PRACTICAL

SEPTEMBER 1968

SOLDERING EQUIPMENT

for the

APPLY DIRECT TO:
SALES \& SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE 01-622 0291

ORGAN BUILDERS! SILICON N.P.N. TRANSISTORS, ALL INDIVIDUALLY TESTED IN PUBLISHED DIVIDER CIRCUIT! GOLD-PLATED LEADS FOR EASY SOLDERING! Unbeatable value at $1 / 6$ each or $\mathbf{5} 5 /-/$ per 100 .

TRANSISTORISED FLUORESCENT LIGHT. 8 WATT 12 in TUBE. Current drain only 700 mA ! Complete and tested $£ 2 / 19 / 6$ only! Or in kit form:

TRANSISTORS

OC200, OC203, OC204, all at $2 /$ - each
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A 2G378A, all at $1 / 6$ each.
Transistors similar to $O C 44, O C 71$ and $O C 72$, all $1 /-$ each.
Unmarked, untested transistors, $7 / 6$ for 50 .
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each. 30 watt transistors (ASZ17), 10/- each.
DIODES. Very low leakage. Make excellent detectors, also suitable for keying electronic organs, $1 /-$ each, 20 for $10 /$-.
RECTIFIERS
BY100, 800 p.i.v., $2 / 6$ each, $24 /$ per doz., $£ 7 / 10 /$ - per 100 , $£ 50$ per 1,000 . BYZ13, 6 -amp, 400 p.i.v., available on same terms.

VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. $10 /$ - per 100. PAPER CONDENSERS, MIXED BAGS, 0.0001 to $0 \cdot 5 \mu \mathrm{~F}$. $12 / 6$ per 100.

RESISTORS! Give-away offer! Mixed types and values, $\frac{1}{4}$ to $\frac{1}{2}$ watt. $6 / 6$ per $100,55 /$ per 1,000 . Individual resistors $3 d$ each. Also $\frac{1}{2}$ to 3 watt close tolerance. Mixed values. $7 / 6100,55 /-1,000$
WIRE-WOUND RESISTORS. I watt to 10 watts. Mixed bags only. 16 for 10%

RECORD PLAYER CARTRIDGES

ACOS

G	67/2	Mono.	15
G	91/3	Stereo Compatible	£1/-/-
GP	93/1	Stereo Ceramic	£1/5/-
GP	94/1	Stereo Cera	£1/5/-
	,	m	(1)

TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. TRANSISTORISED SIGNAL TRACER KIT 10/- only

VEROBOARD

in \times lin	$0 \cdot 15$ in matrix $1 / 1$	n	$0 \cdot 15$ in matrix $11 /$
$3 \frac{3}{2}$ in $\times 2 \frac{1}{4} \mathrm{in}$	$0 \cdot 15$ in matrix $3 / 3$	$17 \mathrm{in} \times 3$ S ${ }^{\text {in }}$	$0 \cdot 15$ in matrix
$3 \frac{3}{4}$ in $\times 3$ 3 ${ }^{\text {in }}$ in	$0 \cdot 15 i n$ matrix $3 / 11$	3isin \because 2 ${ }^{\text {din }}$	$0 \cdot 1$ in matrix 3/9
Sin $\times 2$ in	$0 \cdot 15 \mathrm{I}$ matrix $3 / 11$		$0 \cdot 1 \mathrm{in}$ matrix 3/11
5in \times 3 ${ }_{\text {a }}^{\text {in }}$	$0 \cdot 15$ in matrix $5 / 6$	Sin $\times 2$ 2	$0 \cdot \mathrm{lin}$ matrix 3/11
		5 in $\times 3$ 3 ${ }_{\text {S }}$ in	$0 \cdot 1 \mathrm{in}$ matrix $5 / 6$

Spot Face Cutter 7/6. Pin Insert Tool 9/6, Terminal Pins 3/6-36.
MULTIMETERS. $\quad 20,000$ ohms per volt.
Ranges: a.c. $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$ d.c. $250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}$
d.c. $2,500 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}$. Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6 \mathrm{M} \Omega$. Special price $\mathrm{f}^{2} /$ /-- only.

Orders by post to:
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

Insultay＇s ごロは10

SFECIAL INTEREST ITEMS OUTSTANDING HI－FI BARGAIN

AFX－3U AM／FM STEREO TUNER

Superby engineerea by worit famous manimacturer，the Moolel AFX－35 is an ulta a seusi－ width of the tumer aml unigue multiplex circuitrves ensures the flnest possihle fat reception with nptimun stereo separat ion of over 38ilB．Stemeo signal beacon with special circuitrs unaffected by extermal noise，simplifies FM steren broatcast selection． 3 gang variable condenser provites highly sensitive reception on both bands．The multiplev circuit is completely iree frons snbearrier leakiage amp permits direct tape reconding withont any beat Germanimm diodes and a silicon $1,605 \mathrm{k} / \mathrm{g}$（ 2V．AM－3V．Frequencv response：FM－20－20．000c／s．Distortion Output FM／FM Stereo Circuits：FM Stereo indicator，AFC，Noise filter．Ontput for lirect tape recoriling Hamper enamel and brishell alloy flnigh．Cabinet size $14!\div 5 \cdot 9!$ in．For $220 / 240)^{\circ}$ a．c．Mains 50 or $60 \mathrm{c} / \mathrm{s}$ ）operation．Complete with operating manual．List Price 55 Gni．
Lasky＇s Price 26 Gns．（arriuge and Packing 7 7／

COMMUNICATION RECEIVERS

TRIO

MODEL 9R－59DE
Brifi spec．： 4 band re
Civer covering $550 \mathrm{kc} / \mathrm{s}$ o 30Mc／s cont inuous and 0 lectical band spread netres． 20,40 and 8 diode circult． $4 / 8$ ohn output and phone jack Special features：usB BFO \＆meter siep bFo gind meter diep．

 on $110 / 250 \mathrm{~F}$ ade．Mains．Beantifully designeal control latyout tinighed in light grey with dark grey case，size 7 is 10in．Weight 191h．Fnilly guarint feet，complete with instrur－ fon manhal and service data

Lasky＇s Price £39．15．0（arriage anud P．acking 12／6

MODEL JR－500SE
Brief spec．：Covers all the amateur bands in 7 seyarate rampes bet ween 35 and 2 w． 7 Me＇s irchit nses ritives， 2 trangistors and 5 dioties plns 8 ciystals：antput 8 and 600 ohm and TFO AVO ANL，Apecial features：（rystal controlledi oscilator Variable BFO dial drive with flirect reading down to $I \mathrm{KHz}$ ．Remote control gocket for comection to a tramsmitter．Audio output 1 uatt．For use on $115 / 250 \mathrm{~V}_{\text {ace．Maing．Superl umoden }}$
 Hily guaranteen，complete with inst ruct ion manuat am sel vice datit．
Lasky＇s Price $£ 68.0 .0$

FOSTER HF－204 COMBINED MICROPHONE／HEADSET
High quality moving coil heaulphones ami sensitive fianic merophone combined in one lightweight unat ing），communications（provinles constant monitor trate control），stage direction，langatage labs，ete．Extremely comfortable to wear for long perionls－arljnstable foam paided Headphone inp Ω_{Ω} heatiband t00mW．Microphone imp．2as in． Weight 8.80 ．$^{\text {：}}$ Single cable contain both headphone and micropihone leads．

Lasky＇s Price 59／6 List Price 7 Gins．

GET YOUR LASKY＇S CATALOGUE

CONSTRUCTORS BARGAINS

METI LASKY＇S
 SOLID STATE

INCAPSULATED MODULES

completely new special function circuit modules． Size of each module only $2 \ddagger \times 1 \pm \times$ in．Ready for immeciate use－－just connect to power source（uavally shock proof and almost indestructable full ingrnction Pont 1／8 aech．
E－131l Phono Pre－amp Module－max．out put 3V，RMS，input 50 mV ，input imp．29／8
l0e Ω ，gain 28iB，RIAA compensation． fillinatructions．Pont 1／6 each． E－1312 Tape Head Pre－amp Module－miax．out put 3 V ，RMS，input 50 mV ，input $29 / 8$ C－1313 Microphone Pre－amp Module－max．output 4 V ，RMN，input 50 mV ，input $29 / 8$ -1014 Fow Ampliter module－mat．ontput noomW，imput imp．Ik Ω ，gain 181．

 OmW＇For use with morse －1317 Modulated Wireless Signal Transmitter
 －1318 Lamp Flasher Modnle－fitshes two miniature lampa alternately．For uee

TEST EQUIPMENT
 MINIMETER BARGAIN TTC Model C－1000

A reatly tiny 1，000 O．P．V．pocket multi－tester yith＂big＇ Hand calibratet to Precision．2 jewel meter movement ranges， 4% on a．c．ranges． 2 in square meter．SPECIFICA． TIONS a．c．N ranges： $0-10,50,250,1,000 \mathrm{~V}$ at $1 \mathrm{~K} / 0 . \mathrm{P} . \mathrm{V}$ ． a．c．／V ranges： $0-10,50,250,100 Y^{\prime}$ at $1 \mathrm{~K} / \mathrm{O}$ ．P．V．D．c．carrent： $0-1-100 \mathrm{mmA}$ ．Hesistance： $0-150 \mathrm{~K} / \mathrm{ohms} \quad 13,000$ ohms centre scale）．Decibels：-10 to $+22 d \mathrm{~B}$ ．Operated on one penligh cell．Two colour buffigreen case－gize only $31 \times 2 y \leq 1 i n$ Consplete with test leads batters and instructions with

Lasky＇s Price 39／6 Post $2 / \mathrm{s}$

TTC Model C－I05I

A completely new design 20,000 O．P．V．pocket

 multimeter with built－in thernal protection circuit and mirror scale．Exceptionally large easy to read meter with D＇A rsonval movement． Colour coded scales．Single positive click－in． recessed gelection switch for all ranges．Ohms volts： $0-3-1 \overline{0}-150-300-1 \cdot 2 \mathrm{KV}$ at 20 K ／
 to +17 ill ．Haml calibration gives extremely high gtandard of accurncy on l＇ses one $1!j$ penight bittery．Nirong impact resiatant plastic cabinet－size only 4．3i 1 in．Two colour hufigreen finigh．Complete with tent leads and battery．
Orig．list price 25.5 .0 ．
LASKY＇S PRICE 75／－Post $2 / 6$

LASKY＇S CLEAR PLASTIC

PANEL METERS

Precision made in Japan by HIOKI．Each meter boxed and fully guaranteed with all tixing nuts and washers．Sizes are of front panel．Ald $1 / 6$ P．on each．（Quotes for quantities．） Type KR－52 $\mathbf{3}$ 2！in（illustratei）．

lant	38／6	50 L ／
5 ma	38／6	limas
1001nA	38／6	100μ ．
$300{ }^{\circ}$	$36 /-$	$500 \mu \mathrm{l}$

Type ME－38A lĭin squate

1 max
5 mA

100 mA
300 V
3012 A
1mas meter

Type MK－45A 2in equate
5 ma.
100 m
300 V
$50 \mu \mathrm{~A}$ ．
11m．A s neter
$100 \mu \mathrm{~A}$
ar and instructions with

$50 /-$ $39 / 6$ 59／6

Type EXA－65 3i， $\mathbf{3}$ in
1nis
${ }^{5} \mathrm{mat}$
3001
$50 \mu \mathrm{~A}$
mas $\&$ meter
$100 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$
Type yK－65A 3in tquare
ImA．
100 m.
300 V
$50 \mu \mathrm{~A}$
lma s meter
$100 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$

High Fufelity Aucho Centriss
42 TOTTENHAM CT．RD．，LONDON，W． 1 Tel．：01－580 2573

207 EOGWARE ROAD，LONDON，W． 2 Tel．：01－723 3271
33 TOTTENHAM CT．RD．，LONDON．W． 1 Tel．：01．636 2605
152／3 FLEET STREET，LONDON．E．C． 4 Tel．：FLEet St． 2833

QUALITY

because only test-selected materials and components are accepted for use in Sinclair designs in order that specifications are fully maintained.

VERSATILITY

You will find whatever Sinclair design you choose far more adaptable to your requirements as well as permitting a much wider degree of experimentation.

ECONOMY

Buying Sinclair is an excellent investment. Performance and quality are of standards found in far costlier equipment. You save with Sinclair-and everything is guaranteed.

$60-16,000 \mathrm{~Hz}: 8$ ohms impedance: loading up to 14 watts; acoustically contoured pressure chamber; brilliant transient response; polarised connections; detachable base.
£7.19.6

SINCLAIR

low priced hi-fi speaker

It costs about a quarter of what you would expect to pay for a good stereo speaker system when you choose Q.14s. This is because of the considerable research and experimentation into the acoustic properties of special materials carried out into the design of this excellent speaker. It resulted in an instrument so outstandingly good that experts, reviewers and the public alike were unanimous in their praise for the Q. 14 at this year's Audio Fair. The Q. 14 is very compact, measuring only $9 \frac{3}{4}$ in square on its face by $4 \frac{3}{4}$ in deep. Its unusual contours permit it to be positioned where no ordinary speaker could be used to advantage. The neat black matt finish with aluminium bar trim keep this speaker pleasantly in conformity with modern design trends.
Hear the Q. 14 in your own home. If you are not delighted with it, send it back, and your money, including cost of return postage to this office will be refunded in full.

ORDER COUPON OPPOSITE BRINGS GOODS BY RETURN POST FREE

It applies automatically to everything you buy from Sinclair Radionics and assures complete satisfaction for every customer. "Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in fult at once and without question." FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS.

The world's smallest radio INANEWPACK

For those other constructors who enjoy building their own equipment, the Sinclair Micromatic Kit now comes in a good-looking new presentation pack. It is complete down to a free, generous supply of solder. The moulded polystyrene interior shaped to fit each component enables you to check the contents in an instant, and helps to make building even easier and surer. Today, the Micromatic is better than ever-more powerful, better sounding, for the hi-fi quality magnetic ear-piece assures superb listening. But whether you prefer to build it, or buy your Micromatic ready built-don't be without one. It is the best and the smallest personal radio in the world-and it's British.

SINCLAIR MICROMATIC

The Sinclair Micromatic measures only $1 \frac{1}{2} \times 1 \frac{3}{10} \times \frac{1}{2}$ in and is completely self-contained except for the special magnetic earpiece which switches the set on when plugged in. Slow motion tuning over the medium waveband brings in a choice of stations loudly and with superb selectivity. Available in kit form or ready built. The two Mercury cells, type RM675 give months of life with normal use.

SINCLAIR Z.12

The most- powerful amplifier for its size you can buy
No constructor's amplifier has ever achieved such success as the Sinclair Z.12. It has fantastic power-to-size ratio, and is easily adaptable to a wide range of applications. The $\mathbf{Z .} 12$ will operate from batteries or mains supply unit PZ.4, and give superb stereo reproduction. Thousands are in use throughout the world-in hi-fi, electronic music instruments, P.A., intercom systems, etc. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with the $\mathbf{Z .} 12$ manual which details control circuits enabling you to match the $Z .12$ to your precise requirements. For complete listening satisfaction, use your Z. 12 system with $Q .14$ loudspeakers.
$\operatorname{3in} \times 1$ in $\times 1$ Itin Class B Ultralinear output. 8 Speciai Transistors. $15-50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Suitable for $3,5,8$ or 15Ω speakers. Two 3 -ohm speakers may be used in parallel. Input-2mV
into $2 \mathrm{k} \Omega$. Outpur- 12 watts R.M.S. continuous sine wave (24 W peak). 15 watts music power (30W peak). Ready Built. Tested and Guaranteed. Complete with Z12. manual.

SINCLAIR

HEAVY DUTY STABILISED POWER PACK designed to supply power requirements of up to two $\mathbf{Z . 1 2}$ amplifiers and Stereo 25 control unit. For operation from A.C. mains $200-250 \mathrm{~V} / 50 \mathrm{~Hz}$. Delivers 18 V d.c. at mains $\mathbf{2 0 0 - 5 A}$ Supplied ready built, tested and guaranteed.

SINCLAIR STEREO 25

De-luxe Control/Pre-amp Unit for $Z .12$ sterso system. Sensitivity Mic. 2 mV into $50 \mathrm{k} \Omega$: P.U. -3 mV into $50 \mathrm{k} \Omega$: Radio -20 mV into 4.7Ω. Equalisation correct to within $\pm 1 \mathrm{~dB}$ on RIAA curve from 50 to $20,000 \mathrm{~Hz}$. Supplied ready built with attractive brushed and polished aluminium front panel and knobs to match. Selector/Bass/Treble/Vol./Balance
controls.
BUILT,TESTED and GUARANTEED
E9.19.6

SINCLAIR RADIONICS LIMITED

 22 NEWMARKET ROAD, CAMBRIDGETelephone 0CAS-52998

ORDER FORM

TO: SINCLAIR RADIONICS LTD.
Please send POST FREE
Built, tested and guaranteed with $Z .12$ monual 89/6

22 NEWMARKET ROAD, CAMBRIDGE

\qquad
\qquad

For which / enclose cash/cheque/money order.
NAME
ADDRESS
\qquad
\qquad

LIND-AIR COMPONENT BARGAINS

CATALOGOE OF VALVES, TRANSISTORS, DODDES, SEMI-CONDUCTORS, TRASS-
FORMERS, ETC. THOUSANDS OF ITEMIS LISTED AND PRICED SERD FOR YOUR COPY NOW AND SATE MONEY WITH IIND-AIR COMPONENTS.

IJNREPEATABLE BARCAINS :

7,000 gatuss. lmp. 3-5 ohums. Brand new and guaranteed. List Price 412 LTMD AIR PRICE \&8.19.6. P. \& P. 7/b.
E.M.I. COMBINATION LOUD SPEAKERS. 13$\}$ $x 8$ in. Elliptical with two 3 in dia. Tweeters. mp. 15 ohuss. Power handling 10 watts. Brand new and guaranteed. List PRICE $99 / 6 . P^{\circ} P$ P 76 Also arailable without alac arabe 5 \& 7/6.)

FANE 301 3 in

TWEETERS
Imp. 3.5 ohms. 17,000 gauss. 12 watt. Brand new e3.15 0. LIND-AIR PRICE 59/6. P. \& P. 3/6.

LIND-AIR
 OPTRONICS LTD. $25 \& 53$ TOTTENHAM COURT ROAD LONDON, W. 1

Tel. 01-580 1116/1117/4534/7679 Open 9-6 p.m. Monday to Saturday inclusive.
Open Thursday until 7 p.m.
ALL POST ORDERS TO Dept. P.E. 968
25 Tottenham Court Road London, W. 1

Ideal for mode players, tape decks, etc
6.3 d.c. Motor. 10,900 r.p.m. at 230 mA . $1 \frac{12}{} \times$ in dia. Shaft tin long $\times 3 / 64 i n ~ d i a . ~$

OV d.c. Gram deck raplacement motor. ${ }^{2} \mathrm{in} x$ ilin dia. 3/32in. 17/6. P. ${ }^{2} \mathrm{P}$.

SYNCHRONOUS CLOCK MOTORS
Geared for 40 revo lutions per hour 230v 50 cycle, with mounting flanges. Size approximately linin deep $x 2\}$ in
diameter. ONLY 22/6. 1. \& P. $2 / 6$.

SELECTOR DRIVE
 Auxiliary contact is normatly on but off 1 in every 25. Complete with suppressor, resistors, plus series contact for continuous operation. Ideal window displays, switching lamps, models, etc. 12 V or $24 V$ V. d.c. Brand
new and boxed, 12/6.P. \& P. $2 / 6$ new and boxed, 12/6. P. \& P. 2/6

ELECTRIC MOTOR

FEW ONLY LEFT Made by Cronipton Parkinson. Single phase $\$$ h.p. Motor. $230 / 250 \mathrm{~V}, 50$ cycles. $1 \cdot 3$ amps. 1,425 r.p.n. Continuous rating. Spindle 1若 x in dia. Overall size less spindle approx. $8 \times 6 \mathrm{in}$. Perfect condition. A bargain for the work bench. ONLY 69/6. Carr. 20/.

DELAY ACTION TIME SWITCH Madcby
 Smiths, A.c. operation $200 / 250 \mathrm{~V}$ Double pole Will give time delays from 0-10 minutes. Size 2 in dia. x 27 in long inc in $x 3 / 16$ in dia. spindle. BARGAIM PRICL 17/6. P. \& P. 2/6.

forquirk, RASI, rediaile salidering
Contains 5 cores of non-corrosive fiux. instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Nulticore Savbit Alloy also reduces wear of copper soldering iron bits.

	SIZE 5 HANDY SOLDER DISPENSER Contains 10 ft . coil of 18 s.w.g. Ersin Multicore Savbit Alloy. 2/6 each.		SIZE 15 SOLDER DISPENSER Contains 21 ft . coil of $60 / 40$ Alloy, 22 s.w.g. Ideal for small components, transistors, diodes. etc. 3/-each.
	SIZE 12 Ideal for home constructors. Contains 90 ft . of 18 s.w.g. Ersin Multicore Savbit Alloy on a plastic reel. 15/-each.		BIB MODEL 8 WIRE STRIPPER AND CUTTER Strips insulation cleanly and quickly, fitted with unique 8 gauge wire selector. Plastic handies. 9/6 each.
From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.			

By Order of the Receiver \& Manager re: JENNINGS MUSICAL INSTRUMENTS LTD.

Of interest to all electronic Guitar \& Organ Manufacturers, Musicians \& Electronic Engineers.

SALE BY AUCTION

Of all remaining stock of an Electronic Guitar \& Organ Manufacturing Business

INCLUDING
Electric Guitars and Organs, Large Quantities of Electric Components, Guitar Cases, Amplifiers and Spare Parts, Radio Transmitters. Aircraft transmitters/Receivers and many items of interest to Electronic Engineers

ALSO
Office Furniture, Desks, Cupboards.Steel office equipment. Factory Shelving. Steel Racks, Steel Bins, etc.
To be offered for sale by Auction in lots on the premises at NORDENFEIDT ROAD (off West St.) ERITH, KENT, on THURSDAY, 5th SEPTEMBER, I968, at II a.m. (on view Wednesday, 4th Sept. 10 a.m. to 4 p.m.)

Catalogue price 5/- from Joint Auctioneers

CHAMBERLAIN \& WILLOWS

23 Moorgate, London, E.C.2. 01-638 8001 John D. Wood Co. 23 Berkeley Square, W.I 01-629 9050

Short of a lead?

With a 3-pin DIN plug on one end and 3.5 mm jack on the other? With the Goldring Screened Audio Lead Set, you've got it-instantly-at your finger tips. And 37 other different equipment-to-equipment connections as well. With cable lengths of $20^{\prime \prime}, 40^{\prime \prime}$, or $60^{\prime \prime}$ according to the combinations you use. All tidily and instantly to hand in a small neat storage box. There's no longer any need to have an unwieldy collection of dozens of different leads . . . and still be short of the right one! This new Goldring set will give you most of the
connections you're ever likely to want-
Aycormine without searching for cables and plugs, without soldering, without waiting, without further expense. The Goldring Audio Lead Set, from your $\mathrm{Hi}-\mathrm{Fi}$ dealer, $\mathrm{f} \mathbf{3 . 6 . 0}$
is a real investment at
\mathbf{S} *Goldring are now marketing an extremely useful range of individually packed leads, plugs, sockets and connections for audio enthusiasts.

GOLDRING MANUFACTURING CO. (G.B.) LTD.,486-488 High Road, Leytonstone, London, E.11. Tel: Leytonstone 8343.
 efficient way to make a modern flat-board circuit. Unique 'Cir-kit' adhesive copper strip and special matrix board enable you to work to professional standards with ease. Soldering is easier too, 50 are modifications. That is why "Cir-kit" is aiso widely used in labs., industry and by experimenters. A 5ft. spool, 1 in. or $\frac{1}{6}$ in. wide.

Costs only
"Cir-kit" 0"1in. Matrix Board is available in 3 sizes: $5 \times 3 \frac{3}{2} i n ., 4 /-; 2 \frac{3}{4} \times 3 \frac{3}{4} i n ., 2 / 6 ; 2 \times 3 \frac{3}{3} \mathrm{in} ., 1 / 9$.
"Cir-kit" and other Peak Sound products, i.e. Stereo Amplifier Kit, Mini-Speaker Kit, etc. are obtainable from good high-fidelity stockists. JUST OUT-The authorised "Peak Sound" version of the revolutionary Baxendall foud speaker system. S.A.E. for details. In case of difficulty, please send direct, adding 4d. to value of order to cover cost of postage. TRADE ENQUIRIES INVITED.
An exciusive speciality designed and made by
PEAK SOUND (HARROW) LTD.
32 St. Jude's Road, Englefield Green, Egham, Surrey
Telephone: EGHAM 5316
 ALPHABETICALLY... we can list the names GEOGRAPHICALLY... we can list the countries

All over the world students know that CREI HOME STUDY COURSES are supplying the answer to their need for advanced Technical Education in the field of Electronic Engineering Technology.

CREI PROGRAMMES ARE AVAILABLE IN:
Electronic Engineering Technology Industrial Electronics for Automation
Computer Systems Technology
Nuclear Engineering Mathematics for Electronic Engineers Television Engineering Radar \& Servo Engineering Citv $\mathcal{\&}$ Guilds of London Institute : Subject 49 and Advanced Studies Subject No. 300

Write for free brochures to:
C.R.E.I. (London) (Dept. P.E. 9)
WALPOLE HOUSE, $173 / 176$ SLOANE ST.,LONDON S.W. 1
Telephone: Belgravia 8662
intermatiomal division of capitol radio emgimeering institute washington d.c.

Bend B.A.E. for iull tista. Other ranger avalable. Piease include poatage. Special quotations for quantities. CLEAR PLASTIC METERS

50 $\mathrm{AA}^{\text {a }}$. . . . $87 / 8$	$750 \mathrm{~mA} \quad . . .25 /-$	Type MR.85P. 41 in : 43 in Ironts			
$50.0-50 \mu \mathrm{~A}$. $85 /-$		50nA69/6		
	$2 \mathrm{amp} \quad . . .{ }^{\text {amp/- }}$	$50-0-50 \mu \mathrm{~A}$	59/6	30 amp .	18
100-0-100 $\mu \mathrm{A}$. $38 / 6$	$5 \operatorname{mmp} \cdot \ldots . .25 /-$	$100 \mu \mathrm{~A}$.	50/6	20V d.c.	4916
$200 \mu \mathrm{~A} \quad \cdots . .888 / 6$	$3 \mathrm{y} \mathrm{d.c}. . . .25 /-$	100-0-100 $\mu \mathrm{A}$.	.59/6	50 V d.c.	49/6
$500 \mu \mathrm{~A} \quad \cdots \cdots .37 / 6$	10 V d.c. $\quad . .95 /-$	$200 \mu \mathrm{~A}$...	.55/-	150 V d.e.	49/6
$500-0.500 \mu \mathrm{~A}$. $85 /-$	20 V d.c. \cdots. $25 /-$	$500 \mu \mathrm{~A}$.	52/6	300 V d.c.	49/6
1 mA …..25/-	50 V d.c. $\quad . . .25 /-$	$500.0 .500 \mu \mathrm{~A}$. $40 / 6$	150 V a.c.	49/6
	100 V d.c. . $25 /-$	$\operatorname{ImA} \ldots .$.	. $49 / 8$	300 V a.c.	49/8
$2 \mathrm{~mA} \quad . .$. . $25 /-$	150 V d.c. $\quad .25 /-$	$1.0-1 \mathrm{mi}$	49/6	8 Meter Imis	55/-
$5 \mathrm{~mA} \quad \cdots \cdots .25 /-$	300 V d.c. ${ }^{\text {d }} 25 /-$	5 mA	49/6	VU meter .	69/6
$10 \mathrm{~mA} \cdot \cdots . .95 /-$	500 V d.c. . $25 /-$	10 miA	49/6	1 amp a.c.**	49/6
20 mA . ${ }^{\text {a }}$. $25 /-$	750 V d.c. $.25 /-$	50 mA	. $49 / 6$	$5 \mathrm{amp} . \text { a.c.* }$	49/6
50 mA . ${ }^{\text {a }}$. $5.95 /-$	15V a.c. $\quad . . .85 /-$	100 mA	49/6	10 amp. a.c.*	49/6
100 mA …25/-	50V an.c. $\quad .$. . $25 /-$	500 mA	49/6	20 amp a.c.	49/6
	150 V a.c. 300 V a.c.	1 amp .	$49 / 8$	30 amp a.c.*	49/6
$\underline{200 \mathrm{~mA}}$ 300mA $\quad \cdots .85 /-$	300 V a.c. $\quad . .25 /-$	5 amp.	$49 / 6$		
500 mA . $3.25 /-$	S meter $1 \mathrm{~mA} \quad 29 / 6$ VU meter ..39/6	Type Mr.65P. $31 \mathrm{in} \times 31 \mathrm{in}$ Fronts			
Type MR.45P. 2in square fronts		$50 \mu \mathrm{~A}$.65/-	50 V d.c.	.39/6
		50-0-50 $\mu \mathrm{A}$.52/6	150 V d.c.	39/6
60 4 A . $. . . .48 / 6$	10 V d.c. . . . $27 / 6$	$100 \mu \mathrm{~A}$.52/6	300 V d.c.	39/6
50-0-50 $\mu \mathrm{A} \quad 30 / 6$	20V d.c.87/6	100-0-100 $\mu \mathrm{A}$.49/6	15 V a.c.	89/6
100 $\mu \mathrm{A}$. $39 / 6$	50V d.c. . . . $27 / 6$	$500 \mu \mathrm{~A}$.451-	50 V a.c.	39/8
100-0-100 $\mu \mathrm{A}$. $85 /-$	300 d d.c. . .27/6	1 mA	. $39 / 6$	150 V a.c.	39/6
600 1 A . ${ }^{\text {c.... } 29 / 6}$	15V a.c. . . . $27 / 6$	$610 A$. $89 / 6$	300 V a.c.	39/8
1 mA $27 / 6$	300V a.c. . . $27 / 6$	10 mA	39/6	500 V a.c.	39/6
$5 \mathrm{~mA} \quad27 / 6$	S meter 1 ImA 35/-	50 mA	39/6	S meter 1ma	. 45 /-
10 mA $27 / 6$	VU meter . $42 / 6$	100 mA	$32 / 8$	VU meter	65/-
50 mA27/6	1 amp a.c.* . .27/6	500 mA	. $89 / 6$	50mA a.c.*	39/6
$10 \mathrm{~mA} \quad \cdots .27 / 6$	5 amp a.c.* . $27 / 6$	1 amp.	39/6	100 mA a.c.*	39/6
$500 \mathrm{~mA} \quad . . .27 / 6$	10 amp a a.c.* $87 / 6$	5 amp .	39/6	200mA a.c.*	$39 / 6$
$1 \mathrm{amp}27 / 6$	20 amp. a.c.* 27/6	10 amp .	39/6	500 mA a.c.*	39/6
$5 \mathrm{amp}87 / 6$	30 amp . a.c.* 27/6	15 amp .	89/6	1 amp. a.c.**	39/6
Type MR.52P. 2in	quare Ironta	20 amp.	3976 $39 / 6$	$5 \mathrm{amp.a.c}$	39/6
50μ A	100-0-100رA A . $45 /-$	50 amp .	$39 / 6$	20 amp . a.c.*	. $89 / 6$
50-0.50 LA . $\quad .49 / 6$	$500 \mu \mathrm{~A} \quad442 / 6$	10V d.c.	$39 / 6$	30 amp a.c.*	.39/6
$100 \mu \mathrm{~A}$. . . . $49 / 6$	$1 \mathrm{~mA} \quad \cdots . .37 / 6$	20Y d.c.	$39 / 6$		
BAKELITE PANEL METERS					
Type zar. 85.3 Sin square fronts					
	$25 \mu \mathrm{~A} \quad \cdots \cdots .67 / 6$	500 mA	.32/6	30 V a.c.*	32/6
	$50 \mu \mathrm{~A}$. ${ }^{\text {a }}$. $4.45 /-$	1 amp .	. $38 / 6$	50 V a.c.*	.32/6
	$50 \cdot 0-50 \mu \mathrm{~A} \quad .48 / 6$	5 amp .	. $32 / 6$	150V a.c.*	.32/8
	$100 \mu \mathrm{~A}$. . . . $42 / 6$	15 amp .	.32/6	300V a.c.*	.32/6
	100-0.100 μ A . $42 / 6$	30 amp .	.32/6	1 amp. a.c.*	. $32 / 6$
	$500 \mu \mathrm{~A}$ …..39/6	50 amp .	.32/6	5 amp a.c.*	32/6
	1 mA 32/6	5 V d.c.	.32/6	10 amp. a.c.*	.32/6
\%	$1 \cdot 0.7 \mathrm{~mA} \quad . . .32 / 8$	10 V d.c.	.32/6	20 amp a.c.*	. $32 / 6$
	$5 \mathrm{~mA} \quad382 / 6$	20V d.c.	.32/6	30 amp a.c.*	. $32 / 6$
	10 mA $32 / 8$	$50 \mathrm{y} \mathrm{d.c}$.	.32/6	50 amp a.c.*	. $32 / 6$
*Moving iron, all	50mA - 32/8	150 V d.c.	.32/6	VC meter	59/6
other moving coil.	100mA $: \cdots 32 / 6$	300 V d.c.	.32/6		

TE-20D RF SIGNAL GENERATOR

Carr. 7/6.

T.M.C. 1000 SERIES KEY SWITCHES
Brand New with knobs as follows.
1 way, 2 c/o7/6; 1 way, 2 c/o $2 \mathrm{~b}, 7 / 6 ; 1$ way, $4 \mathrm{c} / \mathrm{o} .8 /-; 2$ way, $3 \mathrm{~m} ., 3 \mathrm{~m} .8 / 6 ; 2$ way, $2 \mathrm{c} / \mathrm{o}$. ,
$2 \mathrm{c} / \mathrm{o} .8 / 6: 2$ way, $2 \mathrm{c} / 0.4 \mathrm{c} / \mathrm{c}$ 10/-
2 c/o. 8/6; 2 way, $2 \mathrm{c} / \mathrm{o} ., 4 \mathrm{c} / \mathrm{o} .10 /$
Post extra. Quantities available.

NOMBREX TRANSISTORISED

TEST EQUIPMENT
All Post Paid with Battery

Model 22. Power Supply 0-15V d.c. $\mathbf{2 1 4 . 1 0 . 0}$ Model 30. Audio Generator. $\quad 19.10 .0$ $\begin{array}{ll}\text { Model 31. R.F. Signal Generator. } & \mathbf{8 1 2 . 1 0 . 0} \\ \text { Model 32. C.R. Bridge }\end{array}$ Model 32. C.R. Bridge.
$\$ 10.10 .0$ Model 66. Inductance Bridge. Model 66. Inductance Bridg
Model 61. Power Supply.

AVO CT. 38 ELECTRONIC MULTIMETERS
High quality 97 range instrument which measure a.c. and d.c. Voltage, Current, Resiatance and Power output. Ranges d.c. volts $260 \mathrm{mV}-10,000 V$ 25 amps. Ohms: $0-1,000 \mathrm{mg} \Omega$. A.c. volt $100 \mathrm{mV}-250 \mathrm{~V}$ (with RF measuring head up to $250 \mathrm{Mc} / \mathrm{s})$. A.c. current $10 \mu \mathrm{~A}-25$ amps. Power output 50 micro-watts-5 watts. Operation $0 / 110 / 200 / 250 \mathrm{~V}$. C. Supplied in perfect condition complete with circuit lead and RF probe \&20.
Carr. $15 /$.

COSSOR DOUBLE BEAM OSCHLLOSCOPES Type 1035 general purpose a.c.
coupled. Type 1049 L.F. d.c. coupled. 885 each. Carr. 30/-.

AMERICAN TAPE

First grade quality American tapes. Brand new. Discount on quantities. 3 in., 2251t. L.P. acetate
 OSCILLOSEOPE

TYPE IOI
An extrenely high quality oscilloscope with time base of $10 \Omega / \mathrm{sec}$. to $20 \mathrm{~m} / \mathrm{sec}$. Internal Y amplifier. Separate mains power supply $200 / 250 \mathrm{~V}$. Supplied in excellent condition with cables, probe, etc., as
received from Ministry. 88.19 .6 . Carriage 30/-.

LELAND MODEL 27 BEAT
 FREQUENCY OSCILLATORS

$0-20 \mathrm{kc} / \mathrm{s}$. Output $5 \mathrm{k} \Omega$ or 500 ohms. 000/20 19 and oftered cont dition. 812.10 .0 . Carriage $10 /-$

G. W. SMITH \& Co. (Radio) Ltd. 3-34 Lisle St., W.C. 2 aLSO SEE OPPOSITE PAGE

MULTIMETERS for EVERY purposel

"LLAB 100 KB/VOLT Giant 6itin. scale. Built-in meter protection. $0 / 6 / 2 \cdot 5 / 10 / 50 /$ $250 / 500 / 1,000 \mathrm{~V}$ d.e. $0 / 3 / 10 / 50 / 250 / 500$ $11,000 \mathrm{~V}$ a.c. $0 / 10 \mathrm{l}$ 100 1 A / $110 / 100 / 500$ MA/2.5/10A. 0/1K/ $10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M} /$ 10Mg. - 10 to 49 - 4 dB 818.18.0. P. \& P. 5/-. hapayinirs 57 Range Super
50,000 O.P.V Muiltimeter Volts 125V-1000V. A.c. Volts 1.5 V 1000V. D.c. Current $25 \mu \mathrm{~A}-10$ Amp.
Ohme. 0-15 Meg $\mathbf{d B}$.
dB. -20 to +81 dB

HEW MODEL 50020,000 O.P.V. With overload protection. Mirror scale. $0 / 0 \cdot 5 / 2 \cdot 5 / 10 / 25 / 100 /$ $0 / 2.5 / 10 / 25 / 100$. $250 / 500 / 1,000 \mathrm{~V}$. a.c. $0 / 50 \mu \mathrm{~L} / 5 / 50 / 500 \mathrm{~mA}$. 12 amp. d.c. $0 / 60 / \mathrm{K} 6$. Meg./60megohm 58.17.6. Poat paid

PROEGSGIONAL 20,600 o.p.v

LAB. TESTH2 Automatic verload protection, mirRanges: scale. $50 / 250 / 500$ / 1,000 volte, d.c. and a.c 0-500 $10 \mathrm{~mA}, 250 \mathrm{~mA}$. Current: $0 / 20 \mathrm{~K}, 200 \mathrm{~K}$, i megohm. Decibels: . -20 to +22 dB . 85.19.6. P. \& P. $2 / 6$.

MODEL TE-70. 30,000 O.P.V. 0/3/16/60/300/ $600 / 1,200 \mathrm{~V}$. d.c. $0 / 6 /$ a.c. $0 / 30 \mu \mathrm{~A} / 3 / 30$ 300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K} /$ $1 \cdot 6 \mathrm{M} / 16 \mathrm{megohm}$. \$5.10.0.
TE-51. स्य Overload ULTL MiFMR. Overioad protection $1,200 \mathrm{~V}$ a.c. $0 / 8 / 60 / 120$, 200V. a.c. $0 / 8 / 30 / 60$ $300 / 600 / 3,000 \mathrm{~V}$. a.c. / 60K / 6 megohm. $85 /$
 P. \& P. 2/6.

KODEL 8501 2,000 O.P.V. 0/10/50/5001 $2,500 \mathrm{~V}$. d.c. $0 / 10 / 50 /$ $\begin{array}{ll}500 / 2,000 \mathrm{~V} . & \text { a.c. } \\ 0 / 2 \mathrm{megohm} . & 0 / 250 \mathrm{~mA} .\end{array}$ $0 / 2 \mathrm{meg}$ ohm. $0 / 250 \mathrm{~mA}$ to 48/6. P. \& P. 2/6

OMRON
Mk. 2 RELAYS
Brand New and Boxed. 24 volt d.c. coils. 2 Pole changeover. 5 amp con-
tacts.
$7 / 6$ $1 / 6$.

MAGNAVOX 363 3-SPEED
TAPE DECKS
4-track $\mathbf{5 1 8 . 1 0 . 0}$. Carrlage Extra.
R.C.A. AR88 SPEAKERS

8in 3 onm speakers in metal case. Black crackle frign to maten our of Receivers. 59/6 Carr 7/6. -9/6. Carr. 18
DUBILIER TITMROGEL CONDENEERS. Brand new. $8 \mathrm{mF} 800 \mathrm{~V}, 8 / 6$. P. \& P. $2 /-$; $2 \mathrm{mF}, 5,000 \mathrm{~V}, 48 / 6$. P. \& P. $5 /-$
OT. 58 sIGRAL GEIERATORS. $8.9-15.5$ and $20-300 \mathrm{Mc} / \mathrm{s}$. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Mains operated. Periect condition less charts. 819.10.0. Carr. 15/-

W8.88 TRANS/REGEIVERS. A and B seta available. Complete with vaives. $39 / 6$ each. P. \& P. 4/6. Accessortes avallable.

Fo. 10 HICROPHONE AND HEADBET. Moving coll Accessory for 19 set. Unused.
$15 /-$. P. $\$ 4 /$.
 TE-900 80,0000 MOLT MTAHER n. full view meter cin. full view meter. 2 protection. $0 / 2-5 / 10 /$ $250 / 1,000 / 5,000 \mathrm{~V}$ a.c. $0 / 25 / 12 \cdot 5 / 10 / 50$ / $250 / 1,000 / 5,000 \mathrm{~V}$ $\begin{array}{lll}\text { d.c. } 0 / 50 \mu \mathrm{~m} / 110 / \\ 100 / 500 \mathrm{~mA} & 10 \mathrm{~A}\end{array}$ d.c. $20 \mathrm{~K} / 200 \mathrm{~K} / 20$ M.c. $20 \mathrm{~K} / 200 \mathrm{~K} / 20$

MODEL AS-100D.
$100 \mathrm{BR} / \mathrm{YOLT}$ 5in. mirror scale. Builtin meter protection. $\begin{array}{ll}0 / 3 / 12 / 60 / 120 / \\ 300 & 600 / 1,200\end{array}$ $300 / 600 / 1,200 \mathrm{~V}$.
d.c. $0 / 6 / 30 / 120 / 300$. d.c. $\quad 0 / 6 / 30 / 120 / 300 /$
600 V a.c. $\quad 0 / 10 \mu \mathrm{~A}$ 600 V . a.c. $0 / 10 \mu \mathrm{~A} /$
$6 / 60 / 300 \mathrm{MA} / 12^{\mathrm{Amp}}$ 6/60/300MA/12 Amp.
$0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$ $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} /$
200 M / -20 $\begin{array}{ll}200 \mathrm{Mg} . & \quad 20 \text { to } \\ +17 \mathrm{~dB} . & 812.10 .0 .\end{array}$ +17dB.
P P. $3 / 6$.

MODES AF-105. $50 \mathrm{~K} \mathrm{~g} /$
Volt. Mirror scale, built-in Volt. Mirror scale, butlt-in meter protection. 0/.3/3/12 $60 / 120 / 300 / 600 / 1.200 \mathrm{v}$. d.c
$0 / 6 / 30 / 120 / 300 / 600 / 1,200 \mathrm{v}$
$0 / 30 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{MA}$ $12 \mathrm{Amp} .0 / 10 \mathrm{~K} / 1 \mathrm{M} / 10 \mathrm{M} /$
$100 \mathrm{Mg}-20 \mathrm{to}+17 \mathrm{~dB}$. $\begin{array}{ll}100 \mathrm{Mg} & -20 \text { to }+17 \\ \mathbf{8} .10 .0 . & \text { P. \& P. } 3 / 6 .\end{array}$
$\begin{array}{llr}\text { MODEL } & \text { M15-12. } & 20,000 \\ \text { O.P.V. } & 0 / 0.6 / 30 / 200 / 600 /\end{array}$ O.P.V. $0 / 0.6 / 30 / 120 / 600 /$
$1,200 / 3,000 / 6,000 \mathrm{~V}$. d.c. $1,200 / 3,000 / 6,000 \mathrm{~V} . \mathrm{d}$.
$1 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V} . \mathrm{a}$ $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$ $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} . / 60$. Megohm 50PF. 2
25.19.6. P. \& P. 3/6.

MODEL TE 80. 20,000 O.P.V. $50 / 100 / 500$ $1,000 \mathrm{~V}$. a.c. $0 / 5 / 25 / 50$ $250 / 500 / 1,000 \mathrm{~V}$. d.c.
$0.50 / \mathrm{LA}$.
$5 / 50 / 500 \mathrm{~mA}$ $0.50 \mu \mathrm{~A} . \quad 5 / 50 / 500 \mathrm{~mA}$
$0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$ $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$
84.17 .6. P. $\&$ P. $3 /-$.

MODEL TE-10A. $200 \mathrm{k} \Omega$ Volt, $5 / 25 / 50 / 250 / 500 / 2,500$
V. d.c. $10 / 50 / 100 / 500$. d.c. $10 / 50 / 100 / 500 /$
$1,000 \mathrm{~V} . \quad$ a.c. $0 / 50 \mu \mathrm{~A} / 2 \cdot 5$ $\mathrm{mA} / 250 \mathrm{~mA}$. d.c. $0 / 6 \mathrm{~K} / 6$ megohm. -20 to +22 dB . $10-0,100 \mathrm{mfd} .0-100-0$
$\mathrm{md} .09 / 6$. P. \& P $2 / 6$

HODEL PT-34 $50 / 250$ / 500 $1,000 \mathrm{~V}$. a.c. and $\begin{array}{ll}\text { d.c. } & 0 / 1 / 100 / 500 \\ \mathrm{~mA} . & \text { d.c. } \\ 0 / 100\end{array}$
 1/6.
HOSIDEN DH04S 2-WAY STEREO

HEADSETS Each headphone contains a a_{i} in woofer Built in individual level 0 .controls. $25-18,000 \mathrm{c} / \mathrm{s}$. 8 a imp . with cable and stereo plug. \$5.19.6. P. \& P.

INTERCOM/BABY SITTER
Transistorised Intercoms, ideal for home / office / workshop etc. 2 -way buzzer call system.
For desk or wall For desk or wal complete with connecting Vire, bat-
terjes, instructions,
$2{ }^{\text {station }} 59 / 6$. P. $^{\text {5 }}$
46.12.6. P. \& P. $5 / .$. terjes, instructions,
P. $2 / 6.4$ station

MODEL ZQH TRAHSISTOR CHECKER It has the fullest capacity fo checking on A, B and Ic checking diodes, etc. Spec A: 0.7-0.9967. B: 5-200. Ieo: 0-50 microamps 0-5mA. Resistance for diode $\quad 200 \Omega-1 \mathrm{MO}$. instructions, battery an leads. 25.10.6. P. ©P. $2 / 6$.

UNR-30. 4-BAND
COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{B}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates variabie
BFO for $\mathrm{CW} / \mathrm{SsB}$ reception. Built \ln epeaker and,$~$ BFO for CW/SSB reception. Buitt in speaker and
phone jack. Metal cabinet. Operation $220 / 240 \mathrm{~V}$. a.c. phone jack. Metal cabinet. Operation 220/240V. a.c.
Supplied brand new guaranteed with Supplied brand new guaranteed with
Carr. $7 / 6$. $\mathbf{3}$ GiS.

LAFAYETTE MODEL HA700 AM/CWSSB AMATEUR COMMUNICATION RECEIVER

8 valves, 5 banus incorporating 2 MECEANICAL FILTERS for exceptional selectivity and sensl$400 \mathrm{Kc} / \mathrm{s}$, 5 requency corerage $10-5-30 \mathrm{Mc} / \mathrm{s}$. Circult incorporates R.F. stage. aerial trimmer, noise limiter, B.F.O. product detector, electrical bandapreat, \& meter, slide rule dial. Output for phones, low to $2 \mathrm{~K} \Omega$ or apeaker 4 or 80 hms . 0 peration $220 / 240 \mathrm{~V}$. a.c. Size
 S.A.E. for leaffet.

NEW LAFAYETTE SOLID STATE HA600 RECEIVER
${ }^{5} 5$ BARD AM/CW/SSB AMATEDR AMD SHORT WAVE $150 \mathrm{KC} / 8$ TO $400 \mathrm{KC} / 8$ AND 550KC/8 TO $30 \mathrm{MC} / \mathrm{B}$.
F.E.T. front end 2 mechanical filters
Huge dial Product detector Huge, dial Product detector Crystal calibrator Variable BFO Noise 230 V a.c. 12 V d.c. neg. earth operation RF gain control. Size 15 in $: 9$ in $\times 8$ in

4 band receiver covering $550 \mathrm{Kc} / \mathrm{a}$ to $30 \mathrm{Mc} / \mathrm{m}$. continuous and electrical band spread on 10, 15, 20, 40 and 80 metres. 8 valve plus 7 diode circuit. $4 / 8$ ohm output and phone jack SSB-CW ANL Variable BFO S meter Sep. band spread dial IF $445 \mathrm{Kc} / \mathrm{s}$ Audio output 1.5 W . Variable RF and AF gain controls. $115 / 250 \mathrm{~V}$. a.c. Mains, Beautifully designed.
Size: $7: 15: 10 \mathrm{~m}$. With instraction Size: 7 15 : 10 in . With instraction manual and service data. $\begin{aligned} & \text { m7.10.0. } \\ & \text { Carriage } 12 / 6 .\end{aligned}$
LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new transistorised receiver covering (not supplied) for nxed irequency operation. Incorporates 4 INTEGRATED CIRCUITS. Built in speaker and illuminated dinl. Squelch and volume controls. Tape recorder output. ${ }_{230 \mathrm{~V}}$ a.c./12V d.c. Neg. earth. 887.10 .0 . Carr. 10/-

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

 19 transistors, 8 diodes, IKF music power, Distortion 1% or less. Inputs 3 mV and 250 mV . Output $3-16 \Omega$. Separate L. and R. volume controls. Treble and bass control. Stereo phone jack. Brushed aluminium, gold anodised extruded front panel with complimentary meta

GARRARD DECKS

Brand new and guaranteed.
1025 mono
2025 TC lees cart.
SP25 Mk. II less cart.
A70 Mk.II less cart.
AT0 Mk.II less cart.
LAB80 Mk.II less cort.
Carr $7 / 6$ ess cart., with base 207.10 .0 .
Wooden Plinths for Garrard Series 1,000 $2,000,3,000$, etc., with perspex cover 4.10.0. P. \& P. 4/6.

GARRARD TAPE MOTORS
Brand new stock as used by famous
 motor 15/- Fast For. motor 15/-. Fast For. wind 10/6. P \& P. 3/-. Set of three motors 32/6. P. \& P. $51-$

RECORDING HEADS

Reuter $\frac{1}{3}$-track. As ftted to Callaro Mk. IV and Studio Decks. High imp. record play back, low imp. erase. Brand new.
pair. MnTFLUX
19/6 COSMOCORD 4-track with mounting plate. TR1-500/P/W record/replay 65/-: TRI 120/P/W record/replay 65/-; TEL 1-6 P/W. Erase 20/-. YARRIOTTT 4-track heads. Record/playback. High imp. 68/-; Erase low fmp. 20/-. Poat extra.
\star TRANSISTORISED FM TUNER \star
 HTRANBISTOR HIGHQUALITY
TUNER, SIZE ONLY $6 \times 4 \times$ stages. Doubl tuned discrim ontput to feed most amplifiers. Operates on 9 V battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Ready built ready for use. Fantastic value for money. 26.7.6. P. \& P. $2 / 6$.
Etereo multiflex adaptors 5 gns ,
E.M.I. SINGLE PLAYERS 4 speed with separate arm and cartridge 5e/6 Curr. $3 / 6$
B.S.R. UA50

Mina auto-changer with stereo cartridge 8.10.0. Carr. ס/-

TRANSISTORISED
TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Separate call and press to taik buttons, applications. Beautifully fin lahed in ebony. Supplted complete with batteries and wall brackets.

The 1968 Hobbies KNIGHTKITSa famous American range of electronic easy-to-build kits. HALLICRAFTERS-the Number One name in communication equipment and radios. $B O O K S$-over 140 titles. $A U D I O$ and $H I-F I-$ a wide, wide range including famous names like Goodman. Sinclair. Sonotone, Acos, Discatron, etc., etc. HOME AND HOBBYsomething for every member of the family-microscopes, telescopes, radio controlled equipment, garage door openers, experimental and educational kits, etc. MOTORING-a special section with money-saving engine tuning kits, radios, seat belts, a car vacuum cleaner and many other useful accessories. SHORT WAVE LISTENING-exciting kits and finished equipment for world-wide reception. TEST $E Q U I P M E N T$ AND TOOLS-a very wide range including multimeters, oscilloscopes, signal generators, soldering irons. cutters, pliers, breadboarding kits, etc., etc. COMPONENTS-over 12,000 items from more than 100 manufacturers. The most comprehensive range available from a single source-now bigger than ever before. AMATEUR RADIO-the best of receivers, transceivers, aerial rotators, aerials. Qoilpax modules and lots more. ELECTRONIQUES PRODUCTS-boxes and assembly systems transistor and valve Hamband and General Coverage tuners, crystal filter I.F. amplifiers, oscillators and other modules for effortless high performance. And finally SEMICONDUCTORS AND VALVES-a new section of famous brand names like STC, RCA Newmarket and Brimar.

HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times 1$ in). 4 digit. 12/24/48V (state copper
COPPER LAMINATE BOARD ($8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 \mathrm{in}$). $2 / 6$ each. 5 for 10/-.
 which) 32/6 each.

BULK COMPONENT OFFERS

100 Capacitors 50 pF to $0.5 \mu \mathrm{~F}$.
250 Carbon Resistors $\frac{1}{2} \& \ddagger W$ (Transistor types)
250 Carbon Resistors $\frac{1}{5}$ \& IW.
100 Ceramic Capacitors $2-1,000 \mathrm{p} \mathbf{F}$
25 Vitreous W/W Resistors (5%).
12 Precision Resistors (0.1%, several standard values included).
25 Close Tolerance Caps. (2%).
12 Silicon Diodes 500 p.i.v. 750 nu.a
4 Silicon Rects. 400 p.i.v. 3 amp .
50 Silicon Trans. (2N706/708, BSY28/29. BCY41/42 types.) Cnmarked, Contested. 50 Silienn Diodes 200 m.a. 100 p.i.v. Sub. Min. ANY ITEM 12/6. ANY 5 ITEMS 22.10.0.
S.C.RI. (Thyristors) CRS1/20 5/6; CRS1/40 7/6; CRS $3 / 10$ 7/6; CRS3/30 8/6;
CRS3/40 10/-; CRS3/50 12/6 each.
'3000' TYPE RELAYS (ev. new equip.) 10 tor $25 /-$ (our choice) P. \& P. $5 /$ -
VENNER LIGHTWEIGHT ACCUMULATORS ($1021_{4}^{3}: 18 \times 1 \mathrm{in}$). 1.5 Ahr 12/6 each.
COMPUTER LOGIC BOARDS containing: 14 BCZ11, 2 trimpots, diodes, etc., $20 /-$ each.
LIGHT DIMMER/SPEED CONTROL MODULES: 200 watt, $35 /-; 500$ watt, $45 /-$; 1,000 watt, $60 / \mathrm{F}$.
RECORD LEVEL METERS (By Smiths). 1! !in, 15/- each. P. \& P. $2 / 6$.
MIMIATURE RELAYS (?oz, ! ! $3_{i n)} 24 \mathrm{~V} 1 \mathrm{c} / \mathrm{o}, 7 / 6$ each.
P. C. CONNECTORS (13 wity in-line), 4/6 pair.

LARGE CAPACITY ELECTROLYTICS: $100+400 \mu \mathrm{~F}, 275 \mathrm{~V}: 1,000 \mu \mathrm{~F}, 50 \mathrm{~V}: 2,500 \mu \mathrm{~F}$, $70 \mathrm{~V} ; 3,200 \mu \mathrm{~F}, 16 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 1 \overline{\mathrm{~V}}, 4 /-$ each. $4,000 \mu \mathrm{~F}, 90 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 25 \mathrm{~V} ; 7 / 6$ each.
$5,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 6,300 \mu \mathrm{~F}, 63 \mathrm{~V} ; 10,000 \mu \mathrm{~F}, 30 \mathrm{~V}: 16,000 \mu \mathrm{~F}, 15 \mathrm{~V}: 25,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 /-$ $5,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 6,300 \mu \mathrm{~F}, 63 \mathrm{~V} ; 10,000 \mu \mathrm{~F}, 30 \mathrm{~V}: 16,000 \mu \mathrm{~F}, 15 \mathrm{~V}: 25,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 /-$
each. each.
SPEAKER BARGAINS (E.M.1. 13 \&in.) With two Tweeters and fover, lo ohm, 65/-; with Duat Cone, 15 ohm, 52/6; Single Cone, 3 or 15 ohm, $45 /-$. P. $\&$ P. $3 /-$. FANE, 12in, 20 maH (Dual Cone), $95 /-$ P. \& P. $5 /-$
TWEETER (E.M.I. 3in), $15 \mathrm{ohm}, 12 / 6$.
CAR RADIO (3/5 ohm), $7 \quad 4 \mathrm{in}, 15 /-; 8$ jin, $17 / 6$,
InVERTER UNTT contaming 2 OC28 and 2 LA5 Pot Cores, is/-. P. \& P. 2/6.

PATTRICK \& KINNIE

8I PARK LANE, HORNCHURCH, ESSEX ROMford 44473

The most accurate pocket size CALCULATOR

in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send 82/6 for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE18)
54 Dundonald Road, London, S.W. 19
 in the simplest language, one at a time, and quickest and soundest way of gaining mastery each is illustrated by an accurate, cartoon- over these subjects. type drawing. The books are based on TO TRY IT, IS. TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice"
L. W. M., Birmingham.
"I find that the new pictorial method is so easy to understand, and I will undoubtedly enjoy reading the following five volumes: thank you for a wonderful set of books." C. B., London.
"Please accept my admiration for producing a long felt want in the field of understanding Electronics." S. B. J.. London.
"The easiest set of manuals it has been my pleasure to study."
J. P. P.. Taunton.

A TECH-PRESS PUBLICATION

To The SELRAY BOOK CO., 60 HAYES HILL, BROMLEY BR2 7 HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 72/-. Cash Price or Down Payment of 15/- followed by 4 fortnightly payments of 15/- each. BASIC ELECTRONICS 84/-. Cash Price or Down Payment of 15/- followed by 5 fortnightly payments of 15/each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY \square BASIC ELECTRONICS \square
Prices include Postage and Packing
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

MARTIN IS HIGH-FIDELITY

F.M. TUNER

STEREO CONTROL ASSEMBLY

You can do so much with MARTIN kits. The system.of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have,
AMPLIFIER SYSTEMS TUNERS

UNITS INCLUDE:
E 5-stage input selector

- Pre-amp.tone controls

E 10 watt amp. (3 ohms)
E 10 watt amp. (15 ohms)

- Mains power supply
- F.M. Tuner

Trade enquiries invited

154/5 HIGH STREET, BRENTFORD MIDDLESEX. |SLeworth |/6|/2
so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness without sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTIN - it's simple to instal, good to listen to, and looks completely professional.

ONLY FROM MARTIN

> MARTIN AUDIOKITS are available for Mono, and can be doubled up for stereo, or as complete stereo units. 3 ohm and 15 oomm systems are available. There is a special pre-amp for low output pick-ups and escutcheon panels to suit the arrangement you cinoose. The tuner is styled to match.

Start by sending for leaflets at once
MARTIN ELECTRONICS LTD.

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, WELLFIELD RD., S.W. 16 Special 24 Hour Mail Order Service

All valves and transistors brand new and boxed
Postage 6d. valve, transistors post free
OPEN DAILY TO CALLERS 9 a.m. -5.30 p.m. No early closing C.W.O. No C.O.D.

Tel. 01.7690199 a 1649

Look What's New from HEATHKIT

New Solid-State Volt-Ohm Meter ... IM-16
8 a.c. and 8 d.c. ranges from 0.5 volts to 1,500 volts full scale ohm-meter ranges with 10 ohms at centre scale and multipliers of $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1$ megohm 11 megohm input on d.c. ranges, 1 megohm on a.c. ranges Operates on either built-in battery power or $120 / 240 \mathrm{~V}$ a.c. 50 Hz Circuit-board construction

Kit k/IM-16 £28.8.0. P.P. 6/-.

New Heathkit Solid-State Portable Volt-Ohm Meter IT-17
Solid-state circuit has FET nput, 4 silicon transistors, and 1 diode 11 megohm input on d.c., 1 megohm on a.c., 4 d.c., volt ranges, $0-1,000 \mathrm{~V}$, with $\pm 3 \%$ accuracy; 4 a.c volt ranges, $0-1,000 \mathrm{~V}$ with $\pm 5 \%$ accuracy. 4 resis tance ranges, $10^{\circ} \mathrm{ohms}$ centre scale $\times 1, \times 100$, $\times 10 \mathrm{k}, \times 1 \mathrm{M}$, measutes from $0 \cdot 1$ ohm to 1,000 megohms. $4 \frac{1}{2}$ in 200 uA meter with multicoloured cales. Operates on ' C ' cell (not included). Circuit board construction
Kit k/IT-17 £12.12.0. P.P. $4 / 6$.

New Heathkit In
Circuit Transistor Tester . . . IT-18
Measures d.c. Beta in-or-out-of-circuit in 2 ranges from 2 to 1,000. Tests diodes in or-out-of-circuit for forward and reverse current to indicate opens or shorts. Measures transistors out-of-circuit for ICEO and ICBO leakage on leakage current scale
 Identifies NPN or PNP devices, anode and cathode of unmarked diodes; matches transistors of the same type or opposite types Cannot damage device or circuit even if connected incorrectly. Big $4 \frac{1}{2}$ in 200 uA Meter. 10 -turn calibrate control. Kit k/IT-18

FULL SPECIFICATION ON ANY MODEL AVAILABLE ON REQUEST

Tel.
GLOS. 29451

Build Your Own Heathkit Electronics

 A kit for every interest - Home Workshop - Hi-Fi - Radio - Test - Amateur
Latest STEREO TAPE RECORDER, STR-1
 Fully portable-own speakers

Kit £58. 0.0 incl. P.T. P.P. 10/6
Ready-to-use £70. 6. 0 incl. P.T. P.P. 10/6

FOR THIS SPECIFICATION
$\frac{1}{4}$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{1}{4}$ and $1 \frac{1}{8}$ ips. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumb-wheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/headphone and external amplifier outputs . . . front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 W rms per channel. Two high efficiency $8^{\prime \prime} \because 5^{\prime \prime}$ speakers. Operates on 230 V a.c. supply.

Versatile recording facilities. So easy to build-so easy to use.

Latest STEREO AMPLIFIER, TSA-12
12×12 watts output
Kit £30. 10. 0 less cabinet P.P.10/6
Cabinet'£2. 5. 0 extra
Ready-to-use £38 (incl. cab.) P.P 10/6 FOR THIS SPECIFICATION

17 transistors, 6 diode circuit. $-1 \mathrm{~dB}, 16$ to $50,000 \mathrm{~Hz}$ at 12 W per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low silhouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished wainut veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 transistor tuners.
Full range power... over extremely wide frequency range. Special transformerless output circuitry. Adequately heatsinked power transistors for cool operation-long life, 6 position source switch.

High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semiconductors (6 transistors, 2 diodes). For I2V positive or 12 V negative earth systems. Powerful output (4W). Preassembled and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembly. Instant operation, no warm-up time. Tastefully styled to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.
KIT (less speaker) £12.18.6 incl. P.T.
Ready-to-use £19.12.6 P.P. 4/6 $\quad 6^{\prime \prime} \times 4^{\prime \prime}$ Loudspeaker $£ 1.4 .5$ extra.
(less speaker) P.P. 4/6

Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.
KIT 228.6.0 incl. P.T. P.P. 10/6
Ready-to-use £35.4.0
P.P. 10/6

Berkeley

A wide range of

 SPEAKER SYSTEMS HI-FI SPEAKER SYSTEM. Model SSU-1. Ducted-port bass reflex cabinet "in the white". Two speakers. Vertical/horizontal models with legs, Kit £12. 14. 6 P.P. 12/- Without legs, Kit £12. 0.0 incl. P.T. P.P. 7/6The BERKELEY SLIM-LINE SPEAKER SYSTEM, fully finished walnut veneered cabinet for faster construction. Special $12^{\prime \prime}$ bass unit and 4^{*} $\mathrm{mid} / \mathrm{high}$ frequency unit. Range 30 $17,000 \mathrm{~Hz}$. Size $26^{\prime \prime} \times 17^{\prime \prime}$ only $7 z^{\prime \prime}$ deep. Modern attractive styling. Excellent value.
Kit £19. 10. 0. P.P. $13 / 6$
Ready-to-use £24. 0. 0. P.P. 13/6

SEE HEATHKIT MODELS at

GLOUCESTER

Factory and Showroom Bristol Road

LONDON

233 Tottenham
Court Road

Transistor Portables

UXR-1, now available in Modern coloured cases or leather.
6 transistor, 1 diode circuit. $7 \times 4 i n$. speaker. LW and MW coverage. Case: brown leather, or colours navy blue, coral pink, lime green. Please state 2nd choice.
Kit £12. 8. 0. incl. P.T. Colour
Kit £13. 8. O. incl. P.T. Leather Ready-to-use £15.10.0. P.P. 4/6

UXR-2, choice of black or brown real leather cases.
7 transistor, 3 diode circuit. Battery saving circuitry. LW and MW coverage. Pushbutton wave change. Slide rule tuning.
Kit £15. 10. 0. incl. P.T. Leather Ready-to-use $£ 17.10 .0$. P.P. 6/-

IHIT SEB THE STNTDARD

Used and acclaimed by:SCIENTISTS ENGINEERS TECHNICIANS TEACHERS \&

This better-thanever edition of the famous Home Radio Catalogue is the result of ten years of most careful selecting, compiling and indexing.

Of course, no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest and best in the world of Radio and Electronics-ready for the next printing.
This edition is without doubt the finest, most comprehensive we have ever produced-it has 256 pages, over 7,000 items listed, over 1,300 illustrations. It really is a must for anyone interested in radio and electronics. With each catalogue we supply our unique Bargain List, a Book Mark giving Electronic Abbreviations, an Order Form and an addressed envelope. All this for only $7 / 6$ plus $3 /-$ post and packing. By the way, every catalogue contains 5 vouchers, each worth 1/- when used as directed. Send the attached coupon today, with your cheque or P.O. for 10/6. You'll be glad you did!

DESIGNING FOR THE FUTURE

THE future pattern of electronics is assuredly tied up in the word "microelectronics".
No enterprising constructor will wish to stand aside from the mainstream of emerging techniques. Even on the home constructor scale definite economic advantages will soon materialise from the outpourings of the microelectronic plants. The cost of a "one-off" integrated circuit will become less than the equivalent discrete components. Nor is it fanciful to envisage IC's at "give away prices" in due time: (Just recall the dramatic fall in the cost of transistors over the last few years.)

Yet there is a very real problem facing the home constructor: how to select and use IC's to the best advantage. Practical Electronics has been investigating this subject for some little while, and the outcome of this work is now presented to our readers in the series of constructional designs commencing in this issue. It was realised that something more than the mere fitting of a "black box" into a circuit was required if the problem was to be properly tackled. Therefore an operational amplifier has been selected as our standard building block for this series; this device is highly versatile and gives the constructor the opportunity to try out several different modes of operation by building up external circuitry using ordinary discrete components.

These five projects can be rightly considered as educational aids, since they provide an introduction to system designing and to building ultimately on a larger scale-and this is how we are likely to make the most profitable use of IC's in the future. This is not the sole purpose of the projects however. Each has been carefully designed to serve a useful function, as a permanent unit.

These articles will demonstrate some of the potentialities of IC's in home constructional work; they will also bring out the fact that circuit design will not become a redundant art even when microelectronic devices take over the major role in electronic equipment.
F. E. Bennett-Editor

IMPORTANT ANNOUNCEMENT

Next month the price of Practical Electronics will be increased to three shillings. This is the first increase in price since the magazine was founded.
During recent years we have ourselves borne many increases in production costs that have occurred, but the position has now been reached when we must ask our readers to make some contribution towards these costs if the standard and authority that has been associated with Practical Electronics from its foundation is to be maintained.
We have made this increase with considerable reluctance but we feel sure our readers will understand the reasons which have made this necessary.

CONSTRUCTIONAL PROJECTS

SWITCHED GAIN AMPLIFIER 618
WHISTLER RECEIVER 625
P.E. ANALOGUE COMPUTER 640
DIGITAL CLOCK 647
SPECIAL SERIES
EXPERIMENTS WITH SOUND, LIGHT, AND COLOUR-2 635
GENERAL FEATURES
BUILDING AROUND AN INTEGRATED CIRCUIT 614
MUSICAL PHASE 630
INGENUITY UNLIMITED 633
NEWS AND COMMENT
EDITORIAL 613
U.S. SOUNDS AND MUSIC 622
ELECTRONORAMA 638
BOOK REVIEWS 646
NEWS BRIEFS 660
READOUT 663
MARKET PLACE 665

Our October issue will be published on Friday, September 13

[^0]
\star This is an introduction to a series of five constructional projects . . . the first appears in this issue and another will appear in each of the four subsequent issues.

* The whole series has been planned as a practical introduction to integrated circuits for the constructor.
* These projects will demonstrate how an IC operational amplifier can be used for a.c. and d.c. amplification, for signal generation, and for filtering purposes.

MANUFACTURERS of integrated circuits aimed initially at satisfying the requirements of the computer industry for digital circuits, because of the high volume market. Their efforts lead to revolutionary changes in electronics. Since the processing techniques and equipment developed for digital circuits will also serve for linear circuit production, IC manufacturers are now aiming at the rest of the electronic equipment industry. The initial cost of developing a linear integrated circuit is rather high-but the potential market is vast.

LINEAR CIRCUITS

Linear circuits can amplify, detect, limit, invert, modulate, or phase shift analogue signals in everything from radar systems to television sets or audio equipment. They usually perform a specific function, for example, the Plessey SL. 500 series, which are wideband amplifiers with 26 dB of current gain and a bandwidth of 100 MHz . These amplifiers are primarily in demand for use in radar i.f. strips at centre frequencies between 10 MHz and 60 MHz . At the moment their price prohibits their use in the obvious domestic application, a $10 \cdot 7 \mathrm{MHz}$ i.f. amplifier for an f.m. receiver.

Fig. 1 (a). The basic circuit diagram for an operational amplifier using a pnp transistor for level shifting

However, the average price of a linear integrated circuit is steadily dropping. When the circuit can be sold for less than the cost of the discrete components it replaces, no designer (professional or home constructor) can afford to ignore it! (quite apart from size and weight considerations).

Bricis

OPERATIONAL AMPLIFIER

The most useful linear circuit (and hence from our point of view the one most likely to become readily available at a reasonable price) is the operational amplifier. Amplifiers in this category are general purpose high gain d.c amplifier units, intended for use with external components to define operating conditions and to set gain and frequency response.

Specifications we would like for an operational amplifier include high gain (60 dB), high input impedance (100 kilohms), several volts output swing, a differential input, and a single ended output.

A simplified basic diagram of such an amplifier is given in Fig. 1a. Transistors TR1 and TR2 form a long tailed pair differential input stage, transistor TR3 provides extra gain and acts as a level shifting device so that inputs and outputs can both be at a nominal 0 V .

Level shifting may be accomplished in other ways, the Plessey SL700 series (for example) using an emitter follower output with a Zener diode, the basic arrangement of Fig. 1b. Both inverting and non-inverting inputs are always available, so that a wide variety of applications are possible. But before we can consider typical applications we must review the basic specifications associated with such an amplifier. These are:

(I) Voltage gain

This is the voltage gain of the amplifier itself, before we add external components. Because of production tolerances manufacturers normally specify minimum, typical, and maximum values for important parameters.

Fig. 1 (b). The basic circuit diagram for on operational amplifier using a Zener diode for level shifting

(2) Upper cut off frequency

This is the upper 3 dB down point of the amplifier (at the other end it goes down to d.c.) and is important because we obviously like to know what bandwidth we can expect for a giver closed loop gain.

(3) Output voltage swing

This is the minimum and typical peak to peak swing we can expect at our output, and may not be equal either side of earth potential.

(4) Input offset voltage

Since both halves of the differential amplifier at the input are made simultaneously, we would expect to have a reasonably close match between them, and with both the inverting and non-inverting inputs earthed, the output should be at earth potential. However, there must obviously be some unbalance in the amplifier, and the offset voltage is the difference in input voltage required to maintain the amplifier output at earth potential. It is typically 1 to 2 mV for a single differential input and 5 mV for a Darlington pair.

(5) Input resistance

This is, as we might expect, the input resistance of each input, and is typically 100 kilohms (Plessey SL700 series or Fairchild $\mu \mathrm{A} 709$).

(6) Input offset base current

Just as we had a slight unbalance in input voltages, we also have an unbalance in input current requirements. While the actual input currents to each side may be approximately $1 \mu \mathrm{~A}$, there will be a small difference in requirements, so that one side may draw $1 \mu \mathrm{~A}$ and the other $1.3 \mu \mathrm{~A}$. This $0.3 \mu \mathrm{~A}$ is the input offset base current.

(7) Common mode rejection ratio

The long tailed pair input transistors should respond only to a differential signal applied between them, and should reject signals (such as hum or noise) which appear in phase to both inputs and hence tend to "push up" both inputs simultaneously. This ratio is a measure of the rejection achieved, and may be typically 60 dB . This means that a 100 mV signal applied simultaneously to both inputs only produces an effective differential input of 0.1 mV .

TYPICAL APPLICATIONS

It is impossible to give here more than an outline of some applications, to demonstrate the versatility of the operational amplifier. This article is intended as an introduction to several practical articles, and so we must at least cover the principle configurations, even though we may not apply them immediately.

Both gain and d.c. conditions are set by negative feedback from the output to the inverting input, and we can apply our signal to either or both inputs to obtain an inverting, non-inverting, or differential amplifier, as required.

The bandwidth is extended (in the case of the SL701) and output impedance reduced as before, but the input impedance is increased and depends on the ratio between the open and closed loop gains and on the original input impedance of the amplifier. In practice this high input impedance may be shunted by the bias resistor required for the base of the input transistor.

Differential Amplifier

The differential mode is shown in Fig. 4. This arrangement can be used where there is hum or noise common to both input lines, and the common mode rejection property of the differential amplifier can be used to advantage to select only the required signal which is balanced about earth.

$$
\text { Gain } G=\frac{R_{\mathrm{f}}}{R_{\mathrm{s}}} \quad \text { Input impedance }=2 R_{\mathrm{s}}
$$

OTHER APPLICATIONS

The applications we have so far shown are directly coupled, and we would have to be careful about offset voltage and drift of operating point with temperature for high gain applications.

Fg. 2. The basic arrangement for an inverting amplifier

Fig. 4. The differential input amplifler confguration

The use of negative feedback to give a predictable mid-band gain, and to modify input or output impedances is well known, and we will content ourselves with presenting the formula suited to the application, without proof. These formulae assume that the closed loop gain with feedback is much less than the open loop amplifier gain. If the amplifier open loop gain is 20 dB more than the required closed loop gain, then the error in our approximate formulae is about 1 dB .

Inverting or Operational Amplifier

Fig. 2 shows the amplifier used in the inverting configuration.

$$
\text { Gain } G=\frac{V_{0}}{V_{\mathrm{i}}}=-\frac{R_{\mathrm{i}}}{R_{\mathrm{s}}} \quad \text { Input impedance }-R_{\mathrm{s}}
$$

The amplifier output impedance is reduced by the feedback, and bandwidth may be extended. This arrangement can be used for mixing purposes by connecting additional inputs to the junction of R_{f} and R_{s}.

Non-inverting Amplifier

For a non-inverting arrangement the feedback voltage is applied in series with the input, Fig. 3. In this case:

$$
\text { Gain } G=\frac{V_{0}}{V_{\mathrm{i}}}=1+\frac{R_{\mathrm{f}}}{R_{\mathrm{s}}}
$$

For a.c. use the input or output can be capacitively coupled (or R_{s} can be a.c. coupled to earth in the noninverting configuration) to avoid giving the amplifier a high d.c. gain, so that the risk of the output level being altered by amplifier drift is greatly reduced.

We can, if we wish, use frequency selective negative feedback, so that the operational amplifier can be used for active filters or tone control, as well as for trigger circuits, integration, oscillation, and so on.

THE "CHOICE" OF AN AMPLIFIER

The majority of integrated circuit manufacturers have always included one or more operational amplifiers in their professional range, but on the whole the need for an inexpensive device suitable for the retail market has been ignored. About twelve months ago, however, Plessey introduced a number of inexpensive amplifiers one of them being an operational amplifier, the SL701C. This device is readily available, in small or large quantities, directly from the manufacturer.

The Plessey SL700 series are intended for use as operational amplifiers or instrumentation amplifiers, and are available in 8 lead TO5 cans or in flat packs. Some versions do not have a level shifting Zener diode, and so their output is not about earth, but is about a point 5.5 V above earth. In order to obtain a symmetrical output voltage swing about earth with these versions (desirable from the biasing point of view) we would have to add an external Zener diode. The - versions available are:

Table I: ELECTRICAL CHARACTERISTICS OF SLTOIC INTEGRATED CIRCUIT

Type No.
SL701B, C
SL702B, C
SL751B, C

Encapsulation

TO5 8 pin
TO5 8 pin
Flat pack

Remarks
Output about earth
Output about $+5.5 \mathrm{~V}$
Both outputs available

The "C" version is the industrial version with slightly relaxed specifications on some parameters, even though typical parameters remain unchanged. For our application the B or C versions would suffice, and we have chosen the SL701C. This device is used throughout in the five practical designs we are publishing.

DETAILS OF THE SL7OIC

The specifications given in Table 1 were taken from
manufacturer's data for the SL701C. The pin connections and equivalent piece-part circuit is also shown in Fig. 5.

This amplifier uses a Darlington compound pair in a long tailed pair configuration at the input (TR1-TR4). The transistors are inherently well matched since they are made simultaneously in a single chip of silicon. An auxiliary balancing circuit is included in the h.t. + supply to the 3.8 kilohm resistors $\mathrm{R} 1, \mathrm{R} 2$ to help make the balanced input less sensitive to supply voltage changes, and to enhance the inherent excellent common mode rejection of the long tailed pair.

Output is taken via an emitter follower TR8 and Zener diode D1 (in our case, for the SL701). Pins 4 and 6 are used for frequency stabilisation, though pin 4 can also be used as an output in some special applications.

Fig. 5. The piece-part circuit diagram for the SLIOI B or C

THERE are often times when the constructor or experimenter needs an amplifier which can just be plugged in for extra gain; to increase the sensitivity of a 'scope, to check a power amplifier in the absence of a suitable preamplifier, or to boost the output of a radio tuner, for example. The amplifier to be described is intended for such temporary test purposes, and gives switched fixed gains of $20,30,40$ or 50 dB .

CIRCUIT DESCRIPTION

The circuit of our complete switched gain general purpose amplifier is shown in Fig. 1. It consists of a non-inverting a.c. amplifier.

Both input and output are direct coupled, but the feedback resistor to earth has been a.c. coupled, so that the l.f. cut off is about 10 Hz . In our case the d.c. offset at the output varied between about +0.5 V for the 50 dB gain position and -0.3 V for the 20 dB gain position.

In a fixed gain amplifier this offset could have been minimised by using equal source resistors for each input, and then "trimming" the values slightly, but it was anticipated that the external circuits used with the amplifier will have coupling capacitors so connected that they are correctly polarised. It is worth noting in this connection that tantalum capacitors can safely withstand up to 10 per cent of their normal rating as a reverse voltage. Where the nominal voltage across the capacitor is zero, we can ignore the possibility of a slight reverse bias. An alternative is to use a nonpolarised electrolytic or use two ordinary electrolytics connected "back to back" (which comes to the same thing).

The input comes into the integrated circuit ICl on pin 7 (the non-inverting input) and the input impedance can be switch selected (S1) as 100 kilohms or approximately $\mathbf{6 0 0}$ ohms, as required. When used at maximum gain the input impedance is slightly less than 100 kilohm (about 80 kilohm) due to the reduced amount of
negative feedback (which increases the 100 kilohm input impedance of the integrated circuit so that it does not load the external 100 kilohm bias resistor).

FEEDBACK RESISTOR

The feedback resistor (R4-R7) from pin 2 to pin 5 sets the gain and d.c. conditions, and sections are shorted out by the switch S2 to provide the different gains required. It is important to use the form of connection shown rather than to switch individual resistors, since with our configuration even if the switch goes open circuit there still remains a d.c. path to set up the proper bias.

OUTPUT ARRANGEMENTS

The 2.2 kilohm resistor (R9) in series with the output has been included for two reasons. Firstly, to prevent damage to the amplifier should the output be short circuited; secondly, to prevent possible instability should the amplifier be fed into a large capacitive load. We must remember that if the amplifier is used with a long screened lead on the output, the bandwidth may be reduced. A 100 pF load (in conjunction with the 2.2 kilohm resistor) would produce an extra roll-off at $6 \mathrm{~dB} /$ octave from 700 kHz , and could reduce our overall bandwidth on the low gain settings.

The current output capacity can be increased if required by decreasing the 5.6 kilohm resistor R8 to the negative rail and removing the 2.2 kilohm resistor R 9 and feeding directly into the load. The manufacturer's data gives the maximum negative swing as a function of load resistance and the resistor from output to the negative rail; the maximum output current from the amplifier must not exceed 20 mA .

FREQUENCY RESPONSE AND FEEDBACK STABILISATION

We have assumed that the amplifier has the constant 180 degree phase shift from input to output that we

Fig. I. The circuit diagram for the switched gain general purpose amplifier

Table I. PERFORMANCE OF THE SWITCHED GAIN GENERAL PURPOSE AMPLIFIER

Nominal gains of
Input impedance
Output impedance
Maximum output Bandwidth

Noise referred to input
(2) Closed loop gain 20 dB . Open loop gain 70dB. Loop gain $70-20=50 \mathrm{~dB}$.
In this case we again have to ensure that the loop gain is less than unity when the extra loop phase shift is 180 degrees, but this is a much more difficult case since we have to control the loop characteristics from 50 dB to 0 dB rather than 20 dB to 0 dB as in the previous case.

There are several ways in which stability can be determined, and the circuit modified if necessary, but these are really beyond our introduction here, the theory rapidly becomes formidable! Fortunately, manufacturers normally give gain and phase characteristics and make suggestions as regards stabilisation for various closed loop gains.

PRACTICAL POINTERS

The complete amplifier can be checked for stability by observing the response to a square wave input for ringing or overshoots. Since the amplifier has an open loop unity gain point of well over 10 MHz , there are several points to be considered. These are:

1. Use the stabilising components recommended by manufacturer or designer (physically close to the amplifier).

IC1 is available direct from the makers: The Plessey Co. Ltd., Components Group, Cheney Manor, Swindon, Wiltshire. Price: 18s.

Fig. 3. Layout of the amplifier board

Fig. 2. General view of the completed unit. Note that the switched attenuator, which occupies the r.h. half of the box, is a separate and optional circuit that can be fitted

COMPONENTS . . .

Fig. 4. Circult diagram for the switched attenuator

2. Use at least $1,000 \mathrm{pF}$ ceramic decoupling capacitors from each supply rail to earth right at the amplifier terminals.
3. Avoid capacitive or inductive loads if possible (no wirewound resistors!)
4. Ensure that d.c. or l.f. amplifiers have a properly restricted bandwidth, add a capacitor from the compensation point to ground or use another similar procedure if the design does not require the full bandwidth of the amplifier.
5. Use a reasonable layout with short leads.
6. Return the input and output to ground with separate leads. This is particularly important in high current amplifiers where the integrated circuit may be feeding an output stage to increase power handling capacity.
7. In cases of desperation a 56 ohm resistor can be added inside the feedback loop directly at the amplifier terminals in series with the output load and feedback network.
In fairness, the precautions of 1-6 are reasonable for a high gain wide band amplifier, and precaution 7 is sometimes used to prevent an emitter follower oscillating at a high frequency when feeding a capacitive load. We have never had any difficulties in using integra ted circuits, provided loop stability requirements are met. Our 2.2 kilohm resistor in series with the output was added as a precaution against a short circuited output, rather than for stability reasons.

CONSTRUCTION

The form of construction is shown by the photographs and diagrams Figs. 2 and 3. Some difficulty may be experienced in finding a 4 -pole switch shallow enough to fit in the specified box. If necessary, the next larger size of Electroniques box could be used as this is deeper. The amplifier can then be spread over a wider piece of Lectroboard while retaining the same basic layout. Three feed-through terminals are fitted to the top side of the box. These terminals are used for h.t. supply connections.
After inserting the pins in the board (spacing them out to accommodate the size of resistors used) we would suggest the following assembly order:

1. Add h.t. and earth wires on the back of the board.
2. Add the $1,000 \mathrm{pF}$ ceramic capacitors.
3. Add resistors and the electrolytic capacitor.
4. Add integrated circuit.
5. Add leads off board to switch, h.t., earth, input and output.
6. Place amplifier board in slot in box and solder remaining leads.
Since the circuit has a high rejection of hum on the h.t. lines, there is no point in providing excessive smoothing on these lines, especially if the unit is run off batteries or a supply already well smoothed. Nominal capacitors of $10 \mu \mathrm{~F}$ or so may be used, unless feedback along the h.t. lines from other units is suspected.

The amplifier board could have been spread out slightly and mounted flat in the bottom half of the box, but we proposed to use this half for a 600 ohm calibrated attenuator, suitable for gain or frequency response measurements.

The calibrated attenuator (to be described next) is entirely separate from the amplifier and its inclusion is optional. It does of course enhance the value of the unit as an item of test gear.

CALIBRATED ATTENUATOR

An unbalanced π arrangement, shown in Fig. 4 is employed as a switched attenuator. This gives 0 to 31 dB in 1 dB steps.

To provide the correct attenuation the last stage has to feed into 600 ohms. For the case where the following stage has a high input impedance, the attenuator can be terminated by a switched-in load. Preferred resistor values are used, since the resulting error is small. The attenuator has been tested against a commercial one at 1 kHz and found to be accurate.

Assembly of the components is straightforward as can be seen from the photograph and diagram Fig. 2. A busbar of 18 s.w.g. tinned copper wire runs between sockets SK3 and SK4 and provides anchorage for the resistors.
Miniature toggle switches were used in the original model. However, two-pole, two-way slide switches are less expensive and more readily obtainable.
Next month: A Pre-amplifier for a Ceramic
P/U Cartridge based on the same IC

Although Chicago is over six hundred miles from the nearest sea coast, it is one of the biggest cities and sea ports in the U.S.A. Yet each year the city "turns on" with the National Association of Music Manufacturers Convention. A town, once torn apart by booming equalisers, is rended anew by the distorted exuberance of today's music making equipment.
Over three hundred manufacturers of musical instruments of all kinds, from huge all-solid state church organs, to junior's recorder, display their products for nationwide dealer appreciation. This is the hard-sell

TEACH YOURSELF

New methods of instruction and equipment are available for those actually wishing to teach themselves to read and play music. The most sophisticated and costly of these is a teaching machine with programmed audio and optical instruction, which the student works out on piano or organ; The student has full control over the machine, and in fact would also have access to an instructor. It is claimed that the system will develop a standard of performance in 39 weeks, which would otherwise take five years to attain.

IMPRESSIONS OF THE NATIONAL ASSOCIATION OF MUSIC

 MANUFACTURERS' CONVENTION IN THE UNITED STATESof the manufacturers' year, when dealer and buyer assess the money making potential of next year's equipment.

Sales of guitars, classical and electrical, are down from their all time high of two years ago, but still exceed one million a year. New technical innovations may keep them there. Nylon stringed classical guitars are now fitted with pick-ups so that their amplified sound can compete in volume with other power dependent instruments. At least one manufacturer claims that special plastic bodies, coupled with the traditional Sitka spruce sound-board, improve the performance.

PAINFUL POWER

The latest electric guitar amplifiers are brutaldesigned to put out sound until it HURTS. Equipment names include "The Bass Exterminator", "The Killer", and "Big Henry". The Killer is claimed to be "the only amplifier in the world with the thrilling effect of stereo vibrato at 300 watts peak music power. Stereo vibrato is said to be the result of two alternating vibratos heard from two precisely balanced speakers driven by two sound systems. Each pitch change is identified in opposing channels, one going sharp, one going flat, creating magnificent panoramic diffusion of swinging sound all-round".

Some can addle the mind with over six hundred watts peak music power output from their all silicon semiconductor circuitry.

Significantly the handouts only quote peak power and loudspeaker diameters. It is left to the shell-shocked hearing of audience and performer to judge the quality.
The amplifier and effects circuitry on most equipment is packaged in a unit separate from the speaker cabinet, on which it rides piggyback. Finish varies from "laboratory instrument" to "space-age contemporary", splashed with gaudy colours, like Martian camouflage.

Psychedelic lights provide visual reinforcement to the sound, the different coloured lights being flashed on and off by frequency discriminating circuitry operating from the music.

Another system, designed for home use and for the individual who wants to see if he can learn before purchasing an instrument, is designed around a very basic two-manual electronic organ. The upper manual covers two octaves and the lower, one and a half, with a special system of lights to indicate chords. If an organ is already in the home, then it can be fitted with a simple adaptor.

Tuition is by text and diagrams, using a book, and instruction and demonstration on a tape, which can be used with any domestic tape recorder. The student compares his own playing with the taped material, through headphones. Instruction and exercises are programmed so successfully that it is possible to play a simple tune and accompaniment after one lesson.

A new instrument, the "electro-piano", has made possible the music laboratory on the same lines as the already familiar language laboratory. This instrument has a key and hammer system similar to that on the conventional piano, but the sound is derived from shorter strings by amplifying signals from an electromechanical pick-up.

The piano has no sounding board, and is almost silent. Thus, while several pianos can be played in one room, each player can hear his performance on a headset without interfering with the others. For group instruction a number of electro-pianos are connected to a control consol on the teacher's instrument. This enables the teacher to listen in to any student's playing and to communicate with any one or group of students, or to demonstrate on his own instrument to them.
Such instruction systems may well further increase the popularity of keyboard instruments. It may be that the latest version of one of the oldest of these will make the next generation's music.

One of the oldest musical instrument manufacturers in America, the D. H. Baldwin Co., demonstrated a harpsichord fitted with pick-ups so that its sounds could be amplified and processed in the way previously used for guitars. The sounds are wild, and may well echo to the end of the seventies.

a new 4-way method of mastering ELECTRONICS by doing - and - seeing . .

DE LUXE PLAYERS
PORTABLE CABINET Asillur-
trated. To at atandard. $69 / 6$
plager or autochanger.
player or autochsnger.
RCS AMPLITER 3 WTT. Ready made and teated with und lo triode pentode valve and loud- $59 / 6$
speaker. speaker.
SUPERIOR
Built and tested
Better sound !
Isolated AC Maing
Transformer, 3 wat ECL82 triode pentode Volume and tone controls with knobs. Quality 89/6 Loudapeaker.
SINGLE PLAYERS MONO SINGLE PLA
Staar (6 volt) EMI Junior Garrard SRP2 Philips AG1010 Gharrard LAB8 Garrard 401
 All fitted LP/78 stylii and pickup crystal complete.

GARRARD TEAKWOOD BASE WB.1. Ready $65 /=$
cut out for mounting $1000,2000,3000$, SP 25 . AT80. GARRARD PERSPEX COVER SPC. 1 for WB. 1 EACH PICK-UP ARM Complete with ACOS LP-78 Turnoper GP67 and Stylii 25/-; GP67 15/-; stereo 35/-

CRYSTAL MIKE INSERTS

PORTABLE

transistor

AMPLIFIER

Many uses, Intercoms, Baby Alarma, Gritar
Practice, Telephone or Record Player Amplifier. ONE WATT OUTPUT Wooden cabinet 12×9 : 4in. Rexine covered two tone grey. Fourtransistors, 7 fin speaker. socket. Use PP9 battery. 7916 Fost $5 / 6$. BATTERY RECORD DECKS 2 speed model $331 / 3$ and 45 r.p.m. 9\%. operated. Complete with pick-up fitted crystal eartridge. Plays 7, 10, 12in. $\begin{array}{lll}\text { above transistor ampliflers. OUR PRICE } \\ 4 \text { speed Model } 9 \text { volt. } 10 /- \text { extra. } & 59 / 6 & \text { POST } \\ 2 / 6\end{array}$ THE ABOVE AMPLIFIER AND DECK POST FREE IF PURGEASED TOGETHER

MAINS TRANSFORMERS

Post
$5 /-$ each 250-0-250 80 mA .6 .3 ₹. 3.5 a .6 .3 v. 1 a , or 5 v. 2 a. $30 /-$ $350-0-35080 \mathrm{~mA}, 6.3$ ₹. $3.5 \mathrm{a}, 6.3$ y. 1 a , or 5 v. 2 a . $35 /-$

MIDGET 220 ₹. 45 mA., 6.3 \%. 2 a .

 $6,8,9,10,12,15,18,24$ and 307 . at 2 a. 1 amp., $6,8,10,12,16,18,20,24,30.36,40,48,60,35 /-$ AUTO TRANSFORMERS $0-115-230 \mathrm{~V}$. Input/Output,
$60 \mathrm{w}, 18 / 6 ; 150 \mathrm{w}, 30 /-; 500 \mathrm{w}, 92 / 6 ; 1000 \mathrm{w}, 175 /-$.

VEROBOARD 0.15 MATRIX
$2: 5 i n, 3 / 8$.
EDGE CONNECTORS 16 way $5 /-24$ way $7 / 6$.
PINS 36 per packet $3 / 4$. FACH CUTTERS $7 / 6$.
S.R.B.P. Board 0.15 MATRIX $2 t i n$. wide 6a. per lin., 31 in . wide 9 d . per lin.; sin. wide $1 /-$ per lin. (up to 17 in.). BLANE ALUMINIUM CHASSIS. $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. 2\%in, sides, <4in., 5/6; $9 \times 7 \mathrm{in}, 6 / 6 ; 11$ 3in., $8 / 6 ; 11$ 7in. 7/6; LLUMINIUM PANELS $18 \mathrm{~s}, \mathrm{w} . \mathrm{g}$. $12 \times 12 \mathrm{in} .6 / 6 ; 14 \times 8 \mathrm{~B}$. $5 / 6 ; 12 \times 8 \mathrm{in}, 4 / 6 ; 10 \times 7 \mathrm{in} .3 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 6 ; 4 \mathrm{in.,1/6}$.
Q MAX CHASSIS CUTTER

 ‘SONOCOLOR' CINE RECORDING TAPE $5^{\prime \prime}$ reel, 900^{\prime} with $L P$ strobe markings. also cine light
deflector-mirror for synchronisstion.
14/- each. Tape Spools 2/6. Tape Splicer 5/-. Leather Tape 4/6. UNIVERSAL TAPE CASSETTES Type C60. OUR PRICE 14i--

THE INSTANT

BULK TAPE ERASER AND RECORDING HEAD

DEMACNETI8ER

200/250 v. A.C. Leatlet S.A.E.

BARGAIN STEREO PARCEL
E.A.R. STEREO PLAYER CABIIET suitshle for B.S.R. Phyyr Deck with $4+4$ STEREO AMPLIFIER and TWO B) BII. LOUDSPEAKEMS
fl3.19.6.
Post 10/6
 $4 / 850 \mathrm{~V}$
$8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$. $16 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$. $32 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$ $100 / 25 \mathrm{~V}$
$250 / 25 \mathrm{~V}$ $250 / 25 \mathrm{~V}$. $500 / 25 V$
$8+8 / 450 \mathrm{~V}$ $8+8 / 450 \mathrm{~V} \quad 3 / 6$

$8+16 / 450 \mathrm{~V}$ | $1 / 9$ | $16+16 / 450 \mathrm{~V} 4 / 3$ |
| :--- | :--- | | $50 / 50 \mathrm{~V}$ | $2 /-$ | $32+32 / 350 \mathrm{~V}$ |
| :--- | :--- | :--- |
| SUB-MIN. $2 / 6$ | | |

 CRPAMC CERAMIC. 500 V 1 pF to 0.01 mF gd. Dises $11-$
$350 \mathrm{~V}-0.1 \mathrm{~d}, 0.52 / 6 ; 1 \mathrm{mF} 3 /-; 2 \mathrm{mF} 150 \mathrm{~V} 3 /-$.
$1,000 \mathrm{~V}-0.001$ 0.05 $8 \mathrm{~d} ; 0.11$ 1; $0.01,0.1 / 6 ; 0.047,0.1,2 / 6$ SILVER MICA. Close tolerance $10.5-500 \mathrm{pF} 1 /-580-2.200 \mathrm{pF}$ $2 /-: 2,700-5,600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-01$, mfd $6 /-; \mathrm{each}$
TWIN GANG. " $0=0$ " $208 \mathrm{pF}+176 \mathrm{pF}$, $10 / 6 ; 365 \mathrm{pr}$ ture $10 /-$; 500 pF standard with trimmers, $9 / 6 ; 500 \mathrm{pF}$ midget less trimmers, $7 / 6 ; 500 \mathrm{pF}$ slow motion, standard $9 /-$ gmall 3-gang 500 pF 18/9. Single " 0 "' $365 \mathrm{pF} 7 / 6$. Twin $10 /-$ SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 5 / 6$ each. Can be ganged. Couplers 9 d each. TUNING. Solid dielectric, $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 5 /-$ eqch. KRIMMERS. Compression ceramic 30,50 ,

250V RECTIFIERS. Selenium 5 wave 100mA $5 /-;$ BY100 10/CONTACT COOLED $\frac{1}{2}$ wave $60 \mathrm{~mA} \% / 6 ; 85 \mathrm{~mA} 9 / 6$. RESISTORS.
 $1 \% 10$ ohms to 10 meg., 2% Ditto 5%. Prelerred values 10 ohms to 22 meg., 8 d .
5 watt
10 watt 0.5 to 8.2 ohm 3 w .
WIRE-WOUKD RESISTORS
15 watt $\int 10 \mathrm{ohmg}$ to 6,800 ohms $10 K, 15 K, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3$

FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12v, outputs. 11 amp. $8 / 9$; 2a., 11/3; $42.17 / 6$. CEARGER TRANSFORMERS. P. \& P. $5 / 21$ - Input $200 / 250 \mathrm{~F}$ for 6 or $12 \mathrm{v} ., 1 \frac{1}{2}$ amps., $17 / 6 ; 2$ amps., $21 / \mathrm{m} 4$ amps., $30 /-$ WIRE-WOUND 3-WATT | POTS. T.V. Type. Values | STANDARD SIZE POYS. | |
| :--- | :--- | :--- |
| 10 ohms to 30 | $\mathrm{~K} .$, | $4 / 6$ |
| Carbon 80 K to 2 meg | LONG SPINDLE | | VALVE HOLDERS, HOULDED 9d; CERAMIC 1/m EACH. NEW MULLARD TRANSISTORS 6/- each 0C71, OC72, OC81, 0C44, OC45, 0C171. 0C170, AF117 REPANCO TRANSISTOR TRANSFORMERS.

Tr45. Push Pull Drive, $9: 1$ CT, $6 /-$ TT46 Output, CT8:1 6/-
TT49. Interstage, $20: 1,6 /-$ TT52 Output 3 ohms, $45: 1,6 /-$ TT49. Interstage, $20: 1,6 /-$; TT52 Output 3 ohms, $45: 1,6 /-$
TRANSISTOR MAINS POWER PACK. FAMOUS MAKE FULLY SMOOTHED. FULL WAVE CIRCUIT $49 / 6$ 9 Volt 500 mA Size 5,
TRANSFOREER ONLY. Size $2 t \quad 17 \times 1$ in. 9 in 9 volt $10 / 6$
WEYRAD P50 - TRANSISTOR COILS RA2W 6 in. Ferrite Aerial Spare Cores bd. with car aerial coil 12/6 $\begin{aligned} & \text { Driver Trans, LFDTA } \\ & \text { Osc. P50/1AC } \\ & \text { Printed Circuit, PCA1 }\end{aligned}$ Osc. P50/1AC $47.35 / 4 \left\lvert\, \begin{aligned} & \text { Printed Circuit, PCA1 }\end{aligned}\right.$ 3rd I.F. PSO/3CC $6 / /$ Weyrad Booklet
 $10 / 6$
$2 / 6$

VOLUME CONTROLS 800 mm Coax 8d, yd. Long spindles. Midget Size SEMI-AIR SPACED 5 K .0 ohms to 2 Meg . LOG or $40 \mathrm{yd} .20 / \mathrm{F} / 60 \mathrm{yd} .30 /$
 COAXIAL PLUG 1/3, PANEL SOCKETS 1/3. LINE SOCKETS 2/-. OUTLET BOXES. SURFACE OR FLUSE 4/6. BALANCRD I PLDGS 1/6. SOCKETS 1/30 or 300 ohms. JACK SOCEET Std O, SOCKE JACK SOCKET Std. open-circuit 2/6, closed circuit 4/6; Chrome Lead Socket 7/6. DNT 3-pin 1/6, 5-pin 2/-; Lead 3/6. 2.5mm; 3.5mm 1/9; DIN 3-pin 3/6;5-pin 5/-

WAVE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p. 2-way, or 2 p. 6-way, or 3 p. 4 -way $4 / 6$ each.
1 p. 12 -way, or 4 p. 2 -wsy, or 4 p. 3 -way, $4 / 6$ esch Wavechange "MAKITS" 1 p. 12-way, 2 p, 6 -way, 8 p. 4 -wsy,

Three Wavebands: Five Valves: ECH81, EFB9, Long, Med., Short, Gram.
$12-$ EDOnth grarantee. A.c. $200-250 \mathrm{~F}$, FL84, EZZ80, 5 watts 8 ohm. Chassis $13 \frac{1}{2}$ in. 7 in . $\times 5$ in. disi size 13in, 4in. Two pilot Lamps, Four Knobs. 410.19 Aligned calibrated. Chasain inolated from maing 10.18

BAKER MAJOR £8

30-14,500 c.p.s., latest double cone, woofer and tweeter cone together with a special BAKER magnet assembly having a fux density of 14,000 gruss and a total finx of 145,000 Maxwells. Basa retonance 45 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Price fB , or Module kit, $30-17,000$ c.p.r. with tweeter, crossover, baffe and instructiong. \&10.19.6. LOUDSPEAXER CABINET WADDING 18 in wide, $2 / 6 \mathrm{EIt}$ BAKER " GROUP SOURD " SPEAKERS-POST FREE Group 25' 'Group 35' 'Group 50'

E.M.I. Cone Tweeter $8 \frac{1}{2 i n}$ square, $3-201 \mathrm{ke} / \mathrm{s}$. 10 W 17/6. Quality Horn Tweeters 2-18kc/t, 10W 29/6. Crosiover 16/6. LOUDSPEAKERS P.M. 3 OHMF. $21 \mathrm{in}, 3 \mathrm{in}, 4 \mathrm{in}, 5 \mathrm{in}, 7<4 \mathrm{in}$, 15/6 each; 8 in 22/6; 8 ! in 18/6; 10in 30/-; 12in. Double cone 3 or $15 \mathrm{ohm} 35 /-; 10<6 \mathrm{in}, 80 /-; 8 \times 5 \mathrm{in}, 21 /-$ E.M.I. Double Cone $13 \frac{1}{2}: 8 \mathrm{in}, 3$ or 15 ohm models, $45 / \mathrm{m}$.
SPECIAL OFFER! 6 ohm, 27 in ; 80 ohm, $21 \mathrm{in}, 21 \mathrm{in}$; 25
 SPEAKER FRET Tygan various colours, skin. wide, from 10/- It. 26in wide from $5 /-\mathrm{ft}$. SAMPLES SA.E. EXPANDED METAL Gold or Silver $12 \times 12 \mathrm{in} ., 6 / \mathrm{F}$.

ALL PURPOSE HEADPHONES

 H.R. HEADPRONES 2000 ohm: General Purpose H.R. HEADPHONES 2000 ohms Super sensitiv DE LUXE PADDED STEREO PHOHES 8 ohms
MINETTE AMPLIFIER
 For Hi-Fi Record Playert.

A,c. Mains Transformer. Two atage negative feediback. Quality outpat' 8 ohm panel, valves, knobs, volume and tone controls, $79 / 6$

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PBICESBARGAIM AM TUNER. Medium Wave.
Transigtor Superhet. Ferrite Rerial, etc.
BARGAIM DE LUXE TAPE SPLICER Cuts, $17 / 6$
trims, joins for editing and repairs. With 3 blades. $1 / 6$ musieal highlights and sound effects to recordings. Will mix Microphone, records, tape and taner with $59 / 6$
separate controls into single ontput.
BARGAIN TRANSISTOR FM-LW-MW TUAER: 10 semi conductors Calibrated tuning dal. 9 v. operation. F2i89108 Me/s; MW 190-560 metres. LW 850- $4 / 4 / 19 / 6$ BARGAIM 3 WATT AMPLIETAR. 4 Transistor 69/6 Push-Pull Ready brilt, with volnme control
40-PAGE EAGLE CATALOGUE 5/- Post Free \star RAD10 B00Ks \rightarrow (Postage 9d.)
High Fidelity Speaker Enciosures and Plans.
Trangistor Superhet Commercial Receivers
Rallard Audio Amplifier Manual .

Transistor Audio Amplifier Hanual Book 1, 3/6; Book'.
Shortwave Transiator Recoivers ..
Transistor Communication Sets
International Radio Btations List
Hodern Tramsiator Circuita for Beginners
Sub-Miniature Transistor Receivers
Wireless World Radio Valve Dats.
At a glance ralve equivalonte
SANGAMO 3 inch SCALE METER
Various calibratione and movements, 100 Microamp; 1 Mflismp; 50-0-50 Wicroamp, ete. S.A. E. for list. POCKA HOVAG COLL SUPERIOR MOVIMG COIL MULTMPTER $0-2-500 \mathrm{D}$ - 90000 ohme dar volt $0-1$ 000 $99 / 6$ Ohms 0 to 6 meg. 50 Microamps (Full list Meters 8.A.E.)

BRAND NEW QUALITY

 EXTENSION LOUDSPEAKER Cream plastic cabinet, 20ft. lead and adaptors. For any radio, intercom, tape recorder. etc. 3 to 15 ohm. PRICE $30 /=$Size: $7 t^{*}$ Post $2 / 6$

extro. full List $1 /$. CALLERS WELCOME

m
 Macler Rell

THIs equipment was designed to allow reception and investigation of very low frequency (v.l.f.) radio emissions. Since the radio waves concerned are in the audio frequency range a "receiver" for them will need no detector and will. consist simply of a high-gain audio amplifier connected to a conventional aerial.

Due to the high gain involved, this equipment is highly susceptible to mains hum pick-up and to internal parasitic oscillations. To avoid the former difficulty the apparatus will generally have to be battery-operated and used in open country far from houses with mains wiring; the second difficulty can only be overcome by building the various sections as complete self-contained units connected only by the signal leads. Obviously, transistorised equipment is very well suited to this role.

OUTLINE OF THE RECEIVER

The block diagram of this equipment for v.l.f. reception is shown in Fig. 1. In the equipment to be described three separate "boxes" are used: (a) preamplifier, (b) intermediate amplifier (two, in fact, one as a standby), (c) audio monitor and S-meter, also a separate board to hold the test oscillator.

This represents a fairly comprehensive system and the S-meter and/or test oscillator can be omitted if not required. Each box is a watertight steel unit with clipon lid, giving a reasonably weather-proof set-up. The total weight, excluding meter and headphones, is $4-5 \mathrm{lb}$, most of which is due to the boxes. Thus the whole system is easilyportable and, due to the use of the different boxes for different stages, quite stable. Although several batteries are required, the consumption from each is very small.

Fig. 4. R.F. filter circuit diogrom

COMPONENTS . . .

PRE-AMPLIFIER

Resistors

RI	$2.2 \mathrm{M} \Omega$	R4	lk Ω	R6	$47 \mathrm{k} \Omega$
R2	$4.7 \mathrm{k} \Omega$	R5	$10 \mathrm{k} \Omega$	R7	$1 \mathrm{k} \Omega$
R3	$1 \mathrm{k} \Omega$				
All \pm	10%				

Potentiometer

VRI $2 k \Omega$ linear

Capacitors

$\mathrm{Cl} \quad 30 \mu \mathrm{~F}$
C3 $30 \mu \mathrm{~F}$
C2 $80 \mu \mathrm{~F}$
C4 $80 \mu \mathrm{~F}$

All elect. 15 V
Transistors
TR1 OC71 TR2 OC7I TR3 OCl71

Miscellaneous

SKI-SK2 Chassis mounting coaxial socket (2 off)
SI Single pole, on/off toggle switch
BYI 9 V layer type battery, PP4 or similar

FILTER

Resistors
$\left.\begin{array}{ll}\text { R33 } & 47 \mathrm{k} \Omega \\ \text { R34 } & 15 \mathrm{k} \Omega\end{array}\right\} 10 \%, \frac{1}{2} \mathrm{~W}$ carbon

Capacitor

C20 500pF silvered mica
Inductor
LI 10 millihenry r.f. choke (Repanco CH 4)
MISCELLANEOUS FOR ALL UNITS
Coaxial plugs and screened lead for interconnections. Battery connectors. Veroboard. Metal cases.

Fig. 3. Pre-amplifier circuit board layout

PRE-AMPLIFIER

The pre-amplifier is the input stage and is fed directly from the aerial. A high input impedance is required here; this could be obtained by using an f.e.t., but in this particular unit a super-alpha pair is used instead.

The circuit diagram of the pre-amplifier is given in Fig. 2 and the Veroboard layout in Fig. 3. This circuit has an input impedance, measured at 400 Hz , of 3.2 megohm and a voltage gain slightly over 1,000 .

Although this and the subsequent stages have a very good linearity response, the gain is so high that some radio break-through may occur due to the very slight non-linearity. A filter, which will remove much of the unwanted r.f. signal, is shown in Fig. 4. This, if desired, would be inserted between the aerial and the pre-amplifier input.

The performance of the transistors in this stage is the limiting factor in the whole system, since low-noise operation is essential. In the prototype pre-amplifier two OC71's were used, this particular pair having a rather lower noise level than average Other types of transistor may be used in this position, the main criterion being quiet operation.

INTERMEDIATE AMPLIFIER

The pre-amplifier will usually provide enough signal to feed the headphone monitor direct, but if an S-meter is to be used then some intermediate stage of amplification is needed. The intermediate amplifier used here is a conventional two-stage $\mathrm{R}-\mathrm{C}$ coupled unit. The circuit is given in Fig. 5 and a suitable layout in Fig. 6. The voltage gain is around 150 and the amplifier takes 7 mA from a 9 V battery.

INTERMEDIATE AMPLIFIER

COMPONENTS . . .

INTERMEDIATE AMPLIFIER

Resistors

Potentiometer

VR2 $5 \mathrm{k} \Omega$ log carbon

Capacitors			
$C 5$	$50 \mu \mathrm{~F}$	$\mathrm{C8}$	$50 \mu \mathrm{~F}$
C 6	$50 \mu \mathrm{~F}$	C	$50 \mu \mathrm{~F}$
C	$50 \mu \mathrm{~F}$		

All elect. 15 V

Transistors
TR5 OC171 TR6 OC171
Miscellaneous
SK3-SK4 Chassis mounting coaxial socket (2 off)
S2 Single pole, on/off toggle switch
BY2 $9 V$ layer type battery, PP4 or similar
ADDENDA: Screens have been omitted from
TR5 and TR6; these should be connected to +veline (G3 and G12)

Fig. 6. Intermediate amplifier circuit board layout

AUDIO MONITOR, S-METER AND TEST OSCILLATOR

Fig. 7. Audio monitor circuit diagram

Fig. 10. Test oscillotor circuit diagram

COMPONENTS

audio monitor

Resistors

R15 $4.7 \mathrm{k} \Omega$	R17	$10 \mathrm{k} \Omega$	R19
R16 $2.7 \mathrm{k} \Omega$	R18	$1 \mathrm{k} \Omega$	
All $\pm 10 \%$,	carbo		

Potentiometers

VR3 $25 k \Omega$ linear VR4 $10 k \Omega$ linear

Capacitors

$\mathrm{ClO} / \mu \mathrm{F} \quad \mathrm{ClI} 50 \mu \mathrm{~F}$ elect. $15 \mathrm{~V} \quad \mathrm{Cl} 250 \mu \mathrm{~F}$ elect. 15 V
Transistor
TR4 OC7I
Miscellaneous
SK5 Chassis mounting coaxial socket
JKI Standard jack socket (fully insulated)
S3 Single pole, on/off toggle switch BY3 9V layer type battery, PP4 or similar High impedance headphones

S-METER

Resistors

R20	$4.7 \mathrm{k} \Omega$	R23	$4.7 \mathrm{k} \Omega$	R26	$6.8 \mathrm{k} \Omega$
R21	$22 \mathrm{k} \Omega$	R24	$10 \mathrm{k} \Omega$	R27	$10 \mathrm{k} \Omega$
R22	$1 \mathrm{k} \Omega$	R25	$1 \mathrm{k} \Omega$	R28	$4.7 \mathrm{k} \Omega$
All $\pm 10 \%$	$\frac{1}{2} \mathrm{~W}$	carbon			

bon
Potentiometers
VR5 IOk Ω log VR6 $25 \mathrm{k} \Omega$ linear
Capacitors
$\mathrm{Cl} 3 \quad 50 \mu \mathrm{~F}$
Cl4
$25 \mu \mathrm{~F}$
Cl5 $50 \mu \mathrm{~F}$
Cl6 $50 \mu \mathrm{~F}$ All elect. I5V
Transistors
TR7 OC70 TR8 OC7I TR9 OC81

Miscellaneous

SK6 Chassis mounting coaxial socket
MI Volt meter, 2.5V f.s.d.

TEST OSCILLATOR

Resistors

R2	$4.7 \mathrm{k} \Omega$	R31	$18 \mathrm{k} \Omega$
R3	18k Ω	R32	$4.7 \mathrm{k} \Omega$
11	10\%,	carb	

Capacitors
Cl7 $0.1 \mu \mathrm{~F}$ plastic $\quad \mathrm{Cl} 8 \quad 0.1 \mu \mathrm{~F}$ plastic
Cl9 $0.1 \mu \mathrm{~F}$ plastic
Transistors
TRIO OC7I TRII OC7I
Miscellaneous
S4 Single pole, on/off toggle switch BY4 9V layer type battery, PP4 or similar

Fig. 9. Audio monitor and S-meter circuit board

AUDIO MONITOR

The audio monitor consists of a single-transistor stage designed to drive a set of high-impedance headphones. The circuit is given in Fig. 7. The monitor is built on the same piece of Veroboard as the S-meter and it will be seen included in the layout diagram Fig. 9. The tone control, comprising C10 and VR4, is an optional extra and provides a degree of treble cut.

There is no reason why a larger a.f. amplifier should not be fitted, for example one to drive a loudspeaker, and this would be connected to the monitor input instead of the headphone monitor.

Fig. II. Test oscillator circuit board layout. Note: no breaks in the copper strips required

S-METER

The function of the S-meter is to measure the strength of the incoming signal. The circuit is given in Fig. 8 and the components are numbered sequentially to those of the monitor. TR7 is a voltage amplifier which feeds a "detector", TR8. The output at TR8 collector consists of the input signal approximately integrated with respect to time, and this signal is applied to TR9. This last transistor forms one arm of a d.c. bridge which is initially balanced by the set-zero control VR6.

A meter was not actually built into the prototype, but sockets were provided so that an external meter could be plugged in when required. A meter with an f.s.d. of 2.5 volts is needed for this circuit.

The overall layout of the monitor and the S-meter is given in Fig. 9.

TEST OSCILLATOR

The requirement here is for a simple a.f. oscillator which can provide a signal for testing the various stages. A standard multivibrator is most easily used and a simple version, together with a layout, is given in Fig. 10 and Fig. 11.

This oscillator runs at about 300 Hz and was originally incorporated in the same box as the monitor and S-meter. Stray pick-up, however, would make it preferable to use a separate box and power supply for this item.

OVERALL CONSTRUCTION

This equipment is most likely to be used out of doors and so a weather-proof construction is required. In the

Prototype layout of audio monitor, S-meter and test oscillator in the same case. Note: in practice it was found necessary to mount the test oscillator in a separate box to avoid stray pick-up
prototype the various circuit boards were screwed to short strips of wood which were then fixed inside steel boxes with lids which clipped shut. (The actual boxes used were ex-W.D. ones which once contained sets of spares for the "No. 19" set.) All controls and input/ output sockets are mounted on the sides of the boxes and each unit has its own power supply. Details of these components and the wiring arrangements are shown in the various photographs.

SETTING UP

The method of use for this apparatus is selfexplanatory. The units are connected as in Fig. 1 to form a complete receiver and, assuming that each individual stage is working correctly, little trouble should be encountered. A good earth connection is essential, this being applied to the pre-amplifier only. Due to the very high gain involved a certain amount of instability may occur, but this can be reduced by careful positioning of the units with respect to each other.

Some general notes concerning v.l.f. reception including details of suitable aerials were included in last month's article V.L.F. Phenomena.

> ATEST addition to the pop-record producer's acoustic box of tricks is a "psychedelic" effect that was once regarded as a major nuisance in long-distance medium frequency broadcasting.

> Phase, skying, or selective fading-according to contextoccurs when a programme travels over two paths having slightly different delay times. The result is a weird quality of reproduction caused by the addition and cancellation of certain audio frequencies and the production of new ones.
> This article investigates the theory of the phase effect and describes one professionally used means of achieving it. Suggestions are given for all-electronic phasing devices.

THE essence of the musical phase effect is to play two recordings of the same piece of music almost, but not quite, in step. The method formerly used by commercial radio disc jockeys-and now by record com-panies-is to play two copies of the soundtrack out of step and to mix the outputs at equal level. The characteristic "whoosh", accompanied by cancellation of some audio frequencies and re-inforcement of others, rises to an infinite frequency as the two recordings move exactly in step, and falls down in pitch as the recordings move apart-finally degenerating into a simple echo.

WHY DOES PHASE OCCUR?

The cause of the "whoosh" and frequency cancellation effect can be illustrated by a pulse waveform A (Fig. 1a).
The waveform is produced by (for example) differentiation of a square wave of frequency f (time period t). Suppose that another pulse waveform B, is available at a frequency of $f+f_{2}$, very slightly different in frequency from A (Fig. 1b).

If A and B are observed on a double beam oscilloscope (refer to left-hand column of Fig. 2) and the common timebase of the scope is synchronised to lock A in a stationary trace, then B will move very slowly relative to A. The speed of movement will depend on f_{2}, the frequency difference, which should be about one quarter of a hertz for f of about 100 to 200 Hz .
Now suppose we mix A and B and display their resultant waveforms on a further, single-trace, oscilloscope (right-hand column of Fig. 2) and listen to the mixed waveforms with an amplifier and loudspeaker.
As the pulses close up, the time period t_{w} (t whoosh) reduces-and this will be heard in the loudspeaker as a
rising "white noise" or "whoosh" effect. (It is possible to observe this effect without special equipment: the Loran navigation network audible on the amateur 160 m band after dark can be heard to "phase" in this manner as the multiple radiating stations vary their pulse rates.)

APPLICATION TO MUSIC

Any "harsh" music--with particular apologies to the pop world!-is rich in peaky waveforms and lends itself to the production of phase on the same theoretical basis as the pulse trains A and B. What is needed is some

Fig. Ia. Illustrating the "whoosh" effect-waveform A

Fig. 1b. Waveform B, slightly different in frequency

Fig. 2. Waveforms A and B observed with oscilloscopes. The interval t_{w} diminishes as the phase difference decreases, and the ear interprets this as a rising "whoosh" frequency
means of splitting the original signal into two versions, one of which can be electronically delayed, or (by recording) made to advance and retard relative to the other.

"PURE" PHASE PRODUCTION

Two record players or tape decks mixed through a common amplifier, and of course playing the same recording, can be used to produce phase. A further recorder can be used to make a permanent "phased" recording-or alternatively the following method can be applied using one four-track recorder, a record player and a mixer/amplifier.

Step 1: Record the disc on to track one of the recorder (Fig. 3).

Step 2: Record disc again on track three (Fig. 4) and monitor the taped disc on track one (assuming the recorder will allow this) and at the same time monitor the record player output through the same amplifier, with equally mixed levels. Achieve phase by keeping recordings closely in step and cause "overtaking" by carefully slowing the machine which is ahead.

Fig. 3. Step one in creating pure phase

Fig. 4. Pure phase-step two. The direct output of the record player is mixed with the pre-recorded track one version and monitored while recording again on track three. Tracks are subsequently replayed together

Starting the recordings in coincidence requires some practice. It is easier to stop the tape (track one monitor) just after the beginning of the recording and then start the disc and keep the tape stationary until it is possible to start running the two in sync.

If you aim at producing an echo and then slow the faster of the two sources (finger on centre of disc or tape spool!), the echo time will decrease and you will achieve phase.

If both track one and track two final recordings are at approximately the same speed, the permanent phase recording can be reproduced at any time by parallel track playback. Fig. 5 shows an alternative method of playback which gives an impression of movement between two loudspeakers.

Another tape recorder approach is possible. Consider the two tape loop mechanisms with erase, record and playback heads arranged as shown in Fig. 6. If the distance in tape transport between record and playback heads is the same in each case, and the tape speeds are exactly the same, then whatever is recorded on the tape loops 1 and 2 at the record heads will appear at some time later at the playback heads exactly in step. However, if one tape loop speed is fixed and the other is slightly variable (but with its speed centred

Fig. 5. Another way of replaying the phased recording derived from the method given in Fig. 4, which gives an impression of movement between the loudspeakers

Fig. 6. Phase production with separate recorders held slightly out of sync.

Fig. 9. Compound "Pradge". A number of monostables, similarly connected, are necessary

Fig. 10. A simple CR phase shift circuit. TRI is a phase splitter, TR2 and TR3 are isolating emitter followers, C and VR provide the phase shift and TR4 provides a high impedance match for the CR network. TRI to TR3 may be almost any small-signal npn transistors (of the same type) and TR4 is a pnp.

Fig. 7. Basic "Pradge" uses a variable monostable to create delayed pulses

Fig. 8 (right). Circuit diagram of the basic "Pradge"

upon that of the fixed speed loop) then whatever is recorded at the record heads can be made to reappear in step (tape speeds the same); with echo (tape 2 slower than tape 1); or a head (tape 2 faster than tape 1).

Clearly if the speed of tape 2 is continuously variable, then the recording will phase as one loop draws ahead of the other. Phasing will of course occur only while the speed is being changed-which to avoid wow must not be too rapid-and will cease when the second loop has stabilised at its new speed.

ALL ELECTRONIC PHASE

The most marked feature of phase, the high frequency "whoosh", can be simulated electronically. The great advantage of a successful electronic system is that it can be used in a live performance without any need for recording. One possible system will now be described. This has been called Pradge--from the pulse re-insertive audio distortion generating equipment employed.

The musical waveform applied to "Pradge" is differentiated to extract a pulse train which is then amplified sufficiently to trigger a monostable of variable time constant. The output from the monostable is differentiated and mixed with the direct music fed to the loudspeaker (see Fig. 7).

Hence for every pulse on the musical waveform large enough to trigger the monostable, a second pulse is produced after a time determined by the setting of the monostable time constant t. The time interval between the pulses gives rise to a whoosh frequency f_{w}, which can be made to vary with the alteration of a single control on the monostable. Thus the system generates whoosh by pulse re-insertion, the frequency being variable. With continuous waveform inputs, the circuit given in Fig. 8 provides a good "swish" as the pitch control is varied, but on music it lacks the pleasing effect of pure phase (dual disc or tape) methods. Although extra pulses can be produced they are insufficient in number, chiefly because the circuit contains only one storage element-the monostableand thus only one pulse may be stored at any moment. It is nevertheless felt that the circuit is worthy of further attention.

COMPOUND PRADGE

To overcome the problem of storing many pulses at the same instant, a compound Pradge system is proposed. Several monostables are used, with and gates directing incoming pulses to the sections which are not storing signals, and are thus able to accept them at any instant.
'The diagram (Fig. 9) shows the general arrangement, where the monostable outputs are taken from both collectors to obtain both direct and indirect outputs for the and gates, which may be passive (diode) or active (transistor) elements.

The monostable outpuis are added and differentiated to obtain a rapid sequence of pulses, each bearing a definite phase relationship to the original audio waveform peak that triggered a device, the time delay being dependent on the time constant of the storing device.
For the sake of completeness, a simple $C R$ phase shift circuit is shown in Fig. 10. It consists of an antiphase-fed circuit which provides variable delay using the time constant of C and $V R$. It will provide a delay of 0.25 Hz at 10 kHz with $\mathrm{C}=1,500 \mathrm{pF}$ and $R=10$ kilohms. In practice several stages would probably be necessary to achieve audible phasing.

It is hoped to publish a more simple method of achieving the phase effect in the near future.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment accord. ing to its merit.

AN ELECTRONIC STORM

ARecent series of articles on electronic sound effects has given me the idea of constructing an electronic storm, which, once switched on rages indefinitely without any further help from the operator.
The equipment operates from the familiar White Noise Generator (January 1968). The output from the generator is passed to two electronic active filters. The output of one of the filters is fed to a diode demodulator and a two stage v.l.f. amplifier. The signal from this amplifier is fed to a transistor which modifies the transfer characteristic of the second filter. The output is taken from this second filter.

The output consists of two random signals. The wind itself is pink noise (i.e. a narrow band of white noise) whose bandwidth and amplitude are varied by the v.l.f. to produce a sound like a natural storm. Switches are provided to change from moaning gales to a violent storm with slashing rain. The sound of a steady downpour is available as an additional bonus from the v.l.f. side of the apparatus.
The circuit is given in Fig. 1 and a block diagram in Fig. 2.
The apparatus was built on a tagboard; layout should not be critical. However, unless a very low impedance power supply is used, it may be necessary to decouple the v.l.f. a mplifier to prevent oscillation at these low frequencies which would ruin the whole effect.
The choke used in the first filter was included to give the filter higher gain and to make it more stable at high Q factors. It was a surplus item removed from a R1155B receiver filter.
It is considered best to test the equipment as it is being built. First construct the noise generator and its emitter follower. Connect the output, via a suitable capacitor, to an audio amplifier and ensure that there is a noise output.

Next build the first electronic filter, and connect its output, via the capacitor, to the amplifier. It should be

Fig. I. Circult diagram of the storm generator. The first OA8I (left) is selected for high noise output. Alternatively a cheap general purpose diode would do if it is noisy

Fig. 2. Block diagram showing how the demodulated v.l.f. component of filtered white noise is used to vary the characteristic of an electronic filter
possible to adjust the VR1 to give an oscillation. If not, try disconnecting it. If oscillation then takes place use a high value resistor. If oscillation still does not occur, try an emitter bypass arrangement as in the second filter. If that won't do it the 100 kilohm resistor may be changed to $33 \mathrm{k} \Omega$. If none of these changes succeed, check the circuit and remedy the faulty wiring or component! The circuit should be oscillating at a high audio frequency, about that of the television line whistle on 405 line transmissions. Now reduce the gain of the circuit with VR1 and hear the sound of falling rain as oscillation just ceases. Some coils may require capacitors across them to achieve the desired effect, others may have too large an inductance, and the only cure is to rewind or replace them!

Next the demodulator and the v.l.f. amplifier may be built, as far as VR2. These are difficult to check without a high impedance voltmeter or oscilloscope, but if they are working, these instruments are not required for this
experiment. If a high impedance voltmeter or d.c. oscilloscope is connected to the collector of the output transistor, a random varying voltage should be observed. It might be possible to hear a rumbling sound in the amplifier, if it is connected to the output.

Next, construct the rest of the circuit, but leave the $200 \mu \mathrm{~F}$ capacitor connected to the first emitter of the filter with one end disconnected. When the filter is completed, it may be tested as before. With the switches on, deeper pink noise should be obtained.

The operation will be completed by the connection of the $200 \mu \mathrm{~F}$ capacitor to TR 5 emitter. With the 2 megohm resistor set at 1 megohm, the output of the filter should represent a violent storm. If not, it may be that a large resistance should be connected across the $200 \mu \mathrm{~F}$. I would suggest 330 kilohms for a start.

It should be noted that the setting of VR1 is critical for correct operation.

VR3 and VR4 are a mixing network for the final output. VR4 controls the wind, and VR3 the steady downpour outputs respectively.
J. C. de Rivaz, B.Sc.

Barnet.

For Future Reference

An index for volume three (January 1967 to December 1967) is now available price Is $6 d$ inclusive of postage.

Orders for copies of the Index only should be addressed to the Post Sales Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

AND

PART 2-A GATHODE RAY TUBE COLOUR PATTERN DISPLAY

He first article of this series gave brief details of the employment of a cathode ray tube display with a colour scanner capable of producing moving patterns in colour from audio frequency signals, such signals being derived from music or sine/square-wave generators. A display of this kind can be produced from an old television receiver, providing that the cathode ray tube and the e.h.t. supply circuits are both in working order. Some familiarity with TV receiver circuitry is, of course, essential. This experimental project should certainly not be undertaken by the novice.

FIRST STAGE-POWER SUPPLIES
Having acquired a redundant TV receiver (suitable models are frequently available for $£ 10$ or less), modification is then carried out on the following lines.

The first stage is to strip out all unrequired valves and components, i.e. the r.f., i.f., video and frame oscillator circuitry. The line scan oscillator and its amplifier, which will most likely be part of the e.h.t. circuit, must be left in and supplied with the necessary h.t. from an external power supply so that the e.h.t. supply can be made to operate again.

Most TV sets employ the a.c./d.c. system of heater and h.t. supply derived directly from the mains. This must be done away with, particularly in view of the experimental nature of this project. On no account should the new heater and h.t. supplies be taken direct from the mains. Such practice would not only be dangerous but could also prove to be lethal.

The heater voltage for the remaining line scan oscillator, its amplifier, and the e.h.t. valves may well prove to be different for each valve left in circuitalthough the common heater current will most likely be $0 \cdot 3 \mathrm{~A}$. A low voltage a.c. supply from a transformer must therefore be provided. The voltage required will depend upon whether the heaters can be left in series at $0 \cdot 3 \mathrm{~A}$, or parallel wired if each valve has the same heater voltage. The new h.t. supply must be capable of supplying $300-350 \mathrm{~V}$ at 120 mA since it will be providing power for the tube e.h.t. circuit as well as the new circuits. It must of course employ a mains transformer, rectifier, and smoothing circuit in the usual way.

BRILLIANCE CONTROL
The second stage is to get the e.h.t. supply and the tube working. The tube brilliance control circuit will probably have to be modified accordingly, and here it may be easier to rewire the brilliance control circuitry and employ variable cathode bias. Other tube potentials should be adjusted according to the make and type of tube.
The TV set shown in the photographs was originally a Ferguson type 306T with a Mullard MW43/64 flat faced tube designed to operate with a maximum of 14 kV e.h.t. It required a grid bias of approximately -60 V to produce cut off, i.e. brilliance reduced to zero.

On completion of this second stage the tube should now display a bright spot at the centre when the brilliance control is turned up. Do not run in this condition for more than is necessary as the beam intensity may be sufficient to burn a hole in the tube fluorescent coating. If an ion trap is fitted to the tube it must be properly positioned before brilliance can be obtained.

By using variable cathode bias for brilliance control the grid can be directly returned to earth via a 470 kilohm resistor. The pulsing voltage can then be applied directly to the grid via series resistances as will be shown later.

fig. 2.1. The colour scanner assembly (see text and also Fig. 2.2)

DEFLECTOR COILS

The deflector coils may be found connected in parallel to preserve symmetrical deflection. They should be left wired this way ready for connection to the output transformers of the new deflection amplifiers. However, as a check on proper deflection of the tube trace, a low a.c. voltage, say 2 V to 3 V , could be connected to each coil in turn.

The display is now ready for the assembly, wiring, and connecting up of the new circuits which comprise two pulse generators, two deflector coil amplifiers, and input and phase shift circuitry.

The existing focusing arrangement is not altered or disturbed in any way.

THE COLOUR SCANNER

First, however, the ĉolour scanner must be assembled and a suitable d.c. motor mounted under the tube.

The arrangement used in the writer's experimental display is shown in the photograph. The motor is a 12 V d.c. type taking a current of 0.5 A and runs at
The stripped down TV set ready for the assembly and whing of the new circuits. The partly assembled new heater and h.t. supply. can be seen on the right

Fig. 2.2. Details of the colour scanner hub and method of securing the inner edges of the colour segments
approximately 10 revolutions per second. This motor was mounted as shown beneath the tube with the shaft extended via a flexible coupler to the scanner hub.

This hub was made from a metal tape spool (Ferrograph type). The centre section of the spool was removed leaving the two spoked faces which were bolted together and provided with a boss and spindle to couple up to the drive motor. Fig. 2.1 shows the general assembly of the scanner which has an overall diameter of 28 in . The diameter will be larger if the c.r.t. is greater than 12 in vertically across the face.

The colour material for the scanner is Cinemoid which is a vailable from Strand Electric and Engineering Limited, 250 Kennington Lane, London, S.E. 11 . Pieces $12 \mathrm{in} \times 12$ in cost 2 s 9 d each and are available in a great variety of colours. A piece of 12 in $\times 12$ in will just allow for one segment of the scanner shown in

This shows the d.c. motor mounted beneath the c.r.t. This motor should be controlled by a varlable serles resistor if necessary so that the scanner will turn ot 6 to 10 revolutions per second. Any 12 to 24 volt motor with sufficient power and a nominal speed of 600 r.p.m. will suffice

The completed cathode ray tube colour pattern display
Fig. 2.1. The Strand Electric reference for these pieces is No. 61 which ensures getting the 12 in $\times 12$ in sheets.

ARRANGEMENT OF COLOURS

For optimum colour effect the segments should be coloured as shown in Fig. 2.1. The two segments marked light blue and dark blue (6 and 7) were found to give a contrast of blues but one or the other could be replaced with a deep red or green to obtain a similar effect.

The colour segments are cut to cover an arc of just over 51 degrees plus half an inch for overlapping as shown in Fig. 2.2. The inner edges also overlap the inside of the hub faces as in Fig. 2.2 and 6B.A. nuts and screws secure the two hub faces and the inner edges of the colour segments as shown in the same diagram. The long overlaps, i.e. from inner to outer diameter are glued with Evostick-the only adhesive found to glue Cinemoid successfully.

When rotating at between six and ten times per second the scanner, which may appear too flexible whilst stationary, remains quite stable and flat. Care should be taken, however, to see that the motor drive and scanner hub run true and that the scanner is perfectly round at the outer edge.

CIRCUIT DIAGRAMS

Details and circuits for the pulse generators and deflection amplifiers, etc. will be dealt with in next month's article.

Fig. 2.3. Circuit of the power supply used by the writer which may serve as a guide to a general arrangement for obtaining the scanner motor voltage, h.t. and heater voltage for new circuitry and any necessary series heater voltoge

The power supply circuit used for the display built by the writer may be of interest and is given in Fig. 2.3. The voltage for any series heater circuits remaining in use, i.e. line oscillator and e.h.t., circuit will of course depend on the number of valves and their respective heater voltages. The motor voltage and current will also depend on that required, but a d.c. motor capable of turning the colour scanner will most likely take around 0.5 amp at 12 volts or so.

The block diagram Fig. 2.4 shows the different circuits associated with the c.r. colour pattern display. These are fairly simple circuit arrangements and can be assembled on small chassis bolted to the existing TV chassis as will be shown next month.

...MAMMOTH MICRO PLANT

NEW COMPANY -. - NEW FACTORY

CLAIMED to be the largest European manufacturer of integrated circuits, Marconi-Elliott Microelectronics Ltd. has recently been formed by English Electric. This new company has a modern production plant with a production capacity of over five million microcircuits per year.
The new factory at Witham, Essex, total area 96.000 sq ft, was officially opened by the Minister of Tech${ }^{\text {nologhy }}$. Rt Hon Anthony Wedgwood Benn MP on July 5. This significant development puts Britain in a strong position to combat international competition

The gleaming white external appearance of the new factory is indicative of the clinical atmosphere within. Scrupulously clean working areas are essential in semiconductor production. At Witham the air cleanliness is controlled to very precise limits and temperature never varies more than $11_{2}^{\circ} \mathrm{C}$ and humidity is kept within ± 10 per cent of 45 per cent. Nylon coats or overalls are compulsory throughout this carefully regulated environment.

Certain processes require even higher standards of clean air than provided in the main areas: operators in, for example, the mask making sections operate equipment in

An operator controlling a semi-automatic encapsulation machine at the new Marconi-Elliott Microelectronics plant at Witham, Essex.

The process, in which semiconductors are put into cans and sealed in an atmosphere of dry nitrogen, is carried out in a cabinet into which nitrogen gas is fed at above atmospheric pressure and continuously monitored in humidity and temperature. The operator works through two portholes with rubber glove extensions attached.

A major feature of the service offered to customers is a comprehensive applications engineering facility, able to design integrated circuits for specific purposes.

The photograph shows an applications engineer working on a "breadboard" layout for a
customer application.

A steam generator, connected to a quartz tube, used in the oxidisation process carried out on silicon slices when they are in a diffusion furnace

A general view of the main $6,000 \mathrm{sq} \mathrm{ft}$ assembly area. The front row of girls in the photograph are testing circuits before they are assembled into their final packages
laminar flow "boxes" providing Class 100 clean air conditions.

The factory is like a giant three layer sandwich, with production and development areas occupying a central floor. This floor is serviced by gas, water, electricity, etc., from below through a complex network of pipes, and from above by a giant rabbit warren of air conditioning ducts. Other services installed include an effluent treatment plant, a demineralised water treatment plant, vacuum cleaning plant and an auxiliary electrical supply to protect the banks of diffusion furnaces. Production and develop-
ment staff gain access through changing rooms.
Production at present is concentrated on bipolar microcircuits, with MOST production being carried out in a smaller area. This relationship is expected to change radically by the 1970s with metal oxide silicon transistor (MOST) circuits accounting for a much higher percentage. Of major importance for the future is the research work being undertaken, especially in connection with large scale integration for linear and digital circuits; automated production techniques for interconnecting these circuits are being explored.

GOOD CCOMPUTERISED HOUSEKEEPING AT THE B.B.C.........

or how to stretch that licence revenue to the limit

Housekeeping can be a great problem especially if you H are responsible for supplying all the BBC's transmitting stations with essential parts. This is the problem of the BBC's Central Valve Store. Some transmitting valves can cost $£ 3,000$ each. No prudent "housewife" would want to hold too many of these items in stock.

Expansion of BBC television in monochrome and colour, the duplication of BBC-1 on u.h.f. and the modernisation of the shortwave stations, have greatly increased the range of valves, semiconductors, cathode ray tubes, camera tubes, and similar devices now in use. Some 4,000 different types are now held in store.

So now an ICT 1909 general purpose computer (see photo) has been called in to compile inventories of valve stocks, and to indicate when new supplies should be ordered from manufacturers. Factors taken in account in the computer programme are stock in hand, stock on order, shortages, requests for special schemes, forecasted demand, minimum order quantity.

The advantage of computerised housekeeping is that no capital is tied up in excess stocks, and that so far as possible no interruption of services will occur due to shortages of replacement parts. Store space is also reduced to the minimum-effecting further economies.

ANALOGUE PEAC COMMRUT區

By D.BOLLEN

THIs month's article deals with UNIT "D"-the multiplier, which is the final piece of PEAC equipment. After a technical description, details of the construction and setting, up are given.

The servo driven potentiometer has been widely employed in the past for multiplication of one variable voltage by another, but its frequency response, in most cases, is seldom better than $0-5 \mathrm{~Hz}$. Modern analogue computers now tend to use all solid-state multiplier circuits, which have a frequency response extending into the kHz region, but they are both complex and expensive. Taking the quarter-square multiplier as an example, it needs five operational amplifiers and two diode function generators to produce an accurate product voltage from two inputs. It follows, therefore. that analogue multiplier circuit design can be expected to present considerable difficulties when cost is an important consideration.

UNIT "D"-THE MULTIPLIER

Working on the premise that even a multiplier of restricted performance can make a worthwhile contribution to an analogue computer which lacks such a facility, an accuracy of $2 \cdot 5$ per cent and a frequency response of 50 Hz under the most favourable conditions was considered to be an acceptable specification for the UNIT "D" multiplier. Although $0-50 \mathrm{~Hz}$ seems rather limited by ordinary electronic standards, in the context of "parallel" computer circuit operation it represents a useful compute time which compares favourably with the servo multiplier.

UNIT "D" contains three distinct circuits, two operational amplifiers and a bistable reed relay driver. One of the amplifiers is identical to those used with UNIT "A", and is available as a multi-purpose operational amplifier when the multiplier is not in service.

TIME DIVISION

With the time division multiplier, a square wave is modulated in such a way that the mark/space ratio is proportional to one input voltage, while the amplitude of the waveform is proportional to another input voltage. The mean value of the resulting waveform is then proportional to the product of the two input voltages.

Looking at Fig. 9.1, which sets out the simplified multiplier circuit with associated waveforms, a voltage E_{2} is compared with a fixed voltage E_{3} at the input of the integrating amplifier. A bistable relay is arranged to switch $\$ 1$ and $S 2$ when the integrator output reaches a pre-determined value, conveniently about two thirds of the maximum available amplifier output swing. If the sign of E_{3} at the $S 1$ contacts is correct, the feedback will be positive, and a self-sustained oscillation at a frequency determined mainly by E_{2} and C_{f} will result. When $E_{2}=0$ the output from the integrator will consist of a sawtooth or symmetrical ramp waveform, with identical rising and falling slopes, which is generated by E_{3}.

Assume now that a voltage E_{y} is applied; this will be added to, or subtracted from E_{3}, depending on the position of the S1 switch. The ramp waveform is therefore modified to an asymmetric form where the ising and falling slopes become dependent on the level and sign of E_{2}.

Waveform (a) in Fig. 9.1 depicts the asymmetric ramp for $+E_{2}$ and $-E_{2}$, while waveform (b) shows the square wave generated by the switch, of mark/space dependent on the magnitude of E_{2}. As S 2 is synchronised with S1, so the input resistor R1 will be alternately switched to the inverting and non-inverting inputs of the product amplifier, and will remain at each contact for a time dependent on the frequency and mark/space of the switching waveform.

The amplitude of the product amplifier output is

Fig. 9.I. Time division multiplier with associated waveforms
Sockets
2 red, 2 blue, 1 black, 2 yellow, 3 white,
I green, and 6 miniature sockets
Miscellaneous
Material for front panel and box. Hardboard,
2 off $12 \frac{3}{8}$ in $\times 4 \frac{1}{2} \mathrm{in}, 2$ off $4 \frac{1}{2} \mathrm{in} \times 3 \frac{3}{16} \mathrm{in}$.
White plastic laminate, 2 off $12 \frac{3}{8}$ in $\times 4 \frac{1}{2} \mathrm{in}$,
2 off $3 \frac{1}{2} \mathrm{in} \times 4 \frac{1}{2} \mathrm{in}, 1$ off $12 \mathrm{in} \times 3 \frac{1}{\frac{1}{1} \mathrm{in}}$.
Softwood, 25 in $\times \frac{1}{2}$ in $\times \frac{1}{2}$ in. Knob, one
Radiospares $1 \frac{1}{1}$ in type PK with pointer.
UNIT "D" BISTABLE RELAY AND
PRODUCT AMPLIFIER
Resistors

COMPONENTS . . .

```
UNIT "D" FRONT PANEL. AND BOX
```

UNIT "D" FRONT PANEL. AND BOX
Potentiometers
Potentiometers
VR25 100\Omega wirewound
VR25 100\Omega wirewound
VR26 50\Omega wirewound
VR26 50\Omega wirewound
(both panel mounting type)
(both panel mounting type)
Switches
Switches
SII 3 pole, 4 way rotary
SII 3 pole, 4 way rotary
SI2 Double-pole slide switch (c/o contacts)

```
    SI2 Double-pole slide switch (c/o contacts)
```

RI	$1 \mathrm{k} \Omega$	*R14	10k $\Omega 1 \%$
R2	$4.3 \mathrm{k} \Omega$	R15	$1 \mathrm{k} \Omega$
R3	$4.3 \mathrm{k} \Omega$	R16	820Ω
R4	$4.3 \mathrm{k} \Omega$	R17	820Ω
R5	$1 \mathrm{k} \Omega$	R18	$\mathrm{lk} \Omega$
R6	100Ω	R19	$8 \cdot 2 \mathrm{k} \Omega$
*R7	$11 \mathrm{k} \mathrm{l}^{\circ} \mathrm{O}$	R20	$22 \mathrm{k} \Omega$
R8	$10 \mathrm{k} \Omega$	R21	$22 \mathrm{k} \Omega$
R9	$27 \mathrm{k} \Omega$	R22	$8-2 \mathrm{k} \Omega$
R10	$2.2 \mathrm{k} \Omega$	*R23	$200 \Omega 2$ 。
RII	100Ω	*R24	lk $\Omega 2^{\circ}{ }^{\circ}$
*R12	10 S 10.	*R25	$1 \cdot 2 \mathrm{k} \Omega 1 \%$
*R13	9.1k $\mathrm{I}^{1 \%}$	*R26	$300 \Omega 1 \%$

(All $10 \% \frac{1}{2}$ watt carbon composition except * $=$ IW metal oxide)

Potentiometers

VRI $100 \mathrm{k} \Omega$ vertical skeleton pre-set
VR2 220Ω miniature horizontal pre-set

Capacitors

$\mathrm{Cl} 1 \mu \mathrm{~F}$ polyester 250 V d.c.
C2 $0.25 \mu \mathrm{~F}$ polyester 250 V d.c.
C3 $\mu \mathrm{F}$ elect. 15 V
C4 $8 \mu \mathrm{~F}$ elect. I5V
C5 $100 \mu \mathrm{~F}$ elect. 15 V
Transistors
TRI, TR2 2N2926 (orange) or 2N3904 (2 off)
TR3 2N3906
TR4 2N3904
TR5, TR6 ACY28 or ACl26 (2 off)
Diodes
DI-D4 OA202 (4 off)

Choke

LI 5H (Radiospares "Midget" type)

Reed coils

RLA, RLB Miniature triple 12V
Osmor type MTI2V (2 off)
Reed switches
RLAI, RLA2 Hamlin MRG2 20 40AT (4 off)
RLBI, RLB2

Miscellaneous

S.R.B.P., I off $3 \mathrm{in} \times 3 \frac{1}{2} \mathrm{in}, I$ off $3 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in}$. Small turret tags. Baseboard/2 in $\times 4$ in s.r.b.p. or plastic laminate

Fig. 9.2. Multiplier circuit, comprising product amplifier panel and bistable relay panel
wholly dependent on E_{1}, but whatever the value of E_{1} it will be divided by $10 / E_{2}$ (time division), which is the same thing as $\left(\mathrm{E}_{1} \times E_{2}\right) / 10$, assuming of course that appropriate values for $\mathrm{RI}-\mathrm{R} 3, R_{\mathrm{f}}$ and E_{3} are chosen.

Waveforms (c) shows what happens to different signs of E_{1} and E_{2}, in terms of the square wave. If now the mean voltage level of the output from the product
amplifier is extracted by a suitable filter (see waveform (d)) it can be seen that four quadrant multiplication has been achieved. When E_{1} and E_{2} are both positive, or both negative, the product voltage will be positive, but when E_{1} and E_{2} are of opposite sign, the product becomes negative.
The multiplier circuit will now be described.

Fig. 9.3. Dimensions and engraving details for UNIT "D" front panel

UNIT "D" MULTIPLIER CIRCUIT

As the operational amplifier circuit has already been given in connection with UNIT "A", it appears in symbolised form only in the multiplier circuit of Fig. 9.2, with VR26 as the front panel balance control, and a fixed value of input resistor R12 provided internally for use with the multiplier. As the feedback capacitor C_{f} only affects the integrator waveform frequency, without altering other multiplier characteristics, it is useful to leave it as a plug-in component, so that the multiplier carrier frequency can be adjusted easily.

The output from the integrator, which it will be remembered from Fig. 9.1 carries information as to the magnitude and sign of input E_{2}, is fed via S11B to a diode resistor network composed of D1, D2, R15-R18, and VR2, the purpose of which is to allow the following bistable relay driver to be switched at precisely determined voltage levels. VR2 establishes the working point of the diode resistor network.

A conventional cross-coupled multivibrator is utilised as a relay driver, with reed coils RLA and RLB forming the respective collector loads of TR5 and TR6. D3 and D4 are used to ensure a "cleaner" switching action at high repetition rates, and the bistable circuit will function satisfactorily at frequencies in excess of 100 Hz without undue relay contact bounce. The reference voltage, which was shown as $\pm E_{3}$ in Fig. 9.1, is extracted from a resistor network R23-R26 and VR25 in Fig. 9.2. VR25 allows positive and negative values of E_{3} to be made equal. E_{3} voltages are then fed, via RLA2 and RLB2 switches, and resistor R13, back to the summing junction of the integrator, thus completing the closed-loop to maintain oscillation.

SIGN CHANGE

The square wave switching cycle is presented to the input of the product amplifier by RLA1 and RLB1, with R14 acting as the input resistor. Changeover switch S12 is included to allow the sign of the multiplier output voltage to be changed to suit a particular problem set-up.

A product amplifier open-loop gain of about 1,000 , which is the gain of the Fig. 9.2 circuit, is quite satisfactory for good accuracy when working with a fixed, closed-loop gain close to unity. Long-tailed pair TR1 and TR2 provide inverting and non-inverting inputs, while TR3 is the output transistor, and TR4 forms a constant current load for TR3, in place of a fixed resistor, thus enabling larger loads to be driven without excessive dissipation. VR1 serves to zero the amplifier output.

The ratio of resistors R 7 and R14 gives a product amplifier gain (closed-loop) of $1 \cdot 1$, while R13/R 12 yields an equivalent gain for the integrating amplifier of 0.91 . The lower value of gain for the integrator enables E_{2} to equal E_{3} without stopping the integration cycle, and yet the overall gain of the multiplier is still unity because $1.1 \times 0.91=1$.

FILTER CIRCUIT

The purpose of the filter circuit L1, C2-C5, R6, and $S 11 \mathrm{~A}$, is to remove the square wave carrier without distorting the product waveform when input voltages are time varying. Bearing in mind that computer waveforms are extremely diverse, it is almost impossible to achieve near perfect results with one filter circuit, especially when the carrier frequency is not far removed from input frequencies. To allow compromise, therefore, the cut-off frequency of the Fig. 9.2 filter can be set by switch S11A to suit the circumstances of a particular problem set-up.

The three switch positions, $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 50 Hz , represent approximately the roll-off points given by the filter, and the bandwidth handled by the multiplier. In the 1 Hz position the filter will virtually eliminate carrier ripple when input voltages are of very low frequency, but the 50 Hz setting is used with fast integrator waveform inputs, where ripple may be less objectionable.

CONSTRUCTION OF UNIT "D" FRONT PANEL AND BOX

Details of the UNIT "D" front panel and box appear in Fig. 9.3 and Fig. 9.4. Note that the operational amplifier (OA4) socket positions and panel markings

Fig. 9.4. Construction of the box for UNIT "D"
are the same as for UNIT "A" operational amplifiers. S11, VR25, VR26, and all sockets may be mounted after the front panel has been marked and drilled.

INTERNAL LAYOUT OF THE MULTIPLIER

The internal layout and interconnecting wiring of the multiplier are shown in Fig. 9.5. Operational amplifier, bistable relay driver, and product amplifier circuit panels are bolted with stand-off spacers to a 12 in $\times 4$ in s.r.b.p. or plastics laminate baseboard, which rests on the wooden bearers at the base of the UNIT "D" box.
Component placement positions for the bistable relay circuit panel, and the product amplifier panel, also appear in Fig. 9.5, together with a rear view of the front panel assembly. The operational amplifier (OA4) is made up in accordance with instructions given in the May issue of Practical Electronics (pages 209-210).

BISTABLE RELAY CIRCUIT

 CONSTRUCTION

 CONSTRUCTION}Drill the bistable relay circuit panel according to Fig. 9.6, and insert turret tags. Then mount all components and complete underside wiring, leaving the reed switches RLA1, RLA2, RLB1, and RLB2 until

last. A triple reed coil is specified for the Fig. 9.2 circuit, to allow the addition of an extra pair of reed switches if the multiplier is to be enlarged to cater for three input voltages; this modification will, of course, also involve the construction of another product amplifier.

PRODUCT AMPLIFIER CIRCUIT CONSTRUCTION

Drilling details and underside wiring of the product amplifier panel appear in Fig. 9.7. Accurate matching of input transistors TR1 and TR2 may not be necessary with this low gain circuit. A 2N2926 transistor should not be employed in the TR4 position, in place of the 2N3904, as its maximum $V_{\text {ce }}$ will be exceeded.
After inserting turret tags, mount resistors and transistors first, then follow with L1, and capacitors $\mathrm{C} 2-\mathrm{C} 5$. C 1 is soldered into position last of all, across the amplifier input turret tags, as shown in Fig. 9.5.

FINAL ASSEMBLY AND SETTING UP OF UNIT "D"

Mount the three circuit panels on the baseboard and complete all interconnecting wiring between the circuit panels and the front panel, including S12 which can be left floating for the time being. The resulting assembly can be set-up and tested out of its box.

Connect red, green, and blue flexible wires from the bistable relay panel to the UNIT "A" power supply solder tags, or alternatively to TL1, TL2, and TL3 with stackable plugs.

Place S11 in the "off", position and zero-set the operational amplifier (OA4) following instructions given earlier for UNIT "A" amplifiers, after allowing the usual warm-up period. When adjusting the VR26 balance control çonnect M/SK2 to any earth socket with a patching lead. Next, attach a sensitive d.c. voltmeter ($0-1 \mathrm{~V}$) to M/SK3 and zero-set the multiplier output by adjustment of VR1 on the product amplifier circuit panel.

REAR OF FRONT PANEL

Fig. 9.5. Internal layout and wiring of UNIT "D" multiplier

Fig. 9.6 (far left). Top and underside views of bistable relay panel

Fig. 9.7 (left). Top and underside views of product amplifier circuit panel

Insert a $0.25 \mu \mathrm{~F}$ capacitor into OA4/SK11 and SK12, and switch S11 to 10 Hz . A "buzz' from the relays should now be heard, which may or may not sound erratic. Transfer the d.c. voltmeter to OA4 output while the relays are still working and adjust VR2 on the bistable relay panel for zero volts; this should produce an even note from the relays. Return the voltmeter lead to the multiplier output M/SK 3 and this time zeroset with VR25.

Apply an in put of +5 V to M/SK2; the relay "buzz" will drop in frequency, but no output should be observed at M/SK 3. Transfer the +5 V patching lead to M/SK1 and again no output should be seen. Finally, apply +5 V to both inputs, M/SK 1 and SK2, to produce a multiplier output of $5^{2} / 10$ or 2.5 V .

Throw switch S12 to change output polarity and experiment with inputs of differing sign. If all is well, the product voltage should retain its value of 2.5 for any sign combination of input voltages and S12.

For best accuracy it is advisable to go over all adjustments again to obtain optimum settings, and also verify that the multiplier will handle a full range of input voltages.

Due to the fact that the power supply may be working close to its maximum current limit, there could be some fall-off in multiplier accuracy because of switching transients, this can be checked by employing the extra current facility, S1 in Fig. 3.1. . The optional -12 V relay power supply should obviate the difficulty if it occurs.

To use the operational amplifier (OA4) on its own, merely switch S11 to the "off"' position and patch the amplifier sockets in the normal way.
Next month: The final article in the PEAC series. This will complete the operational details of UNIT "D", and will give some examples of special circuits to represent mechanical phenomena, and some general notes.

RADIOISOTOPE EXPERIMENTS FOR SCHOOLS AND COLLEGES

By J. B. Dance, M.Sc., B.Sc.
Published by Pergamon Press Ltd. 200 pages, $7 \frac{1}{2}$ in $\times 5 i n$. Price 27s $6 d$
THis concisely written book fulfils a long-felt need for a synoptical guide to the properties of radioactive materials, simple experiments therewith, and an outline of their applications. This subject is now so topical that modern school teaching cannot ignore it. Mr Dance writes in a clear style which is delightful to read and easy to understand, assuming only elementary general knowledge of physics, chemistry and very simple mathematics. All further concepts are adequately explained within the text.

The first two chapters deal briefly with fundamentals of atomic structure and nuclear radiation, including units and measuring equipment. Further chapters are devoted to the problems of biological hazards from nuclear radiations and tolerance limits, as well as general methods of experimental procedure. Four chapters describe numerous safe experiments for practical teaching. Appendices present data tables, a list of suppliers and the legislation controlling the use of radioactive materials.

All experiments are described in sufficient detail to permit immediate practical implementation and copious suggestions are included for further work. The experiments are designed to make use of existing materials and facilities in any school chemistry laboratory, calling for only inexpensive auxiliaries and simple electronic équipment restricted to G.M. tube detectors (Geiger counters). Nevertheless, the range of experiments covers all important basic principles in a well rounded-off survey. No experiments with a gamma ray spectrometer are described, on account of the prohibitive price of this instrument in commercial forms. (This financial barrier has now been broken
down by the STRACE spectrometer design published in this magazine.)

Natural rainfall is a most rewarding subject for radiochemical study by school groups and societies, as Mr Dance points out in some very brief notes, giving rather insufficient information to reveal the scope of such projects. This is no just criticism, because such information has nowhere yet been available and Mr. Dance has not set out to tread new paths, but rather to present a fine collection of well-tried experimental recipes aimed to illustrate basic principles which he has described equally well.
M.L.M.

BEGINNERS GUIDE TO TRANSISTORS

By J. A. Reddihough
Published by the Hamlyn Publishing Group Ltd.
160 pages, $7 \frac{1}{2}$ in $\times 5 \mathrm{in}$. Price 15 s

THIS addition to the Newnes' series of Beginners Guides packs a great deal of information into few pages.

The tenor of the text is essentially practical with an absolute minimum of mathematics. Analyses of commonly encountered circuits, both domestic and pulse, is managed in concentrated and readily assimilable bites of a few paragraphs.

From an opening chapter outlining the physics of conduction in semiconductor materials, the reader is instructed briefly in manufacturing techniques and types of transistor. A chapter on basic transistor circuits and characteristics leads on to a whole host of representative circuits found in a.f., r.f., and pulse equipment. These include amplifiers, both single and compound, and a.m. and f.m. radio receivers. A u.h.f. tuner is examined in a section on television transistor circuitry and intergrated circuits have a short chapter to themselves.
The pulse circuit family is well represented in a general chapter on electronic circuits. This also embraces operational amplifiers and sinewave generators.

The final chapter outlines general fault finding procedures and there are some useful guidelines provided both for diagnoses of faulty stages and transistor check outs with an ohmmeter.
G.M.H.

THIS article describes the construction of a crystal clock with simple digital display. It was first designed to operate in a car with a 12 volt system. Although it may be thought to be fairly expensive for the duty required, the circuitry is given for the guidance of readers who are interested in frequency division principles.

As a pure exercise, it is probably worth considering the relative merits of a.c. and d.c. powered systems and readout briefly before going into the clock circuitry more closely.

DESIGN CONSIDERATIONS

Let us suppose a pure electronic readout is required using numerical display tubes. A 200 to 350 volt supply at 10 mA would be required. If this method is run from the nominal 12 V d.c. supply, the output must remain reasonably steady for supply fluctuations between 9 and 16 V at a consumption of about 7 watts. To this must be added the consumption (and cost) of four ring counters using high voltage transistors or thyristors. The net result would be a display unit taking much more power than the basic clock.

It could be argued that, since we would require 250 V d.c., why not run the equipment from an a.c. 250 V mains supply, using the 50 Hz mains frequency as a fairly constant frequency supply source instead of the crystal. Some of the divider stages could therefore be eliminated. As the power consumption is not now a critical factor, two more number tubes may be driven to display seconds, but two more ring counters would be required.

It can be inferred that if a number tube display is required, complete with long-term count-down, then considerably more current would be required.

The system described in this article overcomes power consumption problems by using a pulsed Ledex switching unit with direct dial readout. Consequently, a mains supply is not necessary and the circuitry is simplified. It is not restricted to being a "one only" clock; the basic electronic frequency dividing unit can be used as a master to operate any number of slave display units, provided sufficient power is available.

In the case of a car, the tube h.t. supply could be switched on only when the ignition switch is operated. In the home, slave units could be strategically placed and driven from the central timing unit.

This could be powered by a small motor cycle battery which is on constant charge via a mains power unit. In the event of mains failure the clock would be able to keep running for up to four days solely from the charged battery.

The prototype described here was designed for operation in a car, but it had to withstand variations in supply voltage and temperature. Divider stability depends on the quality of its capacitors; these values sometimes depend on temperature, which may govern the accuracy of the clock.

In practice the prototype clock has maintained excellent operations with variation from 9 volts to approximately 16 volts, and temperatures from $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. The current consumption is 40 mA continuous with short pulses of up to $1 \cdot 3 \mathrm{~A}$ when the Ledex switches on the display sub-assembly are pulsed into rotation. Averaged out over a long period, the consumption of the clock is far less than that of a parking light.

OPERATION

The basis of any clock is a time standard. There are two highly stable portable frequency standards: a tuning fork and a quartz crystal oscillator. In this unit the crystal oscillator was chosen, both for simplicity of tuning and operation, as the element of the clock. Fig. 1 shows the block diagram of the complete system.
The signal source is the crystal oscillator which produces a 10 kHz sine wave. This is then squared by an overdriven amplifier which functions as a peak clipper. A train of six divider stages serves to reduce this output frequency by an overall ratio of 600,000 to 1 . These stages consist basically of staircase generators, which are sometimes referred to as pump circuits.

The output frequency from the final divider is routed through a power amplifier circuit, then on to the "minutes" display L'edex solenoid. By specific wiring of the contact arrangement on the wafers of this switch, every tenth "minute" pulse is passed through "pulse unit 1 " to provide a tens of minutes display on Ledex 2. Every sixth one of these is passed through "pulse unit 2" to provide the hours display.

CRYSTAL OSCILLATOR

If a crystal is used as the basic element of a clock, one of the simplest circuits to employ to provide a frequency standard is the transistor version of the Pierce circuit.
 the digital clock

This has one unique advantage in that it contains no tuned element except for the crystal which is contained in the feedback path, from collector to base, of TR1, see Fig. 2.

The trimmer VC1 provides frequency adjustment in the final setting up of the unit. Decoupling and additional line volt stabilisation is achieved with the capacitor C3 and Zener diode D1, the latter maintaining approximately 3 volts to keep the crystal drive voltage down to a suitable level.

CRYSTAL OSCILLATOR

COMPONENTS . . .

Resistors

R1 $820 \mathrm{k} \Omega$	R4	$18 \mathrm{k} \Omega$
R2	$3.9 \mathrm{k} \Omega$	R5
R3	$4.7 \mathrm{k} \Omega$	
All 10%		
A 10	$\frac{1}{4}$ watt	

Potentiometer
VRI IM Ω carbon skeleton preset

CRYSTAL OSCILLATOR One of each of the following required Capacitors

CI 22pF mica C3 $8 \mu \mathrm{~F}$ elect. I5V $\mathrm{C} 2{ }^{0.01} \mu \mathrm{~F}$ polyester VCl 300 pF mica compression preset trimmer

Crystal

XI IOkHz type DJC/I95 (see text)

Fig. 2. Circuit diagram of the crystal oscillator

INCREASE YOUR KNOWLEDCE

MANY COURSES TO CHOOSE FROM inct.
RADIO AND TV ENGINEERING SERVICING,
TRANSISTOR AND PRINTED CIRCUIT SERVICING,
CLOSED CIRCLIT TV, ELECTRONICS,
NUMERICAL CONTROL ELECTRONICS,
TELEMETRY TECHNIQUES, SERVOMECHANISMS, PRINCIPLES OF AUTOMATION,
COMPUTERS, ete.

ALSO EXAMINATION COURSES FOR

Institution of Electronic and Radio Engineers
C. \& G. Telecommunication Technicians' Certs
C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Certiffcate
P.M.G. Certificates in Radiotelegraphy

Radio Amateurs' Examination

BUILD YOUR OWN RADIO

AND INSTRUMENTS

With an ICS Practical Radio and Electronics Course you gain a sound knowledge of circuits and applications as you build your own 5-valve Superhet Receiver, Transistor Portable, and high-grade test instruments, incl. professional-type valve volt meter (shown below). Everything simply explained. All components and tools supplied. For illustrated brochure, post

PORTABLE TYPE
69.5.0.

INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE 0-260v BRAND NEW
Keenest prices in the country All Types (and Spares) from $\frac{1}{2}$ to 50 amp. from stock. SHROUDED TYPE 1 amp, E5. 10. 0. 66150.42 .5 amps 5 amps , 99.15 .0 . 8 2mps, E14. 10. 0.10 amps, $£ 18$. 10 . 0 . $12 \mathrm{amps}, 621 \cdot 0.0$. 15 amps , 20 amps, 637 o. 0. £92. 0. ©.
OPEN TYPE (Panel Mounting) $1 . \mathrm{mp}$, £3. 10. $0.1 \mathrm{amp}, \mathrm{E5}$. 10. 0 . (2mps, E6. 12. 6.
PORTABLE TYPE
1.5 amp . portable fitted metal case.

100 WATT PONER RHEOSTATS (NEW)

AVAILABLE IN THE FOLLOWING VALUES
$1 \mathrm{ohm}, 10 \mathrm{a}: 55 \mathrm{ohm}, 4.7 \mathrm{a}: 10 \mathrm{ohm}, 3 \mathrm{a}$.
$25 \mathrm{ohm}, 2 \mathrm{a} . ; 50 \mathrm{ohm}, 1.4 \mathrm{a} . ; 100 \mathrm{ohm}, 1 \mathrm{a}$. ,
$250 \mathrm{ohm}, 7 \mathrm{a} . ; 500 \mathrm{ohm}, .45 \mathrm{a} .1,000 \mathrm{ohm}$,
280 mA . 1500 ohm, 230 mA . $2,500 \mathrm{ohm}$ 3tin. Shaft length Iin., dia. "in. All at $27 / 6$ P. \& P. $1 / 6$.

50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{I}, 000 / 1,500 / 2,500$ ohm, 21/-. P. \& P. 1/6 25 WATT. \& $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$
ohm, 14/6. P. \& P. 1/6.
 2 on/off every 24 hours at any pre-set time. Fitted in metal case. 36 hr. Fraction of makers' price. $£ 3.19 .6$ plus $4 / 6$ P. \& P.
VENNER $200 / 250 \mathrm{~V}$ AC 20A TIME SWITCH Spring reserve 2 on/off every 24 hrs. ing block. Fully testedplete with mount Either eyoe available, with Solar dial on request

CONDENSERS $2,500 \mathrm{mfd} 100 \mathrm{v} .12 / 6 \mathrm{l} / 6 \mathrm{P}$. \& P $4,000 \mathrm{mfd} 25 \mathrm{v} .10 /-1 / 6 \mathrm{~F} . \&$ \& $\mathrm{P} . \quad 4,000 \mathrm{mfd} 50 \mathrm{v}$. 15 CONSTANT VOLTAGE TRANSFORMER
Input 185-250 v. A.C. Output 230 v A.C Capacity 250 watt. Attractive metal case. Fitted red signal lamp. Rubber feet
Weight 1715 . Price \&11/10/0. P. \& P. 15
SELENTUM BRIDGE REC
30 volt 3 amp .. $11 / \mathrm{m} .30$ volt $5 \mathrm{amp} ., 16 / 4$, plus $2 / 6$ P. \& P L.T. TRA NSFORMERS All primaries 220-240

TRANSFORMER Input 230 v . A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36 v. A.C. $0-36 \mathrm{v}$. at 20 amp . $221 / 0 \mathrm{0}$. P. \& P. $15 /-$

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 995 I560 SHOWROOM NOW OPEN

CLOSED SATURDAY

NOW IN STOCK TRANSISTOR MANUAL

INTER: G.E.C. 7th Edition 21/Postage 2/-

BEGINNERS GUIDE TO TRANSISTORS, by J. A. Reddihough. IS/-. Postage $1 /$.
R.C.A. COLOR TV TROUBLESHOOTING PICT-O-GUIDE. $50 /-$ Postage $1 / 6$.
THE ALL-IN-ONE TAPE RECORDER BOOK. Pub. Focal. 15/6. Postage 1/. R.C.A. SILICON CONTROLLED RECTIFIER EXPERIMENTER'S MANUAL. 15/-. Postage $1 /-$.
RADIO AND LINE TRANSMISSION (A), by D. C. Green. 45/-. Postage $1 / 6$. AN ELECTRONIC ORGAN FOR THE HOMECONSTRUCTOR, by A. Douglas 20/-. Postage $1 /$.
COLOUR TELEVISION, PAL SYSTEM, by G. N. Patchett. 40/-. Postage 1/.
BASIC THEORY AND APPLICATION OF TRANSISTORS. 12/-. Postage $1 /$. TRANSISTOR POCKET BOOK, by R. G. Hibberd. 25/-. Postage 1/-

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS of British and American Technical Books 19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

TR2 is an overdriven amplifier which clips the sine wave resulting in approximate square waves, at the crystal frequency, to drive the subsequent cascaded divider units.

FREQUENCY DIVIDERS

There are six frequency dividers: five giving divide by ten and one divide by six. Fig. 3 shows the basic circuit used in all these stages.
The input from the overdriven amplifier is fed to the base of TR1 which is a buffer emitter follower. This provides the necessary low source impedance to drive the transistor pump circuit, which provides an intrinsically linear staircase output across C2. With a positive
going pulse appearing across R1, C2 commences to charge through diode D1 at a time constant equal to the product of the sum of the emitter follower output impedance and diode resistance, and C 1 plus C 2 .
C 2 is larger in value than C 1 so that the voltage change across C2 on the pulse is small in comparison with the input voltage. In the interval of the pulse, C2 charges. After the first pulse, D1 becomes reverse biased and the voltage on C2 remains stored. On the leading edge of the next square wave the operation occurs again. Thus a staircase waveform, as shown in Fig. 3, appears at C2, the height of each step being equal to the initial charge voltage.

To linearise the waveform TR2 acts as a bootstrap

FREQUENCY DIVIDER

Table I:
FREQUENCY DIVIDER COMPONENTS

Divider stage	R2 *	Cl	C 2
1	S.C.	$1,000 \mathrm{pF}$	$0.01 \mu \mathrm{~F}$
2	S.C.	$0.005 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
3	S.C.	$0.05 \mu \mathrm{~F}$	$0.5 \mu \mathrm{~F}$
4	S.C.	$0.5 \mu \mathrm{~F}$	$5 \mu \mathrm{~F}$
5	S.C.	$5 \mu \mathrm{~F}$	$50 \mu \mathrm{~F}$
6	47Ω	$80 \mu \mathrm{~F}$	$500 \mu \mathrm{~F}$

* S.C. means that R2 is short-circuited. Capacitors are polyester or electrolytic 15 V types as appropriate to the values.

Fig. 3. Circuit diagram of one divider. See Table Ifor details of C1, C2, and R2 for all dividers

COMPONENTS . . .

FREQUENCY DIVIDERS
There are six of these each with the following:

Resistors

$$
\begin{aligned}
& \text { R1 I.2k } \Omega 10 \% \\
& \text { R2 See Table I } \\
& \text { R3 I } \Omega=5 \% \\
& \text { All } \frac{1}{4} \text { watt carbon }
\end{aligned}
$$

Potentiometer

VRI Ik Ω carbon skeleton preset
Capacitors
Cl and C2 See Table I

Transistors
TRI-5 2N3704 (5 off)
Diodes
DI and D2 OA202 (2 off)

Miscellaneous

Veroboard 23 holes $\times 12$ holes, 3.5 in $\times 1.875$ in (copper strips run lengthways)
Plug-in card holder and socket (12 ways) for above

STABILISER AND POWER AMPLIFIER

Fig. 4. Circuit diagram of stabiliser (left) and power amplifier (right) panel componeris ...

amplifier holding the positive end of Cl at a voltage slightly below that on C 2 so that each input pulse adds an equal amount to the voltage already on C2.

Staircase frequency dividers have been found unsuitable for many circuits requiring stable division, because the division ratio is inversely proportional to the input voltage. In this circuit the effect of input voltage variation is greatly reduced.

The height of the input pulse is proportional to the d.c. supply and so is the trigger level, as they are both derived from the same supply. If the supply voltage varies, so will the height of each individual step, also the trigger level. These changes tend to balance out. Just to make sure of stability, the supply is fixed at 7.5 volts.

VOLTAGE COMPARATOR

When the staircase voltage reaches a certain level, TR3 will be forward biased when the voltage at the emitter just exceeds the base voltage set by VR1. VR1 sets the trigger level and the number of steps that build up before TR3 is switched on. Conduction in this transistor forward biases TR4 which in turn biases TR3 even further. This cumulative action discharges C2 and reduces the voltage on the wiper of VR1 to zero. This turns TR5 off producing a positive output pulse at the collector. With C2 discharged, the trigger reverts to its normal stage and the staircase sequence starts again.

Reference to Table 1 shows the capacitors to be used in the pump circuit of the six dividers. It will be seen also that R2 is only included in the final divider stage, otherwise D2 is connected directly to TR3 emitter.

Poor divider stability can be put down to a leaky capacitor; it is particularly important to use the best possible capacitors for the C1 and C2 positions.

POWER AMPLIFIER

"Minute"' pulses from the sixth divider are fed to the cascaded triple transistor switch (Fig. 4) which is in effect a buffer and current amplifier to boost the low level output of the final divider. Sufficient current is then available to drive the "minutes" display switch solenoid.

On the same panel the supply voltage (12 V) is fed to the power amplifier and to the voltage stabiliser TR1 (via fuse FS2) to provide 7.5 V for the dividers, oscillator, and pulse unit multivibrator.

DISPLAY OPERATION

The Ledex switches have twelve positions, but the first "minutes" Ledex has only to indicate up to ten digits; that is 0 to 9 inclusive as shown in Fig. 5. It is arranged that when the 9 is displayed, and the next pulse occurs, the motoring contacts of the commutating switch, integral to the " minutes" Ledex, are placed in series with its coil for the next two positions. This carries Sla over these positions to 0 .

Whilst this is happening, Slb switch wiper, which is mechanically coupled to Sla, passes a pulse back to "pulse unit 1 " by way of R1, which in turn feeds a longer pulse to the tens of minutes Ledex. It is necessary for the tens of minute stage to display 6 digits (0 to 5 inclusive). This can be accommodated twice in one revolution.

TRANSISTORS PRICE

AC107	$3^{\prime} \cdot \cdot$	OC170	3/-
ACl26	2/4	0 Cl 17	4/6
ACl 27	$2 / 4$	$\bigcirc \mathrm{OC200}$	3/6
ACl 28	2/4	OC201	$7 / 1$
ACYI7	3/-	2G301	2/6
AFII4	4/4	2G303	2/6
AFII 5	$3 / 6$	2N711	10\%-
AFI 16	$3 / 6$	2NI302-3	4\%
AFII7	4/6	2 N 1304.5	5\%
AFII8	3/6	$2 \mathrm{Nl} 306-7$	6\%
AFI19	3/6	2N1308-9	8/.
AF186	10/-	25303	5 --
BCZII	4/6	Power	
BFY50	4,-	Transistors	
BSY25	7/6	$\bigcirc \mathrm{OC20}$	10/-
BSY26	3/-	$\bigcirc{ }^{\circ} \mathrm{C} 23$	10/-
BSY27	3/-	\bigcirc	8\%
BSY28	3/-	OC26	5/.
BSY29	3/-	OC28	7/6
BSY95A	1/-	$\bigcirc \mathrm{OC} 35$	5/\%
OC41	2/6	OC36	7/6
OC44	1/11	GP826	40\%
$0 \mathrm{OC45}$	$1 / 9$	2N2287	20/-
OC71	2/6	Diodes	
OC72	2/6	AAY42	2/-
0 Cl 3	3/6	OAIO	2/-
0 CsI	$2 / 6$	OATO	1/9
OC81D	2/6	OA79	$1 / 9$
AF102	12/6	OABI	$1 / 9$
OC139	2/6	OA182	2/*
OCI40	3/6	IN914	1/6

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER E 4

EXCITINE NEW PAKS
FOR AMATEURS, PROFESSIONALS, FACTORIES, ORGAN BUILDERS, AND THOSE PEOPLE THAT IUST USE LARGE QUANTITIES OF TRAN. SISTORS.

XA PAK

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81, etc.

PRICE 23 PER 1000

XE PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A

PRICE E5.5.0 PER 500
PRICE \&10 PER 1000
XC PAK
Silicon diodes miniature glass types, finished black with polarity marked, equivalents so OA200, OA202, BAY31-39 and DK10, etc.

PRICE 45 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK. P/P 2/6 PER PACK (U.K.)

TRANSISTORS ONLY 1/- EACH
 SILICON • PLANAR

All these types available

2N929	2N706	2S131	2S103	2N696	2N1613	2S733	BFY10
2S501	2N706A	2S512	2S104	2N697	2N1711	2N726	2S731
2N241I	2N3011	2S102	2N2220	2N1507	2N1893	2N248.	2S732

All tested and guaranteed transistors - unmarked.
Manufacturers over runs for the new PRE-PAK range.

NEW UNMARKED UNTESTED PAKS		
25	BSY95A NPN Silicon	TRANSISTORS 10/-
10	1000 PIV 1 amp. Min. Silicon	DIODES 10/-
25	$\begin{aligned} & \hline \text { BSY26-27 } \\ & \text { NPN Silicon } \end{aligned}$	TRANSISTORS 10/-
10	10 Watt Siticon All Voltages	ZENERS 10/-
25	BFY50-1-2 NPN Silicon	TRANSISTORS 10/-
10	4 amp. Stud. Silicon	RECTIFIERS 10/-
25	8C107-8-9 NPN Silicon	TRANSISTORS 10/-
40	1N914-6 OA200/202 Sub. Min. Silicon	2 DIODES 10/-
180	Min. Germ. High Quality	DIODES 10/-
25	2N706 A NPN Silicon	TRANSISTORS 10/-

PRE-PAK. N. 605 POWER
TRANSISTOR EQUIVALENT $5 /-$ BaCl
TO NKT3OI-4 tantalum capacitors $1 /=$ Bach

PRE-PAKS

Selection from our lists

BRAND NEW PAK • JUST RELEASED
REPLACES OUR VERY POPULAR B. 39 PAK. BRAND NEW SHORT LEAD COMPONENTS ALL FACTORY MARKED AND MOUNTED ON PRINTED CIRCUIT PANELS
80 TRANSISTORS \& DIODES
85 HIGH TOLERANCE
RESISTORS
25 Various capacitors for $\int=$
PLEASE STATE WHEN ORDERING PAK P.I. 2/- P. \& P. WITH THIS PAK.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev. counter for any car.
State 4 or 6 cylinder. $\& /$ Bach

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /-$ post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

Budding technictian?

In just 15 months, the Army could set you up for life!

Think it over. In just 15 months, you could have completed an Army course in electronics. You'd have trained with the most modern equipment and now you'd be handling it as though it was second nature. You'd be earning nearly $£ 14$ a week-with all your food and accommodation thrown in. And you'd be looking forward-in about eight months timeto promotion to corporal and the pay rise that goes with it. It's a great life all right.
And if you're between 17-23 it's wide open to you. Get the facts by filling in the coupon or calling at your local Army Careers Information Office (address from any Post Office).

Join the CONTINUOUSLY GROWING CIRCLE OF SATISFIED PURCHASERS

\star MANY EDUCATION AUTHORITIES
\star ATOMIC ENERGY COMMISSION \star BURGLAR ALARM MANUFACTURERS 1,000's and 1000's and 1,000's OF
PRIVATE USERS OF OUR CONTINUOUS LOOP TAPE CASSETTES $\star 200$ FT. HIGH QUALITY AMPEX TAPE * FITS ALL RECORDERS
$18 / /_{\text {p. p. 6d. }}^{\text {EA. }} \quad$ AVAILABLE ONLY KINGS TELE-SERVICE CO. 105-107 DAWES ROAD, FULHAM FULHAM 1668 \& 2998

PARKERS SHEET METAL FOLDING MACHINES
HEAVY VICE MODELS
With Bevelled Former Bars

No. I. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$. wide $\{12.10 .0$
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide \ldots... \ldots...

Also new bench models. Capacities 48 in . $\times 18$ gauge $£ 40$. $36 \mathrm{in}, \times 18$ gauge E25. 24 in . $\times 16$ gauge $\mathbf{E 2 4}$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for $36 i n$. model, $5 / 6$ per ft . Other models $3 / 6$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One year's quarantee. Money refunded if not satisfied. Send for details.
A. B.PARKER, Folding Machine Works, Upper George St. . Heckmondwike, Yorks. Heckmondwike 3997

CONTROL CHASSIS

Plug-in card circuit components and crystal are listed separately. Refer also to chassis drawings next month for metalwork details.

Chassis

$7 \frac{1}{8}$ in $\times 5 \frac{1}{6}$ in $\times \frac{1}{2}$ in 18 s.w.g. aluminium
Front Panel
Sin $\times 4$ in 18 s.w.g. aluminium
Panel Supports
$\frac{1}{2}$ in angle aluminium 5 in long (2 off)

Switches

S3, 4, 5 Sub-miniature push-to-make, release to break panel mounting
S6 Single pole, on-off toggle switch

Fuses

$\left.\begin{array}{lc}\text { FSI } & 5 \mathrm{~A} \\ \text { FS2 } & 250 \mathrm{~mA}\end{array}\right\}$ Miniature cartridge and fuseholder

Miscellaneous

B7G valve holder for crystal Spring retainer for crystal Flexible one way p.r.c. wire

6B.A. nuts and bolts $\frac{1}{4}$ in grommets

DISPLAY UNIT

COMPONENTS . . .

NUMERICAL DISPLAY CHASSIS

Resistors

R1, R2 $8.2 \mathrm{k} \Omega 10 \%, \frac{1}{4} \mathrm{~W}$ carbon

Switches

SI 2-bank, single-pole, 12-way wafers
S2 l-bank, double-pole, 6-way wafers; both are mounted on Ledex mechanisms; three solenoid mechanisms required. SI must have motoring contacts attached to mechanism (see text)

Lamps

LP1, LP2
Chassis
S.R.B.P. or similar $\frac{1}{8}$ in thick $6 \frac{1}{2}$ in $\times 3 \frac{3}{4}$ in

Angle aluminium $\frac{1}{2}$ in $\times 6 \frac{3}{4}$ in long (2 off)
Sheet aluminium $6 \frac{1}{2}$ in $\times 3$ in $\times 18$ s.w.g. (front panel)
Miscellaneous
2B.A. and 6B.A. nuts and bolts
Indicator dials $2 \frac{1}{4}$ in dia. $\frac{1}{4}$ in thick aluminium or any strong material capable of being tapped 6B.A.
Terminal screw block, 8 -ways
8 -way Jones plug and socket for cable fixing
Perspex sheet for windows $3 \frac{1}{2}$ in $\times 2$ in $\times \frac{3}{16}$ in

Front view of the display unit. The front panel has been removed to show the Perspex panel and lights

Fig. 5. Circuit diagram of Ledex display switches looking at front panel end

OULSE MNIT

Fig. 6. Circuit diagram of pulse unit. Two are required ${ }_{\text {RCA }}^{\text {UNDERSIDE }} 40250$

PULSE UNIT
There are two of these each with the following:
Resistors
RI $120 \mathrm{k} / 2$
R2 $1 k \Omega$
R3 10k Ω
R4 $24 \mathrm{k} \Omega 5 \%$ (or $2 \times 47 \mathrm{k} \Omega$ in parallel)
R5 $6.8 \mathrm{k} \Omega$
R6 $1 \mathrm{k} \Omega$
R7 $510 \Omega 5 \%$ (or $2 \times 1 k \Omega$ in parallel)
R8 $10 \mathrm{k} \Omega$
R9 $82 \Omega \frac{1}{2} W$
All $10 \%, \frac{1}{4}$ watt except where otherwise stated

Capacitors

$\mathrm{Cl} \quad 0.02 \mu \mathrm{~F}$ polyester 150 V
C2 $0.033 \mu \mathrm{~F}$ polyester 150 V
C3 $32 \mu \mathrm{~F}$ elect. 25 V

```
Diodes
    DI ZF3.3(400mW Zener)
    D2 OA202
Transistors
Transistors
TRI, 2, 3 2N3704 (3 off)
TR4 RCA 40250
Miscellaneous
Veroboard 23 holes \ 12 holes, \(3.5 \mathrm{in} \cdot 1.875 \mathrm{in}\) (copper strips run lengthways)
Plug-in card holder and socket ( 12 ways) for above
```


Rear view of the display unit showing the Ledex switch solenoids.

S.B.-Superb Bargains Every Month

The greatest High Fidelity Bargains ever offered

STEREO AMPLIFIER. $13 \frac{1}{2}$ gns. only. Retail value 27 gns . A Fully Transistorized High Fidelity Stereo Amplifier complete in free standing case. Switched input facilities. Socket (1) tape or crystal P.V. (2) radio tuner. (3) ceramic P.U.-mike. Controls: Volume, Bass, Treble, Balance, Input Selector Switeh, Stereo/Mono Switch. Facia plate rigid perspex with black/silver background and matching knobs.
Output 6 watts per channel (R.M.S.) 12 watts Mono. Free response to $3 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{s}$ bass boost approx. 10-12dB. Treble out 2-16dB approx. Negative feedback-18dB over main amp.

12 months' unconditional guarantee. P./P. 6/-.

Plinths to suit all the above. Beautifully styled and first grade manufacture, £2.5.0. P./P. 5/-.
PBARGAIN-A superb Mains Tuner. Our price 6 gns . only. Retail value 12 gns. A.M. superhet transistor unit with own ferrite aerial. Simply add to any of our amplifiers for outstanding results.

12 months' unconditional guarantee. P./P. 5/6.
1 BARGAIN-F.M. Mains Operated Tuner. Our price 8 gns. only 16 gns. value. 6 transistor S / M horizontal dial, 2 I.F. stages, coupled double tuned discriminator terminating in I.F. Ample output for all amplifiers.

12 months' unconditional guarantee. P./P. 5/6.
1 BARGAIN-L.W.-A.M.-F.M.. Mains Operated Tuner. Our price 16 gns. only. Retail value 30 gns . Fully transistorised. Output 5 mV exceptional sensitivity and selectivity on all bands. L.W. $180-360 \mathrm{RC} / \mathrm{S}$, A.M. $600-1,400 \mathrm{kc} / \mathrm{s}$, F.M. $88 \cdot 108 \mathrm{Mc} / \mathrm{s}$. This unit is complete with aerials, three-band horizontal dial.

12 months' unconditional guarantee. P./P. 6/6.
BARGAIN-Record Player Amplifiers, $47 / 6$ only. EL84 output, two controls, flying panel, a.c. mains operated. $230-240 \mathrm{~V}$. Now inc. chassis, fully built and tested.

12 months' unconditional guarantee. P./P. $2 / 6$.
BARGAIN-Record Player Amplifier Unit. 52/6 only. Complete with valves (UCL 82) output. Fully built and tested, mounted on board with 5 in round speaker. Knobs supplied, all leads attached ready for instant connection to your turntable.

12 months' unconditional guarantee. P./P. 3/6.
P BARGAIN-Record Player Cabinets. Our price $52 / 6$ only. Retail value 4 gns. Strongly built wooden frame, two-tone gilt fittings. carrying handle, suitable for any amplifier, ample space for speaker. Matching Garrard or B.S.R. cut out board supplied free of charge. P./P. 5/-.

8in round all 3 -Speakers Standard, 5 in round, 7 4in elliptical,
8in round, all 3 ohms. Our price $15 / \mathrm{F}$. P. $/ \mathrm{P} .2 / 6$.
OUR HIGH FIDELITY EQUIPMENT IS NOT ADVERTISED DUE TO SPACE LIMITATIONS. IN STOCK ALL FAMOUS BRAND NAMES-LEAK, WHARFEDALE, ROGERS, THORENS, RADON, WYE.

UP TO 15% DISCOUNT AGAINST RECOMMENDED RETAIL. PRICE

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-FULL AFTER SALES SERVICE!

RTAMERZ

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION

7 FULLY TUNABLE WAVE BANDS-MWI, MW2, LW, SW1, SW2, SW3 and Trawler Band. Extra Medium waveband provides easier tuning of Radio Luxembourg, etc. Built in ferrite rod aerial for Medium and Long Waves. 5 Section 22 in chrome plated telescopic aerial for Short Waves-can be angled and rotated for peak S.W. listening. Socket for Car Aerial. Powerful push-pull output. 7 transistors and two diodes including Micro-Alloy R.F. Transistors. Famous make $7 \% 4$ in P.M. speaker. Air spaced ganged tuning condenser Separate on/off switch, volume control, wave change switches and tuning control. Attractive case with hand and shoulder straps. Size $9 \times 7 \times 4 \mathrm{in}$ Total building costs Parts price list and and diagrams grade components. Easy to follow instructions $\mathbf{4 5}$. 9.6 P. \& P. easy build plans 3/$\begin{array}{ll}\text { with guaranteed results. } & \text { Poamer } \\ \text { Personal Earpiece with switched socket for private listening, } 5 / \text { extra }\end{array}$

POCKET FIVE
MED, and LONG WAVES AND TRAWLER BARD to approx. 50 metres. WITH SPEAKER AND EARPIECE. 5 transistors and 2 hodes, ferrite rod aerial, tuming $5 \frac{1}{2} 11 \because 31 \mathrm{fn}$. Total Building Costs $44 / 6$ P. \& P. $3 / 6$. Plans and Partaliat $1 / 6$ (free with parts).

SUPER SEVIGE
MED LOHG AKD TRAWLER BAND.
diodes.
3 in
transistors and
2 diodes. \quad sin speaker, 2
stages. push-pull output, stages. push-pull output, etc. Coats 69/6. P. \& P. 4/6. Plans and parts list 2/- (free with and parts Pist $2 /-$ (free with switched socket for private
listening, $5 /$ - extra.

61 a, High St., Bedford. Tel. 52367

ROAMER SIX 6 WAVEBAXDS - MW1, MW\%, SW1. SW2, LW AND KBAWLER BAITD. 6 transistors and 2 diodes. Ferrite rod and telescopic aerials. 3in speaker. Top grade components. Size $7 \frac{1}{2} \times{ }_{2}{ }^{2} \times 1 \frac{1}{2} \mathrm{in}$ d/6. Plang Cosk 79/6. P. \& P 4/6. Plans and parts list 2/(free with parts). Personal Earplece Wilh owite socket sor privat listening, $5 /$-extra.
RADIO EXCHANGELtd
Callers side entrance Stylo Shoe Shop. Open 9-5. Sat. 9-12.30.
4.STATION INTERCOM

Solve your communication problems with this 4-station Transietor Intercom system (1 mester and a Bubs), in de-luxe plastic cabinets for desk or wall momnting. Call/talk/listen from Master to Subs and Subs to Mastar. Ideally zuitable for Business, Surgery, Schools, Hospital, Office and Home. Operates
on one 9 V battery. On/oft syitch. Volume control. Complete with 3 connecting wires each 66 ft and other accessories. P. \& P. 7/6.

WIRE-LESS INTERCOM
No batteries-no wires. Just plug in the mains for instant two-way, loud and clear conmunication P. \& P. $7 / 6$ extra TITEBCOM/BEBYALAMM

Same as 4-station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 661t. connecting wite. Battery 2/6. P. \& P. 4/6.

ciency with this incredible De.Luxe Telephone Ampliwit. Nake down long telephone messages or converse offewitch. Volume hanase. A userviomee aid. On/ 2/6. Full price refunded if not satisfied in 7 days.

TREST LOIDON DIRECT SUPPLIES (P/RS)
169 KAHEINGTON HIGH SNEEEN, LOIDON, W. 8

MOOERN ICCTIONARY OF ELECTRONCS 70/-

AUTHORITATIVE, COMPREHENSIVE, COMPLETELY UP TO DATE, BY GRAF, 3rd. ED. POSTAGE 4/6.

MICROMINIATURE ELECTRONICS by Kalish. 40/.. P. \& P. I/6.
F.E.T. CIRCUITS by Turner. 25/-. P. \& P. 1/3.

ELECTRONIC GAMES AND TOYS YOU CAN BUILD by Buckwater. 24/r. P. \& P. 1/:
F.M. MULTIPLEXING FOR STEREO by Feldman. 30/.. P. \& P. 1/3.
SILICON CONTROLLED RECTIFIERS by Lytel. 21/.. P. \& P. 1/-.
CONTROL INSTRUMENT MECH. ANISMS by Warren. 40/.. P. \& P. 1/6. PRACTICAL TRANSISTOR THEORY by Wiesner. 20/., P. \& P. 1/.
ELECTRONIC MOTOR CONTROL by Lytel. 30/-. P. \& P. I/3.
FUNDAMENTALS OF DIGITAL MAGNETIC TAPE UNITS by Univac. MAGNETIC
SOLID STATE POWER SUPPLIES AND CONVERTERS by Lytel. 20/-. P. \& P. I/-

Where possible 24 -hour service guaranteed

UNVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

Fig. 7. Interconnection wiring of plug-in cards and display unit
units for no apparent reason. This was finally traced to voltage transients caused by the heavy pulses of current required by the Ledex solenoids. This was overcome by using two "earth" return lines, appearing at line 1 for heavy current and line 2 for light current (Fig. 6), both terminating at the power stabiliser common line. This is shown in Fig. 7 which also provides the interconnections of all sub-assemblies in the completed unit.
The switches S3 to S5 serve only in the setting up of the clock and these will be referred to in the second part next month which will deal with constructional details and testing.

COMPONENTS

Before contemplating building this clock as described, readers should consider all the implications outlined earlier, and additionally should bear in mind the likely outlay on components, as the job in hand may prove expensive when compared with a conventional clock.

A 10 kHz crystal may cause some problems but they are made and the type suggested is DJC/195 manufactured by Salford Electrical Instruments Ltd., Times Mill, Heywood, Lancashire. The price quoted to us is £15 1s 6d each. S.T.C. make one at a slightly cheaper price, but it may require oven temperature control. The mounting is not the same.

Ledex rotary solenoid switches are supplied by NSF Limited, although these may have to be ordered from NSF through your retailer. This company is well known for its switch wafers which are supplied with the Ledex solenoids. Solenoid type 5S or 3E low voltage types are required with 25 deg. right rotary stroke, shaft extension on base end, and fitted with spring return ratchet. Switch wafers are as given in the components list.

Underside view of the control chassis

NEWS BRIEFS

International Mobile Meeting

0N the last Sunday in June, East Anglia was invaded by a swarm of four wheeled vehicles with extended antennae. Not ordinary car radio aerials, but much longer and equipped with important and purposeful looking cylindrical pods. In the morning the roads approaching Mildenhall, Suffolk, fairly bristled with these vertical antennae, which seemed to become more agitated and excited as they sensed the "talk-you-in" signals radiated from the fixed station at their destination, the USAF base at Mildenhall. Their "delight" was equalled, if not surpassed, by the eager ham/'s behind the steering wheel, not to mention the exYL and small harmonics.

This was the annual rally of the Amateur Radio Mobile Society, and the emphasis on these occasions is on the family outing aspect. The U.S. airforce provided a spacious venue and an airborne telecommunications centre for inspection; plus one hanger for a trade show. Some well-known manufacturers were present, as well as retailers of components.

Once the cars had found their parking place, and the antennae ceased their waggling, the families piled out to enjoy a picnic in the hot sun. Any thoughts of afternoon dozing were dispelled by a great additional attraction-the RAF Red Arrows Acrobatic Team.

Russians Make Arctic Sparks

Russian physicists are investigating the effect of temperature on semiconductor materials. They have found that the electrical output of an illuminated photoelectric film only one thousandth of a millimetre thick rises to a high voltage under sub-zero conditions.

Triple Order for Deeca

DeCCA Radar are equipping harbour authorities at Dover, Southampton and St. Georges, Bermuda, with additional radar facilities.

Computer Will Plan Phones

THe Post Office is buying a $£ 1$ million computer from English Electric Computers to assist planning of the telephone network, currently growing at the rate of 17 per cent a year.

The computer, a System 4-70, will provide a centralised record of plant and equipment throughout the whole of the country's trunk telephone network. There are about 11,000 cable records containing details of 68,000 sections and some 3 million pairs of wires.

Following installation at the end of this year, the new system will be introduced gradually over three years. Eventually it will be able to forecast telephone circuit requirements which, say the GPO, will reduce the delays in connecting new subscribers.

Second Mullard Glass Plant

THE Mullard television tube plant at Simonstone, near Burnley, is to have a second glassmaking unit costing about $£ 1$ million. It will double the company's glassmaking capacity to 240 tons a day and provide jobs for an additional 100 to 150 people. The Simonstone plant (see special feature in the June issue of PE), has the capacity to produce $1 \frac{1}{2}$ million black and white tubes a year and is expected to be manufacturing tubes for colour receivers at the rate of 150,000 a year by the end of 1968 .

Colour Set Uses IC

ANEW Rank Bush Murphy colour TV receiver to be launched this autumn will contain a silicon integrated circuit-said to be the first to appear in a British consumer product. The 20-lead SIC handles both the linear and switching circuit functions connected with colour matrixing and decoding, and has permitted the use of a more sophisticated "red-green-blue" drive to the picture tube.

Twin Thyristor Export

wo big export orders for thyristor systems to control
printing presses have been won by English Electric's

R.F. Transistor Breakthrough

Difficulties of producing high power at high frequencies using transistors seem to have been overcome by engineers of RCA Electronic Components. They have developed a solid-state amplifier capable of 1,000 watts continuous output at 400 MHz . It uses 64 type 2 N 5016 transistors.

National Physical Laboratory Open Days 1968

NE of the important activities of the National Physical Laboratory is researching into wider applications of computers. Improved methods of communication with computers are essential for future progress in this field. The Division of Computer Science of the NPL is concerned with such problems. Work currently being undertaken includes automatic pattern recognition machines. "Cyclops" (see photo) is a machine which reads poorly printed numerals with great speed and accuracy. Work is now proceeding with an improved version called "Ochre" using the latest electronic techniques. In this exercise NPL is collaborating with Plessey Automation Ltd.

Speech recognition devices are another important aspect of computer research. The equipment seen at the NPL Open Day last June gave a convincing demonstration of its capability to distinguish between vowel sounds. Not yet perfect by any means, but the design team seem confident that it will ultimately be able to cope even with regional dialects.

THE Glatarizio DE-SOLDERING TOOL

 - Self-contained-does NOT require the use of air-lines or pumps.
 - Simple, light and inexpensive.
 - PERMABIT nozzle will not wear or become eroded by the solder.
 - Standard nozzle $\frac{5}{64} \mathrm{in}$. bore. Alternative, $\frac{3}{64} \mathrm{in}$. bore.
 - Mains or low voltages.
 Please ask for colour catalogue A/37
 LIGHT SOLDERING DEVELOPMENTS LTD. 28 sydenham Road, $c_{\text {roydon }}$ cr9 24
 Telephone 01-688 8589 \& 4559

OTHER MODELS-SEND FOR LIST

TRANSISTOR CHASSIS DI
6 Transistors, LW/MW. Tele. scopic Aeriat. Brand: New. Famous British, Manufacturer
(LESS SPEAKERS). P. \& P. $4 / 6$. TRANSISTOR CHASSIS D2
${ }^{8}$ Transistors $59 / 6$ LW/MW. Brand New: Famous Manufacturer

TRANSISTOR RECORO
TRANSISTOR RECORO YR. CABIN
SINGLE PLAYER CABINETS 15/6. P. \& P. 7/6.
TRANSISTOR CASES 19/6. Cloth covered, - many colours.
size $9 \frac{1}{2}$ Similar cases in plastic $7 / 6$.
COCKTAIL/STEREOGRAM CABINET 625

Polished walnut veneer with elegant glass fronted cocktail compartment, padded. Position for two $10^{\prime \prime}$ elliptical speakers. Record storage space. Height 35t", width 52í", depth $14 \mathbf{y}^{\prime \prime}$. Legs 1 gn .
extra.

GOODMANS HIGH FIDELITY
 MANUAL
A Guide to full listening enjoyment
The Manual is much more than a catafogue of Goodmans High Fidelity Loud. speakers-it contains informative articles. including advice on stereo, special beginners page, and full cabinet drawings. You'll find it interesting as well as informative.
The Perfect Combination MAXAMP 30
TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts - Silicon solid state Integrated pre-amplifier - Negligible distortion - £54.0.0.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER
Transistorised - Outstanding specification Stereo decoder (optional) • £65.5.0 $+£ 15.14 .0$ P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{4}^{\prime \prime}$ deep) in Teak or Walnut to order. Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

Abstract

HARVERSOAS 8UPER MOHO AMPLIPTRR A super quality gram amplifier uaing a double wound mantod ralve as ondio smplifter and nower ontput stage. yenpedines 3 ohms: Output approx. $3 \cdot 5$ wetts Volnge and tone controls. Chatstis sife only 7^{*} w. $\times \mathbf{2}^{z}$ d. $\times 8^{\prime \prime} \mathrm{h}$. overall. A.C. mains $800 / 240 \mathrm{v}$. Suppliad abyolutely Brand Fow completely wired and tested with ralves and good quality output transiormer. LIMITED KUnBES OALY. Our Rock Bottom Bargain Price 49/6 P. © P. 8/- E.M.I. 3łin. HEAVY DUTX TWEETERS. Powerful ceramic nagnet. 3 or 8 ohm, 15/-. P. \& P. $2 / 6.15$ ohm 18/6. P. \& P. $2 / 6$.

\section*{TRARSISTOR STEBRO $8+8$}

A really first-class Hi-Fi Stereo Amplifier Kit. Lises 14 tranaistors giving 8 watts push-pull output per channel (16W mono). Integrated pre-amp. with Baas, Treble and Volunie controls. Suitable for use with Ceranle or Gryatal cartridges. Output stage for any speakers from 3 to 15 ohms. Compact design, all parts supplied inclucling drilled metal work. Cir-Kit board. attractive front panel knobs, wire, soluer, nuts, bolts-no extras to buy, to build an annplifier to be proud of. Briel Specificat lon: Freq. response $+3 \mathrm{~dB}, 20 \cdot 20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx leedback 18dB over main amp. Power requirements 25V at 0.6 amp .

Ampliter Kit, e9.10.0. P. \& P. 4/6. Powar Pack Kit, 22.10 .0 P. \& P. $4 /$ Cabinet (as illust.), E8.10.0. P. \& P. $5 / 6$ (Special Oner-214.10.0, post free if all above kits ordered at name time) Circuit diagram, construction details and parts list (frec with kit) 1/8 (S.A.E.).

HIGH GAIM 4 TRANSISTOR PRIHTED CLRCUIT AMPLIFIER KIT Type TAl (as illus, in June issue) Pcak output in excess of li watts. All stanarnel bize 6 components. Built on printed circuit panel вize $6 \because 3$ in. Geaerous size Driver and out put and 15 ohrin speakers transformer tapped 114 a S1 Mullard OC81D and matehed pair of OC81 o/p). - 9 volt operation. Everything supplied, wire. battery clips, solder, etc. Comprehensive easy to Ollow instructions and circuit diagrant 2/b (Frec with Kit. All parts sold separaty invilt and tested $52 / 8$. P. "P. $3 /-$. Also ready built and tested, 52/8.

FH/AN TUNER HEAD by Dormer and Wadsworth with valve and tuner head circuit diagram. (See Jun issue). ONLY 27/6 cath. P. \& P. 3/-.

HIGH GRADE COPPER LAMINATE BOARDS $8 \times 6^{\prime \prime} \times \mathrm{A}^{n}$. FIVE for $10 / \mathrm{H}$. P. \& P. $2 /$

GORLSE F.罢. TUAER HEAD. $88-100 \mathrm{Mc} / \mathrm{s} 10.7 \mathrm{Mc} / \mathrm{s}$ 1.F., 15/-, Plus $2 / 6$ P. \& P. (ECC85 valves, $8 / 6$ extra.) RRAMD HRW MAMN8 TRAKEFORMERS for Brldge Rectifier. Pri. 240v. A.C. Sec. 240v. at 50mA and 6-3v. (Special quotations for quantities).

8-VALVE AUDIO AMPLIFIER MODEL HAB4

Designed for $\mathrm{Hi} \cdot \mathrm{Fi}$ reproduction of records. A.C. Mains
operation. Ready built on operation. Ready built on chassis, size 7 in. w. : 4 in . d. « 4 inin, h. Incorporates ECC83, EL84, EZ80 valves. Heavy duty, double wound mains transformer and output transformer matched for 3 ohn speaker, separate Bass, Treble and volunne controls. Negative feetback line, Output 4 watts, Front pancl can be detached and leade extended for remote mounting tested for only 24.5.0. P. \& P. fi/.

HSL " POUR " AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different ank al vancet circuitry. Complete set of parts, etc, 79/6. P.\&1P. 6/-
10114 WATT HI-PI AMPLIFIER KIT monatral amplifier with an output of 14 watts from ${ }^{2}$ EL84s in push-pull. super reproduction of both music ani speech, with negligible hum. separate inputs for mike abt gran
allow records and amouncments to

follow each other. liully shruuded section wound output transformer to unatch 3-15 3 speaker and 2 independent volume controls, and separate bass and treble controls are providel giving good lift and cut. Valve line-up 2 EL84s, ECC83. FF86. and EZ80 rectiticr. Simple instruction booklet 2/6. (F'ree with parts.) All parts sold separately.
ONLY 27.6.6. ${ }^{1}$. \& P. \&/6. Also available ready built ON H teat woulcte with stil iuput sockets 59.0 ind tested exmplete with stil. input sockets, e9.5.0.
P. \& P. s/G.

MATGEED PAMR OF 2 WATTYTRANSISTOR DRIVER
AND OUTPUT TRANS. AND OUTPUT TRARS. Formbras. Stack size $12 \times$ tapped for 3 ohni and is ohns output. 10/- pair plue 2/P. \& \mathbf{P}.

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Loft Mounting Arrays, 7 element, $37 / 8$. 60/-. Wail Mounting with Cranked Arm, $75 /=18$ element, $82 / 6$. Mast Mountimg with 2in. clamp. 7 element, 42/6; 11 element, $55 / \circ ;$ 14 element, $62 /-\dot{p} 18$ element, $70 /-$. Chimney Mounting Arrays, Complete. 7 element, 72/0; 11 element, $80 /-; 14$ element, $87 / 8 ; 18$ element; unit Complete assembly instructions with every amns from $75 /$. State clearly channel number required on all orders.

BBC•ITV AERIALS
BBC (Band 1). Telescopic
 ITV (Band 3). 3 element loft array, $80 /=.5$ element, 40/-. 7 element, 50/~. Wall mounting; Combined BBC/IIV. Loft $1+3,40 /-1+5,50 /-; 1+7$, 60/-; Wall mounting $1+3,57 / 6 ;$ $1+5,75 /-$ VBFF transistor preoamps,

COMARINED BBCL-TIV-BBC AERIAIS $\begin{array}{ll}1+3+9, \\ 1+7+14, & 10 /-5+9, \\ \text { Loft mounting only. Spectal }\end{array}$ leafiet avallable.
F.M. (Band \%), Loft S/D, 15/-, "H", 82/6, 3 element, 55/-. External units available. Co-ax. cable, 8d. Yd. Co-ax. plugs, 1/4. Outlet boxes, 5/-.
Diplexer Crossover Boxes, $13 / 6$. C.W.O. or C.O.D. P. 5 P. $5 / \mathrm{H}$. Send 6d. stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dopt. P.E.) 27 Central Parade, Now Addington Surrey-CRO-OIB
LODGE HILL 2266

EUGE PUROHABE! E.M.I. 4-Epeed Player Heavy 8 in. metal turntable. Low futte performance $200 / 250 \mathrm{v}$. ehaded motor (90v tap). Complete with latest type lightweight pick-up arm and mono cartridge with t/o atyll for LP/78. LIMITE
NUMBER. ONLY 68/-. P. \& $6 / 6$.

4-8PEED RECORD PLAYER BARGAIIS
Mains models. All brand new in marer's packing. E.M.L m ODEL 990 Single player with unit monnted plekup arm and mono cart. 25.5.0.
B.S.R. UAWs with letat mono combatible Cart. ... $\mathbf{3}$.19.6

LATEST GABRARD MODESLS ALL types available 1000, LATEST GABRARD MODELS ALL types available 1000,
SP25, 3000 , AT 60 , etc. Send S.A.E. Ior latest Bargain Prices! LATEST B.S.R. XIH MONO COMPATIBLE CARTRIDGE With turnover sapphire atyli for plaing EP, LP and Stereo recorde with mono equip. OKLY 22/6. P. \& P. 1/6 somotome 9rate Compatible Sterco Cartridge with
diamond stylus $50 /$. P. $\& P .1 / 6$. diamond stylus $50 /-$. P. \& P. $1 / 6$.
MONO T/O CARTRIDGE, Complete with LP \& 78 sapphire styli. Brand New 12/6. P. \& P. 2/*.

QUALITY RECORD PLAYER AMPLIFIER
A topequality record player anplifier employing heavy duty double wound mains transformer, ECC83. EL84,
EZ80 valves. Separate Bass, Treble and volume controls. Coniplete with output transformer matched for 3 ohin speaker. Size 7in. w. 3in. d. Gin. h. Ready built and testet. PRICE 75/-. P. \& P. 6//. ALSO AVAILABLE mounted on board with output transformer and speaker rearly to fit into cabinct below
PRICE $97 / 6$. P. \& P. $7 / 6$.

EICE 97/6. P. \& P. 7/6.
DE LUXE QUALITY PORTABLE R/P CABMER Uncut motor board size lifin. 12 in . clearance 2 in. below, 5 in. above. Will take above ampliter and any
B.S.R. or GARRARD Autochanger or Single Player Unit B.S.R. of GARRARD Autochanger or single Phyer Uint (except ATt
PRICE \&s.9.8.
P. \&

BRATD IEW 3 OHM LOUDSPEAKERS
Sin., 14/-; 6tin., 18/6; 8in., 27/-: 7in. 4 in . 18/6; 10 in \therefore Gin., 27/6. E.M.I. Sin. 5 5in. with high fux magnet $21 /-$
 12in. 3/6 per speaker
BRAND NEW, 12 in . 15 w . H/D Speakers, 3 or 15 טhm By_{y} well-known British mitker. Now with Hi Flux ceramic fcrobar macnet assembly, e5.10.0. P. \& P. 5/ceramic ferrobar magnet assemthy, 25.10.0. P. \& P. 5 . Guitar nootels. 25 W, 20,30 W. 88.
new

VARI-STAT thermostatic soldering iron

High Production Model D PRICE Miniature Iron 50 watt Voitage $12-250$ volt
Weight | $3 / 402$
"Serew on'" Bit sizes $1 / 16 \mathrm{in}$., 3/32in., $1 / 8 \mathrm{in}$., 3/16in., 1/4in.
Our range'also includes
Standard Miniature Model 50W
Standard Instrument Model 70W
High Production Instrument Model 125W Induserial Model 500W
All these irons give excellent bit and element life since the thermostat completely eliminates overheating and controls reserve heating capacity which makes possible continuous soldering without chilling of the bit. The consistent temperature makes these irons ideal for printed circuit work.

CARDROSS ENGINEERING CO. LTD.,

Woodyard Road, Dumbarton.
Phone: Dumbarton 2655 Phor

Also in The "NEW PICTURE BOOK"

Way of Learning
See page 609
BASIC ELECTRONIC CIRCUITS
BASIC INDUSTRIAL ELECTRICITY
BASIC SYNCHROS \&
SERVOMECHANISMS
38/
BASIC RADAR
22
All prices include postage.
Tick set required
From the Post Bag:
I find the data as written very easy to follow due to the clear and concise presentation.
A.S. Southgate

I have found these books helpful, most enlightening and pleasing to work through. J.B. Welling

I find these books a most excellent way of learning and at the price tremendous value.
J.S. Oxford

Money returned if books not suitable for your requirements.

SEND NOW TO:

SELRAY BOOK COMPANY 60 HAYES HILL HAYES
BROMLEY BR2 7HP

Rodidort A SELECTION FROM OUR POSTBAG

IT's not on!

Sir-The "Flip-Flop" circuit suggested by Mr Hodgson, Huthwaite (Ingenuity Unlimited July issue) will not operate satisfactorily as there is no method of holding "on" period of relay for a long enough period to keep the projector in sync. Also, should the tape and projector pulses occur close together the change-over state may not occur at all.

The answer is to drive the two sides of the flip-flop via "steering diodes". Further, the tape pulse should be sharpened up by a Schmitt trigger, as sharply defined and regular pulses are a necessity for steady operation.

One further point. The reed switch contacts should have a high wattage resistor across them, the value to be found by experiment. The correct value will be that which causes regular speed of projector and incidentally steady "ticking" from reed switch. A suitable starting point for this value is 5 kilohm (10 W). The $0.1 \mu \mathrm{~F}$ (C1) should also - have a 10 ohm ($\mathrm{a} W$) resistor in series with it or sparking will still occur.

I have myself constructed a sync unit of these lines, which has operated most satisfactorily for the past six months.
G. M. Farrer, Slough, Bucks.

BATTLE OF BRITAIN

SEPT. 9th-14th

GIVE FOP THOSE WHO GAVE

The end-or is it?

Sir-May I thank all the correspondents who have been kind enough to offer their thoughts on that cine/tape sync problem. All the points are well taken, particularly those of Mr Bridger and Mr Hodgson.

The l.d.r. pick-up for projector speed could work on spillage light rather than from the screen, but that asymmetrical wave form is rather discouraging. The idea was to avoid any extra parts at all fixed to the projector, but the general opinion seems to be that a more positive pick-up is necessary.

Thyristor control of the projector certainly is possible. I have a control box similar to that published by Mr J. N. Watt in the July issue, and this gives admirable speed adjustment, although the bulb output is affected also. Whilst a relay is better for controlling a camera motor consuming 250 mA at 6 V , I doubt if it would last long on mains voltage at about 3 amps .

Regarding the signal from the tape, I would still prefer to take an output from a parallel track rather than phototransistor and perforated tape. The general switching idea of "ON" from tape and "OFF" from projector implies, as Mr Chapman does, a distinct error over a relatively large number of frames before there is a suitable response. However, once the projector speed has caught up, manual override will then give the lip sync I am aiming for. The same performance may be possible with an s.c.r. circuit, although some opinions are against this. A phase sensitive detector is what I had in mind, so that the projector current could be controlled from zero to maximum with an error of about half a frame.

Consider two sinusoidal signals: when added in phase and rectified, we obtain large pulses, say to speed up the projector fed through an s.c.r. If the speed now takes the projector slightly faster, just half a circle out of sync, there will be cancellation, no pulses, and a slowing down into sync again. Unfortunately, any further slowing down of the projector will stop the pulses in a similar manner till the cycles are in phase again and we have slipped a frame!

Perhaps an expert on f.m. detection could help at this stage to fill that black box?

Washingborough, Lincoln.

MrIM P1 Tlis
Sir-After being unable to purchase locally a 2N2926 transistor for the WAA-WAA Pedal Unit (described in July issue) I tried using a transistor of slightly different characteristics to those of the specified transistor and the result was quite amusing. Instead of the intended WAA-WAA effect, a sound similar to a Jew's harp was heard when tested with a guitar.

The circuit was adjusted slightly to give the effect mentioned the most "life". A BFY18 transistor was used in place of TR1, R7 was replaced with a 50 kilohm resistor (this was made up of two $10 \mathrm{k} \Omega$ and two $15 \mathrm{k} \Omega$ resistors). As the boosted band must be shifted up and down in frequency (in one operation of the pedal) from maximum to minimum, VR2 was replaced with a 1 megohm log-law potentiometer. The circuit was otherwise unaltered.
G. J. Sharp,

Sheerness, Kent.

Electronic music studio survey

Sir-I am conducting a survey of electronic music studios in Great Britain.

Perhaps some of your readers will know of studios either privately or collectively owned with which they could put me in touch. Some may even have their own equipment. In any case I would be grateful if they would contact me with any relevant information.

The Arts Council of Great Britain, 105 Piccadilly, London, W.I.

EXHIBITION . . .

The twenty-third annual Electronics, Instruments, Controls and Components Exhibition and Convention will be held at Belle Vue, Manchester, from September 24 to 27 inclusive.
The Convention will incorporate a programme of Lectures and Film Shows on subjects allied to Electronics. Instruments and Components.

The Exhibition will include displays of electronic devices, instruments. controls and components, of British and Overseas Manufacture, that will be of interest to members of all branches of Science and Industry.

Exhibition admission tickets may be obtained from the Exhibitors or from the Exhibition Secretary. Institution of Electronics, 78 Shaw Road, Rochdale, Lancashire. Catalogues will be available (post free 5s 6d each on receipt of an addressed label) after September 9.

practical
 ELECTRONICS

 OCTOBER ISSUE

 OCTOBER ISSUE
 ON SALE FRIDAY, SEPTEMBER 13

 SIZE $1^{\prime \prime} \times 2 \mathbf{2 1}^{\prime \prime}$
on which to build either of these household or car labour-saving projects.

NOVICES SPECIALLY WELCOME!

For those new to the game we will be giving step-bystep pictorial instructions on how to use the Printed Wiring Board and reveal the secrets of Successful Soldering Without Tears.

MARRET PLALE

Items mentioned in this feature are usually available from electronic equipment and com ponent retailers advertising in this magazine. However, where 2 full address is glven, enquiries and orders should then be made direct to the firm concerned

POWER SUPPLY

One of the main essentials in any good workshop is a source of reliable power supply for running test equipment and prototype projects. With the now common use of semiconductor devices the main requirement is for regulated low voltage supplies with a minimum amount of fluctuation from selected setting.

The new improved Heathkit Model IP-27 regulated low voltage power supply varies from 0.5 to 50 volts in ten switched ranges. The voltage regulation is claimed to be better than ± 1.5 millivolts from zero to full load. There are four switched current ranges: $50 \mathrm{~mA}, 150 \mathrm{~mA}$, 500 mA and 1.5 A , and there is an adjustable current limiter control for all ranges.

The IP-27 is housed in a new styled case which is fully portable and uses all solid-state devices, including Zener diodes. The unit operates from $120 / 240 \mathrm{~V}$ a.c. mains supply and costs £46 12s in kit form plus 9s postage and packing.

A new electronically controlled entirely automatic car battery charger has been introduced by $\mathbf{J D}$ Electronics Ltd., Leafield, Corsham, Wiltshire.

Known as the JD Autocharger it checks its own electronic circuit to ensure correct operating conditions and will cut out on locating any irregularities, extinguishing its red external electric-eye charging lamp. The fault located and corrected it will commenee recharging once the reset button has been activated.

One of the features of the charger is the self-determination of whether it has been connected to a 6 or 12 volt battery, regulate itself and operate. It will allow only sufficient current to recharge. The recharging progress is determined by the modulated glow from the indicator lamp.

There is a temperature limiting device so that if the operator tries to charge a faulty battery it will cut itself off before overheating.

The body shell of the JD Autocharger is shatter-proof white plastics and can be hung on the garage wall while in operation or when not in use. The charger is double insulated to British Standard requirements against accidental shock and costs $\mathfrak{£ 5} 12 \mathrm{~s} 6 \mathrm{~d}$.

IRON STAND

Soldering irons are frequently a source of danger in the home workshop and it is often a problem where to place it when working on equipment. Young Jimmy or any visitor to the workshop runs the risk of burns and damage to clothing.

Weller Electric Ltd. have now introduced a range of simple bench soldering iron stands to ease this risk. It consists of a teak base with a spring funnel mounted on the top to take the iron.

Prices range from 16 s and, in addition to the holder and base, each stand includes a sponge for easy cleaning of the soldering iron tip.

Bench soldering iron stand from Weller Electric

Heathkit improved Model IP-27 regulated low voltage power supply

LITERATURE

The new Mazda booklet entitled Electrons in Shadow-mask Colour Tubes is biased towards the training of dealer's service technicians in the sphere of colour television. It is the latest addition to their series of Electrons instructional booklets.
The text has been specifically levelled at service technicians alreads familiar with the principles of black and white television.
Starting with the system requirements and evolution to the shadowmask tube display device, the booklet gives, in logical easy stages, the basic principles of operation of tubes-with their external neck components and also outlines the methods used in tube manufacture. While the principles of convergence are clearly explained, detailed convergence procedures are not given because they vary from receiver to receiver.

The booklet has been written by Bernard Eastwood B.Sc., M.I.E.E. who is Manager and Chief Engineer of the Thorn-AEI Applications Laboratory, and costs 3 s 6 d plus 6 d postage from Mazda Publicity Department, Thorn-AEI Radio Valves and Tubes Ltd., 7 Soho Square, London, W.1.

Readers who have been following our series on Nucleonics for the Experimenter may be interested in two booklets now available from Mullard Ltd. which provide an introduction to nuclear radiation and radiation detectors.

The first booklet entitled $A n$ Introduction to Nuclear Radiation and their Detection, describes briefly the structure of the atom and explains the phenomenon of radiation. The three main types of radiation (alpha, beta, gamma) are described, radioactive decay is explained and the units of nuclear energy are defined. The last part of the booklet deals with the various types of detectors that are available.

The other booklet, entitled Germanium and Silicon Radiation Detectors, describes semiconductor nuclear radiation detectors and their associated equipment.
The first part of this booklet outlines the factors governing the choice of a lithium-drifted germanium detector and its resolution.

The last section deals with silicon surface barrier detectors and lithiumdrifted silicon detectors. As with germanium detectors, tables and diagrams are given to enable the best possible device to be selected for any particular application.

The two booklets are available on request, on company headed note paper, from the Industrial Electronics Division, Mullard Ltd., Mullard House, Torrington Place, London, W.C.1.

Also available from Mullard and particularly suitable for schools and clubs is a large wallchart ($31 \mathrm{in} \times 43 \mathrm{in}$) entitled The Shadowmask Picture Tube for Colour Television.

The chart covers in detail the construction and operation of a colour tube and illustrates briefly the general principles of colour television.

Copies are available from the Mullard Educational Service, Mullard House, Torrington Place, London, W.C.1, price 5s including postage and packing.

ID Autocharger marketed by JD Electronics

Pructical Electronics Classified Adverisements

The pre-paid rate for classified advertisements is $1 / 3$ per word (minimum order $15 /$-), box number $1 / 6$ extra. Semi-displayed setting $£ 4.2$. 6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

SERVICE SHEETS

SERVICE SHEETS, Radio, TV, 5000 models. List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

RADIO TELEVISION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London, W.6. SHE 8441.

BERVICE SHEET8. RADIO, TELEVISION, TAPE RECORDER8, 1925-1968, by return post, from $1 / \cdot \cdot$ with free fault-finding guide. Catalogue 6,000 models, 2/6. Please send stamped addressed envelope with all orders/ enquiries. HAMILTON RADIO, 54e London Road, Bexhill, Sussex.

FOR SALE

Illustrated cataloque No. 17 Manufacturers' Surplus and New Electronic Components including semiconductors. 3/- post free. ARTHUR SALLIS LTD., 28 Gardner Street, Brighton.

HIGH GLOSS METALLIC

HAMMERED ENAMEL

- MAKES FANTASTIC DIFFERENCE TO PANELS say hundreds of enthusiastic us 'Crackle' pattern appears like ma on wood and metal. N coat. Air dries 15 min. Heat, liquid and
 Scratchproof. Lt.
and Dk. Blue; Bronze; Silver; Green; Black

BRUSH Send for Free list, or 8/- $(+1 / 9$ post) for trial tpt. TIN, colour samples and instructions. Send NOW.
FINNIGANISPECIALITY PAINTS Dept. P.E. STOCKSFIELD. Tel. 2280 Northumberland.

BRA8s, 8TEEL, LIGHT ALLOY, 8TAINLE88 steel tube. Bar Material, Tools, MechanSTEELT, Electrical, plus Assorted Lots. Send ical, Electrical, plus Assorted Lots. Send
S.A.E. for latest Cat. of 1,000 Items. K. R. WHISTON, Dept. BPE, New Mills, Stockport.

MORSE MADE !!

FACT NOT FICTION. If you start RIGHT you win be reading amateur and commercial
within a month (normal progress to be expected). Using wientifcally propared 3-speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as easy as learning a tume. 18 W.P.M. in 4 weeks guaranteed. or send 8d etamp cor er C.O.D. ring S.T.D. 01-660 2896 or send 8d. stamp for explanatory booklet to:

Gschs/H, 45 GREEK LaNE, PURLEY, SURREY
WANTED

YALYES WANTED, brand new popular types boxed. DURHAM SUPPLIES (E), 367 F , Kensington Street, Bradford 8, Yorichire.

WANTED (continued)

WANTED September and November 1966 issues of "Practical Electronics." $10 /$ - for the two copies. WOLSKI, 55 Manor Hoad, Holbury, Southampton, Hants.

8ITUATIONS VAGANT

A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-FREE. Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

TEST ENGINEER required for transistorised electronic instruments. LEVELL ELECTRONICS LTD., Park Road, High Barnet. Telephone 449-5028.

SITUATIONS VAGANT
 (continued)

FED UP WITH YOUR PRESENT JOB?

We require a number of junior engineers with drive and initiative for:

Circuit design - development and prototypeconstruction, etc.; Electromechanical drafting-printed circuit/ chassis layouts, etc.; Production line test and inspection engineers; Production line fault finders.
Excellent prospects and full training given, day release considered. Salary up to $f 1,000$ depending on experience and qualifications.
Send full details in writing of experience to date and present salary to:
Solid State Controls Limited
Brunel Road, Acton, W. 3

TECHNICAL TRAINING by IC S $\begin{gathered}\text { IN RADIO, TELEVIIION AND } \\ \text { ELECTRONIC ENGINERING }\end{gathered}$

First-class opportunities in Radio and Electronics await the ICS trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS EXAMINATION.
* P.M.g. certificates in radiotelegraphy.

Examination Students Coached until Successful.
NEW. SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I CS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL
 CORRESPONDENCE

Schools
A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

ELEGTRICAL

Theace excellent receivers were made for the Government by a famons manufacturer. They will cover the complete amateor band, Aircrati, Martme and other Government 8tations. It in a 5 valve superhet and works from atandard dry batterita. Bullt in a robust metal cave vibe $10 \times 6 \times 4$ in Half moon calibration tuning dial. Phone or speaker output. Not new but in excellent condition. \$8.20.0, carriage 10/.. Few only

Thin wonderful little set will provide hours of Intening pleasure. Listen to the thrilling eound of an 808 at gea. Super for lietening to the Hame at work, A printed circuit layout makea it simple to tione. Employa the latest componente and tranai tors. Complete down to the lat detmil. An Ideal project for beginners. Price 8/0. Poot 5/., Money beck if not delighted.

FANTASTIC

8COOP PURCHASE

The latest electronic 12 volt d.c. to 240 volt 2.c. converter unit. Ideal for running fiuoremcent lighting and a.c. ouly equipment from your 12 yolt car battery drain. They employ the latest highiy battery drain. They employ the latest highiy full connecting lesde and clips. Full ingtructions. Brand new and ready to use. As supplied to hqu. pitais, Universities, and Govt. Depth. Price Onts © $\mathbf{6 . 1 0 . 0 , ~ c a r r . ~ 1 0 / - . ~ C . 0 . D . ~ i f ~ r e q u i r e d . ~}$

ARORAFT/POLICE BADD RECHVER

A emall transistorised recefver that will receive civil aircraft and police/fire/ambulance broadcade. Operates from a 9 volt battery that fits internally. 6 transifitora. Robust metal cabinet sine approx. $5 \times 4 \times 4 \mathrm{in}$. Attractive front panel. Speaker or headphone output. Price 87.10.0, carriage 10/., Few only. Brand new and umused.

MECHLLAKEOUS

Miniature 1 in dia. moving coil speakers, $8 / 6$ each, P. \& P.I/6. Two for $8 / \cdot$ port free
 small tully trangistorised tunable BFO unit will enable any set to receive CW or BSB reception. Compact dingle hole fixing. Full ftting detaila.
Only 49/6, P. 8 . $3 / 6$.
 PHOAT: Brand new in makers' cartons, $25 / \%$. P. * P. $5 / \cdot$.

TRAES/RECHVERS ATH/EA/zProve TRE: Must be dismantied or exported. Complete with mike/epeaker aerisl. Work up to 100 miles. Cowt

 With 1 pair of heavy duty D.P.D.T. contacts pluy numerous low current contacts. Metal bameplate. Paxelin terminal block. Many uses, Ideal for np to 20 amp . current switching. Only 7/6 ench, P. \& P. 2/6. Tour foe es/-post tree.
New Companert Centre open at his address.

TAPE RECORDERS, TAPE8, ETC.

TAPE8 $T 0$ DIBC-using finest professional equipment-45 r.p.m. 18/-. S.A.E. leafiet DEROY, High Bank, Hawk Street, Carnforth Lancs.

EDUCATIONAL

STUDY RADIO, TELEVIBION AND ELECTRONIC8 with the world's largest home study organisation. I.E.R.E.; City \& Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext House, London, SW11.

ENGINEER8. A technical certiftcate or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Elec., Auto, Electronics, Radio, Computers, Draughts, Building, etc. For full details write for FREE 132-page guide. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 125 K), Aldermaston Court, Aldermaston, Berks.

GET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms., etc. For FREE 100page book, write Dept. 856 K , CHAMBERS COLLEGE, 148 Holborn, London, E.C.1.

B00K8 AND PUBLICATION8

MISCELLANEOUS

OALLOR SEND for list from the most interesting shop in Lancashire. Electrical Mechanical and Electronic Goods. ROGERS, 31 Nelson Street, Southport.

CONTINUED OVERLEAF

CITY AND COUNTY OF BRISTOL BRISTOL TECHNICAL COLLEGE

Principal: E. Poole, B.Sc.(Eng.), C.Eng., M.I.Mech.E., M.I.Prod.E.

CAREERS IN RADIO AND RADAR

Marine Radio Officers

2 year full-time course leading to the Second and First Class P.M.G. Certificates and the B.O.T Radar Maintenance Certificate.
Conversion Course (Second Class to First Class).
R.T. Licences (Full or-Restricted)

Courses for Qualifled Marine Radio Officers

Single Sideband Techniques (2 weeks) Marine Electronics Course (Phase 1duration 3 months)
Advanced Marine Electronics Course (Phase II-duration 3 months)

Licensed Aircraft Radio Engineers

2 year full-time course covering the Aircraft Radio Engineers Licences categories A and B, issued by the Board of Trade (Civil'Aviation) followed by a six-months' course for Radar Rating (A and B) in association with
the above.

> Training given on the latest types of Marine and Aircraft equipment in modern, approved laboratories at
> THE SCHOOL OF RADIO AND RADAR
> Senior Lecturer-in-Charge: F. E. Barltrop For further information apply to:-
The Registrar, BRISTOL TECHNICAL COLLECE
ASHLEY DOWN, BRISTOL 7

4 WATT GRAM AMPS．
 Volume and tone controls，mains operation 3Ω outpur，new and boxed $65 /=$ POST BYIOO RECS 3／－
 SALOP ELECTRONICS
 9a Greyfriars Road，
 Coleham，Shrewsbury S．A．E．for lists

CALL OR 8END for list from the most interest－ ing shop in Lancashire．Electrical Mech－ anical and Electronic Goods．ROGERS， 31 Nelson Street，Southport．

TO YOUR LISTENING．．．
＂NNEW DIMENSIONS＂gives tabuious Big Hall 3－dimension effect to all music．PLUS adjuttable echo，vibrato and tone．Battery 95．
model for radio，tapc of player． model for radio，tapc ot piayer．$\%$ Efllsa
Speaker 25！－extra．
CAR VERSION for 6 v ，or 12 v ．+ or－earth． 10 gns．including rear speaker， $5 /-$ post and ins． efther model．
NOTE．Requires 100 mW low－impedance input．
D．E．W．LTD．
P．E．， 254 Ringwood Road，Ferndown，Dor＊et

RECEIVERS AND COMPONENT8

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ 亿ुin x any length．DEW LTD．， Ringwood Road，Ferndown，Dorset．S．A．E， for leaflet．Write now－right now．

ARTIFICIAL LIFE

Well almost，because the NEW range of projects include：an electronic＇animal＇ which LEARNS，and a device capable of REPRODUCING itself！Other projects SURE TO INTRIGUE YOU are an audio transmitter／receiver which has quite an amazing range and requires NO LICENCE； also a machine which recognizes itself，and an electronic dog whistle，etc．，etc．HOSTS OF EASY－TO－CONSTRUCT projects． SEND $2 / 6$ for our list of＇BOFFIN PROJECTS＇－NOW！

To：＇BOFFIN PROJECTS＇
4 CUNLIFFE RD．
STONELEIGH
EWELL
SURREY
RECEIVERS AND GOMPONENTS
（continued）

Constructor selling－out！following com－ Constructor solinggout！following com－ i3 OC71，16 OC72， 3 OC75．＇ 10 OC 200 ， 10 OC201． 10 AFIIG，I AFII7．I AFile．Mullard and perfect．Over 1000 assorted value resistors． t．$\frac{1}{t .}$ ．$\frac{1}{2}$ watt carbon and hy－stabs．Over 300
capacitors：poly＇s．s．m．，ceramic．Everything capacitors：poly＇s．s．m．，ceramic，Everything
brand new and a wonderful bargain at Elo．P．P． brand new and a wonderful bargain at $\in 10$ ．P．P．
$10 ., 5$ worth of components free with bargain 10 －．© 5 worth of components free with bargain
parcel．Also for sale：$\times 20$ kit complete $£ 4$ Parcel．Also for sal
Phone 01－989 0224.

RECEIVERS AND COMPONENT8

（continued）

REPANEO Transistor coils and Transformer． for the Coustructor，Send stanp for lists RADIO JIPPERIMENTAI PRODUCTS LTD．， 33 Wieh Park Street，Coventry．

MORE STOCK INCREASES

from S．E．S．

Now－complete range of Silicon Rectifiers $\frac{1}{2}, 1 \cdot 2,2 \cdot 5 \mathrm{amps}$ at 400 ， 800． 1500 p．i．v．
Mullard Electrolytic Capacitors－ $100 \mu \mathrm{~F} 40 \mathrm{v} . \mathrm{w}$ ．$/=$ $250 \mu \mathrm{~F} \mathrm{40v}$ w．$\quad 1 / 9$
also complete $25 v . w$ ，range！
$\frac{1}{2}$ watt Resistors increased to E24 Series－from 910 ohm to 91 k ．ohm．
You can obtain Sample Resistors， and up to date information on all our stocks by sending 6d，to－

STUDENT ELECTRONIC SERVICES

194 Regent Road，Salford 5，Lancs．
Tel．061－872 5187
Include 1；－P．\＆P．for orders under fI，and build it in LEKTROKIT－ the professional look to a home construction．

BARGAIN PARCELS of new surplis Elec－ tronir compmonts， 3 ；－，5：－10\％，pust free．
 Brita Close，Burntwoul．ar．J．i－hfieht．

AUIUWIWHIII！

SILICON PLANAR TRANEISTORS－EPOXY CASE NPN Similar to 2N2926（Brown to Orange galn spreads），2N3707，etc．All

ORDER AS：2N3TO7E © 15／－DOZEN SILICON PLANAR TRANSISTORS－EPOXY CASE PNP Similar to 2N3702．New Manufacturer＇s surplus．All tested and guaran－ teed，Ideal complementary to 2N3707E（above）．Large quantithes available of both types at LOW，LOW prlces．
ORDER AS：2N372E＠ $15 /-$ DOZEN SILICON PLANARTTRANSISTORS TO－I8 METAL CASE PNP Similar to BCY70771／72．Not tested－approx． 50% yleld of good devices． 10,000 pieces to clear．O ORDER AS：BCYT0／2／E（a，16／－100 pcs． TO－5 CASE I AMP TYPE THYRISTOR REJECTS Line rejects from S．T．\＆C．－CRSI／40 range．Not tested－mainly low voltage yield．

ORDER AS：SCR／REJ（a）10／－FOR 20 pCs SILICON POWER TRANSISTORS CASE TYPE MS－3 NPN Similat to 25012 and 2572 i line．Very high wattage and／or voltage．
Ideal for power supplies，etc．New，these cost Es each！No test． 50% good．

ORDER AS：2SOI2E（a）10／－FOR 4 pCs．
MIXED SUB－MINIATURE GLASS DIODES CASE TYPE DO－7 Ail Silicon type－Maker rejected for forward voltage drop．Ideal for GP use． 50% yield good diodes．Dirty condn．
NEW AND MARKED NIXIE DRIVER TRANSISTORS DI553 NEW AND MARKED NIXIE DRIVER TRANSISTORS DI553 Cheapest Neon／Nixie oriver on Market， 1,000 ＇s already soid to industry．
TO－5 Case．Minlmum ratings Vcb 50 hfe $10-40$＠-1 mA ．Equivalent to $25301 / O C 200$ ．

ORDER AS：DI553（a）3／－EACH，Over 50 pieces（a 2／－eo NEWMARKET TRANSISTOR REJECTS GERMANIUM PNP AF and RF types similar NKT274／6 NKT216／8，etc．No test．Guaran． aed 50% usable devic

ORDER AS：NKT／REJ a $1 / 6100$ pcs． MIXED SILICON TRANSISTORS BY TEXAS．DAMAGED BY DAMP
They look dirty but on test we have found a high percentage of good transistors－money back anyway if not satisfied！You cannot buy cheaper！

ORDER AS TEX／REJ＠ $2 / 6100$ pes！ NOTICE：the above mentioned semiconductors are a genuine stock clearance from the LST Warehouse at Brentwood and can be inspected at our shop if required．The descriptions given are accurate and ou
GOOD REPUTATION is YOUR GUARANTEE OF SATISACTION．
 121

> MATI21
OAS
OA47
OATO
OAT9
O－OATM

> 放句


```
MLEASE SENO 1968 CATALOGUE TO:
```

MLEASE SENO 1968 CATALOGUE TO:
ENcLOSE I/6 STAMPS
ENcLOSE I/6 STAMPS
NaME.
NaME.
ADDRES*

```
ADDRES*
```


RGR RADIO
 51 Burnley Road, Rawtenstall

 Rossendale, LancsTel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

EBF80	$3 /-$	PCC84	$3 /-$	PY82	$3 /-$
EBF89	$3 / 6$	PCF80	$3 /-$	U191	$4 / 6$
ECC82	$3 /-$	PCF82	$3 / 6$	U301	$4 / 6$
ECL80	$3 /-$	PCL82	$4 /-$	$6 F 23$	$5 /-$
EF80	$1 / 6$	PCL83	$4 /-$	$10 P 14$	$3 /-$
EF85	$3 /-$	PCL84	$5 /-$	$20 P 5$	$3 /-$
EF183	$3 / 6$	PL36	$5 /-$	$30 F 5$	$2 / 6$
EF184	$3 / 6$	PL81	$4 /-$	$30 L 15$	$5 /-$
EY86	$4 /-$	PL83	$4 /-$	$30 P 12$	$4 / 6$
EL41	$5 /-$	PY33	$5 /-$	$30 C 15$	$5 /-$
EZ40	$4 / 6$	PY81	$3 / 6$	$30 P L 13$	$5 / 6$
EBC41	$4 / 6$	PY800	$3 / 6$	$30 P L 14$	$5 / 6$

SIX6d
OVER SIX POST PAID.

TRANSISTOR PANELS

New boxed, size 9 in $\times 6$ in $\times 1 \frac{1}{2}$ in with "Valvo' transistors type OC45 or similar, with full length leads, also an equal number of OA85 board in a metal frame.
Panel of 20 tronsistors, diodes, etc. 20/=
$\begin{array}{lll}30-25 /- & 60-40 /- \\ 40-30 & 70-45 /- & \text { Postoge } 2 /- \text { per ponel. } \\ 50-35 \%- & 80-50 /- & \end{array}$ TRANSISTOR CAPACITORS (ELEC. TROLYTIC)
500 mF 4 V
54 mF 40 V
320 mF 10 V
50 mF 10 V
6 mF 25 V 0 mF 25 V 6.4 mF 64 V 4 mF 64 V
1 mF 25 V
/-each. 9/- per doz. Min. order $10 /-$
COMPUTOR PANELS with 40 sil. pnp or
npn transistors, Diodes and res., 22/6 Post
COMPUTOR PANELS (Flip-Flop) with 8-2G37I with diodes, 7/6; without diodes, $5 /-$
Panel with 16-OC84, etc. 10 /-
8-OC43 or GET875 \& OA8I $7 /-$ 8-OC84 6/-
Postage 6 d per panel
ELECTROLYTICS 25,000 a) 12V, 16,000 @ $12 \mathrm{~V}, 15,000$ (2) $10 \mathrm{~V}, 10,000$ @ $30 \mathrm{~V}, 4,000$ (a) $60 \mathrm{~V}, 3,000$ (a)
$8 / 6$ Post Paid.
ZENER DIODES $-2.4,2.7 .13 .6 .4 .75$,
$5.75,6.2,6.8$
$7.5,13,15,16,18,20$,
27,30,
volts. $3 / 6$ each, mostly watt POLYSTYRENE CAPACITORS $350 \mathrm{~V}: 180$
$270,330,390,470,560,680,820 p F$. $1,800,2,200$
$2,700+3,300,5,600,6,800,8,200$
$125 V: 1,200,1,500,1,800,2,200,2,700,3,300$, ,900, 4, $200 \mathrm{pF}, \mathrm{M}$ any selection 2% doz 4-40pF trimmers 4/- doz
BRAND NEW BOXED CHASSIS contain
ing 2-OC35, 2-OC29 12 WW resistors30/-.
Postage 1/6.
NEW CROSS RADIO
6 OLDHAM ROAD, MANCHESTER 4

BSR BRAD. $39 / 6$ pair \mid HICEIGAN REC./PLAY
\& TRAOK BRR MALL $39 / 6$ pair
TRACK 4-TRACX BOGEH ERASE 4-TRACK $27 / 6$

REUTER - COLLARO 4-TRACX	ERABE
4-TRACK	T.E.2/9

ACK | ass |
| :--- |
| $27 / 6$ |

F.M. WIRRLESS MICROPHONE
$94-104 \mathrm{Mc} / \mathrm{s}$. Transiatorised. Operates from 9 V battery. Complete with additional secret tie clip These cannot be operated in U.K
66. 15.0

TRANSISTORISED FM TUNER
G TRANSISTOR HICH QUALITY TUNER SIZE ONLY 6in $\times 4$ in V 2 inin 3 I.F. stages. Double tuned discriminator. Anple output to feed most ampliffers. Operates on 9 b battery. Coverage
$88-108 \mathrm{Mc} / \mathrm{s}$. Ready built ready for $88-108 \mathrm{Mc} / \mathrm{s}$. Ready built ready
use. Fantastic value for mones

E6.17.6
FM MULTIPLEX STEREO ADAPTOR
Printed circuit biscuit, 4 trans. 6 (5.19.6
diodes 9 vith full instructions
LOUDSPEAKERS 12^{*}
 FULL RAFGE EIGE $0 \mathrm{hm}, 15$ watt
$30-20 \mathrm{~K}$$\quad \mathbf{6 . 2 . 6}$
$10^{*} 10$ watt.
15 ohm, CERAMIC - 44/=
 $\begin{array}{ll}4^{\prime \prime} 16 \text { ohm, } & \{3.6 .0\end{array}$ MOLTLEETERS
fron
$32 /=$ REFLEX COHE TYPE
WATERPROOF SPKR. WATERPROOF SPKR.
5 watt, 3 ohm, 300 .
$16,000 \mathrm{c} / \mathrm{s}$ PA $16,000 \mathrm{c} / \mathrm{s}$ PA
Music Relay
M. 5.0

SWITCH ROTARY
RECLPROCATMG
4 POSITIOH, 5 /
LOUDSPEAKERS. $2^{\prime \prime} 9 / 6$ 40 ohm, $24^{\prime \prime} 80$ ohm.

SUPER SILICON RECT. T.V., etc., 1,200 PIV $800 \mathrm{~mA}, \quad 8 /-; \quad$ or complete with instr. resistor, $6 \mathrm{~A}, \mathrm{~B} /-$.

Stamped envelope for full selection and bargain offers in Multimeters, Radios, Baby Alarms, Intercoms, Walkie-Talkies, Rectifiers and Eagle Lists, UNDER ${ }^{21}$-P. \& P. 6d. OVER \& 1 post free
C.O.D. $3 / 6$. MAIL ORDER ONLY

DURHAM SUPPLIES $367 F$, KENSINGTON STREET BRADFORD 8, YORKSHIRE

BRAND NEW ELECTROLYTIC8, sub-miniature 15 valt, 2, $6,8,10,15,20,30,40,50,100 \mathrm{mF}$, $8 / 6$ per doz. post $1 /-, 30$ for 81 post paid. THE C.R.SLPPLY ('O., 127 Chesterfield Road, sheffield, s8 ORN

DUXFORD ELECTRONICS (PE)

Duxford, Cambs. (Sawston 3031) MINIMUM ORDER VALUE 5/C.W.O. Post and Packing 1/DISCOUNT 10\% over \&2
ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$.
submin

Subr	all	es in				
4 V	\times	32	64	125	250	400
6.4 V	6.4	25	50	100	200	320
10%	4	16	32	64	125	200
$16{ }^{\circ}$	$2 \cdot 5$	10	20	40	80	125
255	$1 \cdot 6$	$6 \cdot 4$	$12 \cdot 5$	25	$\overline{50}$	80
40v	1	4	8	16	32	50
645	$0 \cdot 64$	$2 \cdot 5$	$\overline{0}$	10	20	32
Price	$1 / 6$	1/3	1/2	1/-	1/1	1/2

POLYESTER CAPACITORS (Mullard)

Tubular $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}$, 7 d . 0.033 , $0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.068,0 \cdot 1 \mu \mathrm{~F}, 8 \mathrm{~d}, 0 \cdot 15 \mu \mathrm{~F}, 11 \mathrm{~F}, 7 \mathrm{~d} .22 \mu \mathrm{~F}, 1 /-$. $0.33 \mu \mathrm{~F}, 1 / 3$. $0.47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}, 8 / 3$, 1uF, 2/8.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d}, 6,800 \mathrm{pF}$,
 $0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}, 1 / 6$. $0.33 \mu \mathrm{~F}$, $2 / 8 . \quad 0-47 \mu \mathrm{~F}, 8 / 8$.
Modular, metalliged, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01$, $0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$,
$0.15 \mu \mathrm{~F}, 11 \mathrm{~d}$.
$0.22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}, 1 / 5,0.47 \mu \mathrm{~F}, 1 / 8$ $\begin{array}{llll}0 \cdot 15 \mu \mathrm{~F}, & 11 d . & 0-22 \mu \mathrm{~F}, 1 / 2 \\ 0.68 \\ \mathrm{~F}, 2 / 3, & 1 \mu \mathrm{~F}, 2 / 9, & 0.33 \mu \mathrm{~F}, 1 / 5 . & 0.47 \mu \mathrm{~F}, \\ 1 / 8\end{array}$ $0-68 \mu, 2 / \mathrm{s}, 1 \mu \mathrm{~F}, 2 / 9$.
POLYBTYREAE CAPACITORS: 5%, 160 Y (unencapmulated): $10,12,15,18,22,27,33,39,47,56,68,82,100$, $120,150,180,220,270,330,390,470,560,680,820 \mathrm{pF}$, $5 \mathrm{~d} .1,000,1,500,2,200 \mathrm{pF}, \mathrm{Bd}, 3,300,4,700,5,600 \mathrm{pF}, 7 \mathrm{~d}$. $6,800,8,200,10,000 \mathrm{pF}, 8 d .15,000,22,000 \mathrm{pF}, 8 \mathrm{~d}$.
$1 \%, 100 \mathrm{~V}$ (encapsulated): $100,120,150,180,20$
$1 \%, 100 \mathrm{~V}$ (encapsulated): $100,120,150,180,220,270$
$330,390,470,560,680,820 \mathrm{p}, 1 / 2$ $330,390,470,560,680,820 \mathrm{pF}, 1 /-$
1,800,
2,200,
$2,700,3,300,4,700 \mathrm{pF}, 1 / 3$.
1,600
$5,6,800$, $8,200,10,000,12,000,15,000 \mathrm{pF}, 1 / 6$. $18,000,22,000$ $27,000,33,000,39,000 \mathrm{pF}, 1 / 9$. $0.047,0.056 \mu \mathrm{~F}, 2 /-$ $0-068,0-082,0 \cdot 1 \mu \mathrm{~F}, 8 / 3.0 \cdot 12 \mathrm{uF}, 2 / 8.0 \cdot 15,0.18 \mu \mathrm{~F}, 8 /-$ $0.22 \mu \mathrm{~F}, 4 /-., 0 \cdot 27,0.33 \mu \mathrm{~F}, 5 /-. \quad 0.39 \mu \mathrm{~F} .5 / 9, \quad 0.47 \mu \mathrm{~F}, 8 / 8$ POTEHTIOMETERS (Carbon), miniature, lin \times tin spindle. Lin. 100Ω to $10 \mathrm{M} \Omega, \mathrm{I}$ g. $5 \mathrm{k} \Omega$ to $\overline{5} \mathrm{M} \Omega .2 / 8$. SKELETON PRE-SET POTENTIOMETERS (Carbon): Lin. 100Ω to 5 Mg . Horizontal and vertical P.C. mountiog. RESISTORG (
RESISTORS (Carbon film, very low noise. Range: $5^{\circ}{ }^{\circ}, 4 \cdot 7 \Omega$ to $1 \mathrm{M} \Omega ; 10^{\circ}{ }^{\circ}, 10 \Omega$ to $10 \mathrm{M} \Omega$.
$t W^{\prime}\left(10^{\circ}{ }_{\mathrm{o}}\right)$. 1 fd (over $\left.99,1 \mathrm{kd}\right), 100$ of
 $1 W$
$\frac{1}{3} W$
$(10 \%$
0 iW (5%), 2td, (over 99, 2 d), 100 oft per value $15 / 6$. SEMT-CONDUCTORS: 0A5, OA81, 1/6. 0C44. 2/OC45, 1/9. OC71, OC72, OC73, OC81, OC81D, OC82D Also entire current Newnarket range AFl16, AF117, 3/SILICON RECTIFIERS (0.54) 170
P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., $3 / 8$.
P.I.V., 4/-

Send S.A.E. for May, 1968 Catalogue

MICROSWITCHES

all new, wide variety for many jobs from 2/-. Waterproof and metalclad from 9/-.

SYNCHRONOUS MOTORS

with gear boxes 300 rpm to 1 rev 24 hrs. All new, wide variety 3 to 20 watts mostly $230 v$ A.C. 2500 rpm for fans, tape decks, etc. from 7/6d.

S.A.E. list.

HOLFORD \& CO.
6 Imperial Square, Cheltenham

CAPACITORS SURPLUS TO REQUIREMENTS

50 mtd 50 V .	800 mtd .	15 V
50 mtd .25 V .	1000 mtd .	15 V .
50 mtd . 15 V .	32 mtd .	450 V .
25 mtd .50 V .	$16-16 \mathrm{mtd}$.	350 V .
12 mtd .50 V .	16 mtd .	350 V .
10 med .50 V .	16 mtd .	275 V.
200 med. 6 V .	8 mtd .	150 V .
250 mtd .12 V .	.1 mtd.	500 V .
	. 0047 med.	1000 V .
	.02 mtd .	350 V .
DP change over	3/-	
WIREWOUND	5K LIN 3/-	

GREGG RADIO LTD.
II to 13 ALEXANDRA ROAD
HEMEL HEMPSTEAD, HERTS.

COMPONENTS AT GIVE-AWAY-PRIGES! Comprising: Transistors; 1\% Resistors; Condensers; Diodes; Valve Holders; plus very useful 9 -way plug/sockets. Over 100 components from ex-Brand New Equipment 10/-, or 250 assorted as above $20 /$ - post paid. Order now and avoid disappointment. DIAMOND MAIL ORDER PRODUCTS, Prospect House, Canal Head, Pocklington, York.

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: 9v; 7iv; 6v:4iv (single output) $39 / 6$ each. P. P P. 2/9. 9v + single output) 0 or each. Piv a P. $2 / 9$. outpurs) $42 / 6$ each. P. $\&$ P. $2 / 9$. Please state outputs required. All the above units are completely isolated from mains by double wound transformer ensuring 100 "., safety.
n.c.s. Pmoducts (RADIO) LTD. (Dept. P.E.), 31 Oliver Road, London. E. 17

PHOTOELECTRICKIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, InfraRed Phototransistor, Latching Relay, 2 Transistors, Condenser, Resistors, Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact everything you need to build a Steady-Light photo-Switch/Counter/Burgiar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation

12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Switch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Stray-light Alarm. (4) Relay-Less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Projector Lamp Stabiliser. (8) Electronic Projector Modulator. (9) Mains Power Su iply. (10) Car Parking Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super-
Sensitive Alarm.

INVISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for building: I, Invisible-Beam Projector añd I Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, 2 45-degree wooden blocks, Infra-red filter, proiector lamp holder, building plans, performance data, etc. Price 19/6. JUNIOR PHOTOELECTRIC KIT : Surface Mail 2/-; Air Mail $8 /-$ JUNIOR PHOTOELECTRIC KIT
Versatile Invisibie-beam, Relay-less, Steady-light Photo-Switch. Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Pho
CONTENTS: Inira-Red Sensitive Phototransistor, ${ }^{3}$ Transistors. Chassis. Plastic, Case, Resistors, Screws, etc., Full, Size Plans. Instructions, Data Price 19/6. Postage and Pack. 1/6 (UK). Co
JUNIOR OPTICAL KIT ${ }^{(6)}$ (UK). Commonwealth 2:-; Air Mail 4:CONTENTS OPTICAL KIT
CONTENTS: 2 Lenses, Infra-red Filter, Lampholder. Bracket, Plans, etc. Everything (except plywood) to build I miniature invisible beam projector and photocell receiver; Price 10/6. Postage and Pack. 1/6 (UK). Common-
wealth: Surface Mail 2 -; Air Mail 4 --. wealth: Surface Mail 2 ;-; Air Mail 4
YORK ELEGTRICS, 333 York Road, London, S.W. 11
Send a S.A.E. for full details, a brief description ond Photographs of all Kits and all 52 Radio. Electronic and Photoelectric Projects Assembled.

FREE! 6 TOWN MAPS

More easy through-routes for holiday motorists, taking you the quickest way through Nottingham, Oxford, Cambridge, Edinburgh, Aberdeen and Dundee. Plus details of a handy QuickReference Wallet for all Practical Motorist 'Town Guide Cards, available at 7s. 6 d .

ELECTROVALUE

FAST MAIL ORDER SERVICE mini transistors with M|GHTY specifications

Low cost, Plastic encapsulated, slilcon

2N4285 pnp high reverse base-emitter voltage rating.
BFE 35 to 150 BVebo all over $35 V$. IT $=7 \mathrm{MHz}$ minimum
2 N 4286 non tigh $\mathrm{lc}=10 \mathrm{~mA}$. Vce(sat) 0.5 V max $\mathrm{lc}=10 \mathrm{~mA} \mathrm{lb}=1 \mathrm{~mA}$
BVebo over 30 V GVceo over 25 V ; if $T=280 \mathrm{MHz}$ typ to 600 id ic $=1 \mathrm{~mA}$

BVcbo over 60 V BVceo over 45 V iT $=170 \mathrm{MHz}$ typ © min . $\mathrm{Ic}=2 \mathrm{ic}=1 \mathrm{~mA}$ 2 N 4291 pnp large signal high gain $\mathrm{hFE}=100$ to $300 \mathrm{mzelc}=100 \mathrm{~mA} \mathrm{Vce}=10 \mathrm{~V}$
BVcbo over 40V. BVceo over 30 V , Vce(sat) $=1.5 \mathrm{~V}$ max $\mathrm{Ac}=100 \mathrm{~mA}$ $1 \mathrm{~b}=10 \mathrm{~mA}$.

$\mathrm{hFE}=50$ typ.
BV cbo over
 2N3794 npn large signal high gain (complementary to 2N4291)
BVcbo over 40 V BV
All of the above are rated over 20V; hFE $=100 \mathrm{~min}$. $6 \mathrm{it} 1 \mathrm{lc}=100 \mathrm{~mA}$.

B5001 POWER type on TO65 size base, npn high gain. Colie
from mounting surface (500 V insulation ,
 $\mathrm{Tj}($ max $)=150^{\circ} \mathrm{C} . \mathrm{hFE}=100$ to $175 \mathrm{ft} \mathrm{kc}=0.5 \mathrm{~A}($ yellow $\max)=1 \mathrm{lec}$ $V_{c e}($ sat $)=1.2 \mathrm{~V}$ max $(\mathrm{m}) \mathrm{lc}=1 \mathrm{~A}, 1 \mathrm{ib}=50 \mathrm{~mA}$. $=0.5 \mathrm{~A}$ (vellow selection) The seven types above are offered ac the foliowing low prices: 2N4285 to
2N4292, $2 \mathrm{~N} 37943 / 3$ each; B500 (yellow) 2N4292, 2N3794 3/3 each; B5001 (yellow) 13/6.
\star PEAK SOUND PRODUCTS
CIR-KIT No. 3 Pack 12/6; adhesive copper $5 \mathrm{ft} \times 1 / 8 \mathrm{in}$ or $1 / 16 \mathrm{in} 2 /-$
 $2 \neq \mathrm{in} \times 3 \frac{1}{2}$ in $2 / 6$.
TRANSISTORISED STERO AMPLIFIER AND PRE-AMP SAB-B
Complete kit of this very popular amplifier 16 watts total output Cawer sut
Leaflet with
\& 10.10 .0

NEW MINIATURE LOUDSPEAKER TYPE MS8-5

Really outclasses other speakers of its type. Handles high power efficiently and with purity throughout the audio
spectrum. Bass resonance 60 Hz . Ilb ceramic 5 ohms. Power Handing over 8 true watts. Grill: duft gold anodised aluminium. Cabinet: natural Arromosa, Size $9^{*} \times 5^{*}$ wide $\times 10^{*}$ deep. Supplied in kit form to achieve the incredibly low price of $\varepsilon 8 / 1 / 6$ net.
Discount not available on the above Peak Sound Kits.

* UNBEATABLE VALUE IN NEW SEMICONDUCTORS Silicon

Germanium

$2 N 3053$	$5 / 3$	$2 N 3055$	$16 / 6$	$2 N 2147$	$16 / 9$	NKT403	$14 / 10$
BC107	$2 / 9$	BC167	$2 / 3$	AD 161	$8 / 6$	AD 162	$8 / 6$
$B C 108$	$2 / 6$	BC168	$2 /=$	$2 G 308$	$6 / 9$	$2 G 309$	$7 / 9$
BC109	$2 / 9$	BC169	$2 / 3$	$2 N 1304$	$4 / \%$	$2 N 1305$	$4 /-$
$2 N 3702$	$4 /-$	$2 N 3704$	$4 /=$	NKT27I	$4 / 3$	NKT274	$4 / 3$
$2 N 3707$	$4 / 6$	$2 N 3391 A$	$5 / 6$	NKT281	$5 / 2$	NKT781	$6 /-$

Matched pairs I/-extra. Power types complete with insulating sets
Field Effect: MPFI05, gm 2 to $6 \mathrm{~mA} / \mathrm{V}$ B/-, 2 N 3819 Now only $10 /-$ 400 mW ZENERS, 5° tolerance, 3 to $27 \mathrm{~V}, 4 / 6$ each.
Diodes: $15940 \mathrm{I} /-$, OA202 2/-, OA91 I/3, OA95 I/3, EC401 3/-.
Rectifier: BYX10: 800 V piv, 200 mA max only $3 / 3$.
t SUPER QUALITY NEW RESISTORS Corbon film low noise high stabs:

Power 1/8W 5\%	Range	Series	Per doz.	Per 100
1/8W 10\%	\% 18 to 4.70	E12	1/10	$14 / 6$
I/8W 5\%	$390 \mathrm{~K} \Omega$ to 1 Ma	E12	$1 / 10$	14/6
1/4W 10\%	4.7Ω to 10 Ma	El2	1/9	$13 / 6$
I/2W 5\%	478 to 10 Mn	E24	$2 / 2$	17%
$1 \mathrm{~W} 10 \%$	4.7Ω to $10 \mathrm{M} \Omega$	El2	3/3	25/10

$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$ 50k-sets: $100 \Omega, 250 \Omega, 500 \mathrm{n}$, $1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 2.5 \mathrm{ka}$
 Low cost volume controls: 1000 to 10 vertical mounting, $1 /$ - each. Log stereo: $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k}$ l Ma lin, $5 \mathrm{k} \Omega$ to 5 Ma log, $2 / 3$ each. Ceramics: $1,000,2,000,4,700 \mathrm{pF}, 500 \mathrm{~V}, 5 \mathrm{M}, 0.005,0.01,0.02,0.05 \mu \mathrm{~F}, 50 \mathrm{~V}, 5 \mathrm{~s}$, Electrolytics: 5 , $10,25,50 \mu \mathrm{~F}, 10 \mathrm{~V}, 9 \mathrm{~d} ; 5,10 \mu \mathrm{~F}, 25 \mathrm{~V} .9 \mathrm{~d} ; 100,200 \mu \mathrm{~F}, 10 \mathrm{~V}, 1 / \mathrm{i}$; $25,50 \mu \mathrm{~F}, 25 \mathrm{~V}, 1 /$.
Sub-min C426 range ($\mu \mathrm{F} / \mathrm{V}$): $10 / 2 \cdot 5,8 / 4,6.4 / 6.4,4 / 10,2.5 / 16,1.6 / 25,1 / 40$,
$40 / 2 \cdot 5,32 / 4,2 \dot{5} / 6.4, \dot{16} / 10,10 / 16,6 \dot{4} / 25, \dot{4} / 40,2 . \dot{5} / 64 \cdots \quad \cdots \quad$ each
$500 / 2 \cdot 5,400 / 4,320 / 2 \cdot 5,320 / 6 \cdot 4,250 / 4,200 / 6 \cdot 4,200 / 10,160 / 2.5$,
$\begin{array}{llll}125 / 4, & 125 / 10, & 125 / 16,100 / 6 \cdot 4,80 / 2 \cdot 5, & 80 / 16, \\ 64 / 10,50 / 6 \cdot 4, & 80 / 25, & 50 / 40,40 / 16,32 / 10, & 32 / 40, \\ 32 / 64, & 25 / 25\end{array}$
$20 / 16,20 / 64,16 / 40,12 \cdot 5 / 25,10 / 64,8 / 40,5 / 644,3 / 64,25 / 25 \quad . \quad 1 / 4$ each
EVERYTHING BRAND NEW NO SURPLUS FAST DELIVERY
DISCO UNTS: (unless otherwise indicated) $10^{\circ} \circ$ aver $63,15 \%$ ov er 610 . SEND 1/- for 1968 CATALOGUE-involuable to every electronics enthusiost ond professionallaboratory alike.
Postage $I /$ - under \mathbb{I}, post

Stores Phone No.: Egham 5533 (STD 0784-3)

MINIATURE WAFER SWITCHES

4 pole, 2 way-3 pole, 3 way- 4 4 way- 2 pole, 6 way-1 pole, 12 way. All at $8 / 6$ tach. $86 /-$ dozen. your assortment.
WATERPROOF HEATHFA
ELEMENT
26 yards length 70W. Self-regulating
temperature control. 10/- post free.

BLANKET S
Double Pole with
neon let into side so ideal for dark roon or for use with waterproo element-blue plastic case. $7 / 6$ each.

TRANSISTOR SET CASE
Yery modern creann cabinet. size at. 3 . 17 in ing knob and scale. Price 4/6 plus 2/. postage. Printed circuit board for this case TRF circuit 2/6, superhet $8 / 6$.

MAINS TRANSFORMER SNIP Making a power paek for
amplifier or other equipment? These transformers have normal miains primaries (230/40V) ant isolated secondaries. Two types: (1) $12 \mathrm{~V}^{-} 500 \mathrm{md}$ at 9/6; (2) 15 V 500mA at

CAR BATTERY CHARGER
12V 1 anty.- will keep your battery up to scratch. Mains transformer with seconlary isolated metai
rectifier all housed in neat metal box with mains fiex and charging leal terminated with heary duty battery clips-bargain at $27 / 6$ plus $3 / 6$ P. \& P.

Where postage is not definitely stated as an ex ath $2 / 9$. 8.A.E. with enquiries plegso.

n

\qquad

ELECTRONICS (CROYDON) LIMITED also ot 266 LONDON ROAD, CROYDON, SURREY. S.A.E. with enquiries please

$$
\begin{aligned}
& \text { Electric Clock with } 20 \text { amp. Switch } \\
& \text { Made by Smith's these units are as fitted } \\
& \text { to many top quality cookers to control the } \\
& \text { oven. The clock is mains firiven and } \\
& \text { frequency controlled so it is extrenely } \\
& \text { accurate. The two small dials enable } \\
& \text { switch on and off times to be accurately } \\
& \text { get-also on the left is another timer or } \\
& \text { ilarm-this may be set in minutes up to } 4 \\
& \text { hours. At the end of the period a bell wili } \\
& \text { sound. Offered at only a fraction of the } \\
& \text { regulir price- new and unused only } 39 / 6 \text { less than the value of the clock } \\
& \text { alone post and ins. } 2 / 9 \text {. }
\end{aligned}
$$

BARGAIN OF THE YEAR

MICRO-SONIC

7 transistor Key chain loudsp raker Radio in very pretty case, size leather zipped bag. specification: Circuit: $\frac{7}{7}$ transistor superheterodyue. Frequency ringe: 530 to $1600 \mathrm{kc} / \mathrm{s}$. Sensitivity: $5 \mathrm{mas} / \mathrm{m}$. Intermediate frequency: $465 \mathrm{kc} / \mathrm{s}$, or $455 \mathrm{kc} / \mathrm{s}$. Power output: 40 mW . Anteuna: ferrite rod. Loudspeaker: permanent- nagnet type. In transit trom the Farst these sets suffered slight corrosion as the
batteries were left in them but when this corrosion is cleared away they this corrosion is cseared dway they
 out guarantee except that they are new. $19 / 6$ plus $2 / 6$ post and ins., less batteries. A pair of rechargeable everiast ing batteries $3 / 6$ each (2 required)

RECHARGEABLE P.P. 3
Nickel cadmium cells fitted into PP3 case-can be recharged indefinitely charge at 10 mA . Price $87 / 6$. Componeats to make charger $6 / 6$ extra.

TELESCOPIC
AERIAL
for portable, car radio
or transmitter. Chrome pla-ted-six sections, extends from
7 to 47 ln . Hole in bottom for $6 B A$

KETTLEELEMENT
$230 / 240 \mathrm{~V}$ 1,500 watt. Made by Best for kettles with 1 inin
dia. hole including: dia. hole including:
Best. Besco, Chalfont. Best, Besco, Chaliont,
Davidson, Dimplex, Grafton, Hawking, Jurymaid, Mirrowave, Mono: gram, Pifco, Revo, Towen, Swan. Normally 32/6. Our price $15 /-$ plus $2 / 6$ post.
$0-1 \mathrm{~mA}$ Fuel vision moving coil meter $\mathbf{2 " x}^{\prime \prime}$ sq. Full vision. 19/6 plus $2 /-$ post.
300 pF Gilicone tuning condenser $2 / 6$ each. $24 /-$ doz. $0-500 \mathrm{~mA} 3^{*}$ Flash mounting noviag coilmeter $10 / \cdot$
MESSAGE TAPES
20it best qualfty PVC, made in USA. 3in spool 20it best qualfy
packed in self maller box, $4 / 6$ each or 3 for $12 /-$.

PHONE	WENTWORTH RADIO			BAR 3087
	ALISBURY ROA	D, HIGH BA	NET	
$\begin{array}{ll}\text { AFII5 } \\ \text { AFII6 } & \\ \text { AFI6 }\end{array}$	SPECIA	F	OC44	1/11
Afli7	ECIA	FR	OC72	1/10
AFI18			OC75 $\mathrm{OCl7}$ 0	$3 / 9$ $2 / 6$
BCl 107 BCl 108 $4 /-$	GET573	- 7/=	OCl71	2/6
$\underset{\text { BFIO9 }}{ }$			NKT261	4/3
$\begin{array}{ll}\text { BFY50 } \\ \text { BFY51 } & \text { d/- } \\ & 4 / 6\end{array}$	OC45	- 1/6	NKT262 NKT264	4/3
			NKT274	4/3
$\begin{array}{ll}\text { BrY53 } & \\ \text { MATI00 } & \text { 4/9 } \\ \text { MAST01 }\end{array}$	OC201.	- 2/-	NKT403 NKT404	$16 / 1 /-$
MATIO1 8/6			NKT674F	5/9
NKT124	MINIATURE	MAGNETIC	NKT713	8/3
NKT125 5/9	Miniature	MAGNETIC	NKT7I	$8 / 3$
CASH WITH ORDER	EARPIECES	9d. EACH	P. \&	

FOOTBALL POOL COMPUTER

- FORECASTS RESULTS
- CHEAP EASYTOBUILD
- ANYONECAN OPERATEIT

Analogue Computer

- Very simple, cheap, eas

Fascin
ciples.
Ciples.
simple Electrical Analogue circuits, Binary Adder/Subtracter and Noughts \& Crosses
Machine Circuits, 4/6d post 6d.
PLAÑET INSTRUMENT CO.
25(E) DOMINION AVE. LEEDS 7

VALUABLE NEW HANDBOOK Fh EE ENGINERS Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new 'ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng, Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elec Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.—Road Eng. - Hydraulics -- Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG.
Advanced Radio - General Radio-Radio \& TV Servicing - TY' Engineering - Telecommunications - Sound Recording - Automation Practical Radio - Radio Amateurs' Examination. MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech, Eng.-Maintenance Eng. - Diesel Eng. Press Tool Design - Sheet Metal Woik - Welding Eng. Pattern Making -Inspection- Draughtsmanship -Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.General Auto. Eng. - Auto. Maintenance - Repair Auto. Diesel Maintenance duto. Electrical EquipmentGarage Managenn'ut.

We have a wide range of COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

> THIS BOOK TELLS YOU
> \star HOW to get a better paid, more interesting job.
> \star HOW to qualify for rapid promotion.
> * HOW to put some letters after your name and become a key man . . . quickly and easily.
> * HOW to benefit from our free Advisory and Appointments Depts.
> \star HOW you can take adyantage of the chances you are now missing.
> \star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

> 132 PAGES OF EXPERT
> CAREER - GUIDANCE
> PRACTICAL EQUIPMENT
> Basic Practical and Theoretic Courses for beginners in Electronics, Radio,T.V. Etc, A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam.
> R.T.E.B. Certificate
> P.M.G. Certifitale

> Practical Electronics
> Electronics Engineering Practical Radio
> Radio $\&$ Television Servicing Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

[^1]
apa mono preamplificr control unit $£ 6.19 .6$ p.p. $3 /$

- SP4-A mono/gtereo version of
\&P3 El|.|9.6 p.p. 4/6 pick-up as well)
£15.10.0 p.p. $5 /-$
- MPA12/3 12 watt amplifier

54
£4.10.0 p.p. $2 / \mathrm{e}$

- MPA12/15 12 - 16 ohm 12 watt \quad £5.5.0 p.p. $2 /$
- mpa2s $2 \overline{5}-30$ watt amplifier or 7 l - 16 obm speake £7.10.0 ${ }_{\text {p.p. }}$ /6
- Pse4/40 power supply fo
£3.12.6 p.p. 3/
- MU60 power supply for MPA2

VHF FM TUNER

$87 / 105 \mathrm{Mc} / \mathrm{s}$ Transistor Superhet. Geared tuning Terrifle quality and sensitivity. For ralve or with dial plate. 5 Mullard Transistors, plus 4 diodes. (Cabinet Assembly 20/- extra.)
TOTAL cost
TO BULD
$£ 6.19 .6$
Ask for Brochure 3.

6-Transistor MW/LW Car Radio 12 volt operated. 3 ratt output. Push-button, wavechange Supplied built, boxed, ready to ube with Speaker and Batfle, Car fixing kit and manufacturers
carrent guarantee. Special Bargain Offer Positive or Negative Earth. Bargain Offer De-Luxe Five Puabbutton
version
212.12.0 P.P. 4/6

FM STEREO DECODER
7 Mullard Tranisistors. Printed Circuit Design with Stareo Indicator. For use with cong vaive or transistor FM. Uses pot transistors. As used by B.B.C. and G.P.O COMPLETE
KIT PRICE
Ask for Brochure 4.
Build a Quality TAPE RECORDER with MARTIN RECORDAKITS * TWO-track. Deck. Amplifier. Cabinet and epeaker. Complete kits with MCROPHONE and 7in 1,200ft tape, spare spool.
Today's Value ess 36 ghs. P.P.22/6
\star Four-Track. Deck. Amplitier. Cabinet and speaker. Complete kits with mickoPHONE and 7in $1,2001 \mathrm{t}$ tape, spare spool.
Today'a Value 26039 ghs. p.p. 22/6 Ask for Brochare 8 .

8-TRANSISTOR INTEGRATED 7 WATT AMPLIFIER AND PREAMPLIFIER—MAT WITH FULL BASS-TREBLE AND VOLUME CONTROLS.

A brilliant new design suitable for home or portable installations. Desigued for use with magnetic and crystal]ceramic cartridges, radio tunera, mierophones, tape head replay and
auxiliary inputs. Output is for 3 to 16 ohm auxiliary inputs. Sutput is for o to yo ohm speakers. It favours the user in so many ways-
with fantastic power, with far greater With fantastic pitherer, with far greater
adaptability, with freedom to operate it from batteries or mains power supply unit (the new
PS20 is ideal for this). Hi-fi installations, electronic guitars and organs, P.A. installations, intercom systems, etc. This true 7 watt smplifer is supplied ready built, tested and guaranteed. For complete istening gatisfaction. FOR ONLY

Optional mafn unit PS20 $62 / 6$ P.P.
ILLUSTRATED
BROCHURE NO.

£8.10.0 P.P. $4 /=$

MW-LRANSISTOR SUPERET

PORTABLE
New printed circuit design with full power output. Fully tunable on both mw/lw bands. 7 trangistors plus diode, push-pull circuit. Fitced mulard transistors, large ferrite aerial terrific results. All local and Contivental trations. Total cost \&6.19.6
P.P. 4/8 Ask for Brochure 1.

TRANSISTORS SIMICONDUCTORS
COMPLETELY MEW 1988 LIST OF 1000 types a available from stock. Send for your FREE COPY TODAY. (List No. 36)
*S.C.R.'s

* FIELD EFYECT TRANSISTORS from $5 /-$ *POWER TRANSISTORS from 5/*DIODES AND RECTIFIERS from 2/-
30 page illustrated brochure as above including Valves and Quartz Crystals. 1/- post paid.

CATALOGUE

The most COMPREHENSIVE-
CONEISE CATALEAR - COM-
PONENTS CATALOGUE. Complete
FREE WITH EVERY COPY

* 32 pages of transistors an semi-conductor devices, valves and crystals.
* 200 pages of components and equipment.
* 65 pages of microphone, decks and Hi-Fi equipment.

Send today $8 / 6_{\substack{\text { posid } \\ \text { gaid }}}$

GARRARD DECKS	

FROM £5.19.6
Send for lluzatrated brochure 16 \& 17

Completely new 9th

 1968 Edition300 Big pages
6,500 items
1,200 illustrations

[^0]: All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELECTRONICS, George Newnes Ltd., $15 / 17$ Long Acre, London, W.C.2. Phone: 01-836 4363. Telegrams: Newnes London. Subscription Rates including postage for one year, to any part of the world, 42s. (c) George Newnes Ltd., 1968. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRON1CS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^1]: Published about the 15 th of the month by GEORGE NEWNES LIMITED, Tower House, Southampton Street. London, W.C.2, at the recommended maximum price shown on the cover. Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents-Australia and New Zealand: GORDON \& GOTCH (A/sia) Ltd.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World fl 1 l s. od.

