PRACTICAL

ADCOLA

SOLDERING EQUIPMENT

for the

DISCRIMINATING ENTHUSIAST

ILLUSTRATED:

L64 sil" BIT INSTRUMENT IN
L700 PROTECTIVE SHIELD

APPLY DIRECT TO:
SALES \& SERVICE DEPT
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE 01.622 0291

ORGAN BUILDERS! TESTED N.P.N. SILICON PLANAR TRANSISTORS - $£ 5$ per 100 .
TRANSISTOR BARGAIN SALE! NEW STOCK AT UNBEATABLE PRICES!
OC44, OC45, OC8ID now only 1/6 each! 66 per 100
ASY22 Switching Transistors $2 / 6$ each! 110 per 100
2N753 NPN Silicon Planar, $300 \mathrm{~mW}, 250 \mathrm{Mc} / \mathrm{s}$, High speed switching 2/6 each! BSY28 NPN Silicon Planar, Epitaxial, $300 \mathrm{~mW}, 300 \mathrm{Mc} / \mathrm{s} 2 / 6$ each!
BSY 65 NPN Silicon Planar, Epitaxial, $800 \mathrm{~mW}, 100 \mathrm{Mc} / \mathrm{s} 2 / 6$ each!
BSY65 NPN Siticon Planar, Epitaxial, $800 \mathrm{~mW}, 100 \mathrm{Mc} / \mathrm{s} 2 / 6$ each!
AFZ12 PNP Germanium Alloy Diff. Iow noise VHF amplifier $2 / 6$ each!
Complete sets of transistors for radio:
2G344A/2G $345 \mathrm{~A} / 2 \mathrm{G} 345 \mathrm{~B} / 2 \mathrm{G} 37 / \mathrm{A} / 2 \mathrm{G} 378 \mathrm{~A} / 2 \mathrm{G} 378 \mathrm{~A}+$ diode
OC44/OC45/0C45/OC810/OC81 OC81 + diode + diode.. 15/-only! Light sensitive transistors similar to OCP7 diode UNMARKED, UNTESTED TRANSISTORS TO ${ }^{\circ}$ CLEAR $\quad \cdots \quad 2 /$ each: silicon diodes. Make excellent detectors. Also suitable for keying electronic organs. 1/-each, 20 for 10
BY 100 type rectifiers. SPECIAI REDUCED PRICE! ONLY $2 / 6$ each, 24 /-doz.

VERYSPECIAL VALUE!SILVERMICA, CERAMIC, POLYSTYRENE CONDENSERS
Well assorted. Mixed types and values. 10/- per 100.
RESISTORS
GIVE-AWAY OFFER! MIXEDTYPES ANDVALUES. $\frac{1}{4}$ TO $\frac{1}{2}$ WATT. 6 per 100 or $55 /-$ per i,000
ALSO ${ }^{\frac{1}{2}}$ to 3 watt close tolerance. Mixed values. $7 / 6$ per 100 . $55 / \mathrm{pe}$ per 1,000 RESISTORS. I watt, 3 watt, 6 watt. $6 d$ each. 7 watt

CONNECTING WIRE, THIN, P.V.C. INSULATED
loyds 1/-: 100yds 7/6; 500yds 25/= (post 4/6) ; 1.000yds 40/- (post 6/-)
VALVES. BRAND.NEW ANDBOXED. ROCK-BOTTOMPRICES! DY 87
EABC 80
ECC 82

$6 / 9$	PCF 80
$7 /-$	PCF 86
$7 / 4$	PCL 82
$7 / 4$	PCL 83
$7 / 1$	PCL 84
$8 / 5$	PCL 85
$7 / 1$	PCL 86
$7 / 1$	PFL 200
$9 / 5$	PL 36
$9 / 5$	PL 81
$6 / 9$	PL 83
$6 / 9$	PL 84
$6 / 9$	PL 500
$7 / 1$	PY 32
$6 / 9$	PY 81
$7 / 4$	PY 82

PY 800
$4 / 9$
$6 / 9$
A FURTHER 10°, DISCOUNT WILL BE GIVEN ON LOT $5{ }^{\circ}$ OF 50 OF ANY ONE TYPE

Signal Injector Kit-10/-. Signal Tracer Kit—10/.
VEROBOARD
 Special Offer-C. Terminal Pins, 36 for 3/-; Spot Face Cutter, $7 / 3$.
Special Offer-Cutter and 5 boards, 2 iin. 1in., $9 / 9$.
Orders by post to: G. F. MILWARD, 17 PEEL CLOSE, DRAYTON BASSETT, STAFFS.
Please include suitable amount to cover postage
Stamped addressed envelope must be included with any enquiries
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham B. (All POST orders to Drayton) REGRET NO ORDERS UNDER $5 / /$

DONT MISS THIS

GREAT NEWS!

THIS YEAR LASKY'S CELEBRATE THEIR 35th ANNIVERSARY

35 Great Years of service to you based on fair prices and value
To celebrate our success and your satisfaction we have published a 12-page, fully illustrated colour "35th Birthday Pictorial" Catalogue

Printed in large 16×11 in. modern magazine format-the "Birthday Pictorial" contains thousands of different items from our vast Componenta, Communications and other equipment.

P1US many bargain offers and prices exclusive to Lasky's
ADD in addition every copy of the "Birthday Pictorial' ' is numbered and automaticaliy enters you in our great "Birthday Draw
All goods shown ln the "Birthday Pictorial" " are avaltable over the counter from any of our branches-or by post to any address in the U.k. or overseas-briging the benelits

YOUR COPYIS WAITING

-Just send your neme, addrens and a od. itamp lor postege

a must for every electronics HOBBYIST AND HI-FI ENTHUSIAST!

SPECIAL INTEREST ITEMS!

NEW

VOICE ACTUATED MICROPHONE

MODEL B 5001

This new voice actuated microphone is designed lor nse with tap ecorders with facilities for remote control. The microphone is fitted with a three position awitch allowing Dormal hand remote control voice sensitivity action and oft. The degree of voice or sound teve required to operate the recorder can be adjusted. The microphone is gelf powered by one 9V (PP3 type) battery giving 6 to 10 hrs. operating t:me. Super sensitive 6 transistor circult. Strong black plastic case ength 7.1 m . Deaigned for hand held LASKY'S PRICE $\mathbf{8 . 1 9 . 6}$ Poat $3 / 6$

BULK PURCHASE SCOOP!

STEREO AM/FM RADIOGRAM CHASSIS BY FAMOUS GERMAN MAKER
Long, medium and short rave bands coverage, plas VBF/FM multiplex. parate fly whee change, AM and FM basi

t=eble and balance controls, and magic eye tuning indicatur. Ferrite rod aerial. The very latest printed circuitry. Output 5 watts per channel. Complete with multiplex , ming scale, size: 21 6in. Overall dimensions: $21,6 \frac{1}{2} \times 8 \mathrm{in}$. Made to very highest standards
LASKY'S PRICE £38.6.6
Carriage and Packing 10/-
ALSO AVAILABLE WITHOUT MULTIPLEX $£ 33.12 .0$

COMMUNICATION RECEIVERS

NOW AVAILABLE FOR THE FIRST TIME IN GREAT BRITAIN-TWO NEW TRIO

 RECEIVERS
MODEL JR-500SE

This high performance receiver is made especially to cover the amateur banda and utiliees a cryatal controlled double heterodyne circuit for extra sensitivity and stabillty. Briol apec.: Covers all the amatetur bands in 7 aeparate ranges between 3.5 and 29.7
 me / s. Circute uees 7 valves,
2 transistors and 5 diodes plua 8 crystals; output 8 and 500 ohm and 500 ohm phone jack Bpecial foaturea: Crygtal controlled oaciliator Variable BFO VFO AVC ANL S meter 8SB-CW Stand-by switch Special double gear dial drive whe Audio output watt For uee on $115 / 250 \mathrm{~V}$ a.c. Mains. Superb modern atyling and control layout-finisbel in dark grey. Cabinet size $7 \times 13 \times 101 \mathrm{n}$. Weight 181 b cuntro lata LASKY'S PRICE £61.19.0 Carriage and Packing 12/6.

MODEL 9R-59DE
Briel spac: 4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{a}$ continuous and electrical band apread on $10,15,20,40$ and 7 viodres. output and , 4/8 ohn output and phone jack. ANL Vecial Variable BFO g meter Sep. band spread dial IF frequency 465 Kc / s - Audio output 1.5 W Variable $R F^{\text {a }}$ and AF gain

a.c. Mains. Beautifully deaigned control layout finished in light grey with dark gre case, size: $7 \times 15 \times 10 \mathrm{in}$. Weight 19 lb . Fully guaranteed, complete with instruc tion manual and service data.
LASKY'S PRICE $£ 36.15 .0$ Carriage and Packiag 12/8.

CONSTRUCTORS BARGAINS

LASKY'S MINIATURE TRANSISTOR AMPLIFIER MODULES
Incorporating the very lateat circuitry to provide high sensitivity and good gize and compaction witheritreme Ramily quality Newmarket trangistors used throughout. All designed to operate on 9 V miniature battery. Add 1 -on each for post \& packing TXPE LRPC 1. 3 transistor. Input eens. 40Ω, size $2 \times 1 \times 110$. PRICE 27/6

TYPE LRPC 4. 5 transistor. Ieput sens. 150 mV , output 330 mV , output imp. 150 ... PRICE 18/6 TYPE LRPC 5. 6 transistor. Input sens. 8 mV , output 3W, output imp. 3 . ${ }^{2}$, size 5 f TYPE LRPC 9. High to low impedance matching pre-amp.-input imp. 1 megohi output imp. $2 \mathrm{k} / \mathrm{obms}$. Size $1 \frac{1}{1} \times 1 \mathbf{1} \times \mathrm{in}$

PRICE $10 /$
TYPE LRPC 10. Magnetic tape replay pre-amp. denigned so that a 450 mH head can be matched into any of the audio amplifer modules listed above. Sixa
TYPRS IRPC 9 and 10 are ideal for we with LRPC 1 , and 5 and are available at TYPES LRPC 9 and 10 are ideal for use with the LRPC 4.

FULLY INCAPSULATED MODULES

Special function modules - all one size if $\times 1 \times 1$ in. Complete with detalled function and installation inetructions. Send B.A.E. for data.
TYPE PA-1. Public address amp. for use with carbon. crystal or Dynamic micro3Ω output imp. TYPE GR-1. Gramophone amplifer-provides sufficient power to fill average room 3Ω output imp. ... PRICE 30/ TYPE CO-1. Morse code practice oscillator - for usc with morse key and 3 a TYPE MT- Menome module-provides audible and visual beat from 30 to 24 beats per minute (lor use with 3Ω epeaker or ind. lamp)...................... PRICE 22/6

High Fidelity Audio Centres

42 TOTTENHAM CT. RD., LONDON, W. 1 Tel.: 01-580 2573 Open all day Thursday, early closing 1 p.m. Saturday 118 EDGWARE ROAD, LONDON, w. 2 Tel.: 01-723 9789 Open all day Saturday, early closing 1 p.m. Thursday

DO YOU KNOW

THAT YOU CAN NOW OBTAIN ...

$4 S 75$ OF 0.I" MATRIX VEROBOARD?

(formerly only available to professional users)

Vero board

 for improved packaging density. Also compatible for use with TO5 and dual-in-line integrated circuits and miniature discrete components
$0.1^{\prime \prime} \times 0.1^{\prime \prime}$ MATRIX
$0.15^{\prime \prime} \times 0.15^{\prime \prime}$ MATRIX
FROM YOUR USUAL RETAILER
TRADE ENQUIRIES TO:
NORMAN ROSE LTD., 8 St. Chad's Place, Gray's Inn Road, London, W.C.I
technical enquiries to:
VERO ELECTRONICS LTD., Industrial Estate, Chandler's Ford, Hants. SO5 3ZR

SOLDERING ρ

-you need the Antex SOLDERING TOOL KIT

- Model CN240 15W Precision Iron with $\frac{3}{16}$ " bit, - Two spare Interchangeable Bits ($\frac{5}{32}{ }^{\prime \prime}$ and $\frac{3}{32}{ }^{\prime \prime}$) - Reel of Solder - Heat Sink Cleaning Pad - PLUS 36-page booklet on "How-to-Solder'

British made. From The Army \& Navy Stores. Harrods, and Radio Shops, or if unobtainable locally, direct from:
ANTEX LTD
GROSVENOR HSE CROYDON CR910E

The sumallest

 set in the World. .
C

Sounds even BETTER

NOW AT NEW PRICES
COMPLETE KIT OF PARTS INCLUDING MAGNETIC EARPIECE CASE, INSTRUCTION; ETC.
BUILT, TESTED AND GUARANTEED WITH MAGNETIC EARPIECE

49'6 $59^{\prime} 6$

2 LONG-LIFE MERCL'F:Y CELLS AS REQUIRED, EACH is lod.

That's the SINCLAIR MICROMATIC. Robust, powerful, and as easy to take with you as the wristwatch you wear. Now that this British masterpiece of microelectronic design is supplied with a hi-fi quality magnetic earpiece, reception is even more exciting. Hear how marvellously it brings in Radio 1 and other stations all over the medium waveband. Hear how well your Micromatic performs under even the most difficult listening conditions.
This is the set you will quickly learn to rely on as the best of all personal radios. With its elegant aluminium front panel and tuning control and neat smaller-than-matchbox-size black case, you will indeed delight in owning and using a MICROMATIC whether you build the kit or buy it ready built.

- PLAYS ANYWHERE
 - FANTASTIC POWER \& RANGE
 - FULLY
 GUARANTEED
 - $1 \frac{4}{5} \times 1 \frac{3}{10} \times \frac{1}{2} \mathrm{in}$.

FULL SERVICE FACILITIES AVAILABLE WHEN YOU BUY THE KIT AND BUILD IT YOURSELF

Order form and more Sinclair designs SEE PAGES 2 AND 3 SINCLAIR ADS

SINCLAIR

114

ACOUSTICALLY

 CONTOURED SOUND CHAMBER
-
 MAXIMUM LOADING IN EXCESS OF 14 WATTS

BRILLIANT TRANSIENT RESPONSE

15 OHMS IMPEDANCE
a truly superbloudspeaker

Price need no longer stop you enjoying the best possible high fidelity loudspeaker reproduction, nor is size any longer a problem. These are considerations of the utmost importance to the stereo enthusiast. In the Sinclair Q. 14 you will find a loudspeaker of such superb standards and so compactly and cleverly designed that you will want to change over to Sinclair the moment you see and hear it. At a recent trade show, experts and technical reviewers were amazed at the performance of this Sinclair speaker and agreed that for its size and price, the Q. 14 was extraordinarily efficient. Tests made on a stock model by an independent laboratory specialising in acoustic research show the Q .14 to have an exceptionally smooth response between 60 and $16,000 \mathrm{~Hz}$ with well sustained outpur both below and above these readings. The remarkable transient response ensures clean cut separation between instruments, voices, etc; the unusual con-
tours of the Q. 14 allow it to be conveniently positioned on bookshelf, wall corner or flush-mounted singly or in assemblies of two or more units.
The sinclair Q. 14 comprises a seamless, sealed assembly of special ultra-low resonant materials with detachable base and embellishment of solid aluminium bars. J.R.H. of Blackpool, Lancs. writes:

The Q. 14 is superior to the speakers that I have been using . . every note from the lowest to the highest comes through perfectly. Try the Q. 14 in your own home without delay. Your money plus cost of postage back to us will be refunded in full in the unlikely event of your not being fully satisfied with the Q.I4.

£6.19.6

SINCLAIR RADIONICS LTD., 22 Newmarket Road Cambridge

Telephone : OCA-352996

COMBINED 12 WATT HI-FI AMP AND PRE-AMP

ONLY $3^{\prime \prime} \times{ }^{13^{3^{\prime \prime}}} \times 1^{\prime \prime}$

RESPONSE FROM Eight special H.F. transistors are used in the $\mathbf{Z .} 12$ to $15-50,000 \mathrm{~Hz} \pm I \mathrm{~dB}$ achieve results to compare favourably in every way with the costliest equipment you can buy. But the $Z .12$ is smalfer, is more versatile and certainly saves you money.

IDEAL FOR
BATTERY OPERATION

ULTRALINEAR
CLASS B
OUTPUT It is preferred not only for mono and stereo hi-fi, but it also enjoys enormous popularity fitted in electric guitars, used for P.A. and intercoms and many other instances where power and dependability are imperative. This superb amplifier with integrated pre-amp is supplied ready-built, tested and guaranteed together with the $\mathbf{Z} .12$ manual which details matching, volume and tone control and selector switching circuits using one $\mathbf{Z} .12$ in mono or two in stereo.
"1 hove instolled your Stereo 25 with two $Z .12$ Amplifiers. os much.' \quad heard anything better on sets costing four times
W. R. M., Newcostle-on-Tyne.
" 1 lam surprised and delighted with the reproduction from R. H. Ayrshire.

A NEW MAINS POWER SUPPLY UNIT
PZ.4 Stabilised, heavy duty power pack for $\mathrm{Z}, 12$ assemblies. New circuitry, 18 V dards at from Z. 12 assemblies. New circuitry, 18 V d.c. at 15 A 99/6

Built, tested and guaranteed With manual.

YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from wis your money will be refunded in full at once. and without question. FULL SERVICE FACILITIES AVAILABLE TO ALL PURCHASERS.

SINCLAIR STEREO 25

BUILT
For use with two Z.I2's or any good hi-fi stereo TESTED system. Frequency response 25 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ AND $50 \mathrm{k} \Omega$: P.U to two Z.12's. Sensitivity Mic. 2 mV into GUARAN4.7Ω. Equalisation correct to within to 1 dB on RIAA TEED curve from
plus knobs. 50 to $20,000 \mathrm{c} / \mathrm{s}$. Size $6 \frac{1}{2}$ in $2 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in $£ 9.19 .6$

SINCLAIR

MICRO FM
7 TRANSISTOR DUAL PURPOSE PM TUNER/RECEIVER

Luw I.F. makes alignment un neccseary when bult. Tuncs 88 $108 \mathrm{Me} / \mathrm{s}$. The telescopic aerial suttices for good reception in all but poorest arcas. Slgaal to noise ratio- 30 dB at 30 microvolts. One outlet leads to amplifler or recorder the other allows bet to be used as a pocket | piectate and |
| :--- |
| nind | Mntretions. $\quad \mathbf{E 5 . 1 9 . 6}$

To: SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE Please send post free items detailed below:

NAME
ADDRESS

> forquith, Rery riplitile saldiditing

Contains 5 cdres of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

| | SIZE 5 |
| :--- | :--- | :--- |
| HANDY SOLDER | SIZE 15 |
| DISPENSER | |

From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

Keep thase Contacts CLEAN by using a
 DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification

Manufactured in France British Potents applied for

- Grain size 200, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc.
- Grain size 300, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For s maller equipments, like telephone relays, computer relays, etc.
Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny concacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdom

SPECIAL PRODUCTS (DISTRIBUTORS) LTD.
81 Piccadilly, London, W.1. Phone: (01) 6299556
As supplied to the War Office, U.K.A.E.A., Electricity Generating Boards, British Railways and other public authorities; also to leading electronic and industrial users throughous the Uniled Kingdom.

choice of professionals... practical for enthusiasts EMI SPEAKERS

E.M.I. (Matched Speaker Sets reproduce every detail of the original sound over the full audio spectrum, at high or low listening levels. For their size and price they give unrivalled response. They range from Type 250 for enclosures of $11^{\prime \prime} \times 8^{\prime \prime} \times 6$ "', to the Type 950 for which enclosures of $3 \frac{1}{2}$ to $4 \mathrm{cu} . \mathrm{ft}$. are required. Send coupon for full details.

MATCHED LOUDSPEAKER SET 350
\square Bass resonance $25 / 30$ c.p.s. up to 20,000 c.p.s.
\square Incorporating cross-over network
\square High flux magnet 11,000 gauss
\square Smooth response
\square For enclosures $23 \mathrm{in} . \times 12 \mathrm{in} . \times 11 \mathrm{in}$.

E.M.I. SOUHO PROOUCTS LTD COMPOHERT DIVISION - HAYES - MIOOLESEX TEL: 01-573 3888
Please send me details of E.M.I. MATCHED SPEAKER SETS Name

Address

Tel. No.
EMI

Hi-FI FM TUNER. Model FM-4U. Available in two units. R.F. tuning unit ($£ 2.15 .0$ incl. P.T.) with I.F. output of $10.7 \mathrm{Mc} / \mathrm{s}$ and I.F. Amp. unit and valves ($£ 13.13 .0$). Total Price Kit £16.8.0 HI-FI AM/FM TUNER. Model AFM-1. Available in two units which, for your convenience, are sold separately. Tuning heart (AFM-T1--£4.13.6 incl. P.T.) and I.F. amplifier (AFM.-A1£22.11.6). Printed circuit board, 8 valves. Covers L.W., M.W. S.W., and F.M. Built-in power supply. Total Price Kit £27.5.0 STEREO DECODER SD.1. Avaitable as extra for above models. Self-powered. Kit £8.10.0. Assembled £12.5.0
Hear the BBC stereo FM programmes on the TRANSISTOR STEREO FM TUNER. Elegantly designed to match the stereo Amplifier, AA-22U. Available in two units, sold separately, can be built for a Total Price:
Kit TFM-IS (STEREO) $£ 24.18 .0$ incl. P.T.
Kit TFM-IM (MONO) $£ 20.19 .0$ incl. P.T.
$20+20 W$ TRANSISTOR STEREO AMPLIFIER. Model AA-22U. Outstanding performance and appearance. Kit $£ 39.10 .0$ (less cabinet). Attractive walnut veneered cabinet £2.5.0 extra. Assembled incl. cabinet, £59.15.0.
HI-FI MONO AMPLIFIER. Model MA-12. 10 W output, wide freq. range, low distortion. Use with control unit.

Kit $£ 12.18 .0$ Assembled $£ 16.18 .0$
HI-FI CABINETS. Full details available. MALVERN: Kit £18.1.0. GLOUCESTER: Kit £18.10.0.
DE LUXE STEREO AMPLIFIER. Model S-33H. Deluxe version of the S-33 with two-tone grey perspex panel, and high sensitivity necessary to accept the Decca Derampick-up. Kit£15.17.6 Assembled £21.7.6
HI-FI STEREO AMPLIFIER. Model S-99. 9 \& 9W output. Ganged controls. Stereo/Mono gram, radio and tape inputs. Push-button selection. Printed circuit construction. Kit £28.9.6 Assembled £38.9.6

Fheathbit
Enjoy Yourself While You Save

RADIOS

Complete your motoring pleasure with this outstanding car radio, Model CR-1

Will give you superb LW and MW entertainment wherever you drive. Tastefully styled to harmonise with any car colour scheme. 8 latest semi-conductors (6 transistors, 2 diodes) for 12 V positive or negative earth systems. Powerful output (4 watts) will drive two loudspeakers. Pre-assembled and aligned tuning unit. Available for your convenience in two units. Can be obtained for a Total Price: Kit (excl. L.S.) $£ 12.17 .0$ incl. P.T. $6^{\prime \prime} \cdot 4^{\prime \prime} 3 \Omega$ loudspeaker £1.4.5.

UXR-1

GC-1U
"OXFORD" LUXURY PORTABLE Model UXR-2. Specially designed for use as a domestic or personal portable receiver. Many features, including solid leather case. Kit $£ 14.18 .0 \mathrm{incl} . \mathrm{P} . \mathrm{T}$.

TRANSISTOR PORTABLE. Model UXR-1. Pre-aligned I.F. transformers, printed circuit. Covers L.W. and M.W. Has 7" 4" loudspeaker. Real hide case. Kit £12.11.0 incl. P.T.

JUNIOR EXPERIMENTAL WORKSHOP. Model EW-1. More than a toy Will make over 20 exciting electronic devices, incl.: Radios, Burglar Alarms, etc. 72 page Manual. The ideal present! Kit £7.13.6 incl. P.T.
"MOHICAN" GENERAL COV. RE CEIVER for Amateur or Short Wave listening. Send for leaflet. Model GC-1 U. Kit £37.17.6 Assembled £45.17.6

Prices quoted are Mail Order, retail prices slightly higher

WELCOME TO OUR HEATHKIT CENTRES

LONDON-233 Tottenham Court Road, W. 1 Opens Mon.-Fri. 9 a.m.-5.30 p.m. Sat. 9 a.m. -1 p.m. BIRMINGHAM-17-18 St. Martin's House, Bull Ring Tue.-Sat. 9 a.m.-6 p.m. Thurs. 9 a.m. -8 p.m. Demonstrations of models by arrangement

TEST INSTRUMENTS

Our wide range includes:
3" LOW-PRICED SERVICE OSCILLO. SCOPE. Model OS-2. Compact size 5" $7 \frac{1}{1 \prime} \because \times 12$ " deep. Wt. only $9 \frac{3}{2} \mathrm{lb}$ " Y " bandwidth $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$. Sensitivity $100 \mathrm{mV} / \mathrm{cm}$ T/B $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$ in four ranges, fitted mumetal CRT Shield. Modern functional styling. Kit £23.18.0 Assembled £31.18.0

5" GEN.-PURPOSE OSCILLOSCOPE. Model 10-12U. An outstanding model with professional specification and styling. " Y " bandwidth $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$ - 3 dB . T/B $10 \mathrm{c} / \mathrm{s}-$ $500 \mathrm{kc} / \mathrm{s}$. Kit £35.17.6 Assembler $\mathbf{2 4 5 . 1 5 . 0}$

DE LUXE LARGE-SCALE VALVE VOLTMETER. Model IM-13U. Circuit and specification based on the well-known model V-7A but with many worth-while refinements. $6^{\prime \prime}$ Ernest Turner meter. Unique gimbal bracket allows operation of instrument in many positions. Modern styling.

Kit £18.18.0 Assembled £26.18.0 VVM, IM-13U
AUDIO SIGNAL GENERATOR. ModeI AG-9U. $10 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$, switch selected. Distortion less than $0.1 \%, 10 \mathrm{~V}$ sine wave output metered in volts and dB's.

Kit £23.15.0 Assembled £31.15.0
VALVE VOLTMETER, Model V-7A. 7 voltage ranges d.c. volts to 1,500 . A.C. to 1,500 r.m.s. and 4,000 peak to peak. Resistance 0.1Ω to $1,000 \mathrm{M} \Omega$ with internal battery. D.C. input resistance $11 \mathrm{M} \Omega$. dB measurement, has centre-zero scale. Complete with test prods, leads and standardising battery.

Kit £13.18.6 Assembled £19.18.6.
MULTIMETER. Model MM-1U. Ranges $0-1.5 \mathrm{~V}$ to $1,500 \mathrm{~V}$ a.c. and d.c.; $150 \mu \mathrm{~A}$ to 15 A d.c.; 0.2Ω to $20 \mathrm{M} \Omega$ $4 \frac{1}{2}{ }^{\circ}$ 50/"A meter. Kit £12.18.0 Assembled £18.11.6

R.F. SIGNAL GENERATOR. Model RF1U. Up to $100 \mathrm{Mc} / \mathrm{s}$ fundamental and 200 Mc / s on harmonics. Up to 100 mV output. Kit £13.18.0 Assembled $£ 20.8 .0$
SINE/SQUARE GENERATOR. Model 1G-82U. Freq. range $20 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ in 5 bands less than 0.5% sine wave dist. less than $0.15 \mu \mathrm{sec}$. sq . wave rise time.

Kit $£ 25.15 .0$ Assembled $£ 37.15 .0$
TRANSISTOR POWER SUPPLY Model IP-20U. Up to 50V, 1.5A output. Ideal for Laboratory use. Compact size. Kit £35.8.0 Assembled £47.8.0

Prices and specifications subject to change without notice

TAPE DECKS

NEW! STEREO AMPLIFIER, TSA-12

12×12 watts output
Kit $£ \mathbf{3 0} .10 .0$ less cabinet
Assembled $£ 42.10 .0$
Cabinet $£ 2.5 .0$ extra FOR THIS SPECIFICATION

- 17 transistors, 6 diode circuit - $1 \mathrm{~dB}, 16$ to $50,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms Output suitable for 8 or 15 ohm loudspeakers - 3 stereo inputs for Gram, Radio and Aux. Modern low silhouette styling - Attractive aluminium, golden anodised front panel - Handsome assembled and finished walnut veneered cabinet available Matches Heathkit models TFM-1 and AFM-2 transistor tuners.

Full range power . . . over extremely wide frequency range. Special transformerless output circuitry. Adequately heat-sinked power transistors for cool operation-long life. 6 position source switch.
FULL SPECIFICATION SHEET AVAILABLE
|||

CONTROL UNITS

TRUVOX D-106 and 108 TAPE DECKS. High quality stereo/mono tape decks. D106, $\frac{1}{2}$ track, £39.15.0 D108, $\frac{1}{4}$ track, £39.15.0

TRANSISTOR INTERCOM. Models XI-1U and XIR-1U. A timesaving device for office, shop or for the home. Master unit XI-1U will operate up to 5 remote stations. Master, XI-1UKit £11.9.6 Assembled £17.9.6. Remote, XIR-1U Kit £4.9.6 Assembled £5.18.0. Send for full specification leaflet.

MONO CONTROL UNIT. ModeI UMC-1. Designed to work with the MA-12 or similar amplifier requiring 0.25 V or less for full output. 5 inputs. Baxandall type controls. Kit £9.2.6 Assembled £14.2.6

STEREO CONTROL UNIT. ModeI USC-1. Push-button selection, accurately matched ganged controls to 1 dB . Rumble and variablelow pass filters. Printed circuit boards. Kit £19.19.0 Assembled £27.5.0

Build Your Own Electronics

 supply.
SPEAKER SYSTEMS

AVON HI-FI PERFORMANCE 'MINI'SPEAKERKIT. A compact, bookshelf size, $7 \frac{3^{\prime \prime}}{4}$ wide $\because 19 \ddagger{ }^{\prime \prime}$ high $\times 8 \frac{3}{7}^{\prime \prime}$ deep, speaker with beautiful walnut veneered fully-finished cabinet, wide frequency response, special $6^{\prime \prime}$ bass, $3^{\prime \prime}$ HF units and crossover network. Cabinet Kit £8.18.0. Speaker Kit £4.18.0. Total Price Kit £ 13.16 .0 incl. P.T

HI-FI SPEAKER SYSTEM. Model SSU-1. Ducted-port bass reflex cabinet "in the white". Two speakers. Vertical horizontal models with legs, Kit £12.12.0, without legs, Kit £11.17.6 incl. P.T.
Many other models in range.
See latest catalogue for details.

NEW! STEREO TAPE RECORDER, STR-1

1 track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{1}{5}$ ips. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumbwheel zero reset. Stereo microphone whee zero reset. Stereo microphone and auxiliary imputs and controis, speaker headphone and external ampli-
fier outputs . . front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 watts rms per channel. Two bigh efficiency 8 in. by 5 in. speakers. Operates on 230 v A.C.

Kit £45.18.0
Assembled price £59.15.0

FREE!
36 page Catalogue. SEND FOR YOUR COPY NOW!

TO DAYSTROM LTD
Without obligation please send me
FREE BRITISH HEATHKIT CATALOGUE.
FULL DETAILS OF MODEL(S).

NEW MODELS!

Portable Stereo Record Player, spp-I
Automatic playing of 16, 33, 45 and 78 rpm records. All transistorcool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two $8^{\prime \prime} \therefore 5^{\prime \prime}$ special loudspeakers. For $\mathbf{2 2 0 - 2 5 0} \mathbf{v}$ A.C. mains operation.

Compact, economical stereo and mono record
 playing for the whole family - plays anyching from the Beatles to Bartok. All solid state circuicry gives room filling volume.

Kit $\mathbf{6 2 7 . 1 5 . 0}$ incl. P.T. Assembled price on request.

Transistorised AM-FM Stereo Tuner

 circuit boards. Self-powered. Handsome,
finished walnut veneered cabinet. (Optional exira).
Comprising: Model AFM-2T RF Tuning Unit. Kit $\{7.17 .6$ including P.T. AFM-2A If Amp. and power supply kit (24.9.6. Cabinet 62.5 .0 extra.

TOTAL PRICE KIT $£ 32.7 .0 \mathrm{incl}$ P.T.
|| LOW-COST TRANSISTOR STEREO AMPLIFIER KIT TS-23. A really low priced unit yet incorporates all essential features for good reproduction from gramophone, radio and other sources, 3 watts for channel output (15 ohms). Kit £17.15.0. Beautiful walnut veneered cabinet £2.0.0 extra.

Over 150 models shown, many in Full Colour
with
(Tick here)
\qquad
Please send FREE catalogue to

ADDRESS

NAME

ADDRESS
P.E. 2

 bring your record player up to date with
 Sonotone Tral

HIGH FIDELITY STEREOPHONIC CERAMIC CARTRIDGES

Sonotone 9TA SERIES. Superior quality cartridges offering extremely high compliance for a cartridge with dual styli. Tracking weights as low as $1-3 \mathrm{gm}$. allow reproduction from heavy modulated records without distortion on most changers. Standard $\frac{t^{\prime \prime}}{}$ fixing centres. Prices: Sapphire £2.18.10. Tax paid. Diamond £3.16.7. Tax paid. Other types available. Send for leaflet.

TRANATA A really firut-clasa Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 0 With Bass. Treble and Volume controls. Sultable for use with Ceramle or Crystal cirtridges. Output stage for any speakers from 3 to 15 ohns. Compact design, all parts aupplied including drilled meta work, Cir-kit buts, bolts-no extras to buy. Bimple step by step iustructiops enable any constructor to build an anipllier to be proud of.
Briet Specification: Freq. response $\pm 3 \mathrm{db} 20 \cdot 20,000 \mathrm{c} / \mathrm{s}$. Baga boost approx. to +12 db . Treble cut approx. to
-16 db . Negatjve feedback 18 db over maln amp. nents 25 V at 0.6 amp .

PRICES

Amplifier Eis	$£ 9.10 .0$	P. \& P. 4/6
Powor Puck Kit	$£ 2.10 .0$	P. \& P. 4/6
Cabinet (at illua.)	£2.10.0	P. \& P. $8 / 6$

Cabinet (as illua.)
£2. 10.0
P. \& P. $5 / 6$
(Special offer 14.10.0. Post Free if all above ordered at same time.)
Circult diagram, construction detaila and parts list (free with kit) $1 / 6$ (s.A.E.)

HIGE GALM \& TRANBISTOR PRETEED CTRCUTIT Al:PLIFLE
Typo TA1

- Peak out

put in excess
of 11 watte.
All stan-
dard Britlah
components.
printed circuit panel aize is, 3it
printed circuit panel aize ib. 3in. 0 - Generous size Driver and Output Transformers. speakers. Transistors (GET 114 or 81 Mullard OC81D and matched pair of OC81 o/p). 9 volt operation. Everything supplied, wire, battery clips, solder, etc. Comprehensive easy to follow instructions and circuit diagram $8 / 6$ (Free with Kit). All parts sold separately. 8PECLAL PRICE 45/-, P. \& P. 3/-. Also ready built and tested, 82/6. P. \& P. 3/-

PM/AI TUIER HRAD

Beautifully deagned and precision engineered by Dormer and Wadsworth Ltd. Sup -0005 tuning condenser for AM connection. Preallgned FM section covere $86-102 \mathrm{Mc} / \mathrm{s}$. I.F. output $10.7 \mathrm{Mc} / \mathrm{s}$. Complete with ECC85 (6 L 12) valve
 tuner head. Another speclal bulk purcbase enablea us to offer these at $27 / 6$ each. P \& P. $3 /$.. Order quicklyl Limited number also available with precision geared : 1 reduction drive.
MATCHED PAIR AM/FI I.T.'S. Comprising lat I.F. and 2nd I.F. discriminator. ($465 \mathrm{Kc} / \mathrm{a} / 10 \cdot 7 \mathrm{Mc} / \mathrm{s}$). Size 11/- pair. P. \& $\mathbf{F}^{2}, 2 \%$
TURRET TUFERS by famous maker. Brand new and unued Complete with PCC84 and PCF80 valve $34-38 \mathrm{Mc} / \mathrm{B}$ IF. Bigculta for Channel 1 to 5 and 8 and 9. Circuit diagrarn supplled. ONLY $25 /$-each. \mathbf{P}, \& P. $3 / 9$. GORLER F.M. TUATR HRAD, 88-100 Mc/s $10.7 \mathrm{Mc} / \mathrm{s}$ I.F., 15/-, Plus 2/-P. \& P. (ECC85 valves, 8/6 extra.) 8.T.C. SILTCON AVALAICEE EALP-WAVE RECTIFIKRs. Type RAS. 508 AF. 6 ampa. 960 P.I.V. lin. long \times tin. dla. approx. List $60 / \mathrm{F}$. OUR PRICE 8/6. Post Free.
EEON A.C. MADR DDDICATOR, For panel mouting, cut ont size $11 \times 1 \times$ in. deep inc. terminal. White case with lens giving brighter light. For mains $200 / 250 \mathrm{v}$. 8/8 each P, \& P. 6 d . (6 or more post free).

follow each other. Fully shrouded section wound output tranaformer to match 3-15 a speaker aud 2 independent polume controls, anci separste bass and treble controls are ECC83, EF86, and EZ80 rectiter. Simple instruction booklet 8/6, (Free with parts.) All perts gold maparately. ONLY 27.9.6. P. \& P. 8/6. Aloo available realy built and teated complete with std. input oockets, 29.5 .0 . P. \& P. 8/6.
(AIM8 TRASEFORMER, For trankistor power supplles. Pri. 200/240v. Sec. 9-0-9 at 500 mA . 11/-. P. \& P. $2 / 6$. Pri, 200/240v. Sec. 12-0.12 st 1 amp . 14/6. P. \& P. 2/6. MAIM 8 TRANSPORMER. For transistor power supples. Tapped prl 200.250 v . Sec. $40-0-40$ at 1 amp (with electrastatic acreen) and $6 \cdot 3 \mathrm{v}$. at -5 amp for dial lamps etc. Drop thro' mounting. Stack size ifitn. $\times 3$ igin. $\times 3$ in EATCHED PAIR OF \&1 WATT TRAESISTOR DRIVER ARD OUTPUT TRAMGFORMERS. Stack size if x II \times in. Output trans. tapped for 3 ohm and 16 ohm output. $10 /-$ pair plus $2 / \cdot P$. \& P. KRCL 86 's in push-pull to 3 ohm output. ONLY $11 /$ P. \& P. $2 / 6$.
$10-12$ watt OUTPUT TRAASFORMERB. Size $21 \mathrm{ln} . \times 2 \mathrm{in}$ Clamp fitting. For two EL84's in push-pull. State 3 or 15 ohm Impedance. 12/6. P. \& P. 2/6.
TBRATORS. Large selection of 2, 4, 6, 12, 24 and 32 Volt. Non syanc. 8/6; 8ync. 10/-. P. \& P. $1 / 6$ per ACO8 EIGE IMPEDANCE CEY8TAL 8TICK HIKES Listed at $48 /$ - Our price, $21 /-$. P. \& P. 1/6. High eengitivity 18/6. P \& P
1/6. coIf Mince. Fitted on/o awitch for remote control. Bigh quality. High or Low Impe dance. (State imp. reqd.) BARGAIN PRICE $30 /$ -
P. P. $2 / 6$.

HARVERSON SURPLUS CO. LTD

170 HIGH ST., MERTON, S.W.I9 OI-540 3985

Open all day Saturday
 Early closing Wed., I p.m.

Af ow minures from Sourt Wimbledon Tube Station.
S.A.E. with all enquirio

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-FULL AFTER SALES SERVICE!

ROAMFAR 7

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION

- 7 FULLY TUNABLE WAVE BANDS-MW1, MW2, LW, SW1 SW2, SW3 and Trawler Band.
* Extra Medium waveband proLuxembourg, etc
- Built in ferrite rod aerial for Medium and Long Waves.
- 5 Section 22 in. chrome plated telescopic aerial for Short Waves -can be angled and rotated for peak S.W. listening.
- Socket for Car Aerial
- Powerful push-pull output
- 7 transistors and two diodes including Philco Micro-Alloy R.F. Transistors.
- Famous make 7×4 in. P.M speaker
* Air spaced ganged tuning condenser
- Separate on/ofl switch, volume control, wave change switches and tuning control.
- Attractive case with hand and shoulder straps. Size $9 \times 7 \times 4$ in. approx.
- First grade components.
- Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build with guaranteed results.

Total building costs

Total building costs $42 / 6 \quad \begin{gathered}\text { P. \& P P } \\ 3 / 6\end{gathered}$

MELODY SIX

TWO WAVEBAND PORTABLE WITH 3in. SPEAKER
Handsorne leather-look case, size 6_{4}^{3}
 with gilt trim and hand and shoulder straps Incor porates pre-taggel circuit hoard, 8 atagesncorporates pre-taggen circuit hoard, 8 stages-
; tranastors abd 2 diodes-ferrite rod aerial. mash-pull output, wave change slide switch. tuning condenser, volume control, 3in. woving coil speaker, etc. Easy luild plans and parts coil speaker, etc. Easy huild
price list $2 f$ - (FREE with kit).

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE

Attractive case with red speaker gille Nize 0,
 colume contiol, fine tone super dynamic speaker.

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
deractive case with gilt fittings, size 11 in . World wide reception. Tunable on Medium fand plus an extra M.W. band for easier tuning of Luxembourg, etc. Sensitive ferrite rod aerial and telescopic aerial for short Waves. All top grade components. \& stages-6 tranisistors Transistors, etc. (carrying stran 1/fi evtra). Easy build plans and parto price liet $2 /-$ (FREE with kit).
P. \& P. 5/6

Total building costs
39/6 P. \& P .

Total building costs $69 / 6 \quad \begin{gathered}\text { P. } 8 \text { P } \\ 3 / 6\end{gathered}$

POCKET FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE Attractive black and gold case. Slze $\$ \$ \times 1 \$ \times$ 3in. Fully tunable over both Medium and Long Waves with extended M.W. band tor easier tuning of Luxembourg. etc. All first grade components 7 stages-5 transistors and 2 diodes-super semaltive ferrite rod aerial, fine tone 2 in. moving
coil speaker, etc. Eray build plang and parts coll speaker, etc. Eray build plans and parts
price list, $1 / \theta$ (FREE कith kit) POCKET FIVE Medium and vertion with ministure and Lons Wave 29/6. P. \& P, 3/6.

MELODY MAKER 6

 WITH 3in. SPEAKERSmart pocket size case, $6 f \times 3$, $\times 11$ in, with gilt fittings. Fully tunable over both Mediuna and Long Wavea with extra M.W. band for easie Luning of Luvembourg, etc. 8 stages- 6 transistors and 2 diodes-top grade 3in. speaker, 2 R.F. stages for extra boost, high " Q " ferrite rod g/- (FPEF with kit) and parts

Total building costs $69 / 6$ P. $\underset{3 / 6}{8}$ P.

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size $\times 5_{2}$ lim. With gitt fittings and carrying strap. The ideal radio for home, car or outdoors. Covers Medium and Long Waves and Trawler Band, Special circuit incorporating 2 R.F. stages, push-pull output apeaker (will drive larger aneaker) and all first grade components. Price list 2/- (FREE with kit). componeats. Price list 2/- (FREE with

RADIO EXCHANGE Ltd

61a HIGH STREET, BEDFORD
Telephone: Bedford 52367
Callers side entrance Barratt's Shoe Shop. Open 9-5 p.m. Saturday 9-12.30 p.m.

a NEW year has BEGUN, so why not make

${ }^{a}$ NEW year RESOLUTION . . .

AND WHAT BETTER

ONE THAN THE PURCHASE OF A

NEW Home Radio Catalogue

Yes, now it can be told, the 4th Edition of the famous Home Radio Catalogue is now ready for you! In actual fact we have been distributing this New Edition since the 1st December, 1967 but this is the first advertisement bringing it to your notice. This is a completely new Edition-not just a reprint. It is bigger (and we are sure better) than ever- 256 pages, over 7,000 items listed and over 1,300 illustrations. In spite of the increased size the price remains at $7 / 6$, plus $2 /$ - postage and packing, and we are still giving in each catalogue 5 vouchers, each worth $1 /$ - if used as directed. Also in each catalogue will be found a $5 /$ - voucher which can be used towards the purchase of a Weller Soldering Iron, our unique Bargain List, a useful Book Mark giving all the well known Electronic Abbreviations, an Order Form and an addressed envelope.

There is no better way of starting the New Year than by purchasing the latest edition of this famous components catalogue. Send the coupon with your P.O. or cheque for $9 / 6$ today.

VOL. 4 No. 2 PRACTICAL
 February 1968
 PACTICAL
 ELECTRONICS

ART FROM COLOUR AND SOUND

ARE we on the threshold of a new revolutionary era of art? Will swirling colour patterns and surrealistic sound become the major elements of a new and dynamic form of art with limitless possibilities for expression of artistic ideas; and will this lead to a practical application where the production of an environmental atmosphere to suit the whim or mood of the occupier will be possible by the turn of a switch?

Current activities suggest that these are no idle dreams. The merging of art and technology is one of the exciting happenings of today.

Interest in the æsthetic possibilities arising from the imaginative use of colour and sound in combination is not itself novel. Experimental work in this field has been going on ever since artificial light became a readily available and easily controllable media. The colour organ and Son et Lumiere presentations represent some early achievements in this art of blending colour and sound.
It is clear to see that greater sophistication, which really means depending more heavily upon electronic methods and devices, will increase the scope for creative effort. By way of example, there is the possibility of forming exciting patterns by means of the cathode ray tube. Fluorescent lighting tubes (and, one day, whole panels of electroluminous material) may provide alternative light sources. On the audio side, the potentialities are equally great and exciting: techniques for synthesising music and producing fascinating effects have already reached an advanced state. Somewhat surprisingly it is the human voice, natural and unadorned, that offers some further interesting possibilities. The effectiveness of the slow, deliberate annunciation of just words as an atmosphere creating background has been demonstrated at exhibitions.

It would be a mistake to attribute this present interest in colour and sound wholly or chiefly to the trendy pop set. Colour and sound have certainly been used with startling effect by the contemporary with-it movement. But the radiance of their psychedelic set-ups should not be allowed to obscure our view of work being undertaken on a more serious plane by various individuals and groups-like, for example, the Light/Sound Workshop of Hornsey College of Art.

As with all new forms of artistic expression, the results are rarely immediately acceptable to the general public. But we should welcome this attempt to exploit modern technology for purposes other than the more obvious and strictly functional. And, indeed, why should the hippies have all the best colour and sound!
F. E. Bennett-Editor

THIS MONTH

CONSTRUCTIONAL PROIECTS
GLISSANDOVIBE 94
P.E. ANALOGUE COMPUTER 105
I.C. TAPE RECORDER 116
CAR ANTI-THEFT ALARM 139
SPECIAL SERIES
NUCLEONICS FOR THE EXPERIMENTER-4 TRANSISTOR AMPLIFIER DESIGN-I 135
GENERAL FEATURES
CINE/TAPE SYNC 99
INGENUITY UNLIMITED 102
CROSSWORD SOLUTION 132
BEGINNERS
SEMICONDUCTOR BASICS-3 123
TRANSISTOR AMPLIFIER 126
NEWS AND COMMENT
EDITORIAL 93
MARKET PLACE 112
ELECTRONORAMA 120
SPACEWATCH 131
BOOK REVIEWS 132

THE Glissandovibe is extremely portable, being powered by a 9 V layer type battery. A larger amplifier may be employed if desired, but the 500 mW push-pull amplifier described is adequate for most locations; in large halls a microphone can be conveniently sited to boost the sound.

Whilst the Glissandovibe is primarily a solo melody instrument, the smooth legato tone it produces suggests that several in harmony could give some pleasing effects. The frequency range is approximately two octaves.

HARTLEY OSCILLATOR

This simple electronic melody instrument uses a variable audio oscillator with a moving arm and press button switches to alter the pitch of the sound. The block diagram of the Glissandovibe indicates the refinements added to an audio oscillator to give the desired effect (Fig. 1).

A modified version of the Hartley oscillator is used for the note generator (Fig. 2). The tuned circuit comprises the tapped coil L1 shunted by the four "voice" capacitors. These capacitors are shortcircuited by the "voice" switches S1-S4 which are normally closed until a particular range is selected. When a range is selected, the voice switch can be pressed to remove the short-circuit from the appropriate capacitor, which is then effectively connected in parallel with the coil. The capacitor values are chosen to produce four notes at intervals of about half an octave to cover the two-octave range desired. Operation of a voice switch not only selects the appropriate halfoctave range, but also initiates the note. This simplifies the playing technique.

Continuously variable tuning of the half-octave selected is achieved by moving transformer laminations inside an air-cored coil. The moving laminated core is attached to" a control lever which moves over a

Fig. I. Block diagram showing the main functions of the Glissandovibe
graduated scale. As the core enters the coil the frequency decreases due to the increase in inductance. Similarly, the withdrawal of the core increases the frequency. The control lever thus provides a convenient method of applying both glissando and vibrato. The latter effect is often produced electronically by means of an oscillator running at about 5 to 10 Hz , but the side-to-side motion of the arm used with this instrument sounds more natural when the action is perfected.

ATTACK AND DECAY

A sustain/percussion switch S5 controls the attack and decay of each note. In the sustain position the attack and release of a note is governed by the length of time a voice switch is held down. In the percussion position a note has a chime-like attack and will die away even though a voice switch may be held down. The decay time depends upon the size of electrolytic capacitor C6 and some experiment may be necessary
to suit individual tastes. Although this capacitor is within the tuned circuit its effect on tuning is almost negligible because of its large capacitance compared with that of the tuning capacitors in series with it. The voice switches perform an additional function in that they also effectively short-circuit this capacitor between notes. The prototype circuit had a complex switching arrangement to accommodate the sustain/ percussion facility but the author's dislike of mechanical complications finally led to this simple if unorthodox circuit.
Two basic tone colours are provided by simply taking one output from the oscillator base circuit and one from the collector circuit. The output from the base approximates to a sine wave and in the upper register has a flute-like quality; this output is appropriately labelled "woodwind". The other position of the tone switch, "strings", is additionally connected to the collector output which provides a square-wave and gives a greater degree of bite to the notes.

Fig. 6. Constructional details of the case, moving arm, and laminated core

COMPONENTS

Almost any audio transistor may be used for the note generator TRI. Despite the change in supply volts when the sustain/percussion switch is in the percussion position the notes are surprisingly stable throughout the decay period.

The air-cored coil used consists of 4.000 turns of 39 s.w.g. enamelled wire, with a centre tap, on a $\frac{1}{2}$ in diameter former. Alternatively, the primary winding of a valve output transformer, the laminations being removed first, may be pressed into service. The tapping point is not critical. If a centre tap is not provided, one end cheek can be bent back to reveal the primary turns; a point is easily found approximately half-way through to which a flying lead can be soldered.

The values given for the voicing capacitors $\mathrm{C} 1-\mathrm{C} 4$ are only approximate since they are dependent on the inductance of the coil used and the type of the laminated core attached to the control level. Some experiment may be necessary. Fortunately it is easy to calibrate
the scale to whatever components are chosen once a reference note has been established; some readers may wish to increase the number of voice switches and capacitors to cover a greater number of notes. The wide tuning range of the control lever may then be reduced as required by removing laminations. Even one lamination inserted in the coil is sufficient to lower the pitch by one or two tones.

A conventional push-pull amplifier is used to boost the oscillator output to the required level. The driver stage TR2 has the expression or volume control as part of the d.c. stabilising chain; this is located on the front panel so that it is handy for crescendos, diminuendos and forte-piano (fp) effects. A return spring can be attached to the control to enable rapid dynamic changes to be made from a pre-determined volume level. The driver transformer TI couples the signal to the push-pull output transistors TR3 and TR4. Transformer T2 matches the output stage to a 3 ohm elliptical loudspeaker. The amplifier transistors should be matched and can be obtained as a set package type LFH3.

Resistors

R1	$27 \mathrm{k} \Omega$
R2	100Ω
R3	$47 \mathrm{k} \Omega$
R4	560Ω
R5	$6.8 \mathrm{k} \Omega$
R6	$47 \mathrm{k} \Omega$
R7	560Ω
R8	$6.8 \mathrm{k} \Omega$
R9	220Ω
*R10	$5 \Omega \mathrm{IW}$

All $10 \%, \frac{1}{2}$ W carbon except RIO
*R10 can be two $10 \Omega \frac{1}{2} W$ resistors in parallel

Potentiometer

VRI $5 \mathrm{k} \Omega$ linear carbon or wirewound

Capacitors

${ }^{*} \mathrm{C} 1 \quad 0.02 \mu \mathrm{~F}$ polyester 150 V
*C2 $0.05 \mu \mathrm{~F}$ polyester 150 V
*C3 $0.1 \mu \mathrm{~F}$ polyester 150 V
*C4 $\quad 0.2 \mu \mathrm{~F}$ polyester 150 V
C5 $\quad 0.1 \mu \mathrm{~F}$ polyester 150 V
C6 $2-25 \mu \mathrm{~F}$ elect. 15 V
C7 $\quad 0.01 \mu \mathrm{~F}$ polyester 150 V
C8 $25 \mu \mathrm{~F}$ elect. 15 V
C9 $100 \mu \mathrm{~F}$ elect. 6 V
C10 $100 \mu \mathrm{Felect}$. 15 V
Cl 4 are selected to tune with LI and may need slight alteration. ${ }^{}$ C4 can be two $0.1 \mu \mathrm{~F}$ capacitors in parallel (see text)

Inductor

LI Tapped coil using 39 s.w.g. enamelled wire or valve output transformer (see text)

Transformers
TI Driver transformer type TT45 (Repanco)
T2 Push-pull output transformer type TT46 (Repanco)

Transistors
TRI OC7I
$\left.\begin{array}{l}\text { TR2 OC8ID } \\ \text { TR3, } 4 \text { OC8I (2 off) })\end{array}\right\}$ Matched set type LFH3

Loudspeaker

LSI 3Ω, 7 in $\times 4$ in elliptical

Switches

SI-4 Miniature microswitches or light duty push button switches, normally closed (4 off)
S5, 6 Single-pole, on/off, rocker or toggle switches (2 off)
57 Rotary on/off switch

Battery
BYI 9 volts layer type

Miscellaneous

Veroboard, tag boards (see text)
Plywood and hardboard for case
Perspex sheet for moving arm

MECHANICAL CONSTRUCTION

Readers will no doubt have their own ideas regarding the mechanical layout of the instrument. The disposition of the connecting leads and components is not at all critical and the layout given can be changed to suit individual requirements without any ill-effects. The voice switches in the prototype were low pressure push button switches. Rocker switches of the type used for cupboard lighting were used for the tone and attack switches. These are extremely easy to operate with only a light touch of the finger. They can be obtained as a dual unit.

The amplifier circuit is built on a piece of Veroboard; The oscillator on a group tag board (Figs. 3 and 4). Care should be taken when soldering transistors as 1 hey can be damaged by the application of excessive heat. Solder quickly or grip the leads with pliers or a clip to dissipate excess heat.

The remaining items, the speaker, the coil, the controls and the battery are all mounted on the inside of the front panel (Fig. 5). This panel may be of aluminium or plywood or hardboard as desired. A guide to constructing the case is given in Fig. 6. The sides are curved by first thoroughly soaking the hard-
board pieces then moulding to the required shape and fixing in position with wooden blocks and pins. Thick water-based glue such as Cascamite may also be used. The moving arm is made from $\frac{1}{4}$ in perspex sheet and pivoted to the front panel by a bolt with locked nuts.

PLAYING TECHNIQUE

Even those with limited musical knowledge can quickly attain a reasonable degree of dexterity with this instrument. A little time spent in experimenting with the resources available will be well worthwhile.

Set the control lever to the note required and press the appropriate voice switch. If the attack switch is in the sustain position the note will sound out until the voice switch is released. If it is in the percussion position the note will decay as C6 charges through the oscillator circuit. This produces a chime effect because of the percussive attack and gradual decay. A slow side-to-side motion of the control lever at about 5 vibrations per second will produce a natural vibrato that will enhance the sound. Some practice is essential to perfect the movement from one note to another and to co-ordinate the action of the voice buttons and the control lever.

The idea of synchronising a cine projector with a tape recorder seems delightfully simple. The problem unfortunately is inherently complicated not only in obtaining exact synchronism between picture and sound, but also in preparing the sound track.

This article describes an entirely practical and reliable synchronising system which not only enables silent pictures to be shown in synchronism with the tape, but also enables lip synchronised films to be taken and projected.

cine and tape sync

By C.F.WEIR b.sc. c.Eng.

THE equipment described in this article is the result of several years of development work. Before describing it, however, it would be as well to set down the basic requirements of a synchronising system and the various manners in which this may be accomplished.

TWO MAIN METHODS

Two main methods of sound film projection are available, one in which the sound and picture are combined on the one film, and the other where separate units are employed for sound and vision. These may be listed as follows:
(1) Sound on film where either an optical or magnetic sound track is used
(2) A double-headed arrangement whereby film and sprocketed magnetic tape are run through together in mechanical synchronism on a suitably designed projector.
These two methods are entirely convenient and satisfactory buit of necessity they are expensive, and unless the most high grade equipment is used, the quality of the sound will not approach that obtainable from a first class tape recorder.

It should be noted also that where such arrangements are used, auxiliary tape recorders are still required for both recording original materials, and for mixing processes for preparing the final sound track.

METHODS EMPLOYING SEPARATE PROJECTORS AND TAPE RECORDERS

Methods for synchronising separate projectors and tape recorders are as follows:
(3) An arrangement whereby sprocketed tape is used, and both the projector and the sprocketed capstan on the tape recorder are driven by synchronous motors.
(4) An arrangement whereby tape from the recorder is fed through a capstan driven by the projector after the tape leaves the tape recorder capstan.

Any variation between the tape recorder capstan speed and the capstan driven by the projector will result in a greater or lesser length of tape at any instant being present between the two capstans. Tension on this length of tape is maintained by a spring loaded swinging arm. As the tension on the tape varies as a result of difference in projector and tape recorder speed, the arm moves, cutting in or out projector motor resistance in order to adjust the speed.
(5) A variation of (4) is the commercially available synchrodeck where tape and cine speeds are compared using a differential gear box. The measured difference in speed is used to control the speed of the projector.
(6) Electronic pulse system. In this system a series of pulses recorded on tape (usually one per cine frame) are used either to keep the cine projector in step direct, or in commercial applications the two speeds are compared visually on an oscilloscope and minor adjustments made manually to obtain synchronism, whilst a master sound track is prepared for the making of sound on film track.
(7) A servo system where tape controls the projector speed.

disadvantage of mechanical COUPLING

Systems (4), (5), and (6) are available commercially for the amateur.

The swinging arm or the synchro-deck methods give extremely satisfactory results without very great cost.

However, they have the disadvantage of mechanical coupling between the projector and the tape recorder which may make the arrangement a bit cumbersome.

Hundred per cent satisfactory lipsync is not really practicable with such arrangements. They do have the considerable advantage, however, of using a tape recorder for the purpose for which it was intended, namely the recording and play back of sound. This means that true high fidelity results may be obtained.

THE AUTHOR'S SYSTEM

The basic arrangement of the author's system is the use of a differential gear box to measure and correct difference in speeds between the tape recorder and the projector.

Consider the diagram in Fig. 1. If the wheels A and B are driven in opposite directions but at the same speed, the spider (C) will remain stationary. Any difference of speeds between wheels A and B will result in the spider rotating either clockwise or anticlockwise.
If a drive is taken from the spider to operate some form of speed control device (a simple rheostat is entirely satisfactory), then the basis of a synchroniser is built up.

If now, wheel A is driven from the cine projector and wheel B is driven from a synchronous electric motor, the projector will be made a slave to the speed at which the synchronous motor runs. The synchronous motor could obtain its supply from the mains, in which case the projector would run at an exact function of the mains frequency, or it could be supplied from 50 Hz recorded on tape.

If the recorded output of 50 Hz is taken from the recorder and suitably amplified and fed into the motor, it means that the cine projector will now follow precisely the tape speed. This means that tape stretch, slip at the capstan, etc. will all be of no consequence and perfect synchronism will be obtained.

The arrangement may be developed further by fitting a small generator on to the cine camera. The gearing is so arranged that when the camera operates at its normal speed (16,18 , or 24 frames a second), the generator will give an output of 50 Hz . If this is recorded on tape at the same time as the audio information is recorded, this, during play back will make the projector keep in complete synchronism with the speed at which the camera was running during the original filming and recording.

It is thus possible with this equipment to take and to project lip synchronised films. A perfectly standard

Fig. I. The differential gear box
tape recorder is used except that it must be of the stereo type which will enable the two tracks, namely the audio and 50 Hz track to be recorded simultaneously when lipsync is being undertaken. To assist in editing, the tapeheads should be of the in-line type.

ENTIRELY AUTOMATIC

The equipment is entirely automatic in starting and running, although provision is made for fine adjustment should this be needed.

The projector is laced up on to a suitable cue mark on the film and the tape recorder started. The 50 Hz recording on the tape starts the projector at the right moment and then holds it in complete synchronism throughout the film.

On a long film, it is desirable where there are lipsync inserts to check accuracy from time to time as variations in the supply voltage could cause a slight phase displacement between tape and film. This may be corrected on the fine adjustment control. Such correction is not normally necessary where music, commentary, and effects are being used.

PRACTICAL DETAILS

Standard and commercially available equipment has been used for the prototype. Synchronous electric clock motors serve quite well. A differential gear box may be salvaged from an old prepayment electricity meter, or, alternatively, purchased from one of the gear manufacturing firms.

As shown in the simplified general arrangement diagram Fig. 2, the 50 Hz recording from tape is fed into an amplifier-the one at present used is a modestly priced transistor unit. The amplifier 50 Hz output is fed into a step-up transformer to supply a 240 V synchronous clock motor. This clock motor drives one side of the differential gear box. The motor is shunted with a $0.2 \mu \mathrm{~F}$ capacitor in order to improve the power factor. This considerably cuts down the current demand on the amplifier.

The 50 Hz signal is also fed through the coil of relay RLA, the "start" and "run" relay. This relay closes up the main motor circuit at the correct instant.

TIME DELAY RELAY

Relay RLB is a time delay relay which, dependent on the sensitivity of the equipment, may, or may not be necessary. It is arranged to short out the motor speed controller for half a second or so when the equipment is
16 mm Bell Howell Projector fitted with synchronising unit. This unit contains the differential gear box, synchronous motor, and wiping contacts for connection to tapped
resistance

Fig. 2. Block diagram of the cine/tape sync system
first switched on, in order to give the most rapid acceleration to the projection motor.

Unless the motor is rapidly brought up to speed, it is possible that the spider on the differential gear box may make an excursion larger than the control range of the equipment. If this happens, it means that the synchroniser has permanently "lost time".

The length of the excursion time of the spider is a design consideration dependent on the gear ratio, i.e. the speed at which the differential gears run, the number of resistance steps on the speed controller, and the value of the resistance between each step. The higher the sensitivity of the equipment then the less will be the excursion time of the spider. A phase accuracy of \pm half a frame is very readily obtainable.

The spider will hunt on either side of its normal position during operations. It is one of the advantages of this equipment that it can have an in-built tolerance of half a second or so during which to recover its lost or overshot time without losing synchronism.

CORRECT STARTING

It is also of interest, although a fortuitous point in the design, that when the equipment is switched on the synchronous motor must always start in the right direction (the mechanical drive from the projector ensures this).

The equipment is not sensitive to momentary tap "drop out", or indeed to loss of half a cycle at a tape splice, since the inherent friction of the equipment will let the motor coast through.

If no servo gear was used and the amplified signal from the tape recorder was fed direct to a synchronous drive motor on the projector, the projector might suffer very considerable shock treatment at change of speed at the points of tape splicing.

SPEED CONTROLLER

On the prototype the speed controller was in the form of a tapped resistance carrying the main motor current. Despite the fact that the projector is a 16 mm one and takes a fair load, no contact trouble was experienced on the speed controller.
A more modern approach would be to use a thyristor motor control circuit. This would certainly be more elegant, but it means that there is more to go wrong and it may result in noise pick-up from the thyristor.

EDITING

When a sound track is to be added to a film, much careful and accurate editing has to be done. Lip synchronised inserts must be correctly placed, commentary, music, and sound effects must also hit the picture at the right instant.
The equipment described lends itself ideally to editing. The cine film may, of course, be measured by a frame counter. Having, however, recorded 50 Hz on the tape, we have virtually placed a ruler all the way along its length. By using a high speed magnetic counter capable of counting up to $3,000 \mathrm{c} / \mathrm{m}$ the tape length can be measured to an accuracy of within one-third of a frame (at $16 \mathrm{f} / \mathrm{m}$).

LONG TERM ACCURACY

In terms of speed control, the equipment's long term accuracy is 100 per cent. However, since the equipment of necessity must be hunting all the time during operation, its short term phase accuracy under settled running conditions will be according to the design in the order of \pm half a frame.
This stability however, is naturally entirely dependent upon stable mains supply voltage. If this varies during the projection of a film, the spider on the differential gear box, in order to maintain correct speed, will compensate for this voltage variation, but at the expense of a change in phase relationship between picture and film.

ALL-ELECTRONIC VERSION?

Although this equipment operates with complete success, aesthetically it would be attractive to have completely electronic equipment. The need is for an electronic "gear box" which could measure the difference in the two speeds and store the information up to say, half or threequarters of a second to ensure that synchronism was never lost where there may be a sudden change in recorded tape speed.

Such an arrangement would no doubt be possible but perhaps would be more bulky and expensive than the mechanically geared box at present used.

I" N THIS teature we hope, from time to time, to be able to publish suggestions submitted by some of our readers on the possible improvement of projects previously described in PRACTICAL ELECTRONICS; short contributions on other subjects may be included. The aim is not to find fault or undermine the abilities or knowledge of our contributors. It may well be that the original artucle is par exellence but it could be improved or adapted to suit individual requirements. The views expressed by readers are not necessarily those of the Editor.

REVERSE SOUND ON A 4-TRACK RECORDER

FOR some time I have been using a method for reversing sounds with a tape recorder which I believe may be of interest to readers of the article Electronic Sounds and Music (November 1967).

The two centre tracks of a four-track tape are normally recorded in opposite directions. If the second track (which normally runs past one of the "clear" sections of the head) could be lowered by the width of one track, the information on that track could be reversed.

This could be achieved by removing the tape, including track 4. I have prepared 150 feet continuously by pulling the tape over a piece of wood, with two guides set in it, and a blade fixed at $\frac{3}{4}$ of the tape width. Thus, with $\frac{1}{1}$ in tape, the necessary $\frac{3}{16}$ in width of tape was produced along with an apparently unused length of $\frac{1}{16}$ in wide.

By guiding the tape past the head as low as possible (see diagram) the information is recorded, using the track $\frac{2}{3}$ head) down the centre of the tape. Obviously,

to play this back in reverse, all one has to do is send the tape through on the opposite direction.

Unfortunately, due to slight irregularities in cutting, splicing, and in the tape guides of the recorder, I have found that to erase the centre track the tape usually has to be passed through two or three times. This may not be necessary with high quality recorders.
M. Horner, Lincoln.

THYRISTOR SCREÉNWIPER DELAY

|Was very interested in the Screenwiper Delay Unit (September 1967). However, the suggestion was made that it might be possible to use a thyristor instead of a relay in such a unit. Suitable low peak inverse voltage rated thyristors are now available at very reasonable cost and should be more reliable than a relay.

I have evolved a circuit that may be of interest. The only connection required to the existing car wiring is to the terminals of the dashboard wiper switch. The stud (anode) of the thyristor is at chassis potential; use can be made of this asset in mounting the unit behind the dashboard. Any convenient metal part will then form a heat sink.

The components, except the thyristor and the potentiometer are mounted on a piece of Veroboard lin $\times 1 \frac{1}{2}$ in and tucked away in a small recess behind the dashboard ashtray. The thyristor and potentiometer can be bolted to the underside of the metal dashboard with the control knob readily accessible.

When the main wiper switch $\mathbf{S} 2$ is in the off position, a variable delay from 2 to 25 seconds was obtained between strokes of the wiper blades, while continuous operation was obtained on closing the main wiper switch.

The control switch Sl is double-pole on/off and ganged to VR1. Both poles are wired in parallel to increase the current carrying capacity of it.

It is emphasised that this circuit can only be used in a car having a wiper motor with a self-parking switch for the blades and a positive earth wiring system.
A. Edge,

Gloucester.

$\xrightarrow{2}$
 P PE

TRANSISTORS PRICE

TRANSISTORS PRICE			
AC107	6/-	OC170	$2 / 6$
ACl26	2/6	OC171	4/-
AC127	$2 / 6$	OC200	5/-
ACI28	3/-	OC201	8/-
ACYI7	$5 /-$	2G301	2/6
AFil 4	4/.	2 G 303	$2 / 6$
AFIIS	3/-	2 N 711	10/-
AFII6	3/-	2N1302-3	4/-
AFII	4/.	2N:304-5	5/-
AFl18	3/6	2N1306-7	$6 /$.
AFII9	3/6	2N1308-9	8/-
AF478	10.	25303	2/6
BCZ11	5/-	Power	
BFYSO	15/-	Transistor	
BSY25	10/-	$\bigcirc \mathrm{OC20}$	10/.
BSY26	5/-	$\bigcirc \mathrm{OC} 23$	10/-
BSY27	5\%-	$\bigcirc \mathrm{OC} 25$	8/-
BSY28	5/.	OC26	5/-
BSY29	5/.	$\bigcirc \mathrm{C} 28$	7/6
BSY95A	5/.	OC35	5/-
OC41	2/6	OC36	7/6
$\bigcirc \subset 44$	1/11	GP826	40/-
0 O 45	1/9	$2 N 2287$	20/-
OC71	2/6	Diodes	
$\bigcirc \mathrm{O} 72$	2/6	AAY42	2/-
$\bigcirc \mathrm{OC}^{3}$	$5 /$.	OA10	2/-
OC81	$2 / 6$	OA70	1/9
OC81D	2/6	OA79	1/9
$\bigcirc \mathrm{OC83}$	4/-	OABI	1/9
OC139	$2 / 6$	OA182	2/6
OC140	5 /-	IN914	1/6

PACKS OF YOUR OWN CHOICE UPTO
the value of 10/- WITH ORDERS
OVER £4

TRANSISTORS ONLY 1/- EACH
 SILICON - PLANAR N.P.N. - P.N.P

DON'T TAKE CHANCES ON UNKNOWN LOTS
 BRAND NEW UNTESTED TRANSISTORS!
 SAVE £'s TEST THEM YOURSELF
 WE TELL YOU WHAT TYPES THEY ARE

 All these types available$\begin{array}{llllllll}2 N 929 & 2 N 706 & 2 S 131 & 2 S 103 & 2 N 696 & 2 N 1613 & 2 S 733 & 2 N 2904\end{array}$
2 S 501 2N706A 2 S 512 2S104 2 N697 2 N 1711 2N726 2 S 731
2N2411 2N3011 2S102 2N2220 2NI507 2N1893 2N2906 2 S732
All tested and guaranteed transistors-unmarked.
Manufacturers over runs for the new PRE-PAK range.

NEW UNMARKED UNTESTED PAKS

10 | 1000 PrV 1 amp. |
| :---: |
| Min Silicon | DIODES 10

$10 \begin{gathered} 10 \text { Wath Silicon } \\ \text { All Voltages } \end{gathered}$	ZENERS 10/-
	TRANSISTORS 10/-
$10{ }_{\text {din }}^{4}$ amp. Stud.	RECTIFIERS 10/-

40 DIODES 10
$50 \begin{gathered}\text { Min. Germity } \\ \text { High Quality } \\ \text { DIODES } 10 /-~\end{gathered}$
25 NRN Sillicon TRANSISTORS $10 /-$

PRE-PAKS

BI 50 Unmarked uncested, trans.. new
Mixed Types
4 Solar cells, ine. Book
B3 OA5 gold bonded, diodes Mullard - 10
B5 7 Matched ser. OC $44.45 / 81 \mathrm{D} / 81$
Bo 15 Red spot AF, trans or white spot
B8 2 Power trans. OC26/35 eype B9 I Light sensitive cell. ORPIZ type B10 1050 V trans. germ. PNP latest type B44 'Tunnel diode. AEYII. $1050 \mathrm{Mc} / \mathrm{s}$ B21 2 sal recs 10 amp .50100 PlV B45 I Powertrans. ADY22/TK400A B49 2 Power trans. GET 9 VCB64IC 8 amp B50 2 Light sensitive cells ORP60 type

```
C2 I Unijunction, 2N2160 or 2 N 2646
``` 42 RF powertrans. OC22 and BUY11-15 C15 4 Silicon PNP trans in the 25300 Series \(15 /\) C31 4 Sil recs 800 PiV 1 amp top hat \(15 /-\) C32 2 Power trans. TK \(400 \mathrm{~A} / \mathrm{NKT} 404\) \(\vee C B 64\) IC 8 amp

\section*{F.ET.'s FIELD EFFECT TRANSISTORS 2N3822 'N' Channel 4 lead 15--}

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any \(0-1 \mathrm{~mA}\) meter into a perfectly linear and accurate rev. counter for any car.
State 4 or 6 cylinder. L EACh

FREE CATALOGUE AND LISTS for: -
TANTALUM CAPACITORS, TRANSISTORS, RECTIFIERS \& CIRCUIT DIAGRAMS, SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS
 TELEPHONE: SOUTHEND (0702) 46344

BEFORE embarking on constructional details, a few words must be said concerning measuring and test equipment required.

\section*{VOLTAGE STANDARD}

It is necessary, at an early stage of computer construction, to establish a voltage standard for setting up the PEAC circuits.

Since relative voltage levels are more important than absolute levels, one particular voltmeter of proven reliability can serve as a voltage standard, and this might well be a reputable testmeter which has a large scale conveniently calibrated in terms of \(0-10\) volts, with a d.c. sensitivity of not less than 20,000 ohms per volt. Even if the testmeter has an error of 2 per cent of the indicated reading on d.c. ranges, it should be capable of reproducing a given reading, from day to day under similar room temperature conditions, with much greater accuracy.
In addition to use as a voltage standard, the testmeter can, of course, be employed for setting up problems, answer readout, comparative resistance checks, and for general testing of all circuits. There is nothing to prevent re-calibration of the computer to laboratory voltage standards at a later date, and this has been allowed for in the overall design of PEAC.

\section*{COMPUTER INSTRUMENTATION}

Analogue computer instrumentation has much in common with electronic workshop equipment. Among those instruments likely to be of use to the computer operator are: an oscilloscope, a small collection of d.c. voltmeters, an audio oscillator, an a.c. voltmeter, and a component measuring bridge.

The oscilloscope need not conform to a modern specification, and could be a government surplus item. However, it is often an advantage to have a large screen area, and redundant television sets can be converted for computer readout purposes with excellent results. The limited bandwidth of magnetic deflection is no disadvantage at normal computer operating speeds.
D.C. voltmeters with centre zero scales are very useful for rough checks on the terms of a computer equation, where, for example, the wish is to see how \(y\) varies in relation to \(x\) when manipulating a simultaneous equation.

A sine wave oscillator, with attendant a.c. voltmeter, will often be employed for work on transfer functions, and for general electronic circuit simulation.

Finally, the component bridge is a help when makingup plug-in computing components, and for locating possible sources of error.

It is assumed that special classes of equipment, such as the XY plotter, will not be available to the amateur, and they are therefore excluded from further mention.

\section*{UNIT "A" CONSTRUCTION}

The general form of construction adopted for PEAC is based on a series of boxes made with laminates of white Armaboard or Formica and hardboard. The resulting box is rigid and durable, with a surface which easily takes panel transfers and lines drawn in Indian ink. With such a construction, it is possible to achieve a professional appearance using only simple woodworking tools.

It is advisable to start with the UNIT " \(A\) " front panel and case. This slightly unusual procedure, of building the box before starting on internal circuits,

BLACK

RED

8 YELLOW

GREEN

Fig. 2.2. Left-hand portion of front panel. Drilling details, layout of components, and panel engraving. (Below the broken line, there are two further sections, each a replica of "Summer 1")

Fig. 2.1. UNIT" " \(A\) " front panel. Overall dimensions and sectional dividing lines

Fig. 2.3. Reverse side of front panel, left-hand portion (Fig. 2.2), showing components and wiring. Summer 2 and 3 are wired exactly as Summer I shown here. The three terminals TLI, 2 and 3 are mounted on the side of the box

UNIT "A" front panel
may be justified on two counts: firstly, the front panel really forms a circuit which is designed to be accessible, and is an important part of the unit; secondly, the method of construction chosen brings economy by dispensing with a self-supporting internal chassis assembly, and much of the internal gear is actually mounted on the front panel, or to the box itself.

\section*{UNIT "A" FRONT PANEL}

To prepare the front panel, a sheet of white plastic laminate, slightly larger than its finished size of 13 in \(\times 17 \frac{3}{4} \mathrm{in}\), is glued to a sheet of hardboard of the same measurements with Evostick or a similar adhesive. When firm, the panel edges can be planed, rasped, or sandpapered down to size, while making sure that all is square. Next, taking Fig. 2.1 and the photograph of the front panel as a guide, mark out the main dividing lines with a pencil.

The positions of all holes and slots may be found by referring to panel drawings Fig. 2.2 and Fig. 2.5. Establish hole centres by first marking with a pencil, then indenting with a sharp spike. Note that all drilling should be carried out from the plastic laminate side of the panel, to avoid chipping the white surface. It is important to handle tools carefully, and prevent them skidding across the plastic surface and scoring it. When all holes have been drilled, deburr them on the reverse side of the panel with sandpaper, and check that components will fit correctly before applying a coat of clear varnish to the hardboard backing.

Fig. 2.4. Right-hand portion of front panel viewed from rear, showing components and wiring. Operational Amplifiers 2 and 3 are wired exactly as "Operational Amplifier 1 "" shown here

Rear view of UNIT "A" front panel

To finish the panel, draw in all lines and symbols with a nib pen and Indian ink. If any mistakes are made, the ink can be removed-when dry-with a typewriter eraser, and surface shine restored with metal polish. Lettering can be applied by the "rub-on" or "stick-on" transfer methods, and should be protected by a thin layer of clear varnish.
When the panel decor has dried, mount all sockets, potentiometers, knobs with dials, switches, and the neon mains lamp. Dials may be lined up on potentiometer spindles later.

\section*{UNIT "A" BOX}

This time, the box is first constructed of hardboard on a wooden frame, and is later covered with plastic laminate. See Fig. 2.12.

Cut and finish the four hardboard panels to size, and cut the various lengths of softwood. The manner of assembly could be as follows: attach wood lengths \(A\) and \(C\) to top and bottom panels with panel pins or countersunk woodscrews, gluing all joints. Attach lengths \(B\) to side panels, bring panels together and secure. Next, position \(D, E\), and \(F\). Note that there is no length \(D\) at the back portion of the top panel so the slotted amplifier mount \(F\) should be lined up vertically with its companion \(E\). All drilling must be left until the plastic laminate is in place.

\section*{(1)}

Fig. 2.5. Right-hand portion of front panel. Drilling details, layout of components, and panel engraving. Below the broken line there are two further sections, each a replica of "Operational Amplifier 1"

\section*{UNHT "A" FRONT PANEL AND BOX}

Resistors
\begin{tabular}{ll}
RI-R5 & \(9.1 k \Omega\) (5 off) \\
R6-R10 & \(910 \Omega\) (5 off) \\
RII-R15 & \(100 \Omega\) (5 off)
\end{tabular}

All \(5 \%\), \(\frac{1}{2}\) W carbon film
Pre-set Potentiometers
VRI-VR5 \(250 \Omega\) miniature wirewound slider type (5 off)
VRI5-VRI7 \(50 \Omega\) wirewound panel mounting type (3 off)

Potentiometers
VR6-VRIO \(1 \mathrm{k} \Omega 3 \mathrm{~W}\) linear wirewound, \(\pm 20 \%\) or better, \(270^{\circ}\) effective rotation (5 off)
VRII-VR14 10k \(\Omega\) 3W linear wirewound, \(\pm 20 \%\) or better, \(270^{\circ}\) effective rotation (4 off)

\section*{Switches}

SI-S6 Double-pole, on/off slide switch (Radiospares) (6 off)

Plug
PLI 3 way panel mounting mains plug and cable connector

Fuse
FSI 1.5 A cartridge fuse and 20 mm fuseholder
Lamp
LPI Neon indicator lamp (Radiospares "miniature 200-250V panel neon" with self-contained resistor)
Sockets
21 Red, 15 Black, 15 Blue, 15 Yellow, 15 White, 12 Green (painted green, see text)
48 miniature sockets, black or red to choice

\section*{Terminals}

Insulated screw, to take 4 mm stackable plugs (Radiospares). I Red, I Green, I Blue

\section*{Miscellaneous}

Material for panel and box: Hardboard: 2 off 13 in \(x\) \(5 i n, 2\) off \(18 \mathrm{in} \times 5 \mathrm{in}, 1\) off \(13 \mathrm{in} \times 17 \frac{3}{4} \mathrm{in}\). White plastic laminate: 2 off \(13 i n \times 5 i n, 2\) off \(18 \mathrm{in} \times 5 \mathrm{in}\), 1 off \(13 \mathrm{in} \times 17 \frac{3}{4} \mathrm{in}\). Softwood: \(52 \mathrm{in} \times \frac{1}{2}\) in square, 4in \(\times \frac{7}{8}\) in \(\times \frac{3}{3}\) in.
20 s.w.g. tinned copper wire. Insulated sleeving

\section*{Dials and knobs}

Nine 0-10 \(270^{\circ}\) dial knobs (Bulgin type K400), black or grey

Fig. 2.6. Circuit diagram of Voltage Source section

Fig. 2.7. Circuit diagrom of Coefficient Potentiometers section

\section*{SOCKET IDENTIFICATION}

The following abbreviations will be used in the programming instructions for PEAC. Applied as prefixes to socket (SK) numbers, they clearly establish the identity of the particular socket referred to. For example, "VS2/SKI"; "CPI/ SK3" etc.

VS Voltage source
CP Coefficient potentiometers
\(S\) Summer
1 Input (Summer)
OA Operational Amplifier

Fig. 2.8. Circuit diagram of Summer 1, 2, and 3

Fig. 2.9. Circuit diagram of Operational Amplifier 1, 2, and 3

Fig. 2.II. Method of bending leads to make plug-in programming resistors

Fig. 2.10. Circuit diagram of mains supply

Fig. 2.12. Constructional details of UNIT "A" Box

Cut plastic laminate to fit hardboard panels with \(\frac{1}{18}\) in overlap, and glue to the box sides first. Reduce the overlap to size when the laminates are firm, before fitting the top and bottom surfaces. When trimming the top and bottom panels down to size, take care not to scratch and score the side pieces. For economy, the bottom plastic laminate layer can be omitted.

When satisfied with the laminated exterior, the 1.062 in dia. hole can be made by a series of small drillings and finished with a half-round file. The box interior and wood may be varnished, but the raised lip at the front of the box is best painted black, or some dark colour, to contrast with the front panel.

The finished box is quite strong, and will support the full weight of a normal adult when the front panel is in place. However, it is recommended that this test should not be applied too often!

\section*{FRONT PANEL WIRING}

Attach the front panel to its box, which will act as a convenient mount when wiring the back of the panel.

The bare earth wire linking all green sockets runs along the top half of the front panel and down its lefthand side, looking from the back; this should be soldered in place before embarking on the sleeved wiring. (No matching green sockets were available for the prototype, so odd coloured sockets were painted green with cellulose model aeroplane dope.)

The 4 mm red, green, and blue terminal sockets on the side of UNIT "A" are designed to take stackable plugs, and will make available the power supply outputs to external sub-units. Wiring can proceed from the terminal sockets along the voltage source (see Fig. 2.3) and then to the rest of the front panel.

Circuit diagrams for all the various "sections" incorporated in the front panel are given in Figs. 2.6 to 2.10 inclusive. Wiring details are given in Fig. 2.3 and Fig. 2.4.

The summer and operational amplifier sections are triplicated-although only one of each of these sections has been shown in the diagrams Fig. 2.2 to Fig. 2.5 inclusive.
The purpose of the miniature sockets, which appear in the above mentioned diagrams, is to take the plug-in programming components; explained by Fig. 2.11. Resistor leads are preformed in the manner shown. The distance between miniature sockets is standardised at lin, to allow the use of a special made-up two pin plug to support the bulkier components, such as large polyester capacitors.
When wiring up the operational amplifier sockets, ignore for the time being the coloured flexible wires shown in Fig. 2.4 as these are the flying leads from the operational amplifier panel, and will be referred back to when the time comes to mount the amplifiers.
Fit the mains connector PL1 and fuseholder for FS1 to the side of the box. Wire up the neon lamp LP1 and the fuse FS1 to PL1 as shown in Fig. 2.10.

\section*{CORRECTION.}

In Part 1, Page 40, last line of the equation in the example at top of right-hand column should read:
\[
E_{0}=-\left(5 \frac{10}{10}-3.5 \frac{10}{2}+2 \frac{10}{100}\right)=-(5-(3.5 \times 5)+0.2)
\]
therefore \(E_{0}=12.3\).

\section*{Next month: Power supply and operational amplifiers}

\section*{AUDIO TRENDS}

A portable stereo record player for the home is the latest addition from Daystrom Ltd, to the Heathkit range of construction kits.

Called the SRP-1 it is housed in a factory preassembled cabinet covered with two-tone blue and grey rexine with vynair covered speaker grilles, and has a handle for ease of transportation.

One speaker enclosure can be detached from the main cabinet to obtain best stereo separation. A B.S.R. four speed automatic record changer is mounted on a swing-down platform.

When it is necessary to move the stereo record player from one place to another, the speaker enclosure clips on to one end of the cabinet and the record changer folds up in to the cabinet to form a "suitcase".

The only soldering required is when wiring the amplifier printed circuit board and interconnecting wires. The wiring procedure is set out in a fully illustrated step-by-step instruction manual.

The SRP-1 is mains operated and the transistor (four each channel) amplifiers give a total power output of 3 watts r.m.s. The frequency response is 50 Hz to \(12 \mathrm{kHz} \pm 3 \mathrm{~dB}\). There are three controls: volume, balance and tone. The speakers are 15 ohm 8in \(\times\) Sin permanent magnet types. Price \(£ 2715 \mathrm{~s} 0 \mathrm{~d}\) incl. P.T.

The Pilot III a.m./f.m. battery operated receiver from H. O. Thomas Electronics Ltd., Vernon Place, London, W.C.1, is claimed to be able to receive pilot to control tower messages on the special v.h.f. band of \(108-130 \mathrm{MHz}\), as well as all normal broadcasts on the a.m./f.m. wavebands.

The superhet circuit design of the receiver contains 10 transistors and 5 diodes with telescopic aerial for v.h.f./f.m. reception.

The recommended retail price of the Pilot III is \(£ 13 \mathrm{13}\) s including leather case, battery and earpiece for personal listening.

The Cosmocord GP80 is a miniature monophonic ceramic pick-up cartridge specially designed to withstand robust treatment.

One typical application for the GP80 is its use in car record players where the record is inserted in a slot, and the cartridge has to withstand the added vibrations from the roads while the car is in motion.

Further details and performance data can be obtained from Cosmocord Ltd., Eleanor Cross Road, Waltham Cross, Hertfordshire.

Sinclair Radionics Ltd., make their appearance in the hi fi amplifier field with the Sinclair Neoteric 60 Integrated Stereo Amplifier priced at 55 gns . As with previous products small size and latest technical techniques are used to obtain maximum performance. Housed in a steel case with a solid Rosewood

\title{
IIRRHET PLACE
}

Pilot III Receiver from Thomas Electronics

Sinclair Radionics Neoteric 60 StereoAmplifier

Heathkit SRP-I Stereo Player

Home Radio Catalogue
front it measures \(2 \frac{1}{8}\) in high, \(8 \frac{1}{2}\) in wide and 94 in deep.

The Neoteric 60 employs modular construction. All external connections are located at the rear, facing downwards to permit flush mounting to wall surfaces.

The maximum output of the amplifier is 60 watts, 30 watts each channel into an 8 ohm loudspeaker load. The frequency response is 20 Hz to \(100 \mathrm{kHz} \pm 1 \mathrm{~dB}\). The total harmonic distortion at 1 kHz with both channels working is 0.08 per cent maximum at 10 watts into 15 ohms and \(0 \cdot 1\) per cent at 15 watts into 8 ohms.

There are five input facilities: magnetic pick-up, ceramic pick-up, radio tuner, tape head and auxiliary. Outputs for tape recorder providing 100 mV r.m.s, stereo headphones, speaker terminals and switched mains outlet are provided.

The front panel controls are in the form of selector bars with international identification symbols printed on each bar, and are as follows: on/off, incorporating indicator light; two controls providing three h.f. cut-off frequencies; 1.f. rumble filter; mono/stereo switch; three input selection switches providing equalisation for five inputs; tape monitor switch; balance control; volume control; bass and treble controls.

The Neoteric 60 is fully guaranteed and is available from Sinclair Radionics Ltd., 22 Newmarket Road, Cambridge.

\section*{LITERATURE}

A new 90 page catalogue has been published by Sound and Science Ltd. It contains more than 20 separate sections listing over \(500^{\circ}\) items of hobby and do-it-yourself equipment, much of which is available in varying degrees of sophistication to satisfy all age-groups. Microscopes, for example, are priced from 42s for a small but effective hand-held model to £98 for an advanced, industrial standard instrument.

The section on optics is the largest, offering comprehensive selections of optical instruments from powerful refractor telescopes to pocket magnifiers.

Other sections cover sound reproduction; natural science; motoring and boating; and electronics and engineering kits. Copies of the catalogue are available from Sound and Science Ltd., 3-5 Eden Grove, London, N.7, price 3s 6d.

Many new items have been added to the new 4th Edition of the excellent Home Radio (Components) Ltd. catalogue. The new edition has over 250 pages and contains a new component prices catalogue supplement. Like the previous issue the catalogue costs 7 s 6 d plus 2 s postage but there are five gift coupons valued at one shilling each. One shilling is deducted from each order of one pound if accompanied by a coupon.

for the EXPERIMENTER
By M.L. Michaelis M.A.

4-RADIATION DETECTORS icontinued); DETAILS OF G.M. HEAD UNITS FOR STRACE

Following ihe discussion on gas ionisation trpe rad ation detectors we now consider arious other ty jes, insluding solid state and scintillation detectors.

SOLID STATE RADIATION DETECTCRS
The range of nuclear radiaticas before complete absorption is much shorter in solid supstances than in a gas. Thus alpha part cles of some 5 MeV energy will travel atout 8 cm in ai \({ }^{-}\), but only about 0.1 mm in solid subst ances.

In principle the barrier layer of any emiconductor device forms a rajiatior detector in this sense, because the ons released by a particle stopped in the barrier lawer will affect the diode or colfector currem of the deviec. The resulting pulse amplitudes are very sinall, egain requiring critical amplifier equipmert. But the amplitudes are essentially proportional to the energy of the incident parsicles deposited in the barrier layer.

The resolution, i.e. the minimised spread of actual pulse amplizudes obtained for a given st-ictly constant ircident particle energy, is ve-y favourable indeed with modem barrier-layer radiation detectors. The rechnolegical protlems are here tuofoid. Firstly, the need to p-oduce sufficiently uide barrier layers for complete absorption of the incident paricles. Secondly, the feed to locate the barrier ayer right at the surface of the device so that the radiation has to pass as Sttle irsensitive naterial as possible before reaching the active layer.

However, present-day research is misterirg these problems, and barrier-layes radiation detectors a-e widely used, especially in the instrumentation of space research satellises.

CIrdinary semiconductors and ransistors are certainly sensitive to nuclear radiation of sufficiert intensity, as maji be encountered ambient in cuter space. This has
led to certan probicirs in the design and selection of diades and tran=istors is he clectronic circuits in space veticles. to thake heir performanee reliable in the face of intense nuc car radiation. But it is quite pointless for the anmateur to ritempt using erdinary diodes and transistors as nuclear tid ation detezters. since response is absent or negligible at the iutensities which are safe to handle.

SCINTILLATION DETECTCRS
A diferert form: of solid state ionisation radiation detector mates use of the scintiflat on effect.

The electon: dislodged in the crystal sirucsure \(t\). ; incident, absorted nuclear radiat on, wilt ultimately drep back to their correct pos tions if no voltage is applied. In doing so, thes elease their excitation energy as clectr.). magnetic -adiatior. If suitajle crystals are chose?, no:ably sodrim icdide, ciehracens or certain proprictary plestics, the em ttec elecirmagnetie radiations are visitele or ultra-vialet light, which can be p cked up and converted to electrical pulses by conemtipa! photoelectric devices. The comberation of a scintilato- and a photoelectric device is cal ed a scintilat on detecror, see Fig. 4.1a.

Scintillatio crystals must be highly purified and grown as single crystils over their in ire volume. Impuritios and irregidarties would permit energy dissipation by m ans othe than light enission. so that such inferior crustals woald te uscless as radiat on detectors. However. the inherert adianiages or a ploperly grown and purified scintillator crys:a are comeiderable. Above all, it is tery readily poisible to grom crystals with large volumes, whereas it s dificuit to nb ain larga barrier-layer volumes in a semisonductor. I is thus easier to ensure total absorption of indent raciation n the scintillator crystal.

On the other hend, it is more difïcult to get all the light out of the brystal and into the photrelectric devize without
severe losses, so that the energy resolution of a scintillation detector is inherently poorer than that of a barrier-layer detector. Various fractions of the emitted light get lost, according to the positions of enission within the crystal, so that incident nuclear radiation of strictly constant energy produces output pulses from the photoelectric device spreading over a range of amplitudes. This problem hardly arises with a semiconductor barrier-layer detector, because it is a simple matter to draw off essentially all liberated ions with suitable applied voltages.

\section*{ENERGY RESOLUTION}

The scintillation detector specified for our STRACE equipmınt possesses an energy resolution of about 10 per cent This has the following meaning.

If a ve y large number of incident particles of energy \(E\) are imag.ned, and the resulting output pulses from the photoelectric device are sorted according to amplitude, we find a maximum counting rate for the amplitude corresponding to \(E\) (see Fig. 4.1b). In the ideal case, there should be no counts at all for other amplitude levels, but in practice there will be progressively fewer counts as we move away from \(E\) on either side.

We now look for the amplitudes at which the counting rate is half that for the position \(E\), i.e. half the maximum observed rate. The distance between these two halfvalue points, expressed as a proportional percentage of \(E\), is the resolution mentioned above.

In practice, a resolution of 10 per cent means that two nuclear radiation streams must differ in energy by at least 10 per cent if they are to be resolved clearly by the scintillation detector, to produce separate counting rate peaks at the corresponding pulse amplitude levels. Barrierlayer radiation detectors have been produced with resolutions of 1 per cent or better under optimuri professional conditions. A resolution of 5 per cent is already extremely good for a professional scintillation detector, and our value of 10 per cent is by no means poor for this type of detector, even in professional circles.

\section*{LIQUID STATE RADIATION DETECTORS}

Certain liquids and solutions can be excited by absorbing nuclear radiation, with subsequent de-excitation and emission of light. Thus scintillation detectors may well use liquid scintillators in place of solid crystals. There are no other important kinds of liquid radiation detectors.

\section*{CHOICE OF DETECTOR TYPE}

The choice between a liquid scintillator or a scintillator crystal for a scintillation detector is governed by the type of nuclear radiation and the type of radioactive sample to be measured.

As a general rule, the physical dimensions of the scintillator should be of the same order as the range of the radiation in the scintillator substance, so that there is a good chance that light will be enitted anywhere within the volume of the scintillator.

Secondly, the radiation must be able to "get into" the scintillator, i.e. the range of the radiation must be very much greater than the thickness of any container used for the scintillator. Ganma rays in the energy range from 0.1 to 3.6 MeV are most commonly met with from radio-active substances, and these have ranges of many centimetres in solid matter. A sodium iodide crystal 1.5 inches in diameter, 2 inches long, contained in a thin aluminium capsule, is thus very suitable for this kind of radiation and has been specified for our STRACE equipment.

Beta rays in the same energy range will penetrate at most a fewmillimetres, and small anthracene crystals are often used here in professional equipment. Nevertheless, reliable work is difficult in this manner, so that we

Fig. 4.la. Construction of a scintillation detector

Fig. 4.1b. Definition of energy resolution of a spectrometer

Fig. 4.2. Circuit diagram of the STRACE G.M. head unit
have taken a different approach in our amateur equipment. G.M. tubes with the electrodes in a thin-walled glass tube sealed coaxially inside an outer glass tube into which radioactive samples are introduced (see Fig. 3.4a), are eminently sensitive to beta rays, since these can easily penetrate the thin glass walls of the inner tube and the thin layer of sample material surrounding it. We have thus specified Mullard MX124/01 G.M. tubes for the STRACE. These tubes are in fact also sensitive to gamma rays, so that they have excellent response for fission products, such as are found in rain, snow, foodstuffs, vegetation, soil samples, etc. from the fallout of nuclear explosive tests.

Alpha radiation has a range of only a fraction of a millimetre in sold matter, so that it is extremely difficult to get it into a radiation detector from an outside source. For this reason, accurate measurements of alpha radiation are very difficult and thus hardly recommendable--or necessary for that matter-for amateur studies. The most effective method is to introduce the alpha-radioative sample into the detector itself. If a liquid scintillator is used, the alpha-radioactive substance may be dissolved in it. Alternatively, it may be deposited on the electrodes or mixed-in with the filling gas of a G.M. tube. Such methods are largely confined to professional circles, and destroy the detector for each measurement.

If the amateur wishes to detect and measure alpha radiation, a good silicon surface-barrier diode detector is probably the best device for his purposes. (We have already published an article in this journal on this type of barrier-layer radiation detector and its basic circuitry.) After suitable preamplification, the pulses from this detector can be handled by the STRACE radiation meter unit.

Alpha particles give by far the largest pulses with a barrier-layer detector, because they are absorbed essentially completely in the barrier layer. Other types of

STRACE
G.M. HEAD UNIT

General view of the G.M. head unit. The cover cap has been removed and the top of the sample tube can be seen
nuclear radiation usually have a greater range and thus deposit only a fraction of their energy in the barrier layer. Simple amplitude threshold discrimination following a barrier-layer detector can thus distinguish alpha rays from any other types of radiation which may also be present.

\section*{THE CLOUD CHAMBER}

To complete our survey of radiation detectors, we must mention a few other kinds which have attained some technical importance.

The cloud chamber is of great historical importance, and derivatives thereof are vital tools in present-day research. The principle is to reduce suddenly the pressure of a volume of gas above a layer of water so that the gas is supersaturated with water vapour. The ionisation of the gas along the track of a particle of nuclear radiation then induces condensation of fine water droplets along that track, so that the track can be photographed in full detail. The type and energy of the particle can be determined by applying magnetic and/or electric fields and noting the resulting curvature of the track.

Similar track recordings can be made with nuclear emulsions. These are special photographic films, either stacked or with appropriate thickness on a single film. The ionisation produced by the nuclear radiation is equivalent to exposure, so that the track image appears during conventional development of the films.

Ordinary amateur photographic films are quite sensitive to nuclear radiation. If such films wrapped in black paper are sprinkled with radioactive substance and kept for some hours or days in this state before developing, the continued on page 119

The pulse pre-amplifier assembly. All circuit components (see Fig. 4.2.) are wired onto a 9-way tag board
(Below). An interior view of the G.M. head unit. This shows the pre-amplifier assembly mounted inside the casing, also the underside connections to PLI. PL2 and VI

\section*{PART Z}

THE integrated circuit tape recorder, using separate record/replay amplifiers, was described last month. Details of the oscillator coil and panels were given. Now the electronics construction is shown followed by setting-up procedure.

\section*{CONSTRUCTIONAL POINTS}

The amplifier section was constructed on a piece of perforated board with a 0.1 in matrix (Fig. 4a). The interconnecting wires between components are formed from 24 s.w.g. tinned copper wire as indicated in Fig. 4b. The potentiometer terminals are fed through the board offering a simple method of mechanical construction coincident with ease of examination. The indicator light is wired directly on the board in such a position as to shine through the panel at the appropriate point. The front panel, which houses the amplifier in its entirety, is made from \(18 \mathrm{~s} . \mathrm{w} . g\). aluminium and is finished with an acrosol spray of a suitable colour.
A \(\frac{1}{2}\) in tapped pillar is glued to the front panel with Araldite (as shown in Fig. 3b last month) to secure the perforated board to it.
The meter can be of almost any type as long as the rating at full scale deflection is 1 mA with an appropriate marking indicating the maximum record level at three quarters of full scale. If necessary this part of the scale above 8 can be coloured with a red pencil while the \(0-8\) section can be coloured green (see setting-up procedure).
When holes are being drilled into the deck plate it is essential that no swarf falls into the mechanism and this may be obviated by smearing the drill liberally with grease which will tend to hold the fine swarf which would otherwise cause damage. The holes to take the power supply are pre-drilled by the manufacturer. It is advisable to remove the head cover and top plate of the deck while work is being carried out to
ensure that the finish is not damaged, but do not allow swarf to enter the head cases otherwise damage can ensue.

When ordering the extra replay head make sure that the azimuth spring and screw is ordered as well. (This will be described later.) The fitting of this is self explanatory by observing the record head which is already fitted. The replay head must be aligned for azimuth as indicated in the section on setting-up, otherwise the upper frequency response of the tape recorder will be severely limited.

Capacitors C15 and C18 have been placed on the back of the board so that any constructor, who wishes to equalise the recording amplifier more precisely for operation at \(3 \frac{3}{4}\) and \(1 \frac{7}{8} \mathrm{in} / \mathrm{second}\), may do so while making a mechanical link to the speed change spindle that will operate a set of contacts to switch the capacitors. The wires to this switch should be screened to avoid instability. For \(3 \frac{3}{4} \mathrm{in} /\) second C 15 is \(0.022 \mu \mathrm{~F}\); C18 is 680 pF . For \(1 \frac{7}{8} \mathrm{in} /\) second C 15 should be \(0.033 \mu \mathrm{~F}\) and C 18680 pF .

\section*{SETTING-UP PROCEDURE}

Once the tape recorder has been built and checked for wiring errors, a shorting link should be placed temporarily across D1 to minimise the risk of damaging the output transistors should there be some fault condition in this area. The unit may now be switched on in the replay condition and the indicator light should come on.

Connect a d.c. voltmeter from the emitters of TR2 and TR3 to the negative rail. VR2 should be adjusted for 6.2 volts at this point. No further setting-up is required for the replay amplifier. Now remove the shorting link from D1. An indication that this chain is working may be obtained by turning up the replay volume control and the tone control. A hiss should now be heard in the speaker.

Fig. 4a. Component layout on the perforated board

Fig. 5. The tape recorder assembled and wired. The main component board (top) indicates the wiring connection hole numbers (see Fig. 4b)

Under no circumstances should the replay amplifier be terminated by a speaker or other load of less than 15 ohms otherwise the output transistors will be destroyed. Also it is inadvisable to run the amplifier with a sinusoidal input signal in excess of 4 kHz unless the output voltage developed across the load is less than 1 volt peak-to-peak.
The recording head lead which is connected to the negative rail may be disconnected and a 100 ohm resistor inserted in series with this lead and the negative rail so that the audio current and bias current may be checked. This operation is only required to calibrate the level meter, or if a fault in the recording chain is observed, as the current levels are pre-determined by the associated values of components. To measure the correct voltages present across the extra 100 ohm resistor an a.c. millivoltmeter capable of measuring down to 10 mV full scale deflection, and also capable of measuring 50 kHz , should be used.

Adjusting the azimuth screw of the extra replay head

\section*{Rear view of the head block and wiring. The screwdriver is pointing to the extra replay head}

To measure the record current, switch to the record position, disconnect C19 and increase the record volume control to the maximum output condition. A pure sine wave signal at 1 kHz should be applied to the mic input socket at a level in the region of 1 mV , this level should now be increased until the a.c. millivoltmeter reads \(4 \cdot 2 \mathrm{mV}\). With this level held steady VR5 should be adjusted until the meter reads 8 which indicates the maximum level that may be recorded without the introduction of distortion.

Now reduce the input signal so that the measured output signal falls to 1 mV ; alter the input signal frequency to 10 kHz . The output should now be in the order of 4 mV . If this level is recorded for some little time the replay gain may be advanced and the azimuth adjustment for the replay head may be adjusted for maximum output at this frequency whilst the unit is in the replay condition.

The replay head is secured to the sub-plate by two screws; one of these screws has a spring washer. This screw is adjusted for azimuth alignment, i.e. the gap in the head core should be exactly at right angles to the direction of tape movement.

This is done by recording a high frequency signal (about 4 to 10 kHz) and replay this signal while monitoring the output on an a.c. millivoltmeter. Adjust the azimuth screw (described above) for maximum output at this frequency. The adjustment is fairly critical and should be very carefully done. It is advisable to keep the replay volume as low as is convenient for this operation to avoid large output dissipation in the output transistors at this high frequency.

After azimith alignment, go through the record amplifier calibration procedure again, just to make sure that previous adjustments are still correct.

If the signal is now removed with the record volume control reduced to zero, C19 may be reconnected and the voltage measured across the 100 ohm resistor should be 22 mV . If this is reading low C19 may be increased in value and vice versa.

The mic input socket is designed to take a moving coil microphone with an impedance in the order of 100 to 600 ohms; the tape may be fully modulated with an input signal as low as \(500 \mu \mathrm{~V}\). The RAD/GRAM socket input presents an impedance of 220 kilohms and is suitable for most crystal pick-ups, modulating the tape fully with an input level of 400 mV .
It is most important that the speaker output socket is isolated from the rear chassis as shown in Fig. 5 otherwise the supply voltage will be shorted to earth. It is recommended that small insulating washers are placed at either side of the phono socket.

Do not insert or remove the speaker plug while the tape recorder is switched on.

\section*{NUCLEONICS FOR THE \\ EXPERIMENTER \\ continued from page 115}
outlines of the radioactive crystals or heaps will be found to have "printed through". Such experiments are instructive and well worth trying on the part of amateurs. The method is known as auto-radiography when the aim is to produce blackening of the film in proportion to the activity, rather than photographing particle tracks.

\section*{COLORIMETRIC DETECTORS}

Colorimetric detectors consist of special glass or plastic which suffers permanent discoloration in proportion to the dose of nuclear radiation it is exposed to. Persons working in nuclear research establishments or in industry where radioactive substances or radiation are employed, are bound by law to carry radiation detectors on their person, e.g. in a pocket, which permit subsequent evaluation of the total dosage of radiation received by the human body.

Two types of such "personal dosage monitors" (dosimeters) are prevalent. The first type is simply an autoradiographic sheet of film in a lightproof package. The second type takes the form of a fountain pen, containing a small reed electrometer and optical viewing system with scale.

The electrometer is charged on a power pack such that the reed is deflected onto the zero-mark of the backwardsreading scale. Incident nuclear radiation gradually discharges the self-capacitance of the reed with respect to the casing, so that the received dosage can be read-off at any time by looking through the barrel against a light. The insulation is so good that self-discharge due to leakage is negligible over 24 hours, making these units eminently suitable for daily monitoring of persons potentially exposed to nuclear radiation.

\section*{G.M. HEADS OF STRACE}

We now give some practical details of the G.M. head units used in the STRACE equipment.

The G.M. heads contain the G.M. tube and a simple transistorised pre-amplifier, whose purpose is to reduce the impedance level to a low value suitable for feeding the pulses down the coaxial cable to the radiation meter unit.

The accompanying photographs show the construction of the G.M. heads, using a Mullard MX124/01 tube in each unit. This tube is of all-glass construction, with the sensitive section sealed coaxially inside a glass sample tube. About 10 ml of liquid may be filled into this tube, or solid samples may be suspended on a small filter paper in the annular space, using a tag of Sellotape.

The casing should be made of brass or aluminium to provide good shielding, since the circuit is rather sensitive to mains-radiated interference pulses if used in a plastic or wooden case.
The pulse pre-amplifier is constructed on a small tagboard and incorporated inside the casing as shown in the photograph.

The opaque cap must be placed over the open end of the G.M. tube during measurements, since the tubes are slightly sensitive to light.

The theoretical circuit of the G.M. head is given in Fig. 4.2. The amplitude of the pulses developed at the cathode of the G.M. tube is about 10 V in this circuit, so that voltage gain is not required. All three transistors provide current gain. The transistor types are not critical; almost any npn silicon transistor is suitable. The output pulses at PL3 are at low impedance and thus suitable for feeding over considerable lengths of coaxial cable. VR1 should be adjusted such that the pulses at PL3 have an amplitude of 3 V .

The pulses are produced at the G.M. tube cathode by transfer of charge stored in Cl to the cathode circuit stray capacitance. C1 thus influences the pulse amplitude. C 1 is adjusted so that the pulse amplitude across the entire track of VRI is about 10 V .
Next month: Spectroscopy-the measurement of different energy levels

\section*{NEW TELECINE SYSTEM}

The Marconi Company annuances the introduction of an entirely new telecine systern which. it claims, sets a new standard of reproduction of relevision pictures from all types of colour films, black and white films, and slides
At the heart of the colour unit sa version of the well-known Mark VII colour canera which receives images through a revolutionary optical switch, operating faster than the reactior of the hurnan eye, and allowing "on-the-air" cuts between film and slide projectors.
This equipment is probably the first to have the optics, from the lamphouse through the optical switch to the camera itself, designed as one complete system. So little light is lost that a low intensity lamp is employed. A variable density filter adjusts the light output from the lariohouse, enabling increases in intensity to be achie"ed if an extremely dense film is encountered.
The optical switch attached to the camera enables it to scan images from va-ijus combinations of the 16 mm and 35 mm film prejictors and the dual slide projector. Three units cari be grouped arcund three sides of the switch, and on one of these sides
there are two closely spaced inlets for a dual slide projector.
As a result, images are projected on to mirrors within the switch through four inlets. The mirrors move very rapidly in a vertical plane enabling "on-the-air" cuts between any of the film or slide inputs in 0.05 second. As the plane does not alter during the switchover process, the optical image remains stationary, and as fully silvered mirrors are employed there is little light loss through the system.
Two new slide projectors are used individually; slide changing "on-the-air" can be achieved by switching between projectors using the mirrors in the multiplexer.
Owing to the variation of colour fidelity of different films when used in television, it is desirable to correct for film dye inefficiencies, particularly when the film is inserted into a live camera production. This is achieved in the new telecine system electronically.

The photograph below shows the colour television telecine equipment. On the left is the 35 mm projector, on the far side a 16 mm projector, and on the right is a dual slide projection unit. The colour camera and optical switching system is in the centre.

\title{
PULSE CODE MODULATION TELEPHONE TRANSMISSION
}

\[
\begin{array}{lc}
\text { SAPAPLING. PROL JCING } & 24 \text { CHANNEL PAM. } \\
\text { E AMPLITUDE MOOULATION } & \text { SAMPLES PLACEO } \\
\text { (PAM) SIGNALS } & \text { SEQUENTIALLY IN TIME } \\
& \text { DIVISION MULTIPLEX } \\
& \text { (T.D.M) }
\end{array}
\]
PAM. \(52 M P I E S\) COMPAREC WITL A REFERENGE
VCLIAGE ANE COOED
INTO A JNAPY FORM
:OUANTRED)
PULSE COCE MODULATION
(P.CM)

EOLLOWING many years of developFment and field trials, the Post Office has now officially inaugurated the p.c.m. telephone transmission technique in London and will quickly follow up with similar systems in provincial areas

Pulse code modulation was first conceived in principle by A. H. Reeves Senior Scientist with Standard Telephones and Cables, in 1938 , following experiments on digital transmission techniques. The idea was slow to become commercially viable because of the shortcomings of valve componerits
at the time. The advanced development of high speed switching transistors and digital integrated circuits, which we have today, provides the ideal means to solving these early problems

The principle of the system lies in breaking down the speech signal into several narrow band pulses with amplitudes varying in proportion to this signal. By transmitting a limited number of pulses it is possible to use the time between pulses to inject pulse codes from another channel on the same transmission wires. In fact, the new Post Office system uses four wires to transmit 24 speech channels simultaneously.

The pulse rate has to be very high to achieve good intelligible speech reproduction on all channels in this case 8,000 pulses per second. The diagram shows how the speech is processed through sampling, pulse amplitude modulation, time division multiplexing, and coding in binary form. The receiving terminal has to decode the transmission signal in reverse order before the message can be understood by the receiver

Although the system can be used over any length of time, its initial importance is over long distance routes, where present demand for transmission time exceeds the supply of multichannel cables. Repeaters are used every 2,000 yds to maintain the quality of speech
code. The long term cost of installing p.c.m. is said to be "competitive by comparison with the supply and installation of additional cables for the conventional system".

Floor space in exchanges is also at a premium; the new system would occupy a fraction of the space required for the older automatic electromechanical equipment

Initial contracts have been placed with S.T.C and G.E.C. for 72 p.c.m. groups, with the possibility of a further 160 groups later this year. These will serve outlying country areas around suburbia, including Redhill, Caterham, Esher, Weybridge, Ashford, Walton-on-Thames Staines, Uxbridge, Watford, Potters Bar, and Welwyn Garden City.

An undergroinnd repeater on the p.c.m. Link between Reading, Maidenhead, and Slough

\section*{RACTICAL}

Next month, PRACTICAL ELECTRONICS includes full details of a specially designed lighting unit bringing all the convenience of home lighting to campers. All you need is a 12 V battery to run this transistorised unit, which is incorporated in the casing of a 9 in fluorescent tube. Simple to build, and costs little to run-a boon for all readers who enjoy camping holidays and weekends.

MARCH ISSUE ON SALE

Other constructional features
IMPACT COUNTER Wide range of applications wherever small moving objects heed to be recorded.
RHYTHMIC SOUND EFFECTS UNIT Coupled to a suitable audio source, enables a host of fascinating sounds to be created.
SPECIAL "BEGINNERS" PROJECT AN ELECTRONIC THERMOMETER

\section*{SEMICONDUCTOR}
 3-TRANSISTORS

Probably the best known semiconductor device is the thansistof which is now undertaking the many and varied jobs that valves have so far handled in most branches of elderonics. The transistor can be used as an electronic switch, an amplifier, oscillator, detector, or modulator; it can, in fact, do almost anything that the thermionic valve can do-often more efficiently.

The very first transistors were made rather like the point contact diode (described lass month), but with two cat's whisters instead of one pressing upon a piece of \(n\)-type semiconductor erystal. In the early days of radio the author recalls experimenting with a crystal detector in an endeavour to get better results from a crystal set. Batteries were comnected to the crystal while two cat"s whiskers were aranged to make contact with the erystal of galena, which was popular with crystal set enthusiasts.

There was not much improvement in recention, but with one combination of comnctions the circuit could be persuaded to oscillate at critical settings of the two cat's whiskers. In retrospect, it seems that the transistor effect might unwittingly have been discovered, but little importance was attached by the atothor to the oscillating crystal set at that time.

Later, however, when point contact transistors were announced, further experiments were undertaken to simulate the early effect by some microscopic work on point contact diodes -fitting two catts whiskers to these. The basic transistor effect was then demonstrated more scientifically.

\section*{CONSTRUCTION}

Before going on to investigate this effect, let us see how transistors are made today.

The point contact technique is rarely employed now. and more sophisticated techniques have been evolved to obtain the two basic transistor junctions. One technique is a development of the junction diode, where three regions of suitably doped crystal are arranged to form a sandwich, as shown in Fig. 3.1a

When the outer regions are \(n\)-type and the inner \(p\)-type, the transistor is called an npn type. Conversely, a pup transistor has two \(p\)-type regions sandwiching an \(n\)-type region. The \(p n p\) and \(n p n\) transistor symbols are given in Fig. 3.1b.

\section*{JUNCTION TRANSISTOR}

This basic mode of construction forms the junction transistor and it is easier to understand the working of a transistor based on this construction. There are
usually three external transistor connections, one joined to the inner region and one joined to each of the two outer regions. The inner region is called the "base" and the outer regions "emitter" and "collector". These are shown in Fig. 3.1a. Consequently, two junctions exist within the transistor's construction.

Fig. 3.1a also shows these two junctions, the one on the emitter side of the base being the emitter junction and that on the collector side- the collector junction. The base is thus common to both junctions. In effect, there are two junction diodes connected in series opposition, with the base being the common element of each one.

Fig. 3.le shows the equivalent circuit symbol in diode form. The two junctions exhibit exactly the same effects as two separate junction diodes joined back to back. That is, they pass a high current in the forward direction and a low current in the reverse direction (see Part 2 last month).

Fig. 3.2 represents a \(p m p\) transistor, with the collector junction biased for reverse (high resistance) conduction and the emitter junction for forward conduction. Thus, the collector is negative with respect to the base and the emitter positive with respect to the base.

The transistor effect is produced, however, because the hase is common to hoth junctions and because it is a very thin layer of semiconductor material compared with the end layers.

Due to the forward biasing of the emitter junction, (i.e. battery positive to emitter), holes flow from the \(p\)-type emitter into the base and the potential barrier is overcome. Some of the holes entering the base recombine with the electrons already present there, but many of the holes pass through the base region, because it is very thin, and then come under the intluence of the negatively biased collector. thereby creating the collector current.

Fig. 3.I. Basic junction transistor

Fig. 3.2. Basic action of a correctly biased pnp transistor

Although the collector junction is biased for reverse conduction, from \(n\) (base) to \(p\) (collector) a high collector current flows due to the diffusion of holes through the base region from the emitter junction. Therefore, the collector current will rise as the current in the emitter junction is increased. It must be noted, however, that current from the emitter junction flows in the base circuit, so it is generally considered to be this current (base current or base bias) which controls the collector current.

An \(n p n\) transistor works in exactly the same way, but electrons instead of holes constitute the current carriers. Electrons, for instance, flow from the \(n\)-type emitter into the p-type base due to forward biasing of the emitter junction. These are attracted into the collector circuit by this \(n\)-type region being connected to a positive source. Note, therefore, that the bias voltage polarities are reversed on \(n p n\) transistors.

\section*{AMPLIFICATION}

So far so good, but how does a transistor amplify? We know that a semiconductor junction biased for reverse conduction is equivalent to a high resistance element (low current for a given applied voltage) and that a junction biased for forward conduction is equivalent to a low resistance element (high current for a given applied voltage).

From Ohm's law the power yielded by a given current is greater in a high resistance circuit than in a low resistance one. For instance, the power in watts \((P)\) is equal to the current in amperes (\(l\)) squared multiplied by the resistance in ohms \((R)\). Thus, since the emitter-to-collector current is substantially the same through the transistor, while the emitter junction is of low resistance (forward biased) and the collector junction high resistance (reverse biased), the transistor yields a power gain.

However, the current gain in the basic configuration of Fig. 3.2 is less than unity, typically about 0.98 . This is because some of the holes which represent the emitter current recombine with the electrons in the \(n\)-type base region. In other words, not all of the emitter current carriers end up as collector current. This remaining current represents the actual base current of the transistor.

The emitter current is thus equal to the collector current plus the base current. If the emitter current is, say, 1 mA , the collector current might well be about 0.98 mA , leaving \(20 \mu \mathrm{~A}\) base current. The configuration shown in Fig. 3.2 is called "common-base" because the base circuit is common to both emitter and collector circuits. The figures given above illustrate how the currents combine but, in fact, a very much smaller portion of the emitter current is lost through leakage.

Typical values of emitter-to-base and collector-tobase resistance are 500 ohms and 1 megohm respectively, these representing a resistance gain of 2,000 times, producing power and voltage gains in the order of 1,900 and 1,960 times respectively.

\section*{PRACTICAL CIRCUITS}

In practical circuits a single battery serves both junctions, as shown in Fig. 3.3. These circuits are all based on pnp transistors, but they would have the same configuration with \(n p n\) devices except that the supply polarity would be reversed.

Resistors R1 and R2 in all circuits form a potential divider across the supply to bias the emitter junction for a small forward conduction, R3 is the load, C1 the input coupling capacitor, and C2 the output coupling capacitor. R4 in Fig. 3a is the emitter resistor across which the input signal is applied, while R4 in Fig. 3.3b is used essentially to combat any increases in collector current with temperature rise of the junction.

Fig. 3.4. One form of diffused alloy transistor construction

Fig. 3.6. Basic development of (a) mesa and (b) epitaxial transistors

Fig. 3.5. Basic construction of alloy diffused transistor

To avoid the a.c. signal being partly lost through R4 (Fig. 3.3b), a capacitor C3 is connected across R4 10 make R4 appear as a short circuit to the a.c. signal. C3 has no effect on the d.c. voltage. The action of C3 in the other two circuits is similar. In (b) and (c) the signal current is superimposed upon the standing base current, while in (a) it is superimposed upon the emitter current.

The basic d.c. conditions of the transistors are virtually the same for amplification in all three configurations, but the variations in input and output connections have some effect on the impedance (a.c. resistance) \(t 0\) the signal itself. The differing impedances, gains, and phase shift are shown in each case.

\section*{TEMPERATURE EFFECTS}

Previous articles in this series revealed the falling resistivity of semiconductor materials with rise in temperature. This can prove disastrous in some transistor circuits, especially amplifiers, and some means must be used to combat the effect, otherwise the junction properties could be destroyed. Metal heat sinks are used on large diodes and power transistors to dissipate the junction heat, but with smaller devices the emitter resistor, in conjunction with the base potential divider is set to a value which would control the operating d.c. voltages of the transistor.

Since all the collector current fiows in the emitter resistor, an increase in this current would cause an increasing voltage drop across the emitter resistor. Because this voltage is of a polarity which counters the base voltage (for instance, reduces the voltage across the base-emitter junction), the forward current in the base-emitter junction is automatically pulled down as the collector current rises. This, in turn, reduces the collector current giving d.c. stabilisation. Other methods are employed but they all work on the same principle of d.c. feedback over one, two or more directcoupled stages.

\section*{ALLOY DIFFUSED TECHNIQUE}

A major problem with the junction transistor is that the thickness of the base region limits its efficiency at very high frequencies; it is impractical to reduce the thickness to permit operation much above 15 MHz . This shortcoming has led to the development of the alloy diffused technique; devices based on this principle can work up to at least \(1,000 \mathrm{MHz}\).

There have been various developments along these lines. One design uses a wafer of p-type material which eventually forms the collector of a pnp transistor. Two metal pellets forming the emitter and base are then placed side-by-side on the wafer, the former embodying both \(n\) - and \(p\)-type impurities and the latter \(n\)-type only. This set-up is heated to cause the pellets to diffuse into the collector wafer.

Because the n-type impurity diffuses slowly compared with the \(p\)-type, a very thin base layer (about 0.005 mm) is developed between the \(p\)-type collector and the \(p\)-type emitter pellet. This in itself solves the problem of the relatively thick base region of the junction transistor but, in addition, the holes (in the \(p n p\) device) from the emitter are actually accelerated through the base region, owing to the non-uniform distribution of the n-type impurity in this region. This is brought about by the \(p\)-type impurity of the emitter diffusing into the start of the base region. This type of construction is often called a "drift field" transistor.

The technique is also used in some basic junction transistors, where the collector and emitter are in the form of pellets on either side of the diffused base crystal, as shown in Fig. 3.4. Fig. 3.5 shows the basic construction of an alloy diffused transistor.

\section*{MESA AND PLANAR TECHNIQUES}

Different techniques are used in the construction of mesa and planar transistors. In these transistors the original semiconductor wafer serves as the collector, with the base region diffused into the wafer. In this case, the emitter region is diffused (\(n \mathrm{r}\) alloyed) into the base region. A mesa (flat-topped peak) is then etched to minimise the area at the collector junction. Mesa devices can work at high frequencies, they are capable of handling high powers and they are extremely rugged.

Mesa and planar transistors involve two primary constructional activities. The planar structure is created by the employment of diffusion masking materials in conjunction with photolithographic techniques, allowing the junctions to be protected by a nonactive layer. A separate collector contact diffusion (often called epitaxial growth) is used to minimise the collector series resistance. The basic build-up of mesa and epitaxial transistors are shown in Fig. 6.

\section*{SWITCHING}

Having shown how a transistor amplifies an a.c. signal, consider now how a transistor can serve as a switch, important in many electronic applications. It has been established that a transistor allows the control of a relatively large collector current from a very much smaller base current. Indeed, at zero base current the collector current will consist solely of collector leakage current; an increase of base current causes an increase in collector current.

The transistor is said to have "bottomed" when no further rise in collector current is possible with further increase in base current. Most of the supply voltage is then developed across the collector load. The transistor is said to be "cut off" when there is no "real" collector current due to zero base current. In this case, most of the supply voltage appears across the transistor.

Fig. 3.7. Basic switching
circuit

Fig. 3.9a. Input characteristic of a common emitter stage

Fig. 3.8. Monostable switching circuit

Base Current (\(\mu \mathrm{A}\))
Fig. 3.9b. Transfer characteristic of a common emitter stage

These two actions constitute the switching effect.
The principle is well illustrated in Fig. 3.7. Here a small 6 V 40 mA bulb LP2 is connected as the collector load, while switch SI controls the base current. When S 1 is closed, the base is connected to the emitter; then there is no base current and the collector bulb is extinguished. Bulb LP1 in the base circuit then lights up due to the completed path to the battery via switch S1. When S1 is open, a small base current flows in R1 and LP1, via the positive line, but LP1 will not light because this current is too small. However, it switches the transistor on, thereby lighting LP2.

By using two transistors, as in Fig. 3.8, a "monostable" switching circuit is created. This has one state whereby TR1 is switched on while TR2 is off, and one state with TR1 off and TR1 on. In the stable state, TRI is switched on (and held on) by its base current flowing through R2. This causes C1 to charge almost to full supply potential. TR2 is off because its base is held negative, via R3 (note the use of \(n p n\) transistors).

When TR2 collector is shorted momentarily to its emitter, TR1 base goes negative, which switches this transistor off, resulting in a rise of TR1 collector voltage. This is communicated to TR2 base, thereby switching this transistor on, a condition which remains until C 1 discharges through R 2 . The action of the circuit is clearly indicated by the switching on and off of the bulbs in the collector leads.

To conclude this article Fig. 3.9 gives two curves of basic transistor action. Fig. 3.9a shows how the base current rises with increase in base voltage (which is the input characteristic in the common-emitter configuration); Fig. 3.9b shows the transfer characteristic in the same configuration, and reveals clearly how the collector current rises as the base current is increased.

Next month's article will deal with the thermistor, an entirely different kind of semiconductor.

\title{
A Simple \(\triangle \triangle \square \square \square\)
}

ALl the energy for working the headphones of last month's crystal set comes from the radio signal rectified by the diode, and as it is the aerial that abstracts this signal from the passing radio wave, the better the aerial, the louder the signal heard in the 'phones. The earth, too, is very important with crystal sets because the aerial signal is relative to earth, and there must be a return path. On mains sets the earth does not count so much since the set is earthed (albeit, inefficiently) by the connected mains supply. Portables with ferrite rod aerials work in a different way, again. If the crystal set is not giving very good reception, therefore, make sure that the earth is efficient, as well as the aerial.

However, if the aerial is too long it tends to damp the tuned circuit, giving flat tuning, known as poor selectivity. Some improvement is possible under this condition by adding a 100 pF capacitor between the aerial and terminal 3. At best, though, the selectivity of any crystal set is rather poor, and the local station can generally be heard over, at least, a quarter of the rotation of the tuning capacitor; but since a crystal set is for local station reception this does not matter unduly.

\section*{IMPROVING SELECTIVITY}

Selectivity can only be improved by increasing the number of complete tuned circuits and arranging these in so-called "bandpass" mode with ganged tuning

Fig. I. Circuit diagram of the simple audio amplifier. The numbered circles represent the terminal strip connections

\section*{In}
capacitors. A transistor (or valve) amplifier in front of the diode and its tuned circuit makes it possible easily to multiply on the tuned circuits with a consequent improvement both in sensitivity and selectivity. This is called a radio-frequency (r.f.) amplifier because it amplifies the signal delivered by the aerial before it is passed on to the detector diode.

For this month's constructional item it was in the balance whether to illustrate the amplifying capabilities of a transistor in terms of r.f. or a.f. (audio-frequency) signal. The a.f. signal, as present across the load of the diode detector, was eventually decided upon because it was felt that the majority of simple crystal set builders would prefer a more comfortable volume of sound from the headphones of the local station, rather than more sharply-tuned programmes from several stations. The simple a.f. amplifier which forms this month's constructional feature was thus developed.

\section*{TWO STAGE A.F. AMPLIFIER}

This is very basic and easy to build and the extra volume given to the diode signal is significant. Indeed, if a fair aerial and a good earth are used, and a series capacitor connected to the aerial, it will be possible to listen to a few Continental stations which fail to produce an output from the diode alone. This a.f. amplifier also has other useful applications-reference to these will be made in due course as this series progresses.
The circuit diagram of this amplifier appears in Fig. 1. Two germanium \(p n p\) transistors are set-up in common-emitter mode, and the output from the collector of the first transistor TR1 is capacitively coupled to the base of the second one, TR2. Base bias is provided separately to each transistor by the 220 kilohm resistors R2, R4. The base current flowing is almost equal to the collector voltage divided by the base resistance (220 kilohm). A small degree of d.c. stabilisation is given by this kind of circuit, since should the collector current tend to rise due to thermal effects, the collector voltage will fall and thus reduce the base current.
The 4.7 kilohm resistor R1 across the input lead provides the load for the diode detector when the headphones are removed. The circuit as a whole takes only about 1 mA , so a small 9 volt battery will give many months of service provided it is always disconnected after use.

\section*{CONSTRUCTION}

The construction is quite simple and follows the same general procedure as described last month (see Crystal Receiver, page 51).

Careful reading of the text and close study of the illustrations should be undertaken at each stage of construction, and all connections should be carefully rechecked before connecting the battery.

The circuit diagram, Fig. 1, has numbered circles which represent the terminal strip connections, which are also indicated on the wiring diagram, Fig. 2.

An 8 -way plastics terminal block is required and this can be cut from a 12 -way strip or can be the remaining portion from the block used last month.

The first stage is to mount all components on the terminal block before screwing it down on the baseboard. The components should be mounted in the order of the terminal numbering, e.g. R3 between terminal 1 and 6 ,

Fig. 2. Constructional and wiring detalls. Note particularly the transistor connections-refer to key diagrams given above

Showing all components wired to the terminal strip prior to mounting the latter on the baseboard

Mounting plastics terminal strip on baseboard

The completed audio amplifier. The input and phones are not shown connected

\section*{COMPONENTS}

Resistors
\(\begin{array}{ll}\text { R1 } & 4.7 \mathrm{k} \Omega \\ \text { R2 } & 220 \mathrm{k} \Omega \\ \text { R3 } & 4.7 \mathrm{k} \Omega \\ \text { R4 } & 220 \mathrm{k} \Omega\end{array}\)
Capacitors
CI \(8 \mu \mathrm{~F}\) elect. 12 V
C2 \(8 \mu \mathrm{~F}\) elect. 12 V
Transistors
TRI OC7I (Mullard)
TR2 OC71 (Mullard)

\section*{Miscellaneous}

BYI 9 volt PP3 battery (Every Ready)
One 8 -way plastics terminal strip (see text)
Wooden baseboard \(\operatorname{Sin} \times \operatorname{Sin} \times \frac{1}{2}\) in
One spring clip for holding battery
Woodscrews for mounting terminal strip and spring clip
One moulded battery clip with leads (Henry's Radio)
Plastic covered, single core copper wire (Woolworths)
Plastic sleeving

TOTAL COST \(£ 1\) Os Od including battery

R 4 between 2 and 3,C2 between 3 and 6, etc. Note that a link wire is needed between terminals 4 and 8 .

Particular care should be taken to ensure that the transistor leads are wired to the correct terminals, as they can be damaged if wired incorrectly.

Once all the components have been mounted the battery leads should be inserted between terminal 1 (black) and 4 (red). The next step is to mount the terminal strip on a \(\operatorname{5in} \times 5\) in \(\times \frac{1}{2}\) in softwood baseboard. It is a good idea to check the terminal strip wiring before mounting on the baseboard with two \(\frac{3}{4}\) in No. 4 countersunk wood screws.

Finally, the spring clip for the battery should be screwed to the baseboard as indicated in Fig. 2 by a 3 in No. 4 countersunk wood screw.

All that remains is to insert the battery BY1 in the clip and connect the battery to the connectors. No switch is shown in the circuit but the battery connectors act as a suitable on/off switch.

To connect the Crystal Receiver to the Amplifier, the phones are removed from the receiver and inserted in ierminals 1 and 2 (see Fig. 2). Two wires are taken from the receiver output terminals 1 and 2 and inserted in terminals 7 and 8 of the amplifier. It is important that the wire from terminal 1 of the receiver goes to terminal 8 of the amplifier and that the wire from terminal 2 of the receiver goes to terminal 7 of the amplifier.

\section*{OTHER USES FOR THE AMPLIFIER}

This two stage audio amplifier has many other applications. Some of these will be described in future articles.

Next month: An electronic thermometer

\begin{tabular}{|c|c|c|}
\hline & \[
\begin{array}{|ll}
\hline 2> & \begin{array}{l}
\text { BUILD } \\
\text { and USE }
\end{array}
\end{array}
\] & 3 \({ }^{\text {READ and }}\) DRAW and \\
\hline complete range of presentday ELECTRONIC PARTS and COMPONENTS & a modern and professional CATHODE RAY OSCILLOSCOPE & U N DERSTAND CIRCUIT DIAGRAMS \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC} \\
\hline \multicolumn{2}{|l|}{CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . .} \\
\hline - Valve experiments & PHOTO ELECTRIC CIRCUIT - A.C. EXPERIMENTS \\
\hline - transistor experiments & - Computer circuit - d.c. experiments \\
\hline - AMPLIFIERS & - basic radio receiver simple counter \\
\hline - oscillators & - electronic switch time delay circuit \\
\hline - Signal tracer & - simple transmitter servicing procedures \\
\hline \multicolumn{2}{|l|}{This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory--no previous knowledge'required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.} \\
\hline & \\
\hline & RITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please your free Brochure, without obligation, to: we do not employ representatives \\
\hline BROCHURE I NA & BLOCK CAPS \\
\hline ro cut page I AD & Ess \\
\hline
\end{tabular}

PORTABLE TYPE E8. 10. 0.

INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE 0.260 v . BRAND NEW
Keenest prices in the country. All Types (and Spares) from \(t\) to 50 amp. from stock. SHROUDED TYPE
1 amp, f4. 10. \(0 . \quad 2.5 \mathrm{amps}\), 65. 17. 0. 4 amps, \(68 . \quad\) 7. 6 .
 \(12 \mathrm{amps}, \mathrm{f} 19.10\). 0.15 amps , C22. 0. 0. 20 amps , £32. 10 . 0 37.5 amps 65.0 .0 .50 amps 685. O. O. C. \& P. extra. OPEN TYPE (Panel Mounting) \(\frac{1}{2} \mathrm{amp}\), C3. 3. 0. I amp, \&4. 10 . 0 . 2 \(\frac{1}{3}\) amps, 65. 12. 6. P. \& P. \(7 / 6\). PORTABLE TYPE P. 2 mp . portable fitted metal case.
voltmeter, 12 mp , switch, etc. ES .10 .0 . yoltmeter, lamp, switch, etc. similar to above 2.5
P. \& C. \(10 /-\mathrm{m}\)
amp. \(9.17 .6 . \mathrm{P}\), \& C. \(10 /\). P. \& C. 10/-.
amp. S. 17.6. S. 2 C. \(10 /\)

Tin

\section*{100 WATT POWER RHEOSTATS (NEW)}

\section*{AVAILABLE IV THE FOLLOWHNB VALUES}
\(1 \mathrm{ohm}, 10\) a.; \(5 \mathrm{ohm}, 4.7\) 2.; \(10 \mathrm{ohm}, 3 \mathrm{a.;}\)
\(25 \mathrm{hm}, 2 \mathrm{a} ; ; 50 \mathrm{ohm}, 1.4 \mathrm{a} . ; 100 \mathrm{ohm}, 1 \mathrm{a}\).
\(250 \mathrm{ohm}, .7 \mathrm{a} . ; 500 \mathrm{ohm}, 45 \mathrm{a} ; 1,000 \mathrm{ohm}\),
280 mA ; 1,500 ohm, \(230 \mathrm{~mA} ; 2,500 \mathrm{ohm}, .2 \mathrm{a}\). Diameter 3 tin. Shaft length fin., dia. \({ }^{3} \frac{1}{2} \mathrm{in}\). All at \(27 / 6\) each. P. \& P. \(1 / 6\).

50 WATT POWER RHEOSTATS
1 ohm, 7a.; 5 ohm, 3a.; 10 ohm, 2.25a.; 25 ohm, 1.4a.;
 P. \& P. \(1 / 6\).

25 WATT POWER RHEOSTATS
10 ohm, \(1.5 \mathrm{a} . ; 25 \mathrm{ohm}, 1 \mathrm{a}\).; \(50 \mathrm{ohm}, 75 \mathrm{a}\).; 100 ohm, 5 a . \(250 \mathrm{ohm} .3 \mathrm{a} ; 500 \mathrm{ohm}, 2 \mathrm{a} ; 1,000 \mathrm{ohm}\). \(15 \mathrm{a} ; 1,500 \mathrm{ohm}\), . 12a.; 2,500 ohm, . a ; all at 14/6. P. \& P. 1/6. PRECISION FLATPOT. Manufactured by M.E.C. 50 K 45 turn. Fly leads. All metal sealed construction 10/6. P. \& P. \(1 / 6\).
RESETTABLE HIGH SPEED|VENNERELECTRIC TIME SWITCH COUNTER. 4 figure, \(1,000 \mathrm{ohm}\) 200-250 v. A.C. 20 amp. contacts twice on, coil, \(36 \times 48 \vee\). D.C. operation. \&3/10/-. Itwice off, at any manually pre-set time. P. \& P 1/6. 3 figure, 24 v. D.C £1/12/6. P. \& P. \(1 / 6\).
WE NOW STOCK

ForenSANW/A
Multi range meters. New Highly efficient blower unit fitted with totally Model U50D Multi tester, lenclosed 200/250 v. A.C. 50 cycles. \({ }^{2}\) h.p. 20,000 OPV, mirror scaled with overcovers protection. Ranges- mocer, but in first class condition and tested. d.c. yolts: \(150 \mathrm{MV}, 0.5 \mathrm{~V}, 5 \mathrm{~V}, 250 \mathrm{~V}\). Price \(£ 3 / 15 / \mathrm{m}\). P. \& P. \(7 / 6\).
\({ }_{2.000} \mathrm{~V}\); 1,000 volts: 2.5 V , 10 V , 50 V , , Price current: 5 A, \(0.5 \mathrm{MA}, 5 \mathrm{MA}, 50 \mathrm{MA}, 250 \mathrm{MA}\). ITRANSFORMERS Fully isolated low tension Complete with battery and test probe. 65 15s. post paid. There are other \(I\) secondary winding. Input 230 v. A.C.
models available from stoek. Output continuously variable 0-36 v. A.C. Descriptive leaflet on request \(\qquad\) NICKEL CADMIUM BATTERY NICKEL CADMI MM BATMERY Leaflers on request.
Siztered height \(3 \frac{1}{2}\) in., width \(2 月 \times 1 \frac{1}{8}\) in. Weight: approx 13 oz Ex-R A. Tested, 12/6. P. \& P. \(2 / 6\).

INSULATED TERMINALS Available in black, red, white, yellow,
\[
15 /- \text { per doz. P. \& P. } 2 /
\]

2 change over, \({ }^{3}\) ohm coil. 7/6 each
P. \& P. \(1 / 6.3\) for \(20 /-\). Post paid.

\section*{TRALSFORMEBS} LIGHT SENSITIVE SWITCH Kit of parts, including ORPI2 Cadmium Sulphide Photocell, Relay, Transistor and Circuic, etc., 6-12 volt D.C. op. price 25/- plus \(2 / 6\)
P. \& P. ORP 12 including circuit, P. \& P. ORP 12 including
\(10 / 6\) each, plus \(/ /-\mathrm{P}\) \& P.
A.C. MAINS MODEL Incorporices Mains Transformer, Rectifier and specia relay with \(3,5 \mathrm{amp}\) mains \(\mathrm{c} / \mathrm{o}\) contacts. Price inc. circuit \(47 / 6\) plus \(2 / 6 \mathrm{P}\). \& P. LIGHT SOURCE AND PHOTO CELL MOUNTING Brecision engineered Precision engineered
 lens assembly and ventilated lamp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair \(\mathbf{£ 2} 10.0\). P. \& P. 3/6. UUNISELECTOR SWITCHES \(\boldsymbol{N E} \boldsymbol{W}{ }^{4}{ }^{4}\) Bank Uniselector 25 Way Uniselector 25 ohm
coil. \(12-24 \mathrm{v}\). D.C. operation E4.17.6 plus \(2 / 6\) P. \& P.
8 Bank 25 Way 24 v. D.C. operation. 6. 10.0 plus 4/6 P. \& P.
\(U S E D 75 \mathrm{ohm}\) coil 24 v. D.C. 6 Bank 25 position, 5 non-bridging Bridging Wiper \(35 /-\) each. P. \& P. 2/6. MINIATURE UNISELECTOR SWITCH 3 banks of 11 positions plus homing bank. 40 ohm coil. 24-36 v. D.C. operation. Tested, 22/6, plus 2/6 P. \& P.
plus 2/6 P. a
\(\qquad\) Anca COMPACT HEAYY DUTY 6v. D.C. RELAY 2 change over, 3 ohm coil. \(7 / 6\) each.

\section*{SOFT LANDING}

Vemus IV and Mariner \(V\) launched respectively by the Soviet Union and the U.S.A. both achieved their objectives. Venus IV however proved to be the more ambitious and spectacular. Whilst the United States were content to repeat the previous Mariner \(1 /\) programme with a much closer approach to the planet, the Soviet Union repeated their previous programme but this time accomplished a soft landing.

The information so far released relates to Venus IV. During the 129 day journey the spacecraft was regularly interrogated as to its own condition and the monitoring of the space environment. Details of this are not yet released. The softlanding capsule was ejected from the main body at the fringe of the planet's atmosphere. The capsule was a sphere equipped with a heat shield designed to protect the unit from the heat of entry to the point where a parachute could be opened. The time of free fall was some 90 minutes and during this period regular signals were picked up. The long time of descent is said to have been due partly to the fact that during the fall there were times when the braking effects were such that part of the time the unit was suspended in the Venusian atmosphere.

The parachute was jettisoned upon landing and to ensure that the aerials were correctly orientated towards the earth, the payload was so distributed that the capsule would regain its correct aspect however it might fall. It was designed also not to sink in water or benzene and as an additional safeguard should there be an even lighter liquid there was a "sugar lock". This would have dissolved and released a spring aerial to the surface.
There were a number of points of
difference between the new data and that of Mariner \(I I\) when it passed in 1962. The results then given as to the temperature was some 600 degrees K . The Soviet results show that the variations are between 320 degrees \(K\) and 520 degrees K . The atmospheric pressures varied between 1 and 15 atmospheres whereas Mariner II gave figures varying between 5 to 50 atmospheres.

When the American results are released there may be other points of comparison.

\section*{RESCUE IN SPACE}

Spacecraft Surveyor \(V\) will have a special place in space history as the vehicle that was rescued in space. The launch was perfect and some 16 hours later the staff at the operations unit were making ready for the mid-course manoeuvre. At the correct time the vernier engines were fired. Shorly after this the telemetry reported that the helium gas was leaking. The gas is used to force the propellant into the vernier engines. The mid-course manoeuvre had been completed successfully but the pressure of the helium was falling rapidly. The spacecraft was then more than 100,000 miles on its way to the moon.

Groups of engineers covering all the techniques went into action and by the following day set up specia! tests using the next Surveyor which was being prepared for launch.

It was established that if certain changes were made in the order of firing the vernier rockets, there could be a rescue. The vernier rockets have a special duty in the last stages of the flight to enable the soft landing to take place. A command tape was prepared and when the altitude of the craft was indicated at 60 miles above the surface the command commenced. The retro rockets were delayed by 12 seconds at a height of \(150,000 \mathrm{ft}\)-a little more than half the normal point for this action. The danger existed that if the retro burn-out and jettison did not take place in time for the attitude to be stabilised the craft could land and take-off again. However the technique adopted enabled burn-out to occur at some \(4,500 \mathrm{ft}\). The speed of descent was about 60 miles per hour at this point. The verniers now continued to burn to a point 14 ft above the surface and touchdown was accomplished safely.

It is significant that prediction of the results of certain courses of action are possible during a crisis period, and must be looked upon as an important part of the knowhow of extra terrestrial travel.

The rewards that have been reaped from the landing of Surveyor \(V\) have not been completely assessed and only a certain amount of information is available, nevertheless certain important conclusions have been aired.

\section*{MOON RESEMBLES EARTH}

It has been shown that the surface of the moon is similar in chemical composition to that of the earth. The elements which are most abundant on earth are the most abundant on the moon and the rocks mostly resemble volcanic rocks such as are seen in the Deccan Plateau of India and the Giant's Causeway in Ireland.

Though this does not bring us any nearer to knowledge of the moon's origin it does dispose of any ideas that there were chemicals not known on earth. It is safe, to say that the astronauts will tread safely on the surface and that there will be no lunar radiation of a lethal nature to deal with.

\section*{LUNAR WORK PLAN}

The work plan for the men who do land has been disclosed in outline. The first task will be the deployment of instruments which will transmit rudimentary data about the structure of the surface, about the atmosphere, and the temperature gradients. This would represent the first stage after which more sophisticated instruments would be landed by unmanned craft to be followed later by equipment and a shelter to sustain two astronauts for about a fortnight.

During the brief stay that is made there will be great activity, for the astronauts will have to set up a central relay station linked with several satellite stations. More than 30 different sites will be needed for instruments including an optical telescope and the cables linking the sites. The system will have to be tested before the astronauts leave. Power supplies will come from thermoelectric generators.

The central station will be on command from the earth and will transmit to and receive from the satellite stations data which is passed back to earth. This data will be extensive and will concern optical observations, examination of the exterior and interior structure of the moon. Volcanic eruptions and moonquakes will be recorded and also the tidal fluctuations due to the pull of the earth. Electrical and magnetic fields will be measured as well as resisitivity of the surface and the temperature gradient of the crust. It should be possible for such a work unit to function for up to two years without attention.

\section*{NEW X-RAY STAR}

Termed the CRUX XR-I by the joint directors of the project Prof. K. G. McCracken and Dr. A. G. Fenton, this object was the brightest of about 25 discovered which emit X-rays. The equipment used on this project was a group of proportional counters installed behind portholes in the walls of Skylark rockets fired from Woomera.

\title{
4. REDVEDS
}

PRINCIPLES OF TELEVISION RECEPTION By W. Wharton and D. Howarth
Published by Sir Isaac Pitman \& Sons Ltd.
296 pages, \(8 \frac{3}{4}\) in \(\times 5 \frac{1}{2}\) in.

THIS is an eminently readable and excellently produced book which will satisfy a real need by practising engineers or aspiring technicians to have in one book concise accounts of circuits and techniques associated with 625 line u.h.f. transmissions and of colour television systems.
With the advent of transistorised television receivers, the authors, both members of the BBC Engineering Division, have thoughtfully provided parallel descriptions of both solid state and the equivalent valve circuit when analysing sections of the receiver.

From the brief introductory chapter on picture origination equipment and general information on transmission, the book goes on to describe the basic principles of monochrome and colour television together with an informative survey of receiver design techniques. Apart from a chapter on circuit and modulation theory the book is broadly nonmathematical, but for those who would wish to look for more than this succinct but informative survey has to offer an exhaustive 18 page bibliography is provided

Two appendices, one on colorimetry and the other on aerials and feeders provide useful references.
G.M.H.

\section*{ELECTRIC-WIRING DIAGRAMS}

\section*{By R. H. Ladley, C.Eng.M.I.E.E., M.I.Nuc.E. Published by Sir Isaac Pitman \& Sons Ltd. 313 pages, \(7 \frac{1}{2}\) in \(\times 5 \mathrm{Sin}\). Price 25s.}

Every handy man has a nodding acquaintance, at least, with electrical wiring systems. The electronically minded will certainly have a natural affinity to the closely allied subject of lighting and power supply.

Despite any such familiarity it is well to stress at this juncture that the installation of wiring for connection to electricity mains should only be carried out by competent electricians or electrical engineers.
Apart from technical knowledge and practical expertise, it is essential to be well aware of the relevant regulations. Fortunately the essential information is available for student, professional, and keen amateur alike in one pocket sized volume. The latest edition of Electric-Wiring Diagrams is fully up to date with the 14th edition of the I.E.E. Wiring Regulations. The pertinent regulations are set out at the commencement of sections dealing with Mains Fuses, Switchgear and Meters; Distribution Circuits; and Motor Circuits. In all there are 12 sections covering all kinds of domestic, industrial, and amenity requirements for lighting and power. Wiring diagrams total 351. Every conceivable requirement seems to have been catered for.
Ten complete diagrams for cookers are included. Also wiring diagrams for alarm indicating systems and telephone systems. Ex-mains, there is a section devoted to motor vehicle circuits; this contains complete wiring diagrams for 20 different cars.

ELECTRONICS POCKET BOOK
Edited by J. P. Hawker and J. A. Reddihough
Published by George Newnes Ltd.
306 pages, \(7 \frac{1}{2}\) in \(\times 5\) in. Price \(21 s\).
THIs is the 2nd edition of a book written for newcomers to electronics and for those who may have a certain knowledge of electronics-but limited to the traditional fields of radio and television.

Such a purpose seems fully justified. There have long been many popular works of reference dealing with communications; on the other hand the widespread use of electronics in industrial control systems, computers, and other less orthodox applications has created more recently a real demand for a relatively simple book to suit the reader of limited technical experience.
The subject range is immense and there are obvious limitations in a "pocket" book. The editors and contributors have faced a difficult task in selecting and condensing much information into such a space; however, the kind of reader they have in mind is likely to agree that they have been very successful. The text is direct and to the point, as indeed a reference book should be. Concise but satisfactory basic explanations are well supported by circuit diagrams, waveshape patterns, and schematic diagrams which well illustrate the function of various classic electronic circuits and a variety of active devices, including many different transducers.

In the chapters dealing with fundamental circuit elements and amplifier circuits, thermionic and semiconductor devices receive about equal treatment. As we reach pulse, switching, and logic circuits, the semiconductor assumes the larger role in these pages as in real life.

Subjects covered by other chapters include: an outline of electronic systems as used in industry for controlling machinery, welding apparatus, and process counting and timing; computers; and microelectronics. Some useful advice is given relating to the installation and maintenance of electronic equipment in general. The final chapter contains formulae and data.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{DE LUXE PLAYERS}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{4-Speed Mono Players 2-inne}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{dax loudrpesker and Hig} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{bault. Quality outpat. Vol}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{oriable assembly} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\%e minutaz, onl
\#iran to join.
is monthg}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{10 BUILD}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{YOURSELF} \\
\hline \multicolumn{4}{|l|}{Poit 2/6 per item.} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{At [lustrited. To fit Ready made and teated.}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{atand ard player 69/6 Garanteed better sound} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & output. ECL86 & 6 triode \\
\hline \multicolumn{4}{|l|}{testod with JCL82 triode pentode valve. Volume} \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{and loudepeaker. \(59 / 6\) knoba. Quelity \(89 / 6\)}} \\
\hline & & & \\
\hline \multicolumn{2}{|l|}{SIHGLE PLAY MONO} & AUTOCHANTEE M & m \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BSE TU9
Gurrurd
SRP22
24.19.6}} & & \\
\hline & & BSR 8uparsjim & 25.19.6 \\
\hline \multicolumn{2}{|l|}{Garrard SP25 \({ }^{\text {G10.19, }}\)} & Garrard 1000 & 25.19 .6 \\
\hline \multicolumn{2}{|l|}{Pbilipu AG1016 \$12.9.6} & Garrard 2000 & E6.19.6 \\
\hline \multicolumn{2}{|l|}{Pharrurd A70} & Garrard 8000 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lll}\text { Garrard labso } \\ \text { Garrard } & \text { 401 } & \text { 224.19.6 } \\ \text { E29.19.6 }\end{array}\)}} & AT60 MEI & \&10.19.6 \\
\hline & & ATb0 Mk II & \&12.19.0 \\
\hline \multicolumn{4}{|l|}{All with LP/78 mono cartridge (Stereo 12/6 extra)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{GARRARD TEAKWOOD BASE WB. 1 Ready 7 7/-
cat for mounting \(1000,2000,3000\), SP25, ATG0.}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{GARRARD PERSPEX COVER SPC1 ior Wbil \(58 /-\)} \\
\hline \multicolumn{4}{|l|}{A. 18 TRANSCRIPTION TONE ARM with} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{plate and two plug-in hello
Deeca Doram Stereo Dismond Cartridge 24.10 .0 extra}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{\(Q\) MAX CHASSIS CUTTER}

Complote: a die, a panch, an Allen screw and key

 PrCG-UP ARM Completo with ACOS LP.78 Turnover

FULL WAVE RRIDGE CHARGER RECTIPIERS:

 MOVIIG COIL MOLTIMETER 1

 NEW MULLARD TRANSISTORS

 REPANCO TRANSSSTOR TRANSFORMERS
TT48, Push Pull Output CT 8:1, OC72, OC81
TT52, Output 3 ohms 20:1
T49, Intertake
TRANSISTOR MAINS ELIMINATORS. FAMOUS "POWER
 FPECIAL 9 VOLT, 500 mA POWER PACK.

WEYRAD P50 - Transistor Coils A2W 6 in. Ferrite Aerial Spare Cores.. with car aerial coil.....12/6 \(\quad\) Dpare Cores............. P. P60/2CC \(470 \mathrm{kc} / \mathrm{s}\)... 5/7 J.B, Tuning Gang
\(3 \times \mathrm{C}\) I.F. P50/3CC J.B. Tuning Gang

Volume Controls 80 obm Coax 6 d yd LONG SPINDLES. MIDGET Semi-air spaced Cable TZE 5 K . ohms to 2 Meg LOG or LIN, L/S 3/-D.P.5/ 100 yd . drum \(50 /-\) post free FRINGELOWLLOSS \(1 / 6_{\text {rd }}\)
Ideal 625 lines COAXIAL PLUG \(1 /-\). PANEL SOCKETS \(1 /\). LINE SOCK ETS 2/: OUTLET BOXES. SURFACE OR FLUSH 4/G GALANCED TWIN FEEDERS 1/- Yd., 80 or 300 ohms
GAR AERIAL PLUGS 1/6p SOCKETS I/3; LINE SOCKETS 2 -

\section*{EAGLE SA200}

\section*{INTEGRATED}

\section*{STEREO}

AMPLIFIER
II watta per channel.
tspe, tuner, mike
any. tape ontput socket. Separate
volums controls for each channel. separate bass and treble controls. phone socket. Im pedance 4,8 or 16 phone wocket. Impedance 4, 8 or 16 STILL 625 POST
RETURN OF POST DESPATCH Post and Packing \(1 / 6\) unless otherwise stated.
RADIO COMPONENT SPECIALISTS
Written guarantee with every purchase. (Export: Send remittance and extra postage, no C.O.D.) Buses 133, 68 pass door. S.R. Stn. Selhurst. Tel. 01-684-1865

THE E.A.R. RECORD PLAYER CABINET 8trongly built wooden eabinet covered in Blae and Grey leathercloth aize \(15 \times 17 \times 8 \mathrm{in}\). Motorboard \(142 \times 121\) in, roady cut out for B.8.R. Monarch UA 12/14/15/16/25 deckri. Gilt fttinga, itrong carrying handie. Ampliar apace ale 1

 \(8 / 600\).
16600
16
 \(32 / 450 \mathrm{\nabla}\). \begin{tabular}{lll|ll}
\(3 / 450\) \\
₹. & \(\cdots\) & \(3 / 9\) & \(8+16 / 450\) & 8. \\
\(25 / 25\) & \(3 / 9\) \\
\(50 / 50\) & \(\nabla\). & \(\cdots\) & \(1 / 9\) & \(16+16 / 450\) \\
₹. & \(4 / 3\)
\end{tabular} \(\begin{array}{llllll}50 / 50 & 1 / 2 / & 16+16 / 450 & \text { ₹. } 4 / 3 & 60+100 / 860 \\ \text { ₹. 11/6 }\end{array}\) SUB-MIN. ELECTROL TTICS \(1,4,818,95,3050,100\)
 CERAMIC. 500 v .1 pF . to 0.01 mld ., 8 d . Discs \(1 /-\). PAPER TUBULAR8
\(350 \mathrm{v}-0.19 \mathrm{~d} ., 0.5 \mathrm{~g} / 6 ; 1 \mathrm{mid} .3 /-; 2 \mathrm{mid} .150 \mathrm{v} .3\)
5007 . -0.001 to \(0.059 \mathrm{~d} ; 0.11 /-; 0.251 / 6 ; 0.53 /\)
\(1,000 \mathrm{v},-0.0010 .0022 .0 .004 ; 0.01,0,02,1 / 6 ; 0.047,0.12 / 6\) E.H.T. CONDENSERS. \(0.001 \mathrm{mld.} 7 kV,\), , \(8 / 6 ; 20 \mathrm{kV}, 10 / 8\) SILVER MICA. Close tolerance (plus o rminas \(\frac{1}{2}\) DF.), 5 to \(47 \mathrm{pF} .1 /\)-: ditto \(1 \% 50\) to \(800 \mathrm{pF} .1 /-; 1,000\) to \(5,000 \mathrm{pP}, 2 /\) TWIN GANG. "0-0" 208 pP . \(+176 \mathrm{pF} .10 / 6 ; 365 \mathrm{pF}\). minia ture 10/-; 500 pR. standard with trimmers, 9/6; 500pF midget less trimmers, 7/6; 500 pF . slow motion, standard \(9 /-\)
small 3-gang 500 pF . \(18 / 9\). Single " 0 " 365 pF . 7/6. Twin 10/small 3-gang \(500 \mathrm{pP} .18 / 9\). Single "0" \(365 \mathrm{pF} .7 / 6\). Twin \(10 /-\)
SHORT WAVE. Single \(10 \mathrm{pP} ., 25 \mathrm{pP} ., 50 \mathrm{pF} ., 75 \mathrm{pF}\). \(100 \mathrm{pr} ., 160 \mathrm{pF}\), , \(5 / 6\) each. Can be gang ed. Couplern' 9 d . wach TUNING. Solid dielectric. \(100 \mathrm{pF} ., 300 \mathrm{pF} ., 500 \mathrm{pF} ., 3 / 6\) each TRMMMERS. Compresjion ceramic \(30,50,70 \mathrm{pP} ., 9 \mathrm{~d}\).
\(100 \mathrm{pF}, 150 \mathrm{pP} .1 / 3 ; 250 \mathrm{pP}, 1 / 6 ; 600 \mathrm{pF} ., 750 \mathrm{pF} ., 1 / \mathrm{B}\) \(100 \mathrm{pF} ., 150 \mathrm{pR} ., 1 / 3 ; 250 \mathrm{pP}, 1 / 6 ; 600 \mathrm{pF} ., 750 \mathrm{pF} ., 1 / \mathrm{B}\)
 Full wave \(75 \mathrm{~mA} 10 /-\) : \(150 \mathrm{~mA}, 19 / 6\); T.V. rects, from \(10 / \mathrm{z}\) SONOCOLOR' CINE RECORDING TAPE Superior quality. \(5^{\circ}\) reel, \(800^{\prime}\) LP with atrobe markinga also cine light denector-mirror. SuP PRICE 14/- each cine projectors. List 28/- OUR PRICE 14/- each
NEW B.A.S.F. LIBRARY BOXED TAPE 7 in . L. P. 1,800 ft. 45/-; 7 in . D.P. 2,400 ft. 70/60 min , Cassette C 60 (For Philips, etc.) \(17 / 6\) Spare Spools 2/6. Tape Splicer 5/-. Legder Tape 4/6.
Spare Spools 2/6. Tape spicer 5/~. Leader rape 4/6.
REUTER Tape Heads Ior Collaro models 2 track \(21 /-\) pair.

\section*{MAINS TRANSFORMERS}
\(250-0-25080 \mathrm{~mA} .6 .3\) v. 3.5 a .6 .3 v. 1 a , or \(5 \mathrm{~F} .2 \mathrm{~s} .30 / \mathrm{m}\)
 MINIATURE \(200 \mathrm{v}, 20 \mathrm{~mA},, 6.3 \mathrm{v}, 1 \mathrm{a}\).
MIDGET 220 v. 45 mA .6 .3 ₹. 2 a.
SMALL \(250-0-25050 \mathrm{~mA} .6 .3 \mathrm{v} .2 \mathrm{a}\)

Ditto tapped sec. \(1.4 \nabla ., 2,3,4,5,6.3 \nabla, 11\) amp. GENERAL PURPOSE LOW VOLTAGE. Outputs \(3,4,5\) \(6,8,9,10,12,15,18,24\) and 307, at 2 2. \(\ldots \ldots . .30 /=\)
1 amm., \(6.8 .10,12,16.18,20,24,30,36,40,48,60,35 /-\) \(60 \mathrm{w} .186 ; 150 \mathrm{w} .30 / \mathrm{F}\) : \(500 \mathrm{w}, 82 / 6 ; 1000 \mathrm{w} .175 /-\mathrm{l}\).
60w. 18 6; 150w. \({ }^{\text {CRYSTAL MIKE INSERTS }}\)
 ALL PURPOSE HEADPHONES H.R. HEADPHONES 2000 ohms . \(12 / 6\), 4000 ohms. H.R. HEADPHONES 2000 ohms Super Quality
LOW RESISTANCE HEADPHONES \(3-5\) ohms...........25/

Three Wavebands: Five Valves: ECH81, EF89. Long., Med., Short. Gram. EBC81, EL84, EZ80, 12 -month guarantee, A.C. 200-250 \({ }^{\text {V. }}\). Ferrite Aorial
5 watts 3 ohm. Chassis 13 in. \(\times 7 \mathrm{in}\). \(\times\) in. dial size 5 watts 3 ohm. Chassis 13in. \(\times\) Kin. 13 in \(\times 4\) Two pilot Lamps. Four Knobs. \(\leq 10.10\) DE LUXE STEREO GRAM CHASSIS V.H.F MW, SW
 TAPE DECK AMPLIFIER FOR B.S.R., T.D.2, otc, With Pre-Amplifler, Oscillator, all valves, "magic-eye" B.S.R. TD. 2 Tape Deck, Bolts directly to tape deck chasais. ,Sputs for mike and radio/grem Output \(3-5\) obms. A.C,
 BLANK ALUMINIUM CEASSIS. 18 s.w.g. \(2!\mathrm{in}\), sides, \(7 \times 4 \mathrm{in}, 5 / 6 ; 9 \times 7 \mathrm{in} ., 6 / 6 ; 11 \times 3 \mathrm{in} .6 / 6 ; 11 \times 7 \mathrm{in} .7 / 6:\)
\(13 \times 9 \mathrm{in}, 9 / 6 ; 14 \times 11 \mathrm{in} .12 ; 6 ; 15 \times 14 \mathrm{in} ., 15 /=\). ALUMINIUM PANELS 18 s.W.E. \(12 \times 12 \mathrm{in}, 5 / 6 ; 14 \times 9 \mathrm{in}\). ALUMINIUM PANELS 18 8.W.E. \(12 \times 12 \mathrm{in}, 5 / 6 ; 14 \times 9 \mathrm{in}\).
\(4 / 6 ; 12 \times 8 \mathrm{in} .3 / 6 ; 10 \times 7 \mathrm{in}, 2 / 9 ; 8 \times 6 \mathrm{in} .2 /-; 6 \times 4 \mathrm{in}, 1 / 6\).

CANCELLED EXPOR SHIPMENT DUETO DOCK STRIKE!

\section*{15" BAKER WOOFERS}
\(20-10,000 \mathrm{cps}\). Bass Resonance 18-25 cp Hassive Ceramic Flux denifity 15.000 liner. Rated 20 watte. 15 ohmis. Overall depth only \(8 \frac{1}{*}^{*}\). Weight 15 lbs
OUR PRICE
£II.I9.6 Made to
ell at \(\$ 60\) ‘Group 25' 'Group 35' 'Group 50'
 " BONDACOUST " Wedding for cablool linling 16/- sq. FdE.M.I. CONE TWEETERS 8jin. square. 8-2015c/s. 10w. \(17 / 6\). Quality Horn Tweaters \(8-18 \mathrm{kc} / \mathrm{h}, 10 \mathrm{w} .27 / 6\), Croserser \(14 / 6\)
 in. \(\times 4 \mathrm{in}_{\cdot} 15 / 6\) each; \(8 \mathrm{in} .82 / 6 ; 6 \mathrm{in} .18 / 6 ; 10 \mathrm{in} .30 /-\) 18in. 30/-: (15 ohmi 85/-): \(10 \times 6\) in. \(80 /-; 8 \times\) bin. 21/-;
 IE/6 \(250 \mathrm{hm} .5 \mathrm{in} ., 6 \times 4 \mathrm{in} .: 95 \mathrm{ohm} .3 \mathrm{in}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}\).
 JACK SOCKETS Std, open-circuit 2/6, closed circuif \(4 / 6\) Chrome Lead Socket \(7 / 6\). DIN 3-pin \(1 / 3,5-p i n 1 / 6\); Lead 8/6, Phono Plaga 1/-. 8ocket 1/-. JACK PLUGS8td. Chrome 8/-
 2 p .2 -wis, or 8 p . B -why, or 8 p .4 -way \(3 / 6\) each.
1p. 12-way, or 4 p. R-way, or 4 p. 3-way, \(8 / 6\) each.
Wavechange " \(4 \mathrm{p}\).3 -way, 6 p . 2 -way. Priceainclade clicy ipindles, adjustsola tops, apacen, otc., 1 waier, 10/6; 2water, 15/ ; 8 waier, 10/6
 for editing and repairs. With 8 blades.
4 CEANREL TRAM8RETOR MICROPHONE MIXER. Add mix Miorophone, records, tspe snd tuner with \(52 / 6\) separate controls into wingle outpat,
DYNAMIC MICROPRONE, Dnalimpedance \(600 \mathbf{6 . 6 . 0}\)
ohm/50K, Universs I Monnting. \(70-12.000 \mathrm{cpt}\). \(\mathbf{6 . 6}\) Ahm/SOK. Universsl Mounting. \(70-12,000 \mathrm{cps}\).
 PM TUMER 88-108 Mc/a Six Trandistor. 8aparbet. Ready
 8 WATT QUALITY AMPLIFIER. 4 Transistor \(65 /=\)
Push-Pull Ready built, with volume control fan-Pu Roaly bill, win \(\star\) RADIO B00K8 \(\star\) (Postage 9d.)
High Ridelity Speaker Enclosures and Plans Trancintor Sopernet Commercial
Radio Valve Guide, Booki 1, 2, 8, or 5
Practical Radio Incide Out
Trantiftor Audio Amplifier Manusi Book 1, 8/8; Book 2 , 8hortwave Trandator Receivera.
Trannistor Commonication Bets
International Radio 8tations Liat
Sob-Miniature Transistor Receivers Wiroless World Redio Valve Dat At a glance valvo equivalont 2 \(1 /-{ }^{\text {i }}\) w. \(10 \% 6 \mathrm{~d}\) HIGH STABILITY. \({ }^{\frac{1}{2}}\) W.; 1 W. \(1 \%\). 10 ohms to 10 meg., \(2 /\) Ditto \(5 \%_{0}\) Preferred values 10 ohmi to 22 mer., \(\theta 8\).
\(\left.\begin{array}{r}5 \text { watt } \\ 10 \text { watt }\end{array}\right\} \quad\) WIRE-WOURD RESISTORS
15 watt \(10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 88 \mathrm{~K}, 10 \mathrm{~W} .8 /-\)
MAINS DROPPERS. midget. With 1 aldert. \(0 /-\) each.
 \begin{tabular}{l|l|l|}
\hline WIRE-WOUND 3-WATT & WIRE-WODAD \(4-W A T T\)
\end{tabular} POTS. T,V. Type. Values BTAIDARD SIZE POTR. 10 ohms to 30 K., \(3 / 3\), LONG SPINDLE VALOES Carbon 30 K . to 2 mer.. \(3 / \mathrm{F}\). \(\quad 50\) OEME to \(100 \mathrm{K.} 7 / 6.\).
VALVE HOLDERS. Int. Oct. 6d, Mazds Oct. 6d.: B7G, B8A, B8G, B9A. Moulded 9d, Ceramic \(1 /-\). 870
Csins \(1 /-\) Valve base pluga B7G. B9A, Int. Oct., \(2 / 8\).

SANGAMO 3 inch SCALE METERS Various celibrations and movementr. 100 Microamp \(55 /-\); 1 Milliamp \(60 /-\), etc. Post \(5 /-\) extra. Send S.A.E. lor list.

BRAND NEW QUALITY EXTENSION LOUDSPEA Biack plastic cabinets 201t. lead and adaptors. For sny radio, intercom, tape rocorder, etc,

\section*{Gieal Rudio \& TV Repail Aid TO HELP YOU EARN MORE}

These time-saving repair volumes are packed with vital servicing data

Nearly I,000 pages of Circuits, Data and Repair instructions - including the latest facts on Colour TV . . . that's what you get in this big 2-volume RADIO \& TV SERVICING.

All the information you need for the 1965/1967 popular Televisions, Radios, Radiograms, Car Radios, Record Reproducers and Tape Recorders is here - to guarantee quicker turn-round of repair jobs... to increase your earnings. Thousands of sets of previous editions have been sold -solid proof of its value to you as essential workshop "equipment". Seize this opportunity NOW-it's yours to examine and USE free for a week. Simply complete coupon below, and POST TODAY.
FOR THE FIRST TIME-
ADVANCE DATA ON

(PAL SYSTEM)
Compiled by W. A. Montgomery, B.Sc. Head of Advanced Development Group, Consumer Products Division, S.T.C.
This big 32-page illustrated section is one of the many features which makes Radio and Television Servicing well worth examining without obligation to buy.

\section*{}

Post Coupen Todoy
To: Suckingham Press Ltd., 4 Fitzroy Square, London. W.I lease send RADIO \& TELEVLSION NERVICLN(: withunt obligation to buy if you accept my application. I will return the rooks in 8 days ar past -
Full cash price, or
10/- deposit and 16 monthly payments of \(10 /=\). If you ore under 21 your fother must fill up coupon
Full same. (BLOCK
Addrest

Cosnty Occupation

Signalure
Cash price C8. (Credit price C8.10s.) For Eire and
odd \(101-\mathrm{P}\). \& P .

\title{
Transistor Amplifier DESICN By A.Foord
}

\begin{abstract}
AUDIO AMPLIFIER circuits can be simple or complex depending on what sort of performance is required. The purpose of this short series of articles is to show how to go about designing transistor amplifier circuits. Although it may not be exhaustive, it deals with many of the problems that frequently confront the designer. The physics of transistor operation are not included since this aspect is not always of prime importance in designing circuits. The intention is to concentrate on the application of transistors to audio amplification. Most of the examples given use pnptypes, more for convenience of explanation rather than any other reason. But this does not mean that the principles described apply only to pnp types. Indeed, some examples require the use of both pnp and npn types.

Part I this month outlines the principles of various biasing arrangements for small signal stages, while later parts will look into power amplifier stages, special circuits, and negative feedback applied to several kinds of amplifier configuration.
\end{abstract}

IN biasing simple transistor amplifier stages it is often difficult to decide on the method of biasing to usea simple resistor from base to supply, the self bias method, or the conventional potential divider method. The advantages and disadvantages of these commonly used methods are discussed here, with practical examples shown in the circuit diagrams.

\section*{BASE RESISTOR}

The simplest arrangement is shown in Fig. 1.1 where the base is connected by a single resistor to the supply line.

Fig. 1.I. The simplest bias posslble

Fig. 1.2. An improved arrangement to compensate for gain variotions

For the values shown the collector voltage will be 5.2 V for a transistor gain of 40 . However the current gain of a particular transistor type is by no means fixed, and can vary over a wide range from specimen to specimen.

For example, for a gain of 20 the collector voltage is -8.6 V , and for a gain of 50 the collector voltage is -3.3 V . This shows that the collector voltage is very dependent on current gain, and spreads in this gain can alter the collector voltage considerably, even before considering a possible shift in the working point, due to leakage current in the transistor. This means that for this arrangement the bias resistor would have to be varied to obtain the required collector voltage. There would be no hope of just soldering the circuit together and expecting the collector voltage to be around the required value.

This dependence of collector voltage on gain can to some extent be avoided by taking the bias resistor to the collector instead of the supply, since there is a phase reversal in the common-emitter amplifier. If the circuit is designed for a given current gain, and a transistor of higher gain is placed in the circuit, the transistor would conduct harder than normal. This would reduce the collector voltage, and so reduce the bias current, to compensate partly for this. So the circuit shown in Fig. 1.2 is more tolerant to gain variations.

If the gain of a given transistor is 40 , the collector voltage would be -5.4 V ; this voltage varies between -7.2 V for a gain of 20 and -4.7 V for a gain of 50 .

For the collector voltage to be as low as -3.3 V , which was our worst case, the gain would have to be as high as 85. So this method of biasing can tolerate wide variations in gain, provided we are using low signal levels and do not require a specific collector voltage. This arrangement is often used in the first stage of tape replay pre-amplifiers or similar positions; obviously silicon transistors are better than germanium with this bias method, as the leakage current can be ignored.
Apart from the uncertainty of the bias point, there is also the disadvantage that the bias resistor provides a.c. as well as d.c. feedback, hence signal gain is reduced. Decoupling this path is sometimes necessary to maintain audio gain, Fig. 1.3.

\section*{POTENTIAL DIVIDER}

The two simple methods of biasing already discussed, use a bias current injected into the base without being sure of the exact magnitude of current required for a particular collector voltage. To overcome this limitation the potential divider chain bias method is frequently used, as shown in Fig. 1.4.
The bias chain sets the base at -1.3 V , since the current into the base is small compared with the current in the divider chain, and the transistor conducts until it has 0.3 V between base and emitter. The emitter current (and hence collector current) is well established at about 1 mA , and variations in gain or leakage current do not appreciably alter bias conditions. The emitter capacitor decouples the emitter from audio signals and prevents negative feedback which would reduce the gain.

\section*{DIRECT COUPLING}

For two common emitter stages in series an extension of this arrangement is to take the top of the potential divider chain to the emitter of the second transistor as in Fig. 1.5.

This method combines the advantages of a potential divider and the self-biasing arrangement shown in Fig. 1.2. The current through the 39 kilohm and 18 kilohm resistor chain is arranged so that it is much larger than the bias required by TR1.
For the circuit shown,
\(\begin{aligned} \text { Input impedance } & =1 \mathrm{kilohm} \\ \text { Output impedance } & =6.8 \mathrm{kilohm} \\ \text { Gain } & =200 \\ \text { Maximum output } & =150 \mathrm{mV} \text { r.m.s. }\} \text { for a } 1 \mathrm{k} \Omega \\ \text { Frequency response } & =+0 \text { to }-3 \mathrm{~dB} \text { in the range } \\ & 20 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}\end{aligned}\)
Since the two transistors are directly coupled, the voltage measured at one point will show that the d.c. conditions are correct. If TR2 collector is around -10.5 V then the entire circuit must be correctly biased. It will be difficult to measure voltages around TR1 since currents are low here, but TR2 emitter and collector voltages can be measured with a meter of \(20 \mathrm{k} \Omega / \mathrm{V}\) sensitivity.

This article has described the limitations and advantages of the commonly used bias methods, so that the home constructor can choose the most suitable arrangements for his needs. While this description is based on pnp types of transistor, the same principles will apply equally to \(n p n\) types. The only differences lie in the polarities of supply voltages and electrolytic decoupling capacitors.

The next article will deal with power amplifiers. The different output stage configurations will be shown with the relative merits of each type discussed.

Fig. 1.3. Decoupling the bias chain to prevent reduced audio gain

Fig. I.4. The potential divider chain bias method

Flg. 1.5. The potential divider chain principle extended over two stages of a directly coupled amplifer

\section*{MASTER THE THEORETICAL SIDE}

From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

\section*{MASTER THE PRACTICAL SIDE}

ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

\section*{MASTER THE MATHEMATICAL SIDE}

To many this aspect is a bitter problem. Even more so because noelect ronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servomechanisms, Computer'Engineering, Numerical Control Electronics, etc.
EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS ELECTRONIC SERVICING
R.T.E.B. RADIOITV SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY
Build your own radio, transistor portable, and professional-type test instruments with an ICS Practical Radio and Electronics Course. Everything simply explained and easy to handle. All components and tools supplied. For detalls port coupon below.
Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY
I.C.S., Dept. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W. 11

NAME
ADDRESS \(\qquad\)

\section*{S-DeC}

\section*{BREADBOARDING}

SINGLE DeCs. One S-DeC with Control Panel, Jig and Accessories for solderless connections to controls, etc., with booklet ' Projects on S-DeC' giving construction details for a variety of interesting circuits ... 29/6 + - 6 d . P. \& P.

4-DeC KIT. Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet 'Projects on S-DeC' all contained in a strong, attractive plastic case. Ideal for the keen enthusiast and professional user \(\mathbf{E 5 . 1 7 . 6}+2 / 6 \mathrm{~d}\). P. \& P.

Four-stage binary counter using the 4-DeC Kit

\section*{\(\star\) S-DeC AVAILABLE FROM ELECTRONIQUE DEALERS AND LEADING SUPPLIERS}

\section*{THREE HEADS ARE BETTER THAN TWO..} Two amplifiers are better than
-1. Without these refinements

Ask your dealer to unveil the wonders of the Vanguard or write direct for full specification. it is impossible for a tape
recorder to provide such facilities as Double Play Sound-on-Sound and Direct Tape Monitoring these are just some of che outstanding features in corporated in the Wyndsor Vanguard and when you study the complete specifin. spools- 3 headsSeparate Record and Play-back AmplifiersDouble Play-Sound-on Sound - Detachable lid fitted 8 in. speaker-Tape Monitoring - Push but ton controls-Recording meter and Playback in dicator - Bass, treble, volume and record gain controls, etc.) youcan see
that we are offering an extraordinary recorder as an ordinary price.

\section*{59ans.}

Complete with \(1,800 \mathrm{ft}\). LP ape and tape manual (Microphone, Headphones and Stereo tape pre-amp are available as optiona extras.).
WYNDSOR RECORDING CO. LTD. (Dept. PEI3)
Wyndsor Works, Bellevue Rd., Friern Barnet, London, N.II, ENT 2226

\section*{THE NEW RICHARD ALLAN MID RANGE \& TWEETER MODULE}
(£9.7.10 inc. P.T.)
The Mid-range and Tweeter Module is a further development of the well established High Fidelity Module, and is similar to it in that it consists of \(5^{\prime \prime}\) and \(4^{\prime \prime}\) units mounted on a rectangular aluminium plate. However, different cone and magnet assemblies are utilised to suit the specialised purpose for which it is intended

Ideal for adding to existing systems for extra sparkle, filling in the "hole in the middie," or including in new designs, the Mid-range Module is complete with crossover network and is fitted with a sensitivity control for ease of matching to various loudspeakers.

\section*{SPECIFICATION}

Frequency fange
\(500-17,000 \mathrm{~Hz}\).
Power Handling
For use with systems up to 20 watts Impedance
8 or 15 ohms.
Mid-range unit
S dia. 12,000 lines. I" pole Tweeter unit \(4^{\prime \prime}\) dia. 10.000 lines, \(3^{\prime \prime}\) pole Size
\(11^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 2 j^{\prime \prime}\) deep
\(\left(28 \times 16^{3} .5 \times 6.4 \mathrm{~cm}\right)\)
Weigh
3! Ibs. (1.6 Kg .)

Quchuard dllan
RICHARD ALLAN RADIO LTD. BRADFORD RD. GOMERSAL, CIECKHEATOM, YORKS Telephone: CLECRHEATON 2442

\section*{前霛 \\ SUPPLIERS OF ELECTRONIC EQUIPMENT TO ALL \\ RADIO ENTHUSIASTS}

OUR NEW 1967/68 illustrated catalogue NOW AVAILABLE
(Send 2/- in stamps for your copy)

\section*{INCLUDES}

Valves, Transistors, Transformers, Loudspeakers, Recording Tape, Coils, Resistors, Condensers, Potentiometers, Chassis, Rectifiers, Test Meters, Microphones, Tools, Solder, etc.

DISTRIBUTORS OF EAGLE PRODUCTS whose new enlarged catalogue

> is now availoble 5/-

ALPHA RADIO SUPPLY CO.
103 Leeds Terrace, Leeds 7. Tel. 25187

\section*{TRANSISTOR SUBSTITUTION HANBBOOK}

AMERICAN, JAPANESE, BRITISH, ETC. NEW 7th EDITION. 15/-.

COMPUTER DICTIONARY AND HANDBOOK, by Sippl. 90/-. P. \& P. 4/6. SILICON CONTROLLED RECTIFIERS, by Lytel, 21/-. P. \& P. I/-
RAPID SERYICING OF TRANSISTOR EQUIPMENT. 30/-. P. \& P. I/-.
TRANSISTORS IN LOGICAL CIRCUITS, by Altes. \(16 /-\) P. \& P. 1/-,
ELECTRONIC NOVELTY DESIGNS, by Kampel. 8/6. P. \& P. 9d.
COMPUTERS FOR THE AMATEUR CONSTRUCTOR, by Warring. 20/.. P. \& P. I/-.

ELECTRONIQUES MANUAL, by S.T.C. \(10 / 6\). P. \& P. I/3.

PAL COLOUR T.V., by Mullard, PAL System and Circuits described. 12/6. P. \& P. I/-.

HI-FI YEAR BOOK, 1968. I5/-. P. \& P. I/3.

TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR, by Douglas. 18/-. P. \& P. 1/-.
ELECTRONICS POCKET BOOK, by Hawker. 21/-. P. \& P. 1/-
Where possible 24 -hour service guaranteed
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

\section*{NEW RANGE BBC 2 AERRALS}

All U.H.F. actials now fitted with tilting bracket and 4 element grld reflectors.
Loft sounting Arrays, 7 clement, 35/-. 11 element. 42/6. 14 element, \(50 /\)-. 18 element, 37icment, \(60 \%\). 11 element, \(67 /\). \(1+\) element,
 21n. clamp. 7 element, \{2/6; 11 element, \(53 /-\); 14 element, gel-; 18 element, \(70 / \mathrm{F}\). (Chimney Mounting Arrays, Complete, 7 element. 72/6; 11 element, \(80 /-; 14\) element, \(\mathbf{N 7 / 6 ;} 18\) element, 85/:. Complete assembly Instructlons with every unit. Low Loss cable, \(1 / 6\) yd, U.II,F, Preamps from \(75 /\). State clearly channel number requlred on all orders.

\section*{BBC • ITV AERIALS}

BBC (Band 1). Telescopic loft, \(21 /-\) External S/D, 30/-. ' H ", £2.10.0.
1TV (Band 3). 3 element loft array, 25/-. 5 element, 35/-. 7 element, \(45 /=\). Wall mounting. 3 element, \(35 / \sim 5\) element, \(45 / \%\) Comblned InBC/ITV. Loft \(1+3,41 / 3 ; 1+5,48 / 9 ; 1+7\). is \(10 ;\), wall mounting \(t+3,56 / 3\); \(1+5,63 / 9 ;\) Chlmney \(1+3,63 / 9\); \(1+5,71 / 3\).
VIIF translstor pre-amps,
COMBINED BHCI-ITV-1BIBC AIIRI.ALS

F.M. (Band 2). Loft SiD, 12/6, "H", \(30 /-3\) element, \(62 / 6\). External unlts avallable, Co-ax. cable, 8d. yd, Co-ax. plugs. 1/3. Ourlet boxes, 4/6. Diplexer Crossover Boxes, 12/6. C.W.O. or C.O.D. P. \&P. 5). Send 6d. stamps for illustrated IIsts. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.) 27 Central Parade, New Addington Surrey-CRO-OJB LODGE HILL 2266

THE UNIT to be described rere is an crti-theft unit intended primarily for cars but equally suited to use in motor-bikes, scoo:ers and 三ny other similar vehicles with a 12 -volt batter \(\quad\) supply.

Anti-theft units in gereral fall ir to two types: those intended to prevent enty to the prosected vehisle, and those intended to imm shilise the vehicle and give an external indication that the rehicle is being tampered with. It was conside that the second type is preferable, particularly \(n\) the cas of convertiole cars where it is often possible te "brat ir" through the soft top without setting of any alarr conrectel to the doors. The device described in th ; a-ticle is thus of the second type and it has provisicn for a nuraber of possible alarm types, the korn or igts teing made to operate or the fuel pump to be dis.onnected when it is set off.

Interior of burglar alarm showing 'yyout of component board and relays

\section*{THE CIRCUIT}

The unit is built around two common circuits, a low-speed multivibrator and a bistable switch. The bistable, however, is of a slightly unusual design and is not the usual symmetrical version. This asymmetrical design was developed so that the two stable conditions were not equally stable and on initial switch-on the circuit always adopted the same state.

It is necessary to tap only one existing lead in the vehicle's wiring, that from the ignition switch to the ignition coil; this wire can be found from the wiring diagram of the vehicle. It is not necessary to break this wire, the anti-theft unit lead can simply be clipped on at a suitable point. It is also necessary to provide leads from either side of the battery and, of course, leads to the horn or lights which are to be used as the alarm indicator.

A block diagram of the anti-theft system appears in Fig. 1. The circuit diagram is given in Fig. 2 where it can be seen that TR1 and TR2 form the asymmetrical bistable switch with TR3 as a relay driver for RLA. TR4 and TR5 form a conventional multivibrator with a mark-to-space ratio of \(1: 1 \cdot 5\). This is due to TR5 having a slightly lower collector load than TR4, the actual cycle times are 3 seconds "on" and 2 seconds "off".

With S1, the on/off switch, set "off" no battery power can reach any part of the circuit. With SI turned on the bistable takes up its initial state with TR1 cut off and TR2 conducting; TR3 base is thus maintained at nearly the positive rail potential and RLA remains de-energised. As long as no attempt is made to start the vehicle no power will be supplied to the multivibrator, so RLB will also be de-energised.

If any attempt is now made to start the engine, power will be supplied to point " X " of Fig. 2. This is true not only if the ignition is turned on, but also if a more ingenious person tries to connect the battery direct to the ignition coil, by-passing the ignition switch. A fair degree of protection is thus attained.

Fig. I. Block diagram of the Anti-Theft Alarm

Fig. 2. Circuit diagram. All external connections to the unit are made at the dotted line enclosure

When power is supplied to point " X " two things happen. First, the multivibrator operates and the "floating interrupt" contacts open and close repeatedly. These contacts (foating in the sense of being unconnected to the battery) may be used to operate the horn and, possibly, the headlights; an intermittently sounding horn is a fairly effective deterrent. This action will continue until power is removed from point " X " by abandoning the attempt to start the engine.
Second, the pulse provided by the change in potential of point " \(X\) " is shaped by C1, D1 and their associated components and applied to TR1 base. This causes the bistable to change over, so RLA operates. The warning lamp on the dashboard lights and any units connected to "floating latch" are triggered. If the vehicle petrol pump is supplied with power via RLA2 contacts as in Fig. 1 it follows that the fuel supply is removed and the engine will be unable to run for more than a minute or two. Switching off the ignition will not cause the bistable to revert to its original state, it will remain set until the anti-theft unit is turned off.

\section*{SUMMARY OF EFFECTS}

This unit provides a fairly comprehensive protection system. When it is turned on any attempt to start the vehicle, either by using an ignition key or by shorting the battery direct to the coil, will set off the alarm. This will cause the horn and/or the lights to operate inter-
mittently and to go on doing so until the attempt at starting is abandoned. At the same time, a warning lamp on the dashboard will light and the petrol pump will be disconnected, effectively immobilising the vehicle.

\section*{EXTRA PROTECTION}

If desired, extra protection can be added by having microswitches on the vehicle doors. These would be arranged to make contact when the doors were opened, and all such microswitches should be wired in parallel across points " \(X\) " and " \(Y\) " in Fig. 2. Opening any door which is so protected will have the same effect as turning on the ignition.

\section*{CONSTRUCTION}

The components are mounted on a piece or Veroboard \(5 \mathrm{in} \times 2 \mathrm{in}\) as shown in Fig. 3. The wiring layout corresponds exactly with the circuit thus enabling a rapid check out of assembly when the project is completed. Since there is nothing critical in component disposition with these types of switching circuits, higher density board mounting can be undertaken by the more experienced constructor thus reducing the Veroboard area employed.
With the board assembly completed, the relays should be connected up to enable a functional check of the bistable and multivibrator sections of the circuit to be carried out before chassis mounting. With the

\section*{POCKET MULTI-METER}

Size \(3 \frac{7}{4} \times 2 \frac{1}{4} \times 1 \frac{1}{s}\) in. Meter size \(2 \frac{1}{k} \times 1\) inin. Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. \(0-15\), \(0-150,0-1000\). D.C. current \(0-150 \mathrm{~mA}\). Resistance \(0-100 \mathrm{k} \Omega\). Complete with test prods, battery and full instructions, 42/6. P. \& P. 3/6. FREE GIFT for limited period only. 30 watt Electric Soldering Iron value 15/- to every purchaser of the Pocket Multi-Meter

\section*{ANTI-THIEF CAR BURGLAR ALARM}

The Melguard Safermatic consists of an electrical device housed in smal metal box \(4^{\prime \prime} \times 2^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}\), which has been designed and developed to provide protection required by the average motorist at an economic cost Using this system, an alarm and the immobilised condition is set automatically as soon as you park the car. Should you leave the key in the ignition, no one but you can drive the car away. Upon entering the vehicle the method of starting the car is by switching on the ignition depressing two hidden switches and simultaneously operating the starter Location of the switches is known only to you. Should the alarm be set off it can be stopped by following the normal starting procedure. For
12 V operation. List price \(79 / 6\) our price \(29 / 6\) plus \(2 / 6 \mathrm{P}\). \& P. Full 12 V operation. List price \(79 / 6\) our
easy-to-follow instructions supplied.

\section*{3 to 4 WATT APfPLIFIER}

3-4 watt Amplifier built and tested. Chassis size \(7 \times 3 \frac{1}{4} \times 1\) in Separate bass, treble and volume control. Double wound mains transformer, metal rectifier and output transformer for 3 ohms speaker. Valves ECC81 and 6v6. \(£ 2.5 .0\) plus \(5 / 6 \mathrm{P}\). \& \(\mathrm{F}^{\prime}\)

\section*{ESR TAPE DECKS}

200/250 v. A.C. mains
Type TD2 Tape speed 33
twin track
Type TD10 2-track, 3
speed, plus rev. counter
£7.19.6
speed, plus rev. counter
P. \& P. on each \(7 / 6\)

\section*{BSR MONARCH UAI6 with FULL-FI HEAD}

4 -speed, plays 10 records, 12 in ., 10 in . or 7 in . at \(16,33,45\) or 78 r.p.m, Intermixes \(7 \mathrm{in} ., 10 \mathrm{in}\). and 12 in . records of the same speed. Has manual play position; colour, brown. Dimensions: \(12 \frac{1}{2} \times 10 \frac{3}{4}\) in. Space required above baseboard 4 in., below baseboard 2 in. Fitted with Full-Fi-turn-over crystal head. £4.19.6. P. \& P. 9/-

\section*{Special offer ELEGANT SEVEN mk Ila} SPECIAL OFFERR.

Power supply kit to purchasers of "Elegant 8oven' parts, incorporating mains transformer, rectifier and tmoothing condenser, A.C. mains \(200 / 250\) volts. Output \(9 v .100\) mA. 9/6 extra

Buy yourself an easy to build 7 transistor radio and save at least \(\mathbf{\$ 1 0 . 0 . 0}\). Now you can build this superb 7 transistor superhet radio for under \(£ 4.10 .0\). No one olse can offer such iantastic radio with so many de luxe star features.

\&4.4.0
\(\star\) De luxe wooden cabinet size \(12 \frac{1^{*}}{} \times 8 \frac{11^{*}}{} \times 3 \frac{1}{2}\). Horizontal easy to read tuning scale printed groy
 size \(11 \frac{1}{2} \times 2\). 2 High \(Q\) errite rod aerial. * I.F. neutralisation on separate A.C. negative \(\hat{\text { feedback. }} \rightarrow\) Room filling output 350 mW . separate A.c. negative feedback. \& Room filling output 350 mW .
\& Ready otched and drilled printed circuit board back printed for foolproof construction. + Fully comprehensive instructions and point to point wiring diagrams. 大 Car aerial socket. \& Fully tunable over medium and long wave, \(168-535\) metres and 1250-2000 metres. *All components, forrite rod and tuning assembly mount on printed fooard. * 5" P.M. 8peaker. \(\star\) Parts list and circuit diagram \(2 / 6\), free with parts.

\section*{FOUR PLUS FOUR Stereo Amplifier}

A superb high quality yet inexpensive sterco amplifier. Due to great demand we are now able to offer this precision made instru ment at a fantastically low price. Its quality, reliability and styling has in no way been marred by its low price.
SPECIFICATIONS
Elegant styled cabinet (size 16 in wide, 5 in high, \(8 \frac{1}{2}\) in deep) in black rexine and woodgrained sides. Brushed aluminium front panel with contrasting black/silver knobs. CONTROLS
Stereo/mono switch, gram/aux switch, volume left, volume right, treble (cut and lift), bass (cut and lift), separate on/off switch, neon pilot indicator
INPUTS AND OUTPUTS (PER CHANNEL
Gram., aux., tape out and speaker out. A switched mains socket is also provided at the rear of unit.

Employs Mullard valves throughout. ECC83 and 2 ECL 86 with a metal bridge rectification. TECHNICAL
SPECIFICATIONS
Gram. sensitivity 40 mv at 1 KHz Aux. sensitivity 50 mv at 1 KHz (sensitivities are given for rated output). 4 watts R.M.S. per channel, 8 watts R.M.S. in mono position. Bass control at 100 Hz lift position. Bass control at 100 Hz lift
+9 db , cut -10 db . Treble control +9 db , cut -10 db . Treble control
at 10 KHz lift +8 db , cut -13 db. at 10 KHz lift +8 db , cut -13 db
Total harmonic distortion \(0.35 \%\) at 3 watts and \(2 \%\) for rated output at 1 KHz . Negative feedback 13 db at 1 KHz . Mains supply \(220-250 \mathrm{~V}\)
\(50-60 \mathrm{H}\) Ouiput \(50-60 \mathrm{H}\) into matches 13 Gns 3 ohms speaker plus 15/-P.\& P. ystem. Suitable
10 in \(\times 6\) in eliptical speakers are available at 29/6 ea. plus 5/-P. \& P

\section*{Transistorised SIGNAL GENERATOR}

Size \(5 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{i n} . \times 1 \frac{1}{2} \mathrm{in}\). For IF and RF alignment and AF output, \(700 \mathrm{c} / \mathrm{s}\) frequency coverage \(460 \mathrm{Kc} / \mathrm{s}\) to \(2 \mathrm{Mc} / \mathrm{s}\) in switched frequencies Ideal for alignment to our Elegant Seven and Musette. Built and tested. 39/6. P. \& P. 3/6.

\section*{STAR SR 150 COMMUNICATION RECEIVER}

Frequency range: \(535 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\). 4 wavebands. 5 valve superhet. Incorporates BFO, bandspread tuning. \(S\) meter, external telescopic aerial and ferrite aerial. Built-in 4in. speaker. Easy-to-read dial. For 240 v A.C. operation. Complete, brand new, with full instruction manual. 15 gns. P. \& P. 10/-

\section*{}

Transistor Portable Radio

\section*{plus Baby Alarm Facilities}

Completely modulised high quality portable radio featuring complementary N.P.N. and P.N.P. output stage.

The comprehensive easy-to-follow drawings supplied make this the easiest-ever transistor radio set of parts, with the following features
- Simple connections to only 6 tags on the R.F./I.F. nıodule, 3 I.F. stages, osc. coil and 3 transistors which with
 their associated components are comFinger tip controls. pletely wired

Class "B" modulised output stage with thermistor controlled heat stabilization. Class " \(\mathbf{B}\) ' output stage ensures long battery life. Current drain is proportional to the out put level. Total current drain of the receiver under no signal conditions is \(10-12 \mathrm{~m} A\). At reasonable listening level \(\mathbf{2 0 - 3 0 m A}\)
Extension sockets for car aerial input, tape recorder outpul (independent of vol. control) and Ext. Speaker
All components(except speaker) mount on the printed circuit board. Easy to follow instructions. Size of cabinet \(12^{\prime \prime}\) long, \(8^{\prime \prime}\) high and \(3^{\prime \prime}\) deep.
Circuit and parts list \(2 / 6\), free with parts.
PRICE: \&5.5.0 plus \(7 / 6\) P. \& P.

\section*{FIRST QUALITY P.V.C. TAPE}
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

10/6 10/6 25/6 \(32 / 6\)
\(42 / 6\) 42/6
P. \& P. on each \(1 / 6,4\) or more post free

\section*{600 mW SOLID STATE Features NPN and PNP 4-TRANSISTOR AMPLIFIER} matic heat compensation. Combined AC/DC feed back. Class B output stage, i.e. output power is proportional to total current consumption, this ensures long battery life. Under no signal condition (IQ) current drain is approx. 12 mA at 9 volts (4 mA in the output pair). Printed circuit construction, size: \(2 \frac{1}{\prime \prime}^{\prime \prime} \times \hat{x}^{\prime \prime} \times 7^{\prime \prime}\). Speaker output mpedence 12 ohns. Output power 600 mW at \(5 \%\) distortion, 400 mW at \(2.5 \%\) distortion, 750 mW at \(10 \%\) distortion. Supply 9 volts. Total current consumption at a reasonable listening level approx. \(35-40 \mathrm{~mA}\) at full power (speech and music), average 65 mA . Sensitivity for 50 mW output is 10 mW . Frequency response -3 db points \(90 \mathrm{c} / \mathrm{s}\) and \(12 \mathrm{Kc} / \mathrm{s}\). Price \(15 /\)-plus \(1 /\) - P. \& P. \(7^{\prime \prime} \times 4^{\prime \prime}\) speaker to suit. \(13 / 6\) plus \(2 /-\) P. \& P.

8-WATT 4-VALVE PUSH-PULL AMPLIFIER \& Metal RECTIFIER

Size \(9^{\prime \prime} \times 6^{\prime \prime} \times 1 \frac{1}{n}^{\prime \prime}\). A.C. Mains, 200-250 v. 4 valves, For use with Std. or L.P. records, musical instruments. All makes of pick-ups and mikes. Output 8 watts at 5 per cent of total distortion. Separate bass and treble lift control. Two inputs, with controls for gram. and mike. Output transformer tapped for 3 and 15 ohm speech coils. Built and tested. £4.4.0. P. \& P, 11/\(8^{\prime \prime} \times 5^{n}\) Speaker to suit. Price \(14 / 6\) plus \(1 / 6\) P. \& P. Crystal Mike to suit \(12 / 6\) plus \(1 / 6\) P. \& \(\mathbf{P}\).

RADIO AND T.V. COMPONENTS (ACTON) LTD. 21D HIGH STREET, ACTON, LONDON, W. 3
Shop hours 9 a.m. to 6 p.m. \(G\) Gods not despatched outside U.K.
ies stamped oddressed envelope. ferms C.W.O. Also at 323 EDGWARE ROAD, LONDON, W. 2.
PERSONAL SHOPPERS ONLY
All orders by post must be sent to our Acton address.

You'll And it easy to learn with this outstandingly quccesaful new pictorial method-the essential facts are explained in the simplest language, one at a time; and each is Illustrated by an accurate cartoon-type drawing.

The booke are based on the latent research into ajmplifed learning techniques. This has proved that the Pictorial Approach to learning is the quickest

\section*{TO SELRAY BOOK CO.}

60 HAYES HILL, HAYES, BROMLEY, KENT
गlease send me Withoui Obligation to Purchase, one of the above sets on 7 Days Free Trial will either return set. carriage paid, in good condition within 7 days or send the illowing amouts. Hasic flectricity 70/- Cash price or Down layment of 15/follow 1 formichtly Parments of 15/- each. Basic Electronics 82/- Cash Price or 15 foliow by fortnightly payments of 15/- each. This offer applies to l'. l . only. Overseas customers cash with order.
Tick set required (omly ONE set allowed on free trial)
BASIC ELECTRICITY 70/- \(\quad\) BASIC ELECTRONICS 82/-
TRAINER TESTER SUPPLEMENTS for above \(5 /-\) each part
BASIC ELECTRONIC CIRCUITS 38/-
BASIC INDUSTRIAL ELECTRICITY 38/-
BASIC SYNCHROS \& SERVOMECHANISMS 38/-
BASIC TELEVISION PART \(122 /-\)
All prices include poutage

Fig. 3. Component layout and Veroboard showing breaks and connections at the copper strips

Fig. 4. Wiring of relays showing connections to terminal block and component board

Fig. 5. Chassis and relay mounting bracket showing details of drilling

Fig. 6. Terminal strip wiring layout. Note that other side of warning lamp will go to car chassis
supply connected and Sla switched on, correct operation will be evidenced by the relays performing in the manner previously described.

A 6 in \(\times 4\) in chassis is used to house the board and relays. A similarly dimensioned aluminium sheet should be used to form the bottom plate of the box when all internal wiring is completed.

A piece of aluminium 2 in \(\times 1 \frac{1}{2}\) in serves as a bracket for relay mounting (Fig. 5). This should be bent at right angles at \(\frac{1}{2}\) in of its width and drilled along this smaller edge for the screws that will retain it to the chassis. The longer edge should be drilled using the

\section*{COMPONENTS}

Resistors
\begin{tabular}{|c|c|c|c|}
\hline R1 & 47kS & R10 & 22k \\
\hline R2 & 47kS & R1] & \(4 \cdot 7 \mathrm{k} \Omega\) \\
\hline R3 & \(47 k \Omega\) & R12 & \(330 \Omega\) \\
\hline R4 & \(1 \mathrm{k} \Omega\) & RI3 & \(100 \Omega\) \\
\hline R5 & \(4.7 \mathrm{k} \Omega\) & R14 & \(6.8 \mathrm{k} \Omega\) \\
\hline R6 & 10ks) & R15 & 330 2 \\
\hline R7 & \(2 \cdot 2 \mathrm{k} \Omega\) & R16 & \(6 \cdot 8 \mathrm{k} \Omega\) \\
\hline R8 & \(1 k \Omega\) & R17 & 1kS \\
\hline R9 & \(100 \Omega\) & & \\
\hline All & 0\% \(\frac{1}{2}\) & & \\
\hline
\end{tabular}

Capacitors
\(\left.\begin{array}{ll}\mathrm{Cl} & 0.22 \mu \mathrm{~F} \\ \mathrm{C} 2 & 0.22 \mu \mathrm{~F} \\ \mathrm{C} 3 & 100 \mu \mathrm{~F} \\ \mathrm{C} 4 & 100 \mu \mathrm{~F}\end{array}\right\}\) 20V Disc ceramic
Transistors
TRI-TR5 OC71 or NKT214 (5 off)

\section*{Diode}

DI OAB1 Mullard
Relays
RLA 9V 500 a coil. I make I break light duty contacts. 600 Type
RLB 9V \(500 \Omega\) coil. I make heavy duty contacts. 600 Type (Keyswitch Relays Ltd., 120-132 Cricklewood Lane, London, N.W.2.)

Switch
SI Double pole on/off roggle
Miscellaneous
Chassis 6 in , 4 in . Aluminium sheet. Veroboard. 5A 8-way terminal strip. Heavy duty wire, nuts, bolts and shakeproof washers, etc.

Fig. 7. Wiring diagram for negative earth systems
template provided with the relays as a guide. Also included in the relay purchase are bushes for the coil tags. It is important that all burrs should be cleared prior to inserting these. The relays can now be mounted on the piece of aluminium angle and this bolted to chassis using shakeproof washers.

As all flying leads should have been connected to the component board in the test set up, this can be mounted to the chassis side panel using stand-off bushes and shakeproof washers in the assembly.

The final component for mounting is the eight way section of plastics screw terminal strip which connects all external wiring to the unit. When this has been fixed to the chassis panel, holes should be drilled adjacent to the strip connections. Burr clearing at these points is important to remove any chance of insulation puncture when feeding through wires.

All wiring should now be completed as shown in Fig. 4, making sure that heavy duty automobile wire is used between the terminal strip and relay contacts.

\section*{NEGATIVE EARTH}

The unit as shown in Fig. 2 is intended for a 12 volt supply with a positive earth system, however it can be adapted for a negative earth supply. In this case some alterations to the circuit are required. Diode D1 should be reversed so that its cathode is connected to TR1 base via C2; the multivibrator should be re-wired so that points " \(A\) " and " \(Y\) " in Fig. 2a are connected together; the connection from the ignition circuit to the multivibrator, via Sla should be applied to point "B". Slb should now be inserted between the battery positive input and point " \(C\) ", and point " \(Y\) " taken direct to battery negative. If the extra protection microswitches are used these should be wired between points " X " and " C ". These changes are shown in Fig. 7.

\section*{INSTALLATION}

The completed unit should be hidden in any convenient place in the vehicle. The connecting leads to the horn, and also the direct feeds to the ignition coil and switch, should be of heavy duty cable. The on/off switch, S1, may either be a conventional toggle switch in a concealed position, or a more prominent control with a mis-leading name, e.g. FOG-LAMP:

The prototype has been in use for just under a year and is left on for about eight hours a day. During this time it has never given a false alarm. Admittedly, it has not caught any would-be thieves but this is mainly because no-one has tried to steal the car. It has, however, caught its designer a number of times and may be considered quite efficient.
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
3-PUSH SWITCH \\
For test meter. \\
hi-fi amp.. etc.
lit button oper- \\
ates mains on \\
 \\
\begin{tabular}{l}
ite change.orer \\
Hwithere. \\
Knoly \\
\hline
\end{tabular} \\
 \\
 \\
SATCHWELL OVEN THERMOSTATS \\
Type TO. With apillary ture and semsur. 20 atim \\
able by control knob (not supplied). \(12 / 6\) eit \\
MAINS TRANSISTOR POWER PACK \\
besigned to operate trangistor sets ant atnplitier \\
(class B working). Takng the for \\
the following bitteries: I'I'I, PP: Pl't, L'IP \\
 \\
16/6, pius \(3 / 6\) postage.
\end{tabular} \\
\hline \\
\hline
\end{tabular}

MINIATURE
WAFER
SWITCHES

WATERPROOF HEATING ELEMENT

G.E.C. 13 amp SWITCHED SOCKET In excellent opportunity to re-equip your house ir workbhop, or if you are it contractor tor restuck switch sockets, Brown Hiakelite: surface mounting Latest ring main type lieted at 6/6 eath. You cai have a box of 12 for \(30 /\) only-thus showing you: saving of e2.8.0. Postage and insurance \(\ddagger / 6\) extia

\section*{THERMOSTATS}

Type "A" 15 amp. for controlling rooh heotern pointer knob. Uuickly aljuatable from \(30-80\) f \(8 / 6\) plus \(1 /-\) post. suitable box for walt mount ing Type \& P. \(1 /\) made by the fanous sumvic Co. Spindle idjust this from \(50 \sim 550^{\circ} \mathrm{F}\). Internal screw alters the set ting eo this could be adjustable over \(30^{\circ}\) to \(1000^{\circ} \mathrm{F}^{\mathrm{N}}\) uitable for controlling furnace, oven kiln, immer ion heater or to make barme-g or fire alirm Type "D" \({ }^{8 / 6}\) jinst atad insurance
and out at around freczing point. \(2 / 3\) aums in that many uses, one of which would be to keep the loft nipes from freczing, if a length of our blanket wir 163 ds .10 -) is wound rount the pipen. 7, 6 .
P. \& P. I/I. Thin is atandard refrigerator theinus stat. Spiadle adjustrants cover normal refrigeraor temperatures. \(7 / 6\) plus \(1 /\) - boit.
Typo "F", Class encased for controlling the tellips. or siraks-phermostat is beld thalf gubmerped val rubber sucker or wire clif-ideal for lish tinks levelopers and chenical baths if all tipes. Adjustathle over range 00 F to 150 F'. F'rive 18, plus \(2 /-\) post and insurance
See in the Dark INFRA-RED BINOCULARS

These infra-ted binoentats when fed frum , high voltage zource will enable objects to be seen in the dark, providing the objects are in the rays of art infra-red beam. Each eye tube contains a complettThestical lens aystem as well its the infra-red cell, T.V. canneras-light cells, tice, (fetitits supplied). The blnoculars form cells, the. (Aletitifs oupplied). (Tabby) equipment. They are unubed and believed to be in good working order but shlid without : gusantee. Price \(8,17.6\), plus 10/- carr, and ins. Handbook \(2 / 6\).
 GRAM MOTOR

\section*{DOOR INTERCOM}
 out leaving heol or chair, Ontat ramplisiss minerplaner with call pash but tonn come tors
and master intet-com, smply phags together Originally sodd at elo. Simial suip price \(70 / 6\)
phas 3 ti pontrig

\section*{BATTERY OPERATED TAPE DECK}
 lus back and liewind. Motor is a special heary hyy type intended for operation oft \(4 / 5\) volt
Supplied
cumplete with 2 spools reads inatall. Record. Replay \({ }^{2}\) spands ready in M4 type Intendell for use with transiator amplitier. Price 44.15 .0 . Port and ins. \(4 / \mathrm{H}\)

\section*{TUBULAR HEATERS}

 "ith tivang lowh ta aml anailatble in the following gizes.
mft. \(30 /-\mathrm{F}\) lift, \(36-7 \mathrm{l} 2 \mathrm{ft} .42 / \cdot\)

'PILOT' CAPSTAN DRIVEN

\section*{TAPE RECORDER}

Capitan Driven, 4 Tranaiatora
SPECIFICATIOS: \(200 / 7,000\) 400 mW . output-double track-twin speed (3 and ind fast rewind time-5in, spool glves ote hour playing with standari ape. Complete with batter les, microphone.
ape spool and instruction manual. Ninthtne on ge wrong if you use a gool tape abll keep hridscleath. Detmonstrat anonglimlly fiven at our raydun shop. Special sinip Price This Month

\section*{ELECTRONICS (CROYDON) LIMITED}
(Dept. P.E.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) olso ot 266 LONDON ROAD, CROYDON, SURREY S.A.E. enquiries please

\section*{Practical Electronics Classified Advertisements}

\section*{TAPE RECORDER8, TAPE8, ETC.}

\section*{QEE'E RECORDINR TAPE und Atulio Accessorles cont less: Nend \(1 / 0\) for Illustrated
} Newport Street, I omion, W.C.s. Gerrard 6794,

TAPES TO Diso-using Inest professional equipment-45 r.p.m. 18/m. S.A.F. leaflet. DKikOY, High Bnnk, Hawk Street, Carnforth, JAncs.

80\% 6AsH DISCOUNT on most famous makes of Tape llecorders, Hi-ki equlpment, Cameras, etc. Join Jingland's largest Mail Order Club now and enjoy the advantages of bulk buying. Send \(5 /\) - for membership card, catalogues, price lists and ask for quotation on any item. C.B.A. (Iept. A18), 370 St . Abbans lload, Watford, Merts.

\section*{service sheets}
gERVICE SHEETS, Radio, IV, 5000 models. Lat 1/E. S.A.E. enquiries. 'TELliAY, 11 Maudland Bank, l'reston.

RADIO TELEVISIOH, over 8,000 Models. JOHN GILBEIRT TEIHVISION, 1b Shepherds Bush lid., Jondon, W:6. SHE 8441.
service sheets for all uakes undio, T/V, Tape Recorders, 1925-1067. Prices from \(1 /-\) : Cafnlogue 6,000 models, \(2 / 6\). Free faultthinding guide with all sheets. please send stamped addiressed envelope with all orders/ encuiries. HAMIL'ON JADIO, 54 London joad, Jexhill, Sussex.

\section*{SERVICE SHEETS}

4/- each, plus postage.
We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service.
To obtain the Service Sheet you require, please complete the attached coupon:
From:
Name:
Address: \(\qquad\)

\section*{To: S.P. DISTRIBUTORS}

35/36 ereat Marlborough 8trent, London, w. 1
Please supply Service Sheets for the following:

RATES: \(1 / 3\) per word (minimum 12 words). Box No. 1/6 extra. Advertisements must be prepaid and addressed to Advertisement Manager,
"Practical Electronics"
15/17 Long Acre, London, W.C. 2

\section*{FOR SALE}

BRA88, 8TEEL, LIBHT ALLOY, STAINLE8S sTEEL TUBE. Bar Material, Tools, Mechunical, Viectrical, phus Assortel Lots. Nend S.A. F. for latest cat, of 1,000 items. K. R. WHISTON, Drpt. BPE, New Mills, Stockport.

\section*{HAMMERITE}
- JUST BRUSH ON 2\} oz. tins \(3 / 9\), \& pint [8j-, 1 pint \(16 /-\) : Carr.: orders up
to \(5 /-9 \mathrm{~d} . ;\) up to \(10 /-, 1 / 9\) to oper 10/-. \(3 /\) /-. Colours: blue. over
ailver, black, bronze. No
primer
needed. \(\begin{array}{ll}\text { primer } & \text { needed. } \\ \text { transfers, } & \text { Panel } \\ \text { fireproof } & \text { epray }\end{array}\) transfers, fireproof spray
thinners. LIST FREE. thinners. LIST FREE.
INDUSTRIALIBT8 INDUSTRIALIST8
SAVE TIIE AND ERE's
(2 pints will do a Mini)
TS - JUST TRY IT!
AMAZING RESULTS - JUST TRY IT
FINNIGAN SPECIALITY PAINTS (PE) Mickley Square, Stocksfield, Northumberland Tel.: Stocksfield 2280

100 PaE illustrated Catalogite No. 17 Government and manufacturers' electronic surplus, also new section of latest semiconductors and miniature components. Credit voucher for \(2 / 6\) included. Price \(3 /\)-post free. ARTHECl SiALIJS liJi., g:3 North Road, Brighton.

\section*{MORSE MADE ! !}

FACT NOT FICTION. It you start RIGHT you will be reading arnateur thu commercial Using scientifically prepared 3-speed records you atonatically learn to recognise the code RHYTHM wlthout tranalating. You can't help it, it's as easy a learming a tune. 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring S. T.D. \(01 \cdot 660289 \mathrm{f}\) or aend 8d. stamp for explanatory book
GSOH8/H, 45 GREN LAIE, PURLEY, SORREY

\section*{bOOKS AND PUBLICATIONS}

\section*{SURPLUS HANDBOOKS}

19 set Circuit and Notes
1155 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical Inscructions. 46 set Working Instructions 28 set Technical Instructions. BC. 221 Circuic and Noces. Wavemeter Class D Tech. Inser 18 set Circuit and Notes BC. 1000 (31 set) Circuic \& Notes CR.ION/B. 28 Circuit and Nores R. 107 Circuit and Notes. A.in.seb. Inscruction Manual \(\mathbf{4 2}\) set Circuit and Notes 62 aet Circuit and Notes 52 set Sender \& Receiver Circuits 6/-. post free Circuit Diagrams \(3 /-\) each post free. R. \(1116 /\) A, R. \(1224 /\) A, R. 1355, R.F. 24, 25, \& 26. A.II34. T.IIS4. CR.300, BC.342. BC.3I2. BC.348.J.E.M.P. BC.624. 22 set.
Resistor colour code indicacor. I/6 P.P. \(6 d\). S.A.E. with all enquiries please.

Postage rates apply to U.K. only.
Mail order only to:
Instructional Handbook Supplies
Dept. P.E.. Talbot House, 28 Talbot Gardens

\section*{WANTED}

YALVE WANTED, brand new popular types boxed. DURHAM SUlPLIES (E) 175 Durham Road, Bradford 8, Yorkshire.

WANTED: PRACTICAL ELECTRONICE, March 1965 and Index 1965/66. SGT. WHEELER, \(3: 3\) signals, RAF Akrotiri, BFPO 5:3.

\section*{ELECTRICAL}

\section*{whilst stocks last}

Introducing the range ol KHORD audio products we proudly present the symThony unit is a high elass high fidelity unit at an economical price. Size \(24^{\prime \prime} \times 14^{\prime \prime} \times 10^{\circ}\), Hand made contemporary veneered teak or light oak cabinet, with marching Vynair front. Incorporating the fabu An 8 . speaker with dual cone, roll surround. An 8 speaker with dual cone, response \(48-20,000 \mathrm{c} / \mathrm{s}\). Rating \(6 / 10 \mathrm{watts}\). Freq. response \(\mathrm{Hi}-\mathrm{Fi}\) arrangements. Price only 11 gns. carriage 17/6. If purchasing 2 units at once E21. Carriage 30/-. S.A.E. with oll enquiries please. Postoge rotes opply to U.K. only.

(Dept. P.E.7), 24 Cawoeds Yard
Mill Street, of Marsh Lane, Leeds NEW walk around Scientific Store open at this address

\section*{HI-FI EQUIPMENT}

EXTEN8ION SPEAKER8 in mahogany, hand veneered and polished complete with \(7 \times 4\) speaker. Retail price 39/6, carr. 4/6. Trade
enquiries invited. P. F. \& A. R. HELME, Dept. PE, Butcher Pasture, Summérbridge, Dept. PE, Butch
Harrogate, Yorks.

\section*{EDUCATIONAL}

STUDY RADIO, TELEVISION AND ELEGTRONIC8 with the world's largest home study organisation. I.E.R.E.; City \& Gujlds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext House, London, S.W. 11.

\section*{EDUCATIONAL}
(continued)

QET INTO ELECTRONICs - big opportunities for trained men. Learn the praetical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, ment. A.M.I.E.R.E., R.T.E.B., City \& Guilds,
Radio, T/V, Telecoms., etc. For FREE 100Radio, T/V, Telecoms., etc. For FREE 100-
page book, write Dept. 850 K , CHAMBERS page book, write Dept. \(850 \mathrm{~K}, \mathrm{CHAMB}\)
COLI,EGE, 148 Holborn, Iondon, E.C.1.

RADIO OFFICER8 see the world: Sea going and shore appointments. Trainee vacancies during 1968 . Grants available. Day and Boarding students. stamp for prospectus. WIRELENS COLLEGE, Colwy Hay, Wales.

FREE TO AMBITIOU8 ENQINEER8: 132 page Guide to B.Sc. (Ling.), A.M.I.E.R.E. A.M.S.E., A.M.I.M.I., ('ity \(\delta\) Guilds, A.I.O.B. A.R.I.C.S., G.C.E., etc., on "Natisfaction or Refund" terms. Thousands of passes-over 600 Home Study c'ourses in all branches of Engineering Building Redio Eleetronics etc Write: B.I.E.T. (Dept. 125K), Aldermaston, Court, Aldermaston, Berks.

\section*{SITUATIONS VACANT}

EXPERIENCED OUTWORKER required for wiring of assembly containing relays, resistors, etc. Good rates paid and full instructions given. Contact: J. (AWTHORNE at \(01-8366438\)

WE REQUIRE the temporary services of a young man with practical and mechanical ability to carry out various design projects working on his owin. The joh would suit anyone waiting for a new position or on vacation, etce, and would be for a mininum of two months. Nalary would depend on ability and experience. contact, without delay, D. CAWTHORSE at 01-8:36 6438.

\section*{RADIO TECHNICIANS}

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the U.K. including London). There are also opportunities for service abroad.
Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to candidates who can offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of electromechanical equipment will also be an advantage.
Pay according to age, e.g. at \(19-£ 828\), at 25-£1,076.
Prospects of promotion to grades in salary range \(£ 1,159-£ 1,941\). There are 3 few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.
Application forms available from:
Recruitment Officer (RT/54)
Government Communications Headquarlers Oakley
Priors Road
CHELTENHAM, Glos.

\section*{SITUATIONS VACANT} (continued)

UNIVERSITY OF LONDON GOLDSMITHS' COLLEGE, NEW CROSs, LONDOH, 8.E.14. Applications are invited for the post of Technician in Audio-Visual Aids. The work will be with an expanding l'nit and opportumities will exist for an interesting and progressive career. Applicants must he suitably qualified with cxperience in Radio and Tape-Recorder servicing. Experience in C(TVPand Film Projection equipment an advantage. Nalary range: \(\mathfrak{f} 715-£ 1,215\) p.a. according to age and range:
ability. For further particulars write to the Registrar.

\section*{8ITUATIONS VACANT}
(continued)
A.M.S.E. (Elec.), City \(\mathcal{C}\) Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-prage Guide-FREL. I'lease state subject of interest. BRIFISH INSTITUTE OF ENGINEDEANG TECHNOLOGY (Dept. 124 K), Aldermaston ('ourt, Alderinaston, Berks.

\title{
Ferranti in scotand PUBLICATIONS GROUP
}

\section*{Publications Engineers}

Vacancies exist, to be filled from the beginning of February, 1968 for Technical Authors (Electronic), of Grades up to experienced Seniors, for the preparation of technical publications covering design, operation and maintenance of the Company's entire range of products. Our Technical Publications Group is housed in pleasing surroundings on the south bank of the River Forth and claims to be the largest Group of its kind in the Electronics Industry in Britain. The Group is backed by a comprehensive publishing section.
Anyone (male or female) with an electronic background in airborne radars, ground radars, air navigational equipments or machine tool control, with the ability to write in a simple and concise manner will be given the opportunity of training in publications technology. All posts carry attractive salaries and conditions, together with the benefit of living in one of the more pleasant cities in the U.K.
Edinburgh is a city which caters for leisure time and is ideally situated as a centre for Summer Touring and Winter Sports. It abounds in facilities for rugby, football, golf, cricket, badminton, skating, sailing, etc., and has a ski slope and racing circuits on its outskirts. Theatres, Concert Halls and Eating Houses cater for all tastes, summer and winter. Such amenities are provided at a fraction of their cost compared with other cities-AND transport is no problem.
Interviews can be arranged in Edinburgh,
London and Manchester, to suit.
Apply with details of career to
Staff Appointments Officer
Ferranti Lid., Ferry Road, Edinburgh 5

\section*{TECHNICAL TRAINING by IC S IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING}

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, muitimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of IC \(S\) courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

\section*{MISCELLANEOUS}
"PRACTICAL ELECTRONICs" Spring Line Reverheration Init. Proporthonal Nervo System. Anti-dazzle Jriving Mirror. Photographic Exposure Meter. Water Level Alarm. Fuzz Box. Yodeller boor Monitor. Harmonic Distortion Meter. I.C. Gram Amplifler. Thyristor Power ('ontroller. Tramsistor Millivoltmeter. Ncreenwiper Delay l'nit. Elertronic stopr:lock. Transistor Test Set. Elertronit Stopricks. Transistigator Osclioscope. Radio servicing Investigator Oscilioscope. Radio servicing Aid, ©.R.O. Trace Doubler, Bite Indicator. Light Operated Stopwatch. Valve Voltmeter and Ohmmeter. Proxinity Detector. Photo-
flash Slave I'nit. Integrated Stereo Ampiffer flash Slave l'nit. Integrated Stereo Ampifier and all coustructional projects going backised Jssue 1. Send s.a.e. for your choice of temsed DCCTs, 1Na Rumbold Road, Fulham, London, s.W.t.

\section*{PANL}

The original air-drying one-coat brushapplied crystalline black paint. The most reliable and effective finish obtainable for metal surfaces. Just as easy to apply as ordinary paint Obliterates minor surface scratches giving a most pleasing 'crackle appearance
5/- per \(1 / 8\) th pint can including postage (ample for most amateur require ments), obtainable from

> BRUCE MILLER CO. LTD
> 249 Coastal Chambers
> Buckingham Palace Road
> London, S.W.I

\section*{MISCELLANEOUS (continued)}

CALL OR 8 END for list from the most interest ing shon in Laucashire. Electrical Mechanica and Electronic (ioods. ROGERS, 31 Nelson Street, Southport.
motorists. Dim Beam Lighting Kit complete with Diode, Resistor, Relay, all Terminations and Instructions, 12/6. JARVIS 27 Glenpark Drive, Nouthport

\section*{REGEIVERS AND COMPONENT8}

REPANCO 'I'ransistor Coils and Transformer. for the Constructor. Send stamp for list RADIO EXPERIMENTAL PIRODUCTS LTD., 33 Much Park Street, Coventry.

RECEIVERS AND COMPONENTS
(continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{RECORDING TAPES} \\
\hline \(7{ }^{\text {7 }} 1.200\) & 19, & 1,800 & & 00' 19/6 & 2/3 \\
\hline 54* 900 & 6/9 & 1,200' & & 00' \(14 / 6\) & \\
\hline \(600^{\circ}\) & & 900. & & 200 10,9 & - \\
\hline \(3^{\prime \prime} 185^{\circ}\) & & 225' 2 & & \(0^{\circ}\) & \\
\hline \multicolumn{6}{|c|}{Postand packing, \(2 / 9\) per order} \\
\hline \multicolumn{6}{|c|}{SEMICONDUCTOR BARGA} \\
\hline OC22 & 8/- & OC83 & 4/- & AFII7 & \\
\hline & 8/- & 0 O 84 & \(4 / 6\) & AF118 & \\
\hline OC24 & 81- & -C170 & 4/- & AFZ12 & \\
\hline OC25 & 61 & \(\mathrm{O}^{\circ} \mathrm{Cl} 71\) & 4/- & \(\mathrm{BCY}^{3}\) & \\
\hline & \(6 /-\) & OC202 & \(6 / 6\) & BCY34 & 616 \\
\hline & 6/- & OC205 & 6/6 & BCY \({ }^{88}\) & \\
\hline OC30 & 8/- & OA81 & \(2 /-\) & BCY 39 & \(6 / 6\) \\
\hline & \(6 /\) & OA 182 & 2/- & BFY50 & 16 \\
\hline C 36 & \(61-\) & OA200 & 21- & BFY51 & \\
\hline & 3/- & OA202 & 2/- & BFY52 & \(5 / 6\) \\
\hline 析 & \(2 / 6\) & AC107 & 8/- & BY100 & 16 \\
\hline C46 & 3/- & \({ }^{\text {ACl }} 126\) & 4/- & BYZ10 & \\
\hline OC70 & 3- & \({ }_{\text {ACl }}{ }^{\text {a }}\) & 4/- & BYZII & \\
\hline C71 & \(2 / 6\) & ACY17 & 4/- & BYZ12 & \\
\hline & \(2 / 6\) & \({ }^{\text {ACY }} 18\) & 4/- & BYZ13 & 51- \\
\hline 矿 &) & \({ }^{\text {ACY }} 19\) & 4/- & GET102 & \\
\hline & \(3 /-\) & \({ }^{\text {ACY }} 20\) & \(5 / 6\) & GET103 & \\
\hline & & ACY21 & 5/6 & GETI & \\
\hline C78 & 3/- & ACY22 & 4/- & GET 116 & \\
\hline C78D & 3/- & ADI 40 & 8/- & GETII & 16 \\
\hline C8 & 3/- & ADI49 & 8/- & GETI19 & 16 \\
\hline C810 & 3/- & AFII4 & \(4 /\) & 2 N696 & \\
\hline C82 & 3/- & AFIIS & & 2 2N697 & \\
\hline OC82 & 3/- & AFl16 & 4/ & 2N706 & 16 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
All fully tested and guaranteed. Discouns for quantity orders on request. \\
Post and packing, 1/- per order \\
Money refunded in full if not sotisfied
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
A. MAREHALL \& BON (LONDON) LTD. 28 Cricklowood Broadway, London, N.W. 2 (Dept. P.E.17) \\
Tel: 01-452 0161
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{DUXFORD ELECTRONICS}

\section*{DUXFORD, CAMBS}
C.W.O. P. \& P. 1/. Minimum order value \$/Trade enquiries invited
CAPACITORS (Tubular, Axial Leads)
polyester: \(710 \%\). 160 V : \(10,000 \mathrm{pF}, 15,000 \mathrm{pF}, 6 \mathrm{~d}\).
 \(1 / \mathrm{j}, 0.47 \mu \mathrm{~F}, 1 / 6,0.68 \mu \mathrm{~F}, 1 / 10.1 \mu \mathrm{~F}, 2 / 6\).
400 V : 1.000 pF . 1.500 pF . \(5 \mathrm{dd} .2,200 \mathrm{pF}, 3,300 \mathrm{pF}, 4,700 \mathrm{pF}\), \(6,800 \mathrm{pF}, 10,000 \mathrm{pF}, 6 \mathrm{~d}\). 8d. \({ }^{33,000}\) p, \(0.22 \mu \mathrm{~F}\) 166. \(0.33 \mu \mathrm{~F}, 2 / 1,0.47 \mu \mathrm{~F}\) \(17.0 .15 \mu \mathrm{~F}, 19.0 .22 \mu \mathrm{~F}\). \(1 / 6.0 .33 \mu\) \(0.68 \mathrm{LF}, 3 / 9.1 \mu \mathrm{~F}, 4 / 6\).
Polystrrene: \(5 \%\). 160 V : 33 pF . 39pF, \(47 \mathrm{pF}, 56 \mathrm{pF}\), \(68 \mathrm{pF}, 82 \mathrm{pF}\). \(100 \mathrm{pF}, 120 \mathrm{pF}, 150 \mathrm{pF}, 180 \mathrm{pF}, 220 \mathrm{pF}\), \(270 \mathrm{pF}, 330 \mathrm{pF}, 390 \mathrm{pF}, 470 \mathrm{pF}, 560 \mathrm{pF}, 680 \mathrm{pF}, 820 \mathrm{pF}\), \(3,900 \mathrm{pF}, 4,700 \mathrm{pF}, 5,600 \mathrm{pF}\), 6 d . \(6,800 \mathrm{pF}\), \(8,200 \mathrm{pF}\),' \(10,000 \mathrm{pF}, 15,000 \mathrm{pF}, 22,000 \mathrm{pF}, 8 \mathrm{~d}\).
JACK PLUGS (Screened): Heavily chromed, tin. S:andard: \(2 / 9\) each. Side-entry: \(3 / 3\) each.
Scandard (Unscreened): With black, grey, white, red, lue green or yellow covers, \(2 / 3\) each
JACK SOCKETS (tin Plug): With black or white berel and chrome nur, \(2 / 9\) each. Available with: Break/Break, Make/Break, Break/Make, Make/Make

POTENTIOMETERS (Carbon): Long life. low noise. \(\frac{\underset{c}{4} W}{} \mathrm{~W}\) at \(70^{\circ} \mathrm{C} . \pm 20 \% \leqq \pm \mathrm{M}, \pm 30 \%> \pm M\). Body dia., tin. Spindle, lin \(x\) tin, \(2 /\) e each. Linear: kk, \(2.5 \mathrm{k}, 5 \mathrm{k}\), etc., per decade to 10 M . Logarithmic: 5 k . \(10 \mathrm{k}, 25 \mathrm{k}\). ecc., per decade to \({ }^{\text {SM }}\).
SKELETO
PRE-SET POTENTIOMETERS (Carbon): Linear: \(1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}\), etc., per decado

 tical (0.4 in \(\times 0.2 \mathrm{in}\) P.C.M.) mounting, \(1 \%\) each. Submin. 0.1 W at \(70^{\circ} \mathrm{C}\). \(\pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>\) IM. Horizontal (\(0.4 \mathrm{in} \times 0.2 \mathrm{in}\) P.C.M.) or Vertical \(0.2 \mathrm{in} \times 0.1 \mathrm{in}\) P.C.M.) mounting, 9 d , each.
MESISTORS (Carbon film): High stability, very low noise. \(\pm W\) at \(70^{\circ} \mathrm{C}\). Body tin \(\times 1\) in. Values in each decade: \(30,33,36,39,43,47,51,56,62,68,75,82,91\) irom 4.7 \(\mathbf{t o}\) im. \(5 \%\), 2d each, 1.2 M , 1.5 M , 1.8 M , \(4.7 \mathrm{M}, ~ t o ~\)
\(2.7 \mathrm{M}, 3.3 \mathrm{M}, 3.9 \mathrm{M}, ~ 4.7 \mathrm{M}, 5.6 \mathrm{M}, 6.8 \mathrm{M}, 8.2 \mathrm{M}\), lom. \(10 \%\). 2d. each.
SILICON RECTIFIERS: \(0.5 A\) at \(70^{\circ} \mathrm{C}\) (no heat sink required). 400 P.I. V.i. 2/9. 800 P.I. V., \(3 /=1.250\) P.I.V., 3/6. 1.500 P.I. V... \(3 / 9\). \(1 \cdot 2 \mathrm{~A}\) at \(50^{\circ} \mathrm{C}\) (no heat sink required). 400 P.I.V. \(5 / 6\). 800 P.1.V, 7/-. 1,250
 sink required), 400 .I.IV., ili/3.
SWITCHES (Chrome finish, Silver contacts): 3A 250 V . 6 A 125V. Push Buttons: Push-on or Push-off (with white, black, green or red buttons) s/i. Toggle Switches: SP'/ST. 3/3. SP/DT, 3/6. SP/DT (with centre position) \(3 / 9\). DP/ST: \(4 / 3\). DPDT, 5/-.
SEND S.A.E. FOR FULL CATALOGUE Components, Kits, Hi-Fi Equipments. Turn tables, Speakers)

CONTINUED FACING PAGE

RECEIVERS AND COMPONENTS
(continued)

\section*{CURSONS} TRANSISTORS ALL GUARANTEED

\section*{1/-each}

BAY31, BAY50, DK10, OA70, OA81, OA200, OA10, OA90, OA91, OA259, IN914, IN916, JL102

\section*{2/- each}

XA101, XA102, OC71, OC72, OC81, OC81D, OC44, OC45, GET16, FST3/1, ACY22, ASY57

3/- each
OC139, OC140, 2N706, 2N708, 2N2894, BY100, RAS310AF, 2 N914 BSY26, BSY27, BSY95A, AFZ12

7/6 each
RAS508AF, CRS3/40, BLY10, BLY11, BUY10, BUY11, ADY22, ADY23, ADY24, OC22, OC26

\section*{ZENER DIODES}
3.9 v to 26 v , \(\frac{1}{4} \mathrm{w} 3 /-\) each, \(1.5 \mathrm{w} 4 /-\), \(7 \mathrm{w} 5 /-\) each.
B. CURSONS S.A.E. 78 BROAD STREET CANTERBURY KENT

RECEIVERS AND COMPONENTS
(continued)

\section*{HYSTABS}
w \(5 \%\) Carbon film low noise
12 preferred values per decade only
Your choice 3 d. each, \(2 / 3\) doz., \(171=100\)
W/E TCC \(32+32 \mu \mathrm{fin} 300 \mathrm{~V} 4 / 6\) each
WIE TCC \(500 \mu \mathrm{f}\) " \(30 \mathrm{~V} 2 / 9 \mathrm{each}\)
C.W.O. P/P 2/- per Order. S.A.E. Gen. list.

CALDER RECORDINGS LTD.
Regent St., HEBDEN BRIDGE, Yorkshir

\section*{RESISTORS}
\(\frac{1}{2}\) watt carbon film 5\%
All preferred values in stock from 10 ohms to 10 megohms 2d. each. Send S.A.E. for free sample

\section*{CAPACITORS}

Mullard Miniature Metallised Polyester P.C. Mounting, all 250V D.C. working. \(0.01 \mathrm{mf}, 0.022 \mathrm{mf}, 0.047 \mathrm{mf}\),
\(0.1 \mathrm{mf}, 0.22 \mathrm{mf}\), all at 6 d . each
Hunts tubular 0.1 mf 200 V working at 3d. each

Send 6d. stamp for extensive list of low priced Electronic Components, Instruments and Equipment
Please include 1/-postage and packing on all orders under \(£ 1\)

Dept. P.E. 6
brensal electronics limited charles Street, bristol 1

RECEIVERS AND COMPONENTS
(continued)

\section*{SURPLUS (Ex-Govt) BARGAINS \\ \section*{FAYOUS MO. 10 SET TRAMg/RECEIVER}} Covers \(2-8 \mathrm{Mc} / \mathrm{s}\) in 2 bands. 11 valve superbet trapscelver including 807 P.A. Power requ. L.T. 12V, H.T. rec. \({ }^{275 V}\); H.T. trannmit \({ }_{505 / .}^{500}\) d.c. Belightected condition used
 parts avallable.
To. 31. Tranaceiver VHF \(40 / 48 \mathrm{Mc} / \mathrm{s}\). Tunable. 90/80/4IV battery operation, 70/-
To. 88. Two way radio.
trolled, 4 channel, \(60 /\) - each
14. 38. Two way radio. 7-9Mc/6. Tunable 40/- each. onirolled 12 V do telephome. \(60-95 \mathrm{M}\)
No. 6e. Transmitter Receiver. \(1 \cdot 6-10 \mathbf{M c} / \mathrm{p}\). Tunable or cryatal controlled 12 V d.c. operation, 18.10 .0 . R.C.A. C29. Transmitter receiver 2 -8Mc/a. Complete station, brand new, 12 or 24 V d.c. operation, 19.10.0.

Mo. 58 EECEIVEPS. Few left, used (serviceable), 7.10.0.

Tubular Steel Teleacopic Aerial Mata. 94, 4 ation, 70
\(341 \mathrm{t}, 6\) eection, \(90 \%\).
34t, fection, of.
AKE YOUR OWN AERIAL MAST! bit sections make 351 mast FYLOI GIT ROPES Fith memi automatic tensloner 331t, \(0 / 6 ; 501 \mathrm{t}, 7 / 6 ; 60 \mathrm{tt}, \%\). CLASS "D" WAVEMETER, ge/s.
ROTARY TRAISFORMERS BY HOOVE RYTARY TRAR 12 V d.c. input, output 250 V d.c. at 125 mA . \(65 \mathrm{miA}, 25 /\) -
REIECTOR JITT. For relecting unwanted ignals, Switched 4 ranges. 1-2-10Mc/s, \(30 /\)-. R.F. ATTEHINA TUMER (A.T.U.) 160/80/40 metres, \(25 /\).
yovia com EEADPEOREs. soft rubber earpada, 19/b.
All items Carriage Paid Malnland only
Liat giving fuller details of theae and many other urplus bargains 2/. S.A.E. all enquirles (Please print clearly).
A.J.THOMPSON (Dept.P.E.)
"Eiling Lodge" Codicote, Hitchin, Herte. Phone: Codicote 242

\section*{PURE SOLID STATE HIGH FIDELITY MODULES}

SPAI. Silicon mono-stereo preamplifier Inputs for magnetic/ceramic cartridges. Aux/tuner/tape, etc. Supplied tested on printed panel \(2 \frac{1}{2}\) in \(\times 5\) in on brushed Al. facia 9 in \(\times 3\) in with matching knobs. Output 500 mV per channel. \(£ 6.19 .6\) per channel.

IOWI. IOW pure comp. silicon amp. IOW RMS/8 S. \(15 \mathrm{~W} / 4 \Omega\). F.R. 13 Hz to 100 kHz . plus 0 dB minus 3 dB THD at 8 W . RMS: \(25 \mathrm{~Hz}-0.1 \%\), \(1 \mathrm{kHz} \quad 0.05 \% .20 \mathrm{kHz}\) \(-0.15 \%\). I.M. dist. \(0.1 \%\) at 8 W . Low noise. Input \(180 \mathrm{mV} / 3,300 \Omega\). Size \(\operatorname{Sin} x\) 4 in \(\times 2 \mathrm{in}\). Price fully tested, \(\mathfrak{£ 6} 19.6\).

25WI. 25 W pure comp. silicon amp. As above but rated at 25 W RMS/8 \(\Omega\), 30W RMS \(/ 4 \Omega\). Price fully tested, £8.19.6.

FMT2. Two stage all silicon FM tuner head. 88 to 108 MHz . Output \(10 \cdot 7 \mathrm{MHz}\). I.F. Built in AFC. Precision geared Gang. For valve or transistor amps. \(2 \frac{3}{4}\) in \(x\) \(2 \frac{1}{2} \times 1 \frac{1}{2}\) in. Fully tested, \(\mathbf{\text { E5.3.6}}\).

FMT3. Three stage as above with AFC and AGC. Fully tested, ©6.9.6.

FMIF4. Four stage silicon I.F. amplifier 10.7 MHz I.F. input, with AFC and AGC. Preset A.M. rejection. Broad bandwidth \(5 \frac{1}{i}\) in \(\times 2 \mathrm{in}\). Fully tested, \(\mathbf{6 5 . 1 9 . 6}\).

A new concept in amplifier design. Pure comp. silicon units on edge connected printed circuits and heat sink. \(6 \frac{1}{2}\) in \(2 \frac{1}{2} \mathrm{in}\). Overall height lin.
5WP. 5W RMS/8. F.R. 2020 KHz at \(4 W\). THD \(0.8 \%\). \(500 \mathrm{mV} / / \mathrm{P}\) at \(33 \mathrm{k} \Omega\). £5.7.6.
loWP. Specification as above, but 10 W RMS into 8, £5.15.6.

Field Effect Transistor Front End Version 5WPF. As above but \(150 \mathrm{mV} / 2 \mathrm{MS}\). 66.2.6.
\(10 W P F\). As above but \(130 \mathrm{mV} / 222\), €6.17.6.

All modules are Guaranteed for twelve months. Money back if not delighted with results.

Power Supplies.
5W, €2.10.0; 10W, E2.15.0; 25W \(\mathbf{£ 3 . 0 . 0}\); tuner or decoder, \(\mathfrak{£ 2 . 2 . 6}\).

Guaranteed Transistors.

\section*{SUPERIOR QUALITY NEW RESISTORS}

Carbon film high stobinty low noise mixed, \(14 / 6\) per 100
\(+W 10 \% 4.7 \Omega\) to \(10 \mathrm{M} \Omega 1 / 9\) doz., \(13 / 6\) per 100 .
\(\frac{1}{2} W 5 \% 4-7 \Omega\) to \(10 \mathrm{M} \Omega 2 / 2\) doz., \(17 / 6\) per 100 .
All mixtures to your specified values. Large quantities stocked. I/6 per 100 less when ordered in 100 's of one ohmic value.
Quality Carbon Skeleton Presets: \(100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{k} \Omega, 2 \cdot 5 \mathrm{k} \Omega, 5 \mathrm{k} \Omega\), \(10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega\), \(1 \mathrm{M} \Omega, 2.5 \mathrm{Ma}, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega\). All values available in horizontal or vertical mounting \(1 /-\) each.
Volume Controls: \(100,250,500 \mathrm{n}\) to \(10 \mathrm{M} \cap\) linear, \(2 / 3\) each, \(5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}\) to
5M
Enctrolvics: \(5,10,25,50 \mu \mathrm{~F} 10 \mathrm{~V} ; 5,10 \mu \mathrm{~F} 25 \mathrm{~V}, 9 \mathrm{~d}\). each.
THE FINE PRODUCTS OF PEAK SOUND
CIR-KIT No. 3 Pack \(12 / 6\) each. Adhesive copper \(5 f \mathrm{fx} \times\) tin or \(\frac{16}{6} \mathrm{in}, 2 \%\). Per forated board \(0 \cdot 1\) in matrix, 5 in \(\times 3\) in \(4 /-; 2\) in \(\times 3\) itin, \(2 / 6\).
TRANSISTORISED STEREO
AMPLIFIER SAB-8

For an entirely new building experience that is easy to carry out and assures first-class results. Amplifier kit \(£ 10.10 .0\) Power supply kit \(\& 3\) Cabinet \({ }^{3}\)

BEST GUALITY NEW SEMICONDUCTORS

\section*{SILICON}

Low noise high gain: \(\mathrm{BC} 109,4 /-; 2 N 3707,5 /-\). PNP: \(2 N 4058,5 / 6\).
General purpose high goin;
NPN: BC168, \(2 / 6 ; \mathrm{BCl} 108,3 / 6 ; 2 N 2926 / y e l, 3 / 3\). PNP: \(2 N 4062,4 / 6\).
High power: \(2 N 3055,16 / 6 ; 40465,18 / 6 ;\) MJE521, 20/9. PNP: MJE37I, 23/9.
Field effect:
N-channel: MPFI05, 10/-; 2N3819, 14/9. P-channel: 2N3820, \(24 / 6\). Many others including: 2N3241, 8/3; BC167, 3/-; BC107,4/-;2N3702, 4/-; 2N3703, GERMANIUM
Many types including: ACY22, 3/6; 2N1304; 4/-; 2N1305, 4/-; NK
NKT675, 4/9; 2N2147, 16/9; 2N2148, \(15 /-\mathrm{i}\) AD161, \(9 /-;\) ADI62, \(9 /-\mathrm{F}\). MINIATURE SILICON DIODES: I 5940 30V \(75 \mathrm{~mA}, 1 / 3\) each only.
EVERYTHING BRAND NEW NO SURPLUS FAST DELIVERY DISCOUNTS: \(10 \%\) over \(\mathbb{C 3}, 15 \%\) over \(£ 10\).
SEND \(1 /\) - for 1968 CATALOGUE - Invaluable to every electronics enthuslast.
Postage \(1 /\) - under \(\mathbb{C l}\), post free \(\{1\) and over
ELECTROYALUE 6 MANSFIELD PLACE, ASCOT, BERKSHIRE

20 Like BAY50 charge storage DIODES \(10 /-\)

10 50-400 PIV I Amp. SCR's

RECEIVERS AND COMPONENTS
(continued)

\section*{R \& R RADIO}

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
\begin{tabular}{|c|c|c|c|c|c|}
\hline EBF80 & 3/- & PCC84 & \(3 /-\) & PY82 & 3/- \\
\hline EBF89 & 3/6 & PCF80 & 3/- & U191 & 4/6 \\
\hline ECC8 & \(3 /-\) & PCF82 & 3/6 & U301 & 4/6 \\
\hline ECL8C & 3/- & PCL82 & 4/- & 6F23 & 5/- \\
\hline EF80 & 1/6 & PCL83 & 4 /- & 10P14 & 3 - \\
\hline EF85 & 3/- & PCL84 & 5/- & 20P5 & \(31 /\) \\
\hline EF183 & 3/6 & PL36 & 5/- & 30F5 & 2/6 \\
\hline EFI84 & 3/6 & PL81 & 4/- & 30LI 5 & 5/- \\
\hline EY86 & 41. & PL83 & 4/- & 30 P 12 & 4/6 \\
\hline EL4I & 5/- & PY33 & 5/- & 30 Cl 15 & 5/- \\
\hline EZ40 & 4/6 & PY8I & 3/6 & 30 PLI 3 & 5/6 \\
\hline EBC4I & 4/6 & PY & / & & , \\
\hline
\end{tabular}

FOST, ONE VALVE 9d. TWO TO SIX \(6 d\). OVER SIX POST PAID

This set is made up of 3 separate units: (1) a two valve amplifier using a 6 V 6 output valve: (2) (sonie only, not built In the very latest models) a V.H.F. trangreceiver covering 229-241 Mc/s using 4 valves; (3) the main short wave transmitter/receiver covering. in two bwitched bands, just below \(2-4] \mathrm{Me} / \mathrm{s}\), and 4-8 Mc/s (approx. 100-37.5 hetres) using ? valves. For R.T., C.W. and M.C.W. The receiver is super heterodyne having 1 R.F. stage, irequency changer, output stage. A B. F . included for © side-band reception. T.X. output valve 807 , other valvea octal bases. Many extras, e.g. netting switch quick flick dial mettings, squelch, ete. Jower requirements L.T, 12 volts, H.T. receiver 275 volts d.c., H.T. transmitter 500 volts d.e., size itpprox \(17 \frac{1}{2} \times 7 \frac{1}{2} \times 11\) ins. Every set aupplied in new or an new condition in carton with book including circuits, only 84.10 .0 , or Cirade \(\%\) slightly used A KIT of brand
set including all connectors attachments for this and mike, co-axial lead, etc. at only \(40 /\) carriage 5/-, WE MAKEA MAINS 200/250 VOLT POWER UNIT in louvred metal case to plug direct into set power socket to run (1) receiver. 70/- post \(5 /\) (2) TX and \(\mathrm{RX}, 26.10 .0\) post \(7 / 6\). (3) 12 VOLI D.C. P.U. for receiver, \(50 /-\) carriage \(5 /-\). A charge of \(10 /\) to unpack and teat the receiver of theac ets is made only if requested
V.H,F, TRANERECEIVER MK. 1/2

This in a modern self-contained tunable V.H.F. ow powered frequency modulated transreceiver for Ministry of Supply at an extremely high cost by well known Britioh makers, using \(1 \overline{5}\) high cost by well valves. receiver iocorporating R.F, ampliter. Double superbet and A.F.C. Eiow-motion tuning with the dial calibrated in 41 chapnels each \(200 \mathrm{kc} / \mathrm{s}\) apart. The frequency covered is \(39-48 \mathrm{Mc} / \mathrm{s}\). Also has built-in Crystal calibrator which gives pips to coincide with marks on the tuning dial. power 90 volts for receiver. Every set bupplied complete 90 volts for receiver. Every set supplied complete With valves and crystain. New in carton, complete
withustable whip aerlal and circuit. Jrice 64.10.0. carriage 10/-- Headset or hand telephone s0/- Internal power unit stabilised for \(200 / 250\) A.C. input, 8.10.0 extra.

\section*{RECEIVERS AND GOMPONENTS}
(continued)

TIME 8 WITCHES. Reconditioned 14-day clock, once on once off every 24 hours. Fully guaranteed. 5 A Horstmann 29/6-15A Yenner 37/8. Postage 2/6. A. R. BATCHELOR (Bept. P. E.), 4 Park Road, Bromley, Kent.

\section*{P. R}

28 Royston Avenue, Byfleet, Surrer
C.W.O. P. \& P. 6d. Postal Orders Only

150 NEW Assorted Capacitors, Resistots Silvered Mica, ('eramir, ete, 'arbon, Hystab,
Vitreous t-20 watt 12/6, Vitreous, \(\frac{1}{2}-20\) watt, 12/6. p'ost Free. WII SAM ELECTRIC.il, 18 Woodrow Close, Perivale, Middlesex.
 (1) \(0(82\), all at \(2 / 6\). OC \(35,13 / 6\), AJTT 14.15
OSMOR RANGE of IFs, C'oils. Iriver \& mutput trans. Electronic kits sultible for beghiners 22.17 .0
Write al call for our free ('mmponenten Last
BOTHWELL ELECTRIC
SUPPLIES
54 EGLINTON STREET,
GLASGOW, C.b. Tel. 041 SOUth 2904,
Hember of the l.ander (iront

\section*{FIRST-CLASS RADIO AND T/V COURSES}

GET A CERTIFICATE!
After brief, intensely interesting study-undertaken at home in your spare time--YOU can secure a recognised qualification or extend your knowledge of Radio and T.V. Let us show you how:

\section*{FREE GUIDE}

The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry for Radio Cert., C. \& C. Telecoms. A.M.I.E.RE, Guide also gives details of range of diploma courses in Radio T.V. Servicing Electronics and other branches of engineering, together with particulars of our remarkable Guarantee of

\section*{SUCCESS OR NO FEE}

Write now for your copy of this invaluabie publication. It may well prove to be the turning point in your career.

> FOUNDED 1885—OVER 150,000 SUCCESSES CHAMBERS COLLEGE
> (Incorp. National Inst. of Engineering) (Dept. 850F)

> 148 HOLBORN
> LONDON, E.C.I

\section*{Three Scoops from KING'S}

\section*{ELECTRONIC HYPNOTISER}

Full construction plans for this exciting project - guaranteed to give Hours of Fun - Simple to Build - cost approx. 30/- ONLY |O/-

\section*{CONTINUOUS LOOP TAPE CASSETTE \\ \(\binom{\) Never ending }{ No-Rewinding }}

Normally \(£ 3-10-0\)
Our Price 16/- 200 ft AMPEX TAPE

\section*{TELEPHONE ANSWERRECORD MACHINE}

Full Circuit - Parts List - Quick Easy -- Automatic ONLY 25/-

FULHAM 1668 and 2998
KING'S, 105-107 DAWES ROAD, S.W. 6

HIGR SPEED EAGNETIC COUNTERS (\(4 \times 1 \times 1 \mathrm{in}\)). 4 digit. 12/24/48V. (state

 RE-8ETTABLE
which) \(38 / 8\) each.

\section*{BULK COMPONENT OPFER}

100 Capacitors 50 pF to \(.5 \mu \mathrm{~F}\).
250 Carbon Resistors it \(\$ \mathrm{WW}\). (Transistor typea).
100 Ceramic Capacitors 2-1000pF
\({ }_{25} 5^{2}\) Vitreous w/W Resiators (\(5^{\circ} \mathrm{O}\)).
12 Preclaion Reaistora (\(1 \%\) several standard values included).
25 Close Tolerance Caps. (\(2^{\circ}{ }^{\circ}\)).
12 silicon Diodes 500 p.i.y. 750 ma .
4 Silicon Rects. 400 p.i.v. 3 amp.
8 Sillcon Rects. 100 p.i.v. 3 amp . \(28 / 29\) BCY \(41 / 42\) types.) Unmarked, Unteated 50 Silicon Trans. (2N706/708, B8Y28/29. BCY4
50 Silicon Diodes 200 ni.a. 100 p.i.v. Sub. Min

ANY 1TEM \(10 / \%\). ANY 5 1TEMS 4.
8.C.Rs. (Thyriators) CRS1/20 5/6
'8000' TYPE RELAYS (ex. new equip.) 10 for \(85 /-\) (our choice) p.p. \(8 /\) PATTRICK \& KINNIE, 81 Park Lane, Romford, Essex Romford 44473

\section*{WENTWORTH RADIO}

104 SALISBURY ROAD, HIGH BARNET, HERTS.
Suppliers of High Quality Semiconductors
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AD140 & 10/- & NKT124 & 8/5 & & NKT675 & 4/3 & 0074 & 5/- \\
\hline AF114 & 4/8 & NKT125 & 5/4 & BARGAIN OF THE MONTH & NKT676 & 4/4 & 0075 & 51- \\
\hline AF115 & 4/6 & NKT126 & 5/2 & BArgain of The month & NKT677 & \(4 / 4\) & 0077 & 3/- \\
\hline AF116 & 41. & NKT127 & 8/11 & UNREPEATABLE & NKT713 & 6/6 & \begin{tabular}{l}
\(0 C 78\) \\
0C78D
\end{tabular} & 5/- \\
\hline AF117 & \(2 / 6\) & NKT128 & 6/- & UNREPEATALE & NKT773
NKT774 & 5/- & \[
\begin{aligned}
& 0078 D \\
& 0681
\end{aligned}
\] & \[
\begin{aligned}
& 5 /- \\
& 2 / 6
\end{aligned}
\] \\
\hline AF118 & \(8 / 9\)
\(7 / 10\) & NKT129 & \(5 / 2\)
\(6 /-\) & & \[
\begin{aligned}
& \text { NKT774 } \\
& \text { OC20 }
\end{aligned}
\] & 5/-
\(37 / 6\) & \[
\begin{aligned}
& 0 \mathrm{C81} \\
& 0 \mathrm{C81D}
\end{aligned}
\] & \(2 / 6\)
\(2 / 6\) \\
\hline BC107
BC108 & \(7 / 10\)
\(7 / 6\) & \begin{tabular}{l}
NKT141 \\
NKT142
\end{tabular} & \(6 /-\)
\(5 / 2\) & 0 O44 \(A^{4}\) & \[
\begin{aligned}
& \mathrm{OC}_{20} \\
& \mathrm{OC35}
\end{aligned}
\] & \(37 / 6\)
101 & \[
\begin{aligned}
& 00810 \\
& 00170
\end{aligned}
\] & \(2 / 6\)
\(3 /-\) \\
\hline B8Y26 & \(13 / 6\) & NKT143 & 8/- & & \(0 \mathrm{OC36}\) & 101- & \(0 \mathrm{OC171}\) & \({ }_{4 / 6}\) \\
\hline B8Y27 & \(12 / 9\) & NKT162 & 4/11 & AT & OC42 & 6/-
\(2 / 6\) & \({ }_{0}^{06172}\) & \(4 / 6\)
\(3 / 6\) \\
\hline B8Y95A & \(7 / 6\)
\(7 / 19\) & NKT163 NKT164 & \(4 / 11\) & \[
1100
\] & OC44 & \(2 / 6\)
\(2 / 6\) & OC200 & \(3 / 6\)
\(7 /\) \\
\hline MAT100 & \(7 / 9\)
\(8 / 6\) & NKT164 NKT211 & 4/11 & & 0070 & bj- & \(0 \mathrm{AB1}\) & 1/3 \\
\hline MAT120 & \(7 / 9\) & NKT212 & \(4 / 7\) & GENUINE MULLARD & 0071 & 2/6 & OA81 & \(\stackrel{2 /-}{1 /-}\) \\
\hline MAT121 & 8/6 & NKT213 & 4/9 & & 0078 & 2/6 & OA95 & 1/- \\
\hline
\end{tabular}

BAR 3087
THIS MONTH ONLY. Now is your chance to obtain the full sertes of circuits originated by us at less than half price. These clrcuits cover the following:- Noughts and Crosses Machine. Binary Adder/Subtracter. Multiplying/Dividing Analogut Computer. Football Pool Computer. Simuitaneous and Quadratic Equation Solvers.
These are purely electrical drcuirs and all parts
 4/4 post free.

MULTIMETERS: Lowest prices in the country. T1-K, IT1-2, Eagle models EP10K, EP20K, EP30K, EP10KN, EP20KN, EP30KN. All brand new, SAE further details.
- 30 microamp Level Meters \(15 /\) - post \(1 /\)-. High Stability Resistors iW 1\% 2/-; \(\ddagger\) W \(5 \%\) 4d. Full range, SAE stock list.
High Res. Phones 2000 』 11/- pp. 1/-.
PLANET INSTRUMENT CO.
\(25(W)\) DOMINION AVENUE, LEEDS 7

\section*{BAKER MAJOR "MODULE"}

A new Loudspeaker systern featuring the famous 12 inch Baker Major Full range speaker on \(19^{*} \times 12 \frac{1^{\prime \prime}}{}\) baffle board with \(2 \frac{1}{2}\) " tweeter and crossover. Output 20 watts. Response 30-17,000 c.p.s. Impedance 3 or ohms. (Dlease state choice).
conversions of existing cabinets, furniture, etc. £12.10.0 Post Free Also available in kit form with instructions f10.19.6
Cabinet Plans and Catologue Free
(Dept. P.e. 26) Baker Reproducers Ltd
Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

\section*{PARKERS SHEET METAL FOLDING MACHINES HEAVY VICE MODELS}

With Bevelled Former Bars

No. I. Capacity 18 gauge mild steel \(\times 36 \mathrm{in}\), wide
No. 2. Capacity 18 gauge mild steel \(\times 24 \mathrm{in}\), wide
\&12.10.0
No. 3. Caparity 16 gauge mild steel \(x\) | Bin, wide \(\ldots . \quad . . . \quad\) E7.5.0 Also new bench models. Capacities 48 in. \(\times 18\) gauge \(440.36 \mathrm{in} . \times 18\) gauge E25. 24 in, \(\times 16\) gauge \(\mathbf{6 2 4}\). Carriage free.
End folding attachments for radio chassis. Tray and Box making for 36in.
 flanges. As supplied to Government Departments, Universities, Hospitals.

One year's guarantee. Money refunded if not satisfied. Send for details.
A. B. PARKER, Folding Machine Works, Upper George St., Heckmondwike, Yorks. Heckmondwike 3997

\section*{Valluable new handoook Fh EETMAMBITIOUS}

\section*{Have you had your copy of "Engineering Opportunities"?}

The new edition ol' "ENGINEERING OPPOR TUNITIES" is now available - without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES' should be in the hands of every person engaged in any branch of the Enginecring industry, irrespective of age, experience or training.

\section*{On 'SATISFACTION OR REFUND OF FEE' terms}

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

\section*{WHICH OF THESE IS YOUR PET SUBJECT?}

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.- Applied Electronics - Practical Electronics - Radar Tech.Frequency Modulation Transistors.
FLECTRICAL ENG
Advanced Electrical Eng.General Elecirical Eng. Installutions - Draughtsinanship - Jllmminating Eng. Refrigeration - Elen, Elec. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Adranced Civil Eng.Gencral Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.—Road Eng, - Hydratilics. - Mining H'ater Supply - Petrol Tech.

RADIO \& T.V. ENG
Advanced Radio - General Radio-Radio \& TV Servicing -TV Lngineering - Teleconmunications - Sound Recording - Automation Practical Radio - Radio Amateurs' Examination.
MECHANICAL ENG Advanced Mechanical Eng.Gen. Mech. Eng.-Ahaintenance Eug. - Diesel Lug. Press Tool Design - Sheet Metal Wrork - Welding Metat Pattern Making -Inspection-Droughtismanship Inspection- Droughismanship Eng.
AUTOMOBILE ENG Advanced Automobile Eng.-General Auto. Eng. - Auto. Meneral Auto. Eng. - Auto. Mantenance \(\overline{\text { Alno }}\) Repair -
Aiesel Maintenance Anto. Diesel Maintenance -
Auto. Electrical Equipment Garage Management.

PRACTICAL EQUIPMENT
Basic Practical and Theoretic Courses for beginners in Electronics, Radio, T.V., Etc., A.M.I.E.R.E. City \& Guilds Radio Amatcurs" Exam. R.I.E.B. Certificate P.M.G. Certificate Electronics Engineering Practical Radio
Radio \& Television Servicing Automation

You are bound to beneffif from reading "ENGINEERING OPPORTUNI'ENGINEERING OPPORTUNI-
TIES" - send for your copy nowFREE and without obligation.

INCLUDING TOOLS
The specialist ElecB.I.E.T NOW offers you a real laboratory training at home with practical equipment. Ask for details. B.I.E.T.

WE HAYE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.E.R.E., A.M.I.Mech.E., A.M.S.E., A.M.I.C.E., P. B.Sc, A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Chem.E.; A.R.I.C.S., M.R.S.H.. A.M.I.E.D, A.M.IMUN.E., C.ENG., CITY \& GUULDS, GEN. CERT. OF EDUCATION, ETC

\section*{BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE}

\section*{THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD}

\footnotetext{
Published about the 15 th of the month by GEORGE NEWNES LIMITED, Tower House. Southampton Street, London, W.C.2, at the recommended Zealand: GORDON \& GOTCH (A) Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents-Australia and New OFFICE SUPPLIES LTD. Subscription rate; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY \& OFF SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World \(£ 116 \mathrm{~s}\). Od,
}

\section*{Harper Y}

NEW! SOLID STATE HIGH FIDELITY EOUIPMENT BRITISH MADE POWER AMPLIFIERS-PRE-AMPLIFIERS-POWER SUPPLIES Mek: II-

COMPLETE FULLY ILLUSTRATED BROCHURE FREE ON REQUEST 11 and 21
 quipment selling at much bigher prices. Briel details are below:-

MPA 12/15 SANY OTHER SYST

 FM STEREO DECODER \(\quad\) Brochure 4 Mullard Transistors. Printed Circuit
Desiga with Stereo Indicator. For use with Design with Stereo Indicator For use with
any valve or transistor FM. Uses pot any valve or transistor FM. Use pilat pot
cores to Mullard design and ger. and silicon transistors. As used by B.B.C. and G.P.O. Complete Kit Price \(\{5,12,6\) P.P. \(2 / 6\)
BUILD A QUALITY TAPE RECORDER WITH MARTIN RECORDAKITS
\(\star\) TWO-TRACF゙, Deck \(£ 10.10 .0\). Amplitier. £14.19.6. Cabinet and speaker 7gns. Completc
kits with FlkEE 7in. 1,200ft, tape, spare spool

Today's Value 545.27 gns. P.P. 15/m \(\star\) FOUR-TRACK. Deck \(£ 13.10 .0\). Amplifier
 tape, spare spool.
Today's Value \(£ 50\)
Ank for TRANSISTOR RADIO TUNER Fully tunable superhet with excellent sensitivity and selectivity. Output up to etc. \(\quad\) g volt operated. For use with any amplifier or tape recorder. TOTAL COS
TO BUILD

C3. 19.6 P.P. \(2 / 6\)
Ask for Brochure 5

\section*{GARRARD DECKS}

TRANSISTORS
\(\star\) Largest range over 650 types \(\star\) s.c.R's \(\star\) S.e.R's from 5/\(\star\) FIELD EFFECT TRANSISTORS from \(9 / 6\) \(\star\) POWER TRANSISTORS from \(5 /-\) \(\star\) diodes and rectifiers from \(2 /-\) Send for Free List No. 36. 24 page Illustrated Btochure as above including Valves and Quartz Crystals. 1/- post paid.

REGENT-8 MW/LW POCKET 6-Transistor superbet. Geared tuning. Push-pull speaker output. Moulded Sabinet for Brochure 2 . Pbone socket. Send for Brochure 2 TOTAL COST
TO BUILD Full tuning on both bands. \(\rightarrow+\rightarrow+b+b+\cdots+\infty\) British Made 6-Transistor MW/LW. 12 volt watt outpot. Pusth-button to use with speaker and Batfle. Car guarantee. Special Bargain Offer. l'ositive or Negative Earth.
LIST PRICE 12 GNS. Push-but ton de-luxe version 9 ghs. P.P. \(4 / 6\) £1I.19.6. Positive or Negative Parth

M-TRA NSISTOR
MW-LW SUPERHET
PORTABLE New printed circuit design with full power output. l'ully tunable on both unw/hw banids. \({ }^{7}\) Transistors plus diode, push-
pull circuit. Fitted 5 inch speaker, large ferrite aerial and Multard transistors. Lasy to build with terrific results. All local, itnd contincntal stations. Size \(10 \times 7 \times 3 \frac{1}{2} \mathrm{in}\). TOTAL COST
TO BUILD \(6.19 .6 \quad\) P.P. \(4 / 6\) Send for Brochure \(10.18 .0 \quad\) P.P. 4/6

BUILD THE PRACIICAL WIRELESS
SWITCHED F.M. TUNER as per august, 1967 ISSUE \(\begin{array}{ll}\text { TOTAL } & 77 / 6 \\ \text { COST } & \text { POST } \\ 2 / 6\end{array}\)
INCLUDING CIRCUIT AND LAYOUT DIAGRAMS PARTS LIST No. 39

BUILD THE PRACIICAL WIRELESS
I.C. F.M. TUNER AS PER DECEMBER, 1967 ISSUE TOTAL \(99 / 6\) POST COST

99/0 2/6
INCLUDING R.C.A. CA3104 AND CIRCUIT AND DIAGRAMS PARTS LIST No. 40

BUILD THESE PW/PE DESIGNS
EXPLORER (less chassis) \(\quad 68 / 6\) with drilled chassis and case \(\quad 85 /\).
Thyristor Power Controller
from 75/SCREEEN WIPER \(\star\) PRICES \(\&\) PARTS LIST ON REQUEST

\section*{CATALOGUE}

ANTI-DAZZLE MIRROR 79/6 INTEGRATED CIRCUIT FM TUNER SWITCHED FM TUNER STABILISED POWER SUPPLY \(\quad \begin{gathered}77 / 6 \\ 49 / 6\end{gathered}\) (Post and Packing 2/B extra) LATEST EDITION 225 pages, 6,000 items 1,000 illustrations
\(\star 20\) pages of transistors and semiconductor devices, valves and crystals.
\(\star 150\) pages of components and equipment. \(\star 50\) pages of microphones, decks and Hi -fi equipment.

The most comprehensive-Concise-Clear components Catalogue in Gt. Britain. Complete with 10/= worth Discount Vouchers Free with every copy.

\section*{Send today \(8 / 6_{\text {pasid }}^{\text {posid }}\)}

\(\star\) Build this instrument stage by stage in your own bome HASE designs. Brochure 10
\(\star\) Fulls TRANSISTORISED POKYPHONIC. British design. OTAL COST
\(\star\) Call in for a DEMONSTRATION and see for yourself```

