JUNE TO AUGUST 1988

 THE MAPLIN MAGAZINE

LEAMUMORSE EODE TII practioal way wit our stroumatice ossillatont

IIIATcoplin

Morse Code Oscillitiay POWER (a) arf

By int rituy this usemul miece of test equipment your canganerato as nitchiolise as you want!

TUNE W WHFITNS
 Filt construction detalis instict

Als, mithis issuls:

Before you send your next order to us by post, take a look and see if there's a Maplin shop near you. In our shops you'll find that personal service that even the best mail-order operations cannot match. And you can look at the products before you buy. If you're coming for a particular item, a quick phone call will enable you to be certain the shop has everything you want in stock.

Our shops are pleased to accept Access, Barclaycard, Connect, American Express, Mapcard and cheques up to $£ 50$ with a cheque guarantee card. We'll even accept ordinary money as well! All our shops are close to excellent parking facilities, meters in London and Manchester, and free elsewhere.

The South

In the South our Southampton store is conveniently placed for easy access from all parts of Hampshire and surrounding counties, and is 15 minutes from Portsmouth.

London

Our London store now open 6 full days a week is situated just to the west of the pedestrian shopping centre in Hammersmith, and is just five minutes from the end of the M4 and only a short walk from the District, Piccadilly and Metropolitan lines' Hammersmith station.

The Midlands

In the Midlands, our self service Birmingham store now open 6 full days a week is just 3 minutes from the M6. Turn north at Spaghetti Junction (junction 6), onto the A5127 following the signs to Erdington. As you approach the Erdington roundabout, you'll see the store's 50 space car park directly in front of you.

South-East

Essex and Kent are served by our seli-service Southend shop now open 6 full days a week which is right on the A13, just 2 minutes before you reach the centre of Southend. And we're only 30 minutes from the M25 (junction 29) as well.

West
Our West country store in Bristol is open a full 6 days per week. The self-service store can be found on the A38 Gloucester Road, midway between Bristol city centre and the Filton airport.

The North

Our self-service store in Manchester, now open 7 days a week, serves the North and is just off the Mancunian Way, opposite the BBC, about 5 minutes from the end of the M602 or junction 10 on the M63. All our shops are open from 9a.m. to 5.30 p.m Monday to Saturday (9.30a.m. Wednesday) except Southampton which is closed Mondays. In addition Manchester is open Sundays. All shops are closed on Public Holidays. Shops do not close for lunch.
There's a friendly welcome in store for you at any Maplin shop. Our helpful staff may often be able to help with a technical problem or a constructional difficulty,
Call in at a Maplin store and get what you want today. We look forward to serving you.

\& PROJEGS

TDA 7000 FMRadio MKII 2

Improved version of this popular project using ready-wound RF coils. Complete kit now includes a case and aerial and at a realistic price. A superb project for any adult or child to build, as it is easy to construct and requires no alignment equipment.

3 Way Loudspeaker System 13

Presented here is a 20 Litre passive radiator cabinet design which gives excellent sound reproduction at a very reasonable cost. Full details are shown of the cabinet construction and a kit containing the speakers, crossover, front baffle, etc. is available.

Wetil Wetcher
39

This novel project, which is simple to install, will tell you if you are overdriving your speaker system. It can be housed in the speaker cabinet or in a box of its own.

Morse Code Practice

 Oscilletor 46

The best way to learn Morse Code is to practice until you acquire the speed and accuracy necessary to pass the Morse Test. This practice oscillator was designed to help by producing a loud clean tone, with the option of a controlled level of simulated noise. Just like the real thing!

The main use of a Noise Generator is in testing equipment on the bench which will be used in noisy environments in the field. An in-depth discussion on the types of noise to be encountered is also given.

Start of a new series covering the development of the telephone and ancillary equipment. This first part covers its invention, the early telephone systems and the intervention of the Post Office.

Electronics by
 Experiment.
 19

The third part of this series introduces the JK flip-flop and also covers counter chips in some depth. Example circuits are given for you to experiment and learn by using.

Bob's Mini Circuits 24
Another batch of very useful circuits from the prolific pen of Robert Penfold. These circuits are designed to be simple to construct but at the same time to give a useable end product and also to be fun to build for Dad and Lad!

Exploring Radio 36

This issue introduces the ZN414 AM tuner chip which is then used in the design of a MW radio. This little radio employs an earphone as the listening device and a PCB of the circuit is available.

The Video Revolution 42
Looking at the current explosion in home video equipment, John Woodgate uncovers some useful 'extras' and reading material that could help to enhance your hobby.
Diodes 54
This article explains just what constitutes a 'diode' and includes zener diodes and LED's.

RECULARS

Top 20 Books ... 9
Maplin's Big Heart .. 30
Price Changes List 31
Subscription Form 33
Order Coupon ... 34
Amendments to Catalogue 35
Corrigenda ... 35
New Items Price List 35
Top 20 Kits.. 35
Vacancies ... 61
New Books... 62
Classified...

Mail Order

P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Retail Sales: (0702) 554161. Enquiries: (0702) 55291
Trade Sales: (0702) 554171. Enquinies: (0702) 552961
General: (0702) 554155. Cashtel: (0702) 552941.
Shops: See inside front cover

Editorial \& Production	Published by	
Editor	Roy Smith	Typesetting by

> Maplin Electronic Supplies Ltd. Inline Design Systems Ltd. 258A London Road, Hadleigh, Benfleet, Essex SS7 2DE. Mayhew McCrimmon Lid., Star Lane, Great Wakering, Essex. Spolight Magazine Distribution Lid., I-11 Benwell Rd, London N7.

[^0]

Specifications of Prototype

Radio
integrated circuit : TDA7000
Audio
integrated circuit : TBA820M
Operating voltage : 4 V to 8 V
Supply current
at 6 V

Power output
8Ω speaker
Frequency coverage
Aerial

Introduction

This project is an improved version of the radio originally presented in Electronics number 9 (now available às a Projects Book, see inside back cover). Conventional Band II VHF superheterodyne radios use a large number of tuned circuits as these are needed for filtering in the RF, mixer, oscillator, IF, and detector stages. Ceramic filters have become very popular in recent years, but these can only replace one or two IF transformers, and only marginally ease problems with alignment of the finished receiver. The TDA7000 is an imaginative integrated circuit which employs novel
techniques that enable a good quality FM broadcast receiver to have just two tuned circuits. The reason for this device being developed is that it offers radio manufacturers the advantages of reduced costs, both in terms of components and the setting up time for the finished receiver. For the home constructor it similarly gives the advantages of low cost and ease of alignment. In fact the finished receiver only needs to have the core of one coil and a trimmer capacitor adjusted to give the correct frequency coverage. A TDA7000 FM radio is actually no more difficult to align than a simple ZN414 based AM radio!

Low IF

Strictly speaking the basic system used in the TDA7000 is not a new one, and is essentially the same as that used in the so called 'pulse counting' FM tuner designs that were popular amongst home constructors around twenty years ago (the original designs used valves!). The block diagram of Figure 1 shows the way in which these operate. The RF, mixer, and oscillator stages are fairly conventional, but usually quite simple with just a broadband (preset tuning) filter ahead of the mixer, but a more complex arrangement could be used if preferred. It is at the IF and demodulator stages where the real departures from a conventional superhet arrangement occur. The IF amplifiers are virtually ordinary high gain audio amplifiers, but filter capacitors are used to roll-off the response above about 200 kHz and the coupling capacitors only need to be effective at frequencies above the audio range. This gives an IF centred at around 100 kHz or so, and no tuned circuits to provide IF filtering are required. The low IF enables simple C-R filtering to give adequate results, and there is nolack of performance in this respect. A pulse counting circuit plus an RF filter provides the demodulation, and the pulse counter is merely a diode-pump frequency-to-voltage converter. Other
types of circuit such as a phase locked loop or even just a monostable multivibrator can be used here to convert the frequency variations into the corresponding audio signal. While this system has obvious attractions, it is not without its drawbacks as well. The main one is the lack of any image rejection, due to the very low IF and the spacing of only a few tens of Kilohertz between what would normally be the main and image responses. Thus, when tuning a receiver of this type there are two very closely spaced points on the tuning dial where each station can be received satisfactorily, with a very narrow gap between these where the station is received, but is very severely distorted. As Band II FM broadcast stations tend to be well spread out this is unlikely to give problems with co-channel interference, but does make tuning the set a little awkward.

The TDA7000

Although pulse counting tuners were originally conceived as simple alternatives to conventional circuits, it would not be accurate to think of the TDA7000 as providing an inferior alternative to a conventional design. It uses a highly refined version of the pulse counting type of circuit, and in some respects it is

Figure 1. Block Diagram
superior to more conventional designs. Figure 2 shows the arrangement used in this device, plus basic details of the discrete components required. The standard TDA7000 has an 18 -pin DIL plastic package, but there is also a miniature 16 -pin version, the TDA7000T. The input tuned circuit is formed by La , Ce , and Cf. Internal resistors of the TDA7000 heavily damp this filter so that it has a very wide bandwidth and no RF tuning is needed. La can in fact be a zig-zag of printed circuit track, but in the design featured here it is a small moulded coil with a ferrite core. The aerial, which is a simple wire or telescopic type, is coupled to the input tuned circuit by way of a capacitive tapping. A voltage controlled oscillator feeds the other input of the mixer stage. This VCO is a straightforward L-C type which achieves voltage control using a couple of variable capacitance diodes.
There are three IF filter stages, and the first of these uses a second-order low pass Sallen-Key circuit, which is the type of filter used in scratch filters and similar applications. Cq and Cr are the filter capacitors, but the filter resistors and other components are part of the TDA7000. The second filter is a simple bandpass type, and again, the only discrete components are two capacitors. The final filter stage is a straightforward passive first-order lowpass type which uses discrete capacitor Cg . The reason for using discrete rather than on-chip filter capacitors is simply that it is difficult and expensive to include even low value capacitors in an integrated circuit. The -60 dB bandwidth of the filters is approximately 500 kHz , which is perfectly adequate for an FM broadcast receiver.

After filtering the signal is amplified and limited in the usual way, and demodulated by a quadrature detector. Unlike a standard 10.7 MHz quadrature detector, no tuned circuit is required, just

Figure 2. Connection Diagram for TDA7000
one phase shift capacitor (Cb). The intermediate frequency can be set at any reasonable figure by using the appropriate filter capacitor values, but a frequency of 70 kHz would normally be used. Such a low IF eliminates any problems with the image signal of one channel interfering with reception of a transmission on the next channel. With the set tuned to one channel the image response falls roughly half-way between this channel and the next. The problem of using such a low IF is that it would result in severe distortion with signals having something approaching the full plus and minus 75 kHz deviation. This problem is overcome by amplifying the audio output signal and feeding it to the VCO. This gives a form of negative feedback with the VCO following the input signal up and down in frequency. The deviation of the VCO is not quite equal to that of the input signal so that there is some variation in the frequency of the IF signal, but this is only about plus and minus 15 kHz . The typical total harmonic distortion on the audio output is 2.3% at maximum deviation, which is satisfactory for portable radios and similar applications. A useful 'byproduct' of the feedback to the VCO is that it gives a sort of automatic frequency control. Apart from counteracting any tuning drift, this effectively gives slowmotion tuning once the receiver has locked onto a transmission, and makes the set easy to tune even if only a small tuning knob is used.

Correlator

The correlator and mute circuits of the TDA7000 are used to suppress the image response as well as giving a conventional 'squelch' action. The correlator operates by delaying the IF signal by an amount equal to the duration of one IF half cycle. This signal is then inverted and compared with the unprocessed IF signal. If the tuning is correct, the two signals will be virtually identical and will have a high degree of correlation. However, if the tuning is not very accurate the IF signal will be

View of front panel.

Inside the box.
displaced from its normal 70 kHz figure, and the delaying circuit will not give a one half cycle delay. This introduces a phase difference and poor correlation, with the mute circuit switching off the audio in consequence. If the IF signal is noise, or largely consists of noise, this also gives very little correlation between the two signals and mutes the audio output. An interesting effect of this system of muting is that it eliminates the side responses that are normally found on FM radios. These are caused by the signal being 'slope' detected by the skirt responses of the IF filtering, and they can make accurate tuning a little difficult. Many FM radios have a tuning indicator to assist proper tuning. The TDA7000 muting system eliminates the side responses, and together with the frequency locking tuning system makes tuning very easy indeed. A detuning indicator can be driven from pin 1 of the TDA7000, but in practice it would be pointless to do so.

On its own the correlator does not eliminate the image response, but it does so in conjunction with the feedback to the VCO which was described above (the frequency locked loop or FLL as the IC manufacturer terms it). This locking system only operates with the set tuned to the main response, and not when it is tuned to the image, due to the inversion of the signal that occurs. If we take a simple mathematical example to demonstrate this point, let us suppose that the receiver is
tuned to a transmission which deviates between 100 and 101 MHz , and that the oscillator is at 99 MHz . This gives an IF range of 1 to $2 \mathrm{MHz}(100-99 \mathrm{MHz}$ and $101-99 \mathrm{MHz}$). Of course, these figures have been chosen for their mathematical simplicity, and are not meant to be practical examples. As the IF signal moves up and down in frequency the audio output voltage also rises and falls, feeding a control voltage to the oscillator that shifts its frequency in the same direction as the input signal. The image response would occur with the oscillator at 102 MHz , giving an IF range of 2 to 1 MHz ($102-100 \mathrm{MHz}$ and $102-101 \mathrm{MHz}$). This frequency inversion of the IF signal appears as a phase inversion of the audio output signal. Where the oscillator frequency was previously taken higher and lower in sympathy with the received signal to effectively reduce the level of deviation, when tuned to the image response it is moved in the opposite direction so that the deviation is effectively increased. For example, with the input signal at 100 MHz the IF signal is at 2 MHz , giving the maximum audio output voltage. This sends the oscillator higher in frequency, giving an even greater IF signal frequency, greater audio voltage, and positive rather than negative feedback. When tuned to the image the IF signal does repeatedly pass through the acceptable IF range, but the value of Cj is chosen to give the muting circuit a slow response time so that it
ignores these transients, and the image is suppressed. Ra is the load resistor for the audio output stage, and Ck is the de-emphasis capacitor. A slightly bizarre feature of the TDA7000 is a noise generator which gives a quiet noise signal at the audio output when the main audio signal is muted! This is included because it is otherwise very easy to tune over a station without realising it is there. The null in the noise signal as the set is tuned through a station helps to avoid this. However, if desired the noise can be eliminated by omitting Cl .

The Circuit

Figure 3 shows the circuit of a practical radio built around the TDA7000, and the circuitry associated with IC1 exactly follows the arrangement shown in Figure 2 and discussed earlier.

An audio output stage using a TBA820M (IC2) is included because of its low quiescent current, good ripple rejection and low crossover distortion. The signal from the TDA 7000 (ICl) is fed via C19 to the top end of the volume control RV1. The wiper of RV1 is connected to the signal input pin of IC2, with R2 and C20 setting the gain of the amplifier. RV1 has an integral switch, S1 which is used to turn the DC power on and off to the circuit. C21 is connected to pin 1 for high frequency compensation and the zobel network R3 and C22 on pin 5 is connected to the negative rail. Pin 5 has a DC potential so a blocking capacitor C23 is used to feed the output of IC2 to a loudspeaker having an impedance in the range of 8 to 80 ohms . An output power of about 300 milliwatts RMS into an 8 ohm loudspeaker is available, and this is adequate for a portable radio. The output stage will also drive any magnetic type of earphone or headphones.

Top of PCB.

Side view of PCB.

PCB Assembly

A suitable printed circuit layout for the radio appears in Figure 4. The
TDA7000 is not one of the many radio IC's that tend to be unstable at every opportunity, and the low IF eliminates problems with harmonics of the clipped IF
signal being picked up at the input of the circuit. However, with frequencies in the region of 100 MHz involved it is not advisable to use a different layout unless you are familiar with radio projects and know exactly what you are doing. The

Figure 4. Track and Layout of the PCB

Figure 5. Spindle Preparation

Making the spindle longer.

PCB supplied in the Maplin kit is a single-sided, fibre glass type, chosen for maximum reliability and stability. Howeverer, removal of a misplaced component is quite difficult, so please double-check each component type, value and its polarity where appropriate, before soldering! The PCB has a printed legend to assist you in correctly positioning each component.

The sequence in which the components are fitted is not critical. However, the following instructions will be of use in making these tasks as straightforward as possible. It is usually easier to start with the smaller components. Begin with the pins at positions P1 to P5, then fit three more pins at RV1. Next, install the resistors, then the ceramic, polyester and electrolytic capacitors. The polarity for the electrolytic capacitors is shown by a plus sign (+) matching that on the PCB legend. However, on some capacitors the polarity is designated by a negative symbol $(-)$ in which case the lead nearest this symbol goes away from the positive sign on the legend. IMPORTANT!! do not forget to fit the wire link (LK) on the PCB. Using a short length of insulated hook-up wire, connect one end at the hole near R3 and the other to the hole near C25, see Figure 4. Next, install the two IC's ensuring that you fit the appropriate IC in each position, matching the notch with the block on the legend. When fitting the two RF coils ensure that the correct colour coil is positioned as follows, red at L1 and white at L2. Also make certain that the two long plastic tags are facing each other.

Before mounting RV1, bend the three pot contacts back by 90°, so they lay flat on the pins as the pot is inserted. Secure RV1 by using the nut and shake-proof washer supplied with the pot, see Figure 5.
Finally cut the plastic spindle of RV1 to a length of 15 mm .

Next install the tuning capacitor $\mathrm{VC1}$, ensuring that the centre single wire connection is as shown in Figure 5. The capacitor is secured using two M2.5 by 6 mm long bolts and its spindle is then constructed in the following manner. The short brass spindle with the two flat surfaces is supplied with the capacitor. However, this spindle must be extended by using an M3 half inch spacer, secured by an M2.5 20 mm long bolt.
IMPORTANT!! as the bolt is fully tightened, to prevent damage occurring to the tuning vanes inside the capacitor, the brass spindle must be held using a pair of long nose pliers.

This completes the assembly of the PCB and you should check your work very carefully making sure that all the solder joints are sound. It is also very important that the track side of the circuit board does not have any trimmed component leads standing proud by more than 4 mm . Further information on soldering and assembly techniques can be found in the Constructors Guide included in the Maplin kit.

Wiring

If you purchase a complete kit from Maplin it should contain a length of hook-up wire. Carefully follow the wiring shown in Figure 6. The power on/off switch S 1 is connected to P 2 using a 50 mm length of wire. Next cut the wires on the battery clip to 110 mm and connect the red to S1, black to P5. DO NOT fit the clip onto the battery until it is called for during the testing stage.

Prepare a 100 mm length of wire. Connect one end to the aerial input pin P1 and attach an M3 solder tag to the free end. This tag will be bolted to the base of telescopic aerial in the final assembly stage.

Finally, using four 65 mm lengths of wire, connect the headphone socket JK1 to P3 and P4 and to the two terminals on the loudspeaker. When handling the speaker, be careful not to damage the paper cone, or the terminals on the back. This completes the wiring of the PCB assembly. Now check your work very carefully making sure that all the wires and solder joints are sound.

Testing and Adjustment

All the tests can be made with an electronic digital, or analogue moving coil, multimeter. The following test results were obtained from the prototype using a digital multimeter and a 6 V battery pack as the power supply. Before commencing the tests, set the rotary controls as follows, VOLUME OFF, TUNING 88 MHz (fully-anticlockwise). Next set the two RF coils and the trimmer capacitor as shown in Figure 7. The ferrite cores in the coils are very brittle, you must use the hexagon trimming tool supplied otherwise damage may occur. A miniature flat blade screwdriver, or preset type trimming tool can be used when adjusting the trimmer capacitor Cl . The aerial input coil L 1 forms part of a very wide bandwidth tuned circuit. This results in a flat tuning peak in the sensitivity of the receiver, which should occur when the core is flush with the top of L1. The setting of the oscillator coil L 2 is more precise and its final position may vary from that shown in Figure 7. This also applies to the oscillator trimmer capacitor Cl , however the positions shown in Figure 7 should provide a good starting point. Make a temporary aerial out of a piece of wire about 0.5 to 1 metre long and connect one end to the M3 solder tag.

The first test is to ensure that there are no short circuits before you connect the battery. Set your multimeter to read OHMS on its resistance range and connect the probes to the terminals on the battery clip. Turn on the power and with the probes either way round a reading greater than 60Ω should be obtained. Remove the probes and fasten the negative terminal of the clip to the battery box.

Next monitor the supply current, set your meter to read DC mA and place it in the positive line of the battery box. With the volume set to minimum, a current

M3 Solder tag

Figure 6. Wiring

Figure 7. Receiver Adjustment
reading of approximately 13 mA should be seen. As the volume control is advanced to its maximum setting, with no radio station tuned in, this reading will increase to approximately 26 mA and a hissing sound should be heard. If a signal is received this reading can go as high as 80 mA on sound peaks. However, when a headphone, or an earpiece is plugged into JK1 this reading will be significantly reduced. Remove your meter and fastēn the clip to the battery box. Finally, check the tuning range, making any necessary adjustments to the oscillator coil L2 and the trimmer capacitor Cl . You should set the low, 88 MHz end of the band using L 2 and Cl when adjusting the upper 108 MHz limit. This completes the testing and alignment of the TDA 7000 fm radio.

Box Drilling

The box that the unit is designed to fit is the black plastic MB3. Carefully follow the drilling instructions in Figure 8. The self-adhesive trim can be used as a guide for checking the positioning of the holes in the front of the box. However, DO NOT stick the trim down until the final assembly stage is completed. Having completed the drilling, at the same time clearing away any plastic swarf, clean the box using a dry cloth.

Final Assembly

Using a good quality impact adhesive, secure the loudspeaker to the inside of the box, but be careful not to get any glue on the paper cone of the speaker. Next mount

Figure 8. Box Drilling

Figure 9. Final Assembly
the PCB assembly using the M3 hardware as shown in Figure 9. The 3.5 mm headphone socket is then secured in the side of the box using the nut and washer provided. When fixing the telescopic aerial ensure that the M3 solder tag is tightly clamped under its base. Remove the protective backing from the trim and carefully position and firmly push it down using a dry, clean cloth until it is securely in place. Next fit the knobs so that their pointers are at the fully-anticlockwise position. Check that they travel smoothly round to the fully-clockwise position, without scraping on the front panel trim. Fit the power supply clip onto the 6 V battery box and position it as shown in Figure 9. Before fitting the lid of the box, a small piece of foam rubber can be sandwiched between the battery and the inside of the lid. This will prevent the battery box from moving around inside the finished unit.

View of headphone socker.

TDAZ000 FM RADIO MKII PARTS LIST

R1	22k	1	()
R2	33 R	1	(M33R)
R3	1 R	1	(M1R)
RV1/S1	10k Pot Log	1	(FW63')
CAPACITORS			
Cl	220pF Ceramic	1	(WX60Q)
C2,9	330pF Ceramic	2	(WX62S)
C3,22,24,26	100 nF Minidisc	4	(YR75S)
C4	2n2F Ceramic	1	(WX72P)
C5	47pF Ceramic	1	(WX52G)
C6	39pF Ceramic	1	(WXSIF)
C7	150pF Cexamic	1	(WX58N)
C8,18	3n3F Ceramic	2	(WX74R)
C10	150nF Polylayer	1	(WW43W)
Cll	In8F Cexamic	1	(WX71N)
Cl 2	$22 n \mathrm{~F}$ Ceramic	1	(WX78K)
C13,14	10nF Ceramic	2	(WXT7])
C15	10pF Ceramic	1	(WX44X)
Cl6	56pF Ceramic	1	(WX53H)
C17	180pF Ceramic	1	(WX59P)
C19	$1 \mu \mathrm{~F} 100 \mathrm{~V}$ PC Electrolytic	1	(FF01B)
C20,25	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ PC Electrolytic	2	(FF10L)
C21	100pF Ceramic	1	(WX56L)
C23	$220 \mu \mathrm{~F}$ 16V PC Electrolytic	1	(FF13P)
VCl	AM/FM Min Tuner Cap	1	(FT79L)

\section*{SEMICONDUCTORS
 | $\mathrm{IC1}$ | TDA7000 |
| :--- | :--- |
| $\mathrm{IC2}$ | TBA820M |}

1 (KH87U) 1 (WQ63T)

1. (1) Loudspeaker Enclosure Design and Construction. (WM82D) Cat. P82.
2. (7) Mastering Electronics, by John Watson. (WM60Q) Cat. P77.
3. (2) MIDI Projects, by R.A. Penfold. (WP49D) Cat. P83.
4. (3) Power Supply Projects, by R.A. Penfold. (XW52G) Cat. P78.
5. (16) How to get Your Electronic Projects Working; by R.A. Penfold (WA53H) Cat. P77.
6. (4) IC555 Projects, by E.A. Parr. (LY04E) Cat. P80.
7. (11) Introduction to Electronics, by Pam Beasant. (WP50E) Cat. P77.
8. (8) Projects for the Car and Garage, by Graham Bishop. (XW31J) Cat. P79.
9. (-) Beginner's Guide to Building Electronic Projects, by R.A. Penfold. (RF09K) Cat. P77.
10. (9) Adventures with Micro-Electronics by Tom Duncan. (XW63T) Cat. P77.
11. (6) International Transistor Equivalents Guide, by Adrian Michaels. (WG30H) Cat. P73.
12. (15) How to Design and Make Your Own PCB's, by R.A. Penfold. (WK63T) Cat. P76.
13. (13) Electronic Security Devices, by R.A.

Penfold. (RL43W) Cat. P79.
14. (-) Modern Opto Device Projects, by R.A. Penfold (WP74R) Cat. P81
15. (18) 50 Simple LED Circuits Book 2, by R.N. Soar. (WG43W) Cat. P80.
16. (14) Electronic Timer Projects, by F.G. Rayer. (WG72P) Cat. P79.
17. (17) How to Use Op-Amps, by E.A. Parr. (WA29G) Cat. P76
18. (-) Servicing Radio, Hi-Fi and TV Equipment, by Gordon J. King (WG89W) Cat. P85.
19. (-) An Introduction to 68000 Assembly Language, by R.A. \& J.W. Penfold (WP54J) Cat. P87.
20. (10) Model Railway Projects, by R.A. Penfold. (WG60Q) Cat. P79.

These are our top twenty best selling books based on mail order and shop sales during January, February and March 1988. Our own magazines and publications are not included. The Maplin order code of each book is shown together with page numbers for our 1988 catalogue. We stock over 250 different titles, covering a wide range of electronics and computing topics.

by J.K. Hearfield

How Telephones were Invented

In 1854 a paper was published by Charles Bourseul in which he described an experiment. "Suppose", he wrote, "a man speaks near a movable disc sufficiently pliable to lose none of the vibrations of the voice. If this disc alternately makes and breaks currents from a battery, you may have at a distance another disc,-which will simultaneously execute the same vibrations ... It is certain that, in the more or less distant future, speech will be transmitted by electricity". In 1876, Alexander Graham Bell's assistant, Mr. Watson, was the first man to have his work interrupted by a telephone call, and life has never been the same since.

Picture 1 shows Bell's first telephone of 1876. Bell's telephone consisted of a mobile iron diaphragm placed in the field of a polarised electromagnet, so arranged that any movement of the diaphragm produced a change in field. The same principle was used for both transmitting and receiving, so a conversation could be held between two identical instruments.

Bell was invited to demonstrate his wonderful machine to Queen Victoria at Osborne House in January 1878, and in 1879 the Telephone Company Limited was formed. The company was given a
licence to use the Bell patents and opened its first telephone exchange in London the same year.

Picture 2 shows a fretwork fronted telephone, 1878 - one of the first used by the British Post Office. The user spoke into the microphone concealed behind the fretwork cover. Later in 1879, the Edison Telephone Company of London Limited opened a rival telephone exchange. Edison's design of microphone was more efficient and more practical than Bell's. It used the speech energy to compress a piece of carbon, thus varying its resistance. Two years later, the Reverend Hunnings built an even better microphone in which carbon granules replaced the single carbon block, and this design has formed the basis of most telephone microphones ever since. Picture 3 shows Edison's telephone of 1879 with its carbon transmitter and chalk receiver.

Why the Post Office Intervened

In 1880, the two telephone companies amalgamated to become the United Telephone Company, holding patents for both systems. This new telephone system threatened the then sole means of long-distance communication: the telegraph. Telegraphs were already
under the control of the Post Office and, after successfully arguing that telephone calls were similar to telegrams, the Post Office was granted sole control of telephone systems by the High Court in 1880.

The Post Office then granted licences to such as the National Telephone Company to open and operate telephone exchanges. Usually the National Telephone Company operated within towns and cities, the Post Office providing the trunk lines and rural exchanges. London and Birmingham were linked in 1890, and London and Paris the following year.

The Post Office also opened a number of telephone exchanges in different cities and in 1899 an Act of Parliament enabled local authorities to operate their own exchanges. Of the few cities which took advantage of this, only the Hull system remains today as an independent telephone company.

Picture 4 is of the Gower-Bell telephone, circa 1881; the two flexible tubes were held to the ears. Elisha Gray's telephone of 1882 is shown in Picture 5 and Picture 6 shows the Smith and Sinclair coinbox.

The first public telephones were installed in shops as early as 1884. Only non-subscribers were required to use coins to pay for their calls - telephone company subscribers were issued with pass keys. The coinbox had separate

coin slots for local calls (2d) and trunk calls (6d).

The rather elegant Ericsson skeleton telephone of 1895, also known as the Telephone No. 16 (shown in Picture 7), is an example of good industrial design, since the induction coil for the speech circuits is hidden inside the bell shape which supports the cradle for the handset (then called the 'microtelephone'), and the curved legs form the magnets for the hand generator. The local battery is accommodated in a separate box, enabling the telephone to be used as a table rather than wall-hung model.

By contrast, the horse-collar telephone shown in Picture 8 was widely disliked. The idea was simple: a caller who did not wish to be overheard could press his face against the rubber collar, emerging presumably from time to time in order to breathe. Users thought it too unhygenic, and the design didn't last long.

Basic Telephony Principles

The simplest possible two-way telephone circuit is shown in Figure 1. It consists of a microphone, sometimes called a 'transmitter', and a receiver at each end of the line, with a battery somewhere in the circuit to provide the DC needed by the microphones. A microphone translates variations in sound pressure into variations of resistance, so that the current flowing around the circuit depends partly on the instantaneous
sound pressure at each microphone. A receiver works rather like a loudspeaker, translating the small current variations into varying forces on a diaphragm and hence back into variations in sound pressure.

This circuit has several major disadvantages. First, and perhaps most important, it is very inefficient. The resistance of a microphone is quite small compared to the resistance of the whole circuit, so variations in this resistance can produce only minute variations in the circulating current. In energy terms, there is a very poor impedance match between the source (the microphone) and its load.

Second, the same current flows through both receivers, so the person speaking hears himself at the same sound level as does the person listening. This

Figure 1. The simplest possible telephone connection.
local reproduction of outgoing speech is known as 'sidetone', and too much sidetone has the unfortunate psychological effect of causing the speaker to lower his voice, further degrading the effective performance of the circuit. The DC flowing through the receivers is not in itself a problem, since early receivers used it to power the electromagnets they used. Modern receivers are designed around permanent magnets however, and would not work well in this circuit.

Third, there is no means of signalling in either direction. The circuit consumes the same amount of power whether or not it is actually in use.

The Local Battery (LB) circuit, shown in Figure 2, was devised to overcome at least some of these shortcomings. The microphone now sees just the low (and constant) resistance of the induction coil primary, which also improves its impedance match to the line. The match will rarely be exact, of course, because each telephone will be connected to a different length of line. The induction coil is a special type of transformer in which the magnetic circuit is deliberately not closed. This avoids the problems of core saturation that would otherwise occur due to the large DC flowing through one or both windings.

The simple LB telephone still has no means of signalling either that the user wishes to make a call or that an incoming call has arrived. The first attempts to provide signalling involved the use of a trembler bell, as illustrated in Figure 3. This circuit also illustrates how the hooks-

Figure 2. Local battery telephone principle.

Figure 3. Local battery telephone with signalling.
witch (or 'gravity switch' as it was then called) is used to change the circuit configuration depending on whether or not the telephone is in use. In the idle state, the microphone circuit is broken, and the bell is connected across the line ready to detect an incoming ring signal (which in this case is just a battery applied across the line by the calling party). In use, the microphone is powered up and the receiver connected across the line in place of the bell. The user signals he wishes to make a call by pressing the CALL button, which connects the two batteries in series across the line in order to ring the bell at the distant end.

Trembler bells are however only suitable for signalling over quite short
lines. For longer lines, a more efficient solution is to use high voltage AC, and the magneto - a hand-cranked alternator quickly became a standard fitment on telephones. It was used not only to alert the operator that the user wished to make a call, but also to signal the end of the call by ('ringing off'). A magneto generally included some means of switching itself into circuit only when the handle was turned, as Figure 4 illustrates, to prevent its low resistance from affecting the speech performance of the telephone.

Picture 9 shows the Ericsson LB wall telephone, the omate casing concealed the magneto generator (operated by the handle visible on the right hand side) and the large and sometimes messy battery cells mounted underneath.

One of the most popular designs was the so-called 'candlestick' telephone, which was known in its various forms as the Telephone No. 2, No. 4 and No. 150. The circuit diagram of the Type 150 is shown in Figure 5, and though it appears to differ only slightly from earlier circuits, it was in fact designed to work within a quite new system concept, known as Central Battery Signalling, which will be discussed in the next article.

Acknowledgement: All telephone illustrations are reproduced by courtesy of the archivist at The Telecom Technology Showcase.

Figure 4. The Telephone No. 11 circuit (a) as it would have been drawn at the time, (b) redrawn with modern symbols.

Figure 5. The 'candlestick' telephone circuit (a) in its original form, (b) redrawn with modern symbols.

3 WAY LOUDSPRAKIR SYSHIMM

by Dave Goodman

$\star 20$ Lifre cabinet design ฝ 3-way speaker system, HF, Bass and passive drivers $\star 40 \mathrm{~Hz}$ to 15 kHz at 25 Wetts

A loudspeaker cabinet design based on the square bass transducer and matching passive radiator, developed for use in 20 Litre cabinets. The passive radiator does not have a magnet or voice coil and is not driven electrically at all; instead, the diaphragm - piston - is driven by changes in air pressure produced from the bass speaker. The amount of movement that the piston makes is determined by the transducer and cabinet resonance, piston mass/ suspension compliance, frequency and power. As the transducer diaphragm moves inward the radiator moves outward, but not exactly at the same time, otherwise - if that were so - the sound waves would be 180° out of phase and cancel out! Of course phase cancellation does occur at different areas of the frequency spectrum in this type of system and fine tuning the radiator piston and cabinet wadding can minimise this effect.

Infinite baffle (sealed cabinet) and ported reflex cabinets are, by far, the most commonly used systems in use, mainly due to their excellent performance and design/manufacture simplicity. Both types have their relative merits for example: ported cabinets are usually much larger in volume, for a given loudspeaker type; sealed cabinets have a smoother low frequency response cut off; ported designs can have a lower frequency response, but exhibit a sharp cut off slope; sealed designs are simple to develop and make.

The passive radiator design fits between the two types and exhibits the properties of both cabinets in its simple, small construction and excellent low frequency response. Due to the small cabinet volume of 20 Litres, their is an inevitable peak or hump in the response as can be seen from Figure 1, similar in effect to a ported enclosure response. Booming, often associated with this peak in ported and sealed enclosures, is not

Figure 1. Frequency response.
prevalent here, due to the transducer design, although its effect is mostly determined by room volume and resonance. Small volume rooms below 21 cubic metres $-2.5 \times 3.5 \times 2.4$ for example may well resonate at 60 to 90 Hz depending on wall ratios and proportions and under these circumstances the bass output will be enhanced (or reduced!).

Positioning of loudspeakers in a room is virtually a science by itself and cabinets that perform excellently in a Hi-Fi show room often sound lacking when installed in a domestic environment. High frequency sound waves are quite directional and easily deflected by hard, solid objects: walls, sideboards, windows, tables, etc., are all responsible for this and can add to the reverberative muddle experienced. Soft fumishings such as furniture, curtains and carpets will absorb high frequency sound waves, making the cabinet output more directional and, apparently, lower in intensity. Low frequency sound waves pass through solid objects quite easily and walls become transparent, as many of us have probably experienced with the neighbours choice of music perhaps!

When siting loudspeaker enclosures in a room, a general rule of thumb is to use the room corners to reflect some of the low frequency sound energy that emanates from the back of the cabinet. This sets up standing waves which travel across the floor and greatly enhance the 'feel' or 'solidness' of percussive sounds. Try to angle the enclosures so that they both face toward the listening area at 'ear' height and away from furnishings as much as possible. More often than not, this arrangement requires the enclosure to be raised a metre or more above the floor to be clear of obstructions, with a subsequent drop in bass performance the choice is yours!

Figure 2. Cabinet panel dimensions.

Cabinet Assembly

The five cabinet panels, detailed in Figure 2, are not supplied in the kit and should be obtained by the constructor. 15 mm laminated chipboard, or high density chipboard such as flooring grade, can be used for the panels as long as the top panel (4) and bottom panel (5) dimensions are altered to suit any deviation from the 15 mm thickness. Do not use materials less than 15 mm thick or fibreboard, blockboard and hardboard types of material.

Refer to Figure 3 \& Figure 4. Position, glue and nail vertical (9) onto side panel (2) allowing for the back panel (1) thickness of 15 mm or more, and do the same to vertical (8) on side panel (3). Drill six screw clearance holes in each side panel (2) \& (3), 7 mm in from the front edge and countersink for the 38 mm screw heads: Apply wood glue to the long edges of the baffle board, fit side panels (2) \& (3) ensuring all sides and edges are exactly in line and insert $3 . x$ 38 mm screws in each panel.

Cutting list: (not supplied)
15 mm high density chipboard

2 panels	$210 \times 260 \mathrm{~mm}$	$(4 \& 5)$
2 panels	$210 \times 500 \mathrm{~mm}$	$(2 \& 3)$
1 panel	$230 \times 500 \mathrm{~mm}$	(1)

1.5 metres 2×1 inch Prepared ($44 \times 21 \mathrm{~mm}$) 2 verticals 500 mm long ($8 \& 9$) 2 horizontals 188 mm long ($6 \& 7$)

Miscellaneous parts: (not supplied)
24×1.5 inch (38 mm) csk chipboard screws 6×1.25 inch wire nails
Resin wood glue
Optional parts: (not supplied in kit)
Impact adhesive
(FL43W)
Hot melt glue gun
(YP71N)
Spare glue sticks (FS97F)
Flexible rubber sealer
(Y]91Y)

Table 1.

Fit the back panel (1) in place and insert $3 \times 38 \mathrm{~mm}$ screws in each side panel, but DO NOT apply glue as the back panel will be removed later. Drill four screw clearance holes in each end panel (4) \& (5), 7 mm in from the edges and countersink as before (see Figure 5). Apply wood glue to the top edge of side panels (2) \& (3) and top edge of the baffle board only, place panel (4) in position and insert the 4 X 38 mm screws. Depending on panel thickness used, the top front screw may break through into the tweeter mounting hole, in the baffle. In this position only, use a shorter screw or cut/file the screw down after insertion. Apply glue to the side panel and baffle bottom edges and fit panel (5) using 4 x 38 mm screws. Remove the six back screws and back panel (1) before the glue dries. Wipe away any excess glue that may have been squeezed out from the joints and fit the two remaining horizontals (6) \& (7), again using glue and nails. Drill a hole in the back panel, of a size suitable to take the cable used for connecting to an amplifier, leave the cabinet assembly for the glue to dry and proceed with the crossover module modifications.

X-Over
 Modifications

With reference to Figures 6 \& 7, take the 10 mm ferrite rod and cut a piece (\bar{A}) 25 mm long and another piece (B) 40 mm long, using a hacksaw. Ferrite is a very brittle material which breaks easily if dropped or excessive pressure is applied whilst sawing! Orientate the x -over module, as Figure 7, and insert (A) into the former, apply adhesive or hot melt glue around the edge of the rod, to hold in place. Insert (B) into the HF filter coil on the right hand side. The 40 mm long rod protrudes about 15 mm above the former; again run a fillet of adhesive around the edge as shown. The driver transducer piston is covered with an June 1988 Maplin Magazine

Figure 3. Back panel framework.

Figure 4. Panel assembly.

Figure 5. Completed cabinet.

Figure 1. Modifying the crossover.
aluminous polymer layer which emits a typical bandpass - peaking - effect in the upper speech area, around 3 kHz . This phenomenon does nothing to enhance reproduction quality and disappears when the modifications are made to the x-over. Fit a $10 \mu \mathrm{~F}$ bipolar capacitor between common ($0 \mathrm{~V}-$ terminal C) and the bass speaker (Woofer - terminal W). The two 22 R parallel resistors need only be fitted between common C , and tweeter terminal T, if the high frequency output of the tweeter sounds excessive. This being so, fitting the resistors will attenuate the tweeter output by approximately 3 dB , which might be found more acceptable!

Figure 6. Cutting the ferrite rod.

Cabinet Wadding

Cut two pieces of wadding approximately $500 \mathrm{~mm} \times 150 \mathrm{~mm}$, to snugly fit each inside panel (2 \& 3), behind the wood frame. Apply liberal amounts of adhesive to the panels and stick the wadding in position, as in Figure 8. Cut two smaller pieces of wadding 230 mm x 150 mm to fit inside on panels ($4 \& 5$) and cut out a $100 \mathrm{~mm} \times 60 \mathrm{~mm}$ section to clear the crossover, glue both in place. Cut and solder two lengths of wire to the crossover module with the black lined conductors connected to the common terminal, C (see Figure 9). Insert the module into the cut-out section of the wadding, and screw down with 4×0.5 in self tappers. Finally, cut two $450 \mathrm{~mm} \times$ 180 mm pieces of wadding for gluing one above the other, onto the back panel. Allow enough room around the edges for the wadding to clear the frame, once the panel is in position.

Loudspeaker Fixing

The three loudspeakers are mounted into the baffle from outside and held in place with $4 \mathrm{BA} \times 1.5$ in bolts. Take care when handling the square bass driver and passive radiator, as the aluminium polymer covering on the piston can be permanently damaged from mishandling. The tweeter dome can also be damaged very easily, therefore the dome grille should be fitted by; first removing the four pozi-screws on the tweeter plate, (do not remove the magnet or voice coil!) position the grille over the soft dome and replace the four screws.

Figure 8. Fitting wadding and crossover unit.

Bring the tweeter connecting wire, from the crossover module, out through the baffle tweeter cut-out and solder to the tweeter terminals. The +V terminal must be connected to T on the module. Extend the bass driver wire through the baffle cut-out as before, connect the +V or red marked terminal to W on the module. Place both speakers into their mounting positions on the bafle, fit the plastic trim onto the driver and use four screws, shake washers and nuts to hold in place. Mount the passive radiator in the same way. Tighten the nuts well and squeeze a layer of glue or rubber sealer over each nut and bolt shank, to prevent them from shaking loose in use. Rubber sealer is recommended for squeezing along all

Figure 9. Installing the loudspeakers.
internal cabinet joints to ensure airtightness at the seams. A common source of air leakage comes from behind the loudspeaker units; spread a fillet of sealer around the outside edge of each speaker cut-out before mounting the loudspeaker, to prevent this possibility. Air leakage often manifests itself as a squeak or buzz and can be very annoying! Finally, tie both speaker wires securely so that they do not flap about, insert the amplifier connecting cable through the back panel (from the outside!) and terminate onto the crossover input terminals, +V to IN and 0 V to C . Re-fit the back panel and screws and seal the four seams with rubber sealer.

Conclusion

The loudspeakers used in this design are rated at 60W to DIN 45573, this does not mean that they can be fitted to power amplifiers rated up to 60W! For maximum possible reliability and lifeexpectancy do not run this system at more than 25W RMS, which is a good average figure for these speakers when used continuously. Music waveforms are generally composed of high peaks and low troughs, where the peak signals produced from an amplifier can far exceed 25 W , especially at low frequencies. The driver transducer voice coil and former is of high temperature rating and will happily handle peak signals up to 60W. Running a low power amplifier 'flat

Passive Radiator.

Bass Driver.
out' into any speaker invariably causes the reproduced waveform to be severely clipped. Allowing this to happen for any length of time dramatically increases the energy in the voice coil and hence the heat generated will cause mechanical distortion and total breakdown of the unit. The bass transducer is more tolerant of abuse than the dome tweeter, due to its larger heat dispersion areas, whereas the tweeter is very susceptible to high energy, clipped waveforms. The cabinet design is intended for use in smaller domestic type environments, as opposed to hall or stage use, where it is hardly likely to be run continuously at 25 W power levels.

Part 3 by Graham Dixey C. Eng., M.I.E.R.E.

Introduction

Logic circuits fall into two classes, known as 'combinational' logic and 'sequential' logic. The principles and some applications of combinational logic were the subjects of Parts One and Two. Now it is the tum of sequential logic. This, as the name implies, is to do with events taking place in some particular order. The broad divisions of circuits that come under the heading of sequential logic are 'counters' and 'registers'. There is more 'action' in a sequential circuit than in a combinational one. For this reason they tend to generate more interest. Also there is a great variety of possibilities for both counter and register circuits, so many in fact that, in this issue a selection of counter circuits only will be described, registers being covered in the next issue.

The basis of the sequential circuit is the 'flip-flop', also known as a 'bistable' (because it can take up one of two stable states) and sometimes, in particular applications, as a 'latch'. It is best, for practical purposes, to regard the flip-flop as just a "black box' that performs some prescribed function. Textbooks for students of electronics invariably show the flip-flop function as being performed by combinations of gates, which is quite true. However, once these gates are packaged up to perform as a particular flip-flop type, there is little to be gained by considering it other than as a functional package. With this in mind look at Figure 1.

The JK Flip-flop

This figure shows the most commonly used flip-flop type, known as the 'JK flip-flop'. The symbol is shown in (a) and the truth-table in (b). The symbol is generalised to show three inputs, known as the 'steering inputs', J and K and a 'clock' input; also two complementary outputs, Q and $\overline{\mathrm{Q}}$ (not-Q or Q -bar).

The truth-table describes the performance of the flip-flop when all possible combinations of logic levels are applied to J and K. Note the columns called $\mathrm{Q}_{\text {Now }}$ and $Q_{\text {Next. }}$. These are the logic levels at Q immediately before (NOW) and after
(NEXT) clocking. So what is clocking?
In order to cause a counter circuit to go through its designated sequence it must be clocked. This is done by applying pulses, known generally as clock pulses to the clock input. A clock pulse is shown in Figure 2, which defines the 'edges' and

Figure 1. The JK Flip-flop, symbol (a) and truth table (b).

Figure 2. Ciock pulse definitions.
'levels' of the pulse. The JK flip-flops that we shall be using are known as 'masterslave' types. All that this means is that the flip-flop will change state at the negative or trailing edge of the pulse.

Imagine the pulse arriving at the clock input. From logic 0 it rises abruptly to logic 1 (this is the positive or leading edge); the flip-flop does not respond at this point. Instead it waits until the logic level falls back to logic 0 when the negative or trailing edge arrives. If the J and K inputs are set up so as to demand a change of state then, at this instant of the clock pulse, the flip-flop will change state. That is, Q will either go from logic 0 to logic 1 or from logic 1 to logic 0 . It is this sort of information that the truth table tells us. So back to Figure 1.

The first possible combination of J and K is that they are both logic 0 . It is obviously possible for $Q_{\text {Now }}$ to be initially either logic 0 or logic 1 . Thus the truth table has two lines for $\mathrm{J}=\mathrm{K}=0$. Notice that for both lines Q does not change when the flip-flop is clocked. Not very exciting but, nonetheless, important. This condition is known as 'no change'.

The second possible combination is J $=0$ and $K=1$. Note what happens for these two lines. If $Q=0$ initially, it remains at 0 after clocking; if $Q=1$ initially, it becomes 0 after clocking. The flip-flop is said to be RESET when $Q=0$. Thus these two lines describe the 'reset' mode.

Now reverse the logic levels of J and K so that $\mathrm{J}=1$ and $\mathrm{K}=0$. If $\mathrm{Q}=0$ initially, it becomes 1 and if $Q=1$ initially, it stays at 1. The flip-flop is said to be SET when $\mathrm{Q}=$ 1, so that these two lines describe the 'set' mode.

Finally, there is the case when J and K both equal 1 . Notice that whatever the value of Q initially, after clocking it changes to the other logic level. It is said to 'toggle' backwards and forwards between the set and reset states every time it is clocked. This is, therefore, known as the 'toggle' mode.

In order to be able to understand how any counter or register works, it is essential that the effects of the logic levels
at J and K on what the flip-flop does when clocked are thoroughly grasped. This understanding, together with the realisation that the flip-flop (if it is going to change when clocked) will only do so at the negative edge of the pulse, holds the key to a proper appreciation of counter and register operation.

Level-Priggered and Edge-triggered Flip-flops

There is sometimes some confusion about the meanings of 'level triggering' and 'edge triggering'. After all, both terms seem capable of describing what is happening. The triggering of the flip-flop from one state to the other may be said to occur when the 'level changes' from logic 1 to logic 0 or, in other words, at the 'negative edge' of the pulse. Let us put the matter straight. Most flip-flops that will be met are level-triggered and change state when there is a change of level, usually from logic 1 to logic 0 . The clock pulse responsible for the level changes at the clock input of the flip-flop is usually fairly long. This can cause certain problems, as seen by considering what may be regarded as the normal sequence of events.

First the required inputs (to perform one of the actions described previously) at J and K are set up; next a clock pulse arrives - rising from logic 0 to logic 1 (having no effect) - then 'staying at logic 1 for a certain time period' - then falling to logic 0 (causing the action to occur). The problem is caused by the part in quotes in the centre. In effect the situation that exists during this time is that the J and K logic levels to cause the desired action to occur have been established and we are merely waiting for the end of the pulse for this action to occur. Because of the delay, it is sometimes possible for either J or K (or both) to change to some other incorrect value before the negative end of the pulse arrives, with the result that when it does so the action occurring is the wrong one.

Edge triggering is the remedy in these circumstances. The clock pulse is short and fast, giving little time for the J and K levels to change since they were established. The action is achieved by capacitive coupling that differentiates the clock pulse to give a short spike. This type of flip-flop should always be used when there is any danger of J and K changing erroneously.

The Divide-by-Two Action of the JK Flip-flop

The JK flip-flop, when in the toggle mode, acts as a basic binary or 'divide-bytwo' element. This means that any train of pulses applied to its clock input at a certain frequency f will result in a train of pulses at Q of half this frequency, namely f/2. A look at the oscillograms shown in photograph 1 will make it clear why this is. Because only the negative edges of input

Photo 1. Oscillograms for clock input (upper waveform) and Q output (lower waveform) of a JK flip-flop wired in the 'toggle' mode. Note that the \mathbf{Q} output changes only when the input goes 'down', hence the divide-by-two action.

Figure 3. TTL $1 \mathrm{~Hz} / \mathbf{l k H z}$ oscillator.
clock pulses cause changes, all the positive edges of these input pulses are ignored. Thus, for every negative edge transition at the clock input there will be an output transition that is alternately positive and negative, hence dividing the input frequency by two. This is the basis of the counter so it is a very good idea to try this in practice. Just tie J and K together to logic 1, put in a train of pulses from the TTL oscillator (that you have now constructed!) at the clock input and look at the Q output. If you have a CRO, set the pulse frequency to 1 kHz , since this will be easier to see on a 'scope. Otherwise, set the pulse frequency to 1 Hz and, with LEDs on both clock and Q terminals, judge for yourself the binary dividing action.

A De-bounced Switch

Figure 4 shows another useful little circuit that you can make up. It uses a pair of cross-coupled NAND gates to form a simple latch. The feedback holds the circuit in whatever state the push-button triggers it into. Pushing the button down causes Q to go to logic 1 ; releasing it allows it to come back to logic 0 . Thus, it generates a single pulse, very useful for

Figure 4. De-bounced switch with complementary outputs.
stepping counters (and registers) through their sequences for examination. It might be thought unnecessarily complex for such a simple task but it is not called a 'de-bounced' switch for nothing. The contacts of the average mechanical switch actually oscillate briefly between the open and closed states when the switch is operated. For many applications this effect goes unnoticed. But TTL logic devices are fast enough to follow such
changes - standard TTL can respond in $10 n s$. Thus the circuit gets several pulses when it only needs one. The above circuit responds only to the first transition and 'masks out' those following, generating a genuine single pulse. The only awkward component is the c/o push-button switch, these mostly being push-to-make or push-to-break. If one cannot be located, a microswitch can be adapted since these usually have SPDT contacts.

Binary Asynchronous Counters

An asynchronous counter is also often known as a 'ripple through' type because the flip-flops change state one after the other, the effect appearing to 'ripple through' from first to last. Only one stage, the first, is clocked directly from the pulse train input. The others are clocked from the Q outputs of the previous stages. It is this connection that causes the ripple through action. The circuit of a three-stage counter of this type in shown in Figure 5. Since all flip-flops are connected in the toggle mode, each divides by two so the overall division ratio is 2^{3}. In general, for a counter using ' n ' flip-flops the division ratio (also known as the scale or modulo) is equal to 2^{n}. Another feature of this counter, being a practical circuit, is the 'reset' line. It has nothing to do with the reset mode in line two of the JK truth-table. Instead it is a separate pin provided to reset the flip-flop; it has to be taken to logic 0 to enable this to happen. Such a connection is said to be 'active low' or, alternatively, 'negative acting'.

To investigate and learn something of the operation of this circuit, it is recommended that it is connected up, using either the TTL oscillator or de-bounced switch as input, and with LEDs on all the Q outputs. The counter should be reset to start with, so that all LEDs read 0 . Pulsing the circuit through the complete sequence should take it from 000 to 111, eight states all told. From the point of view of the circuit diagram, the binary number shown by the LEDs is actually 'backwards', since the first flip-flop FFA is the Least Significant Bit (LSB) of the number. Having satisfied yourself that it does count in binary, the next step that can be tried is to connect the LEDs to the \bar{Q} outputs instead. Since these are complementary to the Q outputs, the sequence will be reversed, i.e. the counter will count 'down' from an initial value of 111 to a final value of 000 . Thus, the counter can be used to count up or down just by the choice of where the outputs are taken from, either Q or $\overline{\mathrm{Q}}$.

There is a small modification that can be made to this circuit that is worth looking into - especially as it is very easy to do. Leave FFA clock input as it is but connect the clock inputs for FFB and FFC to the \bar{Q} outputs of the previous flip-flops instead of the Q outputs. Record the sequences at both the \bar{Q} and \bar{Q} outputs, as was done before. You might like to ask yourselves whether the results are what you expected.

Binary Synchronous Counfers

A disadvantage of asynchronous counters is their slowness. It should be evident that they will be slow because it is necessary to allow all flip-flops to change state before a new clock pulse can be applied. Try to clock the circuit too quickly and it becomes confused. In a synchronous counter all clock inputs are clocked from a common source, the pulse train input. This presupposes that the counter knows in advance when certain flip-flops should change state and when they shouldn't. What is not wanted is the whole lot changing whenever a clock pulse appears. It would be somewhat tedious, not to say time consuming to go through the design method of synchronous counters. Suffice it to say that some extra gating is usually needed (quite a lot sometimes) in order to sort out when any
given flip-flop should change state in the sequence. From the hobbyist's point of view, it is sufficiently interesting to hook up the circuit (shown in Figure 6) and pulse it to see that it does indeed work. However, it can be taken a stage further.

While the counter is being pulsed, a logic probe can be held on the J and K inputs of FFC (that is the output of the AND gate). The output of this gate can only be either logic 0 or logic 1 , putting FFC into either the 'no-change' or 'toggle' modes. Determine when it is in one mode or the other and why. Investigation of this type teaches one a lot. Try to think of other aspects of the circuit to investigate. You may well have realised that this counter is not actually a full synchronous counter. Only FFA and FFC are truly synchronous; FFB is clocked from the output of FFA. Such a circuit is a compromise between speed and simplicity.

Figure 5. Scale-of-eight asynchronous (ripple-through) counter.

Figure 6. Scale-of-eight synchronous counter.

Figure 7. Scale-of-three feedback counter.

Counters to other Bases

The basic binary dividing element, the JK flip-flop, is only capable of division by two, yet there are times when division by numbers that are not a power of two is needed. As an example of this, consider the simple non-binary counter of Figure 7. This is a 'scale-of-three' counter, the three states being 00,01 and 10 ; the state 11 is avoided. The circuit is forced to reset to 00 on the fourth pulse by means of the feedback between the \bar{Q} output of FFB and the J input of FFA. The action of this feedback is as follows.

Assuming that the counter is initially reset, so that its first state is FFA $=0$, FFB $=0$, the \bar{Q} output of FFB will be at logic 1 which is fed back to the J input of FFA; the K input of FFA is wired to logic 1 anyway, so FFA is in the toggle mode. The J and K inputs of FFB are fed from the complementary Q and $\overline{\mathrm{Q}}$ outputs of FFA, so that FFB will always be in either the SET mode or the RESET mode; it has no other choice. The first clock pulse will cause FFA to toggle, its Q output going to logic 1; this same pulse will have no effect on FFB since its inputs, at the moment of clocking were $\mathrm{J}=0$ and $\mathrm{K}=1$ (RESET mode) and the flip-flop is already reset. The state after the first clock pulse is, therefore, FFA $=1$ and $F F B=0$. But after this first clock pulse, FFB's J and K inputs will have reversed because of the toggling of FFA and we can anticipate that FFB will become SET after the next clock pulse. Sure enough, this is what happens, FFA toggling at the same time, so that the state after the second clock pulse is FFA $=0$ and $\mathrm{FFB}=1$. This is where the feedback comes in. The $\overline{\mathrm{Q}}$ output of FFB has now gone down to logic 0 ; this means that FFA is no longer in the toggle mode, but in the reset mode ($J=0, \mathrm{~K}=1$). What is the mode of FFB? Look at its J and K inputs, $\mathrm{J}=$ 0 and $\mathrm{K}=1$. This means that it is also in the reset mode. Therefore, after the next pulse, FFA 'stays' reset, FFB 'becomes' reset and the final state of the counter is also its initial state for a new sequence, namely 00 .

Taking the idea of feedback further and combining it with gating, we get the circuit of Figure 8, the 'scale-of-five' counter. If you followed the discussion about the 'scale-of-three' counter, you shouldn't have much difficulty in proving to yourself how this one works. However, there's nothing like putting theory into practice so it is suggested that you wire up this counter, reset it and follow it through its sequence $(000,001,010,011,100,000$, etc). Make use of LEDs at the Q outputs and a logic probe on the gate inputs and output. You should find it a useful exercise.

The 'scale-of-five' counter converts to an even more important type if it is preceded by a single JK flip-flop wired in the toggle mode, as shown in Figure 9. The result of the two successive divisions is to produce an overall result of 'divide-byten', that is a decade counter. This has

Figure 8. Scale-of-five feedback counter.

Figure 9. Decade counter constructed from basic divide-by-two stage and the circuit of Figure 8.
obvious practical applications. It is worth wiring this up, especially if you've already breadboarded the 'divide-by-five' counter. Then try reversing the order of the two component parts, that is drive the divide-by-two' section from the 'divide-by-five' circuit. Do you think the order will matter? You may (or may not) be surprised at the result!

Of course, if you really want to build a circuit around a decade counter, you don't have to build it up in this way. There are a number of single-chip circuits, of which the one shown in Figure 10, the 7490, is an example. This actually contains the separate 'divide-by-two' and 'divide-by-five' circuits, which can be accessed separately or wired in series by connecting pin 12 $\left(\mathrm{Q}_{1}\right)$ to pin 1 (pulses in for 'divide-by-five'). Pins 2 and 3, or 6 and 7 can be used to set up an initial state of 0 or $9(0000$ or 1001).

Another interesting circuit is the so-called 'programmable' series of counters, $74160-3$, shown in pin-out form with sample waveforms in Figure 11. A resumé of the circuit operation is as follows:
Features: A 16 -pin DIL IC that can be programmed to start at any required initial state in the binary sequence $0-15$ and terminate at any point in the sequence.
Clearing the Counter: Some counters clear 'asynchronously', that is independently of the clock; some clear 'synchronously', that is on the next positive clock transition.

Figure 10. The 7490 decade counter chip.
Programming the Counter: 'Data in', corresponding to the required initial state (ABCD) is applied to pins 3-6. The 'load' line is taken low and the counter presets on the next positive clock edge.
Enabling and Disabling the Counter: Two control lines, P and T, are provided. They are both taken high to start the counter. Taking either low will disable (inhibit) the counter.
Carry 'look ahead' output: Used for successive cascading of stages without extra gating being needed. A carry pulse

Figure 11. The SN14160-3 programmable counters.

Figure 12. Pin-out for 74107 dual JK level-triggered flip-flops.
is generated and is enabled by the T enable line (must be high).

The set of waveforms of Figure 11 should help to make the operation clear.

A negative-going pulse is required to clear the counter, the asynchronous and synchronous 'clears' being shown at the bottom of the diagram. The load pulse is also negative going and, at its leading edge, the 'data in' (binary 12, i.e. 1100 in order $D C B A$) is preset into the counter (Q_{D} to Q_{A}) - see output waveforms lower down. The clock pulse is a regularly recurring square wave that governs the counting rate - the changes at Q_{D} to Q_{A}, $1100,1101,1110,1111$, etc., can be seen quite clearly to occur at the leading edges of the clock pulses. The action of the enable lines, P and T , is also seen. During the count period both are high but, at a count of 2 , the P line goes low, stopping the count. If both were taken high at any subsequent instant, counting would resume from the last value. In fact, in the example shown, when P goes high again, T goes low, so the counter remains inhibited. The point that is made is that the operation of the counter is under the control of two independent lines, P and T , and how these are actually used is up to the individual.

There should be enough practical work there to while away a few evenings. Building and testing the circuits described will help in gaining a good understanding of a subject that is often imperfectly understood. As already said, a similar look at registers will be the subject of the next part of this series.

Appendix = Problems with TTL

Because TTL gates often use a type of output stage known as a 'totem pole', it is possible to generate, in normal use, short duration current spikes while conduction is changing over from one half of the totem pole to the other, a process that occurs when the output switches between logic levels. Thorough decoupling of TTL circuits is, therefore, advised. The following guidelines are suggested to cure or avoid problems of this type.
(i) Use one $10 \mathrm{nF}-100 \mathrm{nF}$ short-lead disc ceramic capacitor across the supply lines for every four gate packages.
(ii) Use one similarly for every two MSI packages (e.g. counters and shift registers).
(iii) Use a separate such capacitor for every package that is further away than $3^{\prime \prime}$ (75 mm) from the nearest bypass capacitor.
(iv) Use a $10 \mu \mathrm{~F} 6 \mathrm{~V}$ tantalum electrolytic capacitor where the +5 V supply lines enter the board.

From Robert Penfold

Stereo Bargraph

Ever since they were first introduced, which was several years ago now, the LM3914/5/6 series of bargraph drivers have been popular with project designers. Unfortunately, this popularity has not been reflected in the cost of these devices, which are far from being in the 741 or 555 category in this respect. Where two or more bargraph displays are needed for a project it is possible to make a worthwhile saving in cost by using a single driver plus a system of multiplexing to enable it to drive the displays. This circuit shows how a single LM3914/5/6 device can be used to drive two bargraph displays. The obvious application for the unit is in a stereo Vu meter, using the logarithmically scaled

LM3915N, but there must be many other applications which require dual bargraph displays, and where this circuit could be used to good effect. Although the unit is based on a single driver chip, it has two separate inputs and can be used exactly as if it had two driver chips.

Multiplexing is very straightforward in principle, and it merely involves repeatedly driving first one display and then the other. The switching frequency must be high enough to avoid display flicker, which means that each display must be pulsed on at least twenty five times per second, and preferably somewhat more frequently than this. With most digital displays there is no difficulty in doing this, but with a bargraph display there is a slight problem in that the input is an analogue signal. The two input signals must be switched in unison with the switching of the displays, but analogue electronic switches are available at low cost, and this does not represent a tremendous technical problem.

In this circuit the analogue switches are two of the SPST types in a CMOS 4016BE quad analogue switch (IC1). The other two switches are not used and are simply ignored. The outputs of the two switches are connected together and coupled through to the input of the bargraph driver chip (IC3). A two phase oscillator is needed in order to drive the control inputs of the switches out-ofphase, and IC2 operates as this oscillator. It is a 4001 BE quad 2 input NOR gate, but in this circuit all four gates are wired to act as simple inverters. IC2c and IC2b operate as a standard CMOS astable having an operating frequency of very roughly 100 Hertz. The other two gates act as inverter/buffers which generate the anti-phase output signals.

Each output of the bargraph driver drives the corresponding cathode terminal of both displays. The appropriate display for whichever input is currently connected is selected by connecting its common cathode terminal to the positive supply rail. Emitter follower switching
transistors TR1 and TR2 provide this switching, and are driven by the two phase output signal of the oscillator. On the prototype the bargraphs are made up from individual 5 millimetre diameter LEDs, but proper bargraph displays can be used if preferred. These mostly have separate cathode and anode terminals for each LED, but components which do not are only suitable if they are of the common anode variety.

IC3 is used in the 'dot' mode in order to keep the current consumption down to an acceptable level. R2 sets the LED current at 10 mA , but as this is split between two displays it only represents about 5 mA per LED. The output current can be boosted somewhat if desired, and changing the value of R 2 to 560Ω will give a nominal LED current of just over 10 mA per LED. The input sensitivity is the standard 1.2 volts for this series of chips, but this can obviously be changed by the addition of an input amplifier or attenuator.

Stereo Vu Meter

This circuit was designed primarily as an add-on to the stereo bargraph unit described elsewhere in this feature. It converts the twin bargraph circuit into a stereo Vu meter of the peak reading variety. Using the LM3915N bargraph driver the unit provides indications at 3 dB intervals. Just what level each LED corresponds to obviously depends on how the unit is calibrated, but typically the unit would provide indications from -2 ldB through to +6 dB , or perhaps -24 dB to +3 dB . At maximum sensitivity the circuit requires only about 200 millivolts rms for full scale indication, and each channel has a separate variable attenuator to permit accurate calibration.

47k. If a conventional $\dot{\mathrm{V}} \mathrm{u}$ meter is preferred to a LED bargraph type, the bargraph circuit can easily be replaced with two (moving coil) Vu meters.

Many Vu meters are simple average reading types, but these offer what is generally accepted as less than totally reliable results. The problem is simply that meters of this type are calibrated using a sinewave test signal, and this type of waveform has a fairly high average level relative to its peak amplitude. \bar{A} signal which has a spiky waveform will then produce quite a low average reading even with the peaks of the waveform going well beyond the clipp-
ing level. Much more reliable results are obtained using a circuit which has a fast attack time and a very much longer decay time. Typically these times are around 2 milliseconds and 5 seconds respectively. The meter then reads the peak amplitude of the signal, and with the hold-on provided by the very slow decay time, any readings beyond the 0 db level should be clearly indicated. In fact with most designs the odd transient exceeding the $O d B$ level will pass undetected, but in practice signals of this type are few and far between, and would not significantly degrade the audio quality anyway.

Stereo Vu Meter Circuit

This circuit is a fairly conventional type, and as the two channels are essentially the same we will only consider the operation of one of them (the left hand channel). The circuit is basically just a precision fullwave rectifier. Semiconductor diodes introduce a forward voltage drop, with a substantial drop of about 0.6 volts being produced in the case of silicon types. With the bargraph circuit having a full scale sensitivity of about 1.2 volts, this would give very poor accuracy. Not all types of diode are as bad in this respect as silicon types, but none provide quite the degree of accuracy required for this application. The diodes are therefore included in the negative feedback networks of operational amplifiers, and the feedback precisely compensates for the forward voltage drops through the diodes. In
order to give fullwave rectification, two precision rectifiers connected in parallel are used. One is based on a non-inverting amplifer (ICla), and this processes the positive half cycles. The other is built around an inverting amplifier (IClb), and this inverts negative input half cycles to give a positive output. Note that the CA3240E is a type that can operate with a single supply rail, and that most other types (the 1458 C for example) will not function properly in this circuit unless a dual supply is used. C3 is the smoothing capacitor, and a fast attack time is obtained due to the low source impedance from which it is driven. Its only significant discharge path is through the much higher resistance of R7, which gives the circuit its long decay time.

Construction of the unit should prove to be quite easy, but remember that the

CA3240E is a MOS input type, and the usual anti-static handling precautions should be taken when dealing with ICl and IC2. If moving coil Vu meters are preferred, two Maplin (RW73Q) Vu meter movements are suitable, and these should be driven from the outputs via 15 k series resistors. This gives lower sensitivity and a shorter decay time than using the stereo bargraph circuit, but performance in both respects is still perfectly adequate.

In order to calibrate the unit, a steady signal at the 0 dB level is applied to both inputs. RV1 and RV2 are then adjusted for the lowest sensitivities that result in their respective 0 dB LEDs lighting. If meters are driven from the outputs, then the presets are adjusted for precisely $O \mathrm{~dB}$ indications from both meters.

Simple Fibre-Optic Link

Most fibre-optic audio link designs use a frequency modulated carrier wave, and the system described in Issue 20 of this magazine falls into this category. An f.m. system enables good range with a low signal to noise ratio to be obtained, but probably its main attraction is the low distortion level that can be attained. There is inevitably a degree of nonlinearity through the transmitting LED and the receiving photocell (normally a photo-diode), but this lack of linearity does not affect the audio quality of an f.m. system. The photocells are merely handling pulse signals, and it is the frequency of the pulses rather than their precise waveform that is of importance. The linearity of the system is largely governed by the quality of the modulator and demodulators, and with moder circuits a distortion level of well under 1% can be achieved without having to resort to anything too exotic.

While there is probably no serious alternative to some form of pulse system where very high quality results are required, a somewhat more simple approach is perfectly valid where just a basic link is required. For example, if a voice link is all that is required there is little point in going to the expense of a system having the full audio bandwidth plus hi-fi noise and distortion figures. A simple amplitude modulation (a.m.) system will provide perfectly good results. The system described here shows just how simple a fibre optic link can be, and although I expected quite high levels of distortion from the design, provided it is not driven beyond the clipping level the distortion performance is surprisingly good. It certainly provides a speech link which has substantially better audio quality than an average intercom or telephone link. For someone who has yet to dabble in the field of fibre-optics it provides a very inexpensive introduction to this fascinating subject.

Transmitter

The system is designed to be fed from a microphone at the transmitter, and to drive an earpiece or headphones from the receiver. At the transmitter, TRl is the microphone preamplifier, and this is a common emitter amplifier which provides over 40 dB of voltage gain. The input characteristics of this stage are best suited to medium impedance dynamic (communications) microphones, but good results also seem to be obtained with low and high impedance dynamic microphones, or any types with similar output characteristics.

RV1 is the microphone gain control, and from here the signal is coupled to the output amplifier. This has ICl as a noninverting amplifier and TR2 as a discrete emitter follower output stage. Overall negative feedback is applied via R5 and R6, and these set the voltage gain at just over 20 times (26 dB). The full audio bandwidth is not required in a simple system of this type, and so C5 is used to give a small amount of high frequency roll-off. This gives an improved signal to noise ratio. LED1 is the transmitting light emitting diode, and this is a type
specifically designed for fibre optic applications. R7 sets the quiescent LED current at approximately 35 mA . When the unit is fully driven the output current varies between zero and about 70 mA , giving an average of 35 mA . This is comfortably within the 100 milliamp maximum current rating of the MFOE7l used in the LEDI position.

Receiver

The photocell at the receiver is a photo-diode that is designed to complement the LED at the transmitter. Both have peak response in the visible red to near infra-red part of the spectrum, and both work well with the Maplin fibre optic cable. Normally photo diodes are operated in the reverse biased mode, and generate an output signal due to the increased leakage caused by received light. In this application a stronger output seemed to be obtained using LED2 in the voltaic mode. In other words, it acts rather like a solar-cell, with the received light being converted directly into electrical signals. In this mode the polarity of LED2 is unimportant.

Only a very low output level of typically under 1 millivolt peak to peak is

Fibre-optic Transmitter Circuit
produced by LED2, and consequently a great deal of amplification is needed in order to produce a strong enough output to give good volume from headphones. A two stage amplifier is used, and this has obvious similarities to the transmitter circuit. It differs mainly in that the emitter follower output stage has been omitted, and the feedback values for ICl have been altered slightly in order to give increased voltage gain. ICl provides about 40 dB of gain, giving an overall gain in excess of 80 dB (10000 times).

The output will drive a crystal earphone, or most types of headphone. With high impedance types it is preferable to use parallel connection of the earphones if possible, but with low and medium impedance types series connection will almost certainly give better results. Note that it is only possible to drive reasonably sensitive headphones from the unit, and types which are intended for direct connection to loudspeaker outputs are unsuitable. The current consumption of the unit is only about 3 mA , but this might increase somewhat when the unit is used at high volume levels with some types of headphone.

Construction does not present any great difficulties, and although both units contain high gain amplifiers, these do not seem to be especially fussy about the component layout. However, the leads which carry the microphone signal and the signal from LED2 at the receiver must be screened types unless they are no more than about 20 millimetres or so in length. The photocells both have a sort of screw terminal arrangement that is used to hold the cable in position, but the ends of the cable must be suitably prepared first. This is a matter of first cutting the ends of the cable cleanly at right angles with a sharp modelling knife, and then removing about 3 to 5 millimetres of the outer sleeving at both ends of the cable. Make sure that the cable is fully pushed into each photocell, and only tighten the 'terminals' just enough to firmly lock the cable in place.

When initially testing the system it is probably best to use a piece of cable about 30 millimetres or so in length. Talking into the microphone should be so strong that the volume control (RV1 at the receiver) has to be almost fully backed off. For optimum results the microphone gain control should be advanced as far as possible without the signal becoming clipped and seriously distorted. The volume control is then adjusted to give the required volume level. Although the gain of the unit might seem to be excessive when tested with a short cable (and is in fact about 40 dB too high), bear in mind that losses through a fibre optic cable are generally far higher than those through an ordinary audio cable. The maximum range of the unit is therefore unlikely to be more than about 10 to 20 metres. If necessary, R6 can be made a little lower in value so as to boost the gain of the receiver.

Fibre-optic Transmitter and Receiver

Fibre-optic Receiver Circuit

Serial-Parallel Converter

When a computer is used to control electric motors, solenoids, etc., the data is generally extracted from the computer via a parallel port of some kind. For example, the user ports of the BBC model B and certain Commodore computers are often used for this sort of thing. In some applications it can be much better to use a serial output, and this mainly means applications like control of a 'turtle' or other robot. Serial communications has the advantage of requiring as little as two connecting wires, and even at high baud rates quite long ranges are readily achieved without compromising reliability. With parallel communications there can be difficulties over ranges of more than about 2 metres, and a thick ribbon type connecting cable is often less than convenient.

The obvious drawback of using a serial port for this sort of thing is that the robot (or whatever) must include a serial to parallel data converter, with the individual outputs then being interfaced to motors, etc. The serial to parallel conversion can be achieved much more easily than you might expect, and without
consuming large amounts of supply current. This data converter is based on the industry standard UART (universal asynchronous receiver/transmitter) and just a handful of other components, but it can handle any standard baud rate and word format. The current consumption of the unit is only around 4 milliamps. It can be driven from any standard RS232 or RS423 output, and it gives from 5 to 8 CMOS compatible latching outputs (the number of outputs depends on the word format used).

The UART (IC2) does most of the work, with data on the serial input being clocked into a shift register where the start, stop and parity bits (if used) are stripped off leaving the data. The received byte is then transferred to an eight bit latch which provides the parallel output data. A reset pulse is needed at switch-on, and this is provided by C3 and R4. The input signal will be at approximate levels of plus and minus 12 volts, and this must be converted to an ordinary 5 volt logic signal before it is applied to the serial input of IC2. An inversion of the signal is also required. The necessary signal conditioning is provided by the simple common emitter switching stage
based on TR1.
A clock oscillator is needed to set the correct baud rate, and the clock frequency is sixteen times the baud rate. In this circuit, a C-R oscillator based on ICl provides the clock signal, and RV1 must be trimmed to give an output frequency of adequate accuracy. There is no difficulty in adjusting RV1, and in the absence of a suitable frequency meter it is just a matter of using trial and error to find a setting that gives a correctly decoded output. The specified values are for operation at 1200 baud, but by using the output at pin 13 of ICl (instead of pin 10) operation at 2400 baud can be obtained. By changing the value of C 2 it is possible to accommodate other baud rates, and the clock frequency is inversely proportional to the value of this component. For example, a 2 n 2 F component would give operation at 600/1200 baud.

6402 WORD FORIMATS

35	36	37	38	39	Data Bits		Parity
					Stop		
Bits							

$\mathrm{H}=$ High, $\mathrm{L}=$ Low, $\mathrm{X}=$ either state will do.

Table 1

IC2 is programmed for the required word format by tying 5 inputs (pins 35 to 39) to the appropriate logic levels. The circuit diagram shows the connection needed for the most popular word format of eight data bits, one stop bit, and no parity. Table 1 gives the input levels for all the other available formats, and should be consulted if you wish to use a different one. Note though, that the number of outputs available is equal to the number of data bits used, and that using other than eight data bits results in a reduction in the number of outputs available. For word formats of less than eight bits it is the most significant bit or bits that are unused.

Games Timer

A lot of board games, including chess and draughts, can easily become very slow and drawn out with players taking ever longer to make their moves. The obvious solution to this problem is to have a time limit on moves, but some convenient method of keeping time is then needed. This is the type of application in which a simple electronic timer can be used to good effect, and the simple timer described here was designed specifically for games use. It is very easy to operate, and elapsed time is indicated on a bargraph type display. Strictly speaking it is not a true bargraph as the driver device is operated in the 'dot' mode, where only a single LED is switched on at any one time. There are ten LEDs, and the time taken for the display to increment from one LED to the next can be set at anything from around one to five seconds, giving full scale times of between about 10 and 50 seconds. The unit can easily be modified to provide times outside this range though. It is useful to be able to see how much time has elapsed (even if only a rough indication is provided), rather than simply having a unit which suddenly
provides a 'time-out' signal. When a player makes a move, he or she operates a reset button which sets the display back to zero and starts the next timing nun.

This type of timer could be based on digital or analogue circuits, and this particular design is of analogue variety. It consists basically of a C-R timer circuit driving a bargraph driver via a buffer stage. A drawback of a standard C-R timer circuit in this application is that the output voltage rises exponentially. In other words, it starts off rising at a relatively fast rate, but gradually slows down as the charge voltage rises. This could give (say) 2 seconds for the first LED to be activated, but around 20 seconds between LEDs nine and ten being switched on. The problem is easily overcome by charging the timing capacitor via a constant current generator instead of using a resistor to control the charge rate.

In this circuit, ICl is the constant current generator, and the LM334Z is specifically designed for use as a current regulator. Rl and RV1 set the output current, and RV1 is adjusted to give the required full scale time. Sl is the reset
switch, and this merely discharges timing capacitor C2 when it is operated. R2 provides current limiting to prevent contact sparking that could otherwise result in Sl having a very short operating life. In order to ensure proper operation of the circuit it is essential that there is minimal loading on C 2 , and IC2 is therefore used to buffer the output voltage. This is an ultra high input resistance device which has an input resistance of around 1.5 million megohms. It is also a type which is suitable for single supply operation. Few other devices will function properly in the IC2 position of this circuit. The bargraph driver is the popular LM3914N which is operated in the 'dot' mode in order to keep the current consumption down to a satisfactory level. R4 sets the LED current at about 10 milliamps. A lower LED current can be used satisfactorily with some displays, and raising R4 to about 2.2 k ohms in value will then give a useful

Games Timer Circuit
reduction in supply current.
Construction of the unit is reasonably straightforward, but if the display LEDs are individual types, they must be mounted in a row and in sequence in order to give a neat and meaningful readout. If preferred, a proper ten LED bargraph display can be used for D1 to D10. IC2 is a MOS input device, and consequently requires the standard antistatic handling precautions. As IC3 is a
fairly expensive device it should be fitted in a holder.

Adjusting RV1 for the required full scale time is a matter of using trial and error. Delay times outside the normal adjustment range of RV1 can be obtained by altering the value of C 2 , and delay times are proportional to the value of this component. Very long timing periods are not feasible though, as the value of C 2 would need to be impractically large.

SERIAL-PARALLE CONVERTER PARTS LIST

RESISTORS: All 0.6 W 1\% Metal Film			
R2	4 k 7	1	(M4K7)
R3	2 k 2	1	(М2к2)
R4	47k	1	(M4TK)
RV1	10k Sub-min Hor Preset	1	(WR58N)
CAPACTTORS			
Cl	100 nF Ceramic	1	(BX03D)
C2	1n5 Poly layer	1	(WW2\%\%)
C3	$10 \mu \mathrm{~F}$ 50V PC Electrolytic	1	(FF04E)
SEMICONDUCTORS			
1 Cl	4047BE	1	(0x20w)
IC2	6402	1	(QQ04E)
TR1	BC108	1	(Q832K)
D1	1N4148	1	(OL80B)
MISCELSANEOUS			
SE1	Phono Socket	1	(TW06G)
	14 pin DIL Socket	1	(BL18U)
	40 pin Dix Socket	1	(H038R)

STEREO VU MITER PARTS LIST

RESISTORS: All 0.6 W 1\% Metal Film			
R1,9	330k	2	(M330K)
R2,3,10,11	100k	4	(M100K)
R4, 12	390k	2	(M390K)
R5, 13	470k	2	(M470K)
R6,8,14, 16	2200	4	(M220R)
R7,15	47k	2	(M47K)
RV1,2	100k Sub-Min Hor Preset	2	(WR61R)
CAPACITORS			
C1,5	100nF Poly Layer	2	(WW41U)
C2,6	220 nF Poly Layer	2	(WW45\%)
C3, 7	$47 \mu \mathrm{~F}$ 25V PC Electrolytic		(FFO8])
C4	100μ F 10V PC Electrolytic	1	(FF10L)
SEMICONDUCTORS			
IC1,2	CA3240E	2	(WQ21X)
D1,2,3,4	IN4148	4	(OL80B)
MISCELLANEOUS			
	8 pin DHL Socket	2	(BL17T)

STEREO BARGRAPH PARTS LIST

RESISTORS: All 0.6W 1\% Metal Film			
R1	1 M	1	(MIM)
R2	1 k 2	1	(M1K2)
CAPACITORS			
Cl	10 nF Poly Layer	1	(WW29G)
C2	47 F 16V Axial Electrolytic	1	(FR38R)
SEMICONDUCTORS			
1 Cl	4016BE	1	(Qx08])
IC2	4001BE	1	(0X018)
IC3	LM3915	1	(YY96E)
TR1,2	BC54\%	2	(0014Q)
DISP1,2	6mm LED	20	(WL2TE)
MISCELUANEOUS			
	14 pin IC Socket	2	(BL18U)
	18 pin IC Socket	1	(HO16H)

GAMES TIMER PARTS LIST

RESISTORS; All 0.6W 1\% Metal Film

R1	8k2	1	(M8K2)
R2	47R	1	(M47R)
R3	10k	1	(M10K)
R4	1 k 2	1	(M1K2)
RV1	47k Sub-min fior Preset	1	(WR600)
CAPACTIORS			
Cl	100μ F 10V PC Electrolytic	1	(FF10L)
C2	47μ F 25 V PC Electrolytic	1	(FFO8])
SEMICONDUCTORS			
ICl	LM3342	1	(WO32x)
1C2	CA3140E	1	(OH29G)
IC3	LM3914N	1	(W041U)
D1 to D10	5 mm Red LED	10	(WL27E)
MISCES.ANEOUS			
S1	Push to Make Swrich	1	(FH60Q)
\$2	SPST Unra-min Toggle	1	(FH97F)
B1	Battery 1.8V	6	(FIS5KK)
	Battery Hiolder	1	($\mathrm{HCO1B}$)
	Battery Conmector	1	(HF28F)
	DIL IC Holder 8 pit	1	(BLITT)
	DHI IC Holder 18 pin	1	(HO76H)

Maplin's Big Heart
 By J. Rose

On the 19th
year, on a field in south
of June this
London around 20,000 people will gather to join in on one of the most popular fund raising events in the cycling calendar - the annual London to Brighton bike ride. This year the line up will include at least two members of the Maplin team. From the Birmingham branch Dave Kirk, who regularly cycles the Midlands ride, and myself being foolish enough to ride the 56 miles for the second year. All proceeds from the event will be donated to the British Heart Foundation who will use the monev for invaluable research work, as well as providing much needed equipment for heart disease sufferers. If you would like to help by sponsoring the

Maplin team, get in touch straight away! All sponsorship is very welcome, but I must stress that any approach must be made direct to Dave or myself at the Birmingham shop. Sutton New Road,

Erdington B23 6TH. Look in the next issue to see how

1988 CATALOGUE PRICE CHANGES

The price changes shown in this list are valid from 16 th May 1988 to 13th August 1988. Prices charged will be those ruling on the day of despatch.

For further details please see 'Prices' on catalogue page 20.

Price Changes

All items whose prices have changed since the publication of the 1988 catalogue are shown in the list below.

A complete Price List is also available free of charge - order as XF08J

Key

DIS Discontinued.
TEMP Temporarily unobtainable.
FEB Out of stock; new stock expected in month shown. An additional $£ 5.50$ carriage charge must be added. Indicates that item is zero rated for VAT purposes. See 'Amendments To Catalogue'. Note that not all items that require amendments are shown in this list. Whilst stocks last

ONLY $£ 3.40$

FOR A WHOLE YEAR'S SUBSCRIPTION TO 'ELECTRONICS - THE MAPLIN MAGAZINE’

* Every issue sent to you as soon as it's printed, post free.
\star Packed with interesting and novel projects that you can build with all components easily obtainable.
\star Many features on electronics subjects to keep you up-todate with latest developments.
\star More pages to read than monthly magazines.
\star And much, much cheaper too. Many of the monthlies are now £1.30 or more per issue!

BUYING A SUBSCRIPTION IS THE BEST WAY TO BUY 'ELECTRONICS’

'Electronics' is different from any other electronics magazine for two reasons:

1. It's quarterly, so it's hard to remember when a new issue is due out both for you and your newsagent.
2. We don't carry any advertising, which means that having lots of copies sitting on the newstands waiting for casual sales is of no advantage to us. The newsagent will normally have plenty in stock of those magazines which advertise because in almost all cases, he can return them if they are not sold - so he doesn't pay for them.
'Electronics' has no advertisers to pay for unsold copies, nor does it need to have an impressively large circulation, so the newsagent must buy all of his delivery of 'Electronics' and cannot return those he doesn't sell. Therefore, he may not want to take stock of too many. Before you know where you are, 'Electronics' has sold out!
That's why you'll need to place a firm order with your newsagent to be sure of obtaining each new issue. Better still, place the order directly with us by sending $£ 3.40$ now and we will send you every issue for a year, post free.
Despite having very few casual sales, 'Electronics' sells more copies in the U.K. than any other electronics magazine!

Publication dates as follows:

ORDER COUPON

 ELECTRONIC SUPPLIES LTD.

P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone, Credit Card Sales (0702) 554161; Enquiries (0702) 552911.
A different postal code is correctiy shown on the repply paid envelopes.

In any corespondence please quote your custome r number. Date

Customer No
Name.
Address

Post Code

IT IS MOST IMPORTANT THAT YOU INCLUDE YOUR POSTCODE
Block capital letters please. Keep a copy of your order.

NEW ITEMS PRICE LIST

The following is a list of all items introduced since our 1988 catalogue, excluding new items in this issue.

BOOKS

WP78K Intro Antenna Theory Price £2.95 NV WP79L Build Robot 2nd Edition

Price £10.35 NV
WP80B Electronics for E \& E Price $£ 9.95$ NV WP81C Video Handbook Price $£ 30.00 \mathrm{NV}$ WP82D Electronics Price $£ 4.95 \mathrm{NV}$ WP83E Audio Amp Fault Chart Price 95p NV WP84F Electronic Hobbyists Handbook

Price £4.95 NV
WP85G A Practical Approach to Systems
Electronics Price £4.95 NV
WP86T Practical Digital Electronics Handbook Price 56.95 NV
WP87U Radio Amateurs Examination Manual
Price £4.94 NV
WP88V A Guide to Amateur Radio
Price £3.62 NV
WP89W How to Pass the RAE
Price £3.15 NV

CAPACITORS

FD15R 100μ F 100 V P.C. Electrolytic Price 28p FD16S $10,000 \mu$ F 100 V Can Electrolytic

Price $£ 12.95$

PROJECTS \& MODULES
GD600 Appliance Tester PCB
GD61R Metronome PCB
GD63T Mini Metal Detector PCB GD68Y Temp Mod Relay PCB
GD69A Temp Mod Ser/Par PCB
GD70M 12V Rapid Charger PCB GD71N Slow Charger PCB GD72P D/Party Controller PCB GD73Q D/Party Triac PCB GD74R TRF Receiver PCB GD75S Simple Melody PCB GD76 Siren Sound PCB
GD79L HP Mosfet PSU PCB GD80B HP Mosfet Driver PCB GD81C HP Mosfet Output PCB GD82D HP Mosfet Monitor PCB GD83E Multi-Tune Generator PC JC24B Mini Metal Detector Box JC25C $100 \mu \mathrm{H}$ Search Coil JG18U Âppliance Tester Front Panel

JG19V Rapid Charger Front Trim Price $£ 2.95$ G20W Threaded Spacer 10 pk JG21X Plastic Bush 20 pk JG23A Metronome Front Panel LM35Q Mini Metal Detector Kit (PCB not included)

Price $£ 1.98$
Price £7.95 Price 20p
Price $\{2.50$
Price $£ 5.95$
Price £2:95 Price 98p Price $£ 2.95$ Price $£ 1.98$ Price $£ 2.95$ Price 50p Price $£ 1.20$ Price $£ 3.95$ Price $£ 3.50$
Price £4.50 Price $£ 3.50$ Price $£ 2.50$
Price £1.20 Price 45p

Price $£ 2.95$
Price 60p
Price 45p
Price $£ 1.50$
Price $£ 4.95$

LM36P Converter Kit
LM37S Relay Card Kit
LM38R Appliance Tester Kit
LM39N Slow Charger Kit
LM40T 12V Rapid Charger Kit
LM41U Disco Partylite Kit
Price $£ 17.95$
LM42V Siren Sound Generator Kit Price £3.50 LM43W Simple Melody Generator (V1) Kit

Price £2.50
LM44X Simple Melody Generator (V2) Kit
Price £2.50
LM45Y Simple Melody Generator (V3) Kit
Price $£ 2.50$
LM46 A Simple Melody Generator (V4) Kit
Price £2.50
LM47B Multi-Tune Generator Kit Price $£ 8.95$
LM49D Metronome Kit
LM50E HP Mosfet Driver Kit
LM51F HP Mosfet Output Kit
LM52G HP Mosfet Monitor Kit LM53H HP Mosfet PSU Kit X]65V HP Mosfet Transformer XJ66W Heatsink Drilled

Price $£ 29.95$
Price $£ 11.95$
Price $£ 99.95$
Price $£ 19.95$
Price $£ 89.95$
Price $£ 59.95$
Price $£ 21.95$

RESISTORS

L0.22 7W Wirewound $0.22 \Omega \quad$ Price 35p
SWITCHES \& RELAYS
JG22Y 16A 250V AC Relay $12 \mathrm{~V} \quad$ Price £12.95

AMENDMENTS TO 1988 CATALOCUE

Cordless Phone (Page 130). The range of our cordless phone, YM81C, is 100 m not 200 m . Light Fittings (Page 170). Lampholder FQ02C and batten holder LB63T are approved to BS 5042, BS52 is now withdrawn.
Guitar Amp (Page 205). A strap is not provided with Guitar Åmp YP49D
Digital Master Oscillator DM02 (Page 227). In
Figure 1, the plus and minus symbols on REC2 are incorrect. Pin C is the negative line.
Gold Contact Wire (Page 230). Due to a change by the supplier, this product is now supplied in 1 yard lengths, not 1 metre lengths.
Ultrasonic Intruder Detector (Page 245). The pcb's for this kit are: GB00A (Ultrasonic Xvr PCB) Price $£ 1.95$ and GB01B (Ultrasonic IF PCB) Price £1.95.

Frame Store (Page 287). In the additional parts list the transformer should be a YK09K not a YK11M.
Spectrum RS232 Interface (Page 294). The pictures for this and the VIC 20 Talkback have been transposed.
Chassis 11/4in. Fuseholder (Page 300). A new style is now being supplied. Dimensions are 53 mm long x 18 mm high x 12 mm wide, and a solder or screw connection is available.
$11 / 4^{4}$ Quickblow Fuses (Page 301). WR96E is now a 160 mA type not 150 mA .
R-C Network (Page 301). Due to a change by the supplier, the contact suppressor is now made up from a 120Ω resistor ($\pm 30 \%$) and a $0.1 \mu \mathrm{~F}(\pm 20 \%$) capacitor.

Door Guard Battery (Page 307). The order code for the recommended battery for use by 'Door Guard' should be FTK6TX and not FK64U.
UM3561 (Page 380). The list of pin connections are transposed. Where it says Pin 1 it should be Pin 6 and vice versa.
NE544 (Page 389). In the application circuit, $\mathrm{Cl}, \mathrm{C} 2$ and C 5 values are shown in $\mu \mathrm{F}$, they should be in nF . 2764 EPROM (Page 412). The Vpp of this device is +12.5 V not +21 V .
Fan (Page 423). Standard fan WY08]'s cable has no earth connection and should only be used inside equipment that is suitably insulated or earthed. Hi-Fi Speaker (Page 432). WF12N is a 40W $8^{\prime \prime}$ speaker with a plasticised paper cone and soft polymer suspension. The acoustic output is 90 dB .

CORRICENDA

Vol. 7 No. 26. IkW High Power Mosfet Amplifier. In the description of the Monitor module on page 7 it should read: "Diodes D2 \& D4 are reverse biased, ICl pin 11 output is low, and D3 conducts;".
Simple Melody Generator. In the text it refers to C 3 and C 4 ; these should be Cl and C 2 respectively. It should also be noted that both ICl and TRI should be laid flat on the pcb as can be seen in the photograph, and that the + leg of Cl is nearest the outside edge of the pcb.
Multi-Tune Generator. In Figure 4, the pcb track has a small link missing, there should be a connection between C10 and R12 (ends closest to TR3). If you have an issue 3 pcb , this mod will be required. Issue 4 pcb's should have this problem corrected. Siren Sound Generator. In Figure 4, the polarity sign shown on C2 should be on the other side, i.e. connected to R2 and Pin 3.

MAPLIN'S TOP TWENTY KITS

THIS LAST		ORDER	KIT	DETAILSIN
MONTH	DESCRIPTION OFKIT	CODE	PRICE	PROJECTBOOK
1. (1)	4. Digital Watch	FS18U	£2.00	Catalogue
2. (3)	- Live Wire Detector	LK63T	£3.95	14 (XA140)
3. (2)	- Car Battery Monitor	LK42V	£6.95	Best of E\&MM
4. (6)	- Partylite	LW93B	$£ 9.95$	Best of E\&MM
5. (4)	- 150W Mosfet Amplifier	LW51F	£19.95	Best of E\&MM
6. (5)	- U/Sonic Car Alarm	LK75S	£17.95	15 (XA15R)
7. (10)	- Car Burglar Alarm	LW78K	£7.95	4 (XA04E)
8. (8)	(11/R I/R Prox. Detector	LM13P	£8.95	20 (XA20W)
9. (11)	- 8W Amplifier	LW36P	£5.95	Catalogue
10. (15)	- 15W Amplifier	YO43W	$£ 5.95$	Catalogue
11. (13)	- PWM Motor Driver	LK54J	$£ 9.95$	12 (XA12N)
12. (12)	(11) Ultrasonic Intruder Detector	LW83E	£11.95	4 (XA04E)
13. (16)	- 27 MHz Receiver	LK56L	£8.95	13 (XA13P)
14. (20)	- 27 MHz Transmitter	LK55K	£7.95	13 (XA13P)
15. (-)	- Car Digital Tacho	LK791	£19.95	Best of E\&MM
16. (14)	- VHS Video Alarm	LM27E	£11.95	24 (XA24B)
17. (19)	- 50W Amplifier	LW350	£17.95	Catalogue
18. (18)	4 Noise Gate	LK43W	£9.95	Best of E\&MM
19. $(-)$	- TDA7000 Radio Kit	LK32K	£12.95	9 (XA09K)
20. (17)	- Stepper Motor and Driver	LK76H	£16.95	18 (XA18U)

Over 150 other kits also available. All kits supplied with instructions.
The descriptions above are necessarily short. Please ensure you know exactly what the kit is and what it comprises before ordering, by checRing the appropriate Project Book mentioned in the list above - see inside back cover for details.

June 1988 Maplin Magazine

by Graham Dixey C. Eng., M.I.E.R.E. Part 3

Introduction

The Ferranti ZN414 is a single chip AM tuner developed quite a few years ago now, using a type of integrated circuit technology known as Collector Diffusion Isolation (CDI). In this integration technique a much higher packing density is possible than with conventional bipolar technology. As a result, the ZN414 is able to pack a 10 transistor RF circuit into a small 3-lead plastic encapsulation. Naturally, there are some components that cannot be integrated, especially those used for tuning, but also those needed to set the d.c. supply and AGC levels. Nonetheless, a very low component count is possible to provide the basic AM tuner, needing only an audio amplifier to develop enough power to drive an earphone or loudspeaker. There is also an enhanced version of the ZN414, known as the ZN415E, that includes an audio amplifier with just enough power to drive personal phones.

The ZN414 in Detail

Figure 1 shows the internal arrangement of the ZN414 and also the external components needed to put it into a basic configuration,
using a 1.3 V d.c. supply. The first stage is a very high input impedance buffer, which simplifies the tuned circuit design, followed by three stages of r.f. amplification, capacitively coupled, and a transistor detector as the final stage. The output from the latter is, of course, the demodulated signal, that is about 30 mV r.m.s. of pure audio to drive a suitable amplifier.

The d.c. supply requirements are 1.2-1.6V@0.3-0.5mA; optimum supply voltage is 1.3 V . The drive circuit that derives this voltage also sets the AGC level, and Figure 2 shows three possible drive circuits for use with this chip. If the AGC action is not correctly set up, it is possible for a strong signal to swamp the receiver with an apparent broadening of the response. When

Figure 2. Drive circuits for the ZN414, (a) Resistor network, (b) Diode drive, (c) Transistor drive. In all cases the preset is a sensitivity control.

Figure 1. The ZN414 (within chain outline) in its most basic circuit configuration.
correctly set up, the selectivity approaches that of a superhet receiver. This presupposes that the tuned circuit is efficient, with a high ' Q value'. The coil-capacitor combination specified here meets those requirements.

The ferrite rod aerial size is not particularly critical. The one used with the prototype receiver was a 10 cm rod cut down to 7.5 cm , but it can be left at the full length and will, in fact, then be more directional. Be prepared, if necessary, to experiment with the number of turns wound onto the ferrite rod but, as a starting point, 80 turns closewound, of 30 SWG enamelled copper wire should bring in a good selection of medium wave broadcast stations. This was tuned with the aerial section of a miniature AM tuner capacitor $(141.6 \mathrm{pF})$. The winding of the aerial coil can be secured with electrical tape though, in this instance, a dab of superglue was used instead, to give a tidier look to the finished component.

The power gain of the ZN414 is of the order of 72 dB in a typical case, though it is dependent upon the supply voltage to some extent. To give some idea of the possible selectivity, a bandwidth of about 4 kHz can be achieved with correct setting up. The useful frequency range is from about 150 kHz to 3 MHz , making it ideal for AM reception on both medium and long waves. It can, however, be used at higher carrier frequencies by using it as the intermediate frequency (I.F.) amplifier in a superhet receiver, one application being in the radio control field ($27-35 \mathrm{MHz}$).

All of this should give some idea of the versatility of the device. A variety of circuits are obviously possible, some of which will be presented in this series.

Figure 3. Earphone Radio circuit.

Circuit Layout

Any layout problems disappear if the construction is based on the PCB that has been designed to go with this project. However, for those who don't want, for whatever reason, to use the custom PCB, a few words of warning are in order.
(a) The decoupling capacitor across the output (100 nF shown in Figure 1) should be wired as close to the chip pins as possible. Its value is related to that of the AGC resistor as follows.

$$
C(\text { farads })=2 \pi \times R_{A G C} \times 4 \times 10^{3}
$$

(b) All leads should be kept as short as possible, especially those running directly to the ZN414.
(c) The aerial and tuning capacitor should be as far as possible from the battery and earphone and their wiring.
(d) The 'earthy' side (moving vanes) of the tuning capacitor should be connected to the junction of R1 and C1.

The MW Earphone Radio

In this particular design, see Figure 3, a discrete single-stage audio amplifier is driven from the output of the ZN414. The collector load consists of the crystal earpiece in parallel with a 10 k resistor, which provides the d.c. path to the collector and presents the right value of impedance to the output of the stage in order to develop the audio voltage. The ZN414 output is a.c. coupled to the input of this stage through a 100 nF capacitor and the stage is biased by a 100 k resistor between collector and emitter. The emitter circuit effectively consists of a fixed 100 ohm resistor in series with a variable component that gives a measure of control over the volume, should it be required. A 250 ohm potentiometer was called for, but a small carbon one of this value not being available, a 270 ohm fixed resistor wired in parallel with a 1 k variable produces the same approximate value. Naturally the transistor used, a ZTX300, is not a power transistor but gives a sufficient boost to the signal level to drive the crystal earpiece in areas of adequate signal strength. The receiver operates from a 1.5 V cell and the components

Photo 1. The tuning coil consists of 80 turns, closewound on a short length of ferrite rod, which then acts as an aerial.

Photo 2. Birds eye view of the assembled PCB. The earphone socket was an afterthought at this stage.
for AGC and drive for the ZN414 (R1, R2 and C2) are proportioned accordingly.

Assembling the Receiver

Full details, including photographs of the prototype PCB, are given even for what is quite a simple circuit so there should be no real chance of error! With resistors getting ever smaller and the colour bands on them becoming less distinct, the biggest headache is probably identifying the correct resistor. For the less than eagle-eyed a small magnifying glass can be very useful. The pin connections for the ZTX300 transistor and the ZN414 are given, viewed from the underside in each case; obviously it is important to ensure that these go in the right way round, see Figure 4.

The assembly takes a few minutes only, a lot quicker than winding the aerial coil, Figure 5 should assist you. If you've never wound a coil like this before, the procedure is to 'rotate the rod' to wind on the turns, not to wind the turns 'round and round' a stationary rod. The coil will take about five feet of wire so rather more than this can be cut off and one end secured in a vice. Remove all kinks from the wire by pulling it, with a fair amount of tension, between your thumb and a pencil. Then secure the free end of the wire to the ferrite rod by your chosen method and, keeping the wire tight, rotate the rod to wind on each turn right alongside the last, walking (and counting!) as you go. When all 80 turns are on, secure the other end. Finally, scrape off the enamel at the extreme ends and tin them ready for soldering to the wiring pins on the board.

Once the circuit is completely assembled, the battery clipped into its holder (check polarity before doing so) and the personal earphone jacked in, you can have the pleasure of listening to your favourite station. There is no alignment to do whatever.

Photo 3. The fully assembled receiver, showing how simple it is!
Don't expect ear-blasting volume but there should be enough output for comfortable listening in a quiet environment. Next time we shall use the chip a little more ambitiously by giving it rather more 'voice' plus the benefits of an extra waveband.

VIEvED FROM UNDERSIDE
Figure 4. Pin-outs.

Figure 5. Track and overlay of PCB.

pesisions: M10.0W 1\% Metal Fim

R1,3	100k	2	(1100x)
R2	If2	1	(M11)
R	10k	1	(M108)
R	100Ω	1	(M100R)
Es	2700	1	(M830R)
IVI	Ik Ln Pux	1	(FW00R)
CAP\%Crions			
C1	10nr Minidisc	1	(IRYBO)
C2,3	100nF Minidisc	2	(rR7s
VCl	AMTHmer	1	(1303)
SEMMOONDUCTOR			
Cl	72\%414	1	(OLHIU)
TRI	271300	1	(OL48A)

1-SCETLANBOUS

LSI	Crystal Earpiede	1	(1885C)
1.	Femite Rod 810	1	(XC80W)
JK1	3. Srum Jack Socket	1	(FY02C)
	Veropin 2145	1 Plat	(Fl28)
	Hathery Bax 1.6V	1	(R159P)
	Mincrattery	1	(FIG4D)
	PC8	1	(GD88G)
	30 SWCEC wire	1	(31402)

The following item is available, but is not shown in our 1988 catalogue: Earphone Radio PCB Order As GD85G Price $£ 1.95$

by Gavin Cheeseman

When running a speaker system it is useful to have an idea of the approximate level of power being used. In particular it is important that the loud speaker manufacturer's specification is not exceeded as this could result in severe damage to the speaker. The Watt Watcher is a simple circuit that may be fitted into a speaker cabinet to provide an indication of the relative power level and uses three LED's: a green LED lights when the power is at a relatively low level indicating that the system is running; a second (orange) LED indicates an intermediate level of power and a third (red) indicates an overload condition. The level at which the orange and red LED's (LD2 and LD3) light is set by fitting resistors of selected value, depending on the required power range. The Watt Watcher derives its power from the speaker line and hence requires no external power supply.

Circuit Description

With reference to the circuit diagram of Figure 1 it may be seen that the Watt Watcher effectively consists of three similar transistor switches. Each switch is biased to switch on LEDs LD1 to LD3 at different input voltages and these correspond to different power levels
depending on speaker impedance. The power, which is taken from the speaker terminals, is rectified and smoothed by two separate networks: R1, Dl and Cl provide a relatively smooth DC voltage for the supply rail, while R2, D2 and C2 provide a less smooth DC voltage for the transistor bias resistors to allow for fast changes in audio power level. Bias resistors R3, R4 and R5 determine the voltage at which the transistor will switch on and light the LED; TRI is biased to switch on at the lowest voltage and TR3 at the highest. Zener diodes ZD1 to ZD3, serve to limit the brightness of the LED sat higher voltage levels. Diodes D3 and D4 increase the voltage threshold at which LD2 and LD3 light, as orange and red LEDs have a lower voltage threshold than the green type. The current through the LEDs is limited to a few mA by R $6, \mathrm{R10}$ and R14.

PCB Assembly

Insert and solder the components onto the PCB refering to the legend shown in Figure 2, starting with the resistors. R9 and R13 should be selected, depending on the speaker impedance and the power with which the Watt Watcher is to be used (refer to Table 1). The levels of power
shown (RMS) refer to the approximate power at which LD3 will light. Capacitors Cl and C 2 are fitted observing the correct polarity; the negative lead is indicated by a negative sign $(-)$ on the side of the capacitor which goes away from the hole marked positive $(+)$ on the PCB legend. Diodes D1 to D4 are then inserted with the correct polarity (the cathode is marked by a band at one end of the diode). Transistors TR1 to TR3 are positioned so
that their cases correspond exactly with the outline on the PCB legend. LEDs LDI to LD3 are then installed on the track side of the board (see Figure 3). The length of the LED leads may be cut to suit individual needs, depending where the unit is to be fitted; it is important that they are inserted with the correct polarity (the short lead on the flat side of the LED is the cathode). Finally insert PCB pins P1 and P2. For more detailed information on construction
techniques please refer to the Constructor's Guide included in the kit.

Testing

Before testing the unit make sure that all components are soldered and that there are no dry joints or solder short circuits. If a multimeter is available the DC resistance between P 1 and P 2 can be measured; this should read several thousands of ohms. Connect P1 and P2 to

Figure 1. Circuit Diagram.

Figure 2. PCB Track and Overlay.
Figure 3. Mounting the LEDs.
the speaker terminals using insulated wire. Switch on and slowly increase the volume. The green LED LD 1 should start to light at around 3 to 5 watts depending on speaker impedance. As the volume is increased LD2 should start to light indicating an intermediate level of power. The red LED LD3 should only light when the power level chosen from Table 1 is reached; this is intended to indicate an overload condition and under normal operating conditions should not light (other than perhaps an occasional flicker). An overload condition is indicated when LD 3 is lit for the majority of the time. Table 2 shows the approximate input voltage levels at which LD2 and LD3 light for each power range. If all is well the Watt Watcher may be installed into the speaker cabinet or alternatively can be housed in a separate box. It should be noted that the Watt Watcher should not be used with systems running at power levels above the chosen range or with speaker impedances other than those specified as severe damage could result.

POWER		Resistor Value	
		8R Speaker	4R Speaker
25 Watts	$\begin{aligned} & \text { R9 } \\ & \text { R13 } \end{aligned}$	$\begin{aligned} & 1 \mathrm{k} 5 \\ & 1 \mathrm{ko} \end{aligned}$	$\begin{aligned} & 2 k 2 \\ & 1 \mathrm{k} 5 \end{aligned}$
50 Watts	$\begin{aligned} & \text { R9 } \\ & \text { R13 } \end{aligned}$	$\begin{aligned} & \text { 1kO } \\ & 820 \mathrm{R} \end{aligned}$	$\begin{aligned} & 1 \mathrm{k} 5 \\ & 1 \mathrm{ko} \end{aligned}$
100 Watts	$\begin{aligned} & \hline \text { R9 } \\ & \text { R13 } \end{aligned}$	$\begin{aligned} & 820 R \\ & 680 R \end{aligned}$	$\begin{aligned} & \text { 1kO } \\ & 820 \mathrm{R} \end{aligned}$

Table 1. Resistor values for various power levels and speaker impedances.

POWER RANGE (RMS)	Input Voltage (RMS)		
	$8 R$ Speaker	$4 R$ Speaker	
25 Watts	LD2	9 V	7 V
	LD3	14 V	10 V
50 Watts	LD2	14 V	9 V
	LD3	20 V	14 V
100 Watts	LD2	18 V	14 V
	LD3	28 V	20 V

Table 2. Approximate input voltage levels required for LD2 and LD3 to light. Values shown for input frequency - 1 kHz (sinewave).

Component side of pcb.

Side view of pcb.

WATT WATCHER PARTS LIST

RESISTORS: All $0.6 \mathrm{~W} 1 \%$ Metal Film (unless specified)			
R1	22081 Watt Carbon Film	1	(C220R)
R2,6	2700	2	(M270R)
? ${ }^{3}$	820Ω	1	(M820R)
R4, 8, 12	1k2	3	(MIK2)
R5	2 k 2	1	(M2X2)
R7	8*2	1	(M8X2)
R9, 13	See Miscellaneous and Ta		
R10	4708	1	(M470R)
R11	12k	1	(M12K)
R14	1k5	1	(M1KS)

CAPACTTORS

$\mathrm{Cl} \quad 47 \mu \mathrm{~F} 63 \mathrm{~V}$ P.C. Electrolytic $\mathrm{C}_{2} \quad 2 \mu 2 F 100 \mathrm{~V}$ Axial Electrolytic

SEMICONDUCTORS

D1,2	1N4002	2	(QL74R)
D3,4	1N4148	2	(QL80B)
2 Dl	BZX61C4V7	1	(OF45Y)
ZD2,3	BZY88C2V7	2	(ОH00A)

LD1	LED Green	1	(WL28F)
LD2	LED Orange	1	(WL29G)
LD3	LED Red	1	(WLTIE)
TR1,2,3	BC547	3	(00140)
MISCELLANEOUS			
	Constructor's Guide	1	(XH794)
	P.C. Board	1	(GD91Y)
	Pin 2141	1 Pkt	(FL21X)
Select R9 and R13 from the following: 680 n (${ }_{\text {a }}$ (M6BOR)			
	880 n	1	(M820R)
	lk	1	(MIK)
	1k5	1	(M1K5)
	2 k 3	1	(M2K2)

A complete kit of parts is available:
Order Ms LM57M (Watt Watcher Kit) Price £3.98
The following item in the above kit is also available, but is not shown in our 1988 catalogue: Watt Watcher PCB Order As GD91Y Price £2.95

The

V D $-$

REVOLUTION

by J.M. Woodgate
B.SelEng.), C.ENG., M.I.E.R.E., M.A.E.S., M.Inst.S.C.E.

While audio has always been very popular with home constructors, only a few enthusiasts in the past involved themselves in video. This was because the equipment was expensive and not generally available, although these difficulties did not put off members of the British Amateur Television Club and others, many professionally involved in television.

Today, however, video recorders, cameras and even video digitisers are quite freely available at sensible prices, and the number of home experiments with video is rapidly growing. Recognising this, Maplin are now stocking a hardback book, 'Video Handbook (2nd edition)' (WP81C), by Ru van Wesel, which is aimed at the experienced enthusiast and covers everything from basic optical theory and audio for television to pcb layouts for constructional projects, together with video recorders and disc players and TV production techniques. It deliberately does not cover the elementary ideas of scanning and synchronisation, and there are some new developments which will be of particular interest to readers of this magazine. It is the purpose of this article to fill in some gaps and provide an update.

Video techniques cover simple lowpower linear circuits, using transistors no more exotic than BC 107 's, and pulse circuits which are easily designed with cheap IC's. Even digitising requires no more than 7 or 8 bits and speeds within the scope of bipolar TTL devices. For precision amplifiers, there are devices such as the LM592/LM733 which provide gains up to 400 with few external components and very wide bandwidth, but, odd as it may seem, the low-noise audio op-amps NE5532 and NE5534 can also be used for video at modest gains. Keep the feedback resistor below 10 k ohm, though. Comparators are often used in video circuits: in some cases the high-speed
device LM319 may be needed, but any circuits using the old 710 type devices that required two supply rails can be simplified with single-rail devices such as LM311 and LM339/MC3302.

Scanning

Converting sound into an electrical signal is in principle very simple, because the (time-varying) instantaneous sound pressure at the microphone is a single value, a one-dimensional quantity, which translates into a single, time-varying, electrical signal. Conveying directional information is rather more difficult, but Ambisonic theory shows that only four signals are necessary to do even that.

By contrast, the simplest visible thing that is worth converting to an electrical signal is (barring some techniques allied to primitive radar displays) a two-dimensional scene, either real or in the form of a projected picture. One way of doing this would be to have an array of hundreds (at least) of photodetectors connected individually through amplifiers to a

corresponding array of light-emitters. Unfortunately, this is impracticable because to get reasonably sharp pictures the arrays need to contain about a quarter of a million elements, and to get reasonable moving pictures, each of the 250,000 amplifiers needs a bandwidth of about 50 Hz . So, even with multiplexing techniques, a broadcast transmission bandwidth greater than 12.5 MHz would be required. However, while there does not appear to be any future for this technique as a whole, the problem of making the arrays themselves is being vigorously studied in order to develop solid-state cameras and new types of display device to replace the heavy, large and fragile cathode ray tube.

The most practical method of converting a two-dimensional scene into an electrical signal is known as 'scanning', and was discovered by Paul Nipkow in 1883, long before television could be achieved in a practical form. Imagine a room in darkness, with a photodetector 'looking' at it. If we shine a narrow beam of light at a point in the room, the photodetector will respond to the amount of light reflected from the point where the beam lands. Moving the beam about will produce a varying signal from the photodetector, as the beam falls on points of different colour and brightness. Of course, moving the beam about at random isn't likely to be very helpful, but if we could make the movement systematic, we might be able to reproduce this systematic movement at the picture display device (whatever that is), and thus re-create the original picture. In principle, we could move the beam up and down, from side to side, or in a spiral, either inwards or outwards. In fact, all of these techniques have been used for various special purposes, but it turns out, because of the properties of the human eye and brain system, that for television the side-to-side scanning system is the best. It is still possible to do this in two different ways; the
beam could move across, and then back at the same speed, or it could scan across and then flick back quickly. It appears that the use of the second way, which is now almost universal, is a relic of Nipkow's original ideas. Having flicked back to the starting position, the beam is moved down a little, so that it then scans across the scene just below its previous path. When the beam reaches the bottom of the scene to be televised, it flicks back to the top. Instead of moving the beam down a little when it returns to the start, ('indexed scan'), it is more usual to move it down gradually and continuously, so that the 'horizontal' movement actually takes place at a small angle downwards, see Figure 1.

The horizontal motion of the beam is called 'line scan' and the vertical motion is called 'field scan'. In the British television system (CCIR systemI), the line scanning rate is $15,625 \mathrm{~Hz}$ and the field rate 50 Hz .
Each field thus consists of 312.5 lines, and the odd half line means that the lines of one field fall between those of the previous and following fields; this technique is called ' $2: 1$ interlace' and is something of a mixed blessing nowadays since, while it reduces flicker on televised scenes, it increases it, in a sense, on graphics and text displays by making the display 'vibrate' vertically. A complete picture is made up of two fields, called a 'frame'. Television systems are often described by their 'scanning standards', expressed as the number of lines in a frame, followed by the field frequency.
The British system is thus one of the group of $625 / 50$ systems.

The technique of televising a dark scene with a moving beam of light is called 'flying spot scanning', and was widely used in the early days, in spite of the inconvenience of working in darkness, and was also used for

Figure 1. Principle of scanning: The first lines of two consecutive interlaced fields in a 625 line system.
televising films. In modern cameras, the scene is optically projected on a photosensitive target, which is scanned by an electron beam to produce the electrical output signal. The principle of scanning is precisely the same.

Synchronisation

The process of keeping the scanning of the display device exactly in step with that of the camera is called 'synchronisation' (from Greek, syn = same, chronos = time). To achieve it we have to add timing signals to the picture signal output from the camera, in such a way that we can separate them again easily in the display equipment and use the timing signals to control the exact instant when the line and field scans of the display device start.

There are two steps to this synchronisation process. First, we have to make the display scans run at the same frequency as the camera scans, but this is insufficient by itself. We also have to make the scans start at the same instant (allowing for any delay due to the signal path from camera to display). These two steps can be described by the terms 'frequencysynchronous' and 'phase-synchronous', respectively.

Audio signals are built up from sine-waves, so they are pure alternating signals with no direct current component. Consider, however, the output from the photodetector of a llying spot scanner. A deep black object will reflect nearly no light towards the detector, as the output will be zero volts. A bright object will produce a maximum positive or negative direct voltage, depending on how the detector is connected in its circuit. Nothing will produce an output of opposite polarity, which would correspond to 'blacker-than-black'. As the beam scans across one line, a varying positive (or negative) voltage is produced, and when the beam flicks back to the start, a reversed high-speed copy of the same voltage will be produced. It won't be a very good copy, for several reasons:

1. The 'flyback' scanning speed is too fast for the photodetector to respond properly.
2. The track of the flyback beam does not follow the scan exactly, because the field scan is continuously moving the beam down slowly.

Figure 2. Video signal waveform showing line sync pulses and line blanking interval.

1: Switching OV $-2,4,6$ are outputs
$+12 \mathrm{~V}-2,4,6$ are inputs
2: Video 75 ohms
3: Common (earth)

WIRING SIDE OF SOCKET
4: Audio (Left)
$5:+12 V$
6: Audio (Right)

1: Audio Out (Right)
2: Audio In (Right)
3: Audio Out (Left)
4: Audio Common (earth)
5: Blue Common
6: Audio in (Left)
7: Blue in

13: Red Common
14: Data Bus Common 15: Red In
16: Fast Blanking (for captions)
17: Composite Video Output Common

WIRING SIDE OF PLUG
8: Switching: 18: Composite OV-Display Video Input Off-Air signal +12 V - Display signal from connector
9: Green Common
10: Data Bus
11: Green In
12: Data Bus Common
19: Composite Video Out 75 ohms
20: Composite Video in 75 ohms 21: Shell (earth)

Figure 3.6 contact DIN and 21 contact peritelevision (SCART) connectors.

If you don't have a monitor or a TV with a video input connector, you can use one of the UHF modulators stocked by Maplin to feed your signals in via the TV's antenna connector.

For colour, you need a monitor with composite video analogue input, unless you are going to work exclusively with RGB signals or make PAL encoder and decoder units. With modern IC's, such as the LM1889 encoder, neither of these is too difficult, but it is not easy at present to obtain the decoder IC's in small quantities. Monitors with 'digital' (two-state) video inputs are, of course, unsuitable because they cannot reproduce brightness variations.

Handling and Processing Video Signals

Once it is understood that a video signal consists of two parts with separate functions, the picture signal and the sync, the problems of handling and processing can be understood. The video signal requires a bandwidth ideally from zero frequency to 5.5 MHz , but watchable pictures can be obtained with a bandwidth from about 250 kHz to 3 MHz or so, otherwise household VCR's wouldn't work! Video processing consists of cutting,
mixing or superimposing video signals from different sources, and effects processing, where the original picture is distorted in some way. The difficulty of achieving these processes varies greatly.

Cutting

This is the simplest process, and only requires that the two video signals are of more or less the same amplitude and black level. Picture signal amplitude controls the contrast of the picture, and black level controls the brightness. A standard video signal has black level at zero volts, peak white at +0.7 V and sync pulse tips at -0.3 V , so the peak-to-peak amplitude is 1 V . Colour information can increase the peak picture signal to +0.93 V . Video signals are normally carried on 75 ohm coaxial cable. To cut between two standard signals only requires a switch, provided you don't mind the occasional 'frame roll' if you happen to cut during the field sync pulse of one of the signals. The signals don't even need to be frequency-synchronous, within limits.

The Major Problem with Mixing, Fading and Superimposing

These are the most useful video processes but unfortunately they only work with phase-synchronous signals. In a television studio this is no problem because all the cameras, etc., are synchronised with a master sync generator (MSG). Special techniques have to be employed to synchronise putside-broadcast equipment with the studio. In the home, however, you may have a camera, a VCR, an off-air signal and a home computer all producing video signals. Only the camera and the VCR (if they are running together) will be synchronous. It is possible to buy a semi-professional 'genlock' unit to overcome this, but it will cost as much as a good VCR. This is the only solution where you cannot get at the sync generation processes of the two signals to be mixed (e.g. the off-air signal and the home computer), but where you can, or there is an input for external sync, it is possible to make your own Master Sync Generator: instructions are given in the Video Handbook for a device using discrete components and SSI, while it is
possible to obtain complete LSI integrated circuits, such as the Ferranti ZNA134E, which provide standard sync with only a few peripheral components. There is also a new Motorola device, MC1378, which is primarily intended, with the Motorola Raster Management System (RMS) IC's to allow microcomputer video to be locked to an external video or sync signal, but could be used in principle for locking together any two signals.

Effects Processing

These can be divided into those which operate on a single video signal and those, such as wipes and dissolves, which require two or more. The latter need phasesynchronous signals and are relatively simple to arrange when these are available: full details are given in the Video Handbook of analogue methods and digital methods are also very widely used in the professional field. It should be possible to achieve some of these effects with simple video digitisers and a microcomputer.

Effects processing of single signals is a field which has considerable attraction for the home constructor, because there is no synchronisation problem to be solved. It is quite easy to produce inverted video, compress and expand contrast range and even to produce false colours. Several circuits are given in the Video Handbook: note that to invert the video to make a negative picture, you have to invert the picture signal but leave the sync the right way up! These effects can be applied to off-air signals, or video recordings or signals from your own camera. You can also produce effects by pointing your camera at the TV screen and using the camera focus, zoom and other controls, recording the result on the VCR.

Video Enhancers

Maplin offer two of these very useful units (XJ11M and XG59P), which can produce dramatic improvements in picture quality on second-generation recordings and on camera signals. They work by separating the higher video frequencies and nonlinearly amplifying them. Some also improve the shape of the sync signals and stabilise the black-level. The Maplin units also include two audio channels.

Video and Audio enhancer (Maplin code XJ11M).

Video enhancer with sharpness control (Maplin code XG59P).

Video Distribution Amplifiers

These are constructable items consisting of an input buffer amplifier feeding, say, six output amplifiers designed to feed 75 ohm coaxial cable. With one of these, you can watch a picture on a monitor while feeding it also to a recorder and a digitiser, for example. You couldn't connect all this equipment in parallel to one source of signals.

Video Mixers

A mixer will allow you to do cross-fades between phase-synchronous sources, cuts, overlays (superimposing part or all of one picture on another, adding captions, etc.) and even wipes and dissolves. The Video Handbook describes two designs suitable for the experienced constructor: to some extent these could be simplified or expanded. It is, of course, necessary to make provision for mixing and processing the associated audio signals (unless you are making silent videos), and the Handbook deals with this as well.

Copying Cine Film to Video

The Maplin video-cine adaptor (YP47B) makes this very easy to do, and there are a large number of people who would like their home movies copied in this way. It is also possible to do it by projecting on a steadily supported screen the smallest picture that will fill the frame of your camera at its shortest focusing distance, but this is quite difficult compared with the use of the adaptor. You need the smallest possible picture to get enough light to work the camera properly. The projector and camera should be set at equal angles to the screen so as to cancel as far as possible the keystone distortion of the picture, see Figure 4.

Digital Video and the Digitiser

A digitiser, such as the extremely inexpensive Maplin kits (LK59D/LK60E), enables you to take video pictures from any source and process them on a suitable micro-computer; still pictures can even be stored on floppy disk. Once a picture is in digital form, there is no end to the ways in which it can be processed. This is much more fun than video games, and you can print out the results as works of art.

Figure 4. Cine film copying showing compensation of keystone distortion (not perfect).

Future Developments

There are plans to introduce a fifth, land-based TV channel and presumably we shall eventually actually have DBS channels available, whether they use one of the versions of the MAC system or PAL. Video recorders are offering more and more facilities all the time. (For crazy instance, a VCR offers you by far the easiest way of making long uninterrupted audio recordings, up to at least 4 hours!) All these developments, together with the increasing availability of IC's for complex video functions, mean that home-constructor video could become a very big thing in the next few years.

Cine to video copying adaptor (Maplin code YP47B).

by Chris Barlow

\star Easy construction

* Minimum of tools and test gear required \star No setting-up required
\star Variable volume, tone and signal to noise ratio
\star On-board power amplifier
\star Audio output for external amplifier or tape recorder

Specification of Prototype

Operating voltage :	6 V to 12 V
Supply current at 9V :	10mA@min.volume
	157mA @ max. volume
Oscillator frequency :	370 Hz to 1.093 kHz
Oscillator waveform:	digitally
	constructed analogue
Noise generator :	digital pseudo-random
	bit pattern
Amplifier power output	1 W when using
	a 12 V supply

Amplifier output impedance :
Tape output :
Morse key switching current :
Maximum contact resistance : Printed circuit board (PCB) : PCB dimensions :

Introduction

Morse code is one of the most effective means of long distance (DX) radio communication and thousands of stations can be picked up on the short wave bands. These carrier wave (CW) transmissions can be news, weather, shipping, police, military, or amateur radio 'ham radio'. To transmit your own messages a class A radio amateur licence must be obtained from the department of trade and industry. In order to qualify for this licence you must meet the following requirements:

1. Be of British nationality.
2. You must be fourteen years or over.
3. Have passed the radio amateurs examination (RAE).
4. Have passed the Morse test.

The only way to learn Morse code is to keep up the practice until you acquire the speed and accuracy necessary to pass the Morse test. The Maplin Morse code practice oscillator was designed to produce a loud clean tone, with the option of a controllable level of simulated radio noise. This added feature will help train your ears in picking out the weaker signals, from the interference commonly found on the crowded short wave bands. Having mastered this mode of communication the whole world of CW DX radio listening is made available.

Whet is Morse code?

The code was first devised in 1837 by Samuel Morse, in collaboration with Alfred Vail, for the telegraphic transmission of information. The messages were sent as a series of long and short DC currents tapped out on a switch, now known as a Morse key. At the receiving station these DC currents would then be converted using an electromagnetic device into a sound, or a visual display. The short current was known as the DOT and the longer current as the DASH. The code was revised in 1844 and again in 1851 when an international conference combined four similar codes into the system we now know as the Morse code.

In radio communication a dot is represented as an audio tone of short duration and the dash, a tone of the same frequency but of longer duration. When learning the code it is easier to think in terms of dit, or di, pronounced 'dee' for a dot and dah for a dash. For example the letter R dot-dash-dot is easier to think and say in terms of di-dah-dit. The complete international Morse code giving the phonetic pronunciation of each letter and number is shown in Table 1.

Circuil description

In addition to the circuit shown in Figure 2, a block diagram of the complete system giving the signal paths are detailed in Figure 1 This should assist you when following the circuit description or fault finding in the completed unit.

The internal DC power is provided by a 9 volt PP3 type battery and when an external supply is plugged into JK4, the battery is switched out of circuit, see Figure 5. Any DC supply entering the circuit must have the correct polarity, otherwise damage may occur

Table 1. The international morse code

Figure 1. Block diagram

Figure 2. Circuit
to the semiconductors and polarised components. The positive supply voltage is applied to P 10 , passing through S1 on P1, P2 and the negative supply is connected to $\mathrm{P9}$, the ground or 0 V line. Capacitor C16 provides the main decoupling for the +Va analogue supply and additional high frequency decoupling is supplied by C17. NOTE when using an unregulated mains adaptor, the value of C 16 must be increased to a $1000 \mu \mathrm{~F}$ at 16 V single-ended electrolytic capacitor (FF17T). The power for the digital IC's is derived from the main analogue supply by R22 and the zener diode ZD1. To prevent digit noise getting back to the main supply rail, capacitors C13, C14 and C18 are used to decouple the +Vb supply.

The digital tone and noise generators require a clock signal to set the correct timing of each circuit. These signals are generated by IC1, a 4001 BE , used as two independent free running oscillators. The clock frequency required by the noise generator is 4.8 kHz and this is set by the values of R7, C3. To provide a variable tone the frequency of the other clock is set by R1, C1 and RV1, this allows the output to be adjusted from 11.7 kHz to 34.8 kHz .

The noise is generated by IC2 an 18 -bit shift register and IC3 an exclusive OR gate. Several feedback loops around the shift register cause it to produce a pseudo-random bit pattern which closely approximates white noise. The feedback is taken from the 5th, 9th and 18th stage in the shift register and these outputs are gated by IC3 which controls the ' D ' input of IC2. R21 and C10 ensure that the system will start up from switch on. The noise output on pin 4 of IC3 is passed through a simple filter network C7, C8 and R15. The 4.8 kHz clock signal on pin 3 of IC 2 is filtered by C4 and R10, these two signals are then combined using R8 and R13. This simulated radio interference is then fed to RV2a in the signal to noise balance circuit.

The tone is generated by IC4 an exclusive OR gate and IC5 a 12 stage binary counter. This configuration produces 16 digital codes, which are sequentially generated at the rate of the incoming clock frequency on pin 10 of IC5. The output of IC4 is then changed into an audio tone by using a digital to analogue converter. Four bits of the counter feed the resistor ladder R2, 3, 4 and R5, either in true or inverted form to give the positive and negative half cycles. It is the state of the fifth
counter dit that determines whether or not the four dits are to be inverted, by changing the logic condition of one input of each exclusive OR gate. The 741 op-amp IC7 is used as a buffer amplifier, its gain is set by the value of R6 and high frequency suppression is provided by C 2 . The op-amp requires a half supply $D C$ bias applied to pin 3 , its noninverting input. This bias voltage is set by the two $4.7 \mathrm{k} \Omega$ resistors R9, R11 and is decoupled by C 6 . Each analogue cycle is constructed of 32 steps, this results in the audio tone being exactly 32 times less than that of the clock frequency. Since the clock runs from 11.7 kHz to 34.8 kHz the tone produced will be 365 Hz to 1.087 kHz . This signal then passes through C5 and R12 to the input of the Morse envelope generator.

To produce the correct Morse tone envelope, IC8 a CA3080E transconductance amplifier is used as a linear gain control. With no DC bias applied to pin 5 the gain of the amplifier is at minimum. However, as the bias voltage increases the signal output on pin 6 will reach its maximum. This level is set by the value of R19 and any undesirable high frequency signals are suppressed by $\mathrm{C9}$. This has the effect of smoothing out the individual
steps that make up the waveform, thus leaving the tone as clean as possible. The bias for IC8 is generated by TR1 in the DC control stage. This PNP transistor is normally biased off by R28, However, when the Morse key switch contacts join P 7 to P 8 the hold off bias voltage is reduced by R31 and the +Va supply will appear on its collector. If this hard on/off voltage condition was used, the shape of the envelope would be as seen in Figure 3A. This will produce a sharp clicking sound with the tone when keying the Morse characters. To prevent this, the envelope should resemble the one shown in Figure 3B. This soft on/off option has a short attack and decay slope which results in a more pleasant sound being produced. The rate of attack is set by the time constant of R26 and C23. While the decay is controlled by the combined effect of R20, R29 and R32. The resistor R20 is necessary in limiting the amount of DC current fed to pin 5 of IC8 and R32 limits the drive current to the base of TR2. This NPN transistor is used as a saturated switch to control the red light emitting diode LED1 and R30 acts as a collector current limiter. Each time the Morse key is pressed TR2 is biased on and LED1 will light until the key is released. The envelope controlled audio signal from pin 6 of IC8 is fed via C12 to RV2b in the signal to noise balance circuit.

The balance stage is a simple crossfade control and when it is rotated in a clockwise direction the wiper of RV2a.moves towards the OV line. Thus reducing the level of simulated radio noise, while the wiper of RV2b moves towards the output of the Morse envelope generator. The signals are joined by
two resistors R16, R18 to a common mixing point, which feeds the volume control of the on-board power amplifier and the tape output on P6.

The amplifier circuit uses a TBA820M, IC6, which was chosen for its low quiescent current, good ripple rejection and low crossover distortion. C11 is placed across the volume control, RV3, to reduce the pick up of stray external RF interference. The wiper of RV3 is connected to the signal input pin of IC6

Figure 3. Morse signal envelope shaping
via the potential divider, R23 and R24. Resistor R25 on pin 2 in conjunction with C 15 are used to set the gain of the amplifier. C19 is connected to pin 8 for ripple rejection and C21, C22 to pin 1 for high frequency compensation. The bootstrap components R27, C20 are attached to pins 5 and 7, with the zobel network R33, C25 connected to the OV rail. Pin 5 has a DC potential so a blocking capacitor, C 24 , is used to feed the output of IC6 to the 8Ω loudspeaker or headphones on P 3 and P 4 .

PCB assembly

The PCB is a double-sided, platedthrough hole type, chosen for maximum rellability and stability. However, removal of a misplaced component is quite difficult with this kind of board so please double-check each component type, value and its polarity where appropriate, before soldering! The PCB has a printed legend to assist you in correctly positioning each component, see Figure 4.

The sequence in which the components are fitted is not critical. However, the following instructions will be of use in making these tasks as straightforward as possible. It is usually easier to start with the smaller components. Begin with the resistors as usual, then the ceramic, polystyrene, polyester and electrolytic capacitors. The polarity for the electrolytic capacitors is shown by a plus sign (+) matching that on the PCB legend. However on some capacitors the polarity is designated by a negative symbol(-) in which case the lead nearest this symbol goes away from the positive sign on the legend.

Figure 4. Track and layout of the PCB

The zener diode has a band at one end to identify the cathode connection. Be sure to position it according to the legend. There are only two transistors in the entire project, but you must carefully identify each type and match the case to the outline shown on the legend. Next, install the IC sockets ensuring that you fit the appropriate holder in each position, matching the notch with the block on the legend. Now fit the IC's in the sockets, making certain that they are the correct way round and pushed down firmly into each holder. When mounting LED1 it must be 11 millimetres above the board and bent over at 90°, see Figure 6. The LED has a short lead and a flat edge on one side of its case to identify the cathode (K) connection. When inserting it into the board make sure that it is the correct way round, otherwise it will not light.

Next prepare the three rotary potentiometers by cutting the spindles to a length of 10 mm . Install them into the board making certain that they are pushed down firmly on to the surface, see Figure 6. An earthing strap is then soldered to the metal body of each pot and then to the 0 V ground near to RV3, see Figure 6.

This completes the assembly of the PCB The remaining components are connected to the circuit board by wires at a later stage. You should now check your work very carefully making sure that all the solder joints are sound. It is also very important that the track side of the circuit board does not have any trimmed component leads standing proud by more than 4 mm . Further information on soldering and assembly techniques can be found in the Constructors Guide included in this kit.

Box drilling

The box that the unit is designed to fit is the Vero type 215. It is supplied with anodised aluminium panels, four self-adhesive feet and four self-tapping screws to secure the PCB. Follow the drilling instructions in Figures 7 and 8. When preparing the aluminium panels, the self-adhesive front and back trim can be used as a guide for checking the positioning of the holes. Having completed the drilling, at the same time clearing away any swarf, clean the aluminium panels and apply the trim by removing the protective backing. Carefully position and firmly push them down using a dry , clean cloth until they are securely in place. Next drill out the loudspeaker holes in the lid of the box, see Figure 8 . Using a good quality impact adhesive, secure the loudspeaker to the inside of the lid, but be careful not to get any glue on the paper cone of the speaker.

Fit the front panel to the three rotary potentiometers using the shake-proof washers and nuts provided with the pots. Secure the knobs so that their pointers are at the fully-anticlockwise position. Check that they travel smoothly round to the fullyclockwise position, without scraping on the front panel. Next position the red LED through its hole, but DO NOT fit the power on/off switch at this stage. Finally, mount the four chassis sockets at the correct positions on the back panel.

Figure 5. Wiring diagram

View on rear of pots

Figure 6. Assembly drawing

Figure 7. Front and back panel drilling

Figure 8. Box lid drilling

Wiring

If you purchase a complete kit from Maplin it should contain a length of ribbon cable. No specific colour has been designated for each wire connection, it is entirely up to you. The use of coloured ribbon cable is to simplify matters, thus making it easier to trace separate connections to off-board components, just in case there is a fault in any given part of the circuit. Strip off from the main group whichever colour you prefer for each installation.

Carefully follow the wiring shown in Figure 5. The power on/off switch S1 is connected to P 1 and P 2 using two 35 mm lengths of wire. Cut the wires on the PP3 battery clip to 70 mm , use the off cuts to connect the power socket JK4 to P9 and P10. Socket JK3 has two 220Ω resistors to reduce the output power level when using headphones. This socket is connected to P3 and P4 on the PCB using two 70 mm lengths of wire. Next fit two wire links and the 140 mm speaker leads, but do not connect the loudspeaker at this time. The Morse key input JK1 and the tape output JK2 are both connected to the PCB using 60 mm lengths of wire. This completes the wiring of the PCB assembly. Now check your work very carefully making sure that all the wires and solder joints are sound.

Final assembly

Mount the four stick-on feet on the base of the unit and secure the board using the selftapping screws supplied with the Vero box, see Figure 6. Install the power switch on the front panel and slot the back panel into the base. When handling the loudspeaker, be careful not to damage the paper cone or the terminals on the back. Connect the speaker to the wires from the headphone socket and lay the lid to one side of the base.

The PP3 battery is fixed to the base, near to the power switch using a Quickstick selfadhesive pad. Each time the battery is exchanged the pad is destroyed, so a strip of ten pads (HB22Y) is recommended in the optional parts list. DO NOT fit the clip onto the battery until it is called for during the testing stage.

Testing

All the tests can be made with an electronic digital, or analogue moving coil, multimeter. The following test results were obtained from the prototype using a digital multimeter and a 9V PP3 battery as the power supply. Before commencing the tests, set the three rotary controls as follows, VOLUME 0 , BALANCE 'signal' 5 and TONE 5.

The first test is to ensure that there are no short circuits before you connect the battery. Set your multimeter to read OHMS on its resistance range and connect the probes to the terminals on the battery clip. Turn on the power and with the probes either way round a reading greater than 60Ω should be obtained. Remove the probes and fasten the negative terminal of the clip to the battery.

Next monitor the supply current, set your meter to read DC mA and place it in the positive line of the battery. A current reading of approximately 10 mA should be seen and the red LED should not light up. Using a piece of
wire, place a temporary short circuit across P7 and P8 on the PCB. The 'KEY' LED should now light and a current reading of approximately 26 mA will be observed. As the volume control is advanced, an audio tone of approximately 550 Hz should be heard and at maximum output the current drain will be approximately 140 mA . The frequency can be varied by altering the position of the tone control, 370 Hz at the ' 0 ' setting to 1.093 kHz when set fully-clockwise. As the balance control is swung from SIGNAL to NOISE the strength of the tone will decrease as the level of simulated radio noise increases.

Remove your meter, fasten the PP3 clip to the battery and disconnect the wire link from P7, P8 on the PCB. This completes the testing of the Morse code practice oscillator. Before fitting the lid to the base, a small piece of acoustic wadding (RY06G) can be placed inside the box to reduce cabinet resonance.

Morse key preparation

For best results the key should be secured to a stabilising base, made from a sturdy material. The prototype used a 17 mm thick wooden base, measuring 230 mm by 100 mm , see Figure 9 . To prevent the base from slipping, four stick-on feet are mounted underneath the unit. The key is held in place by two fixing screws and the cable is fastened using a round 3.5 mm plastic cable retainer.

The moverment and pressure of the key is controlled by the two adjusting screws and once set are fixed by the locknuts, see Figure 9. As your Morse skills improve, you may need to reduce the amount of movement and pressure to allow for higher operating speeds. The tune up lever is used if both hands are required in setting up the Morse oscillator or any other equipment.

Using the Morse Code Practice Oscillator

The $D C$ power for the unit is supplied by the internal alkaline PP3 9 volt battery. However, if long practice sessions are employed, external power can be fed into JK4 from a 9 V regulated mains adaptor (YB23A). If you use an unregulated adaptor (XXO9K), its voltage output must be set to 7.5 V and the value of C 16 inside Morse unit be increased to $1000 \mu \mathrm{~F}$ at 16 V (FF17T). This is done in an attempt to reduce the level of hum, which is caused by the high amount of ripple found on this basic type of supply. When using either adaptor, its polarity must be set to produce the positive voltage, on the centre pin of the 2.5 mm power plug.

With the addition of the simple circuit shown in Figure 10, the Morse unit can be controlled by a TTL logic source, i.e. a computer. The minimum voltage required to key the unit is approximately +1 V , while the maximum input should not exceed +12 V or go below OV.

For your private listening and so you won't disturb others, the unit has a headphone jack which cuts out the speaker as the plug is inserted. When you begin to learn the Morse code it is advisable to use the clean tone, i.e. balance control set fully-clockwise. However, to train your ears in picking out the weaker signals from the interference commonly found on the short wave bands, the noise level can be progressively increased. The way this is

Figure 9. Morse key assembly

Figure 10. TTL interface
expressed is the RST code, readability, strength and tone, see Table 2.

Further information on learning Morse code can be found in the following publications:
A guide to amateur radio, by Pat Hawker G3VA Amateur radio questions and answers, by F.C Judd G2BCX.
The secret of learning Morse code, by Mark Francis.
All of these are available from the Radio Society of Great Britain (RSGB) publications, Lambda House, Cranborne Road, Potters Bar, Hertordshire EN6 3JW.

Rear vlew showing the morse key and headphones

Table 2			Tone	
The RST code	S1	Faint signals, barely perceptible	T1	Extremely rough tone
Readability	S2	Very weak signals	T2	Very rough tone
R1 Unreadable	S3	Weak signals	T3	Rough tone
R2 Barely readable	S4	Fair signals	T4	Rather rough but better than T3
R3 Readable with difficulty	S5	Fairly good signals	T5	Reasonably clean tone
R4 Readable with practically	S6	Good signals	T6	Clean tone
R5 no difficuity	S7	Moderately strong signals Strong signals	T7	Nearly d.c. tone i.e. a little mains hum audible
R5 Perfectly readable	S9	Extremely strong signals	$\begin{aligned} & \text { T8 } \\ & \text { T9 } \end{aligned}$	Good d.c. tone, slight trace of hum Pure tone

Table 2. The RST code

 conductor with low resistivity and is only slightly affected by changes in temperature, materials such as plastics are good insulators with very high resistivity and are also only slightly affected by temperature changes. Semiconductor materials have a resistivity somewhere between that of a conductor and an insulator. The resistivity of this material can be accurately changed by adding small quantities of impurities and its conductivity approximately doubles for each 20 degree centigrade temperature change.

The commonest materials used in the manufacture of diodes are silicon and germanium. These are treated with impurities to alter the conductivity and this is known as doping. One half of the diode is treated with indium aluminium or gallium which forms the P region, the other half is treated with phosphorous arsenic or antimony to form the N region. The area where the P and N type materials are fused together is known as the P N junction or potential barrier. To understand how diodes behave in a circuit is simple, but one would require a sound knowledge of physics to fully understand the operation of semiconductors, so for simplicity we shall deal with basic principles only.

The P type material contains the positive carriers and the N type material the negative carriers, the potential barrier is formed between the two types and acts as a kind of insulator, see Figure 1a.

When the negative pole of a battery is connected to the P type region and the positive pole to the N type region, the carriers are drawn apart widening the depletion zone and preverting any flow of current. Under these conditions the diode is said to be reverse bias, see Figure 1c.

If, on the other hand, the positive pole of the battery is connected to the P region and the negative pole to the N region, the carriers will be drawn across the PN junction allowing current to flow. The diode is now said to be forward biased, see Figure 1b.

The P region of the diode is called the Anode (denoted as A) and the N region is called the Cathode (denoted as K), so from the previous explanation you will appreciate that the conventional current can only flow in one direction, i.e. from anode to cathode.

Diodes are used quite a lot in electronic circuits and rely on the unidirectional nature of the component and will repel the flow of current from cathode to anode until the pressure builds up to the breakdown voltage, and if heavy current is allowed to flow it will

1odes

by R. Richards

damage the diode. This breakdown voltage is known as the peak inverse voltage (P.i.v.), it is therefore essential when choosing diodes that the P.i.v. should be greater than the maximum voltage the diode is expected to carry.

It must also be noted that a diode will not conduct until a certain voltage is reached to overcome the junction barrier. These values are known as the potential barrier and are different for each type of material. Typical threshold voltages are silicon 0.5 to 0.7 volts and germanium 0.1 to 0.2 volts. Germanium diodes are used where a low forward voltage is required, but the P.i.v. is much lower than the silicon diode.

There are two kinds of diodes, namely the signal diode and the rectifier diode. Signal diodes are used for demodulation, clamping and gating. They have a very small junction which can only pass small amounts of current with low capacitance, which is a very desirable factor for use in high frequency circuits.

Rectifier diodes are used for power supplies of low frequency, normally used for rectifying $A C$ voltages derived from mains transformers prior to smoothing and regulator circuits.

Figure 1. a) Unbiased junction, b) Forward blas, c) Reverse blas.

The modern types of diode are made from silicon and are encapsulated in plastics, but the larger types are encapsulated in a metal stud device, which has provision for mounting on a metal heatsink to dissipate the heat generated internally in the diode during operation. For example, the current flow and voltage drop across the diode causes a power loss which must be dissipated in the form of heat. Power diodes are therefore mounted on heatsinks to improve the cooling of the diode.

The circuit symbol for a diode is shown in Figure 2a. It will be noted that the arrow part of the symbol points in the direction of conventional current flow. Figure 2 b illustrates the identification for plastic diodes with the ring marking the cathode end, usually this type is used for currents up to 1 ampere. Diodes from 1 to 3 amperes are also encapsulated in plastic but are generally larger, see Figure 2c. Diodes above 5 amperes are usually metal stud types and the screw end is normally the cathode and the diode symbol is often marked on the body, see Figure 2d.

There are many different diodes available, varying with peak inverse voltages from 8 to 1250 volts and capable of dealing with currents from 30 mA to 20A. The most popular ones are listed in Table 1.

Figure 2. a) Diode symbol, b) 1 amp case, c) 3 amp case, d) Stud mounted, over 5 amp.

Low Power (signal) Germanium

Device	Volts	Amperes
OA47	25	0.11
OA90	30	0.03
OA91	115	0.05

Low Power (signal) Sllicon

Device	Volts	Amperes
OA202	150	0.08
1N4148	75	0.075
1N914	75	0.075
BA154	50	0.03
BA155	100	0.1

Power Rectifier Diodes		
Device	Volts	Amperes
1N4001	150	1
1N4002	100	1
1N4003	200	1
1N4004	400	1
1N4005	600	1
1N4006	800	1
1N4007	1000	1
1N5400	50	3
1N5401	100	3
1N5402	200	3
1N5403	300	3
1N5404	400	3
1N5405	500	3
1N5406	600	3
1N5407	800	3
1N5408	1000	3
BYX711350	350	7
BYX71-600	600	7

Table 1. The commonest diodes in use.

Zener Diodes

The most common way of providing a fixed reference voltage is with a zener diode. Ordinary diodes will break down if the reverse voltage increases to the breakdown point. This occurs at a precise voltage which can be varied by adding specific amounts of dope to the semiconductor material. It is therefore possible to manufacture diodes which will break down at a fixed and predictable voltage. Zener diodes are made in such a way that the breakdown region is not damaged at the breakdown voltage providing the current is limited by a series resistor to a safe value.

The zener diode forms an excellent constant voltage source because in the breakdown region of operation the voltage drop across the diode remains constant and independent of the current flowing through it.

Zeners are specified by their breakdown voltage and their power rating, so by dividing the power rating by the breakdown voltage, the maximum current that can be safely allowed to flow can be deduced and is expressed in formula as I = PN. For example, if we wish to know what is the safe current allowed to flow in a BZX61C5V6 where $\mathrm{P}=$ 1.3 and $V=5.6$ we gel $I=1.3 / 5.6=0.232$ or 232 mA .

Figure 3a illustrates the circuit symbol used for a zener diode. It should be noted that the arrow part always points towards the positive supply rail. Low powered zener
diodes are encapsulated in plastic with a ring marking the cathode. The body is usually marked with the series code and the breakdown voltage, see Figure 3b. High current zeners are normally stud mounted in a similar fashion to their silicon cousins, see Figure $3 c$.

The most common use of zener diodes is for voltage stabilizing and so they are manufactured in a number of standard power ratings and breakdown voltages as shown in Table 2.

Figure 3. a) Zener diode symbol, b) Plastic case, c) Metal stud.

Series Code	Volts	Power in Watts
BZY88	2.7 to 33	0.4
BZX85	2.7 to 6.8	1.3
BZX61	7.5 to 72	1.3
1N5333	3.3 to 24	5
BZY93	9.1 to 75	20

Table 2. Zener diode ratings.

Light Emining Diodes

These diodes (which are often abbreviated to LED) are made of transparent semiconductor material which has the property of emitting light when forward biased. When the electrons cross the potential barrier in a forward bias the energy they lose will appear in the form of light. This is achieved by making the diode with gallium arsenide phosphide which produces light in the visible region when forward biased. The voltage drop across the LED is rather higher than that of a normal diode. Forward current of 10 to 50 milliamperes can produce a voltage drop of 1.5 to 2 volts. An LED is usually a two terminal device which will only allow current to flow in one direction, i.e. anode to cathode, see Figure 4 a .

The P.i.v. of the LED is very low and if the device is subject to any reverse voltage then it should be protected by fitting an ordinary diode with reversed polarity and connected in parallel with it, see Figure 4c.

The current flow through the LED must not exceed 50 mA . To achieve this a resistor is inserted in series with the LED. The value of the resistor is calculated by the following formula:

$$
R=\frac{E-2}{I}
$$

Where $R=$ resistance, $E=$ battery voitage, 2 $=$ the voltage drop across the LED and I = the current flowing through the LED. See Figure $4 d$ for example.

The circuit symbol for the LED is illustrated in Figure 4b. Note that the arrow part again points in the direction of conventional current flow. Apart from the single LED, arrays of LEDs can be combined to form a 7 segment LED display, as used in calculators and electronic recording devices for example. Single LEDs are manufactured in many colours although red, green and yellow are the most common, and are used for multitudious purposes. Basic LED details are shown in Table 3.

Figure 4. a) LED outline, b) symbol, c) Protected LED, d) Calculation for series resistor.

Introduction
The purpose of this article is twofold. Firstly, to give an introduction to types of noise and possible sources of noise. Secondly, a design, and full constructional details, for a noise generator are given. The main use of a noise generator is in testing equipment on the lab bench which will be subjected to noise in the field. For example, a modem designed to work over normal telephone lines may work fine in a noise free lab with zero line length, however as we all know, telephone lines can be very noisy, especially as they get longer. If you have ever built something which worked fine in the lab, but failed in the field, then noise may be the problem.

Virtually any signal in a system that is not desired might be classified as noise. However, the term noise is usually taken to mean an unwanted signal that has random properties. A few types will now be considered.

White Noise
The noise power of white noise is flat across the frequency spectrum. That is to say, there is the same power of noise in each hertz, and it occurs at all frequencies. What ever frequency an item of equipment operates at it cannot escape white noise. The term 'noise bandwidth' is sometimes used with respect to an item of equipment. This means the bandwidth to which the item of equipment is sensitive to noise. For example, if a particular piece of equipment is designed to observe a low level analogue signal with a frequency of DC to 100 Hz , then to help bring the signal out of the noise it would be sensible to low pass filter the signal, with a filter cut-off frequency just above 100 Hz . The signal would be unaffected by the filter, but the unwanted noise above 100 Hz would be rejected. The noise bandwidth would be said to be 100 Hz . Of course, noise below 100 Hz
would still be present.
Now let us consider some origins of white noise. Noise is often caused by thermal effects (including problems like thermal drift). All resistors generate white noise merely because they have a temperature, sometimes called 'Johnson' noise. The RMS noise is proportional to the square root of absolute temperature. The only way to get rid of the noise is to operate the resistor at $0^{\circ} \mathrm{K}\left(-273^{\circ} \mathrm{C}\right)$, not exactly an easy condition to meet!

The second most well known source of white noise is shot noise. This noise is due to the fact that current is not constant and smooth flowing, but consists of a stream of electrons. This causes current flow to fluctuate.

Both thermally generated and shot white noise are due to fundamental principles and as such can not be reduced by making better quality components, for example a carbon film resistor and a metal
film resistor of the same value will cause the same amount of thermally generated white noise. We have to live with this noise.

Flicker Noise

Flicker noise is also known as $1 / f$ noise and pink noise. It is known as $1 / f$ noise since this describes the noise power spectrum, noise power is proportional to $1 / f$, where f is frequency. $1 / f$ noise has equal power per frequency decade. $1 / f$ noise is an extra in that it is due to manufacturing imperfections. For example, a carbon film resistor will generate more $1 / \mathrm{f}$ noise than a metal film resistor, simply because carbon film resistors are of lower quality than metal film resistors.

Interference

Most other types of noise are commonly put into this class. It includes things such as mains 50 Hz pickup, which is not at all random, and impulsive interference such as electrical motors, car ignitions, lightning, etc. Impulsive interference is broad band in the frequency spectrum.

The Noise Generator

As mentioned at the start of this article any unit which may have to work when subjected to noise/interference will require testing on the lab bench before it can be placed in the field. To test noise performance a controllable noise source is needed. The noise generator design to be described here produces band limited white noise from virtually $D C(0.0001 \mathrm{~Hz})$ to around 250 kHz . The generator requires a supply between +5 V (or $\pm 2.5 \mathrm{~V}$) and +18 V (or $\pm 9 \mathrm{~V}$), split supply rails are not required, but can be used. The supply will typically be taken from the unit under test. A noise level control is provided to allow the noise output level to be adjusted. The absolute maximum output level is dependent on the supply voltage. Three outputs are provided, DC coupled, AC coupled and digital, the use of these outputs is described later.

Psuedo Random Bit Sequences

The noise is generated using a psuedo random bit sequence (PRBS). A psuedo random bit sequence is a sequence of logic ones and zeros that appears to have random properties, that is the sequence has the same probability properties as that produced by repeatably tossing a coin and calling logic one for heads, logic zero for tails. The bit sequence is produced using a digital shift register with exclusive OR feedback, thus the sequence is entirely predictable, however any portion of the sequence looks random. Since the sequence in this design is $8,589,934,591$ bits long and takes over two hours to repeat, it can be assumed to be as good as random in just about all circumstances.

Figure 1. PRBS generator.
The basis of a PRBS generator is shown in Figure 1, a Y bit long shift register with EXOR feedback from the X and Y bits. In Figure 1, only two feedback taps are shown, in fact more than two taps may be needed, depending on the shift register length. The circuit described here uses a 33-bit shift register with feedback from bits 20 and 33. The feedback taps must be chosen correctly to give a maximum length bit sequence. The maximum number of different states for a Y bit shift register is 2^{Y} (i.e. all binary permutations). However, the state of all zeros causes feedback of zero and the register stays stuck at zero. The maximum sequence length possible is $2^{Y}-1$.

PRBS generators have other uses such as, encipherment of data, radar ranging codes, error checking (typically on disks, cyclic redundancy check characters, CRCC), digital signature analysis, etc. For the applications involving data, the data is fed into the shift register by adding it to the EXOR feedback. PRBS generators can be implemented in software, and are sometimes used as the basis of random number generators.

Analogue based noise generators can be built. They usually work by amplifying
the noise produced by a diode or resistor. Since the noise generated by resistors and diodes is reasonably low level, a lot of amplification may be required, this causes sensitivity to interference pickup. The main advantages of using a digital noise source are, the ability to produce noise of known spectrum, all circuits built to the same design will behave the same, that is better repeatability of design and finally insensitivity to supply variation and other interference pickup.

Circuit Description

The noise spectrum generated by a PRBS is almost flat up to a frequency 26% of the shift register clock frequency. At this frequency the noise power is -1 dB down. Band limited white noise is simply produced by low pass filtering the PRBS output.

Referring to Figure 2, the shift register clock does not need to be particularly stable or accurate and a simple RC oscillator, using IC3d, has been used. This gives a clock frequency of approximately 1 MHz . Increasing the clock frequency increases the bandwidth of white noise, the higher the clock frequency the better. The maximum clock frequency is limited by the propagation delays to 1.5 MHz . The 4000 series CMOS integrated circuits used are rather slow, but do have the advantage of operating from a wide supply variation, it was for this reason that they have been used. The schmitt trigger NAND gates and EXOR gates could be replaced by 74 HC series equivalents, which are around ten times faster. Unfortunately, there is no 74 HC equiva-

Rear view.

Figure 2. Noise generator circuit.
lent of the 4006 (IC1 and IC2) 18 bit static shift register. The 4006 is internally organised as shown in Figure 3, it consists of two four bit shift registers with outputs after the fourth stage available, and two five bit shift registers with outputs at the fourth and fifth stage available, all registers are operated from the same clock. IC1 is used as a 16 bit shift register and IC2 is used as a 17 bit shift register, this gives a total length of 33 bits.

As stated earlier, PRBS generators have a 'stuck at zero' state. At power up this state must be avoided. The usual trick to get round this is to use EXNOR feedback, all data is then inverted and the 'stuck at zero' state becomes 'stuck at

Figure 3. Pin-out of the 4006.
one', a reset input on the register is then used at power up to ensure that it starts operation in the all zero state. The 4006 has no reset input so this trick can not be used. The problem has been solved by forcing logic ones into the 33 bit shift register at power up. This is done by IC3a, at power up C7 takes one input low, the output is high regardless of the other input. After a period given by R7 \& C7 time constant, the input goes high and IC3a then inverts the output of IC4a. The shift register feedback is thus EXOR and the 'stuck at zero' state has been avoided by shifting in ones at power up. The R7 \& C7 time constant is much longer than 33 clock periods, this ensures the shift register always starts in the state of all ones.

Band limited white noise is produced by low pass filtering the shift register output, in fact any shift register tap will do. IC5a and associated components form a second order low pass filter. This gives a roll off of 40 dB per decade, starting at 250 kHz . The circuitry around IC5 requires a mid-supply rail. This rail, called 0 V , is derived by R 1 and R 2 from the logic supply rails, Vcc and Vss. R3 and R4 reduce the input voltage swing to IC5, to avoid clipping distortion. IC5a is followed by the noise level control, and finally IC5b, a unity gain buffer. Three outputs are provided, the unfiltered output of the shift register buffered by IC3c, a DC coupled output and an AC coupled output. The AC coupled output is DC decoupled by a $1 \mu \mathrm{~F}$ polylayer capacitor. This capacitor needs to be as large as possible because when the output is connected to a load impedance it will cause high pass filtering and thus attenuate the low frequency noise. For example, with a 10 k resistive load, noise below 16 Hz will be filtered out. Electrolytic capacitors have not been used to DC decouple, because they have poor high frequency performance.

Construction

The PCB does not contain many components and should be easy to construct, use Figure 4 to help in building it. The 4 mm sockets are mounted in the case lid, drilling details shown in Figure 5. The PCB is then mounted directly onto the rear of the sockets, component side to the case lid, see Figure 6. Connections to the noise control are made by flying leads. Since once the PCB has been soldered onto the sockets it is difficult to remove, the unit should be tested before final assembly. Testing will require temporary connections to the socket PCB pads. The best method to test the noise source is to check the noise output on a spectrum analyser. Since not many people own a spectrum analyser the next best method is to use an oscilloscope, the noise output should look reasonably the same for any timebase setting upto around $20 \mu \mathrm{~s} / \mathrm{div}$. Since the signal is random, it is difficult to say exactly what it will be!

Figure 4. Track and overlay of PCB.

Figure 5. Case lid drilling details.

NOISE

Figure 6. Assembly.

Using the
 Noise Generator

It is intended that the noise generator is operated from the power supply of the equipment under test, of course there is no reason why it should not have its own supply. A supply between +5 V and +18 V should be connected from Vss to Vcc , black and red sockets respectively. The green 0 V socket can be left unconnected. If the equipment under test has a mid-supply rail then it can be connected to the 0 V socket. This ensures the 0 V rails will be at the same potential and thus the DC coupled noise output will have no DC offset with reference to the equipment OV .

The exact method for coupling the noise into the equipment under test will depend on the exact nature of the equipment. Basically the noise must be

added to the signal for which noise rejection is being tested. The simplest method is by means of a high value resistor, however this may be too basic in some cases. The DC coupled noise output should be used whenever possible as this output will not attenuate low frequency noise. Indeed when very low frequency noise performance is being tested this output must be used. If equipment $D C$ bias levels must not be upset then the AC coupled output can be used, but remember the high pass filtering problem discussed above. In some cases this may not matter, for instance when testing equipment that works in the audio range (about 30 Hz to 20 kHz).

The completed unit.

NOISE GENERATOR PARTS LIST

RESISTORS: All 0.6 W 1\% Metal Film			
R1,R2,R7	4k7	3	(M4KT)
R3	150k	1	(M150K)
R4,R6	100k	2	(M100K)
R5	62 k	1	(M62K)
RV1	IM Lin Pot	1	(FW08)
CAPACTTORS			
C1,C2	100 nF Minidisc	2	(YR75S)
C7	100 nF Mylar	1	(WW21X)
C3, $\mathrm{C} 4, \mathrm{C6}$	10pF Ceramic	3	(WX44X)
C5	$1 \mu \mathrm{~F}$ Polylayer	1	(WW83H)
SEMICONDUCTORS			
1C1,1C2	4006	2	(QX03D)
$1 \mathrm{C}_{3}$	4093	1	(QW53H)
1 C 4	4077	1	(OW47B)
IC5	TL082	1	(RA71N)

MISCELLANEOUS

SK1	4 mm Socket Red	1	($\mathrm{HF7} 3 \mathrm{O}$)
SK2	4 mm Socket Green	1	(HF72P)
SK3	4 mm Socket Black	1	(HF69A)
SK4,SK5,SK6	4 mm Socket Yellow	3	(HF75S)
	Collet Knob	1	(YC40T)
	Yellow Knob Cap	1	(QY06G)
	Box PBI White	1	(LFOIB)
	PCB	1	(GD90X)
	Front Panel	1	(6G29G)
	Wire	12kt	(BLOOA)

A complete kit is available:

Order As LM56L (Noise Generator Kit) Price $£ 10.95$ The following parts are also available separately, but are not shown in our 1988 catalogue:
Noise Generator PCB Order As GD90X Price £3.95
Noise Generator Front Panel Order As JG29G Price $£ 1.50$

IIIT SHotitis ELECTRONICS

Sorry we don't need any more STARFLEET CREWMEN...BUT!! we do need several
 TECHNICALSALES STAFF

These vacancies are being created continuously as a result of our perpetual expansion program. Currently we are looking for staff in the North, Central and South East of England. We are looking for enthusiastic personnel to help usopen new stores throughout the country. These positions offer real prospects up to, and including, branch management.

Both junior and experienced people will be considered. A knowledge of sales, although an asset, is not essential. But, to become part of the team you do need to be self motivated and have a cheerful personality. Applicants should also be smart and have a knowledge of electronic components.

We offer excellent working
conditions and job security, plus a good salary with commission and a realistic pension scheme.

Apply in writing enclosing CV to David Snoad, P.O. Box 3, Rayleigh, Essex. Or for further information, ring 0702554155.

If you are seeking an interesting career in a Hi -Tech environment then contactus.

NOW!

DEPARTMENT NEWS

Our design and development lab' is responsible for appraising new products sourced from countries all over the world and also for researching and developing projects. As the department is now expanding, we are looking for a suitable engineer to join our technical team and assist in all aspects of project design from initial concept to final production. The position demands a.proven technical background in both analogue and digital disciplines, good communicative skills and the commitment required for working to deadlines.

If you feel that you could be just the right person for us, please send details about yourself to:

Mr. D. Goodman,
The Design Manager, Maplin Electronics, P.O. Box 3, Rayleigh, Essex SS6 8LR.

Optoelectronics
 Circuits Manual

by R. M. Marston

Optoelectronics is the study of any devices that produce an electricallyinduced optical (visible or invisible light) output, or an optically-induced electrical output, and of the electronic techniques and circuitry used for controlling such devices. It is one of the fastest-growing branches of modern electronics and encompasses a wide variety of devices, ranging from simple light bulbs and light emitting diodes to complete infra-red light-beam alarm and remote control systems.
This manual is a useful guide to the opto-electronics device user, and is especially aimed at the practical design engineer, technician, and experimenter, as well as the electronics student and amateur. It deals with the subject in an easy to read, down to earth, and non-mathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the ICs and other devices used are inexpensive and readily available. 182 pages, $137 \mathrm{~mm} \times 215 \mathrm{~mm}$, illustrated.
Order As WP93B (Opto Circuits Manual)

Price£10.95NV

Radio Amateur and Listener's Pocket Book

by Steve Money G3FZX

A unique collection of useful and intriguing data for the traditional and modern radio amateur and the hi-tech listener. Familiar radio topics are probably covered more concisely than in any similar book (for example, abbreviations and codes, symbols, formulae and frequencies) but the most interesting sections of the book deal with the newer features of the ham's world; AMTOR, Packet Radio, Slow Scan TV, computer decoding, airband and maritime glossaries and so on. Radio amateurs, hackers and monitors will all find this book the best singlesource, quick reference guide to an increasingly wide-ranging subject. 160 pages, $95 \mathrm{~mm} \times 196 \mathrm{~mm}$, iliustrated. Order As WP91Y (Ham's Pocket Book)

Price $£ 8.50 \mathrm{NV}$

Introducing Digital

 Audio
CD, DAT and Sampling

by lan R. Sinclair
Digital recording methods have existed for many years and have recently become familiar to the professional recording engineer, but the compact disc (CD) was the first device to bring digital audio methods into the home. Compact discs are now well established, to the extent that newspaper reviews of new releases concentrate more on CD than on other media such as tape or LP, and digital audio tape (DAT) equipment has now appeared.
All this development has involved methods and circuits that are totally alien to the technician or keen amateur who has previously worked with audio circuits. The principles and practices of digital audio owe little or nothing to the traditional linear circuits of the past, and are much more comprehensible to today's computer engineer than the older generation of audio engineers. This book is intended to bridge the gap of understanding for the technician and enthusiast. The principles and methods will be explained, but the mathematical background and theory will be avoided other than to state theend product. The aim is to show what is involved in the digital part of audio signals, particularly in the newer devices such as CD, DAT and sampling, rather than go into esoteric details.
112 pages, $138 \mathrm{~mm} \times 216 \mathrm{~mm}$. illustrated.
Order As WP95D (Intro Digital Audio) Price £5.95NV

Getting the Most from your Multimeter
 by R. A. Penfold

The first piece of test equipment that most electronic hobbyists normally buy is a multimeter. This is probably because it is one of the least expensive items and, also if you know how to use it properly, one of the most useful. This book is primarily aimed at beginners and those of limited experience of electronics. The basics of analogue and digital multimeters are covered, discussing the relative merits and limitations of the two types. Various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is also covered with subjects such as voltage, current and continuity checks being discussed. In the main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects.
112 pages, $111 \mathrm{~mm} \times 178 \mathrm{~mm}$, illustrated.
Order As WP94C (Get More
Multimeter)
Price £2.95NV

Audio and Mi-Fi
 Engineer's
 Pocket Book

by Vivian Capel

A concise collection of practical and relevant datafor anyone working on sound systems. The topics covered include microphones, gramophones, compact discs, tape recording, high quality radio, amplifiers, loudspeakers and public address.
Acoustics is not often dealt with in audio books, nor is it too well understood; so a lengthy section has been included dealing with most aspects the technician is likely to encounter, from human hearing to sound insulation. Apart from providing reference material, it should serve to give a basic grounding in the subject.
From this ancient art to the modern wizardry of digital recording and the compact disc is an enormous leap that illustrates the wide range of knowledge required of the audio engineer; one that encompasses mechanics, heat, magnetism, semiconductor technology and electronics.
190 pages, $95 \mathrm{~mm} \times 196 \mathrm{~mm}$, illustrated.
Order As WP90X (Audio Pocket
Book)
Price £9.95NV

CLASSIFIED

VARIOUS FOR SALE
Stereo $2 \times 24 \mathrm{~W}$ amp/tuner (SX-636), two speakers (all by Pioneer), Aiwa AD-6300 cassette and Goldring-Lenco record decks, Shure carridge. £115 altogether. A. R. McCrae, Port Erin, I.O.M. Tel: 0524834141.

Valved Oscilloscope 3^{n}, scratch built from PW project. Working but needs a complete service. $£ 45$ ono. Spare CRT $3^{\prime \prime}$ for above, $£ 20$. Phone: 0214264471. High quality copper clad circuit board for sale, $280 \mathrm{~mm} \times 216 \mathrm{~mm}$, single sided $£ 1$, double sided $£ 1.50$. Send cheques to: M. Ffitch, 56 Hall Green Lane, Hutton, Brentwood, Essex CM13 2 QU. Switch mode PSUs, monitors, fans, heatsinks, transistors, (ex mainframe), for sale. (To empty my garage!) Send SAE for list to: A. Burnham, 1
Woodside, West Horsley, Surrey KT24 6NA.
Two, Pye Bantam, transceiver, radio-phones, ready to use. Rechargeable batteries. Leather case. Very good condition. Offers around £200. Pye Pocket Phone, transmitter and receiver, boxed, (police type talking brooch), working, good condition. £46 ono. Phone: 0214264471. FREE Television magazines some from 1964 till 1980's. Interesting for beginners. Contact Mr. M. Alter, 18 Twyford House, Chisley Road, London N15 6PA. Phone: 018007636.
Yaesu FT-1 HF transceiver, all options fitted, $£ 1100$:Latest Kenwood portable TH-205E, plus extras, $£ 160$. ATV transceiver with built in monitor, £75. Tel: Rotherham (0709) 554665. Phillips PM3230 dual trace scope, manual, Maplin probe kit. £125. Audio component clear-out, wondercaps, etc. SAE for list: 8 Church Row, Carharrack, Comwall, TR16 SRP, Tel: 0209820066. Electronic components, resistors, capacitors, semiconductors, transformers, stripboard, etc. Too many to list, plus test gear and tools, will sell or exchange for disk drive. Cheshire area. Tel: 0606846438.
Garrard 401 transcription deck with strobe/turntable, SME 3009 tone arm, Shure VN35HE cartridge, all fitted in solid wooden cabinet, $£ 90$. Oric 4 colour printer/plotter, $£ 40$. Gould Alpha 4 digital multimeter, LCD, bench model, £45. Contact: M. Saunders, 7 Drumcliff Road, Thumby Lodge, Leicester LES 2 LH .
Hitachi 9 " black \& white video monitor, $£ 40$. Spectrum 48 K with recorder and 10 games, $£ 70$. Tel: Southend (0702) 461893.
Bargain Bags, contain many useful electronic components including PCBs. Mostly new components at least $£ 10$ worth, only $£ 3$ per bag. Mr. J. Norman, 25 Milton Road, Corby, Northants NN17 2NY.
Tune Generator kit, ideal for beginners. Brand new. Includes easy to understand instructions, all parts, etc. £6 (including postage and packing). D. Gaunt, 11 Barber Street, Eastwood, Nottingham NG 16 3EW. Relays for sale, 240V 10A 8 pin 2 pole, RS stock 348-762, $£ 1.50$ each or 4 for $£ 5$. 8 pin relay bases, 50 p each. P \& P add 50 p . Octal timer relays 240 V 3 A , all time ranges available, $£ 3$ each. SAE for details. P. M. Green, 6 Stilecroft, Harlow, Essex CM18 6LN.

If you would like to place an advertisement in this section, here's your chance to tell Maplin's 200,000 customers what you want to buy or sell, or tell them about your club's activities - absolutely free of charge. We will publish as many advertisements as we have space for. To give a fair share of the limited space, we will print 30 words free of charge. Thereafter the charge is 10 p per word. Please note that only private individuals will be permitted to advertise. Commercial or trade advertising is
strictly prohibited in the Maplin Magazine. Please print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send replies to Box Numbers to the address below. Please send your advertisement with any payment necessary to: Classifieds, Maplin Mag., P.O. Box 3, Rayleigh, Essex SS6 8LR.

For the next issue your advertisement must be in our hands by 8th July 1988.

Have LEDs, will sell, rectangular red and green from $7 p$ each. For list please send SAE to Box 8, Maplin Magazine, P.O. Box 3, Rayleigh, Essex SS6 8LR. Component clear out, full spec unused Op-amps, digital, caps, etc., eclectic selection, value $£ 80$, lost interest, $£ 40$ including post. Tel: 012990867. Enamelled copper wire, various gauges on 1 to 2 kg reels. PVC covered wire, assorted colours and sizes. All under half new price. Magnifying glass on stand, £5, Phone: 015686014. Realistic PRO-31 handheld FM scanner. $60-512 \mathrm{MHz}, 10$ memories, as new, $£ 110$. Tel: Colchester 210878. 50 pF variable capacitors, panel mounting, $£ 1.50 .100 \mathrm{kHz}$ crystals, B7C glass type, $£ 1.50$. Valves, new, ten mixed $£ 6$. Postage included. Mr. Greenough, 2 Bexley Close, Glossop, Derbys SK13 9BG.
Metrix 210 wobbulator $£ 39$. Tech RMS/dB audio millivoltmeter $£ 27$. Sabatronics digital multimeter $£ 29$. Intracept N7118 TV colour bar generator $\{39$. Tel: 050266026 . Neos mouse and cheese. Brand new mouse for all computers, also has a joystick mode for best compatability. Cheese CAD package on disk for C64. £15. Phone: Fareham (0329) 235370.
Two Digiplan stepper motor drive cards size CD20, as new, will split. $£ 80$ each. Tel: 0772314980.
Building a mixer console? 2522 k LOG single and 55220 k LIN dual sliders. £25 the lot. Phone D. Stephen, Banbury 810859.

COMPUTERS FOR SALE

Pet CBM $8096 \mathrm{c} / \mathrm{w} 8050$ twin, cased drives and 'Silicon Office' $£ 235$. Commodore 8026 daisy wheel type writer/IEEE printer (Olympia ES100 type) $£ 195$ inc ribbons, lift-off tape, spare D-wheel. Tel: (0903) 200111 evenings.
Spectrum 48K computer, plus Maplin speech synth, interface, joystick and 18 programs, $£ 75$. Fidelity sensory 8 chess challenger $£ 38$. Tel: 050266026.
Commodore MPS-801 printer: Brand new, will suit any Commodore computer. Includes 2 ribbons, paper, books, plus superb Supercom chip giving 24 type-styles. Cost £200, bargain £85. Phone: Fareham (0329) 235370.

Atari ST/Mapsat weather satellite project software. Demo disk $£ 3$, requires computer only. Refundable against full program and manual, £19.95 inclusive. GEM based machine code, data and processed screens (Degas) to disk. Orbit forecast, construction tips,
interfacing and more. Contact Les Kaye, Fieldvale, Park Lane, Snitterield. Warwicks CV37 0LS.
BBC ' B ' mathematics educational software package for young children. 4 programs covering addition, subtraction, multiplication, division. Multiple difficulty levels. Sound, colour, graphics. Disk only. £6.25. More details from Box 9, Maplin Magazine, P.O. Box 3, Rayleigh, Essex SS6 8LR.

CLuBS

19th June 1988. Denby Dale Mobile Rally will be held at Shelley High School, approx. 5 miles SE of Huddersfield, West Yorkshire. Rally opens at 1100 (disabled 1030). Usual traders, good food and sideshows for all the family. Talk in on S22, SU22 and 10FM. Details from G3SDY on 0484 602905. Also club meetings take place every Wednesday at the Pie Hall, Denby Dale at 8 pm . Further info from G. J. Bond (G4GJB), Wolvelay House, Woolley, Wakefield (or QTHR). How would you like to make local and world-wide contacts, using Morse Code, on simple home made equipment you could build yourself for under $£ 30$? If the answer is 'Yes' then for more information on a Novice 'Ham' radio transmitting licence please send an SAE to Ian Abel G3ZHI, 52 Hollytree Âve, Maltby, Rotherham, Yorkshire.

MUSICAL FOR SALE

Casio CZ-230S digital synthesiser keyboard, 4 octaves, polyphonic, 100 voices, rhythm, programmable memory, MIDI ir/out. £220. Tel: Colchester 210878.
Maplin Rhythm Generator, plus 96 note 5 footage organ generator board, plus drawbars with data, $£ 48$ inc $P \& P$. Tested/unused. Phone: Helensburgh (0436) 71181.

Bargain audio cassettes! Blank TDK-D tapes, nine D90's, two D60's. Plus red/black lockable cassette case, gold colour fastening, etc. Worth £20, bargain at £10! Phone now! Fareham (0329) 235370.

MIDItations: casseme of easy listening synthesiser music prepared by David Howard using MIDI. Price $\{3.50$ (inc P \& P) from: MIDItations, 9 Cavendish Drive, Leytonstone, London Ell IDN. Solid oak organ console with space for two manuals. Full size pedal board. Originally housed valve organ. $£ 50$. Phone: Richard Creak, Danbury (0245) 413725.

Electronic Organ. Technics U40, immaculate condition, big sound, even a beginner will sound good and the
experts won't get bored. $£ 499$ or offers. Phone: Godfrey on 019585113
Toshiba rack system, SB-M20 amp, ST-U20L tuner, PC-G10 cassette deck, SR-B20 turntable in cabinet with glass top and front. Original packing. $£ 200$. Ring 0516773670 (Wirral).
MES 53, two 4 octave keyboards. All boards complete, partly built console, leslie, etc. Tel: 0463782163.
Nivico solid state stereo tape deck, model TD344U. Two mics, many connecting leads, 12×7 inch (one new) and 3×5 inch tapes, 6 tape cases, many extras, little used equipment, $£ 120$ ono. Tel: 072666984.

WANTED

Copies of 'Electronics - The Maplin Magazine', issues 1 to 19 and if possible 20 to 22 and issue 24. Send replies to: 13 Westield Road, Stonehaven,
Kincardinshire, AB3 2EE or phone (0564) 64584.

Patchboard YB08J (with patch plugs if possible); Patchboard HF00A; 5600 front panel XQ01B; Sequencer interface PCB YQ59P; VC filter PCBs (2), the earlier 4600 type, not the 5600 type BB65V. Would consider purchase of abandoned project, etc., in order to obtain these items. Details and price to D. Parsors, 62 Mill Lane, Woodhall Spa, Lincs, LN10 6QZ.
Wanted books: 'Electronic Music Circuits', 'Servicing Electronic Organs' and 'Musical Applications of
Microprocessors'; good payment (exc. if mint!). Contact G. Calderini, Via Ardeatina 222, 00042 Anzio (Rome), Italy.
Wanted: Please any information about a Heathlut MGP-1, contact Bill McGill, Rotherham 814010.
Maplin magazine, volume 4 issue 14. Will sömeone sell the issue to me? Or will you lend it to me for 3 weeks. Write to: R. Heland, Legdesvingen 21A, 5030 Landas, Norway.
Wanted end cheek set (XY96E) for 'Matinee'. Ring: 023468433 anytime, or write G. C. Rogers, 39 Goodmayes Close, Bedford MK42 OLX.
Hawaii 5-0 siren; 1983/84 catalogue number LH98G, or complete schematic diagram. Contact J. Golding, 97 Langton Road, Norton on Derwent, Malton, N.
Yorks YO17 9AE or Tel: 0653600027.
Does anyone have an M147 integrated circuit to sell please? Contact J. D. Jenkins, 3 Orchard Court, Pontllanfraith, Gwent NP2 2NG.
Information please. Where can I get two 16 swg aluminium chassis for valve amplifiers made up to requirements? F . D. Cosgrove, 59 Femon Road. Bournemouth, Dorset BH6 SBS. 2X81 and 16K RAM pack for GCSE technology project. Doesn't matter about condition as long as it works! Will pay for postage. Ring Tim after 6 pm on Bradford 492911.
Wanted. Synthesiser Maplin 5600S, built, part built, kit or parts of. Anything considered. Also consider sequencer or other synths. Contact Paul (0274) 734009,9 am to 5 pm .
Mapsat Equipment Users. Please contact me. I need your help and advice. Postage refunded. Jon Larcombe, 2 Farmhouse Drive, Frome, Somerset BAll 2SS.

DID YOU MISS THESE ISSUES?

Project Book 1 Universal Timer. Programmable mains controller. Combo-Amplifier. 120 W MOSFET power amp. Temperature Gauge. $10^{\circ} \mathrm{C}$ $100^{\circ} \mathrm{C}$, LED readout. Pass The Bomb! Pass-TheParcel with a difference. Six easy-to-build Projects on Veroboard. Car batt. monitor; Colour snap game; CMOS Logic Probe; Peak Level meter; Games timer; Multi-colour pendant. Order As XA01B (Maplin Project Book No. 1) Price 85p NV.
Project Book 2 Digital Multi-Train Controller. Controls up to 14 model trains. Home Security System. Six independant channels. Digital.MPG Meter. With large LED display, a must for more economical motoring.
Order As XA02C (Maplin Project Book No. 2) Price 85p NV.
Project Book 3 ZX81 Keyboard. 43 keys, plugs directly into ZX81 with no soldering. Stereo 25 W MOSFET Amp. 25W r.m.s per channel; Disc,
Tape, Tuner \& Aux. Radar Intruder detector. 20 metres range, may be used with our security system. Remote Control for Train Controller. Remote control by infra-red, radio or wire. Order As XA03D (Maplin Project Book No. 3) Price 85p NV.
Project Book 4 Telephone Exchange. Up to 32 extensions on 2-wire lines. Remote Control for Amplifier. Volume, balance and tone controlled via infra-red link. Frequency Counter. 8 digit DFM, $10 \mathrm{~Hz}-600 \mathrm{MHz}$ range. Ultrasonic Intruder Detector. Areas up to 400 square feet can be covered.
Order As XA04E (Maplin Project Book No. 4) Price 85p NV.
Project Book 5 Modem. 300 baud transmission speed over normal telephone lines. Inverter. 240V AC 60W from 12 V car battery. ZX81 Sound Generator. 3 tone generators fully controlled from BASIC. Central Heating Controller Optimised performance with this advanced system. External Horn Timer. Exterior intruder alarm. Panic Button. Add on to our Home Security System. Model Train Projects. Add on to our Multi-Train Controller. Interfacing Micro processors. How to use parallel l/O ports, with circuits.
Order As XA05F (Maplin Project Book No. 5) Price 85p NV.
Project Book 6 VIC20 \& ZX81 Talkbacks
Speech synthesis projects. Scratch Filter. Tunable active circuit 'reclaims' scratched records. Bridging Module. Converts two 75 W MOSFET amps to one 400 W full bridge amplifier. Moisture Meter. Finds damp in walls and floors. ZX81 TV Sound and Normal/Inverse Video. TV sound and inverse video direct. Four Simple Veroboard Projects. Portable Stereo Amp; Sine Generator; Headphone Enhancer and Stylus Organ.
Order As XA06G (Maplin Project Book No. 6) Price 85p NV.
Project Book 7 CMOS Crystal Calibrator. For amateur radio receiver calibration. DX'er's Audio Processor. Improved sound from Communications Receivers. Enlarger Timer. An accurate timer for the darkroom. Sweep Oscillator. Displays AF frequency response on an oscilloscope screen. VIC20 and ZX81 Interfaces. RS232 compatable.
Order As XA07H (Maplin Project Book No. 7) Price 85p NV.
Project Book 8 Spectrum Modem/RS232 Interface. 2400 baud self contained operating system. Synchime. Simulates bells, gongs and other chiming sounds. Dragon 32 RS232/Modem Interface. Plugs into ROM expansion port. Codelock. Programmable electronic lock. CMOS Logic Probe. Digital display shows logic states. Minilab Power Supply. Versatile unit for the test bench. Dragon 32 I/O Ports. Two 8-bit ports. Doorbell for The Deaf. Flashing lamp attracts attention.
Order As XA08J (Maplin Project Book No. 8) Price 85 p NV.
Project Book 9 Spectrum Keyboard, 47 full travel keys. VIC Extendiboard. Three expansion ports, one switchable. Oric Talkback. Speech synthesiser for the Oric 1. TDA7000 FM Radio. Complete FM receiver on a chip. ZX81 High Resolution Graphics. 256×192 fine pixel display Nine Projects! Personal Stereo Dynamic Noise Limiter; Logic Pulser; TTL/RS232 Converter; Pseudo Stereo AM Radio; and more. Order As XA09K (Maplin Project Book No. 9) Price 85p NV.

Project Book 10 Spectrum Easyload. Helps cassette loading with the Spectrum. 80 m Receiver. Simple SSB direct conversion receiver Fluorescent Tube Driver. 8W 12V for camping and caravanning. Auto-Waa. Autom atic waa-waa effects unit. Digi-Tel Expansion. Expands Maplin Telephone Exchange to 32 extensions. Oric 1 Modem Interface. Adapts the Oric 1 to the Maplin Modem. Dragon 32 Extendiport. Makes the Dragon's cartridge socket more accessible. Order As XA10L (Maplin Project Book No. 10) Price 85 p NV.
Project Book 11 Mapmix. Six channel audio mixer. Xenon Tube Driver. Xenon flash tube module with strobe. Enlarger Exposure Meter Simple inexpensive tool for the darkroom. 8 Channet Fluid Detector. Check/control fluid level in up to 8 containers. Servo \& Driver Module. Servo mechanism with driver module kit. Mk II Noise Reduction Unit. Improves signal/ noise ratio of tape recordings. Cautious Ni-Cad Charger. Controlled charging of ni-cad celis. Motherboard for The BBC Micro. Gives easy access to ports.
Order As XA11M (Maplin Project Book No. 11) Price 85p NV.
Project Book 12 RTTY Unit. The TU 1000 receives/transmits Radio Teletype; connects to computer via RS232. Computadrum. Use your computer as a drum synthesiser, Light Pen. Draw onto the TV screen or select menu options. PWM Motor Drive. Reversible model motor driver for 6 V and 12 V .
Order As XA12N (Maplin Project Book No. 12) Price 85p NV.
Project Book 13 Explosive Gas Alarm Flammable gas detector. Flash Meter. Get your exposure right when using your flash gun. Musical Announcer. A doorbell with a difference. Mains Controller. An add-on for the 8-Channel Fluid detector.
Order As XA13P (Maplin Project Book No. 13) Price 85p NV.
Project Book 14 Live Wire Detector. Invaluable aid for the handyman. Trundle. The line follower robot as featured on Channel 4. 4-Channel PWM Controller. Digital control of motors and servos. Display Driver Module. How to use our LED bargraph display ICs. Control-A-Train. Full inertia control of model trains. Spectrum I/O Controller. Buffered 2-way 8 -bit data bus and 8 control lines. Order As XA14Q (Maplin Project Book No. 14) Price 85p NV.
Project Book 15 Z80 CPU Module. Expandable CPU based controller. Sharp MZ-80K Serial Interface. Get into communications with this project. Ultrasonic Car Alarm. Stop car thieves. Active Crossovef́. Includes matched output power amplifiers. Guitar Equaliser. Specifically for six string electric guitatrs. Fabulous Five. A selection of interesting circuits.
Óder As XA15R (Maplin Project Book No. 15) Price 85 p NV.
Project Book 16 Floodlight Controller. Both power supply and mains switching unit for the Infra-red Intruder Detector Kit. Spectrum Parallel/Serial Interface. Provides 8 -bit I/P and O/P parallel or serial transfer with programmable UART. Mains Tx/Rx Data Commúnications System. Sends or receives data via the mains wiring. 16-Channel Logic IC Tester.
Simultaneously displays logic states for any logic C of up to 16 pin-outs on your oscilloscope. Order As XA16S (Maplin Project Book No. 16) Price 85p NV
Project Book 17 Video Digitiser. Interface a TV camera to your computer. Mixing It. A comprehensive range of audio amplifier modules. Hobbyist's Temperature Controller. General purpose electronic mains power thermostat. ASCII Keyboard. Professional computer keyboard with standard ASCIt output. Play Along Mixer. Play along to your favourite records and tapes on your own instrument. Order As XA17T (Maplin Project Book 17) Price 85p NV
Project Book 18 Weather Satellite Receiver. Display regional weather systems on your TV or monitor. Mixing It Part 2. Mono/stereo Hi-Z mic input, mixer and line amplifiers; VU/headphone driver. Stepper Motor Driver. How to build and start using the Stepper Motor Kit featured in the Catalogue. Amstrad Expansion S̈ystem. The Maplin Amstrad External ROM Card System for the CPC 464, CPC 664 and 6128. Sealed Lead Acid Battery Charger. Special high stability output
with automatic trickle charge mode for sealed lead acid batteries. Fantastic Five. Veroboard projects comprising HF tremelo unit, crystal checker, clap switch, low-Z ohmmeter, snooze timer.
Order As XA18U (Maplín Project Book 18) Price $85 \mathrm{p} N$ V.
Electronics Issue 19 Active Aerial and Aerial Tuning Unit. Get moré from SW. Amstrad Expansion System. 6×8-bit parallel |/O card and PSU. ADA Digital Echo, RAM based low cost echo machine. 'Mixing It. Mixer Modules' PSU.
Order As XA19V (Maplin Magazine Volume 5. Issue 19) Price 75 p NV.

Project Book 20 Weather Satellite Decoder Displays output from Satellite Receiver on TV or monitor. Infra Red Proximity Detector. Short range heat or movement detector. Fibre-Optic Link. Sends AF signals over up to 20 m of fibreoptic cable. Low-Z Microphone Pre-amp. For 200 600Ω mics plus gain adjustment. Order As XA20W (Maplin Project Book 20) Price 85 p NV.

Electronics Issue 216 Channel Burglar Alarm. Develop a complete security system. Six Circuits. Bass Fuzz, Voice-Over Unit, Noise, Gate, Envelope Tremolo, RTTY Decoder and Scratch \& Rumble Filter on veroboard. Notch Filter. AF processor for communications receivers. 12 V Public Address System. 10W per channel from car battery. Tungsten Lamp Controller. AC phase control for mains lamps.
Order As XA21X (Maplin Magazine Volume 6 Issue 21) Price 85 p NV.

Electronics Issue 22 MIDI Interfacing

 Techniques. Connect MIDI instruments to the VIC20 or CBM64. Hi-Fi Speakers \& Enclosures. Two high quality loudspeaker cabinet designs. Keypad for Z80 CPU. At last a keypad I/F \& ROM for the Z80 CPU kit. 41/2 Digit Counter. Versatile basic counter module to $41 / 2$ digits. Weather Satellite Down Converter Part 1. Aerial \& freq. converter for MAPSAT Receiver to tune into the Meteosat satellite. Mini Circuits. Veroboard Audio Level Tester, Sound Triggered Flash, InCircuit Resistance Meter, I/R Audio Isolator. Order As XA22Y (Maplin Magazine Volume 6 Issue 22) Price 85p NV.Electronics Issue 23 MAPSAT Frame Store \#1. Z80B CPU controller. Servo Tester. Proportional servo tester. Weather Satellite Down Converter Part 2. Channel Switching Unit. Capacitance Tester. 5 ranges, 3 digit display. More Mini Circuits. Movement alarm, Stepper Motor Driver, Pink Noise Generator, Optical Port Data Link, 'Metal Pedal'
Order As XA23A (Maplin Magazine Volume 6 Issue 23) Price 85p NV.
Electronics Issue 24 Nuclear Radiation Monitor. Alpha, Beta, Gamma \& X-ray gieger counter. VHF Pre-Amp Module, MAPSAT VHF pre-amp. External Horn Programmable Timer Update. Modifying the module for use with other than the Maplin Home Security System. MAPSAT Frame Store \#2. The Video Graphics Card. VHS Video Alarm. Battery powered portable movement alarm built into a VHS Video Cassette Order As XA24B (Maplin Magazine Volume 6 Issue 24) Price 85 p NV.
Electronics Issue 25 Track side Rapid Charger. Model radio control car ni-cad battery pack charger using 12 V car battery as power source. Slow Charger. Mains powered trickle charger for model cars. Temperature Module Expansion. Relay switch board and serial to parallel converter add-ons. Disco Partylite. High quality, 3 channel party lights. Mini Metal Detector. Detects ferrous and some non-ferrous metals such as iron wall board nails or brass screws. Tester for Electrical Domestic Appliances. Check the safety of any new appliance before you plug it into the mains. Bob's Mini Circuits. A pulsed speed controller, a train controller \& an electronic lock. Order As XA25C (Maplin Magazine Volume 7 Issue 25) Price 85p NV.
Electronics Issue 26 1kW High Power Mosfet Amplifier. Superb amp primarily aimed at use in halls, auditoriums, etc. Simple Melody Generator. Versatile musical project with four tunes available. Multi-Tune Generator. Built around the UM3411A giving 16 tunes etc. Siren Sound Generator. Gives 4 different types of siren noises. Programmable Metronome. Useful musicians aid. Order As XA26D (Maplin Magazine Volume 7 Issue 26) Price 85 p NV.

[^0]: Copyright. All material is subject to world wide copyright protection, and reproduction or imitation in whole or part is expressly forbidden. All reasonable care is taken to ensure accuracy in preparation of the magazine, but Maplin Electronic Supplies Ltd. cannot be held legally responsible for its contents. Where errors occur corrections will be published as soon as possible afterwards. Permission to reproduce printed circuit board layouts commercially or marketing of kits must be sought from the publisher. (C) Copyright 1988 Maplin Electronic Supplies Limited.

