PRACTICAL
 APRIL 1969
 RoNics THREE SHILLINGS

THEDRV

 into Priatile
ALSO

ADCOLA
 Soldering
 Instruments

IN THE JET AGE......

EFFICIENCY AND RELIABILITY, AND CONSISTANT, SUSTAINED PERFORMANCE ARE BASIC REQUIREMENTS.

ADCOLA SOLDERING INSTRUMENTS MEET THESE NEEDS AND GO ON MEETING THEM, DAY AFTER DAY, YEAR AFTER YEAR, WITH UNFAILING REGULARITY.

LEADING MANUFACTURERS THROUGHOUT THE WORLD LIKE THIS, THEY ALSO LIKE THE QUICK SERVICE WHEN REPLACEMENTS DO BECOME NECESSARY. SO THEY SPECIFY ADCOLA.

WHY DON'T YOU!

AVAILABLE FROM SHOPS EVERYWHERE OR DIRECT FROM

SALES \& SERVICE DIVISION, ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD,
LONDON, S.W. 4 .
TELEPHONE 01-622 0291

SEND COUPON FOR LATEST LEAFLET $=7$

TCC G-1120

HEADPHONE/BOOM

 MICROPHONE SETThis lightweight headphone and boom microphone assembly is especially suitable for TV camera crewr, communtcations equipment, language labs., recording studios, etc. The fully adjustable perlods exp long cables to be used without any signal loss. Used with a Tape Recorder this assembly will provide constant monitoring. High quality speciffication and superb finish at a price you can aftord.
Feadset spec.: Dynamic impedance 16 ohms.
 Frequency res. $20-14-1000 \mathrm{~Hz}$. Input 200 mW . Cord length 591 m with Jack piug fitted. Mic. spec:- Impedance dymamic 200 ohms. Frequency res. 200-8000 $\mathrm{I} z$, sensitivity 75dB. Cord length 63 in complete with jack plus

LASKY'S PRICE
 £6.5.0

 Post 2/6
SPECIALIST RELAYS

SCHRACK 4 POLE 12 WAY

This stepping relay inches one step per puise of the coil, contacts are provided for continuous stepping and 2 pole changeover at position "6" Uses include programming Christmas tree lights,
selection of stations on multiway intercom systems (using standard 2 way intercoms), Servo steering of radio control models. Automatic operation of model raintays, esc.

LASKY'S PRICE

THORN PYGMY PLUG-IN RELAY
A miniature 8 pin plug-in relay with 10 A double changeover configuration. Mains operated coil switched for internal powered remote the external circult is broken. Coll resistance $82 \mathrm{~K} / \mathrm{ohms}, 200 \cdot 240 \mathrm{~V}$ AC/DC operation.

LASKY'S PRICE
 | $2 / 6$

Post $2 / 6$

AEI MINIATURE RELAY

A miniature shrouded 3 pole "make" relay of the chassis mounting type. circuits, control systems, using low voltage and current, controlling small circuits, control syatema, ushg low circults from one switch.
LASKY'S PRICE 8/6

Post 1/6

AD-76K MOVING MAGNET CARTRIDGE

New high compliance moving magnet stereo cartridge that really breaks the quality/price barrier. SPECLFICATION: Diamond Stereo LP stylus. Compliance $10 \times 10^{-6} \mathrm{~cm} / \mathrm{cyne}$. Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$. Channel separation 20 dB . Output 5 mV . Trackiag pressure 2 grammes. Standard $\frac{\Sigma}{2}$ in mounting. Replacement Diamond stylus available. Fully guaranteed.

LASKY'S PRICE

90/=

Post $2 /$.

Branches

207 EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 3271 Open all day. 9 a.m. -6 p.m. Monday to Saturiay 33 TOTIENHAM CT. Pb., LONDON. W. 1 Tel.: 01-636 2605 Open äll day. 9 a.m. -6 p.m. Monday to Saturday $152 / 3$ FLEET STREET, LONDON, E.C. 4 Tel.: 01-353 2833 Open all day Thuisday. early closing 1 pm . Saturday

FANTAVOX 500

12 WATT STEREO AMPLIFIER

This outstanding amplifier incorporates all the features expected of an expensive unit but at a budget price. The amplifier has separate tone and volume controls for both channels plus stero mono switch and tuner attractive wralnut grained metal cabinet with anodised pale 5 gold
metal front panel. Brief epec:
12 transistors, 2 silicon diodes. Output, Peak power 12 watts (6 watta per uhamnel) Freq. Reqponse: $40-20,000 \mathrm{~Hz}$, Output impedance 4.16 ohma. Ioput sensitivits. Phonof Tuner 250 mV . Sizc: $3 \ddagger \times 3 \ddagger \times 5 \sharp$ in.

LASKY'S PRICE

E12.10.0
Post
5/

NEWTTC Model A-1008 BUDGET FM TUNER
For size, quality and price we feel sure the Model Allobs Fh Iuner is unbeatable. Probably the word 3 diode printed circuit self poweredoperating from any 9V D.C. source. Slow motion tuning drive. Housed in beautifully flnished walnut cabnet with classic silver trim. Clear horizontal tuning scale covering the entire FM
 band $.88-108$ Mc/s. Complete with FM aerial.
Brief Spec : aerial imp. 7 E ohms. Sensitivity Brief Spec.: aerial imp. 7 B ohms. Sensitivity
better than 10 UV (at 109% modulation for 20 dB S/W), Size $7 \frac{\square}{\%} \% 31 \mathrm{in}$.

LASKY'S
 PRICE

PoAt $3 / 6$

ADD MULTIPLEX TO THE MODEL A-1008

You can enjoy atereo sound with the Model A-1008 FM Tuner above by adding the TTC Model A-1005M Multiplex Adaptor. Brief Specifcation: MPX input sensitivity 100 mr . Output 150 mV . Self powered by a $9 V$ battery. 4 transistor and 6 diode circult. Slze
$5!\times 2 \times$ Iin. Also suitable for wise with other FM tuners with MPX input.

LASKY'S PRICE 99/6

BUDGET PRICED CASSETTES

OVERTURE High quality cassettes from the IU.S.A. C. $60-10 / 6$ C. $90-15 /-\quad$ c.120-20/-

High Fideliay Audio Centres

Open all dyy, 9 am= $=6 \mathrm{pm}$. Monday to statuday
118 EDGWARE ROAD. LONDON. W. 2 Tél: $01-7239789$ Open all day Saiurday, eariy cosing ip. p . Thu

How do yon measure the extra quality of EMiI speakers?

EEMTETIITII

EMII are famous throughout the world for High Quality sound reproduction. Naw our audio design engineers have developed loudspeaker systems suitable for home use.
These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches x 14 inches bass unit, power output 50 watts R.M.S.

Send for literature and price lists to.

EMI SOUND PRODUCTS LTD., HAYES, MIDDX. TEL: 01-573-3888 EXT. 667

DELUXE PLAYERS
 \section*{PORTABLE CABMET Asillus}

 tratec. To at atandard $75 / \mathrm{m}$ RCS AMPLIFIER 3 WM Ready made snd tested. Thit is a 2 -atage urit cuing a striode pentode condensecoupled valve, givink I witti ontpat into a 3 ohm
Toue and rolume controls mounted on chasin with Frobs, Sapplied Fith lordspeaker and vaive UCL82 Frequency response $50-12,000 \mathrm{cps} .59 / 6$
Eenitifity 200 m 7 .
BENGLE PLATERS MONO EMI Janior Mains te.19.8
 A UTOCHAKGERS Ballour Anto BAR Superslim UA25 $£ 6.19 .8$ Gatrard
 All Atted LPj\%8 stylii and mono picinp cerystal complete. Sterso/mono pickups 20/- extra except UA70 and 3000 . GARRARD TEAKWOOD BASE WB.1. Ready $65 /$ GARRARD pgrseex cover sec. 1 lor wr. 165

DE LUXE STEREO GRAM CHASSIS V.H.F. MW, SW
 PICK-DP ARM Complete with ACOS LP-78 GP67 Stylii 29/6; -2aL GP67 17/6; Stereo Ceramic 35/=. Powerpoint $5615 /=$ CRYSTAL MIKE INSERTS
 PORTABLE TRAMSISTOR
 powerful $7-x$
power amplifer pios ulitrs sensitive microphone one watt bettery. Brand new in Makers' carton with full Uses PP9 gatartee. World famous make. Only $90 /-$ Post

WEYRAD P50 \rightarrow TRANSISTOR COILS RA2W 6 in. Ferrite Aerial |Spare Cores with ear aerial coil $12 / 6$ Driver Trans. LFDTA - Bd Onc. P50/1AC I.F. P50/2GC 470 kc ,.. ceietcopic chrome Aerials 6 in , extends to 23 in .
VOLUME CONTROLS 800hm COAX 8d. ya. Long gpincles. Midget size BRITISH AERIALITE 5 K .0 mms to 2 Meg. LOG or AERAXIALAIR SPACED
 VEROBOARD 0.15 MATRIX

PINS 36 per packet 3/4, FACE CUTTERS $7 / 6$.
\%.R.B.P. Boerd 0.15 MATRIZ 2tin. Fide 8d. per lin., 37in. GiR.B.P. undrilled sin. wide $1 /-$ per 1 in . (up to 17 in .)
ELAKE ALUMINIDM CEASSIS. 28 g.w.g. 2 2in, sides,
 $5 / 6 ; 12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{in}, 3 / 6 ; 8 \times 6 \mathrm{in} .2 / 8 ; 8 \times 4 \mathrm{in}, 1 / 6$. $12 \times 12 \mathrm{n}$.

MAX CHASSIS CUTTER

Complete: a die, a punch, an Allen serew and key
in, $16 /-\frac{10}{\text { in }} 17 / 6$ ihin, $19 / 6$ 11in, $24 /-2 \frac{3}{3}$ in. $44 / 3$

'fSONOCOLOR' CINE RECORDING TAPE 5^{n} reel, 900 with Lp gtrobe markings, thso cine light
deflector-mirror for synchronigation UATVERSALTAPE CASSETYES C60. OUR PRICE 14/-.
Tape Spools 2/8. Tspe Splicer 5/- Leader Tape 4/6.
Reuter Tape Hesds for Colaro models 2 track 21/- pair
cun memarr
BULK TAPE
ERABER AND
RECORDING
MEAD
DEMAGNETISER

Minimum Post and Packing 2/6. RETURN OF POST bookbhelf enclogure 5.10 .0 extra.
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, WEST OROYDON

response from 60 to $16,000 \mathrm{~Hz}$
and outstandingly good
comfortably handle up to 14 W
loading and is positively brilliant
in stereo. Measuring 93्येin
square by $4 \frac{3}{4}$ in deep, this loud-
$\begin{aligned} & \text { speaker is finished in matt black } \\ & \text { with solid aluminium bar trim. }\end{aligned}$
Try the Q. 14 in your own hom
without delay. If you are not
delighted with it, your money
$\begin{aligned} & \text { including cost of return postage } \\ & \text { to Sinclair will be refunded }\end{aligned}$
immediately.
design techniques have been
used to produce speaker of
attractive price. Experts and
reviewers have enthusiastically
endorsed its performance. The
shape and size of the Q. 14 make
it far more adaptable to its
with conventionally styled
speakers so that it is much
easier to position this speaker in
the room in which it is to be
heard. The Sinclair Q. 14 has a
substantially

de-luxe pre-amp/control unit

ํ
잉
$\stackrel{\text { O}}{0}$
$\stackrel{y}{*}$

SINCLAIR MICROMATIC

Kit in fitted pack with
 $41 / 3$
 inc. magnetic earplece 54/8

 OCA3-52731 SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12V) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-

Sonotone 9TA and 9TA/HC. Diamond Cart ridge brand new, boxed in manufacturers' carton 49/6 plus $2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP $91-3$ stereo compatible cartridges, new in sealed manufacturers' cartons 22/6 plus 2/6 p/p.

BASF TAPE 25\% off

5 in 600ft. 14/- 900ft. 19/- 1200ft.30/5zin 900ft. 19/- 1200ft. 24/- 1800ft.39/7in 1200ft.24/- 1800ft35/- 2400ft.57/-

P/P 2/- per reel-over £5 FREE

HI-FI SPEAKER
 K12TC-12in 12 wat

Offers an exceptionally smooth and extended response, with very low level of distortion from the specially designed twin diaphragms.
Frequency Response: $30-16,000 \mathrm{~Hz}$. Impedance: $15-160 \mathrm{Hm}$
$\begin{array}{cc}\text { OUR SPECIAL PRICE } \\ \text { PLUS P/P } 6 / 6 & \mathbf{7 / 6}\end{array}$

- BARGAIN - Speakers, Hi-Fi The Baker Selhurst Stalwart. 12 in round, 15 watt rating, 12,000 lines gauss, 15 ohms, response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium chassis. Our price \&5.9.6.

DULCI HI-FI UNITS

The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price.
Amplifiers: 207 and 207M. Tuners. FMT7 and FMT7s.
SEND NOW FOR FULL DETAILS
TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus. Frequency response 20 $20,000 \mathrm{c} / \mathrm{s}$ output. 7 mV tracking pressure 2 grammes $\pm 0.5 \mathrm{grm}$. Fully guaranteed. Price 85/- p/p free.

- Bargain-Changer decks at lowest prices ever

GARRARD
Beautiful teak 1025
£8.0.0 plinth and perspex 2025
cover to suit
these units
Gns. P/P
Free
AT60 Mk. 11 SP25 Mk. 11

3500 with Son 9TA.HC diam. £10.19.6
Add 10/- p/p for each Garrard unit

SPEAKER ENCLOSURES

Type: INFINITE BAFFLE
Model 8: 8 in plus 3 in tweeter
Model 138: 13in $\times 8$ in EM
Both £4.19.6 each
Model 1012: 10in or 12in, plus 4 in tweeter £7.19.6
All enclosures are in olled teak, fully built.
Please add $8 /-\mathrm{p} / \mathrm{p}$ on each enclosure - BARGAIN - Speakers, Hi-Fi The Baker Selhurst Guitar Group 25, 12in round, 25 watt rating, 12,000 gauss, 15 ohms, response $30-10,000 \mathrm{c} / \mathrm{s}$, solid aluminium chassis, heavy duty cone. Our price £5.9.6. p/p 6/6

The greatest HI-FI Budget system today can't be beaten-price or quality anywhere -look at these great features-then compare.
Teleton F2000 tuner amp.
AM-FM with multiplex decoder and A.F.C.-2 $\times 5 \mathrm{~W}$ channels R.M.S. Bass Volume Treble Balance controls, a truly outstanding unit
Garrard SP 25 Mk II Transcription deck
Teleton SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridge

$£$	s.	d.
43	1	0
15	11	11
9	5	0
4	2	0
7	0	0
$£ 78$	19	11

E.M.I. HI-FI SPEAKERS

SET 450: 13×8 with two built-in tweeters and cross-over unit. Our Price $69 / 6,3$ or 15 ohm $10 \mathrm{~W}, 40-13,000 \mathrm{~Hz}$.
SET 850 : $6 \frac{1}{2} \mathrm{in}$ bass plus $3 \frac{3}{2}$ in tweeter and crossover unit. $8 \mathrm{ohm}, 10 \mathrm{~W}, 65-20,000 \mathrm{~Hz}$. $79 / 6$.
SET 250: 5in heavy duty bass plus 3in tweeter and cross-over unit. $80 \mathrm{hm}, 6 \mathrm{~W}, 80-20,000 \mathrm{~Hz}, 65 /-$ Add $5 / 6 \mathrm{p} / \mathrm{p}$ for each speaker set

WALDON ELECTRONICS, Atlas House, Chorley Old Rd., Bolton. Bolton 45628

IT SOM ELECTRONIC

components s STB

BC107/8/919x $2 / 9$
2113819 misi 8/-

2N2646 minician 10 -

SIMLLR 2×2846 TIS 3
BEI 3000, ETC.
6/9
$25+5,30100+438$
CRS3/40AF (5iN
TD716 mana $12 /-$

2113055115 wim pont suma wer
$20+13 /-100+11 /-$

2N2926 \%ine $2 /-$

AD161/2 MRIR $10 /-$
HPI PMP POWER PAIR
${ }_{\text {BEPu}}$

ㅈax alodic

 $\begin{array}{llll}41914 & 11 /- & 9 / 6 & 8 / 4 \\ \text { uL923 } & 14 /- & 12 / 6 & 11 / 9\end{array}$ 5 page Data and CIreults Larger quantity prices (ion and $1,000+$ on application)

LINEAR AMP.IC'S

CA3020 $\frac{1}{2}$ watt output 9 yolt supply 30/6 GuitarfPA Xmplifier!!)
TAA263 Tiny Mullard linear only $17 / 6$-data on request CA3012 Wide band with bult in regulation.27/6 Darlington output 32/6 SL701 Plessey lin. amp. for UITRASONC transoucers

Operate at $40 \mathrm{kc} / \mathrm{s}$. Can be used for remote consrol systems without cables or elee tronic liniks. Type 1404 trans FREE: With each palr our complete transmitter and recelver circuid
PRICE ES.18.0 Pair (sold only in pairs)

대AAGT EVER SOLID-STATE SALE
sEST VALUE IN BRITAIN

 15. Sinimum Medium Power Triausisoors similar to BFYSi rarge 30 TESTEO. Noe coded Tristors. "Talig ase." NPN" sype umiliar 8 Biofigh9 range. Noo reted or coded. Guarameted minimum

 co makers apecifiations PNP. Equal to OCI range. No

 12 silicon A Alanche hectifiers Top-Hze cse 1 ing fe up to

 263718 and $5 \mathrm{D} / 9$ are Manulactureri" tested devices.
Other wh-coded speck are qiven type number at a guide only.
Money refunded if not sutisfed. All above packa pest fres in UK All above pada pest fres in

 $2-\mathrm{BeC}$ " kit lect mannual 2-DeC kit contalins two Decs structive book, all packed in attractive plastle box 6"/6 crestories, manual, etc.
BOOKS FROM STOCK
circutrs ... 29/6 "RCA Transistor Manuad", $5 S 4$ pages includes SCR circuits 28/"Designers Gulde to Berish Transistors". Excellene daza book
Hsts over 1,000 common types plus computer selected substicuUsts over 1,000 common types plus computer selected substicu-
elon chart tion chat (ADO $2 / 6$ POST \& PACKING FOR ALL BOOKS) NEONS Slgnal neons for many types of drcuit type " N " HEATSINKS. Sultable for $2 \times 0 \mathrm{OC35}$, etc. As used in co ALUMINIUM CHASSIS
$6 \times 4 \times 24$ in with reinforced corners 6,9 each (P. \& P. 1/6). Ally panel to fir, $1 / 6$. Paxolin pasel to fir, 2 (.-Many other
sizes in stock up to $\$ 2 \times 8 \times 2 / \mathrm{in}$ (see caralogue)

SILLCON RECTIFERS - -

 THYRISTORSS SCRs
$P I V$ 50 100 200 300 400 600 800

SOLAR CELL

32M 0.2-0.4 volss@2 2mA Selenium type 12/6 B3M 0.2-0.4 volts ($a, 1 \frac{1}{2}+\mathrm{m}$ A Selenjum type S4M0.3-0.4 volts@ $25-40 \mathrm{~mA}$ Silicon
SOLAR DRIVE MOTOR
PHOTOCONDUCTIVE CELL
CSI20 20V 0-4 watt dark Res 110 kchms Min. R @ 10FC $=7.2 \mathrm{k}$ R

SOLAR CELL KITS
DDis0 Contains 4 Selenium photocells and free 24 page
$K-42!$ handbook... $1 / 1$ Cadmium Sulphide plus 24 page manual

TRANSISTOR KITS

DDi80 Contains 2 audio and 1 RF transistor plus free
 cell and germanlum diode. With FREE manual...... 33/6

ILICON RECTIFIER KITS

DDI75 Contains 4100 piy $\frac{1}{2 m p}$ diodes
DDi76 Contzins 2200 pir amp diodes DDIT7 Contains 2400 ply 1 mp diodes

ALL INCLUDE FREE 24 PAGE MÄNUAZ

ZENER DIODES

Avilable in the following voltages with a dissipation of I Watt and olerance on 10%. All supplied with free manual describing many $3.9 \mathrm{~V}, 47 \mathrm{~V} .5 \mathrm{~F} .6 \mathrm{~V}, 6-8 \mathrm{~V}, 8.2 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{Y}, 22 \mathrm{Y}, 2 \mathrm{~V}$. ALL ONE PRICE:

ZENER KIT

DDI70 Bargain pack-contains 5 popular I watt dlodes plus free project manual

TRANSISTOR SUBSTITUTION
Our TROI-C to TRIO-C range are universal replacements for over FULL SEMICONDUCTOR CEs. PENTRE in our FREE Cataloque. INTERESTING DEVICES IN OUR CATALOGUE.

un COMPONENTS -Hー

RESISTORS I OR \& WATT 5% LOW NOISE CAREON

 YEROBOAROQ IShe Mastix RLUX COATED

Step up your EARNINGS

with this complete Library of Electrical know-how and practice

You can have this handsomely-bound library of facts, figures, vital theory and day-to-day practices sent to your home to examine free of charge. It will help you understand the many branches of the vast electrical industry from installation work of all kinds, Equipment, Instruments, Motors and Machines, Repair work Maintenance and Operation right through to the Generation and Distribution of electricity. And, to make the 2,350 pages of absorbing text crystal clear there are over 2,000 "action' photos and explanatory drawings. In addition you receive a slip-case of 36 large Blueprint charts and sheets of handy data. Plus fascinating colour booklet of sransparent pages which peel away to reveal how a Nuclear Power Station is operated. LEADING EXPERTS EXPLAIN IN DETAIL Written by 87 experts, this PRACTICAL library is planned to give you the knowledge which would normally take a ifetime to acquire. Send for your free trial set now-no obligation to purchase.

YOU RECEIVE 4 VOLUMES

strongly bound in Grey Moroquette, $9 \frac{1}{8}$ in. $x 6 \frac{1}{4}$ in. containing 2,352 Pages of 2,100 \quad Photographs latest practice:
2, Working Drawings, Diagrams, showing actual operations in works and plants.
24 Data Sheets in colour. 12 Quick-reference Blueprint Charts, each in the large size of $16 \frac{1}{1} \frac{1}{2}$ in. \times II $1 \frac{12}{3}$ in. NUCLEAR POWER STATIONS BOOKLET

FREE GIFT

 Hewnes Electrical Pocket BookNearly 400 pages with 258 illustrations, diagrams, tables. (Value $10 / 6 \mathrm{~d}$)

Sent to you by post on

 7 DAYS FREETRIALTo: Buckingham Press Ltd., 18-19 Warren Street, London, W. 1 | Please send PRACTICAL ELECTRICAL ENGINEERING without i obligation to buy if you accept my application. I will return the books in 8 days or post-
Tick ($($) here \square Full cash price of $£ 16$, or
$\square 16 /-$ dep. \& 16 monthly payments of 20/-
If you are under 21 your father must fill up the coupon
Full Name....
(Block letters)
Address.

I

County

Occupation
Signature
(Credit price $£ 16.16$ s.)

Please lick [/f hefe The address on left is My four proserly $[$ Bented unfurrishee! furishete accemi Temporary | address |
| :---: | -asdress ___ II nome of the above

PEE/3953

PRINTED CIRCUIT KIT

BULD 40 ITTERESTISG PROJECTS on a PRINTED CIRCUIT CHASSIS with PART8 and TRAISISTORS from yonr SPABlis BOX
CONTENTS: (1) 2 Copper Laminate Boards $41^{\circ} \times 21^{\circ}$ (2) 1 Board for Match box Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent (6) Etchant. (7) Cleanser/Degreaser. (8) 16 -page Booklet Prinsed Circuits for Amaleurs. Design Data, Circuits, Chassis Plann 1 A rery comprehensive selection of circuits to suit everyone's requirements and constractional ability. Kany recently developed very efficient designs publibhed fo the first time, including 10 new circuits.

EXPERIMENTER'S
PRINTED CIRCUIT KIT 8/6
Postage \& Pack. 1/6 (UK) Commonwealth: SCRFACE MAIL 2:ustralia, New Zealand South Atrica, Canada.
(1) Crystal Set with biased Detector. (2) Crystal Net with roltage-quadrupler detector. (3) Crystal Ket with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifer. (5) Carricr Power Conversion Receirer. (6) Split-Load Nentralised Double Reflex. adjusting regeneration (Patent Pending). (9) Solar Battery Loudspeaker Radio. The smallest 3 designs yet offered to the Home Constructor anywhere in the World. 3 Subniniature Radio Receivers based on the "Triflexon" circuit. Let us know if you know of a mialler design publifhed anywhere. (10) Postage Stamp Radio. Size only $1.62^{\circ} \times 0.95^{\circ} \times 0.25^{\prime \prime}$ (11) Wristwateh Radio $1.15^{\prime \prime} \times 0.80^{\circ} \times 0.55^{\circ}$. (12) Ring Radio $0.70^{\circ} \times 0.70^{\circ} \times 0.55^{\circ}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Receirer. (15) Transistor P/P Amplifier. (16) Intereom. (17) 1-ralre Amplifter. (18) Reliable Burglar Alarm. (19) Light-seeking Animal,
Guided Misgile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Humad Body Radiation Detector. (24) Man/Woman Discriminator. (25) Signal Injector. (26) Pocket Transceiver (Licence required). (27) Constant Volume Interconi. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter, (30) Pocket Triple Retlex Radio. (31) Wristwatch Transmitter/Wire-leso Microphone. (32) Wire-less Door Bell. (33) Cltrasonic Switch/Alarm. (34) Stereo Freamplifier. (35) Quality Stereo Push-Pull Amplifier. (36) Light-Beam Telephone "Photophone". (37) Light-Ream Transmitter. (38) Silent TV sound Adaptor. (39)

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 2 Transistors, Condensers, Registors, Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact eversthing you need to build a Steady-Light Photo-SFitch/Counter/Burglar Alarm, etc. (Project No. 1) which can be
modified for modulated-light operation.

PHOTOELECTRIC KIT 39/6
Postage and Pack. 2/6 (UK) Commonwealth SURFACE MAIL 3/6 AIR MAIL £1.0.0 Australia, New Zealand S. Africa, Canada and U.S.A. Also Essential Data Ciraits and Plans for Building
12 PHOTOELECTRIC PROJECTE. (1) Steady-Light Photo-Switch/Alarm, (2) Modulated-Light Alarm. (3) Long-Range strar-Light Alarm. (4) Relay-less Alarm (5) Warbling.Tone Alarm, (6) Closed-Loop Alarm. (7) Project Lamp Stabiliser (8) Electronle Project Modulator. (9) Mains Power Supply, (10) Car Parking Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm.

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: 1 Invigible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarme, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Infra-red filter, projector lamp holder, building plans, performance data, étc. Price 19/6. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail $8 /-$
JUNIOR PHOTOELECTRIC KIT
Versatile Invigible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter Cose Case, Resistors, screws, etc. Fulf Size Plans, Instructions, Data Sheet " 10 Adyanced
Price 19/8. Postage and Pack. 1/6 (E.K.). Commonwealth 2/-; Air Mail 4/-
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Inira-Ted Filter, Lampholder, Bracket, Plans, etc. Ererything (except plywood) to build 1 miniature invisible beam projector and photocell Price 10/6. Post and Pack. $1 / 6$ (U.K.). Commonw
PHOTOELECTRIC PARKING LAMP SWITCH
Automatically turns parking lamp on at dusk, of at dawn. Protects your car. Saves the battery. Miniatore construction. Simply insert in parking lamp lead. Price: 27/6.

Post and Packing $2 / 6$ (U.K.)
 THYRISTOR LIGHT DIMMER

Add a teuch of luxury to your home. Adjust the light at parties, while watching TY, etc. Ideal for Children's bedroom. (100 watts max.) Replaces on-ofl switch.
Price: $59 / 8$. Post and Packing $2 / 6$ (U.K.).

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full details, a brief description and Pholographs of all Kits and all 52 Radio, Eleetronic and Photoelectrie Projects Assembled.

EXCLUSIVE PURCHASE
 PORTABLE AMPLIFIER
 UNIT
 By well known ritish Maker
 A luxury unit
 at a bargain
 price. Only $35 /-\mathrm{P}$. P .

Designed as a Telephone Amplifer but can be used in many different waya - a booster amplifer for transistor radios, a baby alarm, intercom, paging system, etc., etc. High gain four transistor amplifer unit housed in attractive leathercloth covered wooden cabinet with upward facing 3. high flux P.M., speaker covered by
 Operates on standard PP6 or VT6 battery. Supplied complete with telephone pick-up induction coil fitted suction pad, lead and 3.5 mm jack plug.

Our Special price 35/- $\underset{4 / 6}{\text { P. \& P. }}$
Or as above with 3.5 mm plug and DLRE unit for use us sensitive microphone for baby alarms, communication
systems, etc. Will operate over diatances of up to 200 ft systenis, etc. Will operate over diatances of up to
or more when connected with twin fex or bell wire.

(Batterles and fex not included)

Si BRAID REW 3 OHM LOUDSPEAKERS

E.M.I. B 8iu. with high fux ceramic niagnet $42 /$ - (15 ohm 45)hetwork. 3 or 15 . ith two inbuilt tweeters and crossover $10 \& 12 \mathrm{in} .3 / 6$ per speaker.
 ferrobar magnet assembly. e5.10.0. P. \& P. 5/-. Gútar Models: 2JW. 26; 35w. \&8. mic magnet. Availabie in 3 or 8 ohms 15;- eauh; 15 ohms 18if each. P. \& P $2 / 26$. handling. 3 or 15 ohn , $85 /-$ P. © P. $3 / 6$.
$31 \mathrm{in} .12 / 6 ; 7 \times 4 \mathrm{in}$. $21 /=$. P. \& P. $2 / \mathrm{p}$ per speaker
FYKATR AND REXINE SPEAKERS AND CABINET FABRICS app. 54 in. Wide. Usually $35 / \cdot \mathrm{yd}$., our price $13 / 6$ LATEST COLLARO MAGMAVOX 363 STEREO TAPE DECK. Three speeds 4 track, takes up to 7 in . spools. QUALTTY PORTABLE TAPE RECORDER CASE. Brand pew. Beantifully made. Only 49/6. P. \& P. $8 / 6$.

 ACOS HIGE TMPEDANCE CRYSTAL STICE MIEES.
 CARBOM

MEW S.T.C. TYPE 25 ZMINATURE RELAYS12 volt. 4 s/p, c/o contacts. 1 amp rating. Coil resistance 185 ohms. Size appros: $z \times 1 \times 1$ inin. high. 10/- each. P. \& P. $1 / 6$.
Also some similar to above but coil resistance 5,800
SPECLAL OFFER! PLESSEY TYPE 29 TWIN TUNING GANG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and 5:1 integral slow nrotion. Suitable for nominal 470 ke/s
I.F. Size approx. $2 \times 1 \times 1$ in. Only $8 / 6$. P. \& P. $2 / 6$.

TRANSFORMER BARGAINS

MAINS TRANSFORMER. Primary $200 \cdot 240 \mathrm{~V}$ separate $\frac{1}{2}$ wave secondaries giving approx. 16 V at 1 amp and 20 V at 1.2 amp ; secs. can be connected in series for 36 V at 1.5 amp . Ideal for transistor power supplies. Drop through mounting. Stack size $2 \times \times 31$ Zin. $15 /-$. P. \& P. $6 /-$.
MANS TRANSFORMER. For transistor power supplies, Pri. $200 / 240 \mathrm{~V}$. Sec. $9-0-9$ at 500 mA . $11 / \mathrm{F}$. P. \& P. $2 / 6$.
 MATCHED PAIR OF 2 , WATT TRANSISTOR DRIVER AAND OUTPUT TRANSFDRMERS. Stack size $1: \times 1$ in 10/-pair plus 2;- P. dP
${ }^{7}-10$ Watt OUTPUT TRANSFORMERS to match pair of
 Rectifier. Pri. 240 V AC. Sec. 240 V at 50 mA and 6.3 V at 1.5 amp . Stack size $27 \times \frac{3}{2} \times 2 \mathrm{in}$. $10 ; 6$. P. \& P . $3 / 6$. Special quotations for quantities).

HIGH GRADE COPPER LAMMAATE BOARDS $8 \times 6 \times 1{ }^{1} \mathrm{in}$. FIVE for $10 /$-. P. \& P. $2 /$

TRANSISTOR STEREO $8+8$ MK II Yow using Silicon Transistors in first five atages on each sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit Uses 14 transistors giving 8 watts push pull output per channel (16 W mono). Integrated pre-amp. With Bass, Treble and Volume controls, Suitable for use with Ceramic or Crystal cartriuges. Output stage for any spaakers from 3 to 15 ohms. Compact design, all part supplied including drilled metal work. Cir-Kit board attractive front panel, knobs, wire, soluer, nuts,
no extras to buy. Simple ztep by step instructions enable any constructor to build an amplifier to be proud of
 Bass boost approx. to $+12 d B$. Treble cut approx. to -16 dB . Negative feedback 18 dB טver main amp. Power requirements 25 V at 0.6 amp .
PRICES: AMPLIEIER KIT 210.10 .0 ; POWER PACK KIT E3.0.0; CABINET E8.0.0. All Post Free.
Circuit diagran, construction details anit parts list (free with kit) 1/6. (S.A.E.)

EPECLAL PURCEASE: Heavy 8 gin, metal turntable. 100 Huter performance 200$)$
250
V shaded motor 90 V tap). Complete with latest type Iightweight pjek-up arm and mono cartridge with t/o Sylii for LP/78. LIMITED P. $6 / 6$.

Mains mpeed record player barganis
E.M.ins modely. All brand new in maker's packing.
mounted pick-np arm and mono cartridge
 all plus Carriage and Packing 8/6.
Latest garzard models. All types available 1000 PLIFTH UNITS cut out for Garrard Models 1000, 1025 , $2000-3000$. AT60, sp23. With rield p
PRICE 5 gns. complete. P. P P. $8 / 6$.
SONOTONE 9TABC compatible stereo Cartridge with diamond stylus 50/- P. \& P. 2/\% Comptible Cartridge for EPILP/Stereol78. 326 . P. \& P. $2 /$ do Carriage fot FEW OML
QUALITY RECORD PLAYER AMPLIFIER MK II A top-quality record player amplifier employing heary duty double wound maina rainsiormer, ECC83, EL84, Complete with output transformer matched for 3 ohm speaker. Size 7in, w. $\times 3 \mathrm{~d} . \times 6 \mathrm{~h}$. Ready built and tested, PRICE 75/- P. \& P, 6/-
ALSO AVAILABLE mounted on board with output transformer and speaker ready to fit into cabinet below PRICE 97/6. P. \& P. 7/6.
DE LUZE QUALITY PORTABLE R/P CABLNET MK II Uncut motor board size $14 \ddagger \times 12$ in., clearance 2 In. below, Shin, above. Will take above amplifier and any B.S.R. or GARRARD ehanger or single Player (except AT60 and
$8 P 25)$. Size $18 \times 15 \times 8$ in. PRICE 79/6. P. \& P. $9 / 6$.

FM/AM TUNER HEAD

Beautifully designed and pre-
eision engineered by Dormer ix Cision engineered by Dormer \& Wadsworth Lite. Supplied
ready fitted with twin $000 \overline{5}$ ready fitted with twin $000 \overline{0}$
tuning condenser for nection. Prealligned FM tion covers $86-102 \mathrm{Mc} / \mathrm{ss}$. $1 . \mathrm{F}$ output $10.7 \mathrm{Mc} / \mathrm{s}$, Complet
with ECC85 6 L
 full circuit diagram of tuner head. Another special bulk purchase enables us to offer these at $27 / 6$ each. P. \& P. 3/ GORLER F.K. TUNER HEAD. $85-100 \mathrm{Mc} / \mathrm{s} .10 .7 \mathrm{Mc} / \mathrm{s}$. I.F. 15/-plus $2 / 6$ P, \& P. (ECC85 valves, $8 / 6$ extra)

3-7ALVE ADDIO
Designed for Hi-Fi reproduction of recorde. A.C. Mains operation. Ready built on plated heary gauge metal
 EL84, EZ80 valves. Heavy transformer and output trans-
former matched for 3 ohm speaker, separate Bass, Treble and volume controls. Negative feediback line. Output $4!$ watts. Front panel can be detached and leads extended for remote mounting of tested for only 450 P
HSL "FOUR" AMPLIFIER KTT, Similar in appearance to HA134 bove but employs entirely dimar ant apearance HA34 above but employs entirely different and advanced
circuitry. Conplete set of parts, etc. 79/6. P. \& P. $6 /-0$ BRAND NEW TRANSISTOR BARGAINS. GET 15 (Matched Pair) 15/-; V15/10p, 10/-; 0C7I 5/\%; 0 C76 $8 /-$ AF117 7/6.
Set of Mullard 5 transistors OC44, $2-O C 4 \overline{5}, A C 128 D$, matched pair AC128 25/-; Mullard LFH3 Audio Trans
istor Pack AC128D and matched pair AC128 12/6 istor Pack AC128D and matched pair AC128
ORP12 Cadmium Sulphide Cell 10/6. All post free.

SPECIAL OFFER!

Baby Alarm, Booster unit f

transistor radios etc., also ideal fur clagaruo
unit etc. Works perfectly with our special offer ACOS Stick Microphone ($21 / \mathrm{c}$). Output 1000 mW , Uses
standard 9 volt battery. Smart two tone carrying standard 9
case size $12 \times 4 \times 9 i n$. fitted standard foput jack socket, case size $12 \times 4 \times 9 i n$. Aitted standard foput jack socket
volume controls, 7×4 In. speaker. Completely built and tested, brand pew with full maker's guarantec.

STERED AMPLIFIER

Incorporating 2 ECL86's audi 1 EZ80, heavy duty, double Found mains transformer. Outpat 4 watts per chawne Output impedance 3 ohngs.
£5.9.6
P. dP. 8/F saper De
 valves,
sep. bass, sep. bass,
treble and balance con8 gne. P. \& P. 8/-.

HIGH GAIN 4 TRANBISTOR PRIFTED CIRCDE
AMPLIFIER KIT
Type TAL
put in excess
of Is watts
dard British
components.
printed circn
printed circult panel \&ize 6 : 3in

- Generous size Driver and Output tirat - Output fransformer tapped for 3 obn and 15 ohni speakers. Transistors (GET114 or 51 Mullard AC128D and matched palr of ACl28 o/p). 9 volt operation. - Everything aupplied, wire, buttery clips, solder, ete. diagram SPECLAL PRICE (Fith KIt). All parts sold Beparately, tested, 52/8. P. \& P. $3 /$

HARVERSON'S SUPER MONO

AMPLIFIER

A super quality grant auplitier using is double wound mains transformer EZ80 rectifier and ECL82 triode pentode valre as audio amplifier and power output stage Impedance 3 ohms. Output approx. $3 \cdot \overline{\text { b w w whe }}$. Volame and tone controls. Chassis size only 7 in , wide $\times 3 \mathrm{in}$. deep Brand New completely wirel and tested with valves and good quality output transformer. LIMITED NUMBER. | OUR ROCE BOMMOK | |
| :--- | :--- |
| BARGAN PRICE | 4 |

1014 WATT HI-FI

A stylishly finished monnural amplifier with an output of 14 watts from 2 EL84s in push-pult. of both meproduction speech, with negligible hum. Separate inputs for mike and gram allow records and announcements
 to tollow each other. Fully shrouded section wound output traustormer to match 3-150 speaker and 2 independent volume controls, and separate bass and treble controds are provi, EF 86 and EZ80 rectifter. Simple instruction booklet 2/6 (Free with parts). All parls sold separately. ONLY \&7.9.6. P. \& P. 8/6. Also available ready built and tested complete with std. input sockets, 20.5 .0. P. \& P. 8/6.

Open all day Saturday

Early closing Wed. 1 p.m.
A few minutes from Soulk Himbledon
Tube Station

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, S.W. 19

SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEABE FOTE: P. \& P. CHARGES P. A P. ON OVERSEAS ORDLRS CiBARGED EXTRA.

BUILD YOURSELF A QUALITY TRANSISTOR RADIO－FULL AFTER SALES SERVICE！

HOAMER 7 SEVEN WAVEBAND PORTABLE

7 FULLY TUNABLE WAVE BANDS－MW1，MW2，LW，SW1，SW2，SW3 and Trawler Band． Extra Medium waveband provides easier tuning of Radio Luxembourg，etc．Built in ferrite rod aerial for Medium and Long Waves． 5 Section 22 in chrome plated telescopic aerial for Short．Waves－can be angled and rotated for peak S．W．listening．Socket for Car Aerial． Powerful push－pull output． 7 transistors and two diodes including Micro－Alloy R．F Transistors．Famous make 7×4 in P．M．speaker．Air spaced ganged tuning condepser． Volume／on／off control，wave change switches and tuning control．Attractive case with carrying
handle．Size $9 \times 7 \times 4$ in approx．First grade Total bullding costs Parts price list and handle．Size $9 \times 7 \times$ 4in approx．First grade Total bullding costs Parts price list and
components．Easy to follow instructions and
diagrams mate components．Easy to follow instructions and
diagrams make the Roamer 7 a pleasure to build．

RADIO EXCHANGE Ltd

POCKET PIVE MED．and LOEG FATES AND Thetres．WITH SPEA HER AND EARPIECE． 5 transistors and， 2 diodes，ferrite rod aerial，tuning condeuser，moving coil speaker，ete． $\bar{b}^{2} \times 14 \times 3$ 售．Total Building and Parts liet $1 / 6$（frec with patis）．

SUPER SEVEM
MED．LONG ASD TRAWLER BAMD．$\%$ transigtors nnd ${ }^{2}$ Mlodes．
ntager，
push speaker，
2 $7!=5$ vit Casis 69／8．$=$ P．\＆P．4／G．Plang had parts list 2 ）：«iree with

DEPT．PE4，61a HIOH STREET，BEDFFRD．O234 52267 Callers side entrance Stylo Shoe Shop．Open 10－1，2．30－4．30 Monday－Friday 9－12．30 Saturday

LITEAR DTTEGRATED CIRCUITS

KINVER ELECTRONICS LIMITED
STONE LANE，KINVER，STOURBRIDGE，WORCS．

HIGH SPEED MAGNETIC COUNTERS（ $4 \times I \times 1 \mathrm{in}$ ）．\＆digit．12／24／48V（state which）6／6－each．P．\＆P．If－
COPPER LAMINATE BOARD（ 8 ？$\times 5 \frac{1}{2} \times \frac{3}{3} \mathrm{i}$ in）．2／6 each．百 for $10 /$ ． RE－SETTABLE HIGH SPEED COUNTER（ $3 \times 1 \times 3 \mathrm{in}$ ）． 3 digit．12／24／48V（state which） $82 / 6$ each．

BULE COMPONENT OFFERS

100 Capacitors 50 pF to $0.5 \mu \mathrm{~F}$ ．

100 Ceramic Capacitors 2－1，050pF．
25 Vitreons W／W Resistors（5\％）．
${ }_{25}$ Precibion Resistors $(0.1 \%$ several standard values included）
25 Close Tolerance Caps．（ 2% ）．
${ }_{4} 12$ Silicon Diodes 500 p．i．v． $750 \mathrm{~m} . \mathrm{a}$ ．
4 Silicon Rects． 400 p．i．v． 3 amp．
50 Silicon Trans．（2N706／708，BSY28／29．BCY41／42 types．）Unmarked，Tntested． ANY TTEM 12／6．ANY 5 ITEMS \＆2．10．0．

S．C．Re．（Thystistor8）CRSI／20 5／8；CRS $1 / 40$ 2／8；CRS $3 / 10$ 7／8；CRS3／30 8／8； CRS3／40 10／－：CRS3／50 12／6 each
‘ 3000 ＇TYPE RELAYS（ex．new equip．） 10 for $25 /$（（our choice）P．\＆P． $5 /$ ．
 COMPUTER LOGIC BOARDS containing： 14 BC711， 2 trimpots，diodes，etc．，20／－ each．
LIGET DNMMER／SPEED CONTROL MODULES： 200 watt； $85 /$－； 500 watt， $45 /-;$ 1，000 watt， $60 /-$
RECORD LEVEL MEETERS（By Smiths）．1空 $\times \frac{1}{3}$ in，15／－each．P．\＆P．2／6．

P．C．CONNECTORS（ 13 way in－line），4／B pair．
LARGE CAPACITY ELECTROLYTICS： $100+400 \mu \mathrm{~F}, 275 \mathrm{~V} ; 1,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 2,500 \mu \mathrm{~F}$ ， $70 \mathrm{~V} ; 3,200 \mu \mathrm{~F}, 16 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 4 /-$ each． $4,000 \mu \mathrm{~F}, 90 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 25 \mathrm{~V}, 7 / 8$ each．＇ $5,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 6,300 \mu \mathrm{~F}, 63 \mathrm{~V} ; 10,000 \mu \mathrm{~F}, 30 \mathrm{~V} ; 16,000 \mu \mathrm{~F}, 15 \mathrm{~V} ; 25,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 /-$
SPEA
SPEAKER BARGATNS（E．M．I． $13 \times 8 \mathrm{in}$ ．）With two Tweeters and \times／over， 15 ohm ， 85／－；with Dual Cone， $15 \mathrm{ohm}, 52 / 6$ ；Single Cone， 3 or $15 \mathrm{ohm}, 45 /-$ ．P．\＆P． $3 /$－． FANE，12in， 20 waH（Dual Cone），857 P．\＆P．5／－．
TWEETER（E．Y．I． 3 in ）， $15 \mathrm{ohm}, 12 / 6$.
CAR RADIO（ $3 / 5 \mathrm{ohm}$ ）， $7 \times 4 \mathrm{in}, 15 /-; 8 \div 5 \mathrm{in}, 17 / 6$ ．
L．T．TRANSEORMERS．Prim 240 V ．SEC． $10 / 20 / 25 \mathrm{~V}$ ．and $3.5 \mathrm{amp}, 20 /-$ P．\＆P． $5 /-$ 5 amp．model 25／－．P．\＆P．5／－．

PATTRICK \＆KINNIE
8I PARK LANE，HORNCHURCH，ESSEX ROMford 44473

PACKS OF YOUR OWN CHOICE UP TO the value of 10/- WITH ORDERS OVER $£ 4$

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK
Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81, etc. PRICE \&5 PER 1000

XB PAK

Silison TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE 25.5.0 PER 500
PRICE E10 PER 1000

XC PAK

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DK10, etc. PRICE 25 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT be less than the minimum amounts QUOTED PER PACK.

P/P 2/6 PER PACK (U.K.)

\section*{TRANSISTORS ONLY 1/- EACH SILICON - PLANAR All these types available
 | 2N929 | 2N706 | 2 S 131 | 25103 | 2N696 | 2N1613 | 2S733 | BFY10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2S501 | 2N706A | $2 S 512$ | $2 S 104$ | 2N697 | 2N1711 | 2N726 | $2 S 731$ | BCl08 2N3011 2S102 2N2220 2N1507}

All tested and guaranteed for gain and leakage-unmarked.
Manufacturers' fall outs from the new PRE-PAK range.

Ne a Rev. Counter for your Car. The TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
counter for any car
State 4 or 6 cylinder. \triangle CACh

FREE CATALOGUE AND LISTS for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

DEPT. A. 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344

VALVES/SEMI-CONDUCTORS
 BRANDNEW\&GUARANTEED

TRANSISTORS
2N696 5/ 2N6
 2 N 1893
2 N 2160
2 N 2147
2 N 2369 2N2369
2N2646
2N2926 2 N 3705
25102 28102
28103 25104

AC107 | ACl |
| :---: |
| ACl |

AC 1

ACl 65
ACl 7
ACl

ACYI
ACY
$A C Y$
ADI40
AD149 AD149
AD161
${ }^{156-1850}$

TE-20RF SIGNAL GENERATOR

 Accurate wide range signal generator cover- ing $120 \mathrm{Kc} / \mathrm{s}-260$
Mc / s on fi bands.
Direcly Directly cali-
brated. variable R.F. at tenaator. Operation 200 / 240 V a.e.
Brand new with Instructions.
815.0 .0 . P. $\$$.

LAFAYETTE TEA6 RESISTANCE
CAPACITY ANALYSER

Brand Hew 217,10.0.

AVO CT. 38 ELECTRONIC MULTIMETERS

High quality 97 range instrument which measures Power output. Ranges d.c. volts $250 \mathrm{mV}-10,000 \mathrm{~V}$ (10meg $\Omega \cdot 110$ meg Ω input). D.c. current $10 \mu \mathrm{~A}$ $100 \mathrm{mV}-250 \mathrm{~V}$ (with RF measuring head up to 250Mc/s). A.c. current $10 \mu \mathrm{~A}-25$ output 50 micro-watts-s watts. Operation complete with circult lead and RF probe 825. Carr. 15!-

AM/FM SIGNAL GENERATORS

 Oscillator Test No. 2. A high quality precision jastra ministry by Airmec. Frequeney cover-
age $20-80 \mathrm{Mc} / \mathrm{s}$. AM C.W./FM. Incor
meter, precision
 12 d.c. or 0/110/200/250V a.c. Size $12 \times 8 i \times 9$ in. Supplied in brazd new fully teated. \& 45 . Carr. $20 /$

B. 40 RECEIVERS
the Ministry. High quality 20 valve factured by Murphy.
Coverage in 5 bands $650 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$,
$1 / \mathrm{F}$
$500 \mathrm{kc} / \mathrm{s}$.
$\mathrm{In}-$ corporates 2 R.F.
and 3 I.F. stages, band-pass filter,
controlled B.F.O. noise limiter, crystal controled B.Fit-in speaker, output for phones. Operation
$150 / 230 \mathrm{~V}$ a.c. Size $191 \times 13 \frac{1}{2} \times 16 \mathrm{in}$. Weight 1141b. Offered in good working condition, 829.10 .0 . Carr. 30/-. A few circuit diagrams. Also available B. 41 \$17.10.0 Carr. 3

CLASS D WAVEMETERS

 A crystal controlled heterodyne frequency meter covering $\mathbf{3 . 7 -}$$8 \mathrm{Mc} / \mathrm{s}$. Operation on
6 volts volts di.c. Ideal for amateur use. Available in1 good used

Supplied in excel tested and checked. Complete with instructions. | Model ${ }^{7}$ P. \&18.10.0. |
| :--- |

TE-IGA TRANSISTORISED SIGNAL GENERATOR 5 Ranges 400 KHZ -
 30 MEHZ . An inexpensive instruman. Operates on 9V battery. Wide, easy to read scale.
800 KHZ modulation. 5V" with instructions
and leads. P 7.18 .6 .

MARCONI TEST EQUIPMENT

EX-MILITARY RECONDITIONED.
 T.F. 193M. BEAT FREOUENCY OSCILLATOR 0-40Kc/s, $200 / 250 \mathrm{~V}$ a.c. $£ 20$, carr. $30 /$-. TF. 142 E . Distortion Factor Meter, 220 . carr. 20/-. All
above offered in excellent condition fully tested and checked. TF. 3100 VALVE VOLT
METER, Brand New, \&50. T.F. 1267 TRANS.
Variable Volicue Thansfonmirs meon
Brand new, guaranteed and carriage paid.
High quality construction. Input $230 \mathrm{~V} 50-60$ eycles.
1 amp . $-25.10 .0: 2 \cdot 5 \mathrm{mpp}$. $-26.15 .0 ; 5 \mathrm{amp}$. 89.15 .0 ;

ADVANCE TEST EQUIPMENT Brand new and boxed in original sealed cartons
76. VALVE YOLTMETER
R.F. measurements in excess of
$100 \mathrm{Mc} / \mathrm{s}$ and d.c. measure-
of 2 F , D. range
3 accuracy of 1
300 mV to 300 V RMS. Resis-
tance 0.02-500M
8. A.C. MILLIVOLT METEP
ansistorised
ce 555
崖. Uff Millivolt M
istorised A.c. ran
3V. D.c. current range 0.01
to 0.3mA. Resistance 1 ohm
AUDIO SIGNAL GENER
$15 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$, sine or square
wave. Aipice sigMai generator
23. AUDIO SIGNAL
ciase 10 - per itam

TE22 SINE SQUARE WAVE AUDIO GENERATORS

tion manual and leads, ests, Carr. $7 / 6$

RECORDING HEADS

Reuter $\frac{1}{\text { strack. As fitted to Collaro Mk. IY }}$ and Studto Decks. High imp. record play back, low imp. erase. Brand new. 18/6 pasjocond it track heads. High imp record/playback 65/- Low imp. erase 20/. WARRIOTT $\frac{1}{5}$ track heads, High imp. record/playback 65/-. Inw imp. erase 20/Post extra.
G. W. SMITH
\& CO. (RADIO) LTD.
3-34 Lisle St., W.C. 2
Also see oppos. page

MULTIMETER
 for EVERY

LAFAYETTE DELUXE 100 KO/VOLT
 "LAB TESTER" Giant 61 in . scale. Built-fn meter protaction. $0 / \cdot 5 / 2 \cdot 5 / 10 / 50 /$ $250 / 500 / 1,000 \mathrm{~V}$ d.c.
$0 / 3 / 10 / 50 / 250 / 500$ $\begin{array}{lll}1 / 000 \mathrm{~V} & \mathrm{a} . \mathrm{c} . & 0 / 10 /\end{array}$ $100 \mu \mathrm{~A} / 10 / 100 / 500$ 10K $2.010 \mathrm{~A} .0 / 1 \mathrm{~K} /$ $10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M} /$ $10 \mathrm{M} \Omega$. -10 to 49.4 dB 218.18.0.P. \& P. $\overline{5} / \%$ LAFAYETTE 57 Range
50,000 O.P.V. Multimeter. Dec. Volts $12 \pi \mathrm{~V}-1,000 \mathrm{~V}$ Ac. Volts 1.6 V . ,000V D c. Current $25 \mu \mathrm{~A}-10$ Amp. Ohms. 0.15 Meg Ω dB. -20 to +81 CB .
 DW MODEL Carr. $3 / 6$. O.P.F. with overload protection. Mirror scale protection. Mirror scale.
$0 / 0-5 / 25 / 10 / 25 / 100 /$ $250 / 500 / 1,000 \mathrm{~V}$ dec.
$0 / 2.5 / 10 / 25 / 100 /$
$250 / 500 / 1,000 \mathrm{v}$ 8.c. $250 / 500 / 1,000 \mathrm{~V}$ ac. $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{ma}$. 12 smp . d.c. $0 / 60 / \mathrm{K} 6$. Meg./60megohm 58.17 .6 . MODEL TE-90 50,000 .2.V. MRROR 50,000 oVERLOAD PROTECTION $0 / 3 / 12 / 60 / 300 / 600$ / 1,200V .c. $0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{~V}$ $16 \mathrm{k} \Omega$. $03 / 6 / 60 / 600 \mathrm{MA}$ dec. -20 160k $\Omega / 1 \cdot 6 / 16 \mathrm{M} \Omega$.

MODEL TE12.

MODEL TE19 20.000 O.P.V. 0/0.6/30/120/800 $1,200 / 3,000 / 6,000 \mathrm{~V}$ die. 1/6/30/120/600/1,200V ac. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$. $\begin{array}{lll}\text { Megohm } & 50 \mathrm{PF} ; 2 \\ 25.19 .8 & \mathrm{MFD}\end{array}$ \$5.19.8. MODE / $10 / 50 / 100 / 500 /$ $250 / 500$ ac. $0 / 5125 / 50 /$ $0.5 \mu 4$ 5/50/500 mA $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$. 24.17.6. P. \& P. 3/.
 MODEL PT-34 $50 / 250 / 500$ / $1,000 \mathrm{~V} / 500 /$ 1,000V a.c. and $\begin{array}{ll}\text { d.c. } & 0 / 1 / 100 / 500 \\ \mathrm{~mA} & \text { dec. } 0 / 100\end{array}$ mA afc. $0 / 100$
KR
$7 / 6$.

2R-900 20,0000 VOLT GIANT MULTLNTER 6 in. full view meter. 2 colour scale, overload protection. $0 / 2 \cdot 5 / 10 /$ $0 / 25 / 126 / 10 / 50$ $250 / 1,000 / 10,000 \mathrm{~V}$ die. o / 50 ja / 110 $\begin{array}{lll}100 & 1000 \mathrm{~mA} & 10 \mathrm{~A} \\ \text { dec. } 20 \mathrm{~K} & 200 \mathrm{~K} & / 20\end{array}$ Mo. 815 . P. \& P. 5/-. YODEL AS -100D, 100E O/ VOLT. Sin., in meter protection $0 / 3 / 12 / 60 / 120$.
$300 / 600 / 200$ d.c. $0 / 6 / 30 / 120 / 300$ 600 V 3.c. $0 / 10 \mu \mathrm{~A} /$ 6/60/300MA/12 Amp. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$; $\begin{array}{ll}200 \mathrm{M} & -20 \text { to } \\ +17 \mathrm{~dB} . & 212.10 .0 .\end{array}$

PROFESSIONAL 20,000 O.P.V LAB. TESTER

25.10.0. P. \& P. 3/-

HODEL TE-10A. 20k 2 Volt, 5/25/50/250/500/2,500 V. dec. $10 / 50 / 100 / 500$ / $1,000 \mathrm{~V}$. atc. $0 / 50 \mu \mathrm{~A} / 2 \cdot 5$ $\mathrm{mA} / 250 \mathrm{~mA}$. d.c. $0 / 6 \mathrm{~K} / 6$ Inegohm. -20 to +22 dB .
$10-0,100 \mathrm{mfd}$. 0
$0.100-0.1$ $10-0,100 \mathrm{mfd}$. $\% 0 \cdot 100-0$ MODEL TQM TRANSISTOR CHECKER It has the fullest capacity for
checking on A, B and fIco.
Equally adaptable for checking diodes, etc. Spec A:0.7-0.9967. B:5-200 Iso: 0.50 micronmps $\begin{array}{cc}\text { o- mA. Resistance for } \\ \text { diode } & 200 \Omega-1 \mathrm{M}\end{array}$ Supplied complete with Instructions, battery and leads. 55.10 .6. P. sP. $2 / 6$

UNR-30. 4-8AND COMMUNICATION RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BEO. Built in speaker and phone jack. Metal cabinet. guaranteed with instructions. Carr. $7 / 6$. 13 CNS.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE
4 band receiver covering $550 \mathrm{KC} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{A}$. 0, 15,20, 40 and 80 metres. 8 valve pin ohm output and hone jack $88 B-C W$ ANL Variable BRO 8 meter - Sep, band spread dial IF 445Kc/s Audio output 1.5 F . Variable RF and AF gain controls. $115 / 250 \mathrm{~V}$, ac. Mains. Beautifully M designed size: $7 \times 15 \times 103 \mathrm{n}$. With instruction manual and Berrlce data s39,15.0 Carr. Paid.
pro Communication Type Headphones. Normally 25.79.6. OUR PRICE $83,15.0$

NEW LAFAYETTE SOLID

 STATE HA600 RECEIVER 5 BAND AM/CW/SSB AMATEUR AND
F.E.T. front end 2 mechanical filters Huge dial Product detector Variable BFO Noise Miter S Meter $24 t \mathrm{ll}$ Bandspread 230 V ac. $/ 12 \mathrm{~V}$ d.c. neg. earth operation RF gain control. Size EXCEPTIOXAL VALUE S45. Carr. 101 . S AE for
LAFAYETTE PF- 60 SOLID STATE VHF FM RECEIVER A completely new transistorised receiver covering 2-174acis. Fuss tunable or crystal console Incorporates 4 INTEGRATED CIRCUITS Built in speaker and illuminated dial. Squelch and volume controls. Tape recorder output ${ }_{2}^{7} \Omega$ aerial input. Headphone jack. Operation
LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 diodes, IHF music power, Distortion 1% or less. Inputs 3 mV and 250 mV Output $3-16 \Omega$. Separate L. and R. volume controls. Treble and bass control. Stereo phone jack. Brushed aluminium, gold anodised extruded front pane i with complimentary metal

GARRARD

Carriage/insurance 7/6 extra any model. WB4 bases 83.19.6. Perspex cover \$8.10.0. Carr, extra, Special otter base and cover available for those models at 24,15.0. Carr, 5/. Full range of Gerard accessories available.
E.M.I. SINGLE PLAYERS

4 speed with separate arm and cartridge 52/8. Carr. 3/6.

FIELD TELEPHONES TYPE L Generator ringing, metal cases. Operates from two $1.5 v$. batteries (not supplied). excellent condition. 24.10.0. per pair.

An exciting new receiver covering 6 amateur banda 160/80/40/20/15/10 metres. Illuminated slide rule dial. S meter. Crystal calibrator. Product detector. Automatic noise limiter. RF tuning and gain controls. Speaker or phone outputs. 8 valves, 2 transistors, 2 diodes. 220/240V ac. Supplied brand new and guaranteed. 840.0 .0 . Carr. 101

II valve high grade communication reelver suitable for tropical ne. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. AM/CW/FM operation. Incorporates precision vernier driver, BFO. Aerial internal power speaker and 12 V die. excellent condition, fully tested and checked. 215. Carr. 20/-. T.E. 40

HIGH SENSITIVITY AC. VOLTMETER 10 meg. input 10 ranges: $3 / 10 / 30 / 100 / 300 \mathrm{~V}$. R.M.S. $4 \mathrm{c} / \mathrm{s},-1.2 \mathrm{Yc} / \mathrm{s}$. Supplied brand new complete with leads and instructions. Operation 230 V ac. $1 \% .10 .0$.
Carr. $5 / \mathrm{a.c}$

0-2 PORTABLE

A general p cost economy aseillo. scope for everyday use. Y amp. Bandwidth CPG-1 MHZ. Input Imp. 2 meg $\Omega 25$ PF. tube. $115 \times 180 \times 2$ scale. 230 mm . Weight 81 b . $220 / 240 \mathrm{~V}$ ac. Supplied brand new with hand-

R209 MK. II COMMUNICATION

Wi suit

-CW Sine
 Get up-to-date with the latest Mullard Data Book-just, published. It contains details of current components for Radio, picture tubes, semiconductors. Each section, colour TV, Audio and HiFi applications includes comparables and coded for quick reference, equivalents information plarket.
in the replacement market.

Mullard

BROWSERS AND BEGINEERS

Nот all readers of this magazine are doers. Many are armichair constructors-though, let us hasten to add, they are just as welcome as the most zealous manipulators of soldering irons and pliers. That they do at anyrate read about electronics is a distinct mark in their favour! But we always try to coax the browsers from their armchairs into productive activity.

The varied range of projects described in these pages provide a strong incentive for action. At one stage or another some of our passive readers become enthused by the possibilities of certain projects and the plunge is taken. But others still hesitate on the brink, as enquiries we receive concerning the possibility of purchasing made-up projects testify.
Knowledge and practical skill are not obtained without effort. As with all specialised interests, electronics demands study of fundamentals and then practice.
Articles aimed at helping the beginner in the first steps of constructional work appear frequently in these pages. This month we are giving extra special attention to the needs of beginners-whether they be new readers or chairbound regulars. The Constructors Guide included as a supplement in this issue should dispel any remaining qualms in the mind of the most hesitant reader. This guide will familiarise him with the principal features of components and enable him to translate the theoretical circuit diagram into a practical model. The most popular methods of construction are described; the tools and materials required and the techniques employed are concisely but clearly explained.

Having digested this basic information, the first steps in construction can be taken with confidence. Obviously simple projects should be tackled at the start, but with regular practice skills will be acquired and increased familiarity with components gained. A whole range of exciting projects will then come within reach.

But even when a state of high proficiency is reached, there will always be something new to read about: new components and new circuit techniques are constantly being evolved. Things are always happening-that's one reason for the great fascination of electronics. Just reading about the subject is only part of the story however; making practical use of these new developments is even more rewarding.

F. E. Bennett-Editor

THIS MONTH

CONSTRUCTIONAL PROIECTS
MICROPHONE MIXER 259
PHASE SPLITTER- FREQUENCY DOUBLER 267
POCKET RADIATION MONITOR 270
ELECTRONIC MIME MOBILE ANIMAL-EMMA 275
INTERRUPTED SCREENWIPER CONTROL 281
SPECIAL SERIES
BIONICS-6 294
GENERAL FEATURES
THEORY INTO PRACTICE 256
LOUDSPEAKERS 286
NEWS AND COMMENT
EDITORIAL 255
NEWS BRIEFS 258, 291, 305
ELECTRONORAMA 284
MARKET PLACE 292
SPACEWATCH 306
READOUT 309
SUPPLEMENT
CONSTRUCTORS GUIDE
Our May issue will be published on Monday, April 14

Transistor circuits lend themselves readily to several simple forms of layout and construction, due to the facilities of direct transistor connection without the need for plug-in holders. Some of these methods are briefly outlined in this month's extra supplement Constructors' Guide in the centre of this issue.

The following article shows just how easy it is to make a constructional layout when given a circuit diagram only. It is based on a three-transistor class A amplifier, which does not boast a hi fi specification, but can be useful as a monitor in sound recording or as a booster for crystal tuners or pick-ups.

ONe of the problems faced by the amateur constructor, using laminated plastics and copper wiring boards, is the translation of a theoretical circuit to a practical layout.

This can be done quite easily by using a piece of squared paper to represent the hole matrix of the board. The horizontal rows of holes, those which lie along the length of the copper strips, are given a letter $A-Z$, and the vertical rows are given a number $1-26$ or more.
These letters and numbers give a set of co-ordinates to work from. The size of the board to be used is determined after a rough layout has been drawn on the squared paper, showing the physical size of the components that are under consideration.

If space is not a major consideration, the components can be layed out flat on the board; for a more compact layout the resistors and capacitors can be stood up on end as shown in the example. If components are laid flat on the board, one has to determine the amount of space to be occupied, governed mainly by component length.

To give an example for guidance, a $\frac{1}{2}$ watt resistor occupies a minimum length of five holes on a matrix pitch of 0.15 in .

SQUARED PAPER LAYOUT

When preparing the layout of the circuit on the board, take a piece of square paper, and mark it out as near as possible according to the circuit layout in the theoretical diagram. Take as an example for this exercise a simple general purpose linear amplifier (see Fig. 1).
Make a start with the transformer and, after taking a measurement of its size and finding the number of holes required, place this at the top right hand corner of the paper. Position it so that the secondary winding is nearest to the right hand end (Fig. 2). Two rows of holes are left clear of the transformer for the connection wires to the loudspeaker. The holes required are marked on the paper with large dots, for example, $17 B$ and $17 D$ (secondary), $13 B$ and $13 D$ (primary). Enter these references down in a table with the component reference number by the side of it. The copper strips are cut at $15 B$ and 15 D so that primary and secondary windings are not shorted.
The components can be drawn on the squared paper in block form and marked with reference numbers. The values can be placed on the position chart if required. The next components to be located will be TR3. The collector is marked out for the hole 12D, the base at

Fig. I. Theoretical circuit. This example is a class A amplifier. Junction positions for the component board are shown

COMPONENTS

Resistors

R1	$120 \mathrm{k} \Omega(3 E-3 F)$	R4	$5 \cdot 6 \mathrm{k} \Omega(10 \mathrm{~B}-10 E)$
R2	$8.2 \mathrm{k} \Omega(5 \mathrm{~B}-5 \mathrm{E})$	R5	$1 \mathrm{k} \Omega(7 \mathrm{G}-7 I)$
R3	$39 \mathrm{k} \Omega(I I F-\mid 1 G)$	R6	$100 \Omega(13 G-131)$

Potentiometer
VRI $10 \mathrm{k} \Omega \log$ (Wiper to IH , Common to II)

Capacitors

$\mathrm{Cl} \quad 25 \mu \mathrm{~F}$ elect. $15 \mathrm{~V}(2 \mathrm{~F}-2 \mathrm{H})$
C2 $25 \mu \mathrm{~F}$ elect. I5V ($6 \mathrm{E}-6 \mathrm{~F}$)
C3 $50 \mu \mathrm{~F}$ elect. 15 V ($9 \mathrm{G}-91$)
C4 $50 \mu \mathrm{~F}$ elect. 15 V ($15 \mathrm{G}-151$)

Loudspeaker

LSI 3 ohms
(19B-19D)

Transformer

Ti 9-2: : output transformer (Radiospares type T/T4) (Primary to 13B-13D; Secondary to 17B-17D)

Transistors
TRI NKT214 or OC71 (collector to 4E, base 4F, emitter 41)
TR2 NKT2!4 or OC71 (collector to 8 E , sase 8 F , emitter 8G)
TR3 MKT27I or OC81 (collector to I2D, base I2E, emitter 12G)

Battery

BYI 9 volts (negative to $12 B$, positive to 191)

Component Board

Printed wiring board, can be either Veroboard (see Fig. 2) or plain s.r.b.p. with Cir-Kit copper strip
$12 E$ and emitter $12 G$. Next, R6 is marked at $13 G$ and 13I. Following the general form of the theoretical circuit, C 4 will be next and is connected to the emitter via hole 15 G and $15 I$.

Resistor R3 is also connected to the emitter of TR3 and the base of TR2. Its position is marked on the paper at holes $11 G$ and 11F. Mark in the conductor strips that are required by drawing parallel lines on the paper for each strip (see Fig. 2) between the points of entry of the components wires to be joined, e.g. between $15 G$ and $11 G$.

TR2 base is connected to R3 through hole $8 F$. The collector is direct coupled to the base of TR3 through $8 E$. The emitter of this transistor is connected through $8 G$ to R5 and C3 negative which are inserted at $7 G$ and $9 G$ respectively. The other end of these two components are inserted at $7 I$ and $9 I$ for direct connection to the positive supply line. It should be an easy matter to follow the layout of the first stage now. The rest of the components are marked out in a similar fashion.

TRANSFER TO COMPONENT BOARD

When the last component has been drawn the size of the piece of board can be determined, which in this case will be given by the line J and row 19 .

Before placing any components on the piece of board all necessary copper strip breaks must be made. These must be indicated on the paper with crosses.

The drilling of holes is best carried out by clamping the board on a piece of wood, copper side up; this avoids tearing the copper foil. Where a copper strip has to be cut, a $\frac{5}{32}$ in drill will do this by putting the point of the drill in the holes and twisting it until the copper is removed. Be careful or the copper strip may be lifted.

The components are placed in their respective positions on the plain side of the board and all soldering is done on the copper side. The finished article should look like that in the photograph. With practice quite a compact layout can be achieved, and if the stand up method of fixing is used, a very small layout can be obtained.

When soldering on this type of wiring board a hot, clean iron must be used, and done quickly, otherwise prolonged heat may raise the copper foil from the base board.

Transformers, tags and pins or flying leads are either connected with insulated wire or soldered direct to the copper strip. If volume controls (potentiometers) are to be mounted direct on the printed wiring board, a hole must be carefully drilled in the board to accept the threaded fixing ($\frac{3}{8} \mathrm{in}$). The copper strip must be cleared away from the locking nut with a sharp knife to prevent short circuits. The potentiometer tags are connected to the board by insulated link wires soldered to the appropriate copper strips.

60 mW AMPLIFIER

The circuit used in this example is a simple general purpose amplifier suitable for coupling to a crystal set tuner or gramophone crystal pick-up. In this latter application a 100 kilohm resistor should be connected in series with the input to VR1 to avoid mismatch to the amplifier.

TR1 is a small signal amplifier stage providing sufficient drive for the direct coupled power amplifier. The bias current for TR1 is derived through R1 to maintain stable d.c. operating conditions. The bias current for TR3 is taken directly through R4, whilst R3 feeds bias for TR2 from the potential divider formed by T1, TR3 emitter, and R6. With any increase in current through TR2, the base-emitter voltage of TR3 is reduced. This causes less current to flow through TR3. Consequently, the voltage across R6 is reduced, causing a simultaneous reduction in supply to TR2 base. The operating conditions of TR2 and TR 3 are heavily dependent on R3 for stable working without overrunning TR3. The power output fed to a 3 ohm loudspeaker is about 60 mW , which is adequate for personal listening.

258

NEWS BRIEFS

Infated Dome for Radar Stations

SEVERAL of the long range radar stations provided and operated by the National Air ${ }^{\cdot}$ Traffic Control Service of the Board of Trade are sited on exposed positions and are therefore exposed to the most adverse weather conditions. At the Clee Hill Radar Station this problem has been overcome by enveloping the complete aerial system in a 40 ft diameter inflated dome made of hypalon coated terylene. A blower system designed and developed by Premier Precision Ltd., inflates the dome with clean dry air, the pressure being controlled at 0.1 p.s.i. greater than the pressure imposed on the outer surface of the dome by the wind. Pressure control instrumentation was supplied by Thorn Automation and the dome was supplied and erected by the Frankenstein Group.

Computers for Hospitals

THE Department of Health and Social Security have ordered six small on-line computers, from Elliot Automation System Ltd., for automating bio-chemical analysis in hospitals.

The analysis of bio-chemical samples is carried out by hospital pathology laboratories for diagnostic reasons. By linking mechanical analysers directly to an on-line computer, skilled technicians will be relieved of the repetitive and time consuming clerical work involved in making the manual calculations which are otherwise necessary when producing data sheets.

Solid State Traffic Controller

THE first British designed and manufactured solid state traffic controller to be installed in the UK is now in operation at the Bishopsgate-Middlesex Street intersection in the City of London. The design is based on a set of interchangeable modules from which a controller can be assembled and programmed to cater for any intersection. The most complex intersections can be controlled by one equipment and additional modules enable the controller to cope with any increase or change in traffic demands.

The controller is used in conjunction with an inductive vehicle detector which uses a loop of cable buried under the road surface. Two versions of the detector are availablepresence and passage detectors-both of which are used in the City of London installation (see photograph below). The presence detector gives an output to indicate queueing vehicles and the passage detector, which is sensitive even to bicycles, is arranged to ignore parked vehicles.

F you make high quality tape recordings that require mixing microphones and high level radio tuner inputs, this five channel audio mixer might be just the companion piece for your tape recorder.
Designed around two of the amplifier circuits that appeared in last month's article Modern Audio Circuits, this mixer has the added advantage that the constructor need not be limited to the two microphones and three high level signal inputs provided in the prototype as the amplifier circuits can be duplicated so providing more channels if required.

LOW Z MICROPHONES

The mixer can be constructed to cater for low impedance microphones such as ribbon or moving coil types where the microphone transformers are built-in.
Otherwise the microphone inputs have a nominal impedance of 120 kilohms which is suitable for low impedance microphones having their own matching transformers to provide a medium to high output impedance.

HIGH LEVEL INPUTS

The high level inputs are suitable for the output from other pre-amplifiers,' radio tuners, and tape recorder high level outputs, that is, signals from audio outputs of between 600 ohms (line) and up to 500 kilohms at between 100 to 500 mV . Adjustment can be made so that the input signals to both the microphone and high level inputs can be increased without introducing distortion.

NOT FOR CRYSTAL MICROPHONES

While the microphone pre-amplifiers have sufficient gain for use with crystal microphones, the input impedance of 120 kilohms would considerably reduce the bass response. This follows from the fact that crystal microphones have a high source impedance and also high internal capacitance.
Although the high level inputs have an impedance of 500 kilohms, these are equally unsuitable as a high signal voltage is required which the crystal microphone does not produce.

SPECIFICATION . . .

Sensitivity at mic inputs 3 mV - 10 mV max. for I volt r.m.s. output
Sensitivity at line (high level) inputs $200 \mathrm{mV}-500 \mathrm{mV}$ max. for I volt r.m.s. output
Distortion for these inputs-Mic: Less than 0.75% Line: Less than 0.15%
Microphone input impedance (without trans-formers)- 120 kilohms

Line (high level) input impedance- 500 kilohms
Output impedance - Nominal 600 ohms
Signal to noise ratio
Micinputs- 60 dB below I volt at output
Line input-66dB below I volt at output
Frequency response-Mic: 40 Hz to $15 \mathrm{kHz}+2 \mathrm{~dB}$ Line: 30 Hz to $20 \mathrm{kHz} \pm 2 \mathrm{~dB}$
Total current consumption- 12 mA

Fig. I. Circuit diagram of mixer unit. Amplifier sub-assemblies are contained within the dashed lines

CIRCUIT DETAILS

The basic amplifier given in Fig. 1 consists of TR1 and TR2 microphone 1 pre-amplifier; TR3 and TR4 microphone 2 pre-amplifier, and TR5 and TR6 the mixing amplifier.

Common to all of the stages is the use of d.c. feedback loops to achieve stabilisation against temperature variations.

The gain of each microphone pre-amplifier is fixed at approximately 40 dB for a distortion level of less than 0.75 per cent. The gain of the mixing amplifier is adjustable between approximately 13 and 30 dB but, for the overall performance as per the specification, is adjusted to around 15 dB . This more than compensates for the insertion losses of the passive network of mixing amplifier input potentiometers and associated series resistors.

A nominal 600 ohm output allows for a long screened connecting lead to a tape recorder without loss of treble response and will provide more than sufficient signal for tape recorder line or high level inputs at impedances between 600 ohms and 500 kilohms or greater.

FEEDBACK CONTROL

The pre-set control VR6 in the emitter circuit of TR5 controls the amount of feedback between the collector of TR6 and the emitter of TR5 and therefore the overall gain of this stage. With VR6 at maximum resistance the gain will be at a minimum but the circuit will accept much larger input signals. At the same time the gain from the microphone pre-amplifiers will be decreased but they will also accept larger input signals.

It follows that the microphone inputs could therefore be used for electric guitar pick-ups with a medium impedance but fairly high signal output, say 50 mV or so.

For this application VR6 must be pre-set to its maximum value of 10 kilohms. Otherwise VR6 is adjusted as described later, to provide the performance given in the specification.

POWER SUPPLIES

The mixer operates from an 18 V supply, consisting of two 9 V batteries in series, at a total current consumption of 12 mA . It would undoubtedly operate quite efficiently from a mains power unit, but this could lead to problems with mains hum pick-up by the microphone transformers if these are built into the mixer.

In view of the fairly low current consumption and the fact that a mixer is rarely run for so long and so frequently as most other kinds of audio equipment, it would hardly be worthwhile providing it with a mains supply.

Battery operation has the advantage of making the mixer completely portable and quite independent of mains supplies.

COMPONENTS . . .

Resistors

esistors			
RI	$120 \mathrm{k} \Omega$	RI7	$470 \mathrm{k} \Omega$
R2	$4.7 \mathrm{k} \Omega$	R18	$470 \mathrm{k} \Omega$
R3	100Ω	R19	220Ω
R4	$12 \mathrm{k} \Omega$	R20	$470 \mathrm{k} \Omega$
R5	$150 \mathrm{k} \Omega$	R21	$470 \mathrm{k} \Omega$
R6	$1.8 \mathrm{k} \Omega$	R22	$470 \mathrm{k} \Omega$
R7	470Ω	R23	$120 \mathrm{k} \Omega$
R8	$1.2 \mathrm{k} \Omega$	R24	$4.7 \mathrm{k} \Omega$
R9	$120 \mathrm{k} \Omega$	R25	100Ω
RIO	$4.7 \mathrm{k} \Omega$	R26	$12 \mathrm{k} \Omega$
R11	100Ω	R27	$150 \mathrm{k} \Omega$
R12	$12 \mathrm{k} \Omega$	R28	$1.8 \mathrm{k} \Omega$
R13	$150 \mathrm{k} \Omega$	R29	470Ω
R14	$1.8 \mathrm{k} \Omega$	R30	$1.2 \mathrm{k} \Omega$
R15	470Ω	R31	680Ω

All $\frac{1}{4}$ watt $\pm 10 \%$ carbon

Capacitors

C	$0.47 \mu \mathrm{~F}$ tubular paper
C 2	$100 \mu \mathrm{~F}$ elect. 25 V
C 3	100 pF silvered mica
C 4	$1 \mu \mathrm{~F}$ elect. 25 V
C 5	$100 \mu \mathrm{~F}$ elect. 25 V
C	$0.47 \mu \mathrm{~F}$ tubular paper
C	$100 \mu \mathrm{~F}$ elect. 25 V
C	100 F silvered mica
C	$100 \mu \mathrm{~F}$ elect. 25 V
C 10	$1 \mu \mathrm{~F}$ elect. 25 V
C 11	$1,000 \mu \mathrm{~F}$ elect. 25 V
C 12	$0.33 \mu \mathrm{~F}$ tubular paper
C 13	$100 \mu \mathrm{~F}$ elect. 25 V
C 14	100 pF silvered mica
C 15	$100 \mu \mathrm{~F}$ elect. 25 V
C 16	$1 \mu \mathrm{~F}$ elect. 25 V

Transistors
TRI-6 BCI08A (6 off)-LST Components, 7 Coptfold Road, Brentwood, Essex.

Potentiometers
VRI-5 500 k carbon log. (5 off)
VR6 lok carbon lin preset-Electroniques type MPC

Sockets
SKI-6 Standard type jack sockets (6 off)

Switch

SI Double pole on/off switch

Batteries

BYI, BY2 Ever Ready PP9, 9 volts

Miscellaneous

Aluminium case-Electroniques type, series 222
Calibrated control knobs-Electroniques type NK2
Perforated s.r.b.p. ($0 \cdot 15 \mathrm{in}$ matrix) $\quad 3 \frac{1}{4} \mathrm{in} \times 2 \frac{1}{2}$ in (3 off)
Microphone transformers (if used)-Electroniques/ Parmeko type 2549 for 25 ohm microphones, or type 2570 for 100-600 ohm mierophones
P.V.C. covered wire. Battery connectors (4 off)

019 (80ARD 3)
Fig. 2. Component layout and wiring for Board I, comprising the pre-amplifer for Microphone I

Fig. 3. Component layout and wiring for Board 2, comprising the pre-amplifier for Microphone 2

Fig. 4. Component layout and wiring for Board 3, comprising the mixing amplifer

CONSTRUCTION

Each amplifier stage is assembled on a piece of perforated s.r.b.p. board measuring $3 \frac{3}{4} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}$. The holes in these boards are on a 0.15 in matrix.

Assembly details of these amplifiers is given in Figs. 2, 3, and 4.

Space limitation in the aluminium case demand a vertical mounting of the component boards. Details for making the angle brackets for this purpose are given in Fig. 5b. Fig. 5a gives details for making the battery retaining bracket. Before mounting these the front

panel of the case should be drilled as shown in Fig. 6. When this is done, the input potentiometers, jack sockets and supply switch S1 can be attached.

Attachment of boards and brackets and other chassis mounted components can now be done as shown in Fig. 7.

Fig. 8 gives the wiring layout to complete the construction of the mixer.

MICROPHONE TRANSFORMERS

Space for two microphone transformers is shown by the dotted outline in Fig. 7. The transformers can be mounted one above the other on a single fixing bracket.

It should be noted that if the frequency response from the microphone inputs is to be maintained as per the specification, the specified transformers should be used. Inferior microphone transformers will result in poor performance.

Fig. 5. Retaining bracket for (a) the batteries; (b) the three boards

Fig. 6. Front panel drilling details for chassis

Fig. 7. Layout of components and board sub-assemblies connected to chassis base and rear panel

Fig. 8. Wiring of microphone mixer unit

Fig. 9. Microphone transformer connections for (a) balanced input; (b) unbalanced input

The Electroniques type P. 2549 is a $40: 1$ ratio transformer for 25 to 30 ohm microphones. The type P. 2570 is suitable for 400 to 600 ohm microphones and has a ratio of $10: 1$.

Connections for balanced or unbalanced inputs with these transformers are shown in Fig. 9. Balanced inputs will require three way, sleeve ring and tip, jack sockets.

Fig. 10. Frequency response for microphone and line inputs

PERFORMANCE CHECKS

Frequency response and gain checks, etc. should be carried out with an audio signal generator and valve voltmeter.

With approximately 200 mV of sine wave signal fed into either of the line inputs and with the gain control set to maximum, adjust the feedback control VR6 until the signal level at the output is approximately 1 volt r.m.s.

With this setting a 2 to 3 mV signal fed into the microphone inputs should similarly produce this output of 1 volt.

The overall frequency response for these input and output signal settings is shown in Fig. 10.

If no test instruments are available VR6 must be pre-set by trial.

To perform as in the specification, around 2 kilohms of VR6 will need to be in circuit.
With all the preset resistance in circuit giving maximum negative feedback, the input signals to the high level sockets can be increased to around 1 volt and that to the microphone inputs around 50 mV .

K. J. ENTERPRISES

BRITAIN'S PREMIER MAIL-ORDER AUDIO SPEGIALISTS
Immediate despatch on Advertised Lines.
Send Cash with Order.
DISCOUNT BARGAINS * VAST STOCKS OF TAPE \& EQUIPMENT * REFUND GUARANTEE.

BRANDED TAPES 20\% OFF\& BASF - EMI - GRUNDIG PHILIPS - SCOTCH - AGFA

Brand new, Fully Guaranteed and in normal manufacturer's pack

	Price	Our		Lis	
STANDARD PLAY $5^{\sim} 600^{\prime}$	Price	Price	DOUB		Price
$5 \frac{3}{3}{ }^{\text {² }} 900{ }^{\prime}>$ Except Agfa	$22 / 2$ $29 / 5$	185-	3* $300{ }^{\prime \prime}$ Not Scotch	14/3	$11 / 6$
$\left.7^{\prime \prime} 1200^{\prime}\right\}^{\text {Except Agia }}$	$36 / 7$	29/6-	$4^{\prime \prime} \quad 400{ }^{\prime \prime}$ Scoteh only	$16 / 7$ $26 /$	13/3
LONG PLA			$4 \frac{1}{4}^{*} 900{ }^{\prime}$ Agia, BASF	31	25/-
$3^{\prime \prime} 210^{\prime}$ Not Scotch	$9 / 3$	7/6			
$3^{\prime \prime} 300{ }^{\prime \prime}$ Scoteh only	$9 / 7$	7/9	$5^{\prime \prime} 1200^{\prime}$	43/2	34/9
4" 450	14/9	121-	*53** 1800\%	56/11	46/-
$\begin{gathered} 4 \frac{1}{4}^{\prime \prime} \\ 600^{\prime} \text { BASF, Agfa } \\ \text { only } \end{gathered}$	22/-	18/-	$\begin{aligned} & * 7^{* \prime} 2400^{\prime} \\ & 10^{\prime \prime} 4600^{\prime} \text { Agfa, only } \end{aligned}$	79/- $140 / 9$	$63 / 6$ $112 / 9$
5 900'	29/2	23/6	TRIPLE PL		
*53** $1200{ }^{\prime}$	36/5	29/6	$3^{\prime \prime} 450$ Not Scotch	22/3	18-
7 $1800^{\prime \prime}$	$51 / 7$	41/6	$3^{\prime \prime} 600^{\prime}$ Seoteh only	24/10	19/9
84* 2400' B	74/-	58/9	$4^{\prime \prime} \quad 900^{\prime}$ Scote only	401-	32/3
$10^{\prime \prime} 3280{ }^{\circ}$		68/9	*4 ${ }^{\text {² }}$ " $1200{ }^{\text {' Agfa, BASF }}$	501-	40/3
$10^{\circ} 3600^{\prime}$ BASF only	$96 / 6$	77/6	5" 1800' Not		
$10 \frac{1}{2}{ }^{*}{ }^{\text {2 }} 4200{ }^{\prime}$ Agfa, BASF	113/6	89/3	$55^{\prime \prime} 2400$ Agfa, BASF	$91 / 4$	54/-
. only			$7^{\prime \prime} 3600^{\prime}$ \}-only	$116 / 6$	73/6 $93 / 6$
SCOTCH $^{\prime \prime}{ }_{900^{\prime}}{ }^{\text {DYNARANGE }}$ (L/P)			QUADRUPLE PLAY		
			$3^{\prime \prime}$ ' 600°	37/-	29/6
5s** 1200^{\prime}	41/-	33/-	$3 t^{\prime \prime} 800^{\prime}$ > Kodak only	46/3	371-
7"*1800'	58/I	$46 / 6$	$4^{\prime \prime} 1200^{\prime}$,	64/6	51/6
$8{ }^{\frac{1}{4}}{ }^{*} 2400^{\prime}$ (Meral Reel)	84/3	67/6	COMPACT CASSETTES		
GRUNDIG TAPE AVAILABLE ONLY WHERE MARKED WITH ASTERISK			C. 60 (17/6	14/3
			C. 90	25/-	20/3
			C. 120	33/6	27/-

Postage and packing $2 / 6$. Orders over $£ 3$ post free
AMPEX TAPE-SAVE 30\%
A special offer of top quality, premium grade, mylar (Polyester) base tape with Full Leader and Stop Foil. Boxed and Fully guaranteed.
 $\begin{array}{lllll}541-12 & 1150^{\prime} \text { on } 53^{\prime \prime} & \text { reel Long Play } & 35 /- & 24 / 6 \\ 551-12 & 1200^{\prime} \text { on } 5^{\prime \prime} \text { reel Double Play } & 42 /- & 291 /{ }^{\prime 2} & 86 /\end{array}$ $551-16$ 1650 on $53^{\prime \prime}$ reel Double Play 55/-$\begin{array}{llllll}551-24 & 2400^{\prime} \text { on } 7^{*} \\ \text { reel Double Play } & 77 / 6 & 49 / 6 & 97 / 6 & 189 \text {)- }\end{array}$ POST \& PACKING 2/6. ORDERS OVER f3 POST FREE 285/-

Standard pattern to fit Philips, Stella, Elizabethan,
Dansette, Sanyo, etc.

COMPACT CASSETTES UP TO HALF PRICE!

Compact Cassettes with 60 and 90 minutes playing time. Brand New and packed in normal plastic library box. Available at this exceptional price.

MC.60	MC. 90
1 for $10 / 6$	1 for $14 /=$
3 for $30 / 6$	3 for $40 / 6$
6 for 556	6 for $78 / \%$
2 for $105 /$.	12 for $150 /$.

K. J. ENTERPRISES (Dept,) 17 THEBRIDGE, WEALDSTONE, MIDDLESEX (Opposite Harrow and Wealdstone Stalion) 01-427 7758. Showroom hours: $9.30 \mathrm{a} . \mathrm{m}-5.30 \mathrm{p} . \mathrm{m}$. Closed Lunch $12.30=1.30 \mathrm{p} . \mathrm{m}$. Close 1 p.m. Saturday.

sIIFORD -ZONAL TAPE 40\% OFF!
 NEW KJ SPECTACULAR

From the Motion Picture and Magnetic Products Division of ILFORD LTD. we are proud to present a New Stupendous BARGAIN OFFERI! Never before have you been offered such a breathtaking opportunity. LFORD-ZONAL premium grade magnetic tape (extensively used by the B.B.C.) at a terrific reduction of 40% Brand New, Boxed, Fully Guaranteed and complete with leaders, trailers and stop foil. UNIQUE

900^{\prime} on $5^{\prime \prime}$ Description

200^{\prime} on 5^{n} reel Long play P.V.C.
800^{\prime} on $7^{\prime \prime}$ reel Long play P.V.C.
1800° on $7^{\prime \prime}$ Long play P.V.C.
1200 , on $5^{\prime \prime}$ reel Double Play (Polyester) 1800^{\prime} on $53^{\text {n }}$ reel Double Play (Polyester) 56 $\begin{array}{ll}2400^{\prime} \text { on } 7^{x} \text { reel Double Play (Polyester) } & 78 / 10 \\ \text { Post and Packing } 2 / 6\end{array}$

Orders over $145 / 6$ 285/SPECIALISTS in PHILIPS, GRUNDIG, FERGUSON, SANYO and EAGLE EQUIPMENT BARGAIN OF THE MONTH PHLIIPS 4-TRACK TAPE RECORDER SAVE $\mathrm{E7} .15 .0$!

CARRIAGE IO/-

Superb reproduction, beautifully designed, simple operation. The N4307 PHILIPS Tape Recorder incorporates all the famous Philips features.

SPECIFICATION

Freq. Range $60-14,000 \mathrm{~Hz}$. Signal to noise 45 dB . Wow and Flutter 2 mV Gram 100 mV Power 2 watts. Inputs. Mic. 2 mV , Radio/Diode 2my, Gram. 100 mV . Power Supply Mains voltage $110 / 250 \mathrm{~V}$.
Dimensions $16 \frac{1}{2 "} \times 11 \frac{1 z^{\prime \prime}}{} \times 5 z^{\prime \prime}$.
Mision for mono playback of twack at 33 i.p.s. Takes 7" spools. O. Provision for mono playback of two parallel tracks. Monitoring facilities. Prom Mic, Record ind . Tone control. Socket for direct recording from Mic./Record player. Ext. speaker socket. Stylishly housed in wooden cabinet. Complete with microphone, tape and spool.
Our New 100 page illustrated catalogue sent entirely FREE on request. Britain's most specialised comprehensive range of recording tape, Accessories and Audio equipment. 20,000 reels of tape always in stock with reductions ranging up to 50%

THE DORSET (600 mW Output)

7 -transistor folly tunable M.W.-L.W. superhet portablewith baby alarm facility. Set of parts. The latest modulised and pre-allgnment techniques make thim simple to bulld Sizes: $12^{*} \times 8^{*} \times 3^{*}$
CADN POWER PACK KIT: $9 / 6$ extra
Price $\mathbf{5} 5.5 .0$ plus $7 / 6$ p. \& p. Circuit $2 / 6$ FREE WITH PABTs.
THE ELEGANT SEVEN MK. III (350 mW output) 7 -transistor fully tungble M.W.-L.W. portable. set of parta. Complete with all components, including printed for foolproot construetlon.
MADNS POWER PACK KIT: $9 / 6$ extra.
Price E4.9.6 plus 7/6 p. \& p.
Circult $2 / 6$ FREE WTTH PARTS.

50 WATT AMPLIFIER A.C. MAINS 200-250V
An extremely relisble general purpose valve amplifer -with six electronically roixed inputs. Suitable for use with: mice, guitars, gram, tuner, organs, etc.

Price 27 gns. plus 20/~ p. \& p.

POCKET MULTI-METER

Size $3 i \times 21 \times 1$ in. Meter aize $2 t \times 1$ fin. Sensitivity 1000 D.P. current $0-150 \mathrm{~mA}$. D. D. Pe. volts. $0-15,0-150,0-1000$ with test prods, battery and full instruetions, 42/6. Complete $3 / 6$. FREE GIF for limited period only. 30 watt Eliectric Soldering Iron value $15 /=$ to every purchaser of the Pocket Multi-Meter.

CYLDON 4 TRANSISTOR U.H.F. TUNER. BRAND NEW. COMPLETE WITH CIRCUIT DIAGRAM £2. $10.0+1 /-p . \& p$
a.E.C. 13 amp surface in brown. Listed at 6/6. green

THE CLASSIC

Controls: Selector switch. Tape speed
equalisation switch (3 B and 71 i.p.s.) acratch flter and 2 position rumble filter.
Speciffation: Semsitivitles for 10 watt output

acg. P. 0.2 mV . Cer. P.U. Bomvir Radia: 100 mV
correct to within +2 dB (R.I.A.A.) Irom 20 Ez to for each input
control ranje: Bass $亠 13 \mathrm{~dB}$ at 60 Hz , Treble $\pm 14 \mathrm{~dB}$ at 16 KHz . Total distortion: (for 10 watt output) $<1.5 \%$. Slgnal noise: <-80dB. A.C. mains 200-2s0r. Size121 long, $4 z^{*}$ deep, 2t" high. Teak finlshet case. Price 8 gns. j. \& p. $7 / 6$.
The RELIANT IOW SOLID-STATE HIGH QUALITYAMPLIFJER peciffations: Oupu!: 10 watts R.M.S. Oulput impedance: 3 to 4 ohms. Thputs: 1. Xtal mic 10 mV ; 2. Gram/radio 250 mV . Tone controis: Treble control range $\perp 12 \mathrm{~dB}$ at $10 \mathrm{KHz} ;$ Bass control range $\pm 13 \mathrm{~dB}$ at 100 Hz . Frequency response (with tone controls central): Minus 3 dB points are 20 Hz and 40 KHz . Signal to notie ratio: better ihan - 60dB. Transistors: 4 silicon Planar type and 3 Germanium type, Mains input: $220-250 \mathrm{~V}$ a.c. Size of chassis: $10^{*} \times 3 \%^{\prime \prime} \times 2^{*}$. A.C. Mains, plck-ups and mixes. Separate base and treble lift control. Tro inputs with contral plck-tps and mixes. Separate base and treble lift control. Tro inputs with control p. \& p. Crystal mike to suit: $12 / 6$ plus $1 / 6$ p. \& p. PRICE 45.5 .0 plus $8 i-\mathrm{p}$. 8 p .

THE VISCOUNT

Integratod Figh Filallty

PEOLICATIO 8 : Output: 10 watts per channel into 3 to 4 ohms speakers (20 watt monoral), Input: 6 position rotary selector awitch (3 pos. mono and 3 pos, stereo), P.U., Tuner, Tape and Tape Rec. Sensitivities: All inputs 100 mV into 1.8 MI ohm. Frequency repponse: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{db}$. Tone controls: Tone controls flat (Bazandall type), separate bass and treble controls. Treble 13db lift and cut at 18 KHz . Bass 15 db lift and 25 db cut at 60 Hz . Volume controls: Separate for each channel. AC Mains input: $2000-2407$. s0-60世z. Size $12 \ddagger \times 6 \times 2$ in. in teak-fnished case. Boill and teated.

PRICE $13 \frac{1}{2}$ gins. Postage \& Packing $7 / 6$ extro.

B.S.R. TD2 TAPE DECK

This tape deck takes $5 \mathbf{1}^{\prime \prime}$ spools complete with two-track beads. size $13 \frac{1}{*}^{\circ}$ long by $8 \frac{1}{*}^{\circ}$ wide.
68. 19.6 plux 7/6 p. \& p.

THREE-IN-ONE HI-FI 10 WATT SPEAKER 4 complete Loud Speaker ssstem on one frame, combining three matched ceramic magnet speakers with a low loss cross-over network. Peak handling power 10 watts. Impedance $1 \bar{\circ}$ ohms. Fiux denaity 11,000 gauss. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$.
 $5 /-$ D. \& 0 . Similar sueaker to the phove minus tweeters in 3 \& 15 ohms $38 / 6+5 /-$ p. \& p.

Goods not despatched outride U.E. Terme C.T.O. All enquiriet S.A.E.
RADIO \& TV COMPONENTS (ACTON) LTD. 2ld High Street • Acton • London W. 3 323 Edgware Road • London W. 2 ORDERS BY POST TO OUR ACTON ADDRESS PLEASE

RESISTORS

High stability, carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm): Body: $\frac{1 W}{\frac{1}{2} W} ; 10 \times 2.8$
Leads: 35 mm
Prices-per Ohmic value

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}$, IId. $0.22 \mu \mathrm{~F}, \mathrm{~J} /-. \quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, \mathrm{I} / 6 . \quad 0.68 \mu \mathrm{~F}$, $2 / 3$. I $\mu \mathrm{F}, 2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$, $7 \mathrm{~d} . \quad 0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 / 2,0.22 \mu \mathrm{~F}$, 1/6. $0.33 \mu \mathrm{~F}, 2 / 3 . \quad 0.47 \mu \mathrm{~F}, 2 / 8$.
Modular, Subminiature, Epoxy encapsulation, Polyester film, P.C. mounting. $10 \%, 100 \mathrm{~V}: 0.001,0.002,0.005,0.01,0.02 \mu \mathrm{~F}, 6 \mathrm{~d}, 0.05 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$, $0.2 \mu \mathrm{~F}, 1 / \mathrm{I}, \quad 0.5 \mu \mathrm{~F}, 2 /$
POLYSTYRENE CAPACITORS: 5%, 160 V (uneneapsulated): 10,12 , $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $560,680,820 \mathrm{pF}, 5 \mathrm{~d} . \quad 1,000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d}$. $3,300,4,700,5,600 \mathrm{pF}, 7 \mathrm{~d}$. 5,800, 8,200, $10,000 \mathrm{pF}$, 8d. $15,000,22,000 \mathrm{pF}$, 9 d .
$1 \%, 100 V$ (encapsulated): $100,120,150,180,220,270,330,390,470,500$, $550,630,820 \mathrm{pF}, 1 / 3$. $1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900$, $4,700,5,000,5,600,6,800,8,200,10,000,12,000,15,000 \mathrm{pF}, 1 / 6$. 18,000 $22,000,27,000,33,000,39,000 \mathrm{pF}, 2 /-00,047,5,000,0.056 \mu \mathrm{~F}, 2 / 3$. 0.068 , $\begin{array}{llllll}22,000,27,000,33,000,39,000 \mathrm{pF}, 2 /-15 & 0.047,5,000, & 0.056 \mu \mathrm{~F}, 2 / 3 . & 0.068, \\ 0.032, & 0.1 \mu \mathrm{~F}, 2 / 9 . & 0.12 \mu \mathrm{~F}, 3 / 3 . & 0.15, & 0.18 \mu \mathrm{~F}, & 3 / 9 . \\ 0.22 \mu \mathrm{~F}, & 4 / 9 . & 0.27,\end{array}$

JACK PLUGS (Screened): Heavily chromed, tin Standard: 2/9 each. Side-entry: $3 / 3$ each. Standard (Unscreened): $2 / 3$ each.
JACK SOCKETS (t in Plug) : With chrome insert, $2 / 9$ each. Available with: Break/Break, Make/Break, Break/Make, Make/Make contacts.
POTENTIOMETERS (Carbon): Long life, low noise, $\frac{1}{} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>\frac{1}{5} \mathrm{M}$. Body dia., $\frac{3}{8} \mathrm{in}$. Spindle, in $x \pm i n .2 / 3$ each. Linear: 100, 250,500 ohms, etc., per decade to 10M. Logarithmic: $5 k$, $10 \mathrm{k}, 25 \mathrm{k}$, etc., per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq \frac{1}{4} \mathrm{M}, \pm 30 \%>\frac{1}{4} \mathrm{M}$. Horizontal ($0.7 \mathrm{in} \times 0.4 \mathrm{in}$ P.C.M.) or Vertical ($0.4 \mathrm{in} \times 0.2 \mathrm{in}$ P.C.M.) mounting, $1 /-$ sach.
Submin. 0.1 W at $70^{\circ} \mathrm{C} . \quad \pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Horizontal $(0.4 \mathrm{in} x$ 0.2 in P.C.M.) or Vertical ($0.2 \mathrm{in} \times 0.1 \mathrm{in}$ P.C.M.) mounting, 10 d each.

SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81,
OC8ID, OC82D, 2/-. OC70, OC72, 2/3. ACl07, OC75, OC170, OCI71,
2/6. AFII5, AFII6, AFII7, ACY19, ACY21, 3/3. OC140, 4/3. OC200, 5/-. OC139, 5/3. OC25, 7/-. OC35, 8/-. OC23, OC28, 8/3.
SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.IV., 3/-. 800 P.1.V., 3/3. $\quad 1,250$ P.I.V., 3/9. 1,500 P.I.V., 4/-. $(0.75 \mathrm{~A})$: 200 P.i.V., $1 / 6$. 400 P.I.V., 2/-. 800 P.I.V., 3/3. (6A): 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.I.V., $5 /-. \quad 800$ P.I.V., $6 /-$
SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125 V. Push Buttons: Push-on or Push-off $5 /-$. Toggle Switches: SP/ST, $3 / 6$. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/* PRINTED CIRCUIT BOARD (Vero).
0.15 in Marrix: $3 \frac{3}{\text { in }} \times 2 \frac{1}{2} \mathrm{in}, 3 / 3$. $5 \frac{1}{2}$ in $\times 2 \frac{1}{2} \mathrm{in}, 3 / 11$. $3 \frac{3}{8} \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}, 3 / 11$. Sin \times 3 ${ }^{3}$ in, $5 / 6$.
0.1 Matrix: $3 \frac{4}{4}$ in $\times 2 \frac{1}{2} \mathrm{in}, 4 /=5 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 4 / 6$. $3 \frac{3}{4} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}, 4 / 6.5 \mathrm{in} \times 3 \frac{3}{2} \mathrm{in}$, 5/3.

Send S.A.E. for January, 1969 Catalogue

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 63687

(Visit us - at our new Mail Order, Wholesale \& Retail Premises)

 MINIMUM ORDER VALUE 5/-C.W.O. Post and Packing $1 / 6$

THIS circuit is intended for use as the phase splitting stage in high quality push-pull amplifiers and oscilloscopes, or in any application where two equal signals, in anti-phase with each other, are required from a single input signal. The unit is particularly useful in applications where two output signals are required to vary about similar or identical mean d.c. levels. By suitably arranging the output connections of the unit, it may be used to act as an amplifier with a single output, variable in voltage gain between approximately +1 and -1 , or it may be used as a frequency doubler for all a.f. and low r.f. signals.
Before delving into the details of this particular circuit, it is necessary to mention briefly some of the more conventional methods of phase-splitting, and the relative merits (or otherwise) of these alternative systems.

BALANCED INVERTER

Fig. 1 shows a single-transistor phase splitter, sometimes known as a balanced inverter. The circuit has equal loads in the emitter and collector lines (R3 and R4), and an output is taken from across each load. Since the currents flowing in the emitter and collector lines are nearly equal, the signals appearing across the two loads will also be nearly equal in amplitude, but opposite in phase. Apart from its simplicity, the circuit has the great advantage that the balance of the two output signals is virtually unaffected by variations in the transistor characteristics, since any change (in frequency response, etc.) will affect both output signals by an equal amount. The major snag of the circuit is that the two outputs are at very different impedance levels, so that severe unbalance may result when the outputs are terminated. Other minor snags are that the two outputs are at totally different mean d.c. levels, that the overall voltage gain between each output and the input is slightly less than unity (as in the case of the emitter follower) and, since the emitter and collector currents are not quite identical, the two outputs are not perfectly balanced.

Fig. I. The balanced inverter phase splitter

Fig. 2. Long-tailed pair phase splitter

Fig. 3. Circuit diagram of the balanced phase splitter

LONG-TAILED PAIR

Fig. 2 shows an alternative phase-splitter circuit, known as the long-tailed pair or paraphase amplifier, which is widely used. Here, two transistors are used, each of which is wired as a common emitter amplifier, but sharing a common emitter resistor (R4). This common resistor introduces negative feedback to both transistors, with the result that, when an input is fed to TR1 base, both transistors are affected by the signal, and, if TR1 collector becomes more negative TR2 collector will become more positive; the circuit thus acts as a phase-splitter. Theoretically the greater the value of the common emitter resistor (R4), the larger will be the negative feedback and the more nearly balanced will be the two output signals.
This circuit offers two particular advantages: both output signals are at the same impedance, and, if components are suitably selected, both outputs are available at the same mean d.c. level.
The circuit also has the following disadvantages: perfect balance of the output signals is obtained (in theory) only when the emitter resistor is infinitely large,

Fig. 4. Layout and wiring of components on the Veroboard
in which case the voltage gain of the circuit falls to zero. When practical values of emitter resistance are used, voltage gain is obtained and the two outputs may be nearly balanced, but this balance is upset by any difference in the characteristics of the two transistors (such as gain, frequency response, etc.).

BALANCED PHASE SPLITTER

It can be seen that both the above circuits give rather doubtful results. However the circuit shown in Fig. 3, offers a performance superior to either of these alternative circuits. Here, TR1 is wired as a balanced inverter, but the load in the collector circuit is made variable and slightly greater than that in the emitter circuit. Thus, the two output signals can be made exactly equal in magnitude by suitably adjusting VR1, the balance condition then being unaffected by the transistor characteristics. The output from TR1 emitter is fed, via C2, to the base of TR2, which is wired as an emitter follower, and the output from TR1 collector is fed, via C3, to the base of TR3, which is also wired as an emitter follower.

COMPONENTS . . .

Resistors			
R1	68k	R6	$47 \mathrm{k} \Omega$
R2	$18 \mathrm{k} \Omega$	R7	5.6k Ω
R3	$2.2 \mathrm{k} \Omega$	R8	$47 \mathrm{k} \Omega$
R4	$2.2 \mathrm{k} \Omega$	R9	$47 \mathrm{k} \Omega$
R5	$47 \mathrm{k} \Omega$	R10	$4 \mathrm{k} \Omega$

All 10%, $\frac{1}{2}$ W carbon
Potentiometers
VRI 500Ω skeleton preset
VR2 $10 \mathrm{k} \Omega$ skeleton preset
Capacitors
$\begin{array}{llll}\mathrm{CI} & 16 \mu \mathrm{~F} \text { elect. } 15 \mathrm{~V} \\ \mathrm{C} 2 & 8 \mu \mathrm{~F} \text { elect. } 15 \mathrm{~V}\end{array} \quad \mathrm{C} 3 \quad 8 \mu \mathrm{~F}$ elect. 15 V C2 $8 \mu \mathrm{~F}$ elect. 15 V

Transistors
TRI NKT277 TR2 NKT277 TR3 NKT277

Miscellaneous

Veroboard
Plastic covered wire
Battery terminals
9 V battery

The emitter follower circuit has a high input impedance, a low output impedance, and gives a voltage gain of near unity. In Fig. 3 a pre-set variable resistor, VR2, is made common to the base-bias circuits of each emitter follower, making it possible to set both emitters at exactly the same d.c. level, or to set any required degree of difference in d.c. levels that may be needed.
The two balanced outputs of the unit are at low impedance, output 1 being in phase with the input, and output 2 being in anti-phase.

CONSTRUCTIONAL DETAILS

The unit is very easy to build, and all the details for wiring using Veroboard are shown in Fig. 4. The breaks in the circuit board are made first and then the components and fly-leads are wired in. All components are mounted vertically on the Veroboard panel; layout is in no way critical.

FREQUENCY DOUBLER

The principle by which the unit is made to act as a frequency doubler is best understood with the aid of Fig. 5. Here, it can be seen that a conventional centretapped mains transformer and full-wave rectifier are made to act as a frequency doubler, the transformer acting as a phase splitter, while the rectifiers chop off one half of each secondary signal and add the two remaining signals together.

Exactly the same general principle is employed when the phase splitter of Fig. 3 is used as a frequency doubler, this being accomplished by simply shorting the emitters of TR2 and TR3 together after first setting VR2 to give an exact d.c. balance between these two points. In this case, TR1 is used as the phase splitter (in place of the transformer of Fig. 5), TR2 and TR3 act as diodes (in place of the rectifiers), and frequency doubling is obtained. It should be noted, however, that although TR2 and TR3 are used as diodes, they can not be replaced by conventional diodes as correct biasing is essential to circuit operation. Similarly, if the balance of TR2 and TR3 emitters is not correctly set by VR2 before the emitters are shorted together, unbalanced rectification will result.

If the unit is to be built purely as a frequency doubler, the break at " $10 F$ " on the Veroboard may be omitted and R7 and R10 replaced by a single 2.7 kilohm resistor. The setting of VR2 for balanced rectification is obtained with the aid of an oscilloscope. It should be noted that, if balanced rectification is to be obtained, the input signal to the unit should be symmetrical, and preferably of sine form.

SINGLE VARIABLE OUTPUT

The unit of Fig. 3 may be adapted to give a single output, the amplitude of which can be varied between approximately +1 and -1 . This is done by connecting a 10 kilohm variable resistor across the two output connections, and taking the output of the unit from the moving arm of this variable resistor. It should be noted that this modification does not give an output that is fully variable in phase, but an output that is either in phase or anti-phase with the input, but is variable in amplitude.

SETTING UP PROCEDURE

Before the unit is used, it must be correctly set up. An audio generator and an oscilloscope or a.c. valve voltmeter are necessary for this operation. Connect the generator to the input of the unit, and measure

Fig. 5. Principle of the frequency doubler
"output 1 " on the oscilloscope or voltmeter, noting the amplitude of the signal. The frequency of the generator is not particularly important, but the input signal should be approximately 1 volt peak to peak in amplitude. Now connect "output 2 " to the oscilloscope or voltmeter and adjust VR1 until the amplitude is the same as that of "output 1 ". Disconnect the generator and the oscilloscope or voltmeter, and connect a d.c. voltmeter between outputs 1 and 2, and adjust VR2 until a null is obtained. The unit is now ready for use.

APPLICATIONS OF THE PHASE SPLITTER

Using the phase-splitter described here in a high quality amplifier, gives perfectly balanced drive and the necessary bias for any following transistors can be obtained by suitably adjusting VR2. Thus, although this circuit uses three transistors and gives unity voltage gain, it virtually eliminates the need for heavy negative feedback (to overcome distortion) in a complete amplifier system, thus enabling higher gain to be used elsewhere.

Similarly, the unit may be used in the amplifier stages of an oscilloscope, to give push-pull X or Y deflection, or, if used in an early part of the amplifier, to enable the trace to be displayed either in phase or in anti-phase with the input-signal.

APPLICATIONS OF THE FREQUENCY DOUBLER

As a frequency doubler, the unit may be used, in conjunction with suitable filters, to form the basis of a high quality signal generator. Many generators employ only one oscillator range, additional ranges being added by selecting and filtering harmonics of the fundamental range. This system has the advantage that very pure waveforms can be obtained, and has only one tuning scale requiring calibration, all other scales being multiples of this basic range.

The frequency doubler may also be used to obtain special recording effects, although additional circuitry may be required. "Pinky and Perky" effects can be obtained, for example, by feeding normal voice signals into the input of the unit, and feeding the output to an amplifier or tape recorder via a filter circuit. To cover the full range of voice levels, however, a speech compresser should be used in front of the frequency doubler, and a matched speech expander should be used after the doubler.
Many other uses will, no doubt, occur to the reader.

By D.M.BUSSELL

PERSONAL ALARM FOR WORXERS Closely involved with radation sourees

hovel compat desien using minature gelger mulier tube

THIS radioactivity monitor was evolved as a warning device for persons working near units which emit X-rays such as medical X-ray or cobalt units used in hospitals, thickness gauges in industry, or wherever radioactive isotopes are used. It was designed as a personal alarm and not as an accurate measure of beta, gamma or X-ray radiation.

The author has built a small number of these monitors which are giving good service in X-ray and radiotherapy departments of two large General Hospitals. Full cost of this unit will be between $£ 810$ s 0 d and $£ 10$ maximum, depending on availability of parts. The miniature G.M. tube accounts for $£ 5-£ 7$ of this amount. It may seem an expensive device, however in situations where the need is to be aware of radiation sources it can prove to be a life saver.

The radiation monitor circuit consists basically of four sections: monostable, blocking oscillator, h.t. voltage doubler circuit, and the G.M. tube. See Fig. 2.

Fig: I. Response curve for G.M. tube

THE GEIGER MULLER TUBE

An MX151 Geiger Muller tube is employed as the radiation detector; see Fig. 1 as a guide to operating point. The tube becomes sensitive to particles or radiation at around 350 volts, and its normal operating voltage is where the curve tends to flatten; this portion is referred to as the plateau. $W^{i t h}$ the tube biased between 400 and 600 volts ther: little change in its sensitivity, i.e. number of discharges per volt applied. It is not advisable to apply a higher voltage than indicated in Fig. 1 as the tube may be destroyed by the discharge which follows the application of voltages above the plateau region.

When a particle of radiation enters the G.M. tube with the correct voltage applied, a controlled, short discharge through the gas in the tube is triggered off, resulting in a negative pulse being produced at the tube anode. This pulse is used to switch on the circuitry, thus producing an audible bleep, a visible neon tube flash and-through the action of the blocking oscillator -replacement or restoration of the h.t. voltage level.

THE MONOSTABLE

The monostable circuitry, is in the form of an all-off complementary transistor circuit. TR1 being a pnp transistor is switched on by the negative pulse from the G.M. tube. TR1 when on will also turn on TR2; the latter is an $n p n$ transistor and part of its negative going collector voltage is fed back via R3 and C2 to TR1 base, so holding the monostable in the on condition, until the charge has leaked away from C2 via the input circuitry. The negative square wave on TR2 collector is used to supply the base current for the TR3 blocking oscillator circuit, which is then turned on.

BLOCKING OSCILLATOR

In the blocking oscillator converter, formed by TR3-T1, an audible frequency around 1 to 2 kHz is generated and fed to the earpiece transducer XI which is connected across the base winding of Tl . The "tweet" duration is governed by Cl and C 3 in combination.

HIGH VOLTAGE SUPPLY

The high voltage for the G.M. tube is produced or replenished by the h.t. winding on TI . The voltage across the third winding of Tl is doubled by the rectifying circuit D2-D7 and stored in the reservoir capacitor C , ready for the next particle to produce a discharge in the G.M. tube.
While the "tweet" is audible from the earpiece X1, the h.t. will tend to rise above 600 volts and the neon circuit serves two functions; as a visible indicator, plus a high voltage limiter, making use of the reverse breakdown of the two EC401 diodes. The current through this circuit is limited by R8.
To measure the h.t. voltage use only an electrostatic meter, as the high impedance supply will be loaded by any other meter system. In its quiet condition and at room temperature of $25^{\circ} \mathrm{C}$, the monitor's consumption from a 5 volt mercury battery is measured at less than 15 nanoamps. During the "tweets" which occur at intervals of one to two per minute depending on the natural background radiation, the current rises for a quarter of a second to around 10 milliamps. In areas of high radiation of 50 milliröntgen or more the unit will produce a continuous tweeting sound and glow from the neon.
In low radiation areas, the batteries can last up to three months in the case of a Mallory TR114. Alternatively, three DEAC 225DK rechargeable cadmium cells can be used.

CONSTRUCTION

The monitor will be sensitive to high level static or r.f. fields if mounted in a plastic case as in the suggested design, and this should be remembered if for instance radiation from television 25 kV e.h.t. rectifiers is being monitored. The "tweet" due to an r.f. field is recognisable by its regularity.

Construction is not difficult if one has had some previous experience in building small compact units. If the monitor is not required for carrying in the pocket, a larger, easier-to-construct layout can be adopted.
A piece of circuit board measuring $1 \frac{1}{4}$ in by $2 \frac{3}{16}$ in is used as the base for the monitor, the components being mounted as indicated in Fig. 3. Breaks in the copper strips are made, as shown in Fig. 3, before the assembly work commences. The earpiece X1 rests on a small cushion of sponge material laid on top of C5. Battery clips are fashioned from small pieces of brass, see Fig. 3. The complete assembly fits comfortably into a plastics box with hinged lid measuring $1 \frac{7}{16}$ in by $2 \frac{3}{8}$ in by $1 \frac{1}{16}$ in deep.
In the original unit fibre glass board was used for its high insulation properties to prevent leakage from the high impedance h.t. circuitry. However, the standard Veroboard has been used successfully with p.t.f.e. stand-off insulators for the h.t. section. In conditions of high humidity or where leakage in the high voltage circuitry is a problem, a larger reservoir C5 up to $0.1 \mu \mathrm{~F} 630 \mathrm{~V}$ may be desirable, as the storage in C 5 is essential for the continuous operation of the unit.
Encapsulation of the high voltage section is an alternative in high humidity situations.

CRITICAL COMPONENTS

The high voltage diodes D2-D7 have a low reverse leakage. Three Fairchild EC401 125 volt diodes can be used in series, making eight diodes altogether.

High voltage capacitors should be of 630 d.c. volt working but no breakdown has yet been experienced with over-run 400 V d.c. working types. Ceramic capacitors may be too leaky for use in this application.

The earpiece should be a near equivalent to the unit type specified. Re-triggering of the monostable and less output volume may be experienced with higher impedance devices. To increase the audible output a small horn or 2 in $\times \frac{1}{4}$ in tube fitted over the earpiece will help to resonate the sound and increase the audible output, but this will depend also on the case size.

The only suitable G.M. tube for this circuit is the Mullard MX151, or the Japanese version (which may be available). When fitting do not solder direct onto the

Fig. 2. Circuit diagram of the pocket radiation monitor

Fig. 3. Layout and wiring of the board. The battery and microphone are positioned as indicated by the dotted lines, see text. The battery clips are made from strips of brass or similar material

COMPONENTS . . .

Resistors				
R1 $1 \mathrm{M} \Omega$	R4	$2.2 \mathrm{k} \Omega$	$\mathrm{R7}$	$4.7 \mathrm{M} \Omega$
R2 $47 \mathrm{k} \Omega$	R5	390Ω	R8	$10 \mathrm{M} \Omega$
R3 $47 \mathrm{k} \Omega$	R6 $1 \mathrm{M} \Omega$			
All $\pm 10 \%$	$\frac{1}{4} \mathrm{~W}$	carbon		

Capacitors
$\mathrm{Cl} 2 \mu \mathrm{~F}$ elect. 6 V
C2 1,000pF paper 1 kV *
C3 $25 \mu \mathrm{~F}$ elect. 6 V
C4 $0.01 \mu \mathrm{~F}$ paper 400 V
C5 0.047μ F paper 630 V *

* Wima (C.E.S. Ltd., P.O. Box II, Cambridge)

Diodes
DI, EC401 (Fairchild)
D2, 3, 4 EC401 (3 off)
D5, 6,7 EC401 (3 off)
D8, 9 EC401 (2 off)
Transistors
TRI OC202 (pnp silicon)
TR2 BCIO7 (npn silicon)
TR3 OC202 (pnp silicon)

Miscellaneous

VI Neon, wire-ended (Radiospares)
V2 G.M. tube MX15I (Mullard)
TI Transformer: primary 6V; secondary 400 V (Parmeko L|321/4)
XI Earpiece $30-100 \Omega$, miniature magnetic
BYI 5.3V battery. (Mallory TRII4); or (Deac 22.5DK) (3 off)

Veroboard $1 \frac{1}{4}$ in $\times 2 \frac{3}{16} \mathrm{in}$. Plastics box $1 \frac{7}{16}$ in \times $2{ }^{2} \frac{3}{8}$ in $\times 1 \frac{1}{16}$ in
Sponge rubber pad. Material for battery clips
centre anode pin or overheat the tube; use the anode clip supplied and only solder the clip into the circuit with the tube unplugged.

TESTING THE MONITOR

On completion of construction very carefully check the wiring with the circuit diagram. Check also the polarity of C1, C3, and the diodes. The h.t. should be monitored with an electrostatic voltmeter-but if this is not available the flashing of the neon will indicate voltages of over 600 or over.

The monitor may be made operative by connecting and disconnecting the 5 volt supply until "tweets" are heard in the earpiece and the neon flashes. Alternatively, a 10 kilohm resistor may temporary be connected between terminal 2 and 4 of T1. The unit is now ready for a radiation test. The most handy source is a luminous watch dial which will usually give tweets every two or three seconds when the dial is held as near as possible to the tube.

The neon visual indicator should light only for the duration of the audible "tweet". If it stays lit longer and there is no radiation response, the D8 and D9 EC401 diodes may have too low a reverse breakdown voltage and a third series diode should be tried. The neon may not light if D8 and D9 have too high a reverse breakdown; in this case one or both diodes should be substituted. (In the author's experience this condition only arose in about one in ten diodes, and as their current price is near 3 s it is not a bad risk.)
No battery decoupling is used and when the battery is nearing the end of its life the tweet becomes much shorter with a clucking sound. This indicates a change is soon required.

SOLDER ON

CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}$ (1 mm) up to $3 / 16^{\prime \prime}$ For 240, 220, 110, 50 or 24 volts.
If you want the best in soldering, Antex irons are for you. in point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or order direct from Antex by sending Cash. A free colour catalogue will be supplied on request.

PRECISION MINIATURE
SOLDERING IRONS
Antex, Mayflower House, Plymouth, Devon
Telephone : Plymouth 67377/8. Tolex 45296. Giro No. 2581000

Complete precision

This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted隌" bit.
- Interchangeable spare bit's. $\frac{e^{3}}{32}$. $\frac{3}{3^{2} "}$ "
- Reel of resin-cored solder
E Felt cleaning pad
* Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.

From Electrical and Radio Shope or eand cash to Antex.

G 18 watts. Ideal for miniature work on production lines. Interchangeable spare
 220 or 110 volts. $32 / 6$.

E 20 watts. Fitted with $1 / 4^{*}$ bit. Interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$. $3 / 16^{*}$. For $240,220,110$ or 24 volts. from 35/

ES 25 watts. Fitted with $1 / 8^{*}$ bit. Interchangeable bits $3 / 32^{\prime \prime}$, $3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$. deal for high speed production linge. for $240,220,110,24$ or 12 volts,from $35 /$ -

F 40 watts. Fitted $5 / 16^{\circ}$ bit.
Interchangeátle bits $1 / 4^{* \prime}, 3 / 18^{*}, 1 / 8^{\prime \prime}, 3 / 32^{*}$ Very high temperature iron. Available for $240,220,110,24$ or 20 voliss. from $42 / 6$ Spare bits end elements for all models and voltages immadiarely available from stock.
\square Please send me the Antex colour catalogue
Please send me the following irons
Quantity Model BitSize Volts Price
.............
..............
............

To: Antex, Mayflower House, Plymouth, Devon
I enclose cheque/P.O./cash value
NAME \qquad
ADDRESS
P.E. 4

Telephone:
A.P.T. STABILISED P.S.U. MODEL 515/S will regulate from $0-500 \mathrm{v}$. at 500 mA also current regulated from 10 mA to 350 mA in 17 ranges, these units are in as new condition and perfect working order, save pounds, on this one price, P.P. 20/-, £45.0:0

HIGH QUALITY SWITCHING RELAYS
 Ericsson miniature single pole changeover type for high speed operation, 720 ohms $6-9 \mathrm{~V}$, current drain at 6V 8MA, "hermetically sealed," normal price over 60/- OUR PRICE $\$ 7 / 6$ ea. p.p. $1 / 6$

MINIATURE RELAY of good quality. Suitable for

 many applications, model control circuits, alarm systems, etc. 69 V 300 ohms 2 pole C/O 1 MAKE. Contained in grey enamel case, weight only 30 g price $9 / 6$ as above but 36.50 V . 1500 ohms coil 4 C ! O 8/6 ea. p.p. 6dLUCAS HORN AND OVERDRIVE RELAYS
Suitable for many applications for I2V operation. Note our price only 7/6 ea, p.p. 6d.

MINIATURE RECHARGEABLE L.A. BATTERIES
ideally suitab゙le for model boats, portable T.V's, etc., these batteries are of the non-spillable type rated at $12 V 4 \mathrm{~A} . \mathrm{H}$. Size only 4 in square fully sealed but not dry charged, complete with instructions, brand new and guaranteed only 45/= ea. p.p. 2/6

BECKMAN PRECISION POTENTIOMETERS

 "TEN TURN"| Value | Tol. | Model | Price |
| :--- | :--- | :--- | :--- |
| 2K ohms | 0.5 LIN | SAIIOI | $45 /-$ post free |
| 10 K ohms | 0.05 LIN | "A"S | $50 /$ post free |
| 50 K ohms | 0.1 LIN | A | $45 /-$ post free |
| 30 K ohms | 0.5, | A | $45 /-$ post free |
| $100 \mathrm{~K}+100 \mathrm{~K}$ | | A | $60 /-$ post free |

The above HELICALS have $\frac{\text { zin }}{\text { in }}$ shaft and are rated at 10 watts.
MINIATURE HELICALS-TEN TURN
25K ohms 0.5 LIN SAJ337 30/-post free 5 K ohms $\quad 0.5$ LIN $500 \quad 35 /$ post free

LEDEX ROTARY SOLENOID SWITCHES

Suitable for all types of remote circuit selection and a variety of switching operations-brand new stocksno waiting-off-the-shelf deliveries of the following types:

Miniature type-l pole 7 positions 5 banks Ifin dia wafers for flange mounting. Operating voltage
(2) Standard type as above, I pole 2 positions with long shaft to enable user to build up wafers to suit requirements. Voltage 48 d.c. $40 /-$
A.E.I. HIGHLY STABILISED P.S.U.
$3-30 \mathrm{~V}$ d.c. at 2 A . Type R2240, this power supply is ideally suitable for semiconductor work, the unit has a very high specification and is fully transistorised and infinitely variable throughout its range. Supplied brand new boxed. List price £73. OUR PRICE £22.10.0 P. \& P. 15/-

"DALE PRODUCTS INC." HEAT SINK RESISTORS

These high grade resistors are completely sealed against moisture and will withstand rough treatment without failure, this noninductive resistor lends itself to many applications and is ideal for dummy loads in power amplifiers, etc. in the following values:
I5 ohms, $250 \mathrm{~W}, 45 /-; 810$ ohms, $200 \mathrm{~W}, 45 /-; 200$ ohms, $50 \mathrm{~W}, 7 / 6$

DOUBLE BEAM OSCILLOSCOPE TYPE I3A

Bandwidth $2 \mathrm{c} / \mathrm{s}-5 \mathrm{Mc} / \mathrm{s}$. The above scope has excellent specifications and is ideally suitable for radio and T.V. engineers. This well-known scope has sealed " C " core transformers and is renowned for reliability. Supplied in first class condition with leads, graticule, instructions and in guaranteed working order.

EXCELLENT VALUE AT $£ 22.10 .0$ P. \& P. 25/-

COSSOR DOUBLE BEAM OSCILLOSCOPE

TYPE 1049 MK. III
This well-known scope is suitable for all D.C. applications, medical work, servo systems, amplifiers, etc. Supplied in excellent guaranteed condition. List price over $£ 140$. Our price $£ 35$ P. \& P. 30/-

B40 "WORLD WIDE" COMMUNICATIONS RECEIVER

Manufactured by Murphy L.td. for the British Navy, these high quality receivers have been carefully checked and serviced, and EF9I valves fitted in RF section. Specification: 10 Valve, 5 BAND, covers from $650 \mathrm{Kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$ continuously. IF frequency $500 \mathrm{kc} / \mathrm{s} 2 R F$ stages. 31F stages band pass filter, Xtal calibrator, B.F.O. Monitor Spk. 2 phone outlets and many other facilities, size $19 \times 16 \times 13 \mathrm{ins}$. Weight 831bs. OUR PRICE $£ 27.10 .0$ carriage 30/-

STAR OFFERS - BRAND NEW AT SURPLUS PRICES

\star PORTABLE WHEATSTONE BRIDGE MODEL 7009

Calibrated in 5 ranges from 0.05 to 50 K ohms. Miniature Galvanometer scale 10-0-10. Slidewire 0.5 to $5 \cdot 0$. Case moulded plastic. All ranges are switched, internal source 4 V battery supplied brand new at

* £9.19.6 P. \& P. 4/6

\star HIGH QUALITY DECADE CAPACITANCE BOX TYPE R7004

4. individual ranges from $0.00002 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ in $0.00002 \mu \mathrm{~F}$ steps. Accuracy 0.05%. Frequency range $40 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Supplied brand new in hammer finish stove enamel at the much reduced price of * $£ 22.10 .10$ P. \& P. $7 / 6$

\star HIGH VALUE RESISTANCE BOX

 TYPE 7003Range 0.01 to $11 \cdot 10$ Megohm. Accuracy 0.05%, Power rating 0.1 watt per step. Case hammer finish stove enamel. * Price $\mathbf{£ 2 2}$. 10.0

\star PORTABLE MULTIRANGE METER TYPE R7020 20 K ohms. per volt.
D.C. current O-Micro Amps through to 12 Amps in 6 ranges.
D.C. Volts $0-6000 \mathrm{~V}$ in 5 ranges.
A.C. current $0-1 \cdot 2$ fully switched.
A.C. volts $0-6000 \mathrm{~V}$. Resistance 0.3 Megohms.

These are very robust high quality meters with an easy-read scale. Supplied with 2 voltage dividers, spare rectifiers, and all leads contained in hinged lid at only
\star EI2.19.6 BRAND NEW and GUARANTEED

PART one of EMMA detailed the theory and wiring of the complete reflex functions board. This month we describe the "muscle" control and load monitoring circuit and board, the power supply wiring and the mechanical details of EMMA's "skeleton". The block diagram for the electronic parts was shown in Fig. 1 (last month), enclosed by a separate broken line, designated "Board No. 2".

"MUSCLE" CONTROL

The "muscle" (motor) control circuits (Fig. 5) consist of two channels providing power switching for the port and starboard motors. Each channel comprises a pair of OC35 power transistors driven by a complementary input arrangement. Due to their inexpensiveness, common types of power transistors have been used as an alternative to more exotic miniature devices connected in full complementary format. Although larger, the cheaper versions have the advantage that with the small current demands made upon them additional heat sinks are not required.

The motor in each channel is connected between the centre-point of its associated power transistors and, via R67, the common point. With either input Mc1 or Mc2 at ground level the input transistors will be effectively non-conducting and the motors will be switched-off. A positive level on Mc1, however, will turn-on TR26 causing TR28 to conduct and hence drive the starboard motor forward. Taking Mcl, negative will turn of TR26 and switch on TR25 thus causing TR27 to conduct and the motor to drive in the opposite direction. The channel controlling the port motor is operated in an identical fashion.

Despite the employment of separate power supplies, some interference resulting from motor "hash" inevitably reaches the reflex functions board. In an attempt to minimise this complaint and make the motor control system a little more sanitary, two $0 \cdot 1 \mu \mathrm{~F}$ capacitors (C17 and C18) are wired in parallel with the motors.

LOAD SENSING CIRCUIT

During forward motion of EMMA, the joint current demands made by the two motors are monitored by transistor TR33 (Fig. 5) which under no.load conditions
is arranged to be just cut-off. Any mechanical load applied to either or both motors will increase the current drawn through R67 and therefore take the emitter of TR 33 more positive causing the transistor to conduct. The collector level of TR 33 under these conditions will thus tend to go more and more positive with increasing loads and be an indication of the degree of loading. Potentiometer YR 3 sets the level for no-load conditions and controls the sensitivity of the circuit.

Resistor R67 can be fabricated from easily obtainable electric-fire element wire. A few turns of this should be cut off and preferably measured on an ohmmeter for correct value. When the resistance is the correct value, the wire ends should be filed clean to facilitate soldering. R67 must obviously be kept low in value because the motors themselves only have a resistance of about 3 ohms.

CIRCUIT BOARD DETAILS

Illustrations of the "muscle" control board are given in Figs. 6a and b. The board should be drilled as indicated to accommodate the four power transistors. No heat sinks are required because the transistors are not called upon to dissipate any over-large currents.
The reflex functions board, which was detailed last month, is firmly mounted by way of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire soldered between its four comers and the comers of the "muscle" control board. Such an arrangement lends itself well to instant modification and occasional "surgery", additional boards being freely accommodated in minutes.

POWER SUPPLIES

The "animal" requires two power supplies, termed " A " and " B ". Two sources of supply are used in preference to one because of the dermand for large de-coupling capacitors with a single supply. In fact the additional supply takes up less space than would the capacitors. Supply " A " feeds the whole of the reflex circuitry and consists of a pair of type 1289 batteries.

Fig. 5. Electronic mime mobile animal "EMMA". Circuit diagram of the motor control and load sensing circuits

Supply "B" feeds the motor control circuit and comprises a type 126 battery for forward drive (a heavy duty battery is used here because EMMA is more frequently in this mode) and a type 1289 battery for reverse drive. In both cases the supplies are connected so as to form $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ sources (see Fig. 7), the zero point being common to " A " and " B ".

CHASSIS DETAILS

In order to make the construction problem minimal, Meccano components were chosen for the model. The chassis which is of extremely simple construction is shown in Figs. 8, 9 and 10 and essentially comprises a rigid skeleton plinth, formed from two main
longitudinal angle girders connected together by five cross members. The cross members in addition to lending strength to the chassis also carry the motors, motor control board, and override switches S1 and S2, the switches being mounted between two chassis members and thereby dispensing with the need for drilling.

Downward extensions at the front and rear of the plinth support the castors and axles respectively. At the rear of EMMA this is constituted by four doubleangle strips bolted between the plinth and a tie-strip. The frontal (anterior) end comprises a pair of screwed rods running between the plinth and a lower cross member. This member and the plinth are separated by

Fig. 6a. Top view of the motor control board. The board should be drilled to accommodate the OC35 mounting screws and the base and emitter pins. Mounting holes for the board are made at edch corner to lime up with the Meccamo mounting strips

Fig. 6b. Underside view of the Veroboard showing component wiring and breaks in the circuit strips. Care should be taken that the emitter and base leads from the OC35's do not short with adjacent copper strips. All link wires should be of the plastic covered type. Transistors TR25 and TR33, which are mounted upside down, should be kept well clear of the copper strips

Fig. 7. Circuit and wiring of the two power supplies and motors. Capacitors Cl and C2 were shown in the main circuit diagram (Fig. 2) last month

Fig. 8. Top view of EMMA's skeleton showing chassis construction and component mounting positions. Batteries BYI, 2, 3 and 4 occupy the rear end of the skeleton, above the motors (see photos)

tubular pillars which slide over the screwed rods.
Space for the batteries is provided above and just rear of the motor mounting position. For easy access the batteries can be secured in place by way of elastic bands or plastics strips attached to either side of the chassis.

FINAL-DRIVE ARRANGEMENT

EMMA's motive power is derived from a pair of Meccano "Power Drive" motor/gearbox units; these are located port and starboard on the chassis and each is secured in position by four 4B.A. nuts and bolts. The gearboxes, which are of the epicyclic type, have provision for the selection of several gear ratios; in the model the lowest ($60: 1$) is used. Output from the gearboxes is taken via bevel gears which provide a further $3: 1$ reduction, thus giving an overall figure of 180: 1 between the motors and road wheels.
The final-drive axles which run through the centre holes of the double-angle strips each carry a road wheel, a large bevel gear, and a pulley. The pulley, properly adjusted, serves the purpose of reducing endfloat and ensures correct meshing of the gears.

INTERCONNECTION WIRING

Wiring between the boards, switches, motors and power supplies is shown in Fig. 7. It must be emphasised that motor leads should be kept as short as possible and maintained clear of the reflex functions board and its wiring. The " A " and " B " power supply leads should not run in the same cableform and must have quite separate routes to avoid coupling motor "hash" into the reflex functions circuits.

SYSTEMS CHECK-OUT

When the circuit boards have been completed they should be carefully examined to ensure that components are correctly connected and no dry joints exist. Check too that there are no accidental solder bridgeovers between adjacent conductors.

Prior to check-out of the complete system, the inputs to the motor control board (Mc1 and Mc2) should be temporarily disconnected. At this time the "animal" is best raised off its wheels so that they are free to turn during the checks which follow.

MOTOR CONTROL AND LOAD SENSING

Connect both supplies and switch S2 on. Temporarily connect inputs Mcl and Mc2 together and take this common input to zero (ground); under these

1" DIA. PULLEY (N! Z2)

Fig. 9. Rear view of the chassis showing the drive arrangements
conditions neither motor should run. Reconnect the common input to the positive supply rail; both motors should now run in the forward direction-if this is not the case, reverse the connections to the offending motor(s). Now disconnect the common input from positive and connect to the negative rail, ensuring both motors now run in reverse.

COMPONENTS . . .

MOTOR CONTROL	
Resistors ${ }_{\text {R58 }}$	
$\begin{array}{ll}\text { R58 } & 2.7 \mathrm{k} \Omega \\ \mathrm{R} 59 & 2.7 \mathrm{k} \Omega\end{array}$	R64 1k Ω
R60 $2.2 \mathrm{k} \Omega$	$54.7 \mathrm{k} \Omega$
R61 $2.2 \mathrm{k} \Omega$	$\begin{array}{lll}\text { R66 } & 4.7 \mathrm{k} \Omega \\ R 67 & 0.5 \Omega \\ \text { l }\end{array}$
R62 $2 \cdot 2 \mathrm{k} \Omega$	$\begin{array}{ll}\mathrm{R} 67 & 0.5 \Omega \\ \mathrm{R} 68 \\ 6800\end{array}$ (see text)
R63 $2 \cdot 2 \mathrm{k} \Omega$	
Capacitors	
Transistors	
TR25 BFX13 or BFX12	TR30 2N706A
TR26 2N706A	TR31 OC35
TR27 OC35	TR32 OC35
TR28 OC35	TR33 BFX13 or BFXI2
TR29 BFX13 or BFX12	

Miscellaneous

VRI $5 \mathrm{k} \Omega$ min
MOI Meccano "Power Drive", motor/gearbox
MO2 Meccano "Power Drive" motor/gearbox
S2 double pole on/off toggle switch
BYI, 2, 3 type $1289,4.5 \mathrm{~V}$ batteries
BY4 type $126,4.5 \mathrm{~V}$ battery
Veroboard $5 \frac{3}{4} \mathrm{in} \times 2 \frac{7}{8} \mathrm{in}(0.15 \mathrm{in}$ pitch $)$
22 s.w.g. plastic covered wire

MECHANICAL

Chassis Components
No. 2 strips (8 off)
No. 8a angle girders (2 off)
No. 37a nuts (40 off)
No. 48a double angle strips (4 off)
No. 80 screwed rods (2 off)
$2 \mathrm{in} \times \frac{1}{4}$ in dia. dural pillars (2 off)
4B.A. and 6B.A. fixings

Drive Components

Reconnect the common input ($\mathrm{Mc1}$ and Mc) to the positive rail and connect a voltmeter between the negative supply point and the collector of TR33. Adjust VR3 for zero indication under no-load conditions. Now gently load both motors, by slowing the road wheels, and ensure that the indicated voltage increases with increasing load. Disconnect the common input, separate Mc1 and Mc2 and return them to their normal connections with the reflex functions board. Switch S1 on.

LOAD THRESHOLD AND AVOIDANCE SYSTEM

Connect the voltmeter between the negative rail and the collector of TR18. Adjust VR2 so that the Schmitt fires at a point consistent with moderate loading; the circuit will fire after a short delay due to the transient damping.

During the load threshold checks one can simultaneously establish that the avoidance system is functioning correctly-i.e. that with application of loads exceeding the set threshold the motors reverse their direction of rotation and that one. or other continues to reverse for a further period prior to resumption of the normal forward mode. Remember that there should be obvious randomness as to which motor runs-on in reverse. If not, adjust VR1 a fraction until some degree of randomness is present.

STEERING SELECTION AND FINAL CHECKS

Place EMMA on the floor and ensure that the random function also manifests itself in the forward mode of operation. EMMA should quite unpredictably stop, start and turn right or left. During encounters with various obstacles, EMMA should back and turn to commence a new, more favourable course. Finally,

Fig. 10. View from the front of EMMA, with circuit boards removed, showing the castor mountings
shine a light onto EMMA's photo-sensors to ensure that she turns away and then resumes her previous mode.
Although crude compared with some of the most simple living animals, EMMA demonstrates in a quite striking way that electronics can be used to model a few of the basic reflexes. In a later article EMMA will "fill-out" her structure with a learning faculty; in the meantime however the constructor will have his hands full with a "pet" running around the house that requires little exercise and lives a lifetime-provided the battery manufacturers stay in business!

A unijunction circuit for modern cars
 fitted with permanent magnet wiper motors

 RRUPTED

 RRUPTED SCREENWIPER CONTROL
 By C.J.MILLS

N our October issue we published a "Vari Windscreen Wiper" control; this control was designed for use on any car having self parking wipers. We have since discovered that many modern cars are now fitted with permanent magnet wiper motors which have to be shorted to stop them. The circuit diagram of the latest wipers is shown in Fig. 1; in this case the parking switch is a change over type which disconnects the supply and short circuits the permanent magnet motor to stop it in the parking position; the "Vari Wiper" (October issue) cannot be used with these motors.
This article describes a circuit which is designed for the modern permanent magnet type of wiper and provides power to the motor to move it from the parking position; the motor will then continue to run until the wipers return to the parking position. After a controllable time interval another pulse is applied to the motor and the cycle repeats itself.

CIRCUIT DESCRIPTION

The circuit shown in Fig. 2 uses a unijunction, a transistor and a relay instead of the thyristor used in our previous article. The circuit works as follows: when the delay unit is switched on the $80 \mu \mathrm{~F}$ capacitor (C1) charges up through diode D1 and control resistance R2 and VR1 until the unijunction trigger voltage is reached. When the unijunction is triggered it's voltage drops, reverse biasing the diode and producing a square wave voltage output at the unijunction base B1. The duration of this square wave is controlled by the discharge time of capacitor Cl through the 5.6 kilohm resistor (R1). The voltage at B1 switches on the transistor and turns the relay on long enough to start the motor and drive it beyond the parking position. The parking switch now completes the motor circuit and breaks the control circuit allowing capacitor C 1 to discharge through R1 until the parking position is again reached when the cycle repeats.

Fig. 1. Circuit diagram of a modern screenwiper using a
permanent magnet motor

Fig. 2. Circuit diagram of the interrupted screenwiper control.
Points a, b and c show connections to the car wiring

Fig. 3. Wiring diagram of the component-board

COMPONENTS ...

```
Resistors
\begin{tabular}{llllll} 
RI & \(5.6 \mathrm{k} \Omega\) & R3 \(100 \Omega\) & R5 & \(2 \cdot 2 \mathrm{k} \Omega\)
\end{tabular}
    R2 22k\Omega R4 150\Omega
        All }\pm10%,\frac{1}{4}\textrm{W}\mathrm{ carbon
Potentiometer
VRI \(100 \mathrm{k} \Omega\) carbon linear
Capacitor
CI \(80 \mu \mathrm{~F}\) elect. 16 V
Semiconductors
TRI TIS43 (unijunction) DI, D3 OA202
TR2 2N3704
D2 OA91
Miscellaneous
RLA \(12 \mathrm{~V} 700 \Omega 2\) pole change-over relay (Keyswitch type MH 2 )
SI single pole on-off toggle switch
Perforated s.r.b.p. ( 3 in \(\times 2 \frac{1}{8} \mathrm{in}\) ) and solder pins Die cast box (see text)
Control knob; 3 core 5A lead; 6B.A. fixings
```


PRACTICAL POINTS

The delay time is controlled by the 100 kilohm variable resistor (VR1) in series with the fixed 22 kilohm resistor (R2). If a shorter delay is required the value of Cl should be reduced since resistor R 2 is a minimum value for this circuit. Alternative types of unijunction may require different combinations of R and C but if the time constant ($R C$) is kept the same the delay time will not be affected. Any adequately rated npn switching transistor can be used with a base resistor to limit the base current-the relay given in the components list requires a cuncent of only 17 mA . It is a 12 V type with two pole change over contacts connected together in parallel. As the inductive motor circuit is broken by the parking switch a 2 amp rating for the - relay contacts is adequate and permits a smaller relay to

Note: connections at points " X " in Fig' 2 must be reversed for use with negative earth systems.

CONSTRUCTIONAL DETAILS

The unit can be conveniently built into a small die cast box, although any suitable container may be used. The front of the box is drilled to take the control potentiometer (VR1) and the on/off switch S1. The remainder of the components, except the telay, are mounted on a piece of perforated s.f.b.p. which is

Fig. 4. Layout and wiring of the components mounted in the diecast case; all interconnections should be made using plastic covered wire. SI and VRI are positioned to avoid contact with the relay and component board when the front of the case is screwed down
trimmed to fit in the box behind the switch and potentiometer. If a small relay is used, the components can be mounted in a box with internal dimensions $4 \ddagger$ in x $2 \frac{1}{4} \mathrm{in} \times \frac{7}{8} \mathrm{in}$. The relay is screwed to the box at one end and wired up using flexible plastics covered wire. The rest of the components are mounted on the board as shown in Fig. 3. Layout is not critical but an arrangement which is similar to the circuit diagram makes wiring and checking easier. Taper pins are used to anchor the component leads and the insulated wire connections from the rest of the circuit.
The prewired board is held in position by four 6B.A. screws (Fig. 4) and the three control leads from the relay are brought out through a grommeted hole. A control knob and a numerical scale complete with unit.

FITTING DETAILS

The die cast box was attached with a suitable bracket to the underside of the parcel shelf. A short 3 core 5 amp lead is required to reach the rear of the wiper on/of switch and the connections are as follows:
(a) Attach a flat female connector to the common relay contact lead and plug it on to the back of the wiper on/off switch in place of the lead which goes to the parking switch.
(b) Attach a flat male connector to the negative and normally closed relay contact lead and plug it into the lead disconnected in (a).
(c) Connect the positive and normally open contact lead to the earth lead on the wiper switchrouting the positive lead via the case and mounting is not recommended.
Double check these connections and then turn on the wiper control at Sl. The wiper blades should remain stationary for a short period and then execute one complete sweep and stop for another short period. This process will repeat ad infinitum, the length of the pause being varied by VR1.

In next month's
 PRACTICAL ELECTRONICS

PRACTICAL ELECTRONICS ORGAN

Thrill to the sound of a complete family of organ tone colours in your own home. Delight in a frequency range that encompasses keyboard music from 'classies' to ' pop.' Next month PRACTICAL ELECTRONICS gives you the first of a series of articles on how to build a professional class instrument which you will be proud to own for years to come. Designed by an acknowledged authority on organs, it is all solid state using up-to-the-minute silicon planar transistor techniques.
Voiced to produce the sound of an authentic theatre organ, it has two full 61 -note manuals, 30 pedals and 19 stops, with the unusual feature of separate expression pedal for both the solo and accompaniment manuals to permit greater flexibility and tonal range. Separate two-unit speaker enclosure. Optional Leslie tremulant to manuals.
Simple unit construction enables you to complete the organ section by section so forestalling any initial large capital outlay. The total cost would be of the order of $£ 200$ - the completed job comparable with a commercial organ costing $£ 600$ upwards. This is the only home organ in existence with a complete 2 ft top octave providing a host of exciting new tonal combinations.

PRACTICAL

=LICTRONICS

INFRA-RED
 BURGLAR ALARM

An improved design of alarm based on a modulated infra-red beam.

RELIABLE

SENSITIVE
FAIL-SAFE ACTION
TAMPER PROOF

3/- May issue - on sale Monday,
April 14

Goonhilly 2

Comprehensive testing and monitoring facilities for both colour and black and white television signals is provided at this control console
central building. Each carrier, which may transmit up to 132 telephony channels, is monitored separately and reserve equipment is switched into use automatically if a disabling fault condition arises. Faults which cause degradation of the service but do not interrupt it can be located and eliminated by manual switching of their component sub-systems without interference with traffic. A separate console enables the television service to be monitored and tested. The extensive use of duplicated equipment and monitoring facilities ensures a reliability of

Part of the transmitter cabin with an operator adjusting the coolant supply for the output travelling wave tube of one of the transmitters. The local control panel in the foreground is open to show the controls for setting up the drive unit
99.9 per cent for the complete system, which is less than 9 hours per year out of service.

Initially Goonhilly will operate telephony circuits to only the USA and Canada but as more Earth stations become operational the system will expand until by 1971, Goonhilly is expected to be working to 20 countries. Goonhilly 1 aerial is now being refurbished to communicate with countries to the East and will be back in service as soon as an Intelsat III satellite is available over the Indian Ocean.

Production of television picture tubes at the Mullard tube plant at Simonstone, Nr. Burnley has been speeded up with the introduction of a new machine shown below. The machine was developed and built by the Department of Production Engineering and Production Management of Nottingham University and is designed to assemble part of the electron gun automatically.
The electron gun is a precision sub-assembly comprising a large number of small components requiring the use of highly-skilled female labour for assembly; this machine automatically assembles three of the components. The

TV Tubes

component parts are fed by vibrating feeders to "pick-andplace" units which place the components on mandrels at welding stations, an electronically controlled sequence then takes over and the parts are assembled and eight welds are made to produce the (grid 3) assembly.

On completion of the picture tubes an "ageing" process has to be carried out before the tubes are dispatched. This process is carred out at the Mullard plant whilst the tubes are moving around the factory on a conveyor. The still photograph below is from the film "Mullardability" and shows the conveyor carrying the picture tubes.

THERE is more to achieving high fidelity reproduction from a loudspeaker system than just matching its electrical impedance characteristic to that of the amplifier. Apart from electro-acoustic efficiency, mechanical loading of the moving element is a significant factor in obtaining an acceptable aural response free from distortion and disturbing resonances.

The loudspeaker can be likened to a transmitting aerial but with polar response related to audio frequencies. Horns or baffles act as deflectors to obtain certain directional properties and avoid frequency cancellation effects. Acoustic impedance matching is another factor to be considered.

This article traces the history of development of electro-acoustic receiving transducers, then goes into the main features of the moving coil loudspeaker with particular emphasis on solving some of these problems.

HORN LOADED LOUDSPEAKERS

The earliest type of electro-acoustic receiver was that using an electromagnet with moving metallic diaphragm, still in use in principle today in telephones and headphones. The efficiency is poor due to the difference in mechanical impedance between the diaphragm and the air. See Fig. 1a.

Attempts were made to match these impedances by attaching a conical horn to electro-magnetic receiver (Fig. la), the horn acting as an acoustic transformer between the low impedance of the air and the high impedance of the stiff diaphragm of the telephone type of receiver. It was soon discovered that an exponentially shaped horn gave better results, especially in the low frequency range. Sound waves propagated along the axis of an exponential horn are not distorted, as reflections from the wall of the horn are in phase with the propagated waves. Fig. 1c illustrates an example of such a unit.

The efficiency of the horn loaded loudspeaker was limited at the lower frequencies by the size of the horn.

Increases in the overall efficiency were achieved by arranging for the resonance of the diaphragm to be in the frequency range over which the unit was used.

The Brown loudspeaker (Fig. 1b) dispensed with the telephone receiver and used instead a spun aluminium diaphragm driven by an electro-magnetically motivated reed. The reed was fixed at one end (Fig. 2), whilst the remaining end was free to move under the influence of a magnetic field produced by a coil. The apex of the diaphragm was secured to the reed, which acted as a "mechanical transformer".

The response of this unit showed a marked improvement upon the response of the units which used a telephone type receiver, but was in many ways inferior to the response of the direct radiator loudspeakers that were to follow.

A further drive mechanism, which when horn loaded gave favourable results, was incorporated in the ribbon loudspeaker. A corrugated aluminium foil ribbon was suspended in the gap between the poles of a powerful magnet.

An electric current was caused to flow through the ribbon, thus giving rise to a magnetic field which interacted with the field produced by the permanent magnet and consequently caused the ribbon to move. The movements of the air surrounding the ribbon were coupled, via an exponential horn, to the outside air. This form of unit is still produced, but is used mainly as a tweeter to reproduce frequencies above $2,000 \mathrm{~Hz}$.

The low mass and low impedance, in conjunction with a high value of Young's Modulus for aluminium, make the speaker particularly suitable for the reproduction of high frequencies. (The value of Young's Modulus for a given material, determines the degree of stress that the material will withstand before fracture, i.e. Young's Modulus equals the ratio of longitudinal stress to longitudinal strain.) A powerful magnet is required to produce a high magnetic field strength across the gap in which the ribbon is situated.

ELECTROSTATIC LOUDSPEAKERS

The simplest form of electrostatic loudspeaker comprises two large flat metal plates mounted closely together. A potential difference developed across the plates causes a force to be exerted between the plates. A d.c. polarising voltage is usually required, in addition to the alternating voltage signal provided from the audio amplifier.
In its earlier development stages, it was difficult to obtain a wide frequency response compatible with low distortion; sensitivity was relatively low. However, some commercial concerns have in recent years applied specialised techniques to these shortcomings to provide effective and sometimes competitive results over a wide frequency range.

DIRECT RADIATOR LOUDSPEAKERS

The direct radiator loudspeaker superseded the large exponential horn, the diaphragm being coupled directly to the air. Various systems were used to drive the diaphragm, including a reed as in the Brown loudspeaker. Unless the mechanical arrangements of the reed mechanism is critically controlled, severe amplitude distortion could result.

One method of reducing this distortion is to use a balanced armature system (as in the modern lightweight telephone receiver), in which the reed is pivoted at its centre and attached, via a rod, to a cone. The reed moves under the influence of the magnetic field produced by two coils. An example of this form of loudspeaker is illustrated in Fig. 3.
The most popular form of direct radiator loudspeaker is the moving-coil loudspeaker, early examples of which were produced by Magnavox and Rice Kellogg.
The main functional components of the moving-coil loudspeaker are an electrical conductor in the form of a coil, suspended in a strong magnetic field produced by a powerful magnet (Fig. 4), and attached to a large diaphragm (cone), which is free to move under the influence of the forces exerted upon the coil as a result of the current through it.
Early types of moving-coil loudspeaker employed an electromagnetic field usually powered from the h.t. line, but this was later replaced by a permanent magnet.

Fig. 2. Simplified illustration of the reed drive mechanism

Fig. 4. Cross section through a typical moving coil loudspeaker. Notice the suspension arrangements

ig. 3. Celestion Loudspeaker; early direct radiator loudspeaker

Fig. I. Group of early moving iron loudspeakers (Crown copyright, Science Museum, London)

Unlike the loudspeaker shown in Fig. 4 all the early moving-coil loudspeakers were fitted with a front "spider" suspension system attached to the magnet for centring the coil in the air gap. The efficiency of a loudspeaker fitted with a front spider tends to be reduced at low frequencies, whilst at higher frequencies severe peaks in the response become prominent. The overall aural effect is rather harsh. Present-day types (Fig. 4) employ a corrugated foil or fabric suspension system behind the cone.
The popularity of the moving-coil loudspeaker is due, in the main, to the ease of construction and use, smaller space requirements, and the much improved frequency response; the latter is limited mainly by the dynamic characteristics in relation to the air mass which the cone has to move, and the side effects of wave propagation between front and rear. Fig. 5 illustrates an example of a modern moving-coil loudspeaker.
The main problems in any ideal audio system are concerned with the prevention of unwanted distortion and the maintenance of a reasonably flat frequency response throughout the audio frequency range. The loudspeaker is probably the most difficult part of the reproducing chain in which to achieve anything approaching perfection. Let us now look at the problems involved and see if they can be sorted out.

FREQUENCY RESPONSE

The response of a loudspeaker should not be confused with its efficiency. The efficiency of a loudspeaker is determined by the ratio of the sound power output to the electrical power input. The frequency response of a loudspeaker is a measure of the sound pressure produced at a specific position in the surrounding medium (usually in line with the axis of the cone) due to a known electrical input at a given frequency. The acoustic conditions, under which the test is performed, should also be specified. If the loudspeaker were non-directional there would be no differentiation between the efficiency characteristic and the frequency response characteristic.
A reasonably flat average response over a frequency range can be achieved with a direct radiator, movingcoil loudspeaker. (The term average is used because the speaker should respond to transients, see later.) The main problems are concerned with maintaining the response at both ends of the audio frequency range and reducing peaks in the response which occur at both low and high frequencies.
The mass of the vibrating system of a moving-coil loudspeaker, at low frequencies, may be regarded as equal to the sum of the mass of the voice coil and the mass of the cone; the compliance of the system may be considered as being the resultant of the compliance of the supports of the coil and cone.
The mass of a mechanical system is analogous to the inductance of an electrical system, whereas the compliance of a mechanical system is analogous to the capacitance of an electrical system. Consequently, as in an electrical system, the inherent mass and compliance of a mechanical system produce a fundamental resonance based on these two factors.

RESONANCE

The fundamental bass resonance of a moving-coil loudspeaker is an important factor. For a typical 12in diameter loudspeaker this bass resonance can occur around 30 Hz , whereas for an sin diameter loudspeaker the resonant frequency cun \}e 60 Hz or higher.

Fig. 5. Modern form of moving-coil loudspeaker manufactured by Wharfedale

Fig. 6. Frequency response to be expected with a typical lOin moving coil loudspeaker mounted on an infinite baffle

Fig. 7. Dual-cone loudspeaker manufactured by Wharfedale

Fig. 6 shows the frequency response curve for a typical 10in diameter loudspeaker. The fall-off in response of the moving-coil loudspeaker at low frequencies is due, in part, to the inability to match the output of the loudspeaker to the surrounding air. This problem can be partially overcome in a variety of ways. Mounting the loudspeaker in a reffex cabinet (mentioned later in this article), tends to improve the low frequency response, whilst an exponential horn may be -used as an "acoustic transformer", as described previously. Of course, the same result can be achieved by using a moving-coil loudspeaker with a larger cone.
The fundamental bass resonance is important in the determination of low frequency response. Below this resonant frequency the response of a loudspeaker falls off rapidly. Furthermore, unwanted harmonics are produced at and around the resonant frequency. It would appear that the aim should be to reduce, as far as possible, the frequency at which bass resonance occurs.
In practice, however, lowering this resonant frequency, by the use of a suspension with a greater deal of freedom can give rise to certain problems. The manufacture of such a loudspeaker tends to be very difficult and also results in a unit whose robustness leaves much to be desired. The centring of the voice coil would be unstable and could be easily affected by small mechanical shocks.
It is worth noting, that although the efficiency of a moving-coil loudspeaker rises at the bass resonant frequency, the actual increases in the response are normally not as great. This is due to the high damping factor of modern amplifiers, which incorporate negative feedback. It is therefore apparent that the effects of variations in the design, which influence the behaviour of a moving-coil loudspeaker, are more readily observed when the loudspeaker is driven by an amplifier without negative feedback.

EFFECTIVE WORKING RADIUS

At low frequencies, the time taken for a displacement of the cone, at its centre, to travel to the rim, is small compared with the period of the signals reproduced, and consequently may be neglected. The cone can thus be considered to behave as a rigid surface, similar to a vibrating piston.
However, at higher frequencies the cone no longer vibrates as a whole; the amplitude of vibration of the cone becomes smaller nearer its rim, hence causing the effective working radius of the cone to be reduced. The overall effect is an increase in the efficiency of the loudspeaker at frequencies in the order of 1,000 to $2,000 \mathrm{~Hz}$.
Sharpening of the directional pattern of a moving-coil loudspeaker is lessened by the reduction of effective cone radius which accompanies the increase in frequency.
It can be seen that the reduction of effective radius at higher frequencies is a desirable feature; it may be enhanced by employing a loudspeaker which has circular corrugations formed in its cone.

VOICE COIL

Another point to be considered with regard to the high frequency response of a moving-coil loudspeaker, is the electrical impedance of the voice coil. This impedance increases with frequency, consequently causing a fall-off in the high frequency response. Increases in voice coil impedance, with a constant applied voltage, result in a reduction of the current
through the coil, which in turn causes the driving force to be reduced. To maintain the response at higher frequencies requires a reduction in the mass of the voice coil; this can be achieved by using a coil wound with aluminium instead of copper.

Apart from utilisation of various' forms of cabinet (mentioned later), a flat frequency response over a wide range can be achieved by using several loudspeakers, each using a filter to reproduce a section of the audio frequency band. The size of loudspeaker cone has a bearing on the frequency range which that loudspeaker can reproduce well; consequently, larger sizes are employed for low frequencies and smaller sizes for high frequencies.
Instead of using more than one loudspeaker it is possible to incorporate two cones in one loudspeaker (Fig. 7), a mechanical arrangement being used to couple the two cones. At low frequencies the entire system vibrates as a whole, both cones radiating together. At high frequencies the small cone vibrates, without damping interference from the large cone. This system is generally termed dual concentric. In some cases the two cones are energised from two separate voice coils, so that each can be suitably tailored for best response within its range.

Fig. 8. An oscillogram showing the wave-envelope of a piano tone

TRANSIENT RESPONSE

A point often overlooked when considering the sound quality of a moving-coil loudspeaker, is its transient response. The transient response determines the ability of a loudspeaker to follow very rapid changes in the amplitude of the applied signal. The normal frequency response curve only illustrates the ability of a loudspeaker to respond to a constant sinusoidal signal irrespective of time.
In practice a loudspeaker is rarely used to reproduce pure sine waves of constant amplitude, but has to be able to handle signals, the waveforms of which can be of the form shown in Fig. 8. (Notice in this illustration the wave envelope of a piano tone, with its percussive attack and exponential decay.)

The source impedance of the amplifier used to drive the loudspeaker, and the flux density of the magnet used in the loudspeaker, both determine the transient response of the loudspeaker, in addition to the fundamental bass resonance previously discussed. High flux density in the magnet and reductions in the source impedance, by the use of negative feedback in the amplifier, tend to improve the transient response of a moving-coil loudspeaker.

POWER HANDLING

Another important property of a loudspeaker, is its power handling capacity. The output of a moving-coil loudspeaker is limited by the maximum permissible
axial displacement of its cone. The greatest displacements occur at low frequencies, while high frequencies are damped to some degree as mentioned above.

The loudspeaker should be designed to handle the lowest frequency (about 16 or 32 Hz for organ music) without the risk of cone tearing or voice coil former being damaged. An unpleasant rasping sound at low frequencies is a sign to employ a larger loudspeaker. Similarly distortion and vibration at medium frequencies could also point to the need for a larger loudspeaker, but not always.

DISTORTION

Most of the distortion produced by a moving-coil loudspeaker is due to non-linearity of the cone suspension system. This non-linearity results in the production of harmonics and subharmonics. The harmonic distortion as stated earlier, is predominant

The "Airedale" hexagonal enclosure for corners designed by Wharfedale. Three loudspeakers are housed inside with a halfsection three-way crossover seperator unit. Dimensions are $38 \frac{1}{2}$ in \times $27 \frac{1}{4} \mathrm{in} \times 14 \mathrm{in}$
around the fundamental bass resonant frequency, whereas the production of subharmonics due to the cone suspension system occurs at very low frequencies and is not usually noticeable. The troubles associated with the production of subharmonics, are apparent in the mid-frequencies where non-linearity of the cone itself occurs.

Another source of distortion in the moving-coil loudspeaker is non-uniformity of the magnetic field in which the voice coil moves. This can be overcome by employing a voice coil winding, longer than the air gap in which the coil is positioned, thus ensuring that the whole of the voice coil winding remains in the air gap, even during maximum excursions of the coil.

The sources of distortion so far described also give rise to another form of distortion, known as intermodulation distortion. Intermodulation distortion occurs when the simultaneous reproduction of any two frequencies results in the production of another frequency. This form of distortion is reduced by ensuring that the cone suspension system behaves, as far as possible. in a linear manner, and that nonuniformity of the magnetic field is eliminated, in the manner already described.

BAFFLE

The sound energy radiated from the back of the cone of a moving-coil loudspeaker is 180 degrees out of phase with the sound energy radiated from the front. If, therefore, a loudspeaker is not mounted on a baffle board, or in a cabinet of some form, the sound energy radiated from the back of the cone will interfere with the sound energy from the front of the cone, thus
resulting in a reduction of acoustic perception at the listening position. This can be overcome by mounting the loudspeaker on a flat baffle of suitable dimensions with frontal aperture.
The choice of dimensions is governed by the size of loudspeaker and required low frequency response; the lower the frequencies to be reproduced, the larger must be the baffle. However, the baffle need only be made large enough to ensure satisfactory response down to the bass resonant frequency of the loudspeaker. Beyond that frequency, no matter how large the baffle is made, the response of the loudspeaker will fall off rapidly.

The use of a small baffle can also produce a dip in the frequency response at higher frequencies. This is more pronounced when using small loudspeakers. It may be significantly decreased by mounting the loudspeaker off-centre on the baffle.

The size of a flat baffle necessary to ensure satisfactory response is not generally practical and one must accept a compromise by using a smaller baffle with a poorer low frequency response.

TOTALLY ENCLOSED CABINET

A more satisfactory arrangement is often achieved by mounting the loudspeaker in a totally enclosed cabinet (infinite baffle cabinet). The sound energy radiated into the surrounding air then emanates from the front of the loudspeaker cone only, as with an infinite baffie.
The main objection to this form of cabinet is the increase in the frequency of bass resonance of the loudspeaker, as a result of the additional stiffness contributed by the mass of air confined within the cabinet. This causes the response at low frequencies to begin falling off at a higher frequency than if the loudspeaker were mounted on an infinite baffle.

This may be partially overcome in one of two ways; by increasing the volume of the cabinet, thus reducing the additional stiffness, or by using a loudspeaker with a lower bass resonant frequency (i.e. a loudspeaker suspension with greater freedom).

The sound energy radiated from the back of the cone still produces undesirable effects, in this instance causing, at certain frequencies, standing waves to be set up within the cabinet. This results in unwanted dips and peaks in the frequency response, but can be significantly reduced by lining the interior surfaces of the cabinet with a layer of sound absorbent material (e.g. fibre glass, cotton wool, etc.). This reduces the magnitude of the standing waves and also decreases the peak in the response at the bass resonant frequency.

OPEN-BACKED CABINET

One of the simplest ways of mounting a loudspeaker, is in an open-backed cabinet. This is a suitable way of applying a "folded" baffle where space is limited. Here once again, sound energy radiated from the back of the loudspeaker cone combines with sound energy radiated from the front of the cone to produce a rapid fall-off in the response below the fundamental resonant frequency of the cabinet.
The cabinet resonance, is in itself troublesome, as it introduces an unwanted peak in the frequency response. However, by arranging for the bass resonant frequency of the loudspeaker to be lower than that for the cabinet, a smooth and extended low frequency response may be achieved. Standing waves are not a problem due to the air pressure flexibility at the rear.

REFLEX CABINET

The use of a reflex cabinet enables the sound energy radiated from the back of the cone of a loudspeaker to be added, in phase, with the sound energy radiated from the front, thereby increasing the output at lower frequencies.
The reflex cabinet comprises essentially, an enclosed cabinet with a vent aperture situated below the loudspeaker aperture. At high frequencies the vent has no significant effect and the cabinet behaves as a totally enclosed cabinet. The interior of the cabinet must therefore be lined with a sound absorbent material to avoid the presence of standing waves.
At low frequencies, sound energy, radiated from the back of the cone, after undergoing a phase shift of 180 degrees, emanates from the vent, thereby reinforcing the sound energy, radiated into the surrounding air, from the front of the cone.

At frequencies below the resonant frequency of the cabinet, however, this phase shift rapidly decreases, and the air in the vent tends to move in phase with that at the back of the cone. The resultant response due to radiation from the vent and from the front of the cone produces the poor low frequency response associated with a small baffe at frequencies below cabinet resonance.

CONSTRUCTION OF LOUDSPEAKER CABINETS

In the preceding paragraphs the walls of the cabinet have been assumed to provide a definite boundary for the sound waves. In practice, careful attention has to be paid to the choice of cabinet wall dimensions to avoid vibrations of the cabinet itself. This is more important for totally enclosed and reflex cabinets, where high pressures may be set up with the cabinet.
Additional rigidity of the cabinet walls can be achieved by using cavity walls filled with sand. These are constructed by spacing two stout wooden sheets, say $\frac{1}{2}$ in to lin apart, and filling the cavity with dry sand; even better results can be achieved by constructing the cabinet of concrete or bricks.
More precise details of cabinet dimensions are not given here because they should be matched where possible to the loudspeaker to be used. Manufacturers' literature should be consulted or alternatively some text books may offer guidance.

ACKOWLEDGEMENTS

The author wishes to acknowledge Rank Wharfedale Ltd. and Sir Isaac Pitman \& Sons Ltd. for assistance in compiling this article.

NEWS BRIEFS

Talking Books Conversion for New Cassette

THE British Talking Book Service for the Blind, administered by the R.N.I.B. is now rapidly expanding due to the development of the Mark IV type tape cassette. This cassette, which is very much smaller than has hitherto been used, contains up to 13 hours of recording time, playing at $\frac{15}{6}$ in per second on a $\frac{1}{4}$ in tape. New features of the MKIV have brought about the development of a small portable machine (shown below) that has largely superseded the larger MkI version. Transistors are employed to amplify the tape signal and, in the case of the students' library, to give audible signals at high speed for
fast chapter location.

Whilst there are still large quantities of MkI machines which are expected to offer another 10 years of service, they must be made capable of replaying both MkI and MkIV cassettes.

A special adaptor has been developed to enable the MKIV cassette to be played on the MkI machine, after minor modifications to the machine as shown above.
Due to the rapid expansion of the Talking Book Service (some 250 titles and 6,000 new members each year) the problem of voluntary installation and service mechanics is becoming acute in many parts of the United Kingdom. Persons who are willing to give occasional help on a voluntary basis to enable blind people to use the Talking Book machine and assist with repairs would be gratefully acknowledged. Further information and offers should be addressed to The Manager, British Talking Book Service for the Blind, Mount Pleasant, Alperton, Wembley,
Middlesex.

BEITER RECEPTION

Now that colour television programmes are in full swing and more people are taking delivery of colour television receivers, Belling-Lee Ltd., decided to develop a pre-amplifier which would improve colour, black and white, and stereo f.m. radio reception. The result of these developments is the Concord preamplifier which is claimed to give a signal amplification of approximately four times.

Designed to operate on all television channels and f.m. radio band, the Concord is an ultra broad band pre-amplifier which boosts the incoming signal giving better picture quality, sharpening contrast, reducing "snowstorm" noise effects, and, on colour sets, gives better colour quality.

The pre-amplifier is ideally suited for fringe areas and is easily installed by simply hooking the moulded grey case, measuring $\sin \times 3 \frac{1}{3}$ in $\times 2 \frac{1}{4} \mathrm{in}$, onto the rear of the television or radio receiver. Plugging the aerial lead into the input socket, inserting a screened link lead between the pre-amplifier output socket and receiver aerial input socket, and connecting the mains lead to the supplies completes the installation.

Power consumption is very small, approximately the same as an electric clock, and the recommended selling price is $£ 77$ s.

Once installed, it is claimed no further adjustments are necessary.

LOGIC KIT

To meet the needs of electronic project work in schools amongst students of all ages, Geatronix Ltd., have developed the Norkit range of electronic kits.

The basic building brick is a NOR logic module which, together with the other components supplied, enables the rapid assembly of a sequential control system for any automatic device.

There are three Norkit ranges at the moment: the junior, price
mpinge
ltems mentioned in this leature are usually available from olectronic equipment and component retaifers advertising in this magazine. However, where a full sddress is glven. enquiries and orders should then be made direct tes the firm concerned.

Belling-Lee ultra broad band preamplifier
£8 16 s; the senior, price $£ 1712 \mathrm{~s}$; and the advanced kit, price £26 8s.

The junior kit contains seven Nor logic circuits, two output units, diodes, lampholders and lamps, push buttons, reed switch and magnet, capacitors and resistors and all necessary interconnecting wires and solder.

The senior kit contains 12 NOR logic units, three bistable circuits, three output units, microswitch, and a larger selection of all components supplied with the junior version.

The advanced kit introduces components associated with automation equipment, and contains power driver units, photo cells, Zener diodes, thyristors, unijunction transistors, etc.

Handbooks supplied with the kits clearly outline the fundamentals of logic and automation and give a good introduction to computer work.

Most items can be purchased separately and further details can be obtained from, Geatronix Ltd., 28, Redstock Road, Southend-on-Sea, Essex.

Another product aimed at education is the Pidam range of teaching modules from West Hyde Developments Ltd.

These modules are digital and analogue plug-in devices which can be used to make up demonstration models, and can be used to construct teaching machines which can be loaded with questions and answers in elementary physics.

Further details can be obtained from, West Hyde Developments Ltd., 30 High Street, Northwood, Middlesex.

SOLDER

A handy size dispenser for solder has just been introduced by Multicore Solders Ltd., Hemel Hempstead, Hertfordshire. The new, pen size pack contains 21 ft of $60 / 40$ Ersin 5 -core solder and is ideal for the tool box, and for use when soldering small components, fine wires and printed circuit work.
The dispenser is known as size 15, costs 3 s and is claimed to be designed so that the solder cannot fall back inside the container. If the reader only requires enough solder for the odd repair, then possibly the size 2 pack will suffice. This is a larger gauge 5 -core solder contained in an envelope with full soldering instructions printed on the back. The size 2 pack costs 6 d and contains enough solder for 80 average joints.

Junior logic kit manufactured by Geatronix

Solder dispenser
from Multicore Solders

Pidam logic modules produced by West Hyde Developments

CRYSTAL HOLDERS

Constructors may be interested in the range of Augat crystal holders marketed by Electrosil Ltd., Pallion Trading Estate, Sunderland, Co. Durham and available from some retail stockists.

Crystals may be easily inserted or removed without any adjustments to latches or screws, and once inserted it is claimed that the crystal will not shake loose under severe vibrations.

Developed to take crystal sizes HC-6/U, HC-13/U and sub-miniature type HC-25/U, the holders are easily bolted onto any chassis, and the solder terminals are completely insulated.

A 5-pin TO5 outline relay socket is also available from Electrosil Ltd., and can be supplied for printed circuit board or chassis mounting.

FINGER TOOLS

The items in our photograph (bottom right) are not stick-on claws to even up the sexes but finger tools useful for miniature electronic assembly work.

Known as Deli-Cut tools they. consist of miniature cutters, tweezers and positioners. The tools are attached to the finger tips by a selfadhesive band and worked by the thumb. A different tool can be carried on each finger, if necessary.

Marketed by Henri Picard and Frere Ltd., 34 Furnival Street, London, E.C.4., the tools are steel hardened and vary in shapes and cutting angles.

IC CARD

A printed board designed specially to accept integrated circuits is now available from A.P.T. Electronic Industries Ltd., Chertsey Road, Byfleet, Surrey.
Designated Cardic 24 (part number LK-3121), 24 dual in-line (14 or 16 leads) integrated circuits can be mounted on one card. Printed power supply copper tracks run to each i.c. and a 24 -way input/output edge connector provides plug-in facilities.

The cards are designed specifically to achieve simplicity of i.c. insertion and removal without undue damage to the wiring or device.

These cards are also supplied as part of a kit assembly, Lektrokit No. 10, which includes the components for a complete rack mounting framework with 12 sockets and guides for $£ 2310$ s.

РНOTO CELL

A new range of CdS photoconductive cells are now being distributed by Hird-Brown Ltd. Complimenting the existing lin, $\frac{1}{2}$ in and $\frac{1}{4}$ in diameter devices these additional cells are packaged in TO5 outline encapsulations.

Described as types NSL481 to NS484 and NSL487, they offer twice the power ratings and values cover
2.5 kilohms to 160 kilohms, measured at one foot candle.
Spectral response covers the normal CdS range peaking at 0.55 microns, similar to that of the human eye.

All devices have a power rating of 200 milliwatts at 25 degrees centigrade. Maximum peak voltage is rated at 250 V a.c. or d.c.

Any further information can be obtained from Hird-Brown Ltd., Lever Street, Bolton, Lancashire.

LITERATURE

Colleges and evening institutes may be interested in a booklet published by Mullard Educational Service describing an aid for teaching counting systems and logic functions.

Entitled A Digital Integrated Circuit Training Aid (DICTA), the booklet describes a system using integrated circuits and indicator lamps that can be easily arranged to make 100 different types of counter and shift register.

This is achieved by rearranging simple patching links made with copper-plated split pins. The equipment can also be used to demonstrate the logic functions of various types of gate and combination of gates as found in adders and decoders.

Copies of the booklet can be obtained free, from Mullard Educational Service, Mullard House, Torrington Place, London, W.C. 1.

Readers of Hi Fi News will know just what to expect in their Audio Annual 1969-the fourth edition to be published by Link House Publications. It looks very much like a fat edition of the above journal with layout and presentation in the same style.

All this is by the way-most audiophiles will be looking for the usual run-down of audio equipment test reports and reviews that have appeared over the last year. For those about to embark on a spending spree and want to know more about what has come onto the market during this period, this Annual could be 7 s 6 d well spent.

A regular group of consultant contributors have provided some light hearted and serious articles on the general aspects of hi fi, including a survey of progress over the past 50 years.

This annual contains 132 pages including 50 pages of advertisements for current equipment. It is available from most large newsagents.

Available from distributors of International Rectifier components are a range of charts giving detailed operating characteristics for thyristors, triacs and unijunctions; low power and Zener diodes; voltage surge protectors, high power diodes and rectifier assemblies.

Further details of nearest IR distributors can be obtained from International Rectifier Co. Ltd., Hurst Green, Oxted, Surrey.

Augat 5-pin TO5 relay socket from Electrosil

Deli-Cut tools marketed by Henri Picard and Frere

PROPERTY DETECTORS PATTERN RECOGNITION

BIDNTLE

BY G.c.brown

M.S.H.A.A., A.M.R.S.H.

ACTUAL hardware versions of the edge and bug property detectors mentioned in our last discussion really "eat up" photo-cells in the number required to do the job. Such devices additionally demand well matched and sensitive receptors; so even if we had decided upon using. say, ORP12's the total cost could have been extremely high. Unfortunately too, most cheap photo transistors are inappropriate in that they are light sensitive only from the side of the glass envelope-the requirements being that a group of receptors be mounted together so that they may be exposed to illumination end-on.

We will therefore "keep our expensive ideas to ourselves" and look at some equally interesting property detectors which require fewer receptor elements. (While in the meantime we can only hope that manufacturers will make an attempt to equalise the scandalous price differential between their transistors and photo-sensitive devices).

Unlike some of the previous examples which were based more upon inductions from physiological data, the property detectors we shall consider-now will tend to be of the invented kind. The first is shown in Fig. 6.1 .

A CRUDE FORM OF SIMULATION

The notion we have here is one which, although fundamentally simple, could prove to be quite advantageous if utilised in certain automata. One aspect of a higher animal's abilities is that which permits it to judge the speed of objects moving in relation to itself. Just how this is performed in the biological brain is a matter for further research and contemplation. However, in the diagram we see the basis for a method of obtaining a form of crude simiulation. The basic scheme includes just one mono-
stable plus a NAND gate. Its operation is most easily seen if we install a pair of eyes (photo-cells) in the device, so that it can "observe".

For the sake of example we may assume that the monostable as shown in Fig. 6.1 has a period of 0.7 seconds. Now if a moving light, or even a bright object, passes photo-cell XI the monostable will be triggered. If during the time the monostable is in this quasi-stable condition the moving object passes X 2 , the output from the gate will change from 1 to 0 permitting this output to appear up to the time that the monostable reverts to its stable state. On the other hand, if X2 receives the stimulus after the monostable has "switched back", or indeed if it never gets stimulated, the output will remain unchanged.

Such a device, though crude, could be used to classify "fast" and "slow" moving objects. How "slow" and how "fast" we of course do not know; except that the speed of movement was either above or below 0.7 seconds. We cannot be certain either that the stimulus at X2 was caused by the same object! Nevertheless, it is possible to improve the scheme a great deal by employing more classifiers.

MORE ADVANCED DETECTOR

In Fig. 6.2 the scheme is a little more ambitious, for not only does it break the classifications into "fast", "medium", and "slow", but also permits observation of objects from either direction and additionally tells us the direction. (Fig. 6.1 was strictly "one-way only".)

This improved property detector operates in much the same way as the previous example, except that now we have three monostables in each side. Now each monostable in a group has a different period; so if, as before, XI "saw" the approaching object first, then all the monostables in the associated group would turn on.

Fig. 6.1. A crude form of property detector for judging speed of moving objects

Fig. 6.2. Property detector for judging direction and speed of passing objects

We can arrange to do this by mutually inhibiting each group of monostables with the output from the opposite "slow" element. The machine will now be incapable of looking at anything else until the sampling time is over. Unfortunately, there is no easy way of overcoming this fault of "working backwards" once the sampling period is finished, unless we decide when it is going to "take a look'.

COMPLETE CIRCUIT

The constructor might well like to try out the device in Fig. 6.1 for himself, and so in Fig. 6.3 we see the circuit. The monostable used here is fairly conventional and is triggered if $\mathrm{X1}$ (an ORP12) is illuminated. This triggering arrangement, like so many we have used before, is unlikely to require its being preceded by a Schmitt, because generally there is a sufficiently abrupt change in illumination at the photo sensor as to make the inclusion of a threshold element unnecessary.

Following the firing of the monostable, TR2 collector will be at almost ground potential and therefore one half of the gate, TR3, will be enabled. Hence if X2 becomes illuminated at any time during this period, TR4 will be released with the result that the gate output will go negative (the "O" state); thus indicating that the

Fig. 6.3. Circuit diagram for property detector outlined in Fig. 6.I
(Notice that the gates at the outputs of the "slow" and "medium" speed monostables have inhibitory connections taken from the next shorter period element.)

If the moving object passes X2 before the "fast" monostable has reverted to its stable condition, then a " 1 ", will appear at the output of G3. Without the inhibition at gates G1 and G2 a "1" would occur at their outputs too. Assuming the object was moving less quickly, the "medium" or perhaps "slow' speed monostable would probably "catch it", with the result that G2 or G1 would show a " 1 ".

As with all our schemes this one is not without its gremlins either, because when the object passes the second receptor all the monostables on the opposite side will fire too! Thus, it is only necessary for a further object to enter the machine's purview from the same direction to elicit a false response from G4, G5 or G6. This problem can, to a large extent, be overcome by "playing a waiting game", with the "slow" or longest period monostables.

Fig. 6.4. Position detector employing a number of photo receptors. Each sensor delivers an output "l" if the source of illumination is obscured by an object
lighted object passing across the field of view was travelling at a rate faster than the period of the monostable. So far as the machine is concerned, the "apparent" rate of the object will depend on the distance between the sensors.

Fig. 6.5. Device for determining length of passing object

Just as we perform these transformations, the machine discussed is in principle doing the same sort of thing: it however converts length to voltage. These voltages although already quantised into relatively discrete "bits" by virtue of the all-or-nothing characteristic of each sensor, need to be referred to some standard value if meaningful information is to be obtained. This can be achieved quite simply by taking each summer output to a circuit like that in Fig. 6.6.

STANDARDISATION CIRCUIT

Consider the case where the image of an object measuring an inch just activates two receptors, and we require to set this as our standard. The summer output at this time may also be causing the standardisation circuit to return an output as well, so this level must be backed-off at VR1 until it is reduced to zero. Then for lesser or greater outputs from a summer, there will be corresponding positive or negative levels appearing at the output of the standardisation unit. It will thereby give an approximation to the size of an object in relation to some definite dimension.

Fig. 6.6 Standardisation circuit for use in conjunction with the device shown in Fig. 6.5

Apart from physical length, property detectors can be designed which determine the duration of an event-or perhaps the length of one event in relation to another. The number of devices which can accomplish this are manifold; the simplest though usually rely upon the necessary summation being performed by linearly charging a capacitor. An arrangement allied to this (though not strictly linear), was seen in the "learning" circuit discussed in the third article of this series.

SUMMATION DEVICE

A basic example of a device which will linearly sum the duration of input events is shown in Fig. 6.7. An "event" of course will constitute the length of time a current flows into the base of the transistor. Now providing this current remains substantially constant, the capacitor will charge linearly towards earth potential. The actual charge that it finally acquires will largely depend upon its capacity and the duration of the charging current. Thus the voltage E appearing across the capacitor will be equal to I_{t} / C; where I is the charging current, the time taken to reach this voltage, and C the value of the capacitor.

It should be remembered that in reading-out the level across the capacitor, only a very high impedance must be applied. Without this precaution the accuracy of any data would be seriously impaired. To meet this need the output is generally fed into an emitter follower, or better still, a Darlington "triplet". Once the information has been read, the capacitor can be discharged and so made available for further use.

HEATHKIT for a Hobby that's Fun and Fascinating

Building Heathkit models is so easy. THE CONSTRUCTION MANUAL SHOWS YOU HOWI

Easy to understand instructions and large, clear pictorials illustrate clearly the step-by-step procedure for enjoying a fascinating hobby that takes you away from the 'workaday' routine. There's also the thrill when you switch on and experience that exhilarating sense of self accomplishment, knowing that you've done something you doubted you could ever do.

FOR EXAMPLE

This

STEREO RECORD PLAYER IS SO EASY TO BUILD

* Completely assembled and finished cabinetno gluing or covering required.
\star Completely assembled Record Changer deck. Simply drop in and connect a few wires.
* Only a few components to mount on one printedcircuit board.
\star Two $8^{\prime \prime} \times 5^{\prime \prime}$ speakers, easily mounted.
\star Takes only a few hours to build.
\star Suitcase portability.
ALL FOR ONLY $828,81{ }^{\text {KIT SRP-1 }}$
c24.6.1 P.\& P. $10 /$
Choice of blue/grey or red/grey colour scheme.
(Please state preference)

Send for the FREE CATALOGUE

AND MAKE YOUR SELECTION FROM A WIDE RANGE

The latest Heathkit 36-page full colour catalogue contains details of models for the Hi-Fi and Audio Enthusiast, the Music Lover, the Tape Recordist and the Hobbyist, models for Communication, Test and Servicing, Amateur Radio and Short Wave Listening models for Educational Establishments and Industry. No matter what your vocation, there is something for you in this catalogue.

FREE
 FACTORY CONSULTATION SERVICE

Heathkit maintain a staff of skilled technical correspondents to advise, help, and answer any questions about selection, construction and use of your model. This service is free. A speedy factory repair service is also at your command should you ever need it.

In order to compare (as suggested earlier) the duration of one event with another, the outputs from two summation devices can be fed via suitable buffer amplifiers to a differential circuit. This will then give an indication of the degree of parity existing between the two inputs.
PATTERN RECOGNITION
The next natural step from property detectors is of course pattern recognition devices, and ultimately machines capable of reading the printed word. Research which has been aimed at discovering ways and
means for achieving machine recognition (essentially of alpha-numerics, i.e. letters recognition (essentially conducted for something like the last 20 years The fruits of such labours have however been singularly modest; this to a very large extent being the result of inadequate information concerning the recognition processes employed by animals, particularly humans.

Although various forms of automatic character recognition are an actuality today, they nearly all suffer from disadvantages of one kind or another. Typically their abilities seem limited to recognising typefaces in some standard font and size, so that process by which scansion of the characters is performed may be maintained substantially simple and economic.

An example of a scanning process still currently used in some recognition systems is shown in Fig. 6.8. Here is seen the result of scanning the letter "T". The output pulses from the machine are produced by moving the character past a number of receptors; in this way a series of bits (binary digits) can be generated which, following suitable translation, uniquely categorise the letter.

The process of readout from the receptors is essentially in serial/parallel form, although some schemes utilise a single photo-cell which is made to scan each character several times to provide a wholly
serial output. This of course is much like the method employed for interrogating the images projected on to

Fig. 6.8. A scanning process used in some character recognition systems

Fig. 6.9. A circular scan system used by one type of machine designed to recognise line drawings (left) pulse pattern when seanning a triangle
the mosaic of a Vidicon camera tube. Indeed, with the remarkable resolution which Vidicons display, it is hardly surprising that they too are now finding extensive use in this application.

MACHINES LIMITATIONS

Despite the severe limitations imposed by current recognition devices, a greater degree of versatility has been achieved by endowing them with memories for several forms of typeface. Nevertheless this form of recognition still falls very short of human capabilities in this field. With consummate ease we can decipher sloppy handwriting, and letters either lost in a background of irrelevant "splodges" or with such a lack of contrast, that one almost doubts if machines could ever approach this standard. To add insult to injury, we also remain perfectly able to read characters in just about any size, configuration, or position. The machine has many problems indeed!

Our considerable feats versus the few merits displayed by some machines do not however constitute a "checkmate". On the contrary, the people involved in this work are unruffled, and treat this more as a challenge than a vain hope.

BASED ON LOGIC

The argument, if argument there is, for the feasibility of really sophisticated pattern classifiers, stems from the fact that every pattern whether a geometrical figure or the written word is equivalent to some logical function in the field of input data. Hence any example of a particular pattern could have a logical value of " 1 ", and any other input would constitute a " "". In
simpler terms this means that any visual image or is not a square, a circle, an ellipse, a figure "4" or whatever. Thus for any pattern there must exist a unique set of rules for determining what it is.
However, for a machine to recognise, it must needs be capable of generalising to a certain extent. This is, essential since, for example, no two B's or even "cows" are necessarily alike. Nevertheless, a " B " is always a "B" regardless of the way it may be written, and a "cow" is a "cow" for all that! Each particular pattern therefore has quite definite invariants by virtue of which it can generally be recognised.

Exceptions to this hypothesis are such figures as squares, which if rotated 45 degrees become diamonds, and with moderate distortion can take on the form of rectangles or even parallelograms. Another difficult figure of course is the " x ". This can be taken to mean the letter " x " or a "times" sign; or, if rotated 45 degrees, it becomes a sign for "sum".
Problems of this kind can often be minimised by inspecting such characters in context with others. Hence if a machine is reading across a row of input patterns and it sees, say, a square, there is very little chance that this could be taken to imply a diamond because to make such a mistake the sensors would require to be moving diagonally to their normally accepted direction of travel.

CIRCULAR SCAN SYSTEM

A machine, built in the U.S.A. some years ago, which recognises simple line drawings is certainly worthy of mention here. This is a system which can account to an extent for size, lateral displacement, and rotation of a pattern, yet remain able to recognise it. The machine's ability to perform in this way is largely dependent on the method of scansion and the placement of its receptors during this process, see Fig. 6.9.

RADIO
STETHOSCOPE
Easiest way to fanit find－traces signal from aerial to speaker－ Then signal stops you＇ve found he fault．Cse it on Radio，TY hit comprises tro special tranete tors and all partsincluding probe tube and crystal earpiece，29／6－ twin stethoset instead of ear－ piece 11 ／－extra－post and ins． 2／9．

MAINS MOTOR
Precision made－as used in record decks and tape recorders－ finas，blowen，heater， etc．New and perfect． Mnip at $9 / 6$ ．Postage
$3 /-$ for first one then 10．It－for each one over post free．

ROTISSERIE MOTOR

Very powerful 7 r．p．m．operates from standard AC Maine．29／6，plus
$3 / 6$ P．P ．

230 VOLT SOLENOID

SNIPERSCOPE

Famous Far－time for seetige used dark．This is an infra－red image converter cell with a silver cheslum screen which lights
up（like a cathode up（like a cathode
ray tube）when the elcetrons release by the inira－red strike it．A golden opportunity for some interesting experiments． $7 / 8$ each，
post $2 / 6$ ．Data will be supplied with cells，if
requested．

MAINS TRANSFORMER SNIP

Making a power pack for
amplifier or other equip－ amplifier or other equip－ ment？These trans－ formers have normal mains primaries（230／
40 v ．）and isolated secondaries and isolated （1） 12 v .500 mA ．at $8 / 6$ ； （2） 15 F .500 mA ．at $8 / 6$ ．

SPRING COIL LEADS
 as fitted to telephones， 4 core 2／6 each， 3 core 2／－ 4 core 2／6 each， 3 core 2／

PP3 GLIMIXATOR．Play your pocket plete componemt bit save £s．Com plete component kit comprises smoothing condenser and instruc tions，only $8 / 6$ plus $1 /$－post．

AC EAN Small but very motor with 6 2in blades．Ideal for cooling equip． ment or as extrac－ tor．Silent but very efficient Mounts from bacl or front with 4BA screms．

TRANSISTOR

SET CASE

Very modern creanz
cabinet，
size $5: \times 3 \times$ lisin．with chrome handle， tuning knob and acale Price 4／6 plus 2／ postage．

Soil Warming
covering $12 / 6$.

ELECTRIC TIME SWITCH

Made by Smiths these are a．c．mains operated，Not CLOCKWORK ideal for mounting on rack or shelf or san be built into box with 13A socket．Two completely contacts will switch circuit on or off during there periods．58／6，post and ins．4／6．Additional time contacts 10／－pair．

VARYLITE

Will dim fuorescent or incandescent lighting up to 600 watis from full brilliance to out．Fitted on M．K．fush plate，Bame size and fixing is standard wall switch so may be fitted in place of this，or mount on surface．Price complete in heary plastic hor with control knob \＆3．19．6．

NICAD RECHARGEABLE BATTERY

$3-6 \mathrm{Y}-500 \mathrm{~mA}$ hr．－size $1 \frac{18}{8} \times 1 \frac{1}{\mathrm{in}}$ ，really powerful will deliver 1 amp for hour．Regular price $32 / 6$ each－our price $00 / 0$ each．New and guaranteed．Other voltages
arailable．Single cell $1.2 \mathrm{~V} 6 / \mathrm{B}$ ．$\overline{0}$ cell $6 \mathrm{~V} 29 / 8$ ．

ELECTRIC CLOCK WITH 20AMP SWITCH
Made by Smith＂s these units are as fitted to many top quallty cookers to control the oven．The clock is mains driven and frequency confrolled so it is extremely recurate．The two small dials enable witch on and off times to be accurately set－also on the left is another timer or l hour．At the end of the perinut a bell to sonnd．Affered at only a fraction of the regular price－new and unused only $45 /-$ legs than the ralue of the clock alone－post and than the ralue orta clock aione－post and ins． $2 / 9$ ．
 crystal microphone has on／ofi Bwitch Stelephome pick－up－DON＇T MISS THIS LNREPEATABLE OFFER－ extra．Spare Cassettes at $4 / 6 \mathrm{each}$ ，three for $10 /$－

HI－FI BARGAIN

ULL FI 12 IFCH LOUDSPEAKER．This is undoubtedly one of the finest loudgpeakers that we have ever offered，produced by one of the country＇s most famous makers．It has a die－cast
metal frame and is strongly recommended for Hi－Fi load and metal frame and is strongly recomm Ryythm Guitar and public address． Flux Density 11，000 gauss－Total Flux 44,000 Marwells－ Power Handling 15 watts R．M．S．－Cone Moulded fibre－Freq． esponse $30-10,000$ e．p．s．－specify ${ }^{3}$ or 15 ohms－Main re－ lugs－Baffe hole 11in．Diam．－Mounting holes 4，holes－1ing． diam：on pitch circle 11 sin．diam．－Overall height 5 曾in．A $£ 6$ apeaker offered for only $£ 3.9 .6$ plus $7 / 6 \mathrm{p}$ ．\＆p． 15 in ． 30 W \＆7．19．8 plus $7 / 6$ post and ins．Don＇t miss this offer．

PROCESS TIME CONTROLLER

Made by Smiths，motorised and mains driven，enables $15 A$ circuit to be started up to 18 hours in advance and Totally enclosed in metal box with glass front and chrome surround． $49 / 6$ ，plus $4 / 6$ post and ins．

MAINS TRANSISTOR POWER PACK

Designed to operate transistor sets and amplifiers．Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}$ ， 12 V for up to 500 mA （class B working）．Takes the place of any of the prises：mains transformer rectifer PP，PPG，PR，PH，sad others．Kit com－ instructions．Real smip at only 18／6，plus $3 / 6$ postage

REED SWITCH

Suitable for dozens of different applications，such as burglar alarms，conveyor belt switching．These are simply glass in cased switches which can be operated by a passing permanent magnet coil．A special buy enables us to offer these a
2／6 each，or $24 /=$ a dozen．Snitable magnets are $1 /-$ each．

Multi Parposs Keon Test Unit．Robust，useful and instructive，testr ingulation，capacity，continnity， resistor，Volume controls，also acts as signal injector，and L．T．fault finder，kit comprises neon resistors condensers，terminals，ebo th dia， cram，only 016 ，plus $\%$ post and instrance Tuning Condenser，Solid divelectric，$\cdot 0005 \mathrm{mfd}$ ， variable $2 / 6$ ea， $24 /=$ doz．
A．E．I．Fractional H．P．Motor， $200 / 250 \mathrm{~V} 50 / 60 \mathrm{c} / \mathrm{s}$ enclosed，continuous rating $1 / 40 \mathrm{k} . \mathrm{p}$. ，ex．equip． Perfect order，19／6，plus 4／6．
Experimenting with ultra violetf Philing UY lamp，16／6；holder and control gear 10／6．
G．E．C．Black Light Tube for experiments and pecial lighting effects－ 40 watt 2 tt．tubes only， 14／6 easc
Clock Yotor． 230 V 50c／s synchronous－self－ starting， $6 / 6$ ．
Rentode Output Transformer，Standatd size，40－1， ex－equipment but OK， $1 / 3$ each， $48 /=$ doz．Post H．T
E．H．T．Condenser， $0-1 \mathrm{mfd}$ ． $5 \mathrm{kV}, 8 / 6$ each．
Keon Hins Tester， $1 / 3$ each， $12 / \mathrm{a}$ doz．
Flood Lamp Control．Oar dim and full switch is ideal for controlling photo flood lamps；it gives two lamps in series，two lamps full brilliance and lamps off．Similar control of other appliances can be arranged where used in pairs or where circult is known as a double－pole change orer with off． Our price $4 / 6$ ．
Sub－Ministure silicon Diodes．General purpose type with gold－plated leads，1／－eacil or $7 / 6$ per dozen．
Message Tapes． 225 ft ，Tape on 3 in ．spools，nor－ mally $4 / 6$ each，we offer 4 tapes for 12／6．
White Circular FIas．Ideal for lighting drops， win made by BICC．Usually 8 d. yd， 100 yd coil
for $30 /-$ ，plus $6 /-$ postage．
Elgewise Control．Morganite，as fitted many or 24／－per dozen． 127 Inverter．Full transistorised for operating a 20 －watt fuorescent tube，size 6in．long $\times 1 \frac{4}{4} \times 1$ 黄． \＄3．10．0．Post and insmrance $3 /$－． silicon Rectifler．Equī．BY 100750 mA for $20 /$－．
$100 \vee$ ，
Miniature Pickny for 7in．records made by Conmo－ code，crystal cartridge with sapphire stylus tomy $3 / 9$ or $36 /$－dozer．
Hesatphones．Ex W．D．umused and perfect，\}um resistance．Single with headband 4／8．Double with headband 8／6．
Midget Neons for maina indicatora，etc， $1 / 8$ each or 12／．dozen．
Compression Trimmers．Twin $100 \mathrm{pF}, 1 /=$ each； 9／－per dozen．
Sin．PK Londspesker． 3 ohm，12／6： $80 \mathrm{ohm}, 18 / 6$ Rotary Cam Operated Switch． 12 positions aach of Which close a separate pair of contacts except the last which leaves them all open．Contacts rated at $250 \mathrm{~V} 16 \mathrm{amps}, 15 /$ e each．
Rotary Cam Operated 8witch． 4 positions： $18 t$ position all contacts open；2nd contact 1 closed； 3 rd contacts 1 and 2 closed； 4 th contacts 1,2 and Bresst Microphons．Fine American made dynamic type，adjustable or breast plate with neck straps， 7／6，post 4／6．
Circulsr Fluorescent． 22 watt， 9 in．diam．tube complete with choke，starter，holdera and chrome clips，29／6，post，etc．，4／6．
Midget Relay twin 250 ohm coils，size approx． 1 itin．$\times 1 \mathrm{in}, \times \operatorname{lin} .4$ pairs changeover contacte， Pocket Te
Pocket reat Meher，measures a．c．volts（3 ranges）， carry around．ranges），ohms，milliamps，Ideal to test prods．89／6 plpete with instructions and Printed Circuit Board， $2 / 6 \mathrm{p}$ ，\＆ P ． terminations． 32 contacts，standard spacing for verobosrd，etc． 6 ln．long but easily cut． $7 / 6$ each， $80 /$－doz，
1000 W
1，000W Fire Epiral，replacement for most fires．1／8 50 ohin 50 watt Wire Wound Pot－meteri， $8 / 6$ each 1 Meg Minature．Pot－meter Morganite standard tin．spindle 1／－each；9／－per dozen．
1 Meg Miniature．Pot－meter Morganite preset screwdriver control．9d，each；8／－per dozen． Pre－Sef 100X by Welwyn with fntegral bakelite knob， $1 /-$ each； $9 /-$ per dozen．
100 x Pot－Meter．Miniature type with double pole 8 mitch and standsrd fin．spindle，by Morganite，
Battery Motor 1 zin．long $i \mathrm{in}$ ．dia．，operates from 3 V upwarde，reversible speed variable by changing voltage of resistance $4 / 6$ ea． $50 / \mathrm{d}$ doz．
Thermal Relay．Can be used to delay the supply of HT while heaters warm up，or will enable 15A loads to be controlled by miniature awitches or relays．Regular liat price over $£ 2$ ，price 7／6 each． Siemens High Bpeed Relay．Twin 1,000 ohm coils． Platinum points changeover contacts－Ex equipment， $8 / 6$ each．
Toggle Switch Bargain．10A 250 Y normal one hole fitting $2 / 9$ each；or $30 /-$ doz．
Filectric Lock． 24 V coil，but revindable to other
roltages， $4 / 6$ each．

When postage s not stated then orders over 53 are post free．Below 23 add $2 / 9$ ． Semi－conductors add I／－post．Over 11 post free．S．A．E．with enquiries please．

ELECTRONICS（CROYDON）LTD．
Dept．PE， 266 London Road，Croydon CRO－2TH Also 102／3 Tamworth Road，Croydon

NEW 1969 EDITION WORLD RADIO-TV HANDBOOK

Postage 1/-
RADIO COMMUNICATION HAND. BOOK, by R.S.G.B. 63/=. Postage 4/-.
LASERS WORK LIKE THIS, by Egon Larsen. 16/-. Postage $1 /$.
COLOURTELEVISION, PALSYSTEM, by G. N. Patchett. 40/. Postage //-
RADIO COMMUNICATION, by J. H. \& P. J. Reyner. 45/-. Postage 2/-.

TRANSISTOR AELECTRONIC ORGANS FOR THE AMATEUR, by Alan Douglas. 18/-. Postage $1 /$ -
ELECTRONICS POCKET BOOK, edited by J. P. Hawker \& I.'A. Reddihough. 21/-. Postage $1 /$.
THE ELECTRONIC MUSICAL IN. STRUMENT MANUAL, by Alan Douglas. 55/\%. Postage I/6
TAPE RECORDER SERVICING MAN. UAL, by H. W. Hellyer. 63/.. Postage $3 / 6$ NEW CATALOGUE. 2/-

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-2] PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

NEW RAMGE BBC 2 AERILLS
All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.
Loft Mounting Arrays, 7 element, $37 / 6$. 61 element, $45 /{ }^{\circ}$. 14 element, $52 / 6$. 18 element, 7. element, 60%. 11 element, Cranked Arm, 75/. 18 element, $82 / 6$. Mast Mounting with 2in. ctamp. 7 element, $42 / 6 ; 11$ element, $55 /=$; 14 element, $62 /-$; 18 element, $70 /-$. Chimney Mounting Arrays, Complete, 7 element, 72/6; 11 element, $80 / ; 14$ element, $87 / 6 ; 18$ element, 95/-. Complete assembly instructions with every unit. Low Loss Cable, $1 / 6 \mathrm{yd}$. U.H.F.F. Preamps from $75 /-$. State clearly channel numbe

BBC•ITV AERIALS

BBC (Band 1). Telescoplc
 loft, $25 / \mathrm{F}$. External S/D, 30/\%. ' H ", £2.15.0.
ITV (Band 3), 3 element loft array, $30 /$ - 5 element, 40/\%. 7 element, $50 /$. Wall mounting, 3 element, 47/6. 5 element, 52/6. Combined BBC/ITV. Loft
 $60 /-\mathrm{i}$
$1+5$, Wall mounting $1+3,57 / 6 ;$ $1+5,67 / 6 ;$ Chimpey $1+3,67 / 6 ;$
$1+5,75 /-0$ VHF transistor pre-amps,

COMBINED BBC1-TTV-BBC2 AERIALS $1+3+9, \quad 70 \% \quad 1+5+9, \quad 80 \%, \quad 1+5+14, \quad 80 /-$ $1+7+14,100 /-$. Loft mounting only. Special leaflet aratlable.
F.M. (Band 2). Loft SID, 15/-, "H", 32/B, 3 element, 55/-. External units avallable, Co-ax cable, 8d. yd. Co-ax, plugs, 1/4. Outlet boxes, $5 /-$ P. \& P. $6 / \%$ sead $6 d$ stamps for itustrar

CALLERS WELCOME

OPEN ALL DAY SATURDAY
K.V.A. ELECTRONIGS (Dept. P.E.) 40-41 Monarch Parade
London Road, Mitcham, Surrey
01.6484884
4.STATION INTERCOM

olve your communica-4-Sistion Trantistor Intercom system (I master and 3 Sabs), in de-Luxe plastic cabinets for desk or wal mounting. Call/tajk/isten from Master to Subs and Bubs to master. Ideally suitable for Business, Sur gery, Schools, Hospital, Offce and Home. Operate on one other accessories, P.

MAINS INTERCOM
No batteries-no wires. Just plog in the mains for instant two-way, loud and clear communication Onjoll 8 witch and volume control. Price 12 gas

65/-
Same as 4-Station Intercom for iwo-way instant communication. Iteal as Raby Alarm nnd Door Battery 2/6. P. \& P. 4/6.
 ciency with this incredible De-Luxe Telephone AmpliAer. Take down long telephone messages or converse without holdug the handset. A useful ofice aid. On/ 3/6. Finll price
. 169 KENSI GTON HIGE STREET, LONDOH,

Of course no catalogue is ever really finalised. As soon as we have one edition off the press. our researchers get busy finding out what is the latest in the world of Radio and Electronics-ready for the next printing.

This edition of the Home Radio Catalogue is the result of eleven years of careful selecting, compiling and indexing.
It is the finest, most comprehensive we have ever produced-it has 300 pages, over 8,000 tems listed and over 1,500 illustrations. It is a must for anyone interested in radio and elecronics. With each catalosue we supply a Book Mark giving Electronic Abbreviations an Order Form, an addressed envelope, and 6 vouchers each worth I/- when used as directed. All this for only $8 / 6$ plus $3 / 6$ post, packing and insurance. Send the attached coupon today, with your cheque or P.O. for $12 /$.

Pleose write Name and Address in block capitals

NAME

ADDRESS \qquad

Home Radio (Mitcham) Ltd., Dept. PE, 187 London Rd. Mitcham, CR42YQ

Fig. 6.10a. Basic principles of the fixed matrix system. Note: separate hold, trigger, and reset lines not shown

The receptors which form a circle are mounted at the ends of long scanning arms controlled by a motordriven "iris-like" device. Thus as the motor runs, the iris progressively opens and the arms fan outwards. In this way the receptors are caused to describe a circular scan, and optically interrogate any illuminated pattern presented before them.

It will be seen that if during the scanning process the output from the receptors is sampled, the result will essentially consist of a series of "off" pulses. Furthermore, in the case of a triangle for example, the pattern of signals will almost invariably consist of a "wave" of three separate groups of pulses. Substantially this will hold true despite variations in orientation-the degree of spacing between the signals will in fact afford a measure of information about the shape of the triangle too. Actual identification of a pattern can of course only come following suitable processing.

FIXED MATRIX SYSTEM

Since the inception of this last type of machine, others possessing even more sophisticated modes of operation have come into being. A particularly exotic device was one which appeared (in experimental form) during 1965. This, instead of utilising a scanning system of moving sensors, relies upon a whole matrix of stationary elements upon which the image of the character to be recognised can be mapped. An understanding of the basic operating principles of the machine is best gained by initially referring to Fig. 6.10a.
In the illustration only an extremely small matrix is considered: in practice, a matrix containing an array of something like 30×30 elements would be used. Each
sensor in the matrix is connected so as to inhibit the output of a cell containing essentially a pair of bistable elements and an OR gate, every gate output passing along common lines to a summing network.

Assuming initially that no image is mapped upon the cells, then none of them will be inhibited; thus as we apply a pulse to any one of the "propagate" inputs, each one of the bistables in the rows or columns will switch successively until this wave of activity ends at the edge of the matrix when they will all be turned "on". Hence all the associated or gates will present an output, resulting in the summer returning a maximum level. So far, so good!

Facilities (not shown in Fig. 6.10a) do exist for resetting the bistables, and we will accept now that they have all been reset. We might now consider the case where an image has been mapped upon the sensors. For the sake of simplicity we will assume that the machine is expected to recognise any character in a three letter alphabet; this will comprise the letters U , T and H .

RIGHT AND LEFT PROPAGATION

Now depending on the character being interrogated, there will result a corresponding image on the sensors, causing the associated cells to be inhibited. (At this stage it is important to realise that once the cells have been switched or inhibited they will, unless reset, act as barriers to propagation. A propagation can hence continue along every row/column until it encounters either a "barrier" or one of the edges of the matrix.)

Referring to Fig. 6.10b it will be seen that if we propagate "right" then "left", a different result will

4 Initial mepping for the various characters

2 State of the matrix following right/left propagation

Fig. 6.10b. Images formed on sensors as characters are interrogated

M H ${ }^{1 \text { Initial mppins }}$

2 Matrix state following usual right/left and dom propagations

3 State of matrix after holding of unexposed area resetting the remainder and triggering the held segment

4 Final propagation right and left to reduce the character mapped on the matrix

Fig.6.10c. Modified operation to deal with difficult characters
exist for each character. Thus if, following this operation, we inspect the summer output and discover this to be at maximum, then it can be concluded that the letter T is present. Conversely, if the summer does not return such a result, we can assume that the character must be either a U or an H.
If we continue the operation by propagation "down" the matrix, then check the summer level again, we can now be certain about the identity of the character. A maximum output will thus correspond with the letter U , and a lower output with an H . In practice the summer is generally fed into a number of Schmitt triggers set to fire at the different thresholds corresponding to various patterns.

TRICKY CHARACTERS

The capabilities of the machine are now however limited to just U, T and H . Consider the result of "throwing a spanner in the works" by presenting the machine with an M (Fig. 6.10c).

The same routine as described before can be applied, but when we come to the decision "is the character an Hor an M?", the operation must obviously be modified. The procedure adopted is then to "hold" the unexposed area of cells whilst removing the image and resetting the remainder; following this (and by applicable gating arrangements) the "held" area is then inhibited.

Fig. 6.11. A possible system designed for simple word recognition

If we again propagate "right" and "left", the summer will return a maximum level for the letter H , and (by virtue of a partly unexposed area) a lower level in the case of an M. By similar "artful dodges" this type of machine can be extended to not only the task of recognising the whole of the alphabet (a real one that is!), but also to "reading" characters in different sizes and fonts.

SPEECH RECOGNITION

Yet other devices have been "dreamt up" for recognition of the spoken word; most of these machines are however even more complex than the last! Nonetheless, one relatively simple example of this form of machine will be given now.

Such a machine might be of the adaptive kind; that is to say it could be taught to recognise a certain vocabulary of input words. The actual number of words to be "understood" by the device would be restricted according to the application.

Let us then, for convenience, choose a vocabulary comprising ten words; these might be the numbers zero through to nine. Several avenues for achieving an initial segregation of these input sounds are open to us; we however are only interested in ten basic types, and so the encoding method can be kept relatively uncomplex.

Referring to Fig. 6.11 we see a rather interesting example of a machine that could be built for simple word recognition. The input sounds are first passed to an audio amplifier which, possessing a measure of a.g.c., maintains signal amplitudes within reasonable limits. The amplifier output is then fed via a bank of four wideband filters to separate transient detectors which indicate either the presence or absence of a particular group of frequencies. In this way the various speech

100VI memene

 VISUAL! Nm Mh a new 4-way method of mastering
\(\left.\begin{array}{|cc|}\hline 1 \& OWN and

HANDLE a\end{array}\right]\)| complete range of present- |
| :--- |
| day ELECTRONIC PARTS |
| and COMPONENTS |

2 BUILD and USE

a modern and professional CATHODE RAY OSCILLOSCOPE

GEATRONIX LIMITED

EDUCATIONAL ELECTRONIC EQUIPMENT

MANUFACTURERS. OF

N O R K IT
A new HOBBY for the automation age

* Simple building bricks to build your own ELECTRONIC BRAINS.
* Easy to understand handbooks to guide you.
* Learn about LOGIC, BINARY arithmetic and BOOLEAN algebra.
* Modules are rapidly assembled and dismantled to use again.
* Make machines that play games, control model railways, etc. and control automatic machines of any description.

NORKIT JUNIOR

(as shown)
NORKIT SENIOR
£17. 12.0
Handbooks supplied for each kit or available separately

6/- each

LOGIC DEMONSTRATION UNIT TYPE LDU. 1

A new teaching aid for rapidly setting up and demonstrating logic circuits. Stackable patching leads are used to interconnect logic symbols on a mimic diagram. The symbols are connected to appropriate components inside the unit. Switches and pushbuttons are provided to simulate input conditions and outputs are indicated by lamps and an audible alarm.

£68.0.0
GEATRONIX LTD., 28 REDSTOCK RD., SOUTHEND-ON-SEA, ESSEX

sounds (i.e. vowels, through to the dentally generated fricatives like " S " and " F ") can be broken down into their respective components.

Now the utterance of every syllable in a word can be reckoned to have a duration of some average time. So if we settle on a value for this the signals can be encoded into two further categories, i.e. those within such a duration, and those whose length exceeds this.

Following the breakdown of a word into these discrete bits, it is necessary to store this data in order that the machine can be taught to assign a particular meaning. Storage of the information may be performed in a series-parallel fashion, by sequentially gating the signals into the columns of a bistable matrix.

RING COUNTER

This function is achieved by utilising the leading edge produced by any one of the signals to step-up an "open-ended" ring counter controlling the input gating to the matrix. Hence, the presence of components in the first three syllables of a word will be successively represented as a binary number in any of the first few rows of the matrix. The fifth row in the matrix is reserved for syllable duration information: this is derived from a timer (also triggered by the start of any signal) which generates a pulse only if a syllable exceeds some previous duration. No output pulse will appear from the timer if the next syllable occurs prior to the completion of this period-in fact the timer will be reset for the next duration.

LEARNING ABILITY

Having placed all this data into a memory, facilities must now exist which permit the machine to learn. This can be performed by first feeding the matrix outputs into an even larger matrix and, by so doing, expanding the original pattern to show it up in greater detail. The data stored in this expansion matrix can then be passed to a number of binary "weighted" decision devices corresponding with the various positions in the matrix. Combinations of outputs from the decision devices can then be used to drive a particular lamp relating to the spoken number at the input to the machine.
If the incorrect lamp comes on, the machine must be trained to give the right answer by manually adjusting the "weights" in its decision devices until it becomes successful. Once the machine has been trained for one word, further inputs may then be given-however as this process continues it may require re-training for some of the original words.

IN CONCLUSION

Throughout the present Bionics series, we have tried to capture just a mere glimpse of those aspects of electronics which hitherto only a few of us are likely to have come in contact. For various reasons much has been omitted; however it can be expected that further articles on this subject will appear in due course. Some of these, it is anticipated, will take the form of actual constructional projects: for example, one will be concerned with the fabrication of chemical memory devices, while another is likely to deal with a more sophisticated version of the "animal" $E M M A$ described elsewhere in this month's issue.
In the meantime, it is the author's hope that he might have widened (just a little) the scope of amateur electronics, and simultaneously portrayed the folly in believing that living animals are essentially uncomplicated things.

NEWS BRIEFS

Solar Storm Probe

THE first launch by the European Space Research Organisation of a fully stabilised sounding rocket payload, from the Salto di Quirra range in Sardinia, carried an experiment designed to probe solar storms and assess the amount of X-ray radiation emitted from them. Such research is important because of the health hazard presented to astronauts and passengers in supersonic airliners by hard radiation. An understanding of such storms may also enable short wave blackouts to be predicted. The payload was aligned with the sun's centre to an accuracy of one three-hundredth of a degree by an attitude control unit supplied by Elliott Space and Weapon Automation Ltd.

Concorde Engines Simulator

ACONCORDE engines simulator, for training airline pilots and ground crew, has been ordered from Hawker Siddeley Dynamics by Rolls-Royce. The trainer (see picture) will be installed this Autumn in the Patchway (Bristol) Training School, of the Bristol Engine Division, pioneers in propulsion system trainers. It will simulate the Rolls-Royce Bristol/SNECMA Olympus engines of the Concorde supersonic airliner in all flight phases. Faults can be injected by the instructor at any stage of the training programme.

In addition, the trainer can simulate engine ground running, without noise, and can be used in conjunction with airline checkout and engine test equipment for ground crew training. Engine instrumentation in the trainer's Concorde flight deck mock-up is represented by realistic, inexpensive simulated instruments which receive information direct from a digital computer. The trainer is easy to maintain and programming is simple and flexible; no specialised computer training is required.

British Amateur Electronics Club

The British Amateur Electronics Club now boast twenty overseas members, and is increasing all the time.

Two members serving in the British Forces in Germany have arranged an announcement to be made on their local radio programme about the activities of the club, and hope this will encourage other members of the overseas Forces to join.

The club issues a regular Newsletter to all its members containing much technical information and details of constructional projects as well as club activities and future functions. Newsletter No. 11 contains details for a Noughts and Crosses Computer and an Electronic Roulette (inspired by an article in P.E.).

ORBITING OBSERVATORY

One of the astronauts speaking of the Apollo 8 flight made the point that although the situation in the sky, so far as the Earth and moon were concerned, took on an entirely new aspect when viewed from the spaceship, the stars were completely unchanged except in respect of clarity. This emphasises the fact that the galaxy and all that lies beyond needs instruments for exploration.

The advantages of being free from the Earth's atmosphere makes near space and the moon itself an obvious place for such instruments. Space platforms are already one evolving method. Here a team of observers will be able to operate sophisticated apparatus with direct control. The cost of such space laboratories will be high but inevitable.

SPAEEWATICH By Frank W. Hyde

In the meantime a half-way house is afforded by the Orbiting Astronomical Observatory. Launched at the beginning of December 1968, America's OAO is engaged on the most extensive mapping of the heavens ever undertaken. It is the heaviest unmanned satellite that has been put into orbit by the USA. It weighs some 2 tonnes and carries 11 telescopes. Its expected lifetime is six months but it may last longer. If it should last a year it will be able to chart some 100,000 stars and should it be fortunate that it lasts for two years then the whole sky will be mapped. OAO is in a circular orbit 474 miles above the Earth.

The mapping programme will be carried out by a battery of four telescopes. They were built by the Smithsonian Astrophysical Observatory under the direction of Dr F. L. Whipple. The heart of the system is a special television tube which is sensitive to ultra-violet light. The telescopes will lock onto a star and study the wave emission bands in the ultra-violet spectrum before moving on to the next star.

The other seven telescopes were built by the University of Wisconsin under the direction of Dr A. D. Coode. This unit is for the study of a limited number of stars each day. The programme is to be concentrated on "young stars" and also interstellar dust from which new stars are brought into being. A young star is one which is of the order of 100,000 years old and too faint to be seen by Earth based telescopes.

The telescope packages are fitted at either end of the satellite which is loft long. They will share the
observing time working a week at a time in turn.

The satellite is fitted with a special stabilising system designed so that even at its orbital speed of 16,000 miles per hour the telescopes can be pointed with an accuracy sufficient to lock on to the stars chosen. As a comparison it is about equal to being able to distinguish between two marbles at a distance of about 150 ft .

Power supply is obtained from solar cells in panels which extend about 21 ft .

Information is stored on tape and disc and on each orbit the storage systems transmits the information to the ground stations. The Smithsonian unit can be used in "real time", that is, it can directly relay its observations on command. Six ground stations receive the transmission as the satellite orbits the Earth. A computer aboard the satellite can store 256 commands, more than for any previous satellite.

Until now the observations planned in this orbiting observatory have been accomplished only on a few occasions with sounding rockets and balloons. Now there will be a continuous observation, with this and other craft to be launched later, in the gamma-ray, X-ray, and ultra-violet spectrum. It is thought by Dr H . Friedman, an astrophysicist, that X-ray stars may be more numerous than ordinary stars and if this is so new light may be thrown on the origin of the universe.

MARS MISSIONS

It is three years since the first space probe sent back pictures of Mars on its close fly-past. This year there are to be two more such missions.
In 1965 when the spacecraft took 21 pictures from a distance of 6,000 miles they showed that the surface of the planet was marked with craters like the moon. The new spacecraft will be able to approach within about 2,000 miles and there will be a more sophisticated two camera system on board which will
take some 66 pictures, some of them with a resolution of the order of 300 yards (as seen by the naked eye).

One spacecraft is to fly by the south polar cap and the other by the equator. At the time of closest approach to the planet the two vehicles will be about 62 million miles from the earth. The two camera system which will have wide angle and narrow angle facilities will take pictures of the whole disc and closeups of specified areas. The spacecraft will carry other scientific equipment to provide information about the martian atmosphere and surface.

The weight of the craft has increased to 9001 bs each as compared with 575 Ibs on the previous mission. The radio transmitter power is increased from 10 to 20 watts. The power is supplied by banks of solar cells incorporated in the four "sails" and a high gain dish antenna is used for maintaining contact with Earth.

RADIO CAMERA

A new radio camera device is being developed which will enable the reflection of radio waves to be used to produce pictures with the aid of a special emulsion and laser light. The camera has been developed to make use of the fact that when radio waves are directed at a target a small amount of heat is generated.
The back scatter of waves from a reflecting source, such as a ship for example, is directed on to a plate which has a special assembly. A sandwich of heat sensitive cholesterol backed by mylar plastic to pick up the reflected radio waves, and coated with a thin film of crystals suitable for the production of an image when bathed in laser light. The plate is processed as a negative and contains all the information as a refactory pattern. A laser beam played on the pattern produces a hologram with three dimensional image.

There are many applications for such a camera leading to safety measures for ships and aircraft, examining plastics, even to discover if unborn babies are single or twins.

The Orbiting Astronomical Observatory (OAO-2) undergoes final tests.

BI-PAN SENICONOUCTORS
 500 Chesham Houss 150 Regent Street London, W. 1
 BARGAIN'S GALORE SALI

15 GiRM. TRANS. 20/ALL KNOWN TYPES EQVT. LIST INCLUDED PAK No. Tl2

20 SIL AllOY TRAHSS. eqvt. OC200-205 TO-5 2S301-304 pnp Pak No. Tl3

20 SIL. PLAMAR TRANSS.
BCI08, 2N706, 2N697
npn Pak No. Tl4
20/-
GERM. DIODES CG62 eqvt. OA70-79-81 Pak No. TI5

20GERM. GOLD BONDED $10 /=$
eqvt. OA47 ak No. TI7

OAI82 GOLD BONDED
 DIODES. eqvt. OA5 10

 Pak No. Tl6PLASTIC UHJUUMGTION TRANS. eqve. 2 N2646 UT46 TIS43 2 for $10 /$ Pak No. TI 8

Packed with Semiconductors and Components. Min. 150 15 BOARD 10/- Add 2/ with this Pak No. EXI

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.
MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.
Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servomechanisms, Computer Engineering, Numerical Control Electronics, etc.
EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS ELECTRONIC SERVICING
R.T.E.B. RADIOJTV SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Bulld your own radio, tronsistor portable, and professional-type test instruments with an ICS Practical Radio and Electronics Course. Everything simply explained and easy to handle. All components and tools supplied. For detalls post coupon below.

Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY I.C.S., Dept. 151, INTERTEXT HOUSE, parḱgate roád, LONDON, S.W.II

NAME
ADDRESS \qquad

oCCUPATION

AGE.
INTERHATIONAL CORRESPOHDENCE SCHOOLS

MAKE YOUR MONEY GO FURTHER

 with STUDENT EIECTRONIC SERVICESRESISTORS: All brand new, Hi-Stab, low noise, 5% tol., carbon film; $\frac{1}{2} \mathrm{WE}$ E12 series $4 \cdot 7$ - $10 \mathrm{M}, 2 \mathrm{~d}$. each or $15 /$ per 100 of one value; $\frac{4}{2} \mathrm{~W}$ E24 series $4.7-10 \mathrm{M}, 2 \mathrm{~d}$. each or $15 / \mathrm{M}$ per 100 of one value. IW E 12 series 10 - $10 \mathrm{M}(10 \%$ tol. $)$ 3d. each: 3 W wirewound $0.5-12(5 \%$ tol.), $1 / 6$ each ; 5 W wirewound $15-8 \mathrm{k} 2$ (5% toi.), $1 / 9$ each.
65 different values ($E / 2$)-ONLY $\mathbf{E 2}$, i2. 6 .
PRE-SETS: Min, skeleton carbon track, Jow noise with good stability;
Values-Lin: $J k, 2 k 5,5 k$, etc., to 5 M ; Log: $5 k, 10 k$, 25 k , etc., to 1 M , only Values-Lin: Ik, $2 k 5,5 k$, etc., to 5 M ; Log: $5 \mathrm{k}, 10 \mathrm{k}$, 25 k , etc., to 1 M , only
lod. each; Sub-Min skeleton Lin. track-1k, $2 \mathrm{k} 5,5 \mathrm{k}$, etc., to $5 \mathrm{M}, 9 \mathrm{~d}$, each; Slider presets wirewound $\frac{1}{2} \mathrm{~W}$ rating Lin. tracks 10° to $5 \mathrm{k}, 2 / 3$; 3 W wire-
wound fully insulated Lin. tracks 10 to $30 \mathrm{k}, 3 / 9$. pour
POTENTIOMETERS: Min. enclosed, carbon track and wiper contact
only $2 / 6$ Values-Lin: I k , 2 k 5 , 5 k , etc., to 10 M ; Log: 5 k , $10 \mathrm{k}, 25 \mathrm{k}$, etc.,
to 5 M : Min, with double pole swith, insulated spindies only 56 . Valuer Lin: $25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}$; Log: $3 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}$; 3 W wirewound Lin. track 50 to $100 \mathrm{k} ., 7 / 4$ each.
CAPACITORS: New genuine Mullard Electrolysics

10V		16	32	64	125	200		400	640	1,000	1,600
16 V	2.5	10	- 20	40	80	125		250	400	640	1,000
25 V	1.6	$6 \cdot 4$	$4 \quad 12.5$	25	50	80		160	250	400	+640
40 V		4	8	16	32	50		100	160	250	400
64 Y	0.64	$2 \cdot 5$	55	10	20	32		64	100	160	250
Prices:	- each				d. each			1/3	1/6	$1 / 9$	2/6
25 V			800 500	1.250 800	2,000		4,000 2,500		6,400 4,000		
64 V			320	500	1,800		2,500		4,000		
Prices:			5/-	6/6	$8 /$		12/6		15/-		

Mullard Miniature Metallised Polyester 250v.w, $0.01,0.015,0.022,0.033$.
$0.047,0.068-6 \mathrm{~d}$. Mullard Polyester Film and Foil $400 \mathrm{v} . \mathrm{W} .0 .001,0.0015,0.0022,0.0033,0.0047$, 0.0068 , etc. to $0.033 \mu \mathrm{~F} 6 \mathrm{~d}$. each. 0.047 to $0.1 \mu \mathrm{~F}$ 8d. each. 0.15 10d..
$0.22 \mu \mathrm{~F}$ $0.22 \mu \mathrm{~F} 1 /-, 0.33 \mu \mathrm{~F} \quad 1 / 6,0.47 \mu \mathrm{~F}, 1 / 9$.
Disc Ceramics (Erie) $500 \mathrm{v.W.W}$ I, $000,4,700 \mathrm{pF}$ only 5d. each; Silver Mica 1% tol. $500 \mathrm{v} . \mathrm{w} .2 .2$ to 820 pF i/- each; Polystyrene 10% tol. $160 \mathrm{v.w}$. 100 to
$1,000 \mathrm{pF}$ only 5 d . each. 1,000pf only 5d. each.
SEMICONDUCTORS: ALL GENUINE MULLARD NEW AND UNUSED.
 BCIO7, BC109 3/9 each, BCios 3/6. BFY51 4/6. F.E.T. MPF 105 9/6. Silicon Reczifiers-(0.5A) 400piv 2/9, 800piv 3/-1,500piv 3/6 (1.2A) 400 piv $6 /-$ 800 piv $7 /-$, 1,500 piv $7 / 6$. ($2 \cdot 5 \mathrm{~A}$) 400 piv $6 / 6,800$ piv $7 / 6,1,500$ piv $10 / 6(1 \cdot 2 \mathrm{~A}$
and 2.5 A types are stud mounted).
SWITCHES: Vast range of toggle, push butcon and rocker switches with
or without centre position S.P.S.T.,S.P.D.T., D.P.S.T., D.P.D.T. Very high or without centre position S.P.S.T., S.P.D.T., D.P.S.T., D.P.D.T. Very high quality, Toggles priced as low as $2 / 8$ for S.P.S.T. Push-to-make or Push-tobreak $3 / 11$ each (push button available in white, black, red or green. Heavy
duty toggle D.P.D.T. with centre position rated $10 A$ 10 y . "Maka-Switch"; also available-shafts $5 /-$, wafers $5 / 4$. 10 Cl . 110 V . Miniature
Stocks also include a wide range of plugs and sock
mains; a range of hardware and accessories which is increasing daily to supply you the customer with wire, pilot lights, insulating tape, and almoss anything else needed when building a circuic of your choice. We even
stock soldering irons by A.N.T.E.X. and solder by Multicore stock soldering irons by A.N.T.E.X. and solder by Multicore.
You will find all details of our stocks in our catalogue.
You will find all details of our stocks in our catalogue-a a 120 page handpages. The final section of the catalogue contains complete details of the LEKTROKIT chassis construction system including hints on assembly. A copy of this catalogue can be yours for just $3 / 6$ and then you will see that stucent Electronic Services are YOUR complete supplier. (For generas data sheet send a 6d. stamp.)
Please include C.W.O. $1 /-$ P. \& P. on orders of components under El
Orders of Lektrokit: $\underset{5 /-}{2 /- \text { handling charge on orders under } £ 1}$
Send, with name and address to:
STUDENT ELECTRONIC SERVICES
196 Regent Road, Salford 5, Lancs.
Visit us at above address or call 061-872 5187

Arsenide Diodes

Sir-I and some fellow members of my school science society would be interested in carrying out some experiments in "Optical Communication using Laser Diodes" as published in the February issue of Practical Electronics.

We would be very grateful if you could indicate a supplier of the gallium arsenide diodes used for this project.

J. Martin, Lymington,
Hants.

This is one of many similar enquiries we have received on this subject. GALI and GAL 2 devices can be obtained from S.D.S. (Portsmouth) Ltd., Hillsea Industrial Estate, Portsmouth, Hants. at a cost of $£ 4$ and $£ 8$ respectively. Unfortunately the price of these devices is rather high; however we understand that Proops Bros. of 52 Tottenham Court Road, London, W.C.I have offered "surplus" gallium arsenide diodes ot low price, in the region of 28 s each.
We can only hope that in the course of time these devices will become readily available to the amateur ot a lower price-Ed.

Posi Office Bill

Sir-Restrictions on the radiation of electromagnetic energy of any frequency is fair enough, following the activities of pirates and industrial spies. Legitimate users are already familiar with radio licensing, and presumably the Post Office will be prepared to grant licences to laser operators on a fairly free basis. However, if the term electromechanical does not refer to sound then the pirates have an immediate loophole. If they are prepared to go to the trouble of using short range light communication then they can equally well communicate by supersonic carrier over similar distances, by radiating from a multiple transducer array.

Electric, magnetic, and electromagnetic energy has been subject to restrictions for some time, and the

Bill merely seeks to tie up a few loose ends, but what are the obscure intentions and implications behind the term electro-chemical and electromechanical energy? To what do they apply and for what reasons? It might well be that the new restrictions are more far reaching than they at first appear to be!

D. Bollen,
Beaworthy,
Devon.

Site, Oxshott (N.G.R. TQ131597) for all members of the Scout Movement who have an interest in any branch of electronics.

The full programme has yet to be finalised but it is hoped to include demonstrations, talks and discussions on the following: Hi-fi equipment, recording, model control, short wave listening, and amateur radio. In addition it is hoped to have experienced people with test equipment facilities to help the enthusiast with his home constructed projects.

For further details groups or individuals are invited to send a foolscap s.a.e. to:

J. A. Carter,
c/o Baden-Powell House,
Queensgate,
London, S.W.7.

Make Light The Way

Sir-Regarding "Post office privilege", as I understood it, all those proud experimenters, building, and then giving the knowledge-via the various radio magazines-to others, of the use of light rays to pass any form of intelligence from one point to another, are controlled by the same regulations as "Hams"; those with licence to use normal radio methods.

It is quite clear, internal use will be just as one would make use of a signal generator, but I doubt if many would understand this limit when experiments to improve the distance have been tried.

Here then, we have the answer to all those, for and against letters, which Editors have for so long had from, would be "Hams", and others.

No morse test, no inference with important services, no exams, just pay and keep to the rules.

Many years ago, experts had a very poor opinion of short waves, amateurs being given the use of them lead the way.

Pioneers, make light the way!
C. S. Burton,

Bulwell,
Nottingham.

Electronics Scouts

Sir-On 2nd, 3rd and 4th May 1969 a camp will be held at Polyapes Camp

Amorphous Devices

Sir-Further to R. F. Shaw's article on Amorphous Semiconductor Devices in February's edition your readers might like to know some of the history behind the, so called, "Ovionic"' devices.

Mr. Shaw refers to the devices as a comparatively recent discovery. By semiconductor standards this is not altogether true. As long ago as 1962 Stanley Ovshinsky-President of Energy Conversion Devices Inc.was working on specialised materials to form the basis of thermo-electric generators when he suddenly discovered that under certain electrical conditions an alloy of germanium and tellurium showed different apparent conductivity.

The same piece of material would for some apparent reason change from high to low resistance, and on further investigation he found that the material, when changing from a high resistance to a low resistance state, exhibited a characteristic very similar to a gas tube in that when a certain voltage across the material was exceeded it would "break down" and start to conduct. Unlike the gas tube the voltage drop across the material when conducting was very low, i.e. the resistance change was quite extraordinary changing from the order of 10 megohms to approximately 10 ohms. Another unusual phenomena was that which Mr. Shaw describes as the permanent memory out of circuit.
Although it was not known how the device actually worked Ovshinsky took out patents and proceeded to publish details of practical applications of such a device.

In 1963 a British firm obtained exclusive rights to exploit the device and started a research programme to try and evaluate the mechanism of the rather strange conduction characteristics.

At the same time a British Press Conference was called and representatives of most of the technical journals were given a demonstration of the prototype device. The demonstration was met with a widely differing reaction from wonderment to sheer scepticism.

Nevertheless a limited budget research programme was started and attempts were made to obtain government grants to subsidise the work which was progressing satisfactorily. All attempts to obtain such a grant failed-perhaps due to the risk of investing in such an unknown quantity-but the company continued its work and eventually exhibited a number of development devices at the 1964 IEA exhibition at Olympia. Two types of device were shown; the memory device using pure germanium telluride as a material and a threshold device-as described by Mr. Shaw-using germanium telluride with added quantities of arsenic.

In those days the devices were made from pellets of material with point contacts of beryllium copper forming the electrodes (see Fig. 1).

Fig. I Structure of the germanium telluride device of 1964

Unfortunately production devices were never made due to several artifects in the development devices.

These problems all stemmed from the basic problem that the mechanism of conduction was not known. It was impossible to predict the all important breakdown (or threshold) voltage of the device and this could vary from batch to batch; typical values being anything between 20 and 100 volts.

Worse still this threshold voltage would vary for a single device throughout its life-which was comparatively short.

For some unknown reason the threshold voltage was load sensitive; for instance with a high resistance load the break-down could occur at voltages as high as 200 volts and with a large load drawing approxi-

Fig. 2 Prototype test rig for the Quantrol device using a 4 V battery for the high current pulse
mately 2 amps this would fall to the normal range of value (20 to 100 volts).

Fig. 2 shows the type of circuit in which the device operated. The device-at that time called Quantrol -would be connected in series with a load such as a 100 watt electric light bulb. The circuit was supplied from a variable transformer. Starting with the device in the non-conducting state and the applied voltage at zero the voltage would be increased to the threshold level and when this was reached the Quantrol would break down to a low resistance and the lamp would light. To turn the device off it was necessary to apply a comparatively high current pulse obtained from a low impedance. In the prototype test rig this was provided by a 4 volt battery and a push button switch.

Another disadvantage which is apparent from the above circuit was that the device was inherently a two terminal unit; isolated control as can be effected by a transistor, valve, or relay was impossible. It was suspected that the device worked by some type of field effect and attempts were made to introduce a third electrode using the material in a structure very similar to the presentday f.e.t.
All attempts to trigger the device by applied electric fields failed, and this led the researchers to believe that perhaps the device was operating by way of normal dielectric breakdown. The materials used were extremely easily oxidised-some of the alloys used were made by sintering in air which automatically oxidised the surface and others made by casting the molten alloy would not operate until the surface had been oxidised using strong nitric acid.

All the results indicated normal oxide breakdown (similar to that occurring with foil capacitors) and in many cases during the actual breakdown micro sparks could be seen at the junction between the electrode and the material. This effect adequately described the switch on characteristic, and switch off could be explained by the re-formation of an oxide under the surface of the contact by the thermal energy of the high current pulse. If this was the mechanism, the device was working on a physical destruction and reforming principle which would have been highly unreliable in practice. In all fairness, however, this was never conclusively proved and when the allocated research budget ran out further work stopped.

It is interesting to note that at about the same time an American company brought out a device exhibiting identical characteristics which was composed of two electrodes embedded in, but separated by a block of aluminium powder and epoxy resin. This device never reached full production due to the instability of its characteristics.

It seems rather strange that after a lapse of five years the identical device is again being exploited with virtually no change to its characteristics, and still considerable doubt as to its mechanism.

M. J. Hughes,
 Westerham, Kent.

Mr Michael J. Hughes' comments on amorphous semiconductor devices are most interesting and informative, but 1 would like to point out the fact that although the devices ot present hove similar characteristics to the older devices, they ore vastly improved in their characteristics.

The new devices have very stable threshold valtages and other electrical characteristics providing one takes care to operate the devices within their prescribed parameters The newer devices use both different glass alloys and physical device configurations arrived at by both empirical and theoretical considerations which resulted in their improved characteristics, stability, and reproducibility.

As Mr Hughes correctly pointed out, similar switching has been observed in oxide based devices, but there is now sufficient evidence to rule out this mechanism in the Ovshinsky devices described above.

The five year lapse since the first prototype does not seem unduly long for research and development in this field, since only at the present time hos the theory of armorphous materials in general progressed to the state where we can make reasonable postulations as to their conduction mechanisms.-Robert F. Show.

FEBRUARY

FET PRINCIPLES, EXPERIMENTS AND PROJECTS
by Edward M. Noll 40/- net
49 EASY TRANSISTOR PROJECTS
by Robert M. Brown and
Tom Kneitel 16/-net
PHOTOFACT TELEVISION COURSE
by the Howard W. Sams
Engineering Staff
40/~ net
SERVICING DIGITAL
DEVICES
by Jim Kyie
26/- ne!
MARCH
UNDERSTANDING
ELECTRONICS
UNITS AND STANDARDS
by Farl J. Waters $25 /$ net
USING SCOPES IN
TRANSISTOR CIRCUITS
by Robert G. Middleton 32/- net
TRANSISTOR TV TRAINING COURSE
by Robert G. Middleton 35/- net
INDUSTRIAL TRANSISTOR
CIRCUITS
by Allan Lytel
24/- net

APRIL

101 QUESTIONS AND ANSWERS ABOUT COLOUR TV by Lee G. Sands

15/- net
HAVING FUN IN
ELECTRONICS
by Lee G. Sands

101 EASY AUDIO

 PROJECTSby Robert M. Brown and Tom Kneite!

PRACTICAL DESIGN WITH TRANSISTORS
by M. Horowitz
42/- net

FOULSHAM-SAMS TECHNICAL BOOKS
 (W. FOULSHAM \& CO.LTD.) YEOVIL RID. SLOUGH. BUGKS. ENGLAND

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the larest type Xenon
white light flash tube. Solid state timing and triggering circuit. 230/250v. A.C. operation.
ECONOMY KIT. Flash rate $1-36$ flash per second. All components including Unijunction, thyristor, tube and circuit. $85 / 5 / 0$ plus 3/6 P. \& P.
INDUSTRIAL KIT. Flash rate I-80 f.p.s. Ideally suitable for schools, laboratories, etc. Incorporates double wound transformer which isolates both tube and timing circuit from mains. Srabilized timing cirsuit and high power tube. $88 / 8 / 0$ plus 6/- P. \& P.
6告" POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price $8 / 6$ post paid. Regret not sold separately.
PARVALUX TYPE SD19 230/250 VOLTS A.C. REVERSIBLE GEARED MOTOR.
30 r.p.m. 4016 , ins. Position of drive Mounted on substantial cast aluminidm base. Ex-equipment. Tested and in firse class running order. A really powerful motor offered at a fraction of makers price. 6 GNS. P. \& P. 10/.

(TyRNE MPEN.C.I GEARED MOTOR
(Type I) 71 r.p.m. Torque 101b. inch. (Type 2) 28 r.p.m. Torque 20ib. inch. Reversible. $1 / 80 \mathrm{th}$ h.p., 50 cycle, 28 amp are offered in 'as new' condition. input voltars of motor 115 V . A.C. Supplied complete with tran $230 / 240 \mathrm{v} . \mathrm{A} . C$. input. Price, either rype $\& 2$. 17.6 plus $6 / 6$ P. \& P. or less transformer E2, 2. 6 plus $4 / 6 P_{+}$\& $P_{\text {. }}$
200/25OVAC HORSTMANN 2AATIME SWITCH
2 on/off every 24 hours at any pre-set time. Fitted in metal case. 36 hr. spring reserve, Used but fully tested. Fraction of makers' price. ©3.19.6 plus 4/6 P. \& P. Available with solar dial on request.

INSULATED TERMINALS
Available in red, white, yellow, black, blue and green. New 17/=per doz. 2/=, P. \& P.
230/240V. A.C. SOLENOID
Heavy duty type, a pprox. 3 lbs . pull. Price
$12 / 24 \mathrm{~V}$. D.C. SOLENOID Approx. 8 oz. push. Price $8 / 6$ plus $1 / 6$ P. \& P.

TRALISFORUERS LIGHT SENSITIVE SWITCH Kit of parts. including ORPI2 Cad. Trium Sulphide Phoorocell, Relay, volt D.C P. \& P. ORP I2 includin pirs $10 / 6$ each plus $11-P$ \& A.C. MAINS MODEL
A.C. MAINS MODEL Incorporates Mains Transformer, Rectifier and special relay wich 3,5 amp mains c/o contacts. Price inc, circuir $47 / 6$ plus 2/6 P. \& P

LIGHT SOUREE AND PHOTO

 CELL MOUNTING की $-\cdots$? Precision engineered light source with focusible $-\square$ lamp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair £2.15.0. P. \& P, 3/6.UNISELECTOR SWITCHES NEW
4 Bank 25 Way 24 v. D.C.
operation 55.17 .6 plus $2 / 6 \mathrm{P}$. \&
8 Bank 25 Way 24 V. D.C. operation. 47.12.6 plus 4/6 P. \& P.

MINIATURE UNISELECTOR SWITCH Ex-Equipment
3 banks of 11 positions plus homing bank. 40 ohm coil. Tested. 22/6, plus 2/6 P. \& P.
COPPER LAMINATE. Printed Circuit Board. Size $153^{\prime \prime} \times 5 \frac{1}{\prime \prime}^{\prime \prime} 3 / 9$ each. 3 for $10 / \%$ Post paid.

RELAYS

Bulk furchase enables us to offer the following newSIEMENS, PLESSEY, etc, miniature plug in relays complete with rackion of makers price.
$\begin{array}{cc}\text { Coil Working } \\ \Omega & \text { Voltage }\end{array}$

Contacts	Price
2 c	$14 / 6$
4 clo	$15 / 6$
$2 \mathrm{c} / \mathrm{O}$	$12 / 6$
$4 \mathrm{c} / \mathrm{O}$	$15 / 6$
4M 2 B	$12 / 6$
2 c/o H.D.	$12 / 6$
2 co H.D.	12/6
4 clo	10\%
$2 \mathrm{c} / \mathrm{O}$	10\%
POST PAID	

H.D. = Heavy Dusy. POST PAID

SEALED RELAY
230 VOLT AC COIL
Two c/o 5 amp contacts.
Plug-in 1.O. Base.
Price 14/6. incl. base, Post Paid.
Three c/o Amp. contacts.
$17 / 6$ Incl. Base. Post Paid.
'AVO' METER MODEL 7
Supplied fully checked and tes-
red on all ranges and in excellent condition. Complete with batteries and leads. Price E13.10. 0. P.\&P.7/6. Avo Leather Carrying Case 30/. Regret not supplied separately.
AVO' POWER AND DECIBEL EXTENSION UNIT
For Model 7 and $7 X$ "AVO'Meters. This resistance box will permit values from 500 to 1,500 ohms to be obtained. Supplied complete with leads. 42/6. P. \& P. 4/6.

DRY REED SWITCHES

2×1 amp Dry Reeds (makes contacts). Mounted in 870 ohm 9-18 v. coil. Size $3^{\prime \prime}$ $\times 34^{\prime \prime} \times \frac{1^{\prime \prime}}{}$. New. Price 8,6 per pair. Post Paid. Six of the above mentioned units (12 Reeds). Fitted in metal box, Size $4^{\prime \prime} \times 3 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}$. Mig. by Elliott Bros. \New. 45/-each. Post Paid.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN

Personal callers only
9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576
R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., s.W. 16 Special 24 Hour Mail Order Service

Burgess instant heat solder gun

Only the tip heats-but fast! About 7 seconds! Pre-focused lamp lights the job up. Exclusive fulllength trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, 6 " extension barrel, doubleended probe, gun and solder. £4 126.
Full details and
nearest stockist from:
Burgess Products Co Ltd,
Sapcote, Leicester LE9 6JW

Fully built stereo anplifier; $2: 3$ waths; mains trans.; metal rect;;2 \times LCL82; 2 o.p. 11" for 3 -ohm; vol/on-oft; tone; balance; chassis type mith 3 controls on front. Write for details of our F.M. (V.F.F
EF89, 6BW7, ECCB2. Fully built $27,10.0$ or as kit 25 . book of instructions 266 (frce with kit).
 (2 mins. from Station and Buses). FULL GEARANTEE. Aldershot 22240
CLOSED TUES. \& WED.

Aids to economical high fidelity
ES/10-15
BAXANDALL SPEAKER
"A
thoroughbred"
says
BALPH WEST
HI-FI NEWS
OCTOBER, '68
"The immediate impression was of a thoroughbred speaker, smooth and effortless . . . voices were uncannily real. Once again we see the possibility of Rolls Royce stanards . . . when you know how."

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer, P. J. Baxandall in Wireless World (Aug, and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency rango60 to $14,000 \mathrm{~Hz}(100-10,000 \mathrm{~Hz}+3 \mathrm{~dB})$; impedance- 15 ohms; loading up to 10 watts R.M.S.; size $18^{\prime \prime} \times 12^{a} \times 10^{\prime \prime}$. Here indeed is quality performance of a very high order for a very modest outlay.
Equaliser assembly 36/: (P/P 1/6):
Speaker Unit 38/= + 8/11 P. Tax (P/P 5/-): Cabinet assembly, teak finished. £6.3.6 + 12/8 P. Tax (Carr. 8/6).
X-over for woofer if required 22/6 (P/P 3/6)

$+21 / 7$ P. Tax (Carr. in U.K. 11/6)

As specified for
P.W. Double 12 described in Practical

Wireless

THE PEAK SOUND PA/12-15 (12 watts R.M.S. out into 15Ω) is for the constructor who appreciates both sensible design
 and genuine power and hi-fi performance. Available built or in kit form. Response $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$ Distortion at max. output -0.1% 43 dB neg. feed back. Size $5^{\prime \prime} \times 3 \frac{2^{\prime \prime}}{3} \times 1 \frac{3^{\prime \prime}}{}$. With full. instructions. Pre-amp. details available. (P/P for kit or built 2/6)

From your dealer or direct in case of difficulty. (P/P 1/6)
PEAK SOUND (HARROW) LTD., 32 St. Judes Road,
Englefield Green, Egham, Surrey Telephone: EGHAM 5316

prepare now for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.
CREI Study Programmes are directly relaied to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now-enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

CREI

CREI (London), Walpole House, 173-176 Sloane Street, London S.W.1. A Subsidiary of McGraw-Hill Inc.
Post this coupon today for a better future

Pructical Elecironics Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 3$ per word (minimum order $15 /-$), box number $1 / 6$ extra: \cdots Semi-displayed setting $£ 4.2 .6$ per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, IPC Magazines Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

FOR SALE

26,000 IN YOUCHERS GIVEN AWAY, See free Cat. for details. Tools, Materials, Mechanical, Electrical, thousands of interesting items. WHISTON, Dept. PVE, New Mills, Stockport SK 124 HL .

TIME 8WITCHES, 14 day clock, once on once off every 24 hours, reconditioned and fully guaranteed. 5 amp Horstmann 32/6, 15 amp
 BATCHELOR (P.E. Dept.), 4 Park Road, Bromley, BR1 3HP.
RADIO CONTROL equipment/models/ accessories. BILL, 3 Osterberg Road, Dartford, Kent. 27832.

FOR SALE due to pressure of other work. Complete stock of Mail Order Electronic Components Business including valuable test equipment. Approx. 15,000 items. 98% new, rest ex. eqt. Offers on £200. Trade enquiries invited. S.A.E. for details to Box 18.

HIGH GLOSS METALLIC

 HAMMERED ENAMEL - MAKES FANTASTIC DIFFERENCE TO PANELSsay hundreds of enthusiastic users.
'Crackle' pattern appears like magic
on wood and metal. N
coat. Air dries 15 min .
to hard glossy finish.
Heat, liquid and
scratchproof.
Scratchproof. Gronze; Silver; Green; Black; Lt. and Dk. Blue. Send for Free list, or 8/-($+1 / 9$ post) for trial $\frac{1}{2}$ pt. TIN, colour samples and instructions. Send NOW.
FINNIGANSPECIALITY PAINTS Dept.P.E. STOCKSFIELD. Tel. 2280 Northumberland.

COMPUTER IN YOUR POCKET. Home, college, workshop. Pocket slide rules, 17/6, 10 in desk/bench slide rules, 25/-. Full instructions. DEPT. PE, 19 Paynesfield Avenue, S.W.14.

COSsOR TWIN BEAM, Oscillograph 'Scope Kodel 1049 MK. IIIA. Complete with stand, Model 1049 Mik. IIIA. Complet in perfect working order, \mathbf{W}, WADKI
Wales.
AKAI XIV Mains/Portable Stereo Tape Recorder. Complete with tapes and earphones. All as new. $£ 100$. ALLEN, The Old Forge, All as new. Magna, Xr. Yeovil, Som. Marston Marston 273.

MORSE MADE !!
FACT NOT FICTION, If you start RIGIIT You will be reading amateur and commercial Within a monta (normal progress 3 .speed records you atomatically learn to recognise the code RHYTHM suthout translating. You can't help it, it's as easy as learning a tune. 18 W.P.M. in 4 weeks gusranteed. 2896 For details and course C.O.D. ring s.T.D. or send 8d. stamp for explanatory
GBCHS/E, 45 GREEH LAKE, PORLEY, SURREY

WANTED

NEW VALVEs WANTED. Popular TV and Radio types. Best cash price by return. and Radio types. Street, Bradford 8, Yorkshire.

WANTED. Set Newnes R \& TV Servicing Yolumes. SORMAN H. FIELD, 266 Broad Street, Birmingham 1. Please advise condition, price.

WANTED. Practical Electronics, November 1964 to date. Half price offered. G. GROVER, 42 Ditchling Rise, Brighton.

MISCELLANEOUS

RHYTHM MODULES. Build your own rhythm box-simply, cheaply. Realistic sound rhythm box-simply, cheaply. fetails. D.E.W. LTD., 254 Ringwood Rd., Ferndown, Dorset.

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ itin \times any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

GEARED MOTORS
Rectifiers, Potentiometers 6d Stamp for Catalogue
F. HOLFORD \& CO.
6 Imperial Square, Cheltenham

UFO DETEGTOR CIRCUITS, data. 10s. (rffundable). Paraphysical Laboratory (UFO Observatory), Downton, wilts.

ARTIFICIAL LIFE
 Well almost, because the NEW range of projects include: an electronic ‘animal which "LEARNS", an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TOINTRIGUE YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine requires "recognizes" itself, and an electronic dog whistle, etc., ete. HOSTS OF EASYTOg Whiste, etc.; etc. projects, for anyone with a basic knowledge of Electronics. WEND $2 / 6$ for your list-NOW!
 To: 'BOFFIN PROJECTS'
 incorporating
 BIONIC DESIGNS
 4 CUNLIFFE RD.
 STONELEIGH, EWELL, SURREY

MISCELLANEOUS (continued)

GREEN ELECTRONICS for coils and transGREEN ELER to your specification, assembly formers wound to yourg of circuits. "TEMPLECOMBE", Cleveland Road, Worcester Park, Surrey.

PRINTED CIRCUIT for Practical Electronics RHYTHM GENERATOR. $14 \frac{3}{\text { in }} \times 5 \frac{1}{2} \mathrm{in}$ undrilled, with layout plan, for simpler and neater construction. 29/6 including postage. Sand cash with order to ALMARY DESIGNS, 12 Iattimore Road, Wheathampstead, Herts.

BOOKS AND PUBLICATIONS

MAKE YOUR OWN TALKIES. An introduc-
tion to electronic tape/film synchronisation, with an explanation of the "Carol" Cinesound Fith an explanation ofuipment, filming in sync., etc. Price 7/6, post free (refundable against purchase of your "Carol" Cinesound equigmen.

This useful Handbook gives detailed information and circuit diagrams for Sritish and American Government Surplus Receivers, Transmitters some suggested modification details and improvements for the equipment. Incorporated in this revised edition is a surplus/commereial cross referenced valve and transistor guide. This book is invaluable to radio enthusiasts. radio clubs, universities and laborate plus $5 /$ latest edition pricel arom us at
P. \& P. is obtainable from

Dept. P. E., 24 Stansfield Chambers
Gt. George Street, Leeds I
S.A.E. with all enquiries, please. Extra postage for all foreign orders.

SURPLUS HANDBOOKS

19 set Circuit and Notes $6 / 6$ P.P. $6 d$ 1155 set Circuit and Nores H.R.O. Technical Instructions... 38 set Technical Instructions. 46 set Working Instructions. 88 set Technical Instructions.. BC. 221 Circuit and Notes... Wavemeter Class D Tech. Instr 18 set Circuit and Notes 5/6 P.P. $6 d$ 5/6 P.P. 6d 8 set Circuit and Notes $\ldots . . .5$ 5/6 P.P. 6 d BC. 1000 (31set) Circuit \& Notes 5/6 P.P. $6 d$ CR. $100 / 8.28$ Circuit and Notes 10/-P.P. 9d R. 107 Circuit and Notes......... 7/-P.P. $18 /-$ P.P. $6 d$ A.R.88D. Instruction Manual.... $6 / 6$ P.P. $6 d$ 62 set Circuit and Notes $1 . . .$. 52 setSender \& Receiver Circuits $7 / 6$. post Circuit Diagrams 5/- each post iree R. $1 / 16 /$ A. R. $1224 /$ A, R.1355, R.F. 24, 25, \& 26 A. 1134 , T.II54, CR.300, BC.342. BC. 312. BC.348.J.E.M.P. BC.624. 22 set.
Resistor Colour Code Indicator... 2/6 P.P. 6d S.A.E, with all enquiries please. Postage rates apply to U.K. only.
Inseructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

ELECTRICAL

Aitcrafic

Liaten to the thrills of $B A, D P B=C$ Alrcraft,

 Aircraft, Pilots, and at work. Also Arports at work. Also Civil Depts., Fire and Ambulance services. Gas and glectricity Depts. Ideal for receiving 2 metre amateurs. all trangmissions. A fully tranglotorisge of celver covering $108-160$ me/s. VHF broad cast. Robust attractive hinished metal cabi net size approx. $7^{\circ}: 4^{*} \times 4^{*}$. Operates from a 9 volt internal battery. Fitted internal speaker or headphone output. Arallable from ua at e8.19.6. Carriage and insurance $10 / 6$ CWO or COD.

An electronic unit capable of controlling electrical equipment up to 3,000 watts capacity. Fingertip control of alla.c./d.c. electrical equipment. Suitable or all types of lighting arrangements. Incandescent lamps, spot lampe, are lamps, floodlights. Makes types of electric drills and ap to controlling all motors for all appllcations. Ideal for all types of electric heaters. Suitable for lathes and power tools, Employs the latest electronic system. Size $6^{\circ} \times 5^{\prime \prime} \times 2^{\prime \prime}$. Louvred metal case in pleasing hammer finish. Attractive front panel. Bargain

rice $88.19 .8 \mathrm{p} . \& \mathrm{p} .10 / \mathrm{e}$ C.O.D. If reqd.

ARE/SEA TRANS/REC.

Compact V.H.F. Trans./Rec. Fits in the pocket. Consitats of Mike/Speaker, amplifier, aerial, tranmitter and receiver. Were made to operate up to 100 miles depending on terrain. contalned. Cost Govt. over $£ 50$ each. Regulatlons state must not be operated in UK so please mention "For Dismantling purposes only" when ordering. Price 22.10 .0 each, p. \& p. 10\%. Two sets for e5.0.0, post free. Four sets 88, earriage free. Bulk sale of 10 sets E15, carriage e1. Export enquiries
invited.

This wonderful little eet will provide hours of listening pleasure. Super for listening to the Hams at work. A printed cirecit layout makes it simple instractions a short ofme. Fully comprehensive and transis. Employs the lateat components An fdeal project for beginners. Prjce 65 last detall

MINIATUES TRATSISTORISED B.F.O. UTTT
This is a miniature transistorised B.F.O. unit (tunable) that will enable your set to receive O.W. or S.8.B. reception, Compact. Single bole fixing: This small unit win fit anywhere, Ideal for all Ex-Govt. Communication Receivers and most
Commercial Types. Complete with fitting instruc* Commercial Types, Cor
tons. 49/6, post free.

[^0]ELECTRICAL (continued)

240 ELECTRICITY ANYWHERE

most brilliant performance over from i2volt Car Battery. BRIILIANT HEAVY
DUTY 240 vole AMERICAN DYNAMOTOR with BIG 220 WATT OUTPUT. Marvellous for TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL ACIDC MAINS EQUIPMENT. Marvellous for Fiuorescent lighting. Thousands of uses. remendous purchase of this model makes rantastically low price possible.
ONLY $£ 4.19 .6$ each plus $10 / 6$ delivery. C.O.D. ED. Please send S.A.E, for full illustrated details.

Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade BLACKPOOL, Lancashire

Open 7 days a week

TAPE RECORDERS

TAPES TO DISC-using finest professional equipment-45 r.p:m. 22/-. S.A.E. leaflet. DEROY, High Bank, Hawk.Street, Carnforth, Lancs.

SITUATIONS VACANT

A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-FREE. Please state subject of interest, BRITISH NOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

SITUATIONS VACANT (continued)

SERVICE ENGINEER8-we are an old established electronics company, but headed by a young management team, and we need you to help us. Age is no barrier to a high salary as you will find out when you join us. If you have experience in T.V., Radio or $\mathrm{Hi}-\mathrm{F}$ Service and want a job that looks ahead, phone MICHAEL ADLER at 01-638 9606 .

SERVIGE SHEETS

SERVICE SHEETS (1925-69) for televisions, radios, transistors, tape tecorders, record players, etc., by return post, with free faultfinding guide. Prices from $1 /$-. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

C. \& A. SUPPLIERS SERVICE SHEETS

T.V., RADIO, TRANSISTORS, TAPES, ETC. Only $5 /-$ each, plus S.A.E. (Uncrossed P.O.'s please, returned if service sheets not available.) 71 BEAUFORT PARK LONDON, N.W. 11 MAIL ORDER ONLY

RADIO TELEVISION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W.6. SHE 8441.

SERVICE 8HEETS, Radio, TV, 5,000 models. Inst $1 / 6$. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

TECHNICAL TRAINING by IC IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I C S trained man. Let I CS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.

* C. \&G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* p.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I CS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

ISTRRNATIONAL CORRESPOHDENCE

Schools

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools (Dept. 152), Intertext House, Parkgate Road, London, S.W.II.
NAME
Block Capitals Piease
ADDRESS

\square $4 / 69$

RECEIVERS AND COMPONENTS (continued)

EDUGATIONAL

QET INTO ELECTRONICS-big opportunities for trained men. Learn the practical way with low-cost Postal Traiaing, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms., etc. For FREE 100page book, write Dept. 856 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.1.

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. City \& Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext Holse, London, SW11.

RADIO OFFICERS see the world. Sea going and shore appointments. Trainee vacancies in Sept. and Jan. Grants available. Day and Boarding students. Stamp for prospectus. WIRELESS COLLEGE, Colwyn Bay, Wales.

TECHNIGAL TRAINING in Radio, TV \& Electronics thro' world-famous ICS. For details of proven home-study courses write: ICS, Dept. 561, Intertext House, London, S.W.11.

ENOINEERS. A technical certificaite or qualification will bring you security and much better pay. Elem. and adv. private postal better pay, Elem. and adv. private postal
courses for C.Eng., A.M.I.E.R.E., A.M.S.E. courses for Cl.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City it Guilds, A.M.I.M.I., A. I. all branches of Engineering-Mech., Elec., Auto, Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132-page gilide. BRITISH INSTITUTE OF ENGINEERISG TECHNOTOGF (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

RECEIVERS AND COMPONENTS

ELECTRONIC STOCKMARKET kit of most parts; also "Reactalyser" and Waa-Waa pedal. S.A.E. for list. D.E.W. LTD., Ringwood Rd., F.A.E. for list. D.E.

L.S.T. ELECTRONIC COMPONENTS LTD. PLEASE SEE OUR DISPLAY ADVERTISEMENT ON PAGE 247

PEAC OPERATIONAL AMPLIFIERS, ready built on printed circuit board. Tested and guaranteed. 34/- each, post free. WESTEK, guaranteed. 34/-each, post free.
P.O. Box 7, Rickmansworth, Herts.

COMPONENTS AT GIVE-AWAY PRICES. Digital Counters, Rev Counters, Thyristors, Transistors, Valves, Tool Bags, Track Heads, Recording Tape, Aerials, Intercoms, Microphones, Micro Switches, Etc. 6d. stamp only, to DIAMOND MAIL ORDER PRODUCTS, Prospect House, Canal Head, Pocklington, York. NO4 2NW.

TRANSISTOR PANELS New boxed, size 9 in $\times 6$ in $\times 1 \frac{1}{2}$ in with "Valvo" transistors type OC45 or similar, with full length leads, also an equal number of OA 85 board in a metal frame. Panel of 20 transistors, diodes, etc. 20/= 1/- each. 9/- per doz. Min. order $10 /-$ npn transistors. Diodes and res., 22/6 Post Paid COMPUTER PANELS WITH. SEMI- CONDUCTORS. Postage 6d per panel 8-OC42 or GETA75 +24 OABA 24-A1678 $(V 405 A) 550 \mathrm{mc} / \mathrm{s}$ PNP +24 TESTCARDS. 6 transistors 20 for $201-$ ELECTROLYTICS 25,000 @ $12 \mathrm{~V}, 16,000$ $12 \mathrm{~F}, 15,000$ $80 \mathrm{~V}, 3,000$ @ $80 \mathrm{~V}, 2,000 @ 50 \mathrm{~V}, 1,200$ @ 180 V , $8 / 6$ Post Paid. ZENER DIODES $-2 \cdot 4,2 \cdot 7$. $5 \cdot 75,6 \cdot 2,6 \cdot 8,7 \cdot 5,13,15,16,18,20,27,35,30,35$, Yolts. $3 / 6$ each, mostly watt POLYSTYRENE CAPS. 125/350V, 270, 680, $820,1,800,2,200,2,700,6,800,8,200,1,200 / 125 \mathrm{~V}$, 3,900,0.01,0.012, 0.015 2/-doz. 4-40pf trimmers BRAND NEW ing 2-OC35, 2-OC29 12 WW resistors 25/-. Postage $1 / 6$. NEW CROSS RADIO 6 OLDHAM ROAD, MANCHESTER 4

Single channel Radio Control at a price you can afford RADIO CONTROL PRODUCTS EXCELLENT RANGE AND PERFORMANCE TRANSMITTER-

- Crystal controlled tone Tx 12 v . operation. Silicon transistors. In smart blue anodised case with micro-switch. Tx only $56=5-0$

RECEIVER-

- Relayless weight $1 \frac{1}{4} 0 z$. Size $2 \frac{1}{4} \times 1 \frac{1}{2} \times \frac{1}{2}$ in., working on 4.5 volts. In matching blue case.

Rx only $£ 4-5-0$

SUITABLE FOR MODELS OF ALL KINDS
Full off-the-shelf Guarantee, including crash damage, for 1 year

MODEL MART 3 COMBERTON ROAD KIDDERMINSTER. Tel. 5879	OR DIRECT FROM	RADIO CONTROL PRODUCTS 38. FRANCHE ROAD KIDDERMINSTER, WORCS.

KIDDERMINSTER, WORCS.

BRAND NEW ELECTROLYTICS, 15 Volt, Long Wires, 2, 6, 8, 10, 15, 20, 30. 40, 50, 100 Mifds. 7/6 dozen, postage $1 /$. THE C.R. SUPPLY CO., 127 Chesterfield Rd., Sheffield, 88 ORN.

ULTRASONIC TRANSDUGERS. Ideal remote control door alarms, etc. Operating frequency $40 \pm 1 \mathrm{Kc} / \mathrm{s}$ beam width @3dB Points 60°. 2 for 55/- or 30/- each. Post free. Circuit diagram availahle if reguired. THE DIAMOND STYLES CO. LTD., Colwy Bay, North Wales.

TAPE HEADS

BSR BRAD. $39 / 6$ pair IICHIGAN REC./PLAY BSR BRAD.
2 TRACK pa/6 pair Hag IMP.
4-TRACK
BOGER ERASE
UL218/6 45/= BSR MALL
4 TRACX
$39 / 6$ pair
 TRANSISTORISED FM TUNER

 amplifiers. Operates on $9 V$ battery. Coverage
 use. Fantartic value for money Similar to above. Complete mith aerial,
tuners, dial and instructions TUNER'dulci FMT7s stereo $E 23$ COMPACT TRANSISTOR FA TUKER Oiled Wainut cabinet, brushed gold front
panel, vertical styling, internal batteries 612 FM MULTIPLEX STEREO ADAPTOR Printed circuit biscuit, 4 trans. 6 £5.2.6 $\frac{\text { diodes } 9 \mathrm{~V} \text { with full instructions }}{\text { LOUDSPEAKERS }}$

$\begin{aligned} & 12^{*} 20 \text {, watt, } 15 \text { ohs } \\ & \text { TWIN } \\ & \text { CONE } \end{aligned}$	GOITAR SPEAKER $25-18 \mathrm{~K}$ £5.7.0
ohm 15 watt	
	$\underset{\text { CERAMIT }}{\text { CIAGNET }}-49 / 6$
$\begin{aligned} & \hline \mathrm{Cl}^{616} \mathrm{ohm}, \\ & 10 \mathrm{watt}, 30-18 \mathrm{k} \\ & 15,0,0 \end{aligned}$	6
$\begin{array}{ll} 4^{-} 16 \text { ohm, } & £ 3,3.0 \\ 5 \text { watt, } 40-16 \mathrm{~K} \end{array}$	EAK 15

$3 \mathrm{ke} / \mathrm{s}, 16$ or 3 ohm

 5 10th 3 K 5 watt, 3 ohm. 300- $\begin{aligned} & \text { CHARGER } \\ & 16,000 \mathrm{c} / \mathrm{s} \text { PA }\end{aligned}$ TRANSFORMER.
 4 Amp. $21 / 6$ SUPER SIITCON RECT. T.Y. 'etc., 1200 PIV $800 \mathrm{~mA}, 5 /-;$ or complete with instr, resistor, condenser, 66; 6400 PIV HW 6A, $6 /-: 200$ PIV HW $6 A, 8 /$-. BY 100 type, 6 for $10 \mathrm{i}=$.
YEF ARRCZAFT BAND CONVERTER 75/ BURGLAR ALARM/FIRE ALARM/ DOOR BELL. LIST 37/6. OUR PRICE $7 / 6$ chavger decks

$\begin{array}{ll}\text { UA25 B8R } \\ \text { Uith template, Mono. } \\ \text { UA25 BSR with template, Stereo. } & \text { List } 57.15 .0 \\ \text { List }\end{array}$ | UA25 BSR with template, stereo. | List $\begin{array}{ll}\text { E7.19., } \\ 1025 \text { Garrard with template, Mono. } & \text { List } \\ \text { E7.19.8 }\end{array}$ |
| :--- | :--- | 1025 Garrard with template, Mono.

1025 Garrard with template, Stereo.
List E8.5.8.
Lis. PLINTH in simulated teaa. Complete with
Clearview rigid perspex cover for 1025,
In Plinth Cover 7/6
SWITCH ROTARY RECIPROCATING 4
Position, 15amp. Single hole fixing, with $\quad 5 / 6$ ${ }^{\text {instructions. }}$ C60 CASSETE 12/6.

C90 1816
Stamped envelope for full selection and bargain ofters in MULTIMETERS, Radios, baby ALARMS, INTERCOMS, WALKIE-TALKIES, RECTIFIERS, SINCLAIR, DULCI, AND EAGLE,

DURHAM SUPPLIES
 367 F, KENSINGTON STREET BRADFORD 8, YORKSHIRE

R \& R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs Tel.: Rossendale 3152
VALVES BOXED, TESTED GUARANTEED

BF80	$3 /-$	E8C41	$4 / 6$	PY33	$5 /-$
E8F89	$3 / 6$	PCC84	$3 /-$	PY81	$3 / 6$
ECC82	$3 /-$	PCF80	$3 /-$	PY82	$3 /-$
ECL80	$3 /-$	PCF82	$3 / 6$	U191	$4 / 6$
EF80	$1 / 6$	PCL82	$4 /-$	$6 F 23$	$5 /-$
EF85	$3 /-$	PCL83	$4 /-$	$30 F 5$	$2 / 6$
EY86	$4 /-$	PL36	$3 /-$	$30 L 15$	$5 /-$
EL41	$5 /-$	PL81	$4 /-$	$30 P 12$	$4 / 6$
EZ40	$4 / 6$	PL83	$4 /-$	$30 C 15$	$5 /-$

POST. ONE VALVE 9d. TWOTO SIX6d.
OVER SIX POST PAID.

TRANSISTOR BARGAIN!

High-gain low-noise npn planars BUY NOW BEFORE PRICES RISE! BC168B $(\mathrm{hfe}=250-500 @$ Ic $=\cdot 2 \mathrm{~mA})$
BC168C $(\mathrm{hfe}=450-500 @$ Ic 8clon (he $=450-500$ @ $\mathrm{lc}=2 \mathrm{~mA}$) BCI68B is a smallersized (TO 92) EXACT
ELECTRICAL EQUIVALENT of ELECTRICAL EQUIVALENT of BCIOB, BCI71, BCI83L, 2N2925, 2N2926 sreen, etc. These transistors have high audio gain at collector currents down to a few μA. At normal currents they can be used from d.c. to v.h.f.

MAXIMUM RATINGS (both types) VCES 30V; VCEO 20V; VEBO 5 V PC 220 mW .
IC 100 mA d.c. 200 mA peak. Audio
NF 2 dB typ., 10 dB max. fe $=300 \mathrm{MHz}$
Bulk purchase enables us to offer these
superb modern silicon transistors at LESS THAN WHOLESALEPRSICES. All mint, top grade, with makers' numbers and mint, marks. Why buy unknown quantities when you can get the genuine artieles at these
prices? Send $6 d$ for full list. EJTHER TYPE OR MIXE
5 for
5 for $10 /$-; 50 for $90 /$-; U.K. Post PaID
AMATRONIX LTD (PE)
396 Selsdon Road, South Croydon, Surrey, CR2 ODE

RELAYS, RELAYS

0V t.c. 60 ohm, $1 \mathrm{C} / 03 \mathrm{amp}$ (Maguetic Devices 703304), $2 / 6$ each

24 V f.c. $180 \mathrm{ohm}, 2 \mathrm{C} / 010 \mathrm{amp}$ (B. \& R. Relays
Type JO4), $4 / 6$ each Type JO4), $4 / 6$ each
110 V d.c. 5,000 ohm, 1 Mahe, 1 Break, 3 amp
(Londex), $5 / 6$ each (Londex), $5 / 6$ each
35 V d.c. 900 ohm, 3
$35 V$ d.c. $900 \mathrm{ohm}, 3 \mathrm{Make}, 3 \mathrm{amp}$ (Magnetic Devices 24 V d.c. $400 \mathrm{olm}, 2 \mathrm{C}$
(Allied Controls 828425 BJ 3 amp Sesled, Octal Base 24 V d c. 300 ohnt, 1 Make, 1 Break. 10 amp (B R. Relays, Contactor), $5 / 8$ each

6 V d.c. 14 ohm, 2 Make, 35 amp (Magnetic Devjees 703495), $7 / 6$ each
110 V a.c. 2 Make, 3 amp (Londex), $4 / 6$ each
110 V a.c. $4 \mathrm{C} / 0 \mathrm{O}, 3 \mathrm{my}$
Minlature moving coll 2×100 (londex), $7 / 6$ each
sealed 6 in Fly Leads (Electro Metbods 415) $10 / \mathrm{O}$, L/D 6 V d.c. 86 ohin, 1 Make, 3 amp (Magnetic Devich 100. 598/TS 1071), 8/- each (Hagnetic Devices 24 V d.c. 860 ohm, 1 Make, 1 Br Devices TS/1408/2), 4/6 each.
230 V a.c. $2 \mathrm{Make}, 8 \mathrm{amp}$ (CNZ. $\$ 22096$), 12/6 each $6 / 8$ each 150 ohm 2C/O, 10 kmp (CN7.B27927), 25 V d.c.
(Potter \& Brumfeld 800 ohm, 3 amp Sealed Octal Base 4 Yoter \& Brumfeld 828425), $10 / 8$ each $8 ; 6$ each
Cut out
Relay will Relay will operate and disconnect own supply. For
seriea working (Marconi W9785 F.D.A) series working (Marconi W9785 F.D.A.), $2 / 6$ each Carpenter Relays: $1,250 \mathrm{ohm}+1,250$ ohm (3 E 12 TR). $136 \mathrm{ohm}+136$ ohm (3SE. 38 A) $1,040 \mathrm{ohm}$ $+3 / 8$ each.
All
All Relays are in new condition. Please ndd 4/-
in the in for Pose and Packing. Midimum order $10 /-$ -
K. G. SUPPLIES

10 Mallow Street, London, E.C. 1

ELEGTROVALUE

RAPIID MAIL

ORDER SERVICE

Unbeatable Value in SEMICONDUCTORS

30W BAILEY AMPLIFIER

MJ481 and MJ491 matched wair uutput, 59/-; 40361 and 40362 matched pair driver, $30 / 8 \mathrm{~d}$; $4036112 / 6$;
 FREE with cach conuplete trausistor sct. Total for olle chiunel $£ 7.8 .0$ list with 10
 with 150 discount only tivo ehannels 814.16 .0 list; supply kit 84.5 .0 list. Circuit reprints $1 /=$ cach power G.E. 2N2926 PLASTIC RANGZ

Price reductions
Red spot = 55 to 1102%; Orange spot -40 to 180 2/3; Yellow spot -150 to $3002 / 8$; (ireen sput to -235
to $4702 / 9$. to $4702 / 8$.
All the above brand new stock.
TEXAS SILECT RANGE
30 V 800 mA nPM:
$2 \mathrm{~K} 3704=00$ to 330 BC108 20V $\begin{array}{llll}2 N 3705 & -45 \text { to } 165 & 3 / 9 & 3 / 5 \\ 25 \mathrm{~V} & \text { BC109 } 200 \mathrm{M} & 12 \mathrm{~V} \text { to } 900 \text { 2/6 }\end{array}$ $2 \mathrm{~N} 3 \overline{6} 02=60$ to $300 \quad 3 / 6$ BC167 $\quad \because 12 \overline{5}$ to $9002 / 8$ $\begin{array}{lllll}2 N 3703=60 ~ t o ~ & 300 & 3 / 6 & \text { BC167 series (180mW } \\ 2 N 3703 & =30 \text { to } 150 & 3 / 6 & 300 \mathrm{NHz} \text { IT, T092): }\end{array}$ gmall signal npn: \quad BC167 45V TO92):
2N3707 low noise
2 N3711 $=180$ to $6603 / \mathrm{IL} \quad$ BC168 $20 \mathrm{~V}=12 \overline{0}$ to $5002 / 3$ 2mall gignal pnp: 2N4058 low noise $2 \mathrm{~N} 4062=180$ to $6604 / 8$
$\mathrm{BC1}$
$4 / 8$
Beries
 BC107 45V, T018: BC163 are Beta $=125$ to $5002 / 9 \quad$ BC167, BC168 and BC1 BCl 69 Beta values for above, quoted immedia numbers.
PETs-Prices rcduced
MPF105 25 V max., $5 \mathrm{mz}-2$ to $6 \mathrm{~mA} / \mathrm{V}$, low uoise $7 / 8$; 2N3819 25V max, $\mathrm{gm}-2$ to $6 \mathrm{ma} / \mathrm{V}$, low noise $8!-$. MDII TRANSISTORS-Prices Reduced
2N4285 pnp hFE 35 to 150 e $10 \mathrm{nzA} \mathrm{TT} 7 \mathrm{MH} z$ 山iu. Yeb 35 V max.; 2 N 4286 stpn 30 V hFE over 100 (1) 10 jLA to 1 mA fT 280 MHz typ.; 2 N 4289 pnp 60 V hFE over 100 pnp 40 V hFE over 100 fT 170 MHz typ.; 2 N 4291 pnp 40 V hFE over 100 (i) 100 mA , 2 N 3794 Hps 40 V put; 2 N 4202 npn 30 V UHF N.F. 6 dB max © 100 MHz fT 5703 Hz typ, B 5041 Power $14 \cdot 3 \mathrm{~W}$ e| $100^{\circ} \mathrm{C}$ base temp. 35 V , hFE over 100 © 0.5 A . Insulated TO6G size mounting surface.
Prices: 2 F 4285 to 2 N 4292 and 2N3794 2/11; 35041 18/6.
1,000Y 1-5A GENERAL PURPOSE RECTHIER ty1ल 1N5054 $8 / 6$ only.
1,000 0-75A miniature rectificr type TSI 1/9; 400v
type TS4 $2 / 8$.
4ype $1542 / 0$.
ZEMER DIODES 3 V to $27 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ all proferred
voltages, $4 / 6$ each.
NEW TRAFSISTOR BARGAIHS
ALL POWER TYPES SUPPLIED WITH FREE INSULATLIG SETS.
$\begin{array}{llllllll}2 N 696 & 6 / 6 & 2 N 171 & 7 / 4 & 2 N 4060 & 4 / 3 & \text { BC148 } & 3 / 6 \\ 2 N 697 & 6 /- & 2 \times 2147 & 16 / 8 & 40250 & 15 /- & \text { BCI4 } & \end{array}$ $\begin{array}{llllllll}2 N 697 & 6 /- & 2 N 2147 & 16 / 8 & 40250 & 15 /- & \text { BCI49 } & 4 / 8 \\ 2 N 706 & 3 / 5 & 2 N 2369 A & 40406 & 16 / 8 & \text { BD123 } & 94 / 8\end{array}$ $\begin{array}{llllllll}2 N 706 & 3 / 5 & 2 N 2369 A & 40406 & 16 / 8 & \text { BD123 } & 24 / 8 \\ 2 N 1132 & 13 /- & & 6 / 9 & 40408 & 14 / 6 & \text { BF194 } & 7 /-\end{array}$ $\begin{array}{llllllll}2 N 1132 & 18 /- & & 8 / 9 & 40408 & 14 / 6 & \text { BF194 } & 7 /- \\ \text { 2N1302 } & 4 /- & 2 N 2646 & 8 / 6 & \text { AC126 } & 8 / 6 & \text { BFX29 } & 12 / 8 \\ \text { 2N1303 } & 4 /- & 2 N 2924 & 5 /- & 4 C 128 & 8 /- & \text { BFFX84 } & 7 / 8\end{array}$ $\begin{array}{llllllll}2 N 1303 & 4 /- & 2 N 2924 & 5 / /-A C 128 & 8 /- & \text { BFX } 89 & 18 / 8 \\ 2 N 1304 & 4 /- & 2 N 2925 & 5 / 9 & \text { AC176 } & 11 /- & \text { BFY85 } & 8 / 3\end{array}$ $\begin{array}{lllllll}2 N 1305 & 4 /- & 2 N 3053 & 5 / 6 & \text { ACY17 } & 8 /- & \text { BFX85 } \\ \text { 2NFX88 } & 7 / 8 \\ \text { 2N1306 } & 8 / 9 & 2 N 3054 & 15 / 6 & \text { AD161 } & 7 /- & \text { BFYY51 }\end{array}$ $\begin{array}{lllllll}\text { 2N1306 } & 8 / 9 & 2 N 3054 & 15 / 6 & \text { AD161 } & 7 /- & \text { BFY5 } \\ \text { 2N1 } & \text { 8/9 } & \text { 2N3055 } & \text { 16/6 } & \text { AD162 } & 7 /- & \text { BSY } \\ \text { 2N1308 } & 8 / 6 & \text { 2N3391A } & \text { AFI14 } & 7 / & \text { BSX20 } & 4 / 6\end{array}$ $\begin{array}{llllllll}\text { 2N1308 } & 8 / 9 & \text { 2N3391A } & \text { AFI14 } & 7 / & \text { BSX20 } & 4 / 6 \\ \text { 2N1309 } & 8 / 6 & & 5 / 6 & \text { AFI24 } & 7 / 8 & \text { N゙KT403 } \\ \text { 2N1613 } & 6 / 6 & 2 N 3706 & 3 / 8 & \text { BC147 } & 4 / 3 & 14 / 10\end{array}$

HESISTORS

METAL OXIDE type TR5 0-5W 2% tolerance. Very iow noise, low temperature coefficient, low drift. to $1 M \Omega$. Pricc: I to $1110 \mathrm{~d} ; 12$ to $258 \mathrm{~d} ; 25 \mathrm{up} 88$. CAREOH FILM high stab low nuise.

tW $10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega, 1 / 9$ duz., $18 / 6100$. IW $10 \% 7.7 \Omega$ to $10 \mathrm{Ma}, 8 / 8$ doz., $25 / 10100$ 1/6 less per 100 if ordered in complete 100 s of ate ohmic value.
Please state resistance valwes reguired.
Carbon Skeleton pre-sets: 100Ω, $250 \Omega, 500 \Omega$, ik Ω, $2 \mathrm{k} \Omega, 2.5 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \Omega \mathrm{k}, 100 \mathrm{k} \Omega$, $200 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \mathrm{\Omega}, 2 \mathrm{M} \Omega, 2.5 \mathrm{M} \mathrm{\Omega}, 5 \mu \Omega$, nuall high quality 1/- each: Sub-min

PEAK SOUND PRODUCTS

Pcak Sourd PA. 12-5 Power Implificr has a maxiutum distortion level of only 0.1% at $11 \cdot 5 W$, into 15Ω,
In kit form $\$ 3.19 .6$, plus 12% for ready prepared heat In kit form e8.19.6, plus 12/-for ready prcpared heat sink and
$\mathbf{4} 4.10 .0$.
Pre-anp kit 28/-plus controls mono: 6/3; stereo 201 Pre-anp kit 27/- plus controls mono: 8/3; stereo 20/-
Active tone filter kit 19/- plus controls: mono ह/Active tone filter kit $19 /-$ plus controls: mono $5 /-$,
stereo $16 /$. No uiscounts allowable on basic kits only.

ELECTRELYTICS

SUB-MIN.
C426 range (μ F/V): $0.64 / 64,1 / 40,1-6 / 25,2-5 / 16$, $\begin{array}{ll}2-5 / 64,4 / 10,4 / 40,5 / 64, & 0 \cdot 4 / 6 / 4,4, \\ 10 / 4 / 25,8 / 4,10 / 2 & 1 / 0,10 / 16,\end{array}$ 10/64, $12.5 / 25,16 / 10,16 / 40,20 / 16,20 / 64,25 / 6 \cdot 4$, $25 / 25,32 / 4,32 / 10,32 / 40,32 / 64,40 / 2,5,40 / 16,50 / 6 \cdot 4$, $50 / 25,50 / 40,64 / 4,64 / 10,80 / 2-5 \cdot 80 / 16,80 / 25,100 / 64$, $125 / 4,125 / 10,125 / 16,160 / 2-5,200 / 6 \cdot 4,200 / 10,250 / 4$, $320 / 2 \cdot 5,320 / 6 \cdot 4,400 / 4,500 / 2 \cdot 5$. **Price reduction $1 / 8$ cach.
MLIATURE
$5 / 10 \mathrm{~F} / \mathrm{V}$):
10/10
$5 / 10,10 / 10,25 / 10, \quad 50 / 10, \quad 9 \mathrm{~d}$ eauh, $2 \overline{0} / 205 ;$
$50 / 25,100 / 10,200 / 10,1 /-$ cach; $\overline{50 / 60,} 100 / 2 \overline{5}, 1 / 6 ;$
$100 / 50,25 / 2 \overline{5}, 2 /-$ $100150,25 / 2 \overline{5}, 2 /$
LARGE ELECEROLYZICS ($\mu F / V$):
1000/50 7/; $2000 / 509 / 8 ; 5000 / 5017 / 6 ; 5000 / 2510 / 3$; $2500 / 6415 /=$. Vertical clipe for above tyipes 81 cacb.

1) CAPACLTORS

Ceramic disc $20 \% ~ 500 \mathrm{~V} ; 1,000 \mathrm{pF}, 2,000 \mu \mathrm{~F}, 5,000 \mathrm{pF}$, $50 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0-02 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$. Mylar fimm 10% $100 \mathrm{~V}: \quad 1,000 \mathrm{pF}, \quad 2,000 \mathrm{pF} \quad \overline{3}, 000 \mathrm{pF}, \quad 0.01 \mu \mathrm{~F}$, $0.02 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$, Polystyrenc 5% I60V: 22 pF preferred values to 820 pF . ALL (2) 54 each. Polyester cuch. $0.1 \mu \mathrm{~F}$ 8d. $250 \mathrm{~V} 10 \%$, $0.15,0.20 .068 \mu \mathrm{~F}$ 2a $1 / 2 ; 0.471 / 6 ; 1 \mu \mathrm{~F} 2 / 3 ; 2.2 \mu \mathrm{~F}$; $2 /-15,0.228 \mathrm{Cl}^{\circ} 0.33$

2-PDTENTIONETERS

Priced Reduced
Short apindle 100Ω to loun $\Omega \mathrm{lim}, 5 \mathrm{~K} \Omega$ to 5 Kiz loge, stel. Long gpindle $47 \mathrm{k} \Omega 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, lin or log. Only $2 / 6$ each. Long spindle dual sterco: $10 \mathrm{k} \Omega 22 \mathrm{k} \Omega, 47 \mathrm{~h} \Omega, 100 \mathrm{k} \Omega$,
$220 \mathrm{k} \Omega$ lin or log. Only $8 / 6$ each.

all Goods brand new-No surplus

1889 Catalogus now realy, full of most up to date information essential to cvery scrious uscr. Send $1 / 8$ for your copy
cOMPONEAT DISCOUR
COMPORENT DISCOUKTS
10\% on total order over $£ 3.0 .0$. 15\% on total order over $210,0.0$. Vilas atated otherneise
OTERSEAS ORDERS WELCOMED Carriage charged at cost

HOLIDAYS

REGEIVERS AND COMPONENTS (continued)

50,000 TRANSISTORS to be cleared in lots of 50 for si Types available are germanium similar to OC44, and silicon similar to OC202 similar to octa, fully tested and guaranteed. Post frep. WESTEK, P.O. Pox 7 , Rickmansworth, Herts.

WE ARE RREANNG WP GOMPJTERS
E COMPUTER PRINTED CIRCUIT EX COMPUTER PRINT
in $\times 4$ in packed with semiconductors and top qualiey resistors, capacitors, diodes, etc. 10 . W. W P. 2/h a Our price. 0 boards 35 transistors. guaranteed minimum of 35 transistors. 25 boards for fl . SPECIAL BARGAIN PACK. With a guaranteed minimum of 85 Pransistors.
transistors.
100 boards $65 / \mathrm{F}$ P. \& P. 6/6. With a guaranteed minimum of 350 transistors.
PANELS with 2 power transistors sim. to OC28 on PANELS w + components. 2 boards ($4 \times O$ OC2B) 10/. P. \& P. 2/=
NPN GERMANIUM TOS 1 WATT POWER TRANSISTORS on smali heat sink, on $2 \mathrm{in} \times 4 \mathrm{in}$ panel. 5 for $10 / \mathrm{F}$, P. \& P. $2 /$.
POWER TRANSISTORS sim. to 2 NI74 ex eqpt. 4 for 10/-, P. \& P. 2/-.
POWER TRANSISTORS sim. to 2 NI7
Finned Heat Sink (IOD) 4 for si, P. \& LONG ARM TOGGLE SWITCHES ex eqpe. SPST $13 / 6 \mathrm{doz}$., DPST 15/= 2/-doz.
ORGAN BUILDERS' SPECIAL 500 TOI8 TRANSISTORS on panels. E4,P.\& P. 6/-. OVERLOAD CUT PUTS Panel mounting in the following values $5 /-$ eash. $2,3,4,5,7,8 \mathrm{amp}$. P. \& P. $1 / 6$.

MINIATURE GLASS NEONS, $12 / 6$ doz. P. \& P. I/6. 10 amp BRIDGE RECTIFIERS on I50 PIV. HEATSINK. 12/- + 2/-, P. \& P. ea. FINNED HAPACITY ELECTROLYTICS
LARGE CAPACITY ELECTR.
$4 \frac{1}{2}$ in, 2 in diam. Screw terminais.
All at $6 /-$ each $+1 / 6$ each 72 V d.c. wks
$\begin{array}{ll}4,080 \mathrm{mF} & 25 \mathrm{~V} \text { d.e. wkg. } \\ 10,000 \mathrm{mF} & \end{array}$
$\begin{array}{ll}10,000 \mathrm{mF} \\ 6,600 \mathrm{mF} & 25 \mathrm{~V} \text { d.e. } \mathbf{w k g} \text {. }\end{array}$
$\begin{array}{ll}6,600 \mathrm{mF} \\ 1,500 \mathrm{mF} & 150 \mathrm{~V} \text { d.c. wkg. }\end{array}$
$\begin{array}{ll}16,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. wkg. } \\ 25,000 \mathrm{mF} & 12 \mathrm{~V} \mathrm{d.c.} \mathrm{wkg.}\end{array}$
$16,000 \mathrm{mF}$
$25,001 /$
Send $\|$-stamps for list.
KETTRNNICS, 52 Earls Court Road London, W.8. Mail order only

10W AMPLIEIERS

SSAR3. 10W push-pull output. TW99 output trans. 4 valve EF94, ECC81, Two EL90. Full chassis mounting. New and boxed. Comple with circuit drawings. $£ 2.10 .0$. P. \& P. 10\%. 19 set powe
P. \& P. $10 /$ -
Mixer Units Type 18. H.F., M.F., L.F. Valve V885. 10/=. P. \& P. 2/6.
Micro-Ammeters for Instrument Mounting, $0-100 \mathrm{~mA}$ 30/-. P. \& P. 2/6.
Hicro-Ammeters Type Y $0-100 \mathrm{~mA}$, Heavy duty Hicro-Ammeters. P. \& P. $5 /=$. Flexible Metal Tubing.
35/- 100 ft . P. \& P. 7/6. $32 / 6$. P. \& P. 7/6.
CHASSIS UNIT. 7 valves ECC82 (3), EB91 (3), CHASSIS UF Capacitors. Resistors, etc. Valve bases and cans. 20/-. P. \& P. 4/6.
CABLE. Six core (75 yd approx.) and drum assembly. $25 / \%$. P. \& P:4/6.
Resonance performance teaters, S band, $0-25 \mathrm{~dB}$, Resonance periormance testers, $10 / \mathrm{F}$.
SEND US YOUR TRANSFORMER REQUIREENTS, 1,000 IN STOC
S.A.E. FULL LIST.

STATUS SUPPLIES
STATUS HOUSE, WILEINSON ATE., BLACKPOOL

HOLIDAY FOR BOY8 $14 / 16$ years August 1969, specialising in engineering, electronics, photography. Tuition and practical work photographyo-karting. 11 days- 114.10 .0 including grite for free brochure: INTER-SCHOOL Write for iree brochwshiP, 47 Marylebone Lane, I.ondon Wi.1.

PLEASE MENTION
 PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

HI-FI SOLID STATE AUDIO AMPLIFIER

10 Watts continuous sine wave output. 15 Watts music power. Output 3-16 ohms impedance. Frequency response 15 Hz to $18 \mathrm{Khz}-1 \mathrm{~dB}$. Distortion at full power $<0.15 \%$.
This instrument comes to you complete with pre-amplifier, main amplifier and power unit. (A.C. Mains) in modern styled aluminium stelvtite case.
Factory built and tested for the amazingly low price of 16 Gns. P. \& P. 5/6.

SUNDERLAND ELECTRICS
 48 Princess Street, Manchester 1
 trade enauiries invited s.a.e. with enquiries please.

CRESCENT RADIO LTD.
(electronic component specialists) For oll regulor components try 1.22
40 Mayes Road, W aod Hi-Fi equipment try
For surplus components and Hi-Fi equipment
SOME COMPONENT BARGAINS
OC19 power transistor $\quad 5 /$-each
Model motor 6 to 12 volt, $9,000 \mathrm{rpm}, 4 / 6$ each $400 \mathrm{~m} / \mathrm{a}$
inch spun aluminium standard $\frac{1}{4}$ inch spindlegrub serew type knob. For a $2 / 6$ each professional finish to all equipment
Double Pole Rotary on/off switch $2 /$ each standard mains type.
Transistor radio cabinet ideal for you home built radio, $6 \times 3 \frac{1}{4} \times 2$ inch
$2 \frac{1}{4}$ inch 80 ohm loudspeaker 3/. each

Wearite Hyperloy Transformer eype 210
120 volt $250 \mathrm{~m} / \mathrm{a}$ tvil rectifier $\quad 1 /$ each
Car suppressor coil type $\quad 1 / 6$ each
500 mfd 12 volt electrolytic capacitor $1 / 3$ each
Toggle switch mains standard type $1 / 6$ each
Connecting blocks, 4 way standard
screw type
6d each $5 / 6$ per doz.
argain boards, computer boards full of tranistors, diodes and components-a real bargain for the home construetor

With our new premises in Mayes Road we can now offer an eyen wider selection of and ponents for the home enthusiast.

POSTAGE WITH ORDER PLEASE
P.S. new catalogue is now available at $1 / 6$ per copy

The RADIO AMATEURS HANDBOOK 45/-
 1969 Ed. by A.R.R.L. Postage $4 / 6$

AUDIO AMPLIFIERS by Data. $10 / 6$. P. \& P. 1/-.

THEDESIGNERS GUIDE TO BRITISH TRANSISTORS by Kampel. 25/-. P. \& P. 1/6.
HI-Fl YEAR BOOK 1969 ED. 15/P. \& P.1/9.

UNDERSTANDING ELECTRONIC TEST EQUIPMENT by Risse. 30/P. \& P. $1 / 6$.

TRANSISTORS IN LOGICAL
CIRCUITS by Altes. $16 / \%$. P. \& P. $1 / 3$.
RADIO COMMUNICATIONS
HANDBOOK by R.S.G.B. 63/-. P. \& P.4/6.
PRACTICAL OSCILLOSCOPE HANDBOOK by Turner 25/-. P. \& $1 / 6$.
F.E.T. PRINCIPLES, EXPERIMENTS \& PROJECTS by Noll. 40/-. P. \& P. 2/49 EASY TRANSISTOR PROJECTS bY Brown and Kneitel. 16/-. P. \& P. 1/3. SERVICING DIGITA
Kyle. 26/. P. \& P. $1 / 6$.
Kyle. 26/\%. P. \& P. 1/6. DEVICES by
TRANSISTOR CIRCUITS FOR RADIO
CONTROLLED MODELS. 7/6. P. \& P 1/-.

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

Phone 01-437 4560

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

SETS 1R5, 185, 1T4, 3S4, 3V4, DAF91, DF91, DK91, DL92, DL94.

024	4/6	19BG6G1	5/9				
147 G	$7 / 6$	20F2 13j8	DL94 5/9	EL05 5/-		UCC84	
1W6OT	$7 / 8$	20p3 11/9	DL96 \%/-	EM80 5/9	$\text { PFL200 } 12 /-$	$\begin{aligned} & \text { UCC85 } \\ & \text { UCP880 } \end{aligned}$	
1N6GT	$7 / 9$	20P4 18/6	DY86 5/8	EM81 B/9	PL36 9\%	$\begin{aligned} & \text { CCF80 } \\ & \text { UCE42 } \end{aligned}$	
1R5	8/6	25U4GT11/B	DY87 5/8	EM84 6/8	PL81 $7 / 8$	$\begin{aligned} & \text { UCH42 } \\ & \text { UCH81 } \end{aligned}$	
185	$4 / 8$ $8 / 8$	$\begin{array}{ll}30 \mathrm{Cl} & 6 / 9 \\ 30 \mathrm{Cl} 5 & 18 /-\end{array}$	EABC80 6/6	EM87 7/6	PL82 6/6	UCL82	7
4	$5 / 9$	$\begin{array}{ll}30 \mathrm{Cl} 18 & 18 /-\end{array}$	$\begin{array}{ll}\text { EAF42 } & 8 / 9 \\ \text { EB81 } & 8 / 8\end{array}$	EY51 7/-	PL83 6/6	UCL83	11/
,	519	30F5 $18 / 6$	$\begin{array}{ll}\text { EB81 } & 2 / 8 \\ \text { EBC33 } & 7 / 6\end{array}$	$\begin{array}{ll}\text { EY86 } & 8 / 8 \\ \text { EZ40 } & 7 / 8\end{array}$	PL84 0/8	UF41	91
5U4G		$30 \mathrm{FLI} 12 / 6$	EBC41 $18 / 3$	EZ40 $\begin{array}{ll}\text { EZ41 } \\ \text { 7/6 }\end{array}$	PL500 12/-	UF80	
6Y3GT	$5 / 9$	$30 \mathrm{FL12} 14 / 6$	EBF80 81	$\begin{array}{ll}\text { E241 } \\ \text { E280 } & \text { 7/6 } \\ \text { 4/8 }\end{array}$	PL504 12/6	UFP5	㤑
bZ4G	7/6	30 FLI $10 / 6$	EBF89 8/8	E2800E281 $4 / 6$ 4/8	PLD08 15/-	UF89	8
6/30L2	12/6	$30 \mathrm{Ll} \quad 6 /-$	ECC81 8/8	$\begin{array}{ll}\text { E281 } & 4 / 8 \\ \text { G232 } & 8 / 6\end{array}$	PL802 $14 / 8$	UL41	
BALD	8/8	30 L 15 14/-	ECC82 419	KT32	$\begin{array}{lr}\text { PM84 } & 7 / 9 \\ \text { PX25 } & 10 / 6\end{array}$	UL44	01
8АM6	8/6	$30 \mathrm{L17}$ 13/-	ECC83 7/-	KT61	6	UL84	6
BAQ	4/8	30 P 4 12/-	ECC84 5/6		6	UM84	71
6AT6	4/-	$30 \mathrm{P12} 11 / 8$	ECC85 5/-	MEI40015	PY33 10	UY85	
8AU6	4/9	$30 \mathrm{P19}$ 12/-	ECC804 12/8	N78 14/9	PY881 $10 /-$	UY85	
$6 \mathrm{BA6}$	4/6	$30 \mathrm{PLI} 12 / 6$	ECF80 7/-	PABC80 $7 /-$	$\begin{array}{ll}\text { PY81 } & 5 / 8 \\ \text { PY82 } & 5 /-\end{array}$	B	1-
6BE6	4/8	30PL13 14/6	ECF82 6/9	PC86 0/6	$\begin{array}{ll}\text { PY88 } \\ \text { PY83 } & 5 / 8\end{array}$	VP17	
$6 \mathrm{BJ6}$	$71-$	$30 \mathrm{PLI} 1416 /-$	ECH 3 6 6 -	PC88 8/6	$\begin{array}{ll}\text { PY88 } & \text { 6/8 }\end{array}$	${ }_{\text {AC1 }} 707$	
6 B	18/-	35L6GT 81-	ECH42 10/6	PC96 8/6	PY800 $8 / 8$	AC127	$8 / 6$
6 F14	8/-	46	ECH81 5/9	PC97 8/6	PY801 6/9	AD140	$7 / 6$
6F23	18/6	6063 12/6	ECI		R19 6/8	AF102	18/-
6K7G	$2 / 8$	AZs1 8/-	ECL		18/6	AF115	
5K8G	4/8	B729 12/6	ECL83 9\%	PCC8	819	AF116	
SL18	6/-	CCH35 10/-	ECL86 8/3	PCC89 10/6	8/-	AFII7	
6V6G	5/-	CL33 18/6	EF39 3/9	C0189 919		AF124	
8V6G	8/6	CY31 6/9	EF41 9/6	PCF80 6/8			
$8 \times$	$8 / 6$	DAC32 7/8	EF80 4/9	PCF82			
6X8G	8/9	DAF91 4/3	EF85 5/6	PCF86 ${ }^{\text {P/3 }}$	072 $4 / 6$ 78 $3 / 6$	${ }_{\text {AF127 }}{ }_{\text {OC2 }}$	18
788	$10 / 8$	DAF96 6/-	EP86 6/3	PCF800 13/8	$\begin{array}{lr}\text { U191 } & 12 / 6\end{array}$	$0 C 26$ 0044	5/8
B7	${ }^{71} 10$	DF33 7/9	EF89 5/8	PCF801 7/.	U301 18/6	OC44	2/8
$7 \mathrm{C6}$	$8 / 8$	DF91 2/8	EF91 8/6	PCF802 8/6	U801 18\%-	$0 \mathrm{OC71}$	
7441	818/8	$\begin{array}{ll}\text { DF96 } & \text { 6/- } \\ \text { DH77 } & \text { 4/- }\end{array}$	$\begin{array}{ll}\text { EF9.4 } & 4 / 9 \\ \text { EF183 } & \text { 6/ }\end{array}$	PCF805 $\mathrm{j}^{\text {j- }}$	UABC80 6/8	${ }_{0} \mathrm{C7} 72$	
$10 \mathrm{P13} 1$	15/6	DH81 10,9	EF184 5/B		UAF42 $9 / 6$	0 C 75	2/6
12 AT 7	8/9	DK32 7/6	EH90 8/B		0/6	C81	$2 / 8$
2 2U6	4/9	DK91 5/6	EL33 8/9	PCL83	UBC81 7/-	OC81D	2/8
- 77	4/9	DK92 9/3	EL34 9/6	PCL84	UBF80 8i	$0 \mathrm{C82}$	$2 / 8$
X 7	4/9	DK96 7/-	EL41 9/8	$\begin{array}{ll}\text { PCL85 } & 8 / 3\end{array}$	-		
2E8GT	7/-	DL35 5/-	EL84 4/9	PCL86 8'8		2.	

READERS RADIO (P.E.) 86 TORQUAY GARDENS, REDBRIDGE, ILFORD, -88EX.

for urubk,

 Resy, ralitile sontleringContains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

SEND S.A.E. FOR NEW STOCK LISTS

WENTWORTH RADIO
I04 SALISBURY ROAD, HIGH BARNET

BYI00 BFY50 BFY5 BFY52 BFY53 ACl26 2N404 2N696 2N697. 2N1304 $2 \mathrm{~N}_{2} 923$ 2N2925	$\begin{aligned} & 4 / 6 \\ & 6 / 6 \\ & 4 /- \\ & 6 /- \\ & 4 / 9 \\ & 4 / 6 \\ & 5 /- \\ & 5 /- \\ & 5 /- \\ & 5 / 3 \\ & 5 /-- \\ & 4 /-- \\ & 5 /- \end{aligned}$
Cosh with Order	P. \& P. 1/-

$01-4493087$

2N2926	$2 / 9$
NKTI21	$8 / 6$
NKT122	$5 / 11$
NKT126	$6 / 3$
NKTI28	$6 /-$
NKT213	$6 /-$
NKT214	$3 / 9$
NKT215	$4 / 9$
NKT274	$4 /-$
NKT275	$4 /-$
NKT403	$16 /-$
NKT405	$14 / 9$
NKTT13	$5 / 3$
NKTT73	$4 / 9$
NKT781	$5 / 9$
NKT16229	$12 /-$
NKT20329	$12 / 6$

BULLD YOUR CIRCUITS

 veroboand-the Universal Wiring Boardobtainable from your local Retailer
Trade enquiries to:
NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad's Place, Gray's Inn Road, London, W.C. Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping Precision power for the enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 79/6 p.p. 2/6.

De Luxe Professional Kit W/6 17 tools 130/- p.p. Money Ref. Guarantee.

Silicon N.P.N. transistors. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at $1 / 6$ each or $£ 5$ per 100 .
12 VOLT TRANSISTORISED FLUORESCENT LIGHT.* 8 WATT only! Or in kit form:
*Case
Lase hoiders- pair 10/-
Lamp holders - pair 5/-
Transistor
10/-
Condensers, etc. $3 /$.
*Post and Packing 3/-
TRANSISTORS
OC200, OC203, OC204, all at 2/- each.
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A 2G378A, all at $1 / 6$ each.
Transistors similar to OC44, OC71 and OC72, all $1 /$ - each.
Unmarked, untested transistors, $7 / 6$ for 50 .
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), $2 /$ - each.
ORP 12 Cansistors (ASZ17), 10/- each.
ORP 12 Cadmium sulphide light-sensitive resistors 9/-
RECTIFIERS
BY100, 800 p.i.v., $2 / 6$ each, $24 /$-per doz., $£ 7 / 10 /$ - per 100 , $£ 50$ per 1,000 .
BYZ13, 6 -amp, 400 p.i.v., available on same terms.
MULLARD POLYESTER CAPACITORS
$0.001 \mu \mathrm{~F} 400$ volts FAR BELOW COST PRICE!
$\begin{array}{lllllll}0.0015 \mu \mathrm{~F} & 400 \text { volts } & \because & \text { 3d } & 0.15 \mu \mathrm{~F} 160 \text { volts } & . & . . \\ 0.0018 \mu \mathrm{~F} & 400 \text { volts } & \because & 3 \mathrm{~d} \\ 0.22 \mu \mathrm{~F} & 160 \text { volts } & \ldots & \ldots & 6 \mathrm{~d}\end{array}$

$0.01 \mu \mathrm{~F}$	400 volts	\therefore	$3 d$	3 d	125 volts	\cdots	\because

VERY SPECIAL VALUE: Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. 10/-per 100 . per 100 . CONDENSERS, MIXED BAGS, 0.0001 to $0.5 \mu \mathrm{~F}$. $12 / 6$
p
RESISTORS: Give-away offer! Mixed types and values, $\frac{1}{4}$ to $\frac{1}{2}$ watt. 3 watt close tolerance. Mixed Individual resistors 3 d each. Also $\frac{1}{2}$ to WIRE-WOUND RESISTORS. 16 for 10%.

RECORD PLAYER CARTRIDGES

ACOS

GP	67/2	Mono.	
GP	91/3	Stereo Compatible	151--
GP	93/1	Stereo Ceramic	£115\%
GP	94/1	Stereo Ceramic	£1/5\%
Smal	pick-up		

UNREPEATABLE OFFER! GIANT SELENIUM PHOTO-CELLS PRODUCE UP TO 6ma FROM DAYLIGHT! 67 mm . diameter ($29.2 \mathrm{sq} . \mathrm{cm}$.) $10 /-$ each $50 \mathrm{~mm} . \times 37 \mathrm{~mm}$. ($16.5 \mathrm{sq} . \mathrm{cm}$.) 2 for $10 /-$
TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. 10/TRANSISTORISED SIGNAL TRACER KIT $10 /-$
TRANSISTORISED REV. COUNTER KIT 10%

VEROBOARD

$$
\begin{aligned}
& \begin{array}{lll}
3 \sin \times 2 \frac{1}{2} \text { in } & 0 \cdot 15 \text { in matrix } & 3 / 3 \\
3 \sin \times 3 \operatorname{in} & 0.15 \text { in matix }
\end{array} \\
& 3 \sin \times 3 \sin 0 \cdot 15 \text { in matrix } 3 / 11 \\
& 5 \text { in } \times 2 \frac{1}{2} \text { in } 0 \cdot 15 \text { in matrix } 3 / 11 \\
& \sin \times 3 \text { 3in } 0.15 \text { in matrix } 5 / 6
\end{aligned}
$$

The most accurate

 pocket size GALCULATOR
in the world

The 66 inch OTIS KING scales give you exfra accuracy. Write today for free booklet, or send 82/6 for this invaluable spiral slide rule on approval with money back

guarantee if not satisfied.
CARBIC LTD. (Dept. PE 22)

54 Dundonald Road, London, S.W. 19

I2in. DE-LUXE MKII 4

The exceptional quality and performance of the "De-luxe MKIl" brings truly rich satisfying sound from a single loudspeaker, rocreating the musical spectrum virtually flat $\pm 5 \mathrm{db} .25$ to $16,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The unit consists of the latest double cone woofer tweeter cone together with a special Baker "FERROBA" magnet assembly having a flux density of 14,000 gauss and a total flux of 150,000 Maxwells. Bass resonance 32.38 c.p.s. Rated 15 watts. Voice coils available 3 or 8 or 15 ohms. Suitable for any High Fidelity System. Design capability concept and programmed third generation hardware giving fantastically delightful sound.
Further details and
48 page Enclosure
Manual 5/9 post paid.
Bensham Manor Road Passage, Thornton Heath, Surrey. $01-6841665$

MARTIN IS HIGH FIDELITY

Details from:-
Trade enquiries invited.
MARTIN ELECTRONICS LTD., 155 High Street, Brentford, Middlesex. ISLeworth ||6|

To MARTIN ELECTRON/CS, 155 High Street Erentford, Middlesex
I have not had your leaflets before. Please send them on AMPLIFIERS \square FM TUNER \square RECORDAKITS \square (Tick os required)
NAME.
ADDRESS

PE 4

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES'" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience ortraining.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmanship - Illuninating Eng. Refrigeration - Elen. Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.-Road Eng. - Hydraulics - Mining Water Supply-Petrol Tech.

RADIO \& T.V. ENG.
Advanced Radio - Gineral Radio-Radio \& TV Servicing -TV Lngineering - Telecommuntications - Sotnd Recording - Automation Practical Radio - Radio Amatcurs' Examination.
MECHANICAL ENG
Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. ance Eng. - Diesel Eng. -
Press Tool Design - Sheet Metal Work - Welding Metal Park - Welding -Enspection-Draughtsmanship Eugetallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.Gencral Alto. Eng. - Auto. rampenance - Repair Auto. Diesel Maintenance duro. Electrical EquipurntGarage Management.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interest ing job.
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man ... quickly and easily
* HOW to benefit from our free Advisory and Appointments Depts.
大 HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL
EQUIPMENT
Basic Practical and Theore-
tit Courses for beginners in
Electronics, Radio, T.V. Ett.,
A.M.I.E.R.E. City \& Guilds

Radio Amateurs' Exam. R.T.E.B. Certilicale P.M.G. Certificale Practical Electronics Electronics Engineering Practical Radio
Radio \& Television Servicing Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A.,

 A.IO.B., A.M.I.Ex., A.R.IC.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDÜCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

POST COUPON NOW!
TO B.I.E.T., 316A ALDERMASTON COURT,
ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT
Mono or Stereo Audio. Equipment developed from Dinsdale Mk. II-each unit or system will compare favourably with other professional equipment selling at much higher prices.
COMPLETE SYSTEMS FROM
 CHOOSE A SYSTEM TO SUIT YOUR neEdS And save pounds

All units available separately.

SEND FOR FREE BROCHURE (No. 21) TODAY! DEMONSTRATIONS DAILY AT '303' EDGWARE ROAD
5.0
£15.5.0
THE FINEST VALUE IN HIGH FIDELITY-

Acclaimed by everyone

MAYFAIR ELECTRONIC ORGAN

A completely new development in portable electronic
musical instruments and a new field for the home constructor, The 'MAYFAIR' produces a multitude of the most pleasing sounds with a wide range of tone colours suitable for classic or
 entre meyb. The organ is fully polyphonic, that is full chords can be played over the special fullyoard. Supplied as a kil of paris which includes 165 transistors. printed cireuit panels. handle. A complete detailed and illustrated construction manual is provided with circuits and full parts list. All isems may be purchased separately. All parts supplied are fully guaranreed. Full ather sales
?
Once built the 'MAYFA/R' will then provide
years of enjoyable entertainment. ONLY 99 Gns.
Call in. See it and play it yourself.

ORGAN COMPONENTS Deferred terms available. $\begin{array}{ll}\text { We carry a comprehensive stock } & \text { COMPLETE KIT } \\ \text { of organ components for } & \text { Deposit } £ 29.19 .0 .\end{array}$ TRANSISTOR AND VALVE FREE PHASE designs. Ask for BROCHURE 9 EXPORT EMQUIRIES INVIED

BUILT ANO TESTED Deposit $\mathbf{f} \mathbf{3 6 . 8 . 0}$ \& 12 monthly payments f9. Total £144.8.0. RHYTHM UNIT

Complete with full Bass Treble, Volume and Selector Controls MAE6 12 WATt'S STEREO We are pleases to offer two new designs with the chatce of ether mono ot sterea systems These BRITISH DESIGNED UNITS favour the user in'so many ways being sulable for use with all types of PICK.UPS. TUNERS. DECKS and MICROPHONES-with fantastic power and quality with far greater adaptability with freedom for batlery or mains operation Output is from 3.16 OHMS Whether you require a home or Dortable $\mathrm{HI}-\mathrm{FI}$ installation electronic gutar. PA. System Intercomm the MA7 or MA66 will FILL THE BILL. $\begin{aligned} & \text { for complete } \\ & \text { listening satisfaction } \end{aligned}$ MA7 YONO OR The stereo

SC10 Intograted Circuit SINCLAIR EQUIPMEN 212 Amplititer
Micromatic (Ki Micromatic (Buily
RZ4 Power (R24 Power
Storso 25

Storbo 25
014 Spoaker Syztom

MULLARD 1 WATT AMPLIFIER

 on both $\mathrm{mw} / \mathrm{lw}$ bands. 7 transistors plus diade, push-puil circuit. Fitted 5 inch speaker, large ferrite aerial and Mullard transistors. Easy to build with terisic results. All local and Continental
stations. stations.
TOTAL COST £6.19.6.
TO BUILD \quad Send for Brochure
BUILD A QUALITY
TAPE RECORDER
To get the best out of your MAGNAVOX DECK, you need a
MARTIN RECORDAKIT. This comprises a special high
cuality 6 vacive amplifier and pre--ampolities a which comes to you assentbled on its primed crevit board-m lact everv.
thing needed down to the lost serew for MAKING A TMing needded down to the last serew FOR MAXING A
SuPERE TAPE RECOROER, which, when builh, will comSUPERB TAPE RECOROER, which, when builh. will comp-
pare favourably with nnstruments costing wwice as much, yel
You need no experience or sechnical skill to beting this about THE INSTRUCTIONS MANUAL MAKES BUILDING EASY

AND SUCCESS ASSURED
 MICROPHONE 7 in 1.200 ft lape, spate spoot. ALL UNITS AVAILABLE
ASK FOR BROCHURE 6
HI-FI equioment to suit El\%RYPOKKI
VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE RD.

for all feading makes AMPLIFIERS TUNERS DECKS SPEAKERS MICROPHONES TEST EQUIPMENT SYSTEMS
ALL WITH DISCOUNTS
ALL for Hi-Fi- Stock List Leaflet 16.17 .
IT WILL PAY YOU TO PAY US A VISITI

> QUALITY CAR RADIOS

TRANSISTORS-
 SEMICONDUCTORS

 COMPLETELY NEW 1969 LIST OF 1000 types. Send for your FREE COPY TODAY. (list 36)S.C.R.'s from 5/-

Field Effect Transistors from 9/6
Power Transistors from 5/-
Diodes and Rectifiers from 1/6

GARRARD RECORD DECKS

BRAND NEW All below list price
2025 Mono/Stereo.
3000 DM with 9TAHC
AT60 MK
3500 Mono/Stereo 9TAHC
AP1
AP75
SL55
AP75
SL55
SL65
SL75
$\begin{aligned} & \text { SL95 Mk } \\ & \text { Al }\end{aligned}$

Send for illustrated brochures 16, 17
Complete range of accessories available

Fully
 Illustrated CATALOCUE

COMPLETELY NEW 9th EDITION (1969)

The most COMPREHENSIVE-
CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with 101 - worth discount vouchers FREE WITH EVERY COPY

32 pages of iransistors and semi-conductor devices, valves and crystals.

* 210 pages of components and equipment.

70 pages of microphones, decks and Hi-F

6,500 ITEMS

303 Edgware Road, London, W.2. Mail Order Dept. all types of Components, Organ Dept (01) 723-3008/s 309 Edgware Road, London, W.2. High Fidelity Sales, P A and Test Equipment Recerd Decks(01) 723-6863

[^0]: Scoop PURCHISE Reassoonse

 Bulk purchase enables 13 to offer the follow transformers at these ridiculously low prices, Made by a farnous manufacturer and fully tested and Euaranteed. Charger Trantormers. $0-9-15 \mathrm{~V} 24$. $9 / 6$ each, p, \& $p .2 / 6$. Two for $17 / 6$ poat free. Transhtor 12V at 2A, $12 / 6$ each, p. \& p. $2 / 6$. 6 each, p. \& p.2/6.

 群
 (\%) GLOBE SCIENTIFIC LTD ORPT. PEE,22 CAWOODS YARD,
 MIL STREET, LEEDS 9

