

WIDELY USED BY INDUSTRY \& Model 64. ${ }^{\frac{3^{\prime \prime}}{5}}$ Bit 25 WATTS PRICE 36/THE DISCERNING ENTHUSIAST FOR RADIO, T.V. \& PRINTED CIRCUIT WORK

FROM YOUR LOCAL DEALER

OR SEND DIRECT TO:-
ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD, LONDON. S.W.4. TELEPHONE 01.622.0291

Send coupon for latest leaflet

TCC G-1120

HEADPHONE/BOOM

 MICROPHONE SETThis lightweight headphone and boom microphone assembly is especially suitable for TV camera crews, communications equipment, lagguage labs., recording studios, etc. The fully adjustable headset is extremely comfortable to wear for long periods. Low impedance microphone allows long cables to be used without any signal losil rowide constant monitoring. Hirh quality provife cation and superb fintinh at a price you can afford.
 Frequency res. $20-14-1000 \mathrm{~Hz}$. Input 200 mW . Cord length 591 in with jack plug fitted. Mic. spec:. Dynamic, impedance 200 ohms. Frequency res. $200-8000 \mathrm{~Hz}$, sensitivity 75 dB . Cord lensth 691 n complete with jack ping.

SPECIALIST RELAYS

SCHRACK 4 POLE 12 WAY

This stepping relay inches one step per puise of the coil, contacts are provided for continuous stepplng and 2 pole changeover at position "6" Uses include programming Curistmas tree Ilghts, selection of stations on mutiway intercom, Systems ateering of radio control models. Automatic operation of model railways, etc.
Type RT 819800 OR Type RT 819120 $60 \mathrm{~F}-2 \mathrm{~W}$ coil 12 F - 2W coll

LASKY'S

PRICE

each
Post $2 / 6$

THORN PYGMY PLUG-IN RELAY
A miniature 8 pin plug-in relay with 10A double changeover configuration. Mains operated coil switched for internal powered remote mains switching, using one contact as a latch o hoil resistance $82 \mathrm{~K} / \mathrm{ohms}, 200 \cdot 240 \mathrm{~V}$ AC/DC operation.
LASKY'S PRICE I2/6
Post 2/6

AEI MINIATURE RELAY

A miniature shrouded 3 pole "make" relay of the chassis mounting type. circuits, resistance $900 \Omega 24 \mathrm{~V}$ operation. Useful for remote Audroling small i.c. motors and pilot lights, etc.,*and any applleation switching three

dircutes from one switch
 LASKY'S PRICE
 8/6
 Pot 1/6

AD-76K MOVING MAGNET CARTRIDGE
New high compliance moving magnet stereo cartridge that really bresks the quality/price barrier. SPECIFICATION: Diamond stereo LP stylus. Compliance $10 \times 10^{-6} \mathrm{cny} / \mathrm{dyne}$. Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$. Channel separation 20 dB . Output 5 mV . Tracking pressure 2 grammes. Standard fin mounting. Replacement Diamond stylus available. Fully guaranteed.

LASKY'S PRICE
 90/-
 Pot 21 -

Branches

207 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 3271 Open all day. $9 \mathrm{am}-6 \mathrm{pm}$. Monday to Saturiay 33 TOTIENHAM CT. RD. LONDON, W. 1 Open all day $9 . a . \mathrm{m}-6 \mathrm{pm}$. Monday to Sauriday 152/3 FLEET STREET. LONDON. E.C. 4 Tel.: 01-636 2605 Open all day Thuiscdy, ealy closing $1 \mathrm{p} . \mathrm{m}$. Saturday

FANTAVOX 500
 I2W STEREO AMPLIFIER

This outstanding amplifier incorporates all the features expected of an expensive unit but at a budget price. The amplifer has opparate tone and
volume controls for both channels plus stero mono switch and tuner output socket. Finished in au attractive walnut grained metal cabinet with anodised pale gold metal front panel. Brief spec: 12 transistors, 2 silicon diodes. Output, Peak power 12 wats (6 watid pet crannel, Freq. Response: $40-20,000 \mathrm{~Hz}$, Output

LASKY'S PRICE
 Post $5!-$

 스N TTC Model A-1008For size, quallty and price we feel sure the Model A-1008 FM Tuner is unbeatable. Probably the world's most compact FrM tuner with 6 transistor and 3 diode printed circuit, self poweredoperating from any 9V D.C. cource. Slow motion tuning drive. Housed in beautifully finighed wainut cab net with classic silver trinı. Clear band $.88-108$ Mc/s. Complete with FM aerial.

$\underset{\text { PRICE }}{\text { LASKY'S }} \mathbf{1 9 . 1 9 . 6}$

ADD MULTIPLEX TO THE MODEL A-1008

You can enjoy stereo Bound with the Model A-1008 FM Tuner above by adding the TTC

LASKY'S PRICE 99/6

\qquad
F NEW INTERNATIONAL TAPE
FAMOUS AMERICAN MADE BRAND TAPE at RECORD LOW PRICES
3 in . Message tape, 1 soft. 2658 in . Standard play, 850 tt . PVC. 11
 3in. Message tape, 300t.
3 ifin. Triple play, 600 ft . Myar 31 in . Triple play, 600 ft . Mylar 4in. Triple play, 900 tt. Mylar sin. Double play, 1200 ft. Mylar
5in.
Long play, geott. Acetate 5 in . Standard play, 6001 t . PVC sin. Triple play, 1800ft. Mylar 5 5in. Double play. 1800 ft Mylar in. Long play, 1200 ft Actat 126 7in. Long play, 10 . Acetale. 150 P. \& P. 1/- extra per reel. 4 reels and over Post Free. Special quotel Ior quantition.

BUDGET PRICED CASSETTES

" "OVERTURE" High quality cassettes from the U.S.A. C.60-10/6 C.90-15/- C.120-20/=

Post 1/- each. 4 and over Post Free. Special puoter for quanities.
GETYOUR LASKY'S AUDIO-TRONICS PICTORIAL
ㄷ C 16 pages ($16 \times 11 i n$.) 1,000 's of items from our vast stocks. HI-Fi, ㄷㄷ ㄷ Radio, Electronics, Test Equipment.
sead $1 / 8$ for post only and inclusion on our regular mailing list.

High Fidelity Audro Centres

$42-45$ TOTENHAM CT RD, LONDON, W. 1 Tel. 01-580 2573 Open all day 9 a m- 6 pm . Monday to Saturday

118 EIGWARE ROAD. LONDON, W. 2 Tel. 01-723 9789 Open हil day Satuiday, early cosing 1 .pm Thaisday

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12V) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-

Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers carton 49/6 plus 2/6p/p.Acos GP 91-1 and GP 91-3 stereo compatible cartridges, new in sealed manufacturers' cartons $22 / 6$ plus 2/6 p/p.

DULCI HI-FI UNITS

The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price.
Amplifiers: 207 and 207M. Tuners FMT7 and FMT7s
SEND NOW FOR FULL DETAILS
TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus. Frequency response 20$20,000 \mathrm{c} / \mathrm{s}$ output. 7 mV tracking pressure 2 grammes $\pm 0.5 \mathrm{grm}$. Fully guaranteed. Price 85/-p/p free.

- Bargain-Changer decks at lowest prices ever
GARRARD
Beautiful teak 1025
£8.0.0
plinth and
perspex
cover to suit
AT60 Mk. 11
$£ 8.10 .6$
£12.19.6
£12.0.0
5 Gns. P/P
Free 3500 with Son 9TA.HC diam. cart. £10.19.6
Add 10/- p/p for each Garrard unit

SPEAKER ENCLOSURES

Type: INFINITE BAFFLE
Model 8: 8 in plus 3 in tweeter
Model 138: 13in× 8in EMI
Both £4.19.6 each
Model 1012: 10 in or 12in, plus 4 in tweeter £7.19.6
All enclosures are in oiled teak, fully built.
Please add $8 /-\mathrm{p} / \mathrm{p}$ on each enclosure

- BARGAIN - Speakers, Hi-Fi -

The Baker Selhurst Guitar Group 25 12in round, 25 watt rating, 12,000 gauss, 15 ohms, respanse $30-10,000 \mathrm{c} / \mathrm{s}$, solid aluminium chassis, heavy duty cone.
Our price £5.9.6.

The greatest HI-FI Budget system today can't be beaten-price or quality anywhere -look at these great features-then compare.
Teleton F2000 tuner amp.
AM-FM with multiplex de-
coder and A.F.C. $-2 \times 5 \mathrm{~W}$
channels R.M.S. Bass Volume Treble Balance controls, a truly outstanding unit
Garrard SP 25 Mk II Transcription deck
$\begin{array}{ccc}\text { \& } & \text { s. } & d . \\ 43 & 1 & 0\end{array}$

Teleton SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridge
$1511 \quad 11$
950

Plinth and Perspex cover \quad| 7 | 0 | 0 |
| :--- | :--- | :--- | :--- | Exclusively offered by WALDON at the remarkably low price of 63 gns.

E.M.I. HI-FI SPEAKERS

SET 450: 13×8 with two built-in tweeters and cross-over unit. Our Price 69/6.'3 or 15 ohm , OW, $40-13,000 \mathrm{~Hz}$.
SET 850 : $6 \frac{1}{2}$ in bass plus $3 \frac{3}{4}$ in tweeter and crossover unit. $8 \mathrm{ohm}, 10 \mathrm{~W}, 65-20,000 \mathrm{~Hz}$. 79/6.
SET 250: 5in heavy duty bass plus 3in tweeter and cross-over unit. $80 \mathrm{hm}, 6 \mathrm{~W}, 80-20,000 \mathrm{~Hz}, 65 /=$ Add $5 / 6 \mathrm{p} / \mathrm{p}$ for each speaker set

WALDON ELECTRONICS, Atlas House, Chorley Old Rd., Bolton. Bolton 45628

SALES
P.O. BOX 5 WARE, HERTS
TEL.: WARE 3442

EX-COMPUTER PANELS I.B.M. Size 2 in , X in. with TRANSISTORS, DIODES,
RESISTORS. CAPACITORS, etc Over青 million already Sold out to the Trade. $\overline{3} 0,000$ only left at our Ridiculous Price of 63 per 100 panels or 628 per 1,000 panels. Plus carriage, charged extra at cost.

Post and Packing costs are continually rising Pease add $/ /$, towards same. CASH WITH ORDER PLEASE

OVERSEAS QUOTATIONS BY RETURN SHIPMENTS TO ANYWHERE IN THE

OVER ${ }^{3}$ MILLION SILICON ALLOY \& GERM. TRANSISTORS AVAILABLE MANUFACTURERS' END OF PRODUCTION TRANSISTOR Transe and Construct
Al. Germ. Audio. A1. Germ. Audio.
N.P.N. T00:
A2. Germ. A.F. TO-5
A3. Germ. A.F. TO.1

 $\begin{array}{lllll}\text { Ag. Gil.AlloyP.N.P. T0-5 } & \text { £2 } & £ 7.10 & £ 12.10 & £ 100 \\ \text { A7.10 } & £ 12.10 & £ 100\end{array}$ Al to A7 Guaranteed 80% Good Trans. A8 \& As NO OPEN OR SHORTS-ALL GOOD TRANS. TEXASSILICON ALLOY TRANSISTORS $2 \$ 302$ Eqvt. OC200 Vc840 Hfe 15-50 $1-49$ off $3 / 6$ each 25303 . OC20I VcB25 Hie 25-75 50-99 off $3 /$. each 25304 OCHAN 202 VcBI5 Hfe $45-120$ NTE 100 off $2 / 6$ each
ALL BRAND NEW, FULLY GUARANTEE \& MARKED.
HIGH QUALITY SILICON PLANAR DIODES. for OA 200 OA202. 7 GAY Gss Type, suitable replacements at 64 per 1000 pieces. GUARANTEED 80% GOOD SILICON PLANAR PLASTIC TRANSISTORS. 2N3708A VeB30 Hfe 20-60. All marked, fully tested and guaranteed. 1 off $1 / 6$ each; 100 off 10 d . each; 500 off 9 d. each: 1,000 off $7 \frac{1}{2} d$. each.
TO-18 METAL CAN SILICON PLANAR TRANSISTORS. VERY HIGH QUALITY 99% good. Type $2 N 706$ BSY27 47.10 per 500 pieces; $\mathbf{6} \mathbf{1 2 . 1 0}$ per 1,000 pieces.

FULLY TESTED DEVICESAND

QUALITY GUARANTEED-SURPLUS OA202 Silicon Diode. Fulty
150 PIV 250 mA Qty. Price $£ 30$ per I, 000 pieces. ORP12 Cadmium Sulphide Cell -2491- each: 25-99 7/1,000 up $5 / 6$ each. Made in Holland
BYI00 SIL, RECT'S 800 PIV 550 mA
-49 2/6 each: 50-99 $2 / 3$ each; $100.9992 /$ each;
1,000 up $1 / 10$ each. Fully Coded. Ist Qley

THYRISTORS (S.C.R'S), FULLY TESTED, BRAND NEWAND CODED: each

Type No.	PIV	Amp	Each
2N1595	50	1	7/6
2N1596	100	1	8/-
2N1597	200	1	10/6
2N1598	300	,	14/-
2N1599	400	1	15/-
BTX30-500	500	,	22/6
BTX30-600	600	,	25/-
TO.46 CASE (STUD)			
Type No.	PIV	Amp	Each
$2 N 1771$	50	$4 \cdot 7$	$9 /-$
$2 N 1772$	100	$4 \cdot 7$	$9 / 6$
2N1774	200	4.7	12/6
2N1776	300	4.7	1616
$2 N 1777$	400	$4 \cdot 7$	191-
2N1778	500	4.7	25/6
2N2619	600	4.7	301-
8TY79-150	150	4.7	12/-
BTY79-250	250	4.7	14/-
BTY79-400	400	4.7	20/-

TO-48 CASE (STUD)

Type No.
2N682
2N683
2N685
2 N687
2N688
2N689
2N690
2N691
2N692
 $A C Y$
$A C Y$
$A C Y$
ACY20
ACY21

\section*{ach ONEPRICEONLYPNP.NPN. each SILICON PLANARI/-EACH} $\begin{array}{lllll}\text { BCI08 } & 2 N 696 & 2 N 1132 & 2 N 2220 & 25733 \\ \text { BC109 } & 2 N 697 & 2 N 1613 & 2 N 3707 & 2 N 3391 \\ \text { 8FY50 } & 2 N 706 & 2 N 1711 & 2 N 3711 & \text { TIS44 } \\ \text { BFY51 } & 2 N 708 & 2 N 2904 & 2 S 102 & 2 N 2906\end{array}$ | 3FX84 | 2N708 | 2N2904 | 2N2904 | 2S102 |
| :--- | :--- | :--- | :--- | :--- |
| 2N2905 | 2 N 103 | 2N2906 | | |
| 2N2907 | | | | | $\begin{array}{lllll}8 F \times 86 & 2 N 930 & 2 N 2924 & 2 S 104 & 2 N 2696 \\ B F \times 88 & 2 N 1131 & 2 N 2926 & 2 S 732 & 2 N 3702\end{array}$ From Manufacturers' Over-runs-Unmarked Plastic and Metal cases.

GERM. PNP AND NPN TRANSISTORS FULEY TESTED, UNMARKED I/6EACH

ACY22	ACY36	NKT677	OC8I	2G381
ACY27	NKT144	NKT713	OC82	2G382
ACY28	NKJi42	NKT773	$2 G 301$	$\mathbf{2 G 3 9 9 A}$
ACY29	NKT212	OC44	$2 G 302$	

AC
\qquad 1/6

	POWER	TRANSISTORS		
OC25	OC35	NKT403	ASZ17	
OC26	ADI30	NKT404	TI3027	$5 /=$
$0 C 28$	AD140	NKT405	T13028	each
OC29	ADI49	NKT452	TI3029	
Manufacturers' Surplus Germ. A.F.				

TRANSISTOR EQVT. BOOK
Americans references of transistors-British, European, American and Japanese. A must for every transistor user.
Exclusively distributed by DIOTRAN SALES. I5/- EACH.

Practical

 electronics hy numbersIt's as simple as that: instead of a brush you use a soldering iron.
HEATHKIT SUPPLIES - the engineered design, the kit of parts, the easy-to-follow instructions YOU SUPPLY - a few hours of enjoyable relaxation and the cash
In no time at all you'll have first-class test instruments or stereo outfit. We won't mind if you don't tell people that you had our expert backing right down the line it's understandable.
So if you were thinking of stereo, save yourself some money - send for our catalogue today!

IT-18 Portable In-Circuit Transistor Tester

IM-17 Portable Solid-State VOM Gloucester GL2 6 EE. England Tel. Glos. 29451. Telex 43216.

AR-27 FM
Monophonic
Receiver

CR-1
Car Radio

New materials and original response from 60 to $16,000 \mathrm{~Hz}$ design techniques have been and outstandingly good used to produce speaker of transient response. It will fantastic quality at a most comfortably handle up to 14 W reviewers have enthusiastically loading and is positively brilliant endorsed its performance. The in stereo. Measuring $9 \frac{3}{4}$ in shape and size of the Q. 14 make square by $4 \frac{3}{4}$ in deep, this loudit far more adaptable to its speaker is finished in matt black with conventionally styled Try the Q. 14 in your own home speakers so that it is much without delay. If you are not easier to position this speaker in delighted with it, your money including cost of return postage immediately.

Clolomins

MODEL 15

MICRO

 SOLDERING INSTRUMENT

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $3 / 64^{\prime \prime}$ (.047") to $3 / 16^{\prime \prime}$, including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{1}{8}$. . Weight $\frac{1}{2} \mathrm{oz}$. Max. handle dia. 7/16".

- EXTRA-HIGH PERFORMANCE

Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts - equals normal $30 / 40$ watt iron.

all voltages

The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/37.

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Rd., Croydon, CR9 2LL Telephone 01-688 8589 \& 4559

STEREOGRAM CABINET 19
An elogant stereogram Cabinet in modern Veneared Mahogany and cloth covered Front Panal
bLACK LEATHERETTE SIDE PANELS Dimensions: $52^{\prime \prime} \times 17 \frac{1}{2}^{\prime \prime} \times 12^{\prime \prime}$. Speaker positions for Twin $10^{\prime \prime} \times 5^{*}$ Speakers

SPEAKERS $6 / 6$
$2^{\prime \prime}-75 \Omega .2 \frac{1^{\prime \prime}}{2}-35 \Omega$. P. \& P. $2 / 6$. ACOS MICS. 35 /- STANDARD
STICK MIC. 2gns. P. \& P. 3/6.
ASSORTED CONDENSERS
$10 /$ for 50 . P. \& P. $7 / 6$. ASSORTED RESISTORS
$10 /=$ for 50. P. \& P. $4 / 6$. ASSORTED CONTROLS
$10 /=$ for 25 . P. \& P. $7 / 6$. TRANSISTORS

MULLARD MATCHED
OUTPUT KIT
9/- OC8ID-2 OC8I's. P. \& P. FREE.

FERRITE RODS $3 / 6$
$6^{\prime \prime}, 8^{n} \times \frac{3^{\prime \prime}}{3^{\prime \prime}}$ complete with
LW/MW COILS. P. \& P. FREE.

17in.-£ 11.10 .0 carr. $30 /-$ 19in. SLIM-LINE FERGUSON 24 gns. two-year guarantee ex-rental televisions

FREE ILLUSTRATED
LIST OF TELEVISIONS
$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS SIZES AND PRICES DEMONSTRATIONS DAILY

RECORD PLAYER CABINET

 49/6.Cloth covered. Size $163^{\prime \prime} \times 141^{\prime \prime} \times 8^{\prime \prime}$ Takes any modern autochanger.

SINGLE PLAYER CABINETS

 15/6. P. \& P. 7/6.TRANSISTOR CASES $19 / 6$. Cloth covered, many colours.

TWO-YEAR GUARANTEED REGUNNED TUBES $70^{\circ} \& 90^{\circ} 14 \mathrm{in}-69 / 6$, $17 \mathrm{in} .-$ $8996,21 \mathrm{in}-99 / 6.110^{\circ}$ 17in.
19 in . \& $21 \mathrm{in} .-99 / 6$. 23° (not bonded)-II9/6. Exchanged Bowls. Carr. 10/6

```
DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Phone 01-4786001-2-3
Stamp for Free List.
```


VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

OZ4		20 F 2		DL	518	EL90 5/-	EENA4 12/6	UCCB4	
1470T	$7 / 6$	$20 \mathrm{P3}$	11/9	DL94	5/8	EL05 5/-	PEN36C15/-	UCC85	6/6
1 F FGT	$7 / 8$	20 P 4	18/6	DL96	$7 /-$	EM80 5/9	PFL20012/.	UCF80	8/3
1N5GT	$7 / 8$	25 T 4	11/6	DY86	5/9	EM81 6/9	PL 36 9/8	LCH42	9/9
1R6	5/6	30 Cl	8/8	DY87	5/9	LM84 6/3	PL81 $7 / 8$	LCH81	
18	$4 / 3$	$30 \mathrm{Cl15}$	13)-	EABC80	6/6	EM87 7/6	PL82 7/-	UCL82	18
$1 T 4$	$2 / 9$	30 Cl 18	9/-	EAF42	819	EY51 7/3	PL83 7/-	UCL83	
384	$8 / 9$	30 Fs	16/-	EB91	$2 / 3$	EY86 6/9	PL84 6/6	UF4I	98
3V4	5/9	30 FLl	12/6	EBC33	$7 / 6$	EZ40 7/6	PL500 18/-	UP80	
8U4G	4/6	$30 \mathrm{FL12}$	$14{ }_{6} 6$	EBC41	813	EZ41 7/6	PL504 18/6	UF85	$6 / 0$
6Y3GT	5/9	30 FL	1016	EBF80	6/8	E280 4/6	PL508 $23 / 6$	UF89	$6 / 8$
5246	$7 / 8$	30LI	$8 / 6$	EBF89	6/3	E281 49	PL802 14/6	UL41	10/8
$8 / 30 \mathrm{~L} 2$	12/6	30 L 15	141-	ECC81	319	GZ32 819	PM84 719		201-
GALS	$8 / 8$	$30 \mathrm{L1} \mathrm{\%}$	15/6	ECC82	418	KT32 5i-	$\begin{array}{ll}\text { PX25 } & 10 / 6\end{array}$	UL84)
6AM6	$8 / 6$	30 P 4	121-	ECC83	71	KT61 8/8	PY31 $5 / 6$	CM84	7/6
OAQS	$4 / 8$	$30 \mathrm{PI2}$	11/8	ECC84	5/6	KT66 16/-	PY32 101-	UY41	7/-
6AT6	$4 /-$	30P19	121-	ECC85	5/9	ME140015/-	PY33 10/-	UY85	8/9
$64{ }^{6} 6$	$4 / 9$	$30 \mathrm{PL1}$	1218	PCC804	$12 ;$	N78 1418	PY81 5/3	VP4B	10\%
6^{6816}	1/8	30 PL 13	15/8	ECF80	7/-	PABC80 7 -	PY82	VP132	11-1
${ }_{6}^{6856}$	$4 / 8$	80PL14	15/8	ECF 82	6/8	PC86 $610 / 8$	PY83 5/8	777	6
6BJ\%-	181-	35L6G		ECH35	81-	PC88 103 $\mathrm{PC96}$	PY88 ${ }^{\text {PY8 }}$	AC107	6
6 F 13	18/8	35Z4C	8/-	ECH81	10/8	$\begin{array}{ll}\text { PC96 } & 8 / 8 \\ \mathrm{PC} 97 & 8 / 6\end{array}$	PY800 PY80] $7 / 8$	AC127 AD140	$8 / 1$
${ }_{6}^{6 F 14}$	91\%	6089	12;6	ECH84	$7 / 6$	$\begin{array}{ll}\text { PC97 } & 8 / 6 \\ \text { PC900 } & 8 / 3\end{array}$	$\begin{array}{ll}\text { PY80] } & 6 / 8 \\ \text { R19 } & 8 / 6\end{array}$	AD140	18/6
${ }_{6}^{6 F 23}$	1418	ACIV	0/-	ECL80	6/9	$\begin{array}{ll}\text { PCC84 } & 6 / 6\end{array}$	$20 \quad 12 / 6$	AF115	
6K7G	2/8	AZ31	9/-	ECL82	6/9	$\begin{array}{ll}\text { PCC85 } & 8 / 6\end{array}$	TH2tC 9/8	AFIIG	
${ }_{6}^{61} 80$	4/8	8729	12/6	ECLS 3	$8 /-$	PCC88 8 9\%	U25 18/-	AF117	
6L18	6/-	CCH35	10/-	ECLS6	$8 / 3$	PCC89 10/6	U26 12/-	AF124	
6V8GT 6×4	6/6	CL33	18/6	EF39	$8 / 8$	PCC189 11/6	U47 18/6	AF125	$8 / 6$
6X4 ${ }^{6 \times 5}$	8/6	CY31	6/9	EF41	$9 / 6$	PCP80 819	C49 18/6	AF126	7/-
6X5G 786	${ }^{6 / 9}$	DAC32	$7 / 8$	EF80	$4 / 8$	PCF82 6 -	U52 4/6	AF127	8/8
786 787	$10 / 9$	DAF91	$4 / 8$	EF85	$5 / 8$	PCF86 9:6	V78 8/6	0 O 26	8/8
787 7 Cb	7/-	DAF96	$6 / 6$	EF86	$6 / 3$	PCF800 13.6	C191-12/6	OC44	2/8
$7 \mathrm{Y4}$	86	DF33	$7 / 9$	EF89	$5 / 3$ $8 / 6$		$\begin{array}{ll}\text { U301 } & 18 / 6 \\ \text { V801 } & 18 /\end{array}$	OC45	2/8
10F1	151-	DF96	-	EF94	$4 / 8$	PCF802 PCF805 9,6 P6	U801 18/- UABCs0 8/3	OC71	2/8
$10 \mathrm{P13}$	15/8	DH77	41-	EF183	6/-	PCF806 11/6	UAF42 8/6	0 C 75	2/6
$12 A T 7$ $19 A U 6$	810	DH81	10/8	EF184	519	PCF808 10:6	CB41 6/6	$0 \mathrm{C8} 1$	2/8
19AU6	$4 / 8$	DK32	$7 / 6$	EEP0	6/8	PCL82 7/-	UBC41.816	$0 \mathrm{Cs1}$	/3
12AUX	419			EL33	819	PCLs3 9i-	UBC81 7		
12 K 8 G	7/-	DK96	7	EL41	10/6	$\begin{array}{ll}\text { PCCL84 } & 7 / 8 \\ \text { PCL85 } & 9\end{array}$	UBF80	C82D	6
19B6601	17/6	DL35	5/	EL84	4/8	$\begin{array}{ll}\text { PCL86 } & 8,6\end{array}$	UC92 5/	OC17	

READERS RADIO (P.E.)
85 TORQUAY GARDENS, REDBRIDGE, ILFORD, E8SEX.

TeI. 01-5507441
Postage on 1 ralve 9 d , extra. On 2 valves or more, postage 6 d . per
valve extra. Any Parcel Insured against Damage in Iraneit 6d. extra.

Build yourself a quality transistor radio

backed by our after sales service!

SEVEN WAVEBAND PORTABLE SEVEN TUNABLE WAVEBANDSMW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

Extra M.W. band for
easier tuning of Luxembourg, etc. Long Waves.
Built-in ferrite rod aerial for Mediun and Long Waves.
5 Section 22 in. chrome-plated telescopic aerial for short Waves-can be angled and 5 Section 22in. chrome-plated telescopic aerial for Short Waves-can be angled and
rotated for peak $\$$ S.W. listening. Socket for Car Aerial. Powertui push-pull output. rotated for peak S.W. libtening. Socket for Car Aerial. Poweriul push-pull outpake
7 transistors and two diodes including Micro-Alloy R.F. Transistors. Famous make ${ }_{7}^{7}$ transistors. and two speaker for rich-tone volu ne. Air gpaced ganged tuning condenser. Volume/on/off control, wave change switches and tuning control. Attractive case with instructions and diagrams make the Roamer 7 a pleasure to build.

Total building costs
-5 - P. \& P. $\begin{gathered}\text { Personal Earpiece with bwitched socket } \\ \text { for private litetening } 5 /- \text { extra. }\end{gathered}$
Parts price list and easy build plans $3 /-$ (Free with parts).

NEW LOOK

melody six

8 stages-6 transistors and 2 diodes. Covers Medium and Long Waves. Top quality 3 in. Loudspeaker for quality output and also \#ith Personal for private listening. Two R.F. Stages for extra boost. High "Q". Ferrite Rod Aerial. Push-pull output. Handsome pocket size case with gilt fittings. Size $6 \frac{1}{2} \times 4 \times 2 \mathrm{in}$. Easy build plans and parts price liat 2!- (FREE with parts).

Total building costs

- 8 P. \& P.

RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD.
Tel. 023452367
| enclose $£ . ~ p l e a s e ~ s e n d ~ i t e m s ~ m a r k e d ~$ ROAMER SEVEN \square ROAMER SIX \square TRANSONA FIVE \square SUPER SEVEN POCKET FIVE \square MELODY SIX \square
Pairts price list and plans for.
Name.
Address.

GEATRONIX LIMITED

EDUCATIONAL ELECTRONIC EQUIPMENT

NORKIT JUNIOR
 (as shown)

NORKIT SENIOR
£17. 12.0
Handbooks supplied for each kit or available separately

6/- each

LOGIC DEMONSTRATION UNIT TYPE LDU. 1

A new teaching aid for rapidly setting up and demonstrating logic circuits. Stackable patching leads are used to interconnect logic symbols on a mimic diagram. The symbols are connected to appropriate components inside the unit. Switches and pushbuttons are provided to simulate input conditions and outputs are indicated by lamps and an audible alarm.

£68.0.0
GEATRONIX LTD., 28 REDSTOCK RD., SOUTHEND-ON-SEA, ESSEX

Solye your communica-4-Station Trsanistor Intercom system (1 master and 3 8nbs), in de-luxe plastic cabinets for desk or wall mounting. Call/talk/listen from Master to Subs and gery, Schools, Hospital, Office and Home on one 9 V battery. On/off switch. Volume control Complete with 3 connecting wires each 66 ft . and other accessories. P. \& P. 7/6.

MAINS INTERCOM
No batteries-no wires. Just plag in the mains for instant two-way, loud and clear communication On/off switch and volume control. Price 12 gns. Whitericou/anBTMLAMM

65/-
Same as 4-Station Intercom for tro-way instant communication, Ideal as Baby Alarm and Door Phone. Complete with 66it. convecting wire. Battery 2/6. P. \& P. 4/6.
 busipesa eff ciency with this incredible De-Luxe Telephons Ampliter. Take down long telephone messages or converse off s witch. Volume control. Battery $2 / 6$ extra p. On 3/6. Full price refonded if not satisfied in 7 days.

WEST LOADON DIRECT SUPPLIES (PE/3)
169 KENSINGTON HIGH STREET, LONDON, W. 8

NEW RAMGE BBC 2 AERIALS

All U.H.F. aerlais now fitted with tilting bracket and 4 element grid refiectors.

Loft Mounting, Arrays, 7 element, $37 / 6$. 11 element, 45/\%. 14 element, 52/6. 18 element, 7 element, $60 /$, 11 element, $67 /=$ anked Arm, 7. element, 60/=. 11 element, $67 /$ Mounting with 75/-. 18 element, 82/6. Mast Mounting with $2 i n$, ciamp. 7 element, 42/6; 11 element, $55 /-$; m element, 62/-; 18 element, rol-* Chimney 72/6; 11 element, $80 /-; 14$ element, $87 / 6 ; 18$ element; 95% Complete assembly Instructions with every unit. Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps from 75/-. State clearly channel number required on all orders.

AERIALS
BBC (Band 1). Telescoplc "H", \&2.15.0.
ITV (Band 3). 3 element joft array, $30 /-\quad 5$ element, $40 /{ }^{2}$ 3 element, $47 / 6$. Wall mounting, Combined Belity $52 / 6$. $1+3$, $40 /-1+5,50 /-1+7$, $60 /-;$ Wall mounting $1+3,57 / 6 ;$
$1+5,67 / 6 ;$ Chimney $1+3,67 / 6 ;$ $1+5,75 / \mathrm{F}$. VFIF transistor pre-amps,

COMBINED BBCI-ITV-BBCZ AERLALS $1+3+9,70 /, 1+5+9,80 / . \quad 1+5+14,80 /$. leafiet avallable. Loft mounting only. Spectal
F.M. (Band 2), Loft S/D, 15/-, "H", 3 , 6 element, 55/-. External units avallable. Co-ax. cable, 8d. yd. Co-ax. plugs, 1/4. Outlet boxes, 5/=.
 CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELEGTRONICS (Dept. P.E.)

40-41 Monarch Parade
London Road, Mitcham, Surrey $01-6484884$

CRESCENT RADIO LTD.

(electronic component specialists) For all regular components try
40 Mayes Road, Wood Green, N. 22
For surplus components and equipment rry
II Mayes Road, Wood Green, N. 22
Printed circuit board, $8 \times 6 \mathrm{in} \quad 2 /-$ each
$\begin{array}{ll}\text { Printed circuit board, } 8 \times 6 \text { in } & 2 /- \text { each } \\ \text { Zener diode } 8 \cdot 2 \text { vols, } 400 \mathrm{~mW} & 2 / 6 \text { each }\end{array}$
BARGAIN BOARDS
Transistors, diodes, resistors, capacitors and various components all mounted on computer board, $2 /$ each, 3 for $5 /-, 7$ for $10 /-$ and 15 for 20 /-

MODEL MOTOR
12 volt, 9,000 r.p.m., 400 mA
TRANSISTORS \& DIODES
ACl27
OCl9
2N2926
BCI47
4/6 each
2N2926
BCI47
5/- each
BYZ12
OA47
AA120
$\mathrm{OA6}$
M 3
$4 / 6$ each
$7 / 6$ each
2/6 each

BARGAIN PACK
50 unmarked and untested transis-
tors ters $10 / 6$
SILICON DIODE RECTIFIERS
$750 \mathrm{~mA}, 800 \mathrm{p.i.v}$.
COMPONENT BARGAINS
D.P. rotary ON/OFF mains

Car fuseholders complete with lead and tages
Low impedance transistor earpiece LAa aerial transistor type
$2 \not 2 i n$. transistor loudspeaker 516 each Rev counters (tape recorder type) 5/- each CASSETTES
C 60
C 90
$12 / 6$ each
Wo With our new premises in Mayes Road we can ponents for the home constructor and enthusiast.
POSTAGE WITH ORDER PLEASE; P.S. Our new catalogue is now available at $1 / 6$ per copy

TO-3 PORTABLE OSCILLOSCOPE.
sin. tube. I amp. SenBandwhath 1.5 cps-1.5 Bandwith Input imp. 2 megr 25 PF. X amp. mensitivity. oy p-p/CM. bandrridth 1.5 cps-800 KHZ. input imp. 2 ${ }_{5}$ meg ranges 20 PF . Time base. KHZ. Synchronization. Internal!external Huminated arale $140 \times 215 \times 320$ Muplied end brand
$10 /$.

R209 MK. |] COMMUNICATION

 RECEIVER

1 valve high grade eiver suitable for tropical use. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on bands. AM/CW/FM operation. Incorpor tes precision vernier oriver, BFO. Aerial trimmer, jnternal speaker and 12 V d.c. internal power supply, Supplied in excellent condition, fully tested and

TE-65 VALVE VOLTMETER

with 28 ranges. D.c. volts $1 \cdot 5-1,500 \mathrm{~V}$. A.c. Yolts 1.5-1,500V. Resistance up to 1,000 megohms. $220 / 240$ V a.c. operation-
Complete with probe and inetructions. £17.10.0. P. \& P. 6/-. Additional Probes available: R.F. $35 /-$. H.V. $42 / 6$.

TO-2 PORTABLE

 OSCILLOSCOPEA general purpose low cost economy oscillo हcope for ereryday use.
Y 2 CPS-1 MHZ. Input
imp. 2 mega 25 P.F Mluminated scale. 2 in tube. 115×180 $220 / 240 \mathrm{Y}$ a.c. Supplled

book £\&2,10.0. Carr. $10 /$
TE-20D RF SIGNAL GENERATOR Accurate wide ange signal gen$120 \mathrm{kc} / \mathrm{s}$ to $500 \mathrm{Mc} / \mathrm{s}$ on 6 bands. Directly calibrated. Variable RF attenuator, audio
output. output. for zalibration. $220 / 240 \mathrm{~V}$ a.c. Size $140 \times$ Brand new with instructions. $£ 15$.
Carr. 7/6.

TY75 AUDIOSIGNAL GENERATOR

 Sine Ware 20c/s to 200kc/s. Square Wave $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. High and low impedance able up to 6 trolts $220 / 240$ Folts a.c. Size 210×150 120 mm . Brand new Fith instructions. 16. Carr. 7/6.

LAFAYETTE TE46 RESISTANCE CAPACITY ANALYSER

10in. With ingtruction manual and mervice data. E39.15.0, carriage
TRIO COMMUNICATION TYPE HEADPHONES. NET
OUR PRICE 83.15 .0 if purchased with above receiter

MARCONI TEST EOUIPMENT

EX-MIITARY RECONDITIONED$85 \mathrm{Kc} / \mathrm{B}-25 \mathrm{Mc} / \mathrm{s}$, £ 25 , carr, $30 /$ - TF. 885 , VIDE OSCILLATOR. 0.5Me/s, 445 Carr. 30/T.F. 195M, BEAT FREQUENCY OSCILLATOR $0-40 \mathrm{Kc} / \mathrm{s}, 200 / 250 \mathrm{~F}$ a.c. 820 , carr. $30 /-$ TF. 142 E Distortion Factor Meter, above offered in excelen The 1100 VALYE VOLT METER, Brand New, \&50. T.F. 1267 TRANS MSIEION TEST SET, Brand New 275 . TF.1371. Wide Band Millivolt Meter, $\& 50$.

MULTIMETERS for EVERY purpose!

10M ת - 10 to 49-4dB \&18.18.0.P. \&P.5/

 MODEL AS-100D. 100K / /VOLT. Built in meter protection. $300 / 600 / 1,200 \mathrm{y}$ d.e. $0 / 6 / 30 / 120 / 3001$ $6 / 60 / 300 \mathrm{MA} / 12 \mathrm{Amp}$. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$ $+17 \mathrm{~dB} . \quad \mathrm{E} 12.10 .0$

MODEL TE-90 50,000 O.P.V. MIRROR SCALE OVERLOAD PROTECTION $0 / 3 / 12 / 60 / 300 / 600 / 1,200 \mathrm{~V}$ d.c. $0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{~V}$ d.c. $0 \cdot 03 / 6 / 60 / 600 \mathrm{MA}$ d.c.
$16 \mathrm{k} \Omega / 160 \mathrm{k} \Omega / 1 \cdot 6 / 16 \mathrm{M} \Omega$. -20 to +63 dB . 87.10 .0 P. 20 to +63 dB . $£ 7.10 .0$.

MODEL TE-70, 30,000 O.P.Y. 0/3/15/60/300 $600 / 1,200 \mathrm{~V} . \mathrm{d.c} 0 /$.6
$30 / 120 / 600 / 1,200 \mathrm{~V}$. a.c. $0 / 30 \mu \mathrm{~A} / 3 / 30$ 300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $1 \cdot 6 \mathrm{M}$ / 16 megohm

MODEL PT-34.	MODEL
$1,0000 . P . Y T-34$.	$50 / 250 / 500$ $1,000 \mathrm{y}$ a.c. and

d.c. $0 / 1 / 100 / 500$ $\begin{array}{ll}\mathrm{mA} \text { d.e. } 0 / 100 \\ \mathrm{~K} \Omega & 38 / 6, \mathrm{P} . \& \mathrm{P}\end{array}$

TRIO COMMUNICATION

 RECEIVER MODEL 9R-59DE 4 band receiver corerjDg $550 \mathrm{Kc} / 8$ to $3019 / 8$ 40 and 80 metres. 8 value plus $\overline{7}$ diode circuit $4 / 8$ ohm output and phone pack. SSB-CW ANL - Variable BFO $\$$ meter Sep. bandspread dial 1F $445 \mathrm{Kc} / \mathrm{s}^{2}$ Audio output 1.5 W . Fariable RF and AF gain controls. 115/250 A.C. Mains. Beautifully designed. STE-900 20.000Ω MOLTIMETER 6in. full view meter. 2 colour scale, overload protection- $0 / 2 \cdot 5 / 10 /$ $250 / 1,000 / 5,000 \mathrm{~V}$ a.c. $0 / 25 / 12 \cdot 5 / 10 / 50$ $100^{0} / 50 \mathrm{FA} / 110$ / 100 ma 10 A d.c. $20 \mathrm{~K} / 200 \mathrm{~K} / 20$

TE111.

DECADE
RESISTANCE
Fariable rance
$0-111 \mathrm{~dB}$. Con-

nections. Er

balanced T and Bridge T. Impedance 600Ω range $(0.1 \mathrm{~dB} \times 10)+(1 \mathrm{AB} \times 10)$ $+10+20+30+40 \mathrm{~dB}$. Frequency: 0.05 dB . +indication $\mathrm{dB} \times 0.01$. Maxi0.05 dB , +indsan input less 4 W (50 V). Built in 600Ω load resistance pith internal external switch. Brand new e27.10.0. P. \& P. $5 /-$

SINCLAIR EQUIPMENT

 Z12 12 watt amplifer, 89;8 PZ4 Power Supply Unit 89/6 Stereo 25 Preamp., 20.19 .6 Q14 Speakers, £7.19.8 Micromatic Radio Kit 49/6. Built 50/6
SPECLAL OFFER

Two Z12 Amps., PZ4 Fower Supply, Stereo apeakers, 237

NEW SINCLAIR 2000 SYSTEM

 35 watt Integrated Amplifier 829 . Carr. 5/Self powered F, M. Tuner. £25. Carr. 5/-ECHO HS-606 STEREO HEADPHONES PROFESSIONAL 20,000 O.P.V.

MODEL TE12. 20,000 O.P.V. 0/0.6/30/220/600 1,200 / $3,000 / 6,000 \mathrm{y}$ d.c 1/6/30/120/600/1,200 V $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$.
$0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} .160$. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} . / 60$
Megohm $50 \mathrm{PF}-2 \mathrm{MFD}$

AM/FM SIGNAL GENERATORS

Oscillator Test No. 2. A high quality ment made for the ministry by Airmec. Frequency cover-
age $20-80 \mathrm{Mc} / \mathrm{s} . \mathrm{AM} /$ C.W./FM TncorC.W.FM. Incorporates precision dial, level meter, precision 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. Size $12 \times 8 i \times 9$ in, Supplied in brand new condition complete with all connectors fully teated. e45, Carr, 20/\%.

MARCONI CT44/
TF956 AF ABSORPTION WATTMETER
1 $\mu /$ watt to fi watts. £20. Carr. 20/-

FIELD TELEPEONES TYPE L (ienerator ringing, metal cases. Operate from two 1.5 v. batteries (not gupplied) xcelen condition Carr. 10

T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges: $.01 / 10 / 30 / 100 / 300 \mathrm{~V}$. $3 / 10 / 30 / 100 / 300 \mathrm{~V}$.
R.M.S.
/c/8. $-1.2 \mathrm{Mc} / \mathrm{s}$. R.M.S. $4 \mathrm{c} / \mathrm{s},-1.2 \mathrm{Mc} / \mathrm{s}$.
Decibels -40 to +50 dB. Decibels- 40 to +50 dB . complete with leads and instructions. Operation 230V ז... 217.10 .0 .
 Carr. $5 / \mathrm{h}$.

AUTO TRANSFORMERS

$0 / 115 / 230 \mathrm{v}$. Step up or step down Fully shrouded.

150 W. \&1.12.6, P. \& P. 3/6
300 W. $£ 2.7 .8$, P. \& P. $3 / 6$
500 W . $£ 3.10 .0$, P. \& P. $6 / 6$

3,000 W. £7,10.0, P. \& P. 12/6
$\mathrm{T}, 500 \mathrm{~W} .215,10,0$, P. \& P. $20 /-$

HEW CATALOGUTE
Nearly 200 pages giving full details of a comprehensive range of COMPONENTS, TEST
EQUIPMENT, COMMUNICAEQUIPMENT, COMMUNICATION EQUIPMENT AND HI-F! EQUIPMENT.
Each sertion greatiy enlarged and fully illustrated. Thousands of items many at bargain prices. FREE DISCOUNT COUPONS Value 10/
GEMD NOW-ONAY 76 PEPT.

VARI-STAT

THERMOSTATIC
SOLDERING IRON
HIGH PRODUCTION MINIATURE MODEL D. 50 WATT
Weight ... 2 oz.
Heating time 50 seconds
Nickel or Iron Plated
Price
HIGH PRODUCTION INSTRUMENT
MODEL H. 150 WATT
Weight
6 oz .
Heating time 1 min .45 sec.
Nit sizes $\because 3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16$
Nickel or Iron Plated
Price .. 250 to 24 volts

OTHER VARI-STAT IRONS:

New Edition-Now Out

Thinking of High Fidelity-first read Goodmans 28 page High Fidelity Manual. It contains interesting articles on Stereo; an Introduction to High Fidelity; Stage-built systems; as well as full details of Goodmans High Fidelity audio products.

Send for your free copy

Please send me a free copy of Goodmans Manual
Name
Address.
Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tel: 01-902 1200

MARTIN IS HIGH-FIDELITY

F.M. TUNER
 ASSEMBLY

The first and still the most

 satisfactory unit assembly system
Abstract

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated moduletype units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims for years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification.

AMPLIFIER SYSTEMS

UNITS INCLUDE:
■ 5-stage input selector
E Pre-amp tone controis

- 10 watt amp. (3 ohms)
- 10 watt amp. (15 ohms)

■ Mains power supply

- F.M. Tuner

Trade enquities invited 154/5 HIGH 8TREET, BRENTFORD MIDDLE8EX. ISLeworth 1/61/2

When new units are introduced, they are designed for adding to those produced so far, making it easy and economical to extend and improve your existing Martin Audiokit set-up. Anyone can assemble Martin equipment with ease and the fore-knowledge that when finished, he will be possessed of a true hi-fi assembly of the very best kind which looks and sounds completely professional in every way-and MARTIN AUDIOKITS remain as ever, the units that have true add-on-ability.

TUNERS • RECORDERS

ONLY FROM MARTIN

Cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amp for low output pick-ups. Escutcheon panels to suit the arrangement you choose. Tuner is styled to match.
Start by sending for leafiets at once
MARTM ELERTRONMBS LTD.

MARTIN ELECTRONICS

154 High Street, Brentford, Middlesex Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name
\qquad P.E.10/68

See our vast range of Electronic Components at our new Component Centre 25 Tottenham Court Road

Bgt ery Eliminator. Enables
transistor equipment ted from AC mains. $6 / 9 /$
12 F . output selector switch and on/off switch. Case size $4 \times 22 \times 2 \mathrm{in}$. complete with mains lead, con-
necting leads and instructions. $59 / 6$. P. \& necting
P. $3 / 6$.

SAFFAARD DECKS

gRP23 leas cartridge. 1025 Stereo/Mono with cart. 9000 B Btereo/ Mono with cart. 3000D Stereo/Mono with cart. SP2s less cartridge
${ }_{81}$ 8P25 with Decca Deram cart ${ }^{\text {BLL5 }}$ less cartridge Coverg for alove
Baseeg tor above.
AP75 lesa cartridge
AP75 lese cartridge
BL75 less cartridge SL95 less cartridge
BPECIAL OFFER!
8P25 less cart., with base P. \& P. Decks 12/6, Cover 4/6, Base 4/6. EMI COMBINATION $13\} \times 8\}$ in. elliptical two 2fin. tweeters. 15 ohm impedance. Power handling 10 watis, Brand new and guaranteed. 89/B. P. of \mathbf{P}. tweeters. 59/8. P. \& P. 7/6.)
"HI-TEXN"LOUDBPEAKER puit handles up to 10 watts. Ceramic magnet'. Freq. response: $40-10,000 \mathrm{cps}$. Imp:
15Ω. Flux dentsiy: 10,000 lines. 49/6. P. \& P. 4/6.

SOLDERING GUN Comiortable grip with ghaped 8 tin. bit to minimise wear. Tight beam is antomstically directed on $t r i g g e r$ is in wse. $230-250$ volts.
"ADASTRA" SOLDERING IRON. 30 watt. Employs its protective cover lead. 18/6. P. \& P. $2 / 6$ NEW-VEFAIRCRAFT BAND CONVERTOR. of a MW band radio fuli coverage of VHF Alrcraft Band 108-135Mc/s. can be obtained. Ail transistor, 9 y battery operation. Fally tunable
 1

STERED AMPLIFIERS

ORAL STEREO AMPLIFIER MCDEL DULCI STEREO AMPLIFIER MODEL 207 TS-135. SOLID STATE. 18 TRARISTORS.
$\left.\begin{array}{llll}\hline=-\cdots & -1 & -1\end{array}\right]$ 13.5 watts per channel. Free standing unit
with black crackle case and satin alloy front panel. Specification: Frequency range $30 \mathrm{c} / \mathrm{s}^{2}$ to $20 \mathrm{Kc} / \mathrm{s}$ ($\pm 3 \mathrm{~dB}$). Harmonic 4 dib ortion at $1 \mathrm{Kc} / \mathrm{s}$. Signal to noise ratio 60 dB . Inputs: Aux. 100 mV , Phono 3 mV , Tuner 150mV, Tapehead 4 mV . Tone controls: 150mV, Tapehead 4 mV Tone controls:
Treble
$10 \mathrm{Kc} / \mathrm{s}$ at
\pm iodB. Loudness (medium frequency cut). Output impedance 8 ohms. Malns operated. Size
$41 \times 63 \times 12$ in. Price $£ 26.5 .0$. P. \& P. $9 / 6$.

SPECIAL PURCHASE!

8 watts per channel. Integrated high fidelitive free standing unit with provision for moonting in equipment cabinet. Finish Dark Grey vinyl simulated leather grain.
Front panel gatin alloy. Specffcation: Front panel satin alloy. Spectication:
Sensitivity, Radio/Tape 100 mv fito 1 Mohm . Phono 100 mV into 1 Mohm .3 position. selector on front panel. Frequency response: $40 \mathrm{c} / \mathrm{s}$ to $16 \mathrm{~K} \mathrm{c} / \mathrm{s} \pm 2 \mathrm{~dB}$. separate bass and treble controls with boost and cut, balance control, Mono/Stereo Function ${ }^{\text {switch (both channéls work in parallel). }}$ E19.18.0. Plus P. \& P. $9 /$

S-DeC Bread

Solderless breadboard panels, for fast re iable component connettions Single DeCs. One S.DeC with Control Panel, Jig and Accessories for solderless connections to controls, ete., with booklet
"Profects on S -DeC" Biving construction details for a variety of circuits. 29/8 ${ }_{P}$ \& \& P. $2 / 6$.
4. DeC KIT. Four S-DeCs with two Control Panels, Jigs and Accessories and the bookstrong attractive plastic case. Ideal for the professional user. 25.17 .6 . P. \& P. $3 / 6$.

HI-TUNE RECDRDING TAPE
 BRITISH MADE. TOP QUALITY

		BRITISH MADE. TOP QUALITY					
J1001	$3 *$	Long Play PVC	225 ft .	5/6	P. \& P $1 / 2$.		
J1002	3*	Triple Play Poly	600 ft .	10/6	P. \& P. $1 / 2$.		
51003	$5{ }^{*}$	Long Play PVC	9001 t.	101-	P. \& P. 1/8.		
J1004	3*	Double Play Poly	12004 t.	15/-	P. \& P. 1/8.		
51005	01.	Long Play PVC	1200 ft .	12/6	P. \& P. ${ }^{\text {P }}$ 2/-		
$J 1006$	3帚*	Double Play Poly	1800 ft .	22/6	P. \& P. 2/w.	I-	\%
$J 1007$	7 "	Standard Play PVC	1200ft.	$12 / 6$	P. P. ${ }^{\text {P }}$ 2/6.		
$J 1008$ $J 1009$	$7{ }^{7}$	Long Play P VC	18001t.	$17 / 6$ $25 /-$	P. \& P. 2/6.		
J1010	$7{ }^{\circ}$	Triple Play Poly	3600 ft .	50/-	P. \& P. 2/6.		

NEW TRANSISTDR MODULES

E.1311. PEONO PRE AMPLIFIER. Size $2 \times 1 \times \frac{1}{3}$ in. Built-ln R.I.A.A. characteristics enabling low
output magnetic pick-up cartridges to I volt. Input 100Kohm: Gain 28dB: Max. output 35 : Max. input 50 mV . Distortion 0.15% (at 1∇ level). Power supply E.1313. MICROPHONE PRE-AMPLIFIER. Enables a low output microphone to be used with an ampltter or radio. Input inp Max. input 50 mV : Distortion 0.15% (at 1v Ievel): Freq- response $10 \mathrm{~Hz}-50 \mathrm{KHz}$.
Power supply $9-12 \mathrm{~F} .28 / 6$. P. \& P. 2;-. Power supply 9-127. 28/6. P. \& P. 2i-. E.1318. DUAL LAMP FLASHER. A switch module for electronicaly alternating two models, toy boats and planes, displays, warning and security devices, communica. tion signals, etc. Flasher time $\frac{\mathrm{sec}}{\mathrm{f}}$ Power supply 6 v DC: Current 150 mA : Lamp 6v 150mA. 25/-. P. \& P. 2/-.
E.1315. ELECTRONIC ORGAN TONE OSCILLATOR. Used in conjunction with an organ keyboard, variable resistances and a 9 volt power supply, this module acts as Tone Frequency: $200-1,000 \mathrm{~Hz}$. Output. Tone Frequency: $200-1,000 \mathrm{~Hz}:$ Output
80 mW : Current $15 \mathrm{~mA}, 25 /-$ P. \& P. $2 /$.
E.1814. POWER AMPLIFIER. When used in conjunction with E.1311, E. 1312 and E. 1313 units this amplifier module pro-
duces about 300 mW output for speaker connection ($8-16 \mathrm{mhms}$), without speaker for an on (8-16 ohms), without necessity 1,000 ohms: Gain 20dB: Output 300 mp . Distortion 3% (at 200 mW output level). Freq. res. $50 \mathrm{~Hz}-10 \mathrm{KHz}$. Power supply 9 Y . Current 20 mA at no signal, 80 mA at max. output. 28/6. P. \& P. 2/-.
E.1817. MINIATURE MORSE TRANSAM Receiver, also makes a useful oscillator Radio frequency range $400 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. Power supply 9 v DC. Current 35 mA . 25/-. P. \& P. $2 /$ -
E.1812. TAPE PRE-AMPLIFIER. Incorporating N.A.R.T.B. curve characteristics,
this ampliies tape head signals up to 1 volt within the trequency range of 30 Hz 15 KHz . Input imp. 100 Kohm : of 30 Hz Max, output 2 F Max. input 50 mV : Dis tortion 0.15% (at $1 v$ level): Power supply E.1316. MORSE CODE OSCILLATOR. A transistorised morse code oscillator (buzzer) to be used in conjunction with an operating key. Suitable for direct connection to a
loudspeaker. Tone freq. 400 Hz : Power output 80 mW : Power supply $3-9 \mathrm{v}$.: Current 45 mA . 25/-. P. \& P. $2 /$ -

Visit cur Brand New $\mathrm{Hi}-\mathrm{Fi}$ Demonstration Room, Tape Bar, Scientific Show of Microscopes, Binoculars, Telescopes also Watches at 18 Tottenham Court Road

COMPACT 2-WAY INTERCOMS

For table or wall mounting. Smart two tone grey cases size $3 \frac{1}{3} \times 1 \frac{1}{4} \times 2 \mathrm{in}$. Complete
with lead, P. \& P. 3/6. LIGHT DINHER AND SWITCH Fully suppressed complete with control knob and fess casing. Will fit most electrical
fittings. Uses 4 silicon rectiflera, 2 transistors and 1 thyristr: Many P. otheruses. 1

MODEL MARER'S MOTOR

 No. 15RN. Voltage 11.5 F . Current 400 ma . Torque12 grcm . Body size
 ${ }_{1 / 1}{ }^{\prime \prime}$ " dm. Ideal for small models and
toys. $5 / 6$ esch. P. P 13. 3 10 /-. P. \& P. 2/6. NEW TRANSISTOR For measuring alpha, transistors also for checking germanium and sillcon diodes. Internal 9v. battery. Wide reading $7 \times 4+\times 37 \mathrm{in}$. Alpha $0.7-0.9967$ Ranges. -300; Ico 0-50. $5,000 \mathrm{~A}$. resistance. Resistances: reverse internal res. Complete with conrectors and instruction booklet. 87.18.6. $P_{\text {, }}$ \& P. $3 / 6$.
SHIRA 62D MTLTITESTER 20,000 a.p.7.
DC voltage: $8.25 \cdot 50$ - 250 $500-25 \mathrm{KK}$ (20,000 ohms per volt). AC Voltage: $10-50$ 100-500-1000 volts (10,000 ohms per volt). DC Cur rent: 0-5 RA, Resistance: $0-6 \mathrm{~K}$,
250 mA . Resin
0.6 Mg (300 ohm and 30 K . 0 to 001 mid, $001 \mu \mathrm{f}$ to $1 \mu \mathrm{l}$. Decibels: -20 to
 TTC.C1001 HULTITESTER in leather case.
 20,000 opv. AC volts
$10,50,250,1,000 \mathrm{~F}$. DC volts 5-25, 125 ,
$500,2500 \mathrm{v}$.
D. Cur rent $0-50 \mu \mathrm{LA}, 0-250 \mathrm{~mA}$ Resistance $0-60 \mathrm{~K}$,
Megohm. Decibels
-20 to +22 dB . Bize af meter $4 \frac{1}{2} \times 3 \frac{1}{2} \times 1 \mathrm{in}$
$85 /-$. F. $8.3 / 6$.

E
 INTEGRATED CIROUIT 10 watt Amplifer. Size only Ix $0.4 \times 0.2 \mathrm{in}$. A true hi-fi amplifler complete of applications and instructions. Guaranteed 5 years. ONLY $5 / 6$. P. \& P. 1/6.

Shops open $9-6 \mathrm{pm}$. Monday to Saturday Thursday until 7 pm .

S．E．S． $\begin{aligned} & \text { your } \\ & \text { complete supplier }\end{aligned}$

196 Regent Road，SALFORD 5，Lancashire
TELEPHONE 061－872 5187
（Member of the Harrop Industrial Group）
C．W．O．please
1／－p．\＆p．for orders of components under fl
Orders of Lektrokit： 2 －handling charge on orders under if 5／－handling charge on orders under $\mathbf{E 5}$

RESISTORS：All brand new，Hi－Stab，low，noise， 5% tol．carbon film． CW E12 series 4.7 ohm to 10 M ，2d．each or $15 /-\mathrm{per} 100$ of one value． tW
E24 series 4.7 ohm to $10 \mathrm{M}, 2 \mathrm{~d}$ ．each or $15 / \mathrm{per} 100$ of one value
 tol．）． 3 d ．each． 3 W －wirewound－ 0.5 ohm to 12 ohm， $1 / 6$ each． $5 \mathrm{~W} \%$
wirewound－ 15 ohm to $8.2 \mathrm{kohm}, 1 / 9$ each． S E．S．Pre－P

 10 ohm to $100 \mathrm{kohm}, 2 \mathrm{~d}$ ，each．
PRE－SETS：Min．skeleton carbon track，low noise with good stability；

 3 C each．Soder pre－sets wirewound $\frac{1}{2}$ W rating Lin： 10 ohm to $5 \mathrm{k}, 2 / 3$ each
POTENTIOMETERS：Min，enclosed，carbon track and wiper contact only
 Lin： $25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}$ ；Los： $3 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}$ ． 3 W wirewound Lin．tracks 50 ohm to 100 kohm ， $7 / 4$ each．

Mullard Miniature Metallised Poly ester 250V． $0.01,0.015,0.022,0.033$
$0.047,0.068 ~$ Mullard Polyester Film and Foil $4000 \mathrm{~V} 0.001,0.0015,0.0022,0.0033,0.0047$ $\begin{array}{ll}0.0068, ~ e t t ., ~ & 80 \\ 0.22 \mu \mathrm{~F}, 033 \mu \mathrm{~F}, 6 \mathrm{~d} \text { ，each．} 0.047 \text { to } 0.1 / \mu \mathrm{F}, 8 \mathrm{~d} \text { ．each，} 0.15 \mu \mathrm{~F} \text { ，} 10 \mathrm{~d} \text { ．}\end{array}$
 Disc Ceramics（Erie） $500 \mathrm{~V}, 1,000,4,700 \mathrm{pF}, 5 \mathrm{~d}$ ，each．Silver Micas 1% tol
$500 \mathrm{~V}, 2 \mathrm{pF}$ to $820 \mathrm{pF}, 1 /-$ each．Polystyrane $160 \mathrm{~V}, 100-1,000 \mathrm{pF} 5 \mathrm{~d}$

 $1 / 3$ each．Midget Tubular Ceramics－ $0.002,0.003 \mu \mathrm{~F}$ ，iod．each． 0 ． $0.1,0.22$ ， SEMICONDUCTORS：All New and Unused

 10／6．（1．2A and 2．5A types are stud mounted－Anode）．7／i＊NOW－ 1.500 pir 2N2924 3／6； 2 N 2926 （Brown or Red） $2 / 6$ ，（Orange 2／9；（Yellow）3／－，（Green）
$3 / 3 ; 2 \mathrm{~N} 3643$ 8／6； 2 N 3794 ，2N4289 4／－each； N 4148 i／6．
SWITCHES： 100 series－SPST 3／8；SPDT 3／11；DPST 4／6；DPDT 4／8． 400 push－to－make or push－to－break $3 / 1$ ）With centre position） $3 / 8$ ．Series $500-$ red，black ${ }_{\text {ti green）．She }}$ Slide Switeh $3 / 4$ ；Wave Change switches in white Miniature＂Maka－Switch＂also available－－Shafts $5 /-$ ；Wafers $5 / 4$ each
PLUGS AND SOCKETS：Min．Plugs（black or red）Gd．Min．Sockets to fit 9d．Co－Ax Plugs I／2．Co－Ax Sockets 11 d ．Sub－Min fit（black，red，green） 2／－each．Min．Jack Plugs and Sockets $3 /-$ each．Recorder Plugs 3－way $2 / 7$ 5 －way 3／－．Recorder Sockets 3 －way $1 / 2,5$－way $1 / 4$ ．
WIRE：Min．Stranded（available in 10 colours）3d．yd．Solid Core 3d．yd． cable $1 / 6$ yd．Co－Ax cable $1 / 3$ yd．Mains Lead $1 / 3$ yd．Min．Microphone LAMPS：Min．Wire Ended Neon
Light $+12 V$ buib $8 /-$ ；Min．Flange Light $+12 V$ bulb $11 /-$ ． SOLDERING IRONS．A NTEX
32／6．E240 20W mains：A．N．T．E．X．CN240 15W mains operated，small， and elements available．Also stands for above irons， $11 / 6$ each．，Spare bits 20ft coil $60 / 40$ Alloy 22 at Reduced Prites to Everyone！Size A－Approx． 3／－．OUR PRICE 2／9．Size B．APprox． 2001 t recommended retail price． individually packed．Recommended retail price 15／－，OUR PRICE ${ }^{2} /{ }^{2} / 6$ ． BIB Wire Strippers：strips insulation without nieking wire．Recommended retail price $4 / 6$ ，OUR PRRE $4 /-$ ．
LEKTROKIT：Chassis construction system－the professional look to a home 2 side plates $4 / 4$ each．Front panel $\times 4$ in -2 chassis rails $1 / 10$ each Perforated cover $5 / 5$ ． 2 plain covers $4 / 5$ each．in erack－proof paint） $8 / 3$ ． available each $4 \frac{x}{} \times$ in． 2 Thus 2 boards fit above chassis．Plain 7 boards aluminium board $2 / 2$ ．Aluminium board drilled for 66 valveholders $B 7 G$ B8A，B9A，2／6．Aluminium board drilled for 2 valveholders international 0 otal，UX4，ete．，2／4． $0 \cdot 1 \mathrm{in}$ ．perforated grid SRBP board， $2 / 9$ ．Vernaboard 0.1 in and $0.2 \mathrm{in}$. ． $6 / 6$ each．Cloverleaf aluminium board， $6 /-$ ．（Cloverleaf
lead throughs $6 d$ each．Pins for SRBP board $4 / 6$ I 00 ） lead throughs 6 d ．each．Pins for SRBP board $4 / 6100$ ．）

For full details of all our stocks send $3 / 6$ for our bright explanatory 120 page catalogue，or 6d．stamp for Data Sheets．

THE DORSET（ 600 mW Ousput）

7 －transiotor fully tunable M．W．－L．W，superhet portable－ with baby alarm facility．Set of parts，The latest modulised and pre－alignment techniques make this simple to build Sizes： $12^{\prime \prime} \times 8^{*} \times 3^{\prime \prime}$ ．MAINS POWER PACK KIT： $8^{\prime} 6$ extra． Price $\mathbf{5 5} 5.0$ plus $7 / 6$ p．\＆p．Circuit $2 / 6$ FREE WITH PARTS．

THE ELEGANT SEVEN MK．III（ 350 mW output）
7 －trangistor fully tunable M．W．－L．W．portable，Set of parts．Complete with all components，including ready etched and drilled printed circuit board－brek printed for foolproot construction．
Price $\mathbf{4 . 9 . 6}$ plus $7 / 6$ p．\＆p．
Circuit 2／6 FREE WITH PARTS

50 WATT AMPLIFIER A．C．MAINS 200－250V An extremely reliable general purpose ralve amplifier －with sir electronically mixed inputs．Suitable for use with：mics，Euitars，gram，tuner，organs，etc．
Separate bass and treble controls．Output mpedane Separate bass and treble controls．Output impedance
3,8 and 15 ohme． 3， 8 and 150 hms ．
Price 27 gns．plus 20；－p．\＆p．

POCKET MULTI－METER

 D．P．current on A．C．and D．C．volts． $0-150 \mathrm{~mA}$ ．Resistance $0-100 \mathrm{l}, 150$ ， $0-1000$ with teet prodi，battery and fall inge -100 K ．Complete 3／6．FREE GIFT for limited period only， 30 watt Electric Soldering Iron value $15 /$ to every purchaser of the Pooket rulti－aleter．
$=-8$
OUR
PRICE
12 for $30 /=-=0$
Postage $4 / 6$ G．E．C． 13 extra surface W．\＆：
lush
Docket
Bin

in	$\substack{\text { mounting switched sockets } \\ \text { in brown．} \\ \text { Listed at } 6 / 6 .}$	$\begin{array}{l}\text { Aush } \\ \text { green．}\end{array}$

CYLDON 4 TRANSISTOR U．H．F．TUNER．BRAND NEW．COMPLETE WITH CIREUIT DIAGRAM
£2． $10.0+1 / \cdot$ p．\＆p．

THE CLASSIC

Controls：Selector switch．Tape speed equalisation 日تitch（3n and 71 i．p．s．）．
Volucene． scratch ilter and 2 position rumble filter．
Specifleation：Sensitivities for 10 watt output
Mag．P．U．：2mV．herd：P．U．： 80 mV ．Radio： 100 m
Aux．： 200 mV ．Tape／Ree，output：100m Equalisn
is correct to Within $\pm 2 \mathrm{~dB}$（R．I．A．A．）from 20 Hz to 20 K cach input
control range：Bass $\pm 13 \mathrm{~dB}$ at 60 Hz ．Treble $\pm 14 \mathrm{~dB}$ at 15 KHz ．Total aistort Size $121^{\prime \prime}$ long， $4^{\prime \prime}$ deep， 2^{H} ．Signal noise：$<-60 \mathrm{AB}$ ．A．C．maina $200-250 \mathrm{~T}$ ． Size $121^{\prime \prime}$ long， $4 \frac{1}{"}^{\prime \prime}$ deep， $2 \xi^{\circ}$ high．Teak finished case．Price $8 \frac{1}{2}$ gns．p．\＆p． $7 / 6$ ．

THE RELIANT MK II IOW SOLID－STATE HIGH QUALITY AMPLIFIER Specifleations：Output： 10 watts R．M．S．Output impedance： 3 to 4 ohmis．Inputs
1．Xtal mic 10 mV ；2．Gram／radio 250 mV ． 1．Xtal mic 10 mV ；2．Gram／radio 250 mV ，Tone confrols：Treble control range $\pm 12 \mathrm{~dB}$ at 10 KMz ；Bass control range $\pm 13 \mathrm{~dB}$ at 100 Hz ．Frequency response （with tone controls central）：Minus 3 dB points are 20 Hz and 40 KHz ．Signal fo type．Maint input：220－250v a．c．Size of chassis： $10{ }^{*}$ Planar type and 3 Gemanium
 pick－ups and mikes．Separate base and treble lift control．Two inputs withakes of for gram．and mike．Built and tested． $8^{\circ} \times 5^{\circ}$ speaker to Two inputs with contro p．\＆p．Crystal mike to sutit： $12 / 6$ plus $1 / 6 \mathrm{p}$ ．\＆p． BELLAKT MARE II 6ignt $+7 / 6$ p．大 D．In teatofin

THE VISCOUNT

Integrated High Eidelity
SPECIFICATIONS：Output： 10 watto per channelinto 3 to 4 olums speakera（ 20 watt monoral）．Input： 6 position rotary gelector switch（3 pos．mono and 3 pos，stereo）， P．U．，Tuner，Tape end Tape Ree，Sensitivities：Allinpots 100 mV into 1.8 M ohm． Frequency regponse： $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{db}$ ．Tone controls：Tone controls flat （Baxandall type），separate bass and treble controls．Treble Tone controls fist and cut at

15 KEz ．Bass 15 db lift and 25 db cut at 60 Hz ．Volume controls：Separate for each | 15 KHz ．Bass 15 db lift and 25 db cut at 60 Hz ．Volume controls：Separate for each |
| :--- |
| channel．AC Mains input： $200-240 \mathrm{r} .50-60 \mathrm{~Hz}$ ．Size $127 \times 6 \times 2$ in | cage，Built and teated．PRICE $\quad 13 \frac{1}{2}$ gns．Postage \＆Packing i／6 extra，

B．S．R．TD2 TAPE DECK

This tape deck takes $5 z^{\prime \prime}$ spools complete with two－track heads． Size $13 \overleftarrow{z}^{\circ}$ long by 88° wide．
〔8．19．6 plus $7 / 6$ p．\＆ p ．

THREE．IN－ONE HI－FI 10 WATT SPEAKER A complete Loud Speaker aystem on one frame， combining three matched ceramic magnet
speakers with a Peak handling power 10 rattes．Impedamork． ohms．Flux density 11,000 gauss．Resonance $40-60 \mathrm{c} / \mathrm{s}$ ．Frequitycy range $50 \mathrm{c} / \mathrm{s}$ ，Re $20 \mathrm{kc} / \mathrm{f}$ ，

 $5 /-p$. \＆p．Similar speaker to the abore
minustweeters in 3 a 15 ohma $44 / 6+5 /-$ p．\＆ p ．

（

Goods not despatched outvide U．K．Termic．W．O．All enquiries S．A．E．
RADIO \＆TV COMPONENTS（ACTON）LTD．

> 2ld High Street
> Acton London W． 3 323 Edgware Road－London W． 2 orders by post to our acton address please

EXCLUSIVE PURCHASE!
PORTABLE AMPLIFIER
UNIT
By Fell known
Britizh Maker. A luxury unit at a bargain

Designed as a Telcphone Amplificr but can be used in manay armerent ways - a booster amplifier for trangigtor High gain four transtoror papinger unit housed in attractive leathercloth covered wooden cabinet with upward facing 3^{*} high fux P.M., apeaker covered by neat plastic grille. Fitted 3.6 mm jack sacket anil
 oporatete with telephonc pick-110 induction soil fitted suction pad, lead nad 3.5 mm fack plug.

Our Special price 35/

$4 / 6$
Or as above with $3 . \overline{\mathrm{u}} \mathrm{mm}$ plug and DLRē unit for use as sensitive microphone for babs alarms, communication syetems, cte. Will opesate over distances of np to $20 n$ ft or more when connected with twin flex or hell wir

PRICE 40/- ${ }^{\text {P. }}$ \& P

(Batteries and flex not inchuded)

BRAND NEW 3 OHM LOUDSPEAKERS

öin.14/-; 6ilin. 18/6; 8in.27/-; $7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{in}$. 27/6. E,M.I. $8 \times$ bin. with high flux magnet 21/*, E.M.I. $131 \times$ 8 in . With high flux ceramic magnet $42 /-$ (15 ohm $45 /-$). E.M.I. $13 \times 8 \mathrm{in}$. with two inhuilt tweeters and crossorer
netrork. 3 or $1 \overline{5}$ ohms 4 gns. P. \& P. 5 in . $2 /-6 \frac{1}{2}$ \& $\sin .2,6$, 30 \& $12 \mathrm{in} .3 / 6$ per speaker. $\mathrm{BRA} / \mathrm{D}$ Speakers, 3 or 10 ohms. By well-known British maker. Now with Hi Flux ceramic ferrobar magnet assembly. $£ 5,10.0$. P. \& P. $\overline{5} /$. Guitar Models: $25 \%, 46 ; 35 \%$. 88 . E.M.I. 3 in. HEAVY DUTY TWEETERS. Poweríl cera-
mic magnet. Available in 3 or 8 ohms $15!-$ cach: 15 ohms 18/6 each. P. \& P. $2 / 6$. TW . 12ing "RA" TWIN CONE LOUDSPEAK
3inn. 12/6; $7 \times \operatorname{lin}, 21 /-$. P. \& R. 2/- per apaker
VYNATR AND REXDNE SPEAKERS AND CABINET FABRICS app. $54 i n$. Wide. Csually $35 /-$ yd., our price $13 / 6$

IATEST COLLARO MAGNAVOX 863 STEREO TAPE DEGES. Three speeds 4 track, takes up to Tin. spools. E18.0.0. Carr. 10/ Brand new. Beautifully made. Only 40/6. P. \& P. 8/6. Dual Porpose Bulk Tape Eraser and Tape Haad DenagnetACOS CRYSTAL MIKES. High imp. for desk or hand use. High sensitivity, 18/6. P. \&P. 1/6. ACOR PRICE 21/- P. \& P. I/G, Brand New. 2tin. din. $5 /-$ P. \& P. $1 / 6$.

MEW S.T.C. TYPE 25 MINIATURE RELAYS12 volt. 4 日/p, e/o contacts, 1 amp rating, Coil 10/- each. P. \& P. 1/6.
Also some similar to above but coil resistance $\overline{5}, 800$ ohms 48 volt operation. 8/* ench. P. \& P, 1/6.

GPECLAL OFFER! PLESSEY TYPE 29 TWIN TUNING GANG, f00pF + 146pF. Fitter with trimmers and б:1 integral slow motion. Suitable for nominal $470 \mathrm{kc} / \mathrm{s}$
I.F. Size approx. $2 \times 1 \times 1 \frac{1}{2}$. Only $8 / 6$. P. \& P. $2 / 6$.

TRANSFORMER BARGAINS
MAMS TRAKSFORMER. Primary $200-240 \mathrm{~V}$ two separate $\frac{1}{2}$ Fave secondaries giving approx. 16 V at 1 amp and 20 V at $1 \cdot 2 \mathrm{amp}$; secs. can be connected in
series for 36 V at 1.5 amp . Tdeal for trangistor power aupplies, Dron through mounting. Stack aize $2 \frac{3}{4} \times 3$: 3in. 25/\% P. \& P. 6/*.
MAINS TRAMSFORMER. For transistor power supplies Pri. 200/240V. Sec. $9-0-9$ at 000 mA . 11/. P. \& P. 2/才
Pri. 200/240V. Sec. 12-0-12 at 1 amp . 14/6. P. \& P. 2/6 Pri. 200/240V. Sec. 10-0-10 at 1 amp . $14 / 6$. P. \& \& P / P. $3 / 6$ MATCRED PATR OF 2I WATT TRANSISTOR DRIVER
 10/- pair plus $2 /-\mathbf{P}$. \& \mathbf{P}
7-10 watt OUTPUT TRANSEOREERS to match pair o ECLS6's in murhoplull to 3 nhm output. ONJ $\overline{\mathrm{L}}$ 11/BRAND NEW MAINS TRANSFORMERS for Bridge Rectiffer. Pri. 240 V. Ac. sec. 240 at 00 ma and $6 \cdot 3 \mathrm{~V}$ at I- amp . Stack size $23 \times \underset{2}{ } \times 2$ in
(Special guotations for quantities).

HIGH GRADE COPPER LAMINATE BOARDS $\times 6 \times \frac{1}{18} \mathrm{in}_{\mathrm{H}}$ FIVF for 10/- P. \& P. $2 /$

TRANSISTOR STEREO $8+8$ MK II
Now uaing Silicon Tranelistors in first fire stages on each channel resuliting in even lower noise level Fith improred Uees 14 trangietors giving 8 watts push pull output per channel (16 W mono). Integrated prearnp. With Bass, Treble and Volume controls. Sultable for use with Ceramic or Crystal cartridges. Output atage for any peakers from 3 to 15 ohms. Compact dealga, all parta supplied including drilled metal work. Cir-Kit board, attractive front panel, haobs, wire, solder, nute, boltsno extras to buy. Simple step by Beepinstructions end of
 Bass boost approx. to $+12 \alpha \mathrm{~B}$. Treble cut approx, to $-16 d B$. Negative feedback 18 dB over main amp. Power requirements 25 V at 0.6 amp .
PRICES: AMPLIFIER KIT $810,10,0$; POWER PACK KIT E3.0.0; CABINET 88.0.0. All Post Fre
Circuit diagran, construction details and parta list (free with kit) 1/6. (S.A.E.).

SPECLAL PURCHASE! Heary 8zin. metal turntable Low flutter performance 200 250 V bhaded motor (90 V tap), Complete with latest type lightwelght pick-up arm stylii for LP/78. LDHTED | YUMBF |
| :--- |
| . $0 / 6$. |

4-SPEED RECORD PLAYER BARGALIS Msins models. All brand new in maker's packing E.M.I. MODEL 999 Single Playet with rait moanted pick-up arm sna mono cartriage.. B.S.R. VAR with latert mono compatible cart

LATEST GARPARD MODETS All typer argilabl 1000 SPO5, 3000 , ATG0 etc. Send B.A.E. for Bargsin Prices PLINTH UNITS cut out for charrard Yodels 1000, 1025 , PRICE 5 gis. complete. P. \& P. 8/6.

SOKOTONE 9TAEC compatible steren Cartridec with diamond atvins bol- P. P.
LATEST BONEITE TjO Stereo Compatible Cartridge for
EP/LP/Stcreo/78. 32/6. P. \& P. 2/
LATEST RONETTE TO Mono Compatible Cartridge for EP/LPP/78 mono or stereo records on monn equipment

QUALITY RECORD PLAYER AMPLIPIBR MH II
AUALITY RECORD PLAYEA A A top-quality record plajer amplider emple double wound mains transformer, ECC83, EL84, EZ80 valves Separate Bass, Treble and Volume controle. Complete with output transformer matched for 3 ohm
speaker. Size $7 \mathrm{in} . \pi . \times 3 \mathrm{~d} . \times 6 \mathrm{~h}$. Ready built and tested speaker. Size $\operatorname{7in} . \pi . \times 3$
PRICE $75 / \%$ P.
P. $6 / \%$
ALSO AVAILABLE mounted on board Fith output tranaformer and speaker ready to fit into cabinet belop. PRICE 97/6. P. \& P. 7/6.
DE IUXE QUALITY PORTABLE R/P CABLTET ME II Uncut motor board size $14 t \times 12 \mathrm{in}$, , clearance 2 in . below, 5 in. abore. Will take above amplifer and ans B.s.R. o GARRARD changer or Single Player (except AT60 and
SP25). Size $18 \times 15 \times 8$ in. PRICE 78/6. P. \& $9 / 6$.

FH/AM TONER HEAD

Beautifully designed and pre
cision entineered by Dormer \& Wadsworth Itd, Supplied ready fitted with twin 0005 tuning condenaer for AM contion covers $86-102 \mathrm{Mc} / \mathrm{s}$. I.F. tion covers $80-102 \mathrm{Mc} / \mathrm{s}$. $1 . \mathrm{F}$.

full circuit diagram of tuner heark. Another special buil purchase enables us to offer these at $27 / 6$ each. P. \& P. 3/GORLER F.M. TUKER HEAD. $88-100 \mathrm{Mc} / \mathrm{s} .10 \cdot 7 \mathrm{Mc} / \mathrm{s}$. I.F. 15/-plus $2 / 6$ I. \& P. (ECCs5 valves, $8 / 6$ extra).

AMPLIFIES HODEL \#AS4 AMPLIFLSE MODEL HAS
Designed for Hi-Fi reproduc tion of records. A.C. Mains operation. Ready built on plated heavy gavge metal chassis, size 7 in in $\times 4 \mathrm{in} . \mathrm{d}_{2} \times$ 43in. h. Incorporates ECC83, EL84, EZ80 valves. Heary duty, donble wound mains transformer and output trans. speaker, separate Base, Treble and volume controls. Negative feedback line, Outputhit watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs,
tested for only 24.5 .0 . P. \& P. 6%
tested for only e4.5.0. P. \& P. 67
KSL "FODR" AMPLIFIER KIT", Similar in appearance to HA34 abore but employs entirely different and adranced circuitry: Complete set of parts, etc. 79/6. P. \& P. कisBRAND NEW TRANSISTOR BARGATMS. GET 15 AF117 7/6.
Set of Mullarit 6 transistors OC44, 2-0C45, AC128D, matched pair AC128 25/-; Mullard LFH3 Audio Tranamatched pair AC128D and matched pair ACl28 12/6;
istor Pack AC12
ORP12 Cadmium Sulphide Cell 10/6. All post free.
 Baby Alarm, Booster unit transistor radios etc., also ideal for classroon unit etc. Forks perfectly with our special offer ACOS Stick Microphone ($81 /-$). Output 1000 mW . Uses
standard 9 tolt battery. Bmart two tone carrying standard 9 size $12 \% 4 \times 9$ in. fitted standard input jack socket volume controls, 7×4 in. speaker. Completely billt and tested, brand new with full maker's guarantec

STEREO AMPLIFIER

Incorporating 2 ECL86's and 1 EZ80, heary duts, double wound mains transformer. Output 4 watts per channel. Foul tone and volume controls. Absolutely complete. Output impedance 3 ohms.
printed circuit panel size $6 \times 3 \mathrm{in}$.

- Generous size Driver and Output Transformers. - Output transformer tapped for 3 ohm and 15 ohm spenkers. Transistors (GET114 or $\$ 1$ Mullard ACl28D and matched pair of AC128 o/p). 9 volt operation. - Everything supplied, wire, battery clips, solder, etc. diagram $2 / 6$ (Free with Kit). All parts sold separately. SPECLAL PRICE 45/- P. \& P. 9/-. Also ready bullt and tested, $52 / 6$, P. \& P. 3%.

HARVERSON'S SUPER MONO AMPLIFIER

A super quality gram amplifier using a double wound mains transformer, EZ80 rectifier and ECL82 triode pentode talve as audio amplifer and power output veluge and tone controls. Chassissize only iin. wide $\times 3 i \mathrm{in}$. deep x 6 in. high overall. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New completely wired and tested with valres and good quality output transiormer. LMMTED NUMBEM.

10/14 WATT HITRI
AMPLTFTER EIT AMPLIFTER EIT A stylishly finished monaural amplifier 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech, with negli-
gible hum. Separate gible hum. Separate gputs for mike and gram allow records to follow each other.

Fully shrouded section wound output transformer to match 3-15̃ speaker and 2 independent rolume controls, and separate bass and treble controls are prorided giving good lift and cat. Fave ine-up 2 elis a, 10 , EFo and parto All part sold saparatoly OXIV 878. 8 P \& P 8if. partg). All parts sole separately. input sockets, £9.5.0. P. \& P. 8/6.

Open all day Saturday
Early closing Wed. 1 p.m.

HARVERSON SURPLUS CO. LTD.

170 HIGH ST., MERTON, S.W. 19
Tel. 01.5403985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEABE MOTE:P. \& P. CgARGES QVOTED APPLY TO U.K. OALY. charged extra.

Home Racio

234-240•LONDON RDAD•MITCHAM•SURREY•CRム ЗHD
Telephone: 01.648.8422
Only 500 yds. from our old premises - but now we have much more space, much more stock!

New catalogue? Well-yet another edition of the "old faithful" that for over eleven years has presented to an ever-growing army of enthusiasts the latest and best radio and electronic components. This latest edition is no exception to our policy of making every new edition better and bigger than the one before! It has no less than 330 pages, lists over 8,000 items, illustrating over 1,500 of them. With each catalogue you get a 30 -page Price Supplement, a bookmark giving electronic abbreviations and an order form. All for only $8 / 6$ plus $3 / 6$ post, packing and insurance. Incidentally every catalogue contains 6 vouchers, each worth $1 /-$ when used as directed.

\int POST THIS COUPON NOW

 with your cheque or P.O. for 12/-
but still the same old
 SUPERLATIVE SERVIGE

Please write your Name and Address in block capitals

Name

Address

SOUND ECONOMICS

THANKS to advances in audio engineering and the availability of quality sound reproduction systems, listening to music has become a popular but highly civilised form of home entertainment. With this widespread appreciation of good music it is not surprising that many non-musicians feel the urge to become music makers themselves and thus extract the ultimate of pleasure this art can offer. In looking for the ideal instrument many turn to the electric organ. Certainly this offers a source of limitless pleasure to performer and listener alike with its flexibility in tonal expression and wide dynamic range.

Electronic organs of musical compass to satisfy the most fastidious of organists, while sufficiently compact in physical form to be compatible with the average home, can be purchased. There is a healthy business in this market, yet because the price of these instruments is comparable with the cost of a family car, such organs are a luxury beyond the reach of countless would-be music makers.

Realisation of this hard ecomonic fact has spurred on many intrepid enthusiasts to the formidable task of designing and building an organ for themselves. It is also abundantly clear that there exists an even greater number of music lovers who would like to build an organ, but who do not wish (or perhaps are not able) to indulge in protracted experiments with circuits and systems.

An organ is a far from standardised instrument. The musical compass can be wide or limited, the voices can be arranged to suit classical works or lighter romantic music, and various musical effects may be included or excluded, according to individual preference. When considering a design for publication, many aspects had to be taken into account in order to satisfy the widest number of potential constructors. Investigations made by the designer of the Practical Electronics Organ showed that the romantic sound characteristic of the theatre organ would be the more generally preferred sound amongst amateur organists: so this kind of voicing has been adopted.
This decision almost automatically solved another major question which always has to be faced when drawing up an organ design, i.e. the type of tone generators to be employed. Divergent views are heard on this subject. There are, for example, those who claim that only the free phase oscillator is satisfactory; this is undoubtedly true if the intention is to synthesise closely the characteristic sound of a pipe organ. For technical and economic reasons, the frequency divider method has much to commend it, although it produces an "electronic" sound which some purists amongst organists might object to. But this method lends itself admirably to the romantic type of organ, so it is used in this present design.
F. E. Bennett-Editor
CONSTRUCTIONAL PROJECTS
INFRA RED BURGLAR ALARM 336
P.E. ORGAN-I 356
VERY HIGH IMPEDANCE AMPLIFIER 366
TONE FILTER FOR RADIO CONTROL 381
SPECIAL SERIES
COLD CATHODE TUBES-I 343
GENERAL FEATURES
CHOOSING AND USING A MULTIMETER 350
ELECTRONIC SPIROGRAPH PATTERNS 369
INGENUITY UNLIMITED 377
NEWS AND COMMENT
EDITORIAL 335
NEWS BRIEFS 349, 368
AUDIO TRENDS 363
ELECTRONORAMA 364
MARKET PLACE 373
SPACEWATCH 378
READOUT 389

[^0]
* RELIABLE * SENSITIVE * FAIL-SAFE ACTION * TAMPER PROOF

By D.BOLLEN

P^{E}erhaps the most efficient and versatile method of detecting the presence of a burglar is by means of an invisible beam of light, positioned in such a way that the intruder must interrupt the beam to gain entry.

Unfortunately, the modern criminal comes equipped with tools and considerable know-how. He may be able to nullify the alarm before it can give a warning. To be completely effective, an infra-red alarm system must be fail-safe, and proof against knowledgeable tampering. The equipment described here has several novel features, and is designed to combat the efforts of an astute burglar.

DESIGN PRINCIPLES

A light bulb is powered from a 50 Hz supply giving rise to modulated light at a frequency of 100 Hz , because the bulb is switched off twice per cycle and will glow on both negative and positive waveform peaks. When the light bulb is small, and its filament has a short thermal delay, the modulated light output at 100 Hz will have a useful amplitude.

Conventional a.c. methods can be employed to detect and amplify the light signal from the bulb at a distance somewhat greater than can be achieved using d.c. amplification of a steady light signal.

With modulated light, a long beam path is obtainable; typically 150 feet.

A tungsten filament bulb will radiate about 75 per cent of its input energy in the infra-red region of the frequency spectrum; only some 6 per cent will appear as visible light. If a gelatine filter, with good infra-red acceptance properties, is used to block the visible light output from the bulb, there will be very little attenuation of the effective infra-red output.

The same applies when a germanium photo-detector -such as the OCP71, which has a peak response at 1.55 microns-well inside the infra-red region-is arranged to pick up the filtered light from the bulb. The effect of removing the visible light from the beam will be insignificant and there will be virtually no loss of efficiency.

It is usual to employ three units in an infra-red alarm system; a bulb and lens unit to project a narrow beam of light, a photo-detector and amplifier head mounted opposite the projector, and a remote electric bell.
This design, however, combines projector and amplifier into one unit, the beam of light being refiected back to the detector by a small mirror, or collection of mirrors (see Fig. 1a). Note that the beam length is doubled when a mirror is used, and this is where the high sensitivity of a modulated light beam system comes in useful.

PRACTICAL DETAILS

Quite often an infra-red alarm unit is required to detect the presence of an intruder passing along a passageway between two buildings, where the property on one side of the passage belongs to another person. With a small mirror mounted on the opposite wall, all the wiring can be confined to the owner's property, and there is no need to run wires under the floor of the passageway.
Figs. 1b, 1c, and 1d show how alternative mirror arrangements can operate. In Fig. 1b the mirror is fitted to a movable object, which could be a money box or a safe door. The slightest mirror movement will deflect the beam and sound the alarm.
Fig. Ic depicts a method of lacing the beam back and forth across a doorway, for added protection and to detect the passage of small objects.

 RELAR Manion

In Fig. 1d an area is enclosed by the beam, for instance a room with several doors and windows. Entry of an intruder through any door or window would interrupt the beam and trigger the alarm.
The lamp and amplifier must be mains powered if they are to operate continuously for long periods, but provision should be made for sounding the alarm in the event of a supply failure. The bell is therefore furnished with its own battery, and the latching relay is mounted close to the bell.

Fig. Ia. Principle of operation of the infra-red alarm

Fig. Ic. Method of lacing beam across doorway

Fig. Ib. Mirror mounted on moveable object

Fig. Id. Mirrors arranged to enclose an area

Fig. 2. Circuit diagram of the detector and amplifier stages

Fig. 3. Component layout and wiring for the amplifler

If the mains supply is cut off, the relay will close and the bell will ring. In normal operation, the 100 Hz signal from the beam projector holds the relay contacts open. If wires leading to the relay are cut or shorted, the relay contacts will close, and remain closed even if the 100 Hz signal is restored Jater.

PHOTO-DETECTOR AND AMPLIFIER CIRCUIT

Fig. 2 shows the photo-detector and amplifier circuit. Phototransistor TR1 is coupled to the amplifier by C2. C 1 is included across the normally open-circuit base of TR1 to prevent high frequency instability.
Light falling on the collector-base junction of TR1 will cause an increase of collector current, and an a.c. signal will appear at the collector when the light is modulated.

To eliminate bulky electrolytic capacitors, keep components to a minimum, and ensure a uniform low frequency response. The amplifier, composed of TR2, TR3, and TR4, is d.c. coupled.

Voltage gain is better than 200 , and d.c. negative feedback is applied via resistors R4 and R6, to stabilise the amplifier against temperature drift. Capacitor C3 decouples the feedback network to a.c. and thus prevents attenuation of the signal.

AMPLIFIER CONSTRUCTION

Colour coded wiring is included in the diagrams to simplify connections to the circuit panels. The amplifier circuit panel layout and underside wiring appears in Fig. 3.

It is important to note carefully the connections to the $n p n$ and $p n p$ transistors when wiring them into circuit. The panel is drilled and components wired up underneath, using tinned copper wire where the component leads are too short to make a direct connection.

Fig. 4. Circuit diagram of the power supply

POWER SUPPLY

A standard $6.3 \mathrm{~V}-0-6.3 \mathrm{~V}$ filament transformer (T1 in Fig. 4) is used. After full-wave rectification (D1 and D2) and smoothing (C4 and C5) a d.c. voltage of approximately 9 V is available to feed the amplifier. The bulb is wired to one half of the transformer secondary.

Although RS210AF silicon rectifiers are specified for D1 and D2, almost any silicon diode with a p.i.v. of 100 volts and a maximum current of 500 mA or more could be used instead.

Fig. 5. Component layout and wiring of the power supply

POWER SUPPLY CONSTRUCTION

Rectifiers D1 and D2, resistor R8, and smoothing capacitors C4 and C5 are positioned on a small s.r.b.p. panel which bolts to the transformer tag panel, forming a compact assembly. Panel layout and underside wiring, together with numbering details of the transformer tag panel, are given in Fig. 5.

COMPONENTS . . .

Resistors

R1	$4.7 \mathrm{k} \Omega$	R5
R2	220Ω	R6 $1 \mathrm{k} \Omega$
R3	$4.7 \mathrm{k} \Omega$	R7 820Ω
R4 $3.3 \mathrm{M} \Omega$	R8 $30 \Omega 3 \mathrm{~W}$ wirewound	

All $10 \%, \frac{1}{4} \mathrm{~W}$ carbon, except R8
Capacitors
CI $0.047 \mu \mathrm{~F}$ polyester 250 V
C2 $0.68 \mu \mathrm{~F}$ polyester 250 V
C3 $0.68 \mu \mathrm{~F}$ polyester 250 V
C4 $1,000 \mu \mathrm{~F}$ elect. 12 V
C5 $1,000 \mu \mathrm{~F}$ elect. 12 V
C6 $100 \mu \mathrm{~F}$ elect. 9 V
C7 $2 \mu \mathrm{~F}$ elect. 9 V
Transistors
TRI OCP7I or equivalent phototransistor
TR2 2N2926 (orange spot)
TR3 AC154 or OC71
TR4 2N2926 (orange spot)
Diodes
DI, D2 RS210AF (STC, see text)
D3, D4 OA81

Transformer
TI $6.3 \mathrm{~V}-0-6.3 \mathrm{~V}, 0.5 \mathrm{~A}$ mains centre tapped heater transformer

Relay

RLA reed switch (Radiospares type 7RSR) and 800Ω reed operating coil

Miscellaneous

LPI 6V-8V, 0.5A m.e.s. bulb
BYI 4.5 V battery (type 1289)
SI single pole on-off switch
" L " shaped signal lampholder
S.r.b.p. panels, 2 in $\times 2 \frac{3}{4} \mathrm{in}, 1 \frac{3}{4} \mathrm{in} \times 2 \mathrm{in}, 1 \frac{1}{3} \mathrm{in} \times 3 \mathrm{in}$ (I off each)
Lenses 3 in focal length-see text (2 off)
Infra-red filter No. 87, 2 in square gelatine sheet (Kodak)
Electric bell, $4 \frac{1}{2} V$
Magnet (see text)
$\frac{1}{4}$ in plywood, two off $3 \frac{3}{4}$ in $\times 2 \mathrm{in}$, two off $7 \mathrm{in} \times 2 \mathrm{in}$, one off $8 \frac{1}{2}$ in $\times 4 \mathrm{in}$
Aluminium 7 in $\times 4 \frac{1}{4} \mathrm{in}, 16$ or 18 s.w.g. (2 off)
$4 \mathrm{~B} . \mathrm{A}$. and $6 \mathrm{~B} . \mathrm{A}$. fixings

A.C. LATCHING RELAY AND ALARM BELL CIRCUIT

It will be remembered that the relay must respond to a low level a.c. signal, and latch on permanently when the signal is cut off. There are a number of ways of achieving a.c. operation with latching, but in this instance a twin coil reed relay is employed, and is magnetically biased.
The circuit shown in Fig. 6 operates in the following manner. The low level signal from the amplifier output (black lead) is rectified by D3 and D4, and is

relay and alarm bell

Fig. 6. Circuit diagram for the a.c. latching relay and alarm bell

Fig. 7. Component layout and wiring for the relay board
partially smoothed by C7. About 2 to 3 volts d.c. is developed, under normal long beam path conditions, across the relay coils, not enough to close the reed switch contacts.

If now a permanent magnet is brought close to the reed coils, and orientated in such a way that its field opposes the field induced by the signal voltage, cancellation will occur. Then, when the magnet is brought closer still, the magnetic field will begin to increase in the opposite direction, but will now consist of the permanent magnet field minus the signal induced field.

Therefore, with the magnet positioned just at the point where the reed switch contacts are on the point of closing, removal of the signal will increase the field and the contacts will close.
If the signal reappears it will not be able to re-open the contacts, due to inherent backlash in the reed switch mechanism. The reed relay can be re-set in two ways: either by placing a small sheet of ferrous metal between the magnet and the reed coil-which acts as a magnetic shunt-or by counteracting the effects of the bias magnet with another magnet.
After triggering the reed relay will remain closed and needs no power to keep it in that condition; the bell will ring until its battery is exhausted or until the relay is re-set or switch S 1 is turned off.

A.C. LATCHING RELAY CONSTRUCTION

The layout of the latching relay is shown in Fig. 7. Once again, a simple s.r.b.p. panel form of construction is employed, although etched circuits could be used if considered worthwhile. The only points to watch are the capacitor and diode polarities.
The magnet can be taken from an old moving armature headphone. In the original construction, two such magnets were glued together, to increase the magnetic field so that the magnet could be conveniently positioned about $\frac{1}{4}$ in from the exterior of the reed coil. A range of magnets are available from technical suppliers and a $\frac{1}{4}$ in square by 2 in long bar magnet would be suitable for biasing the reed switch.

OPTICS .

A pair of lenses with a focal length close to 3 in are needed. The approximate focal length can be checked by focusing a sharp image of a window on to the wall of a room and measuring the distance of the lens from the wall. Fortunately, the lenses need not be of good quality in this particular application. Plastic lenses taken from two postage stamp magnifiers, were used for the prototype system.
It is false economy to fit very small lenses, as this would tend to reduce the overall sensitivity. Something of the order of $1 \frac{1}{2}$ in diameter, or diagonal in the case of rectangular lenses, can be taken as a reasonable size to use.

LENS BOX

The box can be made up from four pieces of $\frac{1}{4}$ in plywood; two off $3 \frac{3}{4} \mathrm{in} \times 2 \mathrm{in}$, and two off 7 in $\times 2 \mathrm{in}$. Holes are cut for the lenses in the front panel using a fretsaw, and the joints are glued with epoxy resin.
The box sides are 16 s.w.g. or 18 s.w.g. aluminium sheet; one side is permanently glued to the box, while the other side should be detachable, to give access to circuit panels and wiring. Box details, giving positions of amplifier, bulb, and power unit, are shown in Fig. 8.

The amplifier circuit panel is bolted to the s.r.b. 8 . partition using stand-off spacers. Holes must be drilled in the partition to take amplifier supply and

Fig. 8. Positioning of components inside the lens housing case

Fig. 9. Details of relay and alarm bell unit
output leads. Phototransistor TR1 is roughly positioned at the focal point of the lens, and can be precisely aligned afterwards by bending its leads.

It is important to ensure that the partition between the amplifier compartment and the bulb compartment is completely light-proof.

Black insulation tape can be glued to the edges of the partition panel to mask off the joint between panel and box. The inside of the amplifier compartment can also be painted matt black, to cut down reflections. Equally important is the elimination of stray light from chinks in the lens box, which could be visible to the burglar in the dark. Painting all joints with matt black paint should stop most of the stray light, and the removable aluminium side can be fitted with a soft plastics or rubber gasket.

The bulb holder is an "L" shaped signal lampholder, and provides a range of adjustment to deflect the beam at an angle to the axis of the lens box.

The inexpensive gelatine filter (No. 87) is 2in square and can be ordered from any supplier of Kodak photographic equipment. A small card frame can be made up to take the filter, so that it can be quickly removed to facilitate initial beam alignment with visible light.

RELAY AND BELL MOUNT

The bell mounting can take the simple form depicted in Fig. 9. Latching relay panel, battery, switch S1, and bell are fixed to an $8 \frac{1}{2}$ in $\times 4$ in $\times \frac{1}{4}$ in piece of plywood.

A plastics cover may be placed over the relay panel to protect it from dust. Two 4B.A. screws serve as battery contacts, and the battery is held in position by a rubber band. Switch S1 is mounted on a small angle bracket and can be any single pole on-off type switch.

SETTING UP

It is advisable to pre-set the infra-red alarm before installing it in its permanent position. After completing all wiring, check that the amplifier consumes approximately 10 mA .
If there is a serious departure from predicted consumption, this might be caused by a fault or by spreads in the gain characteristic of the transistors used. If necessary, the amplifier working point, and consumption, can be adjusted by altering the value of R4 (Fig. 2).
All tests should be conducted away from the light of mains powered lamps when the lens box side cover is removed.

Place the lens box on a flat surface, switch on, and set the lampholder to throw a level beam, and a well defined image of the glowing filament on a wall about 20 ft away from the unit. If the image is out of focus, bend the lampholder to move the filament to the focal point of the lens.
The next step is to place a mirror where the image occurs on the wall, and deflect the beam back to the photo-detector lens. With a small piece of white card held near the phototransistor, pick up the returned image and find the true focal point (where the image is smallest and brightest), then bend the phototransistor leads until the collector-base junction is at the focal point and is receiving the image.
If all is well, connect an a.c. volt meter to the amplifier output; a signal of about 2.5 V r.m.s. should be indicated. This can be reduced by placing a hand across the light beam.
A high residual voltage will indicate that hum is occurring in the amplifier, and can usually be reduced by earthing tag 2 on the transformer (Fig. 5). A residual voltage of up to about 0.5 V r.m.s. is acceptable for optimum performance.

FINAL ADJUSTMENTS

The lens box can be mounted in its permanent location, on a wall bracket, and mirror adjustments made in dull light, or after dark. When satisfied that the beam is correctly aligned, the infra-red filter can be slipped into place, behind the projector lens, and the lens box side screwed on.
It only remains to find a siting for the latching relay and bell unit, and to fix it in place. This part of the unit should be "behind the beam" so that it is protected from the burglar by the beam. The bell must of course be audible to the householder and/or others. The correct position for the bias magnet is then found and the magnet is glued in place.
The unit is then ready for use and can be tested by breaking the light beam. As soon as the beam is broken the bell should ring and continue to ring after the beam has been restored. The relay can then be reset as described earlier.

DISCDVER A NEW FDUND IMAGE Build these two popular practical projects in next month's Practical Electronics

STROBOSCOPE

Check the speed of a rotating shaft or reciprocating object-a drill, car engine, machine, loudspeaker cone, etc. The stroboscope gives the illusion of a rotating object appearing stationary so that dynamic phenomena can be observed. A valuable aid in non-destructive testing.

ENLARGER EXPOSURE METER

Determine the exposure time for any enlargement quickly, easily, and accurately by building this valuable aid to darkroom work. Easily operated in low light conditions; high stability under fluctuating supply voltages; suitable for use with several different grades of printing paper. Save the cost of guesswork failures with this reliable, versatile, and inexpensive instrument.

June issue on sale Thursday May 15 ORDER YOUR COPY NOW! 3/-

PRACTICAL
 ELECTRONICS

COID CATHODE TUBES
 By J.B.Dance m.sc.

Cold cathode gas filled tubes are widely used in industrial electronic equipment for automation, control, and for other purposes involving switching. Although larger than transistors, simpler and more economical circuits can often be designed using gas filled tubes than is possible with transistors. In the form of numeral character display devices, they are as yet unchallenged by solid state counterparts.

MOST cold cathode tubes have a failure rate which is much lower than that of thermionic valves, but they do have the disadvantage that they cannot be used to carry out very high speed switching operations.

Gas filled tubes are not much used by amateur enthusiasts interested in radio as a hobby. Neither are these tubes normally found in commercially manufactured radio and television equipment produced for the domestic market. There are two main reasons for this.

Gas filled tubes are on/off devices which, unlike thermionic valves and transistors, are always fully conducting or completely non-conducting. Such devices which do not have states of partial conduction cannot be used to amplify the sine waves or signals of random waveforms that are found in domestic radio and television equipment.

In addition the positively charged ions in gas move much more slowly than do the electrons in a high vacuum thermionic valve, precluding the use of most types of cold cathode tube at frequencies much above the audio range. Nevertheless the simplicity of many cold cathode tube circuits is an attractive feature for the average amateur experimenter.

Cold cathode tubes are especially useful as function indicators; for example, they may be used for indicating when the potential between two points exceeds a certain value or for indicating the number of electrical pulses counted by a circuit. They can be used for operating relays, generating waveforms (other than sine waveforms) and timing circuits (for example, photographic timers).
Various types of voltage stabiliser circuit have been developed using these tubes. Special types have been produced for counting electrical pulses.

The basic principles of gas discharge ionisation will be discussed in this, the first part; subsequent parts will look into the more important types of cold cathode tube in detail, with practical circuits for their use.

FUŃDAMENTALS

If a potential is applied between two electrodes. in a gas, no current will flow if the applied voltage is fairly small, since a gas is an almost perfect insulator. As scon as some charged particles (ions) are formed in the gas, however, these ions will be attracted to the electrodes. Their movement to the electrodes constitutes the flow of an electric current, since a current is the movement of charged particles.

Therefore, two conditions must be satisfied before conduction occurs in a gas: a voltage must be applied between the electrodes present in the gas, and ions must be present in the gas at the time the voltage is applied.

Ions can be formed in a gas in a number of ways. All materials contain a very small quantity of radioactive atoms.

If the radiation emitted by a radioisotope passes through matter, ions will be created as the radiation gives up its energy. In some types of cold cathode tube a small amount of a radioisotope is incorporated into the tube during manufacture to provide the ions required to initiate a discharge.

In addition to the radiation emitted by radioactive materials, cosmic rays pass through all materials and also form ions. Therefore, even if no ions are artificially introduced into the gas in a tube, the ions formed by cosmic rays and naturally occurring radioisotopes will enable a discharge to take place when a suitable potential is applied.

However, natural sources of ionising radiation do not provide a continuous source of ions and some method of creating ions artificially in a tube which must conduct promptly is required. These methods will be discussed later.

STRIKING AND MAINTAINING VOLTAGES

Cold cathode tubes must be used in series with a resistor in the type of circuit shown in Fig. 1.1. The resistor imposes a limit on the maximum current which can flow. At low applied potentials the current flowing through a gas discharge tube is very small (less than a

Fig. I.I. Basic circuit for operating a cold cathode tube

Fig. I.2. Regions of typical gas discharge

Fig. I.3. Tubes operating in the normal glow region have a space charge surrounding the cathode

The S.T.C. G55/IK miniature glow stabiliser tube

micro-microamp), but when the applied voltage reaches a certain value known as the ignition or striking voltage, the current suddenly increases (typically to some milliamps if the series resistor is of a suitable value). Simultaneously the potential across the tube falls.

This process is known as striking or ignition. The voltage across the conducting tube in the circuit of Fig. 1.1 is known as the maintaining or running voltage, V_{m}. If the voltage across the tube is reduced below V_{m}, the discharge will cease and the gas will become an insulator again.

It must be emphasised, however, that. striking can only occur when ions (or, more precisely, electrons) are present in the gas.

CHARACTERISTIC CURVE

The general form of the relationship between the current flowing in a gas filled cold cathode tube and the potential difference across the tube is shown in Fig. 1.2 It is assumed that a small number of ions are present in the tube at all times whilst this curve is being plotted. The current is plotted on a logarithmic scale so that a very wide range of current can be accommodated on a single graph.
As the applied potential is gradually increased from zero, a very small current flows through the tube. This current increases with the applied voltage and with the number of ions being introduced into the gas.
If the applied voltage is increased, the electrons present in the gas discharge can give rise to more ions by a process known as gas amplification or gas multiplication. Electrons are accelerated by the applied electric field towards the anode and gain enough energy to knock further electrons out of atoms of the gas, thereby forming positive ions.

The electrons removed from gas atoms by this process can, after further acceleration, knock other electrons out of other molecules of the gas. This multiplication of the number of electrons present in the tube enables a much greater current to flow than would otherwise be possible. The type of discharge which occurs in region 1 of Fig. 1.2 is known as the Townsend discharge after the English physicist who worked on it.

FORMATION OF GLOW DISCHARGE

When the potential applied to the tube reaches the striking voltage, V_{s}, a new phenomenon becomes important. Positive ions are accelerated in the region surrounding the cathode of the tube and strike the cathode with such force that they knock electrons from its surface.
These electrons will undergo gas amplification, thus forming further ions. These in turn bombard the cathode and cause more electrons to be emitted. Thus once the normal glow discharge has occurred, the discharge is self-sustaining and no further ions need be created in the gas for the discharge to continue. The process is one of positive feedback.
The current flowing through the tube is no longer limited by the number of ions introduced into the gas, but is determined only by the value of the series resistor and the value of the applied potential, V_{b} (see Fig. 1.1).
Once the applied potential reaches the striking voltage of the tube, breakdown is said to occur and the discharge quickly passes through regions 2 and 3 of the curve (Fig. 1.2) to the normal glow region marked 4. In region 3 the discharge shows a negative resistance effect. That is, the current flowing through the tube decreases with an increase of the applied voltage.
If the discharge reaches this region, any random increase in the potential difference across the tube will reduce the current flowing. The voltage drop across the series resistor (Fig. 1.1) therefore falls and this results in a further increase in the potential across the tube. Thus the negative resistance region is unstable and the discharge quickly passes to the normal glow region (region 4) of the characteristic.
In the normal glow region the voltage across the tube is almost independent of the current flowing through it. Tubes operating in this region can therefore be used for voltage stabilisation, but this subject will be discussed in more detail in a later article.

SPACE CHARGE

The properties of tubes operating in the normal glow region of the characteristic are largely due to the formation of a positive space charge around the

PRACTICAL!

VISUAL!

Nm Nh EXCITING!

a new 4-way method of mastering ELECTRONICS by doing - and - seeing ...

1 OWN and
HANDLE a

| 4 | CARRY OUT OVER 40 EXPERRIMENTS ON BASIC ELECTRONIC |
| :--- | :--- | :--- |
| CIRCUITS AND SEE HOW THEY WORK | |

[^1]
DELUXE PLAYERS

PORTABLE CABINETAsillus
trated．To fit standard
player or autochenger．
75／－
RIGEA MPLIFIER 3 WATT
Ready made and tested．
This is \＆2－stage unit using
triode pentode condenser conpled raive，giving
into a 3 ohm
londspeaker．
Tone and volume
chassis with knobs．Supplied
with loudspeaker and valve UCL82 Frequency response 50－12，000 cps Sensitivity 200 mV

SINGLE PLAYERS MONO Garrard SRP22 Garr8rd SP25 MkTI £14．19．6 AUTOCHANGERS MONO | Ballour Anto |
| :--- |
| BSR Spperslim UA25 © 5.19 .6 | JA70 Stereo／Mono $£ 12.19 .6$ GarrardAT60 Mk．II £12．19．6 3000 Stereo／Hono e12．19．6

All fthed LPi⿰㇒ stylii and pickup crystal complet GARRARD TEAKWOOD BASE WB．1．Ready 65
cat out for mounting 1025,3000, SP25，AT 60 ，etc．
GARRARD PERSPEX COVER SPC． 1 for WB． 1
DE LUXE STEREO GRAM CHASSIS V．H．F．MW，SW
19.50 m ．SW $60-180 \mathrm{~m}$. Magic ese，push butons．
 PICK－UP ARM Complete with ACOS LP－78 GP67 Stylii 29／6；

CRYSTAL MIKE INSERTS
$11 \times{ }^{3 i n} .6 / 6 ;$ ACOS $1: \times$ Rin． $8 / 6$ BM3， 1 dia． $9 / 6$
MOVING COIL MIKE with Remote Control Stitch $19 / 6$
PORTABLE TRANSISTOR
AMPlifire pus

A seli－contained fully
portable mini p．a．system．
portable mini p．A．system．
Many uses－ideal for
Many uses－idea for Alarm，Intercom，Tele－
Amplifier，eto Attractive covered cebinet，size $12 \times 9 \times 4 i n$ ，with
powerful $7 \times$ sin，spesker and four transistor one wat poper amplifier plus nitra sensitive microphone．Uses PP9 battery．Brand new in Makers＇carton with full makers＇
guarantee．World famous make．Only guarantee．World famous make．Only $90 /=$ Fost

WEYRAD P50－TRANSISTOR COILS RA2W 6 in．Feritse Aerial Spare Cores
With car aerial coil ．．．．12／6 $\begin{aligned} & \text { Driver Trans．LFDT4 }\end{aligned}$ I．F．P50／20C 470 区c 1．Id I．F．P50／3CC Printed Circuit，PC
J．B．Tuning Gang
rd I．F．P50／3CC Weyrad Bookiet
Ferrite Rods Only 8 Aerials 6 in，extends to 23in． 5

VOLUME CONTROLS 800 mm COAX 8 d. yd． Long spindles．Midget Size BRITISH AERIALITE LK．ohms to 2 Meg．LOG or AERAXIAL－AIR SPACED | STEREO L／S 10／6，D．P．14／6 | FRINGE LOW LOSS |
| :---: | :---: | :---: | :---: |
| 5E，S．P．Transistor，5／－． | Ideal 625 lines yd，$/ 6$ | $2!\times 5$ in， $3 / 8.2!\times 3$ IIn． $3 / 2,33$ MATRIX

 PINS 36 per packet 3／4．FACE CUTTTERS 7／6．
S．R．B．P．Board 0.15 MATRIX $2 \frac{1}{2} 12$ ，wide 6d．per lin． 33 in ．

BLANK ALUMINIUM CHASSIS． 18 s．W．g．${ }^{2}$ in．sides，

MAX CHASSIS CUTTER
Complete：a die，a punch，an Allen screw and key

＇SONOCOLOR＇CINE RECORDING TAPE deflector－mirror for synchrobe markings，also cine light deffector－mirror for synchronisation．
UNIVERSAL TAPE CASSETTES C80．
OUR PRICE each． Tape Spools 2／6．Tape Splicer 5／－，Leader Tape 4／6．
＇THE INSTANT BULK TAPE ERASER AND RECORDING head
DEMAGNETISER

BARGAIN STEREO／MONO SYSTEM
Atractive Slim PLAYER CABMET with B．S．B．Stereo
Antochanger $4+4$ AMPLIFIER and TWO Antochanger 4＋4 AMPLIFIER and TWO matched
LOODSPEAKERS．Carr． $10 / 6$ E19．19．6 $\begin{array}{lll}\text {（Only } 4 \text { pairs of wires to join）．} & \text { s．} \\ \text { HEW TUBULAR ELECTROLYTICS } & \text { CAK TYPES }\end{array}$ $2 / 350 \mathrm{~V}$
4.350 V $4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$ $16 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$ $25 / 25 \mathrm{~V}$

$50 / 50 \mathrm{~V}$ | ELECTROLYTICS | |
| :--- | :--- |
| $2 / 3$ | $100 / 25 \mathrm{~V}$ |
| $2 / 3$ | $2 /-$ |
| $250 / 25 \mathrm{~V}$ | $\ldots 2 / 6$ |
| $3 /-$ | $800 / 25 \mathrm{~V}$ |
| $3+8 / 450$ | $4 /-$ |
| $3 / 9$ | $8+18 / 450 \mathrm{~V}$ |
| $3 / 9$ | |

 250 m F 15 V 2！$-500,1000 \mathrm{mF} 12 \mathrm{~V}$ ， $3,8,16,25,30,50,100$, CERAMIC． 500 V 1 pF to 0.01 mF ， 9 d ．Discs
 $500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-0.251 / 6 ; 0.53 /-$ 1．000Y－0．001，0．0022， $0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$. $2 /-; 2,700-5,600 \mathrm{pF} 3 / 8 ; 6,800 \mathrm{pF}-0.01$ pr $1 /-; 560-2,200 \mathrm{pF}$ TWI $2,700-5,600 \mathrm{pF}$ GANG $3 / 6 ; 6,800 \mathrm{pF}-0.01$ ，m！d $8 /-$ each ure 10 ：－； 500 pF standard with trimmers， $9 / 6 ; 500 \mathrm{pF}$ midget less trimmers， $7 / 6 ; 500 \mathrm{pF}$ slow motion，standard $8 /-0$ small 3－gang 500pF 18／9．Single＂0＂365pF \％／6．Twin 10\％－ HORT WAVE．Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ ， 60pF， $200 \mathrm{pF}, 10 / 6$ each．
TUNING．Solid dielectric． $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-\mathrm{esch}$ ． TRIMMERS．Compression $30,50,70 \mathrm{pF}, 1 /-; 100 \mathrm{pF}$,
$150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{FF}, 26$ ． 250V RECTIFIERS．Selenium $\frac{1}{2}$ Fave $100 \mathrm{~mA} 5 /-;$ BY100 $10 /-$ CONTACT COOLED $\frac{2}{2}$ Wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$ ． Full wave Bridge $75 \mathrm{~mA} 10 /$ ； 150 mA 19 19；TV rects． 10 ：－ RESISTORS．Preferred values， 10 ohms to 10

 Ditto 5% ．Preferred values 10 obms to 22 meg．， 9 d ． $\left.\begin{array}{l}5 \mathrm{Wstt} \\ 10 \mathrm{watt}\end{array}\right\}$ WIRE－WOUND RESISTORS 15 wat ffr 10 ohms to 6,800 ohms
FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12v．outputs． $1 \frac{1}{2}$ smp．8／9：2a．， 113 ； $4 \mathrm{a} ., 17 / 8$.

CHARGER TRANSFORMERS．P．\＆P． $5 / \%$ ．Input $200 / 250 \mathrm{v}$ ． for 6 or 12v．，1：amps．，17／6； 2 smps．．21／－； 4 amps．， 30 ． WIRE－WOUND 3－WATT WIRE－WOUND 4－WATT POTS．T．V．Type．Values STANDARD SIZE POTS． | 10 ohms to 30 K, ， | |
| :--- | :--- |
| Carbon 30 K to 2 meg. | $4 / 6$ | VALVE HOLDERS，9d；CERAMIC 1／－：CAFS

BRAND NEW TRANSISTORS 6／－each OC71，OC72，OC81，OC44，OC45，OC171，OC170，AF117 MAT $100 \% 9$ ．MAT 1018 ．${ }^{\circ}$ ．MAT 12078 ；HAT $1218 / 6$ TT45．Push PuIl Drive， $9: 1 \mathrm{CT}, 6 /-$ TT46 Ontput，CT8：1 $6 /=$ TT49．Interstage， $20: 1,6 /-$ ；TT52 Ontpat 3 ohme， $4.5: 1,6 /-$
TT23／4 PAIR 10 watt Amp．Translormers and circuit $45 /-$ ． TT23／4 PAIR 10 watf Amp．Translormers and circnit $45 /-$ 9 volt 500 mA ．Size $4 \times 2 \times 2 \times 2$ in．Metal case． $49 / 6$ Crackle finish，Output terminals．On／off switch． $47 / 6$
Haif Wave 9 volt 50 mA ．Size $2 \frac{1}{2} \times 1$ in ．Snap terminais 32, R volt 500 mA ．TRANSFORMER OKLY． $2 \frac{2}{2} \times 1 i \times 1$ inin． 10.6

MAINS TRANSFORMERS

 Post$5 /=$ each $250-0-25050 \mathrm{~mA} .6 .3 \mathrm{\nabla} .2 \mathrm{amps}$ ，centre tapped $\quad 19 / 6$ $250-0-25080 \mathrm{~mA} .6 .3$ v． $3.5 \mathrm{a}, 6.3$ ₹． 1 a，or 5 r． 2 a ． $30 / \mathrm{l}$

 Dit to tapped sec． 1.4 च．，2，3，4，5， 6.3 v， $1 \frac{1}{3} \mathrm{mmp} . .{ }_{12,6}^{12 / 6}$ GENERAL PURPOSE LOW VOLTAGE．Outputs $3,4,5$,
$6,8,8,10,12,15,18,24$ and 30 ₹．at 2 a．．．．．．．． $30 /$ 8， $8,8,10,12,15,18,24$ and 30 F ．at 2 a.
1 amp．， $6,8,10,12,16,18,20,24,30,38$,
 60w．T8／6；150w． $30 /-; 500 \mathrm{w} .92 / 6: 1000 \mathrm{w}$ ．Inpul／output， COAXIAL PLUG $1 / 3$ ，PANEL SOCKETS 1／3．LINE 2 OUTLET BOXES．SURFACE OR FLUSH 4／6
BALANCED TWIN FEEDERS $1 /-\mathrm{yd}, 80$ ohms or 300 ohms ， Chrome Lead Socket 万／B．Phono Plugs 1 closed circuit $4 / 6$ JACK PLUGS Std．Chrome $3 /-; 3.5 m m$ Chrome $2 / 6$ ．DIF SOCKETS Cbassis 3 －pin 1／6；5－pin 2；－DIN SOCKETS Lead －pin 36 ； 5 －pin $5 /-$ DIN PLUGS $3-\operatorname{pin} 3 / 6 ; 5$－pin $5 /-$ ． WAVE－CHANGE SWITCHES WITH LONG SPINDLES． 2 p． 2 －way，or 2 p． $6-$ wgy，or $3 \mathrm{p}, 4$－way $4 / 6 \mathrm{each}$ ．
1 p .12 －way，or 4 p． 2 way，or 4 p． $3-\mathrm{may}^{2} 4 / 6 \mathrm{each}$ 1 p．12－way，or 4 p． 2 －way，or 4 p． 3 －way， $4 / 6$ each Wavechange＂MAKITS＂ 1 p．12－way， 2 p．，6－way， 3 p．4－way， p．3－way， 6 p． 2 －way． 1 wafer 12／－， 2 wafer 17／－． 3 wafer 22／－ TOGGLE SWITCHES，sp．2／6；sp．dt．3／6；dp．3／6；dp．dt．4／6

BAKER I2in．DE－LUXE MK II LOUDSPEAKER
Suitable for any Hi－Fi System． Provides traly rich sound recresting the musical apectrum Firtally fiat from 25. $16,000 \mathrm{cgs}$ ．Latest dootble cone with apecisl＂Ferrobs＂ceramic megnet．Flux density 14,000 ǧuss．Bans resonance $32-38 \mathrm{cps}$ ． 15 matts British rating．Voice coill available 3 or 8 or 15 obms．

69 Post
48－page Enclosure Manual
 5／9 post paid．
LOUDSPEAKER CABINET WADDING 18 in wide， $2 / 6 \mathrm{ft}$ BAKER＂GROUP SOUND＂SPEAKERS－POST FREE ＇Group 25＇＇Group 35＇＇Group 50

ALL MODELS＂BAZER SPEAEERS＂IN STOCK
Supet Cone Treeter 2 lim square， 3 －17kc／s． 10 W 17／6 Quality Forn Tweeters $2-18 \mathrm{kc} / \mathrm{s}, 10 \mathrm{~W}$ 29／6．Crossover $16 / 6$ LOUDSPEARERS P．M． 3 OHMS， $21 \mathrm{in}, 3 \mathrm{in}, 4 \mathrm{in}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}$ 12in．Double cons 3 or 15 ohm $39 / 6 ; 10 \times 6 \mathrm{in}, 30 /=$ ． E．这．I．Double Cone $131 \times 8 i n, 3$ or 15 ohm models vith twin tweeters，X／over and ceramic magnet $79 ; 6$ ．
SPECIAL OFFER！ $8 \mathrm{ohm}, 2$ tin； 6×4 in； 80 ohm． 2 inn， 2 in $15 / 6$ EACH 25 ohm， $6 \times 4 \mathrm{in} ; 35$ ohm，3in 8in LOUDSPEAKER UNITS 3 ohm 27／6； $15 \mathrm{ohm} 30 / \mathrm{m}$ Delux Ceramic 3 ohm $45 /-$ ； 15 ofim $50 /=$
Sin．WOOFER． 8 matts max． $30-10,000 \mathrm{cps} .8$ or $150 \mathrm{hm} .39 / 6$ ． in．WOOFER． 8 Fitis max． $30-10,000$ cps． 8 or 150 hm ． $39 / 6$ ． SPEAKER FRET VARIOUS TYGAN SAMPLES．SEUd S．A．E．

ALLPURPOSE HEADPHONES
H．R．HEADPHORES 2000 obms Super Sensitive
LOW RESISTAMCE HEADPHONES $3-5$ ohms．
$35 /-$
$38 / 8$
$79 / 6$

MINETTE AMPLIFIER

A．c．Mains Transformer．

Chassis gize $7 \times 3 \frac{1}{2} \times 4$ in high，Valves EcL82．EZ80． 12 month guarantee．Quslity outpat 3 ohm．With engraved fascia，ralves，knobs，volume sud tone controla，
post $\$ / 6$
wired and tested．

Post $5 / 6 \quad 69 / 6$

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICESBARGAIN AM TUAER．Medium Wave．
Transistor superhet．Ferrite aerial． 9 volt． BARGAIN DE LUXE TAPE SPLICER Cats，
trims，joins for editing add repairs．With 3 blades， $17 / 6$ bras，joins lor editing and repairs．With 3 blades． masical highlights and sound effects to recordings．Wil mix Hicrophone，records，tape end tuner with
separate controls into single output． 9 polt．
BARGAIN FM TUNER 88－108 Hc／a Six Transistor．Regdy built．Printed Circnit．Calibrated slide dial $\leq 6.19 .6$
tuning．Size $6 \times 4 \times 2!$ in， 9 volt． BARGAIN 3 WATT AMPLIFIER． 4 Transistor $69 / 6$
Push－Pull Reads built，with volume control．9v， $69 / 6$ 45－PAGE EAGLE CATALOGUE 5／－Post Free \star RADIO BOOES \star（Postage 9d．）
Practical Transishor Receivers
Practical Stereo Handbook
Supersensitive Transistor Pocket Radio
Eigh Fidelity Spesker Enclosures and Plan
 Practical Radio Inside Ont．．
Shortwave Trapaistor Receivers Transistor Commonication Sets
Modern Transistor Circaits 1or Eegingers
Wireless World Radio Valve Data
At B glance valve equivalents．
Valves，Transistors，Diodes equirslents manual Receive loreign T．V．programmes by timple modifications 5 Transistor Circuits Radio－Controlled Models
MANUFACTURERS SURPLUS．TAPE RECORDER $25 /-$
CASE Red／Cream． $15 \times 12 \times 5$ in CASE Red／Cream． $15 \times 12 \times 5 \frac{1}{2}$ in POST FREE $25 /$
 SUPERIOR MOVIRG COLL MULTLMETER $99 / 6$ Ohms 0 to 8 meg． 50 Microsmps（Full list Miteters B．A．E．）
BRAND NEW QUALITY EXTENSION LOUDSPEAKER Kandsome plastic cabinet，201t．lead and
adaptors．Por any radio，intercom，tape recorder，etc． 3 to 15 ohm．
Size： $71^{\circ} \times 55^{*} \times 3^{*}$.
Post $2 / 6$

RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD，WEST CROYDON

The Marconi TFl417 counter/frequency meter which employs cold cathode tubes to provide a display of the count in digits
cathode. At the low currents which occur in the Townsend discharge the number of ions which are present in the gas at any time is relatively small and the electric field strength is uniform at all points in the tube. (This is strictly true only for the case of plane and parallel electrodes.)
In the normal glow region, however, large numbers of positive ions are formed. These ions are relatively heavy and therefore move comparatively slowly towards the cathode. This results in a net charge of positive ions being formed around the cathode (Fig. 1.3).
The positive space charge acts somewhat like an anode and is therefore often called a "virtual" anode. The effect on the performance of the tube is similar to that which one might expect if one used an anode close to the cathode. The electric field strength in the neighbourhood of the cathode is considerably increased by the presence of the space charge and is greater than that in other parts of the tube.
The high field strength around the cathode enables a high gas amplification factor to be obtained and as a result of this the maintaining voltage of the tube is considerably less than the striking voltage. However, a high gas amplification factor alone is not sufficient to render the discharge self-sustaining; electron emission from the cathode by ionic bombardment must also occur.
In the normal glow region of the characteristic of Fig. 1.2, the area of the cathode covered by the discharge automatically adjusts itself so that the ionisation efficiency is a maximum. The area of the cathode covered by the glow is thus proportional to the current flowing through the tube.
In the circuit in Fig. 1.1, the voltage across the tube remains almost constant at the maintaining voltage, V_{m}, as the current passing through it is altered. Thus if the supply voltage is V_{b}, the voltage across the series resistor is ($V_{\mathrm{b}}-V_{\mathrm{m}}$) and, applying Ohm's Law to this resistor,

$$
V_{\mathrm{b}}-V_{\mathrm{m}}=I R_{\mathrm{s}}
$$

Thus the current I can be changed by altering either V_{b} or R_{s} or both.

ABNORMAL GLOW

If the resistor R_{S} is gradually decreased in value, the current flowing through the tube will increase until the discharge covers the whole of the surface of the cathode. A further increase in current will then cause the discharge to move into the so-called "abnormal glow" region of the characteristic; this is marked 5 in Fig. 1.2. In the abnormal glow region the voltage across the tube increases with the current flowing.

ARC DISCHARGE

A further increase in current results in the discharge passing through a second negative resistance region (marked 6 in Fig. 1.2) to the arc discharge region (marked 7 in Fig. 1.2).
The arc discharge region is characterised by very high current densities (amps/sq cm of the cathode surface covered by the glow) and by a low potential across the tube (typically 20 volts).
There are believed to be two kinds of arc discharge. If the cathode is made of a material with very high boiling point (for example, carbon), it becomes so hot under intense bombardment of positive ions that electrons are emitted from it and they sustain the discharge. The emission is like the thermionic emission of electrons in a thermionic valve.
If the cathode is made of a material of relatively low boiling point (for example, mercury), the electrons are believed to be drawn out of the cathode by the very intense electric field which can be formed in these circumstances.

TUBE OPERATING REGIONS

A few cold cathode tubes (such as nuclear radiation detector tubes) operate in the Townsend region where the discharge is not self-sustaining. Such tubes pass a current only when a particle of radiation creates ions in the tube.
Most cold cathode tubes operate in the normal glow region. Such tubes include miniature neon indicators, ordinary trigger tubes, decade stepping tubes, most voltage stabiliser tubes, and numerical and character indicating tubes. Some voltage reference tubes operate in the abnormal glow region.
Some types of high current tube operate in the arc discharge region, but most of them are designed for pulse operation only. That is, they are not capable of passing a large continuous current without being damaged. Such tubes include flash tubes for photographic and stroboscopic work and various types of tube for protecting high voltage power lines; the latter types of tube conduct when the voltage surge across them exceeds a certain value.

CONSTRUCTION OF COLD CATHODE TUBES

The composition of the gas employed in cold cathode tubes greatly affects the characteristics of the tubes. Most types are filled with a mixture of inert gases at a low pressure (neon/argon/helium, etc.), but decade stepping tubes are normally filled with pure neon.

Under certain conditions the use of a small amount of hydrogen in the gas mixture enables a tube to operate at a higher speed. Some types of arc discharge tube are filled with gas at a pressure exceeding atmospheric, but these tubes are not very common.

The reasons which determine the choice of a gas mixture for a certain type of tube lie beyond the scope of
this article, since they are connected with the ionisation potentials and metastable energy levels of the gases concerned. Further information on this subject can be obtained from reference books.

CATHODE MATERIALS

The properties of cold cathode tubes are particularly sensitive to the materials elected for the cathode, but the composition of the other electrodes hardly affects the behaviour of the tubes. The reason for this is that the processes which sustain the discharge (ion bombardment and gas multiplication) occur mainly in the region of the cathode surface. Some types of cathode material lose electrons easily (that is, they have a low work function). Such cathodes will emit electrons readily under positive ion bombardment and tubes employing them can therefore operate at a relatively low voltage.
The type of cathodes that emit electrons easily normally consist of a metal surface covered with an oxide coating (similar to that used to coat the cathodes of thermionic valves) or with a metal of low work function such as potassium.
The other type of cathode used in cold cathode tubes has a higher work function and does not emit electrons so readily. Such cathodes normally consist of a pure metal (usually molybdenum or nickel). Although tubes employing these cathodes must necessarily work at a higher voltage than those employing coated cathodes, they are much more reliable and have a longer life than coated cathode tubes. They also have closer tolerance characteristics, but may be rather more expensive.

SPUTTERING

The positive ion bombardment of the cathode results not only in electrons being emitted, but also in atoms of the cathode material being ejected from the cathode surface. This phenomenon is known as "sputtering". It results in a deposit of the cathode material being formed on surfaces near to the cathode; this may result in failure of the tube by the shorting of two of the electrodes.
Sputtering can also result in premature tube failure if it causes the surface of the cathode to be damaged; this is especially liable to occur with tubes employing coated cathodes. However, sputtering is used to good effect in the manufacture of tubes with pure metal cathodes. Heavy sputtering is allowed to occur during the manufacture of these tubes. This not only leaves the cathode surface very clean, but the sputtered material on the glass envelope of the tube retains foreign gas impurities very effectively. Such impurities can affect the characteristics of the tubes.

The rate at which sputtering occurs increases considerably with an increase of the cathode current. In many types of tube the maximum cathode current is set by the need to prevent excessive sputtering from shortening the life of the tube.

PRIMING

Although a limited number of ions are formed intermittently in any gas by natural radiation, if no other ions are artificially introduced, there may be a delay of up to a minute or so between the application of a potential exceeding the striking voltage and the establishment of a discharge. The greater the applied voltage, the smaller this delay.
There are various ways in which the required ions can be introduced into the gas. The introduction of such ions is known as "priming".

PHOTOPRIMING

Coated cathodes will emit electrons very readily when ordinary light falls onto the cathode surface. Such tubes often rely on light for priming. For this reason one may often read in a data sheet, for a tube employing a coated cathode, that the ambient illumination should not be less than a certain value (for example, 20 lux).
If the illumination is low or if the tubes are operated inside a dark instrument case, there may be a delay in the firing of the tubes when a potential exceeding the striking potential is applied to them. In addition it is important that tubes employing coated cathodes should not be operated in bright direct sunlight, or the number of electrons emitted from the cathode may be so great that the striking voltage falls almost to the maintaining voltage of the tube.
Some tubes employing coated cathodes contain a little radioactive gas, usually tritium (hydrogen of atomic weight 3), or another radioactive material such as nickel-63, to provide the priming electrons. Such tubes can be operated in complete darkness but should not be used in very bright direct sunlight. The radiation cannot penetrate the walls of the tube, but even if the tube is fractured, the amount of the radioactive material employed is so small that it is relatively harmless.
Visible light will not cause photoemission from tubes employing pure metal cathodes. Although ultraviolet light can cause the emission of electrons from such cathodes, ultra-violet radiation cannot pass through the glass walls of a normal cold cathode tube. Some other method of priming must therefore be employed if a tube with a pure metal cathode is required to strike within about a millisecond of the application of a potential exceeding the striking potential of the tube.

The use of a radioisotope is not a particularly satisfactory method of priming in tubes which are to be used

The Echo N6IOA Automatic Scaler. This nucleonic counter employs decade stepping tubes for counting, but the two tubes on the upper right are point indicators. The lower group of decade stepping tubes are used for timing and for stopping the count after a preset time

at very high speeds. One of the most common methods of priming involves the use of an auxiliary priming discharge. The latter generates ions which diffuse to all parts of the tube.
Commonly used forms of priming electrodes are shown in Fig. 1.4. An additional cathode known as the priming cathode is used in the system in Fig. 4a. A small priming discharge takes place to this electrode whenever the equipment is switched on, no matter whether the main cathode is conducting or not. This type of tube is not really suitable for use in circuits in which the anode voltage is liable to fall considerably, since the priming discharge would then be extinguished.
A somewhat similar system in which an additional priming anode is employed is shown in Fig. 1.4b. Although this type of tube can be used in circuits in which the raain anode potential is liable to fall suddenly, it is not really satisfactory for use in circuits in which the main cathode potential is liable to rise suddenly, since this could result in the discharge being extinguished.
A third type of tube employs two auxiliary priming electrodes (see Fig. 1.4c); this may be used when the potentials of the main anode and cathode change by any reasonable amounts. The priming currents are normally a few microamps.
In one type of tube with two separate priming electrodes, a mica screen is placed between the priming electrodes and the main gap electrodes; ultra-violet photons generated in the priming discharge can then pass into the region of the main gap where they cause ionisation.

CARE OF COLD CATHODE TUBES

Cold cathode tubes are extremely reliable components when they are used in correctly designed circuits. They can, however, be permanently damaged by incorrect use just as easily as transistors. All users should therefore check that the conditions under which they use cold cathode tubes do not violate the recommendations in the tube manufacturers' data sheets.
In particular it should be noted that most cold cathode tubes should not be allowed to pass a reverse current from cathode to anode. If any electrode which has not been designed as a cathode is allowed to act as a cathode, the electrode will probably be permanently damaged by positive ion bombardment and the characteristics of the tube affected. Any reverse voltage applied to a cold cathode tube should therefore be kept below about 90% of the voltage at which striking will occur.
However, a few types of tube (mainly miniature neon diodes) are designed so that they will not be damaged if a reverse current passes through them. Indeed, in some miniature neon diodes the anode and cathode are identical and such tubes can be operated from an alternating supply voltage.

Next month: Gas filled diodes-their properties and applications.

Printed Cirruit Production Increased

B^{Y} USING a new spray-etching plant-developed by APV-Kestner Ltd., of Greenhithe, Kent, for mass production of rigid or flexible printed circuits and small electrical components-a manufacturer of television sets is currently obtaining 110 square metres of finished circuit boards per hour and will be able to increase this output at will to meet future demands.
The installation shown below, consists of separate p.v.c. cabinets which are linked by a variable-speed conveyor and can be assembled in whatever order or number is required for different applications.

Displacement Measurement by Laser

USING an interferometer in conjunction with a specially modulated laser beam, members of the Philips Research Laboratories at Eindhoven have obtained, an extreme degree of accuracy in measuring displacements. This facility is required for automatically controlling highprecision metal-working machines or for making integrated circuits.
The apparatus will make it possible to achieve even higher precision in automated machining techniques than was previously possible.

Gun Sound Ranging System

Following three years of development work under a contract awarded by the British Government, and extensive users' trials overseas, the Plessey Electronics Group has received an order from the Ministry of Technology for a Gun Sound Ranging System which incorporates radio links.
This equipment represents the most advanced method of locating hostile artillery, known to be the cause of some 80 per cent of battlefield casualties.
The principal of sound ranging is based on the assumption that sound travels uniformly at a known velocity. Thus if a line of microphones, each at a known location, is placed across the line of fire, the intervals between the time of arrival of the gun sound at each can be transmitted to a central "command post" to be converted to bearings whose intersections will give the source location.

CHOOSING \& USING a MULTIMETER

TODAY, the would-be purchaser of a multi-range testmeter has a considerable range of instruments to choose from. There are models to suit almost every purpose and pocket.
As good an instrument as can be afforded should be obtained, as it is considered to be the engineer's best friend.. The meter should be accurate and have a fairly wide range of facilities. The robustness of the service engineer's instrument may not always be necessary, and so some saving in cost can be achieved in this direction, although the ranges may be more limited.

A second test meter can be very useful where it is often necessary to take two voltage readings simultaneously or a voltage and current reading at the same time. Also a second instrument is a valuable asset as a standby in case of accident or breakdown with the first.

The meter needs to be reliable otherwise the whole point of having a measuring device is lost. Economy should be along the lines of restricting the ranges rather than choosing an instrument that offered many facilities but with a poor basic meter movement.

When comparing the specifications of various multirange meters it may be noticed that some of the cheaper ones offer nearly as much as more expensive ones, and it is tempting to question the necessity of paying so much.

Sometimes users of meters of doubtful worth, when faced with an unexpected or unexplained reading, will say: "Perhaps it is the meter playing up again." This should never be; the test meter should always be above suspicion; if it is in any way unreliable, it is defeating its purpose. With test equipment as with so many other things, you get what you pay for.

METER RESISTANCE

The most important feature in the manufacturer's specification is the meter resistance. Two figures are usually quoted, one for the d.c. ranges and one for a.c. The d.c. resistance is the highest and the most important. It is quoted as so many ohms-per-volt and is related to the range being used, thus a 10,000 ohms-per-volt meter will have a resistance of 1 megohm on the 100 volt range and 10 megohms on the 1,000 volt range.

Beginners often ask what difference the meter resistance makes; if the meter is accurate it will surely read the correct voltage whatever its resistance. This
would apply when the impedance of the voltage source, such as a battery or h.t. supply, is very low relative to that of the meter.

Consider the case though, where there are, say, two 1 megohm resistors in series across a voltage supply (Fig. 1); the voltage at their junction will be half that of the supply.

If we now connect the meter, set to 100 V range, across the lower resistor R2, we are putting another 1 megohm in parallel across it. Hence the combined resistance of R2 and the meter will be $\frac{1}{2}$ megohm. The voltage ratio now between R1 and the meter + R2 combination will be $2: 1$ so the actual voltage registered on the meter will be one third of the total supply voltage.

When measuring a voltage through a resistor, there is bound to be an additional voltage drop due to the current drawn by the meter. When the value of the resistor is small relative to that of the meter, the voltage drop is so small that there is little effect on the reading, but when the value is of a similar order, then quite large errors will occur.

It follows from this that a very high resistance instrument should be chosen to obtain the highest accuracy; 10,000 ohms/volt is about the minimum for best results, but 20,000 ohms/volt is regarded as the better standard for most applications except high impedance signal voltages (see later).
While it may seem that higher values are better, there are mechanical limitations to consider. The meter movement has to be made more delicate to overcome friction, since less power is available to move the pointer and return spring.

A meter will only indicate r.m.s. values on a.c. ranges, so only pure sine waveforms can be measured accurately in these circumstances.

SCALE MARKINGS

The scale should be as large as the instrument dimensions will allow so that the divisions on the scale are well separated and easily seen. Various means have been used by makers to give maximum scale length.

Some have made the scale cover the whole of the meter width, and put the range selector control and test prod terminals at the side to make room for it. Others have mounted the meter scale diagonally with the pointer pivot in one corner instead of in the centre of
the instrument. These aim at giving the largest possible scale within small case dimensions.

Poor scales are not sufficiently numerated and the user must sometimes mentally multiply the scale reading by the range factor. This not only slows down measurements, but increases the possibility of error.

The resistance ranges are not linear on the scale, so check to see how cramped the divisions are at the high resistance end of the scale. Some meters boast a resistance range extending to 10 megohms, but the spacing between 5 and 10 megohms is so small, that interpolation between these values are impossible. Take a look too at the lower end of the scale; it should be possible to read 1 ohm easily and with better instruments lesser values should be interpolated fairly accurately. The resistance range should be at the top of the scale to give maximum scale length.

A well designed scale can be quickly read in conjunction with the range setting without confusion. All range numerators should be inscribed on the scale, so if we have voltage ranges of, say, $0-3,12,60,120,300$, $600,1,200$ volts, the scale should have three numerators scales, 0-3, 0-6, and 0-12.

PARALLAX ERRORS

One possible source of error when taking meter readings is due to parallax effect. This is when the pointer appears to occupy a slightly different position relative to the scale, due to viewing it at an angle greater or less than 90 degrees to the scale, see Fig. 2. In most cases, error is small because the distance between the pointer and the scale is small, but it can be significant when reading the cramped upper end of the resistance range.

Also when comparing readings of very small voltage or current differences, parallax errors could be important. For this reason high grade meters incorporate an anti-parallax mirror behind the scale. When taking a reading, the scale is viewed so that the pointer appears to be exactly above its own reflection, which then indicates the true reading on the scale.

The pointer should move smoothly over the scale and come to rest without much, if any, oscillation to and fro.

VOLTAGE RANGES

Now we come to the actual ranges. Even on low priced meters, the d.c. voltage range nowadays is quite extensive and can be as high as 1,000 volts or more. For solid-state electronics though, it is the lower end which is the most applicable, particularly for measurements of less than 1 volt. It should be possible to read

Fig. I. False readings can be obtained by a poor meter resistance characteristic. (a) The true reading across $R 2$ is equal to half the supply voltage. (b) The meter resistance presents an additional shunt path reducing the voltage across R2

Fig. 2. Parallax error due to incorrect position of the eye in relation to the meter needle
a tenth of a volt with a reasonable standard of accuracy.
If it is intended to measure signal voltages in amplifiers, one or two factors will have to be considered. A low range will be needed for this as signal voltages from low impedance amplifier outputs are also low. A decibel range would be useful here, but it is better to employ a transistor or valve voltmeter, with high input impedance, since the frequency response of a multi-range meter may not be adequate for measuring over the required frequency range.

Of course, if audio measurements are not contemplated it can be assumed that most a.c. measurements will be at mains frequency (50 and 100 Hz).

RESISTANCE RANGES

Next to the d.c. voltage ranges, the most important are the resistance ranges. These should cover a wide range. Values down to 1 ohm and at least up to 5 megohms should be measurable.

Some meters offer extended upper ohms ranges by using external batteries and resistors. Manufacturers' instructions should indicate how this is done.

The majority of instruments incorporate a "set zero" control, which is a variable resistor set to compensate for the falling battery voltage. This setting is usually different for each ohms range, so the zero calibration should be checked when switching from one range to another.

With time and use, the "set zero" potentiometer can become worn and it becomes increasingly difficult to find the zero spot. Some thought has been given to this inconvenience by some makers and there are at least two methods of overcoming this problem. One is to use separate controls for each "ohms" range. Once set up, the ranges can be switched without further adjustment until the next occasion the meter is used.

Another method is to use mercury cells instead of the usual carbon/zinc cells to prolong battery life and reduce the necessity for adjustment at frequent intervals.

Some models can be switched from one "ohms" range to another and used immediately without any adjustment. Any meter that has one of these or a similar arrangement is well worth considering, provided other features are as required.

CURRENT RANGES

The current ranges are much less used than the others; in several models a.c. current ranges are omitted altogether. The lowest d.c. current range is usually the basic current rating of the meter movement without shunts, i.e. for a 20,000 ohms per volt movement, $50 \mu \mathrm{~A}$.

Although little used, a.c. current ranges can be very useful at times. A transformer with a short-circuited turn, for example, can most easily be checked by measuring primary and secondary currents and comparing (taking into account the turns ratio of course).

OTHER FACILITIES

A polarity reverse switch is very useful when working on apparatus that has both positive and negative voltages to chassis. This saves reversing the leads and changing over the chassis-clip and test-prod each time an opposite voltage is encountered.

Some meters include a capacitance range, but these usually involve the use of external circuits and are less satisfactory than using a capacitance bridge.

One facility that should be provided is some form of overload protection. This may be a mechanical plunger, which jumps up and disconnects the meter
when the pointer exceeds a certain speed, or it may be a fuse, or some electronic overload device. A fuse is perhaps less convenient because it will need to be replaced when it blows, and one may not be readily available. However, make sure that the meter is protected in some way.

CONNECTIONS TO CIRCUIT COMPONENTS

The correct use and connection of any test meter 'must be strictly observed or damage may result to either the meter or the circuit under test. Fig. 3 shows the correct methods of connecting the meter to a circuit or component for measuring current, voltage, and resistance. Remember, always start the meter range setting on the highest range before switching on power supplies.

If the polarity is unknown, conneçt the test leads, switch to the highest range, have your finger on the "polarity reverse" button, then switch on. If the needle kicks backwards, i.e. to the left of zero, press the button quickly to indicate the correct reading.

GRAVITY INFLUENCE

It should always be remembered that the meter is a delicate instrument. Never leave it in a precarious position where it may topple over. Never leave the

The most accurate part of a meter's range is in the centre portion of the scale. Again, where extreme accuracy is needed, select the range which brings the pointer into this part.

With high-grade instruments very little difference will be noted in accuracy over the whole scale, but the less expensive ones may show a discrepancy when a voltage is measured on two ranges. This is particularly true of the ohms range, where, in addition to the inaccuracy of the meter movement, we have the unavoidable scale cramping at the higher end.

MEASURING CURRENT

Special care is needed when measuring current; not only may a fault condition exist in the equipment causing a current flow many times higher than expected, but it is possible that a mistake may have been made in connecting the leads.

A crocodile clip may be touching two parts of the circuit and either give an erroneous reading or even damage the meter or circuit. Double check connections and put the meter to its highest range before switching on.

MEASURING RESISTANCE

Inaccurate results can be obtained by overlooking some influencing feature of the circuit under test. This

test leads dangling over the edge of the workbench as they could easily get caught in clothing and pull the meter off the bench. Mechanical shock can dislodge the movement bearings necessitating repair.

The meter may have an effective overload protection device, but this is no reason to become careless and frequently overload the instrument by selecting the wrong range. Few if any of such devices are 100 per cent fool-proof; they are intended to minimise the risk of damage on the rare occasions a mistake is made.

Inaccuracies may be small when the meter is used in the vertical position, but for the greatest accuracy the meter should be horizontal. When vertical, the needle must overcome its own weight when operating in the first half of the scale; it is in fact moving upward. Readings taken here will be under the true value. In the second half of the scale, the needle is moving back down and so is assisted by gravity, hence readings will be slightly more than they should be.

While the needle is very light in weight, the power available to move it is also very small, especially in high impedance instruments. The degree of error is small, but it should be remembered if highly accurate work is required.
is frequently the case when taking resistance readings.
It is very easy when checking the resistance of a component in circuit, to overlook some part of the circuit which is effectively in parallel with that being tested. The result is a lower reading than expected.

An example of this type of error is shown in Fig. 4. If we attempt to measure R1 in the base-bias divider, there will be two additional circuits that will affect the reading.

The first will be the base/collector junction in the transistor itself with R3, which will give a high or low resistance reading depending on the meter connection.

Secondly there is a circuit through resistor R2 and the power supply. This latter may consist of leakage paths through electrolytic capacitors and other networks across the supply line or the supply battery itself. Any reading attempted will therefore be much lower than the actual value of the resistor. As a general rule resistance readings should only be made when disconnected from the associated circuitry.

When checking a diode, it is usually sufficient to compare readings taken backwards and forwards, that is, with the meter leads first one way round and then reversed. The reading in the forward direction should

FOLLOW THE LEADERS

RTING STRTE

QUALITY-TESTED PAKS

Drift Trans. 2×1225 Germ. PNP $100 \mathrm{Mc} / \mathrm{c}$
Matched Trans. OC44/43/81/81D
00 Red Spot AF Trans. PNP P
5 Silicon Recte. 3 A 100-400 PIV
210 A Silicon Rects. 100 PIV
2 OC140 Trans. NPN Switching
112 A SCR 100 PIV
3 Sil. Trans. 2S303 PNP
4 Zener Diodes 250 mW 3 -12V
3 200Mc/s. Sil. Trans. NPN BSYQ6/27
3 Zener Diodes 400 mW 33 V 5\% To
4 High Carrent Trans. OC42 EqVt.
5 Sower Rects. 400 PIV 250 m
4 OC75 Tranalotors Mullara Type. 1 Power Trans. OC20 100V
10 OA202 Sil. Diodes Sub-min, Marked 2 Low Noise Trans. NPN 2N929/30 1 Sil, Trans. NPN VCB 100 ZT86
OA81 Diodes.
4 OC72 Transistor
4 Sil. Rectz. 400 PIV $\overline{0} 00 \mathrm{ma}$
5 GET884 Trans. Eqvi. OC44
5 GET883 Trans, Eqvt. OC2J
2 GN708 Sil. Trans. 300 Mc .
3 GT31 LF Low Noise PNP Trans.
6 IN914 Sil. Diodes 75 PIV 75ma 8 OA 195 Germ. Diodes Sub-min. IN6 3 NPN Germ. Trans, NKT7İ ${ }_{2} 0 \mathrm{OC} 5 \mathrm{P}$ Parer Trans, Germ.
40 OC 2 Trang.
4 AC128 Trans. PSP High Gain. .. 2 AC127/128 Comp. pair PNP/NPA 32 2N1307 PNP Switching Trans.. 10 CG62H Germ. Diodes Eqvt. OA71 3 AF116 Trans.

FREE $\begin{aligned} & \text { One } 10 / \text { - Pack of your own } \\ & \text { choice free with order }\end{aligned}$

 value 24 or over.12 Assorted Germ. Diodes Market 4 AC126 Germ. P\%P Trans. 4 Silicon Rects. 100 PIV 750 mi 3 AF117 Trans.
7 Oc81 Type Trans.
3 OC171 Trans. ..
5 2N2926 Sil. Epoxy Trans.
25 Trans. Heatsinks fit TOIB, SO12, cto
2 2S701 Sil. Trans. Texas NPN.
312 V Yener 400 mW
2 10A 600 PIV Sil. Reacts. IS 45 R
3 BC108 Sil. NPN High Gain Trant
1 2N910 NPN Sil. Trans, VCB100
1000 PIY Sil. Rect. 1-5A R53310 AF 3 BSY95A Sil. Trans. NPN 200Mc/s.
3 OC20 Sil. Trans
I Sil. Power Rects. BYZ13 Power Trans. SPN 100 sel
TK201A
6 zener Diodes 3 -15V Sub-min.
1 2N1132 PNP Epitaxial PlanaE Sil.
3 2N697 Epitaxial Planar Trans. Sll.
1 Unijunction Trans, 2N2646........
3 Sil. Trans, $200 \mathrm{Mc} / \mathrm{s}$. 60 Vcb ZT83/84.
1 Sil. Planar Trans. NPN 100Mc/s.
1 Unijun
4 Sil. Recton Trans. 2N2160 TO-
Germ Powa 500 PIV Stud Typ
1 10A Sil. Stud React. 800 PIV
1 Tunnel Diode AEYII 10503c/g
2 2N2712 Sil. Epoxy Planar HFEQ2
 $2 \overline{5}$ Sil. and Ger
marked, New
2 GET880 Low Noise Germ. Trane
3 NPN Trans, I ST141 \& 2 STi40
4 Madt's 2 MAT100 \& 2 MAT120.
3 Madt's 2 MAT101 \& 1 MAT121.
4 OC44 Germ. Trans. AF
3 AC127 NPN Germ. Trans CADMIUM CELTS
ORP60 ORP61
$8 /-$ cach
$8 / 6$ each
MANY NEW PAK ITEMS
FOLL RANGE OF ZENER DIODES
VOLMAGE RANGE 2-18V.
400 mW (DO-7 Case)
1.5W (Top-Hat)

10 W (SO-10 Stud)
$2 / 6$ each
(11) state voltare so tol. and marisech. Please otate voltage required. Full range eqvi. to and LN types.
TRANSISTOR EQVT. BOOK
52 pages of cross references for trans, and diodes. types include British, European, American and Japanese. Specially imported by BI-PAK

ANOTHER CROWNING SUCCESS-

this month's bargaly paks all fully tested and guarrhteed satiseaction

BRAND NEW TEXAS GERM. TRANSISTORS

Coded and Guaranteed

PAK No.

Satisfaction GUARANTEED in Every Pak, or noney back. Pak No.
U1 120 Glass Sub-min. Genera! Purpose Germanturn Diudes.... 10/C2 60 Mixed Germanium Transistors AF/RF
KING OF THE PAKS Unequalled Value and Quality SUPER PAKS
"Ww. Paw wistio SEMICONDUCTORS F6 40 ma Sub-min. Sil. DJodes 10/U7 16 Silicon Rectifiers Top-Hat 750 mA up to 1000 V $10 /$ U8 50 Sil . Planar Diodes 250 n A A \quad OA/200/202 U9 20 Mixed Volts 1 watt Zener Diodes. U11 30 PNP Silicon Planar Translstors TO.5 sim. 2 N 1132. U12 12 Sificon Rectifters EPOXY BY126/127.. 151330 PNP-NPN Sil. Transistors 0C200 \& 25104 Uif 150 Mixed Silicon and Germanium Diodes Uly 30 NPN Silicon Planar Transistors TO-5 sim. 2N697 U16 10 3-Amp Silicon Rectifers Stud Type up to 1000 PIV U18 8 6.Amp Silicon Rectifiers BYZ13 Type up to 600 PIV U19 30 Silicon NPN Transistors like BC108. 10/[20 12 I.5-amp Silicon Rectifiers Top-Hat up to 1,000 PIV 10$]$ U21 30 A.F. Germanium alloy Transistors 2 G 300 Series \& 0C71. 10/$022 \quad 10$ 1-amp Glass Min. Silicon Rectiflers High Volts U23 30 Madt's like MATT Serien PNP Transistors C24 20 Germanlum 1-amp Rectifiers GJM up to 300 FIV U25 25 300Me/B NPN Silicon Transistors 2N708, BSY27 $\overline{\text { U26 }} 30$ Fast Switching Silicon Diodes like IN914 Micro-min $\frac{10 /-}{10 /}$ U28 Experimenters Assortment of Integrated Circuits, untested Gates, Flip-Flops, Registers, etc., 8 Assorted Pleces. U29 101 amp SCR's TO-5 can up to 600 PIV CRSI/25̄-600 U30 I5 Plastic Sillicon Planar trans. NPN 2N2924-2N2920.. U31 20 Sil Planar NPN trans. Jow nolse . Amp 2N3707...
$\cdots \cdot \frac{201}{20 /-}$ U32 25 Zener diodes 400 mW D07 case mixed Vlts. 3-18... T/33 15 Plastic case 1 amp silicon rectifiers IN 4000 series.
$\because \cdots . . .10 /-10 /-$

Code Nos mentioned above are given as a guide to the type of
device in the Pak. The devices themselves are normally unmarked

ADI61 ApR ADI62 FNP

 MATCHED COMPLEMENTARY PAIRS OF GERM. POWE TRANSISTORS.For mains driven output stages of Amplifiers and Radlo receivers.

PER OF $12 / 6$
$A I R$

HIGHE POWER SILICON PLANAR TRANSISTORS, TEXAS 25034. NPY TO-3.
VCB100 1c4A $\mathrm{TT} .15 \mathrm{M} / \mathrm{cs}$ VCE100 Ptot. 40W
VEB8 hFE(min.)
Price
$15 ;-$ cach
SCR's
NEW SILICON RECTIEIERS TESTED

NEW SILICON RECTIFIERS TESTED					
PIV 400 mA	$750 \mathrm{mAI} 1 \cdot 5 \mathrm{~A}$	3 A	10 A	30 A	
50100	$1 /-$	$1 / 6$	$2 / 8$	$4 / 3$	$9 / 6$
$1001 /-$	$1 / 3$	$2 / 6$	$3 / 3$	$4 / 6$	$15 /-$
$2001 / 3$	$1 / 9$	$2 / 6$	$4 /-$	$4 / 8$	$20 /-$
$300--$	$2 / 3$	$3 / 9$	$4 / 6$	866	$2 /-$
$4002 /-$	$2 / 6$	$4 /-$	$5 / 6$	$7 / 6$	$25 /-$
$300-$	$3 /-$	-	$8 /-$	$8 / 6$	$30 /-$
$6002 / 9$	$3 / 3$	$4 / 3$	$8 / 9$	$8 /-$	$37 /$
$800--$	$3 / 6$	$4 / 9$	$7 / 6$	$11 /-$	$40 /-$
$1,000-$	$5 /-$	$6 /-$	$8 / 3$	$12 / 6$	$50 /-$
$1,200-$	$6 / 6$	$7 / 6$	$11 / 6$	$15 /-$	-

$50030 /-401-45 /-95 /-$

PLEASE KOTE. To avoid any further Increased loostal Charges to our Customers and enable us to keep our "By Return Postal service" which is second to none, we have reorganized and streamlined our Despath Order Department and we how request you to seud all your orders together with postal address: BI-PAK SEMICONDUCTORS, Despatch Dept., P.O. 80X 6, WARE, HERTS. Pustage and pheking atill 1!- per urder. Minimuut

THITELEY

HIGH FIDELITY SPEAKERS

Whiteley Stentorian Speakers incorporate 40 years of development in acoustic technology. Their frequency response is exceptionally wide, and their overall performance is outstanding. Few speakers can equal, and none can excel the superb reproduction of the high fidelity speakers in the Whiteley Stentorian range.

\rightarrow (2) FTV的

MODEL H.F. 1002
$10^{\prime \prime}$ Die-Cast Unit, incorporating 12,000 gauss magnet. Handling capacity 10 watts. Frequency response 30 c.p.s. to 14,000 c.p.s. Bass resonance $35 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Fitted with cambric cone and universal impedance speech coil providing instantaneous matching at 3, 7.5 and 15 ohms.

PRICE: £5.10.3.

Plus PT surcharge of $£ 1.7 .3$
Ask your dealer for full details of the Stentorian range or write to

> WHITELEY ELECTRICAL RADIO CO. LTD
> MANSFIELD : NOTTS ENGLAND
> Tel: Mansfield 24762 London Office : 109 KINGSWAY, w.C. 2

> Tel: HOLboin 3074

XCELITE

Precision made hand tools for the professional

69CG Radio - TV Pliers 70 CG Flat Nose Pliers 71 CG Round Nose Pliers

${ }^{72 \mathrm{CG}}$ Chain Nose Pliers
73 CG Tip Cutting Pliers
74CG Diagonal Close Cutting Pliers
A complete range of miniature lightweight pliers especially designed for holding, bending, shaping and cutting of fine wires in electronic, Radio/TV, electrical and jewellery work.

$32 \mathrm{H} 5^{\prime \prime}$ Straight Nose Junior $5^{\prime \prime}$ Seizer
35 5
5^{\prime} Curved Nose
42H 6"Straight Nose Seizer $43 \mathrm{H} 6^{\circ}$ Curved Nose Seizer

Box joint construction, two position snap on lock. Precision machined from perfectly tempered steel.
Holds like surgical clamp and acts as heat sink.
Straight or curved nose, in $5^{\prime \prime}$ and $6^{\prime \prime}$ sizes.
Distributed by
Special Products Distributors Limited
81 Piccadilly, London, W.I
Tel. 01-629 9556 Cables: SPECIPROD, London, W.I
Full details an request
Made in U.S.A.

IOW AMPLIFIER

SSAR3. 10W push-pull output. TW99 output trans. 4 Valve EF94 ECC81, EL90 (2). Fully constructed on chassis. New and boxed with circuit drawing. $\mathbf{£ 2 , 1 0 . 0}$. P. \& P. 10/-
MIXER UNITS. Type 18. H.F., M.F., L.F. Valve V882. $10 / \mathrm{F}$. P. \& P. 2/6.

FLEXIBLE METAL TUBING. Galvanised 3 in . dia, 35/- 100 ft .
PIELD TELEPHONES TYPE " F "' \quad 32/6. \quad P. \& P. $7 / 6$.
CHASSIS UNIT. 13 valves. ECC82(5), EB91(6), EF91(2). 60 Resistors, Capacitors, etc. Valve cans and bases. Multicon Plugs. 30/-. P. \& P. 6/-
RESISTORS. Mixed Parcel of 200. 20/-. P. \& P. $2 / 6$.
RESISTORS. Variable. Mixed Parcel of 30. 20/-. P. \& P. $2: 6$.
SSTR 894. Pri 220-230 TRANSFORMERS
Pri. 220-230-250V. SSTR 073. Pri. 220-230V. Sec. $6.3 \mathrm{~V}(2 \mathrm{~A}), 300-$ Sec. $35 \mathrm{~V}(2 \mathrm{~V}(0.5 \mathrm{~A})$ $\begin{array}{ll}80-90-100 \mathrm{~V}(10 \mathrm{~mA}) & 225 \mathrm{~V}(27 \mathrm{~mA}) .25 /-.\end{array}$ 30/-. P. \& P. 5/-. \quad P. \& P. 5/-.
S.A.E. FULL LIST

STATUS SUPPLIES
Status House, Wilkinson Avenue, West Park ロrive, Blackpool. Tel. 62788 (2 lines)

be much lower than in reverse. Diodes working as a pair, such as in a discriminator circuit should have closely matched forward resistance and any large discrepancy will produce fault symptoms.

When using the ohms range make sure that there is no current being supplied to the circuit other than that from the meter battery. For this reason, nearly all resistance checks, unless there are special circumstances, should be made with the equipment switched off.

Even so, it may be possible that a voltage with a high current potential may persist. For example, with a power supply unit that has an open-circuit smoothing resistor, the reservoir capacitor will be fully charged with no load to "bleed" the charge away (Fig. 5). Even when switched off for some time it would not be safe to check around this circuit with an ohmmeter.

When in doubt, check with the meter on the voltage range first, then discharge the smoothing capacitors through a low resistance path.

Whenever finishing work, always make a point of leaving the meter switched to the highest voltage range. In a workshop where others are present, there is the possibility that someone else may borrow the meter for a quick test on something else; re-check the range settings before connecting to your circuit.

The meter should never be left switched to one of the ohms ranges. It is possible that with the test leads left

Fig. 4. Misleading errors occur, when measuring resistance in circuit, due to other resistive paths

Fig. 5. The charged capacitors can give incorrect readings when measuring in circuit, even when the supply is switched off
connected, one prod may touch the other; this will result in a full scale deflection of the needle and a continuous drain on the battery until the leads are moved. It may not be realised for some while during which time the battery may be considerably depleted, if not run right down, by the time the instrument is used again.

BATTERY LIFE

The life of a battery in a meter can be surprisingly long. Even with regular use, life spans of several years are quite common. Really, the conditions of use are ideal for the carbon/zinc cell.

When a battery has finished its useful life, it will be found that it is not possible to obtain a "zero ohms" (full scale) deflection even with the ohms set zero control full out. It may be found that this condition is reached on one ohms range before the others.

Some meters use more than one battery, a single-cell torch unit for the lower ranges and a higher voltage battery for the highest range.

CAUSE OF ERRORS

If the ohms range should prove erratic, with constant
adjustment being needed to the "set zero" control, it could be the leads giving trouble; a poor contact can add quite a few ohms to the circuit. Try shorting out the meter terminals on the ohms range with a piece of bare thick copper wire and see if stability is restored; if it is, then the leads are at fault.

Another source of trouble could be the internal battery contacts; these can also be cleaned up and lightly greased in cases of erratic operation.

The potentiometers themselves can become worn or dirty. If access can be obtained to the track, a few drops of switch cleaner may help. In most cases dirt is the answer, but an instrument that has been in use for many years may be worn and a new control from the makers may be the only satisfactory cure. Of course it will be a long time before a new meter gets to this stage.

Oscillator circuits can be prevented from oscillating by the application of the meter or the frequency of oscillation can be radically changed. As voltages in an oscillating circuit differ considerably from those existing when the circuit is not oscillating, it can be seen that completely false readings can be obtained. To minimise the damping effect of the meter, it is best to take measurements in such circuits on the highest range that will give a readable indication.
R.F. circuits can be made unstable by the application of the test prod. As they are then behaving as an oscillator, it follows that voltages will be abnormal. If measurements are confined to points that are decoupled, this problem will not arise.

VOLTAGE READINGS

In the case of voltage measurements, one must take into consideration the effect that the meter itself may have on the circuit, which may affect the operation, hence the reading.

When measuring through a high impedance, the meter will draw current and thereby produce a voltage drop. This must be allowed for, but it can be calculated by finding the ratio of the meter impedance (ohms-per-volt multiplied by the voltage range) to the source impedance and then applying the same ratio to the source voltage.

MAINTENANCE

Apart from replacing the batteries once in a while, there is very little maintenance that is needed. Contacts between the meter terminals and test-lead plugs may need occasional attention. These can be cleaned with methylated spirit and then smeared sparingly with thin grease.
The leads themselves are the most likely cause of trouble because, in spite of being made of special highflexibility cable with a large number of thin strands of wire, they can go open-circuit with constant flexing. Generally the site of the break is near the ends and sometimes a repair can be made.
Other than the points mentioned, the only maintenance is to keep the case clean. A rub over with a barely damp cloth and a polish with a dry cloth will clean most flat plastic surfaces. To clean rough pimple finish surfaces or grooves use an old toothbrush.

Avoid letting any moisture into any of the apertures in the case or damp may start to cause rust on some parts of the interior.

So then, by carefully selecting the most suitable multimeter, giving it reasonable treatment and making the best use of it as we have discussed, we will have a valuable aid in the testing and repair of electronic equipment, whether for business or pleasure.

The PRACTICAL ELECTRONICS organ is based on a number of distinctive solo stops or theatre voices, with a flute or tibia chorus of extended pitch range. Provision is made for an accompaniment manual and in this case, the manuals are reversible by means of a separate expression pedal for each; so that, for example, an 8 ft solo tibia can be reduced in volume to accompany a 4 ft flute on the lower manual. The useful expressiveness is thus much extended, great volume not being required in the average home.
The pedal section provides the ground bass one octave below the manual pitch, but there is also 8 ft tone so that the monotony of 16 ft can be relieved. This section of the organ has its own amplifier and loudspeaker to reduce intermodulation.

No electronic vibrato is provided, but a Leslie type rotor is applied to the manual loudspeaker, thus achieving both frequency and amplitude modulation, as in a pipe organ.

PF

THE

By Alan Douglas, Sen. Mem. I.E.E.E.

N presenting a design for a small electronic organ, we must remember that the present day concept of this class of instrument is far removed from the classical instruments which have relied on pipes for hundreds of years. Current tastes in the field of entertainment bear no relation to those of 50 years ago, and we have largely electronics to thank for this; it is only because of electronics thai we can enjoy sound and music of all kinds in our own homes.
However, in the electronic organ we have a special case; for it is an adaptation of old tone colours to a new method of producing them. So that if one is not well acquainted with the original sounds and how they were formed and combined, there is little likelihood of obtaining realistic synthesis. The author is fortunate in
that he has made and played pipe organs for very many years, and in this way we know the limitations beyond which a simple generator cannot go.
This particular instrument has a generating system of extreme simplicity, since the general use of silicon planar transistors throughout removes the need for circuitry essential to confine germanium transistors to their correct working characteristics.

FREQUENCY DIVIDER SYSTEM

We can define this organ as being a square wave frequency divider system, generating one single type of waveform from nearly 8 kHz to 32 Hz , distributed over two manuals and pedal. The use of a single waveform severely limits the tonal synthesis possible, but it-does so

SPECIFICATION

61 notes. CC to C

contra tibia	16 ft
contra viole	16 ft
double horn	16 ft
tibia	8 ft
viole	8 ft
echo horn	8 ft
oboe	8 ft
tibia.	4 ft
violina	4 ft
piccolo	2 ft

Circuit

All transistorised. Square wave frequency divider system

Output

Manuals: 15W amplifier driving 10in W.B. unit with Leslie tremulant Pedal: 7W amplifier driving $12 i n$ W.B. unit
Loudspeakers housed in separate two-compartment enclosure

Dimensions

Console:
with pedalboard
Loudspeaker enclosure:

Width	Depth
53 in	$20 \frac{1}{2} \mathrm{in}$
	$36 \frac{1}{\mathrm{i}} \mathrm{in}$
$15 \frac{1}{8} \mathrm{in}$	24 in

Pedal

30 notes, CCC to F

 sub bass 16 ft major bass $\quad 16 \mathrm{ft}$bass flute
8 ft

Finish

Arborite Superdec Sapele laminate

Accompaniment

61 notes, CC to C
flute 8 ft
viole acute $\quad 8 \mathrm{ft}$ clarinet . 8 ft
trumpet 8 ft
flute 4 ft
violina 4 ft
Expression pedal

Fig．I．I．Block diagram of the complete organ
happen that all the tone colours or voices required for a romantic entertainment organ can be formed from a square wave．It would not do for a church or concert organ，which would have to have sine and sawtooth waves as well．
Naturally，the high harmonic content of a square wave requires careful handling；a common method being to use such heavy filtering that little is left but fundamental tones．Such instruments，whilst sweet and attractive at first，soon pall as there is no life in the sounds．Another common failing is that the generating system does not go high enough in pitch．
In most small organs，the top octave，or even the top two octaves，double back in pitch so that in fact stops labelled 4 ft and 2 ft are misleading because they do not cover the compass stated．Such instruments cannot have any brilliance of tone．It seems a pity，when the basic cost is naturally high，that an extra octave or two is not added－it makes such a difference．

TONAL SPECIFICATION

It is the prevailing custom to divide the small domestic organ into an upper keyboard having pre－ dominantly solo voices，and a lower manual really for accompaniment．The pedal section supplies the bass， and we have followed this scheme in the specification shown，but with one very important difference．

Whereas it is customary to have the whole organ on one expression pedal，we use a separate one for each manual and the pedal is not controlled in volume except by the stops．This facility enables us to reverse the organ，as it were，and subdue the upper keyboard voices whilst making the lower ones louder if desired．

In this way，extra solo voices are obtained at negligible cost，and we have．added a clarinet and trumpet to the lower keyboard for this reason．Thus，
any balance whatever between the two manuals is possible and it is surprising what extra flexibility and tonal range this gives．

One would find this，of course，on a theatre pipe organ as a matter of normal design．It certainly makes the organ a little harder to play，but then any organ has to be carefully studied before the best results can be obtained．

KEY AND PEDAL COMPASS

Many small organs have a keyboard compass of 3，3⿱亠䒑八⿳亠二口丿 年 4 octaves which is admittedly a help for the tone circuits，since it eliminates many technical difficulties． But if we can provide sufficient tone colours to interpret a great deal of organ music，then the legitimate 5 octave keyboard is much more useful．
The same applies to the pedals，and we have fitted．a full 30 note pedalboard here which can be pulled out and stood on end；but of course，the short compass boards of 13 notes could quite well be fitted if desired．

MODIFICATION

In any organ，we can degrade the system much more easily than improve it，therefore we start with a full scale system and this can be simplified in some respects as will be apparent later on．The question of space may be the deciding factor，but it must also be remembered that all electronic tone generators can be modified or enlarged，so that if，at some future date it is decided to extend or revise the tonal scheme，then if all the playing facilities are there in the first place，it will be much easier．

SIGNAL PATHS

If we look at Fig．1．1，a block diagram of the com－ plete system，we can trace the path of the signals and
see how the sections are co-ordinated. The 12 oscillators are powered by the same unit as the 12 , 7 -octave dividers. The divided signals reach the manual resistive contact switches and are applied to busbars of the correct pitches by printed circuit wiring.
The signals now pass through an emitter follower for each pitch and through a preamplifier to their respective tone networks. Each manual mixed tone net outlet goes to a post amplifier and so to a balancing network. From this, the expression pedals route the tones to the manual power amplifier.

The pedal signals are derived from the upper manual and have their own tone nets and preamplifiers. There are no post amplifiers and the 8 and 16 ft tones pass direct to the pedal power amplifier.

The manual speaker has a Leslie type rotor tremulant; the pedal loudspeaker of course has no vibrato. These units are contained in a separate enclosure.

Three power supplies, all well regulated, serve the different sections. The pedal contacts have provision for sustain, although this is not fitted; similarly a reverberation device can be applied after the balancing network if desired. The tone networks are enclosed in a screening box as are the post amplifiers and the balancing circuit. Otherwise no screening is used beyond that on the signal cables.

GETTING STARTED

Now the circuitry associated with a transistorised frequency divider organ is quite light ir weight, so that the whole system can be fixed to the kneeboard of the instrument and this means that no cumbersome building frame is required.

We can start with the preliminary console details which are nearly all woodwork. A cutting list of materials required is given on page 360 . Ultimately the woodwork can be clad with one of the popular imitation wood finish laminates. Our prototype organ is finished with Arborite Superdec Sapele.

For convenience, cheapness, and strength we make the sides from $\frac{7}{8}$ in plywood. After cutting off the corner pieces as shown in Fig. 1.2, the cut-outs for lower frame members should be made.

To provide a secure base for the sides, two hardwood feet as shown in Fig. 1.3 should be fixed. Prior to this a decorative $\frac{1}{4}$ in chamfer is made along the edges. It is essential to countersink fully for the three $2 \frac{1}{2}$ in No. 12 woodscrews fixing these hardwood strips so that the screw heads cannot catch in a carpet.

Attachment of the lower frame member D, with two 2in No. 12 countersunk wood screws at each of the sides will enable the frame to stand upright. Additional support is provided when the kneeboard support batten E is slid into the cut outs of the side panel and glued as shown in Fig. 1.4.

KEYFRAME SUPPORTTS

It is surprising how much force is sometimes unwittingly applied to a keyboard. Usually the pair of manuals are carried on a heavy wooden plank, but it is easier, and in many ways more convenient, to use a piece of $1 \mathrm{in} \times 1$ in $\times \frac{1}{8} \mathrm{in}$ rolled steel angle with a hardboard rear keyboard support rail. Deformation of the keyframes would certainly lead to contact trouble.

Attachment of the front keyboard support rail F is by means of two 2 in lengths of 1 in $\times 1$ in batten which are first screwed to the sides A with a $1 \frac{1}{2}$ in No. 8 woodscrew. Where the steel angle meets these battens,
holes should be drilled and countersunk to take single $\frac{1}{2}$ in No. 4 woodscrews. The rail can now be affixed.

The rear keyboard support rail C, which is of hardwood, has similar batten mounting pieces, the only difference here being that two fixing screws, $1 \frac{1}{2}$ in No. 8 , are used for retention as shown in Fig. 1.5.

OBTAINING THE KEYBOARDS

The next step is to obtain and fit the keyboards. These are of five octaves compass, 61 notes, CC to C, and are obtainable as single units from J. J. Goddard Ltd., or the same but made throughout in plastic and extruded metals from Kimber-Allen Ltd. This is again a single unit set and is made in Sweden; it is much superior to the Italian sets available from some sources.

As we are going to use key switches actuated by their own integral plungers, one might be lucky enough to pick up a second-hand matched two manual set from an organ builder or even from an old harmonium. The small amount of side play cannot affect the kind of key switch proposed, though it might be quite serious with some other forms of contact.

MOUNTING THE LOWER KEYFRAME

The Goddard keyframe is not very strong and is intended to be mounted on a more substantial material which in our case is the steel support rail F and rear batten C , no further reinforcement being necessary.

Centrally position the lower keyboard on the support members then secure it with four short screws through the steel and four long ones through the batten.

When purchased the Goddard key will not have any springs fitted. These can be obtained from Henry's Radio Limited. If plastic keyboards are purchased it will be found that springs are integral to these assemblies.

Examination of the keys at this stage will show a slight upward tilt. By slightly rotating forward the steel angle and rear batten the keyboard position can be made parallel with the floor.

KEYBOARD THUMPER BARS

The upper keyboard rests on two end pieces as in Fig. 1.6. Here again we must tilt the keys forward with a 10 degree slope, which facilitates certain types of playing.

Arrangement of upper and lower manuals. Full details and measurements appear on next two pages

FIG 1.4

E $31 / 1_{2}^{\prime \prime} \times 31 / 2 \times 1 / 2$ FILET
(6)

FIG 1.2

FIG 1.11

CONSOLE CUTTING LIST

Sides (A) (2 off)
Top (B)
Rear keyboard support rail (C) Lower frame member (D)
Support batten for kneeboard (E)
Front keyboard support rail (F)
Top fillet (G) (2 off)
Feet (H) (2 off)
Kneeboard (I)
End cheeks (J) (2 off)
Upper keyboard supports (2 off)
Lower thumper bar
Upper thumper bar
Quantity of $\operatorname{lin} \times$ lin batten as

1ft $8 \frac{1}{2} \mathrm{in} \times 3 \mathrm{ft} 7 \frac{1}{2} \mathrm{in} \times \frac{7}{6}$ in ply $4 \mathrm{ft} \operatorname{5in} \times 9 \frac{1}{2}$ in $\times \frac{1}{2}$ in ply $4 \mathrm{ft} 3 \frac{1}{4} \mathrm{in} \times 2$ in \times 1in hardwood $4 \mathrm{ft} \sin \times 3 \mathrm{in} \times$ lin hardwood $4 \mathrm{ft} \sin \times 1 \frac{3}{4}$ in $\times \frac{1}{2}$ in wood $4 \mathrm{ft} 3 \frac{1}{4} \mathrm{in}-\mathrm{lin} \times \operatorname{lin} \times \frac{1}{8}$ in steel angle $3 \frac{1}{2}$ in $x 3 \frac{1}{2}$ in $x \frac{1}{2}$ in ply Ift 9 in $x 1 \frac{3}{4}$ in $\times \frac{5}{8}$ in hardwood $4 \mathrm{ft} 3 \frac{1}{4} \mathrm{in} \times 1 \mathrm{ft} 10 \mathrm{in} \times \frac{3}{8}$ in ply $10 \frac{3}{4}$ in $\times 4 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in wood 7in $\times 3 \frac{3}{8}$ in $\times \frac{3}{4}$ in wood $2 \mathrm{ft} \prod_{\frac{3}{4}}^{2} \mathrm{in} \times 1 \frac{1}{4}$ in $\times \frac{3}{8}$ in wood $2 \mathrm{ft} 11 \frac{3}{4}$ in $\times \frac{3}{4}$ in $\times \frac{3}{4}$ in duralumin

Keyboards

61 note keyboards (2 required)
J. J. Goddard Limited,

37 Union Street, London, S.E.I.
The same but made throughout in plastic Kimber-Allen Limited,
London Road,
Swanley, Kent.
Key springs (not required for plastic keyboard) Henry's Radio Limited, 303 Edgware Road, London, W.2.

FIG 1.7

Fig. 1.2. Case sides
Fig. I.3. Hardwood feet
Fig. 1.4. Sides positioned by frame and keyboard supports
Fig. I.5. Fixing method for keyboard supports

Fig. I.6. Upper keyboard supports
Fig. I.7. Lower keyboard thumper bar in position on keys

Fig. I.8. Upper keyboard thumper bar shown bolted to lower keyframe via woodblock

Fig. I.9. Ornamental end cheeks
Fig. I.IO. Panel for case top
Fig. I.II. Kneeboard

Fig. I.I2. Preferred console dimensions
When the springs are attached to the keys, these latter will rise at the front, as will those of the lower keyboard.
To check the lower keys a strip of wood called a thumper bar is fixed across the side members as in Fig. 1.7. The height of this is adjusted until the depth of touch, the distance a key will depress, is about $\frac{5}{16}$ in. In time, this will fractionally increase due to compression of the felt.

Now we can try the touch resistance of the lower keys and if need be, stretch the springs slightly if too strong.

For the upper keyboard we need a stronger thumper bar and this is made from a piece of duralumin channel section $\frac{3}{8}$ in $\times \frac{3}{4}$ in $\times \frac{1}{8}$ in wall thickness.

A two point anchorage is required at each end as shown in Fig. 1.8 using 4B.A. nuts and bolts, the

bolt length being $2 \frac{1}{4} \frac{1}{2}$. Again the height is adjusted to give a touch of 5 in . To prevent mechanical clicks, the underside of both bars is covered with a strip of red or green felt $\frac{3}{4}$ in wide by $\frac{1}{6}$ in thick which is obtainable from Goddard Ltd.
When the top keyboard is in position, a wood screw can be passed through the lower thumper bar into the frame of the upper keyboard, which will stiffen this assembly.
Plastic keys have limit stops moulded in, so require no bars, but ornamental strips of wood may be attached to conceal the metal frame. .
The complete assembly can be seen in the photograph.
Finally make two ornamental end cheeks as in Fig. 1.9 from $1 \frac{1}{2}$ in thick wood such as oak or mahogany. The illustration shows how they are fitted and they can be seen in the introductory photograph of the organ.
All the foregoing requires great care, but should be persevered with, since if there is any uncertainty about the keys, the organ will never be a pleasure to play.

TOP AND KNEEBOARD

The last two major items of woodwork that complete the console will now be described. Both are essentially rectangular so the carpentry is simple.
First, the top B which is of $\frac{1}{2}$ in ply is shown in detail in Fig. 1.10.
For reasons of easy access to electronic subassemblies it was decided not to make this a fixture. A simple method of locating the top to the sides is by the use of triangular key pieces shown dotted.

The actual glueing of these pieces should be delayed until the organ is complete. This will ensure a more precise keying of the top.

The two fillets G are an optional decorative extra.
Fig. 1.11 gives the dimensioning of the $\frac{3}{8}$ in ply kneeboard I which will take the bulk of the electronic assemblies.

To fix this, first cut two lengths of $1 \mathrm{in} \times \operatorname{lin}$ batten. These should now be attached as shown in Fig. 1.4, one at either end of the cross members E and C.

Fixing should be at the sides A and forward of the rear support rail C using $1 \frac{1}{2}$ in No. 8 woodscrews.

The kneeboard can now be retained by the battens using six lin No. 8 woodscrews.

INTERNATIONAL STANDARDS

Whilst the case geometry could be modified to conform with different tastes, one thing is essential, that the keys and stops should be properly related to the pedalboard. We give the preferred measurements in Fig. 1.12 which conform closely to the agreed international standard.
Comfort is essential when playing especially with a full size pedalboard. One can see that the whole physical design is related to the pedalboard, and this also refers to the extent to which the sharps on the pedals are set back from the front of the manual keys.
This in turn determines the position of the expression pedals. So that, if no pedals were fitted, or in the case of a 13 note pedalboard, the dimensions of Fig. 1.12 will still prove to be the most suitable.
Therefore in the console design, we have allowed for the use of the proper full scale parts, and if the pedals are not fitted at once, one can be confident that they will mate with the console at a later date.

Next month we will start on the attachment of the key contact system and some of the electronic subassemblies.

By M. A. Colwell

WHAT is the true definition of stereo (in the domestic hi fi world)? A strange question one may think, but this was recently brought home to me by recent comments in an article in a Sunday newspaper.

It seems to be a not uncommon practice for some recording companies to cut discs and label them stereo, when really the recording has been made by judicious juggling of faders, to control the relative sound levels of each instrument and feed them into two independent channels. The result can be quite pleasing and the unsuspecting listener is probably unaware of how his recording was produced.

TWO-AND-A-HALF DIMENSIONAL

"So what!" you might say-"the effect is threedimensional, it sounds like stereo, so what does it matter!" But is it really three-dimensional or only two-and-a-half dimensional? Does it seem to have depth as well as width.
This is an all important aspect of stereo, but it can become a cheap and easy means for any Tom, Dick, or Harry to set himself up to record music, that is not a true facsimile of the original performance in terms of instrumental positioning. But is this important? Well, conductors and composers think it is important in order to put over the message they are trying to recreate.
The only genuine method is for recording companies to use (as many do) the very simple arrangement of twin microphones in the centre of the proceedings.
But it is claimed that there is a serious risk of "hole-in-the-middle" effects, i.e. the balance of the two channels is such that what goes on in the centre is reproduced in equal magnitude by both channels, leaving a certain air of uncertainty as to its precise location. This problem can and is being overcome in some circles, but is only "small-fry" in comparison with deceiving the customer.

MISLEADING SPECIFICATIONS

On the same topic is the publication of a specification for so-called hi fi equipment, worded in such a way that the customer, who is perhaps only moderately acquainted with the jargon, sees no reason to suspect that the equipment is anything but hi fi. But on comparison with much better gear he finds that the " f " is not as "hi" as he was led to believe.

So he looks again at the specification. Perhaps he cannot understand what is wrong. Usually it is the phrasing of the specification that is not acceptable.
For instance, a frequency response of, say, " 30 Hz to 20 kHz " means absolutely nothing. If it was termed frequency range then this quotation could be correct, but it says nothing about the sound levels at the ends of this spectrum in relation to the mid-frequency range (1 kHz). True, the level at 10 or more kilohertz could be audible, but only just.
Similarly a power rating of so many watts means very little unless some indication of distortion is given with the correct loading. The importance of an accurate description is as important as diagnosing an illness correctly before applying suitable treatment.

If you are not absolutely sure you understand every word in a specification consult an acknowledged expert in high fidelity audio before committing yourself to a purchase.

But you may think: How do I tell where low fidelity ends and high fidelity begins? Experience will tell, but in the meantime, go along to some of the several hi fi showrooms up and down the country and ask for a demonstration of several combinations of equipment. The dealer will either be very willing to do this for your own sense of satisfaction, or will blush at being behind the times.

SOUND REINFORCEMENT

In addition to the hi fi fraternity, another body, the Association of Public Address Engineers, is equally concerned with moral ethics and standards in specifications, and are always willing to help potential clients of their members in obtaining satisfactory equipment and facilities for the purpose for which it is required.

Sound reinforcement is the preferred term these days and modern equipment has been designed to assist the audience with the absolute minimum of unnatural electronic phenomena imposing on aural comfort. Some of this equipment and talks were held at the annual exhibition at the King's Head Hotel on the Hill at Harrow from March 11 to 13.

ON SHOW?-NOT YET!

The rather different appearance of this article this month, with no news of new equipment, is partly deliberate, partly accidental. The fact is that in the few months prior to the Annual Audio Festival and Fair (Olympia, London, October 16 to 21), manufacturers put on "cloak and dagger" and are very reluctant to release details of new developments too soon, for fear of being too helpful to competitors.

Last year, the Fair showed some interesting advances; this year we hope we shall be equally surprised. Nonetheless, the main interest will be to see if the new venue proves acceptable (audibly) and successful (commercially).

It is expected that P.E. will be represented there after another hair-raising stint at the R.S.G.B. exhibition. What are we going to show? Wait and see-we can be just as secretive as the manufacturers, but it will all be worth while.

British Computers Help Europe's Satellite

The European Space Research Organisation's HEOS-A satellite successfully lifted off the launch pad at Cape Kennedy after being thoroughly checked out by two British computers. These systems, a Honeywell DDP 516 and DDP 116 (shown right), have been closely involved in the "Highly Eccentric Orbit Satellite" project from first test to final countdown and launch.
The computers provided two complete and identical check-out systems which, via telemetry equipment, were responsible for all communications with the HEOS-A spacecraft. Messages transmitted under keyboard control included up to 200 variable commands for switching experiments on or off, and for changing experimental modes.

Among the experiments being conducted by HEOS-A are investigations of the earth's magnetic and electrical fields, interplanetary magnetic fields, high energy cosmic ray protons, and low energy solar protons, the flux and spectrum of cosmic ray particles and the so-called solar wind.

ELECTRONORAMA

Water Pollution Study

Pollution of beaches around our coast is a subject of public concern. The Water Pollution Research Laboratory at Stevenage, a department of the Ministry of Technology, have been carrying out experiments to examine the effects of environmental factors on the dispersion of sewage from sea outfalls.
A radioactive tracer (Bromine 82) is added either to the sewage as it enters the sea or directly to the sea at the site of an existing or hypothetical outfall. The dispersal of the tracer is then determined by a number of radiation counters towed at constant speeds and different depths by the survey vessel shown right.
The output from the counters is fed to a recorder housed in the vessel (see photograph below). The recorder, which is battery powered, has five tracks for recording counter output and three other tracks for a recorded controlled-
(Crown Copyright, Water Pollution Research Laboratory)

(Crown Copyright, Water Pollution Research Laboratory)
frequency pilot tone, an audio " notebook" containing readings of the position of the vessel, and an event marker channel for pinpointing the audio position "fixes".

On completion of the sea survey the recorded tape is replayed in the laboratory on a similar instrument feeding a timer-counter, a paper tape punch and, if required, a decimal printer.

The recorded controlled-frequency pilot tone is used as the time base for the timer-counter to allow for differences in the speeds of the two tape transport systems. The event marker signals corresponding to shore "fixes" appear on the punched tape as serially numbered identification characters.

Electronic Sorting

A^{s}s a major step towards establishing fully automated postal sorting offices in Britain, The Plessey Company has completed its first production test of electronic coding desks and translators. This equipment substitutes the written postal code/address on letters with a code that can be understood by machines used for mail handling in an automated post office.

After being sorted for size and then letter faced, the mail is presented to an operator on a coding desk who copytypes the six character code on the electronic keyboard, similar to a typewriter. Information is then fed as an electronic signal to the translator which changes the data into two 12 bit binary code patterns, one representing the "post town" of the address and the other the street or road in which the recipient lives.

The binary code patterns are printed on the envelope as two rows of luminescent dots which are almost indiscernible to the human eye. All mail sorting machines are designed to read these dots thus enabling a letter to be processed completely automatically.

CCTV for Concorde

C^{L}LOSED circuit television equipment has been installed in Concorde prototypes 001 and 002 . Pictures from any of the cameras can be selected for viewing on two monitors and can also be recorded on a video tape recorder.

This very rugged camera head, specially designed for aircraft use, is completely sealed in a strong aluminium alloy casting. The lens, housed internally, looks out through a sealed window which incorporates an electrical heater. The camera incorporates a sun shutter and when used with the EMI Camera Control Unit type CC1106 provides a fully automatic camera system. The rugged EMI 26 mm (1 inch) Vidicon Tube type 9730 and printed circuit scanning coils are used in this unit.
Two of these cameras, one facing aft and one facing forward, are used on each Concorde aircraft for taxiing and landing aid applications.

Mr. N. C. C. De Jong, Director of Postal Mechanisation for the GPO, accompanied by Mr. J. Piggot, Deputy Director of Design and Development and Mr. J. H. Nicall, General Divisional Manager of Plessey Automation Divisions at Poole, examines mail being processed through the electronic code translator

Three of these cameras have been fitted within various small spaces available in engine nacelles to enable possible inflight icing conditions to be observed and recorded. Special optical devices have been engineered to give the necessary viewing angles required in the confined spaces available.

BEFORE delving into the technicalities of this particular circuit, it is necessary to explain just how important a very high input impedance is in certain applications, and just what is meant by the expression "high impedance".

The terms "high" and "very high" impedance are, of course, relative terms. In valve circuits, for example, impedances in the range of several hundred kilohms are normal, whereas, in transistor circuits, impedances in the range of a few kilohms are considered to be common. Generally, in transistor circuits, impedances in the range of several tens of kilohms are considered to be "high", while impedances of greater than a few megohms are regarded as "very high".

INPUT IMPEDANCE

The higher the input impedance of a unit, such as a voltmeter, valve voltmeter or oscilloscope, etc., the lower will be the power that it takes from any circuit under test and thus the lower will be any error in the readings that are obtained due to loading effects.

CRYSTAL MICROPHONE

When a crystal microphone or pick-up is to be fed to an amplifier, it is very important that the amplifier should have a very high input impedance, if low frequency attenuation is not to take place. The effective circuit of the crystal microphone feeding into the amplifier input is shown in Fig. 1. The equivalent circuit of the crystal microphone is shown dotted in

Fig. 1, a voltage generator in series with a capacitance, usually in the order of $1,000 \mathrm{pF}$. This capacitance is in series with the input of the amplifier.

Since C and R are in series, they act as a potential divider network, the attenuation of the circuit depending on frequency. When the reactance of C equals R, the signal appearing at their junction will be half that at the generator terminals (or 6dB down). Thus, for a good low frequency response, R should be as large as possible.

HIGH IMPEDANCE TRANSISTOR CIRCUITS

One transistor circuit which will give a high input impedance is the emitter follower or common collector amplifier, shown in its basic form in Fig. 2a. Another method is to use the Darlington or super-alpha pair, shown in Fig. 2b. Here, TR2 is connected as a normal emitter follower, as in Fig. 2a, but an additional transistor, TR1 is interposed between the input and TR2. The additional transistor has its emitter directly coupled to the base of TR2; this way the effective gain of the circuit as a whole is equal to the product of the two individual transistor gains.

BOOTSTRAPPING

In Figs. 2a and $2 b$ the base-bias is shown as being current derived via a single resistor. R2; this method of base-bias results in poor temperature stability. For good stability, a voltage-divider base-bias network

Fig. 3. Circuit diagram of the very high impedance amplifier
should be used. Such a network would shunt the input circuit even more and so reduce the input impedance further.

This difficulty can be overcome by employing the technique known as "bootstrapping", as shown in Fig. 2c. Here, the voltage-divider base-bias network comprises R2 and R3. The input signal is fed directly to TR1 base.

The voltage gain of an emitter follower is nearly 1 , and virtually the same signal injected at the base will be reflected at the emitter, both signals being in phase.

The a.c. emitter signal is coupled back to the junction of R2, R3, and R4 via C1; thus, the same a.c. signal is present at each end of R4 and no a.c. current flows in this resistor. It follows that the resistor acts as an extremely high impedance to a.c. (but not to d.c.) and thus eliminates the shunting effect of the base-bias network:

The final circuit of the very high impedance amplifier has an input impedance of approximately 5 megohms and the output impedance is one hundred ohms.

PRACTICAL CIRCUIT

Referring to the full circuit diagram shown in Fig. 3, the input is connected via Cl to the base of TR1. TR1 and TR2 are connected as a super-alpha pair in the emitter follower configuration, the emitter load being VR1. The base-bias network, R1 and R2, is coupled to TR1 base via R3. Capacitor C2 feeds the bootstrap voltage from TR2 emitter to the potential divider junction. The effective 'leakage impedance of TRI is also bootstrapped, via R4 and C3.

To prevent the emitter load of TR2 from being effectively shunted by the input impedance of TR4, an additional emitter follower stage, TR3, is inserted in the circuit. The base biasing of TR3 is controlled by resistor R5.

Resistor R10 is the emitter load for TR4 which is connected as a common emitter amplifier. As R10 has no decoupling, negative feedback is applied to this stage, and TR4 produces a voltage gain of approximately $8 \frac{1}{2}$ times.

Finally, another emitter follower, TR5, has its base

GOMDDNENS			
Resistors			
RI	$47 \mathrm{k} \Omega$	R7	$82 \mathrm{k} \Omega$
R2	47k Ω	R8	$4.7 \mathrm{k} \Omega$
R3	$100 \mathrm{k} \Omega$	R9	$5.6 \mathrm{k} \Omega$
R4	$68 \mathrm{k} \Omega$	R10	560Ω
R5	$100 \mathrm{k} \Omega$	RII	$2.7 \mathrm{k} \Omega$
R6	$1.2 \mathrm{k} \Omega$		
All $\pm 10 \%$, $\frac{1}{4}$ watt carbon			

Potentiometer
VRI $5 \mathrm{k} \Omega$ miniature skeleton preset

Capacitors

$\mathrm{CI} 1 \mu \mathrm{~F}$ elect. $15 \mathrm{~V} \quad \mathrm{C} 4 \quad 1 \mu \mathrm{~F}$ elect. 15 V
C2 $16 \mu \mathrm{~F}$ elect. 15 V C5 $16 \mu \mathrm{~F}$ elect. 15 V
C3 $16 \mu \mathrm{~F}$ elect. 15 V C $6 \quad 16 \mu \mathrm{~F}$ elect. 15 V

Transistors

TRI, 2, 3, 4, 5 NKT 277 (Newmarket) (5 off)

Miscellaneous

BYI 9 volts, type PP7 or PP9
Veroboard, battery connectors, p.v.c. covered wire, screened input lead, metal case and coaxial plug and socket (if required)

Fig. 4. Layout of components on the board and underside view showing the breaks in the copper strips
directly coupled to TR4 collector and gives a final output impedance of approximately 100 ohms, via C6.

The emitter load of TR2 is the volume control VR1.

CONSTRUCTION

Start by cutting the Veroboard to size and breaking the copper strips as indicated in Fig. 4.

Wire up the first two stages of the unit-TR1 and TR2. With a voltmeter, check that the voltage on the base of TR1 and the emitter of TR2 is about $4 \frac{1}{4}$ volts. Carry out a simple function check on this stage.

Wire up the rest of the unit, one stage at a time, checking carefully the wiring and carrying out a functional check on each stage.

When used in high impedance applications, it is essential that a screened input lead be used, and that the completed circuit board be enclosed in a metal case.

Two 6B.A. mounting holes are shown in Fig. 4; the board should be mounted on insulating spacers with two 6B.A. screws. Clear away surplus copper around the screws to avoid the risk of short circuits. A coaxial socket can be mounted on the case if desired or the screened lead can pass through a hole in the case directly to the board at points $2 A$ and $2 G$. If the input lead is passed through a hole in the case, a rubber grommet should be fixed in the hole to protect the lead from chafing.

VARIATIONS OF THE CIRCUIT

If the unit is required to act as a straight forward impedance transformer, without amplification, then TR4 and TR5 stages can be eliminated from the circuit, the output being taken from C5 positive.

If greater voltage gain is required in the audio frequency band, connect a $50 \mu \mathrm{~F}$ decoupling capacitor in parallel with R10. If a voltage gain in the order of approximately $8 \frac{1}{2}$ to 25 is required, with maximum possible bandwidth, insert the decoupling capacitor as above and also break the connection between R7 and the negative line and re-connect the top end of R7 to TR4 collector. Adjust the values of R7 and R8 until the required value of gain is obtained, consistent with a no-signal voltage of approximately $4 \frac{1}{2}$ volts at TR4 collector.

It may be necessary, in both of these cases, to insert a decoupling network in the negative supply line between the TR3 and TR4 stages, to prevent instability. This would be a 470Ω resistor in series with the negative supply line between R7-R9 and TR3 collector. A $100 \mu \mathrm{~F}$ capacitor is then connected between TR3 collector and the common positive line.

APPLICATIONS OF THE UNIT-

The unit is ideal for use as a buffer stage between a high impedance crystal microphone and the low impedance input to a transistor amplifier. If the TR4 and TR5 stages are eliminated from the unit and VR1 is replaced with a fixed 4.7 kilohm resistor, the resulting unit will be small enough to be built into a crystal microphone case. The crystal microphone unit will then have an effective output impedance of 100 ohms and thus overcome the hum troubles that normally occur when these have long connecting leads to amplifiers.

Because of the very low value of input capacitance of the circuit, input impedances some 10 to 15 times greater than are possible with normal test equipment, are available at frequencies above about 100 KHz . The voltage rating of Cl will, generally, have to be increased to suit the application.

NEWS BRIEFS

Rapier Anti-Aircraft System to get Radar Eyes

THE Ministry of Technology has placed a contract with the British Aircraft Corporation and Elliott Space and Weapon Automation Limited to develop and manufacture equipment to extend the capability of the BAC "Rapier" anti-aircraft missile system. About 70 per cent of the value of this contract will go to Elliotts who will manufacture the Elliott-designed tracking radar units.

The "Rapier" system, using optical guidance, has been successful during its trials and has been ordered for both the Royal Air Force and the British Army. Substantial overseas sales have also been made. The new radar tracking system will permit engagement of targets during the hours of darkness and in poor visibility.

Pocket Paging for Stook Exchange

Pocket paging receivers, measuring only $1 \frac{5}{5}$ in wide by $5 \frac{1}{8}$ in high by $\frac{3}{4}$ in deep, are to be used at the London Stock Exchange to call dealers immediately they are required by their offices. Initially 1,200 pocket receivers will be installed but the system can be expanded up to 4,000 units.

The paging receiver uses copper-clad Bakelite laminate, supplied by BXL, for the circuit board.

Fiftenth VHF Convention

THE fifteen VHF/UHF Convention will take place on Saturday, April 26 at the Winning Post Hotel, Whitton, near Twickenham in Middlesex. Tickets for the Convention can be obtained from MrF. Green at 48 Borough Way, Potters Bar, Herts. Tickets for the whole day are priced at 32 s 6 d , for the afternoon 5 s , and for the banquet only 27 s 6 d .

Central Training Council Report

THE third report of the Central Training Council, under the chairmanship of the Rt. Hon. Frank Cousins, was published on March 3. The report deals with many aspects of Industrial training and gives recommendations for the training of computer staff.

A second Committee was set up to look more closely at the problem of computer staff training, its recommendations for the training of systems analysts (commercial) has now been published and work is in hand on the process and scientific areas of training. Both the "Central Training Council" report and "The Training of Systems Analysts" are available from HMSO at 4 s and 5 s respectively.

Cricket by Computer

Deople in South Africa are reading ball-by-ball accounts of the test series with England that never took place. The games are being played by an ICL 1900 computer which has been programmed with the records of batsmen over their past 50 first class games and for bowlers 25 matches have been used.

Even the small variables have not been left out; the computer is programmed for such items as the new ball and the state of the pitch. Team tactics are governed by a captain who programmes the computer on team positions and play tactics.

At the start of the first match John Edrich, the England opener, was clean bowled by the first ball-proving even a computer can keep the surprises in the game.

By W. W. McLEAN, b.Sc.

0F THE many methods of comparing frequencies and phase difference, the phase splitter circuit provides all the visual advantages of the Lissajous figures, but provides a clearer display of phase difference and allows a wide range of measurements of even numbered frequency ratios (as high as $50: 1$) and a very precise determination of odd-numbered frequency ratios. The simple circuit consists only of resistors and capacitors.

This article describes a development of the ideas behind the circuit in four stages. The cycloid patterns are produced, in effect, as if the spot of the c.r.o. were on the tip of a vector rotating on the tip of another rotating vector. The shape of the patterns depends on (a) the frequencies of the rotating vectors, (b) the amplitudes of the alternating voltages, and (c) on whether the vectors are rotating in the same or opposite directions.

STAGE I

At the mention of frequency comparison, the familiar display of Lissajous figures immediately springs to mind. The two frequencies are connected, as in Fig. 1, to the X and Y plates of the c.r.o. One member of each pair of plates is common to both deflecting circuits.

For two sources of the same frequency (and the same amplitude), the c.r.o. spot traces out a straight line, an ellipse or a circle depending on the phase difference between the sources. If the two sources have slightly different frequencies, the phase of one will gradually overtake that of the other and the pattern will slowly change through the complete sequence $0-360$ degrees. This is shown in Fig. 2.

STAGE 2

One pattern which we will follow up is for the $1: 1$ ratio with a phase difference of 90 degrees (Fig. 3).

Fig. I. Simple method of displaying Lissajous figures on an oscilloscope connecting to the X and Y plates

Fig. 3. Vector diagram indicating phose difference of 90°

Fig. 2. Basic Lissajous patterns indicating phase differences (a) $0^{\circ}\left(360^{\circ}\right)$, (b) 180°, (c) 90° or 270°, (d) 45° or 225°, (e) 135° or 315°

Fig. 5. Basic circuit for cycloid frequency measurement. Here the numbered outputs refer to the oscilloscope connections for horizontal and vertical amplifiers

Fig. 6. One segment of a polar oscillograph or
spirograph

Hypocycloid with full loops

Epicycloids

The oscilloscope is set up with an a.f. signal generator and phase splitting circuit for displaying cycloids

Assuming that when the voltage source is positive, the spot is deflected as indicated by the arrows for the appropriate sources, and further that the voltages have the same amplitude and the c.r. tube the same deflection sensitivity on both of its axes, the application of the mains (sinusoidal) voltage for f_{2} will produce a circle with f_{1} if their phase difference is 90 or 270 degrees.

STAGE 3

With only one frequency source, the same pattern is obtained with the circuit of Fig. 4, which serves as a simple phase splitting circuit. The voltage across C (taken to the Y plates) being 90 degrees out of phase with that across R (taken to the X plates).
If the value of R is equal to the reactance of C and if the X and Y gain controls (sensitivity. of deflection) have been adjusted to equality, the spot traverses a circle at the frequency of the supply source. The angular displacement (rotation) of the spot is proportional to the time $(1 / f)$ and the radius of the circle is proportional to the peak value of the voltage across C and that of the voltage across R .
If $\mathrm{C}=0.1 \mu \mathrm{~F}$, then its reactance at mains frequency of 50 Hz is $1 /(2 \pi f C)=31,840$ ohms. The voltages across C and R are equal. Otherwise a circular trace would be obtained if $V_{\mathrm{c}} \times Y_{\mathrm{gain}}=V_{\mathrm{R}} \times X_{\text {gain }}$.

STAGE 4

The basic circuit for frequency comparison with cycloids is shown in Fig. 5. The 50 Hz reference

Epicycloids, loops now peaked

Epicycloids

Epicycloids, loops now peaked
frequency is f_{2} and R_{2} is adjusted to the reactance of C_{2}.
R_{1} may be adjusted to be equal to the reactance of C_{1} for the unknown frequency f_{1}. If the voltages across R and C are applied to the c.r.o. the spot should trace out a circle in each case.

If the pairs of voltages are applied simultaneously, the spot traces out the cycloids. The epicycloid is for the vectors rotating in the same direction; the hypocycloid for the vectors rotating in opposite directions.

INTERPRETING THE CYCLOID PATTERNS

Fig. 6 shows part of a polar-oscillograph or spirograph. For one complete loop-the-loop cycle, the reference vector rotates through an angle ω while the added vector rotates in the same time through an angle $360+\omega$ (for the epicycloid) or $360-\omega$ (for the hypocycloid). The frequency ratio $m=f_{1} / f_{2}$ is proportional to the ratio of these angles;

$$
m=\frac{360+\omega}{\omega}=\frac{360}{\omega}+1 \text { (epicycloid) }
$$

and

$$
m=\frac{360-\omega}{\omega}=\frac{360}{\omega}-1(\text { hypocycloid })
$$

If the ratio

$$
\frac{360}{\omega}=\frac{s}{p}, \quad \text { then } \quad m=\frac{s}{p}+1 \text { (epicycloid) }
$$

Outside loop patterns showing ratios of less than I
and

$$
m=\frac{s}{p}-1 \text { (hypocycloid) }
$$

where s is the number of loops or cusps in the pattern, and p is the number of complete revolutions of the spot for a complete pattern. This can be found by counting the number of intersect ons along a radius from the centre of the figure. If the radius goes through a cross over point, count 2 . Cross-over points are easily distinguished from peaks or sharp loops.

PRACTICAL CIRCUITS

The basic circuit in Fig. 7 is practical, of course, and is easily set up on a circuit board of perforated hardboard, size $10 \mathrm{in} \times 8 \mathrm{in}$, using spring connectors.

If the whole audio frequency range has to be coped with, capacitors of value $0 \cdot 1,0.05,0.025,0.010,0.005 \mu \mathrm{~F}$ can be inserted at C 2 . If a reference frequency other than 50 Hz is to be used, a similar set of capacitors can be used at Cl (Fig, 7).

Whether you will get an epicycloid or a hypocycloid depends on the phase of the voltages arriving at the oscilloscope. By throwing the reversing switch S1 you can change from one kind of cycloid to the other.

A $0-20 \mathrm{~V}$ a.c. supply is suitable for the reference frequency. It is possible by switches (not shown in the diagram) to switch off either of the signals and adjust the circles individually and then to switch over to both frequencies to produce the combined pattern.

Fig. 7. Circuit for, showing epicycloids and hypocycloids

Fig. 8. Alternative circuit to that shown in Fig. 7

Fig. 9. Vector diagram showing phase angle accuracy

Fig. 10. The determina= tion of frequency ratio by counting intersections of the trace on an imaginary axis

Fig. II. Cycloid patterns of various frequency rotios.

As the frequency of one source is increased, the rate at which the pattern changes is increased, but at certain frequency ratios, stationary patterns appear. These patterns are known as Lissajous figures, from which the frequency ratio can be obtained.

In general, if vertical and horizontal lines are drawn (in imagination) on the pattern and the number of intersections counted, the ratio of these numbers gives the frequency ratio of the two sources. If the line is drawn where the trace crosses itself, two intersections on that line are counted (see Fig. 10).

If the frequencies are not in the exact ratios above, the pattern goes through a complete precession of figures. The frequency of repetition is equal to the difference between the frequencies of the two sources.

The determination of larger frequency ratios such as $14: 3$ is not easy because of the difficulty of separating and counting the number of loops in the complex trace produced; phase comparison is almost impossible.
The transformer in the practical circuit has three separate windings, each of 100 turns of $38 \mathrm{s.w.g}$. enamelled copper wire, on two C-cores. By reversing the connections A and B the epicycloids can be changed to hypocycloids.

TARHET PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direet to the firm concerned.

PRINTED CIRCUIT BOARDS

Many of our readers showed great interest in our Rhythm Generator published in the November and December 1968 issues, but seemed to have been deterred in some cases by the complex wiring appearance of the prototype.

It should be of interest to many, therefore, that a printed circuit board has been developed to make easier, neater and quicker construction. Designed and supplied by Almary Designs, 12 Lattimore Road, Wheathampstead, Herts., the printed board is supplied undrilled with a circuit layout plan and costs 29 s 6 d including postage.

The board measures $14 \frac{3}{4} \mathrm{in} \times 5 \frac{1}{4} \mathrm{in}$ which is approximately the area of the four Letrokit panels used in the original design. With all the components mounted on one side of the board, all parts of the circuit are easily accessible for testing and fault finding.
S.D.C. Products (Electronics) Ltd., have extended their range of modular solderless breadboarding systems to include two new boards, intended primarily for integrated circuits and discrete components.

The μ-DeCs can accommodate two 16-lead digital integrated logic (DIL) modules or four 10-lead TOS modules. The T-DeCs, intended primarily for discrete components, can also accommodate one DIL module or two 10 -lead TO5 modules.

Spring contacts are of heavy gauge phosphor bronze either silver plated or gold over nickel plated finish. The layout of the parallel contact strips are arranged on two panels, the rows being 5 mm apart. This spacing enables short lead devices to be easily inserted directly into the boards.

All DeCs may be interlocked to give a greater working area; full details of the new boards can be obtained from S.D.C. Products (Electronics) Ltd., The Corn Exchange, Chelmsford, Essex.

WIRING BOARD CASE

Two new width sizes have been added to the Chilworth range of portable module cases manufactured by Vero Electronics Ltd. Making six new sizes in all, these cases are designed for use in conjunction with standard modules from the Vero modular rack system 1A. Guides are located in the cases on special trays, and fitted to allow either single or multiple combinations. A detachable rear panel is supplied as standard.

DRY JOINT LOCATOR

To counter the problem of solder joint failure (i.e. "dry" connections), Davian Instruments are now manufacturing a continuity measuring device to detect dry joints.

The unit is basically a linearscaled ohmmeter of variable (normally preset) sensitivity, and either mains or battery powered. The meter uses low voltage and high current to measure low resistances. By using the high current to measure low resistances any dry joints will be shown by the high joint resistance.

A good soldered joint should have a resistance of less than 50 milliohms and dry joints normally have a resistance greater than 0.5 ohm. Other possible applications are: investigating earth loops and return paths; testing coils for shorted turns and measuring relay contact resistances.
Sensitivity is continuously adjustable with a minimum accuracy of 5 per cent f.s.d. The meter has an adjustable full scale deffection of

Davian dry joint meter from Techmation

Wiring board case manufactured by Vero Electronics
0.5 ohm minimum and 5 ohms maximum. In order to protect the meter and circuit under test, the maximum applied voltage is limited to less than 1 volt. The applied current is 250 mA on the minimum range and 25 mA on the maximum. Resolution at 1 per cent f.s.d. is 5 milliohms at minimum and 0.05 ohm at maximum reading.

The Davian Dry Joint Locator costs $£ 17$ for the battery version and £1910s for the mains version; postage and packing is extra. The meters and further information are available from Techmation Ltd., 58 Edgware Way, Edgware, Middlesex.

P.E. Rhythm Generator printed circuit board and circuit sheet supplied by Almary Designs

μ-DeC experimental circuit board marketed by S.D.C. Products (Electronics) Ltd.

Miniature mains transformers from Belclere

Carr Fastener press-fit switch

Panel mounting fuseholder produced by A. F. Bulgin

MINIATURE

TRANSFORMERS

A new "off-the-shelf" range of miniature mains transformers has recently been introduced by the Belclere Co. Ltd., 385/7 Cowley Road, Oxford.

Outputs range from $3-0-3$ volts to $20-0-20$ volts and each transformer delivers up to 600 mW . The current output ratings vary from 30 mA to 200 mA . By not using the centre tap you can obtain 6 V at $100 \mathrm{~mA}, 12 \mathrm{~V}$ at $50 \mathrm{~mA}, 18 \mathrm{~V}$ at $33 \mathrm{~mA}, 24 \mathrm{~V}$ at 25 mA or 40 V at 15 mA .

These transformers are varnish inpregnated and supplied with printed circuit pin mounting terminals, or can be obtained with clamp mounting fixing with or without an electrostatic screen.

Belclere also run a special subminiature transformer design service to order and experimenters are recommended to write to them for further details.

SWITCH

A new type of rocker switch is now being manufactured by Carr Fastener Co. Ltd., Stapleford, Nottingham.
The switch press-fits into a rectangular hole and is rated at 13 amp 250 volts a.c. A useful feature of the switch is that a number of these switches can be ganged together in one hole, a self-retaining push-on linking bar can be supplied when it is required to link any switches electrically.

FUSEHOLDERS

The incorporation of fuses in electronic apparatus is always a recommended safety precaution, particularly for experimental work.
The best type of equipment fuse holder is probably that intended for panel mounting.

A new range is being produced by A. F. Bulgin \& Co. Ltd., Bye Pass Road, Barking, Essex, that follows this style. When the screw cap is withdrawn with the fuse, the circuit is automatically disconnected; it is virtually impossible to short out the contacts accidentally.

These new moulded construction fuseholders carry $\frac{1}{4}$ in diameter fuses and are rated at 15 A at 250 volts or 20A at 32 volts. Heavy overload tests carried out with a 20A fuse under direct "short circuit" conditions resulted in no damage to fuseholder or fuse cartridge ferrules.

POWER SUPPLY

A new additional range of stabilised power supplies have been added to the Coutant electronic products. Known as the LM series of power supplies, these units use cascade connected voltage amplifiers to provide the high gain necessary for maximum stability and minimum noise. A fast acting current limiting circuit protects the power supply from damage in the event of an overload or short circuit.

There are two models in the series: the LM $50 / 30$ is a 0 to 30 V d.c. at 0.5 A model and the LM $100 / 15$ which is a 0 to 15 V d.c. at 1 A model. Each model includes both coarse and fine panel-mounted potentiometers for accurate adjustment of the output voltage. A built-in meter can be switched to read either the output voltage or current. The output "terminals are completely isolated or "floating" and either terminal may be earthed.

The output impedance is less than 5 milliohms at d.c. and less than 500 milliohms at 500 kHz . The ripple voltage is less than 1 millivolt peak-to-peak.

Complete details and specification of the LM series can be obtained from Coutant Electronics Ltd., 3 Trafford Road, Reading.

FILM FOR EDUCATION

A new, 36 -frame, 35 mm colour film entitled "Integrated Circuits" is now available to schools, colleges, evening institutes, clubs and training establishments from the Mullard Educational Service, Mullard House, Torrington Place, London, W.C.1.

The film is intended as an introduction to the subject for students of semiconductor technology and for those with a wider interest in electronics. Although an elementary knowledge of semiconductors is desirable, it is not essential. The notes accompanying the film can easily be edited to suit a wide range of academic levels.
The filmstrip commences with a brief introduction to integrated circuits and illustrates the great reduction in size that the integration technique has made possible. Then follows a step-by-step description of the manufacturing processes; preparing the silicon slice, oxidisation, photo-etching, diffusion of the n-or p-type materials, cutting the windows, etc. and finally a description of the testing and encapsulation of integrated circuits is given.

The filmstrip costs $£ 2$ from Mullard Ltd., and a set of slides can be purchased for $£ 210 \mathrm{~s}$, including postage, from The Slide Centre Ltd., Portman House, 17 Brodrick Road, London, S.W.17.

AGENT

The West German firm of Richard Hirschmann have appointed Electroustic Ltd., 73b North Street, Guildford, Surrey, their sole U.K. agents.
Amongst the wide range of components are terminals, panel mounting and spade types; single-pole sockets, insulated and non-insulated; banana plugs and sockets; five styles of test prods; crocodile clips, insulated and non-insulated; and continental plugs and sockets.

Catalogues and full information is available from Electroustic Ltd.

Listen!

EEMIETMTIT

EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.
These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.
They have many exclusive features. The range includes the unique 950 system with a 18 inches x 14 inches bass unit. power output 50 watts R.M.S.

Send for literature and price lists to:

EMI

EMI SOUND PRODUCTS LTD., HAYES, MIDDX. TEL: 01-573-3888 EXT. 667

prepare now for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.
CREI Study Programmes are directly relaied to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now-enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer SystemsTechnology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

$\overline{C R E I}$

CREI (London), Walpole House,
173-176 Sloane Street, London S.W.1.
A Subsidiary of McGraw-Hill Inc.
Post this coupon today for a better future

[^2]

UNLIMITED!

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

TRANSISTOR CHECKOUT

THe circuit shown in Fig. 1 has proved very useful for checking gains of "surplus" type transistors. The battery BY1 is connected by a switch S 2 for $p n p$ or $n p n$ types. The middle position is off.
To set up the tester, the 5 kilohm potentiometer VR3 is adjusted so that an external voltmeter, connected across points (a) and (b), will read 6 volts. A known good transistor is then connected to the test socket or test leads, and a multimeter switched to its $50 \mu \mathrm{~A}$ range connected across point (a) and position 2 of switch S1. With switch S1 in position 1, VR2 is adjusted for a reading of $25 \mu \mathrm{~A}$. Then the test lead on position 2 is transferred to position 3 and VR1 adjusted for a reading of $50 \mu \mathrm{~A}$.
Operation is now fairly simple; a sample transistor is connected into the circuit and pnp or npn selected by S 2 . When S1 is in position 1, ICEO is measured. When the switch is in position 2, d.c. β or h_{FE} can be measured, assuming f.s.d. on the meter is 100 . For a.c. β or $h_{f e}$, with the switch in the same position, the reading in milliamps is taken. Call this I_{1}. Then the reading in milliamps is taken with the switch in position 3. This is I_{2}. Then, h_{fe} is calculated from:

$$
h_{\mathrm{fe}}=\frac{I_{2}-I_{1}(\mathrm{~mA})}{0.025\left(\text { change in } I_{\mathrm{b}}\right)}
$$

C. Woods, Oadby, Leicestershire.

MORE PLAYERS FOR "STOCKMARKET"?

IHAVE just built the Electronic Stockmarket shown in your December 1968 issue. In doing so I have found it possible to accommodate several players at low cost. The "bank" and "current" account capacitors can be connected to a two-pole multiway switch. By this means only one set of push buttons and one detector circuit are required and the number of players is only limited by the number of positions on the switch. In practice I have used a three-pole six-way switch, the other pole being used to light low powered indicator lights to show which player is "dealing". The switch must of course be a break-before-make type.

Added interest is achieved by using $100 \mu \mathrm{~F}, 200 \mu \mathrm{~F}$ and $300 \mu \mathrm{~F}$ capacitors in the commodity bank, introducing three types of shares: (1) "guilt edged"-with small gains and losses; (2) "normal"-with average gains and losses; (3) "high risk"-with large gains and losses.

These are easily marked by using different coloured lettering.
E. B. Eves, East Grinstead,

Sussex.

INTEGRATED CIRCUIT HOLDER

Have noticed that many of your contributors who use integrated circuits have warned constructors to be absolutely sure of the circuit's correct position before soldering. I have an idea that might save integrated circuits from destruction during desoldering of a faulty circuit.

If the integrated circuit is soldered into a 5 -pin continental plug (as used on many tape recorders), five of the eight leads are accommodated. The earth shield can be used as another connection, leaving two more leads. If needed these can be soldered to flexible leads and taken out of the top of the plug

The socket can be soldered onto a circuit board. The metal inner case can also be used as a heatsink if desired.
L. M. Newell, Woodbridge,

Suffolk.
A B9A valveholder and plug would provide the required number of connections.-Ed.

Fig. I. Circuit diagram of the transistor checker

THREE MILE

RADIOTELESCOPE

Sanction has been given by the Science Research Council for the new telescope requested by Professor Sir Martin Ryle for the Mullard Radio Astronomy Observatory of Cambridge University. The cost is expected to be of the order of $£ 2 \cdot 1$ million and the work will take about two years to complete.

The old proverb that "It's an ill wind that blows nobody good" is exemplified here. The ideal site for the aerial array is one of the Beeching redundant sections of the CambridgeBedford railway track which runs in a straight line almost due east and west at Lord's Bridge. Named after this station, the Observatory site and the railway is on the northern boundary of the site. The straight stretch of track is about three miles long.
Lord's Bridge station which has stood derelict and is roughly in the centre of the three mile stretch will be used as a control room. It is indeed fortuitous that this was available, for had it not been so there would have arisen much controversy over any negotiations if more farmland had to be taken over.

RECEIVERS

The new telescope will consist of eight dish aerials each 42 ft in diameter. These aerials, 10 be supplied by the Marconi Company, are the direct descendents of the 40 ft dishes built for a military programme. Each dish is made up of aluminium sheets mounted on a quasi-paraboloid steel structure. They are to be of the Cassigrain type where the ray path is from the source to the dish then to a secondary reflector, which is quasihyperboloidal, and from there the ray passes through the main dish to the two detachable receiver horns.

One receiver will operate at 2.7 GHz , the other at 5 GHz and will be mounted on the hub structure. These receivers will be provided by Professor Ryle's own group. The front end of the receiver, consisting of a parametric amplifier and mixer will be mounted at the telescope. The i.f. signals will then be fed to the control room for combinations determined by the programme of work.

COMPUTER CONTROL

In the control room there will be a Marconi Myriad II time sharing computer. This will, besides calculating the linear and angular positions of the movable aerials, combine the incoming signals in each of the 16 possible pairings of the dishes in a simultaneous interferometer arrangement.
The output of the computer drives an $\mathrm{X}-\mathrm{Y}$ plotter which provides a map of the radio sources in equal energy contours. The result is a map looking somewhat like a contour relief map where sources are easily located.

The computer will also control a complex network of delay lines which

are necessary for equalising phase delays which arise as a result of the displacement of individual aerials along the baseline.

TRACKING SYSTEM

Each aerial is mounted on a tripod system which is fully steerable, and are grouped on a fixed and moving pairing plan. Four of the dishes on the western side of the system will be fixed in positions on concrete platforms $1 \cdot 13 \mathrm{~km}$ apart. On the eastern side the other four dishes will be fitted with bogies and travel on an 8.5 metre wide railway track which will be 1.17 km long (see Fig. 1).

These four will be used to make up the combinations of interferometers together with the four fixed dishes. Altogether there are 32 specific positions which will be available to an accuracy of less than one millimetre. The railway track itself will be held to

Fig. I. Layout of the three mile telescope

Fig. 2. How the aperture is "filled" by the rotation of the earth and the change of position of the moveable derial on successive scans of the sky

Fig. 3. An example of aperture synthesis such as was used in early Cambridge work
a level of accuracy of one millimetre. The resolving power of the telescope will be of the order of one to two seconds of arc.

The new telescope will operate in the same manner as the present one , mile telescope and works on the principle of aperture synthesis, which has been the special technique pioneered by Professor Ryle and his group.

Aperture synthesis is based on the covering of large areas using two or more individual aerials. If one aerial is fixed and another moved in specific relation to it, and a plot over 24 hours is made of the sky in each position (see Fig. 2), then the results in digitised form can be fed into a computer. The result is a map of all the sources seen. If the maximum distances so used are, for example, one kilometre in extent east to west and north to south, this is equivalent to an aerial one kilometre square (see Fig. 3).

RESEARCH NEEDS

The one mile telescope which has already shown its value in the resolving of small sources (or very distant sources) made the need for an ever larger telescope desirable. The resolving power of this telescope is about 20 seconds of arc but it has shown that there are more sources which require the higher resolution of the new telescope. The need to understand the mechanism of quasars and galaxies is of great importance to cosmologists and astrophysicists so that this new venture is another important step in the understanding of the Universe.
The advent of the new telescope does not reduce the work of the one mile telescope, for this will continue with source counting when the three mile unit comes into operation.

Now that the intention of the Science Research Council to support only two schools of radio astronomy has been announced, there will be an end to delay on the Mark 5 telescope for Jodrell Bank. This is to be a 400 ft diameter dish with full facilities.

The 250 ft dish is to be overhauled and modified. The modification will be the upgrading of the reflecting surface to make it suitable for wavelengths as short as 3 cm . This will be accomplished by resurfacing of the central area to a diameter of 100 ft .

DRESS REHEARSAL

Apollo 9 was successfully landed at the time of going to press and marked a significant step forward to man landing on the moon. Mechanical manoeuvres included taking the moon landing craft through its own orbit and redocking to the main spacecraft. Two astronauts transferred to the lunar landing vehicle through a connecting tunnel. Lunar landing with Apollo 10 and 11 is expected in May and July.

You wont helieve this

 IT-18
 but you can own a circuit tester for under fib

THE HEATHKIT TEST TWINS are now available at just a fraction of the price of comparable models. How come? Because we have eliminated our assembly costs by giving YOU the satisfaction of building your own equipment.

HEATHKIT IT-18 PORTABLE IN-CIRCUIT TRANSISTOR TESTER

Heath engineers have brought about a breakthrough in transistor servicing. They have taken the high cost of transistor testers and brought them down to earth. The IT-18 has all the facilities you need for fast, in-circuit transistor testing.

HEATHKIT IM-17 PORTABLE SOLID STATE VOLT-OHM METER

Transistorised 'valve-voltmeter' with an 11 meg-ohm input impedance. Battery powered to work anywhere. Features zero-adjust controls, a DC polarity reversing switch to eliminate switching leads, plus continuous rotation 12 position function switch.

Full specifications of these and many other units will be found in our 1969 catalogue - it's yours for the asking.

SEOOOP/NEW LABORATORY TEST EQUIPMENT AT BARGAIN PRICES

 10.05 to 5 ohms 20.5 to 50 ehms 35 to 500 ohms 450 to 5,000 ohms 5500 to 50,000 ohms. Scales: Switched.
Slidewire: 0.5 to 50. Galvanometer Scale: 10-0-10. Case: Moulded plastic. Internal Source: 4 V , Dry battery. Operating Temperature: +10 to $+35^{\circ} \mathrm{C}$. Operating Humidity: Up to 80% R.H. 0.9 kg . List price $£ 25$. Our price $\mathrm{E9} .19 .6$

ging MILLIAMMETER Specification. Type:
Moving Coil, D.C. $0-500$ milliamps. Chart Width: 100 mm . Scale Length: 127 mm . Chart Speeds: 20, 60, 180, 600 1800 \& 5400 mm , hr cision: $540 \% \mathrm{~m} / \mathrm{hr}$ Shunts 75 mY . 1.5% Shunts: Operating (Internal). Operating termperaDimensions: 180 h $163 \mathrm{w} \times 245 \mathrm{~mm}$ Weight 5.5 kg . Complete with 10 chare rolls gears, with oipert sealo gears, inks pipette, scals om List price $\mathbf{6 6 5}$. Our price f 35

MUTUAL INDUCTANCE BOX
TYPE R. 7005
Specification. Range: $0-11.110 \mathrm{mH}$ in 0.002 mH divisions. Accuraey:
$\pm\left(0.3 \times \frac{0.012}{M}\right) \%$ where $M=$ value of mutual inductance in mH set on the box. Frequency range $0-2.5 \mathrm{Kc} / \mathrm{s}$ for all decades $0-1.5$ except
Maximum current 0.5A for decades IA for variometer (both primary and secondary windings). Case: Polished teak.
List price $f 65$. Our price $£ 26.10 .0$
MUTUAL INDUCTANCE COIL TYPE R. 7006
$\begin{array}{ll}\text { Specification. Value: } \\ 0.01 & \mathrm{H}, \\ 0.001 & \mathrm{H}\end{array}$ $\begin{array}{lll}0.01 & \mathrm{H}, & 0.001 \\ \text { Accuracy: } & \mathrm{H} . \\ & +0.3 \%\end{array}$ $\begin{array}{cc}\text { Accuracy: } & \pm 0.3 \% \text { Fre- } \\ \text { Operating } & 0 \text { Kin }\end{array}$ quency: $5 \mathrm{Kc} / \mathrm{s}, 10 \mathrm{Kc} / \mathrm{s}$. Maximum current: 1A, 3A. Resistance of coils: 4 ohms, I ohm. Case: Moulded plastic.
List price 8 gns . Our price 50/-
POTENTIOMETRIC 6 POINT STRIP CHARTLRECORDER. For use with thermocouplers, pyrometers and other e.m.f. sources. 6 point. Range $(-100)-0-(+100) \mathrm{mV} ; 0-1,600^{\circ} \mathrm{C}$. $6 \frac{11}{2 \prime}$ chart width; pen speed 8 secs. Accuracy $\pm 0.5 \%$; 10 chart speeds $20-720 \mathrm{~mm} / \mathrm{hr}$. Tropicalised. including tools and spares. Listed at over $£ 200$. Our price $£ 79.10 .0$. 12 point version available at $£ 99.10 .0$.

PLEASE NOTE. Alljitems are genuine brand new high quality test instruments made to precise standards for laboratory use. Illustrated Ieaflets available on request. Carriage extra. SPECIAL OFFER. If purchased together the following instruments will be supplied for the inclusive price of 665
High Value Resistance Box, Decade Capacitance Box, Mutual Inductance Box, Mutual Inductance Coil.

P. F. RALFE RADIO
 IO CHAPEL ST., LONDON, NWI Tel. 01-723 8753

PORTABLE MULTIRANGE METER

pecification
Ranges: $0-60 \& 0.300 \mu \mathrm{~A}$ D.C. $0.3,0.30 \&$ 0.120 mA D.C. $1.2 \& 12 \mathrm{amps}$ D.C. $0.6-3$ \& 6.30 mA A.C. $24-120 \mathrm{~mA}$ A.C. $0.24-1.2 \mathrm{~A}$ A.C 3-12-30-300-600-1,200 \& 6,000 V, D.C. 0.6-3 2.4-12, 6-30, 60-300, 120-600, 240-1,200 \& $1,200-6,000$ V, A.C. $3-333$ ohms, $0.3-30$ Kohms, 0.03-3 megohms D.C. Resistance -12 to +78 Decibels. Frequency: 50 e.p.s. Input Resistance D.C.: 20,000 ohms/volt. Input Resistance AC..: $\mathbf{2 , 0 0 0}$ ohms/volt. Temperature Range: -10 to $+50^{\circ} \mathrm{C}$. Dimensions: $255 \times 215 \times 170 \mathrm{~mm}$. Weight: 8kg. Supplied with; 2 voltage dividers, H.V. leads, spare rectifiers, 1.5 \& 22.5 V battery. List price f 25 . Our price E12.19.6

DECADE CAPACITANCE BOX TYPE

Specification. Range: $0.00002 \mu \mathrm{~F}-1 \mu \mathrm{~F}$ in $0.00002 \mu \mathrm{~F}$ steps. Accuracy: 0.05%. Frequency Range: $40 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ for all decades except XI $=40 \mathrm{c} / \mathrm{s}-5 \mathrm{Kc} / \mathrm{s}$. Case: Hammer finished stove enamel.
List price $\mathbf{6 6 0}$. Our price $\mathbf{E 2 2 . 1 0 . 0}$
HIGH VALUE RESISTANCE BOX

Specification. Range: $0.01-11.10$ Megohm in 0.01 Megohm divisions. Accuracy: 0.05%. Maximum power rating: 0.1 W per step. Case: Hammer finished stove enangel.
List price $£ 60$. Our price $£ 22.10 .0^{\circ}$
PLUG TYPE RESISTANCE BOX

Specification. Rangex 0.1 to Steps: 0.1 ohm. Accuracy: 0.1%. Rated Power Per Step: Manganin.
Operating Temperature: +10 to $+35^{\circ} \mathrm{C}$. Operating Humidity: Up to 80% R.H. Dimensions: $320 \times 190 \times 165 \mathrm{~mm}$. Weight: 4 kg . List $>$ price $£ 20$. Our price $£ 8.17 .6$

RADIO COMMNICATION HANDBOOK
 By R.S.G.B.

$63 /=$
Postage 4/-
TRANSISTOR TRANSMITTERS FOR THE AMATEUR, by Donald L. Stoner. 21/. Postage 1/-.
49 EASY TRANSISTOR PROJECTS, by Robert M. Brown. 16/.. Postage 1/..
FET PRINCIPLES, EXPERIMENTS AND PROJECTS, by Edward M. Noll. 40/-. Postage $1 /-$
COLOUR TELEVISION, by G. N. Patchett. 40/-. Postage 1/-.
BEGINNER'S GUIDE TO TELE. VISION, by Gordon J. King. 18/.. Postage

RADIO AND ELECTRONIC HANDBOOK, by G. R. Wilding. 17/6. Postage 1/-.
RADIO AMATEUR OPERATOR'S HANDBOOK. 6/. Postage 6d.
GEC TRANSISTOR MANUAL. 21/. CATALOGUE. 2/.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
|9-2| PRAED STREET
LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

COMPONENTS
 BY RETURN OF POST
 $(\pm 10 \%)$ RD POLYESTER CAPACITORS $(\pm 10 \%)$
 $\begin{array}{ll}400 \text { Volt; } \quad 0.001 \mu \mathrm{~F}, & 0.0015 \mu \mathrm{~F}, \\ 0.0033 \mu \mathrm{~F}, & 0.0022 \mu \mathrm{~F},\end{array}$ $0.0033 \mu \mathrm{FF}, 0.0047 \mu \mathrm{~F}, 0.0068 \mu \mathrm{~F}, \quad 0.01 \mu \mathrm{~F}, \quad 6 \mathrm{~d}$, $\begin{array}{ll}0.015 \mu \mathrm{~F}, & 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 7 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 8 \mathrm{~d} \text {. } \\ 0.068 \mathrm{~F}, & 0.1 \mu \mathrm{~F}, 9 \mathrm{~d} \text {. }\end{array}$
 160 Volt; $0.01 \mu \mathrm{~F}, \quad 0.015 \mu \mathrm{~F}, \quad 0.022 \mu \mathrm{~F}$, 6 d . $0.33 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 7 \mathrm{~d}, \quad 0.1 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 10 \mathrm{~d} .0 .33 \mu \mathrm{~F}, \mathrm{I} / 2 \mathrm{~d} .1 \mu \mathrm{~F}, 47 \mu \mathrm{~F}$, $1 / 4$ d. $0.68 \mu \mathrm{~F}, \mathrm{2} /-1.0 \mu \mathrm{~F}, 2 / 6 \mathrm{~d}$.
 250 Volt, P.C. Mounting Miniature; $0.01 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 8 \mathrm{~d}, 6 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 7 \mathrm{~d}$.
 SUB-MINIATURE ELECTROLYTIC
 CAPACITORS ($-10 \%,+50 \%$) all values in $\mu \mathrm{F}$
 $\begin{array}{ccccc}6 \text { Volt } & 50 & 100 & 200 & 320 \\ 10 \text { Volt } & 6.4 & 10 & 16 & 20 \\ 10 \text { Volt } & 25 & 16 & 125 & 200\end{array}$
 $\left.\begin{array}{rrrrr}10 \text { Volt } & 25 & 64 & 125 & 200 \\ 15 \text { Volt } & 10 & 16 & 25 & 40 \\ 25 \text { Volt } & 6.4 & 10 & 16 & 25\end{array}\right\} 1 /-$ each

CERAMIC DISC CAPACITORS
(HUNTS)
$150 \mathrm{pF}, 220 \mathrm{pF},(\pm 20 \%) 330 \mathrm{pF}$
pF, $680 \mathrm{pF}, 1000 \mathrm{pF},(-20 \%+80 \%)$
d. each

HIGH STAB RESISTORS (CARBON FILM) Very Low Noise
0.5 watt $5 \% 4.7$ ohms to 2.2 M ohms 2 d each
0.5 wate $10 \% 4.7$ ohms to 10 M ohms 2 d each

DIODES-OA85, OA91, I/6 each.
SILICON RECTIFIERS
BY236 0.5 amp 800 volt $3 /-$ each 4 for $11 /$-.
C.W.O. POST AND PACKING ADD I/ON ORDERS UNDER $£ 1$.
MAIL ORDERS ONLY TO
YATES ELECTRONICS (FLITWICK)
LTD.
29 LYALL CLOSE,
FLITWICK, BEDS.

THE simplest radio control system uses an unmodulated carrier, and can control only one relay in the model; the addition of a modulator stage in the transmitter and filters in the receiver not only improves selectivity, particularly with super-regenerative receivers, but allows the control of a number of relays.

The modulation "tone" is normally detected, amplified and either applied to a reed bank (mechanical resonant switches) or is electrically filtered and operates switching transistors. Thus, a three tone transmitter (three channels) can independently control three operations in turn, or can control more than three if they are linked (sequential).

PROPORTIONAL CONTROL

If the transmitter has multiple modulators then simultaneous modulation by different tones allows simultaneous control of two or more operations; a further development of this is the "proportional" system in which the receiver output is directly applied to

Fig. I. Circuit diagram of the basic tone filter
a servo motor which develops a torque or displacement proportional to the change in frequency of the modulated tone.

A filter is necessary for each channel of the system; the filter module illustrated consists of four sections which may be connected in series, tandem, or separately as four filters. Banks of filters may be made up as desired, the module being designed to be divided on either axis for packing, each filter weighing less than a half-ounce.

CIRCUIT DESIGN

The circuit of the tone filter (Fig. 1) is relatively simple but many factors affect its design and should be considered when "tailoring" the unit to meet individual needs.

The resonant frequency of a tuned circuit is given by $f=1 / 2 \pi \sqrt{ }(L C)$ and will be the same provided the product of L and C is maintained constant; there is, however, an optimum value for the L to C ratio. The frequency range considered is from 1 to 7 kHz and for values of L less than 100 mH , capacitors greater than $0.5 \mu \mathrm{~F}$ would be required. Since electrolytic capacitors may not be used, the size of the capacitor needed would be excessive for radio control applications.

A reasonable compromise for minimum size and weight of both inductor and capacitor is obtained over the range 0.3 to 1.0 H and 0.0001 to $0.05 \mu \mathrm{~F}$. Series tuned circuits only are considered due to the ease with which the necessary low impedance matching is obtained and the fact that there is no d.c. component in the inductor; there is no need to use a larger core with an air gap to off-set the effects of saturation.

Q-FACTOR

The Q of the circuit is the most important factor and for a single stage filter is determined by $Q=f / B$ where f is the filter frequency and B is the bandwidth (acceptance range) for the low frequency "proportional" signal.

For a tone frequency of say 3 kHz and a bandwidth of 100 Hz , the Q-factor will be $3,000 / 100=30$.

BANDWIDTH

The performance of such a circuit is shown in Fig. 2, the bandwidth being measured at the 3 dB down point (at approximately 70 per cent of the peak signal level).

For a large bandwidth and good adjacent channel rejection, only two channels can be accommodated in the range 1 to 6 kHz (the approximate range of a receiver). To improve upon this two stages are used. If both are tuned to exactly the same frequency the effective Q is greater than that of the individual stages, but if one stage is detuned the effect is to give a wider bandwidth with better rejection of adjacent frequencies. It is therefore possible to use five "proportional"' channels or more simple "reed" tones having a narrow bandwidth.
The frequency range available is limited by the cut-off frequency of the receiver-say 7 kHz for a good superhet receiver-and by approximately 10 times the channel bandwidth, for example, 1 kHz for a bandwidth of 100 Hz , allowing a minimum factor of 10 to 1 (carrier to modulation) for detection purposes.

DESIGN CALCULATIONS

The Q of a coil is defined as $\omega L / R_{1}$ or $2 \pi f L / R_{1}$. Where R_{1} is the effective resistance of the coil-largely
the d.c. resistance at low frequency. A fixed length of wire wound on different magnetic formers will produce values of Q related to the inductance produced at the frequency used: the Q will also be proportional to the frequency provided that the core material is suitable. As an example, the table in Fig. 2 shows the Q-factor for 710 turns of $44 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire on two types of core (d.c. resistance is 66 ohms).
The core material chosen (FX2236) has a Q range of approximately $2: 1$ (Fig. 3) for the frequency range 1 to 6 kHz . The stage Q is determined by the total effective series resistance $R_{\text {tot }}$, i.e. the sum of the coil resistance R_{l}, the source impedance R_{S} and the load resistance R_{L}. The driver output impedance (Z_{0}) is approximately

$$
Z_{\mathrm{o}} \simeq r_{\mathrm{e}}+\frac{R_{\mathrm{s}}+r_{\mathrm{bb}}}{\tilde{h}_{\mathrm{Pe}}}
$$

and is in parallel with the emitter swamp resistor R3. The emitter resistance is

$$
r_{\mathrm{e}} \simeq \frac{(26)}{I_{\mathrm{e}}}+R_{\mathrm{s}}+r_{\mathrm{bb}}
$$

where I_{e} is the emitter current in milliamps, R_{s} is the signal source resistance and r_{bb} the intrinsic base resistance.
continued on page 385

Fig. 3. Graph of Q against frequequency for a coil of 510 turns of 40 s.w.g. wound on an FX 2236 ferrox core

ELECTRONIC COMPONENTS AND EQUIPMENT

NEW RECOMMENDED LINES AT VALUE FOR MONEY PRICES • SEE BACK COVER OF THIS MAGAZINE FOR FURTHER ADVERTS

* STEREO HEADPHONES Adjustable headband. High quality $8+8 \mathrm{ohm}$ phones with - padded earpieces. Fitted jack. Suitable for 3-16 ohms. Frequency range $25 \mathrm{c} / \mathrm{s}$ to $14 \mathrm{kc} / \mathrm{s}$. DHO2S, Price 69!6.
* TRANSISTOR CHECKER Complete capacity for checking all transistors non and pnp for alpha, beta and German. Also diodes complete with leads and instructions. ZQM-2, 65.19.6, p.p. 3/6.
* MULTIMETER Return of a popular model. 2000 ohms/V. $0 / 10 / 50 / 500 /$ 1000 V a.c./d.c. d.c. 0 / $10 / 100 \mathrm{k} \Omega$ । IMa resistance. $d B$ and capacitance scales. Size 5 in x $3 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in. Robust and easy to use. Complete with leads, batteries and THL33A, Price 82/6. Leather Case Price 22/6.
\star SPECIAL OFFER OF EMI TWEETERS - $2 \frac{1}{2}$ in units $6 / 8 \mathrm{~W}, 5 \mathrm{ke} / \mathrm{s}$ to $15 \mathrm{kc} / \mathrm{s}$ 8 ohms (suitable for $3-8$ ohms). Price 12/6, p.p. 1/6. - 3 in units $10 / 12 \mathrm{~W}, 3 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ For 3 to 8 ohms-Price 15/-, p.p. 21- For 12 to 16 ohms-Price 20/-, p.p. 2/-
* SPRING REVERBERATION UNITS 16 ohms input, lok Ω output. Twin spring units. Model HR42, 9 9 in overall $25-30 \mathrm{msec}$ delay, Price $55 /$-. Model HRI62, 167 in overall, $35-40 \mathrm{msec}$ delay, Price $\mathbf{5 6 . 1 0 . 0}$.
* GRID DIP METER All zransistor grid dip meter, absorption wavemeser and osc. detector. Frequency range $440 \mathrm{kc} / \mathrm{s}$ to $280 \mathrm{Mc} / \mathrm{s}$ in 6 coils. Uses 3 transistors diode with $500 \mu \mathrm{~A}$ diode meter. battery. TE15, Price $£ 1$ 1.10.0.
* FiELD STRENGTH METER Covers $1-250 \mathrm{Mc} / \mathrm{s}$. Switches for model control and any application requiring. peaking of transmitters and oseillators. $100 \mu \mathrm{~A}$ meter. Complete with aerial. FSI, Price 45/-.

* SIGNAL INJECTOR

$\Rightarrow \pi m m=5$

New model for checking all audio and RF up to VHF. Simple to use. Battery operated. Output approx. $1 \mathrm{ke} / \mathrm{s}$, $1: 4 \mathrm{~V}$ pp.
Harmonics Up to VHF
SE250B, Price $35 /-$.

* QUALITY PANEL METERS

 38 Series. Faise size $42 \times 42 \mathrm{~mm}$ (15in $\times 1$ IFin). $50 \mu \mathrm{~A}, 3716 ; 100 \mu \mathrm{~A}, 35 /-\mathrm{F}$ $200 \mu \mathrm{~A}, 32 / 6 ; 500 \mu \mathrm{~A}, 27 / 6$; $1 \mathrm{~mA}, 5 \mathrm{~mA}$. $10 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 25$ - each; $10 \mathrm{~V}, 20 \mathrm{~V}, 50 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}$ and 500 V , 25/- each; 1A and 5A, 25/- each. "S meter, ImA, 29/6. VAm meter, $37 / 6$, 65 Series. \quad Face size $86 \times 78 \mathrm{~mm}$ $200 \mu \mathrm{~A}, 47 / 6 ; 500 \mu \mathrm{~A}, 45 /-; 1 \mathrm{~mA}, 5 \mathrm{~mA}$, $10 \mathrm{~mA}, 500 \mathrm{~mA}, 37 / 6$ ' each.' ' S ', meter, $1 \mathrm{~mA}, 42 / 6$. Other ranges and sizes available-state requirements.* 50,000 OHMS PER VOLT MULTIMETER

* SINE/SQUARE WAVE AUDIO CENERATOR
Provides audio output on 4 bands. Sine
wave $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{ke} / \mathrm{s}$, output up to 7 V : wave $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{ke} / \mathrm{s}$, ousput up to 7 V ; square wave $60 \mathrm{c/s}$ to $30 \mathrm{kc} / \mathrm{ss}$. 7 V p-p. Distortion under 2% Output impedance
ik . Variable output amplitude control. Supplied with leads and instructions. A.C. mains operated. TE22, Price E16.10.0, carriage, etc., $10 /-$

* VACUUM TUBE VOLT METER

Features low price for such an instrument. Large 6 in full view scaled meter. 28 ranges. D.C. volts: $\begin{array}{lll}0 / 1 \frac{1}{2} / 5 / 15 / 50 / 150 / 500 / 1500 \text {. A.C. Volts: } \\ 15 / 50 / 150 / 500 / 1500 \text { r.m.s. } & \text { O/I } / 4 / 4 / 14 / 40 / 140 / 400 /\end{array}$ $15 / 50 / 150 / 500 / 1500$ r.m.s. . $0 / 1 \cdot 4 / 4 / 14 / 40 / 140 / 400 /$ $10 \mathrm{k}-100 \mathrm{k}-1 \mathrm{~m}-\mathrm{P}$ iom. Range 0.2 ohm to $1000 \mathrm{M} \mathrm{\Omega} \Omega$. dB scales: 10 to +65 dB . Complete with instruetions and leads. Model T.10.0, p.p. 7/6. H.V. Probe, 50/-. R.F. Probe, 42/6.

* TRANSISTOR POWER ${ }^{1}$ AMPLIFIERS $12 \mathrm{~W}, 3$ ohm, 100 mV input 24 V supply. Model MPA12/3, 4.10 .0 , $12 \mathrm{~W}, 12-16$ ohm, 100 mV input, 40 V supply. Model MPA12/15, \&5.5.0, 25 W , 8-16 ohm, 180 mV input, $50 / 60 \mathrm{~V}$ supply. Model MPA25, 67.10.0, P.p. 4/6. Power supplies:
$24-40 \mathrm{~V}, 90 /-$, P.p. $3 / 6$: $50-60 \mathrm{~V}$, $24-40 \mathrm{~V}, 90 /$, $9 . \mathrm{p} .3 / 6 ; 50-60 \mathrm{~V}$,
 O/P, 7 mV input, operates $12-18 \mathrm{~V}$.
Price $72 / 6$.
- Henry's 320 page Catalogue has over 6,500 stock items. If you read this magazine and have not obtained one. you should-it will save you a lot of money as Henry's stock most things you require in components and equipment at
* EXPERIMENTER'S MODULE

\star CHASSIS PUNCH KIT

Complete kit with punches $\frac{1}{2} \mathrm{in}$, $\frac{5}{6} \mathrm{in}$, $\frac{2}{8} \mathrm{in}$, lin, $1 \frac{1}{6}$ in for metal, plastics, erc., up to 16 gauge. Price 55/-, p.p. 4/6.

2-station, $£ 3.10 .0$; 3 -station, $£ 5.15 .0$; 4-station, 66.12.6 (2-stacion uses no Telephone amplifier, $59 / 6$

Did you know we stock over 1,000 Transistars and Devices?
Ask for Latest FREE List (No. 36).

* MAKE YOUR OWN PRINTED

Supplied complete with copper boards. Templates for shapes, all necessary fluids and pastes. Easy to use. Box forms
dishes. Price I7i6, p.p. 2/-. dishes. Price I7/6, p.p. 2/-.

* BUILD THIS MW/LW TUNER

Complete high quality superhet tuner. Built-in ferrite rod. Batcery operated. construction, 3 transistors plus diode. To Build, 79/6, p.p. 2/6.

CATALOGUE

320 pages with $10 /$ - Discount
Vouchers. Price 7/6, p.p. 2/-

- SALES ASSISTANTS WANTED

EXCEEL

 inMASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE

ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics,
Electronic Maintenance, Servomechanisms, Computer Engineering, Numerica! Control Electronics, etc.

EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS ELECTRONIC SERVICING
R.T.E.B. RADIOITV SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Build your own radio, transistor portable, and professional-type test instruments with an ICS Practical Radio and Electronics Course. Everything simply explained and easy to handle. All components and tools supplied. For details post coupon below.
Member of the Association of British Correspondence Colleges

> FOR FREE HANDBOOK POST THIS COUPON TODAY
> I.C.S., Dept. 151, INTERTEXT HOUSE,

> PARKGATE ROAD, LONDON, S.W.1I

NAME
ADDRESS

OCCUPATION
AGE.
INTERNATIONAL CORRESPONDENCE SCHOOLS
R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., S.W. 16 Special 24 Hour Mail Order Service

COMPONENTS

ONE TONE FILTER ONLY
Resistors
RI $5.6 \mathrm{k} \Omega$
R2 $5.6 \mathrm{k} \Omega$
R3 Ik Ω
R4 $5 \cdot 1 \mathrm{k} \Omega$
R5 $1 \cdot 2 \mathrm{k} \Omega$
R6 $3 \cdot 3 \mathrm{k} \Omega$
R7 $\mathrm{lk} \Omega$
All $\pm 10 \%$, $\frac{1}{8}$ W carbon
Capacitors
CI $100 \mu \mathrm{~F}$ elect. 12 V
C2 $100 \mu \mathrm{~F}$ elect. 12 V
C3 $100 \mu \mathrm{~F}$ elect. 12 V
Cx see text
Transistors
TRI, TR2 ASZ2I (2 off)

Inductor
FX2236 Ferrox pot core--see text for coil details

Miscellaneous

Copper clad s.r.b.p. $\frac{7}{8}$ in $\times 1 \frac{3}{4}$ in (for each section) Plastic covered wire
6B.A. fixings (for pot core)

Choosing a high gain ASZ21 ($h_{\mathrm{fe}}=.70$), standing at a current of about $3 \mathrm{~mA}\left(I_{\mathrm{e}}\right)$ and with a source impedance of less than 300 ohms, gives an output impedance of 1 kilohm in parallel with 25 ohms.

Similarly with the grounded base stage (TR2) where R_{s} is kept low by $\mathrm{C} 2(100 \mu \mathrm{~F})$ in order not to attenuate the low frequency component.

CALCULATION OF Q

The effective Q of a stage can now be calculated. Assume a winding of 510 turns of 40 s.w.g. wire: from

Fig. 4. Graph for determining inductance of coil and value of eapacitor C_{x}, for various frequencies

Fig. 5. Layout and wiring diagram of the printed circuit board for one complete tone filter capacitor. Capacitor C_{t} may be needed if two units are used in series-see text

Fig. 6. Circuit diagram of a two stage unit. Area enclosed by the broken line indicates one stage

Fig. 4, inductance $=0.5 \mathrm{H}$; from Fig. 3, Q at $3 \mathrm{kHz}=69$. As $Q=\omega L / R_{1}$, then

$$
R_{1}=\frac{\omega L}{Q}=\frac{2 \pi \times 3,000 \times 0.5}{69} \simeq 128 \mathrm{ohms} .
$$

Assuming the use of high gain transistors as above, we know that $R_{1} \simeq 128$ ohms, $R_{\mathrm{s}} \simeq 25$ ohms, and $R_{\mathrm{L}} \simeq 20$ ohms. Therefore, the total series resistance $R_{\text {tot }}=128+25+20=173$ ohms. The effective

$$
Q=\frac{2 \pi \times 3,000 \times 0.5}{173}=53
$$

The bandwidth at 3 kHz is given by $B=f / Q$. There-
fore

$$
B=\frac{3,000}{53} \simeq 60 \mathrm{~Hz}
$$

CONSTRUCTION

The printed circuit board shown in Fig. 5 is laid out for one stage.
When two stages are used the output from the first stage forms the bias for the emitter follower of the second
stage, Fig. 6. D.C. coupling is used, omitting C3 from the first stage, R1, R2, and C1 from the second stage, and linking between TR2 collector and TR3 base.
Fig. 7 shows the board layout for four units, and may be used for two channels if divided vertically, or one or two double stage units if divided horizontally.
The gain of the double stage unit is approximately 34 dB but this can be reduced, if necessary, by approximately 6 dB by using the alternative grounded base stage (Fig. 8). This avoids clipping if the input signal is greater than 0.4 volts peak-to-peak and gives a lower output impedance for coupling into the discriminator.
C1, C3 and C5 (Figs. 1 and 6) are electrolytic coupling capacitors and should be wired to suit input and output circuit d.c. levels. The bandwidth required is set by detuning one stage of the two stage unit. In practice the tolerance of cheap polyester or similar capacitors is sufficient to achieve this directly but the use of a small value capacitor Ct as shown in Fig. 6 gives accurate alignment.
Temperature stability is principally dependent on the temperature coefficient of C_{x} and C_{y}; optimum results are obtained by using a parallel combination of positive and negative temperature coefficient capacitors.

Fig. 7. Printed circuit board layout for four tone filter circuits

Fig. 8. Alternative grounded base stage used to reduce gain in the two stoge unit

Get up-to-date with the latest Mullard Data Book-just published. It contains details of current Mullard valves, picture tubes, semiconductors and components for Radio,
TV, Audio and HiFi applications. Each section, colour coded for quick reference, includes comparables and equivalents information plus details of the latest devices in the replacement market.

Mullard
Mullard Limited, Distribuṭor Sales Division, Mullard House, Torrington Place, London WC1.

USE THE SOTDHRING IRONS THE PROFASSOLALS USE

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour
catalogue will be supplied on request.

CN 15 watts, fitted $\frac{3}{32^{\prime}}$ Ferraclad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from .040 (1 mm) up to $\frac{3}{16}$ " for $240,220,110,50$ or 24 volts.

FROM 32'6
actual size

Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8
Telex: 45296 Giro No. 2581000

COMPLETE PRECISION SOLDERING KIT

Supplied in its own compact, rigid plastic container and includes all of these items: CN 15 watts 240 volts miniature model ($\frac{3}{16}{ }^{\prime \prime}$) bit - 2 interchangeable spare bits ($\frac{5}{32}{ }^{\prime \prime}$ and $\frac{3}{32}{ }^{\prime \prime}$) - reel of resin-cored solder - heat sink for soldering transistors - felt cleaning pad - soldering iron stand ${ }^{\text {- }}$ storage space for lead and plug.

Model G-18 watts. Fitted with $\frac{3}{72}$ " bit. Interchangeable spare bits $\frac{5}{2}^{\prime \prime}$, $\frac{3}{10}$. and $t^{\prime \prime}$. For 240, 220 or 110 volts. 32/6.

Madel E-20 watts. Fitted with t_{4}^{*} bit. Interchangeable
 For 240,220 or 110 volts. FROM 35/-.

Model ES -25 watts. Fitted with t" bit. Interchangeable
 For 240, 220, 110, 24 and 12 volts. FROM 35/-.

Model F - 40 watts. Fitted with $\frac{5}{16}$ bit. Interchangeable spare bits $\frac{1}{4}{ }^{\prime \prime}$, $\frac{3}{18}{ }^{\mu}, \frac{1}{\hbar^{\mu}}, \frac{3}{32}{ }^{\prime}$. For 240, 220, 110, 24 and 20 volts. FROM 42/6.

To:Antex, Mayflower House,	Quantity	Model	Bit Size	Volts	Price	NAME.			
E Plymouth, Devon.						ADDRESS			
Please send me the Antex colour catalogue.									
Please send me the	I enclose cheque/P.O. cash value...								
following irons.						Telephone.	PE. 5		

Regidart A SELECTION FROM OUR POSTBAG

Batile of the waves

Sir-We had to reply to the comment in Report from America-bedlam (see February issue). Of course we agree that it is ridiculous to allow anyone to use up to 100 mW without a licence, but how about showing the other side of the coin for a change.

It is equally as stupid to allow the importation of CB gear over a long period of time and the sale of tens of thousands of 27 MHz transceivers. Later the dealer could still sell them but had to tell the buyer "GPO licence required" but not that it was unobtainable, then they have to state "not licenseable in the U.K." but they can still sell them, then the import is banned (theoretically) but dealers are still allowed to sell off their vast stocks.

With a bit of forethought we could have a Citizens Radio Service over here and use the experience of others to our advantage. Let's face it, anything would be an improvement on the state of anarchy that we have today one can hardly be a pirate when there is no legal means of conforming.

Ken Kates (G3 PHS), U.K. Citizen Band Society, Caterham, Surrey.
Obviously there are a number of points one could debate on in this connection. I will confine myself to just one point, that the 27 MHz band in this country is the prerogative of radio control modellers. I do not agree with your statement thot these people would welcome a Citizens Band Service. Communications we have received from radio control enthusiasts indicate quite the opposite.-Ed.

Bank on memory

Sir-I should like to reply to one point raised by Ken Greenberg concerning the Electronic Stockmarket (Readout, March issue).

The bank level can be observed throughout the game every time the player banks cash, if he is also pressing his CHECK CASH button. He will notice the meter level fall as charge is transferred into his bank, and its final resting-level represents his bank level at the time. It is surely part of the game for him to try to remember this level, so that next
time he can gauge whether to transact or to bank his cash. I feel that provision of a separate button would lead to abuse, and also might lower the skill level of the game as a whole, not to mention a reduction in the surprise element.

Incidentally, to those who consider a battery-level button is necessary, I should mention that TAX provides a useful guide to battery state. Simply set rotary switch to TAX and press the CHECK SHARES button. A half-scale reading should be obtained, which could be marked on the meter dial for quick checking.

Brian H. Baily.

Who's for dice

Sir-I must commend Mr Baily on his design of the Electronic Stockmarket (Dec. 1968). I have one suggestion: could not some sort of electronic dice be designed to take the place of the ordinary throw dice? This would make the game entirely electronic and more interesting.

Brian R. Dellow,
Wellington,
New Zealand.

No i.c.'s please!

Sir-I look forward to the Practical Electronics Organ very much, though my constructional activities are of necessity confined to repair, tuning and servicing a few organs as an offering to some Northumberland churches.

But please inform Mr Alan Douglas that I will boycott the reading of his articles if he has used i.c.'s in his design. The integrated circuit seemed to start in the computer field, and as I see some not remote resemblance between binary counters and organ dividers, there is just a danger that the i.c. figures in this organ. If it does I hope that there is a transistor alternative, but my "down" on i.c.'s will have to be the subject of another letter. Suffice it to say that I feel they are not for the public at large!

Meanwhile thanks for an interesting magazine, and keep up the good work!

James W. Robson, Newcastle upon Tyne.

PEAC discussion

Sir-Although I am still only considering building PEAC, I do not anticipate having any serious technical difficulty in its, construction. Your articles on the subject appears to cover the subject adequately.

However, not having had any experience in the operation of computers, I envisage having some difficulty in putting it to proper use. It is for this reason that I would like to discuss PEAC with someone who has had some practical experience in using it.
D. Grime,

St. Mary Cray,
Kent.

"I.C." a problem

Sir-I have recently had cause to wonder if, in fact, it is going to be worth the trouble to accept a modern type of transistor radio for servicing. With the one repaired this week, the total goes up to five, all of which had developed faults in an i.f. module.

Over the years spanning the increasing popularity of the transistor radio, I have been able to offer a reasonable repair, but at the fantastic cost of replacing modules it is small wonder that my customer today has gone away believing that I am trying to get rich quick- 1 think that the boffins who dream up such things should guarantee them for life.

I know that this is regarded as progress by the fact that it speeds servicing, and initial assembly at the factory, but it is also fact that I could replace a component and be fair with the customer regarding cost. As things are now, with the natural swing over from conventional to modules, the customer faces the possibility of having to find pounds instead of shillings just for the replacement module, and before the engineer makes his charge. So the days of the transistor radio being a fair proposition are drawing to a close.
To those who think that it is possible to service one of these modules I say good luck, and trust their curses are not as numerous as were mine.
R. W. Craig (Tin Box Rebel), Bexley,
Kent.

[^3]

Fully built stereo amplifier; 2×3 waite; mains trans.; metal rect.; $2 \times$ UCCL82; 2 o.p. trans. for 3 -ohm; vol/on-off; tone; balance; chassis type with 3 controls on iront. Write for details of onr (8 p p. \& p.).
EF89, 6BW7, ECC82. Fully. (V.H.F.) tuner, self powered, mains, valves ECC85 \#ith kit).
GLADSTONE RADIO ${ }^{66 \text { ELMSROAD }}$
mins A ADERSHOT, Hants. (2 mins. from Station and Buses). FULL GUARANTEE. Alderahot 22240

BULL YOUR CIRCUTS on
 VEROBOARD
 -the Universal Wiring Board-

 obtainable from your local Retailer Trade enquiries to:NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad's Place, Gray's Inn Road, London, W.C. 1 Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects.
type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in aining mechanics and tricity, Radio and Electronics.

WHAT READERS SAY
"I am highly delighted with the books; I didn't known a complicated subject could be so easily presented."
J. K., Earlsfield.
"I am pleased to say how understandable, your books are. I have now quite a sound knowoledge of Electronics.'
P. S., Southgate. "I know your Manuals will prove invaluable for my training and J. L., S. Shields.

A TECH-PRESS PUBLICATION

To The SELRAY bOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of 20 - each. BASIC ELECTRONICS $90 /-$. Cash Price or Down Payment of $20 /$ - followed by 4 fortnightly payments of $20 /-$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

RADIO
STETHOSCOPE
Eastest way to fault find-traces when signal stops you've found the fault. Use it on Radio, TV, amplifier, anything-complete kit comprises two special transig-
tors and all parts including probe tube and crystal earplece. 29/8twin atethoset instead of earpiece 11/- extra - post and ins.,
$2 / 9$.

MAINS MOTOR
Preciaion made-as used in record decks and tape recordersideal also for extractor fans, blower, heater, tet. New and perfect.
Snip at $9 / 6$. Postage 3/- for first one then $1 /$ for each one
ordered. 12 and over post free.

ROTISSERIE MOTOR

Very poweriful 7 r.p.m., operates from standa
$3 / 6 \mathrm{P}$. P .

够
230 VOLT SOLENOID
 2/9. ${ }^{2 / 2} 14 / 6$, postage

Famous war-time "cat's eye ": used for seeing in the dark. This is an infra-red image
converter cell with $\underset{\text { a }}{\substack{\text { converter } \\ \text { silver } \\ \text { cell with } \\ \text { caesium }}}$ a silver caesium up (iike a cathode ray tube) when the
electrons released by the infra-red strike it. Alectrons released post $2 / 6$. Data will be supplied post $2 / 6$. . Data will be supplied with cells, if
requested.

MAINS TRANSFORMER SNIP Making a power pack for
amplifier or other equip. amplifier or other equip-
ment? These transformers have transmains
40 F.) pazimaries (230)
isolated econdaries two types (2) $12 \mathrm{v}, 500 \mathrm{~mA}$. at 500 mA , 8 ;
 SOMNOOO SPRING COIL LEADS

?
PP3 ELIMINATOR. Play your pocket radio from the mainsl save $£_{9}$. Complete component kit comprises ${ }^{4}$ rectifiers-mains dropper resistances, smoothing condenser and instruc tions, only 6/6 plus 1/- post.
AC FAN
Small but very powerful mains
motor with 6 inn motor with $6 \frac{1}{\text { inn. }}$ cooling equipment or as extractor. Silent but very
$17 / 6$ enficient.
post $17 / 6$, post
Mounts
from back Mounts from back
or front or front with 4BA

TRANSISTOR

SET CASE

Very modera cream cabinet, size $5 \frac{1}{2} \times 3 \times$ tuning knob and scale Price 4/6 plus 2/postage. Printed circuit board for this case TRF

Soil Warming element, 30yls., heavy P.Y.C.
covering 12/6.

ELECTRIC TIME SWITCH
Made by Smiths these are a.c. mains operated, NoT CLOCKWORK; ideal for mounting on rack or shelf or adjustable time periods per 24 hours, 5 amp changeover contacts will switch circuit on or off during these periods. 59/6, post and ins. 4/6. Additional time contacta $10 /$ - pair

NICAD RECHARGEABLE BATTERIES

3.6 V 500 mA size $1 \mathrm{l} \times 1 \mathrm{in}$. dia. really powerful will deliver 1 amp for h hour. Regular price $32 / 6$ each-our

ELECTRIC CLOCK WITH 20AMP SWITCH

Made by Smith's these units are as fitted to many top quality cookers to control the oven. The clock is mains driven and accurate. The two small dials enable witch on and off times to be accurately set-also on the left is another timer or alarm-this may be set in minutes up to 4 hours. At the end of the period a bell will sound. Ideal for switching on tape regular price-new and a iraction of the legs than the value of the clock alone- $45 /$,

less than the value of the clock alone-post and lins. $2 / 9$.

THIS MONTH'S SNIP

Recording Tape
Quadruple tape on 3in. apool giving 600ft. Of the finest quality by very
famous maker. Especially suitable for message tapes and portable equip famous maker. Especially suitable for message tapes and portable equip-
ment. Regular price $30 /-$ per spool. Our price $7 / 6$ plus $2 / 9$ p. \& p. or 3 for ment. Regular
22/6 post paid.

HI-FI BARGAIN

FULL FI 12 TrcH LOUDSPEAKER. This is undoubtedly one of the finest loudgpeakers that we have ever offered, produced by one of the country's most famous makers. It has a die-cast Rhythm Guitar and public address. Power Handling 15 watts R.M.S.-Cone Moulded fibre-Freq. response $30-10,000$ c.p.s. -specify 3 or 15 ohms Main resonance 60 c.p.s.-Chassis Diam. $12 i n .-123$ in. over mounting lugs-Baffe hele 11 in . Diam.-Mounting holes 4, holes- 1 in . diam. on pitch circle 111 in . diam.-Overall height 5 kin . A $£ 6$ speaker offered for only $\pm 3.9 .6$ plus $7 / 6$ p. \& p. Don't miss this offer. 15in. 30W \&7.19.6.

for portable, car radio
or transmitter. Chrome pla or transmitter. Chrome pla7 to 77 in . Hole in bottom for 6BA 8crew. $7 / 8$.

Be first this year! SEED AND PLANT RAISING
Soil heating wire and transformer. Suitable for standard size garden frame. 19/6
Post
and ins. $3 / 6$.

DOOR INTERCOM

Know who is calling and speak to them without leaving bed, or chair. Outfit comprises microphone with call push button, connectors and master inter-com. Simply plugs toSpecial snip price 48/6, plus 3;6 postage.

MAINS TRANSISTOR POWER PACK

Designed to operate transistor sets and amplifiers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 mA (class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7, PP9 and others. K it comprises: mains transformer rectifier, smoothing and load resistor, condensers and instructions. Real suip at only 16/6, plus $3 / 6$ postage.

Where postage is not stated then orders over $£ 3$ are post free. Below $£ 3$ add $2!9$. Semi-conductors add 1/- post. Over $£ 1$ post free. S.A.E. with enquiries please.

ELECTRONICS (CROYDON) LTD.

Dept. PE, 266 London Road, Croydon CRO-2TH
Also 102/3 Tamworth Road, Croydon

ORGAN BUILDERS: SILICON N.P.N. TRANSISTORS TESTED AND APPROVED BY DESIGNER FOR USE IN "PRACTICAL ELECTRONICS" ORGAN CIRCUIT- $1 / 6$ each or 55 per 100.

LATEST LIST OF TRANSISTOR STOCK. ALL BRAND NEW AND TO MANUFACTURERS SPECIFICATIONS

 NKT124 8/8NXT272 8/日NET10339 BFX85 8 8/-2N1307 NKT125 $5 / 9$ NKT274 $8 / 8$, ${ }^{8 / 8}$ BFX86

 NKT225 4/6/NKT453 8/-NKT20329 2 N706 NKT229 $5 /-$ NKT603F $8 / 6$ / $12 / 6$ 2N706A

 NKT239

Unmarked transistors (tested) similar to:
2N753 1/6, BSY28 1/6, BSY65 1/6, OC44 1/6, OC711/, OC72 1/-. LIGHT SENSITIVE TRANSISTORS (similar to OCP71), 2/- each. 9/- each.

GIANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6 mA AT 0.6 V FROM DAYLIGHT!
67 mm diameter, $10 /-$ each, $50 \mathrm{~mm} \times 37 \mathrm{~mm} 2$ for $10 /$ -
MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE!
$0.001 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0.0015 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0.0018 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d}$; $0.0022 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0.01 \mu \mathrm{~F}, 400 \mathrm{~V}, 3 \mathrm{~d} ; 0 \cdot 15 \mu \mathrm{~F}, 160 \mathrm{~V}, 6 \mathrm{~d} ; 0 \cdot 22 \mu \mathrm{~F}$, $160 \mathrm{~V}, 6 \mathrm{~d} ; 0.27 \mu \mathrm{~F}, 160 \mathrm{~V}, 6 \mathrm{~d} ; 1 \mu \mathrm{~F}, 125 \mathrm{~V}, 1 /-$.
RECORD PLAYER CARTRIDGES. COMPLETE WITH
NEEDLES
GP67/2, Mono, 15/-, GL91/3, Compatible, £1, GP93/1, Crystal Stereo, $25 /$-, GP94/1, Ceramic, 25/-.
TRANSISTORISED SIGNAL INJECTOR KIT 10/-, SIGNAL TRACER KIT 10/-, CAR REV. COUNTER KIT 10/-.

VEROBOARD

${ }^{2} \operatorname{tin} \times 1$ in, 0.15 matrix, $1 / 3$

3 in $\times 3$ in 12.0 .15 matrix, $3 / 11$
$\sin \times 2 \frac{1}{2}$ in, 0.15 matrix, $3 / 11$
17 in $\times 2 i \operatorname{in}, 0.15$ matrix, $11 /-$
Spot Face Cutter 7/6. Pin Insert Tool 9/6, Terminals Pins 3/6-36. Special Offer! Spot Face Cutter and Five $2 \frac{1}{2}$ in $\times 1$ in boards, $9 / 9$ only!
PAPER CONDENSERS, Mixed bags $0.001 \mu \mathrm{~F}$ to $0.5 \mu \mathrm{~F}, 12 / 6$ per 100 . SILYER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. $10 /$ - per 100 .
RESISTORS. Mixed types and values, \ddagger to 1 watt. $6 / 6$ per 100 . $55 /-$ per 1,000 . Wire-wound resistors. 1 watt to 10 watts. Mixed values. 20 for $10 /-$
Transistors. Mixed, unmarked, mainly O.K. 7/6 for 50.
12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF
NORMAL PRICE! 8 Watt 12in tube. Reflector type £2.19.6. 15 watt 18 in Batten type £3.19.6.
IDEAL FOR CAMPING OR CARAVAN HOLIDAYS!
A BRIGHT LIGHT FOR VERY LITTLE CURRENT!
ELECTROLYTIC CONDENSERS

$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$10 \mu \mathrm{~F}$	25 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 vole	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F}$	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$400 \mu \mathrm{~F}$	644 volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	All at	1/- each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	20 a	sorted
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	(our	election)
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	$2 \cdot 5$ volt		/-.

Orders by post to:
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

AcCURTE HOLES IN BRASS, STEEL, ALUMHUMM, Ts easywith-

Send now for full details of
specifications to Dept. PE
 FIBRE, PLASTIC ACUURATE - FAST BURR-FREE
Used and trusted by engineers, mechanics plumbers, ete. Cuts most materials down to 16 -gauge mild steel... A boon for the handyman who needs accurate tools. Available in sizes from ti" at 13/6, to $3^{\prime \prime}$ dia, at 120 .
TOMPKINS AND LONGMAN LIMITED 237 Gipsy Road, West Norwood, London, S.E.27

PARKERS SHEET
 METAL FOLDING MACHINES heavy vice MODELS

With Bevelled Former Bars

No. 1. Capacity 18 gauge mild steel $\times 36$ in. wide... $£ 14: 0.0$ No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$, wide $614: 0.0$ No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$. wide $\cdots \cdots, \cdots$.... \quad E8.0.0 Also new bench models. Capacities 48 in . $x 18$ gauge $£ 40$. 36 in. $\because \dddot{x} 18$ gauge E27.10.0. 24 in . $\times 16$ gauge 26.10 .0 . Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in . model, $5 /$ is per ft . Other models $3 / 6$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals. One year's guarantee. Moncy refunded if not satisfied. Send for details.
A. B. PARKER, Folding Machine Works, Upper George St., Heckmondwike, Yorks. Heckmondwike 3997

FULLY TESTED AND MARKED

AC107	3/-	OCI70	3/-
AC126	$2 / 4$	OCI71	$4{ }^{4 / 8}$
AC127	$2 / 4$	OC200	$3 / 8$
${ }_{\text {ACl }} 128$	2/4	OC201	71
ACY17	$31-$	2 G 301	$2 / 6$
AFI4	4/-	2 G 303	$2 / 6$
AF115	3/6	2 N 711	10/-
AF16	$3 / 6$	2N1302-3	41 -
AF17	316	2 N 1304 -5	51
AF118	3/6	$2 \mathrm{~N} 1306-7$	6/-
AF239	$12 / 6$	2 N 1308.9	8
AF186	101-	2N3844A	5:-
AF139	101-	Power	
BFY50	4/-	Transistors	
BSY25	716	OC20	10/-
BSY26	3/-	0 C 23	10/-
BSY27	3/-	$\mathrm{OC}^{\mathrm{C} 25}$	8/-
BSY28	3/-	$\bigcirc \mathrm{OC}^{26}$	5/-
BSY29	$31-$	$\mathrm{O}^{\circ} 288$	$7 / 6$
8SY95A	$3 / 1$	$00^{\circ} 35$	5/-
OC41	216	$\mathrm{OC}^{\text {C }} 36$	$7 / 6$
OC44	$1 / 11$	ADI49	101-
OC45	$1 / 9$	AUY10	30/-
0 O 71	216	Diodes	
0 C 72	216	AAY42	2/-
OC73	$3 / 6$	OA95	2/-
OC810	216	OA7\%	$1 / 9$
OC83	4/-	OA81	$1 / 9$
OC139	$2 / 6$	OA73	$21-$
OCl40	$3 / 6$	1N914	$1 / 6$

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER $\mathbf{E} 4$

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK
Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81, etc.

PRICE 65 PER 1000

XB PAK

Silieon TO.18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE $\mathbf{\text { E5.5.0 PER }} 500$
PRICE 10 PER 100

XC PAK

Silicon diodes miniature glass types, finished blaek with polarity marked, equivalents to OA200, OA202, BAY31-39 and DK10, etc.

PRICE 25 PER 1000

ALl THE ABOVE UNTESTED PACKS haVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK. P/P 2/6 PER PACK (U.K.)

TRANSISTORS
 SILICON - PLANAR
 ONLY 1/- EACH

All these types available
$\begin{array}{llllllll}\text { 2N929 } & 2 N 706 & 2 S 131 & 2 S 103 & 2 N 696 & 2 N 1613 & 2 S 733 & \text { BFY10 } \\ \text { 2S501 } & 2 N 706 A & 2 S 512 & 2 S 104 & 2 N 697 & 2 N 1711 & 2 N 726 & 2 S 731\end{array}$
$\begin{array}{llllllll}2 \text { S501 } & 2 N 706 A & 2 S 512 & 2 S 104 & 2 N 697 & 2 N 1711 & 2 N 726 & 2 S 731\end{array}$
All tested and guaranteed for gain and leakage-unmarked.
Manufacturers' fall outs from the new PRE-PAK range.

NEW UNMARKED UNTESTED PAKS	
	TRANSISTORS 10/-
10 OC45-OC81 ${ }^{\text {Oull }}$ Glass Type	TRANSISTORS 10/:
	TRANSISTORS 10/-
$10 \begin{aligned} & 10 \text { Watt Silicon } \\ & \text { All Voltages }\end{aligned}$	ZENERS 10/-
$25 \begin{gathered}\text { BFY50-1-2 } \\ \text { NPN Silicon } \\ \text { An }\end{gathered}$	/-
$10{ }_{\text {Silicon }}^{4 \mathrm{amp} .} \mathrm{Stud}$.	RECTIFIERS 10/-
$25 \begin{aligned} & \text { BC107-8-9 } \\ & \text { NPN Silicon }\end{aligned}$	TRANSISTORS 10\%-
$40 \begin{aligned} & \text { in914-6 OA200/202 } \\ & \text { Sub. Min. Silicon } \end{aligned}$	202 DIODES 10/-
150 Min. Germ. High Quality	DIODES 10/-
25 2N706A ${ }^{\text {NPN Silicon }}$	TRANSISTORS 10/-
$\begin{aligned} & \text { PREEPAK. N. } 605 \text { POWER } \\ & \text { TRANSISTOR EQUIVALENT } \\ & \text { TO NKT } 301-2-3-4 \end{aligned}$	
COMPLIMENTARY SETNPN/PNP GERM, TRANS.	

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Practical Electronics Classified Advertisements

sERVIGE SHEETS

SERVICE SHEET8 (1925-69) for televisions, radios, transistors, tape recorders, record players, etc., by return post, with free faultflading guide. Prices from $1 /-$. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

C. \& A. SUPPLIERS SERVICE SHEETS

t.V., RADIO, TRANSISTORS, TAPES, ETC. Only $5 /-$ each, plus S.A.E. (Uncrossed P.O.'s please, returned if service sheets not available.) 71 BEAUFORT PARK L.ONDON, N.W. 11 MAIL ORDER ONLY

RADIO TELEVISION, over 8,000 Mod +1 s. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W.6. SHE 8441.

SERVICE 8HEETS, Radio, TV, 5,000 modeIs. List 1/6. S.A.E. enquiries. TELRAY, 11 MLaudland Bank, Preston.

MISCELLANEOUS

RHYTHM MODULES. Build your own rhythm box-simply, cheaply. Realistic sound guaranteed. S.A.F. for details. D.E.W. LTD., 254 lingwood Rd., Ferndown, Dorset.

BUILD IT in a DEWBOX quality cabinet 2in $\times 2$ in \times any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

PRINTED CIRCUIT for Practical Electronics Rhythm Generator. $143 \mathrm{in} \times 51$ in undrilled, with layout plan, for simpler and neater construction, $29 / 6$ including postage. Send cash with order to ALMARY DESIGNS, 12 Lattimore Road, Wheathampstead, Herts.

GEARED MOTORS
 Rectifiers, Potentiometers 60 Stamp for Catalogue

F. HOLFORD \& CO.

6 Imperial Square, Cheltenham

UFO DETECTOR CIRCUIT8, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

4 WATT GRAM AMPS,
Volume and tone controls, mains operation,
3Ω outpur, new and boxed $65 /=$ POST
BIG BARGAIN PARCELS ONLY
OF COMPONENTS $10 / /$
SALOP ELECTRONICS
23Wyle COp
Shrewsbury, Shropshire PAID

RATES : $1 / 3$ per word (minimum 12 words). Box No. 1/6 extra.
Advertisements must be prepaid and addressed to Advertisement Manager, "Practical Electronics"
IPC MAGAZINES LTD.
Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS (continued)

ROBOTS

Well almost, because the NEW range of projects include: an electronic 'animal' which "LEARNS", an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TO INTRIGUE
YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which "recognizes" itself, and an electronic dog whistle, etc., etc. HOSTS OF EASY-TO-CONSTRUCT projects, for anyone with a basic knowledge of Electronics. with a basic knowledge of Electr
SEND $2 / 6$ for your list-NOW!

To: 'BOFFIN PROJECTS' incorporating
BIONIC DESIGNS 4 CUNLIFFE RD.
STONELEIGH, EWELL, SURREY
Designed by GERRY BROWN and JOHN

FOR SALE
PRACTICAL ELECTRONICS from first issue to May 1967, 31 copies complete, postage 6/Offers to BOX 19.

26,000 IN YOUCHERS GIVEN AWAY. See free Cat. for details. Tools, Materials, Mechanical, Electrical, thousands of interesting items WHISTON, Dept. PVE, New Mills, Stockport SK12 4HL.

TIME SWITCHE8, 14 day clock, once on once off every 24 hours, reconditioned and fully guaranteed. 5 amp Horstman $32 / 6,15 \mathrm{amp}$ Venner $42 / 6$. ${ }^{5}$. \& P. 4/6. A. R. BATCHELOR (P.E. Dept.), 4 Park Road, Bromley, BRI 3HP.

COMPUTER IN YOUR POCKET. Home, college, workshop. Pocket slide rules, 17/6, 10 in desk/bench slide rules, 25/-. Full instructions. IDEPT. PE, 19 Paynesfield Avenue, S.W.i4.

MORSE MADE ! !

FACT NOT EICTION. If you start RIGHT you will be readiug amateur and commercial Morse Within a month (norınal progress to be expected).
Ubing sulientifically prepared 3 -speed records you without translating. You can't help it, it's as easy as learning at tune. 18 W.P.M. in 4 weeks guaranteed. For detalls and course C.O.D. ring S.T.D. 01-660 2806 or send 8 d . stamp for explanatory booklet to: G3HSC (Box 19), 45 GREEN LANE, PURLEY, SURREY

BOOKS AND PUBLICATIONS

MAKE YOUR OWN TALKIES. An introduction to electronic tape/film synchronisation, with an explanation of the "Carol" Cinesound system, modifying equipment, filming in sync. etc. Price $7 / 6$, post free (refundable against purchase of your "Carol" Cinesound equipment). Contronics Litd., Deepcut, Camberley, Surrey.

BOOKS AND PUBLICATIONS

(continued)

This useful Handbook gives detailed information This useful Handbook gives detailed information and circuit diagrams for British and American
Government Surplus Receivers, Transmitters Government Surpius Receivers, Transmitters some suggested modification details and im= provements for the equipment. Incorporated in this revised edition is a surplus/commercial cross referenced valve and transistor guide. This book is invaluable to radio enthusiasts, radio clubs, universities and laboratories. The latest edition priced at 35 :- per volume pius 5/-
P. P . is obtainable from us at

Dept. P.E., 24 Stansfield Chambers
Gt. George Street, Leeds ! S.A.E. with all enquiries, please. Extra postage Sor

SURPLUS HANDBOOKS

19 set Circuit and Notes 6/6 P.P. 6 d 1155 set Circuit and Notes $6 / 6$ P.P. $6 d$ H.R.O. Technical Instructions... $5 / 6$ P.P. $6 d$ 38 set Technical Instructions.. 46 set Working Instructions. 88 set Technical Instructions
BC. 22 I Circuir and Notes Wavemeter Class D Tech. Inst 8 set Circuir and Nores BC. 1000 (31 set) Circuit \& Notes 5/6 P.P. $6 d$ CR. $100 /$ B. 28 Circuit and Notes 10/-P.P. $9 d$ R. 107 Circuit and Notes......... 7/-P.P. 6d A.R.88D. Instruction Manual..... 18/-P.P. $6 d$ 62 set Circuit and Notes 6/6 P.P 6d 52 set Sender \& Receiver Circuits 7/6. postfree Circuit Diagrams 5/- each post free. R. $1116 / A, R .1224 / A, R .1355$, R.F. 24,25 , \& 26. A. 1134 , T. 1154, CR.300, BC.342. BC.312. BC.348.J.E.M.P. BC.624. 22 set.
Resistor Colour Code Indicator... 2/6 P.P. $6 d$ S.A.E. with all enquiries please.

Maply to U.K. only.
Mail order only to:
Instructional Handbook Supplies Dept. P.E:, Talbot House, 28 Talbot Gardens Leeds 8

ELECTRICAL

OUR PORTABLE ELECTRIC SOLDERING IRON is a sensational line. $40 \mathrm{~W}, 220 / 240$ volt, plastic covered extension wire. Handle unscrews when not in use. Completely safe. $14 / 11$ plus $1 / 6 \mathrm{P} . \& \mathrm{P}$. F . HOLLOWl C (P.E.1) 36 Henleytvenue, Pelton Fell; Chester-le-Street, Co. Durham.

240

 ELECTRICITYANYWHERE

most brilliant performance ever from 2-volt Car Battery. BRILLAANT HEAYY
DUTY 240 volt AMERICAN DYNAMOTOR with BIG 220 WATY OUTPUT. Marvellous for TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL ACIDC MAINS EQUIPMENT. Marvellous for Fluorescent lighting. Thousands of uses. Tremendous purchase of this model makes ONIY 41906 price possible.
ONLY $£ 4.19 .6$ each plus $10 / 6$ delivery. C.O.D. ED. Please send S.A.E. for full illustrated details.

Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade BLACKPOOL, Lancashire

ELECTRICAL (continued)

Compact VHF Trans./Rec. Fita in the pocket. Consists of Mike/Speaker, amplifer, aerial, transmitter and receiver. Were made to operate up to 100 miles depending on terrain. contalned. Cost Govt. over $£ 50$ each. Regulaconains atate must not be operated in UK so please mention "For Dismantling purposee *unr only" when ordering. Price \&e. 10.0 each, p. \& p. 10/-. Two sets for
\$5.0.0, post free. Four sets 88, carriage free. Bulk sale of 10 sets 815, carriage 21. Export enquirles invited.

PRECISION PANEL METERS
Brand new, boxed and fully guaranteed. With fixing nats and boits. Size approx. 3hin square.
$0-500$ voits FSD. As used by leading laboratories. Ex-stock, only 95 /-, p. \& p. 5/-. Two for 83 , poet free. HEATY DUTZ POWER SUPPLT UFIT8 Bulik Purchase. Famous manufacture, Must have cost nearly e 40 each. Input 200/250 volts $50 \mathrm{c} / \mathrm{s}$ a.o. Output 250 volts d.c. at approx. $175 \mathrm{~m} .2 .6 \cdot 3 / 12$ volts at approx. 4 ampa a.c. Robust metal rack mounting cabinet, हize approx. $19 \times 15 \times 8$ in. Price only $85 /-$ carriage and and metered. syOOTमITG TYT
Besatifully made pieces of equpment. 12 volts or 24 volts d.c. 绍口t gives a fully smoothed fully regulated d.c. output. Worth \& 30 each. Robust metsl cabinet with provision for standby battery. Brand new in maker's cartons. Price $65 /-$, p. \& p. 15/-.
New walk-round scientific store now open at 38 Bridgend, Meadow Lane, Leeds 1. Open weekcays 9 a.m. -6 p.m. Plus all day Saturday. All Items available for inspection and demonstration.

Bulk purchase enables us to ofter the following ranaformers at these ridiculously low pricea. Made by a famous manusacturer and fully tested $2 n \mathrm{C}$ g/8 each, p. \& p.2/6. Two for 17/6 postfree. Transiator Powez Pack Types. 6-3V at 2A, 7/6 each, p. \& p. 2/6 12 v at $2 \mathrm{~A}, 12 / 6$ each, p. \& p. $2 / 6$.

ciobe Scientific ITD

DEPTT. P.E., GATOODS YARD, All mail ordery to Globe Eciontific Lid., \& Cswoods Fard, Mill St., Leede 9.

WANTED

NEW VALVEs WANTED. Popular TV and Radio types. Best cash price by return. DURHAM SUPPLIES, 367 F Kensington Street, Bradford 8, Yorkshire.

8ECONDHAND PORTABLE SCOPE (preferably D.B.) in good working order at reasonable price. MALLETT, a Pine Grove, Weybridge.

TAPE RECORDERS

TAPES TO DISC-using finest professional equipment-45 r.p.m. 22/-. S.A.E. leaffet. DEROY, High Bank, Hawk Street, Carnforth, Lanes.

EDUCATIONAL

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. City \& Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext House, London, SW11.

EDUCATIONAL (continued)

GET INTO ELEGTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms., etc. For FRFEE $100-$ page book, write Dept. 850 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.I.

ENGIMEERS. A technical certificate or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng, A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Elec., Auto, Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132-page guide. BRITISH INSTITUTE OF ENGINEERING TECHNOT,OGY (Dent. 125 K), Aldermaston Court, Aldermaston, Berks.

TECHNICAL TRAINING in Radio, TV \& Electronics thro' world-famous ICS. For details of proven home-study courses write: ICS Dept. 561, Intertext House, London. S.W.11.

RADIO \& TELEVISION SERVICING RADARTHEORY \& MAINTENANCE TELECOMMUNICATIONS This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:-
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721

SITUATIONS VACANT

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field. ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radiol TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \&. TELECOMMUNICATION TECHNICIANS' CERTS.

* C. \& ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* P.M.G. CERTIFJCATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multi* meter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

> INTERNATIONAL
> CORRESPONDENCE
> Schools
> A WHOLE WORLD OF KNOWLEDGE AWAITS YOU !

International Correspondence Schools
(Dept. 152), Intertext House, Parkgate Road, London, S.W.II.

NAME
Block Capitals Please
ADDRESS
A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., efc.. on 'Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132 -page Guide-FREE. Please state subject of interest. BRITISH IASTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

CENTRAL ELECTRICITY GENERATING BOARD

SOUTH WESTERN REGION ABERTHAW POWER STATION

Our ref: 7/69/JAC/PAG.
Applications are invited for the following positions at Aberthaw Power Station, St. Athan, Nr. Barry, Glam. CF6 9ZW.

INSTRUMENT MECHANICS

Wage £24.7s. 1d. per week.
The above quoted wage includes payment for incidental overtime, shift enhancement and premium time for weekend working. In addition, a service increment of $£ 20$ per annum is payable after two years satisfactory service with a similar amount on completion of the third year.
The successful applicants will be involved in maintaining a wide range of electronic and mechanical equipment used on pressure, temperature and flow automatic control loops of advanced design. Maintenance is also performed on telemetering and analytical instruments. The modern workshops are equipped with advanced testing and calibrating facilities.
Opportunities exist for promotion and for the advancement of technical studies.
Consideration will be given to men with recent Forces experience in maintaining measuring/control equipment and also to those with high calibre electronic servicing experience.
National Joint Industrial Council Conditions including a basic 40 hour week covering shift working.
Excellent welfare facilities including gencrous holidays and pension schemes.
Applications in writing stating details of age and previous experience to

```
Station Superintendent ABERTHAW POWER STATION at the above address
```


RECEIVERS AND COMPONENTS

TIRY YRANSISTOR RELAY for model control, light switches, experiments, etc. Only 1 in square, 3330 coil, $30 /-$ post free. H.R. RADIO, 174 Bramall Lane, shetfield, $\$ 24 R F$.

ELECTRONIC STOCKMARKET kit of most parts; also "Reactalyser" and Wai-Waa pedal S.A.E. for list. I.E.W. LTD., Ringwood Rd.,
Ferndow, Dorset.

TERRIFIC TRANSISTORS!

High-gain low-noise npn planars
$20 \mathrm{~V}, 220 \mathrm{~mW}, 200 \mathrm{~mA}$ peak Ic , hfe up to 900 . $\mathrm{BC1} 68=\mathrm{BCl} 48$ ($\mathrm{sim} . \mathrm{BCl} 108, \mathrm{BCl} 70, \mathrm{BCl} 183$, $\mathrm{BC1} 69=\begin{aligned} & 2 \mathrm{BC1} 2925,2 \mathrm{~N} 2926 \text {). } \\ & \text { (sim. } \mathrm{BC} 109, \mathrm{BC151}, \mathrm{BC154},\end{aligned}$ 2N3391A etc.)
Prices: BC168, 5 for $10 /, 50$ for $90 /$ BC169, 5 for $11 / 3,50$ for $E 5$.
Brand new, mint, makers' trade marks. Full iist with data, components, eircuits, kits 68. FREE WITH'ORDERS.

Can be built to size of PP6 battery. Com. ponents and data sheet, 17/6. Transformer only, 0-230-250/9-0-9V, 80 mA , size $1 \pm \times 1 \times 1^{\prime \prime}$. with data sheet, $11 /$.. Eagle cransformers (same size) MT6, $6-0-6 \mathrm{~V}$ 100mA, MT12, $12-0-12 \mathrm{~V}, 50 \mathrm{~mA}, 13 / 6$ each. All these can be used with bridge rectifiers giving double the voltage at half the current. Submin. selenium bridge to suit, $3 / 6$.
AMATRONIX LTD. (Mail order only) 396 Selsdon Rd., South Croydon, Surray CR2ODE

R \& R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

BFB0	$3 /-$	EBC41	$4 / 6$	PY33	$5 /-$
EBF89	$3 / 6$	PCC81	$3 /-$	PY81	$3 / 6$
ECC88	$3 /-$	PCF80	$3 /-$	PY82	$3 /-$
ECLB0	$3 /-$	PCF82	$3 / 6$	U191	$4 / 6$
EF80	$1 / 6$	PCL82	$4 /-$	$6 F 23$	$5 /-$
EF85	$3 /-$	PCL83	$4 /-$	305	$2 / 6$
EY86	$4 /-$	PL36	$5 /-$	$30 L 15$	$5 /-$
$E L 41$	$3 /-$	PL81	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$1 /-$	$30 C 15$	$5 /-$

POST. ONE VALVE 9 d. TWO TO SIX6d. OVER SIX POST PAID.

TELEVISIOX I.F. BTRIPS (leas valves)
From BBC, 2 converters ideal for spares, contains smoothing capacitor, dropper realistors, 7 valve holders,
I.F. transformers, coil formers, eapacitors, resitors, diodes, tag strips, chokes, etc., etc., on chassis 11 in \times 34 in, no information or circuit. Brand new in boxes, 14/6.
MAINS TRANSFORMERS HAIAS TRANSFORMERS
 32 V at $10 \mathrm{~m} / \mathrm{A}$, size 24 in < $<13 \mathrm{hn} \times 1 \frac{1}{2} \mathrm{in}$ (drop through
 250 M input, output 22 V at 1 A A , size $2 \mathrm{in} \times 2$ in $\times 2 \frac{1}{2} \mathrm{in}$, MIXED bas.
approx. 150,100 -per bag, ERIE Thyristors for drill speed controls 400 p.i.v. at 5 A. 12/6.
Buxits $0.1 \mathrm{nFF}, 350 \mathrm{mz}$ paper capacitors, P.C. Iype,
uyright miounting, $2 / 6$ doz. $15 /-$ per 100 , post paid per 100 , upright mounting, $2 / 6$ doz.,. $15 /-$ per 100, post paid per 100,
TUBULAR ceranic capacitors, R.C. type, 3.3 pF and 50 pOLAR ceranic capacitors, P.C. type, $3 \cdot 3 \mathrm{pF}$ and 500 pF , only $6 /-$ per $100,1 / 3$ doz.
TRANBISTOR BLECTROL 5 TICS 2 mF 6vw, 4 mF 64w
 $25 \mathrm{vw}, 1 /-.400 \mathrm{mF} 15 \mathrm{vw}, \overline{0} 00 \mathrm{mF} 9 \mathrm{vw}, 9 \mathrm{~d}$. can type,
SPEAKER
SPEAKER COVERIRG 7 in $: 4 \mathrm{in}$ perforated fiexible plastic. Simulated chrome on one side $1 / 8 \mathrm{each} 12 /-\mathrm{doz}$. HUNTS $2,500 \mathrm{mfd} 50 \mathrm{vw}$, brand new $6 / 6$.
SLLVER MCA capacitors 80pF size only 0 KMFRRED
Tested and SX 633 silicon diodes. 300 p.i.v. at \bar{z} amp. Terted and guaranteed, 9d each, 6/- doz
manufacturers marked, not reje etc. 1/3 each, 12/- doz. P.c. BoARD8 21^{-}, drilled and etched, $2 / 8$ doz.
M. $47 \mathrm{mF}, 30 \mathrm{wW}$. P.C. dige ceramice, $8 /-$ doz., 61 per 100. MALL ORDER ONLY SAE FOR LISTS
Postal charges: up to $£ 1+1 / 6 ; £ 1-\kappa 2+2 j-; £ 2 \cdot £ 5+3 / 6$;
over $£ 5$ FREE.
A.J.H. ELEGTRONICS

59 Waverley Road, The Kent, Rugby, Warwichy.

TRANSISTORISED REVERBERATION

Six transistor circuit, all components £7.10.0. post free. (Case 34/- extra, P. \& P. 2/6). Circuit and construction details $1 /-$ (free with kit).
TRANSISTORISED SIGNAL INJECTOR $19 / 6$ P. \& P. I/6. Catalogue of components etc. Doncaster, Yorks.

BRAND NEW ELECTROLYTICS, 15 volt, 1,2 , $5,6,8,10,15,20,30,40,50,100 \mathrm{mfds} .7 / 6$ dozen, postage $1 /$ The C.R. SUPPLY CO., 127 Chesterfield Road, Sheffield, S8 0RN.

TAPE HEADS

BSR BRAD 2 TRACK	$\begin{aligned} & \text { MICHIGAN } \\ & \text { RIGH IMP./PLAY } \\ & \text { 4-TRACK } \end{aligned} \quad 45 /-$
BSR MALL	bogen erase
4 track	$\begin{array}{ll} 0 L 28816 \\ 4-\text { TRACE } & 27 / 6 \end{array}$
Reuter - collaro	COSMOCORD ERASE
ERASE ${ }_{\text {L-TRACK }}$ - $=$	T.E. $2: 9$ /9, $\quad 15 / \mathrm{l}$

TRANSISTORISED FM TONER
6 TRANSISTOR HIGH QUALITY TVNER. SIZE ONLx 6 inx 4 in $\times 2$ in 3 I.F. stages. Double
tuned discriminator. Ample output to feed most ampliners. Operates ou 9 V bottery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Ready built ready for
use. Fantastic value for money SUB-MIN. TRANSISTOR LW/MW/FMI TUNER Similar to above. Complete with aerial,
tuners, dial and instruchions
TUNER dolci patis stereo $£ 23$
COMPACT TRANSISTOR FM TUNER
$\left.\begin{aligned} & \text { Oiled Walnut cabinet, brushed gold front } \\ & \text { panel, vertical styling, internal batteries }\end{aligned} \quad f \right\rvert\, 2$
FM MULTIPLEX STEREO ADAPTOR
Printed circuit biscuit, 4 trans. ${ }^{6}$
diodes $9 V$ with full instructions $\quad £ 5.2 .6$
LOUDSPEAKERS
 THIN CONE $£ 4.15 .0 \left\lvert\, \begin{aligned} & \text { GUTTAR SPEAKER } \\ & 25-13 K\end{aligned}\right.$

	hm
15	2 2" $^{20} 80$ ohm 12"TWIN C
CERAMIC - 49	watt PEAK 15
MAGNET	
REIAYS ${ }_{1}^{4}$ pole changeover, ideal for moriels. $12 \times 1 \frac{1}{3} \times 5=700 \mathrm{ohm} 9-24 \mathrm{v}, 430 \mathrm{ohm} 10 /=$$6-24 \mathrm{v}$	
$\begin{array}{cll}\text { TMEETER } & \begin{array}{l}3^{\prime \prime} 16 \text { ohm, } \\ 10 W \mathrm{CR} / 0.3 \mathrm{k} \Omega,\end{array} & 26 / 9 \\ \text { Horn tspe } \mathrm{Hi}-\mathrm{Fi} & 18,000 \mathrm{c} / \mathrm{s}\end{array}$	
CROSSOYER N	ORK

REFLEX CONE TYPE MULTIMETERS $32 / \mathrm{m}$ WATERPROOF SPKR

CHARGER ${ }^{\text {from }}$
5 watt, 3 ohm. 300- TRARGER $\begin{aligned} & \text { TRANSFORMER. } \\ & 16,000 \mathrm{c} / \mathrm{s} \text { PA }\end{aligned}$

$\frac{3 /-\mathrm{P} / \mathrm{P}}{\text { SUPER SILICON REGT. T.V., etc., } 1,200 \text { PIV }}$ $800 \mathrm{~mA}, \mathrm{~S}_{i}=$; or complete with instr. resistor condenser, 6/6; 400 PIV HW 6. $4,6 \% ; 200$ PIV HW $6 \mathrm{~A}, 6 / \mathrm{F}$. BY 100 type, 6 for 10%.
VHF AIRCRAFT BAND CONVERTER $75 /=$

Place within lin. of MW radio | Place within lin. of MW radio | (1/ |
| :--- | :---: |
| BURGLAR ALARM/FIRE ALARM/ | $7 / 6$ |
| DOOR BELL. LIST 37/6. OUR PRICE | $/ 6$ |

CHANGER DECKS

UA25 BSR with template, Mono. List E6.19.6 UA25 BSR with template, Stereo. Jeist £7.9.6 $\begin{array}{ll}1025 \text { Garrard with template, Mono- } & \text { List } £ 7.7 .6 \\ 1025 \text { Garrard with template, Stereo. } & \text { List } £ 7.17 .6\end{array}$ PLINTH in simulated teak. Complete with f4 150 Clearview rigid perspex cover for 1025. $£ 4.10 .0$ P/P on Decks Plinth
SWITCH ROTARY RECIPROCATING 4
Position, lownp, single hole fixing, with $\quad 5 / 606$
instructions. List $14 / 7$
C60 CASSETTE 10/3.
C90 14/8
Stamped euvelope for full selection and bargain offers in MULTIMETERS, RADIOS, BABY ALARMS, INTERCOMS, WALKIE-TALKIES, RECTIPIERS, SINCLAIR, DULCI, AND EAGLE over £3-2/6. C.O.D. 3/6. MATLORDER ONLF.,
DURHAM SUPPLIES
$367 \mathrm{~F}, \mathrm{KENSINGTON} \mathrm{STREET}$ BRADFORD 8, YORKSHIRE

L.S.T. ELECTRONIC COMPONENTS LTD. PLEASE SEE OUR DISPLAY ADVERTISEMENT ON PAGE 375

D.I.Y.-All materials and components for construction of high fidelity loudspeaker systems (empty enclosures, BAF wadding, Tygan, Vynair fabric, cross-overs, etc.). Many other
audio accessories and speaker kits. S.A.F. for audio accessories and speaker kits. S.A.F. for
lists. P. F. \&A. R. HELME, Dept. PE, Summerbridge, Harrogate, Yorks.

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS

2 in $\times 4$ in packed with semiconductors and top quality resistors, capacitors, diodes, etc.
Our price. 10 boards $10 /=$ P. \& P. $2 /=$. With a uaranteed minimum of 35 transistors. SPECIAL BARGAIN PACK. 25 boards for 15. P. \& P. 3/6. With a guaranteed minimum of 85 100 boards 65 P. \& P. $6 / 6$ minimum of 350 transistors PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times$ OC28) $10 /=$ P. \& P. $2 /$.
NPN GERMANIUM TOS 1 WATT POWER TRANSISTORS on small heat sink, on $2 \mathrm{in} \times 4 \mathrm{in}$ panel. 5 for $10 /=$, P. \& P. $2 /-$.
POWERTRANSISTORS sim. to 2NI74 ex eqpt., 4 for $10 /-$, P. \& P. $2 /-$.
POWER TRANSISTORS, sim, to 2NI74 on Finned Hear Sink (IOD) 4 for $\mathbb{E} 1$, P. \& $P, 3 /-$.
LONG ARM TOGGLE SWITCHES ex eqpt. SPST 13/6 doz., DPST 15/. doz. P. \& P. all types 2/-doz.
ORGAN BUILDERS' SPECIAL 500 TOI TRANSISTORS on panels. \&4, P. \& P. 6/-.
OVERLOAD CUT OUTS. Panel mounting in the following values ...5/- each. 2, 3, 4, 7, 8, 10 amp.
P. \& P. 1/6. Miniature glass Neons, $12 / 6$ doz, P. \& P. $1 / 6$.

I50 PIV. 10 amp. BRIDGE RECTIFIERS on FINNED HEATSINK. $12 /-+2 /=$. P. \& P. еа. LARGE CAPACITY ELECTROLYTICS
4tin, 2 in diam. Screw terminals.
All at $6 /$ - each $+1 / 5$ each P. \& P.
$4,000 \mathrm{mF}$
72 V .e. wks.
$\begin{array}{ll}4,000 \mathrm{mF} & 72 \mathrm{~V} \text { d.e. wkg. } \\ 10,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } w \mathrm{~kg} \text {. } \\ 6,600 \mathrm{mF} & 45 \mathrm{~V} \text { d. } w k g\end{array}$
$\begin{array}{ll}6.600 \mathrm{mF} & 45 \mathrm{~V} \text { d.e. wkg. } \\ 1,500 \mathrm{mF} & 150 \mathrm{~V} \text { d.c. wkg }\end{array}$
$\begin{array}{ll}16,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } w k g \text {. } \\ 25,000 \mathrm{mF} & 12 \mathrm{~V} \text { d.c. } w k g .\end{array}$
KEYTRONICS, 52 Earls Court Road London, W.8. Mail order only

TE8TED 2H2926 (all colours) $2 / 2,2 \mathrm{~N} 38198 / 6$, OC71 2/6. S. R. BAIN, Myrtle Cottage, Maryburgh, Ross-shire.

OA81 4d, OA5 6d EX-EQUIPMENT. Free lists. M. EDMUNDS, 52 Thornhill Park Road, Thornhill, Southampton.

	TRANSISTOR PANELS New boxed, size 9 in $\times 6$ in $\times 1 \frac{1}{2}$ in with "Valvo" transistors type OC45 or similar, with full length leads, also an equal number of OABS diodes, H/S resistors, etc. Built on perforated board in a metal frame. Panel of 20 transistors, diodes, etc. 20/- $\begin{array}{lll}30-25 \% & 60-40 \% \\ 40 & 30 \% & 70\end{array} \mathbf{4 5 \%}$ Postage $2 /$ - per panel. TRANSISTOR CAPACITORS (ELEC. TROLYTIC) 1/-each, $9 /-$ per doz. Min. order $10 /-$ COMPUTER PANELS with 40 sil. pno or non transistors, Oiodes and res., $22 / 6$ Post Paid. COMPUTER PANEIS WITH SEMI. COMPUTER PANELS WITH SEMH. TEST CARDS. 6 transistors 20 for 20/. ELECTROLYTICS 25,000 (M) 12V, 16,000 $60 \mathrm{~V}, 3.000$ m $80 \mathrm{~V}, 2,000$ (it $50 \mathrm{~V}, 1.200 \mathrm{I}$ (90V, ZENER DIODES-2.4. 2.7. 3.6. 4.75, 5.25, $5 \cdot 75,6 \cdot 2,6 \cdot 8,7 \cdot 5,13,15,16,18,20,27,30,33$ POLYSTYRENE CAPS. 125/350V, 270,680, $820,1,800,2,200,2,700,6,800,8,200,1,200 / 125 \mathrm{~V}$, $3,900,0.01,0.012,0.015$ 2 3/900, 0.01, $0.012,0.0152 /$-doz. 4-40pf trimmers BRANONEWB ing 2 -OC35, 2-OC29 12 WW resistors 25/-. Postage $1 / 6$. NEW CROSS RADIO 6 OLDHAM ROAD, MANCHESTER 4

* 2N706

SILICON PLANAR NPN GENL. PURPOSE RF \& HI SPEED SWITCH TOI8 METAL CAN, VCEO 20 V max. IC 200 mA max, PTOT 300 mW (Iw with sink). (FT $300 \mathrm{Mc} / \mathrm{s}$ TYP) BRAND NEW. FULLY GUARANTEED, UNMARKED, BUT COMPLY WITH FULL JEDEC MILITARY SPEC.

1/6 EACH. POST \& PKG. 1/. 8 OR MORE POST FREE
CASH WITH ORDER TO: J. L. CROWTHER 2 MANOR EARM, PURN WAY, BLEADON WESTON-S-MARE, SOMT.

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER. TAPE RECORDER, AyY (single output) 3916 each. P. \& P. 2/9.
 outpust required. All the above units are completely isolated from mains by double
wound eransformer ensuring 100 :, safecy.

RC.S. PAODUCTS (KADIO) LTD.
(Dept. P.E.), 31 Oliver Road, London. E. 17

MINIATURE RESISTORS
LOW NOISE-CARBON FILM SPECIAL OFFER
UNTIL MAY 31st, 1969
\% watt 5% E24 Series: 2 d . each
Minimum order 1 doz. - mixed values
Postage and packing 6d. but C.W.O.
ABRAHAM and PARTNERS 71 Kenley Road, London, S.W.19

The RADIO AMATEURS HANOBCOK 45/-

1967 Ed. by A.R.R.L. Postage $4 / 6$ F.E.T. PRINCIPLES, EXPERIMENTS AND PROJECTS by Noll $40 /=$ P. \& P. 2!-.
49 EASY TRANSISTOR PROJECTS by Brown 16/-. P. \& P. 1/3.
PHOTOFACT TELEVISION COURSE by Sams Eng. Staff, 40/P. \& P. 2/-

SERVICING DIGITAL DEVICES by Kyle 26/-. P. \& P. I/6.
101 MORE WAYS TO USE YOUR SCOPE IN T.V. by Middleton 24/-. P. \& P. 1/6.

COMPUTERS SELF TAUGHT THROUGHEXPERIMENTS bY Brayton 30!-. P. \& P. $1 / 6$.
BASIC THEORY AND APPLICA. TION OFTRANSISTORS new ed. by U.S. Army 14/6. P. \& P. 1/6.

TAPERECORDERS, PER. FORMANCE ANALYSIS SERVICE TECHNIQUES by Spring 42/-. P. \& P. 21-.
AUDIO AMPLIFIERS new ed. by DATA 10/6. P. \& P. 1/-
RADIO COMMUNICATIONS HANDBOOK by R.S.G.B. 63/-. P.\& P. 4/6.
HI-FI YEAR BOOK 1969 ED. 15/-. P. \& P. I/9.

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Stotion) Phone 01.4374560

SEMICONDUCTORS

ERSIN

forquisk, Rasy, praifille solliaring

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

Photoelectric kit

CONTENTS: 2 P.C. Chassis Boards, Chenicals, Etching Manual, Inira-Red PhotoTerninal Block, Flegant Case, Screws, etc. Condensers, Resistors, Gain Control, Stesdy-Light Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can ac modifed for modalated-1jght operation.

PHOTOELECTRIC KIT 39/6
Postage and Pack. 2/6 (UK) Commonwealth: SURFACE MAIL $3 / 6$ AIR MAIL $£ 1.0 .0$ S. Australia, New Zealand S. Africa, Canada and U.S.A. Also Essential Data Cireuits and Plans for Bullding 10 Advanced Designt

INVISIBLE BEAM OPTICAL KIT

Everstbing needed (except plywood) for building: 1 Invisible-Beam Projector and Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, CONTENT8: 2 lenses 2 mirro
lamp holder, building plans, performance data, etc. Price, Infra-red filter, projector 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail 8/9/6. Portage and Pack.
LONG RANGE INYISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kit. Larger Lenses, Filter,
etc. Price $89 / 6$. Postage avd Pack. $1 / 6$ (U.K.). Commonrealth: Surface Rail etc. Price 29/6. Postage avd Pack. 1/6 (U.K.). Commonwealth: Surface Nail
2/6. Ait Mail 10/. JUNIOR PHOTOELECTRIC KIT
Versatile Inviaible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Senaltive Phototransistor, 3 Transistors, Cbassis, Plastic Caise, Resistora, Screws, etc. Full Size Plans, Instructions, Data, Sheet " 10 Advanced Photoelectric Designs"
Price 10/6. Postage and Pack. I/6 (U.K.). Commonwealth 2/; ; Air Mail 4/-.

JUNIOR OPTICAL KIT

CoNTENTS: 2 Lenses, Inira-red Filter, Lampholder, Bracket, Plans, etc. Everythlng (except plywood) to build I minlature invisible beam projector and photocell Price 10/6. Post and Pack. $1 / 6$ (U.K.). Common.

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S. A. E. for full detaits, a brief descriplion anta Photographs of all Kits and all
52 Radio, Electronte and Photoeleetric Provects Astembled.

NEW PRICES ON NEW COMPONENTS

RESISTORS

High stability, carbon film, low noise. Capless construction, molecular termination bonding
Dimensions (mm): Body; $\frac{1}{4} \mathrm{~W} ; 8 \times 2.8$ Leads: $\frac{1}{2} W: 10 \times 4.3$
Leads;
0% ranges; 10 Ohms to 10 Megohms (E12 Renard Series)
5% ranges; 4.7 Ohms to I Megohm (E24 Renard Series) Prices-per Ohmic value.
10%

10					
$\frac{1}{1} W$	10%	each	10 off	25 off	100 of
$\frac{1}{4} W$	10%	2d	$1 / 6$	$3 / 3$	$10 / 4$
$\frac{1}{1} W$	5%	$2 \frac{1}{2} d$	$1 / 9$	$3 / 8$	$11 / 8$
$\frac{1}{2} W$	10%	$2 \frac{1}{2} d$	$1 / 9$	$3 / 8$	$11 / 7$
$\frac{1}{2} W$	5%	$3 d$	$2 /-$	$4 /-$	$12 / 10$

CAPACITORS

Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads.
Prices-per Capacitance value ($\mu \mathrm{F}$)

Polystyrene film, Tubular, Axial leads. Resin encapsulation.

POTENTIOMETERS (Carbon)

Miniature, fully enclosed, rear tags, carbon brush wiper. Long life, low noise. Body dia., $\frac{3}{4}$ in. Spindle, lin. X tin. $\frac{1}{4} W$ at $70^{\circ} \mathrm{C} \quad \pm 20 \% \frac{1}{4} \mathrm{M}$ $\pm 30 \%$. 4 M Lin. 100 Ohms to 10 Megohms Log. 5 Kohms to 5 Megohms Prices-per ohmic value. each 10 off 25 off 100 off

SKELETON PRE-SET POTENTIOMETERS (Carbon)

High quality pre-sets suitable for printed circuit boards of O.lin. P.C.M. 00 Ohms to 5 Megohms (Linear only).
Miniature: 0.3 W ac $70^{\circ} \mathrm{C}$. $\pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ above $\frac{3}{4} \mathrm{M}$. Horizontal $0.7 \mathrm{in} . \times 0.4 \mathrm{in}$. P.C.M.) or Vertical $(0-4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.)
Subminiature: $0 \cdot 1 \mathrm{~W}$ at $70^{\circ} \mathrm{C} . \quad \pm 20 \%$ below $2.5 \mathrm{M}_{1} \pm 30 \%$ above.

Prices-per ohmic value			each	10 off	25 off
Miniature $(0.3 \mathrm{~W})$	100 off				
Subminiature $(0.1 \mathrm{~W})$	\cdots	\cdots	$1 /-$	$8 / 9$	$18 / 9$

ACK PLUGS

in. Type PI. Standard. Screened. Heavily chromed.
in. Type P2. Standard. Unscreened. Unbreakable moulded cover.
in. Type SE/PI. Side-entry version of Pl plug.
3.5 mm Type P5. Standard. Sereened. Aluminium cover.
3.5 mm Type P6. Standard. Unsereened. Unbreakable moulded cover. Prices - each 10 off 25 off 100 off

	each	10 off	25 of	100 of
P1:	$3 /-$	$26 / 8$	$62 / 6$	$233 / 4$
P2.	$2 / 6$	$23 / 4$	$54 / 2$	$200 /$
SE/PI.	$3 / 6$	$30 / 10$	$66 / 8$	$280 /-$
P5.	$2 / 2$	$19 / 2$	$43 / 9$	$158 / 4$
P6.	$1 / 8$	151	$33 / 4$	$116 / 8$

JACK SOCKETS
in. Type S.5. Standard. Moulded body. Chrome insers.
3.5 mm Type S.6. Specification as above.

Available with make/make, make/break, break/break, break/make contacts

Prices -.	$\$.5$	$2 / 9$	$25 /-$	$56 / 8$
	$\$.6$	$1 / 6$	$13 / 4$	$33 / 4$
		$100 / 8$		

ELECTROLYTIC CAPACITORS (Mullard), - 10% to -50%. Subminiature (all values in $\mu \mathrm{F}$)

4 V	8	32
6.4 V	6.4	25
10 V	4	16
16 V	2.5	10
25 V	1.6	6.4
40 V	1	4
64 V	0.64	2.
Price	$1 / 4$	$1 / 3$

Small (all values in $\mu \mathrm{F}$)
4 V
6.4 V
6.4 V
10 V

10 V
16 V
25 V
40 V
64 V
64 V
Price

800	1,250	2,000	3,200
640	1,000	1,600	2,500
400	640	1,000	1,600
250	400	640	1,000
160	250	400	640
100	160	250	400
64	100	160	250
$1 / 6$	$2 /=$	$2 / 6$	$3 /$

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}$, IId. $0.22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6.0 .68 / \mu \mathrm{F}$, $2 / 3$. $\quad 1 \mu \mathrm{~F}, 2 / 8$.

400V: $1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d}$. $6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$. 7d. $0.033 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 / 2$. $0.22 \mu \mathrm{~F}$, $1 / 6 . \quad 0.33 \mu \mathrm{~F}, 2 / 3 . \quad 0.47 / \mu \mathrm{F}, 2 / 8$.
Modular, metallised. P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 11 \mathrm{~d}, 0.22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}, 1 / 5$. $0.47 \mu \mathrm{~F}, 1 / 8$. $0.68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 9$.

SEMICONDUCTORS: OA5, OA81, $1 / 9$, OC44, OC45, OC71, OC81, OC8ID, OC82D, 2/-. OC70, OC72, 2/3, AC107, OC75, OCI70, OCI71, 2/6. AF115, AF116, AF117, ACYI9, ACY21,3/3. OC140, 4/3. OC200,

SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.Y., 3/-. 800 P.I.V., 3/3. 1.250 P.I.V., 3/9. 1,500 P.I.V., 4/-. (0.75A): 200 P.I.V., 1/6. 400 P.I.V., 2/-. 800 P.i.V., 3/3. (6A): 200 P.I.V., 3/-. 400 P.I.V., $4 /-$ 600 P.I.V., 5/-. 800 P.I.V., 6/-.

SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125 V . Push Butzons: Push-on or Push-off 5/m. Toggle Switches: SP/ST, $3 / 6$. SP/DT, 3/9. SP/DT (with centre position) 4/., DP/ST, 4/6. DP/DT, 5/=

PRINTED CIRCUIT BOARD (Vero).
$0 \cdot 15$ in Matrix: $3 \frac{1}{4} i n \times 2 \frac{1}{2}$ in, $3 / 3$. $5 \frac{1}{2}$ in $\times 2 \frac{1}{3} \mathrm{in}, 3 / 1$. $3 \frac{3}{3} \mathrm{in} \times 3 \frac{1}{3}, 3 / 11$. 5 in $\times 3$ 3in, 5/6。
 $5 / 3$.

Send S.A.E. for January, 1969 Catalogue

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE
 Telephone: CAMBRIDGE (0223) 63687

(Visit us - at our new Mail Order, Wholesale \& Rełail Premises) MINIMUM ORDER YALUE 5/- C.W.O. Post and Packing $1 / 6$

ELECTROVALUE

RAPID MAIL ORDER SERVICE - EVERYTHIng BRAND NEW AND TO STATED SPECIFICATION

COMPARE OUR PRIGES—AND REMEMBER OUR DISCOUNTS

C.E. 2N8928 PLASTIO RAMGE

Red spot $=55$ to $1108 / 8 ;$ Orange spot $=90$ to 180 2/8: Yellow spot $=150$ to $300 \mathrm{2} / 6$; Green vpot $=235$ All the above brand new stock.

THKAS STETC RANGE 30 V 800 mA прн:
2N8704 $=90$ to $330 \quad 8 / 8$ $2 \mathrm{~N} 3705=45$ to $165 \mathrm{~s} / \mathrm{s}$ 25 V 200 mA pnp:
$2 N 3702=60$ to $300 \quad 3 / 6$ $2 \mathrm{N3703}=30$ to $150 \quad 8 / \mathrm{s}$ small signal npn: 2N3707 low nolse $2 N 3711=180$ to $6608 / 11$ 2Nall elgral pup: 2N4088 low noise $\quad \$ / 9$ 2A4062 = 180 to $6604 / 8$ $\mathrm{BC107}$ series 300 mW
300 MHz fT TO18. Beta Beta ralues for abore, quoted immedfately after type
numbers.

FETS-Pricer redinced

MPF105 25 V max., $\mathrm{gm}=2$ to $6 \mathrm{~mA} / \mathrm{V}$, low noise $7 / 6$ 2 N 381925 V max., $\mathrm{gm}=2$ to $6 \mathrm{ma} / \mathrm{V}$, low noige $9 /-$.
ZEAER DIODES
voltages, $4 / 8$ each to $27 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ all preferred voltages, $/ / 6$ each.

4TII TRAISIBTORS

2 Veb 28 pnp hFE 35 to 150 @ 10 mA IT 7 MHz min. to 1 mA IT 280 HEL 286 np n 30 V hFE over 100 @ $10 \mu \mathrm{~A}$ to 1 mA fT 280 HHz typ.; 2 N 4289 porp 60 V hFE over 100 @ 100 मA to 1 mA fT 1703 MHz typ.; 2 N 4291
pnp 40 V hFE over $100 @ 100 \mathrm{~mA}$, 2 N 3794 mpr 40 V PnD 40 V hFE over 100 @ 100 mA , 2 N 3794 npn 40 V put; 2N4292 npn 30V UHF N.F. 6 dB mat driver/ontput; 2 N 4292 Mpn 30 M UHF N.F. 6 dBD max $\mathrm{B}_{3} 100 \mathrm{MHz}$, temp. 35 V , hPE over 100 @ 0.5 A . In © $100^{\circ} \mathrm{C}$ base ize mountiog surface. Prices: $2 N 4285$ to 2 N 4292 and 2 N 3794 2/11; B5041
18/6.
1,000V 1 -5A GENERAL PURPOSE RECTLFIER type 1N6054 8/6 only.
100V 0.75A miniature rectifler type TS1 $1 / 8 ; 400 \mathrm{~V}$ type T84 2/8.

IEW TRANBISTOR BARGAITS

$\begin{array}{lllllll}\text { 2N } 696 & 5 / 8 & 2 N 1711 & 7 / 4 & 2 N 4060 & 4 / 8 & \text { BCI48 } \\ 3 / 8\end{array}$ $\begin{array}{lllllll}2 N 697 & 6 /- & 2 N 214718 / 8 & 40250 & 15 /- & \text { BC149 } & 4 / 8\end{array}$ $\begin{array}{lllllllll}2 N 706 & 8 / 5 & 2 N 2369 A & 40406 & 18 / 8 & \text { BD123 } & 2 / 8\end{array}$ $\begin{array}{llllllll}2 N 1132 & 18 /- & & 8 / 8 & 40408 & 14 / 6 & \text { BF194 } & 7 /- \\ 2 N 1302 & 4 /- & 2 N 2646 & 8 / 6 & \text { AC126 } & 8 / 8 & \text { BFY } & 1 /-8\end{array}$

 $\begin{array}{lllllll}\text { 2N1305 } & 4 /- & 2 N 3053 & 5 / 8 & \text { ACY17 } & 8 /- & \text { BFX85 } \\ \text { 2N18 } \\ \text { 2N1306 } & 6 / 8 & 2 N 3054 & 15 / 8 & \text { AD161 } & 7 /- & \text { BYX } 88 \\ 7 / 9\end{array}$ $\begin{array}{lllllll}\text { 2N11306 } & 6 / 8 & \text { 2N3054 15/6 AD161 } & 7 /- & \text { BFX88 } & 7 / 9 \\ \text { 2N1307 } & 6 / 8 & 2 N 3056 \\ \text { 2N18/6 AD162 } & 7 /- & \text { BFY51 } & 4 / 8\end{array}$ $\begin{array}{lllllll}\text { 2N1307 } & \text { B/8 } & \text { 2N3055 16/6 AD162 } & 7 /- & \text { BFY51 } & 4 / 8 \\ \text { 2N1308 } & 8 / 9 & \text { 2N3391A } & \text { AF114 } & 7 / & \text { BSX20 } & 4 / 6\end{array}$ $\begin{array}{lllllll}2 N 1309 & 8 / 9 & \text { 2N3391A } & \text { AF114 } & 7 / & \text { BSX20 4/6 } \\ \text { 2N13 } \\ \text { AF124 } & \text { 7/B } & \text { NKT403 }\end{array}$ $\begin{array}{lllllll}2 N 1613 & 8 / 6 & 2 N 3706 & 8 / 8 & \text { AF124 } & \text { BCI47 } & \text { 4/8 } \\ \text { 2NKT403 } & \text { NK } & 14 / 10\end{array}$ All power types supplied with FREE Mica Washers.

BAILEY 30 WATT AMPLIFIER

Transistor complement, $\mathbf{~ 7 . 8 . 0}$ per channel. PC boards for main amp. 12/6 each or free with channel of transistors. November 1968 WW reprint giving Power supply kit complete circuit $1 /$ - post free. complete including TB5 reaistors where applicable 29.8.0. All components dold separately (gee cataloge)

PEAK SOUAD AMPLIFIER KITS
 boards (main amp), 4/-; of
$1,000 \mu \mathrm{~F} 50 \mathrm{~V}, 7 /-, \mathrm{clip} 9 \mathrm{~d}$.

POTESTIOHETERS

Long plastic spindle
Values, lin and $\log : 47 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, Stereo matched, dual $2 / 6$ each.
$47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$, also 10 K , log and log: $10 \mathrm{~K}, 22 \mathrm{~K}$ Please note: only the zbove valoeg $8 / 6$ each. Whth double pole switch, $2 / 3$ extra

1969 CATALOQUE now ready, full of most up to date infornation essential to every serious user. Send $1 / 6$ for your copy
10% on total DISCOUNTS
10% on total order over $\$ 3.0 .0$. 15% ou total order uver $\pm 10.0 .0$
Unifess stated othertaise.
POSTAGEAND PACEIRG un orders up to 81 , ald $1 /-$: over, post frce OVERSEAS ORDERS WELCOMED Carriage charged al cost.

You can save a considerable amount of money by tackling most of the car maintenance jobs yourself and the Practical Motorist Annual is designed specially to help you. Authoritative articles and step-by-step instructions show you how to maintain the engine, ignition, transmission, suspension and steering, brakes, bodywork, electrics, etc. With holidays in mind there is a most helpful section on camping and caravanning.

PRACTICAL

12in. DE-LUXE MKII \&

The exceptional quality, and performance of the "De-luxe MKII" brings truly rich satisfying sound from a single loudspeaker, recreating the musical spectrum virtually flat $\pm 5 \mathrm{db} .25$ to $16,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The unit consists of the latest double cone, woofer and tweeter cone together with a special and "FERROBA" magner assembly having biux density of 14,000 gauss and a having a flux 150,000 Maxwells. Bass resonance c.p.s. Rated 15 watts. Voice coils availableFider or 15 ohms. Suitable for any High and programmed third generation concept and programmed third generation hardware giving fantastically delightful sound.


```
48 page Enclosure
Manual 5/9 post pai
Bensham Manorfoad Passage, Thornton Heath, Surrey, 01-684-1665
```


Valuable new handoook FI [. Toambitious HIMHERERS
 Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available - without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES", should be in the hands of every person engaged in any branch of the Enginecting industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tech.Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Dratightsmanship - Illtminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.—Road Eng. - Hydraulics - Mining Water Supply-Petrol Tech.

RADIO \& T.V. ENG Advanced Radio - General Radio-Radio \& TV Servicing - TV Enyineering - Tclecommunications - Somnd Recording - Automation Practical Radio - Radio Amatcurs' Examination. MECHANICAL ENG. Advanced Mechanical Eng-Gen. Mech. Eng.-Maintenance Eng. - Diescl Eng. Press Tool Design - Sheet Metal Work - Welding Eng. Pattcrn Making Inspection - Draughtsmanship EMetallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.Gencral Alto. Eng. - Allo. Maintenance - Repair Alto. Diesel Maintenance Auto. Electrical EquipmentGarage Management.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interest ing job.
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man ... quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL

EQUIPMENT
Basic Prattical and Theotetic Courses for beginners in Elettronics, Radio, T.V., Etc. A.M.E.PE Gity \& Guilds Radio Amateurs' Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Electronics Electronics Engineering Piactical Radio Radio \& Television Servicing Aulomation

INCLUDING TOOLS
The specialist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with practical equipment. Ask for details.

You are bound to benefit from reading 'ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E. A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDU'CATION, ETC

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

POST COUPON NOW!
TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

BNELANTDS द3: DLLTG GOU SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT

Mono or Stereo Audio, Equipment-developed from Dinsdale $M k .11$-ach unit o
system will compare favourably with system will compare favourably with
other professional other professional equen
at much higher prices.
COMPLETE SYSTEMS FROM
£15.5.0
the finest value in high figelityCHOOSE A SYSTEM TO SUIT YOUR
 needs and save pounds

All units available separately
SEND FOR FREE BROCHURE (No. 2I) TODAY! DEMONSTRATIONS DAILY AT '303' EDGWARE ROAD

INTEGRATED TRANSISTOR AMPLIFIERS
MAGG 12 WATTS STEREO
We are pleased to offer two new designs with the choice of either
mono of stereo systems. These BRITISH OESIGNED UNITS mono of stereo systems. These BRITISH DESIGNED UNITS
favour the user in so many ways-with fantassic power and favour the user in so many ways-with fantastic power and
quality with far greater adaptability, with freedom for battery or quains operation.

Acclaimed by areryone the mayfala

 $\begin{array}{ll}\text { of tone colours suitable for ctassic } & \text { 12 monthiy paymend } \\ \text { or popular music. The organ is } \\ \text { is. Tatal Ekiunio }\end{array}$ BROCHURE9 ancires attractive vynarinsistors, printed circuit paneis, spocial fulty sprung and depth of touch adjusted keyboard,

\star The GROSVEMOR

is designed for the mare ambitious musician and has a much wider fange than most commercias organs. It compris eq two four-octuve
(49 note) keyboards and a thirte en-note pedal board it has fout

 yoikes in the solo tone-forming unit, 10 yoices in eccompariment
tone-forming unit and - voices in the pedal tone-forming unit. All components and kit zections are available segatately including
the Oak Console at E65 18 . the Oak Console at E65. 18.0 .
A complete detailed and illustrated construetion manual is provided with circuits and full parts list. All items may be purchased
separately. All parts supplied are fully guaranteed. Full atter sales service and advice freely ayailable.
Once built the 'MAYFAlR' and 'GROSVENOR', will then provide years of enjoyable ontertainment.

KITS FROM \&22
BROCHURE 98
PRACTICAL ELECTRONICS-ELECTRONIC ORGAN KIT
We are able to supply Parts as described in this issue. Details on request
ORGAN COMPONENTS : COMPLETE RANGEIN STOCK• 19 AND 67 NOTE KEYBOAROS. 2 TO 5 AMP ASSEMBLIES. PEDAL BOARDS ORHODUM AND GOLD CLAD WIRE. ALSO PRINTED CIRCUHTS ETC LEMALLETE RANGES FOR TRANSISTORISED ORGANS. ASK FOR NE W PRICE LISTS WITHD DETALC.
LEAL

BUILD A QUALITY
TAPE RECORDER To oft the best out of your MAGNAVOX DECK. you need a
MARTIN RECORDAKIT. This comprises a zopecial nigh
 you assembied on its orinted circuil board-in tact every-
thing needed down to the last screw for MAking a thing needed down to the last screw FOR MAKING A
SUPERB TAPE RECORDER, wikh, when built, will com-
Ceie Drie farourably with instituments costing twice st much, met
you nemon experience or tachnical skill to briag this about. TME INSTRUCTIONS MANUAL MAKES BUILDING EASY
ANO SUCCESS ASSURED.

\qquad
NOMBREX
RANSISTORISED PRICE Leaflet e. s. d. No. 2100 No

| 33 | inductance Bridge $20 \quad 0 \quad 0 \quad 29$ |
| :--- | :--- | :--- | :--- |
| VHF FM SUPERHET TUNER MKII | |

 A pogular YHF F:M Tunet
now used
counuy
throughout the

 stability, economicaly sxelliont
TOTA, end

 DECODER ES 19.4.
(GA BINET 20 . A ASK

TRANSISTORS MANUFACTURERS-DISTRIBUTORS We publish a quantity, SEmi-conouctor
BULLETIN listing oyer soo diferent devices avaiable
 PRICES COUPled with PROMPT DELVERIES.
TO OGTANM YOUR COPY. WRITE TO US Headed Hotepaper please) requestion our SEMI-
 We purchase medium to large quantities of Transistors and Devices excess to Manufacturers* and Distributors' requirements.

HI-F1 equipment to suit EYERYPOEKT

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE ROAD
ANO SAVE UP TO £25 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE for all leading makes

ERAND NEW All below list price
2025 Mono/Stereo
3000 DM with 9TAHC
SP25 Mk II
AT50 Mk II
3500 Mono/Stereo STAHC
AP75
SL55
SL5
SL65
SL95
A 70 MK 11
Send for new l-page brochures 16, il
Complete range of accessories available

QUALITY CAR RADIOS

 positile i
MANull as

NEW-MALLORY LONG LIFE MERCURY BATTERIES 50° OFF LIST PRICES

 LiFE are mpuired
QUAMTITIESAVAILABLE.

TRANSISTORS-
SEMICONDUCTORS
COMPLETELY NEW 1969 LIST OF 1000 types. Send for your FREE COPY TODAY. (list 36)
S.C.R.'s from 5 :
Field Effect Transistors from 96

Power Transistors from 5 .
Diodes and Rectifiers from 16

\section*{Fully}
 Illustrated

 COMPLETELY NEW 9th EDITION (1969)

The most COMPREHENSIVE-
CONCISE-CLEAR COMPONENTS
CATALOGUE
Complete with 10 - worth discount vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
210 pages of components and equipment
70 pages of microphones, decks and $\mathrm{Hi}-\mathrm{Fi}$

6,500 ITEMS

320 BIG PAGES

[^0]: All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELECTRONICS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C.4. Phone: 01-236 8080.
 Subscription Rates including postage for one year, to any part of the world, 42s. (C) IPC Magazines Ltd., 1969. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^1]: POSTNOW for To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives NAME. BLOCK CAPS
 BROCHURE
 or write if you prefer not to cut page 1 ADDRESS
 PLEASE PE 4

[^2]: To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, Londan S.W.1. Please send me (without obligation) details of your Educational Programmes please tick My interest is City and Guilds \square General \square

 Name
 \qquad

 Electronics experience

[^3]: Your tale of woe is certainly revealing and I wonder if any other readers have been victims of the widespread use of integrated modules in present day equipment. Obviously many other service engineers and general public will feel the impact and you certainly have my sympathies.
 -Ed.

