PRACITOAL

ABELST 1967

-

ADCOLE

SOLDERING EQUIPMENT
for the DISCRIMINATING ENTHUSIAST

ILLUSTRATED:

L64 $\frac{3}{18}$ " BIT INSTRUMENT IN
L700 PROTECTIVE SHIELD

APPLY DIRECT TO:
SALES \& SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE 01-622 0291

OLRUS ELECTRONICS LTD.
9 NORFOLK PLACE (off Praed St.) LONDON, W. 2

ULTRALINEAR CLASS B OUTPUT

- 12 WATTS RMS CONTINUOUS SINE WAVE OUTPUT (24 W . Peak)
- 15 WATTS MUSIC POWER OUTPUT (30 W . Peak)
- INPUT- 2 mV into 2 Kohms

OUTPUT suitable for 15, 7.5 and 3 ohm speakers. Two 3 ohm speakers may be used in parallel.

SINCLAIR MICRO FM

NEEDS NO ALIGNING

7 TRANSISTOR COMBINED FM TUNER AND RECEIVER
-ess than Jin $1 \frac{3}{3}$ in $\times \frac{1}{3} i n$. F.M Superhet using pulse countin discriminator for superb audio quality. Low I.F. makes align$108 \mathrm{Mc} / \mathrm{s}$. The telescopic aerial suffices for good reception in all but poorest areas. Signal to noise ratio- 30 d 8 at 30 micro volts. Takes standard 9 V bastery. One ousler serves for reeding to amplifier or recorder the other allows set so be used as a pocker portable. Brushed and polished aluminium front spascinating set to build which gives excellent reception by any gives excellent reception by any
standards. Complete kit ine. oerial. cose, earpiece and instructions.

Eight special H.F. transistors are used in the $Z .12$ to achieve results to compare favourably in every way with the costliest equipment you can buy. But the $\mathbf{Z} .12$ is smaller, is more versatile and certainly saves you money. It is preferred not only for mono and stereo hi-fi, but it also enjoys enormous popularity fitted in electric guitars, used for P.A. and intercoms and many other instances where power and dependability are imperative. This superb amplifier with integrated preamp is supplied ready-built, tested and guaranteed together with the $\mathbf{Z . 1 2}$ manual which details matching, volume and tone control and selector switching circuits using one $\mathbf{Z . 1 2}$ in mono or two in stereo.

- $3^{\prime \prime} \times 1 \frac{33^{\prime \prime}}{4} \times 1 \frac{1^{\prime \prime}}{4}$
- 15-50,000 c/s $\pm 1 \mathrm{~dB}$
- IDEAL FOR USE

WITH BATTERIES
$\underset{\substack{\text { AND } \\ \text { GUARANTEED }}}{\text { BUILT TESTED }}$

SINCLAIR STIRTO 15

PRE-AMP AND CONTROL UNIT

For use with two Z.12's or any good hi-fi stereo system. The front panel is elegantly styled in solid

BUILT, TESTED
brushed and polished aluminium with well styled solid aluminium knobs. Frequency response 25c/s to $30 \mathrm{kc} / \mathrm{s}$ IdB connected to two Z.12's. Sensitivity Mic. 2 mV into 50ks2: P.U. -3 mV into $50 \mathrm{k} \Omega$: Radio20 mV into 4.7 s . Equalisation correct to within

AND
gUARANTEED

£9.19.6

 IdB on RIAA curve from 50 to 20,000c/s. Size $6 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in plus knobs.SINCLAIR PZ.3. Transistorised mains power supply unit with ample output for two Z.12's and Stereo 25 together.

ACTJAL SIZE

- CALIBRATED SLOW MOTION DIAL
- TUNES OVER M.W
- BANDSPREAD AND A.G.C.
- FANTASTIC POWEF, SELECTIVITY \& QUALITY
- GUARANTEED 5 YEARS

SINCLAIR GUARANTEE

Should you not be completely satisfied with your purc ase when you receive it from us, your money will be refunded in full at once and without quest on.

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR AUAILABLETS.

with the world's smallest radio

To the fantastically small size of the Sinclair Micromatic must be added its brilliant performance. This British-made set assures you at all times of choice of B.B.C. and many other stations in the medium waveband. After dusk, even more stations come in all round the dial with amazing power and excellent quality. Vernier type tuning takes full advantage of the set's selectivity. This remarkable set provides good listening no matter where you are-indoors, in car, bus, traineverywhere. The Sinclair Micromatic brings a refreshingly new approach to personal listening and for its size, appearance, price and performance, there is nothing to equal it anywhere in the world.
TECHNICAL DESCRIPTION OF THE SINCLAIR MICROMATIC The Sinclair Micromatic is housed in a neat plastic cosè, size $/ \mathrm{s}^{\prime \prime}$, $1 \mathbf{s u n}^{\prime \prime}$. $\mathbf{1}^{\prime \prime}$ with ateractive aluminium front banel and spun aluminium calibroted tuning dicl."
Special Sinclair transiscors are used in a six-stage circuic of exceptional power and sensitivity-cwo R.F. amplification; double diode derector; and a high gain three stage audio amplifier which feeds to a specially matched high quality lightweight earpiece. A.G.C. counceracts fading from distant stations. Bandspread brings in "pop" stacions extra easily. The set is powered by two Mallory ZM.312 Cells readily obrainable, for $1 / 7$ each. Micromatic Kit Pack with earpiece, instruccions, solder, ece in "see-forReady built, tested and guoranteed. 7 /
If you prefer not tacut this poge, pleose quote PE. 8 when ordering

TO: SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE
Please send items detoiled below:

NESTLES
 have vacancies for STAFF INSTRUMENT MECHANICS
 (ELECTRONIC/PNEUMATIC)

 AND

 AND STAFF ELECTRICIANS
 Average solary: Weekly $£ 27.13 .6$ Annual $£ 1,439$

To work on the installation and maintenance of highly automated Process plant and machinery
Applicants should have preferably served a recognised apprenticeship.

INSTRUMENT MECHANICS

Should be fully conversant with electronic instrumentation and control circuits, and/or pneumatic control systems.

ELECTRICIANS

Should have had installation and maintenance experience of motors, hand and automatic control gear and associated circuits, rated from fractional to 150 H.P.

Successful applicants would be required to work on a 3 Shift System - Average 42 $\frac{1}{2}$ hour week. Holiday arrangement will be honoured.

First-class conditions include: Superannuation Fund, Social Club, Canteen and Medical Facilities.
staff vacancies exist for other engineering trades
Please apply to the: PERSONNEL OFFICER
THE NESTLE COMPANY LIMITED HAYES, MIDDLESEX

TLemsary

SPECIAL INTEREST ITEMS!
EXCLUSIVE LASKY'S BARGAIN-SOLID STATE MULTIPLEX

STEREO AM/FM

 TUNER/AMPLIFIER CHASSISHodel T10E-made for U.K. use by Camous North American manufacture and originally installed in De Luxe pounds. The chassis lanof cutstanding pounds. The and quality and ofters
 many unique features plus an extremely comprehensive specitication.
Features - Separate transietorised AM and FM tuners - 3 AM wavebands-LW, MW and Contlnental T.R. band fill FM cover with 5 push button preselected stations (sep, tuning controls for AM and FM ranges) built in multiplex decoder with unique signal is received and vice veras unique aplit amplifier facility for simultaneous play of radio plus any other source' channel reverse awitched inputs for tape and auxiliarles! (sep. sockets for tape in and out) owltched extension speaker outlet - thermal safety trip mocket for stereo headphones.

Tech. spec.: Output 10 watta RMS per channel; output lup. 8Ω p.e.; senaitivity 50 nV or 8 W outputat $1 \mathrm{Kc}$. ; input lmp. $100 \mathrm{~K} \cap$ p.c.: 12 unique tumbler type function controls 8 push button wavechange and station selection controls, vol., bass, treble and balance MW 520-1640 Kc/a, LW $140-290 \mathrm{Kc} / \mathrm{g}$, Continental TR $170.345 \mathrm{Kc} / \mathrm{s}$; FM range 88.108 Mc/s with awitched AFC. Operates on 200/250V A.C., 50 or $60 \mathrm{c} / \mathrm{s}$. Size 17 y y 8 " 12 hm .
LASKY'S PRICE 59 Gns. Poot \& Packing 201-
A range of high quality Hf-Fi Console Cablats by the same famous manufacturer is also avallable at almont : liat price and may be seen at our Eif-Fi A udio Centres.

UHF T.V. TUNERS

Well known Britlsh makers' eurplus atocks. Now available for the firat time to the Home Constructor. Add 2/6 Port and Packing on each.

VALVE UHF MODEL

In metal case sixe $4 \times 6 \times 11$ in. Fully tuasble-complete with PCC86 and PCC88 valves. LASKY'S PRICE 29/6. Without valven $7 / 6$

TELEVISION IF AMPLIFIERS

 $38 \mathrm{Mc} / \mathrm{m}$. Contains a large nunber of components, IF transformers, resiators, capacitors, etc., and the followIng valves: 2xPCF80, 1xEB91, EFP80, EF183 and EF184. Overat1 size $111^{\prime \prime} \times 33^{\prime \prime} \times 4^{\prime}$ deep. Ideal for servicemen and experimenters. This IF amp. when used with the Valve model UHF Tuner (above) provide a suitable conversion for B.B.C.2. Circuit supplied.

LASKY'S PRICE 29/6 Post $2 / 6$

SPECIALPACKAGEOFFER
Free standing table cablnet, wize $17 \frac{1}{2} \times 9 \times 5 \frac{1}{2}$. 9 finlshed in medium Mabogany, Scale marked 21 to 68 (UHF band). Detignet to accept the above IF Amplifier Cabinot only 29/6. Poat 3/6.

Spacial Package Ofer IF Amplifier,
UHF Tuner with valves and Tabl
Cabinet.

EXPORT TTC B4002 FM WIRELESS MIC.

Highly medaitive - suitable for either static or moblle use. Signal can be picked up by any FM radio or tuner which receives requencies between $96.104 \mathrm{Mc} / \mathrm{g}$. over several hundred yards. Size only $3 \times 2 \frac{3}{3} \times 1 \mathrm{lin}$. (in leather case). Operates on one PP3 type battery. Complete with neck cord, clip-on dynamic extenion nuke $1 \times i \times 2$ in.) and batter!
ASKY'S EXPORT PRICE 10 GIS. Post lree. Any: TTC 18/500. More powerful version of above-size $71 \times 13 \times$ in. Operates on one PP3 type battery. LASKY'S PRICE 12 Gns. Post Free. Anywhere in the World.
These cannot be operated in the U.K. owiag to G.P.O. regulations.

WATER TEMPERATURE THERMOSTATS

British made-orig. for use in high quality washing machine. range adjustable bet ween $114^{\circ} \mathrm{F}$ and $230^{\circ} \mathrm{F}$. Rating $20 \mathrm{C} / 250$ V.A.C., 20 amps (also D.C. up to 125 V.A.). Size $21 \times 11 \times 1 \frac{1}{1}$ with 181 n . capillary tube and 6 in . bulb. Single hole fixing- $3 / 36 \mathrm{in}$ spindle
LASKY'S PRICE 15/- Poot $2 /$.

CONSTRUCTORS BARGAINS

THE SKYROVER

De Luxe

7 transistor plus 2 diode superhet 6 wavehand portable receiver covering the full Medium Wave bend and ghort Wareband 3104 M am Wave separate a itched havepread ranges 13M 16 M日eparate awitched bandapread rangea, 13M.,10Mor 19M. and 25M," whith Band Spread coil pack and tuning heart is tactory assembled, and tested. Uses 4 UZ batteries. 5 in. Ceramic, Magnet P.M. Speaker. Telescopic and Ferrlte Rod Aerlal. Tone Circuit, wood cablnet, aize $111 \times 61 \times 3 \mathrm{in}$. covered with washable material, plastic trim and handle. Car aerial socket fitted.
S\%- p.P. Terms: 80/= deposit and 11 monthly Data exira: relunded if you purchase parcel. All parts avail, gep. Fous U2 batt, 3/4 -imple additional circuit provides cover of the $1100 / 1950 \mathrm{M}$ Long Waveband. All components with construction data. Only 10/- extra Pont Free.

PEAK SOUND SA-88 TRANSISTORISED STEREO AMP AND PRE-AMP KIT

A high quality 17 watt, 14 tranaistor High Fidelity Integrated Abplifier which anyone can easily build using the revolutionsry Peak Bound "Cir-Kit'" wiring sybtem. Size assembled oniy $10 \times 2 ; \times 3 \mathrm{in}$. Complete kit with detailed construction data. POWER GUPPLY KIT for

LASKY'S MINIATURE TRANSISTOR AMPLIFIER

 MODULESIncorporating the very latest circuitry to provide high sensitivity and good quality in conjunction with extreme amall size and compactness. High quality Newmarket transistors used throughout. battery. Add 1/-oneach for poat * packing
TYPE LRPC 1, 3 transistor. Input gens. 50 mV .. output 150 mW , output imp.
 TYPE LRPC 4. 5 transistor. Input sens. 150 mV , output 330 mV , output imp. 100 g TYPE KRPC 5, 6 transistor. Input gens. 8 ml , output 3 W , output imp. 3 n , size $\sqrt{\frac{1}{2}}$ $\times 1 \frac{1}{} \times$ lin. ...
 TYPE LLRPC 10. Magnetic tape replay pre-amp. dealgned so that a 450 mH head can be matched into any of the audlo maplifier modules listed above. Size TYPES LRPC 9 and 10 are Jdeal for uge with LRPC I, 4 and 5 and are available at the raduced price of $7 / 6$ each if bought with the LRPC 4.

FULLY ENCAPSULATED MODULES

Special function modules - all one size $14 \times 1 \times 1 \frac{1}{} \mathrm{in}$. Complete with detailed function and installation instructions. Send S.A.E. for data.
TYPE PA-1. Public address amp, for use with carbon, crystal or Dynamic micro-
TYPE GR-1. Gramophone amplifer-provides sufficient power to fill average room.
 TYPE MT-1. Metronome module-providea audible and visual beat from 30 to 240 bents per minute (for use with 3Ω speaker or ind, iamp)....................... PRICE 22/6

SINCIAIR SUPER MINMATURE KITS

We stock the complete range. Write for details of package deals.

THE MIGRO-6 mininture radio only $1 \frac{1}{3} \times 1 \frac{3}{10} \times 1 \frac{1}{2} \mathrm{in}$.
THE MICRO-FM. (tuner/receiver)
THE MICROMATIC mini-radio Kit \&8.19.8. Fully built
8 TEREO 25 pre-amp control unit fully built.
THE $Z=12 \quad 12$ watt amplifier and pre-amplifier. Fully buitt and tested
PZ-3 power pack for Z-12
2219 色
25196
4196
23196
49188 8196
448 848
58198

TRANSISTORS aLL BRAND NEW aND GUARANTEED
GET 81, GET 85, GET S6 2/6; 8:3A, 874P 3/6; OC45, OC71, OC81D 4/6; OC 44, OC 70, OC $76,0 \mathrm{OC} 81$ 5/6; pair (10/6); AF 117, OC 200 6/6; OC 42, OC 43. OC 73. OC 821; 7/6; OC 201, OC $20415 /-;$ OC 205. OC 206 19/6; OC28 24/6; OC 75 81-.

TRANSFILTERS By BRUBE CRYSTAL CO, Avallable from stock. TO—O1B $465 \mathrm{kc} / \mathrm{s} . \pm 2 \mathrm{kc} / \mathrm{s} . \quad \mid \quad$ TO—O2D $470 \mathrm{kc} / \mathrm{s} . \pm 1 \mathrm{kc} / \mathrm{s} . \quad 9 / 6 \mathrm{EACH}$

Branches

207 EDGWARE ROAD, LONDON. W. 2 33 TOTTENHAM CT. RD., LONDON, W. 1

Tel.: 01-723 3271
Tel.: 01-636 2605 Open all day Saturday early closing 1 p.m. Thursday 152/3 FLEET STREET, LONDON, E.C. 4 Tel.: FLEet St. 2833

(Dept. PE), 9/10 Mallow Street, London, E.C. 1 Telephone: CLErkenwell 3661/2
Contractors to Govt. Departments, Services, etc

TWO COMPUTERS

Two kinds of computers-anolog and digital. Two different onimols. Anologs ore a bit like guineo pigs; you can experiment with them without hoving to test the real thing. Anolog circuits simulate the canditions of complex mechonical or to be programmed. You have to analyse the situation ond produce a step-by-step describtion of the tosk to be performed : the digital device will then faithfully follow your instructions.

DIGI-COMP is an operating digital computer. It represents the nerve-centre of a giant electronic brain; and because it is mechanical, you can accually
see how computers make 'decisions'. The highly descriptive instruction Manual (written with 10 yearolds in mind) offers many different experiments: they are organised around the basic operations - of binary arithmetic, logical problems, and the theory of games
such as 'Guess the number' and 'Nim'. The 50 page such as and is intended for those seriously interested in the logic of computer design.
DIGI-COMP costs only 59/IId (63.10 .6 to include the Advanced Booklet) This computer is now available to schools and the public on a free trial basis
Please write for the trial-offer leaflet.

MAC-1 is the Mini-Analog Computer. Its electrical circuitry simulates the conditions of a wide variety of trig, powers ond squore roots con be oscertained of the touch of a button-and rotation of the calibrated dials. The Experimental Instruction Manual lays down a simple step-by-step procedure for each of these operations; with just a little practice 9 year-olds are able to
 also relates the computer to the wider problems of electronics, physics and mechanics
Now available in a wooden instrument case, MAC. 1 costs $E 4.18 .6$ (inclusive). volt battery. A complete kit can be purchased at 4 gns . There is a 10 day return guarantee. Write for details.

I-COR SYSTEMS (FiJe P.E.7), I8 Stamford Hill,

HEATHKIT world-FAMOUS ELECTRONIC EQUIPMENT
 The Hi-Fi, Radio, Amateur Gear, Test Instruments anyone can build

Treat yourself to superb LW, MW entertainment with the

 High-Performance Car Radio Kit, CR-I

 High-Performance Car Radio Kit, CR-I}

Complete your motoring pleasure with this small, compact, high-performance car radio. It can be fitted to any make of car having 12 volt positive or negative earth system Tastafully styled in neutral grey with matching black knobs and chrome trim to harmonise with any car colour scheme.
Features include: Six-transistor, 2-diade circuit. Completely pre-assembled and aligned tuning unit. High sensitivity, combined with wide range automatic gain control (AGC), minimisesfading under weak reception conditions. Easy-tune dial. Push button Long, Medium and Tone selection.

The car radio is available for your convenience, in two separate units; RF Amplifier Kit CR-IT EI . 13 . 6 incl. P.T., IF/AF Amplifier Kit CR-IA CII . 3. 6.
TOTAL PRICE KIT (excluding Loudspeaker) ≤ 12. 17 . 0 incl. P.T. $8^{*} \times 5^{\text {² }}$ Loudspeaker Pe. No. 40 l-505 ©I . 16 . I incl. P.T.

New! Portable Stereo Record Player, sRp-1
Automatic playing of 16, 33, 45 and 78 rpm records. All transistorcool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. De. tachable speaker enclosure for best stereo effect. Two $8^{\prime \prime} \because 5^{\prime \prime}$ special loudspeakers. For 220-250v special loudspeakers.
Compact, economical stereo and mono record
playing for the whole family-plays anything from the Beatles to Bartok. All solid state circuitry gives room filling volume.

Kit $£ 27.15 .0$ incl. P.T. Assembled price on request.

Low-cost Stereo Amplifier, ts-23

Breaks the price barrier in quality Transistor Amplifier cost. Incorporates all the essential features for good quality reproduction from gramophone records, radio and other sources.
Its many features include: 3 warts rms (15Ω) each channel. Good frequency response for outstanding fidelity. Compact slim-line styling. Ganged BASS. TREBLE and VOL. controls, 6-position SELECTOR switch for programme sources. Attractive perspex two-tone front panel. 16 transistor, 4 diode circuit. Handsome fully-finished walnut veneered cabinet. Outputs for 8 or 15 ohm loudspeakers. Printed circuit boards. For free-standing or cabiner mounting. Size $3 \%^{\prime \prime} \quad 13^{\prime \prime}: 8^{\prime \prime}$ deep.

Kit $\mathbb{1}$ 7.15.0. Walnut veneered cabinet $\mathbb{2} .0 .0$ extra.

Hi-Fi performance from a "Mini" Speaker Kit with the
"AVON" BOOKSHELF SPEAKER SYSTEM

The challenge to our acoustic engineers was to design a speaker occupying the minimum space consistent with first class reproduction. The results of our afforts was this "AVON" compact unit of exceptional quality. Features: Two special speakers $66^{\prime \prime}$ BASS, $38^{\prime \prime}$ HF unit and crossover network. Good frequency response. Beautiful fully-finished walnut veneered cabinet, size only $7_{4}^{3 \times} \times 13^{1 / 2} \times$ 8每" deep.
Supplied in two units. Can be built for a total price.
Kit $£ 13$. 16 . 0 incl. P.T.

NEW! Transistorised AM-FM Stereo Tuner

In the same attractive styling as our well-known AA-22U Stereo Amplifier. Features 18 transistor, 3 diode circuit. AM-LW/MW, FM Stereo and Mono tuning. Stereo indicator light. AFC, AGC. Pra-assembled and aligned FM unit. Separate AM and FM circuit boards. Self-powered. Handsome,
finished walnut veneered cabinet. (Optional extra).
Comprising: Model AFM-2T RF Tuning Unit. Kir 67.17 .6 including P.T. AFM-2A IF Amp. and power supply kit $£ 24.9 .6$. TOTAL PRICE KIT $\mathbf{£ 3 2 . 7 . 0} \mathrm{incl}$. P.T. Cabinet $£ 2.5$.0 extra.

Many other models in wide range.

Prices quoted are Mail Order, Retail Prices slightly higher.
Full specification sheets of any model available upon request.

shown in full colour.

FREE!

32 page Catalogue SEND COUPON FOR YOUR COPY NOW!

Over 150 models: Hi-Fi, Audio Speaker systems, Intercom, PA Guitar amplifiers, Amateur Radio, Educational, Transistor radios, Test and service instruments. Many

- - - - HEATHKIT To:-
DAYSTROM LTD., Dept. P.E. 8 GLOUCESTER, ENGLAND. Tel. : Glos. 20217 Please send me FREE British Heathkit Catalogue further details of model(s)

POCKET MULTI-METER

Size $3 \frac{7}{8} \times 2 \frac{1}{2} \times 1 \frac{1}{8} \mathrm{in}$. Meter size $2!\times 1$ Rin. Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. 0-15, $0-150,0-1000$. D.C. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Complete with test prods, battery and full instructions, 42/6. P. \& P. 3/6. FREE GIFT for limited period only. 30 watt Electric Soldering Iron value $15 /$ - to every purchaser of the Pocket Multi-Meter

3 to 4 WATT AMPLIFIER
volume mains transformer mouble wound output transformer for 3 ohms speaker. Valves ECC81 and 6v6. £2.5.0 plus $5 / 6$ P. \& P. The above in Kit Form. £I.14.6 plus $5 / 6$ P. \& P.

NEW Transistorised SIGNAL GENERATOR

Size $5 \frac{1}{2}^{\prime \prime} \times 34^{-} \times 1 \frac{1}{2}^{\prime \prime}$. For IF and RF alignment and AF output, $700 \mathrm{c} / \mathrm{s}$ frequency coverage $460 \mathrm{Kc} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$ in switched frequencies. Ideal for alignment to our Elegan't Seven and Muscte. Built and tested. 39/6. P. \& P. 3/6.

TRANSISTOR INVERTOR 50 v. D.C. Input. Output 240 v. A.C. 40 watts incorporating transformers, choke, condensers and 2 Mullard OC28 in solid 16 gauge Aluminium Case. Size $15^{\prime \prime} \times 6^{\prime \prime} \times 21^{\prime \prime}$
by famous manufacturers. $19 / 6$ plus $7 /-$ P. \& P.

40W FLUORESCENT LIGHT KIT

Incorporating GEC Choke size $8 \frac{1}{4}^{\prime \prime} \times 13^{3 \prime \prime} \times$ $1 \frac{3}{2 "}^{\prime \prime}, 2$ bi-pin holders, starter and starteiholder. 11/6. P. \& P. 5/6
holder. 11/6. P. \& P. 5/6.
Similar to above: 80 W. Fluorescent Light Kit incorporating GEC Choke size $11 \frac{1}{4}^{\prime \prime} \times 1 \frac{3}{4}^{4} \times 1 \frac{3}{4}^{\prime \prime}, 2$ bi-pin holders, starter and
 starter holder 17/6. P. \& P. 6/6.
Twin 40 W Choke instant start for $2 \times 2 \mathrm{f}$. tubes $17 / 6$. IP. \& P. 5/6.
Special offer ELEGANT SEVEN
mk Ila
SPECIAL OFFER. Power supply kit to purchasers of 'Elegant Seven' parts, incorporating mains transformer, rectifier and smoothing condenser, A.C. mains $200 / 250$ volts. Output $9 \mathrm{v}, 100 \mathrm{~mA}$. $7 / 6$ extra.
Buy yourself an easy to build 7 transistor radio and save at least £10.0.0. Now you can build this superb 7 transistor superhet radio for under $£ 4.10 .0$. No one else can offer such a fantastic radio with so many do luxe star features.
\star De luxe grey wooden cabinet size

ONLY

44.4.0

Plus $7 / 6$ Post \& Packing

* De luxe grey wooden cabinet size grey with black letters, size $11 \frac{1}{2}$ " $\times \mathbf{2}^{\prime}$. \star High ' Q ' ferrite rod aerial. \star I.F. neutralisation on each separate stage. \star D.C. coupled push pull output stage with separate A.C. negative feedback. \star Room filling output 350 mW . \& Ready etched and drilled printed circuit board back printed for foolproof construction. \star Fully comprehensive instructions and point to point wiring diagrams. \& Car aerial socket. \star Fully tunable over medium and long wave, 168-535 metres and 1250-2000 metres. \star All components, ferrite rod and tuning assembly mount on printed board. * 5"P.M. Speaker. \star Parts list and circuit diagram 2/6, Free with parts.

B SR Tape deck

AC $200 / 250 \mathrm{v}$., tape speed 33 iwin track

Special price £5.19.6
 Post and packing $\overline{1} / 6$

8-VALVE STEREO RADIOGRAM CHASSIS

3-4 WATTS PER CHANNEL

By Famous Manufacturer

Superb new 8 -value chassis covering long, medium and short waves on AM, also VHF transmissions on FM. AM circuit's high sensitivity permits internal aerial for most stations. Well-known Gorler tuning heart in separate FM input. Tone and volume controls. Extra large illuminated dial. External AM and FM aerial
inputs. Gram. pick-up socket. Standard 3 14. 14.0 ohm speaker. 200/250 volts A.C Size $17 \times 7 \times 5 \frac{3}{4}$ in. deep.

Type E MOTOR
Small A.C. mains motor $230 / 250$ volis complete with gearbox, 6 r.p.m. Price 15/-plus 4/- P. \& P Similar to above motor but without gearbox. I'rice $9 / 6$ plus 3/-P. \& P.
SILICON RECTIFIERS
250 v. P.I.V 750 milliamps Six for 7/6, Posc paid.

TRANSISTORISED $1 \frac{1}{2}$ WATT AMPLIFIER

comprising 2AC $128,20 \mathrm{C} 75$ and 2 AA 129 separate bass and treble volume controls. Complete with Power Supply AC mains 240 v. Size $7 t^{\prime \prime} \times 34^{\prime \prime \prime} \times 2^{\prime \prime}$. Price $50 /-$ plus 2/6 P. \& P.

POWER SUPPLY KIT
A.C. MAINS 200-250 V Incorporating "C" core type mains transformer, full wave metal rectification and smoothing condenser. Smooth output 250 v .250 mA and 6.3 v .4 amp . for Heaters. 25/-. P. \& P. 9/6.

FIRST QUALITY P.V.C. TAPE

Size $9^{\prime \prime} \times 6^{\prime \prime} \times 14^{-}$. A.C. Mains, 200-250 v. 4 valves. For use with Sid. or L.P. records, musical instruments. All makes of pick-ups and mikes. Output 8 watts at 5 per cent of total distortion. Separate bass and treble lift control. Two inputs, with controls for gram. and mike. Output transtormer tapped for 3 and 15 ohm speech coils. Built and tested, $£ 4.4 .0$. P. \& P. $11 /$ $8^{\prime \prime} \times 5^{\prime \prime}$ Speaker to suit Price 14/6 plus 1/6 P. \& P. Crystal Mikc to suit $12 / 6$ plus $1 / 6 \mathrm{P}$ suit.

GEC KETTLE ELEMENT

3,000W WITH AUT OMATIC EJECTION $200 / 240 \mathrm{v}$. size of hole required $1{ }^{\frac{7}{2} \prime \prime}$. List Price 32/-. Our PRICE 15/-. P. \& P. $1 / 6$.

RADIO AND T.V. COMPONENTS (ACTON) LTD.

 2ID HIGH STREET, ACTON, LONDON, W. 3Shop hours 9 a.m. to 6 p.m. Early closing Wednesday. Goods not despatched outside U.K. All enquiries stamped addressed envelope. Terms C.W.O.

Also at
323 EDGWARE ROAD, LONDON, W. 2
Early closing Thursday
PERSONAL SHOPPERS ONLY
All orders by post must be sent to our Acton Address

BAKER 12in. "GROUP 35"
Designed to stand up to long periods of electronic power input.

Ideal for Vocal Groups, Bass, Lead and Rhythm all Sound Systems.
Maximum Power Bass Resonance 35 watts Available Flux Density 80 c.p.s. from all
4,000 gauss Voice coil diameter 14,000 gauss Radio \& Voice coil impedance 15 ohms Hi-Fi Voice coil marerial Copper Dealers Full response 2513,000 c.p.s:
Conesurround
Roll $8 \frac{1}{2} G \cap S$ Chassis material solid aluminium $8 \frac{1}{2} \circlearrowleft \cap S$ Overall diameter Send for New cotalogue and enclosure plans

Baker Reproducers Ltd

(DEPT. P.E. 20) Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

TWO SCOOPS FROM "KING'S"
(NEVER ENDING - NO REWINDING) TAPE CASSETTE
BULKPURCHASE
RIDICULUSPRICE
IDEAL BACKGROUND MUSIC - LANGUAGE COURSES, ETC. 200ft. HIGH QUALITY AMPEX TAPE. WILL FIT ALL TAPE RECORDERS. CANNOT BE REPEATED.
HURRY! SEND FOR YOURS.
hurry! NOW only 16/- each

FULL CIRCUIT - INSTRUCTIONS - PARTS LIST TO BUILD YOUR OWN TELEPHONE ANSWERING MACHINE: SIMPLE - QUICK - EASY - AUTOMATIC. TAKES 100's OF CALLS: 25/-
CHEAP TO BUIID. SEND NOW KING'S TELE-SERVICE CO.
105/107 DAWES ROAD, FULHAM, S.W. 6 FULHAM 1608-2998

ZENER DIODES
Comprehenaive range 3 y to 50 V in three power
rating all 5% tol, 350 mW 8/6 each. $1.5 \mathrm{~W} 5 /-$ ench. iv 7/6 each.

SCR's (THYRISTORS)

	SCR			
Pio	${ }^{50 / 8}$	${ }^{1005}$		400 15
1 amp	6/8	${ }_{8 / 8} 818$	12/6	${ }_{17 \%}^{18}$
${ }_{25}^{3} \mathbf{3 m p}$	20/-	35\%	47/6	60\%-

SEMI-CONDUCTOR BARGAINS

MINIATURE RRLAFS with removable cuvers. Very sensitive (wibl close on only 20 mAA). Coil reaplance 10,00 ohms-conhacts arc pen circuit triple set lor change over pair hit-perfect order and the third pair from equipment), 7/6 each. vacuam Cleaner Fler. Non-kinkuble ribbed rubber, most pliable but very tough. 24/36 Cores. Normally $1 / 9$ per yard, offered at 83 per 100 yard coll, post und lnsurance 8/6.
Sub-Miniakure silicon Diodes. Genenll purpose type with gold-plated, leads, $1 /=$ each, $10 /=$ lee doz. gillicon Boetifer, eqniv. BY $100.750 \mathrm{~m} . \mathrm{a} .400 \mathrm{v}$. new, periect. 6 for 1 , post iree.
MAIIS TRANBFOR 胃RE, Upright mounting with primary tapped $200,220,240$ V. H.T. secoudary secondaries of 6.3 V 11 anip.-upused (renoved from equipment), $15 /$ - plus $3 / 6$ post and insurance. "O" CORE POTTHD OUTPOT TRANEPORMAR, Made by the fanous "Parmeko" company these are the best money can buy, we can ofer a burgain 10 watt rating, centre tapped primary with secondary for 3 ohm speaker. Potted and in bluck otove enamelled case for upright mounting these 18/s plus $3 / 6$ carriage and insurance-hurry for these. pors By Erie, etundard tive spindle, lin ons, 7d. each in doz. lota, otherwise 10 d
ErisG. PeTs Wiriz D.P. gWITCH. Again by Erie. Standard mize opindie in. length. We. eweth In doz. lots, otherwige 1/a each
IITLATURE PICK-UP. For pop records-this is made by Cosmocord has a crystal cartridge and long play sapphire at ylus-offered for less than the wholesale price of the stylus only-nansely $3 / 8$
each or $36 /=$ doz.

BUILDING SOMETHING? Most useful power pack with $250-0$. H.T. plus 2 <6.3Y' secondary windinge fused in housed in louvred metial cabinet, size approximately $10 \mathrm{in} . \times 10 \mathrm{in}$. Tin., on the trant is a 2in. flush moving coil meter Also five preset controls. Within the unit is a power pack, a lot of clear space for anything you wint to it. Below is an asoorthent org panels and components. All unused. $29 / 6$ plus $10 /$ carriage and insurance.

Only recently sold for 210.9.6. Note these features: Long \& Medium Wave Long dial Push pull output A.V.C and ieed Cabinet aize ifin $x 3$ in \times litn with carryipe atrap. You get everything you need and inatrap. You get everything you need had
atructions. ${ }^{2} / 6 / 6$ plua $3 / 6$ P. \& P. Bat 1/3 extra. Data вeparately 2/6.

DRILL CONTROLLER
Electronically changes speed from approximately 10 revs. to max. Full power at all speeds by angertip control. Kit includes all partes, case. verything and full instructions. 19/6 plue 2/6 post and ineurance.

750 mW TRANSISTOR AMPLIFIER
4 transistors including two in push-pull input for crystal or magnetic nitcropnone or plck-up-feed hack lonpssensitivity 5 mV Price 19/6. Poat

EX-WD BARGAIN Easily robulidable to short wave radio

This is the 46 Receiver/Trausuitter. 1t has a range of approx. $\$$ nuiles. Operates fron dry balteries. Complete with dix valves fin. $\because 3$ in. Coniplete approx. 12 in . not tested nor guaranteed, $19 / 6$ plus $4 / 6$ post and insurance. Should not be operated as a transmitter in the r.K

THIS MONTH'S SNIP

An excellent opportunity to re-equip your house or workshop, or it you are a contractor to restock for future ring main jobs. We offer 12 GEC switch sockets, Bakelite fluah mounting or Bakelite surface mountingbox of 12 for $80 / \mathrm{F}$ only-thus showing you at saving of 88.8 .0 . Postage and insurance $4 / 6$ extra

SUPERTONE G.C.V.

saves you work

It'l partiy bailk
Like its predeceasors this latest Conn panion has full ti performance-such am only a good wooden cabinet and biflux opeaker can give, and due to its being purtly built you will have it going
teatures: Mullard Transistors including 3: AF117.

- Two-tone Cabinet, size $11 \times 8 \times 3 \mathrm{in}$ All circuit requirenients-Push-pull
output-A.c.i. and feed back, enly onnections, e.g. to Volune control-- Printed circuit board all Wired only
- Pre-aligneal 1F stare complete with full instructions. Price only 8 2.19.6 jlus $6 / 6$ post and insurance.

AUTO RECORD PLAYER Model 2000

This is one of the latest prolucts of the World's most experienced maker of fine record reprolucers. 1t mperior features include-automatic playing of up to 8 mixed size recoristopping and starting without rejecting luw at yius pressure-harge cilameter turn-table formax. stability-adjustrnent inciude pick-up height-pick-up dropping position and stylus pressure. Bize is $13 \frac{1}{2} 1 \mathrm{in}$. clearance 41 in . above 2 i in, below-fitted with latest hi-compliance cartridge for stereo-and mono L.P. and 78. Supplied complete with mounting template and service sheet. Oflered this month at ihe special snip price of 88.9.8 plus $7 / 6$ carrlage and insurance.

CASSETTE LOADED DICTATING MACHINE

Battery operated aml with all accessories. Really fantastic olier an British mad $\$ 81$ outnt for only 28.19 .6 brilliantly designed for speed and efficiencycalsaette takes normal spools dropa
in and out for casy loading-anl normal functious-actessories include: -stethosconic carpicce-erystal nicrophone has on/ofi switch-telephone phone has on/on switeh-telephone MISS TH1S UNREPEATABLE OFFER-SEND TODAY \&6.19.6 plua $7 / 6$ post and insurauce. Foot swith $18 / 6$ extra. Spare Cassettes at $7 / 6$ each, three for 21

9V BATTERY OPERATED RECORD CHANGER

 Made by Sanders Electronics. This provides extrene reliability under irduous conditions, Long battery plif, compactness and higntness, above $\times 8$ inin. below 2 in. Takea Eight 7in. records 33 or 45 r.p.m. Motor has governor giving consistant speed despite bittury, voltagc drop. Wow, 4% Flutter -2%. Heav Zinc Turntable gives Fly wheel erfect with improved reproduction. Pick up ts the Leos GP 79/5 Ceramic Cartrldge. Frequency response $50-8000 \mathrm{c} / \mathrm{b}$. Output 250 inV. Trackiug weight 9 grams. Autonatic Trip complete with mounting har ware. Leads ready for conncetion. 79/6 cach, carriage and ingurance $7 / 6$.

MAINS MOTOR
made by Garrard for their best changers, laboratory balanced, size 2 lin. $\times 2$ in. Suitable for 116 V or 230 240 Forking by re-arrang ing lead connect

MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and amplifier Adjugtable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12$ volts for up to 500 inA (clase B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PPG, PP7 PP9 and others. Kit comprises: mains transformer rectifler, smoothing and load resistor, 5,000 ant Real snip at only $14 / 6$ plus $3 / 6$ postage.
GANGED POTS
Standard type and size with good length of spindle-minde by Morganle. List price is 10/-
 can have them at $12 /$-doz. (or 1/6 each if less than (loz.). Following values in stock. all "lin." doz.). Following values in stock. all ing all new and unused. Pont $2 / 9$ on lat doz. then $1 /$ - per doz. 6 doz. or more post free.

ARMCHAIR CONTROL
 Renote Controller
for Philips, Stella and Coseor TV sets
but adaptable to but adaptable to noodel control. Com$\begin{array}{lll}\text { nodel } \\ \text { prises } & 3 & \text { rock } \\ \text { switches } & \text { two } & \text { vari- }\end{array}$ switches, two vari-
able resistances and components including Mullard OA81-Knobs-10 way plug-11 ft. 7 way cable, etc., etc. List price $83 / 3 /-$, sours for only $12 / 6$ plus 2:post and insurance.

PANEL LAMP BARGAIN

An aseortment of radlo panel bulba, all made by the famous Philips company. Their coot if bought retail would exceed $80 / \mathrm{F}$. Oftered as a parcel for $10 /-$ post free. Parcel comprises $20 \times 6.3 \mathrm{~V}$, $0-3$ A. 10×12
All M.E.s. cap.

PP3 Eliminator-play your pocket radio from the mains! Save lis. Complete component kit comprises
4 rectifiers-mains dropper resistances, smoothing condenser and instructions. Only 6/6, plus 1/- post.

SNIPERSCOPE
 Fanous war-tine for seeing in the dark this is an infra-red huage converter cell with a
silver silver caesiunn screen which lighty
up (like a cathode up (like a cathode electrons released by the infri-red atrike it. A golden opportunity for some interesting experiments. $7 / 6$ each, port AUDIO SWITCH
ant to open your garage door curtains with close your Or make anything obey your conmand? Then firat you need an Audio Switch. We offer complete kit, including 5 transistors, Veroboard panel, all the realstors and condensers and the
relay with diagrams. relay with diagrams, plus 2/6 post and plus 2/6

> | AUTOMATIC TIME SWITCH |
| :--- |
| By Hurseal |
| 12 hour, 15 A, to control heating, lighting, |
| radio, imnersion heaters, etc. Regular price |
| e4.4.0. Limlted quantity $89 / 6$ p. \& p. $3 /$. |

ELECTRONICS (CROYDON) LIMITED

(Dept. P.E.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY

Keep thase Contacts CLEAN
 by using a
 DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification

Manufactured in France British Patents applied for

- Grain size 200 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial rel.sys and switching equipment, etc.
-Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive. Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (IISTRIBUTORS) LTD.
81 Piccadilly, London, W.1. Phone: (01) 6299556
As supplied to the War Office, U.K.A.E.A., Electricity Generating Boards, British Railways and other public authorities; also to leading electronic and industrial users throughoul the United Kingdom.

RADIOGRAM CABINETS ONLY £5.19.6

An attractive discreetly designed space saving cabinet in natural grained polyestered sapele. Pressdrop flap for autochanger and record storeage compartment. $10^{\prime \prime} \therefore 5^{\prime \prime}$ speaker position. Complete with legs. DIM. $29 \frac{\frac{1}{2}^{\prime \prime}}{} \mathrm{H} \because 14 \frac{1^{\prime \prime}}{} \mathrm{D} \therefore 29^{\prime \prime} \mathrm{W}$. Carr. Ins. 25/-.

OTHER MODELS-SEND FOR LIST
17 in. TWO-YEAR GUARANTEE
EX-RENTAL TELEVISIONS 11.10 .0 3 star Guarantee \star Tube \star Valves \star Components Channels for all areas

Insured Carriage 30/-

FREE ILLUSTRATED LIST

Slim line models
$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
A wide range of sizes, models and prices.

Demonstrations daily

TRANSISTOR CASES 19/6. Cloch covered, many colours. Size $11^{\prime \prime} \times 66_{2}^{\prime \prime} \times 3^{\prime \prime}$
P. \& P. $3 / 6$. Similar cases in plastic $7 / 6$.
SINGLE PLAYER CABINETS $19 / 6$. P. \& P. $7 / 6$.
T.V. TURRET TUNERS 2/6. New Less Valves. Slim Models $5 /$-. Press Button Models $19 / 6$. P. \& P. $4 / 6$

[^0]| ELECTROLYTIC CONDENSERS | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 4uf. | 4 | 160. | . 150 V . | | |
| | | | | | | | |
| | | 40 f. | | | | | |
| luf. | $\cdots 50$ | | | | . 15 | 100 | |
| | | | | | | 150 | |
| | . 16 | | | | | 150 | |
| | | 5 | | | | 200 | |
| | | | | | | 200 | |
| | | | | | | 200 | |
| | . 15 | 6.4 uf | , | | | 250 | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | $\ldots 3 \mathrm{~V}$ | 10uf. | .10V | 40 u | | | |
| | | | | | | | |
| | 25 | 10 ff | 25V | | | 100 | |
| | | $12.50 \mathrm{uf}^{\text {f }}$ | | 64 u | | | |
| | | | | | | | |
| | | | | 64 | | | |
| | | | | | | | |
| All at 1/- each, $9 /$ - per dozen. Mixed packet (our selection) 20 for $10 /$ 200/100uf., 275V.; 200/200uf., 275V.; 125/300/50uf., 275V.; 5/- each o 3 for $10 /$-. | | | | | | | |
| PAPER CONDENSERS | | | | | | | |
| | | | | | | | |
| | . 10000 | . 02 | . 600 | | 75 | | |
| 0.002 uf . 3500 V . 0.02 uf . | | | | | | | |
| All at 15/- per 100, or mixed packet (our selection) 50 for $10 /$-. | | | | | | | |
| VERY SPECIAL VALUE!
 SILVER MICA, POLYSTYRENE
 Very well assorted. Mixed types and values. 10/- per 100. | | | | | | | |
| | | | | | | | |
| RESISTORS | | | | | | | |
| | | | | | | | |
| par
 $\frac{1}{4}$ watt to 3 watt mixed values and cypes, $10 /$ for $100,55 /$ per 1,000 . | | | | | | | |
| | | | | | | | |
| OO CLEAR: 10 Meg. 1/6th watt resistors, $f 1$ per 1,000 .
 WIRE-WOUND 3 watt, 5 watt-6d each.
 7 watt, 10 watt-9d. each. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| TRANSISTORS
 AFZ12, Screened V.H.F. oscillator transistors, 5/- each. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| AFZ12, Screened V.H.F. oscillator transistors, 5/- each. OC44, 45, 8ID- $2 / 6 \mathrm{~d}$ each.
 OC71 equivalent, $1 /$ - each 63 per 100 . | | | | | | | |
| Switching Transistors ASY22 (pnp) or 1.B.M. (npn). 6 for | | | | | | | |
| Car radio type Output Transistors type NKT40S, $10 / 0$-ach | | | | | | | |
| | | | | | | | |
| UNMARKED, UNTESTED TRANSISTORS- 50 for 101 -. LIGHT-SENSITIVE TRANSISTORS SIMILAR TO OCP7I-2;- each. | | | | | | | |
| TELEVISION VALVES. BRAND NEW AND BOXED PCFEBO, 7/6; PL81, 7/6; PCL82. 7/6; PCL85, 7/6; PCL84, 7/6; PCC84. $6 / 6$ PY81, 6/-; ECC82, 6/6; PL36, 91-; EY96, 6/-; PCL83, 9/-; PY33, 9/-; ECL80 6/6; PCC89, 9/-. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| Silicon diodes. Make excellent detectors. Also suitable for keying electronic organs. $1 /$ each or 20 for 10%.
 BYIOO TYPE TELEVISION H.T. RECTIFIERS, SPECIAL PRICE 5/- each, 30/-dozen. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| BATTERY CHARGERS, with meter and fuse, 4 amp . $6 / 12 \mathrm{~V}$., $55 /-\mathrm{each}$. SOLON MODEL 615 Slim Pencil-bit Soldering Irons, 25/- each. WELLER DUAL-HEAT SOLDERING GUN, 57/6. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| NUTS, SCREWS and WASHERS, very useful assorted packs, 6/- each. WALKIE-TALKIES (not for use in U.K.). ©7/10/- pair. | | | | | | | |
| | | | | | | | |
| SIGNAL INJECTOR, parts and circuit to make, 10/SIGNAL TRACER parts and circuit to make, 10 - o | | | | | | | |
| | | | | | | | |
| MOTOR CAR REV. COUNTER (less ImA meter), parts and circuit to make, 10/- only. | | | | | | | |
| TRANSISTORS, COMPONENTS AND CIRCUIT to convert ImA meter to 0 to 10 Meg . ohm meter. $10 /$-. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| TRANSISTORISED RUMBLE AND SCRATCH FILTER (for improving reproduction of old records), ali components and circuit, $30 /-$. | | | | | | | |
| SINCLAIR. All products in stock including latest version of MICRO World's smallest radio-and only 59/6! | | | | | | | |
| NEEDLES FOR RECORD PLAYERS. HALFPRICE!
 All types below at $3 / 6$ each:
 TC8LP: GC2LP; GCBLP; BF40LP; GP67LP: GP37: GP59: TC8 Stereo LP: Studio OLP.
 CARTRIDGES
 SONOTONE MONO, 10/-. ACOS, $15 /$. ACOS STEREO SAPPHIRE 12/6; DIAMOND, 17/6. All complete with needles! | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| LAPEL MICROPHONES, Magnetic or Crystal, 10/- each.
 TAPE RECORDER MICROPHONES, Fancastic value at 12 - each. ACOS MIC. 4S, 30/-. Many others, both crystal and dynamic in stock. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| THIN CONNECTING WIRE. $10 y 0$. . $1 /$-; $100 y d ., 7 / 6 ; 500 y d ., 25 /-;$ Post 4/6. 1,000yd., 40/-. Post 6:- | | | | | | | |
| LOUDSPEAKERS. 12in. Richard Allen. 37/6d. 12in. Bakers Guitar, $65 / 5 /-3 \mathrm{in}$., 4 in ., Sin . and $5 \mathrm{in} \times 3 \mathrm{in}$., all at $10 /-$ each; $8 \mathrm{in} . \times 2 \mathrm{izin}$., 12/6; 2 in. 80 ohm, 7/6.
 EARPIECES. Magnetic or Crystal, 5/- each. | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
|
 Terminal Pins, 50 for $3 /-$ i Spot Face Cutter, $7 / 3$; Pin Insert Tool, $9 / 6$. Special Offer-Cutter and 5 boards, $2 \frac{1}{2} \mathrm{in}$. $\times 1 \mathrm{in}$., $9 / 9$. | | | | | | | |
| | | | | | | | |
| ORDERS BY POST-TO G. F. MILWARD, 17 PEEL CLOSE, DRAYTON BASSETT, STAFFS. | | | | | | | |
| PLEASE INCLUDE APPROPRIATE POSTAGE COSTS
 No Enquiries without stamped addressed envelope | | | | | | | |
| | | | | | | | |
| For customers in the Birmingham area, goods may be obtained from: Rock Exchanges, 231 Alum Rock Road, Birmingham 8 | | | | | | | |

a new 4-way method of mastering ELECTRONICS by doing

$1>$	OWN and
HANDLE a	

2	BUILD
and USE	

a modern and professional CATHODE RAY OSCILLOSCOPE

UNDERSTAND CIRCUIT DIAGRAMS
send your free Brochure, without obligation, to: we do not employ representatives

NAME

NEW ROLES IN MCROELECTRONC INDUSTRY

THE likely impact of microelectronic techniques upon future product developments has excited much attention. Complex data processing systems and control equipments for industry; desk top calculators for the office; hi fi equipment and automatic washing machines for the home-these are just some of the diverse applications where, it is said, integrated circuits are bound to have an important influence.

No one will doubt that the improved products made possible by the new techniques will bring about many profound changes in everyday life, in one way or another. What is perhaps less generally appreciated is the "revolution"' the electronic industry itself faces due to this large scale movement from discrete components to integrated circuits.

There seem to be two major "domestic" problems created by the microelectronic era: one concerns the function of the manufacturers, and the other the function of their design staff.

Some companies which previously manufactured discrete components only are now producing thin film circuits or semiconductor chips. This means they are in reality assuming the role of circuit designer. Their old customers, the electronic equipment manufacturers, may therefore find themselves relegated in part to the role of assemblers of someone else's circuit blocks. In an attempt to prevent this, some equipment firms are setting up their own integrated circuit production units. It is thus obvious that the once fairly clear-cut distinction between component manufacturer and equipment manufacturer will cease to exist in the future.

The second problem we have referred to concerns the role of the design engineer.

It has been suggested by some authorities that design engineers will be eventually classified as "device" men, or "systems" men. Only one in about ten (it is suggested) will be required in the first category, which involves circuit design; the great majority will find employment as systems designers, and to them the integrated circuit will be merely a "black box". This latter role is of course comparable with that of the computer engineer.

Yes, major changes are on the way. But in this latest technological revolution the repercussions will (in their own way) be no less dramatic and far-reaching for the innovators, than for the users of the finished electronic equipment.

CONSTRUCTIONAL PROIECTS

INVESTIGATOROSCILLOSCOPE571
BITE INDICATOR 587
CHEMOSTAT 594
MODEL CONTROLINSTALLATIONS602
SPECIAL SERIES
MICROELECTRONICS-I 566
GENERAL FEATURES
ELECTROMAGNETIC RELAYS 576
INGENUITY UNLIMITED 616
NEWS AND COMMENT
EDITORIAL 565
ELECTRONORAMA 592
SPACEWATCH 601
POINTS ARISING 606
ROYAL AIRCRAFT
ESTABLISHMENT 606
MARKET PLACE 607
THE 73 PAGE 612
DETACHED PARTICLES 615
Our September issue will be published on
Friday, August II

[^1]

PART ONE

Abstract

WITHOUT any shadow of doubt the last few years have seen a revolution with the widespread introduction of microelectronic circuits to industry. Until now very little has been seen of these devices on the amateur market largely because of their relatively high price, or availability, but the time is now with us when it is possible to buy modular, thin film integrated, and semiconductor integrated circuits for a matter of shillings-the same devices having cost as much as E 50 as recently as 1960 .

By M.J.HUGHES M.A.

WHY MINIATURISE?

Why is it necessary, or desirable, to aim at smaller and smaller components and circuits? The answer is not quite as simple as might appear at first sight. It is obviously desirable to have small, compact units when building vast complex electronic equipments, but this is not the end of the story.

As modern computers get faster in their speeds of operation, engineers now find that they are not so limited by switching speeds of circuits themselves, but by the distance signals have to travel down wires. (The speed at which an electrical signal passes down a wire is approximately $3 \times 10^{10} \mathrm{~cm}$ per second-the speed of light.) If we were to consider the typical case of a wire 100 cm in length, the time for a signal to travel from one end to the other would be approximately 3 nanoseconds.

There are already in existence circuits with switching speeds faster than this; therefore, the actual wiring length of a computer complex could be a serious limiting factor to the computer's speed of operation. The only way to overcome this problem is to keep interconnection wires as short as possible, therefore the packing density of the components must be high. A second, and more down to earth point, is that by modern techniques of manufacture-which will be described later in this article-the smaller the circuit the cheaper it is to manufacture.

It is inevitable that whatever one gains on one hand one loses on the other, and microelectronics is no exception. Although it is quite possible to reduce the
size of components to microscopic dimensions, it is not always possible to reduce such factors as power dissipation. The smaller and more dense circuits become, the more difficult it is to remove heat produced by the mundane effect of current passing through a component. This particular phenomenon has to be overcome by careful circuit design to keep dissipation to a minimum, wherever necessary by using special high thermal conductivity packaging to dissipate unwanted heat into the atmosphere.

Another problem which becomes highly relevant as size comes down is the effect of parasitic capacitance, and mutual inductance between components and this can only be prevented by the skill of the designer. There are many other associated problems, and some of these will be mentioned later.

THREE MAIN LINES

As has already been implied there are three main lines towards miniaturisation; these are modular circuits which are made by high density wiring of conventional (discrete) components into encapsulated units; thin film integrated circuits which are made by depositing thin layers of metal on to glass substrates to form equivalents of resistors and capacitors on a micro scale, to which more or less conventional transistors are added.

The third method, and perhaps that which is most likely to provide devices on the work bench of the amateur (from the cost point of view) is the integrated circuit-sometimes called the semiconductor integrated

A typical Elliott modular circuit with discrete components

Thin film version of an Elliott logic circuit shown in its manufacturing stages

Semiconductor integrated circuit ($/ \frac{1}{2} m m$ square) compared with a silicon planar transistor dice (right) type $2 \mathrm{~N} / 6 / 3$ made by SGS-Fairchild
circuit, or SCIC-which as the name implies is made from semiconducting material such as silicon. In the early days of development these latter circuits were loosely referred to as "solid circuits".

MODULAR CIRCUITS

Not a great deal reed be said about modular circuits; they are made by wiring conventional miniature components on to printed circuit board-sometimes highly sophisticated wiring systems are used-and when completed with suitable lead out wires, or tags the completed circuits are potted in epoxy resin such as Araldite, or Bondaglass.

It is usually impracticable to contemplate repairing such circuits, and therefore it is essential that basic designs are well within the tolerances and ratings of the individual compenents.

GLOSSARY

A short Glossary of terms commonly used with reference to Thin Film, and Semiconductor Integrated Circuits.
Active component-A device providing gain to a circuit, e.g. a transistor.
Angstrom (A) - Unit of length equal to $10^{-8} \mathrm{~cm}$.
Base width-The distance between the emitter and collector regions of a transistor. The narrower the base width the higher the gain of the device, but the more difficult it is to control. Base width is typically 0.5 to 1.5 micron for a planar transistor.

Bipolar-Containing npn or pnp junctions as distinct from field effect devices.

Bonding

Wire bonding-The connection of very fine gold or aluminium wires to the contact areas of circuits, thence to the lead out terminals of the package. It can be carried out by soldering in thin film circuits, but more commonly by thermal compression, or ultrasonic welding techniques.

Dice bonding-Attaching the dice, or chip, which contains the circuit, to the platform of the package which is to hold the circuit. This process is always carried out before wire bonding commences.
Bonding pads-Small areas-typically gold for thin film circuits, but aluminium for semiconductor integrated circuits-to which the fine lead-out wires can be connected by wire bonding methods.
Buried layer-A region below an epitaxially deposited growth which is heavily doped, and therefore of very low resistivity. It can be used as a basis for isolation, or more commonly as a shunt to the collector of a transistor to reduce the internal voltage drop, or saturation voltage, of the transistor.
Cermet-A combination of ceramic and metallic powders used in making thin or thick film resistors. Charge storage-The effect whereby any pn junction can act as a capacitor-the depletion layer acting as a dielectric.
Chip (or dice)-A small piece of silicon, usually no more than 2 mm square which contains all the elements of the circuit.
Depletion layer-The crossover region where p material merges into n material (commonly known as a junction). The region is low in holes or electrons due to the cancelling effect, and therefore is high in resistivity. This area causes the capacitance effect of pn junctions.
D.C. injection electroluminescence-The production of light from a junction in a semiconductor by the injection of minority carriers by a steady field.

Diffusion

Base emitter diffusion-The process of introducing an impurity or dopant into silicon by the natural migration of atoms of the dopant under the action of heat. By controlling the time and temperature of a diffusion, the depth of penetration can be very accurately controlled.

Isolation diffusion-The diffusion of channels of say p-type dopant into n-type silicon which if electrically biased in a reverse direction will isolate the silicon on both sides of the channel. This process is usually carried out in conjunction with a buried layer.
Discrete components-Conventional components with individual lead wires as opposed to integrated components.

Dopant-A material which, when added to a semiconducting material such as silicon, will provide either free electrons or free holes (depending on whether it is an n or a p-type dopant). Common n-type dopants are arsenic, antimony, and phosphorus, while the most used p-type dopant is boron.
Dual in-line package-A very popular form of package for integrated circuits. It gets its name from the fact that there are two rows of outlet leads separated by 0.3 in , and the leads in each row are in line and separated by 0 lin. (Ideal for use with 0 - Iin matrix perforated board.)
Epitaxial growth-The deposition of materialtypically silicon-on to a substrate. Although the grown layer may differ in type or resistivity to the substrate, it follows the same crystal orientation.

Etch

Selective etching-The preferential removal of one material from a sandwich structure without affecting any other material, effected by careful selection of chemicals or acids.
Fan in-The number of inputs a logic gate can handle. Fan out-The number of stages a logic gate can drive. Flat pack-A very compact form of encapsulation for integrated circuits. There are various types of flat pack, but a typical example is in square, and approximately $\frac{1}{10}$ in thick. The lead-outs are in the same plane as the package, and are designed for welding into a circuit.
Flip chip A piece of silicon containing perhaps a transistor, a diode, or a resistor, or any combination, which may be inverted and then bonded into a circuit (sometimes directly to printed circuit board) without any encapsulation or wire bonds. These chips usually have solder dipped bonding pads, and the chips are fixed to a well fluxed circuit board merely by the application of heat. Sometimes aluminium contacts are used, and in this case ultrasonic bonding is used.
Header - The part of a metal can to which a dice is bonded. This header usually forms part of the final package, and usually carries the lead-out wires.
Hybrid integrated circuit-A complex circuit made (in microelectronics) by the joint use of semiconductor integrated circuits together with thin film circuits. The integrated circuits may sometimes be in the form of flip chips.
Integrated circuit (IC)-A term often referred to as a small circuit which is made up of components encapsulated in a single package. Strictly speaking, modular or thin film circuits are integrated, but the term is becoming more and more used specifically for semiconductor integrated circuits of the monolithic type.

Isolation

Dielectric isolation-The use of non-conducting materials, typically silicon dioxide, to prevent electrical conduction from one portion, or component of an integrated circuit to another.

Diode isolation-Using the high reverse resistance effect of pn junctions to limit conductivity between neighbouring areas of an integrated circuit.

Epitaxial isolation-This is the same as diode isolation except that the pn junction is formed at the boundary between the epitaxial layer and the substrate.

Resistive isolation-Making use of high resistivity (containing low dopant concentrations) silicon to limit conductivity.
Junction-The region between p - and n-type material which is deficient in current carriers (holes or electrons) and has rectifying properties.
(TO BE CONTINUED)

THIN FILM CIRCUITS

Thin film circuits are one step removed from conventional component circuits in that passive circuit components such as resistors, capacitors, interconnections, and sometimes inductors are actually fabricated in the process of making the circuit. The components are made by the process of vacuum evaporation, or sublimation of materials such as gold for conductors, nickel chromium alloy for resistors, and aluminium for the electrodes of capacitors with silicon dioxide, or monoxide as dielectric material.

VACUUM EVAPORATION

Any material has associated with it what is called a vapour pressure. This vapour pressure is caused by atoms of the material leaving the solid or liquid to go, into the vapour in much the same way as "steam" can be seen over puddles on a hot day, even though the water in the puddle may not be boiling.

The number of atoms which escape from the material depend on the temperature and the pressure of the atmosphere around it; the lower the pressure the more easily atoms can escape. This effect is well known to climbers who have had the difficult experience of boiling an egg at high altitudes without the help of a pressure cooker. The water molecules in the latter case leave the liquid so easily that it is unnecessary to heat water to such a high temperature to get it boiling, and consequently the egg never cooks.

If an artificially low pressure is produced such as that in a vacuum bell jar (sce Fig. 1) it is possible to boil certain metals at comparatively low temperatures. It is this principle which is used to form the thin films of metal from which thin film circuits are fabricated.

When a piece of metal such as gold is heated in a vacuum, the atoms of gold leave the heated source and move off in straight lines in all directions from the source. If the vacuum is as near perfect as possible, and there are no foreign atoms present in the space around the source, the gold atoms will travel on until they reach the cool walls of the vacuum chamber, where they condense and build up a thin layer of solid gold.

Fig. I. Schematic diagram of an evaporation chamber

If a shaped mask is held between the source and the wall of the chamber, it will act rather like a stencil, and will reproduce its shape as a shadow pattern in the gold.

INTERCONNECTION PATTERNS

If we were to introduce a stencil with patterns cut in it to represent the connection patterns of a printed circuit, the gold would pass through the cut-out areas and faithfully reproduce this pattern either on the wall of the chamber, or better still on a "substrate" of glass or similar material, which would take the place of the insulating backing of a conventional printed circuit board. As gold is a very good conductor of electricity we would, by this method, build up a useful set of interconnection patterns.

Fig. 2. Cross-section of thin film components

The whole circuit protected by silicon monoxide

Transistor, coil, and lead wires added to diced substrate

Finished pack (right)

These six pictures show stage-by-stage process of making an S.T.C. thin film circuit by stencil mask

In actual practice this method has to be slightly modified as gold by itself does not adhere particularly well to glass, and therefore most manufacturers carry out an intermediate process of despositing chromium, or nickel chromium, which bonds well to glass, and will accept gold as a secondary deposit (see Fig. 2).

All materials, even gold, have certain specific resistances; these are sometimes called bulk resistivities and are constant for any particular material irrespective of its shape. This resistivity by itself does not determine the actual resistance of a piece of metal unless the dimensions of the metal are taken into account. For a given resistivity, the resistance of a material is directly proportional to its length, and inversely proportional to the area of cross section through which the current flows.

EXTREMELY THIN LAYERS

The process of vacuum deposition is capable of producing extremely thin layers of material quite often as little as $75 \AA$ Angstrom units, or ${ }_{\text {r }}$ 酎 of the wavelength of visible light. An Angstrom is a unit of length used to define extremely short distances; 1 Angstrom unit is equal to $10^{-8} \mathrm{~cm}$.

The thinness of these layers limits the effective cross-sectional area, and hence the current flow path, quite considerably. By careful choice of film thickness and materials one can generate either reasonably high conductive areas, e.g. with gold, or high resistance areas with nickel chromium alloys.

Using sequential evaporation of different materials through different stencil masks it is therefore comparatively easy to build up networks of conductors and resistors. Naturally there are some limitations to the values of resistance one can produce by this method, but generally speaking short wide areas of resistive material can produce values as low as 10 ohms, and long narrow paths, which can sometimes meander or zig-zag, will give values up to 1 megohm.

As gold can be soldered very easily it is possible to attach conventional miniature components to these circuits to cover values which are not readily made by thin film methods. Although this is possible most manufacturers prefer not to adopt this practice as it is not an easy operation, and can add considerably to the cost of a circuit.

PHOTOLITHOGRAPHY

An alternative method of producing conductor and resistor patterns is by a process called photolithography. This process is used in the printing world as a method for etching patterns into metal plates from which photographs and drawings could be printed. It is now an extremely common process in the electronics industry both for making printed circuits, and perhaps more so in the production of microcircuits.

There are several plastics materials available which undergo a change called polymerisation when subjected to ultraviolet light. These materials are called photoresists. Polymerisation causes the plastics to harden, and usually tends to make it less soluble in certain solvents.
A glass substrate coated entirely in a thin layer of gold, is coated with a layer of photo-resist, either by brushing or spraying (see Fig. 3). It can then be exposed through a photographic negative of a conductor pattern, thus hardening the plastics over areas which would ultimately be the actual conductors. By using a suitable solvent-more commonly called a developer-the remaining "soft" material is removed
from the rest of the substrate. With an etching solution, such as a mixture of iodine in potassium iodide, the unwanted gold areas are etched away leaving the conductor pattern.

This process is very often used to produce extremely fine patterns both for conductors and resistors and is usually called upon to produce higher values or tighter tolerances in resistors. Naturally, different etchants would be required for different materials. As the actual values and tolerances of the final resistors are directly proportional to the dimensions of the photographic image, it is very important that great care is taken in producing the negatives.

SCALED-UP PATTERN

As the types of microcircuit described here rarely exceed dimensions of $1 \mathrm{in} \times \frac{1}{2} \mathrm{in}$, all original design work is carried out many times life size, and photographic methods are used to reduce the size to the final requirements.

The designer of thin film circuits would need to calculate the dimensions of the resistors he requires knowing the resistivity, and thickness of the nickel chromium film to be used. He would then make a rough sketch (to scale) of the layout of these components and their interconnection patterns in exactly the same way as would a printed circuit designer.

When the dimensioned sketch is finished a special table, called an $x-y$ co-ordinatograph is used to transfer the patterns, sometimes 20 or 30 times life size, on to a material called "cut and peel" film. This film has a tough base of transparent plastics, with a thin film of red plastics on its surface.

By using special cutters on the table it is possible to cut through the thin red film without damaging the underlying plastic base; after cutting round the required areas the unwanted red film can be stripped from the base material. The finished scaled pattern of the final circuit connections is left behind in red on a clear background.

The film is illuminated from the rear, and a special camera is used to reduce the pattern to the required size on to a high-contrast photographic plate. Sometimes the same camera can be used to step and repeat

THE "Investigator" oscilloscope is simple in design and construction, so very little description is necessary. Last month the complete circuit was given with a description of each stage and its function.

Also included were drilling diagrams for the front and back panels. This month the rest of the constructional details are followed by a simple setting up procedure.

MECHANICAL ASSEMBLY

As many constructors do not possess the metal working machinery normally to be found in industrial workshops, the metal work used in this unit is kept simple. Possibly the top cover is the only piece that may prove to offer some difficulty when finally coming to the bending operation.

The main frame consists of six pieces of material the four side struts are made from $\frac{1}{2}$ in square aluminium or steel each $9 \frac{1}{2}$ in long; the end pieces form the front and rear panels (Figs. 2 and 3 last month) of the oscilloscope which are screwed to the struts. To this structure the rest of the metalwork and component board may be screwed thus forming a very rigid assembly.

The tube mounting plate again has only one simple bend and is screwed to the top struts of the main structure. This has been made adjustable by putting slots in the plate so that the plane of the tube can be orientated.

The tube is held in two places. A piece of 3 in bore aluminium tubing is fixed to the front panel and is lined with foam rubber to cushion the tube screen end. The tube mounting plate is fitted with a large capacitor clip to hold the base end which is also adjustable.

The cover consists of two sections, one being the base plate which is just a simple rectangular piece of 20 s.w.g. aluminium to which is screwed a handle. This handle is not only used for carrying but also inclines the instrument on the bench so that viewing is more comfortable.
Another piece of large aluminium tubing was polished and used as a permanent viewing hood
although the two pieces can be combined as one which is passed through the large hole in the front panel. This may be glued in position with Araldite. The final frame and panel assembly is shown in Fig. 4.

MAIN CHASSIS WIRING

After the main frame has been assembled with the front and rear panels, the components should be assembled on the panels and wired completely accord: ing to Figs. 5 and 6 . This is possibly the longest job and great care should be taken in checking this wiring assembly before any further assembly takes place.
text continued on page 574

Fig. 4. Main frame with front and back panels

 and wiring of back panel

In order to check wiring and voltages at a later stage, it will be an advantage to wire the respective h.t. lines in different colours to save having to trace wiring round the cable harness.

POWER BOARD

The power supply unit is simply mounted on the rear panel, being held off by two pillars and contains the e.h.t. supply components. Great care should be taken when delving around this section after the instrument has been switched on as the voltage present is somewhere in the order of 800 V relative to chassis. Even when the supply is switched off the capacitors C31 and C32 may still be charged to a high voltage.
The physical size of the $50+50 \mu \mathrm{~F}$ capacitors should be kept as small as possible to clear the c.r.t. fixing bracket.

MAIN AMPLIFIER

This amplifier is fitted to the botton struts of the oscilloscope; the base plate of the case has been made removable so that it is easy to check the underside
wiring during the setting-up procedure (Figs. 7 and 8).
As this board is only held on its extreme edges, care must be taken when inserting the valves so that the board is not fractured by too much pressure in pushing the valves home.
As there are one or two adjustments to be made to potentiometers at a later stage, it may be advisable to drill through the board in the appropriate places so that adjustment may be made from the underside.

FINISHING NOTES

Great care must be taken when checking out the wiring as any error could be detrimental not only to the tube but to the valves and rectifiers, if shorts or incorrect supply voltages appear at various points. Test voltages were given on the circuit diagram (Fig. 1) last month. When clamping the tube base, too much pressure must not be brought to bear on the base itself otherwise fracturing of the tube could ensue.
The front panel was finished in a light coloured cellulose spray paint; it is best to do this and allow to dry before assembling components on it. The whole

of the casing can be sprayed in blue hammer finish paint obtained from Messrs. Yucan or Finnigan Speciality Paints (as advertised).
A graticule can be made to slide down the viewing hood so that instant reference may be made to this grid when measuring voltage levels. The graticule consists of a clear piece of Perspex cut to fit the hood and then scribed at accurate 1 cm spacings from the centre X and Y axes.
Once a groove has been cut in the Perspex a black wax crayon is rubbed across the surface on the side that has been scribed; very clear black lines will show up when the surplus wax has been cleaned off. Intermediate millimetre markings can be similarly scribed on the centre X and Y axes.

SETTING-UP PROCEDURE

Y calibration

The oscilloscope should be switched on by advancing the brilliance control in a clockwise direction and the instrument should be given two minutes to warm up. The X gain should be in the fully clockwise condition and the X shift control in the middle of its travel.
The brilliance and focus are now adjusted to give the required trace and the function switch $S 4$ is set into the 1 millisecond position with the Y gain switch set at 1 volt.

After the sync control has been set to int a 1 kHz signal of 355 mV r.m.s. or 1 V peak-to-peak is applied
to the input socket and the "set gain" control VR3 is set so that the deflection on the screen is 1 cm .
Now the signal is removed, Y shift (VR1) is set to mid-position, and VR2 is adjusted so that the trace centres in the Y plane.

X calibration

With the controls set in the condition indicated in the previous paragraphs and the input signal at 1 kHz re-applied to the input, the fine frequency control (VR9) is set in the fully counter-clockwise condition and the X gain is adjusted so that the time base scans exactly 5 cm .
The trigger control (VR5) is advanced from a fuily counter clockwise condition until the waveform just locks and then VR8 is adjusted so that five complete cycles are indicated on the screen. This shows that 1 kHz covers one centimetre, that is to say that the time base is running at a speed of 1 millisecond.

This accuracy can be checked by switching to the 100 microsecond range and increasing the input signal frequency to 10 kHz ; once again five complete cycles should be seen.

If the components in the time base stage are kept to a reasonably close tolerance then it is possible to check the frequency of incoming signals quite accurately. It is essential when trying to ascertain the frequency of an incoming signal that the fine frequency control is in the fully counter-clockwise condition.

PART

Fig. I6. Latching a relay with its own contocts

Fig. I7. Using a resistor to hold a relay in

[^2]HE relay, being a two state device, can be used as a memory cell. In fact a complete computer, logic circuits, arithmetic unit, registers, etc. can be built using only relays, although their comparatively slow speed and their considerable power requirements make such a project impracticable. However, the "memory" function can be put to good use in many circuits where it is desired that the relay remains closed after the cessation of the operate pulse.

This property is known as "latching" the relay, i.e. it stays closed when the operating current ceases.

A relay may be latched in several ways. Fig. 16 shows how a pair of make contacts is used to connect the coil to the supply after the operate pulse has ceased. So closing switch S1 energises the relay, when the contacts close, the circuit is completed through S2. When S1 is opened, the relay remains energised, only becoming de-energised when S 2 is opened.

J

LATCHING A RELAY WITHOUT USING CONTACTS

In order to avoid using a special pair of contacts just for latching, the circuit shown in Fig. 17 may be used.

Here advantage is taken of the fact that the "hold-in" current is less than the "pull-in" current.

The value of the resistor R is chosen so that insufficient current flows through R and RLA to close the relay, but sufficient to hold it in when it has been closed by S1. Again opening S2 will release RLB.

Several relays may be latched in this manner and released by a common "unlatching" switch, S4 in Fig. 18.

In this circuit the respective relay will latch by closing S1, S2, or S3, but all can be unlatched simultaneously by opening S4.

INCREASE YOUR KNOWLEDGE

CHOOSE THE RIGHT COURSE FROM
RADIO AND TELEVISION ENGINEERING, INDUSTRIAL TELEVISION, RADIO AND TELEVISION SERVICING, ELECTRONICS, COLEVISTER S AND PROGRAMMING, COMPUTERS AEND PROGRAMMING, ELECTRONIC TECHNICIANS, SER CISOMECH ANISMS, TELEMETRY, CLOSED CIRCUIT TV,
INSTRUMENTATION, AND PRINCIPLES OF INSTRUMENTA
AUTOMATION.

ALSO EXAMINATION COURSES FOR:

Inst. of Electronic and Radio Engineers
C. \& G. Telecommunication Techns'. Cert.
C. \& G. Supplementary Studies
R.T.E.B. Radio TV Servicing Cert.
P.M.G. Ceruficates.

Radio Amateurs' Exam

LEARN AS YOU BUILD

Practical Radio Courses: Gain a sound knowledge of Radio as you build vOJR OWN 5-valve superhet Receiver and Transistor, Portable Signal Generator and High Quality Multitester. At the end of the course you have valuable practical equipment and a fuind of personal knowledge and skill. ICS Practical Radio Courses open a new world to the keen amateur.

THERE IS AN $B S$

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.
There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY
You will recoive the FREE ICS Prospectus listing the examinations and ICS technical courses in radio, television and electronics. PLUS details of over 150 specialised subjects.

BRAND NEW T.V. U.H.F. TUNER AND SOUND AND VISION I.F. PANEL
By world famous maker. ' 5 uitable for use in con-
version of $T V$ sets to B.B.C. 2 (625 line recepcion) version of (less valves) AT THE BARGAIN PRICE OF ONLY 27/6. Post Paid. (The components are worth far more than our price for the complete unit and duc to the very high value we regret that no correspondence can be entered into regarding this item.)

HIGH GAIN 4 TRANSISTOR PRINTED CIRCUI AMPLIFIER KIT Type TAI

- peak
output in excess
If watts. - All sta dard British components.
 printed circuit panel, size 6×3 in.
- Generous size Driver and Output Transformers ohm speakers. Transisters for 3 ohm and 15 Mullard OC8ID and matched pair of OC81 o/p). - 9 volt operation. Everything supplied. wire, battery clips, solder, etc. Comprehensive easy to follow instructions and circuit diagram 2/6 (Free with Kiz). All parts sold separately.
SPECIAL PRICE $45 /$. SPECIAL PRICE 45/6 P. \& P. $3 /-$. Also ready, built and tested, $52 / 6$.

STEREO AMPLIFIER

Incorporating 2 ECL86s and I EZ80, heavy dury double wound mains transformer. Futput 4 watts
per channel into 3 ohm speakers. Full tone and volper

SPECIAL PURCHASE! TURRET TUNERS By famous maker. Brand new and unused. Complete with PCC84 and PCF80 valves $34-38 \mathrm{Mc} / \mathrm{s}$ IF. Biscuits supplied. ONLY 25 '- each. P. \& P. 3,'9.

GÖRLER F.M. TUNER HEAD

88-100 Mc's 10.7 Mc's. 1.F.. 15°-, plus 2 P P. \& $口$ (ECCB5 valve, 86 extra).

ACOS CRYSTAL MIKES. High imp. Fordesk or hand use. Highsensitivity, 18/6. P. \& P. I/6. ACOS HIGH IMPEDANCE CRYSTAL STICK

SPECIAL PURCHASE!

B.S.R. GU7
volt Battery
Operated Record Player Units. 4-speeds, Automaric stop. Plays any size with mono t/o head and sapphire styli.

QUALITY RECORD PLAYER AMPLIFJER Mk II A cop-quality record player amplifier employing heavy duty double wound mainstransformer, ECC83,
EL84, EZ80 valves. Separate Bass. Treble and EL84, EZ80 valves. Separate Bass. Treble and
Volume contrcis. Complete with output transVolume contrcls. Complete with output trans $\times 3 \mathrm{in}$. d. $\times 6$ in. h. Ready built and tested. PRICE A150. P. \& P. 6/-
ut AVAILABLE mounted on board with out cut transformer and speaker ready to fit into
cabinet below. PRICE 89/6. P. \& P. $7 / 6$.

DE LUXE QUALITY PORTABLE R/P CABINET Uncut motor board size 14 lin. X I 2 in. clearance 2 in below, 5 lin, above. Will take above amplifier and any B.S.R. or GARRARD Autochanger or Single
Player Unit (except AT60 and SP25). Size $18 i n$. x Player Unit (except AT60 and SP25). Si
$15 \mathrm{in} . \times$ Bin. PRICE $\mathbb{3} / 9 / 6$. P. \& P. $9 / 6$.

4-SPEED PLAYER UNIT BARGAINS Mains Models. All brand new in maker's origina packing.
S.R. TUINGLE PLAYERS

GARRARD SP25 De Luxe... $\begin{array}{lll}\text { G10/19/6. } & \text { Carr. } 5 / 6 . \\ \text { Garr. } \\ 5 / 6 .\end{array}$ B.S.R. GU7 with unit mounted pickup arm

AUTO. CHANGERS Carr. $6 / 6$ on

 atest B.S.R. UA25 Super slim Carr. $6 / 6$ on each GARRARD 1000 with Hi-Fi cart.GARRARD 2000.
GARRARD 3000.
AATEST GARRARD AT60 Mk. II £8 150 All the above unit- are compl. 120 and sapphire styli or can be supplied with comparible stereo head for $12 / 6$ extra.

BRAND NEW CARTRIDGE BARGAIN: ACOS GP69-I MONO CARTRIDGE. For E.P and L. P. Complece with stylus. ONLY i2/6. P. \&

BRAND NEW. $12^{*} 15 w$. H/D Speakers, 3 or 15 ohm. Current produetion by well-known British Guitar models: 25 w . 85.5 .0 ; 35 w . 68.8 .0 .
GRAND NEW 3 OHM LOUDSPEAKERS $5 \mathrm{in} ., 12 / 6 ; 6 \frac{1}{2}$ in., $15 /-; 8$ in., 22/6; $10 \mathrm{in} ., 27 / 6$; $7 \mathrm{in} . \times 4$ in.. $16 ;-; 10$ in. $\times 6$ in., $27 / 6$.
E.M.I. 8 in. $\times 5$ in. with high flux magner $21 /$
E.M.I. $13!\times 8 \mathrm{in}$. with high flux ceramic magnet $42 / \mathrm{m}$ (15 ohm, $45 /-$). P. \& P. $4^{\prime \prime} \& 5^{*} 2 /-, 6^{\prime N}$ \& $8^{*} 2 / 6$, E.M.I. PLASTIC CONED TWEETER.
E.M.1. PLASTIC CONED TWEETER.
$2 \frac{1}{3}^{\circ}$. 3 ohm. Limited number: $12 / 6$ each, P. \& P. I/6. VYNAIR AND REXINE SPEAKER AND CABINET FABRICS app. 54 in , wide. Usually $35 /$. yd.' our price $13 / 6$ per yd. length min. Iyd.)
P. \dot{Q} P. $2 / 6$. S.A.E.forsamples.
7-10 watt OUTPUT TRANSFORMERS to match pair of ECL 86's in pushapull to 3 ohm output. ONLY II/FP. \& P. $2 / 6$.
MAINS TRANSFORMER for transistor power supplies. Tapped pri $200-250 \mathrm{v}$. Sec. $40.0-40$ at amp (with electrostatic sereen) and $6.3 v$ at .5 amp for dial lamps etc. D:op thro mounting. Stack size 1 " $\times 3 A^{*} \times{ }^{2}$
MATCHED PAIR OFF $27 / 6$ WATT TRANSISTOR DRIVER AND OUTPUT TRANSFORMERS, Stack size $1: \times 1 \% \times$ in. Output trans, tapped for ${ }^{3}$ chm and 15 ohm output. $10 /$ - pair plus 2% P. \& P P Beautifully designed and precision engineered by Ltd. Supplied ready fitted with twin . 0005 tuning condenser for AM connection. Prealigned FM section covers $86-102 \mathrm{Mc} / \mathrm{s}$. I.F. output $10.7 \mathrm{Mc} / \mathrm{s}$. Complete with ECC85 (6L12) valveand full circuit diagram of tuner
head. Another special bulk hear. Another special bulf these at $27 / 6 \mathrm{each}$. P. \& P limited number als.
Limited number also avail3:I reduction drive. $\mathbf{3 0} \%$. P. \& P. 3/m.
3.VALVE A

AMPLIFIER MODEL HA34 Designed for Hiafi repro duction of records. A.C. buile on plated heavy geauge meral chassis, size $7 \frac{1}{2} i n$. w $x 4 \mathrm{in}$. d. $x 4$ in. h. Incor porates ECC83, EL84. EZ80 valves. Heavy duty, double wound mains transformer and output transformer matched for 3 ohm speaker separate Bass. Treble and volume controls Negative feedback line. Output $1 \frac{1}{2}$ watis. Fron panel can be, decal The HA 34 has been specially
The chem complete with knobs, valves, \&4.5.0 etc., wired and tested for only P. \& P. 6/ HSL FOUR' AMPLIFIER KIT A.C. Mains 200,250v. ${ }^{4}$ Watt using ECC83
 EL84, EK 80 valves * Heavy duty doublewound mains transformer with electrostatic screen \star Separate Bass, Treble and volume controls, giving with minimum insertion loss. Heavy negarive feedback loop over 2 stages ensures high output a excelient quality with very low distortion facter \star Suitable for use with guitar, microphone or record player. A Provision for remote mounting of controls or direct on chassis. t Chassis size only 1 . wide $\times 4 \mathrm{in}$. ceep. Overall heigh new. t Very clear and concise instructions brand even the inexperienced with 100^{n}. success. \rightarrow Supplied complete with valves, output transformer (3 ohms only) screened ead wire nurs, bolts, solder, etc. (No extras to buy.) PRICE 79/6. P. \& P. 6/-. Comprehensive circuit diagram
This kit although similar in appearance to HA3 This kit although similar in appearance to HA
employs entirely different and advanced circuitry.

10/14 WATT HI-FI AMPLIFIER KIT

 A stylishly finished monaural amplifier with an output of I 4 wates from 2 El84s in push-pull. Super reproduction of both music and pible hum seg gible hum.. Sep mike and gram mike and gram \qquad announcements to follow each other. Fully shrouded ection wound output transformer to match 3-15) speaker and 2 independent volume controls and separate bass and treble controls are provided EVing good life and cut. 780 alve line-up 2 EL84s ECC83, EFB6, and EZ80 rectifier. Simple instruction booklet 2/6. (Free with parts.) All parts sold separately. ONLY $47 / 9.6$. P. \& P, $8 / 6$. with std. input sockers, $69 / 5 / \%$ P. \& P. $8 / 6$. With std. input sockers, 69/5/". P. \& P. 8/6
Carrying Case for above 28/6. P. \& P. $7 / 6$.
MATCHED PAIR AM/FM R.F.'s. Comprising Ist I.F. and 2nd I.F. diseriminator. ($465 \mathrm{Kc} / \mathrm{s} / 10.7$ Mc/s). Size $1{ }^{*} \because 1 \frac{1}{2}^{+} \times 2 \frac{1^{*}}{}{ }^{*} H$. Will match FM/AM HARVERSON SURPLUS CO. LTD. I70 HIGH ST., MERTON, S.W. 19 CHErrywood 3985

CURRENTIY FITTED TD OVER 100 MODELS BY mador MANUFACTURERS

bring your record player up to date with

Sonotone TrCL

HIGH FIDELITY STEREOPHONIC CERAMIC CARTRIDGES
Sonotone 9TA SERIES. Superior quality cartridges offering extremely high compliance for a cartridge with dual styli. Tracking weights as low as $1-3 \mathrm{gm}$. allow reproduction from heavy modulated records without distortion on most changers. Standard $\frac{1^{\prime \prime}}{}$ fixing centres. Prices: Sapphire £2.18.10. Tax paid. Diamond £3.16.7. Tax paid. Other types available. send for leaflet.

Fig. 19. Simple relay burglar alarm

Fig. 20. "Suicide" contocts on a remanent relay

Fig. 21. A typical transistorised relay block diagram

SIMPLE BURGLAR ALARM

The burglar alarm circuit (Fig. 19) incorporates a "fail-safe" facility, i.e. if a wire is cut or a contact opened the relay will drop out and remain out. RLA is fed via a closed loop consisting of the door and window operated switches S1, S2, and S3, and a make contact on RLA. When the "set" button is pressed, RLA pulls in and holds in through the n.c. contacts of the changeover set. The relay contacts change over and hold via the switches. If the closed loop is broken momentarily the relay drops out, the bell rings, and even if the loop is closed again, the relay will not pull in until the "set" button is pressed again.

THE REMANENT RELAY

Such latching circuits have two drawbacks: they consume power all the time the relay is latched; and in the event of a supply failure, they would all unlatch. Such an event could be catastrophic if the latched relays represented a number in the memory of a computing device.

To overcome these defects the "remanent" relay is used. This has a special core of highly remanent material, that is, when the magnetising current is switched off, the core retains sufficient magnetism to hold the armature in.

To unlatch this relay, a pulse of opposite polarity to the energising pulse is applied to the coil, and the armature releases. If the pulse were too long, the armature would be attracted back again as the coil became a magnet of opposite polarity. A "suicide contact" is invariably used, to break the circuit immediately the armature is released.

This is shown in Fig. 20. When S1 is closed, the relay energises and remains latched even when $S 1$ is opened, due to the remanent core. To release the armature S 2 is closed, when a pulse of opposite polarity

Permanent relay with slugged core

(Jack Davis Relays)
is applied to the coil, releasing the armature and opening the "suicide" contact; the armature thus remains released. To simplify the power supply circuits, and to extend the versatility of the remanent relay, it is also available wound with two coils, called the "operate" and "release" coils.

THE TRANSISTORISED RELAY

It frequently happens that a very low power source is required to operate a relay controlling apparatus of high power. For example, a tiny contact on the pointer of a measuring instrument may have to switch in a large a.c. motor.

Normally we would have to use at least one "slave" or intermediate relay, the sensitive contact operating this "slave" relay, which in turn energises the main relay.

By using a relay in conjunction with a transistor, non-inductive loads of up to 5 A at 30 V d.c. or 250 V a.c. can be switched directly by inputs of as low as 75 microwatts. This means that a robust relay can be used with consequent stability under conditions of vibration or mechanical shock.

Transistorised relays are available as integrated units in which the connections are brought out to a 9-pin valve base or multi-way plug and socket.
Fig. 21 shows the block diagram of a typical transistorised relay. The relay operates when the input circuit across pins 6 and 7 is closed, and approximately 4 mA is drawn from a 3 V supply.

When the input circuit is open, the current consumption is small enough to be ignored for practical purposes, rising to about 40 mA when the relay is energised.
Mechanical latching on a P.O. 3000 type relay. The push button cable trigger is attached to the latching mechanism (Jack Davis Relays)

Fig. 22. Transistorised relay using on OC72

Fig. 23. Slow to release using a capacitor

Fig. 24. Slow to release for pulse operation

Fig. 25. Slow to operate

Fig. 26. Two relays used for longer operate delays

Fig. 22 shows a circuit using an OC72 transistor. Here the input is energised when the input terminals are connected together, and drops out when they are disconnected. The diode D1 is included to protect the transistor from the high peak voltages which may develop when the on/off action is very fast, giving a build-up of back e.m.f. from the relay coil.
The diode should be able to carry at least the maximum current flowing through the relay, of the order of 60 mA with a 100 ohm coil, and its maximum inverse voltage rating must be much greater than the supply voltage.

DELAYING A RELAY

Because a relay depends for its action on the building up and the decaying of a magnetic field, it is possible to prolong the time for which it remains operated after the energising pulse has ceased, or conversely to delay the operation of the relay by various means.

Copper slugs inserted in the core can produce operate delays up to 150 ms or release delays up to 500 ms , but where larger delays of the order of 300 seconds are required, the connecting of a large capacitor in parallel with the relay coil will considerably delay the release of the armature. See Fig. 23.

When S1 is closed the full supply voltage appears across RLA, which pulls in at once. At the same time capacitor C is charged to the supply voltage. When SI is opened, the energy stored in C will tend to keep the relay closed as the capacitor discharges through the relay coil.
The larger the capacitance, the more energy is stored and the longer the relay remains closed after S1 is opened. It will also be apparent that a relay of high resistance will take longer to discharge a given capacitor, and in general, longer delays are possible with high resistance relays.
This delayed drop out is also assisted by the fact that the magnetic field of a relay with high inductance takes a finite time to decay, and in decaying, produces a force which opposes the change to which it is due, in
this case the cutting off of the supply voltage. The relay then will tend to remain closed until the magnetic field collapses.

This method of delaying a relay has a drawback if the relay is to be actuated by a short pulse. In this case the pulse may not be long enough to charge the capacitor fully, and a varying delay will be obtained. To overcome this the circuit of Fig. 24 can be used.

In this circuit, C is charged through the break sections of a changeover contact while the relay is open. A brief pulse, as long as it is of sufficient duration just to close the relay, switches the charged capacitor through the make section of the changeover contact. Thus a constant delay with varying input pulses is obtained.

With large values of C up to $5,000 \mu \mathrm{~F}$, and high relay resistances up to 50 kilohms, delays of up to several minutes are possible.

DELAYED PULL-IN

Occasionally it may be required that a relay does not pull in immediately, but after a fixed delay. One way of doing this is shown in Fig. 25.

Unfortunately, however, it is not possible to obtain delays longer than about 1 second or so by this method without using capacitors of a prohibitively large value. Also the drop-out will be delayed more than the pull-in.

Encapsulated plug-in sub-miniature relay with two changeover contact sets.
(Clare-Elliott)

The following circuit using two relays will delay the pull-in for longer periods, up to 3 or 4 minutes (Fig. 26).
In this circuit RLB is the relay whose pull-in is to \approx be delayed. Upon operating $\mathrm{S} 1, \mathrm{Cl}$ previously charged to $+V$ through contact b , will discharge through RLA which pulls in and holds for a brief period depending on the value of C2 and the resistance of RLA. While RLA is energised, C3 charges up to +V through the make contact of RLA2. When RLA eventually drops out, RLB is pulled in by the discharge from C3, and holds in through its latching contact RLBI.

RELAY AS AN OSCILLATOR

If a relay is connected as shown (Fig. 27), it will oscillate rapidly in a similar manner to that of a bell or buzzer. The oscillatory action may be slowed down by connecting a large value capacitor in parallel with the coil. This results, however, in a very unequal mark/space ratio, because while the drop-out is delayed, the pull-in is virtually instantaneous.

Double coil, double armature relay. Each bank of contacts can be individually controlled
(Jack Davis Relays)

A rather more even action can be obtained by connecting two relays as shown in Fig. 28. By connecting capacitors in parallel with either or both relay coils, the mark/space ratios can be altered.
Several relays can be connected together in an oscillating circuit to enable lamps to be lit in sequence, for example, see Fig. 29.
The action is started by momentarily depressing S1. RLA pulls in and is held in for a time by the charge on C1. Meanwhile, C2 is charged up to the supply voltage. When RLA eventually drops out, C2 discharges through RLB which pulls in and holds in temporarily via C3, at the same time charging C4. When RLB drops out, RLC is operated in a similar manner, C4 then operating RLA when RLC drops out, the cycle thus recommencing. Thus the lamps wi!! light in sequence as long as the circuit remains in action. Any number of relays may be used in this circuit, and effective displays can be made using this basic principle.

Relay contactors for power stations
(B \& R Relays)

HEIGHT MEASURING DEVICE

The next circuit is of an automatic coin operated height measuring device, designed for use in an amusement arcade. The machine exploits the properties of a light dependent resistor, and the principle is shown in Fig. 30.
The subject stands on platform P and inserts a penny The belt carrying the light sensitive device then moves downwards until it reaches the lower contact which is fixed at a height lower than the lowest to be measured.

Upon closing this contact, the belt reverses its direction of travel while the ambient light is prevented from reaching the l.d.r. by the subject's body. At the position corresponding to the top of the head the l.d.r. unlatches the coin relay, stopping the belt, its position now registering the height of the subject. The basic circuit is shown in Fig. 31.

When a coin closes contacts SI, RLB pulls in and latches through its hold-on contact RLB1 via contact RLA1. RLB connects the motor via RLB2 and RLCI to BY2 negative. RLA and RLC are so far in the non-operated condition. So the motor drives the belt carrying the l.d.r. down.

Upon reaching the lower contact S2, RLC pulls in and latches via its hold-on contact RLC2 and contact RLA1. The motor is now connected to the BY1

Reed relay coil and reed switch insert
(Radiospares)

Fig. 27. Oscillating or vibrating relay

Fig. 28. Two relays for more even oscillation

Fig. 29. Sequential switching of lamps

Fig. 30. Principle of height measurement using a l.d.r.

In what other catalogue can you find these products?

Having trouble in obtaining the components you need? Well now you can get them!

In the new 600 -page Electroniques Hobbies Manual you will find not only commonly used components but also hard-to-get professional and specialist products unobtainable elsewhere.
Featured above are:

1. AERIALS \& ROTATORS A comprehensive range of J -Beam Aerials to advanced design for domestic and amateur applications. OurChannel Master rotators have more advanced features than any other on the United Kingdom Marketand at a lower price. From 12 guineas each.
2. NUMERICAL INDICATOR TUBES These cold cathode tubes display numerals 1-9 for use in digital instruments and equipments. Special gas filling ensures reliability and long life. From 35/each.
3. RF LOAD RESISTORS These highquality non-reactive dummy aerial loads use a ceramic substrate with cracked carbon film. They are very suitable up to V.H.F. and for use in applications such as R.F. Wattmeters. From 33 9d. each.
4. LOGIC MODULES Series 40 germanium modules use TRL logic and compare favourably in price with relay logic. and with enhanced reliability and life expectancy. From 9'- each. Silicon integrated circuits are also available in our Series 30 modules. Ideal for the modern constructor using advanced techniques. For the 600-page Electroniques Hobbies Manual or further details of the products displayed on this page write to:
Electroniques (Prop. S.T.C. Limited), Edinburgh Way, Harlow, Essex. Telephone: Harlow 2677%.

TARIIABLE VOLTAGE TRANSFORMERS

68. 10. 0.

INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE: 0-260v. BRAND NEW Carriage Paid. Buy direct from the importer, keenest prices in the country. All Types (and Spares) from 3 PEN TYPE (Prom stock $\frac{1}{2}$ amp, E3. 3. 0. 1 amp, E4. 10. O. SHROUDED TYPE ${ }^{2 \frac{2}{2} \text { amps, } 6 .}$ 1 amp E5. 17. 0. ${ }^{10}{ }_{4}$ amps, 28.5 amps, 5 amps, $\mathbf{6 9} 0.0 . \quad 8$ amps E13. 10. 0. 10 amps, 177 . 0. 0 $12 \mathrm{amps}, 619.10 .0 .15 \mathrm{amps}$. E22. 0. O. 20 amps , 632 . 10 . 0 37.5 amps , 665.0 . 0. 50 amps , 1.5 amp. portable fitted metal case voltmeter, lamp., switch, etc. $\mathbf{C s} .10 .0$ amp. 9.17 . P \& C 10 to above 2.5

100 WATT POWER RHEOSTATS (NEW)

 AVAILABLE IN THE FOLLOWINB VALUES1 ohm, $10 \mathrm{a} . ; 5 \mathrm{ohm}, 4.7 \mathrm{a} . ; 10 \mathrm{ohm}, 3 \mathrm{a}-$ $25 \mathrm{ohm}, 2 \mathrm{a} . ; 50 \mathrm{ohm}, 1.4 \mathrm{a} . ; 100 \mathrm{ohm}, 1 \mathrm{a}$ a.;
$250 \mathrm{ohm}, 7$ a. 500 ohm, $45 \mathrm{a} . ; 1,000 \mathrm{ohm}$,
$280 \mathrm{~mA} ; 1,500$ ohm, $230 \mathrm{~mA} ; 2,500 \mathrm{ohm}, .2$ a. Diameter 3 tin . Shaft length $\frac{7}{6} \mathrm{in}$., dia. $\mathrm{t}_{5} \mathrm{in}$. All at $27 / 6$ each. P. \& P. I/6.

25 WATT POWER RHEOSTATS
10 ohm, 1.5 a .; 25 ohm, I a.; 50 ohm, 75 a .; 100 ohm, 5 a .; 250 ohm, $3 \mathrm{a} ; 500 \mathrm{ohm}, .2 \mathrm{a} ; 1,000 \mathrm{ohm}$, . $15 \mathrm{a} ; 1,500 \mathrm{ohm}$,
 NICKEL CADMIUM BATTERY
Sintered Cadmium Type 1.2 v. 7AH. Sintered Cadmium Type 1.2 v. 7AH. Size: height $3 \frac{1}{2}$ in., width $28 \times$ I $\frac{3}{3}$
in. Weight: approx. 13 oz. Ex-R.A.F. in. Weight: approx. 13 oz. Ex-R.A.F. Tested, $12 / 6$. P. \& P. $2 / 6$.

INSULATED TERMINALS

 Available in black Available in black, red, white, yellow, blue and green. New$15 /-$ per doz. P. \& P. 2/-.

34R SILICON SOLAR
CELL $4 \times \cdot 5 \mathrm{v}$. unit series connected, output up to 2 v . at 20 mA , in sunlight. 30 times the efficiency of selenium. As used in power Earth Satellites, $37 / 6$. P. \& P. Satel

" SOLAR CELL AND PHOTO.
 CELL EXPERIMENTERS'

 GUIDE "Teaches the principles of light sensitive devices and their application. 26/-, post paid.

36 VOLT 30 AMP AC or DC VARIABLE LT SUPPLY UNIT Input 220/240 volts A.C. output continuously variable 0 -36v. Fully isolated. Fitted in robust metal case with Voltmeter, Ammeter, Panel Indicator and Chrome Handles. Input and output fully lused. Ideally suited for Lab. or Industrial use. $\mathbf{4 5 5}+40 / \mathrm{CP}$.

LIGHT SENSITVE SWITCH
Kit of parts, including ORPI2 Cadmium Sulphide Photocell, Relay, Transistor and Circuit, etc., 6-12 volt D.C. op. price 25). plus 2/6 voit D.C. Op. price 25/- plus $2 / 6$
P. \& P. ORP 12 including circuit, P. \& each, plus $1 /-\mathrm{P}$. \& P.
A.C. MAIN's MODEL Incorporates Mains Transformer, Rectifier and special relay with $3,5 \mathrm{amp}$ mains c/o contacts. Price inc. circuit $47 / 6$ plus $2 / 6$ P \& P
LIGHT SOURCE AND PHOTO CELL MOUNTING BI PH Precision engineered light source with focusibie $\quad \square$ lamp housing, to take MBC butb. Separate photo cell mounting assembly for ORP.'I2 or similar cell. Both units are single hole fixing. Price per pair $\& 2.10 .0$, P. \& P. 3/6. MINIATURE UNISELECTOR SWITCH 3 banks of II positions plus homing bank. 40 ohm coil. 24-36 v. D.C.
operation. Carefully re-
moved from equipment and tested. 22/6, plus $2 / 6$
P. \& P.

UNISELECTOR SWITCHES 75 ohm coil 24 v . D.C.
6 Bank 25 position, 5 non-bridging 1 Bridging Wiper
6 Bank arranged to give 3 bank 50 posicio 6 Bank arranged to give3 bank, 50 posit Carefully removed from equipment. All at $35 /$ - each. P. \& P. 2/6.
at a fraction DIGITAL VOLTMETERS foun AUTOMATIC DECIMAL WOINT Manufactured by Dawe Instruments Ltd. Type 652A Voltmeter and Type 653 A A.C. Input Unit. These Type 653A A.C. Input Unit. These ing. Volts D.C. 2 millivole to $1,000 \mathrm{v}$. 10.2% accuracy in four f.s.d. ranges of $\mathrm{lv}, 10 \mathrm{v}, 100 \mathrm{v}$, and $1,000 \mathrm{v}$. Voles A.C. I millivolt to $500 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ to 25 kcs . 0.3% accuracy in four ranges. A.C. Mains operation, IIO v and 200$250 \mathrm{v} .50-60 \mathrm{c} / \mathrm{s}$.
These fully transistorised portable units, weighing together only $\mid 51 \mathrm{bs}$.
 are offered complete with handbook, for only 647.10 .0 per set. incl.
Postage (U.K. only). Leaflets available on request. DRYREED SWITCH. I amp. contact, size $\frac{1}{3}^{\prime \prime} \times \frac{1^{n}}{8} .4$ for 10/-: Post paid.
THYRISTOR 400 piv. $3 \mathrm{amp} .9 / 6$ post paid.
THYRISTOR 400 piv. $8 \mathrm{amp} .28 / 6$ post paid.

230 VOLT A.C. GEARED MOTORS

5 r.p.m. 1.7 lb . inch E2.9.6. P. \& P. 2/6. 13 r.p.m. 1.45 fb inch E2.17.6. P. \& P. 2/6. 80 r.p.m. 26 lb. inch E2.2.0. P. \& P. 2/6.

DOUBLE WOUND VARIABLE L.T
 TRANSFORMERS fully isolated low tension secondary winding. Inpue 230 v. A.C. Output continuously variable $0-36 \mathrm{v}$. A.C.
 0.36 Yolt at 5 Amp. ©8.10.0. P. \& P. 8/6.
 0.36 Volt at 20 Amp. \mathbf{E} i9.10.0. P. \& C. $15 /-$
 These fully shrouded Transformers designed to our specifications are ideally suited for Educational and specifications are ideally Industrial Laboratory use.

-

 COMPACT HEAVY DUTY sv. D.C. RELAY 2 change- SUPER POWER MAGNET over, 3 ohm coil. $7 / 6$ each. P. \& P. 1/6. 3 for 20/-. Post paid."CONSTANT VOLTAGE TRANSFORMER Inpur 185-250 v. A.C. Output 230 v. A.C. Capacity 250 watt. Attractive metal case. Fitted red signal lamp. Rubber feet. Weight 17 lbs. Price fll.10.0. P. \& P. 15/-.
 Fantastic ex-W.D. weighing only 4 lb . will magners, over 100 lb . Swivelled handle well over 00 lo. Swivelled handle and in. Packed in two's. Price $30 /=$
 per pair plus $7 / 6 \mathrm{C} . \& \mathrm{P}$. MOVING COIL HEADPHONEAND MIKE Soft rubber ear-pieces with M/C Mike fitted 5-way plug as on No. 19 set. New in makers packing, $16 / 6$ plus $3 / 6 \mathrm{C}$. \& P .

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN
584

Personal callers only 9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

TRANSISTOR

SPEEIFICATION \& SUBSTITUTION HANDBOOK
New 1967 Ed. By Tec-Press. 22/6
Transistor Pocket Book, by Hibberd. 26/3.

Transistor Electronic Organs for the Amateur, by Douglas. 19/-.
Elements of Electronic Pulse Circuits, by Towers. 35/-.
Rapid Servicing of Transistor Equipment, by King. $31 / 3$.
Direct Readout Meters. by Lenk. 27/-
Digital Computers, Storage and Logic Circuitry. 31/-.
101 Questions and Answers about Transistors, by Sands. 22/-.

Transistors in Logical Circuits, by Alres. 17/-.

Practical Oscilloscope Handbook, by Turner. 26/-.

Questions and Answers on Electronics, by Brown. 9/3.

All prices include U.K. postage
Where possible 24-hour service guaranteed

UNIVERSAL BOOK CO

12 LITTLE NEWPORT ST., LONDON, W.C. 2
(Leicester Square Tube Stotion)

FOOTBALL POOL COMPUTER CIRCUIT and three other analogue circuits, 4/6.
digital computer circuit
A simple digital Adder/Subtractor using switcbes aud lamps ouly. A fasciuating demongtration of Binary arlthmetic. Full circuit. wiring diagram ade moter on the Binary systenn, $8 / 6$.
NOUGHT8 AND CROSSES MACHINE CIRCUIT. Ube standard miniature switches and lampa only. This machine cannot be beaten. Full circuit, wiring diagram and
$1^{\text {of }}$ High Stability Resiators
3 watt 18 . $18 /=$ each. Full range 10 ohms to 10

$$
\begin{aligned}
& 1_{1}^{\prime \prime} \text { Wirewound Resiators } \\
& 1 \text { ohm to } 5 \mathrm{~K}, ~ 8 / 6 \text { to to } 20
\end{aligned}
$$

19 wate, 1 ohm to $5 \mathrm{~K}, 8 / 6$; to $20 \mathrm{~K}, 4 / 6 ; 1 \%$ add 3 d . Your value wound to order.
300 Assorted 2 watt Resistors, 10 to $20^{\circ}{ }^{\circ}, 13 / 8$.

PLANET INSTRUMENT CO.
25 (E) DOMDION AVENUE, LEEDS 7

Fig. 33. Configurations of obstacle sensing
positive via RLB2, RLC1, and RLA1 so causing it to move the belt upwards. At the same time, the l.d.r. circuit, which cannot yet operate as the light is still blocked by the subject, is connected to BY1 positive via RLC1 and RLA1. The belt moves upwards until light falls on the l.d.r.

RLA then operates, and is held in by the capacitor. RLA1 opens long enough to unlatch RLB and RLC, thus stopping the motor. When the capacitor has discharged through RLA coil, RLA will revert to normal. The position of the l.d.r. now indicates the height of the subject.

Of course this is only the basic circuit; in practice other components would be needed, for example, limit switches to prevent the motor over-running, and some means of adjusting the sensitivity of the I.d.r. to suit different degrees of ambient light.

ROBOT VEHICLE

A more complex circuit is that of an automatically controlled vehicle which will take appropriate avoiding action on meeting an obstacle. Here again the obstacle is detected by means of l.d.r.s (Fig. 32).

The type of obstacle to be avoided takes the form of a vertical wall, and the machine can avoid the following configurations (see Fig. 33):

1. A single wall immediately ahead.

Multi-reed relay developed by
Thermosen in U.S.A.
(Livingstone Components)
2. A wall ahead and one to the right,
3. A wall ahead and one to the left.
4. A wall ahead and to right and left.

The vehicle is equipped with three l.d.r.s sensitive to ambient light, and their associated relays, normally energised, drop out when their respective l.d.r.s are a certain distance from the obstacle. The contacts are so arranged that various combinations of de-energised relays cause the machine to take the appropriate avoiding action.

If " A " is obscured, the machine turns either to the right or left; if " A " and " C " are obscured, to the left; if "A" and " B " are obscured it turns to the right; if all' three, " A ", " B " and " C " are obscured, then the machine goes into reverse.

Each situation produces a different combination of de-energised relays, and in order to make the machine take the appropriate action, we require a separate output for each combination.

We can simplify the requirements if, instead of giving the machine a choice of direction when it encounters obstacle 1, we make it turn always to the right, say, whenever this obstacle is encountered.

For three relays. then, we have eight possible combinations, as set out in Table 1. For each combination the required functions of the drive motor and steering motor are also tabulated.

Transistorised relay
(Keyswitch Relays)

Herinetically sealed mercury relay using a plunger in a gas filled tube
(Techna Sales)

Fig. 34. Transfer tree of relay contacts for avoiding obstacles

Table I: OBSTACLE CLEARING MOVES

Relay de-energised	Drive Motor	Steering Motor
RLA	Forward	Right
RLB	Forward	Centralised
RLC	Forward	Centralised
RLA + B	Forward	Right
RLA +C	Forward	Left
RLB +C	Forward	Centralised
RLA + B +C	Reverse	Special (see text)
Nil	Forward	Centralised

To produce a separate output for every possible combination of the three relays $\left(2^{3}=8\right)$ we can use the "transfer tree" method of connection (see Fig. 34) which, for any combination of relays RLA, RLB, and RLC will give one, and only one, output. It will be seen in Fig. 35 that to achieve this, relay RLA has one changeover contact, RLB has two changeovers, and RLC has four changeovers.
MS is the steering motor fitted with centralising segments, and MD is the main propulsion motor.

With SI closed, MD runs in a forward direction, deriving its supply from the positive side of the battery BY1 via RLEI.

If all of the relays RLA, RLB, and RLC are energised, which only occurs on meeting an obstacle, the steering motor MS centralises via the contact segments "X" and " Y ". The circuit follows the path L, K, E, D, B, and A, and either segment " X " or " Y ", the steering motor thus running in the required direction' to centralise and then stop.
If RLA now drops out, corresponding to obstacle 1 (see Fig. 33), MD remains in the forward direction, the steering motor is connected via $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{H}, \mathrm{Q}, \mathrm{R}$ to BY1 positive, which steers the machine to the right. As soon as the machine has turned sufficiently so that RLA energises once more, the steering motor centralises through O, N, F, D, B, and A, because RLB will now be shielded by the obstacle. Similarly if RLA and RLB are de-energised, the steering motor is fed via

Fig. 35. Circuit diagram for avoiding obstacles
A, C, G, J, T, and U to BY1 positive and again the machine turns to the right until RLA re-energises, when MS centralises.
If RLA and RLC are de-energised, MS is fed via A, C, G, H, Q, and S to BY2 negative, and so the machine turns to the left, centralising as soon as RLA re-energises. If now RLA, RLB, and RLC deenergise, the circuit to the steering motor iscompleted via $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{J}, \mathrm{T}$, and V , and relay RLE. The resistance of RLE is made high enough to prevent the steering motor turning, but sufficient current (about 10 mA) flows to pull it in . This reverses the polarity of MD, which drives the machine in reverse until again RLA is de-energised.

While RLE is pulled in, C1 charges up to the full supply voltage and, when it drops out, high resistance relay RLD pulls in and holds in for a time dependent on the capacitance of Cl and the resistance of RLD. This has the effect of temporarily energising the steering motor, to prevent the machine from continuously moving into and reversing out of, the obstacle.

CONCLUSION

There are many applications, some of which we have considered, where relays afford a versatile and elegant method of operation, particularly where many circuits are to be switched simultaneously, or where circuits depend on mutual interlocking for their correct operation.

MECHANICAL STRUCTURE

The illustrations show the mechanical structure that suited the particular rod to hand. It is not necessary to adhere to this pattern and no doubt many readers will have their own excellent ideas as to the mechanics to be adopted. The bite indicator breaks down in to three sections and each section is described separately in the following paragraphs.

ACTUATOR ARM

The actuator arm serves two purposes: (a) to connect the line to the unit and (b) to trigger off the oscillator, see Fig. 1.

For the first requirement a hole is drilled in one end of the plastic strip and a fine slot cut into the side of this to allow for easy loading of the line and yet retain the line during actual operation. The slight bend has been made to make sure that in the arc of operation there is no binding action of the arm upon the line, and as this will differ from rod to rod it will be a matter of trial and error to determine the exact amount of bend needed.
At the other end of the strip a small piece of metal is glued onto the actuator arm-the size being determined by the ball race used-and this latter fixture acts as a shaft for the ball race. The material is twisted through 90 degrees about a quarter way along its length so that the plane of the material lends itself to carrying the line at the one end and taking the bearing shaft at the other. All these dimensions are shown in Fig. 1.
The more critical of the features of the actuator arm concern the positioning of a small magnet at the upper end of the arm so that when moved either up or down the magnet will open circuit a reed switch RLA accurately housed in the main unit. The choice of a reed switch was made to minimise the interference with the actuator arm, consequently reducing the actuating force required. It is not as difficult as it sounds to place the magnet and reed switch in a suitable position but merely a matter of common-sense. However, it must be noted that the body of the mechanical housing is made from aluminium, as steel will quash any operation of the reed switch.

MECHANICAL HOUSING

Again, the mechanical housing is a matter of choice, and the two clips that fix the unit to the butt of the rod will have to be varied to suit the varying cork thicknesses of different rods; or it may be necessary to adopt the configuration used on this unit where' the butt section is not quite long enough and one of the clips

maternal: $3 / 32$ PLASTIC Sthip
Fig. I. Actuator arm, this is made from a piece of plastic strip

KEY TO HOLES
A.... 6 BA FOR SELF-TAPPING SCREWS.

B ... TO CLEAR 6BA SELF-TAPPING SCREWS.
C.... 6 BA FOR ACTUATOR ARM STOP SCREW.
D.... 68A FOR FIXING SMALL TERRY CLIP.
E.... 4BA FOR FIXING LARGE TERRY CLIP.
F..... 4 BA FOR FIXING SWITCH.
G....48A FOR FIXING CIRCUIT BOARD
h.... $3 / 8^{\prime \prime}$ dia. for actuator arm bearing.

Fig. 2. The housing for the bite indicator. This is built up from two pieces of aluminium cut out, bent, and drilled as shown
fits onto the rod itself. The on/off switch S1 has been situated within easy reach of the left hand which is usually the one that is free.
The construction of the housing is clearly indicated in Fig. 2.

OSCILLATOR

The electronics of the bite indicator are very simple and make use of the elémentary emitter coupled oscillator, see Fig. 3.

The two transistors TR1, TR2 are directly coupled and a gain figure of a relatively small quantity is required to promote oscillation. TR1 is the amplifier and is directly coupled to TR2 which acts as a matching device with the required low output impedance. The collector load of TR1 is so arranged that TR2 is correctly biased and the high input impedance of TR2 places little load on output of the preceding stage.

COMPONENIS...

Resistors
RI 390Ω
R2 390Ω
R3 lk Ω
Capacitors
$\mathrm{Cl} \quad 0.64 \mu \mathrm{~F}$ elec.
C2 $6 \cdot 4 \mu \mathrm{~F}$ elec. (see text)
Transistors
TRI NKT26I
TR2 NKT26I

Switches

SI S.P.C.O. Slide Switch
RLA Miniature Reed Relay with magnet

Miscellaneous

Magnetic earpiece (65Ω)
Perforated board $2 \frac{3}{8}$ in $\times \frac{3}{4}$ in
Three spring clips (see text)
Four 4 B.A. nuts, bolts and washers
Two 6 B.A. nuts and bolts
Four 6 B.A. self-tapping screws
Aluminium spacer approx. 支in if required (see text)
Ball race
Plastic actuator arm approx. 9in (see text)
Two pieces of aluminium sheet $4 \mathrm{in} \times 2 \frac{1}{8}$ in and $4 \mathrm{in} \times 2{ }_{8}^{\mathrm{s}} \mathrm{in}$
Wire, sleeving, solder, etc.

BYI $_{1.5 \mathrm{~V}}$ Vidor type VI6

Fig. 4 (right) The electronic assembly. Most of the circuit components are mounted on the small piece of perforated board. The board is secured to the housing by the same screw which secures the battery clip; a 4 B.A. nut must be positioned on the screw, between the rear of the boaird and the metal housing, as a spacer.
The earpiece XI and the ball race are secured to the housing with Araldite. The reed switch however must be secured with Evostick, this is to ensure a flexible bond and so prevent damage to the glass tube if the bite indicator is dropped or otherwise receives a blow (see Fig. 6)

Fig. 3. Circuit diagram of the bite indicator

The working point of the transistors is established by R3 which applies the required biasing voltage to the base of TR1 in a very stable configuration. As the temperature increases so the collector voltage of TR1 becomes more positive and due to the emitter follower action of TR2 this fall in voltage is fed back to the base of TR1 via R3 and reduces the base to emitter voltage of TR1 thus returning the circuit to its original condition. Of course the action is reversed should the temperature fall.

On test the unit was found to be satisfactory between -10 degrees C and +55 degrees C which, unless the operator were fishing for seal through a hole in the ice, should prove quite adequate.

The frequency at which the circuit oscillates is governed by Cl and C 2 , with C 2 playing the greater part. It is a little difficult to establish the exact value for C2 as this will vary depending upon the earpiece used and the tone required. The earpiece incorporated in this unit had an impedance of about 65 ohms but widely varying devices in fact performed quite successfully, although the value of C 2 had to be adjusted accordingly.

FUNCTION OF REED SWITCH

The reed switch merely shorts out the earpiece X1 in the inoperative condition and when the magnet is taken away from the switch (the actuator arm moved), the switch becomes open-circuited and an audible warning is given.

The quiescent current of the unit is in the order of 2.5 mA in both conditions, thus the battery gives many weeks of use.
: Some query may be raised as to why the reed switch does not open circuit the supply voltage in the inoperative condition and consequently draw no current from the battery; this in fact was the way in which the first unit was made, but the problem was then to give warning of a bite where the fish had picked up the weight and caused the arm to drop instead of move in an upwards direction. This could have been solved by the inclusion of a second reed switch, but the difficulty in setting up the magnet to cope with both conditions is very awkward and it was felt that the small battery drain was worth the more accurate results thus obtained.
Details of the electronic assembly and wiring are given in Fig. 4.
The battery BY1 is held in position with a spring clip. Some of the paper surrounding the cell is removed so the casing makes contact with the negative rail via the clip.

SETTING UP PROCEDURE

As the electronics are of such a simple nature no setting up is required other than to determine the value

Fig. 5. Inoperative condition of actuator arm

Fig. 6. Correct positioning of the reed switch RLA

Fig. 7. Ledger weight used to reduce the actuating force required to operate the indicator
of C 2 in the circuit of Fig. 3, so that the tone generated by the oscillator is satisfactory to the user.

The main adjustment will lie in the setting of the reed switch with regard to the magnet fixed to the actuator arm. It will be much more of a simple operation if this point is attended to before the oscillator or any of the wiring is installed.

The reed switch can be clearly heard to come in and out as a magnet is passed lengthwise over the reed switch, so if the magnet is fixed to the arm in the first instance and the arm correctly located in the ball race, a spot of Evostick or the like can be smeared over the underside of the reed and the reed placed in an approximate position in the housing. The arm should be at about 45 degrees to the horizontal plane of the rod when the reed is in the middle of its held on condition (see Fig. 5) and it is a simple matter to move the reed about until this condition is achieved.

Once the position has been determined the reed switch should be glued into position with a rubbery type of adhesive so that the vibration encountered in casting, etc. will not fracture the glass casing of the reed.

If the wires coming from the end of the reed switch have to be bent to facilitate wiring of the unit, it is essential that no bend should be made within $\frac{3}{1}$ in of the glass and a pair of pliers should be used to grip the wire between the glass and the section to be bent. If the glass is fractured, then the reed is useless. The reed switch must be placed on the chassis so that the wider section of the internal contacts are parallel with the mounting surface, otherwise the switch will not pull in. This is indicated in Fig. 6.

SUMMARY

While the mechanics may be altered to suit individual requirements, the bite unit is primarily based upon a self contained oscillator which requires no trailing wires to a separate power supply. In order to make the actuating force even lighter a small hole can be drilled in the end of the actuator arm at the magnet end so that a small ledgerweight can be clipped on to act as a counterweight (as shown in Fig. 7). Under this type of condition a small shot hanging on the line has been found sufficient to actuate the indicator.
In practice, of course, this shot would be lying on the bed of the lake and any small alteration in the balance of the equipment would be sufficient to indicate that this condition has been disturbed.

From the other point of view where the unit is being used in fast running water, then it may be necessary to apply a weight, such as a weighted crocodile clip, to the other end of the actuator arm to counteract the drag of the flow.

continued from page 570
the pattern several times over the same plate if several circuits are required simultaneously.

The negatives produced by this process are used for photolithographic removal of the thin film from the circuit substrate, or can also be used to produce stencil masks by etching through thin stainless steel foil. Different "cut and peel" masters have to be prepared for each type of circuit element, for instance, a circuit involving just resistors and interconnections would require two separate masters.

THIN FILM CAPACITORS

For the sake of simplicity we have kept off the subject of capacitors, but these can be produced in a similar way as resistors. The prime difference, however, is that to produce capacitance it is necessary to have a dielectric of some description sandwiched between two electrodes. A thin film capacitor is perhaps one of the most basic forms, and can be produced by several methods.
The most common way is to deposit an area of aluminium through a stencil mask as a base electrode, and on to this an insulating film of silicon monoxide through a second mask. A more sophisticated dielectric with better properties is silicon dioxidepure quartz-but this requires a highly specialised deposition process called dielectric sputtering. (This process will not be described here as it is outside the scope of this article.) The second electrode of the capacitor is then deposited by using aluminium through a third mask.
The capacitance of such a device is proportional to the dielectric constant of the insulating material, the area of cross-over of the two electrodes, and is inversely proportional to the thickness of the dielectric. Unfortunately the working voltages of such capacitors are directly proportional to the thickness of the dielectric; therefore a compromise between capacitance value and breakdown voltage has to be determined.

Usually the maximum values of thin film capacitors are limited to about $5,000 \mathrm{pF}$ for these reasons. This is not such a disadvantage as this top value will meet most applications. Whenever higher values are needed, additional discrete components can be used; there are now many physically small, but high value capacitors of the solid tantalum type, with dimensions no more than $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 1 \mathrm{~mm}$, which can give capacitance values as high as $25 \mu \mathrm{~F}$.

THIN FILM INDUCTORS

Inductors can be made by thin film techniques, but as the circuits can only be made in a single plane, it is impossible to make multiturn, pile wound coils. The nearest approximation to a coil is produced by depositing a spiral of conductive material. Inductance values for these tend to be very low, and also the areas occupied by the spirals tend to be large.

When all the deposition stages are completed, active devices such as transistors and diodes can be wired into the circuit by careful soldering. Naturally the transistors used have to be as small as possible, and there are many special types of encapsulations for transistors designed specifically for thin film circuits. The final stages in the manufacture of a circuit are to solder on the lead out wires, and to encapsulate the whole circuit-usually in an epoxy resin.
Next month: Semiconductor integrated circuits

Infra-red Television

Intensity modulated CRTtrace
 in complete darkness.

Emi electronics is currently engaged in developing scanning equipment to produce infra-red television pictures. Whereas a normal television system utilises the reflection of light, the infrared television uses the heat or infra-red radiation emitted by an object. With the EMI system, temperature variations of a few hundredths of a degree centigrade can be detected and, since the method does not require light, pictures of acceptable quality can be obtained

The infra-red picture (above right) was taken at night with an overcast sky and no visible light; a light level of approximately 10^{-4} Lux. An ordinary photograph of the same subject taken in daylight is shown (top left). In the infra-red photograph, it will be noticed that the hotter the object, the whiter it shows on the television screen. The loss of heat through the windows of the building is clearly shown. Also the turret top (right) is revealed.

A block diagram of infra-red equipment in use at the Royal Radar Establishment, Malvern, is shown left. Here it is being used to simulate ground reconnaissance systems likely to be used in aircraft.
Airport Movements Watched by Radar
A^{s} an aid to efficient manoeuvring within a tight schedule of aircraft and vehicles at London Airport'

Simulator for Cobalt Treatment

Ahigher ratio of patients is expected to be treated by cobalt and other high energy teletherapy equipments by setting up a preliminary simulator to the required position and dosage. The time the patient has to remain under the cobalt source will be significantly reduced by ensuring that accurate readings are obtained when the patient is finally placed under the isotopic source-shown in the photograph (right) as the overhead source head. The patients' treatment bed can be raised and lowered, and rotated through 360 degrees to locate the treatment area, by using the control consoles. Shown by Fairey Engineering at the Hospital Equipment and Medical Services Exhibition at Olympia, this simulator is expected to contribute to treatment of cancer.

Lined up for Colour

0
NE of the important tests which have to be carried out on colour television receivers is to make sure that the scanning coils mounted on the neck of the tube are correctly positioned. Our photograph (left) shows the tube neck; the range of colour purity is adjusted on a prototype Plessey scan coil and convergence assembly. Here the technician checks the adjustment.

Mobile Satellite Communication

THE day may arrive when we have Field Days for "hams" who may communicate by satellite-if one can afford it.
The Signals Research and Development Establishment near Christchurch, Hampshire, have found that successful communication via satellite is not necessarily restricted by the size of dish. Their latest set-up, built for experimental use only, is this 6 ft diameter dish with teleprinter equipment in the truck. The only restrictions are the number of channels that it will handle and the time allocated for transmission.

The operating frequency is 8 GHz from a 1 kW air cooled klystron. The equipment can be set up (below left) almost anywhere on location in less than half an hour by using a compass for direction finding. Below right, we show the 6 ft dish on tow compared in size with a large SCAT station radome in which is housed a 40 ft Marconi dish with transmitter, parametric amplifiers, and receiver.

The Chemostat is a mains power switching device controlled by a remote temperature feeler, which may be connected via any convenient length of threeway screened cable to the main unit. The circuit will switch any type of mains appliance (room heaters, immersion heaters, refrigeration units, water pumps, etc.) up to 2 kW rating. The feeler temperature at which the circuit switches is continuously variable between 17 degrees C and 40 degrees C (scale 63 degrees F to 105 degrees F is also fitted) and may be set to any desired value within this range, with the help of a manual control on the front panel.

This temperature range is primarily suited for colour and monochrome photographic processing and for preparing various kinds of solutions for photographic baths. However, the Chemostat is equally suitable for use in conjunction with any chemical process requiring accurate thermostatic control of liquids-for example medical and physiological incubation experiments. The upper limit of the temperature control range covers normal body temperature and moderate fever simulation. It is very easy to extend the range up to still higher temperatures.

The Chemostat may also be used for controlling room air temperature, and for raising flowing cold water to a mean temperature suitable for washing photographic prints.

SWITCHING FUNCTIONS

A switch S1 on the front panel permits choice of "power on" either above or below the selected switching temperature. This provides maximum versatility of types of external appliances which can be controlled. For example, refrigeration units require power to be on above the switching temperature, but heating systems require power to be on below the switching temperature.

A second switch $S 2$ on the front panel selects the alternative functions of "trip off" or "repeat". The "repeat" function is for normal thermostatic control, power being switched on and off repeatedly according to the state of the switching amplifier. The "trip off" function is required, for example, when using the Chemostat to warm large volumes of water to a predetermined temperature (usually between 30 degrees C and 40 degrees C) to make up solutions for photographic processing tanks. For this application, an immersion heater powered via the Chemostat, a stirring motor and the Chemostat temperature feeler are mounted such that they all dip into the water vessel. When the desired temperature has been reached, the heater will be switched off automatically and remains off.
The "trip off", function is also required when using the Chemostat feeler inside experimental electronic equipment. The switching temperature is thereby set
relay contacts
$\left.\begin{array}{l}M=\text { MAKE } \\ B=\text { BREAK }\end{array}\right\} \begin{aligned} & \text { WHEN RELAY } \\ & \text { ENERGISED }\end{aligned}$

THRESHOLD ORIVER $-\overline{\text { SCHMITTT TRIGGER }}-\cdots-$ SWITCH AMPLIFIER

to the maximum safe temperature and the equipment is powered via the Chemostat. If the experimental equipment develops excessive temperature, power to it is automatically switched off and remains off.

BLOCKING LOOP

Electrical installation regulations often demand the provision of a blocking loop in power control equipment. A blocking loop is an override circuit containing a number of low-voltage contacts which must all be closed before power can be switched on, regardless of the other prevailing states and conditions. Such a blocking loop is an important safety device, and it should be incorporated even if regulations do not expressly stipulate it.

For example, if the temperature feeler of the Chemostat is inadvertently left disconnected, or if it develops a faulty plug or cable contact, the power to the immersion heater will not be switched off in the normal manner when the intended temperature has been reached. The blocking loop must therefore contain a simple bimetal strip contact in a glass test tube close to the immersion heater and set to open at a still safe temperature above the highest normally intended temperature. High accuracy is not necessary.

When using water jacket systems for adjusting the temperatures of photographic baths (see next month's instalment), trouble would again arise if the water flow ceases for any reason, such as inadvertent pinching of a rubber tube in the darkroom, or even forgetting to turn the water tap on. A simple flow contact can be included in the blocking loop for such applications.

Any reasonable number of contacts may be included in the blocking loop as required. All contacts must be connected in series, in any convenient order. If any one contact opens, power is tripped off in an overriding manner and remains off until reset manually by pressing the reset button on the front panel. Pressing the reset button has no effect if the blocking loop is still open circuit at any contact. Power can be restored manually only when the blocking loop is closed. The function of the blocking loop is quite independent of whether the control switching circuit happened to be on or off, or set to trip or repeat. It always blocks power switching until the faulty condition has been rectified and the blocking loop relay re-energised by manual actuation of the reset button.

VISUAL INDICATORS

Three pilot lamps on the front panel of the Chemostat meet all requirements of visual indication. Two green lamps indicate normal running conditions. One of these (LP3) is lit continuously, indicating the presence of mains input power to the Chemostat. The

other green lamp (LP2) is on when the output power is switched on, and off when the output power is off. The third lamp (LP1) is a red one and announces abnormal conditions (blocking loop open or still not set) when it comes on.

Continuous visual indication of the actual temperature would involve unnecessary circuit complication and additional expense. Once the system has reached the selected nominal temperature, fluctuations of the feeler temperature do not exceed about $\pm 0 \cdot 1$ degrees C, and fluctuations of the bath solution temperature do not exceed about ± 0.5 degrees C. Discrepancies smaller than these are of little interest, at least not for photographic work. The second green lamp thus suffices as a combined temperature and power indicator. In a heating control system, the temperature is on the low side when this green lamp is lit, and vice versa.

TEMPERATURE FEELER

We require a very sensitive temperature feeler, in order to obtain a satisfactory change of its electrical output for 0.2 degree C change of temperature. The collector leakage current of a transistor is a notoriously temperature-dependent parameter. It was therefore decided to aggravate this effect to the maximum obtainable slope in designing a transistor feeler for the Chemostat.

All transistors, including silicon types, manifest collector leakage currents with a very large positive temperature coefficient, but the absolute magnitudes in the temperature range of interest for the Chemostat are satisfactory only with germanium transistors. High current gain is also required. A Mullard AC126 meets these requirements and is very readily obtainable.
To maximise temperature-dependent collector current, no base current should be injected apart from that due to internal thermal leakage. To obtain the greatest possible slope, the emitter must be taken straight to the positive supply voltage without interposing any resistor. Furthermore, the operating point must be chosen such that the current gain is rising with collector current. This calls for a constant operating point, which then logically corresponds to the trip-over point of the already mentioned trigger circuit.
The thermal resistance of an $\mathrm{ACl26}$ is about 0.3 degree C / mW, so that the operating point must not dissipate more than about 2 mW in the transistor, to keep the junction temperature change within the ambient tolerance limit. The constant operating point enables the junction temperature difference correction to be included in the calibration, so that to a first order of approximation it is then effectively zero.

TEMPERATURE SELECTOR

The manual temperature selection control (VR1) takes the form of a variable resistor between the base and emitter of the temperature feeler transistor. It shorts out an adjustable fraction of the thermal leakage current injected internally from collector to base. The nominal collector current is then reached at correspondingly higher temperatures, the smaller the base-to-emitter resistance is made. It was found possible to achieve a slope of nearly one volt per degree centrigrade with an AC126 at an operating point satisfying all essential conditions. This means that the hysteresis of the trigger stage must be reduced to $0 \cdot 2 \mathrm{~V}$ or less, which was found to be readily possible in

Fig. 2. Chassis and front panel assembly

Fig. 3. Front panel layout and engraving

the adopted circuit. The slope of the transistor temperature feeler is equivalent to halving its effective impedance for about 5 degree C rise of temperature, which is nearly twice as steep as the steepest standardrange n.t.c. resistor. Thus, the transistor feeler is an improvement on an ordinary n.t.c. resistor.

INPUT AMPLIFIER

$\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 4$, and C14 provide a.c. shorts to chassis for all leads of the temperature feeler, so that it is quite insensitive to mains hum or other inductive interference. Screaned cable is not absolutely essential, but advisable, for the temperature feeler. The collector current of the temperature feeler transistor TR1 develops $5 \cdot 2 \mathrm{~V}$ across VR2 at the nominal operating
point. This is the voltage input to the linear current amplifier TR2-TR4 at which trip-over of the trigger stage TR5, TR6 takes place.

Below this threshold level, relay RLA is energised, so that one of its contacts is shorting-out R3 and thus the full $5 \cdot 2 \mathrm{~V}$ appear across VR3 and are applied via R4 to the base of the first transistor TR2 in the current amplifier. The trigger stage thus trips-over as soon as C5 has charged to $5 \cdot 2 \mathrm{~V}$ via R 5 . This causes relay RLA to drop off and remove the short across R3, causing the amplifier input voltage to drop to a fraction of that across VR2. Suitable adjustment of VR3 thus makes the trigger stage revert to just above its trip-back level (3.5 V) as soon as it has tripped over.

A very small feeler temperature drop then reduces the input voltage sufficiently for trip-back, whereupon RLA

energises and immediately shorts-out R3 again, lifting the trigger stage back to the verge of trip-over. R2 prevents instantaneous charge transfer between C6 and C3, avoiding relay contact spitting.

D3 is a small Zener diode to limit the input voltage to the current amplifier to a safe value if VR1 happens to be set to a temperature much smaller than the actual feeler temperature.

The input amplifier TR2-TR4 is necessary because the hysteresis-cancellation and time-delay circuits at its input lead to a very high impedance from which it is not possible to drive the trigger stage directly. The amplifier is a simple three-stage cascaded emitter follower with a current gain of about fifty thousand. R8 ensures a safe minimum output load for TR4, whilst R9 and C7 develop the low-impedance drive voltage for the trigger stage and hold it constant during switching transients.

SCHMITT TRIGGER STAGE

With no voltage, or only a small voltage, applied to the base of TR5, this transistor remains cut off. Its high collector voltage saturates TR6, whose resulting heavy current also flows through R11 and there produces the voltage drop holding TR 5 cut off. Once the input voltage is sufficient to lift TR5 to cut-on,
cumulative feedback via C8 causes TR5 to saturate immediately and the resulting low collector voltage reduces the current through TR6 to a very low value.
The Zener diode potential divider D4, D5 ensures that the input voltage to the output amplifier TR7, TR8 is zero in this state and 8 V in the former state. This ensures either nominal voltage or zero voltage across the relay RLA at the output.

SWITCH AMPLIFIER

The switch amplifier TR7, TR8 is similar to TR2TR4 and is required because the output impedance of the trigger stage is too high to supply RLA directly.

R20 ensures a safe minimum load for TR8 and C10 removes inductive transients otherwise produced when current through the relay coil is suddenly interrupted. C10 at the same time delays relay drop-off for a fraction of a second, preventing any possibility of chatter. R19 is very important. Its purpose is to reduce the collector voltage of TR8 in the switched-on state, such that the power dissipation in TR8 definitely remains below 500 mW .

STABILISED SUPPLIES

Stabilised supply voltages are essential for the temperature feeler, input amplifier, and trigger stage,

Fig. 5. Under-chassis component layout and wiring

COMPONENTS . . .

Resistors					
RI	1 k S	R9	$1 \mathrm{k} \Omega$	R16	47Ω IW
R2	100Ω	R10	$4.7 \mathrm{k} \Omega$	R17	$33 \Omega 1 W$
R3	$150 \mathrm{k} \Omega$ IW	R1I	150 ${ }^{\text {a }}$	R18	$1 \mathrm{k} \Omega$
R4	4.7M Ω IW	R12	150』 IW	R19	47S IW
R5	$10 \mathrm{k} \Omega$	R13	820s IW	R20	6.8® IW
R6	$2.7 \mathrm{k} \Omega$	R14	$10 \mathrm{k} \Omega$	R21	220』 5W ww
R7	470Ω	R15	$68 \mathrm{k} \Omega$	R22	$120 \Omega 5 \mathrm{~W}$ Ww
R8	100Ω				

Potentiometers

VRI $100 \mathrm{k} \Omega$ carbon, log.
VR2 $50 \mathrm{k} \Omega$ carbon, lin.
VR3 $500 \mathrm{k} \Omega$ carbon, lin. $\}$ miniature skeleton

Capacitors

Cl	$1 \mu \mathrm{~F}$ microfoil
C 2	$1 \mu \mathrm{~F}$ microfoil
C	$1 \mu \mathrm{~F}$ microfoil
C 4	$100 \mu \mathrm{~F}$ elect. 30 V
C 5	$0.1 \mu \mathrm{~F}$ microfoil
C	$1 \mu \mathrm{~F}$ microfoil
C 7	$250 \mu \mathrm{~F}$ elect.

C8	$22 \mu \mathrm{~F}$ microfoil
C9	$220 \mu \mathrm{~F}$ elect. 30 V
C10	$1,000 \mu \mathrm{~F}$ elect. 6 V
C11	$100 \mu \mathrm{~F}$ elect. 30 V
C12	$200 \mu \mathrm{~F}$ elect. 30 V
C 13	$200 \mu \mathrm{~F}$ elect. 30 V
C 14	$1,000 \mu \mathrm{~F}$ elect. 12 V

Transistors
TRI ACI 26 (Mullard)
TR2-TR8 BSY53 (S.T.C.) (7 off)

Relays

RLA, B 42Ω coil, 6 V d.c. Two c/o contacts (Trls 152a/TBV63040/63d. Siemens) (2 off)
RLC Mains energised contactor. Three 10A contacts and one $6 \mathrm{~A} c / 0$ ($\mathrm{B} \& \mathrm{R}$ Relays type KIO)

Diodes

Switches

SI S.P.D.T. mains, 2A, toggle
S2 1 maker press button
S3 S.P.S.T. mains, 2A, toggle
S4 D.P. mains, 10A, toggle

Plugs and Sockets

PLI 3 pole Continental type plug
SKI 3 pole Continental type socket
SK2 Coaxial socket
SK3 3 pole wall socket, I3A or I5A
TBI 3 way terminal block

Lamps

LPI Red, 12V 0.1A
LP2 Green, 12V 0.1A
LP3 Green, 12V 0.1A
(NOT 6V, since too bright for darkroom!)
Fuse
FSI 10A panel mounting fuse

Miscellaneous

Material for chassis, front panel, etc. Paır of handles. Copper clad laminated plastics board. Pointer type control knob.
to avoid temperature calibration errors due to mains voltage fluctuations. D2 stabilises the supply for the input amplifier and trigger stage, whilst D1 stabilises the supply for the temperature feeler. These separate stabilisers are necessary to avoid residual switching transient interactions which would impair the stability of hysteresis cancellation.
A bridge connected rectifier D6-D9 fed from an 18 V winding on the mains transformer T1 provides the direct current for the electronic circuits and coils of relays RLA and RLB.

A.C. POWER CIRCUITS

Power is switched on an off on both poles of a singlephase mains supply, using two contacts of a standard three-phase 10 amp circuit breaker with mainsenergised solenoid (RLC).

Two make contacts are used to switch the output power circuit to the outlet socket SK3, a third to switch the power indicator pilot lamp LP3 and the fourth contact is used as a self-latehing contact for the mains energised solenoid in the "trip-off" function. For the "repeat" function, S2 simply shorts-out this latching contact.

The mains feed to the circuit breaker solenoid is also taken via contacts of RLA and RLB. S1 selects either a maker or a breaker contact of RLA for this purpose, to provide the optional power-on above or below the threshold temperature.

RLB is associated with the blocking loop and completes the circuit for the solenoid of RLC only when RLB is energised, which is possible only when the blocking loop is closed at SK2. RLB is energised via the blocking loop and its own latching contact, so that it drops off and remains off if the blocking loop is temporarily interrupted. C14 prevents RLB unlatching on brief mains kicks. The third contact of RLB switches-on the red fault indicator lamp LP1 whenever RLB is not energised, i.e. when power control is blocked off. It is important to use 12 V bulbs in LP1 to LP3, although the running voltage is only about 6 V : six volt bulbs would be far too bright for the photographic darkroom.

CONSTRUCTIONAL DETAILS

A front panel and a simple U -shaped chassis bolted together with the aid of two angle brackets form the main structure for the Chemostat. Dimensions and assembly details are given in Fig. 2.

The electronic circuitry enclosed within the dotted line in Fig. 1 is built up on a printed circuit board, see Fig. 6 and Fig. 7. This board is secured to the underside of the chassis. The disposition of all other components and wiring is clearly shown in the diagrams, Figs. 3, 4, and 5.

Make sure that the mains wiring is carried out with substantially insulated wire and that connections are secure-especially all earthing connections. The conductor side of the printed circuit board must be coated with approved insulating varnish to prevent spurious leakage due to dust accumulation.

The main assembly should be enclosed in a suitable sized metal cabinet. To minimise dust entry, use a cabinet with only very small ventilation slits at the rear. The entire circuit develops negligible heat, so that efficient ventilation is not necessary.

Next month's article will include diagrams for the printed circuit board and the temperature feeler; also instructions for calibrating and using the Chemostat.

Accurately measuring the interval of time elapsing between any two events or stimuli, this high precision Stopclock has four switched ranges: 0-0.012; 0-0.12; $0-1.2$; and $0-12$ seconds. Capable of a. wide variety of applications, with a novel design based on standard, ready made 'Logic Blocks'.

SCREEN WIPER DELAY UNIT

An easy-to-make fitment for the motorist. Provides adjustable delay between each sweep of the wiper blades.

RESERVE YOUR COPY NOW!

The opening article of this new feature is mainly devoted to the first all-British spacecraft.

FIRST ALL-BRITISH SPACECRAFT

The contributions to space research from the United Kingdom have been considerable, though, perhaps, they have not received the same degree of publicity as those from other countries. With the successful launching of satellite $U K 3$, the first all-British built spacecraft, there is indeed something to shout about.

At the end of its first pass in a correct orbit the space craft, in accordance with custom, changed its designation to $A F I E L 3$.

There are five experimental packages aboard the vehicle and the integration of these electronic-wise presented some problems which have now been proved to be fully mastered

A commentary on space exploration activities
New developments in radio astronomy and spacecraft with emphasis on the electronic techniques and equipment employed

V.L.F. EXPERIMENT

A study being carried out for Sheffield University is directed to the spatial and temporal characteristics of very low frequency radiation above the ionosphere. The data from this experiment will extend the studies in this field which have already been made by the Alouette and Injun satellites.
The observations are being made at various frequencies at a number of earth based stations simultaneously with those of the satellite. The frequencies chosen are $3 \cdot 2,9 \cdot 6$, and 16 kHz . The aerial is a 14 turn loop and the receiver is housed in a box measuring 8 in $\times 6$ in $\times 6$ in into which
are crammed some 183 transistors and 800 other components, with a total power consumption of 250 milliwatts.

The ground-based stations are at Sheffield University, at Halley Bay, in the Faroes operated by an amateur Martin Haasen, and at Winkfield, Johannesburg, Quito and Santiago.

SURVEY OF THE IONOSPHERE

Birmingham University have designed their experiment to investigate the density of ionisation and the temperature at various points along the satellite's path. The density of the ionisation is being measured by using an r.f. plasma probe developed by the University. The measurement of temperature is made by a new probe which is in the form of a pair of matched spheres which draw current from the environment occupied by the satellite. The data will be telemetered and also stored and then read out once every orbit.

NOISE RESEARCH

The Nuffield Radio Astronomy Laboratory, University of Manchester at Jodrell Bank, has an experiment which is designed to map out large scale noise sources in the Galaxy. The emission of noise or sky brightness, if made with sufficient angular resolution, will provide information on the ionospheric refraction and its effect on the distribution radiation across the sky.
A special technique used in this study takes advantage of the focusing effect of the ionosphere. The receiver is made to sweep slowly across a spectrum of 2 to 5 MHz . When the frequency coincides with the cut-off frequency prevailing locally there occurs a focusing effect which gives a finite width of beam of about 20 degrees at 5 MHz and 20 degrees at 2 MHz .

METEOROLOGICAL OFFICE

The amount of molecular oxygen present between the satellite and the Sun in the upper atmosphere is being investigated by a Meteorological Office experiment.

A detector which is sensitive only to a specified wavelength in the ultra violet region is used for this work. There are four ion chambers which look sideways from the top of the satellite. The chambers are sensitive to a wavelength of 1,450 Angstroms. The outputs are amplified by means of a very sensitive (d.c.) amplifier developed by the Meteorological Office.

TERRESTRIAL NOISE

An experiment which is being carried on behalf of the Radio and Space Research Station seeks to discover the amount of $h . f$. moise received and the distribution of the noise sources. These sources include lighting and the aim is to deduce the distribution over the surface of the earth at different times of the day and at different seasons.

ARTIFICIAL SATELLITE

ARIEL 3 ($1967-42$ A)
Injected into orbit 1967, May 5. Weight 89.9 kg , length 0.91 metres, diameter 0.76 metres.
Orbital elements:

Perigee height Apogee height

497 km .
Inclination $80^{\circ} .2$ Eccentricity 0.008 Interval +97.5 min

Apogee,
608 km
Period 95 m .7
Daily change
$-4.5 \mathrm{~min}$
Beacon on 136.56 MHz

The average voltage is measured and its envelope divided into three pairs of narrow-band channels at 5 , 10 , and 15 kHz . The number of amplitudes over a certain threshold is measured.

The aerial system consists of two orthogonal screened loop aerials. Each has an effective area of 0.12 sq. metre. Noise data is recorded after filtering by a low speed encoder at intervals of 27.92 seconds and stored in the recorder. There are outputs every 1.745 seconds for direct telemetry.

SOLAR POWER

Power for several electronic units in Aerial 3 is provided by over 6,000 Ferranti solar cells. The printed circuits in these solar cells have been manufactured by Turner Electrical Instruments from copper-clad Bakelite laminated.

SOUND WAVES IN THE IONOSPHERE

The mirror in the sky, the elevated region of the atmosphere where free electrons and ions modify, reflect, and refract radio waves has been assumed to consist of layers. These layers at varying heights and with varying degrees of reflectivity are subject to a number of influences. Some of the effects have been explained by making the assumption that very low frequency waves existed in the atmosphere. Information is now available that these infrasonic waves have been obscrved.

At the Physics Dept. of the University of Queensland, K. L. Shrestha has analysed a disturbance which occurred over a large part of Australia on August 12, 1965. A regular variation of 10 to 25 seconds was observed at $\cdot 3 \cdot 84 \mathrm{MHz}$ and a longer period of up to 50 seconds at a frequency of 5.8 MHz using the normal methods of ionospheric sounding. The variations are shown to be the effect of infrasonic waves moving upwards through the atmosphere. The velocity of these waves was of the order of 650 metres per second. The origin of these waves however is still not known. At the time of the occurrence no unusual effects were observed on the barometric or magnetic records.

Fig. 14. Pulsed tone

TT is worth considering briefly the various "states" given by control systems, in terms of elementary logic. There is first of all the single channel sequence binary state, made more versatile by further mechanical binary division in the escapement itself. For progressive steering three states are required, corresponding to going right, going left, and steering fixed. With two channels, four states are theoretically possible, no tone, tone one, tone two, and both tones.

Although the last mentioned state-simultaneous tones-can be achieved with two separate audio oscillators in the transmitter, and a special relayless switch, this is a considerable complication just for one extra state. As far as model control is concerned, the more states there are the better, so long as this does not involve a build-up of component density in the model. However, even though very small models exclude the use of many channels, circuits can be devised which, by careful blending of internal switching with available states, will accomplish a great deal.

Taking the simple single-tone transmitter with its two states, and a single-channel receiver, if the tone is chopped by a $50: 50 \mathrm{mark} / \mathrm{space}$ square wave, a new condition will be created which, for want of a better term, may be described as the "half-on state". Rearrangement of the relayless output switch will permit this new state to be usefully employed as a zero datum so that "no tone" corresponds to, say, a negative signal, and "full tone" a positive signal. Furthermore, the mark/space ratio can be continuously varied by a potentiometer at the transmitter to give signals such as "quarter on" or "two-thirds on"; in fact, anything between full on and full off. Therefore, pulsed tone can give the counterpart of "three-state"' two-tone working with fewer components and the added advantage of an analogue function.

Fig. 15. Circuit diagram of "one-stick" single channel control system

"ONE STICK" PROGRESSIVE SYSTEM

Relayless output and servo details for a pulsed control system are shown in Fig. 15. The propulsion motor is switched by modified limit contacts on the servo to achieve six "states", so that the model will be fully steered while going forward or in reverse, and the propulsion motor can also be stopped. Control is accomplished by a single potentiometer mounted on the transmitter. In the model, a 1 kHz version of Amplifier " B ", relayless output, servo, and low consumption propulsion motor are all powered by a single centretapped battery of four pen-cells.

Although this system has been tested to the limits of range in a fast model aeroplane, with an engine speed servo in place of the propulsion motor, it is best restricted to slower speed models which work in two dimensions only, unless the operator has an ultra-fast reaction time and very good nerves. The simplicity of the system commends it particularly to electrically powered small model boats and cars. There is ample servo crank power to overcome the heaviest model car steering loads.

In Fig. 15, additional amplification is provided by TR1, to ensure that TR2 and TR3 are switched hard on in the emitter follower mode. With this output circuit, TR2 and TR3 are both off when the mutual base voltage is close to the battery centre-tap voltage.

Of course, since TR2 and TR3 are alternately switching hard on in response to the mark and space of the pulse, they will never both be off at the same time, but the servo motor interprets a $50: 50 \mathrm{mark} /$ space ratio as a zero d.c. voltage across its brushes.

Although smoothing could be applied, to convert the mean pulse level to steady d.c., it is an advantage to allow this large ripple voltage to remain as it helps to overcome servo motor inertia and frictional forces, and gives a much smoother response.

Depending on pulse repetition rate, and servo gearbox ratio, a slight jitter of the steering cam will be evident, together with a loud hum from the motor when stationary, but this does not affect the model.

Fig. 16. Servo system details for the circuit in Fig. 15

Propulsion motor switching, by means of the cam and changeover contacts depicted in Fig. 16, is as follows. Starting with the cut-away portion of the cam in line with the moving contact, the contacts are biased open, steering is at neutral, and the propulsion motor is stopped. Also, the control stick attached to the transmitter potentiometer will be upright and central.

By advancing the stick slightly to the right the servo will be made to creep slowly, say, counter clockwise,

Fig. 17. Circult diagram of a pulser
thus the moving contact will be pushed by the cam to the right and the propulsion motor will start.

Left steering is momentarily applied while the crank moves to the lower neutral position. When the crank reaches lower neutral, the control stick is returned to the upright position, whereupon the model will be going forward in a straight line. If now the model is steered to the left, with the cam going clockwise, the servo contacts will not switch back, so full right and left steering commands may be given without affecting the forward motion of the model.

If the model is required to go in reverse, the transmitter stick is pushed to the left. The speed of servo response is determined by how far the stick is displaced from centre. The stick is held until the cut-away in the cam again comes into line with the moving contact. Servo rotation is continued in a clockwise direction and the moving contact will this time be pushed to the left, reversing the propulsion motor, while allowing steering to be carried out as before.

To stop the model at any time it is only necessary to push the stick hard over until the cut-away lines up with the moving contact, and hold it with the stick central.

Although the procedure may be difficult to grasp when explained, it is fairly simple to master when a model is being controlled. The important point to

COMPONENTS . . .

PULSER CIRCUIT

Resistors

R1	$3.3 \mathrm{k} \Omega$
R2	$4.7 \mathrm{k} \Omega$

R4 $3.3 \mathrm{k} \Omega$
R2 $4.7 \mathrm{k} \Omega$
R5 $1 \mathrm{k} \Omega$
All $10 \% \frac{1}{10}$ watt carbon
Potentiometer
VRI $50 \mathrm{k} \Omega$ linear miniature carbon

Capacitors

CI $100 \mu \mathrm{~F}$ elect. 25 V
C2, C3 Miniature paper 60V (see Fig. 17 text)

Transistors

TRI, TR2, TR3 ACY28 (S.T.C.) or OC81 (3 off)

Diode

DI OA8I

Switch

SI Single pole or double pole, on/off, miniature slide switch

Batteries

BY1, BY2 9V type PP7 (2 off)

Miscellaneous

S.R.B.P. panel $1 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{4}$ in

Control stick (made from brass control knob insert and threaded rod) fitted to VRI spindle Battery connectors

Model car chassis showing the steering motor, gearbox, and track rod mechanism. The receiver aerial wire (coiled on the gearbox) would be connected to a whip aerial

Fig. 18. Component layout of the pulser circuit. A full size drilling template is given
realise is that the propulsion motor contacts are arranged to switch off or over only when the cut-away in the cam is presented to them. Normal steering motion is confined to the upper 180 degrees of the crank, with the cut-away remote from the contacts.

Fig. 16 shows the essential constructional points of the servo. The moving contact should be of springy material which will retain its shape despite the bending forces of the cam. Crank, cam, and contacts are resin glued.

PULSER CIRCUIT

The pulser circlit is in Fig. 17, and component placement panel details are in Fig. 18. The output from the pulser is taken to the R1/S2 connection in the transmitter modulator (see transmitter circuit), and S2 can be removed from this circuit.
The prototype pulser was fitted into a larger transmitter case, alongside the transmitter panel, with two PP7 batteries. It was decided to retain the tone push button, for use with sequence equipment when required. Pulser panel construction follows closely the method employed with previous units, and is quite straightforward.

If it is found that the control stick action is reversed relative to the steering in the model, track connections to VR1 should be interchanged.

The 18 V transmitter rail voltage is in excess of the maximum collector rating of many transistors in common use. If transistors of a different type to those specified-or of uncertain origin-are substituted, check that the maximum ratings are not exceeded. Where a doubt remains, and if the full range capabilities of the transmitter are not required, the supply voltage may be reduced to 9 V or 12 V .

In Fig. 17, alternative values are given for C2 and C3, so that the pulse frequency can be adjusted; 50 Hz 100 Hz will suit most progressive steering servos. Simple puise-proportional has not been mentioned, because its low crank power and steering linkage oscillation renders it unsuitable for use in model cars. However, the 10 kHz pulser frequency is included for those who wish to experiment with simple proportional control of model boats. The servo of Fig. 16 can be quickly adapted for pulse-proportional by attaching a rubber band to the crank, to bias the steering in the lower neutral position; that is with cam cut-away 180 degrees

removed from the contacts. The gearbox should be set to give a $6: 1$ or $a^{\prime \prime} 12: 1$ reduction ratio. No other modifications are required.

RECEIVER COILS

Several readers have requested details of the series Miniature Model Control on which this current series of articles is based. We regret that neither these back numbers nor reprints from then are available, but details of the individual circuits originally used are reproduced in this current series.

The circuits for the receiver and amplifiers "A" and "C" were reproduced in the June 1967 issue. Details of the receiver coils are as follows:

L1 is a wave-wound r.f. choke on a small carbon resistor and is a purchased item. The winding terminations are secured to the pi winding with small spots of glue. The resistor is then carefully removed, leaving the winding intact. Although the precise inductance of the original was not known, the choke had a self resonance at 2 MHz ; the estimated inductance was 1 mH .
L2 is made by winding 30 turns of 32 s.w.g. enamelled wire close wound on a ${ }_{16}$ in coil former. The winding is secured in place with a layer of tape or wax. It can be wound on a former taken from a television tuner "biscuit", obtainable from television repair shops. After winding, the former is cut down to an overall length of ${ }_{16}^{3} \mathrm{in}$.
The capacitor C 6 , across the collector and emitter of TRI, is made by twisting together a pair of 32 s.w.g. enamelled wires each $1 \frac{1}{2}$ in long. The two wires must not be in electrical contact with each other and must not be untwisted.
The circuits for the transmitter and amplifier "B" were reproduced last month: coil details were included.

THE ELECTRONIC ORGAN
Our introductory series of articles on the electronic organ was concluded in the June issue. We would remind readers that detailed information and instructions for building the specially designed P.E. Organ will be presented in a new series. An announcement concerning publication date will be made shortly.

COMPUTER EVOLUTION

This current series will be resumed next month, with Part Four.

C.R.O. TRACE DOUBLER (June 1967)

The resistors used on the model shown were $\frac{1}{2}$ watt 10 per cent types. It is not essential to use those types quoted in the Components List.

DIAL-A-NAME GAME (June 1967)

Under the side heading "CODE COUNTING", read: the initial letter of the surname on the centre dial scale is dialled against each letter of each christian name on the outer scale. In the example, dial B on the centre scale against J on the outer scale, and so on throughout. 606

T^{1}he Royal Aircraft Establishment is concerned with alnnost every aspect of the work of the aircraft and aircraft equipment industries. Ground and airborne avionics are a very important part of the varied activities undertaken at the R.A.E. headquarters at Farnborough.
Open Days (the first for six years) held last June provided the opportunity for visitors to explore the extensive site and to inspect the work of all departments.
A star attraction was the forward section of the Concord fuselage installed on the special test frame in the newly built site. A multiplicity of cables run from the fuselage to the adjacent Control Centre building where the signals from various transducers will be fed into KDF7 computers. Tests will cover all significant loading actions experienced by the aircraft on the ground and in flight.

An example of a piece of airborne test gear (essentially electronic) is the Counting Accelerometer. This instrument automatically counts the number of times given levels of acceleration are exceeded due to rough air conditions. The counters are photographed at intervals together with instrument readings of height. speed and time. This kind of instrument has been flown in passenger aircraft and the data collected and analysed. The results assist aircraft designers in allowing for metal fatique.

INSTRUMENT LANDING SYSTEMS

Much work is being undertaken in instrument landing systems (ILS). A comprehensive study of a hybrid navigation system for future long range transport aircraft is being made. Such a system would be pilot operated, with world wide coverage. It would employ a digital computer, an inertial navigator for controlling the autopilot in azimuth, and an externally based system such as a radar aid for gross error checking.

Study is being made into a new approach guidance system for helicopters. This will be computer controlled, and will use microwave interferometers.

The R.A.E.'s interest in advanced electronic technology is illustrated by current work on semiconductor materialsparticularly the development of light emitting junction devices for incorporation in display panels, and in light controlled contactless switches and variable controls for electronic equipment.

The use of a digital computer to aid the circuit designer was demonstrated. This in no way replaces creative talents of the designer, but provides him with a rigorous analysis of the circuit characteristics, allowing a deeper insight in circuit performance; the result is a reduction in development time and cost.

LOAD MEASURING SANDALS

Work undertaken at the R.A.E. is not limited exclusively to aeronautical applications. One department has been helping the medical staff at the Royal Orthopaedic Hospital in connection with the treatment of arthritic patients. Load measuring sandals have been devised to give the medical authorities a graphic record of the load imposed on the sole and heel of the foot as the patient walks. These sandals embody a capacitive transducer in the sole which modulates the carrier frequency of the tiny transmitter housed inside the hollow heel. Signals are radiated at 100 and 150 kHz (right and left foot respectively) and picked up by an inductive loop system. The two outputs from the receiving equipment are voltages proportional to foot load, and these can be displayed on a double trace c.r.t., and also used to operate a pen recorder.

mRRRET PLACE

l:cms mentioned in this leature are usually avalable. from electronic ecuipment and component retaiters advertising in this magazine. However, where a full address is given. enquiries and orders should then be made direct to the firm concerned.

SHOW REPORT

It follows, that this month's Market Place should devote its pages to the R.E.C.M.F. Components Exhibition.

Held once every two years, this exhibition is the Electronic Industries' largest "market place", showing British Manufactured Components and typical British skill to the World.

This year's main theme throughout the exhibition was one of quality coupled with reliability; and this being Quality and Reliability Year was reflected very successfully at practically every "stall" visited.

To those companies not mentioned and all concerned with this year's show, it is sufficient to mention that the attendance figures were up by 10 per cent and at least $£ 25$ million of deals were transacted to gauge the amount of effort and hard work that went into the show to make it so successful-indeed, praise to all concerned.

One subject that was prominent throughout the show was the vast strides taken by British firms in the field of microminiaturisation. This reflects the courage and resources of British Industry, using their own money and brains, in this highly competitive field, until recently dominated by American firms backed by Government subsidies. This strangle-hold seems to be finally broken.

Early applications of microelectronics was confined to the computer, missile and aircraft applications. Now they are edging their way into the consumer field. Typical of these firms is Mullard who are producing microcircuits and modules for domestic radio and audio equipment.

Now down to business and to mention just some of the many varied and some new components unveiled at the show for the first time.

SEMICONDUCTORS AND
 TUBES

Recently honoured for their technical achievements the Semiconductor Division of Joseph Lucas (Electrical) Ltd. are now producing a new range

50 watt valtage regulator and 2.5A bridge rectifier assembly from Lucas Semlconductor Division
of "flangeless" high voltage rectifiers, potted rectifier assemblies and voltage regulators.

The 50 watt Voltage Regulators are available in $12,13,15,16,18$ and 20 volt versions, with 5 per cent tolerance, but this range will be extended later in the year.

Of interest to designers is a new service being offered by SGS-Fairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks., whereby variants of their basic range of silicon planar semiconductors can be specified to meet individual requirements.

Emihus Microcomponents Ltd., have added a new range of double-heat sink diodes to their Hughes DO7 range. The new type HDS is particularly suitable for low current switching applications.

From Electrautom Ltd., there is a large range of silicon rectifier modules. All units are available with controlled avalanche or high transient voltage limits and are ideally suitable for general applications.

All the large companies introduced new ranges of silicon planar transistors and all claimed greater versatility and closer operating tolerances, due to better manufacturing techniques.

With less than four months to the start of colour television programmes it was inevitable that firms should introduce components for use in sets

TR5 Glass-Tin-Oxide resistors from Electrosil
suitable for receiving this new service.
Mullard introduced their 19 in and 25 in "Colourscreen" picture tubes. They are rectangular 90 degree types that do not need any protective shield and include four integral mounting lugs. The tubes need no more scanning power that earlier tubes and a new unipotential electron gun enables the neck diameter to be narrowed to only 36 mm .

As no protective shield is required in front of the screen the tube is able to project beyond the front cabinet, saving costs of masks and escutcheons, and enabling new cabinet styles to be tried. Another point worth mentioning is that the 25 in tubes are covered by a one year guarantee and at the time of purchasing his receiver the customer has the option of extending the guarantee for a further three years for a recommended premium of £8 Os Od.

RESISTORS AND

CAPACITORS

Electrosil Lid. announced two new ranges of glass-tin-oxide resistors. The first is an improved TRS triple rated range offering a lower temperature coefficient of 100 p.p.m. and better colour code legibility. The second is the NC range with 50 p.p.m. temperature coefficient.

mariket PLACE

Morganite Resistors Ltd. and Welwyn Electric Lid. were amongst a large number of companies who announced new types of potentiometers.

The new Welwyn potentiometer is called the "Trimultimate" and is rated at 1 watt at 70 degrees centigrade. The ohmic values vary from 10 ohms to 20 kilohms in standard values at ± 5 per cent.

Silver-mica capacitors were featured by both the London Electrical Manufacturing Co. Ltd., and Erie Resistor Ltd. The main points being their small size and low voltage types, but with a good range of capacitance and stability.

STC subminiature diaphragm relays

RELAYS AND SWITCHES

This section was probably the largest and the final choice is left to personal taste and the type of delivery and after sales service obtainable. Although this is very difficult as practically all firms recognise this important facility and make every effort to meet any requirements.

The B16 miniature relay from B \& R Relays Ltd., Temple Fields, Harlow, Essex, is a new component which can be interchanged with the older B14 type and can also be used in printed circuits. The B16 has nominal power ratings of 0.1 watt, and current rating of lamp at 250 volts a.c.
Oliver Pell Control Ltd., introduce two additions to the Varley miniature plug-in relay range. Supplied to operate from 6 V to 250 V , the contact arrangement can vary from two, four or six makes and breaks. Contact ratings can be $1 \mathrm{amp}, 1 \mathrm{amp}$ twin or 5 amp for most models.

The same firm's a.c. solenoid switches have improved performance figures and the AT $2 \mathrm{~L} / \mathrm{S}$ model, which originally had a pull of $6 \frac{1}{2}$ lb at $\frac{5}{16}$ in, now has a pult of 8 lb at $\frac{5}{8} \mathrm{in}$. A special feature of the reed relays from Allen Taylor Transformers Ltd., Munster Park Works, Gowan Avenue, S.W.6, is that choice of gold, tungsten, mercury, rhodium or silver contactsare available. The contacts are enclosed in hermetically sealed glass tubes filled with a protective gas and situated inside the coil. The relays are available with one to six contacts, either normally open and/or changeover types.

Varley plug-in relay produced by Oliver Pell Control

There were many other firms exhibiting reed switches similar to those mentioned above.

A new approach in relay design was shown by the Electro-Mechanical Division of Standard Telephones \& Cables Ltd. Called," "Diaphragm Sub-miniature Relays", they make use of a flexible metallic diaphragm as the moving contact in a simple "make" action. When the coil is energised, the diaphragm is attracted to the fixed contact and makes firm contact. To ensure reliable contact the surfaces are coated with gold, typical contact resistance being 30 milliohms.

The relays are designed for printed circuit use, connections being made by soldering pins. The maximum current and voltage ratings are 0.5 A and 150 V d.c. or 250 V a.c. Operating time is approximately 1.5 ms including point bounce; release time is about $500 \mu \mathrm{~s}$.

The diaphragm relay is produced in multiple forms and, like the reed relay, the contacts are hermetically sealed in a non-oxidising gas.

The reliability, performance and small size should make the diaphragm relay a strong competitor to the reed relay, particularly in applications where the reed, due to its fragile nature, requires protection.

SOLDERING

Here many interesting developments were evident. Multicore Solders Ltd., have produced a fivecore solder in the Ersin range which is so thin it can be threaded through the eye of a needle. This should be ideal for fine printed circuit work where large deposits of solder are not wanted.

Another item from the above firm was the introduction of solder pellets. These pellets are primarily intended for industry, but no doubt many "go-ahead" retailers will be stocking them in the future and readers will

Aerosol Freezer marketed by Electrolube

soon find various conditions where there use solves the particular problem at hand.

A product that seems to be "tailor" made for the amateur market is the Electrolube Freezer from Electrolube Ltd., in aerosol form. Many applicacations are recommended besides its primary function of tracing faults in circuits.

HERE COME THE CATALOGUES!

There are so many catalogues these days that at times it seems like an army on the march! Even in the field of radio and electronic components there are quite a number of productions.
We are convinced that the Home Radio Catalogue really does lead the way. But judge for yourself ! How does one judge the merits of a catalogue? Just ask yourself these questions: 1. Is it really comprehensive? 2. Is it well indexed, well illustrated, well printed? 3. Is it backed by an extensive stock of the components listed? 4. Is ordering made clear and simple? 5. Is the service fast and efficient? The Home Radio Catalogue scores top marks on every point. Moreover, it is wonderful value ($7 / 6$ plus $1 / 6$ postage and packing) and every copy contains five vouchers, each worth $1 /$ - if used as directed. Send the coupon with your cheque or P.O. for 9/- . . . today!

The Home Rudio Catalogue lists some 6,000 quality components, over 1,000 of them illustrated. With each catalogue you also get a bookmark, an Order Form and an addressed envelope.

Please write your Name and Address in block capitals
NAME I
ADDRESS

I
home radio Ltd., Dept. PE, 187 London Road, Mitcham, CR4 2YQ, Surrey

NEW RANGE U.H.F. AERIALS FOR

 BBC 2 (625) line transmissions All U.H.E. aerials now fitted with tilting bracket and 4 element grid reflectors.I,oft Mounilng Arrass, 7 elemert, $35 /-$. 11 element, $4 \% / 6.14$ element, so/ 18 slement, 5z/6. Watl Hommtine with cianked Arm, 7 element, $\quad 18$ element. $8.9 / 6$. Nasi Vionnting with 2in. clamp. 7 element, 4 io/b: 11 element, in/-: 14 element, 60/-: 18 element, $70 / \mathrm{F}$. Shimmas' Monnting iriass, cumplete; 7 element. 72/6; 11 element, sol-: 14 element, x-/6; 18 element, $95 /-$ Complete assembly instructions with every unit. I ow Joss calbla, $1 / 6$ yd. lill, R' Pres amps from $75 /-$ State cearly channel number
requlred on all orders.

BBC • ITV • F.M. AERIALS

131BC (itandi 1). Telescopic ioft, $1 /-$ External S/D, $30 /=$

ITV (Iand 3). 3 element toft array, Wall mounting, 3 clement, $35 /=$ 5 element, $45 /-$ Combincal Ble $/ \mathrm{ITV}$. Loft $1+3$, 41/3: $1+5,48 / 9 ;$ Wall mounting $1+3, ; 6 / 3 ; 1+5,63 / 9 ;$ Chimney $1+3,63 / 9 ; 1+5,71 / 3$. VIIF transistor pre-amps from 8is/-
F.M. (Hand 2). Loft S/D, 19/6, "H", 30/-, ${ }^{3}$ element, $5 \% / 6$. External units available. Coax. cable, \&il. yd. Co-ax. plugs $1 / 3$. Qutlet boxes, $4 / 6$. p\& \& $5 /$ Send 61 stamps for illustrated lists. Quotations for special arrass avaliable on request
K.V.A. ELECTRONICS (Dept. P.E.) 27 Central Parade, New Addington Surrey-CRO-OJB LODGE HILL 2266

LODGE TRADING CO.

SPEAKER UNITS $12^{\prime \prime} \mathrm{HI} / \mathrm{FI} 25$ watt 15 ohm Heavy Duty (ELAC) $\quad \mathbf{6 . 6 . 0}$ $12^{\prime \prime}$ Guitar 25 watt 15 ohm Heavy Duty (ELAC) $\quad \mathbf{E 6 . 6 . 0}$ 12" 15 ohm smal! magnet 8,000 Lines (R \& A) £2.5.0 $10^{\prime \prime}$ Ceramic 11,000 Lines 15 ohm or 3 ohm (ELAC)
£1.19.6
10" . 6" Ceramic 11,000 Lines 15 ohm or 3 ohm (ELAC) £1.19.6 $8^{\prime \prime}$ Ceramic 11,000 Lines 15 ohm or 3 ohm (ELAC) £1.17.6 $8^{\prime \prime}$ small magnet 8,000 Lines 3 ohm only (ELAC)
$7^{\prime \prime} \quad 4^{\prime \prime}$ small magnet 7,0003 ohm only (CELESTION) 17.6 $3^{\prime \prime}$ Square 4 Hole Fixing 25 ohm only (PLESSEY)

AERIALS

BASIC TELEVISION

New Model Illustrated Course of Elementary Technician Training. A Common Core Book

Pr. I. 21/- Tech. P. Postage I/-

THE RECORD PLAYER BOOK, by P.J. Guy. 30/-. Postage 1/-.

SILICON CONTROLLED RECTIFIERS, by A. Lytel. 21/-. Postage $1 /$-.
BASIC THEORY \& APPLICATION OF TRANSISTORS, U.S. Dept. of Army. 10/.. Postage 1/-.
TV FAULT FINDING 405, 625 LINES, a Data Publication. 8/6. Postage 6 d .
SHORT WAVE LISTENING, bY 1. Vastenhoud. 12/6. Postage 1/-.

MATHEMATICS FOR RADIO AND ELECTRONICS TECHNICIANS, by I. F. Bergtold. $50 /$-. Postage $1 / 6$.
radio valve data sthed. Compiled by "WW". 9/6. Postage $1 / 2$.
Inter GEC TRANSISTOR MANUAL. 18/.. Postage 2/-.

THE MOOERN BOOK CO.
BRITAIN'S LARGEST STOCKISTS of British and American Technical Books 19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday I p.m.

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-GUARANTEED RESULTS BACKED BY OUR SUPER AFTER SALES SERVICE!

ROAMANAR

Seven waveband portable and car Radio with a super specification giving outstanding performance!

- 7 fully tunable wavebandsMW1. MW2. LW, SWI. SW2 SW3 and Trawler Band.
- Extra Medium waveband provides easier tuning of "pop" stations.
- Built in ferrite rod aerial for Medium and Long Waves
- 5 Section 22 in. chrome plated telescopic aerial for Short Waves can be angled and rotated for peak S.W. listening.
- Socket for Car Aerial
- Powerful push-pull output
- 7 transistors and two diodes including Philco Micro-Alloy R.F. Transistors

Total building costs
$42 / 6 \quad \begin{gathered}\text { P. \& } \\ 3 / 6\end{gathered}$

Total building costs
$59 / 6 \quad$ P. \& P. 3/6

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE

Atractive case with red speaker grille. Size $6: x$ 41×1 in. Fully tunable. 7 stages o transistors hat thorles-fer rite rod aerial, tuning condenser, 16 tirst control, tine tone super dynamic speaker, harts price 11 componente. Easy build plane and Marts price list $1 / 6$ (FREE with kit). Cedjum Wave, Short Wave and Trawler Band

MELODY SIX

TWO WAVEBAND PORTABLE WITH 3in. SPEAKER
Handsome leather-look case, size $61 / 3!: 1 \% i n$ with gilt trim and hand and shoulder straps Fully tunable over both Medium and Long Waves. [ncurporates pre-tagged circuit board, 8 atages6 transistors and 2 diodes-ferrite roxl aerial, push-pull output, wave change slicle switch, coil speaker, etc. Easy build plans and parts price list $2 /-(F R F$ F with kit).

Total building costs 79/6 P. \& P. 3/6

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Ittractive cage with gilt ittingk, size $7!x \bar{x} \frac{1}{3}$ and World wide reception. Tunable on Medium Bhat plua nthextra M.W. Bind for easier tuniag of "pop" atations. Sensitive ferrite roll therial and telescopic merial in Short Waves. All top grade components, 8 stages- f transistors and 2 diorles including Philen Micro-Alloy R.F. Transistors, etc. (carrying strap $1 / 6$ extra). Easy buikd plans and natte price liat 2!- (FREE with

Famous make 7×4 in. P.M speaker, rich-toned volume.

- Air spaced ganged tuning condenser.
- Separate on/off switch, volume control, wave change switches and tuning control.
- Attractive leather look case with hand and shoulder straps. Size $9 \times 7 \times 4 \mathrm{in}$. approx.
- First grade components.

Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build with guaranteed results.

Total building costs

E5.19.6. P. \& P 5/6

Total building costs
P. \& P. 3/6

Total building costs 79/6 $\quad \begin{gathered}\text { P. \& } \\ 3 / 6\end{gathered}$

POCKET FIVE

TWO WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive black and gold case. Size $\overline{\mathrm{o}} \mathrm{y} \times 1$ W!lo. Fully tunable over both Medjum and Long Waves with extended M.W. band for easier lunlog stages- 3 transigturs first grade components, onsitive ferrite rod werial, fine tone 3in, moving oil speaker, etc. Easy buld plans and ping price list. $1 / 6$ (FREE with kit). ersion with miniature speaker ONLY 29/6. P, 辟 P. $3 / 6$.

MELODY MAKER 6

THREE WAVEBAND PORTABLE

 WITH 3in. SPEAKERSmart pocket size case, $6 I \times 31 \times 1$ in. with git fittings. Fully tunable over both Medium and Long Waves with extra M.W. band for easier tuning of "pop" stations. 8 stages-6 transistors and ${ }^{\text {and }}$ dor extra boost, high speaker, 2 R.F. aerial. Ensy build plana and parls price list ar- (FREE with kit).

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Atractive case size $i=\times 5=\ldots$ In, with pilt hittings and catrying strap. The deal radlo for hone, war or outdoors. Covers Medium uni incorporating 2 R.F incorporating 2 R.F. stages, push-pull output, spenker (will drive farger speaker) and all first grade components. Price list $2 / \sim$ (FREF with

RADIO EXCHANGE Ltd

Callers side entrance Barratt's Shoe Shop. Open 9-5 p.m. Saturday 9-12.30 p.m.

61a HIGH STREET, BEDFORD
Telephone: Bedford 52367

mRRKEI PLALE

When discontinuity, instability, intermittence or drift occurs in a circuit, it is often the result of a temperature rise in some thermally sensitive component such as a transistor, capacitor or resistor. By applying the Freezer to suspect components one at a time whilst the circuit is operating, the nature of the fault will change, once the faulty component is sprayed, due to the rapid temperature drop. Similarly if a dry joint or faulty connection is suspected the symptoms will again change.

It is obvious that one of the most common mistakes or faults that occurs when building apparatus is the damage caused by excessive heat from the amateur's soldering iron, caused by conductance of heat through the component leads. Transistors, diodes, pick-up cartridges, etc. are typical devices in this class. But by applying the Freezer before soldering ensures adequate protection for the components.

ROUND-UP

Many firms had new ranges of cabinets on show and West Hyde Developments Ltd., demonstrated their standard printed circuit board and the ease with which they can be installed in their Contil instrument cases. Vero Electronics Ltd. also produce portable cases. Called the "Chilworth" they are designed to house standard $7 \frac{1}{4}$ in and $10 \frac{1}{4}$ in boards.

Bulgin had their usual large assortment of control knobs as well as their Security Alarm System on display.

There were many new power supplies and just one of these was the Series 30 units from A.P.T. Electronic Industries Ltd., Chertsey Road, Byfleet, Surrey. The Series 30 models cover any preset output between 0 and 500 V at various current ratings up to 10 A at low voltages, and 100 mA above 350 V . They can also be supplied as variable voltage units.

Both Sifam Elecirical Instrument Co. Ltd., and Taylor Electrical Instruments showed new meters, as did many other firms.

The "Liliput" series of transformers from Gardeners Transformers Ltd., Somerford, Christchurch, Hampshire, are designed for use with semiconductor circuits at low voltages (normally below 100 V peak). An exception to this is the SCR Trigger Transform Series where higher secondary voltages are required. Typical circuit uses are: converter/inverter

Chilworth portable cabinet from Vero Electronics

Type SCV3IB-I power supply from A.P.T. Electronic Industries

Thorn-Bendix Stumpi connector

Miniature display from Counting Instruments
circuits; output stages; a.f. and wide band communication a.f. drivers; a.f. smoothing and pulse circuits.

In addition to metal film, high stability carbon and wirewound resistors, Painton \& Co. Ltd., Kingsthorpe, Northampton, displayed new moulded subminiature r.f. chokes. Type C 30 M is rated at 0.17 watt at 90 degrees centigrade up to $120 \mu \mathrm{H}$ and 0.15 watt over $120 \mu \mathrm{H}$. The inductances available being from 0.15 microhenries to 1,000 microhenries.

Wolsey Electronics gave details of their new v.h.f./u.h.f. set-top aerials, designed to cover all television channels in bands $1,3,4$ and 5 .

Two new miniature d.c. motors, type AB. 100 and AB. 2000 were shown by A.B. Metal Products Ltd., 119/127, Marylebone Road, London, N.W.1.

The 3-pole ungoverned AB. 1000 produces 4 to 10 watts output at 3,500 r.p.m. approximately. The operation voltage is 13.5 V nominal at 250 mA .

The AB. 2000 is similar to the AB. 1000 but the rated speed is 5,000 r.p.m. The operating current is 1.8 A .

EMI Sound Products Ltd., Components Division, Blyth Road, Hayes, Middlesex, are another firm who produce a vast variety of small electric motors.

The motors from both firms can be used for such applications as: car screen washers; radio and television tuning motors; film slide projectors and miniature R / C installations.

The "Stumpi" low voltage connectors were featured by ThornBendix Ltd., Great Cambridge Road, Enfield, Middlesex. The connectors are designed for general purpose use and available with pin or socket contacts rated at 5,20 and 40 A .

Mallory Batteries Ltd. demonstrated the versatility of their mercury and alkaline batteries for use in hearing aids and cine camera drives. The many uses of Sellotape insulating tape was the theme of Sellotape Products Ltd. stand. Their new "Resin Bond Polyester Thermosetting 1615 Tape" is claimed to have three times greater adhesion to itself than other polyester tapes. The breakdown voltage of the tape is 5,000 volts.
Finally, a new microminiature display, see photograph for actual size, has been designed and developed by Counting Instruments Ltd., and features a novel system of plastics moulded lenses.

A multiple of five units, each unit is capable of displaying 11 different numbers, letters, symbols or colours. It contains an assembly of 11 miniature lamps at the back, a negative with 11 message displays, a series of lenses, and a front viewing screen. On lighting one or more of the lamps the corresponding part of the negative is illuminated and focused through the lens system onto the viewing screen.

the 70_{0}° raxit hatat G5UM

Field Day Time

Now is the time a young man's fancy turns to thoughts of lugging radio transmitting equipment to some inaccessible hilltop for the purpose of participating in a contest. For now is the time of the great outdoors for the amateur transmitting enthusiast, interspersed with dives for the dry inside the operating tent as the next rain squall booms overhead.
In other words, whatever the effort of setting up 'portable transmitting stations out in the open, and whatever the vagaries of the British weather, there's no deterring the many hundreds who enjoy this sport. For sporting chance indeed governs much of what goes on when field days come round. Station is pitted against station-and the general feeling is "may the best one win".

May until Septeriber is the season of outdoor radio, ushered in by what is officially known as the 144 MHz Portable Contest during the first weekend of every May, and brought to a grand finale by V.H.F. National Field Day in the first weekend of every September.

This is not to suggest that all field days are v.h.f. ones. Yet it does happen to be the case that the "very highs" offer special attractions for portable operation both in respect of aerials, which being snall and light can be erected high and in the clear, and in respect of equipment, which may be modest in physical size and ideal for portability for the very good reason that the high gains achieved by directional aerials call for only a nominal output from the associated transmitter.

Perhaps because of the ease with which a v.h.f. station may be set up in a field or operated from vehicles, more portable events are organised for the metre wave bands than for any other. Yet the hardiest annual transmitting contest of all is one that utilises what are sometimes facetiously called "the d.c. bands"-
or more accurately the h.f. bands in contradistinction to the v.h.f. ones. This event is National Field Day, initiated by the Radio Society of Great Britain as long ago as 1933 , traditionally held during the first weekend of June, and representing the climax of many months of planning and practise by clubs and groups throughout the land.

Six Band Operation

For National Field Day, local radio groups customarily enter two stations sharing operations on the six h.f. amateur bands. "Which stations for what bands?" is a question that calls for an assessment of operating tactics to be adopted on The Day. Certain groups and clubs prefer to allocate the three lower frequency bands of $1.8 \mathrm{MHz}, 3.5 \mathrm{MHz}$ and 7 MHz to one station, and the higher frequency bands of 14,21 and 28 MHz to the second station, for the practical reason that an aerial cut for one of the three can be made to "fit" the other two reasonably well.

But it happens to be the case that the lower frequency bands offer at certain times a greater scoring potential than the higher frequency ones-yet you cannot operate one station on two bands at the same time! So the pay-off tactic is to allocate one of the higher scoring bands to the second station so that both will be kept plugging away hard at it most of the time. To do this complicates the aerial situation. You simply can't win! Yet the object of entering, National Field Day is to do precisely that!

Radio Logistics

Well before N.F.D. Weekend the permutations of bands and aerials are sorted out by intending participants as part of the major planning
effort which every National Field Day demands. A complicated exercise in logistics is performed in order to provide the aerials already mentioned, along with the transmitting and receiving equipment into which they will work; the power supplies-some of them far from portable for a so-called "portable" event; the tented accommodation ("Stations must be operated from tents" has long been a regulation), and the furnishings for the tents. Further tents for those who will sleep at the site. As for the personnel themselves: the Morse-men of fortitude who will keep two stations active on six bands for 24 hours nonstop; if there is any "most important component" on Field Day, it is they.

Thirty Four Years Old

It is curious to reflect that National Field Day, thirty four years old this year, sprang from a custom developed by a group of London transmitting amateurs in the early Nineteen Thirties of retiring to a rural retreat "reep in the heart of Essex to enjoy a "radio weekend".
The success of these events suggested their development on a national basis. And so National Field Day was born.

Today's N.F.D. techniq̣ues are a world removed from the simple twovalve transmitters and straight receivers, battery powered as like as not, that did adequate duty on the air in the spacious days of three and a half decades ago. Change, the essence of radio communication, embraces National Field Day as it does everything else. How in certain important particulars it has influenced the event this year is something to which attention will be given on this page next time.

A scene repeated a hundredfold during the annual National Field Day transmitting contest: an operator sending swift Morse on an automatic key, a second man logging. And grass growing up through the base of the tent

Q MAX CHASSIS CUTTER

Complete: a die, a punch, an Allen screw and key

 BARGAIN XTAL PICK-UP ARM Complete with ACOS LP-78 Turnover Head and Stylii 201-: Stereo $30 /$ SPEAKER FRET Tygan various colours, 52in. wide, from EXPANDED METAL Gold or Silver $12 \because 12 \mathrm{in}$, 6 EXPANDED METAL Gold or Siver $12,12 \mathrm{im} .6 /-\mathrm{m}$. 15EW GARRARD GRAM MOTORS 2.50 (in series), or 10/-ea. Post $2 / 6$. FULL WAVE BRIDGE SELENIUM RECTIFIERS 6 or 12 o. outputs. $1 \frac{1}{2} \mathrm{amp} ., 8 / 9 ; 2 \mathrm{a}, 11 / 3 ; 4$ a.. 1% CHARGER TRANSFORMERS. P. \& P. 2/6. Input 200,250 lor charging at 6 or 12 v.. $1 \frac{1}{2 m p s ., ~} 17 / 6 ; 2$ amps.,
4 amps., $25 /-$. Circuit free. Ammeter 0 to $5 \mathrm{mp} .10 / 6$.
 0C71 6/-: OC72 7/6; 0C81D 6/-: OC81 6/-: AF115 $\begin{array}{ll}\text { AP114 } 8 / 6 ; \text { OC44 } 8 /-: \text { OC45 } 8 \%-0 C 171 & \text { O/-; OC170 } \\ 8 / 8 ; \\ \text { AF11 }\end{array}$

ARDENTE TRANSISTOR TRANSFORMERS
D3035, 7.3 CT : 1 Push Pull to 3 abms for OC72, OC8 D3034, 1.75, 11 CT. Push Pull Draver for OC72, OC81 D3058, 11.5 : 1 Output to 3 ohms for OC72, OC81 TRANSISTOR MAINS ELIMINATORS. FAMOUS "POWER MITE". 9 VOLT. SAME SIZE AS PPG BATTERY.
FULLY SMOQTHED. 150 mA . FULL WAVE CIRCUIT. $45 /$
WEYRAD P50
Transistor Coils
RAQW 6 in. Ferrite Aerial
Wpare Cores............. 64
with car aerial coil..... $12 / 6$
Driver Trans. LFDT $\begin{array}{ll}\text { with car aerial coil..... } 12 / 6 & \text { Driver Trans. LFDT4..... 9/6 } \\ \text { Osc. P50/1AC } & \text { Print....... } 5 / 4 \\ \text { Printed Circuit, PCA1. ... } 9 / 6\end{array}$ I.F.P50/2CC $4 \% 0 \mathrm{ke} / \mathrm{s}$ $\begin{array}{ll}\text { 5/: } & \text { J.B. Tuning Gang } \\ \text { 8/- Weyrad Booklet }\end{array}$

Volume Controls

 LONG SPINDLES. MIDGET SIZE 5 K . ohms to 2 Meg LOG or LIN. L/S 3/-. D.P. $5 /$80 obm Coax 6d yd. Semi-air spaced Cable 00 yd, drum $50 /$ - post free FRINGE LOW LOSS $1 / 6_{y d}$
Ideal 625 lines

COAXIAL PLUG 1/-. PANEL SOCKETS 1/-. LINE SOCK TS 2/- OUTLET BOXES, $30 R F A C E$ OR FLUSH $4 / 6$ ELESCOPIC CHPOME AERIALS. Bin ertend B/6 each. CAR AERIAL PLUGS $1 / 6$. Societs $1 / 3$.

SPECIAL PURCHASE!

B.S.R. GU7

9 volt Battery
Operated Record Player Decks
4 speeds, automatic stop. Plays any size record Complet 4 speeds, automatic stop. Plays any sice record. Complete
with mono LP/78 xial and sappbire stylus. $69 / 6$ P. \&P.

With stereo cartridge
 RETURN OF POST DESPATCH Post and

STELLA RECORD PLAYER AMPLIFIER 4 watt. 2 stage. 3 to 7 ohm. Neg. feed back. UCL82. UY85 $200-250 \mathrm{z}$. A.C. tapped input. Chassis size $8 \times 2 \frac{2}{2} \times 4$ in. high. Gold/Walnut knobs. Volume and Tone controls on separate Polished Wood Panel $6 \times 2 \mathrm{X}$. Brand new with
makers' guarantee. BARGAIN PRICE P. \& P. 2/6. $78 / 6$ makers' guarantee. BARGAIN PRICE P. \& P. 2/6.

$350 v .0 .1$ gd., $0.52 / 8 ; 1 \mathrm{mfd} .3 /-\mathrm{F} 2 \mathrm{mid} .150 \mathrm{v}$.
$500 \mathrm{v},-0.001$ to $0.05 \mathrm{gd} ; 0.11 /-0.251 / 6 ; 0.53 /-$
$1,0007 .-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.12 / 6$ E.H.T. CONDENSERS. $0.001 \mathrm{mid} ., 7 \mathrm{k} V ., 8 / 6 ; 20 \mathrm{k} V ., 10 / 6$ SUB-MIN. ELECTROLYTICS. $1,2,4,5,8,16,25,30,50,100$ 50 mfd . $15 \mathrm{v} .2 / 6 ; 500,1000 \mathrm{mid} .12 \mathrm{v} .362000 \mathrm{mfd} .25 \mathrm{v} .9 / 6$ ERAMIC 500 . pF to $0.01 \mathrm{mfd} ., 9 \mathrm{~d}$. Discs
SILVER MICA. Close tolerance (plus or minus ${ }^{1} \mathrm{pF}$.). 5 to
 ture $10: 500 \mathrm{pF}$. stendard with trimmers, $\mathrm{B}_{6} 6: 500 \mathrm{pF}$ uideret less trimmers. r/6:500 pF. slow motion, standard $8 /-$ madget less irimmers. $18 / 9$. Single "0" 365 pF . 7/B. Twin $10 /$ SHORT WAVE. Single 10 pF . 25 pF .. $50 \mathrm{pF} . \mathrm{S}^{75} \mathrm{pF}$ $100 \mathrm{pF}, 160 \mathrm{pF}, 5 / 6$ each. Can be ganged. Couplers 9 d . each TUNING. Solid dielectric. 100 pF .. $300 \mathrm{pF} . .500 \mathrm{pF}$.. $3 / 6$ each TRIMMERS. Compression ceramic 30. $50.70 \mathrm{pF} ., 9 \mathrm{~d}$.
$100 \mathrm{pF}, 150 \mathrm{pF} .13: 250 \mathrm{pF} ., 1 / 6 ; 600 \mathrm{pF} ., 750 \mathrm{pF} .1 / 9$ 250v. RECTIFIERS. Seleniuna wave $100 \mathrm{~mA} 5 /-:$ BY100 10 -

NEW B.A.S.F. LIBRARY BOXED TAPE 7 in. L.P. I, $800 \mathrm{ft} .45,-7 \mathrm{in}$. D.P. 2,400 ft. 70/60 min . Cassette C 60 (For Philips, etc.) 17/6 Spare Spools 2:6. Tape Splicer 5/-. Leader Tape 4,6.

MAINS TRANSFORMERS
250-0-250 80 mA . 6.3 v. 3.5 a. 6.3 v. 1 a. or 5 v. 2 a. 25/ 50-0-350 80 mA. 6.3 v. 3.5 a. 6.3 v. 1 a. or 5v. 2 a. 29/6 MINIATURE $200 \mathrm{v} .20 \mathrm{~mA}, 1,6.3 \mathrm{v} .1 \mathrm{a}$. MIDGET 220 v. 45 mA .16 .3 ₹. 2 a .
SMALL $250-0-25050 \mathrm{~mA} .8 .3$ v. 2 a. .
HEATER TRANS. 6.3 v. 1 a., $8 / 6 ; 6.3$ v. ${ }^{\text {a }}$
Ditto tapped sec 1.4 v. . $2.3,4,5,6.3 \mathrm{~F}, 1^{\prime} \mathrm{gmp}$. GENERAL PURPOSE LOW VOLTAGE. Outputs $3,4,5$, $6,8,9,10,12.15,18,24$ and 30 v. at 2 s . $29 / 6 ; 2 \mathrm{a} . .47$, 8

CRYSTAL MIKE INSERTS
in. 6/6; BM3 $1 \therefore$ in. $7 / 6 ; \operatorname{ACOS} 1 \%$ iu. 8.0 ALL PURPOSE HEADPHONES
MOVING COIL HEADPHONES 100 ohms (ex. Govt.) 12,8 H.R. HEADPHONES HEADPHONES 2000 ohms Super Quality

Three Wavebands: Five Valves: ECH81, EF89, Long., Med., Short. Gram. EBC81. EL84, EZ80 12 month guaranter. A.C. 200-250 v. Ferrite Aeria 5 watts 3 ohm. Chassis 13 in. \because \%in.
13 in " 4 in. Two pilot Lamps. Four Knobs. ≤ 10.10 Aligned calibrated. Chassis isolated irom mains $19-50 \mathrm{~m}, \mathrm{SW} 60-180 \mathrm{~m}$. Magic eye, push buttons. $£ \mathbf{£ 1 9 . 1 9}$ 19-50m, SW 60-180m. Magic eye, pugh butions. $\mathcal{L} 9.19$
6 valve plus rect. Size $15^{\prime \prime} \times 7^{\prime \prime} \times 6^{\prime \prime}$ bigh
HIGH GAIN TV. PRE-AMPLIFIER BAND 1 B.B.C Tunable channels 1 to 5 . Gain
BAND III I.T.A.- same prices. Tunable channels \sim to 13. Band I or III. Coils and circuit only, 9/6. Chassis 4/9, B.B.C. 2 SUPER BOOSTER transistor model. Ready built 75 ,-

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2'in. sides, 13 9in. $8 / 6 ; 14 \div 11 \mathrm{in} .12 / 6 ; 15 ; 14 \mathrm{in} . .15 /-$ ALUMINIUM PANELS 18 s.w.g. 12\% 12in. 5/6: 14 9ia. ALL PURPOSE TRANSISTOR PRE-AMPLIFIER ALL PURPOSE TRANSISTOR PRE-AMPLIFIER
Gain 14: 1. 250v. or 9 v . input. Regdy built with Mu Metal input transformer for Mises, Pick-Ups. Tuners
THE INSTANT

BULK TAPE

 ERASER ANDRECORDING HEAD
 $200 / 250$ v. A.C
Leaflet S.A.E

Br-AM SEMCOMOUCTOR

(DEPT. E)

8 Radnor House 93/97 Regent St London. W. 1
FAIRCHILD

BRAND NEW FROM U.S.A. 8 LEAD - EPOXY CASE RT/LL MICROLOGIC

"INTEGRATED CIRCUITS"

COMPLETE DATA AND
CIRCUITS SEND $1 / 6$ OR FREE
WITH ALL IC WITH A
ORDERS

NEW AND TESTED VALUE PAKS One 10/- Pack of
2 Drift Trans. 2 N 1225 Germ. PNP $100 \mathrm{Mc} / \mathrm{s}$
Matched Trans. OC44/45/81/8/D
5 Red Spot AF Trans. PNP
5 White Spot RF Trans. PNP
10 a silicon Rects 50 and 100
Germ. Diodes OATO Muliard
OCl 39 Trans. NPN Switching
12 A SCR 100 PIV
Assorted Computer Diodes
NPN Med. Speed Switching Trans.
Zener Diodes 250 mW ${ }^{3-1}$
$200 \mathrm{Mc} / \mathrm{s}$ Sit. T, Tans. NPN BSY26/27
Bi-directional Trans. ASY66 PNP
Zener Diodes $400 \mathrm{~mW} 33 \mathrm{~V} 5 \%$ Tol
Power Transistors OC26 OC 35
Silicon Rects. 400 PIV 250 mA
OC7I Transistors Mullard Tyo
OC75 Transistors Muliard Type
NPN Silicon Trans. $70 \mathrm{Mc} / \mathrm{s}$
Oower Trans. OC20 100 V
${ }_{4}$ OA A 40 Gold Bonded Diodes
2 Low Noise Trans. NPN 2N929/30
8 OABI Diodes (CV448)
${ }_{3}{ }^{3}$ OC72 Transistors Mullard Type
Metal Alloy Transistors Mat Type
4 Gif. Rects. 400 PIV 500 mA
5 GET883 Trans. Eqve. OC 45
2 GET20 Germ. PNP Trans. With Heat-si
3 VHF Sil. Epoxy Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$
2 N 708 Sil. Trans. $300 \mathrm{Mc} / 5 \mathrm{NPN}$
${ }^{4}$ GT41/45 Germ. Trans. PNP Eqve OC7
2 GT31 LF Low Noise Germ. Trans. PNP
8 OA95 Germ. Diodes Sub-min IN69

- NPN Germ. Trans. NKT773 Eqve. ACi30
$\frac{2}{2}$ OC22 Power Trans. Germ.
$2 \mathrm{OC}_{23}$ Mullard Trans Germ
AC127/128 Comp pair PNP/NPN
FREE
5 TK22C Germ. Switching Trans.
32 2N1307 PNP 5witching Tians.
${ }_{20}{ }^{3}$ OC76 Mullard Trans.
7 CG 62 H Germ. Diodes Equv. O 3 OCI70 Trans. Mullard Type
Assorted Germ. Diodes Marked
30 Amp ower Rectifer 100 PIV
51 Amp Germ. Recr. 200
OAS Gold Bonded Diodes
ORPG1 Photo-conductive cell
Silicon Rects 100 PIV 750 mA
AFII7 Trans. Mullard Type.
OC81 Type Trans.
ORPI2 Photo-conductive cell LDRO3
eClob sil. NPN High Gain Trans
Zener Diodes 25 W 18 and 22 V
1000 PIV Sil. Rect. 15 A RS310 AF
High Vole. AF Trans. PNP ACY17
BSY 95 A Sil. Trans. NPN 200 Mc
BSY95A Sil. Trans. NPN $200 \mathrm{Me} / \mathrm{s}$
Sil. Power Reces. BYZ13
AFI 39 VHF Germ. Trans. $1500 \mathrm{Mc} / \mathrm{s}$.
Zener Diodes $3-15$ Y Sub-min TK201A
2N1132 PNP Epitaxial Planar git
Germ Power Trans Equar Octans. Sil.
Unijunction Trans. 2N2646 Eqve. D5E29.
Sil. Trans. $200 \mathrm{Mc} / \mathrm{s} 60 \mathrm{Vcb}$ ZT83/84.
sil. Trans. $15104150 \mathrm{Mc} / \mathrm{s}$ HFE 200 NPN
Tunnel Diode IN3720 (TD5)
Unijunction Trans. 2 N2 160 TO-S can G.E
Si. Rects. 5 A 400 PIV Stud Type
10 A Sil. Stud Rect 800 PIV
Tunnel Diode AEYi। 1050
2N1257 PNP Epoxy Planar HFE225 max
Sil. Power Trans. NPN 2572185 W
2 NY 2926 NPN Sil, Planar Trans.
5 Sil and Germ. Trans. Mixed all Marked New
New Power Trans. GEC replaces OC $16 / 26 / 28$
25024 Sil. Power Trans. NPN 100 V 100 W

AMAZING

CIGARETTE RADIO
ONLY 25/

No soldering

Yes. a perfectly ordinary packet of cigarettes! range of sour friends astonishment on bearing ite -yet conceals senaitive, fully cranaistorised clrcuit (including ting battery). A young boy can absemble it In 2 bours. No soldering. Only 18 condections to make ALL PARTS including seni-conductore, ABC Plang, etc. ONLY 25/- plus 2/6 P. \& P
\qquad
Fruatrated Import Shipment Offered BELOW HALF PRICE to Cleer 500 Only Five PRICE

PERSONAL
TRANSCEIVER SETS £6.18.11
You ve hearu about tbell-you've read abont Highly sensitive R CHANCE TO OWN THEM. sets have individual volume control and talke listen switch. Telescopic aerial pully it the voice from the other set over tremendous diatances-no vires arceuine tranaceiver as used by official bodies abl ories batteriets only at 26.18 .1 , neluling ance not be used in U.K.

MAKE 5 ENT RADIOS For 39/6
tion seti Beconie a radio expert for $39 / 6$. A consplete Home Radio Courne. No experience needed. Parts including instructions for each design.
step-by-Step plan Trausistork. Joudspeaher personal phone plan, al Bcrews, etc. all you need Box size $14^{*} \times 10^{*} \times 8^{\circ}$ (parts a vailable вeparately). Originally L6. NOW $30 / 6$

CONCORD ELECTRONICS LTD., P.E. 34
New Bond St., W.I. (Mail orders only)

SPECIAL OFFERS!

B.F. SIRENS : Have you found athother use for ou powerful yet miniature bigh frequency hornis? Already tbey thre being used fa burglar and tire clear penetrating sound is required
1.5/4.BV. D.C. only $3 / 6$ each plus $1 /-\mathbf{P}$. \& \mathbf{P}. per horn

TRANSISTORS: OC44. OC'45. OC'1 ind OC72 All at $2 / 6$ each phe tit. P. \& P. OCSt at $2 / 3$ each RELAYS:

Miniature plug-in with 2 light duty voconacts Miplature plug. in with 4 D.C. $13 / 8$. Mindature plug. in with 4 'light duty c/o contacte.
Coil 130 ohms. $4 / 15 V$ D.C. 18/8. Coll 130 obms. $9 / 15 V$. D.C. $18 / \mathrm{B}$
Heavy duty car alarm relay 6/12t. D.C. 3
P. AP. on aboventacts. 27/6.

Base for jterll (2), $8 / 8$ plus 611 . 1
LOUDSPEAKERS: We carry a range of speakers to
West well 0.2 W.; 8 chuli; 2lin. dia., $7 / \theta$.
Weatwell 0.2 W ; 8 ohn; 3 in . dia., $8 / 6$.
Rlchard Allen $12 i n$. 15 ohw with tweeter, $37 / 6$
TEST METERS: ITI-2. - supelt bing for the dis. cerning engineer with a limited budget. 20 K . ohmef

CARBON CONTROLS: Excellent range ;waibible. 10 K ohtu-2 Meg. ohms. Ail at 3/6 carh plus ! 1

RECTIFIERS: BY 100 Type at $3 / 0$ each plis did

SINCLAIR RADIONICS PRODUCTS
All Shaclair products and Lander Kechrity Devices always in stoek.

GLASGOW, C.5. Tel. 041 SOUth 2904 Member of the Lander Group

AT FARNBOROUGH

Most of us associate Farnborough with flying displays, and the opportunity to see at close quarters the latest products of the British Aircraft Industry. On such occasions the tarmac and the sky are the two focal points for the visitors' eyes, while the great complex of buildings which comprise the Royal Aircraft Establishment is a barely distinguishable backcloth to the main proceedings.

But all this was changed for a few days just recently when the permanent buildings basked in the floodlights, as it were, during the first Open Days to be held for six years.

Immediate impressions: an extensive conurbation in the midst of Hampshire countryside-but no drab uniformity in style of buildings. The varied styles are indicative of the continual growth of the Establishment over the past 50 years or more. The buildings themselves afford an interesting side study for any architecturally and historically minded visitor meandering from one department to another.

Even more varied in character than the buildings, are the activities they house. So far as electronics is concerned, the R.A.E. would appear to be a real forcing ground for research and development in all aspects of the technology. There would seem to be hardly any branch of electronics which is not making some contribution to the progress of air and space travel, whether in the testing of structural materials, recording aircraft behaviour during flight, or in navigation and communication aids.

ELEMENTARY, DEAR WATSON

Much of the research at the R.A.E. is, of course, directed towards making aircraft as safe as possible, and able to withstand any hazards encountered in flight. But accidents do unfortunately happen, and special attention is given to the development of techniques for investigating and analysing wreckage from crashed aircraft.

Significant information can be obtained from the examination of simple items such as cockpit indicator
lamps and radio valves. This was illustrated by an exhibit where a fibroscope had been inserted into wreckage and a magnified view of a warning lamp obtained on a closed circuit TV monitor. This picture showed that the lamp filament was unbroken, but distorted. From this it can be deduced that the lamp was on at the time of the crash. If it had been off, the cold filament would either have sprung back or broken as a result of the impact.

Similar evidence can be derived from a broken radio valve. A discoloured valve heated filament will suggest that the valve was "on" at the time of accident, for a cold filament never oxidises.

Although rather elaborate flight recording devises are fitted nowadays to many aircraft, it seems there is still scope for intelligent detective work by the technician working amongst the recovered wreckage.

One point does occur to me however. The replacement of valves by semiconductors, and (in the not too distant future) the replacement of filament lamp by luminous semiconductors, will remove this particular source of evidence concerning the state of operation of airborne equipment. Does the semiconductor provide any similar tell-tale information for the investigators?
It seems that the rugged character of these devices precludes their acting as silent witnesses, as do their thermionic counterparts. But this

"Make up your mind Dave, it's either fish and chips, for supper, or the Forsyte Saga"'
attribute of the semiconductor will of course greatly enhance the reliability of the black boxes-or flight recorders.

SET-TOP BATTLE

Improved sensitivity of modern receivers and the development of efficient ferrox rods have made the external aerial almost extinct, so far as normal radio broadcast reception is concerned. Even for television reception the drift is towards-simple, inexpensive set-top aerials. No matter that the results are often far from perfect, the general viewing public is well satisfied, it seems.

Now with colour TV on the way the broadcasting authorities and the receivers manufacturers are a little concerned-to put it mildly-about this reticence on the part of the public to invest in good efficient roof top aerial systems.
1 reckon what is needed is a publicity drive to re-educate the public on this matter. How more ludicrous a situation can you have than a person paying out $£ 250-£ 300$ for a colour receiver and then trying to get by with a thirty bob toast rack stuck on top of the set?
All praise then to Belling Lee who have announced their intention to cease production of all u.h.f. set-top aerials. And "thumbs down" to their competitors Antiference who have decided to pursue the opposite course.
In support of this policy,Antiference make the following pronouncement:
"Furthermore, we do not consider that the Aerial Industry can or should dictate to Trade or Consumer what standard of reception is acceptable, since this is a matter of personal choice and experience and varies from one individual to another."

Some people might consider it part of the aerial industry's responsibility to lead and educate the public in such technical matters.

Leave it to the customer indeed! Why bother to purchase an aerial at all if a screwdriver stuck in the aerial socket gives some kind of picture. After all, so we are told, the customer is the sole arbiter of picture quality!

IN THIS feature we hope, from time to time, to be able to publish suggestions submitted by some of our readers on the possible improvement of projects previously described in PRACTICAL ELECTRONICS; short contributions on other subjects may be included. The aim is not to find fault or undermine the abilities or knowledge of our contributors. It may well be that the original article is par exellence but it could be improved or adapted to suit individual requirements. The views expressed by readers are not necessarily those of the Editor.

LOW VOLTAGE NEON INDICATOR

THE smallest indicator lamps generally available require currents in the order of 40 mA and this can be prohibitive in battery equipment. Small neon lamps are easily obtained, however, with (or without) limiting resistors of ${ }_{1}^{10}$ to $\frac{1}{4}$ watt rating and giving reasonable light output for only a few microamps current at 100 V plus.

The use of a "ringing choke" converter allows such lamps to light from currents as low as 4 mA (at 6 V) dependant upon the efficiency of the converter-the one illustrated draws 9 mA at 12 V and operates down to 5 V .

The transformer can be wound on a variety of formers, success having been achieved even with a piece of ferrite $\frac{1}{16}$ in $\times \frac{3}{16} \mathrm{in}$. L2 should have an inductance approximately one-fifth of that of LI and tunes with Cl at frequencies up to 1 MHz depending upon the core material.

L3 should be wound to produce at least 150 V to ensure reliable striking.

In small units no lamp series resistor is necessary, R1 being kept as high as possible.

To prevent interference the supply should be decoupled and the components screened.

J. A. Tennant,
Maidstone,
Kent.

MERCURY SWITCH ALARM

WITH reference to the Car Burglar Alarm System by M. J. Bruce described in the February issue, it has two disadvantages. First, once the alarm has been set off, maybe accidentally by someone leaning on the car, it can't be stopped unless the owner of the car is present. Second, with the car in use and the alarm switched off, the mercury switches are still in circuit. If the car goes over a bumpy road the interior light flashes on and off accordingly.

One way of overcoming the first problem is to fit some form of time device which would allow the horn to blow for, say, 30 seconds, switch off and re-set the alarm. A foolproof alarm system is shown here. Once the alarm is set off it will sound the horn for about 30 seconds (depending on values of C and R), switch off and re-set automatically.

When Sla or b is operated, capacitor C charges to the full potential of the supply (12 V) causing a negative voltage to be applied to the base of TR1. The collector current energises RLA therefore closing contacts RLA1 sounding the horn. When the switch S1 is opened again C discharges through R and the baseemitter junction of TRI. After a period, C discharges sufficiently to cause a reduced collector current to flow through the relay coil. The relay now de-energises and the time cycle is now complete.

A. Shaw,

Bolton,
Lancashire.

When the water level increases it reaches probes 2 and 3 , but due to the relay contacts being in the open position there is no current flow from the negative line to the base of TR1 and so RLA remains de-energised. The water continues to rise until it reaches probe 1.
This then causes a current flow from the negative line to TR1 base; the relay then energises. Both sets of relay contacts close, one set switches on the water pump and the other set connects the negative line to probe 3.

As the water level starts to fall it leaves probe 1 and continues to fall until it leaves probe 3, the relay then trips out and the water pump stops. The whole process is repeated as soon as the water level reaches probe 1.

Any double-pole relay which will pull in at 10 mA

PROBES

THIS circuit was primarily designed to pump water automatically out of the car inspection pit in my garage, in which there was a constant water seepage. It may be adapted to control water levels in tanks or small ponds to prevent overflow.

Current drain is quite small and dry batteries will last well over 12 months. With relay RLA energised the current drain is about $10-15 \mathrm{~mA}$. Standby current drain is only a few microamps.

Probe No. 1 is set to maximum water level required. Probe No. 3 is set to minimum water level required. Probe No. 2 is set about $\frac{1}{2}$ in below probe No. 3.
or less is suitable.
The coil resistance of the relay is 700 ohms; heavy duty contacts are desirable. The probes are made from $10 \mathrm{~s} . w . g$. tinned copper wire, 12 in long each. A suitable water pump is obtainable on the surplus market.

The control unit has been in use for about 16 months without any attention whatsoever and still works perfectly.

F. J. Brown, Wirral, Cheshire.

OPTICAL COMMUNICATION

THE following idea may be useful to your readers interested in optical communication. In the transmitter two bulbs are driven in push-pull by the signal to be sent. Each must have a polarising current in it to prevent frequency doubling and this might be obtained from the standing current in a class-A amplifier. A piece of polaroid covers each bulb and these are orthogonally polarised. The combined light output

will appear to be steady to an observer. The receiver has two similar polaroid filters in front of two phototransistors. The output of the transistors is applied in push-pull to the input of an audio amplifier.
lt will be seen that a pulse of randomly polarised light will give no audio output as the push-pull input cancels the two photo-transistor outputs. This gives immunity from interference.

The transmitter is apparently a steady light and can only be received by a receiver with a polarised screen. A suggested output configuration for the transmitter is shown below.
D. J. Summer,

Horsham,

Pructical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is $1 /$ - per word (minimum order $12 /$-), box number $1 / 6$ extra. Semi-displayed setting $£ 3.5$. 0 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed " Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

SERVICE SHEETS

SERVICE SHEETS for all makes Radio, T/V, Tape Recorlers, $1925-190 \%$. Prices from $1 /-$ Catalogue 6,000 mudels, 2,6. Free faultfinding gaide with all sleets. llease send stamped iddressed envelope with all orders/ enquiries. HAMLLTON RADIO, Western Rd., St. Leonards, Sussex.

CERYICE SHEETS, Radio, TV, 500 models. List $16 . \quad \mathrm{S} . \mathrm{A}, \mathrm{F}$. embtiries. TVERAY, 11 Mandland Bank, lspeston.

RADIO TELEVISION, ower 8,000 Models. JOHX (illBER'T 'LI, JNINION, 11b Nhepherds lush Ra., lomulon, Wi.6. Sifts s441.

SERVICE SHEETS

4/- each, plus postage.
We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service.
To obtain the Service Sheet you require, please complete the attached coupon:
From:
Name:
Address: \qquad

To: S.P. DISTRIBUTORS

35/36 Great Marlborough street, London, W. 1
Please supply Service Sheets for the following:
Make:
Model No.:
Make: \qquad
Model No. \qquad
Make:
Model No.: Radio/TV
also require the new 1967 list of Service Sheets at $1 / 6$ plus postage. (ρ lease delete items not applicable) enclose remittance of \qquad
MAIL ORDERS ONLY aug. PE

EDUCATIONAL

[^3]
EDUCATIONAL
 (continued)

GET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Powtal Training, complete with equipment. A.M.I.E.R.E... R.T.E.13., (ity © (cuilds, ladio, T/V, Teleroms., efc. For FlRELE 100page buok, write lept. X 66 K , ('HAMBERS ('OLLBE(il', 148 Holborn, London, E.i'. 1 .

ALDERMASTON COURT POSTAL TRAINING for ll.sc. (Eing.) lart 1, A.M.I.E.R.E., A.M.s.b., (ity w inilds, C.C'B., etc. prepares A.m.s.a., (ity womids, G.C.je. etc. prepares Ten prician or Technologist. Thousands of passes. For details of Exams and courses in all branches of Engineering, Building, Electronics, etc, (including latest information on (Eng.), write for 13%-page HandbookFlisio. lilease state interest. l3RITISH INSTITLTE OF EN(BNLEMING TECHNOLOGY, (Dept. 125 K), Atdermaston Conrt, Aldermaston, liserks.

TELEVISION SERYICING RADIOTELEGRAPHY RADAR MAINTENANCE COMPUTER TECHNIQUES

Full and Part-time Training Courses Apply:-Director, British school of Telegraphy, 20 Ponywern Road, Earls Court, London, s. W. 5

HOME sTUDY COUR8Es in Practical lilectronics. Free brochure without obligation from: BRITLSH NATTONAL lRADIO sCHOOL, Rending, lerks.

RADIO OFFICERB sep the world: Sea going and shore appointments. Trainee vacancies during 19世-. (irants available, lay and Boarding students. stamp for prospectus.

STUDY RADIO, TELEVISION E ELECTRONICs with the world's largest home-stady organisation. l.E.K.E., ('ity \& Guilds, R.'T. F. B., etr. Also practical courses with equipment. No books to buy. Write for FRE1; proxpectus stating subject to I. C.S., Intertext Hotse, Parkgate Rond (Dept. 5:亏), London, s.W.11.

FOR SALE

SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gearlots of unusual stuff. This cat. is free for the asking. K. K WHISTON (Dept. (1PE), New Mills, stock port

FOR SALE. Oscilluscopers - (ialsumometers Evershed ${ }^{\prime}$ Viguoles Meggers. Also other items and romponents, Firee list. stanp please. R. © E: MAR'T, Box !, "P.P., Tunbridge Wells, K (ent.

BNC FITTINGS, 10 for $10 /-$ Ginaranterd top iltality. Ex-eduipmont. Mixed selection of phas. sockets and fittims. Poxt free. J. © M. TVIRNBR, 16: standom Road, shelifeld, 9 .

FOR 8ALE
 (continued)

A COMPLETE SET OF "PRACTICAL ELEC-

 TRONICs', from No. 1 पP, and including Jint 196\%. What offers? MONKMAN, 8 Quef nsway, larnaley, Yorks.CLEARANCE, Infinished radion, 6 Tramsistor, IW and LW, loudspeaker, Hattery. e2.10. 1. puid. R. S. HIN(istos, 41 Norwood Ave., Brlfast, 4.

100 PAGE illustrated catalogue No. 17 of Government and manufacturess' electronic and mechanical surphus, also a complete new section of the latest semi-conductors and miniature components, includes a credit voucher for $2 / 6$. Send for your copy now.
 (RADIO (ONTROL) LTD., 93 North hoad, Brighton.

MORSE MADE ! !

FACT NOT FICTION. If you start IRIGITT you will be reading ahmateur and commercial Morso Uing acientifically progress tol be expected). utomatically learn to recognise the cole RHYTHM without translating. You can't help it, it's as easy as learning a tune. 18 W.1P.M. in 4 weeks gunranteed. For details and course C.O.D. ring S.T.D. 01-660 2896 or send 8 d . stanp for explanatory booklet to:

OBCHS/H, 45 GREER LANE, PURLEY, SURREY

MISCELLANEOUS

CONVERT ANY TV \&ET into an Oscilloscope. Diagrams and lnstructions, 12/6. leEDMOND, 42 Dean Close, Portslade, Sussex.

CALL OR SEND for list from the nowt interesting shop in lancashire. Electrical. Mechanical and Eilectronic doods. ROGERS, 31 Nelson street, sonthport.

MI8CELLANEOUS (continued)
 ELECTRONIX
analogue and digital computer kits i
Jobs galore for Computer Trained men at higher than ever salaries! Now is the time to learn FIRST HAND
what makes the giant
computers tick!
Analogue Computer 1 and Digi- I Comp 1, designed to meet the I needs of people with little or no knowledge of computers-helps you to do that. No scientific background needed-if you can read you can build and master the first fundamentals of computer technology in next to no time.

Desk Top ACI is battery operated and has a fully transistorised Audio Sinewave generaa fully transistorised Audio
tor. It computes heights of objects, solves tor. It computes heights of objects, solves mathematical problems, teachesfundamental
theory of Analogue computers, measures unknown resistors, capacitors and inductors with AN ELECTRONIC MEASUREMENT BRIDGE. It can handle many different problems in arithmetic, geometry, trigonometry, algebra, mechanics, electricity, electronics, heat, light and sound. The further you advance in your knowledge, the more applications you will find for the computer. Supplied complete with all parts, hardware and accessories, including batteries, large pictorial wiring diagrams and clearly written manual. Ingenious patented design requires no soldering. Beautifully design requires no soldering. Beautifuly year. Minimum Retail Price Elo.14.6. Special Introductory Offer $£ 8.19 .6$. Incl. p. \& p.

Digi-Comp I. This remarkable teaching ald is the first of its kird. It is a binary computer kit that anyone can assemble and programme and learn first hand about the operations hidden in the circuits of a giant computer. They can see while they carry out a total of 15 experire ents how a computer adds, subtracts, shifts,.complements, multiplies and divides. An excellent science and maths project for classroom demonstration and discussion or home-study. DigiComp 1 is a highly successful and revolutionary concept in teaching the $A B C$ of computers. Supplied complete with 32-page instruction manual and large pictorial diagrams for assembly (about $1-2$ hours). For those who want to know more about Boolean Algebra, Prograrnming, computer Boolean Algebra, Prograrnming, computer logical design, use of truth tables and flow charts and the detailed mathematical derivations of the programmes in the Digi Comp I Instruction Man:sal, an "Advanced Text Book' has been prepared. Digi Comp I. ONLY 59/- incl. p. 8 p. Advanced Text Book $12 / 6$ incl. p. 8 p Electronics and computers are fast progressing.
Don't delay, oct now! This could be the best Don't delay, oct now! This
investment for your future.
ELECTRONIX LIMITED (P.4)
One The Hamlet, Champion Hill, London, S.E. 5
"PRACTICAL ELECTRONICS" Vidfo l'attern Gemerator. ('.R.O. Trace Doubler. Sume Alarm sistem. light operated stopwateh. Milk-(o-stat. Field Strength Meter. Valre Voltmeter and Ohmmeter. l'roximite beter tor. photothash slase lait. boorbeld Repeater lotegrated stereo fimplitier, and Repeater. lintegrated stereo Amplifier, and all constructional projects going back to lum
 Road. Fulham. Iombon. S.W. 6 .

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes
 4/6 P.P. 6d

 II55 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical Instructions. 46 set Working Instructions 88 set Technical Instructions. 8C. 221 Circuit and Notes
Wavemeter Class D Tech. Inst

 18 set Circuit and NotesaC. 1000 (31 set) Circuit \& Notes CR. $100 / 8.28$ Circuit and Notes R. 107 Circuit and Notes

A.R.88D. Instruction Manual | R. 107 Circuit and Notes........... |
| :--- |
| A.R.88D. Instruction Manual |
| 62 set Circuit and Notes |
| $15 / 6$ P.P. $1 / 6$ |
| $4 / 6$ P.P. $6 d$ | 3/6 P.P. 6d 3/6 P.P. 6d

3/6 P.P. 6d 3/6 P.P. 6d 3/6 P.P. 6d 5/-P.P. 6d 3/6 P.P. 6d 3/6 P.P. 6d 3/6 P.P. 6d 3/6 P.P. 6d 8/6 P.P. 9d 52 set Sender \& Receiver Circuits 6/-. post free Circuit Diagrams 3/- each posi free Circuit Diagrams 3/- each post free. A.ll34, T.ll54, CR.300, BC.342. BC. 312 . A.C.348.J.E.M.P. BC. 624 . 22 set.

Re.348.S.E.M.P. BC. 624 . 22 set. I/6 P.P. 6d. Resistor colour code indicator
S.A.E. with all enquiries please.
Postage rates apply to U.K. only
Mail order only to
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

SITUATIONS VACANT

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man. Let IC S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. SUPPLEMENTARY STUDIES.
* R.T.E.B. RADIO AND TV SERVICING
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Examination Seudents Coached until Successful.
NEW SELF-BUILD RADIO COURSES.
Build your own 5-valve receiver, transistor portable, signal generator and multi-meter-all under expert tuition.
POST THIS COUPON TODAY and find out how I $C S$ can help YOU in your career. Full details of IC S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL CORRESPONDENC: SCHOOLS
 A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

SITUATIONS VACANT (continued)

RADIO TECHNICIANS

A number of suitably qualified candidates are required for permanent and pensionable employment (mostly in Cheltenham, but from time to time there are some vacancies in other parts of the U.K. including London). There are also opportunities for service abroad.
Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to candidates who can offer " O " Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at $19-£ 812$, at 25-£1,046 (highest age pay on entry) rising on $1 / 1 / 68$ 10-at $19-£ 828$, at 25-£1,076.
Prospects of promolion to grades in salary range $£ 1,159-£ 1,041$. Thiere are \exists few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply. Application forms available from:

Recruitment Officer (RT)
Government Communications Headquarters Oakley
Priors Road
CHELTENHAM, Glos.

-

\square

ELECTRICAL 240 VOLT ELECTRIC POWER FROM YOUR 12 VOLT or 6 VOLT CAR BATTERY Run your mains a.c./d.e. equip ment direct from your car batery with this compact
low batteryconsumption dynasumption dyna-
motor. Size moty Sin . x 3in. Sturdy construction. Converts a 12 volt input to a 240 volc output. Huge purchase enables us to offer them at only $39 /$ each, post and packing 5/-. 6 volt input model only 35/-, post and packing 5/-. Thousands already sold.
(Dept. P.E.), 14 Clifton Grove, Leeds 9
TAPE RECORDERS, TAPES, ETC.

TAPE8 TO DIBC-using finest professional equipment- 45 r.p.m. 18/-. S.A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

20\% CASH DI8COUNT on most famous makes of Tape Recorders, Hi-F' equipment, C'ameras, etc. Join Fingland's largest Mail Order Club now and enjoy the advantages of bulk buying. Send 5/- for membership card, catalogues, price lists and ask for quotation on any item. C.B.A. (Dept. Al8), 3 - 0 st. Albans Road, Watford, Herts.

RECEIVERS AND COMPONENTS

$\mathrm{BC} \cdot 1076 / 6, \mathrm{BC} \cdot 10 \times 6 / 6, \mathrm{BC} \cdot 1097 / 6,13 F Y 518 / 6$, B(')31 13/6, $1 \mathrm{Y}^{2} 13$ 7/6, Al'Y10 40/-, ACY22 $4 /-2 \times 214 \% 16 /-2 \times 3 \times 1925 /-2 \times 7065 /-$
 C.W.O., P. N. Get. Mail only, S.A.E. list. M. HARVEY, 29 The Drive, Potters Bar, Herts.

COMPONENT BARGAINS

Silicon Bridge Rectifiers IA 400 P.I.V. encap-
sulated in cylinder sulated in cylinder lem by lcm.15/6
Unijunction transistor 2N2646...................12/2N2925 high-gain NPN silicon planar hie 235 min. 470 max,.. T/6 2N2713 NPN with low saturation voltage and good current gain up to 200 mA hfe 60 $8 / 6$ 2N1893 for switching at medium power 3 W Midget Plesser pots IM Iin,2/6 SCRs 400 PIV, IA9/9, 3A \qquad Cir-kit No. 3. Postoge and pocking 6d.

NESLO ELECTRONICS

(Dept. P.4), 53 GROSVENOR PLACE NEWCASTLE UPON TYNE 2

RECEIVERS AND COMPONENT\&

(continued)

0C71: 2/6! Send for free lists of our components and accessories. CROWBOROUGH ELECTRONICS, 3 Rotherhill Road, Crowborough, Sussex.

```
PADDED MOVING COIL HEADPHONES
                AND MIKE
NEW CONDITION
            HIGH QUALITY
        Bargain 13/.. Post Paid
    S.A.E. for Lists of other Bargains
    SALOP ELECTRONICS
    9a GREYFRIARS ROAD, COLEHAM
        SHREWSBURY, SHROPSHIRE
```

BC107, BC108, BC109. Transistors 6/- each 8.A.E. for details or cash with order. P. B ELECTRIC, 17 Bronson Road, London, S.W. 20 .

51	Q B B A D O	- B A D O			
	Burnley Road, Rawtenstall Rossendale, Lancs				
	Tel.: Rossendale 3152				
Ivage	Valves	Good	Emis	Gua	-
	1/6	30 P 4	T/-	30FLI	5/-
88	3/-	E891	1/-	PL82	$4 /$
CL80	3/6	EF85	5!-	PL36	$5 /$
	5/-	30PLI	5/-	PCC84	$4 /$
80	4/-	EY86	4/-	PY81	1
81	5/-	U301	$61-$	PY33	

Speakers, Ex T.V. 5 inch rnd. 3/6. $6 \times 43 / 6$. Min. post $2 / 6$.
BY100 and equiv. rects. with 10 watt res. 5/6.
Ekroball tuners, less cover can 9 -.
Push Bue Tr trans, U26 type 35 -, post paid. rectangular buttons 27/6. post paid. Postage on valves 60 d, over three, post paid.
S.A.E. with all enquiries. S.A.E. with all enauiries.

Closed July 21 st to August 5 th.
(continued)

SILICON PRODUCTS

2N3053, 10/6. 2N3055, 22/-. All 2N2926, 3/9. 2N696, 6/6. $2 N 697,5 /-. \quad 2 N 706,3 / 9$. Miniature N-Type, $25 \mathrm{~V}, 200 \mathrm{~mW}$, FET, $10 / 6$. 2NI302-9, all sypes, 4/6.
S.A.E. for full lists
C.W.O. Add.postage

PREMMIT LTD., Components Div.
31 Queen Anne's Gate London, S.W.I

REPANCO Transistor Coils and Transformer. for the Constructor. Send stamp for Iists RADIO EXPERIMENTAL PHODUCTS LTD., 33 Much Yark Street, Coventry.

DUXFORD ELECTRONICS

 DUXFORD, CAMBS.Silicon Rectifiers: 5 A (3) $70^{\circ} \mathrm{C}$ (no heat sink reguired). 400 P.I.V. 2/9, 800 P.I.V. 3/-, 1,250
P.I.V. $3 / 6$, I, 500 P.IV. $3 / 9.1 .24\left(50^{\circ} \mathrm{C}\right.$ (no heat P.I.V. 3/6,, 500 P. $10.3 / 9 . V$. $2 A / 90^{\circ} \mathrm{C}$ (no heat
sink required). 400 P.I.V. $5 / 6,800$ P.I.V. $6 / 9$, sink required). 400 P.i.V. 5/6, 800 P.I.V. $6 / 9$,
1,250 P.I.V.T/6, 500 P.I.V. B/4. $2.5 A(\Omega) 50^{\circ} \mathrm{C}$ (no heat sink required). 400 P.I.V. 6/, 800 P.I.V. 7/6, I,250 P.I.V. 8/3, I,500 P.I.V. II/3.
Potentiometers: Long life, low noise, $\ddagger W$ @ $70^{\circ} \mathrm{C}$. Body fin. dia., Spindle lin. \times tin. $1 / 9$ each. Linear: $1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}$, $250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2.5 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{M}$. Logarithmic: 5 k ,
$10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, \mathrm{IM}, 2.5 \mathrm{M}, 5 \mathrm{M}$. Jack Pluge (screened): Heavily chromed din. $2 / 9$ each.
Jack Sockets: With black or white bezel and chrome nut. 2/9 each, available with: Break/ Break, Make/Break, Break/Make, Make/Make contacts.
Transistor Mounting Pads: TO5 and TO18 Id. each.
C.W.O. P. \& P. //-

MINIMUM ORDER VALUE 5/-

ADROIT ELECTRONICS

Lord Alexander House
Waterhouse Street
Hemel Hempstead, Herts

TRANSISTORS			TRANSISTORS		DIODES, ETC.	
OC28		$4 / 6$	2N696	4/6	OA5	1/3
OC35		10/-	2N697	5/-	OAB1	1/3
OC36		8/6	2N706	4/3	OA200	2/6
0 C 41		2/3	2N711	$9 / 6$	OA202	3/6
0 O 44		2/3	2N2646	12/6	OA210	6/6
0 C 45		2/3	2N2926	2/6	BZY13	7/6
OC70		2/3	2N3053	10/-		
0 C 71		2/3	2N3055	19/-		
OC72		2/3	2N3702	4/-		
OC81		$2 /-$	2N3704	5/-		
OC139		2/6	2N3705	.. 5/-		
OC140		4/6	2N3706	4/6		
OC170		2/3	2N3708	$5 /$.		
OC171		2/6				

Send 9d. stamps for complete lists Transistors, Rectifiers, Integrated Circuits, Ete.

SMALL SILICON BRIDGES			
1A	$1.5 A$	$6 A$	$10 A$
$17!6$	$27 / 6$	$47 /-$	$60 /-$
$19 /-$	$40 /-$	$49 /-$	$65 / 6$
-	$42 /-$	$57 /-$	$80 /-$
$25 /-$	$45 /-$	$60 /-$	$85 /-$
$35 /-$	$55 /-$	$69 /-$	$95 /-$
		-	-

INTEGRATED CIRCUITS, RTL
Dual Buffer 35/

Dual J.K
$21 / P$ Gate
Cash with order please. Postage 9d. Airmail extro

TOP VALUE JN NEW SEMICONDUCTORS

silicon Transistors

Low noise high gain AF, NPN: BC109 6/-, 2 N3707 5/9; PNP: 2 N4058 $6 / 6$.

AF driver, NPN, BC107 (40 V 0.3 W) $6 /-2 \mathrm{~N} 3705$ (30 V 0.3 W) $5 / 1 \mathrm{I}$.
2 N 3053 (60 V W W) $7 / 9$ B B 885 (100 V 0.8 W) $12 / 9$
PNP low power O/P or driver, 2N3702 (25 V 0.3 W) 4/6, 40319 (40 V IW) 13/3
High Power O/P, NPN, 40465 (40V 70 W (t," $70^{\circ} \mathrm{C}$ case) $\mathrm{i} 6 / 3$.
RF amplifiers, oscillators, mixers: T $1407 \mathrm{~T} / \mathrm{F}$. T1408 $6 / 6$. T1409 $3 / 110$
High voltage, $120 \mathrm{~V} 0.2 \mathrm{~W}, \mathrm{C} 407 \mathrm{~g} / 6$. UHF $\mathrm{T} / 200 \mathrm{MHz} 2 \mathrm{~N} 3663 \mathrm{ll} / 3$.
Germanium Transistors
Low noise AF, PNP 2 G 308 6/9, high gain 2G309 7/9, low gain NKT265 3/8.
General Purpose amplifier, PNP NKT264 high gain (15V) 3/8, NKT214 (32V) 3/9 General Purpose switching, PNP ACY17 (60V), 8/3, NKT217 (60V) 7//, ACY22 3/6 High voltage PNP $320 V^{2} 5 \mathrm{~F}$ 2N3731 16/3. AF driver and O/P (low power) PNP NXT261 (= OC81, 82) 3/8 $2 \mathrm{~N} \mid 305$ 4/NPN 2NI 304 4/-.

Special types
TRIAC (SCR for AC) Sensitive-only 20 mA to trigger, 400 V max. 5 A rms max $41 / 6$ Sub-miniature BCI22, low noise AF/RF amplifier/switching. 7/6.

NEW RESISTORS

Carbon film, Low noise, Low drift.
12 values per decade covering the range from 4.7Ω to 10 Ma
$1 W 10 \%$ 2/- doz mixed, $15 /-100$ mixed, $13 /-100$ of one value.
$1 \mathrm{i} W \% 2 / 3$ doz mixed, $17 / 3100$ mixed, $15 / 6100$ of one value.
All mixtures are to your specified values. Large quantities stocked.
Quality Carbon Skeleton Pre-sets
All values $100 \mathrm{n}, 250 \Omega, 500 \mathrm{n}$, etc. to $10 \mathrm{M} \Omega$
All values available in vertical or horizontal mounting: $1 /-$ each. Volume controls: $100 \Omega, 250 \Omega, 500 \Omega$, etc. to $10 \mathrm{M} \Omega$ linear $2 / 6$ each
$5 k \Omega$, $10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$, etc. to $2 \mathrm{M} \Omega$ log., DP switch $5 / 3$ each
CIR-KIT trial pack No. 3, new price $12 / 6$
Accessories: $15 \mathrm{ft} \times \mathrm{tin}, 15 \mathrm{ft} \times 1 \mathrm{in}, 6 \mathrm{in} \times 12 \mathrm{in} 7 / 6$ each.
Peak Sound Stereo Ampifier kit: $\begin{array}{cc}\left.\begin{array}{l}\text { price reduced to } \\ \text { Power Pack }\end{array} \begin{array}{cc}10 \mathrm{gns}, \\ 63 / 0 / 0\end{array}\right\}, \text { P. \& P. 5/6 }\end{array}$
For full semiconductor data and equivalents, see our catalogue, price 6d,

TOP QUALITY - FAST SERYICE - 10% DISCOUNT OVER \&3
ELECTROVALUE 6 MANSFIELD PLACE, ASCOT, BERKSHIRE

BARGAINS IN SEMICONDUCTORS - ALL TYPES look at these values! \int PACKS
(20)

ECONOMY THYRISTORS

P.1.V. 1 Aus, 3 A пир 7 Amp $10 / 12$ Alb!
$\begin{array}{ccc}50 \mathrm{~V} & 5 /- & 10 /-\end{array}$
$200 \mathrm{~V} \quad 6 / 6 \quad 11 /-\quad 19 /-\quad 23 /$
$\begin{array}{ccccc}400 \mathrm{~V} & 8 / 6 & 13 /- & 22 / 6 & - \\ 800 \mathrm{~V} & - & - & 68 /- & 72 /-\end{array}$

$13 /-$
$12 /-$
$10 /$
$8 /$
$9 /$
101
$8 /$
10
10.

' X^{\prime} LINE MODULES
 (POST \& PACKING 1/-)

New hatred (erma, and Nijic
+2 STOG Flatus. NP N
Superhet type $1{ }^{2} 1,2$ and Mixer κ.TC
2 OC4s Mullard pair + OC815 Mri
Fairchild planar loCI13 NPN
$10 /-$
$20 /$

SAVE ERS RES

SPECIAL OFFER

I Watt S.T.C. 300 MC/S N.P.N. Silicon Planer. Transistors. With data. Limited Stocks. fl for 6.

3/- each. OC44, OC45, OC70, OC7I, OC8I, OC8ID, OC200, Get 16, Get 20.

4/- each. AFII4, AFII5, AFII6, AFII7, OCI70, OC171.

5/- each. OCl39, OCl40, Get 7, Get 8, Get 9, XC141, BYI00, OAS!.

ZENER DIODES

3.9 v . to 26 volt, $\frac{1}{4} w .3 / 6$ each, $1.5 w .5 /-, 7 w .6 /-$ each

Send 6d. for full lists: inc. S.C.R. Zeners.

BSY 27, 7/6 each. OC20, 10/each.

Cursors
 78 Broad street Canterbury Kent

8PEAKER8. Bin and Tin, 3 ohm 10/\%. EX brand new equipment. Many other sizes in stock. P. dP, 2/6 all, BAR KY HE゙ATH, 175 Newburg Gins., Stoneleigh, Surrey.

EXCLUSIVE OFFER Computer modules
 $\star 4$ INPUT NOR GATE 6 -6
 \star FLIP FLOP $\quad 15-0$
 * LAMP \& RELAY DRIVER 9.0
 * $9^{\prime \prime} \times 6^{\prime \prime}$ VEROBOARD 0.1" $25-0$
 \star CIRCUIT MANUAL
 7-6
 013
 BUILD COMPUTER
 CIRCUITS. ADDERS,
 COUNTERS, GAMES
 2/6 P.P. C.W.O.
 MODULES LEIGH-ON-SEA,ESSEX

TRANSISTOR PANELS

New boxed, size $9^{*} \times{ }^{6^{\prime \prime} \times} \times 1 \frac{1}{2}$ " with "salvo'"
transistors type $0 \mathrm{C} 45^{\circ}$ or similar, with full transistors type length leads, also an equal number of OAB5 diodes. H/S resistors, etc. Built on perforated board in a metal frame.
Panel of 20 transistors, diodes, etc. 20/-
$\begin{array}{lll}30-25 /- & 60-40 / \% \\ 40-30 /- & 70-45 /- & \text { Postage } 2 / \text { - per panel }\end{array}$ $\begin{array}{ll}40-30 \% & 70-45 \% \\ 50-35 \% & 80-50\end{array}$
Computer boards, two types average 30 planar epitaxial transistors. ZT. $70 B$ or equiv. 300 megs. ZENER DIODES
$2 \cdot 4 v, 2 \cdot 7 v, 3 v .3 \cdot 6 v, 4.3 v, 4.75 v, 5 \cdot 25 v, 5 \cdot 75 v$ $6.2 v$. $20 \mathrm{v}, 7.5 \mathrm{v}, 9 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}$, 16 v , 19 v . 20v $27 v, 30 v, 33 v$, mostly IW at $3 / 6$ each.
Pkes. of 50 transistors all new, unmarked and untested $10 /$-pkt. $50 /$ for 6 pts.
Polystyrene Capacitors. 350v. 680. 820, 1,800, $2,200,2,700,5.600,6.800,0.018,0.022,0.033$. $\begin{array}{lllll}125 \mathrm{v} . & 1,000,1,200, & 1,500, & 1,800,3,300,3,900 \\ 4700,8200, & 0.012, & 0.015,2 \% \text { dozen any select }\end{array}$ 4,700, 8,200, Sinks low finned, $5 /=$. Miniature dion. Heat Slays, $1 \times t^{\prime} \times \$.950$ ohm, 2 pole change over Relays, Electrolytics, 5,000 MFD, 50v. 6/6. 1,000 MFD, 60v. $5 /=1,000$ MFD. $30 \mathrm{v} .4 / \mathrm{F} .3,000 \mathrm{MFD}$. 10v. 2/. Gold Bonded Diodes, $75 v$. P.I.V. 75 mA . Cards of 25 , $10 /-$. Wire Wound Pots 5 . $10,25,50,100,250,500,1 \mathrm{k}, 2 \mathrm{k}, 2 \cdot 5 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}$, $20 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}$, not presets, $2 /$ - each, 5/-; OA8I $2 /=$ Minimum order $5 /$-. post $1 /$.
NEW CROSS RADIO
6 OLDHAM ROAD, MANCHESTER 4

PHOTOELECTRIC KIT

Build 12 EXCITING
PHOTOELECTRIC DEVICES
on a Printed Circuit Chassis
CONTENTS: 2 P.C. Chassis Boards, Chemicals Etching Manual. Infra-Red Sensitive Photocell Pot. Terminal Block, Elegant Case. Screws etc. In fact, everything you need to build a simple but efficient Phato-Switch/Burglar Alarm/Counter, ecc. (Prolect No. I shown below) which can be modified for modulated light operation (Projects Nos. 2 \& 3).
 PHOTOELECTRIC

Also Essential Data, Circuits and Pians for building 12 PHOTOELECTRIC PROJECTS. (I) Simple Photo-Switch. (2) Modulated Light Alarm, (3) Long Range Stray-Light Alarm. (4) Relay-less Alarm. (5) Warbling-Tone Alarm.
(6) Closed-Loop Photoelectric Alarm. (6) Closed-Loop Photoelectric Alarm. (7) ProMector Lamp Stabiliser. (8) Electronic Prolector Modulator. (9) Mains Power Supply Unic. (10) Automatic Car Parking Lamp Controller. (II) Alarm. (12) Car Automatic Headlamp Dipper Alarm. Kit: 39/6. Post and Packing 2/6 (U.K. OPTICAL KIT
Everything needed (Except plywood) for building I Folded-Beam Prolector and I Photocell Receiver to suit PHOTOELECTRIC PROIECTS. CONTENTS: 2 lenses, 2 mirrors, Infra-Red Filter, 245 deg. Blocks. Projector Lamp Optical Kir: 19/6. Postare and Pa

ExPPRMMENTEP'S PRNTTED CIRCUIT CHASSIS KIT

BUILD 40 TRANSISTORISED PROJECTS on a printed circuit chassis with pares and ifiers, Scientific Devices, etc., etc., to suit everyone's needs and interests. The kit comprises 4 assorted PC laminate boards, etchant, resist. solvent, degreaser, 16 -page etching manual "Printed Circuits for Amateurs," 2 miniature Radio Dials. Also Essential Design Data, Circuits and Printed Circuit, Chassis Plans for building.

40 SUGGESTED PROJECTS

Many recently developed circuits published for RADIOS IN THE WORE THE SMALKEST ${ }^{3}$ (.70 $\times .70 \times .55$ in) Wristwatch Ring Radio - 80 in.), Poscage Stamp Radio ($1.6 \times 95 \mathrm{in}$.) Recently invented Triple Reflex with selfadjusting regeneration. (Pat. Pen.). Neutralised Double Reflex. Pocket Transceiver (licence required). Solar Loudspeaker Radio, Bacteria Powered Radio. Control of Models by Induction (not radio). Light-Seeking Robot. Guided Missile. Electronic Man/Woman Discriminator. Perpetual Motion Machine. 4 Pocket Transistor Radios. 4 Amplifiers. 2 Intercoms. Burgiar All designs suit PC boards enclosed.
Price of Kit: $8 / 6$. Post and Packing $1 / 6$ (U,K)
Send o S.A.E. for full details, o brief description and Photogrophs of all 52 Radia, Electronic and Photoelectric Projects. Assembled.
"'YORK ELECTRICS"'
33 YORK ROAD, LONDON, S.W.II

RECEIVERS AND COMPONENTS
(continued)

SILICON TRANSISTORS, ETC.

Medium Power, 250 mW - 600 mW

| 2N696, $6 / 6$. | $2 N 697,5 /-$. | $2 N 706,4 / 3$. |
| :--- | :--- | :--- | :--- |
| $2 N 3702 / 6 / 8 / 9 / 10,4 / 6$. | $2 N 3703$, | $5 /-$ | 2N3702/6/8/9/10. 4/6.

2N3703, 5 /-
2N3704/5/7, 5/6.
High Power, 5W-Il5W

	Veb.	Ic.	Pd.	Each
2N3053	40	0.5 A	5 W	$11 /-$
2N3055	100	$15 A$	115 W	$21 / 6$
$2 N 3738$	250	$3 A$	$20 W$	$37 / 6$

Single Phase Silicon Bridges Full range from 1 Amp to 16 Amp, 25 PIV to 600 PIV, S.A.E. for list
C.W.O. Add postage

RECTRA COMPONENTS LTD.
25 Victoria Street London, S.W.I

This set is made up of 3 separate units: (1) it two valve amplitier using o 6 V f output valve: (2) (some only, no, hait in the very latest molels) a V.H.F. trinnrecuver covering $229-241$ Me/a using 4 valves in two switched 4i-8 Mc/B (approx. 160-37.5 beiow 2-4 $\ddagger \mathrm{Mc} / \mathrm{s}$, ank For R.T., C.W, and M.C.W mebres) using 9 valves heterodyne having $1 \mathrm{IL} . \mathrm{F}$. st:uge, frequeticy chatger, two I.F. ($465 \mathrm{ke} / \mathrm{a})$ sighal detector, A.V.C. aimi output stage. A B.F.O. included for C.W. or single side.band reception. T.N. output valve 807 , othe valven octal bases. Many extras, e.g. netting switeb quick Hick dial settings, squelch, etc. Yower re guireinents L.T. 12 volit. H.T. receiver $2 \overline{0} 5$ volts d.c. H.T. trinsmituer 500 volta d.e., size appox ns new circuite ouls $\$ 4100$ or Girale a sightly umed 30/- carriace hath $15 / \mathrm{m}$ A FULL KIT of brat
set including ath commectors, control box hents for this and mike, aerial tuning unit, coonxial tead, etc, at G日ly $45 /$-crriage $5 /$. WE MAKE A MAINS $200 / 250$ VOLT POWER UNIT in louvred metal ease toplag irect into set power socket to run (1) receiver, $70 /$
 VOLT D.C. P.U. for receiver, $50 /-$ earriage $5 /=$ A charge of $10 /$ - to mupack and test the recevier of

V.H.F. TRAMBRECEIVER MK. 1/1

This is a modern seli-containcd tunable V.H.F. ow powered frecjucncy modulated transrecelver for R.T. cotmmunication up to 8-10 miles. Made for the Minfury of supply int an extrenely high cost by well known British makers, using 15 midget B.G. 7 Vaves, receiver incorporating R.F. amphifier. with the dial calibrated in d. Sow-motion tuting apart. The frequency correred is $36-48 \mathrm{Me} 200 \mathrm{kc} / \mathrm{s}$ has huilt-in Crystal calibritor which Me/s. Also coincide with marks on the tuning ilial. Power required L.T. 4; volte, H.T. 150 volts tapped at 90 volis for receiver. Every set supplied complete with valves and eryatals. New In carton, complete with iuljustable whip aerial and circuit. Price 30/- . Carringe $10 /-$. Heamiset or hatnd telephone A. C input ernal power unit stathilised for 200/250 A.C. input, $\mathbf{2 6}$.10.0 extria.

RECEIVERS AND COMPONENTS
(continued)

150 NEW A88ORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc Carbon, Hestab Vitreous, $\frac{1}{2}-20$ watt, 12/6. Post Free. W'HIT SAM ELECTRICAL, 18 Woodrow Close Perivale, Middlesex.

MICROMINIATURE MICROPHONES

Sensitive dynamic type. Will pick uprustle of newspaper from 30 feet.
Size $9 \mathrm{~mm} . \times 9 \mathrm{~mm}, \times 3.5 \mathrm{~mm}$. Size $9 \mathrm{~mm} . \times 9$
Impedance $\mathrm{I} \times \mathrm{Q}$.

ONLY 28/6
Post free-C.W.O
SHOWN
FULL
MICRO DATA SYSTEMS
30 BAKER ST., LONDON, W.I

NEW HI-GAIN EXPORT VHF/FM AERIALS FOR MONO/STEREO

Full band width spacing

- High forward gain
- High frone to back ratio
- Fibreglass moulding
- Universal clamp for up to $2 \frac{1^{\prime \prime}}{2}$ masts The perfect answer to Mono/Stereo FM reception
- HGFM/3 3 element 60
- HGFM/4 4 element 75/-(Illustrated)

ALSO HIGH PERFORMANCE UHF 625 COLOUR AERIALS
Type C 5003 element $25 /-~$
Type C 5707 element
Type C 51010 element $30 / 6$
$\begin{array}{ll}\text { Type C } & 514 \\ 14 & \text { element } \\ 47 / 6\end{array}$

- Full range of masts and fittings on request
- State channels required when ordering
W.O. or C.O.D. p. \& p. 4/6d.
"C" AERIALS LTD.
14.15 QUARRY STREET, GUILDFORD, SURREY TEL.: GUILDFORD 67704

Get a PHOTAIN B-A ELECTRONIC BURGLAR ALARM UNIT

E8.19.6
complete
P. \& P. 3/6)

PHOTAIN
MITED (K)

[^4]Solve your communica. tion problems with this gew 4-8tation Transiator Infercom (1 master and 8 Subs), is de-suxe plastic cabinets for deak or wal mounting. Callitalk/listen from Manter to Subl and Subs to Master. Ideally suitable for Business, Surgery, Schoole, Hospital, Office and Home. Operates on one 9V batters. On/off switch Volunie control. Complete with 3 condecting
other accesmories. P. \& P. 6/6.
 Originally 6 gne
ouncici,
oni. 57.6

Modernise lusiness or home with thie new two-way Portable Traniator Intercom. ('ousistiug of Master and Sub. in strong plastic cabinets, for deak or wall. Designed an a two-way instant communication systens. Call/talk/histen hom Master to Sub and sub to Master. Operaten ou one 9\% batter

Why not boost business effeiency with this incredible De-luxe Telephone Amplifier. Take down long tele phone messager or converse without bolding the bandset. Indisperasible in ciftice/hume. On/ort switch. Volume Control. Operates on one 9 V . battery. P. \& P. $2 / 6$. Battery $2 / 8$ extra.
Full price refunded it returned in 7 dass.
WEST LONDON DIRECT SUPPLIES (PE/8) 169 KENSINGTON HIGH STREET, LONDON W.8.

Eesiatora
EW, 10\%, Hizh stali. (Hass 1 lan muise a/- per doz. As above maseortcal valucs
Capscitor
rin. Electrolytics assurical whes
Polystyrene up to
up to 0.022 uF
Polyester innl foil (sec list for aletails) fromi 6/- per doz. Transistore (Sce list for conipicte eclectina) Matched output kit. OC811) $+2 \times$ OC81 $7 / 6$ pur bet Type 1020 PNP Germanium, AF, $50 \mathrm{~mW} 8 / \mathrm{per}$ dor. Type 1024 PNP Germanium, JFF, Typ. $4 \mathrm{Mc} / \mathrm{P}$
 Sllicon Epita xial Planar HC108
Ampliter
Watt into 8 ohms from Xtal P U. $2 V$ supply

LOW-COST PLANARS
DISCOUNT PRICES (in brackets) when you buy FIVE OR MORF OF SAME TYPE. First grade, o surplu

$\begin{aligned} & \mathrm{BC} 107 \\ & \mathrm{BC} 109 \end{aligned}$	$\begin{aligned} & 5 / 6(5 /-) \\ & 5 /=(4 / 6) \end{aligned}$	$\begin{aligned} & \text { ME/HKIOI hie }= \\ & 30-60 \quad 2 /-(1 / 9) \end{aligned}$
2N2926 hf	fe $=-$	50-100 2/3 (2/-)
55-110	3/- (2/9)	$90-180$ 2/6 (2/3)
$90-180$	3/3 (3/-)	$150-450$ 3/- (2/6)
150-300	3/6 (3/3)	ME/HK301 hie $=$
235-470	3/9 (3/6)	$20-60 \quad 2 / \%$ (1/9)
2N3702	4/3 (4/-)	$50-100 \quad 2 / 3$ (2/-)
2N3704	4/6 (4/3)	$90-180 \quad 2 / 6$ (2/3)
2N3707	5/6 (5/-)	$150-450 \quad 3 /-(2 / 6)$

B-5000 25 W npn silicon audio power $10 / \mathrm{F}(9 /-)$
2SB187 hi-gain pnp germanium $200 \mathrm{~mW} 2 /-(1 / 9)$
9V BATTERY ELIMINATOR KIT: builds into space of PP6. PP9, etc. Mains trans. FW

MINIATURE AMPLIFIER KIT AMAKIT ONE. Now contains ALL components for low power transformer less class B amp. Operates 3-12V. State voltage when ordering. IS/-ic
TRF PACKAGE. Matched set of 4 silicon TRF PACKAGE. Matched set of 4 silicon
transistors and cce. for easy, sensitive $M W / L W$ transistors and sec. for easy, sensitive MWI
set. II/FiERS: $1 \$ 557$ sil., 800 piv, $500 \mathrm{~mA} \mathrm{3/6}$
RECTIFIERS RECTIFIERS: IS557 sil., 800 piv, $500 \mathrm{~mA} 3 / 6$
(3/-). Miniature flat-pack 30 V rms selenium (3/-). Miniature flat-pack 30 V rms selenium
bridges: $150 \mathrm{~mA}, 4 /=700 \mathrm{~mA}, 7 /=$
 $9-0-9 \mathrm{~V} 80 \mathrm{~mA}$. $11 /$.
C.W.O. Mail order only. Post paid over $5 /$ -

AMATRONIX LTD

396 SELSDON ROAD, CROYDON SURREY. CR2 ODE

HIGE SPEED MAGNETIC COUNTERS ($4 \times 1 \times$ P. 8 P. 1

RE-SET H.S. MAGNETIC COUNTERS ($3 \times 1 \times \frac{1}{2}$. 3 digit. $12 / 24 / 48 \mathrm{~V}$. (state which) 32/6 eath. P. d P.2/6
 2/6 each. 5 for $10 /-$
PRINTED CIRCUIT CONNECTORS', 13 way 'in-line', Gold Plated Pins. $4 / 6$ Pair. P. \& P' 64.

BULK COMPONENT OFFERS
100. Capacitors (latest types) bopFraishr types) 200 Carbon Resistors if \& 1 W .
$60 \mathrm{H} / \mathrm{gh}-\mathrm{Stab}$ Resiators $\ddagger . \$ 1 \mathrm{~W}$
100 Ceramic Capacitors 2- 1000 pl
25 Vitreous W/W Resistors (5
12 Preciblon Resistora (11°).
12 Preciblon Resistora (15
5 Close Tolerance Caps. AN: 5 ITEMS 22.
SILICON CONTROLLED RECTIFIRRS, CRS $1 / 30$ 360 P.I.V. 1 amp) 7/6 each. CRS $3 / 40$ (460 F.I.V. 3 amp) 10/. each
THYRISTOR LAMP DIMMER/SPEED CONTROL KITS. 200 watt kit. 27/8, P. P. $2 / \mathrm{L}$; 500 watt kit 37/6. P.P. 2/6.
ELECTROLFTICS $100 \mu \mathrm{~F}, 60 \mathrm{~V}$. $2 / 6$; $200 \mu \mathrm{~F}, 250 \mathrm{~V}$. $8 / 6 ; 100$ \& $400 \mu \mathrm{~F}, 276 \mathrm{~V}$. $6 / 6 ; 560 \mu \mathrm{~F}, 100 \mathrm{~V}$, $4 / \mathrm{F}$ $1000 \mu \mathrm{~F}, 50 \mathrm{~V} .5 /-3000$

PATTRICK \& KINNIE 81 Park Lane Romford, Essex ROMford 44473

CRESCENT RADIO LTD.
ELECTRONIC COMPONENT SPECIALISTS
40 Mayes Road, Wood Green, N. 22
Telephone : BOWes Park 3206
A.M. RADIO TUNER, MW/LW 2 valve with ferrite rod aerial, 11 in. $\times 44$ in, front panel. Complete with dial. Power PRICE ONLY C3.5.0. No Postage.

PHOTOCONDLARD
 ORP. 1

TRANSISTOR BARGAINS
2G339/A 1/6 each
2G339/B $+2 G 378 / B$ matched $4 /-$ the pair
3/- each

AC127	3/- each
OC35	$8 / 6$ each

SPECIAL LINES
Mains Neons if inch round fixing Red.
Yellow and Green
120 a $50 \mathrm{~m} / \mathrm{a}$
way group boards 1/6 each
Midget 10 volt eransformers \quad 2dil each
50 yards Insulating tape $\quad 3 / 3$ each
8 ohm earpieces $1 / 6$ each
PRINTED CIRCUIT BOARD

9×5 inch	1/11 each
6×5 inch	1/6 each
12×3 inch	1/6 each
8×51 inch	1/9 each
Vero Board	
Vero Kit. 5 boards I spot, face cutter	9/9 each
Vero Board 5×21 inch	3/11 each
Vero beard 32×38 inch	3/11 each
34×21 inch	3/3 each
5×38 inch	5/6 each
Vero Pins	3/- for 50

We have a large stock of electronic components and feel that a visir to our premises would be to Please include postage with orders.

FAIRCHILD

AMPLIFIER SILICON PLANAR
TRANSISTOR PACKS (P.E. JUNE 1967) AS DEMONSTRATED AT AUDIO FAIR
A.F. $10 \quad 8-10$ W. $\quad 29 / 6$ $\begin{array}{llr}\text { A.F. } 11 & 20 \mathrm{w} . & 67 / 6 \\ \text { A.F. } 12 & 30 \mathrm{w} . & 120 /-\end{array}$ (All with Circuits
Preamplifier circuits and pack on request. We specialise in FAIRCHILD components.
Let us know your requirements.
S.A.E. for List of Transistors and other components.
VIBRAY MOULDINGS LTD.
3 Kings Road, Slough, Bucks
(Mail Order Only)

WENTWORTH RADIO

BAR 3087
104 SALISBURY ROAD, HIGH BARNET, HERTS.

ACY31 14/- ARYS

Suppliers of High Quality Semiconductors
$10 /-\mid \mathrm{BCY} 43$

$1 / 8$	BCZ11
$4 / 3$	BFY
1	

$4 / 5$	BFY!
-1	BFY20

$\begin{array}{ll}: 1 \\ 5 / 3 & \text { BFY20 } \\ \text { BFY2 }\end{array}$
18/- BFY\&4

	B45\%		21	$9 /-$	NKT211	$5 /-1$	NKT226	9/-1	3
14/3	BSY52	19/6i	NKT122	$6 / 5$	NKT212	$4 / 7$	NKT227	8/6	N KT2\%3
1913	Buy 53	221-	NKT123	$5 / 3$	NKT213	4/9	NKT22H	4/4	NKT274
19/6	BNY 55	321-	NKT124	x/5	N KT214	:3/9	NKT237	$8 / 3$	NKT275
127/6	BSY 5 t	34/-	NKT125	$5 / 4$	NKT215	$3 / 9$	NKT23N	$5 \mathrm{j}-$	NKT242
27/3	BSYes	241-	NKT120	$5 / 2$	NKT21d	H/6	NKT239	$5 / 5$	1
13/3	Bscins	281	NKT127	$8 / 11$	NKT214	$8 /-$	NKT240	4/7	02
13/-	BSY40	22/-	NKT128	$6 .-$	NKT214	4/4	NKT241	5/7	03
22/6	BSI95A	716	NKT129	$5 / 2$	NKT2	4/10	NKT242	4/-	4
20/-	BUY10	421-	NKT14]	bi)-	NKT221	4/11	NKT244	4/1	51
$301-$	BU\11	£7.10	NKT142	a/2	NKT222	4/3	NKT245	4/6	
15/-	MAT100	7/9	NKT143	$51-$	NKT22241	30/-	NKT261	3/6	
13/6	Matiol	8/6	NKTlit	$4 / 11$	NKT223	4/4	2	$3 / 6$	
12/9	MAT120	$7 / 9$	NKT163	4/11	NKT2231	30/-		3/6	
19/-	MAT12t	8/6	NKT1i4	4/11	NKT224	3/9	N KT264	$3 / 6$ $3 / 6$	NKT402
23j	NKT0003	12/-	N NT 202	$10 / 11$	NKT2242	$30 /-$	5	3/6	

$5 /-1$
$4 / 7$
5) NKT226

NKT22~ 9/-|NKT2
NKT237 4/3 NKT274
9 NKT23N $8 / 3$ NKT27
/6 NKT239
/4 NKT240 4/7 NKT30
4/4

$7 / 6$ BSX28
7/10 BHY24
7/6 BNY25

$19 / 6$	B8 Y 29
$8 /-$	B8 Y 39

SIX PAGE LIST NOW AVAILABLE. S.A.E. TERMS, CASH WITH ORDER. P.P. ADD 9d.
SEMICONDUCTORS AND MAIL ORDER ONLY, WE REGRET, NO CALLERS.

the Wyndsor Vanguard . . . the most versatile

 recorder at its price* offering so many outstanding features . . .The safest, quick and handy connector for electrical appliances

Rey̌iniectar

Only $5 \times 3 \times$ litins. the MAINS KEYNECTOR combustible is made of nonDerain modern style and eliminates the need of terminating the mains input lead of any electrical instrument or appliance with a plug. Also enables more than one appliance to be connected in parallel and used simultaneously.
Colour: Duo-Green Rating: 13 amp .
Duo-Grey
British and Foreign Potents applied for
CYBERNAUT CONTROLS LTO. (Ref. P.E.5), 28-30 Rivington St., London, E.C. 2

TECHNICAL TRADING Co.

All items previously advertised available, also see items advertised in Practical Wireless. Huge HiFi and Components stocks at all branches.

ROBOPHONE ORDERS Your C.O.D. order exceeding tl_{1} ean be telephoned to
BRIGHTON 680722
at any time day and night

JASON TAPE

Top British

Standard Play		Double Play	
$3{ }^{*}$	150 ft . $2 / 3$	$3{ }^{3}$	300ft. 4/-
4*	300ft. 4/8	4*	600ft. B/-
$5^{\prime \prime}$	600tt. 7/8	$5{ }^{\circ}$	1200ft. 15/-
51*	900 ft . 10/6	54"	1800ft. 18/6
7"	1200ft. 13/6	$7{ }^{*}$	24001 t . 27%
$3^{*}{ }^{\text {Long Play }}$,		Triple Play	
		4**	900ft. 13/-
4*	450 ft . $\quad 5 / 6$	6 "	1800ft. 25/-
$5^{\prime \prime}$	9001t. 10/6	57°	24001t. 34/-
E! ${ }^{\circ}$	1200ft. 13/-	$7^{\prime \prime}$	3600tt. 44/-
7^{*}	1800ft. 18/6	Quadruple Play 600 ft	
Port 1/-			

10 TOTTENHAM COURT RD., LONDON, W.I Tel.: MUS 2639
350/352 FRATTON RD. PORTSMOUTH. Tel: 22034
72 EAST STREET, SOUTHAMPTON. Tel: 25851
132 MONTAGUE STREET, WORTHING. TEL: 2585
PARK CRESCENT PLACE, BRIGHTON

VALUABLE NEW HANDBOOK F1 E COAMBITIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Elvectronic Lng.Gen. Electronic Eng.-Applied Electronics - Practical Electronics-Radar Tich.Frequency Modulation Transisiors.
ELECTRICAL ENG:
Advanced Elecrrical Eng.General Electrical Eng. Installations - Draughtsmatrship - Illminuating Eng. Refrigeration - Ehem. Elec Scionce - Elec. Supply Mining Elec. Eng. CIVIL. E.NG.
Advanced Civil Ens.General Cibil Eng. - Mmicipal Ling. - Structural Eng. -Sanitary Eng.- Road Ens. - Hydraulics -- Mining Water Supply - Petrol Tech.

RADIO ENG. Advanced Radio - Gencral Radio-Radiod TV Servicing - IV Linginecring - Tolecommumicathons - Sound Recording - Amomation
practical Radio - Radio Amathus` Examination.
MECHANICAL IENG
Advanced Mechanical Eng. Gen. Mech. Fng.-Mamtenauce Eug. - Diesel Eur. press Tool Design - Sheret Alctal W'ok - Wetding Eng. Patrern Making Inspection - Draughtmanshif - Metallargy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng. Gineral Auto. Lins. - Auto Maintenance - Repair Atho. Diesel Maintenance Alto. Electrical EquipmentGarnge Management

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., A.M.I.Mech.E., A.M.S.E., A.M.I.C.E., A.S., B., A.M.IP.E., A.M.I.M.I., A.R.I.B.A., A.IO.B., A.M.I.Chem.E.I A.R.I.S.S., M.R.S.H., A.MIIED. A.M.IMUN.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW so get a betzer paid, more inseresting job.
t HOW to qualify for ropid promotion.
* HOW so put some lesters ofter your name and become a key man .. . quickly and easily.
* HOW zo benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
t HOW, irrespective of your age, educasion or experience, YOU can succeed in ony branch of Engineering. 132 PAGES OF EXPERT CAREER - GUIDANCE

PRACIICAL

 EQUIPMENTBasic Piastical and Theore tic Courses for beginners in Radio. T.V. Electronics. Etc A.M.I.E.R.E. City \& Guilds Radio Amateurs Exam. R.I.E.B. Certificate P.M.G. Centilicale Practical Radio
Radio \& Telerision Servicing Practical Electronics Electronics Enginecting Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

3al. stamp if posted in an unsealed phselope.

TO B.I.E.T., 3I6A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a PREE copy of "ENGINEERING
OPPORTUNITIES." I am interested in (state subject, exam., or career).

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

NEW SOLID STATE HIGH FIDELITY EQUIPMENT IMPROVED PERFORMANCE - NEW STYLING - NEW MODELS - MONO \& STEREO

MP8. Mono preamplifier. All silicon low noise zener stabilised circuit. Full range
of controls-fully equalised input for xtal pu. dyu/xtal mic. radio tunerg of coutrols-fully equaliged inputs for xtal pu, dyu/xtal mic. radio tuners,
tand preamp. replay. Supplied built and tested on metal chassis complete with grey/silver front patue, alu. knols ant haulbook. Output 250 mV. Supply 12 to

SP8-2. Muno/stereo priamplitier. I'ses 8 silicrn/germanium devices. Zener stabilised. Completely new low noiac lesign. Full range of controls and filters. Inputs for magnetic/xtal/ceranic cartritges, radio tuners, tape preamp. microphones, (tape heatl, etc. Record outpat socket. Nupplied built anll tested on metal chassis with grey/silver frout janel and matching knobs. Complete with input sockets and handbook. Output $2 \overline{50} 0 \mathrm{~m}$ Ver channel. Supply 12 to 60 wolts 4 mA . Overall gize 12 k

 8P4. Mono/stereo preamplifter as previounly advertised. (complete with iront panel and knobs. Nize 4×3, 18 in
\$P4 Price 810.19 .6, P.P. $3 / 6$.
MPA12/3 and MPA12/15.
5. 12 wa Improved reaponse and. 12 watt power amplifiers for use with above preamplifiers. lmproved response and jerformance with even lower distortion levels. MPA12/3 for 3 to 5 whm speakers, $24 / 28$ volt supply. MPA12/15 for 10 to 16 ohm speakers, $40 / 45$ volt supply, uses 8 silicon and germanium devices. Inputs 100 mV for 12 watts, response 士 $1 \mathrm{llB}, 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{ke} / \mathrm{s}$. THD $0-2 \%$ at 12 watts. High gain stable puah-pull ontput designs. Built on to metal chassis as illustrated. Overall size $5 \times 2 \times 34 \mathrm{in}$. Complete with handbook. MPA1e/3 Price \$4.10.0, P.P. 2/6

MPA12/15 Price $\mathbf{L b}_{5} 5,0$, P.P. $2 / 6$
MPA12+12. Twin amplifier for monofatereo use with above preamplifers. Consista of two matched MPA12/15 ampliflers (are above) on single chassis. Output for 10 to 16 ohm speakers. $40 / 45$ volts supply. Overall size $10 \times 2 \times 3!i \mu$

MPA12+12 Price \& $^{2} .19 .6$, P.P. 4/-
MPA85. 25/30 watt power amplifer for use with above preamplifters. New design and layout with improved response and overall performance. Output for 71 to 16 ohm
speaker aystems. Input 180 mV for full output. Push-pull speaker aystems. Input 180 mV for full output. Push-pull circuit. Uses 10 silicon and germanium devices. Supply $50 / 60$ volts. Overall size $8<2 \times 3 \mathrm{f}$ in.

MPARS Price $\mathbf{2 7 . 1 0 . 0}$, P.P. $3 / 6$
XP2 and X84. New preamplifer modules for use where controls of above preamplifiers may not be necebsary. XP2 Mono. X84 Stereo. Input 47 k 4 mV . Equalisation RIAA for mag./dyn. cartridges, also tape head for $1 \% \mathrm{in} . / \mathrm{sec}$. to $7!\mathrm{in}$./sec. and also 50 k khm dynamic mic. Sufficient output to drive power amplifiers direct, aleo headphones. 9 volt operated. XP2 Price 45/-, P.P. 1/6. X84 Price 70/-, P.P. 1/6.

THE FINEST VALUE IN HIGH FIDELITY-FULLY GUARANTEED CHOOSE A SISTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

CHOICE OF

 PREAMPLIFIERS MAINS UNITS POWER AMPLIFIERS 12 WATTS MONO TO 60 WATTS STEREO
MANRS DNITS

 used. Fully smoothed aput. AC/DC MU series has additional choke capacitor flitering and panel voltake selectors. All types on metal chassie. P824/40. Output 24 and 45 volta 1 anp. For use with 1 or 2 MPA12/3.MPA12/15, or 1 MPA12 +12 . Price 701-, P.P. $3 /-12$ Price 70/- \quad P.P. 3/-
24 and 45 volta 1 ampthed. Output or 2 MPAl2/3 and MPAIt $2 / 15$ or 1 MPA12+12. Price 87/B, P.P. 3/6. MU60. Choke smoothel, Output 50 volts 1 anp. For use with 1 or
 $\mathrm{MP3}+\mathrm{MPA12/15+}$ PS_{40}
MP3+MPA12 \quad 214.12.B, P.P. 6/6 $\underset{\text { PS24 }}{\text { MPA12 }} 13+$ MP3 + MPA $25+$
MU60
SP6-2
213.17.6, P.P. 6/6 218.5.0, P.P. 8/
or 2 MPA19
OPA
2MPA12/1
$+\mathrm{MU}^{2}$
 + MU24 MPA12/3
+26.15 .0, P.P. $10 /$ 6-2 +2 MPA25 $+\mathrm{MU60}$ $\begin{aligned} \mathrm{AP} 4 & +2 \text { MPA } 12 / 15 \\ + & \text { PS } 40\end{aligned}$ + PS40
3 P 4
+2 MP

+ 4 +2 MPA12/3
+ PS24 MP3+2 MPA12/15 $+\mathrm{MU4}{ }^{+}{ }^{2}+2$ MPA12/3 +3 +2 MP
+MU 24

16-PAGE BROCHURE FREE ON REQUEST

[^5]
7-TRAMSI8TOR

MW-LW 8UPERHET NEM!
New printed circuit deaign with $\frac{1}{y}$ watt fult power output. Fully tunable on both mw/ pull circuit. Fitted 5 inch speaker, large ferrite aerial and Mullard transibtors. Easy to build with terrific results. All local, pirate and continental stations. Handbook free TOTAL C08T. 19.6 P.P. on request To BUILD $\leq 6.19 .63 / 6$

TOURMASTER TRANSISTOR
7-Tranaintor MW/LW Car Radio. 12 volt operated. 3 watt output. Push-button wavechange. RF stage. Supplied built, boxed, ready to use with speaker and Batfle. Car Axing kit and manufacturers' current
guarantee, Special Bargain Offer. Buy Now! LIST PRICE If GNS. 17.196 P.P.

VHP FM TUNER TO BDILD 87/105 Mc/s Transistor Superhet. Geared for valve or transistor ansplifiers. $4 \times 3 \pm x$
 Transistors, Plus 4 Diodes. (Cabinet Assem-
 FK 8TEREO DECODER 7 Mullard Transiators. Printed Circuit Design with Stereo Indicator. For use with any valve or tranaistor F'M. Uses pot cores to Mullard deaign and ger. and silicon tran-
sistors. Leaflet on requeat. As used by B.B.C. sistors. Leaflet on requeat. As used by B.B.C.

and G.P.O. | and G.P.O. |
| :--- |
| Cormplete Kit Price |

BUILD A QUALITY 2 OR 4
TRACK TAPE RECORDER TRACK TAPE RECORDE 3-apeed version uging '888' decke
TWO-TRACK. Deck 210.10 .0 . Martin Amplider. 14.19.6. Cabinet and apeaker 7 gns. Complete kita with FREE 7in. 1200ft. tape, spare spool. 27 gins.
Today's Value e45. - FOUR-TRACK. Deck 18.10 .0 . Martin Amplifler ti5.19.6. Cabinet and speaker 7 gns . Complete kits with FREE 7in. 12001 t. tape, spare epool. 30 gns.
Today's Value $£ 50$.

BUILD TEESE PW/PE DESIGF EXPLORER (less chassis)
or with drilled chagsis
MULTI-BAND SUPERHET PHOTO FLASH SLAVE UNIT HOLID STATE IGNITTION
(Post and Packing 2/6 extra

MAYFAIR PORTABLE ELECTRONIC ORGAN

NOW AVAILABLE AS: PLOMPLETE KIT OF PARTS BUILT AND TESTED PRE-BUILT ASSEMBLIES.
REVERBERATION UNITS AND RECOMMENDED SPEAKERS AND AMPLIFIERS IN STOCK. Deaigned by
L. W. ROCHE

STRAIGHT FORWARD TO BUILD AND TUNE-EASY TO PLAY-FULLY GUARANTEED. ALL PAATS AVAILABLE SEPARATELY-ASTOUNDING VALUE AND PERFORMANCE. Start to build for as little as £5.
Plug-in printed circuits I70 transistors and devices selected tone colours Fully sprung keyboard Vibrato 6 Octaves of generators Simple locked-in tuning 110/250 volt mains unit Cabinet size $30{t^{\prime \prime}}^{\prime \prime} \times 15 \frac{1}{2}^{\prime \prime} \times 9^{\prime \prime}$ Weight 35 lb . Cabinet with detachable legs, music stand and foot swell pedal Fully detailed building manual with photos, drawings and full circuits.
COMPLETE RANGE OF ORGAN PARTS IN STOCE. H.P. FACILITIES AVAILABLE TRADE/EXPORT SUPPLIED, FULLY DETAILED LEAFLET AND PRICE LIST ON REQUEST. CALL FOR DEMONGTRATION AND PLAY THE MAYFAR.

RELAYS, MOTORS, 8WITCHES, MDIATURE COMPONENTS,
TRANSISTORS AID DEVICES

HiBComplete range in stock all types for every purpos
Complete range in stock alf types for every purpose. Also pauel and tranaistors, tunnel diodes, thyristors, Ladio control crystais and parta, Everything you need for amateur and professional applications-see 1967 catalogue. The largest range in the country at value for money prices.

IsT8 AVAILABLE

(incorporated in full catalogue)

- Transistors / Rectiflers / SCR's / Valves
- Crystais/Zeners, etc. 24 pages, $1 /-$. - All popular makes. Free on request. - Car radio and tape recorders. Free.

HENRY'S RADIO LTD.
303 EDGWARE RD., LONDON, W. 8
Telephone, 91-723-1008
Open Mon. En Sat. 9-6. Thurs. 1 p.m. Open all day Saturday
Allitems fully guaranteed

[^0]: DUKE \& CO. (LONDON) LTD. $621 / 3$ Romford Road, Manor Park, E. 12 Phone : 01-478 6001-2-3.

 Stamp for Free List.

[^1]: All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELECTRONICS, George Newnes Ltd., $15 / 17$ Long Acre, London, W.C.2. Phone: 01-836 4363. Telegrams: Newnes London. Subscription Rates including postage for one year, to any part of the world, 36s. (c) George Newnes Ltd., 1967. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^2]: Fig. 18. Multiple latching and simultaneous uniatching

[^3]: on "atisfaction or Refund of Fee" terms. Wide ranke of Home study courses in File etronises, compputers, Ridio, T.Y., etc. 132-page finide-PR1EE, Please state subject of interest BRITLSH IASTITLTE OF ENGINEFRING TBAHNOLOGY (Dept.

[^4]: BATTERY ELIMINATORS The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER AMPLIFIER, ect. Types available: $9 v$; 7 iv ; $6 v$ 4 4v (single output) $39 / 6$ each. P. \& P. $2 / 9$.
 output required. All the above pase stat completely isolated from mains by double wound transformer ensuring 100% safety.
 R.C.S. PRODUCTS (RADIO) LTD
 (Dept. P.E.), II Oliver Road, London, E. 1

[^5]: WE CAY SUPPLY FROK 8TOCK HOST OF THE PARTS SPECLFIED OA CIRCUIT8 If THIS MAGAZIE OR BETTER ETILL BUY THE HEW OR BETYER BTIL-BUY THE MEW
 1967 CATALOGUE. EVERYTHIFG YOU AEED IS LISTED AND AVAILABLE PROM STOCE. - See page 624 for furth

