PRACTICAL
 = = CTRDNICS

MARCH 1969

ADCOLA

LEADERS IN PRECISION SOLDERING!

THE RANGE OF ADCOLA SOLDERING INSTRUMENTS INCLUDE MODELS FROM 19 WATTS WITH A WIDE SELECTION OF BITS, COPPER OR LONG LIFE

PENTACOATED. FOR EACH
MODEL PRICES START AT 33/6.

COURTESY OF THORN ELECTRONICS LTD.

FOR A QUALITY SOLDERING INSTRUMENT AT THE RIGHT PRICE, CHOOSE ADCOLA. AVAILABLE AT SHOPS AND DEALERS THROUGHOUT THE COUNTRY.

SEND COUPON FOR LATEST LEAFLET
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE
01-622 0291/3

Branches
207 EDGWARE ROAD, LONDON, W. 2 Têl:: 01-723 3271 Open all day Saturday, eariy closing 1 p.m. Thursday 33 TOTIENHAM CT. RD., LONDON. W. 1 Tel.: 01:636 2605 Open all day, 9 a am. - 6 . .m. Monday io Salurday 152/3 FLEET STREET, LONDON, E.C. 4 Tel:: 01-353 2833 Open all day Thursday, early closing 1 p.m. Saturday

High Fidelity Audio Centres 42 TOTTENHAM CT. RD., LONDON. W. 1

Tel.: 01.5802573 Open all day Thursday, eaily elosing 1 p.m. Saturday

118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01.723 9789 Open all day Sazurday, early closing 1p.m. Thutsolay

ALL MAIL ORDERS AND CORRESPONDENCE T0: 3-15 CAVELL ST., TOWER HAMLETS, LONDON, E.1 Tel.: 01-790 4821

-RADIONIC

LEARN AS YDU HEILD

AT HOME

THE EXCITING WAY

Clear, simple, yersatile, this rugged system can huild almost any electronic circult. Ideal for the experimen ter; the teacher; and the complete beginner, Already used by well over 1,50 schools in the U.K.
Selected by the Councll of Industrial Design for all British Design Centres. Featured in Sound and Television broadcasts.
Beautifully engineered; battery operated; no soldering; no prior knowledge needed. Results guaranteed by our technical department. People say:
"I can only describe the results as brilitant, absolutely brillant."
"Y You have opened up a new world."
" Nothing could paint the plcture clearer than buliding these sets."
"The kit has been used by my son (aged 10) with complete success."
Most impressive-a stroke of genius whoever devised it.'
UNiQUE: Our "No soldering" printed circuit board for superhet portable. Slmply insert components and tighten nuts.
No. 1 Set E7.10.0. 14 Circuits (Earphone)
No. 2 Set Es.e.e. 20 Circuits (Earphone)
No. 3 Set $\$ 13.10 .0$. 22 Circuits ($z^{\prime \prime} \times 4^{\circ}$ Londspeaker Output)
No. 4 Set 18.10 .0 . 28 Circults (incl. E-transistor and refiex superhets) ELECTRONICS KIT: 30 plus circuits $£ 18.7 .0$.
(Prices Post Free)

Full details from:

RADIONIC PRODUCTS LIMITED

 ST. LAWRENCE HOUSE29-3I BROAD STREET, BRISTOL BSI 2HF
Tel. (0272) 25351

RADIO \& ELECTRONIC INSTRUCTIONAL SYSTEM

A No. 4 SET and 6-TRANSISTOR SUPERHET

Theoretical Circuit

Practical Layout

E/605 Light Operated Relay.
Our ' E ' Series of basic electronic circuits is available separately.

MARTIN IS HIGH-FIDELITY
 satisfactory unit assembly system

Abstract

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated moduletype units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims for years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification.

AMPLIFIER SYSTEMS - TUNERS - RECORDERS

ONLY FROM MARTIN
Cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amp for low output pick-ups. Escutcheon panels to suit the arrangement you choose. Tuner is styled to match.

UNITS INCLUDE:

- 5-stage input selector

E Pre-amp tone controls
E 10 watt amp. (3 ohms)

- 10 watt amp. (15 ohms)
- Mains power supply

E F.M. Tuner
Start by sending for leaflets at once
MABTIN ELECTBONISS LTD.

Trade enquiries invited
154/5 HIGH 8TREET, BRENTFORD midDLEsEX. ISLeworth I/61/2

When new units are introduced, they are designed for adding to those produced so far, making it easy and economical to extend arid improve your existing Martin Audiokit set-up. Anyone can assemble Martin equipment with ease and the fore-knowledge that when finished, he will be possessed of a true hi-fi assembly of the very best kind which looks and sounds completely professional in every way-and MARTIN AUDIOKITS remain as ever, the units that have true add-on-ability.

MARTIN ELECTRONICS

154 High Street, Brentford, Middlesex
Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name
\qquad
P.E. $3 / 69$

Build yourself a quality transistor radio

backed by our after sales service!

roamer seven mk iv

SEVEN WAVEBAND PORTABLE SEVEN TUNABLE WAVEBANDSMW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive black and gold cane. Size bi i! stin. Tunsble over both Medium and Long tuning of Luxembourg, etc. All frat grade con-ponente- 7 stages-5 transietors and 2 dlodes, aupersenaltive ferrite rod aerial, fline tone moving coll speaker, also Personal Earplece with switched cocket for private listening. Easy build plans and parta price list, 1/0 (FREE wlth parta)

Total building costs
4.4/8 P. \& P.

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive case with red speaker grille. Slae $61 \times$ $41 \times 1 \frac{1}{2 n} .7$ atagem- 5 tranaiators and 2 dlodes, ferrite rod aerial, tuning condenser, volume control, fine tone moving coll speaker aleo Personal Earpiece with awitched accket for private listenlig. All flrat grade componenti. Eany bulld plans and parts price list 1/0 (FREE with parta).

Total bullding costs
$47 / 8 \begin{aligned} & \text { P. \& } P \text { P } \\ & 3 / 9\end{aligned}$

Total bullding costs $8 \otimes / 8$ P. \&. $_{4 / 6}$ P.

Total building costs

$7 \otimes / 8$ P. \& $_{4 / 6}$ P.

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gllt fltings, aize 7! : 8 ! 11 m . Tunable on Medium and Long waves, two dhort waves, Trawler band plue an extra M.W. band for easer tunjag of Laxembourg, etc. senaitive ferrite rod aerial and telemeople merial for Sbort waves. All top grade componenta. - irangistora and 2 diodes includiog Mero-Aloy R.F. Tranalara, elc. (Carrying plans and parta price list 2/- (FREE With parto). (Perwonal Earplece with awitch mocket for prlvate liatening 5/- extra.)

- Callers aide entrance Stylo Shoe Shop.

Open 10-1, 2.30-4.30 Mon.-Fri. 9-12.30 Sat.

Extre M.W. bend for
egaler tuning of Luxemborg, etc.
Bullt-in ferrite rod wer lal for Medjum and Long Waves.

- Section 22in, cbrome-plated telemcoplc aerial for short Weren-can be andied aod rotated for peak 8.W. llatening. Eocket for Car Aerial. Poweriful puah-pull output. 7 tranalstors and two diodes lincluding Micro-Alloy R.F. Transiators. Famons make $7: 4 \mathrm{ln}$. P.M. apeaker for rich-tone volume. Alr apaced ganged tuning condenaer. Separate on/ofl awltch, volume control, wave change iwitches and taning controm, AtiracGosy to follow fnatructions and diagrama make the Roamer 7 a plearure to buld.

Total buliding costs

Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK

 8 atages- 6 tranalatorn and 2 dioden Covers medium and Long wavee. guality output and also with Personal Earplece with witched mocket for private listening. Two R.F. Stage for extrs boost. High "Q'. Ferrite Roal Aerial. Push-pull output. Handsome pocket size case with glit fittlngi. Sine b; $\because 4 \times 2 i n$. parth).

Total building costs
69/6 ${ }^{\text {p. }{ }_{4 / 3}^{\text {p. }}}$

RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD. Tel.: Bedford 52367
I enclose $£ . ~ p l e a s e ~ s e n d ~ i t e m s ~ m a r k e d ~$
ROAMER SEVEN \square ROAMER SIX \square TRANSONA FIVE \square SUPER SEVEN

POCKET FIVE MELODY SIX
Parts price list and plans for.
Name.
Address.....................
P.E. 3-69

SINCLAIR Z.12 12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP

12 watts R.M.S. continuous sine wave output.

This is the recommended amplifier for those requiring greater power than that provided by the IC.10. This eight transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $Z .12$ performs satisfactorily from a wide range of voltages and it can easily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $Z .12$ to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it:

[^0]
89/6

SINCLAIR STEREO 25

De Luxe Pre-amp and Control Unit for IC. 10 or Z.12 Stereo assemblies. Switched inputs for P.U (equalised to R.I.A.A. curve from 50 to $20,000 \mathrm{~Hz}$ $\pm 1 \mathrm{~dB})$, Radio and auxilliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/ Treble/Volume/Balance/Input are solid aluminium. Size- $6 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \frac{1}{2}$ in plus knobs. Built, tested and guaranteed.
£9.19.6

SINCLAIR PZ4
 STABILISED MAINS POWER SUPPLY UNIT

Heavy duty transistorised power supply unit to deliver 18 V d.c. at 1.5 A . Designed specially for use with two $Z .12$ or $1 C .10$ Amplifiers together with Stereo 25. Built, tested and guaranteed.

SINCLAIR MICROMATIC

The world's smallest radio

This fantastic little British pocket receiver is available in kit form to build for yourself or ready built, tested and guaranteed. Its range and selectivity must be experienced to be belleved; its power and quality everything you could want. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radıo 1 easier; in fact, you will find your Micromatic performing where other sets cannot be heard at all. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.

- High quality mag. netuc earpiece
- Choice of many stations
- Plays anywhere

Mallory Mercury Cells RM. 675 (2 reqrd.) each $2 / 9$

SINCLAIR 0.14

the most challenging loudspeaker design in years

It is more than a matter of saving money when you choose the Q.14. This is the loudspeaker that delights experts and critics alike for its find forward quality, its clarity and exceptional adaptability. Designed on original lines and from unusual materials. the Q .14 will easily carry up to 14 watts and has very smooth response from 60 to $16,000 \mathrm{~Hz}$. Size- $9 \frac{3}{2}$ in square $\times 4 \frac{3}{4} \mathrm{in}$ deep. with matt black finish and solid aluminium bar embellishment. Input impedance- 8 ohms.
The 0.14 costs about a quarter of what you might expect to pay for a good stereo speaker system. A pais used with IC. 10 s or $Z .12 \mathrm{~s}$ and the Stereo 25 will give you superb high fidelity to stand comparison with far costlier equipment.

Try the 0.14 in your own home without delay. If it does not delight you, send it back and your money including cost of postage
£7.19.6 will be refunded in full.

GUARANTEE
Should you not be completely satisfied with your purchase when you recerve it from us, your money will be refunded in full at once and without question. Full service facillties available to all purchasers.

YOUR GUIDETO
 ABETTER HOME LIN 1969

Packed with ideas and step-by-step instructions for a wide range of attractive home improvements indoors and out.

Features include:

LAYING A DRIVE	\square	CENTRAL HEATING
DECORATING MADE EASY	\square	KEEPING OUT THE RAIN
KNOW-HOW ON DRAINS	\square	GET DOWN TO FLOORS
A LOFT TO LIVE IN	\square	KITCHEN FITMENTS
FIXING FENCES	\square	POWER TOOLS

Get yours at your Newsagents today 2/6

VALVES SAME DAY SERVICE NEW! TESTED! GUARANTEED!

SET- $\begin{aligned} & \text { 1R5, } 185,1 T 4,384,3 V 4, \text { DAF91, DF91, DK91, DL92, DL94 } \\ & \text { Set of } 4 \text { for 17/6, DAF96, DF96, DK96, DL96, }\end{aligned}$

				1	EL	910	PCL56	8/6		
1	716	19		5)-	EL	$4 / 9$		8/6	UC	6/6
1HSGT	$7 / 8$	20F'2 13/6	DL	5/9	EL	5/-	P	15/-	UCF80	
1NBC	$7 / 9$	$20 \mathrm{Ll} \quad 16 / 9$		9	EL0	5/-			UCH42	9/1
1 Rs	$5 / 6$	20P3 11/9	DL9	$7 /$	EM8	5	PL36	$9 / 6$	UCH8	d/
185	$9 / 8$	20P4 18/6	DY8	5/9	EM81	$6 / 9$	PL81	$7 / 8$	UCL8	7
1 T 4	2/9	25U4GT11/6	DY87	5/9	EM84	6/8	PL82	6/6	UCL8	11/6
384	$5 / 9$	30 Cl - 6/9	EABC8	6/6	CM87	7/6	PL83	$8 / 6$	UF41	,
3 V 4	5/9	$30 \mathrm{Cl} 513 /-$	EAF42	8/8	EY5 1	71-	PL84	6/8	UF80	1
$5 \mathrm{U4G}$	$4 / 6$	$30 \mathrm{Cl} 1718 / 6$	ER91	2/8	EY8	6/3	PL500	12/-	UF85)
$5 Y 8 \mathrm{GT}$	5/9	30 Cl 18 9/-	EBC3	$7 / 6$	Z40	7/6	PL504	12/6	UF'89	
\$24G	$7 / 6$	30F5 13/6	EBC41	8/3	EZ41	7/6	PL508	15/-	UL41	/
8/30L	$12 / 6$	$30 \mathrm{FLI} 18 / 6$	EBF80	8/-	EZ80	4/6	PL802	14/6	UL44	20/-
6ALD	$2 / 8$	30FL12 14/6	EBF89	6/8	EZ8	4/9	PM84	$7 / 8$	UL8	1
6AM6	$8 / 6$	30FL14 10/6	ECC8	$3 / 9$	Gz32	$8 /$	PX2	10/6	UM8	$7 /$
6AQS	4/9	30 Ll 6 -	CC8	18	KT6	8/	PY32		UY41	$7 /$
6AT6	$4 /-$	OL15 14/-	C8	71	KT66	16/	PY33	10/	UY85	5/8
6AU6	$4 / 8$	0L17 13/-	CC84	$5 / 6$	ME1	$15 /$	Y81	5/8	$V \mathrm{~V}^{4} \mathrm{~B}$	10/1
6BA6	$4 / 6$	30P4 12/-	CC85	8/-	N78	14/9	PY88	$5 /$		
6BE6	$4 / 8$	$30 \mathrm{P} 1211 / 9$	ECC80	9/6	PabC	71-	PY88	$5 / 9$	Z77	$8 / 6$
6BJ6	$71-$	30P19 12/-	ECF80	7/-	PC86	$9 / 6$	PY88	6/8	C107	
68W	18/-	$30 \mathrm{PL} 112 / 6$	ECF82	6/8	PC88	$9 / 6$	PY800	6/9	AC12	2-
6 CC 4	$2 / 9$	$30 \mathrm{PL13} 14 / 6$	ECH35	6/-	PC96	$8 / 6$	PY80	6/9	AD 140	7/6
6 F 13	$8 / 6$	30PL14 15/-	ECH42	10/6	PC97	$8 / 6$	R19	6/6	AF102	18/
6F14	9/-	35L6GT 81-	ECH81	5/9	PC90	8/3	R20	12/6	AF115)
81F23	18/6	36 W 4 4/6	ECH84	$8 / 9$	PCC8	$8 /$	TH2	$9 / 9$	AFl16	81
${ }^{6 K} 7 \mathrm{C}$	$2 / 6$	35Z4GT 5/-	ECLS0	8/9	PCC8	6/6	25	13/-	AF117	
$6 \mathrm{K8G}$	4/8	6063 12/6	ECL8	819	PCC8	$9 / 9$	U26	12)	AF124	
$6 \mathrm{L18}$		AZ31 9/-	ECL8	91	PGC88	10/6	U47	18/6	F125	
6V6G	816	8729 12/6	ECL8	$8 / 3$	PCC18	9/9	49	$18 / 6$	12	71-
${ }^{8} \mathrm{~V} 6 \mathrm{G}$	616	CCH35 10/-	EF39	$3 / 8$	PCF8	$6 / 9$,	4/6	AF12	
8 XX	$8 / 6$	CLa3 18/6	EF41	9/6	PCF82	6/-	0.8	3/6	C26	
$6 \times 5 \mathrm{G}$	$5 / 9$	DAC32 7/8	EF80	19	PCF86	$0 / 3$	U191	12/6	OC44	
786	$10 / 8$	DAF91 4/3	EF85	$5 / 8$	PCF800	18/6	U301	13/6	1	
787	7/-	DAF96 8/-	EF86	8/8	PCF801	7\%	U801	18/-	C71	\%
$7 \mathrm{C6}$	$6 / 9$	DF33 7/9	EF89	5/8	PC F802	916	UABC80	8/8	C72	1
7 Y	6/6	DF91 2/8	EF91	$8 / 6$	PCF805	9/-	UAF42	$9 / 6$	C75	16
101	15/-	DF96 6/-	EF94	$4 / 8$	PCF80	1/6	UB41	6/8	81	18
$10 \mathrm{P13}$	15/6	DH77 4/-	EF183	6/-	PCF808	0/6	UBC41	7/8		
12AT7	819	DH81 10/9	EF184	$5 / 8$	PCL82	7-	UBC8	71-	C88	
12AU6	419	DK32 7/6	EH90	6/6	PCL83	9)	BF80			
12AU7	4/9	DK91 5/6	EL33	$8 / 8$	PCL84	7/6	UBF89	6/8	OC82D	$2 / 6$
12AX7	4/9	DK92 9/3	EL34	$9 / 6$	PCL85	8/8	UC92	5	cl	

READERS RADIO (P.E.)
85 TORQUAY GARDENS, REDBRIDGE, ILFORD, E88EX.

The most accurate pocket size CALCULATOR

 in the worldThe 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send 82/6 for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE.2I)
54 Dundonald Road, London, S.W. 19

FOLLOW THE LEADERS

RKING SIZE
 QUALITY－TESTED
 PAKS

．10／－
20 Red Apot AF Trans．PNP
10／－
16 White Spot RF Trans．PNP
ANOTHER CROWNING SUCCESS－
THIS MONTH＇S BARGAIM PAKS
all fully tested and guarahteed satisfaction
sillcon Rects． 3 A $100-400$ PIS 10 A silicon Rects． 100 PIY
0 Cl 140 Trans．NPN Nwitching OC140 Trans．NPN Witchin
st1 Trang 2 S 303 PN
Zener Diodes 250 m W
200M c／s．Al．Trans．NPN BS＇゙26／27
Zeder Dloden 400 mW 33Y 5% Tol．
High Current Trans．OC42 Eqvi．
2 Power Transistors 1 OC26 1 OC＂35
Silicon Rects． 400 P1V＇ 250 mA
0C75 Transistors Mullarel Typ
Power Trans．OC20 100V
OA202 Sill．Dioles 8ub－min．Markei Lou＇Nolse Trans．NPN 2N929／30
O A81 Diodes
4 OC72 Tranaiators
Oc77 Transistors
4 SII．Rects． 400 PIV 500mA
5 GET884 Trans．Eqvi．OC4
5 GET883 Trant．Eqve．OC45
2 2N708 Sil．Trans． $300 \mathrm{Mc} / \mathrm{s}$ ．NPN
3 GT41／45 Gerni．Trans．PNP
3 GT31 LF Low Nolse PNP Trans．
 8 OA95 ficrm．Diodes Sub－mid． OC22 Power Trans，Germ
${ }^{2}$ OC25 Power Trans，Germ
4 OC72 Trans．
4 AC128 Trans．PNP High Gain
2 AC127／128 Comp．pair PNP／NP
S 2N1307 PNP Switching Trans．
0 CG62H Germ．Diodes Eqvi．OAT1

FRES $\begin{aligned} & \text { One 10／－Pack of your own } \\ & \text { choice fret with order }\end{aligned}$

 value 24 or over．12 Asborted（term．Diodes Markel
12 Aseorted（ierm．Diodes M
4 AClico Germi．PNP Trans．．．．．
3 AFI17 Trans．
7 Oc81 Type Trans
3 OC171 Trans．
5 2N2926 Sil．Epoxy Trans．
OC71 Type Trans．
（018，MO12，etc． 1
225701 sil．Trans．Texas NPS
3 12V Tener 400 mW
210 A 600 PIV Ail．Reacts． 1845 R
1 BC108 Sil．NPN High Gain Trans
21000 PIV \＆il．Rect．1－5A R63310 A
3 BSY95A Sil．Trans．NPN $900 \mathrm{Mc} / \mathrm{s}$ ．．
3 OC200 Sil．Trans
2 gil．Power Rects．BYzi3
1 SIt．Power Trans．NPN 100 Mc
TK201A
＊Zener Diodes 3．1sV Bub－min．
（ 2N1132 PNP Epitaxial Planar Sil．
3 2N697 Epitaxial Planar Trans．Sil．
1 Uerm，Power Trans．Eq
2 SH．Trans． $200 \mathrm{Mc} / \mathrm{s}$ ． 60 Veb ZT83／84．．．
1 Sil．Planar Trans．NPN $100 \mathrm{Mc} / \mathrm{s}$
B8X25
1 Unljunction Trans．2N2160 TO－5
2 Sil．Rects．5A 500 PIV Stud Type
2 Germ Powter Trans．OC28／29
1 10A Bll．Stud React． 800 PIV
2 2 N 2712 Sil．Epoxy Planar HFE 22 ．
8 BY 100 Type Sil．Rects．．．．．．．．．．．．．．
25 8il．and Germ．Trans．Mixed．
marked，New
2 GET880 Low Noise Germ．Trans．
1 AF139 PNP High Freq．Trans．
3 NPN Trans． 1 ST141 \＆ 2 ST140
4 Madt＇s 2 MAT100 \＆ 2 MAT120．
3 Madt＇s 2 MAT101 \＆ 1 MAT 121 ．
4 Oc44 Germ．Trans，AF
${ }_{1}$ 2N 3906 Sil．PNP Trans．Motorola
CADMOM CELLS
ORPG0 ORPG1
$8 /-$ each
$8 / 6$ each
MANY NEW PAK ITEMS
FULL RANGE OF ZENER DIODES
VOLTAGE RANGE E－16V
400 mW （DO． 7 Case）
1．5W（Top－Hat）

8／8 each state voltage required．Full narked．Please OAZ Mullard Type Z．Range of sTC．I．R．Texas and IN types．
TRANBISTOR EQVT，BOOK
52 pages of cross references for trans．and diodes． typea include British，European，American and Japanesc：Specially Imported by BI－PAK

 2 N 3820
MPF105．

INTEGRATED CIRCUITS

Our price $12 / 6$ each 3 off 11／－pich．Large Qts
FAIRCHILD EPOXY TO－5

8 Land Buffer

PRINTED CIRCUITS EX－COMPUTER
 tors ati componente， 10
boarde give g guaranteed 30
trans aml 30 diontes．Our price 10 boards 10／－．Plus

CADMIUM CELLS

$\begin{array}{lll}\text { ORP } & \text {（i0 } & \text { OR } \\ \text { ORP12 } & 8 / 6\end{array}$
SIL．G．P．DIODES $300 \mathrm{~mW}, 30 \ldots 10$ $\begin{array}{lr}\text { 25PIV（Min．）} & 100 \\ \text { Sub－Min．} \\ \text { Fully Teated } 1,000\end{array}$

500 CHESHAM HOUSE 150 REGENT STREET LONDON，W． 1

Pak
$\$ 11$
$\mathbf{N 1 2}$
13
814
815
$\$ 11$
$\$ 17$
818
819
820

Qty．
Degeription
Power Transistors $1 \times$ AD140， 1 AD1 $49 . .$.
Dual Transistor $200 \mathrm{M} / \mathrm{Cs} 25 \mathrm{VcB}$ NPN TO－ 2 ． 2. Dual Transistor $200 \mathrm{M} / \mathrm{Cs} 25 \mathrm{VeB}$ NPN Photo Diode Texas 18701＝IN2175 Photo Diode Texas
S．C．R．s $3 \mathrm{Amp} 1 \times 400$ PIV 1 N 100 PIV sil．Trans．BC108 NPN
sil．Rectifers $2 \times$ BY126， $2 \times$ BY 127 silicon Unilateral ：witch（8U8）D13D1 \＆Data silicon Alloy Trans．PNP BCY26－27 AF silicon Rectifters 3Amp 500 PIV Stud Type Price
$10 /=$
$10 /=$
$10 /-$
$10 /=$
10%
$10 /=$
$10 /=$
$10 /=$
$10 /-$
10%
 ARD gAVE EVEN MORE ON YOUR BI－PAE BARGADE．

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS
 NEW BI－PAK UNTESTED SEMICONDUCTORS

Satisfact
Pak No
C1 120 Glass Suh－min．（ieneral Purpose Germanlum Dioles．．．．10／ U2 f0 Mixel Germanium Transistors AF／RF $153 \quad 75$ Germanium Gold Bonded Dlodes sim．OA5，OA47 $\overline{[4} \quad 40$ Germanlum Transistors like OC81，AC128 \qquad
\qquad $15 \quad 60200 \mathrm{~mA}$ Sub－min．Sil．Diodes
L6 40 Silicon Planar Transistors NPN aim．BSY95A，2N706 1\％ 16 silicon Rectithers Top－Hat 750 mA up to 1000 V
$\tilde{j}_{0} \mathrm{nil}$ ．Planar Diodes 250 mA OA／200／202
TH9 20 Mixed Volts 1 watt Zener Diories．
U11 30 PNP Nilicon Planar Transistor TO－5 aim．2N 1132 012 12 Nilicon Rectifiers EPOXY BY126／127． C13 30 PNP．NPN Sil．Transigtora OC200 at 2N104 U14 150 Mixed silicon and Germanium Dloles U15 $\quad 30 \mathrm{NPN}$ Silicon Planar Transistors TO－5 adm．2N697 $\overline{\text { Eil }} \quad 10$ 3．Amp Silion Rectifiers Stud Type up to 1000 Pl V17 30 Ciemanium PNP AF Translatora TO－5 like ACY 17－22． U18 86．Amp Silicon Rectifiers BYZ13 Type up to 600 PIV U19 $\quad 30$ Alicon NPN Transistors like BC108
$120 \quad 12 \quad 1.5$－amp Stilicon Rectiflers Top－Hat upto 1,000 PFV
i＇21 30 A．F．Germanium alloy Transistors 2G300 Series \＆OC7t 1 ＂22 10 1－amp Class Min．Sllicon Rect iflers High Volts L＇23 30 Madt＇s like MAT Series PNP Tranglators 2420 （termanium l•anp Rectiffers（iJM up to 300 PIV

\qquad F20 30 Frat Switching Silicon Diodes like 1 N914 Micro－min 10／－
 1299101 amp sCR＇s TO－5 can up to fi0n PIV CRSI／25－600 t30 15 Plast ic Nllicon Platar trans．NPN 2N2924－2N292t． 131 20 Ni］Planar NPN trans．Iow nolse Amp 2N3707． $\sqrt{132}$ 25 Zener dionles 400 mW ［007 casc mixed Vita．3－18．．

Corte Nos．mentioned above are glyen as a guide to the type of Code Nos．mentioned above are glven as a guite to the type of
device in the Pak．The devices themselves are nornally unnarked

ADI6｜NPV ADI $62_{P N F}$ MATCHED COMPLEMENTARY PAIRS OF GERM．POWER RANBISTORS．
Ampliflers and Rad output stages of OUR LOWEST PRICE OF $12 / 8$ FEW BILICON RECTIPIERA TESTRD
PIV $400 \mathrm{~mA} 750 \mathrm{~mA} 1 \cdot 5 \mathrm{~A} \quad 3 \mathrm{~A} \quad 10 \mathrm{~A}$

PIV 400 mA	750 n	$1 \cdot 5 \mathrm{~A}$	3A	10A	30.4
5010 d	1／－	1／8	2／8	4／8	9／6
100 1／－	1／8	8／6	3／3	4／8	15／－
$2001 / 8$	1／0	2／6	4／－	4／8	201－
300	2／8	$3 / 9$	4／6	6／6	28／－
400 2／－	218	4／－	5／6	716	25／－
$500-$	3／－		6／－	$8 / 6$	301－
$6002 / 8$	$3 / 8$	4／8	$8 / 9$	91－	87／－
800	$8 / 6$	4／8	7／6	11／－	40／－
1，000	$5 /-$	6／－	9／8	12／6	50／－
1，200	8／6	$7 / 6$	11／6	15／－	

HIGH POWER SILLICON PLANAR THANBISTOR YCB 100 le 4 A IT． $15 \mathrm{M} / \mathrm{cs}$ VCE100 Ptot．40W
VEB8 $\mathrm{hFE}(\mathrm{min}$.

rice $15 /-$ each

60

PLEASE MOTE．To avoil any further Increased Postal Charges to our Customers and enable us to keep our＂By Return Poatal service＂which is second to none，we have re－organized and atreamlineal our Despatch Order Department and we now request you to send all your orders together with your remittance，direct to our Warehouse and Despatch Departnient， postal address：BL－PAX 8EMICONDUCTORS，Denpatch Dept．，P．O．BOX 8 ， WARE，HERTS．Postage and packing atill 1／－per order．Midimum

A Heathkit model for Every Interest . . . Hi-Fi•Radio•Test and Service • Amateur

Cabinet walnut or teak finish £3.10.0 extra

Kit K/AR-17
£39.0.0
P.P. 10/6

Low-cost FM Stereo Receiver, AR-17

28 transistor, 7 diode circuit, 14 watts music power, 10 watts r.m.s. from $25-35,000 \mathrm{~Hz}(\pm 1 \mathrm{db}$. Automatic stereo indicator light. Adjustable phase control. Complete front panel controls. Flywheel tuning. Factory assembled and aligned FM front-end. Circuit board assembly. Compact $10 \mathbf{z}^{\prime \prime}$ deep $\times 3^{\prime \prime}$ high $\times 12^{\prime \prime}$ wide. Use free standing with Heathkit cabinet optional extra.

Quality FM Stereo Receiver, AR-14
Kit K/AR-14
£54.0.0
P.P. 13/6

31 transistor, 10 diode circuit can deliver $\pm 1 \mathrm{db}, 15$ to $50,000 \mathrm{~Hz}$ at 10 watts per channel (20 watts total) 15 watts per channel 1 HF music power (30 watts total). Wide-band FM/FM stereo tuner plus two preamps, two power amplifiers. Compact only 37" high $\times 15 \frac{1^{\prime \prime}}{}$ wide $\times 12^{\prime \prime}$ deep. Install in a wall, free standing or in Heathkit cabinet optional extra.
Cabinet walnut or teak finish $£ 4.10 .0$ extra $210-240 \mathrm{~V} 50 \mathrm{~Hz}$ a.c.

Low-cost FM Mono Receiver, AR-27

Kit K/AR-27
£22.10.0
P.P. 10/6

Cabinet walnut veneered $£ 3.10 .0$

13 transistor, 6 diode circuit. 7 watts music power. $-1 \mathrm{db}, 25$ to $60,000 \mathrm{~Hz}$ at 6 watts. Input connectors for phono and aux. Complete front panel controls. Flywheel tuning, factory prealigned $F M$ tuner. Circuit board assembly. Compact bookshelf size. Install in a wall, free standing or in cabinet optional extra. 210-240V 50 Hz a.c. operation.

ALL MODELS AVAILABLE

Solid-State Volt-ohm-Milliammeter, IM-25
9 a.c. and 9 d.c. ranges 150 mV up to $1,500 \mathrm{~V}$ f.s. 7 resistance ranges, 10 ohms centre scale with
Kit K/IM-25 multipliers $\times 1, \times 10, \times 100, \times 1 k, \times 10 k, \times 100 \mathrm{k}$ and $\times 1$ Meg. . . . measures from 1 ohm to $1,000 \mathrm{Mohms}$.
£48.10.0 11 current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale. 11 Mohm input impedance d.c. 10 Mohm P.P. 10/6 input impedance a.c. $6^{\prime \prime} 200 \mu \mathrm{~A}$ meter. Internal battery power or $120 / 240 \mathrm{~V}$ a.c. 50 Hz supply. PCB construction.

Solid-State Volt-ohm Meter, IM-16

Kit K/IM-16
£28.8.0
P.P. 10/6

Solid-State Low Voltage Power Supply, IP-27

Kit K/IP-27
£46.12.0
P.P. 10/6

8 a.c. and 8 d.c. ranges $0-5 \mathrm{~V}$ to $1,500 \mathrm{~V}$ f.s. 7 ohmmeter ranges with 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 k, \times 10 k, \times 100 k$ and $\times 1 \mathrm{Meg} . . .11 \mathrm{Mohm}$ input on d.c., 1 Mohm on a.c. Internal battery power or $120 / 240 \mathrm{~V}$ a.c. 50 Hz supply.

READY-TO-USE PRICES ON REQUEST

Make your choice from the latest 36 page HEATHKIT Catalogue . . .it's FREE

STEREO RECORD PLAYER, SRP-1

Two built-in speakers Suitcase portability Kit £28.6.0 P.P. 10/6

CAR RADIO, CR-1
High performance at low cost. 12 v pos. or 12 v neg. operation. 4 watts output
Kit (incl. spkr.) £14.12.0 P.P. 4/6

STEREO TAPE RECORDER, STR-1
Built-in speakers. Many features unobtainable elsewhere at this price Kit £58.0.0 P.P. 10/6

MANY OTHER INSTRUMENTS FOR TEST AND SERVICE IN RANGE

A wide range of speaker systems including:

BERKELEY
Slim-line
SPEAKER
SYSTEM
Kit \&21.4.0 P.P. 13/6

See the FREE

Catalogue for yourself Today!

4-BAND RECEIVER, GR-64E

Cover $1 \mathrm{MH} / \mathrm{z}$ to $30 \mathrm{MH} / \mathrm{z}$ plus $550 \mathrm{kH} / \mathrm{z}$ to $1620 \mathrm{kH} / \mathrm{z}$ AM broadcast band. Built-in speaker. Handsome low-boy styling. Kit £22.8.0 P.P. 9/-
和

PORTABLE RADIO UXR-1
Kit coloured case
£12.8.0 P.P. 4/6
Kit leather case
£13.8.0 P.P. 4/6

PORTABLE RADIO UXR-2
In black or natural leather
Kit £15.10.0 P.P. 6/-

SEE HEATHKIT MODELS

in LONDON
233 Tottenham Court Road

BIRMINGHAM

17-18 St. Martin's House, BULL RING

GLOUCESTER

Factory and Showroom:
Bristol Road, GLOUCESTER

 IT'S A MUST OUR CATALOGUE JOIN THE THOUSANDS OF SATISFIED CUSTOMERS SEND NOW FOR

OUR NEW 1968/69 illustrated catalogue NOW AVAILABLE
 (send 2 -in stamps for your copy)

Catalogue contains prices and details of Amplifiers - $\mathrm{Hi}-\mathrm{Fi}$ Tuners - Loudspeakers -Pick-ups - Playing Decks Microphones - Test Meters Hand Tools - Valves Soldering Irons - Tape Recording Accessories, etc.

ALPHA RADIO SUPPLY CO
103 Leeds Terrace, Leeds 7. Tel. 25187

By JOHANSEN. Postage $1 / 6$
PRACTICAL POWER-SUPPLY CIRCUITS by Shields. 24/-. P. \& P. I/6.
ELECTRONIC MUSICAL INSTRU. MENT MANUAL, new 5th ed. by Douglas. 55/-. P. \& P. 2/-.
COLOUR T.V. PAL SYSTEM by Patchett. 40/-. P. \& P. 1/6.
DESIGNERS GUIDE TO BRITISH TRANSISTORS by Kampel. 25/. P. \& P. 2/-.
F.E.T. CIRCUITS by Turner. 25/-. P. \& P. 1/6.
ABC': OF COMPUTER PROGRAMMING by Lytel. 18/-. P. \& P. $1 / 6$.
UNDERSTANDING ELECTRONIC
TEST EQUIPMENT by Risse. 30/-. P. \& P. 1/9.

HI-FI YEAR BOOK 1969 ED. 15/-. P. \& P. I/6.

RADIO COMMUNICATIONS HANDBOOK by R.S.G.B. 63/-. P. \& P. $4 / 6$.
BASIC THEORY AND APPLICATION OF TRANSISTORS by U.S. Army. $14 / 6$. P. \& P. I/6.

CONTROLINSTRUMENTMECHAN. ISMS by Warren. 40/-. P. \& P. $4 / 6$
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station) Phone 0l-437 4560

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with thting bracket and 4 element grid refectors.

Loft Mounting Arrays, 7 element, 37/6. 11 element, 45/-. 14 element, 52/6. 18 element co/-. Wail Mounting with Cranked Arm 7 element, $60 /=.11$ element, $67 /-$. 14 element, $75 /-$. 18 element, $82 / 6$. Mast Mounting with 2 tn . clamp. 7 element, $42 / 6 ; 11$ element, $55 /-\mathrm{i}$ 14 element, $62 /$; 18 element, 70/-. Chimney M2/ti 11 element, $80 /-\mathrm{i}$ i 14 element, $87 / \mathrm{s} ;$ is element, 72/f; 11 eiement, $80 /$-i 14 element, $87 /$; is element. 951-- Lomplete assembly instructions with every
unit. Low Loss Cable, $/ \mathrm{C}$ yd. U.F.F. Pre amps from $73 /$. State cleariy channel number requited on all orders.

BBC•ITV AERIALS

BBC (Band 1). Telescople

loft, $25 /$-. External $\mathrm{S} / \mathrm{D}, 30 /-$
IIV (Band 3), 3 element lort array, 301-0 5 element. 40\% 3 element, $47 \mathrm{c}_{\mathrm{g}} 5$ element 58 O Combined BBC/ITV. Loft $1+3,41-; 1+5,50 /-; 1+7$ $1+5$, $7 / 1 /$; Chimney $1+3$, $67 / 6$; $1+5,75 /-$ VFF translistor pre-amps,

COMBINED BBCL-ITV-BBCZ AERIALS $1+3+9,70 / 1+5+9,80 \% 1+5+14,80 /$ $1+7+14,100 /-$.
leaset a a
F.M. (Band 2). Loft $\mathrm{S} / \mathrm{D}, 15 /-$, "H", 32/6, 3 element, $55 /-$-, Extemal units avalable. Co-ax. cable, 8d. yd. Co-ax. plurs, $1 / 4$. Ourlet Doxes, $5 /-$ Diplexer Crossover Boxes, 13/F. C.W.O. or C.O.D P. \& P. 5/. Send 6d. stamps for illustrated lista. callers welcome
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)

27 Central Parade, Now Addington Surray-CRO-OJB

> Bargain-Car Radios. Our Price 9 gns. Nega tive or positive earth (switched) fully transistorised ($12 v$) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-

Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers' $49 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP Frequency response 20-20.000 c/s output 91-3 stereo compatible cartridges, new in 7 mv tracking pressure 2 grammes ± 0.5 sealed manufacturers' cartons $22 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. grm. Fully guaranteed. Price 85/-p/p free.

BASF TAPE 25% OfF

$5^{\prime \prime}$	600 t.	$14 /-$	900 ft.	$19 /-$	1200 ft.
$30 /-$					
$57^{\prime \prime}$	900 ft.	$19 /-$	$1200 \mathrm{ft} .24 /-$	$1800 \mathrm{ft} .39 /-$	
$7^{\prime \prime}$	$1200 \mathrm{ft} .24 /-$	$1800 \mathrm{ft} .33 /-$	$2400 \mathrm{ft} .57 /-$		

P. \& P. 2/- per reel.-over $£ 5$ FREE

KELETRON HI-FI SPEAKER

 K12TC-12|n. 12 wattOffers an exceptionally smooth and extended response, with very low levei of distortion from the specially designed twin diaphragms.
Frequency Response: $\mathbf{3 0 - 1 6 , 0 0 0 H z}$.
Impedance: $\mathbf{1 5 - 1 6 0 H m}$
OUR SPECIAL PRICE
PLUS P. \& P. 6/6
97/6

BARGAIN - Speakers, HI-FI - The Baker Selhurst Stalwart. 12 in . round, 15 watt rating 12,000 lines gauss, 15 ohms, response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solld aluminium chassis. Our price £5.9.s.

Brand new, p/p 6/6

OULCI HI-FI UNITS

The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price.
Amplifiers : 207 and 207M. Tuners: FMT7 and FMT7s. SEND NOW FOR FULL DETAILS

Model AD76K. Diamond Stereo LP Stylus
TRIO Stereo Moving Magnet Cartridge

The greatest HI-FI Budget system to-daycan't be beaten - price or quality anywhere -look at these great features-then compare. Teleton F200C tuner amp. AMFM with multiplex decoder and A.F.C. $-2 \times 5 w$ channels R.M.S. Bass Volume Treble Balance controls, a truly outstanding unit Garrard SP 25 Mk II Transcription deck SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridge
Plinth and Perspex cover

316
70
$£ 750$

Exclusively offered by WALDON at the remarkably low price of 63 gns.

> E.M.I. HI-FJ SPEAKERS

SET 450: 13×8 with two built-in tweeters and cross-over unit. Our Price 65/6, 3 or 15 ohm , $10 \mathrm{w}, 40-13,000 \mathrm{~Hz}$.
SET 850 : $6 t^{\prime \prime}$ bass plus $33^{" 1}$ tweeter and cross-over unit. ohm, $10 \mathrm{w}, 65-20,000 \mathrm{~Hz}$. 79/6.
SET 250: 5^{*} heavy duty bass olus $3^{" 1}$ tweeter and cross-over unit. $8 \mathrm{ohm}, 6 \mathrm{w}, 80-20,000 \mathrm{~Hz}$. $65 / \mathrm{F}$.

Add 5/5 p/p for each spoaker set

EXCLUSIVE PURCHASE! PORTABLE AMPLIFIER
UNIT
By well kuowin
Britloh Maker
A luxury unit
price. Only

Designed as a Telephone Amplifier but can be used in inany different ways - a booster amplifier for transistor radios, a baby nlarm, intercom, paging systent, etc., ete.
High gain four transistor amplifier unit housed High gain four transistor amplifier unit housed il athract facing 3^{v} high fux P.M., speaker covered by neat plastic grille. Fitteil 3.5 mn jack wocket inyl Operates on standard PP6 or VT6 baltery. Supplied complete with telephone pick-up induction coil fitted suct lon pad, lead and 3.5 mm jack plug.

Our Special price $35 /=\begin{gathered}\text { P. \& } \\ P^{P}\end{gathered}$

Or as above with 3.5 unt plug and DLRō unit fur use as sensitive nicrophone for baby alarms, communication eystems, etc. Will operate over distances of up to 200 ft onne

Batteries and flex not included)

BRAND NEW 3 OHM LOUDSPEAKERS

 6in.14/-; 61im. 18/8; 8in.27/-; $7<4 \mathrm{in} .18 / 6 ; 10<6 \mathrm{in}$. 27/6. E.M.1. 8 init. with high tux magnet $21 / \mathrm{c}$, F.M.1. $13!$ 8in. with high flux ceranil magnet $42 /-(15$ ohin $45 /-)$. E.M.1. 13 , 8 in . With two inbuilt tweeters and crossover network. 3 or 10 ohms 4 gar$10 \& 12 \mathrm{in} 3 /$.6 per вpeaker
BR\& $12 \mathrm{in} 3 /$.6 per 日peaker $H / 1$ Speakers, 3 in 15 ohns. By well-known British maker. Now with Hi Flux ceramic ferrobar magnet assenbly. \&5.10.0. P. \& P. $5 /-$. (iuitar Models: 25w. 86; 35w. \&8.
E.M.I. 3 hin. HEAVY DUTY TWEETERS. Poweriul ceramide ruagnet. Available in 3 or $\$$ ohms 15:- each; 15 ohtus 18/6 each. P. \& P. $2 / 6$.
12in. "RA" TWIN CORE LOUDSPEAKER. 10 watts peak handling. 3 or 15 ohm, $35 /$ /. P. dy P. $3 / 6$.
3th. 12/6; 7 ; 4 in. 21/w. P. \& P. 2/- per speake
VYAAIR AND REXIRE SPEAKERS AND CABINET FABRICS app. 54 in. wide. tsually $35 /-y$ d., our price $13 / 6$ yd. length. P. \& P. $2 / 6$ (min. 1 yd.). s.A.E. for samples.

LATEST COLLARO MAGNAVOX 363 STEREO TAPE DECX. Three speeds 4 track, takes up to Tin. spools. 216.0.0. Carr. 10/-.

QUALITY PORTABLE TAPE RECORDER CASE. Daal Purposa Bulk Tape Eraser and Tape Head Demagnetineor $35 /$ /- P. \& P. 3
ACOS CRYSTAL MIKES. High inip. for lesk or hand use.
Higb eengltivity, 18/6. P. \& P. 1/6.
ACOS HIGH IMPEDANCE CRYSTAL STICK MISES. ACOS HIGH IMPEDANCE
OUR PRICE $21 /-P$ \& P. $1 / 6$
CARBON MIKE INSERTS. Hrand New. 2jin. dit. 5/P. \& P. 1/6

MEW S.T.C. TYPE 25 MINLATURE RELAYS13 volt. 4 djp, c/o contacts. 1 amp rating. Coil
resiatance 185 ohme. size approx. $9 \times 1 \frac{1}{8} \times 1 \frac{1}{2} \mathrm{n}$. high. resistance 185 ohms. ${ }^{\text {si }}$
10/- each. P. \& P. $/ 6$.
Also ache similar to above but coil resistance 5,800 Aho aome solt operatlon. 8/- each. P. \& P. $1 / 6$.

SPECIAL OFFER: PLESSEY TYPE 29 TWIN TUNING GANG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and 5:1 integral slow motion. Suitable for nominal \& \quad. ke / s
I.F. Size approx. $2 \times 1 \times 1$ in. Only $8 / 6$. P. \& $2 / 6$.

TRANSFORMER BARGAINS

MAINS TRANSFORMER, Primary 200-240V

scparate wave secondaries glving approx. 16 V at 1 amp and 20 V at 1.2 amp ; gecs. can be connected is seriea for 36 V at 1.5 amp . ldeal for transistor power supplies. Drop through mounting. Stack size 27 in. 15/-. P. \& P. 6/..
MADTS TRANSFORMER. For transistor power supplies. Pri. $200 / 240 \mathrm{~V}$. Sec. $10-9$ at $500 \mathrm{~mA} .11 /$. P. \& P. $2 / 6$.
Pri. 200/240V. Sec. $12-0-12$ at 1 anip. 14/6. P. \& P. $2 / 6$. Pri. $200 / 240 \mathrm{~V}$. Sec. $10-0-10$ at 2 amp. 27/6. P . \& P. $3 / 6$.
MATCHED PATR OP $2:$ WATT TRAFSISTOR DRIVER MATCHED PAIR OR 2, in. Output trane, tappell for' 3 whm and 15 .hum output 10/- pair plus $2 /-\mathbf{P}$ \& \& \mathbf{P}.
$7-10$ watt OUTPUT TRAN8FORMERS to watch pait of
 BRAND NEW MAINS TRANSFORMERS for Bridge
 Special quotations for quantities)

HIGH GRADE COPPER LAMINATE BOARDS

TRANSISTDR STEREO $8+8$ MK 11 Now using silicon Transistors in first five stages on each
channel resulting in even lower noise level with improvel channel resulting in even lower noise lewel with improven
sensitivity. A really first-class $\mathrm{Hi} \cdot \mathrm{Fi}$ Stereo Anplifier Kit. sensitivity. A really first-class Hi . Fistereo and 14 transistors giving 8 watts push pull output per ses 14 transistors giving 8 watts push pun outp Bass,
chamel (l6W mono). Integrated pre annp. with Bat Treble ani Volume controle. Kuitable for nse with Ceranie or C'rystal cartridges. Output stage for any speakers from applied induding driiled intal work. C'ir-Kit board, attractive front panel, knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructiona enable any constructor to build ith anplifier to be proud or. Brict specification: Freq. response $-\mathrm{BdB} .20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +121 B . Treble ent approx. to - 16 dB . Negative feedback 18 dB
 KIT \&3.0.0: CABINET 23.0 .0 . All Post Free.
(irevit liagrals, construction letails anil parts list (free with kit) 1/6. (S.A.E.).

SPECIAL PURCHASE! E.M.I. 4-SPEED PLAYER Heavy 8 in. metal turntable.
Low flutter performance 200 / Low flutter performance $200 /$
250 V shaded motor 90 V 250 V shaded motor (90 type lightweight pick-up arm and mono cartridge with t/o ytylii for LP/78. L1MITED
NUMBER ONLY 63:- P. \& NUMB
P. $6 / 6$.
4-SPEED RECORD PLAYER BARGAINS Mains models. All brand new in maker's packing. E.M.L. MODEL 999 Single Player with unit mounted pick-up arm and mono cartridge. . . All plus Carriage and Packing 6/6.
LATEST GAREARD MODELS All types araila ile 1000 SP25, 3000, AT00 etc. Send 8.A.E. Ior Bargain Prices! PLINTH UNITS cut out for liarrard Modele 1000, 1025 , PRICE 500 , AT60, SP25. With rigid pe
RICE 5 git. complete. P. \& P. 8/b.
8ONOTONE 9TAHC compatibl ATEST RONETTE TiO Stereo Compatible Cartridge for LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/78 mono or stereo recordla on mono equijument 30/\% P. \& P. 2/
FEW ORLY! ACOS GP69/1. For E1'and LP 10/-. 1. \& P. 2f QUALITY RECORD PLAYER AMPLIPIER MK II A top-quality record player ampitier employing heavy duty double wound mains trangiormer, ECC83, EL84 EZ80 valves. Neparate bass, Ireble and Complete wis speaker. Slze 7in.w. ©
PRICE $75 / \mathrm{m}, \mathrm{P}$. \& i . 6%
ALSO AVAILABLE mounted on board with uutput ransformer and speaker ready to tit into cibinet below PRICE 97/6. P. \& P. $7 / \mathrm{t}$.
DE LUXE QUALITY PORTABLE R/P CABINET MK II Uncut motor board size 144 : 12 ish, clearance 2 in . below, Sin. above. Will tuke above timplifter and any B.S.R. or
fiARRARD changer or Single Player (except ITG0 and (:ARRARD changer or Single Player (except. IT60 and
SP25). Size $18 \times 15,8$ in. PRICE 79/6. P. $\$$ P. $8 / 6$.
FM/AM TONER HEAD Beautifully designed and pre
cision engineered by Dormer \& Cision engineered by Dormer
Wadsworth Ltd. Supplied ready fited with twin 0005 tuning condenser for AM connection. Prealigned FM sec tion covers $86-102 \mathrm{Mc} / \mathrm{s}$. I.F
output $10.7 \mathrm{Mc} / \mathrm{s}$. Complet
 with ECCB5 (6L 12) valve and
full circuit diagram of tuner head. Another special bulk full circuit diagram of tuner heat. Another specinl bulk
purchase enables us to offer these at $27 / 6$ each. P. \& P. $3 /$. GORLER P.M. TUNER HEAD. 88-100 Mc/s. $10.7 \mathrm{Mc} / \mathrm{s}$ GORLER P.M. TUNER HEAD. $86-100 \mathrm{M} / \mathrm{y} / \mathrm{s} .10$
$1 . \mathrm{F} .15 /-\mathrm{plus} 2 / 6 \mathrm{P} . \& \mathrm{P}$. (ECC85 valves, $8 / 6$ extra)

3-VALVE AUDIO AMPLIPIER MODEL HAB4 Desigaed for Hi-Fi reproduction of recorts. A.C. Mains operation. Ready built on plated heavy gauge metal
chassis, size 7 in $w . \times 41 \mathrm{n} . \mathrm{cl} . \%$ chassis, size 7in w. Incorporates ECC83, EL84, Ez80 valves. Heavy duty. double wound mains transformer and out put transformer matched for 3 ohm speaker, separate Bass, Treble and volume controls. Negative feedback line. Output 4! watts. Front panel can be detached tum leats cxtended inr remote mounting of
controls. Complete with knobs, valves, etc.. wired and

H8L "FOUR" AMPLIFIER KIT. Smatar in appearance to HA34 above but employs entirely different and advanced circuitry. Complete set of parts, etc. 79/6. P. \& P. 6/-. BRAND NEW TRANSISTOR BARGAINS. GET 15 (Matched Pair) $15 /=$: V15/10p, 10/-: 0C71 5/-; 0C76 $6 /-$ IF117 7/6.
Het of Mullird if framsistory OC44, 2-OC45, AC128D, 1natched pair AC128 25/-; Mullard LFH3 Audio Transjetor Pack AC128D and matched pajr AC128 12/6
ORP12 Cadmium Solphide Cell $10 / 8$. All post free.

SPECIAL OFFER!

Cunity to pur-
Mase a flrat clase
C E N E R
PURERAL

$$
\begin{aligned}
& \text { PURPONE, } \\
& \text { H } 1 \text {, }
\end{aligned}
$$

HIGHAEX
SITVITY
SITIVITY,
PORTABLE CMPLIFIER Completely beli contained and call be used for a variet Haby Alarii, Booster unit fur
 unit etc. Works perfectly with our special uffer ICOS Stick Microphone ($21 /-$). Output 1000 mW . Use standard 9 volt battery. Suart two tone carrying case size 12 4. Gin. hitted standard input juck socket volume controls, $7 \times$ sin. $_{\text {ing }}$ speaker. Completely
tested, brand new with full maker's guaraitec

STEREO AMPLIFIER

Ineurporating 2 ECL86's aud 1 EZ80, heavy duty, double wound mains transformer. Out put \& watts ger chanvel Fuli toue and volune controls. sbsolutcly complete Gutput impedanee 3 uhis
 high gain 4 transistor ${ }^{\text {PRIMTED CIRCDT }}$ AMPLIPIER KIT
printed circuil patel bize o gilh. Out put 'ransformers.
Generous size Driver and - Output transformer tapped for 3 chan and 15 ohm
 and matched pair of ACl28 w/p). © volt operation. - Everything supplied, wirr, battery clips, soller, ete Iliagrani $2 / 6$ (Free with K it). All parts sold separately. SPECIAL PRICE 45/-. P. if. 3/-. Alsis realy built ant tested. 32/6. I'. \& 1'. 3/-.

HARVERSON'S SUPER MONO AMPLIFIER

A super quality grams inuplitier using : thuble wound majas transformer, EZ80 rectifier and ECL82 triode pentode valve as audio amplifier and power output stage.
Impedance 3 ohms. Output approx. $3 \cdot 5$ watte. Volume and tone controls. Chassis size ouly 7 in . wide $: ~$ 3in. deep: 6 in . high overall. AC malna 200/240V. Supplied ibsolutely Brand New completely wired and tested with valves and gool quality output transformer. LIMITED NUMBER. $\begin{aligned} & \text { OUR ROCE BOTTON } \\ & \text { BARGAIN PRICE }\end{aligned} \quad 40 / 6 \quad$ P. \& P.
10/14 WATT HI-FI
10/14 WATT HI-TI A stylishly finished monaural ampliffer 14 watts from EL84s in puab-pull. Super reproduction of both music and speech, with negligible hums. Separate inputs for mike and gram allow records
 and announcements
\qquad to follow earh oth
fully shrouded section wombld output trauswrther to and separate bass and treble 2 independent volume controls, food lift and cut. Valve line-up 2 EL84a, ECC83, EF86 and EZ80 rectifier. simple Instruction booklet $2 / 6$ (Free with parta). All parts sold aeparately. ONLY 87.9.6. P. \& P. 8/6 Atso available ready built and tested co.pe input sockets, 29.6.0. P. \& P. 8/6.

Open all day Saturday
Early closing Wed. 1 p.m.
A few minuics from South 11 imbledon
Tube Station

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W.I9
Tel. 01.5403985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(P/ease write clearly) pleage mote; pap.clearges QUOTED APPLY TO O.K. OILY P. © P. ON OVERS.
CHARGEDEXTRA.

Send S.A.E. Jor full lists. Other ranges available. Please include poatage. Special quotations for quantities.

CLEAR PLASTIC METERS

Type MR.38p, 1 21/32in sqnare front

BAKELITE PANEL METERS

- Moring iron, all
othera moving coil.
Type MR.65. 3 in square tronts

$25 \mu \mathrm{~A}$	67/6	500 ma	32/6	30 yaxc *	32/6
50uA	451-	1 amp .	$32 / 6$	50 V a.c.*	32/6
50-0-50 $\mu \mathrm{A}$	42/6	5 amip.	32/8	150 V a.c.*	32/6
$100 \mu \mathrm{~A}$	42/6	15 anир.	32/8	300 V a.c.**	32/6
$100-0-100 \mu \mathrm{~A}$	42/6	30 amp .	32/8	1 amp. :c.c.*	32/6
$500 \mu \mathrm{~A}$	39/6	50 amp .	32/6	5 апиц. а.c.**	32/6
1 mA	32/6	5 V d.c.	32/6	10 amp a ace**	32/6
1.0.1m.i	32/6	$10 \mathrm{Vad.c}$	32/6	20 amp atec**********	32/6
5 mA	82/6	20 V d.c.	32/6	30 аир. л.e.*	82/6
10 mA	32/B	50 V d.e.	32/6	50 atnp. ac.e.	32/8
50 mA	32/6	150 V d.c.	32/6	\cdots limeter	50/6
100 mA	32/6	300 V d.c.	32/B		

ECHO HS-606 STEREO
HEADPHONES

Wonderfully contortable. lightweipht indjustable
vinyl headband. vinyl headband. 6ft. cable and 25-17,000 plak. $\begin{array}{ll}25-17,000 & \text { cps. } \\ \text { ohm imp. } & 67 / 6\end{array}$

TRANSISTORISED TWO-WAY TELEPHONE

 INTERCOMOperative uver anaziugly long distances. Separate call 2 -wire connection. 1000 's of applications. Beautifully finished in ebony. Supplied complete with batteries and wall hrackets.
26.10.6. P. \& P. $3 / 6$.

AUTO TRANSFORMERS

 $0 / 115 / 230 \mathrm{y}$. Step up or step lown. Fully shrouded$150 \mathrm{~W}, ~ 21.12 .6, ~ P . ~ \& ~ P, ~ 3 / 6$
300 W
300 w , \&2.7.6, P. \& P. $3 / 6$
$500 \mathrm{~W} .83 .10 .0, \mathrm{P} . \& 1 \mathrm{P} .6 / 6$
1.000 W

SPECIAL OFFER
Two Z12 Anipe., PZ4 Pawer Supply, Stereo 25 Preamplifie

NEW SINCLAIR 2000 SYSTEM
35 watt Integrated Amplifier 829. Carr. ${ }^{5}$;
Self powered F.M. Tuner. 205. Carr. 5!-

FIELD TELEPHONES TYPE L
Generator ringing, metal cases. Operatek from two 1.5v. batteriea (not aupplied). Excellent condition. 24.10.0 per pair.

High quality 37 range instrument which meamuree z.e. and d.e. Voltage, Current, Resiotance and Power output. Ranges d.c. volts $250 \mathrm{mV}-10,000 \mathrm{~V}$. (10megn-110megn input). D.c. current $10 \mu \mathrm{~A}$ $100 \mathrm{mv}-250 \mathrm{~V}$ (with KF measuring head up to $250 \mathrm{Mc} / \mathrm{s}$). A.c. current $10 \mu \mathrm{~A}-25 \mathrm{amps}$. Power output 50 micro-watie-5 watis. Operation $0 / 110 / 200 / 250 \mathrm{~V}$. C. Supplied in perfect condition complete with circuit leal and RF probe 825. Carr. $15 /$

TYPE I3A DOUBLE BEAM OSCILLOSCOPES

ADMIRALTY

B. 40 RECEIVERS Just released hy
the ministry. High quality 10 valve receiver manu-
factured by Murphy Coverage iu $\overline{5}$ bande
 ind 3 1.F. stigee baud-pang filter, malibe limiter, LFerystoutput, rte. Huilt-in apeaker, output for phines. Operation $150 / 2300^{\prime}$ a.c. Nize $19!13!16 \mathrm{in}$. Weight 114 b Uffered ill gool working condition, 222.10 .0 . Carr, $30 /$, I tew available lrand New 235, Carr. 30/6. With cireuit diagrams. Also arailable 13.41 817.10.0 Curr. 30%

CLASS D

WAVEMETERS
herersstal controlled meter covering 1.7
machuen 8.Mc/a. Operation un vailable in good used condition E5.19.6. Carr. 7/6. Or branl new with intecsoriey

AM/FM SIGNAL GENERATORS
NKi Onciltator Teat Nu,
 porates p attenuator $1 \mu \mathrm{~V}-100 \mathrm{~m} \mathrm{~V}$. Operation from 12 V d.c. or 0/110/200/2501 are. Size $12 \times 8 \frac{1}{2} \times 9 \mathrm{in}$. Suppliet in brand Dew conditiou complete with all conmectors fully tested. 845 . Carr.
$201-$. $201-$

R209 MK. II COMMUNICATION RECEIVER

11 valve high grade commuditation receiver suitable for tropical use. $1-20 \mathrm{Mc/s}$ on 4 precision vernjer driver, Bro. derjal trimmer, internal speakef and 12 v. D.C. internal power bupply. supplied in exceltent condition, fully teated and checked. 115. (arr. 20\%

TE-IGA TRANSISTORISED SIGNAL GENERATOR
 Ranges tno KHZ
30 MHZ . do MHZ. An in-
oxpenslve instrument
for the hadymatu. Operates of an bittery. Widle, casy to
 $53^{\prime \prime}=33^{\prime \prime}$. Complet
with instructions

MARCONI TEST EQUIPMENT

EX-MILITARY RECONDITIONEL
TF 14AGATANDARDSIGNAL GENER ITTORS,
 T.F. 195M. BE.IT FREOUENCY OACILLATOI - $40 \mathrm{ke} / \mathrm{s}, 200 / 250 \mathrm{~V}$ at. 220, carr. 30/-. TF, 142 E . bisturtion Factor Meter, 820 , carr. 20t-. AII above offered in execllent condition fully
tested and ehecked. TF. 1100 V.ALVE volt
 ETER, E50. T.
Mission TEsT KET, Bratud New, 875. TFilizi. Wide band sillivult Meter, 250.

Variable Voltage Indirfonlill cerey
 Brantl new, guarauteed and carriage paid

High quality construction. Input $230 \mathrm{~V} 30-60$ cycles
Output full variable from $0-260 \mathrm{~V}$. Bulk quantities available
8 amp.-214.10.0; 10 amp.-218.10.0; 12 amp. - $281 ; 20$ anıp. - 23%

ADVANCE
 TEST EQUIPMENT

Brand new and bozed in original VM76. VALVE VOLTMETER
R.F. measurements in excess of $100 \mathrm{Mc} / \mathrm{s}$ and d.c, measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.c. range 300 mV to 1 kV . A.c. range 300 mV to 300 V RMS. Resistance $0.02-500 \mathrm{MS}$. Price $£ 72$. VM78. A.C. MILLIVOLT METER Transistorised. 1 mV to 300 V . Frequency $1 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$. Price $\varepsilon 55$.
VM79. UHF MILLIVOLT METER
Transistorised. A.c. range 10 mV to 3 V. D.c. current range 0.01 μ / A to 0.3 mA . Resistance 1 ohm μ / A to 0.3 mA . Resista
to 10 mepohms. $£ 125$.
to 10 megohms. E125. AUDIO SIGNAL GENERATOR
$15 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$, sine or square wave. Price 530 .
IIB. AUDIO SIGNAL GENERATOR $15 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$. Price $£ 30$.
J22B. AUDIO SIGNAL GENERATOR As per JIB except fitted with output meter. $£ 35$.
TTIS. TRANSISTOR TESTER
\&37.10.0.
Carriage 10/- per item.

AMERICAN TAPE

First grade quality American tapes Brand new. Digcount on quantlices. 3in. 225 ft . L.P. acetate
3 in 600 tt T. T. sin. 600 ft stit. plastic in. 900 ft L.F.acetate 5 in , 1,800ft. T.P. mylar 5 in. $1,200 \mathrm{ft}$ L. 1 . acetate 5in. 1,200tt. L. P. mylar 3in. 1,800tt. D.P. mylar 51 in . 2,400ft. T.P. mylar 7in. 1,200ft. atd. acetate 7 in . $1,800 \mathrm{ft}$. L.P. acetate 7in. 1,800it. L.P. mylar 7 in. $0,400 \mathrm{ft}$ U.P. inylar
fostage 2/-, Over ± 3 pont pair

TAPE CASSETTES

C60-60 mins. 10/3. (90.90 mins. $14 / 3$.
Over ex post pilit.

G. W. SMITH

* CO. (RADIO) LTD.

3-34 Lisle St., W.C. 2
Also see oppos. page

MULTIMETERS for EVERY purposel

＂LEEB 100 EQ／VOLT Giant $6!$ in．scale． Built－in meter pro－
tection． $0 / 5 / 2 \cdot 5 / 10 / 50 /$ $250 / 500 / 1,000 \mathrm{~V}$ $0 / 3 / 10 / 50 / 250 / 500$ $11,000 \mathrm{~V}$ a．c． $0 / 10 \mathrm{f}$ $100 \mu \mathrm{~A} / 10 / 100 / 500$
$\mathrm{MA} / 2 \cdot 5 / 10 \mathrm{~A} .0 / 1 \mathrm{~K} /$ $10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M}$
$0 \mathrm{Mn},-10$ to LAEAYETTE 57 Range
$50,000 \quad 0 . \mathrm{P} . \mathrm{V}$ M0，000 O．P． Volts $125 \mathrm{~V} \cdot 1000 \mathrm{C}$ A．c．Volts 1.6 V － $25 \mu \mathrm{~A}-10 \mathrm{Amp}$ ． Ohma．0－15 Meg Ω ． dB．-20 to +81 dB

prerlog Protection $812,10,0$ ，Carr．3／6 NEW MODEL $500,30,000$ O．P．V．with overload protection．Mirror bcale． $0 / 0 \cdot 5 / 2-5 / 10 / 25 / 100 /$
$250 / 500 / 1,0005, ~ 1 . c$ $0 / 2.5 / 10 / 25 / 100$ $250 / 500 / 1,000 \mathrm{~V}$ ，a．c． 12 amp．d．c． $0 / 60 / \mathrm{K} 6$. Meg．／60megohm 88．17．6． MODEL TE－90 Post paid． O．P．V MIRROR SCALE OVERLOAD PROTECTION d．c． $0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{~V}$ $16 \mathrm{k} \Omega / 160 \mathrm{k} \Omega / 1.6 / 16 \mathrm{M} \Omega$ -20 to +63 dB ， $\mathrm{EF}^{210.0}$

MODEL TE－12 20,000 O．P．V． $0 / 0 \cdot 6 / 30 / 120 / 600 /$ $1,200 / 3,000 / 6,000 \mathrm{~V}$. d．c． 1／6／30／120／600／1．2007，a．c． $\begin{aligned} & 0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MLA} . \\ & 0 / 6 \mathrm{~K}\end{aligned} 800 \mathrm{~K} /$／ $0 / 6 \mathrm{~K} / 800 \mathrm{~K} /$ bmeg．／60．
Megohm $50 \mathrm{PF}, 2 \mathrm{MFD}$ 4egohm 19.8 \＆\＆P ． MODEL TE 80 90，000 O．P．V． $0 / 10 / 5$
$1,000 \mathrm{~V}$ ．a
\qquad a．c． $0 / 5 / 25 / 50 /$ $0-50 \mu 5$ $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$ 24．17．6．P．\＆P．3／－．

MODEL，PT－34．
1,000 O．P．V．0／10
 TY75 AUDIO SIGNAL GENERATOR Sine Wave $20 \mathrm{c} / \mathrm{s}$ to
$200 \mathrm{ke} / \mathrm{s}$ 佰 $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$ ．High and low impedance output．Output vari－ able up to 6
$220 / 240$
volts Size 210×150 ． with 816. $50 / 250 / 500$
1,000 d．c． $0 / 1 / 100 / 500$ mA．d．c． $0 / 100$ ：10：

TE－20D RF SIGNAL GENERATOR

	Accurate
	range signal
	crator covering
	$120 \mathrm{kc} / \mathrm{s}$ to $500 \mathrm{Mc} / \mathrm{s}$
	on 0^{0} ban
䊝稆	Directly catibrated
緆	Variable RE
	attenuator．itudio
	output．
	tion． $220 / 240 \mathrm{~V}$
	a．c．size 140
	215 － 170 mm
	Brand new with
	instructions． 815

arlable R．F，attenuation int／ext．modula tion．Incor porates dual purpose meter to $220 / 240 \mathrm{~V}$ a．c． 230.0 .0 ．Carr． $7 / 6$ ．

TE－900 20，000n MOLTIMETER n．full view meter． colour acale，overload protection． $0 / 2 \cdot 5 / 10 /$
$250 / 1,000 / 5,000 \mathrm{~V}$ $250 / 1,000 / 5,000 \mathrm{~V}$ a．c． $2 / 25 / 12 \cdot 5 / 10 / 50 /$ l．c． $0 / 50 \mu \mathrm{~A} / 110 \mathrm{~V}$ $100 / 500 \mathrm{~mA} / 10 \mathrm{~A}$
d．c． $20 \mathrm{~K} / 200 \mathrm{~K} / 20$ M Ω ．\＆15．P．\＆P． $5 /-$
MODEL AS－100D

PROFESSIONAL 20，000 O．P．V

E．10．0，P．\＆

MODEL TE－10A． $200 \mathrm{k} \Omega$ Volt， $5 / 25 / 50 / 250 / 500 / 2,500$ $1,000 \mathrm{~V}$ ．a．c． $0 / 50 \mu \mathrm{~A} / 2 \cdot 5$ mat $/ 250 \mathrm{~mA}$ ．d．c． $0 / 6 \mathrm{~K} / 6$ megohm．-20 to $+22 d \mathrm{~B}$ ． $10-0,100 \mathrm{mfd}$ to $0 \cdot 100-0 \cdot 1$
mfd． $69 / 6$. R．\＆F． $2 / 6$. mfd．69／6．P．\＆P． $2 / 6$.
TRANSISTOR CHECEER MODEL ZQM TRANSISTOR GEECKER It bas the fullest capacity checking on A，B and Ico for adatable checking diodes，etc．Spec． A：0．7－0．9967．B： $5-200$ ．
Ico：0－50 microamps $\begin{array}{cc}\text {－5mA．} & \text { Resistance for } \\ \text { diode } & 200 \Omega-1 \mathrm{M} \Omega\end{array}$ Supplied complete ${ }^{\prime}{ }^{\prime} i t h$ Instructions，battery and

TE－65 VALVE VOLTMETER

High quality instrument with 28 ranges．D．c．volts $1 \cdot 5-1,500 \mathrm{~V}$ ，A．c．volte go to 1,000 megohms． $220 / 240 \mathrm{~V}$ a．c．operation． Complete with probe and instructions．\quad \＆17．10．0． P．\＆P．6／－．Additional Probes Available．H．V． $42 / 6$ ．

AVOMETERS
supplied in excel lent condition，fully teated and checked． Complete with
prods，leads and prods，leads anil
instructions． Model 7 el3．10．0．

TRANSISTORISED L．C．R．A．C． MEASURING BRIDGE
bridge oftering excellent range
and accuracy at low Ranges： $\mathrm{H} .0 \mathrm{Cl} \mathrm{\Omega}$ $-11.1 \mathrm{M} \Omega$ ．

$$
\begin{aligned}
& \text { rangee } \quad \pm 11 \% \text { (} 111 \mathrm{H}, \\
& \text { L. } \quad \text { ranges } \pm 2 \% . \mathrm{C} .
\end{aligned}
$$

$10 \mathrm{pF}-1,110 \mathrm{MF}, 6$ range $\pm 2 \%$ ．Turns ratio $1: 1 / 1,000-1: 11,160$ Bridge voltage at $1,000 \mathrm{c} / \mathrm{s}$ ．Operated fron $9 \mathrm{~V}, 100 \mu \mathrm{~A}$ ．Meter indication．Attractive 2－tone metal case．Size 7i

GARRARD

FULL CURRENT RANGE
OFFERED，BRAND NEW AND GUARANTEED AT FANTASTIC SAVINGS

88.8 .0 $\$ 8.17 .8$

48.17 .8
89.19 .6
29.19 .8
211.19 .6
$\mathbf{1 1} .19 .8$
211.19 .8
$\mathbf{E 1 2 . 1 0 . 0}$
118.10 .0
118.10 .0
14.14 .0
899.0 .0

828． 7.8
829． 0.0
835
0.0
Carriage ingurance $7 / 6$ extra any mode

Carriage ingurance $/ 6$ extra
se models at $\mathbf{4 . 1 5 . 0}$ ．Carr．5／－．
－Special offer base and cover available for

UNR－30．4－BAND COMMUNICATION RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ ．Incorporates variable BFO for CW／SsB reception．Built in ppeaker and phone jack，Metal cabionet．Operation 20／2 GNS． jant tuctions．

Carr．7／6． 13 GNS．
NEW LAFAYETTE SOLID STATE HA600 RECEIVER 5 BAND AM／CW／SSB AMATEOR AND SHORT WAVE． $150 \mathrm{KC} / \mathrm{S}$ TO $400 \mathrm{KC} / \mathrm{S}$ AND 550KC／S TO 30MC／S．
F．E．T．front end 2 mechanical filters o Huke dial Product detector Wariable Bandspread 230 Y ac． 12 Y do ${ }^{24} \mathrm{in}$ carth operation onf gain control．Rize．
 EXCEPTIONAL VALOE E45．

NEW STAR SR－ 200 SSB AMATEUR RECEIVER
 nue eciting new receiver colvering 6 amateur band lial．\＆meter．Crystal calirrator．Proluct detector． tutomatic maise lifuiter．RF tuning and gain controls，speaker or phone outputs． 8 valves， 2 tranaistors，\＆diodes．020／240\％a．c．Suppled Hrand new and guaranteed． $240,0.0$ ．Carr． 10%

LAFAYETEE LA－R24T TRANSISTOR TEREO AMPLIFIER

19 tranesisturs， 8 diodes． 1 HF music power 30 W at H ohms．Res． $30-20,000 \geq 2,1 \mathrm{Bat}$
 L．and R．valume controls．Treble and baes control．Stereo phone Jaek．Brushed aluminium，gold anodiget extrudet front panel with metal case． $10 \pm \times 3$,
$115 / 230 \mathrm{v}$ ．A．C． $\mathbf{£ 2 8}$ ．Carr． $7 / 6$ ．

HOSIDEN DH04S 2－WAY STEREO

HEADSETS

Each headphone coli－
taing a 2 ）
in wooler $\begin{array}{lll}\text { taing a } \\ \text { and } \\ \text { and } & \text { In wooter } \\ \text { a }\end{array}$ Built in individual level controle． 8 a mp ． $25-18,000 \mathrm{c} / \mathrm{k}$ ．
cable and
with
cater cable and atereo plug．
45．19．6．P．\＆P． $2 / \mathrm{f}$ ．

TRANSISTORISED FM TUNER
 most auplihers．Operates on 95 batters．Coveragr $88-109 \mathrm{Mc} / \mathrm{s}$ ．Read money．\＆6．7．8．P．※ 1＇．2／6．

TO．3 PORTABLE OSCILLOSCOPE

 Bandwilth 1．5 cpe－1．5
MHZ．Input emp $\begin{array}{lll}\text { MHZ．} & \text { Input } & \text { imp．}{ }^{2} \\ \text { meg } & 25 \mathrm{PF} . & \mathrm{X} \text { amp．}\end{array}$ megar 25 PF ． X amp．
gensitivity，
gv
 KHZ ．Input imp． 2 ${ }_{5}^{\text {meg }}$ гадzes 20 PF ．Time base． KHZ．Syuchronization．Internal／external． Hlluninated arale $140 \times 215 \times 320 \mathrm{Mr}$ Weleht $15 \frac{1}{16}$ ．220／240 V．A．C．Supplied
brand new with handloonk． 235.0 .0 ．Carr．

1 OWN and HANDLE a	$\begin{aligned} & \text { BUILD } \\ & \text { and USE } \end{aligned}$	3 READ and
complete range of presentday ELECTRONIC PARTS and COMPONENTS	a modern and professional CATHODE RAY OSCILLOSCOPE	U N DERSTAND CIRCUIT DIAGRAMS

$4>$ CARRY OUT OVER 40 EXPERIMENTS ON BASIC LECTRONIC	
CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .	
VALVE EXPERIMENTS	PHOTO ELECTRIC CIRCUIT A.C. EXPERIMENTS
- TRANSISTOR EXPERIMENTS	COMPUTER CIRCUIT D.C. EXPERIMENTS
- AMPLIFIERS	BASIC RADIO RECEIVER SIMPLE COUNTER
- OSCILLATORS	ELECTRONIC SWITCH TIME DELAY CIRCUIT
SIGNAL TRACER	SIMPLE TRANSMITTER SERVICING PROCEDURES
This new style course will enable any no maths, and a minimum of theory to test, service and maintain all types	to really understand electronics by a modern, practical and visual methodprevious knowledge'required. It will also enable anyone to understand how ectronic equipment, Radio and TV receivers, etc.

[^1]
TECHNCALLY ECLIPSED

Technologically speaking, 1968 went out in a blaze of glory. From the comfort of our fireside chairs, we looked in on the greatest, most amazing live outside broadcast yet. The true measure of the Apollo 8 achievement has still to register in many minds. But it is clear that electronic technology came through its severest test to date with flying colours. A virtual 100 per cent performance of the electronic systems has been reported. Considering over five million separate electronic parts were involved in the Apollo 8 space project, this indeed speaks volumes for the order of reliability now attainable when operating under extraordinary arduous conditions.

Sad to say, man's triumphant progress in space contrasts greatly with his impotency in other areas of more direct concern to all. This was dramatically brought home to us in the first weeks of the New Year. Elation changed to downright depression when fog and icy conditions brought calamity to our motorways.

Before disaster returns next winter-on an even larger scale-action ought to be taken to apply some of our own native electronic expertise to this problem of driving under extreme weather conditions.

Surely it is by now recognised that modern high speed roads demand sophisticated electronic warning and guidance devices. These aids are just as vital here as the radar, navigation, and communication systems which are mandatory on ships and aircraft. The challenge of fog must somehow be met-whether through simple radars for cars or roadside installations that compute distances between vehicles and provide suitable warning.

Not as alluring or exciting as developing systems for space adventures-but since we are out of that race, we could well exert ourselves in winning this "road event".

The Minister of Technology should exhort, demand, and infuse some sense of urgency into the various Research Establishments that come under his sponsorship, as we!l as promote the required liaison with industry.

Those who appreciate the latent possibilities of electronics must be irritated and thoroughly impatient with the apparent lack of progress in this area. Heaven knows there are plenty of amateur inventors and experimenters of no mean talent who would welcome the chance to have some of the facilities enjoyed by the large staffs of highly qualified workers employed at these Government establishments.

How about some speedy results Mr Minister? After all, we taxpayers do foot the bill. And you can't dismiss this as mere moonshine.
F. E. Bennett-Editor
CONSTRUCTIONAL PROJECTS
PHOTOGRAPHIC TIMER 176
BINARY ADDER 187
ELECTRONIC MIME MOBILE ANIMAL-EMMA 196
KNITTING MACHINE ALARM 204
SOUND OPERATED SWITCH 207
SPECIAL SERIES
BIONICS—5 212
GENERAL FEATURES
MODERN AUDIO CIRCUITS 179
APOLLO-8 182
INGENUITY UNLIMITED 192
ELECTRONIC VIDEO RECORDING 210
NEWS AND COMMENT
EDITORIAL 175
BOOK REVIEWS 184
NEWS BRIEFS 190, 221
SPACEWATCH 203
BOAT SHOW 206
POINTS ARISING 209
MARKET PLACE 222
ELECTRONORAMA 225
READOUT 226

Our April issue will be published on Friday, March 14
Our April issue will be published on Friday, March 14

THe small unit to be described in this article has been in use for some time as an enlarging timer. It is reliable, and gives consistent timing accuracy. The capacitor and resistor in the timing circuit are effectively isolated from the remainder of the circuitry, until the neon strikes, therefore the timer accuracy depends mainly upon these components.

Using a tantalum capacitor and high stability resistors a repeatable accuracy of better than five per cent on the full three minutes range is obtained, although this could be further improved by using a stabilised power supply instead of the one shown.

CIRCUIT DESCRIPTION

Fig. 1 shows the general circuit, which, with SI on, functions as follows: when S 3 is pressed the capacitor Cl is placed in series with R 2 and the mains rectifer D 1 causing this capacitor to be charged rapidly to about 250 volts.

On release of S 3 the capacitor is connected across R3 and the relay coil, the relay operates closing contacts RLA2, so connecting the mains to the lamp via RLA1. At the same time, the timing capacitor C3 is disconnected from R11 by contacts RLA3. Capacitor C3 now commences to charge through VRI and R4 (R6 to R10 being short circuited with S4 in position 1); this charging will continue until the neon strikes at around 75 volts.

When the neon strikes a current pulse is fed through R5 to the base of TRI, causing the transistor to be switched on and hence short circuit the relay coil. The relay de-energises and opens contacts RLA2, removing the mains from the unit.

Capacitor C2 is required to keep TR1 switched on for a longer period than it takes Cl to discharge; without it the relay would just click and leave the unit switched on. The purpose of diode D2 is to absorb the back e.m.f. from RLA which would otherwise appear across TR1 and damage it.

Resistor R4 is a current limiter and so should not be reduced below 1 kilohm. It also gives the minimum timing cycle; in this case approximately 0.1 second which corresponds to five cycles at mains frequencyhardly time for the bulb to reach full brilliance.

The contacts RLAl are used to switch the external load (lamp); the relay' contacts must be capable of carrying the load current and heavy duty contacts are recommended. In the original unit provision is made for switching the lamp on, prior to processing, to set up the focus; this switch (S2) is a normal toggle type capable of switching a current of 5A.

The relay used has a coil resistance of 570 ohms and a nominal operating voltage of 24 V . The contacts are rated 5 A at 250 volts a.c. Other types of low current relays could be used if the value of R 3 is changed, the new value for R 3 being given by:

$$
R_{3}=\frac{\left(250-V_{r}\right) R_{\mathrm{r}}}{V_{\mathrm{r}}}
$$

where V_{r} and R_{r} are the relay coil voltage and resistance respectively.

If the relay is rated at more than 24 volts, then a transistor with a higher collector rating will be required, an OC77 or NKT217 being suitable for relays of up to 48 volts.

CONSTRUCTIONAL DETAILS

Construction is quite straightforward and in no way critical as no signal voltages are involved. Most of the smaller components, including the relay, can be mounted on a piece of plain perforated s.r.b.p. using soldering pins. The size of the board used depends on the components, but a basic layout and wiring diagram is shown in Fig. 2. All wiring between the mains input and the load output connectors must be of reasonably substantial wire, capable of passing up to 5A.

Some difficulty may be experienced in obtaining a suitable polarised tantalum capacitor. The one used in

Fig. I. The complete circuit diagram of the photographic timer

COMPONENTS . .

Resistors

R1	$270 \mathrm{k} \Omega$ (may be fitted in $L P I$)
R2	680Ω
R3	$5 \cdot 6 \mathrm{k} \Omega 8 \mathrm{~W}$ wirewound
R4	$3.3 \mathrm{k} \Omega$
R5	$10 \mathrm{k} \Omega$
R6	$1 M \Omega$
R7	$1 M \Omega$
R8	$1 M \Omega$
R9	$1 M \Omega$
R10	$1 M \Omega$
R1I	150Ω
All	10% see text)

Capacitors

$\mathrm{Cl} 8 \mu \mathrm{~F}$ elect. 450 V
C2 $100 \mu \mathrm{~F}$ elect. 6 V
C3 $70 \mu \mathrm{~F}$ tantalum 75 V (see text)

Semiconductors

TRI OC72 (see text)
 DI BYI00, 16MBI6
 D2 OA8I, WG5I

Switches

SI Double-pole, on-off toggle (5A at 240 V a.c.)
S2 Single-pole, on-off toggle (5A at 240 V a.c.)
S3 Single-pole, changeover push button, press to change, release to restore
S4 Two-pole, six-way wafer switch (only one pole used)

Miscellaneous

TI Mains transformer; secondary 240 V at 100 mA
VI 2L, 70V neon
LPI Mains neon indicator (normally includes RI)
VRI IM Ω carbon potentiometer
RLA 24 V , 570Ω 3-pole changeover relay heavy duty contacts (see text)
FSI 3A fuse and holder
FS2 100 mA fuse and holder
SKI Mains plug and socket, Buigin type P340
SK2 Mains plug and socket, Bulgin type P437
Die-cast metal box (see text) or other case
Two pointer knobs
Plain perforated s.r.b.p. board and soldering pins
the prototype was one of the Plessey "double-highcap" range; these components are available through some retail suppliers. (List of suppliers will be available from Plessey Components Group, Chemical and Metallurgical Division, Wood Burcote Way, Towcester, Northamptonshire.)

The mains transformer, all switches, fuses, indicators, and potentiometer VR1 are mounted directly to the case which is earthed through the mains input socket. Resistors R6 to R10, which are wired around the wafer of switch S4, should not be mounted until the unit is calibrated, as described later.

A general layout and wiring diagram is given in Figs. 3 and 4; these diagrams show the components mounted in a die-cast metal box measuring 9 in $\times 5$ in $\times 2 \frac{1}{2}$ in but this size will depend on the size of the components used. The pre-wired board is mounted on pillars to prevent short circuits between the terminal pins and the case.

Components LP1, VR1, and all the switches are mounted on the front panel of the case and must be so arranged that they do not touch any components mounted inside the case (see Fig. 4). Leads between components on the front panel and components inside the case must be long enough to facilitate easy removal of the front panel. The input and output connectors used are made by Bulgin, the input connector being of the male type and the output of the female type.

Fig. 2 Layout and wiring of the pre-wired board. All fly leads should be of plastic covered wire

Fig. 3. Layout and wiring diagram of the components mounted inside the metal case. All connections are made with plastics covered wire.

ALTERNATIVE UNIT

It is possible to reduce the cost of this unit and ease construction by employing continuously variable timing. In this case resistors R6 to R10 and switch S4 should be omitted and VR1 connected directly to C3. The timing range, which will then be 30 seconds, could be increased by replacing VR1 with a higher resistance potentiometer, two megohms giving approximately one minute and five megohms approximately two and a half minutes.

Capacitor C 3 could be replaced by a $100 \mu \mathrm{~F} 100 \mathrm{~V}$ electrolytic type; this would however reduce the accuracy of the unit on longer timings due to higher leakage current. It would also give different calibration scales.

CALIBRATING THE TIMER

Connect the lamp between the "lamp output" terminals, and connect up the mains supply. Set both timing controls to the lowest position, switch on and depress the start button-the lamp should switch on and off once quickly. Rotate the timing control (VR1) to the opposite end and repeat the procedure, timing the cycle with a stop watch or the second hand of any watch or clock. Time should be between 30 and 40 seconds for one cycle, if it is not then suspect the timing capacitor or VR1, i.e. time low-not enough
capacitance, or VR1 is low in value, time high-too much capacitance or VR1 is high.
Place a piece of white card behind the control and, using a stop watch and pencil, calibrate the scale in seconds at five second intervals. Double check on the five and ten second marks, and space, at regular intervals, marks between each five second mark to represent each second. The scale can now be inked in or transferred to some other suitable dial material.
Set the timing switch (S4) to position 2, VR1 to 30 seconds, and connect R6 (1 megohm) temporarily in circuit. Check the timing and, if it is below one minute, connect a small value resistor in series with R5, thus adjusting the value to obtain an interval of exactly one minute. If above one minute the timing can be adjusted by adding a higher value resistor in parallel with R5, or alternatively selecting a suitable 1 megohm resistor to replace R6. Switch to higher ranges and repeat the above procedure to obtain the correct timing for each switch position, i.e. $30,60,90,120$ and 150 seconds (plus 30 seconds for each position with VRI at maximum).

If the unit is used for photographic purposes do not fix it to the enlarger, as pressing the start button on the unit is liable to set up a small vibration in the enlarger column. This vibration will give an "out-of-focus" effect to the prints.

Fig. 4. Layout of components mounted on the front panel. The areas enclosed by the broken lines should be left clear to avoid shorting with the transformer and the relay

By F.C.JUDD

SINCE the 1930's audio engineers have devoted a good deal of their knowledge and energy toward producing audio amplifiers with low distortion, low noise and a wide, flat frequency, response. Negative feedback paved the way to improvement in frequency response and later, the introduction of low noise amplifier valves like the Mullard EF37, did much toward reducing noise and microphony in high gain preamplifier stages.

This trend continued for a time with improved low noise pentodes such as the Mullard EF86 and with special audio frequency triode valves like the ECC83 which were much favoured for tape recorder record and replay pre-amplifiers.
Most audio equipment manufacturers have now "gone over" to transistors, not without problems of course, but with reasonable success even in the realm of hi fi.
In this article a number of practical feedback amplifiers will be described. All of these are high performance audio designs and employ various Mullard npn silicon planar epitaxial transistors of the type BC107, $\mathrm{BC1} 08$ and BC 109 .

IMPEDANCE TECHNIQUES

A technique now becoming common in transistor audio circuit design is the use of a high input impedance and low output impedance. This enables circuits like those given in this article, to be connected together since they each have the requisite high input and low output

Fig. I. Basic amplifier circuit
impedance for successful cascading. The supply voltage of 18 V can be varied within limits of plus or minus 15 per cent without any appreciable change in performance, so that a stabilised voltage supply is not necessary.
A basic amplifier circuit is given in Fig. I. This will provide voltage gains of $10,20,30$ and 40 dB dependent on the choice of circuit component values. Complete stabilisation is obtained by employing two d.c. feedback loops, one between the emitter of TR2 and the base of TR1 and the other between the collector of TR2 and the emitter of TR1.
The frequency response is uniform between 20 and $20,000 \mathrm{~Hz}$ and the input and output impedances, although somewhat dependent on the overall gain and the amount of feedback, will be nominally low, from 60 to 700 ohms for the output and high, from 110 to 145 kilohms for the input. The actual input and output impedances together with circuit component values for amplifiers with a gain of $10,20,30$ or 40 dB are given in Table 1.

The distortion for this amplifier is below 0.1 per cent for output voltages up to 1 volt and below 1 per cent for output voltages up to 3 volts. The noise voltage referred to the input is less than 1 microvolt.

PRE-AMPLIFIERS WITH A SPECIAL FREQUENCY RESPONSE

With two feedback paths available as in Fig. 1 it is conceivable that one could be used for producing special frequency responses such as equalisation for gramophone record reproduction (RIAA) or for reproduction from a tape head (CCIR or NAB). For these applications the equalisation response is obtained by feedback from the collector of TR2 to the emitter of TR1 as in Fig. 2.

Table 1: COMPONENT VALUES AND VOLTAGE READINGS

Gain(dB) 10	20	30	40	Units	
R2	4.7	1.5	1.5	1.0	$\mathrm{k} \Omega$
R4	12	15	56	180	$\mathrm{k} \Omega$
R5	1.8	2.2	2.2	2.2	$\mathrm{k} \Omega$
R6	470	560	330	680	Ω
R7	1200	470	270	220	Ω
C_{2}	-	-	-	10	pF
V_{1}	3.4	0.97	0.4	0.15	V
V_{2}	10.8	9.3	9.3	9.7	V
V_{3}	5.6	3.55	2.3	3.4	V
$Z_{\text {in }}$	145	140	135	110	$\mathrm{k} \Omega$
$Z_{\text {out }}$	63	140	260	700	Ω

The component values given produce the necessary equalisation for record reproduction (RIAA) via modern low sensitivity magnetic pick-up cartridges as shown in Fig. 3.

The input sensitivity is approximately 3 mV for a 60 to 100 mV linear output. A twin channel stereo version of this circuit was constructed by the writer expressly for use with low sensitivity magnetic pick-ups and performed as follows:

Input Sensitivity
Input Impedance
Output Impedance
Distortion
Equalisation
Noise Level

3 mV at 1 kHz for 75 mV output
56 kilohms
10 kilohms
Less than $0 \cdot 2 \%$
RIAA
Better than -60 db

BUFFER AMPLIFIERS

The occasion often arises when one has to match a very high impedance device such as a crystal microphone

Fig. 2. Circuit for pre-amplifier with RIAA equalisation

Fig. 4. Buffer amplifler with high impedance (3.6 megohms) input
to a comparatively low impedance input. The buffer amplifier circuit given in Fig. 4 has an input impedance of around 3.5 megohms'to which a crystal microphone could be connected without loss of low frequency response.

The gain of the amplifier is unity and the output impedance is low. It could therefore be used with the pre-amplifier circuit in Fig. 5. TR1 operates in a common emitter arrangement with a large amount of feedback and with TR2 operating as an emitter follower. The frequency response is from 20 to $20,000 \mathrm{~Hz}$ and distortion below 0.5 per cent with output voltages up to 2 volts.

VARIABLE GAIN PRE-AMPLIFIERS

The circuit given in Fig. 5 is derived from that given in Fig. 1 and permits a continuous variation in gain between 13 and 40 dB . The gain is controlled by VR1 in the TR2 collector to TR1 emitter feedback circuit.

Fig. 3. Response of circuit given in Fig. 2. Dotted line is response for a duplicate of the amplifier, i.e. a second channel for stereo

Fig. 5. Signal amplifier with variable gain

Fig. 6. Tone control network for bass and treble, lift and cut

For the highest gain (40 dB) and an output of 2 volts, the distortion is 0.75 per cent and for the lowest gain $(13 \mathrm{~dB})$ is 0.1 per cent. Frequency response is from 20 to $20,000 \mathrm{~Hz}$ within the limits of plus and minus 2 dB . The input and output impedances are as follows: $Z_{\text {in }}$ for a.gain of $13 \mathrm{~dB}=145$ kilohms and for $40 \mathrm{~dB}=120$ kilohms. $Z_{\text {out }}$ for a gain of $13 \mathrm{~dB}=47$ ohms and for $40 \mathrm{~dB}=120$ ohms.

A five channel microphone and high level signal mixer designed around this circuit will be described next month.

OTHER APPLICATIONS

The basic circuits given in this article lend themselves to numerous audio applications, some of which will be dealt with in later issues as working items of equipment. For example the buffer amplifier of Fig. 4 can be employed very successfully in an audio high pass/low pass filter with unity gain. The circuit of Fig. 2 can be extended to cover the usual requirements for a hi fi pre-

Fig. 7. Frequency response obtainable with the tone control circuit of Fig. 6
amplifier with inputs for tape head, crystal or magnetic pick-up cartridges and radio tuner, etc.

Yet another application in hi fi pre-amplifier stages is the active tone control network shown in Fig. 6. This is quite different from the usual frequency dependent passive network and operates with a frequency dependent feedback network between the collector and base of the transistor.

The gain through the amplifier is almost unity and the tone controls provide bass and treble lift and cut as shown in Fig. 7. For an input voltage not exceeding 250 mV the total distortion is below 0.1 per cent. The input impedance is 40 kilohms and the output impedance 180 ohms.

ACKNOWLEDGEMENT

The writer would like to thank the applications staff of Mullard Limited for advice on the use of the Mullard transistors type $\mathrm{BC} 107, \mathrm{BC108}$ and BCl 109 and for permission to quote from Mullard publications. \star

First Manned Lunar Orbit Mission A Triumph For Technology

THE milestones of history cause widely different attitudes in community groups and perhaps it is not therefore surprising that in America complaints about the monitoring of the Apollo mission to the moon should have arisen.
The reactions of people to the mission have been as wide as they have been varied. To those who see it from the outside as it were and are responsive to the inevitable emotional reaction of an outstanding achievement, it must rank as one of the important moments of their time and be indelibly printed on their memories.
There have been others whose reaction takes a different direction, some to the point of deriding the whole concept of such projects. The superficial thinking which always surrounds such events indicates how blasé people at large have become after ten years of man in space. To those actively engaged in the projects the excitements of each step keeps alive an enthusiasm that is only tempered by a knowledge of what might be in the future.

MAGNITUDE OF THE ACHIEVEMENT

To engineers and scientists generally (there are some agin' it) the magnitude of the achievement and what is involved in the successful completion of such a mission, all marks a point in the history of technology where planned sequential events integrated with human endeavour shows man's capabilities of using his knowledge of his environment and the physical laws which govern it.

The most vital requirement for the Apollo 8 mission was a perfect system of communication between the vehicle and the control centre at Houston, Texas. This was achieved without having to use the extensive "back up" systems that had been built into the spacecraft. It had been argued and indeed still is that this extensive use of "redundant" equipment reduces the payload to a considerable extent. While this undoubtedly is so there is perhaps a good reason to suffer this against the possible chance of failure however remote that may be.

COMPUTER PROGRAMME

An example of this was the ability of the on-board computer to deal with the essential problems should the ground communication fail. This was called the Colossus programme and is summarised here:

> launch monitoring; translunar injection monitoring; execute and monitor, mid-course correction manoeuvre, lunar orbit insertion manoeuvre, plan, target and monitor trans-earth injection manoeuvres, re-entry guidance;platform alignment with star, sightings, navigation, star horizon sightings, lunar landmark sightings.

The gains to be had from the mission itself were extensive and did in fact justify the decision to bring forward the programme of missions.
The flight trajectory, the critical points and manoeuvres necessary, and the television broadcasts have already been extensively written up, but these spectacular events are but a small part of the whole. It will take some weeks for all the data to be processed but
some comment can be made on the original programme. This can be summarised under the five following general headings.

NAVIGATION

Under navigation will come the lighting constraints. It is desirable that the lunar landing should be at a time when the lighting on the lunar surface is at a fairly low sun angle. This is required for the onboard computation of the navigational and guidance data to track accurately the targets on the horizons, stars or on the lunar surface. The second requirement is the evaluation of the back-up systems.

COMMUNICATIONS AT LUNAR DISTANCES

Under the heading of communications come all the systems of telemetry which concern the biological data, the interchange of information between ground control and spacecraft at voice levels, telemetry of environmental conditions outside and inside (other than biological) and television.
There are two aerial systems: an omni-directional aerial and the high-gain group of directional aerials. All systems communication is possible with the omnidirectional aerial, except television. The high gain aerial system after adjustment operated quite satisfactorily. The blank period of course is the time when the vehicle is behind the moon, for line of sight facility is required for communication. The success of this has demonstrated the efficiency of the electronics involved; The frequencies chosen were in the "unified S-band" and the choice of this band has been entirely justified.
A significant and interesting thing about the television transmissions was the improvement of the standard of the picture when coming from the Madrid terminal via Eurovision as compared with the transmission from Houston via satellite channels.

There is another aspect of the communications dependent on line of sight and that is that in tracking earth orbiting satellites successive tracking stations are brought into operation to keep the satellite within the "beam". In the case of the moon it is far enough out to be in the beam for a longer period, but still the successive tracking is needed because the earth is rotating and compensation has to be made for this in order to keep in the beam.

THERMAL ENVIRONMENT

Temperatures and changes that take place as certain rolling manoeuvres are made to even up the direct effect of the sun's rays were monitored. A number of studies were also programmed to deal with radiation and its effect. One significant feature noticed was the different dosage received by each astronaut which seemed to have a relation to position in the spacecraft.

OPERATIONAL EXPERIENCE

Under the heading of operational experience come those manoeuvres and programming when within the moon's gravity, which will have a direct bearing on lunar landing techniques. Photography as well as direct viewing becomes important here since evaluation of surface features is vital. The stereoscopic mapping was obtained by shooting a series of pictures at an angle of some 20 degrees and the next orbit round a series of vertical shots.

During training the astronauts had made studies of earth sites which might be similar to those on the moon and also they had made an intense classroom study of
geology to help in the evaluation. Five principal sites had been chosen for particular observation. The photography dealt with these by using stereo pairs in addition to the close time pairs mentioned above. This will give shots fore and aft and also side to side and will enable future teams to recognise sites as they come up and will of course be very valuable in training.

In addition to these special tasks on the orbiting part of the mission, the approach to the moon was extensively photographed. The importance of this to navigation for future missions is the ability to recognise the changed aspect of the moon when approaching it at several thousand miles per hour when all semblance to the moon as we see it has changed.
The television camera specially designed for these flights operates at 320 lines with a frame speed of ten per second. A telephoto lens was included but it seems that this had been designed for a much lower light level than was encountered and this made the pictures taken of the receding earth useless. Filters later helped this but it will be necessary to wait for the final details on this. There are only three terminals with the facilities to convert the direct television signals to the normal mode and the latest of these is at Madrid.

VERIFICATION

The last programme concerned with the verification of mission planning, computer programmes, and crew procedures has been amply rewarded for all systems worked well.
The power supply units, which incidentally provide the water for the astronauts as a by-product of the fuel cells, worked without trouble this time and the faults shown up on Apollo 7 did not appear. It is perhaps of importance to remember that some minor modifications were made as a result of experience with Apollo 7.

INTO PERSPECTIVE

It may help to bring the magnitude of the Apollo 8 achievement into perspective from two points of view.

For the first time man has been able to see his own habitat from the point that would be available to a visitor from space. A globe of blue and white which gives little clue, from the distance of the moon, as to its occupants or condition. No indication of whether or not it is inhabited for the cloud cover is extensive. For
Apollo 8's view of the large crater Goclenius (foreground) which is nearly 40 miles from rim to rim. An unusual feature is the rill that crosses the crater rim

the first time an environment that has bounded most direct experience has been left behind by three men who have entëred and lived in an entirely different part of the planetary system. The psychological effect of this was evident when an astronaut spoke of "your earth" before correcting himself to "ours too, of course".
The other point of view is the compact and complete unit in which man was able to do this. A small, selfcontained unit with not only the means to sustain life but also to send back the conditions of the function of the vehicle and its occupants. This involves. the summit of many and varied techniques from cryogenics to recycling units.
Some indication of the extent of the systems involved is given by the twenty or more different services provided for by the power supply which operates basically from fuel cells. The power supply is duplicated and if necessary the spacecraft could have run quite successfully on one unit only.

THE AMATEUR ASSISTS

Into this project comes also the amateur. Commander H. Hatfield at Sevenoaks was able to photograph the separation of the third stage rocket. This was a fortunate circumstance since this was one event that was not available to the launching site.

The second amateur connection is the matter of the possible erupting areas of the moon. Some 25 countries were co-operating in keeping a special watch for events during the Apollo flight.

Due largely to the activities of Miss Barbara Middlehurst, a world wide network of selected observers was alerted and an arrangement made for direct communication with a telephone at Houston in an attempt to give moment to moment details of observations. It was intended, if it were possible, to ask the crew of the spacecraft to photograph the area. The ground based observers were chosen because of their experience with the special observation of those areas of the moon that the spacecraft would be able to see.

View of the Earth, half covered with clouds, from Apollo 8. The photograph was taken when the spacecraft was halfway between the Moon and Earth

THE PEGASUS BOOK OF RADIO EXPERIMENTS By F. G. Rayer A.I.E.R.E., G30GR Published by Dobson Books Ltd. 214 pages, $7 \frac{3}{4} \mathrm{in} \times 5 \mathrm{in}$. Price 16 s
N this moderately sized book the author covers many radio experiments from the simple crystal receiver through single valve and transistor radio circuits to audio and r.f. amplifiers and more complex receivers. There are 100 diagrams in this book and, although they are not always technically precise or, in a few cases, very clear, these illustrate the electronic principles, the method of construction of the various experimental units and the physical design of the electronic and mechanical components used.
The language used is not over-technical and abbreviations and symbols are explained as are the functions of each part of the circuits. Basic valve and transistor theory is covered and theoretical formulae given for calculations on the circuits. The book explains basic radio principles and lists numerous experiments that can be undertaken by the inexperienced in complete safety for a moderate outlay.

This is not a book for the radio amateur but one for those wishing to learn about simple radio theory and receiver construction. The author, who has written many books both on popular electronics and radio, has achieved a publication which is both informative and interesting and one which should help the newcomer along his first steps in this fascinating and rewarding technical hobby.
M.K.

ITV 1969
236 paglished by the Independent Television Authority 236 pages, 9 in $\times 7 \mathrm{in}$. Price 10 s 6 d

THIS entirely revised seventh edition of the ITA handbook, besides continuing as an excellent reference on the structure and technical operation of Independent Television in the U.K., has a great deal of its contents devoted to the intended ITV colour service on 625 line u.h.f.

New maps show the estimated coverage for the first seven main u.h.f. stations. Details are also given of the first 26 main stations, expected to be in service before the end of 1971, and of the first 12 relay stations which are likely to be in service by the end of 1970 .

To get best reception for these colour service areas choice and siting of aerial installations is important and in this context much useful advice is given.
G.M.H.

P.E. INDEX

An index for volume four (January 1968 to December 1968) is now available price 1s 6 d inclusive of postage. Orders for the index should be addressed to the Post Sales Department, IPC Magazines Ltd., Tower House, Southampton Street, London, W.C. 2

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can

CN 15 watts, fitted $\frac{3}{32}$ Ferraclad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from .040 (1 mm) up to $\frac{3}{16}$ " for 240, 220, 110, 50 or 24 voits.
order direct from us. A free colour
catalogue will be supplied on request.
our

PRECISION MINIATURE SOLDERING IRONS
Made in England
Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8
Telex: 45296 Giro No. 2581000

15 watts- 240 volts
with nickel plated bit ($\frac{3}{32}$) and in a
handy transparent pack.

COMPLETE PRECISION SOLDERING KIT

Supplied in its own compact, rigid plastic container and includes all of these items: CN 15 watts 240 volts miniature model ($\frac{3}{16}^{\prime \prime}$) bit - 2 interchangeable spare bits ($\frac{5}{32}$ " and $\frac{3}{32}$ ") - reel of resin-cored solder - heat sink for soldering transistors - felt cleaning pad - soldering iron stand ${ }^{-}$- storage space for lead and plug.

How do you measure the extra quality of EMII speakers?

Listen!

 EEMIETOUTU

EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers hase developed loudspeaker systems suitable for home use.
These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.
They have many exclusive features. The range includes the unique 950 system with a 19 inches $x 14$ inches bass unit power output 50 watts R.M.S.

Send for literature and price lists to:

EMI

EMI SOUND PRODUCTS LTD., HAYES, MIDDX. TEL: 01-573-3888 EXT. 667

MAKE YOUR MONEY GO FURTHER with STUOEN EIECTBOMC SERVICES

RESISTORS: All brand new, Hi-Stab, low noise, 5% tol., carbon film; tW E12 series $4.7-10 \mathrm{M}, 2 \mathrm{~d}$. each or $15 /-$ per 100 of one value; 1 W E24 series $4.7-10 \mathrm{M}, 2 \mathrm{~d}$. each or $15 /$ - per 100 or one value; IW El 2 series $10-10 M$ (10% tol.). 3 d. each: 3 W wirewound $0.5-12$ (5% :ol.), $1 / 6$ each ;
5 W wirewound $15-8 \mathrm{k} 2$ (5% tol.), $1 / 9$ each. $5 W$ wirewound $15-8 k 2$ (5% tol.), $1 / 9$ each.
S.E.S. Premack gives you SM 4 to IM, $\frac{1}{2}$ or $\frac{1}{2} W$ -

PRE-SETS: Min. skeleton carbon track, low noise with good stability Values-Lin: $1 \mathrm{k}, 2 \mathrm{k} 5,5 \mathrm{k}$, etc., to 5 M ; Log: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc., to 1 M , only 10d. each; Sub-Min skeleton Lin. track-Ik, 2k5, 5k, etc., to 5M, 9d, each; wound fully insulated Lin. tracks 10 to $30 \mathrm{k}, 3 / 9$.
POTENTIOMETERS: Min. enclosed, carbon track and wiper contact only $2 / 6$; Values-Lin: $1 \mathrm{k}, 2 \mathrm{k} 5,5 \mathrm{k}$, etc., to 10 M ; Log: 5 k , $10 \mathrm{k}, 25 \mathrm{k}$, etc., to 5 M ; Min. With double pole switch, insulated spindies only 3 W , Lin: 25k, $50 \mathrm{k}, 100 \mathrm{k}$: Log: 3k, $5 \mathrm{k}, 10 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}$; 3 W wirewound
Lin. track 50 to $100 \mathrm{k} ., 7 / 4$ each.
CAPACITORS: New genuine Mullard Electrolytics

Mullard Miniature Metallised Polyester 250v.w. $0.01,0.015,0.022,0.033$, $0.047,0.068-6 \mathrm{~d}$. each; $0.1,0.15,0-22 \mu \mathrm{~F}-7 \mathrm{~d}$. each.
Mullard Polyester Film and Foil $400 \mathrm{v}, \mathrm{w} .0 .001,0.0015,0.0022,0.0033,0.0047$, Mullard Polyester Film and Foil $400 \mathrm{v} . \mathrm{w} .0 .001,0.0015,0.0022,0.0033$,

0.0068 , etc. to $0.033 \mu \mathrm{~F}$ 6d. each. 0.047 to $0.1 \mu \mathrm{~F}$ 8d. each. 0.15 10d.. | 0.0068 , etc.: to $0.033 \mu \mathrm{~F}$ 6d, each. 0.047 to $0.1 \mu \mathrm{~F}$ 8d. each. 0.1510 d. |
| :--- |
| $0.22 \mu \mathrm{~F} 1 /-0.33 \mu \mathrm{~F} ~$ |
| $16,0.47 \mu \mathrm{~F}, 1 / 9$. | $0.22 \mu \mathrm{~F}$ i/-, $0.33 \mu \mathrm{~F} 1 / 6,0.47 \mu \mathrm{~F}, 1 / 9$.

Disc Ceramics (Erie) $500 \mathrm{v} . \mathrm{w}$. $1,000,4,700 \mathrm{pF}$ only 5d. each: Silver Mica 1% $1,000 \mathrm{pF}$ only 5 d , each.
SEMICONDUCTORS: ALL GENUINE MULLARD NEW AND UNUSED.
OA5 4/6, OABI 3/4, OA202 2/3, OC71 4/-, OC72 4/6, OC44 7/9, OC45 6/-6 BCIO7, BCIO9 3/9 each, BCIOB 3/6, BFY5I 4/6. F.E.T.-MPF 105 9/6. SOOpiv 7/ 1,500piv 7/6. (2.5A) 400piv 6/6, 800piv $7 / 6$, 1,500 piv $10 / 6(1-2 \mathrm{~A}$ and $2 \cdot 5$ A types are stud mounted).
SWITCHES: Vast range of toggle, push button and rocker switches with or without centre position S.P.S.T., S.P.D.T., D.P.S.T. D.P.D.T. Very high quality, Toggles priced as low as 2 for for S.P.S. Dlack, red or green. Heavy duty coggle D.P.B.T, with centre position rated IOA IIOV 9/7. Miniature 'Maka-Switch"' also available-shalts 5/-, wafers 5/4.
Stocks also include a wide range of plugs and sockets including Jacks and mains; a range of hardware and accessories which is increasing daily to supply you the customer with wire, pilot lights, insulating tape, and almost anything else needed when building a circuit of your choice. stock soldering irons by A.N.T.E.X. and soider by Multicore.
You will find all details of our stocks in our catalogue a 20 page handpages. The final section of the catalogue contains complete details of the LEKTROKIT chassis construction system including hints on assembly. A copy of this catalogue can be yours for just $3 / 6$ and then you will see that Student Electronic Services are YOUR complete supplier. (For general data sheet send a 6d. stamp.)
Please include C.W.O, I/- P, \& P. on orders of components under $£ 1$ Orders of Lektrokit: $\mathbf{2 / - h a n d l i n g ~ c h a r g e ~ o n ~ o r d e r s ~ u n d e r ~} \mathbb{E l}$

Send, with name and address to:

STUDENT ELECTRONIC SERVICES

196 Regent Road, Salford 5, Lancs.
Visit us at above address or call 061-872 5187
\square O

By A.FORD

A simple educational aid for schools and hobbyists to teach the principles of binary arithmetic as used in modern electronic computing systems

THis machine will add two binary numbers entirely by switching and display the answer on a bank of lamps. Before describing the machine it may be helpful to give a short explanation of the binary number system. The machine is designed to form a first introduction to computer ideas, and a knowledge of binary notation is essential for this.

PLACE VALUE SYSTEM
Our everyday number system, called the denary or decimal system, is made up of ten different symbols including nought, larger numbers being formed by placing these symbols in different columns. Counting from one, when we reach nine in the "units" column, we start again with a one in the "tens" column, the only function of the nought in 10 being to push the 1 into the next decimal increment column.

Every number can be analysed in this way; for example 216 means two hundreds, one ten, and six units. This makes our number system a "place value system", where the value of each figure symbol depends upon its position. To see the advantages of a place value number system, one has only to consider calculations in a different notation, the most common example being in Roman numerals. To add eighteen to three hundred and nineteen, using Roman numerals we get: CCCXIX + XVIII.

There is no logical way to set out the sum, and it is almost pointless to write it out at all. The most reliable method of adding would probably be to count in ones; this is what the Romans did, using an abacus. The above sum in denary notation would be arranged like this: $319+$ and would be done column by column 18
starting at the right (units). It is important to see clearly the necessity for a place value system for fast calculations before going into binary notation.

ELECTRICAL OR ELECTRONIC SYSTEMS
When the idea of employing electrical or electronic calculating machines began to take shape, it was soon realised that the decimal system with its ten symbols presented some knotty problems. How, for instance,
could the number seven be represented by the state of an electric current? One obvious answer is that it could be represented by a voltage of seven at a certain point, but this means that an accurate power source must be available to supply the circuitry with accurate analogues without varying more than a small fraction of one volt. Suppose that the place value system was kept, with different readout points standing for units, tens, hundreds and so on. This would be much better, but an error of a volt in say the thousands column obviously could not be tolerated.

A third method of representing numbers electrically would be by corresponding numbers of pulses, as is used on the telephone dial and uniselector. The disadvantages here is the relatively slow speed and the possibility of a dropped pulse, or an extra pulse introduced accidentally somewhere else in the circuit.

Fig. I. Block diagram of binary adder with eight digit readout

The most reliable method of representing a number in an electric circuit is to make use of the on-off state of a circuit. In this case, OFF stands for nought and on stands for one.

BINARY SYSTEM

It is here that the binary number system comes in and solves the problem. This can also work by place value, but has only two digits, one and nought, which can be represented electrically by on and off. The system works in columns, but these are in multiples of two; units, twos, fours, eights, and so on.

Nine is the maximum number that can be shown in one column in the decimal system, and so one is the maximum for the binary system, after which carrying occurs. Study of the following table will make this clear.

Denary (decimal)		Binary
1	$=$	1
2	$=$	10
3	$=$	11
4	$=$	100
5	$=$	101
6	$=$	110
7	$=$	111
8	$=$	1000

It would appear to be nonsense to read binary numbers out as though they were decimals. The binary for eight is not "a thousand", it is read as one, nought, nought, nought. The system can be grasped easily if one remembers that the columns are units, twos, fours, eights, etc. Thus, the binary 110010 means one "two", one "sixteen", and one "thirty-two" (in denary terms fifty, since each column is added).

Changing from decimal to binary takes a little longer. To do this, factorise by two, showing at each step a remainder either of nought or one, until you are left with nought or one, for example take 20:

$$
\begin{aligned}
& 2 \mid 20 \\
& 2+0 \text { over } \\
& 2 \mid 5+0 \text { over } \\
& 2 \frac{2}{1}+0 \text { over }
\end{aligned}
$$

Then gather up the final figure and the remainders, and write them out from the bottom up, starting with the final figure, i.e. the binary $10100=16+0+4+0$ $+0=20$ (denary).
The next example is 56 :

$$
\begin{aligned}
& 2 \underline{56} \\
& 2 \underline{28}+0 \text { over } \\
& 2 \underline{14}+0 \text { over } \\
& 2 \underline{7}+0 \text { over } \\
& 2 \underline{3}+1 \text { over } \\
& 1+1 \text { over }
\end{aligned}
$$

Therefore the binary number $111000=$

$$
32+16+8+0+0+0=56
$$

Naturally, in a full-sized computer, these conversions are done automatically.

OPERATION

The following part of the article describes a switching device that is simple to build and operate for illustrating binary arithmetic. In computer terminology it consists of one half-adder and a number of full-adders. A half-adder deals with two quantities of either one or nought, and produces a result and a carrying figure. A full-adder deals with three quantities--the two numbers to be added and the "carry" from the previous column.

Each section of the circuit consists of two switches (Fig 1) and a "readout" lamp. To add two binary numbers the switches on each row are set to the number configurations (up for nought and down for one); the lights then give the added figure (off for nought and on for one). The machine adds two binary numbers of up to seven "bits" each (a binary digit is called a bit); units could be constructed to handle smaller or larger amounts since the intermediate switching circuits are identical.

COMPONENTS . . .

SI to SI4 4-pole, 2-way, keyswitch (14 off) LPI to LP8 Pilos lamp 6V. 100 mA (8 cff) BYI 6 V lantern battery
 Chassis: $\quad 10 \mathrm{in} \times 7 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}$ Instrument handle 4 in

Fig. 2. The "Lrits" column is a half-adder with carry "out" lines

Fig. 3. Intermediate stages from the "twos" column to the penultimare stigge are full adders with carry "in" and carry "out" lines

Fig. 4. The final stage displays the penultimate and final digits of the answer

CONSTRUCTION

The adder is built around a number of Post Office style key switches which are ideal for the purpose. These can be expensive items, but the constructor may be able to come across a cheap source on the surplus market. It is sometimes possible to strip them from certain ex-government units. Alternatively, fourteen rotary wafer switches, each switch being 6-pole 2 way, could be used; only four poles would be required on each water.

The lamps used are panel indicators rated at 6 volts 100 mA , but any type would do if they are all the same as the battery voltage. The unit was built into a 10in $\times 7$ in $\times 2 \frac{1}{2}$ in chassis, stood on its side and fitted with an instrument handle. Two rows of rectangular holes were cut in the chassis to admit the keyswitches, a row of small holes for the lamps being the only other drilling required. A 6 volt lantern battery can be housed in the chassis and this provides the power for the lamp circuits. Drilling measurements are not given because these will depend on the type of switches and lamps used.

CIRCUIT WIRING

A block diagram is shown of the prototype (Fig. 1), and the circuit for each "column" shown in Figs. 2, 3, and 4. Any version of the adder must incorporate the circuits of the first bit (half-adder Fig. 2) and the last bit (Fig. 4). Any number of intermediate bits may be incorporated between these two, these being full-adders. To avoid confusion in the wiring, use several different colours, to identify certain parts of the circuitry. One wrong connection will certainly produce wrong answers. Finally, paint the chassis with at least two coats of plain or hammer finish paint or cellulose, and label the lamps and switches.

Calling All Young Scientists

The British Association for the Advancement of Science has now formed two sections specially for young members between the ages of 12 and 18 . The new sections will be known as the British Association of Young Scientists or BAYS for short (covering the age group 15 to 18) and Junior BAYS (covering the age group of 12 to 15).

The aim is to stimulate, inform and give guidance to young "would-be" scientists, mostly schoolboys and schoolgirls, through films, lectures, meetings and exhibitions on all forms of research and developments in the fields of science.
As the BAYS organisation develops, it is hoped to provide opportunities to take part in national and international scientific activities, including science tours and other events in foreign countries.
Full details on how to become a member of BAYS can be obtained from the British Association for the Advancement of Science, 3, Sanctuary Buildings, 20, Great Smith Street, London, S.W.1.

Advanced Standard Converter

THe BBC has agreed with Rank Precision Industries Ltd. for the British firm to manufacture under licence and market abroad the BBC's new Advanced Field-store Television Standards Converter.

The exchange of television programmes between different systems is only possible by means of standard converters, because receivers are designed to operate only on the system or systems transmitted in the country where the sets are used.

The result of years of research and development work by the BBC is shown in the advanced field-store television standards converter which is a fully electronic device able to convert television signals on the American standard of 525 lines, 60 fields per second, with NTSC colour or monochrome, to the European 625 line, 50 fields per second standard, with colour on the PAL system.

During the Olympic Games in Mexico (12-26 October) the advanced converter was in use for a total of 170 hours of transmission via satellite relay across the Atlantic; 45 hours were live in colour for BBC 2. BBC 1 and ITV also showed pictures from Mexico in monochrome.

In the rest of Europe, eleven television services in nine countries took the converted programmes in colour. Twenty other television services in nineteen countries, including seven in Eastern Europe, took the programmes in monochrome.

Extta
 IN NEXT MONTH'S PRACTICAL ELECTRONCS EIGHT-PAGE SUPPLEMENT

A valuable reference for both beginners and more advanced constructors. Describes methods of construction, gives facts about components and includes a simple project which provides an effective practical exercise for those just getting started in the hobby.

THEORY TO PRACIICE 米 MICROPHONE WIXEER

Remove the time-consuming task of converting theoretical circuit diagrams into practical wiring layouts. Straightforward transference methods are illustrated with the intention of making circuit tracing and fault location simple on perforated wiring boards.
This article augments information given in the special Constructors' Guide.

Build this high-quality five-channel audio mixer to combine microphone and high level signals into a single channel. Ideal for multichannel recording on a single track.

PRACTICAL

April issue on sale Friday, March 14 - order your copy now!

UNLIMITED!

A selecsion of readers' suggessed circuiss. Is should be emphasised that these designs have not been proven by us. They will ac any rate scimulate fursher thoughe.
This is YOUR page and any idea published will be awarded paymenc accord ing so iss meris.

SIMPLER FLIP FLOP GAME

The Flip Flop game (December 1968) can be simplified and modified to provide a time delay. The following components can be removed or altered to provide the new version. (Fig. 1 shows the first stage modification only; the rest of the circuit remains as published.)

C 1 to be $5 \mu \mathrm{~F}$ elect. 12 V
C 2 to be $250 \mu \mathrm{~F}$ elect. 12 V in place of 1.d.r. X1
Connect push button S1 and potentiometer VR1 $2 \mathrm{M} \Omega$ in parallel with the new C 2 .
Remove LP1, TR2, R4, R5, S1, C2 from original circuit on p. 898.
With the modified version the "heads" and "tails" lamps (LP2, LP3, page 898) start flashing when the new S1 is pressed. Within about 5 seconds the lamp flashing rate will slow down until only one of them remains lit.
When the new C2 is not charged, C 1 discharges through it and TR1 emitter. Capacitor C2 charges at the same time until Cl can no longer supply a charge to C2. Conseauently TR1 will set the flip flop to a static state with only one lamp conducting. When S1 is pressed again $\mathbf{C 2}$ is discharged immediately, C 1 is charged and the circuit goes through the process again.

If a longer "spin" time is required the value of C 2 should be increased. The setting of VR1 determines the pulse repetition frequency. The flashing speed of the lamps can be decreased by increasing the value of C1.

> S. Whitehead,
> Bradford,
> Yorkshire.

SOUND EFFECTS ATTACK AND DECAY

HAVING read through the entire electronic music series in Practical Electronics, I noticed several complicated circuits for an attack and decay control.

The article in the April 1968 issue on Wind Effects gave me an idea for an extremely simple circuit, see Fig. 2.

Only one transistor is used, in exactly the same configuration as used by A. J. Bassett, but with two extra components. If instead of placing the transistor across the audio path, one places it in series with it, the device operates "in reverse" compared to the other use in the filter. The effect is very like an attack and decay circuit, but may require some experimentation to give the desired result.

This circuit is not prone to generating clicks because the capacitor absorbs them. The main advantage of this circuit is that there is no signal when S1 is not depressed, whereas there is a continuous noise with the others. The extra capacitors should be of several microfarads, values according to result required.
L. M. Newell,

Woodbridge,
Suffolk.

Input conmen
Output common

Fig. 2. Circuit diagram of the attack and decay unit

Fig. I. The simple Flip Flop game with timq delay

Bl-PREPAK LIMITED

FULLY TESTED AND MARKED

PACKS OF YOUR OWN CHOICE UP TO the value of 10/- With orders

OVER 44

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK
Germanium PNP typetransistors, equivalents to large part of the $O C$ range, i.e. $44,45,71,72$, 1, etc. PRICE 55 PER 1000

X PAK
silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a 3SY27/29, BSY95A

PRICE $\$ 3.5 .0$ PER 500
PRICE ElO PER 1000

XC PAK

silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31.39 and OK10, ete

PRICE 25 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK. P/P 2/6 PER PACK (U.K.)

TRANSISTORS
 SILICON
 PLANAR
 ONLY 1/-
 EACH
 All these types available
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N929</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N706</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S131</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S103</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N696</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N1613</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S733</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">BFY10</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S501</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N706A</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S512</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S104</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N697</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N1711</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N726</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S731</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">BC108</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N3011</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S102</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N2220</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N1507</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N1893</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2N2484</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2S732</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 2N929 | 2N706 | 2S131 | 2S103 | 2N696 | 2N1613 | 2S733 | BFY10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2S501 | 2N706A | 2S512 | 2S104 | 2N697 | 2N1711 | 2N726 | 2S731 |
| BC108 | 2N3011 | 2S102 | 2N2220 | 2N1507 | 2N1893 | 2N2484 | 2S732 |</table-markdown></div>
 All tested and guaranteed for gain and leakage-unmarked.
 Manufacturers' fall outs from the new PRE-PAK range

PRE-PAKS

Selection from our lists

JUST INTRODUCED 2 BRAND NEW ITEMS

PAK B. 78 NTEGRATED CIRCUITS, MIXEDUNTESTED, TYPES IN-CLUDE:-MIC 930, $932,936,944$, 945, $946,948,950,951, \& 962$. These are STC Type Numbers. Orders.
PAK B. 79

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linear and accurate rev.
counter for any car.
State 4 or 6 cylinder. $-\int$ EaCh

FREE CATALOGUE AND LISTS
for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS

enjoy exciting new scope now in

Air Traffic Control

There are opportunities in the National Air Traffic Control Service, a Department of the Board of Trade, for you to play a vital part in the safety of Civil Aviation. You'll work on the latest equipment including Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be $£ 869$ (at 19) to $£ 1,130$ (at 25 or over); scale maximum $£ 1,304$ (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.
Write for details to: Mr. T. H. Maliett, B.Sc. (Eng.), C. Eng.,
M.I.E.E., Room 705, The Adelphi, John Adam Street,'
London, W.C. 2 marking your envelope 'Recruitment'.
Name
Address
Not applicable to residents outside the United Kingdom.

National Air Traffic Control Service

forquisk, Ressy, prifide salidering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.
SIZE 5
HANDY SOLDER
DISPENSER
Contains 10 ft. coil
of 18 s.w.g. Ersin
Multicore Savbit
Alloy. 2/6 each.

GOODMANS HIGH FIDELITY MANUAL

A Guide to full listening enjoyment
The Manual is much more than a cata logue of Goodmans High Fidelity Loud-speakers-it contains informative articles, including advice on stereo, special beginners, page, and full cabinet drawings. you'll find it interesting as well as informative
The Perfect Combination MAXAMP 30
TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts. Silicon solid state Integrated pre-amplifier - Negligible distortion - £54.0.0.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER Transistorised . Outstanding specification - Stereo decoder (optional) • £65.5.0 + £17.5.5 P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1}{2}^{\prime \prime} \times 5 \frac{\frac{1}{2}^{\prime \prime}}{} \times 7 \frac{1}{4}^{\prime \prime}$ deep) in Teak or Walnut to order. Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

THE following circuit may be of interest to any of your readers who may be experimenting in optical communication.

As simplicity and low cost were important I decided to use an OC 35 instead of a valve modulator. The resulting quality, although not quite up to hi fi standards, was reasonable. Speech is good and intelligible, even using a light bulb with its non-linear voltage/current characteristics.

The transmitter can be run from the low impedance loudspeaker output of any audio source, or a carbon microphone may be connected as shown in dotted lines, see Fig. 3. Potentiometer VR1 is set so as to bias the transistor with the bulb at just below full brightness. A little experimenting here will be necessary so as to prevent clipping of the waveform on high peaks.

The bulb used in the circuit is a 6 V 0.06 A m.e.s. type, and resistor R1 is 100 ohm $\frac{1}{2}$ watt. This is included so that in the instance of the bulb filament short circuiting, the collector current will be 120 mA thus not harming the transistor. The actual value of R1 will depend on the bulb used.

I found the receiver circuit to be most sensitive, even more so than an ORP12 and OC71 pre-amp. It was used to feed a small amplifier or a telephone receiver directly. The system worked well up to 60 feet with the amplifier and up to 100 feet with a telephone receiver.

Incidentally, mechanical feedback occurs very easily

Fig. 3. Circuit diagram for optical communication system. The output should be fed into an amplifier with loudspeaker
if the loudspeaker is on the same base as the OCP71 or the lens.

G. J. Isley,
Leeds 15.

pn the November issue of Practical Electronics, Mr D. F. Moody describes a Frost Warning Device. Whilst not wishing to criticise any person's design, I feel that he is using "a sledgehammer to crack a nut.". A thermistor is a pretty obvious choice for the sensitive element, but there is no need to go to the expense and complexity of a bridge circuit, and my circuit, Fig. 4, is vastly simpler and uses fewer components.

The thermistor X1 has a resistance at 0 degrees centigrade of $3 \cdot 3$ kilohms (nominal). Above this temperature its resistance is lower. Potentiometer VR1 is adjusted so that at 0 degrees TR 1 is just switched off. Base current is then supplied to TR2 via R2 and the lamp lights.' Below 0 degrees centigrade the resistance of the thermistor increases and TR1 is held even more securely off.

Above 0 degrees centigrade the potential at " A " rises, and base current is fed to TR1 which switches on. TR1 quickly saturates, TR2 is switched off, and the lamp goes out.

To prevent the operating temperature differing with the supply voltage, the thermistor is supplied by a semi-stable voltage source, using a 10 V Zener diode, designed for use with a 12 V car battery. By using a $4 \cdot 7 \mathrm{~V}$ Zener diode it will work with a 6 V system.

The circuit has the following design considerations.

1. Output transistor will drive a bulb requiring up to 250 mA , i.e. max. 3W (suggest 0.75 watt as adequate).
2. TR1 has high gain at low current so that TR2 is switched on and off rapidly.

Fig. 4. A 12 V car frost warning device. Alterations for a $6 V$ version are shown in the inset box
3. D1 is 10 V 400 mW Zener diode. 10 per cent selection tolerance.
4. VR1 can be up to 1 kilohm but the higher its value the coarser the calibration.
G. N. Bartlett,

Newbury,
Berks.

Enixd

THIS article deals with the construction and operation of an electronic "animal" (or robot) and is consistent with the subject matter given in the current P.E. series Bionics. The design concept has been based largely on data relating to the habits of "real live" animals called planaria. These animals, which represent a species of flatworm, are commonly found lurking beneath small rocks and boulders in many of Britain's streams.

Whilst planaria demonstrate a crude form of learning, our synthetic version (which we have called EMMA) will exhibit only certain in-born or innate characteristics. This project should therefore be considered an open-ended affair, in that it can later form the basis for an even more sophisticated "animal". But, while keeping in mind such limitations, it must be emphasised that the model EMMA as described in detail in this article is a complete design and will provide a practical demonstration of this rather unusual application of electronics. In a more general sense, purely as a novelty, EMMA is likely to arouse interest amongst even those who have no electronic knowledge.

The electronic circuit boards, power supplies and the two electric motors which provide EMMA's muscle power are all mounted on a simple chassis. The constructional details for all these items, except the main circuit board, will be given next month in part two of this article. Final setting up and testing procedure will also be detailed in part two. In this opening article, we deal with the reflex circuits, which constitute the main circuit board (No.1)-and the major portion of the electronics involved in EMMA.

THE ANATOMY

An understanding of EMMA is best obtained by initially referring to Fig. 1 which is a block schematic of her anatomy. Like many real animals, particularly young ones, EMMA responds to stimuli in a rather negative fashion. By acting in such a way a fair degree of self preservation is thus afforded.

NORMAL FUNCTIONS

Under normal conditions the model will be capable of performing any one of four possible actions. These are

Fig. I. Block schemotic of EMMA's anotomy

filectionic mIME MOBIII anIMAL
 By G.C.BROWN
 M.S.H.A.A. A.M.R.S.H.

determined quite randomly through a noise generator and drive selector. The responses available in this mode are as follows:
(a) Moving straight ahead-both motors driving forward.
(b) Moving forward to the right-one motor stopped (starboard) and the other (port) driving forward.
(c) Moving forward to the left-one motor stopped (port) and the other (starboard) driving forward.
(d) Stationary-both motors stopped.

The bracketed port and starboard refer to the respective physical locations on the "animal's" chassis, not to the direction of turn.

When the model is able to adopt this mode of operation its behaviour is very much like that displayed by a living animal, finding itself in a strange environment. This design concept is intentional, since under these conditions a creature endowed with a learning faculty would gradually behave in a progressively less random way as it became familiar with its immediate environs. The normal functions are, however, overridden at times when EMMA interacts with photic and tactile (touch) stimuli.

REFLEX FUNCTIONS—PHOTO-SENSE

The sensing of light is bilateral; two quite separate channels exist-left and right. Each channel derives its input from a photo-sensor and, following suitable amplification, has direct control over the forward mode of operation of the opposite channel. Hence if a strong light stimulates one of the sensors the animal will make a reflex movement away from the source of illumination (i.e. the creature is negatively phototropic).

The photo-responses are thus:
(a) Reversing in a straight line away from frontal illumination-both motors running in reverse.
(b) Turning left and away from illumination on the right-one motor (starboard) driving forward and the other (port) driving in reverse.
(c) Turning right and away from illumination on the left-one motor (port) driving forward and the other (starboard) driving in reverse.

LOAD-SENSING

A form of tactile sense, reliant upon "muscle" loading, is built into the model and is an improvement on an earlier version which relied upon a sensitive
"touch-boom" arrangement. This scheme was found to be somewhat unsatisfactory due to both the singleended sensitivity of the boom and the awkwardness of its aspect.

The later concept incorporated in EMMA has quite a different basis of operation. Indeed the system adopted here, whilst retaining a good measure of sensitivity to tactile stimuli, additionally makes provision for monitoring loads. Currently the response to loads is set for some predetermined threshold, but because the model is capable of being modified ad infinitum there is no reason why the load-sensing system could not ultimately constitute one of the inputs to a learning network.

Load sensing then is achieved by monitoring the current drawn by the drive motors. If some pre-set level is exceeded, as for example when the model encounters an obstacle, a Schmitt threshold circuit will be caused to fire. The output from this circuit can then either be fed to a memory system or, as in the present application, to an avoidance circuit.

AVOIDANCE REACTION

During the time that the model is moving around it is likely to meet situations that it finds difficulty in extricating itself from; chair legs and so on representing a particular menace in this respect. In order to improve its chances (of survival!) in these tricky encounters, an avoidance system is employed which, following initial triggering by the load sensing circuit, causes the model to reverse away from the offending obstacle then quite randomly turn either left or right.

The randomness is derived from the noise generator. By making a turn in this rather unreliable way it can be demonstrated that EMMA stands a far more optimistic chance of moving out of trouble than would be the case if the turn was predictable.

As will be seen from the block diagram (Fig. 1), following the load threshold being exceeded the Schmitt circuit will fire the 0.5 second monostable causing the reversing procedure to be adopted. On return of this monostable to its stable condition the trailing edge of its pulse will appear at the inputs of gates G3 and G4 simultaneously.

RANDOM PULSE GENERATOR
Fig. 2. Electronic mime mobile animal "EMMA" reflex circuits

If this input to the gates coincides with an enabling level from the random generator, one or other of the 0.2 second monostables will be fired. As a consequence although one motor will have begun driving forward, its opposite number will continue in the reverse direction for a further 0.2 seconds, resulting in the animal performing a turn. At the end of this period the avoidance reaction will be terminated, no further response being elicited unless the load threshold is again exceeded.

WORK AND REWARD

A further point of interest arising from this loadsensing/avoidance reaction system is that EMMA will tend to respond both to obstacles in its path and additionally display something of "annoyance" if direct loads (in the form of added weight-heavy books, etc.) are applied. The constructor will here see even more interesting possibilities-a creature able to determine loads need only be interconnected with a learning network to be in a position to receive payment in return for work. Thus if instead of attempting to shake-off an unwelcome load (e.g. when its battery is low) it accepted the task and was later rewarded (with a recharge), it would have learnt that to work was to survive-a not altogether unreasonable assumption! This more ambitious type of project will be a feature of the future article mentioned earlier.

TRANSIENT DAMPING AND LOAD THRESHOLD CIRCUITS

Because we have no wish to let our "animal" respond to transient loads (as for example would be caused by the initial stall currents when the motors turn on) it is necessary to include C15 (Fig. 2) to damp-out such effects. The response, as a result, is now more positive and only occurs when more continuous loads are applied.

The trigger circuit, shown in Fig. 2, comprising TR18 and TR21 has its threshold level set by VR2. Depending on the setting of this potentiometer the circuit can be made to fire for high or low load conditions. Prior to triggering, TR21 is cut off and TR18 is conducting; if the circuit fires, then TR18 collector will go positive. This transition is utilised in triggering the avoidance system as will be seen shortly.

OUTPUT GATING

The two output gates (G1 and G2 in Fig. 1) comprise TR6, TR 10 and TR14, TR16. Whilst these gates are depicted in normal binary logic form in Fig. 1, they actually perform a ternary function (see Fig. 2). Their logic is such that the output function can be $+1,0$, or -1 and is essential since EMMA is required to go forward, stop, and reverse. The gates are essentially of NAND/NOR format but differ in the respect that the transistors have their emitters returned to different potentials.

For example, with both TR 6 and TR10 non-conducting their common collector point will be positive with respect to earth, corresponding to the forward condition in the port channel. If TR 10 is made to conduct the collector point will drop to zero, corresponding to the stop condition. On the other hand if TR6 is caused to conduct the reversing condition will be initiated and override all else in the channel. At these times the common collector point will be negative with respect to earth. The gate for the starboard channel operates in an identical way.

RANDOM PULSE GENERATION

The requirement for a low-occurrence random pulse source in EMMA has given the author many a headache. Diodes and similar devices are of no real use in this application because the noise generated by them generally has a pulse rate which is inordinately high. An electro-chemical device finally proved to have the necessary characteristics. In an earlier project this took the form of a saline cell; although representing a practical proposition this needed frequently topping-up and could not unfortunately be sealed completely without the risk of high gas pressures developing.

A very much improved random pulse source is incorporated in EMMA and is, depicted as R1 in Fig. 2. The device is a completely sealed electro-chemical cell and has a casing made either from glass or perspex tubing measuring approximately $\frac{1}{2}$ in $\times \frac{1}{4}$ in diameter.

Contained within and leaving the tube at either end -are a pair of silver-wire electrodes making contact with a cotton-wool plug. This plug is barely saturated with about a one per cent solution of silver nitrate. The open ends of the tube are sealed off using an epoxy-resin such as Araldite. See Fig. 3.

Caution; silver nitrate is a particularly corrosive chemical and care should be exercised in keeping it clear from the skin and eyes.

When the completed cell (R1) is subjected to quite low applied voltages, metallic ions are taken out of the solution and form silver threads which rapidly grow from the negative to positive electrodes (these threads are extremely fine and can only be seen with difficulty). The threads are supported by and grow through the cotton-wool plug; however, upon reaching the opposite electrode a thread will just make contact (causing a sudden reduction in the voltage drop across the cell) and then be disrupted by the increased current.

Following each break-down a new thread will begin and the process repeats. As the growth processes and disruptions are quite unpredictable so the changes in voltage across the cell occur randomly.

The output noise pulses from the cell have varying amplitudes and hence, following suitable amplification (TR2 and TR5), can be applied to the Schmitt threshold circuit which, once set by VR1, provides selection of only the higher amplitude pulses. In this way it is possible to obtain randomly distributed pulses having very low occurrence rates. The output derived from the collector of TR12 in the Schmitt circuit is taken to the steering selection binaries.

STEERING SELECTION SYSTEM

The pulses derived from the randomising circuit are fed direct to a conventional two stage binary counter controlling the forward and stop functions of the model (Fig. 2). Feeds to the output gating circuits are taken via resistors from the collectors of TR4 and TR24, and with both these transistors in the conducting state (collectors negative) forward drive will be selected.

The first random pulse to appear at the counter will result in both stages of the counter turning over and as a consequence TR4 and TR 24 collectors will go positive causing the animal to stop. However, the next two pulses to arrive will result in the animal performing right and left turns. Forward drive will be resumed as a result of the fourth pulse; the cycle will then repeat.

As it is impossible to predict when each pulse will occur, the times between the various forward modes are thus random. Operation of the circuit although sequential does not always appear so in practice. This is because the pulses sometimes have a bunched

Underside view of EMMA showing the reflex functions board
characteristic and hence the counter may well be completely cycled several times without its effects being observed.

Additional outputs are taken from the last stage of the counter at the collectors of TR20 and TR24 and control the gating in the avoidance system.

AVOIDANCE SYSTEM

The avoidance system comprises the three monostables and random gating arrangement discussed earlier and shown in Fig. 2. Whenever a load is sensed which exceeds the set threshold level, the associated Schmitt TR18, TR21 will fire causing a positive pulse to appear at the base of TR15 in the reversing monostable. The monostable will therefore switch to its quasi-stable state and the positive level now appearing at the collector of TR13 will turn both TR6 and TR16 on, resulting in EMMA reversing.
Following a short period (about 0.5 seconds) the reversing monostable will return to its stable condition. In so doing, a negative pulse fed from TR 13 collector will momentarily pull-down the emitters of gating transistors TR11 and TR17. Now at any particular time one of these transistors will be able to conduct because they are both under the control of the last stage in the steering selection system.
Thus, assuming TR 17 base happens to be at a positive potential just when its emitter is taken negative, then TR19 will turn off and the right-turn monostable will fire. Therefore, although TR6 will have returned to normal, TR16 will maintain reverse drive in the starboard channel causing the turning mode to be to the right. Turning left after reversing will result from triggering of the left-turn monostable via TR11.

By employing the random output from the steering selection system to route pulses to one or other "turn" monostables, the avoidance reaction will hence in part also be random and therefore give a better chance of negotiating obstacles.

PHOTO-SENSORS

The animal relies for its photo-sense upon two CDS cells, X1, X2 (these can either be ORP12 or ORP16 types). Each cell is connected between the base of its associated photo amplifier and the negative rail. These cells must be mounted so that they face away from the circuit board in a direction which is parallel to the edge of the board.

In the un-illuminated condition of the cells, both TR1 and TR22 collectors will be at a negative potential. If, for example, X2 (physically located on the port side) is illuminated then TR22 collector will go positive, thereby turning TR16 on; as a consequence the starboard motor will drive in reverse causing the model to turn away. Similarly if XI only is stimulated then the port motor will reverse.
Stimulation of both photo sensors results in the model backing away until it is out of the influence of the light source. Generally this backing-away mode will be terminated by a short turn in one or other directions due to slight differences in channel sensitivities; the process is thus unlikely to be uselessly repeated.

CONSTRUCTION OF THE CIRCUIT BOARD

Figs. 4 a and 4 b show the layout and wiring details of the main circuit board. This board contains all the electronic circuits which provide the reflex functions.

The Veroboard used only requires drilling for the randomising circuit potentiometer as shown in Fig. 4, all other components are mounted by means of their own leads. The breaks in the copper strips shown should be made before the components are fitted and care should be taken to ensure that the complete width of the strip has been cut.

It is advisable to mount the transistors and diodes after all the other components to avoid overheating when soldering.

Details of the motor control circuit board, power supplies and all mechanical construction and mounting of the various parts will be fully detailed next month.

LUNAR GRAVITY

Perturbations of the orbits of lunar orbitor vehicles have shown that there are areas on the moon where the gravity is increased. These areas also coincide with what have become known as "hot spots". Visual observations have shown changes of colour and infra-red observations during eclipses have confirmed this. The areas are mainly confined to the maria. The particular areas of greater gravity are situated in the maria and consistent with the presence of dense material. One suggestion put forward to explain this anomaly is the possibility of large meteoric missiles falling on the surface of the moon and penetrating to a considerable depth below the surface.

This hypothesis requires certain special circumstances to exist if it is to be tenable. One is that the size of meteoric bodies would need to be of the order of 100 km in size and another that there was a swarm of such bodies at least five in number to account for the conditions that exist. There is considerable difficulty in finding the latter event possible. There are no bodies in the asteroid belt large enough to fit this condition.

The other possibility is that the interior of the moon is still hot and that where faults have occurred in the surface gases can emerge giving rise to visual changes on the surface. There is in fact just such an area in the Mare Humorum.

MASCONS

The mass concentrations or "mascons" as the areas of higher gravity have been called may be another hazard to lunarnauts. If the
concentration of the higher gravity field is in an area of the size of the objects suggested earlier, it could be that the lunarnaut would have a hard time crossing the area or should he be on a "pogo" stick his leaps might be severely restricted.

The "pogo" stick reminiscent of the sprung stick of 40 years ago is a device developed for travelling over surfaces such as the moon. Jets are controllable enabling the user to make leaps of some 100 feet or so and have a height of 25 feet at the top of the trajectory.

PULSARS

It may be that Pulsars after all are farther away than was at first thought. An attempt to check the distances of these newest exciting objects has been made at Jodrell Bank by a team led by Dr J. E. B. Ponsonby. The first estimates of distance were made based on knowledge of the density of electrons in space and dispersion of radio pulses.

There are certain limitations in time which govern the smallest size of a radiating body. The limitation is that the radio pulse emitted cannot be shorter than the time it would take light to travel across the body. As an illustration the sun may be used to demonstrate this. If the radiation from the sun were to suddenly cease it would take about two seconds for it to become dark all over.

The first estimates of distance were based on this fact plus the clue from ionised interstellar gas where there are free electrons. In these conditions the higher frequencies have a higher velocity than the lower frequencies.

The original estimates were based
on a density of one electron to a volume of 10 cubic centimetres. On this basis the distance of CP 0328 (Cambridge pulsar at R.A. 03 hours 28 minutes) was 268 parsecs (one parsec equals 3.26 light years). Since our galaxy has a diameter of about 30,000 parsecs the pulsars are near neighbours.

However in the case of CP 0328 measurements at Jodrell bank of the absorption spectrum of the radiation which is caused by the neutral hydrogen that lies between the earth and the pulsar extends this distance considerably.

The hydrogen is rotating with the galaxy at a velocity which is dependent upon the distance of the gas from the galactic centre. There will therefore be a Doppler shift in the spectrum. The amount of this shift would be related to the distance of the pulsar. It appears that the figure for this should be increased to something of the order of 25,000 light years-in other words well out to the edge of the galaxy. This also means that the energy is that much more intense and that the size will be greater.

VEIL OF VENUS LIFTED

Mention was made previously in Spacewatch of the possibility of checking the claims of visual observers that there were markings darker than the normal surface appearance. The first radar contacts were made some ten years ago. Since that time improvements in instruments and techniques have made it possible to draw pictures of the Venusian surface.

Three particular groups have been concentrating on this work in America. They are at Cornell University, Massachusetts Institute of Technology and the Jet Propulsion Laboratory. An extensive area of the northwest face has been mapped. The extent of the triangular area is of the order of 160,000 square miles. Three irregular and somewhat rugged sectors appear on this map, see photo.

These features could be chains of mountains or extensive fields of boulders. It is known that these are permanent because they have appeared in all the tests. The first time was in 1962 rather faint, then in 1964, 1966 and 1967 strong. That they are part of the surface seems to be certain since they rotate with the planet.

The power required for this work is very high. The latest pictures obtained used a beam with a power of 100 kW . After a $4 \frac{1}{2}$ minute journey a few millionths of a watt is returned. The measurements are made when the planet is closest to the earth. This is about $26,000,000$ miles and occurs for a few months in every 18 months; the next period is in April. The 210ft Goldstone dish is to be used then with a power of 450 kW and will no doubt provide even finer detail.

KNITIING MACHINE

MODERN home knitting-machines are capable of high speed operation and with speed comes a high rate of wool consumption. Many machines use a coneformer, upon which is wound an ounce of wool and this can be transferred to knitting in about seventy-five seconds. With this kind of work the machine-operator is aware that the wool is likely to run out and the cone is watched for this to happen.

However, when needle manipulation is required to produce patterned knitting, the process is much slower and the wool can become inadvertently completely exhausted. This invariably results in dropped stitches and in severe cases the removal of all knitting from the

Fig. I. Circuit diagram of the knitting machine wool exhaustion warning device
machine. The latter case can be painful because the knitting is sometimes tensioned with heavy weights which usually manage to land on the operator's feet, with the knitting.

BUILT INSIDE CONE FORMER

To provide an indication of impending disaster, a warning device was designed, built inside the cone to give the operator as much warning as necessary for the type of work in progress. The device has the advantage that it can be built from odd junk-box pieces and apart from small resistors and capacitors the average constructor will need to spend little.

CIRCUIT OPERATION

The circuit is shown in Fig. 1. TR1 and TR2 are coupled to form a low frequency astable multivibrator, which has a quasistable time of $0.7 C_{1} R_{2}$ and a cycle period of $1.4 C_{1} R_{2}$. With the values used, the period becomes 0.66 seconds and the repetition rate 1.5 per second.

TR3 and TR4 are coupled to form a higher frequency circuit with unsymmetrical half cycles. The time period for one repetition is $0.7\left(R_{6} C_{3}+R_{7} C_{4}\right)$ seconds.

With the values used this approximates to one millisecond which provides a repetition rate of 1,000 per second.
A "personal" crystal earphone is coupled to the collector of TR4. The semiconductor diode D1, joined between TR1 and TR3 collectors, effectively "squeggs" the audio oscillation from the earphone X1 by fixing the collector potential of TR3 at a static level whenever TR1 collector potential is less negative than that of TR3. The effect of the diode has not been taken into account in estimating timing, and for ordinary purposes it can be ignored. Switch S1 applies power from a 9 volt battery BY1 to the circuit.

Fig. 2. Sectional view of the cone with the electronics installed

Circuit values have been purposely chosen for stability, coupled with audio requirements. In a normal domestic situation, a sudden, loud warning note would not be welcomed and components have been chosen to provide the sedate, interrupted note required by the writer. These circuit values allow for the use of a variety of odd transistors which may be available from discarded projects. The writer used those which are specified in the components list.

MECHANICAL CONSTRUCTION

The top of the empty cone is removed and neatly replaced by a washer $1 \frac{1}{4} \mathrm{in}$ in diameter. The earpiece is fixed into the washer central hole. Both of these operations are carried out with adhesive. Fig. 2 shows
an elevation view of the cone. Exact measurements will obviously vary with available components.

BUILDING THE CIRCUIT

Veroboard is used to form the circuit assembly. To fit into the conical space a frustum-shaped module is built, with components supported between circular pieces of Veroboard. The top disc is $\frac{7}{8}$ in in diameter and the lower dise $1 \frac{3}{8}$ in diameter. Fig. 3 shows the two pieces of Veroboard and Fig. 4 the complete assembly. If four "leg" components are assembled first, this provides a stable base for inserting the other parts.

The actuator switch Sl is made from a pair of spring contacts as shown in Fig. 5 and attached to the cone wall with a countersunk screw. The prototype used a pair of contacts from a discarded washing machine relay.

Another hole through the cone wall is lined with a brass bush to provide ingress for the shaft of a plunger, one end of which is soldered to the relay spring so that when the shaft is pushed in the contacts open. The length of shaft is carefully adjusted by filing so that the cap soldered to the end outside the cone is as near to the cone as possible, consistent with efficient operation. The cap used was a copper washer, covered with solder and shaped to provide a non-slip surface for wool.

Most wool cones are made of a "compressed paper" material and this does not take wholesale perforation for fixing screws. Two 6B.A. fork ends are used as indicated in Fig. 4 for securing the electronic unit. When splayed out to an overall diameter greater than that at the fixing position, the sharp ends of the forks dig into the cone and provide a stable anchor.

An s.r.b.p. disc carrying a spring clip is used as a battery mount and wires to the battery positive and switch are brought through a small hole in the disc. The mount is accurately cut to be a tight push fit in the cone,

COMPONENTS . . .

Resistors

RI, R4 $1 \mathrm{k} \Omega$ (2 off)
R2, R3, R6, R7 $47 \mathrm{k} \Omega$ (4 off)
R5 $10 \mathrm{k} \Omega$
R8 560Ω
All 10%, $\frac{1}{6}$ watt carbon
Capacitors
C1. C2 $10 \mu \mathrm{~F}$ elect. 12 V (2 off)
C3 $0.02 \mu \mathrm{~F}$ plastic
C4 $0.01 \mu \mathrm{~F}$ plastic
Transistors
TRI GT45-B or NKTI 26
TR2 GT45-B or NKTI 26
TR3 A5Z21
TR4 A5Z2I

Diode

DI 15920 or similar small silicon type
Battery
BYI 9V (PP4 or equivalent)

Miscellaneous

SI Actuator switch (see text)
XI Crystal earpiece
Battery clip and connectors, printed wiring board, contacts, etc.

Fig. 3. The two circular pieces of Veroboard used for the electronic assembly

Fig. 4. The assembly and wiring of circuit components on the two printed wiring board discs

Fig. 5. A suitable actuator switch (SI) made from a pair of spring contacts

SEQUENCE OF ASSEMBLY

The earpiece is glued to the top of the cone as described and connected with about nine inches of flex to the electronics module. The module, with "tails" ready for connection to the battery and S1, is then pushed into the cone until the two forks grip the interior. This is followed by the pair of switch contacts-one being wired to the negative lead of module and the other provided with a tail ready for connection to the battery.
The remaining two wires should be posted through the holes in the battery disc, and the connecting clips attached. The battery disc (less battery) is now pushed home and positioned so that the battery will clear S 1 . On connecting the battery the unit is ready for use.

USING THE DEVICE

Wool is wound on the cone by starting just below the switch with about 30 turns, trapping the free end. The 31st turn (say) is passed with others over the switch actuator and the rest of the wool wound on.
When not covered with wool the device is switched off by depressing the plunger with a rubber band. \star

BOAT SHOW

AT this year's International Boat Show the numbers of larger craft displayed had increased although the total number of boats on show was fewer than the previous year. As the demand for larger family boats rises so the demand for associated electronic equipment is also increasing and one manufacturer claimed that he was still receiving orders from contacts made at the previous Boat Show.

Electronic equipment used in small craft is mainly concerned with navigation but many other items such as wind speed and direction indicators and emergency radio equipment which can be carried in life rafts was also displayed. It is noteable that the Olympic Gold medal winners Lt. Rodney Pattison R.N., and Iain MacdonaldSmith were aided to their resounding victory by an electronic wind indicator carried in the bows of their Flying Dutchman dingy.

NEW INSTRUMENTS

The indicator used by Pattison and Smith was manufactured by Brookes and Gatehouse Ltd. These manufacturers market a comprehensive range of electronic aids for the small craft owner and have this year introduced a solid state computer which is extremely compact and which can be used in conjunction with other equipments from the same manufacturer to plot course deviations as small as
20 yards.

Precision Electronic Terminations (EMI) Ltd., who have been marketing a limited range of navigational aids for the last three years, have introduced a range of "Electra" modular navigational instruments for the weekend yachtsman. Instruments which are now available cover boat speed, distance, depth, apparent wind direction and wind speed; more instruments are expected to follow.

INEXPENSIVE RADAR

Radar sets costing less than $£ 1,000$ installed, were again displayed and the Decca 101 system appeared on most of the larger craft in the show. Few radar aerials are available in enclosures-although these have many advantages such as weatherproofing and no wind resistance on the aerial enabling smaller motors to be used. Two reasons for external aerials were given by manufacturers; many boat owners do not like the added wind resistance of an aerial enclosure and owners prefer to see the aerial revolving-"It lets others know you have radar"-keeping up with the Joneses!

EQUIPMENT DISPLAYS

Various interesting displays of working equipment were used to attract customers and, unintentionally, small children with sticky fingers and ice lollies. Taped sales talk was provided on the Ferrograph stand to advertise their graphic echo sounder, one of the smaller units displayed which uses dry recording paper. On another stand a marine receiver, made by S.P. Radio, was displayed working whilst being sprayed with water, although this receiver was removed from the stand at intervals during
the show!

Electronic equipment for use at sea is not cheap but the quality of most of the equipment on display was excellent. Such equipment is built to high standards of reliability and most units are waterproof to some degree.

Electronics is playing a bigger and bigger part in weekend boating, not only in navigational aids but in the very necessary and useful distress signal equipment which is inexpensive when one considers its life saving ability.

4 (1)

Although this unit is described as a "sound" operated switch, it can, in fact, be operated by any audio frequency signal that is connected to its input.

Basically, the unit consists of an amplifier section followed by a rectifier, which converts the amplified input signal to d.c.; the d.c. is then used to trigger an electronic switch, which in turn feeds the output load, a 6 volt 40 mA bulb.

Normally, the bulb is off but is switched on when an audio signal of sufficient amplitude is connected to the input of the unit; if required, the mode of operation of the unit can be modified so that the bulb is normally on but is triggered off when the audio signal is applied.

A relay can be substituted for the lamp load, allowing external circuitry to be switched.

CIRCUIT DESCRIPTION

The full circuit diagram of the sound operated switch is shown in Fig. 1. A five transistor circuit is employed with the input connected, via C1, to the base of TR1, which acts as a common emitter amplifier.

Negative feedback is applied over this first stage by variable decoupling of the emitter load, VR1, thus providing an effective volume or sensitivity control.

The output of TR1 is coupled, via C3, to the base of TR2, which is also connected as a common emitter
amplifier. The output of TR2 is fed, via C5, to the rectifier circuit, D1 and D2. C6 acts as a smoothing circuit in conjunction with the input impedance of TR3; the rectified voltage is negative in polarity.

SCHMITT TRIGGER

TR3 and TR4 are wired as a Schmitt trigger which is a two state circuit where either TR3 is hard on and TR4 off, or TR4 is hard on and TR3 is off; the state of the circuit can be changed by applying a suitable trigger potential to TR3 base.

In the circuit shown, TR3 is normally off and TR4 hard on, this state of the circuit being ensured by the choice of component values of R8 and R9, the basebias network for TR3.

When the input signal is connected to the unit the rectified negative voltage is also fed to the base of TR3, changing its base-bias; when the bias is raised to a sufficient level, the Schmitt will trigger and the circuit will change its state very rapidly with TR3 switching hard on and TR4 off. The collector of TR4, which is normally at near zero potential, will jump to near full negative rail potential.

TR5 is wired as an emitter follower with its base direct coupled to the collector of TR4; thus, as TR4 switches off, TR 5 switches hard on, illuminating the 6 volt 40 mA bulb, LP1.

Fig. I. Circuit diagram of the sound operated switch

PURPOSE OF DIODE

If diode D3 was omitted from the circuit it would be found that, although TR5 base and TR4 collector are at near zero volts, sufficient negative bias would still be available to cause TR5 to conduct quite heavily (almost 30 mA). Including D3 in the circuit effectively raises the emitter potential of TR5, reducing the negative bias condition and reducing the emitter current to nearly 2 mA with the Schmitt trigger off.
When the input signal falls to a sufficiently low level, the rectified d.c. decreases to a value at which the Schmitt can no longer be held on; the Schmitt then triggers very rapidly back to the off condition and the sequence of operations of the circuit is complete.

CONSTRUCTION

Start construction by cutting the Veroboard panel to size and breaking the copper strips, as indicated in Fig. 2.

COMPONENTS . . .

As the first stage of assembly, wire up C1, R1, R2, R3, TR1, VR1 and C2 as shown in Fig 3. Double check the wiring and carry out a simple functional check to ensure that this section of the circuit is operating correctly. Next, wire up the second amplifier and rectifier stages.

If a voltmeter is available, connect it across C6 on its 10 volt d.c. range, apply a signal to the input of the unit and check that the circuit is functioning correctly by observing the reading on the voltmeter.

Now wire up the Schmitt trigger circuit and check that it operates by monitoring the voltage at TR4 collector.

With the Schmitt circuit off, TR4 collector will be almost 0.8 volts; with the Schmitt circuit on, TR4 collector will be around 8 volts.

Finally, wire up the rest of the circuit, comprising TR5, D3, and LP1, and check the operation of the complete unit.

VARIATIONS

In the circuit shown in Fig. 1, LPl is normally off but is switched on when an input signal of sufficient amplitude is applied; if it is required that LP1 should be normally on instead, but switch off when the input signal is applied, modify the circuit by breaking the connection between TR5 base and TR4 collector, and re-connect TR5 base to TR3 collector.

If required, LP1 can be replaced by a 6 volt relay of resistance greater than 12 ohms ; if a relay with a resistance of greater than about 100 ohms is used, D3 can be omitted from the circuit.

An input signal of about 8 mV is required to trigger the unit; if it is driven from a speaker and matching transformer, quite loud noise levels are required for triggering. For low level triggering with a sound source such as a soft voice several yards away, one or both of two modifications can be made to the circuit:

Fig. 2. Underside of board showing breaks in copper strips

Fig. 3. Layout of components on board and connection details to other components
(a) Replace R9 with a 10 kilohm preset skeleton potentiometer, connecting one of the fixed arms to the slider; now short out the input to the unit and adjust the 10 kilohm potentiometer to the point at which the Schmitt circuit is just short of triggering; now connect an input signal and check that the Schmitt triggers at the required low level and resets itself when the input signal is removed.
(b) Add another amplifier stage to the unit, in front of the input connection, the additional stage being identical with the TR2 stage; if instability occurs, insert a decoupling network, comprising a 470 ohm resistor and $16 \mu \mathrm{~F}$ capacitor, in the negative supply line between the new stage and the TR1 stage.

If either of these modifications are made, it will be necessary to increase the size of the Veroboard panel to accommodate the new components.

USING THE UNIT

To operate the unit directly by sound, connect a loudspeaker or microphone to the input via a matching transformer (the input impedance of the unit is in the order of a couple of thousand ohms, depending on the setting of VR1) and adjust VR1 for the required sensitivity; fairly high noise levels are required to trigger the unit.

The unit is primarily intended to be used in conjunction with other electronic equipment, such as amplifiers, transmitters, receivers, etc. and in this context the unit should be coupled into the other equipment at a point where sufficient drive is available to operate the switch; if the unit is to be used in conjunction with valve equipment, replace Cl with an adequately rated component; it may be necessary to include a limiting resistor in series with the input to prevent damage by overdriving.

APPLICATIONS

With a relay load the unit may be used as a baby alarm by remotely switching off the sound of a radio or television receiver when the child cries.

Two applications which should prove useful to the amateur radio fraternity are:
(a) as a voice command switch, the unit can be made to turn off the transmitter when not speaking, so providing considerable economies in carrier power radiation. This should appeal particularly to those owners of mobile equipment.
(b) as an indicator to provide a warning when a signal comes through on a preset channel of a communications receiver.

Since the switch can be made to trigger above an abitrary level of input signal, it can act as an overload cut-out if built into a composite piece of equipment.

PARTY NOVELTY

Finally, for those who like party tricks, the unit can be set up with the lamp LP1 mounted in front of a small concealed speaker, the lamp can then be illuminated by blowing on it (blowing on the speaker in fact).

Alternatively, if the connection between TR 5 base and TR4 collector is broken and TR 5 base connected to TR3 collector, a normally switched on lamp can be blown out.

VARI WINDSCREEN WIPER (October 1968)
Following the author's notes on the Vari Windscreen Wiper (Points Arising, January 1969) some readers have noted that they are able to achieve sat isfactory results when bench tested, but difficulties arise when fitted in the car. The following contributions may be of help to other readers:
Rapid Recovery Voltage
With reference to Points Arising in the January issue, the explanation may be correct in some cases, but I feel the fault is more likely to be due to the rapid recovery voltage of the electrical system causing the thyristor to switch on again.

The only remedy is to delay the rapid recovery of the voltage. One very effective way is to connect a capacitor across the thyristor (anode to cathode) thus giving a parallel path to produce the required delay (microseconds). The value could be from $1 \mu \mathrm{~F}$ upwards.

I have built two of these devices with the modification which have been highly successful, then modified two others for friends who have had trouble with theirs. I used $25-50 \mu \mathrm{~F}$.

On those that I built, I removed the 560 ohm resistor R5, which does not appear to have any practical use; the devices have not suffered any as a result.-F.M., Sale, Cheshire.

Fire Risk

I feel obliged to advise you that there is a very serious fire risk on a modern vehicle if this system is employed together with permanent magnet field wiper motor. The user should be aware of the danger of pulsing the wiper or switch, since this switch effectively shorts out the motor armature, to produce the dynamic braking principle involved to stall the armature during "parking". However, the published circuit (October 1968) may be used to pulse a changeover relay which would have to be

Fig. 1. Modiffed circuit for the Vari Windsereen wiper wired to replace the existing wiper switch.

To do this, disconnect the existing switch from the dash panel and transfer the wiring io the relay contacts as shown in Fig. 1. Then connect the new control relay coil either via the on-off switch for normal running, or via the pulse circuitry for delay wiping.-A.C.N.W., Ford Motor Co.
Capacitor Across Brushes
A friend of mine who had similar trouble suggested a capacitor across the brushes of the motor which cured the trouble of continuous action. However after being switched on for some time the action quickens up so that the slowest speed is only about three seconds between wipes. I tried a higher value potentiometer than 100 kilohns which gave a longer first delay, but again after running for some time quickens up to about the same previous threesecond speed.-C.G.W., London, S.W. 12.

Readers may also like to note that we have other ideas on windscreen wiper delay and hope to be able to publish details in the near future.-Ed.

METAL LOCATOR (January 1969)

We regret that a pagination error occurred in this article making continuity incorrect. The material on pages 18 and 19 should be transposed with the material on pages 20 and 21.

electronic VIDEO RECORDING

using a flying spot scanner on specially prepared film

Alittle more than a year ago the first public announcement was made of a novel concept in audio visual recording. The idea was developed by Dr. Goldmark at the CBS Laboratories, Stanford, California, using specially prepared non-commercial film.

The system has now been. released under patent protection rights by a partnership known as EVR, who will sell manufacturing and marketing rights by licence to genuinely interested and suitably equipped commercial concerns.

PLAYBACK ON F.M. TELEVISION

Special film records are prepared by copying 8 or 16 mm masters and 1 or 2 in video tape recordings at the Ilford Ltd. plant, Basildon. They are then loaded into a special cassette which, when inserted on the EVR (electronic video recording and reproduction) teleplayer spindle, will be automatically unloaded.

The playback film is threaded and automatically fitted to the take-up spool inside the teleplayer machine at the press of a button.

The teleplayer, which is connected to the aerial socket of a normal 625-line television receiver

The picture image on the film is converted to a frequency modulated video carrier of 175 MHz suitable for injecting direct in the aerial socket of a 625-line standard domestic television receiver, while the sound track from a magnetic stripe on the film is suitably converted to a modulated television sound carrier frequency.

ELECTRON BEAM SCANNING

On the film originating side, the recording is made in the production laboratories at Basildon with an electron beam recorder. In this device a beam of electrons carrying the picture information bombards a special type of photographic film which is in a vacuum.

There is no purely optical system and there are no phosphor powders to cause a grainy effect on the film. Certain photographic emulsions are very sensitive to the high energy contained in the electron beam. The beam has a sharpness of definition beyond that obtainable with the very finest grain of film.

The electron beam sensitises the film to obtain a goodquality picture only about one tenth the size of the image on a 16 mm film, and less than half the size of the image on an 8 mm film. This ability to pack a lot of picture information in a small space without loss of quality is the essence of the system.

Two half-hour programmes in black and white or a single half-hour programme in colour can be recorded on a single spool of film of smaller dimensions than a conventional spool. Special signals are also recorded on the film whilst in the vacuum to serve as a basis for generating a modulated carrier in synchronism with the programme material.

The film has no sprocket holes, is contained in a sealed unit protected from dust, is completely automatic in threading and therefore is not subject to the wear and deterioration which is associated with conventional optical films with sprocket drive.

THE TELEPLAYER

The cathode ray tube used in the flying spot scanner is a long-life device which can be expected to deteriorate very slowly and be free from the sudden failure characteristic of normal projection lamps. Moreover, the life of the tube is prolonged by an automatic brilliance control circuit.

The teleplayer is about eighteen inches square and about seven inches high. It is completely automatic. It has facilities for normal playing, fast forward, fast reverse and for examining any selected single frame by manual drive in the vicinity of the selected part.

The output of the teleplayer goes by co-axial cable to any 625 -line television set and can be plugged into either the aerial socket or a spare channel on the receiver. It in no way interferes with normal broadcast television reception and the receiver can be used for this or for EVR by the usual channel selection control.

On completion of playback, the film can be automatically rewound and loaded back into the cartridge; the cover is replaced making the complete film ready for immediate storage.

Whilst being of modest physical size the teleplayer uses semiconductors throughout to convert the recorded image and sound track simultaneously to f.m. signals, which are fully compatible with existing 625 -line standards.

PRODUCTION AND APPLICATIONS

The first manufacturing licence has been granted to the Rank Organisation and the initial production run from Rank Bush Murphy is expected to be ready for field trials later this year.

Although it is possible to use the system for domestic purposes, it is primarily intended to assist in industrial training and educational establishments throughout the world. The basic price of a single teleplayer is estimated to be in the region of $£ 200$, while pre-recorded films could be made available on hire or by purchase, although the latter could in some cases be uneconomical to pursue.

A colour version of the teleplayer is expected to be demonstrated by EVR early next year, in which the luminance signal will be recorded on one track and the chrominance signal on the other. The EVR partnership was formed in 1967 by the Columbia Broadcasting System Inc. of America, Imperial Chemical Industries, and CIBA of Switzerland.

Comparison of 16 mm film with an EVR telecartridge. The 16 mm film on the left plays for 52 minutes. The cartridge on the right plays for one hour. A length of fllm from the cartridge shown has been unwound to illustrate the size of the film. Normally the film remains within the cartridge, except when it is being played. Take-up and rewind are automatic. On the right is the teleplayer being operated

NEURAL NETWORKS

To date an incredible quantity of information has been amassed concerning the operation of the neuron, or nerve cell. Theories and models too have appeared by the hundred showing ways in which networks of these neurons might be connected so as to produce certain intelligent functions. Indeed there are such a choice of theories, many of them perfectly feasible, that often rather than clarifying the situation, make the problem of finding the key to the working of the brain even more remote.
As it is, neurons are such tiny entities that an electron microscope is required to resolve their inner construc-tion-an even bigger problem manifests itself when we try to picture the interconnections between say the "ten thousand million odd" in the human brain. An assessment of the number of interconnections becomes downright astronomical when we realise that there may very easily be something in the order of 5×10^{4} individual contacts on each neuron.

THE HUMAN BRAIN

The various areas of the human brain and the primary functions associated with them have been largely mapped since the first World War; this last, in particular, appears to have been an ideal time for examining cortical topology-albeit rather unethically. However, the business of assigning "which bits appear to do what" seems to be more of a surgical operation than anything else, and as our brains are so complex anyway, neurologists have looked for some of the answers to the problem of "how" in the more simple forms of life.

We shall later inspect some of the less complex arrangements of neurons used in "property detectors" found in some of the simpler animals. In the meantime we shall take a look at the component that makes such things possible-the neuron.

It is fortunate for the animal kingdom that nature bestowed the neuron upon nearly all its members. Without networks of such neurons few living things, other than plants, would be able to regulate their
external and internal environments and so survive. Functionally, a large proportion of neurons serve to receive and transmit information by way of electrical impulses to and from the various parts of an organism. These sensory and motor neurons, as they are called, are not the only type. In the brain of the vertebrates, for example, other neurons exist which co-ordinate the bodily activities, and so prevent chaotic or disorganised functioning

LIKE A MO yostable

Electrically, individual neurons seem to operate in a way somewhat like the monostable circuit. When suitably triggered, the neuron fires a pulse of relatively constant amplitude lasting about 1 millisecond; it then goes through a short refractory period before it is able to accept triggering again. Increases in trigger amplitude cause the neuron to fire more frequently. while with relatively constant levels it "seltles down" or accominodates to the input.

As has been previously discussed, there are several kinds of nel rons-however, they all have a number of features in com non with one another. Fig. 5.1 gives a general idea of the type found in the vertebrate brain. As can be seer from the illustration, each neuron comprises a scma or cell body from which several processes fird their origin. These are the axons and dendrites. The axon is an output termination which feeds information from the neuron to other cells; while the dendrites (tree-like extensions) act as inputs connecting the neuron with axons from surrcundingcells.

SYNAPSES

The point at which a dendrite meets an axon is called a synapse: this term was "coined" by Sir Charles Sherrington in about 1897 from the Greek word, meaning "to clasp". The synapse consists of a bulb adjoining the axon, and separates the latter from the receiving dendrice.

Not so long ago the neuron was considered to operate essentially in a binary fashion; to wit, it was

Fig. 5.I. Diagrammatical 'representation of a neural network which constitutes the basic component of the brain in vertebrates
either "off" or "on"-_"firing" or "not firing". This view has changed in recent years, and "all or nothing firing" now appears limited to the axon alone. The electrical characteristics observed in dendrites appear markedly at variance with those seen in the axon, and this seems almost certainly due to the presence of the synaptic contacts.

Synapses are most easily conceived of as "weights" applied to each neuron cell which either allow it to fire easily, or only after some overall input threshold level has been exceeded. Looking at the neuron as a whole, complete with synapses adjoining axons from neighbouring cells, it might be thought of as a rather complex gate with a firing mode (as discussed previously) not unlike that of a monostable circuit. Fig. 5.2 shows a very much simplified schematic of the properties displayed by so-called "formal" neurons. Notice that the synapses although weighting a neuron may be either excitatory or inhibitory.

There is evidence that the synapses in addition to having varying controls over a neuron, can themselves vary over a period and so change the threshold. This seemingly gives rise to the effect that a neuron's ease of firing can be influenced by past events (previous inputs): tantamount surely to a memory.

Fig. 5.2. Simplified schematic of the properties displayed by "formal" neurons

Fig. 5.3. Majority logic gate. If three or more inputs are active, the "neuron" will fire (this would also depend upon the weight of the inhibitory connection)

THRESHOLD AND MAJORITY LOGIC

In order to embrace both the digital-like axon function and analogue properties associated with the inputs to neurons, some convenient forms of logic have been evolved. These are threshold and majority logic. This latter type of logic, incidentally, is in the course of being applied to computer design because it carries a fair degree of redundancy, thus improving reliability of the equipment.

Majority logic is rather like a more versatile kind of normal logic: Fig. 5.3 gives the general idea. One could think of this example as having much the same properties as a three-input and gate; except that there are five inputs, only three (and any three) of which need be stimulated together to provide an output.
Fig. 5.4 shows a threshold logic gate. This is like a combination of analogue and digital principles.

Fig. 5.4. Threshold logic gate
Remember that these examples are not actual neurons, but only hypothetical models which partly mimic a neurons action.
The threshold gate in Fig. 5.4 has binary inputs S_{1}, $S_{2}, S_{3}, S_{4}, \ldots S_{\mathrm{n}}$; these for convenience are treated as having values of either +1 or -1 rather than the normal " 0 " or " 1 ", and are supplied (following suitable weighting $W_{1}, W_{2}, W_{3}, W_{4}, \ldots W_{n}$) to the summation unit. An additional threshold weight is applied to the summation device so that there may be a definite reference level. If this level is exceeded, the quantiser will produce an output of 1 , otherwise it will remain at zero.
Whether an output from the gate occurs or not depends upon the level of the weighted sum of the inputs being equal to, or greater than, the threshold. This can be expressed mathematically as

$$
\text { output }=+1 \text { if } \sum_{n=1}^{n} W_{n} \cdot S_{n} \geqslant W_{t}
$$

or,

$$
\text { output }=-1 \text { if } \sum_{\mathrm{n}=1}^{\mathrm{n}} W_{\mathrm{n}} . S_{\mathrm{n}}<W_{\mathrm{t}}
$$

where W_{t} is the threshold weight.

Many of these threshold logic units (T.L.U's) have been dubbed "neural nets", because some of their characteristics are similar to those found in real neural systems. In fact the threshold device in Fig. 5.4 is capable of being "trained" to recognise certain inputs. This is accomplished by adapting the weights W_{n} until the quantities $W_{\mathrm{n}} S_{\mathrm{n}}$, compared with the threshold, result in an output of " 1 " at the quantiser. This process is then repeated with a number of variations in input to establish that the device gives the correct response only for particular inputs.

MOTOR-DRIVEN POTENTIOMETER

We suggested earlier that synaptic strengths often varied with the number of times a neuron had been triggered. As an electrical analogy this "semipermanent memory" might be thought of as a motor-

Fig. 5.5. An electrical analogy of a long-term memory

Fig. 5.6 Short-term memory.
driven potentiometer, Fig. 5.5. With inappropriate responses the gain would be reduced, and conversely attenuation reduced for the correct response; it might be called a "punishment" and "reward" system.
In a biological neuron, synaptic strengths seem to be varied chemically rather than electrically; the overall behaviour of a complete network of neurons would of course depend upon both this (the training) and the way in which the neurons are interconnected. (Whilst on the subject of chemistry, the reader may well be interested to know that we shortly anticipate examining some artificial memory devices using electro-chemical principles. Techniques, which the author uses, for constructing some of these devices will also be given.)
Although there is a considerable weight of evidence to suggest that we may now be "on the brink" of knowing the nature of memory storage, the question is still very moot as to just how many biological methods there could be for achieving this end; also, which of these happen to be relevant for a particular set of circumstances. We have already seen that variable synaptic weights may constitute a type of long-term storage device, but then is a similar principle involved in short-term memory? Certainly short-term memory can be demonstrated.

Everything You need to know about 7 Dins El:GBiGGL Repalis

 AMAZING ‘KNOW HOW’ BOOK

 AMAZING ‘KNOW HOW’ BOOK

 Brings You RIGHT UP TO DATE!

 Brings You RIGHT UP TO DATE!
 576
 PAGES 470 ILLUSTRATIONS REVISED AND ENLARGED-this essential handbook for the enthusiast, handyman or professional repairer, is packed with detailed information and easy-tofollow instructions on how to service radio and TV sets (including all-transistor and U.H.F. circuits), audio equipment and domestic appliances of every kind. Shows every step in fault tracing and the use of modern test gear, from simple meters to complex oscilloscopes. Also provides practical guidance on household electrical installation work: 576 pages. Over 470 illustrations. Mammoth value-Special Library Edition, superbly bound in Leathercloth, 50 /-, or on easy ierms; 13/-down and 3 monthly instalments of $\mathbf{1 4 / -}$ (total credit price $\mathbf{5 5} /$-). But first accept 7 Days Home Trial Offer-without obligation!

COVERS ALL THE LATEST TECHNICAL ADVANCES!

U.H.F. TELEVISION

Here are basic circuits and full instructions to enable you to service modern sets-get perfect 625-line reception.

Getting the best from RADIO AND TELEVISION SETS

How to make adjustments and repairs in order to get the best possible performance from any set.

All you need to know about DOMESTIC INSTALLATIONS

Learn from these helpful pages how to carry out modifications and extensions - with efficiency and safety! Complete guidance on lighting and power circuits, prac tical wiring work, safety regulations, cables, earthing, fuses, etc. Also Fluorescent Lighting, Time Switches and Thermostats.
function Boxes for Leod-covered Cobles

WATER HEATING

All you should know about water heaters and how to install them and keep them in perfect working order. How to service FIRES and SPACE HEATERS.

HOW TO MAINTAIN AND

REPAIR DOMESTIC APPLIANCES

From irons, toasters, hair dryers, etc. to cookers, washing machines and refrigerators. Also covers the repair and rewinding of small motors.

SPECIAL SECTION ON COLOUR TELEVISION

FAULT FINDING

This grand book is invaluable for tracing faults in radio and TV sets (both valve and transistor circuits). Deals fully with tools and bench work-shows how to make the best use of test instruments. Tells everything you want to know-from how to carry out preliminary tests to how to align tuned circuits.

Servicing DOMESTIC AUDIO EQUIPMENT

How to locate and rectify faults in hi-fi equipment (mono or stereo), record players, tape recorders, etc.

ACT NOW!

Simply complete form, indicating method of payment preferred, and post without delay. Offer applies in U.K. only. Hurry, make sure of your copy NOW!

Explains clearly and concisely the principles of all the main colour systems.

[^2]

SEND NO MONEY NOW!

To: Dept. AGB, Odhams Books, Basted, Sevenoaks, Kent.

WITHOUT OBLIGATION please send me, on 7 Days' Home Trial, Radio, Television and Electrical Repairs. Within 8 days 1 will either (a) send the Cash Price of 50/- (plus charge for postage and packing), or (b) send a down payment of $13 /-$ (plus postage charge), followed by a 3 monthly payments of $14 /$ - (Total Credit Price $55 /-$). Alternatively. I will return volume in good condition, postage paid, within 8 days.
Cross our words NOT applicable below
1 wish to pay by CASH/TERMS. 1 am (a) houseowner; (b) tenant in house or flat; (c) temporary resident; (d) single; (e) married; (f) over 21 ; (g) under 21 .

Please sign here
Your Signature
(Or. if you are under 21, signaure of parent or guardian)
block letters below
NAME (Mr./Mrs./Miss)
Full Rostal
ADDRESS.
$\mathrm{AGB} / \mathrm{NS} / \mathrm{CC}$

SOLDERING INSTRUMENTS

With the introduction of the latest moulded Nylon handle, the change-over to this type throughout the range is now complete. The LITESOLD range includes seven models ($10,18,20,25,30,35$ and 60 watts), and many accessories.

The newest handle is fitted to the 30 , 35 and 60 watt models, the latter being an improved version of the 55 watt model which it supersedes.

Other improvements featured on the 60 watt model are the simplification of the bit mounting and element fixing arrangements, which bring it into line with the other LITESOLD models. There is also an increase in performance.

All LITESOLD models are now available, to special order, with neon indicator lamps. This feature is valuable in reducing the risk of burns, and of fires caused by instruments left on.

The indicators are mounted inside the handles, which are made from translucent Nylon for this application. An orange glow is clearly seen through the handles whenever the supply is switched on.

Please ask for colour catalogue L/37

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2 LL Tel. 01-688 8589 \& 4559

prepare now. for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.
CREI Study Programmes are directly relaied to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now - enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * * Television Engineering * Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

CREI (London), Walpole House, 173-176 Sloane Street, London S.W.1. A Subsidiary of McGraw-Hill Inc.

Post this coupon today for a better future

SHORT-TERM MEMORY

It has been conjectured that short-term memory may exist in the form of reverberatory feedback loops around neurons, so that once a group of such neurons have been activated they would continue firing one another until such time as they were inhibited. At that time, their output might either be modified, or destroyed (assuming it was no longer applicable), or alternatively transferred to a long-term memory in the event that a particular response proved fruitful. The former may also be true for long-term memory, where a certain long standing response to a contingency suddenly became inappropriate.
In Fig. 5.6, we see a formal representation of how this short-term memory could operate. An input at the first neuron will cause it to fire, resulting in the second being triggered and producing an output. The output pulse will also be fed back to the first neuron, resulting in it being re-triggered, and so on. After initial triggering, the system would hence produce an output indefinitely unless an input appeared at the inhibit connection to the second neuron.

Fig. 5.7. Exclusive OR function

FEEDBACK LOOPS

Feedback loops of this kind do apparently exist biologically. If the reader inspects the two neurons on the extreme right of Fig. 5.1 it can be seen that synaptic connections exist between the processes radiating from both cells, forming a reverberatory loop. Not so long ago, an experiment was performed involving this type of feedback in the motor neurons of a frog's leg section. However, the feedback loop was deliberately introduced to establish whether reverberation could be induced artificially. This in fact proved to be true, for the muscle (connected with the neurons) continued twitching until the source of energy, maintaining its operation, was finally depleted.

OTHER LOGICAL FUNCTIONS

Up to now we have discussed some of the adaptive properties of neurons and neural networks. Neural networks also seem to perform many of the logical operations with which we are all familiar. The AND function we have already seen connected with majority logic; however such functions as "inclusive" and "exclusive" OR and NOT, are additionally evident biologically. Fig. 5.7 illustrates how the exclusive or function is achieved in a neural systen.

We shall see later on just how important these logical operations can be in several of the property detectors found in nature. In the meantime, another occurrence which must at times appear in neural nets should be examined. This is the possibility of malfunction. Although somewhat paradoxical, there is every likelihood that say a few intermittently operating neurons in a network may well be to a considerable advantage in certain situations. A hypothetical example of this will be discussed shortly, but first a look at an animal which seemingly has no memory.

ANIMALS WITHOUT MEMORY

In some of the most simple animals (protozoa) there is an indication that certain types of memory exist; this though may only be applicable to some of an organism's more major roles. Almost certainly, no real memory exists (that can be observed) in the amoeba. Surprisingly enough though, this single celled microscopic organism manages to perform in quite remarkable ways.

For example, an amoeba can sense tactile stimuli; it will screw up into a ball if given a good poke with a small glass rod. The amoeba also moves away from lesser tactile stimuli, bright light, and toxic chemicals. It additionally displays selective behaviour when on to the trail of food; for if the victim happens to be a quick mover, the amoeba will throw out its psuedopods (false feet) wide so as not to irritate or disturb the prey whilst engulfing it.

Conversely, the technique changes to clasping the food organism very closely for relatively inert objects. Quite a vocabulary of actions from a microscope blob of jelly-like protoplasm that apparently has no memory!

The truly incredible point that emerges from the example of the amoeba is that with no memory as such, it manages to survive at all! The whole virtue of a memory is, that with it, an animal is capable of remembering a particular event that has occurred within its environment and use the knowledge to advantage in the future. It thus learns from past experience. The amoeba seems unable to accomplish this, yet gets along quite well.

RANDOM MALFUNCTIONING

Suppose we designed an artificial device based on the amoeba; i.e. no memory, but some rudimentary sensory apparatus and the ability to move. One could imagine, that without the "animal" having some ability to keep a record of past events there would come a time when it found itself in serious difficulties. An example of this might be if the device elicited a response of say, a right turn, when confronted with bright lighting. Sooner or later it would make this response, and run headiong down a blind alley or into a brick wall.

Without a memory the "animal" would, to coin a phrase, be sunk! Nevertheless, even with no memory, it is possible to give the device a greater chance of survival. Let us suppose that instead of arranging to have the animal always turn right, we deliberately introduce some random malfunctioning. This might be a noisy (intermittent) component somewhere in its muscle control circuits. The modified "animal", we will assume, now occasionally turns (say) left, rather than making the "correct" response.

It will be clear that despite having an unreliable component within its framework, our "animal" now has a distinctly improved situation. This time, when it meets a bright light, it may well turn left instead of right and so avoid the previous contingency. Certainly it is better fitted for its environment than an animal without this defect, and would as a result exist for a longer time. (The reader will remember that this very notion of randomness was built in to the breadboard model of a few articles ago for the same reason.)

MORE COMPLEX ORGANISMS

Amoeba of course is an extremely simple animal. However, as we progress up the evolutionary ladder so we find that the more complex organisms utilise more and more specialised sensory equipment. We began to

Fig. 5.9. Frog's "bug" detector

Fig. 5.8 (left). Image edge detector
notice for example that not only do some of these animals react to say the presence or absence of light, but also respond to changes in level of illumination and contrast between shadow and light in their field of view. For instance a large shadow might cause an organism to retreat, whereas a small one may elicit curiosity.
Yet higher up the ladder we come across even more sophisticated sensory apparatus-particularly that involved with sight and hearing. In addition to the sensory organs of which we are relatively familiar, there also exist a number which are not so immediately obvious. These receptors are naturally just as (sometimes more) important than those which go to make up the five senses, for they monitor the internal conditions of the animal.

The internal receptors may be found in muscles where they detect stretch and contraction; there are other sensory devices which detect the movement of joints. Still more pass on information about body temperature, posture, blood pressure, and pain stimuli. All these detectors vary in their construction according to the kind of sensory function they have to perform.

PROPERTY DETECTORS

Earlier we promised looking at some of the less complex property detectors; some of these will now be discussed both in the light of present knowledge, and hypothetically in relation to artificial counterparts.

A considerable proportion of the experimental work carried out with biological sensory systems up till now has been concerned with visual receptors. In this direction there is consequently a whole wealth of data available from which one may make comparisons, and postulate ways for synthesising some of the less complex examples. Indeed, it is from this very concept that the application of bionics springs.
Many of the more lowly marine animals, particularly the molluses, and crustacea, have nervous systems which are extremely simple compared with the vertebrates. In fact some of their neural networks comprise only a handful of quite sizeable neurons-it is thus possible, in some cases at least, to be in a position to assign definite functions to these systems with a reasonable degree of accuracy.

COMPOUND EYE

One such case which has lent itself well to the study of visual systems has been the simple compound eye of the horseshoe crab Limulus. In such eyes there are a number of quite separate receptor cells, each having its
own lens system and sensory cells from which run axonal fibres to the central nervous system.

The eye of the Limulus revealed some particularly interesting mechanisms, one of which (lateral inhibition) may well have exposed an important principle underlying certain functions in mammalian visual systems too. This particular mechanism makes itself evident when just a few of its visual receptors (ommatidia) are stimulated.

It seems that in addition to the receptor nerve fibres leading to the central nervous system, there also exist a plexus of further fibres from the same receptors communicating with their neighbours. These lateral interconnections make synaptic contacts at adjacent cells and appear to be mutually inhibitive. Thus by stimulating a group of receptors this lateral inhibition seems to promote contrast at the boundaries of an image-a type of edge or corner detector in fact.

IMAGE EDGE DETECTOR

Take a look at Fig. 5.8. Here we have part of a group of formal neurons and receptors which together show, in simplified form, how this property detection for edges seems to operate. Imagine that the receptors, a through to e, are illuminated. In this condition, each receptor will be generating an output which will place an inhibitory input on the neuron of its adjacent cell. Now each neuron requires two inhibitory inputs to ensure non-firing, so with all receptors stimulated (and assuming binary operation of the neurons) the neurons would return an output of zero. Come to think of it, we would additionally see zero output if none of the receptors were illuminated!

From inspecting the illustration, the reader will already have grasped what will occur if having illuminated the receptors we decided to move an object across the immediate field of view.

Assuming receptors a, b, and c are shaded from the light source, and d and e are exposed, an interesting phenomena takes place. The first three outputs will produce a " 0 ", because although their neurons are disinhibited no inputs are present. The fifth output will also give a " 0 ", for the opposite reason that despite having its receptor illuminated the neuron has two inhibitory inputs. The fourth output however will return a " 1 ", due to it being illuminated and having insufficient inhibition to turn it off; i.e. only one inhibit from receptor e.
Thus, if an image moves in front of the receptors (from one side of the field to the other), the associated

MORE TO CHOOSE

A NEW DE-LUXE FM MONO/STEREO TUNER FROM TRS

- A.F.C. \& A.G.C. Noise Limiter - Chassis Ready Built - Pre-tuned This adranced design commutiable Hi-Fi mono/ atereo FM tuner connes in easy-to-isesmble prefabricated units engineered to the highest standards of efficiency ind performance. Valuable reffements nolude switchable A.F.C., atomatic noisc suppression, flywheel tuning, ntereo indicalion thit excellent a to responac. Inclusiou of a world-famous Forler I.F. anmplifier ensures superb performance. Excellent chasasia design made specially to fit the standard TRS simplex cabinet syatem. Siyled to match the TK 3tereo 4-4.
S.A.E. brings full delnile

Total price
(for nialne operation) $\mathbf{8 8 9 . 1 0 . 0 \text { (tarriage } 1 0 /}$ Kit to make MONO tureer inc. chassis/5ggs. and tuning assembly (p.p. $3 / 6$)

10 gns.
Power linit (p.p. 2/6) E2.5.0
simplex C'abinet (y.p. 2/6) El.17.6

INTEGRATED AMPLIFIER

A T.R S. design based on newly developed Mullard 4 watt modules with BC108 pre-amp. Suitable for speakers from 3 to 16 ohms. Bass and treble cut boost. Responee- 60 to 15 kHz ti. 3 dB . Thi excellently engineered layout requires only wiribg between coutrols and modules. Conplete with metal chassis and T.R.S. simplex teak-cuded cabliet for
instant assenbly. Sterco/Mono and Jtadio/P: switehes.
Amplifier Kit 27.18.6 (p/1; 3/6)
T.R.S. Power Unit 88.5 .0 ($\mathrm{p} / \mathrm{p} 2 / 6$)
T.R.S. Slmplex Cabinet, 21.17.8 (p/p 2/6)
prs. DIN plugs and sockets if purchased separately
Comp

PLAYING UNITS BY GARRARD \& E.M.I.

LM3900 Recort Player with 9T.A. Stereo Cartridge

 810.15 .0AT. 60 Mr. II De-Luxe Auto-changer, diceast turntable. Less cartridge. 213.17.6.
table. Less cartridge. 112.10 .6 . Braud new in table. Lebs cartridge. sartons. Packing and carriage on any one of above 7/6.
GARRARD PLITTH WB.I. In fine Teak for above
units. (Packing and carriage $5 /-$.) $67 / 6$.
Olear-viow rigid persper cover (carriage $4 / 6$), $65 /-$
CARTRIDGES FOR ABOVE-8TEREO Sonotone 9TA/HC Ceranic with clamond 52/6; Decca 1 eran
 kt I 4-sp englo plage. and T/O cart. $72 / 6$ (p/p $5 / \mathrm{F}$)

MAKE A BOOKSHELF SPEAKER With a set of matched apeakers and cros8-over fron TRS. Comprises modern style high efficiency ஏiu. bass unit with special cone assenibly. X-over and 2In. tweeter for moumting luto your own calnet or baxing up to 6 watte Made by it world-famous manufacturer. I genuinc bargain for only $79 / 6$ (carr. 5 -).
ORDERITG-Send cash with order. Poat and packing whero we stated add $1 /-$ per $1 \mathrm{lb} . ; 1 / 911 \mathrm{~b}, ; 3 / 6,2 \mathrm{~b} . ;$ 0/-. $61 \mathrm{~b} . ; 6 / 6,101 \mathrm{~b}$.
with enguiries please
LISTS-Eight large printed pagen, packed with bargain offers including difflcult to find lines. Hend 6id. for latest copy

COMPONENT SPECIALISTS Est. 1946
70 ERIGSTOCK RD., THORNTON HEATR, SURREY Tel. 01-884 2188 g.1u--6 p.m. daily 1 p.m. Wcdu. A few doors from Thornton Heath Station (S.R. Victoria Section)

150 AMPS

AMP
E3.10.0.
 69. 5. 0.

INPUT 230/240v. A.C. 50/60

 OUTPUT YARIABLE $0-260 \mathrm{v}$ BRAND NEWKeenest prices in the country All Types (and Spares) from to 50 amp . from stock. HROUDED TYPE
1 amp f5. 10. $0 . \quad 2.5 \mathrm{amps}$ C6. 15, 0. 4 anips, 69.0 .0 5 amps, 69. 15. 0. 614. 10. 0. 10 amps, 618. 10. 0 . $12 \mathrm{amps}, 621.0 .0$. 15 amps , E25. 0. O. $20 \mathrm{amps}, 637.0 .0$. 692. 0. C OPEN TYPE (Panel Mounting) amp, E3. 10. 0. I amp, 65. 10. 0. ${ }^{2}$ amps, E6. 12. 6.
PORTABLE TYPE
 imilar to above 2.5 amp. fli..7.6.

L.T. TRANSFORMERS All primaries

	Taps	Price	Carr
	$30,32,34,36$ v. at 5 am	64/5/0	$6 /$
2	$30,40,50 \mathrm{v}$. at 5 amps .	66/5/0	$6 / 6$
3	$10,17,18 \mathrm{v}$ at 10 amps .	E4/10/0	16
4	6, 12 v . at 20 amps .	65/17/6	6/6
5	17, $18,20 \mathrm{v}$. at 20 amps .	66/12/6	$6 / 6$
6	$6,12,20 \mathrm{v}$. at 20 amps.	66/5/0	7/6
7	24 v . at 10 amps. . . .	£4/15/0	5/6
	4, 6, 24, 32 v . at 12 amps .	E6/10/0	6/6

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuic. $230 / 250$ v. A.C. operation
ECONOMY KIT. Fiash rate 1-36 flash per second. All components including Unijunction, thyristor, tube and circuit. 65/5/0 plus 3/6 P. \& P.
INDUSTRIAL KIT. Flash rate 1-80 f.p.s. Ideally suitable for schools, laboratories, etc. Incorporates double wound transformer which isolates both tube and timing sircuit from mains. Stabilized timing sircuit and high power tube. $68 / 8 / 0$ plus $6 /-\mathrm{P}$. \& P.

6年" POLISHED REFLECTOR-
Ideally suited for above Strobe kits. Price $8 / 6$ post paid.
Regret not sold separately.
PARVALUX TYPE SD19 $230 / 250$ VOLTS A.C. REVERSIBLE GEARED MOTOR.
30 r.p.m. 401b. ins. Position of drive spindle adjustable to 3 different angles.
Mounted on substantial cast aluminium Mounted on substantial cast and in first class running order. A really powertu price. 6 GNS. P. \& P. $10 /-$

BODINETYPE N.C.I GEARED MOTOR (Type I) 71 r.p.m. Torque 101 b . inch.
Reversible. I/70th h.p., so cycle, 38 amp. Type 2) 28 r.p.m. Torque 201 b , inch Reversible. I/B0th h.p.: 50 cycle, 28 amp.
 The above. two precisison made U.S.A. motors are offered in 'as new' condition. input voltage
of motor 115 V . A.C. Supplied complete with transformer for 230 240 v . A.C. input. Price. either type 62 . 17.6 plus $6 / 6$
P. \& P. or less transformer 62.2 .6 plus $4 / 6$ P. \& P.

$200 / 250 \cup$ AC HORSTMANN 2OA TINE SWITCH

2 on/off every 24 hours at any pre-set
time. Fitted in metal case. 36 hr . raction of makers' price. $£ 3.19 .6$ plus 46 P. \& P. Available with solar dial on request

- NSULATED TERMINALS

Available in red, white, yellow, black, blue and green. New $17 /$ per doz. 2/-. P. \&
230/240V. A.C. SOLENOID Heavy duty type, approx. 3 lbs. pull. Pric 17/6 plus 2!6 P. \& P.

12/24V.D.C. SOLENOID
Approx. 8 oz. push. Price $8 / 6$ plus $1 / 6$ P. \& P

LIGHT SENSITIVE SWITCH
Kit of parts, including ORPI2 Cadmium Sulphide Photocell, Relay, Transistor, and Cireuit, ete., 6-12
volt D.C. op. price $25 /-$ plus $2 / 6$ volt D.C. op. price $25 /$ - plus $2 / 6$
P. \& P. ORP 12 including circuit $10 / 6$ each, plus $1 /-$ P. \& P.
A.C. MAINS MODEL Incorporates

Mains Transformer, Rectifier and special relay with $3,5 \mathrm{amp}$ mains c / o contacts. rice inc. circuit $47 / 6$ plus $2 / 6$ P. \& P.
LIGHT SOURCE AND PHOTO
CELL MOUNTING Bran light sou engineered
lens assembly and vencilated $0 \Rightarrow$
lamp housing, to take MBC bulb. Separate
photo cell mounting assembly for ORP. 12
or similar cell. Both units are single hole fixing Price per pair 62.15.0. P \& P $3 / 6$. UNISELECTOR SWITCHES NEW
4 Bank 25 Way 24 v. D.C
\& PAB
8 Bank 25 Way 24 v. D.C. operation
67.12.6 plus 4/6 P. \& P.

MINIATURE UNISELECTOR SWITCH
Ex-Equipment
3 banks of 11 positions plus
homing bank, 10 ohm coil. 24-36 V. D.C. operation. Tesced. 22/6, plus $2 / 6 \mathrm{P}$. \& P.
COPPER LAMINATE. Printed Circuit Board. Size $15 ?^{\prime \prime} \times 5 \mathrm{l}^{\prime \prime} 3 / 9$ each. 3 for $10 /-$ Post paid.

RELAYS

Bulk purchase enables us to offer the following new SIEMENS, PLESSEY, etc. miniature plug in relays complete

Coil	Working		
Ω		Contracts	,
280	6-12	$2 \mathrm{c} / \mathrm{O}$	1416
280	9.18	4 clo	15/6
700	12-24	$2 \mathrm{c} / \mathrm{O}$	$12 / 6$
700	16.24	4 cio	15/6
700	16-24	4 M 2 B	12/6
1250	20-40	$2 \mathrm{coloh.D}$.	12/6
2500	30.50	2 coh . D .	$12 / 6$
5800	50.70	$4 \mathrm{c} / \mathrm{O}$	10/-
00	40.70	$2 \mathrm{c} / \mathrm{O}$	10:-
H.D.	Heavy	y. POSTPA	

|SEALED RELAY
230 VOLT AC COIL
Two c/o
Plug-in 10 Bats.
Price 14/6. incl. base. Post Paid.
3 c/0 Amp. CONTACTS 17/6 incl. Base. Pose Paid.

saña multi RANGE METERS

4. New Model U50D Multi tester, protection. Ranges-d.c. volts: 100 mV . 0.5 v. 5 v., 250 v.. 1.000 v.i. a.c. volts: $2.5 \mathrm{v} ., 10 \mathrm{v} ., 50$ v.. 250 v. . 1,000 v.; D.C. current: $5 \mu A, 0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}$, 250 MA . Complete with battery and test probe. $67 / 5 / 0$ post paid. Three other models available from stock. Descriptive eaflet on request.

A.C. CONTACTOR

 2 make $\therefore 2$ break (or, 2 c / o.) 15 amp . contacts. $230 / 240 V$. A.C. operation Brand new. Price 22/6 plus | $1 / 6$ P. \& P.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN

Personal callers oniy
9 LITTLE NEWPORT ST.
LONDON, W.C.2. Tel. GER 0576

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE

ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servomechanisms, Computer Engineering, Numerical Control Electronics, etc.
EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS ELECTRONIC SERVICING
R.T.E.B. RADIO/TV SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Build your own radio, transistor portable, and professlonal-type test instruments with an ICS Practical Radio and Electronics Course. Everything simply exploined and easy to handle. All components and tools supplied. For detalis post coupon below.
Member of the Association of British Correspondence Colleges

> FOR FREE HANDBOOK POST THIS COUPON TODAY
> I.C.S., DEPE. 1SI, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11

NAME
ADDRESS

OCCUPATION.
INTERNATIONAL CORRESPOHDENCE SCHOOLS

SEMICONDUCTORS

BRAND NEW AND FULLY GUARANTEED
NOR

A. MARSHALL \& SON

28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 01-452 0161/2

CALLERS WELCOME
neurons will progressively show "ones" at their outputs as the approaching edge meets a receptor. This type of property detector, therefore, not only displays the ability to see edges and sharpen up contrast, but has the merit that it can pass on information about rate and direction of movement as well!
The Limulus is not, of course, the only animal whose visual system makes use of mutual inhibition-in fact it is fast becoming clear that without this property, true recognition, be it visual, auditory or whatever, would be virtually impossible.

FROG BUG DETECTOR

Not so long ago, some other workers in the bionics field localised a rather interesting form of inhibiton present in the eye of the common frog. The system that incorporated this form of inhibition they called, for lack of a better phrase, the frog's "bug detector". It will be apparent from Fig. 5.9 that a group of such devices besides giving the frog an indication of the "bugginess" of the environment, would also serve to warn the animal if a predator came into view. Small shadows across the frog's field of view would tend to mean food, and large shadows could imply, "hop it, someone's after you!"

Of course, Fig. 5.9 is but a simplification of the real thing--however, it does work! Assuming the receptors are all equally illuminated, then the effects of the six exciter receptors will be just cancelled by the -6 output from the inhibitor. The neuron would therefore return a vote of nil. Now if, whilst the receptors remained illuminated, the image of some object in the field of view happened only to cover the central inhibitor an output would immediately appear at the neuron. Such a condition might, to the frog, be indicative of a fly or some other tasty morsel in the immediate vicinity.

We could imagine other connections from the receptors in the "bug detector" which might pass on information only if a shadow covered all the receptors. Such data could constitute a warning that danger was imminent.

IMPORTANCE OF INHIBITION PROPERTY

Inhibition certainly seems to be one of the important fundamental characteristics of nervous systems; at times it would almost appear more significant than the property of excitation.
Research concerning the implications of inhibition in sensory mechanisms is currently being conducted in many universities and laboratories. In fact, so vast could be the outcome stemming from work in this field, that the United States Air Force recently granted a contract to a research foundation to "drum up" as much biological literature as possible in order to get ideas! The response they received was incredible, for it resulted in something like five hundred references on the subject, and in the region of one hundred and fifty odd papers and volumes connected with biological "transducers" alone!
In the article appearing next month we shall forge ahead with discussions about more of these property detectors. Also describe how some of them might be implemented in our "mobile breadboard", which incidentally the constructors amongst you must have felt the author had completely forgotten about!

A topic emerging from all these discussions about nerve nets and property detectors, will also be in evidence next month: that of pattern recognition.

NEWS BRIEFS

Television Guidance System for Martel

$A^{\text {N ORDER worth several million pounds sterling has been }}$ $A_{\text {placed with The Marconi Company by the Ministry of }}$ Technology, for television guidance systems for the first production batch of Anglo-French MARTEL guided missiles.

The heart of this very advanced missile system is a small sensitive television camera, carried in the nose of the missile, which provides a high quality picture from which any type of target can be positively identified.

This "missile-eye-view" is transmitted back to the launching aircraft, where the observer is able to follow the missile flight on a television monitor.
A joystick control in the cockpit enables him to adjust the field of view of the camera, over a command radio link. Control signals are then generated within the missile itself to align the flight path with the axis of the television camera, once the target has been identified.
The launching aircraft need never come within visual or radar range of the target, and can be safely on their way back to base while the missile is guided to its target.

Inventions and New Products Exhibition

ANexhibition of inventions and new products covering a wide range of items was held at the New Horticultural Hall, Westminster, during January. Among the various electronic devices on display was a motor vehicle immobiliser, which cuts out the engine of the vehicle by blocking the air intake when the driver leaves his seat, and ensures that the engine cannot be restarted without the use of a special key.

A versatile low cost computer the Micro- 16 made by Digico Ltd. was on display. This computer can be desk mounted, works as a real time machine with interrupt facilities and has a 4,000 word store with teletype input and output. The complete computer is priced at $£ 4,100$.

Other inventions included a kinetic abstract image display which produces a continually changing colour display and a pressure variable resistor which uses plastic foam impregnated with carbon as the resistive element.

New Computers

Two NEW computers have recently been introduced by ird generathey are the 4004/16 and the 4004/25. The monolithic circuits and featuring cycle times in the nanosecond range have so far proved to be reliable and efficient. The photograph shows the central processor 4004/26 of the Siemens computer system 4004.

marhet Plate

Items mentioned in this leature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, anquiries and orders should then be made direct tn the firm concerned.

R.F. SIGNAL GENERATORS

The new range of Nombrex r.f. signal generators, models $29-\mathrm{S}$ and 29-X, are ideal for the amateur constructor, service engineers and technical training colleges.

The main feature of the 29-S model is a frequency range of 150 kHz to 220 MHz in eight overlapping bands on separate scales with an accuracy said to be better than 2 per cent. There is a front panel electronic scale calibration control. The modulation frequency is adjustable from 400 to $1,000 \mathrm{~Hz}$ and modulation depth is fully adjustable from 0 to 100 per cent.

[^3]The average r.f. output is 100 mV on all ranges and the output impedance is 600 ohms, constant at all attenuation settings.

The $29-\mathrm{X}$ model incorporates all the features of the standard model and also incorporates an integral crystal oscillator module.

The crystal oscillator provides harmonic calibration check points on all ranges to an accuracy of ± 0.02 per cent using the front panel calibration control. The marker signal level, adjustable by the attenuator, is available separately at the r.f. output socket for use with external equipment.

Both models are housed in a steel stove enamelled medium grey case and the rectangular tuning scale measures $5 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}$. The generators are all solid state and are powered by

Nombrex Model 29-S signal generator
standard 9 volt batteries. The retail prices are: model $29-\mathrm{S} £ 20$; model 29-X £27.

MISTER BASSMAN

A musical accompaniment instrument recently released by D.E.W. Ltd., Ringwood Road, Ferndown, Dorset, should arouse the interest of our musically minded readers. Called "Mister Bassman" it is believed, by the manufacturers, to be the only self-contained bass accompaniment pedal unit on the market.
The unit has a thirteen note foot change arrangement giving an organ tone for vamping, or a string bass effect with decay on each note sounded. The unit is battery powered and can be used with almost any amplifier.
The Dewtron Mister Bassman costs $£ 25$ and is finished in hammer blue, with heavy chromed keys.

AEROSOL SPRAY

An item that should have many useful applications is the "Sprayit", Aerosol marketed by David Hewson Ltd., 195, Sparrows House, Bushey Heath, Herts. The "Sprayit" costs 22 s 6 d and consists of a propellant aerosol spray, a glass jar with graduated volume markings on the side and plastics down tubes.

It is claimed that one ounce of propellant will spray up to two fluid ounces of any liquid from the jar. In some cases it is not necessary to pour liquid into the jar, but simply insert the down tube in the existing bottle or can.

The spray can be used to give a hammer finish to metal work;
sealing, painting or varnishing woodwork; applying fluids when etching printed circuits; and used for cleaning switches, contacts and any delicate electronic equipment.

LITERATURE

The second edition of the catalogue of electronic components and equipment is now available from G. W. Smith \& Co. (Radio) Ltd., 34 Lisle Street, London, W.C.2.

Many new items are listed and the catalogue contains five 2 s -in-the-f1 discount coupons enabling the cost of the catalogues to be recovered on subsequent orders.

Because of increased postal and labour costs a minimum postal charge of 3 s is made by G. W. Smith's on all parcels sent by post. The cost of carriage on larger items is indicated separately throughout the catalogue.

Readers looking for technical information are recommended to consult a technical library where most librarians are often helpful in finding the necessary data required. This often leads the reader to obtaining a copy of the book or perhaps leaves him in some doubt as to whether it really helps to solve his problem. A comprehensive stock of technical books on several subjects is often available through some local dealers, but if in difficulty, we would suggest readers obtain a copy of the new technical book catalogue from the Modern Book Co., 19-21 Praed Street, London, W.2. Their "Catalogue of Radio Television and Electronics Books" (price 2s) contains 68 pages of probably the most comprehensive list of technical books in town.

"Mister Bassman" pedal accompaniment unit marketed by D.E.W. Ltd.

DE LUXE PLAYERS

PORTABLE CABINET Aaillumtrated. To it atandard 69/6 ROS AMPLIFIER 3 WATT. Roady made and teated. This is a \&-stage unit using triode pentode condenser coupled ralve, giving 8 watit outpul
into a 8 ohm into a 80 hm Tone and volum Tone and volume
controls mounted on chasris with knobs. Supplied With loudapesker and valve UCL82 Irequency response $50-12,000 \mathrm{cps}$. $59 / 6$

Sensitivity 200 mF . SRIGLE PLAYERS MONO ADTOCHANGERS MONO 97. Battery model E4.19.6 GBrardAT60Mk. II 18.19 .6 EMII Junior Maing 82.18 .6 BSR Transcription | Garrard SRP28 | ... | \&6.19.6 | DA70 Stereo!Mono |
| :--- | :--- | :--- | :--- |

All fitted LP/78 atylit and mono pickup crystal complete. Stereo/mono pickapi 20/- extra except UA70.

GARRARD TEAKWOOD BASE WB.1. Ready
cat out for mounting $1000,8000,3000$, SPEs, ATB0
GARRARD PERBPEX COVER SPC. 1 for WB.
65/-

DE LUXE STEREO GRAM CHASSIS VRF MW SW
 PICE-UP ARM Complete with ACOS LP-78 GP67 and Stylii $29 / 6$; XTAL $G P 67$ 17/6; Stereo Ceramic 35/-. CRYSTAL MIKE INSERTS
 portable Trailistor
AMPLIFIER PLUS
DYYAMIC MICROPHONE
A selif-contsined fully
ports ble mini p.a. system.
 many nses - ideal for Parties, or as a Beby phone or Record Player Amplifer, ete. Attractive rexine covered cabinet, tize $12 \because 9$ 4in., with powerlal $7: 4 \mathrm{in}$. speaker and four tranaiator one watt power amplifier plos altra seusitive microphone, Jses PPQ guarantee. World famous make. Only $90 /-\frac{\text { Post }}{}$

WEYRAD P50 - TRANSISTOR COILS RA2W 6 in. Perrite Aerial Spare Cores
 Opc. P50/1AC …......5/4 Priuted Circuit, PCA1 I.F. P50/2CC $470 \mathrm{kc} / \mathrm{s}$. $5 / 7$ J. B. Tuning Gang 3rd I.R. P50/8CC 6/- Wegrad Booklet

VOLUME CONTROLS
 80 omm Coax 8d. st.

Long spindles. Midget Size SEMI-AIR SPACED 5 K .0 hms to 2 Meg . LOG or $40 \mathrm{yd} .20 / \mathrm{F} ; 60 \mathrm{yd} .30 /$
 5K. S.P. Edge type, 5/-. Ideal 625 line VEROBOARD 0.15 MATRIX
21 : $5 \mathrm{in} .8 / 8$. $21 \times 31 \mathrm{in} .3 / 2,85 \times 3 / \mathrm{in} .3 / 8.3 \mathrm{x}, 5 \mathrm{in} .5 / 2$.

S.R.B.P. Board 0.15 MATRIX 21 n . wide $6 d$. per lin. 37 in . Wlde 8 d.
Ber lin. 5 in . wide $1 /=$ per lin. (up to 17 in .).
8
BLANE ALUMINIUM CHASSIS. 18 s.w.g. 2 inin. sides, $7 \times 4 \mathrm{in}, 5 / 6 ; 9 \times 7 \mathrm{in}, 6 / 8 ; 113 \mathrm{in}, 8 / 6 ; 11 \mathrm{7in} .7 / 6 ;$
 $5 / 6 ; 12 \times 8 \mathrm{in} .4 / 6 ; 10 \cdot 7 \mathrm{in} .3 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 6$ 人 $4 \mathrm{in} ., 1 / 6$.

Q MAX CHASSIS CUTTER

Complete: a die, a punch, sn Allen gerew and key

'SONOCOLOR' CINE RECORDING TAPE $5^{\prime \prime}$ reel, 800° with LP strobe markings. also cine light detiector-mirror for synchronisation.

OUR PRICE $14 / \mathrm{l} /$.
Tape Spoold 2/6. Tape Splicer 5/-. Leader Tape 4/6.
Renter Tape Heads lor Collaro models 2 track 21/- pair
"THE IN8TANT"
BULK TAPE
ERA8ER AND
REEORDING
HEAD
DEMAGNETISER
200/250 v. A.C. Leallet S.A.E

BARGAIN STEREO/MONO SYSTEM Attractive glimline PGAYER CABIIET with B.8.R. UAES
 (Only 4 pairs of wires to join). NEW TUBULAR ELECTROLYTICS $2 / 850$ 2/8 EL 1850 V $4 / 800 \mathrm{~V}$
$8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$ $16 / 450 \mathrm{~V}$
$82 / 450 \mathrm{~V}$
$85 / 25 \mathrm{~V}$ 5/25V

CAN TYPES $8 / 600 \mathrm{~V}$
$16 / 600 \mathrm{~V}$ 16/6007 $\begin{array}{llr}16+16 / 500 \mathrm{~V}^{12} & 7 / 6\end{array}$ $32+32 / 250 \mathrm{~V}$ $60+50 / 850 \mathrm{~V}$ $50 / 50 \mathrm{~V} \quad 2 /-\quad 82+32 / 350 \mathrm{~V} / 1 / 6$ SUB-MIN, ELECTROLYTICB. $1,8,4,5,8,16,85,80,50,100$, CERAMC. 500 V 1pF to $0.01 \mathrm{mF}, 9 \mathrm{~d}$. Discs $1 /$.
CERAMIC. 500 V 1 pF to $0.01 \mathrm{mF}, 8 \mathrm{~d}$. Disce $1 / \mathrm{e}$. $500 \mathrm{~V}-0.001$ to $0.05 \mathrm{gd} ; 0.11 /-; 0.251 / 6 ; 0.53 /$
$1.000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0-1,2 / 6$ BILVER MICA. Close tolerance $1 \% .5-500 \mathrm{pR}$ 1 $/-; 580-2,200 \mathrm{p}$ P $2 /-; 2,700-5,600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-0.01$, mld $6 / 0 ; \mathrm{each}$ TWIN GANG. "0-0" 208pF $+176 \mathrm{pF}, 10 / 6$; 365 pF , minin tare $10 /=: 500 \mathrm{pF}$ atandard with trimmera, $9 / 6 ; 500 \mathrm{pF}$ midget less trimmers, $7 / 6 ; 500 \mathrm{pF}$ slow motion, standard $\theta /-$ small 3-zang 600 pF 18/9. Single "0" 365 pF 7/6. Twin 10/ SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ $160 \mathrm{pP}, 800 \mathrm{pR}, 10 / 6$ each. Can be ganged. Couplers 9 d each
TUNWG. 80 id dielectric. $100 \mathrm{p} \mathrm{F}, 300 \mathrm{p}, 500 \mathrm{pR}, 7 /$ esch. TUNING. Solid dielectric. $100 \mathrm{pR}, 300 \mathrm{pF}, 500 \mathrm{pP}, 7 /=8$ ech. $150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 8 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 0 ; 1000 \mathrm{pF}, 2 / 8$. 850V RECTIFIERS. Selenium $\frac{1}{2}$ wave 100mA $5 /-;$ BY100 10/CONTACT COOLED
 NEON PANEL INDICATORS 250 F . AC/DC $8 / 6$

 Ditto 5%. Preferred vajues 10 ohmt to 28 meg., 8 d ,
$\left.\left.\begin{array}{c}5 \mathrm{watt} \\ 10 \mathrm{wstt}\end{array}\right\} \quad \begin{array}{l}0.5 \text { to } 8.2 \text { ohm } 3 \text { W. } \\ 1\end{array}\right\}$ $\left.\begin{array}{l}10 \text { wst } \\ 15 \text { whtt }\end{array}\right\} \quad \begin{aligned} & \text { WIRE-WOURD RESISTOR } \\ & 10 \text { ohms to } 6,800 \text { ohmi }\end{aligned}$ FOLL WAVE BRIDGE CHARGER RECTIEIERS 6 or 12 y . outputh. 11 amp 8/9; 2a $11 / 8$; 4A. 17 CHARGER TRANSFORMERS. P. \& P. 5/-' Inpot 200/250\% lor 6 or $12 \mathrm{v} ., 1$ 소 amps., 17/6; 2 amps., 21/-; $42 \mathrm{mps} ., 30 /$ WIRE-WOUND 8-WATT

10 ohms to 80 K,
Carbon 30 K to 2 meg.

TT45. Push Pull Drive, 8:1 CT, 8/-. TT48 Ontpat, CT8:1 8jTT49. Interatage, $20: 1,8 /$-; TT5 5 Ontpat 8 ohms, $4 \cdot 5: 1,6 /$ Tres/4 PAIR 10W. Amp. Translormers sud circait 45/

TRANSISTOR MADIS POWER PACKS. FULL WATE
 Hetif Wave 9 volt 50 mA . Sige $91 \times 1 \mathrm{hn}$. Snap terminala $82 / 6$

 250-0-250 80 mA .6 .8 ₹. 3.5 a. 6.8 ₹. 1 a, or 5 v. 2 s . $30 /-$ GENEBAL PORPOSE LOW VOLTAGE. Outpate $6,8,9,10,12,15,18,24$ and 30 . at $2 \mathrm{a} . \ldots \ldots . .30 /-$ 1 amp., $6,8,10,12,18,18,20,24,30,36,40,48,60,35 /-$ 3 amp., $0-12$ F. and $0-18$ F. AUTO TRANSFORMERS
 $60 \mathrm{w} .18 / 6 ; 150 \mathrm{w} .30 /-; 500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w} .17 \mathrm{~F} /$

COAXIAL PLUG 1/3, PANEL BOCKETS 1/3. LINE 2/-

BAKER I2in. DE-LUXE MK II LOUDSPEAKER
Suitable for any Hi-Fi syatem. Provides traly rich round Providesing the mualical apectrom virtually lat from 20$16,000 \mathrm{cps}$. Latest double cone with special "Parroba" caramic magnet. Flax density 14,000 gance. Bess resonance $82-38 \mathrm{cpt}$. 16 watte British rating. Foice colle a vaileble 8 or 8 or 15 ohms.

E9 ${ }^{\text {Pont }}$
48-page Enclosure Manual 5/9 post paid.
LOUDSPEAKER CABLIET WADDIIG 18 ln wde, $2 / 61 t$ BAKER " GROUP 8OURD" SPEAKERS-FOST FREE 'Group 25' 'Group 35' 'Group 50 $25 \mathrm{~min} 6 \mathrm{gns}$.35 watt $8 \frac{1}{2} \mathrm{~g}$ ns. 50 watt $18 \mathrm{gns}$. ALL MODELS "BAKER SPEAKERS" IN 8TOCE

 6/6 each; 8in 27/6; 61 in 22/6; 10 in $37 / 6 ; 8 \times 5 i n, 21 /-$ Pin. Dorble cone 3 or $15 \mathrm{ohm} \mathrm{35/m;} 10 \times 0 \mathrm{in}, 30 /-$
E.M.I. Double Cone $18, \times 8 i n, 8$ or 15 hmm modele, $45 /-$ or rith twin tweeteri, $X / o v e r$ and H / D magret $79 / 6$.
SPECIAL OFFER: $8 \mathrm{ohm}, 21 \mathrm{in} ; 6 \times 4 \mathrm{in} ; 80 \mathrm{ohm} .2 \mathrm{hin}, 8 \frac{1 \mathrm{in}}{}$; $15 / 6$ EACE 25 ohm, $6 \times 4 \mathrm{in}$; 85 ohm , 8 in 5 in . WOOFER. 8 watts $158 \mathrm{mmm}, 30-10,000 \mathrm{cps}, 8$ or $150 \mathrm{hm} .39 / 6$ PEAKER FRET VARIOUS TYGAF SAMPLES. SeId B.A.E

ALL PURPOSE HEADPHONES
H.R. HEADPHORES 2000 ohms General Purpose H.R. HEADPRONES 2000 ohm Super Sonsitlve K.R. HEADPHANE READPHONRS 3-5 ohme..
LOW RESIETAICE
 12 month guarantee. Quality output 8 ohm . With ongxaved
 wired and tested.

ALL EAGLE PRODUCTS SUPPLIED AT LOWEST PRICES

 BARGMI DE LUXE TAPE SPLJCERR Cati,
trims, joins for editing and repairs. With 8 blades 17/6 BARGAIN 4 CRANREL TRANSIBTOR MIXER. Add manical highlights and sound ancets to record
mix Mierophone, record, tape and tuner with
separate controls into aingle output. 9 volt. separate controlinto ningle outpa. BARGADY FM TUNER 88-108 Me/s Six Tranaiator. Rondy Barit. Printed circnit. Celibrated slide dial $\mathbf{6 6 . 1 9 . 6}$
buning. Sise $6 \times 4 \times 2$ in. 9 volt.

69/6
BARGAin 3 WATT AnPLIPIER. 4 Tranistor
Panh-Patl Ready built, with volume control. Ov. $69 / 6$ 45-PAGE EAGLE CATALOGUE 5/- Post Free

\star RADIO BOOKS $*$ (Postage 9d.)

ODTLET BOXES. SURFACE OR FLUSH 4/6.
BALAMCED TWIN FEEDERS 1/- yd. 80 ohms or 800 ohms. Chrome Lead Socket 7/6. Phono Pluge 1/-. Phono Socket 1/JACK PLUGS Std. Chrome 8/-; 3.5mm Chrome 2/8. DIN SOCKETS Chassis 3 -pin $1 / 6 ; 5$ pin 2/-. DLI 8OCEETS Lead 3-pin 8/6; 5-pin 5/- DIN PLUGS 3-pin 3/6; 5-pin 5/0. WA VE-CHANGE SWITCEES WITH LONG SPINDLES. 2 p .2 -way, or 2 p . 6 -way, or 3 p .4 -way $4 / 6$ ach. 1 p. 12-way, or 4 p. 2-way, or 4 p. $3-$ way. $4 / 6$ each. ${ }^{\text {Wavechange "MAKITS" } 1 \text { p. } 12-w a y, 2 \text { p. } 6-\text { way, } 3 \text { p. } 4 \text {-way, }}$
 4 p.d-way, 6 D. 2 -way. 1 waier $12 /-, 2$ wai
Addional wafers $5 /-$ each up to 12 max. TOGGLE SWITCHES, हp. 2/6; 3p. di. 3/6; dp. 3/6; dp. dt. 4/6

MINI-MODULE LOUDSPEAKER KIT

 10 WATT 55/= CARR. 5/Triple speazer tyatem combining onready cat baffe. in. chipboard ready cut baffic. $i n$. chipboard
15 in. $\times 88$ in. Separste Bass, $15 \mathrm{in} . \times 8 \mathrm{in}$ in Separste Bass,
Midalie and Treble loudspeakers and crossover oondenser. The heavy
duty 5 in. Bass Woofer unit has a anty 5 in. Bass Wooter unit has a low reaonance cone, The
Range unit is apecially designed to add drive to the midile reginter and the tweeter recreatea the top end of the musical apectrum. Total reaponse $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm . Teak ventered

Practicsl Trassistor Roceivers
Practical Stereo Handbook
Supersonsitive Transintor Pocket Radio
High Fidelity Spes irer Enclosures and Plant.
Radio Talve Guide, Bools 1, 2, 8, or 4 es. $5 /-$ No. 5 en, Practical Radio Inside Ont.
Shortware Tranmistor Receivers
Tranaistor Commanication Bets
Modern Transistor Circuits for Boginners
Sab-Miniataro Transistor Rocelvers
Wirelesa World Radio Falve Data
At a glance valve eqnivalents.
Valves, Transistor, Diodes equivalonts manua
How to recelve Foreign T.V. programmer on your set
by simple modidestions ..
艮

99/6

booksholf encloanure $£ 5.10 .0$ extra.

SANGAMO 3 inch SCALE METERS Various calitorationg/movemente,
1 Killiang; $50-0-50$ Micronmp, ote. S.A. E. for list.

POCKET MOVLSG COLL MULTMETER. $49 / 6$ O-1,000 A.C./D.C. ohme
$0-2-500 v$. D.C. 20,000 ohms per valk, $0-1,000$ v. A.C.
Ohms 0 to 8 meg. 50 Microamps (Fall list Meters 8.A.E.
BRAND NEW QUALITY
EXTENSION LOUDSPEAKER
Black plastic cabinet, 201t. lesd and
adeptore. Por any radio, intercom, ta
recorder, etc. 3 to 15 ohm. PRICE
Size: $71^{\prime \prime} \because 52^{n} \because 3^{\prime \prime}$. Post $2 / 6$

Size: $74 \because 5 z^{*} \because 3$. Post 2/6 $30 / 4$

CRESCENT RADIO LTD.

(electronic component specialists) For all regulor components try
40 Mayes Road, Wood Green, N. 22
For surplus components and equipment try
Printed circuit board. 8×6 in $2 /$ each OC19 power transistor $5 /$ each Zener diode 8.2 vols, $400 \mathrm{~mW} \quad 2 / 6$ each BYZI2

BARGAIN BOARDS

Transistors, diodes, resistors, capacitors and various components all mounted on computer board, 2/- each, 3 for $5 /-, 7$ for 10/- and
15 for $20 /-$

MODEL MOT'OR
12 volt, 9,000 r.p.m., $400 \mathrm{~mA} \quad 4 / 6$ each
BARGAIN PACK
50 unmarked and untested transistors

750 mA , 800p.iv.
3/3 each
COMPONENT BARGAINS
D.P. rotary ON/OFF mains
switches
Car fusehoiders
2/- each
lead and tages
Low impedance transistor earpiece
LA3 type pot core 45 mh
1/3 each

2tin. transistor loudspeaker
Rev counters (cape recorder type)
5/6 each CASSETTES
$C 60$
$C 90$
$12 / 6$ each
$18 / 6$ each
With our new premises in Mayes Road we can now offer an even wider selection of com.
ponents for the home constructor and enthusiast.

POSTAGE WITH ORDER PLEASE P.5.

Our new catalogue is now available at $1 / 6$ per copy

4STATION NTEERCOM

4-8tation Trandistor Intercom problems with this Saba), in de-luxe plastlc cablnetarn (2 master and mounting Caly/til Sabe to Marter. Ideally suitable for Busine to and gery, Schools, Hospital, Office and Home Operate on one 9 V battery. On/off suitch. Volume control Complete with 3 connecting wires each 66 ft . and other accessories. P. \& P. $7 / 6$.

WIRE-LESS INTERCOM
No battaries-no wires. Just plug in the mains for instant two-way; loud and clear communication.

Same at 4-Station Intercom for two-way inatant communlestion. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire.
Battery $2 / 6$. P. \& P. $4 / 6$. Battery 2/6. P. \& P. 4/6.

clency with this incredible De-Luxe Telephone Amplifler. Take down long telephone messages or converse ifr. Take down long telephone messag of once ald. On/ ot switch. Volume control. Battery 2,6 extra. P. \& P 3/B. Full price refunded if not satistled in 7 days. WERT LOIDDON DIRECT SUPPLIES (PE/2)
169 ERARISGTON HIGE GTRERT, LONDON, W.

 min sif tile stainainThis edition of the Home Radio Catalogue is the result of eleven years of careful selecting, compiling and indexing. It is the finest, most comprehensive we have ever produced-it has 300 pages, over 8,000 items listed and over 1,500 illustrations. It is a must for anyone interested in radio and electronics. With each catalogue we supply a Book tronics. With each catalogue we supply a Book
Mark giving Electronic Abbreviations, an Order Mark giving Electronic Abbreviations, an Order
Form, an addressed envelope, and 6 vouchers Form, an addressed envelope, and 6 vouchers
each worth $1 /$-when used as directed. All this each worth $1 /$ - when used as directed. All this
for only $8 / 6$ plus $3 / 6$ post, packing and insurance. Send the attached coupon today, with your cheque or P.O. for 12/-.

Of course no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest in the world of Radio and Electronics-ready for the next printing.

ELEGTRONDEAMA

Small Ship Submarine Detector

A New British sonar equipment, the MS26, developed by the Plessey Marine Systems Division, has been demonstrated to representatives from selected overseas navies under seagoing operational conditions. This followed the charter of H.M.S. Dee (renamed MV Robert Clive) by Plessey from the Royal Navy for trials and demonstrations of this new equipment.
Developed as a derivative from a very successful Admiralty designed equipment, the sonar equipment is aimed at small to medium sized ships, for detection primarily of submarines. It is operated by a single man and can detect under best conditions up to $7,500 \mathrm{yds}$ range. The practical average expected performance is up to 5,000 yds range.

This equipment has been designed specifically as a primary sonar on small patrol boats, but can be usefully employed in a secondary category on large warships.

Three Miles Under The Sea

The National Institute of Oceanography has been using Mallory batteries to power scientific recording equipment at depths in the North-East Atlantic of up to 2,640 fathoms. Geophysicists on the RRS Discovery, Britain's largest Oceanographic Research Vessel, used equipment which sinks to the ocean bed inside a ballasted sphere. The reverberations of explosive charges detonated 200 feet under the surface are picked up by a hydrophone, and the signals recorded inside the sphere on tape recorders.
Coded acoustic signals release the ballast and the positions of the spheres are tracked

acoustically as they float upwards. Once on the surface the researchers find them by radio signals and flashing beacons attached to the spheres.

As a result of these experiments the scientists were able to record seismic refraction signals from the sea bed, and to obtain geological data.

The photographs show (below left) the ocean-bottom spheres used in the Atlantic, and the interior (below right)-the seismic recording equipment and the Mallory 6.75 V Duracell batteries which power it.

More on trial and error

Sir-I have just read with interest your leader in the December 1968 issue of Practical Electronics.

While Prof. Farvis is no doubt correct in frowning upon the undisciplined approach to circuit design as applied to complex systems required to operate over wide ranges of ambient conditions and in accordance with strict specifications, he is surely overlooking the merits of the semi-empirical method as applied to simple "one-off" circuits which are usually required in a hurry and when little essential design data is at hand.
I have always found that the most productive way of teaching electronics at an introductory level is to deal with the minimum amount of theory necessary to produce formulae which can be directly applied to simple circuit design to say a first approximation. Students are then encouraged to translate the formulae into component values and actually make up and check the resulting circuits on the bench.

The associated practical work has always been a headache with this approach-it is always tempting to take the easy way out in the laboratory and present students with pre-designed circuits for examination. However, since investing in some of the S-Dec "breadboards" advertised in your pages, I have found the problems have largely evaporated and that students are now able to cover much more ground. They have no need to fight their way through the soldered "birds-nests" mentioned in your paragraphs. To give examples, I have found it relatively simple and beneficial to let students actually work through the circuits discussed by \mathbf{A}. Foord in his recent series on Feedback Amplifiers, and the Feedback Pair described by P. Williams in the December '68 issue of P.E. They have all the while to calculate their own component values.

I think many more of your readers would be able to follow through articles such as these were the S-Dec method presented to them and layouts suggested in the same way as you provide layouts for Veroboard in many articles.
B. Pounder,

Dept. Physics,
Dundee College of Technology,

Amplifier rating

Sir-The recently introduced Trade Description Act would seem to cover the accuracy of the figure used to express the output power of audio amplifiers, and therefore needs consideration by everyone associated with the marketing of all types of amplifiers. Whilst the vast majority of equipment is sensibly rated, exceptions do occur, particularly in items offered in the musical/entertainment field.

This Association has long campaigned for the universal adoption of continuous, sine wave, rating of Public Address amplifiers with considerable success.

Readers in any doubt as to the correct method of expressing the rated and maximum output power of an audio amplifier are referred to BS 3860: 65 published by the British Standards Institute.
Further, those involved in the marketing of amplifiers in this country can obtain guidance and advice from the Information Service of the Association of Public Address Engineers.
H. G. Warren, Technical Information Officer, Association of Public Address

Engineers,
394 Northolt Road,
South Harrow,
Harrow,
Middlesex.

Can anyone help?

Sir-I recently purchased a AVO CT. 38 valve volt meter, but was unable to get a copy of the instruction manual from the manufacturers.
I wonder if it is possible that one of your readers may have a copy which I could purchase or borrow.
S. Tan,

17 Lophook Crescent,
London, S.E. 23.

Mr Ken Greenberg's version of our Stockmarket

American stockmarket

Sir-Enclosed is a photograph of the Electronic Stockmarket game I built from the article in your December 1968 issue.

The game is constructed on a $12 \mathrm{in} \times 12 \mathrm{in} \times 3$ in aluminium chassis. Using all new American components, the game cost me about $\$ 45.00$ (19 British pounds). I know it sounds incredible, but that's how high the cost of living here is these days.

The game works perfectly as described in the article. On my game I located the shares and tax presets on top of the chassis for easier access. I also fitted two four-contact sockets to the chassis for the future addition of two more players' positions (outboard on separate little chassis). I will be able to simply plug-in the extra positions.
I have only one suggestion that I feel might improve the game or at least make it more real. I think there should be a button that would allow each player to check his bank balance (charge on bank capacitor). Knowing your bank balance would certainly result in making more sensible transactions. What do you think of this idea?
In a ny case, I enjoyed building the game and playing it is fun. Very few construction articles as interesting and simple as this appear in American electronics magazines. I subscribe to them all and they all tend to come up with expensive and complicated gadgets most of the time. Very few "games" articles appear.

Ken Greenberg,
Chicago,
U.S.A.

DRY JOINT TESTER
The moot reliable way of teating for n dry joint is to measure the resistance between the component lead and the printed circuit board. Our kit for doing thit comprises a iarge ecale (3in.) moving coil mettlog, and a wiring diagran with inntructions The only additional items you will need are battery, motne wire, a pair of test rods. Price 19/6, poatage and insurance $2 / 6$.
MINIATURE WAFER SWITCHES
 your assortment.

WATERPROOF HEATMGG

6 yards length 70w
temiperature control. 10/-
BLANKET SWITCH
Double pole with neon let
nto side so luminous in dark,
deal for thark roon light or for polastic case. $5 / 6$ each. 3 heat molel

INDICATOR LAMP

Panel mounting, cousiats of neon lamp,
in red plastic lens with reaiator in leads for mains operation $2 / 6$ each, $24 /-$ doz.

12 V BLOWER

Heavy tuty motor with centrifugal blower coupled to one enil. Ideal for car heater. 12/6, phus 4/6 post.

PP3 ELIMINATOR. Play your pocket radio from the mainsl suve ts. Complete component kit comprises ${ }^{4}$
rectifiera-maing dropper resistances, smoothing tions, nuly $6 / 8$ phas $1 / \%$ post.
BECKASTAT This is an instant thermostat, simply plug your appliance into it and its lead into wall plug. for normal air teme peratures. 13 . loading. Will save ta cort in $\%$ senson. 19/6. Postage and

KETTLE ELEMENT $230 / 240 \mathrm{~V} 1500$ Fatt. Made by Best for kettles including: Best, Besco, Chalfont, Davidson, Dimplex, Grafton, Hawkins,
Monorram, Pifco, Revo, Jurymaid, Mirroware, Monogram, Pico, Revo,
Towed, Swan. Normally $32 / 6$. Our price $15 /-$ plue Towen, Sw

QUICK CUPPA

Mini Inınersion Heater, 350 w . wo minutes. Lee any socket or lanp holder. Have at bedside tor tea, baby's fool, etc. 19/8, poat and Insurance 1

MAIN8 TRAN8I8TOR POWER PACK

Designed to operate iransigtor bets and amplifiers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 mA (class B working). Takea the place of any of PP7, PP9, and others. Kit comprises: mains randormer rectifer smootbing and losd resiator condensers and instructions. Real snip nt only 16/6, plus 3/6 postage.

THERMOSTATS

Type "A" 15 atnp. for controlling room heatere greenhonses, airing cupboard. Has spindle for $9 / 6$ plus $1 /$ - post. Suitable box for wall mounting, Type "B" is amp. This is a 17 in . long roul type nade by the famous Sunvic Co. Spindle adjusta
this from $50-550^{\wedge} \mathbf{F}$. Internal scres alters the setting sos thig could be
aljustable over 30^{\prime} to $1,000^{\circ} \mathrm{F}^{\text {. Suitable }}$ for controlling formace, ovelt kiln immersion heater or to make thame-start or fire Type "D". We call this the Ice-gtat as it cuts in and out at around freezing point, $2 / 3$ ampa. Has many uses one of which would be to keep the loft. plpes from freezing, 16 a length of our blanket wire P . \& P. $1 / /-$. tat spindle adjustments cover normal refrigera tor temperature. 7/6, plus $1 /$ - po月t.
Type "F". Glass encaset for controlling the temp of liquid-particularly those in glasa tanks, vata or sinks-thermostat in held (hall submerged) 1 ,y rubber sucker or wire clip-ideal for fish tanksdevelopers and chemical baths of all types. plus $2 /$-port and insurance.

ELECTRIC CLOCK WITH 25 AMP. SWITCH Made by Amith's these units are as fitted to many top quality cookers to control the oven. The clock is mains driven ani frequency controlien so it is extrenely accurate. The ifn get. Ideal for suitching on tape recorders. Offered at only a fraction of the regular price-new and unuzen only $39 / 6$. less than the value of the clock alone-post and Insnrance less
$2!9$.

2 $\frac{1}{2} k W$ FAN HEATER
Three position switching to suit changes in the weather. wWitch uptch down for halt heat ($1!k W$), uwiteh central hlows cold for sumuner cooling -aljustable thermostat acts as ruto control and safety cut out. Complete kit 83.15 .0 .
Post and ine. 7/6.

INFRA-RED HEATERS
Make up one of these latest type They are simple to make from our
easy-to-follow lnst ruct ions-useandica
enciosed elernenta deaigned for the cor-
rect infra-red wavelength (3 microns). Price for 750 watts element, all parts, meta casing as illust rated, 19/6, plus $4 / 6$ post and insurance. Pull switch $3 /$ - extra,

DRILL CONTROLLER

Electronically changes speed

REPAIRABLE RADIOS

7 transibtor key chain Ridio in very pretty case size $29 \times 2 \mathrm{x} \times 1$ in.-complete with soft leath
zippeal bag. Specification:-Circuit: 7 transistor superheteronlyne. Frequency range: 330 to $1600 \mathrm{Kc} / \mathrm{s}$. Sensltivity: $5 \mathrm{mv} / \mathrm{m}$. Intermediate frequency: $485 \mathrm{Kc} / \mathrm{s}$, or 485
Kc / s. Kc/s. Power output: 40m. intenna: net type
These railios are complete but require attention Gircuit Iliagram is nut available. 17/6 each plus $2 / 9$ post and Inaurance. 4 radios 83 post 1 rem.

THIS MONTH'S SNIP

DEAC RECHARGEABLE BATTERIES

(V, $500 \mathrm{~mA} / \mathrm{hr}$. size 2 ; in. $\quad 1 \frac{1}{2} \mathrm{in}$. dia. Really powerful, will deliver 1 : m, m for : hour. Regular price $\mathbf{6} 5 /$--our price $89 / 6$. New and unuaed.

THERMOSTAT WITH PROBE This has a sensor attached to a 10 A switch by a 14 in . length of flexible capillary tubing-control range is $20^{n} F$ to $150^{\circ} \mathrm{F}$ so it la gultable to control soil henting and liquid heating especialty when in buckets or portable vesselis ns the
sensor can be raised out and lowered into the vessel. This thermostat could aloo be used to sound a bell or other alarm when critical temp. spontaneous combustion or if liquid is being spontaneous combustion or if hquid is being Pobtage and insurance $2 / 9$.

ELECTRIC CLOCK WITH 3A

SWITCH
Electric Clock with 3 amp switech made by mmithe for Dreamland. These are malis diriven and rrequency contren ". are ext "mely nccurate. The dial enabled if is 3 hours time or be accurately set. Swith off is onual control. Intended for switching electric blunketa this neerls only one setting for the seasoln. Nuitable also to control tape recorder, ralio utul lamp etc. up to 600 W . In neat plastic case with mains lead and twn outlet pluge. New :ami thusel. 39/6, post ani insurnace $3 / 6$.

5A, 3 PIN SWITCHED SOCKETS
An excellent opportunity to make that beuch tlis boaril you have neeleil or to stock up for future jobs. This month shutterell 5 A switch sockets for only $10 / \mathrm{m}$ plus $3 / 6$ poat anil inturanice. (20 hoxes post free)

VARYLITE

Will dim incandeacent lighting up to 600 watts from ful brilliance to out. Fithed on M.K. füh plate, same size and fixing as atandard wall switch so may be fitted in place of this, or mount on surface. Price complete In heavy plastic
hox with control knobess 19.6 . hox with control knob es.19.6.

When postage is not statedi then orlera over $\mathbf{4} 3$ are post free. Below $\mathbf{4 3}$ add $2 / 9$. semi-conductors add 1/- post. Over $\& 1$ post free. S.A.E. with cnquirses please.

ELECTRONICS (CROYDON) LTD.
Dept. PE, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Raad, Croydon

T-transietor fully tunable M.W.-L.W. superhet portablewith baby alarn facillty: Set af parte. The latest modullsed and pre-alligntaent techniques bathe thim simple to bulat Sizes: 12* . $\mathrm{K}^{\prime \prime} \mathrm{3}^{*}$.
MAINS POWER PACK KIT: $9 / 6$ extri.
Price $\mathbf{6 5 . 5 . 0}$ plus 7/6 p. \& D. Circuit 2/6 FREE, with Palts.
THE ELEGANT SEVEN MK. III (350 mW output)
7 -transistor fully tunable M.W.-L.W. portable. Scl of parts. Complete with all components, including ready etched and drilled printed circuit honert liack MAINS POWER PMCK KIT: 9/6 extri.
Price $\mathbb{4} 9.6$ plus 7 /6p. \& F
Circuit 2/6 FREE WITH PIRT:
50 WATT AMPLIFIER A.C. MAINS 200-250V

In extremely reliable general parpose valye amplifier with six electronically mixed inputs. Suitable for use with; mies, guitars, gram, tuner. organa, etc. Price 27 gns. flus $20^{\prime}-\mathrm{p} . \times \mathrm{x}$.

THE VISCOUNT

Integrated High Fidelity
Transistor Stereo Amplifier

8PECIFICATION\&; Output: 10 watts per channel into 3 to 4 uhats speakers (20 watts monoral). Taput: 6 position rotary belector switch (3 pos. mono and 3 pos. stereo),
P. U., Tuner, Tape and Tape Hec, Sensitivities: Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$. Tonc controls: Tone into 18 M ohm. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz}$ 2do. Tonc controls: Tone bontrols fla
(Baxandall type), separate bass and treble controls, Treble 13 db lift and cut at 15 KHz . Bass 15 db lift and $\mathbf{2 5 d b}$ cut at 60 Hz . Volunce controls: Separate for each channel. AC Mains input: $200-240 \mathrm{v} .50-60 \mathrm{~Hz}$. Nize $12 \frac{2}{2}$ G 2 in. in teak-finished case. Built and tested.

```
PRICE \(13 \frac{1}{2}\) ghs. Postage \& \(\mathrm{l}^{\prime}\) acking \(7 / 0\) extra,
```


B.S.R. TD2 TAPE DECK

This tape deck tikes $\overline{J l}{ }^{\prime \prime}$ spools complete with two-track heads. Size $13 \frac{1}{n}^{\circ}$ long by $8 z^{*}$ wide

C8.19.6 phas 7/6p.xp.

THREE-IN-ONE HI-F 10 WATT SPEAKER A complete Loud Speaker syatein on oue frame, combining three matched ceramic magnet speakers with a low hoss cross-over network, ohms. Flux density 11,000 gaush. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size 13:". $8 \mathrm{is}^{*} \times 4 \mathbf{1}^{*}$. By famous manu facturer. List price ${ }^{2}$ 't. Our price $69 / 6$ plus $5 /-\mathrm{p} . \& \mathrm{p}$. Similar pweaker to the above minustweeters in 3 \& 15 ohms $39 / 6+5 /-\mathrm{p} .8 \mathrm{p}$.

Goods not despatched outside U.K. Terms C.W.O. All enquitios S.A.E.
RADIO \& TV COMPONENTS (ACTON) LTD.
2ld High Street • Acton • London W. 3 323 Edgware Road - London W. 2 ORDERS BY POST TO OUR ACTON ÁDDRESS PLEASE

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE Telephone: CAMBRIDGE (0223) 63687

(Visit us - at our new Mail Order, Wholesale \& Retail Premises)

 MINIMUM ORDER VALUE 5/-C.W.O. Post and Packing $1 / 6$

DISCOUNT $\begin{array}{ll}\mathbf{1 0} \% \text { over } £ 3 \\ 15 \% & \text { over } £ 10\end{array}$

CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm 20 \%$; 100, 220, 330 pF . $-20 \%,-1-80 \%$; 470, 680, 1,000pF. 5d each. ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$. Subminiature (all values in $\mu \mathrm{F}$)

4 V	8	32		64	125	250	400
6.4 V	6.4	25		50	100	200	320
10 V	4	16		32	64	125	200
16 V	2.5	10		20	40	80	125
25 V	1.6	6.4		$12 \cdot 5$	25	50	80
40V	1	4		8	16	32	50
64 V	0.64	2.5		5	10	20	32
Price	1/6	1/3		1/2	1/-	1/1	1/2
Small (all values in $\mu \mathrm{F}$)							
4V	800		1,250		2,000		3,200
6.4 V	640		1,000		1,600		2,500
10 V	400		640		1,000		1,600
16 V	250		400		640		1,000
25 V	160		250		400		640
40 V	100		160		250		400
64 V	64		100		160		250
Price	1/6		2/-		2/6		3/-

POLYESTER CAPACITORS (Mullard)
Tubular, 10%, $160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. 0.068 , $0.1 \mu \mathrm{~F}, 9 \mathrm{~d}, \quad 0.15 \mu \mathrm{~F}, \mathrm{IId} . \quad 0.22 \mu \mathrm{~F}, \mathrm{I} / \cdots . \quad 0.33 \mu \mathrm{~F}, \mathrm{I} / 3 . \quad 0.47 \mu \mathrm{~F}, \mathrm{I} / 6 . \quad 0.68 \mu \mathrm{~F}$, $0 / 1 \mu \mathrm{~F}, 1 \mathrm{daF}, 2 / 8$.
$2 / 3.1 \mu \mathrm{~F}, 2 / 8 ., 50,2,200,3,300,4,700 \mathrm{pF}$, $6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$, 7d. $0.033 \mu \mathrm{~F}, 8 \mathrm{dd} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad \begin{aligned} & 0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} . \\ & 0.15 \mu \mathrm{~F}, \mathrm{I} / 2 . \\ & 0.22 \mu \mathrm{~F},\end{aligned}$ $\begin{array}{lll}7 \mathrm{~d} . & 0.033 \mu \mathrm{~F}, 8 \mathrm{~d} . & 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} \\ 1 / 6 . & 0.33 \mu \mathrm{~F}, 2 / 3 . & 0.47 \mu \mathrm{~F}, 2 / 8 .\end{array}$
Modular, metallised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}$, IId. $0.22 \mu \mathrm{~F}, \mathrm{I} /-. \quad 0.33 \mu \mathrm{~F}$, 1/5. $\quad 0.47 \mu \mathrm{~F}, \mathrm{I} / \mathrm{B}$. $\quad 0.68 \mu \mathrm{~F}, 2 / 3$. $\quad 1 \mu \mathrm{~F}, 2 / 9$.
POLYSTYRENE CAPACITORS: 5%, 160 V (unencapsulated): 10,12, $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,47$,
$560,680,820 \mathrm{pF}, 5 \mathrm{~d}$.
i, $000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d}$.
$3,300,4,700,5,600 \mathrm{pF}, 7 \mathrm{~d}$. $6,800,8,200,10,000 \mathrm{pF}, 8 \mathrm{~d}$. $15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}$.
1%, 100 V (encapsulated): $100,120,150,180,220,270,330,390,470,500$, $560,630,820 \mathrm{pF}$. $1 /-.1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900 \mathrm{pF}$ $1 / 3.43,700,5,000,5,600,6,800,8,200,10,000,12,000,15,000 \mathrm{pF}, 1 / 6$. $18,000,22,000,27,000,33,000,39,000 \mathrm{pF}, 1 / 9 . \quad 0.047,5,000,0.056 \mu \mathrm{~F}, 2 /-$. $0.068,0.082,0.1 \mu \mathrm{~F}, 2 / 3 . \quad 0.12 \mu \mathrm{~F}, 2 / 9.0 .15,0.18 \mu \mathrm{~F}, 3 /-.0 .22 \mu \mathrm{~F}, 4 /-.0 .27$. $0.33 \mu \mathrm{~F}, 5 /-.0 .39 \mu \mathrm{~F}, 5 / 9 . \quad 0.47,0.5 \mu \mathrm{~F}, 6 / 3$.
JACK PLUGS (Screened): Heavily chromed, tin Standard: 2/9 each. Side-entry: 3/3 each.
Standard (Unscreened): 2/3 each
JACK SOCKETS (t in Plug) : With chrome insert, $2 / 9$ each. Available with: Break/Break, Make/Break, Break/Make, Make/Make contacts.
POTENTIOMETERS (Carbon): Long life, low noise. $1 W$ at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq \$ \mathrm{M}, \pm 30 \%>\$ \mathrm{M}$. Body dia., in. Spindle, 1 in \times tin. $2 / 3$ each. Linear: $100,250,500$ ohms, etc., per decade to 10 M . Logarithmic: $5 k$, 10k, 25k, etc., per decade to 5M.
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \% \leqq t \mathrm{M}, \pm 30 \%> \pm \mathrm{M}$. Horizontal ($0.7 \mathrm{Fin} \times 0.4 \mathrm{in}$ P.C.M.) or Vertical $(0.4 \mathrm{in} \times 0.2 \mathrm{in}$ P.C.M.) mounting, $1 /-$
 $0.2 \mathrm{in} \mathrm{P.C.M)} .\mathrm{or} \mathrm{Vertical} \mathrm{(} 0.2 \mathrm{in} \times 0.1 \mathrm{in}$ P.C.M.) mounting, 10 d each.
RESISTORS (Carbon film), very low noise. Range: $5 \%, 4.7 \Omega$ to $1 M \Omega$ (E24 Series); $10 \%, 10 \Omega$ to $10 \mathrm{M} \Omega$ (E12 Series)
tW (10%), $1 \frac{1}{2} d, 100$ off per value 12%. it $W(5 \%), 2 d, 100$ off per value $13 / 9$. $+W$ (10%), 2 d , 100 off per value $13 / 9$. $\frac{1}{3} W(5 \%), 2 \mathrm{~d}$, 100 off per $13 / 9$.
value $15 / 6$.
SEMICONDUCTORS: OA5, OAB1, 1/9. OC44, OC45, OC71, OCB1, OC8ID, OCB2D, $2 /$. OC70,OC72, 2/3. AC107, OC75, OC170, OC171 2/6. AFII5, AF116, AFII7, ACYI9, ACY21, 3/3. OCI40, 4/3. OC200, 5/-. OC139, 5/3. OC25, 7/-. OC35, 8/-. OC23, OC28, $8 / 3$.
SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/-, 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. $/, 500$ P.I.V., $4 /$ /-. $(0.75 \mathrm{~A})$: 200 P.I.V., $1 / 6$.
 400 P.I.V., 2/-. 800 P.I.V., 3/3. THA): 600 (600 P.I.V., $3 /-$. P.I,V., $10 / \mathrm{I}-\mathrm{C} 400$ P.I.V., $15 /-$.

SWITCHES (Chrome finish, Silver contacts): $3 \mathrm{~A} 250 \mathrm{~V}, 6 \mathrm{~A} 125 \mathrm{~V}$. Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6, SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/5T, 4/6. DP/DT, 5/PRINTED CIRCUIT BOARD (Vero).
 5 in $\times 3$ isin, $5 / 6$.
0.1 Matrix: $3 \frac{1}{4}$ in $\times 2 \frac{1}{\frac{1}{2} \mathrm{in}, 4 /-. ~} 5 \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}, 4 / 6$. $3 \frac{1}{4} \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}, 4 / 6.5 \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}$, 5/3.
RECORDING TAPE (Finest quality MYLAR-almost unbreakable).
Standard Play: $5 \mathrm{in}, 600 \mathrm{ft}$, 7/6. 5a in, 850ft, $10 / 6$. 7in, 1,200ft, $12 / 6$.
 1,800ft, $18 /-. \quad 9 \mathrm{~d} . \mathrm{P} . \&$ P. per reel.

Send S.A.E. for January, 1969 Catalogue
either to control supplies or disconnect the noise cell, has been embodied. The primary object of suggesting such a cell was to provide a means for generating random noise spikes, which it does quite efficiently.

The design of the cell was obviously left very "open-ended" and, indeed, no particular data for electrode materials was given. However, Mr Gee's suggestion for fabricating the positive electrode from a carbon rod is very valid because the $2 \mathrm{Cl}^{-}$ions upon conversion to Cl_{2} would without doubt attack a metal electrode. Nevertheless, I feel that he could be a little inaccurate when he says that the Cl^{-}and OH^{-}may combine to produce HCl . Water, by itself, is an extremely weak electrolyte and although it would require less energy to discharge OH^{-}than Cl^{-} there are noturally more chloride ions present. Because of this (and unless we added some alkali) there would be far fewer hydroxyl (OH) ions available at the electrode and the chloride ions would be discharged. Any hydroxyl ions that are present would probably react with the chlorine to produce chloride ions, oxychlorate ions, and water thus:

$$
\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{OCl}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Under most circumstances (except for fused NaCl) the sodium ions (Na^{+}) which migrote to the negative electrode will react with the $\mathrm{H}_{2} \mathrm{O}$ to produce sodium hydroxide, i.e.
$2 \mathrm{Na}^{+}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
(Present as the equilibrium $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$. H^{+}, as Mr Gee implies, does not exist in aqueous solution due to its polarising power and so combines with water to create a hydroxonium ion thus: $\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ $\mathrm{H}_{3} \mathrm{O}^{+}$)
Mr Gee states that the cell would decompose after use. Certainly this is possible if left in-circuit for a long while, but in the disconnected state there appear to be no likely chemical reactions that would support this view. However, a point worth noting is that the conventional primary and secondary cells, like the saline device, all have only a limited lifetime and require replacement from time to time. Descriptions about another device which has an incredible long lifetime, and is based on a different principle, appears in EMMA, see page 196 of this issue.
To conclude, Mr Gee's comments must be answered concerning the proposed tactile sensing arrangement based on motor current monitoring. Hypothetically it is true that such a scheme could permit certain reactions when travelling uphill, but then this is admitting of a little over-presumptuousness on his part! In some situations the "animal" might well be acting more prudently by "abjecting" to steep gradients, although the system proposed employs a threshold mechanism which permits it to be selective in its response to loads. Indeed, it is this very ability which, in a later article, will demonstrate a method whereby an electrode animal can learn to "work" in return for reward (payment).-
G.C.B.

Back numbers wanted for electronics course

Sir-I am trying to include a course in Electronics into my Science Syllabus and would like to ask if you would include in "Readout" an appeal for back copies.
G. M. Bartram
(Head of Science Dept.), Teeside Education Committee, Nunthorpe County Modern School, Middlesbrough.

Any offers of help from readers would be gratefully considered by Mr Bartram at the above address.-Ed.

Solid state echo

Sir-l have recently become acquainted with your magazine, and find it to be of exceptional quality. Your projects alone make it a very worthwhile investment as I have just found out by completing your Electronic Door Chimes, which 1 might add are most satisfactory.
However, the reason I am writing to you, is to ask if you can help me in any way.
l am most keen to build a solid state echo chamber, to use in conjunction with a stereo amplifier and transcription deck but just don't seem to be able to get hold of a suitable circuit. I have had only limited experience with solid state electronics as I work mainly with heavy electrical machinery and therefore would have no idea as to how to design the project in question.

Any help at all will be most gratefully received, and I can assure you this is one customer you will not lose.
G. G. Arscott,

Hemswell, Lincoln.

We have "on the stocks" a Spring Line Reverberation Unit; this may be just what you need, so keep looking out during the next few months.

scope tube

Sir-Having decided to finish the construction of an oscilloscope described in your magazine by P. Cairns, I am finding great difficulty in obtaining a tube 3BPI, 3EP1 or 3GP1.

I wonder if any of your readers would sell me one of these tubes, preferably with the associate mumetal screen.
R. D. Cornforth,

83 Davyhulme Road East,
Stretford,
Manchester, M32 ODH.

The
 professional touch

A really professional training-that's what you get in the Army. 15 months course in electronics with the Royal Signals (for instance) with the most modern equipment and the best instructors soon makes the whole business second nature to you. And quite apart from setting you up for life, it'd give you a good deal of pleasure. Because Army life's varied enough to make every day full of interest. Look into it. If you're between 17 and 30 it's wide open to you.

R.S.T. VALVE MAIL ORDER CO.

BLACKWOOD HALL, WELLFIELD RD., S.W. 16 Special 24 Hour Mail Order Service

You'll find it easy to learn with this out- the latest research into simplified learning standingly successful NEW PICTORIAL techniques. This has proved that the METHOD-the essential facts are explained PICTORIAL APPROACH to learning is the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects.
type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"May I take this opportunity to thank you for such enlighening works and may I add, in terms, easily understood by the novice."
L. W. M., Birmingham.
"I find that the new pictorial method is so easy 10 understand and I will undoubtedly enjoy reading the following five volumes: thank you for a wonderful set of books." C. B., London
"Please accept my admiration for producing a long felt want in the field of understanding Electronics." S. B. J.. London.
"The easiest set of manuals it has been my pleasure to study."
A TECH-PRESS PUBLICATION

TO The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT ER2 $7 H 0$ Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, 1 will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of $20 /$ - followed by 3 fortnightly payments of 20 - each. BASIC ELECTRONICS $90 / \mathrm{F}$. Cash Price or Down Payment of $15 /$ - followed by 4 fortnightly payments of 20/Price or This offer applies to UNITED KINGDOM ONLY. Overseas each. This ofter applies to UNITED
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parem or guardian)

NAME

BLOCK LETTERS
FULL POSTAL
ADDRESS

8TEREOGRAM CABINET \&19
An elogant 8tereogram Cabinet in modern Veneered Mahogany and cloth covered Front Panal
black leatherette side panels
Dimensions: $52^{\prime \prime} \times 17 \frac{1}{2}^{\prime \prime} 1^{\prime \prime}$. Speaker
positions for Twin $10^{\prime \prime}$ - $5^{\prime \prime}$ Speakers

SPEAKERS 6/6

2 " $-75 \Omega .2 \frac{1}{2}{ }^{\prime \prime}-35 \Omega$. P. \& P. 2/6. ACOS MICS. 35 /- STANDARD
STICK MIC. 2gns. P. \& P. 3/6. ASSORTED CONDENSERS
$10 /-$ for 50 . P. \& P. $7 / 6$ ASSORTED RESISTORS

10/- for 50. P. \& P. 4/6. ASSORTED CONTROLS
$10 /$ for 25 . P. \& P. $7 / 6$. TRANSISTORS

MULLARD MATCHED OUTPUT KIT 9/- OC8ID-2 OC8I's. P. \& P. FREE.

FERRITE RODS $3 / 6$
$6^{\prime \prime}, 8^{\prime \prime} \times \frac{y^{\prime \prime}}{8}$ complete with LW/MW COILS. P. \& P. FREE.

17in.- £II. 10.0 carr. $30 /-$ 19in. SLIM-LINE FERGUSON 24 gns. TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE ILLUSTRATED LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS
SIZES AND PRICES demonstrations daily

TRANSISTOR RECORD TRANSISTOR RECORD
PLAYER CABINETS $19 / 6$ P. \& P. 7/6

SINGLE PLAYER CABINETS

 15/6. P. \& P. 7/6.TRANSISTOR CASES 19/6. Cloth covered, many colours. Size $9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 3 \frac{t^{\prime \prime}}{}$ P. \& P. 3/6. Similar cases in plastic $7 / 6$.

TWO-YEAR GUARANTEED REGUNNED TUBES $70^{\circ} \& 90^{\circ} 14 \mathrm{in}-69 / 6,17 \mathrm{in} .-$
 19in. \& 2lin. $99 / 6$. 23° (not Bowls. Carr. 10/6.

DUKE \& CO. (LONDON) LTD.
$621 / 3$ Romford Road, Manor Park, E. 12
Phone 01-4786001-2-3
Stamp for Free List.

Fully built atereo inuplifier; $2 \quad 3$ watta; nains trans; metal reet.;e CCL8z; * 0.p. trans. for 3 -ohnt; volon-off; tone; balance; chargis type with 3 cont rols on front, $11^{\prime \prime} 3 \mathbf{z}^{\prime \prime} 4^{\prime \prime}$ high. 86 (M/-p. \& p.)
Write for details of our F.M. (V.H.
 with kit).

GLADSTONE RADIO ©ELMS ROAD

(2 ming. from itation thd Buses). FTHL GI'ARANTEF.
ULOSED TUES. \& WED.

AMAZING MINI•DRILL

Indispensable for precision drilling, prinding, polishing. etching, gouging, shaping. etching, gouging, shaping.
Precision power for the Precision power for the
enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 79/6 p.p. 2/6.

De Luxe Professional Kit with 17 tools $130 /-$ p.p. 4/6.
Money Ret. Guarantee

Dept. PE2D, Nailsea, Bristol BSI9 2LP

Silicon N.P.N. transistors. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at $1 / 6$ each or $\varepsilon 5$ per 100 .
12 VOLT TRANSISTORISED FLUORESCENT LIGHT.* 8 WATT 12 in TUBE. Current drain only 700 mA ! Complete and tested $£ 2 / 19 / 6$ only! Or in kit form:

Post and Packing $3 /$ -

TRANSISTORS

OC200, OC203, OC204, all at $2 /$ - each
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A 2G378A, all at $1 / 6$ each.
Transistors similar to OC44, OC71 and OC72, all $1 /$ - each.
Unmarked, untested transistors, $7 / 6$ for 50
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each.
30 watt transistors (ASZ17), 10/- each.
ORP 12 Cadmium sulphide light-sensitive resistors $9 /$.
RECTIFIERS
BY100, 800 p_i.v. $2 / 6$ each, $24 /$-per doz., $£ 7 / 10 /$ - per $100, £ 50$ per 1,000 . BYZ13, 6 -amp, 400 p.i.v., available on same terms.

MULLARD POLYESTER CAPACITORS
FAR BELOW COST PRICE!

$\begin{array}{llll}0.0018 \mu \mathrm{~F} & 400 \text { volts } & \cdots & 3 \mathrm{~d} \\ 0.0022 \mu \mathrm{~F} & \mathbf{4 0 0} \text { volts } & . & \mathbf{3 d} \\ 1 \mu \mathrm{~F} & 125 \text { volts } & 160 \text { volts } \\ 0.0125\end{array}$
VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. 10% per 100 . PAPER CONDENSERS, MIXED BAGS; 0.0001 to $0.5 \mu \mathrm{~F}$. $12 / 6$ per 100.
RESISTORS! Give-away offer! Mixed types and values, $\frac{1}{4} \frac{1}{2}$ watt. $6 / 6$ per $100,55 /-$ per 1,000 . Individual resistors 3 d each. Also $\frac{1}{2}$ to 3 watt close tolerance. Mixed values. 7/6 100,55/-1,000.
WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only. 16 for $10 /$.

RECORD PLAYER CARTRIDGES

${ }_{\mathrm{GP}}^{\mathrm{ACOS}}$

UNREPEATABLE OFFER! GIANT SELENIUM PHOTO-CELLS PRODUCE UP TO 6 ma FROM DAYLIGHT! 67 mm . diameter ($29.2 \mathrm{sq} . \mathrm{cm}$.) $10 /$ - each $50 \mathrm{~mm} . \times 37 \mathrm{~mm}$. ($16.5 \mathrm{sq} . \mathrm{cm}$.) 2 for $10 / \cdot$							
TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. 10/TRANSISTORISED SIGNAL TRACER KIT 10/- TRANSISTORISED REV. COUNTER KIT 10/-							
VEROBOARD							
2 tin \times lin 0.15 in matrix $\quad 1 / 6 \quad 17$ in $\because 2$ 2tin 0.15 in							
Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins 3/6-36.							
MULTIMETERS. 20,000 ohms per volt. Ranges: a.c. $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$. d.c. $250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}$ d.c. $2,500 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}$. Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6 \mathrm{M} \Omega$. Special price $£ 4$ only.							
ELECTROLYTIC CONDENSERS							
$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$10 \mu \mathrm{~F}$	25 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	100μ	9 volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	320	4 volt
$1.25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 voit	$25 \mu \mathrm{~F}$	12 volt	320μ	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	400	6.4 volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt		
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	All	- each.
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt		
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 vo	$64 \mu \mathrm{~F}$	2.5 volt	$\begin{aligned} & 20 \\ & \text { (our } \end{aligned}$	orted lection)

SKELETON PRE-SET POTENTIOMETERS. $100 \Omega, 100 \mathrm{~K} \Omega$, SLIDERS. $680 \mathrm{~K} \Omega$. 6d each.
SMALL TRANSISTOR OUTPUT TRANSFORMERS $2 / 6$ each SMALL TRANSISTOR DRIVER TRANSFORMERS $2 / 6$ each

TAPE RECORDER MICROPHONES $12 /$ -

Orders by post to: G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, FTAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

PRINTED CIRCUIT KIT

BULLD 40 ETTERESTLIG PRONECTS on PRINTED CIRCUTT CHASSIS with PARTE ad TRARISETORS from jont spages Box
CONTENTA: (1) 2 Copper Laminate Boards $44^{\prime \prime} \times 21^{\circ}$ (21 1 Board for Matchbox Redlo. (3) 1 Board for Wristwatch Radlo, etc. (4) Resilit. (5) Resist Aolvent (6) Etchant. (7) Cleanser/Degreaser. (8) 16-page Brok let Printed Circuits for A mateurt (9) 2 Miniature Radio Dialis SW/MW/LW. Also free with each kit. 10 EBsentia
 A very comprebeasive selectlon of circuits to suit everjone s requiremeath and
conatractional abllity. Many recently developed very efficient designs pubibhed for the first time, including 10 new circuits.

EXPERIMENTER'S

 PRINTED CIRCUIT KIT 8/6Postage \& Pack. 1/6 (CK) Commonwealth:
St Rface Mail $\mathbf{R}^{\prime}-$
astralia, New Zealand, South Africa, Canada.
(1) Crystal Set with blased Detector. (2) Crystal Sei with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifier. (5) Carrin Power Conversion Receiver. "T) Split-Load Netaralised Refoub with self(5) Matchhox or Photocell Radio. (8) adjuating regeneration (Patent Pending). (9) Solar Battery Louispeaker Radio. adjuating regeneration (Patent Pending), (9) Solar Battery Lounspeaker Raino. 3 Subninlature Radio Receivers based on the "Triflexon' circuit. Let un know if yout know of a amaller deaign published anywhere. (10) Postage Stanip Radio. Size ouly $1.62^{*} \times 0.95^{*} \times 0.25^{*} \times(11)$ Wristwateh Radio $1.15^{\prime \prime} \times 0.80^{* \prime} \times 0.55^{\prime \prime}$. (12) Ring Radio $0.70^{\circ} \times 0.70^{*} \times 0-55^{2}$. (13) Bacteria-powered Radio. Runs on sugar or breal. (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifer. (16) Intercom. (17) I-valre Aniplifier. (18) Reliable Burglar Alarm. (19) Light-8eeking Animal, Guided Missile. (20) Perpetual Motion Mactine. (21) Metaan/Worman Discriminator-
Teater. (23) Human Body Radiation Detector. (24) Man/Worn Teater. (23) Human Body Radiation Detector, (24) Man/Woman (iscriminator-
(25) Signal Injector. (26) Poeket Transceiver (Licencc required). (27) Constabt Volume Intercon. (28) Remote Control of Models by Induction. (29) Inductive-Loop Tranmmitter. (30) Pocket Triple Reflex Radio. (31) Wriat watch Tranamitter/Wire-leas Microphone. (32) Wire-less Door Bell. (33) E'Itrasonic Switch/Alarm. (34) Stereo Preamplifier. (35) Quality Stereo Push-Pulf Amplifler. (36) Light-Beam Telephone 'Photophone'. (37) Light-Beam Tranamitter. (38) Silent TV Sound Adaptor, (39) Litrasonic Tranamitter. (40) Thyristor Drill Speed Controller

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassia Boards, Chemicals, Etcbing Manual, Infra-Rell PhotoCONTENTS: 2 P.C. Chassis Boarus, Chemicala, Etching Manaal, Resistor, Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact everything you need to build a
Steady-Light Pboto.Switch/Counter/Burglar Alarn, ete. (Project No. 1) which can be Terminal Block, Elegant Case, Scrter/Bu
Steady-Light Pbotoswitch/Cound
modified for modulated-light operation.

PHOTOELECTRIC KIT 39/6

Postage and Pack. 2/6 (UK) Commonrealth:
hURFACE MAIL 3/6 AIR MAIL $£ 1.0 .0$ Australia, New Zealand s. Africa, Canada nad U.S.A. Also Essential Data Cirsuita and Plans for Bullding
12 PHOTOELECTRIC PROJECTS. (1) Stealy-Light Photo-Switch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Bt thy-Light Alarm. (4) Relay-less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Project Lamp StablliserSwitch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm.

INYISIBLE BEAM OPTICAL KIT

Everstblng needed (except plywood) for building: 1 Invisible-Beam Projector aud 1 Photocell Recelver (as illuatrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Intra-red filter, projector lamp holder, bullding plans, performance data, etc. Price 19/6. Pootage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail 8/-.
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
 ase, Resistorm, Bcrers, etc. Full Size Plans, Instructions, Data Sbeet " 10 Advanced Phowelectric Designs

JUNIOR OPTICAL KIT

CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniature invisible beam projector and photocell Price 10/6 Poet and Pack $1 / 6$ (U K) Common
PHOTOELECTRIC PARKING LAMP SWITCH
Automatically turns parking lamp on at dusk, on at dawn. Protects your car. Savea the battery. Miniature construction. Simply insert in parking iamp lead. Price: 87/6. Post and Packing 2/6 (U.K.).

THYRISTOR LIGHT DIMMER

Add a terch of lurury to zour bome. Adjust the light at partiea, while watching TV,㲘 Price: E0/6. Poat and Packing 2/6 (U.K.).

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full details, a brief description and Photographt of all Kits and all 52 Radio, Electronic and Pholoelectric Projects Assembled.

Radio Enthusiasts! Build this

PROGRESSIVE SUPERHET

A special in March PRACTICAL WIRELESS, this easy-to-build receiver for short wave fans will be described in six progressive stages-operational at each stage. Begin building the first stages now from full how-to-do-it instructions.
Other Constructional Features:

MICROPHONE PREAMPLIFIER

ONE-SIXTY SUPERVERTER

plus fully detailed article on
WORKSHOP PRACTICE

PEAK SOUND
 Aids to economical high fidelity

ES/10-15 BAXANDALL SPEAKER
" A thoroughbred"
SAYs
RALPH WEST
HJ-FI NEWS
OCTOBER, '68
"'The immediate impression was of a thoroughbred speaker, smooth and effortless . . . voices were uncannily real. Once again we see the possibility of Rolls Royce stanards . . . when you know how."

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer, P. J. Baxandall in Wireloss World (Aug, and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency range60 to $14,000 \mathrm{~Hz}(100-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB})$; impedance- 15 ohms; loading up to 10 watts R.M.S.; size $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$. Here indeed is quality performance of a very high order for a very modest outlay.
Equaliser assembly 36/- (P/P 1/6):
Speaker Unit 38/- + 8/11 P. Tax (P/P
5/-): Cabinet assembly, teak finished.
£9.17.6
£6.3.6 + 12/8 P. Tax (Carr. 8/6). + 21/7 P. Tax
X-over for woofer if required 22/6 (P/P 3/6) (Carr. in U.K. 11/6)

A new

Peak Sound

Power

Amplifier

THE PEAK SOUND PA/12-15 (12 watts R.M.S. out into 15Ω) is for the constructor who appreciates
 both sensible design and genuine power and hi-fi performance. Available built or in kit form. Response $10 \mathrm{~Hz}-45 \mathrm{KHz} \dot{\mathrm{K}}-0.5 \mathrm{~dB}$ Distortion at max. output -0.1% 43 dB neg. feed back. Size $5^{\prime \prime} \times 3 \frac{3^{\prime \prime}}{} \times 1 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$. With full instructions. Pre-amp. details available. (P / P for kit or built 2/6)

from your dealer or direct in case of difficulty.
PEAK SOUND (HARROW) LTD., 32 St. Judes Road,
Englefield Green, Egham, Surrey Telephone: EGHAM 6316

- TO PEAK SOUND: $-\infty-\infty-\infty-\infty-\infty=-\infty$

Please send (post free)
for which I enclose f...................... d
NAME .
ADDRESS

[^4]Block letters please P.E.3/89

Pructicul Electronics Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 3$ per word (minimum order $15 /-$), box number $1 / 6$ extra. Semi-displayed setting $£ 4.2$. 6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

BOOKS AND PUBLICATIONS

MAKE YOUR OWN TALKIES. An introduction to electronie tipe/film srnchronisation, with an explanation of the "(arol" Cinesound system, muslifsing equipuent, filming in syne., etc. l'rice $\mathbf{i} 6$, post free (refundable against purchase of your "Carol" ('inesound eyuipment). Contronics Litu., Deepeut, C'amberler, Surrey.

SURPLUS HANDBOOKS

19 set Circuit and Notes

 1155 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical Instructions. 46 set Working Instructions. 46 set Working Instructions.88 set Technical Instructions. 88 set Technical Instruction
BC. 221 Circuit and Notes. Wavemeter Class D Tech. Instr 18 set Circuit and Notes BC. 1000 (31 set) Circuit \& Notes CR. $100 / 8.28$ Circuit and Notes 10/-P.P. 90 R. 107 Circuit and Notes........ 7/-P.P. 6d A.R.88D. Instruction Manual. ... 18/-P.P. 6d 62 set Circuit and Notes 6/6 P.P 6d 52 set Sender \& Receiver Circuits 7/6. post free Circuit Diagrams 5/- each post free R. $1116 / A$, R. $1224 / A$, R. 1355, R.F. 24, 25, \& 26 A. 1134 , T. 1154, CR. 300, BC.342. BC. 312 . BC.348.J.E.M.P. BC. 624.22 ser.
Resistor Colour Code Indicator...2/6 P.P. 6d S.A.E. with all enquiries please.

Postage rates apply to U.K. only
Mail order only co:
Instructional Handbook Supplies
Dept. P.E., Talbot House, 28 Talbor Gardens Leeds 8

This usefut Handbook gives detailed information This usefuit Mandbook gives detailed information
and circuit diagrants for British and American
Government Surplus Receivers. Transmicters and Test Equipment, erc.: also contained ars some suggesced modification derails and improvements for the equipment. Incorporated in this revised edition is a surplus/commercial cross referenced valve and transistor guide. This book is invaluable to radio enthusiasts, radio clubs, universities and laboratories. The latest edition priced at $35 /$ - per volume plus 5 /
GILTEXT LIMITED
Dept. P.E., 24 Stansfield Chambers S.A F Gt. George Street, Leeds I for ali fore all enquiries, please. Extra postage for all foreign orders.

EDUCATIONAL

[^5]
EDUCATIONAL (continued)

RADIO \& TELEVISION SERVICING RADARTHEORY \& MAINTENANCE TELECOMMUNICATIONS This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:-
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, s.W.5.

Tel. 01-373 8721

QET INTO ELECTRONICS - big opportunities for trained men, Learn the practical way with low-cost Postal Tralning, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms, etc. For FREE 100page book, write Dept. 856 K , CHAMBERS COILLEGE, 148 Holborn, London, E.C.1.

STUDY RADIO, TELEVISION AND ELEOTRONICs with the world's largest home study organisation. City \& Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext House, London, SW11.

CITY AND COUNTY OF BRISTOL BRISTOL TECHNICAL COLLEGE

Principal: E. Poole, B.Sc.(Eng.), C.Eng., M.I.Mech.E., M.I.Prod.E.

CAREERS IN RADIO AND RADAR

Marine Radio Officers

2 year full-time course leading to the Second and First Class P.M.G. Certificates and the B.O.T. Radar Maintenance Certificate.
Conversion Course (Second Class to First Class).
R.T. Licences (Full or Restricted).

Courses for Qualified Marine Radio Officers

Single Sideband Techniques (2 weeks) Marine Electronics Course (Phase Iduration 3 months)
Advanced Marine Electronics Course
(Phase II-duration 3 months)
Training given on the latest types of Marine and Aircraft equipment in modern, approved laboratories at

THE SCHOOL OF RADIO AND RADAR

Senior Lecturer-in-Charge: F. E. Barltrop For further information apply to:-

The Registrar, BRISTOL TECHNICAL COLLEGE
ASHLEY DOWN, BRISTOL 7

2 year full-time course covering the Aircraft Radio Engineers Licences categories A and B, issued by the Board of Trade (Civil Aviation) followed by a six-months' course for Radar Rating (A and B) in association with the above.

FOR SALE

6,000 IN VOUCHER8 GIVEN AWAY, See free ('at. for details. Tools, Materials. Mechanical, jelectrical. thousands of interesting items. WHSNTOS. Dept. lVE. New Mils, Stockport $S K 1-4 \mathrm{Hi}$

PRECISION POTENTIOMETERS

Multi-turn, continuous or ganged from 25/carbon from 2/-. Also resistors, mains rectifiers, synchros, geared motors, chokes, eapacitors, meters, mieroswitches, semiconductors. 6 d , stamp catalogue. F. HOLFORD \& CO., 6 Imperial Square, Cheltenham.

TIME 8WITCHE8, 14 day clock, once on once off fvery 24 bours, reconditioned and fully guaranteed. 5 amp Horstmann $32 / 6,15$ anmp 'enner $4 \cdot / 6 \quad P$ \& $\quad 4 / 6$. A. R BA'T(DEJOR (P.E. Dept.), t lark Road, Bromley, BRI 3H1.

to hard glossy finis
Heat, liquid and
scratchproof.
Bronze; Silver; Green ; Black; Lt. and Dk. Blue. Send for Free list, or $8 /-(+1 / 9$ post $)$ for trial $\frac{1}{2} p \mathrm{t}$. TIN, colour samples and instructions. Send NOW.
FINNIGANSPECIALITY PAINTS Dept. P.E. STOCKSFIELD. Tel. 2280 Northumberland.

FOR sALE. Every issue of "Practical Electronics" No. 1 onwards; every issue " Hi -Fi Sound" No. 1 onwards; "Hi-Fi News" every month from April 1967. Offers invited. F. J. BENSON, 21 Winson Green Road, Birmingham, 18.

TREMENDOUS

CLOSING DOWN SALE

WHOLESALE STOCKIST SHORTLY EMIGRATING HAS VAST STOCKS OF THE FOLLOWING FOR BULK OR OUTRIGHT SALE: AMPHENOL, BENDIX, BELLING LEE, BURNDEPT, B.I.C.C.-BURNDY, CANNON, CONTINENTAL CONNECTORS, ETHER, HELLERMANEDEUTSCH, MCMURDO, PAINTON, LERMAN-DEUTSCH, MCMURDO, PAINTON, P.E.T. PLESSEY SEALECTRO, THORN,
TRANSRADIO, U.E.C.L. and WINCHESTER PLUGS and 'SOCKETS OF ALL TYPES. PRINTED EDGE CONNECTORS by CONTINENTAL CONNECTORS and U.E.C.L. L.P.A. watertight connectors, CINCH and WARD-BROOKE BARRIER STRIPS, PAINTON, BOURNS, M.E.C. and RELIANCE miniature trimming and flatpot potentiometers, subminiature type TOS trimming potentiometers, CLARE-PENDAR computer switches, condensers, capacitors, resistors, translormers, American headsets, ball-races, servo, syncro, drag-cup motors, magslips, tachometer generators, luses and fuse-holders, V.H.F. and transmitting units in G.P.O. type racks, Oxley and Harwin components and hundreds of other miscellaneous and varied components and spares. Would also consider selling complete manufacturers' and M.O.A. literature, sales and buying contacts, furniture, stationery and effects. Book value in excess of $£ 100,000$.

Only firms or individuals interested in bulk buying can be entertained.

Would accept outright offer for complete business if convenient.

Full lists ready by February 1969.
Please write in first instance to Box No. 17.

VIDEOTAPE EQUIPMENT, TV cameras amil large quantity electronics to clear. I,ONOR latge quantity electronics to clear. 1 Maddox Street, London, Wla $2 \mathrm{~L} / \mathrm{T}$ Phone 01-734 4114.

BACK NUMBERS. "Practical Electronics" 3/6 p.p. NEVE, Old Coach ('inse, Beachley, Chepstow, Mon.

MORSE MADE ! !

FACT NOT FICTION. It you start ItIGIIT you will the reatling amateur and commercial Morse within a month (normal progress to be expected). Using scientifcally prepared 3 -speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as ensy ao learning a tune. J8 W. P.M. in 4 weeks guaranteed For detaila and course C.O.D. ring S.T.D. 01-600 2800 or send 8d. 日tamp ror explanatory booklet to:

G3Ch8/h, 45 GREEN LANE, PURLEY, sURREY

HOLIDAYS

HOLIDAY FOR BOY8 $14 / 16$ years August 1969, specialising in engineering, electronics, photography. Tuition and practical work including go-karting. 11 days- £14.10.0. Write for free brochure: 1 NTER-SCHOOL CHRISTIAN FELLOWSHIP, 47 Marylebone Lane, Iondon W. 1

SITUATIONS VACANT

A.M.I.E.I.E., A.M.S.E. (Elec.), City $\&$ Guilds, G.C.E.. etc., on "Satisfaction or Refund of $\mathrm{Fee}^{"}$ terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-FIREE. Please state subject of interest. BRITISH INSTITUTA OF RNGINEERING TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

SITUATIONS VACANT
 (continued,

TRAINEE RADIO TECHNICIANS
 A PROGRESSIVE CAREER IN THE FIELD OF
 RADIO AND ELECTRONICS

Applications are now invited for an intensive training course of 3 years, leading to appointment as a fully qualified RADIO TECHNICIAN, with further prospects of progression to the Telecommunication Technical Officer Class.

Generous Pay and Conditions while under training.

Candidates must be over 16 and under 21 years of age as ar September 8th. 1969, on which date training commences.

Minimum educational qualifications required are passes at G.C.E. 'O' Level in English Language, Mathematics and Physics (already held or expected to be obtained in the Summer 1969). Equivalent passes in Scottish or Northern Ireland Certificates and C.S.E. Grade I passes are also acceptable.

Closing date for applications, 3lst March, 1969. Interviews will be commenced about end of April.

Apply for full details and application form to:-

THE RECRUITMENT OFFICER (TRT/54)
government communications headouarters oakley, priors road. Cheitenham, glos.

G152 5AJ

TECHNICAL TRAINING by IC S $\begin{gathered}\text { IN Radio, television and } \\ \text { Electronic engineering }\end{gathered}$

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.

* C. \& G. ELECTRONIC SERVICING.
* R.T.e.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
* RADIO AMATEURS' EXAMINATION. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how $1 C S$ can help YOU in your career. Full details of IC S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

ELECTRICAL

An electronic unit capable of controlling electrical equipment up to 3,000 watta capacity. Fingerifp
control of alla.c./d.c. electrical equipment. Suitable control of all a.c./d.c. electrical equipment. Suitable
tor all trpes of lighting arrangements. Incandesceni tor all types of lighting arrangements. Incandescent
lamps, spot lamps, arc lanps, floodlights. Makea lamps, spot lamps, arc lamps, floodlights. Makes
an Ideal Jimming unlt. Jcleal for controlling all an Ideal dimming unlt. Jcleal for controlling all types of electric arilis and up to
motors for ali applications. ldeal for all typee of electric heaters. Suitable for lathes and power toola. Fmploys the latest electronic syatem.
Bize $6^{*} \times 5^{2}$. Lousred metal case in pleasing hamnier finish. Attriactive front panel. Bargain price $88.19,6$ p. \& 0.10% C. $0 . D$. if reqd.

ARI/SEAATTRNS/RCC.

Compact V.H.F. Trans./Rec. Fits in the pocket. Conaists of Mike/Speaker, ampliffer, aerial, operate up to 100 milea depending on terrain. Operntes from dry batterles. Completely selfcontained. Cost Govt. Over $£ 50$ each. Regulations etate must not be operated in UK so plense mention "For Dlamantling purposes cunr only" when ordering. Price 88.10 .0 each, p. \& p. $10 / \mathrm{M}$. Two seta for
$\mathbf{8 5 . 0 . 0}$, post free . Four sets 88 , 85.0.0, post free. Four sets 88 ,
carriage free. Bulk anje of 10 get. carriage free. Bulk anie of in met. \rightarrow invited

SHIPPING /SO.S/BAND

 RECEIVERHear shipping from all over the worid. Covers the complete maritime, tranler and amateur bands.
A neat little superhet. Attractive black crackle finlah case approx $7^{\prime \prime}$. Atractive black crackle torised. 9 volt battery fits inside. Speaker or headphone output. Brand new direct from makers. Comparable with sets being sold at 30gra. Onr
Price only 89 , Carr. \& ins. $10 /$-.

MIMATUEE TRAMSISTORISED E.F.O. UNIT This is a miniature transistorised B.F.O. unit (tunable) that wion enale 3 ur sel or B.s.B. reception. Compret. single hole fixing. Ex-Goval. Communication Heceivers and inoat Commercial Types. Completc with fitting instructions. 49/8, post iree.

Butk purchate vaibles us to "tier the foliowing transformers at these ridiculonsly low prices. Made by a famous manufacturer and fully tested ani
 Power Pack Types. fi-3' at $2 \mathrm{~A}, 7 / \mathrm{B}$ each, p. \& p. $2 / \mathrm{h}$. 12 V at 2 A , $12 / 6$ pach, p. © $\mathrm{p} .2 / 6$.
(\%) CiOBE SCIENTIFIC LTD
SEPT. P.E. 22 CAWOOD8 YARD.
MILL BTREET, LEEDS 9

ELECTRICAL (continued)

most brilliant performance ever from 12-volt Car Battery. BRILLIANT HEAVY with BIG 220 WATT OUTPUT. Marvellous for WIth BIGION ELECTRIC DRILLS, MAINS TIGEVING and ALL UNIVERSAL ACIDC MAINS EQUIPMENT. Marvellous for Fluorescent lighting. Thousands of uses. Tremendous purchase of this model makes fantastically low price possible.
ONLY 44.19 .6 each plus 1016 delivery. C.O.D. with pleas ure. MONEY BACK if not DELIGHT-

Dept. PE, STANFORD ELECTRONICS
Rear Derby Road, North Promenade BLACKPOOL, Lancashir

MISCELLANEOUS

RHYTHM MODULEs. Build your own rhythm box-simply, cheaply. Realistic sound guaranteed S.A.E for details. D.E.W. LTJ., 254 Ringwood Rd., Ferndown, Dorset.

BUILD IT in a DEWBOX quality cabinet 2in x 2tin x any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

4 WATT GRAM AMPS.

Volume and tone controls, mains operation, 3Ω output, new and boxed $65 /$ -
BIG BARGAIN PARCELS ONLY OF COMPONENTS

SALOP ELECTRONICS

 10/-23 Wyle Cop
Shrowsbury, Shropshire
SAE.

UFO DETECTOR CIRCUITs, data. 10s. (refundable). Paraphysical Iaboratory (UFO Observatory), Downton, Wilts.

PRINTED CIRCUIT for Practical Electronics' IRhythm Generator, $14 \frac{1}{4}$ in $\times 54$ in with layout plan and drilling template, for simpler and neater construction. 29s. 6d. including postage. Send cash with order to ALMARY IDESIGNS, 12 Lattinore Road, Wheathampstead, Herts.

ARTIFICIAL LIFE

Well almost, because the NEW range of projects include: an electronic 'animal" which "LEARNS", an Electro Chemical device capable of "REPRODUCING" irself! Other projects SURE TOINTRIGUE which has quite an amazing range and which has quires NO LICENCE; also a machine requires which 'recognizes'" itself, and an electronic which 'recognizes' itself, and an electronic
dog whistle, etc., etc. HOSTS OF EASYTog whiste, etc., etc. HOSTS for anyone with a basic knowledge of Electronics SEND 2/6 for your list-NOW!

To: • BOFFIN PROJECTS incorporating
BIONIC DESIGNS
4 CUNLIFFE RD.
stoneleigh, ewell, surrey

WANTED

NEW VALVES WANTED. Popular TV and Jarlio types. lbest cash price by return. 1) (íHAM SUJPLDB, 367F Kensington Street, Bradford 8 , Yorkshire.

TAPE RECORDERS, TAPES, ETC.

TAPES TO DISC-using linest professional equipnent -45 r.p.m. 18/-. S.A.L. leatlet. DEROY, High Bank, Hawk Strcet, Carnforth, Latucs.

RECEIVERS AND COMPONENTS

ELECTRONIC STOCKMARKET kit of minst parts; also "Reactalyser" and Waa-Waa pedal. S.A.E. for list. 1.E.W. LTD., Ringwood Rd., Ferndown, Iorset.

TAPE HEADS

 2 TRACK ${ }^{\text {MIGH TMP. }}$ 4-TRACK $\quad 45 /-$
$\underset{4 \text { TRACK }}{\text { BRR MALL }} 39 / 6$ pair

		4-TRACK	27/6
Rguter	collaro	cosmocor	erase
${ }_{\text {ERASE }}$	15/=	T.E. $2 / 9$	15/-

6 THANSETOR HIGH QUALITY TUNER. BIZE ONLY 6 in $\times 4$ in $\times 2$ in 3 i.F. atages. Jouble tuned discriminator. Ample ontput to feed most 2n-108Mc/s. Ready built ready for
E6. 12.6 SUB-MIN. TRARSISTOR LW/MW/FM TUNER Similar to above. Complete with aerial,
tuners, dial and instructlons $\quad \mathbf{1 4}$ DULCI FaTMFs sTEREO TUKER
Complete Complete
Colded Walnut cabinet, bruehed gold ront
panel, vertical styling, internal batteries $\quad \mathbf{~} 12$ panel, vertical styling, internal batteriee
FM MULTIPLEX STEREO ADAPTOR
Printed circuit biscult, 4 trans. $6 \quad \mathbf{5 5 . 2 . 6}$ $\frac{\text { diodes } 9 \mathrm{y} \text { with tull instructions }}{\text { LOUDSPEAKER }}$

TWEETER $\begin{gathered}3 \text { or } 16 \text { ohin, } \\ 10 \mathrm{~W} \text { CR } 0.3 \mathrm{k} \Omega,\end{gathered}, 26 / 9$ Horn type Hi-Fi $\quad 18,000 \mathrm{c} / \mathrm{s}$
CROSSOVER NETWORK 14/-

REPLEX CONE TYPR	MULTMETERS
32/-	

5 watt, 3 ohm. 300 -
$16,000 \mathrm{c} / \mathrm{P}$ PA
$\underset{\text { Relay }}{\text { \& Music }} \quad \mathbf{3 . 1 0 . 0}$
charger
TRALSFORMER.
4
4
Ant. 16
$21 / 6$
SUPER SILICON RECT. T.V.: etc.. 1,200 PIV $800 \mathrm{~mA}, 51-;$ or conplete *ith instr. resistor,
condenser, $6 / 6 ; 400$ PIV HW 6A, $6 /-; 200$ PIV HW $6 A_{1}, 6 /-, \quad$ BY100 type, 6 for $10 \mathrm{i}=$. VhF AIRCRAFT BAND CONVERTER Place within in of MW radio
burg within alarm
75/=
FIRE ALARM
7/6
DOOR BELL
37/6
CHANGER DECKS
UA25 BSR with template, Mono.
UA25 BSR with template, Stereo. List E7.15.0
$\begin{array}{ll}1025 \text { Garrard with template. Mono. } & \text { List tist } \$ 7.8 .8 \\ \text { Lis. }\end{array}$
1025 Garrard with template, Stereo. List 28.5.0
PLINTH in ilmulated teak. Complete with
Clearview rlgid perspex cover for 1025 ,
5 $5,5,0$ Clearview rigid perspex cover for 1
SWITCH ROTARY RECIPROCATING 4
Position. 15amp. Single hole fixing, with 5/6
C60 CASSETTE 12/6.
C90 18/8
Stamped envelope for full aelection and bargain ofters in Multineters, Ladios, Baby Alarma, Inter-coms, Walkie-Talkies, Rectitiers, Sinclair, DULCI, and Eagle Lists. UNDERR
\&1 to $£ 3-1 / 6$, over $23-2 / 6, ~ C .0 . D . ~ \& / 6 . ~ P . ~$
MAlL

DER ONLY

DURHAM SUPPLIES $367 \mathrm{~F}, \mathrm{KENSINGTON} \mathrm{STREET}$ BRADFORD 8, YORKSHIRE

TELEVISION I.F. STRIPS (less valves) From BBC. 2 convertors ideal for spares, contain smoothing capacitor, dropper resistors, 7 valve resistors, diodes, tag strips, chokes, etc.. etc. on chassis llin 3 in no information or circuit BRAND NEW in makers' boxes, a gold mine of components for ONLY $16 / 6$ each post paid.
MAINS TRANSFORMERS
250 V input, outputs 10 V $32 \mathrm{~V}(310 \mathrm{~m} / \mathrm{A}$, size 2 din liin $\times+\operatorname{lin}$ (drop through type) ideal for transistor power supply, $10 /$-post paid. 250 V input, output 22 V in $1 \frac{1}{2} \mathrm{~A}$, size 2 in $\times 2$ in $\times 2 \frac{1}{2} \mathrm{in}$. $11 /$-post paid.
TRANSISTOR driver and output transformers for 3 ohm speaker, suit OC81s, etc., approx. I watt As above but $500 \mathrm{~m} /$ watt rating, $4 /$-pair. $3 /-$ each MIXED bag of s.lver mica and ceramic capacitors approx. 150 . $10 /$-per bag.
ERIE 0.01 mF . 12 vw wire ended disc ceramics, $3 /-$ do 001 mF , 500 vw disc ceramics, P.C. type, is in dia 2/- doz.. 10 - per
HUNTS $01 \mathrm{mF}, 350 \mathrm{vw}$ paper capacitors, P.C type, upright mounting. 2/6 doz., 15/-per 100 post paid per 100 .
TUB LAR ceramic capacitors, P.C. rype, 3.3pF and 500 pF , only $6 /$-per 100 . $1 / 3 \mathrm{doz}$
m imp. brand TRANSISTOR ELECTROLYTICS 2 mF 6vw $4 \mathrm{mF} 64 \mathrm{vw}, 10 \mathrm{mF} 12 \mathrm{vw}, 20 \mathrm{mF} 6 \mathrm{vw}, 50 \mathrm{mF} 6 \mathrm{vw}, 100 \mathrm{mF}$ $6 \mathrm{vw}, 6 \mathrm{~d}$ each. $100 \mathrm{mF} 9 \mathrm{vw}, 8 \mathrm{~d}$. 100 mF , $25 \mathrm{vw}, 1 / \mathrm{m}$ $400 \mathrm{mF} 15 \mathrm{vw}, 500 \mathrm{mF} 9 \mathrm{vw}, 9 \mathrm{~d} .11,000 \mathrm{mF}+1,000 \mathrm{mF}$ 18 vw can neg., $2 /-1,000 \mathrm{mF} 50 \mathrm{vw}$ can type, $4 /-$. CRYSTALS HC6/U, $12700 \mathrm{Mc} / \mathrm{s}$ ex equipment tested, $5 /$-. SILVER MICA capacitors 80pF size
only 1 in x din 200 vw , 4/-per 100 . OLY $11+1 / 6$ SAE FOR LISTS C2-65 + 3/6; over 55 FREE

50 Waverley Road, The Kent, Rugby, Warks

```
TRANSISTOR PANELS
New boxed. size 9in x 6in x I in with "Valvo
leniscors cype OC45 or similar, with full
length leads, also an equal number of OA85
diodes, H/5 resistors, etc. Built on perforated
board in a metal frame
lol
$0-30/- 80- 50/- Postoge 2/- per ponel.
TROLYTIC)
500mF 4V
300mF 10V 
250mF 4V % 30mF 10V 
200\textrm{mF 10V }
64mF 40V 16mF 25V Mi-per doz. Min.order 10% 25
COMPUTER PANELS with 40 sil
npntransistors,Diodes and res., 22/6 Post Paid.
COMPUTER PANELS WITHSSEMI-
CONDUCTORS. Postage 6d per panel
8-OC42 or GETB75 + 24-OABI
6-OC41 + 3-OC139+ Diodes
4-OC170+2-OC139+2-OC42
4-ASC20 + 6-GEO40 + 27 Diodes
2-OC170+6-1-2G306 + OC42
5-OC23+15-OA10
6-2N38B + 2-2G403 + 2-T2040
4-OC36 +8-CETIO3+2-LZS3IA
8-ASZ20 + 80 Diodes
6-ASZ21 + 15-OA91
9-SB240+18-OA47
2-2G106 + 24 Diodes
8-2G371 (Invertor)
6-2G371 (Invertor)
6-2N488
6-2N388
48-OAB1
48-OAB1
4-OC42
2-ASZ20 + 80 Diodes
13-OC42+24-OA91
2-2G106 + 1-2N2410
24-OC42 + 8-OA47
3-GET872 + 3-GEX541, ETC
3-GET872 + 3-GEX541. ETC
TEST CARDS. 6 AROSistors 20 for 201
ELECTROLYTICS 25,000 (@) 12V, 16,000 (@)
ELECTROLYTICS 25,000 @(ल) 12V,16,000 @
60V,3,000 & BOV, 2,000 (a) 50V, 1,200 (a) 180V,
/6 Post Paid.
ZENER DIODES-2.4, 2.7. 3.6. 4.75, 5.25,
5.75,6.2,6.8,7.5, 13, 15, 16, 18, 20, 27, 30, 33
POLYSTYRENE CAPACITORS 350V:180,
POLYSTYRENE CAPACITORS 350V:180,
270,330,390,470,560,680, 820pF. 1,800, 2,200
125V: i, 200. 1,500, 1,800, 2,200, 2,700, 3,300,
3,900, 4,700, 5,600, 6,800, 8,200, 0.015. 80pF
ceramic 200pF S.M. any selecrion 2%- doz.
4-40pF trimmers 4/- doz. CHASSIS
ing 2-OC35,2-OC29 12 WW resistors 25/
ing 2-OC35
    NEW CROSS RADIO
    OLDHAM ROAD, MANCHESTER 4
```


ELEGTROVALUE

 RAPID MAIL

 RAPID MAIL
 ORIDER
 SEIRVICE

Unbeatable Value in SEMICONIDUCTORS

30W BALLEY AMPLIFIER

MJ481 and MJ491 matched pair out put. 58/-; 40361 and 40362 matehed pair diver. $30 / 3 \mathrm{~d}$; 40361 12/8 BC109 2/9; Main FREE with eich complete traisistor set
Total for oile chamnel $£ 7.8 .0$ list with 10% discout only £tis.3. Totat for two channels £14.16.0 list with 15% discount only 212.11.8. Complete powe ${ }^{\text {supply kit }}$ £4.5.0 list. Circuit reprints $1 /$ each
G.E. ene926 PLASTIC RANGE
reductions
Red spot $=55$ to $1102 / 3$; Orange spot -90 to 180 2/3; Yellow spot $=150$ to $3002 / 6 ;$ Gireen spot $=235$ to $4702 / 9$.
texas silect range prices reduced 2N3704-90 to 330 B/9 BC108 20 V 125 to 900 2/8 2N3705-45 to $165 \begin{array}{lll}3 / 5\end{array}$
 $\begin{array}{llll}2 \mathrm{~N} 3703-30 & \text { to } & 150 & 3 / 3\end{array}$ 300NHz fT, To92): 2 N 3707 low noise $\quad 4 /-\quad \mathrm{BC167} \stackrel{125}{ }$ to $500 \mathrm{z} / \mathrm{3}$ $2 \mathrm{~N} 3711-180$ to $6603 / 11$
sinall signal pnp:
BC168 20V
$=125$ to $9002 /-$ sintill gignal pnp:
2 N 4058 low nole
$\begin{array}{llll}2 \mathrm{~N} 4058 & \text { low nolse } & 4 / 9 \\ 2 \mathrm{~N} 4062 & 180 & \text { to } 660 & 4 / 3\end{array}$
BC107 Beries $\quad 300 \mathrm{nW}$
300 MHz fT, TO 18 :
BC107 $=125$ to $500 \mathrm{8} / 9$
Beta values for above, quoted innnediately after type
FET:-Prices reduced
MPF105 25 V max., gm $=2$ to $6 \mathrm{~mA} / \mathrm{V}$, low noise 7/6 2 N 381925 V max., gin $=2$ to $6 \mathrm{ma} / \mathrm{V}$, low noise $9 /-$.
mini transistors - Prices Reduced
$2 \mathrm{~N} 4285 . \mathrm{p}^{p n} \mathrm{p}$ hFE 35 to 150 a 10 mA IT 7 MHz min. Yeb 35 V nax.: 2 N 4286 npn 30 V hFE over 100 @ $10 / \mathrm{A}$ to 1 mA fT 280 MHz typ; $2 \mathrm{~N} 4289 \mathrm{pnp}{ }^{60 \mathrm{~V}} \mathrm{hFE}$ over

 put: 2 N 4292 npr 30 O UHF N.F. fidB max $\mathrm{on}^{2} 100 \mathrm{MHz}$ PT 570 M 4 F z typ.; B5041 Power 14.3 W (a) $100^{\circ} \mathrm{C}$ base temp. 30 V , hFE over 100 © 0.5 A . Insulated TO66 gize mounting surfface
Prkes: 2 N 4285 to 2 N 4292 and 2 N 3794 2/11; B5041 13/8.
1,000 15a general purpose rectifier type 1 N $50543 / 6$ only. $1,0000.75 \mathrm{~A}$ miniature rectifter type TS1 $1 / 8 ; 400 \mathrm{~V}$ type Ts4 $2 / 3$
ZENER DIODES $3 V$ to $27 \mathrm{y} 5 \%$ 400mW all preferred
voltages, $4 / 6$ each.
NEW TRANSISTOR EARGAINS
ALL POWER TYPES SUPPLIED W1TH FREE INSULATING SETS.
$\begin{array}{llllllll}2 N 696 & 5 / 6 & 2 N 171 & 7 / 4 & 2 N 4060 & 4 / 3 & \text { BC148 } & 3 / 6\end{array}$ $\begin{array}{lllllll}2 N 697 & \text { B/- } & \text { 2N2147 } & 18 / 8 & 40250 & 15 /- & \text { BC149 }\end{array}$ $\begin{array}{llllllll}2 N 706 & 3 / 5 & 2 N 2369 \mathrm{~A} & 40406 & 16 / 3 & 13 \mathrm{D} 123 & 24 / 3 \\ 2 \mathrm{~N} 1139 & 18 /- & & 8 / 8 & 40408 & 14 / 6 & \mathrm{BF} 194 & 7 /-\end{array}$

2 N 1302	$4 /-$	2 N 2646	$9 / 6$	AC 126	$6 / 6$	BFX 29	$12 / 3$
2N1303	$4 /-$	2 N 2924	$5 /-$	$\mathrm{ACl28}$	$8 /-$	BF	

 $\begin{array}{lllllll}\text { 2N1308 } & 8 / 9 & 2 N 3391 A & & \text { AF114 } & 7 / & \text { NSN } \\ \text { 2N } 1309 & 8 / 9 & & 5 / 6 & \text { AF124 } & 7 / 6 & \text { NKT } 403 \\ \text { 2N1613 } & \text { B/6 } & 2 N 3706 & 3 / 3 & \text { BC147 } & 4 / 3 & 14 / 10\end{array}$

RESISTORS

METAL OXIDE type TR5 $0.5 \mathrm{~W} \mathbf{2} \%$ tolerance. Very low noise, low temperature coefficient. low drift A Professional resistor. All E24 preferred values 10Ω
to $1 \mathrm{M} \Omega$. Price: 1 to $1110 \mathrm{~d} ; 12$ to $259 \mathrm{~d} ; 25 \mathrm{up} 8 \mathrm{~d}$. CARBON FILM high atitb low noige
$W 10 \% 1 \Omega$ to 33Ω and $W 5 \% 39 \Omega$ to $1 M \Omega 1 / 10 \mathrm{doz}$. 14/8 100 .
W $10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega, 1 / 8$ doz-, $13 / 6100$
W 5% 4. $\mathrm{F} \Omega$ to 10 Ma . $2 / 2 \mathrm{doz}, 17 /-100$.
IW $10 \% 7 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega, 3 / 3$, $102 ., 25 / 10100$.
$1 / 6$ less per 100 if ordered in complete 100 s of one $1 / 6$ less per 100 if ordered in cothp
ohmic value.
Please stale resistance ealues required.
Carbon Skeleton presets: $100 \Omega, 250$
Carbon Skeleton pre-sets: $100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{k} \Omega$ $2 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \Omega \mathrm{k}, 100 \mathrm{k} \Omega$ $20 \mathrm{k} \Omega$, $250 \mathrm{k} \Omega$, $500 \mathrm{k} \Omega$, $1 \mathrm{~m} \Omega$, mounting
\$mall high quality, 1/- each; Sub-min, type 11d each

PEAK SOUNID PRODUCTS

Peak Sound PA.12-5 Power Ampliffer has a maximun diatortion level of only 0.1% at 11.5 W , into 15Ω
 ink and mounting board. Power supply Ps. 45 Kit 84.10.0.

Pre-ann kit $27 /$-plus controle mono: $6 / 3$; stereo $20 /$ Active tone filter kit 19/- plus controls: thono 5/Active tone nite kit $19 /-$ pollowable on basic klte only

ELECTIROLYTICS

SUB-MIN
C426 range ($\mu \mathrm{F} / \mathrm{F}): \quad 0.64 / 64,1 / 40,16 / 25,2 \cdot 5 / 1 \mathrm{~h}$, $2 \cdot 5 / 64,4 / 10,4 / 40,5 / 64,6 \cdot 4 / 6 \cdot 4,6 \cdot 4 / 25,8 / 4,10 / 2 \cdot 5,10 / 16$ $10 / 64,12 \cdot 5 / 25,16 / 10,16 / 40,20 / 16.20 / 64,20 / 6 \cdot 4$, $\begin{array}{ll}25 / 23,32 / 4, & 32 / 10,32 / 40,32 / 64,40 / 2 \cdot 5,40 / 16,150 / 6 \cdot 4 \\ 50 / 25,50 / 40,64 / 4,64 / 10,80 / 2 \cdot 5 & 80 / 16,80 / 25,100 / 6 \cdot 4\end{array}$ $125 / 4,50 / 40,64 / 4,64 / 10,80 / 2 \cdot 5 \quad 80 / 16 \cdot 80 / 25,100 / 6 \cdot 4$ $320 / 2 \cdot 5,320 / 6 \cdot 4,400 / 4,500 / 2 \cdot 5$. **Price reduction $1 / 3$ each.
MINIATURE ($\mu \mathrm{F} / \mathrm{V}$): $50 / 10$ gd each $25 / 25$ $5 / 10,10 / 10, \quad 25 / 10,50 / 10, \quad 9 \mathrm{E}$ each, $25 / 25$ $50 / 25,100 / 10,200 /$
$100 / 50,25 / 25,2 /-$
LARGE ELECTROLYTICS ($\mu \mathrm{F} / \mathrm{S}$)
1000/50 7/C2000/50 9/3; $5000 / 50$ 17/8; $5000 / 2510 / 3$ $2500 / 6415 /$-. Vertical clips for above types 9d each

I- CAPACITORS

Ceramic disc $20 \% 500 \mathrm{~V}: 1,000 \mathrm{pF}, 2,000 \mathrm{pF}, 5.000 \mathrm{pl}$

 ferred values to $820 p \mathrm{~F}$. ALL © © 5 d each. Polyester $250 \mathrm{~V} 20 \%$: $0.01,0.015,0.022,0.033,0.047,0.068 \mu \mathrm{~F} 7 \mathrm{~d}$ each. $0.1 \mu \mathrm{~F}$ 8d. $250 \mathrm{~V} 10 \%: 0.15,0.229 \mathrm{~d} ; \quad 0.33$ $\begin{array}{ccc}\text { each. } 0 \cdot 1 \mu \mathrm{~F} & 8 \mathrm{~d} . \\ 1 / 2, & 250 \mathrm{~V} & 10 \% \\ 1 / 6 & 1 \mu \mathrm{~F} & 2 / 3 ; \\ 2.2 \mu \mathrm{~F} & 4 /-\end{array}$

POTENTIOMETERS

ALI. GOOIDS BRAND NEW-NO SUIRPLUS

1089 CATALOGUE now ready, full of most up to date information essential to every gerious user
send $1 / 6$ for your copy
COMPONENT DISCOUNTS
10% on
POSTAGE AND PACKING on orders up to \&1, add $1 / \mathrm{m}$: over, post free in U.K.
OVERSEAS ORDERS WELCOMED Carriage charged at cost

D.I.Y.-AII materials and components for construction of high fidelity loudspeaker systems (empty enclosures, BAF wadding, Tygan, Vynair fabric, cross-overs, etc.). Many other nudio accessories ard speaker kits. S.A.E. for ists. P.F. dA.R. HELME, Dept. PE, Summerbridge, Harrogate, Yorks.

COMPONENTS AT GIVE-AWAY PRICES. Digital Counters, Rev Counters, Thyristors, Transistors, Valves, Tool Bags, Track Heads, Recording Tape, Aerials, Intercoms, MicroFhones, Micro switches, Etc. ©d. stamp only, to DIAMOXD MAIL ORDER PRODUCTS, Prospect House, Canal Head, Pocklington, York, NO4 NJW.

TRANSISTOR BARGAIN!

High-gain low-noise npn planars BCI68B (hfe $=250-500 @ \mathrm{Ic}=2 \mathrm{~mA})$ $\mathrm{BCl} 68 \mathrm{C}(\mathrm{hfe}=450-500 @ \mathrm{Ic}=2 \mathrm{~mA})$ BCI6BB is a smaller sized (TO 92) EXACT ELECTRICAL EQUIVALENT of BC148, and a likely direct substitute for BC108, BCI7I, BC183L,2N2925, 2N2926 green, etc. These transistors have high audiogain at collector currents down to a few μA. At normal currents they can be used from d.c. to v.h.f.
MAXIMUM RATINGS (both types)
VCES 30V: VCEO 20V; VEBO $5 V$.
PC 220 mW
IC 100 mA d.c. 200 mA peak. Audio
NF 2dB type., 10dB max.
Bulk purchase enables us to offer these superb modern silicon transistors at LESS THAN WHOLESALEPRICES. All mint, top grade. with makers' numbers and trade marks. Why buy unknown quantities when
you can get the genuine articles at these you can set the zenuine articies at these
prices? EITHER TYPE OR MIXED:
5 for $10 /=; 50$ for $90 / \mathrm{F}$; U.K. POST PAID AMATRONIX LTD (PE)
396 Selsdon Road, South Croydon, Surrey, CR2 ODE

BRAND NEW ELECTROLYTIC8, 15 Volt, Long Wires, $2,6,8,10,15,20,30.40,50,100$ Mids. 7/6 dozen, postage $1 /$-. THE C.R. SUPPLY CO., 127 Chesterfield Fid., Sheffield, S8 0RN.

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT
2 in \times iin packed with semiconductors and top quality resistors, capacitors, diodes, etc.
Our price. 10 boards $10 /=$ P. \& P. 2/-. With a guaranted minimum of 35 iransistors.
SPECIAL BARGAIN PACK. 25 boards for GI. P. \& P. 3/6. With a guaranteed minimum of 85 transistors.
100 boards $65 /-$ P. \& P. 6/6. With a guaranteed Pinimum of 350 transistors. each board + components. 2 boards ($4 \times O$ O28) NPN GERMANIUM TOS I WATT POWER TRANSISTORS on small heat sink, on $2 \mathrm{in} x$ tin panel. 5 for $10 /-$, P. \& P. $2 /-$
POWER TRANSISTORS sim. to 2 NI74 ex eqpt., 4 for $10 / \%$, P. \& P. 2/-.
POWER TRANSISTORS sim. to 2NI74 ON Finned Heat Sink (IOD) 4 for KI, P. \& P. 3/-.
LONG ARM TOGGLE SWITCHES ex eqpt
SPST $13 / 6$ doz., DPDT $22 / 6$ doz. DPST $17 /=$ doz SPST $13 / 6$ doz., DPDT $22 / 6$ doz., DPST $17 /=$ doz.
P. \& P. all types $2 /$. doz.
ORGAN BUILDERS' SPECIAL 500 TOI8 TRANSISTORS On panels. K4, P. \& P. 6/-.
OVERLOAD CUTOUTS. Panel mounting in the following values. $1 / 5 / \%$ each. $1,1 \frac{1}{2}, 2,3,4,5,7$, MINIATURE GLASS NEONS, $12 / 6$ doz. P. \& P. I/6. N. \& P. 2/-.

LARGE CAPACITY ELECTR
4/in, 2 in diam. Screw terminals.
All at 61 - each $+1 / 6$ each P. $\$$ P.
Al at $6 /$ each $+1 / 6$ each P. \& P.
$4,000 \mathrm{mF}$
72 V d.c. wkg
$4,000 \mathrm{mF}$
$10,000 \mathrm{mF}$

> KEYTRONICS, 52 Earls Court Road London, W. 8.

> Mail order only

R \& R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152

BFBO	31-	PCC84	3/-	PY82	1/-
EBF89	3/6	PCF80	$3 /-$	U191	4/6
ECC82	3/-	PCF82	3/6	U301	4/6
ECL80	3/-	PCL82	4/-	6F23	5/-
EF80	1/6	PCL83	4/-	IOP14	$31-$
EFBS	31-	PCL84	5/-	20P5	3/-
EF183	3/6	PL36	5/-	30F5	2/6
EFIC4	3/6	PL8I	4/=	30 LI 5	5/-
EY86	$4 /-$	PLa3	4/-	30 Pl 12	$4 / 6$
EL4I	5/-	PY 33	5/-	30 Cl 5	5/-
EZ40	4/6	PY8I	3/6	30 PLI 3	5/6
EBC41	4/6	PY800	3/6	30 PL 14	5/6
POST, ONE VALVE 9d, TWO TO SIX6d. OVER SIX POST PAID.					

8ERVICE 8HEET8 (1925-69) for televisions, radios, transistors, tape recorders, record players, etc., by return post, with free faultplayers, etc., by return fost, with iree falltmodels availahle. Please semd S.A.E. with all models availahle. Please selad S.A.E. with all
orders/enquiries. HAMLLTON KADIO, 54 orders/enquiries. HAMLTO
Jondon Road, Bexhill, Sussex.

C. \& A. SUPPLIERS
 SERVICE SHEETS

T.V., RADIO, TRANSISTORS, TAPES, ETC.

Only 5/- each, plus S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.) 71 BEAUFORT PARK LONDON, N.W. 11 MAIL ORDER ONLY

SERVICE SHEET8 (continued)

RADIO TELEVI8ION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Id., London, W.0. SHE 8441.

8ERVIGE 8 HEET8, Radio, TV, 5,000 models. List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

MINIATURE RESISTORS
LOW NOISE - CARBON FILM \pm watt 5% E24 Series $3 / 8$ per doz. $\frac{1}{2}$ watt 5% E24 Series $3 / 9$ per doz. $\frac{1}{2}$ watt 10% El2 Series $3 / 3$ per doz. Minimum order 1 doz - mixed values. ree postage and packing but C.W.O ABRAHAM and PARTNERS
71 Kenley Road, London, S.W. 19

SEND S.A.E. NEW STOCK LIST
 WENTWORTH RADIO
 104 SALISBURY ROAD, HIGH BARNET

AFII4	4/3	OC44	2/6	BC107	4/-	2N3053	6/-
AFIIS	3/9	$0 \mathrm{C45}$	1/8	BCl08	3/9	2N2218	8/-
AFII6	2/3	OC71	2/3	BC109	4/-	2N2219	$8 / 9$
AFII7	2/3	OC72	2/6	BCY43	7/-	2N2905	1616
BFY50	6/-	OC81	2/2	BCY70	5/-	NKT20329	$12 / 6$
BFY51	$4 / 9$	OC8ID	2/3	BCY7	10/6	NKT241	5/-
BFY52	$61-$	OCI70	2/9	2NI304	6/-	NKT242	3/-
BFY53	$4 / 9$	OCI71	2/3	2N1305	5/9	NKT243	13/6
8 Bl 127	$4 / 6$	OC201	2/3	2NI306	6/9	NKT403	16/-
2G302	6/-	NKT121	8/6	2N1307	6/9	NKT404	14/-
2G303	4/7	NKT 122	5/11	2N1308	8/6	NKT773	4/9
2G304	7/6	NKTI23	4/11	2N1309	$8 / 6$	NKT781	$5 / 9$
2G308	7/3	NKT 124	8/9	2 N 1613	6/3	NKT781	$5 / 9$ $6 / 6$
2G371	$3 / 6$	NKT211	5/-	2 N 1711	$7 / 6$	NKT10339	6/6
2N404	5/-	NKT212	$5{ }^{\text {j- }}$	2N2368	4/6	NKT10419	5/-
2N696	5/-	NKT213	6/-	2N2926	3/9	NKT 12329	10/6
2N697	5/-	NKT713	5/3	Cash wit		P. \& P. 1/-	

Hi-Fi Audio Transistor Amplifiers Mains Powered 240V a.c.

ACS4 requires $250 \mathrm{mV} @ 1 \mathrm{k} \Omega$ for $6 \frac{1}{2} \mathrm{~V}$ r.m.s. into 8 or 15Ω load. 55.10.0.

ACS5 requires 250 mV @ $2 \mathrm{k} \Omega$ for 12 V r.m.s. into 8 or 15Ω load. \&10.0.0.
ACS2c Pre-Amplifier complete with treble, bass and volume controls to drive either ACS 4 or $\mathrm{ACS5} ; 250 \mathrm{mV} 800 \mathrm{k} \Omega$ input (crystal p.u., radio, tape, etc.). E4.10.0.
ACS2 ${ }^{m}$ Pre-Amplifier with selector switch for magnetic pick-up (4 mV $47 \mathrm{k} \Omega$ R.I.A.A.), $50 \mathrm{mV} 50 \mathrm{k} \Omega, 100 \mathrm{mV} 100 \mathrm{k} \Omega$ to work into $\mathrm{ACS2}$. 4.10.0.

Good range of modules and components for high quality audio work. S.A.E. for lists.

AUDIO COMPONENTS \& SERVICES Sound Studios, Bell Hill, Off Crown Hill Croydon, Surrey. 6883706

PARKERS SHEET METAL FOLDING MACHINES HEAVY VICE MODELS
With Bevellod Former Bart

No. 1. Capacity 18 gauge mild steel $\times \mathbf{3 6 i n}$. wide $. . . \quad . . . \quad .$. f14:0.0 No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide $. . . \quad .$. No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$. Wide' \ldots. Also new bench models. Capacities $48 \mathrm{in} . \times 18$ gauge $£ 40.36 \mathrm{in} . \times 18$ gage G710.0. 24in. $\times 16$ gauge 76.10.0. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in model, $5 / 5$ per ft . Other models $3 / 6$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One rear's zuarantee. Money refunded if not sotisfied. Send for details.
A. B. PARXER, Fodimg Mechine Works, Upper George SI., Heckmondwike, Yorks. Heckmond-ike 3997

PLEASE MENTION

PRACTICAL ELECTRONICS
WHEN REPLYING TO ADVERTISEMENTS

BATTERY ELIMINATORS

 The ideal way of runnint your TRANSISTOR The ideal weG of runnimi your TRANSISTOARADIO, RECGRD PLAYER. TAPE RECORDER. RADIO, RECORD PLAYER. TAPE RECORDER.
 4 V (single output) $39 / 6$ each. P. © P. $2 / 9$, w + N: $6 v+6 v i$ or $4 i v+4 / v$ (ewo separate eutpus required. All the above units are cempletely isolated from mains by double wound transformer ensuring 100° ", safety.
R.C.S PRODUCTS (AADIO) LTD.
(Depe, P.E.). 3i Ollver Read. Lenden, E.It

EAGLE MULTIMETERS

EP30K, 120/-, p.p. 4/6; EP10KN, 108/*, p.p. 4/6; EP20KN, 90/\%, p.p. $3 /-$; EP30KN. 150/;, p.p. 4/6; EPSOLN ' 210% p.p. 4/6, detalls on request.

High Stability Resistora 1% 1 W, 2/=. Full standard range plus many multimeter values. 8% iW, 4 d . Full stock list on request.

0-50 microamp level meters, $15 /-$, post $1 /-$

Circuils

Noughta and Crosses Machine 2/8d
Binary Adder/Subtractor $2 /$ /dd.
Analogue Computer (Football Pool: Multiplying Dividing; Equation solvers) 3/6
Full set of above circuits $5 /-$ post free
Postage extra, cash with order
PLANET INSTRUMENT CO. 25(E) DOMINION AVENUE, LEEDS 7

PRRAC'TICAL
 Butiding iderurating
 EXTRA!
 32-page Colour Supplement KITCHENS and BATHROOMS

Packed with step-by-step pictures and detailed instructions, this superb PRACTICAL BUILDING \& DECORATING supplement contains all you need to know to build yourself a luxury, bathroom and kit out a fully labour-saving kitchen.
Plus Specials on:
Home Safety-Building an Open-Plan Staircase -Beating Damp and Condensation - Power Tools

GO FOR THE MARCH ISSUE TODAY - 2/6

Nowhere in the world can you buy semiconductors cheaper than from us.
We are the largest purchasers of We are the largest purchasers of
manufacturers'surplus stocks, and can manuiacturers surplusstocks, and can petitive prices. S.A.E. for full lists.

Post and Packing costs are continually rising Please add $1 /$ - cowards same. CASH WITH ORDER PLEASE
OVERSEAS GUOTATIONS BY RETURN SHIPMENTS TO ANYWHERE IN THE WORLD

HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times \mathrm{lin}$). 4 digit. $12 / 24 / 48 \mathrm{~V}^{\circ}$ (state
COPPER LAMINATE BOARD ($8: \times 5!<\frac{1}{3}$ in). $2 / 6$ each. 5 for $10 /-$
RE-SETTABLE BIGH SPEED COUNTER ($3 \times 1 \% \mathrm{in}$). 3 digit. 12/24/48V (state which) 32/6 each.

BULK COMPONENT OFFERS

100 Capacitors 50 pF to $0.5 \mu \mathrm{~F}$
250 Carbon Resistors \& \& (Tradsistor types)
250 Carbon Resistors 1 \& 1 W,
100 Ceramic Capacitors 2-1,090pF
25 Vitreous W/W Resistors (5%).
12 Precision Resistors (0.1% several stavdard values included)
25 Close Tolerance Caps. (2%).
12 Silicon Diodes 500 p.i.v. 750 m a
4 Silicon Rects. 400 p.i.v. 3 amp .
8 Silicon Rects. 100 p.i.v. 3 amp .
50 Silicon Trans. (2N706/708, BSY2849. BCY41/42 tspes.) (immarked, Entested. ANY ITEM 12/6. ANY 5 ITEMS 82.10 .0 .
S.C.Rs. (Thyristors) CRS1/20 5/6; CRS1/40 7/6; CRB3/10 7/6; CRS3/30 8/B;
S.C.Rs. (Thyristors) CRS1/20 5/6
CRS3/40
10/4; CRS3/50 12/6 each.
' 3000 ' TYPE RELAYS (ex. new' equip.) 10 for $25 /$ - (our choice) P. \& P. 5
 COMPOTER LOGIC BOARDS containing: $14 \mathrm{BCZ} 11,2$ trimpote, diodes, ete., $20 /-$ each.
LIGHT DIMMER/SPEED CONTROL MODULES : 200 watt, $35 /-; 500$ watt, $45 /-$; 1,000 watt, 60/-
RECORD LEVEL METERS (By Smiths). $1 \frac{1}{2} \frac{1}{2}$ in, 15/- each. P. \& P. 2/6.
MTNIATURE RELAYS ($1 \mathrm{oz}, 3 \times 2 \mathrm{in}$), $24 \mathrm{~V} 1 \mathrm{c} / \mathrm{o}, 7 / 6$ each. 12V. 10/- each P. C. CONKECTORS (13 way in-line), $4 / 6$ pair

LARGE CAPACITY ELECTROLYTICS: $100+400 \mu \mathrm{~F}, 275 \mathrm{~V} ; 1,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 2,500 \mu \mathrm{~F}$, $70 \mathrm{~V} ; 3,200 \mu \mathrm{~F}, 16 \mathrm{~V}: 5,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 4 /-$ each. $4,000 \mu \mathrm{~F}, 90 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 25 \mathrm{~V}, 7 / 6$ each. $5,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 6,300 \mu \mathrm{~F}, 63 \mathrm{~V} ; 10,000 \mu \mathrm{~F}, 30 \mathrm{~V} ; 16,000 \mu \mathrm{~F}, 15 \mathrm{~V} ; 25,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 /$ ach
SPEAKER BARGAIMS (E.M.I. 13 Sin.) With two Tweeters and $\times /$ over, 15 ohm. 65/-; with Dual Cone, 15 ohm, $52 / 6$; Sidgle Cone, 3 or $15 \mathrm{ohm}, 45 /-$. P. \& P. $3 /$ FANE, $12 \mathrm{in}, 20$ waH (Dual Cone), $95 /-$ P. \& P. $5 /-$
TWEETER (E.M.I. 3 in), $15 \mathrm{ohm}, 12 / 6$.
CAR RADIO ($3 / 5$ ohm), $7<4 \mathrm{in}, 15 /$; $8 \times$ sin. $17 / 6$.
L.T. TRANSFORMERS. Prim 240V. SEC. $10 / 20 / 25 \mathrm{~V}$, and 3.5 amp 20/-. P. \& P. $\mathrm{B} /-$

PATTRICK \& KINNIE
 81 PARK LANE, HORNCHURCH, ESSEX ROMford 44473

I 2in. DE-LUXE MKII $£ 9$
The exceptional quality and performance of the "De-luxe MKII"' brings truly breathtakingly rich sound from a single loud speaker, recreating the musical spect rum virtually flat recreating the musical spectrum virtualys
from 25 to $16,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The unit consists from 25 to 16,00 c.p.s. The unit consists of the latest double cone, woofer and
tweeter cone together with a special Baker tweeter Cone together with a special Baker
"FERROBA" magnet assembly having a flux density of $14,000 \mathrm{gauss}$ and a total flux of 150,000 Maxwells. Bass resonance 32-38 c.p.s. Rated 15 watts. Voice coils available 3 or 8 or 15 ohms. Suitable for any High Fidelity System. Design capability concept
 giving fantastically delightful sound at this

Bensham Manor Road Passage, Thornton Heath, Surrey. O1-684 1665

VALUABLE NEW HANDBOOK

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or tratining.

On'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Adranced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.Frequency Modlulation Transistors.
ELECTRICAL ENG;
Advanced Electrical Eng.General Electrical Eng. -Installations-Draughtstinanship - Illuminating Eng. Refrigeration - Elem. Elec Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civid Eng.Gencral Civid Eng. - Minnicipal Ling. - Siructural Eng. -Sanitary Eng.-Road Eng. - Hydraulics - Mining -- Vater Supply-Perrol Tech.

RADIO \& T.V. LNG Advanced Radio - Gonerd Radio--Radio \& TV Servicing - TV Lngineering - Tclecommmatications - Solnd Recording - Automation Practical Rudio - Radio Amatcurs Ewamination. MECIANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Mam!enance Eng. - Diesel Lng. Press Tool Design - Sheet Metal Work -. Welding Ling. P'alfern Making Inspection - Draughtsmanship? - Metalhugy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.General Anto. Eng. - Anto. Maimtomatnes - Repair Aluo. Diescl Alaintcnames duto. Electrical EquipmentGorrage Mamageme'nt. ing job. easily.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E. A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS. GEN. CERT. OF EDUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316a aldermaston court, aldermaston. berkshire

NAME

THIS BOOK TELLS YOU

* HOW to get a better paid, more interest-
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theorelic Courses for beginners in Electronics, Radio, T.V., Etc., A.M.IE.R.E. City \& Guilds Radio Amateurs' Exam. R.I.E.B. Cellificate P.M.G. Certilicale Practical Electronics Electronics Engineering Praclical Radio
Radio \& Television Serviting Allomation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

TO B.I.E.T., 316A ALDERMASTON COURT,

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE
THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD
Published about the 15 th of the month by GEORGE NEWNES LIMITED. Tower House, Southampton Street. London, W.C.2, at the recommended maximum price shown on the cover. Printed in England by THE CHAPEL RIVER PRESS. Andover. Hants. Sole Agents-Australia and New Zealand: GORDON \& GOTCH (A/sia) Lid; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World £2 2s. Od.

BNELATIDS EITNTIG GO
 SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT

Mono or Stereo Audio. Equipment developed from Dinsdale Mk.II-each unit or system will compare favourably with other professional equipment selling at much higher prires.
COMPLETE SYSTEMS FROM
£15.5.0
THE FINEST VALUE IN HIGH FIDELITYCHOOSE A SYSTEM TO SUIT YOUR needs and save pounds

Acclaimed by everyone

MAYFAIR ELECTRONIC ORGAN
A complately now development in portable electronic
musical insirumenis and a new field for the home constructor The MAYFAla produces a multiture of the mosi pleasing
 antire keyboard. Supplied as a hit of parts which includes 165 Iransistars. printed cricuit panels special fully sprung and depth of touch adjusted keyboard. atrractive vynall covered cabinel with cariy handle A complete detaled and illustrated construction manual is provided with cicuits and tull parts
list all items may be purchased separasely All parts suppited are fully guaranteed Full after sales

Once buit the 'MAVFAlR' will then provide
years of enjoyable entertainment. ONLY 99 Gns
Call in. See it and play it vourself

A/l units available separately
SEND FOR FREE BROCHURE (No. 21) TODAY! demonstrations daily at '303' edg ware road

1 INTEGRATED SOLID STATE TRANSISTOR POWER AMPLIFIERS ma66 12 Watts stereo

We are pleased to atter two new designs with the choice of elther mono or stereo systems these BRITISH DESIGNED UNITS tavour the User in so many ways being surlabie tor use with all types
of PICK-UPS TUNERS DECKS and MICROPHONES-with fantastic power and qual with greater adaptability with freedom for batiery or mans operation Output is from 3.16 OHMS

ORGAN COMPONENTS Deferred terms avalable We carry a comprehensive stock of organ components tot TRANSISTOR ANO VALVE FREE PHASE desgns fol BROCHUR

Deferred terms available
COMPLETE K:T COMPLETE K T
Deposi! $£ 2919.0$ 12 monthly payments of $\mathbf{6} 7$. TOTAL E113.190

BUILT AND TESTED Deposil $£ 368.0$ \& 12 monthily payments £9. Total £144.8.0 RHYTHM UNIT
E59.10.0 pp.

	INTEGRATED SOLID STATE TRANSISTOR POWER AMPLIFIERS MA66 12 WATTS STEREO Complete with full Bass Treble. Volume and Selector Controls We de pleased to atter two new designs with the choice of elther mono or stereo systemis these BRITISH DESIGNED UNITS tavour the user in'so many ways being surlable tor use with all types of PICK-UPS TUNERS DECKS and MICROPHONES - with fantasicic power and quality with far greater adaptability with freedom for batiery or mains operation Output is from 3.16 OHMS Whether you requite a home or portable HI-FI installation electionic guilar. PA System intercomm MAD MONO		
DO IT YOURSELF MW/LW PORTABLE New printed circuit design with bands? on both mw/lw bands 7 transistors plus diode push-puli circurt. Fitted 5 rnch speaker. large ferrite aerial and Mullatd transistors Easy to buld with ternific results. All local and Continental stations TOTAL COST £6.19.6 PP.4/6 TO BUILD Send for Brochure 1		QUALITY CAR RADIDS A Drecision enginetred cat rddie thats nertect company for immadiat station selecilon and chovce of Mytium of Long ohund even al high rmoloming speeds Includes iull accessories and instructions MANUAL as above EB.19.6, but with single MW/W \qquad	MULLARD 1 WATT AMPLIFIER PORTABLE TRANSISTOA UNIT wilt volume canlro Teleptione or Record Player Amplilier Optional Remine covered wood cabinel $12 \times 9 \times 4125$ OMA In speakef Uses. PPS turtery 45/- ${ }^{56}$
BUILD A QUALITY TAPE RECORDER To get the best Dul of your MAGNAVOX OECK you need a MAATIN RECORDAKIT This comprises a special high quality f walve ampliter and pre amplifier which comes io rhing needed down to the last screw FOR MAKING A SUPERB TAPE RECOROER wheh when buall, will com pare favourably w th instuments costing rwice às much ye You neen no er befience of technical shall 10 bring ihs aboul THE INSTAUCTIONS MANUAL MAKES BUILDUNG EASY ANO SUCCESS ASSURED	VHF FM SUPERHET TUNER MKII MANUFACTURERS DISTRIBUTORS We publah o OUANTITY SEEMI CONOCTOA EROM SToCk in madum to targe quantilias al MEEN We purchase medium to latge quanitities of and Distributors requirements	TRANSISTORS SEMICONDUCTORS COMPLETELY NEW 1969 LIST OF 1000 types. Send for your FREE COPY TODAY (list 36) S.C.R.'s from 5/- Field Effect Transistors from 9/6 Power Transistors from 5/ Diodes and Rectifiers from 1/6	GARRARD RECDRD DECKS Complete range of accessories available
¢17 7 ¢			
for all leading makes AMPLIFIERS TUNERS UECKS SPEAKERS MICROPHONES TEST EQUIPMENT SYSTEMS ALL WITH DISCOUNTS Ask for Hi-Fi-Stock List Leaflet 16 IT WILL PAY YOU TO PAY US		COMPLETELY NEW The most COMPREHENSIVE CONCISE-CLEAR COMPONE CATALOGUE Complete with 10 - worth discouit FREE WITH EVERY COPY * 32 pages of transistors and sema\| devices, valves and cirstals. * 210 pages of components and equip * 70 pages of microphones. decks equipment. 6,500 ITEMS 320 BIG PAGES	EDITION (1969) di today $6^{\text {Prasin }}$

HiAC AMIIII HR
303 Edgware Road, London, W.2. Mail Order Dept all types of Components. Organ Dept. (01) 723-100: /s 309 Edgware Road, London, W.2. High Fidelity Sales, P.A and Test Equipment, Record Decks(01) 728-6963

[^0]: Size--3in $\times 1 \frac{3}{4} i n \times 1 \frac{1}{4} \mathrm{in}$. Class B Ultralinear Output: Frequency response from 15 to $50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$: Output suitable for loudspeakers irom 3 to 15 ohms impedance. Two 3 ohm speakers may be used in paralle!: Input 2 mV into 2 K ohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) Power requirements $6-20 \mathrm{~V}$ d.c. from battery or PZ. 4 Mains Supply Unit. Ready built. tested and guaranteed.

[^1]:

[^2]: ## ONE GREAT VOLUME covers:

 Current, Voltage and Resistance, Coils, Capacitors and Tuning, Valves, Tubes and Transistors, Radio Components, Receiver Design Principles, Transistor-Radio Circuits, Valve-Radio Circuits, ValveTelevision Circuits, Transistor-Television Circuits, Colour-Television Systems, Audio Amplifier Circuits, Audio Equipment and Gramophones, Tape Recorders, Radio and Television Aerials, Tools and Bench Work, Test Instruments and Their Use, Fault Tracing and Circuit Testing, Alignment of Tuned Circuits, Television Fault Tracing, Interference Suppression, Domestic Power Supply Circuits, Electrical Wiring Work, Fluorescent Lighting, Thermostats and Time Switches, Motor Repair and Rewinding, Small Appliances, Space and Water Heaters, Electric Cookers, Washing, Drying and Ironing Machines, Electric Refrigerators, Suction Cleaners and Floor Polishers.

[^3]: "Sprayit" aerosol from David Hewson

[^4]:

[^5]: ENGINEER8. A technical certificate or qualiflcation will bring you security and much better pay. Eilem. and adv. private postal courses for C.Eng. A.M.I.E.R.F., A.M.S.E (Mech (E Elec.), ('ity \& Guilds, A.M.I.M.I. A.I.O.B. and (\mathbf{i}. C. E. exams. Diploma courses in all branches of lingineering-Mech,, Elec., Auto, Flectronics, Radio, Computers, Draughts, Building, etc. For full details write for FRFE 132-page guide. BRITISH INSTITLTE OF ENGINEERING TECH NOIGOG (Dept. 125 K), Aldermaston Court, Aldermaston, Berks.

