## PRACTICAL



特 1
f II Iİl） 10

多多
＊
B

## ADCOLA

SOLDERING EQUIPMENT
for the DISCRIMINATING ENTHUSIAST


APPLY DIRECT TO:
SALES \& SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE OI-622 0291


[^0]HEAVY DUTY LTT. TRANSFORMERS
Pri 220-240V. Sec. 12 V , $90 \mathrm{~A}_{4}$. Flying lead connections. $\mathbf{4 3 . 1 9 . 6 \text { ; earr, } 1 0 / 6 . ~ . ~}$ Pri tapped 190, 210, 230, 250V, Sec. $55 \mathrm{~V}, 50 \mathrm{~A}$ fi8.10.0; carr. 151-.
L. T. SUPPLY UNIT'S TYPE S.E.S
A.C. input $220-240 \mathrm{~V}$ d.c. Ourput 12 or 24 V 10 A conkinuous rating. Selenium full wave bridge rectificacion. 3 inch scale ammeter, neon indicator, housed in serong metal case. Size $17 \times 7 \times 62 \mathrm{in}$. fi4/10/=; carr. 15)-

VARIABLE D.C. SUPPLY UNITS TYPE SE.4.
$0-48 \mathrm{~V}, 10 \mathrm{~A}$ continuous from 240 V a.c. Silicon full wave bridge rectification, isolated transiormer with Variac controlled primary 3 inch scale voltmeter and ammeter. Neon indicator. Housed in strons metal case. Sixe $17 \times 7 \times 6 \frac{1}{2}$. $879 / 10 /=$; carr. $15 /-$

ADYANCE COMPONENTS LTD.
Seabilised low voltage power supply units. Type DC3. Input $200-215-230-245 \mathrm{~V}$, Output $12 \mathrm{~V}, 1 \cdot 25 \mathrm{~A}$ at $55^{\circ} \mathrm{C}$. stabilised within $\pm 1 \%$ at ull load with supply volitage variation up to t. $15 \%$ Ripple less than $1.5 \%$ R,M.S. of total outpuc. Supplied brand new. £5.10.0; carr. 10 \%.

## WONDERFUL OFFER!

SEOTCH MAGNETIC TAPE. Type 3M 459. $\frac{1}{2}$ in 3.600 feet. Suitable or video. Brand new in maker's sealed cartons. List Prise fis/lol. Our Price E3/19/6. P.P, 5/

## SPECIAL OFFER OF BLOCK CAPACITORS

BRAND NEW IN MAKER CARTON
G.E.c. $\mathrm{ImF}^{2} 600 \mathrm{~V}$ d.c. wkg, at $71^{\circ} \mathrm{C}$. Six for $29 / 6$. Carr. $7 / 6$. S.T.C. 5 mF 400 V a.c. wkge, chree for $17 / 6$. Carr. $7 / 6.5-25 \mathrm{mF} 600 \mathrm{~V}$ a,c, wkg. chree for 2216. Care. $7 / 6$. Aerovox ImF 800 V d.e. wkg., six for $12 / 6$. P.P. $4 / 6$. T.M.C. $2 \mathrm{mF} / 100 \mathrm{~V}$ d.c. wkg., $\operatorname{six}$ for $7 / 6$. P.P. $4 / 6$.

SAMSON'S (ELECTRONICS) LTD.
9.10 Chapel Street, London, N.W.I
Tel: PADdington 7851
AMBassador 5125

## 

## DON T MISS THIS

## HAVE YOU GOT YOUR LASKY＇S GATALOGUE

률 $=$ second Grest Beprint Isure Kow Bead
SPECIAL INTEREST ITEMS
DESIGNED ESPECIALLY TO REPLAY PHILIPS CASSETTE SYSTEM THE FANTAVOX TAPE CASSETTE PLAYER This machinse to the first of its type sud is clesigned opeci－ floally to replay pre－recorded tape cassettes made for the PHILIPS antl other cassetta systenng，The cassette is to play．Each cassette gives over 40 minutes play（twin track），no loss of thme in rewlnding－sinply turn casset te nver．Constant tanc apeen Jiz l．p．s．Only two coustrols otli jlay and vol，Fully transistorisel，powerful vol，built in mpeaker，socket for yersonal exrpiece．Operutes on 6 pen－ IIght batteries，Very attructively at．yled shockproof platits nabinet size $0 f \times 4 \frac{1}{3} \times 2$ tu with wrist strap．Comsplete with carpleco and batteries，There are now over 200 nuss－ rabsette titles arallable：jazz，pop，shows and classics， Thle inuchine atlowe you to play the masic of your chnice


## anywbere－anytifie． <br> LASKY＇S PRICE £7．9．6 Post $5_{i-}$

## CROWN MODEL TRF－6 AM／FM

## 9 TRANSISTOR RADIO

Unbelievably small for an AM／FM receiver－the Crown is only $4 \frac{1}{1}$ in $\times 2$ in $\times 1$ in．Super tensitive stibilised reception．AM cover：MTH $335 \overline{5}-1,605 \mathrm{ke} / \mathrm{s}$ ． FYM cover； $88-108 \mathrm{Mc} / \mathrm{s}$ ．Buperb tone reproduction． 2tIn PM speaker．Precision tuning． 6 section 14 in ）seleseople terial－elips into ride when styled and finishel cablnet in black plastic with bllver melal trim．Operates on one 9V battery． Complete with leather puree，ear－piecc and batters保 PTice $13_{2} \mathrm{Gns}$ ．
SCOOP Price £7．19．6 Poot 2／6


## MODEL C－1000 MILI TESTER

A really ting weter with＂big＂meter performance．Brief Specifica． Hon：Muveluent sensitivity $400 \mu \mathrm{~A}$ ．D，C．volts ranges： $0-10,50,250$ ， 1,000 solts，$+3 \%$ fol at 1 K OPY．A．C．vorts ranges： $10-10$ ，ons，


Lasky＇s Price 39／6 Port 2／6

## AUDIO GENERATOR Model TE－22

A new factory tested and calibrated low atortion sine whee and square wawc hudio Genera hor muintble for use with mos． quency range－Sine wave $20 \mathrm{c} / \mathrm{a}$ to $200 \mathrm{kc} / \mathrm{s}$ In four awitched ranges 20－200c／s， $200 \mathrm{c} / \mathrm{f}$ to $2 \mathrm{ko} / \mathrm{s}, 2$ 2－20kc／s， $20-200 \mathrm{ke} / \mathrm{s}$ ．（Two scales $10-90$ and $20-200$ on etched circular dal With hair－1ine cursor．）square pave as Sine waves）．Frequency rebponse $60 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{kc} / \mathrm{s} \pm 1 \cdot 0 \mathrm{~dB}$ ．Distortion less that $2 \%$ ．Otput voltage：load Impedance IMロ．7V（max．），load impe－ dance 10 ks ，$\delta \mathrm{y}^{2}$（max．）．Variable nutput amplitude control．Valve lime－up： 6BM8，12AT7，6X4．Power requirements $105 / 125 \mathrm{~V}$ or $220 / 240 \mathrm{~V}, 50 / 60 \mathrm{c} / \mathrm{s}$ a．c．Btrons snetal cabinet size $7 \times 10 \frac{1}{2} \times 5 \|$ in，finished in kever crackie，with leather carrying handle． Powrer＂on＂pillot light fitted．Complete Lasky＇s Price $£ 15.0 .0$

Branches
207 EDGWARE ROAD，LONOON，W． 2 ..... Tel：01－723 3271
Open oll day Saturday，early closing 1 p．m．Thussday33 TOTENHAM CT．RD．，LONDON，W． 1 Tel．：01－636 2605Ophen ail day 9 am -6 pm ，Monday lo Sarurdax$152 / 3$ FLEET STREET，LONDON，E．C． 4 Tel．．FLEet St． 2833Opon all day thurstiny．earfy elosing 1 pm Saturday

## MOTORING PLEASURE

## ＂EASI－TUNE＂AM／FM MAJOR <br> V．H．F．CAR RADIO

 A completely new Britishmaxie AM／EM car radto that bringe the Hi－k missions to your ear （ALL the Hew local atatime IPIL＇s neellum wavelkinl cover $180-1$
570 m and 5r0m and long wave－ tyM cover $1,150-2,000 \mathrm{~m}$ with antor： $8-108 \mathrm{Mcja}$
peature．A．F．C．） Features five EASITUNE． push buttora for wave change and lnataro aelection of three of your faviaurite atultun wave atatlons，plua fuil manum tuning．Nine transtator and four ribile circuit givas imunedate reception powerful 3 W $W$ output and superior performance at high speent．Other feat ures incluplr
 （fita nil otanlari tut－outa），Very handsome appearance，astiver／biack／ebrome finiah，Fine univeratl moundrig kit and fratruction thannal．
LASKY＇S PRICE 23 Gns．post free

## NEW ANOTHER＂EASI－TUNE＂ CAR ENTERTAINER

THE STEREO－TONE STEREO TAPE CASSETTE CAR

## PLAYER

Another Britidh first－ right on tine，right up－ to－dale the latest in
travelling plearare．Plass travel！ing pleasurc．Plasis
ALL the new great range of pHILIPS range of Pustensectes with over 250 titlean now available－ giving rou the cholee fourney（each cassettc dives feach cassette continuous to to 48 ． 48 in
stereo－Tone is compact，easy to fit and styled to enhasce aur car．Incorporates the mell proven icr onfont with indlentor，single control for start；＇stop，fast forwarel and rewind，sepp．volume， hask，treble and stereo balance controle．Tape lnading anil change arc super cany－ The stereo－Tore slldes out from ith vibration free mounting for inserting nr turnibg cussette over then puabes back for obstruction free operation．The stereo－Tone cablnet ly made from high quality seratch proof cycolace plastic in lark grey with saim siiver control panel with black knobs．size nnl so sup Tape apeed
 earth syblems．Complete with two loudgenkers，bame botrite y your choice
LASKY＇S PRICE 229.0 .0 Post FREE
TWO BAND TRANSISTOR CAR RADIO BARGAIN！

## MODEL CR－62

A new high quality imported sil traussetor superhet car radio that really breaks the cuality／price barrier．A ungque feature of this set are the four H／W band station pre－ selection buttons whlech you yourself set to your own four favourite stations－this is in ${ }_{8}^{35-1,003 \mathrm{kc} / \mathrm{a} \text { and full } \mathrm{L} / \mathrm{W} \text { band cover over }}$ $150-800 \mathrm{kc} / \mathrm{s}$（IF frequency $455 \mathrm{kc} / \mathrm{B}$ ）．Exter－ nally adjuatable rerial trimmers ensure maximum output．Slx transistor（includin笑 one frift type）and one fiode circuic negative ground 12 V exbtems（external bine fuse fittel）．Standard nounting eize $61 \times 5 i \times 2$ in－front panel fin larger all round－finished in anodiged alan intretion black push buttons．Complete with mrounting brackets，full instalfation inatruction and two bafle boards（for round or elliptical speaker）．Fulls suarantect．
LASKY＇S PRICE £9．19．6 Post 5／－
a $: 8$ tin elliptien 8 n dynamic speaker 17／6 extra－Post FREES．
gPEOLAL OFFER－LOCKTKG CAR AERLAL Model E3003 fire bection 402 extention heavy chrome telegcople wind mounting tjpe with unique locking verice to protect the
 EASKY＇s special PRICE 39／6 Poat Free with the Rojal CR－62．ePost Scp ． $8 / 6$.

## High Fidefity Audio Centres <br> 42 TOTTENHAM CJ．RD．LONDON，W． 1 Tel．．01－580 2573 Open all day Thursday，early closing 1 pm ．Saturdiay

118 EDGWARE ROAD，LONDON，W． 2 Tel： 01.7239789 Open all day Saturday，early diosing 1 p．m．Thursday

11
PPs EHiminator. Play your pocket radlo from the malna! Seve fa, Complete component kit comprisea 4 rectiferscondemer and instructlons. Only 8/8 plus 1/- pont.

## miniature wafer switches



4 pole, 2 way- 8 pole, 8 way- 4 pole.
8 way- 2 pole, 4 way- 3 pole, 4 wsy - 2 pole, 6 way- 1 pole, 12 way. All at $8 / 6$ each, $88 /$ - dozen, your assort ment.

## WATERPROOF HEATHGELEMENT

 26 yards length 50W. Selt-regulating temperature control. 10/: post iree.A.E.E. FRACTIONAL R.P. MOTOR. $200 / 250 \mathrm{~V}$ $50 / 60 \mathrm{c} / \mathrm{s}$ enclosed continuous rating $1 / 40 \mathrm{~h} . \mathrm{p}$. Ex. equfp., perfect order. $19 / 6$ plus 4/6. A, C. FAT, Poweriul mains motor with $6 \frac{1}{2} \mathrm{~m}$, blade. Ideal blow or extract. 17,6 plue $3 / 6$.
 tin. thick (approx.). 8/6 each, Charger for two cells 12/6,
OIFTHERMOSTAT. Teddington type T.B.B. with capillary tube and sensur adjustable by knob (not eugplied) controls i h.p. motor or up to $1 \overline{5} \mathrm{amp}$. reastive lood. 9ib.
5 PUSE 8WITCE, One push operates nialns ondort switch the other four operate varjous onforl and change/over owitchea. 2/6.

## QUICK CUPPA

Mini Immerion Heater, 800W, $200 / 240 \mathrm{~V}$. Eolls full cup in about two misutes. Cise any oocket or laup holder. Have at bedalue for tea, baby's food, etc. 19/6, post ami insurance $1 / 6$.

## NO SOLDERING POCKET 3



Lots of fun to buifl and good revalto when kit with detalled Ingtrac kit with detalled instracBatteries $1 / 2$ extra- 05 yatu only 10/6, plus $3 /-$ post and ina.

DRILL CONTROLLER
Etectronically changes speed from approxinutely 10 revs to maximum. Full power at all speeds by Hinger-tip control. Klt fneludes all parts, case, everything and full instruc-
tions 10/6 pius $2 / 6$ post and insurance. up 38;8. availisble made up 32

## CENTRIFUGAL FAN

Centrifugal blower or extractor by Torríngton, very low nolse but large capactiy air flow, designed for central heating and alr conditioning, Idea. afso for fume extraction over cooker, duct type


## THIS MONTH'S SNIP

Futl-Fi 12in. louxispeaker. This is undoubtedly one of the finest loudspeakers that we have ever offered produced by one of this country"s nost famous makers. It has a die-cast metal frame and la strongly recommended for H1-Fi load and Rhythm Guftar and public address. Flux Denefty 11,000 gauso-Total Flux 44,009 Maxwelle; Power Handiligg 15 watts r.t1,.s. Cone Moulded fibre: Freq. reaporias $30-10,000 \mathrm{c} / \mathrm{s}$ Input Imperlance 15 ohma; Math resonance to cisi Chasals Diam. $121 \mathrm{~L},-\mathrm{J} 2 \mathrm{sin}$. over mounting luga bame hole tha. $11{ }^{2}$ in



GARRARD AUTO RECORD PLAYER Model 3000
This is one of the Inateat profucts of the This is one of the latest profucus of the record reproducers. Jts superlor teatureu ficlude-automatic playing of up to K snixed size records-stopping and startlug without rejecting-manual playing-pick-up plvolu to give low stylus pressure-large din. incter turntable far nutx, stability. Adjustnents instude pick-up height-plok-up ITropping position auit tytuz pressure, Size is $13 \ddagger \times 11$ in. clearance 41 in. above, 2fiu. below. Fittesl with the very superior ceramic stereo cartridge type 9TAHC with dianond utylif which is ligted at over $\mathbf{E f}$. Price complete 210.9.6, carr. and insurance $7 / 6$.

INFRA-RED BINOCULARS


These intra-red binoculars when fed trom a high These infrared binoculars when fed rom a high dark, provided the obsects are in the rayn of an infra-red beam. Eech eye tube contaling a complete optical lens ayutem as well as the infra-red cell. These optlial syalems can be used as lensen for TV cameran-light cellh, etc. (detalla supplied). The binocularg form part of the Army night driving (Tabby) equlpment. They are unused and believed to be in good working order but sold without a guarantee. Price $\mathbf{E 3 . 1 7 . 6 , \text { plua 10/4 carr. and ins. }}$ Handbook $2 / 6$.


MAINS MOTOR
Precilion made-ag uned in record decks and tape recordert-Ideal also for extractor fana, blower; henter, etc. New and perfect. Snip at 9/6, Postage $3 /$ for frat
one then $1 /$ for ench oue then $1 /$ - for each
one ordened. 12 ane ordened. 12 and
free.

## MAINS TRANSISTOR POWER PACK

Desigued to operate transistor seto and amplifiers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 mA (class is working). Takes the place of any of the following batieries: PP1, PPS, PP4, PP6, PP7, rectifier, smeokling and lokd realator, condensers and fastructions Real mity of only 18/6 plas $3 / 6$筑d -
Where poatage is not definltely atated as an extra then ordera over 48 are post free. Below 83 add 2/p. Semiconductora add i/- post, Over 81 poot free. 8A.A. w. with enquirles pleame.

## ELECTRONICS (CROYDON) LIMITED

(Dept. P.E.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY S.A.E. with enquiries please

## m <br> ADD-ON-ABILITY THRILLING POWER DEPENDABILITY

 GENUINE ECONOMYHow would you tike to start with a simple ampliffer, say, and add to it until it became a fully stereo twenty watt amplifler with FM tuner and faclilties to take the most sensitive low output pickups ever made? With Martin Audiokits it's easy, for with these superbly engineered all-transistor prefabricated units, suecess is built in from the start and you build to your own preferred plan. IT'S A MONEY SAVING SCHEME, TOO.

- Trade enquiries invited.

Details from:MARTIN ELECTRONICS LTD., 155 High Street, Brentiord, Middlesex. ISLeworth |I6I

## TO MARTIN ELECTRONICS, 155 High Streef

 Brentford, MiddlesexI have not had your leaflets before. Please send them on AMPLIFIERS $\square$ FM TUNER $\square$ RECORDAKITS $\square$ (Tick as required)

## NAME.

ADDRESS
PE 6

PARKERS SHEET METAL FOLDING MACHINES heavy vice MODELS

## With Bevalled Former Bars



No. 1. Capacity 18 gauge mild steel $\times 36 \mathrm{in}$, wide
$\pm 12.10 .0$
No. Capacity is gauge mild steel $\times 24 \mathrm{in}$. Wide
87.5 .0

Also new bench models. Capacities 48 in . $\times 18$ gauge 640 . 36 in, $\times 18$ gauge E25. $24 \mathrm{in}, \times 16$ gauge $\mathbf{E 2 4}$. Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36 in . model, $5 / 6$ per ft . Other models $3 / 6$. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals, One year's guarontee. Maney refunded if not satisfied, Send for details.
A. B.PARKER, Folding Machine Works, Upper George 51., Heckmondwike, Yorks. Keckmondwike 3997


SANW/
USED THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY'RELIABILITY, VERSATILITY, UNSURPASSED TESTER PER6 Months' Guarantee * Excellent Repair Service Model P-IB 6376
45100
Modal JP-5D.
Model U-50D
Model $360-\mathrm{YTR}$
Plense write for illustrated leaffets of these Sanwa Metors

When you buy a British made Antex miniature soldering iron you are buying a specialised precision instrument that has proved its success in the majority of leading companies in the electronics industries throughout the World. These are professional irons for the man who wants the ultimate in precision soldering. The versatility and accuracy of an Antex iron will give you fingertip control over any soldering problem. Send for your Antex iron now. Or you may have our colour catalogue. Simply complete the coupon.
CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}$ ( 1 mm ) up to $3 / 16^{\prime \prime}$. For 240 , 220.110, 50 or 24 volts.

From Electrical and Radio Shops or send cash to Antex.

## Complete precision

 soldering kit

This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted $\frac{3}{16}{ }^{\prime \prime}$ bit.
- Interchangeable spare bit, $\frac{5}{32}{ }^{\prime \prime}$.
- Interchangeable spare bit, $\frac{3}{3 z}{ }^{\prime \prime}$.
EReel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.
From Electrical and Radio Shops or send cash to Antex.


Antex. .Grosvenor House, Croydon, CR9 10E Telephone 01-686 2774


$\stackrel{1}{\frac{1}{3}}$ AMF
63.10.0.

INPUT $230 / 240 \mathrm{v}$. A.C. $50 / 60-$
OUTPUT YARIABLE $0-260 \mathrm{v}$ OUTPUT VAR
BRAND NEW


PORTABLE TYPE
49.5.0. Keenest prices in the country. All Types (and Spares) from $\frac{1}{1}$ to 50 mmp . from stock. SHROUDED TYPE 1 amp, $65.10 .0 . \quad 2.5$ amps. C6. 15, 0. 4 amps, ©9. 0. 0 . $5 \mathrm{amps}, 69.15 .0$. £14. 10. 0. 10 amps, $£ 18.10$. 0.
12 amps, $£ 21.0 .0$. 15 mps ,
 37.5 amps , £72. 0. 0. 50 amps , 692. 0.0. OPEN TYPE (Panel Mounting) $\frac{1}{2}$ amp, E3. 10. 0. I amp, E5, 10. 0. $2 \frac{3}{2}$ amps, 6 . 12.6.
PORTABLE TYPE 1.5 amp. portable fitted metal case, volvmecter, tamp, switch, etc. 69.5 .0 .


## 100 WATT POHER RHEOSTATS (NEN)

AVALLABLE II THE FOLLOWIMB VALUES
$I$ ohm, 10 2.i $5 \mathrm{ohm}, 4.7$ 3.; 10 ohm, $3 \mathrm{a.i}$ $25 \mathrm{ohm}, 2 \mathrm{a} ; 50 \mathrm{ohm}, 1.4 \mathrm{a} ; 100 \mathrm{ohm}, 1 \mathrm{a}$. $250 \mathrm{ohm}_{1}, 7$ a.; $500 \mathrm{ohm}, .45 \mathrm{a.i} 1,000 \mathrm{ohm}$, $280 \mathrm{~mA} ; 1,5000 \mathrm{hm}, 230 \mathrm{~mA} ; 2,500 \mathrm{ohm}, .2$ a. Diameter 3tin. Shaft length ${ }_{8} \mathrm{in}$., dia. $\mathrm{J}_{4}^{5} \mathrm{in}$. All at $27 / 6$ each. P. \& WA/b.

50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ${ }_{25}$ ohm, $21 /$ WATT. \& P. $1 / 16$. $/ 50 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, I4/6. P. \& P. I/6. 200-250 v. A.C. 20 amp . contacts twice on, ewice off, at any manually pre-set time. Spring reserve (in case of power cut) fully tesced 63/9/6. P. \& P. 4/6. Or complere © $\mathbf{6} / 19 / 6$, plus $4 / 6$ P. \& P P. case (illustrated) with solar plis) 46 P. \& P. Can be supplied with solar dial,
Prices as above.

Available in red. whice yellowinals and green. New $17 /$ per
$230 / 250$ V. A.C. SOLENOID Heavy duty type, app
$17 / 6$ plus $2,6 \mathrm{P}, \& \mathrm{P}$.

I2/24V. D.C. SOLENOID
Approx. 8 oz. push. Price $8 / 6$ plus $1 / 6$ P. \& P.
PRECISION INTERVAL TIMER
From $0-30$ seconds (repetitive). Jewelled balanced movemenc.
Operates
230 V . A.C. 5 amp. $/$ re-sec. switch. New. Price $17 / 6$ plus $2 / 6$ P. \& P. CONDENSERS 2,500 mid 100 v . $12 / 6$ 1/6 P. \& P . $4,000 \mathrm{mid} 25 \mathrm{v}$. $10 \mathrm{~J}-1 / 6 \mathrm{P}$. \& P. $4,000 \mathrm{mid} 50 \mathrm{v}$. $15 /$ $1 / 6$ P. \& P. $10,000 \mathrm{mfd} 35 \mathrm{v}$, $15 /-1 / 6 \mathrm{P} . \&$ \& P. CONSTANT VOLTAGE TRANSFORMER Input $185-250$ v. A.C. Output 230 V A.C. Capacity 250 watc. Atcractive metal case.
Fitted red signal lamp. Rubber feet. Weighe 17 lb . Price $611 / 10 / 0$. P. $\&$ P. $15 /$ -

## SELENTUM BRIDGE RECTIFIERS

## 30 volt 3 amp., $11 /$., plus $2 / 6$ P. \& P

## - RADIO

## ALTIMETER

This precision instrument, built
co highest Ministry specification, is based on a 24 v . LOW INERTIA Incegrating Motor. The Motor, fitced with gold brushes and drawing only 800 microamp at 24 V. D.C., drives two precision pots with platinum wipers through close tolerance gear-trains, including
miniature stipping clutch, combined with two subminiazure pots for calibrating the electrical bridge circuit. The -3 in. calibrated dial, with $a$ number aperture indicating one rev, per revolucion of pointer of approx. 30 in . Offered as fraction of Manufacturer's price, 32/6. P. \& P. $6 /$

LLIGHT SENSITIVE SWITCH
Kit of parts, including ORPI2 CadTram Sulphide Photocell, Relay, Transistor and Circuit, etc., 6-12
vole D.C. op. price $25 j-$ plus $2 / 6$
$P$ \& P. ORP P. \& P. ORP 12 including circuit. 10/6 each, plus 1/-P. \& P.
A.C. MAINS MODEL Incorporates Mains Transformer, Rectifier and special relay with 3.5 amp mains c/o contacts.
Price inc. circuit $47 / 6$ plus $2 / 6 \mathrm{P}$. \& P. LIGHT SOURCE AND PHOTO CELL MOUNTING precision engineered
light source with focu
light source with focusible--
lens assembly and ventilated
lens assembly and ventilated
lamp housing, to take MBC bulb, Separate photo cell mounting assembly for ORP, 12 or similar cell. Both units are single hole fixing. Price per pair E2.15.0. P. \& P. 3/6. RESETTABLE HIGH SPEED 1 COUNTER. 4 figure, $1,000 \mathrm{ohm}$ coil. 136-48 V. D.C. operation. $63 / 10 / \mathrm{F}$ P. \& P. \& P. $1 / 6 . \quad$ REY SWITCHES. New special offer of Ory Read Switches half amp. Contact. Size $1 \times \%$. 4 for $10 /$
MINIATURE UNISELECTOR SWITCH 3 banks of 11 positions plus
homing bank. 40 ohm coil
24-36 V. D.C. operation
Tested. $22 / 6$, plus $2 / 6$ P. \& $P$.
1,63
Cested. 22/6, plus 2/6P. \& P
COMPACT HEAVY DUTY 6V. D.C. RELAY 2 change over 30 ohm coil. $7 / 6$ each. IP. \& P. 1/6. 3 for 20/-, Post paid. NICKEL CADMIUM BATTERY Sintered Cadmium Type $1 \cdot 2$ y. 7AH. Size: height $3!$ in., width $28 \times 13$ in.
Weight: approx. 13 oz. Ex-R.A.F. Tesced. 12/6. P. \& P. 2/6.

## SANWA MULTI RANGE METERS

[ New Model USOD Multi tester, 20,000 OPV, mirror scaled with overload protection. Ranges-d.c. volts: 100 mV . 2.5 v., 10 v., 50 Y., 250 v., 1,000 v.; D.C. current: $5 \mathrm{FA}, 0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}$,
250 MA . Complete with battery and test $\{250$ MA: Complete with battery and test 1 models available from stock. Descriptive
leafler on request. -100 THYRISTOR 400 piv, $5 \mathrm{amp} ., 14 / 6$
THYRISTOR 400 piv, $8 \mathrm{amp} ., 28 / 6$ $220 / 240$ У A.C. COOLING UNIT [ 2,300 r.p.m. $6^{\prime \prime}$ blade size. Amooth powerful motor. | All metal construct Individually tested.
Offered at fraction of maker's price. $\mathbf{C 2 . 1 5 . 0}_{\text {P. \& P. } 7 / 6}$

## SANGAMO WESTON

 Dual range voltmeter. 0-5and $0-100 \mathrm{v}$. D.C. FSD I m/a.
In carrying case with test prods and leads, 32/6, P. \&


## A.C. CONTACTOR 2 make +2 break (or, 2

 2 make +2 break (or, 2c/o.) 15 amp. contacts.
$230 / 240 \mathrm{~V}$. A.C. operation. 230/2d $\begin{aligned} & \text { new. A.C. operation. } \\ & \text { Brice 22/6 plus } \\ & 1 / 6 \text { P. \& P. }\end{aligned} . \begin{aligned} & \text {. }\end{aligned}$.

## SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN CLOSED SATURDAY

Personal callers only 9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

## ELECTRONIC BROKERS LIMITED

## SYMCHRONOUS TIMING

HOTORS EY HAYDON (illus.),
a high quality d.e. motor, 400 z corque at 3 r.p.m. 3 r.p.m. $12 V$. r.p.m. 12 V , J/12 r.p.m. 30 V 1/15 rip.m. $24 V_{1} 160$ r.p.m. OURPRICE
$28 V, 1 / 120$ r.p.m. $28 V$. Lise $£ 7$. OUR E3.3.0.
HYSTERESIS CLUTCH MOTOR with ineegral clutch allowing the motor to drop out of engagement with the gear train, thereby facilitating easy resesting when used in timers or in conjunction wirh a light spring, 60x torque at is r.p.m. ${ }^{2}$ r.p.m. $\mathrm{L}_{1} 88$ r.p.m. R and L; 6 r.p.m. Li
 12, 就 r.p.m. 25

## HIGH TORQUE INDUCTION MOTOR MP 10.

Useful for cycle timers. Moxorised valves, advertising display unit. 30 ozlin at 1 r.p.m. 30 r.p.m., 20 r.p.m. Right, 6 r.p.m., 4 r.p.m.
 PRICE 15\%
LOW TORQUE HYSTERESIS MOTOR MA23
(illusi). Ideal for instrument chart drives, extremely quiet, uneful in areas whero ambient high starting torque a relatively high inertis load can be
driven. 60 /in at 1 r.p.m. 240 driven. 6oz/in at 1 r.p.m. 240
volts, 50 eycles, 10 r.p.m. R; r r.p.m. $R$ and $L ; \frac{1}{\frac{1}{3}}$ r.p.m. L; $\frac{1}{2}$ r.p.m. ; $\frac{1}{8}$
 त्रिए r.p.m., हुत r.p.m., 与हो it r.p.m., 2-2 way friction. $25 /$... HYSTERESIS REVERSIBLE MOTOR. Incorporating two coils. Each coil when energised shafe, 240 volt, 50 cyele. 15 r.p.m., 6 F.p.m., r.p.m., $\frac{1}{4}$ r.p.m.e, $\frac{+}{8}$ r.p.m., $\frac{1}{t}$ r.p.m. 120 volt, 60 cycles, th r.p.m. $80 /$ reduced $8030 \%$.
DELAY TIMER BN4Z consisting of D.P.D.T. ralay, a pilot duty switeh, a clutch motor and an
aecuator, 240 volt, $50 \mathrm{c} / \mathrm{s} 10 \mathrm{~min}$., 13.5 sec ., 120 sec. E4,4.0.
CYCLE TIMER (illus.). Repeats aser cycle or sequence of whe moto operations as long as Iminot 2 min ., 3 min ., 4 min . 5 min . $35 /=$
REPEAT CYCLE TIMERS Y3CB. Intorporating a timing motor which drives one or more cams for set period of time. 8 microswizches. One minute or 2 minutes. E5.5.0.
PROGRAMME TIMERS.
voles- 50 min, 30 min., 44.4.0. DPII RESET TIMERS (iillust.).
$240 \mathrm{~V}, 50 \mathrm{cyclen}, 6 \mathrm{sec} ., 4 \mathrm{~s} / \mathrm{m}$.

## PEN RECORDERS

Ellote Bros, 3-7/8983. A single Pen Recorder. 5 mA complete with Sweep and Recording Unit Trpe 1168 A . Voltage range $0-5 \mathrm{~V}$, $0-10 \mathrm{~V}$, -25. 227.10 .0 .
Southers Instruments Two Pen Recorder. Complete with Amplifier and 4-speed gearbox Kelv
Twoin \& Hughes Two Pen Recorder, 889, Two pens atcivared mechanically by inn Charc wideh 1.3 in. Driven by Synchronour Motor
Sangamo Westen 57 Motory ${ }^{\text {rev }}$
per hro
E7.10.0.

- It thould be noted a wido range
of chart speeds can be achieved by the replacement of the motor.
Portable Sinfla Pen Recorder by Record Elactrical (illus.). 3 in
Chail res. 1.53 ka . Fully
interchangtable gears availo ablo make wide range Size $8 \times 11 \times 6$ in. Brand new, comp. with chart and ink. List over fioc. OUR
 PRICE E49.10.0.
Elliot Portablo singla Pen Recordar, 3tin chart. Sensitivity 500 mA . I and 6 in per 229.10.0.

ELECTRONIC BROKERS LTD.
8 BROADFIELDS AV., EDGWARE MIDDLESEX
TEL: 01-958 9842

# S.B.-Superb Bargains Every Month 

## The greatest High Fidelity Bargains ever offered

STEREO AMPLIFIER, $13 \frac{1}{2}$ gns, only. Retail value 27 gns. A Fully Transistorized High Fidelicy Stereo Amplifier complete in free standing case. Swisched input facitities. Socket (1) tape or crystal P.V. (2) radio tuner. (3) ceramic P.U.-mike. Controls: Volume, Bass, Treble, Balance, Input Selector Switch, Stereo/Mono Switch. Facia plate rigid perspex with black/silver background and matching knobs.
Output 6 watts per channel (R.M.S.) 12 watts Mono. Free response to 3dB, 20-20,000c/s bass boost approx. $10-12 \mathrm{~dB}$. Treble out 2-16dB approx. Negative feedback $\rightarrow 18 \mathrm{~dB}$ over main amp.

12 months' unconditional guarantee. P./P. 6/-.

- BARGAIN-High Fidelity Sterea Amplifier. Our Price 7 gns. only. Retail value 16 gns , Complete in free standing case. Ideal for crystal or ceramic P.U., Tape, Radio, Tuner. Fully integrated. Rigid perspexfacia plate black/silver matehing knobs.
Output 4 watts per channel R.M.S. 12 months' unconditional guarantee. P/P, 5/6.
- BARGAIN-High Fidelity Mono Amplifier. Our price 7 gns. only. Retail value 14 gns . Providing excellent results at all outpur levels and complete in free standing case. Frequency response: $3020,000 \mathrm{c} / \mathrm{s}$ 2dB. Sensitivity: 5 mV (max.). Harmonic distortion: $0.5 \%$ at $1,000 \mathrm{c} / \mathrm{s}$. Output: 3-8-15 ohms, Input: Mike, Gram, Radio, Tuner, Tape Recorder. Inpuc selector: facia rigid perspex black/siiver with matching knobs.
Output 6 watts R.M.S. (certified). 12 months' unconditional Output 6 Watts R.
BBARGAIN-CHANGER DECKS AT LOWEST PRICES EVER

| Garrard | 1,000-1,025 | £6.5.0 | P./P. $7 / 6$ |
| :---: | :---: | :---: | :---: |
|  | 2,000-2,025 | 66.15.0 | P./P. $7 / 6$ |
|  | 3.000-3,500 | 68.19 .6 | P./P. 7/6 |
|  | AT/60 Mk II | ¢12.10.0 | P./P. $8 / 6$ |
|  | SP25 Mk. II | E10.15.0 | P./P. 8/6 |
|  | LAB80 Mk. II | $\pm 23.10 .0$ | P./P. 10/6 |
|  | SRP22 | ¢4.10.0 | P./P. 5/6 |
| B.S.R. | UA/25 | ¢6.5.0 | P./P. $7 / 6$ |

Plinths to suit aff the above. Beautifully styted and first grade manufacture, E2.5.0. P./P. 5/-.

- BARGAIN-A superb Mains Tuner. Our price 6 gns. only, Retail value 12 gns. A.M. superhet transistor unit with own ferrite aerial. Simply add to any of our amplifiers for outstanding results.

12 months' unconditional guarantet. P//P, 5/6.
BARGAIN-F.M. Mains Operated Tuner. Our price 8 gns. only16 gns . value. 6 transistor S/M horizontal dial, 2 I.F. stages, coupled double tuned discriminator terminating in I.F. Ample output for all amplifiers.

12 months' unconditional guarantee. P./P. 5/6.

- Bargain-i.W.-A.M.-F.M., Mains Operated Tuner. Our price is gns. only. Retail value 30 gns . Fully transistorised. Output 5 mV . exceptional sensitivity and selectivity on all bands. L.W. $180-360 \mathrm{RC} / \mathrm{S}$, A.M. $600-1.400 \mathrm{kc} / \mathrm{s}$, F.M. $88 \cdot 108 \mathrm{Mc} / \mathrm{s}$. This unit is complete with aerials, three-band horizontal dial.

12 months' unconditional guarantee. P./P, 6/6.

- BARGAIN.-Record Player Amplifiers, $47 / 6$ only. EL84 output, two controls, flying panel, a.c. mains operated. 230-240V. Now inc. chassis, fully buitz and tested.

12 months' unconditional guarantee. P./P. 2/6.
BARGAIN-Record Player Amplifier Unit. 52/6 only. Complete with valves (UCL 82) output. Fully built and tested, mounted on board with $\operatorname{Sin}$ round speaker. Knobs supplied, all leads attached ready for instant connection to your curntable.

12 months' unconditional guarantee. P./P. 3/6.

- BARGAIN-Record Player Cabinets. Our price $52 / 6$ only. Retail value 4 gns . Strongly built wooden frame, two-tone gils fittings, carrying handle, suitable for any amplifier, ample space for speaker. Matching Garrard or B.S.R, cut out board supplied free of charge. Ma/P. 5/-.
BARGAIN -Speakers-Scandard, 5 in round, $7 \times 4 \mathrm{in}$ elliptical, 8 in round, all 3 ohms. Our price 15/.. P./P. 2/6.

BARGAIN-Speakers, Hi-fi-E.M.I. $8 \quad 5 \mathrm{in}$ elfiptical, 12.000 lines gauss, Alcomay magner, rating 5 wates, 3 or 15 ohms. Sold elsewhere at 50/-, Our price 27/6.
BARGAIN-Speakers, Hi-fi-E.M.I. 13 . 8 in elliprical, 13,000 lines gauss, Alcomay magnet, rating 10 watcs, 3 or 15 ohms. Sold elsewhere at $£ 4.0 .0$. Our price $47 / 6$.

Brand new, 12 months' unconditional guarantee, P.!P. free.

- BARGAIN-Speakers, Hi-Fj-The Baker Selhurst De-Luxe Scalwart, 12 in round, 15 wate rating, 12,000 tines gauss, 3 or 15 ohms. response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solid aluminium chassis. Our price $\mathbb{1 , 1 9 . 6}$.

Brand new, 12 months' unconditional guarantee, P./P. 6/6.
BARGAIN-Speakers, Hi-Fi-The Baker Selhurst Guitar Group 25, 12 in round, 25 watt rating, 12,000 lines gauss, 15 ohms, response $30-10,000 \mathrm{c} / \mathrm{s}$, solid aluminium chassis, heavy duty cone. Our price $\mathbb{6}$,19.6.

Brand new, 12 months' unconditional guarantee. P./P. 6/6.
Cartridges All Bargain Prices

| Sonotore-9TA/H,C. Sapphire (Stereo) | ¢2.0.0 |
| :---: | :---: |
| Sonotone-9TA/H.C. Diamond (Stereo) | ¢2.3.0 |
| Sonotone 2T/Ceramic H/C (Mono) | £1.2.0 |
| Acos GP91/3 (Mono) | 61.0.0 |
| E.R. S.M.B, Crystal (Mono) | ¢1.0.0 |
| E.R. S.M.B. Ceramic (Mono) | ¢1.0.0 |
| E.R, S.M.B.X, Ceramic (Stereo) | ¢1.5.0 |
| T.C.8. H. (Mono) | ¢1.0.0 |
| T.C.B. M. (Mono) | $\leqslant 1.0 .0$ |
| C.I. Stereo | E2,2.0 |

All cartridges are supplied with fixing brackets and serews at no extra cost. P./P. on all above $2 / 6$.

- BARGAIN-"Phillips" Intercom System. Our price $59 / 6$ only. Retail value $\{6.6 .0$. This equipment is ideal for baby alarm, office, home and hundreds of other uses. Absolutely brand new in handsome presentation case containing all leads, etc.

12 months' unconditional guarantee. P./P. 3/6.

- BARGAIN-car radios. Our prica 9 gns., retail value 16 gns. Negative or positive earth (switched), famous brand name, fully transistorized (I2V), medium and long waves, chromium escutcheon. Speaker and fitting kit supplied at no extra cost.

12 months' unconditional guarantee, P./P. 7/6.
BARGAIN - car aerizis. Our price $22 / 6$ only, retail value $37 / 6$. Heavy chrome plate, retractable. A snip-buy while stocks last. Brand new in maker's package.

- BARGAIN-Slimline T.V. receivers in mint condition, 17. 19, 21 in , checked complete and working but less I.F. strip. Our price 69.10.0 only. I.F. strips supplied at $45 /$ - if required. Ficting charge for I.F, strip if requested $£ 2.2 .0$. P./P. T.V. set $30 /-$. P./P. I.F. strip $5 /-$, If purchased together 30/-. Personal collection advised otherwise despatch at customer's risk.
- BARGAIN-Car Radio Portable. Our price 41, gns, only, retail value $7 \frac{1}{8}$ gns. Single wave band (medium), fully transistorized, ideal for home or car. A beautiful radio, the performance has to be heard to be believed.

12 months' guarantee. P./P. 4/6.
Free with this radio, suitable window mounting car aerial.
BARGAIN -Diodes. Our price $\mathbb{6} .0 .0$ for 750 in 750 locs onlyassorted.

# S. B. ELECTRONICS <br> ATLAS HOUSE CHORLEY OLD ROAD BOLTON BOLTON 25881 

## true to specification

 SIVGLALR DESBIS
## Q. 14 сомраст HIGH-FIDELITY LOUDSPEAKER



- Size $9 \frac{7}{8} \mathrm{in} \times 9$ in $\times 4 \frac{3}{8}$ in deep plus detachable base. © 15 ohms impedance - Up to 14 walts loading. Smooth respanse between 60 and 16.000 Hz British manufacture

When Sinclair Radionics decided to design and manufacture a new loudspeaker, it was required from the start that its performance should be worthy of today's best high fidelity standards and be so reasonably priced that the greatest numbers could afford it. By using ultra-low resonant materials to form its acoustically contoured housing, outstandingly brilliant performance resulted. Furthermore, the unusual form of the Q. 14 meant it could be used as a free-standing shelf speaker, as a wall-corner sound radiator or flush mounted singly or in multiple units on a flat surface such as a wall. The correctness of the design of the Q. 14 has amply proven itself since within a few months of its introduction, it is already amongst the four most demanded loudspeakers irrespective of price. Independent laboratory tests have already shown that the Q. 14 has amazingly good performance characteristics. As a judge of good sound yourself, your ear will confirm this instantly. At its price, there is nothing to stop you changing to Sinclair at once.

The Q. 14 is finished in matt black with solid aluminium bar embellishment on the front. Supplied in strong fitted. carton and sent post free under money back guarantee if you are not satisfied.


SINCLAIR RADIONICS LTD., 22 Newmarket Road, Cambridge Phone OCA-352996


# COMBINED 12 WATT AMPLIFIER AND PRE-AMP 

Buill, tested and guaranteed. 89/6

No constructor's transistor amplifier has ever achieved such success as the Sinclair 2.12. It favours the user in so many ways-with fantastic power-to-size ratio, with far greater adaptability, with freedom to operate it from batteries or mains power supply unit (the new PZ.4 is ideal for th/s) and with the opportunity to obtain superb stereo reproduction for very little outlay. Countless thousands of Z.12s are in use throughout the worid in hi-fil installations, electronic guitars and organs, P.A. installations, intercom, systems, etc. This true 12 -watt amplifier is supplied ready built, tested and guaranteed together with the $\mathbf{Z . 1 2}$ manual which detalls a number of control circuits enabling you to match the $\mathbf{Z}, 12$ to your precise requirements. For complete listening satisfaction, use your $\mathbf{Z} .12$ system with $\mathbf{Q} .14$ loudspeakers. It assures superb quality with substantial savings.

## SINCLAIR PZ. 4 STABILISED MAINS POWER UNIT

A heayy ducy seabilised power supply unit of advanced design developed specially for systems using ene or more $\mathbf{Z}, 12$ s. For running from standard A.C. Mains supplies, the PZ. 4 delivers 1 QV. D.C. at l.5A. Supplied built, tested and guaranteed.

SINCLAIR STEREO 25

- inpur switch in/TreblejBass/Volume/Balance Controls
- Sensitiviey for 10 watts into 1.5 ohms per channel Mic. $=2 m \mathrm{~V}$ into 50 K ohms Radio- 20 mV into 4.7 K ohms
- Equalisation correct to within I IdB, R1AA curve, $50-20,000 \mathrm{~Hz}$.
- $6!\times 2!\times 2!$ ins. plus knabs. Aluminium front. Ready buile and cested. $29.19,6$

SIICLAIR MIBROMATIG


## No increase in price

Prices fer this fantastically tiny, powerful recejver remain the same in spite of increased purchase tax so that the Sinclair mierematic is not on yi, ze most original and efficient set of its kind eve educed, it is the best value 800 . As easy te take with youas your wrist watch. fncludes superb magnetic earpiece, tunes over M.W. and plays anywhere.

Complete kit of $10 / \mathrm{R}$ Ready built $\begin{gathered}\text { parts inc. earpleer. } \\ \text { cage, } \\ \text { aluminiun }\end{gathered} 4 / 5$ case, sluminhuan
front panel, eht. Heady built
with earplecc
teated and guarsiuteed.

## YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question.

## Please send POST FREE

NAME.

ADDRESS

PE. 6

## LIND-AIR COMPONENT BARGANS

condon's lowest

Yalvea

Kew 7 Midget Mufti Tester, Eagle's new super midget tester operates on the same principles and provides the same performance as larger meters... With the same degree of accuracy. New unitized mallest pocket multimeters - about the size of a cigarette packet. Mirror scale, "turn around" test leads, battery compartmenc, princed circuit, voltage. current, and resistance measuring ranges qualify this instrument as a versatile, handy cool that experi menters, students and servicemen will always want to earry wish them. Visic your Eagle dealer to inspect this exciting new midget meter ... such good value at 59/6d.

EOR VERSATILITY, RELBABILITYANDSOUNDVALUE INSISTON


6LD3

10;6 | $7 \%$ | 8 |
| :--- | :--- | :--- |
| $7 /$ | 1 |

84
$1410 D^{\prime} 8 ; 6$
1500 150
177
277
409
859

$\left|\begin{array}{|l|}\text { PCF808 } \\ \text { PCLE } \\ \text { PCL } \\ 14 /-\end{array}\right|$ | PCF880 |
| :--- |
| PCL |
| PCL |
| $14: 6$ |
| $10: 8$ | $\begin{array}{ll}\text { PCL83 } & 101 \\ \text { PCL84 } & 10 /-\end{array}$ $\begin{array}{ll}\text { PCL84 } & 10 /- \\ \text { PCL85 } & 11 / 8 \\ \text { PCL } & 11 / 8\end{array}$ $\begin{array}{ll}\text { PCL } 86 & 11 / 6 \\ \text { PCL88 } & 15 /-\end{array}$ PCL88 15j-

PCL800 15j-PCL80015/-
PCL801 15/-
PFL20018/8 PCL\&0118/6
PFL20018/6
PL 3812,6
PI 38
$17 / 6$ PL
PL38
PL

$$
A_{1} \cos _{1} A
$$

# (OPTRONICS) LTロ. 

 25 \& 53 TOTTENHAM COURT ROAD, LONDON, W.1. Tel. $01.5804534 / 7679$ALL. POST ORDERS TO Dept. P.E. 668 25 Tottenham Court Road London, W. 1
Open 9-6 d.m. Monday to Saturday inclusive. Open Thursday until $7 \mathrm{p} . \mathrm{m}$.


SYNCHRONOUS CLOCK
 MOTORS
lienreat for to revo= futfona per hour. 230 30 cyelc, with mumiting flangee. size approximately 1sin teç $x 21 / \mathrm{m}$


## SELECTOR DRIVE

 1 ip every 25. Caniphete with suppressor,
 (iperat han. Libul wimhow Alsiln:s, swilching

$\div$ H.P. MAINS MOTOR


Nade liy Cruanton 5arkinoon, Nibgle phase \& h.p. Motar. $230 / 2000 \mathrm{~V}, 50$ cycles. $1 \cdot 3 \mathrm{Ampss}$. jf $x$ iin tha, Overntl size lesy spindle apppos of $x$ fin. Perfect condition. A barsain for the work beneh. OHLI 79;6. Carr. 20/- if h.p. Slutar aleonavallathe, 80:6. C'arr, $2^{9} i^{\circ}$

## DELAY ACTION

 TIME SWITCH
cadebs operation $200 / 250 \mathrm{~V}$. Dauble pole. Will give time thelays from $0-10$ minutes. Nize 2 ifin din. z eiza long jne thin $x / 16 \mathrm{in}$ dia. apintie. BABGADI PRICE 17;8. P. \& P. 2; $\%$.

## VALVES／SEMI－CONDUCTORS BRAND NEW \＆GUARANTEED



## ADMIRALTY B． 40 RECEIVERS

Juat relessed by the Minishry．Elgh quality 10 valve receiver manufactured by Murphy．Coverage in 5 bands $850 \mathrm{Kc} / \mathrm{a}-\mathrm{somc} / \mathrm{f}$ ， I／F $500 \mathrm{Ko} / \mathrm{y}$ ，Incorporates $2 \mathrm{R}, \mathrm{F}$ ，and $\$ \mathrm{Y}, \mathrm{T}$, 日 I／R，oatput，ete．Bullt－jn eryeaker，outpyt for phones，Operation $160 / 230 \mathrm{~V}$ a．c．Blze $19 \frac{1}{6} \times 181 \times 16 \mathrm{in}$ ．Welght． 1141 b ．Offered
 dlagrame．Aloo apallable B． 11 L．F．version of sbove 1 bRefs． $700 \mathrm{Kc} / \mathrm{s}$ ， $\mathbf{s} 17.10 .0$ ，Carr， $30 /$－

 $\qquad$
TRANSISTORS
2N753
2N2160
$2 N 2160$

AC107
AC126
AC127
AC128
ACV19
ACY19 ACY21 AD149 18 ADT14015 AFl15 AF11 $\begin{array}{ll}\text { AF117 } & 4 / 6 \\ \text { AF118 } & 4 / 6 \\ \text { AF119 } & 4 / 6 \\ \text { A8Y28 } & 7 /- \\ 3 C 107 & 5 / 8\end{array}$





## $\begin{array}{ll}\text { PY81 } & 8 /- \\ \text { PY82 } & 8 /- \\ \text { PY83 } & 6 / 6 \\ \text { PY88 } & 7 / 6\end{array} \quad$ 位

 PY800
PY801
U25 U24
U19
U28
U30 U801 UAF
UBC
UBF UBF8
UBF8
U＇CC8 Cucss UCF80
UOB 4210 UOH42
UCH81 $9 / 6$
$10 /=$
$71-$ UCL药品号云商 UPB ULA
ULB
UY4
UY8 $\mathrm{H}^{2} 105 / 30$ VR150／305／－ MANY
OTHER TYPER

## SILICON POWER DIODES

60 P．I．F．290MA 2／－ $\begin{array}{ll}70 \text { P．I．V．lamp } & 8 / 6 \\ 150 \text { P．I．V．} 165 \mathrm{MA} & 1 /-\end{array}$ 150 P．I．V． 25 amp $10 /$ 200 P．I．V．Єалр 400 P．I．V． 500 MA 400 P．I．V，flomu 5／6 400 P V Somp 400 P．I．V．Bamp $7 / 6$
700 P．I． $8, ~ I 00 \mathrm{mmp} 35 /-$ 800 P．I．．． $000 \mathrm{mmp} 35 /-$
800 R．I．V． $500 \mathrm{MA} 5 / 6$ 800 P．I．V．500MA
800 P．I．V． 5 amp
$8 / 6$ 800 P．I．V．
，000 P．I．V．famp
$7 / 6$ 1,090 P．I，V，G50MA B／6

## ZENER DIODES

|  | 04 |  |
| :---: | :---: | :---: |
|  | OAZ205 8／8 | OAZ209 0／8 |
| AZ202 8／8 | OAT206 8／6 | 0.42210 |
| OA2208 8／6 | DAZ207 |  |
| STC 1 WATT SERIES $5 \%$ <br> $2.4 / 2.7 / 3 / 3-8 / 4 \cdot 3 / 13 / 16 / 18 / 20 /$ yo／33V．5／－each． <br> 2 berfes．All voltagea from 3.9 to 50 v ． 250MW $2 / 6$ each．1．5W 4／－each． 7W 5／－each． |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

$0 \mathrm{Az212}$ 8／6 ${ }^{\text {OAZ }}$
PLEASE
ADD
POSTAGE
 （Handbcoke 28 extra．） $85 \mathrm{Kol} / 8.25 \mathrm{mc} / \mathrm{s}$ ， 2255 ，carr． $30 /$ ． Alf above offered i
 Carr．20／－

## SILICON CONTROL RECTIFIERS

400 F．I．工，samp 7／8 100 P．I．V． $7 \mathrm{amp} 18 / 0$ 200 P．I．V．7amp 15／6 400 P．I．V．tamp 15／6

SOLARTRON CD7IIS．2，DOUBLE BEAM osciLLoscape

An extremely high orliginally coatlog E 800 ．Swltched beamn．Identical Y1， Y＇2 Ampilfiers d．o， to OMO／a．Benaltivity
$3 \mathrm{mV} / \mathrm{CM}$ $3 \mathrm{mV} / \mathrm{CH}$
$100 \mathrm{~V} / \mathrm{CH}$. base $100 \mu / \mathrm{sec}$ to to $10 \mathrm{M} /$ aece．Calibrator． $2.5 \mathrm{Me} / \mathrm{g}, \quad Z$ Modulation． $110 / 220 / 250 \mathrm{~V}$ ， 285，carriage 22 ，or available is recelved from Ministry unserviced $\mathbf{8 5 0}$ ，carriage $\mathbf{e z}^{2}$ ．
Cormat

## AV0 CT． 38

ELECTRONIC MULTIMETERS
High quality 97 range inetrument wheh measures a．c，and d．c．Voltage．Current， Reslatance and Power oulput．Hange d．c．volts $250 \mathrm{mV}-10,000 \mathrm{~V}$ ．（ $10 \mathrm{meg} \Omega$ 110meg a input）．D．o，eurrent $10 \mu$ ． 25 ampa，Ohrns： $0-1,000 \mathrm{meg} 0$ ．A．c． volt $100 \mathrm{mV}-260 \mathrm{~V}$ ．（with R．R．messuridg head up to $\quad$ onome／s）．A．e．current $-10 \mu \mathrm{~A}-25$ amps．Power output 50 micro watts +8 watts．Operation $0 / 110 / 200 /$ 250V．C．Supplied in perfect condition complete with circuit lead and R．P． probe＊\＆5．Curr．15j）．

## MARCONI TEST EQUIPMENT

EX－MLLITARY RECONDITIONED．
TF 144 STANDARD SIGNAL GENERATORE，
TPR855．VIDEO OSCILLATOR，0－5Mc／a， 245. T－F．195M，BEAT FREQUENCY OSCHLLATOR $0-40 \mathrm{ke} / \mathrm{g}, 200 / 260 \mathrm{~V}$ a．e， 200 ，carr． $30 / \mathrm{m}_{\text {．}}$
Alf above offered in excellent condition fully

TF． 1100 VALVE VOLTMETER，Brad New
\＄50．TF， 1267 TRANSMI8SION TE8T 8ET
Brand New， 875 ，


L GENERATORS
Oacillator Teast No．2．A high
yually precision Irality precision
Instrument made for the ministry for the ministry
by Alrmec．Fre quency coverage
$20-80 \mathrm{Mc} / \mathrm{s}$ AM C．W．$/ \mathrm{FM}$ ．Incorporates precialon d｜n｜， level meter，prechion attenuator $1 \mu \mathrm{~V}$－ 100 MV ．Operation from 12 V d．c．or
$0 / 110 / 200 / 250 \mathrm{~V}$ a．c． $\mathrm{Size} 12 \times 8 \mathrm{~m} \times 91 \mathrm{n}$ ． gupplied in brand new condition cormplete
with all connectors fully teated．©45．

TYPE IGA DOUBLE BEAM OSCILLOSCOPES<br>

## Variable Voltage TRANBFORHERS

brand netr，guaranteed and carriage paid．
High quallty constructlon．Input $230 \mathrm{~V} 50-60$ cycles．
Output full varlable from 0.260 V ．Balk quantities avallable．




AVOMETERS bapplied in ex－
cellent condition， cellent condition，
fully teated and checked．Com－ plete with prods， tions．
Model 4 製，18．6．
Model 7 ： $18,10.0$ ．
Model 8 \＄18．0．
M．\＆P． $7 / \beta$ each．
TE22 SINE SQUARE WAVE AUDIO GENERATORS
 shre： $20 \mathrm{c} / \mathrm{e}$
$300 \mathrm{ke} / \mathrm{m}$
on 300ke／s on ape／s io $30 \mathrm{kc} / \mathrm{s}$ ．
Output
impled ance 5,000 ohms， $200 j 200 \mathrm{~V}$
Supplied brand new and guaran－ tion minnust and leads， 815 ．Garr．Tf

DUEILIER HITROGEZ CONDEASERS Brand new $8 \mathrm{mfd} .800 \mathrm{~V} 8 / B, \boldsymbol{x}$ \＆$P .8 /=$ 2 mfi． $5,000 \mathrm{~V} 4 \% / 6$ ，P．\＆P． $5 /$

## LUCAS 20／0／20 AMMETRES

Brand new boxed．Suitable car／motor （10）P．

LELAED KODEL 97 BEAT FRERUEXGY O8CDIT．ATO\＆8．0－27KO／5．
Output 5 K or 500 ohme． $200 / 230 \mathrm{~V}$ a．c． Otered in excellent conditlon t18．10．0 Carr．10／＂


LAFAYETTE TE46 RESISTANCE CAPACITY ANALYSER $0 \mathrm{~F}-2,000 \mathrm{mtr}$ megohms．Also
checks impe－ dance，turns ratio，insula－
thon， $200 / 250 \mathrm{~V}$ Brand Hew 015.

HIGH S．E． 40 A．C．VOLTMETER

10 meg．input 10 ranges： $3 / 10 / 30 / 100 / 300 V$
R．M． R．M．B． $4 \mathrm{c} / \mathrm{a}-1.2 \mathrm{Me} / \mathrm{s}$ Bupplied brand complete with lend new fostructions． 230 V 8．c


T．M．C． 1000 SERIES KEY SWITCHES Brand N
followe．
1 way， 2 c／o $7 / 4$ ； 1 way， $2 \mathrm{c} / 02 \mathrm{~b}, 7 / 8$ ；I way， $2 \mathrm{e} / \mathrm{o} .8 / 6 ; 2$ พвy， $2 \mathrm{efo}$.4 e／o． $10 / \mathrm{c}$
Pont extra．Quantities avallable．

ARF－ 100 COMBINED AF－RF SIGNAL GENERATOR
 AF．BINE WAYE
$80-200,000 \mathrm{c} / \mathrm{s}$ Square wave $20-$ 30,000 e／a．O／P
HIGK IMP． 21 V P／P．6€00 3－8V Mofa
Variable R．F．，atteruation futi／ext，moduia－
 $220 / 240 \mathrm{~V}$ a．U．E27，10．0．Earr，7／6．
TE－20RF SIGNAL GENERATOR $\mathrm{ng} 120 \mathrm{Kc} / \mathrm{s}$－ 260 Mefe on 6 bande， Directly call－ R．F．attentator． Operation 200 240 V a， C
Brand mew with
instructions． 515．0．0．P．\＆$P$ ． detaita．

## AUTO TRANSFORMERS

 Futly shov．Bt500 W． $88,10.0$, P．\＆P． $6 / 6$
1,000 W． $5,10, ~ P . ~ P ~$
$1,500 \mathrm{~W}_{\text {．}}$ E8．10．0，P．\＆P． $8 / 6$


## MULTIMETERS for EUERY purpose！



00D． mirror scale．Buile． meter protection 300 ／ 000 ／ $1,200 \mathrm{~V}$ d．c． $0 / 6 / 30 / 120 / 300$ $6 / 60 / 300 \mathrm{MA} / 2 / 10 \mu \mathrm{~A}$ $/ 2 \mathrm{~K} / 200 \mathrm{~K}$ Amp． 100 M ． $200 \mathrm{~K} / 2 \mathrm{M}$ $\div 17 \mathrm{~dB} . \quad-20.10$.
 VODEL TE－10A．200k $\Omega$ Volt， $5 / 25 / 50 / 250 / 500 / 2,500$ Y．d．c． $10 / 50 / 100 / 500$
 to +22 dB ． $10-0,100 \mathrm{mfd}, 0 \cdot 100-0 \cdot 1$
 MODEL TR－70，30，000 ．P．Y．0／3／15／60／800 100／1．200 V．d．c．0／6 $30 / 120 / 600 / 1,2005$ a．c． $0 / 30 \mu \mathrm{~A} / 3 / 30$ f 1.6 M ． 16 megohm


IODEL 250 J 8，000
O．P．V．0／10／50／500／ $\begin{array}{ll}2.000 \mathrm{~V}^{2} \\ 500 / 2,0005 . \mathrm{c} . & 0 / 10 / 50 /\end{array}$ $0 / 2 m e g o h m . ~ 0 / 2 a 0$ ans． -20 ．$\frac{10}{}+3.2 / 6$ ．
LAFAYETTE



## Ansistor checker



HOSIDEN DHOAS 2－WAY STEREO HEADSETS Each headpbone con－ tains a a to rooter and a in tweter． Bullt in Individnal level
$25-18,000 \mathrm{cfs}$ ．
Eantrols．
Bimp． Hhe cable and atere plug．
$2 / 6$.
 F．M．WIRELESS MICROPHONES 04－104Mc／f．Transistor－ ired．Operates from 9 V batters．Complete with additlonal secret sie－clif microphone．Xist $\mathrm{El12.10.0}$
 These cannot be operated in J．K．
TRANSISTORISED TWO－WAY TELEPHONE INTERCOM
Operative over amazingls loug distances．Separate cail and press to talk buctonk， 2 －wire connection． 1000 ＇s of applications．Beautifully fin－ ighed in ebony．Supplied completo with batlerles and wall bracketa． $8 / 6$ ．


NEW MODEL $500.20,000$ Q．R．Y．with overload protection，Mirror acale． $250 / 500 / 1.000 \%$ $0 / 2 \cdot 5 / 10 / 25 / 100$／ $250 / 500 / 1.000 \mathrm{~V}$ ．as． 0／50 $15 / 5 / 50 / 800 \mathrm{ma}$ ．
12 amp． $4 . \mathrm{c}_{\text {．}} 0 / 60 / \mathrm{K} 6$. Meg． 60 megohm 98.17 .8 ． MODEL TE－18． O．P．V． $0 / 0 \cdot 6 / 30 / 120 / 600$ $1,200 / 3,000 / 6,000 \mathrm{~V}$ ．d．e $1 / 8 / 30 / 120 / 600 / 1,200 \mathrm{~V} . \mathrm{a}$ $0 / 60 \mu A / 6 / 60 / 600 M A$
$0 / 6 K / 600 K$ $0 / \mathrm{BK} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$ 45ior $P$ \＆


MODEL T T 80， 80,000
MODES
$\begin{array}{ll}\text { O．P．F．} \\ 0 & 10 / 50 / 200 \text {／} 500\end{array}$
 $250 / 500 / 1,000 \mathrm{~V}$ ．d．e． $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / \mathrm{G}$ Meg． \＆4，17．8．P．\＆ P ． $3 \%$ ．
TE－51．NEW 20.000 日 VOLT MULTMETER． $0 / 6 / 60 / 120,1,200 v, 8.0$
$0 / 3 / 30 / 60 / 300 / 600$ $3,000 \mathrm{~V}$ ．d．e． $0 / 60 \mu \mathrm{~A}$ $32 / 300$ mis．．．．c． $0 / 60 \mathrm{~K}$ ${ }_{2} 8$ megohth． 85


MODEL PT－34．
，000 O．P．TV．0／10 $50 / 250 / \mathrm{s} 00 \mid$
1.000 F, and d．c． $0: 1 / 100 / 500$
mA．Al．c． $0 / 200$ K』 $99.6 . \mathrm{P}$ ，\＆ $\mathbf{P}$ ．

MoDel AF－105．SoKn
 $12 \mathrm{Amp} .0 / 10 \mathrm{~K} / 1 \mathrm{M} / 10 \mathrm{M}$ $100 \mathrm{M} \mathrm{\Omega}-20$ to +17
$2 \mathrm{P}, 10.0, \mathrm{P}, \mathrm{P} .3 / \mathrm{B}$.

TE－65 VALVE VOLTMETER


High gutilys instru＊
ment with g＊ranges； ment with 28 ranges，
D．c．volts $1 \cdot 5-1,500 \mathrm{~V}$
A．c．volts $1 \cdot 5-1,500 \mathrm{~V}$ Resistance up to 1,000 M． 2.
$220 / 240 v$
Completo with probe sad instructlons． si7．10．0．P．\＆P．6／－．
Additional
Probea available：
H．Y． $42 /$

## GARRARD DECKS

Brabll rew and guarantec
1025 with cartriage LAB80 MK． 11 less cart
87.10 .0. LAB80 Mk． 11 less cart．，with wB2 10.0 ． 401 Tranautiption less cart． 287.10 .0 ．

## 2－WAY RADIOS

 Super quality．Brand new and guaranteed． 86．15．0 pr $\begin{array}{ll}\text { i．transistor } & 86.16 .0 \mathrm{pr}, \\ 4 \text { transistor } & e 8,19.8 \mathrm{pr},\end{array}$ $\begin{array}{ll}5 \text { transistor } & 26,19.6 \mathrm{pr} \\ 6 \text { transistor } & 87,19.6 \mathrm{pr},\end{array}$

 Post extra Thesc eannot be operated in U．K．

SINCLAIR EOUIPMENT Z18 12 watt amplifler，89／8． PZA Power Supply Unit $98 / 8$. Btarea 85 Freamng．， $89,19.6$.
Q14 Speakers，
27．19．6． M14 Speakers， 2 ，18．6．



## CLEAR PLASTIC METER8



UNR－30．4－BAND
COMMUNICATION RECEIVER Covering $\quad 800 \mathrm{Kc} / \mathrm{B}-30 \mathrm{Mu} / \mathrm{s}$ ，－Incorporntes varialse phone fack．Metal cabinct．Operation $220 / 240 \mathrm{Y}$ ，and supplied brand new guaranteed with
Castr， $7 / 6$.
Custructions．

LAFAYETTE MODEL HA700 AM／CWSSB AMATEUR

## COMMUNICATION RECEIVER



FILTERS for exceptional selectivity and senal tivlty．Frequency coverage on olectivity and menni－ $400 \mathrm{Ke} / \mathrm{s}, 550-1.600 \mathrm{Kc} / \mathrm{s}, 1.6-4 \cdot 0 \mathrm{Mc} / \mathrm{s}$ ， $4 \cdot 8.14-5 \mathrm{Mc} / \mathrm{s}$ ， $\mathbf{0 - 8 - 8 0 M c / s . ~ C i r c u i t ~ j t u m p o r u t e s ~ R . F . ~ A t a g e ~}$ erial trimer，notse limiter，B．F．O．product detector，electrical hamdspreal， 8 meter，ollue rule
Hal．Output for phones，low to 2 KQ or opeaker Hal．Output for phones，low to 2 KG or optaker Is 10iv．Supplien bratal new and gunranteed with handbook． 86 GNE ．Carr．10\％．

## LAFAYETTE MODEL HA－500 SSB／AM／CW

 80 THROUGH 6 METER RECEIVER
## the $80 / 40 / 20 / 15 / 10 / 6$ metre bands．Incorporates 10 valves，product detechor，two mechanscal filters s．Meter，dual converslon on all bands，crybtal callbrator，Y．F．O．noise limiter，aerlal trimmer <br> 

 1 Fs $2,608 \mathrm{Mc} / \mathrm{s}$ ．and $468 \mathrm{Kc} / \mathrm{s}$ ．Output Bohms and 500 ohals．Operationa $220 / 240$ ，a．c．Supplied brami new and guaranteed with bandbook 48 Gns ．Carr$10 \%-100 \mathrm{Kc} / \mathrm{a}$ ．crystal， $85 /=$ ．
LAFAYETTE LA－224T TRANSISTOR STEREO AMPLIFIER 19 trausintors， 8 diodea，1HF music power，
30 W nt 8 g ．Reaponse $30-20,000 \pm 2 \mathrm{~dB}$ at 2 F ： 30 W at 8 A ．Reaponse $30-20,000 \pm 2 \mathrm{~dB}$ at 27 ．
Distortjon $1 \%$ or less．Inputs 3 mV and 250 mV ． Distortion $1 \%$ or less．Tnputs 3 mV and 250 mV ．
Output $3-18 \Omega$ ．Separato L ．and R．volume Output $3-18 \Omega$, separato L ，and R ．Volus．Btreen phoue jack．Brashed aluminium，gold anoeliged


大TRANSISTORISED FM TUNER

${ }^{6}$ TRANSISTOR RIGHQUALITY
 $\begin{array}{lr}\text { 2His．} & \text { I．F．} \\ \text { tages．} \\ \text { tuned } \\ \text { Double } \\ \text { discrim }\end{array}$ inator．Armpie
output to feed mat amplitiers．Coverage $88-108 \mathrm{Mc} / \mathrm{s}$ ．Ready buile reaty for nge．Fantastio value for mones． $8.7,8$ ．P．
Stereo multifex adaptors 5 gigs．

## AMERICAN TAPE

First grade quality American／npes． Brand new．Discount on quantities． pes． $3 \mathrm{in}, 2255 t$ ．L．P．acetale 3 Hin 800 tt ．T．P．mylar
 Sin．9001．I．P．acetate 5in．1，200ft．D．P．mylar
8 in． 1,800 t．T．P．mylar ${ }_{61} \mathrm{in} .1,1,800$ fit．T．P．P．mylar
 stin．1，2001t．L．P．mylar 5fin．2，400tt．T．P．mylar in． $1,2001 \mathrm{t}$ ，std．acelate 7in． $1,800 \mathrm{ft}$ ．L．P．acetato 7in．1，8001t．L．P．mylar 7in．2，400ft．D．P．mylar in．3，600tt．T．P．mytar
Postage $2 /-$ ，Over $£ 3$ past paid


TRIO COMMUNICATION RECEIVER MODEL $9 R-59 \mathrm{DE}$


4 baud reveiver covering $050 \mathrm{Ke} / \mathrm{a}$ to $30 \mathrm{sf} / \mathrm{s}$ ． continuous and electrlcal bind apread on 10，15， 20,40 and 80 metres． 8 valve plus phono Jack SEB－CW ANL Varlable BFO $\$$ meter sep ．band opresd dial 15 $445 \mathrm{Kc} / \mathrm{s}$ audto output 1.5 W ． Carjable EF and AF gain controls． $115 / 2500$ ．a．e．Maina．Meautifully designed． Size： $7 \times 15 \times 10 \mathrm{in}$ ，With jnstruction Manual abd service liats．s87，10，0．

COSSOR DOUBLE BEAM OSCILLOSCOPES
 coupled．TyPe 1043 L．F．d．c．coupled．
235 each．Carr． $30 /=$ ．

## RECORDING HEADS

Router s－track．As fitted to Collaro 24k． 18 and gtudia Decks．High imp，record play back，low impl，erase．Brapul new．ID／6 palr．MINIFLUX fotrack set of 3 ， $20 / 8$ ． COSMOCORD WIth mounting plate． TRI－N0／R；W recordjreplay ES／－；TRI


3．34 LISLE STREET，LONDON，W．C． 2

## OOKI <br> PRACTICAL! VISUAL! EXCITING!

 Nr Ah
## a new 4-way method of mastering ELECTRONIICS by doing - and - seeing

$1>$ OWN and
HANDLE a complete range of presentday ELECTRONIC PARTS and COMPONENTS


## 2 BUILD and USE

a modern and professional CATHODE RAY OSCILLOSCOPE


| 3 | READ and |
| :--- | :--- |
| DRAW and |  |

UNDERSTAND CIRCUIT DIAGRAMS


## THE AIR FORCE AND ELEETRONICS

THE fiftieth anniversary of the Royal Air Force is a fitting occasion to recall the close relationship that has always existed between this Service and the branch of technology we now know as electronics. Their histories are closely interwoven. The needs of air defence were chiefly responsible for the sudden growth of electronics.

When the R.A.F. was formed in 1918 wireless communication was already established, but still rather a novelty. Fortunately, government advisers on defence matters anticipated important future developments in the use of electro-magnetic waves, and a Radio Research Board was set up in that very same year. Thus was brought into being the nucleus of the official machinery which later facilitated consultations with persons such as R. Watson-Watt, destined to become the father of radar.

Once the feasibility of locating aircraft by radio had been demonstrated, many of the finest brains from universities, the radio industry, and government scientific departments were harnessed to the task of converting this idea to a practical reality. As is now well known, the first chain of R.D.F. stations was installed around the coasts of Britain well before the outbreak of war in 1939.

Furthermore, as we now realise, the door leading to a future "electronics" era was dramatically pushed open by these heroic backroom efforts of scientists, physicists, and engineers in the Iate 30 's.

In amateur circles there is to be found an especial regard for the Royal Air Force. No other service depends so heavily upon signals and other branches of electronics. In 1939 hundreds of radio amateurs entered the R.A.F., some to perform signal duties, others to be assigned to special training on the secret R.D.F. equipment. Subsequently, thousands of other men and women from all walks of life became initiated into the strange world of radio-or the even stranger one of radar-during those war years.

Many of these ex w/op's and radar mechanics have retained their interest and have applied this fortuitously acquired knowledge to good effect in Civvy Street. The current general awareness of electronics, and the adoption of this subject as a useful and intellectually stimulating recreation by a great many lay persons, are in large measure due to the training and experience provided by the armed forces, and the R.A.F. in particular.

Today the future pattern of the Royal Air Force is the subject of much speculation. The move from manned aircraft to remotely controlled missiles can only mean a greater preponderance of electronic devices and systems. Whatever changes take place, the role of electronics is bound to be pre-eminent.

F. E. Bennett-Editor

## CONSTRUCTIONAL PROJECTS

RADIO CONTROL SYSTEM FOR MODEL BOATS ..... 398
CAMERA TRIGGER ..... 414
P.E. ANALOGUE COMPUTER ..... 429
DRUMMER'S WHOOSH ..... 443
SPECIAL SERIES
NUCLEONICS FOR THE EXPERIMENTER-8 ..... 417
TRANSISTOR AMPLIFIER DESIGN-5 ..... 422
GENERAL FEATURES
EPOXY RESINS ..... 410
INGENUITY UNLIMITED ..... 420
NEWS AND COMMENT
EDITORIAL ..... 397
POINTS ARISING ..... 409
SPACEWATCH ..... 413
ELECTRONORAMA ..... 428
MARKET PLACE ..... 447
READOUT ..... 448
Our july issue will be published on Friday, June 14

[^1]
## MULTI CHANNEL ADIO CONTROL SYSTEM BOATS <br> <br> FOR MODEL

 <br> <br> FOR MODEL}HE relatively simple transistorised multi-channel control system described here was designed specifically for controlling a 34 in model diesel powered Vosper R.A.F. Crash Tender. Circuit and constructional details are given for the radio transmitter, receiver and control arrangements, including those for rudder and throttle actuator mechanisms. No special tools are required other than perhaps a power hand drill, although a multi-range meter is desirable and an oscilloscope is an advantage. The overall model with electronics will appeal to the do-it-yourself modeller who has a certain amount of electronics knowledge.

## SINGLE OR MULTI-CHANNEL?

Undoubtedly the simplest control arrangement is "single-channel" operation in which only one item of information is transmitted at any one time. This can be quite effective, although special operating techniques may have to be evolved, particularly when high speed models are used, so that function selection is not unduly delayed.

In the case of model aircraft, the flying technique for single channel working differs completely from normal multi-channel practice. Therefore, it would seem to be a very natural progression to the more versatile "multi" techniques, which enable simultaneous movements of various controls to be made, particularly if the cost of such a system could be kept low:

## AIRCRAFT OR BOAT?

The scope of "multi" aircraft control can be very rewarding, but the following points were the decisive factors in selecting a boat for using the control system described.

## Cost of the installation

A boat or land vehicle control system need not be as complex as its aircraft counterpart, a four-channel system being usually quite adequate for controlling a boat, even at high speed. Surface vehicles are not seriously affected by equipment weight, size, or power consumption restrictions generally imposed by an aircraft of practical proportions.

This gives the home constructor much more scope to use materials and components which are readily available, rather than to have to purchase the relatively expensive, compact, and lightweight items generally required for aircraft control. There is no particular
need to miniaturise the circuitry or actuators; with a boat of 34in overall length, lack of space is not a problem to be encountered here.

## Loss or damage

In the experimental stages, particularly with homebuilt equipment in the hands of newcomers to model control, there is a very real risk of damage, or even a complete write-off, in the case of a powered aircraft, as a direct result of some form of loss of control.

## Adeguate operating facilities

Unless one joins a club it is difficult to find suitable large open spaces for aircraft flying without undue aerial hazards. It must be remembered that a powered aircraft in free flight at speed is potentially a dangerous projectile and serious personal injury has been known to occur to spectators. There are still plenty of smooth stretches of water to be found of quite sufficient size for putting a boat through its paces without risk of annoyance to anyone. Most marine diesels are equipped with silencers to reduce noise.

The effective working range of the transmitter/ receiver combination described in this article is about a quarter of a mile. In practice, this was found to be more than adequate, because even at 200 yards distance it becomes difficult for the operator to ascertain the boat's position and attitude in the water.

## BASIC ARRANGEMENT

The basic scope for control of a boat is probably less than that for an aircraft, and in order to justify the selection of a "multi" system, a high-speed planing hull was selected, capable of good manœuvrability at speed. Because of the low power/weight ratio achieved with electric propulsion, an ample size of diesel engine was chosen as the power unit. This was installed in an "Aerokits" R.A.F. Crash Tender available in kit form in plywood. The 34 in model is used.

This boat is ideal for an installation of this type, the hull being conveniently divided, by bulkheads, into five compartments (see maker's plans). It is very wise if an internal combustion engine is used, to keep one compartment amidships reserved for the engine, fuel tank, and perhaps throttle gear, as these miniature engines tend to become dirty, exuding a mixture of soot and unburnt fuel-the penalty for throttling a diesel engine.

## PART ONE

The bow compartment (No. 1) (see maker's plans) is sealed off and filled with buoyancy material; No. 2 compartment (wheelhouse) is used as the main electronics area, as this is readily accessible but is well protected and well clear of any spray that might occur at speed. This compartment accommodates the radio receiver, preamplifier, and both control motion panels.

The receiving aerial plugs into a socket fixed to the deck adjacent to No. 2 compartment. No. 3 compartment is the engine room with throttle control and fuel tank. No. 4 houses the battery, relays, and the isolator switches. No. 5 compartment is occupied fully by the steering actuator and the actuator supply battery. It is probably a good idea to mark these compartments on the.plans.

If polyurethane foam is inserted ahead of bulkhead BI, holes of about lin square should be made in the bulkhead.

The second compartment houses the four perforated s.r.b.p. modules: the receiver (aft), the pre-amplifier (port side), rudder control (starboard side), and throttle control (forward). These four modules are easily recognised in the circuit diagram, each being indicated by a hatched line box (see Fig. 2). The complete circuitry in the boat is shown; the transmitter will be described later.


## TWO BASIC SYSTEMS

There are two basic systems of control in general use, and there are also two main ways by which the control intelligence can be made to actuate the controlled member (see Fig. i).

## Progressive control

Progressive control is usually simplest, but less precise, being in principle an "open loop" arrangement of integration where the controlled member will move at more or less constant rate in the desired direction until it is checked.

## Proportional control

This is a true "closed loop" servo position control.
The simplicity of the system to be described stems from the fact that it permits simultaneous transmission of one progressive system and one proportional system, the former being used to actuate the throttle, i.e. commands "close", "open", and "hold", the latter to steer the boat.

The rudder assumes the angular position corresponding to that set up on the steering "wheel" on the transmitter unit, regardless of the load conditions on the rudder. To achieve this it is necessary to feed back the rudder position to the controller by means of a potentiometer (VR2) ganged to the rudder shaft.

## CONTROL PRINCIPLE

The two controls, rudder and throttle, may be operated individually or simultaneously, and the principle of operation may be readily understood from Fig. 3. The transmitted 27 MHz carrier is 100 per cent modulated by a square wave of adjustable mark/space ratio to correspond to rudder control, and at three preselected fundamental frequencies to provide throttle control.

The appropriate frequency ( $110 \mathrm{~Hz}, 600 \mathrm{~Hz}, 400 \mathrm{~Hz}$ ). corresponding to "increase", "decrease", and "hold" throttle respectively, can be selected by a centre biased three-position key on the transmitter, without affecting the pre-set mark/space ratio. The mark/space ratio of the square wave is variable from $1: 10$ to $10: 1$ for


(1)The D.C. level of the Rudder woveforms does not change with frequency (2) The Throttle waveform is not affected by change of Rudder Mark/space ratio

Fig. 3. Steering and throttie control waveforms
any selected frequency and is set by the steering wheel control on the transmitter, a ratio of 1:1 corresponding to "rudder straight".

After detection by the receiver, the square wave signals are converted to d.c. levels which in turn actuate relays. These control the d.c. motors which rotate, in the appropriate direction, the actuator lead screws.

The general description of the system will now be followed by a more detailed account of the various functional units. However, it is emphasised at this stage that general information on constructing the boat is excluded since it is outside the scope of this magazine. It is expected that the constructor will acquire the boat kit with instructions through a retailer.

A kit of accessories for this model is available through retailers from Keil Kraft. The electronics are not generally available in complete kit form; constructors will find that all electronic parts are obtainable through the usual retailers.

## RADIO RECEIVER

It is an undisputed fact that, because of their selectivity performance, superheterodyne receivers are to be preferred to t.r.f. types; nevertheless super-regenerative receivers can give excellent results and are undeniably simple. If the constructor has no intention of becoming involved in active competition work, where a superhet could offer advantages, he would probably do well to compromise and go for a super-regenerative receiver, which is simple and inexpensive while offering adequate performance.

At the high transmission frequency used, it would have been very difficult to have achieved adequate r.f. amplification with a conventional tuned radio frequency (t.r.f.) receiver, whereas the super-regenerative receiver is capable of providing tremendous amplifcation, provided that faithful reproduction of the modulation signal is not an important criterion.

As we are dealing with "clipped" rectangular waveforms the effects of signal distortion are of little consequence.

The principle of the super-regenerative receiver is to employ large amounts of positive feedback, to increase the overall gain or sensitivity. This "regeneration", or "reaction" as it was once known, is arranged to render the circuit alternatively oscillatory and nonoscillatory at a fairly rapid rate.

In ordinary t.r.f. receivers, the amount of regeneration possible is limited by the tendency towards instability, leading to continuous oscillation or "howl". The super-regenerative receiver makes full use of this phenomenon, and sufficient positive feedback is applied to ensure that self-oscillation will definitely occur.

TR2 is the super-regenerative detector stage and regeneration is applied via $̧ 7$ from collector to emitter from the tuning coil L3.

As self-oscillation is assured, the strong resulting a.c. level is rectified by the base/emitter junction of TR2 to provide a d.c. bias signal. This bias builds up progressively on C4 and C6 such that the gain of TR2 progressively reduces until the transistor cuts off, and oscillation ceases.

The charges on C4 and C6 immediately begin to leak away after cut-off occurs, and ultimately TR2 will again commence to conduct, the current and gain increasing until oscillation again ensues, when the

process repeats itself. The time constants C4-R5 and C6-R7 are selected such that the periodic bursts of oscillation (referred to as "squegging") occur at some low radio frequency, which is not particularly critical, and will be found to increase with the antenna
signal strength, normally being between about $30-100 \mathrm{kHz}$. This is well out of the signal modulation frequency range, and can be fiftered out after detection.

It can be seen, therefore, that there is a substantial portion of time in each period of "squegging" when the gain of the receiver is exceptionally high, but when selfoscillation does not exist. . The gain during this period is far higher than could be achieved, with stability, in any single stage "conventional" t.r.f. receiver.

## REGEIVER CONSTRUCTIONAL DETAILS

## COMPONENTS . . .

Resistors

| RI $3.9 \mathrm{k} \Omega$ R4 $1 \mathrm{k} \Omega$ R6 $22 \mathrm{k} \Omega$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R2 | $15 \mathrm{k} \Omega$ | R5 | $2 \cdot 2 \mathrm{k} \Omega$ |  | R7 | $1 \mathrm{k} \Omega$ |
| R3 1k $\Omega$ |  |  |  |  |  |  |
| All 10\%, $\frac{1}{4}$ watt carbon |  |  |  |  |  |  |
| Capacitors |  |  |  |  |  |  |
| Cl | 22pF |  |  | *C5 |  | ceramic |
| C2 | 220pF |  |  | C6 |  | $\mu \mathrm{F}$ mica |
| C3 | $0.001 \mu$ |  |  | *C7 |  | ceramic |
| C4 | $0.001 \mu \mathrm{~F}$ |  |  | C8 | $2 \mu \mathrm{~F}$ | elect. 25 V |

$\mathrm{C} 260.02 \mu \mathrm{~F}$ polyester (additional squegging filter) *C5 and C7 may be altered in value so that the dust core in $L 2 / 3$ is about mid travel for optimum tuning

Transistors
TRI. TR2 OCI70 or OCI7I (2 off)

## Coils

LI 12 turns 28 s.w.g. enam. wire close wound on Neosid $\frac{1}{4}$ in polystyrene former with adjustable core. Tapping is taken 2 turns from the "earthy" end of the winding.


L2/3 $\frac{3}{8}$ in Aladdin former with dust core. L3 wound first- $9 \frac{1}{2}$ turns 28 s.w.g. enam. wire close wound. 122 turns 28 s.w.g. enam. wire wound on top of L3 at "TRI collector" end
L4 R.F. choke, 38 s.w.g. enam. wire in single layer on $\frac{1}{4}$ in Neosid former with dust core

Miscellaneous
Aerial, 14 in whip type made from 20 s.w.g. brass or nickel silver wire with wander or banana plug fitted to one end. Socket for aerial. Plain or perforated copper clad s.r.b.p. sheet (see Text) $4 \mathrm{in} \times 4 \mathrm{in}$. Pins for perforated board


Fig. 4. Component layout and wiring of the receiver panel

Because of the fact that TR2 operates very close to its cut-off point, its characteristic is non-linear, and it is this non-linearity which provides the essential characteristic for detection of the modulation of the carrier. Therefore, TR2 performs the dual role of high gain r.f. amplifier and detector.

If no signal is being received, then self-oscillation is induced at a higher level of collector current, or gain, and hence any circuit noise is greatly amplified in the absence of a carrier. It is because of this inherent
characteristic that the super-regenerative receiver is affectionately referred to by some as a "rush-box".

The selectivity of a super-regenerative receiver is inherently poor, and hence is prone to receive simultaneous transmissions, on neighbouring frequencies, from other model control operators in the vicinity. This undesirable feature is to some extent offiset by the tendency of the circuit to "latch on" to the strongest signal present, and suppress any weaker signals received.

PREAMPLIFIER CONSTRUCTIONAL DETAILS

A


Fig. 5. Component layout and wiring of the preamplifier panel

## COMPONENTS . . .

Resistors

| R8 | $470 \Omega$ | R12 | 10k $\Omega$ | R16 | $10 \mathrm{k} \Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R9 | $100 \mathrm{k} \Omega$ | R13 | $47 \mathrm{k} \Omega$ | R17 | $100 \mathrm{k} \Omega$ |
| R10 | $56 \mathrm{k} \Omega$ | R14 | $39 \mathrm{k} \Omega$ | R18 | $27 \mathrm{k} \Omega$ |
| RI] | $10 \mathrm{k} \Omega$ | R15 | $8.2 \mathrm{k} \Omega$ | R19 | $2 \cdot 7 \mathrm{k} \Omega$ |
|  | 10\%. | car |  |  |  |

Potentiometer
VRI $250 \mathrm{k} \Omega$ carbon min. preset

## Capacitors

| C 9 | $10 \mu \mathrm{~F}$ elect. 12 V | Cl 3 | $50 \mu \mathrm{~F}$ elect. 6 V |
| :--- | :--- | :--- | :--- |
| C 10 | $25 \mu \mathrm{~F}$ elect. I2V | Cl | $25 \mu \mathrm{~F}$ elect. 12 V |
| CII | $25 \mu \mathrm{~F}$ elect. I2V | $\mathrm{Cl5}$ | $0.01 \mu \mathrm{~F}$ paper |



## Transistors and Diodes

TR3, 4, $5 \quad 2 \mathrm{~N} 3702$ or 2 N 3703 (3 off)
DI, 2 IS44 or ISI30 or OA200

## Miscellaneous

Plain or perforated s.r.b.p. sheet (see text) 4in $\approx 3$ in Pins for perforated board


The "squegging" action of the receiver can cause unwanted r.f. radiation from a receiving antenna connected directly to the input. Indeed, the initial experiments, performed in an attic workshop, caused considerable interference to television receivers via
aerials in the immediate vicinity. This was eliminated and a 6 dB gain achieved by fitting an r.f. stage TR1.

This acts as a buffer between the "squegging" detector TR2 and the antenna, and is merely a class A amplifier biased by R1 and R2 in the base, and R3 and C3 in the emitter circuit, for stable operation. The output at the collector is loosely coupled by L2 to L3.

The effect of the antenna loading is reduced on the detector stage, thereby increasing its performance,

STEERING CONTROL CONSTRUCTIONAL DETAILS


## COMPONENTS . . .

Resistors

| $R 20$ | $10 \mathrm{k} \Omega$ | $R 24$ | $47 \mathrm{k} \Omega$ | $R 28$ | $150 \mathrm{k} \Omega$ |
| :--- | :--- | :--- | :--- | ---: | :--- |
| $R 21$ | $4.7 \mathrm{k} \Omega$ | $R 25$ | $22 \mathrm{k} \Omega$ | $R 29$ | $8.2 \mathrm{k} \Omega$ |
| $R 22$ | $27 \mathrm{k} \Omega$ | R 26 | $27 \mathrm{k} \Omega$ | $* R 30$ | $15 \mathrm{k} \Omega$ |
| $* R 23$ | $10 \mathrm{k} \Omega$ | $R 27$ | $1 \mathrm{k} \Omega$ | $* R 31$ | $33 \mathrm{k} \Omega$ |

All $10 \%$, $\frac{1}{6}$ watt carbon

* R23, R30, and R31 may require adjustment on test


## Potentiometers

VR2 $5 \mathrm{k} \Omega 2$ linear carbon or wirewound min.
VR3 IMS2 carbon min, preset

## Capacitors

C16 $20 \mu \mathrm{~F}$ elect. 16 V
CI7 I $\mu \mathrm{F}$ tantalum or paper 12 V
Cl8 O.I $\mu \mathrm{F}$ paper
C19. $0.1 \mu \mathrm{~F}$ paper
C20 $8 \mu \mathrm{~F}$ elect. 25 V
C2I $0.1 \mu \mathrm{~F}$ paper

Transistors and Diodes

| TR6, 7. 8, 10 | 2N3702 or 2N3703 (4 off) |
| :--- | :--- |
| TR9, 11 | 2N3707 (2 off) |
| D3, 4 | Z8.2 (Brush) or OAZ246 (Mullard) |
|  | Zener diodes (2 off) |
| D5 | Z5.6 or OAZ242 Zener diode |
| D6, 7 | IS44, ISI 30, or OA200 (2 off) |

TR6, 7, 8, $10 \quad 2 \mathrm{~N} 3702$ or 2 N 3703 ( 4 off)

D3, 4
D5
D6, 7
Z5.6 or OAZ242 Zener diode
IS44, ISI30, or OA200 (2 off)


RLA, RLB $12 \mathrm{~V} 700 \Omega$ type MH 2 with two changeover sets of IA contacts (Keyswitch)
or type 4190GD (S.T.C.) (2 off)
(Normal open pair of contacts used)

## Switches

S2 Single pole roggle
$\left.\begin{array}{l}\text { S3 } \\ \text { S4 }\end{array}\right\}$ Part of Drive System, see Part 2

## Miscellaneous

MO2 Motor 3V 6,000-7,000 rev/min (Ripmax Orbit type 505)
Plain or perforated s.r.b.p. sheet $4 \mathrm{in} \times 4 \mathrm{in}$. Pins for perforated board
whilst the antenna loading circuit itself is flatly tuned by L1-C1 prior to amplification by TR1.

The high frequency "squegging" component at TR2 output is filtered out by C26.

## PRE-AMPLIFIER

Satisfactory operation of the controls depends entirely on the preservation of a good rectangular waveform after detection by the receiver. This is effected by the use of a high gain pre-amplifier (which is normally saturated), together with a degree of noise rejection filtering. Due to the saturated condition of the amplifier, it is quite stable, and the limiting action is effective in removing the inherent noise generated by the super-regenerative circuit.

The pre-amplifier comprises TR3-TR5 in a circuit which is optimised to clip and square the full range mark/space ratio for minimum signal strength conditions, and provides automatic d.c. restoration of the rectangular wave relative to the zero level for all signals.

Potentiometer VR1 is an optional preset control, which is fitted to the prototype, and can be adjusted to give optimum noise rejection at the limit of the working range of the transmitter. Some degree of noise rejection is provided by C12 and C15.

## PROPORTIONAL RUDDER CONTROL

The resultant "clean" rectangular waveform appearing at TRS collector contains an average d.c. component proportional to the mark/space ratio, but independent of the frequency. This component is extracted by the smoothing circuit R20 and C16 and buffered by emitter follower TR6, prior to being used as a "reference" voltage. This voltage is to be compared with a feedback reset voltage proportional to the actual rudder position as derived by VR2, which is driven mechanically by the rudder shaft, and is some fraction of the battery voltage.

The comparison is made at the input of the d.c. operational amplifier TR7, TR8, TR9, whose closed loop gain is controlled by VR3, the feedback potentiometer, to something around 15 .

The quiescent state of the servo is that associated with an amplifier output of about half the battery voltage, when the input currents derived from the


## IMPORTANT

Readers intending to construct this radio controlled model boat are advised that, before operating in the U.K., the appropriate "model control" licence must be obtained. This licence, which is allocated for model control only at 26.96 to 27.28 MHz for a radiated power not exceeding $\$: 5$ watts, can be obtained, upon payment of CI (sterling), from the Radio Services Branch, G.P.O. Headquarters, St. Martins-leGrand, London, E.C.I.
reference source and the feedback potentiometer are approximately equal. If, however, the reset voltage differs from that required to obtain this state by about 0.25 volt or so, the amplifier will drive hard to saturation or cut off depending on the polarity of the difference voltage.

A deadband circuit embodying Zener diodes D4 and D5 follows the amplifier, which inhibits operation of succeeding circuits until the "error" voltage exceeds about half that necessary to saturate the amplifier in either direction. This "error" voltage corresponds to about 5 degrees of arc of the steering control at the transmitter ( 270 degrees helm to helm) and is experienced as lost motion. The deadband, however, creates a definite quiescent state for the control, in which the rudder relays and actuator motor are not energised, and hence once the rudder "homes" to the selected position, current consumption falls to a very low level.

If a signal of more than 5 degrees helm is given then TR 10 or TRII, as appropriate, conducts and the associated port or starboard relay is energised which in turn actuates the helm motor. When the rudder nears the selected equilibrium position, the amplifier "zeros" and the relay is released.

Limit switches are fitted at the extremes of lead screw travel which open the motor circuit for the direction selected, should hard helm be given.

The servo system is simply and effectively stabilised to one overshoot by the phase lead circuit in the feedback path (R28, C17).

Adjustment of the gain control VR3 will optimise the response, corresponding to minimum dead zone without any tendency to oscillate.

As the distance from the transmitter increases, some waveform degeneration is experienced which results in a slight "wander" of the rudder position. Similarly as the batteries run down, the relationship between
helm position and rudder position will be observed to change slightly. In practice these effects were not found to be severe enough to be embarrassing.

If desired, the effect of battery voltage deterioration affecting the rudder control
can be easily compensated for by merely rotating the rudder potentiometer body, with respect to its fixing bracket, slightly, say every half hour or so during operation.

## PROGRESSIVE THROTTLE CONTROL

The output of TR5 is differentiated by C22 and R32 and fed to the throttle control circuit TR12-TR17.

## THROTTLE CONTROL CONSTRUCTIONAL DETAILS

## COMPONENTS . . .

Resistors

| R32 | $15 \mathrm{k} \Omega$ | R35 | 3.9k $\Omega$ | R39 | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R33 | $47 \mathrm{k} \Omega$ | R36 | $180 \mathrm{k} \Omega$ | R40 | $3 \cdot 3 \mathrm{k} \Omega$ |
| R34 | $470 \mathrm{k} \Omega$ | R37 | $4 \cdot 7 \mathrm{k} \Omega$ | R41 | 4 |
|  |  | All | \%, $\frac{1}{4}$ | car |  |

## Potentiometer

VR4 $100 \mathrm{k} \Omega$ carbon min, preset

## Capacitors

$\mathrm{C} 220.003 \mu \mathrm{~F}$ paper $\mathrm{C} 2440 \mu \mathrm{~F}$ elect. 16 V
$\mathrm{C} 23 \quad 0.02 \mu \mathrm{~F}$ paper
C25 $0.1 \mu \mathrm{~F}$ paper

## Switches

S5 Single pole toggle
$\left.\begin{array}{l}\text { S6 } \\ \$ 7\end{array}\right\}$ Part of Drive System, see Part 2
Transistors and Diodes
TRI2, 13, 14, 15, 17 2N3707 (5 off)
TRI6 2N3702 or 2N3703
D8, 9, 12, 13 IS44 or OA200 (4 off)
D10 Z8. 2 or OAZ246 Zener
DII Z5.6 or OAZ242 Zener

## Relays

RLC, RLD I2V $700 \Omega$ type MH2 with two changeover sets of IA contacts (Keyswitch) or type 4I9GD (S.T.C.) (2 off) Normal open pair of contacts used

R42 $8.2 \mathrm{k} \Omega$


MOI Motor, miniature for throttle control with a short shaft (Kell Kraft)
Plain or perforated s.r.b.p. sheet 4 in $\times 4$ in
Pins for perforated board

## OTHER ITEMS FOR ELECTRONICS <br> Switch <br> SI Single pole toggle

## Batteries

BYI 15 V made up from 12 nickel cadmium cells connected in series (Deac $1 \cdot 25 \mathrm{~V}, 225 \mathrm{mAh}$ )

BY2 2 V I.6Ah lead acid cell
Components for mechanical actuators given next month


Fig. 7. Component layout and wiring of the throttle control panel

TO TR5 COLLECTOR RLC COIL
ON PRE-AMP

# Build Your Own Heathkit Electronics 

 A kit for every interest - Home Workshop - Hi-Fi - Radio - Test - AmateurLatest STEREO TAPE RECORDER, STR-1


Fully portable-own speakers
Kit £58, 0.0 incl. P.T. P.P. $10 / 6$ Ready-to-use $\mathbf{\text { £ } 7 0 . 6 , 0} \mathbf{~ i n c l . ~ P . T . ~}$ P.P. 10/6

FOR THIS SPECIFICATION
$\ddagger$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{1}{2}$ and 17 ips. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on elther channel. 18 transistor circuit for cool, Instant and dependable operation. Moving colt record level indicator, Digitaf counter with thumb-wheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/headphone and external amplifier outputs ... front panel mounted for easy access. Push-button controls for operational modes. Bullt-in stereo power amplifier giving 4 W rms per channel. Two high efficlency $8^{\prime \prime} \times 5^{\prime \prime}$ speakers. Operates on 230 V a.c. supply.

Versatile recording facilities. So easy to build-so easy to use.

## High-performance CAR RADIO, CR-1

 8 Latest semiconductors ( 6 transistors, 2 diodes). For 12 V positlve or 12 V negative oarth systems. Powerful output (4W). Preassembted and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembiy. Instant operation, no warm-up time. Tastafully styled to harmonlse with any car colour scheme. High quallty output stage will operate two loudspeakers if desired. Can be built for a total price.KIT (less speaker) £12.18.6 incl.P.T.
P.P. $4 / 66^{\prime \prime} \times 4^{\prime \prime}$ Loudspeaker $£ 1.4 .5$ extra.

Ready-to-use £19.12.6 (less speaker) P.P. 4/6


Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

## Latest STEREO AMPLIFIER, TSA-12

$12 \times 12$ watts output
Kit £30. 10.0 less cabinet P.P.10/6 Ready-to-use $\mathbf{2 8}$ (incl. cab.) P.P 10/6
Cabinet £2. 5. 0 exira

## FOR THIS SPECIFICATION

17 transistors, 6 diode circuit. $\pm 1 \mathrm{~dB}, .16$ to $50,000 \mathrm{~Hz}$ at 12 W per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low sithouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished walnut veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 translstor tuners.

Full range power... over extremely wide frequency range. Special transformerless output circuitry. Adequately heatsinked power transistors for cool operation-long life, 6 position source switch.

## A wide range of SPEAKER SYSTEMS

HI-FI SPEAKER SYSTEM. ModeI SSU-1. Ducted-port bass reflex cablnet "in the white". Two speakers. Vertical/horizontal models with legs, Kit £12. 14. 6 P.P. $12 /-$ Without legs, Kit £12. 0.0 incl. P.T. P.P. 7/6


Berkeley

The BERKELEY SLIM-LINE SPEAKER SYSTEM, fully finished walnut veneered cablnet for faster construction. Special $12^{\prime \prime}$ bass unit and $4^{*}$ mid/high frequency unit. Range $30-$ $17,000 \mathrm{~Hz}$. Size $26^{\circ} \times 17^{\prime \prime}$ only $73^{\prime \prime}$ deep. Modern attractive styling. Excellent value.

KIt £19. 10. 0. P.P. 13/6
Ready-to-use £24, 0. 0. P.P. 13/6

## SEE HEATHKIT MODELS AT: <br> GLOUCESTER

Factory and Showroom, Bristol Road.

## LONDON

233 Tottenham Court Road, W.1.

## SIR MINGHAM

17-18 St. Martin's House, Bull Ring.
Demonstrations by arrangement.
Deferred terms available over $\mathbf{£ 1 0}$ (U.K. only).
Prices quoted are Mail Order prices.

Send for Latest FREE Catalogue
36 pages, many models in Colour

## Transistor Portables

UXR-1, now available in Modern coloured cases or leather.
6 transistor, 1 diode circuit. $7 \times 4 i n$. speaker. LW and MW coverage. Case: brown leather, or colours navy blue, coral pink, lime green. Please state 2nd cholce.

Kit £12, 8. 0. incl. P.T. Colour
Kit £13, 8. O. incl. P.T. Leather
P.P. $4 / 6$

UXR-2, choice of black or brown real leather cases.
7 transistor, 3 diode circuit. Battery saving circuitry. LW and MW coverage. Pushbutton wave change. Slide rule tuning.
Kit £15, 10, 0. incl. P.T. Leather P.P. 6/-

Latest Portable Stereo Record Player, SRP-1
Automatic playing of 16, 33, 45 and 78 rpm records. All transis-tor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8 in $\times 5$ in special loudspeakers. For $220-250 \mathrm{~V}$ a.c. mains operation. Overall cabinet size $15{ }_{16}^{16} \times 3_{\frac{4}{4}}^{\because} \mathbf{1 0 t} \mathbf{I n}$.
Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.
KIT £28.6.0 incl. P.T. P.P. 10/6 Ready-to-use $£ 35.4 .0$ Ready-to-use $\begin{array}{r}\text { E35.4.0 } \\ \text { P.P. } 10 / 6\end{array}$

# ELEGTROVALUE <br> <br> FAST MAIL ORDER SERVICE 

 <br> <br> FAST MAIL ORDER SERVICE}

Mini transistors with MIGHTY specifications
Low cost, Plartic encapsulated, Silicon
2N42B5 pno high reverse base-emieter voleage racing
BVebo BVceo BVebo al: over 35V. IT 27 MHz minimum
hFE 35 to 150 int Ic $=10 \mathrm{~mA}$. Vee(sat) 0.5 V max w $1 \mathrm{c}=10 \mathrm{~mA} .1 \mathrm{lb}=1 \mathrm{~mA}$ BVcbo over 30 V BVceo over 25 V . IT 260 MHz typ ic ic - mA N4289 pnp high gain bFE $=100 \mathrm{~min}$. " Ic $=100 \mu \mathrm{~A} 160 \mathrm{~min}$. in k .
BVcbo over 60 V BVceo over $45 \mathrm{Y} \mathrm{fT}=170 \mathrm{MHz}$ typ $1 \mathrm{lc}=2 \mathrm{~mA}$.
2 N 4291 pno large signal high gain hFE $=100 t 0300$ 分 le mo $100 \mathrm{~mA} \mathrm{~V}_{\mathrm{ce}}=10 \mathrm{~V}$
BVcbo ovar 40 V , BVeeo over 30 V , Vce(sas) $=1.5 \mathrm{~V}$ max $\mathrm{ml} \mathrm{I}_{5}=100 \mathrm{~mA}$
$2 N 4292$ npm UHF, low noise, $\quad\{T=570 \mathrm{MHz}$ typ t $\mathrm{tc}=2 \mathrm{~mA}$ Vce $=5 \mathrm{~V}$. FFE 50 typ.
8Vcbo over 30 V , Bveco over $15 \mathrm{~V}, \mathrm{~N} . F, 6 \mathrm{~dB}$ max ui. $\mathrm{Ic}=1 \mathrm{~mA}, \ell=100 \mathrm{MHz}$.
2N3794 npn large signal high gain (complementary to 2N4291)
All of the above are rated at 500 mA . hax $=100 \mathrm{~min}$. wi $\mathrm{lc}=100 \mathrm{~mA}$.
Size $0.175 \times 0.090 \times 0.090$ in high max $1 c^{2}, 200 \mathrm{~mW} \max$ it $25^{\circ} \mathrm{C}$
size 01 POWER type 0.0901 n high. Lead arrangement: in-line.
from mountinpe on TO66 size base, npn high grain. Collector isolated $\mathrm{Tc}=100^{\circ} \mathrm{C}$ and V se $=10 \mathrm{~V}$ ( 500 V insulation). Dissipates 14.3 W max $\mathrm{Tc}=100 \mathrm{Gax}{ }^{\circ} \mathrm{ce}$ hFE $=100$ (max) $35 \mathrm{~V}, \mathrm{le}(\max )=3 \mathrm{~A}, \mathrm{Bb}(\max )=1 \mathrm{~A}$ $\mathrm{Vce}(\mathrm{sat})=1.2 \mathrm{~V}$ max fil lc $=1 \mathrm{~A}, \mathrm{lb}=50 \mathrm{~mA}$. 2N4292, 2N3794 3/3 each; B5001(yetlow) 13/6.
PEAK SOUND PRODUCTS
CIR-KIT No. 3 Pack 12/6: adherive copper 5ft $x$ 1/8in or 1/16in 2/ 00fe $x$ l/bin or $1 / 16$ in $30 / \%$. Perforated board 0.1 in matrix $\sin \times 3 \frac{3}{2}$ in, $4 /$ 2in $x+\frac{1}{2} \operatorname{in} 2 / 0$.
TRANSISTORISED STERO AMPLIFIER AND PRE-AMP SA9-8 Complete kir of this very popular amplifier 16 watt total output $\quad\{10.10 .0$
Power supply kit Cabinet supply kit
DISCOUNT on whole order and post free when purchaying on SAE-8!

## EXTRA VALUE IN SEMICONDUCTORS

Silic
BC 107, 45V, B 125-500, 2/9
BC167. 50V, $\beta$ 125-500, 2/6
BC108, 20V, \& 125-900, 2/6

BCl 09 and BC169 are low noise types, BC167, BCI 6 B and BC 169 are plastic.
Best value for:
High Power: $2 \mathrm{~N} 3055,115 \mathrm{~W}, 100 \mathrm{~V}, 16 / 6 ; 2 \mathrm{~N} 3054,90 \mathrm{~V}$, fT 25 MHz zyp, 51 , Fied Elfece: MPFIOS, 8 m 2 to 6 mAlV , $8 / \mathrm{of} 2 \mathrm{~N} 3819$, $13 / \mathrm{m}$
VHF and fast swirching: BS 20 , 1T $600 \mathrm{MHH}, 4 / 6$.
High gain: $2 \mathrm{~N} 3390, \beta 400-1250,6$
Low Noise: 2N377, 4/6; 2 N 3391 A . 5/6; 2N4058 (pnp), 5/-
Sub-Miniature: $\mathrm{BC} 122,30 \mathrm{~V}, 50 \mathrm{~mA}, 80 \mathrm{~mW}, 250 \mathrm{MHz}, 1 \times 1.5 \times 2 \mathrm{~mm}, 6 / 6$, Alow cost: $2 \mathrm{~N} 29 \mathrm{~N}, 104$, $10 \mathrm{MHz}, 2 / 3$ (our colour selection).
Also: $2 \mathrm{~N} 3702,2 \mathrm{~N} 3704,4 /$-each: BFY50, 5 /
Germanium: many types in stock including RF, VHF: NKT603F, 6/: Low-noise: 2G308; 619; 2 G309, 719; NKT275, 3/8
Still running well: 2 Ni 302,2 2N1303, 3/6; 2N1304, 2NI305, 4/-: $2 N 1306$, 2N1307, 6/-; 2N1308, 2N1309, $7 / 11$
High Power: NKT403, 14/10; 2 Nz147, 16/9: matching, $1 /-\mathrm{pr}$
Complementary Output: AD/61 (npn), 9/:: ADI62 (pnp), $9 /$
silicon diadar
Low cost: $15940,30 \mathrm{~V}, 75 \mathrm{~mA}, 1 / \mathrm{o} ; \mathrm{OA} 202,150 \mathrm{~V}, 160 \mathrm{~mA} 2 / \mathrm{of} 8 \mathrm{gY} 238,850 \mathrm{~V}$, 500 mA 3/9; iN5054, 800 V , AA 4/9; BYZ13, $200 \mathrm{~V}, 6 \mathrm{~A}, 6 / 9$.
Zener diodes: $400 \mathrm{~mW}, 5 \%, 2 \cdot 7 \mathrm{~V}$ to 33 Y ( $\mathrm{E}_{2} 4$ values), $5 / 3$
Germanium diodes: OA47, $1 / 9 ; 0 A 70,1 / 6$; OAB1, $1 / 6 ; 0 A 90,1 / 3 ; 0 A 91,1 / 3$; 0A95, 1/3.
SUPER QUALITY NEW RESISTORS
Carbon film low noise high stabs:

| Power | Range | Series | Per doz. | Per 100 |
| :---: | :---: | :---: | :---: | :---: |
| li8w 5\% | $5 \cdot 10$ to 330 k a |  | 1/10 | 14/6 |
| 1/8W 10\% | $19.100^{4.70}$ | E12 | $\pm{ }^{\frac{1}{2}} \mathrm{~d}$ | resistor |
| 1/4W $10 \%$ | 4.78 to 10 Ma | E12 | $1 / 19$ | $13 / 6$ |
| 1/2W 5\% | 4.78 to 10 Ma | E2 | $2 / 2$ |  |
| IW 10\% | 4.78 to 10 Ma | E12 | 3/3 | 25/10 |

16 per 100 tess in complete 100 's of one ohmic value. IW typo $4 d$ each
Please state yalues required.
Quality Carbon Skeleton Pre-sets: 1000, 250 , 500 , 1kO, 2kB, 2.5kn. 5 k , $30 \mathrm{~kg}, 20 \mathrm{ka}, 25 \mathrm{~kg}, 50 \mathrm{k}$, $100 \mathrm{k} \Omega .250 \mathrm{kQ}, 500 \mathrm{kR}, 1 \mathrm{MQ}, 2 \mathrm{MQ}, 2.5 \mathrm{MQ}$, SMQ, IOMR. Available in horizontal or vertical mounting, $1 /$ each.
Low cost volume controls: $100 \Omega 5010 \mathrm{Mg}$ lin, 5 kg to 5 Mg log, $2 / 3$ each.

$\begin{gathered}\text { Ceramics: } \\ \text { sovisd } \\ 5 d\end{gathered} 100,220,470,1,000,2,200,4,700 \mathrm{pF}, 500 \mathrm{~V}$, $5 \mathrm{~d}: 0.01,0.02,0.05 \mu \mathrm{~F}$,
Electrolytics: $5,10,25,50 \mu \mathrm{~F}, 10 \mathrm{~V}, 9 \mathrm{~d} ; 5,10 \mu \mathrm{~F}, 25 \mathrm{~V}, 9 \mathrm{~d} ; 100,200 \mu \mathrm{~F}, 10 \mathrm{~V}, 1 / \mathrm{oi}$ Electrolytics: $25,10,10,25 \mathrm{~F}, 1 /$
sub-min C 126 range ( $\mu \mathrm{F} / \mathrm{V}$ ): $10 / 2 \cdot 5,8 / 4,6.4 / 6.4,4 / 10,2.5 / 16,1.6 / 25,1 / 40$ $0.64 / 64$
40/2.5, $32 / 4,25 / 6 \cdot 4,16 / 50,10 / 16,6 \cdot 4 / 25,4 / 40,2 \cdot 5 / 64,{ }^{\circ} 160 / 2.5^{\circ}$
$125 / 4,125 / 10,62516,100 / 6.40,200 / 6 \cdot 4,200 / 10155,64 / 4$
$54 / 10,50 / 6-4,50 / 25,50 / 40,40 / 16,32 / 10,32 / 40,32 / 64,25 / 25$
20/16, 20/64, $16 / 40,12 \cdot 5 / 25,10 / 64,8 / 40,5 / 64$
1/4 each
EVERYTHINGMBRAND NEW NO SURPLUS FAST DELIVERY DISCOUNTS: $10 \%$ over $E 3$, $15 \%$ over $E 10$.
SEND I/- for 1968 CATALOGUE-invaluable to every electronics enthusiast and

Postage 1/- under El , pose free CI and over.

## FANTASTIC BARGAINS SONOTONE

 SOLENT
## 2 SPEAKER HI-FI

 SYSTEMS- LIST $£ 18$ EACH

SPECIAL OFFER

## 11 gns. foct $\begin{aligned} & \text { fact } \\ & \text { post }\end{aligned}$

Impedance 8 ohm. Power input up to 12 watts.

- Suitable for valve or transistor amplifiers.

Frequency response $40 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{k} / \mathrm{cs}$.

- Scandinavian style cabinet.
- Small attractive size $14 \times 9 \times 8 \frac{1}{2}$.

On permanent demonstration.
Reviewed by Hi-Fi News, The Gramophone, etc. Send large s.a.e. for FREE Leaflets and Test Reports available from our Showrooms.

## J. J. FRANCIS LTD. 123 ALEXANDRA ROAD <br> LEE ELECTRONICS 400 EDGWARE ROAD LONDON, N. 8 BOW 1662 <br> PADDINGTON 5521

## FAULT LDCATION




For rapid and effective fault location. Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to -42 centigrade. it can also be used to prevent heat damage during soldering processes, for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.

Other Kontakt products:
Kontakt 60 and Kontakt 61 for relay contact cleaning: Plastic Spray 70 , transparent protective lacquer: Insulating Spray 72: Kontakt WL. Spray Wash; Antistatic Spray 100 , Antistatic agent for plastics; Politur 80 , Polish and cleaner; Fluid 10!. Dehydrating Fluid.

## Details from U.K. distributors:

## Special Products Distributors Ltd.

81 Piccadilly, London, W.I.
Tel, 01-629 9556

The negative-going edges are used to set a monostable multivibrator TR12, TR13 and TR14, whose quasistable pulse length is preset by VR4 such that it is approximately one half-period of the centre "hold" frequency, 400 Hz , equal to 1.25 ms .

The monostable output therefore comprises a $1: 1$ mark/space ratio for this condition, and has an average d.c. component after smoothing (R39, C24) of about half the battery voltage ( 7 V ). Neither Zener diode (D10, D11) conducts, thereby depriving TR16 and TR17 of drive; hence, neither throttle relay is energised.
It can be seen that as the monostable is only influenced by negative-going edges, and there is only one such pulse per cycle, the output d.c. level will be unchanged as the mark/space ratio of TR5 output varies over its full range.

If, however, the transmitted frequency is raised to 600 Hz ("close throttle") the quasi-stable period of the monostable becomes nearly equal to one complete period of the signal frequency and TR12 is not conducting for a high percentage of time. The monostable output average d.c. component assumes a positive voltage, approaching that of the battery, and D11 conducts, operating the "throttle close" motion relay via TR17.

The throttle motor will continue to rotate until the frequency is restored to a lower level, or the limit switch on the lead screw is operated. If the frequency selected is 110 Hz then TR12 remains in its stable state (conducting) for relatively long periods of time, with an average d.c. output voltage of about 1 volt to earth. This results in conduction of D10 and operation of the "throttle open" relay RLC via TR16.

The monostable is of a special design which permits rapid recharging of the timing capacitor C23 at the end of a quasi-stable period. This ensures that the monostable is ready to re-enter an accurate quasistable period with the minimum delay in the stable state (about 5 per cent), thus guaranteeing good separation between the "hold" and "throttle close" signals.

The "open throttle" discrimination is determined by the cut-off condition of TR15 (about 1.5 volts) as a result of TR16 base current. The "open throttle" frequency need only be low enough to create the cut-off condition, any further frequency reduction only results in unnecessary chatter of RLC.

The frequency allocations for throttle control functions are deliberately made to provide a fail-safe feature. It is obviously desirable that the throttle should be closed to minimum (tick-over) should the transmitter fail or the boat get out of range. Contrary to initial expectation, loss of signal does not produce the effect of frequency reduction to d.c. conditions, i.e. zero frequency.

The noise level of the super-regenerative circuit rises enormously if the carrier is removed, and becomes sufficient to trigger the monostable continuously, giving a high positive output from TR12. It is wise, therefore, to associate this condition with the "throttle close" command.

In a similar manner the random noise pattern generated under weak signal conditions results in an approximately "average" mark/space ratio of unity on the rudder control. As a result the rudder assumes a position roughly amidships. The slow speed straightahead attitude adopted by the vessel was very comforting during trials when the transmitter was deliberately switched off.

At this point it will be realised that, had the modulating frequency of the transmitter been made infinitely variable instead of being switched, which could be readily achieved by variation of the charging potentials of the transmitter multivibrator capacitor, the throttle control could have been an independently actuated simultaneous position control, in a manner similar to that used on the rudder. However, it was decided not to do this on the prototype both to preserve simplicity, and to explore the possibilities of both systems.

## BOARD CONSTRUCTION

Perforated s.r.b.p. boards were uset throughout for the electronic assemblies and layouts were not found to be critical although it is desirable to keep lead lengths as short as possible in the 27 MHz portions.

The receiver panel is actually a peg-board manufactured from s.r.b.p. and copper laminate (unetched printed circuit material) the copper acting as an earth plate, being cut away round the plated pegs used for connections to components. This is easily done by countersinking the $\frac{1}{18}$ in peg holes with a ${ }_{8}^{3}$ in drill prior to insertion of the pegs.

The entire receiver section is mounted on an unetched s.r.b.p. card 4 in $\times 4 \mathrm{in}$ fitted with isolated pegs, and soldering components straight down to the copper ground plane as required. The receiver layout is not particularly critical provided that lead lengths are kept to a minimum and the "earthy" end of certain capacitors are taken to a common point on the ground plane as shown.

So far as the other three assemblies are concerned, there is no special need for using copper clad board (as shown in the diagrams) and a plain type of s.r.b.p. board can be used here if preferred.

Full layout and wiring details for the boards are given in the illustrations (Figs. 4 to 7).

## Next month : Actuator construction and installation of drive system and power supply.



PRACTICAL TRANSISTOR CIRCUITS (April /968) The loudspeaker should be connected between $\mathrm{C} 3+$ and the -9 V line in the complementary symmetry circuit; R6 should be connected between C3 + and TR2 base; C2 should be connected in parallel with R3.
SOUND EFFECTS : WIND AND RAIN (Aprif 1968) Capacitor numbering in the wiring diagram (Fig. 5) should be amended as follows: Cl to Cl should read C7 to C13 in sequence; likewise C8 to C13 should read C1 to C6. In the components list R1 to $R 7$ inclusive should be $2.7 \mathrm{k} \Omega$.
FLUORESCENT CAMPING LIGHT (March 1968) Modification for pre-heating the lamp electrodes was published in the May 1968 issue. It has been found that in this modified circuit (page 375) the capacitor $C 2$ is no longer required and should be deleted. The lamp will then give maximum output when switch $\$ 1$ is turned to position 3 .

# EPORU RE5ルก5 

And some of their applications
in the electronics industry

By P. A. Dunni, cian (A.R.L) tud.

THE technique of protecting components by enveloping them in a "block" or film of moisture-resistant material was in use long before the development of the present-day potting or casting resins. For many years, components such as capacitors have been encapsulated in wax or bitumen, while transformers and other wound components have been impregnated using vacuum or dipping methods.

These processes, however, give very little mechanical protection to the components. Moreover, should any local overheating occur, thermoplastic materials such as wax and bitumen will melt and drain away. Another method is to hermetically seal components in a metal can, the leads being made through glass-metal seals, which are subsequently soldered. This method, however, is expensive.

Epoxy resins, introduced to this country about 18 years ago, have brought new concepts of design to the electrical and electronics industries and the ease with which intricate high performance components can now be formed with these resins has given a new freedom to design engineers.

## APPLICATIONS

Probably the most well known use of epoxy resins is as adhesives and they are widely used as such in the electronic and electrical industries. Gramophone rotors are bonded to shafts, ceramic insulators are bonded to metal, nickel iron laminations are bonded together to form stators, etc. They are also used to bond the lids of car batteries and to bond iron powder in the manufacture of iron dust cores.

> A wirewound resistor receiving a coating of epoxy resin by the fluidised bed technique


## CIRCUIT BOARDS

When reinforced with, for example, glass cloth, epoxy resins can be formed into structures having a high strength-to-weight ratio, excellent electrical properties over a wide range of temperatures, great dimensional stability under varying conditions, and good chemical resistance, etc. Pre-impregnated sheets of epoxy glass cloth, pressure moulded to form printed circuit boards, are rapidly supplanting conventional s.r.b.p. ("Paxolin") in high quality equipment.

## CHOICE OF INGREDIENTS

Chemically the resins are derived from epichlorhydrin and diphenylol propane. By varying the ingredients and certain phases of the manufacturing process a series of resins may be produced ranging from rather viscous liquids to hard solids. In the uncured state the resins are thermoplastic with poor mechanical strength. They are converted into hard, tough and substantially infusible materials of high molecular weight, by reaction with a suitable hardener. A wide range of chemical hardeners may be employed and since the hardener takes part in the reaction, the properties of the cured product are not only affected by the type of resin selected, but also markedly by the type of hardener employed.

Some epoxy resin and hardener mixtures will cure at room temperature, while others require processing at elevated temperatures. The ratio of hardener to resin in each case is fixed within narrow limits and departure from the optimum ratio entails loss in performance. The choice of hardener can affect the application viscosity of the mixture, the pot-life and the rate of cure. In general, therefore, pot-life and rate of cure can be varied only by choice of hardener, and not by change of resin : hardener ratio. There are, however, some formulations in which a small and variable addition of an accelerator may be used to adjust the pot-life and cure time of a slow acting resin-hardener system.

## FILLING AND COLOURING

The many combinations and permutations of the several basic epoxy resins and the greater number of hardeners can be extended by even further modifications. The viscosity may be reduced by solvents, plasticisers, and diluents. Some diluents and plasticisers are reactive and can be combined into the final cured product. Diluents and plasticisers reduce viscosity or impart resilience at the expense of strength at elevated temperatures. Inert fillers may be added to the epoxy resin systems for opacity, cheapness, to improve hardness, wear resistance, thermal conductivity, electrical and mechanical properties, to increase viscosity or reduce the co-efficient of expansion or possible exothermic reaction.

Commonly used fillers are silica, mica, chalk, asbestos, glass, and synthetic fibres, etc. Epoxy resins can be dyed, pigmented and pastes of colouring matter dispersed in liquid epoxy resin are available.

Although the number of possible combinations of resin, hardener, plasticiser, filler, and dyestuff is very great and the number of possible applications is equally large, resin formulations for specific purposes are commercially available. At the same time, the ingredient resins and hardeners are available for those who prefer to exercise wider choice or to derive their own formulations.

## EPOXY POWDERS

Although much of the early work with epoxy resins in the electrical and electronic industries involved the use of liquid epoxy resins, more recent techniques make use of the resin systems in powder form.

Epoxy moulding powders consist essentially of a partially cured resin-hardener mixture in powder form. In use they are very free-flowing and may be easily moulded round delicate inserts, while thin sections of resin may be moulded round large metal inserts without difficulty. They cure rapidly on the application of heat and pressure with negligible after-shrinkage. As with other forms of epoxy resin, the absence of volatile matter during the curing operation is of particular value.
The moulding powders have a shelf life of some months and are usually stored at temperatures below 25 degrees C. After processing, they possess high insulation strength, excellent dimensional stability, good heat resistance, low water absorption, and good resistance to tracking. They maintain their dimensional stability at elevated temperatures and in adverse climates.
Epoxy moulding powders have been widely adopted for the fabrication of bobbins, relay bases and connectors, and for the protection and insulation of transformers, silicon diodes, ferrite cores, and metal film resistors.

## FLUIDISED BED COATING

In the fluidised bed coating technique the powder, based on an epoxy resin system, is placed in a container with a porous base plate. Air is passed through the plate which causes the powder to become fluid. The component requiring protection is pre-heated and placed in the powder which becomes molten with the heat and adheres to the component. The time of

## (right) Rank Pullin amplifier-transmitter units before and

 after encapsulation(below) Án epoxy cased transistor from the Mullard "Lockfit' range

immersion in the powder and the pre-heat temperature of the component determines the thickness of the coating. Subsequent cure may or may not be required depending upon the resin system used. By suitable masking techniques, the protective or insulating film can be placed where required, as for example, in the slots of rotors, eliminating the need for slot liners. The absence of solvents, as may be present in normal coating systems, leads to the elimination of solvent bubbling and solvent entrapment during processing, etc.

Apart from application by the fluidised bed technique, powders can be applied by electrostatic spraying techniques or by processes involving the advantages of both techniques.

## "E-PAK" TECHNIQUES

A technique recently introduced to the U.K. and particularly applicable to the packaging of diodes and transistors uses moulded cases and pre-formed pellets of epoxy resin, appropriate in shape and size to the component being protected. As supplied the pellets are dry, non-toxic, and easy to handle. Cure temperature, viscosity, and other physical properties may be varied to meet the requirements of productivity. As in the case of moulding powders and fluidised bed powders, etc., the epoxy pellet in the "E-Pak" process, as it is called, is not fully cured and under the influence of heat it melts, fills the moulded housing containing the components, then sets to form a high strength solid.

## LIQUID RESINS

In the same way that an electronic component can be dipped into a fluidised bed powder, it may be protected by dipping into a liquid epoxy resin system. .In this case, however, the component is usually at room temperature. The liquid epoxy resin system is formulated to give a thixotropic characteristic so that the resin will not flow from the component during cure. Where the specified requirements are not too high, this system probably offers the cheapest method of encapsulation. It is necessary, however, to take steps to ensure control over the thickness of the coating, since, should this vary, variable performance under high humidity may be obtained and there may also be a tendency for the thinner coatings to crack at low temperatures.

Liquid resin epoxy systems are, however, normally employed by pouring the fluid uncured mixtures into moulds of metal, plaster, plastic or other material by simple gravity casting techniques. Indeed, the term
"casting" is normally employed to describe the general process, although it usually implies the production of an insulating or insulated component where the mechanical as well as the electrical properties of the material are important.

Potting, or encapsulation, implies the complete envelopment and embedment of a component or device in a protective mass of the resin, the object being not only to insulate, but also to protect the article being potted against vibration, shock, dust, ingress of moisture, chemical attack, insects, and other environmental hazards. It will be appreciated that such a technique gives a consistent resin thickness around the component being protected.

The basic casting methods are common to both the electronic and heavy electrical industries, but the products are usually different. Resins used for encapsulating electronic devices are usually designed to cure at low temperatures, for obvious reasons.

## MECHANICAL REQUIREMENTS

In the case of magnetic materials, which are highly sensitive to pressure, such as some high permeability steels, it is often necessary to exclude contact with the encapsulation resin by making the core external to the casting, or by means of certain more specialised methods. Metal components can be enclosed within the cured epoxy resins, providing that the differences in thermal co-efficient of expansion are considered.
Both thermal contraction and the curing shrinkage may be further reduced by extending the resin mixtures with inert mineral fillers such as silica, mica, slate, and chalk, etc. The use of fillers also reduces possible exotherm, increases the thermal conductivity and reduces the cost. Fillers are invariably used in the production of large castings.

## An automatic dispenser is used by Telegraph Condenser Co. for epoxy sealing of capacitors




Pye of Cambridge use epoxy adhesives to bond the two halves of ferrite pot cores for telephone equipment

Liquid epoxy resin systems may be used to complete the existing closure, made of metal or insulating material, with which a component has been surrounded, by casting the epoxy resin in the container. For example, components may be placed in metal cans and sealed with a layer of epoxy resin and by this technique the need for relatively expensive sealed outlet bushings may be eliminated.

Certain other liquid epoxy resin systems are specially designed for impregnation. The usual technique is the straightforward vacuum impregnation used in industry, although when considered necessary, vacuum may be followed by pressure.
For the impregnation of windings of electrical machines, such as motors, dynamos, and syncros, liquid epoxy resin may be employed in the trickle impregnation process. Here the wound armatures or stators are exposed, while rotating, to a trickle of freshly prepared solvent-free epoxy resin mixture, for a fixed time at a constant temperature and at an appropriate angle. When the winding is completely filled with the epoxy resin, rotation is continued at a controlled temperature in the horizontal plane until the resin has gelled. Heat treatment may follow.

## SOLUTIONS

Solutions of epoxy resins are also employed for impregnation and have advantages over more traditional systems. For example, they are used for the impregnation and bonding of "C-cores", where their adhesive properties are valuable.
Another major application of epoxy resins is their use in surface coatings. Epoxy based primers and finishes find wide application for the protection of refrigerators, washing machines, and the housings of many items of electrical and electronic equipment.


Impression of United States Apollo space station

## FIRST ASTRONAUT

At the time of writing the sad news of the death of Yuri Gargarin was announced. He will go down in history as the first man in space and who marked the starting point of manned spaceflight. He was an unassuming and pleasant man who seemed quite unaffected by the publicity that his exploit brought him. He continued to lead the Russian cosmonauts though he did not make other spaceflights. This contrasts with the American "first men" who are no longer connected with spaceflight.

## RUSSIAN MOON PROGRAMME

It is perhaps appropriate at this point to look a little more closely at the Russian Moon Programme. It has been thought that the general trend of Russia's efforts would be on the space platform technique. They had indicated this on a number of occasions when they gave small cocktail parties at the Soviet Embassy.

Since the successful remote manoeuvring of space vehicles it must be a possibility that Soviet technology has reached a point where they could be very close to the U.S.A. in point of time. The rumours of a special high thrust booster greater than Saturn $V$ were circulating some time ago; such a booster could have a thrust in excess of $10^{\circ} \mathrm{Ibf}$.

Possibly this has been once more achieved by the same techniques as in the past, namely the group or cluster method. It could be that a circumlunary project is being prepared in which case, if normal Soviet procedure is followed, there will be a first such attempt using dogs. It is rather significant that nine tracking ships came into operation in various parts of the world, some with large radomes aboard.

Such a network would be essential to any moon attempt which is manned. It is known that the astro-
nauts are having training for water landings, since a circumlunar attempt would probably require a landing somewhere on the equator.

## VOICE OPERATED DEVICES

From time to time a certain Hungarian, Lazlo Telcs, has made headlines with his voice operated devices. Though some of these led to rather embarrassing incidents it did not minimise the importance of this development of electronic techniques.
A number of organisations have tackled this problem and now comes news from RCA that under contract for the American Air Force they have under development an advanced project for astronauts. The advantages of such a system are that the astronaut would have his hands free for tools, cameras, control of a personal jet system, etc. while being able to instruct other devices.
The technique of speech recognition has reached a stage where such variations as local dialectal differences can be accepted. There is a name for this type of recognition. The word "Phoneme" indicates the smallest part of speech sound that can be distinguished. The " f ' in "fin" for example is one.

## GROUND STATIONS

Cable and Wireless Ltd. will be setting up two new ground stations for public service. Scheduled to be in operation by May 1969 they will be constructed at Hong Kong and Bahrain. A contract has been placed with The Marconi Company covering the aerial structure and associated electronic equipment. The cost will be of the order of $£ 2 \cdot 1$ million. The total cost to Cable and Wireless for this service will be about $£ 3.5$ million.
These two stations will operate through the Intelstat 3 satellites. The aerial dishes will be 27 metres in diameter and will be mounted on 18 metre towers. They will be fully
steerable in order that they may follow satellites in any orbit.

The Hong Kong station will be concerned with the satellite over the Pacific and will be located on Stanley Peninsular. The Bahrain station situated at Abu Jajur will operate through the other satellite over the Indian Ocean. There will be a direct service from London to Japan, the U.S.A., Hawaii, Australia, Thailand, and the Phillipines.

It is hoped by 1970 that another satellite UK-4 will be launched. A design study has been completed. There would be a repeat of the experiments performed by UK-3 with three new additions. Three of the previous experiments need to be repeated for they were spoiled to some extent by mutual radio interference. All three were in the low frequency range of the radio spectrum.

## OPTICAL TELESCOPE IMPROVEMENTS

One of the problems in the optical field is getting enough area to gather the maximum amount of light since this determines limits of resolution. A recent successful system has now been developed which virtually makes a mirror ten times larger. This electronic system called the Boyd-Boksenburg Charge Image Reader is to be fitted to the new Isaac Newton Telescope at Herstmonceaux.

The inventors were Prof. R. L. F. Boyd and Dr. A. Boksenburg of the Mullard Space Science Laboratory at University College London. The system has been patented and is on the production line.

Tested on the Isaac Newton Telescope it gave an effective mirror diameter of $2,500 \mathrm{~cm}$. The system uses a highly insulated electronic storage plate backed by a conducting plate on which the optical image is directly converted to a charge image by photo-emission. The image is "read" by the proximity of a vibrating probe. The distance between the probe and the plate is of the order of ten microns. The rapid change of capacitance results in an alternating current flow which is directly proportional to the quantity of charge. When amplified it results in a picture when the probe scans the area.

The method differs from ordinary television scanning in that the image is not destroyed during the scan and it is therefore possible to build up the picture element till it reaches a suitable value to be useful.

There are many great advantages to be derived from this device. A photographic image may take hours to expose where this method takes minutes, and in addition there is no grain to mar detail. Moreover the direct readout eliminates the processing of film and the attendant techniques, and not least avoids the uncertainty of the success of the exposure.

# A LIGHT OPERATED EAMEDET <br> By A. FOORD 

THERE are frequent occasions when one would like to trigger some apparatus into operation without being present to operate it oneself. Examples of some applications are burglar alarms, counting circuits, photography, and so on.

In photography, a birdwatcher is a special case. All too often the bird, or indeed any animal, can be heard, but one has to wait patiently for some time before it will show its face. In the time it takes to set up a camera to photograph the subject, it could have vanished as unexpectedly as it appeared.

What is required, then, is some device that could be set up in the field ready to trigger the camera without undue loss of time. Such a device is described here and was designed to fulfil the following requirements, bearing in mind the use of the photo-electric principle of breaking a light beam.

1. To respond to the fast or slow movements of birds or animals.
2. To be unaffected by very slowly changing external light, such as daylight.
3. The distance between the light source and the triggering unit had to be as great as possible to avoid the animal scenting the photographer.
4. The unit should be lightweight, portable, and have low power consumption.


Fig. I. Diagram of the camera trigger set-up
5. As most animals are sensitive to white light but not to red, a dark red filter was placed over the light source to render the beam inconspicuous.

## SHADOW TRIGGER

The system used is illustrated in the block diagram Fig. 1. The complete circuit is given in Fig. 2. The drop in light intensity on the photocell, caused by the shadow of the subject, is used to trigger a monostable multivibrator. A low power lens, such as found in a watchmaker's eyeglass, was found to be suitable fo directing the light onto the photocell, in this unit phototransistor TR1. The eyeglass can be obtained quite easily through large well stocked toolmerchants?

Transistors TR2 and TR3 comprise the multivibrator, and TR4 operates the relay.

Consider at some instant that TR1 is illuminated. When the uni: is switched on TR3 will conduct, since its base is returned via R7 to the negative rail. Thus TR3 collector-emitter voltage will be almost zero, and TR2 and TR4 will be cut off. The circuit will remain in this state indefinitely unless compelled to change by an externally applied signal. If the light beam is cut, a negative going pulse will be applied to TR2 base, making TR2 conduct and produce a positive pulse at its collector. This pulse is applied via C 2 to the base of TR3, cutting it off. A negative pulse appears at TR3 collector and is applied to TR4 base; TR4 conducts to pull in the relay.

The circuit is now in the second of its two possible states: TR2 conducting, TR3 cut off, but will not remain in this state for long because C2 (which was charged up when it conducted the pulse from TR2 to TR3) immediately begins to discharge through R7 and the output circuit of TR2. As C2 discharges, TR3 base becomes less positive until TR3 conducts again. The circuit is now back in the stable state.

In brief, when the beam is interrupted, the unit changes from its stable state (TR3 conducting; TR2, TR4 cut off) to an unstable state (TR3 cut off; TR2, TR 4 conducting) and operates the relay. The duration of the latter condition is given by $t=0.69 R_{7} C_{2}$ seconds.

COMPONENTS . . .

| Resistors |  |
| :---: | :---: |
| R1 | $18 \mathrm{k} \Omega$ |
| R2 | $3.9 \mathrm{k} \Omega$ |
| R3 | $120 \mathrm{k} \Omega$ |
| R4 | $150 \mathrm{k} \Omega$ |
| R5 | $3.9 \mathrm{k} \Omega$ |
| R6 | $15 \mathrm{k} \Omega$ |
| R7 | $39 \mathrm{k} \Omega$ |
| R8 | $3.9 \mathrm{k} \Omega$ |
| R9 | $4.7 \mathrm{k} \Omega$ |

All $10 \%$, $\frac{1}{2}$ watt carbon
Capacitors
C1 $8 \mu$ elect. 15 V
C2 $8 \mu \mathrm{~F}$ elect. 15 V
C3 $0.002 \mu \mathrm{~F}$ paper or polyester
Transistors
TRI OCP7I (phototransistor)
TR2, 3, 4 OC201 (3 off)

## Diodes

D1, 2, 3 OA81 (3 off)

## Relay

RLA 185 $\mathbf{6}$ V type MH2 (Keyswitch Relays)

## Miscellaneous

BYI Battery 6 to I2V
MI Meter 0-1.5mA f.s.d.
JKI, PLI Jack with two break contacts and plug Sockets for wander plugs ( 2 off)
SI Single-pole, on/off, toggle switch
Light source (bicycle lamp)
Red filter (Ilford No. 608)
Component tagboard, 10 pairs of tags
Diecast box $6 \frac{3}{4}$ in $\times 4 \frac{3}{2} \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}$ or similar
Watchmaker's eyeglass
Battery retainer and clips
Insulation board, s.r.b.p., 4 in $\times 3$ in

For the values shown the relay hold-in time is about $0-2$ seconds. If this time is not sufficient (in any particular case) it may be increased by increasing the value of C 2 .
It is usually desirable for the unit to operate with the minimum of time lag, the addition of C3 gives appreciable feedback at high frequencies, and ensures that the

rectangular pulses generated at the collectors of TR2 and TR3 are sharp edged, so that the monostable changes state rapidly.

## SIMPLE TO MAKE

The diode D1 may be any small signal type, while D3 prevents the high back e.m.f. from the collapsing magnetic field of the relay from damaging TR4. D2 is inserted to prevent damage if the battery connections are accidentally reversed. Relay RLA could be any 6 V type requiring up to 30 mA to operate it (see components list).
The construction used for the unit would vary according to the needs of the constructor; a diecast box is ideal for this to exclude unwanted light. Fig. 3 shows the tagboard wiring and tagboard component positions. The photograph shows the layout in the box, this will depend to a large extent on the focal length of the lens used. The one in the prototype has a 2 in focal length.
For a lens of short focal length the phototransistor can be mounted on the back of the box as shown, with the lens mounted in a hole in the box lid. The trigger unit is connected to one of the remote camera releases available commercially, these usually consist of a solenoid released plunger, operated from a battery when a contact is made.


Fig. 2. Complete circult of the trigger unit


Fig. 3. Component layout and wiring of the tag board in the trigger unit

The meter M1 in series with TR1 is for setting up, and is externally connected via a jack JK1, with break contacts to short the jack when not in use.

The phototransistor is mounted as shown in the photograph so that the emitter junction is facing the lens. This can be seen through the glass envelope and recognised as the side of the base (square piece) with the largest "blob".

## SETTING UP PROCEDURE

Using an ordinary bicycle front lamp, reliable operation can be achieved with a beam length of over 40 ft without the filter, and 20ft with the filter. The light source and trigger unit are mounted on camera tripods. The light source should not be run from a.c. supplies, otherwise unreliable operation will result.

Point the light source in the required direction and switch on. Arrange the trigger unit in the path of the light beam and switch on; the leads to the remote release should not be connected at this time.

Swing the trigger unit vertically and horizontally until M1 reads a maximum. Lock the trigger unit in this position; the light is now focused on TR1. For reliable operation M1 should read at least 0.5 mA . There is no point in providing enough light to give more than 1 mA current, so the intensity of the light source should be adjusted according to the range required.

Remove the meter from JK1. Now, by passing the hand through the light beam you should hear the click of the relay. The output sockets can be temporarily connected to an ohmmeter, or a series bulb and battery, to ascertain that the relay is actually switching. If all is in order, connect the remote release to the trigger unit and all is ready for photographing, provided the camera is aimed at the light beam, where the subject will be.


Interior view of the trigger unit showing layout of all components and interconnecting
wires. Note the positioning of the phototransistor must line up with the fens mounted on
the lld.

# nueleonics 

## for the

 EXPERIMENTERBy M.L. Michaelis M.A.



## 8-STRACE RADIATION METER (Continued)

AST month the ratemeter module of the STRACE radia. tion meter unit, was described. Before going on to consider the other sub units which make up the complete unit, a few remarks concerning chart recording will be appropriate.

## CHART RECORDING

The circuit of Fig. 7.1 illustrates all essential features of a modern ratemeter possessing high efficiency and excellent stability with respect to time and temperature. This circuit is eminently suitable for chart recording.


One of the pip generator modules of the STRACE Radiation Meter

The recommended chart recorder is the model "Metrawatt. Multiscript 3 " obtainable from "Messrs. Smiths Electric Clocks Ltd. This is a precision multimeter, which may also be used as such and possesses a scale and pointer in the usual arrangement. The pointer is a sharp knifeedge type and hovers above special pressure-sensitive waxed paper obtainable in rolls from the same makers. This paper carries the same scales across its width, and is driven forwards by a small mains synchronous motor, at a rate selectable with an internal lever. The motor at the same time drives a strirrup via a cam, causing the stirrup to drop onto the pointer once every two seconds. The knife-edge thereby strikes the waxed paper and makes a black mark For chart-recording with the STRACE equipment, the Multiscript 3 should be set to the 1 mA f.s.d. range, and the paper speed lever to $20 \mathrm{~mm} / \mathrm{hour}$.

Chart recording enormously enhances the scope of a ratemeter, for two important reasons. Firstly, the gradual decay of the activity of samples with short halflives is thereby traced directly. It would be most inconvenient to sit and watch the panel meter for such purposes. Secondly; even when measuring long-life samples with insignificant decay over the time of recording, it is readily possible to draw a mean straight line through the residual random fluctuations of the recording. This leads to an effective statistical accuracy considerably better than the nominal design figure of 5 per cent for panel meter readings. In other words, chart recording brings the overall accuracy to a figure at least as good as the read-off accuracy of the chart recorder itself.

The long-term stability of the circuit of Fig. 7.1, when properly adjusted, is so good that the recordings are dead straight lines for days on end with no input puises, or with a fixed input frequency from a crystal-controlled pulse generator, even if ambient temperatures and mains voltage fluctuate in the meantime. This zero-point stability is of course essential for reliable chart recording in the 2 per cent accuracy class.

## ADJUSTMENTS

A source of standard pulse frequencies is required. These may be obtained from a crystal-controlled generator, or from any simple pulse generator (e g the Heathkit IG 82) which is tuned accurately to successive harmonics of the 50 Hz mains by observing Lissajou figures on an oscilloscope.


The STRACE Radiation Meter

First of all, switch to Range 1 and adjust VR3 for 10 per cent f.s.d. on meter and chart recorder. Then back-off both devices with their mechanical pointer setting screws, to give zero scale readings.

Now switch to range 4 and tune the pulse generator to the third harmonic of the mains ( 150 Hz ). Adjust VR5 to obtain meter reading $9,000 \mathrm{c}$. p.m. Then retune to 50 Hz and correct with VR7, if necessary, to read exactly 3,000 c.p.m.

Repeat adjustment of VR5 and VR7 alternately until no further improvement.

Switch to range 3. Adjust VR6 for zero scale reading
with no input. Switch to range 1 and connect-up a G.M. counter detector unit without sample, i.e. counting solely the cosmic radiation background of about $40 \mathrm{c} . \mathrm{p} . \mathrm{m}$. Determine the true c.p.m. value by counting the pips in the loudspeaker (see below) and timing with a stopclock or watch with seconds hand. Adjust VR4 for correct reading. Wait at least 5 minutes between successive adjustments of VR4. Finally, feed positive pulses of 2 V amplitude to PL2, or 5 V amplitude to PL3, using pulse generator and oscilloscope. Adjust VR2 such that pulse expander just triggers, i.e. pips just audible in the loudspeaker.


Fig. 8.f. STRACE RADIATION METER: circuit diagram of the pip generator module


## The audio ampliffer module of the STRACE Radiation Meter

Now to resume discussion of the remaining circuitry of the radiation meter.

## THE PIP GENERATORS

Fig. 8.1 shows the full circuit of the pip generator module. The layout and semiconductor types are not critical, and it is possible to accommodate this circuit on a $2.5 \mathrm{in} \times 3.75 \mathrm{in}$ piece of Veroboard.

We saw that the pulse integration time is 160 seconds ( $40 \mu \mathrm{~F} \times 4$ megohm) on ranges 1 and 2, so that individual pulses produce little or no visible change in the meter reading, and the final meter reading is not reached until about 10 minues have elapsed. Some means of getting a rough immediate idea of the pulse rate is therefore essential, for selecting an appropriate range and for checking that the detectors are working correctly. This function is achieved acoustically, by making each pulse from the detector produce an audible pip in a small loudspeaker.
The STRACE radiation meter possesses two identical ratemeter channels according to Fig. 7.1, and thus also two pip generators according to Fig. 8.1. The latter differ only in the pitch of the pips they produce, so that the two channels can be distinguished when sounding


Fig. 8.2. STRACE RADIATION METER: Circult diogram of the audio amplifier module
simultaneously in the loudspeaker. Channel 1 sounds 400 Hz pips, whilst channel 2 sounds 1 kHz pips. The components C9 and R12 in the respective pip generators are selected accordingly, and VR4,6 adjusted to give the respective pip pitches.

## SINEWAVE OSCILLATOR

The pump pulses from the ratemeter are also fed out via R18 of Fig. 7.1 to the pulse inverter TR1 of Fig. 8.1. This triggers another expander, which produces the much longer gate pulse for generating a pip of audible duration. This gate pulse drives the modulator TR4, which keys an. RC sinewave oscillator of the suppressed-harmonic multivibrator type. This circuit keys very neatly to give accurate bursts of sinewave oscillation of about 20 cycles per burst.
continued on page 421

Fig.8.3. STRACE RADIATION METER: Circult diagram of the power suppy section

## UNLSIMATE[ED:

N THIS feature we hope, from time to time, to be able -to publish suggestions submitted by some of our readers on the possible improvement of projects previously described in PRACTICAL ELECTRONICS; short contributions on other subjects may be included. The aim is not to find fault or undermine the abilities or knowledge of our contributors. It may well be that the original article is por exellence but it could be improved or adapted to suit individual requirements. The views expressed by readers are not necessarily those of the Editor.

## ADDING AN " X" AMPLIFIER AND SCRIBING THE GRATICULE



HERE is one suggestion for putting the spare valve to good use in the Investigator Oscilloscope (July 1967). Rather than add more valves the unused $V 4 b$ is wired so that the timebase can be switched to bring in an $X$-amplifier in its place, using a 7 -pole 2 -way switch.

The circuit is simplified by the omission of the time base range and attenuator switches and several other components. The new $X$-amplifier is identical to the Y-amplifier and the setting of VR6 should be determined by trial and error.

Constructors wishing to build this unit are referred to The Oscilloscope and its Applications (March and April 1967) which covers the measurements that be undertaken using an X-amplifier instead of a timebase circuit.

And now another small addition to the Investigator Oscilloscope which might prove useful. When the lines on the perspex graticule are being scribed it will improve the accuracy of the reading taken if lines are scribed on both sides of the perspex.

This acts in the same way as the Mirror Scale on some of the more expensive multimeters, that is when the pointer and its image in the mirror coincide, then the eye is directly above the pointer and the reading is the most accurate in this position. The point where the image and pointer coincide is known as the position of no parallax. It is important to be directly above the reading to be taken because if the meter is being read from an extreme angle a considerable error is incurred.

To apply this method to the Oscilloscope the head should be moved about until the lines on the outside of the graticule coincide with those on the inside. Thus more accurate readings can be taken.

It might be found that the lines on the outside of the graticule may lose their layer of black wax with constant use so it may be advantageous to place another piece of perspex in the front of the graticule to preserve the lines.
I. W. Berry, Huddersfield.

## WHITE NOISE GENERATORS

D eaders may be interested in the following White Noise Generator circuits, having seen the article published in the January 1968 issue. The circuit in Fig. 1 was derived from the Bonanza Board Simple Pre-amplifier and Treble Booster described in the March 1966 issue. The components shown in dotted lines are those omitted from the original circuit, also the printed circuit board for the noise generator and the pre-amplifier are identical. All that is necessary to convert the pre-amplifier into a noise generator is the replacement of D1, the base-emitter bias diode, by a device having a poor reverse resistance in the region of 5 to 10 kilohms. Also it is important to omit the original diode bypass capacitor as this attenuates the


Fig. $I$.


The circuit in Fig. 2 relies on the movement of heavy particles due to the ionised gas in a miniature neon indicator to produce white noise. The neon used may be of the type used as mains warning indicators provided that it has no integral series resistor. If construction of this circuit is contemplated it must be remembered that neons tend to be susceptible to mechanical shock when used in this application, and thus the unit gives best results if fitted with antivibration mountings.

$$
\begin{aligned}
& \text { S. A. Hardy, } \\
& \text { Chippenham, Wiltshire. }
\end{aligned}
$$

## NUCLEONICS FOR THE EXPERIMENTER

Adjust VR3,5 such that triggering is secure. Then adjust VR4,6 to give correct pitch of the pips. If the oscillator bursts into continuous oscillation before correct pitch can be reached with VR4,6, judiciously increase the value of C9. Continuous oscillation also results if VR3,5 is turned too far towards R4, but this can be distinguished by its staccato form, as compared to a pure sinewave squeak if too low a value of C 9 is the cause.

## THE AUDIO AMPLIFIER

Fig. 8.2 shows the circuit of the common audio amplifier, using three readily available germanium transistors. TR1 is a driver stage for the series-push-pull output stage TR2, 3.
This simple circuit develops about 75 mW output power and is thoroughly recommendable for monitoring purposes in general electronic equipment. Layout is again quite uncritical, and accommodation on a piece of $2.5 \mathrm{in} \times 3.75 \mathrm{in}$ Veroboard, or even smaller, is a simple matter.
If a 100 ohm speaker is unobtainable, any other impedance may be fed from a suitable matching transformer (e.g. about $4 \cdot 5$ : 1 ratio step-down for a 5 ohm speaker). The exact ratio for the transformer is not critical, and a sub-miniature component is satisfactory.
Returning to Fig. 8.1, it is seen that the outputs of the pip generators are fed via respective front panel volume controls to the common audio amplifier. Either channel may thus be sounded alone at any desired volume, or both may be sounded together, whereby distinction is still possible by virtue of the different pitches. Both volume controls may be turned to zero when running the equipment on automatic chart recordings overnight, and noise is thereby undesirable.
It is of course equally possible to construct a radiation meter with only one ratemeter module, with or without a pip generator and audio amplifier. Or a single pip generator may be provided, which can be switched to either ratemeter module at will.

## POWER SUPPLIES

Fig. $8 \cdot 3$ shows the power supply circuit providing all voltages for the circuits of Figs. 7.1, 8.1, and 8.2. The bridge rectifier and smoothing circuits with Zener diode stabilisation associated with TR1 are conventional.
D9 is a 15 V power Zener diode and D10 a 12 V power Zener diode. Both are rated for at least 750 mW dissipation without cooling fin. The 250 V winding of TR2 feeds a voltage doubler circuit for the e.h.t. supply for the specified G.M. counter detectors ( 450 V stabilised). D11 and D12 may be any standard television silicon h.t. rectifier or other mains type.
$\mathbf{V} 1$ is a Noval-based Telefunken valve containing four miniature neon stabiliser sections of 125 V running voltage each. Four separate neons or Zener diodes of equivalent rating may be used in series as alternatives.

The a.c. input to the e.h.t. rectifier circuit is switched via an extra contact on the scintillation spectrometer switch. Thus the G.M. counter detectors are automatically switched off when power is switched on to the scintillation detector/kick-sorter amplifier unit, and vice versa. The pulse cables of both types of detector units may be left connected to the radiation meter.

This completes our survey of the pulse processing circuits employed in a very typical analogue radiation meter. We have seen that two parallel channels are here provided. Professional equipments may use much greater numbers of parallel channels. These can be run on entirely independent experiments, but more commonly some form of coordination for a single composite experiment is required, since this is the only real justification for including more than one counting channel in a single equipment. The channel coordinating circuits are known as the programme control section of nucleonic equipment.

Next month: Programme control circuits.

# Transistor Amplifier DESIGN 5 fegative 

## By A.Foord

AST month's article gave an outline of the theory of negative feedback principles. Continuing now with this subject, the virtual earth amplifier is described in relation to feedback; later on, negative feedback will be shown to have an influence in designing tone control networks.

## VIRTUAL EARTH AMPLIFIER

For a "virtual earth" amplifier, an inverting amplifier is used and the output taken directly back to the input (see Fig. 5.1) via the feedback resistor R2. The open loop gain of the amplifier is $\bar{A}$ where the bar indicates phase shift of 180 degrees. R3 represents the input impedance of the amplifier; R2 and R1 determine the gain with feedback.

In the analysis we assume that $\mathbf{R}_{2}$ and $\mathbf{R}_{\mathbf{L}}$ do not load the output of the amplifier. Since the gain $A$ is large, the voltage $V$ at point $A$ will be small $\left(V_{0} / A\right)$ for practical values of $V_{0}$, so this point is often called a "virtual earth". The larger is $A$ the smaller will be $V$. Taking into account the shunting effect of R3 and the finite gain for $A$, the overall actual closed loop gain

$$
G^{\prime}=\frac{V_{0}}{V_{1}}=-\frac{R_{2}}{R_{1}} \times \frac{1}{1+\frac{R+R_{2}}{A R}}
$$

where $R$ is $R_{3}$ and $R_{1}$ in parallei

$$
R=\frac{R_{1} R_{3}}{R_{1}+R_{3}}
$$

If $A$ is large this simplifies to
Ideal closed loop gain $G=\frac{V_{0}}{V_{1}}=-\frac{R_{2}}{R_{1}}$
Provided $A$ is large the gain is determined by the feedback resistors; taking a practical example we can compare the results between the actual and ideal formulae.
If $R_{1}=1 \mathrm{k} \Omega \quad R_{2}=10 \mathrm{k} \Omega \quad R_{3}=10 \mathrm{k} \Omega \quad A=50$
(a) Using the accurate formula:

$$
\begin{aligned}
R & =\frac{R_{1} R_{3}}{R_{1}+R_{3}}=\frac{10}{11}=0.91 \text { kilohms } \\
G^{\prime} & =-10 \times \frac{1}{1+\frac{10.91}{50 \times 0.91}}=-8 \text { times } \\
& =18 \mathrm{~dB}
\end{aligned}
$$

(b) Using the ideal formula:
. $G=-10$ times $=20 \mathrm{~dB}$

We aimed for a gain of 20 dB and obtained 18 dB , so that when $A$ is only 5 times the required closed loop gain and $R_{3}$ is only ten times $R_{1}$, the error in using the ideal formula is small, 2 dB in this case. If $A$ had been larger (say 100) the error would have been smaller, as we would expect from our theory on feedback in general.
It can be shown that the impedance at the virtual earth point A is given by:

$$
Z_{A^{\prime}}=\frac{R_{2}}{A}
$$

If $\quad R_{2}=10$ kilohms and $A=50$
$Z_{\mathrm{A}}=\frac{10^{4}}{50}=200 \mathrm{ohms}$
This low impedance at this point is another reason for calling this a "virtual earth". If we consider the complete amplifier including R1, then

$$
Z_{i} \simeq R_{1}
$$

The output impedance of the amplifier (Fig. 5.2) without feedback is represented by $Z^{\prime}$ o and could be of the order of 100 ohms if the last stage of the amplifier is an emitter follower. The output impedance with feedback is given by

$$
Z_{0}=\frac{Z_{0}^{\prime}}{A} \times \frac{R_{2}}{R_{1}}=20 \mathrm{ohms}
$$

The output impedance is reduced. The frequency response is improved by a factor of $A R_{1} / R_{2}$ at each end.

If the amplifier had its upper 3 dB point at 6 kHz then, if as before, $A=50, R_{1}=1,000, R_{2}=10,000$ the 3 dB down point is improved by $(50 \times 1) / 10$ or 5 times, to become 30 kHz . Similarly at the low end, the lower 3 dB down point might be extended from 200 Hz to 40 Hz (Fig. 5.3).

## SHUNT LOCAL FEEDBACK

The simplest method of applying this feedback is around a single common emitter stage, see Fig. 5.4. As one might expect, the effect of decreasing $R_{\mathrm{z}}$ is to decrease the gain and increase the bandwidth of the overall response (Fig. 5.5).

It is desirable to make $R_{\mathrm{L}}$ high in order to increase the open loop gain of the amplifier, but unfortunately this means that $R_{\mathrm{L}}$ will be loaded by the next stage, so that it is not possible to predict closed loop gain by the above formula. By feeding $R_{\mathrm{L}}$ into an emitter follower, a better arrangement is possible, see Fig. 5.6a.


Fig. 5.j. Basic configuration to illustrate the "virtual earth" amplifler


Fig. 5.2. impedance without feedback is $\mathbf{Z}^{\prime}$ 。


Fig. 5.3. Extended frequency response by using negative feedback


Fig. 5.4. Simplest form of negative feedback through R2, which is also used to blas the base


Fig. 5.5. Effect of decreasing the value of R2 in Fig. 5.4 to Increase bandwidth

The collector load of TR1 is no longer loaded by R2, the output impedance of the amplifier is already low and is further decreased by the feedback, and R3 will not shunt the virtual earth point to any extent. The open loop gain $V_{\mathrm{o}} / V$ was about 300 times, which agrees with the similar figure obtained when using this amplifier previously for series local feedback.

$$
\begin{aligned}
\text { Closed loop gain } & =\frac{R_{2}}{R_{2}}=\frac{39}{3 \cdot 9}=10 \text { times }=20 \mathrm{~dB} \\
Z_{i} & =3,900 \\
Z_{o} & =10 \mathrm{ohms} \\
\text { Maximum output } & =500 \mathrm{mV} \text { r.m.s. into } 1 \mathrm{k} \Omega
\end{aligned}
$$

Without the capacitor across R2, the amplifier has a bandwidth of 60 kHz ; with 180 pF across R2 the bandwidth is restricted to about 22 kHz (see Fig. 5.6 b ).

Since this amplifier needs to be fed from a source impedance low in comparison with R1, it can be fed either from an emitter follower or from the output of a similar circuit. These amplifiers can therefore be cascaded without interaction, the maximum output of 500 mV into 1 kilohm is governed by the emitter current of TR2.

For a similar stage which presented a load of 3.9 kilohms a larger signal could be handled. If this amplifier needed to feed 500 mV r.m.s. into a power amplifier which actually had a low impedance of the order of 1 kilohm, it might be better to reduce the emitter resistor of TR2 from $4.7 \mathrm{k} \Omega$ to, say, $2.2 \mathrm{k} \Omega$ so that there was no danger of the amplifier limiting.

The polarity of the input capacitor assumes that the amplifier is fed from a similar amplifier or an emitter follower.


Fig. 5.6a. To avoid heavy loading of the amplifier stage an emitter follower is used


Fig. 5.6b. The feedback resistor R2 can be shunted by a capacitor to reduce bandwidth


Fig. 5.7. Three inputs are mixed into the "virtual earth" point of the amplifier


Fig. 5.8. A detailed circuit of the 3-channel mixer, each input being "buffered" from the others by an emitter follower


Fig. 5.9. A typical example of the Baxandall type of feed. back tone control circuit for treble and bass boost and cut


Fig. 5.10. Upper and lower limits of frequency response given by the Baxandall circuit


Fig. 5.11.
Treble control


Fig. 5.13. Treble boost Fig. 5.14. Treble cut


Fig. 5.15. Bass control


Fig. 5.16. Bass flat


Fig. 5.17. Bass boost


Flg. 5.18. Bass cut

Figs. 5.11 to 5.18. This series of diagrams shows the maximum, minimum and "flat" conditions of the Baxandall eircuit

## MIXING

Mixing can be achieved by adding extra inputs at the "virtual earth" point, Fig. 5.7.

$$
V_{0}=R_{p} \times\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+----\right)
$$

If $\mathbf{R 1}=\mathbf{R} \mathbf{2}=\mathbf{R} 3=\mathbf{R}$. This becomes

$$
V_{0}=\frac{R_{f}}{R} \times\left(V_{1}+V_{2}+V_{3}\right)
$$

A practical audio mixing unit could be made up in this fashion (Fig. 5.8) for three or more inputs.

$$
\begin{aligned}
& \text { Input impedance }=8 \mathrm{k} \Omega \\
& \text { Maximum gain }=10 \mathrm{times}=20 \mathrm{~dB} \\
& \text { Maximum output }=500 \mathrm{mV} \\
& \text { Frequency response } 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \pm 3 \mathrm{~dB} .
\end{aligned}
$$

Each parallel input stage is identical.

## FEEDBACK TONE CONTROLS

The virtual earth arrangement can be used with feedback and input networks that are frequency selective, providing tone controls of the well known Baxandall type (see Fig. 5.9). The performance of this circuit is given in Fig. 5.10, and was measured with the gain control at maximum, so that the tone controls were effectively fed directly from the previous stage, which had an output impedance of 250 ohms.

With the volume control at a lower level, the source impedance would be slightly higher (up to a maximum of $5 \mathrm{k} \Omega$ ) but this would not effect the response curves by more than a couple of dB or so, since the tone control network is made a high impedance network.

The 2N1309 was used here so that the open loop gain without feedback extended well outside the audio band. An OC75 (which has a lower cut-off frequency) could be used here, but the response on maximum treble boost might not be as great.

Slightly more bass boost can be obtained by reducing the 47 kilohm resistors to 22 kilohms. Performance: When no boost or cut is applied $\pm 3 \mathrm{~dB}, 20 \mathrm{~Hz}-20 \mathrm{kHz}$. Bass boost 12 dB at 20 Hz ; cut 19 dB at 20 Hz . Treble boost 19 dB at 20 kHz ; cut 19 dB at 20 kHz .

The overall gain is about unity at mid-band and will give a maximum output of 500 mV into 1 kilohm. The circuit has been broken down into eight configurations in Figs. 5.11 to 5.18 . Taking the treble section (Fig. 5.11) this can be divided into three conditions: flat (Fig. 5.12); boost (Fig. 5.13); cut (Fig. 5.14).

Secondly, the bass control in Fig. 5.15 gives equal source and feedback impedances (and hence unity gain) in the flat condition, Fig. 5.16. Feedback is reduced at low frequencies to give bass boost, Fig. 5.17. In the bass cut condition the input network increases in impedance from 1 kHz towards 20 Hz , and overall gain is reduced below unity, Fig. 5.18.

To ensure that the tone controls are not overloaded on peaks, it is preferable to place the volume control as early in the circuit as possible, so that the tone controls are operated at a low level, see Fig. 5.19.

## VOLTAGE OUTPUT, SERIES INPUT NEGATIVE FEEDBACK

Apart from the virtual earth arrangement, there is another method of applying negative feedback over two stages: the voltage output, series input arrangement.

In this case (Fig. 5.20) the resistor R2 enables a signal proportional to load voltage to be fed back,


Fig. 5.22. Practical circuit of amplifier with voltage output, series input negative feedback


Fig. 5.23. Frequency response of circuit in Fig. 5.22 with and without shunt capacitor


Fig. 3.25. Ideal tape replay charocteristic compared with open loop gain response for $7 \frac{1}{2} \mathrm{in} / \mathrm{second}$


Fig 5.26. Overall frequency response from tape replay head and amplifier.


Fig. 5.27. R.I.A.A. microgroove replay characteristic


Fig. 5.24. Varlous tone correction characteristics are obrained with switched feedback paths. Position 1 for microphone, 2 for tape head replay, 3 for magnetic pick-up


Fig. 5.28. Using an npr, pnp pair with fixed feedback
while R1 enables this feedback voltage to be applied in series with the input, Fig. 5.21.

This applied feedback increases the input impedance and decreases the output impedance. R1 should be kept low (less than 1 kilohm) since this applies local feedback to the first stage. The amount of output fed back $=B=R_{1} /\left(R_{1}+R_{2}\right)$. Then gain with feedback

$$
G=\frac{1}{B}=\frac{R_{1}+R_{2}}{R_{1}}=1+\frac{R_{2}}{R_{1}}
$$

provided $1+\left(R_{2} / R_{1}\right)$ is much less than $A$ in the usual way for negative feedback formulae.

If the gain with feedback is such that $R_{2} / R_{1}$ is much greater than unity, then $G=R_{2} / R_{1}$.
Input impedance is given by

$$
Z_{i}=\beta_{1} \beta_{2}^{\prime} \times \frac{R_{1} \cdot R_{3}}{R_{2}+R_{3}}
$$

this is shunted by the bias resistors at TR1 base. Output impedance is given by

$$
\begin{aligned}
& Z_{0}=\frac{G}{\beta_{1} \cdot \beta_{2}} \times\left[R_{\mathrm{s}}+\beta_{1} \cdot R_{\mathrm{l}}\right] \\
& Z_{0}=\frac{R_{2}}{\beta_{2}}
\end{aligned}
$$

for a low source impedance $R_{\mathrm{s}}$.
A typical circuit of this type is shown in Fig. 5.22, which has a frequency response as shown in Fig. 5.23.

Without feedback the.input impedance $Z_{i}=5$ kilohms. Output impedance $Z_{0}=6.8$ kilohms. Midband gain is 52 dB and bandwidth 14 kHz .

With feedback the gain is 38 dB , which is what one might expect since the open loop gain is $52 \mathrm{~dB}=400$ times, while the closed loop gain

$$
G^{\prime}=\frac{400}{1+\frac{400}{100}}=\frac{400}{5}=80 \text { times }=38 \mathrm{~dB}
$$

Ideal closed loop gain $=100$ times $=40 \mathrm{~dB}$
Amount of feedback $=52-38=14 \mathrm{~dB}$
Input Impedance $Z_{i}=8 \cdot 2$ kilohms
Output Impedance $Z_{0}=200$ ohms
Maximum output is 150 mV r.m.s. into $1 \mathrm{k} \Omega$, and 250 mV r.m.s. for open circuit output.

Noise referred to input $=5 \mu \mathrm{~V}$ r.m.s. for a 600 ohm source. Bandwidth is 66 kHz , reducing to 20 kHz with the 820 pF capacitor in circuit. The response is 3 dB down when the impedance of the capacitor is equal to 10 kilohms, in this case 19.4 kHz .
The feedback must be operative until a frequency lower than the low frequency 3 dB down point of the amplifier, otherwise we could obtain a peak in the closed loop response. This is deliberately done for tape equalisation, where a rising l.f. response is required. This feedback arrangement is widely used in preamplifiers since, by switching the feedback network, a wide variety of frequency selective characteristics can be obtained.

At the moment, the load is fed directly from the collector of TR2, which reduces the open loop gain. Feeding the load via an emitter follower increases the open loop gain to 65 dB . For a tape head or magnetic pick-up input we require a high input impedance, but the high input impedance given by the negative feedback is masked by the shunting effect of the resistors biasing TR1.

Bootstrapping these resistors enables us to take full advantage of the high input impedance provided by negative feedback. The modified amplifier suitable for use with switched feedback is now as shown in Fig. 5.24.

## Microphone Amplifier

As previously shown this will have a gain of about 40 dB and a bandwidth of 20 kHz . Input impedance is greater than 100 kilohms over the audio band.

## Tape Amplifier

This has a gain of about 61 times $(30 \mathrm{~dB})$ at 1 kHz and an input impedance of 100 kilohms over most of the audio band, but the input impedance will drop at the low frequency end where it runs out of loop gain.

The ideal response for $7 \frac{1}{\mathrm{in}} / \mathrm{second}$ ( $70 \mu \mathrm{~s}$ time constant) is shown in Fig. 5.25 . Below 150 Hz the amount of negative feedback is less than 12 dB , so the equalisation is not going to be exact. This, coupled with the drop in input impedance would give an overall response out of the tape head, similar to that shown in Fig. 5.26

## Magnetic pick-up

Here the mid-band gain is about 35 dB , with R.I.A.A. equalisation. The input impedance is about 47 kilohms, which is recommended for most magnetic pick-ups, this falls to 30 kilohms at 20 Hz , which is acceptable. The equalisation is within $\pm 2 \mathrm{~dB}$ of the required characteristic between 20 Hz and 20 kHz .
The straight line approximation of the theoretical curve is given in Fig. 5.27, which is referenced to 0 dB at 1 kHz . The 100 kilohm impedance has been increased from the theoretical value (about 47 kilohms) to allow for the finite open loop gain at low frequencies ( 65 dB ).

## Summary

Inputs at 1 kHz for an output of 250 mV
Microphone. $2.5 \mathrm{mV} 100 \mathrm{k} \Omega$
Pick-up. $4 \cdot 5 \mathrm{mV} 47 \mathrm{k} \Omega$
Tape. $4.0 \mathrm{mV} 100 \mathrm{k} \Omega\left(7 \frac{1}{\mathrm{in}} / \mathrm{sec}\right.$ and $\left.70 \mu \mathrm{~s}\right)$
Maximum output: 250 mV into $1 \mathrm{k} \Omega$
For a simple amplifier of fixed feedback, it can be advantageous to use an $n p n, p n p$ pair, as in Fig. 5.28. In this case
Maximum output $=250 \mathrm{mV}$ r.m.s.
Frequency response $\pm 3 \mathrm{~dB} 20 \mathrm{~Hz}-20 \mathrm{kHz}$
Gain 10 times $=20 \mathrm{~dB}$
Input Impedance $=20 \mathrm{k} \Omega$
Output Impedance $=150 \Omega$

## Next month: High input, low output impedance amplifiers and active filters

## For Future Reference

An index for volume three (January 1967

- to December 1967) is now available price Is $6 d$ inclusive of postage.

Orders for copies of the Index only should be addressed to the Post Sales Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

## Official O．K．for Calibration Lab．

The overworked National Physical Laboratory expects to be relieved of some time－consuming routine tasks following BCS（British Calibration Service）approval of the Ferranti Calibration Laboratory．
＂Outsiders＂can now obtain help in a wide range of measurements covering frequency，d．c．resistance，inductance， capacitance，a．c．and d．c．voltage， current，and power．

The calibration laboratory started at Ferranti＇s Moston works in 1940 and was transferred to its present site at Wythenshawe，Lancs．，in 1954 to provide a service to the company＇s factories engaged in design and pro－ duction of guided weapons．

It was later made available to all Ferranti factories in the Manchester area，and in 1963 was extended to other manufacturers and organisations engaged on government contracts by obtaining EID part III test house approval，which covers a variety of electrical and physical measurements．

The service was extended to all industries when the new BCS granted approval for d．c．and low frequency measurements．

## Type from Tape

A Lancashire printing company，the Tinling Printing Group，has ordered an Elliott－Automation com－ puter typesetting system for its Prescot works．

The computer will automatically justify text（punched on special key－ boards）and will produce complete pages in the form of punched paper tape．It also makes a record on magnetic tape for storage in case reprints are required．

The completed paper tape is fed to a Photon typesetting machine which produces a positive of each page for making litho printing plates．

Editing the book，and author＇s cor－ rections，will also be easier and quicker because the computer adjusts the page make－up automatically to allow for alterations to the text during the proof－ reading stage．

## （below）the magnetic and paper tape units

 oxide thickened 8ottom electrode along edges． Aluminium
The point－source electron gun （above）can be matrixed to produce a detailed dispiay

## 目回国

## Semiconductor Picture Display

Whar could be the beginning of a semiconductor version of a television tube was demon－ strated at the Physics Exhibition by STL Research．The prin－ ciple used relies on the electron tunnelling effect，already to be found in tunnel diodes．

The significant difference， though，is that electrons，after excitation in aluminium，are channelled through silicon oxide to a gold electrode．
Free electrons are then re－ leased into a vacuum to strike the phosphorescent coating on the display screen．The matrix （or raster）on the screen is made up from a series of tiny dots，each dot being related to its own semiconductor＂gun＂．

Current experiments by STL have shown that good alpha－ numeric displays using 10 sq mm dots of activity are quite feasible and，in fact，could be developed on a commercial scale more economically than conventional methods．
The size of the dot can be made very much smaller（about 0.002 in）to make up a fine screen matrix with a large regular pattern of dots．Repro－ duction by photo－optic and electronic systems of live or photographic pictures becomes a possibility．The major hurdle to be jumped here，of course， is the vastly increased numbers of lead－out wires，but sequential display of each＂dot＂would reduce this number to practical proportions．


THE PEAC basic equipment has now been dealt with and this month we commence a detailed description of the chief ancillary unit. Subsequent articles will cover the remaining two ancillary units.

Perhaps it should be repeated at this stage that the three ancillary units are purely optional add-on items. The additional facilities they each provide, are indicated in the PEAC Specification (January 1968, page 38).

## PEAC UNIT "B"

UNIT " B " reinforçes the facilities of UNIT " A ", but does not introduce new computing circuit elements. A master potentiometer and a suitably scaled readout meter improve the accuracy and ease of handling of UNIT "A", while the integrator mode switching circuit opens up further possibilities in the solution of Calculus problems.

## UNIT "B"FRONT PANEL

It may not be necessary to use hardboard for the front panel if a thick grade of plastic laminate is used, since the wooden surround in the box front gives plenty of support.

Prepare a $17 \frac{3}{4}$ in $\times 8 \frac{3}{4}$ in white laminate panel and establish hole centres with a sharp spike, from the drawings Fig. 6.1 and Fig. 6.2. Next, drill only the holes for all sockets, $\mathbf{S 7}$, $\mathbf{5 8}$, the meter mounting studs, and cut out a hole for the meter body with a fretsaw.
Beginning with the master potentiometer dial, draw a 300 degree arc of radius $2 \frac{1}{6}$ in with a pencil compass (refer to Fig. 6.2). Divide the arc into 3-degree divisions with protractor and pencil. The accuracy of the master potentiometer will benefit from careful preparation of the dial. Draw in the dial arc and divisions with Indian ink.

Rub-on transfers are suitable for the dials of VR18 and VR19, and will save time, but make sure that the transfer gives main divisions spaced at 30 -degree intervals, for a 1-10 calibration.

When dials are complete, drill holes to take the
spindles of VR18-VR20, S9 and S10. Draw in all ink lines, add transfer numerals, and varnish.

## BOX CONSTRUCTION

Commence building the UNIT " $B$ " box by cutting out two side panels from hardboard; they are shown in Fig 6.3. Fix $\frac{1}{2}$ in square softwood lengths $A, B, C$, and $D$ to the inside of the side panels. Join the side panels together by means of horizontal lengths $E$, and $F$, using countersunk woodscrews and glue. Square up with the assembly placed on a flat surface.
Cover the box framework with hardboard top, bottom, and front strip panels, and, when firm, reduce overlapping edges with a rasp and sandpaper. Finish off the box with a layer of white plastic laminate, and paint exposed hardboard edges to match the UNIT "B" box.

## MASTER POTENTIOMETER AND NULL METER

A d.c. voltmeter connected to the slider of a computing potentiometer will impose a small load, and when the voltmeter is removed the measured coefficient will increase slightly, to the extent of about $1 \frac{1}{2}$ per cent in the case of a $10 \mathrm{~V} 20,000$ ohms/volt meter, and a 10 kilohm potentiometer set with its slider near mid-track. One way of avoiding the error is to leave the voltmeter connected to the potentiometer after a coefficient reading has been taken, but this is seldom convenient.

Ideally, the instrument used to measure coefficients or computer voltages should impose no load at all, and this condition can be satisfied fairly easily by employing an accurately calibrated master potentiometer.

In Fig 6.4, a permanent load is placed on the coefficient potentiometer CP by the computing resistor $R_{\text {in }}$, thus causing a significant dial setting error. To find the true coefficient of CP , both potentiometers are supplied with a reference voltage of +10 V , so that potentiometer coefficients of $0-1$ will be multiplied by 10 to conform to a $0-10$ dial calibration. When

## COMPONENTS

## UNIT "B" FRONT PANEL

NOTE: All front panel controls ore numbered consecutively, following on from UNIT " $A$ ", but internal sub-assemblies have individual component numbering.
Potentiometers
VRI8 $100 \mathrm{k} \Omega$ carbon linear
VR19 $100 \mathrm{k} \Omega$ carbon linear
VR20 $25 \mathrm{k} \Omega$ wirewound, $3 \mathrm{in}, \quad 25 \mathrm{~W}$ instrument potentiometer. (G. W. Smith \& Co. (Radio) Ltd., 3 Lisle Street, London, W.C.2)

## Switches

S7 Miniature push button, push to make, one pole
58 Toggle, single pole changeover
S9 4 pole, 3 way rotary
SIO 2 pole, 6 way rotary
Sockets
5 red, 3 black, 5 blue, 4 yellow, 4 white, and 2 green
Knobs
One Bulgin K403, 2 공in knob with 3 in skirt. Three Radiospares type PK I $\frac{1}{1}$ in knobs with pointers

## Meter

MI "Sew" MR85P, 100-0-100 $\mu \mathrm{A}$, internal resistance $1,000 \Omega$

Miscellaneous
Plastic laminate (thick) for front panel, I off, $17 \frac{3}{4}$ in $\times 8 \frac{3}{4} \mathrm{in}$. Rub-on dial transfers and letters, black (Radiospares)

## UNIT" "B" MASTER POTENTIOMETER

## Resistors

| R1 $200 \Omega$ | R3 | $47 \Omega$ | R5 | $820 \Omega$ |
| :--- | :--- | :--- | :--- | :--- |
| R2 $820 \Omega$ | R4 | $47 \Omega$ | R6 | $200 \Omega$ |

All $5 \%, \frac{1}{2} \mathrm{~W}$ carbon film or metal oxide
Pre-set potentiometers
VRI-VR4 $100 \Omega$ wirewound (4 off)
panel mounting type
Miscellaneous
16 s.w.g. aluminium sheet 6 in $\times 4 \mathrm{in}$. Tag strip with three tags.

UNIT "B" READOUT METER

## Resistors

| R1 | $82 \mathrm{k} \Omega$ | $10 \%$ | R3 |
| :--- | :--- | :--- | :--- |
| R2 | $7.5 \mathrm{k} \Omega$ | $5 \%$ |  |
| $2 \mathrm{k} \Omega$ | $10 \%$ | R4 | $1.2 \mathrm{k} \Omega 10 \%$ |

All $\frac{1}{2}$ W, carbon composition
Pre-set potentiometers

| VRI | $22 \mathrm{k} \Omega$ | All miniature horizontal |
| :--- | :--- | :---: |
| VR2 | $10 \mathrm{k} \Omega$ | mounting skeleton con- |
| VR3 | $2.2 \mathrm{k} \Omega$ | struction |
| VR4 | $1 \mathrm{k} \Omega$ |  |

Meter protection diodes
D1, D2 OC71 or similar "inverted" germanium transistor (2 off)
Miscellaneous
S.R.B.P. panel $2{ }_{8}^{\frac{1}{8}}$ in $<2 \mathrm{in}$.

## 'UNIT "B" INTEGRATOR MODE SWITCH

 Resistors| R1 | $10 \mathrm{k} \Omega$ | R4 | $4.7 \mathrm{k} \Omega$ | $R 7$ | $27 \mathrm{k} \Omega$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| R2 | $10 \mathrm{k} \Omega$ | R5 | $27 \mathrm{k} \Omega$ | R | $4.7 \mathrm{k} \Omega$ |
| R3 | $1 \mathrm{k} \Omega$ | R6 | $1 \mathrm{k} \Omega$ |  | R9 |



Fig. 6.1. UNIT "B" front panel, integrator switching section

| $R 10$ | $10 \mathrm{k} \Omega$ | R 12 | $3.3 \mathrm{k} \Omega$ | R 14 | $\mathrm{Ik} \Omega$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| R11 | $\mathrm{k} \Omega$ | R 13 | $10 \mathrm{k} \Omega$ | R15 | $560 \mathrm{k} \Omega$ |

All $10 \%$, $\frac{1}{2} \mathrm{~W}$ carbon composition

## Pre-set Potentiometers

VRI $10 \mathrm{k} \Omega$
VR2 $5 \mathrm{k} \Omega$ Both vertical mounting

## Capacitors

CI $1,000 \mu \mathrm{~F}$ elec. 15 V
C2 $1 \mu \mathrm{~F}$ polyester 250 V d.c. C6 $1 \mu \mathrm{~F}$ polyester 250 V d.c.
C3 $1.4 \mu \mathrm{~F}$ polyester 250 V d.c. $\mathrm{C} 7 \quad 1.4 \mu \mathrm{~F}$ polyester 250 V d.c.
C4 $14 \mu \mathrm{~F}$ elec. $25 \mathrm{~V} \quad \mathrm{C} 8 \quad 14 \mu \mathrm{~F}$ elec. 25 V working.
C5 $\quad 0.1 \mu \mathrm{~F}$ polyester 250 V d.c. 'C9 $0.068 \mu \mathrm{~F}$ polyester 250 V d.c.
(The values of C3, C4, C7, and C8 are approximate-see text)
Transistors
TRI-TR6 ACY28 or ACI26.
Diodes
D1, D2 OA95 (2 off)
D3-D14 |B30 (Radiospares) (12 off)

## Reed Coils

RLA, RLB Miniature triple 12V Osmor type MTI2V (2 off)

## Reed Switches

RLAI-RLA3 Hamlin MRG2, 20-40AT (R.T.S. Ltd., RLBI-RLB3 \{P.O. Box It, Gloucester St. Cambridge) (6 off.)

## Miscellaneous

S.R.B.P. panels: I off $6 \frac{1}{4}$ in $<2 \frac{1}{2} \mathrm{in}$; 1 off $3 \mathrm{in} \times 2 \mathrm{in}$.

Small turret tags.


Fig. 6.2, UNIT "B" front panel, readout meter and master potentiómeter



Fig. 6.4. Master potentiometer circuit for measuring coefficients

Fig. 6.5 (below). Circuit diagram of readout meter and master potentiometer
the voltage at the slider of CP is identical to the slider voltage of MP, no current flows through the null meter, and the true coefficient of CP can be read straight off the dial of MP.

Since no current flows at null point, no load is imposed, and the input resistance of the measuring circuit is virtually infinite. Meter protection diodes are included to preserve good meter sensitivity without allowing damaging currents to flow through the meter when the circuit is off balance.

## READOUT METER AND MASTER POTENTIOMETER CIRCUITS

One meter movement serves for null indication and voltage measurement. Considering first the readout meter circuit Fig 6.5a, miniature pre-set resistors VR1-VR4 will permit calibration of each meter range to an external voltage standard, and also help to eliminate discrepancies between ranges.

The way in which meter protection diodes D1 and D2 are wired may be unfamiliar to the reader, so some explanation is called for. If a transistor is operated "inverted", that is with collector-emitter polarities reversed, it will exhibit a very low "on" resistance when the base is near emitter potential. With base connected straight to emitter, the transistor therefore becomes a diode with lower than normal forward resistance, and yet will still offer a high resistance



You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on the latest research into simplified learning
techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT
"Man DIG THOSE
Kt last wirh it.
"Without doubt they are the easiest to follow books I have read, they will be used continuously from now on." J. W., Fife.
"I am delighted with them and consider them a most excellent set of books. They are all your other readers claim for them." G. P., Harrogate.
"I have viewed a number of such books in an effort 10 obtain the necessary knowledge suifable for the layman to understand easily, and find that only our own publication can do this, and does so very well indeed."
D. F., Trowbridge

A TECK-PRESS PUBLICATION.

To The SELRAY BOOK CO., 60 HAYES HILL, BROMLEY BR2 7 HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 72/\%. Cash Price or Down Payment of $35 /$ - followed by 4 fornnightly payments of $15 / \mathrm{each}$. BASIC ELECTRONICS 84!-. Cash Price or Down Payment of $15 /$ - followed by 5 fortnightly payments of $15 /$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one ser allowed on free trial.)


BASIC ELECTRONICS
Prices include Postage and Packing.
Signature

BLOCK ZETTERB
EULL POSTAL
ADDRESS

TRANSISTOR STEREO $8+8$

A really first-claas Hi-Fi Stereo Amplifier Kit. Tiscs 14 tratasistors giving 8 watte push-pull output per channel. ( 16 W mono). Integrated pre-rmip with Bass, Treble and oolume controls. Sultabte for use with Ceranis or Compact design, all parts aupplied imelveling drillion meta compact design, all parts supplied including drilied meta solder, nuts, bolts-mo extras to buy. Blmple step by step instructions enable any constructor to build an anmplifer to be proud of.
Briet Speclication: Freq, response $\pm 3$ db $20-20,000$ efs. Base boost npprox, to +12 db. Treble cut approx. to
 HKGH GADA 4 TRANSIETOR HIGH GAN 4 TR
PHIFTED CFRCUII AMPLIPIE
Typg TA1
put Peak out
All mata. dard Britiali - Buila


- Gencrous biza Drlyer - Output transformer tapued Uutpme Trisistornaers. Bpeakers. Trunslstors (CiET 114 or \$1 Mallaril operation. Ererything rupplled, wire, batters ctiog, solder, ete. Comprehensive eass to follow instructions and circult slingram 2/6 (Free wish KIt). All parts bolld eeparately; SPECLAL PRICE $4 \$ / \%$ P. 丳 P. $3 / \%$ Also ready huift nad tested, 52;6. EH/AM THEER HEAD Beatifully designed and pre
cision engineered by Dorme cision engineered by Dormer
and Wadeworth Lid. Supand Wadsworth Ltd. Sup
plied ready fitted with twin AY comention Prealipner FM contion corers $80.102 \mathrm{Me} / \mathrm{s}$ I.F. outpat $10+7 \mathrm{Mc}$ 's. Coms plete with ECC85 ( 6 L 12 ) Faiv
 taner head, Oaly $27 / 6$ each. P. \& P. 3/e, Order quickly! WATCHSD PAIR AMFMI.F. M, Comprising Ist IF. and

 I.F., 15/~. Plus 2/6 P. \& P. (ECC8s valves, 8/6 extra.) ST.C. STHTCOK AVALAHCKE EALR-WAVE RECMIFIERS. Type RAS. 508 AF, 6 amps. 960 P.I.V. lla. long
 GANG. $400 \mathrm{pf}+146 \mathrm{pf}$. Fitted wilh teiminers and $5: 1$ integrni sinw motinn. sultable for nominal $470 \mathrm{kc} / \mathrm{g}, \mathrm{I} . \mathrm{F}$.


at 30 mA . OALX MAS MicicATOR, For panel mountiag, cnt out eize $1 \times 4 \times 2$ in. decp inc, terminal. White cade with P. \&P. 6d. (6i or more post free).
YIBRATORS. YIRRATORS, Large eelection of 2, 4, 6, 12, 24 and
32 Volt. Nonssync. $8 / 6 ; 8 y \mathrm{mc} 10 /=, \mathrm{P} . \& \mathrm{P} .1 / 6 \mathrm{per}$ Fibrator, 8.A.E, with all enquirles. PRIRTED ERRCUIT BOARD BY T.C.C. for Mullard


DLIFIER MODEL HAB4 Designed for Hi-fi reproduc operation. Ready buituins phated heniy gange mela! chassis, size $\%$ ing. $4 . \times 4 \ln$.
l. $x 4$ inin. h. Incorporates ECC83, ELS\%, EZ80 valves Heavy duty, double wound transformer matched for ohru speakur, нeparata Basa, Treble anil volurne controis. Negative feerlbuck line, Output, 42 watts. Front panel an he detached and leade extendel for renote mounting ested for only $\mathbf{2 4 . 5 , 0}$. P. \& P. f
H8L "FOGR " A MPLIFIER KTE. Nimilar in appearmuce o HA34 nbove but employs entirely sifferent ind at
rancel cireultrs, Completeget af parta, etr, 7日/6. P. \& $5.8 \%$ ASYPLRIER HI-F APLIRIER KIT A stylishly finisbed
monakral amplitier monaural amplith withan outpux 51. 849 in push-pull. super reproduction of both numelo num speech; with hes
ltgible bum. sep arnte inputs for
mlke and brum allow records and follow each other.

allow each other. Fitrly ybrouded sections woumd uvtput volume controis, ank separate bass anhl treble controls are rovided giving good Mit furl cut. Vinlye lue-up 2 ETB48, hooklet $2: 6$. (Free with parts.) Ail parts sold separately
 and testert complete with stul, iuput sockets, 89.5 .0 P. d P. Sfi.
 MANTS TRANSPORMER. For tratasistor power suppliea. Tapped pri $300-250 \mathrm{~F}$. Sec. $40-0-40$ to 1 amp (xith electrostatic screen) and 6.35, at - 5 amp for dial lamps ete Drop thra' mountiag. Stack size 1 gin, $:=3$ zin. $x 31 \mathrm{in}$. HATCHED YALR OF 2 : WATT TRANSISTOR DRIVER AND OUTPUT TRAESFORMGRS. Btuck slze I 12112 put, 10f-nuir plus $2 /-P$. \& P. match pair of ECL $82^{\prime}$ s in push-pull. Sec, tapped s.75 7.5 and 15 ohm. Stack slze $2 \dot{z}^{*} \times 1^{*} \times 2^{\prime \prime}$ approx. ONLY -10 writ OUTPVT TRAKSFORNERS to match pair of ECL $86^{\prime \prime}$ in push-pall to 3 okm output. ONLY 11/-10-12 watt OUTPUT TRAESFORMERS, Size $2 \frac{1}{3} \mathrm{~m}, ~ \therefore 2 \mathrm{H}$, Clamp ftting. Fot two El.a4's in push-pull. State 3 or ACOS EIGH DRPEDANCE CRYSTAY BTICE MIXES. Usted at 42/-. Our price, $21 /$ H. P. R P. $^{2} / 6$.

PRICES
Ampllfer Eit Built and Teated
$£ 9.10 .0$
P. \& P. 4/6 \&12.10.0
22.10.0

Bullt and Tested
$\$ 3.0 .0$
. \& P. 4/6
£2.10.0
-, \& \&
Glbleet (as illur.) $\quad$ 22.10.0 $\quad$ P. \& P. $8 / 8$
(Spectal offer-214.10.0. Poat Free if all above kits ordered at tame थlme or can be supgilied bullt and terted or $\mathbf{2 1 8 . 0 . 0}$ Poat Yree).
Creojt diagramı, construction details and pinuta list (freo (ta kit) $1 / 8$ (S.A.E.)

HUGE PURCEASE! E.M.I. 4-Speed Plager. performance $200 / 250 \mathrm{v}$, shaded motor $(90 \mathrm{v}$. tap). Complete with latest type lightwelght pick-up arm and mono cartridge With थ/o styll for LP/78. LIMITED


4-SPEED RECORD PLATER BARGAYSS Malnill models. All brand new in maker's packiog E.M.I. MODEL 899 single player with onit monuted pickup arm and mono cart. e5.6.0.
B.8.8. GU7 Single Piayer fith mono Cart......... 84.18 .8
B.s.E. UA85 Chagger with mono Cart. ........... 88.7 .8 B.s.E. UA25 Changer with mono Cart.

All plua Carriage and Pactink B/6.
LATEST GAREARD MODELS ALL typea svailable 1000 SPRE, 3000, A T60, oto.'Send S.A.E. for hateat Bargain Pricea

BRAND NBW CARTRTDGE BARGANSS! LATEST B.8.R. XIH MONO COMPATLBLE CARTRIDGE With turnover sapphire styll suitable for playlag KP, LP
and Stezeo records with mono equipment. ONLY $28 / \mathrm{c}$ P. A P.1/6.
somotome
omotoas gxakd Compatible stereo Cartridge with dianozd stylus $50 f$ or wilh sapphire strius $30 / \%$

QDALTTY RECORD PLAYER AMPLIFIER A top-quabity reoord player anmplther emploplng heavy duty double wound mains transformer, ECCB3, ELS\&. ER80 valres, Separate Bass, Treble and folume controls. Complete with output transformer matched
 ALAO AYALLABLE mounted on board with outpui PRICE 97/6. P. \& P. $\mathrm{F} / 6$.
de luxe quality portable r/P cabmet CDeut motor board size $141 \mathrm{in}, \%$ 12id. clearance 2 in below, Syin. abore. Will thke above amplifier and any
B. $8 . \mathrm{R}$. or GARRARD Autochanger or Single Player Unit (except AT60 nud SP25), Size 18 in . $\because 15 i n .3: 8 i n$ PRICE \&3.9.8.
VYFAIR AND REXINE SPEAEER AND CABINET PABRICS app. $\overline{f+i n}$, wite. Usually $35 /-$ yd., our price $18 / 6$ per 5d. lesgth. P. \& P. 2/6. (min. I Yid). S.A.E. for satmples.

BRASD NEW 3 OHM ROUDSPEAKER8


 12in. $3 / 6$ per speuke
BRAKD NEW, 12in. 15 w , H/D Speakers, 3 or 15 ohm Current productlon by well-known Brlkish maker. Offered below liat prive at 89/8.
 cernimie nagdet. Available in $3_{q} 8$ or 10 ohms. 15/-. 2in. "RA" TWIN CONE LOUDSPEAKER. 10 watis peak output. 3 or 15 olm . $35 / \mathrm{m}$. P. \& P. $3 / 6$.

35 OHM RPEAKERS
Higb semetivity, 18/6. P. \&
EPECLAL OFFER1 MOVDNG COIL MIKE, Fitted onfort switch for remote control. High quality. High or Low imper dance. (State imp. roqd.)

## HARVERSON SURPLUS CO. LTD. <br> 170 HIGH ST., MERTON, S.W.I9

Open all day Saturday Early closing Wed., I p.m. A few minutes from Souzh Wimbledon Tube Station. . (Please write cleorly)
OVERSEAS P. \& P. CHARGED EXTRA. S.A.E. With allienquiries

## The most accurate pocket size GALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send 82/6 for this invaluable spiral slide rule on approval with money back guarantee if not satisfled.
CARBIC LTD. (Dept. PE17)
54 Dundonald Road, London, S.W. 19

reverse characteristic. The arrangement eliminates the need for a meter series resistor while still giving adequate protection.
In Fig. 6.5b, VR20 is a 3 in instrument potentiometer of good linearity. The voltage divider network, composed of R1-R6 and VR1-VR4, taps off four standard voltages from the computer power supply, so that the master potentiometer will measure inputs of 0 to $+1 \mathrm{~V}, 0$ to $-1 \mathrm{~V}, 0$ to +10 V , and 0 to -10 V on its $0-10$ scale. The accuracy of the master potentiometer, bearing in mind the 14 in scale length, approaches that of a laboratory voltmeter.

## FRONT PANEL AND MASTER <br> POTENTIOMETER ASSEMBLY

Mount all sockets, potentiometers VR18-VR20, switches S7-S10, and meter, on the UNIT "B" front panel. Make up an aluminium bracket from the measurements given in Fig. 6.6, and glue it to the front panel, along with the small tag strip, in the position shown in Fig. 6.7. A hot soldering iron applied to the aluminium bracket will solidify the epoxy resin glue in a matter of minutes, sufficient to hold the bracket in place until the joint sets hard.
Rest the front panel inside-out on the UNIT "B" box front, to protect panel markings during assembly. Mount pre-set voltage divider potentiometers VR1-VR4 to the aluminium bracket, and then proceed with the


Fig. 6.6. Mourting bracket for pre-set potentiometers


TO POWER PACK master potentiometer and readout meter wiring


Fig. 6.8. Meter resistor panel, underside view
wiring of master potentiometer components, using $20 \mathrm{~s} . \mathrm{w} . g$. tinned copper wire and sleeving.

## READOUT METER ASSEMBLY

Make up the meter resistor panel shown in Figs 6.7 and 6.8, and attach to the meter terminals. Solder D1 and D2 to MP/SK1 and RM/SK2, then complete S10 and resistor panel wiring.

As centre-zero voltmeters with $10-0-10$ and $3-0-3$ scale calibrations are not readily available, a scale will have to be made. Perhaps the most satisfactory way of fabricating a new and really accurate meter scale is to draw it two to four times full size, photograph it, and then have the resulting negative enlarged back to the original size on glossy photographic paper. The enlarging can be done commercially if the oversize drawing carries a thick black line to represent a length of 1 in on the finished scale, just outside the scale perimeter.

When taking the photograph, ensure that the camera lens is in line with the centre of the scale card, and that the film plane is parallel to the surface of the oversize drawing, to prevent optical distortion.

Another tip, use white Formica for the drawing, as then mistakes in ink can be erased without leaving unsightly grey areas.

To remove the existing scale from the meter, prise off the transparent meter front, and carefully remove the scale card by undoing thic two holding screws. Measurements can then be taken for preparing the oversize drawing.

To fit the new scale, cut out the photographic reproduction and paste it over the old scale, with edges and mounting holes of both scales properly registered.

## SETTING UP MASTER POTENTIOMETER AND READOUT METER

With red, green, and blue p.v.c. covered wires, connect the master potentiometer tag strip (Fig 6.7) to the solder tags on the power pack output terminals. Also, temporarily link the rear of MP/SK2 to the green earth wire. Rotate VR20 spindle fully clockwise and patch MP/SK2 to SK3, MP/SK5 to SK6, MP/SK1 to SK4, and link RM/SK2 to VS1/SK1. Switch on the computer and S6, and adjust VS1 for an exact +10 V . Now obtain a null on the readout meter by setting VR1 on the voltage divider bracket, from the back of UNIT "B" box.

Repeat for VR2 with an inpunt of +1 V by transferring the patching lead plug from MP/SK6 to SK7, and again for VR3, SK8, with an input of - IV, and VR4, SK9, with an input of -10 V .

After that, while still nulling with a -10 V input, rotate VR20 spindle slightly clockwise, until the meter pointer just begins to move away from zero. Place the large knob on VR20 spindle, with the transparent plastic cursor aligned with the " 10 " division, and tighten the grub screw. Set VR20 cursor to the " 5 " division and check for null with an input of -5 V . It may be necessary to slightly re-position VR20 knob on the spindle, and trim VR1-VR4 again to minimise errors.

Calibration of the readout meter is straightforward. Apply a selection of known voltages to RM/SK1 and


Fig. 6.9. Dlode clamp circuit, showing principle of operotion

## Nearly 1,700 Circuits and Diagrams plus full repair data for



Now off the Printing Presses-a great new edition of RADIO \& TV SERVICING, to save your time, to boost your earningpower. Packed with CIRCUITS, REPAIR DATA and vital information, it covers all the popular 1965-1968 TVs, Radios, 'Grams, Record Players and Tape Recorders - including latest data on COLOUR TV. Thousands of sets of previous editions sold. Now you can examine this big NEW edition free for a week. 3 handsome volumes-over 1,500 pages written by a team of research engineers - there's no other publication like it. Speeds up repair work for year after year. Hurry - send no money - simply post this coupon below... There can be no reprint once stocks are sold and there's absolutely no obligation to buy under

## FULL DATA \& CIRCUITS FOR REPAIR OF

- TELEVISIONS including

COLOUR TV

- radios, radiograms
- car radios
- record players this free trial offer.


## SERVICING DATA FOR ALL THESE MAKES

Aiwa, Alba, Baird (including colour TV), Beogram, Beolit, Bush, Carousel, Cossor, Dansette, Decca, Defiant, Dynaport, Dynatron, Eddystone, Ekco, Elizabethan, Ever Ready, Ferguson, Ferranti, Fidellty, G.E.C. (including colour TV), Grundig, H.M.V., Kolster-Brandes, Hitachi, invicta, McMichaef, Marconiphone, Masteradio, Motorola, Murphy, National, Newmatic, Pam, Perdlo, Peto-Scott, Philips (including colour TV), Portadyne, Pye, Radiomobile, R.G.D., Regentone, Roberts' Radio, Sanyo, Sharp, Smith's Radiomoblle, Sobell (including colour TV), S.T.C., Sony, Standard, Stelia, Stereosound, Teletron, Thorn, Trans Arena, Ultra, Van Der Molen, World Radio.

Printed panel diagrams


Component layout diagrams


Drive-cord diagrams


Block diagrams

## PLUS <br> LATEST <br> DEVELOPMENTS IN RADIO AND TELEVISION

IncludIng-Integrated Tuners, Stereo Multiplex Broadcasting-The Zenith-G.E. System. Receiver, Decoder and adjustments, Aerial, etc. Colour TV Receivers, Colour TV Test Card $F_{1}$ Servicing Transistor Equipment, Chemical Alds to Servicing, Batteries and Rechargeable Cells, Sound-on-Sync., Double Line Sync., Silicon Transistors, etc.
Sent to your home post paid on


Absolutely no obligation to buy OVER 1,500 PAGES, PACKED WITH CIRCUITS, COMPONENT LAYOUT DIAGRAMS, PRINTED PANEL DIAGRAMS, TABLES AND WAVEFORM GRAPHS.

Handsomely bound in rich maroon and gold.


MOVDK COIL MOLMMEXER TX 25 .
 . $99 / 6$ Ohms 0 to 6 meg. 50 Hicronmps. (Pall list I Ietarn S.A.E.)
0c71 NEW MUL OC78 $6 /-1$
0071 6/-; OC78 8/-; OC81D 8/; 0c91 6/-; AF115 8/-:



TT48, Pagh Poll Drvar 9:ICT...

TT5E, Outout 1 ohmi 80:1

 9 VOLT, 500 ma Bize $8 \times 3 \times 2 \mathrm{ain}$.
DITTO TEANSFORFER DITTO TEANSFORMER OKLY. Size $21 \times 1 \overline{1} \times 17 \mathrm{in} \ldots . .10 / 6$


MAINS TRANSFORMERS
P084


 MDGET 280 \%, $45 \mathrm{~mA} .4,17.2 \mathrm{a}$.
HEATER TRANS. 0.3 ₹. 11 8., $8 / 6 ; 8.3$ ₹. $4 \mathrm{~B} . . .$.
Ditto tapped sec, 1.4 T. 2, 8, 4, 5, 6.8 7. 1\} amp... $12 / 6$
GENERAL PURPOSE LOW VOLTAOE. Ortputy $8,4,5$,
 I smp., $8,8,10,12,16,18,80,24,30,88,40,48,80,35 /-1$
ATVTO TRANBFORMERB $0-115-230$. Inpul/Output ATTO TRANBFORMERS 0-115-230 \%. Input/
$80 \mathrm{w} .18 / 6 ; 160 \mathrm{w} .80 /=; 800 \mathrm{w} .92 / 6 ; 2000 \mathrm{w} .175 /-$

CRYSTAL MIKE INSERTS

ALL PURPOSE HEADPHONES H.R. HEADPHONES 2000 ohms

L, R\% PESIBTANCE KEADPHOR 8uper quality
RESISTORS. Prelerred fafues, 10 ohms to 10 mag
 HIGH STABILITY. Ditlo $5 \%$. Prelerredi valuea 10 ohmi to 98 meg. 8 dd .
5 watt
10 witt $\}$ WIEE-WOUSND EEESISTORS
15 watk $\} 10$ ohms to 6,800 ohms
$10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 88 \mathrm{~K}, 10 \mathrm{~W} .3$,
SPEAEFE FGET Tygen varloas colours, 52 in , wide, from 101. 15.; 2Bin. wide from 5/- 7t. 8AMPLes 8.A.E. EXPANDED METAL Gold of Silper $18 \times 18 \mathrm{~m}$. 6 f . VEROBOARD 0.15 MATRIX
$21 \times 5 i n, 3 / 8 d, 21 \times 3 i \mathrm{in} .5 / 2 \mathrm{~d}$. $32 \times 82 \mathrm{in} .3 / 8 \mathrm{~d}$.

PINS 86 per packet A/4. FACE CDTTERS 7/B.
S.R.B.R. Board 0.15 MATRIX 2in, wide Bd, per Inn; $8_{i}^{3} \mathrm{in}$. wide 9 d . per 1 in . 5 in . wide $1 / \mathrm{m}$, per lin , (uy to 17 in ) BLANK ALOMMIUM CHASSIS. 18 , w. $\mathrm{F}, \mathrm{g}$ gin, Bides, $7 \times 41 \mathrm{nig} 5 / 6 ; 8 \times 71 \mathrm{n}, 8 / 8 ; 11 \times 3 \mathrm{in} 8 / 8 ; 11 \times 7 \mathrm{in}, 7 / 6 \mathrm{i}$

ALUMIKIEM PAKELS $18 \mathrm{~s}, \mathrm{~W} \mathrm{~g} .12 \times 18 \mathrm{in}$. $8 / 6 ; 14 \times \operatorname{in}$. $5 / 8 ; 12 \times 8 \mathrm{sin}, 4 / 8 ; 10 \times 7 \mathrm{in}, 8 / 8 ; 8 \times 6 \mathrm{in}, 2 / 8 ; 8 \times 4 \mathrm{in} .1 / 6$.


## ALL EAGLE PRODUCTS

 1716
 EAGLE 4I CHANFEL TRAN8IBTOR MIXKRE, Add mugieal highighty and sound effects to reeorlingi, Wili
mix Hierophone, records, tape and funer with $59 / 6$ mix Hierophone, records, tape and t
separate controla into adpgle outpot.



 EAOLE 8 WATT AMPLIFIER. 4 Tranistor
 40-PAGE EAGLE CATALOGUE $5 /=$ Po
$*$ RADIO BOOKg $*$ (Postage 8d.)
High Fidellty Speaker Enolasures and Plans Transititor Spporbhat coummercial Recelvera Mrallard Audio Amplifer Mennal ,...... Practical Esado Inaide Ont, Transistor Audio Amptifer Manual Book 1, 3/8; Book \&, $8 / 8 /-$ Shortwava Transistor Receivers
Transistor Communication Sets
International Badio 8tatifons Liet
Modern Transistor Cireaify for Beginners
Wirminiaiuro Tranmiblor keceivert
Wireless World Radio Valve Data
At a glanca valve equipsienis..
WIRE TOUTD 2WATh - Walenta manual ........10/6

 VAEVE YOLDER8, MOULDED 9\%. CRRAMIC 1/- PACH 8CREENING CANS $1 /:$ VALVE BASE PLUGS $2 / 8$, SANGAMO 3 inch SCALE METERS 45/- ea, Variou: calibrations and movements. 100 Microsmp; 1 milligmg $60-0-60$ aticrosmpt, ete. B.A.E. Jop lint.
BRAND NEW QUAL!TY EXTENSION LOUDSPEAKER Btact plastio cubinet, 20tt. laad and adaptors. Forsmy radio, Intercom, tape


## RETURN OF POST DESPATCH Minimum Post ond Pocking charge 2/6. <br> RADIO COMPONENT SPECIALISTS

c.O.D. 5/- exira. Full List 1/-. CALLERS WELCOME 337 WHITEHORSE ROAD, WEST CROYDON
Written Euarantee with every purchase, (Export: Send remittance ond extra postage, no C.O.D.) Buses 133,68 pass door. S.R. Stn. Selhurst. Tel. 01-884-1685

## NEW RAMGE BBC 2 AERIALS

All U.H.F. aerials now fitred with tittlng bracket and 4 element grid refiectors.

Koft Mounting Arrays, 7 element, $37 / 1$. 11 element, $45 /$-. 14 element, $52 / 6$. 18 element, 60/. Wall Mountiag with Cranked Arm, 7 etement, 60\%, 11 element, $67 /-14$ element,
 21 n . slamp. 7 element, $42 / 6 ; 11$ element, $5 \mathrm{~s} / \mathrm{h}$ : 14 element, 62/; 18 element, $70 / \%$ Chimney Mounting Arrays, Complete, 7 element, 72/f; 11 element, $80 /-314$ element, $87 / 6 ; 18$ element \$3/-. Complete assembly instructiong with every amps from $75 \%$. State clearly channel number required on all orders.

BBC - ITV AERIALS


BRC (Band 1). Telescoplc ${ }^{\prime \prime}$ loft, $250 / \%$ External $\mathrm{S} / \mathrm{D}, 30 / \%$ "H", E\%15.0.
YIV (Band 3). 3 element joft array sol- 5 element, $40 /=$ 3 element, sole. Wal mounting, Combined BIBCIITV. Lort
 $1+5$, 67//; Chlmney $1+3$, 6//6; VFF transistor pre-amps,
COMBINED BBCL-ITV-BRCZ AERIALS
 $1+7+14$,
lealiet avallable.
F.M. (Band 2), Loft S/D, 15/- "H", $32 / 6,3$ element, 55l-, External units avaliable, coax. cable, 8d. Yd. Co-ax. Dlugs, 1/4. Outlet boxes, $5 /$ P.\&P. 5\% Send ©d. stamps for illustrated lists. CALLER5 WELCOME OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.) 27 Central Parade, New Addington Surray-CRO-OJB


## MATERIALS FOR THE RADIO CONTROL DEVICES IN THIS ISSUE AVAILABLE FROM TELERADIO

Specialists in Radio Control Systems

Send S.A.E. for breakdown price lists of the components required, quoting P.E./RC/68
TELERADIO ELECTRONICS 325-7 FORE STREET EDMONTON, LONDON, N. 9 01-807 3719

## NEW 1968 Edition

 RADIO AMATEUR HANDBOOK45/-<br>by A.R.R.L. Postage 4/m

WORLD RADIO T.V. HANDBOOK, 1968 ed. 42/-. Postage 1/-. MULLARD DATA BOOK, 1968. 3/6. Postage 6d.

RADIO AND AUDIO SERVICING HANDBOOK, by G. 1 . King. 30/. Postage 1/6.

MATHEMATICS FOR RADIO AND ELECTRONICS TECHNICIANS, by Ing. F. Bergrold. $50 /=$ Postage $1 / 6$.
RCA TRANSISTOR MANUAL. 20/., Postage $1 /-$
Inter GEC. S.C.R. MANUAL 4thet. 25/-. Postage $2 / \mathrm{m}$.
COLOUR TELEVISION PAL SYSTEM, by G. N. Patchett. $40 /=$. Postage 1/-
TRANSISTOR POCKET BOOK by
R. G. Hibberd. 25/\%. Postage $1 /$.

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS of British and American Technical Books

19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185 Closed Saturday I p.m.


Fig. 6.10. The complete circuit diagram of the integrator switch
adjust VR1-VR4 on the resistor panel for optimum accuracy on each range.

## INTEGRATOR MODE SWITCHING

The simplest type of integrator switch employs a mechanical relay with several sets of contacts, driven by an astable multivibrator, and this system is used for small demonstration and educational analogue computers. The relay is arranged to "gate" the inputs of several amplifiers simultaneously.

The PEAC integrator switch goes a stage further, with reed relays for a "clean" switching action at high speeds, full initial condition facilities, and a circuit based on two independently timed monostable multivibrators.
Referring back to the basic integrator switch shown in Fig 1.2c, two changeover switches S1 and S2 are opened and closed in a pre-determined sequence, governed by an external timing circuit. It is important to ensure that integrating amplifier input resistors are not left floating when they are disconnected from the virtual earth summing junction, as this could seriously disturb input and other computer voltages, hence the presence of S1 and S2 earthed contacts.

## DIODE CLAMPS

To eliminate the need for expensive reed switches with changeover contacts, diode clamps can be used instead of an earthed contact, see the alternative
amplifier circuit of Fig 6.9. The diodes do not interfere with the normal working of the integrator, but will nevertheless hold resistor junctions close enough to earth to prevent load variations when S1 and S2 are open, and this modification more than halves the cost of switching components.

In the block diagram of Fig 6.9, the 1st monostablecontrolled by VR18-determines the period of closure of S1. When S1 opens after a timed interval, a pulse is delivered to the input of the 2nd monostable, thus closing S2. S2 will remain closed for an interval controlled solely by VR19.

For "single shot" operation, a trigger pulse applied to the 1st monostable input, when $\mathrm{S8}$ is switched to "hold", will initiate the closure of S1 (reset) and bring the integrating amplifier to its initial condition.

As soon as S 1 opens, S 2 closes (compute) and connects input resistors to the summing junction. At. the end of the compute period, S1 and S2 are both open (hold), the monostables are quiescent, and the amplifier output voltage is held steady by the action of capacitor $C_{f}$. The next computer run is started by another trigger pulse applied to the 1 st monostable input.

Repetitive operation is achieved by passing the output pulse from the 2nd monostable back to the input of the 1st monostable, when S8 is switched to "repeat". S1 and S2 are then made to open and close alternately, and the "hold" facility is deleted.

The method of inserting an inital condition voltage is as follows. When S 1 is closed the reset resistor $R_{r}$ is connected between the amplifier output and summing junction, and can therefore be regarded as a feedback resistor in parallel with $C_{r}$.

As long as S 1 remains closed, $R_{\mathrm{ic}}$ will be acting as an input resistor, so that

$$
E_{\mathrm{o}}=-E_{\mathrm{ic}} \frac{R_{\mathrm{r}}}{R_{\mathrm{ic}}}
$$

and $E_{\mathrm{o}}=-E_{\mathrm{lc}}$ when $R_{\mathrm{r}}=R_{\mathrm{fc}} . \quad R_{\mathrm{ic}}$ and $R_{\mathrm{r}}$ are disconnected from the amplifier summing junction when S1 opens, but $C_{f}$ will "remember" the initial condition voltage and hold the amplifier output steady prior to the application of compute voltages when S2 closes:

## INTEGRATOR SWITCH CIRCUIT

The complete circuit of the integrator switch is shown in Fig 6.10. The 1st monostable consists of TR2 and TR3, with RLA actuated by emitter follower TR1. VR18 continuously covers two ranges given by C3 ( $10-100 \mathrm{~ms}$ ), and C4 ( $0 \cdot 1-1 \mathrm{~s}$ ). Components associated with the 1 st monostable input are C2, R1, and D1.

The 2nd monostable is almost identical to the 1st. TR4 drives RLB, C7 and C8 offer the same timing range coverage as C 3 and C 4 , and input components are C6, R8, R9, and D2. However, more care is taken to establish the correct values for 2 nd monostable timing capacitors C7 and C8, and VR2 allows precise calibration of the "fast end" of the VR 19 timing scale, so that compute intervals can be determined by a reasonably accurate dial setting.

VR1 establishes the working point of both monostables, to achieve reliable operation at all dial settings. S7 is a push button on the front panel for starting a "single shot". computer run. Full control of an oscilloscope trace, from UNIT " $B$ " front panel, can be realised by suitable connection to the integrator switch circuit. With S 8 switched to "hold", the mode sequence can be triggered repetitively, with a variable hold interval, by the oscilloscope timebase output or by a separate oscillator. Consistant syncronisation of the trace, with continuous or single-sweep timebases, is made possible by linking IS/SK10 to an appropriate oscilloscope input

## A SEPARATE SUPPLY

The load capacity of the existing stabilised power supply can be improved by wiring the collectors of TR1 and TR4 (shown dotted in Fig. 6.10) to a separate -12 V unregulated supply, which can be housed inside the UNIT " B " box, and in this event Cl could be omitted from the Fig. 6.10 circuit, as it merely serves to prevent current pulses from flowing in the negative stabilised supply line during relay switching.

RLA and RLB consist of two triple-switch coils, catering for the needs of three integrating amplifiers. A duplicate relay panel could be added later, by wiring relay coils in parallel, to increase the switching capacity to six amplifiers.

## CORRECTION

In Fig. 5.7, the captions for the first and second oscillographs (top row, left and centre) should be transposed.

Next month: Assembly and setting up of the Integrator Switch; practical examples in the use of this section. Introduction of UNIT "C" Function Generator.

## next month !

## Build this

DRILL SPEED
 CONTROLLER


An invaluable accessory giving controlled drill speed at constant power. Easy to build from full instructions in next month's issue. This small, compact unit incorporates a simple thyristor circuit, providing smooth variation of drill speed by finger-tip control.
ALSO
MULTI-CHANMEL RADIO CONTROLLED MODEL BOAT
The second part of this feature contains details of the electro-mechanical drive system and the power supply
WAA-WAA
A moders effects unit for electronic guitars

## PRACTICAL

## Budding technitian?

## In just 15 months, the Army could set you up for life!

Think it over. In just 15 months, you could have completed an Army course in electronics. You'd have trained with the most modern equipment and now you'd be handling it as though it was second nature. You'd be earning nearly $£ 14$ a week-with all your food and accommodation thrown in. And you'd be looking forward-in about eight months timeto promotion to corporal and the pay rise that goes with it. It's a great life all right.
And if you're between $17-23$ it's wide open to you. Get the facts by filling in the coupon or calling at your local Army Careers Information Office (address from any Post Office).


## S-DeC



## BREADBOARDING

SINGLE DeCs. One S-DeC with Control Panel, Jig and Accessories for solderless connections to controls, etc., with booklet ' Projects on S-DeC' giving construction details for 2 variety of interesting circuits $29 / 6+6 d$. P. \& P.

4DeC KIT. Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet 'Projects on S-DeC' all contained in a strong, attractive plastic case. Ideal for the keen enthusiast and professional user $\mathbf{\ell 5 . 1 7 . 6}+2 / 6 \mathrm{~d}$. P. \& P.


Four-stage binary counter using the 4-DeC Kit

* S-DeC AVAILABLE FROM ELECTRONIQUE DEALERS AND LEADING SUPPLIERS

In cose of difficulty in obtoining from a retoiler post this form:
Please send me S-DeCs kits and
kits for which I enclose P.O./Cheque/Money Order
value $f$
NAME
ADDRESS
/
TO: S.D.C. PRODUCTS (Electronics) LTD.
THE CORN EXCHANGE, CHELMSFORD, ESSEX
/

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRAIGISTOR BARGAIS BALE：NEW BTOCE AT UNBEATABLE PRICES！ |  |  |  |  |  |  |
| OC71，OC72 equivaient $1 /$－each！ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| R19Y88 N．P．N，Silicon Planar，Epilaxial，3000mw． $300 \mathrm{Mc} / \mathrm{s}$－ |  |  |  |  |  |  |
| B8Y65 | P．N．Silteon Plan | P |  |  |  |  |
| APZI2 P．N．P．Germaalum Slloy Dith，low noise V．H．F．amplitier ．．2／6 each！ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 2G344A／2G345A／2G345B／2G371A／2G978A／2G378A＋diokle $\quad .$. |  |  |  |  |  |  |
| GET120， | watts．Heat Bj | include |  |  |  |  |
| masistor Driver Transior |  |  |  |  |  |  |
|  |  | ners（sultai） | le foc our kits abo | e）．． |  |  |
| 0 C 26 \％$\quad .0$ ． |  |  |  |  |  |  |
| 87，10．0 per 100； $850.0,0$ per 1,000 ． |  |  |  |  |  |  |
| Light men | tivity transletor | similar to |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $1 /$ ench； 20 for 10／－． |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 10.0 per 100； $250,0.0$ per $1,000$. |  |  |  |  |  |  |
| RTELTROLTITC COSDENSERS 1 FARTASTKC 8ELEC |  |  |  |  |  |  |
| $0.25 \mu \mathrm{~F}$ | 3 volt | $\theta \mu \mathrm{F}$ | 3 volt | 30， |  | 9 volt |
|  | 50 volt | $8 \mu \mathrm{~F}$ | 3 volt |  |  | 2.5 wo |
|  | 300 volt | $8 \mu \mathrm{~F}$ |  |  |  |  |
| 1．20\％ | 16 volt | ${ }^{8 \mu}$ | 350 solt | $100 \mu \mathrm{~F}$ |  |  |
|  | 3 volt | $8 \mu F$ | 450 volt | $100 \mu \mathrm{~F}$ |  | volt |
| $2 \mu \mathrm{~F}$ | volt | ${ }^{8} \mu \mathrm{~F}$ | 60 volt | $100 \mu \mathrm{~F}$ |  | 9 volt |
| $2 \mu \mathrm{~F}$ | 30 voll | $8 \mu \mathrm{~F}$ | 276 voit |  |  | 12 voit |
| $2 \mu \mathrm{~F}$ | 130 volt | $10 \mu \mathrm{~F}$ | 25 volt |  |  |  |
| $2 \mu \mathrm{~F}$ | 350 volt | $16 \mu \mathrm{~F}$ | 100 volt |  |  |  |
| ${ }^{2} \cdot \underline{\mu}$ | 16 volt | $20 \mu \mathrm{~F}$ | 3 volt | $200 \mu \mathrm{~F}$ |  |  |
| $2 \cdot \sigma \mu \mathrm{~F}$ | 26 volt | $20 \mu \mathrm{~F}$ | 6 volt | $280 \mu \mathrm{~F}$ |  | 5 |
| ${ }^{3} \boldsymbol{\mu}$ | 3 volt | $20 \mu \mathrm{~F}$ | 9 volt | $350 \mu \mathrm{~F}$ |  | 9 volt |
|  | 25 volt | $20 \mu \mathrm{~F}$ | 15 volt | $320 \mu \mathrm{~F}$ |  | 2.8 volt |
|  | 8.4 volt | $25 \mu \mathrm{~F}$ | 8 volt |  |  |  |
| 8．24F | 64 |  | 12 volt |  |  |  |
|  | 4 volt | $2 \delta \mu \mathrm{~F}$ | 15 volt | $350 \mu \mathrm{~F}$ |  | 10 volt |
|  | 12 volt | $25 \mu \mathrm{~F}$ | 26 volt | $400 \mu \mathrm{P}$ |  | 2.5 v |
| 4 mF | 25 volt | $30 \mu \mathrm{~F}$ | 6 volt | $400 \mu \mathrm{~F}$ |  | 15 volt |
| 4 $\mu \mathrm{F}$ | 108 volt | $80 \mu \mathrm{~F}$ | 10 volt | $500 \mu \mathrm{~F}$ |  | 1 t |
| ${ }_{8 \mu}$ | $\because{ }^{\text {O }}$ \％volt | $40 \mu \mathrm{~F}$ | 3 volt | $500 \mu \mathrm{~F}$ |  | 6 rolt |
| $5 \mu \mathrm{~F}$ | 25 volt | $40 \mu \mathrm{~F}$ | 6.4 volt | 640 $\mu \mathrm{F}$ |  |  |
| All at 2／－each，Mixed Packets of 20 （our selectio |  |  |  |  |  |  |
| FAPER CONDENSERS |  |  |  |  |  |  |
| $0.0011,7$ | $\cdots 5000$ volt | $0.02 \mu \mathrm{~F}$ | 600 a．c． | $0.25 \mu \mathrm{~F}$ |  | 360 v |
| $0.001 \mu \mathrm{~F}$ | 1000 volt | $0 \cdot 02 \mu \mathrm{~F}$ | 350 volt | $0 \cdot 5 \mu$ |  |  |
| $0.002 \mu \mathrm{~F}$ | 000 volt | $0.1 \mu \mathrm{~F}$ | 360 volt | 0.54 F |  | olt |
| $0.000 \mu \mathrm{~F}$ | 760 volt | $0.1 \mu \mathrm{~F}$ | 760 volt |  |  |  |
| All at 15／－per 100． $3 /$－per dozen，Mlied Bags of 100 （our sefection） 10 － |  |  |  |  |  |  |
| MULLARD FOLYR8TER CAPACTHORS．ALL HALF PRICE |  |  |  |  |  |  |
| 0．0022， 1 F | 400 voltu |  | $0.18 \mu \mathrm{~F}$ | 0 volts |  |  |
|  |  |  |  |  |  |  |
| $0-0015 \mu \mathrm{~F}$ | 400 volta |  | 0．27 2 F | 0 rolts |  |  |
| $0-001 \mu \mathrm{Fr} 400$ volta... |  |  |  |  |  |  |
| 68pF Tubular pulse ceramic $\because$ Bich each |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| VERY 8PECLAC VALUE！Silver Mich，Ceramic，Polvgtyrene Coudensers． Well assorted．MIxed types and values， $10 / \sim$ per 100. |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  E／6 per 100 or $55 /$－per 1，000．Individual values， 8 d each Also it to ${ }^{2}$ Fratt clowe tolerance．Mixed values， $2 / 6$ per 100； $55 /$－per 1，000． <br>  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $\text { Od stach or } 20 \text { mixxed types } 10 /-$ |  |  |  |  |  |  |
| OONAECTEG WIRE，THIN，P．Y．C．INBULATED． $10 \mathrm{yd}, 1 /-; 100 \mathrm{yd}, 7 / 8 ; 500 \mathrm{yd}$ ， $85 /$－（post 4／6）； $1,000 \mathrm{yd}, 40 /-$（post 6／－）． |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| VALVES．GRAMD－NEW AND BOXED．ROCK－BOTTOM PRICES！ |  |  |  |  |  |  |
| DY87 | 8／8 | EY86 |  | PCLS6 |  |  |
| EABCB0 |  | Ex87 |  | PFIL00 |  | 11／8 |
| ECC82 |  | PABC80 |  | PL36 |  |  |
|  | 714 | PC97 | ．．10／8 | PL81 |  |  |
| ECL80 |  | PCC84 | －7／4 | PL83 |  |  |
| ECE86 | $8 / 6$ | PCC89 | $\therefore 10 / 8$ | PLS4 |  |  |
| EF80 | $7 / 1$ | PCP80 | －．8／5 | PLE00 |  | 12／5 |
| EF85 | 711 | PCF8G | $\therefore 10 \%$ | PY32 |  | $1-$ |
| EF183 | 9／5 | PCL83 | － 810 | PY81 |  | 8／9 |
| EF184 | 0／5 | PCLL84 | $\therefore 8 / 5$ | PX82 |  |  |
| EY51 | 6／9 | PCLS5 | 8／5 | PY800 |  |  |
| A further $10 \%$ discount will be given on lote of 50 of any ane type． |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| RECORD PLAYER CARTRIDGES <br> Acos GP67／29 Mono，15／－；Acos GP91／35C stereo compatible，201－；Acos GP94／1 stereo，25／－．All whith needles． |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Transistorised Signal Injector Kit－10／－． |  |  |  |  |  |  |
| Transistorised Signal Tracer Kit－10／－。 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $2 \mathrm{flin} \times 3$ | in 0.15 matri |  |  |  |  |  |
| $2 \mathrm{fin} \times 5$ | in 0.15 mistrix | 3／1 | $5 \mathrm{in} \times 2 \mathrm{~lm}$ | 0.1 matrix |  |  |
| $3 \ln \times 3$ | in 0.15 matrix | 3／1 | 3yin $\div 24 \mathrm{ln}$ | 0.1 matrix |  |  |
| ${ }^{31 \mathrm{in} \times 5}$ | 0．15 matrlx |  |  | 0．l matrix |  |  |
| $17 \mathrm{in} \times 2$ | a 0．18 matrix |  | 3 l In $\times 3$ \％ in | 0－1 matrix |  |  |
| gprolai | OFPER 1 |  |  |  |  |  |
| Cutteran | 5 Boarda 2 jln a | 1in，\％／9．C | I onls，7／6． P | nesert Tom |  | erminal |
| na．P | cket of 36，8／8． |  |  |  |  |  |
| GAT | OFFER！ |  |  |  |  |  |
| orly | Wultimeters，1，0 | 0 per voit | 45／－； $20,000 \mathrm{BP}$ | volt， 800 |  |  |
| Orders by poat to：－ <br> G．F．MILWARD， 17 PEEL CLOSE，DRAYTON BASSET，Staff， <br> Please include euitable amount to cover postage．Stamped addremed envelope murt be Incloded with any enquiries． <br> For customera in the Birmingham ares goode may be obtained Irom Rock Exchanges， 291 Alura Rock Road，Birmingham 8．（All POBT orders to Draston．） Minnum ORDEs 10\％ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | TRAAGISTOR BARGAET BALE：NEW ETOCE AT UHBEATABLE PRICES：

 ABY22 SWitching Tranaistors 2,8 each！$E 10.0 .0$ per 100 B6YP8 N．P．N，Silicon Planar，Epltaxial， 300 mW W． $300 \mathrm{Mc} / \mathrm{s}$ 2／8 each： APZ12 P．F．F．Germaolum Alloy Ditt low noise V．H．F．ainylitier 2／6 each？
 $10 /-$ onis！
$8 / 8$ each mansintor 2 watis．Heat bink includel 2／6 each Transintor Output Transformers（sultable soc our kits above） $8 / 0$ each
 $87,10.0$ per 100； $850.0,0$ per 1,000 ．
LISMEARKED，UNTESTED TRANEISTORS TO C CLEAR＇
2／－each！ gutcan dioden rake creeitent detectore．Aleo axitable for keying electronic organe 1／－anch； 20 for $10 /-$－SPECLAL REDUCED PRICE！ONLY $2 / 6$ each；24／－doz．； \＄7，10．0 per 100；250，0．0 per 1，000．
EWFETEOLYKIC CONDERSERS！FAKTASTIC SELECTION

RECORD PLAYER CARTRIDGES
Acos GP67／29 Mono，15／－；Acos GP91／35C stereo compatible，201－；Acos GP94／1

Transistorised Signal Tracer Kit－10／＊。
FEzOBOARD，All cizes in atock．
$\begin{array}{ll}2 \operatorname{lin} \times 1 \text { in } & 0.15 \mathrm{matrix} \\ 2 \text { fin } x & 34 \text { in } \\ 0.15 \mathrm{matrix}\end{array}$
2海 $x 5$ in 0.15 miktris
3 in $\times 3$ in 0.15 matris
3 in x 5 號 0.15 matrlx gpzoz tha matrix Pins．Packet of 36，8／8．

## BARGAN OFFER！

Orders by poat to：－ 17 PEEL CLOSE，DRAYTON BASSET，Stafr．
G．FILWARD， 17 ， Please inciude exitable amount to cover postage，Stamped addremed emvelope must
 291 Alum Rock Road，Blrmingham 8 ．（AH！POBT orders to Drajton．）

SHORT WAVE ONE VALVE
RECEIVER KIT $39 / 6+2 / 6$ P．P．

UNIT＇$A$＇COMPLETE
$£ 26.0 .0+15 / \cdot$ P．P．
Punched aluminium panels and case for above £4．17．6 $+5 /$ P．P． CLUBMAN MK．I KIT COMPLETE £6．17．6＋5／．P．P． Without metal work 24．12．6 $+2 / 6$ P．P． CLUBMAN MK．II KIT COMPLETE £10．17．6＋5／．P．P． Without metal work
£8．12．6＋4／6 P．P．
EXPLORER KIT COMPLETE \＆4． $2.6+2 / 6$ P．P．
STABILIZED POWER SUPPLY KIT 0－20V． 500 ma COMPLETE \＆4．17．6＋5／－P．P．
COMBINED AUDIO OSCILLATOR AND FREQUENCY METER \＆17＋10／－P．P．
PORTABLE TEST UNIT KIT
FLUORESCENT CAMPING LIGHT IN STOCK
S．A．E．FOR TRANSISTORS，SEMICONDUCTORS，FULL LIST 700 TYPES
3 SILICON RECTIFIERS，BYI00 TYPE 10／－
IO MIXED MARKED TESTED TRANSISTORS 10 －
40 UNMARKED UNTESTED TRANSISTORS NEW 10／－ 1 LIGHT SENSITIVE CELL ORPI2 $8 / 6$ 25 MIXED UNMARKED TESTED TRANSISTORS 10／－
2 TRANSISTOR COMP．PAIR ADI6I／162 16／－
P．P．1）：
OUR COMPONENTS CATALOGUE 5／－Post Paid with 10／－worth of

## istaunt vouchers．

## OLRUS ELECTRONICS LTD． <br> 748 HIGH ROAD，LEYTONSTONE （next to gren man）

LONDON，E．11．
Tel．01－989 2751 CALLERS WELCOME－CLOSED ALL DAY FRIDAY

## $\star$ CA 3020 <br> （LINEAR 1．C．）WIDE－BAND AMPLIFIER

## COMPLETE WITE DATA SHEET 33／－EACH

 deep st $7 / 8$ eawh，Type B 47 ＜ $32 \times 2$ n．deep at $10 ;-$ ench
SUBMINLATURE TAGBOARDS－（ 1 d $\{\mathrm{h}$ ．Wile），（f－wRy at $1 / 8.18$－way at $3 / \mathrm{e}$ ench． COAX．SOCKBT－Surface mounting，Nislon insuinter， $1 / 8$ each．
coAx．PLUG－Belling Lee I＇ype 1． $334,1 / 4$ ench．
RESIETORS－CARBON PHMM－－1 wati， $5 \% 10 \mathrm{ohm}$ to 10 Megobm， 31 l each or $3 i 3 \mathrm{doz}$ ．
CARBOX PRESET POTENTIOMETERS－Vorical or Horizontnl mounting－ 200 ohm to 2 Megohm．（Antanslard values）at $1 / 4$ each．
MNLATURE CARBOM POTENTIOMETERR－1in．dia． apinite， 5 Kohm to 2 Mregohm LOG，and 5 Kohm to 1 Megohm，LiV，at 3／－each of $2 ; 8$ each for 4 or more of the sanue value．（Standard values only．）
CAPACMORS－CERAMIC TUBULAR－（standard Vnlues） $4.7 \mathrm{pF}-0.01 \mu \mathrm{~F}$ $8 d$ each．
CAPACITORS－SLITER MICA－5pF－800pl 1／＝each（Standard Sahues）．
CAPACITORS－TANTALUM BEAD－A range of 36 miniature uuits，with values from $100 \mu \mathrm{~F} / 3 \mathrm{vw}$ to $0.1 \mu \mathrm{~F} / 30$ yw alt values at $4 / 8 \mathrm{ench}$ ．

DIODES－OA70，OA71，OA79，OA81，OA85，OA01，0．4200，OA202 at $2 /$ each． TRARSXSTORS－OC44，5／6：OC43，5／1：OC71，3／8；OC72，5／4：OC83，4／－： OC170，7／8；BC107，3！11；BC108，8i3；BC109，811；BC150， $6 /-\mathrm{F}, \mathrm{OC81Z}, 10 /-\mathrm{c}$

 $8 / 10 ; 2 N 706,8 / \theta ; 2 N 697,8 /-2 N 3053,8 / 9: 2 N 9638,5 / 0 ; 2 N 3702,3 / 8 ; 2 N 3703$,

 2N2648（UJT），10／6；BRYBH（gCs），10／8；A WIDR RANGE OF OTHER TYPES
ARE WN BTOCK，INCLUDING 2N2926 SEHIES－AII groups at $\$ / 8$ ench ARE WN BTOCK，INCLUDIN
（or， $2 / 6$ each in mult

Postage and packing is olfarged at $1 /-$ in the $\&$（Minimum of $2 /-$ pee order）．
M．R．CLIFFORD \＆COMPANY（COMPONENTS DEPT．）， 209A，MONUMENT ROAD，EDGBASTON，BIRMINGHAM， 16. Tormi：C．W．O．（or C．O．D．－over 24 only）

Tel．：021－454 6516


By A.J. BASSETT

THE "cymbals" circuit with the white noise generator, described last month, can be adapted to give a "whoosh" effect to the sound of drum beats. A microphone is placed in close proximity to the drums; the signal from the microphone is passed through the "whoosh", unit. The effect produced can be tuned or filtered to give different pitches for each drum beat.

## WHOOSH TRIGGER

The unit described incorporates its own microphone amplifier to give sufficient drive to trigger the whoosh into action. Referring to the circuit in last month's cymbals effects article, the signal is fed into C7 from the heavily driven amplifier shown in Fig. 1.

This amplifier cannot be used as an ordinary audio amplifier or pre-amplifier for normal listening purposes, as its output would be pulsed and highly distorted; however, it is very suitable in this case for providing a pulse drive to the cymbals circuit. This latter circuit is triggered to pass white noise from the P.E. White Noise Generator.

Refer to the block diagram on Fig. 2. The sound of the drum is picked up by the microphone, which is placed close to the drum skin. The signal passes to the high-output-swing amplifier via a volume-control VR2.

The output pulses from the amplifier then operate the cymbal circuit,' whose output can be heard as a "whoosh" by connecting to a power amplifier. A single-pole push/push switch may be connected from the junction of D2, D3 to chassis, in order to mute the unit when effects are not required.
The cymbals filter circuit is altered to give a lower "whoosh" sound rather than a cymbal effect. This

Fig. I. Circuit diagram of the microphone ampliter

alteration consists merely of increasing the values of C 5 and C 10 to $0.05 \mu \mathrm{~F} ; \mathrm{C} 7$ and C 8 become $0.01 \mu \mathrm{~F}$, and R10 is decreased to 1 megohm. Different values may be tried, thus altering the effect to your own personal preference. It is necessary to adjust the volume controls (both the sensitivity control VR2 and the volume control on your audio amplifier) after changing the capacitors, as they have a considerable effect on the output amplitude of the unit.

If VR2 is set too high, acoustic feedback can occur, resulting in a continuous "whoosh" effect from the loudspeakers. Therefore, VR2 is set a little lower, so that a tap on the drum is necessary before the "whoosh" effect is produced. Other sounds, for example, from an electric guitar or organ, should not be allowed to trigger the whoosh unit. Another measure, which may be necessary in order to avoid this continuous "whooshing" feedback is to position the loudspeakers well away from the drums.

## MAKING THE MODS

To make this effects unit you will need the basic white noise generator and cymbals filter boards (see last month's article). Carry out the modifications to the cymbals filter board as detailed earlier; fit these two units into a chassis or other box 12 in $\times 4$ in $\times 2 \frac{1}{2}$ in, leaving space for the new microphone amplifiers and possibly the 18 V power supply.
The "manual pulse" push-button S1 and resistor R7 are not necessary and can be omitted if desired. The "pulse input" jack JK1 is not necessary either and can be transferred for use as the microphone input jack.
A muting push-button is fitted to the chassis and connected in parallel with D2 on the filter board.


Fig. 2. Block diagram showing the interconnection of panels with jacks and controls

## COMPONENTS . . .



Fig. 3. Printed circuit pattern (full size) for the microphone amplifier

Fig. 4. Component layout on the printed circuit board

## MICROPHONE AMPLIFIER

Resistors

| R1 $1 M \Omega$ | R3 | $22 \mathrm{k} \Omega$ | R5 | $22 \mathrm{k} \Omega$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| R2 $150 \mathrm{k} \Omega$ | R4 | $2 \cdot 2 \mathrm{k} \Omega$ |  |  |
| All $10 \%$ | $\frac{1}{4} \mathrm{~W}$ | carbon |  |  |

## Potentiometer

VR2 $10 \mathrm{k} \Omega$ log. carbon

## Capacitors

CI $10 \mu \mathrm{~F}$ elect. I5V
C2 $10 \mu \mathrm{~F}$ elect. 15 V
C3 $100 \mu \mathrm{~F}$ elect. 10 V

## Transistors and Diode

TRI, TR2 ME4103 or C424
DI 1SI30 or DD000

## Miscellaneous

Printed circuit board 2 in $\times 1 \frac{1}{2}$ in
Other components are as given in the Cymbals Effects Unit article last month except:
Change CS to $0.05 \mu \mathrm{~F}$
C 7 to $0.01 \mu \mathrm{~F}$
Clo to $0.05 \mu \mathrm{~F}$ RIO to IMS
C8 to $0.01 \mu \mathrm{~F}$

Delete SI and R7
Add Single pole on/off switch in parallel with D2 (push on/push off)

Next, the new panel incorporating components for amplifying the microphone signal is made up. The printed circuit pattern is shown full size in Fig. 3, while component layout is given in Fig. 4. Terminal points on the board can be either pins or direct connections to the copper through holes in the board.

All printed circuit boards can be glued on to foam rubber or plastics pads in the box so that the copper does not touch the metallic chassis; plain s.r.b.p. boards can be used here to separate the printed circuit boards from the metal.

## TESTING THE EFFECTS UNIT

Connect the unit to a power supply of 18 to 24 volts, also a negative bias supply for the cymbal circuit. The power source may consist of either batteries or a mains power unit with smoothed output (as shown in last month's article). Connect also a power amplifier with loudspeakers (a guitar amplifier or public-address amplifier is suitable). All variable controls should be set initially to a low level. Temporarily connect the junction of R8, C8 (cymbals filter) to the positive supply and switch on.
By adjusting VR1 and the volume control of the audio amplifier, the sound of the white noise generator should come through in a filtered form; the controls should now be adjusted to give a fairly loud, continuous low-pitched
hissing effect. Remove the positive supply connection from the junction of R8, C8, and this sound should die away.

By adjusting VR2, you will find that sounds received by the microphone are transformed to give a whooshing effect from the loudspeaker. VR2 can be set so that only the loudest sounds have this effect, and if the microphone is mounted near to, and facing, the skin of a drum, only a tap on this drum will produce an output from the unit.

## USING THE UNIT

The unit may be used with just one particular drum, which is the simplest arrangement. Alternatively, several different drums may be used, each with its own microphone. If a number of identical microphones are used, these may be simply connected in parallel using screened wire. Alternatively, an audio mixer unit may be used in place of VR2, to feed signals from a number of different sources to the input of the amplifier. The microphones used may be an inexpensive crystal type, or a moving-iron diaphragm unit.

In order to obtain a different "whoosh" sound from each drum, you may wish to build a separate "whoosh unit" for each drum, and feed the output from each unit to the power amplifier by way of a mixer unit.

## BUILD YOURSELF A QUALITY TRANSIST,OR RADIO-FULL AFTER SALES SERVICE!

## HoAMERTZ

## SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION

- 7 FULLY TUNABLE WAVE BANDS-MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band.
- Extra Medium waveband provides easier tuning of Radio Luxembourg, etc.
- Built in ferrite rod aerial for Medium and Long Waves.
- 5 Section 22 in . chrome plated telescopic aerial for Short Waves --can be angled and rotated for peak S.W. listening.
- Socket for Car Aerial.
- Powerful push-pull output.
- 7 transistors and two diodes including Philco Micro-Alloy R.F. Transistors.
- Famous make $7 \times 4$ in. P.M. speaker.
$\qquad$ Air spaced ganged tuning condenser.
- Separate on/off switch, volume control, wave change switches and tuning control.
- Attractive case with hand and shoulder straps. Size $9 \times 7 \times 4 \mathrm{in}$. approx.
- First grade components.
- Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build with guaranteed results.


## Total building costs

£5.19.6 P. \& P.
7/6



Total building costs
$42 / 6 \quad$ P. $8 / 6$ P.
4/6

## TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE
Attractive case with red speaker grille. Size $61 \times$ 4\} $\times 1$ inin. Folly tupable. 7 stages- 6 transistors and 2 dindes-ferrite rod serial, tuning condenser, volume control, the tone super dynamic 2 fin . speaker, all Arst grade components. Easy bulld plana and paris price list 1/6 (FREE wlih parta).


Total building costs
3016 P. \& P.

## POCKET FIVE

## MEDIUM WAVE, LONG WAVE

 AND TRAWLER BAND PORTABLEAttractive black and gold case. Slzo $5 \$ \times 1 \frac{1}{} \times$ Attractive black and gold case. Sizo s\} $\times 1$. $x$
\$fn. Fully tunuble over both Medum and Long
Waver with extended M. W. band for eader tunlig Waves with extended M. W. band for eavier tuning
of Luxembearg, etc. All firut grade componento. $\frac{1}{5}$ ot Luxembegrg, etc. All irnt grade componente. senslages- ferrite rod zerini, fine tone 2 jin. moving sensi speaker, eto. Easy build plans and parts price ilst. 1/6 ( FR RE with parts).


## NEW MELODY MAKER SIX

## 3 WAVEBAND PORTABLE 8 stages-6 transistors and 2 diodes

 Covers Medium and Long Waves and EXTRA M.W. BAND FOR EASIER TUNING OF LUXEMBOURG, etc. Top quality 3 in , Loudspeaker for quality output. Two RF stages for extra boost. High "Q" Gin. Ferrite Rod Aerial. Approx. 350 milliwatts push-pull output. Handsome pocket size case with gilt fittings. Size $64 \times 3 \frac{3}{4} \times 1 \frac{1}{2} \mathrm{in}$.This amazing receiver
may be bullt for only

Parts Price List and easy bulld plans 2/(Free with parts).


Total building costs $79 / 6 \quad$ P. 8 P.

## ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gitt fittings, alze 7i $\times$ 碳 $>$ 1 hlo. World wide reception. Tunable on Medium and Long Wavea, two Short Waves, Trawler Band plus an extra M.W. Band for easier tuming
of Luxembeurg efc. Sensitive ferrita rod semst of Luxembourg, etc. Sensitive ferrite rod serial and telescoplo aerial sor Sbort Waven. All top
and
2 Transistors, etc. (carrying strap 1/B extra). Easy bulld plans and parta price list $2 /$ (FREE with parts).


Total building costs
69/6

THREE WAVEBAND PORTABLE WITH Jin. SPEAKER

Attractive cane size $7 \frac{1}{2} \times 81 \times 1 \mathrm{i} \mathrm{n}$, with gitt fittings. The lideal radio for home, car or outdoors, Covera Medfum and Long Waves and Irswler Band. Special circuit incorporatipg 2 R.F. Etages puth-pull output, ferrite rod werlal, 7 tranulatora
Bad 2 diodes, $3 \mid n$, tpeaker \{will drlve larger and 2 diodes, 3 in , npeaker (will drlve larger
apeaker) and all firat grade components. Price apeaker) and all firat grade
Hist $2 /-(\mathrm{FRFE}$ with parts).

## RADIO EXCHANGE Ltd

61a HIGH STREET, BEDFORD
Telephone: Bedford 52367
TWO SCOOPS FROM "KING'S"CONTINUOUS LOOP
(NEVER ENDING - NO REWINDING)
TAPE CASSETTE
BULK PURGHASE
RIDICULOUS PRICE
IDEAL BACKGROUND MUSIC - LANGUAGE
COURSES, ETC. 200ft. HIGH QUALITY AMPEX
TAPE. WILL FIT ALL TAPE RECORDERS. CANNOT BE REPEATED

| NEARLY | ALL GONE | Each |
| :---: | :---: | :---: |
|  | NOW ONLY | 8 |

FULL CIRCUIT - INSTRUCTIONS - PARTS
LIST TO BUILD YOUR OWN
TELEPHONE ANSWERING/RECORD
MACHINE - QUICK - AUTOMATIC
TAKES 100's OF CALLS: 25 I
CHEAP TO BUILD. SEND NOW $25 /=$
7 " AMPEX TAPE SPOOLS, ONLY 2/6
KING'S TELE-SERVICE CO.
105/107 DAWES ROAD, FULHAM, S.W. 6
FULHAM 1668-2998

## VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!
SETS


| 1 A | 7/6 | 10P13 14/6 |  |  |  |  |  | 8, | 2 | 9/9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1H5GT | $7 / 8$ | 12AT7 | DK | $5 / 6$ | EF18 | $6 / 8$ | PCLL | $8 / 0$ | UCEE1 | \%/8 |
| 1256T? |  | 18AU6 49 | DK92 | 9/8 | EH9 | 018 | PENA4 | 6/8 | UCL82 | $7 / 6$ |
| 120G\% |  | 12AU7 4/9 | DK9 | 7 - | EL23 | $8 / 0$ |  |  | UCLES | 918 |
|  | $5 / 6$ | 12AX7 4/9 | DLis | \% | EL41 | $0 / 6$ | PFL2001 |  | UF41 | 10/6 |
| 184 | 419 | 12KBG7\% $7 / 6$ | DIAS |  | EL84 | 410 | PL ${ }^{1} 6$ | $9 \cdot 6$ | UP80 | 71 |
| 185 | $8 / 9$ | $205210 / 6$ | DL92 | - | ELOC | 81 | PL81 | $7 / 8$ | UP89 | 818 |
| 174 | $8 / 8$ | $20 \mathrm{Ll} \mathrm{18/8}$ | DL94 | 519 | EL95 | $8 /$ | PL82 | 0 | UL41 | 8 O |
| 5 | $8 \cdot 6$ | $208314 / 9$ | DL98 | $6: 6$ | EM34 | 12/0 | PL83 | 7- | U144 | 00\% |
| 354 | $8 / 6$ | 20P4 17\% | DY86 | 6/9 | EM80 | $5 / 9$ | PLA4 | O/3 | OL84 | , |
| $3 \mathrm{~V}^{2}$ | $5] 9$ | 25U4GTII/6 | DY87 | 5/9 | EM81 | 619 | PJ. 500 | 181- | UY41 | I= |
| U4G | $4 / 6$ | $30 \mathrm{C} 1511 / 6$ | EABC80 | 8/6 | EM84 | $6 / 6$ | PX25 | $10 / 6$ | CYE | $5 / 0$ |
| BV4G | 81 | 80C17 12/\% | EAF42 | 8/6 | EM87 | $7 / 8$ | HY32 | 101- | VP4B | 10/6 |
| 883G1 | 5/9 | $30 \mathrm{cl18}$ Of- | ER891 | $8 / 8$ | EY61 | $7 /$ | \%「83 | 10/- | VP132 | 1/- |
| 8240 | $7 / 6$ | 30F5 18/- | EBC33 | 718 | EY86 | $0 / 8$ | PY80 | 8/3 | 277 | $8 / 6$ |
| 6/80L2 | $11 / 8$ | S0FL1 18/6 | EBCS1 | $81-$ | 2Z40 | $7 / 6$ | PY81 | $5 / 3$ |  |  |
| 6ALS | 818 | 30 FL 141816 | EBF80 | 8/- | E241 | 716 | PY82 | 85- |  |  |
| GAM6 | 218 | 30L15 11/- | EBF89 | 8,8 | E280 | $1 / 8$ | PY83 | $5 / 8$ | Tran |  |
| *AQ5 | 4/8 | $80 \mathrm{L17}$ 18/- | ECC81 | $8 / 9$ | E281 | 49 | PY88 | 718 | AC10 | 10/- |
| BAT6 | 41 | 3084 12/- | ECces | $4 / 8$ | 1232 | 91- | PY800 | $6 / 8$ | ACl27 | $6 / \sim$ |
| BA6 | 4/6 | $90 \mathrm{P12}$ 11/- | ECC8s | 7\% | KT61 | $8 / 8$ | PY801 | $8 / 8$ | AD140 | 18/6 |
| 8BE6 | $4 / 3$ | S0P19 12j- | ECC84 | $5 / 6$ | KT81 | 151- | R19 | 616 | AFl02 | 18j- |
| 08G60 | 18)- | 90PLI 18/8 | ECC85 | $4 / 9$ | N78 | $14 / 8$ | R20 | 1810 | AF115 | 8 8- |
| 68J6 | 819 | $30 \mathrm{RL} 1314 / 6$ | ECE ${ }^{\text {c }}$ | $71-$ | PC86 | $9 / 8$ | L26 | $11 / 6$ | AP116 | 8/6 |
| 0086 | 8/8 | 30PL14 14/6 | ECE82 | 619 | PCC8 | $9 / 6$ | C26 | $11 / 0$ | AF117 | 1-0 |
| 6F13 | $2 / 8$ | 38L6GT 81- | ECF88 | 0)- | PC97 | $8 / 6$ | L47 | 186 | AF218 | 16 |
| $8 \mathrm{Fl4}$ | 0 )- | 35W4 4/6 | ECH35 | 8)- | PC900 | 91- | 149 | $18 / 6$ | AF124 | 710 |
| ${ }_{6} \mathrm{FF} 28$ | 12/6 | 3524FT 5/- | ECH42 | 101- | PCC84 | $0 \cdot$ | U82 | $4 / 6$ | AF125 | $7 / 0$ |
| 0K7 ${ }^{\text {a }}$ | $2 / 5$ | 6063 18/6 | ECEE81 | 8/9 | PCC89 | 10/6 | U78 | 816 | AF126 | 71 |
| 6K8G | 1/8 | Az31 0/- | ECH84 | 7/8 | PCC189 | $9 / 9$ | U192 | 11/- | AF127 | $\stackrel{7}{6}$ |
| $6 \mathrm{L18}$ | $8 /-$ | B36 4/9 | ECL8 | $6 / 9$ | PCF80 | $7 /$ | U301 | 1816 | $0 \mathrm{OC22}$ | 19 |
| 8V6G | $8 / 8$ | 8729 18/6 |  | $0 \cdot 18$ | PCF82 | 0/- | U801 | 1810 | 0028 | 0 |
| 6V6G | $8 / 6$ | CCH35 101- |  | $8 / 3$ | P | 9/9 | UABC80 | $8 / 8$ | ${ }^{0 \mathrm{OC} 26}$ | 8 O |
| $6 \times 1$ | $8 / 6$ | DAC32 7/8 | ECL8 | 818 | PCP800 |  | UAF42 | 719 | $0 \mathrm{CA4}$ | $8 / 8$ |
| 6x5a | 810 | DAE91 8/0 | EFS9 | 819 | PCF801 | $7 / 9$ | U841 | 8/6 | OCA5 |  |
| 786 | 1019 | DAF96 8- | EF41 | 810 | FCP802 | $9 / 0$ | UBC41 | $7 / 8$ | $0 ¢ 71$ |  |
| 7B7 | 71 | DCC90 8/6 | EF80 | $4 / 9$ | PCFE05 | 9]- | UBFEO | 8/= | $0 \mathrm{OC7}$ | 19 |
| 7 CS | 18)- | DF33 7/ | EF85 | 516 | PCF80 | 11/8 | UBF89 | 810 | OC76 |  |
| 706 | $8 / 8$ | DF91 810 | EF86 | $8 / 8$ | PCF808 | 216 | $\begin{aligned} & \text { UBI } 21 \\ & \text { JC92 } \end{aligned}$ | $8 /-$ $8 /$ | $0 C 810$ |  |
| 7H7 | $5 / 8$ | DF98 a/- | EFB9 | $5 / 3$ | PCL82 | $7 / 3$ | UCCC84 | $7 / 8$ | 0082 | - |
| 7Y4 | 8/6 | DH77 4/m | EF91 | $8 / 6$ | PCL89 | 9 | UCC85 | 6/8 | 0C82D | 81 |
| 0F1 | 15/m | DE81 12/6 | EF97 | $7 / 6$ | PCL84 | 7/6 | ECFP0 | 88 | OC |  |

## READERS RADIO (P.E.) 85 TORQUAY GARDENS, REDBRIDGE, ILFORD E8SEX

Pontage on 1 valve 9d. extra, on \% valven or more, protage 6d. per


HIGE SPEED HAGYETIC COUNTERR (4 $\times 1 \times$ jin.). 4 di
P. $\mathrm{P} .1 / \mathrm{A}$
 $2 / 8$ each, 5 for $10 /=$
EE-BETTABLE EYGE SPEED COUFTER
 each

## BULK COMPONENT OFEEES

 100 Copacitori 50 pF to $5 \rho \mathrm{fF}$.250 Carbou Reslistors it $\& 2 \mathrm{JW}$. (Traneistor types).
250 Carbou Resintors it 100 Ceramic Capacitors 2-1000pF.
25 Vitreous W/W gexintore ( 5,0 ).
12 Prectulon Restators $(\cdot 1 \%$ several btandard vatues 12 Included).
5 Close Tojerance Caps. ( $2 \%$ )
12 silicon Diodes 500 p.i. 7.750 ma
4 Silicon Rectia, $400 \mathrm{p} . \mathrm{i}, \mathrm{v}, 3 \mathrm{amp}$
50 Silicon Trans. (2N70B/708, B8Y28/29, BCY $41 / 42$ 50 Siticon Diodear 200 man . 100 p.l.v. Snb. Min ANY TTEM 10/F, ANY ס TTEMA 22.
8.C.RA, (Thyrlators) CR81/20 6i6: CRB1/40 7/6; 2/83/10 7/6: CRS3/30 8/6; CRS3/40 10/-; CRS3/50 2/8 each.
4000' TYPE RELAT8 (ex. new equip.) 10 for 25/PATTRICK \& KINNIE BI PARK LANE ROMFORD, ESSEX ROMford 44173

## BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR AMPLIFIER, etc. Tyoes available: 9vi 7tvi $6 v$ : 4iv (single output) $39 / 6$ each. P. A. P. $2 / 9$. ov + $9 v ; 6 v+6 v ;$ or $4 \frac{1}{2}+41 v$ (ewo separate outputs) $42 / 6$ each. P. \& P. $2 / 9$. Please state output required. All the above units are completely isolared from mains by double wound cransformer ensuring $100^{\prime \prime}$, salety.
N.E. PRODUCTS (RADIOI LTD.
(Dept P.E.), 31 Oliver Road. London. E.I\%

## The ELECTRONIC MUSICAL IWSTRUMEVT MANUAL

New 5th Edttion.

By Douglas. 55/-, P. \& P. I/6. COLOUR TY PAL.SYSTEM, by Patchetc. 40/\% P. \& P. 1/\%.
F.E.T. CIRCUITS, by Turner. 25/-, P. \& P. 1/-.
TAPERECORDER SERVICING MANUAL, by Hellyer. 63/-. P. \& P. 4/6. ELECTRONICCOUNTING, byMuliard. 27/6. P. \& P. 1 .
SILICON CONTROLLED RECTIFIERS, by Lytel. 21/, P. \& P. I/-. BOOK, by Turner. 25/-. P. \& P. 1/-.
HAVING FUN WITH TRANSISTORS, by Buckwalter. 24/-. P. \& P. 1/-.
SOLID STATE POWER SUPPLIES AND CONVERTERS, by Lytel. 20/. P. \& P. I/-

ELECTRONIC MOTOR CONTROL, by Lycel. 30-/. P. \& P
TRANSISTORS IN LOGIC CIRCUITS, by Altes. 16/-, P. \& P. If
Where possible 2 -hour service guaranteed
UNVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

# m <br> 品 PLALE 

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is glven, enquiries and orders should then be made direct to the firm concerned.

## COMPONENTS

The "Apollo" subminiature mercury switch available from Photain Controls Ltd., should prove very useful for trip or alarm circuits, and in a variety of other circuits such as communications, measuring and control equipment.

Very similar in appearance and size to a transistor, the switch consists of a robust metal housing and contains high purity mercury. One electrode is the metal outer casing and the other the centre lead. The contacts are sealed in glass and filled with gas. The load current is 0.3 A at 110 V .

When the switch is tilted at a minimum of 30 degrees from horizontal position the mercury moves and closes or opens the contacts, switching the supply on or off as required. When operating there is no clicking noise. Further details are available from Photain Controls Ltd., Randalls Road, Leatherhead, Surrey.

Now to lighting, the Mark-A-Lite is a small halfpenny size disc which glows continuously in the dark, yet needs no electricity, mains, battery or recharging. The back of the disc is self-adhesive and is useful for marking the position of any small item that could be a hazard, or for locating objects in darkness. Light switches, keyholes, car ignition switches and front panel controls, are just a few of the applications that come to mind.

The Mark-A-Lite costs 11 s 4 d and is available from Wrights Aviation Co. Ltd, 4 Melbourne Close, Morton, Middlesbrough, Yorkshire.

A new range of battery holders have just been announced by A. F. Bulgin \& Co. Ltd., Bye Pass Road, Barking, Essex. These holders take U2 cells and equivalents. They are designed for front panel mounting, making it easy to replace exhausted batteries; all contacts are heavily plated to prevent corrosion.

The holder is fixed to a panel by four 6B.A. bolts, the front cap or contact being a push and twist type.

An r.f. microminiature coaxial connector by Thorn Special Products is available for matched impedance coupling of 50 ohm screened cables. It is made of gold plated copper alloy, with crimped coninections, the connector being insulated with
p.t.f.e. The contact resistance is claimed to be less than 4 milli-ohms. This connector is supplied as a complete cable assembly, the pin and socket each being assembled with a 12 in length of 50 ohm cable. Alternative lengths are available to order.

## EQUIPMENT

Newmarket Transistors Ltd., have recently added a preamplifier to their range of "packaged circuit" modules. The PC10 is intended mainly for tape head amplification and is powered from a 9 V supply. It has an input impedance of 150 ohms and output impedance of $3,300 \mathrm{ohms}$. The sensitivity is given as 150 mV out at 1 kHz for a 15 mV input.

Readers thinking of purchasing a new multimeter may be interested in the Sanwa range available through Household Electrix Ltd.; 47-49 High Street, Kingston-upon-Thames, Surrey.
The price of the Sanwa range of meters varies from $£ 37 \mathrm{~s} 6 \mathrm{~d}$ to $£ 135 \mathrm{~s}$.

One item not shown at this year's Audio Fair is the Dewtron New Dimensions sound effects amplifier.

Marketed at 8 guineas, plus 4 s postage, by D.E.W. Ltd., Ringwood Road, Ferndown, Dorset, the unit provides adjustable echo, vibrato, spacial (reverberation) and tonal effects. The unit can be used with any domestic radio, record player, electronic musical instrument, or tape recorder having provision for an external speaker.

The effects amplifier creates a pseudo "stereo" effect if an extra speaker is used together with the existing appliance speaker. The power output is approximately 1 watt. Another version is obtainable for car radio use and is wired directly to the car battery.

## AGENTS

Home Radio (Components) Ltd., 187 London Road, Mitcham, Surrey, have been appointed retail stockists of all Lektrokit components.
Over 150 individual items in the Lektrokit ranges are now available "off the shelf" and are all obtainable through the postal delivery service run by Home Radio.
Single cell or small quantities of Voltabloc rechargeable nickelcadmium battery cells can now be purchased through Electroniques,


Microminiature coaxial connector
produced by Thorn Special
Products


Apollo mercury switches from Photoin Controls


Panel mounting battery holder by A. F. Bulgin


Wrights Aviation Mark-A-Lite


## Reandonf A SELECTION FROM OUR POSTBAG

## Thriving and active

Sir-About a year ago, a letter was published in your magazine, announcing the intention of forming a radio club in South London. The Addiscombe Amateur Radio Club was formed, having as its hard core several young people who wrote to us as a result of reading about us in P.E. Since those early days we have had many more members and visitors attracted by the publicity you have given us. The members have asked me, as secretary, to write to you with our thanks for the help and encouragement you have given to us, and doubtless to many other clubs who are struggling to get firmly established.

Thanks to P.E. the Addiscombe Club is now a thriving and active club.
S. V. Knowles, Hon. Sec.,

West Croydon,
Surrey.

## Unsociable or mere handmaiden?

Sir-I wonder how many readers have stopped to think how Electronics, as an activity for Amateur enthusiasts, has never produced a social movement for the advancement of its aims and interests in a similar way, for instance, to the Amateur Radio Movement. It might be said that this lack of an effective Club or Society movement is due to the lack of incentive to co-operate with other fellow enthusiasts, which is essential in such activities as Amateur Radio.

It must mean that thousands of Electronics enthusiasts are working away on Jonely projects, and that Electronics has no collective voice or recognisable unity as a hobby movement.

But, a closer look at my statement about lack of incentive above, shows that it does not hold water. There are a great number of Amateur Movements with strong collective organisations, the Amateur Astronomers, Model Engineers and Aeromodellers, to name just a few. None of these activities can claim an essential social element, like that necessary for Amateur Radio, yet they have strong society movements.

There might be more serious reasons for the lack I have been
discussing. Is it possible that, on the average, Electronics enthusiasts are an unsociable type of person anyway, rather dealing with gadgets and things than with people? They may have had a strong desire to retreat into their gadgetry world, over which they can keep a sense of power.

There is one further explanation, and that is the one that says Electronics has no separate existence. This means that the activities of the people engaged in electronics are catered for by other firmly established bodies. Therefore, Radio Amateurs constitute a vast number of electronics men. There is a large pool in the model control field. The Radio Astronomers make up another quite advanced group. The Photographer would build his timers and gadgets, without the need to go to an Electronics Club.

It would seem that Electronics is a handmaiden to other interests, in other words it has come too late and the prospects for any representative Society arising is bleak... or is it? There may be readers with other views, but the evidence would have to be strong!
R. F. Marchant, Leyton, E. 10.

## " Phial"-ed

Sir-I would like to congratulate A. J. Nicholls on his approach to Electronic and Mechanical car protection (see Readout April issue). I feel though that his car is still dangerously vulnerable to theft.

The modern thief, having beaten the electronics and entered the car, thinks nothing of breaking or unlocking any mechanical device linking steering to a pedal.

I have made my car safer by arranging in addition, that the release of the handbrake, as the thief goes to drive away, breaks a glass phial and fills the car with tear gas. At this stage I felt my car was fairly secure until I realised that the thief might have a gas mask with him.

I have therefore arranged things further so that as soon as the car moves forward small bursting charges in the hubs blow off all four wheels.

Dr. R. Parfitt,
London, S.E. 19.
You must have a thriving practice. We hope you don't charge a consulting fee?

## Simplicity is the key

Sir-I have read your Editorial in the April issue of Practical ElecTRONICS with great interest.

As the Design Engineer of a small firm of Instrument Engineers I too have found that some of the circuits given in your magazine tend to be a little too sophisticated. Of course, if the aim is to generate an increased interest in electronic circuitry this is very fine. If, on the other hand, usefulness is the aim I would suggest that simplicity is the best policy.

Many manufacturers of instrumentation have the tendency to make their products with many "frills" built into them as sales gimmicks. For instance, I know of one s.c.r. control circuit containing no less than ten transistors. Compared with another (fool-proof and accurate) circuit produced by another firm that only employs three transistors.

There are numerous examples of this kind to be found in the industrial field. Believe me, the simpler a circuit can be made the less trouble in maintenance and reliability is to be expected.

Trusting that these remarks may interest your readers.
D. H. Heppell,

Warley.

## Any square wire?

Sir-Can any reader suggest a source of SQUARE connecting-up wire, as used in the early 1920's?

This is urgently wanted by members of the Peterborough Radio and Electronic Society, in the making of "genuine 1922 " wireless receivers for their "Radio Museum". Plenty of old components have been collec-ted-but not a bit of SQUARE wire.
D. Byrne G3KPO,

Jersey House,
Eye, Peterborough.

## Come und join us

Sir-We are writing to enquire if any of your readers in the Paddington area would be interested in visiting the Paddington and District Amateur Radio Society which meets every Thursday at $7.30 \mathrm{p} . \mathrm{m}$.

The club promotes an interest in amateur radio and allied subjects. Lectures and film shows are amongst the itinerary together with a constructional evening, held on Wednesdays.

The Clubroom is in the Beauchamp Lodge Settlement, 2a Warwick Crescent, W. 2 .

The Club intends to hold several field days during the year and provide demonstration stations for local events.
M. M. Pawley G8AWV,
London, W.2.

$\square \square \square$
PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER $£ 4$

EXCITING NEW PAKS FOR AMATEURS, PROFESSIONALS, FACTORIES, ORGAN BUILDERS, AND THOSE PEOPLE THAT JUST USE LARGE QUANTITIES OF TRANSISTORS,

XA PAK
Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. $44,45,71,72$, 81, etc.

PRICE 45 PER 1000

## XB PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to $0 C 200-1,2$ N706a, BSY27/29.

PRICE \&S.5.0 PER 500 PRICE \{10 PER 1000

## XC PAK

Silicon diodes miniazure glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DKIO, atc. PRICE 15 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF $75 \%$ OR MORE GOOD SEMICONDUCTORS, FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK P/P $2 / 6$ PER PACK (U.K.)

## TRANSISTORS ONLY 1/- EACH <br> SILICON - PLANAR

All these types available

| 2N929 | 2N706 | 25131 | 25103 | 2N696 | 2 N 1613 | 25733 | BFYIO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2S501 | 2N706A | 2S512 | 2S104 | 2N697 | 2N171I | 2N726 | 2S73 |
| 2N2411 | 2N3011 | 2 S 102 | 2N2220 | 2N1507 | 2 N 1893 | 2N2906 | 25732 |

All tested and guaranteed transistors-unmarked.
Manufacturers over runs for the new PRE-PAK range.


| NEW UNMARKED | - UNTESTED PAKS |
| :---: | :---: |
| 25 ESYY85A | TRANSISTORS 10/- |
| $10 \begin{aligned} & 1000 \text { PIV } 1 \text { amp. } \\ & \text { Min, Silicon }\end{aligned}$ | DIODES 10/- |
| $25 \begin{aligned} & \text { ESY26-27 } \\ & \text { NPN Silicon }\end{aligned}$ | TRANSISTORS 10/- |
| $10 \begin{aligned} & \text { 10 Watt Silicon } \\ & \text { All Voltages }\end{aligned}$ | ZENERS 10/\% |
| 25 EFY50-1-2 | TRANSISTORS 10/- |
| $10.4{ }_{\text {amp, }}{ }_{\text {Silicon }}$ | RECTIFIERS 10/\% |
| $25 \begin{aligned} & \text { BC107-8-9 } \\ & \text { NPN Silicon }\end{aligned}$ | TRANSISTORS 10/- |
| $40{ }_{\text {Sub. Min. Silicon }}^{\text {Sider }}$ | DIODES 10/- |
| 50 Min Germ. High Quality | DIODES 10/- |
| 25 2N706 A | TRANSISTORS 10/- |
| PRE-PAK.N.605 POWERTRANSISTOREQUIVALENT $/$ / - BAChTO NKT301.A |  |
| tantalum capacitors $4 /=$ Pach |  |

## PRE-PAKS

|  |  | Price |
| :---: | :---: | :---: |
| AI | 6 Silicon rectifiers 8 Y 100 type | - 20/- |
| A3 | 20 Mixed marked and tested crans. | - 20/- |
| Al3 25 New trans. \& diodes marked \& rested |  |  |
| Al5 | 2 Power Comp. Patr, AD161/2 |  |
| Al7 | 3 Sil. seud recs. 6 amp. 400 PIV. BYZ12 |  |
| 18 | 2 Sil, stud recs. 10 amp. 800 |  |

Bi $\$ 0$ Unmarked untested, trans., new - $10 /=$
B2 4 Solar cells, inc. Book of Instructions 10/-
B3 4 OA5 gold bonded, diodes Mullard - 10/-
B5 7 Marchedser, OC44,45/81D/Bi + - $10 /$
B6 15 Red spot AF, erans. or white spot $10 /-$
BQ 2 Power trans. OC26/35 type $10 /-$
B9 I Light sensitive cell, ORP12 type - 9/-
B 101050 V trans. germ. PNP latest type . 10/-
B44 Tunnel diode. AEYII. $1050 \mathrm{Mc} / \mathrm{s}$ - 10/-
B21 2 Sil. recs. 10 amp., 50-100 PIV - 10/-
845 I Power trans. ADY22/TK400A
ver trans. ADY22/TK 400 A
VCB60 IC Amps. PNP
$10 \%$
B49 2 Power trans, GET 9 VCB64 IC Bamp.
366 150-Germanium diades, uncested 10/-

C2 IUnijunction. 2N2160 or 2N2646 - 15/= C4 2 RF power crans., OC22 and BUYII - $15 /-$ CI5 4 Silicon PNP trans, in the 253005 eries $\mathbf{5} / \mathrm{F}$ C31 4 Sil. recs. gCO PIV $\frac{1}{4}$ amb. top hat - 15/. C32 2 Power trans. TK400A/NKT404 70 VCB64 \&C 8 arro.
70 amp. 400 PIV SCR special offer
15/.
INTEGRATED CIRCUITS (TEXAS)
SN7430 ${ }^{8}$ INPUT POSITIVE $19 / 6$
Make a Rev. Counter for your Car. The TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev counter for any car. State 4 or 6 cylinder.

20 each

FREE CATALOGUE AND LISTS for: -
TANTALUM CAPACITORS, TRANSISTORS, RECTIFIERS \& CIRCUIT DIAGRAMS, SUBSTITUTION CHART

MINIMUM ORDER 10\%- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

## Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 3$ per word (minimum order $15 /$-), box number $1 / 6$ extra. Semi-displayed setting $£ 4.2 .6$ per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

## SERVICE SHEET8

BERYICE SHEET8, Radio, TV, 5000 models. List $1 / 6$. S.A.E. enquiries, TEIJRAY, 11 Braudland Bank, Preston.

[^2]QERVICE SHEETS. RADIO, TELEVI8IOH,
TAPE RECORDER8, 1925-1968, by return
post, from $1 /$ - with free fault-finding guide.
Lastalogue 6,000 models, $2 / 8$. Please send
catamped nddressed morevelope with nill orders!
enquiries. HAMIITON RADIO, 54e Jondon
lend, 3exhill, sussex.

## WANTED

VALYES WAMTED, brand new popular types boxed. DURHAM SUPPLIES (E), 175 Durham Toad, Bradfori 8, Yorkshire.

## EDUCATIONAL

BTUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. I.s.R.E.; City o Guilds; 1.T.J.3., ete. Also practical courses with equipment. No books to buy. Write for FlRE1: Prospectus to ICS (Vept. 57\%), Intertext FIouse, London, SWi1.

EMGINEERS. A technical certjfleate or "ualification will bring you security and mueh better pay. Ejem. and adv. private postal courses for ('.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. © Elec.) Gity \& Gulds, A.M.I.M.I., A.Y.O.33. and G.C.E. exams. Diploma courses In all branches of Jingineering-Mech., blee., Auto, Blectronics, Radio, Computerx, Draughts., Buikuing, etc. For full details write for FREE 132-page kuide. BRITISH 1NSTITETE OF ENGISEERING TECHPOLOGI (Dept. 125K), Aldermaston ('ourt, Aldermaston, Berks.

QET INTO ELECTRONIC8 - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., 1R.T.E.B. City \& Guilds, Radio, T/V, Telecoms., etc. For WIREE $100-$ page book, writo Dept. 850 K , CHAMBLRS COLLEGE, 148 Holborn, Jondon, IS.C.1.

RADIO OFFICER8 see the world! Nien golug and shore appointments. Trafure varuncies in September. firants available, Dhy autiol Boarding students. stamp for prospectus, WIRELESS COILLEGE, folwyn Bay, Wales.

## 8ITUATIONS WANTED

[^3]
## SITUATIONS VACANT



## RADIO\& \&ELEVISION SERVICING RADAR THEORY \& MAINTENANCE <br> Vacancies regularly exist in industry for men with good knowledge of Radio TV and Radar. Our one-year day courses provide effective training. Shorter day courses available for men with experience. Write for details to:- <br> The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. <br> Tel. 01-373 8721

A.M.I.E.R.E., A.M.S.E. (Elè.), Ctity \& Guilds, G.C.E., pte., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronies, Computers, Radio, T.V., ete. 132-page tulde-FRELi. Please state subject of interest. BRITISH INSTITUTE OF JENGENERLNG TECHJOLOGY (Dept, 124K), Aldermaston Court, Aldermaston, Berks.

YOUNG MAN repuired to assist in development department, working on audio devices. Apply SELMER FLECTRONTCS LTD., 40 Theobalds Road, W.C.1. Phone: 01-242 6141.

## TECHNICAL TRAINING by IC IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS EXAMINATION.
- P.M.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES



20 Penywarn Road, Earls Courl, London S.W.5.
Tol. 01-373 8721
This Private School provides full and part day training in the following professional subjects

## RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE RADIOTELEGRAPHY

## MISCELLANEOUS

CALL OR 8END for list from the most Interesting shop in Lancashire. - Electrical Mechanical and jilectronic Goods. ROGERS, 31 Jielson Street, Southport.

ARTIFICIAL LIFE
Well almost, because the NEW range of projects include: an electronic "animal" which LEARNS, and a device capable of REPRODUCING itself! Orher projects SURE TO INTRIGUE YOU are an audio transmiscer/receiver which has quite an amazing range and requires NO LICENCE; also a machine which recognizes itself, and also a machine which recognizes itself, and
an electronic dog whistle, etc., etc. HOSTS an electronic dog whiste, etc, etc. HOSTS
OF EASY-TO-CONSTRUCT projects. SEND $2 / 6$ for our list of 'BOFFIN PROJECTS' -NOW!
To: 'bOFFIN PROIECTS'

## 4 CUNLIFFE RD. <br> STONELEIGH EWELL <br> SURREY

"PRACTIGAL ELECTRONIC8". Homecom. Rhythmic Effects Cnit. Impact Counter. Fluorescent C'amping Light. Glissandovibe. Spring Line Reverberation Vnit. I. (: Tape Recorder. Combotron. Analogate C'oniputer. Photographic Exposure Meter. Water Level Alarm. Fuzz Box. Yodeller Door Monitor. I.C. Gram Ampliter. Thyristor Power Controller. Trausistor Millivoltmeter. Screenwiper Delay init. Investigator Oseilloscope. C.R.O. Trace Doubler. Light Operated stopwatch. Proximity Detector. Photorlash Slave Unit. Integrated Stereo Amplifler and all constructional projects going back to lissue 1. Scnd s.a.e. for your choice of itemised price lists. AJAX ELECTRONICA, I8a Rumbold Road, Fulbam, London, S.W.6.

## BOOKS AND PUBLIGATIONS

## SURPLUS HANDBOOKS

19 set Circuic and Notes 1155 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical inscructions 46 see Working Instructions 88 set Technical Instruccions BC. 221 Circuit and Notes Wavemeter Class D Tech. Instr 18 set Circuic and Notes BC. 1000 (3I set) Circuit $\&$ Notes CR,100/8.28 Circuic and Notes R.I0T Circuit and Notes........ 5/6 P.P. $6 d$ 5/6 P.P. 6d 4/6 P.P. $6 d$
4/6.P. 6d 4/6 P.P. 6d 4/6 P.P. 6d
4/6 P.P. 6d $6 /-$ P.P. $6 d$ 4/6 P.P. $6 d$ 4/6 P.P. 6d
4/6 P.P. 6d 4/6 P.P. 6d 4/6 P.P. 6d 9/6 P.P. 9d R. 107 Circuit and Notes.......... 6/-P.P. 6d A.R.88D. Inseruction Manual. .... $16 /-$ P.P. //6
62 set Circuit and Notes ...... $5 / 6$ P.P. 6 d 52 set Sender \& Receiver Circuics $7 / 6$, post free Circuit Diagrams $4 /$ - each post free. R.II|6/A, R.1224/A, R.I355, R.F. 24, 25, \& 26 A. 1334 , T. 1154 , CR 300 , BC.342. BC. 312 BC. $348 . J . E . M . P$. BC.624. 22 sec. Resistor colour code indicator, 2/- P.P. 6d. S.A.E. with all enquiries please, Postage rates apply to U.K. only.

Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens

## TAPE RECORDERS, TAPES, ETC.

$\mathbf{2 0 \%}$ GABH DI8couNT on most famous makes of Tape Recorders, Hi-Fi equipment, Cameras, etc. Join England's largest Mail Order Club now and enjoy the advantages of bulk buying. Send 5/- for membership card, catalogues, price lists and ask for quotation on any Item. C.B.A. (Dept. A18), 370 St. Albans Road, Watford, Merts.

TAPE8 TO D18C-using finest professional equipment- $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. $18 / \mathrm{m}$. S.A.E. leaflet.
 Lancs.

## FOR SALE

BRA 88 , STEEL, LIGHT ALLOY, STAINLE88 8TEEL TUBE. Bar Material, Tools, Mechanical, Electrical, plus Assorted Lots. Send S.A.I. for latest liat, of 1,000 ftems. K. R. WIIISTON, Dept. BPE, New 3iills, Stockport.

ENTHUSIASTS! Discover the fascinating world of model railway slgnalling! Send for detafls of Conrad model railway control panels, 1/- post free from COC'KROB1N CONTROLS, 36 Villiers Avenue, Surbiton, Surrey.

## EXCLUSIVE OFFER

Further to our overwhelming response to our recent advert, we have acquired another censignment of extendable 4 sare leads, excends from Ift to 6fe bin an supplied to G.P.O. for telephones. These have many applications in the field of amareur electronics, ete. in the field of amateur electronics, etc.
These are offerad to you at the unbeatable Price of 5/- each or $55 / \sim$ for 12 Post Free.
PAXOLIN SHEETS PRINTED CIRCUIT

12 ins $\times 12$ ins shees
4/6d. or 支d. per sq. inch cus to size. Post Free.

Larger sizes ovailable upon request at Specially reduced prices. Mason Trading Company
24 Stephen Street, Coventry
100 PAGE \&llustrated Catalogue No. 17 Government and manufacturers electronic surplus, also new section of latest semisurplus, also new section of latest semivoucher for $2 / 6$ included. Price $3 /-$ post free. voucher for $2 / 6$ included. Price $3 /-$ post free. ARTHUK
Brighton.

[^4]
## HIGH GLOSS METALLIC

 HAMMERED ENAMELMAKESFANTASTICDIFFER-
ENCE TO PANELS-say hundreds of enthusiastic users. 'Crackle' pattern appears like magic on wood and metal. No undercoat. Air dries 15 min. to hard glossy finish. Heat, liquid \& scratch-

OR SPRAY-ON proof \& scratch-proof-Lt. \& Dk. Blue; Bronze; Silver; Green; Black. Send 10/-
NOW for trial $\frac{1}{2 p t . ~ T i n . ~ C o l . ~ s a m p i e s ~ \& ~ i n s t n ' s . ~}$ Post free.
FINNIGAN SPECIALITYPAINTS Dept.P.E. STOCKSFIELD. Tel. 2280 Northumberland.

## MORSE MADE ! !

 FACT NOT FICTYON. If you Ekart HIGHT you wil be reading amatear and commerclal Mora Velag scientiffelly progress to be expected). utomatically lears to recognise the code fBy you without translating. You can't help lt, it' $R$ IXTHK learning a tone. 18 W.F.M. in 4 weeks guaranteed.For details and course C.O.D. ring S....D. 01 - 8602896 or send 8d, statnp for explanatory booklet to:

GScEs/E, 45 GREET LANE, PURLEY, SURREY

## RECEIVERS AND COMPONENTS

BARGAIN PARCELS of new surplus lilece tronic Compoments, $2 / 6,5 / \omega, 10 / \omega$, post free. DOLPHIN ELECTRONICS, 5 l'noles WFy. Hriar Close, Bturntwood, nr. Lichfleld,

## NEW PRICES ON NEW COMPONENTS

ELECTROLYTIC CAPACITORS (Mullard) $8 \mu \mathrm{~F} / 4 \mathrm{~V}, 6.4 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 4 \mu \mathrm{~F} / 10 \mathrm{~V}, 2.5 \mu \mathrm{~F} / 16 \mathrm{~V}, 1.6 \mu \mathrm{~F} / 25 \mathrm{~V}$ $1 \mu \mathrm{~F} / 40 \mathrm{~V}, 0.64 \mu \mathrm{~F} / 64 \mathrm{~V}, 16 \mathrm{~V}, 32 \mu \mathrm{~F} / 4 \mathrm{~V}, 25 \mu \mathrm{~F} / 6.4 \mathrm{~V}$, $16 \mu \mathrm{~F} / 10 \mathrm{~V},{ }^{10 \mu \mathrm{~F} / 16 \mathrm{~V}, 6.4 \mu \mathrm{~F} / 25 \mathrm{~V}, 14 \mathrm{~F} / 40 \mathrm{~V}, 2.5 \mu \mathrm{Fj}}$ 64 V . $8 / 3.64 \mu \mathrm{~F} / 4 \mathrm{~V}, 50 \mu \mathrm{~F} / 6.4 \mathrm{~V}, 32 \mu \mathrm{~F} / 10 \mathrm{~V}, 20 \mu \mathrm{~F} / 16 \mathrm{~V}$, $12.5 \mu \mathrm{~F} / 25 \mathrm{~V}, 8 \mu \mathrm{~F} / 40 \mathrm{~V}, 5 \mu \mathrm{~F} / 64 \mathrm{~V}, 1 / 2, \quad 125 \mu \mathrm{~F} / \mathrm{V}$ V $40 \mathrm{~V}, 10 \mu \mathrm{~F} / 64 \mathrm{~V}, 1 / \mathrm{Fo} 250 \mu \mathrm{~F} / 4 \mathrm{~V}, 200 \mu \mathrm{~F} / 6.4 \mathrm{~V}$, $125 \mu \mathrm{~F}$ $10 \mathrm{~V}, \mathrm{BO}^{2} \mu \mathrm{~F} / 16 \mathrm{~V}, 50 \mu \mathrm{~F} / 25 \mathrm{~V} / 4 \mathrm{~V}, 20 \mu \mathrm{~F} / 6 \cdot 4 \mathrm{~V}$. $125 \mu \mathrm{~F} /$ 1II $400 \mu \mathrm{~F} / 4 \mathrm{~V}$ 320 F $/ 6.4 \mathrm{~V}$, $300 \mu \mathrm{~F} / 10 \mathrm{~V}$, $20 \mu \mathrm{~F} / 16 \mathrm{~V}$ $80 \mu \mathrm{~F} / 2 \mathrm{VV}, 50 \mu \mathrm{~F} / 40 \mathrm{~V}, 32 \mu \mathrm{~F} / 6 \mathrm{VV}, \mathrm{V} / 2$.
POLYESTER CAPACITORS (Mullard)
 $\begin{array}{lllll}0.033, & 0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, & 0.066, & 0.1 \mu \mathrm{~F}, & 9 \mathrm{~d}, \\ 0.22 \mu \mathrm{~F}, 1 / 15 \mu \mathrm{~F}, & 0.11 \mathrm{~d} \\ 0.33 \mu \mathrm{~F} & 1 / 3 . & 0.47 \mu \mathrm{~F}, & 1 / 6, & 0.68 \mu \mathrm{~F} \\ 2 / 3\end{array}$
 6 d . $6,800 \mathrm{pF}, 0.01 \mu \mathrm{FF}, 0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~T}$. $0.033 \mu \mathrm{~F}$, 8 d , 0.047 pF , $9 \mathrm{~d} .0 .068 \mu \mathrm{~F}$, 10 d . $0.1 \mu \mathrm{~F}$, $11 \mathrm{~d}, 0.15 \mu \mathrm{~F}$,


 $0.47 \mu F$, $1 / 6.0 .68 \mu \mathrm{~F}, 2 / 3$. । $4 f, 2 / 9$.
POLYSTYRENE CAPACITORS, $5 \%$ 160Y 150 , 110, $220,270,330,390,470,560,680,820 \mathrm{pF}$, 5d. $1,000,1,500,2,200,6 \mathrm{~d}, 3,300,4,700,5,600 \mathrm{pF}$. $7 \mathrm{~d} .6,800,10,000,8 \mathrm{~d} .15,000,22,000 \mathrm{pF}$, 9 d .
POTENTIOMETEAS (Carbon), miniature. t" 5 SM. $2 / 3$.
SKELETON PRE-SET POTENTIOMETERS (Carbon): Lin . $100 \Omega$ to 5 Ma horizontal and versical P.C.M. mounting.
MINIATURE ( 0.3 W ), $1 / \mathrm{h}$ - Submin ( 0.1 W ), IOd. RESISTORS (Carbon film): $5 \%$, $10 \%$ over IMg.

 DISCOUNT- $10 \%$ over $\mathbf{1 2}$. $15 \%$.over $\mathrm{E5}$. Send S.A.E. for May 1968 Catalogue.

## DUXFORD ELECTRONICS (PE)

 DUXFORD, CAMBS.Tel.; Sawston 3031

RECEIVERS AND COMPONENTS（continued）

## RECORDING TAPES

Fully Guaranteed 7
＝D／P 2，400 191 $\begin{array}{lll}\text { LIP } & 1,800^{\prime} & 12 / 3 \\ \text { STO } & 1,200^{\prime} & 7 / 3\end{array}$ $\begin{array}{lll}\text { STP } & 200 & 1 / \% \\ \text { D／P } & 1,800 & 14 / \\ 3,200 & 9 /\end{array}$


Spoole：日1，33／6 $213 ; 54^{\circ}, 2 /=; 5^{\prime \prime}, 2 /-;$ 3＂，9d．
Post and Pocking up to 3
reels $2 / 9$ otherwise $4 / 6$.


A．MAR8HALL \＆SON（Lendon）LTD． 28 Ericklewood Brondway，N．W， 2
Tel，Ol－452 0161／2．Oept．P．E． 19

| BYZI3 <br> GET102 <br> GET103 <br> NKT2．41 <br> NKT242 <br> NKT244 <br> NKT245 <br> NKT261 <br> NKT262 <br> NKT264 <br> NKT27！ <br> NKT603 <br> NKT613 <br> NKT674 <br> NKT677 <br> NKT713 | $\begin{aligned} & 5 / 6 \\ & 4 / 6 \\ & 1 / 6 \\ & 6 / 6 \\ & 6 / 6 \\ & 5 / 6 \\ & 516 \\ & 166 \\ & 166 \\ & 416 \\ & 416 \\ & 616 \\ & 616 \\ & 6 / 6 \\ & 6 / 6 \end{aligned}$ | NKT734 <br> NKTT36 <br> NKT773 <br> NKT78 <br> 2N696 <br> 2N697 <br> 2N706 <br> 2N706A <br> 2N70B <br> 2N2220 <br> 2N2221 <br> 2N2222 <br> 2N2369A <br> 2N2411 <br> 2N3053 | 5／9 <br> 616 <br> 5／6 <br> 6／－ <br> 51－ <br> 5）－ <br> $4 / 6$ <br> 4／6 <br> 5／－ <br> 5／－ <br> 31－ <br> 51－ <br> $8 / 7$ <br> $6 / 6$ |
| :---: | :---: | :---: | :---: |
| VEROBOARDS： $32^{*} \times 2 \frac{1}{2}^{*}, 3 / 6 ;$ $34^{*} \times 3 z^{\prime \prime}, 4 / 3$ ；cutter， $9 /=$ <br> DEE GEE： 30 watt，Soldering lrons， 16／－each． |  |  |  |
| SPEAKE <br> 25／6；12＂ <br> RESISTO <br> ELECTA <br> to 100 M | $\begin{aligned} & 1 / 3 \\ & 16 ; 7 \\ & 15=\frac{1}{4} \\ & 2 Y T \\ & 1 / 6 \end{aligned}$ | $\begin{aligned} & \mathrm{hm} .5 \\ & \times 4^{5}, 16 / 6 \\ & \text { act. ©d; } \\ & \text { cS: } 15 \mathrm{v} 11 \\ & \text { ach. } \end{aligned}$ | $\begin{aligned} & 6 ; 9 \\ & 7,9 / 6 \\ & \mathrm{cr}, 6 \mathrm{~d} . \\ & \mathrm{FD} \text { up } \end{aligned}$ |

COMPONENTS
POSTAL SERVICE
＊RECHARGEABLE $\qquad$ （Sealed DEAC Ni－Cad）
PP3 Equiv：
9v．37／－（p．\＆p，2／－）
$\begin{array}{ll}\text { U2 Equiv．：} & 1.25 \mathrm{v} .32 / 6 \text {（p．\＆p．} 21- \\ \text { U7 Equiv．：} & 1.25 \mathrm{v}, 12 / \text {（p．\＆p．} 1 / 6 \text { ）}\end{array}$ U7 Equiv．：$\quad 1.25 \mathrm{v}, 12 /-(\mathrm{p} .8 \mathrm{p} .1 / 6)$
UII Equiv．： $1.25 \mathrm{v}, 26 /-(\mathrm{p} .8 \mathrm{p}, 1 / 6)$

＊BARGAIN PACK
100 Hi－Stab Resiscor
30 Silicon Diodes
8 Siticon Top Hat Rectifiers
＊ASSORTED RESISTORS－HiSEab． 300 off
（P，\＆P．1／6 per order）C．W．O．
S．A．E．for list of Industrial Components
for the Home Constructor
ELMBRIDGE INSTRUMENTS LTD．
Ialand Farm Arenue，Went Moleney，Surrey

## B－PAK SENICOMOUCTORS 8 Radnor House KING OF THE PAKS Satisfaction guannteed 93／97 Regent StsUPER PAKS－BRAND NEW （DEPT E） London W 1 Untested Semiconductors QUALITY－TESTED V <br> 2 Drift Tr Matched Träns．ÖC44／45／81／8iö 16 Red Spot AF Trans．PNP <br> 6 White Spot RF Trans，PNP <br> 10A Silican Rects． 100 PIV <br> 2 OCI 40 Trans．NPN 5witching <br> I2A SCR 100 PiV <br> Sil．Trans． 25303 PNp <br> Zener Diodes 250 mW 3－ïV 200Mc／s sil．Trans．NPN BSY26／27 3 Zener Diodes $400 \mathrm{~mW} 33 \mathrm{~V} 5 \%$ Tol． <br> 2 Power Transistors 10 OC26 I OC35 <br> 5 Silicon Reers． 400 PIV 250 mA <br> 4 OC75 Transistors Mullard Type． Power Trans．OC20 100 V ． 4 OA202 Sil．Diodes Sub－min， <br> 2 Low Noise Trans．NPN 2N929／3 Sif．Trans．NPN VCB 100 ZT86． Sil．Trans，NP <br> 4 OA82 Transistors Mullard Type． <br> 4 OC77 Transistors Mullard Type． <br> 5 Metal Alloy Transisters Mat．Type 4 Sil，Rects． 400 PIV 500 mA 5 GEIB84 Trans．Eqve．OC44 GET883 Trans．Eqvt．OC4S <br> 5 GT41／45 Germ．Trans．PNP Eqve <br> 0 Cl <br> 3 GT31 \＆F Low Noise Germ．Trans． <br> 6 IN914 \＄il，Dilodes $7 \boldsymbol{7} 5$ PIV $7 \ddot{5} \mathrm{~mA}$ ． <br> 8 OA95 Germ，Diodes Sub－min．， <br> 3 NPN Germ．Trans．NKT7T3 Eqvt ACl30 <br> 2 OC22 Power Trans．Germ <br> 2 OC25 Power Trans，Germ <br> 2 OC73 Mullard Trans． <br> ${ }_{4}^{4}$ ACl 28 Trans，NPN High Gain <br> 2 ACI27／128 Comp．pair PNP／NP 3 2N1307 PNP Switching Trans． <br> 7 CG62H Germ．Diodes Eqve，OA7I <br> 3 Afll6 Mullard Type Trans <br> 12 Assoreed Garm．Diodes Marked．．． 4 AC 126 Germ．PNP Trans． I ORPGI－Photo－conduetive cell <br> ＊TESTED DEVICES＊ <br> Set of 4 trans．comp．with circuit and building inst． for radio．All boxed $5 /$ per set． <br>  <br>  <br> UNIJUNCTION UT46，Eqve． 2 N 2646 Eqvt．TIS43．BEN3000 7／6 EACH SIL．RECTS．TESTED PIV 750 mA 3A 10A 30A  $\begin{array}{llll}100 & 2 / 3 & 3 / 6 & 6 / 151- \\ 200 & 2 / 6 & 1 / 6 & 6 / 6 \\ 201\end{array}$ $\begin{array}{lllll}200 & 2 / 6 & 4 / 6 & 6 / 6 & 20 /- \\ 300 & 3 /- & 1 / 9 & 8 /- & 22 / \\ 400 & 3 / 6 & 6 /- & 9 /- & 25 /-\end{array}$ $\begin{array}{lllll}400 & 3 / 6 & 6 /- & 9 /- & 25 /- \\ 500 & 4 /- & 6 / 6 & 9 / 6 & 3 /-\end{array}$ $\begin{array}{llll}600 & 4 / 3 & 7 /-10 /-37 /- \\ 800 & 1 / 9 & 8 /-15 /-4012\end{array}$ $\begin{array}{ccccc}800 & 1 / 9 & 8 /-15 /-40 j- \\ 1000 & 6 /-10 /-17 / 6 & 50 /-\end{array}$ <br> SCR＇s <br> LOWEST PRICE $\begin{array}{rrrrr}\text { PIV } & \text { IAMP } & 7 A & 16 A & 30 A \\ 25 & \overline{1} & 7 / 6 & - & 30 /- \\ 50 & 7 / 6 & 8 / 6 & 10 / 6 & 35 /- \\ 100 & 8 / 6 & 10 /- & 15 /- & 45 /- \\ 200 & 12 / 6 & 15 /- & 20 j- & 35 /-\end{array}$ $\begin{array}{lllll}100 & 8 / 6 & 10 /-15 j-45 j- \\ 200 & 12 / 6 & 15 j-20 j-55 / \\ 300 & 15 /-201-25 i- & \end{array}$ $\begin{array}{lll}300 & 15 j-201-25 i-80 \\ 400 & 17 / 6 & 251-351-80 j-\end{array}$ $40017 / 625 /-35 j-80 j-$ $50030 j=401-45 /-95 j-$ ORPI2，ORP60 8／6 each <br> PRINTED CIRCUITS EX－COMPUTER <br> Packed with sernicon－ ductors and components， 6 boards give $a$ guaran－ teed 30 trans and 30 diodes．Our price 8 boards $2 /=P, \&$ P． <br> PAK NO． <br> pose Germanium，Diodes <br> 60 Mixed Germanium Transistors <br> AF／RF 75 Germanium＂Gold＂Bonded <br> Diodes Sub－min．Sim，OA5，OA17 <br> 40 Germanium Transistors like 101 OCBI，ACI28 <br> U5 60200 mA Sub－min．Sil．．Diodes <br> 10 Silicon Planar Transistors NPN <br> 16 silicon Rectifiers <br>  <br> U8 50 Silicon Planar Diodes DOM 10／ <br> U9 20 Mixed Volts watt Zener Diodes <br> UIO 20 BAY50 charge storage ö Diodies <br> UII 30 PNP Silicon Plan <br>  13 mA tp 30 PO B00 PIV <br> LI 30 PNP－NPN Si 0 O 200 and $2510 \%$ <br> U14 150 Mixed silicon and G̈̈rmañ－ <br> UI5 30 NPN Silicon Planar Tran－ <br> U｜6 103 Si Silicon Rectifiers Stud <br> Type up to 1,000 PiV <br> UI7 30 Germanium PNPAF T̈ransis－＂ <br>  <br> UI9 Type ipp to 600 PlV <br>  <br> U21 30 AF．Germanium Allö Trañ－ <br> U22 10 IA IA Glass Min．Silicon Recti－ <br> U23 fiers High Volts 30 MADT＇s like MAT series PN゙P <br> U2420 Transistors Germanium＂iA Rëctifier＇s <br> U25 GIM Series up to 300 PIV <br> U25 25 300Me／s NPN Silicon Tran－ sistors 2 N70日，BSY27 <br> U26 30 Fast Switehing Sificon＇${ }^{\text {Siodes }}$ <br> U27 12 NPN Germanium AF Transis： <br> U29 Experimenters Assortment of Intregated Circuits，Untested， Coffers，Registers，ete．In Flat－ <br> Pack and Dual－in－Line， 8 Assor－ <br> Coded Pieces <br> Code Nos．Mentioned above rere given as <br> a suide to the type of device in she Pak． The devies themselves are normally The devices unmarked． <br> 6 VHF trans． 667 eqve． AFII6－117 10／－． <br> OCP7！IMPORTANT NOTICE WE HAVE NOT CHANGED OUR NAME OR AMALGAMATED

TRANSISTORS EX STOCK


## WE ALSO STOCK:

20 wate Solid Stace Amplifier Kic-AFII ... ... ABE.O
Solid State Pre-Amp for abave, Complete ... ... [6.10.] Send now for detalls
"S-Dec" Breadboards ... ... ... ... ... 20/6
$\frac{1}{6}$ and $\frac{1}{2}$ wate $5 \%$ Carbon Film Sub-Min. Resistors 4d each Skeleton Presets

1/6
Mullard Sub-Min. Electrolytics and Polyester Capacitors Heat Sink for $2 \times$ OC35, etc. ... ... ... ... b/-Veroboard-All standard sizes
Aluminium Chassis and Panels
Internation-Rectifier
SEMICONDUCTOR CENTRE Stockists
MULLARD EAIRCHILD Integrated Circuits
Handbooks of all sypes
40ke/s Transducers $5 \mathbf{C 5} 10.0$ pair with free circuits.
" $X$ "-Line Modules_Solid State-ready buile and sested circuits
ALL THE AEOVE AND MUCH MORE
IN OUR 1968 CATALOGUE

PEEASE SEND TO ME YOUR 34 PAGE CATALOGUE
I enclose $1 / 6$ stamps

NAME..
ADDRESS

GUARANTEF: All the above-listed semiconductor devices are Brand New, First Grade, and gyaranteed, Wo will replace at no charge any device found to be fulty. Further: all devices carry the Manufacturer's name or Trade Mark, type number and batch number. We do not offer ior sale devices often described as "new and tested" or bearing re-marked type numbers, these often have a short and unreliabie life, LST COMPONENTS

DECADE COUNTER UNIT8. Ubinlg. 3 1.C.s and silicon transistors. HBx..p.r.f. above 2 Mffz , B.C.D. output, reset-line, $2.4 \times 1.5 \times 0.3 \mathrm{In}$, 85/- each ine, postage. 12. MOUXT, Keldholme, Linton, Wetherhy, Yorks.


## STUDENT ELECTRONIC SERVICES

194 Regent Road, Salford 5
We stock a wide range of Resiscors $t$ and $\frac{1}{2}$ watt.
Buy individually OR try the S.E.S. Pre-Pack. Stocks now include Potentiometers - Log. and Lin.
Enclose 6d. for complete price list.

[^5]INTEGRATED AMPLIFIER RC'A:3020 550 mm class 13 amp, in TOa call. With data, 33/List 3d. AMATRONIX LTI)., 3196 selsdon Road, Croydon, surrey, CRD Olik.

BRAND NEW ELECTROLYTICs, sub-miniature 15 volt, $s, 10,30,50,100 \mathrm{mF}, 8$ per doz. post $1 /-$ The (!k, Sl'PPI, ' ('0, 12: ('hesterfleld Road, shettield, is OlRS.

COMPUTER PANELS
Eight assorted printed circuit panels with transistors, diodes, resistors, capacitors, etc. Guaran.
teed minimum 30 transistors, ldeal for Experimenters. 8 boards 10/. POST FREE.

> 100 Boards $65 /-$ POST FREE
$1500+2000$ MFD Electrolyties 25 vole DC.wkg.
$3 /-$ each. $9 \mathrm{~d} . \mathrm{P}$. P .


KEYTRONICS, 52 Earls Court Road, London, W.8. Mail order only

## R \& R RADIO

51 Burniey Road, Rawtenstall Rossendale, Lancs Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED


## STUDENT ELECTRONIC SERVICES

I94 Regent Road, Salford 5
Constructional aids - including Assembly Stand (each individually made by craftsmen).
LEKTROKIT-the biggest money and time saver since the safety pin!
Everything to construct a professional job, from a variety of boards, pins to chassis plates and rubber feet.
Special introductory kit in 2 sizes.
Write now for complete price list AND sample resistors, enclosing 6 d.

## SEMICONDUCTORS

All Brand New Mullard or Newmarket, No Rejects.
2N2926: Green \& 235-470, 3/9; Yellow $\beta$ 150-300, 3/6; Orange $\beta$ 90-180, 3/3; Red $\beta$ 55-110, $3 /$-.

| ACY22 | $3 /-$ | $2 N 706$ | $3 /-$ |
| :--- | :--- | :--- | ---: |
| BC107 | $5 /-$ | $2 N 708$ | $4 / 6$ |
| BC108 | $4 / 6$ | $2 N 1132$ | $12 / 6$ |
| BC109 | $5 /-$ | OC71 | $3 /=$ |
| BFY50 | $7 / 6$ | OA70 | $1 / 6$ |
| BFYSI | $5 / 6$ | OA81 | $1 / 6$ |
| BFY52 | $7 / 6$ | OA90 | $1 / 6$ |
| BSY95A | O/6 | OA91 | $1 / 6$ |
| 2N697 | $6 /-$ | OA202 | $2 / 6$ |

Resiscors, $\frac{1}{\frac{1}{2}}$ watt carbon, all preferred values 30 each.
P. \& P. I/-, free on orders over 15/-, C.W.O.

Dept. P.E. W. W. Electronics
10 The Drive, Newcastle on Tyne, 7

## TRANSISTORS <br> 1,000,000 FOR SALE

BRITISH MANUFACTURERS

Owing to the reorganisation and expansion by the manufacturers of these transistors, it has been necessary to clear them as surplus to requirements. These devices would normally be tested several times into different groups, 50 ". would be used as good industrial transistors and a further 35 "\% would make diodes. The remaining I5 ${ }^{\prime \prime}$ a would be disposed of as scrap rejects.
Offering these devices in varied quantities make them ideal for AMATEUR ELECTRONICS, RADIO HAMS and for EXPERIMENTAE USE IN SCHOOLS, COLLEGES and INDUSTRY.
All transistors are in mixed lots, mainly PNP but some NPN, all are Germanium type. Prices and quantities as follows: approx. count by weight
100 pieces
300
500
10/-
500
1,000
$25 / \%$
$40 \%$
$60 \%$
10,000
Large quantities by negotiation.
TERMS-CASH WITH ORDER, all goods sent by return. Please add $2 /-$ towards Post \& Packing orders up to E3, over $£ 3,5 /-$. Monthly accounts for Education Authorities, etc, on receipt of an Official Order.
EXPORT ENQUIRIES WELCOME All correspondence, cheques, Postal Orders, etc., to:
DIOTRAN SALES, P.O. Box 5, 63 High Street, WARE, HERTS. Tel.: WARE 3442

CHASSIS. Brand new 18 in $\times 11 \frac{1}{2}$. 18 gauge steel chassis with frone panel, ready punched for power supply, etc., 10/- each. $4 / 6 \mathrm{P} . \& \mathrm{P}$.
Brand new 10 in $\times \operatorname{Sin}, 16$ gauge aluminium chassis, ready punched for swo relays, cas strips, etc., $5 / 6$ each. 2/- P. \& P.

RELAYS. I. Heavy duty type, suitable for use in cars, etc., 30 ohm coil, two sets of contacts, supplied on mounting bracket containing
dropper resistor and input socket. 1/6 P. \& P.
2. 3000 type, brand new, six pairs of thangeover contacts. 200 ohm or 1.000 ohm coil, 10/- each. $1 / \%$ P. \& $P$.
3. 600 zype, 1.000 ohm coil, ons set of

CONSTAUCTING YOUR OWN RELAYS? Brand new and boxed relay concacts. Two pairs of change-over contacts per set. 3,000 type, four sets 10/-: medium power type, four sexs $7 / 6$. $1 /-$ P. \& P.
UNISELECTORS. Unused but soiled due to warehouse scorage. 8 bank, 25 position,
75 ohm coil, $29 / \mathrm{e}$ each. $3 / \mathrm{P}$, P . 4 bank 75 ohm coil, 29/- each. $3 /-$ P. \& P. 4 bank ( +1 shorting bank), 25 posn. 75 ohm coil, $19 /$ e each. $3 /-\mathrm{P}$. \& P. 3 bank, 25 position,
12 ohm coil, $15 /=$ each. $3 /=$ P. \& P.
PHOTOTRANSISTORS. OCPTI equivalents, $3 /=$ each. P. \& P. 6d. 5 for Cl post free.

AVO VALVE TESTERS. Two only. Currently selling at 630 , a bargain at $\mathcal{C 2 0}$ plus $£ 1$ carriage.
BUILDING YOUROWNTAPEDECK?TAPEREVERB UNIT? Professional quality pround face and nyion bearing insert, suisable ground face and nylon bearing insert, suitable P. \& P, 6d. Prices for larger quantities on application.
POSTAL SERVICE ONLY-REGRET NO CALLERS.
BEEJAY ELECTRONICS 106 REDDICAP HEATH ROAD SUTTON COLDFIELD, WARKS.

## CURSONS TRANSISTORS ALL GUARANTEED

1/- each
BAY31, BAY50, DK10, OA70, OA81, OA 200, OA10, OA 90, OA91, OA259, IN914, IN916, JL102

2/- each
XA101, XA102, OC71, OC72, OC81, OC81D, OC44, OC45, GET16, FST3/1, ACY22, ASY57

3/- each
OC139, OC140, 2N706, 2N708, 2N2894, BY100, RAS310AF, 2N914, BSY26, BSY27, BSY95A, AFZ12

7/6 each
RAS508AF, CRS3/40, BLY10, BLY11, BUY10, BUY11, ADY22, ADY23, ADY24, OC22, OC26

## ZENER DIODES

3.9 v to 26 v , $\frac{1}{4} \mathrm{w} 3 /-$ each, $1.5 \mathrm{w} 4 /-\mathrm{O}_{1}$ 7w 5/- each.
B. CURSONS S.A.E. 78 BROAD STREET CANTERBURY KENT

REPANCO Transistor Colls and Transformer. for the Constructor. Send stamp for lists RADIO EXPERIMENTAL PRODUCTS LTD., 33 Much Park Street, Coventry,

## MICROMINIATURE MICROPHONES

Sensitive dynamic type. Will pickup ruscle of newspaper from 30 feet. Sixe 9 mm . $\times 9 \mathrm{~mm} . \times 3.5 \mathrm{~mm}$. Impedance IK』.

$$
\text { ONLY } 28 / 6
$$

Pose free-C.W.O.
SHOWN MICRO DATA SYSTEMS SIZE 30 EAKER ST., LONDON, W.I

## PHOTO ELEETRIC CONTROL

SVETEM Comprises a Hght source with with optlonal Infra Red gilter and lens photo-efectric Relsy control unit. Both housed In metal cases for bench or wall monnting, aemaltivity contral, maitus on-ori wwitch. Works from $230 / 240 \mathrm{~V}$ a.c. Mains. Can be used as a simple on-oft swituh by breaking the boam of light (invisible if Inira Red filter (s used) and ns such it will operate as a burglar alarm, or will open doors, ete. Also ta conjunction with n exonter or other equigment it will perform many functlons in the factory or $\mathbf{4 9 . 1 9 . 6}$
warehouse. warehouse.
F.M. WIRELFSS MICROPHOFE

04-104Mc/s. Transistorised, Operates from ov battery. Complete with additional meeret tie clip mherophone, List $412 / 10 /-0.1 \mathrm{LY} \quad \mathbf{6 . 1 5 . 0}$ TRAKBISTORISED FI TVI
6 TRANSISTOR HIGH QUALITY TCNRR, S1zE ONLY $6 \operatorname{in} \times 4$ in $\times 2 f$ in 3 J .F, 日tages, Double tuned discriminator, Ample output to feed moss anplifiers,
$88.108 \mathrm{Mc} / \mathrm{g}$. 1 peady built remdy for E 6.17 .6 88-108Mcfa. Betaly built ready for usc. Fantastic value for mone5
FM MULTIPLSX ETEREO ADAPTOR

 dlodes \&V with full instructions | BSR | TAPE | HRAD8 | MDLTIMETYR8 |
| :--- | ---: | ---: | ---: |
| BRAD. | $39 / 6$ | from |  | ERAD. $39 / 6$ pair




 16, n00e/s PA $\mathbf{4 . 5 . 0}$ CROB8OVER NET- $17 /$ Whan Woan 16 ohm
SUPER SILTCON RECT, T.V., ete,, 1,200 PIV
 $6 A, 61-$
Sturitued envelope for full selection and bargain oflers in Multirteters, Radios, Buby Alarma, Inter*
 c.O.D. $3 / 6$.

DURHAM SUPPLIES
175F. Durham Enosd, Bradford, 8, Yorkehire

## ELEGTRICAL.



Best quality 3 core cable used. Fitted with unbreakable rubber plug and socket in either i3 amp., 5 or 15 (szate cholee). Witl also extend SOUTH WEST SUPPLIES (Dept. Pi) 222 Fishponds Road, Bristol 5

## DON'T MISS THIS OFFER



British Made Elactric Soidering Iron, 6 month: Makers Guarantee AND After Sales Service. 30 warcs $230-250$ voles or $200-220$ voles, stase cheice, supplied with over 10 p , , of 3 -core pve price of ONLY $16 \%+1 / 6$ P.P. $\$ 0$ UTH WEST SUPPLIES, 222 Fishpand Road, Bristol 5.

## COMMUNICATION RECEVER TYPE GDX <br> 

The Latest version of the T．R．GDX Series． The type $25 / \mathrm{C}$ improved model． brand new fully transistorised receiver． Four complete ranges $550 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$ covering all amateur bands，shipping bands and broadcast bands．It is a highly efficient double tuned superhet comprising R／E aerial tuning section，A．VC and built in B．F．O．（tunable）for C．W．or S．S．B． reception．Ideal for mobile reception． Size only $9: 7 \times 6 \mathrm{in}$ ．Operates from internal 9 volt battery．Gives a high quality reproduction．With speaker or headphone output．Hammer finished robust steel case of pleasing design，with all controls on well set out front panel．The set complete with handbook， 14 gos．Car－ riage $16 /-$ ．Headphones， $19 / 6$ extra； P．\＆P．3／6．ACCESSORIES：fitted S meter $\mathbf{£ 2}$ extra，Stabilised miniature battery eliminator，50／－P．\＆P．5／－． De－Juxe loudspeaker in matching metal cabinet $\mathbf{5 2 . 1 5 . 0}$ ：carriage 5／－．


MK V，3，000 WATT MODEL．Finger tip control of all a．c．／d．c．electrical equipment． Suitable for all types of lighting arrange－ ments．Incandescent lamps，spot lamps， arc lamps．Floodlights．Makes an ex－ cellent dimming unit．Ideal for controlling all types of electric heaters．Electric blankets and electric irons．Will control the speed of all drilts for all applications． Also lathes and power tools．Contains the latest electronic switching devices，and associated Thyristor circuitry．Size $6 \times 5 \times 2 \mathrm{in}$ ．Louvered metal case in pleasing hammer finish，Attractive front panel with matching socket and control． Ample cable provided．Additional cable $3 / 6$ per yard．The recommended price of the unit is 25 gns．Due to another bulk purchase we can offer them at only 88．10．0．carriage and insurance $10 / \mathrm{F}$ ． C．O．D．3／6 extra．
TWO WAY TALKIE PHONES．Ideal for indoor／outdoor Communication．Will work up to long distances．Clear reception．No G．P．O．Iicence required．Once complete set £2．10．0：carriage 10／－．Batteries 10／－extra． Special offer of Two complete sets plus batteries $£ 6$ post paid．

## All ordetz to：Dept．P．E． 11

（MLOBE SGIENTIFIC LTD
24 CAWOOD8 YARD，MILL STREET
MAR8H LANE，LEED8 9 （LEEDS 35900）
Callers weicome．Open 7 days a week New Component Centre opening 20th May at this address．

CRESCENT RADIO LTD．
（electronic component specialists） For all reguior components try
40 Mayes Road，Wood Green，N． 22
For surplus componenes and afuipment try
i1 Mayes Road，Wood Green，N． 22 BARGAIN BOARD
7 in $\times 5$ in board with the following compo nents attached：
2 GETB72A transistors
$\frac{2}{2}$ Mullard OAlO diodes
12 Midger OAS Resiscors
12 Midger 1 W Resiscors various values
including postage in Great Britain BARGAIN CHASSIS
All usable components
Electrolytic capacitor 100 plus 100 mF
Electrolytic capacizor 100 mF im 150 V
Electrolytic capacitor 8 mF in 450 V
0.12 mF （m； 600 V

2 Silicon Diodes
2 Preset Pots（1） $500 \mathrm{k} \Omega$ ．（1） 2 Ma ．
2 mF 350 V
5 mixed resistors
Transformer SPECIAL LINES Airspaced capacito
standard spindle
ohm transistor earpices
Heavy duty 1.25 ohm slideı resistor Double pole knife switehes
G．P．O．1，000 ohm relays
500 ohm midger relays， 9 V
$45 \mathrm{~m} / \mathrm{h}$ Ferroxecube choke，L．A． 3 size，
00 gangs 208／176pf
$5 \mathrm{k} \Omega$ midget transistor pot with S．P． ${ }^{\text {switch }}$
Twin transistor cooling elips OC8।
Black and satin chrome 1 $\ddagger$ in．knabs，
standard spindle
B．S．R．erase heads
Mains indicators，yellow and green，
tinfixing VERO BOARD
$31 \times 3 \mathrm{tin} 0.15$ pitch JRANSISTORS
2G339A piair 2G378B and 2G3398
Matched
2G401
now offer an premises in Maycs Road we can ponents for the home constructor and enthusiast． POSTAGE WITH ORDER PLEASE

AKRTAL WIRE：Colls of 26 Jd．Blanle Btrand $2 / 2+$ 6id P．${ }^{2} \mathrm{P}$ ．

## 6．2P．\＆

1．Minalature Plag－in Relays． 185 Coil $4.8 / 18 \mathrm{~V}$ ． 2 Change over Contacts $18 / 8+1 / 8$ R．$\Delta$ P．
2．Miniature Plug－ta Relays． 130 Coil 4，Light Duty Contacts． $9 / 15 \mathrm{~V}$ ． $18 / 8+1 / 6$ P．\＆ $\mathbf{P}$ ．
3． 6 V octal base $A / \mathrm{C}$ Relays． 2 palra hesvy duty contacts cfo．Complete with octal bnee． $28 /=+$ 1／6 P．\＆P．
4．Ingle change over Relay．日78 Coll．18Y for printed clrcuit． $16 /-+1 / 6$ P．\＆$P$ ．
5．Pases for Item I and 2， $8 / 9+8 \mathrm{Cd}$ P．\＆$P$ ．
stake whether wired or printed clrcuil．
SEST METER： 20 K per Folt ITI－2． 48.9 .0.
PT34 mmall test meter $21.14 .0+3 / \mathrm{P} . \alpha$
 many othera．
LOUDSPEAKERS： 8 OH3 $2^{*}$ to $8^{\circ}$ from $7 / 6$ to $18 / 6$ ＋1／6 P．\＆ F
Car Speakera

TRANEFORMERS： $250-0-250$ sec． 80 M／A／d．3Y． $18 / 9+3 / 6 \mathrm{P}$ ，\＆ P ．
$250-0-250 \mathrm{sec} .100$ צ $/ \mathrm{A} / 6 \cdot 3 \mathrm{~V}, ~ 89 / 6+3 / 6 \mathrm{P} . \& \mathrm{P}$ ．
TRAKSFORKER8 8UITABLE FOR SMALL POWIER 8 8PPLIES： $5 / 11 / 17 \mathrm{~V}$ at 4 amph． $27 / 6+3 / 6$ P．${ }^{6}$
 trancformers． $10 / 6+2 / 6 \mathrm{P}$ ．$\& \mathbf{P}$ ．
OUTPUT TRAKSPORMEES：Sultable for ELAB，＇LL L8－ Singies，8／8＋2／6 P．\＆P．Muget Choke Output．6； $+2 j 6 \mathrm{P}$ ．\＆P．
COHDEXSERS RLIECTROLYTIC： $2,4,10,16,30,50$ $100 \mathrm{~m}, \mathrm{~g} . \mathrm{d}, 15$ F． $1 / 6+4 \mathrm{~d}$ ．P．\＆P．each
CARBON CONTROLS：$\delta \mathrm{K}$ to 2 M Lin ．or LoI， $3 / \mathrm{l}$

EAR PIECES： 2.5 nmi or 3.5 nmm Maguetic 2.6 Crystal $2 \cdot 5 \mathrm{~mm}, 3.5 \mathrm{~mm}$ ． $5 / 8$ ．
smetair Productis all uult und Mat．Tram， TRAFSISTORS：Popular Range OC＇Ns，OC＇s5，OC＇71， OC72，OC91，OC82，all at 2／b．
POFFER TRANEISTORS：OC20，10；9，OC28 18／8 OC35，19／8，ADT149，15／
Oswor ranaE of IFs，Colls，Drivur \＆output trawa ELECTROAIC KITS：Sultable for beginders 22，12．6． Write or call for our free Componento List．


> BOTHWELL ELEGTRIC
> 8UPPLIES（Olaskow）LTD
> B4 EGLTHTON ETREET．

GLASGOW，C．B．Tel，Oil south 2204.
Meraber of the Lander Group


## WENTWORTH RADIO

 104 SALISBURY ROAD，HIGH BARNET| A0Y18 | 46 | BC109 | $5 /-$ | NKT21－ | 78 | NKT612 | 4，11 | 0 C 45 | $1 / 8$ | 0 Cliz | 2／8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACY19 | $4 / 8$ | BCY31 | 10／0 | NKT201 | 3／8 | NKTTis | 412 | $0 \mathrm{OCFO}_{0}$ | B， | $0 \mathrm{Cl7} 1$ | 816 |
| Acyso | 4／8 | BFXSO | $7 /$ | NKT271 | 8／8 | NKTGテ̇ | 418 | $\mathrm{OCH}_{0}$ | $1 / 8$ | $0 \mathrm{OC172}$ | 4／8 |
| ACY21 | 5／0 | byxpan | 6／－ | NKT2T3 | 3，8 | NKTH3 | 4；8 | $0 \mathrm{C7} 2$ | 1／10 | $2 \mathrm{G371}$ | $8 / 3$ |
| ACY22 | $3 / 8$ |  |  |  |  |  |  |  |  | 2N04 | 6／0 |
| ACY23 | 819 |  |  |  |  |  |  |  |  | 2 N 686 | $4 / 6$ |
| ACY ${ }_{\text {A }}$ | 8／8 |  |  | an |  | 50 |  | Ch |  | ${ }^{2 N 706 A}$ | ${ }^{4 / 6}$ |
| AD140 | 8186 |  |  | an |  |  |  |  |  | 2 N 1304 | $4 / 6$ |
| AF134 | 1／8 |  |  |  |  |  |  |  |  | 2N1305 | 4／6 |
| AF115 | 4／8 |  |  |  |  |  |  |  |  | $2 \times 1307$ | 31 |
| AP116 | $2 / 8$ | matien | 7／9 | － $\mathrm{NKT}^{\text {2－4 }}$ | 9；6 | －ктi\％3 | 4：－ | OC：${ }^{4}$ | $3 / 9$ | 2 N 13 ps | 9－ |
| AFI17 | 218 | Metriol | 8／6 | NKT304 | 11／－ | OC35 | $8 / 8$ | $0_{0}^{06 \%}$ | 8／8／8 | ${ }_{2}^{235012}$ | $8 / 8$ |
| AF118 | $4 / 8$ | SKTI | 4／11 | NKT403 | 15／－ | 0 C 36 | $8 / 6$ | OC81 | 1／86 | 29812. | $8 / 8$ |
| BC108 | 4：9 | ХкT234 | 3／8 | 入Кт45s | 12：－ | Or． 44 | 1／11 | ocgl！ | 2：3 | $\underline{293010}$ | $6 / 7$ |
| CASH WITH ORDER |  |  |  |  |  |  |  |  |  |  |  |

R.S.T. VALVE MAIL ORDER CO. 144 WELLFIELD ROAD, STREATHAM, S.W. 16 Special 24 Hour Mail Order Service

## PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS on P PRINTED CIRCUIT HASSIS with PARTS and faANSistonsfrom your spanes BOX CONTENTS: (1) 2 Copper Laminate Boards $4 \frac{1}{2} \times 2 \frac{1}{2}$. (2) 1 Board for Matchbox Radio. (3) I Board for Wriscwatch Radio, etc. (4) Resist. (5) Resise Solvent. (6) Etchant. (7) Cleanser/Degreaser, (8) 16-page Booklet Printed Circuits for Amoteurs, (9) 2 Miniature Radio Dials SW/MW/LW. Also free

## 40 TRANSISTORISED PROJECTS

A very comprehensive zelection of circuits to suit everyone's requirements
and constructional mbility. Many recently developed very efficient designs and construttional ifbility. Many recently developed very efficient designs
published for the first time, including 10 new circuits.

(1) Grystal Sec with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifier, (5) Carrier Power Conversion Receiver. (6) Split-Load Noutralised Double Reflex. (7) Matchbox or Photocelf Radio. (8) "TRIFLEXON" Triple Reflex with self-adjusting regeneration (Patent Pending). (9) Solar Bactery Loudspeaker Radio. The smallest 3 designs yet offered to the Home Constructor any where in theW Worid. 3 Subminiature Radio Receivars based on the Irifiexon circuit, Lec us know if you know of a smalier
design published anywhere. ( 10 ) Postage Stamp Radio. Size only $1.62^{\prime \prime} \times .95^{*}$ design published anywhere. (10) Postage Samp Radio. Size only $1.82^{n} \times .95^{*}$
$\times-25^{\prime \prime} .(11)$ Wristwatch Radio $1 \cdot 15^{*} \times-80^{\prime \prime} \times-55^{n}$. (12) Ring Radio $70^{\prime \prime} \times$ 70" $\times 55^{*}$. (13) Bacteria-powered Radio. Runs on sugar or bread, (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifier. (IG) Inzercom. (17) Guided Missile, (20) Perpetual Morion Machine, (21) Might-Seeking Animai, Transistor Tester. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. (25) Signal Injector, (26) Pockes Transceiver (Licence required). 27) Constane Volume Incercom. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitser. (30) Pocket Triple Reflex Radio. (31) Wristwatch Transmitter/Wire-less Microphone. (32) Wire-less Door Bell. (33) Ultrasonic Swisch/Alarm. (34) Stereo Preamplifier. (35) Quality Stereo PushPull Amplifier. (36) Light-Beam Telephone "Photophone". (37) Lighs-Beam Transmitter. (38) Slient TV Saund Adaptor, (39) Ulrasonic Transmitter.

## PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Cadmium Sulphido Photocell, Latching Relay, 2 Transistors, Condenser, Resistors, Gain Control forminal Block, Elegant Case, Screws, etc. in lact everything (Project No. 1) which can be modified for modulated-light operation.


12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Switch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Scray-light Alarm. (4) Relay-Less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Projector Lamp Stabiliser. (8) Electronic Projector Modulator, (9) Mains Power Supply.
(10) Car Parking Lamp Switch. (11) Automatic Headiamp Dipper. (12) Super(10) Car Parking
Sensitive Alarm.

## INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: I, Invisible-8eam Projeecor and I Photocel! Receiver (as illustrated). Suitable for all Photoolectric Burglar Alarms, Counters, Door Openers, etc
CONTENTS: 2 lenses, 2 mirrors, 2 45-degree wooden blocks, Inira-red fileer rojector lamp holder, building plans, performance data, etc. Price $19 / 6$ ). Commonwealth: Surface Mail 2/-: Air Mail 8/-

## JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-5witch, Burglar the Experimente
CONTENTS: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassis Plastic Case, Resistors. Screws, etc., Full Size Plans, Inseructions, Data Sheer $" 10$ Advanced Photoolectric Designs
Price $19 / 6$. Postage and Pack. $1 / 6$ (UK). C

## JUNIOR OPTICAL KIT

CONTENTS: 2 Lenses, Infra-red Filcer, Lamphoider, Bracket, Plans, ete. Everyehing (oxcept plywood) co build I miniature invisible beam projector and photocell receiver. Price 10/6. Postage and Pack. I/6 (UK), Common

YORK ELECTRICS, 333 York Road, London, S.w. 11
Send a S.A.E, for full details, Grief description and Photographs of oll Kits and all 52 Radio, Electronic and Photoefectric Projects Assembled.













 -

E

$$
1
$$

E -

OPEN AAll valves br
C.W.

SEND S.A.E. FOR LIST OF 2,000 TYPES


Bensham Manor Road Passage, Thornton Heath, Surrey.
01-684 t665


Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES' should be in the hands of every person engaged in any branch of the Enginecring industry, irrespective of age, experience or training.

## On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

## WHICH OF THESE IS YOUR PET SUBJECT?

## ELECTRONIC ENG.

Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics - Radar Tech.-Frequency Modulation Transisfors.
ELECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Dratighesmonship - Illuminating Eng. Refrigerafion - Elem, Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.General Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.—Road Eng. - Hydraullcs - Mining IVater Stupply - Petrol Tech.

## RADIO \& T.V. ENG.

 Advanced Radio - Gencral Radio-Radio \& TV Servicing -TV Engineering -TelcRecording - Aufonation Practical Radio - Radio Amatcurs' Examination. Mechanical eng. Advanced Mechanical Eng.Gen. Mech. Eng.-Mainten-ance Eng. - Diesel Eng. Press Tool Design Shees Metal Work -- Welding Inspection - Draughismanship EMetallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng:General Auro. Eng. - Auto. Maintenance - Repair Anto. Diesel Maimcnance-Auto. Electrical Equipment-
Gurage Management. Curage Management.

## THIS BOOK TELLS YOU

大 HOW to get o better paid, more interest* ing iob.
$\star$ HoW to qualify for rapid promotion.

* HOW to put some letters ofter your name and become a key mon ... quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU con succeed in any branch of Engineering.

> I32 PAGES OF EXPERT

CAREER = GUIDANCE

$$
\begin{array}{lc}
\text { PRACTICAL } & \text { INCLUDING } \\
\text { EQUIPMENT } & \text { TOOLS }
\end{array}
$$

Basit Practical and Theorelic Courses for beginners in Efechonics, Radio, T, V., Etc., A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam. R.T.E.B. Certificate P.M.G. Certificate Practizal Eleclionics Electronics Engineering Practical Radio Radio \& Television Serviting
Attomation You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

The specialist Elecrronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with practical equipment. Ask for details.
B.I.E.T.

We have a wide range of courses in other subjects inCLUDING CHEMICAL. ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc.(Eng.), A.M.S.E., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex, A.R.I'C.S., M.R.S.H., A.M.I.E.D.,A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

## POST COUPON NOW!

TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASION, BERKSHIRE. Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, Eexam., or career).

3d. stamp if posted in $=$ an unsealed envelope.

## BRITISH INSTIUTE OF ENGINEERING TECHNOLOGY

 3I6A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE


NAME
ADDRESS

## THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Published about the 15 th of the month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, London, W.C.2, at the recommended maximum price shown on the cover. Printed in England by THE CHAPEL, RIVER PRESS, Andover ${ }^{*}$ Hants. Sole Agents-Australia and New Zealand: GORDON \& GOTCH (A/sia) Lid.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY \& OFFICE SUPPLIES ITD. Subscription rate including postage for one year: To any part of the World £1 16s, 0 d .

## SOLID HIGH FIDELITY AUDIO EOUIPMENT



16 PAGE BRDCHURE ON REQUEST. No 21 All units sold separately.

- MP3 mono preamplifier (20.19.6 p.p. 3 )
- SP4-A mono/atereo veralon of MP3 f11.19.6 p.p. i/6
- SP6-2 monolstereo (takes mag. pick-up 睆 well
£15.10.0 p.p. 5 ]
- MPA18/3 12 watt amplifier
£4 10.0 р.p, $2 / 6$
- MPA18/25 12 - 16 ohm

12 watt $\quad$ 55:5.0 p.p. $2 / 6$

- MPA25 25-30 watt ampliter for 71-16 ohm speaker
f7.10.0 p.p. $3 / 6$
- PS24/40 power supply
£3.12.6 p.p. 3/
- MU24/40 ch £4.10.0 D.p. $3 / 6$
- MU60 power supply lor MPA25 £4.17.6 p.p. 4/f

All pysteras completa with grey/alleer panels and matohing silpa knobs.

Audio Equipment developea trom Dinedale Mk, If-each unit or syatem will compare favourably with other professionsl equipment selling at muth bitheer prioes, Briet details are below

| Complete suggastod syafems |  | Price |
| :---: | :---: | :---: |
| 14 | MP3+MPA12/3+MU24 | 915.5.0 p.p. 5/ |
| 2A | MP3 + MPA12/1a +MU40 | 818.0.0 p.p. $6 /$ |
| 4 | $\mathrm{MP3}+$ (2) $\mathrm{MPA12f15}+\mathrm{MU} 40$ | 281.8 .6 p-p. 7/- |
| 8 | MP3 + MPA $25+$ MU60 | S18.18.0 p.p. 7/- |
| 8A | SP4-A + (9) MPA12/15 + MU40 | 888.0.0 p.p. 8/6 |
| 10 | SP6-2 + (2) MPA12/28 + MU40 | 289.5.0 p.p. 816 |
| 12A | SP4-A + (2) MPA25 + (2) MU60 | E85.10.0 p.p. $10 \%$ |
| 18 | SP6-2 + (2) MPA85 + (2) MU60 | 888.17.8 p.p. $101-$ |

THE FINEST VALUE IN HIGH FIDELITY-CHOOSE A SYSTEM TO SHIT YOUR NEEDS AND SAVE POUNDS - complete range of suitable player decks, speakers and tuners in stock.-ask for latest list 16 -

INTEGRATED 7 WATT AMPLIFIER AND PREAMPLIFIER - MA 7


Few desige for 3 to 10 ohm speakers, Taput for mang. zeal/ceramlo gu's. Tape, tuner mic., etc. Battery operated or maine unit Fill Treble/Bass controls. 8 transistor design.
pRICE $£ 8.10 .0$ P.P. 4/-
Leaflet on request (Maing int PS20 62/6. P.P. 8/-)


TRANSISTOAS - SEMICONDUCTORS COMPLETELY NEW 1968 LIST OF 1000 types available from stack. Send for your FREE COPY TODAY. (List No. 36)

from 5/t FIELD EFFECCT TRANSISTORS from 9/6 $\star$ ©POWER TRANSISTORS from 5/*DIODES AND RECTIFIERS from 2/80 paze illustratod brochure as above including Valves and Qusitz Crystaf. 1/- post prid.

GARRARD DECKS all the latest models


COMPLETE RANGE IN FROM £5.19.6 STOCK Send for illustrated broohpre 16 \& 17


TOTAL COST TO BUILD 99 GNS.
Ask for Brochure 9.

* Build this instrument stage by stsge in pour own home. t A truly portable instrument for all enthusigest.
 © Oill in for a DEMONSTRATION and see lor yourself. 13 NOTE PEDAL KIT E18.0.0. P.R. $10 /$


Also READY buILT AND TESTED 128 gns. Daferred terms available. DEPOSIT f36.8.0 and 12 monthly payments of f9. Total £144.8.0. KTY of PARTS Delerred ferms: DEPOSIT Q29.19.0
12 monthly psyments of 27. TOTAL COST s.118.19.6. ORGAN COMPONENTS. We carry a comprehensive stock of organ components for TRANSISTOR AND YALVE FREE PEASE designe, Brachure 10.

EXPORT PRICES ON APPLICATION

LIT.


VEF FM TUNER Ask for Brooharea 3 and 4. $87 / 105 \mathrm{Mc} / \mathrm{s}$ Tranafator Superhet. Geared tuning. Torrlifo quality sud sensitivity. For valve or dial plate, 5 Mullard Transistors, plas 4 diodes ToTAL cost
TO $8 U L L D$
f.P. $6 / 19.6$ TO BULLD
P.P. 2/6


FM STEREO DECODER Brobhare 4 7 Mallard Transistors, Printed Cirenit Design with Stereo Indicstor, For use with
say valve or transistor FM. Uses pot any Valve or transistor FM. Uses pot
cores to M allard design and ger, and kilison
 complete E t Prive E 5.19 .6 P.P. $2 / \mathrm{B}$
Build a Quality TAPE RECORDER with MARTIN RECORDAKITS 363 DECK * TWO-TRACK, Deck £12,18.6, 414.18. B, Cabinet and swasker ${ }^{7}$ Ens. Complete
 kits with HICROPHONK and 7 ia $1,200 \mathrm{ft}$ tape, spare spool.
Todsy's Yalue $555 \quad 32$ ghS. P.R. $22 / 6$
t FOUR-TRACK, Deck s15.19.6. Amplifier 215.19.6. Cahinet and apeaker 7 gnc, Complete spare spool.
Toiay's Value $560 \quad 35$ gilS. P.P. $28 / 6$


M-TRANSISTOR
NEW!
New printed clrcuit deaign with full power outpnt. Fully tunable on both $m$ w/lw bands. 7 transistors plus diode, push-pull circuit. Fltted 5 inch spesker, large ferrite aerial and Mullard translstors. Easy to build with torriñe resulto, At! locs! and Continentsl
atations. Size $10 \times 7 \times 34 \mathrm{in}$. TOTAL $\operatorname{cost} 5619$
TOXALEOST $\mathbf{~ E 6 . 1 9 . 6 ~}$
send tor Brochure $1 \quad$ P.P. $4 / 6$
BUILD THESE PRACTICAL WIRELESS DESIGNS OLUBMAN

| LEBS CHASB1S |  |
| :--- | ---: |
| MK I | $89 / 6$ |
| MK II | $72 / 6$ |
| MK III | $45 /-$ | List No. 41

L.C. F.M. TMUN
Dec. 2967 99/6
Including RCA CA3014 List 40A

## CATALOGUE

LATEST EDITION
240 pages, 6,000 items 1,000 illustrations

* 25 pages of transistors and semiconductos devices, valves and crystals.
$\star 150$ pages of camponents and equipmunt. $\star 50$ pages of microphones, decks and Hi-fi equípment. The moant eomprehensive-Concise-Clear components
Catalogut in Gt. Britain. Complete with 10/- worth Discount Vouchers Free with every copy.


## Send today $8 / 6$ Posid



WE CAN SUPPLT FROM STOCK MOST OF THEPARTS 8PECLFIED FOR CIRCUTTS IN THIS MAGAZINE, SEND LIST FOR QUOTATION.


[^0]:    BRAND NEW PARMEKO HT TRANSFORMERS
    Pri tapped $200-250 \mathrm{~V}$. Sec. $500-0-500 \mathrm{~V}, 250 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 4 \mathrm{~A}_{4}$ $5 V$ 3.5A. Metal cased zable top connections. Fraction of maker's price E4,15.0; carr, 10\%.

    BRAND NEW TWICKENHAM HEAVY DUTY L.T
    TAANSFORMERS
    Pri tapped $110,220,235,250 \mathrm{~V}$. Sec. No. 1, 55V 24A. Sec. No. 2, 14 V 10 A . Sec, No. 3, 60V 2A $11-0-0 V 2 A$. Tropically finished-zerminal connections. Fraction of maker's price $£ 9.19 .6$; carr. 15 /-.

[^1]:    
    
    
    
     these are therefore expressly forbidden.

[^2]:    RADIO TELEYISION, over 8,000 Models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., Jondon, W.6. SHE 8441.

[^3]:    A YOUNA ELECTRONIC8 enthusinst in leoking for a position as a trainee technician In liadm, TV, etc. Prepared to work hard. Please reply: Box 11.

[^4]:    Operational Amplifiers for PEAC Analogue Computer, ready built on PC board, tested and guaranteed, 34/- each.
    Kits available at 28/- post free.
    WESTEK ELECTRONICS
    10 Maple Lodge Close, Maple Cross Rickmansworth, Herts.

[^5]:    RESISTORS
    $\frac{1}{2}$ watt carbon film 5\%
    All preferred values in stock from 10 ohms to 10 megohms 2d. each. Send S.A.E. for free somple

    ## CAPACITORS

    Mullard Miniature Metallised Polyester P.C. Mounting, all 250 V D.C. working. $0.01 \mathrm{mf}, 0.022 \mathrm{mf}, 0.047 \mathrm{mf}$, $0.1 \mathrm{mf}, 0.22 \mathrm{mf}$, all at 6 d , each

    Hunts tubular 0.1 mf 200 V working at 3d. each

    Send 6d. stamp for extensive list of low priced Electronic Components, Instruments and Equipment

    Please include 1/-postoge and packing on all orders under El

    Dept. P.E. 12
    BRENSAL ELECTRONICS LIMITED
    CHARLES STREET, BRISTOL 1

