PRACTICAL
 = =-CTRANICE

JANUARY 1969
THREE SHILLINES

ALSO en inis éssue...

ADCOLA
 Soldering Instruments

IN THE JET AGE......

EFFICIENCY AND RELIABILITY, AND CONSISTANT, SUSTAINED PERFORMANCE ARE BASIC REQUIREMENTS.

ADCOLA SOLDERING INSTRUMENTS MEET THESE NEEDS
AND GO ON MEETING THEM, DAY AFTER DAY, YEAR AFTER YEAR, WITH UNFAILING REGULARITY.

LEADING MANUFACTURERS THROUGHOUT THE WORLD LIKE THIS,
THEY ALSO LIKE THE QUICK SERVICE WHEN REPLACEMENTS DO BECOME NECESSARY. SO THEY SPECIFY ADCOLA.

WHY DON'T YOU!

AVAILABLE FROM SHOPS EVERYWHERE OR DIRECT FROM

SALES \& SERVICE DIVISION, ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD,
LONDON, S.W.4.
TELEPHONE 01-6220291

Tanstaア's IRacilo

SPECIAL INTEREST ITEMS!

MIDLAND Model 10-502

VHF AIRCRAFT BAND

 CONVERTERAn entirely new item for the radio enthusiast bringing instant reception of the ground-to-air, air-to-ground waveband. For use with any standard AM or FM radio covering 535 to $1,605 \mathrm{kc} / \mathrm{s}, 98$ to 108Mc/s respectively-with no electrical conversion or con-
nection required. The Model $10-502$ (self powered by nne 9 V nection required. The Motel $10-502$ (seli powered by nne 9 , (Pr3 type) batters) is merely placed close to the receiving set
and then tuned over 110 to $135 \mathrm{Mc} / \mathrm{s}$ which covers the whole aircraft communications band. Volume and reception effective. ness is adjugted by moving both sets to the moat favonrable position and basancing the volume controls of each accorlingly.
 The Model 10-502 has a smartly designed black plast ic cabinet with bushed met:ll Iront panel and 18 in chrome telescopic antenma, ajze only $4 \times 95 \times 2$ in (inc. knohs?. Complete with battery and full instructions.
Lasky's Price 79/6 Post 3/f

SPECIAL TRANSCRIPTION MOTOR

 OFFER - FAMOUS Connoisseur Classic
2 speed transeription deck. One synchronous motor for each speed- 45 and 33 r.p.m. List Price 215.15.7. Lasky's Price E9.19.6. P. \& P. 5/-

ALSO AVAILABLE Connoisseun nCU. 1 pickup arm and cartridge. List Price e8.13.4. Lasky's Price ©5.19.6. P. \& P. 3/6
PACKAGE PRICE IF BOUGHT TOGETHER $£ 12,19,6$, P. \& P. $5 /-$

GARRARD RECORD PLAYERS

AUTOCHANGERS

1025
2025
SL95
3 S95
AT60 Mk. II stero cart.
AT60 Mk. II
A70
AP75
A 50

GARRARD BASES
WB1 E8/5/8 WB2 E4/13/8 WB4 E5/6/1I

$\begin{array}{llr}\text { SINGLE PLAYERS } \\ \text { GARRARD SP25Mk.1I } \ldots . & \\ \text { GARRARD SRP22 } \ldots \ldots .119 / 6 \\ \text { G } 2 / 10 / 6\end{array}$
87/18/6
28/19/6
$845 / 0 / 0$
28/18/6
$£ 13 / 19 / 6$
$\mathrm{f13/19/6}$
£13/19/6
$\mathbf{~} 20 / 10 / 0$
220/10/0
£7/7/0

HITACHI CAR RADIO SHORT WAVE

ADAPTOR

Model WM20
New from Hitachi-worlil tamoue for high quality transistor radiosn push button short tiave adaptor enabling you to receive all foreign broalcasta in the $3-22 \mathrm{Me} / \mathrm{s}$ uraveband.

The WM- 20 andaptor is suitable for use with :ury make or motel of AM car rat in (coverimg the unual $585-1,605 \mathrm{kc} / \mathrm{s}$) iu any make or molel of car (f or 12 V , positive or negative groumd) $31,41,49,60$ and 90 plus off button. Having selected the required hand by puehing the appropriate button-fine station tuning is pffected by use of the parent rallin's tuning system - Iletaila with the adaptor show corresponding centres for each short wave band on the radio dial. Double superhet IFM circuit and the use of a Zenor dionle and compensating ennclenser, provides great stability. Switched adjustment for 6 or 12 V and pos. or neg. ground: external aerial trimmer proviled. Connection to the parent radio is via the aerial jack, power is taken lirect from the ear AUX. supply with sep. line firse. All necersary mounting brackets, leade and jacks are provided with instruction manual. The WM-20

List Price 14 Bns. Lasky's Price 69.19.6. P. \& P. 5/-

GET YOUR LASKY'S CATALOGUE

FRE E. Third great issue now in preparation-more pages - 1,000 's more items. post only

Branches

207 EDGWARE ROAD, LONDON. W. 2 Tel.: 01-723 3271 Open all day Saturday. early closing 1 p.m. Thursday
33 TOTIENHAM CT. RD., LONDON, W. 1 Tel.: 01-636 2605 Open all day. 9 a.m. -6 p.m. Monday to Saturday
152/3 FLEET STREET, LONDON, E.C. 4 Tel.: FLEet St. 2833
Open all day Thursday, early closing 1 p.m. Saturday

COMMUNICATION RECEIVERS

TRIO
MODEL 9R-59DE Briet spec.: 4 band recelver covering $550 \mathrm{kc} / \mathrm{a}$ electrical band spread en 10, 15, 20, 40 and 80 metres. 8 valve plus 7 liode circuit. $4 / 8$ ohn' output and phone jack. Special Ieatures: sSB. CW ANL - Variable

 thark grey case, size $7 \div 10<10$
Lasky's Price £39.15.0 (arriage and Packing 12//
SPECIAL INTEREST ITEM JUST AR TUNER ADAPTOR PACK FOR CASSETTE RECORDERS
An amazingly ingenious AM Tuner that looks like and is exactly the same size as astandard
tape cassette-which converts your tape tape calssetce-
cascette recorder/player instantiy into radint The tuner pack is a conpletely self.
\qquad Realy type 123) giving approx. 150 hrs operation. All you to is take out the tape cassette : 1 in slip in the tuncr. Tunable over $535-1,605 \mathrm{kc} / \mathrm{s}$ (full Merlinm wavebanil). Kititable in
with battery
Lasky's Price 89/6. P. \& P. 2/6.

CONSTRUCTORS BARGAINS

LASKY'S ENCAPSULATED SOLID STATE MODULES
8 completely new special function elrcuit motules. Size of cath module only $2 t \times 1 \pm \times$ in. Feady for
mumediate use- just connect to power source (uatally 9 y hatt.), input add output. Encapsulated morlules are shockproof and almost indestruetible. Comp. with fulling. Post $1 / 6$ each.
E-1311 Phono Pre-amp Module-max. nut

 E-1313 Microphone Pre-amp Module-max. output 4V, RMs, input 50 mL , huput $29 / 6$ E-1314 Power Amplifier Module-max, output 300mw, input imp. Ik Ω, gain $29 / 6$ E-1315 Electronic Organ (tone oacilhator) Module-frequency 200-1,000c/s. 25/= E-1316 Morso Code Practice Oscillator Module-frequencs $400 \mathrm{c} / \mathrm{s}$, output 25/80 mW . For use with morse key and speaker. E-1317 Modulated Wireleas signal Transmitter for use in test hench fault finding 25/= E-1318 Lamp Flasher Module-Gashes two miniature lamps alternately. For uge $25 /=$ with $6 \mathrm{~V} .100 / 200 \mathrm{~mA}$ bulbs and 6 V power supply

CLEAR PLASTIC PANEL METERS Precision made in Japan by TTC. Each meter bored and fully guaranteed with all fixing nuts and washers, Sizes are fully guaranteed with all oring nuts and washers, sizes are Type KR-52 $3 \quad 21$ in (illustrated).
1 mA
 300 V 35/- $500 \mu \mathrm{~A}$......... 45% Type ME-38A 1 in square Type KR-85 313 Bin

Type MK-46A 2 in square 4
$.89 / 8$
$.28 / 8$
$.28 / 8$
$.88 / 6$
$.49 / 8$
$.88 / 6$
$.38 /-$

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL ST., TOWER HAMLETS, LONDON, E.1 Tel.: 01-790 4821

Marksman irons to cover all your soldering needs. 25 W , $40 \mathrm{~W}, 80 \mathrm{~W}, 120 \mathrm{~W}, 175 \mathrm{~W}$. Nickel-plated factory pre-tinned tips in stainless steel shanks.

INSTANT HEAT FOR RAPID SOLDERING
THE tool for intermittent work such as servicing. Working heat in a few seconds. The job is done in less time than it takes a normal iron to heat up. Expert dual-heat and Heavy Duty models.

TEMPERATURE CONTROL FOR RELIABILITY
For sophisticated production line soldering or to replace several conventional irons. No dry joints. Control of temperature without inhibiting performance. Mains or low voltage. standingly successful NEW PICTORIAL techniques. This has proved that the in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS TO PROVE IT

The series will be of The series will be of
exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice." L. W. M.. Birmingham.
"I find that the new pictorial method is so easy to understand and I will undoubtedly enjoy reading the following five volumes.: thank you for a woonderful set of books." C. B., London.
"Please accept my admiration for, producing a long felt want in the field of understanding Electronics." S. B. J.. London.
"The easiest set of manuals it has been my pleasure to study."
J. P. P.. Taunton

A TECH-PRESS PUBLICATION

TO The SELRAY BOOK CO., 60 HAYES HILL, hAYES, BROMLEY, KFNT ER2 7 HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of 20- each BASIC ELECTRONICS 90/-. Cash fortnightly payments of $20-15 /$ followed by 4 fortnightly payments of $20 /$ Price or Down Payment This offer applies to UNITED KINGDOM ONLY. Overseas cach. This ofter apples, to

Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS.

Look What's New from HEATHKIT

Low-cost FM Stereo Receiver, AR-17

Kit K/AR-17
£39.0.0
P.P. 10/6

Cabinet walnut or teak finish $£ \mathbf{\$ 1 0 . 0}$ extra

28 transistor, 7 diode circuit, 14 watts music power, 10 watts r.m.s. from $25-35,000 \mathrm{~Hz} @ \pm 1 \mathrm{~dB}$. Automatic stereo indicator light. Adjustable phase control. Complete front panel controls. Flywheel tuning. Factory assembled and aligned FM front-end. Circuit board assembly. Compact $10 \frac{1}{2}^{\prime \prime}$ deep $\times 3^{\prime \prime}$ high $\times 12^{\prime \prime}$ wide. Use free standing with Heathkit cabinet optional extra.

Quality FM Stereo Receiver, AR-14

Kit K/AR-14
P.P. 13/6

31 transistor, 10 diode circuit can deliver $\pm 1 \mathrm{~dB}, 15$ to $50,000 \mathrm{~Hz}$ at 10 watts per channel (20 watts total) 15 watts per channel 1HF music power (30 watts total). Wide-band FM/FM stereo tuner plus two preamps, two power amplifiers. Compact only $3 \frac{3^{\prime \prime}}{}{ }^{\frac{1}{8}}$ high $\times 15 \frac{1^{\prime \prime}}{}$ wide $\times 12^{\prime \prime}$ deep. Install in a wall, free standing or in Heathkit cabinet optional extra.
Cabinet walnut or teak finish $\boldsymbol{£ 4 . 1 0 . 0 \text { extra }}$ $210-240 \mathrm{~V} 50 \mathrm{~Hz}$ a.c.

Cabinet walnut veneered $£ 3.10 .0$

Low-cost FM Mono Receiver, AR-27

Kit K/AR-27
£22.10.0
P.P. 10/6 Comp FM tuner. Circuit board assembly. Compact bookshelf size. Install in a wall, free standing or in cabinet optional extra. $210-240 \mathrm{~V}$ 50 Hz a.c. operation.

Solid-State Volt-ohm-Milliammeter, IM-25

Kit K/IM-25
£48.10.0
9 a.c. and 9 d.c. ranges 150 mV up to $1,500 \mathrm{~V}$ f.s. 7 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$ and $\times 1 \mathrm{Meg}$. . . . measures from 1 ohm to $1,000 \mathrm{Mohms}$. 11 current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale. 11 Mohm input impedance d.c. 10 Mohm
P.P. 10/6 input impedance a.c. $6^{\prime \prime} 200 \mu A$ meter. Internal battery power or $120 / 240 \mathrm{~V}$ a.c. 50 Hz supply. PCB construction.

Solid-State Volt-ohm Meter, IM-16
Kit K/IM-16
£28.8.0
P.P. 10/6

8 a.c. and 8 d.c. ranges $0-5 \mathrm{~V}$ to $1,500 \mathrm{~V}$ f.s. 7 ohmmeter ranges with 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$ and $\times 1$ Meg.... 11 Mohm input on d.c., 1 Mohm on a.c. Internal battery power or $120 / 240 \mathrm{~V}$ a.c. 50 Hz supply.

Solid-State Low Voltage Power Supply, IP-27

Kit K/IP-27
£46.12.0
P.P. 10/6
0.5 to 50 V d.c. with better than ± 15 Millivolts regulation. Four current ranges 50 mA ; 150 mA , 500 mA , and 1.5 amperes. Adjustable current limiter: 30 to 100% all ranges. Panel meter for output voltage or current.

PLEASE USE COUPON ON RIGHT FOR FREE CATALOGUE

Build Your

STEREO RECORD PLAYER, SRP-1
Two built-in speakers Suitcase portability Kit £28.6.0 P.P. 10/6

CAR RADIO, CR-1
High performance at low cost. 12 v pos. or 12 v neg. operation. 4 watts output
Kit (incl. spkr.) £14.12.0 P.P. $4 / 6$

STEREO TAPE RECORDER, STR-1
Built-in speakers. Many features unobtainable elsewhere at this price Kit £58.0.0 P.P. 10/6

MANY OTHER INSTRUMENTS FOR TEST AND SERVICE IN RANGE

BERKELEY Slim-line SPEAKER SYSTEM
Kit £21.4.0 P.P. 13/6

See these and many more in the Latest CATALOGUE . . . it's FREE

MANY SHORTWAVE RECEIVERS including:

4-BAND RECEIVER, GR-64E
Cover $1 \mathrm{MH} / \mathrm{z}$ to $30 \mathrm{MH} / \mathrm{z}$ plus $550 \mathrm{kH} / \mathrm{z}$ to $1620 \mathrm{kH} / \mathrm{z}$ AM broadcast band. Built-in speaker. Handsome low-boy styling. Kit £22.8.0 P.P. 9/-

PORTABLE RADIO UXR-1
Kit coloured case
£12.8.0 P.P. $4 / 6$
Kit leather case
£13.8.0 P.P. 4/6

PORTABLE RADIO UXR-2
In black or natural leather
Kit £15.10.0
P.P. 6/-

SEE HEATHKIT MODELS

in LONDON
233 Tottenham Court Road

BIRMINGHAM

17-18 St. Martin's House, BULL RING

GLOUCESTER

Factory and Showroom:
Bristol Road, GLOUCESTER

[^0]
PRINTED CIRCUIT KIT

BUILD 40 LETERERTGIG PROJECTE on A PRINTED CLRCUIT CHASSIS with PART8 and TRANSIBTORS trom yonr sPAREB BOX
CONTENTA: (1) 2 Copper Laminate Boarda $41^{\prime \prime}>: 2!^{*}$, (2) 1 Board for Matchbox Radio. (3) 1 Board for Wriatwatch Radio, etc. (4) Resiat. (5) Resist Rolvent. (8) Etchant. (7) Cleanser/Degreaser. (8) 16 -page Booklet Printed Circuits for A mateurs. (9) 2 Miniature Radio Diala SW/MW/LW. Also free with each kit. (10) Essential Design Data, Clrcuits, Cbase is Plana, etc. for 40 TRANSISTORIRED PROJECTS. A very comprehensive selection of circuits to sult everyone's requirements amd
constractional ability. Many recentiy developed very efficient desigms publighed for constructional ablity. Many recently d
the firat time, including 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT 8/6
Postage \& Pack. 1/6 (${ }^{+} \mathrm{K}$) Commonwealth: SCRFACE MAIL Q:-
AIR MAIL 8/-
Australia, New Zealant, South Africa, Canada.
(1) Crystal Net with biased Detector. (2) Crystal Net with voltage-quadrupler detector. (3) Crymtal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifler. (5) Carrinr Power Convergiod Receiver. (6) Split-Lond Neutralised Double Reflex. (7) Matchbox or Photncell Radio. (8) "TRI-FLEXON" Triple Reflex with seltadjusting regrneration (Patent Pending). (9) Solar Battpry Loudspeaker Radio. The smalleat 3 deaigas yet offered to the Home Constructor anywhere in the World. 3 Subrintature Radio Receivers based on the "Triflexon"' circuit. Let us know if you know of a mialler design published anywhere. (10) Postage Stanip Radio. Hize only $1.62^{\prime \prime} \times 0.95^{\prime \prime} \times 0.25^{\prime \prime}$, 111) Wriat watch Radio $1.15^{\prime \prime} \times 0.80^{\prime \prime} \times 0.55^{\prime \prime}$, (12) Ring Radio $0.70^{\circ} \because 0.70^{\prime \prime} \times 0.55^{\prime \prime}$. (13) Racteria-powered Radio. Runa on sugar or bread. (17) Radio Control Tone Receiver. (ive Amplifier. (18) Reliable Burglar Alarm. (19) Light-seeking Animal, Guided Miseile. (20) Perpetual Motion Machine. (21) Metal Detector, (22) Transistor Teater. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. (25) Bignal Injector. (26) Pocket Trangepiver (Licence required). (27) Constant Volume Intercom. (28) Remote Control of Modela by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Refex Kadio. (31) Wristwatch Trangmitter/Wire-less Microphone. (32) Wire-less Door Bell. (33) Lltrasonic Switch/Alarm. (34) Stereo Preamplifier. (35) Quality Stereo Pugh-Pull Amplifler. (36) Light-Beam Telephone "Photophone". (37) Light-Beam Trananitter. (38) Silent TV Sound Adaptor. (39) Eltrasonic Transmitter. (40) Thyristor Drill Speed Controiler.

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 2 Transistors, Comlensers, Resistors. (iain Control, Terminai Block, Flegant Case, Screws, etc. In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modifed for modulated-light operation.

Photoelectric kit 39/6
Posinge and Pack. 2/6 ($1 / \mathrm{K}$) Commonwealth:
SURFACE MAIL 3/6 AIR MAIL $£ 1.0 .0$ Australia, New Zealand s. Africa, Canada and U.S.A. Also Essential Data Cirnuits and Plans for Building
12 PHOTOELECTRIC PROJECTs. (1) Stewy-Light Pboto-Switch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Stray-Light Alarm. (4) Relay-lese Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Project Lamp Stabiliser (8) Electronic Project Modulator. (9) Mains Power Supply. (10) Car Parking Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm.

INYISIBLE BEAM OPTICAL KIT

Eversthing needed (except plywood) for building: 1 Inviaible-Beam Projector aud 1 Photocell Receiver (as Illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 leuses, 2 mirrors, 245 -degree wooden blocks, Infra-red fitter, projector lamp holder, building plans, performance data, etc. Price 10/6. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mall $8 /$.
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Pboto-Switch, Burglar Alarm, Door Opener. Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototransiator, 3 Transistors, Chassis, Plastic Case, Resiators, Screws, etc. Full Size Plans, Instructions, Data Sheet " 10 Allvanced
Pbotoelectric Designs
Price 19/6. Postage and Pack. $1 / 6$ (Li.K.). Commonwealth 2/-; Air Mail 4/-.
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Inira-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to bulld 1 miniature invisible beam projector and photocell recelver for use with Junior Photoelectric Kit.
Pricc 10/6. Pont and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail 4/-. PHOTOELECTRIC PARKING LAMP SWITCH
Automatlcally turas parking lamp on at dusk, off at dawn. Protecte your car. Saves the battery. Miniature construction. 8imply insert in parking lamp lead. Price: 87/6. the battery. Miniature construct
Poat and Packing $2 / 6$ (U.K.).

THYRISTOR LIGHT DIMMER

Add a tcuch of lurury to your home. Adjust the light at parties, while watching TV, etc, Ideal for Chlldren's bedroom. (100 watta man.) Replaces on-ofl awitch. Price: 59/6. Post and Packing 2/B (U.K.).

YORK ELECTRICS

 333 YORK ROAD, LONDON, S.W. 11Send a s.A.E. for full detalls, a brief description and Photorraphs of all Kits and nil 52 Radio, Electronic and Pholoelectric Projecta A asembled.

ENGINEERS TEST EQUIPMENT AND ACCESSORIES

MULTIMETERS. Complete range of high precision instruments.
TRANSISTOR CHECKERS. For use with PNP NPN Transistors, IF and RF Resistors, Diodes, Rectifiers.

> RESISTOR SUBSTITUTION BOX. CAPACITANCE SUBSTITUTION BOX. adjustable acjdc converter.
> test lead kits, etc.

We also stock large range of MICROPHONES, AUDIO UNITS, RECORDING TAPES, INTERCOMS, TELEPHONE AMPLIFIERS, CAR RADIOS, T.V. SPARES, ETC.

Send S.A.E. for illustrated brochures and price list.
D. WEBB, Wholesalers

61-63 Clifton Street, Hull, E. Yorkshire Telephone 36016

[^1][^2]

TRANSISTORS PRICE

AC107	3/-	OC170	3/-
AC126	2/4	OC171	4/-
AC127	$2 / 4$	- C200	3/6
AC128	2/4	OC201	7/-
ACYI7	3/-	2G301	2/6
AFII	4/-	2 G 303	2/6
AFIIS	3/6	2 N 711	101
AFl16	3/6	2N1302-3	4/-
AFII7	3/6	2NI304-5	5/-
AFII8	3/6	2NI 306.7	$6 /-$
AF119	$3 / 6$	2N1308-9	8/-
AF186	10/-	2N 3844 A	5/-
AF139	10/-	Power	
BFY50	4/-	Transistors	
BSY25	$7 / 6$	OC20	10 -
BSY26	3/-	${ }^{\circ} \mathrm{C} 23$	10/-
BSY27	3/-	OC25	8/-
BSY28	3/-	OC26	5/-
BSY29	3/-	OC28	$7 / 6$
BSY95A	3/-	0 C 35	5/-
OC41	$2 / 6$	0 O 36	$7 / 6$
OC44	1/11	A0149	10\%
OC45	1/9	AUY10	301-
OC71	$2 / 6$	Diodes	
OC72	$2 / 6$	AAY42	1/-
OC73	$3 / 6$	OA95	2/-
OCal	$2 / 6$	OA70	$1 / 9$
OC81D	$2 / 6$	OA79	1/9
OC83	4/-	$\bigcirc \mathrm{OABI}$	1/9
OC139	$2 / 6$	OA73	$2 /-$
OC140	3/6	IN914	1/6

$\square \square \square \square \square$
PACKS OF YOUR OWN CHOICE UP TO the value of 10/- WITh orders OVER e4

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP type transistors, equivalents to a large part of the $O C$ range, i.e. $44,45,71,72$ BI, etc.

PRICE 15 PER 1000

XE PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A

$$
\text { PRICE } £ 5.5 .0 \text { PER } 500
$$

PRICE EIO PER 1000

XC PAK

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DK10, etc.

PRICE 65 PER 1000

ALL THE AbOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMI. CONOUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

P/P 2/6 PER PACK (U.K.)

TRANSISTORS ONLY 1/- EACH

SILICON All these types available

2N929	2N706	$2 S 131$	$2 S 103$	$2 N 696$	$2 N 1613$	$2 S 733$	BFY10
2S501	2N706A	$2 S 512$	$2 S 104$	$2 N 697$	$2 N 1711$	$2 N 726$	$2 S 731$
BCl08	2N3011	$2 S 102$	$2 N 2220$	$2 N 1507$	$2 N 1893$	$2 N 2484$	$2 S 732$

All tested and guaranteed transistors - unmarked.
Manufacturers over runs for the new PRE-PAK range.

[^3]
PRE-PAKS

Selection from our lists

			Price
BI		Unmarked Trans. Untested	
B2		Photo Cells Inc. Book of In	
B6	17 R	Red Spot AF Transistors	
B6A		White Spot RF Transistors	
B9		ORP 12 Light Sensitive Cell	
B53		Sil. Trans. $400 \mathrm{Mc} / \mathrm{s} \quad$ Brand Ne	10/
B54	40	NPN To 5 Trans Vol	10
B55		NPN Tols \& Gain Fall	10/-
856	40	NPN/PNP All Tested	
B68		Top Hat Recs. $750 \mathrm{M} / \mathrm{A}$	
B69		Diodes. Gld-Bnd. Germ Sil. Planer	
B7		Gld-Bnd. Diodes. 2-OA9, 3-OA5	
875		Comp. Set. 2G371, 2G381: 2G339	
C2		Unijunction Transiscor 2N2160	
C32		Top Hat Recs. IS 100 Type	
C35		Unjunction Transistors $=$ to 2 N	15.
Al		Silicon Rectifiers BY/00 Type	30
A3		Mixed Marked and Tested	
A2I		Power Transistors I.ADI49/I-OC26 and 3 others	

BRAND NEW PAK • JUST RELEASED

REPLACES OUR VERY POPULAR B. 39 PAK BRAND NEW SHORT LEAD COMPONENTS ALL FACTORY MARKED AND MOUNTED ON PRINTED CIRCUIT PANELS.
80 TRANSISTORS \& DIODES
50 HIGH TOLERANCE RESISTORS
20 VARIOUS CAPACITORS FOR $\omega /=$
PLEASE STATE WHEN ORDERING PAK P.I. 2/- P. \& P. WITH THIS PAK.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rev.
counter for any car.
State 4 or 6 cylinder.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS

EAGLE'S new range of plug-in all-transistor miniature modules.
EM. I Phono Pre-amplifier
EM. 2 Tape Head Pre-amplifier EM. 3 Mierophone Pre-amplifier EM. 4 Power Amplifier
Each module is completely assembled and supplied with mounting socket to enablethem Visit your EAGLE dealer to inspect these new miniature modules... such good value at $32 / 6 \mathrm{~d}$. each.

FOR VERSATILITY RELIABILITY AND SOUND VALUE INSIST ON

Distributed by
B. Adler \& Sons (Radio) Ltd. Coptic Street, London, W.C.I

Same as 4-8tation Tntercom for tro.way ingtent same as 4-station Intercom for twoway instant
communication. Ideal as Baby Alarm and Door communication. Complete with 68ft. connecting wire. Battery 2/6. P. \& P. 4/6.

Why not boost
businesa effl ciency with the incredble De-Luxe Teitphode Ampl flor. Take down long telephone mestages or convers without holding the handiet. A useful office aid. On/ 3/6. Full price refunded 41 not satligied in 7 days.

FEST LORDON DIRECT SUPPLIES (PE/I)
169 KRASMGTON HIGH STREET, LONDON, W. 8

new VARI-STAT

thermostatic

 soldering ironHigh Production Model D PRICE Minizture Iron 50 watt
Voltage 12-250 volt
Weight I $3 / 40 \mathrm{oz}$.
"Screw on" Bit sizes $1 / 16 i n$., 3/32in., $1 / 8 i n$. 3/16in., 1/4in.
Our range also includes
Standard Miniature Model SoW
Standard Instrument Model 70W
High Production Instrument Model 125 W Industrial Model 500W
All these irons give excellent bit and element life since the thermostat completely eliminates overheating and controls reserve heating capacity which makes possible continuous soldering without chilling of the bit. The consistent temperature makes these irons ideal for printed circuit work.

CARDROSS ENGINEERING CO.LTD.
Woodyard Road, Dumbarton.
Phone: Dumbarton 2655

OUR NEW 1968/69 illustrated catalogue NOW AVAILABLE
(send 2/-in stamps for your copy)

Catalogue contains prices and details of Amplifiers - $\mathrm{Hi}-\mathrm{Fi}$ Tuners - Loudspeakers -Pick-ups - Playing Decks Microphones - Test Meters Hand Tools - Valves Soldering Irons - Tape Recording Accessories, etc.

ALPHA RADIO SUPPLY CO
103 Leeds Terrace, Leeds 7. Tel. 25187

Build yourself a quality transistor radio guaranteed results backed by our after sales service!

roamer seven mkiv

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE! 7 FULLY TUNABLE WAVEBANDS-
MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Atractive black and gold case. size $5!1 \frac{1}{2}$
$3 t$ in. Fally tunable over both Meclumen and Waves with extended M.W. band for eanier tuning of luxembourg. ete. ill first grade cont ponents-7 stages-5 transistors and 2 diodes supersensitive ferrite rod aerind, fine tone moving coil speaker, also Personal Earpiece with switched socket for private listening. Easy buidd plathe and parts price list, 1/6 (FREE with parts).

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH $3^{\prime \prime}$ SPEAKER AND EARPIECE

Attractive case with red speaker grille. Size 6! $41 \times 1 \frac{1}{2}$. Fully tunable. 7 stages- 5 transistors and 2 diodes, ferrite rol aerial, tuning condenser, Persanal Earpiece with switcherl socket for private listening. All firsi grade components. Easy build phans and parte price list $1 / 6$ (FREE with parts)

uper seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case size $7 \frac{1}{4} \times 5 \frac{1}{2} \times 11 \mathrm{in}$. with gilt fittings. The idcal radio for home, car or outdoors Band Medium and Long Waves and Trawle push pull output, fer rite roul aerial, 7 transistor and 2 liodes, Bint. speaker (will drive larget spenker) and atl first grasle components. Easy build plans and parts. Price list 2/- (FREE with parts). (Personal Earpiece with switcherl socke for private listening 5 !- extra.)

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt fittings, size $-\frac{1}{2} \times 5 \frac{1}{2}$ $1 \frac{1}{2}$ in. World wide reception. Tunable on Mediun and Long waves, two short waves, Trawler Band embourg, etc Sensitive ferrite rod serial and embourg, etc. Sensitive ferrite rod aerial and telescopic aerial for short waves. An top grade including Micro-Alloy R.F. Transistors, etc (Carrying atrap 1/6 extra.) Easy build plans and parts price list 2/- (FREE; with parts). Persona Earpiece with switch socket for private listening 5/-extra.)

Total building costs 4.4/6 P. \& ${ }_{3 / 6}$

Total building costs

Total building costs 69/6 ${ }^{\text {P. } 4 / 4, b^{p}}$

Total building costs
$7 \otimes / \mathrm{B}_{4 / 6}^{\text {P. \& } P}$

[^4]Extra M.W. band for
easier tuning of Luxembourg, etc
built-in ferrite rod aerial for hedium and Long Waves
5 Section $22 i n$. chrome-plated telescopic aerial for Short Waves-can be angled and rotated for peak S.W. listening. Socket for Car Aerial. Powerful push-pull output. O 4 PM spansing Fancus mak Separate on/off switch, volume control, wave change switches and tuning control Attrac tive case now with inget varrying handle. Size 9774 in approx Firstegrade com ponents. Easy to follow instructions and diagrams make the Roaner 7 in pleasure to build with guaranteed rebults.

Total building costs
 $7 / 6$ for private listening $5 /-$ extra.

Parts price list and easy build plans $3 /=$ (Free with parts).

NEW LOOK

melody six

8 atages-6 transistors and 2 diodes. Covers Medium and Long Waves. Top quality 3 in. toudepcaker for quality output and also with Personal Earpiece with suitched socket for private listening. Two R.F. Stages or extra boost. High "Q". Ferrite Rod Aerial. Push-pull output. Handsome pocket size case with gili fittings. nd parta and parte price list 2F (FREE with

Total building costs

RADIO EXCHANGE LTD

61 HIGH STREET, BEDFORD. Tel: Bedford 52367 I enclose $£ \ldots \ldots \ldots$........................ase send items marked
ROAMER SEVEN \square ROAMER SIX \square
TRANSONA FIVE \square SUPER SEVEN \square
POCKET FIVE $\quad \square$ MELODY SIX \square

Parts price list and plans for
Name.
Address

ORADIONIC LEARN AS YOU BUILD

AT HOME

THE EXCITING WAY

Clear, simple, versatile, this rugged system can bulld almost any electronic circuit. Ideal for the experimenter; the teacher; and the complete beginner. Already used by well over 1,50 schools in the U.K.
Selected by the Council of Industrial Design for all British Design Centres. Featured in Sound and Television broadcasts.
Beautlfully engineered; battery operated; no soldering; no prior knowledge needed. Results guaranteed by our technical department. People say:
"I can only describe the resuits as brilliant, absolutely brilliant."
" You have opened up a new world."
"Nothing could paint the picture clearer than building these sets."
"The kit has been used by my son (aged 10) with complete success."
" Most Impressive-a stroke of genius whoever devised it."
UNIQUE: Our "No soldering" printed circuit board for superhet port able. Simply insert components and tighten nuts.
No. 1 Set $£ \% 10.0$. 14 Circults (Earphone)
No. 2 Set \quad s.0.0. 20 Circults (Earphone)
No. 3 Set 813.10 .0 . 22 Circuits ($7^{*} \times$ A $^{\text { Loudspeaker Output) }}$
No. A Set $\mathbf{8 1 8 . 1 0 . 0}$. 26 Circults (incl. ©-transistor and refex superhets)
ELECTRONICS KIT : 30 plus clrcuits £19.7.0.
(Prices Post Free)

Full details from:

RADIONIC PRODUCTS LIMITED

ST. LAWRENCE HOUSE
29-31 BROAD STREET, BRISTOL BSI 2HF
Tel. (0272) 25351

RADIO \& ELECTRONIC INSTRUCTIONAL SYSTEM

A No. 4 SET and 6-TRANSISTOR SUPERHET

Theoretical Circuit

Practical Layout

E/605 Light Operated Relay.
Our 'E' Series of basic electronic circuits is available separately.

EAGLE MULTIMETERS

EP30K, 120/-, p.p. 4/6; EPI0KN, 108/-, p.p. 4/6; EP20KN, $90 /-$, p.p. 3/-; EP30KN, 160/-, p.p. 4/B; EP50LN, 210/-, p.p. 4/6, details on request.
High Stability Renistors $1 \% \frac{1}{3} \mathrm{~W}, 2 /-$. Full atapdard range plus inany multimeter values. $\delta \% ~ \$ W$, 世d. Full stock list on request.
$0-50$ microsmp level meters, $15 /-$, post $1 /$ -
High Res, Phones, 2,000 Q, 15/-, p.p. 1/-.
Maltimeter ITI-2, 20,000 o.p.v. d.c., 0-5, 25, 50 , $250,2,500 \mathrm{~V}$ d.c., $10,50,100,500,1,000 \mathrm{~V}$ a.c. capaclty and dB ranges, $67 /$, post $3 / \% \mathrm{~A}, \quad 0-6 \mathrm{M} \Omega$

Postage extra, cash with order.
PLANET INSTRUMENT CO. 25(E) DOMINION AVENUE, LEEDS 7

Hi-Fi Solid State Audio Amplifier

10 Watts continuous sign wave output. 15 Watts music power.
Output 3-16 ohms impedance. Frequency response 15 Hz to $18 \mathrm{Khz}-1$ DB.
Distortion at full power $<0.15 \%$.
This instrument comes to you complete with preamplifier, main amplifier and power unit (A.C. Mains) in modern styled aluminium stelvetite case.
Factory built and tested for the amazingly low price of 15 GNS. P. \& P. 5/6.
SUNDERLAND ELECTRICS LTD. 48 Princess Street, Manchester 1

Trade enquiries invited. S.A,E. with enquiries please.

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $82 / 6$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE 20) 54 Dundonald Road, London, S.W. 19

HARVERSON'S EXCLUSIVE BARGAIN! HI-FI GUITAR AMPLIFIERS

 Refurbished units peak output of approx. 20 watts. Brief spec: AC Mains 200/240V. ECLB2. Bridge Rect. Two Inputs ja standard jack ockets for 1 or 2 guitare or mike controlled by single volume control. Geparate basa and treble controls. Tremold with variable apeed control and standard jack socket yor remote control or tremolo on/of (3 or 15 ohm). Completely self contained unit In attractive portable case finished in dark rexine with gold trim and capable of really HI - Pi pprox. $14 \frac{1}{\text { Y }} 117 \times 8 \mathrm{in}$. Also gram deck or radio tuner. Each amplifer used with a tented and checked by us hefore despatch and carerully fact that the cabinets are slightly atore andled we are
oftering them at the unrepestable nrice of
offering them at the unrepeatable price of
£12.12. 0.
Standard Jack Plugs $2 / 8$ each, if required. FOOT 8WITCH for tremolo on/off control, complete with lead and Jack plug $27 / 6$.

BRAND NEW 8 OHM LOUDSPEAEERS $5 \ln .14 /-; 6\} \mathrm{in} .18 / 6 ; 8 \mathrm{in} .27 / 7 ; 7 \times 4 \ln .18 / 6 ; 10 \times 6 \mathrm{in} .27 / 6$. 8 in . With high flux ceramic magnet $42 /-$ (i5 ohn $45 /=$ E.M.I. $13 \times 8 \mathrm{in}$. With two inbuilt tweeters and crossover net work. 3 or 15 ohms 4 gni , P. \& P. ōin. $2 /-, 6 \frac{1}{2}$ \& $8 \mathrm{in} .2 / 6$, $10 \& 12$ in. $3 / 6$ per speaker.
BRAND NEW. 12 in . 15 W H/D Speakers, 3 or 15 ohms.
By well-known Britiah By well-known British maker. Now with Hi Flux ceramic ferrobar magnet assembly. \&5.10.0. P. \& P. $5 /$. Guitar Mod
E.M.1. $8 \frac{1}{2}$ in. HRAVY DUTY TWEETERS. Powerful ceramic nlagnet. Avallable In 3 or 8 ohms 15/- each; 15 ohms 18/6 each. P. \& P. 2/6.
18in. "RA" TWIN CON
handling. 3 or 15 ohm, 35 ORM SPRAKERS

VYFATR AND BEXINE SPEAKERS AND CABETET FABRICS app. 54in. Wide. Uaually $35 /, y$ d., our price $13 / 6$ yd. length. P. \& P. 2/6 (min. 1 yd.). S.A.E. for samples. LATEST COLLARO MAGNAVOX 863 8TGREO TAPE DECK. Three speeds 4 track, takes up to 7 In . spools. Send S.A.E. for latest prices.
B.8.R.TD2, $4-$ TRACK STEREO TAPE DECK. Send S.A.E. for latest price.
QUALITY PORTABLE TAPE RECORDER CABE. Brand new. Beautifully made. Only 49/6. P. \& P. 8/6. Dual Purpose Bult Tape Eraser and Tape Head DemagnetACOS CRYBTAL MIKES. High imp. for leak or hand use. HIgh senaltivity, 18/6. P. \& P. 1/6.
Acos HIGR IMPEDANCE CRYSTAL STICE MIKEs Lfated 8PECIAL OFFER : MOVING COIL STICE MIKE. Pitted on/off switch lor remote control. High quality. High or low impedance. (State imp. required). BARGAMF PRICE 30/-. P. \& P. 2/6
KEW 8.T.C. TYPE 25 MINIATURE RELAYS12 volt. $48 / \mathrm{p}, \mathrm{c} / \mathrm{o}$ contacts. 1 amp rating. Coil $10 /-$ each. P. \& P. $1 / 6$. Also some similar to above but coll resistance $\mathbf{5}, 800$ ohme 48 volt operation. $8 /$ - each. P. \& P. $1 / 6$.
8PECLAL OFFRR! PLEESEY TYPE 29 TWIN TUNDG G:1 integral slow motion. Fitted with trimmers and I.F. Size approx. $2 \times 1 \times 1 \mathrm{in}$. Only $8 / 6$. P. \& P $2 / 6$
 separate ${ }^{\prime}$ wave secondaries giving approx. 16 V at
1 amp and 20 V at $1-2$ amp; seca. can be connected in series for 36 V at 1.5 amp . Ideal for transistor power supplies. Drop through mounting. Stack size $21<31<$ 7in. 16/-. P. \& P. $6 / \%$
MAIV8 TRAFSFORDEE. For transintor power supplies. Pri. 200/240V. Bec. $9-0-9$ at 500 mA . $11 / \mathrm{c}$. P. \& P. $2 / 6$.
Pri. 200/240V. Sec. $12-0-12$ at 1 amp . $14 / \mathrm{P}$. \& P . $2 / 6$. Pri. 200/240V. Sec. $12-0-12$ at 1 amp . 14/6. P. \& P. $2 / 6$.
Pri. 200/240V. Sec. $10-0-10$ at 2 amp . 27/6. P. \& P. $3 / 6$. Pri. 200/240V. Bec. $10-0-10$ at 2 amp 27/6. P. \& P. 3/6.
MATCHED PAIR 0F 2i WATT TRA MATCHED PAIE OF \& in. Output trans. tapped for 3 ohm and 15 ohm output. 10/- pair plus 2/ P. \& P. OUTPUT TRAMEFORMERS to match pair of ECL82's in push-pull. Bec. tapped 3.75 , 7.5 and 15 ohm. Stack alze $2 \hbar \times 1 \times 2 \mathrm{in}$. approx. ONLY 12!- P. \& P. 3/.
7-10 watt OUTPUT TRAESFORMERS to match pair of
ECL8E: in push-pull to 3 ohm ECL80' in purh-pull to 3 ohm output. ONLY $11 /-$. PRAMD MK. MEW MAMS TRAM8FORMERS lor Bridge Rectifier. Prl. 240 V AC. gec. 240 V at 50 mA and $6-3 \mathrm{~V}$ at (Special quotatlons for quantitles).
HIGH GRADE COPPER LAMINATE BOARDS
$8 \times 6 \times \frac{1}{\text { hin }}$. FIVE for $10 / \mathrm{F} . \mathrm{P}$. \&P. $2 / \mathrm{F}$.

Open all day Saturday

Early closing Wed. 1 p.m. A fou minutes from South Wimbledon
Tube Station

TRANSISTOR STEREO $8+8$ MK II

Now using silicon Transistors In first five stages on each channel resulting in even lower noise level with tmproved bensitivity. A really frat-clasa Hi-Fi Stereo Amplifer Kit. Usee 14 transintors giving 8 watts push pull output per
channel (16 W mono). Integrated pre-amp. with Bass, channel (16W mono). Integrated pre-amp. With Bass, Treble and Volume controls. Sultable for une with Ceramic or Crystal cartridges. Output itage for any speakers from 3 to 15 ohms. Compact design, all parts attractive front panel knobs, wire elder nuts bolte no extras to buy simple step by atep instructlons enable any constructor to build an amplifier to be proud of. Brief specification: Freq. reaponse $\pm 3 \mathrm{~dB} .20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 dB . Treble cut approx. to -16 dB . Negative feedback 18 dB over maln amp. Powrer requirements 25 V at 0.6 amp .
PRICES: AMPLIFIER KIT E10.10.0; POWER PACK KIT 8.0 .0 ; CABINET 88.0 .0 . All Post Free
Clrcult iliagram, construction detalls and parts list (free with kit) 1/6. (S.A.E.)

SPECLAL PuikCEREE! E.M.I. 4-8PERD PLAYER
Heavy 8in. metai turntable. Low flutter performance $200 /$ 250 V shaded motor (90 V tap). Complete with latest
type 11 ghtweight plck-up arm type lightweight plck-up arm
and mono cartridge with t/o and mono cartridge with t/o
atylll for LP/78. LIMITED NUMBER ONLY 68/-. P. \& P. $6 / 6$.

4-BPEED RECORD PLAYER BARGAIIS Maing models. All brand new in maker's packing.
E. M
y. mounted pick-up srm and mono cartridge. es. 5.0 B.S.R. DARs with latest mono compatible cart... 86.19 .6 All plus Carriage and Packing $6 / 6$.
LATEST GARRARD MODELS. All types available 1000 8P25, 3000, AT60 efc. Send 8.A.E. for Bargain Pricen? PLINTR UNTT8 cut out for ciarrard Models 1000, 1025 , 2000,3000 , AT60, SP25. With rigid perapex cover. OUR PRICE 5 gis. complete. P. \& P. 8/6
sONOTONE 9TABC compatible
diamond atylus $50 / \mathrm{P}$ \& P. $2 /$. EP/LPT RONETTE T/O Sterio Comp
EAP/Stereolis. 32/6. P. \& P. $2 /$ EP/LET RONETTE T/O Mono Compatible Cartridge for $0 / 2 y$ mono or stereo recoris on mono equipment FEW OMLY: ACOS GP69/1. For EP and LP 10/-. P. \& P.

QUALITY RECORD PLAYER AMPLIFIER
duty quabity record player amplifier employing heavy EZ80 valve Separate Bais, Treble and Volume controls. Complete with output transsormer matcbed for 3 obm gpeaker. Size $7 \mathrm{in} . \mathrm{w}_{\mathrm{P}} \times 3 \mathrm{l}, \times 6 \mathrm{~h}$. Ready built and tested. PRICE 75/-. P. \& P. 6/-
ALSO AVAILABLE nounted on boaril with output transiormer and speaker ready to fit into cabinet below. PRICE 07/6. P. \& P. 7/6.

DE LUXE QUALITY PORTABLE R/P CABINET Cncut motor board size $141 \times 12 \ln$., clearance $2 \ln$, below, s in. above. Will take above amplitier and any B.S.R. or GARRARD changer or single Player (except AT60 and SP25). Size $18 \times 15 \times 8 \mathrm{in}$. PRICE 23,9.8. P. \& P. $9 / 6$

FM/AM TUNER HEAD

Beautifuly designed and pre-
cision engineered by Dornier Wadsworth Ltd. Supplied ready fitted with twin 0005 tuning condenser for AM conneetion. Prealigned FM sec tlon covers $86-102 \mathrm{Mc} / \mathrm{s}$. I.F
output $10.7 \mathrm{Mc} / \mathrm{s}$. Complet with ECC85 (6 L 12) valve and

full circuit diagrann of tuner head. Another special bulk purchase emables us to offer these at $27 / 6$ each. P. \& P. $3 /$. GORLER F.M. TUNER HEAD. $88-100 \mathrm{Mc} / \mathrm{s} .10 .7 \mathrm{Mc} / \mathrm{s}$ I.F. 15/- plus 2/6 P. \& P. (ECC85 valves, 8/6 extra)

AMPLIEIER MODEL HA84
AMPLIFIER MODEL HA84 Deslgned for Hl-FI reproduc. tion of records. A.C. Mains
operation. Ready built on plated heavy gauge metal plated heavy gauge metal
chasis, size $7 \|$ in $w . \times 4$ in. d. \times $41 \ln$. h. Incorporates ECC83, EL84, EZ80 ralves. Heavy luty, doubje wound malns transformer and output transformer matched for 3 ohm speaker, separate Bass, Treble and volume controls. Negative feedback line. Output 4t watts. Front panel can be controls. Conipiete with knobs, valves, etc., wired and tested for only 44.5 .0 . P. \& P. $6 /-$. H8L "FOUR" AMPLIFIER KIT. Similar in appearance to ircultry. Complete set of parte, etc. 79/6. P. \& P. 6/-. BRAND NEW TRANSIBTOR BARGAIMS. GET 15 (Matched Pair) 15/-; V15/10p, 10/-; OC71 5/- ; OCT6 6/-; AF117 7/6.
Set of Muliard 6 trangistors OC44, 2-0C45, AC128D, matched pair AC128 25/-; Mullard LFFF Audio Transjator Pack AC128D and matched pair AC128 12/6;
 Baby Alarm, Boonter unit for
tranaistor radios etc., also ldeal for classroom unit etc. Works perfectly with our speclat ofter High Impedance Dynamle Microphone ($30 /-$). Ont put 1000 mW . Usee standard 9 volt battery. Snart two tone carrying case size $12 \times 4.9 \mathrm{n}$. Athed standard rolutne controls, $7 \times 4 \mathrm{in}$. speaker. Completely built and

Only 79/6 ${ }^{\text {c.act }}$

STEREO AMPLIFIER

Incorporating 2 ECL86's and 1 EZ80, heavy duty, touble wound mains transformer. Output 4 watts per channel Full tone and volume controls. Absolutely complete.

BIGE GAIN 4 TRANSIETOR PRLNTED CIRCDIT AMPLIFIER KIT
Type TA1
put in excess
$1 \frac{13}{}$ watts.
All atan-
dard Britlah

- Bumpilt on
 - Generous size Drlver and Out.put Tranaformers. speskers. Transistors (GET1 14 or S1 Mullard AC』28D and matched pair of AC128 o/p). 9 volt operation. Everything supplied, wire, battery clipe, solder, etc. Comprehensive easy to follow instructions and circult Ilagram 2/6 (Free with Kit), All parts sold neparately SPECIAL PRICE 45/-, P. \& P. 3/-. Also ready built and ested, 59/6. P. \& P. 3/.

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gran amplifer using a double wund mains transformer, EZ80 rectifer and ECL82 tulode pentode valve as audio ampllfter and power output stage and tone controls. Chasslosize only 7 in . wide $\times 3 \mathrm{in}$. deep x 6 in . high overall. AC mains 200/240V. Supplied absolutely Brand New completely wired and tested with valves and cod quality output transforner. LIMITED NUMBER. $\begin{aligned} & \text { OUR ROCK BOTTOM } \\ & \text { BARGAIM PRICE }\end{aligned} 49 / 6 \quad$ P. $8 / \mathrm{P}$.

10/14 WATT HI-FI
AMPLIFIER ETT A stylishly finished monaural amplifter 14 watts from 2 EL84a in push.pull Super reproduction of both muaic and speech, with megligible hum. Beparate inputs for mike and gram allow record. and announcement. to follow each ot her.
 rully ahrouded section wound output transtormes match 3-15 apeaker and 2 independent volume controls controls are provided giviog EZ80 rectifler. Simple ine-up 2 EL84a, ECC83, EF86 and parts). All parta sold soparately. ON LY \&7.9.6. P. \& P $8 / 6$ Also avallable ready bullt and tested complete with itd. input sockets, te.5.0. P. \& P. 8/6

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W. 19
Tel. 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clear/y) PLEAGE MOTE: P. \& P. CHARGES QUOTED APPLYTO D. E OHLI.

SEm
 D2

sond B.A.E. Ior full lista. Othog ranges arailabie. Pleate inclade postare. Special quetations for quantition.

CLEAR PLASTIC METERS

Trpe MR. 88 P .1 21/32in square tronts

Trpe 14R.38P. 1 21/32in equare fronts		Type MR.85P. Aifn \times ¢	
$50 \mu \mathrm{~A}$. $97 / 6$	780 mA25/-	$50 \mu \mathrm{~A}$. $69 / 6$	15 amp
$50.0 \cdot 50 \mu \mathrm{~A}$.. $35 /-$	1 amp $20 /-$	$50-0.50 \mu \mathrm{~A} \quad .59 / 8$	30 amp .
$100 \mu \mathrm{~A}$. $85 /-$		$100 \mu \mathrm{~A}$. . . . $50 / 6$	20 V d.c. $\ldots . .49$
100-0-100 $\mu \mathrm{A}$. $82 / 6$	8 mmp 281 -	100-0-100 A A $\quad .59 / 6$	50 V d.c... .48
$200 \mu \mathrm{~A}$. $32 / 6$	3 v d.c. $\quad . . .86 /-$	$200 \mu \mathrm{~A}$. . . . 6.85 -	150 V d.c.
$500 \mu \mathrm{~A}$. $37 / 6$	10 V d.c. $. . .25 /-$	$800 \mu \mathrm{~A}$ … . 88.6	300 V d.c.
$500-0-500 \mu \mathrm{~A}$. $26 /-$	20 V d.c. $. . .261-$	$500-0-500 \mu \mathrm{~A}$. $49 / 6$	150 V a.c.
1 mA $25 /-$	50 V d.c. $. . . .26 /-$	$1 \mathrm{~mA} \cdot \ldots48 / 9$	300 V a.c.
$1.0 .1 \mathrm{~mA} \quad . .25 /-$	100 V d.c. . .28/-		\& Meter lma
$2 \mathrm{~mA} \quad25 /-$	150 V d.c. ..25/-	$5 \mathrm{~mA} \quad4$ 49/6	VU meter 69
$5 \mathrm{~mA} \quad28 /-$	300 V d.c. . $25 /-$	$10 \mathrm{~mA} \quad49 / 6$	1 ump a.c.*
$10 \mathrm{~mA} \quad9 .25 /-$	500 V d.c. . .28/-	50 ma . ${ }^{\text {c....49/6 }}$	5 amp , a.c.*
20 mA . ${ }^{\text {c. }}$. $25 /-$	750 V d.c. . $28 /-$	$100 \mathrm{~mA} \quad . . .49 / 6$	10 amp a.c.* 49/8
$50 \mathrm{~mA} \quad28 /-$	15 V a.c. $. . .25 /-$	$500 \mathrm{~mA} \quad . . .49 / 6$	30 amp a.c.* . $49 / 6$
$100 \mathrm{~mA} \quad . . .25 /-$	50 V a.c. $\quad . . .85 /-$	1 mmp . $\quad . . .49 / 6$	\$0 mmp. a.c." . $49 / 6$
$150 \mathrm{~mA} \quad . . .25 /-$	150 V a.c. $\cdot . . .95 /-$	5 amp .	
$200 \mathrm{~mA} \quad . . .25 /-$	300 V a.c. . . 26 j-		
900mA $\quad . . .85 /-$	500 V a.c. . . 25	Type 18.88	Inin tronts
500 mA . . . $25 /-$	$\begin{array}{lr}5 \text { meter } \operatorname{lma} \\ \text { VU meter } & \text { 29/6 } \\ \text {. } 29 / 6\end{array}$	$\begin{aligned} & 50 \mu \mathrm{~A} \\ & 50-0-60 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{ll} 50 \mathrm{~V} \text { d.c. } & \ldots .89 / 6 \\ 150 \mathrm{v} \text { d.c. } & \ldots . .89 / 6 \end{array}$
Type Mr.48P. Sin square fronta		$100 \mu \mathrm{~A}$. . . . $52 / 6$	300 V d.c. $\quad . . .89$
		100-0.100 $\mu \mathrm{A}$. $49 / 6$	15 V a.c.
	10 V d.c. . . . $27 / 6$	600 2.445/-	60V a.c. $89 / 6$
$50-0.60 \mu \mathrm{~A} \quad 29 / 8$	20 V d.c.. ...27/6	$1 \mathrm{~mA} \quad \cdots \cdots 39 / 6$	180 V a.c. . . . $89 / 6$
$100 \mu \mathrm{~A}$ - $\mathrm{c}^{\text {a }}$. $39 / 6$	50 Y d.c. $\quad . . .27 / 8$	5 mA ….. $39 / 6$	300V a.c. . . . $89 / 6$
$100 \cdot 0-100 \mu \mathrm{~A} \quad .36 /-$	300 V d.e. $\quad .27 / 6$	10mA …..39/6	500V r.c. $\quad . .89 / 6$
$500 \mu \mathrm{~A}$. $29 / 6$	15 V a.c. $\quad \cdots .87 / 6$	50 mA $89 / 8$	8 meter 1 mA . $85 /-$
1 mA $27 / 6$	300 V a.c. $\quad .27 / 6$	100 mA ... $39 / 6$	YU meter . . . 68 /-
$5 \mathrm{~mA} \quad$ - . . . $27 / 8$	8 meter $\operatorname{lma} 36 /-$	500 mA - . . $89 / 6$	50 mA a.c.* . .89/6
10mA $27 / 6$	VU meter . . 42/6	1 mmp . $. . .889 / 8$	100 mA a.c.* . $89 / 6$
$50 \mathrm{~mA} \quad27 / 6$	1 amp a.c.* . $27 / 8$	5 amp. $89 / 8$	$200 \mathrm{~mA} \mathrm{a.c.*} \mathrm{}. \mathrm{} 80 /$.
$10 \mathrm{~mA} \quad \cdots . .27 / 6$	5 amp a.c.* . $27 / 8$	10 amp . $. . .89 / 6$	500 mA a.c.* . $89 / 6$
$500 \mathrm{~mA} \quad \ldots . .87 / 6$	10 amp a.c." $27 / 8$	15 mmp.	1 amp. a.c.* . $89 / 6$
1 mmp . ${ }^{\text {a }}$. . . . $27 / 8$	20 amp . A.c.* $27 / 6$	20 mmp .	5 mmp . a.c.* . . 80/6
5 amp.	30 mmp . n.c.* 27/6	30 mmp .	10 amp . ncc^{*} * . $89 / 6$
		50 amp . $. . .89 / 6$	20 amp. a.c.* . $30 / 6$
		10Y d.c. . . . 89816	30 amp a.c.* .80/6

Moving iron, all athers moving coll

BAKELITE PANEL METERS

NEW RANGE OF "SEW" EDGEWISE METERS 2! deep overali. A vailiable as follow:
 $\begin{array}{cc}100-0-100 \text { microamp } & 58 / 6 \\ 200 \text { microamp } \ldots . . & 52 / 6\end{array} \quad$ VT meter $\ldots \ldots .$.

TE-20D RF SIGNAL GENERATOR

Carr. 7/6.

TY 75 AUDIO

SIGNAL
QENERATOR
Sime Wave 20c/e to $20 \mathrm{c} / \mathrm{s}$ to $80 \mathrm{ke} / \mathrm{s}$. High and low impedanc output. Output vari able up to 6 volts. 220/240 volta a.c. 8120210×150 120 mm . Brand nex Fith Carr. 7/6.

T.M.C. 1000 SERIES KEY SWITCHES
Brand New with knobs as follow
1 way, 2 c/o 7/6; 1 way. 2 c/o 2b, 7/6; 1 way $4 \mathrm{c} / \mathrm{o} .8 / \mathrm{f}: 2 \mathrm{may}, 3 \mathrm{~m} ., 3 \mathrm{~m} .8 / 0: 2$ way. $2 \mathrm{c} / \mathrm{o}$. $2 \mathrm{c} / 0.8 / 6$
Post extra. Quantities available

NOMBREX TRANSISTORISED

 TEST EQUIPMENTAll Post Pald with Battery

Model 22. Power Supply 0-15V d.c. 214.10.0 Model 80. Audio Generator. $\quad 19.10 .0$ Model 31. R.F. Bignal Geberator. 18.10 .0 Model 32. C.R. Bridge.
Model 33. Inductance Bridge. Model 61. Power gupply.

3in aquare tronts					
$25 \mu \mathrm{~A}$.87/6	500 mA	89/6	30V a.c.*	$32 / 6$
$50 \mu \mathrm{~A}$.45/-	1 amp .	82/6	50 V a.c.*	2
50-0.50 $/ \mathrm{A}$	48/8	5 amp .	88/6	150V a.c.*	2/6
$100 \mu \mathrm{~A}$.48/6	15 amp .	82/6	300V a.c.*	12/6
100-0-100 $/ \mathrm{A}$	48/6	30 smp .	88/6	1 amp a.c.*	32/6
$500 \mu \mathrm{~A}$. 8916	50 amp .	82/6	5 amp a.c.*	32/8
1 mA	88/6	8 V d.c.	32/6	10 amp a.c.*	d2/6
1.0 .1 ma	.82/6	10V d.c.	32/6	20 amp .acc*	82/6
5 mA	82/6	20V d.c.	88/4	30 amp 2.c.*	32/6
10 mA	.88/6	50 V d.c.	32/6	50 amp. a.c. ${ }^{\text {c }}$	32/6
50 mA	82/6	150 V d.c.	82/6	VU meter	39/6
100 mA	.38/6	300 V d.c.	82/6		

MARCONI TEST EOUIPMENT
EX.MILITARY RECONDITIONED. TF 144G STANDARD SIGNAL GENERATORS, $85 k c / s-25 \mathrm{Mc} / \mathrm{a}, 225$, carr. 30/-. TF.885. VIDEO T.F. 195M. BEAT FREQUENCY OSCILLATOR $0-40 \mathrm{kc} / \mathrm{s}, 200 / 250 \mathrm{~V}$ a.c. 220 , earr. $30 / \mathrm{H}$. TF. 142 E . Distortion Factor Meter, carr. carr. 20/-. All Bbove offered in excellent condition fully teated and checked. TF. 1100 VALVE VOLT GETER, Brand New, 550 . T.F. 1267 TRANSMIBSLON TEST SET, Brand New. 275. TF.1371. Wide Band Milivolt Meter, 250.

Variable Voltage TRANBEDAMIIR

Brand new, guaranteed and carrlage paid.
High quality construction. Input $230 \mathrm{~V} 50-60$ cycles,
Output full variable from $0-260 \mathrm{~V}$. Bulk quantities available
1 amp - $55.10 .0 ; 2.5 \mathrm{nmp}-26.15 .0 ; 5 \mathrm{amp}-$ - 29.15 .0 ;
8 nmp - $814.10 .0 ; 10 \mathrm{amp} .-218.10 .0 ; 12 \mathrm{amp}$. 881 ; $20 \mathrm{amp} .-28 \%$.

AM/FM SIGNAL GENERATORS

Obcillator Tent No 2. A Migh quality precialom inatra
ment made for the minalatry by Airmec. Frequency cover. C.W./FM. Incor porates precision dial, level meter, preciaion attenuator $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Operation from 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. Size $12 \times 8 \frac{1}{2} \times 9 \mathrm{in}$ Supplied in brand new condition complete with all connectors fully tented. 845. Carr 20 /-

AVOMETERS

Supplied in excel lent condition, fully Complete with prods, leads and instructions. and Model 47A 19.19.6. P. \& P. 7/6 each.

AUTO TRANSFORMERS $0 / 116 / 230 \mathrm{v}$. Step up or step down. Fully shrouded

150 W. \&1.12.6, P. \& P. 3/-
$\begin{array}{lll}300 \mathrm{~W}, & 28.7 .0_{0}, & \text { P, \& P. } 3 / 6 \\ 500 \mathrm{~W} . & 8.10 .0, \text { P. \& P. } 6 / 6\end{array}$
$\begin{array}{cc}500 \mathrm{~W} . & 8.10 .0, \text { P. \& P. } 6 / 6 \\ 1,000 \mathrm{~W} . & 8.10 .0, \text { P. \& P. } 7 / 6\end{array}$

1,500 W. 88.10 .0, P. \& P. 8/6
3,000 W. $87.10,0$, P. \& P. $1 / 6$

MULTIMETERS for EVERY purpose!

LUEE 100 K Ω /VOLT GAB TEATER, Built-In meter pro tection. $0 / 5 / 2 \cdot 5 / 10 / 50$ $250 / 500 / 1.000 \mathrm{~V}$ $0 / 3 / 10 / 50 / 250 / 500$ $11,000 \mathrm{~V}$ a.c. $0 / 10 /$ $100 \mu \mathrm{~A} / 10 / 100 / 500$ MA/2-5/10A. 0/1K 1 B 18180 P 10 M
10м』. -10 to $49 \cdot 4 \mathrm{~dB}$ e18.18.0. P. \& P. 5/• LAFAYETTE 7 Range Supe Maltimete Volts 125 V . 1000 V . A.c. Volte 1.5V1000V. D.c. Current $25 \mu \mathrm{~A}-10$ Amp. Ohms. 0.15 Meg dB. -20 to +81 dB

TE-900 20,000 VOLT GIAMT
din. full view meter. colour scale, overload protection. $0 / 2.5 / 10$ $250 / 1.000 / 5,000 \mathrm{~V} \quad 2 . \mathrm{c}$ $0 / 25 / 12.5 / 10 / 50$ $250 / 1,000 / 5,000 \mathrm{~V}$ d.c. $0 / 50 \mu \mathrm{~A} / 110 /$
$100 / 500 \mathrm{~mA} / 10 \mathrm{~A}$ d.c. $20 \mathrm{~K} / 200 \mathrm{~K} / 20$ Mロ. \&15. P. \& P. 5\%

MODEL A8-100D. 100KR/VOLT Sin. in meter protection. $0 / 3 / 12 / 60 / 120 /$ $300 / 600 / 1,200 \mathrm{~V}$. d.c. $0 / 6 / 30 / 120 / 300 /$ 600 V a.c. $0 / 10 \mu \mathrm{~m} /$
$6 / 60 / 300 \mathrm{MA} / 12 \mathrm{Amp}$. $6 / 60 / 300 \mathrm{MA} / 12$ Amp;
$0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$; $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} /{ }^{2} \mathrm{M}$)

NEW MODEL $500.80,000$ O.P.V. with overload protection. Mirror scate
$0 / 0.5 / 2 \cdot 5 / 10 / 25 / 100$ $250 / 500 / 1.000 \mathrm{~V}$. d.c.
 $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~m} . \mathrm{s}$ 12 amp. i.c. $0 / 60 / \mathrm{K} 6$ Meg./60megohn 28.17.6. Post paid.
 ODDEL 250J. 2.000 O.P.V. $\quad 0 / 10 / 50 / 500 /$ $5,600 / 2,000 \mathrm{~F}$ $0 / 2$ mégohmi. 0/250 mA. -20 to +36 dB 49/6. P. \& P. $2 / 6$.

ADVANCE
 TEST EQUIPMENT

Brand new and bored in original sealed cartons
VM76. VALYE VOLTMETER R.F. measurements in excess of $100 \mathrm{Mc} / \mathrm{s}$ and d.c. measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.c. range 300 mV to 1 kV . A.c. range 300 mV to 300 V RMS. Resis tance $0.02-500 \mathrm{M} \Omega$. Price $£ 72$.
YM78. A.C. MILLIVOLT METER Transistorised. 1 mV to 300 V . Frequency $1 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$. Price 555.
VM79. UHF MILLIVOLT METER Transistorised, A.c. range 10 mV to 3 V . D.c. current range 0.01 μ / A to 0.3 mA . Resistance 1 ohm to 10 megohms. $£ 125$.
HIB. AUDIO SIGNAL GENERATOR $15 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$, sine or square wave. Price 530
JIB. AUDIO SIGNAL GENERATOR $15 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$. Price $£ 30$.
J22B. AUDIO SIGNAL GENERATOR As per JIB except fitted with output meter. $£ 35$
TTIS. TRANSISTOR TESTER £37.10.0.
Carriage 10/- per item.

MODEL TE-70, 30.000 O.P.V. 0/3/15/60/300/ $30 / 120 / 600 / 1.200 \mathrm{~V}$ $30 / 120 / 600 / 1,200 \mathrm{~V}$.
a.c. $0 / 30 \mu \mathrm{~A}$ A.c.
300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K} /$

MODEL TE-18. 20,000 O.P.V. $0 / 0 \cdot 6 / 30 / 120 / 600 /$ $1,200 / 3.000 / 6,000$. d.c. 1/6/30/120/600/1.200V. $0 / 60 \mu \mathrm{~A} / 6$ /60/600мA. $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$. Megohin
50.18.6. P. \& P. $3 / 6$.

MODEL ZQM TRANSISTOR CEECKER It has the fulleat capacity fo checking on A, B and Icc checking diodes, ete. Spec A:0.7-0.9967. B: $5-200$. Ico: 0 -50 microamps 0-5mA. Resistance for diode
Supplied conplete with Sppled conplete
 leads. 25.19.6. P.\&P. 2/6.

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Separate call and press to talk buttons applications. Beautifully fin shed in ebony. Supplied complete with batteries and wall brackets. 86.19 .6 . P. \& P. $3 / 6$.

BY SITTER Trangistorised Intercoms, Ideal for
 hup etc. 2 way For deak system. mountlag. Supplled complete with con. necting wire bat. teries, instructions, 2 station 89/6. P. \& \mathbf{P} 2/6. 4 station 86.18.6. P. \& P. $5 /-$

RECORDING HEADS

 Reuter detrack. As fitted to Collaro Mk. IV and studio Decks. High imp. record play back, low imp. erase. Brand new. 18/6 COSBIMCORD \& track heads. High imp recordiplayback 85%. Low lnip. erase $20 /-$. MARRIOTT $\&$ track head. High lmp. record/playback 85/-. Low Imp. erase e0/-

Nearly 200 pages siving full details of a comprehensive range of COMPONENTS, TEST ERUIPMENT COMMUNICA TION EQUIPMENTAND HI-F EIONIPMENT
Each section greatly enlarged and fully illustrated. Thousands of items many at bargain prices.
FREE DISCOUNT COUPONS VALUE 10/-

TIM MOMRONLY GRPR

UNR-30. 4-BAND COMMUNICATION RECEIYER
Covering $550 \mathrm{Kc} / \mathrm{B}-30 \mathrm{Mc} / \mathrm{s}$. Incorporatek variable BF0 for CW/BsB reception. Bullt in apeaker and phone jack. Metal cabinet. Operation $220 ; 240 \mathrm{~V}$. a.c. supplied brand new guaranteed with
instructions. $\quad 13$ GNS.

NEW LAFAYETTE SOLID STATE HAGOO RECEIVER 5 BAND AM/CW/SSB AMATEUR AMD HOR S5OKC/8 TO $150 \mathrm{KC} / \mathrm{s}$
F.E.T. front end 2 mechanical filters Huge dial Product detector Variable BFO Noise limiter S Meter 24 in Bandspread 230 V a.c./12V d.c. neg.
15in $\times 9$ in $\times 810$. Wt. 18 lb .

Carr. 10/-
TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering $650 \mathrm{~K} \mathrm{c} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{a}$ $0,15,20,40$ and 80 metres. 8 valve plus 7 diode circult. $4 / 8$ ohm ontput and phone jack 8SB-CW ANL Variable BFO 8 meter Sep. band apread dial IF $445 \mathrm{Kc} / \mathrm{s}$ Audio output $1-5 W$. Variable RF and AF galn controla $115 / 250 \mathrm{~V}$, a.c. Mains. Beautifully designed. Size: $7 \times 15 \times 10 \mathrm{in}$. WIth motruction
manual and service data 839.16 .0 . Carr. Paid.
TR10 Communication Type Headphones. Normally 5 . 19.6. OUR PRICE 43.15 .0 if purchased with above receiver.
LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new transistorised recelver covering not supplied) for fixed frequency operation. Incorporates 4 INTEGRATED CIRCUITS. Built in speaker and illuminated dial. Squelch and volume controls. Tape recorder output. 75 a nerial input. Headphone Jack. Operation

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
 9 transistors, 8 diodes, IHF musle power 30 W at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W Output $3-16 \Omega$. Separate L. and E. volume controls. Treble and bass control. stereo phone jack. Bruahed aluminium, gold anodleed extruded front pane with complimentary meta. ease. glze $10 t \times 3$? $\times 7$ Hin. Operation
$115 / 230 \mathrm{~V}, \mathrm{~A} . \mathrm{V} .28$. Carr. $7 / 6$.

GARRARD DECKS

Brand new and guaranteed.
1000 stereo
1025 mono
025 mono
1025 stereo
2025 TC less cart.
2025 TC stereo
SP25 Mk. II leas cart
Carr. $7 / 6$ each
Woodon Plinthy for Garrard Series 1,000 , $2,000,3.000$, ete., with persper cover. 84.10.0. P. \& P. $4 / 6$.

/230V. A.V. 288. Carr, 7/6
TRANSISTORISED FM TUNER
 HIGHOUASTOT
 tages. ${ }^{3}$ I.F. tuned discriminator. Ample output to feed Operates on 9V. battery. Coverage $88-108 \mathrm{Mc} / \mathrm{a}$. Ready built ready for use. Fantatic value for money. te.7.6. P. \& P, 2/6.
Stereo multifex adaptors 5 ent
HOSIDEN DHO4S 2-WAY STEREO

HEADSETS Each headpbone contains a
and
a
2 11
in Built ${ }^{3}$ in in individaal Built in iadividual $25-18,000 \mathrm{c} / \mathrm{s}$. W/th cable and stereo plug
\$0.10.6. P. $\$$ P. $2 / 6$.

STEAM or solid state

If your interest lies in last year's gear, or next year's... if you go for transmitting, receiving, reproducing, or the lot . . . if you're working on a tight budget, or an elastic one . . . the HOME RADIO Components Catalogue is a MUST! In its 256 pages, listing over 7,000 items (more than 1,300 of them illustrated) you can track down any component you're ever likely to need. At $7 / 6$, plus $3 /-p$. \& p. it's the best ever bumper book . . . and every copy contains 5 vouchers, each worth a shilling when used as directed. Send the coupon now with your cheque or P.O. for $10 / 6$. It'll be the best Christmas gift you've ever given yourself.

A Atlerry

 Christmas to all our Readers!Please write your Name and Address in block capitals

Name.
Address
\qquad

Home Radio (Mitcham) Lid., Dept. PE, 187 London Rd., Mitcham
CR4 2 Y0

THE TRANSISTOR THREATENED?

「N the two decades since the Americans Bardeen, Brattain, and Shockley invented the transistor, countless new and dramatic developments have occurred in the field of semiconductors. The material originally used, the rare element germanium, has given way to the more common material silicon, with drastic reduction in costs. Manufacturing techniques have advanced, so bringing about further economies, and also making possible a variety of active circuit devices closely related to the transistor, but endowed with certain features which allow each of them to make a marked individual contribution to progress in electronics technology.

Dissimilar in certain respects, such as construction, mode of operation and circuit function, all present day semiconductor devices do share a common physics background: all exploit the property of conduction through solid crystalline material by means of positive and negative current carriers.

But now a further discovery has been made that may revolutionise solid state technology. Another American, S. Ovskinsky, has discovered that non-crystalline substances possess the property of changing from high to low resistivity under certain conditions, and he has invented a microminiature two-way switching device based on this effect. The material used is an inexpensive amorphous glass substance and it is claimed that this device will have considerable advantages over the transistor, especially for computer and communications applications. Apart from cheapness of production, this new device is claimed to be more reliable than existing devices.

Professor Mott, director of the Cavendish Laboratory at Cambridge has described this as the newest, and most exciting discovery in solid state physics at the moment. Prof. Mott was speaking as a scientist of course, and it rests with the technologists to develop and prove this as a practical circuit element. There may be certain yet unseen snags in transferring this invention from the research laboratory to the production floor. There may also be a lack of enthusiasm from the semiconductor manufacturers if this newcomer seems likely to become a serious rival to the established transistor and diode. But the expansion of the computer industry and the widespread adoption of pulse techniques for control and communication purposes suggest there will be an ever growing demand for electronic switching devices in the future. Such commercial doubts are likely therefore to be quickly dispelled.

For the layman, it is difficult to contemplate a component that will outshine the transistor in efficiency, cost, and size. We can only wait and see.
F. E. Bennett-Editor

CONSTRUCTIONAL PROIECTS

METAL LOCATOR 16
SQUARE WAVE OSCILLATOR 24
SONIC FISH BAIT 38
STABILISED POWER SUPPLY 42
SPECIAL SERIES
BIONICS—3 30
GENERAL FEATURES
ZENER DIODES 50
PROBING THE OCEAN 54
INGENUITY UNLIMITED 66
NEWS AND COMMENT
EDITORIAL 15
MARKET PLACE 23
POINTS ARISING 36
BBC EXPERIMENTAL37
ELECTRONORAMA 40
BOOK REVIEWS 49
NEWS BRIEFS 49

Fig. I. Block diagram of the metal locator

OSCILLATOR CIRCUIT

The complete metal locator circuit appears in Fig. 2. Looking first at the search coil, this consists of two windings, L1 and L2, which are inductively coupled. Ll , tuned by fixed capacitor Cl and trimmer VCI, is intentionally left "floating" to reduce capacitive effects when the coil is brought close to non-metallic bodies. Also, 4-turn coil L1 has a low intrinsic value of inductance, so that any unavoidable stray capacitance changes will be swamped by the large values of Cl and VCl needed to bring L1 to resonance at the working frequency of 300 kHz .

Coupling coil L2 forms the collector load of common base oscillator TR1, while collector-emitter capacitor C4 introduces positive feedback, and trimmer VC2 acts as a fine frequency control for adjustment of the audio note when the metal locator is in use. A small proportion of the available output from TR1 emitter is tapped off by VRI, and this particular arrangement largely eliminates the tendency of one oscillator to "pull" and lock with the other when their frequencies are almost the same.
The combined mixer and reference oscillator TR2 is similar to that used in a superhet receiver, and in fact employs a standard transistor medium-wave
oscillator coil (L3, L4, L5), tuned by C8 to a fixed frequency of about 300 kHz . Inductive coupling between L3 and L4 provides self-oscillation, and the reference frequency, while the signal derived from the search oscillator is fed to the base of TR2 and is amplified. Both frequencies are combined at the collector of TR2, but instead of the usual i.f. transformer, a simpler arrangement of a fixed resistor and a capacitor (R7 and C7) suffices to filter out the two high frequencies and leave the resulting difference or beat frequency.

The two remaining stages, consisting of components associated with TR3 and TR4, merely serve to amplify the audio beat note to a level adequate for headphone listening in a noisy environment.

CONSTRUCTION

A 6 ft length of nylon curtain rail is bent round to form a 23 in diameter circular search coil former. Although not particularly rigid when unbraced, the coil former is tough and light, and can be prevented from vibrating by a string stay. The stay also serves as a shoulder strap when transporting the folded metal locator to and from a site.

Fig. 2. Circuit diagram of the metal locator and connection details for the oscillator coil and transistors

Fig. 6. Component layout and wiring details and drilling template for the circuit panel contained in the handle of the metal locator
$R I N$

Potentiometer

VRI 100Ω miniature horizontal skeleton preset (Body size $0.5 \mathrm{in} \times 0.37 \mathrm{in} \times 0.12 \mathrm{in}$)

Capacitors			
*CI	1,000pF polystyrene	125 V	$0.6 \mathrm{in} \times 0.25 \mathrm{in} \mathrm{dia}$
	$0.047 \mu \mathrm{~F}$ polyester	250 V	$0.45 \mathrm{in} \times 0.17 \mathrm{in} \mathrm{dia}$
	3.000 pF disc ceramic		$0.1 \mathrm{in} \times 0.5 \mathrm{in} \mathrm{dia}$
	470pF polystyrene	125 V	$0.4 \mathrm{in} \times 0.2 \mathrm{in} \mathrm{dia}$
	$0.047 \mu \mathrm{~F}$ polyester	250 V	$0.45 \mathrm{in} \times 0.17 \mathrm{in} \mathrm{dia}$
	$0.047 \mu \mathrm{~F}$ polyester	250 V	$0.45 \mathrm{in} \times 0.17 \mathrm{in} \mathrm{dia}$
	$0.047 \mu \mathrm{~F}$ polyester	250 V	$0.45 \mathrm{in} \times 0.17 \mathrm{in} \mathrm{dia}$
	1,000 pF polystyrene	125 V	$0.6 \mathrm{in} \times 0.25 \mathrm{in} \mathrm{dia}$
	$100 \mu \mathrm{Felect}$.	15 V	$0.75 \mathrm{in} \times 0.3 \mathrm{in} \mathrm{dia}$
	$0.1 \mu \mathrm{~F}$ polyester	250 V	$\begin{aligned} & 0.53 \mathrm{in} \times 0.41 \mathrm{in} \times \\ & 0.26 \mathrm{in} \mathrm{dia} \end{aligned}$
CII $1 \mu \mathrm{~F}$ elect. C12 $16 \mu \mathrm{~F}$ elect.		15 V	$0.5 \mathrm{in} \times 0.12 \mathrm{in} \mathrm{dia}$
		15 V	$0.6 \mathrm{in} \times 0.22 \mathrm{in} \mathrm{dia}$
$\mathrm{Cl} 31 \mu \mathrm{Felect}$.		15 V	$0.5 \mathrm{in} \times 0.12 \mathrm{in} \mathrm{dia}$
$\mathrm{Cl} 416 \mu \mathrm{Felect}$. * CI, C4, C8 are \pm		15 V	$0.6 \mathrm{in} \times 0.22 \mathrm{in} \mathrm{dia}$
		\% t	yp

Trimmer Capacitors
VCI 500 pF
$0.94 i n \times 0.62 i n \times 0.18 i n$
VC2 140pF 0.81 in $\times 0.38$ in $\times 0.25 i n$ Both VCI and VC2 are "postage stamp" type

Inductors
LI Wound with $14 / 0076$ p.v.c. covered wire (see text)
L2 Wound with $7 / .0048$ p.v.c. covered wire (see text)
L3, L4, L5 M.W. oscillator coil type P50/IAC (Weyrad)

Transistors
TRI. TR2 2N2926 (orange grade) (2 off)
TR3, TR4 OC7I (2 off)

Switch

SI Single-pole changeover miniature toggle switch

Plug and Socket
PLI and SKI Jack plug and socket open circuit jack type J 2 and plug $\frac{1}{4}$ in dia, 2 contacts (Bulgin)

Miscellaneous
Headphones 2 to $4 \mathrm{k} \Omega$ d.c. resistance
Nylon curtain rail 7 ft (Swish) (see text)
Plywood $\frac{1}{4}$ in thick, I sq ft
Plywood $\frac{3}{6}$ in thick, 8 in $\times 4$ in
Dowel rod $\frac{3}{4}$ in dia. 3 lin long
S.R.B.P. sheet 6 in $\times \frac{3}{4}$ in $\times \frac{1}{16}$ in

Battery connectors, plastics wheel, nuts and bolts (see text)
will help to hold the dowel in place. Take care to keep the slot in the dowel free from glue, and facing towards the interior of the handle.

The $\frac{3}{8}$ in diameter plastics screw used to clamp the dowel and discs on the prototype was taken from a broken toilet seat; it is important to avoid the use of metal attachments (bolts) at the search coil end of the metal locator. Drill the discs and flat end of dowel to suit the size of clamping screw employed.

Drill holes in the handle to take S1 and SK1, in the positions shown in Fig. 4, and make up a battery box from three pieces of s.r.b.p. sheet or plywood. All wooden parts should be finally sandpapered and given one or two coats of protective varnish.

WINDING THE SEARCH COIL

Small holes can be drilled through the nylon coil former to take start and finish leads of L1 and L2. L1 consists of four close wound turns of $14 / \cdot 0076$ p.v.c. covered wire, while L2 is a single turn of $7 / 0048$ insulated wire, the latter with ends left long enough to go up the slot in the dowel and into the handle (shown colour coded yellow in Fig. 2). Note that the single turn L2 is wound in the upper channel of the curtain rail, away from L1. It is advisable to fit protective sleeving to all coil lead-outs; L1 turns should be covered with a layer of plastics insulating tape to prevent movement.

Obtain a small plastics box, or make one up from wood, s.r.b.p. or polystyrene sheet glued at the edges, to take Cl and VCl . Two holes are drilled at one end of the box to admit L1 leads. There are holes also to take VCl mounting screw, and a trimming tool. To mount the completed box assembly on the search coil

Layout of components mounted inside the handle

Drill a $5_{\frac{7}{8}} \mathrm{in} \times{ }^{18}$ in piece of s.r.b.p., from the full size plan given in Fig. 5. Prior to mountirg components, fit a lin long 8B.A. screw to trimmer VC2, in place of the existing adjuster screw, and bend up one of the trimmer solder tags. Also, at this stage, use the circuit panel as a template to mark out and drill holes in the handle for VC2 screw, and the two 6B.A. countersunk mounting screws.

former, carefully make a hole to clear VCl mounting nut, in the top of the two short rail sections and glue the box to the rails in the position shown in Fig. 2.

If it is intended to use the search coil submerged in several inches of water, when exploring river bed or pond, for example, then the box, VCl mounting screw and nut, and L1 lead entry holes must be thoroughly waterproofed with a generous layer of epoxy resin glue, before fixing to the search coil former. The trimming tool hole can be rendered waterproof with a small rubber bung.

CIRCUIT PANEL

In order to accommodate the complete circuit panel in the space provided by the hollow handle, components used must not be much larger than those employed in the prototype. It is often the case, especially with capacitors, that components of near identical electrical specification will differ in size, and for this reason certain dimensions are included in the component list, to assist the reader.

After riveting the two turret tags to the panel, progressively mount all components and complete underside wiring. VC2 only needs to be initially secured to the circuit panel by blobs of solder on its push-through tags. Ensure that one of the oscillator coil can tags is wired to the positive circuit rail for screening purposes, and that the polarity of electrolytic capacitors is correct.

FINAL ASSEMBLY

Mount S1 and SK1 in the handle, and solder a 4B.A. nut to the lug on SK1, to take the lid fixing screw (see Fig. 3). Wire the battery connector to S 1 and leave short red and blue leads for later connection to the circuit panel turret tags.

Slide the plywood discs on to the search coil former and clamp the dowel between the discs. Take the L2 leads and thread them into the handle, then retain the leads in the dowel slot with a thin smear of glue.

Referring to Fig. 3, two plywood discs are slotted on to the search coil former, and a wooden dowel stick is clamped between the discs by a large plastics screw and nut. Leads from L2 are taken up the stick, inside a groove, to the handle, which houses the circuit panel, battery, on/off switch, fine frequency control, and a headphone socket (Fig. 4). The handle is made from a hollowed out sandwich of plywood,

Close-up view of the search coil fixing

Fig. 7. Sensitivity response across the search coll

Fig. 8. Method of pinpointing location of small metal object

Next, install the circuit panel on stand-off spacers inside the handle, and connect up yellow panel wires to L2 leads, green and blue wires to JK1, and the red battery wire to its turret tag. A small plastic disc or gear wheel should be fixed between two 8B.A. nuts on the VC2 screw.

TESTING OPERATION

To test for correct circuit action, connect a milliameter between the blue battery wire and its turret tag, fit a battery, and switch on S1. A meter reading of about 3.75 mA will show that there are no serious faults. Set VR1 to half track and insert the headphone plug in SK1. A hiss should be heard with perhaps a low level whistle. Rotate VC2 knob fully clockwise (maximum capacitance), then turn back half a turn. With a trimming tool, screw down VC1 slowly, and listen for a succession of whistles produced by oscillator harmonics. Near the maximum capacitance position of VCl a much louder whistle should occur, indicating that L 1 is tuned close to the reference oscillator frequency.
Now with the search coil laid flat on the ground, away from metal objects, it will be found that a null point-where the audible note drops in pitch to zero frequency and then begins to rise again-can be obtained by adjusting VC1 and trimming VC2. Without moving the search coil, bring a metal object into the field of the coil and listen for a note of rising pitch.
It only remains to attach the handle lid by its screws and fit the search coil string stay. Drill a small hole in the top of the search coil former at a point opposite the plywood discs, also drill a hole in the dowel just below the handle. Set the dowel at an angle to the search coil which suits the height and arm length of the user, then tie plastics sleeved string between the search coil and the dowel.

HINTS ON METAL LOCATION

Best sensitivity results from having a steady low frequency note in the headphones, which is caused to increase in pitch as the search coil is brought near metal. As a given beat frequency occurs twice, on
each side of the zero frequency null point, it is important to select the right one. First obtain zero frequency with VC1, then unscrew VC2 towards minimum capacitance, so that the frequency of the search oscillator is slightly above that of the reference oscillator.

A sudden decrease of beat frequency will be observed when the search coil is lowered through the last $\frac{1}{2}$ in before touching the ground. It can be easily verified that this phenomenon is not wholly due to capacitive effects, but that the ground is acting as a "lossy" insulator. Suspend a large sheet of p.v.c. from the ceiling, positioned well away from all metal objects, and then bring the search coil towards the plastic, whereupon a similar decrease of frequency will be experienced. The "lossy" insulator effect is not too troublesome, and will only reduce sensitivity when searching over rough ground or in long grass.

It is possible to locate metal objects when they are submerged in fresh water, but sea water-being a good conductor-will affect the inductance value of the search coil. Nevertheless, it is still feasible to search for metal on a dry beach, or above the high water mark.
Despite the large diameter of the search coil, small buried objects can be located precisely by making use of the peak of maximum response which is situated near the inside edge of the search coil, see Fig. 5. The method given in Fig. 6, of first sweeping the edge of the coil across the object, then making a second sweep at 90 degrees to the first, will reveal the exact point of intersection.

As a rough guide to sensitivity, a 5 in diameter 9 ounce brass ashtray should be detected under some 15 in of soil, and something the size and weight of a motor car body will give a clear response at a distance of more than 9 ft when submerged in fresh water.

BATTERY CHARGER

The demand for small battery chargers for the more common alkaline cells now being used more frequently in transistor radios, cameras, tape recorders, etc. has long been needed to offset the relatively high cost as well as the superior performance obtainable with these types of batteries.
The Pencel battery charger from DCB Instrument and Lighting Co., Austin House, Croft Road, Crowborough, Sussex, is one of many now appearing on the market designed specially for the more standard type of alkaline battery. Designed to cover the type of battery used in domestic equipment, it is claimed that 1.5 V cells can be recharged between ten and thirty times, depending on operational conditions.

The Pencel charger is very neatly finished and as our photograph shows the cells are simply pressed into a holder mounted on the top of the unit. The charger costs 79 s 6 d , including four alkaline batteries which should soon pay for itself in increased battery life/hours.

TEST METERS

A neat and versatile pocket test meter has just been introduced by West Hyde Developments Ltd., 30, High Street, Northwood, Middlesex.

Called the Tech Test Meter it costs only 45 s including test leads, has 15 ranges for measuring 0 to 1 kV a.c./d.c. and 0 to 100 kilohms. The meter movement has jewelled bearings and has a sensitivity of 1,000 ohms per volt.

The low cost of this meter means that it is possible to leave a number of multi-meters in circuit on the bench instead of using a more expensive, single range meter.

A more expensive, sensitive and professional multimeter is the Kelvo 6E Electronic Multimeter. This meter incorporates a self contained battery-operated d.c./a:c. amplifier enabling measurements to be made with an accuracy of ± 1 per cent.

The instrument has 26 voltage ranges, permitting measurements from 1 mV f.s.d. to 1 kV d.c. and a.c. The sensitivity of the meter is 1 megohm per volt at 1 mV to 10 V and 10 megohm per volt at 30 V to 1 kV . There are 28 current ranges from $1 \mu \mathrm{~A}$ to 3 A d.c. and a.c. Also, there are six resistance ranges for measurements between 0.2 ohm and 50 megohms, and six capacity ranges from 50 pF to $5,000 \mu \mathrm{~F}$.

The meter is fitted with a sensitive and effective automatic electrical cutout which operates independently of the condition of the batteries, protecting the instrument from damage if subjected to overload.

It is claimed that under continuous 24 hour usage the batteries will enable the instrument to operate satisfactorily for approximately two months.

The Kelvo 6E multimeter is marketed by Smiths Industries Ltd., Kelvin House, Wembley, Middlesex, and cost $£ 72$.

RESEARCH INSTRUMENT

Designed for Industrial Laboratories and University Research Departments is the Universal Digital Instrument type EU-805 from Daystrom Ltd., Bristol Road, Gloucester.

The Heath 805 Universal Digital lnstrument is a multi-purpose instrument capable of many high accuracy standard measurements and has the adaptability and versatility required of modern research instrumentation. Some of the functions include events counter; frequency meter; integrating digital voltmeter; ratio meter; time interval meter and voltage integrator.

The unit incorporates a modular design based on 16 plug-in cards using TTL Integrated Circuit. This design enables card additions for new functions to be added, protecting it against obsolescence.

In both academic and industrial use it is intended as a companion to the Heath Analogue Digital Designer EU-801-A, a device for teaching digital logic and instrumentation.

FILMS FOR CLUBS AND SCHOOLS

Of interest to schools and clubs are two films from the Central Office of Information and Mullard Ltd.

The Mullard film is entitled Mullardability, is in colour, runs for 9 minutes and is of 16 mm gauge.

The film begins with illustrations of Mullard's capability to massproduce vast ranges of electronic components, from television picture tubes to micro-electronic circuits. Finally the film deals with the Mullard Research Laboratories and its study and development of new materials, systems and techniques of the future.

Copies of the film are available on free loan from Mullard Film Library, Kingston Road, Merton Park London, S.E. 19.
The COl film is entitled Movi= from Computers, runs for 20 minutes and is of 16 mm gauge. The film contains extracts from existing com-puter-generated industrial and research films. The use of computers in mathematics, physics and engineering, and also the use in flight training techniques are shown.

The film is available from the Central Film Library, Government Building, Bromyard Avenue, Acton, London, W.3. The hire charge is $£ 1$ for one day only (reduced charges for additional days). In addition to the hire charge there is a surcharge of 1s 6 d per 16 mm reel to cover despatch and certain other handling costs for the first day of hire only.

The current edition of the Films in Industry catalogue is also available from the Central Film Library, price 4s 6d post free.

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then $b=$ made direct to the firm concerned.

Pencel battery charger from DCB Instrument and Lighting

Heath EU-805 Universal Digital Instrument from Daystrom

Kelvo 6E meter marketed by

IIST OSCIILIATOR

This is the concluding project in our five-part series featuring the integrated circuit linear amplifier Type SL701C

The expected waveforms are drawn in Fig. 2. If we assume that immediately we switch on, the output c goes to +2 V , then the input b will go to +1 V , and Cl will charge up (through R2) from zero towards +2 V . When the input a just exceeds the +1 V of input b, the circuit will rapidly switch to the other state of c at -2 V and b at -1 V . Cl then discharges from $+1 V$ towards -2 V and the circuit reverts to its previous state when a now reaches -1 V ; and so on. The a waveform is therefore of an exponential form. The mark to space ratio of the waveform should be one to one, and the frequency is given by:

$$
f=\frac{1}{2 \cdot 2 C_{1} R_{2}} \mathrm{~Hz}
$$

Fig. 2. Waveforms associated with Fig. I arrangement

| 4 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC |
| :--- | :--- | :--- |
| CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING | . .

7-tranaiator fully tunable M.W.--L.W. superhet portablewith baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to huilto. Sizes: $12^{n} \times 8^{*} \times 3^{n}$
MAINB POWER PACK KIT: $9 / 6$ extra.
Price $\mathbf{\$ 5 . 5 . 0}$ plus $7 / 6$ p. \& p. Circuit $2 / 6$ FREE With Parts.
THE ELEGANT SEVEN MK. III (350 mW output) 7-tranaistor fully tunable M.W.-L.W. poitable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board-back printed for fooprool construction

Price $\mathbf{4 . 9 . 6}$ plus $7 / 6$ p. \& p . Circuit $2 / 6$ FREE WITH PARTS.
 50 WATT AMPLIFIER A.C. MAINS 200-250V An extremely reliable general purpose valve amplifier with six electronically mixed inputs. Suitable for use with: mics, guitars, gram, tuner, organk, etc. Separate bass and treble controls.
Price 27 gins. pius 20/- p. \& p.
XIOI IOW SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP
8pecifications: RMS Power Outpul (into 3 ohtıs speaker): 10 patts continuous (sine wave), 13 watts music power. Sensilicily (for rated output): lnIV into 3 K ohms (0.33 microoutput 1.50 . Frequency Response: Minus JdB points 20 Hz and 40 Khz . Speaker: $3-4$ ohus ($3-15$ ohms may be used). Supply rollage: 24 V (l.c. (a) 800 mA ($6-24 \mathrm{~V}$ may be used).
Control assembly: including resietors and capacitors

1. Volume: PRICE 5/

2. Treble: PRICE 5/-

Price $49 / 6$
3. Comprehensive bass and treble: PRICE 10/-.
plus 2/6 p. \& p.
Power Supplies for the X101

THE CLASSIC

Controls: Selector switch. Tupe speed
equalisation switch $\{33$ and $7!$ j.p.8.). Volume. Treble. Bass. 2 position seratch filter and 2 position rumble fiter.
Specffaction: Sensitivities for 10 watt output
at 1 KHz . Tape head: 3 mV (at 3 3 i.p.s.).
Mag. P.U.: 2 mV. Cer. P.U.: 80mV. Radio: 100 m
Aux.: 100 m V. Tape/Rec. oufput: 100 mV . Equalisation for cath input is correct to within $\pm 21 \mathrm{~B}$ (R.1.A.A.) from 20 Hz to 20 KHz . Tone confrol range: Bass ± 13.5 at 60 Hz . Treble $\pm 14(60$ at 15 KHz . Tolal disfortion: (for

The RELIANT IOW SOLID-STATE HIGH QUALITY AMPLIFIER Specifcation: Oupur: 10 watts R.M.S. Sine-wave; 13 watts R.M.N. Music-power. Output impedance: 3 to 4 ohms. /npuls: 1. Xtal mic 10nv; 2. (iram/adio 250ml'. Tone coudrols: Treble control range $\pm 12 \mathrm{~dB}$ at 10 KHz : Bass control range $\pm 13 \mathrm{~dB}$ at 100 Hz . Frequency response (with tone controls central): Minus 3uB points are
20 Hz and 40 KHz . Signal fo noise ratio: better than - 60 llB . Transistors: 4 silicon 20 Hz and 40 KHz . Signal ro noise ratio: better than -60 ClB . Transistors: 4 dilicon
Planar type and 3 Germanium type. Mnins input: $220-250 \mathrm{~V}$, ic. Si:e of chnssis: Planar type and 3 Germanium type. Mfninz input: 220-250V a.c. Siie of chassis: instruments, all maket of pick-upe and mikes. Separate base cunt tretble lift control instruments. allmaket of pick-ups and mikes. Separate base aut tretre lift contiol suit: Price $14 / 6$ plus $1 / 6 \mathrm{p}$. \& p. Crystal mike to suit: $12 / 6$ plus $1 / 6 \mathrm{p}$. \& p. PRICE 25.5 .0 plus $5 i-$ p. \& p.

THE VISCOUNT

Integrated Eigh Fidelity Transistor Stereo Amplifler
8PECIFICATIONS: Output: 10 watts per channel into 3 to 4 ohms speakers (20 watts monoral). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. Sensitivities: All inputs 100 mV into 1.8 M ohno. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{db}$. Tone controls: Tone controls flat Baxandall type), eeparate basa and ireble controls. Treble 13 db lift and cut at 15 KHz . Bass 15 db lift and 25 db cut at 60 Hz . Volume controls: Separate for each channel. AC Majns input: $200-240 \mathrm{v}$. $50-60 \mathrm{~Hz}$. Size $12 \frac{3}{3} \times 6 \times 2 \mathrm{jin}$. in teak-finished
case. Built and tested.

PRICE $13 \frac{1}{2}$ gins. Postage \& Packing $7 / 6$ extra

forpuith, rasy ralitide salitiding

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear
of copper soldering iron bits.
SIZE 5

STEREOGRAM CABIRET £19 An elegant stereogram Cabinet in modern Veneered Mahogany and cloth covered Front Pansl
black leatherette side panels Dimensions: $52^{\prime \prime}, 17 \frac{1}{2}^{\prime \prime}, 12^{\prime \prime}$. Speaker positions for Twin $10^{\prime \prime}, 5^{\prime \prime}$ Speakers

OTHER MODELS-SEND FOR LIST

SPEAKERS $6 / 6$

$2^{\prime \prime}-75 \Omega .2 \frac{1}{2}{ }^{\prime \prime}-35 \Omega$. P. \& P. $2 / 6$
ACOS MICS. $35 /-$ STANDARD
STICK MIC. 2gns. P. \& P. 3/6 ASSORTED CONDENSERS
$10 /$ for 50 . P. \& P. $7 / 6$ ASSORTED RESISTORS

10/- for 50. P. \& P. 4/6
ASSORTED CONTROLS
$10 /=$ for 25 . P. \& P. $7 / 6$
TRANSISTORS
MULLARD MATCHED
OUTPUT KIT
9/- OC8ID-2 OC8I's.
P. \& P. FREE.

FERRITE RODS 3/6
$6^{\prime \prime}, 8^{\prime \prime} \times \frac{3^{\prime \prime}}{8}$ complete with LW/MW COİLS. P. \& P. FREE.

I7in.-£ 11.10 .0 Carr. 30 19in. SLIM-LINE FERGUSON 24 gns. TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS FREE ILLUSTRATED LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS SIZES AND PRICES DEMONSTRATIONS DAILY

TRANSISTOR CHASSIS DI 6 Transistors, LW/MW. Brand New. Famous British Manufacturer (LESS SPEAKERS TRANSISTOR RECORD PLAYER CABINETS $19 / 6$ P. \& P. $7 / 6$

SINGLE PLAYERCABINETS 15/6. P. \& P. 7/6.
TRANSISTOR CASES $19 / 6$. Cloth covered, many colours Size $9 \frac{1}{2}{ }^{*} \times 6 \frac{1}{2}$ " $\times 3 \frac{1}{1}$ ". P. \& P. 3/6 Similar cases in plastic $7 / 6$.

AUTOCHANGERS $\mathbb{C 8 . 1 9 . 6}$
Garrard 3000 with Sonotone $9 T$ HC. D/S Stereo Cartridge.
DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Phone 01-478 6001-2-3

Stamp for Free List.

SQUARE WAVE OSCILLATOR CIRCUIT

Fig. 3. Complete circuit diagram for the square wave test oscillator

CONSTRUCTIONAL DETAILS

COMPONENTS . . .

Resistors

R1	$12 \mathrm{k} \Omega$
R2	$5.6 \mathrm{k} \Omega$
R3	$12 \mathrm{k} \Omega$
R4	$12 \mathrm{k} \Omega$
R5	$3.3 \mathrm{k} \Omega$
R6	680Ω
R7	$1.2 \mathrm{k} \Omega$
All	$10 \% \cdot \frac{1}{4} W$ carbon

Capacitors
CI $\quad 0.047 \mu \mathrm{~F}$ ceramic or polyester
39pF ceramic
1,000pF ceramic
1,000pF ceramic

Fig. 4. Layout and wiring for the oscillator

Miscellaneous

ICl Linear integrated circuit (d.c. coupled amplifier - SL70IC) (available direct from the makers: The Plessey Co. Ltd., Components Group. Cheney Manor, Swindon, Wiltshire. Price: 18s)
VRI $10 \mathrm{k} \Omega$ carbon potentiometer
D1, D2 IN914, IN916 (2 off)
SKI $\quad 4 \mathrm{~mm}$ ' socket and matching plug or coaxial socket and plug (Radiospares)
Die-cast box $4 \frac{3}{4}$ in $\times 3 \frac{3}{4} \mathrm{in} \times$ lin (Electroniques 46R.043A)
Perforated s.r.b.p. 3 in $\times 2$ ifin
Three insulated feed-through terminals
Control knob
6BA screws and nuts

Fig. 5. Some other passible applications of the operetional amplifier: (a) integration; (b) summation; (c) Icw pass filter; (d) limiting; (e) backlash circuit

THE PRACTICAL CIRCUIT

The practical circuit is shown in Fig. 3, and there are several additional points worthy of explanation.

The output is limited by the diodes D1, D2 to $\pm 0.6 \mathrm{~V}$, which keeps b within the permitted value $\overline{\text { of }}+0.5 \mathrm{~V}$ for correct common mode working of the differential input stage. The peak output current from the amplifier through the diodes is limited in a positive direction by the 680 ohm resistor R 6 .

The Plessey SL701 integrated circuit is intended primarily for linear applications, rather than as a switching comparator, and therefore exhibits some hysteresis in its switching characteristics (like a Schmitt trigger) so that the output waveform from a circuit like Fig. I would be a rectangular waveform of about three to one mark to space ratio (rather than a square waveform as we would expect). This could be adjusted by returning R 1 to a voltage rail slightly offset from earth, but this would mean a potential chain of two resistors. For our application we have chosen to include a resistor in series with the timing capacitor as an alternative approach. This ensures that the mark to space ratio is almost one to one, and for our particular circuit values, this measure increases the frequency from the 800 Hz calculated from the formula to about 1 kHz .

PERFORMANCE

The maximum output is about IV peak to peak, spaced equally about earth potential, and has a rise time of $0 \cdot 2 \mu$ seconds which is much faster than that required for audio applications. An amplifier with a bandwidth of 1.5 MHz would degrade this edge to $0 \cdot 3 \mu$ seconds.

Since the output impedance of the circuit depends on the setting of the output potentiometer VRI and is in any case 1 kilohm at best, any capacitive load will degrade the edge. For video testing the output lead should be kept as short as practicable, while for audio use the rise time will be adequate in all positions of the potentiometer, provided the capacitive loading does not exceed 50 pF .

CONSTRUCTION

Construction is detailed in the diagram of Fig. 4 and should present no difficulty provided a similar layout is followed.

All components except R7, SKI and VR1 can be mounted on a piece of perforated s.r.b.p. $3 \mathrm{in} \times 2 \frac{3}{8} \mathrm{in}$. Holes are drilled in the base to accommodate VR1, SK 1, the three feed through supply terminals and the mounting screws for the board. Spacers are used under the board to prevent shorting between it and the base.

It is essential to use reasonably fast diodes in order to maintain the fast rise time inherent in the circuit, but the type specified is available from a number of suppliers.

OTHER APPLICATIONS: USING THE
 I.C. IN TRUE OPERATIONAL MODE

In this series of five articles based upon the SL701C integrated circuit we have considered some of the many possible ways of using this high gain amplifier, but ironically we have not in fact considered any of the analogue computing techniques which would use the amplifier in a true operational mode. An operational amplifier is one which takes the input signal and operates on it in a known mathematical way. Some of the analogue computing circuits which can be realised with a high gain amplifier are given in Fig. 5.

Fig. 6. Further applications using more than one operational amplifier: (a) square and triangular generator; (b) selective amplifier; (c) low frequency oscillator

Integration

We can, for example, integrate a square wave to obtain a triangular waveform.

Summation

We can add or mix a number of inputs to provide a combined output.

Low pass filter

This circuit could be used as a scratch filter for an audio amplifier.

Limiting

This circuit uses diodes to provide heavy negative feeđback to limit an input signal to $\div 0.6 \mathrm{~V}$.

Backlash circuit

This can be used in a similar fashion to a Schmitt trigger.

If we are more ambitious we can use several integrated circuits, and projects such as Fig. 6 become possible.

Square and triangular waveform generator

By combining an integrator and a backlash circuit we can produce a square and triangular waveform
generator relatively simply. We could even shape the triangular waveform with yet a third circuit, to produce a sinewave.

Selective amplifier

Two integrators and an inverter can be used to form a frequency selective amplifier.

Low frequency oscillator

By adding positive feedback to the selective amplifier, this can be made into an oscillator which will work over a frequency range from seconds per cycle (heavy negative feedback sets the d.c. conditions and autputs can be directly coupled) up to about 20 kHz for the Plessey amplifiers.

By using a fourth integrated circuit in a peak amplitude detector (not shown) the distortion of the arrangement can be kept down to $0 \cdot 1$ per cent. Using variable resistors and switched capacitors this circuit can give us a two phase oscillator from 2 Hz to 20 kHz , and, with appropriate switching, a selective amplifier covering the same range with a variable, known Q . This shows the range and versatility of the analogue approach.

But an instrument such as this must wait until we can afford to use four integrated circuits in one constructional project, and for the moment we must be content to incorporate the odd single integrated circuit. We hope that these five articles have been of some help in this respect.

BY G.c.BROWN

M.S.H.A.A., A.M.R.S.H.

LAST month we examined the basic conditional reflex response as exhibited by some animals, and considered the possibilities for its synthesis. We shall discuss now the form which the hardware will take for the demonstration of this simple learning, also how it may be interconnected with the existing circuitry mentioned in the last article. There are in fact numerous circuit arrangements which will "fit the bill", but we shall deal with just one relatively simple example, this however will work quite successfully in our model.

LEARNING CIRCUIT

It will be remembered from our earlier "black box" hypothesis of a learning circuit that only a very• few building bricks were utilised; i.e. a short term memory to extend S_{n} for a period of time to allow for coincidences with S_{s}, a differentiator for S_{s}, a means for summing the coincidences, and a few gates to route pulses at the correct times. A look at Fig. 3.1 will disclose just how simple the circuit really is. There are a few additional items of course such as the bistable flip-flop and the Schmitt; these however provide certain improvements and will be explained later on. Fundamentally, the results from a circuit without these extras would be very similar, in that it would exhibit the characteristics we are looking for.

The present circuit configurations of the model demand that the learning section be rather more digital than analogue, and so the basic schematic diagram has been tailored a little to meet this need. The reader will notice at once that our use of the term "differentiator" has been stretched considerably, so far in fact as to include in this instance a monostable! However, there is a reason for this.

LONG OVERLAP PERIOD

Look at Fig. 3.I again. Imagine that the neutral stimulus has just occurred, and suppose now that the specific stimulus appears. Now if we are going to achieve any useful summing action during the overlap period of the specific and neutral stimuli, a differentiator using a capacitor of massive proportions would be required. It needs a while for us to appreciate this situation-in electronics we are used to things happening at enormous speeds: in this particular case though, everything has slowed right down and we are dealing with quantities which occur at rates we could comfortably count on our fingers.

The requirement then for our differentiator seems to be not thal it chops off a very thin "slice" from the beginning of each S_{5} event, but that it takes a good sized chunk. If we make it behave in this way we are now the possessors of a very sloppy differentiator indeed, however this is of ro concern

The output waveiform from this version naturally has none of the slender proportions of that seen from the normal type, and so it was decided that it might be as well to dispense with it altogether and use a monostable instead. This we have done. And where the "chastity" of the nice neat spikes from a normal differentiating circuit would have meant summing several hundred repetitions of the specific stimulus during the extension of S_{n}, we now need only a few.

CIRCUIT INTERCONNECTIONS

So that the reader can appreciate how the learning circuit is interconnected with the existing hardware, the relevant sections of the reflex circuitry are reproduced again in Figs. 3.2 anc 3.3.

Fig. 3.I. The simple learning circuit. This is interconnected with the sensor and reflex sections of Fig. 2.4

Fig. 3.2 Part of Fig. 2.4 with additions to permit extraction of the neutral stimulus

Fig. 3.2 shows the method for extracting the neutral stimulus S_{n}.

The specific stimulus S_{s} is picked-off direct at the tactile probe in the reversing monostable indicated in Fig. 3.3; a diode D9 has been included here, the purpose of which will be seen shortly. A further connection is also made to the other side of the reversing monostable for use when the model has "learnt" a particular combination of stimuli-this will be discussed later.

Fig. 3.3 Part of Fig. 2.4 with modifications to permit extraction of the specific stimulus and application of the "learnt" signal

OPERATION

Assuming now that all the necessary connections have been made between the reflex and "learning" sections of the model, we are now in a position to see how the circuits operate and interact with each other.

If a neutral stimulus (light) is applied by way of the photo-transistors in the reflex section, then a positive pulse will pass via either diode D1 or D2 to turn off transistors TR1a and TR1b of the extension mono-

Stable. This monostable will now turn over and hence TR2 collector will become positive, resulting in one side of the summer gate being opened. The extension monostable will remain in the quasi-stable state for approximately 60 seconds. If the tactile sense is stimula ted by way of the probe in the reflex section, then a positive pulse will be fed via diode D7 resulting in transistor TR7 of the differentiator monostable being switched off. Hence this monostable turns over and produces our so-called "differentiated" pulse which in fact lasts about 1 second.

The collector of TR8 being connected via R8 to the other side of the summer gate hence causes the base of TR4 to go positive, opening this side of the gate. Now if the stimulus S_{n} occurs any time up to 60 seconds before S_{s}, then the result of their coincidence, or overlap, will cause the common collector point of the summer gate to go negative (i.e. both sides of the gate opened).

Diode D5 will now be forward biased and capacitor C3 will commence charging towards the negative rail potential. This capacitor thus serves as a sort of shortterm memory for coincidences of S_{s} and S_{n}, and at this stage could be connected almost directly to the learnt gate were it not for the fact that in practice we require a more permanent memory.

Fig. 3.4 Case where a conditioned reflex is evoked during one application of the neutral stimulus

THRESHOLD SCHMITT

In order to improve the learning circuit a little, the threshold Schmitt and the semi-permanent memory bistables have been added. Once potentiometer VR1 has been set to some value, the Schmitt will act as a threshold device and fire when the voltage due to the charging of C 3 reaches a certain level (see Fig. 3.4). This will be equivalent to a given number of repetitions of S_{s} during extension of S_{n}, and in practice should be between 10 and 20 separate stimulations.

When the threshold Schmitt fires a negative going pulse will be passed via the diode D6 and capacitor C7 to the semi-permanent memory bistable.

MEMORY BISTABLE

It will be noticed that the base bias for transistor TR11 of the bistable is derived via a resistor (R25) whose value is relatively small compared with that in the opposite side (R24). This has been. done deliberately to ensure that upon switching the circuit on an irrelevant memory is not produced.

Once the bistable has switched, one side of the learnt gate will be opened and hence any further S_{n} stimuli will open the other side also. The common collector point of the gate will thus go negative for all future applications of S_{n} and switch the reversing monostable via capacitor C 6 (this could be replaced by a diode for analogue functions). Hence instead of S_{n} causing the usual homing response, this is now inhibited; the model now "cowers" and backs away with "its tail between its legs".

This will always be the result from now on, unless the permanent memory is disturbed by, say, the power supplies being switched off, or unless we make special arrangements for inhibiting the response. Suitable circuitry can be designed for this, modelled upon the black box systems shown earlier: however it is not at this stage intended to go into the actual design for the electronics.

CASE OF INSUFFICIENT STIMULI

Hitherto for the convenience of describing the operation of the learning circuit, we have assumed that a sufficient number of repetitions of S_{s} always occur during the extension period. But suppose S_{s} appears only a few times, insufficient to fire the threshold Schmitt: what will be the effect? The capacitor C 3 will have received some charge, but if no further S_{s} arrives its voltage level will gradually diminish. However, this is the way we want it to be. This after all is the situation where an insufficient number of coincidences have occurred for the model to "see" any significant connection between S_{s} and S_{n}.
If on the other hand further combinations of the two stimuli occur during the slowly decaying voltage across C3, their result will be added to whatever level the capacitor has discharged to. This may, or may not, cause the threshold Schmitt to fire for it will depend solely upon the threshold voltage being reached.

In practice, if the coincidences are sufficiently infrequent, conditioning could take hours, and in fact may never take place at all. During conditioning experiments with real live animals exactly the same effect takes place if the neutral and specific stimuli are not allowed to overlap of ten enough.

FUNCTION OF D9

Earlier we mentioned the inclusion of diode D9 in the reversing monostable, its purpose will become clear upon examination: without the diode, after conditioning has taken place the neutral stimulus could thereafter trigger the differentiator monostable via the "avoidance system". This would result in capacitor C3 being charged due to S_{n} alone-not that this would matter, you might say, because the model has been conditioned.

However, if we decided to build in an inhibit circuit (which the constructor might choose to do) an irrelevant "short term" memory would already be stored in C3, and although this might not affect the inhibition it could none-the-less cause some problems. D9 thus overcomes this difficulty.

MORE FACTS ABOUT ANIMAL BEHAVIOUR

Having satisfied ourselves that we can indeed simulate the simple conditional reflex (albeit by quite different and less sophisticated means than those used by a biological example), we must now "press on" and discover some more facts about animal behaviour.

FOLLOW THE LEADERS

IBING
 SIZR
 QUALITY-TESTED PAKS

Seasons Greetings from BI-PAK SEMICONDUCTORS and a Xmas "GIFT DOLLAR" value 5/- redeemable with all orders of One Pound or over. Cash in now and sav next order. Not valid after 31st January 1969 CUT ALONG DOTTED LINE

KING OF THE PAKS Unequalled Value and Quality CIDER DAVG BRAND NEW-UNTESTED SEMICONDUCTORS

12 60 mixell (iermanium Transistors AF/RF 10
13 is Germanium (ioli Bonded Diodes sim. OA5. PAt 10
T'4 40 Germanium Transistors like OC81, AC128
100 200mA sul-min. Sil. Diodes
40 silicon Planar Trausistors NPN sill, BSY $95 \mathrm{~A}, 2 \mathrm{~N} 706$
U7. 16 Silition Rectifers Top-Hap 750 mA unt to 1000 V

12 12 4ilicon Rectifiere EPOXY 500 mi A up to 800 PIV
$13 \quad 30 \mathrm{PNP} \cdot \mathrm{NPN}$ Sil. Transistors OC200 \& 28104

T116 10 3-Amp silicon Rectifiers Stud Type up to 1000 PIV
W17 30 Germanium PNP AF Transistors TO-5 like ACY 17.22
$\overline{T 18} \overline{8} 6 \cdot \mathrm{imp}$ Rilicon Rectiflers BYZ13 Type up to 600 PIV
1.19 30 milicon NPN Transistors like BC108

20 _ $121.5-\mathrm{imp}$ silicon Rectifiers Top-Hat up to 1,000 PIV.
'21 - 30 A.F. Cermanium alloy Transistors 2c:300 series \& OC71
(222 - 1 -1-an! (ilass Min, Nilicon Rectitiers High Volts

25 - $25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistore 2N708, BKY27
26 - 30 Fint Switching Silicon Dindes like INyl4 Micro-min
(28 Esperimenters Assortment of Integrated Circuits, untested. 20

「31 20 Sil Planar N PN trans. Jow noise Amp 2N3707.
$\cdots ~$
10
10

U32	25 Zener diodes 400 mW D07 case mixed Vlts. 3-18.
63	15 Plastic case 1 amp silicon rectifiers in 4000 series. .

10%

33 15 Plastic case 1 impsilicon rectiffers 1 N 4000 series........... 10 .

Code Nos. nentioned above are given as a guide to the type of
device in the fak. The devices themelves are normally unmarked

AD 61 rr* AD 162 PVr					HIGH	POWER				
MATCHEJ COMPLEMENTA					PLANAR TEXAS 24034 .			TO		
PA1RS OF GERM. POWER					VCB 100	c 4 A	T. $15 \mathrm{M} / \mathrm{cm}$			
TRANSISTORA.										
For mains driven output stages of amplifiers and Radio receivers. OI'R LOWENT PRICE OF 12/6 PEK PAIR					VCE100 VEBR	Ptot. 40w hFE(min.) 60				
NEW SILICON RECTIFIERS TESTED						SCR's				
PIV 400ma 7	7501	1.5 A	3A	10A		30 A	Ow			
5010 d	1/-	1/8	$2 / 9$	4/3		$9 / 6$	LARGE		RAN	
$100 \mathrm{I} /-$	1/3	$2 / 6$	$3 / 3$	4/6		15/-	PlV 1 A		16 A	30A
$2001 / 3$	1/8	2/6	4/-	4/9	$201-$					
$300-$	$2 / 3$	$3 / 9$	4/6	$8 / 6$	29/-	$50 \quad 7 / 6$		10/6	86/-	
400 2;-	$2 / 6$	4/-	$5 / 8$	$7 / 8$	25	100 8/6		-18/-		
	$3 /-$		$8 /-$	$8 / 6$	801-	200 12/6		$20 /$	$51-$	
$6002 / 8$	3/3	4/3	$8 / 9$	$\boldsymbol{\theta}^{\text {- }}$	$37 /-$	300 15/-		- $25 /$		
$\begin{array}{r} 800= \\ 1,000- \end{array}$	3/6	$4 / 9$	$7 / 6$	11/-	$401-$	$40017 / 6$	25)-	- 35/-	80/-	
	$5 /-$	$81 /$	9/3	12/8	50/-	500 30/-		- 45/-		
1,200 =	6/8	7/6	11/6	18j-		600 -		- $801-$		

PLEASE NOTE. To avold any further Increased Postal Charges to our Chatomers and enable us to keep our "By Return Postal service" which is second to none, we have re-organized and streanlined our Despatch Order Department and we now request you to send all your orders ingether with your remittance, direct to our Warehouse and Despatch Department, portal address: BI-PAK 8EMICORDOCTORS, Derpatch Dept., P.O. BOX 6, WARE, RERTS. Poatage and packing sthi $1 /-$ per oriler. MInimum

-

OT4B UNJUCTION OT46, \quad EqV. 2N264
Eqvt, TIS43. BEN3000 $7 / 6 \mathrm{EACH}$
25-995/- 100 I'P 4/-

INTEGRATED CIRCUITS
 with Zener output. for P.E.
Type 701C. Ideal Type 701C. Ideal for P.K.
Projects. 8 Lead TO-5 case. Projects.
Full data
Our price $12 / 6$ each 5 off 11/-each. Large Qty
Prices quoted for. FAIRCEILD EPOXY TO-*
8 Lend
$\mu \mathrm{L9} 14$ Dual Gate μ L923 J.K. Flip-Flop. . . 14/ MOLLARD I.C. AMPLIFIERS $\begin{array}{ll}\text { TAA243 ORP. Amp. } \\ \text { TAA263 Min AF Amp } & 18 / 8\end{array}$
 PRANTED CIRCUITS PRINTED CIRCUITS
EX-COMPUTERPacked with gemicondur-
tors and. components, 10
boarilas give a guananteed 30
trans and 30 diodes. Our
price 10 biarly 10 . Plusprice 10 buarils $10 \%-$. Plua$\frac{2 /-P . \& P \text {. }}{\text { CADMIUM CELLS }}$

Olatarmino

MODEL 15

MICRO SOLDERING INSTRUMENT

EXTREME VERSATILITY

Range of 8 interchangeable bits, from 3/64" (.047") to $3 / 16^{\prime \prime}$, including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{t^{\prime \prime}}{}$. Weight $\frac{1}{2} \mathrm{oz}$. Max. handle dia. 7/16".

EXTRA-HIGH PERFORMANCE

Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts - equals normal $30 / 40$ watt iron.

all Voltages

No
To
AND
$*$fast EaSY way BASIC RADIO AND ELECTRONICS Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build . . . and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

You'li and what's more, UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.

You LEARN-but it's as

 fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
 Dept. 371B, Aldermaston Court, Aldermaston, Berkshire.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set . . . here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards
Send now for free 132 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 132-page book -'ENGINEERING OP-PORTUNITIES'-Free and without any obligation.

The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/37.

LIGHT SOLDERING DEVELOPMENTS LTD.

Telephone 01-6888589 \& 4559

Also whether or not we can arrange these facts to fit within our framework of black box analogies.

When we began discussing the conditional reflex, the reader will remember how we stressed the importance of the neutral stimulus being presented just before the specific stimulus if conditioning were to occur. As in all things there is the inevitable exception to the rule; this particular exception is, however, an important one as we shall see.

Let us assume we have conditioned an animal (it might be one of Pavlov's dogs) to, say, salivate when a bell is rung-the bell (neutral stimulus S_{n}) having been previously "paired" with food (specific stimulus S_{s}). We might now require the dog to salivate upon our touching its left ear. This presents no problem, we can simply combine this stimulus with S_{s} when the dog is fed, as we did with the bell. Suppose though that in this particular experiment we are forbidden to make this conditioning direct, is there any other method that can be adopted? This is where we meet the exception to the rule.

SECOND ORDER CONDITIONED REFLEX

Bearing in mind that the dog is conditioned to "bell-means-food", if we now wish to introduce a further stimulus (in this case tactile), to mean food, all that is

Fig. 3.5 Basic arrangement for synthesising higher or second order conditioning
necessary is to couple the new stimulus with S_{n}. After several repetitions of the new stimulus (call it $S_{\mathrm{n}_{2}}$) just prior to the original neutral stimulus (let us now call this $S_{\mathrm{n}_{1}}$) we will find that the condition "touch on left ear-means-bell-means-food" has been established. There will hence be an indirect connection between $S_{\mathrm{n}_{2}}$ and S_{s} via $S_{n_{1}}$, with the result that the dog will salivate upon application of $S_{\mathrm{n}_{2}}$ alone.

This type of conditioning is called a second order conditioned reflex, and has been taken experimentally to third, fourth, and even higher orders. There does in fact seem to be almost no limit to how far this effect can be extended.

This carries us on to another interesting phenomenon, that of stimulus generalisation. Now that touching the dog's left ear elicits the salivation response, what if we touch the right ear, or the nose, or the right paw, or the tip of his tail-will there still be a response? Certainly there will: however if we measure the amount of saliva produced there will be a noticeable decrease as we move away from the site of initial conditioning.

The important fact that remains is that the animal was never conditioned to anything other than the tactile stimulation to the left ear. The dog seemingly generalises about all the other stimuli.

TRACE REFLEX

Yet another effect emerges in many ways similar to the phenomena just described, which is worthy of some explanation. Generally speaking if a conditional reflex is to be produced, the neutral stimulus must come just before S_{s}, certainly within a minute or so. There is though a method whereby even this rule may be broken.

If during the time we are establishing the conditioned reflex we gradually make S_{s} come later and later, it is possible to increase the $S_{\mathrm{n}} / S_{\mathrm{s}}$ interval to quite considerable lengths and yet still produce the conditioning effect. This is known as a trace reflex and extends the period of time between stimuli whilst still allowing conditioning to take place.

Following our brief examination of higher order conditioned reflexes, stimulus generalisation, and the trace reflex we should now be able to see if the black box technique can help us establish what mechanisms might produce these effects.

THE BLACK BOX APPROACH

The black box in Fig. 3.5 shows one way in which second order conditioning might occur. The real picture must of course be very much more complex than in the example-in our case we are only manipulating just a few elements, whereas in a live animal millions of nerve cells could be involved.

Fig. 3.6 Stimulus generalisation effect

As the reader will see, this hypothetical arrangement amounts to a compounded ensemble of our original learning units. $S_{\mathrm{n}_{1}}$ as before has the ability to pair itself with S_{s} (there is no reason why it should net have equal facilities for its possible combination with $S_{\mathrm{n}_{2}}$ either, except that the schematics become more complicated!). However, $S_{\mathrm{n}_{2}}$ can be conditioned to either S_{s} direct, or indirectly via $S_{\mathrm{n}_{1}}$ if $S_{\mathrm{n}_{1}}$ has been previously conditioned to S_{s}.

Looking even closer into the black box we notice that $S_{\mathrm{n}_{2}}$ could even become conditioned to S_{s} in another way. Suppose for a moment that the animal is in the unconditioned state, then we condition $S_{n_{2}}$ to $S_{n_{1}}$ so that "touch on left ear"' means "bell". If later we then condition $S_{\mathrm{n}_{1}}$ to S_{s} (the food) we have also involved $S_{\mathrm{n}_{2}}$. There are thus several possible ways here in which conditioning could take place.

STIMULUS GENERALISATION EFFECT

The stimulus generalisation effect probably does not need black box treatment here. One could liken the
effect to the response of some filters, say a low Q tuned circuit. Fig. 3.6 gives the general idea.

If the peak in the graph indicates the maximum amplitude of the animal's response to a given stimulus, then for stimuli even some distance away from it there would still be some response. The generalisation about the stimuli would thus seem to depend on the "passband" of the filter. As a general term this type of device might be called a "property filter", for it could be involved with the separation of pitches, amplitudes, pulse widths, spatial positions, etc.

Fig. 3.7 The arrangement of Fig. 3.5 now modified to incorporate trace reflex conditioning

Trace reflex conditioning could be shown quite conveniently with a slight modification to our basic "learning" circuit Fig. 3.7. The "short-term" memory which-provides for the extension of S_{n} has a fixed period, therefore any attempt to combine S_{s} with S_{n} after this time would be futile. However, if we arranged to feed part of the summation output back to control the short-term memory-so that increases in the summer level caused increases in the extension periodthen the model would now by itself be capable of eliciting a trace reflex.

ABILITY TO ADAPT

Hitherto, our inquiries into learning led us to believe that the conditioned reflex depended upon it being bound quite rigidly to the exclusive characteristics of the stimuli that had been paired. Assuming this were the case, no further learning could occur-the animal would be in no position to vary or modify its responses and update them for current purposes. It therefore seems, that amongst other things, we have discovered in "generalisation", "higher order responses", and "trace reflexes", a quality which would allow the animal to adapt.

Animals do adapt, they are doing it constantly. Take, as an example, a television service engineer. At some early time in his career he undoubtedly received many electric shocks. However, the shocks weren't all the same, or from the same places. As time went by he adapted himself to avoid the characteristics that resulted in getting a shock: such things as seeing line output transformers, e.h.t. capacitors, large ceramic insulators, and so on. If it were not for "generalisation" in particular, he would probably now be the proverbial dead duck!

DEGREE OF REINFORCEMENT

It seems that we can therefore come to a very positive conclusion about this "generalisation", in that without it a difference in stimulus would have no effect in eliciting a response. Conversely, of course, it is equally
important that the animal can produce differing responses despite similarities in the stimuli that may be presented.

What a paradox all these requirements seem to cause-nonetheless they are necessary. The inevitable balance that occurs between the generalisation of stimuli on the one hand, and differentiation on the other, is seemingly dependent upon the degree of reinforcement, and indeed which stimuli are reinforced.

Throughout the article we have made considerable use of such indefinites as "seemingly" and "perhaps"there will be no apologies though, for the subject of animal behaviour is fraught with so many variants that to be too specific about any particular aspect could be dangerous.

TRIAL AND ERROR

Because an animal exhibits what appear to be specific responses for certain stimuli there is no reason to believe that without these stimuli these characteristics will not still occur. There is a general theory that during the process of learning, animals may very well hypothesise (or make an assumption) about a situation. This would pre-suppose that the animal "sits tight", makes a number of guesses, and then proceeds to reach a goal (if one exists) by trial and error, eliminating all un-rewarded responses.

We can only conjecture about all these multifarious possibilities at present, though in later articles we may be considering how they could be implemented in a synthetic device. Next month we shall be adding to our breadboard device a rather crude "self and mutual recognition" circuit. We will also see whether it might be feasible to conceive of a machine which could display a type of anxiety neurosis. Imagine an "electronic animal" with ulcers! This is perhaps being a little too anthropomorphic!

To be continued

LIGHT OPERATED SWITCH (October 1968)
The transistor type NKT127 can be replaced by type NKT128 which is readily obtainable from transistor stockists.

VARI WINDSCREEN WIPER (October 1968)
Some readers have experienced difficulty in correct operation of this circuit due to the device not switching off. The author emphasises that the earth return wire from the control circuit board to car chassis should be as short and thick as possible. All connections between this wire and the battery earth connection must be clean and sound. Cable resistance and contact resistances can provide sufficient voltage drop across the thyristor to maintain conduction, i.e. not fall below the holding current. The holding current of the thyristor is about 10 mA while the anode-cathode potential at this current is 0.8 V which can result from long cables or faulty connections. A resistance as low at $0 \cdot 1$ ohm could cause this trouble.

BBC EXPERIMENTAL SOUND-IN-VISION SYSTEM

On November 7 at Broadcasting House was given the first public demonstration of the transmission and reception of composite sound and vision signals. This unique system of "Sound-in-Vision" has been developed by the BBC Research Department for use with 625 line television signals.
Ordinarily, the two components of a television programme, both picture and sound, are separately distributed from studio to transmitting station. With the sound-invision system these two studio derived components are combined and the combination is sent over a single vision circuit to the transmitting station where the sound is extracted, converted into its usual form and sound and picture are transmitted in the usual way.

Besides offering an improved audio bandwidth of 14 k Hz and excellent noise immunity this system simplifies the operational requirements as the separate circuits and often different routes used in transmitting the two components of the conventional television signal are reduced to one circuit and one route in this composite system

SYNC INTERYAL

How this is done without interaction between the composite video and sound components is by making use of the line synchronising interval. Reference to the sound-in-vision oscillogram (Fig. 1) shows that the sound signal occupies a period of $3.8 \mu \mathrm{~s}$ within each $4.7 \mu \mathrm{~s}$ line synchronising interval, its placement being equally disposed compared to the leading and trailing edges of the synchronising pulse. Apart from this interval the vision signal occupies the transmission circuit for the rest of the time. As can be seen the system constitutes in essence a form of time division multiplex.

SAMPLING

By sampling the sound signal at twice the 625 line frequency an audio bandwidth of 14 kHz is possible for transmission. The two samples produced during each line period are converted to pulse code modulation signals then delayed and compressed in time then inserted into the television waveform during the next line synchronising interval.

In the 625 video oscillogram shown the p.c.m. signal precedes the colour burst. It consists of a marker pulse which identifies the start of the sound pulse group containing two 10 digit binary code groups so that 21 pulses in all are accommodated within each line synchronising period.

Fig. I. 625 line video waveform during line blanking interval showing p.c.m. signal consisting of a marker digit plus two 10 digit groups inserted in line synchronising pulse

After transmission via the distribution link the sound pulses are extracted and reconverted to normal signals at the receiving terminal. The video waveform is also restored to standard form.
The use of p.c.m. and high amplitude pulses ensure that the sound signal is immune from all but the most severe interference and distortion.

TERMINAL EQUIPMENT

The sending and receiving terminal equipment are shown in block form, Fig. 2. The compressor and expander form a syllabic companding system which ensures that the mean signal level into the analogue to digital converter is as high as possible. This converter samples the audio frequency signal presented to it at twice line rate and provides an output in p.c.m. form to the combiner unit. This unit accepts the vision signal clamps it during the back porch and inserts the sound pulses.

At the receiving terminal this process is reversed with the combined sound-in-vision signal being fed to the separator unit from which a clamped and restored vision signal is produced. Separated sound pulses are decoded in the digital to analogue convertor which delivers an audio frequency signal.

Extensive use is made of integrated circuitry for the digital operations together with discrete transistor circuits for the analogue operations.

Fig. 2. Block diagram showing how vision and sound signals are combined at the sending terminal equipment, prior to transmission via the distribution link, and separated at the receiving terminal equipment

ANY seaman who has worked with sonar equipment knows that fish are attracted by certain man-made noises. Perhaps the fish believe that the sound must be coming from some source of food such as a trapped insect-or perhaps their motivation is simply curiosity.

The device described here produces a repeating high pitshed bleep under water which will help lure some species of fish to the fly. In a practical test on a quiet stretch of the North Tyne, the author consistently landed a better average than nearby anglers.

CIRCUIT DESCRIPTION

The circuit consists of a single transistor Hartley oscillator with feedback via the tapped inductance (Fig. 1). With the component values shown the output frequency is about 1 kHz with a bleep-rate of 60 to 150 times a minute depending on the setting of VR1. With VR1 at maximum resistance the unit produces a continuous tone.

The bleeps are emitted from a high impedance earphone or microphone insert (detailed later), connected in parallel with the inductor.

CONSTRUCTION

The original model was built on a small 12-way tagboard, as shown in Fig. 3; layout is in no way critical. To augment the output in one direction a cone cut from the top of a plastics detergent bottle is glued to the face of the transducer, which is then glued to the underside of the tagboard. The battery is held by a Terry clip screwed to the tagboard on the same side as the transducer.

The unit must be fairly robust to withstand "casting" and retrieving when in use; it should also be kept as small as possible. All sharp projections must be rounded off of covered to protect the bag in which the unit is placed.

OPERATION OF "BAIT"

The completed bleeper can then be sprayed with a waterproofing compound as used on car electrical systems and enclosed in a polythene bag-carefully tested beforehand for leaks! Enough air should be left inside so that it will just float and the top sealed with an

Fig. I. Circuit diagram of fish bait
elastic band. A line and sinker are attached, as shown in Fig. 2, but the float is not required. To use the device adjust the distance between the unit and the sinker, so that the unit is held at hook depth, and cast the "bait" to the required position.

An alternative method is to squeeze the excess air out of the polythene bag and support the unit by using a float (Fig. 2). The float can be made from a small plastic detergent bottle or similar item and the depth of the unit is then set by adjusting the length of line between the float and the unit. If this method is adopted a weight may be required in order to keep the unit vertically below the float.

Note: if practicable the polythene bag can be heat sealed to ensure an airtight unit. This method of sealing can be carried out by some bait shops selling live bait in polythene bags.

Repetition rate is adjusted by trial and error to give the best results-VR1 can be manipulated through the polythene bag.

DIRECTION VANE

Where there are currents it will be possible to direct the sound by adding a vane (Fig. 2), as is done on hydrophones. The vane should be made as shown and the

COMPONENTS . . .

Resistors

RI 56Ω
R2 $22 \mathrm{k} \Omega$
All $\pm 10 \%, \frac{1}{4} \mathrm{~W}$ carbon

Potentiometer

VRI $5 \mathrm{k} \Omega \mathrm{min}$. with switch (Radiospares)
Capacitor
$\mathrm{Cl} 25 \mu \mathrm{~F}$ elect. 25 V
Transistor
TRI OC7I
Miscellaneous
LI Repanco TT4 using secondary with centre tap
XI Crystal earpiece type MCI (Olrus Electronics,
748 High Road, London, E.II)
BYI 1.5V penlight cell
Tagboard: 12 way
Terry clip for battery
Float, small plastic detergent bottle (see text)
Fishing line and weight
Polythene bag

Fig. 2. Bait set up for use with float, vane and weight

length of the wooden shaft set to balance the weight of the vane when in the water. The vane can be attached to the unit by a shaped wire drawn around the polythene bag. Ideally, sound should be transmitted across currents.

COMPONENTS NOTE

Any crystal earpiece or microphone insert can be used--but the one specified in the components list gives more output than most. Use of the specified transformer for LI is strongly recommended-although other types having a centre tapped winding with a total d.c. resistance of between 100 and 300 ohms may be tried.

Fig. 3. Layout and wiring diagram showing position of components and tags removed from board

World-wide sest reservations

Statistics

Cre~ schedules

GLECTRONDEAMA

Accounting

Management information

Weight and balance

Flight planning

Message switching

B^{R}RItish Overseas Airways Digital Information Computer for Electronic Automation is one of the world's largest computer complexes linked to one of the most comprehensive communications networks surrounding the globe.

The complete computer, power supplies, air conditioning units and all other ancillary equipments are housed in Boadicea House at London's Heathrow Airport. The complex is protected by one of the most sophisticated security systems in the country and is completely screened by aluminium foil from radar interference

BOADICEA is designed to meet the needs of all BOAC's requirements well into the future and will cover all operations shown. The main "brain" consists of three 1BM 360 model 65 computers, interlinked to form a comprehensive back up system. These computers work in conjunction with three other computers also at Boadicea House. All information passing through the computer is taped and microfilmed to provide three information storage systems, enabling BOAC to continue operations in the event of the complex being destroyed.
The main advantage of BOADICEA to the travelling public is the reservations system which uses cathode ray tube readout and solid state keyboards for operator's use. Reservation staff in the UK, Europe and North America have, at their fingertips, instant reservation information on all flights of BOAC and its associated companies. Seat availability on any flight can be established within seconds and four flights are displayed on request to aid passengers selection. Seat reservations, hotel bookings, car hire and any special requirements can be made through the computer system, up to 11 months in advance.

BOADICEA network is comprised of over 50 computers and handles 350,000 messages a day.

Magnetic data storage machines and information input and eccess points, in use inside the computer room, are shown chow, whilst below an engineer is shown setting up one of ihe three IBM computers which form the main brain of 3OADICEA

Maintenance schedules

Personnel records

Puwtif sipy

By J.T.Tiernan

SPECIFICATION

Input: 240 V 50 Hz .
Output: 0 to 22 V d.c. continuously variable.
Maximum load current: 1A continuous.
Current overload protection range: 25 mA to $\mathbf{2 . 5 A}$.
Output ripple at 1A load: $500 \mu \mathrm{~V}$.

THE power supply design described in this article is a general purpose unit covering the range 0 to 22 V at load currents up to 1 A r.m.s. Silicon transistors are used throughout and the unit includes an extremely reliable overload protection circuit. Standard components have been used where possible, and little difficulty should be experienced as regards component availability.
The design is presented with the reasonably experienced constructor in mind, and though practical details are accordingly brief, a comprehensive testing and setting-up procedure is included.

Fig. 1 shows a general block diagram of the unit, and should be studied in conjunction with Fig. 2.

D.C. SUPPLY AND OVERLOAD CIRCUIT

The circuit diagram of the unit is shown in Fig. 2. The "main" a.c. secondary voltage is full wave rectified by D1, D2, D3 and D4, and smoothed by C1, before being routed to the overload protection circuit and series stabiliser elements (TR3, TR4 and TR5).

In series with the common line is a resistor, selected by S2, across which is developed a voltage proportional to the load current being supplied. S3a is normally closed and, if the load current increases such that 2.5 V is developed across the selected series resistor, the thyristor will be triggered into its conducting state. The anode of the thyristor will fall from around 30 V , to practically 0 V , the thyristor current being limited to

Fig. I. Block diagram of power supply

between 30 and 40 mA by R7 and LP2. Thus, 0 V is reflected in the stabiliser section, via D8 and D9, causing the output voltage to fall to zero.

Momentarily opening S3a to the reset position will stop current flow in the thyristor, and on returning S3a to the normal position the output voltage will return to its original value, provided the excess load has been removed.

When the thyristor is not conducting, D8 and D9 are reverse biased and have no effect on the operation of the stabiliser section.

Reliable triggering of the thyristor is ensured by D7 and R8, and VR1 acts as a trip sensitivity control. D14 ensures tripping if LP2 is open circuit and C10 slows up the action of the trip circuit to prevent tripping when the output is increased (due to charging of (8).

REFERENCE SUPPLY

The auxiliary a.c. supply is rectified via the voltage doubler D5, D6, C2, C3 and fed to the reference supply diodes D10 and D11. The current through the Zener diodes is limited by R9 to approximately 25 mA and C4 ensures minimum ripple on the reference supply lines.

The junction of D10 and D11 is connected to the common line, and the voltages at the cathode of D10 and the anode of D11 become the +27 V and -10 V lines respectively.

DIFFERENTIAL AMPLIFIER

The differential amplifier consists of TR1 and TR2, with a variable reference voltage applied to TR1 base, via VR3. The collector load for TR2 is R10, and feedback to TR 2 base, via TR3, TR4, TR 5 and D12, sets the voltage at TR2 base equal to that applied to TR1 base. Thus, by varying the reference voltage via VR3, the output voltage at the emitter of TR5 may also be varied.

A reasonable and steady collector-base voltage for TR2 is ensured by D12, a 3.3V Zener diode, which also allows any variations of the output line voltage to be passed in full to TR2 base. This results in maximum compensating action by TR2, keeping the output voltage constant over a wide range of load currents.

It is essential that the current through D12 is held as constant as possible, and to achieve this end D12 is fed from the constant current circuit formed by TR6. The values of R12, R13 and R14 are such that the current through D 12 is approximately 2 mA , and this changes by less than 2 per cent for an output voltage variation from 0 to 22 V .

Since the voltage at the bases of TR1 and TR2 is 3.3 V less than the output voltage, due to D12, the variation of voltage required from VR3 is -3.3 V to +18.7 V for an output range of 0 to 22 V ; VR2 and VR4 are adjusted to provide this variation across VR3.

The "trip 1" and "trip 2" lines are connected from D8 and D9 in the overload section to the bases of TR1 and TR3.

S3b ensures the load is removed when the overload circuit is being reset, and may be used to isolate the load from the unit. Whether a normal on-off switch or a spring loaded switch is used for S3 is a matter of individual preference.

It is important to note that C8 must be connected at the supply side of the switch, otherwise it will often not be possible to reset the overload circuit. The diode D13 is included to ensure tripping of all units if power supplies are used in series.

COMPONENTS AND CONSTRUCTION

A suggested layout and case size have been given (Fig. 8), but both depend on the size and shape of the transformer(s) and smoothing capacitors used. Most of the smaller components can be mounted

Fig. 2. Complete circuit diagram of the high performance stabilised power supply

Fig. 3. Layout and wiring of overload and rectifier board "A"

Fig. 4. Layout and wiring of differential amplifier and constant current board "B"
on pre-wired boards; layout and wiring diagrams for these are given in Figs. 3, 4 and 5. Plain Veroboard can be used with pins for component mounting. Solid wiring lines are on the non-component side of board and dotted lines indicate wiring on component side.

Layout of components within the unit is not critical and connections may, in general, be made with lightweight wire. It is recommended, though, that wiring carrying the main load current be 20 s.w.g. copper, or reasonably substantial multistrand wire.

TRANSFORMER DETAILS

The mains transformer is probably the only component which may prove at all difficult to obtain. Among firms which are able to supply transformers with a standard primary, and secondaries of 24 V at 1 A and 50 mA are-T.R.S., Thornton Heath, Surrey, and Osmabet Ltd., Edgware, Middlesex. The cost being about 35 s each.

However, in case of difficulty, the secondary voltages required may be conveniently obtained by using two separate transformers. The main secondary winding is required to deliver 1 A , but the auxiliary supply may be obtained from quite a small transformer, since 24 V at only 50 to 100 mA rating is required. A suitable item is the Belclere type MS3169, however the one-off price for this item is a little high and cheaper alternatives can no doubt be found.

Fig. 5. Layout and wiring of overload resistor board "C"

Fig. 6. Transistor connection outlines
Secondary voltage requirements are not critical; for the main supply this may be within the range 18 to 24 volts. The maximum output available from the unit, maintaining the 1 A load capability, is about 2 V below the a.c. voltage available. The auxiliary a.c. supply should be within the range 20 to 25 volts.

SEMICONDUCTORS

The thyristor specified is rated 1A at 50 p.i.v. and any similar component will be suitable provided trigger sensitivity is good. Poor trigger sensitivity will perhaps mean increasing the values of R2 to R6 if the overload current ranges are to be set as specified.

For example, a T140A4, 3A 400 p.i.v. thyristor, requires a 3 ohm series resistor for R3 before the unit will trip at IA load current. The other series resistors would have to be increased by a factor of 1.2.

Transistor types used are also non-critical, apart from TR4 and TR5, and three suitable types have been specified in each case.

HEAT SINK REQUIREMENTS

The heat sink requirements for TR5 will vary according to the anticipated conditions under which the unit will work. The following may be used as a guide:

1. For continuous operation at full load, with output voltage above 12 V , mount TR5 on an aluminium panel with a mica washer and insulating bushes. Minimum panel area required is 36 sq in.
2. For continuous operation at full load, with output voltage above 6 V , insulate the panel from the unit and mount TR5 in direct contact. Panel area 36sq in.
3. For continuous full load operation below 6 V output, it is advisable to use two transistors in parallel for TR5, with a 0.5 ohm 3 W wirewound resistor in each emitter lead. Mounting as in para. 2 above, but with a panel area of 48 sq in.
A separate heat sink assembly may be used to meet all requirements, and a suitable item, size approx. $5 \mathrm{in} \times 4 \mathrm{in} \times 2 \mathrm{in}$, is given in the component list. A finned clip-on heat sink should be fitted to TR4.

COMPONENTS

Resistors

RI $270 \mathrm{k} \Omega$ (may be incorporated in LPI)
R2 $1 \Omega 7 \mathrm{~W}$ wirewound
R3 $2.5 \Omega 7 \mathrm{~W}$ wirewound (may be made up from 2.7 27 W and 33Ω IW in parallel)

R4 $10 \Omega 3 \mathrm{~W}$ wirewound
R5 25Ω IW (may be made up from 27Ω IW and 330Ω in parallel)
R6 $100 \Omega \mathrm{IW}$
R7 820Ω IW
R8 $82 \mathrm{k} \Omega$
R9 820Ω IW (for aux. supply voltages less than 22 V , R9 is 680Ω (W)
RIO $27 \mathrm{k} \Omega$
RII $3.9 \mathrm{k} \Omega$
R12 $10 \mathrm{k} \Omega$
RI3 10k Ω
R14 $2.2 \mathrm{k} \Omega$
$18 \times 1 \mathrm{k} \Omega 1 \%$ resistors (only needed if $S 4$ is fitted)
(All $\frac{1}{2} \mathrm{~W}, 10 \%$ carbon except where stated)
Potentiometers
VRI 500Ω skeleton preset
VR2 10k Ω wirewound preset
VR3 $10 \mathrm{k} \Omega$ wirewound (not needed if S 4 is fitted)
VR4 $5 \mathrm{k} \Omega$ wirewound preset
VR5 $25 \mathrm{k} \Omega$ wirewound preset (only needed if S4
VRG $2.5 \mathrm{k} \Omega$ wirewound $\quad\}$ is fitted)

Capacitors

$\mathrm{Cl} 3,000 \mu \mathrm{~F}$ elect. 50 V
C2 $250 \mu \mathrm{~F}$ elect. 50 V
C3 $250 \mu \mathrm{~F}$ elect. 50 V
C4 $32 \mu \mathrm{~F}$ elect. 64 V
$\left.\begin{array}{ll}\text { C5 } & 80 \mu \mathrm{~F} \text { elect. } 25 \mathrm{~V} \\ \text { C6 } & 100 \mu \mathrm{~F} \text { elect. } 6.4 \mathrm{~V}\end{array}\right\}$ (Mullard)
C7 $\quad 0.01 \mu \mathrm{~F}$ polyester or metal foil 160 V
C8 $100 \mu \mathrm{~F}$ elect. 25 V
C9 $0.1 \mu \mathrm{~F}$ polyester or paper 160 V
CIO $0.47 \mu \mathrm{~F}$ polyester or paper 160 V
Transistors

TRI	2N697, 2S004, ZT82	TR6	2N697, 2S004, ZT82
TR2	2N697, 2S004, ZT82	TR4	BFY50, 2N3053, 2N1507
TR3	2N697, 2S004, ZT82	TR5	2N3055, 2S024, ZTI702,

TRI 2N697, 2S004, ZT82
TR2 2N697, 2S004, ZT82
TR3 2N697, 2S004, ZT82
TR6 2N697, 25004 ZT82
TR5 2N3055, 2S024, ZTI702
2 SO 33

iod	and Rectifiers		
DI	1.5A 100 p.i.v. (IS020)		
D2	1.5A 100 p.i.v. (ISO2O)		
D3	1.5A 100 p.i.v. (15020)		
D4	1.5 A 100 p.i.v. (IS020)		
D5	$0 \cdot 2 \mathrm{~A} 100$ p.i.v. (\|SI3)	
D6	0.2 A 100 p.i.v. (ISI3\|)		
D7	0.2 A 100 p.i.v. (ISI3\|)		
D8	0.2 A 100 p.i.v. (IS13\|)		
D9	0.2 A 100 p.i.v. (\|S	3)
D10	27V 1.5W (Zener) (IS4027)		
DII	10V 1.5W (Zener) (IS4010)		
D12	3.3V 0.4W (Zener) (157033)		
D13	1.5A 100 p.i.v. (15020)		
D14	9V I.5W (Zener) (VR9B)		

Thyristor

SCRI IS610, 2N|595

Sockets

SKI Mains (Bulgin type P360)
SK2, 3 and 4 Output terminals (Bulgin type Tl03)

Miscellaneous

TI Mains transformer sec. $1,24 \mathrm{~V}$ at $\mid \mathrm{A}$ sec. 2, 24 V at 50 mA (see text)
LPI Neon panel indicator (may include RI)
LP2 6V, 0.04A lamp. (Electroniques SGF9/G/RD/6) FSI, FS2 2A fuse holder and fuse
Plain Veroboard and Veropins (size depends on components used) (3 off)
Heat sink-see text (Electroniques HSD5)
18 s.w.g. aluminium for case

Switches

S1 Double pole single throw (see text)
S2 Maka-switch shaft assembly and 2 Maka-switch 2-pole, 5 way, make-before-break wafers (Radiospares)
S3 Double pole single throw toggle
S4 Maka-switch shaft assembly and 2 Maka-switch single-pole, II-way, make-before-break wafers (Radiospares) (if used)

こURRENT AND VOLTAGE CONTROLS

Switch S2 should be a make-before-break type and, unless a rotary stud switch is available, is made up from two 2 -pole 5 -way wafers. Each switch section should be connected in parallel as shown in Fig. 7.

The only other component worthy of special mention at this point is VR3, the output voltage control. This may be a normal 10 kilohm linear potentiometer as indicated in Fig. 2. S1 must then be a separate switch. The output will be varied linearly with rotation of VR3. However, with a power supply of this type it is somewhat pointless to use such a coarse control, and the following alternatives are suggested:

1. Use a 10-turn helical potentiometer for VR3, which will enable the output voltage to be set extremely accurately. These components occasionally appear on the "surplus" market at prices ranging from 10 s to 30 s, although they may need looking for. Again SI will have to be a separate double-pole, single-throw switch.
2. Replace VR3 with the network as shown in Fig. 9
(S4). This arrangement gives switched increments of

Fig. 7. Wiring of S2: 4 poles are wired in parallel to switch large currents

2V. and the 2.5 kilohm potentiometer (VR6) will vary the output $\pm 2 \mathrm{~V}$ on the selected value. It is probably also the most convenient arrangement to use; Sl can then be incorporated in S 4 , as shown in Fig. 8. This is done by using a Radiospares "Mains-switch" which is made to mount on "Maka-switch" assemblies.

TESTING AND SETTING UP PROCEDURE

Complete assembly and wiring of the unit, but omit the following connections:
(a) Positive d.c. line between component boards;
(b) Connection between $\mathrm{C} 2 \dagger$ and the stabiliser board (B).
(c) All connections between TR4, TR5, and stabiliser board.

When this stage has been reached, first check that all diodes and rectifiers have been wired in the correct polarity, then switch on a.c. mains, whereupon LP1 should light.
(1) Check d.c. voltage across $C 1$, which should be about 1.4 times the a.c. voltage available from the "main" secondary winding of the transformer.
(2) Check the d.c. voltage between C2 + and $\mathrm{C} 3-$, which should be aoproximately three times the a.c. voltage available from auxiliary secondary.
(3) Set VRI for minimum resistance and select 100 mA overload current with S 2 . Touch a 100 ohm resistor between the d.c. positive and the common output pins on the rectifier-overload board. Check that the voltage across the thyristor is less than IV and that LP2 lights.
(4) Reset overload with S3 and return S3 to normal. LP2 should extinguish and the voltage across the thyristor should rise to equal the voltage across $C l$. Repeat Test 3.
(5) Switch off a.c. mains and wire in the connection between $\mathrm{C} 2+$ and the stabiliser board.
(6) Wire teniporary links on stabiliser board as follows
(a) Between pins 11 and 12 on board.
(b) Between d.c. positive pin and $\mathrm{C} 4+(-+27 \mathrm{~V}$ line).
Set VR2 and VR4 to maximum resistance.
Note: d.c. line between boards and TR4, TR 5 still out of circuit.
(7) Recheck connections, switch on a.c. mains and check that the voltage between common (-ve output) line, and $C 3-$ equals $-10 \mathrm{~V}+10$ per cent.
(8) Check that the voltage between $\mathrm{C} 4+$ and common line equals $+27 \mathrm{~V} \pm 10$ per cent.
(9) Check that the output voltage is available from the unit, and may be varied by VR3 (or S4 if fitted).
(10) Set output voltage control to maximum and adjust VR2 to give 20 V output.
(11) Set output voltage control to minimum and adjust VR4 to give 0.5 V output.
(12) Set output to about 10 V , and check that the overload setting is 100 mA .
(13) Repeat Test 3, and check that the output from the unit falls to less than $2 \cdot 5 \mathrm{~V}$, with LP2 lit.
(14) Switch off a.c. mains and remove temporary links wired in Test 6.
(15) Connect TR4 and TR5 to the stabiliser board, and link the d.c. positive line by connecting 100 ohm resistor between the d.c. positive pins on the two boards (positions $1 A$ and $8 B$).
(16) Recheck connections, select 25 mA overload, turn VRI to maximum and switch on a.c. mains. (Overload circuit will probably operate.)

(C5/त̄ $6 / \mathrm{VRA} 4)$

Fig. 9. Wiring of $\$ 4$ output volts control. The 18×1 kilohm resistors are ${ }_{i}$ Wh.s. and are wired around the switch wafers

Leave power unit switched on for about 10 minutes to settle down, and then reset with S3 if necessary.
(17) If a variable resistor is used for VR3, repeat Tests 10 and 11 , setting these voltages to 22 V and 0 V respectively, then go to Test 25 when completed.

Note: VR2 and VR4 interact, and Tests 10 and 11 should be carried out as many times as necessary to achieve an optimum result.

If S4 is fitted as in Fig. 8, proceed as follows:
(18) Replace VR6 and VR5 variable resistors with two 1 kilohm 1 per cent resistors connected in series; junction of the two resistors to be connected to TR 1 base.
(19) Select 20 V output position and adjust VR2 to give 20 V output.
(20) Select 2V output position and adjust VR4 for 2 V output. Repeat Tests 19 and 20 as necessary.
(21) Remove the two 1 kilohm resistors and connect VRS and VR6 back in circuit.
(22) Select the $2 V$ output position, turn VR6 for minimum output, and adjust VR 5 to give 0 V output.
(23) Check that VR6 can now vary the output from 0 to 4 V .
(24) Select 20 V output position and check that VR6 can vary the output between 18 V and 22 V .
(25) Select 100 mA overload and set output to 10 V .
(26) Load output with 100 ohm, 1W resistor and adjust VR1 slowly until overload circuit operates.
(27) Remove 100 ohm load resistor and reset.
(28) Check overload trips when 100 ohm load is reconnected.
(29) Remove 100 ohm resistor, in series with +d.c. line, between boards, and replace with permanent connection. (Switch off to do this.)
(30) Recheck for correct output voltage variation range, and recheck operation of overload circuit as in Tests 25 and 26 (VR1 should not need to be altered).
(31) Select 20V output and 1 A overload, connect an 18 ohm resistor across output terminals and check that unit trips.
(32) Check short circuit output current is less than 10 mA . It will probably be much less than this, but is dependent on leakage current through TR3, TR4 and TR5.

PERFORMANCE DETAILS

The unit built by the author used a transformer with secondaries of $22 \cdot 3 \mathrm{~V}$, 0.9 A (main) and $21 \mathrm{~V}, 60 \mathrm{~mA}$ (auxiliary). The voltage range was set for an output of 0 to 20 V and the output control was as per Fig. 8.

Measured performance was as follows:
Voltage range-
0 to 20 V
Max. r.m.s. load current- 1A
Output resistance at $20 \mathrm{~V}, 1 \mathrm{~A}-$
30 milliohm (0.03 ohm)
Output resistance at $0.2 \mathrm{~V}, 1 \mathrm{~A}-$
40 milliohm (0.04 ohm)
Output ripple at 1A load-

$$
500 \mu \mathrm{~V} \text { r.m.s. }
$$

Voltage setting accuracy-
Better than 1.5 per cent
Output variation for ± 10 per
cent mains variation-
Better than $0 \cdot 1$ per cent Overload protection range-

$$
25 \mathrm{~mA} \text { to } 2 \cdot 5 \mathrm{~A}
$$

Short circuit output current- $\quad 1 \mathrm{~mA}$
The only parameter not mentioned in the table is that of temperature stability.

When first switched on the output voltages will be, at worst, 6 per cent low, and this is due almost entirely to the temperature coefficients of D10 and D11. The output voltages settle very quickly and are within 1 per cent of their final value in about one minute of switching on.

If it is required to decrease the effects of temperature variation, then the following is suggested: make D10 from five Zener diodes, each rated at $5 \cdot 6 \mathrm{~V}$, connected in series, and D11 from two Zener diodes each of $5 \cdot 1 \mathrm{~V}$, connected in series.

However, unless the unit is to be used for applications where temperature stability better than 1 or 2 per cent is mandatory, then the extra cost of replacing D10 and Dll is not justifiable.

FINAL COMMENTS

There are two further points worth mentioning.
Although the unit is only intended to handle a maximum load current of 1 A , a $2 \cdot 5 \mathrm{~A}$ overload position has been included. This allows the unit to be used where average currents are less than 1A but where high current peaks may be encountered. For example, class-B and class-C power amplifiers.

The -10 V line may be made available on the front panel of the unit. Although currents of only 2 or 3 mA may be drawn from this line without affecting the main supply, this can nevertheless be useful for small signal biasing applications.

RCA HOBBY CIRCUITS MANUAL

Published by RCA Great Britain Limited, Lincoln Way, Windmill Road, Sunbury-on-Thames, Middlesex

224 pages, $8 \frac{3}{8}$ in $\times 5_{8}^{8} \mathrm{in}$. Price 17 s 6d.

1N this one reasonably priced volume are presented thirty five circuits which should have a broad appeal to electronics hobbyists

Whilst including some games and novelty circuits, the majority fall into specific categories such as photography, motoring, ham radio, audio, etc., providing solid state aids or accessories in these pursuits.

The Manual opens with brief, but adequate, descriptions of the theory and operation of the semiconductor devices used in the various circuits and a general introduction to some commonly encountered circuit "bricks". A section on construction techniques provides all the information necessary both in the handling and assembly of the components used.

Sections on test circuits for component troubleshooting, and suggested circuit uses, preface the thirty five projects all of which are dealt with in detail both for circuit operation and construction.

Semiconductor types used can be obtained from RCA Great Britain at the address given above.
G.M.H.

COLOUR TELEVISION :

A Background to Colour Tube Adjustment for the Service Engineer
Published by Distributor Sales Division,
Mullard Limited
48 pages $8 \frac{1}{2} \times 6$ in. Price 17 s 6 d .

WITн the advent of colour television has come more rigorous demands on the service technician both in the understanding of new circuit techniques and the application of new and necessarily more complex setting up procedures.

In two parts this book provides a liberally illustrated "teach-in" on colour tube control assemblies and their adjustment. Part 1 provides a brief description of the shadowmask picture tube with explanations of convergence and colour purity and associated assemblies necessary to achieve this. Part 2 gives a typical setting up sequence of adjustments, the emphasis being on a simple easy-to-follow procedure which should appeal to the service man.
Colour pictures and diagrams are used to show the operation of the various controls and to give examples of the displayed picture before and after adjustments are made.
G.M.H.

AUDIO DIARY 69

Published by Link House Publications Ltd. 60 pages of information plus diary section, $4 \frac{1}{8} \mathrm{in} \times 2 \frac{7}{8} \mathrm{in}$. Price 8 s 6 d .

THE information section of this diary will be a most useful and convenient work of reference for all who appreciate good music and the means for its reproduction in the home. The subject matter has been selected to embrace the musical art as well as acoustic science and audio engineering. Topics succinctly but objectively dealt with include: frequency and pitch, gramophone records and their reproduction, loudspeakers, and tape recording. There are also other data such as music terms, index of composers, audio terms, and circuit symbols. Illustrated with charts and diagrams.

TRANSISTOR SERVICING GUIDE

Prepared and published by RCA Institutes Inc. 194 pages, 8 in \times Sin. Price 35 s.

Service engineers, who prefer to learn from straightforward factual reporting of, technical information, might find this book helpful. For those hitherto unfamiliar with transistor techniques, the early chapters lay out clearly and concisely the necessary basic theory of circuit operation of amplifying and r.f. stages.
Typical circuits used in transistor radio receivers are given in Chapter 3, while the next chapter looks at transistor television circuitry. This is dealt with in some considerable length. One would have thought that by this stage in the book one might have read about typical fault diagnosis and practical work-according to the title-but this aspect is given only in the last 40 pages.

Although of American origin, this book has been Anglicized to a considerable degree making it more digestible to the British service man.
M.A.C.

NEWS BRIEFS

Safer Level Crossings

Television cameras are being mounted on Italian unmanned level crossings to provide an unobstructed view of the whole crossing area. The cameras, which use English Electric Vidicon picture tubes, feed monitors mounted in the signal box, these monitors provide the signalman with a continuous view of the crossing and, in the event of the track being obstructed when the barriers are lowered, allow him time to warn approaching trains.

Britain Contributed to Apollo 7!

$B^{\text {ritain's contribution to the Apollo } 7 \text { space mission }}$ Bconsisted of five Cable and Wireless stations ir Antigua, Ascension, Bermuda, Suva (Fiji) and Tortola (B.V.I.). The "NASCOM" communications network, used to control and track the entire flight, consisted of teleprinter, voice and data circuits and covered a large part of the globe. Circuits had to be maintained in the highest state of efficiency throughout the mission; reliability requirements being as high as $99 \cdot 8$ per cent

Computer-Aided Design Centre

The Ministry of Technology have been negotiating with ICL to operate the new computer-aided design centre at Cambridge under Mintech direction. The design centre, which is expected to be operational in mid 1969, will provide multi-access facilities working largely through the medium of teleprinters but using displays and other devices in some instances. Expected costs and running expenses for the first five years are about $£ 2 \frac{1}{2}$ million.

Integrated Circuits Joined by Electrons

A ${ }^{\text {n electron beam cutting and welding unit, which is }}$ to be used for connecting together micro-integrated circuits, is being developed by the research division of ICL. The heart of the control system for the unit is to be an English Electric M2140 multi-processor computer

Computing Past and Present

A small exhibition of mechanical, electro-mechanical and electronic computing machines, past and present, is now being shown in the Science Museum, South Kensington, London. It is open every day (except Christmas Day) until January 12, 1969 , admission free.

Zener Diodes

By J.S. LAMB

BEFORE using any unfamiliar electronic device it is wise to examine the characteristics carefully and if possible try to understand its physical properties. With Zener diodes both these points are relatively simple to master. The Zener diode is very similar to any silicon diode and if used in the forward biased condition will give similar results. The difference, due to impurities injected during manufacture, is found when the device is reverse biased as it breaks down at a given voltage and will conduct large currents (see Figs. 1a and lb).
Before proceeding it is important to note that, like all semiconductors, Zener diodes are likely to be damaged if excessive currents are allowed to pass through them. To avoid this ensure that a series resistor is used to limit that current whenever the breakdown voltage is to be exceeded.

Fig. I. Characteristic curves and circuit symbols of (a) silicon diode and (b) Zener diode

Fig. 2. Characteristic of Zener diode IN753

ZENER BREAKDOWN

Looking at a typical characteristic curve (Fig. 2) of a Zener diode type $1 \mathrm{~N} 753, \mathrm{AB}$ is a region in which very little current flows and the device presents a high impedance usually above 50 kilohms. Region BC is the breakdown voltage V_{z} and is usually a very sharp knee but it can be a steep curve especially at very low breakdown voltages, i.e. 3 to 4 volts. Finally in the region $C D$ the breakdown voltage is exceeded and very large currents flow for small increases in voltage.

The manufacturers data for Zener diodes is presented with a definite value of Zener current $I_{z(\min)}$ being quoted for the breakdown voltage. This is usually greater than required and lies well into the conducting portion of the curve, to ensure that the working point of the device never lies on the curved portion BC. It is important to note, however, that for large variations in Zener current the breakdown voltage increases slightly, i.e. this device still has a finite resistance $\boldsymbol{R}_{\mathbf{z}}$ after breakdown. Two other parameters are also quoted $I_{\mathrm{z}(\text { max })}$ and maximum power dissipation $P_{\mathrm{c}(\text { max })}$. The maximum power dissipation depends on temperature, but for the purpose of this article it is assumed that an ambient temperature of 25 degrees C prevails and the devices are never subjected to maximum power dissipation. All Zener diodes are subject to a 5 or 10 per cent tolerance and it is not unreasonable for a nominal 6.2 V Zener to have an actual breakdown voltage between 5.6 and 6.8 V , although any one diode will always have a constant breakdown voltage within this range. Zener diodes also vary with temperature; those below 5 V have a negative coefficient, those above 6 V a positive coefficient, and those at 5 to 6 V have a zero temperature coefficient. Thus by combining selected diodes (i.e. above 5 V and below 5 V) the total temperature coefficient of several devices can still be less than the temperature coefficient of one diode of corresponding voltage.

STABLE VOLTAGE SOURCE

The Zener diode is most commonly found in voltage reference and stabilising circuits. Fig. 3 shows the most common Zener diode circuit used to produce a constant voltage with a varying load current and supply voltage. As the latter varies, the voltage across R1 varies, allowing V_{z} to remain constant provided that $I_{\mathrm{z}(\mathrm{min})}$ is allowed to flow continuously through the Zener diode. Under the conditions where no load current is taken, the maximum load current required in the external circuit plus $I_{Z(\min)}$ flows through the diode, while on full load the Zener diode conducts only $I_{z(\min)}$.

DESIGN PROCEDURE

The design procedure for a stabiliser of $6 \cdot 2 \mathrm{~V}$ (as in Fig. 3) is as follows:

1. Stipulate maximum and minimum current I_{L} to be drawn in load (e.g. 10 mA and 0 mA).
2. Stipulate the maximum supply voltage V_{i} likely to occur (e.g. 12 volts) and ensure that the minimum supply voltage is at least 1 V above the breakdown voltage of the Zener diode.
3. At any time $V_{i}=V_{z}+V_{R 1}$, where V_{z} is the breakdown voltage $V_{R_{1}}$ is voltage across R 1 , and $I_{z}=I_{\mathrm{z}(\mathrm{min})}+I_{\mathrm{L}}$, where I_{L} is the maximum load current stipulated.
Using Zener diode 1 N 753 where $V_{z}=6.5 \mathrm{~V}, I_{z(\text { min })}=$ $100 \mu \mathrm{~A}$ (from Fig. 2).

Maximum $I_{z}=100 \mu \mathrm{~A}+10 \mathrm{~mA}$

$$
=10 \cdot 1 \mathrm{~mA}
$$

Therefore R 1 must conduct $10 \cdot 1 \mathrm{~mA}$ at the minimum supply voltage.

Allowing 1.5 volts minimum across R 1 , i.e. $V_{\mathrm{i}}-V_{\mathrm{z}}$.

$$
\begin{aligned}
R_{1} & =\frac{1 \cdot 5}{10 \cdot 1 \times 10^{-3}} \\
& =148.5 \mathrm{ohms}
\end{aligned}
$$

The nearest preferred value resistor would be 150 ohms.
4. At maximum supply voltage 12 V :

$$
\begin{aligned}
V_{\mathrm{R}_{1}} & =I_{\mathrm{z}} R_{1} \\
I_{\mathrm{z}} & =\frac{(12-6.5)}{150} \\
& =36.7 \mathrm{~mA}
\end{aligned}
$$

Under no load conditions this current flows through the Zener diode when the Zener dissipates most power.
5. The power dissipation for these open circuit conditions is given by

$$
\begin{aligned}
P_{\mathrm{c}} & =I_{\mathrm{z}} V_{\mathrm{z}} \\
P_{\mathrm{c}} & =6.5 \times 36 \mathrm{~mA} \\
& =234 \mathrm{~mW}
\end{aligned}
$$

This is well within the 400 mW rating of the 1 N 753. The results of this circuit are shown graphically in Fig. 4.

ZENER DIODES IN SERIES

As stated earlier in this article it is possible to add two or more diodes in series (Fig. 5). The calculation is similar but in this circuit $I_{z(\mathrm{~min})}$ must be a minimum value, so that the current passing through any diode is never less than the value at which the breakdown voltage of that diode occurs. If this condition is fulfilled then six different stable supplies can be obtained from three diodes as shown in Fig. 5.

ZENER DIODES IN PARALLEL

For very good stability at low voltages, especially for supplies containing a.c. ripple, two Zeners can be added in parallel, Fig. 6. The calculation is the same for both diodes, each being treated as a single stage. If a potentiometer is substituted for R2 then a variable stabilised supply can be obtained although stabilisation is not as good as in the fixed voltage circuit.

If large load circuits are required or the supply varies by more than 2 to 3 V the Zener diodes can easily be over loaded; to overcome this a transistor is usually added.

VOLTAGE STABILISE WITH
 TRANSISTOR

In this type of circuit the Zener diode is used as a constant voltage source on the base of a transistor. The transistor is operated in the emitter follower configuration, with the load acting as the emitter resistor (see Fig. 7).

The roltage at the emitter follows the voltage at the base. In this circuit, the latter is constant so the output across the load is also constant and the maximum current through the load is the maximum emitter current of the transistor. The gain of the transistor $h_{\mathrm{t}} \mathrm{e}$ should be high (e.g. 50) to ensure that under maximum load conditions the base current is not large enough to load the Zener diode circuit.

Fig. 4. Load characteristics for given inputs of Zener dioda stabiliser

Fig. 5 Three Zener diodes connected in series provide six
stabilised outputs.
stobilised outputs.

Fig. 6. Zener diodes connected in parallef

$v_{1}=13.0$ volts	
$V_{0}($ volTs $)$	$I_{0}(\mathrm{~mA})$
6.10	10
6.05	30
6.05	50
6.05	60

STABILISER DESIGN

The procedure for designing a circuit using 1 N753 to give 6.5 volts output, as in Fig. 7, is as follows:

1. Stipulate maximum and minimum load current, (e.g. 50 mA and 0 mA respectively).
2. Stipulate maximum and minimum supply voltage; again the minimum supply should be 1 to 2 V above $V_{\mathrm{z}}\left(\right.$ e.g. $\left.V_{\mathrm{i}(\max)}=12 \mathrm{~V}, V_{\mathrm{i}(\min)}=8 \mathrm{~V}\right)$, i.e. $V_{\mathrm{R} 1}=1.5 \mathrm{~V}$.
3. Select transistor for power dissipation $P_{\text {tot }}$

$$
\begin{aligned}
P_{\mathrm{tot}} & =\left(V_{\mathrm{i}(\max)}-V_{\mathrm{o}}\right) \times I_{\mathrm{L}(\max)} \\
& =(12-6.5) 50 \times 10^{-3} \\
& =275 \mathrm{~mW}
\end{aligned}
$$

It is also required that $h_{\mathrm{fe}}=50$ (use transistor type OC84)

Therefore $I_{\mathrm{b}}=\frac{I_{\mathrm{L}(\max)}}{1+h_{\mathrm{fe}}} \simeq \frac{I_{\mathrm{L}(\max)}}{h_{\mathrm{fe}}}$

$$
I_{\mathrm{b}}=1 \mathrm{~mA}
$$

4. For good regulation the current through the Zener diode should be much larger than the required base current, i.e. by a factor of 5 .
The value of R_{L} is then calculated as in the simple stabiliser.
i.e. $R_{\mathrm{L}}=\frac{V_{\mathrm{i}(\mathrm{min})}-V_{\mathrm{Z}}}{I_{\mathrm{z}}}$

$$
=\frac{8-6 \cdot 5}{5 \times 10^{-3}}
$$

$=300$ ohms
The nearest preferred value resistor is 300 or 330 ohms.
5. The power dissipation is given by

$$
P_{\mathrm{c}}=\left(\frac{\left(V_{\mathrm{i}(\max)}-V_{\mathrm{z}}\right)}{R_{1}}-I_{\mathrm{b}(\min)}\right) V_{\mathrm{z}}
$$

If the minimum load current is zero, $I_{\mathrm{b}}=0$

$$
\begin{aligned}
P_{\mathrm{c}} & =\left(\frac{12-6 \cdot 5}{330}\right) 6 \cdot 5 \\
& =112 \mathrm{~mW}
\end{aligned}
$$

For the results of this circuit, see tables in Fig. 7.
It is interesting to note that as this circuit behaves as an emitter follower the output voltage is smaller by the $V_{b e}$ of the transistor. It is also worth noting that $V_{\text {be }}$ increases slightly as the emitter current increases.

Fig. 7 (left). Circuit diagram and table of results of voltage stabiliser using a transistor connected in series.

Fig. 8. Use of Zener diodes in meter circuits

Fig. 9. The results of adding a Zener diade and parallel resistor to a ImA meter

Fig. 10 a. Zener diode used to protect a voltmeter against overload

Fig. 10b. Two Zener diodes used "back to back" to give protection against positive and negative transients

Fig. Il. A free running square wave generator using a Zener diode

ZENER DIODES FOR METER CIRCUITS

One of the most useful applications of Zener diodes to the amateur constructor is its addition to voltmeter circuits (Fig. 8a).
For this application a 1 mA meter was used, with a series resistor R1, as a voltmeter. Sensitive meters should be shunted to measure at least 1 mA f.s.d. to ensure that f.s.d. is not reached by Zener diode leakage current (Fig. 2).
The Zener diode presents a very high impedance (about 50 kilohms) until the voltage across it reaches the breakdown voltage, so from zero volts to the Zener breakdown voltage the meter reads only the Zener leakage current, i.e. Fig. 2 (A - B). After breakdown the Zener resistance is very small (e.g. in the region 10 to 100 ohms) so the meter now behaves as a normal voltmeter. The scale is compressed up to the Zener breakdown voltage, whereafter it is linear. If it is required to measure a voltage of 7 V accurately then using a Zener diode of 6.5 V and a 1 mA meter, the meter will read 7.5 V full scale with a deflection range of 1 V if $\mathrm{R} 1=1$ kilohm.
If a resistor is placed in parallel with the Zener diode (Fig. 8b) to form a potential divider then the lower part of the scale can be increased, while still being compressed, to give a reasonable reading outside the required rarge. Fig. 9 shows the results of adding a Zener and parallel resistor to a 1 mA meter.

CIRCUIT PROTECTION

A Zener diode can be used very effectively to protect a voltmeter against overload or a reversed polarity signal (Fig. 10a). When the input reaches the breakdown voltage the diode conducts and short circuits the meter. In practice the diode used has a breakdown voltage 2 to 3 times that which would overload the meter. Also, if a voltage is applied which is of reversed polarity the Zener diode behaves like a normal diode, forward biased, thus again short-circuiting the meter. This method of protection can also be used to protect instruments from transients through supplies. In this case it is usual to place two Zener diodes back to back as in Fig. 10b, thus protection is gained against positive and negative transients.

SIMPLE TIMING CIRCUIT

In the circuit of Fig. 11 the capacitor C 1 is charged through the resistor R 1 until the voltage across it reaches the Zener breakdown voltage plus the $V_{\text {be }}$ of the transistor.
The Zener diode then conducts allowing a base current to flow which switches the transistor hard on. The time taken for this to occur is given by

$$
t \simeq \frac{0.7 C_{1} R_{1} V_{z}}{V_{\mathrm{cc}}}
$$

Unfortunately the value of R1 has a practical maximum. This resistor must be able to conduct the $I_{z(\min)}$ of the Zener diode and a base current large enough to switch on the transistor. This means that large values of capacitance must be used for long time delays.
The repeatability of the time delay depends on the capacitance and the shape of the knee of the Zener diode. Thus this circuit can never be used in applications which require a high degree of accuracy.
If a relay is used in the collector circuit with one set of contacts used to discharge the capacitor then the circuit becomes a free running square wave generator.

Don't risk accidents caused by faulty brakes. Play safe-take the guesswork out with this electronic brakemeter. Here's a simple constructional project which provides immediate visual readout of the braking efficiency of your vehicle. You need it-and you'll enjoy building it.

Also

ELECTRONIC FENCER FOR FARMERS

An all solid state battery operated version of the "Electric Fencer" widely used for livestock control. Small size, current economy and long-term reliability are features of this new design.

PRACTICAL ELECTRONICS

February Issue On Sale Monday Jan 13
MAKE SURE OF YOUR COPY-ORDER NOW!

By P. R. HINCHCLIFFE B.Sc.

Abstract

ASTUDY of the acean involves the accurate determination of such parameters as pressure, temperature, salt content and current flow in regions of the earth's surface where man could never live, without the aid of bulky and expensive protective vessels. The following article describes how the oceanographer enlists the aid of electronics to penetrate depths otherwise forbidden to him, and to study them both in situ and in the laboratory.

MEASUREMENT OF DEPTH

The eatliest measurements of depth were, of course, taken by the technique of throwing a weighted rope over the side of a ship. In later years, a blob of candle grease on the weight also provided early marine geoch ϵ mists with a convenient sample of the sediment from the sea floor.
However this procedure was inaccurate, and especially in deep waters, very lengthy. Paying out and winding in 3,000 fathoms of wire is a very tedious procedure, and a survey of a small area could take months using this procecure.
A modern day technique is to use sonar. A high frequency acoustic pulse (about $10-15 \mathrm{kHz}$) is released from a transducer below the ship, at the same time that a pen recorder begins to sweep across a paper. The reflected echo is received and causes the pen to mark the paper.
The time pulse and echo gives the depth accurately, assuming that the velocity of sound in water is known. This value is taken to be 800 fathoms per second, but tables are available to correct for different parts of the ocean.
Accurate measurement of sound velocity is also useful for determining current flow or water densities under certain circumstances. The method usually used to measure velocity is based on the "sing-around" system (Fig. 1). A pulse emitted from the transmitting transducer travels an accurately known path and is received by a second transducer, which feeds the signal back to the transmitter via shaping and amplifying circuits, causing electrical pscillations to occur. The frequency of oscillation is dependent on the velocity of sound in the water between the transmitter and receiver.
This transmission of data as a frequency modulation is very convenient, requiring only one probe-to-ship cable to carry many different channels of information. Considerable modification is often incorporated into a sensor system so that a modulated frequency signal can be obtained, as we will see later.

DEPTH RECORDER

Knowing the velocity of sound enables accurate depth measurements to be made using the system mentioned above. Fig. 2 shows in block diagran form a typical depth recorder based on this principle.

Use of the "sing-around" principle would cause loss of definition of the structure of the sea bed as the interval between pulses may be several minutes in deep waters, and in this time the boat may have thavelled quite a cistance. To overcome this a string of Fulses is given out and this is gated in a particular code to determine which echo carne from which pulse.

Fig. 1. Scund velocity meter using "sing-around" frinciple

Complete precision soldering kit

This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted $\frac{3^{\prime \prime}}{18}$ bit.
Interchangeable spare bit, $\frac{5}{32}{ }^{\prime \prime}$.
- Interchangeable spare bit, $\frac{3}{32}^{\prime \prime}$.
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.

From Electrical and Radio Shops or Shops or
send cash
to Antex.

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from . 040 " (1 mm) up to $3 / 16^{\prime \prime}$. For $240,220,110,50$ or 24 volts.
From Electrical and Radio Shops or send cash to Antex.

. . pin-point precision soldering fingertip control... bits that do not stick to shafts . . . bits that slide over elements... sharp heat at the tip ... reliable elements ...spares always available
in Europe, Africa, Asia, America .. . ANTEX soldering irons are used by experts and amateurs alike; they have found out the advantages of Antex...
you can too ... buy one in a shop or direct from us... or ask for our catalogue first.

15 watts -240 volts
31 ${ }^{1-}$
Fitted with nickel plated bit (3/32") and in handy transparent pack. From Electrical and Radio Shops or send cash to Antex.

PRECISION MINIATURE SOLDERING IRONS made in Engiand

Antex, Mayflower House, Plymouth, Devon Telephone: Plymouth 67377/8. Telex 45296. Giro No./258 1000.

> F 40 watte. Fitted $5 / 18^{\prime \prime}$ bit.
> Interchangeable bite $1 / 4^{\prime \prime}, 3 / 16^{\prime \prime} .1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ Very high temperature iron. Avallable for $240,220,110,24$ or 20 volts. $42 / 6$.
> Spare bits and elements for all models and voltages immediately available from st ock.

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., S.W. 16 Special 24 Hour Mail Order Service

Vacancies exist in the Royal Australian Air Force for men who are interested in being trained in the Technical Radio fields. Applicants should be United Kingdom citizens resident in the U.K. aged between 18 and 33 years. Qualified personnel up to the age of 43 years are also invited to apply.

Free passage to Australia is provided for families and pay commences from date of enlistment in London.

Further information can be provided by writing or phoning: raaf careers officer (Dept. p.e.) australla house STRAND, LONDON W.C. 2 Telephone No: 01-836 2435

[^5]

Fig. 2. Block diagram of typical depth recorder

Fig. 3. Helical stylus used on depth recorders

Sing-around type depth recorders, however, have the advantage that loss in signal strength by absorption in water can be compensated for automatically by using a time-variable gain on the receiver.

The recorder uses a pen which sweeps across the paper at a constant rate-often a helical stylus is used to achieve this effect (Fig. 3). A pulse is emitted as the stylus is at zero and the pen marks the paper again on receipt of the echo. Different rotating speeds of the stylus give different depth ranges.

The transducers used are usually multiple ceramic devices, but for some cases nickel/iron magnetostrictive rings or quartz crystal devices may be used.

Sonar systems are also used for giving the depth of probes or sampling devices below the sea surface. A "pinger" is fitted on to the probe, which gives out a string of sonar pulses. Two main pulses are received onboard the ship, one direct and one reflected from the sea bed. When the two traces on the recorder coincide, the probe or sampler will be on the sea bed.

VIBROTRON

Depth is closely related to pressure, to such an extent that a pressure recorder is often used to indicate the depth of an instrument. A useful sensor, which directly gives a signal whose frequency is dependent on
pressure, is the vibrotron, in which the pressure is used to tighten or slacken a vibrating wire, hence varying the frequency of vibration of the wire. Devices in which pressure varies the capacitance of the capacitor in an LC oscillator are also useful.

The vibration and the sonar device described may be used in wave measurement, which may become important in the future for predicting storms. However, these have to be resting on the sea bed and cables must run from the instrument to shore or ship, so they are only really useful as near-shore, shallow water devices.

For shipborne wave analysis a very elegant system is used. An arbitrary reference depth is fixed below the ship. Shipborne transducers measure the pressure (and hence the height of the wave) and compare this to the reference level to allow for the motion of this ship in both vertical and rolling motion. The reference level is fixed by measuring the vertical acceleration due to the wave motion at each side of the ship. Distance is found from acceleration by double integration.

The transducers used are variable inductance transformers (Figs. 4 a and 4 b). A voltage of 10 V at 10 kHz is fed to the fixed coil, and $10 \mathrm{~V} \pm 10$ per cent is induced into the other, dependent on its height relative to the

Fig. 5. Shipboard wave recorder
core. This is compared to the standard 80 V reference to give an output V_{o} (Fig. 4c) dependent on either acceleration or pressure.
The acceleration signal is integrated twice (Fig. 5) and mixed with the pressure signal. The resultant is fed via a filter to eliminate long term drifting in the previous network into a pen recorder. The trace may then be analysed at leisure on land.

MEASUREMENT OF TEMPERATURE

There are two quite separate problems involved in temperature measurement of the ocean-the thin skin of the surface is often at a quite different temperature to that of the mixer layer immediately below. Measurements of the surface skin are usually carried out using an airborne radiation thermometer (a.r.t., see Fig. 6) which, as the name suggests, is usually carried in an aeroplane.

This device compares the infra-red radiation of the surface layer of the sea with the radiation reflected from a shutter in front of the thermostatically controlled container. The shutter rotates to give a chopped 20 Hz signal in the thermistor; the signal is then filtered, analysed and recorded. This method was used to plot the Gulf Stream very accurately, as it can measure surface temperatures of large areas rapidly to within $\pm 0 \cdot 2$ degree C.

For sub-surface measurements, reversing thermometers and isothermal sampling bottles are often used, but for the fast temperature/depth contouring a device known as a bathythermograph (b.t.) is useci. This is in the form of a fish which is towed behind the ship.

On paying out the hawser the weight at the end of the b.t. causes it to sink, and on stopping the winch and then winding in the hawser the b.t. rises to the surface by means of its fins. Pressure drives a smoked glass plate in one direction, whilst the expansion of a liquid in a copper tube drives a stylus over the plate to indicate temperature against depth.

However, a more modern procedure is to use the expendable bathythermograph (e.b.t.) which is in the form of a streamlined plumb carrying a thermistor. An extremely fine 3-core cable connects the thermistor to a compensated bridge circuit on board the ship. As the cable is reeled out from both the e.b.t. and the shipboard unit simultaneously, it will float along the sea surface allowing the plumb to fall freely at a known speed whilst the ship steams away from the spot where it dropped the e.b.t.

The temperature is recorded against time, and hence against depth. These e.b.t.'s cannot be recovered, as the cable is far too fine to stand the strain of rewinding the instrument. It is possible to record the temperature to within ± 0.1 degree C.

Contouring temperature recorders (strings of 20 or more thermistors on a single hawser) are often used to plot the variation of the depth of an individual isotherm. The thermistors are wired individually into circuits such as that shown in Fig. 7.

MEASUREMENT OF SALINITY

Water masses in the ocean can be accurately defined and their movements plotted by measurement of their depth, temperature and salt content. However, variations of salinity in the major oceans are fairly small, and measurements to within ± 0.01 per cent would be required.

The most reliable and accurate method of salinity measurement is by the chemical procedure of titration, but this requires isolated samples of sea water, and a good deal of time and care. Rapid laboratory techniques usually measure the resistance of a standard vessel of sea water. The resistance is inversely proportional to the salinity, but also varies with temperature and pressure of the water.

In the laboratory pressure presents no problems-if the sample has been taken from a great depth, the pressure may be allowed for by use of tables. However, temperature must be controlled to a very fine degree, and this is done by immersing the conduction "cells" in an accurate thermostat.

Fig. 8 shows the circuit of a simple conduction bridge. The circuit is a Wheatstone bridge compensating

Conductivity salinometer

DE LUXE PLAYERS PORTABLE CABIMETABIILut
tretad. To At standard $69 / 6$ playg or sutochans or. Ready mado and teated with chis hilo valve and lond- 59/6

UPTRIOR

Bnilt and test
Better sound :
Isolated AC Maing
ranilormer. 8 mat
CCLEA triode pentode ralie.
Volume and tone controle whth knobs, quality 89/6 SIIGLE PLAYERS MONO 8tatar 9v. Battery 45 rpm model HII Junior Mato 22.19 .0 Garpard sipen 28.19 .6
 tortod LP/78 itflii mono pickup cryatal completo. steroo/mono 20/- ertra oxcept UA70.

GARRARD TEAETOOD BA8E WB.1. Ready $65 /-$
cat out for monntlig $1000,2000,3000,8 P 25, ~ A T 60.6$ GARRARD PERSPEX COVER SPC. 1 Ior WB. 1 EACH

PIOK-UP ABM Complete with ACO8 LP-78 GP
and Stylif $20 / 6$: XTAL GF67 17/6; 8tereo Ceramic $35 /-$.
CRYSTAL MIKE INSERTS

PORTABLE TRANSISTOR
AMPLIFIER PLUS
MICROPHONE
Bany uses, Intercoms, Baby Alarms, Gritar Eractice Reiserer Amplifor. ONE WATT OUTPUT Wooden cabinet $12 \times 9 \times$ 4in. Rexine covered two tone grey. Poartrantigtors, $7 \times$ in. spazker. Volume control. Jack 0UR 90/- Poat Free. sockot. Jes PP9 battery. PRICE $90 /$ - Worth double

COLLARO BATTERY RECORD DECKS 4 speed model 9v. operated. Complote with pick-ap Atted cryatal cartridge. Playi 7, $10,12 \mathrm{n}$. recorda. Fitted anto, $\begin{array}{llll}\text { stop and start. Ideal for use with above } 69 / 6 & \text { POST } \\ \text { trauristor amplifers. } \\ \text { OUR PRICE } & 6 / 8\end{array}$
 DECE PORT FREE IP PURCHASED TOGETERR

WEYRAD P50 - TRANSISTOR COILS

 I.P. P50/2CC $470 \mathrm{zc} / \mathrm{s}$ 8rd I.P. P50/3CC

8/7 J.B. Tuning Gang
Telescopic Chrome Aerials Bin. extende to 83 in . $5 / \mathrm{L}$
VOLUME CONTROLS 800hm Coax 8d. sd.
 LII. L/8 3/- Dios
 VEROBOARD 0.16 MATREX
$21 \times 5 \mathrm{in}, 3 / 8.2\} \times 3 i \operatorname{in} .3 / 2,31 \times 3 / \ln .8 / 8,31 \times 5 \mathrm{in} .5 / 2$. EDGE CONEECRORS 16 WAY $5 /-24$ way $7 / 6$
8.R.B.P. Bosid 0.15 MATRIX $2 t$ tn. Wide $8 d$. per lin., 3tin. wide 9d. per 1 in .: Bin, wide $1 /=$ per lin. (up to 17 in .). S.E.B.P. undrillod tita. Board $10 \times 8 \ln .3 /$
 $7 \times 4 \mathrm{in} ., 5 / 6 ; 9 \times 7 \mathrm{ln}, 6 / 6 ; 11 \times 81 \mathrm{n}_{,}, 6 / 6 ; 11 \times 7 \mathrm{ln}$. 7/6: $18 \times 91 \mathrm{n} .9 / 6 ; 14 \times 11$ in. $12 / 6 ; 16 \times 1410 ., 16 / 8 ; 14 \times 0 / n$ S/6; $12 \times 81 \mathrm{n} .4 / 6 ; 10 \times 7 \mathrm{in}, 8 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 6 \times 4 / \mathrm{n} ., 1 / 6$. A MAX CHASSIS CUTTER

Complete: a die, spunch, an Alen gcrev and koy
 "SONOCOLOR' CINE RECORDING TAPE 5^{*} reel. 900^{\prime} with $L P$ atrobe markingit. aleo cine light
 Tape Ipools 2/6. Tape 8pllcer 5/-. Leader Tapo 4/6. zontor Tape Heads lor Collaro models 8 tracz 21/- pair.

"THE INSTANT

BULK TAPE
ERASER AND
RECORDING
HEAD

DEMAGNETI8ER

800,250 y. A. C. Laentiot 8.A.E.

BARAAIM STEREO/MONO SYSTEM

 (Only 4 pairl of wires to jola)

ETW TUBULAR ELRCIROLITIC8 CAE TTPES

 $1 / 480 \mathrm{~F}$ 16/4507 $82 / 450 \mathrm{~V}$ | $8+8 / 4507$ | $8 / 6$ | |
| :--- | :--- | :--- |
| $8 / 657$ | $8 / 9$ | $8+16 / 480 \mathrm{y}$ |
| $8 / 9$ | | | 0/507 $\quad 1 / 8 /{ }^{26}+16 / 46074 / 8$

 UB-MII. ELECTROLYTICE. $1,2,4,5,8,16,25,80,50,100$
 CAPIR $850 \mathrm{~V}-0.19 \mathrm{~d}, 0.52 / 5 ; 1 \mathrm{mF} 8 /-2 \mathrm{mF} 150 \mathrm{~V}$ $600 \mathrm{~V}=0.001$ to $0.059 \mathrm{~d} ; 0.11 /-0.251 / 6 ; 0.58 /-$ $1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$ SILVER MICA. Close tolerance 1%. $5-600 \mathrm{pF} 1 /-; 560-2,200 \mathrm{pF}$ 2/-i 2,700-5, 600pP 3/8; 6,800pr-0.01, mid 6/-; each TWH GANG. "0-0" $208 \mathrm{pr}+17 \mathrm{gpF}, 10 / 6 ; 366 \mathrm{pF}$; minig ture $10 /=; 500 \mathrm{p}$ P standard with trimmera, $9 / 6 ; 500 p \mathrm{~F}$ midget leas trimmers, 7/8; 500pF slom motion, atandard $9 /$ small 8-geng 500pr 18/0. 8 ingle " 0 " $386 \mathrm{pF} 7 / 8 . \mathrm{TWin} 10 / \mathrm{p}$ 8H0RT, $/ 6$ each. Can be ganged. Conplors 9 d asch.
 Treneres Compreation 30, $60,70 \mathrm{pF} 1 /-100 \mathrm{p}$ $160 \mathrm{pF}, 1 / 8 ; 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{p}, 8 / \mathrm{c}$. 850V RE0xifitsin. Belealum it whe 100mA 5/-; BY100 10/-

Fall wave ridet $75 \mathrm{~mA} 101-$; $150 \mathrm{~mA} 10 / 5$; TV rects. 10%
M20 PAIEL IMDIOATORE 2BOF. AC/DC 8/6

 Ditto 5%. Freferred values 10 ohms to 22 mes., 9 d . $\left.\begin{array}{l}5 \text { watt } \\ 10 \mathrm{wath}\end{array}\right\} \quad$ WIRE-WOOND RESISTOR8
i6 watt $\}$ W 10 ohmi to 6,800 ohm $10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3 /-$ TULL WAVE BRIDGG CHARGER EECTIFTERS

 - TATDAR
 VALVE HOLDEES, MOULDED 8A.; CERADIC $1 /-E A C H$. NEW MULLARD TRANSISTORS 6/- each OC71, OC72. OC81, OC44, OC45, 0c171, OC170, AF117. REPAMCO TRAIBISTOR TRASS FORMERE
TT45. Pugh Pull Drive, $9: 1$ CT, $6 /-$ TY46 Ontpat, CT8:1 6/TT40. Interstage, $20: 1,6 /-$; Tr5s Outpat 8 ohms, $4 \cdot 6: 1,8 /-$ PAIS 10W. Amp. Transiormers and cironit 45/o
TRATBISTOR TAMS POWER PACES. FOLL WAVE 9 volt 50 mA . $8 \mathrm{tan} 2!\times 1 \mathrm{in}$. Sanp tarminals 89,6 2 volt 800 mA . Sise $41 \times 21 \times 2 \mathrm{in}$. Crackle metal $49 / 6$

MAINS TRANSFORMERS

Pont
$5 /-$ ench
$250-0-25050 \mathrm{~mA} .6 .8 \mathrm{v} .2 \mathrm{amps}$, centro tapped o $19 / 6$ 250-0-250 80 mA .8 .8 v .3 .5 m .6 .8 v . 1 z , or 5 V .8 s . $20 /-$
 MILATURE $200 \mathrm{~F} .20 \mathrm{~mA}, 6.3 \mathrm{~F} .1$ MmaET 250 7. $45 \mathrm{~mA} ., 6.3$ v. 2 s

 GENERAL PURPOSE LOW VOLTAGE. OntputI $3,4,5$ $6,8.9,10,12,15,18,24$ and 80 F. at $28.16,48,8$
1 amp., $6,8,10,12,16,18,20,24,30,86,40,48,8$

 COATIAL PLUG 1/3, PAMEL 8OCKET8 $1 / 8$. LINE $8 / \%$ OUTLET BOKES. SURPACE OR FLUSH 4/6. BALANCED TWII PEREDERS $1 /-$ yd. 80 ohmi or 800 ohme.
JACK 80CEET 8td. opon-circuit 2/6, closed circult 4/6; Chrome Lead Socket 7/6. Phono Plaga $1 /$-. Phono 8ocket $1 /$ JACE PLDGs 8td. Chrome 3/-; 8.
 8-pin 8/6; 5-pin $5 /$-. DL PLUGS 3-pin 8/6; s-pin $6 /-$ © p. $2-\mathrm{wiy}$, or $2 \mathrm{p} .6-\mathrm{way}$, or $3 \mathrm{p} .4-\mathrm{may} 4 / 6$ each. 1 p .12 -way, or 4 p .2 -way, or 4 p .3 -way, $4 / 6$ each Wavechange "MAEITS" 1 p. 12-way, 2 p. 6-way, 3 p. 4 -why. 4 p .8 -way. 8 p. 2 -way. 1 wafer $12 /-, 2$ welor $17 /-.8$ witor $82 /-$

$30-14,500$ 6.9.1., $\mathrm{Hi}-\mathrm{TI}$ donble cone, woofor and tweatar cont together
 magnot asyembly herin - fax ingofte of 14000 causi and - tot 18,000 145,000 1 latiol iux of respance ts e.p.L. Reted 20 watts. Volce coils nvilable 3 or 8 or 15 ohms. Price 68, or Yodule kdt, 80-17,000 c.p.1. with tweeter, crossover, bante and instractions. elo.19.6. Lobeg EAKEAR CABIIRT WADDLIG 18 in wide, $2 / 64$ BAKRR " GROUP SOUND" 8PEAKFRS-POBT FRES 'Group 25' 'Group 35' 'Group 50'
 ALL IODELS 'BAKER BPEAKER8" IT BTOCK

g.in.I. Double Cone $18+\times 8 \mathrm{in}$, 8 or 15 ohm modele, $45 /-$ or rith twin tweeters, $\Sigma / 0$ ver end E/D magnet 70.6. SPECLAL OFFRR! 8 ohm, $24 \mathrm{in} ; 6 \times 4 \mathrm{in} ; 80$ ohm. $24 \mathrm{in}, 8 \mathrm{tm} ;$ $15 / 6$ EACH 25 ohm, $8 \times \operatorname{lin} ; 3 t$ ohm, 吅
 SPEAKER FRET VABIOU TEGAM BAMPLE. Bend B.A.E.

ALL PURPOSE HEADPHONES

 E.R. HEADPHONEs 8000 ohma General Parpose H.R. HEADPHON HRAD 2000 ohms 8qper Benstive

1918
$38 /-$
$89 / 6$
$70 / 6$

MINETTE AMPLIFIER
 For ALL, Record Players.
 A.c. Malm Tranalormer

 Chassin sise $7 \times 81 \times 4 i n$ nigh. Falves ECL89, EZABO. is month guarantoe. Quality outpnt 8 olm matching Bargeln offor complete with ongraved control panel,Talves, Falva, knobs, volame and tone controls, wired
and toated.
Post $6 / 6$

ALL

EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICES.BARGAIM AM TUMRR. Modiam Wave. $79 / 6$
BARGAM DE LOXF TAPE BPLICER C口th $17 / 6$ trmen, foini for editing sad ropsirs. Wha shed. BARGAIM 4 CBAEMEL TRANBISTOR IIXRER. Add
 separate controls jato single ortpat. o volt. $59 / 6$ BARAANI PI TUIER 88-108 Mc/E 8ix Tranvistor. Ready bult. Printed Circuit. Callhrated slide dial 6.19 .6 BARGAII 3 WATT AMPLIFIER. 4 Transiator $69 / 6$ 40-PAGE EAGLE CATALOGUE 5/- Post Frea \rightarrow RADIO B00Ks \rightarrow (Postege 9d.) Practical Trausistor Recelvert
Practical Trausit
Practical 8 Roreo Handbook..
Practical 8toreo Iandionor Pocleot Eadio
8aperian mitivo Irangistor Pocirot kadio
Eadio Valve Guide, Books 1, 2. 3, or 4 ea. 5/-Ho. 6 ea. Practical Zedio Indide Dot. Bhortwivo Transistor Receivert Tranatator Commpuication Sets Hodern Transistor Cícalts loz Eeginnere Sub-Miniature Tranimior Receiver At a slance valve equivalents Ats slance valve equivilenksoivients manou How to recelve Forelgn T.V. programmer on joar at by timple modifications

SANGAMO 3 inch SCALE METERS 45%

POCEET MOTAIG COIL HULTMETIRS.

BRAND NEW QUALITY
EXTENSION LOUDSPEAKER
Bleck plastic cabinot, 20it. load and adeptors. For sny radio, fincorcom, tripe recorder, otc. ${ }^{\text {s. }}$ to 15 ohm. PRIC
Bize: $74^{*} \times 64^{*} \times 8^{\circ} . \quad$ Post $2 / 6$

Written guarantee with every purchase. (Export: Send remittonce and extra postage, no C.O.D.) Buses 133,68 poss door. S.R. Stn. Selhurst. Tel. q1-684 1664
 OUTPUT VARIABLE 0-260v. BRAND NEW
Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp . from stock. SHROUDED TYPE
1 amp 65. 10. 0.
C6. 15. $0 \quad 4 \mathrm{amps}$. 59 amps , 5 amps, E9. 15 . 0 mps, 89.0 . 0 . 614. 10. 0. 10 amps, E18. 10.0 . 12 amps, 421.0 .0 . 15 amps, £25. 0. 0 . 20 amps, E37. O. O. 37.5 amps, E72. 0. 0. 50° amps, E92. 0.0 .
OPEN TYPE (Panel Mounting) amp, 65. 10. $0.2 \frac{1}{2}$ amps, 66. 12. 6.
PORTABLE TYPE
1.5 amp. portable fitted metal case. voitmeter, lamp, switch, etc. $\mathbf{\text { E9.5.0. }}$
C9.5. 0.
PRECISION INTERVAL TIMER From 0-30 seconds (repetitive). Jewelled balanced movement. Lever re-set. Operates 230 V. A.C. 5 amp. c/o Microswitch. New. Price $17 / 6$ plus $2 / 6$ P. \& P. CONDENSERS $2,500 \mathrm{mfd} 100 \mathrm{v}$. $12 / \mathrm{s}$ 1/6 P. \& P. $4,000 \mathrm{mfd} 25 \mathrm{v} .10 / \mathrm{l} / 6 \mathrm{P}$. \& P. $4,000 \mathrm{mfd} 50 \mathrm{v}$. $15 /-$ $1 / 6$ P. \& P. $10,000 \mathrm{mfd} 35 \mathrm{v}$. $15 /-1 / 6$ P. \& P

230 VOLT A.C., GEARED MOTORS

 Type DI5G 5 r.p.m. 1.7 lb . inch, $62 / 9 / 6$, P. \& P. 3/-. Type B16G 80 r.p.m. 26 lb . inch, 62/2/0, P. \& P. 3/-. Type DIGG $\frac{13}{\text { SEL.p.m. } 1.45 \mathrm{lb} \text { inch, } 2 / 17 / 6, \text { P. \&P. } 3 /-}$ 30 volt 3 amp., $11 / \mathrm{-}, 30$ volt $5 \mathrm{amp} ., 16 / \mathrm{m}$, plus $2 / 6 \mathrm{P} . \&$. P . L.T. TRANSFORMERS Type No.
Sec. Taps

f $30,32,34,36 \mathrm{v}$. at 5 amps.
$230,40,50 \mathrm{v}$. at 5 amps. 10, $17,18 \mathrm{v}$ at 10 amps. 6, 12 v . at 20 amps.
17, 18, 20 v . at 20 amps.
All primarie
$220-240$ volts Price Carr. E4/5/0 E6/5/0 E4/10/0 45/17/6 £6/12/6 E6/5/0 £4/15/0 £6/10/0

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{v}$. A.C. operation.
ECONOMY KIT. Flash rate 1.36 flash per second All components including Unijunction, thyristor,

TRAISFORNEERS LIGHT SENSITIVE SWITCH
Kit of parts, including ORP12 CadTransistor and Circuit
Transistor and Circuit, etc., 6-12
volt D.C. op. price 25/- plus $2 / 6$
P. \& P. ORP 12 including circuit.
$10 / 6$ each, plus $1 /-$ P. \& P.
A.C. MAINS MODEL Incorporates

Mains Transformer, Rectifier and special relay with $3,5 \mathrm{amp}$ mains c/o contacts. Price inc. circuit $47 / 6$ plus $2 / 6$ P. \& P. LIGHT SOURCE AND PHOTO CELL MOUNTING Brecision engineered light source with focus
lens assembly and ventilated $\mathrm{S} \longrightarrow$ lamp housing, to take MBC bul6. Separate photo cell mounting assembly for ORP. I2 or similar cell. Both units are single hole fixing. Price per pair $£ 2.15 .0$. P. \& P. 3/6. UNISELECTOR SWITCHES

NEW

4 Bank 25 Way 24 v. D.C.
operation 65.17 .6 plus $2 / 6$ P. के P
Bank 25 Way 24 V . D.C. operation. E7.12.6 plus 4/6 P. \& P
MINIATURE UNISELECTOR SWITCH 3 banks of 11 positions plus homing bank. 40 ohm coil.
$24-36$ v. D.C. operation.
Tested. 22/6, plus 2/6P.\&P.

DRY READ SWITCHES. New special offer of Dry Read Switches half amp. Contact. Size $1 \frac{1}{3} \times \frac{1}{1}$. 4 for $10 /-$ Post Paid.

RELAYY			
Bulk purchase enables us to offer the following new SIEMENS, PLESSEY, etc. miniature plug in relays complete with base, at a fraction of maker's price.			
Coil	Working		
	Voltage	Contacts	Price
280	6-12	$2 \mathrm{c} / \mathrm{o}$	$14 / 6$
280	9.18	$4 \mathrm{c} / \mathrm{O}$	15/6
700	12.24	$2 \mathrm{c} / \mathrm{o}$	$12 / 6$
700	16-24	$4 \mathrm{c} / \mathrm{O}$	15/6
700	16-24	4 M 2 B	12/6
1250	20.40	$2 \mathrm{co} \mathrm{H.D}$.	$12 / 6$
2500	30-50	$2 \mathrm{c} / \mathrm{H} . \mathrm{D}$.	12/6
5800	50-70	$4 \mathrm{c} / \mathrm{O}$	10/-
9000	40.70	2 co	
H.D. = Heavy Duty. POST PAI			

SEALED RELAY

| 230 VOLT AC COIL
Two change over
| 5 amp contacts.
Plug-in I.O. Base.
Price 14/6. incl, base. Post Paid.

है

 SANWA MULTI RANGE METERS- 0 New Model U50D Multi tester 20,000 OPV, mirror scaled with overioad protection. Ranges-d.e. volts: 100 mV , 2.5 v. 5 v., 250 v., 1,000 v.: a.c. volts 2.5 v., 10 v., 50 v... 250 v., 1,000 v.; D.C. current: $5 \mu \mathrm{~A}, 0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}$, 250 MA . Complete with battery and test probe. $67 / 5 / 0$ post paid. Three other models available from stock. Descriptive leaflet on request.

A.C. CONTACTOR

2 make +2 break (or, c/o.). 15 amp. contacts. 230/240V. A.C. operation. Brand new.
$1 / 6$ P. \& P. tube and circuit. $\$ 5 / 5 / 0$ plus $3 / 6 \mathrm{P}$. \& P INDUSTRIAL KIT. Flash rate I-80 i.p.s. Ideally suitable for schools, laboratories, etc. Incorporates double wound transformer which isolates both tube and timing circuit from mains. Stabilized timing circuit and high power tube. $88 / 8 / 0$ plus $6 /-\mathrm{P}$. \& P .

6! $\frac{1}{2}^{*}$ POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price $8 / 6$ post paid.
200/250vAC HORSTMAN 2OA TIME EWITCH
2 on/off every 24 hours at any pre-set time. Fitted in metal case. 36 hr . spring reserve. Used but fully tested. raction of makers' price. £3.19.6 plus 4/6 P. \& P.
COPPER LAMINATE, Printed Circuit Boadr $15 \frac{1}{2}^{\circ} \times 5 t^{*} 3 / 9$ each. 3 for $10 /$. Post paid
ins ulated terminals
Available in red, white, yellow, black, blue and green. New 17/- per doz. 2/-. P. \& P. 230/250V. A.C. SOLENOID
Heavy duty type, approx. 3 lbs. pull. Price: $7 / 6$ plus $2 / 6$ P. \& P.

12/24V. D.C. SOLENOID

Approx. 8 oz. push. Price $8 / 6$ plus $1 / 6$ P. \& P.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY

Personal eallers only 9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

COLOUR TELEVISION
 A BACKGROUND TO COLOUR
 ADJUSTMENTS FOR THE
 SERVICE ENGINEER
 A Mullard Publication
 Postage I/-

TRANSISTOR SUBSTITUTION

 HANDBOOK No. 8. Pub. F-Sams. 16/. Postage $1 /$-.RCA HOBBY CIRCUITS MANUAL. 17/6. Postage $/ /$
HIFIIN THE HOME, by J. Crabbe. 40%. Postage $2 /$ -
MULLARD DATA BOOK, 1968. 3/6. Postage 6d.
ELECTRICAL \& ELECTRONIC SIGNS \& SYMBOLS, by R. G. Middleton. 30/-. Postage 1/-.
THE A.R.R.L. ANTENNA BOOK. 28/6. Postage $2 /$ -
SOLUTION OF PROBLEMS IN ELECTRONICS \& TELECOMMUNI. CATIONS, by C. S. Henson. 38/.. Postage $2 /-$
INTRODUCTION TO TELEPHONY AND TELEGRAPHY, by E.H. jolley. 75/-. Posrage $2 /$
THE RADIO AMATEUR'S V.H.F. MANUAL. Pub. A.R.R.L. 28/6. Post age $2 /-$.
NEW CATALOGUE. 2/..

THE MOOERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-2| PRAED STREET
LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.
Loft Mounting Arrays, 7 element, $37 / 6$. 60/. Wail Moune 14 element, 52/6. 18 element 7 element, $60 /=. \quad 11$ element, $67 / \mathrm{F}$. 14 element 75/-. 18 element, 82/6. Mast Mounting wlth 2 in. clamp. 7 element, 42/6; 11 element, $55 /-;$ 14 element, $62 /-\frac{18}{}$ element, $70 / \%$. Chimney Mounting Arrays, Complete, 7 element 72/6; 11 element, $80 /-; 14$ element, $87 / 6$; 18 element; $95 /-$ Complete assembly instructions with every unit. Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps from $75 /$ - State clearly channel number required on anl orders

BBC • ITV AERIALS

BBC (Band 1). Telescoplc lort, 25/-. External S/D, $\$ 0 /=$, £2.15.0.
rYV (Band 3). 3 element loft 7 element sol. Wall mounto. 3 element, 47/6. 5 element, 52/6. Combined BBC/ITV. Loft
$1+3,40 / ; 1+5,50 /-; 1+7$, $10 /-j, ~ w a / 2 ;$ mounting $1+3,57 / ;$
$1+5,75 /-$. VHF transistor pre-amps,

COMBINED BBCI-ITV-BBC2 AERLALS $\begin{array}{llll}1+3+9, & 70 \% & 1+5+9, & 80-1 . \\ 1+7+14, & 100 /-, & 1+14, & \text { Loft mounting only. } \\ 1+1\end{array}$ $1+7+14,100 /-$. Loft mounting only. Special
leafiet avalable.
F.M. (Band 2). Loft S/D, 15/-, "H", 32/6, 3 cable, 8d. Yd. External units avallable. Co-ax. Diplexer Crossover Boxes, $13 / 6$. Outlet boxes, $5 /-$ P. \&P. 5/. Send 6d. stamps for illustrated ilsts. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.) 27 Central Parade, New Addington Surrey-CRO-OJB

Fig. 8. Simple conduction bridge circuit

(d)

Fig. 10. Detalls of induction salinometer
Fig. 10a. Coll system of inductive conductivity sensor
Fig. IOb. Theoretical circuit of sensor
Fig. 10c. Circuit that will give approximately the correct compensation for a temperature change over a limited range
Fig. 10d. Pressure compensator

Fig. Ila. Paralog system

Fig. I/b. Vector diagram showing that phase ϕ varies with magnitude of E_{0}

Fig. I/c. Salinity, temperature, depth probe

INDICATOR LAMP

Panel mounting, consists of neon lamp in red plastic lens. with resistor in leads SPRING COIL LEADS As Ritied
2/- each.

HEADPHONES

Ex.W.D. unused and perfect, single with heint hand $4 / 6$. Double with headband $8 / 6$.

16 RPM GEARED MOTOR

Mane by Smith's Electrics, these are almost silent running, but are very powerful. They operate from normal to 240 V . mains and the final shaft speed is $16 \mathrm{r} . \mathrm{p} . \mathrm{m} .15 / \%$. Post $\&$ ins. $2 / 9$.

COPPER CLAD ELEMENT 1250 watts-4ft. long hut bent to $1 T$ shape, itleal for overhead heater-just mount reflector abow 12/8 each, plus $4 / 6$ post. 86 loz. post pail

Yoa never need buy another battery for your transistor radio. Stupendous offer this month-it 6-9V Nickel Cadmium bat tery stack together with it malns operated charger which you mount on the back of your set. The mains flex unplugs so the than the cost of the batteries alone. ONLY' $29 / 6$ plus $3 / 6$ post.

REED SWITCH

REED SWITCH
Suitable for dozens of different applications, such as burglar alarms, conveyor belt switching.
These are simply glass encased switches which can he operited by a passing permanent magnet coll. A spectal buy enables us to offer these at $2 ; 6$ each, or $24 /-$ a dozen. Suitable magnets are
$1 /$ each.

CENTRIFUGAL FAN CEITTRIFUGAL BLOWER
 or extractor by Torrington, rery low nolse but large
capacity air flow, designed capacity air flow, debigned
for central heating and air for central heating and air
conditioning; ideal also for funce extraction over cooker, duct type outlet, $200-250 \mathrm{~V}, \quad 50 \mathrm{c} / \mathrm{s}$ motor. 23.18.6, post and insurance
7/6. See in the Dark IMFRA-RED BIMOCULARS

Thesc infra-red binoculars when fed from a high voltage source will enable objects to be seen in the dark, providing the oblects are in the rays of an optical lens system as well as the infra-red cell. optical lens system as well as the incra-red cell. TV cancras-light cells, etc. (details supplied). The binoculars form part of the Army night driving (Tabby) equiptient. They are unused and believed to be in good working order but gold without a guarantee. Price es.17.8, plus $10 /$ carr. and ins. Handbook $2 / \mathrm{h}$

Be first this year!
 SEED AND PLANT

RAISING

Noil heating wire and trans-
former. Suitable for standardl size garden frame. $19 / 6$ Post nul ins. 3/i. 19/6
TELESCOPIC AERIAL for portable, car ralin
or transmitter. Chrome Pla-
ted- six Rectione, extends from
merew. $7 / 6$. Hols in botom for bB.

BECKASTAT This is an instant thermostat, simply plng your appliance into it and its lead
into wall plug. Adjustable getting for normal air temperatures. 13 A loading. Will save its cost in a season.
19/8. Postage and 19/8. Postage and
ine. $2 / 9$.

MAINS TRAMSISTOR POWER PICK
thesigned to operate tranaistor seta and amplifiers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 miA
(class B workingl. Takes the place of (clasg B workingl. Takea the place of any of
the followiog batteries: PP1, PP3, PP4, PP6, the following batteries: PPl, PP3, PP4, PP6,
PP7, PP9, and others. Kit comprises: maina transformer rectifier, smoothing and load resiator, condensers and instructions. Real smp at only 10/6, plus $3 / 6$ postage.

INFRA-RED HEATERS

Make up one of these latest type heaters. Ideal for hathroom, etc.
 easy-to follow instruct ions-usessilica enclosed elements designed for the cor-
rect infra-red wavelength (3 microns). Price for 500 watte element, all partg, metal casing as illustrated. 19/6, plus 4/6 post and insurance. Pull switch 3/- extra.

BREAST MICROPHONE

Fine - Inerican made dynamic type, adjuatable on breas plate with neck atraps, 7/6, post 4/6.

12V BLOWER
Heary duty motor with centrifugal blower coupled to one nil. Ineal for car heater. 18/6, plus $4 / 6$ poat.

VARYLITE

Wiil dim incameacent lighting up to 600 watto from full brilliance to nut. Fitted on M.K. Gush plate, same aize anil fixing as otandard wall owitch so may be fitted in place of this, or mount on suriace. Prich control knob 23.18.

THIS MONTH'S SNIP

Electric Clock

with 3 anp switch made by smithe for lreambind. These are mains driven and frequency controlled so are exremely accurate. The dial enables "Bwitch-on" time to be accurately set. 8witch off is 3 hours later or by blankets this needs only one setting for the season. Suitable also to control tape recorder, radlo ani lamp etc. In deat plastic case with mains lead and two outlet plugg.

THERMOSTAT WITH PROBE This has a aensor attached to a 15 A switch by it range fo $20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ mo it is suitable cont rol soil heating and liquid heating especially When in buckets or portable vessela as the sensor can be raised out and lowered into the vessel. This thermostat could also be used to gound a bell or other alarm when critical temp is reached in stack or heas subject to spontaneous combustion or if liquid is heing heated by gis or other means not controllable by the switch. Male by the
Postage ind ingurance $2 / 9$

MAINS MOTOR

Precision made-as uned in record tecks and tape recorders-ideal also for extractor fans, blower for flrst one then $1 /$ - for each one orilereil. 12 aul over post free.

WORKSHOP or REFRIGERATOR? Many readers will have found to thelr dismay Many readers wlll have found to thelr dismay that the loft, garage or shed, which they an
carefully converted finto a workshop, fo just ia rafefulyy convertor in the winter-it can't be used. because it never gets warm until it is time to finish. The answer is RADIANT ZONF
 Onr Racliant Zone Heaters (made by the famous Philips Company) are inter-
nally mirored glase tube with built in 500 watt heat and Hght elements. Four nally mirrored glass tubes with built in 500 watt heat and igght elemente. Fon ot these over the average pize bench ia al you need and wil cost onty about matter how minit the 'mini". Price is 27/6, post and insurance $4 / \mathrm{li}$ mn one nr any quantity.

RADIO STETHOSCOPE

Eaniest way to fanlt find-traces aignal irohn acrial to speaker When signal stops you've found the fault. I'se it on Radio. TV, anplifier, anything-complete kit comprises two epecial transistora and all parts ingluling probe tube and erystal post anul ins. $2 / 9$

ELECTRIC CLOCK WITH 25 AMP. SWITCH Marie by Rmith's these units are as fitted to many top quality cookers to control the oven. The clock is mains alriven anil frequency smerrolled so it is extremely accurate. The twu aniall dials cnable awitch on and of times to be accurately set. fraction of the regular price-new and umused only $39 / 8$ ib fraction of the regular price-new ahi utused only 39/B, ress
$2 / 4$.

DEAC RECHARGEABLE BATTERY

$36 \mathrm{~V}-500 \mathrm{~mA}$ ht-size $1 \frac{1}{4} \times 1$ in. din. really powerinul will

Multi Puppose Meon Tent Unit. Robuat, aseful and nstructive, teste insulation, capacity, continuity reaiator, volume controls, also acts as signa injector, and L.T. faut finder, kit comyrises neon ndicator, 4 ay gram, only 9/6, plus 2/- post aml inaurance.
5 Path 8witch. One push operates muins on/of Puah 8witch. One push operates muins onfout swith, the other hour ope
change over switches, $8 / 6$.
A.E.I. Fractionsl H.P. Motor. 200/250N $50 / 60 \mathrm{c} / \mathrm{e}$ enclosed, continuous rating $1 / 40 \mathrm{~h} . \mathrm{p} .$, ex. equip. Perfect order, 19/6, plus 4/6.
Experimeting with altra violetp Philips l'V. lamp, 18/6; holder and control gear 19/8.
Q.E.C. Black Light Tube for experiments and Q.E.C. Biack Light Tubs for experiments and $14 / 6$ each; holiers and control gear, 19/6, plus 4/6 post. ,

Clock
starting,
Motor

Pentode Oufput Transiormer. standaril size, 40-1 ex-equipment but OK, 4/3 each, 48/-sinz. Port paid.
E. H, T. Condenter. $0-1$ mid. $5 k \mathrm{~V}, 8 / 6 \mathrm{ewch}$

Feon Mains Tester, $1 / 8$ each, 18/- doz
Flood Lamp Control. Our dim and full switch is ideal for controlling photo flood limps; it gives two lamps in series, two lampe full brilliance an lamps off. similar control of other applances can be arranged where used in palis or ware circult can be split exactly in halt. Technically the awftc is known as a clouble-polf change over with of Our price 4/6.
Sub-Miniature Silicon Diodes, (ieneril purpose type with golil-platet leals. $1 /$ - each or $7 / 6$ per dozen.
Measige Tapes. 220 ft . Tape on 3 in . spools, nor-
mally $4 / 6$ each, we offer 4 tapes for $18 / 8$. mally $4 / 6$ each, we offer 4 tapes for $12 / 6$.
White Circular Flex. Iileal for lighting irope, twin made by BICC. L'sually Ril. Yal. 100yd coil for 30/w, plus $6 /$ - postage.
Edgewiec Control. Morganite, ity fittel many tranisiator radlos, 2 K or 5 K with switch, $2 / 6$ pach
or $24 /$ - per tozen. 124 Inverter. Full trampistorised for uperating a 8.10.0. Post and insurance $3 /$. Silicon Rectiler. Equir. By'ion -̄́ful. 400 V Silicon Rec
10 for $201-$.
Miniature Pickud for Tint. recorila made by Cosmo code, eryat car
 plated, ${ }^{2} 6$ section extentis from ilit. in 47 in Midget Neons for mim
Midget Neons for mains indicatiors, et- , I/3 each Comprestion
Compression Trimmers. Twin 100 p F. 1:- each $9 /$ per dozen.
3in. PM Loudapeaker. is ohm, 12/6: M0 ohm, 13/6 Rotary Cam Opertated 8 witch. 12 positions each of h hich close a separate pair of contacts except the 250 V 16 amps, $15 /$ each.
Rotary Cam Operated 8witch. 4 positions: 1 si position all contacts open; 2 und contart 1 closed 3 ril contacts 1 and 2 closed: 4 th contacts 1,2 anit 3 closed. Contact rated 250 V 16 amira, $8 / 6$ each Under Carpet Heating Element. Waterprool plastic coverell element 12 yds . lone, $\mathbf{3 0 0}$ watt
$12 / 6$ each. Breant Microphone. Fine American made dynam, type, adjustable or breast plate with reck straps 7/6, post 4/6.
Circular Fluorescent. 22 wnth, 9 in . liam. tube complete with choke, starter, holilers nand chrome clips, $29 / 6$, post, etc. $4 / 6$.
Midget Relay twin 250 ohn coils, size appros $1 \nmid i n$. 1ln. 1 in .4 paira changeover contacts 7/8 each.
P.O. Type Relay. Twin 200 ohin coils. size approx $3 \mathrm{in} . \mathrm{V}_{2} \mathrm{in}$. $\exists \mathrm{in} .4$ pairs rhangeover contacte Printed Circuit Board, Edge Connector, solder terminations. 32 contacts, standard spacing for veroboard, pte. 6 in . long but pasily curt, 7/6 each, $80 /-$ doz.
$1,000 \mathrm{~W}$.
1,000W Fire Spiral, replarminent fur mat fires. 1/3 each, 12/-doz.
50 ohm 50 watt Wire Wound Pot-meter $1,8 / 6$ euch. 1 Yez Minature. Pot-meter Morgannte gtandaral tin. spinulle 1/-each; $9 /$ - per ilozen.
1 Meg Miniature. Pot-meter Morganite preat arrewitriver control. 9d. each: $8 /-$ pes dozel.
Pre-Set 100 K by Welwn with integtal bakelite knob, 1/- each; p/- jer dozen.
100K Pot-Meter. Minlature type with , Ionble pole switch and standard tin. spindle, h! Morganite, 8/- each: IR/- per dozen.
Blanketstat. Claws enclosed. Normally closed. Circuit will open should blanket overhe at, $4 / 6$ each. Thermal Relay, Can be ugpal to delar the supply uf HT whlle heaters warm ill, or hill enable or relays. Regular list price over $£ 2$, price $7 / 8 \mathrm{each}$. Siemens High Speed Relay. Twin \mathbf{I}, nNO ohm coile. Siemens High speed Relay. Trinum points chancenver enntact Platinum points
equipment, 8/6 each. $10.1250 \mathrm{~V}^{\circ}$ notmal one hole htting $2 / 0$ earh; nr $30 /$ - doz.
Electric Lock. 24 coif, hut rowimblebe to other voltageg, $4 / 8$ each.

[^6]ELECTRONICS (CROYDON) LTD.
Dept. PE, 266 London Road, Croydon CR0-2TH

PEAK SOUNDAids to economical high fidelity

"A thoroughbred" SAY8 RALPH WEST HI-FI NEWS OCTOBER, '68
'The immediate impression was of a thoroughbred speaker, smooth and effortless . . . voices were uncannily real. Once again we see the possibility of Rolls Royce stanards . . , when you know how.'

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer, P. J. Baxandall in Wireless World (Aug. and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency range60 to $14,000 \mathrm{~Hz}$ ($100-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$); impedance- 15 ohms; loading up to 10 watts R.M.S.; size $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$. Here indeed is quality performance of a very high order for a very modest outlay. Equaliser assombly $£ 1,16.0$: Special loudapeaker unit £1.18.0: Purchase Tax 8/1: Afrormosia Teak cabinet cut and drilled £6.15.0. Cross-over choke

A new

Peak Sound

Power

Amplifier

the peak sound PA/12-15 (12 watts R.M.S. out into 15Ω) is for the constructor who appreciates both sensible design

Carr, paid in UK
 and genuine power and hi-fi performance. Available built or in kit form. Response $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$, distortion at max. output -0.1% 43 dB neg. feed back. Size $5^{\prime \prime} \times 3 \frac{z^{\prime \prime}}{} \times 1 \frac{13^{\prime \prime}}{}{ }^{\prime \prime}$. With fill instructions. Pre-amp. details available.

AND TESTED LU. 1,0 and board 20
from your dealer or direct in case of difficulty.
PEAK SOUND (HARROW) LTD., 32 St. Judes Road,
Englefield Green, Egham, Surrey Telephone: EGHAM 6316

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE
 Telephone: CAMBRIDGE (0223) 63687

(Visit us - at our new Mail Order, Wholesale \& Refail Premises) MINIMUM ORDER VALUE 5/C.W.O. Post and Packing 1/-

DISCOUNT $\mathbf{1 0 \%}$ over $\mathbf{~} \mathbf{1 5}$

CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm 20 \% ; 100,220$, 330 pF . $-20 \%,+80 \%$; $470,680,1,000$ pF. 5d each.
ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$.
Subminiature (all values in $\mu \mathrm{F}$)

4 V	8	32	64	125	250	400
6.4 V	$6 \cdot 4$	25	50	100	200	320
10 V	4	16	32	64	125	200
16 V	2.5	10	20	40	80	125
25 V	1.6	$6 \cdot 4$	12.5	25	50	80
40 V	I	4	8	16	32	50
64 V	0.64	2.5	5	10	20	32
Price	1/6	1/3	1/2	1/-	1/1	1/2
Small (all values in $\mu \mathrm{F}$)						
4 V	800			2,000		3,200
6.4 V	640			1,600		2,500
10 V	400			1,000		1,600
16 V	250			640		1,000
25 V	160			400		640
40 V	100			250		400
64 V	64			160		250
Price	1/6			$2 / 6$		3/-

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}$, IId. $0.22 \mu \mathrm{~F}, \mathrm{I} /-. \quad 0.33 \mu \mathrm{~F}, \mathrm{I} / 3 . \quad 0.47 \mu \mathrm{~F}, \mathrm{I} / 6 . \quad 0.68 \mu \mathrm{~F}$, 2/3. $1 \mu \mathrm{~F}, 2 / 8$
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$, $7 \mathrm{~d} . \quad 0.033 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}$, $11 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}$, $1 / 6 . \quad 0.33 \mu \mathrm{~F}, 2 / 3 . \quad 0.47 / \mathrm{F}, 2 / 8$.
Modular, metallised, P.C. mounting, 20%, 250V: $0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, \quad 0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}$, 1/5. $0.47 \mu \mathrm{~F}, \mathrm{I} / 8 . \quad 0.68 \mu \mathrm{~F}, 2 / 3$. $\quad 1 \mu \mathrm{~F}, 2 / 9$.
POLYSTYRENE CAPACITORS: $5 \%, 160 \mathrm{~V}$ (unencapsulated): 10,12 , $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $560,680,820 \mathrm{pF}, 5 \mathrm{~d} .1,000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}, 7 \mathrm{~d}$. $6,800,8,200,10,000 \mathrm{pF}, 8 \mathrm{~d}$. $15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}$.
$1 \%, 100 V$ (encapsulated): $100,120,150,180,220,270,330,390,470,500$, $560,680,820 \mathrm{pF}, 1 /-.1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900 \mathrm{pF}$ ', $1 / 3$. $4,700,5,000,5,600,6,800,8,200,10,000,12,000,15,000$ pF, $1 / 6$. $18,000,22,000,27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0 .047,5,000,0.056 \mu \mathrm{~F}, 2 /-$ $0.068,0.082,0.1 \mu \mathrm{~F}, 2 / 3$. $0.12 \mu \mathrm{~F}, 2 / 9 . \quad 0.15,0.18 \mu \mathrm{~F}, 3 /-.0 .22 \mu \mathrm{~F}, 4 /-0.27$, $\begin{array}{ll}0.33 \mu \mathrm{~F}, 5 /-.0 .39 \mu \mathrm{~F}, 5 / 9 . & 0.47,0.5 \mu \mathrm{~F}, 6 / 3\end{array}$
JACK PLUGS (Screened): Heavily chromed, tin Standard: 2/9 each. Side-entry: $3 / 3$ each.
Standard (Unscreened): 2/3 each.
JACK SOCKETS ((in Plug) : With chrome insert, $2 / 9$ each. Available with: Break/Break, Make/Break, Break/Make, Make/Make contacts.
POTENTIOMETERS (Carbon): Long life, low noise, $f \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leq \frac{1}{d} M, \pm 30 \%>\frac{1}{2} M$. Body dia., tin. Spindle, fin x din. $2 / 3$ each. Linear: 100, 250, 500 ohms, etc., per decade to IOM. Logarithmic: $5 k, 10 k, 25 \mathrm{k}$, etc., per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq t \mathrm{M}, \pm 30 \%>\frac{1}{4} \mathrm{M}$. Horizontal ($0.7 \mathrm{in} \times 0.4 \mathrm{in} \mathrm{P.C.M)} .\mathrm{or} \mathrm{Vertical} \mathrm{(} 0.4 \mathrm{in} \times 0.2 \mathrm{in}$ P.C.M.) mounting, $1 /-$ each.
Submin. 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Horizontal $(0.4$ in x 0.2 in P.C.M.) or Vertical (0.2 in $\times 0.1$ in P.C.M.) mounting, lod each.

RESISTORS (Carbon film), very low noise. Range: $5 \%, 4.7 \Omega$ to $1 M \Omega$ (E24 Series); $10 \%, 10 \Omega$ to IOM Ω (E12 Series).
tW (10%), 1 dd (over 99, $1 \frac{1}{2} d$), 100 off per value $12 /-$. IW (5%), 2d (over 99 (13d), 100 off per value 13/9. $\frac{1}{2} W(10 \%)$, 2d (over 99,1 17d), 100 off per value 13/9. $\frac{1}{2} W(5 \%), 2$ dd (over $99,2 d$), 100 off per value $15 / 6$.
SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81, OC81D, OC82D, 2/-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171,' 2/6. AF115, AFI16, AF117, ACY19, ACY21, 3/3. OC140, 4/3., OC200, 5/-. OC139, 5/3. OC25, 7/-. OC35, 8/-. OC 23, OC $28,8 / 3$.
SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1,500 P.I.V., 4/. (0.75A): 200 P.I.V., i/6. 400 P.I.V., 2/-. 800 P.I.V., 3/3. (6A): 200 P.I.V., $3 /-.1400$ P.I.V., $4 /-$. 600 P.I.V., 5/-. 400 P. P.I.V., 6/-. THYRISTORS (5A): 100 P.I.V., $8 /-. \quad 200$ P.I.V., $10 /-.400$ P.I.V., 15 / $/$-.

SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125 V . Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/PRINTED CIRCUIT BOARD (Vero).
0.15 in Matrix: 3 itin $\times 2 \frac{1}{2} \mathrm{in}, 3 / 3$. $\quad 5 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 3 / 11$. $3 \frac{3}{4} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}, 3 / 11$. $\sin \times 3 \neq i n n, 5 / 6$.
 5/3.
RECORDING TAPE (Finest quality MYLAR-almost unbreakable). Standard Play: 5in, 600ft, 7/6. 51in, 850ft, 10/6. 7in, 1,200ft, 12/6. Long Play: 3in, 225ft, 4/-. 5in, 900ft, 10/6. 5년ㄷ, 1,200ft, 13/-. 7 in . 1,800 t , 18/-.

Send S.A.E. for January, 1969 Catalogue
circuit, two arms being the cells containing the sample and a reference standard, the third the balance control and zero setting trimmer, and the fourth having a capacitance zero trimmer to allow for the capacitance in the cells, across the reference resistor. To avoid electrolytic dissociation of the sea water damaging the electrodes, an a.c. source is used, between 500 and $5,000 \mathrm{~Hz}$. The cells must be of high resistance to avoid electrical heating.

The main difficulty of this circuit is the problem of measuring the variable resistor to 1 part in 50,000 as would be necessary to obtain the required accuracy. This may be overcome by using a transformer bridge. Other advantages of this form of circuit are that it has a negligible temperature coefficient and very little capacitance to earth. The number of turns must be controllable to 1 part in 100,000 , and this is overcome by using a system of tapped coils shown in Fig. 9a.

Fig. 9 b shows the complete bridge which will give an output as an oscilloscope trace indicating both resistive and reactive null-points.

INDUCTION CELLS

For in situ measurements of salinity the conductance bridge is quite unsuitable. The electrodes would be fouled very quickly with insoluble matter and the temperature would be difficult to control accurately or compensate for. These problems are not inherent, however, in the induction or electrodeless salinometer.

Figs. 10a and 10b show the principle of the induction cell. Two magnetically shielded toroids are wound on a non-inductive former with the water sample coupling them. On to each former a second coil is wound, one of which is in opposition to its primary, so that it may be used to give a null-reading at the balance point of the bridge, i.e. when the voltage induced in the secondary by the water link is balanced out by the voltage induced by the second coil system.

However, the salinity of a given sample is dependent on temperature and pressure in a rather complex way, and whilst some induction cells record pressure and temperature along with conductance for subsequent compensation, a more convenient way is to compensate within the instrument. Typical temperature and pressure compensating circuits are shown in Figs. 10c and 10 d .

As mentioned earlier, the most efficient way of transmitting analogue data from a probe to a ship is in the form of a modulated frequency. This salinity system can be made to vary a frequency by use of positive feedback through a variable phase amplifier (Figs. 11a, 11b). In the paralog system positive feedback occurs through amplifiers A1 and A2. For this to occur the total phase shift around the circuit must be zero or 360 degrees, and the frequency of oscillation will change until the variable phase amplifier (Q2) can create this condition. The phase shift due to E_{r}, the combination of E_{0} and E_{1} shifted through 90 degrees, depends on the magnitude of E_{0}, which in turn, is dependent on the state of the sensor.

In a typical survey probe three such systems may be incorporated using respectively an induction cell, a thermistor and a vibrotron unit, giving out three different main frequencies modulated to give the variation in salinity, temperature and pressure of the water surrounding the probe.

Fig. 11c shows how this information can be received on board the ship and analysed by use of narrow bandpass amplifiers and frequency modulation detectors to give a voltage dependent on frequency, and subsequently recorded as a plot of temperature and salinity against depth (equivalent to pressure) on an $\mathrm{Xl}, \mathrm{X} 2, \mathrm{Y}$ pen recorder.

To be continued

Close-up of the probe, showing inductive salinity sensorupper of two cylinders near the base of the probe

Salinity, temperature, depth probe
(Plessey)

UNLIMITED!

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment accord. ing to its merit.

SUPPRESSED ZERO CAR VOLTMETER

THE voltage appearing across the terminals of a car battery is a useful indication of the state of the battery and charging circuit. If a conventional voltmeter (say 0 to 15 volts) is connected across the battery it will be found that only a small portion of the scale is used, centred on the nominal battery voltage of 12 volts and extending a maximum of about 3 volts on either side, as the battery charges and discharges (see Fig. 1).

A Zener diode has the property of not conducting until a certain voltage, the Zener voltage, appears across it. The voltage drop across the diode then remains constant provided its wattage rating is not exceeded.

Consider now the circuit of the improved battery voltmeter (Fig. 2). A 9 volt Zener diode is connected in series with a conventional voltmeter circuit (moving coil meter plus multiplier resistance) which measures 6 volts full scale. If the voltage across the terminals of the instrument is less than 9 volts then the diode will not conduct and the meter will read zero. Suppose the voltage now rises to 12 volts. The diode will conduct and a voltage drop of 9 volts will appear across it, 3 volts will then appear across the voltmeter circuit which will then indicate half full scale deflection. If the voltage now increases to 15 volts, 9 volts will again appear across the diode and 6 across the meter, which will indicate full scale deflection. The meter will, therefore, only indicate voltages between 9 and 15 volts, thus spreading the useful part of the readings on a conventional voltmeter along the full scale length of the meter used.

In the prototype a 9 volt, $\frac{1}{4}$ watt Zener diode was used and the 0 to 6 volt voltmeter, M1, consisted of an ex-Government 5 mA moving coil meter in series with a 3 kilohm potentiometer, VR1.

CONSTRUCTION

Construction consisted of mounting the two components on a small piece of Veroboard which was bolted to the back of the meter by the nuts on the meter terminal bolts. Connection to the meter terminals was by solder tags which were soldered to the board. A red lead and a black lead from the board formed the input connections to the instrument. Care was taken to observe the correct polarity and one lead was taken to the car chassis and the other to the ignition switch so that the voltmeter continuously monitored the battery voltage when the ignition was turned on.

CALIBRATION

Calibration was carried out by setting the potentiometer VR1 to its maximum resistance and connecting an accurate 12 volt supply to the instrument. The potentiometer was adjusted for half full scale deflection on the meter. The potentiometer was then sealed with a blob of wax. The original scale on the meter which read 0 to 5 mA was covered with white paper, leaving the scale itself uncovered. The figures 9 to 15 were substituted for 0 to 5 . The figure 12 appeared at the centre of the scale in place of the original 3.

A very neat and professional looking job was obtained with the aid of "Letraset" dry transfer letters. The legend VOLTS was also added.

This type of instrument is known as a suppressed zero voltmeter and this technique could be adapted for uses other than the one described. Care must be taken not to exceed the manufacturer's published wattage ratings of the diode. The prototype has been in use in the author's car for some months and has proved very useful.
P. A. Graves, Westcliff-on-Sea, Essex.

Fig. I. The small segment of the scale that is used in conventional car voltmeters

Fig. 2. Circuit diagram of the improved car battery voltmeter

Sinclair launch their System 2000 range with coils. They have become an integral part of provision for plug-in remote and switched the amplifier, tuner and speaker shown here. the printed circuit and never need adjust- tuning units (available separately). The amplifier and loudspeaker are equally outstanding and well worth comparing for yourself. Ask your dealer for a demonstration or write or ring us for a leaflet.

System 200035 watt integrated Stereo Amplifier 29 gns System 2000 F.M. Tuner 25 gns 4 gns 12 gns Plug-in stereo decoder System 20008 ohm loudspeaker

Sinclair Radionics Limited, 22 Newmarket Road, Cambridge. Tel. Cambridge 52996 ment-another step in increasing reliability and reducing the final price.

Almost all other tuners use the Foster-Seeley discriminator or the ratio detector. The System 2000 tuner uses a pulse counting discriminator. This is free from drift and possesses a lower level of distortion than any other system. Inter-station noise suppression, mains tuning and stereo indicators together with a sensitivity for full limiting of
 ated. An additional attractive feature is The tuner and amplifier are separate units which may be mounted together for convenience. Each is complete in itself and may be used with existing high fidelity equipment. The System 2000 uses new components and ingenious construction in ways which reduce costs, increase performance and improve reliability. or F.M. tuners and you will find that they vary very little. Look at the System 2000 tuner. You will notice the absence of conventional

SINCLAIR Z.12
 12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP

12 watts R.M.S. continuous sine wave output.

This is the recommended amplifier for those requiring greater power than that provided by the IC.10. This eight transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $Z .12$ performs satisfactorily from a wide range of voltages and it can easily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $\mathbf{Z} .12$ to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it:

Size--3in $\times 1 \frac{3}{4} \mathrm{in} \times 1 \frac{1}{4} \mathrm{in}$. Class B Ultralinear Output: Frequency response from 15 to $15,000 \mathrm{~Hz} \div 1 \mathrm{~dB}$: Output suitable for loudspeakers irom 3 to 15 ohms impedance. Two 3 ohm speakers may be used in parallel: Input 2 mV into 2 K ohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) Power requirements 6 - 20 V d.c. from battery or PZ. 4 Maıns Supply Unit. Ready built, tested and guaranteed.

89/6

SINCLAIR STEREO 25

SINCLAIR PZ4 Stabilised mains power supply unit

Heavy duty transistorised power supply unit to deliver 18 V d.c. at 1.5 A . Designed specially for use with two Z..12 or IC. 10 Amplifiers together with Stereo 25 . Built, tested and guaranteed.

SINCLAIR MICROMATIC

The world's smallest radio

This fantastic little British pocket receiver is available in kit form to build for your self or ready built, tested and guaranteed Its range and selectivity must be experienced to be belıeved; its power and quality everything you could want. The Micronatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radıo 1 easier; in fact, you will find your Micromatic performing where other sets cannot be heard at all. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.

- High quality mag. netic earpiece
- Choice of many stations
- Plays anywhere
 earpiece. solder and instructions.

Mallro Mercury Cells RM. 675 (2 reqra) each 2/9

SINCLAIR 0.14

the most challenging loudspeaker design in years

It is more than a matter of saving money when you choose the 0.14. This is the loudspeaker that delights experts and critics alike for b's find forward quality, its clarity and exceptional adaptability. Designed on original lines and from unussal miterials, the 014 will easily sarry up to 14 watts and has very smooth response from 60 to $16,900 \mathrm{~Hz}$. Size- $9 \frac{3}{3}$ in square $\times 4 \frac{3}{4} \mathrm{~m}$ deep. with matt black finish and solid aluminium bar embellishment. Input impedance- 8 ohms
The 0.14 costs about a quafter of what you might expect to fay for a good stereo speaker system. A parr used with IC. 10 s or 2.12 s and the Stereo 25 will give you superb high fidelity to stand comparison with far costler equipment

Try the 0.14 in your own home without delay. If it does not delight you. sendit back and your money including cost of postage
£7.19.6 will be refunded in full.

GUARANTEE Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question.

 Full service facillies available to all purchasers.

ELEGTROVALUE

 Rapid Mail Order Service unbeatable value in new semiconductors $\left.\begin{array}{l}\text { MJ481 npm } \\ \text { MJ491 pnp }\end{array}\right\}$ matched pair output $\mathbf{E 2 . 1 9 . 0}$ 40361 дpn
40362 pnp $\}$ matched pair drivers 21.10 .3
Total for one channel 27.8 .0 list；with 10 in discount only 88.18 .3
Total for two chanriela 14.16 .0 list；with 15% ilscount only 818．11．8．
G．E．Surge96 PLASTIC range： 18 V 200 mW
Red apot $\beta=\$ 5$ to 110 2／a Yellow apot $\beta \quad 160$ to $3002 / 8$

High relinbility ceramic typea nvaliable
C82926 red 8／8；orange $4 /-$ ；yellow $4 / 3 ;$ C $\$ 292020 \mathrm{~V} \beta \quad 230$ to $470 \$$

TETAS SILECT rang
30 V 800 mA npn
2N3704 β－ 90 to $3304 /$
$2 \mathrm{~N} 3708 \beta-46$ to $1605 / 8$
25 V 200 m 4 prip
2N3702 $\beta=60$ to $3004 /-$
$2 N 3703 \beta=30$ to $1509 / \theta$
2N3703 B＝ 30 to $1509 / 0$
8mall slgan npn
2N371 $\beta=-180$ nolse $4 / 8$
2N3711 $\beta=180$ to 660 4
small signal pap
small signal pnp
2N 4058 low nolme
$2 N 4062 \beta=180$ to $6604 / 3$

BC107 SERIEB

300 mW 300MHz IT TO18 BC10745V β न． 125 to $6002 / 8$ BC108 $20 \mathrm{~V} \beta=125$ to $9002 / 8$ BC109 20 V B $二 \mathbf{2 4 0}$ to $9002 / 9$ BC167 SERIES 80 mW 300 MHz iT TOQ2
 BC168 20V $\beta \quad 125$ to 900 \＆／－ BC109 20 V B $\quad 240$ to $900 \mathrm{~g} / 8$ BC167，BC168 and BC169 are F
FETE MPF105 26 V max．， $\mathrm{gm}-2$ to $6 \mathrm{~mA} / \mathrm{V}$ ，low noise $8 /$ 2 N 3819 25V max．，gm -2 to $6 \mathrm{~mA} / \mathrm{V}$ ，low noise 10 －

Mini TRAM8L8TORS WITE MIOETY SPECLYCATIONS

2N 4285 PNP hFE $35-160$ © 10 mA ．IT 7MHz mln．
2 N 4286 NPN 30 hFE over 100 （ $10 \mu \mathrm{~A}$ to 1 mA ．fT 280 MHz typ
$2 N 4289$ PNP 60 V hFE over 100 a $100 \mu \mathrm{~A}$ to 1 mA ．IT 170 MHz typ

2N4292 NPN 30V UFF，N．F．6d
 Bo501 Power， $14.3 W$
$\begin{array}{rl}\text { over } 100 \text {＠} \\ \text { Prlces：} 2 N 4285 \\ \text { to } 2 N 4292, ~ 2 N 3794, ~ 8 / 8 ; ~ B 5001, ~ & 18 / 6 . ~\end{array}$
＊REOTIFIERS： 100 V PIV \｛A Type TB1， $2 /-; 400 \mathrm{~V}$ PIV＇ 3 A Type TA4，g／9 800V PIV \ddagger A Type BY238，8／0：1，000才 PIV 1－6A Type IN5064， $8 / 11$ FOR FURTHER DATA on the above semiconductors and many others，see our catalogue，price I／－only，post free．

Zener diodes 3V tc $27 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ all preferred voltages， $4 / 8$ each

 $28 \ln \times 3 \ln , 2 / 6 ; 2 \ln \times 3 i \ln , 1 / 0$ ．
ALL PEAK SOUID PRODUCTS AS ADVERTISED

＊SUPER AUALITY NEM RESISTORS

Carbon alm high atab，low noted
$\mathrm{k} W 10 \% 1 \Omega$ to $3-3 \Omega$
$\mathrm{~kW} 5 \% 3.90$ to 1 Mn$\} 1 / 10$ doz．， $14 / 6$ per 100.
さW $10 \% 4.7 n$ to $10 \mathrm{Ma} 1 / 9$ doz．， $18 / 8$ per 100 ．
iW $5 \% 4$－7n to $10 \mathrm{Ma} 8 / 2$ doz．， $17 /=$ per 100 ．
1W $10 \% 4-7$ a to 10 MO 4 d each， $8 / 8 \mathrm{doz}$ ． $85 / 10$ per 100
1／6 leas per 100 it ordered in complete 100 ＇s of one ohmic value．Please atate resiatance values required．
 $6 \mathrm{k} \cap, 10 \mathrm{k} \Omega, 20 \mathrm{k}$ ， $60 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 250 \mathrm{k}$ ， $500 \mathrm{k} \Omega, 1 \mathrm{Mn}, 2 \mathrm{Mn}, 2 \mathrm{BM} \Omega, 6 \mathrm{M} \Omega$ 10 Ma
Avajable in horizontal or vertical monnting， $1 /$－each．
ELECTROLYTICS，GUB－MIN．，C426 range（ $\mu \mathrm{F} / \mathrm{V}^{\prime}$ ）： $0-64 / 64,1 / 40,1.6 / 26,2.6 / 16$ $2 \cdot 5 / 64,4 / 10,4 / 40,5 / 64-6 / 4 / 6 \cdot 4,6.4 / 25,8 / 4,8 / 40,10 / 2 \cdot 5,10 / 16,10 / 64,12 \cdot 5 / 25,16 / 10$ ， $18 / 40,20 / 16,20 / 64,25 / 6 \cdot 4,25 / 20,32 / 4,32 / 10,32 / 40,32 / 64,40 \cdot 2 / 5,40 / 16,50 / 6 \cdot 4$ ， $50 / 25,60 / 40,64 / 4,64 / 10,80 / 2 \cdot 5,80 / 16,80 / 25,100 / 6 \cdot 4,125 / 4,125 / 10,125 / 16$ ， $160 / 2 \cdot 5,200 / 6 \cdot 4,200 / 10,250 / 4,320 / 2 \cdot 5,320 / 6 \cdot 4,400 / 4,500 / 2 \cdot 5,1 / 4$ each． ELECTROLYTICS，MINIATURE（ $\mu \mathrm{F} / \mathrm{V}$ ）： $5 / 10,10 / 10.10 / 25,20 / 10,50 / 10$ ，od each． $26 / 26,50 / 26,100 / 10,200 / 10,1 /-$ each， $60 / 502 /-, 100 / 60,2 / 6,250 \mu \mathrm{~F} 26 \mathrm{~V}$ 2／6．
POTENTIOMETERS（Bhort spindle）： $100 \cap$ to $10 \mathrm{M} \Omega \mathrm{lin} .5 \mathrm{~K} \Omega$ to $5 \mathrm{Mn} \log 2 / 3$ cich Dual（tong spindle）： $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K} \operatorname{lin}$ or $\log , 10 / 6$ each．
＊ALL GOODS BRAND NEW
＊NO＂SECONDS＂OR SURPLUS
COMPOMENT DISCOUNTH： 10% for total order value exceedlag 28 list．
POST AXD 15% for total order value exceeding 1101 lat
OVERSEAS ORDERS WELCOMED－Carriage chargel at cos
A IEE ELEGTROVALUE CATALOGUE，READY JAN． 69 containing data on 200 up－to－dato semiconductors available from stock as well as many other conuponente designer．Everything at begt posilble prices．82MD $1 / 8$ FOR FOUR COPY NOW
Stores telephone No．EGHAM 5533 （STD 0784－3）
ELECTROVALUE
（Dept．P．E．12） 6 MANSFIELD PLACE，ASCOT，BERKS

VALVES
 SAME DAY SERVICE NEW！TESTED！GUARANTEED！

SET§ $\begin{aligned} & \text { 1R5，ISb，1T4，384，3V4，DAF91，DF91，DK91，DL92，DL94．} \\ & \text { Set of } 4 \text { for 17／6．DAF96，DF96，DK96，DL96，} 4 \text { for \＆8／＝，}\end{aligned}$

	4／6	12AX7 4／0	7／－	EL42－$/ 8$	12／6	UCC84	$7 / 8$
1atat	$7 / 8$	12K8GT 7／8	DL35 5／－	EL84 4／0	PEN36C16／－	UCC8b	8／8
1HEGT	$7 / 8$	12SN7GT6／	DL92 S／9	EL90 5／－	PFL20012／．	UCF80	$8 / 8$
1NFGT	7／9	20F2 13／6	DL94 5／9	EL05 8／－	PL36 0／6	UCH42	$9 / 9$
1R5	8／8	20L1 18／9	DL96 7／－	EM80 5／9	PLSI 7／3	UCH81	1／6
185	4／3	$20 \mathrm{P} 3 \quad 11 / 9$	DY86 $5 / 9$	EM81 6／9	PL82 8／B	UCL83	7／6
1 T4	$2 / 9$	20P4 18／6	DY87 5／8	EM84 8／3	PL83 6／6	UCL83	$0 / 9$
384	8／9	25U4GT11／8	EABC80 8／8	EM87 7／8	PL84 8／3	UF41	$9 / 9$
3 V 4	8／9	30 Cl 6／9	EAF42 8！6	EY51 7／－	PL500 12／－	UF80	7／－
5U4G：	4／8	30C15 13／－	EB91 2／3	Ev86 8／3	PL504 12／6	UF85	6／9
5Y3GT	5／8	$30 \mathrm{Cl} 1712 / 8$	EBC33 $7 / 8$	EZ40 7／8	PL508 15／－	UF89	8／8
$5 \mathrm{Z4G}$	7／8	$30 \mathrm{C18}$ 0／－	EBC41 8／3	EZ41 1 7／6	PM84 7／日	UL4］	$9 / 8$
6／30L2	12／6	30Fb 18／6	EBF80 6／－	EZ80 4／6	PX25 $10 / 6$	UL44	20／－
6ALS	8／8	30FL1 12／8	EBF89 8／3	EZ81 1／9	PY32 101－	UL84	8／8
6AM6	$8 / 6$	30FL14 12／6	ECC81 8／9	（1232 8／9	PY33 10／－	UM84	7／8
6AQ5	$4 / 9$	30L］8／－	ECC82 4／8	KT61 8／9	PY80 $8 / 3$	UY41	$7 /-$
6 AT6	4／－	30L15 14／－	ECC83 \％－	KT81 15／－	PY81 5／3	UY85	5／9
8AU6	5／8	30L17 13／－	ECC84 5／8	N78 14／9	PY82 5／w	VP4B	10／6
6BA6	4／6	30P4 12／－	ECC85 5／－	PABC80 7／－	PY83 5／9	VP132	21／－
6RE6	4／8	30 P 12 11／8	FCC804 12／6	PC86 9／8	PY88 6／3	Z77	3／6
6BJ6	$7 /$	30P19 12／－	ECF80 7／－	PC88 9／6	PY800 8／9	Trans	rs
8BW6	13／－	30PL1 12／6	ECF82 8／9	PC96 8／6	PY801 6／9	${ }^{\text {AC }} 107$	3／6
6 C 4	2／8	30PL13 14／6	ECH35 6／－	PC97 8／8	R19 6／6	AC127	2／－
6 F 13	3／6	30PL1415／－	ECH42 10／6	PC900 8／3	R20 12／6	AD140	7／8
8 F 14	9／－	35L6GT 8／－	ECH81 5／9	PCC84 8／－	TH21C $9 / 0$	AFl02	18／－
6 F 23	13／3	35 W 4 4／6	ECHP4 6：8	PCC85 618	U＇25 13／－	AFl15	3／－
8K7G	2／8	35746T 5／－	ECL80 6／9	PCC88 919	U26 12／－	AF116	$8{ }^{1}$
$6 \mathrm{K8G}$	4／3	6063 12／6	ECL82 619	PCC89 10／6	U47 18／6	AF117	3／3
6 L 18	6／－	A 231 9／－	ECL83 9／－	PCC189 9／8	U49 18／6	AF124	7／6
6 V6G	8／6	B729 12／6	ECL86 813	PCF80 8／8	U52 4／6	AF125	8／6
6 VGOT	6／6	CCH3s 10／－	EF39 3／9	PCF82 6／－	U78 8／6	${ }_{\text {AFl26 }}$	$7 /-$
6×4	3／8	CL33 18／6	EF41 0／6	PCF86 19／3	U191 12／6	AF127	3／6
$8 \times 5 \mathrm{GT}$	5／9	DAC32 7／3	EF80 4／9	PCF800 13／8	U301 13／6	0 C 26	8／8
786	$10 / 9$	DaF9］4／3	EF85 5／6	PCF801 7／3	U801 18／－	0 C 44	2／3
$7 \mathrm{B7}$	7／－	DAF9tj 0／－	EF86 8／3	PCF802 0／6	UABC80 ${ }^{\text {B／3 }}$	$0 \mathrm{C45}$	$2 / 3$
7C5	151－	DF33 7／8	EF89 5／3	PCF805 9／－	UAF42 $8 / 6$	$0 \mathrm{OC7}$	2／6
7C6	$8 / 9$	DF91 2／8	EF91 3／6	PCF806 11／6	$\begin{array}{lll}\text { UB41 } & 8 / 6\end{array}$	0 C 72	$2 / 6$
7 Y 4	8／8	DF96 6／－	EF183 5／9	PCF808 12／8	UBC41 $7 / 9$	0 C 75	2／6
10F1	15／－	DH7\％4／－	EF184 5／9	PCL82 7／－	UBC81 \％／－	$0 \mathrm{C81}$	2／3
10P13	15／6	DK81 10／8	EH30 $\quad 8 / 6$	PCL83 $\quad 10 /-$	UBF80 $6 /-$	OC815	2／3
12AT7	$3 / 9$	DK32 7／6	EL33 8／9	PCL84 $\quad 7 / 6$	UBF89 6／9	0 C 82	2／3
12AU6	4／9	DK91 5／8	EL34 9／6	PCL85 8／3	UBL21 9／－	OC82D	2／6
12AU7	$4 / 9$	DK92 9／3	ELA1 9／6	PCL86 8／6	UC92 B／－	0 C 170	2／6

READERS RADIO（P．E．）

85 TORQUAY GARDENS，REDBRIDGE，ILFORD， E88EX．

Tel．Ot－550 7441
Poatage on 1 valve 9d．extra．On 2 valvea or more，postage 6 d ．per
valve extra．Any Parcel Insured againat Damage in Tranalt fd．extri

HI－FI AUDIO CIRCUIT KITS

Complete with circuit diagrams
ACSIK．Everything for building a Hi－Fi mains powered transistor stereo amplifier． $250 \mathrm{mV} 800 \mathrm{k} \Omega$ input for $6+\mathrm{V}$ RMS output each channel．Baxendale type tone control．Attractive silver and black fascia．Panel mounting $12 \frac{1}{2}$ in $5 \frac{1}{4}$ in $\times 3 \mathrm{in}$ ．£12．Solid teak case 23．Circuit board and chassis only 50s．
ACS2K．Kit for matching magnetic pick－up，etc．OR for Baxendale type tone control complement and pre－stage． 3 transistor circuit． $\& 25 \mathrm{~s} 6 \mathrm{~d}$ each．Board only 17 s ．
ACS3K．For matching stereo magnetic pick－up． $4 \mathrm{mV} 47 \mathrm{ks} \Omega$ input． $300 \mathrm{mV} 100 \mathrm{k} \Omega$ output with RIAA correction．Line voltage $\pm 24 \mathrm{~V}$ up to 350 V d．c．$\varepsilon 310 \mathrm{~s}$ ．Fitted plastic case 12 s 6 d ．Board only 18 s 6 d ．

Forget $\frac{\mathbf{P} \text { to } \mathbf{P} \mathbf{V}^{2}}{\mathbf{R}}=W$ ．Deal in facts and get better value
$\frac{V^{2}(\mathbf{R M S})}{\mathbf{R}}=\mathbf{W}$ direct from ACS．
Styling and results must more than satisfy．S．A．E．for lists AUDIO COMPONENTS \＆SERVICES
Sound Studios，Bell Hill（ofl Crown Hill），Croydon，Surrey．Phone 688－3706

S-DeC
 BREADBOARDING

Fast, reliable, solderless circuit assemblyContacts last indefinitely
Use-ordinary components again and again

- Test all the circuits in the magazines

This breadboard is used professionally by development engineers throughout the world. Over 80° of current production is exported.
A booklet of projects is included with each kit giving construction detalls for a varlety of clrcuits such as amplifiers, oscillators, VHF transmitter, radio, etc.
S-DeC Kit: One S-DeC with Control Panel, Jig and Accessories for solderless connectlons to controls, etc., with booklet "S-DeC Projects"giving construction detalis for a variety of circults. 29/6d retall.
f-DeC Kit: Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet " S-Dec Projects '" all contained in a strong, attractive, plastic case. ideal for the professional user. $£ 5.17 .6$ retall.
1/. Packing and Postage for S-DeC's, and 3/- Packing amd Poktage for 2-and 4-DeCs.

AVAILABLE FROM LEADING SUPPLIERS
or in case of difficulty from

S.D.C. PRODUCTS (Electronics) LTD

THE CORN EXCHANGE, CHELMSFORD, Essex Telephone: Chelmsford (OCH 5) 56215

GOODMANS HIGH FIDELITY MANUAL
 A Guide to full listening enjoyment

The Manual is much more than a cata logue of Goodmans High Fidelity Loud. speakers-it contains informative articles, including advice on stereo, special beginYous page. and full cabinet drawings. You'll find is interesting as well as

The Perfect Combination

 MAXAMP 30TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts - Silicon solid state Integrated pre-amplifier • Negligible distortion • £54.0.0.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER Transistorised . Outstanding specification - Stereo decoder (optiqnal) • £65.5.0 $+£ 15.14 .0$ P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1^{\prime \prime}}{} \times 5 \frac{1}{2}^{\prime \prime} \times 7 \frac{1}{4}^{\prime \prime}$ deep) in Teak or Walnut to order. Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

FREE Pleasesend Hi-Fi Manual together with name and address

required now for vital work in Air Traffic Control
Join the National Air Traffic Control Service, a Department of the Board of Trade, and play a vital part in the safety of Civil Aviation. Work on the latest equipment in Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and otherengineering establishments in the South of England, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience ir at least one of the main branches of telecommunications, fll in the coupon now. Your starting salary would be $£ 869$ (at 19) to $£ 1.130$ (at 25 or over); scale maximum $£ 1,304$ (rates are higher at Heathrow). Non-contributory pensions tor establisted staff.

Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

National Air Traffic Control Service

Bargain-Car Radios, Our Price 9 gns. Retail Intercom/Baby Alarm System. Fully value 16 gns . Negative or positive earth (switched) transistorised ideal for home, office or fully transistorised (12 v) medium and long waves. workshop. Robust construction. offered Speaker and fitting kit supplied at no extra cost. at a fraction of retail price $47 / 6+2 / 6$ P/p. 5/-

Sonotone 9TA and 9TA/HC. Diamond Cart- TR10 Stereo Moving Magnet Cartridge ridge brand new, boxed in manufacturers' Model AD76K. Diamond Stereo LP Stylus. carton $49 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$ output 91-3 stereo compatible cartridges, new in 7 mv tracking pressure 2 grammes ± 0.5 sealed manufacturers' cartons $22 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. grm. Fully guaranteed. Price 85/-p/p free

BASF TAPE LONG PLAY

5in.	900 ft.	$17 /-$
53 in.	1200 ft.	$21 / 6$
7in.	1800 ft.	$33 /-$

p/p. cost for a limited period only. 15 gns. p/p free.
|Bargain-Changer Decks at Lowest Prices Ever Plinth WB1
£2.15.0
Cover SPCI
£2.15.0
Garrard 2025 p/p. $7 / 6 \quad$ £8. $7 / 6 \quad$ £8.10.0 AT60 Mk. II p/p. 8/6 £12.19.6 SP25 Mk. II p/p. 8/6 £12. 0.0

The greatest HI-FI Budget system to-day-Can't be beatenprice or quality anywhere-look at these great teatures-then compare
Teleton F2000 tuner amp. AM-FM with multiplex decoder and A.F.C. $-2 \times 5 \mathrm{w}$ channels R.M.S. Bass
Volume Treble Balance controls, a truly outstand.
Carrard SP 25 Mk 11 Transcription deck
Teleton SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridqe
Plinth and perspex cover
Exclusively offered by SBE at the remarkably low price of £59 gns.
This month's SBE offer $5 \times 5 \mathrm{~W}$ transistorised
stereo amplifier. Undoubtedly a most remarkable offer-outstanding performance, comparable with amplifiers in the $£ 25-£ 30$ price range. Brief specification includes volume, bass, treble, balance control, stereo, mono, switch, inputs, sockets, tape tuner pick up AUX. Being Manufacturers' distributors of this fine stereo amplifier, as an initial promotion we are prepared to offer this unit at fractionally above

4 Watt Transistorised Beautiful Amplifier with integral oiled teak en stabilised power unit. closure to suit Complete ready built EMI $13 \times 8 \mathrm{in}$. and tested, with volume speakers. Retail and tone control on fly- value $£ 8.15 .0$. ing lead. Retail price Our low-low £6.15.0. Now offered at price Only 99/6 79/6 p/p 2/6.
plus 8/-p/p.

The Baker Selhuist guitar group 25 12 in . round, 25 watt rating, 12,000 lines GAUSS, 15 ohms response $30-10,000 \mathrm{c} / \mathrm{s}$ solid aluminium chassis. heavy duty cons. Our Price f4.19.6, p/p 6/6. Brand new. 12 month's unconditional guarantee.
E.M.I. 8×5 elliptical 5 watt 3 ohm Blcomax mag-
net, sold elsewhere $50 /$-. Our Price $27 / 6$ p!p free. SBE. 12 in . diam. 20 13×8 elliptical 13.000 lines GAUSS 3 or 15 Ohm watt iwin cone HI-FI 10 watt alcomax magnet usually \&4. Our price speaker as sold by $47 / 6$ p/p free. 13×8 elliptical with double tweeter leading manufacturer and cross over unit, IMP 3 or 15 ohm 10 wat * Usual price £5.17.6. Bass res. 40.50 hz . Magnadure 11 Magnet. Usu- Our price 87 ' 6 p/p $5 /$ ally $£ 6.10 .0$. Our Price 59/6 p.'p free

HI-FI The Baker Selhurst stalwart SPEAKERS 12 in . round, 15 watt rating, BARGAINS 12,000 lines 'GAUSS, 3 or 15 OHMS response $45-12,000 \mathrm{c} / \mathrm{s}$ Bass resonance, $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium chassis. Our price £4.19.6

WALDON ELECTRONICS Atlas House, Chorley Old Rd., Bolton. Bolton 45628.

TRANSISTOR SULSSITUTIOW HANDBOK

AMERICAN, JAPANESE, BRITISH, ETC. NEW 8th EDITION. 16/P. \& P. $\mathrm{I} / \mathrm{3}$.

MODERN DICTIONARY OF ELEC. ThONICS by Graf. 3rd ed. 70/.. P. \& P. 4/6.
SILICON CONTROLLED RECTA. FIERS by Lytel. 21/.. P. \& P. 1/3.
F.E.T. CIRCUITS by Turner. 25/-. P. \& P. $1 / 3$.

HAVING FUN WITH TRANSISTORS by Buckwalter. 24/-. P. P. P. 1/3. COMPUTERS FOR THE AMATEUR CONSTRUCTOR by Warring. 20/-. P. 2 P. $1 / 3$.

CIRCUITS FOR AUDIO AND TAPE RECORDING by Judd. 7/6. P. \& P. I/-. HI-FI IN THE HOME by Crabbe. 40/\%. P. \& P. $2 /-$
SYSTEMATIC ELECTRONIC FAULT DIAGNOSIS by Wingate. 17/6. P. \& P. 1/3.
SOLID STATE POWER SUPPLIES AND CONVERTERS by Lytel. 20/-. P. 2 P. I/-

TRANSISTORS IN LOGICAL CIR. CUITS by Altes. 16/-, P. \& P. $1 /$. COLOUR T.V., PAL SYSTEM by Patchett. 40/-. P.. \& P. $1 / 3$.

UNIVERSAL BOOK CO.

12 LITLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station) Phone 01-437 4560

AMPLITIERS

ssar3. 10W push-pull output. TW99 output trans. Four valve. Full chassis mounting. Nep and boxed. Complete with circuit drawings. 88.10.0. P. \& P. 10/-
gsAR7. L00W output. Three valve. TW132 output trans. Selenium rectifers. $8 \mu \mathrm{~F}$. con denser. Full chasais mounting. New and boxed Complete with circuit drawings. \&2,10.0. P. \& P. 00/-

JUST RELEASED
R.A.F. Receiver Type R3673. Details on request.

Mixer Units Type 18. H.F., M.F., L.F. Valve Y885. 10/0. P. d P. 2/6
Micro-Ammeters for Instrument Mounting, etc. $0-100 \mathrm{~mA}$. $30 / \mathrm{c}$. P. de $P .2 / 6$
Micro-Ammeters Type Y. $0-100 \mathrm{~mA}$. Heavy duty in case complete with leads. \&3. P. \& P. $5 /$ Flexible Metal Tubing. Galvanised. Watertight. 95/-100ft. P. \& P. 7/6
ELECTRO-METHODS. Low Inertia Motor 24 V d.c. 2,000 r.p.m. 20/- P. \& P. $2 / 6$

CHASSIS UNIT. 7 valves ECC82 (3), EB91 (3), 6 F33 (1). 45 Capacitore. Reaintors, etc. Valve bases and cans. 20/=. P. \& P. $2 / 6$
 $225-0-225 \mathrm{~V}(27 \mathrm{~mA})$, oll flled. $25 /-. \quad$ P. \& P. $81-$ 88TR009. Pri. 230V. Sec. $0-50 \mathrm{~V}(50 \mathrm{~mA})$, 4 V (1A). $6.3 \mathrm{~V}(8 \mathrm{~A})$. $25 /-\quad$ P. \& P. 51
1,000 Transformers in etock.
CAPACITORS. 30 assorted 0.01 mF to 1 mF (our selection). 10/\% P. \& P. 2/-
CABLE. Six core (100 y d new) with drum assembly 25/6. P. \& P. 4/6
TEST INSTRUMENTS, ETC. S.A.E. FULL LIST. STATUS SUPPLIES
gTATUS HOUSE, WILKISSON AVE., BLACKPOOL

EATTERY ELIMINATORS

 The ideal way of running your TRANSISTOR AMPLIFIER, etc. TYPEs araiblabe RECORDER, 4 V (single ourput) $39 / 6$ each. P. it P. 2/9. outputs) 42/6 each. P. Pi: P. 2/9. Please state output, required. Ail the above units are cempletely isolated from mains by double wound transformer ensuring $100^{n} . .1$ safety.
ne. PRODUCTS (RADIO) LTD.
(Dept. P.E.t. 11 Oliver Road, London. E. 17

CRESCENT RADIO LTD.
(electronic componene specialists) For all regular components try 40 Mayes Road, Wood Green, N. 22 For surplus components ond equipment try
II Mayes Road, Wood Green, N. 22 GARRARD TURNTABLES AT BARGAIN

1025, with mono cartridge 2025, with 9TA/HC. stereo cartridge 3000, with 9TA/HC. stereo cartridge SP25, less cartridge Please include $7 / 6$ postage with order	68.10.0
	£9.15.0
	$¢ 10.10 .0$
	¢11.10
Sonotone 9TA/HC, with diamond stylus Please include $2 / 6$ postage with this item	
Plinths for Garrard types teak finish	50/- each
Plinths as above complete with cover Postage on plinths 6/- each	95/- eac
Stereo headphones 8 ohm 1 mp Ex Govt. low imp headphones	¢3.10.0 $10 / 6 \mathrm{each}$
2,000 ohm headphones Foster type Please include $1 / 6$ postage	15/- ea
Mono microphone mixer 4 way	
Stereo microphone mixer 4 way transistor type Please include $2 / 6$ postage	59/6
MW/LW AM tuner, valve type, ready to work through any amplifier	64.0.0
Please include 4/- postage Standard gram amplifier suitable for all turntables and above tuner. Single valve type	59/6 eac
CASSETTES	
C60 C 90	12/6 each 18/6 each
With our new premises in Ma	ad we can
now offer an even wider selection ponents for the home const enthusiast.	on of comructor and
POSTAGE WITH ORDER	LEASE
P.S. Our new catalogue is now availabl copy	as $1 / 6$ per

ELECTRONICS INSTRUCTORS

Due to reorganization within the Apprentice Training School, Borehamwood, Herts, vacancies now exist for two Electronics Instructors, working as a team, to teach theory, and to institute interesting projects for practical application.
The senior member of the team will be responsible for preparation of the working syllabus, together with care and calibration of instruments in the Electronics Laboratory, the teaching of electronic theory together with practical applications.
The junior member will give instructions on wiring, soldering, cable forms, etc. and assist the senior member generally. A general knowledge of machining practice would be advantageous, so that he may be employed in the Fitting Shop in an emergency.
The apprentices spend their first year in the Training School, during which time they acquire experience of basic fitting and machining, together with an introduction to electronics.
These positions will be monthly salaried staff posts, in the starting range $£ 800-£ 1,300$ per annum.

Those interested should please write, with brief particulars to the Personnel Officer,
Elliott-Automation Limited,
Elstree Way, Borehamwood, Herts.
Ref. No. PE 156.

Opportunity of a lifetime!
 Big price reductions on top quality Knight-Kits

Easy to build. Advanced design. Invaluable for both the professional and amateur. Faultless performance guaranteed.

Complete kit: \&54. 2.6. Postage 158 od.
KG663 Regulated $0-40$ Voit Solid

State DC Power Supply Kit
Compact. 6 silicon transistors. 12 diodes. Output voltage and current $0-40 \mathrm{~V}$ DC. $0-1.5 \mathrm{~A}$, continuously veriable. Complete kit: $\mathbb{\&} 40.19 .6$. Postage 108 od

KG661 Solid-State Regulated Low-Voltage DC Power Supply Kit Compact and rugged. 4 silicon transistors. 7 diodes. Voltage output $0-25$ volts
 DC. at $0-0-5 \mathrm{amp}$. Complete kit: E 15.6 .6 .

KG686 Lab, Quality RF Signal Generator

$100 \mathrm{kHz} / 1 \mathrm{MHz}$ Crystal Callbrator. 10 silicon transistors. 6 diodes. Frequency coverage
 Pottage 15s 0d.
KG688 Solid-State Sine/Square Wave Generator Kit Slne Wave: 20 Hz to 2 MHz in 5
ranges. Square Wave: 20 Hz to 200 kHz ln 4 ranges. Precision Sulzer oscillator circuit. All t1t: £36.5.6 Postige 10 ow

330 Grid-dip Meter Kit
Covers all frequencles from 1.5 to 300 MHz in 6 overlappling ranges Extremely compact. Supplied
 KG675 R \& C Substitution Box Ellminates need for soldering and resoldering when substituting. 36 switch-selected Resistance Ranges. 19 Switch-selecectod capacitance Ranges. 750 mA 800 PIV Silicon Diode. 40 mfd 450 capacitor.

$$
\text { Postage } 7 \mathrm{Ba} \text {. }
$$

KG650 RF Signal Generator Kit

For TV. AM and FM allgnment etc. Wide range fundamental output in 5 separate bands. Highly stable Colpitts type oscillator. Complate kit. 815.19.6. Potage 128 Gd.

Easy credit facilities available, ask for details.

New 960 page Hobbies Manual

12 Hobbies Sections - over 12,000
units \& components for dozens of

Practicul Electronics Classified Advertisements

MISCELLANEOUS

RHYTHM MODULE8. Build your own rhythm box-simply, cheaply. Realistic sound guaranteed. S.A.E. for details. D.E.W'. LTD., 254 Ringwood Rd., Ferndown, Dorset.

BUILD IT in a DEWBOX quality cabine t 2in $\times 2 \frac{1}{2}$ in \times any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

ARTIFICIAL LIFE
 Well almost, because the NEW range of projects include: an electronic 'animal" which LEARNS, and a device capable of REPRODUCING itself! Other projects SURE TO INTRIGUE YOU are an audio transmitter/receiver which has quite an amaxing range and requires NO LICENCE; an electronic dog whistle, etc., etc. HOSTS OF EASY-TO-CONSTRUCT projects. SEND $2 / 6$ for your list-NOW!
 To: 'BOFFIN PROJECTS' incorporating
 BIONIC DESIGNS 4 CUNLIFFE RD.
 STONELEIGH, EWELL, SURREY

UFO DETECTOR CIRCUIT8, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

4 WATT GRAM AMPS. Volume and tone controls, mains operation, 3Ω output, new and boxed $65 /=$ POST PAID $\begin{array}{ll}\text { BIG BARGAIN PARCELS ONLY } \\ \text { OF COMPONENTS } & 10 /-\end{array}$ OF COMPONENTS $10 /-$ SALOP ELECTRONICS QA. Greytriars Road Coldaham, Shrawsury \qquad

CALL OR 8END for list from the most interesting shop in Jancashire. Electrical Mechanical and Electronic Goods. ROGERS, 31 Nelson Street, Nouthport.

RATES: $1 / 3$ per word (minimum 12 words). Box No. 1/6 extra.
Advertisements must be prepaid and addressed to Advertisement Manager, "Practical Electronics"
15/17 Long Acre, London, W.C. 2

EDUCATIONAL

8TUDY RADIO, TELEVIBION AND ELECTRONICs with the world's largest home study organisation. City \& Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to JCS (Dept. 577), Intertext House, London, SW11.

EDUCATIONAL (continued)

ENGINEER8. A technical certifticate or qualification will bring you security and much better pay. Elem. and adv. private postal courses for ('.Eng., A.M.l.E.R.E., A.M.S.E. (Merh. \& Elec.), 'ity \& Guilds, A.M.I.M.I., A.I.O.B. and (i.C.E. exams. Diploma courses in all hranches of Eingineering-Mech., Elec. Auto, Electronics, Radio, coniputers, Draughts., Juilding, etc. For full details write for FREE 132-page guide. BRITISH INSTITVTE OF ENGINEERING TECHNOIOGY (Dept. 125k), Aldermaston ('ourt, Aldermaston, Berks.

QET INTO ELECTRONICS - big opportunitios for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms., etc. For FREE 100page book, write Dept. 856 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.1.

RADIO \& TELEVISION SERVICING RADARTHEORY\& MAINTENANCE TELECOMMUNICATIONS This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:-
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5.

Tel. O1-373 8721

CITY AND COUNTY OF BRISTOL BRISTOL TECHNICAL COLLEGE

Principal: E. Poole, B.Sc.(Eng.), C.Eng., M.I.Mech.E., M.I.Prod.E.

CAREERS IN RADIO AND RADAR

Marine Radio Officers

2 year full-time course leading to the Second and First Class P.M.G. Certificates and the B.O.T. Radar Maintenance Certificate.
Conversion Course (Second Class to First Class).
R.T. Licences (Full or Restricted).

Courses for Qualifled Marine Radio Officers
Single Sideband Techniques (2 weeks) Marine Electronics Course (Phase Iduration 3 months)
Advanced Marine Electronics Course (Phase II-duration 3 months)

Licensed Aircraft Radio Engineers

2 year full-time course covering the Aircraft Radio Engineers Licences categories A and B , issued by the Board of Trade (Civil Aviation) followed by a six-months' course for Radar Rating (A and B) in association with the above.

Training given on the latest types of Marine and Aircraft equipment in modern, approved laboratories at
THE SCHOOL OF RADIO AND RADAR
Senior Lecturer-in-Charge: F. E. Barltrop
For further information apply to:-
The Registrar, BRISTOL TECHNICAL COLLEGE ASHLEY DOWN, BRISTOL 7

HOLIDAY FOR BOYS $1+/ 16$ years August 1969, specialising in engineering, electronics, photography. Tuition and practical work including go-karting. 11 days- e1f.10.0. Write for free brochure: INTER-scilool OHRISTIAN FELIGOWSHIP, 47 Marylebone Lane, London W. 1.

BOOKS AND PUBLICATIONS

MAKE YOUR OWN TALKIES. An introduction to electronic tape/film synchronisation, with an explanation of the "Carol" C'inesound system, modifying equipment, filming in sync., etc. I'rice 76 , post free (refundable against purchase of your "Carol" Cinesound equipment). Contronic: Litil, Deepcut, Camberler, Surrey.

GOVT

This useful hand book gives detailed information and circuits for British and American Government Surplus Receivers, Transmitters, and Test equipment, etc... plus suggested modification Also a Surolus/commercial cross reference valve guide and Government component codings and references. Invaluable to Radio enthusiasts, Universities and Laboratories. Available only from us at VERITEXT (LEEDS) LTD., 24 Stansfield Chambers, Gt. George St., Leeds J, Yorkshire at 30/: per volume post paid. Extra postagefor Foreign Orders.

SURPLUS HANDBOOKS

19 set Circuit and Notes
6/6 P.P. 6 d 1155 set Circuit and Notes 6/6 P.P. 6d H.R.O. Technical Instructions 38 set Technical Instructions. 46 set Working Instructions. 88 set Technical Instructions. BC. 221 Circuit and Notes. Wavemeter Class D Tech. Instr 18 set Circuit and Notes BC. 1000 (31 set) Circuit \& Notes CR.100/B. 28 Circuit and Notes R. 107 Circuit and Notes.. A.R.88D. Instruction Manual 62 set Circuit and Notes $5 / 6$ P.P. $6 d$ 62 set Circuit and Notes 5/6 P.P. 6d 5/6 P.P. 6 d 7/-P.P. 6d (ircuits 7/6. post free Circuit Diagrams 5/- each post free.
R.III6/A, R.1224/A, R, 1355, R.F, $24,25, \& 26$ R.III6/A, R.1224/A, R,1355, R.F. 24, 25, \& 26. A.II34, T.J154, CR.300, BC.342. BC.312. BC.348.J.E.M.P. BC.624. 22 set. Resistor Colour Code Indicator... 2/6 P.P. 6d S.A.E. with all enquiries please. Postage rates apply to U.K. only.

Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

FOR SALE

TIME 8 WITCHE8, 14 day clock, once on once off pyery 24 Jours, reconditioned and fully gua ranteed. 5 amp Horstmann $32 / 6,15$ amp
 BATCIELOR (P.E. Dept.), 4 Park Road, Bromley, 1 Kl 1 3Hl'.

ILLUSTRATED CATALOGUE No. 17 Manufacturers* Kurplus and New Electronic Components including semiconductors. 3/- post free. ARTHINRSAIISS LTI., 28 Gardner Street, Brighton.

HAMMERED ENAMEL
MAKES FANTASTIC DIFFERENCE TO PANELS say hundreds of enthusiastic us on wood and metal. No under coat. Air dries 15 min . to hard glossy finish Heat, liquid and

BRUSH scratchproof. Lt. and Dk. Blue; Bromze; Silver: Green; Black Send for Free list. or $8 /$. (- $1 / 9$ post) for trial fpt. TIN. colour samples and instructions.
FINNIGANISPECIALITYPAINTS Dept. P.E.
STOCKSFIELD. Tel. 2280 Northumberland.
STOCKSFIELD. Tel. 2280 Northumberland.

FOR SALE
(continued)
BRAS8, 8TEEL, LIGHT ALLOY, STAINLE88 8 TEEL TUBE. Bar Material, Tools, Mechanical, Elretrical, plus Assorted Lots. Send S.A. F. for latest (Gat of $1,0 \mathrm{om}$ items. K. l . WHISTON, Jept. ßPE, New Mills, Stockport

PRECISION POTENTIOMETERS

Multi-turn, continuous or ganged from 25/-; carbon from 2/-. Also resistors, mains rectifiers, synchros, geared motors, chokes, capacitors, meters, microswitches, semiconductors. 6d. stamp catalogue. F. HOLFORD \& CO., 6 Imperial Square, Cheltenham.

UNU8ED 8EALED ni-cad. cells 1.22 y 5A.H. $3 \cdot 625^{\prime \prime} \times 1 \cdot 25^{\prime \prime}$ diameter, 12/6 each, 3 with case 35/-. MASON, 72 The Drive, Romford, lissex.

FOR SALE

a. Large quantity of electronic components including valves, transistors, resistors, capacitors, switches, chassis components, knobs, veroboard and pins. List value well over
£ 40 . Will accept $£ 20$ o.n.o. £40. Will accept $£ 20$ o.n.o
b. The following Practical Electronics projects: Speed Reducer
Transistor Ignition (2 units unused)
Signal Generator
Signal Generator
Power Supply Unit
Allat 50/-each.
c. SANWA transistor tester (as new) $£ 4$.

All items available separately or $£ 35$ the lot.
P. C. SUTHER, Alban House, Holly Hill

Lane, Sarisbury, Southampton SO3 6AG

SOLARTRON DIGITAL VOLTMETER LM901. Three window display. Three ranges, $[-200 \mathrm{v}$. Manuid/auto/external sampling. Accuracy $0 \cdot 1$ per cent. Zero, calibration and printout facilities. Excellent condition, with all accessories. 225 ono. CAMBERIEY 23292.

MORSE MADE ! !

FACT NOT FICLION. If you tart HIGHT you will be reading amateur and commercial Morao within a month (normal progresa to be expected $\stackrel{\text { - }}{ }$
Using acientifically prepared 3-speed records you sutomatically learn to recognise the code RHYTHM
without translating. You can't help it, it's as easy as learning a tune. 18 W.P.M. in 4 weeks guaranterd.
For details and course C.O.D. ring S.T.D. $01-5602896$ or send 8d. stamp for explanatory booklet to.

OBCHS/H, 46 GREEN LANE, PURLEY, SUEREY

WANTED

NEW VALVES WANTED. Popular TV and Radio types. Best cash price by return. 1) CRHAM SUPPLIES, $367 \mathrm{~F}^{\prime}$ Kensington Street, Bradford 8, Yorkshire.

TAPE RECORDERS, TAPES, ETC.

TAPES TO DISC-using tineat professional equipment-45 r.p.m. 18/-. S.A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

SITUATIONS VAGANT

TECHNICAL TRAINING by IC S $\begin{gathered}\text { IN RADIO, TELEVIIION AND } \\ \text { ELECTRONIC ENGINEERING }\end{gathered}$

First-class opportunities in Radio and Electronics await the ICS trained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.

- C. \& G. ELECTRONIC SERVICING.
- R.t.E.b. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INDUSTRIAL COMPUTERS

A number of positions are available at all levels within the

TEST AND QUALITY DEPARTMENT

of our INDUSTRIAL COMPUTER DIVISION at KIDSGROVE.

Applicants should preferably have a sound academic background, with a minimum of O.N.C. (Electrical) or equivalent and experience in at least one of the following fields:

Computer or Electronics Industry
Radio and Television or associated industry
Radar equipment installation, maintenance or servicing.
These are excellent opportunities offering good scope and prospects, an attractive salary commensurate with past experience and academic achievement, and a contributory pension and life assurance scheme.
Please write giving brief career details and quoting reference PE 0320 H to the Personnel Officer, I.C. \& A., The English Electric Company Limited, Kidsgrove, near Stoke-on-Trent, Staffs.

E ENCHISH BLDCTRIC

INDUSTRIAL CONTROL AND AUTOMATION
A.M.I.E.IT.E., A. M.S.E. (Elec.), City \& Guilds, G. '.E., etc., on "Satisfartion or lefund of Fee" terias. Wide range of Home Study Courses in blectronics, (immputers, Jadio, T.V., pte. 132-jage fiuide-FREF. l'lease state sinbect of interest JBRITISM INSTITITE OF ENGIXEERING TECHNOLAOY (lhept. $1 \geqslant 4 \mathrm{~K}$), Aldermaston ('ourt, Aldermaston. Jerks.

SERVICE SHEETS

SERVICE 8HEET8. RADIO, TELEYIBION, TAPE RECORDER8, $1925-1968$, by returil post, from $1 /-$ with free faintt-finding gulde. Catalogue 6,000 models, $2 / 6$. Please send stamped aduressed envelope with all orders/ enquiries. HAMILTON KADIO, 54 e London Road, Bexhill, Sussex.

C. \& A. SUPPLIERS SERVICE SHEETS

T.V., RADIO, TRANSISTORS, TAPES, ETC. Only 5/- each, plus S.A.E. (Uncrossed P.O.'s please, returned if service sheets not available.)
71 BEAUFORT PARK LONDON, N.W. 11 MAIL ORDER ONLY

SERVICE SHEETS

(continued)
RADIO TELEVI8ION, over 8,000 Modeis. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W.6. SHE 8441.

SERVICE 8 HEETS, Radio, TV, 5,000 models. List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

ELECTRICAL

240 vor ELECTRICITY ANYWHERE

most brilliant performance ever from
12 -volt Car Battery. BRILLIANT HEAVY 12-volt Car Battery. BRILLIANT HEAVY
DUTY 240 volt AMERICAN DYNAMOTCR with BIG 220 WATT OUTPUT. Marvellous for
TELEVISION, ELECTRIC DRILLS MAINS TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL ACIDC
MAINS EQUIPMENT. Marvellous for MAINS EQUIPMENT. Marvellous for
Fluorescent lighting. Thousands of uses Fluorescent lighting. Thousands of uses. fantastically low price possible.
ONLY 4.19 .6 each plus $10 / 6$ delivery. C.O.DWith pleasure. MONEY BACK if not DELIGHT-
ED. Please send S.A.E. for full illustrated details.

Dept. PE, STANFORD ELECTRONICS Rear Derby Road, North Promenade BLACKPOOL, Lancashire

TRANS/RECEIVERS AIR/SEA/RESCUE TYPE
Muat be dlamantled or exported. Complete with mike/speaker aerial. Work up to 100 miles. Cost Govt, over $£ 40$ each. $\& 2.10 .0$ per set, $10 /-\mathbf{P}$. \& \mathbf{P}. 2 aets 25, post free.

Listen to the thrills of aircraft, pilots and airporta at work. Also police fire/ambulance. Taxis and civil depts. Ideal for receiving 2 metre amateurs. A fully transistorised receiver covering $97-150 \mathrm{Mc} / \mathrm{s}$ V.H.F. broadcasts. Robust steel, black crackle flagh cabinet. Size $6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$. Operates from a $9 V$ battery that fits inside. Speaker or headphone output. simple to we. work over
Our price 88.10 .0 car. and ins. $10 /-$. C.W.O. or C.O.D
MINIATURE MOVING COIL SPEAKERS
ifin. diameter. Only $3 / 6$ each, p. \& p. $1 / 6$. Two for $8 / 8$ post free. Four for 15/-post free.

Brand new fully transistorised Communications Receiver, Specifications: 4 complete ranges 550kc/s to 30Mc/6. Coverng all araateur bands, Ahipping and trawher efficient double tuned superhet, compriaing A highly efticient double tuned superhet, comprising R/F a.erial tuning gection. A.V.C. and built-in fixed or mobile reception. Operates from Standard 9 V battery, provided that fits internally, Gives over 1 watt audio output. With speaker and headphone output. Hammer finighed robust steel case of pleasing modern design with all controls on weil set-out front panel. Size approx. $3 \times 7 \times 6 \mathrm{in}$. British manufacture. Due to huge purchase we can offer these excellent receivers at less than half their normal worth. Complete with handbook si8.10.0. Carr. and ins. 15/-. Headphones if re-
quired $17 / 8$ per pair. P. \& P, 2/6.

This is a miniature transistorised B.F.O. unit that is fully variable, that is a necessary acceseory to any receiver. Completely seli-contained and aingle hole fixing makes installation so easy. Full in structions provided. Can even be fitted to modern transiator receivers. Price only 40/6, post free.

TOP BAND TRANSMITTER

A fully transiatorised compact transmitter for Licensed Amateur use. Fully portable. Sultable for mobile use. Fully Tunable 1.8 to $2 \mathrm{Mc} / \mathrm{s}$. Contains R/F output meter. Price 812.10.0.
(4) HEDBE SCIENTIIIC LTD

DEPT, P.R. 20, \& CAWOODS YARD,
TILL 8TREET, LEGDS 8

bapealy pacis!

4 FST3/8 STC SIl. Rectifiers New and Marked
800 piv $1 \frac{1}{4}$ amp. Good substitute for BY 100 , ete.
RAS3IOAF STC Avalanche Rectifiers New and Marked 1.200 piv $1 \frac{1}{5}$ amp $S A$ surge rated
GJ4M New and Marked AEI Germanium Rectifiers 50 piv I amp
GP297/I Sub-miniature power transistors Texas New

Diodes
I Pair of AD161/AD162 NPN/PNP Power Com
plementary Pair ...
Pair of $\mathrm{ACl} 28 / \mathbf{A C I} 76 \mathrm{NPN} / \mathrm{PNP}$ Driver Com-
plementary Pair
plementary Pair
Set OC82D $2 \times$ OC82 Matched Pair Now Muliard Marked
BSY95A 5TC New and Marked Planar Transistors
BCI 08 Mullard Latest type Low noise planars New
and Marked
NKT276 New and Marked Newmarket Audio
General purpose transistor
36 Square inches of 0.15 in Matrix Veroboard the most popular pack of all only from LST
NKT162 New and Marked Newmarket Switching OCI9 New and Marked Mullard Power Transls-

BAll5 New and Marked Muliard Colour Tele.
vision Diodes
4 2G371B New and Marked Texas Audio Transistors 4 BY $\times 38 / 600$ Mullard New and Marked Power Studs 600 piv $2 \frac{1}{2}$ amp
1 "Designers Guide to British Transistors" New data book with over 1,000 types listed-Computer selected substitution chart. Just out from Publishers (add $2 / 6$ this irem post)

CAPACITORS AND RESISTORS

 Minisery release. Bargain prices. Electrolytictubular. rectangular. large and small, wide tubular. rectangular. large and smalt, wide
range. Hunts Sangamo resistors, Colvern precision pots, ditto presets. Power resistors, sliders, etc. Bargain parcel, over 100 items, our selection, different values, 20/- post paid. Send 1/-P.O. for list of interesting and unusual value components. Quickservice. SAE anyinquiries.
STOODLEY POSTAL ELECTRONICS Sedbury. Doctors Hill, Sherfield English
Romsey, Hants SO5 OJW

TELEVISION I.F. STRIPS (less valves)
From BBC. 2 convertors ideal for spares, concains smoothing capacitor. dropper resistors. 7 valve holders, I. transformers, conl formers, capacitors, chassis ilin x 3tin. no information or circuit. BRAND NEW in makers' boxes, a gold mine of components for ONLY $16 / 6$ each post paid.
MAINS TRANSFORMERS
250 V input. outputs 10 V , $500 \mathrm{~mA}, 24 \mathrm{~V}$, 100 mA , 32 V in $10 \mathrm{~m} / \mathrm{A}$, size $2 \frac{1}{\mathrm{i}} \mathrm{in} \times 17 \mathrm{in} \times \mathrm{lin}$ (drop through type) ideal for cransistor power supply,
$10 /-p o s t ~ p a i d . ~$
250 V input, output 22 V (1) A, size $10 /$-post paid. 250 V input, output 22 V (a) $1 \frac{1}{2} \mathrm{~A}$, size 2in \times 2in $\times 2 \frac{1}{2}$ in, $11 /-$ post paid.
for 3 ohm speaker suit O C8Is, utput transformers rating, only $6 /-$ pair or $4 /-$ each.
rat.. approx. I watt As above but $500 \mathrm{~m} /$ watt rating. $4 /$-pair, $3 /$-each. MIXED bag of s.lver mica and ceramic capacitors, approx. $150,10 /-$ Der bag.
ERIE $0.01 \mathrm{mF}, 12 \mathrm{\gamma w}$ wire ended disc ceramics, $3 /$-doz. $0.01 \mathrm{mF}, 500 \mathrm{vw}$ disc ceramies, P.C. type, $\frac{1}{3}$ in dia., HUNTS 0.1 mF , 350 vw paper capacitors, P.C. type, upright mounting, $2 / 6$ doz., $15 /-$ per 100, post paid per 100.
and 500 pF only 6 icic capacitors, P.C. type, 3 3pF and 500pF only $6 /$ - per 100 . $1 / 3$ doz.
new boxed ex WD ill6 post paid TRANSISTOR ELECTIOLYTICS 2 mF Grw, $4 \mathrm{mF} 64 \mathrm{vw}, 10 \mathrm{mF} 12 \mathrm{vw}, 20 \mathrm{mF} 6 \mathrm{vw}, 50 \mathrm{mF} 6 \mathrm{vw}, 100 \mathrm{mF}$ $6 \mathrm{vw}, 6 \mathrm{~d}$ each. $100 \mathrm{mF} 9 \mathrm{vw}, 8 \mathrm{~d} .100 \mathrm{mF}, 25 \mathrm{vw}, 1 /-$ $400 \mathrm{mF} 15 \mathrm{vw}, 500 \mathrm{mF} 9 \mathrm{vw}, 9 \mathrm{~d} .1,000 \mathrm{mF}+1,000 \mathrm{mF}$ 18 ww can neg., $2 /-1,000 \mathrm{mF} 50 \mathrm{vw}$ can cype, $4 /$. CRYSTALS HC6/U. $12.700 \mathrm{Me} / \mathrm{s}$ ex equipment tested, 5/-. SILVER MICA capacitors 80pF size
only $\frac{1}{2}$ in x in $200 v w, 4 /-$ per 100 . only $\frac{1}{1}$ in $\times \operatorname{din}$ 200 $\mathrm{Vw}, 4 /-\mathrm{per} 100$.
MAlL ORDER ONLY
SAE FOR LISTS Postal charges: up to El
C2-E5 + $3 / 6$; over $E 5$ FREE A.J.H. ELECTRONICS

[^7]BARGAIN PARCELS of Hew suplus Filectromic Comprmmots, 3/-, 5/-, $10 /-$, prist free

ELECTRONIC STOCKMARKET KIT OF MOST PARTS ALSO 'REACTALYSER' AND WAA-WAA PEDAL. S.A.E. FOR LIST.
 D.E.W.LTD., RINGWOOD RD. FERNDOWN, DORSET

 Tested. P' \& l^{\prime}, fill per rriler, Ibata supplied,

R\&R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTEO \& GUARANTEED

BF80	$3 /-$	PCCB4	$3 /-$	PY82	$3 /-$
EBF89	$3 / 6$	PCF80	$3 /-$	U191	$4 / 6$
ECC82	$3 /-$	PCF82	$3 / 6$	U30	$4 / 6$
ECL80	$3 /-$	PCL82	$4 /-$	$6 F 23$	$5 /-$
EF80	$1 / 6$	PCLB3	$4 /-$	$10 P 14$	$3 /-$
EF85	$3 /-$	PCL84	$5 /-$	$20 P 5$	$3 /-$
EFIB3	$3 / 6$	PL36	$5 /-$	$30 F 5$	$2 / 6$
EFI84	$3 / 6$	PL8	$4 /-$	$30 L 15$	$5 /-$
EY86	$4 /-$	PL83	$4 /-$	$30 P 12$	$4 / 6$
EL41	$5 /-$	PY33	$5 /-$	$30 C 15$	$5 /-$
EZ40	$4 / 6$	PY8I	$3 / 6$	$30 P L 13$	$5 / 6$
EBC41	$4 / 6$	PYB00	$3 / 6$	$30 P L 14$	$5 / 6$
POST. ONEVALVE 9d. TWOTOSIX $6 d$.					

S.E.S.

KITS

 Mini Kit-10 off each, 5% resistors through any decade, E12 values in $\frac{t}{t}$ or $\frac{1}{2}$ watt. ONLY $18 / 6$.For further information of all our stocks write sending $3 / 6$ for catalogue (or 6 d . for individual data sheets), phone or call:

TRANSISTOR PANELS New boxed, size 9 in $\times 6$ in $\times 1$ in with "Valyo" length leads, also an equal number of OABS diodes, H/S resistors, etc. Built on perforated board in a metal frame. Panel of 20 transistors, diodes, etc. $20 /-$ 1/- each. $9 /-$ per doz. Min. order $10 /$ - COMPUTER PANELS with 40 sil. pnp or npn transistors, Diodes and res., 22/6 Post COMPUTER PANELS WITH SEMICONDUCTORS. Postage 6d per panel 8-OC42 or GETS75 +24 -OA81 20 for $10 /$ - TEST 6 transistors 20 for $20 /-$ ELECTROLYTICS 25,000 @ 12V, 16,000 (3) $12 \mathrm{~V}, 15,000$ @ $10 \mathrm{~V}, 10,000$ in $30 \mathrm{~V}, 4,000$ (9), $60 \mathrm{~V}, 3,000$ (3) $80 \mathrm{~V}, 2,000$ (3) $50 \mathrm{~V}, 1,200$ (3) 180 V , a/6 Post Paid. ZENER DIODES-2.4, 2.7. $3 \cdot 6.4 .75,5 \cdot 25$, $5 \cdot 75,6 \cdot 2,6 \cdot 8,7 \cdot 5,13,15,16,18,20,27,30,33$ volts. $3 / 6$ each, mostly 1 watt , 180 V POLYSTYRENE CAPACITORS 150V: 180, $270,330,390,470,560,680,820$ DF. $1,800,2,200$, $270,330,390,470,560,680,820$ pF. 1,800, 2,200, $2,700,3,300,5,600,6,800,8,200$ $3,900,4,700,5,600,6,800,8,200,0 \cdot 015.80 \mathrm{pF}$ ceramic $200 \mathrm{pF} 5 . \mathrm{M}$. any selection $2 /$ doz. $4-40 \mathrm{pF}$ trimmers 4 /- doz. GRAND NEW BOXED CHASSIS containing 2-OC35, 2-OC29 12 WW resistors 25/.. Postage 1/6. NEW CROSS RADIO 6 OLDHAM ROAD, MANCHESTER 4

"\&UBMINIATURE ELECTROLYTIC8'’ 15 volt. 2, 6, $8,10,15,20,30,40.50,100 \mathrm{mfds}$. $8 / 6$ $2,6,8,10,15,20,30,40.50,100$
dozen; 30 for 21 . Brand New, Post Free. The dozen; 30 for $\$ 1$. Brand New, Post Free. The
C.R. SUPPLY CO., 127 Chesterfield Rd., Sheffield S8 ORN.

AERIALS

Enthusiasts THE T.M.P. EXPERIMENTAL AERIAL KIT

A unique collection of alloy elements, dipoles, booms, clamps, mast reflectors, nuts and bolts, cables, even a compass! etc., to make up various experimental aerials to cover all bands.
This includes TV transmissions, SW for the radio amateur, VHF for BBC FM. Amateurs on 2 and 4 MTrs, Aircraft, Police, etc., UHF for experiments on BBC 2 and Ultra High Frequencies. These Kits can be used indoor or outdoor. Robust construction with simplified detailed plans for easy assembly.
The Wonder T.M.P. Kit costs only 89/6-no extra for carriage.
Despatched to any address in UK within 7 days.

TUBULAR METAL PRODUCTS 7 LOWESMOOR TERRACE WORCESTER

PARKERS SHEET METAL FOLDING MACHINES HEAVY VICE MODELS
 With Bevellod Former Bars

No. 1. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. wide
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide
4i4:0.0
68.0 .0
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide
No. 3. Capacity 16 gauge mild steel $\times 18 \mathrm{in}$, wide
88.0 .0
88.0 .0
 Q27.10.0. $24 \mathrm{in} . \times 16$ gauge E26.10.0. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in . model, $\$ / 4$ per ft. Other models $3 / 6$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One yeor's swarantee. Monay refunded if not satisfied. Send for details.
A. B. PIRKER, Fohling Merhine Works, Upper George SI., Heckmondwike, Yorks. Heckmendwike 3997

NEW F.M. STEREO TUNER $\mathbf{K 2 5}$ Range 87 to 107 MHz Black crackle finiah metal case with cast front excutcheon. Case alze $13 \mathrm{In}, \times 7 \mathrm{In}$. $\times 3 \mathrm{izn}$. high. Maind transformer. Metal Rectifier andValves ECC85, EF89, EF80, ECC82 as cathode follower. EM84 tuning indicator, $2 \times$ AF117 and 2 diodes. A really fantabtic performer. Price e2s, tax paid and carr. paid. MOKO YEBSION as above but less stereo decoider 817.17 .0 tax and carr. paid. T'erms avallable this Item. M.W.; S.W.1; B.W.2; V.H.F.; Gram: Stereo Gram Two separate channela for Stereo. gram with balance control. Also operates with two speakers on Radio. Chassin size: $15 \times 7 \times 6$ in. hlgh. Dial silver and black $15 \times 3 \ln$. $190-$ 650M; 18-51M; $60-187 \mathrm{M}$; VHF $86-100 \mathrm{Mc} / \mathrm{s}$. Valves: ECC85, ECH81, EF89. 2 x ECL86, EM84 and Rect. Price 319.19.0, carr. paid or e8,18.0 deposit and 5 monthly payments of 50/6. Total H.P. price $2 \% 0,16.6$. BTREREO DECODER 57,10.0 extra. ALOERSHOT, Hants. (2 mins. from Station and Buses). FULL GUARANTEE. Aldershot 22240 CLOSED WEDNESDAY AFTERNOON.

SEMICONDUCTORS

BRAND NEW AND FULLY GUARANTEED

\begin{abstract}
IN91
iN9

is025

$1 \$ 120$
15130
15131
1513
1513
$2 G 30$
$2 G 30$
$2 G 302$
$2 G 303$
$2 G 371$
$2 G 371$
2 N 696
2N696
2N697
2N698
2N698
$2 N 706$
2N706A
2N708
2N708
2 N929
2 N 929
2 N 930
2 N 1090
2 N 109
2 N 109
$2 \mathrm{~N} \mid 13$
$2 \mathrm{~N} \mid 13$
$2 \mathrm{~N} \mid 13$
2NI 30
2 N 130
2 N 130
$2 N 1304$
$2 N 1305$
2 N
$2 \mathrm{~N} \mid 308$
2 NI 309
$2 N 1309$
$2 N 1507$
$2 N 1613$
$2 N 1613$
$2 N 1711$ $2 N 1889$
$2 N 188$ $2 N 1893$
$2 N 2102$ 2 N 214 2N2160 2N2193
$2 N 2193 A$ 2N2193A 2N221
2N22 2 N 2218
2 N 2219
2 N 2220 2N222 2N272
2N236 2 N 2369 $\begin{array}{lll}2 N 2540 & 4 / 6 & \text { ADI } 40\end{array}$ 2N2646 $11 / 6$ AD161 $\begin{array}{ll}\text { 2N2696 } & 6 / 6 \\ \text { 2N2904 } & 8 /-\end{array}$ N2904A 8/-

RECORDING TAPES

Fully Guaranceed

ZENERS. I! WATT $2.7-33 \mathrm{~V}$ 4/6

A. MARSHALL \& SON

28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 $01-4520161 / 2$

$\begin{array}{ll} \text { TRS } & \begin{array}{l} \text { MOR } \\ \text { FRO } \\ \text { LESS } \end{array} \end{array}$	O CHOOSE PAY
	A NEW DE-LUXE FM MONO/STEREO TUNER FROM TRS
	- A.f.C. \& A.g.c. - Noise Limiter Chass - pre-tuned

A T.R.S. derign based on newly developed Mullard 4 watt modules with BClus pre-amp, suitable for speakers from 3 to 15 ohiris. Bass and treble cut/buost excellently engineered layout requires only wiring between controls and modules. Complete with metal chassis and T.R.S. simplex teak-ended cabinet for iustant

TRS STEREO 4-4 integrated amplifier
assembly. Stereo/Mono and Radio/PU switches.
Amplifier Kit e\%.19.6 Complete kit $\begin{array}{ll}\text { (p/p 3/6) } & \text { inc. cabinet/ } \\ \text { T.R.8. Power Unit e2.5.0 power pack/ }\end{array}$ (p/p $2 / 6$) T.R.S. Simplex Cabinet, sockets 4 prs. D1N plugs and 212.10 .0 sockets if purchased
separately, $15 /$-.

PLAYING UNITS BY GARRARD AND E.M.I

LM8000 Record Pla
Cartridge. 210.5 .0 .
Cartrjdge. 210.5.0. AT. 60 mr. II De-Lare Auto-changer, dit
cast turntable. Less cartridge. 213.5.0. cast turntable. Less cartridge, 218.s.0. Brand new in makers" cartons. Packing aud carriage on any one of above $7 / 6$.
GARRARD PLINTH WB.I. In tine Teak for above units. (Packing and cirriage

Clear-view rigid perspex cover (carriage 4/6), 62/6. CARTRIDGES FOR ABOVE-STEREO 49/6; 92/6; MONO A cos tip91-1 21/-; (icldring MX2M 28/6.
EMI 4-sp. single plager, 101 inn . Tijable, separate arm am T/O cart. 69/6 (p/p 5/•).

MAKE A BOOKSHELF SPEAKER
With a set of matched sqeakers and cruss-over from TRs. Comprises modera style high efficiency 5 in. bass unit with special cone assembly, X-over ant 2 in, tweeter for mounting into your own cabinet or batfe system. Simooth response from 80 to $20,000 \mathrm{~Hz}$. Loading up to 6 watts. Mitle by
a world-fumous manufacturer. A genuine bargain for only
(carr. 5/-).

RESIBTORS-Modern ratings, lull range 10 ohms to 10 megohms. $10^{\circ} \mathrm{d}-1 \mathrm{~W}, 4 \mathrm{~d}$. each; 20\% 1W, 8d. each; 2W, 9d. each:
 each. $1 \% \mathrm{Hi-stab}, \mathrm{~W}, 1 / 6$ each (below $100 \Omega, 2 /-$ eacb).
WIREWOOND RESISTORS-25』 t_{0} $10 \mathrm{k} \Omega 5 \mathrm{~W}, 1 / 8$ each; $10 \mathrm{~W}, 1 / 8$ each; 15 W , $2 / 8$ each.
CONDENSERS-Silver Mica. All values 2 pF to $1,000 \mathrm{pF}, 6 \mathrm{~d}$. each. Ditto ceramica, 9 d . Tab. 450 V T.C.C. etc. $0.001-0.01$ $0.02-0 \cdot 1 \mathrm{mF} 500 \mathrm{~V}$ 1/-each. T.C.C. 850 V $0.02-0.1 \mathrm{mF} 500 \mathrm{~V} 1 /-$ each.
$0.25,1 / 9$ each; 0.5 , $2 /-$ each
CLOSE TOL. 8/MICAS- $10 \% ~ 5-500 \mathrm{pF}$ 9 d .; $600-5,000 \mathrm{pF}, 1 / \mathrm{F} 10 \% 2.100 \mathrm{pF}$, 11d. $100-250 \mathrm{pF}, 1 / 2 ; 270-800 \mathrm{pF}, 1 / 4 ; 800$ $5,000 \mathrm{pF}$
VEROBOARD -All standard sizes including 2 in. $\times 51 \mathrm{n} .3 / 8 ; 21 \times 31 \mathrm{in} .3 / 0 ;$ $3 \mathrm{in} . \times 5 \mathrm{in} .5 / 2 ; 3$ in. $\times 3$ in. $8 / 9 ; 21 \mathrm{in} . \times$ 17in. 12/6. All accessories and tools in
stock.
copper circuit atrip-60im. spool, $1 / 16 \mathrm{in}$. 2/- No. 3 Kit, special price $10 /-$ (p.; p. 1/*). GOLUME CONTROLS- $1 \frac{1}{2}$ in. Uia. Long ohine-2 Megohims. Guaranteed 12 ationthg Logins-2 Megohms. Guaranteed 12 nionths. Sw. 5/-. Ditto Centre tupped i $\frac{1}{\text { Megohm }}$ Log, 1 Megohin leas Sw 5/a. Twin ganged stereo controls It dia, long spindiea All values 5,000 ohnis to 2 Megohme less $S w$.. ea. 8/6. Ditto 100 K to 2 Megohing with DP Sw., eu. 10/8.
gTEREO BALANCE CONTROLS-Log/Anti-Log $6 \mathrm{~K}, 1$ Meg., 1 Meg., 2 Meg., ea. $9 / 6$.

ORDERING-Serd cash with order. Post and packing where not stated add $1 /-$ per $11 \mathrm{~b} . ; 1 / 91 \mathrm{lb} . ; 3 / 6,2 \mathrm{~b} . ; 5 /-$,
6ib.; $6 / 6,101 \mathrm{~b} . ; 8 /-14 \mathrm{~b}$. over, $10 /-$, S.A.E. wihh enquiries please.

LIST8-Eight large printed pages, packed with bargain otters lucluding pafkeult to find Ilves. Send 8d. for latest
copy. copy.

COMPONENT SPECIALISTS

 EST. 194670 BRIGSTOCK ROAD, THORNTON HEATH, SURREY
Telephone: 9 a,m. 6 p.m. daily A few doors from Thornton
01-648 2188 | p.m. Weds.
Heath Stn. (S.R. Victoria Section)

STEP UP YOUR EARNINGS

 WITH THIS LIBRARY OF KNOW-HOW AND PRACTICE You can have PRACTICAL ELECTRICAL ENGINEERING sent to your home to examine free of charge. It will help you understand the many branches of the electrical industry from installation work, Equipment, Instruments, Motors and Machines, Transformers, Rectifiers, Lifts, Maintenance and Operation right through to the Generation and Distribution of Electricity. And, to make the 2,350 pages of facts and vital theory crystal clear, there are over 2,000 ' action ' photos and drawings. In addition you receive a slip-case of 36 large Blueprint charts; a fascinating booklet which shows how a

1
Buckingham Press Ltd., 18/19 Warren Street, London, W.
Please send Practical Electrieat Engineering without obligation to buy if you accept my appitcation. I will return the books in 8 days or post-
Tick ($) ~$ Full cash prlce of 16 , or
here
$16 /$ dep. and 16 monthly pavients of $20 /$. If you are under 2 I your father must fill up coupon (2will Name (ajo0x Listrina)

 Sifnature(Credit price 616 16g.) For Eire and N. Ireland send 616 with Please tich (a) here The address on left is Mylour property \square Rented
unfurnished Furnished accom $[$ Temposary address $[$ 7I none of the above
please answer hicte (

Valluable new Handoook Fí EE ENGINEERS

 Have you had your copy of "Engineering Opportunities"?The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new '"ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or tratining.

On 'SATISFACTION OR REFUND OF FEE' terms

This remark able book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.Frequency Modulation Transistors.
FLECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmartship - Hlluminating Eng. Refrigeration - Elem. Elec Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.Gencral Civil Eng. - Municipal Eng. - Struchual Eng. -Sanitary Eng.—Roal Eng - Hydraulics - Mining Water Supply-Petrol Tech

RADIO \& T.V. IENG.
Advanced Radio - General Radio-Radio \& TV Servicing - TV Engineering - Tclecommunications - Somnt Recording - Automation -
Practical Radio - Radio Anthateurs' Examination. MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. Press Tool Design - Sheet Metal Wook - Wetding Eng. Pattern Making Inspection - Draughtsmanship Eng. Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Alutomobile Eng.Gencral Allo. Eng. - Allto Maintenance - Repair Amo. Diesel Mainchance--
Auto. Elecrical EquipmenGarage Managememt.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power?
Which qualification would increase your earning power?
A.M.I.E.R.E.. B.Sc.(Eng.), A.M.S.E.. A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.M.I.E.R.E.M.S.Sc.(Eng.), A.M.S.E.. A.M.I.P.E.' A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.EX., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M
CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

 316 A ALDERMASTON COURT, ALDERMASTON, BERKSHIRETHIS BOOK TELLS YOU
t HOW to get a better paid, more interesting job.

* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man ... quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT
Basic Practical and Theore tic Courses for beginners in Elestronics, Radio. J.V., Els, A.M.I.E.R.E. Cily \& Guilds Radio Amateurs' Exam. R.T.E.B. Cerlificate P.M.G. Certifitate Practiral Electronics Electioniss Engineering Prattical Radio Radio \& Television Servicing Automation

You are bound to benefit from reading 'ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

POST COUPON NOW!
TO B.I.E.T., 316A ALDERMASTON COURT, aldermasion, berkshire.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

SOLID STATE-HI			
AUDIO EQUIPMENT		THE MAYFAIR ELECTRONIC ORGAN	
highess ricices.		Nomen	
the finest value in high fielityCHOOSE A SYSTEM TO SUIT YOUR neeos and save pounds			
NEEDS AND SAVE POUNDS SEND FOR 16 PAGE BROCHURE (No. 21) TODAY!			
		OTM DRITISH MADE CAR RADIS	
BUILD THESE PRACTICAL DESIGNS Fluorescent Camping E3.17.6. eq us have your enquiries for parts fo current PW and PE designs. SA.E PLEASE			
		NEW-MALLORY LONG LIFEMERCURY BATTERIES 50% OFF LIST PRICES	ARRARD DECKS
		边	
		TRANSISTORS--SEMICONDUCTORS	

HTFI equipment to suit EVZKYPOKKZ

Ask for Hi-Fi- Stock List Leatlet 1617
VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE RD

Fullystrated CATALOCUS

The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE

Complete with $10 /$-worth discount vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
* 200 pages of components and equipment.
* 65 pages of microphones, decks and Hi . Fi equipment.

[^0]: DAYSTROM LTD
 Dept. P.E. 1
 GL'OUCESTER. Tel. 29451
 Please send me FREE CATALOGUE \square Tick NAME \qquad
 ADDRESS

 Prices and specifications subject to change without notice

[^1]: HIGE SPEED MAGNETIC COUNTERS (4, 1 lin). 4 (ligit. 12/24/485 (state which) 6/8-each. P. \& P. 1/-
 COPPER LAMINATE BOARD ($8,<5!: \frac{1}{2}$ in). 2/6 each. $\overline{0}$ for 10/-,
 RESETTABLE EIGE SPEED COURTER (3 1 : in). 3 digit. 12/24/48V (state whicb) $32 / 6$ each.

 ## BULE COMPONENT OFFERS

 100 Capacitors 50 pF to $0.5 \mu \mathrm{~F}$.
 250 Carbon Resiators \& \& $\frac{1}{2} \mathbf{W}$ (Tradsistor types).
 istors d $1 \mathbf{1} \mathbf{W}$.
 100 Ceramic Capacitors 2-1,000pF
 25 Vitreous W/W Resintors (5%)
 12 Precision Resistors (0.1% several standard values included)
 25 Close Tolerance Caps. (2%).
 12 Silicon Diodes 500 p.i.v. $750 \mathrm{~m} . \mathrm{a}$
 4 Silicon Rects, 400 p.i.v. 3 amp.
 8 Silicon Rects, 100 p.i.v. 3 amp .
 50 Silicon Trang. (2N706/708, BSY2s/29. BCY41/42 types.) Cumarked, ITntegted, ANY ITEM $12 / 6$. ANY 5 ITEMS $28,10.0$.

[^2]: S.C.Rs. (Thyristors) CRS1/20 5/6; CRSI/40 7/6; CRS3/10 7/6; CRS3/30 8/6; CRS3/40 10/F; CRS3/50 12/6 each.
 ' 3000 ' TYPE RELAYS (ex. new equip.) 10 for $85 /=$ (our choice) P. \& P. 5/v
 COMPUTER LOGIC BOARDS containing: $14 \mathrm{BCZ11,2}$ trimpote, diodes, etc., so/-
 each. each.
 LIGRT DDMMER/SPEED CONTROL MODULES: 200 watt, $85 /-$; 500 watt, $45 /-$; 1,000 Fatt, 60/-.
 RECORD LEVEL METERS (By Smiths). $1 \frac{1}{2} \because \frac{1}{2} \mathrm{in}, 15 /$ each. P. \& P. $2 / 6$.
 MITIATURE RELAYS (!oz, $\because 2 \times$ (in), $24 \mathrm{~V} 1 \mathrm{c} / \mathrm{o}, 7 / 8$ each. $12 \mathrm{~V} .10 /-$ each.
 P. C. COINECTORS (13 way in-line), 4/6 pair.

 LARGE CAPACITY ELECTROLYTICS: $100+400 \mu \mathrm{~F}, 275 \mathrm{~V} ; 1,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 2,500 \mu \mathrm{~F}$, $10 \mathrm{~V} ; 3,200 \mu \mathrm{~F}, 16 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 4 /-\mathrm{each} .4,000 \mu \mathrm{~F}, 90 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 25 \mathrm{~V}, 7 / 6$ each.
 $5,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 6,300 \mu \mathrm{~F}, 63 \mathrm{~V} ; 10,000 \mu \mathrm{~F}, 30 \mathrm{~V} ; 16,000 \mu \mathrm{~F} .15 \mathrm{~V} ; 25,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 /=$ each.
 SPEAKER BARGALFS (E.M.I. $13 \therefore$ 8in.) With two Tweeters and $\times /$ over, 15 ohm ,
 FAFE, 12in, 20waH (Dual Cone), $95 /-$ P. \& P. 5/TWEETER (E.M.I. 3 in), $15 \mathrm{ohm}, 18 / 6$.
 CAR RADIO (3/5 ohm), $7 \times 4 \mathrm{in}, 15 /-; 8 \therefore$ gin, 17/6.
 L.T. TRAN8PORMERS. Prim 240V. SEC. 10/20/25Y. and $3.5 \mathrm{amp}, 20 /-$. P. \& P. $5 /-$ 5 amp. morlel 25/-. P. \& P. 5/-.

 PATTRICK \& KINNIE
8I PARK LANE, HORNCHURCH, ESSEX ROMford 44473

[^3]: PRE-PAK, N.605 POWER
 TRANSISTOREQUIVALENT / / RaGh
 TO NKT301-2.3.4
 COMPLIMENTARYSET
 NPN/PNP GERM, TRANS. $2 / 8$ 9ain

[^4]: Open 10-1, 2.30-4.30 Mon.-Fri. 9-12.30 Sat

[^5]:

[^6]: When postage is not stated thellorider
 over $\$ 3$ are post free. Below 43 udd $2 / 9$ Semi-conductors add $1 /$-post. Over $\boldsymbol{e} 1$ post free. S.A.E. with enquiries please

[^7]: 59 Waverley Road, The Kent Rugby, Warks.

