= FAOTRAL

Granire

at바 1968
PRICE 216

SOLDERING EQUIPMENT
for the
DISCRIMINATING ENTHUSIAST

APPLY DIRECT TO:
SALES \& SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE 01-622 0291

ELECTRDUALUE
 Rapid Mail Order Supply Service

* Mini Transistors WITH THE MIGHTY specifications
$\left.\begin{array}{ll}\text { 2N4285 pnp high reverse Vbe } \\ \text { 2N4291 pnp large signal high gain } \\ 2 N 4292 \text { npn UHF low noise }\end{array}\right\}$ 3/3
$\begin{array}{ll}\text { 2N4286 npn high gain } & \text { 2N4292 npn UHF low noise }\end{array}$
2N4289 pnp high gain 85001 npn high power $13 / 6$ each
Details in our last month's advertisement or see our latest catalogue

* PEAK SOUND PRODUCTS

TRANSISTORISED STEREO AMPLIFIER AND PRE-AMP SA8-8

Complere kit of this very successiul amplifier
Power supply kit
Cabinet 63 net

NEW MINIATURE LOUDSPEAKER TYPE MS8-5

Really outclasses other speakers of its type. Handles high power efficiently and with purity throughout the audio spectrum. Bass resonance 8 true watts. Grill: dull gold ohis. Powminium. Cabinet. natural Afromosa. Supplied in kit form to achieve the incredibly low price of $\mathbf{£ 8 / 1 / 6}$ net.

Discount not ovailable on these Peak Sound Kits.

* UNBEATABLE VALUE IN NEW SEMICONDUCTORS

SILICON
BC107, 2/9; BC108, 2/6; BC109, 2/9; BC167, 2/6; BC168, 2/-; BC169, 2/3; BCl09 and BC169 are low noise. $\mathrm{BC} 167, \mathrm{BCl} 68$ and BCl 69 plastic. 2N3055, high power. 16,6 only. MPF105, field effect, gm 2 to $6 \mathrm{~mA} / \mathrm{V}$, 8/- only.
Low noise: 2N3707, 4/6; 2N3391A 5/6; 2N4058, pnp, 5/-
Bargain: 2N2926, red, 2/3; orange, 2/6; yellow, 2/9; green, 3/-; 2N3702. 2N3705, 3/8; 2N3053, 5/3.

RESISTORS
LW, $10^{\circ} 0,1 / 9$ doz.; $13 / 6100$. $\frac{1}{2} \mathrm{~W}$, 5\%, 2/2 doz.; 17/-per 100 . $1 / 6$ less per 100 if ordered in complete 100 s of one ohmic value. IW and IW ypes also available, see catalogue. Large stocks of Skeleton pre-sets, high quality, horiz. or vert.

ELECTROLYTICS: for full details of our extensive and varied stocks see the latest Elecirovalue Catalogue.

EVERYTHING BRAND NEW NO SURPLUS FAST DELIVERY DISCOUNTS: (unless otherwise stded) 10% over $63,15 \%$ over 610 DISCOUNTS: (unless otherwise stated) professional laboratory alike.
POSTAGE I/-on order under \mathcal{C}, FREE $\subset 1$ and over.
ELECTROVALUE ${ }^{\text {mansfieL }}$ PLACE, ascot, berks.

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, InfraRed Photptransistor, Latching Relay, 2 Transistors, Condenser, Resistors, Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm

12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Switch/Alarm. (2) Modulaced-Light Alarm. (3) Long-Range Stray-light Alarm. (4) Relay-Less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Proiector Lamp (10) Car Parking Lamp Switch. (II) Automatic Headlamp Dipper. (12) Super-

Sensitive Alarm
invisible beam optical kit
Everything needed (except plywood) for building: I, Invisible-Beam Projector and I Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS. 2 lenses, 2 mirrors, 245 -degree wooden blocks, Infra-red filter projector lamp holder, buly . Commonwealth: Surface Mail etc. Price 19/6
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassis Plastic Case, Resistors, Screws, etc., Full Size Plans, Instructions, Data Sheet "10 Advanced Photoelectric Designs"
Price 19/6. Postage and Pack. $1 / 6$ (UK). Commonwealth 2/-; Air Mail 4/-.
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc Everything (except plywood) to build i miniature invisible beam projector and photocell receiver. Price 10/6. Postage and Pack. I/6 (UK). Common wealth: Surface Mail
YORK ELEGTRICS, 333 York Road, London, S.W. 11
Send a S.A.E. for full details, o brief description ond Photogrophs of oll Kits and all 52 Radio, Electronic and Photoelectric Projects Assembled.

Tuselfar' =

GET YOUR LASKY'S CATALOGUE

FREE second Great Raprint Isean Row Ready. Twolve 18×11 in pages -1禺禹

DESIGNED ESPECIALLY TO REPLAY PHILIPS CASSETTE SYSTEM

THE FANTAVOX

TAPE CASSETTE PLAYER

This machine is the firat of its type and is designed epeciicslly to replay pre-recorded tape cassettes made tor the Hily slipped into the machine and is immediately ready to play. Each cassette gives over 40 minutea play (twin track), no loss of time in rewinding-simply turn cassette over. Constant tape speed 1is i.p.s. Only two controls ofi/ play and rol. Fully transistorised, powerful vol., built in speaker, socket for personal earplece. Operates on 6 penlight batteries. Very attractively styled shockproof plastic cabinet size $6 t \times 4 i \times 2$ in with wrist strap. Complete with earpiece and batteries. There are now over 200 musiThis machine allow you to play the mosic of your choice anywhere-anytime. LASKY'S PRICE £7.9.6 Post o -

TRANSISTOR FM TUNER CHASSIS
 Fully tunable-range 88 to $108 \mathrm{Me} / \mathrm{s}$. Com pletely wired on printed circuit. $10 \cdot 3 \mathrm{Mc} / \mathrm{s}$. 1 F . 6 transistors and 3 diodes. flow motion tuning rive. size $6 t \times 4 \times 2$ in. Operates from any LASKY'S PRICE E6.10.6 Post 5/-

MULTIPLEX ADAPTOR

Now you can enjoy atereo sound with the rM Twer above. Brief spec.: MPX input cansitivity 100 mV . Output 150 mV . Self powered by a 9 V battery. 4 transistor and 6 diode circuit. size $6, \times 2 \times 1 \mathrm{l}$,
Also suitable for use with other FM tuner
with MPX input.
LASKY'S PRICE 99/6 Post $5 /$
PACKAGE.PRICE IF BOUGHT TOGETHER $£ 11$ Post $5 /$ -

NEW! TTC ELECTRONIC REMOTE CONTROL SWITCHING SYSTEM
 Comprising trangistorigel signal tranamitter

 unit and receiver relay switching unit this is an extremely compact, simple to use and inatall remote switching system for use with a wide range of mains operated equipment. The high frequency (inandible) algnal which the transmitter produces is relayed io the remote switching unit via the a.c. maina circuit into which the wnits are plager-proviang instan on/oft-oition control of appliances. Ideal
for use with audio, radio. TV, Ilghte, electric blanket and most other domestic equipment. Spec.: 3 transistor and 1 diode efrcuit. Frequency 190ke/e (factory pre-tet). Power $220 / 240 \mathrm{~V}$ a.c., $50 / 60 \mathrm{c} / \mathrm{s}$. Max. power of cquipment to be switched 300 W . The applance to be triggered simply plugs in to the switch relay unit. Strong piastic cabinets aize $51 \times 21 \times 18 \mathrm{in}$, each gitted with neon indicator lamp. Complete with fiex and operating lnstructions.
LASKY'S PRICE $\pm 7.19 .6$ Post $5 /:$

gnGLE FLATERE
Auto start and atop. Complete with pick-up arm.
pick-up arm.
t/table $111 / 19 / 8$
GARRARD ERP22
20/10/6

GARRARD AUTOCHANGERS

AP75 ……
AT60 Mk.
3000LM with stereo cart A70 s/10/ sit196 57/7/0
Avo… GRARRARD 401 ser/19/0 GARRARD Lab. 80 Mk. II complete with aAREARD BABE
WB
81/5/8 WB2
4il18/8
WB4
8/8/11
CLEARVIEW PLAMTIC COVZHS
SPC1.. $88 / 2 / 10$ 8PC2
Postage on all ikove 5/- axtra

TEST EQUIPMENT

RF SIGNAL GENERATOR

Model TE-20

A new high quality factory tested and calibrated RF Signal Generator offering : full trequency range cover of $120 \mathrm{ke} / \mathrm{m}$ to $260 \mathrm{Mc} / \mathrm{s}$ in 6 bands plus one harmonic band. Dual High/low RF output terminail provided and separate varlable Audio output. Etched circular sealeaceuracy $\pm 2 \%$-read agalnst halir-line on perspex cursor. Power " on" pilot light fitted. Briaf 8poofacation; Fre quency range (6 fundamental bands) A.

 Frequency accuracy $\pm 2 \%$. Output-RF (high) $100,000 \mu \mathrm{~V}$ max., $R \mathrm{RF}$ (low) $100 \mu \mathrm{~V}$ mux. Aullo output $400 \mathrm{c} / \mathrm{s}, 8 \mathrm{~V}$ approx. (adjustable). Power requirement. 105/125V
 size: $7 \times 10 \times 5 j$ in, finlshed in grey crackle with leather carrying hamile. Complete with lest leads and tnatruction book.
LASKY'S PRICE $£ 12.10 .0$ Post \bar{j} /

TTC Model C-105I

A completely new dealga 20,000 O.P.V. pocket multimeter with bullt-in thermal protection circuit and mirror scale. Exceptionally large easy to read meter with D'Arsonval movement. Colour coded males. Single pooltive click-in, recewed selection switch tor all ranges. Ohms $\begin{array}{ll}\text { zero } \\ 0-6-30-300-1,200 \mathrm{~V} \\ \text { at } \\ \text { ang } \\ 10 \mathrm{~K} / \mathrm{ohma} / \mathrm{V} \text {. } & \text { D.c. }\end{array}$ volts: $\quad 0-8-15-150-300-1.2 \mathrm{KV}$ at $20 \mathrm{~K} /$ ohms/V. Hesistance: $0-60 \mathrm{~K}-6 \mathrm{meg}$. D.c. current: $0-60 \mu \mathrm{~A}-300 \mathrm{~mA}$. Decibels: -20dB to +17 idB . Hand calibration gives extremely high standard of accuracy on all ranges Uses one $1!\mathbf{V}$ penight battery. Strong impact resistant plastic cabinet-size only $48 \times 8 k \times 1 / \mathrm{in}$. Two colour buif/green finieh. Complete with teat leadia and battery Oris. 1int price a5.5.0.
LASKY'S PRICE 75/- Pont 2/6

LASKY'S CLEAR PLASTIC

 PANEL METERSProcicion made in Japan by BIOK L. Eech moter hozed and tully zuasenteed with sll ixfing nuts and wahary. Sizes are

$10 \mathrm{~mA} \ldots \ldots \ldots \ldots$.

Type ME-884 lfin square	9018	Type Ex-46 3: $\times 3 \mathrm{ln}$	
$\mathrm{Imax}_{5 \mathrm{ma}}$	27/6	1 mA	
100 ma	87/6	5 ma .	
300 V	87/6	300 V	
$50 \mu \mathrm{~A}$	87/6	$50 \mu \mathrm{~A}$	
1 mas i meter	89/8	Imas meter	
$100 \mu \mathrm{~A}$	87/8	$100 \mu \mathrm{~A}$	
$500 \mu \mathrm{~A}$	29/6	$500 \mu \mathrm{~A}$	
Type $\mathbf{1 5}$-454 2in aquare		Typa IEx-88A 3in square	
1 mA	29/6	1 mA	
5 mA	28/6	5 md	
100 mA	.8/6	100 mA	
300 V	.88/8	300 V .	
$50 \mu \mathrm{~A}$.	49/8	$30{ }^{\text {a }}$ A ${ }^{\text {a }}$. ${ }^{\text {at. }}$	
lmas meter.			
$100 \mu \mathrm{~A}$.	. 18.6	$100 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$	481-

[^0]

${ }^{\text {GII }}$

 thls 960 PAGES THE COMPLETELY NEW 1968 ELECTRONIQUES MANUAL 12 HOBBIES SECTIONS PLUS OVER 12,000 COMPONENTS AND SPECIAL VOUCHER OFFERS COULD SAVE YOU £25 IF YOU BUY THE MANUAL NOW!The 1968 Hobbles

The 1968 Hobbles
Manual now contains electronic easy-to-build kits famous American range of Number One name in communication equipment and radios. $B O O K S$-over 140 titles. AUDIO and $H I-F I-a$ wide, wide range including famous names like Goodman, Sinclair Sonotone, Acos, Discatron, etc., etc. HOME AND HOBBYsomething for every member of the family-microscopes, telescopes, radio controlled equipment, garage door openers, experimental and educational kits, etc. MOTORING-a expecial section with money-saving engine tuning kits, special section with money-saving engine tamag on other useful accessories. SHORT WAVE LISTENING-exciting kits and finished equipment for world-wide reception. TEST EQUIPMENT AND TOOLS-a very wide range including multimeters, oscilloscopes, signal generators, soldering irons, cutters, pliers, breadboarding kits, etc., etc. COMPONENT'S-over 12,000 'ttems from more than 100 manufacturers. The most comprehensive range available from a single source-now bigger than ever before.
from a single source-now bigger than ever before. AMATEUR RADIO-the best of receivers, transcei rotators, aerials, Qoilpax modules and lots more.
$E L E C T R O N I Q U E S$ PRODUCTS-boxes and assembly systems, transistor and valve Hamband and General Coverage tuners, crystal filter I.F. amplifiers, oscillators and other modules for effortless high performance. And finally SEMICONDUCTORS AND VALVES-a new section of famous brand names like STC, RCA Newmarket and Brimar.

R.S.T. VALVE MAIL ORDER CO.
18A WELLFIELD ROAD, STREATHAM, S.W.16
Special 24 Hour Mail Order Service

$\underset{\mid 201}{201}$

$10 \mathrm{BI} / 91$

Dr91	3/-	EM34
DiP96	$6 / 9$	EM80
1088/01	801-	EM81
10H77	4/6	EM84
DK91	6/6	EN32
DKP0	$81-$	WY51

展

元
BUILD YOURSELF A QUALITY TRANSISTOR RADIO—FULL AFTER SALES SERVICE!

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION

- 7 FULLY TUNABLE WAVE BANDS-MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band.
- Extra Medium waveband provides easier tuning of Radio Luxembourg, etc.
- Built in ferrite rod aerial for Medium and Long Waves.
- 5 Section 22 in. chrome plated telescopic aerial for Short Waves -can be angled and rotated for peak S.W. listening.
- Socket for Car Aerial.
- Powerful push-pull output.
- 7 transistors and two diodes including Philco Micro-Alloy R.F. Transistors.
- Famous make $7 \times 4 \mathrm{in}$. P.M. speaker.
- Air spaced ganged tuning condenser.
- Separate on/off switch, volume control, wave change switches and tuning control.
- Attractive case with hand and shoulder straps. Size $9 \times 7 \times 4 \mathrm{in}$. approx.
- First grade components.
- Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build with guaranteed results.

Total building costs

£5.19.6
P. \& P. 7/6

Parts price list and easy build plans 3/(FREE with parts).

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE
Attractive case with red speaker grilie. Size $6 \frac{2}{8} \times$ $4 \frac{1}{2} \times 14$ in. Fully tunable. 7 stages $-\overline{5}$ transistors and 2 dmdes-ferrite rod aerial, tuning condenser, volume control, fine tone super dynamic 23 in. speaker, all first grade componenta. Easy build plans and parts price list $1 / 6$ (FREE with parts).

Total building costs $39 / 6 \quad \begin{gathered}\text { P. \& } \\ 3 / 6\end{gathered}$

POCKET FIVE

MEDIUM WAVE, LONG WAVE

 AND TRAWLER BAND PORTABLEAttractive black and gold case. Size $5!\times 1 \frac{1}{2} \times$ $3 \frac{1}{2}$. Fully tunable over both Medium and Long Waves with extended M.W, band for easier tuning of Lurembourg, ete. An first grade components, 7 stages-5 transistors and 2 diodes-super: coil speaker, etc. Easy build plans and part rice list $1 / 6$ (FREE with parts) price list. 1/6 (FREE with parts).

Total building costs
$42 / 6 \quad$ P. \& P.
$4 / 6$

NEW MELODY MAKER SIX

3 WAVEBAND PORTABLE
 8 stages-6 transistors and 2 diodes

Covers Medium and Long Waves and EXTRA M.W. BAND FOR EASIER TUNING OF LUXEMBOURG, etc. Top quality 3 in . Loudspeaker for quality output. Two RF stages for extra boost. High "Q" 6 in. Ferrite Rod Aerial. Approx. 350 milliwatts push-pull output. Handsome pocket size case with gilt fittings. Size $6 \frac{1}{4} \times 3 \frac{3}{2} \times 1 \frac{1}{2}$ in.
This amazing receiver may be built for only
69/6
P. \& P. 4/6

Parts Price List and easy build plans 2/(Free with parts).

Total building costs $79 / 6 \quad$ P. \& P.

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt Attings, size $7 \frac{1}{2}$ - 0 : 1 in. World wide reception. Tunable on Medium 1hin. World wide reception. Tunable on Medium and Long Waves, twn Short Waves, Trawier of Luxembourg, etc. Sensitive ferrite rod aerral and telescopic Rerial sor short Waves. All top grade componente, 8 stages - 6 transiators and 2 diodes including Philco micro-Alloy R.F. Trangiators, ete: (carrying strap 1/6 extra). Easy build plans and parte price list $2 /-$ (FREE with
parts). parts).

Total building costs
$69 / 6$ P. 8 P.

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Atractive cape size $71 \times 5 \frac{1}{3} \times 11 \mathrm{in}$. with gilt attinga. The ideal radio for home, car or outdoors. Covers medium and Loag Waves and Trawler Band. special circuit incorporating 2 R.F. stages, puah-pull output, ferrite rod aerlal, 7 transistors and 2 diodes, 3in. speaker (will drive larger speaker) and all first grade components. Price
lint $2 /$-(FREE with parts).

RADIO EXCHANGE Ltd

61a HIGH STREET, BEDFORD

Callers side entrance Stylo Shoe Shop. Open 9 - 5 p.m. Saturday 9 - 12.30 p.m.
Telephone: Bedford 52367

SINCLAIR
 IT14a brilliant advance in high fidelity loudspeaker design

When the Sinclair Q. 14 was demonstrated at this year's Audio Fair, it delighted some of the world's keenest and most critical listeners. It more than held its own against far more expensive loudspeakers and proved beyond all question that research and careful design could produce a quality loudspeaker for a remarkably low price. The Q. 14 measures $9 \frac{1}{4}$ in square on its face and is finished in black matt with natural aluminium bar embellishment. Its unique shape allows it to be tried and used in a far wider choice of positions than conventionally shaped speakers. A pair in stereo give true "in-depth" performance with complete freedom from listening fatigue. If you missed the Audio Fair, why not hear this speaker in your own home. Should you not be pleased with it, your money including cost of return post to this office will be refunded in fulf.
" The very finest value for money."
SAYS THE EDITOR OF "TAPE RECORDING MAGAZINE."
Page 267, June issue.
". . . After a great deal of listening I have formed the positive and unshakeable opinion that in the Q .14 we have the very finest value for money it is possible to buy. In the B \& K graph * lies the answer to the astonishing quality of these little fellows. My recommendation (to persons not ready to spend $\mathbf{c} 100$ or more on speakers) is to invest in Sinclair $\mathbf{Q} .14$ s and sit back and enjoy them for the next few years."

* Published Practical Electronics, November 1967.

ACCLAIMED BY

 USERS TOO!P.G. of Newry. N. Ireland writes: "I have always been cynical about letters written to manufacturers praising their goods, buc I am so delighted with the (two) Q. 14 speakers that I feel I must write this for it sounds that you have given me a new collection of records. I congratulate you on a marvellous speaker at very reasonable cost."

SUPERB VALUE AT

NEW STYLING
ALL BRITISH

COMBINED 12 WATT HI-FI AMP AND PRE-AMP

The small amplifier with the enormous output

No constructor's amplifier has ever achieved such success as the Sinclair Z.12. It has fantastic power-to-size ratio, and far greater adaptability. It will operate from batteries or mains supply unit PZ.4, and give superb-stereo reproduction for a modest outlay. Thousands are in use throughout the world-in hi-fi, electronic music instruments, P.A., intercom systems, etc. This true 12 watt amplifier is supplied ready built, tested and guaranteed together with the $Z .12$ manual which details control circuits enabling you to match the $Z .12$ to your precise requirements. For complete listening satisfaction, use your precise requirements. For complece istening satisfaction, use your substantial saving in outlay.
\star IDEAL FOR BATTERY OPERATION.
Sin I $\frac{3}{4}$ in.: Itin. Class B Ultralinear output. $15-50,000 \mathrm{~Hz}+1 \mathrm{~dB}$. Suitable for $3,5,8$ or 15Ω speakers. Two 3-ohm speakers may be used in parallel. Input- 2 mV into $2 k \Omega$. Output- 12 watts R.M.S. continuous sine wave (24 W peak), 12 watts R.M.S. continuous sine wave (24 W peak), Tested and Guaranteed.

SINCLAIR PZ. 4 STABILISED POWER SUPPLY UNIT

A heavy duty a.c. mains power supply unit delivering 18 V d.c. at $1 \cdot 5 \mathrm{~A}$. Designed specially for use with one or 0
more Z.12s. Ready buift and
tested.

SINCLAIR STEREO 25 PRE-AMP/CONTROL UNIT
For use with two Z.I2's in stereo. With full control and matching facilities. Attractive aluminium front panel and knobs.

E9.19.6

THE SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. FULL SERVICE FACILITIES AVAIL. ABLE TO ALL PURCHASERS.

Please send POST FREE	
...........n.......-6nc...	NAME...
..........................	ADDRESS.......... ..
For which I enclose cash/cheque/money order	PE. 7

SUMMER BARGAIN！

HARVIRSONS 8UPER MONO AMPLIFIER A super enalify gram amplifier naing a double wound onsode valve all andio ampliher and power output stage and tone controls．Chatis ifise only $7^{n} \mathrm{w} . \times 8^{+} \mathrm{d} . \times 8^{*} h$ rerail．A．c．mains 200／240v．Supplitd absolntely Brand quality output trangiormer．LIMITED NUMBER ONLY． Out Roct Bottom Bargain Price 49／6 P．息 P． $6 /$

E．M．I．8yin．HEAVY DUTY TWMETERS．Powerfu 18／6．P．\＆P．2／6．

A really first－class Hi－Fi Stereo Amplifer Kit．Loes 14 transistors giving 8 watts push－pull output per channe 16W mono），Integrated pre－anp．with Bass，Ireble and Crystal cartridges．Output stage for any speakers from 3 to 15 ohms．Compact design，ali parts supplied including pivel tnobs，wire solder nuts boits no extras to buy imple atep by atep instructions enable any constructo o build an amplifier to be proud of．Brief Specification to +12 dB ．Treble cut approx．to -16 dB ．Negative at 0.6 amp ．
Amplifier Xit， 29.10 .0 （Built and Tested £12．10．0）
Power Pack Kit，2te， 10.0 （Built and Tested 88）P．\＆P．1／－ Cabinot，\＆8．10．0．P．\＆P．5／6．
at same time or built and tested for 518 post free）． ith diagram，construction details and parts list（fre

HIGH GAIN 4 TRANSISTOR PRINTED CLRCUIT Peak output in excess of 11 watts all stan dard British components．Built on printed circuit panel size 6 ソ 3 in．Generous size Driver and Output ransiormers，Output transiormer tapped for 3 ohn S1 Mullard OC81D and matched pair of OC81 o／p）， 9 volt operation．Everything supplied，wire follow instructions and circuit diagram 2／6（Free with Kit）．All parts sold separately．gPRGLAL PRICE 45／－ ${ }_{P}^{P} \&^{\&} P$ P．3／－．Also ready built and tested，52／6．
 with valve and tuner head circuit dlagrans．（See June
issue），ONLY $87 / 6$ each．P．\＆P． $3 /$－，

GORLDR F．M．TUSER HEAD． $88.100 \mathrm{Mc} / \mathrm{s} 10-7 \mathrm{Mc} / \mathrm{s}$ 1．F．，15／－，Plus 2／6 P．\＆P．（ECC85 valves，8／6 extra．） BRAND NEW MATIS TRANBFORMBRS for Bridgc Rectifier．Pri．240v．A．C．Sec．240v，at 50mad ami 6－3v

Desigicr MODEL HA34 Designed for Hi－Fi reproduc tion of records．A．C．Main operation．Ready built on plated heary gauge metal chassis，size 7 ！in．w．4in d．$x 4 \%$ in．h．Incorporates ECC83，EL84，EZ80 valves Heavy duty，double wound mains transformer and out put 3 ohm speake separate Bess．Treble and wolume controls Negative feedback line．Output $4:$ watts．Front pane can be detached and leads extended for remote mounting of controis．Complete with knobs，varees，etc．，wiret an tested for ouly $\$ 4,5,0$ ．P．\＆ 1^{\prime} ． $\mathrm{t}^{1 / m}$
HSL＂FOUR＂AMPLIFIER KIT．Ninilar in appearame to HA34 above but employs entirely different and ad vanced circuitry．Complete set of parts，etc，78／6．P．\＆P．6 10／14 WATT HI－FI AMPLIFIER KIT A stylishly finished
monaural amplifier with and output of 14 watts from of EL84s in push－pull Super reproduction of both music and speech，with neg ligible hum．Sep－ arate inputs for mike and gran allow records and
 follow each other ollow each other．Fully shrouled sectivu n unnd output ransiormer to mateh $3-10 \Omega$ speaker and 2 hoependen provided giving good lift and cut．Valve line－up 2 ELS4s． ECC83，EF86，and EZ80 rectifier．simple instruction booklet 2／6．（Free with parts．）All parts sold separately ONLY 27.9 .6 ．P．\＆P，8／6．Also available ready buil and tested complete with stid．input sockets． 29.5 .0 P \＆P．8／6．
MATCHED PAIR OR 2 WATMIRANBISTOR DRIVER AHD OUTPUT TRARE ORMERS．Stack size 11 $1 \% \times$ in．Output trans． apped for 3 ohm and 15 ohn output．10／－pair plus 2／
 Heary tap）．Complete with latest type ligh weight pick－up arim and nono cartridge with t／o styli for LEIG8．LIMTTED NYMBER．ONLF 63／－．F．\＆P：6／6．

4－SPEED RECORD PLAYER BARGAHI

Main：models．All brand new in maker＇s pacting

 ary ap arm and mono cart et 5.0 All plus Carringe and Pacting B／6．
IATEST GARRARD MODELS ALL typer available 1000 8R25， 8000 ，AT 60 ，etc．Send S．A．E．Lor lateat Bargain Prices LATEST B．g．R．X1H MONO COMPATIBLE CARTEIDGR With turnover sapphire styli for playing zP，LP and Stereo records with mono equip OXLY 8e／6．P．\＆P． $1 / 6$ sOHOTONE 9TAHC Conpatible Stereo Cartridge with diamond sts lus $50 / \mathrm{F}$ ．P．\＆P．1／t．
MONO T／A CARTRIDGE．Complete with LP \＆ 78 arpphire styli，Brand New 12／6．P．\＆P ， $2 /$ ．

QUALITY RECORD PLAYER AMPLIFIEA
A top－quality record player amplifier cmploying heavy duty double wound mains transiormer，ECC83，ELS4， EZ80 valves，Separate Bass，Treble and Volume controls．Complete with output transformer matched
ior 3 ohm speaker．Size 7in．w．\times Sin．d．$\times 6$ in， h ． ior 3 ohm speaker．Size 7in． \mathbf{w}, \times 3in．d．$\times 6$ in．h． ALSO AVAILABLE nounted on board with outp ALSO AVAILABLE nounted on board with output

DE LUXE QUALTTY PORTABLE R／P CABIMET Vncut motor board size l4jin．$\because 12 \mathrm{jn}$ ．clearance 2 in ． below， \sin above．Will take above amplifier and any
G．S．R．or GARRARD Autochanger or Single Player Unit rexcept AT60 and SP25）．Size 18in．\because 15in．$X 8 i n$ ． $\begin{array}{llll}\text { rexcept } \\ \text { ARICE } & 8.9 .6 . & \text { P．} & \text { P．} 9 / 6 .\end{array}$

BRAMD NEW 3 OHM LOUDSPEAKRES
 G．M．I． 13 ？in．F．M．I．Sin．with with high flux magnet $21 /-$
 12in．3／6 per sheaker．
BRAND KEW．12in．1uw．H／D speakers， 3 or 15 ohm， By well－known British maker．Now with Hi Flux ceramic ferrobar magnet assembly，25，10．0．P．\＆P． $5 /-$
（initar models： $25 \mathrm{~W}, ~ 88 ; 30 \mathrm{~W}$ ． 88.

17in．－\＆11．10．0 carr．30／－
Igin．SLIM－LINE 24 gns．
TWO－YEAR GUARANTEE EX－RENTAL TELEVISIONS
fREE ILLUSTRATED
FREE ILLUSTRATED
LIST OF TELEVISIONS
$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS SIZES AND PRICES dEMONSTRATIONS DAILY

8TEREOGRAM CABINET £19

An ologant stereosram cabinet in modern Voncered mahogany and cloth covered Front Panel
black leatherette side panels Dimensions：52＂$\times 17 \frac{1}{2}^{\prime \prime} \times 12^{\prime \prime}$ ．Speaker positions for Twin $10^{\prime \prime} \times 5^{\prime \prime}$ Speakers

OTHER MODELS＿SEND FOR LIST

TRANSISTOR CHASSIS DI
6 Transistors，LW／MW．Tele－ scopic Aerial．Brand New． Famous British Manufacturer
（LESS SPEAKERS）．P．\＆P． $4 / 6$ ．
TRANSISTOR CHASSIS D2
8 Transistors LW／MW．Brand New Famous Manufacturer

AUTOCHANGER RECORD CABINETS 59／6 P．\＆P． $7 / 6$.
SINGLE PLAYER CABINETS 19／6．P．\＆P．7／6．
TRANSISTOR CASES 19／6． Cloth covered，many colours．
Size $9 \frac{1}{2}^{2} \times 6 \frac{1}{2}^{2} \times 3^{2}{ }^{2}$ ．${ }^{2}$ P．P． $3 / 6$ ． size
Similar cases in plastic $7 / 6$ ．
RADIOGRAM CABINETS
ONLY \＆5．19．6

An attractive discreetly designed space saving cabinet in natural grained polyestered sapele．Press－ drop flap for autochanger drop flap for autochange and record storage com－ partment． $10^{\circ} \times 5$ speaker position．Complete with
legs．Dim． $29 \frac{1}{2}^{\prime \prime} \mathrm{H} \times 14 \frac{1}{2}^{\prime \prime} \mathrm{D}$ ess．Dim． $29 \frac{1}{2}^{\prime \prime} \mathrm{H} \times 14 \frac{1}{2}^{\prime \prime} \mathrm{D}$
$\times 29^{\prime} \mathrm{W}$ ．Carr．Ins． $25 /=$

DUKE \＆CO．（LONDON）LTD． 621／3 Romford Road，Manor Park，E． 12 Phone 01－4786001－2－3

Stamp for Free List

```
HIGH SPPED MAGNETIC COUFTTRRS (4 }\times1\times1\textrm{lin}).4\mathrm{ digit. 12/24/48V (state
which) 6/6 each P. & P, 1/
COPPER LATHMATE BOARD (8? < 5% < \frac{1}{36}\mathrm{ in). 2/6 each. 5 for 10/=}
```



```
which) 89/6 each.
```


BULE COMPONENT OFFERS

```
100 Capacitors \(\overline{0} 0 \mathrm{pF}\) to \(0 . \overline{0} \mu \mathrm{~F}\) ．
250 Carbon Resistors \(\frac{1}{ \pm}\) \＆W（Transistor types）．
250 Carbon Resistors is \＆ 1 W ．
100 Ceramic Capacitors 2－1，000pF
12 Precision Resiators \((0.1 \%\) serer
12 Precision Resistors（ \(0.1 \%\) several standard values included） 25 Glose Tolerance Caps．（ \(2 \%\) ）．
4 gilicon Rects． 400 p．i．v． 3 amp ．
4 Silicon Rects． 400 p．i．v． 3 amp
8 Silicon Rects． 100 p．i．v． 3 amp
50 Bilicon Trans．（2N706／708，BSY28／29，BCY41／42 types．）Unmarked，Vntested． 50 Silicon Diodes 200 m．a． 100 p．i．v．Sub．Min
ANY ITEM 10／－．ANY 5 ITEMS 28.
```

8．0．R．（Thyristors）CRS1／20 5／6；CRS1／407／6；CRS8／107／6；CRA3／30 8／6； 8．0．RE．（Thyristors）CRS1／20 5／6
CRS3／40 10／m：CRS3／50 12／6 each．
＇ 8000 ＇TYPE RELAY8（ex，new equip．） 10 for $25 / \mathrm{m}$（our choice）P．\＆P． $5 /$
 CONPUTER LOGIC BOARDS containing： 14 BCZII， 2 trimpots，diodes，etc．，20／－ each．
LIGET DIHYER／BPEED CONAROL MODULER： 200 watt， $85 /-$ ； 500 watt，45／－； 1，000 watt， $60 /$
RHCORD LEVEL METHRS（By Smiths）． $1 \frac{1}{3} \times \frac{1}{2}$ in，15／－each．P．\＆P．2／6．

P．C．COSAECTORS（ 13 way in－line）， $4 / 6$ pair．
LARGL CAPACITY ELECTROLYTICS： $100+400 \mu \mathrm{~F}, 275 \mathrm{~V} ; 1,000 \mu \mathrm{~F}, 50 \mathrm{~V} ; 2,000 \mu \mathrm{~F}$ ， $70 \mathrm{~V} ; 3,200 \mu \mathrm{~F}, 16 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 4 /-$ each． $4,000 \mu \mathrm{~F}, 90 \mathrm{~V} ; 5,000 \mu \mathrm{~F}, 25 \mathrm{~V}, 7 / 8$ each． $5,000 \mu \mathrm{~F}, 50 \mathrm{~V}: 6,300 \mu \mathrm{~F}, 63 \mathrm{~V}: 10,000 \mu \mathrm{~F}, 30 \mathrm{~V}: 16,000 \mu \mathrm{~F}, 15 \mathrm{~V} ; 26,000 \mu \mathrm{~F}, 15 \mathrm{~V}, 10 /=$ each．
GPEAKER BARGALIS（E．M．I． $13 \approx$ sin．）With two Tweeters and $\times /$ over， 15 ohm 65／－；with Dual Cone， $15 \mathrm{ohm}, 52 / 6$ ；Single Cone， 3 or $15 \mathrm{ohm}, 45 / \mathrm{F}$ ．P．\＆P． $3 /-$ ． FAIE， $12 \mathrm{in}, 20 \mathrm{waH}$（Dual Cone），95／－P．\＆P．5／\％．
TWEETER（E．M．I．3in）， $15 \mathrm{hm}, 18 / 6$.
CAR RADIO（3／5 ohm）， $7 \times 4 \mathrm{in}, 15 /-; 8 \ldots 5 \mathrm{in}, 17 / 6$.
IRVERTER UNIT containing $2 *$ OC28 and 2 LA5 Pot Cores．15／－．P．\＆P．2／6．
PATTRICK \＆KINNIE
8I PARK LANE，HORNCHURCH，ESSEX ROMford 44473

PITMAN BOOKS

Pick-ups: The Key to Hi-Fi

J. WALTON. i2s 6d NET

Now that the recording companies have announced their intention to concentrate on stereo recording, Mr. Walton has introduced material dealing with pick-up "compatibility" requirements for this second edition of his book, besides general revision. Of the first edition, Hi-Fi News said "It can be highly recommended as a first-class introduction to the subject of high-quality record reproduction."

Telex

R. W. BARTON. 70s NET

The increasing use and importance of Telex equipment on an international scale has led to a demand for a more comprehensive treatment of this subject than is given in the book Telegraphy. This book provides a detailed study of the Telex system of the British Post Office and the metheds adopted for inter-working with the Telex systems of other countries. Primarily for engineers and students, it will also be valuable to those engaged in traffic and operational aspects.

The Electronic Musical Instrument Manual

ALAN DOUGLAS. Fifth Edition. 55s NET

Substantial changes have been incorporated in the fifth edition of this most successful work, many of these being due to the impact of transistors-now widely used in small electronic organs for traditional effects. A useful introduction to semiconductors is now included and the sections on amplifiers, power supplies and experimental methods have been heavily revised and extended. The book will undoubtedly maintain its place as the standard work in this field.

Systematic Electronic Fault Diagnosis
 T. H. WINGATE. PAPER BACK i7s 6d NET; HARD BACK 27 s 6d NET

Dealing with the fundamentals of fault-finding technique in the servicing of electronic equipment, this is a programmed text which has already been validated in use on Royal Naval training courses. Branching in form, it should be of considerable help to the large number of students taking such courses as that for the City and Guilds R.T.E.B. Certificate.

Principles of Electrical Technology
 H. COTTON. 45 s NET

The sixth edition of Electrical Technology, which treated the subject at first-year level and became in its field one of the most popular textbooks ever written, is now replaced by this new book, which is in M.K.S. Units and, in accordance with the changing approach to electrical technology, contains more electronics and less on machines than its predecessor. Professor Cotton has lost none of his flair for exposition and the book should quickly establish itself as a standard work for first-year electrical engineering students.

39 Parker Street, London, W.C. 2

calarmens

MODEL 15

MICRO SOLDERING INSTRUMENT

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from 3/64" (.047") to 3/16", including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \mathrm{t}^{\prime \prime}$. Weight $\frac{1}{2} \mathrm{oz}$.
Max. handle dia. 7/16".

EXTRA-HIGH PERFORMANCE
Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts-equals normal 30/40 watt iron.

- All VOltages

The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/37.

LIND-AIR COMPONENT BARGAINS

 LONDON'S LOWEST PRICES!| | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

SEE LIND-AIR OPPOSITE

 25 \& 53 TOTTENHAM COURT ROAD, LONDON, W.1. Tel. 01.580 $4534 / 7679$

 25 \& 53 TOTTENHAM COURT ROAD, LONDON, W.1. Tel. 01.580 $4534 / 7679$ Open 9-6 p.m. Monday to Saturday inclusive. Open Thursday until 7 p.m.

ALL POST ORDERS TO Dept. P.E. 768 25 Tottenham Court Road London, W. 1

FANE 202

3 Bin
TWEETERS
Imp. 3 -5 ohms. 17,000
gauss. 12 watt. Brand new ع3.15 0. LIMD-AIR PRIEE 59/6. P. \& P. 3/G. GOODMANS BPEAKER BARGAIES: 5 in 3 ohms, $15 / 6 ; 6 \ln 3$ ohm, $29 / 6 ; 8 \mathrm{in}$ $3 \mathrm{ohm}, 32 / 6 ; 10 \mathrm{in}$ б $\mathrm{ohm}, 65 /-; 10 \mathrm{in} \times 6 \mathrm{in}$ per Bpeaker.

AHFINES
Enjoy \& tereo Sound as you have never heard it G1111 as 11lustrated. Goft padded earphones. Soit padded earphones Impedance 8 ahma per phone. Frequency range $25-13,000 \mathrm{c} / \mathrm{s}$. With 5 ft . lead. Price 09/6. P. \& P. 4/6. Other similar types available. ARAI Aspess. 8 ohms. $\mathbf{1 7 . 1 0 . 0}$. CORAL E10\% 16 ohms, *5.19.6
EAGLE SE1. 16 ohms, 84/- T.T.C. Stothotcope 8 ohms, 49/6. P. \& P. 4/6 each.

Input $0.200,220,240 \mathrm{~V}^{\prime}$
Ontput 110 V.
Output 110 V .
$\begin{array}{lll}50 \mathrm{~W} & 81.7 .6 & 1,000 \mathrm{~W} \\ 75 \mathrm{~W} & 8.9 .0\end{array}$ $\begin{array}{ll}75 W & 81.17 .0\end{array}$
$1,500 \mathrm{~W} 815.15 .0$ 2,000W E18.10.0 $3,000 \mathrm{~W}$ 205.10.0

 500 W 整.8.6 $0.30 \mathrm{~V}, 3 \mathrm{4} 42 /-$

MAINS TRANSFOHMEAS

Input 200/250V $00 \mathrm{c} / \mathrm{s}$
$24 \mathrm{~V} 3 \mathrm{~A} 98.12 .6 \quad 24 \mathrm{~V} \quad 8 \mathrm{~A} 85.5 .0$ Post extra.
Mains and Output Transformer lists available on request.

EXTENSION TELEPHONES

omly
37/6 P. \& P. $5 /$
Complete with lead, automatic dial numbered -10 and internal bell. Guaranteer perfect turer to G.P.O. Specification.

SEE OPPOSITE

TEAK
FINISH
PLINTHS with perspex cover 61 gns. (for LAR80 (2gne.). P. \& P. 12/6
Goldring, ete.

GARRARD DECKS
 3000 with Sonotone 9TAHC Stereo Cartrilge 3000 with Sonotone 9TAHC Diamond Stereo Cartridge
 T60 MKII less cartridg
 P. 25 MKII less cartridge
 SP. 25 MKII with Decca Deram Sitereo Cartridge AP. 75 less cartridge
 Ali plus P. \& P. 12/f

Mono Cartridge $17 / 6$ extra
Stereo Caitridge 22/6 extra.

Ideal players,
deck, ete
6.3 d.e. Motor. 10,900 r.p.in. at 230 mA . $1 \operatorname{lin} \times$ lin dia. Shaft lin $\begin{array}{lll}\text { long } \\ 9 / 6 . & \text { P. } & \text { S/64in dia. } \\ \text { P. } & 2 / 6 .\end{array}$

9V d.c. Cram deck roplacement motor. Sinaft x in in dia, 3/321n. 17/6. P.\& \mathbf{P}. 2/- Two for 80/: SYNCHRONOUS CLOCK

MOTORS
Geared for 40 revolutions per hour. 230 v 50 cycle, with mounting flanges. Size approximately 1 itn deep x 2tin
dianeter. OKLY 2\&/6. P. \& P. $2 / 6$.
 auxiliary contact is normally on but off 1 in every 25 . Contplete with suppressor, resistors, plus series contact for continuous operation. Ideal window displays, switching lamps, molels, etc. 12 V or 24 V d.c. Brand new and boxed, 12/6. P. \& P. 2/6

ELECTRIC MOTOR

Made by Crompton Parkinson. Single phase $\$$ h.p. Motor. $230 / 250 \mathrm{~V}, 50$ cycles. 1.3 mmpa . 1,425 r.p.m. Continuous rating. Spladle $1 t x$ in dia. Overall size less spindle approx. $8 \times 6 i n$. Ferfect condition. A bargain for the
work bench. ONLY 79/6. Carr. 20/.

DELAY ACTION TIME SWITCH

> Madeby Smiths. A.c operation 200 / 250 V . Double pole. Will give time delays from 0-10 minutes. gize 2lin dia. x 27 in long ine
in $\times 3 / 16 \mathrm{in}$ dia. spindie. BARGAL FBICE 17/6. P. \& P. 2/6. $1 / \mathrm{F} 500 \mathrm{Kc} / \mathrm{s}$ ．Incorporates 2 R．F．and 3 I．F．stages，band－ pass filter，noise limiter，crystal controlled B．F．O．，calibrator I／F，output，etc．Built－in speaker，output for phones．Operation 1500230 V a．c．Size－192 $\times 13 \mathrm{~L} \times 16 \mathrm{in}$ ．Weight 1141 b ．Offered in good working condition，se8．10．0．Carr．30／－．With circuit diagrams．Also available．B．41 L．F．version of above 15 K c／s．
$700 \mathrm{Kc} / \mathrm{s}$.
E17．10．0．Carr． $30 /$ ．

SOLARTRON CDTIIS．2．DOUBLE

BEAM OSCILLOSCOPE
 $\underset{\text { An extrennely high }}{\text { acillowcope }}$ quality oscilloucope Switched beam．Iden－ tical Y1，Y2 Aupliffers d．c．to $9 \mathrm{Mc} / \mathrm{s}$ ．Sensi－ tivity $3 \mathrm{mV} / \mathrm{CM}$ to 100 V／CM．Time base 10μ／ sec．${ }^{\text {bo }} \mathrm{x}$ misecs．Cali－ brator．X amplifler d．c．
to $2.5 \mathrm{Mc} / \mathrm{B}$ ． Z Modula－ 10 2．5Mc／A．Z Modula－
tion． $110 / 200 / 250 \mathrm{~V}$ a．c supplied in good working order． 865 ，carriage e2，or available as recelved from Ministry un．
serviced．$£ 50$ ．Carriage $£ 2$ ．（Handbooks $\& 2$ extra．）

MARCONI TEST EQUIPMENT
 EX－MILITARX RECONDITIONED．

TF 144G STANDARD SIGNAL GENERATORS， $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{mc} / \mathrm{s}$ ， 2 L .6 ，carr． 30 －
TF． 885. ．VIDEO OSCILLATOR． $0.5 \mathrm{Mc} / \mathrm{k}, \mathrm{se}$ ，
T．F．195M．BEAT FREQUENCY OSCILLLATOR $0-40 \mathrm{kc} / \mathrm{s}, 200 / 250 \mathrm{~V}$ a．c． 820, carr． $30 /$－
All above ontered and checked．excellent condition fully esk and checked
TF． 1100 VALVE VOLTMETER，Brand New， Brand New， 275.
AM／FM SIGNAL GENERATORS
 Osciliator 2．A high quality precision
ment made fortru－
ine ment trade for the
ninigtry by Airmec． Frequency cover－
age $20-80 \mathrm{Mc} / \mathrm{si}$ AM 4ge $20-80 \mathrm{Me} / \mathrm{s}, \mathrm{AM} / \mathrm{FM}$ Incor－

In porates precision clial，level meter，precision attenuator $1 \mu \mathrm{~V}-100 \mathrm{mV}$ ．Operation from 12 V Supplied in brand new condition complete | with |
| :--- |
| 201. |

Variable Voltage TRANBFOMMERB

Brand new，guaranteed and carriage paid
High quality construction．Input 230V 50－60 cycles
Output full variable from $0-260 \mathrm{~V}$ ．Bulk quantities available
1 amp．一 $5.10 .0 ; 2.5 \mathrm{amp} .-26.15 .0 ; 5 \mathrm{amp}$ ．-19.15 .0 ；
$8 \mathrm{amp}-\$ 14.10 .0 ; 10 \mathrm{amp}-\mathrm{k} 18.10 .0 ; 12 \mathrm{amp} .-221 ; 20 \mathrm{amp} .-887$.

ELECTRONIC MULTIMETERS

High quality 97 range instrument which measures a．c．and d．c．Voltage．Current Resistance and Power output．Range d．c．volts $250 \mathrm{mV}-10,000 \mathrm{~V}$ ．（ 10 meg ？ 110meg 2 input）．D．c．current $10 \mu A$ volt $100 \mathrm{mV}-250 \mathrm{~V}$（with R F meguring head un to $250 \mathrm{Mc} / \mathrm{s}$ ）A current $10 \mu \mathrm{~A}-25$ ampe．Power output 50 mlc ． watts－5 watts．Operation $0 / 110 / 2001$ 250 V ．C．Supplied in perfect condition complete with circuit lead and R．F． probe 造．Carr．15／－．

4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ ． cont inuous and electrical band apread on $10,15,20,40$ and 80 metres． 8 valve plus
7 diode circuit． $4 / 8$ ohm output and 7 diode circuit． $4 / 8$ ohm output and phone jack SSB－CW ANL AN Garisble
BFO 8 meter Sep，band spread dial IF $445 \mathrm{Kc} / \mathrm{a}$ Audio ontput 1.5 W ． Variable RF and AF gain controls． 115／250V．a．c．Maing．Beautifully designed．
Size： $7 \% 15 \times 10 \mathrm{in}$ ．With ingtruction gize： 7 is 10 in ．With instruction Carriage 12／6．

AUTO TRANSFORMERS Fully shrouded

500 W.	咸10．0， P ．
$1,000 \mathrm{~W}$ ．	25．10．0，P．\＆P．7／6
1，500 W．	88．10．0，P．\＆P．8／6
$3,000 \mathrm{~W}$.	87．10．0，P．\＆P．12／6
7，5	5．10．0，

SOLARTRON MONITOR OSCILLOSCOPE
An extreinely high quality oscilloscope With time base of $100 / \mathrm{sec}$ ．to $20 \mathrm{~m} / \mathrm{sec}$ ． Internal Y amplifier．Separate malns lent condition with cables，probe，etc．，as received from Ministry．88．19．6．Carriage

HOSIDEN DHOAS 2－WAY STEREO HEADSETS Each headphone con－ tains a $2 \frac{1}{\text { in woofer }}$ and a an tweeter． Built in individual controls．
$25-18,000 \mathrm{c} / \mathrm{s}$.
$8 \Omega \mathrm{imp}$ ． with cable and stereo plug．\＄5．19．6．P．\＆P．

TRANSISTORISED TWO－WAY TELEPHONE INTERCOM Operative over arnazingly
long distances．Separate cail and press to talk buttons， 2 －wire connection．1000＇s of applications．Beautifully fin－ ished in ebony．supplied complete with batteries and wail brackets．

INTERCOM／BABY SITTER

Transistorised 1n－ cercoms．ideal for home office／work－
shop etc． 2 －way huzzer etc．2－way For deak or wali mountling．Eupplied complete with con－ necting wire，bat－ teries．instructions， 2 station 50／6．P \＆P ． $2 / 6$ ． 4 station 88．18．6．P．\＆P． $5 /$－．

SINCLAIR EOUIPMENT Z12 12 watt amplifier，89／6．PZ4 Power Supply Unit 99／6．Storeo 25 Preamp．，29．10．6．Q14 Speakers， 87．19．6．Micrometic Radio Eth，49／6． Built 59／8．Wieto FM Radio Kit 25．19．6．All Post Paid．

gPRCRAL OFPRE 2 Z12 Amps．，FZA Power Supply．Stereo 25 Preampllfier． Or with two Q14 Speakers． 187.

LAFAYETTE TE46 RESISTANCE

CAPACITY ANALYSER

T．E． 40

HIGH SENSITIVITY

 A．C．VOLTMETER10 meg．input 10 ranges： $3 / 10 / 30 / 100 / 300 \mathrm{~V}$ R：M．S．$\quad 4 \mathrm{c} / \mathrm{s} .-1.2 \mathrm{Mc} / \mathrm{s}$ Decibels－ 40 to $+\overline{50 d B}$ ． Supplied brand new complete with leads and instructions．Operation 230 V 8．c． 817.10 .0 Carr．5／－．

TE－65 VALVE VOLTMETER

High quality instru－ ment with 28 ranges． D．c．volts $1 \cdot 5-1,500 \mathrm{~V}$ A．c．Volts $1 \cdot 5-1,500 \mathrm{~V}$
Resiatance up to 1,000 Ma． 20／240V
tion．
Complete with probe and instructions． 17．10．0．P．\＆P．6／－． Additional Probes
available：
R．F． $85 /-$ avaiable：
H．V．4e／6．

PRINTED CIRCUITS

Five assorted prin－ ted circuit boarda with transistors，
diodes，
realators， condensers， Guaranteed mini－ num 20 transistors． Ideal for expert． for 10／－．P．\＆P．2／－．

NOMBREX TRANSISTORISED TEST EOUIPMENT
All Post Paid with Battery

Model 22．Power Supply 0－15V d．c．s14．10．0 Model 30．Audto Generator． 519.10 .0 Model 31．R．F．Signal Generator，$\quad 819.10 .0$ Model 32．C．R．Bridge．
Model 33．Inductance Bridge．
model 66．Inductance Bridge

COSSOR DOUBLE BEAM OSCILLOSCOPES
Type 1085．General purpose．A．c．Coupled． Type 1049 L．F．d．e．Coupled． 885 each． Carr．30／－．

MAINS INTERCOMS

No wires，no in－

 stallation，no ins－ plug into power point andoperate operate． tremely sensitiv 88.1

EEW

Send S.A.E. for full lists, Other rangen spailable. Plense include postage. special quotations for quantities.
CLEAR PLASTIC METERS

Type MR.38P. 1 21/88in square fronts

$50 \mu \mathrm{~A}$. $37 / 6$	750 mA	
50-0-50 $\mu \mathrm{A}$.35/-	1 mp	
$100 \mu \mathrm{~A}$.25/-	2 amp	
$100-0 \cdot 100 \mu \mathrm{~A}$.88/6	5 amp	
$200 \mu \mathrm{~A}$.38/6	${ }^{3} \mathbf{V}$ d.c.	
$500 \mu \mathrm{~A}$. $37 / 6$	10V d.c.	
$\mathbf{5 0 0 - 0 - 5 0 0}^{\boldsymbol{\mu} \mathrm{A}}$.25/-	20 V d.c.	
1 mA	.25/-	50 V d.c.	
1-0-1mA	.251-	100 V d.c.	
2 mA	.25/-	150 V d.c.	
5 mA	.25/-	300 V d.e.	
10 mA	. 251 -	500 V d.c.	
20 mA	25/-	750 V d.c.	
50 mA	.25]-	15 V a.c.	
100 mA	25/-	50 V a.c.	
150 mA	.25]-	150 V a.c.	
200 mA	250-	300 V a.c.	
300 mA	.251-	500 V a.c	
500 mA	25/-	S meter ImA	

Type Min.45P. 2in zquare fronts

$100 \mu \mathrm{~A}$ 39818	20 V
50 V d.c.		

$100-0-100 \mu \mathrm{~A} .35 /-300 \mathrm{~V}$ d.c.

${ }_{5 \mathrm{~mA}}^{1 \mathrm{~mA}} \quad \cdots \cdots .27 / 8 \quad \mathbf{3 0 0 V}$ a.c.
10 mA
50 mA
10 mA
500 mA

500 mA	$\cdots . .27 / 6$	5 amp .2.
	$\cdots .27 / 6$	10 amp.

Type MR.52P. eqin square fronts
$50 \mu \mathrm{~A}, \cdots \cdots .59 / 6 \mid 100-0-100 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$

$.45 j-$
$.42 / 6$

$.49 / 6$	$500 \mu \mathrm{~A}$
$.49 / 6$	1 mA

5 mA 10 m 50 n 10 $\overline{0} 0$ 1 1 10 10

$50 \mu \mathrm{~A}$
$50-0-50 \mu \mathrm{~A}$ $100 \mu \mathrm{~A}$
$100-0-100 \mu \mathrm{~A}$
$200 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$
500-0.500 $\mu \mathrm{A}$
$\underset{1-0-1 \mathrm{mi}}{\ln A}$
$5 \mathrm{mAA}_{10 \mathrm{~mA}}$
50 mA
${ }^{50 \mathrm{~mA}} 1$
$\mathbf{1 0 0 m A}$
500 mA
1 amp. 5 amp .

Tye me.65P.
$50-0-50 \mu \mathrm{~A}$
$100 \mathrm{\mu A}$
$100-0-100 \mu \mathrm{~A}$
$200 \mu \mathrm{~A}$
1 mA
$\overline{\mathrm{m}} \mathrm{mA}$
10 mA
$\stackrel{0}{50 \mathrm{~mA}}$
100 mA
500 mA
1 amp.
1 amp .
5 amp .
5 amp .
10 amp .
15 amp .
20 amp .
30 amp.

BAKELITE PANEL METERS

Moving iron, all other moving coil.

Type MR.65. 8tin aquare fronts

$25 \mu \mathrm{~A}$	67/6	500 mA	82/6	30V a.e.
$50 \mu \mathrm{~A}$	45/-	1 amp.	82/6	50 V a.c.*
50-0-50 $\mu \mathrm{A}$	48/6	5 amp.	38/6	150 V a.c.**
$100 \mu \mathrm{~A}$	42/6	15 amp .	82/6	300 V a.c.*
100-0-100 $\mu \mathrm{A}$	48/6	30 amp .	32/6	1 amp . a.c.*
$500 \mu \mathrm{~A}$	39/6	50 amp .	39/6	5 amp a.c.*
1 mA	32/6	5 V d.c.	32/6	10 mmp a.c.*
1.0 .1 mA	32/6	10 V d.c.	82/6	20 amp a.c.*
5 mA	32/6	20 V d.c.	32/6	30 amp . a.c.*
10 ma	32/6	50 V d.c.	.82/6	50 amp . a.c.*
50 mA	32/6	150 V d.c.	32/6	VU meter
100 mA	32/6	300 V d.c.	38/6	

NEW RANGE DF "SEW" EDGEWISE METERS

MODEL PE70. Dimensions $317 / 32 \times 111 / 32$
$2 f$ deep overall. Available as
2\% deep overall. Available as foliows

50 microamp ...	57/6	500 microainp
50-0-50 microamp	5/-	1 milliamp
100 microamp ...	$55 /-$	300 V a.c.
100.0.100 microamp	52/6	VU meter
200 microamp .	52/6	Post ex

RADON 404 STEREO SYSTEM

Comprising Hi-Fi Solid State integrate stereo amplifier, 8 watts per channel, two matching compact speaker units, Garrard SP25 transcription record unit with stereo forish. All necessary piugs and leads supplied. Nothing more to buy!
price 48 Gns. carr. 15/
(Also available in teak 12/- extra.)

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS
$0-20 \mathrm{kc} / \mathrm{s}$. Output $5 \mathrm{k} \Omega$ or 500 ohms. $200 / 250 \mathrm{~V}$ a.c. offered in excellent con dition. 212.10.0. Carriage 10/-.

R.C.A. AR88 SPEAKERS

8 in 3 ohm speakers in metal case. Blank crackle finish to match our 88 Receivers. Available brand new and boxed with leads.

MULTIMETERS for GVERY purpose)

MODEL AS-100D. 100Kn/VOLT bin.,
mirror scale. Builtmirror scale. Built-
in meter protection. in meter protection.

$0 / 3 / 12 / 60 / 120$ $300 / 600 / 1,200 \mathrm{~V}$. | d.c. | $0 / 6 / 30 / 120 / 300 /$ |
| :--- | :--- |
| 6000 | a.c. | 600 V . a.c. $0 / 10 \mu \mathrm{~A} /$

$6 / 60 / 300 \mathrm{MA} / 12 \mathrm{Amp}$. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{Mp}$; 200 MA . -20 to

MODEL ZQM TRABEISTOR CHESKER It has the fullest capacity for checking on A, B and Ico Equally adaptable for checking diodes, etc. Spec A: 0-7-0.9967. B: 5~200. Ico: 0 -50 microamps $0-5 \mathrm{~mA}$. Resistance for
diode $\quad \mathbf{2 0 0 \Omega} \mathbf{- 1 M} \mathbf{\Omega}$. Supplied complete with leads. \$5.19.6. P.\&P. $2 / 6$

NEW MODEL 500.30,000 O.P.V. Fith overload jurotection. Mirror scale $250 / 500 / 1,000 \mathrm{~V}$ do $0 / 2-5 / 10$ /25/100 $250 / 500$ / 2500 V . 3 $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~mA}$ 12 amp. d.c. $0 / 60 / \mathrm{K} 6$ Meg./60megohm $\begin{gathered}\text { 8.17.6. }\end{gathered}$ Post paid.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, 1 HF music power, 30 W at 8Ω. Kesponse $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Distortion 1% or less. Jnputs 3mV and 250 mV .
Output $3-16 \Omega$. Separate L. and R. volume controls. Treble and bass control. streed phone jack. Brushed aturniniun. gold anodised

LAFAYETTE LR-500T

 receiver in the world. Incorpanced stereo grated Circuits, 2 Fet's 30 Transi 4 inteDiodes, 60 watts IHF' Powransistors, 17 flexibility of operation Power. Complete stereo inputs. Distinctively styled metal case. Operation $115 / 230 \mathrm{~V}$ a.c. 875 .
 UNR-30. 4-BAND

COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates variable
BFO for $\mathrm{CW} / \mathrm{SsB}$ reception. Built BFO for CW/SSB reception. Built in speaker and
phone jack. Metal cabinet. Operatlon $220 / 240 \mathrm{~V}$. a.c. phone jack. Metal cabinet. Operation 20/240. a.c. ingtructions.

LAFAYETTE MODEL HA700 AM/CWSSB AMATEUR COMMUNICATION RECEIVER

8 valves, 5 bands incorporating 2 MECHANICAL HILTERS for exceptional selectivity and sensi$\begin{array}{llll}\text { tivity. Frequency coverage on } & 5 & \text { bands } & 150- \\ 400 \mathrm{Kc} / \mathrm{s}, & 550-1,600 \mathrm{Kc} / \mathrm{s}, & 1 \cdot 6-4 \cdot 0 \mathrm{Mc} / \mathrm{s}, & 4 \cdot 8-14 \cdot 5 \mathrm{Mc} / \mathrm{s},\end{array}$ $10 \cdot 5-30 \mathrm{Me} / \mathrm{s}$. Circuit incorporates \mathbf{R}.F. stage, nerial trimmer, noise limiter, B.F.O. product aeriector, electrical bandspread, S meter, slide rule tetector, electrical bandspread,
dial. Output for phones, low to $2 \mathrm{~K} \Omega$ or apeaker dial. Output for phones, low to $2 \mathrm{~K} \cap$ or apeaker
4 or 8 ohms. Operation $220 / 240 \mathrm{~V}$. A.c. Size $7 \mathrm{i} \times 15 \times 10 \mathrm{in}$.
S.A.E. for leaflet. S.A.E. for leaflet.

LAFAYETTE MODEL HA-500 SSB/AM/CW 80 THROUGH 6 METER RECEIVER

New outstanding Ham Bands only receiver covering the $80 / 40 / 20 / 15 / 10 / 6$ metre bands. Incorporates 9. Meter, dual conversion on all bands, crystal calibrator, V.F.O. noise limiter, aerial trimmer, IFs $2,608 \mathrm{Mc} / \mathrm{s}$. and $455 \mathrm{Kc} / \mathrm{s}$. Output 80 hms and 500 ohms . Operations 220/240V. a.c. Supplied brand new and guaranteed with bandbook 48 Gns. Carr. $10 /-.100 \mathrm{Ke} / \mathrm{s}$. crystal, $85 /-$.

6 TRANSISTOR HIGH ONLY $6 \times 4 \times 2 \operatorname{Lin} 3$ I.F. stages. Double tumed diseriminator. Ample output to ceed most amplifiers. Operates on 9 V battery. Coverage 88$108 \mathrm{Mc} / \mathrm{s}$. Ready built ready for use. Fantastic value for money.
Sterco multiflex adaptors 5 gat.

86.7.6. P. \& P. 2/0. sterco multiflex adaptors 5 gns.

GARRARD DECKS Brand New and Guaranteed 1025 with cartridge $\mathbf{8 7 . 1 0 . 0}$ A70 Mk II less cartridgc
LAB 80 ME 12.18 .0
e9 100 cartridge

401 Transcription less cart.
s97.6.0
Carriage $7 / 6$

4CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

\author{

- VALVE EXPERIMENTS
 TRANSISTOR EXPERIMENTS
 AMPLIFIERS
 OSCILLATORS
 SIGNAL TRACER
}
A.C. EXPERIMENTS
- PHOTO ELECTRIC CIRCUIT

COMPUTER CIRCUIT
BASIC RADIO RECEIVER
ELECTRONIC SWITCH
SIMPLE TRANSMITTER
D.C. EXPERIMENTS

- SIMPLE COUNTER

TIME DELAY CIRCUIT

- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge'required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

TO: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

NAME
BLOCK CAPS
ADDRESS
PLEASE PE 7

DOWN-TO-EARTH BUSNESS

ONG distance radio communication via artificial earth - satellite is now accepted as normal. Already, an immense amount of international traffic is handled by space systems and one wonders just how we would have managed if this method had not been conceived and if the required expertise (and money) had not been found to design, produce, and operate the peculiar kind of hardware needed.

The satellite repeater station and the associated rocketry employed to put this fascinating package of electronics into a defined orbit receive, quite rightly, much attention. So far, all satellite launchings for Intelsat, the international organisation responsible for commercial space communications, have been performed by the U.S.A. Disappointing as this may be to some British and European interests, this seems to be the pattern for the future as well. But this is only one aspect of the matter, for the earth terminal station is an equally important component in any space communication system. In the short history of space communications, British industry (and notably the Marconi Company) has established itself as an undoubted leader in the design and construction of earth stations. As the planning, organising, and operating body for the first U.K. earth station at Goonhilly, the Post Office also deserves its full share of credit for the great reputation this station has won for Britain.

The demand for radio links for telephony, telegraph, data, and television channels is increasing every minute. This "communication explosion" is real-and it concerns the private person as well as the business man, the computer as well as the television network. A global space communications system cannot be far off. Indeed the launching of a further generation of satellites Intelsat III later this year will be another large step towards this goal.

Here then is a great opportunity for British industry to capitalise on their unique experience and know-how in earth stations. A world wide market awaits-but first the potential buyers must be educated into the mysteries of programme planning, drawing up specifications, and operating eanth stations. It was with this purpose in mind that the U.K. Seminar on Communication-Satellite Earth Station Planning and Operation was held in London last May. Jointly sponsored by The British Government and Industry, this meeting was attended by representatives from more than 50 countries. Despite keen competition from the U.S.A. and Japan, the prospects for our industry are bright. The sponsoring of this seminar confirms this country's determination to "sell hard" in this expanding field of global communications.
F. E. Bennett-Editor
CONSTRUCTIONAL PROJECTS
WAA-WAA PEDAL 470
RADIO CONTROL SYSTEM FOR MODEL BOATS 476
DRILL SPEED CONTROLLER 490
P.E. ANALOGUE COMPUTER 500
SPECIAL SERIES
TRANSISTOR AMPLIFIER DESIGN--6 484
NUCLEONICS FOR THE EXPERIMENTER-9 508
GENERAL FEATURES
INGENUITY UNLIMITED 489
COLOUR TUBE PRODUCTION 494
NEWS AND COMMENT
EDITORIAL 469
AUDIO FAIR '68 473
AMATEUR TAPE AWARDS 475
NEWS BRIEFS 493
MARKET PLACE 498
BOOK REVIEWS 516
READOUT 520
Our August issue will be published on
Friday, July 12

[^1]

By B.H. BAILY

Hardly a half-hour programme of "pop" music passes without the sound of the now-popular Waa-Waa effect. This extraordinary sound may lead the listener to believe that a fairly complicated circuit must be used.
Do not be deceived! The model described can be produced for an outlay of about $£ 2$ in parts, and takes only an hour or two to build.

PRINCIPLE

The secret of the Waa-Waa lies in the use of a selective amplifier; that is to say, an amplifier which applies boost to a selected band of frequencies within the audio range, while amplifying the remaining frequencies to a lesser degree. The position of the boosted band, relative to the rest of the band, can be shifted up and down in frequency by operation of a foot pedal.

CIRCUIT DESCRIPTION

The circuit (see Fig. 1) uses only one transistor, type 2N2926, of green spot (high gain) classification. This is connected into a circuit, which, despite its unusual appearance at first glance, is basically a phase-shift oscillator, except that feedback is restricted to a value which is just insufficient to maintain self-oscillation.

When a signal is applied to the transistor base, the circuit behaves as a selective amplifier, and affords
higher gain to all harmonics lying within a certain defined band than to those outside this band. The selective band lies between limits which are spaced on either side of the natural resonance of the circuit.

This natural frequency may be varied by changing the resistance of VR2, which is connected between the junction of C4/C5. Using the capacitor values shown, the value of this component should be variable between zero and about 50 kilohm. However, it was found necessary to use a 100 kilohm log-law potentiometer in this position, since the simple mechanical linkage allows only partial rotation of the pot. shaft. Hence, with the chosen component, it was found possible to get a maximum value of about 50 kilohm while having to rotate the shaft less than half its normal travel, from the fully-anti clockwise position. Minimum resistance raises the boosted frequency band, whilst increasing resistance lowers the band.

BUFFER CIRCUITS

Since the input and output connections are made to the oscillatory circuit in rather a direct manner, it was found necessary to build in buffer circuits. These, while "matching" the input impedance to the more common 50 kilohm, allow for some variation in input and output matching with a minimum of variation in the performance of the circuit. The buffer resistor network is composed of R1, R2, R3, R4, and R5.

Fig. I. Circuit diagram of the Waa-Waa pedal. R3 is adjusted on test to give minimum change in overall volume when $\mathbf{S 2}$ is operoted

COMPONENTS

Resistors

R1, R2, R4, R5 $47 \mathrm{k} \Omega$ (4 off)
R3 220k Ω (see text)
R6 $1 M \Omega$
R7, R8, R9 $56 \mathrm{k} \Omega$ (3 off)
All $10 \% \frac{1}{2} W$ carbon

Potentiometers

VRI $\mathbf{2 k} \Omega$ linear pre-set
VR2 $100 \mathrm{k} \Omega$ log.

Capacitors

C1, C2 $0.1 \mu \mathrm{~F}$ plastic (2 off)
C4, C5
3,300pF (2 off)
C3 $\quad 0.047 \mu \mathrm{~F}$ plastic
C6 $0.01 \mu \mathrm{~F}$ plastic All 160V polyester

Transistor
TRI 2N2926 (green spot)

Switches

SI Single pole on/off toggle
S2 Single pole, press on, release off push-button

Sockets

JKI, JK2 Standard two-terminal jack sockets (2 off)

Battery

BYI 9V (PP3 or equivalent)

Miscellaneous

Eight-way tagboard. p.v.c. covered wire. Wood. Wood screws. Rubber household adhesive, plastic trim beading, ribbed rubber sheeting, $2 \frac{1}{2}$ in hinge. Plastics box, outside measurements 10 in $\times 2 \frac{1}{2}$ in $\times 3$ in, from D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset

Pedal from wood block $8 \times 3 \times 1 / 2$ faced with ribbed rubber tread

The emitter resistor VRI is a preset potentiometer, which allows the sensitivity of the circuit to be adjusted. This control allows the feedback to be adjusted to the required near-oscillation point for optimum results.

Battery consumption is of the order of 100 microamps, which ensures many months of normal use on the tiny PP3 battery.

CONSTRUCTION

The circuit of the prototype Waa-Waa unit was constructed on a five-way two-row group board. Mullard 400 V capacitors were used since space was not at a premium, but lower voltage types could be used instead to conserve space. However, avoid using the very low voltage disc-type (below 50V) capacitors in this circuit, because these often have a high leakage current and are unsuitable in the critical phase-shift circuit.

The components group board is mounted inside a case upon which is fitted the pedal. In the prototype a proprietary plastics box 10 in $\times 2 \frac{1}{2}$ in $\times 3$ in was used -see illustrations. However, a suitably strong case could be made from aluminium or wood, if preferred. Contact adhesive is used to fix the group board to the case.
 clockwise when the pedal is in the position shown

THE PEDAL

The pedal was made from a piece of $\frac{1}{2}$ in $\times 3$ in $\times 8$ in wood, pivoted by a hinge mounted on a short length of lin triangular cross-section strip. The method of assembly should be first to screw the hinge to the triangular strip, and then screw the other half of the hinge to the box or base. Next, the pedal can be pinned and glued to the strip from above. The pedal is then ready to receive its trim. p.v.c. trim was used, and a small piece of ribbed rubber sheeting was obtained from a garage service department to give the pedal a professional and non-slip top finish. The details of the pedal construction are clearly shown in Fig. 2.

The linkage from the pedal to the shaft of VR2 was fashioned from two short lengths of $10 \mathrm{~s} . w . g$. galvanised fencing wire. One length of wire was formed into a crank by wrapping it around a sawn-off length of potentiometer shaft in a vice. It was then removed and pushed over VR2 shaft, and pinched on tightly with pliers. Fitting a small control knob prevented the wire coming off, while the half-flat section on the shaft prevented rotational slippage.

The other length of wire was bent to form a small loop at each end. One loop was secured under the head of a wood screw driven into the side of the pedal, and the other loop passed over the crank end, which was then doubled back to secure it. Positions for the control VR2, the pedal pivot, and the link screw, as well as the finished linkage length, must be found by experiment since they are fairly critical. Final adjustments can be made after completion by slightly bending the crank and link to ensure that the "up" position of the pedal exactly corresponds to the fully anticlockwise position of VR2.

SETTING-UP

To set the position of VR1, connect the unit to the instrument and amplifier with which it will normally be used. The amplifier must be connected to the output jack, and the guitar or organ to the input jack. Connect unit to battery and switch on. Turn VR1 to minimum resistance, and a howl should be heard from the loudspeaker of the amplifier. Back VR1 off slowly, until the howl just ceases, and rock the pedal slowly up and down over its full range. If the howl recurs at any position, turn VR1 back a fraction more. You should hear a slight Waa-Waa sound imposed on the background hiss, but no howl.

Ideally, VR1 should be mounted in a fairly accessible position, since it is just possible that it may require

View of the pedal linkage. To avoid stress, the cut-out button (S2) should be positioned carefully so that it operates just before the pedal stops against the top of the case
slight re-adjustment if the unit is used with other equipment. Should the Waa-Waa effect lack "life" on an instrument, it may be necessary to advance VR1 setting closer to the point of oscillation to obtain the right effect.

USE OF UNIT

The unit may be used with any electronic musical instrument which gives an output rich in harmonics, e.g. guitar (not bass), organ, harmonica (with microphone), etc.

The push-button $\mathbf{S} 2$ under the pedal allows the operator to cut out the effect completely if he desires, without having to reach down and disconnect the unit. The switch short-circuits the input direct to the output when the pedal is pushed fully down. The full range of frequencies is then passed to the output; with virtually no modification. The value of R3, nominally 220 kilohm may require to be selected carefully to ensure minimum change in overall volume when the switch is operated.

ARECORD 40,000 people braved corridors, queues and mild suffocation to hear the hi fi industry's latest offerings at the 1968 Audio Festival \& Fair.

This year 99 exhibitors, just under half of continental origin, occupied the full six floors of the Hotel Russell. The size of the event, and the greater proportion of specialised professional equipment, provoked further officially-denied whispers of a future move to an exhibition site.
As before, there were several unveiling ceremonies and rather fewer real technological breakthroughs. There was some aural evidence of a year's progress in loudspeakers and low-cost pickup cartridges, and ample visual confirmation of the trend to integrated tuner/amplifiers and "package deal" installations. There was also a heartening increase in the number of British designers taking advantage of f.e.t.s.

BIGGER SPEAKERS

Starting with speakers (as most visitors to the fair seem to do) there was a noticeable soft-pedalling of the mighty midgets that made their first appearance four or five years ago. Although many of these have proved highly acceptable-aided by higher-powered transistor amplifiers to overcome low sensitivitybetter known makers were concentrating on units of around 2 to 3 cubic feet. Among the handful of manufacturers who consistently draw long queues, Celestion unveiled the Ditton 25, a progression in size, performance (and price) on the Dittons 10 and 15.

Goodmans were demonstrating the M range of speakers in conjunction with the Maxamp 30 amplifier, Stereomax tuner and MT1000 player unit. Juliet and Janet were two new bookshelf speakers incorporating the Jordan-Watts module-a versatile driver of interest to home constructors.

Lowther used a five-octave electronic organ of their own manufacture to demonstrate this form of home music-making and their extensive range of hornloaded and cabinet speakers. Tannoy were showing the improved Monitor Gold concentric in a new enclosure, alongside the enormous Autograph.

Wharfedale's Denton and Super Linton speakers make their first appearance at the fair in a typically relaxed and informal demonstration.

"FLEXION" DIAPHRAGM

The Yamaha demonstration room was packed with people attracted by the extraordinary construction of the "Natural Sound" speaker. This was, to quote the publicity, "Inspired by the rich tonal resonance of the grand piano . . . it replaces the piston action of the cone speaker with a new flexion movement of the diaphragm." When we called in to listen, it was reproducing non-demanding pop music which made judgement difficult. It nevertheless sounded much better than it looked.

To sum up the speaker situation, no unit has yet been produced that sounds totally convincing on all forms of input. At a given price, the better products sound progressively more alike and difficult to choose between -particularly amid the fun of the fair. Only when speakers are perfect will they all sound the same!

AMPLIFIERS, TUNERS

With one striking exception, amplifier manufacturers continued to retreat from valves, and to pack ever more watts into smaller boxes. Packing in the tuner as well were Armstrong, Fisher, Pioneer, Rogers, Sanyo and Sansui.

Sinclair System 2000 FM tuner

(above) Goldring G800 "free fie/d" cartridge
(left) Goodman: Magnum-K loudspeaker

(above) Garrard Model SL95 transcriptor
(right) Richard Allan Class A amplifier

The Sinclair "Neoteric" f.m. tuner was a newcomer to the select minority of commercial units incorporating a pulse-counting detector. Unlike conventional ratio and Foster-Seeley discriminators, this circuit provides near-perfect linearity and does not' need occasional re-alignment. The tuner can be converted to stereo with a plug-in module.

Crossover distortion is still a sore point with designers and users of Class B amplifiers, and Richard Allan provided the obvious answer with the introduction of two Class A transistor amplifiers, the twin 10 watt model A21 and the twin 20 A41. (And congratulations to R.A. on their 21 st anniversary, celebrated on opening day!)
"Odd man out" was Richardson Electronics, a relatively new firm exhibiting for the first time a range of high grade stereo and mono valve amplifiers with outputs of up to 70 watts. However, their preamplifiers were transistorised, with f.e.t. front ends.

CARTRIDGES A AND B

Gramophone cartridge seekers climbed five floors to hear the Miniconic semiconductor cartridge demonstrated by the importers Elstone Electronics. Its design permits a bass response down to 1 Hz .

Those on a tighter budget were treated to a courageous A-B comparison by Sonotone (Technical Ceramics Ltd.) of their low-cost 9TAHC ceramic cartridge against a $£ 20$ magnetic. There was a difference, as the demonstrators readily conceded, but it was up to the listener to decide how much the difference was worth.

One of the few autochangers possessing a plausible hi fi specification was the new Garrard SL95. It a twin-rotor motor to achieve both hioh.t constant speed, and a "fold" for uncluttered mans

In the tape sution turned into revolution sós overnight. The new Series 7 Ferrographs were a sensation for those to whom the solid Wearite deck and valve amplifier had become part of life. The new continental styled models use silicon transistors and f.e.t. input stages, have variable speed spooling and less than 0.08 per cent wobble at $7 \frac{1}{2} \mathrm{in} / \mathrm{sec}$. Another relatively conservative manufacturer, Brenell, gave a preview of a completely new all-transistor mono recorder which boasted the exceptionally low noise level of -66 dB .

MICROPHONE EXHIBITS

Of a dozen firms exhibiting microphones, only three catered for the average, hard-up, quality seeking amateur by demonstrating recordings made with instruments in the under $£ 20$ class. Lustraphone had recorded an amateur orchestra to demonstrate the VR/65/NS ribbon, an all-in-one stereo pair for well within this price range. Reslo showed three new dynamic microphones and played piano recordings made with the established VRT/L ribbon. Sennheiser had a 15 -minute tape containing a variety of stereo recordings made with four microphones ranging in price from $£ 15$ to nearly $£ 100$; a particularly valuable demonstration that won several orders on the spot.

Spreading the fair to the sixth floor made for a more civilised event, with less Bach/Beatles cross-modulation than in previous years. But there were the usual endearing scrambles for the best "stereo seat", the hawk eyes on tone control settings and the arguments about "honest" watts.

THE pr . tation of prizes to winners of the 1967 British Am . r Recording Contest was made on Saturday, April 2 Whis year, at the London Audio Fair.

The \quad n recording categories covered documentary, technid. Wecording, stereo, speech and drama, reportage, schools tries, and a set subject.

Taf if the Year winner was Paul Griffin of High Wycbere who was awarded the EMI trophy for this as well the Kodak Shield for the "Technical Experiment" secys䀊, The superb multi-track guitar rendition of , an old popular tune by Richard Rogers, was made 6. Wil Griffin with quite modest recording equipment in F arage. The tape was originally selected by F. C. Judd, Bember of the BATRC committee and one of the preminary judges. Paul Griffin's tape was chosen as also were others as winners of their respective sections by a team of eminent judges including music maestro Eric Robinson, Basil Boothroyd, Anne Duchene, and Christopher Bishop (EMI).

The presentation of prizes was made by Mr Rex Hassan, Director of the London Audio Festival. Miss Brenda Marriott of Grundig Limited, presented the prizes to winners of the "schools section". In view of the fact that the Tape of the Year award was made for a multi-track recording, the proceedings were begun with an electronic organ and guitar multi-track recording by F. C. Judd (whose articles on Electronic Music and multi-track recording techniques have appeared in recent issues of Practical Electronics). He commented on the tremendous creative possibilities that multi-tracking offers to tape recording enthusiasts.

THIS month's article describes the construction of the mechanical drive system, and then deals with the installation and co-ordination of this gear with the electronics and power supply inside the model boat.

STEERING GEAR

The rudder is of the compensated pattern, and is made exactly to the profile recommended in the Aerokits plans, from $\frac{1}{16}$ in sheet brass, soldered to a $\frac{3}{38}$ in diameter brass spindle.
1 The rudder spindle is rotated by means of the slotted linkage, which engages the pin on the travelling block and leadscrew arrangement. The leadscrew is driven by a 3: 1 reduction using nylon gear wheels (available from most model shops) and an "ORBIT 505" motor MO2. See Fig. 8 and Fig. 9.

The motor rotation is selected by the appropriate relay contacts, in series with limit switch contacts S3 and S4. These switches are constructed from relay spring sets.

The steel travelling block is cushioned by small coil springs at the end of its travel so that it does not jam during overrun of the switches. The lead screw is $4 \frac{3}{8}$ in long, this being the maximum length that can be accommodated in the after-well width, and gives an angular movement of the rudder of ± 40 degrees, which is ample for good manœuvrability.

The rudder spindle is supported by a brass tube fastened into the keel and the upper end of the spindle is threaded 4B.A. to engage in a tapped hole in the feedback potentiometer VR2 which is clamped to a bracket screwed to the transom. The potentiometer body can be rotated in the bracket and locked in position to obtain correct "tracking" with the rudder control potentiometer. It is apparent that only 80 degrees of the potentiometer track is actually used.

The "lock-to-lock" range is adjusted to correspond with the transmitter control by selection of the value of $\mathbf{R 2 3}$ when setting up.

1) ...0.
The steering actuator framework is of bass sheet $\frac{1}{16}$ in thick accurately bent in a vice and fitted with bearing bushes of 4 in brass drilled and soldered to the outside of the support cheeks to carry the keydscrew. The leadscrew is a piece of 2B.A. threaded mild steel rod which should be cia clean and slightly under-size, with each end reduced in diameter to 0.09 in $(2.3 \mathrm{~mm})$ as in Fig, 9 nower drill and file can be used for this operation of s theth is no avalable.
The leadscrew thrust is borne by the gear whec at the drive end and by a thrust pad soldered to the bearing bush at the non-drive end.

The leadscrew and block, with its reaction peg, have to be assembled to the sidecheeks prior to bolting them up to the base plate, and the end float can then be taken up during final assembly on the threaded support and peg guide rails, slotted holes being provided in the base plate to accommodate this adjustment.

The mild steel running block has a lateral hole tapped 2B.A. for the leadscrew, and another 4B.A. tapped hole at right angles to take the swivel pin at the top and the reaction peg at the bottom. Remember to tap the 2B.A. hole last.

The reaction peg engages loosely between the two guide rails which also serve to strengthen the assembly.

The time taken to traverse from "lock to lock" is about 4 seconds.

THROTTLE GEAR

The throttle control gear is a miniature version of the steering gear, this time using lighter gauge materials, with a 4B.A. leadscrew 34 in long driven by a cheap miniature model motor MOI. Full details of the construction and general assembly appear in Fig. 10 and Fig. 11.

The power required to actuate the throttle lever is of course much less than that required for steering; however, in practice the current consumption of the two motors is about the same $(200-400 \mathrm{~mA})$ due to the lower efficiency of the smaller motor.

Space is somewhat restricted in the region around the carburettor and so the throttle actuator was dimensioned such that it could just be accommodated on the port side of the engine, the starboard space being used for the fuel tank. The arrangement of the actuator is such that the motion of the linkage from the running block to the throttle lever produces a non-linear rate of throttle rotation.

This is achieved by deliberately setting the leadscrew axis at an angle of 20 degrees to the axis of the boat, so that relatively large block movement is needed to rotate the throttle at low openings, compared with the

RADIO CONTROL

BOATS - PART TWO - By E.J. PEPPER
 C.Eng. M.I.E.E.

Fig. 8. General view of the steering mechanism showing arrangement of the steering linkage and feedback potentiometer VR2

STEERING MOTOR (MO2)

54
LIMIT SWITCH

VR2
FEEDBACK POTENTIOMETER

Close-up view of the steering mechanism

movement near full throttle. This is desirable, as the effect of throttle position on engine power is non-linear, and fine control of the throttle at low settings is essential.
The throttle limit switches are shown in Fig. 10. The throttle open limit switch S 6 is virtually identical to the steering limit switches. There is, however, no room for the throttle closed limit switch $\mathrm{S7}$ on the actuator itself, so this is suspended from the side deck supports, which are immediately above the throttle motor drive end. The pair of P.O. 3000 leaves are secured with brass woodscrews passed through the spring set spacers into the deck.
The throttle actuator is best protected from engine oil by means of a polythene sheet, cut to shape and Sellotaped down; otherwise, the oil tends to prevent the contacts making on the limit switches.
In operation, the actuator becomes well bathed in unburnt fuel oil and lubrication is certainly no problem. In fact, on the prototype equipment, as a result of the over-generous oil supply, the open type limit switches were eventually replaced by miniature enclosed microswitches. One of these (S7) can be seen in the accompanying photographs.

POWER SUPPLIES

The total consumption of the electronics and the relays varies from 70 mA (both motions operating together) to 40 mA in the quiescent state, and the 15 volt nominal supply is adequately catered for by DEAC cells of 225 mAh capacity (BY1). These cells suffice for several hours' operation between charges.
It is not desirable to operate the motors from the "electronics" supply, and 2 volts was found adequate to give positive motor action. This supply is derived from a group of miniature sealed lead-acid cells connected in parallel to give $1 \cdot 6 \mathrm{Ah}$ capacity (BY2). These cells have been found to give a discharge life comparable with that of the electronic supply, as the loading is of a very intermittent nature.
The addition of small capacitors C21, C25 across the motor terminals was found to give adequate protection from interference, and it is wise to bond all metal parts together, and connect to the stern tube, which provides a good "earth".

Battery charging terminals and readily accessible isolator switches for each motor (S2, S5) and one for the electronics (S1) are fitted in the battery/relay compartment. These switches greatly facilitate the setting-up procedure. See Fig. 12 and photograph.

DeCs are a professional breadboard which are used in their thousands in industrial and Government research laboratories and being used increasingly in educational establishments from degree level electronics courses to the teaching of electricity to primary school children. This breadboard is sold world wide, and over 50% of current production is exported
$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$ The diagram shows $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$ the layout of the O-O-O-O-O Each S-DeC con-$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$ tains two of these $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$ most electronic $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$ building blocks to Decs may be joined $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$ using the keying method provided to form a stable area of any size. The connection points are on a tin matrix. Components are simply pushed into the contacts and may be withdrawn at will.

Accessory Kits: With every S-DeC kit purchased there are included accessories A control panel is supplied for mounting such things as potentiometers, and this panel simply slots into the S-DeC base. Other accessories include small compression springs for making solderless connections to controls and clips for mounting such things as ferrite rods on the panel. Also included with each kit is an instruction leaflet and booklet of projects.

Projects on S-DeC: In every kit a booklet of circuits is supplied with fuld instructions for assembly of the circuits on DeCs. The circuits include a three transistor reflex radio with diode detection, morse practice oscillator, electronic flasher, a monostable multivibrator, a three stage audio amplifier (picture of amplifier mounted on a DeC below), and circuits for a number of oscillators

Insertion/Withdrawal

Force 90 gm . wt. Capacitance between adjacent rows of contacts 3pF Resistance between adjacent contacts $10 \mathrm{~m} \Omega$ Resistance between adjacent rows of contacts

Experiment and Project Guides: S.D.C. Froducts provide a series of experiment and project guides for educational users. These are available to the enthusiast and full details can be supplied, either from 'Electroniques' (Edinburgh Way, Harlow, Essex) or the manufacturers, S.D.C. Products (Electronics) Limited.

Single DeCs: One S-DeC with Control Panel, Jig and Accessories for solderless connections to controis, etc., with booklet 'Projects on S-DeC' giving construction details for a variety of circuits. 29/6 retail.

4-DeC Kit: Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet 'Projects on S-DeC' all contained in a strong attractive plastic case. Ideal for the professional user, $£ 5.17 .6$ retail.

Available from leading suppliers and 'Electroniques' dealers

In case of difficulty DeCs may be purchased direct from the manufacturers. Include $6 d$. (in the case of single DeCs) and 2/6d. (in the case of 4-DeCs) to cover postage and packing.

S.B.-Superb Bargains Every Month

The greatest High Fidelity Bargains ever offered

STEREO AMPLIFIER. $13 \frac{1}{2}$ gns. only. Retail value 27 gns. A Fully Transistorized High Fidelity Stereo Amplifier complete in free standing case. Switched input facilities. Socket (I) tape or crystal P.V. (2) radio tuner. (3) ceramic P.U.-mike. Controls: Volume, Bass, Treble, Balance, Input Selector Switch, Stereo/Mono Switch. Facia plate rigid perspex with black/silver background and matching knobs.
Output 6 watts per channel (R.M.S.) 12 watts Mono. Free response to $3 \mathrm{~dB}, \mathbf{2 0 - 2 0 , 0 0 0 \mathrm { c } / \mathrm { s } \text { bass boost approx, } 1 0 \mathrm { m } / 2 \mathrm { dB } \text { . Treble out } 2 - 1 6 d B \quad 1 0}$ approx. Negative feed back-18dB over main amp.

12 months' unconditional guarantee. P./P.6/-.

BARGAIN-High Fidelity Stereo Amplifier. Our Price 7 gns. only. Retail value 16 gns. Complete in free standing case. Ideal for crystal or ceramic P.U., Tape, Radio, Tuner. Fully integrated. Rigid perspexfacia plate black/silver matching knobs.
Output 4 watts per channel R.M.S. 12 months' unconditional guarantee. P./P. 5/6.
BARGAIN-High Fidelity Mono Amplifier, Our price 7 Ens. only. Retail value 14 gns. Providing excellent results at all output levels and complete in free standing case. Frequency response: $30-20.000 \mathrm{c} / \mathrm{s}$ 2 dB . Sensitivity: 5 mV (max.). Harmonic distortion: 0.5% at $1,000 \mathrm{c} / \mathrm{s}$. Output: 3-8-15 ohms. Input: Mike, Gram, Radio, Tuner, Tape Recorder. Input selector: facia rigid perspex black/silver with matching knobs.
Output 6 watts R.M.S. (certified). 12 months' unconditional guarantee. P./P.5/6.
-BARGAIN-CHANGER DECKS AT LOWEST PRICES EVER

Plinths to suit all the above. Beautifully styled and first grade manu- facture, 2.5.0. P./P. 5/-

B BARGAIN-A superb Mains Tuner. Our price 6 gns. only. Retail value 12 gns. A.M. superhet transistor unit with own ferrite aerial. Simply add to any of our amplifiers for outstanding results.

12 months' unconditional guarantee. P./P. $5 / 6$.

- BARGAIN-F.M. Mains Operated Tuner. Our price 8 gns. only16 gns. value. 6 transistor S/M horizontal dial, 2 I.F. stages, coupled double tuned discriminator terminating in I.F. Ample output for all amplifiers.

12 months' unconditional guarantee. P./P. 5/6.
BARGAIN_L.W.-A.M.-F.M., Mains Operated Tuner. Our price 16 gns. only. Retail value 30 gns. Fully transistorised. Output 5 mV exceptional sensitivity and selectivity on all bands. L.W. 180-360RC/S, A.M. $600-1,400 \mathrm{kc} / \mathrm{s}$, F.M. $88 \cdot 108 \mathrm{Mc} / \mathrm{s}$. This unit is complete with aerials, three-band horizontal dial.

12 months' unconditional guarantee. P./P. 6/6.
BARGAIN-Record Player Amplifiers, $47 / 6$ only. EL84 output, two controls, flying panel, a.c. mains operated. 230-240V. Now inc. chassis, fully built and tested.

12 months' unconditional guarantee. P./P. 2/6.
BARGAIN—Record Player Amplifier Unit. 52/6 only. Complete with valves (UCL 82) output. Fully built and tested, mounted on board with 5 in round speaker. Knobs supplied, all leads attached ready for instant connection to your turntable.

12 months' unconditional guarantee. P./P. $3 / 6$.
BARGAIN-Record Player Cabinets. Our price $52 / 6$ only. Retail value 4 gns. Strongly built wooden frame, two-tone gilt fittings, carrying handle, suitable for any amplifier, ample space for speaker. Matching Garrard or B.S.R. cut out board supplied free of charge. Matching
P./P. 5/-.
B BARGAIN-Speakers-Standard, 5 in round, 7 , 4 in elliptical, 8 in round, all 3 ohms. Our price 15/ヶ. P,/P, 2/6.

- BARGAIN-Speakers, Hi-fi-E.M.I. 8 天 5 in elliptical, 12,000 lines gauss, Alcomay magnet, rating 5 wates, 3 or 15 ohms. Sold elsewhere at 50/-, Our price 27/6.
- BARGAIN Speakers, Hi-fi-E.M.I. 13×8 in elliptical, 13,000 lines gauss, Alcomay magnet, rating 10 watts, 3 or 15 ohms. Sold elsewhere at $£ 4.0 .0$. Our price 47/6.

Brand new, 12 months' unconditional guarantee, P./P. free.

- BARGAIN-Speakers, Hi-Fi-The Baker Salhurst De-Luxe Stalwart. 12 in round, 15 watt rating, 12,000 lines gauss, 3 or 15 ohms, response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium chassis. Our price E4.19.6.

Brand new, 12 months' unconditional guarantee. P./P. 6/6.

- BARGAIN--Speakers, Hi-Fi-The Baker Selhurst Guitar Group 25,12 in round, 25 watt rating, 12,000 lines gauss, 15 ohms, response $30-10,000 \mathrm{c} / \mathrm{s}$, solid aluminium chassis, heavy duty cone. Our price E4.19.6.

Brand new, 12 months' unconditional guarantee. P./P. 6/6.
Cartridges-All Bargain Prices
Sonotone-9TA/H.C. Sapphire (Stereo) $\mathbf{E 2 . 0 . 0}$
Sonotone-9TA/H.C. Diamond (Stereo)
Sonotone 2T/Ceramic H/C (Mono)
Acos GP91/3 (Mono)
12.5 .0
$\mathcal{C} 1.2 .0$
E.R. S.M.B. Crystal (Mono)

C1.0.0
E.R. S.M.B. Ceramic (Mono) E1.0.0
E.R. S.M.B.X. Ceramic (Stereo)
T.C.8. H. (Mono)
T.C.8. M. (Mono)

E1.5.0
C.l. Stereo

E1.0.0
Ci.0.0
cost. P./P, on all above $2 / 6$.

- BARGAIN-"Phillips" Intercom System. Our price 59/6 only. Retail value $£ 6.6 .0$. This equipment is ideal for baby alarm, office, home and hundreds of other uses. Absolutely brand new in handsome presentation case containing all leads, etc.

12 months' unconditional guarantee. P./P. 3/6.

- BARGAIN-car radios. Our price gns., retail value 16 gns. Negative or positive earth (switched), famous brand name, fully transistorized (I2V), medium and long waves, chromium escutcheon. Speaker and fitting kit supplied at no extra cost.

12 months' unconditional guarantee. P./P. 7/6.
BARGAIN car aerials. Our price $22 / 6$ only. retail value $37 / 6$. Heavy chrome plate, retractable. A snip-buy while stocks last. Brand new in maker's package.
OBARGAIN-Stimline T.Y. receivers in mint condition, 17, 19, 21 in, checked complete and working but less I.F. strip. Our price E9.10.0 only. I.F. strips supplied at 45 /- if required. Fitting charge for I.F. strip if requested $\mathbf{E 2 , 2 0}$. P./P. T.V. set $30 / \%$. P./P. I.F. strip $5 /-$, If purchased together $30 / \mathrm{F}$. Personal collection advised otherwise despatch at customer's risk.
dither

- BARGAIN-Car Radio Portable. Our price $4 \frac{1}{2}$ gns. only, retail value $7 \frac{1}{2}$ gns. Single wave band (medium), fully transistorized, ideal for home or car. A beautiful radio, the performance has to be heard to be believed,

12 months' guarantee. P./P. 4/6.
Free with this radio, suitable window mounting car aerial.

- BARGAIN-Diodes. Our price $\mathbf{E t} .0 .0$ for 750 in 750 lots onlyassorted.

OUR HIGH FIDELITY EQUIPMENT IS NOT ADVERTISED DUE TO SPACE LIMITATIONS. IN STOCK ALL FAMOUS BRAND NAMES-LEAK, WHARFEDALE, ROGERS, THORENS, RADON, WYE.

s.
 B. ELECTRONICS
 ATLAS HOUSE CHORLEY OLD ROAD BOLTON BOLTON 25881 LANCS

LEADSCREW DIA. REDUCEO TO $0.09^{\prime \prime}$ FOR $3 / 8^{\prime \prime}$
LEADSCREW DIA. REDUCED TO $0.09^{\prime \prime}$ FOR $1 / 8$
TIE BAR beTwEen side

LIMIT SWITCH S7 THROTTLE
CLOEE (SUSPENDED FROM
PACKING WASHER
 EEL SU
SPRING

INSTALLATION IN BOAT

Plan and side elevation views of the complete craft appear in Fig. 12. The distribution of the equipment amongst the five boat compartments is clearly indicated, and only a few notes are needed to supplement the information given in these diagrams.
The four circuit boards should be mounted on pads of $\frac{3}{8}$ in thick polyurethane foam and secured to the sides of the No. 2 compartment by means of brass woodscrews, screwed through the foam into either the bulkheads or the side deck supports as appropriate.

The interconnection wiring should be carried out by referring to the circuit diagram Fig. 2, and to the diagrams of the various boards, Figs. 4 to 7, given last month. Leads are soldered directly to the appropriate pins, with sufficient slack to permit partial withdrawal of the boards for servicing purposes. Those leads going to the other compartments should be laced together to form a neat cableform which is then run down the craft, passing through holes cut near the tops of the various bulkheads, with individual leads branching out as required, en route.

The aerial consists of a single section whip 14in long. This fits into the socket mounted on the port side. The socket and plug used were heavy duty, all brass, banana type 0.175 in diameter. The plug is soldered to a 14 in length of $\frac{1}{1 \pi}$ in brass wire (e.g. Triang Railways overhead catenary wire (0.05 in) available in 14 in lengths from any model shop).

ENGINE COMPARTMENT

To facilitate starting, a preheat coil is fitted around the engine cylinder. (This can be seen in the photograph of the throttle actuator.) Connections to this coil are brought out to two pins on the bulkhead, to which a car battery is temporarily connected by means of crocodile clips, to preheat.

BATTERY, RELAY, AND ISOLATOR COMPARTMENT

The twelve 1.25 V DEAC nickel cadmium cells, which together comprise the 15 V battery BY1, are available in units of eight, already sleeved and connected together. Hence $1 \frac{1}{2}$ units are used (it is possible to cut the units into portions as required).

The cells are accommodated on a plywood board measuring $2 \frac{1}{2}$ in $\times 3$ in which is glued horizontally from chine to keel, the cells themselves lying laterally across the boat secured by Terry clips. See Fig. 12.

The four actuator relays RLA-RLD are mounted on a 4 in square s.r.b.p. board. This board is mounted vertically (with a polyurethane foam pad, in a similar manner to the other electronic boards), on the forward side of No. 5 bulkhead, under the hinged switch lid.

Mounted on the hinged lid of this compartment (in line abreast) are the three isolator switches $\mathrm{S} 1, \mathrm{~S} 2$, and S5. When wiring these components, sufficient "spare" wire should be allowed to permit the opening of this lid.

STEERING GEAR COMPARTMENT

Four 2 V 400 mAh cells connected in parallel (BY2), are wrapped in polythene sheet. This pad is held together by elastic bands, and wedged in the space immediately forward of the rudder linkage, in the cutout on the starboard side cheek of the steering gear, against No. 5 bulkhead. See Fig. 12.

These cells are advertised by Messrs Henry's Radio, and give adequate range between charges. In the prototype a two pin miniature plug and socket is fitted to the "battery", so that it can be detached when not in use to avoid the risk of corrosion of the steering actuator.
Next month : Transmitter construction; setting up and alignment of the complete system.

Transistor Amplifier DESIGN 6 Nums ACTIVE FILTERS By A.Foord

THIS is the final article of the present series, and here we shall be considering two main topics: firstly, high input, low output impedance amplifiers and secondly, active filters.

HIGH INPUT-LOW OUTPUT IMPEDANCE AMPLIFIERS

We know that an emitter follower gives a high input impedance and a low output impedance, but the emitter follower is really an example of an amplifier of one stage with 100 per cent negative feedback. This can be shown by redrawing the circuit, remembering that the supply lines present a low impedance to signals and are effectively shorted. See Fig. 6.1.

The circuit now becomes a common emitter amplifier, where all the output voltage is applied in series with the input, to give an overall gain of unity, a high input impedance and a low output impedance as we would expect.

This arrangement has the practical advantage over the conventional arrangement that bias resistors on the transistor base do not shunt the input, but only shunt the transistor input impedance, which is low in any case. It has the disadvantage that both input leads are floating above earth, but since each lead is a comparatively low impedance to earth; this is quite often not a problem. A practical circuit is Fig. 6.2.

We have used an emitter follower in the conventional manner to avoid loading the 27 kilohm resistor. Input impedance can be as high as 1 megohm, suitable for a crystal microphone or ceramic cartridge. The method
often used of bootstrapping bias resistors in the conventional circuit, Fig. 6.3, has a severe disadvantage.

INDUCTIVE EFFECT

Using ordinary germanium transistors an input impedance of 1 megohm is easily obtained, provided the d.c. bias resistors are bootstrapped to effectively increase their a.c. value.

Unfortunately, when the circuit is used with a capacitive source (such as a ceramic pick-up!) the feedback via the C can cause a peak in the response at the low frequency end, at low frequencies the feed-back capacitor will have an appreciable impedance, and can behave as an inductor in effect.

This "inductor" resonates with a capacitive source and for typical values can produce a peak of up to 20 times at 200 Hz . Decreasing the value of C from (say) $5 \mu \mathrm{~F}$ to $0 \cdot 1 \mu \mathrm{~F}$ helps reduce the peak, but the input impedance drops at l.f. where we most require it to be high with a ceramic pick-up.

It is possible to optimise values, but we still cannot obtain much output from the cartridge below 1 kHz , as shown in Fig. 6.4.

We must hasten to add that the moderate bootstrapping used in the preamplifier with switched equalisation is acceptable provided we do not attempt to use a capacitive source!

If we use silicon transistors we can operate at low collector currents and high resistance bias values, to achieve a high input impedance directly, Fig. 6.5. We need to use transistors with a high f_{T} because with a collector current of tens of microamps for the first transistor its frequency response is drastically reduced.

This circuit has an input impedance of 1 megohm up to 20 kHz or so. Note that we are bootstrapping the collector of the first. transistor, but this is completely safe because its only 50 per cent bootstrapping, and because it extends down to d.c. so we cannot possibly have any "inductive" effects. Incidentally, we must use a paper dielectric capacitor for the input, since leakage current though an electrolytic can be sufficient to completely alter bias conditions!
We have already seen that the type of feedback we called voltage output, series input, can have the effect
shift of 180 degrees around the loop will cause oscillation if the loop gain then exceeds unity (since the feedback then becomes positive rather than negative).

In this case we have the open loop gain of two transistors in series, and 100 per cent feedback, so instability is quite possible. Worst conditions occur if each transistor has a similar phase/frequency characteristic, since TR1 is working in common base (as far as the loop gain is concerned) and TR2 is operating in common emitter; h.f. instability is most likely to occur if:

of increasing input (and decreasing output) impedance, and the reasoning behind the emitter follower suggests that we try an amplifier with 100 per cent negative feedback. The npn pnp pair lends itself admirably to this circuit arrangement, Fig. 6.6.
Input impedance is given by:

$$
Z_{i}=\beta_{1} \beta_{2} \cdot R_{1}
$$

and output impedance tends to zero ohms.
We have to remember that TR1 is operating at a low collector current, so its β must be that associated with a low current. Since the feedback is 100 per cent d.c. conditions are very stable, and we have no need to consider leakage current for silicon, so we do not require a bias resistor in TR2 emitter circuit.

INSTABILITY PROBLEM

With 100 per cent feedback we may have a stability problem, as in any feedback system, an extra phase

Worst Conditions.

$$
f_{\mathbf{T}_{1}}=\frac{f_{\mathbf{T}_{2}}}{\beta 2}
$$

Transistors of the same f_{T} are marginally safe, but preferably

$$
f_{\mathrm{T}_{1}} \gg \frac{f_{\mathrm{T}_{2}}}{\mathrm{~B} 2},
$$

so that the transistor in common emitter is the limiting factor.
For any two transistor pairs we cannot use the npn or pnp first depending on our use of a positive or negative supply rail, we MUST use the transistor with the highest f_{T} in the common base position TR1.

Instability would be evident by a peak in the response or by ringing on a square wave signal, Fig. 6.7.
As previously suggested a peak in the response of up to 2 dB and one overshoot would be acceptable, Fig. 6.8.

Fig. 6.9. Simple low pass CR filter with response curve showing how turnover frequency is related to filter component value

Fig. 6.11. Simple high pass CR filter and response curve. Like the low pass filter the reciprocal of the CR product determines the turnover frequency

Fig. 6.10. Basic active low pass filter with response curve. Note that mid band gain is a function of the ratio of R2 and RI

$$
f=\frac{1}{2 \pi C O M} H z_{z}
$$

Fig. 6.12. Basic active high pass filter with response curve

Fig. 6.13. Active low pass filter where R1 and R2 are normally equal and the ratio of C1 to C2, determines turnover point

Fig. 6.14. Response curve for active low pass filter showing changes in turnover as q, the ratio of Cl to C2, is varied

Fig. 6.15. Output from low pass filter when $q=1$. Square wave input frequency is 1 kHz

ACTIVE FILTERS

Conventional filters use inductors, capacitors, and resistors, but at audio frequencies circuits without inductors may be preferred, both from the hum pick-up point of view and because they would need impracticably large values of inductance.

Passive filters using only resistors and capacitors do not give the sharp cut-off obtainable with L.C.R. filters; but by using R.C. networks in active feedback systems this restriction can be overcome, and all the frequency responses usually associated with L.C.R. networks can be obtained.
We have already considered how the bandwidth of our feedback amplifiers may be shaped to roll off at $6 \mathrm{~dB} /$ octave, but for special applications we may require an accurately defined high or low pass characteristic with a 12 or even 18 dB /octave slope.
It is convenient to talk of 1st, 2nd or 3rd order filters, where the order refers to the number of reactive components. Thus a 1 st order filter rolls off at $6 \mathrm{~dB} /$ octave, a 2 nd order at 12 dB /octave, and a 3rd order at $18 \mathrm{~dB} /$ octave.

FIRST ORDER FILTER-LOW PASS

The simplest passive filter consists of an R and C network, Fig. 6.9.

At zero frequency the reactance of C 2 is infinite, and there is no current, and no voltage drop across R2, so output equals input voltage. As frequency increases, the reactance of C 2 falls, i increases, there is an increasing voltage drop across R2, and output voltage falls. Eventually the reactance of C2 becomes small compared with R2, i becomes constant (and equal to input voltage divided by R2) and the output falls off inversely with frequency.

THE ACTIVE CASE

Similar reasoning applies in the active case, Fig. 6.10. At low frequencies the reactance of C2 is large, and gain is determined by R2 and R1, as frequency increases the reactance of C 2 decreases, providing more negative feedback. When the reactance of C 2 is equal to that of R2 (at f) the overall gain is 3 dB down, and continues to fall at $6 \mathrm{~dB} /$ octave. The active circuit has the advantage over the passive circuit that the output can be loaded and an overall gain at mid band (R2/R1) can be obtained.

FIRST ORDER FILTER-HIGH PASS

Again for the passive filter, Fig. 6.11, at high frequencies the capacitor impedance is zero, and output equals input. Towards the l.f. end of the band the capacitor impedance increases, and output drops.

IFig. 6.16. Practical low pass active filter

Fig. 6.17. Response curve of active low pass filter where the theoretical turnover point is 6.1 kHz

Fig. 6.18. High pass active fiter

Fig.6.19. Combination of high pass and low pass fiters

Fig. 6.20. Low frequency response curve of combination filter where theoretical turnover point is 67 Hz

For the active filter, Fig. 6.12, the impedance of the capacitor is zero at h.f. giving an overall gain of R2 divided by R1. Towards the I.f. end of the band the reactance of the capacitor increases, increasing the source impedance and giving a reduction in gain.

SECOND ORDER FILTER-LOW PASS

In the low pass active filter, Fig. 6.13, there is an energy interchange between the output and input via C 1 , and since we have two reactive components a 2 nd order filter is possible.

Normally R1 and R2 are made equal and C1 and C2 are chosen to give the required turnover point. By choosing a suitable ratio for C 1 to C 2 it is possible to obtain one of several responses, Fig. 6.14.

An arrangement with a q of about 1 is often used in audio preamplifiers as a scratch filter, the 2 dB peak in the frequency response is accompanied by a pronounced overshoot on a 1 kHz square wave, but this is tolerated to obtain a sharp cut off, Fig. 6.15. This is shown in the photographs.

In this response of a filter with $7 \mathrm{kHz} f$ to an input square wave of 1 kHz , rise time is degraded and there is an overshoot, as we would expect.

If we assume a perfect emitter follower (high input impedance, low output impedance, unity voltage gain) then the turnover frequency f is given by:

$$
f=\frac{1}{2 \pi \sqrt{ }(\mathrm{R} 1 \mathrm{R} 2 . \mathrm{ClC})} \mathrm{Hz}
$$

and

$$
q=\frac{\sqrt{ }(\mathrm{R} 1 \mathrm{R} 2 \cdot \mathrm{C} 1 \mathrm{C} 2)}{\mathrm{C} 2 \cdot(\mathrm{R} 1+\mathrm{R} 2)}
$$

For our practical circuit of Fig. 6.16.
The response curve is Fig. 6.17, and is 3dB down at 7 kHz and 18 dB down at 20 kHz . These figures compare well with the theoretical values of 6.1 kHz with a q of $1 \cdot 6$, which assume unity voltage gain for the emitter follower.

Since the response is 3 dB down at 7 kHz the point where the curve recrosses the OdB line is almost exactly the 6 kHz predicted by the formula, but the actual q obtained in the circuit is about 1 because of the finite current gain of the emitter follower.

SECOND ORDER FILTER-HIGH PASS

Complementary to the arrangement used for the low pass filter, a high pass filter can be designed, Fig. 6.18.
R2 can be considered to be the input impedance of the emitter follower, including the bias resistors. Again with this arrangement we can obtain various values of q

Fig. 6.23. Feedback and filter circuits of typical audio pre amplifler
by making Cl and C 2 equal and selecting the required ratio for R 1 and R 2 . For a q of about 1 , in theory:

$$
f=\frac{1}{2 \pi \sqrt{ }(\mathrm{R} 1 \mathrm{R} 2 . \mathrm{C} 1 \mathrm{C} 2)} \mathrm{Hz}
$$

and

$$
q=\frac{\sqrt{ }(\mathrm{R} 1 \mathrm{R} 2 . \mathrm{C} 1 \mathrm{C} 2)}{\mathrm{R} 1 .(\mathrm{Cl}+\mathrm{C} 2)}
$$

Our practical low pass circuit can be biased from our high pass circuit, and the two are shown together in Fig. 6.19.
The response curve for the high pass filter is shown in Fig. 6.20.

Performance 3 dB down 50 Hz 18 dB down 20 Hz

Max output 500 mV r.m.s. 1 kilohm load (either filter).

Midband gain XI (either filter).
These figures compare well with the theoretical turnover point of 67 Hz (where the curve crosses the 0 dB line) and a q of 1.5 (ideally).

THIRD ORDER FILTERS

Third order filters can be designed around one amplifier, for example the low pass filter of Fig. 6.21, but the mathematics can become rather involved.

If third order filters are required it is probably easier to combine a first and second order, e.g. Fig. 6.22.

CONCLUSION

In this series of articles we have considered many circuits separately, although they could be combined in various ways to produce complete audio amplifiers to suit the individual needs of the constructor. For example, it is possible to combine a high-low impedance converter such as Fig. 6.3 with the tone controls described in Part 5 and the scratch filter of Fig. 6.16. Fig. 6.23 shows this arrangement.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merit.

CINE AND TAPE SYNC

| would like to make a few points in reply to Mr Watts' letter in Readout (May 1968) concerning Cine and Tape Sync. Using reflected light from the sereen the output from his I.d.r. will vary according to the light content of his picture, and on dark scenes or fadeouts will lose his signal altogether, therefore losing his sync.

Secondly, a three segment shutter is used on many projectors and consists of a large segment blanking off the light while changing frame, the other two segments maintain flicker frequency but are made small to allow maximum

Fig. I. Optical pickup produces an asymmetrical waveform

Fig. 2. Using a sine wave reference from the projector
light passage. This will give an asymmetrical waveform from the l.d.r. as shown in Fig. 1.

An alternative arrangement besides using a separate shutter and optical arrangement independent of the light path of the film, would be to fit a circular magnet on the shutter spindle with three coils in close proximity. This would give a sine wave output (as apposed to a square wave which would require changing to sine wave with a harmonic filter). See Fig. 2.

For his "black box" this 50 Hz error signal after suitable amplification could be fed to a phase sensitive detector together with his reference signal from tape recorder. The d.c. output from this could then control a thyratron or a pulse firing circuit for a silicon controlled rectifier.

If the coils were replaced with a reed switch and the reference frequency lowered accordingly (frame speed), the reed switch could then demodulate the tape recorder reference frequency directly providing a d.c. error suitable for the Pulse Firing Circuit. This would provide a simple method for accurate Cine Tape Sync and because of the low reference frequency used, a two track tape recorder could be used with suitable filtering for the separation of the reference frequency and audio signal.
N. I. Bridger,

Macclesfield, Cheshire.

"FLIP FLOP" SYNC

|N reply to the letter "What's in the box?"' by D. Watts of Lincoln (May edition), may I point out that to use a thyristor in this way is impracticable since once the trigger pulse applied to the gate has switched it on, any further pulse will not switch it off again. The only way to switch it off is to remove the mains supply from it.

A simpler and cheaper method is to use a "flip flop" relay in conjunction with perforated cine tape. See Fig. 1.

A four track tape recorder is not required with this type of synchroniser. The only slight modification to the projector is to fit a one pulse per picture contact cam and to put the relay contacts in series with the motor circuit. The relay must be of the high speed type.

By fitting a similar one pulse per frame contact maker and interrupting the battery supply with the relay, this device can be made to synchronise a movie camera with a tape recorder providing the camera is electric and not clockwork.

It must be observed that for this device to operate the projector manual speed control must be set to fast (i.e. faster than 16 f.p.s.) and that the camera must have a slightly higher voltage than normal (i.e. six penlight cells instead of four). This condition is necessary because the synchroniser can only slow the motors down to the exact speed, it cannot speed them up.

As for the fitting of contact makers, this must be left to the discretion of the reader as it is impossible to generalise on the numerous types of projectors or cameras. Basically a nylon half bush cemented to the drive shaft made to lift a phosphor-bronze contact strip off the shaft will do

Fig. I. In the "black box" -a tronsistor flip flop providing the shaft is making one revolution per picture frame.

As for the tape perforation scanner, this can be done either by a contact spring that drops through the perforations on to a capstan or the tape could be made to interrupt a light beam on to an OCP71 phototransistor or ORP60 light dependent resistor. This latter method however requires another battery to supply a light source on the scanner.
R. S. Hodgson, Huthwaite, Notts.

Electric hand drills are deservedly popular with home handymen, and others, but do have the disadvantage that the running speed is too high for many jobs. The drilling of masonry is an example, and even drills with built-in two speed gear-boxes can be made more useful by a reduction of speed.

At first sight the simplest way of reducing the running speed would appear to be tolower the voltage applied by means of a series resistor, or a voltage dropping transformer. Both of these simple schemes result in a serious loss of torque, however, and, in the case of the series resistor, the generation of a large amount of heat, which is, of course, wasted. Both methods are also less flexible in use than the method to be described.

A much better and more sophisticated way of controlling speed is to use a thyristor or silicon controlled rectifier (s.c.r.), as the controlling element. As will be seen later, the circuit used is so arranged that when the drill is loaded and thus tends to slow down, extra power is automatically applied to it to make up for the extra work it is called upon to do.

THYRISTOR PROPERTIES

Readers familiar with the gas filled valve or thyratron will recognise the following description of the properties of a thyristor, for both are very similar in general "peration-in fact the name "thyristor" is derived from "thyratron transistor".

Briefly, a thyristor has three very important properties.
(a) It will conduct only in one direction.
(b) Even with a positive voltage applied to its anode it will not start to conduct until the third connection, known as the gate, is made a small amount positive with respect to the cathode. It will then conduct freely.
(c) Once conducting, it will continue to do so even if the positive voltage is removed from the gate, until either the anode is no longer held
positive or until the current through the device has fallen below a very low value (known as the holding current).

POWER CONTROLLER DESIGN

We shall employ all of these characteristics in the electronic speed controller.

Consider the mains voltage waveform; suppose we use a thyristor in series to block the negative halfcycles (shown shaded in Fig. 2). With only the remaining positive half-cycles applied to a drill motor, there will be a reduction in the speed at which it runs, compared to normal, but, somewhat surprisingly, this

Fig. I. Circuit diagram of the speed controller. The fuse FSI may be omitted if 13A plugs and sockets, fused for 3A, are fitted
reduction is not very great. Some means of controlling the positive half-cycles is required, and this is where we can make use of the second property of the thyristor.

If we do not allow the gate to become sufficiently positive to cause the thyristor to conduct (or trigger) until some time after the start of each positive halfcycle, then no power will be supplied to the drill until that time. The third property of the thyristor will ensure that power continues to be supplied until the end of the half-cycle, and the whole process will be repeated when next the anode goes positive. See Fig. 3.

It can be seen that, taken over many cycles of the mains, the average voltage supplied is less than before, and hence the drill runs more slowly. It remains to arrange for the trigger point to be varied to have control over the speed in use.

CIRCUIT OPERATION

The complete circuit diagram for the drill controller is given in Fig. 1.
The voltage applied to the gate of SCR1 is derived from the mains via a potential divider, R1, VR1, R2, with a diode D1 in series to reduce the mean current

Fig. 2 (above left). With the gate held sufficiently positive relative to the cathode, the thyristor behaves as a half-wave rectifier, blocking negative half-cycles of the supply

Fig. 3 (right). By preventing the gate of the thyristor from receiving a large enough pulse to trigger the device until some time after the start of each positive half-cycle of the mains, no power will be conveyed until that time. Therefore a smaller percentage of the energy in the positive half-cycle will be available to feed the load

Fig. 4 (above left). The instantaneous level of the positive pulse fed to the gate of the thyristor, and thus the point on the incoming mains half-cycle at which the device conducts, is adjusted by VRI-the speed control. DI avoids dissipating unwanted negative half-cycles through the potential divider chain

Fig. 5 (right). The curves at the bottom show three (arbitrary) levels of voltage input to the thyristor gate and the corresponding shifts in the point on the supply half-cycle at which the device conducts or "fires"

Fig. 6. Interior view of the completed controller
through the resistors and hence allow components of a reduced wattage rating.

The waveform at D2 anode will vary in amplitude as VR1 slider is moved. This voltage, applied to the gate of the thyristor, will cause the latter to conduct at varying points during positive half-cycles, as shown in Fig. 5. The large value capacitor C 1 introduces sufficient phase shift to allow the thyristor trigger point to be varied over the whole of the positive halfcycle, thus giving complete control of drill speed down to a few r.p.m. D2 protects the thyristor gate from negative half-cycles of the mains and R3 provides a d.c. path from gate to cathode.

This does not, however, exploit all the possible virtues of the circuit. It will be recalled that the gate of the thyristor must be taken positive with respect to the cathode. Now, in the circuit (Fig. 1), it is seen that the cathode is connected to the drill itself. Suppose the drill motor is running freely, unloaded, and at about half speed. The back e.m.f. of the motor will appear at the cathode and the gate must exceed that voltage level by a small amount before the thyristor will conduct.

If now a load is applied, the speed will tend to drop, the back e.m.f. will fall and hence the gate voltage will exceed that of the cathode earlier in each half-cycle and hence the average voltage supplied to the drill will rise. This will tend to automatically maintain the speed of the drill as it is used, for example, for drilling masonry. The effect is quite noticeable; the sound emitted by the drill will be heard to change as a load is applied, and this is an indication that the circuit is functioning correctly.

CONSTRUCTION

The general layout is as shown in Figs. 6, 7 and 8.
A strong case is required to house the unit, and an alloy diecast box is specified, for the controller will doubtless be subject to hard usage in service.

The thyristor should have a voltage rating of at least 400 V , for it must withstand the peak mains voltage, and a current rating of 3 A . It will require to be mounted on a heat sink of about 3 sq in and for this a piece of angled aluminium sheet is suitable, which must be insulated from the case on nylon screws with insulated washers between case and heat sink (see Fig. 7).

COMPONENTS

Resistors

RI $10 \mathrm{k} \Omega 6$ watt wirewound
R2 $150 \Omega \frac{1}{2} W$ carbon
R3 lk $\Omega \frac{1}{2} W$ carbon
Potentiometer
VRI Ik Ω wirewound

Capacitor

CI $16 \mu \mathrm{~F} 450 \mathrm{~V}$ elect.

Thyristor

SCRI $400 \mathrm{~V}, 3 \mathrm{amp}$ rating (available from G. W. Smith \& Co., 3 Lisle Street, London, W.C.2)

Diodes
DI, D2 ISII3 or similar with 400 V 50 mA rating
Switches
SI Changeover toggle switch
Fuse
FSI Miniature 3A fuse and holder (see text)

Socket

SKI I3A fused mains supply socket (see text)

Miscellaneous

Die-cast box (Eddystone or S.T.C.), approx. $4 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in $\times 2 \frac{1}{4}$ in. Six way tag strip. Nylon screws, 4 B.A. Aluminium for heat sink.

Fig. 7. Layout of components inside the die-cast box. The fuse FSI is only necessary when unfused (5A or 15A) plugs and sockets are used

Fig. 8. Position of controls and socket on the die-cast box. Location of feed-through holes (D) will depend on the design and type of socket. Hole C is only needed when a separate fuse is fitted

Fig. 9. Thyristor symbol and terminal connections

Otherwise, construction is straightforward and should give no difficulty even to a beginner. A small tagstrip is useful for mounting the large phase shift capacitor and one of the diodes, while the resistors can be supported in the wiring. Ensure that there can be a free flow of air around R1.

FUSE PROTECTION

The thyristor should be protected against overload. If 13 amp plugs and sockets are used with the controller, these can be fitted with 1 in $\times 4$ in 3A cartridge fuses (available from Radiospares stockists). Models using 5A plugs and sockets (or 15A types without fuses) should incorporate a separate miniature 3A fuse and holder, connected in the "live" supply lead to S1. This fuseholder can be mounted inside the box as indicated in Fig. 7.

REACTION TO LOAD CHANGES

As mentioned previously, the speed controller circuit reacts to load changes; the effectiveness of this depends on the residual magnetism of each individual motor, but in any case will be most effective when the trigger point occurs at peak input voltage. It is at that point that a small change in trigger point will cause most change in the resultant output power.

It may be noticed that at very slow speeds the motor will fire intermittently, and in fact will sound rather
continued on page 519

NEWS BRIEFS

New Task for No. 1

Aerial No. 1 at Goonhilly is to be re-equipped to enable it to carry commercial telephony traffic and television programmes between the U.K. and countries in the East, via a communications satellite over the Indian Ocean.

Work will begin when the aerial is freed from its present task of tracking the Early Bird satellite, probably in the late summer of this year, and will be completed in the first half of 1969. The contractors are GEC-AEI (Electronics) Ltd.

To reduce the amount of apparatus that would otherwise be needed in the limited space on the aerial itself, the connection to receivers in the central control building, a quarter of a mile away, will be through a semi-flexible waveguide operating at 4 GHz . Tests are to be made to see whether a similar system can be used for the transmitting direction.

Artificial Earthquake

RUSSIAN scientists are building a huge "artificial earthquake" machine which will be used to put architectural methods and materials to the crucial test. It uses an electronically-controlled "seismic platform" to simulate the reciprocating and rotary oscillations of a ferro-concrete framed building during a 'quake, and a variety of instruments for detecting the resultant static and dynamic stresses.

Officially Acurrate

THE British Calibration Service, set up by the Ministry of Technology in 1966 to provide industry with authenticated calibration facilities for a wide range of measuring instruments, has received Royal assent for an official badge (right) to appear on the certificates it issues to approved laboratories. It comprises the mathematical signs for "not greater than" and "not less than", surmounted by a crown.

crown copyright

Faster Forecasts

OMPUTERS are helping to produce weather maps much more quickly than by previous methods, but to speed up the transmission of facsimile copies by landline or radio to met. offices and airports calls for higher grade circuits with increased bandwith. New equipment which doubles the transmission speed over existing networks, without any increase in bandwidth, has been developed by the Muirhead Group. It makes the most of the available frequency band of the telephone line by transmitting the picture signals on a carrier of 2.4 kHz . Only a vestige of the upper sideband is transmitted. At the receiving end, both the upper and lower sidebands are reconstructed and fed to the reproduction machine.

Cleaning up the TV

WHEN the telly goes on the blink-give it a wash! Removing the film of dirt from the components of long-serving equipment can bring a definite improvement in performance, but in busy repair shops it creates a bottleneck. Telehire Ltd. have adopted a modern method that speedily bestows "as new" appearance and performance on reconditioned TV sets. The complete chassis is immersed in'the vapour of ICl Arklone solvent (trichlorotrifluoroethane in full) and hosed down with a jet of the solvent. The solvent drips from the chassis, carrying the dirt with it, and is distilled and recirculated to the jet.

More Phone Exchanges

"MASSIVE" five year programme of expansion by the GPO will see the completion of more than 200 new telephone exchanges and the enlargement of a further 600 by the end of this year.

This was announced by the Postmaster General, Mr Roy Mason, at a ceremony in London to launch Telephone Fortnight. His speech was linked by television with 16 towns and cities throughout the country.

Computer Plans Conference

TTHE Institution of Electrical Engineers is using its own computer to plan a conference on electronics design, to be held at Cambridge University in September. A large number of engineers have completed questionnaires on the choice of topics, and their preferences are being analysed. One observation to emerge from the computer is that while junior designers are more interested in design method and research into design processes than their seniors, they are much less concerned with human factors and the behaviour of design teams.

Transistor U...F. Drive

THe Marconi Co. has begun production of an all solidstate u.h.f. drive unit for use in colour television transmitters. The new drive, providing 5 W vision and 10W f.m. sound, is less than half the size of conventional valve units. A single crystal oscillator controls the output frequencies.

The Mullard Plant at Simonstone, Nr. Burnley, Lancs, is the largest TV picture tube production unit in the U.K. and is the most modern in' Europe. It includes a glass works second in size only to Pilkington's in the U.K.
The Simonstone Works has a current capability for manufacturing about $1 \frac{1}{2}$ million monochrome tubes per year. Present plans for colour tube manufacture envisage a production capability rate of over 150,000 tubes per annum towards the end of 1968.

THIs is an account of the production processes involved in the making of a colour picture tube. It is prefaced by a brief outline of the principles behind the shadowmask colour tube.

FEATURES OF THE COLOUR TUBE

All television picture tubes have a screen layer which fluoresces under the impact of a high velocity electron beam generated at the cathode of an electron gun and accelerated by voltages applied within the tube. Monochrome tubes have a single continuous layer of phosphor on the screen which glows white when struck by the electron beam generated by a single gun. Colour tubes have three phosphors which glow red, green or blue when struck by the electron beam. Various "mixes" in illumination of these three basic colours provide the full colour spectrum.

The red; green and blue phosphors are not in a continuous layer but are arranged in discrete dots forming "triads" over the whole screen surface. Three electron guns are used, one to activate each colour and to ensure that each gun can only activate its own phosphor colour, a shadowmask is interposed between the three electron guns and the screen.

The shadowmask is a thin steel sheet, typically 0.006 in thick, perforated with tiny holes and manufactured to great precision. In a typical colour tube there are some 440,000 triads each consisting of a red, green and blue dot of phosphor. The final assembly must ensure that

[^2]

an electron beam from the red gun can "see" through the shadowmask only dots of red phosphor, the green gun only green phosphor. and the blue gun only blue phosphor.

PREPARING THE FACEPLATE

Tube production starts with reception of faceplates from the stores. These are first washed in hydrofluoric acid, rinsed off and dried. A layer of potassium silicate is then laid on the screen to act as a barrier between the phosphor and the glass. The layer maintains the brightness of the screen by eliminating any possible reaction between oxides in the glass and the phosphors.

The faceplates are then passed to the ultra-clean flowcoating room which is temperature and humidity controlled. This is the area where the red, green and blue phosphors are laid on the screen in a triad formation.

The order of laying the phosphors is first green, then blue, followed by red. A separate flow mill is used for each phosphor. The temperature of the glass, which must be clinically clean, of course, is critical at the start of the process. The fiow mills are entirely automatic in operation including the dispensing of the correct amount of slurry-the phosphor suspended in a mixture of polyvinyl alcohol, distilled water and ammonium dichromate.

An essential quality of the phosphor slurry is that it must act as a photo-resist. That is, if exposed to ultraviolet light the particles should adhere and become insoluble. Unexposed particles should remain unaffected and be easily washed off.

FIXING THE DOTS

After laying the green phosphor the faceplate is passed to a photo-exposing equipment dubbed a "lighthouse". Before exposure to ultraviolet light concentrated through a quartz resonator, the shadowmask is fitted to the faceplate. The shadowmask acts as a template for fixing the green dots, and this is achieved by positioning the light source at exactly the same position that
the electron gun for that colour will be in the final assembly. The light source shining through the holes in the shadowmask will harden every spot of green phosphor in direct line with the green electron gun. From this moment on, that particular shadowmask must be clearly identified with that particular faceplate.

After exposure the shadowmask is removed and the faceplate mounted in the second flow mill where the first operation is the washing away of all the unexposed green phosphor, leaving a pattern of green phosphor dots on the screen. The blue phosphor is then applied and, after drying, the faceplate is again passed to the photo-exposing equipment.

Again the same shadowmask is fitted and the blue phosphor is exposed to ultraviolet light, but this time the light source is positioned to simulate the blue electron gun. The process is then repeated with the red phosphor.
The final result is that the screen is now fully covered with triads of red, green, and blue dots positioned accurately in relation to the holes in the shadowmask.

The assembly station for mounting the shadowmask to the faceplate. The operator in the foreground is spot welding steel strips round the edge of the shadowmask. These prevent stray electrons reaching the screen round the edges of the shadowmask

Completed faceplates are now passed through an airlock to an adjoining area and placed on a lacquer mill, lacquered and dried. The faceplates are then cleaned carefully by hand to eliminate all traces of phosphor from the screen walls and the operators here paint on a small oblong patch of graphite to connect electrically with a spring on the shadowmask at a later assembly stage.

Cones are also part processed in this area. The graphite coating is applied to the inside surfaces and the neck and powdered glass in suspension is applied to the ground edges of the cone.

ALUMINISING PROCESS

Faceplates are then subjected to the aluminising process. In this, the faceplate is placed on a machine and all air evacuated. A slug of aluminium is heated

Faceplates in position on the "lighthouse" stations where each layer of colour phosphor is exposed to ultra-violet light
in the vacuum and eventually vaporises to deposit a very fine film of aluminium over the inner surface of the faceplate. An interesting feature of the aluminising plant is that the thickness of the aluminium layer is automatically checked by a capacitive probe while the faceplate is still on the machine. The lacquer is then baked off to complete the process.

FITTING THE SHADOWMASK

The time has now arrived for the final meeting of the faceplate and its shadowmask. This takes place in a clean area where shadowmasks are also optically inspected. After clipping the shadowmask into position a series of thin steel plates is spot welded round the shadowmask periphery. This is to prevent stray electrons escaping round the edges of the shadowmask and activating the phosphors-a process which, if allowed, could cause colour dilution. The same operator also spot welds two springs to the shadowmask which will make electrical contact with the conducting graphite surface on the interior of the cone.

MATING OF CONE AND FACEPLATE

The faceplate assembly is now ready for mating with the cone. The cones have undergone a baking process at $450^{\circ} \mathrm{C}$ and are received at the entry to the Frit oven.

Assembly of colour gun components to insulating rods (beading)

Electrical and visual final inspection of colour guns
Here the cones are mounted on precision jigs and the faceplates accurately positioned ground-edge to groundedge with the powdered glass, previously applied to the cones, between the two surfaces. By exposure to a temperature of around $450^{\circ} \mathrm{C}$ for one hour the powdered glass slowly melts and fuses the two components together. This process at low temperature is necessary in order to prevent damage to the shadowmask.

Insertion of cathode to colour gun using capacity setting equipment

ELECTRON GUN

After a full inspection the next operation is the fitting of the electron gun assembly into the neck of the tube. Electron guns are kept in a hot box in readiness for the process. This reduces the possibility of thermal shock during the sealing-in process. The bulbs are placed on a vibrator which automatically sweeps over a vibration frequency range of $600-1,100 \mathrm{~Hz}$ which includes the resonant frequency of the bulb. This process shakes out any residual foreign matter. The necks are then cleaned manually with chamois leather and alcohol. The gun assembly is then sealed into the tube on an automatic machine.

TUBE EVACUATION

Nearly 90 self-contained pumping stations are in operation on the all important evacuation process. Each has two fast pumps capable of creating a vacuum of atmospheric pressure 5×10^{-6} Torr. The evacuating process takes about 3 hours. During the process the bulb is heated to $400^{\circ} \mathrm{C}$, which assists in out-gassing the glass and metal components, and, during a later stage of the process, the tube heaters are energised for about 40 minutes, an important part of the cathode activating process. By applying high voltages to the tube it functions as an ion gauge, and can therefore be used to check its own vacuum.

The next series of tests and processes are designed to further activate the tube and search out rejects. The normal maximum operating voltage of a "ColourScreen" tube is 25 kV but they are tested at much higher voltages. The electrical quality of the Frit seal is tested at 44 kV and must successfully withstand this voltage. A voltage of 65 kV is applied to the anode to break down any sharp points in the internal structure "which could lead to flashovers, a process known as "spot-knocking".

Evacuation is completed by gettering-a process in which a small pellet of barium is fired internally in the bulb to absorb any gases remaining and to maintain the excellence of the vacuum for the tube's working life.
Extensive testing is undertaken in the later stages of manu-
facture. Picture shows a battery of high voltage testers facture. Picture shows a battery of high voltage testers

AGEING AND FINAL TEST

The tubes are then mounted on the ageing conveyor. On this, each tube is electrically connected and, during a $1 \frac{1}{2}$ hour period on the conveyor, current is drawn from the cathodes, the emission is stabilised and two more periods of spot-knocking are sustained.

Final test is conducted at a bank of five specially designed colour test boards. All "ColourScreen" tubes are tested for blemishes in each colour and in white, for convergence, linearity, cathode quality, overvoltage, etc. The process, once cumbersome and time consuming, has been streamlined by careful design of the test boards and the inclusion of modern aids such as digital read-out for colour purity checks. To completely test a colour tube now takes under 10 minutes giving a throughput of up to 30 tubes an hour from the five test boards. As production increases, so will the number of test boards be increased in proportion.

After visual inspection the tubes are fitted with a reinforcement guard, given a final wash, receive a coating of graphite on the cone exterior.

GUN ASSEMBLY

Gun assembly is undertaken in a completely separate part of the factory away from the heat and noise and general bustle. The assembly area is air-conditioned and has clean rooms in which nylon overalls are mandatory. Even in the less critical general assembly area the operatives are obliged to wear nylon gloves. Electron guns are virtually "untouched by hand". The department employs over 200 girls skilled in fine assembly work.

STAINLESS STEEL PARTS

Piece parts for the triple-guns are manufactured at the Mullard Blackburn Works. The quality of the raw materials is closely controlled. Metal parts are stainless steel and these are stored in a dry hydrogen
Close-up of one of the final test stations. The engineer is checking linearity with a grid pattern on the screen. On the right of the picture is a further electronics cabinet and the digital readout of colour purity can be seen in the upper section of this unit

atmosphere at $1,050^{\circ} \mathrm{C}$. Parts for immediate use are withdrawn from the hot store and retained in vacuum jars up to the assembly stations. All mica parts are vacuum stoved before use for de-gassing. The chamber is pumped out to 10^{-4} Torr at $500^{\circ} \mathrm{C}$ and as the chamber cools down the vacuum can rise to as high as 10^{-6} Torr.

Nearly 30 stages of assembly are necessary. The key to accuracy lies in a number of ingenious assembly jigs and the skill of the operator.

SPECIAL TEST GEAR

Another feature of gun assembly is the specially designed test gear. For example, in an early stage of assembly the correct positioning of the cathode micas into the structure is critical. The correct positioning on assembly is determined by measuring the capacity between the cathode and g2. The method was developed in the Mullard organisation. Another ingenious machine is the auto-tester designed at Simonstone and used in the final assembly clean rooms. This completely checks over 60 parameters for continuity and shortcircuit as well as measuring the heater resistance.

THE SHADOWMASK

The shadowmask is a critical component in all colour TV picture tubes. A typical shadowmask has 440,000 tiny holes at a density of some 1,500 to the square inch. The holes have to be microscopically accurate in position and dimensions: Furthermore, the holes, depending on their position on the shadowmask, vary in size down to 220 microns in diameter and are tapered.

The process involves etching the holes in acid baths after exposing the thin sheet steel of the shadowmask between two photographic negatives. This sounds simpler than it is but there are enormous problems in careful alignment of the negatives, handling and cleanliness. A single spot of dust, for example, can become an unwanted hole.

One aspect of the shadowmask is that in service it must withstand a temperature increase without deformation. Even with a density of 1,500 holes to the square inch, the holes represent only about 25 per cent of the shadowmask area and thus only 25 per cent of the electrons fired at it from each gun pass through to bombard the fluorescent screen. This is one of the reasons why a higher e.h.t. voltage is required on colour tubes. The shadowmask itself has to absorb an electron bombardment which results in a typical heat dissipation of 20 W in the shadowmask. For colour purity this must be absorbed without flexing or other distortion of the mask.

THE GLASS FACTORY

Special quality glass is required for TV picture tubes. The qualities required include mechanical strength to withstand atmospheric pressure and a force of several tons when the TV tube is evacuated. The faceplate must be completely free from blemishes and distortion, must have a good "colour" and not be subject to discoloration when subjected to bombardment by high velocity electrons. Finally, the glass must be capable of withstanding scores of thousands of volts without electrical breakdown.

Clearly, the quality of the glass is fundamentally related to the final quality of the TV picture tube. By retaining complete control of glass manufacture Mullard are able to control quality from the start. Among the routines is a daily chemical analysis of glass quality and immediate feedback of reject trends from inspection points to the processing stations.

MARHET PLALE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is glven, enquiries and orders should then be made direct to the firm concerned.

WORKSHOP AIDS

There are a number of items this month worthy of consideration for addition to the workshop.

The new range of multimeters from Daystrom Ltd. (Models IM-16 and IM-25) are ideal for the workshop, and being in kit form also give that personal feeling of satisfaction when built-up at home.

The Heathkit model IM-16 is an all transistor multimeter operating either from the mains or from internal batteries. There are separate switches for each individual function.

There are seven switched ohms ranges $\times 1$ to $\times 1$ megohm; the $\times 1$ range has a 10 ohm centre scale. The meter has eight a.c. and d.c. ranges from 0.5 V to $1,500 \mathrm{~V}$ f.s.d. The meter accuracy on the a.c. ranges is ± 5 per cent full scale, and ± 3 per cent on the d.c. ranges. The input impedance on the d.c. range is 11 megohms, and 1 megohm on the a.c. range.

The new bench-top styled $1 \mathrm{M}-16$ is available in kit form at $£ 28 \mathrm{8s}$ 0d or pre-assembled and tested at $£ 35$ 8 s 0 d . Postage and packing is 6 s extra.

The Nombrex C-R 32 Test Bridge is a neat and fairly inexpensive piece of test equipment at $£ 10 \mathrm{los}$ that is ideal for the workshop. The three resistance ranges cover 1 ohm to 100 megohms. Capacitances of 1 pF to $100 \mu \mathrm{~F}$ can be measured, also in three overlapping ranges. There is provision for indication of leakage and power factor in larger values of capacitors.

Model CN iron from Antex Ltd

Housed in a steel case and powered by battery, the bridge has a total consumption of approximately 25 mA . There is provision for external power supply by mains or battery.

Antex Ltd, announce a new pack for their 15 watt Model CN iron. The miniature iron is fitted with a ${ }_{38}^{3}$ in bit, specially suitable for use on transistor and other miniature circuitry. The list price is 31 s and is available from most component stockists.

MINIATURE MOTORS

The elimination of radio and television interference problems are two major advantages of a new range of miniature d.c. motors announced by Impex Electrical Ltd., Market Road, Richmond, Surrey.

The motors, series 12005 and 12007, incorporate a transient voltage suppressor and are particularly suitable for use in servo mechanisms and radio controlled apparatus.

Heathkit IM-16 voltmeter

The 12005 motors operate from a 4V supply and produce a nominal torque of 20 gcm at $3,800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The 12007 motors operate from 6V supply and produce a nominal torque of 30 gcm at $4,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Motors for use at other voltages and speeds are also available.

A modified version of the 12007 series has the advantage of an integral gear box. The gear ratios available extend from $1: 5 \cdot 5$ to $1: 729$, thus

Miniature d.c. motors from Impex Electrical, left to right type 12007, $\quad 12007$ with gearbox, and type 12005
allowing the designer to use a slower speed with a greater torque if required.

COMPUTER TOYS

Teachers, clubs and education establishments should find the new showrooms of Electronix Products Ltd., 171-175 Southampton Way, London, S.E.5, of particular interest. At the Electronix showrooms are demonstration models of their range of computer toys and teaching aids.

It is claimed that for an investment of less than $£ 5$ the binary system can be taught to a group in a week, with little or no assistance from the teacher.

LIGHTING

Suitable for controlling lamps up to 300 watt and rated at $220 / 250$ volts a.c., the Varibrite light dimmer is British made and designed to meet British Standards specification. The control circuit is housed in a moulded body and can be fitted in place of an existing light switch.

Available from M. \& J. Supplies and Sales, 30-40 Dalling Road, Hammersmith, W.6, the Varibrite costs 49 s 6 d plus 2 s 6 d postage and packing and is guaranteed for 12 months.

Although thyristor light dimmers are now becoming increasingly popular, it should be pointed out that they can cause electrical interference on some domestic receivers. We understand that the G.P.O. is making investigations in this respect.

TELEVISION

The first Ultra 19 in colour television receiver, Model 6701, is an all transistor set using modular construction. Housed in a teak veneered cabinet with matching stand, model 6701 is recommended to be sold to the public at 284 guineas.

The set has push-button switching for channel selection and also includes a personal tint control for correct white balance.

AUDIO

"Fluff-free" dusters for cleaning audio and electronic equipment are now available from component and hi fi shops. Called BIB Hi-Fusters, the cloths are made from soft, highly absorbent viscose rayon material. They measure $16 \frac{1}{2} \mathrm{in} \times 13 \mathrm{in}$, cost 2 s 6 d per packet of two dusters, and are manufactured by Multicore Solders Ltd.

Dixons photographic shops are now expanding their range of AudioHi Fi Departments and will specialise in Philips and Arena ranges of audio equipment.

COLOUR FILMS

The manufacture of Mullard ColourScreen picture tubes for colour television receivers is the subject of a new film which has just been released by Mullard Ltd., and added to the company's film library.

Available on free loan and entitled "It's The Tube That Makes The Colour', the 16 mm film runs for 19 minutes and, appropriately, is in colour. The aim of the film is to show in detail the theory and immense amount of skill and care which goes into the production of these tubes.

Another 16 mm film entitled "Colour Television" lasting 16 minutes is also available from Mullard's at a hire fee of $£ 115 \mathrm{~s} 0 \mathrm{~d}$ per booking.

This film describes in general terms how colour television works and as such is useful to engineers studying colour television and to schools and other establishments.

All enquiries for these films should be addressed to the Mullard Film Library, Kingston Road, Merton Park, London, W. 19

LITERATURE

The 1968 edition of the Mullard Data Book embraces the complete ranges of the company's current production valves, tubes, semi-conductors, and components for entertainment applications. One of the features of this edition is the use of colour coded sections.
Comparables are listed in the semiconductor section, equivalents and earlier types in the valve section and replacements in the picture tube section. The book also contains a list of symbols and abbreviations.

The Data Book is available, for the first time, through retailers to any reader at a recommended price of 3s 6 d per copy.

Now available from Motorola Semiconductors Ltd., Technical Information Centre, York House, Empire Way, Wembley, Middlesex, is a series of seven selection guides covering a wide range of their products.

The series covers Zener diodes and temperature compensated reference diodes; silicon power transistors; Unibloc plastic silicon annular transistors; silicon power rectifier assemblies; Unibloc plastic smallsignal transistors; germanium $p n p$ power transistors; thyristor products.

Also just published by Motorola is a new Zener Diode Handbook. The handbook has been compiled to give circuit designers all the necessary data for the use of Zener components in circuit designs.

Chapters include information on Zener diode theory, production, techniques, reliability considerations for the designer, Zener characteristics, applications, and a cross reference selector guide for Zeners.

Over 2,000 equivalents are listed in the English Electric 1968 Equivalents

Index. It contains no technical data but simply lists equivalents or replacements to various manufacturers. Service type numbers are also given.

Copies can be obtained free from English Electric Valve Co. Ltd., Chelmsford, Essex. All requests for copies must be accompanied by a stamped addressed envelope.

Colour television valves and tubes are included for the first time in the Mazda 1968 Data Booklet just published.

The booklet contains 168 pages and has sections on current, obsolescent and obsolete valves and cathode ray tubes, and an equivalents section.

Copies can be obtained from Mazda Publicity Department, ThornAEI Radio Valves and Tubes Ltd., 7 Soho Square, London, W.1.

Pitran pressure sensitive transistor from Guest Electronics

EXPERIMENTAL DEVICES

Two items mainly for professional readers and educational institutes are the latest products from Plessey and Guest Electronics.

The Plessey Fluidic Experimenters Kit has been developed for laboratory, research, and design engineers. The kit enables engineers to familiarise themselves in this fairly new and fast developing field of fluidics, and to construct and test prototype systems using standard Plessey devices.

The kit comprises 20 logic elements, six digital indicators, four proximity detectors, a pressure gauge, an electropneumatic relay transducer, two variable restrictors and a variety of mounting and connecting units. These include three manifolds or large diameter tubes, each with a row of nozzles which provide both the (air) power supply and a push fit mounting facility for up to 12 logic elements.

Also supplied with the kit is a 38 -page handbook containing sections on the principles of fluidics, the meanings of logic terms and graphical symbols, and the basics of

Boolean algebra. The major part of the handbook is devoted to 11 experiments.

For educational purposes the kit is ideal in that the fluidic elements, unlike electronic devices, are transparent and the student can see exactly what is happening at all stages.

The Plessey Fluidic Experimenters Kit is available from the Industrial and Electronic Components Division, Plessey Components Group, Ilford, price $£ 98$ 10s.
The Pitran pressure sensitive transistor available through Guest, Electronics Ltd., is a miniature solid state device for converting forces and pressures into electrical pulses or signals.

The device functions in the same manner as a conventional transistor and can be biased in almost any way an ordinary $n p n$ transistor is biased.
However, the device operates on an entirely different principle from conventional transducing devices. The transduction taking place at the base-emitter junction caused by a mechanical link to a diaphragm, which forms the top of a standard TO46 can. When a pressure or point force is applied to the diaphragm, a large reversible change in the transistor characteristics takes place. The device will even respond to the touch of a feather.
The small size makes it suitable for encasing in surfaces in contact with gases and fluids at changing pressure and velocities. It can be used in high intensity microphones of the type used to record seismic blasts.

In addition to providing a simple linear output voltage, it will amplify or switch other signals and can be used as the active element in an oscillator for direct f.m. and p.w.m. outputs.

Further details can be obtained from Guest Electronics Ltd., Nicholas House, Brigstock Road, Thornton Heath, Surrey.

Plessey Fluidic Experimenters Kit

on its blocks, and, following Fig. 6.10 and Fig. 7.3, wire all controls and sockets to the turret tags on the two sub-assembly panels, again with p.v.c. covered flexible wire, long enough to allow the switching circuit panel to be turned over for underside inspection. Run red and blue wires from S 9 , and a green wire from IS/SK12, to the power pack output solder tags, and fit knobs to S9, VR18, and VR19.

SETTING UP THE INTEGRATOR SWITCH

Time intervals can be measured with fair accuracy when an operational amplifier is employed to integrate known voltages, and this method is useful for setting up the integrator switch.

Begin by temporarily soldering $8 \mu \mathrm{~F}$ electrolytic capacitors in the C 4 and C 8 positions, with $1 \mu \mathrm{~F}$ polyester capacitors for C3 and C7 (circuit Fig. 6.10).

Set VR1 and VR2 with sliders at mid-track, on the integrator switch panel.

Connect integrating switch to the operational amplifier by linking IS/SK 7 to OA3/SK9, IS/SK 8 to OA3/SK10, and IS/SK9 to OA3/SK4. Fit 100 kilohm computing resistor in S3/I1/SK3 and SK4. Join S3/I1/SK1 to VS1/SK2 and switch off S6. Insert a 2 kilohm reset resistor in OA3/SK5 and SK6, and join S3/SK5 to OA3/SK13.

வNALOGuE
 COMROUR圆

By D.BOLLEN

Switch on the computer and allow a warm up period before zero setting OA3 from the back of the UNIT "A" box, by means of VR1 on the OA3 amplifier panel. Insert a $1 \mu \mathrm{~F}$ computing capacitor into OA3/SK11 and SK12.

With S8 switched to "hold", S9 on the $0 \cdot 1-1$ s range, and VR18 and VR19 rotated fully clockwise, press S7 to run the integrating amplifier through reset, compute, and hold sequence.

Listen for two clicks from the reed relays, and observe that the readout meter pointer will move close to zero. If the relays click more than twice, or not at all, adjust VR1 on the integrator switch panel.

To obtain a true zero output from the amplifier, when integrating a zero input voltage, adjust VR17 (OA3 balance control) while repeatedly pressing S 7 . If there is a slow drift away from zero output several seconds after S7 was last pressed, retrim VR1 on the OA3 amplifier panel.

As the gain of OA3 is set at $10\left(1 \mu \mathrm{~F}\right.$ for C_{R} and 100 kilohm for $R_{\text {in }}$), an input of -0.9 V "gated" by the integrator switch for an interval of 1 s should give rise to an amplifier output of exactly +9 V . Switch on S6 and adjust VS1 for -0.9 V , monitored at S3/I1/SK2 by a voltmeter.

Now when S7 is pressed, and with VR19 still rotated fully clockwise, the readout meter reading should rise to somewhere below +9 V and stay there.

Fig. 7.3. Rear view of UNIT" "B" front panel showing integrator switch wiring

CALIBRATING THE SECOND RANGE

To calibrate the $10-100 \mathrm{~ms} \mathrm{~S} 9$ range, repeat the above procedures in just the same way, but this time use a $0.1 \mu \mathrm{~F}$ capacitor for C_{1} in sockets OA3/SK11 and SK12, and adjust the value of timing capacitor C 7 for correct compute intervals.

1st monostable timing capacitors C3 and C4 need not be precise, as VR18 has no effect on the accuracy of computations, and is mainly used to control the switch cycle frequency when integrator output waveforms are displayed by oscilloscope. Therefore, and merely for the sake of conformity, build up C3 and C4 capacitor values until the coverage of VR18 is approximately as indicated by the reset interval dial calibration.

CIRCUIT ADJUSTMENTS

The Fig 6.10 circuit should operate reliably at all switch and dial settings, with no noticeable relay bounce or overlap between the closure of reset and compute switches. However, it may be found that the integrator switch will stop running during repetitive operation, when reset and compute intervals approach 10 ms , despite the fact that VR1 has already been trimmed for optimum performance. If so, try reducing the value of R8.

At the opposite extreme, if the integrator switch suddenly goes into repetitive operation when S 8 is at "Hold", and VR18 and VR19 settings are near 1s, increase R8, and also try the effect of doubling the value of C 1 to improve decoupling.

PROBLEM EXAMPLE 4 STRAIGHT PATH MOTION OF AN OBJECT

Problem Example 4 is primarily intended as a comprehensive introduction to the use of integrator mode switching, but the programme is sufficiently flexible to allow many experiments in dynamics to be performed.

Several factors can combine to influence the overall motion of an object, and some are shown in the ball problem of Fig. 7.4. A ball thrown vertically into the air will be subject to an initial upward velocity $i v$, retardation or negative acceleration due to gravity $-a$, and air resistance. The situation is further complicated if the ball is projected upwards from an initial height is, and is arrested at some height other than zero.

Ignoring for the moment air resistance, the equations which govern the motion of the ball are,

$$
\begin{align*}
& v=\int_{0}^{t} a \mathrm{~d} t+i v \tag{Eq.7.1}\\
& s=\int_{0}^{t} v \mathrm{~d} t+i s \tag{Eq.7.2}
\end{align*}
$$

and
Clearly, integration of a yields v, and a further integration of v will give s.

The formulae used to calculate velocity or distance when acceleration is constant are,

$$
\begin{align*}
& v=i v+a t \tag{Eq.7.3}\\
& s=i v t+\frac{1}{2} a t^{2}+i s \tag{Eq.7.4}
\end{align*}
$$

Eq. 7.3 and 7.4 will not apply if, for example, acceleration is proportional to time. A discussion of the implications of variable acceleration lies outside the
scope of this series, but time varying voltage analogues of acceleration are fairly easy to generate on the computer.

The drag on a body moving through air or a fluid conforms to an exponential law, and is proportional to velocity when there is little or no turbulence. Viscous friction should not be confused with the friction resulting from solid surfaces in contact, as the latter is independent of velocity except at very low speeds. A general solution to an equation which describes the motion of an object through a viscous medium-where composite velocities are involved-is often unwieldy and can demand extensive calculations.

However, an exponential decay can be set-up on the computer to simulate true viscous friction, in terms of a coefficient value μ which remains constant for all velocities. Nevertheless, as μ will be dependent on such factors as the surface area, shape, and relative smoothness of an object, it can only be determined by practical experiment, or by comparison between the computer solution and the timed motion of an actual object.

Looking at the symbolised diagram of Fig 7.5, OA1 is employed to integrate a known voltage against time, so that t can be conveniently and accurately displayed as a meter reading. OA2 integrates a to give an output v, and at the same time handles the initial velocity $i v$. The exponential decay $\mathrm{e}^{-(\mu / \mathrm{m}) t}$ is introduced by CP1. Resulting velocity v is then integrated by OA3 and initial distance is is included to give distance or height s at any time t.

Routine. Set-up the problem according to the simplified patching circuit of Fig. 7.5 but omit for the time being all C_{f} capacitors. The integrator switch is linked to the three operational amplifiers by connecting IS/SK1 to OA1/SK9, IS/SK2 to OA1/SK10, IS/SK 3 to OA1/SK4, IS/SK4 to OA2/SK9, IS/SK5 to OA2/SK10, IS/SK 6 to OA2/SK4, IS/SK 7 to OA3/SK9, IS/SK8 to OA3/SK10, and IS/SK9 to OA3/SK4.

Allow the computer to warm up before zero-setting the amplifiers, also make sure that S 6 is off. Using the readout meter on its 10 V range, zero-set amplifier outputs (OA1/SK13, S3/I5/SK2, and OA3/SK13) by means of VR1 on each amplifier panel, from the back of the UNIT " A " box.

Next insert the C_{P} computing capacitors into amplifier feedback loop sockets (SK11 and SK12) and set the integrator switching controls to give reset and compute

Fig. 7.4. An experiment in dynamics with a ball
times of approximately $0 \cdot 1$ second. Put S 8 in the "hold" position. With the readout meter on its $1 V$ range, applied to the output of OA1, press $S 7$ and adjust VR15 for a zero voltage reading. Repeat for OA2 output and VR16, and OA3 output and VR17, in that order. The amplifiers should now be balanced for near zero input offset voltage.

Fig. 7.5. Symbolised diogram of the ball problem illustrated in Fig. 7.4.

To enable static and dynamic checks to be made, trial values are given to the ball problem of Fig. 7.4, as follows: $t_{\text {real }}=1 \mathrm{sec}, a=-32 \mathrm{ft} / \mathrm{sec}^{2}$, $i v=25 \mathrm{ft} / \mathrm{sec}$, $i s=10 \mathrm{ft}, \quad v=-7 \mathrm{ft} / \mathrm{sec}, \cdot \cdot s=19 \mathrm{ft}, \quad$ and $\mu / m=0$. The problem scaling is such that 1 computer volt $=10$ units in all cases. For example, $1 \mathrm{~V}=1 \mathrm{sec}$ for t at the output of OA1 ($10 \times$ compute time), and $1.9 \mathrm{~V}=$ 19 ft for s at OA 3 output. Calculation from the formula Eq. 7.4 shows that the ball will have travelled just beyond $s_{\text {max }}$ after a time of 1 sec , when air resistance is zero.

The next stage is to establish all computer static voltages shown in the Fig. 7.5 symbolised diagram, starting with VS1. Set the dial of the master potentiometer to " 10 " and patch MP/SK1 to SK4, MP/SK2 to SK3, and MP/SK5 to SK8. Connect RM/SK2 to S1/11/SK2. Switch on S6, set switch S10 to "null" and adjust VS1 dial for a null meter reading, corresponding to a voltage source output of - 1V. Remove the null input patching lead completely, and use it to link RM/SK1 to OA1/SK13.

With the readout meter on its $1 V$ range, press S7, and trim compute time control VR19 for an integrator output of 1 V ; this will ensure that the compute interval is, exactly 0.1 sec . Set up VS2, VS3, and VS4 check voltages, preferably by nulling with the master potentiometer to avoid loading, and rotate CP1 fully anticlockwise. Switch off S 6 and press S 7 to reset the amplifiers. Check that amplifier outputs are zero.
To obtain dynamic check voltages, switch on S6 and press S7, while applying the readout meter to the outputs of OA1, OA2, and OA3 in turn. For greater convenience, three separate voltmeters can be left connected as shown in the patching circuit of Fig. 7.5 to give simultaneous readouts of t, v, and s. Before altering other problem variables, introduce air resistance by means of CP1 and arrest the travel of the ball at selected positions along its path by adjusting the compute time. It is instructive to compare the velocity and distance of the ball when $a=-32 \mathrm{ft} / \mathrm{sec}^{2}$ and friction is present, with a ball projected upwards under moon gravity conditions (approximately $a=$ $-5.3 \mathrm{ft} / \mathrm{sec}^{2}$) in a vacuum.
The existing scaling of layout Fig. 7.5 will provide the following coverage: VR2 $0- \pm 100 \mathrm{ft} / \mathrm{sec}^{2}$, VR3 $0- \pm 100 \mathrm{ft} / \mathrm{sec}$, VR4 $0- \pm 100 \mathrm{ft}$, with amplifier outputs of OA1 $0 \cdot 1-10 \mathrm{sec}$, OA2 $0- \pm 100 \mathrm{ft} / \mathrm{sec}$, and OA3

Fig.7.7. Generating non-linear functions with a voltage dependent resistor

When employed for squaring an input voltage, with both networks operating in parallel, the function generator will accept input voltages of $0- \pm 10 \mathrm{~V}$, and yields amplifier outputs of up to $\pm 10 \mathrm{~V}$. Accuracy can be within 2 per cent of the indicated value, depending on the care taken in setting up a function, for input voltages between 0.2 V and 9 V .

NON-LINEAR FUNCTIONS

Quite often some nonflinear function of an applied voltage is needed in analogue computer work, two simple instances being the square or square root of a number. An arbitrary function may also be encountered, perhaps arising from experimental data for which no analytic expression is available.

Servo driven potentiometers and circuits consisting of biased diodes are widely used for generating nonlinear functions, but the latter is deservedly popular because it can be adjusted to cater for a range of functions, and does not suffer from a severely limited frequency response.

To show how a diode function generator can give rise to non-linear functions, when allied to operational amplifiers, use is made here of the parallel which exists between the discontinuous behaviour of a biased diode network, and the smooth response of a voltage dependent resistor. Both can display a fall in resistance with an increase in applied voltage.

Consider first of all the circuit and generalised curve of Fig. 7.7a. Input and feedback resistors $R_{\text {in }}$ and R_{f} are not influenced by applied voltage, therefore a straight line function is generated, while amplifier gain and $\tan \alpha$ remains constant. However, if some form of non-linear resistor, or biased diode network, is substituted for R_{in} (NLR in Fig. 7.7b) the gain of the amplifier
when $t=0$, and increases linearly to $10 \mathrm{ft} / \mathrm{sec}^{2}$ when $t=1 \mathrm{sec}$ real time. VS1 can be used to adjust the magnitude of a when $t>0$. Also, if OA1 initial conditions are inserted, in a similar manner to OA2 and OA3, many other time functions of a can be generated.

UNIT "C" FUNCTION GENERATOR

UNIT "C"" contains two diode-resistor networks, one for positive input voltages, and the other for negative inputs. The characteristics of each network can be adjusted separately by means of miniature pre-set potentiometers to give a wide range of possible functions, and optimum accuracy. The function generator is designed to be used in place of a normal computing resistor, at the input or in the feedback loop of an operational amplifier.
tends to grow with an increase of E_{in}, and the tangent to the curve will vary according to some function $f\left(E_{\text {in }}\right)$, arising from the characteristic of NLR. A related function $f_{2}\left(E_{\text {in }}\right)$ results when NLR is exchanged for R_{f}, as in Fig. 7.7 c , but here the amplifier gain falls off with an increase of E_{in}. The curves of Fig. 7.7b and Fig. 7.7 c only occupy two of four possible quadrants, but four quadrant operation can be achieved if the function is inverted by a sign changing amplifier, depicted in Fig. 7.7d.

Fig. 7.7e shows how curves, of widely differing slope and magnitude, may be generated if the characteristic of NLR is alterable. Finally, any fixed function will find wider application if its $E_{\text {in }}=0$ datum is shifted, as in Fig. 7.7f. Moreover, as a voltage shift can also be applied to the E_{0} axis, it becomes a simple matter to locate any portion of a curve in any quadrant.

Fig. 7.8a. Circuit of a simple function generator

BIASED DIODE NETWORK

The next step is to see how biased diode networks are used to achieve an increase of resistance with applied voltage, and thus imitate the behaviour of an ideal voltage dependent resistor. Unfortunately, currently available silicon carbide, selenium, and copper oxide resistors are far from ideal in many respects, and are not sufficiently accurate for serious use with operational amplifiers.

Fig. 7.8b. Adjustable characteristic of simple functlon generator

The UNIT "C" function generator is based on the simple circuit of Fig. 7.8a. In the absence of an input voltage all diodes are biased off, and the network can be represented by a very high value of resistance in series with the operational amplifier input, giving an amplifier gain of almost zero. If a positive voltage is gradually applied to the input terminal, there will be virtually no output until a point is reached where $E_{\text {in }}$ is slightly larger than $-E_{\mathrm{b}}$, whereupon D1 conducts and connects VR1 to the operational amplifier summing junction. Further increase of E_{in}, beyond $-E_{\mathrm{b}}$, will produce a straight line output of slope determined by the amplifier gain $R_{\mathrm{t}} / \mathrm{VR} 1$.

When E_{in} reaches approximately the level of $-E_{\mathrm{b}_{2}}$, D2 conducts and places VR3 in parallel with VR1, thus reducing even more the effective resistance of the network. It can be easily imagined that where a number of diodes and variable resistances are cascaded, the resistance of the network will continue to fall as $E_{\text {in }}$ becomes larger still.

Bias voltage $-E_{\mathrm{b}}$ is determined by the relative resistances of VR1 and VR2, and the same applies to $-E_{\mathrm{b}_{2}}$, VR3 and VR4. Furthermore, the setting of VR1 will obviously affect the combined slope of VR1 and VR3 (see Fig. 7.8b), and it follows that all the resistance settings associated with D1 and D2 must be interrelated.

Considerations applying to the positive branch of circuit Fig. 7.8a are also pertinent to the negative branch formed by D3 and D4, and VR5-VR8, except that input and bias voltage polarities are reversed. There is no interaction between the resistance settings of the positive branch and the negative branch, and the two can be separated when required for independent use.
The output characteristic curve of Fig. 7.8b identifies slopes and breakpoints with VR1-VR8. As there are only two diodes in each branch, the result is a very rough approximation to a smooth curve. Generally speaking, the accuracy of a diode function generator is proportional to the number of diodes employed, but a natural rounding at the junction of straight lines does occur at low input voltage levels, due to the dynamic resistance of the diodes (not shown in Fig. 7.8b), so the deviation from a smooth curve is not as great as might be expected. Commercial diode function generators sometimes use more than 20 diodes to achieve accuracies of better than 1 per cent.
Next month: Construction of UNIT "C" and some practical applications of this Function Generator.

BrPREPAK

TRANSISTORS PRICE

AC107	6/-	OCI70	$7 \mathbf{3}$?
ACI26	2/6	OC171	4/\%
AC 127	2/6	OC200	5/-
ACl28	3/-	OC201	8/-
ACYI7	5/-	2G301	2/6
AFl! 4	4/.	2G303	2/6
AFII 5	3/-	2N711	10\%
AFII6	$3 /-$	2N1302-3	4/\%
AFII7	4/-	$2 \mathrm{~N} 1304-5$	5\%
AFIIB	3/6	$2 N 1306-7$	6/-
AFII9	3/6	2N1308-9	8/6
AFI78	10/-	2\$303	2/6
BCZII	5/-	Power	
BFY50	5/5	Transistors	
BSY25	$7 / 6$	OC20	10\%
BSY26	3/-	OC 23	10\%
BSY27	3/4	$\mathrm{OC}^{2} 5$	8/\%
BSY28	3/-	$\bigcirc \mathrm{OC} 26$	5/-
BSY29	3/-	OC28	7/6
BSY95A	3/\%	$\bigcirc \mathrm{OC} 35$	5/-
OC41	2/6	OC36	7/6
OC44	1/11	GP826	40\%
OC45	1/9	$2 N 2287$	20/-
$0 \mathrm{OC7}$	2/6	Diodes	
OC72	2/6	AAY42	2/-
$0 \mathrm{OC73}$	5/-	OAIO	2/-
0 CBI	2/6	OA70	1/9
$0 \mathrm{C810}$	2/6	OA79	1/9
OC83	4/-	OA81	1/9
$\bigcirc{ }^{\circ} \mathrm{Cl} 139$	2/6	OA182	2/8
OC140	3/6	IN914	1/6

EXCITING NEW PAKS

FOR AMATEURS, PROFESSIONALS, FACTORIES, ORGAN BUILDERS, AND THOSE PEOPLE THAT JUST USE LARGE QUANTITIES OF TRAN. SISTORS.
XA PAK
Germanium PNP type transistors, equivalents to
a large part of the OC range, i.e. 44, 45, 71, 72,
8I, etc.
PRICE 55 PER 1000

XB PAK

silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N7062, BSY27/29, BSY95A.

$$
\text { PRICE ع5.5.0 PER } 500
$$

PRICE EIO PER 1000

XC PAK

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DKIO, etc.

PRICE 55 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT be Less than the minimum amounts QUOTED PER PACK

P/P 2/6 PER PACK (U.K.)

ONLY 1/- EACH
 N.P.N.
 P.N.P
 -

TRANSISTORS
 SILICON
 PLANAR

$\begin{array}{llllllll}\text { 2N929 } & \text { 2N706 } & \text { 2S131 } & \text { 2S } 103 & \text { 2N696 } & \text { 2N1613 } & \text { 2S733 } & \text { BFY } 10 \\ \text { 2S501 } & \text { 2N706A } & \text { 2S512 } & \text { 2S } 104 & \text { 2N697 } & \text { 2N1711 } & \text { 2N726 } & \text { 2S731 }\end{array}$
2N241I 2N301I 2SIO2 2N2220 2NI507 2N1893 2N2484 $2 S 732$
All tested and guaranteed transistors - unmarked.
Manufacturers over runs for the new PRE-PAK range.

BRAND NEW PRE-PAKS
 FOR BETTER VALUE

Seiection from our lists
No.
50 Unmarked Trans Untested
B2 4 Solar Cells Inc. Book of Instructions - 10/-
8617 Red Spot AF Transistors - 10/-
B6A 17 White Spot RF Transistors
B9 I ORP 12 Light Sensitive Cell
10/-
B54 40 . Trans. $400 \mathrm{Mc} / \mathrm{s}$ |Brand New - 10/-
B54 40 ," , NPN To5 Trans Voltage - 10/-
B55 40% " NPN Tols \& Gain Fallouts 10/-
B56 40 ." .. NPN/PNP All Tested - 10/-
B68 10 Top Hat Recs. $750 \mathrm{M} / \mathrm{A} 100-800 \mathrm{PIV}$. 10%
B69 20 Diodes. Gid-Bnd. Germ Sil. Planer - 10/-
B74 5 Gld-Bnd. Diodes. 2 OA. 9 30A5 \quad - 10/-
8753 Comp. Set. 2G371, 2G381, 2G399A - 10/-
C2 I Unijunction Transistor 2N2160 = 15/-
C26 3 TEXAS Power Transistors 2S102A - 15/-
C32 6 Top Hat Recs. ISI00 Type

- 15/.

Al 7 Silicon Rectifiers BY:00 Type

- 20/-

A3 25 Mixed Marked and Tested Transistors - 20/-
A21 5 Power Transistors 3 IADI49/1OC26 and .20 3 others AND MANY MORE
FEW LEFT 70 AMP/400PIV. SCRs. (3) . 70 i-

INTEGRATED CIRCUITS (TEXAS)
SN743 8 INPUT POSITIVE $19 / 6$
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate re
State 4 or 6 cylinder.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

9-PROGRAMME CONTROL CIRCUITS

T^{r}HE programme control section is a vital part of any computer system, whatever its function may be. In computers for a rithmetical or other mathematical functions, the programme control section stores the commands for and coordinates the execution of the individual steps of a complex calculation.

A nucleonic equipment may be called upon to deal with numerous radioactive samples in succession, simultaneously or in groups, and it will possess one or more radiation meter channels for the purpose. Where more than one radiation meter channel is running simultaneously, the programme control section must also coordinate the readout of these channels within the logical framework of the experiment.

We find that the programme control circuits take such varied forms, according to the nature and purpose of a particular equipment, that it is particularly difficult to compose a general treatment. We must therefore rely more than ever on the practical example of our STRACE equipment, but in describing this, we will underline those aspects which bear more general implications.

THE MASTER TIMEBASE

A programme for a computer is the coordination of a sequence of functions according to a time schedule. The heart of any programme control section is thus a master timebase which defines the basic time units for the successive operational steps.

Various forms of timebases are found. High-speed digital computers for arithmetical operations usually employ crystal-controlled oscillators. Other systems may use a synchronous mains motor with suitable gearing and cam-driven switches.
In principle, any simple free-running oscillator may be used as timebase, provided its frequency stability is adequate for the intended functions of the equipment. The function of the master timebase is always to mark out equal intervals of time corresponding to the shortest programme step in the equipment. The master timebase frequency is thus equal to the reciprocal of the shortest programme step period. In the STRACE equipment, the shortest programme step takes 50 seconds, so that the master timebase runs at 0.02 Hz . A simple free-running multivibrator is used here. Fig. 9.1 shows the circuit, which is tolerant of any convenient layout and may be constructed on-a small piece of veroboard. Any silicon npn transistor type is suitable for all three positions, as
long as the current gain is at least 30 , and the maximum dissipation rating without cooling fin at least 750 mW for TR3. D1 is a small 10 V Zener diode rated for at least 150 mW dissipation. D2 is any silicon 1.t. rectifier of the 0.5 A class.
This circuit possesses extremely good long-term frequency stability, by virtue of the supply voltage stabilisation with D1 and the good stability of silicon transistors. The time for which TR1 is cut off and TR2 conducting is determined by R1/C2 and is about 49 seconds. The time for which TR1 is conducting and TR2 is cut off, is determined by $\mathrm{R} 4 / \mathrm{Cl}$, and is about one second. During this brief one second interval, the voltage at the collector of TR2 rises to 10 V , so that TR3 is made to conduct heavily, causing the timebase relay RLA to energise. The master timebase thus causes the (two) contacts of a relay to close briefly for about one second, once every 50 seconds.

THE PROGRAMME LOGIC

After the master timebase, the most important part of a programme control circuit is the programme logic. Not all steps of a composite programme will be of the same length. Some require only one basic time unit, whilst others require several basic time units. One function of the programme logic is thus to count-down from the master timebase, in order to derive the various required multiple time units.

In general, the count-down process must be carried out digitally, since it is not possible to prevent free-running analogue systems from getting out of step. When synchronisation is applied, the analogue system amounts to a digital one.

In our STRACE equipment, we happen to require two multiple time units, viz. 400 second and 800 second intervals, in addition to the basic interval of 50 seconds from the timebase. The programme logic circuit (Fig. 9.2) thus contains a chain of three binary counters producing an output (brief energising of relay RLA in Fig. 9.2) only for every eighth ($2 \times 2 \times 2$) input pulse to TRI from the master timebase. A fourth binary stage provides another output (brief energising of relay RLB in Fig. 9.2) for only every second appearance of the first output, i.e. for only every sixteenth input pulse from the master timebase. RLA and RLB thus energise briefly once every 400 and 800 seconds respectively, and since the count-down is effected digitally, these multiple periods remain rigidly in step with each other and with the master timebase.

Build Your Own Heathkit Electronics

 A kit for every interest - Home Workshop - Hi-Fi - Radio - Test - Amateur
Latest STEREO TAPE RECORDER, STR-1
 Fully portable-own speakers

Kit £58. 0. 0 incl. P.T. P.P. $10 / 6$
Ready-to-use £70. 6. 0 incl. P.T. P.P. 10/6

FOR THIS SPECIFICATION
$\frac{1}{4}$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{7}{4}$ and $1 \frac{1}{7}$ ips. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumb-wheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/headphone and external amplifier outputs . . . front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 W rms per channel. Two high efficiency $8^{\prime \prime} \times 5^{\prime \prime}$ speakers. Operates on 230 V a.c. supply.

Versatile recording facilities. So easy to build-so easy to use.

High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semiconductors (6 transistors, 2 diodes). For 12 V positive or 12 V negative earth systems. Powerful output (4W). Preassembled and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembly. Instant operation, no warm-up time. Tastefully styied to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.
KIT (less speaker) £12.18.6 incl. P.T.
Ready-to-use £19.12.6 (less speaker) P.P. 4/6

Latest STEREO AMPLIFIER, TSA-12

12×12 watts output
Kit \&30. 10. 0 less cabinet P.P.10/6
Ready-to-use $\mathbf{\$ 3 8}$ (incl. cab.) P.P 10/6
Cabinet £2. 5.0 extra

FOR THIS SPECIFICATION

17 transistors, 6 diode circuit. $\pm 1 \mathrm{~dB}, .16$ to $50,000 \mathrm{~Hz}$ at 12 W per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low silhouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished walnut veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 transistor tuners.

Full range power... over extremely wide frequency range. Special transformerless output circuitry. Adequately heatsinked power transistors for cool operation-long life, 6 position source switch.

Compact, economical stereo and mono record playing for the whote Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.
KIT £28.6.0 incl. P.T. P.P. 10/6 Ready-to-use £35.4.0 P.P. 10/6

Transistor Portables

UXR-1, now available in Modern coloured cases or leather.
6 transistor, 1 diode circuit. $7 \times 4 \mathrm{in}$. speaker. LW and MW coverage. Case: brown leather, or colours navy blue, coral pink, lime green. Please state 2nd choice.

Kit £12. 8. 0. incl. P.T. Colour
Kit £13. 8. O. incl. P.T. Leather P.P. 4/6

UXR-2, choice of black or brown real leather cases.
7 transistor, 3 diode circuit. Battery saving circuitry. LW and MW coverage. Pushbutton wave change. Slide rule tuning.
Kit £15. 10. 0. incl. P.T. Leather P.P. 6/-

UXR-1

BIRMINGHAM

17-18 St. Martin's House, Bull Ring.
Demonstrations by arrangement.
Deferred terms available over £10 (U.K. only).
Prices quoted are Mail Order prices.

233 Tottenham Court Road, W.1.
SEE HEATHKIT MODELS AT: GLOUCESTER
Factory and Showroom, Bristol Road.

LONDON

Please address all enquiries to
Send for Latest FREE Catalogue
36 pages, many models in Colour DAYSTROM LTD., Dept. P.E.7, GLOUCESTER | \square Please send me free catalogue |

\qquad NAME (Block caps)

ADDRESS

Prices and specifications subject to change without prior notice
 69.5. 0.

E VOLTAGE
 INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE 0-260v. BRAND NEW

Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp. from stock.
SHROUDED TYPE 1 amp E5. 10. $0 . \quad 2.5 \mathrm{amps}$, €6. I5. 0. 4 amps, 49 . 0 . 0 . 5 amps, 89 . 15. 0 . 8 amps, E14. 10. 0. 10 amps, $£ 18$. 10 . 0. $12 \mathrm{amps}, \in 21.0 .0 . \quad 15 \mathrm{amps}$, 375 . 20 amps, 230°. E92. 0.0 .
OPEN TYPE (Panel Mounting) $\frac{1}{2} \mathrm{amp}, \mathrm{E3}$. 10. 0. 1 amp E5. 10. 0. $2 \frac{1}{2}$ amps, E . 12.6.
PORTABLE TYPE
1.5 amp . portable fitted metal case, volumeter, lamp, switch, etc. E9.5.0.
Similar to above 2.5 amp. $\mathbf{E I I} .7 .6$.
100 NATT POWER RHEOSTATS (NEW)
AVAILABLE IN THE FOLLOWIHG VALUES
1 ohm, 10 a .; $50 \mathrm{ohm}, 4.7 \mathrm{a} . ; 10 \mathrm{ohm}, 3 \mathrm{a}$.
$250 \mathrm{hm}, 2 \mathrm{a} . ; 50 \mathrm{ohm}, 1.4 \mathrm{a} . ; 100 \mathrm{ohm}, 1 \mathrm{a}$. .
$250 \mathrm{ohm}, .7$ a.; $500 \mathrm{ohm}, .45$ a.: 1,000 ohm,
$280 \mathrm{~mA}_{;} \mathrm{I}, 500$ ohm, $230 \mathrm{~mA} ; 2,500$ ohm. 2 a. Diameter
 P. \& P. 1/6.

50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, 21/-. P. \& P. $1 / 6$. 25 WATT. io/25/50/100/250/500/1,000/1,500/2,500 ohm, 14/6. P. \& P. $1 / 6$.
VENNER ELECTRIC TIME SWTTCH 200-250 v. A.C. 20 amp. contacts twice on, twice off, at any manually pre-set time. Spring reserve (in case of power cut) fully tested $£ 3 / 9 / 6$. P. \& P. 4/6. Or complete in weatherproof metal case (illustrated) €3/19/6, plus $4 / 6$ P. \& P. Can be supplied Prices as above.
Prices as abo INSUTATEDTE
Available in red, white, yellow, black, blue and green. New $17 /$-per doz. $2 /-. \mathrm{P}, \& \mathrm{P}$.
230/250V. A.C. SOLENOID
Heavy duty type, approx. 3 lbs. pull. Price: $17 / 6$ plus $2 / 6$ P. \& P.

12/24V. D.C. SOLENOID

 Approx. 8 oz. push. Price $8 / 6$ plus $1 / 6$ P. \& P
PRECISION INTERVAL TIMER

 From 0-30 seconds (repetitive). Jewelled balanced movement. Lever re-set. Operates 230V. A.C. 5 amp. c/o Microswitch. New. Price $17 / 6$ plus $2 / 6$ P. \& P CONDENSERS $2,500 \mathrm{mfd} 100 \mathrm{v}$. $12 / 6 \mathrm{l} / 6 \mathrm{P}$. \& P $4,000 \mathrm{mfd} 25 \mathrm{v} .10 /-\mathrm{I} / 6 \mathrm{P} . \&$ P. $4,000 \mathrm{mfd} 50 \mathrm{v}$. $15 /$ $1 / 6$ P. \& P. $10,000 \mathrm{mfd} 35 \mathrm{v} .15 /-1 / 6$ P. \& P. CONSTANT VOLTAGE TRANSFORMER Input $185-250$ v. A.C. Output 230 v A.C. Capacity 250 watt. Attractive metal case. Fitted red signal lamp. Rubber feet. Weight 1716 . Price $E 11 / 10 / 0$. P. \& P. 15/-SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp ., $1 \mathrm{I} /$-, plus $2 / 6$ P. \& P 30 volt 5 amp., $16 /-$, plus $2 / 6$ P. \& P

L.T. TRANSFORMERS

 All primaries $220-240$ volts.All primaries $220-240$ volts.
Type No.
Sec. Taps
Type No. 34,3 Sec. Taps
$10,32,34,36 v$. at 5 amps.

2	$30,40,50 \mathrm{v}$. at 5 amps.
3	10,17

$310,17,18 \mathrm{r}$, at 10 amps.
$46,12 \mathrm{v}$. at 20 amps .
$517,18,20 \mathrm{v}$. at 20 amps . 6 6, $12,20 \mathrm{v}$. at 20 amps . 724 v . at 10 amps.......... E6/5/0 8 4,6,24, 32 v .at 12 amps . - 4,6,24, 32 v .at 12 amps E6/10/0 DOUBLE WOUND VARIABLE LT TRANSFORMER Input 230 v. A.C. OUTPUT CRANSFORMER Input 230 v. A.C $0-36 \mathrm{v}$. at 5 amp . $\in 9 / 12 / 6$. P. \& P. $8 / 6$ $0-36 \mathrm{v}$. at 20 amp . $E 21 / 0 / 0$. P. \& P. $15 /$

Price
84/5/0
E6/5/0
E4/10/0
E5/17/6
E6/12/6
E6/5/0
t4/15/0 $10 / 0$

1

Carr. 3

TRAMSFORIEERS

 LBNT SENSITIVE SWITBHmium Sulphide Photocell, Relay
Transistor and Circuit te 6-12 volt D.C. op. price 25/- plus $2 / 6$ P. \& P. ORP 12 including eireuic, 10/6 each, plus $1 /-P$: \& P
A.C. MAINS MODEL Incorporates Mains Transformer, Rectifier and special
Price inc 3,5 amp mains C / \circ contac

LIGHT SOURCE AND PHOTO CELL MOUNTINE I Precision engineered
light source with focusible- $\rightarrow \square$
lens assembly and ventilated buib. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair E2.15.0. P. \& P. 3/6. RESETTABLE HIGH SPEED COUNTER. 4 figure, $1,000 \mathrm{ohm}$ coil, [36 - 48 v. D.C. operation. $63 / 10 / \%$ P. \& P. 1/6. 3 figure, 24 v. D.C. $t / / 12 / 6$.
P. \& P. $/ 6$. P. \& P. $1 / 6$ DRY READ SWITCHES. New special offer of Dry Read Switches half amp. Contact. Size $\mathrm{I}_{8}^{1} \times \frac{1}{8}$. 4 for $10 /-$
Post Paid.
MINIATURE UNISELECTOR SWITCH 3 banks of 11 positions plus homing bank. 40 ohm coil. Tested. 22/6. plus $2 / 6$ P. \& P. P.
COMPACT HEAVY DUTY 6Y. D.C. RELAY I 2 change over, 30 ohm coil. $7 / 6$ each P. \& P. I/6. 3 for 20/-. Post paid.

NICKEL CADMIUM BATTERY Sintered Cadmium Type 1.2 v. 7AH. Size: height $3!$ in., width $2 \frac{2}{3} \times 1 \frac{3}{3}$ in. Weight: approx. 13 oz. Ex-R.A.F. Tested_12/6. P. \& P. 2/6. \quad Ex-R.A.F. SAA wa mǘti RANGE METERS
New Model U50D Multi tester, 20,000 OPV, mirror scaled with overload protection. Ranges-d.c. volts: 100 mV , 0.5 v. 5 v., 250 v., 1,000 v.; a.c. volts: $2: 5 \mathrm{v},. 10 \mathrm{v},. 50 \mathrm{v.} ,250 \mathrm{v}, 1,.000 \mathrm{v.;}$ D.C. current: $5 \mu \mathrm{~A}, 0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}$. 250 MA. Complete with battery and test probe. 67/5/0 post paid. Three other | models available from stock. Deseriptive leaflet on request. THYRISTOR $400 \mathrm{piv}, 5 \mathrm{amp} ., 14 / 6$ THYRISTOR 400 piv, 8 amp., $28 / 6$ 220/240 v A.C. COOLING UNIT 2,300 r.p.m. 6" blade size. I Smooth powerful motor All metal construction. Continuously rated.
Individually tested.
Offered at fraction of

- P. \& P. $7 / 6$ - -2 .

230 VOLT A.C., GEARED MOTORS
Type DI5G 5 r.p.m. 1.7/b. inch, E2/9/6, P. \& P. 3/-. Type BI6G 80 r.p.m. 261b. inch, $2 / 2 /-$, P. \& P. $3 /-$ Type D16G |i3 r.p.m. I.45ib. inch, $\mathrm{E} 2 / \mathrm{I7/6}$, P. \& P.
 1/6P.\&P.
20 Amp LEVER MICRO SWITCH Brand new lever operated \mid Micro Switch. 20 amp A.C.
c/o contacts. Price $4 / 6$ each
plus $1 / 6$ P. \& P. 5 for $\in I$ 1 Post Paid.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space
57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN

Personal callers only
9 LITTLE NEWPORT ST. LONDON, W.C.2. TeI. GER 0576

PRAGTICAL TELEVISION CIRCUITS

The contents of this New Edition cover Pre-Amplifiers, Receivers, Aerials, iTest Gear, TV Baby Alarms, Deal Aids for TV Viewers and several novel and useful items.

MULLARD DATA BOOK, 1968. 3/6. Post. age 6 d.
RADIO YEARBOOK, 1968. 15/-. Postage 1/.
RADIO AND ELECTRONIC HAND. BOOK, by G. R. Wilding. 17/6. Postage 1/-. THE ELECTRONIC MUSICALINSTRUMENT MANUAL, by A. Douglas. 5th ed. 55/-. Postage 1/-.

STRAIN GAUGES, by H. K. P. Neubert. 35/. Postage $1 /$.
RADIO AMATEUR'S HANDBOOK, 1968 ed., by A.R.R.L. 45/-. Postage 4/-
practical wireless circuits. Pub. Newnes. 17/6. Postage $1 /$.
RADIO VALVE DATA, Eth ed. Compiled by "W.W." 9/6. Postage 1/-

THE MOOERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS of British and American Technical Books |9-2| PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.
 4-Etation Transistor Intercom system (1 manter and 8 8uba), in de-luxe plastic cabinets for desk or wall mounting. Call/talk/listen from Matter to Subs and Gabs to Arter. Ideally suitable for Business, Surger 5. Schools, Hospital, Offce and Home. Operates Complete with 3 connecting wires each 06 ft , and other accessories. P. \& P. F/G. WIRELESS INTERCOM
Mo batteriet-no wiret. Juat plug in the maing for instant two-may, loud and clear communication P. \& P. $7 / 6$ extra
\qquad

Same as 4.Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 6fft, connecting wire. Battery 2/6. P. \& P. 3/6.
 without holding the handset, A useful office sid. Onf off switch. Volume control, Battery $2 / 6$ extra, P. An/ 2/6. Full price refunded if not antisfied in 7 days

WEST LOXDOI DIREOT SUPPLIES (P/EB)
10\% KERGIGTOA BIGH STREET, LOMDOH, W. 8

SWITCHING METER AND RECORDER

The second function of a programme logic circuit, speaking quite generally, is the correct coordination of the multiple time intervals, which in turn determines the correct sequence of events in the controlled computer -circuits. In the STRACE equipment, the 400 second intervals are used to switch the meter and chart recorder back and forth between the two rate-meter channels. Thus each channel is read-out and recorded alternately for 400 seconds.

Each time RLA in Fig. 9.2 energises briefly, the meter and recorder are connected to the other channel. For reasons explained below, each complete cycle of 16 master timebase steps (800 seconds) must commence with the meter and recorder on channel 2 for the first 400 seconds, followed by channel 1 for the last 400 seconds. After 16 pulses from the master timebase, the relays energise briefly simultaneously; RLA connects the meter to channel 2, and RLB feeds out a pulse to the scanner of the gamma ray spectrometer unit, to move it to the next energy step.

These correlations are obtained if the binary stages are set to zero before switch-on, i.e. if they are set to the state requiring eight subsequent pulses before RLA energises and 16 pulses before RLB energises. Furthermore, an additional pulse must be fed straight through to RLA if, and only if, the meter and recorder happen to be on channel 1 at the moment of switch-on.

CORRELATION WITH MOTOR SUPPLY

The moment of switch-on is logically the moment at which the chart-recorder motor is switched on. Thus the correlation functions are combined with the mains switch for the chart recorder motor. A resting contact of this switch in the "motor off"' position holds tags D and E of Fig. 9.2 shorted together, so that the positive supply voltage is fed via R44 and respective resistors and diodes, to all four binary stages as rest voltage. This holds the counter in the zero state indefinitely. When the chart recorder motor is switched on, this contact opens and the counter can run.

A further contact on the same switch connects a capacitor over to tag \mathbf{N}. This capacitor is charged if, and only if, the meter and recorder happened to be connected to

Fig. 9.1. STRACE RADIATION METER: circuit diagram of the master timebase (programme control)
channel 1 , so that the charged capacitor then feeds one pulse to TR12, causing RLA to energise briefly at once and throw the meter correctly to channel 2 . If it already happened to be on channel 2, it stays there, because the capacitor connected to tag \mathbf{N} is then not charged. The normal channel changeover pulses energising RLA once every 400 seconds, are fed from the last of the three binary stages, via C25, to the other driver TR13.

LOGIC CIRCUIT DETAILS

Whilst the particular circuit of Fig. 9.2 is certainly specific to the STRACE equịpment, the methods are of quite general validity. Large professional equipments may use numerous binary or decimal counting stages to derive a large number of different multiple time units, each with its own relay amplifier, or purely electronic output amplifier with switch transistors in high-speed circuits. In addition, a complex system of set drivers will be required, to bring the circuits to a definite state at the outset, or to various combinations of states according to alternative available programmes.

The actual circuit bricks used in Fig. 9.2 are also quite typical of such circuits in general, although they certainly do not exhaust all possibilities for realising these logical functions with practical circuits.

Five basic circuits are here involved, viz. a Schmitt trigger, several drivers; several binary counters, two univibrators and two pulse switches as relay output stages.

THE SCHMITT TRIGGER

The Schmitt trigger stage employs TR1 and TR2. It is a threshold switch. With no input voltage to TR1 base, this transistor rests permanently cut off, and TR2 rests conducting. As soon as a positive voltage applied to TR1 base exceeds a certain threshold value, the two transistors abruptly change over their roles, with TR1 then conducting the TR2 cut off. A sharp negative pulse thereby appears TR2 emitter.

The new state of the circuit persists until the input at TR1 base drops back below the threshold. A sharp positive pulse thereby appears at TR2 emitter.

An important feature of the circuit is that it is immaterial how rapidly or slowly the input threshold is exceeded, i.e. a slowly rising or falling d.c. input voltage is equally effective.

The Schmitt trigger is clearly a very effective amplitude discriminator, and is often used as such in kick-sorter amplifiers, as a further alternative to the circuits already discussed. It is also useful for regenerating sharp pulses where the input pulses have become distorted or roundedoff, e.g. after passing through lengthy cables.

The function here in Fig. 9.2 is to suppress relay contact rebounds, which would otherwise lead to spurious multiple counts. The input once every 50 seconds from the master timebase consists of brief shorting together of tags B and C of Fig. 9.2 by a timebase relay contact. C1 then charges via R1, at a rate slow compared to the time of closing of the relay contacts, so that even if contact rebounds take place, the voltage is applied only once and slowly to TR1 base.

But the binary counter stages require sharp pulses. The Schmitt trigger regenerates a single sharp pulse from each slow positive rise at TR1 base.

THE DRIVERS

Drivers are simply impedance step-down stages, for feeding subsequent circuits requiring more current or power than the signal source can provide directly. At the same time, they provide decoupling, i.e. they function as buffer stages. All the drivers in Fig. 9.2 except TR12 are emitter followers, although this is not imperative in general. Any amplifier stage with power gain can serve as a driver.

The negative pulse produced by the Schmitt trigger when the positive input voltage appears, is fed via the driver TR3 to the first binary stage TR4, TR5. The positive pulse from-the Schmitt trigger when the timebase relay drops off again and Cl discharges back below the threshold, is removed by D3.

โUc (o)nics

Fig. 9.2. STRACE RADIATION METER: circuit diagram of the programme logic section

BASIC ELECTRICITY
 (5 vols.) ELECTRONICS (6 vols.)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on the latest research into simplified learning
techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.
WHAT READERS SAY
"May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice." L. W. M., Birmingham.
"I find that the new pictorial method is so easy to understand and I will undoubtedly enioy reading the following five volumes: thank you for a wonderful set of books." C. B., London.
"'Please accept my admiration for producing a long felt want in the field of understanding Electronics.
S. B. J., London.
"The easiest set of manuals it has been my pleasure to study." J. P. P., Taunton.
A TECH-PRESS PUBLICATION.
POST NOW FOR TH/S OFFER!

To The SELRAY BOOK CO., 60 HAYES HILL, BROMLEY BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 72/-. Cash Price or Down Payment of $15 /$ - followed by 4 fortnightly payments of 15/-each. BASIC ELECTRONICS 84!-- Cash Price or Down Payment of $15 /$-followed by 5 fortnightly payments of $15 /$ - each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial.)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature...
(If under 21 signature required of parent or guardian)

NAME
 BLOCK LETTERS
 FULL POSTAL
 ADDRESS....

MARTIN IS HIGH-FIDELITY
 PREFERRED FOR RELIABILITY, QUALITY, ADD-ON-ABILITY AND ECONOMY

You can do so much with MARTIN kits. The system of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have,

AMPLIFIER SYSTEMS
STEREO CONTROL ASSEMBLY
so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness without sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTIN - it's simple to instal, good to listen to, and looks completely professional.

UNITS INCLUDE:
E-stage input selector MARTIN AUDIOKITS are available for
Moono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pick-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match. MARTIN AUDIOKITS are available for
Mono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pick-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match. MARTIN AUDIOKITS are available for
Mono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pick-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match. MARTIN AUDIOKITS are available for
Mono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pick-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match. MARTIN AUDIOKITS are available for
Mono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pick-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match. MARTIN AUDIOKITS are available for
Mono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pick-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match. MARTIN AUDIOKITS are available for
Mono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pick-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match. MARTIN AUDIOKITS are available for
Mono, and can be doubled up for
stereo, or as complete stereo units. 3
ohm and 15 ohm systems are available.
There is a special pre-amp for low out-
put pich-ups and escutcheon panels to
suit the arrangement you choose. The
tuner is styled to match.

E Pre-amp/tone controls

- 10 watt amp. (3 ohms)
- 10 watt amp. (15 ohms)

星 Mains power supply
E F.M. Tuner

ONLY FROM MARTIN

Start by sending for leaflets at once
Trade enquiries invited
154/5 HIGH 8TREET, BRENTFORD MIDDLESEX. ISLeworth I/6I/2

MARTIN ELECTRONICS

154 High Street, Brentford, Middfesex
Please send Recordahit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name

Address \qquad

SANGAMO 3 inch SCALE METERS 45/- ea. arious calibrations and movements, 100 Microamp 1 Millismp; 50-0-50 Microamp, etc. S.A.E. for list

SELCOL

gUITAR PRACTICE AMPLIFIER
ONE WATT OUTPUT. Portable cabinet $12 \times 4 \times$ 9 in, all transistor, fitted control. Jack socket. Uses PP9 battery. OUR PRICE $79 / 6$ Post 5/6.

THE E.A.R. RECORD PLAYER CABINET $59 / 6$ strongly built wooden cabinet covered in Blue and Grey leathercloth. Size $15 \times 17 \times 8 \mathrm{in}$. Hotor Board $14 \frac{1}{2} \times 12 \mathrm{in}$ ready cut out for B.S.R. Bonarch UA12/14/15/16/25 decks. Amplifier space size 14×7. 3 in . The bafle is cut out for a ${ }_{2} \frac{1}{2}$ in dia. speaker.
FEW TUBULAR ELECTROLYTICS | CAN TYPES

$2 / 850 \mathrm{~V} \ldots 2 / 8 \mid 100 / 25 \mathrm{~V} . .2 /-\quad$ CAN | $4 / 950 \mathrm{~V}$ | \ldots | $2 / 3$ | $250 / 25 \mathrm{~V}$ | .. | $2 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $8 / 450 \mathrm{~V}$ | \ldots | $2 / 3$ | $500 / 25 \mathrm{~V}$ | | | $8 / 450 \mathrm{~V}$.

$16 / 450 \mathrm{~V}$.

 \begin{tabular}{lll|l}
$32 / 450 \mathrm{~V}$ \& \cdots \& $3 / \theta$ \& $8+8 / 450 \mathrm{~V}$

$8+16 / 450 \mathrm{~V}$ \& $3 / 9$

\& $8+16 / 450 \mathrm{~V} 3 / 9$ \& $32+32 / 250 \mathrm{~V}$ \& $3 / 6$

$25 / 25 \mathrm{~V}$ \& \cdots \& $3 / 9$ \& $8+50 / 350 \mathrm{~V}$ \& $7 /$

$25 / 50 \mathrm{~V}$ \& \cdots \& $1 / 9$ \& $16+16 / 450 \mathrm{~V}$ \& $4 / 3$ \& $60+100 / 350 \mathrm{~V}$

$50 / 5$ \& $11 / 6$
\end{tabular} SUB-MIN. FL ECT 50 mF 15 V 2/-; $500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 6 ; 2000 \mathrm{mF} 25 \mathrm{~V} 9 / 6$. CERAMIC. 500 V 1 pF to $0.01 \mathrm{mF}, 9 \mathrm{~d}$. Disce $1 /-$

PAPER TUBULARS
350V-0.1 9d, 0-5 2/6; 1mF 3/-; 2mF 150V 3/4.
$500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-; 0.251 / 8 ; 0.53 /$
$1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,8 / 6$. E.H.T. CORDEISERS. $0.001 \mathrm{mF}, 7 \mathrm{xV}, 6 / 6 ; 20 \mathrm{KV}, 10 / 6$. SILVER MICA, Close tolerance (plus or minus IpF), 5 to $47 \mathrm{pF}, 1 ;$ ditto $10 \% 50$ to 300 pF , $1 /-1,000$ to $5,000 \mathrm{pF}$, $2 / \mathrm{-}$. TWIN aANG. "00"" $208 \mathrm{pFF}+176 \mathrm{pF}, 10 / 6$; 365 pF ; ministure $10 /-; 500 \mathrm{pF}$ standard with trimmers, $9 / 6 ; 500 \mathrm{pF}$ midget less trimmers, 76; 500 pF slow motion, titandard $9 /-$; SHORT WAVE, Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{p}$. $160 \mathrm{pF}, 5 / 6$ each. Can be ganged. Conplers 9 d each.
TUNING. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 5 /$ each. TRIMMERS. Compression ceramic $30,50,70 \mathrm{pF}, 1 /=$; $100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9$. 250V RECTIFIERS. Selenium $\frac{1}{\text { ! wave } 100 \mathrm{~mA}} 5 /-$; BY100 10/-. CONTACT COOLED : Wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$. Full wave $75 \mathrm{~mA} 10 /-$; $150 \mathrm{~mA} \mathrm{19/6;} \mathrm{TV} \mathrm{rects}$.$\mathrm{from} 10 / -$
"SONOCOLOR' CINE RECORDING TAPE sin reel, gooft with LP strobe markings also cine light deffector-mirror for synchronisation.

14/- ea.
JACK SOCKET Std. open-cirenit 2/6, closed circuit 4/6; Chrome Lesd socket 7/6. DIN 3-pin 1/3, 5-pin $1 / 6 ;$ Lead $3 / 6$. 2-5mm; 3-5mm 1/8; DIN $3-\operatorname{pin} 3 / 6 ; 5-$ pin $5 /-\quad$. WAVE-CHARGE BWITCHES WITH LORG SPIMDL 2 p. 2-way, or 2 p. 6-way, or 3 p. 4 -way $4 / 6$ each. Wavechange "MAKITs" 1 p. 12-way, 2 p. 6-way, 3 p. 4-way 4 p. 3-way, 6 p. 2-way. 1 wafer 12/-, 2 wafer $17 /-3$ wafer 22/-, TOGGLE SWITCHES, $8 p .2 / B ; 3 p$. dt. $3 / 6 ; \mathrm{dp} .8 / 6$; dp. dt. $4 / B$. PICK-UP ARM Complete with ACOS LP-78 Turnover GP67 and Stylii 25/-; ACOS GP67 15/-; Btereo 35/-

BAKER MAJOR $£ 8$

30-14,500 c.p.z., Latest double cone, wooler and wreter cone together with a tpecial BAKER magnet asembly having 8 Any density of 14,000 ganss and a total fux of 145,000 Maxwells. Band remonance 45 c.p.s. Rated 20 watts. Voice coila available 3 or 8 of 25 ohms. Price E8, or Module as illus. $\mathbf{3 0}-17,000$ c.p.s. with tweeter, croanover and bafle. f10.19.6.
"BONDACOUST" CABIHET WADDING 18 in wide, $2 / 8 \mathrm{fit}$. BAKER " GROUP 8OUAD" SPEAEERS-PO8T FREE 'Group 25' \quad 'Group 35 ' \quad Group 50'

E.M.I. Cone Tweeter 8 in square, 3 -20kc/s. 10W $17 / 6$. Quality Horn Tweeters $2-18 \mathrm{kc} / \mathrm{s}, 10 \mathrm{~W}$ 29/6. Crospover $18 / 6$.

 Cone $13!\cdot 8 \mathrm{in}, 3$ or 15 ohm models, $45 /$
SPECIAL OFPER! $8 \mathrm{ohm}, 2$ in; $80 \mathrm{ohm}, 21 \mathrm{in}, 21 i n ; 25$ $15 / 6$ EACH ohm, 5in, 6. 4in; 35 ohm , 3in

MINETTE

AMPLIFIER
For Hi-Fi Record Players.
Chasis size $7 \times 3!\times 4$ in high Valves BCLe9 5790 Two stage negative leedback. quality output 3 ohm matching. Bargain ofres complete mith engraved control panel, valver, knobs, voinme and tone consrole,
wired and tested.
Post $5 / 6$

NEW RAMBE BBC 2 AERIALS

An U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, 14 element, 52/6. 18 ejement col-. Wall Mounting with Cranked Arm, 7 element, $60 /$-. 11 element, $67 /$-. 14 eiement. $75 /-18$ element, $82 / 6$. Mast Mounting with 21 n . ctamp. 7 element, 42/6; 11 element, $55 / 9$ 14 element, $62 /$-; 18 element, $70 /$-. Chimney Mounting Arrays, Complete; 7 element, 72/6; 11 element, $80 /-; 14$ element, 87/6; 18 eement, bit. Low Loss Cable, $1 / 6$ yd. U.F.F. Preamps from $75 /$. State clearly channel number requitred on all orders.

BBC•ITV AERIALS BBC (Band 1). Telescopic
 oft. 25/-. Extemal S/D, $30 /$-. " ${ }^{\prime}{ }^{\prime}$ ", £2.15.0.
MTV (Band 3). 3 element loft array, 301-: 5 eement, 401-: 7 element, sel-. Wall mounting 3 element, 47/6. selement, 52/6 Combined BBC/ITV. Loft $1+3$, $40 /-; 1+5,501-; 1+7$. $1+5$, Wall mounting $1+3$, $57 / 6 ;$ $1+5$, 75%.
VEFF translistor preamps,
COMIBINED BBCL-ITV-BBC2 AERIALS $1+3+9,7 \%, 1+5+9,80 \%, 1+5+14$, $1+7+14$, 10\%/. Loft mornting only. Specia
F.M. (Band 2). Loft S/D, 15/m, "H", 32/6, 3 clement, $55 /-$ External units available, Co-ax. cable, 8d, yd. Coax. plugs, 1/4. Outlet boxes, $5 / 5$ Diplexer Crossover Boxes, 13/6. C.W.O. or C.O.D P. \& P. 5\%. Send 6d, stamps for illustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELEOTRONIGS (Dept. P.E.) 27 Central Parade, Now Addington Surray-cro-oj

cOLOUR TV

WITH PARTICULAR REFFEENEE TO THE PAL SYSTEM
By PATCHETT 40/-. P. \& P. 1/-.
FUNDAMENTALS OF DIGITAL MAGNETIC TAPE UNITS, by Univac. 21/-. P. \& P.1/-
BRIDGES AND OTHER NULL DEVICES, by Turner. 26\%. P. \& P. 1/-. TAPE RECORDER SERVICING MECHANICS, by Schroder. 21/-. P. \& P. $1 /$.

ELECTRONIC MUSICAL INSTRUMENT MANUAL. New ed., by Douglas. 55/-. P. \& P. 1/6.
F.E.T. CIRCUITS, by Turner. 21/-. P. \& P 1/-
COMPUTER CIRCUIT PROJECTS YOU CAN BUILD, by Boschen. 24/-. P. \& P. 1/-

ELECTRONIC MOTOR CONTROL, by Lytel. 30/-. P. \& P. I/3.
ELEMENTS OF TRANSISTOR PULSE CIRCUITS, by Towers. 35/-. P. \& P. 1/-.
ELECTRONIC NOVELTY DESIGNS, by Kample. 8/6. P. \& P. 9d.
PRACTICAL OSCILLOSCOPEHAND. BOOK, by Turner. 25/-. P. \& P. I/-

Where possible 24-hour service guaranteed

12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

Specialists in Radio Control Systems

Send S.A.E. for breakdown price lists of the components required, quoting P.E./RC/68

TELERADIO ELECTRONICS 325-7 FORE STREET EDMONTON, LONDON, N. 9
 01-807 3719

Similarly for the drivers TR6, TR9, TR 17 between the successive binary stages; these feed the negative pulses from the respective binary stage collectors to the next binary stage, whereas the respective diodes D4, D5, D14 remove the positive pulses on the other phase.

THE BINARY STAGES

The four binary stages are all identical in principle. We will consider the first one, TR4, TR 5.
The complete symmetry and d.c.-coupling of the two transistors gives the circuit two stable states, which can each be maintained for any length of time, until a suitable disturbance arrives to throw the circuit into the other stable state.

At the outset, the circuit is unambiguously held in the state with TR5 conducting and TR4 cut off due to the low collector potential of TR5. TR5 is held conducting by the positive voltage fed in via the reset contact D, E, R44 and R40/D6.

When the reset contact is opened, this state persists until a negative pulse arrives from the driver TR3. This cuts-off TR5 via C8. The resulting rise of collector voltage of TR 5 then cuts-on TR4 via C5, whereafter the new state persists, with TR4 now conducting and TR 5 cut off. The positive pulse from TR5 collector was suppressed by D4, as far as the next driver TR6 was concerned, so that the pulse is not fed to the next stage.

The second negative pulse from the driver TR3 now cuts-off TR4 via C6, so that TR5 is cut-on again via C9. The resulting negative pulse from TR5 collector circuit is now fed via C10 and the driver TR6 to the next binary stage. Thus only every second pulse is passed on to the next stage.
Only every eighth original input pulse reaches the third binary stage TR10/TR11 such that a positive pulse appears in TR10 collector circuit and a negative pulse simultaneously in TR11 collector circuit. The former drives the 400 second relay circuit, and the latter the fourth binary circuit, which in turn produces a positive pulse in TR 19 collector circuit every alternate time, for driving the 800 second relay circuit.

DIGITAL COUNTING OF PULSES

Binary stages may be used in very similar arrangements for counting the radiation detector pulses. Thus if an electromechanical counter mechanism can not respond
faster than 25 Hz , pulse frequencies of 50 Hz can be handled if one binary stage is interposed between the radiation detector and the counter circuit. If four binary stages are interposed, pulse frequencies of up to 400 Hz can be handled by the same counter mechanism, since they are scaled down to 25 Hz .

Various arrangements of pulse feedback between successive binary stages permit scaling to powers of ten instead of powers of two, if required. Special ten-cathode neon tubes, or cathode ray tubes with ten stable positions of the electron beam, and a number of other special devices are also available for decimal scaling. These give their own luminous indication of intermediate counts, whereas resistor networks and neon lamps must be used to sense and display the intermediate count states of a binary counter chain.

All these types of circuits are found in radiation meters which operate digitally. It is easy to see that overall circuit complexity rapidly becomes much greater than that of ratemeter circuits, if fast digital counting rates are required. A ratemeter (analogue) circuit does not increase in complexity for faster counting rates.

THE UNIVIBRATORS

The Univibrators TR14/TR15 and TR21/TR22 respectively in Fig. 9.2, are once again merely pulse expanders, of the kind we have already met in the kick-sorter amplifier and pip generators.

Considering the first one, this rests normally with TR14 cut off and TR 15 conducting. A positive pulse from the driver TR12 or TR13 causes TR14 to conduct and TR15 to cut off. This new state persists for about one second, determined by C26/R53. Thereafter, the circuit returns of its own accord to the original state. The collector potential of TR15 is thus large positive for about one second each time.

THE PULSE SWITCHES

TR16 is thereby turned-on hard via D10 and R55, causing relay RLA to energise for one second and close its contact F,G for this duration. The pulse switches TR16 and TR23 are simply Class C current amplifier stages.
Next month: The overall programme control circuit, the facilities provided, and some hints concerning operational use.

AMATEUR RADIO CIRCUITS BOOK
Compiled by G. R. Jessop
Published by the Radio Society of Great Britain 120 pages, $8 \frac{3}{4}$ in $\times 5$ in. Price 10 s 6d

ALTHOUGH intended primarily for the transmitting amateur or short wave listener, the latest edition of this very popular work contains a number of circuits of general interest.

In addition to practical circuits for receiver preamplifiers (five alternatives), converters (14), and transmitter modulators (16)-to mention a fewthere is a section on test equipment which includes a.f. and r.f. signal generators and wobbulators, CR bridges, and valve voltmeters. Also useful outside the "ham" field are a speech compressor and a variety of voice-operated switches.

Circuit description is kept to an absolute minimum, but component values and details for winding coils, etc. are included in all cases. Valve designs outnumber transistor by about two to one.
H.E.O.

INSTRUMENTS ELECTRONICS AUTOMATION PURCHASING DIRECTORY 1968

Prepared by the publishers of Instrument Review, Electronic Engineering, and Control
Published by Morgan Bros. Ltd.
708 pages, $1 \frac{3}{4}$ in $\times 9$ in. Price $\not \subset 5$

Previously published as IEA Year Book and Buyers Guide, this fourth edition incorporates many changes-and now has a new and more apt title.

This is a comprehensive reference to British manufacturers of electronic components and equipment, instruments, and other related products. It is sure to find its way into the purchasing departments of businesses and official organisations whose responsibilities include the specifying and ordering of such equipment or components.

Obviously this is not the kind of book P.E. readers in general will rush to buy. But in particular, it will be of interest to those whose employment brings them into the above mentioned areas of activity, and this must also include members of the teaching profession concerned with scientific projects. Apart from these special cases, the general reader of this magazine will at least be interested to know that such a work of reference exists, and he will doubtless be able to gain access to a copy at his local reference libary, if ever the need arises.

The main body of this volume consists of the Buyers Guide containing over 4,800 product headings; under each are listed firms that make or market such items.

A simple coding system differentiates between various sub-divisions of the main category wherever appropriate. The indexing and cross referencing is well organised and clear, although one could indulge in a few minor quibbles. For example, why are transistors listed under "Valves, Semiconductors" (following "Valves, Gas and Liquid")? Strange, since rectifiers (truly valves!) are listed as such, separately. Such an important component as the transistor deserves entry under its own name or, at least, under "Semiconductors."

Other sections directly related to the Buyers Guide include Manufacturers' Addresses, Trade Names, and Illustrated Products-a collection of manufacturers' advertisements providing a useful expansion of the bare facts listed elsewhere.

There are also the following supporting features: Associations Addresses (the I.E.E.T.E. is listed, but not the S.E.R.T.; likewise, the R.S.G.B., but not the E.O.C.S.); Who's Who in the industry; and Who Buyspersons responsible for supplies in U.K. Public Services. The final section, Equipment Surveys, covers 14 different kinds of equipment (e.g. analogue computers, microelectronics, hygrometers) with tabulated technical data enabling immediate comparison to be made between various procucts.
D.D.R.

TAPE RECORDING

By C. N. G. Mathews
Published by Museum Press Ltd.
128 pages, $8 \frac{3}{4}$ in $\times 5 \frac{1}{2}$ in. Price 20 s

THIS is an informative little book which touches on most aspects of tape recording and which requires scant preknowledge of physics or electronics to understand, and as such it serves adequately to instruct any enthusiastic tyro both in the principles and practise of his intended hobby.

From preliminary chapters on sound and its recording, a functional understanding of the recorder is realised through chapters on the recording and reproduction processes. Here magnetism basics and the operational relationship between tape and heads is examined in considerable detail. There is also an interesting evaluation of simple equalisation circuits as encountered in record/playback amplifiers.

A chapter on microphones and loudspeakers makes no mention of two important electrical characteristics, namely sensitivity and output impedance, in its outlines of microphone types.

The remaining half of the book is devoted in the main, to a practical appreciation of the capabilities of a tape recorder and examples are given of converting a short story into a play, with dialogue interspersed with suitable effects, and of production techniques employed in the recording of debates and dramatic productions. The mechanics of tape editing and splicing is also explained.
A penultimate chapter on recorder servicing provided a chuckle, for under a sub-heading "Valve Troubles" one reads-"Another common valve fault is micro-phony.-Then the valve acts as a microphone and you get anything from a continuous howl to a 'pong' every time your cat shakes his whiskers."-That's one fault that should be a "stinker" to troubleshoot.
G.G.

TEACH YOURSELF
 ELECTRONICS AND radio

IN YOUR OWN HOME

ELECTRONICS KIT

Basic Transistor characteristics to Advanced Digital Circuitry

RADIO KITS

Diode Detectors to
Super-Heterodyne Receiver

NO $\begin{gathered}\text { Special Tools } \\ \text { Other Tuition } \\ \text { NEEDED }\end{gathered}$

RADIONIC

Crawley 27028

Stephenson Way
Three Bridges
Crawley, Sussex

5 mwait mans surit Sistat Imprifietion fromile:cio

E Full 50 watt RMS output. $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s} \pm 1 / 2 \mathrm{db}$.
E 3 db roll-off frequencies $30 \mathrm{c} / \mathrm{s}$ and $18 \mathrm{Kc} / \mathrm{s}$.

- Hi-Fi performance at reduced power outputs of 30 watts or less.
- 100 volt line output, reducing speaker line losses and enabling the latest speaker techniques to be employed.
- Hum and noise level better than - $\mathbf{7 0} \mathrm{db}$ at full power.
- Unique short-circuit protection, incorporating patented electronic fuse with reset.
- Integral power pack for mains supply 200/250v. included in price.
- Despatched, assembled and fully tested ready for immediate use.

Plug in input modules available for:-
Microphones, Guitars (Electric bass), Record players (Choice of 3 modules-High output crystal, Medium output crystal, Compensated crystal).
Music matching module ($1 / 2$ megohm input impedance takes up to one volt input, i.e. suitable for matching tape recorders, AM and FM tuners, electronic organs etc.)
Tone control module 15 db lift and cut at 30 cps and $15,000 \mathrm{cps}$. Zero insertion loss.
Algebraic 8 input mixer module.
Separate gain control and DC on/off switch on each module, except tone control and mixer.
Pre-wired cassette available to accept your selection of up to 8 input modules plus mixer, plus semi-stabilised power supply.
Cabinet suitable for 50 watt systems (as illustrated above) £6. 0.0 .
Cabinet suitable for 100 watt or 150 watt systems (2 or 3 amplifiers in parallel) $£ 8.0$. 0 .
Amplifier chassis size 19 in . $3^{1 / 2} \mathrm{in}$. front panel $\times 81 / 2 \mathrm{in}$. deep.

40 DODD TRANSFORMERS LIMITED

 Manufacturing Electronic Engineers BRADLEY ROAD, TROWBRIDGE, WILTSHIRE telephone trowbridge 5401

Short of a lead?

With a 3 -pin DIN plug on one end and 3.5 mm jack on the other? With the Goldring Screened Audio Lead Set, you've got it-instantly-at your finger tips. And 37 other different equipment-to-equipment connections as well. With cable lengths of $20^{\prime \prime}, 40^{\prime \prime}$, or $60^{\prime \prime}$ according to the combinations you use. All tidily and instantly to hand in a small neat storage box. There's no longer any need to have an unwieldy collection of dozens of different leads . . . and still be short of the right one! This new Goldring set will give you most of the connections you're ever likely to wantwithout searching for cables and plugs, without soldering, without waiting, without further expense. The Goldring Audio Lead Set, from your Hi-Fi dealer, $\mathbf{E 3 , 6 , 0}$
*Goldring are now marketing an extremely useful range of individually packed leads, plugs, sockets and connections for audio enthusiasts.
GOLDRING MANUFACTURING CO. (G.B.) LTD.,
486-488 High Road, Leytonstone, London, E. 11.
Tel: Leytonstone 8343.

GOODMANS HIGH FIDELITY MANUAL

A Guide to full listening enjoyment
The Manual is much more than a catalogue of Goodmans High Fidelity Loud-speakers-it contains informative articles, including advice on stereo, special begin ners page, and full cabing as well as informative.

The Perfect Combination MAXAMP 30

TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts \cdot Silicon solid state Integrated pre-amplifier • Negligible distortion - £54.0.0.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER Transistorised • Outstanding specification - Stereo decoder (optional) $\cdot £ 65.5 .0+£ 15.14 .0$ P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime} \times 7 \frac{1}{4}^{\prime \prime}$ deep) in Teak or Walnut to order. Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

PICK-UPS: THE KEY TO Hi-Fi
By J. Walton
Published by Sir Isaac Pitman \& Sons Ltd.
102 pages, $7 \frac{1}{4}$ in $\times 4 \frac{1}{2} \mathrm{in}$. Price 12 s 6d

Choosing a gramophone pick-up can be a hazardous affair. And yet so much depends upon the ultimate choice, not only the quality of reproduction obtained, but the treatment given to the record during the process of playing. Damage or distortion induced at this stage is irrevocable. The lesson is obvious-learn precisely what is expected of a pick-up and what mechanical problems are involved in the translation of the groove modulation into an electrical impulse, and then look around at the devices offered on the market and choose with knowledge and discrimination. Manufacturers' literature does not always give the most important criteria, and the non-technical or semi-technical enthusiast is well advised to study J. Walton's excellent little book for authoritative guidance on the subject.

This is the second edition of a work which has been widely acclaimed by hi-fi enthusiasts. The text is supported by clear diagrams and there are a number of electron micrographs which graphically demonstrate the damage and other ill effects that can be caused to a record groove under certain abnormal playing conditions.

Purchase of this book may well prove to be a small investment providing ample dividends in well preserved records capable of giving hundreds of top quality performances.

> D.D.R.

DRILL SPEED CONTROLLER

continued from page 492
similar to a two-stroke motor-cycle engine! This intermittent running is known as "skip cycling" and can be explained as follows.

At very low speeds an impulse of energy at the end of one positive half-cycle, as explained above, causes the motor to speed up slightly; thus its back e.m.f. rises and during the next few positive half-cycles, no power is required to maintain speed. Hence the thyristor does not trigger and the motor free-wheels until the speed drops low enough to allow the thyristor to fire again. No harm will come to the motor as a result and in fact as soon as a load is applied the automatic feedback circuit will ensure that energy is applied at each cycle.

OTHER APPLICATIONS

When you have made and used the controller you will doubtless wonder how you ever used an electric drill without one! You may also be tempted to use the controller on electrical devices other than a drill. This is in order provided several factors are borne in mind:

1. The output of the controller is pulsating direct current. It is therefore unsuitable for equipment fed via a mains transformer.
2. Only brush motors can have their speed controlled in the way described.
3. The thyristor used is rated at 3 A . This limits the upper power rating to 750 watts.
4. The load compensating circuit functions only when a motor is in use.

With these factors in mind, it can be seen that lamps, low power heaters, etc. can also be controlled in a very efficient manner.

Beginning next month, a new series shows how these media can be coordinated to produce exciting effects. The harmonious blending of technology and art suggested in these articles offers you a further field of interest-not just a psychedelic rave for "hippies" but a genuine challenge to the creative ability.

Also Constructional Projects for:
RADIO CONTROL TRANSMITTER MUSICAL DOOR BELL

PRACTICAL

DON'T MISS IT!

ORDER YOUR COPY NOW

Redidut A SEIECTION FROM OUR POSTBAG

No future?

Sir-I regret to tell D. Watts (Readout, May 1968) that his system for Cine and Tape Sync will not work, for the following two reasons:
(1) Unless he achieves perfection the projector and tape recorder can still run at very slightly different speeds; under these conditions the error signal would be too small to trigger the thyristor.
(2) Each time a speed difference occurs the error signal can only correct the speeds-it will not restore the synchronisation that has slipped; this is analogous to the loop in a sound projector being the wrong size-although the film passes the gate and the sound pick-up at the same speed, there is a lack of synchronisation.

Because of these two basic faults, I see no future in this system.
E. W. Chapman,

London, W.9.

Sync again

Sir-Your correspondent puts forward a suggestion for an entirely practicable synchronising scheme.

The theoretical answer to what to put in the black box is very simple. Use a bistable multivibrator. Arrange it so that pulses from the tape will switch the motor on (using a s.c.r.) and those from the projector will switch it off.

There is no need to use a 50 Hz pulse. The pulses can be derived from the projector (or the camera) in the first instance. Mr Watts can therefore run his projector at 16,18 or 24 f.p.s. if he wishes.

However, this is only a part of the overall picture.

Before embarking on sound, one must consider very carefully what one is trying to do. For example, what sort of sound is required: (a) full lip synchronisation, (b) commentary, music and background effects only, or (c) is it required just for novelty value?

Supposing lip sync is required. I think the next step is to contemplate designing the system as a whole. Synchronisation

During lip sync filming, (a) is the camera to be controlled by the tape speed?; (b) is the camera to record its own control pulses on tape? or (c) can a synchronous electric motor be fitted to the camera? This could simplify things considerably.
Will sprocketed or twin tape be used?

What are the characteristics of the projector? Will it work satisfactorily with a pulsed system? (Some projectors are troublesome on this form of control.)

Editing

When editing in synchronism, film and tape counting equipment is needed. An error of more than one frame out of synchronism cannot be tolerated.

This means an accuracy of $\frac{1}{16}$ second.

Splicing

Splicing twin track recording tape can be tricky. It may mean using one of the special preparations available which when applied to the tape indicate visually where the pulses are.

Mixing

When transferring and mixing tracks, remember that the pulse track also has to be transferred in register. This requires an additional recorder and additional tape heads and also, of course, an electronic mixer.

These are some of the problems on the technical side. Fortunately they are all soluble at the price of much patience and hard work. However, the thought of reward sweetens labour-it is a most satisfying job when you have done it.
L. F. Weir,

Congresbury, Somerset.

Triac sync

Sir-Reference the letter from D. Watts in Readout, May issue.

Before suggesting circuits, a considerable amount of information is still required. Might I perhaps provoke more thought, amongst readers of your magazine, to the very versatile "Triac" which in many ways

is superior and just as readily available as the thyristor. A few uses of which come to mind are: relays; closed loop systems; on/off switches; converters; decade counters; thyratrons; overload protectors; light operated devices; ultrasonic generators, etc., to name but a few applications of thyristors and triacs.

A closed loop system of the type I think would be required will consist of at least the following elements: reference level; error detector (possibly differential amp); forward gain control unit; feedback voltage or current sampler; control unit to give initial level; external control (forces causing variations); a power source subject to proportional control from error signal.

R. Bland, G3BKL, Salisbury, Wilts.

Use a "filip-flop"

Sir-I read the letter from D. Watts with interest and would like to suggest one method of overcoming the problem of synchronisation, in other words the "black box" mentioned.

If a train of input pulses are obtained from the projector and the tape recorder by suitable shaping of the outputs from a photo-sensitive device and a tape head respectively, then these can be used to gate a "flip-flop"; the output can be used to switch a relay drive circuit which in turn switches the projector motor. Synchronisation is achieved by phasing the system so that the pulses from the projector turn the projector motor off, pulses from the tape recording turning it on again. Any tendency for running slow or fast will result in an increase or decrease in the motor "on time".

A reed-relay would be the most suitable device for switching the projector motor; it is doubtful if the complexities in making the circuit fully "solid state" are worthwhile.
P. J. Franke,

Harrogate.

Meeting points

Sir-I would appreciate it very much if you could mention in your magazine that the British Amateur Electronics Club will be holding regular meetings at the Penarth Secondary School from September 1968 to March 1969, and that anyone interested is invited to write to the Hon. Secretary, Mr J. H. Hooper, 5 Cwrt-y-Vil Road, Penarth, Glamorgan, for full details of the meetings and also the club.
The British Amateur Electronics Club is holding an Exhibition of electronic games during the Penarth Holiday Week from July 20 to 28 in aid of the Imperial Cancer Research Fund.
C. Bogod, Penarth, Glamorgan.

	P.O. BOX 5 WARE, HERTS TEL. WARE 3442
SURPIUS SEMICONDUCTORS For Quantity Buyers Manufacturers Over-Runs and Surplus Devices at a Fraction of Manufacturing Cost. HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO. 7 Glass Type, suitable replacements for OA200, OA202, BAY38, ISI30, IS940. 200,000 to clear at $£ 4$ per 1,000 pieces. GUARANTEED 80% GOOD.	TESTED TRANSISTORS ONE PRICE ONLY PNP. NPN. SILICON PLANAR
SUPERB QUALITY TESTED SILICON PLANAR DIODES (Surplus Govt. project). 250mA $150-200$ p.i.v. DO-7 sub-min glass, finished black equt. OA202, IX923, MS4H, HS3I32. 75,000 only available at: 100 pieces, $£ 2 / 10 /-; 500$ pieces, $£ 9$; 1,000 pieces, $£ 15$.	BC108 2N696 2N1132 2N2220 2S733 BC109 2N697 2N1613 2N3707 2N3391 BFY50 2N706 2N1711 2N3711 TIS44 BFY51 2N708 2N2904 2S102
MICRO-MINIATURE SILICON FAST-SWITCHING DIODES. Type IN914. QUALITY TESTED. 75 p.i.v. 75 mA . 100,000 available. 100 pieces $\mathrm{E2}$; 500 pieces, $£ 7 / 10 /-; 1,000$ pieces, $£ 12 / 10 /$.	BFX84 2N929 2N2905 2S103 BFX86 2N930 2N2924 2S104 BFX88 2N1131 2N2926 2S732
GERM. GOLD BONDED DIODES. High quality subminiatures D0-7 Glass 80% good devices guaranteed. Substitutes for OA5, OA47, LG80H, CG90H 150,000 to clear at $£ 4$ per 1,000 pieces.	From Manufacturers Over-runs-Unmarked Plastic and Metal cases.
VAST MIXED LOT OF SUE-MINIATURE GLASS DIODES. COMPRISING OF SILICON GERM. POINT CONTACT AND GOLD BONDED TYPES PLUS SOME ZENERS. 500,000 available at Lowest of Low Price. 1,000 pieces, $\mathbf{6 3} ; 5,000$ pieces, $\mathrm{f} 13 / 10 /$-; 10,000 pieces E 23 .	OMER TRANSISTR
BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. Type similar to TIS43 and BEN3000 and replacement for 2N2646. Full date available. LOWEST PRICE AVAILABLE ANYWHERE. 100 off $4 /$-each $=$ E20; 500 off $3 / 6$ each $=£ 87 / 10 /-$; 1,000 off $3 /-$ each $=\mathbf{6 1 5 0}$. Sample devices $7 /-$ each on request.	OC25 OC35 NKT403 ASZ17 OC26 ADI30 NKT404 TI3027 OC28 AD140 NKT405 TI3028 OC29 AD149 NKT452 T13029
TEXAS SILICON ALLOY TRANSISTORS. 25302 EqVI. OC 200 VcB40 Hfe $15-50$	nufacturers Surplus Germ. A.F. EACH

25302 Eqve. OC 200 VcB40 Hfe $15-50$
25303 " OC201 VcB25 Hfe 25-75
25304 Ö OC202 VcB15 Hfe 45-120
ALL BRAND NEW FULLY GUARANTEED AND MARKED.
GERM ALLOY AF TRANSISTORS PNP. Manufacturers fall out, ideal OC7IOC75 OC81 type from 2G300 Series untested, approximately 80% good. 500 off, ¢7/10/-: 1,000 off, $£ 12 / 10 /$-.
MIXED LOT OF TRANSISTORS ALL GERM. MAINLY PNP. AF/RF $50 \% \mathrm{good}$. Further $35 \% \mathrm{good}$ for diodes, only 50,000 left out of $2,000,000$. Ridiculous price of $\mathfrak{E 3}$. Per 1,000 .
MIXED SILICON PLANER TRANSISTORS NPN TO-I8 CASE. Transistors to fill a number of requirements like 2N706, 2N708, BSY27, BSY95A, etc. sistors to fill a number of req
500 off; $65 ; 1,000$ off $£ 8 / 10 /-$.

PRICE
$1-49$ off $3 / 6$ each $5-99$ off $3 /-$ each
100 off $2 / 6$ each

TRANSISTOR EQVT. BOOK

2,500 cross references of transistors - British, European, American and Japanese. A must for every transistor user. Exclusively
distributed by DIOTRAN SALES.
$15 / \mathrm{m}$ EACH

In this advertisement we offer you the best of both, first quality devices and surplus bargains currently available. We can supply any device not advertised -just ask and we will supply.
Post and Packing Coses are continually rising. Please add 1/towards same.

BRAND NEW FROM THE MANUFACTURERS. NO SURPLUS OR SECOND GRADES ARE OFFERED IN THE FOLLOWING DEVICES. ALL CARRY THE MANUFACTURERS FULL GUARANTEE. USE THEM WITH CONFIDENCE.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AA1 19 \& \[
3 /-
\] \& \& 4/6 \& BFY52 \& \(5 / 6\) \& GET103 \& 4/- \& NKT214 \& 4/9 \& NKT713 \& 5/6 \& OC70 \& \& TK200A \& 21/- \& \& \\
\hline AA129 \& \[
3 /-
\] \& ASY26 \& 6/6 \& BFY53 \& \(5 / 1\) \& GETII6 \& 5/- \& NKT215 \& 4/6 \& NKT717 \& 8/6 \& OC71 \& 3/6 \& UT46 \& 21/6 \& \[
\begin{aligned}
\& \text { 2N929 } \\
\& \text { 2N930 }
\end{aligned}
\] \& \[
\begin{gathered}
8 /- \\
10 /-
\end{gathered}
\] \\
\hline AA735 \& 3/- \& ASY27 \& \(8 / 6\) \& BSX19 \& \(5 / 6\) \& GETII8 \& 5/- \& NKT2 16 \& 10/- \& NKT734 \& 5/6 \& O372 \& 4/6 \& ZT20 \& 6/- \& 2N976 \& \(8 /\) \\
\hline ACll3 \& 3/- \& ASY28 \& \(6 / 6\) \& BSX20 \& \(5 / 6\) \& GETI19 \& 4/- \& NKT217 \& 101- \& NKT756 \& 6/6 \& \(\bigcirc{ }^{\circ} \mathrm{C} 73\) \& 5/6 \& ZT22 \& 6/6 \& 2N1131 \& \(8 / 6\)
\(9 / 6\) \\
\hline \(\mathrm{ACl}^{\text {Cl }}\) \& 2/6 \& ASY29 \& \(7 / 6\) \& BSY26 \& \(4 / 6\) \& GET120 \& 5/- \& NKT219 \& 6/- \& NKT773 \& 5/6 \& OC75 \& 4/6 \& ZT23 \& 6/6 \& 2Nil32 \& \(9 / 6\)
\(9 / 6\) \\
\hline ACl26 \& 2/6 \& ASZ20 \& 6/6 \& BSY27 \& 4/6 \& GET873 \& 3/- \& NKT223 \& 6/- \& NKT781 \& 6/- \& \(\bigcirc\) OC77 \& 4/6 \& ZT63 \& 8/6 \& 2NJ302 \& \(9 / 6\)
\(4 / 6\) \\
\hline \({ }_{\text {ACl }}\) \& 4/- \& ASZ21 \& 12/6 \& BSY28 \& 4/9 \& GET874 \& 4/- \& NKT224 \& 4/6 \& OA5 \& 2/6 \& \(\bigcirc \mathrm{OC81}\) \& 3/- \& ZT70 \& 8/- \& 2NI303 \& 4/6 \\
\hline \[
\mathrm{ACl} 27
\] \& 5/- \& ASY50 \& 3/6 \& BSY29 \& 4/9 \& GET875 \& 4/- \& NKT225 \& 4/6 \& OA6 \& \(3 / 6\) \& OC810 \& 3/- \& ZT83 \& 6/- \& \[
\begin{aligned}
\& 2 \mathrm{Nl} 303 \\
\& 2 \mathrm{Ni} 304
\end{aligned}
\] \& 5/6 \\
\hline \[
A \subset 128
\] \& 4/- \& ASY57 \& 4!- \& BSY95A \& 4/6 \& GET872 \& 31- \& NKT229 \& 6/- \& OA7 \& 6/- \& OC82 \& 4/6 \& ZT84 \& 6/6 \& \[
2 N 1305
\] \& 5/6 \\
\hline \[
A \subset 176
\] \& 6/-
\(10 /-\) \& BAY31 \& 3/- \& BY 100 \& 4/3 \& GET693 \& 3/- \& NKT237 \& 7/- \& OAIO \& 4/6 \& OC82D \& 4/- \& ZT86 \& 12/6 \& 2NJ306 \& 6/6 \\
\hline ADI40 \& 10/- \& BCIO7 \& 5/- \& BYIO1 \& 4/16 \& GT31 \& 5/16 \& NKT238 \& 6/- \& OA47 \& 2/6 \& OC83 \& 3/6 \& ZTX300 \& 5/6 \& \[
2 N 1307
\] \& 6/6 \\
\hline ADI49 \& \(11 /-\) \& BCl08 \& \(4 / 9\) \& BYI04 \& 6/6 \& GT40 \& 2/6 \& NKT239 \& 6/- \& OA70 \& 2/- \& OC84 \& 4/6 \& ZTX302 \& 6/- \& 2N1308 \& \(8 / 6\) \\
\hline \begin{tabular}{l}
AD 161 \\
AD162
\end{tabular} \& \(7 / 1 /\) \& BCl09 \& \(5 / 9\)
\(12 / 6\) \& BYI05
8YI30 \& 6/6 \& GT41 \& 2/6 \& NKT240 \& 6/1 \& OA79 \& 2/- \& OC85 \& 4/- \& ZTX303 \& 8/6 \& 2Ni309 \& \(8 /-\) \\
\hline ADI62
AFIO2 \& \(7 / 6\)
151 \& BCII
BCI

BCy \& $12 / 6$
$15 / 6$ \& BYI30 \& 4/1- \& GT45 \& 2/9 \& NKT241 \& 6/6 \& OA81 \& 2/- \& OCl 39 \& 8/- \& ZTX304 \& $9 / 6$ \& 2N1613 \& 6/6

\hline AFIO2 \& 15/- \& BCII4 \& 15/6 \& CIII \& 171/ \& GEX54 \& $3 / 1$ \& NKT242 \& 6/1 \& OA85 \& 2/- \& OC140 \& 12/- \& ZTX310 \& 5/6 \& 2N1711 \& 6/6

\hline \& 5/19 \& BCY10 \& $5 / 6$ \& Cllie \& 16/- \& GEX55/I \& 3/6 \& NKT243 \& 12/- \& OA86 \& 2/- \& OCI70 \& 6/- \& ZTX311 \& 6/16 \& 2N2160 \& 15/-

\hline AFII5
AFII6 \& $4 / 9$ \& BCYI2 \& $5 / 6$

$5 / 6$ \& Cll2 \& 14/- \& GEX541 \& 8/6 \& NKT244 \& 5/- \& OA91 \& 2/- \& OCI71 \& 7/- \& ZTX312 \& $7 / 6$ \& 2N2646 \& $$
15 /
$$

\hline AFII6 \& 4/6 \& BCY33 \& 5/6 \& C400 \& 8/7 \& GEX541- \& \& NKT245 \& $5 / 6$ \& OA95 \& 2/- \& OC169 \& 5/- \& ZTX313 \& $7 / 6$ \& 2N2647 \& 26/-

\hline AFII7 \& 4/6 \& BCY38 \& 51- \& C407 \& 6/6 \& $$
B|P|
$$ \& 33/- \& NKT261 \& $4 / 6$ \& OA200 \& $2 /-$ \& OC200 \& 6/- \& ZTX314 \& $8 / 6$ \& 2 N 2712 \& 7/6

\hline AFII8 \& $9 /-$ \& BCY39 \& 5/- \& C420 \& $9 / 6$ \& MAT100 \& 6/- \& NKT262 \& $4 / 6$ \& OA202 \& 2/- \& OC201 \& 91- \& ZTX500 \& 616 \& 2N2714 \& 8/6

\hline AFI24 \& 6/6 \& $$
\mathrm{B} \subset Y 70
$$ \& 6/6 \& C424 \& 5/6 \& MATIOI \& 6/6 \& NKT264 \& $4 / 6$ \& OA21 \& 6/1- \& OC202 \& 15/- \& IN69 \& $1 / 9$ \& 2N2923 \& 5/6

\hline AFI25 AFI26 \& 6/6 \& BCY7I \& 101- \& C425 \& 9/6 \& MATI20 \& 7/16 \& NKT271 \& $4 / 6$ \& OA2 11 \& $8 / 6$ \& OC203 \& 8/- \& IN914 \& 210 \& 2N2924 \& 8/6

\hline AFI26 \& 6/3 \& \& 5/6 \& C426 \& $7 / 3$
$5 / 9$ \& MATI2I \& 7/6 \& NKT272 \& $4 / 6$ \& OC16 \& 8/6 \& OC204 \& 8/- \& IN916 \& $2 / 6$ \& 2N2925 \& $71-$

\hline AFI27

AFI86 \& 8/3 \& $$
8 F \times 12
$$ \& 6/6 \& C428 \& 5/9 \& NKTII \& 5/- \& NKT274 \& $4 / 6$ \& OC20 \& $22 / 6$ \& OC205 \& 10/- \& 2N35 \& $5 / 6$ \& 2N2926 \& 3/6

\hline | AFI86 |
| :--- |
| AFI 39 | \& 18/6 \& BFXI3 \& $6 / 6$

$14 / 9$ \& C442 \& $8 / 9$
$9 / 6$ \& NKTI2 \& 5/- \& NKT275 \& $4 / 6$ \& $\bigcirc \mathrm{OC}^{-22}$ \& $13 / 6$ \& ORP60 \& 9/- \& 2N388 \& 4/- \& 2N3702 \& 5/5

\hline | AFI39 |
| :--- |
| AFZ12 | \& $12 / 6$

$12 / 2$ \& $$
\begin{aligned}
& \mathrm{BF} \times 29 \\
& \mathrm{BF} \times 30
\end{aligned}
$$ \& $14 / 9$

$16 / 6$ \& C444
$C 450$ \& $9 / 6$
$5 / 9$ \& NKT72 \& 6/6 \& NKT281 \& $5 / 6$
$12 / 9$ \& $\bigcirc{ }^{\circ} \mathrm{C} 23$ \& 22/6 \& ORP61 \& 10/- \& 2N428 \& $4 / 7$ \& 2N3703 \& 4/9

\hline $$
\begin{aligned}
& \text { AFZI2 } \\
& \text { ACY27 }
\end{aligned}
$$ \& 12/- \& \[

$$
\begin{aligned}
& \text { BFX30 } \\
& \text { BFX43 }
\end{aligned}
$$
\] \& 16/6 $7 / 6$ \& $C 450$

$C 451$ \& $5 / 9$
$7 / 3$ \& NKT73 \& 6/6- \& NKT304 \& 12/9 \& OC25 \& $7 / 6$ \& ORP 12 \& $9 / 6$ \& 2N601 \& $6 /-$ \& 2N3707 \& 5/-

\hline ACY27

ACY28 \& 3/6 \& $$
\begin{aligned}
& \text { BFX43 } \\
& \text { BFX44 }
\end{aligned}
$$ \& 7/6 $7 / 6$ \& $C 451$

$C 452$ \& $7 / 3$
$6 / 6$ \& NKT32
NKTI24 \& $5 / 6$
$7 / 6$ \& NKT401 \& 15/6 \& OC26 \& 7/6 \& P346A \& 6/6 \& 2N696 \& $4 / 6$ \& 2N3708 \& 4/-

\hline | ACY28 |
| :--- |
| ACY30 | \& 4/- \& \[

$$
\begin{aligned}
& 8 F \times 44 \\
& \text { BFX } 84
\end{aligned}
$$
\] \& $7 / 6$

$8 /-$ \& C452 \& $6 / 6$
$5 / 9$ \& NKTI24 \& $7 / 6$
$6 /-$ \& NKT402 \& 16/6 \& OC28 \& 15/- \& ST140 \& 6/1- \& 2N697 \& 5/- \& 2N3709 \& 4/3

\hline $$
\begin{aligned}
& A C Y 30 \\
& A C Y 31
\end{aligned}
$$ \& 5/- \& $8 F \times 84$

BFX85 \& $8 /-$
$10 /-$ \& C453 \& 5/9
$7 /-$ \& NKTl25
NKTl26 \& 6/- \& NKT403 \& $15 /-$
$13 /-$ \& OC29 \& $16 /-$

$12 /-$ \& STI41 \& 7/- \& 2N698 \& 5/- \& | 2N3819 |
| :--- |
| 2N3820 | \& \[

15 /-
\]

\hline ACYI7 \& 4/1- \& BFX86 \& $7 / 6$ \& DD2068 \& 8/6 \& NKTI35 \& 5/6 \& NKT405 \& 15/- \& OC26 \& $12 /-$
$13 / 6$ \& TIS43 \& $9 / 6$
$2 / 6$ \& 2N700
2N706 \& 8/- \& 2N3820 \& 26/-

\hline ACYI8 \& 4/- \& BFX87 \& $9 /-$ \& EA403 \& 31- \& NKTI37 \& $7 / 6$ \& NKT420 \& 33/- \& OC41 \& 7/6 \& TK33C \& 2/6 \& 2N706A \& 4/6 \& \&

\hline ACY19. \& 4/- \& BFX88 \& 81- \& EP383 \& 4/- \& NKT210 \& 6/- \& NKT603 \& 616 \& OC42 \& $8 / 6$ \& TK1004C \& 3/- \& 2 N 18 \& $5 /-$ \& \&

\hline ACY20 \& 5/- \& BFY18 \& 5/- \& EC401 \& 5/16 \& NKT2:1 \& 6/- \& NKT613 \& $6 / 6$ \& OC43 \& $16 / 6$ \& TK201A \& $18 /-$ \& 2N, 3A \& $5 / 6$ \& \&

\hline ACY21 \& $5 / 6$ \& BFY50 \& 5/- \& EC402 \& 4/6 \& NKT212 \& $5 / 6$ \& NKT674 \& 617 \& $0 \mathrm{OC4}$ \& 3/6 \& TK202A \& $18 /-$ \& 2N914 \& $7 /-$ \& \&

\hline ACY22 \& 4/6 \& BFY51 \& 5/- \& GET102 \& 4/- \& NKT213 \& 5/9 \& NKT677 \& $5 / 6$ \& OC45 \& 3/- \& TK203A \& 22/- \& 2N916 \& $8 /$ \& \&

\hline
\end{tabular}

Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 3$ per word (minimum order $15 /$-), box number $1 / 6$ extra. Semi-displayed setting $£ 4.2$. 6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

WANTED

MISCELLANEOUS

CALL OR 8END for list from the most interesting shop in Lancashire. Wlectrical Mechanical and Electronic Goods. KOGERS, 31 Nelson Street, Southport.

BYIOO RECS. 3/-

big bargain parcel. Capacitors, resistors some high stab, rectifiers, potentiometers, diodes, tr 1 nsistors, connecting wire, etc., oniy $10 /-$ post paid.
S.A.E. for lists of other bargains

SALOP ELECTRONICS
9a Greyfriars Road, Coleham, Shrewsbury, Salop

PRINTED CIRCUIT8. Printed Circuits made to your Negatives or Transparent Master Positives. 1 board to 250 boards. We will produce master to your circuit diagram if required. BIDEFORD GRAPHIC ARTS, Torridge Hill, Bideford, North Devon. Telephone: Bideford 4991.

SOUND EFFECTS

Printed Circuit Boards available for the following Printed Circuit Boards avaina
Practical Electronics designs.

1. Fuzz Box (Nov. '67) 5/- each.
2. Fuzz Box (Nov. Spring line Reverb. Unit-Amplifier Panei and Power Supply board (Dec. '67) $19 / 6$ per set.
3. White Noise Generator (Jan. '68) 5/= each.
4. Rhythmic Effects Unit (March "68) $9 / 6$ each.
5. Electronic Cymbals (May '68) 6/- each.
6. Electronic Didjerideo-Drive Amplifier and Oscillator Board $9 / 6$ per set. All boards supplied ready drilled and fluxed. Post and packing $1 /$ - per order.
B. D. SALES, Station Approach, Chipstead, Surrey. CR3 3TD.

ARTIFICIAL LIFE
 Well almost. because the NEW ranze of 'projects include: an electronic 'animal' which LEARNS, and a device capable of REPRODUCING itself! Other projects SURE TO INTRIGUE YOU are an audio cransmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which recognizes itself, and an electronic dog whistle, etc., etc. HOSTS OF EASY-TO-CONSTRUCT projects. SEND $2 / 6$ for our list of 'BOFFIN PROJECTS'-NOW!
 To: 'BOFFIN PROJECTS'
 4 CUNLIFFE RD. STONELEIGH
 EWELL SURREY

SITUATIONS VAGANT

MINISTRY OF DEFENCE (AIR FORCE DEPARTMENT) CENTRAL MEDICAL ESTABLISHMENT
 Vacancy for a SCIENTIFIC ASSISTANT

Duties involve research into and development of, electronic equipment for medical use and the study of noise problems. Opportunity may be given for day release for further studies on an approved course.

Qualifications

Four GCE ordinary level passes, including English Language and a Scientific or Mathematical subject.

Candidates must be natural born British subjects.

Salary

$£ 526$ (age 16) - $£ 756$ (age 21) $-£ 901$ (age 25) rising to flllo.
Application forms from Ministry of Detence, GE2a(Air), Sentinel House, Southampton Row, London, W.C.I.

20 Penywern Road, Earls Court, London S.W.5.
Tel. 0!-373 8721
This Private School provides full and part day training in the following professional subjects

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE RADIOTELEGRAPHY

TECHNICAL TRAINING by
 ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
- C. G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. \&. ELECTRONIC SERVICING.
* R.T.E.b. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* p.M.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of 1 CS-courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL

CORRESPONDENCE
SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU !

INSTITUTE OF ; CANCER RESEARCH: ROYAL CANCER HOSPITAL RESEARCH ABsISTANT required for work on Physical Properties of Metalloproteins and to help build, maintain and use advanced magneto-chemical apparatus (located at Imperial, College, South Kensington). Some experience in physies of electronics necessary. Starting salary according to qualifications and experience in region of $£ 700-£ 1,000$ in scale extending to $£ 1,276$. Apply with names of two referees to the Secretary, 34 Sumner Place, S.W.7. quoting Ref. $301 / B / 324$.
A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., etc., on 'Satisfaction or Refund of Fee' terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide-FREE. Pleasé state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

```
        SITUATIONS VACANT
CONTINUED ON PAGE }52
```


EDUCATIONAL

STUDY RADIO, TELEVIBION AND ELEOTRONICS with the world's largest home study organisation. l.E.R.E.; City α Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext Hoase, London, SW11.

ENGINEERS. A technical certiffcate or qualiflcation will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I. A.I.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Elec., Auto, Electronics, Radio, Computers Draughts. Building, etr. For full details write for FREE 132-page guide. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

GET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, madio, T/V, Telecoms., etc. For FREE 100Radio, T/V, Telecoms., etc. For FREE $100-$ page book, write Dept. 856 K, CHAMB

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

I9 set Circuit and Notes
5/6 P.P. 6d
II 155 set Circuit and Notes
H.R.O. Technical Instructions 38 set Technical Instructions. 38 set Technical Instructions 86 set Working Instructions BC. 221 Circuic and Notes.. Wavemeter Class D Tech. Instr 18 set Circuit and Notes . $1 . .$. . BC. 1000 (31 set) Circuit \& Notes CR. 100/B. 28 Circuit and Notes R. 107 Circuit and Notes. 5/6 P.P. 6d A.R.88D. Instruction Manual. . . 62 set Circuit and Notes $5 / 6$ P.P. $6 d$ 4/6 P.P. $6 d$ 4/6 P.P. 6d
4/6 P.P. 6d 4/6 P.P. 6d
6// P.P. 6d 6/- P.P. $6 d$ 4/6 P.P. $6 d$
4/6 P.P. 6d 4/6 P.P. 6d $4 / 6$ P.P. $6 d$ 9/6 P.P. 9 d Not . . .16/- P.P. 1/6 52 set Sender \& Receiver Circuits 7/4 P.P 60 Circuit Diagrams 4/- each post free. R.1116/A, R.1224/A, R.1355, R.F. 24, 25, \& 26. A.1134. T.1154. CR.300, BC.342. BC. 312. BC. 348 .J.E.M.P. BC. 624,22 set. S.A.E. with all enquiries please. Postage rates apply to U.K. only.

Mail order only to
Instructional Handbook Supplies
Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

CITY AND COUNTY OF BRISTOL bRISTOL TECHNICAL COLLEGE

Principal: E. Poole, B.Sc.(Eng.), C.Eng., M.I.Mech.E., M.I.Prod.E.

CAREERS IN RADIO AND RADAR

Marine Radio Officers

2-year full-time course for young men aged 16, upwards, leading to First and Second Class P.M.G. Certificates and B.O.T. Radar Maintenance Certificate.
Conversion Course (Second
Class to First Class).
R.T. Courses (for Full or Restricted Licence).
Marine Electronic Maintenance Engineers Course (for qualified Marine Radio Officers).

Licensed Aircraft Radio Engineers

2-year full-time course for A.R.M.E. Licences, categories A and B , and six months courses for Radar Rating in association with the above.

Training given on the latest types of Marine and Aircraft Equipment in newly equipped Laboratories at
THE SCHOOL OF MARINE RADIO AND RADAR
Senior Lecturer-in-Charge: F. E. Barltrop
For details, write to:-

The Registrar, BRISTOL TECHNICAL COLLEGE ASHLEY DOWN, BRISTOL 7

TAPE RECORDERS, TAPES, ETC.

TAPES TO DIBC-using finest professional equipment 45 r.p.m. $18 /-$ S. A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

FOR SALE

BRASS, 8TEEL, LIGHT ALLOY, STAINLESS sTEEL TUBE. Bar Material, Tools, Mechanjcal, Electrical, plus Assorted Lots. Send S.A.E. for latest Cat. of 1,000 items. K. R. WHISTON, Dept. BPE, New Mills, Stockport.

ENTHUSIA8T8! Discover the fascinating world of model railway signalling! Send for details of Conrad model railway control panels, 2/- post free from COCKROBIN CONTROLS, 36 Villiers Avenue, Surbiton, Surrey.

migh glass metallic hammered enamel

MAKES FANTASTICDIFFER-

ENCE TO PANELS-say hun-
dreds of enthusiastic users. 'Crackle' pattern appears like magic on wood
and metal. No undercoat. Air and metal. No under
dries 15 min. to hard glossy finish. Heat, fiquid $\&$ scratch-

proof. Lt. \& Dk.
Blue; Bronze; Sitver; Green; Black. Send 10/-
NOW for trial $\frac{1}{2}$ pt. Tin. Col. samples \&instn's.
Post free.
FINNIGANSPECIALITYPAINTS Dept.P.E
STOCKSFIELD. Tel. 2280 Northumberland.

FOR SALE

(continued)
100 PAGE illustrated Catalogue No. 17 Government and manufacturers' electronic surplus, also new section of latest semiconductors and miniature components. Credit voucher for $2 / 6$ included. Price $3 /-$ post free voucher for 2/6included. Price Noth Road, Arighton.

Operational Amplifiers for PEAC Analogue Computer, ready built on PC board, tested and guaranteed,
34/- each.
Kits available at 28/- post free.
WESTEK ELECTRONICS
10 Maple Lodge Close, Maple Cross Rickmansworth, Herts.

NAGARD O8CILLOSCOPE Type DS. 103830. Cossor Oscilloscope Type 1035 820. Cossor Oscilloscope Type 1049 Mk. $2 £ 20$; Mk. $3 £ 25$. Oscllloscope Caneras, Single Shot 85 extra. Motor Driven $\$ 10$ extra. Muirhead Decade Oscillator $1 \mathrm{c} / \mathrm{s}-100 \mathrm{kc} / \mathrm{s}$. 225. All Equipment in Excellent condition. D. R. WILLIAMS, 8 The Rise, Mount Drive, St. Albans, Herts,

MORSE MADE ! !

FACT NOT FICTION. If you start RIGHTT you will be reading amateur and commercial Mors Tithin a month (normal progress to be expected).
 without translating. You can't help it, it's as easy at learning a tune. 18 W.P.M. in 4 weeks gaaranteed. For details and course C.O.D. ring S.T.D. 01 -660 2896 or mend 8d. stamp for explanatory booklet to: GSGES/E, 45 GREEN LAIE, PURLEY, SURRET

ELEGTRIGAL

The Latest version of the T.R.GDX Series. The type $25 / \mathrm{C}$ improved model. A brand new fully transistorised receiver. Four complete ranges $550 \mathrm{kc} / \mathrm{s}$ to $.30 \mathrm{mc} / \mathrm{s}$ covering all amateur bands, shipping bands and broadcast bands. Makes an ideal mobile receiver. It is a highly efficient double tuned superhet comprising R/F aerial tuning section, AVC and built in B.F.O. (tunable) for C.W. or S.S.B. reception. Ideal for mobile reception. Size only $9 \times 7 \times 6 \mathrm{in}$. Operates from internal 9 volt battery. Gives a high quality reproduction. With speaker or headphone output. Hammer finished robust steel case of pleasing design, with all controls on well set out front panel. The set complete with handbook, factory built and tested with 12 month guarantee 16 gns . carriage and insurance $14 /$-.
ACCESSORIES: Headphones (Moving coil) 19/6 p.p. 5/-. Fitted S meter $£ 2.10 .0$. extra. Stabilised mains power pack $£ 4.10 .0$. carriage $10 /$. This set is now available to the home constructor in kit form. With fully punched chassis, point to point wiring diagram, complete set of parts, full step by step instructions. ,Printed circuit boards and pre-aligned IFs. Price 14 gns. Carriage and insurance $14 /$-.

MK V. 3,000 WATT MODEL. Finger tip control of all a.c./d.c. electrical equipment. Suitable for all types of lighting arrangements. Incandescent lamps, spot lamps, arc lamps. Floodlights. Makes an excellent dimming unit. Ideal for controlling all types of electric heaters. Electric blankets and electrie irons. Will control the speed of all drills, and all $A C / D C$ electric motors for all applications. Also lathes and power tools. Contains the latest electronic switching devices, and associated Thyristor circuitry. Size $6 \times 5 \times 2 \mathrm{in}$. Louvered metal case in pleasing hammer finish. Attractive front panel with matching socket and control. Ample cable provided. Additional cable 3/6 per yard. The recommended price of the unit is 25 gns. Due to another bulk purchase we can offer them at only 88.19.6. carriage and insurance $10 /$-. C.O.D. 3/6 extra.

TWO WAY TALKIE PHONES. Ideal for indoor/outdoor Communication. Will work up to long distances. Clear reception. No G.P.O. licence required. One complete set £2.10.0: carriage $10 /$-. Batteries $5 /$ - extra. Special offer of Two complete sets $£ 5.10 .0$. with batteries, post free.

All orders to: Dept. P.E. 12

24 CAWOODS YARD, MILL STREET
MAR8H LANE, LEEDS 9 (LEEDS 35900)
Callers welcome. Open 7 days a week
New Component Centre opening 20th May at this address.

TRANSISTORS EX STOCK

WE ALSO STOCK:

20 watt Solid State Amplifier. Kit-AFII EA.E.e Solid State Pre-Amp for above, Complete e6.10.3 Send now for details
"S-Dec" Breadboards 29/6
$\frac{1}{4}$ and $\frac{1}{2}$ wate 5\% Carbon Film Sub-Min. Resistors 4d each Skeleton Presets I/6 Mullard Sub-Min. Electrolytict and Polyester Capacitors Heat Sink for $2 \times$ OC35, etc. 6/-Veroboard-All standard sizes
Aluminium Chassis and Panels
Internation Rectifier
SEMICONDUCTOR CENTRE Stockists MULLARD \& FAIRCHILD Integrated Circuits

Handbooks of all types
40ke/s Transducers © $\mathbf{4 5} .18 .0$ pair with free circuits.
" X "-Line Modules-Solid State-ready built and tested cireuits
ALL THE ABOVE AND MUCH MORE
IN OUN ISG CATALOGUE
PLEASE SEND TO ME YOUR 34 PAGE CATALOGUE
I enclose $1 / 6$ stamps
\qquad
ADDRESS

GUARANTEE: All the above-listed semiconductor devices are Brand New. First Grade, and guaranteed. We wilt replace at no charge any device found to be faulty. Further: all devices carry the Manuracturer's name or Trade Mark, type number and bateh number. We do not offer for sale devices often described as "new and life. LST COMPONENTS

PHOTO ELECTRIC COHTROL

QYRTF Comprises a light source unit with optional Infra Red filter and lens system to force the light. Also a photo-electric Relay control unlt. Both boused in metal cases for bench or wall mounting, senaitivity control, mains on-off switch. Works from $230 / 240 \mathrm{~V}$ a.c. Malns. Can be used as a simple on-off switch by freaking the beam of light (invisible if infra Red alarm, or will open doors, etc. Also in as burgia with a counter or other equipment it will perform many functions in the factory or 99.19 .6 warehouse.
F.T. WHRELNGS MOROPHOME
$94-104 \mathrm{Mc} / \mathrm{s} . \mathrm{Tranaistorised} .\mathrm{Operates} \mathrm{from} \mathrm{9V}$ battery. Complete with additional secret tie clip These cannot be operated in U.K.
66. 15.0

Theme cannot be operated in U.K
6 TRANSISTOR HIGH QUALITY TUNER. sIZE ONLY 6in $\times 4$ in $\times 2$ 立in 3 I.F. atages: Double tuned discriminator. Ample output to feed most amplifers. Operates on $9 \mathbf{V}$ battery. Coverage $88-108 \mathrm{mc} / \mathrm{s}$. Ready built ready for $\& 6.17 .6$ use. Fantastic value for money
?
FIT KULTIPLEX ETEREO ADAPTOR
Printed circuit biscuit, 4 trans. $6 \quad 55.19 .6$

diodes 9V wlth full insiructions | BER | TAPR HMADS | MULTITETERS $32 /=$ |
| :--- | ---: | ---: |
| BRAD, | $39 / 6$ | from | BRAD

2 TRACK
$39 / 6$ pair
Ban TAPE ERADS LOUDAPEAKMRs. 2*0/6

 5 watt, 3 ohm, 300 - 10 wati, $18 \mathrm{~K}-\mathrm{CPG} 20 / 0$

surat 8michon REDx. T.V., etc., 1,200 PIV $800 \mathrm{~mA}, 8 / \mathrm{m}$ or complete with instr. reaistor, condenser, $2 / 6 ; 400$ PIV HW 6A, 8/-; 200 PIV HW 6A, 8/-.
Stamped envelope for full selection and bargaln offers in Multineters, Radios, Baby Alarms, Interoms, Waikie-Talkies, Rectifiers and Eagle Liats C.O.D. 3/6.

DURHAY 8UPPLIES
1757, Durham Bosĭ, Bradurd, 8, Yorkahise

SEMI-CONDUCTOR BARGAINS!
NEW UNMARKED, UNTESTED, MIXED TRANSISTORS, 100° FOR $10 /=50$ FOR $6 /-$ TRANSISTORS, 100 FOR $10 / \approx 50$ FOR
P. \& P. I/6.
BY 100 RECTIFIERS 4/-EACH. P. \& P. 9d BY 100 RECTIFIERS 4/-EACH. P. \& P. 9d.
BCIOB TYPE TRANSISTORS, TOIB CAN. U BCIO8 TYPE TRANSISTORS, TOIB CAN, UN-
MARKED $3 / 6$ EACH. P. \& P. 9 d MARKED $3 / 6$ EACH. P. \& P. 9d.

Orders over $£ 1$-Postage Free. C.W.O. Y. O'CONMOR

212 MIDDLE LANE, HORNSEY, N. 8

PRICE REDUCTION:

F.E.T. MPF 105 DOWN to $9 / 6$ each!

STOCK INCREASES:

Silicon Rectifier BY267-I500 p.i.v. at $1.2 \mathrm{amp} \mathrm{7/6} \mathrm{each}$.
Mullard Electrolytic Capacitors complete 40 VW range. IOd, each.
Pre-Set Potentiometers - log. and lin. ONLY IOd. each.
Don't forget we stock LEKTROKIT - the professional look to home constructions.
Include 1/- p. \& p. for orders under $£ 1$.
Send 6d. for complete price lists and Sample Resistors.

To: STUDENT ELECTRONIC SERVICES

194 Regent Road, Salford 5

CURSONS TRANSISTORS ALL GUARANTEED

1/- each
BAY31, BAY50, DK10, OA70, OA81, OA200, OA10, OA90, OA91, OA259, IN914, IN916, JL102
2/- each
XA101, XA102, OC71, OC72, OC81, OC81D, OC44, OC45, GET16, FST3/1, ACY22, ASY57

3/- each
OC139, OC140, 2N706, 2N708, 2N2894, BY100, RAS310AF, 2N914, BSY26, BSY27, BSY95A, AFZ12

7/6 each

RAS508AF, CRS3/40, BLY10, BLY11, BUY10, BUY11, ADY22, ADY23, ADY24, OC22, OC26

ZENER DIODES

3.9 v to $26 \mathrm{v}, \frac{1}{4} \mathrm{w} 3 /-$ each, $1.5 \mathrm{w} 4 /-$, 7w 5/- each.
B. CURSONS NEW. LIS 78 BROAD STREET CANTERBURY KENT

RECEIVERS AND GOMPONENTS (continued)

BRAND NEW ELEOTROLYTIGS, sub-miniature 15 volt, $8,10,30,50,100 \mathrm{mF}, 3 / \mathrm{per}$ doz. post 1/.. The C.R. SUPPLY CO., 127 Chesterfield Road, Sheffield, S8 ORN.

COMPUTER PANELS

Eight assorted printed circuit panels with tran sistors, diodes, resistors, capacitors, etc. Guaran seed mistors per 8 boards 8 Boards 10/,, Post Free 100 Boards $65 /-$. Post Free Electrolytics: P.\& ${ }^{\text {P. I } /=\text { ea. }}$
6,300 MFD 75v wkz 6/- बa 10,000 MFD $35 v$ wkg 6/- 02
16,000 MFD $30 v$ wkg $6 /-0 a, ~$ 25,000 MFD 15v wkg 6/- ea.
KEYTRONICS, 52 Earls Court Road, London, W.8.

RECORDING
TAPES

Fully Guaranteed 7. D/P 2.400 191

B-PAK SENICONDUCTORS KING OF THE PAKS satisfaction guamurted SUPER PAKS-BRAND NEW DEPT E London W 1 Untested Semiconductors
 QUALITY-TESTEDV 100Mc/s
 6 Matched Trans. $\ddot{O C} 44 / 4 \dot{5} / 81 / 8 / 0 \ddot{D}$ 16 Red Spot AF Trans. PNP 16 White Spot RF Trans. PNP 5 Silicon Rects. 3A $100-400$ PIV 210 A Silicon Reces. 100 PIV 2 OCI 40 Trans. NPN Switching 1 12A SCR 100 PIV 3 Si. Trans. 25303 PNP 3 200Mc/s Sil Trans NPN 12 V 3 Zener Diodes $400 \mathrm{~mW} 33 \mathrm{~V} 5 \%$ 26/27 3 Zener Diodes $400 \mathrm{~mW} 33 \mathrm{~V} 5 \%$ Tol. 2 Hower Transistors i OC26 I OC35 5 Silicon Rects. 400 PIV 250 mA 1 Power Trans. OC20 100 V 4 Power Trans Diodes Sub-min. 2 Low Noise Trans. NPN 2 N929/30 8 OABI Diodes
 4 OC72 Transistors Mullard Type.. 4 OC77 Transistors Mullard Type.. 5 Metal Alloy Transistors Mat. Type 4 Sil. Rects. 400 PIV 500 mA 5 GET884 Trans. Eqvt. OC44 2 2N708 Sil. Trans, $300 \mathrm{Mc} / \mathrm{s}$ NPN... 5 GT41/45 Germ. Trans. PNP Eqve. 3 GT31 LF Low Noise Germ. Trans. 6 IN914 Sil. Diodes $7 \dddot{5}$ PIV $7 \boldsymbol{5} 5 \mathrm{~mA}$ 8 OA95 Germ. Diodes Sub-min.... 3 NPN Germ. Trans. NKT773 Eqvt. 3 NPN G ACI 30
 2 OC22 Power Trans. Germ
 2 OC73 Mullard Trans.
 4 ACl 28 Trans. NPN High Gain 3 AC127/ 128 Comp. pair PNP/N 7 CG62H Germ. Diodes Eqve. OA7i 3 AFII6 Mullard Type Trans. 12 Assorted Germ. Diodes Marked. I ORP6I Photoecon ductive cell
 4 Silicon Rects. 100 PIV 750 mA 3 AF1 17 Trans. Mullard Type 3 OC171 Trpe Trans.
 5 2N2926 Trans. Mullard Type 7 OC7I Type Trans.
 5 Trans. Heatsinks fit TOI $\ddot{8}$, SOI 2.
 22570 i Sil. Trans. Texas
 3 10A Zeners 400mW 200 PIV Sil. Rects. IS̈̈25R
 2 BCl08 Sil. NPN High Gain Trans. 1 2N910 NPN Sil. Trans. VCB100 2 N 910 $80 \mathrm{Mc} / \mathrm{s}$
 2 1.000 PIV Sil, Rect. I SA R̈S310 ÄF
 3 BSY95A Sil. Trans. NPN 200Mc/s
 3 OC200 sii. Trans. Mullard
 2 Sil. Power Rects. BYZi3 1 Sil. Power Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$
 Sil. Power Trans. NPN IOOMc/s TK201A
 6 Zener Diodes $3-1 \ddot{5} \dot{V}$ Sub-min.
 2NII32 PNP Epitaxial Planar Sil.
 3 2N697 Epitaxial Planar Trans. Sil. 4 Germ. Power Trans. Eqve. OCi6 Mullard
 Unijunction Trans. ${ }^{2 N} 26$ 亿̈ 6
 2 Sil. Trans. $200 \mathrm{Mc} / \mathrm{s} 60 \mathrm{VCb}$ ZT83/84
 Sil. Planar Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$ BSYZ5
 Tunnel Diode IN37̈20 (TÖS) G.E.. I Unijunction Trans. $2 N 2160$ TO.S
 Unijunction Trans. 2N2160 TO-S
 san G.E. Sil. Rects. 5 Ä 400 P̈V Szü̈ Type
 2 Germ. Power Trans. OC28/29
 I Tunnel Diode AEYII I,050 Mc/s
 2 STC 2712 Sil. Epoxy Planar HFE2 $2 \ddot{5}$
 6 By 100 Type Sil. Rëcts.
 25 Sil. and Germ. Trans. Mixed, ali
 10 New Power Trans. GEC replaces ew Power 4 OA1O Diodes Muliärd
 Fi E E Choice free with ordors
 TRANSISTOR MANUAL Er o.E.
 CIRCUITS, APPLICATIONS,
 $101-$
 S.CR. MANUAL er o.t. UT46, Eqve, 2N2646. Eqve. TIS43. BEN3000 7/6 EACH
 SIL. RECTS. TESTED PIV $750 \mathrm{~mA} 3 \mathrm{~A} \quad 10 \mathrm{~A} ~ 30 \mathrm{~A}$ $\begin{array}{lllll} & & & & \\ 50 & 2 /- & 3 /- & 4 / 6 & 9 / 6\end{array}$
 PAK NO. UI 120 .
 U3 AF/RF Germanium Gold Bondëd
 U4 Diodes Sub-min. Sim. OAS, OA47 u5 60200 ACl 28
 US 60200 mA Sub-min. Sil. Diodes $10 /$
 40 SiliconPlanar Transistors NPN Sim. BSY95A, 2N706
 U7 16 silicon Rectifiers Top-Hä
 U8 50 Silicon Planar Diodes DO.7
 Us Glass 20 Mixed Volim. OA200/202...
 Diodes U10 20 BAY
 U10 20 BAY 50 charge storage Diodes
 U| DO-7 Glass 30 PNP Silicon Planar Transistors
 U|2 12 Silicon Rectifiers Epoxy 500:-
 UI3 30 PN ${ }^{\text {to }} 800$ PIV 30 NPN Sil. Transistors
 U13 30 PNP-NPN Sil OC200 and 25104
 U14 150 Mixed Silicon and German-
 UI5 ium Diodes NPN Silicon … Planar. Tran. Sistors TO. 5 Sim. BFY50, 2 N697 $10 \quad 3 \mathrm{~A}$ Silicon Rectifiers Stud 17 Type up to 1,000 PIV
 UI7 30 Germanium PNP AF Transis:

 Type up to 600 PIV U19 30 Silicon NPN Transistor like
 UCIO8 ${ }^{30}$ Sill NPN Transistors like
 U20 12 1.5A $\begin{array}{lll}\text { Silicon Rectifiers Top }\end{array}$
 U21 30 AF Germanium Allö Trañ
 sistors 2G300 Series and OC71 10 IA Glass Min. Silicon Recti-
 2210 IA Glass Min. Silicon Recti-
 U23 30 MADT's like MÄT series PN̈
 U24 20 Germanium " ${ }^{\text {GA Rectifiers }}$
 GJM Series up ta 300 PIV 25 300Mc/s NPN Silicon Tran:
 u2s sistors $2 N 708$, BSY27, \cdots.
 U26 30 Fast Switching Silicon Diodes U27 like IN914 Micro-Min.
 .. $10 /-$ U27 12 NPN Germanium AF Transis-
 U28 Experimenters Assortment of Intregated Circuits, Untested. Consisting of Gates, Flip-Flops, Buffers, Registers, etc. In FlatPack and D ted Pieces
 20/Code Nos. mentioned above art given as a guide to the type of device in the Pak. a guide to the type of device in the Pak. unmarked.
 21/-
 6 VHF trans. 667 eqve.
 AFII6-117 10/-.
 0CP7I
 IMPORTANT NOTICE WE HAVE NOT CHANGED OUR NAME OR AMALGAMATED OUR ADVERTISED STOCK WITH ANY OTHER PAK FIRM. YOU CAN ONLY OBTANN BI-PAK SEMICONDUCTORS, 8 RADNOR HOUSE, $93-97$ REGENT ST., LONDON, W.I
 Set of 4 trans. comp. with circuit and building inst. for radio. All boxed 5/per set.

 IS130, BI-PAK GUARANTEE SATISFACTION OR MONEY BACK

REGEIVER8 \& COMPONENTS
(continued)

NEW PRICES ON NEW COMPONENTS

DISCOUNT 15% over E 2

HLECTROLYTIC CAPACTTORS (Lullard). $\mathbf{- 1 0 \%}$ to $+50 \%$.

Sibminiature (all values in $\mu \mathrm{F}$)						
			164	125	250	400
6.45	6.4	25	60	100	200	320
10V	4	16	32	64	125	200
16 V	$2 \cdot 5$	10	20	40	80	125
25 V	1.6	6.4	12.5	25	50	80
40 V		4	8	16	32	50
64V	0.64	$2 \cdot 5$	${ }^{5}$	10	20	32
Price	1/6	1/8	1/2	1/-	1/1	12
gmall (all values in $\mu \mathrm{F}$)						
4 V		800	1,250	2,000		3,200
6.4 V		640	1,000	1,600		2,500
10 V		400	640	1,000		1,600
16 V		250	400	640		1,000
25 V		160	250	400		640
40 V		100	160	250		400
64V		64	100	160		250
10V	2,000	3,200	5,000	10,000		16,000
16 V	1,250	2,000	3,200	6,400		10,000
$\stackrel{25 V}{ }$	800	1,250	2,000	4,000		6,400
40 V	800	800	1,250	2,500		4,060
64 V	320	500	800	1,600		2,500
Price	$8 / 8$	$9 / 9$	18/9	19/9		23/8
Clips	1/-	1/2	1/8	1/8		1/4

POLYESTHR CAPACITORE (MLullard) $0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .088,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.15 \mu \mathrm{~F}$, 11d. $0.22 \mu \mathrm{~F}, 1 /-$ $0.33 \mu \mathrm{~F}, 1 / 3$. $0.47 \mu \mathrm{~F}, 1 / \mathrm{B}$. $0.68 \mu \mathrm{~F}, 8 / 3$. $1 \mathrm{luF}, \mathrm{g} / \mathrm{B}$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,7700 \mathrm{pF}, 6 \mathrm{~d}$. $6,800 \mathrm{pF}$,
 $0.068,0.12 \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}$, 2/8. $0.47 \mu \mathrm{~F}, 2 / 8$.
Hodalas. metallised, P.C. mounting, $20 \%, 250 \mathrm{~V}$: 0.01 , $0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$
 $0.68 \mu \mathrm{~F}, 8 / 3.1 \mu \mathrm{~F}, 2 / 9$.
POLYGTYERME CAPACITORS: $5 \%, 160 V$ (unencapsulated): 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, 100 120, 150, 180, $220,270,380,390,470,660,680,820 \mathrm{pF}$ $6800,8,200,10,000 \mathrm{pF}, 8 \mathrm{p}$. $15,000,22,000 \mathrm{p}, 90 \mathrm{pF}, 7 \mathrm{~d}$,800, $8,200,10,000 \mathrm{pF}, 80.15,000,22,000 \mathrm{pF}, 9 \mathrm{c}$.
$1 \%, 100$ (encapsulated): $100,120,150,180,220,270$
$330,190,470,560,680,820 \mathrm{pF}, 1 /-1,000,1200,1.500$ $1,800,2,200,2,700,3,300,4,700 \mathrm{pF}, 1 / 8$.
$\mathbf{1}, 600$,
8,800 $8,200,10,000,12,000,16,000 \mathrm{pF}, 1 / 6.118,000,22,000$ $27,000, \quad 33,000,39,000 \mathrm{pF}, 1 / 9 . \quad 0.047, \quad 0.056 \mu \mathrm{~F}, 2 /-$ $0.068,0.082,0.1 \mu \mathrm{~F}, 8 / 8$. $0.12 \mathrm{uF}, 8 / 9$. $0.15,0.18 \mu \mathrm{~F}, 3 /-$ $0.22 \mu \mathrm{~F}, 4 /-, \quad 0.27,0.33 \mu \mathrm{~F}, 5 /-.0 .39 \mu \mathrm{~F}, 5 / 9,0.47 \mu \mathrm{~F}, 6 / \mathrm{s}$ POTRHTYOIEETERS (Carbon), miniature, lin \times itn opindle. Lin. 100Ω to $10 \mathrm{Mn}, \log .5 \mathrm{k} \Omega$ to $5 \mathrm{M} \Omega, 8 / 8$.
GTEREO POTGHTIOMETERS (Carbon). Matched tracks, $2 \ln \times$ tin spindles. 20k ${ }^{2}$ to 2 Ma . Lin. and Log., 8/8KRLIETOM PRE-SRT POTEHTIOMETERS (Carbon): in. 1000 to 5 M . Horizontal and vertical P.C. mounting. Miniature (0.3 W), 1/-. Subnin. (0.1W), 10 d .

RESISTORS (Carbon Film)
High stabllity, very low noise.
\% Range: 4.7Ω to $1 \mathrm{M} \Omega$ (E24 Series).
W, 2d. ea., over 99, 1 idd. oa.
$\frac{1}{2}$ W, 21d. ee., over 99, 2d. ea.
10% Range: 10Ω to $10 \mathrm{~m} \Omega$ (E12 Series).
WW, 1zd. ea., over $99,1 \frac{1}{2} \mathrm{~d}$, ea.
(100 off per value, $12 /-$).

(100 off per value, $18 / 9$).
SLATI-COMDUETORS: OA5, OAB1, $1 / 6$. OC44, 2/OC45, 1/9. OC71, OC72, OC73, OC81, OC81D, OC82D OC170, OC171, 8/8. OC140, AF115, AF116, AF117, 8/Also entire current Newnarket range

JACE PLTGS (itn): Black, white, yellow, green, red or blue covers, 8/s. Bcreened (heavily chromed): standard /9; slde-entry version, $8 / 8$.
JACK SOCKEXS (1 in plug): chrome facla nut. Make Make, Make/Break, Break/Break or Break/Make, panel nsulated, 2/9.
PRILTRED CIRCUTT BOARD (Vera)
 Iin $\times 3$ zin, 8/11. sin $\times 3$ itin, $5 / 6$.
0.1 in Matrix: 3 itin $\times 21 \mathrm{in}, 4 /-$, $\sin \times 21 \mathrm{in}, 4 / 6$.
$3 \operatorname{in} \times 3 \mathrm{in}, 4 / 6$. $5 \operatorname{in} \times 3 \frac{1}{2} / \mathrm{n}, 5 / 3$.

> IFTHECOM/BABY ALARM (Transistorised). Master, wlth volume control/switch, and uub fa elegant cream plastic cablneta, 4 in $\times 3$ in $\times 1$ ing, and 50 it cream lead with plugs. Exceptional reproduction and sensitivity. Facility for calling with unit witched ofl. Duitable for desk or wall mounting P. P. 3/6. (Berret bo order dieo

Send S.A.E. for May, 1968 Catelogue MinImUM ORDER VALUII SI-
C.W.O. Post and Packing if

DUXPORD EEETRONICS (PE)
Duxford, Cambs. (Sawston 3031)

REGEIVER8 AND COMPONENT8 (continued)

BAREAIN PARGELS of new. surplus Electronic Components, $3 / \mathrm{F}, 5 / \mathrm{F}, 10 / \mathrm{F}$, post free. DOLPHIN ELECTRONICS' 5 Pooles Way, Brira Close, Burntwood, nr. Lichfield.

R \& R RADIO
 51 Burnley Road, Rawtenstall

 Rossendale, LancsTel.: Rossendale 3152
VALVES BOXED, TRSTED 를 GUARANTEED

E8F80	$31-$	PCCA4	3/-	PY82
EBF89	3/6	PCF80	3/-	U191
ECC82	3/-	PCF82	3/6	U301
ECL8O	3/-	PCLE2	4/-	6F23
EF80	$1 / 6$	PCL83	4/-	IOPI4
EF85	3/-	PCLE4	51-	20P5
EF183	3/6	PL36	517	30F5
EF184	3/6	PL81	4/-	301.15
EY86	4/.	PL83	4/-	30 Pl 2
EL41	51-	PY33	51-	30 Cl 5
EZ40	4/6	PY81	1/6	30PLI3
EBC41	4/6	Pr800	1/6	30 PL 14

REPANGO Transistor Coils and Transformer. for the Constructor. Send stamp for lists RADIO EXPERIMENTAL PRODUCTS LTD., 33 Much Park Street, Coventry.

TRANSISTOM TROLYTIC)	CAPACITORS (ELEC-
320 mid 10V	
200 mfd 16 V	
100 mfd 16 V	
1/-each. $9 / \mathrm{p}$ per doz. Min. order 10/-	
20 for 20/-, 30-25/-50-35/-, 70-45/-, 40-	
30/-60-40/- 80	50/- PPostage 2/-per panel
Brand new STC sil. EPT planar tra	
$2 N 753,2 N 916, ~ B S Y 26, ~ B S Y 28, ~ B S Y 65, ~ B S Y I A, ~$	
$100+200 \mathrm{mfd} 300 \mathrm{~V} 5 / 6$.	
W.W. POTS 5, 10, 25, 50, 100, 250, 500 ohms, 1k, 2k, 2.5k, 5k, 10k, 25k, 50k, 100k, not proset 2/- each. Min. order 5/-. Postage 1/:	
33 volts. $3 / 6$ each, mostly 1 watt	
POLYSTYRENE CAPACITORS 150V: 180 , $270,330,390,470,560,680,620$ pf. 1,800, 2,200, $2,700,3,300,5,600,6,800,8,200$	
$125 \mathrm{~V}:$ 3,900, $4,700,5,600,6,800,8,200$, 4-40pf trimmers $4 /$ dox.	
BRAND NEW BOXED CHASSIS, containing 2-OC35, 2-OC29 12 WW resistors 30/-. Postage $\mathrm{I} / 6$.	
STEREO POTS. Less switeh, single spindle. 1 meg +1 meg log and 1 mes log +1 meg revi log. $7 / 6$ each.	
NEW CROSS RADIO	
6 OLDHAM ROAD, MANCHESTER 4	

BUSINE88 OPPORTUNITIE8

INVENTIONS

Electronics Manufacturer seeking new lines suitable mass market exploitation any field invites enquiries from inventors, Royalty payments guaranteed. Brief particulars to Box No. 12.
capacitors $100+200$
$100+200 \mathrm{mfd} 300 \mathrm{~V} 5 / 6$.
W.W. POTS 5, 10, 25, 50, $100,250,500$ ohms, proset $2 /$ - each. Min. order 5/\%. Postage 1/.
$5 \cdot 75,6 \cdot 2,6 \cdot 6,7 \cdot 5,9 \cdot 1,13,15,16,18,20,27,30$,
33 volts. $1 / 6$ each, mostly I watt

$2,700,3,300,5,600,6,800,8,200$
$3900,400,500,100,2,200,2,700,3,300$, 80pf ceramic 200pf S.M. any saiection $2 /$ - doz. //-doz.
ing $2-O C 35,2-O C 2912 \mathrm{WW}$ resistors $30 /$. Postage 1/6.
1 meg + I mo lass 1 wich, single spinde.
NEW CROSS RADIO
6 OLDHAM ROAD, MANCHESTER 4

DEOOA MONO/STEREO HI-FI AMPLIFIER, seven watts per channel, input sensitivity 70 mN , output impedance 15 ev . Fully tran istorized and high quality reproduction. 12.10.0. Phone PUT 3724 or call 42 Montserrat Road, Putney, S.W.15.

SERVICE SHEET8

sERVIOE SHEETS, Radio, TV, 5000 models. List 1/6. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

RADIO TELEYIBION over 8,000 Modela JOHN GILBERT TELEVISION, Ib Shepherds Bush Rd., London, W.6. SHE 8441.

GERYIOE SHEETS. RADIO, TELEVIBION, TAPE REOORDERS, 1925-1968, by return post, from $1 / 6$ with free fault-finding guide. Catalogue 6,000 models, 2/6. Please send stamped addressed envelope with all orders enquiries. HAMILTON RADIO, 54e London Road, Bexhill, Sussex.

CRESCENT RADIO LTD.

(electronic component specialists) for all regular components tr
40 Mayes Hoad, Wood Green, N. 22
For surplus components and enuipment try
If Maye Road, Wood Green, N. 22 BARGAIN BOARD
7in \times Sin board with the following components attached:

2 GET872A transistors
2 Mullard OA 10 diodes
$\frac{2}{2}$ Midzet $t W$ Resistors
12 Midget $\frac{1}{2}$ W Resistors various values
ncluding postape in Great Britain BAKGAIN CHASSIS All usable components
Ejectrolytic capacitor 100 plus 100 mF
Electrolytic capacitor 100 mF if 150 V
Electrolytic capacitor 8 mf in 450 V
Silicon (a) 600
Silicon Diodes $500 \mathrm{k} \Omega$. (1) $2 \mathrm{M} \Omega$.
2 mF 350 V
5 mixed resistors
i Transformer 6/6 each
Airspaced capaciter 50pF with
standard spindte
8 ohm transistor earpieces
Heavy duty 1.25 ohm slider resistor
Heavy duty 1.25 ohm sider
Double pole knife switches
G.P.O. 1,000 ohm relays

500 ohm midget relays, 9 V
$00 \mathrm{~m} / \mathrm{h}$ Ferroxcube choke, L.A. 3 size.
00 tangs 208/176p
witeh et transistor pot with S.P.
Twin transistor cooling clips OC8
Black and satin chrome 1 tin. knobs,
1 ktandard spindte
IkO Bercostat pot
B,S,R, arase heads
Mans indicators, yellow and green,
tinfixing verio BOARD
34×3 tin $0 \cdot 15$ pitch finsistons
2G339A
2G401
$6 / 6$ each

With our new premises in Mayes Roanch
$2 / 6$ each
now offer an prenises in Mayes Road we can ponents for the home constructor comenthusiast.

BATTERY ELIMINATORS

 The ideal way of running your TRANSISTOR RADIO, AECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: 9v; 7/v4 Pv (single output) $39 / 6$ each. P. P. $2 / 9$. $4 v$ (single output) $39 / 6$ each. P. A P. $2 / 9$.
$9 v+9 v ; 6 v+6 v$; or $4 \frac{1}{2 v}+4 i v$ (two separace ov $+9 v ; 6 v+6 v$; or $4 i v+4 i v$ (two separate
outputs) $42 / 6$ each. P. P. $2 / 9$. Please state outputs) $42 / 6$ each. A. Al P. $2 / 9$. Flease state completely isolated from mains by double wound transformer ensuring mains by 10 satety.

RE. PRODUCTS (RADIO) LTD.

πPrs Elthinator. Play your pocket radio trom the mains! Bave as. Complete component lit comprises 4 rectifiersmains drojper reaintances, amoothing plus 1/- post.

DRILL CONTROLLER
Electronically changes apeed from approrimately 10 revs. to maximum. Full power at all speeds by fingertip control Kit incindes all parts, case, every structions $18 / 8$ plua $8 / 6$ post and
 poet.

Timed switch and thermostatic switch For control of oll-fired boilera and procen ovent in fact any equipment where partd of it have to operate for ahort starting periods-but which will be awitched off immedlately should a high enough temperature be resched
The clockwork mechandarn with jewelled escapement may be set for up to 4 mins. and opreates can be set $70-900^{\circ} \mathrm{F}$. and operates more witches directly the operating temperature is reached. Made by gmith'a Electrica, brand new and perfect, 89/6 each, plus 2/9 post and ins.

TAPE BARGAINS

American made P.V.C. base 2501t, tape in mensage bores (space provided for name and addrese of reciplent), $8 / 8$ each, 4 for 14/B post paid. Other P.V.G. tape bargain oin1800ft, 8/6; 6ln-850tt, 10/6; 51in-850 ft; $9 /=; 5 \sin -1200 \mathrm{ft}, 11 / 6 ; 5 \frac{1}{4} \ln -1800 \mathrm{ft}, 18 / 6$; 61in-24001t, 88/6; 7in-1200ft, 11/6; 7in1800ft, 18/6; $7 \mathrm{in}-2400 \mathrm{ft}, 86 /-; 7 \mathrm{in}-3600 \mathrm{ft}$.
48/6. 48/6.
A.E.L FRACTIOIAL E.P. TOTOR 200/250V $50 / 60 \mathrm{c} / \mathrm{s}$ enclosed, continuous rating $1 / 40 \mathrm{~h} . \mathrm{p} .$, ex. equipt. Perfect order, 18/6, plus $4 / 6$.

When postage is not definitely stated as an extra then orders over 急8 are post free. Below 88 add $2 / 9$. Semiconductors add $1 /-$ poet. Over 21 post free. S.A.E. withenquiries please

BARGAIN OF THE YEAR

cosoasonrc 7 transistor Key chain

radio in very pretty case, size 2itiny. in \times iln-complete with toft leather 7 tranalstor superheterodyne. Frequency range: 530 and $1,600 \mathrm{kc} / \mathrm{s}$. Sensitivity: $5 \mathrm{mv} / \mathrm{m}$. Intermediate frequency $465 \mathrm{kc} / \mathrm{s}$ or $455 \mathrm{kc} / \mathrm{s}$. Power output; 40 mW . Antenna: ferrite-rod. Loudspeaker. Permanent magnet type. In transit from the kast haese hatteries were lett in them bot when batteries were lert in hiem but when shonld work perfectly-offered without guarantee except that they are new. 18/6 plus $2 / 6$ poet and fins., less batteries.

HI-FI BARGAIN

FULE TI 18 ITCH LOUDRPRAKER. This is undoubtedly one of the finest loudspeakers that we have ever offered, produced by one of this country's most famous makers. Hi-Fiload and Rhythm Guitar and public addreas
Flux Density 11,000 geuss-Tota! Flux 44,000 MaxweilsPower Handling 15 watt R.M.B.-Cone Moulded fibreFreq. response $30-10,000 \mathrm{c} / \mathrm{s}-\mathrm{Main}$ resonance $60 \mathrm{c} / \mathrm{s}-\mathrm{Ch} a \mathrm{ssis}$ Diam. 12in-12fin over mounting luga-Bafile hole 11in Diam.-Mounting holes 4, holes-lin diam. on pitch circle 11 in diam.-Overall height 5 tin. A es speaker offered for only $88 / 9 / 6$, plus $7 / 6$ P. \& \mathbf{P}. Specify three or fliteen ohms. Don't mise thite offer.

THIS MONTH'S SNIP

Electric clock with 20 amp switeh

Made by Smith's these units are an fitted to many top quality cookers to control the oven. The clock is mains driven and irequency coniroled so it is extremely witch on and oft times to be accurately set -also on the left is another timer or alarm-this may be set in minutes up to 4 hours. At the end of the period a bell will sound. Offered at only a fraction of the regular price-new and unused only 39/6, less than the value of the clock alone
 -post and ins. $2 / 9$.

CASSETTE LOADED DICTATING MACHINE

brilliantly detigned for apeed and effleiencycassette takes normal spoois drops in and out tor easy loading-all normal functions-accessoriee include: stethoscopic earpiece-crystal microphone has on/ofl switch-telephone pick-uptape reference pad-DON'T MISS THIS UNREPEATABLE OFFER-SEND TODAY, 18/19/6 plus $7 / 6$ post and insurance. Footewitch
MAINS TRANSISTOR POWER PACK Designed to operate transistor seta and amplifiers.
Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 mA (class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP' PPG and others. Kit comprises: mains transformer rectifier, smoothing and load resistor, condensers and instructions. Real snip at only 16/6, plus 3/6 postage.

THERMOSTATS

 Type "A" 15A for controlling room heaters, pointer knob. Quickly adjustable from $30-80^{\circ} \mathrm{F}$. 9/6, plus 1/- post. Suitable box for wall mounting, S/- P. \&P. $1 /-$Type "B" 15A. Thia is a 17 in long rod type made by the famous Sunvic Co. Spindle adjuata this trom $50-550^{\circ} \mathrm{F}$. Internal screw alters the settiog the this could be
adjustable over 30° to $1,000^{\circ} \mathrm{F}$. Suitable for con-
trolling froling
oven kiln, immersion heater or to mak flame-start or fire alarm, 8/6, plus 2/6 post and insurance.

ELECTRONICS (CROYDON) LIMITED

(Dept. P.E.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Cróydon Stn.)
also of 266 LONDON ROAD, CROYDON, SURREY. S.A.E. with enquiries please

Eatlo Kaltimeters EP30K, 180/-; p.p.4/6; EP10KN,
 150/-, p.p. 4/6; EP50LN, 210/-, p.p. 4/6, detalls on request.
High Stability Readitory 1%; W, $2 /$-. Full standard range plus many multimeter valuce. $\overline{5} \% \dot{\circ} \mathrm{~W}$, 4 d . range plus many multim
F'ull stock list on request.
Wirowound Resistors 1W 1%, $3 / 6 ; 4 \%$, $3 / 9 ; 1 \Omega$ to 5ka, 5 kn to $20 \mathrm{kn} 1 \%, 4 / 8 ; 3 \%, 4 / 9$. Your value wound to order.
0-50 microamp level meters, $15 /-$-, post $1 /$-.
High Res. Phones, 2,000 ת, 15/, p.p. $1 /$.
Muitimeter ITI-2, 20,000 o.p.v. d.c., $0-0,25,50$, $250,2,500 \mathrm{~V}$ d.c., $10,50,100$ 500, $1,000 \mathrm{~V}$, a.e. ; capaelty and dB ranges, $81 /-$, post 3%.

Postage extra, cash wth order.
PLANET INSTRUMENT CO. 25(E) DOMINION AVENUE, LEEDS 7

SO PROFESSIONAL THE SHKAN SPRM YURN AEROSOL WAY- Get these air drying GREY HAMMER NOW! OR BLACK WRINKLE

Yukan Aerosol spraykit contains 16 ozs. fine quality, durable easy instant spray. No osove baking required. Hammers availabie in grey, blue, zold.
bronze. Modern Esthell Black Wrinkle (Crackle) all at $14 / 11$ at our bronne. Modiern Efgsthall Black Wrinkle (Crackle) alf at $14 / 11$ at our
couter or $15 / 1$ carriage paid. ptr push-butcon sell-spray can. Also counter or $15 / 11$. carriage paid. ptr push-button seif-spray can. Also
Durable, hest and water resistant Bhack Matt finish (12 ozs. selfopray cans only) 13/月 carriage paid.
Cas only) OFFER: can plus optional cransferable snap-oh trigger handie

Mense enclose cheque or crosted P.O. for total amount to
YUKAN, DEPT.PE/G 307, EDGWARE ROAD, LONDON, W, 2. We supply many Government Departmenzs. Municipal Authoritic

- Open aH day Sazurday. Closed Thursday steernoon

Bensham Manor Road Passage, Thomton Heath, Surrey.
$01-6841665$

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new 'ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics-Practical Electronics - Radar Tech.Frequency Modulation Transistors.
ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.

CIVIL ENG.

Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.—Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG. Adyanced Radio - Gcneral Radio-Radio \& TV Servicing - TV Engineering - Telecommmications - Sound Recording - Automation - Radio Practical Radio - R
Amateurs' Examination. MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng, - Diesel Eng. Press Tool Design - Sheet Metal Work - Welding Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.Gencral Auto. Eng. - Auto. Maintenance - Repair Maintenance $\overline{\text { Auto }}$ Diesel Maintenance Auto. Diesel Maintenance--
Auto. Electrical EquipmentGarage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Se.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.EX., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

t HOW to get a better paid, more interesting job.
t HOW to qualify for rapid promotion.
K HOW to put some letters after your name and become a key man ... quickly and easily.

* HOW to benefit from our free Advisory and Appointments Depts.
大 HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

$$
\begin{aligned}
& \text { I32 PAGES OF EXPERT } \\
& \text { CAREER - GUIDANCE }
\end{aligned}
$$

PRACTICAL EQUIPMENT
Basic Pratical and Theoretic Courses for beginners in Electronics, Radio,T.V., Etc. A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam. R.T.E.B. Certilicate P.M.G. Certificate Prattical Electronics Eledtonics Engineering Practical Radio
Radio \& Television Servicing Automation

INCLUDING TOOLS
The specialist Electronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ask for details.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

POST COUPON NOW!
TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE. ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINE ERINE
OPPORTUNITIES." I am interested in (state subject, exam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

SOLID HIGH FIDELITY AUDIO EQUIPMENT bRITISHMADE POWER AMPLIFIERS - PRE.AMPLIFIERS/CONTROL UNITS - POWER SUPPLIES

16 PAGE BROCHURE ON REQUEST. No. 21 All units sold separately.

- MP3 nono preaniplififer/ control unit £6.19.6 p.p.3/.
- \$P4-A monofstereo version of MP3 £ $11.19 .6_{\text {p.p. } 4 / 6}$
- SP6-2 mono/stereo (takes mag. pick-up as well)
£ 15.10 .0 p.p. $5 /-$
- MPA12/8 12 watt ampliffer
£4. $10.0_{\text {p.p. } 2 / 6}$
- MPA12/15 12 - 16 ohm 12 watt $£ 5.5 .0$ p.p. $2 / 6$
- MPA25 25-30 watt anypiffier
£7 10.0
p.p. 3/6

PS24/40 power supply int
MPA12/3 \& MPA12/15
\&3 126
oke version $\mathrm{p} . \mathrm{p} .3$.
£4. 10.0 p.p. $3 / 6$

- MU60 power supply for MPA25 $\mathbf{~} 4.17 .6_{\text {p. . . } 4 / 6}$
All aftemat complate with grey/ailver panela and matching silver knobi.
Audio Equipment developed Rrom Dinadale ME. II-each unit or aystem wil compare iavourably with other protesaionsl equipment alling at mach higher prices. Briel details are below:

Completo swogested item:		Price
14	MP3 + MPA12/3 + MU24	115.5.0 P.p. 5/-
24	MP3 + MPA $12 / 15+\mathrm{MU} 40$	818.0.0 p.p. \%/-
4	MP3 + (2) MPA12/15 + MU40	421.2.6 p.p. \%/-
6	MP3 + MPA25 + MC60	118.15.0 p.p. $7 /-$
84	SP4-A+(2) MPA12/15+MU40	228.0.0 p.p. 8/6
10	SP6-2 + (2) MPA12/15+MU40	209.5.0 p.p. 8/6
12A	SP4-A+(2) MPA25 +(2) MU60	485.10.0 p.p. $10 /$
18	SP(6-2 +(2) MP. 25 + (2) MU60	888.17.6 p.p. 10

THE FINESTVALUE IN HIGH FIDELITY--CHOOSE A SYSTEM TO SUIT YOUR NEEOS AND SAVE POUNDS - COMPLETE RANGE OF SUITABLE PLAYER DECKS, SPEAKERS AND TUNERS IN STOCK.-ASK FOR LATEST LIST IG

NEW! INTEGRATED 7 WATT AMPLIFIER AND PREAMPLIFIER

VHY FM TUNER. Aik for Brochures 8 and 4. Si/105 Mo/s Transistor Superhet. Geared tunlng. Terrific quality and senaitivity. For valve or with dial plate. $\overline{5}$ Mulland Tramaistors, pune 4 diodes total cost $£ 6.19 .6$ FM STEREO DECODER Brochare 4 Design with stereo Indicator. For cireaif any vilve or trausistor gin. Usea pot cores to Mullard defign and ger. and ailicon transiztors. As ased by B.B.C. and G.P.O. complete Kit Price $£ 5.19 .6$ p.P. 2/8
Build a Quality TAPE RECORDER with MARTIN RECORDAKITS

and epeaker. Complete kits with MacroPHONE and 7 inl $1,2001 \mathrm{t}$ tape, spare spool.
Today's Value ess 36 gns. P.P. 22/6
\star FOLR-TRACK. Deck. Auplifier. Cabinet amil speaker. Complete kite with McroPHONE and jin 1,200ft tape, apare epool. Today's Value z60 39 ghS. P.r. 22/6

7-TRATSEFTOR

PORTABLE

NEW!
New priuted circuft design with full power output. Pully tunable on both $m w / l w$ bande. ${ }^{7}$ trited and Mullard trangistors. Easy to butld with lerrific results. All local and Continental stations. 8 Ize $10 \times 7 \times 31 \mathrm{in}$.

To BUILD Send tee Brochure if
P.P. $1 / 6$

CATALOGUE

NEW 9th EDITION 280 pages, 6,000 items 1,000 illustrations

* 25 pages of transistors and semiconductor devices, valves and crystals.
$\star 200$ pages of components and equipment.
$\star 50$ pages of microphones, decks and Hi -fi equipment.
The most comprehensive-Concise-Clear components Catalogue in 6t, Britain, Complets with $30 /-$ worth Discount Vouchers Free with every copy.

Send today $8 / 6{ }^{\text {poost }}$

Tel. 01-723 1008/9

TWO STOP SHOPPING FOR ALL YOUR NEEDS
303 Edgware Road, London, W.2. Mall Order Dept., all types of Components, Organ Dept.
309 Edgware Road; London, W.2. Migh Fidellty Sales, P.A. and Test Equipment. Record Decks, etc.

[^0]: 207 EOGWARE ROAD, LONDON, W. 2 Tel: $01.723 \quad 327$ 42 TOTEENHAM GI RD. LONDON. W. 1 Tel. $01-5802573$ 33 IOTTENHAM CT. RD., LONDON, W. 1 Tel. 01-636 2605 i52.3 FLEET STREET, LONDON. EC4 Tel.: FLEa St. 2833

[^1]: All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELECTRONICS, George Newnes Lid., $15 / 17$ Long Acre, London, W.C.2. Phone: 01-836 4363. Telegrams: Newnes London. Subscription Rates including postage for one year, to any part of the world, 36s. (C) George Newnes Ltd., 1968. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^2]: General view of the ultra-clean Flow Coating Room. Bulk of the space is taken up by the three large automated flow mills. Along the left hand walls are the "lighthouse" stations. Note the air filter bags suspended from the ceiling

