangement can be used in order to measure capacitance. The circuit is shown in Fig. 1.3 and, in this case, the unknown capacitor \(C\) takes the place of the input resistance \(Z_{i}\) in the operational amplifier circuit shown in Fig. 1.1. The feedback network is a resistance of value \(R_{\mathrm{fb}}\) ohms. The capacitance value is given by
\[
C=\frac{\nu_{0}}{2 \pi f R_{\mathrm{i}} v_{\mathrm{s}}}
\]

Here again the frequency of the signal generator can be chosen to facilitate meter reading. This cán be made 600 Hz and \(v_{\mathrm{s}}\) as 26.5 V r.m.s. The range will then depend on \(R_{\mathrm{i}}\) as seen from Table 1.2.

Table 1.2: CAPACITANCE RANGES ON METER
\begin{tabular}{ccc}
\hline \begin{tabular}{c} 
C-range \\
f.s.d. (pF)
\end{tabular} & \(R_{\text {fb }}\) (ohms) & \(v_{\text {o (volts) }}\) \\
\hline \(0-1,000\) & 100,000 & \(0-10\) \\
\(0-10,000\) & 10,000 & \(0-10\) \\
\(0-100,000\) & 1,000 & \(0-10\) \\
\hline
\end{tabular}

Table I.3: HIGHER CAPACITANCE RANGES ON METER
\begin{tabular}{ccc}
\hline \begin{tabular}{c} 
C.range \\
f.s.d. \((\mu \mathrm{F})\)
\end{tabular} & \(R_{t \mathrm{D}}\) (ohms) & \(\mathrm{v}_{\mathrm{o}}\) (volts) \\
\hline \(0-0.1\) & 51.000 & \(0-10\) \\
\(0-1.0\) & 5,100 & \(0-10\) \\
\(0-10.0\) & 510 & \(0-10\) \\
\hline
\end{tabular}

For larger values of \(C\) (say greater than \(0.01 \mu \mathrm{~F}\) ) the mains frequency of 50 Hz can be used. If the signal source is 6.3 V r.m.s. as before, then the calibration for the meter (which can be a \(0-10 \mathrm{~V}\) a.c. meter) is simplified as shown in Table 1.3.
The derivation of the capacitance equation follows similar lines to that given for the inductance circuit \(v_{\mathrm{s}}=v_{\mathrm{s}(\text { max })} \sin \omega t\) as before and
\[
i_{\mathrm{s}}=C\left(\frac{\mathrm{~d} v_{\mathrm{s}}}{\mathrm{~d} t}\right)
\]

The output voltage developed across \(R\) is:
\[
v_{\mathrm{o}}=i_{\mathrm{s}} R_{\mathrm{i}}=C R\left(\frac{\mathrm{~d} v_{\mathrm{s}}}{\mathrm{~d} t}\right)
\]

Substituting for \(v_{s}\) and evaluating gives
\[
\nu_{\mathrm{o}}=C R_{\mathrm{i}} \omega \nu_{\mathrm{s}(\text { max })} \cos \omega t
\]

From which by rearrangement the original equation for \(C\) is
\[
C=\frac{v_{\mathrm{o}}}{2 \pi f R_{\mathrm{i}} v_{\mathrm{s}}}
\]

This too can be described mathematically as a differentiation circuit.

\section*{A MEGOHMMETER}

Measurement of resistance values up to several hundreds of megohms can be carried out simply with the operational amplifier circuit in Fig. 1.4. A d.c. supply of up to 10 V , a 10 V d.c. meter, and a precision input resistance \(R_{\mathrm{i}}\) are required in addition to the operational amplifier.

The resistance to be measured \(R_{\mathrm{fb}}\) is connected across the amplifier feedback path; the value may be read on the meter scale. This will be
\[
R_{\mathrm{fb}}=R_{\mathrm{i}}\left(\frac{v_{\mathrm{o}}}{v_{\mathrm{s}}}\right) \text { megohms }
\]
where \(R_{\mathrm{i}}\) is in megohms.
Table I.4: RESISTANCE RANGES ON THE METER
\begin{tabular}{lcl}
\hline \begin{tabular}{c}
\(R-\) range \\
f.s.d. (megohms)
\end{tabular} & \(R_{i}\) (megohms) & \(v_{0}\) (volts) \\
\hline \(0-5\) & 0.1 & \(0-10\) \\
\(0-50\) & 1.0 & \(0-10\) \\
\(0-500\) & 10.0 & \(0-10\) \\
\hline
\end{tabular}


Fig. I.4. Operational amplifier used as a megohmmeter


Fig. 1.5. Switching voltmeter between input and output of megohmmeter

Notice that an accurate source of voltage is not required. Only the ratio \(v_{o} / v_{s}\) is required; this can be read by putting the meter across input and output terminals in turn (see Fig. 1.5).
From the point of view of easy scale reading it is convenient if \(v_{s}\) is fixed. If \(v_{s}\) is chosen to be 0.2 V , then the output meter can be calibrated directly in megohms as given in Table 1.4.

\section*{HIGH INPUT IMPEDANCE ATTACHMENT}

The need often arises to measure a d.c. voltage at a high impedance point in the circuit where an ordinary multi-range meter will not be suitable. This type of meter usually has an internal resistance of 20,000 ohms/ bolt and will load the circuit much too heavily.

The operational amplifier circuit in Fig. 1.6 will achieve this type of measurement with very little loading. The input resistance \(R_{\mathrm{i}}\) can be made very many megohms; the combination of low impedance meter and operational amplifier will have the characteristics of a vacuum tube voltmeter.

Choice of component values for the feedback network is important since, if \(R_{\mathrm{fb}}\) is too large, some noise will be introduced into the circuit.

For a gain of -1 we must make \(R_{2} / R_{3}=R_{\mathrm{i}} / R_{\mathrm{fb}}\). For an input resistance of, say, 10 megohms ( \(R_{\mathrm{i}}\) ) and a reasonable value for \(R_{\mathrm{fb}}\), say 1 megohm, then \(R_{2}\) could be 100 kilohms and \(R_{3}=10\) kilohms which will give an extremely satisfactory performance.

Next month: The operational amplifier used to measure very small currents and voltages.


Checking all stages of Mariner-Venus satellite

\section*{SPACELWATEH By Frank W. Hyde}

\section*{ROBOT REPAIR SATELLITE}

The Aero-Propulsion Laboratory of the U.S. Air Force awarded a contract to the General Electric Corp. of America for a study of an android type of satellite which could perform rescue and repair operations in space. It would also be required to maintain satellites in space. The robot would be operated entirely by a remote control system which could be Earth based or in a nearby space vehicle.
The scheme envisages quite sophisticated techniques since there would be a kind of "force feedback" so that the remote operator could "feel" the moment-to-moment contact operations of the manipulators. The application of manipulative methods that have been developed over the past few years, both mechanical and bio-electrical, would enable the operators to be in complete control with all data transmitted back to his hands at any moment.

Present limitations on completely remote control of such delicate actions is one of time lag. In near space, such as for vehicles in earth orbit, there would be no difficulties but for vehicles at moon distances the effect of the communication time lag would become significant. A specification based on previous work has been put forward by Richard \(H\). Blackner of GEC.

The robot repair satellite would consist of two master slave arms and hands, the telemetry system, and a television system mounted on a manoeuvrable satellite under remote control which carries tools and spares.

Remote firing of directional thrusters could bring the roving satellite to that needing attention and the television cameras would enable the remote operator to couple the two together. Experimental packages could be exchanged, mechanical maintenance of parts carried out, and so on.

One of the special purposes would be to keep satellites in longer operational condition by regular maintenance and or replacement of defective parts.

\section*{FRENCH WORK IN ROCKET ASTRONOMY}

The French National Centre for Space Research have developed a rocket stabilisation system to enable small telescopes to be mounted on a rocket for measurements above the atmosphere.
The inertial platform system called "Cassiopea" can attain fine pointing on certain flights. The system can be used with solid or liquid fuel rockets. The fine pointing device has so far only been used with liquid fuel rockets.

The pointing accuracy is claimed to be one degree using the inertial platform alone and half a degree using fine pointing. Two star trackers are used to lock the system. The size of the mirror system is about 50 cm .

\section*{WIND PHOTOGRAPHED BY RADIO TELESCOPE}

The first photographic records of the extremely violent winds that occur in the fringe areas of the earth's atmosphere have been made in Australia. These were obtained by Dr B. H. Briggs and his team at the University of Adelaide using an aerial system of 89 aerials mounted on poles 10 metres high and carrying 16 km of wire covering an area of \(2 \mathrm{~km}^{2}\).
Pulses from a transmitter are reflected from cloud like formations appearing at a height of between 80 and 640 km above the Earth and picked up by the aerial system. Each aerial is connected to a radio receiver which carries the reflected impulses to a control system which varies the brightness of lamps. The moving pattern across these light screens corresponds to the upper atmosphere wind.
The array was completed by the staff and students of the University in three years at about one third the cost of putting the work out to contract.

\section*{ROCKETS TO PROBE SOLAR ECLIPSE OF 1970}

At Quoddy Inlet, Canada, Nova Scotia scientists are planning to use Black Brant III rockets to probe the upper atmosphere during the eclipse of the sun next year. There will be two experiments, one carried out under DrA.G. McNamara which will make a direct measurement of the variation of electron density and positive ion densities over the complete trajectory of the rocket. This
means that there will be two measurements of the D - and E-regions.

The other experiment will be under the direction of Dr J. S. Belrose and will measure the differences in the propagation of radio waves using a ground based transmitter which radiates circularly polarised pulse pairs. This will provide a measure of the density of the electrons up to a height of 80 km .

The sequence of the experiments will be arranged so that the first rocket will be fired six minutes before the moon begins to pass between the earth and the sun so that the undisturbed condition of daytime ionisation can be used as a base level. The other three rockets will be fired when about 80 per cent of the suns disc is occulted by the moon.

Previous ground based observations have shown that the greatest changes in ionisation occur between this period of obscuration, reaching a maximum some six minutes after total obscuration. The three rockets will therefore be fired at intervals of six minutes starting just before totality and ending just after the sun reappears.

\section*{CANADA'S THIRD SATELLITE}

Isis-A Canada's third artificial satellite is a follow up of the two previous successful Alouette I (1962) and Alouette II (1965) both of which are still doing extremely useful work. The new addition is in a near polar orbit which is elliptical and measures 350 nautical miles at perigee and 1,890 nautical miles at apogee.
The purpose of Isis-A is similar to the previous satellites, namely to make a study of the ionosphere in time and space.

In all, ten experiments are planned and one of these will be a fixed frequency device to map horizontal electron density; another will record vertical density. The other experiments will include the measurement of particle temperature, densities, composition, and radio noise. A v.l.f. receiver will pick up signals generated by lightning.

\section*{AGAINST THE BIG BANG}

A recent experiment has been performed by scientists in a joint effort between Cornell-Sidney University Astronomy Centre and the Naval Research Laboratory in Washington. This has produced results that seem to cast doubts on the big bang theory.

An Aerobee rocket was launched carrying a liquid helium cooled telescope to a height of 170 km . Also contained in the rocket were four solid state detectors which were sensitive to a wavelength between 1.3 millimetres and 0.5 microns. The signals recorded in the range were found to be two orders of magnitude greater than was to be expected, namely 8.3 degrees Kelvin as against the 3.0 degrees Kelvin required to support the "big bang" theory.

\section*{PRACTICAL! \\ VISUAL! Nm Mn}

\section*{a new 4-way method of mastering} by doing - and - seeing..
\begin{tabular}{|c|c|c|}
\hline 1 OWN and & \[
\begin{aligned}
& \text { BUILD } \\
& \text { and USE }
\end{aligned}
\] & 3 READ and \\
\hline complete range of presentday ELECTRONIC PARTS and COMPONENTS & a modern and professional CATHODE RAY OSCILLOSCOPE & UNDERSTAND CIRCUIT DIAGRAMS \\
\hline  &  &  \\
\hline
\end{tabular}

4CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING
VALVE EXPERIMENTS
TRANSISTOR EXPERIMENTS
AMPLIFIERS
OSCILLATORS
SIGNAL TRACER

PHOTO ELECTRIC CIRCUIT
COMPUTER CIRCUIT
BASIC RADIO RECEIVER
ELECTRONIC SWITCH
SIMPLE TRANSMITTER
A.C. EXPERIMENTS
D.C. EXPERIMENTS
- SIMPLE COUNTER

TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge'required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.
\begin{tabular}{|c|c|}
\hline POST NOW & To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives \\
\hline IILBROCHURE & NAME ............................................................................................... BLOCK CAPS \\
\hline | or write if you prefer not to cut page & ADDRESS.......................................................................................... PLEASE PE 4 \\
\hline
\end{tabular}

\section*{ELECTRONIC COMPONENTS AND EQUIPMENT HR NEW RECOMMENDED LINES AT VALUE FOR MONEY PRICES}
* 3 SPEED 9 YOLT RECORD PLAYER DECK \(\begin{gathered}\text { Brand new Eritish made deks. } \\ \text { records. } \\ \text { Fitced crystal }\end{gathered}\)

* TRANSISTOR

CHECKER
Complete capacity for checking all transistors npn and pnp for alpha, beta
and German. Also diodes complete with leads and instructions ZQM-2,
\&5.19.6, p.p. 3/6.

* MULTIMETER Return of a popular
model. \(2000 \mathrm{ohms} / \mathrm{V}\) model. 2000 ohms/V 1000 V
\(0 / 50 \mu \mathrm{~A}: 0 / 10^{\text {a.c.ld.c. }}\) d.c. 01101100 mA 1M』 resistance dB and capacitance scales. Size Sin \(x\) \(3 \frac{1}{2}\) in \(\times 1 \frac{1}{2} \mathrm{in}\). Robust and easy to use. Complete with

\section*{leads, batteries and} THL33A, Price 82/6.

\section*{* SPECIAL OFFER OF EMI}

TWEETERS
- \(2 \frac{1}{2}\) in units \(6 / 8 \mathrm{~W}, 5 \mathrm{kc} / \mathrm{s}\) to \(15 \mathrm{kc} / \mathrm{s}\), 8 ohms (suitable for \(3-8 \mathrm{ohms}\) ). Price 2/6, p.p. \(1 / 6\)
For 3 to 8 ohms- \(10 / 12 \mathrm{~W}, 3 \mathrm{kc} / \mathrm{s}\) to \(20 \mathrm{kc} / \mathrm{s}\). For 12 to 16 ohms-Price 20/-, P.p.p. 2/-.
\(\star\) SPRING REVERBERATION
* SPRITS

16 ohms input, \(10 k \Omega\) output. Twin spring units. Model HR42, \(9 \frac{1}{3}\) in overall, 25-30msec delay, Price 55/-
Model HR162, \(16 \frac{7}{6}\) in overall, \(35-40 \mathrm{msec}\) delay, Price \(\mathrm{f}^{6.10 .0 \text {. }}\)

\section*{\(\star\) GRID DIF \\ METER}

All transistor grid dip meter, absorposc. detector. Fre quency range \(440 \mathrm{kc} / \mathrm{s}\) to \(280 \mathrm{Mc} / \mathrm{s}\) in 6 coils. Uses 3 transistors diode with \(500 \mu \mathrm{~A}\) meter.
TEIS, Price EII.I0.0.

* FIELD
* FIELD METER
Covers \(1-250 \mathrm{Mc} / \mathrm{s}\)
Switches for model control and any applieation requiring peaking of transmitters and osciliators. \(100 \mu \mathrm{~A}\) with aerial.
FSI, Price 45/-
* SIGNAL INJECTOR

C \(>\) man
New model for checking all audio and RF up tod VHF. Simple to use. Batery operated. Output approx. \(1 \mathrm{kc} / \mathrm{s}, 1 \cdot 4 \mathrm{~V} p\). Harmonics up to
SE250B, Price 35/-.
TO3'SCOPE \&35, p.p. 10/-.

\section*{* Quality panel meters} 38 (D.C. RANGES) ( 1 in \(\mathrm{in} \times 1\) isin) Face size \(42 \times 42 \mathrm{~mm}\) \(200 \mu \mathrm{~A}, 32 / 6 ; 500 \mu \mathrm{~A}, 27 / \mathrm{B} ; 1 \mathrm{~mA}, 5 \mathrm{~mA}\) \(10 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 25 /-\) each \(10 \mathrm{~V}, 20 \mathrm{~V}, 50 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}\) and 500 V 25/- each; IA and 5A, 25/- each. "S" meter, \(1 \mathrm{~mA}, 29 / 6\). VAm meter, \(37 / 6\).
65 Series. Face size \(86 \times 78 \mathrm{~mm}\) 65 Series, Face size \(86 \times 78 \mathrm{~mm}\) \(137,{ }^{3 / \mathrm{in})}, 50 \mu \mathrm{~A}, 62 / 6 ; 100 \mu \mathrm{~A}, 52 / 6\);
\(200 \mu \mathrm{~A}, 47 / 6 ; 500 \mu \mathrm{~A}, 45 /-1 \mathrm{~mA}, 5 \mathrm{~mA}\), \(10 \mathrm{~mA}, 500 \mathrm{~mA}, 37 / 6\) each. "S' meter 1 mA, 42/6. Other ranges and sizes a railable.
Complete list on request.


EXPERIMENTER'S MODULE Terrific offer of brand
new STC time delay new STC time delay
electronic
units. electronic \(\begin{aligned} & \text { Adjusfable } \\ & \text { 3-1 } \\ & \text { units. } \\ & \text { recs. }\end{aligned}\) 9-12V \({ }^{2}\) operated. Supplied complete Circuits. STC Module Price 35/-.
\(\star\) CHASSIS PUNCH KIT


Complete kit with punches \(\frac{1}{2} \mathrm{in}\), \(\frac{1}{\mathbf{1}} \mathrm{in}, \frac{1}{4} \mathrm{in}\),
 16 gauge. Price 55/-, p.p. \(4 / 6\).

\section*{\(\star\) SWR}

ALIGNMENT METER
Ideal for allt ransmiteer alignment, Built-in field strength mezer Ready to use. SWR Ready to use
\(1: 1\) to \(1: 3\).

SWR-3, Price 69/6, p.p. 2/6.

* TRANSISTORISED
INTERCOMMS


2-station, \(£ 3.10 .0\); 3 -station, \(\mathbf{4 5 . 1 5 . 0}\) 4-station, E6.12.6. Mains operated, -station, uses no wires \(\mathbf{1} 11.19 .6\).
Front Door Intercom \(90 /\).

Did you know we stock cver 1,000 Transistors and Devices?
Ask for Latest FREE List (No. 36).
* MAKE YOUR OWN PRINTED RCUITS


Supplied complete with copper boards. Templates for shapes, all necessary fluids and pastes. Easy to use. Box forms dishes. Price 17/6, p.p. 2/-
* BUILD THIS MWILW TUNER


Complete high quality superhet tuner. Built-in ferrite rod. Battery operated. Will feed any amplifier. Printed circuit construction, \({ }^{3}\) transistors plus diode.
To Build, \(79 / 6\), p.p. \(2 / 6\).

\section*{CATALOGUE}

320 pages with \(10 /\) - Discount
Vouchers. Price \(7 / 6\), p.p. 2/-
- SALES ASSISTANTS WANTED

\title{
Linear \\ scale
} OHMMNETER

\section*{By A. FOORD}

This ohmmeter eliminates reading interpolation difficulties, allows the use of standard linear scale meters, and can be used to test transistors safely

ACONVENTIONAL ohmmeter has a non-linear scale (Fig. 1a) which may cover several decades. Whilst this enables a multimeter to cover a wide ohmic range, a meter with a linear scale (Fig. 1b) has several other advantages.

The meter can be read more easily and more accurately, because only a ten to one range is covered and because equal scale divisions make interpolation easer.

Also a standard linear meter scale can be used.' This is most important as anyone who has paid several pounds for a microammeter, in order to build a multimeter, is unwilling to attempt to calibrate an extra scale. In any event, most meters have an arrow type of pointer rather than a knife edge, so that there is no room for the extra scale.

\section*{BASIC CIRCUITS}

The basic circuit for a linear scale ohmmeter is given in Fig. 2. This circuit consists of a constant current generator connected in series with the resistance to be measured (Rx). Since the current through \(R x\) is maintained constant, the voltage measured is directly proportional to its resistance. Thus, by choosing a suitable scale, the voltmeter can be directly calibrated in terms of resistance. No zero or f.s.d. adjustments are
required, because once set up, accuracy depends on the stability of current regulation rather than on adjustments to compensate for changes in battery voltage. With the circuit finally chosen a drop in battery voltage of 15 per cent has little effect on reading accuracy.

If we take an example where \(I\) is kept constant at 1 mA and we can measure from 0 to 10 volts then, from Ohm's law:
\[
E=I R \quad \text { or } \quad R=\frac{E}{I}
\]
then, since \(I\) is constant at \(1 \mathrm{~mA}: R \propto V\) in kilohms. For a 1 kilohm resistor we would measure 1 V and for a 10 kilohm resistor we would measure 10 V . One method of obtaining a constant current is shown in Fig. 3.

The emitter of the transistor will remain at approximately 0 V , so that 1 mA will flow through the transistor and the unknown resistance.

This circuit has the disadvantage that the voltmeter must take a current which is small in comparison to \(I\), so that the majority of the current does in fact flow through the unknown resistance. While this is possible when \(I\) is greater than 1 mA (using a meter of \(100 \mu \mathrm{~A}\) f.s.d.) this would no longer be possible if \(I\) is reduced to \(100 \mu \mathrm{~A}\) or less.


Fig. Ia. The non-linear scale of a conventional ohmmeter


Fig. Ib. A linear-scale, as used in the linear-scale ohmmeter

Fig. 2 (below). The basic circuit of the linear scale ohmmeter
Fig. 3 (right). A simple constant current generator



An additional difficulty with this circuit is that the transistor might not have a good current gain at such a low collector current. What we require is a method of sensing the current through Rx regardless of the current through the voltmeter, and this leads to the basic arrangement of Fig. 4.
Here the current \(I\) develops a voltage \(V_{R}\) across a standard resistance \(R\) and this voltage is compared (by a differential amplifier " \(A\) ") with a reference voltage \(\left(V_{r}\right)\) of 5.6 volts.

If \(V_{\mathrm{R}}\) is greater than \(V_{\mathrm{r}}\) the amplifier alters the base current of the series transistor (TR2 in Fig. 5) to reduce its collector current, so that \(V_{\mathrm{R}}\) is made equal to \(V_{\mathrm{r}}\). The current \(I\) is maintained by this negative feedback. loop at a value determined by:
\[
I=\frac{V_{r}}{R}
\]

By switching \(R\) we can obtain constant currents between \(10 \mu \mathrm{~A}\) and 10 mA , provided we observe the following points.


Fig. 4. Block diagram of the linear scale ohmmeter

\section*{DESIGN NOTES}

The amplifier A must take much less than \(10 \mu \mathrm{~A}\) from the \(R_{x}, R\) chain. It does not matter that, in fact, it takes \(1 \mu \mathrm{~A}\) ( 10 per cent of the lowest current range) since it remains constant. Hence we can allow for the fact that, on the lowest range, \(9 \mu \mathrm{~A}\) rather than \(10 \mu \mathrm{~A}\) will flow through R ; on the other ranges this \(1 \mu \mathrm{~A}\) drain has no significance.
If \(R_{x}\) is zero, M1 will read zero and no current will flow through the meter, if \(R_{x}\) has a finite value M1 will read and draw current through TR2; however, since this current does not flow through the sensing resistor \(R\), the constant current \(I\) is in no way affected.
If a Zener diode is used to provide the 5.6 volt reference, \(I\) will remain constant for small changes of Zener current.
In our practical circuit \(V\) can be measured by any meter with a 0 to 10 V range provided it consumes not more than 1 mA for f.s.d. A 1 mA meter and appropriate series resistor ( 10 kilohms less the meter resistance) is used, but the 10 V range of a multimeter would serve equally well.
No protection device is needed to prevent damage to the meter, since even with the measuring terminals open circuit only 13 V appear across the meter; although this drives the meter over full scale, no harm will result.
\begin{tabular}{|ccccc|}
\hline \multicolumn{5}{c|}{ Table I } \\
\hline\(R\) & \(560 \mathrm{k} \Omega\) & \(56 \mathrm{k} \Omega\) & \(5.6 \mathrm{k} \Omega\) & \(560 \Omega\) \\
1 & \(10 \mu \mathrm{~A}\) & \(100 \mu \mathrm{~A}\) & 1 mA & 10 mA \\
\(R_{X}\) & \(1 \mathrm{M} \Omega\) & \(100 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

Values of \(R\) from 560 ohms to 560 kilohms give constant currents from 10 mA to \(10 \mu \mathrm{~A}\) and ohms ranges from 1 kilohm f.s.d. to 1 megohm f.s.d. (Table 1).

\section*{PRACTICAL CIRCUIT}

The practical circuit is shown in Fig. 5; there are several points worthy of mention.
On the lower current ranges (less than 1 mA ) the collector current of TR2 would be 2 mA or less (including current demanded by the meter). This current is increased by adding R4, to avoid the drop in transistor current gain which occurs at low collector currents.

To avoid high frequency instability in what is basically a feedback stabilised power supply, two measures are incorporated which are effective on all ranges with the terminals open or short circuited.

Firstly a capacitor C2 is included across the terminals to ensure that they are always connected together as far as h.f. is concerned. Secondly \(\mathrm{C1}\) is connected from the collector of TR1 to the negative rail to "roll off" the amplifier frequency response at a low frequency. Since TR1 only passes a collector current of \(100 \mu \mathrm{~A}, \mathrm{C} 1\) should be a low leakage type, preferably tantalum; its value is not critical.

\section*{CONSTRUCTION}

Construction is straightforward and shown by the photograph and drawings. Veroboard was used for the amplifier, which is mounted on the meter terminals, as shown in Fig. 6.
The complete amplifier should be constructed and all external wires attached (Fig. 7)-these cannot be added once the amplifier is mounted. The amplifier can then be mounted to the meter terminals.


Fig. 5. Practical circuit of the linear scale ohmmeter


Fig. 6. Amplifier mounting details


\section*{COMPONENTS . . .}

Resistors
\(\left.\begin{array}{ll}\text { R1 } & 2.7 \mathrm{k} \Omega \\ \text { R2 } & 6.8 \mathrm{k} \Omega \\ \text { R3 } & 12 \mathrm{k} \Omega \\ \text { R4 } & 5.6 \mathrm{k} \Omega \\ \text { R5 } & 560 \Omega \\ \text { R6 } & 5.6 \mathrm{k} \Omega \\ \text { R7 } & 56 \mathrm{k} \Omega \\ \text { R8 } & 560 \mathrm{k} \Omega \\ \text { All } \pm 10 \% \text {, } \frac{1}{4} \mathrm{~W} \text { carbon except where stated }\end{array}\right\} \pm 2 \%, \frac{1}{4} \mathrm{~W}\), high stab. (see text)

\section*{Capacitors}
\(\mathrm{Cl} 1 \mu \mathrm{~F}\) elect. or tantalum 24 V
C2 \(0.1 \mu \mathrm{~F}\) polyester
Transistors
TRI 2N3707
TR2 2G302
TR3 2N3707
Miscellaneous
MI 0-10V f.s.d. (see text)
SI Single pole on/off switch
S2 Single pole, 4 way wafer switch
SKI Two way polarised plug and socket
Terminals, insulated ( 3 off)
Diecast box \(4 \frac{1}{4}\) in \(\times 3 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}\)
Veroboard
18 V battery
For modification components see Fig. 9

\(2 N 3707\)
26302
both vizwed from
underside

Fig. 7. Layout of the amplifier and underside of the Veroboard

Fig. 8. General layout and wiring of the unit. Components and wiring shown by broken lines represent the "add on" modification for easier transistor testing


Fig. 9. Circuit modification to provide a calibration control


Due to the layout employed there is insufficient clearance on the amplifier board to anchor the board to the positive meter terminal without shorting the copper strips. The board must be spaced above the back of the meter and secured to the positive terminal only (Fig. 6).
The ohmmeter can then be wired up as shown in Fig. 8 but, at this stage, the sensing resistors R 5 to R8 should not be connected.

\section*{TESTING AND CALIBRATION}

Switch to range 2 (1mA current) and solder in R6 ( 5.6 kilohms), then switch the unit on. With the terminals open circuit the meter should read over full scale; if the battery voltage is reduced to 12 volts the meter should now read about \(6 \cdot 5 \mathrm{~V}(12 \mathrm{~V}-5 \cdot 6 \mathrm{~V})\). If this is satisfactory return the supply to 18 V . Next short circuit the terminals and check that the meter reads between 0 V and \(0 \cdot 2 \mathrm{~V}\). This small voltage represents the difference in base to emitter voltages of TR1 and TR3; the mechanical zero of the meter can be adjusted to obtain a zero reading.

There are several possible methods of calibration depending on the accuracy required. If the Zener voltage is exactly 5.6 V and the resistor exactly \(5 \cdot 6\) kilohms, then the current would automatically be correct at 1 mA . Our readings would then only depend on the accuracy of the voltmeter.

The simplest arrangement is to use close tolerance resistors for sensing and accept any errors due to Zener and voltmeter tolerances. Then the maximum error is:

Voltmeter error ( \(\pm 2\) per cent f.s.d.) + Zener tolerance ( \(\pm 5\) per cent) + Resistor tolerance ( \(\pm 2\) per cent).

Hence, using this method, we could expect an accuracy of \(\pm 10\) per cent of f.s.d. for all ranges except the 1 megohm range (we have not allowed for the \(1 \mu \mathrm{~A}\) drawn by the amplifier).

A better approach is direct calibration at f.s.d. against known resistors of \(1,10,100\) kilohm and 1 megohm. If we take the 10 kilohm range as an example; connect the 10 kilohm standard across the terminals (SK1). If the meter reads high then the
constant current is high and must be reduced. It is possible that another 5.6 kilohm resistor would give the required f.s.d. Select a resistor to give a low reading on the meter (going to 6.8 kilohms or 8.2 kilohms if necessary and shunt it with a higher value (start at 68 kilohms) until the meter reads f.s.d.

This can be repeated for the other ranges using appropriate values. A potentiometer and a series resistor could be used for each range provided there is room in the box. With careful setting up an accuracy of \(\pm 2\) per cent of f.s.d. can be achieved, using this method for each range.

\section*{MODIFICATIONS}

The setting up procedure outlined has the disadvantage that it is laborious and depends on the Zener voltage; a change of Zener diode would mean recalibrating to obtain the previous accuracy. To overcome this a modified circuit can be used to provide an f.s.d. setting arrangement (Fig. 9).

In this case the sensing resistors can be 2 per cent high stability types to maintain range to range consistency (the 560 kilohm may need adjustment). VR1 is adjusted to set f.s.d. on a known resistor. The emitter follower TR4 has to be used in order to pass the meter current.
When the test terminals are open circuited the base of TR3 is connected to 0 V (via the range selection resistor) while the emitter is maintained positive and 0.6 V below the Zener voltage. For Fig. 5 this amounts to a reverse bias on the base-emitter junction of TR 3 of 5 V , which is within the maximum rating of 6 V for the 2 N 3707.
With the modified circuit (Fig. 9) this reverse bias could reach 6.2 V (for a nominal Zener voltage of 6.8 V ) and is dangerously near the maximum rating. To prevent damage to the transistor should breakdown occur, a 22 kilohm resistor must be included in series with TR3 base to limit the position reverse current to a safe value.
Since under normal working conditions the current bias into the base of TR3 is small, the 22 kilohm resistor in no way affects normal circuit operation, and can also be included in the wiring in Fig. 7 as an added safety measure if required.

\section*{USES OF THE OHMMETER}

The linear scale ohmmeter can be used for a variety of applications apart from its normal use as an ohmmeter. Some of these uses are described in detail below. The theory behind these uses and the limitations of each method are given where applicable.

\section*{ZENER DIODE TESTING}

The unit can be used as a constant current source to test Zener diodes. The graph (Fig. 10) shows a normal Zener diode operated from \(10 \mu \mathrm{~A}\) to 10 mA and the reverse breakdown voltage of the base-emitter junction of a 2N709 transistor. Since the junction is quite small currents of less than 1 mA were used.

It is interesting to note that the transistor breakdown voltage remained constant down to low levels while the conventional Zener diode voltage fell. This is because the Zener diode was designed to pass currents of up to approximately 50 mA , while the base-emitter junction of the transistor was only designed to dissipate a few milliwatts and is inherently a low current Zener diode.

\section*{TRANSISTOR TESTING}

The unit can be used to test small signal transistors, with the advantage that the possibility of damaging the transistor is reduced. The possible tests have been divided into two sections, one covering tests on \(n p n\) transistors and the other for \(p n p\) transistors.

\section*{NPN TRANSISTORS}

\section*{Reverse Base-emitter Breakdown Voltage}

As suggested in the previous section this can be measured at currents of up to 1 mA without damaging the transistor.

\section*{Collector Saturation Voltage}

This can be measured as shown in Fig. 11. If the base is shorted to the emitter, the transistor will turn off and the meter will read over f.s.d. If the base is connected to +18 V via a resistor, the transistor will turn hard on and the meter will read almost zero \((0.3 \mathrm{~V}\) for a germanium transistor and 0.7 V for a silicon transistor).

\section*{DC Current Gain}

For this arrangement the base is connected to the collector via a resistor (Fig. 12). Most of the constant current ( \(I\) ) is passed through the collector and the base


Fig. 10. Graph of results obtained when testing a 5.6V Zener diode and the base-emitter breakdown voltage of a 2N709 transistor


Fig. II. Arrangement to measure collectoremitter saturation voltage in an npn transistor


Fig. 12 Arrangement to measure current gain in an npn transistor
current has to be ( \(I / h_{\mathrm{f}}\) ) which means that the collector voltage must go to ( \(I / h_{\mathrm{fe}}\) ) \(\times R\) volts to maintain the correct base current.
\[
\begin{aligned}
\text { Collector current } & =I \mathrm{~mA} \\
\text { Base current } & =\left(I / h_{\mathrm{e}}\right) \mathrm{mA} \\
\text { Collector voltage } V & =\left(I / h_{\mathrm{f}}\right) R \text { volts }
\end{aligned}
\]

Rearranging:
\[
h_{\mathrm{fe}}=\frac{I R}{V}
\]

We must use resistor values and constant current values appropriate to the transistor.

\section*{Example 1:}

Choose \(I=1 \mathrm{~mA}, R=100\) kilohms
The maximum voltage which can appear across the transistor is 13 V . Therefore the maximum transistor dissipation \(=13 \mathrm{~mW}\).

These values are suitable for almost all small signal transistors with gains up to 100 times. A 2N709 transistor gave a reading of 6 V .
Therefore \(\quad h_{\mathrm{ie}}=\frac{100}{6} \simeq 16\left(I_{\mathrm{e}}=1 \mathrm{~mA}\right)\)

\section*{Example 2:}

Choose \(I=10 \mathrm{~mA}, R=10\) kilohms
Maximum transistor dissipation \(=130 \mathrm{~mW}\)
The same 2N709 transistor now read 4 V .
Therefore \(\quad h_{\mathrm{fe}}=\frac{100}{4}=25\left(I_{\mathrm{c}}=10 \mathrm{~mA}\right)\)
Example 3:
To observe the effects of leakage, a high gain germanium transistor was tested (2N1308).

Choose \(I=1 \mathrm{~mA}, R=1\) megohm
With the base open circuit the meter read 8 V showing that leakage was quite high. With the 1 megohm resistor connected, the meter read 4 V .

Therefore \(\quad h_{\mathrm{fe}}=\frac{1,000}{4}=250\left(I_{\mathrm{c}}=1 \mathrm{~mA}\right)\)
With a high leakage transistor it might be necessary to use a collector current of 10 mA in order to avoid leakage problems.

\section*{PNP TRANSISTORS}

Reverse Base-emitter Breakdown Voltage
This can be measured in the same way as for npn transistors, but taking note of the reverse polarity required (Fig. 13).


Fig. 13. Arrangement to measure base - emitter reverse breakdown voltage of a pnp transistor


Fig. 14. Arrangement to measure saturation voltage of a pnp transistor


Fig. 15. Arrangement to measure current. gain of a pnp transistor -


Fig. 16. The circuit of an "add on" unit designed to aid transistor testing

\section*{Collector Saturation Voltage}

This can be measured at 1 mA collector current by connecting a resistor to the 0V rail (Fig. 14).

\section*{D.C. Current Gain}

Again, this can be measured by using a resistor between base and collector (Fig. 15).
Example 1:
A V205 transistor was tested \(I=1 \mathrm{~mA}\), \(R=100\) kilohms, \(V=4 V\)

Therefore
\[
h_{\mathrm{fe}}=\frac{100}{4}=25
\]

Example 2:
Transistor was 2G302, \(I=1 \mathrm{~mA}, R=100\) kilohms, \(V=1.4 \mathrm{~V}\)
\[
\text { Therefore } \quad h_{\mathrm{fe}}=\frac{100}{1 \cdot 4} \simeq 70
\]

Since this collector voltage of 1.4 V is lower than we would normally run the transistor, the current should be increased to 10 mA (the transistor is rated at 200 mW dissipation so we will be within its limits).
Using the same transistor, \(\quad I=10 \mathrm{~mA}\), \(R=100\) kilohms, \(V=6.5 \mathrm{~V}\)
Therefore \(\quad h_{\mathrm{fe}}=\frac{1,000}{6.5} \simeq 150\)

\section*{MODIFICATION TO INCORPORATE TRANSISTOR TESTER}

By adding an extra terminal and a four-way switch several tests can be made (Fig. 16). For a given switch position the function measured depends on the type of transistor ( \(p n p\) or \(n p n\) ), see Table 2. The positions and their uses are set out below for both \(p n p\) and \(n p n\) transistors.

\section*{FOR PNP TRANSISTORS}

\section*{Position 1}

The transistor is held hard off by the resistor to a positive rail and the meter should read over f.s.d. for currents of 10 mA or 1 mA , unless the transistor is shorted or its collector to emitter breakdown voltage is less than 10 V .

\section*{Position 2}

In this position the transistor is only slightly held off by the resistor between the base and emitter. As an example the 2G302 read over f.s.d. on all ranges except the \(10 \mu \mathrm{~A}\) where it read \(0 \cdot 1 \mathrm{~V}\).
\begin{tabular}{|cll|}
\hline \multicolumn{4}{c|}{ Table 2 } \\
\hline Range & \multicolumn{4}{c|}{ PNP Test } & NPN Test \\
\hline 1 & Short c-e & Saturation at ImA \\
2 & Leakage & Gain \\
3 & Gain & Leakage \\
4 & Saturation at ImA & Short c-e \\
\hline
\end{tabular}

\section*{Position 3}

Here the resistor is connected to the collector and gain can be measured from the formula \(h_{\mathrm{fe}}=I R / V\).

\section*{Position 4}

If \(I\) is set to 1 mA , the transistor will saturate (meter reads 0.3 V or 0.7 V ) if \(h_{\mathrm{fe}}\) is greater than 10 .

\section*{FOR NPN TRANSISTORS}

Exactly the same tests can be applied, except that the switch positions are reversed.
Position 1
If \(I\) is 1 mA the transistor will saturate, if it has a \(h_{\mathrm{fe}}\) greater than 20 (the voltage available to force current into the base of the transistor is lower in this configuration).

\section*{Positions 2 and 3}

These positions are as for the pnp transistors.

\section*{Position 4}

Here the transistor is held off by 5.6 V , which could cause the base-emitter junction to break down, but this is harmless since the current is limited to less than 0.2 mA .


\title{
USE THE SOLDORNG IRONS THE PROEMSSONAT USE
}

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour
catalogue will be supplied on request.

CN 15 watts, fitted \(\frac{3}{32}{ }^{\prime \prime}\) Ferraclad bit. The leading iron. for miniature and micro miniature assemblies: 18 interchangeable bits from .040 ( \(1 . \mathrm{mm}\) ) up to \(\frac{3}{16}\) " for \(240,220,110,50\) or 24 volts.


PRECISION MINIATURE
SOLDERING IRONS
Made in England
Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8
Telex: 45296 Giro No. 2581000
T-

\section*{COMPLETE PRECISION SOLDERING KIT}

Supplied in its own compact, rigid plastic container and includes all of these items: CN 15 watts 240 volts miniature model ( \(\frac{3}{16}{ }^{\prime \prime}\) ) bit -2 interchangeable spare bits ( \(\frac{5}{32}{ }^{\prime \prime}\) and \(\frac{3}{32}{ }^{\prime \prime}\) ) - reel of resin-cored solder - heat sink for soldering transistors - felt cleaning pad - soldering iron stand' - storage space for lead and plug.


Model G -18 watts. Fitted with \(\frac{3}{32}{ }^{n}\) bit. Interchangeable spare bits \(\frac{y^{\prime \prime}, \frac{3}{16}}{}{ }^{4 \prime}\) and \(\frac{t^{\prime \prime}}{}{ }^{\prime \prime}\). For 240,220 or 110 voits. \(32 / 6\)

actual size


\title{
MARTINIS HIGH FIDELITY
}

Details from:-

How would you like to start with a simple amplifier, say, and add to it untit it became a fully slereo twenty watt amplifier with FM tuner and facilities to take the most sensitive low output pickups ever made? With Martin Audiokits it's easy, for with theso superbly engineered all-transistor prefabricated units, success is built in from the start and you build to your own preferred plan. IT'S A MONEY SAVING SCHEME, TOO.
- Trade enquíries invited.

MARTIN ELECTRONICS LTD., 155 High Street, Brentford, Middlesex. ISLeworth 1161

\section*{To MARTIN ELECTRONICS, 155 High Street Brentford, Middlesex}

I have not had your leaflets before. Please send them on FM TUNER \(\square\) RECORDAKITS \(\square\) (Tick as required)

\section*{NAME}

\section*{ADDRESS.}

PE

VALVES
SAME DAY SERVICE NEW! TESTED! GUARANTEED!
 Set of 4 for 186. DAF96, DF96, DK96, DL96, 4 for 281


\section*{READERS RADIO (P.E.) 85 TORQUAY GARDENS, REDBRIDGE, ILFORD; ESSEX. \\ Tel. O1-550 7441}

Postage on 1 valve 9d. extra. On 2 valves or more, postage 6 d . per alve extra. Any Parcel Insured against Damage in Transit 6d. extra.

\section*{DIMMASWITCH}


This is an attractive dimmer unit which fits in place of the normal wall light switch. The mounting plate is ivory to match modern fittings and the control knob is in bright chrome. An ON/OFF switch is incorporated to control up to 500 watts at mains voltages from \(200-250\) volts.

These are normally sold at \(£ 4\) 19s. 6d.our price is \(£ 355\). We also offer at \(E 2\) 15s. a complete kit of parts with simple instructions enabling you to build this dimmer yourself.

The circuit uses the latest miniature RCA triac and new diac triggering device to give complete reliability. Radio interference suppression is included.

\section*{DEXTER \& COMPANY}

14 Endsleigh Gardens, Chester CH2 ILT Chester 26432

\section*{NEW 1969 EDITION \\ RADIO AMATEUR'S HANDBOOK \\ By A.R.R.L. \\ 45/- \\ Postage \(4 / 6\)}

SERVICING ELECTRONIC ORGANS, by Carl R. Pittman. 30/-. Postage I/-.
USING SCOPES IN TRANSISTOR CIRCUITS, by Robert G. Middleton. 32/e. Postage \(1 /\).

TRANSISTOR POCKET BOOK, by R. G. Hibberd. \(25 /\). Postage \(1 /\) -

ELECTRONIC MUSICAL INSTRU. MENT MANUAL, by Alan Douglas. 55l.Postage 1/-.
TELEVISION ENGINEERS' POCKET BOOK, by J. P. Hawker. 21/-, Postage 1/-.

HI FI YEAR BOOK, 1968/9, edited by Miles Henslow. 15/. Postage 1/-

RAPID SERVICING OFTRANSISTOR EQUIPMENT, by Gordon J. King. 30/-. Postage 1/-
RADIO COMMUNICATION HAND. BOOK, by R.S.G.B. 63/-. Postage 4/6. CATALOGUE, \(2 /\) -

\section*{THE MODERN BOOK CO.}

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

\section*{COMPONENTS \\ BY RETURN OF POST} MULLARD POLYESTER CAPACITORS ( \(\pm 10 \%\) )
400 Voit \(0.0 .001 \mu \mathrm{~F}, \quad 0.0015 \mu \mathrm{~F}, \quad 0.0022 \mu \mathrm{~F}\) \(0015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 7 \mathrm{~F}, 0.01 \mu \mathrm{~F}, \quad 6 \mathrm{~d}\). \(0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}\), 9 d .
160 Vott; \(0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 6 \mathrm{~d}\) \(0.33 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d}\). \(0.1 \mu \mathrm{~F}, 8 \mathrm{~d}\) \(1 / 4 d\). \(0.68 \mu \mathrm{~F}, 2 /-\mathrm{j} .0 \mu \mathrm{~F}, 2 / 6 \mathrm{~d}\).
250 Volt. P.C. Mounting Miniature; \(0.01 \mu \mathrm{~F}\) \(0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 7 \mathrm{~d}\). \(0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 8 \mathrm{~d}\). \(0.15 \mu \mathrm{~F} 10 \mathrm{~d}\). \(0.22 \mu \mathrm{~F}\), \(1 /-\) SUB-MINIATURE ELECTROLYTIC CAPACITORS ( \(-10 \%\), \(+50 \%\) ) 6 Volz 50 values
\begin{tabular}{llrrr}
10 Volt & 6.4 & 10 & 16 & 320 \\
10 & 20 \\
15 Volt & 25 & 64 & 125 & 200 \\
25 Volt & 10 & 16 & 25 & 40 \\
40 Volt & 8 & 10 & 16 & 25 \\
4 & 32 & 50
\end{tabular}

\section*{CERAMIC DISC CAPACITORS \\ \(150 \mathrm{pF}, 270 \mathrm{pF}\), \(\pm 20 \%\) ) 330 pF ,}
\(470 \mathrm{pF}, 680 \mathrm{pF}\), \(1000 \mathrm{pF},(-20 \%+80 \%)\). 5 d . each
HIGH STAB RESISTORS (CARBON FILM) Very Low Noise
0.5 watt \(5 \% 4.7\) ohms to 2.2 M ohms 2 d each 0.5 watt \(10 \% 4.7\) ohms to 10 M ohms 2d each SKELETON PRE-SET
Miniature, Linear, 100, 250, 500 ohms and Decades to 1 M ohm \(0.3 \mathrm{~W}, \pm 20 \% \leqslant \frac{1}{4} \mathrm{M}\) Circuit Mounting \(/=\) each
CIOD
SILICON RECTIFIERS
BY236 0.5 amp 800 volt \(3 /-\) each 4 for \(11 /-\).
C.W.O. POST AND PACKING ADD I/MAIL ORDERS ONLY TO
YATES ELECTRONICS (FLITWICK) LTD.
29 LYALL CLOSE, FLITWICK, BEDS.

\title{
COLD CATHODE TUBES By J.B.Dance m.sc.
}

\section*{GAS FILLED DIODES}

GAs filled cold cathode diodes have many uses in electronic circuits and it will be possible only to give details of some of their more common applications in this article. Miniature neon diodes, operating in the glow discharge region of the characteristic, are used on instrument panels as indicator lights, whilst larger neon diodes can be used for night lighting in sick rooms.

Various types of diode operating in the glow discharge and corona modes have been designed for voltage stabilising purposes. In addition miniature neon diodes are often used as circuit elements, for example, in simple relaxation oscillators, for pulse storage, for routing telephone calls, and for carrying out timing operations. However, these latter are not so widely used as the more versatile trigger tubes in this particular application.

\section*{MAIN PROPERTIES}

In last month's article, it was stated that as the voltage across a cold cathode tube is increased from zero, hardly any current flows until the striking voltage of the tube is reached. At this point the gas suddenly conducts and the current through the tube is limited by the resistor placed in series with it. The voltage across the conducting tube after striking is known as the maintaining voltage and is lower than the actual striking voltage.


A group of miniature neon diode indicator tubes (Cerberus A.G.)

\section*{VOLTAGE INDICATORS}

Miniature neon diodes containing two small electrodes in a glass envelope are often found in domestic equipment. The type of circuit which may be used is shown in Fig. 2.1. The diodes used have two identical electrodes so that current can flow through them in either direction without undue damage; the diode shown in the circuit is therefore represented by a symmetrical symbol, each electrode combining the anode and cold cathode symbols.

When the switch is closed, the neon diode will strike as soon as the instantaneous voltage of the alternating mains input reaches the striking voltage of the diode used. The tube will be extinguished when the mains voltage falls below the maintaining voltage of the diode towards the end of each half cycle, but will ignite again during the succeeding half cycle. Thus the tube emits 100 flashes of light per second but is seen by the eye to produce a fairly steady glow.

The resistor R1 is the current limiting resistor. If it is too small in value, the maximum current rating of the neon diode will be exceeded and the envelope of the tube may be blackened fairly quickly by sputtered material. If R1 is too large, however, the amount of light emitted by the neon will be very small.

Some neons have the series resistor incorporated in the tube holder. The optimum value of the resistor depends on the type of diode used and the supply voltage. For 240 volt mains a typical value of the series resistor is 470 to 680 kilohms for a diode rated at 0.5 mA .

Neon indicator lamps have the advantage over tungsten filament lamps that they are almost entirely free from sudden failure and their current consumption


Fig. 2.1. Use of a symmetrical neon diode as a mains indicator


Fig. 2.2a. Simple relaxation oscillator using a neon diode


Fig. 2.2b. Graph showing the output voltage from VI anode


Fig. 2.3. Simple sawtooth waveform generator for a.c. mains

The G42 switching diode designed mainly for use in timer circuits

Fig. 2.4. Coupling valves with a neon diode

(Cerberus A.G.)
is negligible. After many thousands of hours of use the light emitted by a neon diode falls owing to sputtered material collecting on the envelope of the tube. The diode can then be replaced before total failure occurs.
The use of fluorescent coatings on the inside surface of a neon tube enables neon tubes to be manufactured which emit light of almost any chosen colour.

\section*{RELAXATION OSCILLATOR}

Neon diodes may be used in a fairly wide variety of pulse circuits, but for many applications they tend to be replaced by the more versatile trigger tubes (to be discussed next month). However, one of the simplest possible oscillator circuits can be constructed using a single neon diode; it is shown in Fig. 2.2.

When a voltage is applied to the circuit, Cl charges up until the voltage across it reaches the striking voltage of the tube. The tube then conducts and remains conducting until the voltage supplied by Cl falls to the maintaining voltage. The tube stops conducting, the capacitor starts to recharge via R1, until the striking voltage is reached again. Fig. 2.3 shows the graph of neon diode anode voltage during charge and discharge of C 1 . The result is a sawtooth waveform containing even harmonics of the fundamental frequency.
The frequency of oscillation is determined mainly by the time taken for the capacitor C 1 to charge through R 1 , since the discharging time is quite small. Thus the frequency is determined mainly by the values of Cl and R1, but the supply voltage also has some effect. Cold cathode diodes cannot oscillate at very high frequencies and if the product of the values of C 1 and R1 is relatively small, the oscillations will cease.

Generally R1 should be greater than about 300 kilohms. If a large value of C 1 is required to produce a low output frequency, a resistor should be placed in series with this capacitor to limit the value of the current flowing through the tupe. C 2 is a d.c. blocking capacitor in series with the output.

The output voltage is approximately equal to the difference between the striking and maintaining voltages. Types of diode known as "difference diodes" are available in which the striking voltage is much greater than the maintaining voltage. Such diodes will provide large output voltages from the circuit in Fig. 2.2. For example, the Cerberus difference diode type G42 has a striking voltage of about 155 volts and a maintaining voltage of about 55 volts. It will therefore provide an output waveform of about 100 volts amplitude.
A practical sawtooth generator circuit (published by the Cerberus Company for their GL range of gas filled diodes) is shown in Fig. 2.3. The value of the capacitor Cl may be altered to provide the desired frequency of oscillation. The electrodes of the GL10L diode are not symmetrical; if this diode is employed, the wire terminal to the inside plate shaped electrode should be used as the cathode connection.
Neon diode relaxation oscillators are sometimes used to provide an audio modulation signal in some of the cheapest types of radio frequency signal generators.

\section*{COUPLING}

Neon diodes may be used to couple two valve stages as shown in Fig. 2.4. Normally a capacitor would be used, but a neon diode has the advantage that it provides satisfactory coupling for low frequencies.

\section*{HIGH CURRENT DIODES}

High current switching diodes are rather different from the normal neon diodes; they operate in the arc discharge region and can pass peak currents of up to 10 A . The arc voltage across the tube is about 15 volts provided that the current exceeds 50 mA . The maximum frequency is limited to about 2 kHz . The BD21 tube breaks down at about 200 volts, the BD22 at about 400 volts and the BD23 at about 600 volts.
A typical use of these high current diodes is in electric fence units for keeping farm animals in a field.

\section*{GLOW STABILISER TUBES}

One of the most commonly used forms of cold cathode tube is the type of voltage stabiliser which operates in the glow discharge region of the characteristic. Such tubes normally contain a central anode wire surrounded by a cylindrical cathode.
The typical circuit in which a glow stabiliser tube is used is shown in Fig. 2.5. This circuit uses the property of the normal glow discharge that the voltage across the tube is almost independent of the current flowing through it.

If the load current passing through \(\mathrm{R}_{\mathrm{L}}\) increases, the voltage across the load will remain almost constant, but less current will flow through the stabiliser tube. If the h.t. supply voltage is increased, the tube will pass a larger current, but the voltage across it will remain almost constant. A larger voltage drop will therefore appear across R1.
Thus the voltage across the load is stabilised against variations in both the load current and the h.t. supply voltage. This simple circuit will, in a typical case, produce a variation of voltage across the load of about 0.1 V for an input change of 10 V . The supply voltage should not normally be less than about one and a half times the voltage across the load.

The tube data sheets for any stabiliser tube specify a minimum and a maximum operating current. Variations in the load current as the load resistance changes must not exceed the difference between the specified maximum and minimum tube currents. In practice it must be appreciably less than this difference in order to allow for component and voltage tolerances.

The current passing through the series resistor (R1) is equal to the sum of the tube current ( \(I_{v_{1}}\) ), and the load current ( \(I_{\mathrm{L}}\) ). Therefore the voltage across R1 is equal to ( \(I_{\mathrm{L}}+I_{\mathrm{V}_{1}}\) ) \(R_{1}\).

When \(I_{\mathrm{L}}\) is small (or zero), \(I_{\mathrm{v}_{1}}\) will be a high value which must not exceed the maximum value recommended in the tube data sheets, even if the supply

The SR44 subminiature stabiliser tube providing a stabilised output of 84 volts (Cerberus A.G.)

voltage is at its maximum possible value, and \(R_{1}\) is a \({ }^{\mathrm{t}}\) the minimum value to be expected from the tolerance of the resistor used.
Similarly when \(I_{\mathrm{L}}\) is at a maximum, the value of \(I_{\mathrm{V}_{1}}\) must not be less than the recommended tube current even if the supply is low (for example, due to a low mains voltage). Simultaneously \(R_{1}\) should be at the maximum value to be expected from the tolerance of this resistor.
When the h.t. voltage is first applied, the voltage across the tube before it conducts will be
\[
V_{\mathrm{S}}\left[\frac{R_{\mathrm{L}}}{\left(R_{\mathrm{I}}+R_{\mathrm{L}}\right)}\right]
\]

It is essential that this voltage should exceed the striking voltage of the tube or ignition may not occur.

However, some tubes have an additional priming electrode which is connected through a resistor directly to the source of high tension. This ensures that such a tube will strike readily, but only a little current flows to the primary electrode.

\section*{REFERENCE TUBES}

Voltage reference tubes are a particular type of stabiliser tube which are intended to provide the greatest possible voltage stability at a specified current. They should not be used in circuits in which the tube current is likely to change by more than a small amount, since ordinary stabiliser tubes give a better performance in such circumstances.

Reference tubes should therefore be used only when the load current is almost constant. They are used in the same type of circuit as ordinary stabiliser tubes (see Fig. 2.5), but are also used with thermionic valves in more complicated stabiliser circuits.

Precision spark gap tubes for protection circuits and other applications (Victoreen Instrument Co.)


\section*{CORONA STABILISERS}

Corona stabiliser tubes may be employed to stabilise high voltages at small currents. Tubes which will provide outputs in the range 340 volts to 30,000 volts are available, but the maximum permissible tube current is usually of the order of one milliamp-sometimes even less.
Corona stabiliser tubes contain a thin anode wire in the centre of a cylindrical cathode, the gas filling being hydrogen. When they are operated from a high voltage supply in series with a suitable resistor (normally some megohms), a corona discharge takes place in the tube. The circuit in which the fubes are used is like that in Fig. 2.5.

Corona discharges occur from any sharply curved or pointed surface which is at a high potential relative to its surroundings. Corona effects can cause trouble in the e.h.t. supplies of television receivers and lead to some power losses in high voltage power lines. The discharge can often be heard as well as being seen as a faint glow around the curved surface concerned.


Fig. 2.5. Basic voltoge stabiliser circuit

Fig. 2.6. Cascaded stabiliser tubes

The operating voltage of a corona stabiliser is determined by the electrode dimensions and by the gas pressure. Tubes with maintaining voltages up to about \(7,000 \mathrm{~V}\) can be produced in envelopes similar to those used in thermionic valve manufacture. As it is difficult to make a glass seal when the gas is at a pressure above atmospheric, corona tubes for the highest voltages are normally encased partly in metal.

One of the most notable differences between corona and glow stabiliser tubes is that the striking and maintaining voltages of corona tubes are almost equal. No special arrangements are therefore required to ensure that a corona tube will strike promptly.

\section*{CASCADED STABILISER TUBES}

Glow stabiliser tubes can be used in cascade in the type of circuit shown in Fig. 2.6. The first tube, V1, reduces any voltage fluctuations in the supply considerably and the second tube, V2, reduces them still further. However, this circuit will not provide better stability against variations in the load current than the simpler circuit of Fig. 2.5. A reference tube is often used for V2, the anode resistor of which must normally be a close tolerance component.

A group of corona stabiliser tubes. The glass tubes on the left are available with main taining voltages of 400 to a few kilovolts, whilst the metal M42 tube covers the range 6 to 12 kV and the M105 12 to 20 kV (Victoreen instrument Co.)


Corona tubes can also be used in cascade, although such use is not very common.

\section*{HIGHER STABILISED VOLTAGES}

The simple voltage stabiliser circuit can provide only an output voltage equal to the maintaining voltage of the tube employed. Although a potential divider circuit may be connected across the output from the circuit in order to obtain lower stabilised voltages, the stability against variations of the load current will be reduced.

If a higher stabilised output voltage is required than can be provided by a single tube, two or more tubes connected in series may replace the tube shown in Fig. 2.5. However, if the tubes are not all of the same type, care must be taken to ensure that there is an adequate overlap of their current ratings. The output voltage is, of course, the sum of the maintaining voltages of the individual tubes.

An alternative method of obtaining a higher output voltage involves the use of a multi-gap tube. Such tubes contain several discharge gaps in one envelope, so intermediate output voltages are also obtainable from circuits employing such tubes. For example, the G.E.C. "Stabilovolt" tubes provide stabilised output voltages of \(70,140,210\) and 280 volts. Two of these tubes may be connected in series to provide stabilised outputs of up to 560 volts at 70 volt intervals.

Corona tubes may be connected in series, but a capacitor of about \(1,000 \mathrm{pF}\) should be connected in parallel with each tube to avoid the possibility of spurious oscillation.
Neither glow stabiliser nor corona tubes should be operated with tubes connected directly in parallel, since one of the tubes will probably strike first. It is improbable that any other tube will then conduct, since once one tube has ignited, the voltage across the others will be less than the striking voitage.
Both glow and corona stabiliser tubes can be used with thermionic valves in circuits which provide highly stable outputs at voltages and currents which may be quite high.

\section*{Next month: Circuits using cold cathode trigger tubes}

\title{
mARKE PLACE
}

Items mentioned in this feature are usually available from elecitronic equipment and component rectilers advertising in this magazine. However, where full address is given, enquiries and orders should then be made direct tn the firm concerned.

\section*{MODEL CONTROL}

For model control enthusiasts a new transmitter and receiver has been released by Radio Control Products, 38 Franche Road, Kidderminster, Worcestershire.

The transmitter is crystal controlled on any of the specified radio control frequencies and gives an r.f. power output of 0.5 W . It has a microswitch tone button, a full length telescopic aerial, and is housed in a blue vinyl covered case.

The receiver measures \(2 \frac{1}{4} \mathrm{in} \times 1 \frac{1}{2} \mathrm{in} \times\) \(\frac{7}{8}\) in and is a superhet operating with an i.f. of 455 kHz . A special noise suppression circuit is incorporated in the audio stages of the receiver.

Both relay and relayless versions are available; the relayless receiver has an output transistor capable of switching up to \(0 \cdot 5 \mathrm{~A}\). The contacts on the relay versions are fitted with spark quench suppressors. Both units operate from a 4.5 V supply and cost \(£ 1818\) s as a matched pair of units.


\section*{TELEFILM CONSOLE}

Designed as a self-contained unit for showing continuous loop film on television sets, the Beulah Telefilm Console should be of special interest to hotels, motels, advertising agencies, and possibly training establishments. Being completely automatic, it will operate for long periods without any attention. A time switch is built-in to programme its period of operation. The standard model has a video output and the signal can be fed via a modulator unit into a distribution amplifier.

A special optical unit designed by Beulah Electronics couples a television camera to the film projector. The control panel has a 9in monitor.

The units are usually installed by franchise operators who cover a number of hotels and motels in an area carrying out installation and maintenance. Full details can be obtained from Beulah Electronics Ltd., 126 Hamilton Road, West Norwood, London, S.E. 27.


Eagle HA. 10 Stereo Headphone Amplifier

\section*{HEADPHONE AMPLIFIER}

The Eagle HA. 10 is one of the latest pieces of audio equipment to be added to their range of products. The HA. 10 is a stereo headphone amplifier that can be used with any record deck and pick-up cartridge and it is claimed to give high fidelity reproduction at headphone listening level.

The output of the headphone amplifier is 50 mW per channel and the inputs are: magnetic 5 mV (equalised); ceramic 100 mV (flat); and tuner 100 mV (flat). It is powered by a 9 V battery.

The price of the HA. 10 stereo headphone amplifier is \(£ 110 \mathrm{~s} 6 \mathrm{~d}\).

\section*{AEROSOL CLEANER}

Known as Ultraclene, a new aerosol industrial cleaner is announced by Automation Facilities Ltd., and available from some retailers. Its uses are numerous and it acts very quickly, the spray removing dirt, grease, and oil. Being in aerosol form it can penetrate some of those otherwise inaccessible areas and enables electrical equipment to be cleaned in situ, without dismantling.

Each Ultraclene aerosol contains 16 ounces of solvent and is claimed to be a suitable alternative to carbon tetrachloride.


\section*{Telefilm Console from Beulah}

\section*{LITERATURE}

The fifth edition of the Home Radio Catalogue is now available from Home Radio (Components) Ltd., 234 London Road, Mitcham, Surrey.

The price of the catalogue has been increased for the first time since 1965 to 8 s 6 d , but an extra 1s coupon has been added and there are now six ls-in-the-£1 discount coupons enabling some of the cost of the catalogue to be recovered on subsequent orders. These coupons are supplied separately and readers should make sure that they ask for coupons when purchasing this excellent catalogue.

Many sections have been completely revised and brought up to date and numerous new items added. Also supplied with the catalogue is a new component prices supplement.

The 1969 edition of the Mullard Data Book, just published, follows the same successful formula introduced last year and embraces the complete Mullard ranges of valves, television picture tubes, semiconductors and components for entertainment applications.

For easy reference different coloured paper is used for each of the main product sections.

Equivalents and earlier types are listed in the valve section, replacement details are given in the television picture tube section and information about comparables is shown in the semiconductor section. Symbols and abbreviations are explained in a separate section.

Continuing the practice started last year, this 138 -page book is available, through radio and television retailers, to electronics enthusiasts outside the trade. This arrangement is being continued and the recommended retail price remains unchanged at 3 s 6 d a copy. If there is any difficulty in obtaining copies readers should contact Mullard Ltd., at Mullard House, Torrington Place, London, W.C.1.

PEORC/AN PARTE

\section*{By Alan Douglas, Sen. Mem. I.E.E.E.}

WE left the last instalment with the two keyboards in position. Now they must be removed from the console, as we have to attach the key contact system. In any organ of this kind which uses frequency division, the generators all run continuously. Not only this, but some of the actual notes or pitches may be used simultaneously for the upper manual, lower manual and pedals. So two things have to be considered; how to key the signal and how to prevent this multiple usage from reducing the signal strength.
If one cuts into any waveform abruptly, there will be a transient signal of an unpleasant nature. It will be a click or a thump and it may occur again on releasing the key. Clearly it is an advantage if we can eliminate this irritating effect and this is possible if we use resistance keying.

The really unpleasant transient is of very short duration and often of very high frequency. So if we cause a graphited surface to contact either an incorrodible metal or another graphite surface, we will have a momentarily high resistance, rapidly decreasing with increased pressure to a lower value. This attenuates the transient and in favourable conditions removes it altogether.

\section*{MANUAL CONTACT ASSEMBLIES}

Unfortunately, such graphited switches require precision in assembly and special treatment if they are to have a long life; so it is not too easy to make them. We also know that we need signals of different pitches from any one playing key, so that a great deal of crossconnecting is called for. For these reasons, we have specified the manual contact assemblies made by Harmonics Ltd.

We require a four bank unit for the upper keyboard, wired for \(16,8,4\) and 2 ft ; and a two bank unit for the lower keyboard, wired for 8 and 4 ft . The distribution of these pitches from common oscillators and dividers is effected by printed wiring as in Fig. 2.1, which shows part of the upper unit. This saves the constructor some hundreds of soldered joints and is very neat, a useful feature as there is not too much room between the keyboards.

In addition to the printed wiring, these contact assemblies have integral anti-robbing resistors. As stated, it is necessary to ensure that use of the same signal more than once does not reduce the overall volume. By inserting resistors in series with the divider outputs, we can control this. Indeed, should two notes coincide on two manuals, or through the use of two pitches, then the resistor value will be halved and the notes will become louder as indeed they should. Therefore, when ordering these switch units, we ask for 100 kilohm resistors to be fitted to each switch contact wire.


Fig. 2.I. View of the underside of the upper manual comtact assembly showing the pitch connections to the printed circuit board. Note the hardwood strip which fixes the board to the keyframe


Fig. 2.2. Upper manual contact assembly shown in perspective with one hardwood strip removed

\section*{SWITCH UNITS AND OSCILLATORS}

This series is expected to extend to 12 parts
Total cost of material for the organ is likely to be around \(£ 250\)

\section*{ATTACHING TO THE KEYFRAMES}

As supplied, the switches have the printed coupler wiring on the bottom, and the switch finger wiring on a small side panel. This panel faces the front of the keys, when the keyboard is turned upside down.
The plungers contact the respective keys, and the units are fastened down by seven screws each side to strips of hardwood across the keyframes. These strips must be of such a thickness that the flat end of the plungers projects from the printed wiring side by about \(\frac{1}{18}\) in with the keys at rest. Do this very carefully, or erratic keying could result.
Fig. 2.2 shows one end of the upper keyboard assembly with one wood strip removed and Fig. 2.3 shows the whole affixed to the keyboards. Note also the fixing of the duralumin thumper bar in this picture.
If the hardwood strips are correct, there will be no clearance between the underside of the keys and the ends of the plastic dollies. Of course, the thumper bars must be in position to check this.

We can now put the two keyboards back to check the touch and clearances, but the next step will be to solder the generator output wires to the printed wiring so they will have to come off again when the dividers are completed.

\section*{ALTERNATIVE KEYING}

It is possible, of course, to use direct metal-to-metal key contacts such as gold clad bronze wire, and this is much cheaper. However there is almost a certainty of transients at high pitches here.

Then again, diode or transistor keying could be used; or the electrolytic system devised by Arthur le Boutillier of the Electronic Organ Constructors Society. We have


Underside of the lower manual showing printed board wired and mounted to keyframe via hardwood strips
to try to suggest a system which is known to work well, be little trouble to the builders, and to remain reliable.

Later on, we will discuss possible alternative methods of keying. Suffice it to say that graphite keying has been proved entirely satisfactory by the Baldwin company for more than 20 years.

\section*{P.S.U. FOR OSCILLATORS AND DIVIDERS}

Now we must turn our attention to the oscillators and frequency dividers, and strange though it may seem, we start by making up the power supply unit (P.S.U.1) for these.


Fig. 2.3. Upper and lower manuals complete with contact units in position on keyboard support rails

\section*{P.S.U.I FOR GENERATOR AND DIVIDER UNITS}


Fig. 2.4. Circuit diagram of power supply unit for generators and dividers

Although the inherent stability of the oscillators is very good, testing such circuits with dry batteries is to be deprecated for two reasons; firstly, the high and variable impedance of a battery. And secondly, the question of earthing and hum pickup which could be misleading with batteries.
The d.c. load on this power unit is constant, about 320 milliamps at 15 volts which together give the lowpower consumption figure of under 5 watts. Nevertheless, an inexpensive stabiliser is desirable and this also reduces ripple giving a very low output impedance which in its turn makes decoupling easier.

\section*{OPERATION}

To achieve the current output and low output impedance, TR1 and TR2 are strapped as a modified Darlington pair as shown in Fig. 2.4.

The comparator transistors TR3 and TR4 are arranged in a long-tailed pair configuration where the voltage across R5 is equal to the difference between the reference voltage of D5 and the base to emitter voltage of TR4.

A change in the emitter to base voltage of TR4 produces an equal and opposite change in the voltage across R5. Since TR3 and TR4 are the same type, the effect of temperature change on the former is nullified by a similar effect on TR4 and the change in voltage across R5.

The value of the output voltage is adjusted by means of potentiometer VR1 which alters the fraction of the output that is compared with the reference voltage. After amplification, this is fed back to the Darlington pair.

C2 and VR2 are included to eliminate any tendency for the circuit to oscillate. If such oscillations are apparent the resistance of VR2 should be increased from zero until such disturbances disappear.


Chassis underside of power supply unit, see Fig. 2.5 for
details

\section*{POWER SUPPLY WIRING}

\section*{COMPONENTS . . .}

POWER SUPPLY UNIT I
Resistors
RI 3.9 k
R2 \(1.6 \mathrm{k} \Omega\)
R3 \(2.6 \mathrm{k} \Omega\)
R4 \(4.7 \mathrm{k} \Omega\)
Capacitors
CI \(2,000 \mu \mathrm{~F}\) elect. 50 V
C2 \(0.01 \mu \mathrm{~F}\) polyester
C3 \(8 \mu \mathrm{~F}\) elect. 25 V
Potentiometers
VRI Ik \(\Omega\) wirewound preset
VR2 \(10 \mathrm{k} \Omega\) carbon slider preset

Transistors
TRI ACY21
TR3 ACY22
TR2 OC28
TR4 ACY22

\section*{Diodes}

DI-D4 DDO558 (Lueas) 4 off
D5 OAZ203 (Mullard) 6.2 V Zener
Transformer
TI Rectifier transformer. Primary: 200-240V tapped; secondary 30 V (Radiospares)

\section*{Miscellaneous}

FSI 500 mA fuse
Fuse holder
LPI Neon indicator
Miniature tag board \(4 \frac{1}{2} \mathrm{in}\) long
Heat sink \(4 \mathrm{in} \times 4.875\) in


Fig. 2.5. Wiring layout for P.S.U.I. The d.c. output wires are taken to a terminal strip mounted on chassis top, see Fig. 2.6

Fig. 2.6. Topside of P.S.U.I. Here TR2 is connected directly to the heat sink which has meant mounting this on insulating perspex posts.
Note chassis cutout for
transformer windings


\section*{CONSTRUCTION}

Nearly all of the small circuit components are assembled on a \(4 \frac{1}{2}\) in miniature tag board as shown in Fig. 2.5. When this is done the chassis should be cut for the transformer and drilled for all chassis mounting screws.
To stand off the tag board, this should be mounted on four \({ }_{3}^{3}\) in spacers with lin 6B.A. nuts and bolts.
Wiring of all chassis components should now proceed as shown in Fig. 2.5.

The extruded heat sink for TR2 can be seen in Fig. 2.6 and this is insulated from the chassis unless mica washers are fitted under the transistor; be very careful about this question of insulation or the OC28 will be destroyed.
The output voltage can now be set by adjusting VR1 and to do this we must connect a dummy load across the line. Assuming a current drain of 300 mA at 15 V , we can use a 3 watt resistor of 50 ohms to simulate the collective oscillator and divider load.
With a meter across the load VR1 can now be adjusted for 15 V .

\section*{HARTLEY OSCILLATORS}

Now that we have the power available, it is time to look at the oscillator units. As we know, there are 12 oscillators for the top 12 notes and all the other octaves oscillators for the top 12 notes and all the other octaves
downwards are obtained by \(2: 1\) bistable frequency
dividers. Thus, there are but 12 notes to adjust te dividers. Thus, there are but 12 notes to adjust to tune the whole organ, a decided advantage in an organ of this kind, although it cannot give the greatest realism.

From the many possible oscillator designs, we chose the circuit invented by J. V. L. Hartley nearly fifty years ago. It is simple, stable, economical and can be adjusted to give different kinds of waveforms. Of course, the original circuit used valves, and some adaptation is required for transistors.
The average amateur finds his greatest difficulty in obtaining stable capacitors. The Hartley oscillator has but one in the critical tuning position, though of course this will require selection and padding to give the correct frequencies. At the present time imported polyester and polystyrene low voltage capacitors are readily available at economical prices, therefore the use of this type of dielectric is recommended throughout the generator system.

\section*{SILICON TRANSISTORS}

At the outset it was explained that silicon was to be used in preference to germanium transistors. From every point of view the encapsulated planar device scores. For small signals, the leakage current is infinitesimal; for large signals, the danger of thermal runaway is virtually non-existent. Apart from this, the price is in many cases lower than germanium, and this will reduce still more.
The relatively high temperatures which silicon can withstand during processing permit the fabrication of all kinds of complicated integrated circuits. Although we do not use these, one day they will be commonplace for organs. So we are able to use one type only for all the oscillators, dividers, pre and post amplifiers and emitter followers.

\section*{MAJOR COMPONENTS}

In a project of this magnitude it is to the constructor's advantage to bulk purchase those components which will appear in fairly large numbers. It is for this reason we include the following list of resistors and capacitors required
in quantities of 12 or more. The semiconductor and inductor complement is also included
Individual component lists will, of course, be published with each circuit diagram as they occur


Rear view of organ console showing general layout of all sub-assemblies

\section*{OSCILLATOR UNIT}

Fig. 2.7. Circuit diagram of an oscillator unit. Here the output \(F\) is a 2 ft pitch frequency and SYNC the input to the first stage of the relevant divider unit. Values for the tuning capacitor CI vary for each of the 12 oscillators and these will be given in a later article


\section*{COMPONENTS . . .}

\section*{OSCILLATOR UNIT (12 required)}

\section*{Resistors}
\begin{tabular}{ll} 
R1 & \(330 \Omega\) \\
R2 & \(3.3 \mathrm{k} \Omega\) \\
R3 & \(33 \mathrm{k} \Omega\) \\
R4 & \(1 \mathrm{k} \Omega\) \\
R5 & \(100 \mathrm{k} \Omega\) \\
R6 & \(33 \mathrm{k} \Omega\) \\
R7 & \(2.2 \mathrm{k} \Omega\) \\
R8 & \(2.2 \mathrm{k} \Omega\) \\
R9 & \(100 \Omega\) \\
all \(10 \%\) & \\
at watt carbon
\end{tabular}

\section*{Capacitors}

Cl* See text
C2 \(\quad 0.22 \mu \mathrm{~F}\) polyester
C3 1,000pF polystyrene
C4 \(2,200 \mathrm{pF}\) polystyrene
C5 \(100 \mu \mathrm{~F}\) elect. 25 V

\section*{Transistors}

TRI ZTX300 (Ferranti)
TR2 ZTX300 (Ferranti)
Inductors
LI 100 plus 100 turns of 32 s.w.g. enamelled copper wire wound in Mullard Vinkor type
LA2300
Miscellaneous
Miniature tag board \(3 \frac{1}{2}\) in long
Bakelite backing plates to suit

\section*{SUPPLIERS}

Manual contact assemblies: Harmonics (Bromley) Ltd. For 18, 8, 4, and 2 ft pitches (loff): Clarion Works For 8 and 4 ft pitches (loff): Napier Road, Bromley, Kent
When ordering ask for 100 kilohm resistors to be fitted to each switeh contact wire


Fig. 2.8. Tagboard mounting and wiring of oscilla= tor components

\section*{PRINTED CIRCUITALTERNATIVE}


Fig. 2.9. Printed circuit board layout and wiring for oscillator assembly

\section*{INDUCTORS}

The oscillator circuit is shown in Fig. 2.7. The inductance coil L1 is a Mullard Vinkor type LA 2300, but although this ensures the greatest stability and the minimum of crosstalk, these coils are expensive.

As the frequencies of the oscillators all lie between 8 kHz and 4 kHz , it is possible to use less costly iron dust cores such as the Denco Neosid. So far as is possible, the Vinkors are to be strongly recommended.

\section*{BUFFER STAGE}

The Hartley circuit oscillates vigorously, and since we want to use these frequencies for 2 ft pitch, a buffer stage is added to isolate the actual oscillator from the keying load. This also shapes the sine wave so that the first divider is properly triggered.

From an audible point of view this high pitched note could have almost any waveshape since the ear would not be able to resolve harmonics above the concordant second which is the octave of the fundamental. But higher harmonics are present, so some slight degree of filtering is applied through later tone forming circuits.

\section*{CONSTRUCTION}

The oscillators are constructed on miniature tag boards, one of which is shown in Fig. 2.8. This is convenient since the oscillators are spaced somewhat away from the dividers they feed, and in addition the actual dimensions of the components may vary according to the source of supply.

The 12 oscillators used are identical in their component complement with the exception of the tuning capacitors shown as Cl in the circuit diagram of Fig. 2.7. This uniformity means that the component layout on all 12 tag boards follows that of Fig. 2.8.

100 plus 100 turns of 32 s.w.g. enamelled copper wis e are wound on to the pot core bobbin. When winding on the second lot of 100 turns it is essential to maintain the same winding sense.

With the wire ends cleaned these are then taken and soldered to the tags. The bobbin is then placed in the core assembly and the clamps tightened down.

The tuning capacitor and associated padders shown as Cl will be given values in a later article.

It is, of course, possible to use a printed circuit board construction for the oscillators and this with component layout is shown in Fig. 2.9.

\section*{FUNCTIONAL CHECKS}

As each oscillator unit is completed a functional check should be made. To make this test the power supply unit, P.S.U.1, should be set to +15 V .

First solder a \(30,000 \mathrm{pF}\) capacitor across the coil L1 at either one of the Cl connections shown in Fig. 2.8. Now connect the +15 V supply.

If an oscilloscope is available, examination of the outputs at either C3 or C4 should provide a square wave. If not, check the output at the collector of TR1. Here a clipped sinusoidal wave should be evident.

These checks will resolve a defective stage.
Providing your hearing is good, these procedures can be undertaken using a pair of high impedance phones.

When you are satisfied that all 12 oscillators are working both these and the power unit should be placed to one side.

Next month we will start construction of the frequency divider units with wiring details of their associated assemblies.

To be continued

\section*{Thin Film Circuits}

As the use of thin film circuits becomes more widespread in the electronics industry, methods of measuring and improving the properties of thin films are being carefully studied at the National Physical Laboratory (N.P.L.) at Teddington.

Good adhesion of thin films to their substrates and to one another is essential for microelectronic and optical applications. Existing methods of measuring adhesion have always been inadequate; N.P.L. have studied these methods and introduced new ones.

Using the new measuring methods, it has been found that superior adhesion is achieved more efficiently by "glowdischarge" cleaning of the substrate prior to deposition of the thin film. The process of "glow-discharge" cleaning can be introduced into a production line relatively simply.

In order to isolate the factors which most affect adhesion, it is necessary to be able to deposit films in the presence of controlled amounts of contaminants. This is carried out at N.P.L. in the ultra-high vacuum system illustrated right.


Crown copyright: National Physical Laboratory.

\section*{H.P.L. Ultrasonic Tank}

IN conventional ultrasonic flaw detection apparatus a short ultrasonic pulse is transmitted through the solid material. When flaws or discontinuities are present in the material being checked they are shown up at the receiver as secondary ultrasonic sources. In the N.P.L. apparatus shown right, a pulsed beam of ultrasonic sound is propagated through a tank of liquid which can be maintained at any desired temperature. When a sample of material is interposed at an angle in the beam, refraction occurs at the interface and it is possible to transmit both longitudinal and shear waves. A change from one type of wave to the other is made by reorientating the sample. Measurement of the wave velocities in several directions makes it possible to calculate longitudinal elastic stiffness coefficients as well as shear and rigidity coefficients.


Crown copyright: National Physical Laboratory.


VISITS THE NATIONAL PHYSICAL LABORATORY

\section*{Electron Microscopy}

The photograph left shows an A.E.I. EM802 electron microscope being used to study grain boundaries in an alloy of considerable technological importance. Investigations aimed at improving the properties of materials require very sophisticated techniques. This instrument is a 100 kV electron microscope which allows the specimen to be examined at magnifications up to 160,000 times at resolutions better than 0.5 microns. The National Physical Laboratory have recently taken delivery of a new high voltage microscope to assist in their study of the properties of materials.



Control centre for M4 Signalling System showing the control desk, mimic diagram and closed circuit television monitors. Situated on the desk is the control for emergency telephones, police radio and closed circuit television


Post mounted signal situated on the central reservation, showing 10 m.p.h. speed restriction

The display of signals is controlled by an Elliott 900 series computer which first checks the typed instructions; if the instruction is valid the computer allows it to be passed to the signals.

The system incorporates check routines that automatically interrogate responders to ensure continued normal operation. In addition, impact detectors on posts and gantries provide immediate alarm should any signal be hit by a vehicle. Meteorological sensors can be added to give automatic warning of weather hazards. Comprehensive protection is also incorporated to prevent dangerous situations arising from power failure or equipment malfunction. The system includes closed circuit TV cameras controlled from Heston, providing surveillance of important points on the motorway.

The proposal to introduce signal systems throughout the motorway network by the mid-1970's was announced in November 1966. Aimed at reducing accidents and securing safer all-weather driving conditions on motorways, these automatic signals will gradually replace the temporary fiashing amber signals.

Gantry mounted signals at the Lionel Road Interchange showing a diversion

\section*{M4 TRAFFIC CONTROL}
\(A^{T}\) the official opening, on March 21, of the new remotely controlled signals on the M4 motorway, the Joint Parliamentary Secretary to the Ministry of Transport, Mr R. Brown, had the following words to say:
"Today's switch-on is a major step forward in increasing road safety-and we hope it will reduce the number and severity of motorway accidents".
The new computer controlled system was manufactured and installed by GEC-Elliott Traffic Automation Ltd., and developed in collaboration with the Ministry of Transport. This first installation covers an 11 mile stretch of the M4 between Chiswick Flyover and Langley Interchange and is operated by the Metropolitan Police from a control centre at Heston Service Area.



THE INSTRUMENT to be described in this article was designed for use with a photographic enlarger to determine the exposure times required for any particular enlargement.

Although it requires calibration for each grade of printing paper, the instrument is very easy to use once calibrated and the results obtained are consistently good.

\section*{DESIGN ASPECTS}

Any device connected to the mains supply is a potential danger unless it is built very carefully. A low voltage battery operated unit is safer to use.

The exposure meter is operated in low light conditions and it is essential that the operator can adjust it easily in such conditions when the need arises.

The reading of the exposure meter should not change, despite changes in the supply voltage due to mains voltage fluctuations or to battery ageing effects.

The photographer may use a number of different grades of printing paper; the meter has been designed to accommodate any grade.

The total cost of the meter has been kept to a reasonably low level without sacrificing its performance.

In designing this exposure meter the above requirements have been met with a simple transistorised circuit using a photosensitive resistor as the light sensing element.

A photosensitive resistor or light dependent resfstor (l.d.r.) has a very high resistance in total darkness. The resistance falls as the light intensity increases until, in bright light, the resistance is as low as 100 ohms.

To meet the stability requirement a bridge circuit is incorporated. Although a d.c. or a.c. bridge circuit could be used, the latter is more convenient in this application since it can provide an audible indication of balance when optimum exposure conditions are set up.

\section*{CIRCUIT}

The complete circuit diagram is shown in Fig. 1. The first two transistors TR1 and TR2 are used in a simple multivibrator circuit which oscillates at a frequency of about 500 Hz . The output of the oscillator is used to feed the bridge circuit containing the photosensitive resistor.

By adjusting the potentiometer VR1 the a.c. voltage developed across the l.d.r. can be balanced against the voltage across the lower part of the potentiometer. In this condition the voltage across the transformer primary will be at a minimum and consequently the sound output from the earpiece will also be at a minimum.

The transformer isolates the bridge circuit from the amplifier circuit formed by transistors TR3 and TR4. TR3 is connected as a common emitter amplifier and is directly connected to the emitter follower stage.

Since the output impedance of this stage is low, almost any magnetic earpiece can be used as the indicator. The prototype used a balanced armature earpiece of 30 ohms impedance.

\section*{COMPONENTS AND CONSTRUCTION}

A suggested component layout is given in Fig. 2 and the photograph of the complete unit shows the positions of the controls.

The values of R5 and R6 were found to be correct for the l.d.r. used in the prototype (ORP12), but if a different l.d.r. is used these values would probably need adjustment.

The transformer was obtained from a television chassis, but any transformer having a ratio of about \(4: 1\) could be used, for example the Ardente D239 or D189 which have ratios of \(4 \cdot 5: 1\) and \(3 \cdot 66: 1\) respectively.
The circuit has been designed so that almost any transistors can be used in the various stages. The


Fig. I. Complete circuit of the enlarger exposure meter


Fig. 2. Layout of components on the perforated wiring board. Underside wiring is shown as dotted lines

\section*{COMPONENTS . . .}

Resistors
\(\left.\begin{array}{llll}\text { R1 } & 4.7 \mathrm{k} \Omega & \text { R7 } & 100 \mathrm{k} \Omega \\ \text { R2 } & 33 \mathrm{k} \Omega & \text { R8 } & 10 \mathrm{k} \Omega \\ \text { R3 } & 33 \mathrm{k} \Omega & \text { R9 } & 4.7 \mathrm{k} \Omega \\ \text { R4 } & 4.7 \mathrm{k} \Omega & \text { R10 } & 470 \Omega \\ \text { R5 } & 100 \mathrm{k} \Omega \\ \text { R6 } & 15 \mathrm{k} \Omega\end{array}\right\}\) see text \(\quad\) R11 \(1.5 \mathrm{k} \Omega\)

All \(\pm 10 \% \cdot \frac{1}{4}\) watt carbon

\section*{Potentiometer}

VRI \(25 \mathrm{k} \Omega\) linear carbon

\section*{Capacitors}
\begin{tabular}{|c|c|c|}
\hline Cl & \(0.01 \mu \mathrm{~F}\) & \\
\hline C2 & \(0.01 \mu \mathrm{~F}\) & polyester \\
\hline C3 & \(0.01 \mu \mathrm{~F}\) & \\
\hline C4 & \(2 \mu \mathrm{~F}\) elec & ct. 15 V \\
\hline C5 & \(5 \mu \mathrm{~F}\) elect & ct. 15 V \\
\hline C6 & \(0.1 \mu \mathrm{~F}\) po & olyester \\
\hline
\end{tabular}

\section*{Transistors}

TRI, 2, 3 OC71 or OC45 (3 off)
TR4 OC72•or OC84

\section*{Transformer}

TI Small signal transformer 4.5 : I (D239 or TT49)

\section*{Miscellaneous}

LSI Balanced armature earpiece 30 ohms
XI Light dependent resistor. type ORPI2
BYI 4.5 volt flat battery
SI Single pole on/off switch
Perforated component board and solder pins
Hardboard or \(\frac{1}{4}\) in plywood for case (Fig. 3)
Expanded metal grille, knob with pointer, sockets for I.d.r.

Fig. 3. Suggested case construction from \(\frac{1}{4}\) in plywood or standard hardboard, with glued corner fillets
multivibrator circuit will work with transistors having current gains of ten or less. For the TR3 position a transistor having a higher gain is desirable. Satisfactory operation was achieved using four OC71s, but very cheap transistors of low gain are equally suitable.

The majority of the circuit is built on perforated wiring board (Fig. 2), although there is no reason why other construction methods should not be used. The whole unit is assembled in a home-made wooden case (Fig. 3).

The l.d.r. is mounted on a strip of s.r.b.p. with the photosensitive area facing uppermost.

The photograph shows the paper scale with the inked markings. Units were marked every 15 degrees with half-units marked midway between them. This gives

a scale having 20 major divisions since potentiometer spindles usually rotate through 300 degrees between the end stops. Low readings on the scale correspond to high light intensities and the high scale readings to low intensities.

\section*{CALIBRATION}

The scale on the meter has linear markings and it now remains to show how these markings are used with the printing paper. Calibration graphs are prepared for each different grade of printing paper in the following manner.
The instrument is taken into the darkroom and a clear piece of film from a blank exposure is placed in the enlarger. Having switched off all light sources (except the enlarger) the detector head is placed on the enlarger easel and the balance control is set to some reading on the scale.
The aperture ring of the enlarger is adjusted until a balance point is heard (i.e. when the sound from the earpiece is at a minimum). Having found this balance point the enlarger is switched off and a narrow strip of printing paper is used to make a test strip (see Fig. 4).
Stripes on the test strip can be obtained in steps of one second. After developing and fixing the strip the result will be similar to that shown in Fig. 4 where the gradual transition from white to black can be seen. The numbers below the strip indicate the exposure times in seconds and the arrow indicates the exposure that gives the first black stripe.


Fig. 4. Graduated tone scale for set exposure times


Fig. 5. Calibration graph for indicating exposure time against scale reading

This exposure time is recorded together with the scale reading of the exposure meter and by taking test strips for various scale readings a calibration graph can be drawn. A typical calibration curve is shown in Fig. 5. For higher scale readings it is more convenient to make exposure strips at two or four second intervals.

This procedure must be repeated for all other types of printing paper used but after the first calibration curve has been plotted subsequent calibrations will be easier since the operator will already have some experience of the meter and his paper. For example, an exposure of two seconds would very rarely be encountered for a \(10 \mathrm{in} \times 8 \mathrm{in}\) print from a 35 mm negative!

\section*{EXPOSURE TIMING}

The correct exposure for any normal negative where all tones are to be preserved may be found by placing the detector head under the magnified image of the clear margin of the negative, and adjusting the balance control until a balance point is found. The correct exposure time is then found from the calibration graph. For example, if the scale reading was 7 and we assume that Fig. 5 is the correct calibration curve, then the correct exposure time would be 27 seconds.
Difficulty is only encountered when extreme negatives are printed on normal grade paper but this is only to be expected and in these cases a reading will provide the basis for making an accurate test strip.
Many special effects may be created by placing the detector under any part of the negative that one wants printed black and exposing for the corresponding time. This is particularly successful for silhouettes.

Some difficulty may be found when attempting to obtain balance points corresponding to high scale readings (i.e. in low light intensity levels) since the minimum is not too distinct, but the error involved is only very small and should not affect the quality of the finished print.

\section*{ADVANTAGE}

The main advantage of the exposure meter is that it saves the operator having to make test strips for every different enlargement and consequently leads to a saving in time and materials.
This exposure meter can be built for as little as 50 s , which is considerably cheaper than any comparable commercial instrument. A wooden cabinet costs only a few shillings to make, but any wood, plastic or metal box could be used with equal success.

\section*{Af|l|l}

rIs always a pleasure to visit the Public Address Exhibition, as this exhibition is held in one of the most convivial and friendly atmospheres encountered at any such shows. This does not mean that the proceedings are not taken seriously, far from it. The amount of professionalism that is put into the proceedings is immediately apparent when one visits the stands and attends the lectures held each day throughout the exhibition.
This year's exhibition, held at the King's Head Hotel at Harrow-on-the-Hill, on March 11 to 13, was the 21st anniversary of the exhibition and there was a special display on the lower floor devoted to early equipment and papers of historic interest. The exhibition was slightly smaller than previous years; this was due to a similar exhibition held abroad the week before and the lack of time to transport equipment back to England. Nevertheless, the 27 companies taking part represented the best in the P.A. industry, and quality was the main theme.

Customer package deals and interchangeable or add-on units were evident at many of the stands. Of these the Private Communications Division of STC broke new ground with their range of complete public address equipment for particular requirements. The kits are designed to be able to cater for small churches and halls, social and sports centres, office intercom, and background music units.
A complete range of Philips P.A. equipment and a newly styled range of indoor cabinet and column loudspeakers, ranging from a small cabinet handling \(1 / 3\) watt to a speech and music column capable of handling up to 20 watts was exhibited on the Philips Sound Division of Pye T.V.T.
Microphones obviously paid an important part in the exhibition, as no equipment can meet manufacturers' data unless the "front end" delivers the "goods". Of the numerous microphones on display the FC range of condenser microphomes from Fi-Cord Co., carry an unconditional five year guarantee against any kind of maltreatment. These microphones are suitable for pop music groups due to the falling bass response below 200 Hz , thus minimising acoustic feedback-not to mention the current trend of stage acts of complete break-up of instruments during a performance.
Many new and improved design power amplifiers and loudspeakers were evident at most stands. Reliance exhibited their Buxford flameproof loudspeaker, which is claimed to be incapable of causing a fire or explosion.
Finally, the Association took the opportunity to introduce a special 45 r.p.m. double-sided test record of sounds and phrases for microphone and system testing. The record provides 3 minutes of male speech, with a special 30 second off-mic speech to illustrate the importance of correct microphone technique. Female speech follows and runs for 3 minutes.

Side two comprises selected intelligibility phrases for phonetic balance and general performance of the complete installation; \(1,000 \mathrm{~Hz}\) tone and warble tone, for equipment line-up and measurements with sound level meters, and a reference level for individual equipment. The inclusion of white and pink noise, while of limited application without auxiliary equipment, are for aural evaluation of loudspeakers, pick-ups, tone controls, and filter circuits.
Although prepared primarily for A.P.A.E. members the record is available for general (bona fide) professional use. The record costs 15 s , plus 1s postage and packing, and applications for copies should be made to the A.P.A.E. Sales Office, 394 Northolt Road, South Harrow, Middlesex.

\title{

}

\author{
By P.J. POBGEE (National Physical Laboratory)
} As computers play an ever-increasing part in our daily lives the need to communicate with them also increases. We find it convenient to mark symbols on paper in the shape of bills, cheques, and other documents. Before a machine can process this information it has to be translated into another form, such as a code of electrical impulses.

Unfortunately, the problems in constructing a device to recognise just the numerals 0 to 9 are far from trivial and at the present time large numbers of people are employed merely translating this data into a more acceptable form.

For example, the code, which the Post Office has introduced for postal addresses to aid the sorting of mail, has to be re-marked as a pattern of fluorescent dots to be readily detectable electronically.

Conversely, the software outputs of computers often have to be duplicated in both machine and human languages. An example is the overprinting of punched cards with alphanumeric symbols used by insurance companies.

\section*{MAGNETIC INK}

A compromise is reached by banks using magnetic ink. The characters printed at the bottom of cheques are specially shaped to be distinguishable by a machine and yet remain intelligible to the human eye. As the cheques are fed through the machine the strip of magnetic printing ink is used in a similar way to a piece of magnetic tape being played back by a tape recorder.
Although the required quality and accuracy of printing is expensive to produce, the reading head is not affected by irrelevant marks such as date stamps or the pattern of the paper.
However, what is really needed is a device capable of recognising ordinary writing. One approach is to imitate the retina of the human eye by constructing an array of light sensitive elements. These divide the field of view into cells and a large number of elements are required to give adequate resolution. They are so connected that when a pattern covers the appropriate cells the machine's logic emits the corresponding signal.
This highlights two difficulties: if the pattern occurs in a slightly different place another group of cells is covered, requiring the logic to be repeated; the logic has also to decide whether each element is seeing ink or blank paper. The latter problem arises because, for
other than perfect printing the patterns are not just black and white but contain intermediate shades of grey.
The intensity we call black depends on the background surrounding that area. For example, a badly printed 5, with a faint top and a heavily smudged bottom, gives false information that the open part of the loop is darker than the top stroke of the character; this must be ignored.

\section*{"CYCLOPS"}

An interesting alternative known as Cyclops will now be discussed in some detail.
If the image of a raster on a cathode ray tube is projected on to a document and the reflected light is collected by a photocell, a video signal is produced. This flying spot technique is the type of television camera often used for transmitting cine films. The three dimensions of horizontal and vertical position and grey value are represented by the two dimensions of time and electrical amplitude.
If this video signal is passed through a pure time delay the effect is the same as if the pattern had been in a different place. Times equivalent to the durations of line scan correspond to horizontal shifts, and fractions of a line period to vertical shifts. (It is most convenient in this case to have the fastest scan in the vertical direction.)
Fig. 1 shows the effect of delaying the signal by a complete line period and also by an additional quarter of a line. If we measure the correspondence between these copies, at any instant we relate the ink density at three points, such as \(A B C\), separated by the distances determined by the time delays.

Since we are comparing the signal only with itself the correspondence is unaffected by the position of the original pattern. We call such an arrangement of points an \(n\)-tuple and design it to fit on a characteristic feature of the patterns to be identified. Any number of points may be so grouped, including negative ones. The latter are realised by inverting the video waveform
so that the presence of white, such as the centre of a zero, may also be detected.

\section*{LOG CIRCUITS}

It is necessary to measure the correspondence by multiplying the signals at each point together, since we wish the answer to be zero whenever any of the points do not fit. Mere addition still gives a sum even when one of the components are zero.

Fortunately the voltage across a forward biased semiconductor junction approximates to the logarithm of the current flowing through it and economic multiplication can be performed by adding the logarithms as in Fig. 2.

The output of the antilog circuit represents a continuous measure of the fit of the \(n\)-tuple as the raster scans the input pattern. If this output is integrated over the whole field of view a measurement is obtained which depends on the overall shape of the original pattern but is independent of its actual position.

We may extract a set of such measurements by using several different \(n\)-tuples simultaneously. Each one will measure the amount of its appropriate feature but will also vary with the contrast of the ink with paper, although they will tend to move in sympathy with each other. For example, a pattern with a poor contrast will give a low output on all the measurements.

To cope with this problem Cyclops 1 uses \(20 n\)-tuples feeding 10 numeral wires through resistors, these being chosen to correspond with the relative fits of the \(n\)-tuples expected for that numeral. By selecting the wire with the largest signal the answer is only dependent on the ratios of the \(n\)-tuple measurements and not their absolute values.

Using these techniques Cyclops is able to recognise a strip of ten unknown numerals in inferior printing in less than 4 milliseconds.

\section*{HANDPRINTING}

There is still a long way to go to approach the performance of a human reader who interpretes the enormous variety of shapes and sizes produced by handwriting.

The \(n\)-tuple technique just described has the advantages of speed and simplicity for machine generated printing where the patterns are of predetermined shape, although their outlines are generally not well defined.

A hand printed character, however, often has a sharp outline but consists of a sequence of strokes whose relative positions are variable. The strokes may be treated as mini-characters and recognised by the \(n\)-tuple method.

If the order in which they appear is noted, a parts list can be prepared to match with a catalogue built into the machine. For example, if the strokes are labelled horizontal \(h\), diagonal down to right \(r\), diagonal down to left \(l\), and vertical \(v\), then a 5 when scanned from top-to-bottom and left-to-right could be coded hvhrvlhr>. This code may be represented by a series of pulses and compared with similar pulses stored in the machine.

Yet another system ignores positional information by tracing around the outline of the unknown character and forming a list of the directions travelled from point to point. The length of a list obviously depends on both the size and shape of the pattern but Mullard Research Laboratories are successfully reducing such lists to a standard number of measurements. By presenting measurements from typical patterns to a computer they are able to use it to adapt a decision mechanism to recognise handprinted numerals.


Fig. Ia. Basic raster pattern superimposed on a figure 5. (b) Wave forms corresponding to recognition response on the figure 5


Fig. 2a. Basic theory of the log-generator


Fig. 2c. Antilog circuit using a bose-emitter diode
Fig. 2. Simple analogue multiplier


The process is analogous to that of training the resistive network, to which \(n\)-tuple measurements are applied, in the Cyclops system to modify itself when a wrong answer is obtained.

\section*{OPTICAL METHODS}

Other investigations being carried out allow processing of all the elements of a pattern in parallel at the speed of light. An obvious method is to compare the unknown with a set of photographic masks. The difficulty arises in fitting the pattern on the masks. Any difference in shape or position reduces the correct fit and may increase the wrong one.

Consider a simple pattern composed of alternate black and white lines. By scanning across it a "temporal" frequency, of so many peaks per second, could be obtained but this value would depend on the speed of the scan. By using the concept of "spatial" frequency, of so many peaks per millimetre, the pattern is described without reference to time. Complex patterns can be built up from a Fourier series of spatial frequencies in the same way that a complex electrical waveform may be obtained from a set of sine waves.

By using a transparent pattern as the aperture of a lens a Fourier transform can be obtained at the focal plane of the lens. This transform is, in effect, a graph

\section*{Cyclops I character recognition machine}

of the spatial frequencies present in the pattern against axial distance. The finer the detail the more the light is diffracted from the optical axis. A blank pattern produces a bright spot of light at the focus since it corresponds to zero spatial frequency. These transforms are independent of the input position thus removing one variable. Unfortunately, the transformed patterns appear to be even more difficult to separate into character types.

If a filter is placed in the focal plane to suppress certain frequencies the detail present when the original pattern is reformed may be enhanced or reduced as an aid to recognition.

\section*{HOLOGRAMS}

A recent article explained how holograms can be formed by using a single reference beam. By illuminating the hologram with a similar beam the original pattern may be reconstructed.

One can also make a set of holograms on a single photographic plate using a different beam or code of beams for each example of a character. When this plate is illuminated by a similar pattern the appropriate beam or code is reconstructed. If the :unknown pattern is only slightly different from the appropriate one of the hologram the resulting beam may be lost in the spurious light generated by incorrect fits.

Although photographic emulsion can store an enormous amount of information it is obviously impracticable to store examples of every type of distortion expected.
This problem and the need to produce the input data in transparency form appear at present to place optical processing at a disadvantage with the ease with which complex functions can be performed by integrated circuits.

\section*{ACKNOWLEDGMENT}

The author is grateful to the Directors of National Physical Laboratory, Ministry of Technology, for permission to publish details of the Cyclops character recognition machine, built in the Computer Science Division.


\section*{ACCESSORIES}

One of the many features of DeC breadboards is that links may be made with single strand wire but the following Plugs and Leads are available (all supplied in Packs of 10).
(a) 1 mm Plugs (Specify Yellow, Green, Blue or Red) 3/9d. per set.
(b) Leads with 1 mm Plugs fitted at both ends (Specify length \(2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}\) and \(7^{\prime \prime}\) )

12/6d. per set.
(c) \(20^{\prime \prime}\) Leads with single 1 mm Plug \(8 / 6 \mathrm{~d}\). per set. T-DeCs, S-DeCs and Accessories are all obtainable from leading suppliers throughout the U.K. In case of difficulty, complete the coupon and mail without delay.


Post To:
S.D.C. ELECTRONICS (SALES) LTD

34 Arkwright, Astmoor Industrial Estate, Runcorn, Cheshire (Runcorn 5401)

Please send me:-


\section*{NEWS BRIEFS}

\section*{Computier Aided Dasign}

Three years ago the Racal Group Chairman, Mr E. T. Harrison, announced the commencement of a research programme at Tewkesbury to study the possibilities of designing electronic circuits and equipment with the aid of a computer. The idea has now become a reality and, with the support of the Ministry of Technology, REDAC (Racal Electronic Design and Analysis by Computer) is being offered as a consultative service to the electronics industry.

The established breadboard development technique using discrete components is replaced by a more reliable method, involving the application of stored information to mathematical and theoretical problems.

Reliability is improved, costs stabilised and predetermined at the design stage, and marketing of an original concept can be considerably speeded up. As an example, where a printed circuit board can take about three weeks to design by conventional methods using drawing office facilities, REDAC can do the work in less than a week at about the same cost. Multilayer integrated circuits can be designed by using a cathode ray tube graphic display machine developed by Elliott Automation.

Mr E. Wolfendale, Deputy Managing Director, has spent much of his time in computer aided design and has travelled to many parts of the world to lecture on the subject. In describing the system, he emphasised the possibilities of taking into account a sensitivity analysis and "worst-case" or statistical tolerance performance, so that the designer can re-analyse, re-optimise and retolerance to provide for these factors.
Because electronics is becoming so complex, Racal believe that time and money will not be available in the future for traditional manual design methods employing such a wide range of components. It is not expected that Racal will monopolise the system idea; indeed, they are offering a tutorial service to customers' engineers which will enable them to computerise on their own premises.
Inevitably a design language is needed for the computer and the mathematical and languages group have developed a special circuit calculation language for the designer to use. Input specifications or updating data are sorted by the computer into component generic types, then classified in data form into a manner easily accessible to the designer.
Off-line data links are provided between the design centre and the customer by G.P.O. Datel links.

\section*{Skynet}

THIS year will see the introduction of Skynet-the United Kingdom's Defence Satellite Communications System. The overall system has been designed by Mintec \({ }^{\text {'1 }}\), to satisfy stringent Ministry of Defence requirements. The System will comprise nine earth stations and two satellites, one operational and one standby (procured from and launched by the United States), in a closely defined synchronous orbit some 23,000 miles above the Indian Ocean.

Five of the earth stations will be placed at fixed locations, two installed in the assault ships HMS Fearless and HMS Intrepid, and two air transportable mobile stations will be held available for rapid deployment to meet contingency requirements. The network of stations and the satellites will provide better and more reliable communications for all arms of Britain's forces, and will provide a national communication capability from the Atlantic to the Far East including Hong Kong.

\section*{International Apprentice Competition}

Selection tests for this year's British entrants in the International Apprentice Competition took place at Southgate Technical College during April. Two sections of the competition, which covers a large variety of skills and involves apprentices from all over the world, were dealt with at Southgate. They were: the Industrial Electronics section, looked after by Mr Smith of Nottingham College of Technology, and the Radio and Television Servicing section under the watchful eye of Mr Hicks of Southgate Technical College.
The results of the examinations are placed before a committee who decide on the placings of apprentices and award Gold, Silver and Bronze medals to the first three apprentices in each section. The first apprentice in each section is sent to the final which is to be held at Brussels in July and the second apprentice is a non-travelling reserve.

This year's winners were:-
Industrial Electronics section:
1 st Mr P. Guttridge ; Mintech.R.A.E. Farnborough.
2nd Mr G. Clarke; Mintech.E.Q.D. Aquila.
3rd Mr D. Bracknel; Mintech.R.A.E. Farnborough.
Radio and Television Servicing:
1st Mr R. Pheasant; Alex Owen Ltd.
2nd Mr D. Throup; Fairbank Harding Ltd.
3rd Mr M. Hobs; R. P. Jones.

\section*{Electronics Help Beat Crime}
|ndustrialists in Birmingham will be the first in the country to have the opportunity of being connected to a new type of equipment to monitor burglar and fire alarms installed on their premises.
Securitas Alarm Limited have developed the Securifon, which will enable a constant "electronic" watch to be kept on alarm systems installed in subscribers' premises in the Birmingham area. The system, operating over normal GPO telephone lines, uses the principle of telemetry.
Data on the current state of burglar alarms in up to 100 subscribers' premises is fed into a satellite station usually located within a two mile radius. Coded signals are then fed from the satellite station via a single telephone line and displayed on a control unit located at a central station, manned 24 . hours a day by security personnel.


POCKET RADIATION MONITOR (April 1969)
The specified transformer T1 was made by Messrs Fortiphone three years ago; it was a standard \(6 \mathrm{~V}-\) 800 V 1 watt inverter type ( \(6 \mathrm{~V}-400 \mathrm{~V}\) plus doubler). Messrs Fortiphone are still the suppliers of either: L1320/4; L1320/8; L1321/4 and L1321/8, all of which will function well in the circuit.
D.C. FEEDBACK PAIR (December 1968)

In Fig. 7 on page 855 the output from TR2 should be taken from the emitter and not the collector.

ELECTRONIC SPIROGRAPH PATTERNS
(May 1969)
The first caption on page 371 should be: Hypocycloids, loops now peaked

\title{
Here's money-making repair data for over 1000 POPULLAR MODELS \\ \(1965!\) \\ This big RADIO \& TELEVISION SERVICING
}

\section*{1969 right back to

\section*{1969 right back to \\ From \\ From RADIOS} RECORD PLAYERS - CAR RADIOS • TAPE RECORDERS TV's including COLOUR TV 2,180 pages. 2,657 circuits, component layout diagrams, printed panel diagrams, tables and waveform

\section*{JUST OUT!}

New 12th Edition of Electrical Engineer's Reference Book

Over 2,000 pages, more than 2,400 Diagrams, Photographs and Tables. A comprehensive reference work on modern theory, practice, equipment and latest developments written by 75 leading experts.

Main Sections include-
Theory and Calculations. PowerStation Practice. Cables and Wires. Lighting, Heating, Lifts. Motors, Wiring and Automatic Control. Computers. Lates L.E.E. Reg. requirements. Education Training, City \& Guilds, etc.


\section*{RADIO \& TELEVISION

\section*{RADIO \& TELEVISION SERVICING} SERVICING} repair library will help you speed up your repair work and increase your earnings. Packed with circuits, repair data and vital information it covers all the popular 1965-1969 TV's, Radios, Radiograms, Car Radios, Record Players and Tape Recorders-including the latest data on COLOUR TV. Four volumes handsomely bound in maroon and gold. 2,180 pages written by a team of expert Research Engineersthere's no other publication like it! Speeds up repair work year after year. Examine this latest edition at home free for a week. Send no moneyjust post coupon below-there's absolutely no obligation to buy.

\section*{COLOUR TV}

All aspects of Colour TV are covered-from installation to static convergence. The vital information in the colour section make this repair library invaluable to the Service Engineer.

\section*{SERVICING DATA ON ALL THESE MAKES}

Aiwa, Alba, Baird, Beogram, Beolit, B.R.C., Bush, Carousel, Cossor, Dansette, Decca, Defiant, Dynaport, Dynatron, Eddystone. Ekco, Elizabethan, Ever Ready, Ferguson, Ferranti, Fidelity, G.E.C., Grundig, H.M.V., Kolster-Brandes, Hitachi, Invicta, McMichael, Marconiphone, Masteradio, Motorola, Murphy, National, Newmatic, Pam, Perdio, Peto-Scott, Philifs, Portadyne, Pye, Radiomobile, R.G.D., Regentone, Roberts' Radio, Sanyo, Sharp, Smith's Radiomobile, Sobell, S.T.C., Sony, Standard, Stella, Stereosound, Teletron, Thorn, Trans Arena, Ultra, Van Der Molen World Radio.

\section*{SENT TO YOU BY POST ON DaYS free trial}


FULLY TESTED AND MARKED
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\(A C 107\)
\(A C 128\)
\(A C 157\) \\
AC127
AC128
A 118 \\
\({ }_{\text {ACYI }}{ }_{\text {AFII }}\) \\
AF115
AFII \\
AFI 17 \\
AF239 \\
AF139 \\
BFY 50
BSY 25 \\
8 SY 26
BSY 27 \\
BSY28 \\
BSY95A \\
OC 44
OC 45 \\
\({ }^{\circ} \mathrm{C} 72\) \\
-C81 \\
OCB1D \\
OC139
OC140
\end{tabular} &  &  & \(3 /-\)
\(4 / 6\)
\(3 / 8\)
\(7 /-\)
\(2 / 6\)
\(10 /-\)
\(4 /-\)
\(3 /-\)
\(6 /-\)
\(8 /-\)
\(5 /-\)
\(10 /-\)
\(10 /-\)
\(8 / 1\)
\(5 / 6\)
\(7 / 6\)
5 \\
\hline
\end{tabular}

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS OVER 84

\section*{TRY OUR X PAKS FOR UNEQUALLED VALUE}

\section*{XA PAK}

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. \(44,45,71,72\), 81 , ete.

PRICE 65 PER 1000
POST \& PACKING \(4 / 6\) U.K.
XB PAK
Silicon TO-18 CAN type transistors NPN/PNP mixed lots with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE E3.5.0 PER 500
PRICE E10 PER 1000
POST \& PACKING \(2 / 6\) U.K.

\section*{XC PAK}

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DKIO, etc.

PRICE E 5 PER 1000
POST \& PACKING \(2 / 6\) U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF \(75 \%\) OR MORE GOOD SEMI. CONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT be less than the minimum amounts QUOTED PER PACK.

\section*{TRANSISTORS ONLY 1/- EACH \\ SILICON • PLANAR \\ All these types available}
\(\begin{array}{llllllll}2 N 929 & 2 N 706 & 2 S 131 & 2 S 103 & 2 N 696 & 2 N 1613 & 25733 & \text { BFY1O }\end{array}\)
\(\begin{array}{llllllll}8 C 108 & 2 N 706 A & 2 S 512 & 2 S 104 & 2 N 697 & \text { 2N1711 } & 2 N 726 & 2 S 731\end{array}\)
All tested and guaranteed for gain and leakage-unmarked.
Manufacturers' fall outs from the new PRE-PAK range.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{NEW UNMARKED UNTESTED PAKS} \\
\hline B78 & 12 & Intergrated Circuits, Data and Circuits of types, supplied with orders & 10/- \\
\hline 880 & 8 & Dual Trans. Matched \(O / P\) pairs NPN. sil. in TO. 5 can & 0/9 \\
\hline ¢82 & 10 & \[
\begin{aligned}
& \text { OC45, OCBIO and } \\
& \text { octar } \\
& \text { glass type } \text {. Mullard }
\end{aligned}
\] & 0/- \\
\hline 883 & 200 & rrans. Newmarket reject and other types NPN and & 0/- \\
\hline 884 & 100 & Silicon Diodes DO.7 glass & \(10 / 5\) \\
\hline \(\overline{\text { B6B }}\) & 150 & High quality Germ. & 10/- \\
\hline \(\overline{886}\) & 50 & Sil. Diodes sub. min.
IN914 and IN916 types & 10/- \\
\hline B87 & 100 & Germ. PNP Trans.equiv.
to 0 d4, OC45, \({ }^{\text {ecal, erc }}\) & 0/- \\
\hline B8E & 50 &  & 10/- \\
\hline 860 & 10 & 7 Watt Zener Diodes Mixed Voltages & 0/- \\
\hline \multicolumn{4}{|l|}{PRE-PAK.N.605 POWER
TRANSISTOR EOUVALENT
//- eaCh} \\
\hline \multicolumn{4}{|l|}{COMPLIMENTARY SET NPN/PNP GERM, TRANS. 2/6 pair} \\
\hline
\end{tabular}

RETURN OF THE UNBEATABLE P.I PAK. NOW GREATER YALUE THAN EVER FULL OF SHORT LEAD SEMICONDUCTORS AND ELECTRONIC COMPONENTS, APPROX. 170. WE GUARANTEE AT LEAST 30 REALLY HIGH QUALITY FACTORY MARKED TRANSISTORS PNP AND NPN, AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON PRINTED CIRCUIT PANELS. IDENTIFICATION CHART SUPPLIED TO GIVE SOME INFORMATION ON THE TRANSISTORS.
please ask for pak P.I only IO/-2/- P. \& P. on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any \(0-1 \mathrm{~mA}\) meter into a linear and accurate rev.
counter for any car.
counter for any car.
State 4 or 6 cylinder.
FREE CATALOGUE AND LISTS
for: -
ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add \(1 /-\) post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS


\title{
AN \\ AECHNICAL LANEUAEE BY R. SPATHAKY B.A.
}

Language standardisation is the kind of process that took place when in 1921 the International Commission for Radio and Visual Signalling Techniques persuaded nearly all countries to replace the English term twoelectrode valve, French tube à deux électrodes, German Zweielektrödenröhre, and Swedish träelektrodrör, by the international word DIODE.
Interlinguistics is the new branch of linguistics which studies how far the above process can and should go. This is of great importance in the scientific and technological fields. Naturally nobody would want to see an international version of "Hamlet" processed and standardised!

Amateurs and professionals in electronics may be interested to know that Dr Eugen Wuster, the Austrian who is a prominent member of the International Electrotechnical Commission, is also one of the pioneers in the removal of linguistic barriers between technologists by standardisation of units and of names for components. He not only keeps the wires humming in the technical sense but makes common-sense suggestions as to the verbal shape of the messages going along the wires.

To illustrate the kind of schemes for the future that Wüster is interested in, we give the following example of standardised language.

\section*{INDICATORES DE VOLTAGE}

Minuscule diodos a neon que contine duo parve electrodos in un inveloppo de vitro es sovente installate in apparatos domestic. Le specie de circuito que pote esser usate es monstrate in Fig. 2.1. Le diodos usate ha duo electrodos identic de maniera que le currente pote fluer a transverso illos in cata direction sin injuria significante; le diodo monstrate in le circuito es ergo representate per un symbolo symmetric, cata electrodo combinante le symbolos pro un anodo e un cathodo frigide.
Quando le commutator es clause le diodo a neon operara al momento quando le voltage instantanee del conductor a currente alternante attingera le voltage liminal del diodo empleate. Le valvula essera extinguite al momento quando le voltage del currente conductor essera inferior al voltage minimal del diodo, verso le fin de cata semicyclo, ma reaccendera durante le semicyclo succedente. Assi le valvula emitte 100 fulgores cata secundo ma le oculo lo vide producer un lumine basse satis continue.

Well, if you haven't identified the original yet, the above is an international rendering of the third and fourth paragraphs of the article entitled Cold Cathode Tubes on page 435 of the present issue of P.E. This is one of the types of standardisation of terminology in which Wüster is interested.

\section*{MINIMUM OF GRAMMAR}

The bugbear of most people in learning languages is the complexity of grammar. As Dr Alexander Gode,
who "discovered" the above interlingua has remarked, you really need no grammar at all to be able to read a passage such as the one just cited. In order to write or speak it, enough grammar to cover both sides of a postcard will do, i.e.

Article: le electrodo
Plural: le electrodos
un electrodo
Adjective: un symbolo symmetric
symmetric symbolos
Adverb: recente gives recentemente
frequente gives frequentemente
(-mente is our -ly). plus practic que (more . . . than) le circuito le plus practic minus que (less...than) -the most practical circuit.
\begin{tabular}{cccccc}
\begin{tabular}{c} 
Persons \\
Subject
\end{tabular} & Object & Possessive & Subject & Object & Possessive \\
io & me & mi & nos & nos & nostre \\
tu & te & tu & vos & vos & vostre \\
ille & le & su & illes & les & lor \\
illa & la & su & illas & las & lor \\
illo & lo & su & illos & los & lor
\end{tabular}
(All words in -self \(=\mathrm{se}\) )
Complete Table of the Verb. (Filtrar-to filter). Present (Past when -va added)
io filtra
tu filtra
ille filtra
illa filtra, etc.
Pres. Part. filtrante
Past Part. filtrate
Imperat. filtra!
Future filtrara
Condition filtrarea
Perfect ha filtrate Condit. Perf. Pass. haberea essite filtrate

Using as tintacks a handful of particles like a-to, at; ab-from, since; ante-before; circa-around, one should be able to express most technical prose.

\section*{CONTROL LANGUAGES}

The above schema is enough for those who are not linguists but merely wish to handle the tool. For those who would like to know where the language came from; it is based on prototypic forms derived from the paradigm of each word in all the Romance languages and taking into account English, German and Russian.

In rather imprecise terms one can say an "average" word has been made out of the various European forms. Oriental and African languages are not included in the control languages because they are eager importers of Greco-Latin technical terms. This is how the "averaging" process works:
abberation of aberration de la aberración del
light
(Eng.)
aberrazione della
luce
(Ital.)
lumière
( Fr .)
Lichtabirrung
(Ger.)
luz
(Sp.)
aberratsiya
(Russ.)

From this series the interlingual form is aberration del lumine. What is not shown in the above, however, is how words in the rest of the total paradigm, such as our luminous, also influenced the final form.

Of course there are occasional hard nuts to crack when one comes to extract these standard European forms from the control languages. Perhaps those readers who also happen to be linguists would care to advise the author on the problem of the series:
\begin{tabular}{ccc}
\begin{tabular}{c} 
B battery \\
(Eng.)
\end{tabular} & \begin{tabular}{c} 
batterie de tension \\
anodique
\end{tabular} & batteria B \\
(Fr.) & \(S p)\). \\
batteria anodica & B-Batterie & polosa \\
(Ital.) & (Ger.) & (Russ.)
\end{tabular}

I would opt for the interlingual form batteria (de tension) anodic. Would anybody say that batteria-B is a better international form?

\section*{WHY NOT ENGLISH?}

Some will say that all this is unimportant because English is all set to become the world language of science. It is true that it is a hot favourite, but there are other sturdy competitors like Russian and Chinese.
One would think that the speakers of the most important languages would be able to come to some agreement, especially about technical terms. It is natural that their languages will continue to capture each other's speakers and readers; this is an industrial and commercial struggle as well as a linguistic one. But agreement could avoid the worst effects of the languagestruggle.
The "Big Three" would agree to teach each other's languages more than they do at present. Secondly, they would adopt a universal technical code, probably based on the roots common to English and Russian. Chinese and Japanese are importers of these basic words (though the Chinese have probably stopped during the recent cultural revolution). They fit them as best they can into the tone-system of their languages. Here are recent imports into Japanese:
\[
\begin{array}{ll}
\text { maika chikudenki } & \text { mica condenser } \\
\text { maikurohon zatsuon } & \text { microphone noise } \\
\text { magunetto sen } & \text { magneto wire } \\
\text { rotari shiki } & \text { rotary system } \\
\text { refurekkusu zofuku } & \text { reflex amplification } \\
\text { homodaim jushiu } & \text { homodyne reception } \\
\text { ichi eherugi } & \text { potential energy }
\end{array}
\]

The basis for agreement upon.either a code or an interlingua between Anglo-Saxons and Russians is shown by the following equivalents: (Eng., Russ.) crane, cran; electric, electricheski; battery, batereya; telegraph, telegraf; machine, mashina; platinum, platina; hypothesis, gipoteza; selenium, selen; motor, motor.

\section*{PRONUNCIATION}

The problem of how an interlingua should be pronounced is a highly technical one, which has been written about by Troubetzkoi, the founder of practical phonology and therefore, in a way, of all accoustic and hi fi studies.

The American A. Gode says that the Greek and Latin rootwords can only be given one feasible appearance and pronunciation, a slightly southern European one. That is why the extract at the beginning of this article probably reminded you of Spanish. But it would remind a Spaniard of Italian, an Italian of English. It is Standard European.

Finally, the standardisation of terms has some importance for education. When Greek and Latin studies were more widespread they at least ensured a supply of future scientists who could compose the terminology of their work. Realising that such a class of philologists hardly exists,some Swedfish schools have recently introduced classes in General Linguistics for their pupils, along the lines of the interlingua described in this article.


Another international exhibition at Earls Court was nearly postponed due to a go slow by workmen. However, the LABEX exhibition was opened as planned on March 25 by The Rt. Hon. Edward Short, M.P. The completion of some of the stands continued into the second day and at one time there was talk of Pye Unicam's standthe largest in the exhibition-being taken down and rebuilt, as enthusiastic Pye staff had violated the go-slow over the preceding weekend to finish their stand.
Laboratory apparatus and materials of a fantastic variety were displayed by over 550 firms, half of them from the U.K., some 70 from America and others from Germany, Switzerland, Sweden and Japan in that order. During the exhibition a series of lectures and discussions took place and these, too, covered a wide variety of subjects from "Detection of Flavour in Food" to "Computers in the Laboratory".
Several new instruments made their debut at LABEX. These included the Philips PW 1410 Manual X-ray Spectrometer which allows quicker and more accurate analysis of elements than was previously possible. An experimental computer complex was displayed on the Pye stand, designed to link a number of gas chromatographs and spectrometers to a small computer. Stanton Instruments were displaying a newly developed low temperature differential thermal analyser, which covers a temperature range of between -180 and 450 degrees C . The most interesting feature of this device is its fast cooling ratefrom \(450^{\circ} \mathrm{C}\) to ambient temperature in 10 minutes.
Bosch Ltd., and Leitz U.K. Ltd., exhibited a new Iconometric Analysis Microscope which uses an optical electron computer for quantitive analysis and evaluation of optically perceptible structures. The apparatus comprises a very high quality television camera which is attached to a microscope. The video signal from the camera is analysed and evaluated in the main control unit. The picture is also displayed on a monitor, thus enabling an operator to insert marker pulses and an adjustable mask; by this means any area of the picture can be selected for evaluation.
The machine has a wide application in medical, metalIurgical and chemical fields.
A number of new low cost Infrared spectrometers were displayed on many stands; some appeared at half the cost of previous instruments: this shows a trend in the laboratory apparatus industry-specialised instruments becoming available at greatly reduced cost and, in many cases, the equipment is more compact and easier to set up and use.

\section*{LIND•AIR OPTRONICS LTD}

See our vast range of Electronic Components at our new
Component Centre 25 Tottenham Court Road

Battery Eliminator. transistor equipment
to be opera: to be opera-
ted from AC mains. 6/9/
12v. output selector switch and on/of switch. Case size \(4 \times 2 \pi \times 2\) in. complete with mains lead, connecting
P. \(3 / 6\).
GARRARD DECKS


GRP22 less cartridge.
1025 Stereo/Mono with cart. 2025 Stereo/Mono with cart. 3000 D Stereo/Mono with cart. 8P25 less cartridge ......... 8P25 with Decca Deram cart GLJ5 less cartridge gL55 with Decca Deram cart. Covere for atruve
AP75 less cartridg
SL75 less cartridge
SL95 less cartridge
Baser for above.
8PRCLAL OFFER1
SP25 less cart., with base P. \& P. Decks 12/6, Cover \(4 / 6\), 818. 2.6 EMI COMBINATION LOUDSPEAKERS. \(13 \ddagger \times 81 \mathrm{in}\). elliptical with two \(2 \ddagger i n . t\) tweeters. 15 ohm 10 watts. Brand new and guaranteed. grand new and 7/6. (Also avallable without wecters. 59/6. P. \& P. 7/6.)
'HIT-TEN'LOUDSPEAEER British made full range 10 in. unit handles up to 10 wr tts Ceramic magnet; Freq. re sponse: \(40-10,000 \mathrm{cps}\). \(\operatorname{Imp}\)
\(15 \Omega\). Flux dentsiy: 10,000 \(15 \Omega\). Flux dentsiy: 10,000
Hnes. 49/6. P. \& P. 4/6


SOLDERING GUN Comfortable grip with trigger control, "U" shaped 3 in. bit to minimise wear. light beam is automatically directed on trigger is in use. 230-250 volts
watt element. \(49 / 6\), P. \& P. \(3 / 6\). "ADASTRA" SOLDERING IRON, as a handle. AC \(230 / 250 \mathrm{v}\). With 4 ft . lead. 12/6. P. \& P. 2/6. NEW-VEFAIRCRAFT BAND CONVERTOR. When placed within 1 in . of a MW band radio full coverage or HF Air crait. Band 108-135Mc/s. can be obtained. All transistor, 9y battery operation. Fully tumable scopic aerial. Size \(4 \times 27\)
\(\times 11\) in. \(78 / 6\). P. \& P. \(3 / 6\).
 £5. 9.8
87.19 .8 48. 9.6
4.19.6 29.18.8
£10.19.6 ع10.19.6 E17. 4.8 212. 9.8
\(\{18.14 .6\) \(\$ 18.14 .6\) 22.10 .0
E3. 0.0 £3. 0.0
£19.19.0 E19.18.0
228.19.6 228.19.6 24.19.6 \&18. 2.8

\section*{STERED AMPLIFIERS}

ORAL STEREO AMPLITIER MODEL
TS-135. SOLID STATE. 18 TRANSISTORS.

13.5 watts per channel. Free standing unit front panel. Specification: Frequency range \(30 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{Kc} / \mathrm{s}(+3 \mathrm{~dB}\) ). Harmonic distortion \(2 \%\) at 10 watt (IKc). Cross talk 4.5 dB at \(1 \mathrm{Kc} / \mathrm{a}\). Signal to noise ratio 60 dB . Inputs: Aux. 100 mV , Phono 3 mV , Tuner 150 mV , Tapehead 4 mV . Tone controls: Treble \(10 \mathrm{Kc} / \mathrm{s}\) at \(\pm 10 \mathrm{~dB}\). Loudness (medium frequency cut). Output im\(4^{3} \times 68 \times 12^{3} \mathrm{in}\). Price \(£ 28.50\) Prated. Size

SPECIAL PURCHASE!


DE-LUXE STEREO
HEADPHONES
With soft rubber - 1 8-16 ohras. Frequency With lead and stereo
 IEW STEREO/MONO HEADPHONES
SDH-7. Saft
earpieces with slide switch for monol stereo listening, and ind. voun. controls. Frag. respnnse \(25-\)
\(15,000 \mathrm{cps}\). With lead and stereo plug.
\&6.6.0. P. \& P. \(3 / 6\).


\section*{HI-TONE RECORDING TAPE}

BRITISH MADE. TOP QUALITY

\section*{J1001 \(J 1001\)
\(J 1002\)
\(J 1003\)
\(J 1004\)
\(J 1005\)
\(J 100\)
\(J 100\)
\(J 100\)
\(J 100\)}

Triple Play Po Long Play PVC Long Play P Double Play
Standard Pla Standard Play poly Long Play \(P\) Double Play Poly 225 ft .
600 ft.
900 ft
120 ft
1200 ft.
1800 ft.
120 ft.
1800 ft
2400 ft.
3600 ft. \(5 / 8\)
\(10 / 6\)
\(10 /-\)
\(15 /-\)
\(12 / 8\)
\(22 / 6\)
126
\(17 / 8\)
\(25 /-\)
\(50 /-\)
 P. \(1 / 2\).
P. \(1 / 2\).
P. \(1 / 8\).
P. \(1 / 8\).
P. \(2 /-\).
P. \(2 /-\)
P. \(2 / 6\).
P. \(2 / 6\).
P. \(2 / 6\).
P. \(2 / 6\).

\section*{III Tome}


\section*{NEW TRANSISTIR MODULES}

E.1811. PHONO PREAMPLIFIER. Size
\(2 \times 1 \times 7\) in. Built-in \(2 \times 1 \times\) inin. Built-in R. I.A.A.characterioutput
pick-up
martridgetic to 1 volt. Input \(100 \mathrm{Kohm:} \mathrm{Gain} 28 \mathrm{~dB}\) : Max. outpat 3 r: Max. input 30 mV . Disrion \(0.15 \%\) (at ly level). Power supply E.1313. MICROPHONE PRE-AMPLIEIER. Enables a low output microphone to be used with an amplifler or radio. Input imp 100Kohms: Gain 28dB: Max, output 3v: Max. input 50 mV : Distortion \(0.15 \%\) (at E.1318. DUAL LAMP FLASHER. Aswitch module for electronically alternating two miniature bulbs, \(6 \mathrm{~V}, 100-200 \mathrm{~mA}\). Icieal for models, toy boats and planes, displays, warning and security devices, communica tion bignals, etc. Flasher time \(t\) sec: Power supply 6 v DC: Current 150 mA Lamp ar isom.
E.1315. ELECTRONIC ORGAN TONE OSCILLATOR. Used in conjunction with an 9 volt power supply, this module acta as the osclisator unit for an electronic organ. Tone Frequency: \(200-1,000 \mathrm{~Hz}\) : Output 80 mW : Current \(15 \mathrm{~mA} .25 /-\). P. \& P. 2/-.
E.1314. POWER AMPLIFIER. When used In conjunction with E.1311, E. 1312 and E. 1313 units this amplifler module produces about 300 mW output for speaker
connection ( \(8-16 \mathrm{ohms}\) ), without necessity for an output transformer. Input imp 3,000 ohms: Gain 20dB: Output 300 mW Distortion 3\% (at 200 mW output level). Freq. res. \(50 \mathrm{~Hz} z-10 \mathrm{KHz}\). Power supply 9 v Current 20 mA at no signal, 80 mA at max utput. 29/6.
E.1317. MNIATURE MORSE TRANS How. Win transmit to sny adjacent As Receiver, siso makes a useful oscillator for trouble shooting. Audio tone \(400 \mathrm{c} / \mathrm{s}\). Radio frequency range \(400 \mathrm{c} / \mathrm{s}\) to \(30 \mathrm{Mc} / \mathrm{s}\) ower supply 9 v DC. Current 35 mA E.1312. TAPE PRE-AMPLIFTER. Incorporating N.A.R.T.B. curve characteristics, this amplines tape head signals up to 1 volt 15 KHz . Input imp. 100 Kohg : Gain 25 dB Max. output 27: Max. input 50 mV : Dis tortion \(0.15 \%\) (at iv level): Power sapply 9-12 volts. 29/6. P. \& P. 2/
E.1316. MORSE CODE OSGILLATOR. A ransistorised zoorse code oscillator (buzzer) key. Suitable for direct connection to \& loudspeaker. Tone freq. 400 Hz : Power output 80 mW : Power supply \(\quad 3-9 \mathrm{v}\) :
Current \(45 \mathrm{~mA} .25 /-\). P. \& \(\mathrm{P} .2 /-\).
\(18,25 \& 53\) TOTTENHAM COURT ROAD, LONDON W. 1. Tclephone: 01-580 2255/4532/7679
Shops open 9-6 pm. Monday to Saturday. Thursday until 7 pm .


MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

\section*{MASTER THE PRACTICAL SIDE}

ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

\section*{MASTER THE MATHEMATICAL SIDE}

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servomechanisms, Computer Engineering, Numerical Control Electronics, etc.

EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS ELECTRONIC SERVICING
R.T.E.B. RADIO/TV SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Build your own radio, transistor portable, and professional-type sest instruments with an ICS Practical Radio and Electronics Course. Everything simply explained and easy to handle. All components and tools supplied. For detalls post coupon below.

Member of the Association of British Correspondence Colleges
```

FOR
FREE HANDBOOK POST THIS COUPON TODAY
I.C.S., Dept. 151, INTERTEXT HOUSE,
STEWARTS ROAD, LONDON, S.W.8

```

NAME
ADDRESS

OCCUPATION.

\section*{IHTERHATIOHAL CORRISPOHDEKCE SCHOOLS}

\section*{XCELITE}

Precision made hand tools
for the professional


69CG Radio.TV Pliers \(70 C G\) Flat Nose Pliers 71 CG Round Nose Pliers

PLIERS
72CG Chain Nose Pliers
73 CG Tip Cutting Pliers
74CG Diagonal Close Cutting Pliers A complete range of miniature lightweight pliers especially designed for holding, bending, shaping and cutting of fine wires in electronic, Radio/TV, electrical and jewellery work.

Precision made for the expert with miniatures in mind. Cushion grip handle, coil spring openers.
curved nose
SEIZERS
\({ }_{3}^{32 H} 5^{5 \prime}\) Straight Nose Junior \(5^{\prime \prime}\) Seizer
\(42 \mathrm{H} 6^{*}\) Straight Nose Seizer \(35 \mathrm{H} 5^{\circ}\) Curved Nose Junior \(5^{\prime \prime}\) Seizer 43H 6. Curved Nose Seizer Box joint construction, two position snap on lock. Precision machined from perfectly tempered steel.
Holds like surgical clamp and acts as heat sink.
Straight or curved nose, in \(5^{\prime \prime}\) and \(6^{\prime \prime}\) sizes.
Distributed by
Special Products Distributors Limited 81 Piccadilly, London, W. 1
Tel. 01-629 9556 Cables: SPECIPROD, London, W.I
Full details an request
Made in U.S.A.

\section*{WELS FAREO} now ship E line


\section*{Ferranti}

E line epoxy transistors include low cost, general purpose amplifiers and switches, high speed switches, neon drivers and low noise VHF amplifiers.
NPN and PNP complimentary types are available for most functions.

Further data and ex stock delivery from:


Components Ltd
5 Loverock Road • Reading . Berks . Tel: Reading 580616-9 - Telex 84529 Ministry of Technology approved distributor.


\section*{UNLIMITED!}

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought
This is YOUR page and any idea published will be awarded payment accord ing to its merit.

\section*{SPOT ON}

The CIRCUIT in Fig. 1 was designed as a gimmick for a dance, the idea being to have a spotlight directed on to a doorway, so that whenever people walked in or out the spot came on.

With a light focused across the doorway on to a ORP12 light dependent resistor, the resistance is low and insufficient voltage is available to trigger the thyristor SCR2. When the light beam is interrupted the change in resistance value is sufficient to trigger the thyristor. The firing point of the thyristor is controlled by VR2.
If the lamp (load) is allowed to switch from the off to on state rapidly it would have a very short life span, and components R1, C1, D1, VR1, and SCR1 are included in the circuit to protect the lamp. This timing circuit is set by VR1 so that when SCR2 is in the off state the lamp is glowing as dimly as possible, thus when the light beam is interrupted the light flashes from "just-on" to "full-on". This keeps the lamp filament hot enough to prevent large surge currents from flowing.
The photo-beam was provided by a 4.5 V 0.5 A bulb, powered by a mains transformer, housed in a torch case. The transformer was just small enough to fit into the battery compartment.
The circuit can also provide a "strobe" effect simply by pointing the ORP12 at the controlled light. This sets up a form of feedback and the speed can be varied by VR1 and VR2.
Resistor R2 was placed across VR2 because it was found that VR2 has a tendency to change resistance due to heating, leaving the light permanently on.
A. K. Draper, Norton St. Philip, Bath.

\section*{TIME SWITCH}

NEARLY four years ago I made the clock with the cold cathode numeral indicator tubes as described in Practical Eiectronics.

After a year I had trouble with worn contacts on the first digit single pole 10 -way switch, which I replaced with a new one (this switch makes and breaks nearly \(\frac{1}{2}\) million times a year!).
I have now substituted a rotary switch made from 10 dry reed switches, type \(6-\mathrm{RSR}\), length 1.45 in \(\times 0.125\) in diameter. The reed switches are mounted between two perspex discs with a permanent magnet Araldited to the spindle of an old volume control, see below.
As these reed switches are good for \(10^{8}\) operations, the estimated life of my clock is now over 2,000 years!
D. B. Pearce,

Abbey Wood,
London, S.E.2.


Fig. 2. Single-pole, 10 -way reed switch


Fig. I. Automatic spotlight control switch

\section*{BASS-MAKER}

THE circuit was designed and built for a 6 -string "lead" guitar to produce bass guitar notes.
This bass conversion cannot be done satisfactorily using filtering techniques, but must involve frequency division. In this case, the basic string frequencies are effectively halved.

This is achieved by converting the fundamental signal into a pulse train whose p.r.f. (pulse repitition frequency) is equal to fundamental frequency. This pulse train is made to drive a bistable switch, so that the bistable makes one change of state for each input pulse. Since two changes of state in the bistable constitute a complete cycle, it is seen that two pulses in, produce one cycle output. When this square wave train is filtered to remove the unwanted harmonics it can sound remarkably like the true bass sound.

The only, perhaps major, limitation of the device is its inability to cope with a very complex input signal, i.e this must be predominantly fundamental in nature. For example: one guitar note only must be injected at a time. Two or more produce an erratic bistable drive train, and in general, a "grating" noise at the output.
It is interesting to note that, when using a microphone input, singing or talking produced the grating output (additional to that already present) whilst the human whistle, nearly sinusoidal in form, was nicely lowered an octave, losing, however, its characteristic tone.

\section*{DESIGN NOTES}

The component values given were arrived at by design and must be considered only as a guide for any adventurous constructors see Fig. 3.

The resistors marked with an asterisk must be found by experiment since they control the base currents of TR1, TR2, TR3 and TR4 and will vary considerably in value between transistors of the same type due to the gain spread. If 6 volts is chosen as the supply voltage, then R3 is adjusted so that TR1 collector is quiescent at about 3 V . Resistor R5 is adjusted so that TR2 emitter is quiescent at about 3 V , but should be fairly low around 2 kilohms to maintain a low output impedance for TR2.

Resistor R7 is adjusted so that TR3 collector is quiescent at about \(5 \cdot 5 \mathrm{~V}\). R10 is adjusted so that TR4 collector is quiescent at about 1V. Transistor TR 5 is not biased but acts as a grounding switch for D2 and D3, the bistable steering diodes. R9 is used to "stop" oscillations, but may not be necessary where lower gain devices are used, or where layout is improved. It was found easier to use this resistor rather than decoupling.


Fig. 4. Wave shapes at different stages of the circuit
Negative feedback in the form of resistance in the emitter, or from collector to base of TR3 and TR4 must be avoided, since such feedback causes spikes on the drive pulses, which can cause malfunction of the bistable. The waveforms shown in Fig. 4 should be observed at the stated points when the circuit is operating correctly.

The amplitude of output is maintained nearly constant over the guitar frequency range due to the use of the low " Q " filter C7/L1. A high resistance ( \(1 \mathrm{k} \Omega\) ) iron cored coil (from a relay) was tuned by increasing the value of C7 until the correct sound was obtained using the guitar 6 th string. The bass sound is obtained over a restricted range, but is quite acceptable even on the fourth string.
Resistor R17 reduces the loading on the bistable and attenuates the 6 V signal to 100 mV . Total quiescent current drain is approximately 4 mA . To set up the circuit for use, adjust VR1 until only the fundamental is amplified by TR3.
P. E. Clancy, Ashton-under-Lyne.


Fig. 3. Circuit diagram of the guitar bass-maker

PROTECT VALUABLE DEVICES contact \(90^{\circ}-190^{\circ} F\) or with the dial removed range
 3/6 P. \& P.
sot in the Dark INFRA-RED BINOCULARS


These intra-red binoculars when fed from a high voltage source will emable objects to be seen in the intra-red beam. Each eye tube contains a complete optical lens system as well as the infra-red cell. These optical systems can be used as lenses foTV cameras-light cells, etc. (details supplied). The binoculars form part of the Army night driving (Tabby) equipment. They are unused and believed to be in good working order but gold without guarantee. Price
Handbook \(2 / 6\).


16 RPM GEARED MOTOR
Made by Smith's Electrics, these are almost silent running, but are very powerful. They operate from normal to 240 V . mains and the final shaft speed is 16 r.p.m. 15/-. Post \& ins. 2/9

MINIATURE WAFER SWITCHES
 four assortment.


KETTLE ELEMENT \(230 / 240 \mathrm{~V} 1500\) watt. Made by Best for kettles with 1 ? in in. dia. hole including: Best, Besco, Chalfont, Davidson, DimJurymaid Mironat Grafton, Harkins, Tower, Swan. Normally 32/6. Our price 15/- plus 2/6 post.

AC FAN Small but rery powetful mains motorwith 6in. cooling equipcooling equipment or as extrac-
tor. Silent but very efficient. 17/6, post 4/6. Mounts from back or front pith 4BA screws.


Fron thermal runFay or overheating. Thyristors, rectifiers, transistors, etc., which use heatsinks can easily be protected; simply thermostat part of the heat-sink. Motoreand equip ment generally, can also be adequately protected by having thermostats in stra tegic spots on the casing. Our wen 80 to 80007 Price 101

\section*{ROTISSERIE MOTOR}

Very powerful 7 r.p.m., operates rom standard AC Mains. 29/6, plus

230 VOLT SOLENOID 7 in . stroke, size 2 in. \(x\) \(2 \mathrm{in} . \times 1\) in. 14/6, postage

MAINS MOTOR Precision made-as
used in record decks and tape recordersideal also for extractor fans, blower, heater, etc. New and perfect.
Snip at \(9 / 6\). Postage Snip at \(9 / 6\). Postage
\(3 /\) - for first one then \(1 /\) - for each one ordered. 12 and ordered.
orer post free. 4 pole, 2 way- 3 pole, 3 way -4 . pole, 3 way- 2 pole, 4 way- 3 pole way. All at \(3 / 6\) each. \(86 /-\) dozen

\section*{WATERPROOF HEATLTG \\ ELEMENT 26 yards length 1 . Self-regulating temperature control. 10/-post free.}

ELECTRIC CLOCK WITH 25 AMP. SWITCH
Made by Smith's these units are as fitted to many top quality cookere to control the oven. The clock is mains driven and irequency controlled so it is extremely accurate. The \(t w\) set. Ideal for switching on tape recorders. Offered at only \(a\) fraction of the regular price-nery and unused only \(38 / 6\) less than the value of the clock alone-post and insurance \(2 / 9\).


HI-FI BARGAIN
FULL FI 12 ITCH LOUDSPEAKER. This is undoubtedly one of the finest loudspeakers that we have ever offered, producent by one of the country's most famious makers. It has a die-cast metal frame and is strongly recommended for Hi 1 -Fi load ant
Rhythra Guitar and public addresg,
Flux Density 11,000 gauss-Total Flux 44,000 Maxwellis Power Handling 15 watts R.M.S.-Cone Moulded fibre-Freg. response \(30-10,000\) c.p.s.-specify 3 or 15 ohms-3ain resonance \(60 \mathrm{c.p.s}\).-Chassis Diam. 12in.-12 12 in . over mounting lugs-Baffe hole 11 in . Diam.-Mounting holes 4, holes-tin. diam. on pitch circle 11 in. diam.-O Terall height 5 kin . A 56 speaker offered for only \(\$ 3.9 .6\) plus \(7 / 6 \mathrm{p}\). \& p. Don't miss this offer. \(15^{*}, 30\) watt \(£ 7.19 .6\)

\section*{THIS MONTH'S SNIP}

\section*{G.E.C. 13A SOCKETS}


Opportunity to re-equip your house or workshop, or it a contractor, to stock up for future jobs. We offer bakelite
13 A socketg for fuxh or surface mounting made by the famous G.E.C. company and listed at \(8 / 6\) each. you can have a box of 12 fush type \(24 /\), surface type \(29 / 6\), post and ins, 4/6. (Gross or more carr, free.)

\section*{TIME AND SET SWITCH}


Made by Sralths, motorised and mains driven, enables 15 A circuit to be started up to 18 hours in advance and to stay on for a period from 15 minutes to 3 hours
Totally enclosed in netal box with glass front and chrome surround. 49/6 plus \(4 / 6\) post and ins.

\section*{NICAD RECHARGEABLE BATTERIES}

\(3 \cdot 6 \mathrm{~V} 500 \mathrm{~mA}\) size \(11 \times 18 \mathrm{in}\). dia. type rel. DKZ500 really powerful will deliver 1 amp for \({ }^{2}\) hour. Regular price 32/6 available, single cell \(1.2 \mathrm{~V} 8 / 8,5\) cell \(6 \mathrm{Y} 29 / 8\).


HIS BARGAIN

\section*{CASSETTE LOADED} DICTATING MACHINE
Battery operated and with all accessories. Really fantastic offer a British made \(£ 31\) outfit 10 or ouly 24.19.8, brilliantly designed 1or speed
and efficiency-cassette takes normal spools, drops in and out for easy loading spois, nops in and out or easyleading include: \(\begin{aligned} & \text { stethoscopic earpiece- } \\ & \text { crystal microphone has on/off switch }\end{aligned}\)
FOR ONLX 89/6. -telephone pick-up-DON'T MISS THIS UNREPEATABLE OFFERSEND TODAY, E4.19.6 plus 7/6 post and insurance. Footswitch 18/6 extra. Spare Cassettes at \(4 / 6\) each, three for \(10 /\)

\section*{REPAIRABLE RADIOS}

7 transistor Key chain Radio in very pretty case size \(21 \times 2 \pm \times 1\) tin.-complete with soft leathe sistor superheterodyne. Frequency range: 530 to \(1600 \mathrm{Ke} / \mathrm{s}\). Sensitivity: \(5 \mathrm{my} / \mathrm{m}\). Intermediate frequency: \(465 \mathrm{Kc} / 8\), or 455 Kc/s. Power output: 40 mW . Anterna: ferritype.
Theee radios are complete but require attention Cireuit diagram is not available. \(17 / 6\) each plus


\section*{VARYLITE}

Wril dim incandescent lighting up to 600 watts from full brilliance to out. Fitted on M.K. fush plate, same size and fixing as standard wall switch so may be fitted in place of this, or mount on surface. Pri
box with control knob \(£ 3.19 .6\).


\section*{12V BLOWER}

Heary duty motor with centrifugal blower coupleit to one end. Ideal for car heater. \(12 / 6\) plus \(\$ / 6\) post.


> Where postage is not stated then orders over \(£ 3\) are post free. Below \(£ 3\) add \(2 / 9\). Semi-conductors add \(1 /\) - post. Over \(£ 1\) post free. S.A.E. with enquiries please.

\section*{TELESCOPIC}

\section*{for portable, car radio or transmitter. Chrome pla7 to 47 in . Hole in bottom for 6 BA} sсеет. 7/6.

MOVING COIL METER BARGAIN Panel meters are always being needed and they Panel meters are always being needed and they are folly costly when you have to buy them in a 2 in . moving cofl flush mounting meters only \(9 / 6\). These are actually R.F. meters and cost about 23 each but if you don't want them for \(\cdot \mathbf{R}\).F. then all you have to do is to remove the thermocouple and you will have a \(2-3 \mathrm{~mA}\) meter which you can make into almost anytbing by adding shunts or series resistor. New and unused.

MAINS TRANSISTOR POWER PACK Designed to operate transistor sets and amplifers Adjustable output \(6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}\) for up to 500 mA (Class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7
PP9 and others. Kit comprises: mains transformer PP9 and others. Kit comprises: mains transormer and instructions. Real snip at only 10/6, plus \(3 / 6\) postage.

\section*{REED-SWITCH}

Suitable for dozens of different applications, such as burglar alarms, conveyór belt switching. These are simply glass encased switches which can be operated by a passing permanent magnet coil. A special buy enables us to offer these at \(2 / 6\) each, or 24/- dozen. Suitable magnets are \(1 /\) - each.

\section*{MINIATURE RELAY}

American make- 630 ohm coil \(20-30\) volt opera-
tion- 2 pole changeover \(4 / 6\) each, \(48 /-\) dozen.


5A, 3 PIN SWITCH SOCKET8 An excellent opportunity to make An excellent opportunity to mak needed or to stock up for future jobs. This month we offer 6 British made (Hicratt) bakelite fueh mounting shuttered 5 A switch sockets for only \(10 /-\) plus \(3 / 6\) pos
and
insurance.
( 20 bores free.)

\section*{QUICK CUPPA}

Mini Immersion Heater, 350 w . 200/240v. Boils full cup in about two minutes. Cise any socket or for tea, baby's food, etc. \(19 / 6\), post and insurance \(1 / 6\) 127. car model also available.

\section*{MISCELLANEOUS ITEMS}

Hesaphones. Ex-W.D. unused and perfect, single with headband 4/6. Double with headband 8/6. Mrulti parpose Meon Test Unit. Robast, useful and instructive, tests insulation, capacity, continuity, injector, and L.T. fault finder, kit comprises neon indicator, 4 -way wafer switch, ebonite tubee resistors-condensers, terminals, etc., with dia gram, only \(9 / 8\), plus \(2 /\) - post and insurance. Tuning Condenzer. Solid di-electric, 0005 mfd . variable \(2 / 8\) each. \(24 /\) - dozen.
A.E.I. Fractional H.P. Motor. 200/250V \(0 / 60 \mathrm{c} / \mathrm{s}\) enclosed, continuous rating \(1 / 40 \mathrm{~h} . \mathrm{p}\). , ex. equipment. Perfect order, 18/6, plus \(4 / 6\).
Experimening with nulta violetP Philips U.V. G.E.C. Black Lier and control gear 19/6.
special lighting effects-40 watt experiments and 14/6 each; holders and control gear, 19/B, plus \(4 / 6\) post. \(\begin{aligned} & 4 / 6 \text { post. } \\ & \text { Clook } \\ & \text { Motor. }\end{aligned} \quad 230 \mathrm{~V} \quad 50 \mathrm{c} / \mathrm{s}\) synchronous-selfPeatode Output Tranalormer, Standard size, 40-1, ex-equipment but OK, \(4 / 3\) each, \(48 / \%\) doz. Pogt pald. \(\mathrm{E} . \mathrm{T}\). Condenser. 0-1 mid. \(\overline{\mathrm{s}} \mathrm{LV}, 8 / 6\) each. Heon Mains Tenter, \(1 / 3\) each, \(12 /-\) doz
Flood Lamp Control. Our dim and full switch is ideal for controlling photo flood lamps; it gives two lamps in series, two lamps full briliance and lamps off. Similar control of other appliances cal can be split exactly in half. Technically the switch is known as a double-pole changeover with off Our price \(4 / 6\).
Sub-Ministure Silicon Dioder. General purpose type with gold-plated leads, 1/- each or 7/6 per dozen.

\section*{ELECTRONICS (CROYDON) LTD. \\ Dept. PE, 266 London Road, Croydon CRO-2TH}

\section*{To So Ma ELECTRONIC \\ components ta}



\section*{THE PHYSICS EXHIBITION}

In an exhibition of this kind it is impossible to detect a dominant theme, since it is concerned with the unique display of several developments, from ideas to final production. (The Physics Exhibition, sponsored annually by the Institute of Physics and Physical Society, was held at Alexandra Palace, London, from March 10 to 13.) Out of this event, commercial concerns cannot expect to reap immediate financial rewards. However, it is frequently forgotten that, if it were not for the "back-room seedsmen", many companies would not have any produce to take to market.
The field of technical knowledge covers several acres but the harvest depends largely on the applications to human needs. Typical here is the growing quest for diagnosis and treatment of diseases, in which several branches of physics technology can plough through the problems.

\section*{HIDDEN CONTOURS REVEALED}

It should come as no surprise to many that holography is an obvious choice in showing three-dimensional views of internal human organs, as opposed to the two dimensions from x-ray plates. Some indication of proportions and contours can become apparent-a breakthrough in diagnostic interpretation. This work is being carried out at A.W.R.E., Aldermaston.
The Acoustics Group of the Institute held a collective display of acoustic and ultrasonic techniques in collaboration with organisations concerned with medical research. Of particular interest was the ultrasonic transducer "Diasonograph" which makes two dimensional scans of, among other organs, the liver. The transducer is moved over the surface of the skin and, using liquid paraffin as a couplant, provides pulse echo information from the liver area to modulate the brightness of a cathode ray tube beam.

Although potentially valuable in finding abnormal shapes due possibly to foreign growth, this method has so far presented difficulties in applications, due to natural variations between individuals in the transmission loss of the anterior abdominal wall.

These variations can reduce diagnostic accuracy, but suspicions of diseases, such as cirrhosis, cancer, and cyst, can help localise and concentrate further investigation on a reasonably sound basis. This work is sponsored by the Medical Research Council with the Board of Governors of United Bristol Hospitals.

\section*{CLOSE STUDY IN SCHOOLS}

The experimental and close study techniques employed by university laboratories has been attracting the interest of secondary grade schools (with sufficient financial incentive) enough to encourage basic research work in science projects. Consequently it is encouraging to see an enlarged section devoted to school projects and educational techniques at most levels.

Typical in this group is the belief by The King's School, Gloucester, that a precision, frequency locked, electronic counter can be made a basic laboratory instrument, operating at 100 kHz , for accurate time and frequency measurement, temperature and electrical resistance, inductance and capacitance measurememt. The system developed at this school uses comparison techniques, whereby the oscillator frequency is made the analogue of the parameter under investigation. The actual counter is the means of measuring this frequency.

\section*{Walch oul for nexid month's Praciciza Electronics}

\section*{CHROMATONE}

A thyristor controlled lighting effect unit that can be used with any sound source from a transistor radio to an electric guitar or organ. This portable mains operated unit is particularly suitable for pop groups since it can supply bulbs of up to 750 watts total output on each of its three channels. The intensity of each channel and of the whole display are variable.


\section*{OPTICAL REMOTE CONTROLLER}

A simple visible light transmitting and receiving system which can be used to control various electronically or electrically operated devices.

PRACTICAL


July issue on sale Friday June 13 order your copy now \(3 /-\)

\section*{Req A SELECTION FROM OUR POSTBAG}
correspondents wishing a reply must enclose a stamped addressed envelope

\section*{The right level?}

Sir-As a regular subscriber to Practical Electronics for the past 18 months, I should like to offer some criticism (more praise really) and suggestions, which I hope you may find of interest.

Firstly, a word of praise for your subscription department and general publishing policy. It is much appreciated that overseas subscriptions do not cost more than at home, and that the magazine reaches me here no later than it appears on the newsstands at home. My special thanks, incidentally, for sending on any free gifts at no extra charge-the same can, unfortunately, not be said of many U.K. publishers.
With regard to the magazine itself, I hope you will continue to steer clear of television and radio topics, and in particular of amateur radio. This latter field surely has outlets enough as it is, and the "fraternity"s" peculiar love of esoteric abbreviations and home-brewed jargon can make a non-enthusiast's teeth grind.

Through my work, and also through acquaintances, I manage to see most of the amateur "electronics" magazines published in Europe, plus a few of U.S. origin, and I honestly think that yours is the best. This is because, I believe, you have managed to hit on exactly the right level of technical "difficulty" in your practical projects, which are also almost always eminently practical.

This is not intended to imply that I am not in favour of articles such as the recent series on Bionics, which I consider to be an excellent idea.
> G. J. Phillips,

> The Hague, Netherlands.

\section*{Aroused from the chair!}

Sir-I have just finished reading my first copy (April 1969) of Practical Electronics-prompted by the advertisement in Practical Motorist -and I am most impressed!

Indeed, it has re-awakened my interest in electrical gadgetry. I'm sure your editorial was aimed at me since this browser and second time beginner is about to become a "doer".
1 found the constructor's guide supplement most useful-especially the construction materials (I've seen transistors and printed circuits of course, but I hadn't realised it was so readily available to the amateur) and the circuit symbols.

The article Theory into Practice is also very useful-comprehensible without being over-simplified, and the Pocket Radiation Monitor was most interesting, since I am an X-ray technician, but far too expensive for the amount of radiation I am exposed to, but invaluable to industrial technicians I think.

A little adverse criticism now if I may... I personally would find it very useful if the approximate total cost of materials was quoted in the components box as 1 am right out of touch with costs these days \(\rightarrow\) and this would indicate whether the project was within spare cash range.

Thankyou for giving me a table-top hobby-it will be a change from being "under the bonnet" after the sun goes down
B. P. E. Lawrence, \(\begin{array}{r}\text { Smethwick, } \\ \text { Worcs. }\end{array}\)

\section*{Kits please}

As a schoolmaster running an electronics club I find it difficult to obtain lots of components called for in your various plans and this is a cause for most boys giving up a project early.

Could you not come to some arrangement with some firms to supply a complete set of components as is done with some jobs in other magazines? This would make a lot more people take up the practical work, particularly your coming attraction of the Electronic Organ. I feel sure that the financial attraction would make component suppliers keen to go to some trouble to make up sets of parts to the magazine specifications so that one could order by post or go to one shop and know that the whole job could be purchased.

I am going to try and get the School to finance the making of the Electronic Organ and I do hope that my suggestion of suppliers might be carried out on this job and I feel sure that many more schools and individuals will "make the jobs" to the advantage of everybody concerned with the electronics industry.
S. Orford,

New Eltham,
London, S.E. 9 .
We would certainly like to see kits advertised, but this is really a matter for the component suppliers rather than ourselves. See this month's editorial comment-Ed.

\section*{Of considerable value}

Sir-We would very much appreciate it if you could mention in your next issue that anyone who is interested in the British Amateur Electronics Club should contact the Hon. Secretary, Mr J. G. Margetts, 12, Adenfield Way, Rhoose, Barry, Glamorgan.

I would like to take this opportunity of congratulating you on an excellent issue and your supplement (April) will be of considerable value to experimenters, such as the members of the B.A.E.C.
C. Bogod,

Chairman, B.A.E.C.,
Penarth.
.....talking of Bionics, here are two photos taken from the TV screen during transmission of the Southern Television programme "HOW" a few weeks ago. Our author G. C. Brown is shown demonstrating one of his electronic animals which is shown in close-up in the second picture


\section*{DE LUXE PLAYERS}

PORTABLE CABINET Asillas-
 RCS AMPLIFIER 3 WATT. Eesdy made and tested. This is a 2-stage unit using s triode pentode condenser conpled valve, givi 3 watts outpu
in \(6 \mathrm{a} ~\)
3 ohm
londspeaker.
Tone and volume
controls monated
hastis with knobs. Supplied Freøূuency response \(50-12,000 \mathrm{cps}\)

5.6 each Sensitivity 200 mV . 59/6
SIMGLE PLAYERS MONO AUTOCHANGERS MONO \begin{tabular}{ll|l} 
EMI Junior Mains & £2.19.6 & Baliour Princess \\
Gzrrard SRP2 & £5.19.6 \\
E6.19.6
\end{tabular}
 All fitted \(7 P / 78\) stylii 3000 Stereo/Mono 212.19 .6 Stereo!mono pickups 20/- extra except 3000 . GARRARD TEAKWOOD BASE WB.1. Ready \(65 /=\) cut out lot mounting 1025, 3000, SP25, A 2 世60, etc GARRARD PLASTIC COVER SPC.I for WB. 1

DE LUXE STEREO GRAM CHASSIS V.H.F. MW, SW \(19-50 \mathrm{~m}\). SW \(60-180 \mathrm{~m}\). Magic eje, push buttons. 622.10
valve plus rect. Size 15 British Made. Details S. A.E
PICK-UP ARM Complete with ACOS LP-78 GP67 Stylii 20j6; XTAL GP67 17/6; Stereo Ceramic 35/-. Fowerpoint \(5815 /\)

CRYSTAL MIKE INSERTS
\(1!\) dia. in. \(6 / 6:\) ACOS 131 in, dia. \(9 / 6\). BMa, \(1{ }^{\prime \prime}\) dia. \(9 / 6\)
MOVING COIL MIKE with Remote Control Switch \(19 / 6\)
PORTABLE TRANSISTOR
AMPLIFIER PLUS
DYAAMC MIEROPHONE
A self-contained fully
portable mini p.a.system,
Many uses -ideal for
Partjes, or as a Baby
Parties, or as a Baby
Alarm, Intercom, Tele
phone or Record Player,


Amplifer, etc. Attractive rexine
powerial 7 a Lin, speaker and four transistor one wat poweriul \({ }^{2}\) power amplifer plus ultra sensitive microphone. Dses PP9 battery. Brand new in Makers' carton with Full makers guarante. World famous make. Only \(90 /=\begin{aligned} & \text { Post } \\ & \text { Free }\end{aligned}\)
WEYRAD P50-TRANSISTOR COILS RA2W 6 in. Ferrite Aerial Spare Cores

 I.F. P50/2CC \(470 \mathrm{kc} / \mathrm{s} \cdot \mathrm{S}^{5 / 7}\) J.B. Tuning Gang Telescopic Chromer Aerials bin, extends to 23 in .
VOUME CONTROLS
80 omm Coax 8 da, sd Long spindles. Midget Size BRITISH AERIALITE 5 K, ohms to 2 Meg. LOG or AERAXIAL-AIR SPACED STEREO L/S \(10 / 6\), D.P. \(14 / 6\)
Edge 5K. S.P. Transistor, 5/-
Ideal 625 lines yow
 PINS 36 per packet 3/4. FACE CUTTERS \(7 / 6\)
S.R.B.P. Board 0.15 MATRIX 21in. wide 6d. per lin. 3 3in. Wide gid. per lin.; 5 in. Fide \(1 /-\) per 1 in. (up to 17 in .)
BLANE ALUMINIUM CHASSIS. 18 8.w.g. 2!in, sides,




"SONOCOLOR' CINE RECORDING TAPE \(5^{*}\) reel, \(900^{\circ}\) with LP strobe markings. also cline light defiector-mirror for synchronisation.
UNIVERSAL TAPE CASSETTES C60. THREE FOR \(30 /-\).
Tape Spools 2/6. Tape Splicer 5/-. Leader Tape 4/6.
Reuter Tape Heads for Collaro models 2 track 21/- pair
"THE INSTANT"

\section*{BULK TAPE}

ERASER AND
RECORDING

\section*{HEAD}

\section*{DEMAGNETISER}
 Poos \(2 / 842 / 6\)
200/250 v. A.C. Leaflet S.A.E

BARGAIN STEREO/MONO SYSTEM Attractive Slim PLAYER CABNET witk B.8.R. Stereo
 (Only 4 pairs of wires to join).

\section*{CAN TYPES}

NEW
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline \(2 / 350 \mathrm{~V}\) & 2/3 & 100/25V .. 2/- & 8/600V \\
\hline \(4 / 350 \mathrm{~V}\) & 2/3 & 250/25V .. 2/6 & 18/600V \\
\hline 8/450V & \(2 / 3\) & 500/25V .. 4/- & \(18+18 / 500 \mathrm{~V}\) \\
\hline 16/450V & 3/- & \(8+8 / 450 \mathrm{Y}^{3 / 6}\) & \(32+32 / 250 \mathrm{~V}\) \\
\hline 32/450V & \(3 / 9\) & \(8+16 / 450 \mathrm{~V} 3 / 9\) & \(50+50 / 350 \mathrm{~V}\) \\
\hline 25/25 & 1/9 & \(16+16 / 450 \mathrm{~V} 4 / 3\) & \(80+100 / 350 \mathrm{Y}\) \\
\hline 50150 V & & \(32+32 / 350 \mathrm{Y} 4 / 6\) & \(32+\) \\
\hline
\end{tabular} \begin{tabular}{lll|l|l|l}
\(25 / 25 V\) & \(16+16 / 450 \mathrm{~V}\) & \(4 / 3\) & \(60+100 / 350 \mathrm{~V}\) & \(11 / 6\) \\
\(50 / 50 \mathrm{~V}\) & \(2 \cdot\) & \(32+32 / 350 \mathrm{~V}\) & \(4 / 6\) & \(32+32+32 / 35078 / 6\)
\end{tabular} SUB-MIN. ELECTROLYTICS. \(1,2,4,5,8,16,25,30,50,100\),
\(250 \mathrm{mF} 15 \mathrm{~V} 2 /-500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 6 ; 2000 \mathrm{mF} 25 \mathrm{~V} 7 \mathrm{-}\) \(250 \mathrm{mF} 15 \mathrm{~V} 2 /-; 500,1000 \mathrm{mF}\), 12 V . \(3 / 6 ; 200\)
CERAMIC. 500 V 1 gF to \(0.01 \mathrm{mF}, 9 \mathrm{~d}\). Discs \(1 /-\). PAPER \(350 \mathrm{~V}=0.19 \mathrm{~d}, 0.52 / 6 ; 1 \mathrm{mF} 3 /-; 2 \mathrm{mF} 150\) \(500 \mathrm{~V}-0.001\) to \(0.05 \mathrm{gd;} \mathrm{0.11/-:0.251/8;0.53/}\) \(1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 8 ; 0.047,0.1,2 ; 6\) SILVER MICA. Close tolerance \(1 \%, 5-500 \mathrm{pF} 1 ; 560-2,200 \mathrm{p}\) \(2 /-\quad 2,700-5,600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-0.01, \mathrm{mfd} 6 /-\) each
TWIN GANG. " \(0-0\) " \(208 \mathrm{pF}+176 \mathrm{DF}, 10 / 6 ; 365 \mathrm{pF}, \mathrm{mi}\) ture \(10 /-; 500 \mathrm{pF}\) standard with trimmers, \(12 ; 6 ; 500 \mathrm{pF}\) midget less trimmers, \(7 / 6 ; 500 \mathrm{pF}\) slow motion, standard \(8 /-\) Small 3-gang 500 pF 19/6, Single "0" \(365 \mathrm{pF} 7 / 6\). Twin \(10 / 6\) \(160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6 \mathrm{each}\). \(10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}\) TUNING. Solid dielectric. \(100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-\) each.
TRIMMERS. Compression \(30, \quad 50,70 \mathrm{pF}, 1 /-: 100 \mathrm{pF}\), \(150 \mathrm{pF}, 1 / 3: 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 19 ; 1000 \mathrm{pF}, 2 ; 6\). 250V RECTIFIERS. Selenium \(\frac{1}{2}\) Wave \(100 \mathrm{~mA} 5 /-\) BY100 10/Full wave Bridge \% 5 ma \(10 /=; 150 \mathrm{~mA} 18 / 6\). TV rects, \(10:\) FEON PANEL INDICATORS \(250 \%\) AC/DC \(3 / 6\).

 HIGH STABILITY, \(\begin{aligned} & \text { Ditto } 5 \% \text { Preferred values } 10 \text { obms to } 22 \text { meg., } 9 \mathrm{de} \text {. }\end{aligned}\)
 10 watt 15 watt \(\int 10\) ohms to 6,800 ohms \(10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3\),
FULL WAVE BRIDGE CHARGER RECTIFIER
 lor 6 or \(12 \gamma_{., ~} 1 \frac{1}{=}\) amps., \(17 / 6 ; 2\) amps., \(21 / \mathrm{c} ; 4 \mathrm{amps} ., 30 ;\) \begin{tabular}{l|l|}
\hline WIRE-WOUND 3-WATT & WIRE-WOUND \(3-W A T T\)
\end{tabular} \begin{tabular}{l|l} 
POTS. T.V. Type. Values & STANDARD SIZE POTS \\
10 ohms to \(30 \mathrm{~K} .\), & \(4 / 6\) \\
Carbon 30 K to 2 meg. & LONG SPINDLE \\
\hline
\end{tabular} \begin{tabular}{l|l} 
Carbon 30 K to 2 meg. \(4 / 6\) & LONG SPINDLE \\
50 OHMS to 100 K.
\end{tabular}\(/ 6\) VALVE HOLDERS, 9d.; CERAMIC 1/-; CANS 1/-. BRAND NEW TRANSISTORS 6/- each OC71, OC72, OC81, OC44, OC45, OC171, OC1\%0, AF11\%. MAT REPANCO TRANSISTOR TRANSFORMERS.
 TT45. Push Pull Drive, \(9: 1 \mathrm{CT}, 6 /-\) TT48 Ontput, CT8:1 B TT49. Interstage, \(20: 1,6 /-;\) TT52 Output 3 ohms, \(4-5: 1,6 /\) TRANSISTOR MAINS POWER PACKS. FULL WAVE
 Crackle finish. Dutput terminals, On/oft switch. \(47 / 6\) 9 volt 500 mA . TRANSFORMER OXLY. 21 13 \(181 \mathrm{in} 10^{\prime}\) BENCH POWER PACK 230-250. A.C.
with Meter for \(8-9-12 \mathrm{y}\). 1 amp D.C.

\section*{MAINS TRANSFORMERS \(\underset{\substack{\text { Fost } \\ 5 /- \text { esach }}}{\substack{\text { en }}}\)}
\(250-0-25050 \mathrm{~mA} .6 .3 \mathrm{\nabla} .2 \mathrm{amps}\), centre tapped \(\quad 19,6\) \(250=0-25080 \mathrm{~mA} .6 .3\) ₹. 3.5 a .6 .3 v .1 a a, or 5 v .2 a . \(30 /-\)




 \(6,8,9,10,12,15,18,24\) and 30 . at 2 a. \(\ldots \ldots .3 .30 /-\)
1 amp., \(6,8,10,12,16,18,20,24,30,36,40,48,60,35 /-\) AUTO TRANSFORMERS \(0-115-230\) \% \% Input/Output,
GOw. 18/6; 150w. \(30 /-500 \mathrm{w} .92 / 6: 1000 \mathrm{w} .275 /-\) COAXIAL PLUG \(1 / 3\), PANEL SOCKETS 1/3. LINE 2;OUTLET BOXES. SURFACE OR FLUSH \(4 / 6\).
BALANCED TWIN FEEDERS \(1 / \mathrm{F}\) yd. 80 ohms or 300 ohms. JACK SOCKET Std, open-circuit 2/6, closed circuit 4;6; Chrome Lead Socket 7/6. Phono Plugs 1/-. Phono Socket \(1 / 6\) dACK PLUGS Std, Chrome \(3 /-i 3.5 \mathrm{~mm}\) Chrome 2;6. DIN 3-pin 3/6; 5-pin 5:- DIN PLUGS 3 -pin \(3 / 6 ; 5\)-pin \(5 /-\). WAVE-CHANGE SWITCHES WITH LONG SPINDZES. WAVE-CHANGE SWITCHES WITH LONG SPLNDL
\(2 \mathrm{p} .2-\) Way, or 2 p . 6 -way, or 3 p .4 -way \(4 / 8\) each. Wavechange "MAKITS" 1p. 12-way, 2 p. 6-way, 3 p. 4 -way, 4 p. 3-way, 6 p. 2-way. 1 wafer \(12 /\), 2 waler \(17 /=.3\) wafer \(22 /-\) Additional wafers 5 - each up to 12 max.
TOGGLE SWITCHES, sp.2/6; sp, it. 3/6; dp. 3;6; dp. dt. 4;6

\section*{MINI-MODULE \\ LOUDSPEAKER KIT}

10 WATT 55/= CARR. 5:-
Triple speaker system combining on ready cut baffle. \(\frac{1}{2}\) in. chipboard 15 in . 68 in. Separate Bass, Middle and Treble loudspeakers and crossover condenser. The heary duty 5 in. Bass Wooler unit has a low resonance cone. The Mid-Range unit is specially detigned to add top end of the musical spectrom Total response \(20-15,000 \mathrm{cps}\). Foll instructions for 3 or 8 ohm. TEAK VENEERED BOOKSBELF ENCLOSURE.


BAKER I2in. SUPERB LOUDSPEAKER
Suitable for all Ei-Fi Syrtems, Provides rich clear reproduction of the deepest bass and remarkable enciency in the npper register. Response 20-17,000
cps. "Baker" double cone with special "Ferrods" ceramic megnet. Flar density 18,500 garis. Bans resonance \(22-26\). cpg. 20 watt rating. Voice coil 8 ohms or 15 ohms.
ElS Pont Free

48-page Enclosure Manual


LOUDSPEAKER CABINET WADDING \(18 i n\) wide, \(2 / 61\) t BAKER "GROUR SOUND" SPEAKERS -POST EREE Group 25' \({ }^{\prime}\) Group 35' \(\quad\) Group 50' 25 watt \(6 \mathrm{gns}.{ }_{35}^{12 \mathrm{in} \text { wat }} 8 \frac{1}{2} \mathrm{gnS} .50\) watt \(18 \mathrm{gnns}\).
ALL MODELS "BAKER SPEAEERS" IK STOCK
Super Cone Tweeter 2 亩 square, \(3-17 \mathrm{kc} / \mathrm{s}\). 10W \(17 / 6\).
 \(7 / 6\) each; 6 Iin \(22 / 8 ; 10\) in \(37 / 6 ; 8 \quad 5 \mathrm{in}, 21 /=8<21\) in \(21 /=\) 12in. Double cone 3 or 15 ohm 39;6; 10 6in, \(30 /-\)
E.M.I. Dopble Cone \(13!\times 8\) in. 3 or 15 ohm models, \(45 /\) of with twin tweeters, \(X\) /over and ceramic magnet 79/6.

 8in LOUDSFEAKER DKITS 3 Ohm \(27 / 6\); 15 ohm 30 i-: 8 in. De Luse Ceramic 3 ohm \(45 /-15\) ohm \(50 /=\)
8 in LOUDSPEAKER. TWIK CONE 8 . in .


ALL PURPOSE HEADPHONES
H.R. HEADPHONES 2000 ohms Super Sensitive LOW RESISTANCE HEADPHONES \(3-5\) ohms.

MINETTE AMPLIFIER
A.c. Mains Transformer in high. Valves ECL82, EZ80. Chassis size 7 . 4 in high. Valves ECL82, EZ80.
12 month garantee. Quality output 3 ohm. With engraved Iascia, Falves, knobs, volume and tone controls,
\(\begin{aligned} & \text { Post } 5 / 6\end{aligned}\)
wired and tested.

\section*{ALL EAGLE PRODUCTS}

SUPPLIED AT LOWEST PRICES.
45-PAGE EAGLE CATALOGUE \(5 /-\). Post free.
\(\begin{aligned} & \text { BARGAIN AM TUNER. Medium Wave. } \\ & \text { Transistor Superhet. Ferrite aerial. } 9 \text { volt. }\end{aligned} \quad 79 / 6\)
BARGAIM DE LUXE TAPE SPLICER Cuts, \(\quad 17 / 6\) BARGAIN 4 CEANNEL TRANSISTOR MIXER. Add musical highlights and sound eflects to recordings. Will
mix Microphone, records, tape and tuner with
separate controls into single outpat. 9 volt. mix Microphone, records, tape and tuner Fith
separate controls into single outpat. 9 volt. BARGAIN FM TUNER 88-108 Me's Six Transistor. Ready built. Printed Cifcuit. Calibrated slide dial \(\mathbf{4 6}\). 19.6 BARGAII 3 WATT AMPLIFIER. 4 Transistor \(69 / 6\) Push-Pull Ready built, with volume control. 98 \(\star\) RADIO BOOKS \(\star\) (Postage 9d.)
Practical Transistor Receiver
Fractical Stereo Eandbook.................
Supersensitive Transistor Pocket Radio ....
Radio Valve Guiue, Books 1, 2,3, or 4 ea. 5 - Ko. 5 ea, B/ Practical Radio Iaside Out.
Shortwave Transistor Receivers.
Transistor Communication Sets
Modern Transistor Circuits for Bekinuers
Sub-Miniature Transis!or Receivers
Wireless World Radio Valve Data
At a glance ralve equivalents
Valves, fransistors, Diodes equipalents msaual........ \(10 / 6\) Transistor Circuits Radio-Controlled Models.
MANUFACTURERS SURPLUS! 25/=
TAPE RECORDER CASE. Red/Cream or
Grey 2-tone. Rexine covered. Size \(15: 12 \times 5 \frac{1 \mathrm{in}}{}\). POST FREE POCKET HOVING COIL MOLTIMETER. \(49 / 6\) \(\begin{array}{ll}\text { SUPERIOR MOVING COIL MULTIMETER } \\ 0-2-500 \%, ~ & 99 / 6\end{array}\) \(0-2-500 \mathrm{~F}\), D.C. 20,000 ohms per volt, \(0-1,000\) \%. A.C.
0 hms 0 to 6 meg .50 Microamps (Full list Meters 8.A.E.)

BRAND NEW QUALITY
EXTENSION LOUDSPEAKER
Handsome plastic cabinet, 20ft. Iead and



Minimum Post and Packing \(2 / 6\). RETURN OF POST DESPATCH. HI-FI STOCKISTS. CUSTOMERS FREE CAR PARK. CALLERS WELCOME. \(30 /=\)
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, WEST CROYDON
List \(/ /=\). Written guarantee with every purchase. (Export: Remit eash and extra postage.) Buses 133,68 pass door. S.R. Stn. Selhurst. Tel. \(01-684\) 1665
 f9．5． 0.

INPUT 230／240v．A．C．50／60－ OUTPUT VARIABLE 0－260v． BRAND NEW Keenest prices in the country． All Types（and Spares）from \(\frac{1}{2}\) to 50 amp．from stock． SHROUDED TYPE
1 amp， \(65.10,0 . \quad 2.5\) amps， E6．15，0． 4 amps， E9． 0.0 ． 5 amps，69．15． 0 ． 8 amps， E14．10．0． \(10 \mathrm{amps}, \pm 18.10\) ． 0. \(12 \mathrm{amps}, £ 21.0 .0\) ． 15 amps ， €25．0．0． \(20 \mathrm{amps}, £ 37.0\) ． \(37.5 \mathrm{amps}, € 72,0.0\) ． 50 amps， 692．O．© OPEN TYPE（Panel Mounting） tamp，£3．10．0． 1 amp, £5．10． 0. \(2 \frac{1}{2}\) amps，£6．12． 6.
PORTABLE TYPE
1.5 amp ．portable fitted metal case，

\begin{tabular}{lll} 
L．T．TRANSFORMERS \\
Type No． & \begin{tabular}{c} 
All primaries \\
\(220-240\) volts
\end{tabular} \\
Pec．Taps & Price
\end{tabular} Carr．

\section*{STROBE！STROBE！STROBE！}

Build a Strobe Unit，using the latest type Xenon white light flash tube．Solid state timing and trigger－ ing circuic． \(230 / 250 v\) ．A．C．operation． ECONOMY KIT．Flash rate 1.36 flash per second． All components including Unijunction，thyristor， tube and circuit． \(65 / 5 / 0\) plus \(3 / 6 \mathrm{P}\) ．\＆P． INDUSTRIAL KIT．Flash rate l－80 f．p．s．Idealiy suitable for schools，laboratories，etc．Incorporates double wound transformer which isolates both tube and timing sircuit from mains：Stabilized timing circuit and high power tube．\(£ 8 / 8 / 0\) plus \(6 / \mathrm{P}\) P．\＆\(P\) ．

6⿳亠口冋⿱⿰㇒一乂凵：POLISHED REFLECTOR
Ideally suited for above Strobe kits．Price \(8 / 6\) post paid． Regret not sold separately．

PARVALUX TYPE SDI9 230／250 VOLTS A．C． REVERSIBLE GEARED MOTOR．
30 r．p．m．40lb，ins．Position of drive spincle adjustable to 3 different angles． base．Ex－equipment．Tested and in firs class running order．A really powerfu motor offered at a fraction of makers price． 6 GNS．P．\＆P． \(10 /\) ．
BODINETYPEN．C．I GEARED MOTOR
（Type 1） 71 r．p．m．Torque 101 b ．inch．
Reversibie． \(1 / 70 \mathrm{ch}\) h．p．， 50 cycle .38 amp． Reversible． \(1 / 70\) th h．p．， 50 cycle， 38 amp ． （Type 2） 28 r．p．m．Torque 201 b ．inch． Reversible．1／80：h h．p．； 50 cycie， 28 amp． are offered in＇as new＇condition．Input voltars of motor 115 v ．A．C．Supplied complete with \(230240 v\) ，A．C．input．Price，either type \(\mathbf{f 2}\) ． 17 ． 6 mer for P．\＆P．or less transformer \(£ 2.2 .6\) plus \(4 / 6\) P．\＆P．

\section*{SPEEDIVAE HIGH VOLTAGE}

HIGH FREQUENCY GENERATOR
Input \(100 / 110\) volts or \(200 / 250\) volts AC／DC．Output 19 KV variable．Ideal for testing insulation，vacuum，leakage path，gas discharge lamps，neon，ete．A useful ozone and HF supply．
Manufactured by Edwards
High Vacuum Lid．Brand new in Manufactured by Edwards High Vacuum Ltd．Brand new in
maker＇s polished wooden carrying case．Offered at fraction of maker＇s polished wooden carrying case．Offered at fraction of maker＇s price． 110.0 .0 plus \(7 / 6 d\) ．P．\＆P．
CT82 NOISE GENERATOR
ideal for aliznment of als types of com－ munication and VHF receivers．Self con－ tained audio output meter and mains power supply
\(100 \mathrm{Kc} / \mathrm{s}\) to \(160 \mathrm{Mc} / \mathrm{s}\) Frequency range 43 ohm or 75 ohm range to 20 d ．
In rugged alloy case with instructions for use．Offered untested but in excellent condition，less mains lead．E7／19／6，P．\＆P． \(10 /-\) ．


\section*{SERVICETRADING CO}

All Mail Orders－Also Callers－Ample Parking Space 57 BRIDGMAN ROAD，LONDON，W． 4 Phone 9951560 SHOWROOM NOW OPEN

Personal callers only 9 LITTLE NEWPORT ST． LONDON，W．C．2．Tel．GER 0576

LIGHT SENSITIVE SWITCH
Kit of parts，including ORPI2 Cad－ mium Sulphide Phococell，Relay， Transistor and Circuit，etc．，6－12 volt D．C．op．price \(25 /\)－plus \(2 / 6\) P．\＆P．ORP 12 including circuit， \(10 / 6\) each，plus \(1 /-\) P．\＆P．
A．C．MAINS MODEL incorporates Mains Transformer，Rectifier and special relay with \(3,5 \mathrm{amp}\) mains \(\mathrm{c} / \mathrm{o}\) contacts． Price inc．circuit 47／6 plus 2／6 P．\＆P．

\section*{LIGHT SOURCE AND PHOTO} CELL MOUNTING \(\quad\) I Precision engineered \(\Rightarrow=\square\) light source with focusible
lens assembly and ventilated lamp housing，to take MBC bulb．Separate photo cell mounting assembly for ORP． 12 or similar cell．Both units are single hole fixing．Price per pair £2．15．0．P．\＆P．3／6．

\section*{UNISELECTOR SWITCHES}

NE W
4 Bank 25 Way 24 v．D．C．
operation \(\mathbf{4 5} .17 .6\) plus \(2 / 6\) P．\＆
operation 25 Way 24 V．\＆．C． Bank 25 Way 24 V．D．C．operation． £7．12．6 plus 4／6 P．\＆P．
MINIATURE UNISELECTOR SWITCH Ex－Equipment
3 banks of 11 positions plus
homing bank． 40 ohm coil． 24－36 V．D．C．operation．
Tested．22／6，plus 2／6 P．\＆P
COPPER LAMINATE \(==\) Board Size \(15 \frac{1^{m}}{2^{\prime}} \times 5 \frac{1}{n}^{m} 3\) for \(10 /\) ．Post paid 3 minimum order．

\section*{RELAYS}

Bulk purchase enables us to offer the following new SIEMENS，PLESSEY， etc．miniature plug in relays complete， price
\begin{tabular}{|c|c|c|c|}
\hline Coil & Working & & \\
\hline 8 & Voltage & Contacts & Price \\
\hline 280 & 6－12 & \(2 \mathrm{c} / 0\) ！ & \(14 / 8\) \\
\hline 280 & 9.18 & \(4 \mathrm{c} / \mathrm{O}\) & \(13 / 6\) \\
\hline 700 & 12.24 & \(2 \mathrm{c} / \mathrm{o}\) & \(12 / 6\) \\
\hline 700 & 16.24 & \(4 \mathrm{c} / \mathrm{O}\) & 15.6 \\
\hline 700 & 16－24 & 4 M 2 B & \(12 / 6\) \\
\hline 1250 & 20.40 & \(2 \mathrm{c} / \mathrm{O}\) & ． 1216 \\
\hline 2500 & 30－50 & \(2 \mathrm{c} / \mathrm{O}\) & ．12／6 \\
\hline 5800 & 50.70 & 4 e\％ & 10／－ \\
\hline 9000 & \(40-70\) & \(2 \mathrm{c} / \mathrm{O}\) & 10：－ \\
\hline H． & Heavy & ty．POS & AI \\
\hline
\end{tabular}
＇AVO＇METER MODEL 7
Supplied fully checked and tes－ ted on all ranges and in excellent condition．Complete with bat－ teries and leads．Price \＆13．10． 0 ．
P．\＆P．7／6．Avo Leather Carry－

ing Case 30／－，Regret not

\section*{supplied separately．}

\section*{＇AVO＇MODEL 47A}

Ex－Admiraley in first class condition，com－ plete with instructions，leads and case．\(£ 9 / 19 / 6\) ， P．\＆P．10／．

\section*{＇AVO＇MODEL 48A}

Ex－Admiralty in good condition with instruc－ tions，leads，plus D．C．Shunts for 120 Amp and 480 Amp．A．C．Transformer for 60 Amp． plete ouffir in fitted case． \(15 / 0 / 0\), P．\＆P． \(10 /-\) INSULATED TERMINALS A Available in red，white，yellow， ENack，blue and green． Ne ．

\section*{DRY REED SWITCHES}
\(2 \times 1 \mathrm{amp}\) Dry Reeds（makes contacts） Mounted in 870 ohm \(9-18\) v．coil．Size \(3^{\prime}\) \(\times 3 \frac{1^{n}}{}{ }^{n} \times \frac{1^{\prime \prime}}{2}\) ．New．Price \(8 / 6\) per pair． Post Paid．\({ }^{2}\) Six of the above mentioned units（ 12 Reeds）．Fitted in metal box．Size \(4^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}\) ．Mfg．by Elliott Bros． New．45／－each．Post Paid．

\title{
NEW FROM ILIFFE
}

\section*{110 SEMI－ CONDUCTOR PROJECTS FOR THE HOME
CONSTRUCTOR}

R．M．MARSTON，technical author and design consultant．
This is a book which will appeal equally to the elec－ tronics amateur and to the professional engineer．
110 different circuits are described and the operation of each one is explained in simple and precise terms．The main feature of the book is that it fulfils a long－awaited need for readable information on these devices．

\section*{CONTENTS}

30 Silicon－Planar Transistor Projects
15 Field－Effect Transistor Projects
20 Uni－Junction Transistor Projects
15 Silicon Controlled－Rectifier Projects
30 Integrated－Circuit Projects
124 pages 110 illustrations 25s．net case \(26 /\)－by post
18s．net student edition 19／－by post

\section*{ILJFFE BOOKS LTD}

42 RUSSELL SQUARE LONDON，W．C． 1

\section*{NEW PRICES ON NEW COMPONENTS}

\section*{RESISTORS}

High stability, carbon film, low noise. Capless construction, molecular
cermination bonding.
Dimensions (mm): Body; \(\frac{1}{4}\) W; \(8 \times 2.8\)
Leads;
\(\frac{1}{2} W: 10 \times 4 \cdot 3\)
35
\(10 \%\) ranges; 10 Ohms to 10 Megohms (E12 Renard Series)
\(5 \%\) ranges; 4.7 Ohms to 1 Megohm (E24 Renard Series) Prices-per Ohmic value.
\begin{tabular}{lclccc}
\(1 W W\) & \(10 \%\) & each & 10 off & 25 off & 100 off \\
\(\frac{1}{4} W\) & \(10 \%\) & 2 d & \(1 / 6\) & \(3 / 3\) & \(10 / 4\) \\
\(\frac{1}{4} W\) & \(5 \%\) & \(2 \frac{1}{2} \mathrm{~d}\) & \(1 / 9\) & \(3 / 8\) & \(11 / 8\) \\
\(\frac{1}{2} W\) & \(10 \%\) & \(22 \frac{1}{2} \mathrm{~d}\) & \(1 / 9\) & \(3 / 8\) & \(11 / 7\) \\
\(\frac{1}{2} W\) & \(5 \%\) & 3 d & \(2 /-\) & \(4 /-\) & \(12 / 10\)
\end{tabular}

\section*{CAPACITORS}

Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads. Capacitance value \((\mu \mathrm{F})\)


\section*{OTENTIOMETERS (Carbon)}

Miniature, fully enclosed, rear tags, carbon brush wiper. Long life, low noise. Body dia., sin. Spindle, lin. \(x \frac{1}{4} i n . \frac{1}{4} W\) at \(70^{\circ} \mathrm{C} .+20 \% \frac{1}{4} \mathrm{M}\), \(\pm 30 \%\). iM Lin, 100 Ohms to 10 Megohms, Log. 5 Kohms to 5 Megohms. Prices-per ohmic value. each 10 off 25 off 100 off

\section*{SKELETON PRE-SET POTENTIOMETERS (Carbon)}

High quality pre-sets suitable for printed circuit boards of O.lin. P.C.M. 00 Ohms to 5 Megohms (Linear only).
Miniature: 0.3 W at \(70^{\circ} \mathrm{C}\). \(\quad 20 \%\) below \(\frac{1}{2} \mathrm{M}, \pm 30 \%\) above \(\frac{1}{4} \mathrm{M}\). Horizontal \(0.7 \mathrm{in} . \times 0.4 \mathrm{in}\). P.C.M.) or Vertical \((0.4 \mathrm{in}\). \(\times 0.2 \mathrm{in}\). P.C.M.).
Subminiature: 0.1 W at \(70^{\circ} \mathrm{C}\). \(\pm 20 \%\) below \(2.5 \mathrm{M}, \pm 30 \%\) above.
\(\begin{array}{ccccc}\text { Prices-per ohmic value } & \text { each } 10 \text { off } 25 \text { off } 100 \text { off } \\ \text { Miniature }(0.3 \mathrm{~W}) & 1 /-\quad 819 & 18 / 9 & 66 / 8\end{array}\) Miniature \((0.3 \mathrm{~W})\)
\begin{tabular}{cccc}
\(1 /-\) & \(8 / 9\) & \(18 / 9\) & \(66 / 8\) \\
\(10 d\) & \(7 / 1\) & \(14 / 7\) & \(46 / 8\)
\end{tabular}

\section*{JACK PLUGS}
in. Type P1. Standard. Screened. Heavily chromed.
\(\frac{1}{4}\) in. Type P2. Standard. Unscreened. Unbreakable moulded cover.
in. Type SE/PI. Side-entry version of PI plug.
3.5 mm Type P5. Standard. Screened. Aluminium cover.
3.5 mm Type P6. Standard, Unscreened. Unbreakable moulded cover Prices-
\begin{tabular}{lllll} 
& each & 10 off & 25 off & 100 off \\
P1. & \(3 /-\) & \(26 / 8\) & \(62 / 6\) & \(233 / 4\) \\
P2. & \(2 / 6\) & \(23 / 4\) & \(54 / 2\) & \(200 / \%\) \\
SE/PI. & \(3 / 6\) & 3010 & \(66 / 8\) & \(280 /-\) \\
P5. & \(2 / 2\) & \(19 / 2\) & \(43 / 9\) & \(158 / 4\) \\
P6. & \(1 / 8\) & \(15 /=\) & \(33 / 4\) & \(116 / 8\)
\end{tabular}

\section*{JACK SOCKETS}
tin. Type S.5. Standard. Moulded body. Chrome insert. 3.5 mm Type S.6. Specification as above.

Available with make/make, make/break, break/break, break/make contacts. \(\begin{array}{llllll}\text { Prices- } & \$ .5 & 2 / 9 & 25 /- & 56 / 8 & 216 / 8 \\ & \$ .6 & 1 / 6 & 13 / 4 & 33 / 4 & 100 / \cdots\end{array}\)

ELECTROLYTIC CAPACITORS (Muilard), - \(10 \%\) to \(-50 \%\). \(\begin{array}{lc}\text { Subminiature }(a l l \\ 4 \mathrm{~V} & 8\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 V - 8 & 32 & 64 & 125 & 250 & 400 \\
\hline 6.4 V - 6.4 & 25 & 50 & 100 & 200 & 320 \\
\hline 10 V & 16 & 32 & 64 & 125 & 200 \\
\hline 16 V & 10 & 20 & 40 & 80 & 125 \\
\hline 25 V & 6.4 & 12.5 & 25 & 50 & 80 \\
\hline 40 V & 4 & 8 & 16 & 32 & 50 \\
\hline 64 V & \(2 \cdot 5\) & 5 & 10 & 20 & 32 \\
\hline Price \(\quad 1 / 4\) & 1/3 & 1/2 & 1/- & I/I & 1/2 \\
\hline \multicolumn{6}{|l|}{Small (all values in \(\mu \mathrm{F}\) )} \\
\hline 4 V & 800 & 1,250 & & 2,000 & 3,200 \\
\hline 6.4 V & 640 & 1,000 & & 1,600 & 2,500 \\
\hline 10 V & 400 & 640 & & 1,000 & 1,600 \\
\hline 16 V & 2.50 & 400 & & 640 & 1,000 \\
\hline 25 V & 160 & 250 & - & 400 & 640 \\
\hline 40 V & 100 & 160 & & 250 & 400 \\
\hline 64 V & 64 & 100 & & 160 & 250 \\
\hline Price & \(1 / 6\) & 2/. & & 2/6 & 3/- \\
\hline
\end{tabular}

POLYESTER CAPACITORS (Muilard)
Tubular, \(10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068\). \(0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.22 \mu \mathrm{~F}, 1 / \sim . \quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, 1 / 6 . \quad 0.68 \mu \mathrm{~F}\), \(2 / 3\). \(1 \mu \mathrm{~F}, 2 / 8\).
\(400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} . \quad 6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}\), 7d. \(0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0 . \mathrm{I} \mu \mathrm{F}, \mathrm{IId}, 0.15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}\), 1/6. \(0.33 \mu \mathrm{~F}, 2 / 3 . \quad 0.47 / \mathrm{FF}, 2 / 8\).
Modular, metallised. P.C. mounting, \(20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}\). \(0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 1 \mathrm{Id} .0 .22 \mu \mathrm{~F}, 1 / \mathrm{F} .0 .33 / \mathrm{FF}, 1 / 5\) \(0.47 \mu \mathrm{~F}, 1 / 8\). \(0.68 \mu \mathrm{~F}, 2 / 3\). \(1 \mu \mathrm{~F}, 2 / 9\).

SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC7I, OC8I, OC8ID, OC82D, 2/-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171.
 \(5 /-\) OC139, 5/3. ОС25, 7/- OC35, 8/-. OC23, OC28, 8/3.

SILICON RECTIFIERS (0.5A): 170 P.I.Y., 2/9. 400 P.I.Y., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1,500 P.I.V., \(4 /-\quad(0.75 A): 200\) P.I.Y., I/6. 400 P.I.V., 2/-, 800 P.i.V., 3/3. (6A): 200 P.I.V., \(3 /-.400\) P.I.V., \(4 /-\) 600 P.I.V., \(5 /=800\) P.I.V., 6/-.

SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125 V . Push Buttons: Push-on or Push-off 5/\%. Toggle Switches: SP/ST, \(3 / 6\). SP/DT, 3/9. SP/DT (with centre position) 4/\%. DP/ST, 4/6. DP/DT,5/w

\section*{PRINTED CIRCUIT BOARD (Vero)}
\(0 \cdot 15 \mathrm{in}\) Matrix: \(3 \frac{7}{4}\) in \(\times 2 \frac{1}{2} \mathrm{in}, 3 / 3\). \(5 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 3 / 11.3 \frac{3}{4} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}, 3 / 11\). \(\sin \times 3 \frac{3}{4} \mathrm{in}, 516\).
 5/3.

Send S.A.E. for January, 1969 Catalogue

\title{
DUXFORD ELECTRONICS (PE) \\ 97/97A MILL ROAD, CAMBRIDGE
}

Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale \& Retail Premises) MIMIMUM ORDER VALUE 5/- C.W.O. Post and Packing \(1 / 6\)


THE DORSET ( 600 mW Output)
T-transistor fully tunable M.W.-L.W. superhet portablewith baby alarn facility. Set of parts. The latest modulised and pre-alignment techniques make this simple to build Sizes: \(12^{\prime \prime} \times 8^{\circ} \times 3^{\prime \prime}\). MAINS POWER PACK KIT: \(9 / 8\) extra.
Price \(\mathbf{\$ 5 . 5 . 0}\) plus \(7 / 6\) p. \& p. Circuit \(2 / 6\) FREE WITH PARTS.
THE ELEGANT SEVEN MK. III ( 350 mW output)
of parta. Complete with all components, incluting of parta. Complete with all components, including
ready etched and drilled printed circuit board-back printed for foolprontled printed circuit boan MIANS POWER PACK K1T:

Circuit \(2 / 6\) FREE WITH PARTS


50 WATT AMPLIFIER A.C. MAINS 200-250V An extremely reliable general purpose valve amplifier use with: mics, guitars, mixam inputs. Suitable for use with: mics, guitars, gram, tuner, organs, etc.
Separate bass and treble controls. Output impedance Separate bass and treble controls. Outputimpedance
3,8 and 15 ohms.
Price 27 gns.

\section*{the reliant IOW solid.state high quality amplifier}

Specifcations: Output: 10 watts R.M.S. Output imp codure: 3 to 4 obmes. Inputs: \(\pm 12 \mathrm{~dB}\) at 10 KHz ; Bass control range \(\pm 13 \mathrm{~dB}\) at 100 Hz . Frequency response ( (rith tone controls central): Minus 3 ilB points are 20 Hz and 40 KHz . Signal to noise ralio: better than - 601B. Transisors: 4 silicon Planar type and 3 Germaniun
 pick-ups and mikes. Separate base and freble jift control. Two inputs with control for gram. and mike. Built and tested. 8* है' \(^{*}\) speaker to suit: Price 14/6 plus \(1 / 6\) p. \({ }^{8} \mathrm{p}\). Crystal mike to suit: \(12 / 6\) plus \(1 / 6 \mathrm{p}\). © p . 3k. I as above, less teak case


\section*{THE VISCOUNT}

\section*{Integrated High Fidelity}

SPECIFICATIONS: Output: 10 watts per chaunel inio 3 to + ohms speaters 20 watt monoral). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo),
P.U., Tuner, Tape and Tape Rec. Sensitirities; Allinputs 100 nV , into 1.88 M ohm P.U., Tuner, Tape and Tape Rec. Sensitivities; Allinputs 100 mV into \(\mathrm{I} \cdot 8 \mathrm{MM}\) ohm, Frequency response: \(40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{db}\). Tone controls: Tone controls fat
(Baxandali
type). separate bass and treble controls. Treble 13 db lift and cut at Baxazdali tre), separate bass and treble controls. Treble 13 db lift and cut at
15 KHz . Bass 15 db Iift and 25 db cut at 60 Hz . Yolume controls: Separate for each chamuel. AC Mains input: \(200-240 \mathrm{c}\). 50.60 Hz . Sizume controls: Separate for each case. Built and tested. PRICE \(13 \frac{1}{2}\) gns. Postage \(\%\) Packing \(7 / 6\) extra,

> DUETTO Integrated Transistor Stereo Amplifier

SPECIFICATION: R.3.S. power output: 3 watts per chamnel into 10 ohms speakers. INPUT SENSITIVITY: Nuitable for medium or high output crystal cartridges and switch (2 pos. mono \& 2 pos. stereo) dual gangel volume control. TONE CONTROL. Treble lift and cut. Separate on/off switch. A balance preset control is also Theorporated inside amplifier, which is set to provide equal gain on both channels. \(10 \frac{1}{\prime \prime} \times 41^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}\) with contrasting front panel. Built anit testeh. PRICE 9 GNS.

\section*{THE CLASSIC}

Controls: Selector switch. Tape speed equalisation 8 mitch ( 37 and \(7 \frac{1}{2}\) i.p.g.). scratch filter and 2 pos. rumble fitter
Speciffeation
\[
\begin{aligned}
& \text { 1: Seasitivities for } 10 \text { matt output } \\
& \text { Tape head: } 3 \mathrm{mV} \text { (at } 3!\text { i.p.s. } \\
& \text { : 2mV, Cer. P.U.: 80my: Radio: }
\end{aligned}
\]
 Mag. P.U.: 2 mV , Cer. P.U. 80 mV , Radio: 100 mV Aux.: Iomr. Tape/Rec. output: 100 mY . Equalisation for cach input control range: Bass -13 dB at 60 Hz . Treble 14 dB at 15 KHz , 7 on 10 watt output) <1.5\% Signal noise: < -601 A . A.C. mains \(200-250\).



POCKET MULTI-METER
 D.C. current \(0-150 \mathrm{ma}\). . Resistance \(0-100 \mathrm{k} \Omega\). Complete with test prods, battery and full jnstructions, \(42 / 6\). P. \& P. 3/6. FREE GRFT for limited period only. 30 watt Electric Soldering Iron value 15/- to every purchaser of the Pocket


OUR
 G.E.C. \(13 \underset{\text { extra }}{\text { amp }}\) surface W. \& D. 13 amp in brown. Listed at 6/6.

CYLDON 2 TRANSISTOR U.H.F. TUNER. BRAND NEW. COMPLETE WITH CIRCUIT DIAGRAM £2. \(10.0 \div 1 /\) - p. \& \(p\).

\section*{B.S.R. TD2 TAPE DECK}

This tape deck takes \(5 z^{\prime \prime}\) spools complete with twotrack heads. Bize 13!" lodg by 8 gi" wide. \(^{*}\)
\&8.19.6 plus 7/6 p. \& p.

RADIO \& TV COMPONENTS (ACTON) LTD. 21d HIGH STREET, ACTON, LONDON, W. 3

323 EDGWARE ROAD, LONDON, W. 2 ORDERS BY POST TO OUR ACTON ADDRESS PLEASE

ORGAN BUILDERS! SILICON N.P.N. TRANSISTORS TESTED
AND APPROVED BY DESIGNER FOR USE IN "PRACTICAL AND APPROVED BY DESIGNER FOR USE IN "PRACTICAL
ELECTRONICS" ORGAN CIRCUIT- \(1 / 6\) each or \(£ 5\) per 100 .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{LATEST LIST OF TRANSISTOR STOCK. ALL BRAND NEW AND TO MANUFACTURERS SPECIFICATIONS} \\
\hline NKT11 & 9/8NKT261 & & BDY20 & 22/8:2N1803 & & \\
\hline NET12 & \(7 / 8 \mathrm{NET} 262\) & & & 11/ف 2 N1304 & & \\
\hline NK172 & \(5 /-\mathrm{NKT264}\) & & & 18/3,2N1305 & & \\
\hline NET73 \({ }^{5}\) & 5--NET271 & 8/8 \({ }^{5 / 8}\) & BFX84 & 8/8'2 \(\mathrm{N}^{1306}\) & & \\
\hline NKT124 8 & 8/6, NKT272 & 8/9NET10339 & BFX85 & 8/-2N1307 & & \\
\hline NKT125 & 5/9 NKT274 & & & 8/62N1308 & N & \\
\hline NKT126 & 5/-NKT275 & \(8 / 8\) & BFX87 & \(8 /-2 \times 1309\) & \(8 / 6\) & \\
\hline NKT135 5 & 5/-NKT28 & 5/- 7/8 & 18 BFX88 & \(7 / 82 \mathrm{~N} 1813\) & & \\
\hline NET137 6 & 8/6 \({ }^{\text {NKT } 302}\) & 1818 & BFY50 & 5/-2N1711 & 2 N 29 & 18/6 \\
\hline NET210 & 5/9 NKT & 1 & & \(4 / 82 \mathrm{~N} 1893\) & 2/8 2 & \\
\hline NKT211 5 & 5 - NET351 & 11/6 NKT12429 & BFY 52 & 5/-2N 2217 & 8 2 & \\
\hline NET212 & 5/-NET 401 & 3-14/- & -BFY53 & 4/62N22 & & \\
\hline NET213 & 8/6 \(\mathrm{NK}^{\text {P }}\) & 18/3 NKT13329 & BFY90 & & & \\
\hline NKT214 & 4/6 & & -B8X18 & \(4 / 62 \mathrm{~N} 2218\) & 8/8 2 N & \\
\hline NKT215 & 5/-NKT & & BSX & 4/6 2 2 22 & & \\
\hline NET218 10 & 0/-N KT & & -38 & & 10/-29345 & \\
\hline NKT217 10 & 0/9 N & NKT35219 & BSX61 & 10/-2N & & \\
\hline NKT'219 5 & 5/-NKT420 & \(22 / 8\) & 8 BSY & 8192N & & \\
\hline NXT223 & 5/8 NET451 & \(18 / 8\) NKT16229 & 2N & 5/-2N & 7/30022 & 01- \\
\hline NKT224 & 418 NKT452 1 & & 6 2N697 & 51-2N2221 & 8/6.0C204 & \\
\hline NKT225 & /6 NKT453 & 8/-NKT20329 & 2N706 & \(31-2 \mathrm{~N} 2221 \mathrm{~A}\) & & \\
\hline NKT229 \({ }^{\text {S }}\) & 8/-NKT603 & 6/6 12/6 & \(182 \mathrm{N706A}\) & & 101-OC45 & \\
\hline NKT237 7 & 7/3NKT613 & 7/ \(\mathrm{NKT20339}\) & 2N708 & , & , & \\
\hline NKT238 4 & \(4 / 6\) N & & 6,2N709 & & & \\
\hline NKT239 & \(8 /-\mathrm{NKT677P}\) & 4/6|BC107 4/8 & 62 N 914 & & & \\
\hline NRT240 4 & 416 NKT713 & 5/-BC108 8/- & -2N918 & 11/62 & & \\
\hline NKT241 & 5/-NKT717 & 8/-BC109 9/6 & 82N929 & 7/3 2 N2368 & & \\
\hline NKT242 & 3/-NKT734 & 5/-BCYбб & & \(81-2 \mathrm{~N}\) & 4/6.100/299 & \\
\hline & & 6/6 BCY70 51- & 2N1131 & 8/82N2369 & 1 & \\
\hline NKT244 3 & 81-NET773 & 4/6 BCY71 9/8 & 2N1132 & 10/-2N2483 & & \\
\hline NET245 8/ & 8/9 \({ }^{\text {NKT } 781}\) & 6/-bCy\%2 4/6 & 8,2N1302 & 4/6.2N2484 & \(10 / 81\) all on & \\
\hline
\end{tabular}

Unmarked transistors (tested) similar to:
 ORP12. CADMIUM SULPHIDE LIGHT-SENSITIVE RESISTORS 9/- each.
GIANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6 mA AT 0.6 V FROM DAYLIGHT! 37mm 2 for \(10 /-\)

MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE!
\(0.001 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0.0015 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0.0018 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d}\); \(0.0022 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0.01 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0 \cdot 15 \mu \mathrm{~F}, 160 \mathrm{~V}, 6 \mathrm{~d} ; 0.22 \mu \mathrm{~F}\),
\(160 \mathrm{~V}, 6 \mathrm{~d} ; 0.27 \mu \mathrm{~F}, 160 \mathrm{~V}, 6 \mathrm{~d} ; 1 \mu \mathrm{~F}, 125 \mathrm{~V}, 1 /-\).
RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES
GP67/2, Mono, 15/-, GL91/3, Compatible, 21 , GP93/1, Crystal 2/-, GP94/1, Ceramic, 25/-
TRANSISTORISED SIGNAL INJECTOR KIT 10/-, SIGNAL TRACER KIT 10/-, CAR REV. COUNTER KIT 10/-.

\section*{VEROBOARD}
\({ }_{2}^{2 \frac{1}{2} \text { in }} \times 1 \mathrm{in}, 0.15\) matrix, \(1 / 3 \quad 17\) in \(\times 33\) in, 0.15 matrix, \(14 / 8\)
\(3 \sin \times 2 \frac{1}{2}, 0.15\) matrix, \(3 / 3\)
3 3in \(\times 3\) 3in, 0.15 matrix, \(3 / 11\)
\(\sin \times 2 \frac{1}{2} i n, 0 \cdot 15\) matrix, \(3 / 11\)
5 in \(\times 3\) inn, 0.15 matrix, \(5 / 6\)
\(17 \mathrm{in} \times 2 \frac{1}{2}\) in, 0.15 matrix, \(11 /-\)
\(33 \mathrm{in} \times 2 \frac{1}{1} \mathrm{in}, 0.1\) matrix, \(4 / 2\)

5 in \(\times 3 \frac{23}{\text { Sin }}, 0.1\) matrix, \(5 / 6\)
Spot Face Cutter 7/6. Pin Insert Tool 9/6, Terminals Pins 3/6-36. Special Offer! Spot Face Cutter and Five \(2 \frac{1}{2}\) in \(\times 1\) in boards, \(9 / 9\) only!
PAPER CONDENSERS, Mixed bags \(0.001 \mu \mathrm{~F}\) to \(0.5 \mu \mathrm{~F}, 12 / 6\) per 100.
SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. \(10 /-\) per 100.
RESISTORS. Mixed types and values, \(\frac{1}{4}\) to 1 watt. \(6 / 6\) per 100 . \(55 /\)-per 1,000 . Wire-wound resistors. 1 watt to 10 watts. Mixed values. 20 for \(10 /-\).
Transistors. Mixed, unmarked, mainly O.K. 7/6 for 50.
12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF NORMAL PRICE!
8 Watt 12 in tube. Reflector type £2.19.6. 15 watt 18 in Batten type £3.19.6.
IDEAL FOR CAMPING OR CARAVAN HOLIDAYS!
A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

\section*{ELECTROLYTIC CONDENSERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(0.25 \mu \mathrm{~F}\) & 3 volt & \(4 \mu \mathrm{~F}\) & 4 volt & \(10 \mu \mathrm{~F}\) & 25 & \(F\) & 9 volt \\
\hline \(1 \mu \mathrm{~F}\) & 6 volt & \(4 \mu \mathrm{~F}\) & 12 volt & \(20 \mu \mathrm{~F}\) & 6 volt & \(100 \mu \mathrm{~F}\) & 9 \\
\hline \(1 \mu \mathrm{~F}\) & 20 volt & \(4 \mu \mathrm{~F}\) & 25 volt & \(25 \mu \mathrm{~F}\) & 6 volt & \(320 \mu \mathrm{~F}\) & 4 vo \\
\hline \(1.25 \mu \mathrm{~F}\) & 16 volt & \(5 \mu \mathrm{~F}\) & 6 volt & \(25 \mu \mathrm{~F}\) & 12 volt & \(320 \mu \mathrm{~F}\) & 10 vol \\
\hline \(2 \mu \mathrm{~F}\) & 3 volt & \(6 \mu \mathrm{~F}\) & 6 volt & \(25 \mu \mathrm{~F}\) & 25 volt & \(400 \mu \mathrm{~F}\) & 64 volt \\
\hline \(2 \mu \mathrm{~F}\) & 350 volt & \(8 \mu \mathrm{~F}\) & 3 volt & \(30 \mu \mathrm{~F}\) & 6 volt & All at & /- each. \\
\hline \(2 \cdot 5 \mu \mathrm{~F}\) & 16 volt & \(8 \mu \mathrm{~F}\) & 12 volt & \(30 \mu \mathrm{~F}\) & 10 volt & 20 a & sorted \\
\hline \(3 \mu \mathrm{~F}\) & 25 volt & \(8 \mu \mathrm{~F}\) & 50 volt & \(50 \mu \mathrm{~F}\) & 6 volt & (our & election) \\
\hline \(3 \cdot 2 \mu \mathrm{~F}\) & 64 volt & \(10 \mu \mathrm{~F}\) & 6 volt & \(64 \mu \mathrm{~F}\) & 2.5 volt & (our & j-. \\
\hline
\end{tabular}

Orders by post to:
G. F. MII WARD
G. P MIIWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFPS
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

\section*{FOLLO
TG STRE \\ }

QUALITY-TESTED PAKS
2 Drift Trans. 2 N1225 Germ, PNP
\(100 \mathrm{Mc} / \mathrm{s}\).
Matched Trans, OC44/45/81/810
20 Red Spot AF Trans. PNP
6 Silicon Rects. 3 A 100-400 PI
210 A Silicon Rects. 100 PIV
2 OCl40 Trans. NPN Switching
12 A SCR 100 PI
Sil. Trans, 2S303 PNP
4 Zener Diodes 250 mW 3.12 V
3 200Mc/s. Sil. Trans, NPN BSY26/27 4 High Current Trans. OC42 Eqvt.
\({ }_{2}\) Power Transistors 1 OC26 I OC3
5 Silicon Rects. 400 PIV 250 mA
40 C 55 Transistors Mullard Tspe
1 Porrer Trans. OC20 100
10 OA202 Sil. Diodes Sub-min. Marked.
2 LoFT Noise Trans. NPN 2A929/30
1 Sil. Trans. NPN VCB 100 ZT86
OA81 Diodes
\(40 C 72\) Transistors
4 Sil. Rects. 400 PIV 500 mA
5 GET883 Trans, Eqvt, OC45
2 2N708 Sil. Trans. 300Mc/s. NPS
5 GT41/45 Germ. Trans, PNP.
3 GT31 LF Low Noise PNP Trans.
6 IN914 Sil. Diodes 75 PIV 75 mA
8 OA95 Germ. Diodes Sub-min. IN69.
3 NPN Germ. Trans. NKT-T3.
2 OC22 Power Trans, Germ
2 OC22 Power Trans. Germ.
\(40 \mathrm{C72}\) Trans.
4 AC128 Trans. PNP High Gain..
2 AC127/128 Comp. pair PNP/SPS
3 2N1307 PNP Switching Trans.
10 CG62H Germ. Dides Eqvt. OA71
FREE
One 10/-Pack of yonr own choice free with order
2 Assorted Germ. Diocles Marked
4 Silico Germ. PNP Trans.
3 AFI17 Trans.
7 Oc81 Type Trans.
3 Oc171 Trans, ...........
5 2N2926 Sil. Epoxy Trans.
\({ }^{5}\) Trans, Heatsinks
25 Trans. Heatsinks fit T018, sole, etc
312 V 7ener 400 m Y
210 A 600 PIV sil. Rencts. IS \(4 \overline{5} \mathrm{R}\)
3 BCl08 Sil. NFP High Gain Trans
1 2N910 NPN Sil. Trans. YCB100
2 1000 PIV Ril Rect. 1-5A R 53310 AF.
3 BSY95A. Sil. Trans. NPK \(200 \mathrm{Mc} / \mathrm{s}\).
2 Sil. Power Rects. Byziz
1 sil. Power Trans. NPY " \(100 \mathrm{Mc} / \mathrm{B}\)
6 TK201A
I 2 N1132 PNP Epitaxial Planar Sil.
3 2N697 Epitaxial Planar Trans. Sil.
4 Germ, Power Trans. Equt. OC1
1 Unijunction Trans. 2N2646
2 Sil. Trans, \(200 \mathrm{Mc} / \mathrm{s}, 60 \mathrm{Vcb}\) ZT83184..
BSY25 Planar trans. SPN 100Mc
1 USY25
2 Sil. Rects 54500 PIV 2160 TO-5
2 Germ Power Trans. OC28/29
1 10A Sil, Stud React. 800 PIV
1 Tunnel Diode AEYII \(1050 \mathrm{Mc} / \mathrm{s}\)
2 2N2712 Sil. Epoxy Planar HFE22 5 Sil. and Germ
25 Sil. and Germ. Trans. Mixed, all
2 GET880 Low Noise Germ. Trans.
1 AF139 PNP High Freg. Trans.
3 NPN Trans. 1 ST141 \& 2 ST140
4 Madt's 2 MAT100 \& 2 MAT120
4 OC44 Germ. Trans. AF
3 AC127 NPN Germ. Trans.
1 2 J3906 Sil, PNP Trans. Motorola
CADHIUN CELLS
ORP12
8/- each
MANY NEW PAK ITEMS
FULL RANGE OF ZENER DIODES
VOLTAGE RANGE 2-18Y.
400 mW (D0.7 Case)
2/6 each
10w (Top-Hat)
3/6 each
10W (SO-10 Stud)
5/- each All fully tested \(5 \%\) tol. and marked. Please oAZ vollard required. Full range eqrit. to OAZ Mullard Type Z. Range of STC. J.R. Texas and IN types.

\section*{TRANSISTOR EQVT, BOOK}

52 pages of cross references for trans, and diodes. types include British, European, American and Japanese. Specialiy imported by BI-PAK

THE LEADERS
ANOTHER CROWNING SUCCESS-

\section*{2N2060 NPN SIL. DUAL TRANS.}

CODE DI699 TEXAS. OUR PRICE 5/- each

GERM. RECTIFIER SINGLE-PHASE RRIDGE, Mullard type. GA List Price 58/our price \(12 / 6\) Each

120 VCB NIXIE DRIVER TRANSISTOR
Sim. BSX21\&C407. 2N1893 FULLY TESTED AND CODED NDI20. 1-24 3/6 each. To-5 N.P.N. 25 up 3/m each.

\section*{KING OF THE PAKS Unequalled Value and Quality SUPPR PAKS New lipak witistiod SEMICONDUCTORS}

Satisfaction GUARANTEED in Every Pak, or money back. Pak No
\begin{tabular}{|c|c|c|}
\hline \[
\varepsilon_{2}
\] & 60 & Mixed Germanium Transistors AF \\
\hline 73 & 70 & Germanium Gold Bonded Diodes sim. OAv̄, OA4 \\
\hline  & 40 & Germanium Transistors like OC\$1, AC128 \\
\hline \[
55
\] & 60 & 200 m . Sub-min. Sill Diodes ......................... 10 \\
\hline  & 40 & Silicon Planar Transist \\
\hline  & & Top-Hat 750 mA up to 1000 \\
\hline  & & nar Diodes 250mA 0a/200/202 \\
\hline  & \[
20
\] & Diodes \\
\hline & 30 & PNP Silicon Planar Transistors TO-5 \\
\hline & 12 & Silicon Rectifiers EPOXY BY126/127.................. \(10 /-\) \\
\hline & 30 & PNP-NPN Sil. Transistors OC200 \& 28104 \\
\hline & 150 & Mixed Silicon and Germanium Diotes \\
\hline & 30 & NPN Silicon Planar Transistors TO-ŏ sim. 2 20697 \\
\hline & & 3-Amp Silicon Rectiflers Stud Type up to 1000 PIV \\
\hline & & Germanium P \\
\hline & & 6 -Amp Silicon Rectifiers BYZ13 Type up to 600 PIV ... 10 \\
\hline & & licon NPN Transistors like BC108 \\
\hline & & Silicon Rectifiers Top-Hat up to \\
\hline & & A.F. Germanium alloy Transistors 268300 Series \& OC71 , 10 \\
\hline & & 1-amp Glass Min. Silicon Rectifers High \\
\hline & & Madt's like MAT Series PNP Transistor \\
\hline & & Germanium 1 -amp Rectifiers GJ3I up to 3 \\
\hline & & 300Mc/s MPN Silicon Transistors \(2 \times 708, \mathrm{BSY} 27\) \\
\hline & & Fast Switching Silicon Diodes like 1.N914 Micro- \\
\hline & & menters' Assortment of Integrated Circuits, untested. Flip-Flops, Registers, etc., 8 Assorted Pieces. \\
\hline & & \(\mathrm{amp} \mathrm{SCR's} \mathrm{TO-5} \mathrm{can} \mathrm{up} \mathrm{to} 600\) PIV CRSI/25-600 \\
\hline & & Silicon Planar trans. NPN 2N2924-2N2926....... 10 \\
\hline & & Sil Planar NPN trans. low noise Amp 2N3707............ 10 \\
\hline & & Zener d \\
\hline & & \\
\hline
\end{tabular}

Code Nos, mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked

\section*{AD161 \(x_{P N}\) ADI62 \({ }_{P N P}\)} MATCHED COMPLEMENTARY PAIRS OF GERM. POWER TRANSISTORS.
For mains driven output stages of Amplifiers and Radio receivers.
PER PAYR

\section*{NEW SILICON RECTIFIERS'TESTED}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PIV 400 m & 750 & 1 & 3 A & 10A & 3 \\
\hline 5010 d & 1/- & 1/6 & \(2 / 9\) & 4/3 & \(9 /\) \\
\hline 100 1/- & 1/3 & \(2 / 6\) & 3/3 & \(4 / 6\) & 15 \\
\hline \(2001 / 3\) & \(1 / 9\) & \(2 \cdot 6\) & 4/- & 4/8 & 20 \\
\hline 300 & \(2 / 3\) & 3/8 & 4/6 & 8/6 & 22 \\
\hline 400 2!- & 2;8 & 4/- & \(5 / 6\) & 7/6 & \\
\hline 500 & 3/- & & 81- & \(8 / 6\) & \\
\hline 600 2/9 & \(3 / 3\) & 4/3 & \(8 / 8\) & 91- & \\
\hline 800 & \(3 / 6\) & \(4 / 0\) & \(7 / 6\) & 11/- & 4 \\
\hline 1,000 -- & 5 - & \(6 /-\) & 9/3 & 12/6, & \\
\hline 1,200 - & 6/6 & 7/6 & 11/6 & 15/- & \\
\hline
\end{tabular}

HIGH POWER SILICON HIGH POWER SILICON
PIANAR TEXAS 2S034. NPE TO-3.
YCB100 le 4 A TT. 15M/cs VCE100 Ptot. 40W
VEB8 hFE(min.)
60 Price

PLEASE FOTE, To aroid any further Increasen Postal Charges to our Customers and enable us to keep our "By Return Postal service" which is second to none, we have re-organized and streanlined our Despatch Order Department and we now request you to send all your orders together with your remittance, direct to our Warehouse and Despateh Department postal address: BI-PAK SEMICONDUCTORS, Despatch Dept., P,O. BOX 6 WARE, HERTS. Postage and packing atill 1/- per order. Minimun


\section*{Pructicul Electronics Classified Advertisements}

\section*{SERVICE SHEETS}

RADIO TELEVISION, over 8,000 Models. JOHN GILBERT JLLAVVISION, 1 b Shepherds Bush lid., Jondon, W.6. SIIE 8441.

SERVICE SHEETS, Radio, TV, 5,000 models. List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

\section*{LARGE SUPPLIER OF}

\section*{SERVICE SHEETS}
T.V., RADIO, TRANSISTORS, TAPES, ETC. Only \(5 /-\) each, plus LARGE S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)
C. CARANNA

71 BEAUFORT PARK, LONDON, N.W.II MAIL ORDER ONLY

SERVICE SHEETS (1925-69) for televisions, radios, transistors, tape recorders, record players, etc., by return post, with free faultHnding guide. Prices from \(1 /\)-. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADJO, 54 J.ondon Road, Bexhill, Sussex.

\section*{FOR SALE}

26,000 IN YOUCHERS GIVEN AWAY. See free Cat. for details. Tools, Materials, Mechanical, Electrical. thousands of interesting items. WMISTON, Dept. PVE, New Mills, Stockport SK12 4 HL .

SONY 625 LINE VIDEO CAMERA, with R.F. output. As new condition, cost \(£ 195\), will accept \(£ 140\) o.n.o. Hertford 5230 after 7 p.m.

FOR SALE. Approx. 2 cwt. of Precision and other components, AR88D, RX, Instruments, Valves, Transistors, Dekatrons, Meters, etc. Must be all sold by May 26 . Any and all offers considered. (Ex-Constructor going overoffers considered. (Ex-Constructorgoing overSeas.) COAD, Fairend

\section*{MORSE MADE ! !}

FACT NOT FICTIOX. If you start RIGHT Fithin a month (normal progress to be expected). Using scientifically prepared 3-speed recoruls you automntically learn to recognise the code REYTHM without trinslating. You can't help it, it's as easy as learning a tune. 18 W.P.M. in 4 weeks gharnitec.
For detais. and course Co.D. ring S.T.D. \(01-6602896\) or send 8d. stamp for explanatory booklet to: G3HSC (BOX 10), 45 GREEN LAKE, PURLEY, SURREY

\section*{MISCELLANEOUS}

RHYTHM MODULES. Build your own rhythm box-simply, cheaply. Realistic sound guaranteed. S.A.E. for details. D.E.W. LTD., 254 Ringwood Rd., Ferndown, Dorset.

BUILD IT in a DEWBOX quality cabinet 2 in \(\times 2 \frac{1}{2}\) in \(\times\) any length. DEW LTD. Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

RATES : \(1 / 3\) per word (minimum 12 words). Box No. 1/6 extra. Advertisements must be prepaida nd addressed to Advertisement Manager, "Practical Electronics"
IPC MAGAZINES LTD.,
Fleetway House, Farringdon Street, London, E.C. 4

\section*{MISCELLANEOUS (continued)}

\section*{GEARED MOTORS}

Rectifiers, Potentiometers 6d Stamp for Catalogue
F. HOLFORD \& CO.

6 Imperial Square, Chelferham
ETCHED PRINTED GIRCUIT BOARD KITS. Full instructions. 19/6, c.w.o. CIRCUITETCH, 12 Cambridge Rd., St. Albans, Herts.

\section*{MAKING AN ORGAN}

We can save you \(£ £ \pm\) s
We have acquired the bulk organ stores from a
leading British manufacturer. Stocks too numerous to list in full. Examples:

PLAIN STOP TABS
ENGRAVED STOP TABS from
GENERATOR P.C, BOARDS from
AMPLIFIER P.C. BOARDS from RESISTORS from
SPEAKERS, KEYBOARDS, CABINETS Id. FOOTSWITCHES, MOTORS, TRANSFORMERS, CAPACITORS, ETC., ETC
"Everything you want to build : organs, amplifiers. "Leslie" cabinets...
S.A.E. for full price list.
E.M.C. (Dept. P.E.I), 104 ASHLEY

ROAD, PARKSTONE, POOLE, DORSET trade enquiries invited

UFO DETECTOR GIRCUITS, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

ONE OFF PRINTED CIRCUIT BOARDS cheaply made to customers' requirements Send s.a.e. for details: D. R. MANM, 12 Randolph Street, Nottingham.

\section*{ROBOTS}

Synthetic Animals with "BRAINS" of their own. The NEW range of projects include: an electronic 'animal' which "LEARNS", an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which "recognizes" itself, also a machine which recognizes itself,
and an electronic dog whistle, etc., etc. and an electronic dog whistie, ete., etc.
HOSTS OF EASY-TO-CONSTRUCT proiects, for anyone with a basic knowledge of Electronics.
SEND \(2 / 6\) for your list-NOW!
To: 'BOFFIN PROJECTS'
BIONIC DESIGNS, 4 CUNLIFFE RD.
STONELEIGH, EWELL. SURREY
Designed by GERRY BROWN and
JOHN SALMON and presented on T.V.

\section*{MISCELLANEOUS (continued)}

GOING ABROAD: Must sell all components. 95 Transistors, Mullard and Texas types. 650 assorted resistors and capacitors. Everything brand new. £10 the lot. Lists Everything brand new. \&io the lot wists Staff.

\section*{BOOKS AND PUBLICATIONS}


This useful Handbook gives detailed information and eircuit diagrams for British and American Government Surplus Receivers, Transmitcers and Test Equipment, esc.; also contained are some suggested modification details and improvements for the equipment. Incorporated in this revised edition is a surplus/commercial cross referenced yalve and eransistor guide. This book is invaluable to radio enthusiasts, radio clubs, univarsities and laboratories. The volume, plus \(5 /-\) P. \& P., C.O.D. a pleasure, is obtainable from us at

\section*{GILDTK (LEDS)LDD}

Dept. P.E., 24 Stansfield Chamber
S.A.E. with all enquiries, please, Extra postage for all foreign orders.

\section*{SURPLUS HANDBOOKS}

19 set Circuit and Notes
\begin{tabular}{l}
19 set Circuit and Notes \(\ldots .\). \\
1155 set Circuit and Notes.... \\
\hline
\end{tabular} \(6 / 6\) P.P. 6 . 6d H.R.O. Technical Instructions . : 5/6 P.P. 6d 38 set Technical Instructions.. 46 set Working Instructions 88 set Technical Instructions. BC. 221 Circuit and Notes. Wavemeter Class D Tech. Instr Wavemeter Class D Tech. Instr
18 set Circuit and Notes ..... 18 set Circuit and Notes 10 ....
BC. 1000 ( 31 set) Circuit \& Notes ER. 1001 B 78 Circuit \(10 / 6\) P.P. 6d CR. \(100 /\) B. 28 Circuit and Notes 10/-P.P. 9d R. 107 Circuit and Notes.......... 7/-P.P. 6d
A.R.88D. Instruction Manual. ... 18/-P.P. 6d A.R.88D. Instruction Manual. ... 18/- P.P. 6d
62 set Circuit and Notes ..... 6/6 P.P 6d 52 set Sender \& Receiver Circuits 7/6. post free Circuit Diagrams : 5/- each post free. R.I] 16/A, R.|224/A, R.1355, R.F. 24, 25, \& 26. A.ll34, T.ll54, CR.300, BC.342. BC. 312. BC.348,J.E.M.P. BC.624. 22 set.
Resistor Colour Code Indicator... 2/6 P.P. 6d S.A.E. with all enquiries please.

Postage rates apply to U.K. oniy.
Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

\section*{EDUCATIONAL}

STUDY RADIO, TELEVISION AND ELEGTRONICS witl the world's largest home study orgasisation. City \& Guilds; R.T.L.B., etc. Also practical courses with erquipment No books to buy. Write for FIREE Prospectus to ICS (Dept. 577), Intertext House, Stewarts Road, Jondon, S.W. 8.

RADIO OFFICERS see the world. Sea going and shore appointments. Trainee vacancies in Sept. and Jan. Grants available. Day and Boarding students. Stamp for prospectus. WIRELESS COLLEGE, Colwyn Bay, Wales.

TECHNICAL TRAINING in Radio, TV \& Electronics thro world-famous ICS. For details of proven home-study courses write details of proven home-study courses write: Road, London, S.W.8.

GET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.T.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms., etc. For FREE 100page book, write Dept. \(856 \mathrm{~K}, \mathrm{CHAMBERS}\) COLLEGEF, 148 Holborn, London, E.C.1.

\section*{FULL TIME COURSES IN BASIC ELECTRONICS AND TELEVISION SERVICING}

Nine-month courses, starcing September 1969, leading to City and Guilds Certificates. Part time also available, Details from:
Section 47/48, Southall College of Technology, Beaconsfield Road, Southall, Middlesex

ENGINEERS. A technical certificate or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Jing., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Elec., Auto, Electronics, Radio, Computers, Draughts., Building, ete. For full details write for FREE 132-page guide. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 125K), Aldermaston Court, Aldermaston, Berks

\section*{SITUATIONS VACANT}
A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C. W., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-FREE. Please T. W., etc. 132 -page Guide-FREE. Please Staternetis of ENGINEERING TECH. NOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

RADIO TECHNICIANS
VACANCIES TO be flled by OCTOBER 1969
A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheitenham and other parts of the UK, including London). There are also opportunities for service abroad.
Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of electro-mechanical equipment will be an advantage.

Pay according to age, e.g. at 19 £869 at \(25-\mathrm{fi}, 130\).
Prospects of promotion to grades in salary range \(£ 1,217-£ 2,038\). There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
Recruitment Officer (RT/54)
Government Communications Headquarters Oakley, Priors Road
Cheltenham, Glos. GL52 5AJ

\title{
\(\cdots\) \\ 
}

THE WORLD'S FINEST PROFESSIONAL PORTABLE TAPE RECORDER

\section*{JUNIOR SERVICE ENGINEER}

An excellent opportunity has arisen for a young engineer to work in our Service Department. The successful applicant will be an enthusiastic and diligent worker with a good understanding of basic tape recorder principles and a standard of workmanship consistent with the quality of the product.

Good salary and conditions. Existing holiday arrangements honoured.
Please send full details in writing to:-

\section*{MANAGING DIRECTOR HAYDEN LABORATORIES LTD. EAST HOUSE, CHILTERN AVENUE AMERSHAM, BUCKINGHAMSHIRE}

SERVICE ENGINEERS-we are an old established electronics company, but headed by a young management team, and we need you to help us. Age is no barrier to a high salary as you will find out when you join us. If you have experience in \(\mathrm{T} . \mathrm{V}\). , Radio or Hi-Fi Service and want a job that looks ahead, phone Service and want a job that looks ane

AN ELECTRONIC ENGINEER is required to service and maintain Photon 713 and Lumitype 540 photo typesetting equipment on the Night Shift of a large group of weekly newspapers. Experience preferred but not essential as training can be given. Apply Production Manager, KING \& HUTCHINGS, Cricketfield Road, Uxbridge. Telephone Uxbridge 37161.

\section*{TECHNICAL TRAINING by IC S IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING}

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:
* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C.\&G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* P.M.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS an help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL CORRESPONDHCE

\section*{Schools}

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools (Dept. 152), Intertext House, Stewart Road, London, S.W.8.

NAME
Block Capitals Please
ADDRESS

\section*{NEWCASTLE UPON TME PoIMEGHNLC (Distenaie)}

\section*{RUTHERFORD COLLEGE OF TECHNOLOGY}

\author{
B.Sc. ELECTRICAL AND ELECTRONIC ENGINEERING (Honours and Ordinary)
}
B.Sc. PHYSICAL ELECTRONICS (Honours and Ordinary)

\section*{M.Sc. ADVANCED EXPERIMENTAL PHYSICS}

Further details of these and other courses and of residential accommodation available, may be obtained from Administrative Officer, Rutherford College of Technology, Ellison Place, Newcastle upon Tyne NE1 8ST quoting PE 693.

\section*{RECEIVERS AND COMPONENTS}

TINY TRANSISTOR RELAY for model control, light switches, experiments, etc. Only lin square, \(3 ; 30 \Omega\) coil, \(30 /=\) post free. H.R. RADIO, ifi Bramall Lane, sheffield, Sg4RF.

\section*{L.S.T. ELECTRONIC COMPONENTS LTD. PLEASE SEE OUR DISPLAY ADVERTISEMENT ON PAGE 468}

ELECTRONIC STOCKMARKET kit of most parts; also "Reactalyser" and Waa-W aa pedal. S.A.E. for list. D.E.W. LTD., Ringwood Rd., Ferndown, Dorset.
40 WATT DC TO AC CONVERTER
KITS, 2 TRANSISTOR TYPE SUIT-
ABLE FOR LIGHTS, SHAVERS,
COMPRISING:
1 SPECIAL TRANSFORMER 45/ \(+6 /-\mathrm{pp}\).
2 HEAT SINKS
20/-+2/-pp.
2 OC28 TRANSISTORS \(\quad 20 /-+1 / 6 \mathrm{pp}\).
2 CONDENSERS, 2 MICA \(4 / 6+1 / 6 \mathrm{pp}\).
WASHERS, ETC.
All parts available separately. Complete Kit
£4.17.0 post paid. CASE \(30 /-+4 / 6\) post paid.
De Luxe type 4 Transistor 60 Watt suitable
for Lights, Tape Recorders. I Driver Stage
comprising Transformer, 2 Transistors wired
and tested \(£ 3.10 .0\). Pp. 4/-
160 WATT OUTPUT TRANSFORMER
2 HEAT SINKS E2.15.0+6/-PP
2 OC28 TRANSISTORS \(20-1 / 6 \mathrm{PP}\)
1250 V NEON INDICATOR LAMP.
SWITCH, CONDENSERS, MICA
WASHERS \(\quad 15 /-+2 /-\mathrm{pp}\).
1 BULGIN INPUT PLUG/SOCKETS
I BULGIN OUTPUT PLUG/SOCKETS
ICASE
4/6+1/-pp.
COMPLETE KIT \(30 /-+4 / 6 \mathrm{pp}\).
J. ROBINSON (RADIO TV),
4 highCliffe road, MANCHESTER M9 3FX Tel. 061-740 1175

RECEIVERS AND COMPONENTS (continued)

\section*{TERRIFIC TRANSISTORS!}

High-gain low-noise npn planars \(20 \mathrm{~V}, 220 \mathrm{~mW}, 200 \mathrm{~mA}\) peak lc , hfe up to 900 . \(\mathrm{BCI} 68=\mathrm{BCI} 148\) (sim. \(\mathrm{BCl} 108, \mathrm{BC} 170, \mathrm{BCI} 83\),

2N2925, 2N2926), hfe \(=250-900\)
\(\mathrm{BC169}=\mathrm{BC149}\) (sim. \(\mathrm{BC109}, \mathrm{BCI51,BC154}\) Prices: BC 339 ( A, ete.), \(\mathrm{hfe}=450-900\) BC169, 5 for \(11 / 3\), 50 for \(£ 5\).
Brand new, mint, makers' trade marks. Full list with data, components, circuits, kits 6d FREE WITH ORDERS.


Can be built to size of PP6 battery. Components and data sheet, 17/6. Transformer only, 0-230-250/9-0-9V, 80 mA , size \(1 \pm \times 1 \times I^{\prime \prime}\), only, 0-2ta-250,9-0.9V, 80 mA, , size \(1 \pm \times 1 \times 1\) with data sheet, \(11 /-0\) Eagle transformers
(same size) MT6, \(6-0.6 \mathrm{~V} \quad 100 \mathrm{~mA}, ~ M T 12\), (same size) MTG, \(6-0.6 \mathrm{~V}\). 100 mA , MTI2,
\(12-0-12 \mathrm{~V}, 50 \mathrm{~mA}, 13 / 6\) each. All these can be \(12-0-12 \mathrm{~V}, 50 \mathrm{~mA}, 13 / 6\) each. All these can be used with bridge rectifiers giving double the voltage at half the current. Submin. selenium bridge to suit, \(3 / 6\).
AMATRONIX LTD. (Mail order only)
396 Selsdon Rd., South Croydon, Surrey CR20DE

RECEIVERS AND COMPONENTS
(continued)
D.I.Y.--All materials and components for construction of high fidelity loudspeaker systems (empty enclosures, BAF wadding, Tygan, Vynair fabric, cross-overs, etc.). Many other audio accessories and speaker kits. 6 d . in stamps for lists. P. F. \&A. R. HELME, Dept. PE, Summerbridge, Harrogate, Yorks.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
TRANSISTOR PANELS \\
New boxed, size 9 in \(\times 6\) in \(\times 1 \frac{1}{2}\) in with "Valvo" transistors type OC45 or similar, with full length leads, also an equal number of OA85 diodes, \(H / S\) resistors, etc. Built on perforated board in a metal frame. \\
Panel of 20 transistors, diodes, etc. 20/- \\
 \\
TROLYTIC) \\
COMPUTER PANELS with 40 sil. PNP or non transistors, Diodes and res., 22/6 Post Paid; \\
TEST CARDS. 6 transistors 20 for \(20 \%\) \\
ELECTROLYTICS 25,000 (3) 12V, 16,000 \\
\(12 \mathrm{~V}, 15,000 @ 10 \mathrm{~V}, 10,000\) @ (3) \(30 \mathrm{~V} .4,000\) @
\(60 \mathrm{~V}, 3,000\) @ \(80 \mathrm{~V}, 2,000\) (9) \(50 \mathrm{~V}, 1,200\) @ 180 V , \\
816 Post Paid. \\
ZENER DIODES-2.4, 2.7. 3.6. 4.75, 5.25, \\
volts. \(3 / 6\) each, mostly 1 wate \\
POLYSTYRENE CAPACITORS. \(125 \mathrm{~V}, 18\), \\
\(22,120,220,270,330,390,560,820,1,000,1,200\), \\
\(\begin{array}{lll}1,800, & 2,200 & 2,700,3,300,3,900,4,700,5,600,\end{array}\) \\
Packing. \\
BRAND NEW BOXED CHASS1S containing 2-OC35, 2-OC29 12 WW resistors 25/-. \\
Postage \(1 / 6\). NEW CROSS RADIO \\
6 OLDHAM ROAD, MANCHESTER 4
\end{tabular} \\
\hline
\end{tabular}

\section*{Single channel Radio Control at a price you can afford}

\section*{RADIO CONTROL PRODUCTS} EXCELLENT RANGE AND PERFORMANCE TRANSMITTER-

\section*{RECEIVER-}
- Crystal controlled tone Tx. 12v. operation. Silicon transistors. In smart case with micro-switch.
\[
\begin{aligned}
& \text { Tx only } \mathbf{\leq 6}=5=0 \\
& \text { RG: } \\
& \text { SUITABLE FOR MODELS OF ALL KINDS } \\
& \text { ONLY E10-10-0 COMPLETE }
\end{aligned}
\]

TRADE ENQUIRIES TO

MODEL MART 3 COMBERTON ROAD
KIDDERMINSTER. Tel. 5879

OR DIRECT FROM

RADIO CONTROL PRODUCTS 38 FRANCHE ROAD
KIODERMINSTER, WORCS

\title{
RECEIVERS AND COMPONENTS
}
(continued)

CARBON FILM RE8ISTORS, 13/- per 100. S.a.e for component catalogue. SRY ELECTRONICS, 11 Rosedene tve., Croydon, CRO 3DN. 01-684 0402.

50,000 TRANSISTORS to be cleared in lots of 50 for \&1. Types available are gernanium for mim . To OCPe and silicon similar gernanium All transistors fully tested and guaranteed. Post free. WESTEK, P.O. Box 7, Rickmansworth, Herts.

\section*{TAPE HEADS}
\begin{tabular}{l|l} 
BSR BRAD. \\
2TRACK
\end{tabular} 4-TRACK 45/= BSR MALL
4 TRACK
\(39 / 6\) pair
REUTER - COLIARO COSMOCORD ERASE
 TRANSISTORISED FM TUNER
6 TRANSISTOR HIGH QUALITY TUNER.
SIZE ONLY 6 in \(\times 4\) in \(2{ }^{2}\) in 1 IF states SIZE only 6in \(\times 4\) in \(\times 2\) in 3 I.F. stazes. Double
tuned diseriminator. Ample output to feed most
 SUB-MIN. TRANSISTOR LW/MW/FM TUNER Similar to above. Complete with aerial,
tuners, dial and instructions \(\quad \underline{\leq}\) TUNER DULCI FMT7S STEREO \(\leq 23\) COMPACT TRANSISTOR FM TUNER
Oiled Walnut cabinet, brushed gold front
panel, vertical styling, internal batteries
\& FM MOLTLPLEX STEREO ADAPTOR
Printed circuit biscuit, 4 trans, 6 £4.19.6
iliodes 9 with full instructions LOUDSPEAKERS

\section*{Watt PEEAK 15 or}

3 ohm \(\quad \underset{\varepsilon 5.7 .0}{ }\)

CABINET Teak \(2338 \times 131 \times 9 \xi^{*}\), contemp. \(12^{*} 99 / 6\) RELAYS \({ }^{4}\) pole changeover, ideal for models.
 Horn type Hi-Fi \(18,000 \mathrm{c} / \mathrm{s}\)
CROSSOYER NETWORK
\(3 \mathrm{kc} / \mathrm{s}, 16\) or 3 ohm
REFLEX CONE TYPE
MULTIMETERS
32/WATERPROOF SPKR.
5 watt, 3 ohm. \(300-\)
16,000e/s PA

CHARGER
TRANSFORMER
4 Amp.
2/6/12 volt
\(21 / 6\)
SUPER SILICON RECT. T.N., etc., 1,200 PIV
 condenser, 86; 400 PIV HW 6A, 6
\(6 \mathrm{~A}, 6 /-\mathrm{BY} 100\) type, 6 for \(10 ;-\).
\(6 \mathrm{~A}, 6 / \mathrm{e}\). BY100 type, 6 for 10, -
\(7 / 6\)
and Std. Jack Adaptor
AD140 8:B BC108 \(3 / B\)
 \({ }_{\text {AF186 11/6 NKT213 5/6 OC45 3/- OA911/6 }}\)

\section*{GHANGER DECKS}

UA25 BSR with template, Mono. List £6.19.8 1025 Garrard with template, Mono. List \({ }^{57} .9 .9\) 1025 Garrard with template, Stereo. List \&7.17.6 PLISTH in simulated teak. Complete with
Ciearview rigid perspex cover for 1025.15 .0 Clearview rigid perspex cover for
\(\mathbf{P} / \mathrm{P}\) on Decks, Plinth and Cover \(7 / 6\)
SWITCH ROTARY RECIPROCATING 4
5osition, 15anip. single hole fixing, with 5 instructions. List \(14 / 7\)
C60 CASSETTE
10/3.

5/6 Stamped envelope for \(\quad\) Co0 14/3. 3 Post free Stamped envelope for full selection and bargain
offers in MULTTMETERS, RADIOS, BABY ALCARMS, INTERCOMS, WALKIE-TALKIES, RECTIFTERS, STNCLAIR, DULCI AND EAGLE Lists. UNDER \(\& 1-\mathrm{P}\). \& P . 6dl, \(\mathrm{E}_{1}\) to EA-1/6.

DURHAM SUPPLIES
367 KENSINGTON STREET
BRADFORD 8, YORKSHIRE

RECEIVERS AND COMPONENTS (continued)

BRAND NEW ELECTROLYTICS, 15 Volt, 1,2, 5, 6, 8, 10, 15, 20, 30, 40, 50, 100, \(200 \mu \mathrm{~F} .7 / 6\) dozen, postage \(1 /-\). The C.R. SUPPLV co., 127 Chesterfield R(., Sheffield, 880 RN.

\section*{TRANSISTORISED REVERBERATION}

Six transistor circuit, all components £7.10.0. post tree. (Case 34/- extra, P. \& P. 2/6). Circuit and construction details 1/(free with kit).
TRANSISTORISED SIGNAL INJECTOR \(19 / 6\) P. \& P. 1/6. Catalogue of components etc. 1/-. Wilsic Electronics Ltd, 6 Copley Road, Doncaster, Yorks.

PEAC OPERATIONAL AMPLIFIERS, ready built on printed circuit board. Tested and guaranteed. 34/- each, post free. W'FSTEK, P.O. Box 7, Rickmansworth, Herts.

\section*{R \& R RADIO}

51 Burnley Road, Rawtenstall
Rossendale, Lancs

\section*{Tel.: Rossendale 3152}

VALVES BOXED, TESTED \& GUARANTEED
\begin{tabular}{ll|ll|ll} 
BF80 & \(3 /-\) & EBC41 & \(4 / 6\) & PY33 & \(5 /-\) \\
EBF89 & \(3 / 6\) & PCC84 & \(3 /-\) & PY81 & \(3 / 6\) \\
ECC82 & \(3 /-\) & PCF80 & \(3 /-\) & PY82 & \(3 /-\) \\
ECL80 & \(3 /-\) & PCF82 & \(3 / 6\) & U191 & \(4 / 6\) \\
EF80 & \(1 / 6\) & PCL82 & \(4 /-\) & \(6 F 23\) & \(5 /-\) \\
EF85 & \(3 /-\) & PCL83 & \(4 /-\) & \(30 F 5\) & \(2 / 6\) \\
EY86 & \(4 /-\) & PL36 & \(5 /-\) & \(30 L 15\) & \(5 /-\) \\
EL41 & \(5 /-\) & PL81 & \(4 /-\) & \(30 P 12\) & \(4 / 6\) \\
EZ40 & \(4 / 6\) & PL83 & \(4 /-\) & \(30 C 15\) & \(5 /-\)
\end{tabular}

POST, ONE VALVE9d. TWO TO SIX 6d. over six post paid.

\section*{WE ARE BREAKING UP COMPUTERS}

\section*{EX COMPUTER PRINTED CIRCUIT}

2 in \(\times\) tin packed with semiconductors and to quality resistors, capacitors, diodes, etc. guaranteed minimum of 35 transistors
SPECIAL, BARGAIN PACK. 25 boards for fi. P. \& P. 3/6. With a guaranteed minimum of 85 100 boards
minimum of 350 e. P. \& P. 6/6. With a guaranteed TRIMMER POTS on \(2^{*}\)
components. \(100 \Omega, 500 \Omega\), \(15 k\) or \(20 k+\) other stare requirements. 5 bds. for \(10 \%+2 /=P\) \& \(P\). PANELS with 2 power transistors sim, to OC28 on each board + components. 2 boards ( \(4 \times 0 \mathrm{OC} 28\) ) NPN GERMANIUM TOS 1 WATT POWER TRANSISTORS on small heat sink, on 2 in \(\times 4 i n\) Panel. 5 for \(10 /-\), P. \& P. \(2 /-\) sink, on 2 in \(\times 4\) in
POWERTRANSISTORS sim, to \(2 N I 74\) ex 4 for 10 . P. \&
POWER TRANSISTORS sim. to 2 Ni74 on Finned Heat Sink (IOD) 4 for \(£ 1, P\). \& \(p\). \(5 /\)-.
LONG ARM TOGGLE SWITCHES ex
LONG ARM TOGGLE SWITCHES ex eqpt,
SPST I3/6 doz., DPST \(15 /-\) dox. P. \& P. all types
2/-doz. BUILDERS' SPECIAL 300 TOIA TRANSISTORS on panels. E4, P. \& P. 6/\%.
OYERLOAD CUT OUTS. Panel mounting in the following values...5/- each. 2, 3, 4, 7, 10 amp. P.\&P.IIG. P. \& P. \(1 / 6\).

150 PIV. 10 amp . DIODE BRIDGERECTIFIERS on finned heat sink. \(12 /=+2 /-P\). \& P. ea.
150 PIV. 20 amp. DIODE BRIDGE RECTIFIERS on finned heat sink. \&1 ea, +3/-P. \& \(P\)
LARGE CAPACITY ELECTROLYTICS
All at \(6 /\) - each \(+1 / 6\) each \(P\). \& \(P\).
All at \(6 /\) - each \(+1 / 6\) each P. \& \(P\).
\begin{tabular}{ll}
\(4,000 \mathrm{mF}\) & 72 V d.c. Wkg. \\
\(10,000 \mathrm{mF}\) & 25 V d.c. wkg . \\
\(6,600 \mathrm{mF}\) & 45 V d.c. kkg . \\
\(16,000 \mathrm{mF}\) & 25 V d.c. wkg. \\
\(25,000 \mathrm{mF}\) & 12 V d.c. wkg.
\end{tabular}

KEYTRONICS, 52 Earls Court Road London, W.8. Mail order only

\section*{ELECTRICAL}

\section*{}

Itaten to tro thirile of BANDREC. Alreraft, Pilots, and SAMDC, Arports at work, Also Civil Depts., Fire and
Ambulance services. Gas and Electricity Ambulance services. Gas 2 and Electricity Depts. Ideal for, receiving 2 metre amateurs.
Gives super reception within the range of all transmissions. A fully transistorised receiver covering \(97-147 \mathrm{~m} / \mathrm{s}\) VIIF broadcasts. Robust attractive 2-tone finished metal cabinet size approx. \(7 \times 4 \times 4 \mathrm{in}\). Operates from a 9 volt internal battery. Speaker or earphone output plus chrome telescopic aerial. Only \(£ 8.19 .6\). Carr. and insurance
10/6. CWO or COD. 10/6. CWO or COD.
SURPLUS BARGALNS
HEAVY DUTY AGCUMULATORS
Type I ( 6 volt) 40 AH . In metal cabinet. Size approx. \(10 \times 9 \times\) bin. Complete with output Wocket, carrying strap. Brand new and unused. juburance 15)-.
Type 2 ( 6 volt) 16 AH . In sturdy wooden cabinet boxed, only \(32 / 6\). Worth 27 each. Brand new and FIELD TELEPHONES
Type F. Housed in a portable wooden case. Ideal for indoor/outdoor communication up to 10 mlles. Absolutely brand new. Price only 25.19.6 per pair, carriage and insurance \(15 /-\)
10 set Headphones and Mike
\(1980 t\) Headphones and Mike. Not new but in working order. Only \(7 / 6\) per set. p. © p, 4/6.
sin (heavy duty fideal for \(p\) As new, \(9 / 6\) each, \(p\). \& \(p\). High Quality moving coil headphopes and hand microphone. Brand new, only 25/-, p. \& p. 5/-.
Suitable for most applications (cost approx, \(£ 3\) per Suitab
pair).

\section*{ARR/SEEATRANS/REC.}

Corapact VHF Trans/Rec. Fits in the pocket. Consists of Mike/Speaker, amplifier, aerial, operate up to 100 miles depending on terrain. Operates from dry batteries. Completely selfcontained. Cost Govt. over \(£ 50\) each. Regulations atate must not be operated in UK so please mention "For Dismantling purposes
 \&5.0.0, post free. Four sets e8, \&15, cartiage 21. Export, enquiries invited.

明

\section*{PRECISION PANEL METERS}

Brand new, boxed and fully guaranteed. With fxing nuts and bolts. Size approx. 3kin square. \(0-600\) volts FSD. As used by leading laboratories. Ex-atock, only 35/-, p. \& p. 5/-. Two for \&3, post free. HEAVY DUTY POWER SUPPLE UEITS
Bulk Purchase. Famous manufacture. Must have cost nearly \(£ 40\) each. Input 200/250 volts \(50 \mathrm{c} / \mathrm{s}\) a.c. at approx. 4 amps a.c. Robust metal rack mounting cabinet, size approx. \(19 \times 15 \times 8 \mathrm{in}\). Price only \(85 /-\) carrlage and insurance \(15 /-\). All units are fully cused and metered.
BMOOTEDNG UNITS
Beautifully made pieces of equpment. 12 volts or 24 volts d.c. input gives a fully bmoothed fully regulated d.c. output. Worth \(£ 30\) each. Robuat metal cabinet with provision for standby batteryBrand new in maker's cartons, Price \(65 /-\) p. \& p. 10/-.
New walls-round scientific store now open at 38 Bridgend, Meadow Lane, Leeds 1. Open weekdays
9 a.m.-6 p.m. Plus sll day Saturday. All items 9 a.m. -6 p.m. Plus sll day Saturday. All ite
avallable for inspection and demonstration.


Buk purchase enabres us to offer the following trantormers at these ridiculously low prices, Made by a famous manufacturer and fully tested and guaranteed. Charger Transtormert. 0-9-15V 2A. 8/6 each, p. \& p. 2/6. Two for 17/6 postifree. Tisanistor Power Pack Typer, 6-3Y at 2A, 7/8 each, p. \& p. \(2 / 6\). 12 V at \(2 \mathrm{~A}, 12 / 6\) each, p. \& p. \(2 / 6\).

\section*{GLOBE SCIENTIFIC LTD}

DEPT. P.E., 24 CAWOODS YARD,
MILK BTREET, MARSH LANE, LEEDS 9
Callers welcome for a demonstration

ELECTRICAL (continued)

\section*{240 orr ELECTRICITY ANYWHERE}

BESTEYER 200/240 VOLT" MAINS" SUPPLYFROM 12 VOLT CARBATTERY Exclusive World Scoop Purchase. The fabulous Mk.2D American Heavy Duty Dynamotor giving the most Brilliant 200/240 volt perford mance of all time. Marvellous for Television, Drills, Power Tools, Mains Lighting, AC Fluorescent Lighting and all 200/240' volt Universal ACIDC mains equipment. Made at tremendous cost for U.S.A. Govt. by DelcoRemy. This magnificent machine is unobtainOnly E4.19.6 + \(10 / 6\) postage. C.O.D. with pleasure, refund guarantee. Please send S.A.E. for illustrated details.
Dept. PE, STANFORD ELECTRONICS Rear Derby Road, North Promenade BLACKPOOL, Lancashire

\section*{TAPE RECORDERS}

TAPES TO DISC-using finest professional equipment-45 r.p.m. \(22 /-\). S.A.E. leaflet, JEROY, High Bank, Hawk Street, Carnforth. Jancs.

\section*{BATTERY ELIMINATORS} The ideal way of running your TRANSISTOR
RADIO, RECORD PLAYER, TAPE RECORDER, RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: \(9 v\); 71 V
41 y (single ourput) \(39 / 6\) each. P. \& P. \(2 / 9\). 4 yv (single ourput) \(39 / 6\) each. P. \& P. \(2 / 9\).
 output required. Ali the above units are completely isolated from mains by double wound eransformer ensuring 100.., safecy.
R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E.), 31 Oliver Road, London. E. 17

\section*{CRESCENT RADIO LTD.}
(electronic component specialists)
For all regular components try 40 Mayes Road, Wood Green, N. 22 For surplus components and equipment try
iI Mayes Road, Wood Green, N. 22 11 Mayes Road, Wood Green, N. 22 \(\begin{array}{ll}\text { Printed circuit board, } 8 \times 6 \text { in } & \text { 2/- each } \\ \text { Zener diode } 8.2 \text { volt, } 400 \mathrm{~mW} & 2 / 6 \text { each }\end{array}\)

\section*{BARGAIN BOARDS}

Transistors, diodes, resistors, capacitors and various components all mounted on computer board, \(2 /\) - each, 3 for \(5 /-, 7\) for \(10 /-\) and 15 for 20/-

MODEL MOTOR
12 volt, 9,000 r.p.m., 400 mA
TRANSISTORS \& DIODE


SILICON DIODE RECTIFIERS
\(750 \mathrm{~mA}, 800 \mathrm{p} . \mathrm{i} . \mathrm{v}\). \(3 / 3\) each
COMPONENT BARGAINS
D.P. rotary ON/OFF mains

Car fuseholders complete with
lead and tages complete with
Low impedance transistor earpiece
Slab arial transistor type
1

LA3 type poc core 45 mh
\(2 \frac{1}{4} \mathrm{in}\). transistor loudspeaker
80 ohm
pe recorder type)
\(\begin{array}{ll}80 \text { ohm } \\ \text { Rev counters (tape recorder type) } & 5 / 6 \text { each } \\ 5 / \text { e each }\end{array}\)
C60
CASSETTES

C60
C90
With
now
\(18 / 6\) each
\(18 / 6\) each how offer an premises in Mayes Road we ean now offer an even wider selection of com-
ponents for the home construetor and ponents for the home constructor and
enthusiast.
POSTAGE WITH ORDER PLEASE;P.S. Our new satalogue is now available at \(1 / 6\) per
copy copy

Burgess instant heat solder gun
Only the tip heats-but fast! About 7 seconds! Pre-focused lamp lights the job up. Exclusive full-
length trigger on pistol grip eases
finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, 6" extension barrel, doubleended probe, gun and solder. £4 126. Full details and nearest stockist from:

Burgess Products Co Ltd, Sapcote, Leicester LE9 6JW

\section*{| 2 in . SUPERB \(£ 15\)}

The exceptional quality and performance of the "De-luxe MKII", brings truly exceptional sound from a single loudspeaker, recreating the musical spectrum virtually flat recreating the musical spectrum virtually flat
\(\pm 5 \mathrm{db} .20\) to \(17,000 \mathrm{c} . \mathrm{p} . \mathrm{s}\). The unit consists \(\pm 5 \mathrm{db} .20\) to \(17,000 \mathrm{c.p.s}\). The unit consists of the latest double cone, woofer and
tweeter cone together with a massive Baker tweeter cone together with a massive Baker
"FERROBA" magnet assembly having a flux density of 16,500 gauss and a total flux of 176,000 Maxwells. Bass resonance 22-26 e.p.s. Rated 20 wates. Voice coils available 8 or 15 ohms. Suitable for all High Fidelity Systems. A high quality loudspeaker providing clear reproduction of the deepest
 bass and highest treble.
Further details and Baker Reproducers Lid
48 page Enclosure
Manual \(5 / 9\) post paid.
Bensham Manor Road Passage, Thornton Heath, Surrey, Oi-684 1665

\section*{VALUABLE NEW HANDBOOK}


Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPOR-

TUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES", should be in the hands of every person engaged in any branch of the Enginecring industry, irrespective of age, experience or training.

\section*{On 'SATISFACTION OR REFUND OF FEE' terms}

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

\section*{WHICH OF THESE IS YOUR PET SUBJECT?}

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.-Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG.
Advanced Radio - Gencral Radio-Radio \&TV Servicing - TV Engineering - Telcconmmmications - Sound Recording - Automation Practical Radio - Radio Amatcurs' Examination. MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. Press Tool Design \(\rightarrow\) Sheet Metal Work - Welding Eng. Pattern Making -Inspection-Draughtsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.General Auto. Eng. - Auto. Maintenance - Repair Auto. Diesel Maintepance Auto. Diesel Maintenance-
Auto. Electrical EquipmentAuto. Electrical Equipment-
Garage Management. ing job. easily.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power?
A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.L., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

\section*{BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE}

\section*{THIS BOOK TELLS YOU}
+ HOW to get a better paid, more interest-
HOW to qualify for rapid promotion.
* HOW to put some letters after your nome and become a key man .. . quickly and
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
t HOW, irrespective of your age, education or experience, YOU con succeed in ony branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE

\section*{PRACTICAL EQUIPMENT}

Basic Pratical and Theore lic Courses for beginners in Electronics, Radio, T.V., Etc. A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam.
R.J.E.B. Certificate
P.M.G. Certificate Practical Electronics Elettronics Engineering Practica! Radio
Radio \& Television Servicing Automation

You are bound to benefit from reading 'ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

The specialist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with practical equipment. Ask for details.



TO B.I.E.T., 3I6A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

\section*{NAME}

ADDRESS
\(\qquad\)
\(\qquad\)
\(\square\)
WRITE IF YOU PREFER NOT TO CUT THIS PAGE

\section*{THE B.I.E.T.IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD}
```

