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THE LINEAR DISTORTION OF FM SIGNALS
IN BAND-PASS FILTERS FOR LARGE

MODULATION FREQUENCIES

BY J. K. SKWIRZYNSKI, B.Sc., A.R.C.S.

The following article sets out to show that the linear distortion of a frequency -
modulated (FM) harmonic signal in a symmetrical band-pass filter follows almost
exactly the static response curve of the network provided that the modulation frequency
is not less than about tine -thirds of the semi -bandwidth.

Introduction
ONLY .1 very small portion of the field of distortion of FM signals in passive

networks is covered in what follows. On the other hand, the results obtained
below are to be considered as supplementary to those published in the following

article.11l In spite of that, it was decided to publish this article separately, as the
mathematical techniques used here are quite distinct and show an obvious method
of attack not previously used.

From the practical point of view, the problem would be stated as follows:
\\'hat is the distortion (i.e., the ratio of the output to the input signal) to he expected
when a FM signal of the form

itn = i0 exp (.1ó.10t jm sin pt) (1)

is passed through a band-pass filter with a general admittance function
Y(w) = G(co) -I- jB(o)

= I Y(o) I exp 1j95(o) i (2)

where i0 amplitude of the signal.
on = 27: x carrier frequency.

p = 27t x modulation frequency.
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m = - = modulation index.

á = 2t x maximum deviation frequency.
Y = complex admittance.
G = conductance.
B = susceptance.
YI = modulus of the admittance function.

= phase of the admittance function.

It is important to state here clearly what is meant by the expression " the
output signal," when used by a practical engineer. The signal obtained at the output
terminals of a passive network is both amplitude and frequency modulated. The
amplitude modulation is subsequently equalised and the signal which is now of
constant amplitude but varying phase is passed through a discriminator whose
output is proportional to the instantaneous frequency of the signal. Thus, from the
practical point of view, it is the derivative of the output phase with respect to time,
which is of immediate interest.

Hence, there is not much point in presenting the output signal both as an
amplitude and phase modulated time variable, unless the instantaneous frequency
of that expression can be readily obtained.

In general, a solution of such a problem would thus present immense mathe-
matical and, what is still more important, computational difficulties.

The distortion is most conveniently expressed in terms of the modulation radian
p and the maximum deviation radian frequency A. Further, it should

be divided into two distinct parts:-
(1) Linear distortion, being that part of the output signal which is of the same

frequency as the input modulation frequency.
(2) Non-linear distortion, being those components of the output signal which

are various hainionics of the input modulation frequency.

It should be noted that here and subsequently, the expression " output signal "
indicates, unless otherwise stated, the output from the linear frequency discriminator,
as explained above.

In the present work, the range of the modulation radian frequency p and of the
maximum deviation radian frequency 0 is limited; in order to fix the limits properly
consider the ratios of p and 0 to the semi -bandwidth radian frequency of the
network o . We shall now divide the practical values of p arbitrarily into " large "
and " small," using the following convention :-

p is said to be " large " if

and " small " if

0.6 < $ <1 (3)
Wg

0 < P < 0.6 (3a)
WB

This mode of division will become clear below, where we shall see that the following
analysis is applicable to " large " values of p only. On the other hand, the possible
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values of A cover the whole of the semi -bandwidth:

0 < 1
coil

(4)

Furthermore, the analysis will only hold for highly selective networks, i.e., those

where Q t,)° is sufficiently large to justify the use of arithmetical approximation.

Thus, the frequency response of a general band-pass filter can be always expressed
in terms of the parameter

X coo ( W 0.-)o)
(5)= 9Ws

(.1)0)o
- w

\VIu n vtn - 20i i.e., Q » 1, we can write
ü)-cooX=; (5a)

s

so that X is proportional to the frequency deviation from the carrier point. Since
the amplitude response of a band-pass filter is always an even function of X, the
approximation (5a) will cause this response to be an even function of the frequency
deviation about the carrier frequency.

It will be seen below that the use of (5a) will greatly facilitate the mathematical
analysis.

Summing up, the following analysis is applicable only to highly selective band-
pass filters with modulation frequency of the applied signal being not less than about
two-thirds of the semi -bandwidth; the maximum deviation frequency can have
any value within the semi -bandwidth.

The Development of the Method
Assuming the input signal to be a sinusoidally frequency modulated current as

in (1), we can expand it into harmonics in the usual way, as follows:-
iin in exp (%cant jni sin pi)

:::i
exp (jct) J(m) exp (jnpt) (6)

where in(m) is the Bessel function of order n and argument n2.

Let the transfer admittance of the band-pass filter be Y(np), such that
cwX=np=co-coo (7)

'1.hus lip is equal to the frequency deviation from the carrier, provided that we can
use the arithmetical approximation (5a).

The voltage on the output terminals of the filter will be thus given by the
Fourier series:

From (2)
:::i'on = r eYp (7) .(m) Y(uh) exp (9nt) (8)

Y(np) = G(np) -- jB(np) (2)
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Hence, (8) becomes
n = lco

eont = a exp (jcoot) Z Jn (m) { [G(np) cos npt
1.

- B(np) sin np1 + j [B(np) cos npt G(np) sin npt]} (9)

Since the admittance function Y(np) is assumed to be symmetrical round the
carrier frequency :

G(-np) = G(np)
B(-np) = -B(np)

Also
(10)

J-n (m) = (-1)1 J. (m) (11)
The relations (10) and (11) greatly simplify further analysis; making use of them:-

eout = io exp (jcoo t) {Jo (in)

-I- 2 : J2n (ni) [G(2nP) cos 2npt - B(2np) sin 2npt] (12)
n=1

[G(2n 2j > J21 (m) -1) cos 2n - ipt - B(2n -l) sin 2n - ipt] }

As stated in the introduction we shall require the phase of this expression ; thiscan be written:-

where:

and

/=coot tan-1
Zd2n-1 (ryn+ p, t)

n=1

1-I-
ZR2n(m,p,t)
n = 1

as (in, p, t) = gs (m, p) sin spt -F- bs (ni, p) cos spt
Rs (m, p, t) = gs (m, p) cos spt - bs (m, p) sin spt

2J5 (ni) G(sp)
b°s (1n, p) =

Jo (m)

bs (m, p) = 2 J (m) B(sp)

For brevity we shall write :-

Note also that

Jo (m)

as (m, p, t) = as

Rs (m, p, t) = P8

aocst - "á =á
aRs= ' = -
at - as psds

(104)
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Expressions (15) show that provided in is sufficiently small (i.e., m - 2.405, which
is the first root of J0 (in) = 0), the values of gs (ni, p) and b, (m, p) will decrease rapidly
as s increases. We shall discuss below more fully the rate of decrease of these quantities
where it will be seen that for a limited range of p and J it is sufficient to take into
consideration only the first two terms.
Then

=- coot -1- tan -1 /x x3}
1 r32

Hence, the instantaneous frequency becomes:-
ax (1 + 32) WI¡- 3C3) - 32 (71 + 7:dWiust

at - WO
(1 + 32)' + (a1 +- 'x3)2

= + (1 + 32) (31 ± 333) -i- `-'x2 (0-1 + )
Wo

(1 ± )2)2 + (71 + 13)2
from (17). This expression will be further simplified by neglecting higher order terms
which are comparatively small. Then

31 3 33 31 2x1 72
cAinst - C)0 =

+

2
1 2 N2 -r- 1_

Substituting from (14) and making the necessary trigonometrical manipulations, we
can group the terms in (18) in the following way:-

(1S)

(1q)oina - (')o
D(pt)

where
N(pt) = _-11 cos Jet + B1 sin Jet A3 cos 3f>t B3 sin 31,1

D(pt) = Ao± A2 cos 2pl B, sin 2/t

and where

The quantities

A -== 1 ( *i

-1 = .1 ---
3

(g1 ,2 b1 b2)

B1 = b ---
3

(,;1 b2 -;- h g)

= 2g2 ) (z+l -b)

B2 = 2b2 - ,01 bl

.-13 = 3g3 - 7 (g1 g2 - b1 1,2)

B3 = 3b3` (g1 112 - h ,22)

es -,J9 (na, p)
bs = bs (m, p)

( 105 )
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are defined in (15) as functions of the network response and the appropriate Bessel
coefficients. The output signal is proportional to the time dependent part of the
instantaneous frequency. Thus, the required value of the output current is:

1 = pN(pt) (9-)D(pt)

This expression will consist of a signal of frequency p/27c and a series of harmonics
of that frequency. These components can all be separated by standard Fourier
analysis. Thus, the nth harmonic of (25) becomes :-

1
In =

fr:
pD(pt))

exp (jnpt) apt (26)

P
£ (z4+z2+)(aZs+

aZ4+a-1Z2+ a3)Z-2dZ
(27)

lTCa2
aa2

where Z = exp (jpt) and c denotes the unit circle. Also

as = As + j Bs
as=As -j Bs

The roots of the denominator in (27) are given by:-

S2=-a"(1-a) (29)
2

E2 = - a; (1 +
a2

where

Hence (27) can be written

where

aó

I p_ Q(Z)
Zn_2

dZn
TC a2 c(Z2 E2) (Z2 a2)

Q(Z) = Q(-Z) = a3 Z6 + al Z4 + a1 Z2 + a3

(28)

(30)

(31)

(32)

(33)

The integrand in (32) has poles within the unit circle at Z = 0 (when n < 2)
and Z = + 8. Hence, the amplitude of the fundamental component of the output
signal will be given by

2p j( 2

1

S2 a2
let +

1
2 E25

R

ao[a1+12(a;s2+(ID ao(+ 1) (34)

In a similar way we could deduce the expressions for further harmonics but this
will not be done here since they will be well outside the pass -band of the network
in the range of p and 0 where (21) is applicable; this is discussed below.

The Range of Applicability of the Results
In deriving expression (20) from (13) we have neglected in the total output
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phase expression (18) all terms multiplying harmonics higher than the third. Hence
the range of the modulation index In will be determined by the relative magnitudes
of the coefficients gs and hs defined in (15). An inspection of tables of Bessel functions
will show us that for ni = 1

Ji (m) 180
J4 (m)

so that we shall specify the range of In as
O< c1

In

2/3

I3
2/3 4/3 5/3 P/Wº

I/3
2/3 4/3 5/3 n/',B

FIG. I

The regions where equation (34) bolds are shaded

(35)

Further, since we neglect all harmonics
higher than third, the modulation frequency
p must be sufficiently high, so that all its
harmonics higher than the third should fall
well beyond the pass -band of the network.
This condition will obviously be governed
by the selectivity of a particular band-pass
filter, but we can safely propose a con-
venient range for p

2
< (36)

3 wB

Thus, for a conventional maximally flat
amplitude, triple tuned circuit, the attenua-
tion associated with the fourth harmonic
for 5 = 2/3 is about 25 db (for Q = 20),
while for a single tuned circuit the corres-
ponding attenuation is only 9 db. Hence,
the condition (36) will hold well for com-
paratively selective networks. In Fig. 1 we
see the shaded regions of P/wB, Li/w and
m where inequalities (35) and (36) hold.

The Fundamental Component of the Output Signal
Expression (34) can be directly computed for any type of network whose

admittance is symmetrical round the carrier point. It will be useful, however, to
obtain the first order approximation of (34) in terms of the network and signal
parameters.

Remembering that for " large " values of p
1a31 < 1a21 < 1a1 1 < 1 < 1a01

we obtain
al 1 a2 all

II 'p
at) 2 al

J

(37)

rl - 2 Ia1I2 - a2 exp (- 2j íi)] (38)
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where is the phase of al in (28). Hence, from (28), (23) and (15)

I cc Y*(p) S 1 + ó m2 r1 - 4 I Y(p)12 -2 I Y(2p) I exp (j [20(1) -
We observe that for small values of 0 and sufficiently high p,

component follows the static characteristic Y(p). In particular, the
component is governed by the static amplitude response, while
conjugate of the static phase.

We can thus state that the attenuation of the fundamental is
D (p, 0) - 20 [login Y(p) -I- logro A(p, )]while the phase is

where
0(p,o)=27r- OP) +EP, )

#(2P)]) (39)

the fundamental
amplitude of this
its phase is the

given by:-

A (p, 0) = 1 ±8-1 m2 { 1 -4 1 Y(P) I2 -21Y(2p)1 cos [256(p) - st(2P)J }

tan mp, o)`] -_ 4
m2

I Y(2p) I sin [295(p) - #(2p)]
A(p, o)

Y(p)

1 p)A(p,á)
FIG. 2

Vector relation between the output signal and the
static response (not to scale)

Applications
For sufficiently high Q, the transfer admittance of a single tuned circuit may be

written :-

(40)

(41)

(42)

(43)

Fig. 2 shows the relations between
the static response and the fundamental
component of the output, as expressed
in terms of the correction factors A(p, 0)
and 44, 0). From (42) it is seen that for
P/wB < 1, the amplitude correction factor
A(p, á).< 0 since then 1Y(p)12 > 1. Thus,
the attenuation curve of the output signal
will, for modulation frequencies less than
the semi -bandwidth, lie under the static
response curve; for modulation frequencies
greater than the semi -bandwidth, the
attenuation of the output signal may, how-
ever, be smaller than the corresponding
static attenuation. In general, however,
both correction factors (42) and (43) are
quite small. We shall now apply these
results to two typical networks, namely,
the single tuned one and the maximally
flat amplitude triple tuned one (Butterworth
type).

Y(nP) = (1 ± n2P2)-E exp ; -j tan -1 (nP) 1
1 nP

1 .n2P2-9 1 +n2P2

( 108 )
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The distortion correction factor for two networks discussed in the text

while for a conventional triple tuned, maximally flat amplitude circuit (see Ref. 1) :-
Y nP = (1 n6 Ps k ex - tan -1( ) + ) P

(2nP_n3PS)}
(45)

-

1.4

I ámax
2 WB

F(p) FOR

SINGLE TUNED CIRCUIT

TRIPLE TUNED

aL

1.6

CIRCUIT

1.8 2 0

P =P/wg

1 - 2n2P2 . 2nP - n3P3-
n6 P6 9 n6 P6

( 109 )
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The variable nP is to be considered here as dimensionless, since P is regarded as
a fraction of the semi -bandwidth (see pp. 102-103) :-

P = (013.

Since rn = 0/P, the amplitude correction factor A(F, á), as defined in (42) and
in Fig. 2 can be written:-

A(P, 0) = 1 - á2 F(P) CP > (46)

where 0 here again is to be regarded as normalised with regard to the semi -bandwidth.
For the single tuned circuit (44)

5 +17P2 - 4P4F(P) 8p2 (1 + P2) (1 + 4 P2)

while for the maximally flat amplitude, triple tuned circuit

- 5 --f- 253 P6 - 48 P8 - 64 P12F(P)
8 P2 (1 + P6) (1 -{- 64 P6)

2

s

0.4

a

/STATIC SELECTIVITY CURVE

0
/ I.0_ A

6B

6 8 10 1.2 1,4

FIG. 4

Output signal attenuation for the single tuned circuit

within the range of the modulation
The corresponding curves for a

(47)

(48)

These two functions (47) and
(48) are shown in. Fig. 3 for suitable
range of the modulation frequency P
normalised with respect to the semi-
bandwidth (see Fig. 1). The dashed
curve shows the maximum value of
the normalised maximum deviation
Frequency for which the graphs are
applicable for a given value of the
modulation frequency P.

In Fig. 3 we see that for the
modulation frequency p = 0.9864,
the factor F(P) for a triple tuned
network changes sign and the atten-
uation of the fundamental com-
ponent of the output signal becomes
smaller than the static attenuation .

In Fig. 4 the static attenuation
curve is compared with the attenua-

16 tions of FM signals for various
P =9/03. values of P and A in a single

tuned circuit. We observe that
this attenuation hardly ever exceeds
the static attenuation by 1 db

frequency where our formulae apply.
maximally flat amplitude, triple tuned circuit

(110)
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Í

o

8 o i2

I .. 5

Phase Tarp/in.« /or !be ,riugle tuned circuit

1 4

P P/we

would almost coincide with
the static attenuation curve,
as can be seen from the
form of the corresponding
F(P) factor in Fig. 3.

This network will be dis-
cussed fully in the following
articletrt where the corres-
ponding distortion curves
will he shown over the whole
range of P in the pass -band.

It is sometimes impor-
tant (e.g., in problems con-
nected with the double FM
modulation) to determine
the phase of the output
signal. This can be eval-
uated directly from equa-
tion (43) and is shown for
the single tuned circuit in
Fig. 5. We observe again
here that the phase almost
follows the static response

6 curve. A similar set of
curves for the triple tuned
case will be shown in
the following articleo).

Conclusion and Summary
Equations (40) and (41) show that the linear component of the output follows

essentially the static network attenuation and phase response curves providedthat
(I) The modulation frequency P is at least equal to two thirds of the semi-bandwidth.
(2) The modulation index nt does not exceed unity.
r3) The network is sufficiently selective to warrant the use of the " arithmetic "Amin, imation in its response equations:-

w co
2 co co co co73

These ronrinsions were applied to a single tuned network with results shown inFigs. 4 ;Ind 5, They agree well with the experimental work performed in thelaboratories of the Marconi Co. and also in U.S.A.(2).
It is proposed to continue this work with two aims in view:
1) To investigate the linear and non-linear distortion in band-pass filters for" small " values of the modulation frequency p.

(2) To generalist' the results for networks where the " arithmetic " approxima-tion no longer holds.
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THE DISTORTION OF FM SIGNALS IN
PASSIVE NETWORKS

BY R. H. P. COLLINGS and J. K. SKWIRZYNSKI, B.Sc., A.R.C.S.

The distortion of sinusoidal FM signals in passive networks is examined and a new
method of treating this distortion is derived which compares favourably with existing
methods. The results are applicable within a well defined region of network and signal
parameters. The method is applied to the maximally flat amplitude triple tuned circuit.

The results are exemplified by Tables and Graphs. Special attention is given to the
effects of detuning.

Introduction
THE aim of this article is to present general results on the behaviour of

sinusoidally frequency modulated signals in electric networks. It is hoped that
this has been achieved completely within a certain range of the signal para-

meters; these are the modulation frequency and the maximum deviation frequencyin relation to the network parameters such as the mid -band frequency and the
bandwidth.

The results obtained are general in the sense that they can be applied to any
passive network.

Part I discusses the existing methods of attack, especially that due to Fry
and Carson'); a careful examination of these methods is given with special reference
to their drawbacks.

It will be found that the so-called " quasi-stationary theory " is in many ways
unreliable, especially from the point of view of the fundamental component of theoutput signal.

Part II gives the derivation of theoretical formulae together with a thorough
discussion on the range of their applicability. The fundamental component and thefirst four harmonics of the output instantaneous frequency are then given in termsof a series expansion in the modulation frequency and the modulation index. Thecoefficients of expansion depend entirely on the network parameters. Since thelatter were obtained by expanding the network functions in terms of the frequencydeviation from the carrier, it was found necessary to investigate the possibility ofsuch a simple expansion for band pass filters which are not symmetrical about themid -band point. This forms the subject of Part III where a general table is given
converting the coefficients of expansion of a network function in terms of the " bandpass parameter

X =Q (
co coo

wo w

to an expansion in terms of the frequency deviation 8 w = w - 00. This table alsoincludes the effects of a possible detuning.
Part IV contains a discussion of the maximally flat amplitude triple tuned circuit(also called the " Butterworth " circuit). The distortion coefficients of this networkare given in a special table and the fundamental and harmonic distortions of theoutput instantaneous frequency are plotted for a selected range of parameters. The

( 113 )
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detuning of such network shows here interesting consequences. Furthermore, the
distortion of the fundamental component is, for a " high Q " case, extended to
modulation frequencies up to the value of one-half bandwidth by means of results
obtained in the preceding article.

The final and fifth part of this article contains a comparison of our method with
those discussed in Part I; it is found that it agrees well with the results obtained
previously by Fry and Carson" and by Stumpers(2).

PART I

GENERAL CHARACTERISTICS OF EXISTING METHODS
The problem of estimating the distortion of FM signals by linear networks has

received the attention of many eminent mathematicians and engineers; it was first
considered by Fry and Carson" in their classic article and since it has been followed,
up to now, by most other workers in this field, it will be useful to discuss their method
in some detail.

1.1. The Fry and Carson Method
In their paper(1) Fry and Carson deduce the following expression (29) for the

output current I due to the applied e.m.f. as defined in their equation (25) :

I = E exp (j ioCt
I
,J t Jt) 717(- we) i /`In 17/nl Uwe)} (29)

o n=1

where Y(j co) is the transfer admittance of the network, co, is the carrier angular
frequency and la = i.(t) is the variable part of the instantaneous angular frequency.

Expression (29) forms the basis of most of the work done on this subject by Fry
and Carson as well as by other authors. As Fry and Carson remark, however, the
series in (29) may not be convergent and is very laborious to compute.

Actually the series in (29) is of asymptotic nature (as has been shown by
Stumpers; see Ref. 2 and Section 1.2.1 below) and diverges in most practical cases.
This is due to the peculiar structure of the operators C. Thus:

C1=.

C2-11,2-,Ei

C3 = E -L3 - 3.7.1941:

C4=E1,4-6iu.2µ' - 41-q),,, 3P.,2

Fry and Carson then use the following approximation:

Cn - Eln 7 (n 2

1)n
p.11-2 (p. 519)

which as we see includes only the first two terms in each C,,; i.e., in the above table
the terms which are to the left of the vertical dashed line.

Then (29) becomes:-
t,

I = E exp (9wCt -F 91 ladt) Y (96)11)
n

where

Y (.7(-010 = Y (j1) + 2 Y2 (js')

( 114 )
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and where
12 (t) = we + (J.(t) (3)

The expression (16a) is of great importance in the further history of the problem.
Thus it ís identical with the formulae used subsequently by Stumpers (Ref. 2),
van der Pol (Ref. 3) and hence by all authors following van der Pol.

Many writers have been content to take the first term only of (16a) ; this is the
so-called " quasi -stationary approximation." Some very useful results have been
Obtained by means of this approximation but there has always been some doubt
as to the range of its validity.

From inspection of the table of coefficients Cu, we observe that the " quasi -
stationary " term in (16a) includes only the first term of the expression for Cu
(i.e., u.") while the second term in (16a) corresponds to the second term in the

(n - 1)n u_2expression for Cu (i.e. -j µ ( ). Both first and second terms include
distortion components and examination shows that the " quasi -stationary " term
includes some distortion components cancelled by the components included in the
second term. Furthermore, some of the remaining terms are again cancelled by
those parts of the expression for Cu which are neglected in (16a). The use, either
of the " quasi -stationary " approximation, or of (16a) thus results in the appearance
of distortion components which would not be shown if the complete expression (29)
were used.

It is thus obvious that the " quasi -stationary " approximation cannot give the
correct output input relation; in fact, it is only true for zero modulation frequency,
a rather trivial case. For, let

= sin pt
where J --= maximum deviation frequency,

p --- modulation frequency.
Then the terms in the first column of the table of Cu become proportional to

0, 02, 03, . . . 0°
and are completely independent of p. This fact, of course, does not preclude theoutput harmonics of the instantaneous frequency being functions of p, for if we
expand Y (ji2) in a power series of the frequency deviation from the carrier, p willappear there; such dependence, however, on the modulation frequency will not
necessarily give the actual magnitude of the harmonics and the fundamental,
especially of the latter.

Similarly, by including the second term in the expression (16a) we shall stillobtain an answer true only as far as the first order in p ; the terms in the second
column in the table of Cu become proportional to

op, o2p, o3p, .... onp.
One can thus state generally that the expression (16a) is only true as far as the firstpower of p (see section 1.1.2).

1.1.1. The Fry and Carson " Retarded Time " Formula
Fry and Carson include also in their paper a slightly modified approach, which,

however, is of great importance, as will be seen below. They write
(j coo j co) _ I Y (jet), + jo) e-.i a (33)

( 115 )



The Distortion of FM Signals in Passive Networks

where
9 = Wes' + (irT + 3(0))

p (0) = p' (o) = o

and where -r is the initial delay of the network.
t,

I = E exp (j f 12 (T)dT)
o

X [1 + J L Y (9 wc) +Ern
Cn(t')]° 9t=2

(35)

where t' = t -T is the " retarded " time, and

rn = rn(w
an

e) = n Y (jet) j w) ei cw)
awc w=o

This expression has a great advantage in that it presents the output current in
an easily interpreted way. An FM signal when passed through a network will be
delayed by the amount -r and also distorted; the distortion as seen from (35) is due
to the varying amplitude response of the network as well as to the non -linearity of
phase as expressed by Ç.

It will be seen in the last part of this article (p. 134) that the " retarded time "
formula of Fry and Carson agrees completely with that derived by us in an entirely
independent way.

It is necessary to stress the fact that the " retarded time " formula of Fry and
Carson is the only one met up to now in the literature which allows the engineer
to obtain the required results without an excessive amount of mathematical labour.

\Ve observe, however, that in (35) Fry and Carson do not include the " quasi -
stationary " admittance at all. It will be interesting, therefore, to consider how the
" quasi -stationary " admittance of a linear phase network reacts to a harmonic
11VI signal.

1.1.2. Critical Test of the " Quasi -stationary " Approximation
Suppose that

Y (j w) = ei»,

i.e., the network has a flat amplitude response and a linear phase response. Then,
from 1.1. (16a)

Hence:
Y(1 12) = eizw,. 1-

I =Eexp + j f utlt+ floe +jap.}
o

and the instantaneous frequency becomes:
wi= we+N-+ap.

= J sin pt

wj = we + á sin pt + a 4 cos pt
Thus, the amplitude of the fundamental becomes proportional to:

A1/1 + a2 p2

or, when
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which ís in complete disagreement with equation (35) of the Fry and Carson paper,
unless p = O. The reason for this discrepancy becomes obvious if we remember that
Y (jSl) was obtained by Fry and Carson by including only the first terms of the
expression for C (see p. 114) which are not sensitive in p.

This example shows directly how dangerous it is to use the " quasi -stationary "
approximation even for qualitative results for it would seem that the amplitude of
the fundamental would increase with the modulation frequency which, as will be
shown below, is not true; the amplitude of the fundamental would in this case remain
constant, independent of p. This point is further discussed in section 5.2.

1.2. Prof. van der Pol's Method.
In his paper on " The Fundamental Principles of Frequency

Prof. van der Pol derives the " quasi -stationary " approximation
different way from Fry and Carson. The output current is given
operational form :

i(t) = exp {Iot d)- js Ct -f- } Y (jco) /
where

s(t) = 4coJ g(t) dt

and g(t) is the modulating signal. Expression (36) is deduced
of a time dependent admittance which results in an asymptotic
1.2.1. below.)

Considering only the first term of the expansion (36), Prof.
the quasi -stationary solution:

i(t) = exp (9fá e dt) Y(911)

Modulation "(3)
in a somewhat
formally in an

(36)

from the expansion
series. (See section

van der Pol obtains

(39)

which he defines as such when " the circuit is completely capable of following through
stationary states the variable frequency of the applied emf." The solution (39)
thus represents a limiting case; but we have seen above (section 1.1.2.) that unless p
vanishes identically, an approximation like (39) may lead to erroneous results. Thus
Prof. van der Pol states that " in the quasi -stationary approximation the total
current signal (including its distortion) is completely determined by the phase
characteristic of the admittance only, and is therefore-at least explicitly-
independent of the amplitude characteristic of the admittance." Applying this
conclusion to the case treated above (section 1.1.2.) we again find that the output
instantaneous frequency deviation is increased by:

1 -+- 2
a2 (L 63)2 ,/i2

where a is the initial group delay of the admittance. Moreover, Prof. van der Pol
states that the " quasi -stationary " approximation is true provided:

p 0 a) « B2 (p.158)

where: B is equal to the 3 db bandwidth of the network.

Such a condition is rather misleading for it imposes no restriction on the value
of p alone but on the product pá co. We shall see below that Stumpers modifies
van der Pol's condition correctly (section 1.2.1.). It may be added, also, that in the
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Fry and Carson expansion discussed above, the " quasi -stationary " approximation
is intrinsically non -sensitive as far as p is concerned and van der Pol's limiting
condition shows it perfectly.

Van der Pol discusses further the next term in his expansion, but since this is
included in the Stumpers' formulation, it is better to describe it there.

1.2.1. The Stumpers' Method.
The paper of Dr. F. L. H. M. Stumpers on " Distortion of Frequency Modulated

Signals in Electrical Networks " is the first critical contribution dealing with the
problem. Stumpers recognises the asymptotic nature of the Fry and Carson series
and concludes that " it is asymptotic in the sense of Poincaré when p-*0." Hence
the expression for the output current is expanded in terms of p and, what is still
more important, the range of the validity of the expansion is defined by two
conditions, one involving the product pAo (as in van der Pol's paper), the other
involving p only (see p.86 of ref. 2).

The Stumpers' expression is very simple to use especially when the power
expansion of the network function is given.

We shall discuss this method again in the last part of this article (p. 135) where
the Stumpers' formula is compared with the Fry and Carson and our present
formulation.

PART II

GENERAL DESCRIPTION OF THE METHOD

2.1. Theory
The input current is assumed to be:

'in = Io exp; /coo t -f jna sin fi

which can be expanded as a Fourier series:
c0

(2.1.1)

Iin = Io exp (j coo t) In(m) exp (I n p co,; t) (2.1.2)
11=

Let also:
Z(w) = M(0)) exp 3jcp(o)) 3 (2.1.3)

be the transfer impedance of a passive network. For the purpose of our analysis
we shall express the independent variable w in (2.1.3.) in terms of the modulation
frequency 5coB of our input signal (2.1.1.) by writing:

W = coo +nPWB (2.1.4)

The output signal due to (2.1.1) expressed as the voltage on the output terminals
of the network whose impedance is (2.1.3) will be given by:

CO

E = Io exp (jWo t) .J1(m) M(np Wn) eXp 3 jnp co t -i- 9c? (nl' co) f (2.1.5)
n= -co

The amplitude M and the phase p of (2.1.3) can be expanded round the carrier
frequency as a series in the deviation from that frequency; the method of expansion
is discussed at length in Part III of this article. For the time being let us write:
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CO

M(np wB) = E bs (np w1t)s
s=o

p (np ws) _ Z as (np ws)s
s=o

(2.1.6)

(2.1.7)

In most practical cases the coefficient a0 in (2.1.7), which represents the constant
phase at the carrier frequency, will vanish; the coefficient al represents here the
initial group delay. It was already pointed out by Fry and Carson) (also see in
Part I of this article, section 1.1.1), that it is convenient to exclude this delay from
the analysis at this stage. This can be done by introducing the " delayed time "
of the output signal:

= t al (2.1.8)

Then, substituting (2.1.6 - 8) in (2.1.5), we obtain
E = Io exp 1/00 (T-a1) + ja01 a (2.1.9)

where

and where:

J(m) M(np co,) exp ljnp Ws T+ 9(n con)} (2.1.10)

11= -GC

 (np wB) = cp (lip wB) - a0 - al up wB (2.1.11)
from (2.1.7).

It has been pointed out already in section 1.1.2 that an ideal network with flat
amplitude response and linear phase response should introduce no distortion beyond
shifting the time scale of the output signal by the amount equal to its delay. Thus
in (2.1.10), if we put:

M (np wB) - 1

'P (np co) - 0
we obtain:

and:

as expected.
Returning to (2.1.10), consider the expansion of the product:

M(npws) exp w)1 ds (npw)s
s=o

, = exp ; jm sin pwB T

E = Ip exp ;9 wo (T -- al) + jao + jm sin p wB

(2.1.12)

where q is a large but finite integer. The choice of q will obviously be governed by
the number of terms sufficient to represent the impedance function within its passband
and also-still more important-by the algebraical and computational labour
involved in obtaining required results. In our analysis we have chosen q = 6; it
will be shown in section 2.1.1 that such an expansion of the impedance function
covers well the required ranges of frequency deviation, without making the amount
of mathematical work prohibitive.

The coefficients cis are easily found as polynomials in terms of as and bs, the
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phase and amplitude coefficients of the impedance function respectively.
Hence substituting (2.1.12) in (2.1.10) :

q

E = Jn(m) { ds (yap wB)s
3

exp (jnp wB T) (2.1.13)n= s o

Before proceeding with the analysis further it will be necessary to show underwhat conditions the series E is an absolutely convergent one. The modulus of thenth term of (2.1.13) becomes:

Zn = Jn(m) [do+d1 (np wB) + . . . . dq(npwB)g]

As n increases, while ni is reasonably small, we can write:

so that:

Hence:

Jn(m) _ (ini)n
n!

do + d1 (np wB) -I- . . . dg (11P wB) q
Sn-1 2-71 do + d1 (n-1 pcoB) + . . . dq (n--1 pwB)

Lim
Cn =

/
m( 1+ -9)n n-1 2n \ i2/

}

It follows that provided q is finite, the above limit vanishes and thus the series(2.1.13) is absolutely convergent for any finite q and m. Note, however, that for agiven value of q, the maximum values of p and in must be appropriately limited asexplained in section 2.1.1.
Under these circumstances it is permissible to exchange the order of summationin (2.1.13) :

q

s S m n,/, w expn wB T) }
S

E = d Jn( ) ( Y B)s (.% p
0 11= - (2.1.14)

==(- j)S ds [exp jnn sin pc,BT)] (2.1.15)

Now let:
exp (jm sin pw1,T) = exp [jg(T)] =y(T) (2.1.16)where:

g(T) = m sin p 0,3 T (2.1.17)

Thus, substituting (2.1.15, 16) into (2.1.9), we obtain the final formula for theoutput voltage:

where:
E = I0 exp I/630 (T - a1) + jao + jm sin p wB T f X

=
g

l)(

/1(-,)S ds l(T) (T/s [.y(T)]}
5=a

(2.1.18)

(2.1.19)

In the expression (2.1.18) the first part of the product represents an undistorted
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output signal subject only to a constant delay, as on p. 15. The second part, i.e., the
sum x, differs from unity to the extent to which distortion has been introduced by the
network.

Subject to the limitations introduced by the convergence proof above (i.e., finite
q), the output signal is completely specified by (2.1.18, 19). In practical applications
the accuracy of the solution will be found to depend only on the extent to which the
transfer impedance can be represented in the form (2.1.6, 7) by a finite number of
terms.

2.1.1. Range of Applicability of the Formulae
We should note at this stage that for given value of q as defined in (2.1.19) there

are further restrictions which must be imposed on the values of 5 and m owing to the
nature of the expansions described in section 2.1. and leading to (2.1.19).

As mentioned on p. 119 the choice of q will be governed by the number of terms
sufficient to represent the impedance function of a given network within as large a

portion of the pass -band as possible
without the necessary mathematical
labour being prohibitive.

It was decided by the authors
to take the value of q = 6 which
in particular covers about 60°0
of the centre of the 3db band of
a conventional maximally flat
(Butterworth) triply tuned network.
For a given value of the modulation
index m = 0ip we can easily find
the number of sidebands not ex-
ceeding a certain small value,
say 0.01 times the unmodulated
amplitude of the carrier. Assuming
that further sidebands are not

tin which it is permitted to use the expansion significant we can find the maximum
value of the normalised modulation
frequency p for a given ni (and

hence z) such that no significant sidebands will lie outside the limits + 0.6 of the
semibandwidth where our expression ceases to be valid. Fig. 1 shows the resulting
region of validity of 5 and á (shaded).

Regions

FIG. I

(2.1.19) for q= 6

2.2. The General Expressions for the Instantaneous Frequency.
The direct application of the expression (2.1.19) to practical problems involves

considerable labour; it is thus fortunate that the work can be reduced to quite
modest proportions by some further simple though tedious manipulations.

These consist of evaluating the network coefficients d, of finding the time
function appearing within the curly brackets of (2.1.19) in terms of harmonics of the
delayed input signal and of collecting the terms contributing to each individual
harmonic. In this way we obtain an expression in the form :

= exp +i ) (2.2.1)
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where:
Éi = 3- log 3 (Re X)2 + (Im y)2}

g = tan -1 ImRe

y

(2.2.2)

(2.2.3)

The quantity .A in (2.2.1) represents the amplitude (modulation) distortion of
the output signal which will not be considered further in this analysis. The quantity
e represents the phase distortion. The total phase of the output signal is from
(2.1.18), (2.2.1) and (2.2.3) :

8 = w6 (T - al) + a0 + m sin p wT + e (2.2.4)

This involves rather tedious multiplication of series like those in (2.2.1) and leads toa result in the form
g Cl cos p T Sl sin p

+ C2 cos 2p w T + S2 sín 2p w T (2.2.5)
+

This expression is directly applicable to phase modulation (see below) ; thecorresponding expression for frequency modulation, in terms of instantaneous
frequency, is found in the usual way by differentiating with respect to T:

12 = wo + 0 1(1 + Hc1) cos p w T + Hs, sin p w T
} Hc2 cos 2p w T + Hs2 sin 2p w (2.2.6)

where the harmonic ratios Hc1, etc., can be expressed in terms of the signal parameters
p and na and the coefficients of the expansions (2.1.6.7). These coefficients aretabulated below up to and including the term s = 6 in these expansions.

We note that the phase coefficients C, S of (2.2.5) can be obtained from theF.M. coefficients Hc, Hs using the following relations:
npwCn nHsn

mp w m

Hcn = lip w Sn-_ Smp w n n

HCl = T201'2 + T40 + T42 m2] p4 + [T60 + T62 m2 + T64 M4 p6
HSl = rT30 + T32 M2] p3 + [T50 + 752 9n2 + T54 in4i p5
Hc2 - 631 mY3 + L651 + 653 m2]

¡¡'Hs2 = 621 mpy + [(741 + 643 nt2] m,/,14 + L661 +
HC3 = 942 9n2p4 + [962 + (P644 M21 m2p6

HS3 - 932 m2p3 + [952 + 954 m2] m2p5
Hc4 = ;£53 m3,,/p,,

5

Hs4 = i431n3Y 4 + [p.63 + m2]m3p6

( 122 )
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where :
'20 - 192 , `30 = - (a3 + a2 b1) , T.32 = 1 a3

740 = (2 b4 - = (6 b4 + bi b2 -2 a2 --b, -3 b1 b3)

^50 = - (a5 + a4 bl + a3 b2 + a2 b3) , `14 = -a5
"52 = - (15 a5 + 6 a4 b1 + 17 a3 b2 + 17 a2 7)3 -8 a3 bi -9 a2 b1 b2 -{- a2 bi)

b0 = ; (2b6 -2a2a4 --a3 -2a2a3b1 -a2b2)
62 = _%

(30 b6 -34 a2 a4 -12 a3 -15 a2 a3 b1 -18 a2 b2 + 4 b2 b4 -15 b1 b5
+ 8a2bi -b2 + bib4 + 2b1b2b3 -3b3)

^64 = TI -(30 b6 -16 a2 a4 -9 a3 -14 b2 b4 -20 b, b5 -6 b3 + 2 b2
+ 16 b1 b2 b3 + 12 bi b4 -6 bi b2 -6 b; b3 + 2 bi b,)

G21 = -a2; G31 = 3 b3 -b1 b2; G41 = - (7 a4 + 6 a3 b1 + 6 a2 b2 -a2 bl)

G43 = -a4, G51 = 15 b5 -14 a2 a3 -6 a2 b1 -b1 b4 -b2 b3

a = (10 b5 -6 a2 a3 --4 b2 b3 -6 b1 h4 + 2 b1 b2 + 3 bi b3 -bi b2)

G61 = -3 (93 a6 -14 a2 + 90 a5 b1 + 90 a4 b2 ± 90 a3 b3 + 90 a2 b4
-6a3b1b2 -3a2b2 -3a4bi -6a2b1b3)

Gb3 = -3 (60 a6 -4 a2 + 30 a5 b1 + 48 a4 b2 + 54 a3 b3 + 48 a2 b4
--36a3b1b, -12a,b2 -3a2b1 -18a4bi -30a2b1b3

-}-9bia3+ 18a2bib2)
15G65 - - 16 a6

P32 - T32 ; (P42 - 3 T42 ; 952 = -1 (25 a5 + 18 a4 b1 21 a3 b2 + 21 a2 b3
-9 a2 b1 b2 -6 a3 bi + a2 bi)

3 =954 - 2 754; 964 :; 764

962 = 11 (270 a6 -246 a2 a4 --126 a3 -279 a2 a3 b1 - 102 a2 b2 -24 b2 b4
+ 45 b1 b5 -18 a2 bi -9 b3 + 6 b1 b2 b3 -3 MI b4

1 5

1.143 - 13.43 1L53 - a53; t65 - 2 `65
1-7'63 = - (45 a6 -2 al + 20 a5 b, + 32 a4 b2 -30 a3 b1 b2 + 32 a2 b4 -{- 34 a3 b3

-18 a4 bi --a2bi + 12 a2 bi b2 -10 a2 b2 + 6a3bi -28 a2 b1 b3)
The practicability of this method of analysing the distortion depends of course

on being able to express the amplitude and phase characteristics of the network
in terms of the coefficients a, b of (2.1.6, 7). In Part III we shall develop a method
for evaluating these coefficients for a large class of important networks.

PART III
THE EXPANSION OF THE IMPEDANCE FUNCTION

Most passive networks used in FM transmission are band-pass filters such
that their impedances can be expressed in terms of the " band-pass " parameter.

X =Q (Wo - (3.1.1)

For example, the impedance of a single tuned circuit can be written
Z(X) = (1 + X2) --i exp (j tan -1 X)

and expanded in the form (2.1.6, 7)

( 123 )
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M(X) = 1- X2 + s X4- ... (3.1.3)

p(X) = X -1 X3 + X5- ... (3.1.4)

However, to use the method described in (2.1) for the calculation of distortion,
the expansion required must be in powers of w- wo= ni (OB. To facilitate this we
shall now develop a general method such that if the expansion in X can be obtained
for any particular network, the corresponding expansion in np wB = 8 w can be
determined immediately from tables.

The expansion will be made in such a way that the effects of mistuning can be
readily determined. To this end we shall write

when:

Y=Q/W -``'-°1=Q
1 Jwo

1  v
C

a _ K-1-2v-v2
a 1-- v- Q

a (1 -1-- v)

w 8w 1v=
2 c,)

and a is the mistuning factor, i.e. the centre frequency is taken as moo rather than coo.
We can expand (3.1.5) in terms of the " small parameter " v:

(3.1.5)

a=1-{-$; K=1-a.2 (3.1.6)

l = 11Q-K
/K + (2-K) v - (1 - K)  (-)s vs+2} (3.1.7)

s=0

Q  Slsl'l-' Sw s=
- -

V 1 -K 2S (wBs=o s=o

Similarly, any power of X can be expressed as:

(3.1.8)

XT
= (1-K)r/"-

ZrsQ'_s Cw)s
(3.1.9)` Bs=0

Consider now either the phase or the amplitude of an impedance function; these
can be represented as :

p(X) = Ao + Al X + A 2 X2+ .. .

M(X)=1 d-MIX+M2X2-I-....

The expansions required, i.e. in powers of ( --`' are in the form\w»/
9(Ico Ica

wli/ - ao
+ al (wB J + a2 (-- )' ±.. .

2M(16")- /Jo bl
(ów

+ b (8w¡ +
\\ COB wB COB

(3.1.10)

(3.1.11)

Hence, comparing the coefficients in (3.1.11) and (3.1.10) and using the expansion
(3.1.9), we find:

ar - 2r (1QK)s
sr As; br = QK)s

/sr Ms (3.1.12)
0 s=0
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so that the coefficients required when calculating distortion from (2.2.6) are obtain-
able using (3.1.12). To avoid the considerable labour involved, Table I has been
prepared using (3.1.12) so that the as and bs coefficients may be read directly.

In Table I the coefficients F are the A or MI, (i.e., the phase and amplitude
coefficients, in the X -expansion) of (3.1.10).\ The successive rows represent a,, or
bs associated with a given power of ( w

I. In the preparation of Table I we have\coil/
neglected the nonlinear terms in K (see 3.1.6) since in most practical applications
SKI :0.02.

It should be observed that even if coefficients of powers of X in (3.1.10) higher
than the sixth are included in the analysis, their inclusion would not modify any of
the coefficients evaluated in Table I.

Examination of Table I shows that the most significant terms lie either on the
main diagonal or immediately to the left and to the right of the diagonal terms.
Those on the left (proportional to Q-1) are more important in wide -band work, while
those on the right (proportional to the detuning factor r, - -2Q8, where z = 1 -1- 8)
are more important in narrow -band work where the effects of mistuning are
particularly serious.

PART IV

APPLICATION
4.1. General Procedure of Using the Method

As an example of the technique described we shall evaluate the distortion intro-
duced by a maximally -flat triple tuned circuit.

In the interest of simplicity we shall impose the following restrictions:
Q > 3; ICI = 1 2Q8 I < 0.2; ISI < 0.01

p < 0.3; < 0.3 (4.1.1)

In spite of these restrictions it will he found that the resulting formulae have con-
siderable practical value.

For the maximally flat triple tuned circuit.
M(X) = 1 - X6...

4(1)=-21-3.13-- X5... (4.1.2)
Using the values in Table I for the coefficients in (4.1.2) the as, bs coefficients

are found to have the approximate values shown in Table II. This table also shows
the maximum numerical values of the coefficients as, bs when the restrictions of
(4.1.1.) apply.

Substituting from Table II into (2.2.6), the distortion formulae of Table III
are obtained. In deriving these formulae only those terms have been retained which
are necessary for the formulae to be accurate to within about ± 3 db.

4.3. Maximally Flat Amplitude Triple Tuned Circuit
The type of network considered here, namely the maximally flat amplitude

triple tuned circuit, is of great practical importance in FM engineering because of
comparatively easy tuning, good value of the gain -bandwidth product and relative
simplicity of construction.
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TABLE II

Approximate Í'orms of the coefficients a, and b, for the Maximally Flat Triple
Tuned Circuit.

a

rs.d

J
ri)

,.

Coeff. I Algebraic Form
Magn. of Coeff.

Low Q High Q

-4 (8Q)2 - 2 -2.16

a2 1/2Q +28 Q 0.25 ±0.4

a3 -1/3 -16 (8Q)2 -0.33 -1.0

a} 1/4Q +48 Q 0.12 +08

a; -2/5 -0.40 ---040

a3 1 /2Q 0.25 0

-30 (8Q)2 0 -1.2

b; 68Q 0 --1 2

1)6 1/2 -0.5 (l.5

N.B. bi=b2b==0
From (4.1.2.) we see that the amplitude response of this network decreases as

1-12(6 near the mid -band frequency; we should thus expect the distortion of the
fundamental component of the output signal to be negligible. The actual value of
the fundamental distortion is so small for low values of Q, as to make impracticable
any closer investigation. This can be seen immediately from the values of the
coefficients Hc, and Hsi in Table III. For higher values of Q, the amplitude and
phase of the fundamental component of the output follow the static expressions
with small though significant deviations; this subject is discussed more fully in the
next paragraph 4.3.1.

Considering the second harmonic, the second term for Hs2 in Table III
is -28Q m p2, as in the case of the single tuned network (see 4.2.3). Hence, to the
first approximation, the amplitude of the second harmonic of the output signal is:

D S2_ P. 8 c
(4.3.1)w 3

p

where 012, = maximum angular frequency deviation.
P = modulation angular frequency.
coo = carrier angular frequency.
8co = detuning angular frequency.
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This expression is only valid for large values of Q. For p > 0.2 the next term
in Hs2 becomes significant. Under these circumstances:

H2 8Q3
A. P. Soo

Q3AS2.P.8w (1+2P2Q2
(4.3.2)

3
Cú02

l

The third harmonic component can likewise be seen to be identical (as far
as the first approximation is concerned) with that derived for the single tuned
circuit (see 4.2.5 and Table III).

TABLE III.

Algebraic Forms of the coefficients for the Maximally Flat Triple Tuned
Circuit.

2 Q < 20
IQ<0.2

Fundamental Hci

Hsi

- (8Q)2 (32 + 47

+ 48 (8Q)21

m2) p4

(4 + 3 m2) p3

J2nd Harm.
Hc2

1
{j- + 298 (8Q)][07

1

+ 2
1

LQ + 64 (8Q)
m2} mmps

Hs2 -2
CQ +

4 (8Q)] inp2-
CQ

+ 16 (8d (7+m2) ?npI

3rd Harm. Hc3 - 141 (8Q)2 m2 p4

Hs3
L

1 + 48 (8(2)21

4th Harm.
Hc4

L

1-}-
L Q ..11

64 (8Q)1 m3 ps

Hs4 -[Q+16(8Q)m3P4

In Fig. 2 are plotted the amplitudes of the second and third harmonics against
the Q of the circuit for various values of the maximum deviation frequency normalised
with respect to the carrier -frequency. The values of A¡ wo were again taken as:
001, 002, 005, .01, 02. All these curves are plotted from expressions derived in
Table III. These expressions are accurate as far as the p4 term.

The curves in Fig. 2 are grouped in three rows corresponding to the values
of the modulation index.

rn = 0.5, 1.0, 1.5
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Furthermore, the second harmonic distortion is divided into three graphs for each
value of in, corresponding to the positive detuning of

8 = 0, 0.002, 0.01

It is seen that the positive detuning does not decrease the distortion here. In fact
quite the opposite occurs, especially for large values of Q, where the second harmonic
distortion for 1% detuning may be as much as 20 db greater than in the tuned case.
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FIG. 3
Maximally fiat triple tuned circuit. Second harmonic distortion for negative detuning

(a) s = +0'002; (b) s = +0.0I

This effect is not symmetrical, as for a negative detuning, a characteristic " dip
occurs in the distortion curves. In Figs. 3a and 3b we have shown the effects of
negative detuning for the case of m = 1. In all cases the curve for positive detuning-
lies above the corresponding curve for negative detuning.
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In Fig. 4 is shown the amount of negative detuning corresponding to the
minimum second harmonic distortion as a function of Q of the network. This value
of 1 is not well defined as can be seen in Fig. 3a where the minima do not correspond
to the same value of Q.

4.3.1. Distortion of the Fundamental Component over the Pass Band
Some work has been done previously by one of the authors (see preceding article)

on the distortion of that component of the output voltage which is of the
fundamental modulation frequency.

07 The analysis was applicable to
filters with symmetrical charac-
teristic about the carrier, i.e. for
sufficiently high Q so that the
" band-pass parameter " X becomes
proportional to the frequency
deviation. Moreover the analysis
could be managed only for a
small number of sidebands ; this
necessarily limited the range of
applicability of this method to
values of the normalised modulation
frequencyp which were high enough

to make m = sufficiently small.

In particular the method
was applied to a maximally flat
amplitude triple -tuned circuit for
which the frequency response is:
M(X) = (1 + Xs) -1_ (4.3.1.1)

2X -Xs

12

FIG. 4

p(X) = - tan 1 1 - 2X2
(4.3.1.2)

The range of the normalised
modulation frequency taken was
0.6 < p < 1.0 while the maximum

l(aximallp flat triple tuned circuit. Amount of negati,e deviation frequency 0 was varied
detuning for minimum second harmonic distortion from 0 to 1.0 (see pp. 106-110

in ref. 4). It was found then that
the amplitude and phase distortions of the fundamental component of the output
instantaneous frequency follow very closely the static response curves (see Fig. 9
and 10 in ref. 4).

The method of analysis discussed here, is, on the other hand, especially applicable
for small values of p and thus it is of some interest to see how the results of the
two methods fit each other over the pass band. In Fig. 5 we see the amplitude
distortion curves together with the static selectivity curve (corresponding to 0 = 0).
The full lines on the right (large values of p) give the distortions obtained by the
method used in ref. 4 ; those on the left (small values of p) give the distortions obtained
by the method used here. Remembering the limits of the applicability of both

16 20
o ---
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methods (see pp. 119 and 121) it is easy to join the two sets of curves for the smaller
values of the maximum deviation frequency 0 (i.e. 0< A < 0.6). The continuous
curves, including the dashed portions of the middle give the fundamental distortion
over the whole of the band. For higher values of 0 (> 0.6) the joining of two sets of
curves becomes more problematical because of the limited range of each of the
two methods.

SMALL VALUES OF p.

0.2 0-4

A

0.2

0.4

0-6

0'8

1.0

L

0.6

'LARGE' VALUES OF p.

O 6

THE THICK LINES REPRESENT THE SEMI - BANDWIDTH

FIG. 7

The sideband distribution

I0

Fig. 6 shows the two similar sets of curves joined together and representing the
relative phase of the fundamental, where:

Prel = -Pstatic +Ptotai + 2rá (4.3.1.3)

where cpstatle = the static phase characteristic of the network.
total = the output phase characteristic of the fundamental.

Returning to Fig. 5 we observe a definite maximum of the amplitude distortion
for values of p between 0.4 and 0.6 of the semi -bandwidth. This phenomenon can
be explained by considering the sideband distribution associated with given values
of p and A. In Fig. 7 we see the relative amplitudes and positions of the upper
sidebands for given values of p and 0, the semi -bandwidth being represented by the
thick lines. The values of p and 0 which can be treated by the analysis used in
ref. 4 are associated with the sideband distributions above the broken line; the
dotted vertical line divides " large " values of p (treated in ref. 4) from " small "
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values of p. It will be observed that as we move in the direction of the arrows more
and more of the significant sidebands are shifted to the regions of the passband
where the approximation due to taking q = 6 in 2.1.12 results in significant errors
(i.e. 5 and 0 > 0.6).

Fig. 6 also shows that the relative phase characteristic behaves in a similar way.

PART V

COMPARISON OF THE RESULTS OBTAINED HERE WITH
OTHER METHODS

5.1. Standards of Comparison
In Part I of this article we have discussed the powerful method introduced by

Fry and Carson and subsequently developed by Stumpers. We have seen there
that the " quasi -stationary " approximation taken alone will give misleading results
especially when applied to that part of the recovered signal which is of the fundamental
modulation frequency (see section 1.1.2).

It will be useful now to compare the results obtained in Part IV with the results
which would be obtained in similar conditions by Stumpers and by Fry and Carson
using their retarded time " formula.

We shall thus consider a network whose phase and amplitudes are expanded
in terms of C -hi' f as explained in Part III. The expansion will be carried out only\'B/
to the cubic term inclusively.

Thus:
cp (8(ó) = al 803 + a2 (803)2 + a3 (8(ü)3

111 (803) = 1 + b1 (8w) + b2 (8o)2 + b3 (8 (0)3

It is important here to state briefly the criterion by which a method of evaluating
the response of a network to a harmonic FM signal can be tested. In section 1.1.2
we have seen that the " quasi -stationary " approximation fails as far as the funda-
mental component of the output signal is concerned. The obvious test will thus be
to see whether this fundamental follows the static response of the network for
vanishingly small values of the modulation frequency p.

We have seen this to be the case in the previous part of this article. Moreover,
in the case of the maximally flat triple -tuned circuit the fundamental output ríever
deviates considerably from the static response within the whole of the pass -band
(see section 4.3 and ref. 4).

The examination of (5.1.1) will show that for networks whose amplitude response
is an even function of the frequency deviation 8 o, the most important coefficients
are al in the phase expansion and b2 in the amplitude expansion.

The coefficient al will cause the whole of the signal to be delayed by the time
equal to a1, since it represents the initial delay; the coefficient b2 will thus be decisive
as far as the distortion is concerned and in particular the fundamental part of the
output signal should, for vanishingly small values of p, follow the expression:

1'1 + 2b2 p2

Remembering that b2 is always negative for band-pass filters, it is clear that the
output at fundamental frequency will diminish as p increases.

(134)

(5.1.1)



(5.2.2)

cp' =a1+2a28o+3a3(8w)2
(5.2.3)

M"=2b2+6b38co

Note that the dashes here refer to differentiation.

After some manipulation, we obtain formulae corresponding to those given in
Table II:

The Distortion of FM Signals in Passive Networks

5.2. The Stumpers' Method.
The formula of Stumpers is given in ref. 2, equation 16a. It is easily seen that

if the input frequency is given by:
h = 6)0 + 0 sin p wB t (5.2.1)

the two terms in curled brackets of (16a) are respectively of orders p3 and p4. We
shall only consider here terms up to p3 and thus we can write Stumpers' formula
(16a) as:

[i"wo=h(pwBt)+p'h'+P2 C9'2-MM"
J

..

Here, from (5.1.1): J

where:

as required.
Hence, the Stumpers formula agrees completely with that obtained by us asfar as the first approximation is concerned. Moreover, expression (5.2.7) shows

exactly where the " quasi -stationary " approximation fails in neglecting furtherterms. By assuming that T10 = O. i.e. by neglecting the p2 term one obtains a rising

Hs1 = 1 +,/,T20 p2
Hc1 = `l0 p + T32 nb2 p3

Hs2 = 6,2'i mp2

HC2 = 631 mp3
Hc3 = - T32 m2 p3

T20

T10

T32

= 2 (2b2 - a12)

= al
_  a3

621 - a2
631 = 2a1 a2 + b1 b2 - 3b3

(5.2.4)

(5.2.5)

If we compare (5.2.5) with the coefficients obtained by our method we observe that
they are identical as long as al = 0; since the underlined coefficients are those
obtained by us by the method described in Part II.

We see thus that as far as the 2nd and 3rd harmonics are concerned, Stumpers
agrees with us provided that the first order approximation is taken; we have seen
in Part IV that this approximation is quite sufficient for many practical applications.

Equally, for the fundamental, we can write approximately:
Hsi -1+T2op2

/
Hc1 = Tío p

"y (Hsl)2 + (Hc1)2
.vi + (240 + T102) p2,

= Vi + 2b2 p2 (5.2.7)

(5.2.6)
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amplitude response of the fundamental, whereas in fact this coefficient cancels out
with the corresponding one in the p2 term leaving only the part depending on the
static amplitude response, as required.

We have thus shown that it is a dangerous procedure to use the " quasi -
stationary " approximation, since (as this has been shown in pp. 114 and 115, and in
section 1.1.2) although this approximation will in general give the fundamental,
component as a function of p, such dependence is completely misleading. This
is due to the way in which the " quasi -stationary " approximation picks out the
terms in the power expansion of the output signal (see p. 115).

On the other hand if one has to use the " quasi -stationary " approximation,
the only way one can arrive at a reasonable result is to change the time scale as in .
(2.1.8). This leads us to the " retarded time " formula of Fry and Carson, but this
is no longer " quasi -stationary " in form.

It is interesting to note that in a recent article on the same subject, R. G.
Medhurst(5) comes to similar conclusions (see pp. 173, 175 of ref. 5) stating that
" the constant part of the group delay (i.e. a) should not affect the distortion ". This
is certainly the case, although not for the reasons stated by the author, as can be
seen from the above discussion.

The Fry and Carson " retarded time " formula (35) is however much more
involved to use especially if one tries to obtain the output instantaneous frequency;
this requires evaluating the inverse tangent of the complex expression which is
rather laborious. Stumpers expression (16a) gives the instantaneous frequency directly
and is thus of much greater practical importance.
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P.O. Box 926, Guayaquil.
PT. Associated British Manufacturers (Egypt),
Building B, 11, Sharia Emad el Din, Cairo, and
'haraonit Engineering & Industrial Co., 33, Tew-
:eet, Cairo.
'REA. Mitchell Cotts & Co. (Middle East) Ltd.,
Box 1212, Asmara.
IOPIA. Mitchell Cotts & Co. (Middle East) Ltd.,
Box 527, Addis Ababa.
DE ISLANDS. S. H. Jakobsen, Radiohandil,
ox 35, Torshavn.
.AND. OY Mercantile ABs, Mannerheimvagen,
elsinki.
NICE AND FRENCH COLONIES. Compagnie
ale de Telegraphie, sans Fil, 79, Boulevard Hauss-
Paris 8.
ECE. P. C. Lycourezos, Ltd., Kanari Street 5,
.s.
LAND. Algemene Nederlandse Radio Unie
Keizersgracht 450, Amsterdam.
AND. Orka, Ltd., P.O. Box 1094, Reykjavik.

Registered Office
Marconi House,
Strand,
London, W.C.2.
Telephone : Covent Garden 1234.
Telegrams: Expanse, Estrand, London.

INDIA. Marconi's Wireless Telegraph Co., Ltd.,
P.O. Box 195, New Delhi.
INDONESIA. Yudo & Co., Djalan Pasar Minggu,
Paal Batu, Djakarta.
IRAN. Haig C. Galustian & Sons, Shahreza Avenue,
Teheran.
IRAQ. C. A. Bekhor Ltd., P.O. Box 138, Baghdad.
ISRAEL. Middle East Mercantile Corpn. Ltd.,
P.O. Box 1740, Tel -Aviv.
ITALY. Marconi Italiana S.P.A., Via Ambrogio
Negrone, Genova-Cornigliano.
JAMAICA. The Wills Battery Co., Ltd., 2, King
Street, Kingston.
JAPAN. Comes & Co., P.O. Box 158, Tokyo.
LEBANON. Mitchell Cotts & Co. (Middle East),
Ltd., P.O. Box 251, Beirut.
LIBYA. Mitchell Cotts & Co. (Libya) Ltd., Meiden
Esciuhada, Tripoli.
MALAYA. Marconi's Wireless Telegraph Co. Ltd.,
Far East Regional Office, P.O. Box 1158, Singapore.
NEW ZEALAND. Amalgamated Wireless (Austral-
asia) Ltd., P.O. Box 830, Wellington.
NORWAY. Norsk Marconikompani, 35, Munke-
damsveien, Oslo.
PAKISTAN. International Industries Ltd., P.O.
Box 225, Karachi.
PARAGUAY. ACEL S.A., Casilla de Correos No.
651, Asuncion.
PERU. Milne & Co., S.A., Lima.
PORTUGAL AND PORTUGUESE COLONIES.
E. Pinto Basto & Ca Lda., 1, Avenida 24 de Julho,
Lisbon.
SAUDI ARABIA. Mitchell, Cotts & Co. (Sharqieh)
Ltd., P.O. Box 31, Jedda.
SOMALILAND PROTECTORATE. Mitchell Cotts
& Co. (Middle East) Ltd., Street No. 8, Berbera.
SOUTH AFRICA (INCLUDING N. RHODESIA).
Marconi (South Africa) Ltd., 321-4 Union Corporation
Building, Marshall Street, Johannesburg.
SOUTHERN RHODESIA. Faraday Engineering
Co. Ltd., P.O. Box 2259, Salisbury & P.O. Box 717,
Bulawayo.
SPAIN AND SPANISH COLONIES. Marconi
Española S.A., Apartado de Correos No. 509, Madrid.
SUDAN. Mitchell Cotts & Co. (Middle East) Ltd.,
P.O. Box 221, Khartoum.
SWEDEN. Svenska Radioaktiebolaget, Alstromer-
gatan 12, Stockholm.
SWITZERLAND. Hasler S.A., Belpstrasse, Berne.
SYRIA. Levant Trading Company, 15-17 Barada
Avenue, Damascus.
THAILAND. Yip In Tsoi & Co. Ltd., P.O. Box 23,
Bangkok.
TRINIDAD. Masons & Co., Ltd., P.O. Box 448, Port
of Spain.
TURKEY. G. & A. Baker Ltd., P.O. Box 468,
Istanbul, and P.O. Box 1008, Ankara.
URUGUAY. Regusci & Voulminot, Casilla de
Correo 532, Montevideo.
U.S.A. Mr. J. S. V. Walton, 23-25, Beaver Street,New York City 4, N.Y.
VENEZUELA. J. M. Manzanares C.A., Apartado
134, Caracas.
YUGOSLAVIA. Farchy, Ltd., 30, Grosvenor Place,
London, S.W.1 and Terazije 39, Belgrade.




