MAVIGATIOI SYSTEM

AH IHCREDIBLY LOW PRICE

3animes

DID YOU MISS THESE ISSUES?

Project Book 1

Universal Timer. A programmable controller with 18 program times for up to 4 mains appliances.
Combo Amplifier. Superb 120 W MOSFET power amp with lownoise BI-FET pre-amp having built-in flanger, inputs for guitars, keyboards or microphones, and five-step equaliser.
Temperature Gauge. Coloured LED indication of $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Pass The Bomb! Low-cost easy-to-build electronic version of pass-the-parcel - keeps kids amused for hours!
Six easy to build projects on Veroboard. Car Battery Monitor Colour Snap Game - CMOS Logic Probe - Peak Level Indicator Games Timer - Multi-Colour Pendant.

All this for only 70 p . Order As XA01B (Maplin Project Book No. 1) Price 70 p NV.

Project Book 2

Digital Multi-Train Controller. Controls up to 14 loco's with up to 4 simultaneously. Features automatic short-circuit protection and DC supply present all the time for carriage lights etc. Modules will fit in most modern 00 -scale engines. Home Security System. With six independent channels and 2 or 4 -wire operation, main and external tamper-proof cabinets, and detection of open or short circuits or just resistance change, the unit offers a high degree of protection with excellent long-term reliability.
Digital MPG Meter. Easy to build with large LED display, makes motoring more economical.
All this for only 70 p.
Order As XA02C (Maplin
Project Book No. 2)
Price 70p NV.

Project Book 3

ZX81 Keyboard. Full-size fulltravel 43 -key keyboard with electronics makes graphics, functions and shift lock, single key selections. Keyboard plugs directly into sockets inside ZX81 and there is no soldering in ZX81. Gives fast, reliable entry. Stereo 25W MOSFET Amp. Kit includes wooden cabinet and printed and punched chassis. This superb 25 W rms per channel amp has inputs for magnetic
 pick-up, tape tuner and aux. Very easy to build, no setting up, superb frequency response, low noise low distortion and the grandeur of MOSFET sound. Radar Intruder Detector. Home Office type-approved detector gives coverage up to 20 m . May be used with our Burglar Alarm Remote Control for Train Controller. Infra-red, radio, or wired remote control units for our Multi-Train Controller.

All this for only 70p. Order As XA03D (Maplin Project Book 3) Price 70p NV.

Telephone Exchange. Up to 32 extensions on 2-wire lines for home, office or factory. Save fff's on rental charges. Details for up to 16 lines in this book. Remote Control for Amplifier. Adjust volume, balance and tone whilst you sit back and relax with our infra-red remote control. For use with our 25W MOSFET stereo amp or almost any amp. Frequency Counter. Superb easy-to-build low-cost 8 -digit counter with superior specification covers 10 Hz to 600 MHz range. Incorporates full push-button control, electronic switching, and one input for the whole range
Ultrasonic intruder Detector. This easy-to-build ultrasonic transceiver covers up to 400 square feet; though more than one unit can be used for larger areas. The unit automatically adjusts itself to transmit at the frequency where the transducers give their maximum output. Up to three of these units may be connected to our Home Security System.
All this for only 70p. Order As XA04E (Maplin Project Book No. 4) Price 70p NV.

Project Book 5

Modem. A low-cost high quality unit
capable of 300 baud transmission speed over normal telephone lines. Send data to your friends anywhere in Europe ortalk to our computer.
Inverter. Reliable MOSFET design is ideal for camping, caravanning or standby use during power.cuts
ZX81 Sound Generator. This unit plugs into the Maplin ZX81 extension board and gives full control from BASIC of 3 tone generators, with single address access.
Central Heating Controller. Optimise performance of your heating system with this advanced unit
External Horn Timer. To comply with latest legal requirements
Panic Button. Add on to our Home Security System.
Model Train Projects. Additions for our Multi-Train Controller. Interfacing Microprocessors. Describes the use of parallel input/output ports. Complete with circuits.
All this for only 70p. Order As XA05F (Maplin Project Book No. 5) Price 70p NV.

PROJECH

RTTY Unik

Easily as good as units selling for well over 4 or 5 times the price of this unit, the TUl000 features fixed or variable tone shifts, VCO controlled filters, receive and transmit capability and RS232 port for direct connection to your computer.

Computadrum 20

Turn your home computer into a drum synthesiser! This unit has six tunable drums and resonance control to enable the timbre of the drums to be varied. May be used with many different home computers.

Light Pen 38

Draw pictures on your TV set or select menu options just by pointing, with our Light Pen all this is possible and much more. And its cheaper and better than most ready-built models as well!
PWM Mofor Driver
A high performance model motor driver for 6 V and 12 V motors. The unit gives smooth control from off to full speed and is ideal for use in model boats and cars and in robotics.

Five Easy Pieces

 50Five fascinating circuits includuing a personal medium wave radio using a new IC, a telephone amplifier, an opto-coupled rpm meter, a tremolo unit and a model train chuffer controlled from the train speed controller on your layout.

FEATNRES

The 2X81 \& Your Boat \qquad
A complete navigation system for your boat. The unit compares tides, wind speed and direction, and water speed and distance and can steer the boat for you. In a yacht the unit will tell you when to tack and the best course to sail allowing for the prevailing wind.

Electronic Chronicles

 16Another dip into the past to look at the late 19th century geniuses who were largely responsible for making the 20th century the electronics age.

Machine Code Programming with the 6502 25

More on the wide range of facilities offered by the 6522 and how to get the most out of this incredible chip.

First Base
Part seven looks at the CMOS digital integrated circuit family and features circuits for a timer and a piezo-electric timer.

Projed Fault Finding
 47

The start of a brand new series that will prove invaluable to all home constructors. In part one we look at some of the most common problems encountered when building at home.

To complement our range of phone connectors featured in our last issue, this article describes how to use them and how your telephone works.

Measurements
 in Electronics

58This month we look at the specialised test equipment available for use in fault-finding in digital circuits.

Dwell Angle
 Meusurements

Shows how to measure dwell angle on your car using your multimeter. The method is far more accurate than using feeler gauges.

Connections Made Easy .. 63
How to connect up the new range of space-saving and time-saving IDC comnectors.

NEWS

Catalogue for 1985 64
Classified Advertisements 61
Corrigenda ... 36
New Books .. 28
Price Change List 31
Price List of Items Since Catalogue 29
Readership Survey Results 37
Shop Addresses 30
Subscriptions .. 64
Top Twenty Books 36
Top Twenty Kits 36

Mail Order	Cover	Editorial \& Production		Published by	Maplin Electronic Supplies Limited.
P.O. Box 3, Rayleigh, Essex SS6 8LR.	Cover photograph by lan James.	Editor	Doug Simmons		
Telephone: Retail Sales: (0702) 55291		Production Manager Technical Editors	Hugh Moir	Typesetting	Essex Process Engraving, Stock Rd, Southend
Trade Sales: (0702) 552961.	Seawolf 26 supplied by:		Robert Kirsch		
General: (0702) 554155.	J. \& J. Yachting,		Dave Goodman	Printed by	Eden Fisher (Southend)
	Essex Yacht Marina,	Art Editor	Peter Blackmore		Lid, Stock Rd, Southend
Shops: See page 30.	Wallasea Island,	Technical Artists	Roy Smith	Distributed by	Spotlight Distribution.
All shops closed Mondays.	Essex.		John Dudley		Benwell Rd, London N

Copyright. All material is subject to world wide copyright protection, and reproduction or imitation in whole or part is expressly forbidden. All reasonable care is taken to ensure accuracy in preparation of the magazine, but Maplin Electronic Supplies Ltd cannot be held legally responsible for its contents. Where errors occur corrections will be published as soon as possible afterwards. Permission to reproduce printed circuit board layouts commercially or marketing of kits must be sought from the publisher. (c) Copyright 1984 Maplin Electronic Supplies Limited.

Seprember 1984 Maplin Magazine

The ZX81 computer is robust, relatively powerful and has no moving parts. It is compact, uses 9 volts D.C. and is very cheap. \AA kit cost me $£ 25 . ~ A$ boat is a joy to possess and sometimes a delight to sail. However there are two things which make sailing difficult - bad weather and having to navigate during bad weather. It is much easier in a rough sea to punch a few keys than to use a parallel rule and mental arithmetic. A computer can ask you all the right questions and unerringly give you the correct answers. It is not affected by sea sickness or exhaustion

The following article describes how your 2X81 will aid your navigation and, in average seas, steer your boat. In bad weather, it at least removes the need for mental arithmetic. When sailing into the wind, it can calculate the best course and

by D.I. Heaps Part One

tell you when to tack. The program with this article contains five parts combined into a menu. It is written for use on a 16 k extended ZX81 and is entered as one program. Each part can be used separately on a simple ZX81 with a little rewriting of the program.
The sections are:-
(1) Tides: Averages the tides.
(2) Navigation: Allows for tides and how close the boat will sail into the wind. It will tell you when to tack.
(3) Wind speed and direction: Uses an Input/Output port (I/O port) and simple hardware to tell the wind speed and direction.
(4) Water speed and distance: Uses an VO port and a towed log to tell the speed of the boat and the distance travelled through the water.
(5) Steening: Uses an VO port and purpose-built compass and servos to steer the boat.

By using the Navigation program several times it is possible to optimise your navigation. It removes the guesswork in choosing between a slower, shorter journey close hauled, or a faster but longer one off the wind. A further development would be to use the
constantly available data from the wind speed and direction finder and that from the water \log to enable the computer to adjust the course continually. This would ensure the most economical passage. As you can see there is scope for you to combine your computer and handyman skills to produce either an aid to navigating or a complete self-steering system which will compete with most on the market, but at a fraction of the price.

The Programs

These have been written as a menu of five parts entered as one program. All the parts display a brief description of their function and ask for input when needed. When the program has been entered (loading sign 'IN), press RUN followed by NEWLINE and the television will display a menu with 5 options. Type in the number of the option required followed by NEWLINE and new information screens will be displayed. To return to the menu, press R.

Option 1. Tides.

This program calculates the average strength and angle of the tides over the estimated duration of the voyage. An estimate is made of the time it will take, and the strengths and angles of the tides are entered into the program for every hour. The output gives the averages for the journey which can be used in program 2. It also gives the Eastings and Northings of the accumulated tides which can be of great help if you decide to do some plotting.

Option 2. Navigation

If motoring, this program calculates the course and distance through the water allowing for the tides. If sailing, it will also take into account the wind and properties of your boat. It will tell you if it will be necessary to tack, the courses to sail and distances through the water on each leg of the tack.
Option 3. Wind Speed and Direction.
This program displays on the TV the wind speed and direction. It uses a purpose-built anemometer and wind direction finder, and an V/O port. Wind speed is measured electronically by counting the rate that two small magnets pass a sensor. Wind direction is measured by four sets of Infra Red (IR) emitters and sensors. The signals are sent to the computer which decodes them and displays them on the TV screen.

Option 4. Water Speed and Distance.
This program displays the water speed and distance travelled through the water. It uses an V/O port and a trailed log. The rotation of the propeller on the log is measured by magnets and a small magnetic switch. The on/off signals are counted by two binary counters. A four-bit counter cycles from 0 to 15 and is sampled every cycle of the computer. It then calculates the speed of the boat and displays the result on the TV. An eight-bit counter continually counts the on/off

Figure 1. Block Schematic
signals and is sampled by the computer when required. The signals arriving at the counter are divided by 256 by two dividing circuits so that the equipment will record aver about 30 miles. The displays can be zeroed by pressing the reset button on the computer interface.

Option 5. Steering.

This program steers the boat along a required course. It compares the data from a purpose-built compass with the course which has been entered into the computer. The computer sends instructions to the steering servo interface which instructs the servo to move the tiller. The servo interface knows where the tiller is due to an IR sensor on the tiller servo. The amount of movement of the tiller will be varied according to the amount the boat is off course. When the compass reading and the required course are displayed, the STEER CODE shown is the position code that the computer is sending to the servo interface.

Option 6. Optimiser?

This program is not included but is suggested as a further improvement. It could take the contents of the various program stores and issue amended instructions to the steering servo. It could react to changes in wind speed and direction and adjust the course in much the same way as would a skilled helmsman. It could measure the distance travelled along the first leg of a tack, and when at the tacking point, tack the boat. Of course, most boats would have to be specially fitted with a tacking jib to make this happen properly.

Hardware

The Maplin I/O Port.

The first step is to get data into and out of the computer. The Maplin ZX81 I/O port has 3 ports which can be adjusted in many ways to read or change the environment for the computer. I have arranged for port A to be mainly

Figure 2. Wind Vane
dedicated to the 6 bit compass. It also sends instructions to change the data arriving at port B. Port B normally measures the distance travelled through the water. On instruction from port \bar{A} the data arriving at it is changed to wind speed and direction. The higher part of port C is used to read water speed. The lower part issues the steering instructions to the servo interface.

Measuring Wind Speed and Direction.

This instrument is built from pieces of plastic piping, perspex and brass. Lengths of stainless steel are required for the axles and I used ball bearings for the pivots. Wind Direction is measured by a Wind Vane which is mounted on top of a circular four-bit encoder. Signals are sent to the computer which displays the direction on the TV. The signals are generated by four pairs of infra-red emitters and receivers placed on either side of a circular mask. The mask rotates with the wind vane. See Figure 2.

Two small magnets are mounted on the shaft of an anemometer to measure

Wind Speed. As the anemometer rotates with the speed of the wind, the magnets pass close to a small electronic chip which is sensitive to changes in magnetic fields (Hall effect). The chip switches on at each passage of the magnets. These signals are counted by a four-bit counter which is sampled by the computer. Software is then used to calculate the speed of the wind and display the result. It may be a help to builders to know that I made the cups of the anemometer from the tops of roll-on deodorant containers. These have to be fixed to the ends of the rotating arms with Araldite. See Figure 3. The instrument can be calibrated by multiplying ' N ' in line 3055 of the program by a suitable factor.

Water Speed and Distance Measure-

 ment.The hardware for these measurements consists of a towed \log and two small electronic circuits. The log is made from a rod of plastic about 100 mm long and about 25 mm in diameter. One end is shaped like a bullet. 25 mm is cut off the

Figure 3. Anemometer
Figure 4. Log
other end to make the rotating part. The static bullet shaped part is drilled out to take the towing/signal wire and the shaft for the rotating part. A magnetic switch is located close to the flat end of the static part (Reed switch) and a magnet inserted in the rotating part. The Reed switch is wired through the body of the \log to the towing wire. The bullet end of the log is split in two and then bolted around the towing wire to act as a clamp. All holes are then filled with Araldite. Two vanes are fitted to the rotating part and a small bush is pressed into its centre to aid free rotation. Care must be taken to see that the magnet passes close to the Reed switch when the spinner rotates. See Figure 4. The on/off signals from the log are counted by a four-bit counter as with the wind speed measurer. The computer samples the counter each cycle of the program and displays the speed through the water on the TV. Again the instrument can be calibrated by introducing a multiplyer into the software. The on/off signals from the log are also fed through a signal divider and then to an eight-bit counter. The eight-bit counter is then sampled on demand and the distance from the start of the journey displayed. The software can be used to calibrate the instrument.

Steering.

This part of the project compares the required course with that actually happening and adjusts the tiller accordingly. It requires a compass that the computer can read, a servo to move the tiller and a sensor to tell the computer where the tiller is. The required course can be calculated using program 2. Any allowance for lee-way should be made at this point.

The Compass is a purpose built compass which converts the direction being sailed into six-bit binary numbers. The computer then decodes these numbers, compares them with the required course and issues coded instructions to the steering servo. The construction of the coding part of the compass is similar to that of the wind direction finder. It consists of six pairs of infra red emitters and sensors separated by a mask. The mask is rotated by a compass magnet and has holes in it coded to give compass bearings. See Figure 5.

The tiller is moved by a servo made from a modified windscreen wiper motor. The one I used came from a D registered Mini and has served me well for three years so far. The motor drives a slider in a length of steel channel which in turn moves the tiller through a push rod. The motor moves the slider by a system of pulleys and ropes. See Figure 6. To make the motor rotate in either direction, it was necessary to modify it so that the field winding could be connected to the servo control box separately.

The Tiller Sensor consists of a four-bit infra red emitter and sensor which reads a coded mask to find out where the tiller is. The sensor is moved up and down the mask by the movements of the tiller slider. The mask is fixed so

Figure 5. Compass

that it can be adjusted to allow for bias in the set of the sails or boat steering. The readings from the sensor are fed to a four-bit comparator chip which compares the position of the tiller with that instructed by the computer. If there is a difference between the two then the servo is made to move the tiller to the required position. The movement of the tiller will then change the heading of the boat, which will be noted by the compass and the computer. The computer will then give new instructions to the comparator chip which then goes through the process again. See Figure 7.

Installing the System

The ideal would be to have a television and a keyboard in the cockpit. However, as we are building an 'economy' system, we will have to put up with mounting our $£ 50$ black and white portable TV in the corner of the cabin. A good arrangement would be to build two

EEETVED RTTY CAIAS FURTHER

EFCEIVED FTTTY
信 ROHN AT THE HEEKEND. SINCE SARINGIMG THE NUMEER BE ERL I N, JULY 15 ADN - ERICH HONECKER, GENERAL SECRETARY DF. THE WANA AT THE WEEKEARNIUAL SEASON HAS DPENED IN ELIXSTONE, HAS BEEN CLOSE, SPOKESMAN FOR THE DOCI REPUBLIC STATE COUNCIL CHAIRMAN, HAS CABLED CONDOLENCES TO THE
ORTS TO A THE CLOSURE ON MONDAY OF THE PORT OF DI REPESIDENT OF THE PRESIDENCY OF YUGOSLAUIA, UESELIM DJUKANOUIC, ON
THNOUNTANT PASSENGER PORT TO THE EUKOPEAN MAINLAS THE GRAUE TRAIN DISASTER IN YUGOSLAUIA. THE CAELE EXPRESSES YTI TY
PEDPLE.
ARRIVED HERE ÖN A E A , JULY IE IN ETHIOFIA
 IN THE CALLFORNIAN TON
E 3 HICARAGUAN WOMEN FIRMLY LINKEU THOUSANDS OF TIUCHE 25
M A N A G U A , JULY 15 AD FIRM CONFIDENCE IN THE TEMPESTS IN CHILE TAKE 54 LIUES
SATUROAY REAFFIFMED THEIR FGAINST THE AGGRESS AN S A N T TAG D DE C H I E
REVOLUTION ANO PROTESTE THROUGH THE CITY AND AN CHILE HAVE CLAIMED AT LEAST 54 (54) LULY LIUES IN THE PAST TWELUE DAYS. Y IS AD DISASTER FRISES

 AT THE FRONT, YREY ACUEMENTS.

R

REJOLUTIONARY ACHIE
 Fhallaphin Thu000

Introduction

Home computers are mostly used for games and educational applications, but if you are looking for more than this, computer communications may be the answer. Many of you have probably heard of computers 'talking to each other', using a telephone modem. The major drawback to this system is the expense of running it. Telephone charges can run into pounds, for just a few minutes usage, though obviously this will depend on the distance and the time of the day. Transatlantic hook-ups are, therefore, prohibitively expensive and unless you are very wealthy, out of the question.

An alternative is not to use the telephone network, but use radio communications instead. The advantages are that there are no charges for hooking-up and no distance limitations. There is one slight problem: to use the system for sending data, you must have a licence to use a radio transmitter. However, no licence is required to receive data! This in itself is an interesting and absorbing pastime.

With a modest communications receiver it is possible to receive data transmitted by radio amateurs from all over the world. The short wave bands also abound with commercial stations sending news, weather reports and many other services, 24 hours a day. This system of typed data by radio, referred to as 'radio teletype' or abbreviated to RTTY, has been in use for many years.

by Chris Barlow

RS232 Compatible
\star Fixed or Variable Tone Shifts
\star Receive and Transmit
\star Visual Tuning Aid

* VCO Controlled Filters

[^0]The system uses two audio tones which represent the two logic conditions, high or low, to control a mechanical teleprinter, or an ever increasing number of computer-based VDU systems.

The TUl 000 has been developed for the purpose of demodulating the received audio tones into RS232 logic signals that a home computer, with the necessary software, can display. The TU1000 also offers audio output tones controlled by your computer for transmitting RTTY data.

The History of RTTY

As previously mentioned, RTTY dates back to the beginning of the 20th century and the code used goes back even further. In 1874 a Frenchman, Emile Baudot, formulated a five-unit code to control an electro-mechanical system. In 1903, Donald Murray modified Baudot's code to nun his time division multiplex system which was used by the British Post Office. This code, although modified slightly over the years, is still referred to as the Baudot Code under the auspices of the International Telecommunication Union.

The earliest recorded use of radio teletype was in 1904 during the RussoJapanese war, for military and civilian purposes. The first use of encrypted radio teletype signals was in the two world wars for communicating secret messages between military positions. Encryption, or 'scrambling' of the message, is still in use today for confidential and restricted information by various factions world-wide, although the majority of stations send messages in plain language.

The Baudot Code

The code has five data bits, or elements, so there are only thirty-two possible characters to be interpreted. The alphabet takes twenty-six of the code values, which leaves six for control functions, null or no data, return, linefeed, space, letters and figures. The last two speak for themselves. 'Letters' puts the printer, or VDU into upper case \bar{A} to Z and 'Figures' gives numbers 0 to 9 , fifteen punctuation marks, and the 'bell' command.

If the 'bell' code were sent, on the receiving teleprinter a bell would sound to alert the operator to an incoming message. As you can see, the system does not support lower case as well as numbers and punctuation marks, unlike the majority of home computer displays.
\bar{A} complete list of the Baudot Code, showing letters and figures, plus their decimal and hexadecimal values, is shown in Figure 1. Apart from the five data bits, the system uses 1 start bit and $11 / 2$ stop bits, although, in practice, you can set your RS232 port to 1 or 2 bits, if $11 / 2$ is not available.

The Two-Tone System

As stated in the introduction, RTTY uses two audio tones to represent the logic conditions high or low, commonly September 1984 Maplin Magazine

Circuit Description

The audio tones from the speaker or earphone socket are fed into the TU1000 via a two pin speaker DIN socket. The signal passes through choke CHl and capacitor Cl , to Sl , the speaker on/off switch. The switch, when in the off position, connects the output of the receiver to an 8 ohm resistor to simulate a loudspeaker load. This facility is provided to mute the sound while maintaining the signal to the TU1000. When Sl is pressed in, the signal is fed, via CH 2 and C2, to another two pin speaker DIN socket connecting your loudspeaker or earphone. The reason the incoming and outgoing signals go via the two chokes and capacitors, is to prevent any stray radio frequencies from entering the TU1000, if you use an amateur radio transmitter.

The audio signals passing through the system are tapped off Sl via the passive filter components R2, R3, C3 and C 4 into ICl . ICl, with diodes Dl and D2, amplify the audio signal and limit the output to approximately 1 volt. This stage will provide limiting for an input as low as 10 millivolts. The limiting action is provided in order that the volume setting of the receiver and the fading radio signal are maintained to a constant level within the range of the circuit. At this stage, the frequencies are not separated for mark and space. The splitting of mark and space tones is achieved by feeding the output of the limiter to IC2 (MF10).

The MF10 is a dual switched capacitor filter. It offers two independent filter blocks controlled by a clock generator and, in the mode I have selected, the frequency passed by the filters is 100 times less than the clock frequency. That is, for a filter frequency of 1275 Hz , the clock must run at 127.5 kHz . The passband, or width of the filter, is very narrow because the difference between tones can be as little as 170 Hz . There are two clock frequencies required to drive each filter. These clocks are generated by IC3 and IC4, which are voltage controlled oscillators. IC4's frequency is set by RV5, which is 127.5 kHz . IC3 produces the clock frequencies for the mark filter, by switching in RV1 to RV4, setting the voltage controlled oscillator to $144.5 \mathrm{kHz}, 170 \mathrm{kHz}$ and 212.5 kHz . These are the necessary shifts for 170 Hz , 425 Hz and 850 Hz . RVI, 2 and 3 are preset potentiometers, while RV4 is a front panel potentiometer for the variable shift whose range is from almost 0 up to 1000 Hz . IC's 3 and 4 also provide clock outputs which are required for generating the audio tones needed for transmitting data.

The mark and space tones leaving IC2, on pins 2 and 19, are buffered by IC5, a quad op-amp (3403). The remaining two stages of IC5 perform the task of driving the dual meter M1 that shows the mark and space tone levels. It is necessary to convert the mark and space tones to a DC voltage in order that the meters can display a relative level. This is achieved by D4 and D5 and the voltage produced here is fed to Cl3 and Cl4. The effect of

Figure 1. The Baudot Code

this is to slow down the changes in level over a short period of time to maintain a more stable reading on the meters which are back-illuminated by LPl.

As previously mentioned, the mark and space tones are buffered by two sections of IC5, and are then fed, via S7 (section A), to the discriminator diodes D6 and D7. The function of S7 (A) is to accommodate normal or reversed tones. The discriminator circuit produces DC pulses, positive or negative, depending upon the dominant signal from either filter. The output from the discriminator is connected to IC6 (3403), which forms the active part of a low-pass filter. The signal is then fed to the remaining three sections of IC6, forming the signal balancing circuit. The output from this circuit provides a bias voltage which centres the output level of the low-pass filter to the input of the first part of IC7, a dual op-amp (1458). This section is referred to as the 'Slicer', the function of which is to allow only its output state to change when its input exceeds the pre-set threshold, set by the values of R44 and R45. This circuit prevents low level signals from producing spurious outputs.

The second half of IC7 forms the 'mark hold circuit' which returns the RS232's output negative if a space signal is longer than 150 milliseconds. Normally, this condition will not arise, because even at 45.45 bauds, the maximum space timing element is shorter in duration than 150 milliseconds, ensuring that if a prolonged tone is received, it will not hold the RS232 output high. The output from this stage is monitored by TR2 and TR3, which switch LED 1, or LED 2, on. These LED's indicate the logic state of the RS232 output. LED 1 indicates the mark, or negative output, while LED 2 indicates the space, or positive output. Before the

RS232 output of IC7 is fed to pin 4 of the 5-pin DIN socket, it passes through R50 to limit the current should a short circuit accidentally appear on the RS232 line. Between pin 4 and ground, capacitor C31 has been placed to prevent any RF signals, that may be picked up on the leads connected to the 5 -pin DIN socket, from entering the TU1000. This completes the description of the receiving part of the circuit and we now proceed to the audio tone generator used for transmitting.

If you recall, IC's 3 and 4 provide high frequency clock signal outputs which are now utilised in this part of the circuit to provide audio tones. S , (section B), has the same function as section A, but allows normal or reversed tones to be transmitted. IC8 performs the function of selecting either the mark or the space high frequency clock when TRI is turned on by the RS232 input on pin 1 of the 5 -pin DIN socket. Normally, IC8 passes the mark clock frequency, however, when the RS232 input goes 'high', turning on TRI, IC8 gates the space clock frequen-
cy. The gated output of IC8 is fed to IC9 and ICl0. These two IC's form a frequency 'divide by one hundred' stage which result in frequencies at the two audio tones required for transmitting. The audio tones will be directly related to the tones passed by lC2, the filter, because the same division ratio is used, which makes alignment of the transmit tones automatic, since they must be the same as the receive filter pass tones. In other words, once the receive tones are aligned, the transmit tones will also be aligned.

Before these tones can be fed to a transmitter, it is necessary to convert the square wave output of IC10 into a filtered signal, as a square wave is very rich in harmonics and can lead to a very wide transmitted signal. This is achieved by passing the square wave signal through a low pass filter, ICll. The cut-off frequency is set slightly higher than the maximum audio tone to be generated, and is set by the filter network, C33 and C34, R63 and R64. Although not a pure sine wave, the output is clean enough for transmitting

Figure 3. Transformer mounting
purposes. The level of signal is adjusted by RV6 from almost 0 to 2 volts peak to peak, available at pin 5 of the 5 -pin DIN socket. \bar{A} lower level signal is available at pin 3 which is again adjustable by RV6 from almost 0 to 200 millivolts peak to peak.

Finally, a brief description of the power supply. The transformer has a 15-0-15 volt AC secondary feeding BR1, a bridge rectifier which produces a DC positive and negative supply with respect to 0 volts. It is necessary to regulate both rails to + and -12 volts. This is carried out by regulators REGl (μ A78M12UC) and REG2 (μ A79M12UC), and their associated decoupling capacitors C17 and C18. The only other power requirement in the circuit is for LP1, the lamp behind the meters. This supply is taken from one half of the 15 volt secondary of Tl (15 volts AC).

Construction

The components are mounted on a double-sided PCB and connections are made between the top and bottom tracks by through pins, the positions of which are indicated by the small circles on the board. You must insert the pins through the board, and solder them carefully on each side. It is important that these pins are installed before fitting any other components because some pins will be covered by certain IC sockets. The Veropins will be inserted next in the large circles marked on the board. These are pushed all the way into the board by applying the soldering iron to the head of the pin, and by pushing with a reasonable amount of pressure, the pin will go into the board. The IC sockets are fitted next, and care must be exercised in putting them in, matching the notch at the end of the socket with the printed mark on the legend. Starting with the 8 -pin sockets at locations ICl, IC7, and ICll, then the three 14 -pin sockets, followed by the four 16 -pin sockets and finally the 20 -pin socket. The IC's themselves are not inserted at this stage.

The 2-pin and 5-pin PCB mounted DIN sockets are installed next, making sure that the sockets are pushed tightly against the board. The next item to mount is the mains transformer. Take the solder tag included in the kit and fit the transformer using the 4BA hardware as shown in Figure 3. The secondary outputs from the transformer are then connected to the board in the following way: bend the two outer tags down carefully and solder them to the Veropins located beneath the tags. The two inner tags are connected to the remaining Veropin by using an off-cut from C2l, the mains suppressor capaitor, as shown in the diagram. This capacitor is attached across the primary tags of the transformer. Finally, solder two insulated wires to the 0 and 15 V tags using two wires from the 10 -way ribbon cable.

The next components to be fitted are the voltage regulators, REG1 and REG2. These are installed using the $6 B A$ nuts, bolts and shakeproof washers as per

Figure 4. It is not necessary to use any silicone grease or mica washers for these devices.

The next item to be assembled is the 6 -way switch-bank as shown in Figure 5. In the kit, you may receive a 6 -way latchbracket and a 4 -way latching bar. However, a 6 -way latching bar may be supplied instead. If this is the case carefully cut off two tags to make a 4 -way, and note that if the bar is bent in any way, it may cause the switch assembly to jam.

Figure 4. Fitting regulators

RECETVUED FTTY

YRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYR DE
FGCDX FGCDX FGCDX
PR CNBEL CNBEL TKS DR DM FR CALL, MY
name name Jean pIerre Jean pierre jean pierre
OTH OTH la cQauille la coouille la coouille
(50KM SUD DE LIMOGES, IN SH FRANCE)
UR RST RST RST---599---599---599. FB REPORT. A VOUS CNBEL
DE F $6 C D X$ F $6 C D X$ F $6 C D X$
FS кк̆кккк
DE IBAFK I8QFK IBafk
CQ CO CO DE IBAFK IBQFK IBQFK
CG CO CQ DE IBAFK IBOFK IBAFK
THIS IS IBOFK CALLING AND STANDING BY FOR ANY POSSIBLÉ CALL PSE PSE KKK

CQ CO CO DE I2SFX I2SFX I2SFX (5)
ca Ca Ca DE I2SFX I2SFX I2SFX (4)
ca co Co de I2SFx I25FX I25FX (3)
CO CQ COUSIX $125 F X$ (2)
CQ CQ CO DE I2SFX I2SFX J2SFX (1)

WPATHE BUREAU 737373 GOOD DX GOOD LUCK
TO YOU AND FAMILY AND I HOPE TO MEET YOU AGAIN IN THIS MODE OR OTHER
MODE CIAO TON DE FRANCO IN COMO CITY BYE AND TKS FOR THIS NICE OSO
CIAO PAOLUF PAOLUS PAOLUS DE I2KFW IZKFW JZKFW AR PSE SK SK SKFCO CO CQ CO CO CO ce coce de

FIRING PRACTICE SINCEI6 UNTIL 21 OJULY FROM 0900Z TO 16002 DUAILZ
IN AREA BOUNDED BY :

$4457 \mathrm{~N} 30 \quad 34 \quad$ FECDX F6CDX F6CDX
4544
 $4358 \mathrm{~N} 3128 \mathrm{E} \quad$ FECDX FGCDX FGCDX
AREA TEMPORARILY DANGEROUS
TD NAUIGATION AND AIRCRAFT
FLYGHTS UP TO 2500 METRES.
cacaca ca ca do co ca ca ca co co ca ca ca ca co ca de FSCDX FSCDX FSCOX
ca co ca ca co ca co ca ca ca co co co ca co co ca co de rscox fscox fscox

Received RTMY messages

Figure 5. Switch sub-assembly

At switch position 6, install the leaf spring as shown in Figure 5. Using wire off-cuts from C21, solder two links onto S7. The switch assembly should not be mounted on the board at this stage.

Install the Veropins on the meter $P C B$ in the same manner as the main $P C B$. As you will see from Figure 6, the pins protrude through side one of the board. The lamp is mounted on side two. This board is now fitted to the back of the dual meter by carefully bending the lugs of the meter over the board and soldering in position on one side. The meter assembly is also fitted at a later stage.

Returning to the main PCB, fit the resistors in their respective positions according to the legend and remove any excess wire after they have been soldered into position. The five preset potentiometers are fitted next. They are all of the same value and should be set at the halfway point of travel. The tantalum and the electrolytic capacitors are installed next. Make sure that they are correctly positioned according to their polarity. The remaining capacitors can be installed either way round and are fitted next.

Fit D3, a 10 V zener according to its polarity marking. The remaining diodes are all of the same type (IN4148), and are fitted with the same consideration to polarity. The three transistors can then be fitted by matching the flat on the transistor with the flat on the board and soldering in place. The two RF chokes are mounted immediately behind the two 2 -pin DIN sockets. The two LED's have to be mounted so that they will fit neatly through the holes in the front panel, see Figure 7.

Fit the mains switch, S2, pushing the switch leads into the board as far as they will go. Fit the switch assembly, S1, S3 to S7 in the same manner. Check that each of these switches is operating smoothly. Using Figure 8 as a guide, wire RV4, the 10 k linear pot, using three lengths of wire from the ribbon cable to the three Veropins immediately behind S 6 .

The dual meter assembly is also wired according to Figure 8, using wire from the ribbon cable. Three connections are made from the meter to the three Veropins close to the 5-pin DIN socket and the remaining two 15 V wires from the

Figure 7. Fitting the LED's
September 1984 Maplin Magazine

Figure 6. Meter illumination
mains transformer are connected to the meter board at the points shown in the diagram. This completes the construction of the main PCB, but note that the IC's are not to be inserted yet.

Initial Tests

Visually check the circuit board for the correct installation of the components, unsoldered joints, solder bridges, dry joints, capacitor and diode polarisation, and transistor orientation. Place the PCB on a clean non-conductive surface, with the meter assembly and RV4 clear of the board. Temporarily solder the mains

Figure 8. Wiring

Figure 9. Case layout
cable to the transformer 0 and 240 V tags and the mains earth lead to the solder tag installed on the transformer fixings. Insert a 3A fuse into a mains plug. WARNING!! There will be live mains on the transformer, so please use extreme care.

A voltmeter will be required in the following stages to check the power supplies to the various parts of the circuit. Plug the unit into the mains. At this stage LEDI and 2 will not light, but the meter bulb should. Set the volmmeter to cover a range suitable for 12 V DC, connect the -V lead to Test Point 5 and the +V lead of the meter to Test Point 3, when a reading of between 11.5 V and 12.5 V should be seen. Reconnect the $+V$ lead to Test Point 5 and the -V lead to Test Point 4, when a similar reading should be seen. Connect the -V lead to Test Point 5 and the $+V$ lead to the cathode or banded end of D3. An approximate reading of 10 V should be seen. If the readings you have obtained are within this range, the initial voltage tests are complete.

Disconnect the mains supply from the unit and insert all the IC's. You must be careful to insert these devices according to the notches on the IC and with the markings on the PCB. Check that all the pins are fitted into their respective holes, because they are easily bent under the IC. Reconnect the mains supply and LED1 should light, but not LED2. Repeat the voltage tests from the initial checks once more when you should obtain the same readings for each test as before.

These voltage tests allow us to proceed to the function tests. Set the following controls: SI on (in), S3 on (in), RV4 set half way, and S7 off (out). Connect a piece of insulated wire between pin 5 of the 5 -pin DIN socket and the round pin marked S on SKT l, one 12
of the 2 -pin DIN sockets. The left-hand meter should indicate a full scale deflection and LEDI should remain on. Connect another piece of wire between Test Point 6 and Test Point 3. LEDl and 2 should momentarily change state and the left-hand meter should go from full scale deflection to low, and the right-hand meter should go to full scale. If S7 is switched on (in), the meter conditions will be reversed. Repeat this test for S4, S5 and S6. Remove the wire from Test Points 3 and 6. This completes all the function tests. Disconnect the unit from the mains supply, desolder and remove the mains connections from the transformer and earth tag.

Final Assembly

Referring to Figure 9, drill the holes for the PCB mounting pillars, drill the front and rear holes and cut the window for the meter using the decorative front and rear labels as templates. Thoroughly clean any swarf from the holes, clean the case with detergent and warm water and give all surfaces a thorough going over with methylated spirit. Remove the backing from the decorative front and rear labels and carefully stick them in position.

Stick the rubber feet supplied with the case in place on the base of the case. Carefully scrape away the paint from around the holes in the bottom inside surface of the case. This will provide an earth connection between the PCB and the case via the pillars. The PCB is mounted as shown in Figure 9, using the 6BA hardware from the kit. Strip approximately 5 inches of the outer sleeving from the mains cable provided, and cut off a 3 inch length from the brown wire and discard it. Strip a $1 / 4$ inch length from all of the wires and twist and tin the ends
with solder. Pass the prepared lead through the mains inlet hole and fit the strain relief grommet. Solder the green/ yellow earth lead to the solder tag on the transformer, and the blue 'neutral' wire to S2 (Figure 8). Fit the fuseholder, and solder the brown 'live' wire to the terminal as shown in Figure 8. Locate the 6 inch length of blue and brown mains wire from the kit and complete the wiring according to the diagram. Because all of these connections are directly associated with mains voltages check all of them very carefully before connecting the unit to the mains. Bolt RV4 into position and cut the plastic shaft to fit the knob. Carefully put a coat of impact adhesive to the recessed portion of the meter (M1) and also a suitable area around the inside of the cut-out in the case, following the adhesive maker's instructions. If not already fitted, put the control buttons onto the switches. With the completion of this stage, we can now proceed to the alignment of the unit.

Alignment

There are two basic methods of alignment: with test gear, or tuning around on a radio and adjusting the presets until you can resolve the incoming data. Tuning around is the least accurate method of the two, but you can, in time, obtain quite good results.

Using test gear is much more accurate, and this method is to be preferred if the unit is to be used for transmitting. The only test gear required is a digital frequency counter, the resolution of which must be capable of reading down to at least 100 Hz . Because the frequencies involved are below 1 MHz , even a modest counter is more than adequate.

Connect the test lead of the counter to Test Point 5, ground. The signal input lead of the counter should be connected to Test Point 1 and RV5 adjusted to give a reading of 127.5 kHz . This sets the frequency of the space filter and the space tone output for transmit. Now connect the test lead to Test Point 2 and push in S3, adjusting RV1 to produce a reading of 144.5 kHz . Leaving the leads in this position, press S4 and adjust RV2 for a reading of 170.0 kHz . The last preset shift is set by RV3 and with S5 pushed in, adjust this preset to give a reading of 212.5 kHz . This completes the fixed shifts and if 56 is pressed, the front panel control, RV4, will produce a reading of about 127.5 kHz in the fully anti-clockwise position and about 227.5 kHz in the fully clockwise position. The alignment of the TU1000 is now complete and you may connect it up to a computer and a suitable receiver.

RTTY Software

The software necessary to receive and transmit RTTY data can be as complex as you care to write. Not many RTTY or communication programs have been published in the computer magazines, but the program included in this article is for use with an Atari home computer and the Atari 850 RS232 interface. Due to the large number of Maplin Magazine September 1984

100 CLR :REM R.T.T.Y BY Chris Barlow.

200 REM 850 INTERFACE MODULE RS-232 PORT 1
300 TRAP 10900:CLOSE \#2:OPEN \#2,4,0,"X:"
400 GRAPHICS 0:POKE 710,180:POKE 709,0:POKE 712,180:POKE 559,0 500 SOUND 0,80,10,5
600 REM $\star \star \star$ BAUDOT TO ATASCII SET-UP $* * * *$
700 DIM BA\$(7):DIM ATASCII(64):DIM BAUDOT(128):DIM RT\$(1000):
DIM RP\$(5000)
800 LET RT $\$={ }^{\prime \prime \prime}:$ LET PO $=0:$ LET KEY $=49: L E T$ RP $=1$
900 LET SX2 $=1:$ LET SY2 $=1:$ POKE 82,1
1000 FOR I=1 TO 64:READ DAT:LET ATASCI(I)=DAT:NEXT
1100 REM $\star \star \star \star$ ATASCII TO BAUDOT SET-UP $\star \star \star \star$
1200 FOR I=1 TO 128:READ DAT:LET BAUDOT(I)=DAT:NEXT I
1300 FOR I = 0 TO 33:READ D:POKE 1556+1,D:NEXT I
1400 LOW = PEEK (106) $-8:$ LOWZ $=$ LOW +4
1500 HIGH $=$ PEEK $(106)-4:$ HIGHZ $=$ HIGH +4
1600 POKE 1556+4,LOW:POKE $1556+19$, HIGH
1700 POKE 88,0:POKE 89,HIGH:POKE 106,HIGHZ:PRINT CHR\$(125)
1800 POKE 89,LOW:POKE 106,LOWZ:PRINT CHR\&(125)
1900 POKE 560,20:POKE 561,6
2010 FOR LOOP = 0 TO 17:READ D:POKE 1536+LOOP,D:NEXT LOOP 2020 MAC=USR(1536):POKE 559,34:POKE 712,0
2090 GOSUB 9300
2100 REM $\star \star \star$ RECEIVE $\star \star \star$
2200 LET SHIFT=0
2300 LET SX1 $=1:$ LET SY1 $=3$
2400 REM KEY TEST
2500 IF PEER(53279)=5 THEN GOSUB 4000
2600 IF PEEKK(53279)=3 THEN GOSUB 8900
2700 LF PEEK(764)<255 THEN COSUB 11200
2710 STATUS \#1,A
2800 IF PEEK (741) $=0$ THEN 2400
2900 GET \# 1,RECEIVE:GOSUB 3100
3000 GOTO 2400
3100 LET RECEIVE = ATASCII (RECEIVE-224+SHIFT + 1)
3200 IF RECEIVE <0 THEN RETURN
3300 IF RECEIVE $=0$ THEN SHIFT $=0:$ RETURN
3400 IF RECEIVE $=1$ THEN SHIFT $=32:$ RETURN
3500 POSITION SX1,SY 1:PRINT CHRS(RECEIVE);
3600 LET SX1 = PEEK (85):LET SY1 = PEEX (84)
3700 IF SXI>38 THEN PRINT CHR\$(155);:LET SXl=1:
LET SYl = SYl +1
3800 IF SYl>10 THEN POKE 752,1:POSITION 1,1:PRINT CHR\$(156):
LET SY1=10:POKE 752,0:POSITION SX1,SY1-1:PRINT
3810 LET RP $\$(R P)=$ CHRS $(R E C E I V E): L E T R P=R P+1 / I F R P>4999$
THEN RP $=4999$
3900 RETURN
4000 REM $\star \star \star *$ SEND BUFFER $* * * *$
4100 CLOSE \# 1:OPEN \# 1,8,0,"R1:":LET AL=1
4200 IF LEN(RT\$)<1 THEN 6300
4300 POKE 89,HIGH:POKE 106,HIGHZ:POKE 752,1:POKE 712,21
4310 POSITION 1,1:PRINT " " Wou must enter 38 speces between these quote marks.
4400 POSITION 1,1:PRINT " SEND BUFFER. BAUD RATE ";BA\$
4500 FOR Q $=1$ TO LEN(RT\$)
4600 IF PEEK(53279)=6 THEN 8500:REM START KEY TO RETURN TO RECEIVE.
$4700 \mathrm{KEY}=$ ASC $($ RTS $(\mathrm{Q})): \mathrm{LET}$ OUT $=$ KEY
4800 IF OUT >127 THEN LET OUT $=$ OUT -128
4900 LET OUT $=$ BAUDOT(OUT + 1)
5000 IF OUT $=0$ THEN 4600
5100 F $\mathrm{AL}=1$ THEN 5500
5200 IF OUT < O THEN 5700
5300 LET AL=1:PUT \# 1,31
5400 GOTO 5700
5500 IF OUT >0 THEN 5700
5600 LET AL=0:PUT \# 1,21
5700 PUT \#1,ABS(OUT)
5800 IF OUT $<>8$ THEN 6100
5900 PUT \#1,2:PUTT \#1,31
6000 LET AL=1
6100 NEXT Q:XIO 32,\#1,0,0,"Rl:"
6200 PRINT CHR\$(125):PRINT " BUFFER SENT' KEYBOARD ON
LINE.":POKE 752,0:PRINT :LET SX2=1:LET SY2=3:GOTO 6420
6300 POKE 89,HIGH:POKE 106,HIGHZ:PRINT CHR\$(125):LET SX2=1
LET SY2=3
6400 POKE 752,1:PRINT " SEND. BAUD RATE ";BA\$:POKE 752,0
6420 POKE 712,21
6500 IF PEEK (53279) $=6$ THEN 8500:REM START KEY TO RETURN TO RECEIVE
6600 IF PEEK (764)=255 THEN 6500
6700 GET \# 2,KEY:LET OUT = KEY
6800 IF OUT >127 THEN LET OUT $=$ OUT -128

6900 LET OUT = BAUDOT(OUT + 1)
7000 IF OUT $=0$ THEN 6500
7100 POSITION. SX2,SY2:PRINT CHR (KEY)
7200 LET SX2 = PEEK (85):LET SY2 = PEEK (84)
7300 IF SX2>38 THEN PRINT CHR\$(155);LET SX2 $=1: L E T$ SY2 $=$ SY2 +1
7400 IF SY2>10 THEN POKE 752,1:POSITION 1,1:PRINT CHR\$(156):
LET SY2 = 10:POKE 752,0:POSITION SX2,SY2-1:PRINT
7500 IF $\mathrm{AL}=1$ THEN 7900
7600 IF OUT <0 THEN 8100
7700 LET AL=1:PUT \# 1,31
7800 GOTO 8100
7900 IF OUT >0 THEN 8100
8000 LET AL=0:PUT \#1,21
8100 PUT \# 1,ABS(OUT)
8200 IF OUT $<>8$ THEN 6500
8300 PUT \#1,2:PUT \#1,31
8400 XIO 32, \#1,0,0,"R1:":LET AL=1:GOTO 6500
8500 CLOSE \#1:OPEN \#1,5,0,"R1:":XIO 40, \#1,0,0,"R1:"
8600 PRINT CHR\$(125)
8700 POKE 89,LOW:POKE 106,LOWZ:PRINT CHR\$(125):LET SXI = 1:
LET SY $1=3:$ LET SX2 $=1:$ LET SY2 $=1$:POKE 712,0
8800 PRINT " RECEIVE. BAUD RATE ";BA\$:PRINT :LET PO=0
LET RT\$="":RETURN
8900 REM BAUD RATE 45.5 TO 300
9000 PRINT CHR\$(125):POKE 752,1:PRINT " BAUD RATE 45.5 TO 300 - INPUT 1 TO $8^{\prime \prime}$

9010 PRINT :PRINT " PRESS P FOR PRINT-OUT"
9100 GET \#2,KEY:IF KEY>127 THEN KEY=KEY-128
9105 CLOSE \#1
9110 IF KEY = 80 THEN LPRINT :LPRINT "RECEIVED RTTY":LPRINT : LPRINT RPS:LET RP=1:LET RPS ="'
9200 IF KEY < 49 OR KEY>56 THEN 10200
9300 IF KEY=49 THEN BAS $=$ " 45.5
9400 [F KEY=50 THEN BAS=" 50.0 "
9500 IF KEY=51 THEN BA\$ $=$ " 56.875
9600 IF KEY=52 THEN BAS="75.0"
9700 IF KEY $=53$ THEN BA $\$=" 110.0$ "
9800 IF KEY $=54$ THEN BA $\$=$ " 134.4 "
9900 IF KEY=55 THEN BA\$="150.0"
10000 IF KEY $=56$ THEN BAS $=" 300.0$ "
10100 RATE $=$ KEY -48
10200 BAUD $=48+$ RATE
10300 OPEN \# $1,5,0,{ }^{\prime \prime}$ R1:":REM PORT 1 INPUT ONLY (CONCURRENT MODE)
10400 XIO 36,\#1,BAUD, 0, 'R1:"
10500 XIO 40, \# $, 0,0$, ,'R1:":REM PORT 1 CONCURRENT MODE SET
10600 XIO 38,\#1,32,0,'Rl:":REM NO TRANSLATION
10700 LET SX1 = 1:LET SY $=3$
10800 PRINT CHR\$(125):PRINT " RECEIVE. BAUD RATE ";BA\$
POKE 752,0:PRINT :RETURN
10900 SOUND $0,25,10,10$
11000 POKE 752,1:PRINT :PRINT "< SYSTEM ERROR > ";
11100 LET E=PEEK(195):PRINT E:FOR I=0 TO 300:NEXT I:GOTO 100
$11200 \mathrm{PO}=\mathrm{PO}+1: \mathrm{IF} \mathrm{PO}>1000 \mathrm{THEN} \mathrm{PO}=1000$
11300 GET \#2,KEY:LET RT\$(PO)=CHRS(KEY)
11400 POKE 89,HIGH:POKE 106,HIGHZ
11500 POSITION SX2,SY2:PRINT RT\$(PO);
11600 LET SX2=PEEK(85):LET SY2 = PEEK (84)
11700 IF SX2>38 THEN PRINT CHR\$(155);:LET SX2=1:LET SY2=SY2+ 11800 IF SY2> 10 THEN POKE 752,1:POSITION 1,1:PRINT CHR\$(156)
LET SY2 = 10:POKE 752,0:PÓSITION SX2,SY2-1:PRINT
11900 POKE 89,LOW:POKE 106,LOWZ:RETURN
12000 REM BAUDOT TO ATASCII DATA
12100 DAT'A - 1,69 - 1,65,32,83,73,85,155,68,82,74,78,70,61,75,84,90,76, 87,72,89,80,81,79,66,71,1,71,88,86,0
12200 DATA $-1,51,-1,45,32,39,56,55,155,36,52,39,44,33,58,40,53,34,41$, 50,35,54,48,49,57,63,43, 1,46,47,59,0
12300 REM ATASCII TO BAUDOT DATA
12400 DATA $0,8,0,0,0,0$
12500 DATA $4,-45,-17,-20,-9,0,-26,-11,-15,-18,0,-26,-12,-3$,
$-28,-29,-22,-23,-19,-1,-10,-16,-21,-7$
12600 DATA $-6,-24,-14,-30,0,0,0,-25,0,3,25,14,9,1,45,26,20,6,11,15$ 18,28,12,24,22,23,10,5,16,7,30,19
12700 DATA $29,21,17,0,0,5,0,0,0,3,25,14,9,1,45,26,20,6,11,15,18,28,12,24$
12800 DATA $22,23,10,5,16,7,30,19,29,21,17,0,0,5,0,0$
12900 DATA $112,112,66,0,20,2,2,2$
13000 DATA $2,2,2,2,2,2,2,2$
13100 DATA $48,66,0,0,2,2,2,2$
13200 DATA $2,2,2,2,2,2,2,65,20,6$
13300 DATA 104,169,6,162,6,160,11,32,92
13400 DATA $228,96,169,0,133,17,76,95,228$
microcomputers used in the home, it is not possible, at the moment, to produce a program listing which will run satisfactorily on all machines. This is due to the various BASIC dialects and differing internal structures, such as port addressing and PEEK's and POKE's. It is hoped that sufficient interest will be generated in this article so that more computer systems might run RTTY software. If there is any feedback from this article, programs for other processors may be published in future editions of 'Electronics'. But note that Scarab Systems, 39 Stafford Street, Gillingham, Kent produce a range of suitable software for most of the popular home computers.

In order to help you write your own programs, here are a few guidelines. The program, if intended to be used for transmitting as well as receiving data, must have the ability to select either mode. If you intend to receive only, virtually half of the program may be discarded. As you can see from Figure 1. the decimal value allocated to each character is not the same as the ASCII value. For this reason, the value of one must be translated to the other for received codes as well as transmitted codes. A simple method for achieving this is to set up an array of sixty-four ASCII values, their positions in the array relating to the decimal value of the incoming or outgoing data. For example if the third value in the array was 65, this would represent the letter ' A '. When the 'figures shift' code is received, an additional offset must be added to select the correct position in the array to return the ASCII character codes for numbers and punctuation marks. If the program is written to support transmit facilities, an additional array of 128 values must be set up to convert ASCII values to the correct decimal value representing the outgoing data. The reason for the size of the ASCII array is due to the large number of possible values returned by a typical computer keyboard. Any non-valid key should be converted by the array, to a value of 0 . This will inhibit values outside the range of the five-bit code.

This would be the minimal requirement for an RTTY program, but should really be used as the basis for additional refinements. Such refinements could be a split-screen to enable one, if transmitting, to compose your reply while the incoming message is being displayed on the other half of the screen, or it may be useful, if a printer is available, to add a hard copy option to the program. If you do not possess a printer, another manner of storage is to create a file on cassette, or preferably disc. Another very useful option is to be able to select the baud rate, if your system allows software control of the RS232 parameters. Prerecorded messages and tests (RYR) could be retrieved from cassette or disc another useful feature if you are transmitting. It is also possible that you may require other features to be built into your program. The possibilities are quite large and limited only by one's imagination.

The TUI000 In Use

A receiver that is capable of resolving RTTY signals must have a BFO (beat frequency oscillator), although most communications receivers have a built-in CW or SSB position, and of course an antenna to pick up the signals. The frequencies covered by a modem receiver are typically between 1 and 30 MHz . It is within this range of frequencies that there are literally thousands of RTTY signals. Probably the best antenna to use for simple monitoring is a long wire, as long as possible and as high as possible. If you can orientate it South-West - North-East, so much the better. It is advisable to tune the receiver against a good external ground system, such as a buried bare copper wire, or a ground rod.

The connection to the TUl000 is made through the headphone or loudspeaker socket. Provision has been made
on the TUl000 for muting the sound output by pressing Sl. This switches off the loudspeaker and introduces a 10Ω resistor which acts as a dummy load for the receiver audio circuit. The initial tuning is done by identifying the characteristic sound produced by RTTY transmissions and once this is done the data will be presented on the VDU avoiding the need to sit for hours listening to the tones.

I would recommend that initially you tune into one of the amateur RTTY portions of the band. A good start would be to set the receiver to 14.090 MHz . It is around this frequency that RTTTY signals will be found 24 hours a day, except in the winter when they will tend to disappear around sunset or shortly after. RTTY is easy to identify from the other signals most likely to be found in this portion of the band, namely morse code. RTTY signals have a pronounced warble as one tone is transmitted and then the next. Amateur RTTY transmissions are set at 170 Hz shift between mark and space tones. Using the main tuning control of the receiver, tune across the RTTY transmission and you will notice that the sound of the pitch of the signal will change, the S-meter on the receiver will peak and the twin meters on the TU1000 should also peak together, usually at full scale. At the same time the LED's on the front panel should flash.

Connect the TU1000's RS232 I/O port to your computer system. The normal rate of an amateur RTTY transmission is either 45.45 or 50 bauds. The majority of them are at 45.45 bauds. With this rate set by your system and the software set to receive, the data should now be displayed on the screen. S7 will have to be pressed if the signal is garbled, because the tones may be reversed. If the transmission is idling, the mark tone will cause the meter to peak. Therefore if the right-hand meter is peaked, then the reverse tones are being transmitted and if it is the left-hand needle that is peaked

then the tones are being transmitted in the normal manner. If, after trying these settings, the data is not being resolved, it is likely that the transmission is at 50 baud and again could be normal or reversed. When it is not possible to peak both
meters, it is likely that a shift other than 170 Hz is being used, so try pressing the other fixed tone shift switches, or the variable control RV4.

If you would like to learn more about the subject, I would recommend contacting John Perkins, The British Amateur Radio Teleprinter Group, 5 Ash Keys, Southgate, Crawley, W. Sussex, who would be best able to assist. There are numerous books on the subject and again the secretary of BARTG can supply a list. I can personally recommend 'Guide to RTTY Frequencies' by Oliver P. Ferrell and published by Gilfer Associates Inc.

RITY UNIT TUOOO PARTS LST

RESISTORS: All	0.4W 1\% Metal Film unless sp			IC2	MFIOC	1	(OY350)
R1	10n 3W Wirewound	1	(WloR)	IC3,4	4046BE	2	(QW32K)
R2,5,1,50,66,68,69	1k	7	(M1K)	IC5,6	3403	2	(OH51F)
R3,57,50,61,65	10k	5	(M10K)	IC7	1458C	1	(OH46A)
R4,6,8,9,34,35	100k	6	(M100K)	IC8	4011UBE	1	(QLO4E)
R10,12,13, 15,38,				1C9,10	4017BE	2	(QX09K)
40,42,43,45,48	33k	10	(M33K)				
R11.14,47	470k	3	(M470K)	MISCELHANEOUS			
R16	47 ${ }^{\text {a }}$	1	(M47R)	T1	Min Tr 15V	1	(WB15R)
R17,18	320Ω	2	(M220R)	M1	Dual VU Meter	1	(YQ47B)
R19,20,64	1M	3	(M1M)	LPl	Wire Bulb 12V	1	(WO13P)
R21,22	220k	2	(M220K)	S1-6	Latchswitch 2-pole	6	(FH6TX)
R23,24,54	12k	3	(M12K)	S1	Latchswitch 4-pole	1	(FH68Y)
R25	47S IW Carbon Film	1	(C47R)	FSl	250 mA Fuse 20 mm	1	(WR01B)
826,27	30k	2	(M30K)	SKT1,2	2-pin DIN Skt	2	(YX90X)
R28,31,32	201k	3	(M20K)	SKT3	5-pin DIN Skt	1	(YX91Y)
R29	16k	1	(M16K)		Latchbracket 6-way	1	(FH80B)
R30,36,41	15k	3	(M15E)		Ret Latchbutton Grey	,	(FH62S)
R33	11k	1	(M11K)		Ret Latchbutton Red	1	(FH63T)
R37	390k	1	(M390K)		Rct Latchbutton White	,	(FH64U)
R38	56k	1	(M56K)		Safuseholder 20 mm	1	(RX96E)
R44,46	2 k 2	2	(M2K2)		DIH SkT 8 -pin	,	(BL1TT)
R49,59	4k7	3	(M4K7)		DH Skt 14-pin	3	(BL18U)
R81,65	150k	2	(M150K)		DL Skt 16-pin	4	(BL19V)
R52,58	2k7	2	(M2K7)		DIL Skt $20-\mathrm{pin}$	1	(HOTT)
R53	27 k	1	(M27K)		SR Grommet 6W-1	1	(LR49D)
R58	22k	1	(M32K)		Knob K78	1	(YX03C)
R62,63	8k2	3	(M8K2)		Veropin 2141	1 pkt	(FLO1X)
R67	47k	1	(M47K)		Track Pin	1 pkt	(FL82D)
RV1,2,3,5,6	4k7 Hor S-Min Preset	5	(WR57M)		C6A Mains Cable Black	2 m	(XR03D)
RV4	10k Pot Lin	1	(FW02C)		10 way Ribbon Cable	1 m	(XR06G)
CAPACITORS					Wire 3202 Blue	1 m	(XR33L)
C1, $2,5,31,32,36$,					Wire 3202 Brown	$1 m$	(XR34M)
38	100pF Ceramic	7	(WX56L)		6BA Nut	1 pkt	(BF18U)
C3,4	32 nF Polycarbonate	2	(WW33L)		6BA Shakeproof Washer	1 pkt	(BF26D)
C6,7,8,11,12,26	100 nF Polycarbonate	6	(WW41U)		4BA Bolt $1 / 2^{\prime \prime}$	1 pkt	(BFO3D)
C9,10	$10 \mu \mathrm{~F} 35 \mathrm{~V}$ PC Electrolytic	2	(FF04E)		4BA Nut	1 pkt	(BF1TT)
C13,14	$2 \mu 2 F 63 V$ PC Electrolytic	2	(FFO2C)		4BA Shakeproof Washer	1 pkt	(BF25C)
C15,16	1000 10 F 25 V PC Electrolytic	8	(FF18U)		2BA Washer	1 pkt	(BF30W)
C17,18	220μ F 16V PC Electrolytic	2	(FF13P)		4BA Tag	1 pkt	(BF28F)
C19,20,39-44	100 nF Disc Ceramic	8	(BX03D)		4BA Spacer $1 /{ }^{n}$	1 pkt	(FW30H)
C 21	100 nF IS Cap	1	(FF56L)		TU1000 PC8	, pla	(GB67X)
C22,25	InF Polystyrene 1\%	2	(BX56L)		Meter PCB	,	(GB73Q)
C23,24	10nF Ceramic	2	(WXTT)		Front Panel	1	(FI53H)
C27	330 pF Ceramic	1	(WX62X)		Rear Panel	1	(F]54)
C28,39	$3 \mu 3 F 35 \mathrm{~V}$ Tantalum	2	(WW63T)				
C30	230 nF Polycarbonate	1	(WW45Y)	OPTIONAL			
C33,34	10 nF Polycarbonate	2	(WW29G)		Blue Case 222	1	(XY45Y)
C35	$1 \mu \mathrm{~F}$ 100V PC Electrolytic	1	(FFO1B)		DIN Plug LS	2	(H124B)
C37	0.47 μ F 100V PC Electrolytic	1	(FFOOA)		DIN Plug 5-pin 13 Amp Plug	1	(HH27E) (RW67X)
SEMICONDUCT	ORS				3 Amp Fuse	1	(HO325)
D1,2,4-12	1N4148	11	(QL80B)				
D3	EZY88Cl0	1	(OH14Q)	A complete kit of parts (excluding Optional items) is available. Order As LK53H (TU1000 RTTY Kit) Price £49.95			
LED1,2	Red LED Shape R1	2	(TY45Y)				
TR1,3	BC548	2	(QB73Q)	The following parts used in this project are also available separately, but are not included in our current catalogue.			
TR2	BC212L	1	(QB600)				
BR1	W005	1	(QL37S)	F753H Front Panel Price £1.65			
REGI	μ AT8M12UC	1	(0L29G)				
REG2	μ A79M13UC		(WQ89W)	F754J Rear Panel Price £1.45			
CH1, 2	RF Supp Choke 1A	2	(HWOAE)	GB67X Main PCB Price $£ 7.50$			
[C1,1]	LF361		(WO30H)	GB730 Meter PCB Price $£ 1.75$			

by Mike Wharton Part 3

In this issue we shall continue following the infant subject of electronics as it developed during the last half of the 19th century. The foundations had been laid down by the earlier pioneers, but from this point the rate of development was to increase dramatically as the general tide of scientific advancement pushed forward. During the previous centuries the work had been carried out by a few individuals who had contributed single, but vital, pieces to the emerging 'jig-saw' puzzle of electricity. From now on the modern subject of electronics can be seen to take shape, supported by the many discoveries in the connected areas of physics and chemistry. It was during this period that some of the land-marks were pointed out by the leaders in their field, although it was not until 1897 that J. J. Thomson was able to prove the existence of the electron.

In 1868 Georges Leclanché invented a cell which bears his name, and which was the fore-runner of the modern dry battery. The availability of such a convenient current source made it possible to investigate the effect of passing an electric current through almost anything the scientists could lay their hands on. Passing a current along a wire gives rise to the heating and magnetic effects; passing a current through a solution produces effects which have led to the whole subject of electro-chemistry; and passing a current through a gas at low pressure eventually led to the production of the modern cathode ray tube, or CRT, something which we all look at every day!

HISNRY

Up until this time, nearly all the work had been done by people living in Europe; the only notable exception being the American Benjamin Franklin. However, the name of another American, Joseph Henry, cannot go unmentioned here, since if history had been played a little differently it might have been his name we remember rather than Michael Fara-

Joseph Henry 1797-1878
day's. Henry was born in Albany, the state capital of New York in 1797. He had only the barest of educations, but he was an avid reader. Like his contemporary, Faraday, a chance encounter with a book on science led to him studying seriously for entry to the Albany Academy, where he studied chemistry, anatomy and physiology with the intention of becoming a doctor of medicine. However, in 1825 he gave up the idea of becoming a doctor in favour of a career in engineering. After qualifying, he worked at the Academy for some years as a teacher and was appointed Professor of Mathematics. Six years after this he was made Professor of Natural Philosophy at the University of Princeton, where he taught a range of subjects, from mathematics and physics to astronomy and architecture.

From 1846, and for the remainder of his long life, Henry was the first director of the Smithsonian Institute in Washington. This well-known organisation was

Figure 1. Indactance of Air-cored Solenoid.

founded by James Smithson, the wealthy son of the Duke of Northumberland. From the Smithsonian many other scientific bodies were to emerge, such as the Meteorological Bureau and the National Museum. Henry was also a founder member of the National Academy of Science and, during the American Civil War, was a technical adviser to Abraham Lincoln.

From his early days Henry was interested in electro-magnetism, and he greatly improved the power of his electro-magnets by using insulated wire, rather than just insulating the core. By this means he was able to use many layers of overlapping turns. He made a large electro-magnet for Yale College which was able to raise a load of one ton, a record at that time.

One of his major contributions to the subject of electronics was the discovery of self-inductance. He showed that when a current in a coil of wire changes in strength with time, a weaker current flowing in the opposite direction is produced, which retards the change in the original current. Another important discovery was that a varying current flowing in a coil produced a current in an adjacent coil, which is the basis of the transformer.

The American inventor was mortified when Faraday, who published his work on similar lines in 1831, received all the credit. Henry's other duties of teaching, together with his involvement on numerous committees, had delayed the publication of his own work. He was later given some recognition, and of course his name is remembered in the SI unit of inductance, an honour which was bestowed in 1893, after his death.

Henry also parallelled Faraday by constructing one of the first electric motors, which he regarded simply as a toy! He also designed and operated the first electric telegraph over a distance of a mile, and later used it to collect data for weather forecasts from a number of volunteers scattered around the country. With the help of his brother-in-law he
carried out investigations into sunspots and solar radiation. By using a sensitive thermo-galvanometer he was able to show that sunspots are cooler than the normal surface of the sun. A potentially more significant discovery to the study of electronics was that the discharge from a Leyden jar, which was a primitive form of capacitor, was of an oscillatory nature. Moreover, the oscillations were of a very high frequency, and this was to be of great value to Hertz in his later work on electro-magnetic radiation.

Joseph Henry died in 1878 in Washington DC , and is considered by Americans to be one of their greatest scientists. Many claim that he actually beat Faraday by at least one year in discovering electro-magnetic induction, but that his other work delayed publication of the results. It is quite possible that had he devoted more time to his scientific pursuits and less to committee work he would have been of greater service to American science.

Ernst Werner Von Siemens 1816-1892 STFMENS

Ernst Wemer von Siemens was the eldest of four gifted brothers who were all engineers and inventors. Werner was borm in 1816 at Lenthe in Hanover, Germany. His father was a patriot who believed in the unification of Germany, and so the family moved from the 'Royal Bnitish' province of Hanover to Meuzendorf in Mecklenburg-Strelitz. The young Siemens went to school in Lubeck and then decided to study engineering. His father thought that the Berlin Academy would be too expensive and decided that the Army could provide just as good an education for free! After some difficulty he managed to gain entry to the Prussian Army Engineer Corps, for special permission was needed from the King of Prussia for a 'foreigner' to join the army. He enjoyed the strict discipline of the army, and studied maths, physics and chemistry with great enthusiasm. However, he still managed to get involved in a duel, for which he served a short term in prison.

After a period spent at the Engineers and Antillery School in Berlin he moved to Wittenburg, where he produced his first invention. This was the plating of metal articles with gold and silver. He sold the rights to the process, and then used the money to finance further projects. As he began to make money from his inventions September 1984 Maplin Magazine

Figure 2. Siemens' self-exciting Dynamo, 1861.
he paid for one of his brothers, Karl Wilhelm, to travel to England to develop the market for his electro-plating and other inventions related to electricity. His brother eventually retumed to Germany, but soon made his way back to England, which became his second home. Here he became involved with the manufacturers of iron and steel, and invented the Siemens Open Hearth Furnace. Meanwhile, back in Germany, Werner was busy developing other electrical inventions, such as the Wheatstone dial telegraph in which he introduced automatic make and break circuits, and which was adopted by the German and Russian railways in 1846. In 1847 the world famous firm of Siemens and Halske was founded in Berlin; J.G. Halske was Wemer's brilliant mechanic. The factory made needle telegraphs, sounders for railways and insulated wire. Siemens also turned his attention to the generation of electric power. He developed a generator in which the usual permanent field magnets were replaced by electromagnets, and invented the ' H ' armature. He and his brothers were responsible for a great many inventions. Between them they were involved in the design of the trans-Atlantic cable laying ship 'Faraday', building an electric railway at Portrush in Ireland and the introduction of a telegraphy system throughout Russia; the news from the Crimean War reached St. Petersburg on the longest land-line of the day.

Ernst Werner von Siemens died in 1892 at the age of 76 at Charlottenburg in Germany. He had expenienced the satisfaction of seeing his inventions come to fruition and attaining public acclaim worthy of his great creativeness. Besides other honours bestowed on him and his brothers, Werner also has the honour to have an SI unit named after him. The 'siemen' (S) is the unit of conductance, the inverse of the ohm.

KIIGHIOFF

Gustav Robert Kirchhoff was borm at Königsburg, Prussia, now part of the Soviet Union, in 1824. On leaving school he entered Königsburg University where he studied theoretical physics. After getting his doctorate in 1848, he moved to a teaching post at Berlin University,
where he met the famous Bunsen. Both men then moved to Heidelberg, where they teamed up with Helmholtz. They were so successful that students flocked from all over Germany and abroad to hear their lectures and attend the laboratories. Kirchhoff was particularly interested in the field of spectrum analysis, and with Bunsen, discovered the metals Caesium and Rubidium. It was the almost non-luminous flame of Bunsen's famous burner that made such work possible, and it was oniginally designed for this purpose rather than the one it is usually put to these days in school laboratories.

Gustav Robert Kirchhoff 1824-1881
It is Kirchhoff's early work on electricity for which he is remembered in the form of 'Kirchhoff's Laws'. These describe in a formal manner the fact that the sum of any currents flowing into a junction is zero, and that in a closed circuit the e.m.f. applied is equal to the sum of the products of current and resistance.

An interesting story concerns Kirchhoff's bank manager who, when told by Kirchhoff of the discovery of terrestial metals on the sun remarked "what use is gold on the sun if I can't get it down to earth?". Later, after Queen Victoria had presented him with a medal and a prize in gold sovereigns for his work on the sun's spectrum, he took it to the bank manager and said, "Look, gold from the sun!"

In 1868 he seriously injured his leg and this affected his general health. He returned to Berlin to the Chair of Physics, which was a less arduous job. His health continued to deteriorate and he was forced to retire in 1884. He died in Berlin in 1887 at the age of 63.

William Thomson, Lord Kelvin 1824-1907

ए CORD KGHVN

Lord Kelvin was born William Thomson in Belfast in 1824. His father was Professor of Mathematics, first at Belfast and then at Glasgow University when the family moved to Scotland. His mother died when he was only six, and his father took on the job of educating both him and his brother, James. He must have made a good job of it judging by the results, for William managed to pass the entrance exam to Clasgow University at the incredibly early age of ten. He was a very gifted student, and had produced no less than twelve research papers before he had even graduated. At the age of twenty-two he became Professor of Natural Philosophy at Glasgow and his work was soon known throughout Europe. He produced a llood of research works and, unlike many other scientists, kept his finances in strict order. During his life-time he amassed the sum of $£ 160,000$, a fortune in those days. The success of the Atlantic Telegraph Cable was due largely to his engineering genius. He determined the most suitable method for transmitting the signals, and invented instruments of the highest standard for sending and receiving them. For example he was responsible for the Kelvin bridge, which was used for measuring very low resistance, the Kelvin sounder and the Kelvin compass. He also discovered the 'Kelvin effect', also called the skin effect, where high frequency currents tend to concentrate at the surface of a conductor, a phenomenon which has been of great importance in

Figure 3. Kelvin Bridge (Thomson Double Bridge).
radio and high frequency heating. He also devised Kelvin's Law, which determines the most economical size of conductor for carrying electrical power, taking into account the cost of the cable used and the resistive losses incurred.

Kelvin was also greatly interested in the theory of conservation of energy, and developed the idea of an absolute scale of temperature. Thus he is remembered for the work which he did in this area, rather than that of electricity, and thermodynamic temperature is now expressed in the SI unit of kelvins, (K).

Thomson was knighted in 1866 for his many contributions to science and engineering, and took the title Lord Kelvin of Largs. He died at Netherhall, near Largs in Ayrshire in 1907 at the ripe old age of 83. During his life he had produced 600 scientific papers, taken out 70 patents, received honours from 250 academies and societies around the world, and made a considerable fortune.

James Clerk Maxwell 1831-1879

MAXWIL

James Clerk Maxwell is universally accepted as the greatest theoretical physicist of the nineteenth century. He possesed a wondeful mathematical ability and a complete grasp of physical reality together with a brilliant imagination. Thus he was able to make great advances in science without recourse to any preconceived ideas about the working of nature. Maxwell is mainly remembered in the study of electricity for his mathematical interpretation of Faraday's concept of the electro-magnetic field which had been deduced by his laboratory experiments. In carrying out this task he gave the world the electro-magnetic theory of light which paved the way for the discoveries of Rudolf Hertz 23 years later.

Maxwell was born in Edinburgh in 1831, but spent most of his early life on his parents estate at Middlebie. His mother died when he was eight years old and, like Kelvin, he was brought up by his father. At the age of ten he was sent to Edinburgh Academy where his broad Galloway accent and rather fancy clothes, in which his father had unfortunately dressed him, earned him the nick-name 'Dafty'. The other boys bullied him and he arrived home at the end of his first day bleeding and his clothes in tatters.

He showed no particular ability until he was put onto a course in maths at the
age of thirteen. He then made such swift progress that by the age of fourteen he had won a gold medal in the subject. At sixteen he entered Edinburgh University, where he made such an impression that he was allowed the run of the physics and chemistry labs, and was able to carry out any research in which he was interested. He then entered Trinity College, Cambridge in 1850 and was appointed Professor of Natural Philosophy at Aberdeen in 1856. In 1860 he was appointed Professor of Natural History at King's College, London.

During his time at King's College he carried out a great deal of research work on a variety of subjects, including the kinetic theory of gases and statistical mechanics. His work on electricity yielded the Maxwell bridge for measuring capacitance and inductance and his famous field equations. These formalized the ideas of Gauss, Faraday and Ampère and may be used to derive the theory of electro-magnetic radiation. He was able to predict the possibility of radio waves many years before their existence was shown by Hertz, and thus led the way to all the inventions which were to come in the field of electro-magnetic radiation.

On the death of his father in 1865 he retired from academic life and retumed to the family estate in Scotland, where he devoted himself to research and writing his great treatise on electro-magnetism. In 1871 he was persuaded to accept the Cavendish Professorship at Cambridge, where he designed the new Cavendish Laboratories. He continued to work with unabated enthusiasm until the time of his death, which occured after some stomach trouble, ignored because of the pressure of work. He suddenly became seriously ill and died on November 5th 1879 at the age of 48 .

Heinrich Rudolf Hertz 1857-1894

Heinrich Rudolf Hertz was the son of a successful lawyer, born in the city of Hamburg in Germany in 1857. At school he was particularly fascinated by experiments in optics and mechanics, and attended additional evening classes on engineering and the use of measuring instruments. On leaving school young Rudolf decided to become an engineer and attended the Polytechnic Institute at Munich. After one year, though, he realized that his interest lay in the field of pure science and so moved to Berlin

University to study under the famous trio, Kirchhoff, Bunsen and Helmholtz. Later on he went to Kiel for further study and was then appointed Professor of Physics at Karlsruhe, where he carried out his famous experiments on radio waves. It had been some years previously that Maxwell had put forward his theory that electrical oscillations could produce electro-magnetic waves, and that they would travel at the speed of light. Hertz used a spark coil to generate the electro-magnetic radiation, with large plates attached to each side of the spark gap. When the receiver was positioned close to this 'rransmitter' a feeble spark could be observed in the receiver gap. Hertz then went on to show that the radiation had a wavelength of only 24 cm , the same frequency used nowadays for microwave communication and radar. Moreover, he showed that the radiation behaved in the same manner as light, and could be reflected, refracted and polanised, and that its velocity was the same as that of light, $30,000,000$ metres per second.

The name of Rudolf Hertz has become more prominent since the introduction of the Systeme International d'Unites (SI). Previously the term for the frequency of a periodic vibration was not connected with anyone's name, simply being described as 'cycles per second' or possibly 'vibrations per minute'. However, it is now named in honour of the German physicist who first demonstrated

Figure 4. Maxwell's Field Equations.

Figure 5. Hertz' Experiment.
the transmission of radio waves and thus paved the way for the invention of wireless telegraphy

In 1889 Hertz succeeded Clausius (of thermodynamics fame) as Professor at Bonn, but his career here was short-lived. Five years later, at the age of only 37, he died as a result of blood-poisoning on New Years Day, 1894. Seven years later the Italian engineer Gugleilmo Marconi was successfully to transmit a wireless signal across the Atlantic.

This latter event heralded the enormous advances which were to be made in the 20th century, and next time we shall have a look at those famous names involved during this period.

ZX81 \& YOUR BOAT Continued from page 5.

shelves in the comer, one above the other. The top one would carry the TV whilst the lower one would carry the ZX81 and the interface box. If the shelves were mounted over the chart table, so much the better. Of course, the shelves will have to be strong enough to hold the instruments in a rough sea. The best place for the wind instrument is on top of the mast. However, this will need long leads and make any maintenance very difficult. A 3 metre long pole fixed to the push pit would make life much easier. The instrument could be fixed to the top of this and the leads would be short and access would be easier. The trailer log can be fixed to the push pit by a length of rope in much the normal way. You may need to use a length of shielded wire through the cockpit or past any engine. On a previous model of the log, I found that I was counting the revs. of the engine as well! The positioning and securing of the compass should be considered very carefully. The device does not have a very high resolution but you do want it to give you the best service it can. It must be able to swing freely on its gimbles in all directions. It must not be close to any engines, metal or electronics. This compass doesn't have to be 'read' so it can be mounted safely in a locker out of sight and out of harms way. The tiller servo and follower can be mounted in a cockpit locker. The moving parts must be clear of obstructions. It would be useful if the tiller September 1984 Maplin Magazine

Figure 7. Tiller Follower

follower mask was accessable so that it can be adjusted easily.

Power for the servo and the TV can be taken straight from the boats 12 volt DC supply. (Of course, the TV can be switched off if a display is not required, say during automatic steering.) It is necessary to use a separate power supply for the electronics. The ZX81 and the other circuits can be affected by the 'spikes' in voltage caused by the switching of the relays and the servo motor. The power needed is quite small and an old, but not dead, car battery will give many months of power. In part 2 of this article, I will give the circuitry and the program listing plus some hints on navigation.

《Comppuradrum?

by Robert Penfold

This is a six channel drum synthesiser which is designed specifically for use with a home computer. The computer acts as a sophisticated sequencer, and the unit can be directly driven from the BBC model B, VIC-20, Commodore 64 , Atari 400/600XL/800/800XL, and Memo tech MTX500/512 machines.

It can also be used with machines such as the ZX81 and ZX Spectrum if they are fitted with an extemal input/output port that provides at least six digital outputs. For example, a ZX81 plus the Maplin ZX81 I/O Port would be perfectly suitable. The Computadrum only requires brief trigger pulses from the controller, and it could even be used with a non-computer based control circuit.

The sound generated by the unit is a simple fixed pitch drum sound rather than a falling pitch disco drum sound, but the pitch of each channel is tunable over a reasonably wide range using a preset control. Also, each channel has a resonance control which enables the output sound to be varied from a dull, short duration signal to a rich and resonant sound lasting a few seconds. Each drum has a different central pitch, and together they provide a very wide pitch range. The unit is battery powered and has an output for use with an external amplifier and loudspeaker.

Filfers

Figure 1 shows the unit in block diagram form, and the circuit consists basically of six filters with their outputs combined by an active mixer stage. The output signal from the computer is a short

Figure 1. Block diagram
pulse which gives a 'olick' sound, and each filter is fed from a digital output of the computer. A lowpass filter is used to remove most of the high frequency content on each input pulse to give a lower pitched 'thud' sound, like the initial sound when a drum is struck. A bandpass filter close to oscillation is fed with this signal, which excites the filter giving a short burst of sinewave signal at the output. The signal has a fast attack and slower decay, with the latter being controlled by means of the resonance control.

This gives a straightforward but quite realistic drum sound. The pitch and decay times can be controlled using the preset pitch and resonance controls, and the attack time is controlled by the cut-off
> \star Complote Electronic Drum Kit for Your Homo Compuler
> * Six Variable Pitch Drums
> \star Resonence Control Varies Drum Timbre \star Works With Many Makes of Home Compuler

Figure 2. Twin T Filter
frequency of the lowpass filter. The operating frequency of each lowpass filter is not adjustable, but if desired the attack times can be altered by changing the value of the filter capacitor used in each lowpass filter. Thus, although this is an extremely simple way of generating a drum sound, it does give good control over the sound produced.

The bandpass filters are all based on the twin T arrangement shown in Figure 2 , and the way in which this filter configuration obtained its name will probably be obvious. This passive filter circuit gives a notch of (theoretically) infinite attenuation at a certain frequency (the frequency at which the impedance of C is equal to that of R). This type of filter provides quite a narrow notch of attentuation, with losses of only a few dB being produced slightly 'off-tune'.

Of course, what we require in this application is a sharp bandpass response, which is the exact opposite of what the twin T configuration provides. However, by using a twin T filter in the negative feedback circuit of a reasonably high gain amplifier the required high Q bandpass response is obtained. All that
happens here is that the twin T filter provides a low impedance path at frequencies outside the notch, giving a large amount of negative feedback and little voltage gain. At the notch frequency (and very close to it) the impedance through the twin T network is so high that there is no significant negative feedback, and the amplifier has its open loop voltage gain.

The Circuit

Figure 3 shows the circuit diagram of the Computadrum. The filters are each built around one section of a CMOS 4069BE hex inverter. Although not really intended for use in linear applications, a CMOS inverter will operate as a linear amplifier having a voltage gain of about 34 dB (50 times) if a bias resistor is connected between its input and output terminals. In this case the bias resistance is provided by two resistors in the twin T circuit. The six filters are essentially the same, the only difference being the use of different values in each one so that a different pitch range is covered.

If we consider the filter based on ICla, Cl provides DC blocking at the input while R1 and C2 form the lowpass filter circuit. C4, C5 and RV2 are one of the T networks, and RV2 acts as the resonance control. Using the theoretically correct value in the RV2 position the circuit oscillates at its resonant frequency. This is due to the phase changes that occur through the twin T circuit, giving positive rather than negative feedback at the resonant frequency. RV2 is therefore used to give a somewhat higher resistance which prevents continuous oscillation from being produced. If RV2 is set just below the threshold of oscillation the

Figure 3. Circuit Diagram
September 1984 Maplin Magazine
input pulse will still produce strong oscillations that take several seconds to decay, giving a very resonant drum sound. If, on the other hand, RV2 is well backed off from this point, the filter will have a low Q and the oscillations will rapidly die away, giving a short, well damped drum sound.

The other T network is formed by RV1, R3, R4 and C3. RV1 enables the resonant frequency of the filter to be adjusted, but as only one resistive element of the T network is being varied this inevitably means that adjustment of RVl has some effect on the resonance setting of the filter. Similarly, adjustment of RV2 has a small effect on the operating frequency of the filter. In practice this interaction is too slight to be a major drawback, and it does not result in the unit being difficult to set up ready for use.

IC2 is used in the mixer circuit which is a standard operational amplifier summing mode type. The output from each filter circuit is quite high at a few volts peak to peak, and the mixer circuit has therefore been given less than unity voltage gain to prevent overloading if more than one drum is activated at any one time. The input resistors of the mixer have been given high values so that a high input impedance (about 220 k) is provided at each input. This is essential as an input impedance of several kilohms or less is sufficient to damp the filters to the point where a resonant drum sound cannot be achieved.

Power for the circuit is provided by a 9 volt battery, and the current consumption of the circuit is only about 7 milliamps. IC3 is used to provide a well stabilised supply to the filter circuits, and this is necessary because changes in supply voltage affect the gain of the amplifiers, and therefore the resonance setting. The use of a stabilised supply for the filters ensures that consistent results are obtained, as the battery voltage drops due to ageing.

Construction

Details of the printed circuit board are provided in Figure 4. ICl is a CMOS device, and it should be fitted in a 14 pin DIL IC socket. Leave it in the antistatic packaging and do not fit it into the socket until the board is in other respects finished. Handle the device as little as possible. The only other point to watch when building the board is to make sure that components are inserted in the right positions in the board. There are numerous resistors and physically similar capacitors, which makes it all to easy to produce mistakes. It is advisable to work through the components methodically and carefully, rather than just taking them at random and fitting them onto the board. Use Veropins at points on the board where connections to SK1, JK1, and Sl will eventually be made.

A Verocase measuring about 180 by 120 by 40 millimetres will comfortably accomodate all the components. SKl, JKl, and Sl are mounted on the front panel, as can be seen be refering to the photographs of the prototype. A 7 way DIN

Figure 4. Artwork and wiring
socket is specified for SKI, and this is likely to be the most convenient type to use in practice, but obviously any socket having 7 or more ways will do. Assuming a DIN connector is used, two 6BA $1 / 4$ inch mounting screws plus nuts are required.

Mount the completed printed circuit board on the base panel of the case using 6BA or M3 mounting bolts about 12 22
millimetres long. There are four mounting pillars moulded into the lower section of the case, but these serve no useful purpose in this case, and may in fact get in the way. They can easily be drilled out using a bit of about 8 to 10 millimetres in diameter. Finally, the hard wiring is üdded using ordinary multistrand insulated hook-up wire.

Comnection

The audio output of the unit is coupled to the amplifier (or whatever) using an ordinary screened audio cable fitted with a 3.5 mm jack plug which connects to JKI. Connection to the computer is via a piece of 7 way ribbon cable about 1 metre long, and fitted with a 7 way DIN plug at the end, which Maplin Magazine September 1984
connects to SKl. The connector used at the other end of the lead must obviously be varied to suit the computer used as the sequencer. For a VIC-20 or Commodore 64, a 2 by 12 way 0.156 inch edge connector is required; a 20 way IDC header socket is required for the $B B C$ model B; the Atari machines need two 9 way D sockets; and for the Memotech machines a 14 pin DIL header plug is needed. Figure 5 gives connection details for all these computers. Note that the Memotech computers require a shorting lead from the output strobe terminal (pin 5) to ground (pin 16), to enable the outputs.

With any of the computers, an output pulse to trigger the unit is generated by setting an output line high and then immediately setting it low again. The speed of BASIC is such that a pulse of a few milliseconds in duration will be generated, and this is ideal. With machine code programs the output pulse generated will be too short unless a delay loop is used to suitably extend the pulse.

With the Memotech machine there is no setting up procedure required, and the Computadrum is controlled by writing data to the user port using the OUT $7, \mathrm{X}$ instruction, where X is the value written to the port (e.g. OUT 7,2: OUT 7,0 would trigger channel l).

With the VIC20, Commodore 64, and BBC model B computers the six lines of the user port that are used to control the unit must be set up as outputs. This is done by writing 63 to the data direction register which is at 37138,56579 , and \&FE62 for the VIC20, Commodore 64, and BBC model B respectively. The Computadrum is then controlled by writing data to the user port which is at 37136, 56577, and \&FE60 respectively. Joystick ports 1 and 2 of the Âtari machines are set

Figure 5. Connections to various compaters

10 REM DRUMBEAT PROGRAM 20 REM FOR VIC20
30 REM SETUP
40 DIM ST(20)
50 POKE 37138,63
60 REM MAIN PROGRAM
70 GOSUB 1000:REM INPUT
80 GOSUB 2000:REM PLAYLOOP
90 GOTO 70
1000 PRINT '"‘:REM CLEAR SCREEN
1010 INPUT "NUMBER OF DRUMBEATS";N
1020 FOR $\mathrm{P}=1$ TO $\mathrm{N} * 2$ STEP 2
1030 INPUT "DRUM NO.";ST(P)
1040 INPUT "TIME INTERVAL";D
$1050 \operatorname{ST}(P+1)=D * 50$
1060 NEXT P
1070 RETURN
2000 PRINT:PRINT"PRESS ANY KEY TO STOP"
2010 FOR $P=1$ TO $N \star 2$ STEP 2
2020 POKE 37136,ST(P):POKE 37136,0
2030 FOR DE $=0$ TO ST $(P+1):$ NEXT DE
2040 NEXT P
2050 GET A\$:IF A\$="" THEN 2010
2060 RETURN
For Commodore 64, change to:50 POKE 56579,63
2020 POKE 56577,ST(P):POKE 56577,0

10 REM DRUM CONTROLLER PROGRAM
20 REM FOR ATARI COMPUTERS
30 REM SETUP
40 DIM STORE(20)
50 POKE 54018,56
60 POKE 54016,63
70 GOSUB 1000:REM INPUT ROUTINE
80 GOSUB 2000:REM PLAY ROUTINE
90 GOTO 70
1000 ?CHR\$(125):REM CLEAR SCREEN
1010 PRINT "NUMBER OF DRUMBEATS IN LOOP" 1020 INPUT N
1030 FOR P=1 TO N $\star 2$ STEP 2
1040 PRINT "DRUM";
1050 INPUT DRUM:STORE $(\mathrm{P})=$ DRUM
1060 PRINT "TIME INTERVAL";
1070 INPUT DELAY:STORE $(\mathrm{P}+1)=$ DELAY $\star 50$
1080 NEXT P
1090 RETURN
2000 PRINT: PRINT "PRESS SELECT TO STOP"
2010 FOR P $=1$ TO $\mathrm{N} \star 2$ STEP 2
2020 POKE 54016, STORE (P):POKE 54016,0
2030 FOR $D=0$ TO STORE $(P+1)$:NEXT D
2040 NEXT P
2050 POKE 53279,8:IF PEEK (53279)^5 THEN GOTO 2010
2060 RETURN

10 REM DRUMBEAT PROGRAM
20 REM FOR BBC MODEL B.
30 REM SETUP
40 DIM STORE (20)
50 ?\&FE62=63
60 REM MAIN PROGRAM
70 REPEATT
80 PROCinput
90 PROCloop
100 UNTILL FALSE
1000 DEF PROCinput
1010 CLS
1020 INPUT "Number of drumbeats", N\%
1030 FOR P=1 TO N\% \& 2 STEP 2
1040 INPUT "Drum No.",STORE (P)
1050 INPUT "Time interval", D
1060 STORE $(P+1)=D \star 100$
1070 NEXT P
1080 ENDPROC
2000 DEF PROCloop
2005 PRINT"PRESS ANNY KEY TO STOP":REPEAT
2010 FOR P=1 TO N\% $\downarrow 2$ STEP 2
2020 ?\&FE60=STORE $(P): ? \& F E 60=0$
2030 FOR delay $=0$ TO STORE ($\mathrm{P}+1$):NEXT delay
2040 NEXT P
2045 UNTIL INKEY\$(1) ©""
2050 ENDPROC

0 REM DRUMBEATT PROGRAM
20 REM MTX 500/512 VERSION
30 DIM STORE (20)
40 GOSUB 1000:REM INPUT
50 GOSUB 2000:REM PLAY LOOP
60 GOTO 40
1000 CLS
1010 INPUT "Number of drumbeats?";N
1020 FOR P=1 TO N $\star 2$ STEP 2
1030 INPUT "Drum No.?";STORE (P)
1040 INPUT "Time interval?";DELAY
1050 LET STORE $(P+1)=$ DELAY $\star 50$
1060 NEXT P
1070 RETURN
2000 PRINT: PRINT "PRESS ANY KEY TO STOP"
2010 FOR P=1 TO N $\star 2$
2020 OUT 7,STORE(P): OUT 7,0
2030 FOR D $=0$ TO STORE ($\mathrm{P}+1$): NEXT D 2040 NEXT P
2050 IF INKEY $\$=$ "แ" THEN GOTO 2010
2055 PRINT "OUT OF LOOP"
2060 RETURN
up as outputs using the following routine:

```
POKE 54018,56
POKE 54016,63
POKE 54018,60
```

Data is then written to the outputs at address 54016. When initially testing the unit it is probably best to start with all the presets at about half maximum resistance. Then use a short loop program to repeatedly trigger one channel, and set up the two presets for that channel to give the desired pitch and reasonance. Then repeat this procedure for the other five channels. For those who do not wish to devise their own software the accompanying listings give suggested software for each of the machines mentioned here, and these programs are self explanatory in use.

"Computadrum"

COMPUTADRUM PARTS LIST

R1,6,11,16,21,26	39k	6	(M39K)
R2, 4, 7, $9,12,14,17$,			
19,22,24,27,29	100k	12	(M100\%)
R3,8,13,18,23,28	56k	6	(M56\%)
RS, 10, 15,20,25,30	220k	6	(M220K)
R31,32	27k	2	(M278)
R33	68k	1	(M685)
RV1-12	100k Hor Sub-Min Preset	12	(WR61R)
CAPACITORS			
Cl,7,13,19,25,31	4 $\mu 763 \mathrm{~V}$ PC Electrolytic	6	(FF03D)
C2,37	68 nF Polycarbonate	2	(WW39N)
C3,16,17	15 nF Polycarbonate	3	(WW31])
C4,5	6n8 Polycarbonate	3	(WW2TE)
C6,12,18,34,30,36	$2 \mu 363 \mathrm{~V}$ PC Electrolytic	6	(FFO2C)
C8,33	100nF Polycarbonate	2	(WW410)
C9,22,23	22 nf Polycarbonate	3	(WW33L)
C10,11	10 nF Polycarbonate	2	(WW29G)
Cl4	150 nF Polycarbonate	1	(WW43W)
C15,28,29	33nF Polycarbonate	3	(WW350)
C20,26	220 mF Polycarbonate	2	(WW45Y)
C21,34,35	47nF Polycarbonate	3	(WW37S)
C31,38	100 nF Minidisc	2	(YR75S)
C39	$10 \mu \mathrm{~F} 35 \mathrm{~V}$ PC Electrolytic	1	(FF04E)
C32	330nF Polycarbonate	1	(WW4TB)

SEMICONDUCTORS

1 Cl	40698E	1	(QX25C)
1C2	$\mu \mathrm{A741C}$ (8 pin)	1	(QL23Y)
1 C 3	$\mu \AA 78 L 05 A W C$	1	(OL26D)
MISCELUANEOUS			
SETI	DIN Socket 7 Pin	1	(HIE3TS)
JK1	Jack Socket 3.5 mm	1	(Hㅏ83D)
S1	SPST Ultra-Min Toggle	1	(FH915)
	Printed Circuit Board	1	(G872P)
	Veropin 2148	1 pkt	(Fi248)
	PP3 Clip	1	(HF285)
	DL Socket 14-pin	1	(BL18U)
	DIf Socker 8-pin	1	(BL17T)
	Hook-up Wire	2 m	(BL00A)
OPTIONAL			
	Case Verabox 214	1	(1007H)
	Bott 6BA $1 / 2 \mathrm{inch}$	1 pkt	(BF06G)
	Nut 6BA	1 pit	(BF18U)
	Spacer 6BA V8inch	1 pkt	(FW33L)
	Plug Scr. 3.5 mm	1	(HP81C)
	DIN Plug 7-pin	1	(HH 30 H)

[^1]
K

Hin 1

by Graham Dixey C.Eng., M.I.E.R.E. Part Six

Introduction

The 6522 VIA, which is often associated with the 6502, offers 16 parallel input/output lines plus several control lines which can oversee the transfer of data between the micro and certain peripherals. A basic discussion of this was undertaken in the last article and it is now time to look at further facilities offered by this extremely versatile support chip. We shall start with the 6522's timer facilities.

The 6522 Timers

The 6522 has two timers, designated logically as Timer 1 and Timer 2. They are able to perform either input or output functions. When used on output, a timer will generate a specified single pulse or train of pulses. The duration of the pulse or the number of pulses will be specified by the contents of the timer register. When used on input, a timer will either measure the length of a pulse or count the number of input pulses. The register mentioned above is first cleared in this mode. Whether used as input or output, when dealing with single pulses the timer is said to be in the 'one-shot' mode. However, when handling trains of pulses, the timer is in the 'free-munning' mode.

Figure 1. Use of the ACR to control Timer 1 modes.
Timer 1 has four operating modes which are determined by bits 6 and 7 of the Auxiliary Control Register (ACR). This is shown in Figure 1. Bit 6 determines whether the timer is in single-shot or free-running mode, while bit 7 enables or disables an output on PB7 of Port B. This latter can be used to signal the end of a
timed period when timing out for example. The easiest way to assimilate this is by an application example, which will now be described.

Performing Two Simultaneous Tasks

This is an apt heading in more senses than one since, not only can one show how to make the micro perform two (or more) unrelated tasks but, at the same time, the use of the timer facility can be demonstrated. Let us start by specifying the two tasks:
(i) the micro will generate a squarewave of a specified frequency and mark/space ratio, for outputting to some external device.
(ii) the micro will also continuously monitor data input at a port and process this data.
Taking item (i) first, it was shown in Part Four of this series that square-waves could be generated by successively taking an output line to logical 1, logical 0 , logical l, etc. while interposing a delay loop between these transitions in order to specify the frequency and mark/space ratio. This method does work but has the disadvantage that the micro is 'twiddling its thumbs', so to speak, between said transitions. Why not make it fill in the time with some useful employment? This is exactly what will be done by passing the responsibility for generating the time intervals over to one of the 6522 timers, say Timer 1 . This allows the micro to get

Figure 2. Flow-chart for timer application example.

LDA	\#FO	Initialise Port A: PA0 - 3 as inputs;
STA	DDRA	PA4-7 as outputs (square-wave on PA4).
SEI		Disables $\overline{\text { IRQ. }}$.
LDA	\#C0	Initialise timer: output to PB7 enabled;
STA	ACR	free-running mode selected.
LDA	\#00	Set timer cunt i.e. establish frequency
STA	TlL	of square-wave (markespace ratio is $1: 1$).
LDA	\#02	
STA	TlH	

Table A.
on with some other job while the timer ticks happily away. This 'other job' is, of course, the task specified in (ii) above i.e. data handling at Port A. When the timer 'times out' we just 'interrupt' the data handling program momentarily while the next transition of the square-wave is generated and then retum, hardly knowing that we have been away. If the timer has been put into the free-running mode it will go straight into another timing sequence exactly as before. The result will be a continuous square-wave output and a data-handling program that appears continuous so short are the breaks in it. Bearing all the foregoing in mind, the problem should be formally stated now, in the form of a flow-chart (Figure 2).

The Flow Chart

A flow-chart is not just a pretty picture. It really does help to clarify one's thought processes, get the procedure sorted out, break the program down into separate blocks and, finally, test the likelyhood of the program's success by means of a dry run. In this case, there are five blocks, the first of which is concerned with initialising the ports and timers i.e. establishing their exact roles in the program. In Assembly Code it looks like Table A.

The Timer 1 register is sixteen bits wide, each byte being loaded separately (TlL = low byte; $\mathrm{T} 1 \mathrm{H}=$ high byte). So in this example the initial register value is 0200 and the timer will decrement this value down to zero, at which point it is said to have 'timed out'. Obviously any value from 0000 to FFFF could be loaded into this register, giving a range, in decimal, from 0 to 65535 . The value of 0200 in decimal is 512 and is an arbitrary choice in this case; it gives a square-wave of frequency 500 Hz with a unity mark/ space ratio.

The next block on the flow-chart generates the leading (positive) edge of the square-wave. This it does by loading the Port A. Data Register (DRA) with the

HEX value 10. Write out this number in binary (00010000) to see that it puts a ' 1 ' into the fifth bit position from the right which corresponds to PA4. This is a very short program segment which, in Assembly Code is shown in Table B.

One little trick in the program is to generate the alternate positive and negative edges of the square-wave. This means taking PA4 alternately to the logic 1 and logic 0 levels. It is necessary to note the direction of the last transition in order to know which way it has to go next time. To this end, MEMO is a memory location that holds a ' 1 ' or a ' 0 ' according to the direction of the last transition. This is then consulted before each new transition and updated after it.

At this point, on the first pass through the program, the leading edge of the square-wave would have been generated and the timer would be counting down. It is possible to put the 6502 to work on the main program of data handling while leaving the 6522 to look after the first half-cycle of the square-wave.

Table C shows a program segment using a 'masking' operation (AND\#0F) to get the data input on lines PA0-3. This is then handled by a sub-routine which keeps returning for more data. This it does until 'interrupted'. And that is the important point. It should be appreciated that it doesn't really matter what task the main program is performing. What is being demonstrated is that the micro can occupy itself with some job but can be diverted, momentarily, at the required instant in order to do something else. In this example it is the cessation of the timing period that initiates the interrupt procedure.

Assuming that an interrupt occurs during the main program then this will bring us to the decision diamond on the flow-chart. Was the last character a 1 ? This question is answered in the program segment that follows, (Table D), by the CMP\#01 instruction and the two branches BEQ and BMI. It will be remembered that the CMP\#O1 instruction subtracts 01 from the Accumulator con-
tents (without actually affecting these contents) and conditions flags in the Processor Status Register according to the result. If the Accumulator is first loaded with the contents of MEM0 then, if MEM0 holds a ' 1 ', the result is zero (BEQ branch taken to SEND0), since last transition was positive, this one must be negative. But, if MEMO holds a ' 0 ', this will give a negative result and the BMI branch to SENDI will be taken. Thus MEM0 is consulted, as stated previously, in order to determine the sign of the last transition. See Table D.

We come now to the final program in which PA4 is taken to logic 0 when required and MEM0 is updated to record this fact. This loops back to the main program to continue handling data input as before. See Table E.

Now count the number of lines in the

PC	OPCODE	BYTE 2	BYTE 3	
0020	A9	F0		
0022	8D	03	09	
0025	78			
0026	A9	C0		
0028	$8 D$	$0 B$	09	
$002 B$	A9	00		
$002 D$	$8 D$	04	09	
0030	A9	02		
0032	$8 D$	05	09	
0035	A9	10		
0037	$8 D$	01	09	
$003 A$	85	60		
$003 C$	AD	01	09	
$003 F$	29	$0 F$		
0041	$4 C$	00	03	
0044	A5	60		
0046	C9	01		
0048	F0	02		
$004 A$	30	E9		
$004 C$	A9	00		
004 E	$8 D$	01	09	
0051	85	60		
0053	$4 C$	$3 C$	00	

Table F.

LDA	MEM0	Tests last transition at PA4.
CMP	\#O1	
BEQ	SEND0	Branches to SEND0; makes PA4 logic 0.
BMI	SEND1	Branches to SEND1; makes PA4 logic 1.

Table D.
26
complete Assembly Code program i.e. Tables A to E inclusive: there are 23 all told. Thus, there will be the same number of lines in the Machine Code program. \AA line by line comparison should present no problems and there are no tricks in encoding into machine code. Only four addressing modes are used (all nonindexed): Implied (Inherent); Zero-page; Absolute and Relative. Assigning addresses is a matter for the programmer according to the specific machine in use. Those given in Table F are mainly on zero page, the exceptions being the 6522, which is on page 9 as previously agreed, and the sub-routine for the data handling, which has been located on page 3. The complete machine-code program is shown in Table F.

The data for the branches is computed in the usual way. Just as a reminder, the branch length is always taken from the address 'immediately after' the program line for the branch. Thus for the BEQ instruction, the branch starts at 004A and ends at 004C (2 steps FORWARD), while for the BMI instruction, the branch starts at 004 C and ends at 0035 (23 steps BACKWARDS). Converting these two distances to signed HEX gives: $+2=02$ and $-23=E 9$.

Inferrupts NMI and IRQ

It will be remembered that programming bit 7 of the ACR enabled or disabled an output on PB7 (bit 7 on Port B) and, since this occurs at the end of the timer period, it effectively signals its conclusion. The question is - how can we make use of this facility?

What we want to do is to interrupt the 6502 processor at the end of each timed period in order to generate either the leading or the trailing edge of the square-wave. The 6502 has two intermpt lines, one of which has a lower priority than the other.

The lower priority line is $\overline{\mathrm{IRQ}}$ INTERRUPT REQUEST in full. This line, when taken low, will stop the execution of the program, allowing the processor to complete its current instruction only before initiating an intermpt sequence which diverts it from the main program to do something else; that 'something else' is called INTERRUPT SERVICE ROUTINE (ISR). In the example that we are dealing with the ISR is merely a short piece of program that produces the square-wave transitions at PA4. However, the 6502 will

Figure 3. Role of the ACR in shift register control.
only respond to $\overline{\mathbb{R} Q}$ going low if the 'interrupt flag' in the Processor Status Register is 'clear'. This is achieved with a CLI (Clear Interrupt Mask) instruction. If, however, the SEI (Set Interrupt Mask) instruction has been used then the interrupt flag will be 'set' and the $\overline{\mathrm{IRQ}}$ going low will be ignored. It has been 'masked out', giving priority to calls on the other intermupt line $\overline{\mathrm{NMI}}$ (NonMaskable Interrupt). It is this procedure that assigns the priority in a case where both intermupt lines are in use. In the specific program that we are dealing with we could equally well have used IRQ. However, NMI was chosen in order to introduce the SEI instruction just as if there were another device connected to IRQ.

Now to return to the 'end of timing' signal on PB7. To make use of this we must do two things:
(i) Make an electrical connection from PB7 on Port B of the 6522 to the NMI pin of the 6502
(ii) Tell the 6502 where to find the start address of the Interrupt Service Routine. This is known as the 'intemupt vector'. This intermpt vector is contained in two specific,

Figure 4. 6522 VIA pin-out diagram.
consecutive memory locations (which are machine dependent see user manual). The programmer must remember to load this vector into these two locations at the time that he enters the rest of the program into RAM. For this particular program the ISR starts at location 0044; this is therefore the intermpt vector for this program.
The subject of interrupts will be dealt with in detail in the next article together with the topic of 'stack' operations.

The Shift Register (SR)

This section of the 6522 chip operates as either a parallel - serial (output) or serial - parallel (input) converter. It can be programmed to shift data at a rate determined by one of a number of sources e.g. Timer 2, 02 of the system clock, or an extemal clock. It is also able to output data continuously (free-running mode) under the control of Timer 2. These modes are selected by programming the appropriate pattern of bits into bit positions 2, 3 and 4 of the ACR, as shown in Figure 3. The Shift Register is actually connected to pin CB2 of the 6522 .

To use this register on output the user first loads it with data, which operation initiates the shifting process. At the end of an 8 -bit shift, bit 2 of the Interrupt Flag Register is set, a fact which can be tested by the program. An example of a parallel - serial 'shift out' is given in the Assembly Code segment shown in Table G.

To shift data in serially and then fetch it as an 8 -bit word (parallel input) is similar. The ACR is cleared and initialised to select the mode, which also starts the shifting. A loop is set up to keep testing bit 2 of the IFR to establish when the whole 8 -bit word is in. When bit 2 is set the data word can be stored in memory via the accumulator.

In Assembly Code, a typical serial parallel 'shift-in' program is shown in Table H.

This completes what is, necessarily, a fairly brief survey of the facilities of the 6522. It is evident that it offers a lot of potential in the handling of input and output data, whether in parallel or serial form. Further, the timers allow functions to be performed while the processor is otherwise occupied. Interrupts allow this task to be suspended momentarily. The pin-out for the 6522 is shown in Figure 4.
\square

LDA	$\# 00$	Clear ACR.
STA	ACR	

LDA \#18 Program bits 3 and 4 of the ACR to
STA ACR be 'l's, - shift out under 02 control.
LDA MEMI Fetch data from a memory location.
STA SR Send data to shift register.

AGAN	LDA	\#00	Clear ACR.
	STA	${ }_{\text {ACR }}$	
	LDA	\#08	Program bit 3 of the ACR to be
	STA	ACR	shift in under 02 control
	LDA	IFR	Done for 8 bits? [Tests bit 2 of
	AND	\#04	IFR (SR interrupt flag)].
	BEQ	AGAN	Keep testing.
	LDA	SR	Get data from shitt register.
	STA	MEM2	Store data in memory.

Table H .

25 Simple Indoor and Window Aerials
by E.M. Noll
For the short wave listening enthusiast who may be living in a flat or similar accomodation where the use of extemal aerials is impossible, this book describes how one can install aerials in or around the room, attic, windows, ceiling etc - twenty five different permutations are shown in detail. The book also shows how simple variations can be improved for the best optimum performance. Much information is given on the short wave bands, aerial directivity, time zones, working dimensions etc.
$178 \times 110 \mathrm{~mm}, 70$ pages, illustrated. Order As WM81C (25 Simple Ind Aerial)

Price £1.90NV

Micro Interfacing Circuits Book 1
by R.A.Penfold
It is now perfectly feasible for the average amateur electronics enthusiast to build reasonably simple add-ons for a microcomputer, and transform it into a versatile and sophisticated piece of equipment for measurement or control. This book will help those who, although having some previous knowledge of electronics, are unfamiliar with the 'interfacing jargon'. It describes the basic principles of interfacing circuits to microprocessor equipment, but not just in a purely theoretical manner. The circuits are all practical ones using real devices. Subjects covered include address decoding, parallel and serial interfacing, A to D and D to A converters etc.
$178 \times 110 \mathrm{~mm}, 98$ pages, illustrated.
Order As WM79L (Micro I/Face Ccts)

Price £2.35NV

An Introduction to

Semiconductor Microtechnology
by D.V. Morgan and K. Board Containing everything you ever wanted to know about how a transistor is manufactured. The book provides an introduction to the technology of semiconductors and integrated circuits. The emphasis is on principles, but a real-life design sequence is included, in order to give an insight into real technology. The book is aimed at readers who have no specialist knowledge beforehand, and contains a minimum of mathematics. Should appeal to students of electronic engineering, computer science, physics, and materials science. Contents include the development of semiconductor technology, materials used, photolithography, fabrication, future developments and a host of informative appendices.
$227 x 152 \mathrm{~mm}, 167$ pages, illustrated. Order As WM90X (Intro Semi Microtech) Price £9.55NV

A.s Introduction to Programming the Atari 600/800XL
by R.A. and J.W. Penfold
Learning to program in BASIC might at first appear to be a daunting task, but it can be made much easier if tackled in a sensible way. This book takes the reader, step by step, from the fundamentals of BASIC, on to more advanced topics such as animated graphics, allowing the reader to exploit the Atari's exceptional graphics and sound capabilities. Although it is impossible to cover every aspect of a micro as versatile as the Atari fully, the authors have attempted to complement the manufacturers' information rather than just copy it. Hopefully the reader will be able to write their own programs and progress on to more advanced programming. Chapters include variables and arrays, strings and codes, INPUT, PRINT and DĀTA, sound generator, animation etc. $178 \times 110 \mathrm{~mm}, 116$ pages, illustrated. Order As WM80B (Intro Prog Atan XL)

Price £2.10NV

An Introduction to Simulation Techniques on the Sinclair QL by John Cochrane
You too can make your computer think it's a dog, fly a Jumbo Jet in your living room, find out what the Stock Exchange is going to do tomorrow, or anything else that takes your fancy, with the aid of computer simulation. The author is an experienced consultant engineer and an expert in computer simulations. He shows how you can make the most of the considerable potential of the Sinclair QL, working within its limitations as far as simulation is concemed. The book takes the reader logically through the world of computer simulations, building up knowledge of the techniques used by professionals to produce useful programs to create working electronic models which may, for example, be used to solve a practical problem. $235 \times 155 \mathrm{~mm}, 125$ pages, illustrated.

Order As WM87U (Intro Sim Sinclair)

Price £7.65NV

Microchip Technology

by Charles Kerridge
Basically a history of the silicon microchip, this rather jovial book goes into the design, construction and manufacture of 'chips', touching on such aspects as their chemical structure, and their enormous variety of applications. The author takes us from electricity as a natural phenomenon, to transistors, integrated circuits and their manufacture; and computer peripherals and soft ware. Includes some amusing analogies to illustrate a few basic principles. There is also some speculation on what the silicon chip holds in store for the future! $229 \times 152 \mathrm{~mm}, 176$ pages, illustrated. Order As WM89V (Microchip Technology)

Price £9.62NV

Electronics Servicing

by Rhys Lewis
Part of a series covering the Part II Core Studies syllabus in the City and Guilds Institute course 224, it could nevertheless be a useful reference book of basic electronic principles. The book follows a logical teaching order, components and devices being described in themselves prior to the presentation of actual circuits. The topics covered are LCR circuits, transformers, semiconductor diodes, transistors and other devices, voltage amplifiers, waveform generation and shaping, the cathode ray tube and power supplies. \bar{A} minimum of the essential basic mathematics is included, although physical explanations are used throughout.
$234 \times 156 \mathrm{~mm}$, 142 pages, illustrated. Order As WM86T (Elect Servicing)

Continued on page 36.

The following is a list of all items introduced since our 1984 catalogue, excluding new items in this issue.

BOOKS

WK05F Mastering Visicalc by Douglas Hergert. Price £10.98NV WK06G Hart's Dictionary of BASIC by W.A. Hart. Price £7.25NV WK07H The Spectrum Pocketbook by Trevor Toms. Price £7.95NV WK08J The Spectrum Games Companion by Bob Maunder.

Price £5.95NV
WK09k Mastering CP/M by Alan Miller. Price £13.52NV WKIOL Adventures with Digital Electronics by Tom Duncan.

Price $\mathbf{E A}^{2} .25 \mathrm{NV}$
WKIIM Assembly Language Programming for the BBC Micro by lan Birnbaum.

Price 89.65 NV
WKI2N VIC Innovative Computing by Clifford Ramshaw.

Price 87.10 NV
WK13P Understanding Your Spectrum by Dr lan Logan.
Price £2.95NV Circuits by lan Kampel.

Price £12.20NV
WK15R Programming the BBC Micro by P. Williams.

Price £2.55NV
WK16S Programming Languages for Micros by G. Marshall.

Price $\mathrm{E1.49NV}$
WK17T Programming Microcomputers with Pascal by M. Beer. Price $£ 1.10 \mathrm{NV}$
WK18U Over the Spectrum.
Price 16.95 NV
WRE19V Introducing Spectrum Machine Code by lan Sinclair.

WK20W Programming with Graphics by G. Marshall. Price $£ 6.75 \mathrm{NV}$ WK21X Machine Intelligent Programs for the 16K ZX81 by Charlton, Harrison \& Jones. Price £5.25NV WK22Y Games ZX Computers Play by Tim Hartnell. Price $£ 3.25 \mathrm{NV}$ WM31I Audio Amplifier Construction by Robert Penfold.

Price £2.25NV
WM34M An Introduction to Programming the Dragon 32 by R.A. \& J.W. Penfold. Price £1.95NV
WM38R The Atari Book of Games by James, Gee \& Ewbank. Price $\mathbf{R}^{5.95 N V}$
WM39N Spectrum Adventures by Bridge \& Camell. Price $£ 7.39 \mathrm{NV}$
WM40T Master your ZX Microdrive by Andrew Pennell.

Price $£ 8.20 \mathrm{NV}$
WM4IU Commodore 64 Adventures by Mike Grace. Price $£ 7.53 \mathrm{NV}$
WM42V The Commodore 64 Games Book by Owen Bishop.

Price $£ 6.88 \mathrm{NV}$
WM43W Programming for Education on the BBC Computer by Scotiden \& Hall. Price £7.49NV
WM44X Putting Your BBC Micro to Work by Chris Callender.

Price $£ 5.30 \mathrm{NV}$
WM46A Advanced Programming Techniques for the BBC Micro by McGregor \& Watt.

Price $£ 10.20 \mathrm{NV}$
WM478 The Oric 1 Companion by Bob Maunder. Price £7.66NV
WM48C 40 Educational Games for the Spectrum by Vince Apps.

Price £6.45NV
WM49D 21 Cames for the Electron by James, Gee \& Ewbank. Price $\mathrm{E}_{\mathrm{E}} .35 \mathrm{NV}$
September 1984 Maplin Magazine

WM50E The Aquarius and How to Get Most From It by lan Sinclair.

Price $£ 6.20 \mathrm{NV}$
WM51F Software 64 (Commodore) by Owen Bishop. Price $£ 6.30 \mathrm{NV}$ WM52G Spectrum Interfacing \& Projects by Graham Bishop.

Price $£ 7.63 \mathrm{NV}$
WM53H DIY Robotics and Sensors with the BBC Computer by John Billingsley. Price £1.79NV WM54J Advanced Sound and Graphics for the Dragon Computer by Keith and Steven Brain. Price £10.96NV
WM55K Writing Strategy Games on the Atari Computer by John White. Price 66.95 NV M56L Ādvanced Programming Techniques on the Commodore 64 by David Lawrence.

Price £10.63NV
WM5TM Graphic Art on the Commodore 64 by Boris Allan.

Price 86.85 NV
WM59P Linear Electronic Circuits and Systems by Graham Bishop. Price $£ 8.95 N \mathrm{NV}$
WM600 Mastering Electronics by John Watson. Price £4.35NV WM62S Introducing Dragon Machine Code by Ian Sinclair.

Price £8.95NV
WM63T The Electron Programmer by S.M. Gee \& M. James.

Price E6.95NV
WM64U The Electron Book by J. McGregor \& \AA. Watts.

Price £9.98NV
WM65V Assembly Language Programming on the Electron by John Ferguson \& Tony Shaw.

Price 59.48 NV
WM66W Basic \& Fortran in Parallel by S.J. Wainwright \& A. Grant. Price £2.10NV
WM67X How To Design Electronic Projects by R.A. Penfold.

Price $£ 2.40 \mathrm{NV}$
WM68Y An Introduction to Programming the Acom Electron by R.A. \& J.W. Penfold.

Price $£ 2.10 \mathrm{NV}$
WM69A An Introduction to Programming the BBC Model B by R.A. \& J.W. Penfold.

Price $£ 2.15 \mathrm{NV}$
WM70M Secrets of the Commodore 64 by P. Comes \& A. Cross.

Price $\mathrm{E2.15NV}$
WMZIN The Atan 600XL Program Book by Peter Coode.

Price £6.95NV
WM72P Electronically Speaking: Computer Speech Creation by John P. Cater. Price £13.62NV WM13Q Language of the Dragon by Mike James. Price $£ 8.45 \mathrm{NV}$ WM14R Interfacing Projects for the BBC Micro by Bruce Smith.

Price £1.95NV
WMi5s Master Memory Map for Commodore 64 by Paul Pavelko \& Tim Kelly. \qquad Price £14.45NV WM76H Programming the M68000 by Tim King \& Brian Knight.

Price £10.15NV
WM77J Working with dBase II by M. de Pace. Price £8.95NV WM78K Memotech Computing by lan Sinclair. Price £2.95NV

BOXES

XR78K PVC Beading Section.
Price 25p per metre
CABLE
XR73Q IDC Cable 16-way.
Price 29p per 30 cm XR74R IDC Cable 20-way.

Price 35 p per 30 cm

XR75S IDC Cable 26-way.
Price 45 p per 30 cm
XR76H IDC Cable 34 -way.
Price 58 p per 30 cm
XR27J IDC Cable 40-way.
Price 68p per 30 cm
CAPACITORS
FG15S AMFM Varitune Capacitor.
Price $£ 1.12$
COMPUTERS
YK16H Floppy Disk Album. Price $£ 5.95$ YK82D Computer Disk Cleaner Kit. Price $£ 13.95$
YK83E Computer Cassette Cleaner Kit . Price £11.20
YK8TU Flip ' n ' File Minibox 15.
Price $\mathbf{5} 6.18$
YK88V Flip ' n ' File Keybox 25.
Price $£ 22.95$
YK89W Tape \& Disk Cleaning Fluid,
YK90X Anti-Static Foam Cleaner.
Price $£ 3.25$
YK91Y Anti-Static Screen Cleaner.
Price $\$ 3.99$
YK92A Anti-Static Spray
Price $\mathbf{5 4 . 4 9}$
YK93B Safesolve Cleaning Solvent.
Price $£ 5.75$
YK94C Pressurised Air Duster.
Price $\$ 4.25$
YK95D Anti-Static Polish.
Price 13.25
YK96E Flip ' n ' File Standardbox 50 . Price £16.95
YK97F Flip ' n ' File Minibox 10. Price $\mathbf{\Sigma}^{2} 4.49$
YK98G Data Buds 100. Price $£ 2.15$
YK99H Data Wipes 150. Price $£ 9.60$

CONNECTORS
BK79L 0.156 inch 2×22 Way P.C. Edgecon. Price £3.50 BK84F 18 Way R.A. Minicon Plug. Price 92p
BK85G 18 Way Latch Minicon Plug. Price 84p
BK86T 18 Way Jumper Cable.
Price $\mathrm{EA}_{4} .82$
BK96E 34 Way IDC Socket \& Cable. Price $£ 3.85$
BE97F 2×20 Way P.C. Edgecon. Price $£ 1.60$
BK98G Budget 3-pin XLR Line Plug. Price $£ 1.54$
BK99H Budget 3-pin XLR Line Socket. Price $£ 1.68$ FG76H Budget 3-pin XUR Chassis Plug. Price 95p FG77J Budget 3-pin XLR Chassis Socket. Price 195 p FG18K XLR Type PCB Connector. Price 49p
FJ00A PCB Mono Jack Socket. Price 25p
FJ018 IDC Skt \& $1 / 4 \mathrm{~m}$ Cable 16 -way Price $£ 2.45$ FJ02C IDC Skt \& $1 / 4 \mathrm{~m}$ Cable 20 -way Price $£ 2.65$
FJ03D IDC Skt \& 1/4m Cable 26-way Price $£ 2.98$
FJ04E IDC Skt \& $1 / 4 \mathrm{~m}$ Cable 40 -way. Price $£ 3.95$
FJ05F PCB Stereo Jack Socket. Price 35p
FJ13P IDC PCB Header 16-way. Price $£ 1.40$
F]14Q IDC PCB Header 20-way. Price $£ 1.60$
FJI5R IDC PCB Header 26-way Price 11.80
F]16S IDC PCB Header 34-way Price $£ 2.30$ FJ17T IDC PCB Header 40-way. Price $£ 2.60$ FJ248 BBC Analog Port Cable. Price $£ 5.85$

F]25C BBC 1 MHz Port Cable.
Price $£ 4.99$ FJ26D BBC עO Port Cable.

Price $£ 3.30$
F]27E Flush Master Line Jack Unit 3/4A.
FJ28F Jack Plug 420 Price $£ 1.65$
F]29G 5m Line Cord 4/504.
Price $£ 3.45$
F]30日 Dual Adaptor 10/3A.
Price $£ 5.30$
FJ31J Line Plug Screw Terminal Adaptor. Price 54.15
FJ32K Line Plug/US Socket Adapior Price 54.20
FJ33L Line Plug 4-way 431A.
Price 50p
FJ34M Flush Secondary Line Jack 3/6A. Price 2.05 HF99日 PCB Phono Socket. Price 28p

HARDWARE

BK83E Loudspeaker Clamp Kit.
Price $£ 1.79$
BK87U Snap Rivet (Pack of 10). Price 20p
FG19L Flexible Nylon Handle
Price 19p
HEATHKIT
HG46A Regulated High Voltage Power Supply IP-2717A

Price $£ 239.95$
HP03D Microcomputing Course EC-1000. Price $£ 39.95 \mathrm{NV}$ For Passive Circuit Design Course EE-1001:
BS23A Classroom Text EB-6001.
Price £18.95NV
HS24B Workbook EB-6001-40
Price £12.95NV
HS25C Instructors Guide EB-6001$50 . \quad$ Price £10.15 HS26D Parts Kit EB-6001-30.

Price $£ 15.95$
For Transistor Circuit Design
Course EE-1002:
HS27E Classroom Text EB-6002
Price £20.95NV
HS28F Workbook EB-6002-40.
Price £12.95NV
HS29G Instructors Guide EB-600250. Price £10.75NV ESS30H Parts Kit EB-6002-30

Price $£ 25.95$
HS58N Robot Applications Course EE-1812. Price £114.95 HS59P Microprocessor Applications Course EE-3405. Price $£ 114.95$ HS60Q Battery Life Tester GD-1703. Price $£ 21.95$
HS63T HW-9 ORP Transceiver.
Price 2299.95
HS64U HWA-9 Accessory Band Pk.
Price $£ 49.95$
HS65V EC-1121 MS-DOS Course.
Price £109.95
ES67X Automatic Mode ROM.
Price $£ 39.95$
For Robot Applications Course EE-1812:
HS69A Classroom Text EB-1812.
Price £25.95NV
HS70M Workbook EB-1812-40.
Price £15.95NV
HS71N Instructors Guide EB-1812$50 . \quad$ Price £13.95NV BS72P Parts Kit EB-1812-30.

Price $£ 64.95$
For Microprocessor Applications
Course EE-3405:
HS73Q Classroom Text EB-6405.
Price £23.95NV
HST4R Workbook EB-6405-40.
Price £14.95NV
HS75S Instructors Guide EB-6405-
$50 . \quad$ Price £13.95NV
HS76H Parts Kit EB-6405-30.
Price $£ 64.95$
BS77J Herol Body Only ET-18. Price $£ 899.95$

HS78K Herol Arm Only ET-18-1
Price £399.95
HS79L Herol Voice Orly ET-18-2.
Price 1119.95
HS80B Hero 1 Assembled ETW-18. Price £2199.95

PROJECTS \& MODULES
FJ35Q Front Panel Noise Reduction Unit Mk. II. Price $£ 2.25$
FJ36P Mapmix Front Panel. Price $£ 3.85$
GB26D TTL/RS232 Converter P.C.B. Price 11.62 GB27E ZX81 1K Extendi-RAM P.C.B Price $£ 3.20$
GB32K Latchcard P.C.B. Price £2. 20 GB33L Spectrum ADC P.C.B. Price $£ 2.80$
GB34M Spectrum DAC P.C.B.
Price $£ 2.84$
GB35Q Digi-Tel Expansion P.C.B. Price $£ 25.95$
GB36P Logic Pulser P.C.B.
Price 11.32
GB39N Motherboard for BBC P.C.B. Price $£ 5.40$
GB40T Frequency Mtr Adaptor PCB Price El 1.42 GB4IU VIC 20 Extendiboard P.C.B Price $£ 5.25$ GB43W ZX81 Hi-Res Graphics PCB.

Price 111.99
GB44X Personal Stereo DNL PCB.
Price 11.96
GB45Y Oric Talkback P.C.B. Price $£ 3.62$
GB47B Spectrum Keyboard P.C.B. Price 10.12
GB48C Spectrum robd Corn PCB Price 11.96 GBSOE TDA 7000 Radio P.C.B. Price $£ 1.82$ GB5IF 2.8 kW Power Controller P.C.B. Price £2.38 GB52G Fluorescent Tube Driver P.C.B. Price £1.96

GB54] Auto-Waa P.C.B. Price £1.99
GB5SK Oric Maplin Modem Inter-
face P.C.B.
GBS6L Dragon Extend on P.C.B.
Price $\mathrm{E}_{2} 25$
GB57M Spectrum Easyload P.C.B.
Price $£ 3.62$
GB59P 80 Metre Receiver P.C.B.
Price $£ 2.75$
GB600 Mapmix P. C.B Price $£ 5.35$ GB61R Xenon Tube Driver P.C.B.

Price $£ 2.45$
GB64U Enlarger Exposure Meter P.C.B. Price 99p GB65V Ni-Cad Charger P.C.B.

Price $£ 2.55$
GB66W 8-Channel Fluid Detector P.C.B.

Price $£ 3.10$
GB68Y Servodriver P.C.B.
Price $£ 1.35$
LK16S ZX81 1K Extendi-RAM Kit. Price $£ 8.95$ LK17T TTL/RS232 Converter Kit.

Price $£ 11.95$
LK19V Logic Pulser Kit.
Price 55.95
LK20W Frequency Mr Adaptor Kit. Price $£ 1.95$
LK22Y VIC 20 Extendiboard Kit
Price $£ 29.95$
LK23A ZX81 High Res Graphics Kit. Price $\mathbf{E 2 7 . 5 0}$
LK24B Latchcard Kit. Price $£ 6.95$
LK25C Spectrum DAC Kit
Price $£ 17.95$
LK26D Spectrum ADC Kit. Price $£ 32.95$
LK2TE Personal Stereo DNL Kit Price $£ 8.95$
LK285 Oric Talkback Kit. Price $£ 23.95$
LK29G Spectrum Keyboard Kit. Price £28.50
LK 30 H Spectrum Kb Adaptor Kit. Price ${ }^{6} 6.50$
LK32K TDA 7000 Radio Kit Price £10.95

LK33L Infra-Red Movement Detect or Kit. Price $£ 34.95$ LK 34M 2.8 kW Power Controller Kit Price £18.95 LK35Q Fluorescent Tube Driver Kit Price $ع 8.45$ LK36P Auro-Waa Kit. Price £11.95 LK37S Digi-Tel Expansion Kit.

Price 129.95
LK38R Mk II Noise Reduction Kit.
Price £39.95
LK39N Spectrum Easyload Kit.
Price 19.95
KK40T Onic Maplin Modem Inter face Kit Price $\$ 13.95$ LK41U 80 Metre Receiver Kit.

Price £15.95
LK42V Car Battery Monitor Kit.
Price $\mathrm{E}_{6.95}$
LK43W Noise Gate Kit. Price $£ 9.95$ LK44X Enlarger Exposure Meter
Kit. Price $£ 7.95$
LK45Y Servodriver Kit. Price £9.15
LK46A Xenon Tube Driver Kit
Price 111.25
LK47B BBC Motherboard Kit Price $£ 27.95$
LK48C 8-Channel Fluid Detector Kit Price $£ 12.95$
LK49D Mapmix Kit. Price $£ 29.95$ LKS50E Ni-Cad Charger Kit. Price $£ 19.95$
QY58N 2716/M8. Price $£ 8.50$
QY60Q 2716/M5. Price £10.50
XG35O Spectrum Case. Price $£ 4.95$
XG36P Spectrum Ready-built Key-
board (including adaptor \& case). Price £44.95
xG37S Mk. II Noise Reduction Unit Case. Price $£ 8.95$ XG38R Mapmix Case. Price $£ 8.95$ YK71J Spectrum Reytop Print.

Price 68p
RECORD, TAPE \& VIDEO
FJ06G Video Belts VSK9707. Price 16.95

FT02H Video Belts VSK9806.
Price 12.95
FJ08J Video Belts VSK9876.
Price $£ 7.95$
FJ09K Video Belts VSK9708.
Price $\mathbf{8} 6.95$
FJ10L Video Belts VSK9794. Price 16.95
FJllM Video Belts VSK9605.
Price $\{7.95$
FJ12N Video Belts VSK9635.
Price 17.95
FJ18U Drive Belt NavPan AS8187.
Price 12.85
FJ19V Drive Belt Pioneer AS8189.
Price 12.45
FJ20W Drive Belt Sony AS8195.
Price $£ 2.45$
FJ21X Drive Belt Trio AS8201.
Price $£ 2.45$
FJ22Y Drive Belt Sansui AS8205. Price $£ 2.45$
F]23A Drive Belt Hitachi AS8210.
Price $\mathbf{E} 2.45$
SEMICONDUCTORS

QQ64U BFY90.	Price 95p
QY56L 7581 ADC.	Price $£ 26.95$
QY59P 74LS260.	Price 84p

SOUNDERS \& SPEAKERS
YK84F VDU/Speaker Stand Price $£ 15.95$
YK85G 12V DC 6 inch Dome Bell. Price $£ 9.95$

TEST GEAR
BK78K Carrying Case MC20 Price $\mathbf{E 3 . 3 2}^{2}$

WOUND COMPONENTS
EX17J Trans Coil 3T Blue.
Price $\mathbf{£ 2 . 2 0}$
EX78K Trans Coil 3T Red.
Price $\mathrm{E}_{2} 20$
YK86T Toroidal Transformer 24V/24V. Price £13.95

Before you send your next order to us by post, take a look and see if there's a Maplin shop near you. In our shops you'll find that personal service that even the best mailorder operations cannot match And you can look at the products before you buy. If you're coming for a particular item, a quick phone call will enable you to be certain the shop has everything you want in stock.
Our shops are pleased to accept Access, Barclaycard, American Express and Mapcard, and also cheques up to $£ 50$ with a cheque guarantee card. We'll even accept ordinary money as well!
All our shops are close to excellent parking facilities, meters in London and Manchester, and free elsewhere.

The South

In the South our Southampion store is conveniently placed for easy access from all parts of Hampshire and surrounding counties and is just 15 minutes from Portsmouth (from the M27 junction 6, tum left onto the A335).

London

Our London store situated just to the west of the pedestrian shopping centre in Hammersmith, is just 5 minutes from the end of the M4 and only a short walk from the

Birmingham: Lymon Square, Perry Barr. Tel: 0213567292
London: 159 -161 King Street, Hammersmith W6. Tel: 017480926
Manchester: 8 Oxford Road. Tel: 0612360281.
Sorthampton: 46-48 Bevois Valley Road. Tel: 070325831.
Southend-on-Sea: 282-284 London Road, Westcliff-on-Sea, Essex. Tel: Southend-an-Sea (0702) 554000.

District, Piccadilly and Metropol itan lines' Hammersmith station.

The Midlands

In the Midlands our Birmingham store is just 5 minutes from the M6 on the A34, and only a little farther from the M5 (junction 1) on the A4040

The North

Our self-service store in Marchester serves the North and is just off the Mancunian Way, opposite the BBC, about 5 minutes from the end of the M602 or junction 10 on the M63.

South-East

Essex and Kent are served by our Southend shop which is right on the A13, just 2 minutes before you reach the centre of Southend. And we're only 30 minutes from the M25 (junction 29) as well.

All our shops are open from 9 a.m. to 5.30 p.m. Tuesday to Saturday (closed all day Sunday and Monday) and do not close for lunch.

There's a friendly welcome in store for you at any Maplin shop. Our helpful staff may often be able to help with a technical problem or a constructional difficulty.
Call in at a Maplin store and get what you want today. We look forward to serving you.

1984 CATALOGUE PRICE CHANGES

The price changes shown in this list are valid from 13th August 1984 to 10th November 1984. Prices charged will be those ruling on the day of despatch.

For further details please see 'Prices' on catalogue page 12. The letter in brackets after the price on some items, indicates the minimum trade quantity thus: $\mathrm{A}=5 ; \mathrm{B}=10 ; \mathrm{C}=25 ; \mathrm{D}=50 ; \mathrm{E}=100 ; \mathrm{F}=250$; $G=500 ; H=1000$. For further details see 'Trade Prices' on catalogue page 13.

Price Changes

All items whose prices have changed since the publication of the 1984 catalogue are shown in the list below. Those where the price has changed since the last Price Change Leaflet (dated 14th May 1984) are marked ' \bullet ' after the price. A complete Price List is also available free of charge - order XF08J.

Key
NYA Not yet available.
DIS Discontinued.
TEMP Temporarily unobtainable.
FEB Out of stock; new stock expected in month shown. To be discontinued when stocks are exhausted. NV Indicates that item is zero rated for VAT purposes.

* See 'Amendments To Catalogue'. Note that not all items that require amendments are shown in this list. Please add $£ 6$ carriage if your order contains one or more items marked thus.

TOP TWENTY KITS

THIS LAST		ORDER	KIT	DETAILS IN
MONTH	DESCRIPTION OF KIT	CODE	PRICE	PROJECT BOOK
1. (1)	75W Mosfet Amp Module	LW51F	£15.95	Best of E\&MM
2. (2)	Modem	LW99H	£44.95	5 XA05F
Case also available: YK62S Price £9.95.				
3. (3)	Car Burglar Alarm	LW78K	£7.49	$4 \times$ P04E
4. (5)	Partylite	LW93B	$¢ 9.95$	Best of E\&MM
5. (4)	Spectrum Easyload	LK39N	£9.95	10 XA10L
6. (8)	8W Amp Module	LW36P	£4.45	Catalogue
7. (10)	VIC20/64 RS232 Interface	LK11M	£9.45	$7 \times 1007 \mathrm{H}$
8. (-)	Cautious Ni-Cad Charger	LK50E	£19.95	11 XA11M
9. (6)	Syntom Drum Synthesiser	LW86T	£12.95	Best of E\&MM
10. (12)	Spectrum RS232 Interface	LK21X	¢19.95	8 XA08J
11. (7)	Ultrasonic Intruder Detctor	LW83E	£10.95	$4 \times$ PA04E
12. (9)	Logic Probe	LK13P	¢10.95	8 XA08」
13. (13)	2X81 I/O Port	LW76H	£10.49	4 XA04E
14. (16)	Harmony Generator	LW91Y	£17.95	Best of E\&MM
15. (17)	Guitar Tuner	LWgox	£12.95	Best of E\&MM
16. (20)	Burglar Alarm	LW57M	£49.95	2 XA02C
17. (-)	Keyboard for 2X81	LW72P	£23.95	3 XA03D
Case also available: XG17T £4.95. Complete ready-built: XG22Y £32.50				
18. (19)	80 m Amateur Receiver	LK41U	£15.95	10 XA10L
19. (-)	2X81 Sounds Generator	LW96E	£13.49	5 XA05F
20. $(-)=$	2X81 Talkback	LK01B	£19.95	6 KA06G E\&MM
Over 80 other kits also available. All kits supplied with instructions.				
The descriptions above are necessarily short. Please ensure you know				
exactly what the kit is and what it comprises before ordering, by checking the				

CORRIGENDA

Vol. 1 No. 3
The specification of the 25W MOSFET Amplifier should read:Magnetic pick-up input 2 mV at 68 k ; Tape input 50 mV at 1 k 2 ; Tuner input 50 mV at 1 k 2 ; and Auxiliary input 50 mV at lk 2 . Also note that if you check the +15 V rails on D5 and D6 you should obtain a reading below 30 mV DC between the cases of the four MOSFET's and the chassis.

Vol. 2 No. 6

ZX81 Talkback: If you have a talkback module that suffers from 'slurred speech' when POKEing data from a string or REM line, then two simple component value changes can be made. Change R8 to 47Ω from 1 k and C 7 to $10 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum from a $0.1 \mu F$ Disc ceramic. The $+V$ lead of C7 must connect to pins 2 and 25 of IC5.
Vol. 2 No. 7
ZX81 Modem Interface: Some kits are being supplied with IC3 as
an NEC D8255AC-5 type, in which case a small modification is required to improve access timing. Remove the track pin adjacent to ICl pin 9 (which connects to $\overline{M R E Q}$). Re-connect ICl pin 9 to ICl piri $7(0 \mathrm{~V})$. The MREQ line is left disconnected.

Digital Enlarger Timer/Controller: In the circuit diagram pin 10 of 1 C 2 b should go to +12 V and not 0 V .
Vol. 3 No. 9
TDA 7000 Radio: Improved reception can sometimes be obtained by decreasing the number of turns in Ll to 5 .
Vol. 3 No. 10
Spectrum Easyload: In the circuit diagram, note that R5 and Rl5 are reversed. R5 is the resistor from the base of TRl to $-V$, and R15 is the resistor from the base of TRl to D1/IC3. Note the PCB layout is correct.

1. (3) How to Design \& Make Your Own PCB'S, by R.A. Penfold (WK63T) cat. P40.
2. (2) Power Supply Projects, by R.A. Penfold (XW52G) cat. P41.
3. (10) IC55S Projects, by E.A.Parr (LY04E) cat. P42.
4. (11) Intemational Transistor Equivalents Guide, by Adrian Michaels (WG30H) cat. P36.
5. (7) Understanding Telephone Electronics, by J. Fike and G. Friend (WK4SY) cat. P42.
6. (-) Audio Projects, by F.G. Rayer (WG46A) cat. P44.
7. (9) How to Build Your Own Solid State Oscilloscope, by F.G. Rayer (XW07H) cat. P45.
8. (20) Electronic Synthesiser Projects, by M.K. Berry (XW68Y) cat. P5l.
9. (-) Atari Op-sys Users Manual (Technical Notes), (WA46A) cat. P62.
10. (8) Electronic Security Devices, by R.A. Penfold (RL43W) cat. P43.
11. (1) Remote Control Projects, by Owen Bishop (XW39N) cat. P45.
12. (14) How to Use Op-amps, by E.A. Parr (WA29G) cat. P38.
13. (-) Z80 IC's Data Sheets (4th Edition) (RQ54J) cat. P38.

14. (6) A $Z 80$ Workshop Manual, by E.A. Parr (WA54J) cat. P51.
15. (16) Radio \& Electronics Colour Codes \& Data Chart (RHOSF) cat. P34.
16. (-) How to Make Walkie-Talkies, by F.G. Rayer (RF18U) cat. P47.
17. (-) 68000 Assembly Language Programming, by Kane, Hawkins and Leventhal (WA04E) cat. P56.
18. (-) 30 Solderless Breadboard Projects Book 1, by R.A. Penfold (WA5IF) cat. P35.
19. (-) Towers' Intemational Transistor Selector Update 2, by T.D. Towers (RR39N) cat. P36.
20. (19) How to Build Advanced Shortwave Receivers, by R.A. Penfold (RB26D) cat. P47.

These are our top twenty best selling books based on mail order and shop sales during March, April and May 1984. Our own publications and magazines are not included. We stock nearly 700 different books, covering a wide range of electronics and computing topics. The full selection is shown on pages 33 to 70 of the 1984 catalogue, plus the new books sections in 'Electronics' Volume 3 issues 9,10 and 11, and the new books in this issue.

Continued from page 28.

NEW BOOKS

ZX Spectram Astronomy

by Maurice Gavin
A book aimed at Spectrum owners who wish to expand their computing knowledge to include astronomy. All aspects of the subject are introduced, including starcharts, star systems, tracking the orbit of a planet, satellites etc, plus much more. Great emphasis is placed on the high quality graphics that can be achieved, to display such things as the simulated movement of stars. $234 \times 153 \mathrm{~mm}, 229$ pages, illustrated.
Order As WM84F (Spectrum
Astronomy) Price £7.95NV

Axtificial Intelligence on the Commodore 64
by Keith and Steven Brain An interesting new book which explains Artificial Intelligence from first principles; all the important aspects of the subject are covered and fully illustrated with programs. The book will show you how to implement A.I routines on the Commodore 64 and turn it into an 'intelligent' machine which can converse rationally.
$233 \times 155 \mathrm{~mm}$, 144 pages, illustrated. Order As WM85G (A.I. Commodore 64)

Price £7.65NV

The Commodore 64 Puzzle Book by Brian Boyde-Shaw The book is not about how to make up crossword puzzles or play games of snakes and ladders on the 64, rather it is a teaching system to help the reader learn how to write and enter programs and eventually be able to use the machine with confidence. Ideal for beginners, the 'puzzles' take the form of writing programs to solve problems for which solutions are also provided in case of difficulty or to double-check your progress. By the time you have solved the first few problems you will be
confident that you can write programs that will for example, display text on the screen, just as YOU want it to look, carry out calculations, or play simple games. You will solve these problems and leam BASIC at the same time, and also learn to approach each problem in a logical fashion. Your success in solving a problem is used to reinforce what you already know, so that the next problem is solved more easily. $214 \times 135 \mathrm{~mm}, 130$ pages, illustrated.

Ordey As WM91Y (64 Puzzle

Book)

Price 58.20 NV

READERSHIP SURVEY RESULTS RESULTS RESULTS RESULTS RESULTS

Most opinion polls rely on interviews with a minute cross-section of the population and assume that their responses can be extrapolated to the population as a whole. Usually about one to two thousand people are questioned and the response of twenty to thirty million people predicted from the result. Even with such a small percentage poll, the results can be extraordinarily accurate.

The results of our survey should be even more accurate, since we received 1657 replies, yet wish to use this as a guide to what oniy a little over 200,000 people (our customers) think about us. Before we begin though, let me tell you the winners of our Prize Draw. First out of the hat was Mr. R. Murphy, a student from Boume in Lincolnshire who wins $£ 50$. The second and third prizes of $£ 10$ each went to Mr. A. Raja, a printer from London, and Mr. B. Harrington, an electronics engineer from South Ascot in Berkshire. Now to the actual results.

Nearly two-thirds of our readers are in the age-group 16 to 35 and well over a

third are under 21 . I would have thought that electronics would be a fascinating hobby for those who have retired, so it was disappointing to see such a low audience amongst the over 50's. Perhaps the content of the magazine doesn't appeal to them, (or as is much more likely, all the most enthusiastic, constructors have long since died, welded between the cathode and anode of an 807). Ah, those were the days, when men were men and the power rail would melt the end of your screwdriver if you weren't careful. Nowadays it's all 5 V and CMOS. These youngsters can't remember the excitement of turning on a new project with its lethal voltages buzzing before you; the hairs on the back of the neck tingling and the smell of ozone rising from a bad joint.

We were pretty certain that comput ing would be one of the main interests of our readers, so we were not suprised to see such a large figure here: nearly two-thirds of our readers. Lots of you mentioned security as another interest, but we really meant this area to be covered by "Home", so we've added these together, and still "Audio" just scraped in as second favourite. Fortunately, many people were interested in a wide range of subjects, which means we can please most of the people most of the time with our average content.

The only really sizeable vote for more coverage was for non-computer projects whilst over a third of you also wanted more educational articles and equipment reviews. However, since there was no really large vote for less of anything, this could be a problem

A massive 91% of our readers, regularly build projects and the average project builder builds an astonishing 5.8 projects per year. (We must have been out of stock of something for the sixth one). Only a third of the projects you built were Maplin's, but we were pleased to see that 99% of them worked; 64.6% first time as well. Less than 8 in a thousand of our readers were unsuccessful.

Of those who had built Maplin projects over 98% thought they were at least as good as other magazines' etc. and a very gratifying 64% of you thought they were better.

Another very pleasing result was that over 70% of you read the magazine very thoroughly, and over 97\% keep the magazine for future reference.

We haven't yet finished analysing what you thought of the monthly magazines, so we'll tell you about that in our next issue. And we'll answer some of the more interesting comments (good and bad) then as well.

MAGAZINE CONTENTS

by Chris Barlow

If you own an Atari, VIC20, or Commodore 64, you possess a computer with the ability to accept a light pen input. But if you have ever tried to obtain a readybuilt unit, you will probably have been amazed at the cost even if you found a source at all. This is partly due to the lack of software that the device requires, and the difficulty in manufacturing a reliable piece of hardware. Some manufacturers have attempted to produce such a device, but due to marketing considerations (i.e. cost and potential sales), the resulting hardware leaves a lot to be desired. In this article I present a Light Pen which should cost in components, less than half the price of a commercially available unit, with, in my opinion, a considerably better performance. I have written the article with reference to my own computer, which is an Atari 800 , but I have also tried the Light Pen on a VIC20 and a Commodore 64 and it works perfectly.

Method

To explain how a light pen works, you must first have an idea of how the television picture system is generated. A TV picture is basically constructed from a number of lines produced on the phosphor coating on the inside of the screen. The original TV system in this country used 405 lines, but today 625 lines is used. The phosphor on the screen glows when struck by the high speed electrons given off by the hot cathode wire (gun) in the tube. This is focussed by a magnetic field around the tube to produce a single spot of light on the TV screen. \bar{A} set of electro-magnets called horizontal deflection coils are used to move the spot of light across the screen to produce a horizontal line (X axis). When the spot reaches the right-hand side of the screen, it is deflected back to the left-hand side

for the Atari, VIC20, and Commodore 64

at high speed and during this period the gun is blanked to prevent spurious flyback lines being generated. A vertical deflection coil is slowly moving the spot down the screen as well so that by the time the spot gets back to the left-hand side again it is slightly below its previous
start position and thus ready to draw a new line. The downward scan (Y axis) continues until all 625 lines have been drawn, at which point the beam is made to return to its top left starting position. This is a highly simplified description; in a real TV set the actual procedure is far more complex.

The Light Pen is designed to detect the spot of light which moves over the screen. The computer has the job of determining the X and Y co-ordinates of the spot as it passes the pen. These values are obtained in an Atari from the internal register set of the 'Antic' display processor. Since the position of the light spot on the screen is directly related to the time it took to get there from the beginning of the first scan position, the hardware can determine X and Y values and store them in two hardware registers.

Figure 1. Circuit Diagram

Figure 2. Artwork and Legend

When programming in BASIC, the X and Y values are obtained by PEEKing locations 564 for X and 565 for Y.

The user's software then has to interpret these values in order to obtain screen position related values. The horizontal or X location (564) will return a value of 78 for the extreme left-hand side of the screen, increasing by 1 up to a value of 227 . Then something rather strange happens; the value jumps to 0 and then increments to a final value of 8 for the extreme right-hand side. Although this is a problem, it can be allowed for in the software. The vertical or Y location (565) will return a value of 16 for the extreme top of the display, incrementing by 1 to a value of 111 at the extreme bottom of the display. The values stored at these two locations are updated when any of the four joystick trigger inputs are used.

Circuit

As can be seen in the circuit diagram (Figure 1), there are very few components necessary to obtain a working Light Pen. The most important is the light detector. It must have good sensitivity and fast reaction characteristics. The BPX25 phototransistor meets both requirements at a modest cost. This device is equipped with its own built-in optical lens which is made of glass. This point is worth noting, since, if direct contact is made with the glass of the TV screen, scoring may occur. To prevent this, the BPX25 should be recessed into a plastic tube of some description. To obtain maximum sensitivity and operating speed, it is necessary to bias the base of the transistor. The voltage required is quite small, about 0.5 V . This voltage is adjustable with the 100 k preset (RV1) from 1.2 V down to 0 V . In practice the September 1984 Maplin Magazine
preset wiper position comes out at about half way round its travel. The 1.2 V at the top end of the preset is generated by two silicon diodes in series, and forward biased. The current through the diodes is limited by R1 connected to the +5 V supply taken from pin 7 of the joystick port (PCB pin 5).

When the phototransistor detects a light pulse, the amount of current flowing through it changes. The current through the device is limited by R2 in the collector. These changes in current cause a voltage change at the collector of the phototransistor. The voltage pulses are then coupled by Cl into the base of a BC109C, TR1. This device performs the necessary voltage amplification to obtain TTL logic levels. The final stage of shaping the pulse is left to ICl , a quad 2-input NAND Schmitt trigger, 24LS132. As can be seen, only three of the four gates are used. The final component in the circuit is C 2 , a tantalum bead capacitor across the supply rails to remove any spurious noise on the rails. The output of the final gate is fed to pin 6 of the joystick
port. The ground connection is made from PCB pin 7 to pin 8 on the joystick port.

In the prototype, a push-to-make switch was used as the trigger for the Light Pen. The switch was simply connected between pin 1 and pin 8 of the joystick port. The final construction and choice of housing is left to you, but an old Biro or felt-tip pen case is ideal for the pen itself, and the electronics can be housed in a small plastic box. The cable linking the phototransistor to the circuit board must be screened to prevent stray interference pick-up. The prototype used 4-core overall screened cable. Connection to the joystick port is via a standard D-type 9 -way connector. Please note that if you have one of the Atari XL range of computers, due to the case moulding around the joystick ports, the standard D-range connector supplied in the kit will not fit and will either have to be modified or a suitable substitute found.

Programs

Included in this article are three very

simple programs for the Atari, the first of which is used to set up RV1 in the circuit. In all three programs we have used joystick port l, because the Light Pen's switch controls the value of STICK (0). However, the Light Pen will work in any of the four joystick ports, except on the 400 where it will only work on port 4 , so STICK(3) should be used in the programs in this instance. Program 1 is a simple drawing utility which will produce lines or dots depending on the state of the function keys. Holding Select down will put the drawing program into dot mode and the Option key will clear the screen and reset the starting position to the current pen position. Pressing the Light Pen's own button will produce continuous line drawing. To set a new starting point,
simply place the pen on the screen and press the Select key. To adjust the preset to obtain the correct results simply hold the Light Pen against the screen, press the switch on the Light Pen and move the pen slowly. If the line does not trace the movement, adjust the preset until it does. If you cannot obtain a satisfactory result, try increasing the brightness and contrast controls on your TV. If there is still no response, recheck your soldering and construction.

Program 2 is an example of how a Light Pen can be used for menu-driven software. Position the pen over the number you wish to choose and press the Light Pen switch. If all is well, a tone will be heard and your selection will be shown at the bottom of the screen.

The final program (3) is a very simple musical instrument, in which you can select both volume and pitch. The sound will only be present whilst pressing the light Pen switch. The display on the screen is a matrix of square dots with volume increasing down the screen and pitch increasing across the screen, right to left.

In conclusion I must point out that the programs shown are by no means good examples of what can be achieved, but are adequate for testing purposes and demonstrating the principles behind Light Pen Software implementation When writing your own software, you must bear in mind where the screen is dark, no information can be detected by the Light Pen.

Atari Program 1
10 GRAPHICS 24:COLOR I
$20 X=$ PEEK (564) : $X=X-155+X:$ IF $X<1$ THEN $X=1$
$30 Y=\operatorname{PEEK}(565): Y=Y-30+Y: I F Y>190$ THEN $Y=190$
40 IF PEEK (53279) $=3$ THEN GOSUB 80
50 IF PEEK (53279) = 5 THEN PLOT X,Y
60 IF STICK(0)<>15 THEN DRAWTO X, Y
70 GOTO 20
80 GRAPHICS 24:COLOR I
90 PLOT X, Y:RETURN

Atari Program 2

10 REM MENU
20 GRAPHICS $2+16:$ SETCOLOR 0,0,12:SETCOLOR 4,4,1
30 PRINT \#6;" atari 1"
40 PRINT \#6;" atari 2"
50 PRINT \#6;" ATARI 3"
60 PRINT \#6;" ATARI 4"
70 PRINT \#6;" atari 5"
80 PRINT \#6;" atari 6 "
90 PRINT \#6;" ATARI 7"
100 PRINT \#6;" ATARI 8"
110 PRINT \#6;" atari 9 "
120 PRINT \#6;" atart 10"
130 IF STICK (0) < > 15 THEN 150
140 GOTO 130
150 LET I = PEEK (565)
160 IF I < 18 OR I >94 THEN 150
170 IF $\mathrm{I}=18$ OR I= 19 ORI=20 OR I= 21 ORI= 22 THEN M=1:GOSUB 280
180 IF $\mathrm{I}=26$ OR I=27 ORI=28 ORI=29 ORI=30 THEN M=2:GOSUB 280
190 IF $\mathrm{I}=34$ OR $\mathrm{I}=35$ OR $\mathrm{I}=36$ OR $\mathrm{I}=37$ OR $\mathrm{I}=38$ THEN M=3:GOSUB 280

200 IF $\mathrm{I}=42$ OR I $=43$ OR I $=44$ OR I $=45$ OR I $=46$ THEN M=4:GOSUB 280
210 IF $\mathrm{I}=50$ OR I $=51$ OR $\mathrm{I}=52$ OR $\mathrm{I}=53$ OR $\mathrm{I}=54 \mathrm{THEN}$ M=5:GOSUB 280
220 IF $\mathrm{I}=57$ OR $\mathrm{I}=58$ OR $\mathrm{I}=59$ OR $\mathrm{I}=60$ OR $\mathrm{I}=61$ THEN M=6:GOSUB 280
230 IF $\mathrm{I}=65$ OR I $=66$ OR $\mathrm{I}=67$ OR $\mathrm{I}=68$ OR $\mathrm{I}=69$ THEN M=7:GOSUB 280
240 IF $\mathrm{I}=74$ OR I $=75$ OR I $=76$ OR I $=77$ OR I $=78$ THEN M=8:COSUB 280
250 IF I $=82$ OR I=83 OR I $=84$ OR I $=85$ OR I $=86$ THEN M=9:COSUB 280
260 IF I=90 OR I=91 OR I=92 OR I=93 OR I=94 THEN M $=10$:GOSUB 280
270 GOTO 130
280 IF MM = M THEN RETURN
290 POSITION 4,11:PRINT \#6;"ATARI=";M;"" 300 FOR V $=15$ TO 0 STEP - $1: S O U N D ~ 0, M \star 10,10, V: N E X T$ V:LET MM = M:RETURN

Atari Program 3

10 GRAPHICS 4+16:COLOR 1 20 SETCOLOR 4,2,3:SETCOLOR $0,0,15$
30 FOR Y=0 TO 47 STEP 4
40 FOR X=0 TO 70 STEP 4
50 PLOT X,Y
60 NEXT X:NEXT Y
70 IF STICK (0) < > 15 THEN 90
80 SOUND $0,0,0,0$:GOTO 70
90 SOUND 0,PEEK(564)/3, 10,PEEK(565)/10 100 GOTO 70

PARTS LIST FOR MOHT PEN

MISCEDLANEOUS

Printed Circuit Board	1	(GB74R)
Veropin 2145	1 plat	(FL34B)
Cable Multi-Core 4-Way	2 m	(XR25C)
Verobox 301	1	(Ll2N)
D-Range Socker θ-way	1	(RK61R)
D-Range Cover 9-way	1	(RR62S)
Bolt 6BA thinch	1 pkt	(BF06G)
Nut GBA	1 pkt	(BF18U)
Shakeprool Washer 6BA	1 pkt	(BF26D)
Spacer 6BA Wuinch	1 pkt	(FW33L)
Grommet Small	2	(FW59P)

A complete kit of parts is available.
Order As LK51F (Light Pen Kit) Price $£ 10.95$
The Printed Circuit Board in this project is also available separately. Order As GB74R Light Pen PCB Price $£ 1.25$

by Mike Wharton

A Beginner's Guide To Logic Design.

CMOS Devices

As mentioned in the last article, there is available a range of logic devices based on a different type of technology from that of TTL devices. TTL chips have resulted from developments in bipolar transistors, that is the common or garden type like the ubiquitous BC109 and its ilk. The term bipolar is used to describe the manner in which the electrical current is carried through the transistor, which is by two charge carriers called electrons and 'holes'. The electron we are all familiar with, in a manner of speaking, being the basic particle carrying a unit negative charge; a 'hole', on the other hand, is simply the absence of an electron within the crystal structure of the semi-conductor material. It is really beyond the scope of this series of articles to delve further into the theory of semi-conductor action, but suffice to say that this type of device has certain electrical features which have been used to advantage in TTL devices.

Many readers will be quite aware that besides bipolar transistors there are the so-called FET's or Field Effect Transistors. In these devices the charge is carried only by electrons, there being no involvement with 'holes'. FET's have been developed along different lines to give several families, from Junction Gate FET's, (UGFET's) to Insulated Gate FET's, (IGFET's). A widely used member of this last family is the MOSFET, or Metal Oxide Semi-conductor FET, and it is distantly related cousins of these that form the basis of the Complementary Metal Oxide Semi-conductor, or CMOS, logic devices. Figure 1 shows how CMOS transistors are fabricated on the surface of a silicon chip, whilst Figures 2a and 2 b give an indication of the internal circuitry of typical CMOS and TTL devices.

As mentioned last time, there are a variety of advantages and disadvantages associated with both kinds of device, but it seems that many of the disadvantages with the CMOS variety are rapidly being overcome and they are poised to become September 1984 Maplin Magazine

Figure 1. Conventional Metal Gate CMOS Structure.
the major type of logic element. Briefly, their most serious problem has been the low speed of operation as compared with TTL devices, but this may be off-set by their much reduced power consumption and wider operating voltage. For CMOS devices the supply positive is connected to Vdd (drain voltage), and supply negative to Vss (source voltage). The negative is connected to source since it can be regarded as the 'source' of negatively charged electrons. Practically all CMOS devices will tolerate a range of supply voltages from 3 to 15 volts, and hence may be operated quite happily from a standard TTL supply of 5 volts. If any difficulties are experienced, though, then it may be necessary to increase the supply to 9 volts or so.

Figure 2a. CMOS 2-input NOR Gate.

Many of the logic elements available in TTL have direct equivalents in CMOS, indeed, some are even pin compatible replacements. A glance through the appropriate pages of the Maplin catalogue will give a very good idea of the range of devices commonly available along with their respective pinouts. Pretty well all of the circuits given so far in this series can be implemented using CMOS devices, and Figure 3 shows one of the earlier ideas but using a CMOS chip, the 4520. Because of the larger scales of integration possible with CMOS, this actually contains two four-bit binary counters within the 16 -pin package, and the internal arrangement is a little different from the 7493 which was used in the original design.

Figure 2b. TTL 3 -input NAND Gate.

Figure 3. 4520 Dual 4-bit Binary Counter.

Beware of Static!

This point is perhaps a convenient one at which to mention one of the problems of using CMOS devices which is never encountered with TTIL, that of sensitivity to static discharges. One may inadvertantly destroy a CMOS device by careless handling even before it is put into the circuit. The reason for this is due to the nature of the input to this type of device; the layer of insulating silicon dioxide, shown in Figure 1, is extremely thin, typically only a few microns thick. It is very easy to generate high static charges due to friction; for example by walking across a synthetic fibre carpet in rubber-soled shoes it is possible to produce a charge of 10,000 volts. Normally this would quickly leak away, but if applied to a CMOS chip then the thin oxide layer will break down and the device is effectively destroyed. Most of the devices produced nowadays have some form of protection against static discharge, usually in the form of internal zener diodes. However, the protection is not completely effective, and some care needs to be taken. The usual advice is to work on an earthed metal tray with all manner of other anti-static precautions, but for the common logic devices this is not really necessary. Provided you avoid touching the pins when handling them and resist the temptation to polish them up on your woolly jumper, no 'dead' chips should be produced. Also, it is a good idea to store them in their anti-static tubes or with the pins pushed into polystyrene foam which has been covered with aluminium cooking foil, so that the pins are all effectively shorted together.

One word of caution, don't adopt too much of a cavalier attitude to them or you might be tempted to treat a microprocessor in the same way, with expensive results!

Figure 4. CMOS Astable Formed by 2 Lnverters.

CMOS Logic Gafes

One very useful effect of the insulated gate construction of these devices and its associated high input resistance is that some 'tricks' are feasible which would be difficult or impossible with TTL gates. For example, Figure 4 shows how a simple square wave oscillator, or astable flip-flop, may be obtained from just two gates. The frequency of operation is set by the values of capacitor and resistor chosen, but the exact frequency will be determined to some extent by the gate input characteristics, which will vary slightly from device to device. The approximate frequency of operation is found from the empirical formula:-
$f=0.6 / C \times R$ where frequency, f, is in Hertz, capacitance is in Farads and resistance is in ohms and with an upper frequency set by the natural limitations of these devices. Similarly, Figure 5 shows a monostable flip-flop made up from two gates; due to the high input resistance long time constants can be achieved by the use of relatively small value capacitors in conjunction with large resistors. The period of this type of monostable is given by another form of the above expression:-
$t=0.6 \times C \times R$ where C and R are as before and t is the period in seconds.

A third type of flip-flop is shown in Figure 6. This is the bistable flip-flop, which is so called because it can adopt either of two stable states, and a suitable trigger pulse can flip it from one state to the other, where it remains until it is triggered to flop back.

Figure 5. Monostable Formed by Two 2-input NOR Gates.

Figure 6. Bistable Formed by Two 2 -input NAND Gates.

CMOS Counters

Some of the above ideas are brought together in Figure 7. If you have been following the series you should have some idea as to the function of the circuit, which is a simple timer to count up to 59 seconds and then reset to 00 . The clock pulses are obtained from an astable lip-flop which has a period of about one second. Because of the simple nature of this part of the design the overall accuracy of the timer will not be very good; a much more accurate method of generating clock pulses will be discussed in a future article. The clock pulses are fed into one half of a 4518 binary coded decimal (BCD) counter. The outputs from this counter are then used to operate a 4511 BCD to seven segment decoder/driver for the 'units' LED display. The output from the most significant bit (MSB) of the first half of the 4518 is then used as the clock input to the second half of the counter, which produces the required output for the 'tens', via the second 4511 and LED display. The extra

Figure 7. Simple Seconds Timer.

Figure 8. Astable used to operate a Piezo-Electric Sounder.

Figure 9. Circuit for Increased Output.
gating of IC5a and IC5b is to detect the presence of the value ' 6 ' on the output from the second counter, since it is desired only to count up to 59 and then reset to zero. The method of achieving this is to connect both the ' 4 ' and the ' 2 ' output lines to the inputs of a two-input AND gate, since the value of ' 6 ' is present when '4' AND '2' are both at logic l. You may well be wondering, then, why two NAND gates are shown in the diagram. This is simply to avoid purchasing a chip containing AND gates when the job can be done with the more versatile NAND gates. The two NAND gates connected as shown, of course, produce an AND gate, as reference to previous Truth Tables will reveal.

The output from the AND gate is then fed to the Reset pins on both counters, so that counting is forced to re-commence from zero. Actually, a figure 6 will appear on the display, but only for the time it takes for the reset signal to be gated through the decoder and counter, which is of the order of a few nano-seconds, so you are unlikely to see it! Of course, it is possible to detect other vaiues, so that instead of counting minutes some other number is counted. Without any reset logic, i.e. with the Reset pins connected permanently to Ground (or Vss), the circuit will count up to 99 before cycling round to zero again. The reader is left to experiment for himself, the only requirement being to AND all the unique values of the next highest count together to the Reset pins. For example, if it were desired to display the value ' 60 ', then 61 would need to be detected by ANDing ' 4 ' and ' 2 ' from the tens counter, along with ' 1 ' from the units counter. This could be achieved with a three-input AND gate or more conveniently with an equivalent array composed of two-input NAND gates. This kind of decoding can be done with this counter since it is of the synchronous type, described in the last article.

Jeepers Bleepers!

Returning to the simple oscillators made up from a couple of CMOS gates, and incorporating some of the ideas outlined above, brings us to the final portion of this issue's logic feast.

Although the output stages of CMOS gates are unable to drive even a small loudspeaker directly, they are ideal for operating the small piezo-electric sounders for producing an audible note. The September 1984 Maplin Magazine
type shown on page 421 of the current Maplin catalogue, order code QY13P, is the kind to use. It requires some care in soldering on a couple of connecting wires, but has the advantage of being cheap. Figure 8 shows a circuit which has an output of around 1 kHz , which may be used to test the transducer. The audio output can be increased by the use of an extra gate, as indicated in Figure 9, but even then it will not be rock-crushing! By employing another set of gates operating at a much lower frequency it is possible to control the audio oscillator to produce a pulsating tone, as shown in Figure 10. Developing this idea further, it is then possible to control this circuit with yet another one, this time a monostable with a period of, say, 5 seconds. When initiated, the circuit of Figure 11 will produce a pulsed tone for this duration, and could be used as an audible waming device. Finally, Figure 12 shows how this last idea can be added to the simple timer outlined above, so that a warning note is sounded when a particular time is reached on the counters, in this case at every minute mark.

If you have a requirement for a simple timer of this nature, then the design could well be made up into a more permanent form, rather than being left as a breadboard experiment. In such a case it would be better if the features of the design were more versatile; for example, if the 'alarm time' could be set to any value over a wider range of times, to produce a high technology egg-timer! You may have some idea as to how this might be achieved, but the next article will include a suitable design, as well as probing deeper into the use of other interesting CMOS devices.

Figure 12. Reset Pulse used to Trigger Monostable for Audible Warning Device.

Figure 10. Gated Astable to produce Pulsating Tone.

Figure 11. Monostable used to Gate Pulsed Astable.

* 6-12V Forward and Reverse Model Mofor Driver Ł Proportional Control Offers Smooth Transition from Off to Full Speed * Ideal for Model Boats, Cars and Robotics

Following on from the previous issues PWM Servo Driver, this model speed controller will drive low voltage electric motors from a suitably encoded pulse width modulated signal. Both 6 V and 12 V systems are catered for by the output drive circuitry which will handle motor stall currents up to 5 amps, while the front end decoding section connects separately to a low voltage $4.8-6 \mathrm{~V}$ supply obtainable from radio control Rx battery packs for instance. Although primarily intended for Radio Control model use, the project also finds application in Robotics projects where computer control of movement and direction is required.

Proportional Control

Unlike servo's, the speed controller does not require positional feedback information. Essentially all that is required to start and stop an electric motor is to apply then disconnect power via a switch, and toggling the switch will alternately increase then decrease the speed at which the motor is running. If the switch could be held closed for a set time period and then held open for the same time, so that its MARK (closed) to SPACE (open) ratio becomes even, then the motor would be expected to run at approximately half power allowing for over-run and starting losses.

Lengthening the switch make time and reducing the switch break time repeatedly will therefore mean that power is applied for longer periods and the motor will increase its speed accordingly. Conversely, reducing the switch make time and lengthening the break time will slow the motor. This principle is applied in PWM systems as shown in Figure 7.

The repetition rate, or switch on and switch off cycle, is standardised at 20 ms and each complete cycle is called a Frame. The reciprocal value from this (1 $\div 0.02$) produces the Frame Rate and is

50 frames per second. During each 20 ms frame cycle the positive going pulse can be increased from a minimum width of $0.2 / 0.5 \mathrm{~ms}$, up to a maximum width of $2.0 / 2.5 \mathrm{~ms}$, the latter corresponding to maximum speed and the former to minimum. Obviously, manually operating a switch in the motor supply line at 50 times a second is slightly impractical and use of electronic switching IC's becomes desirable.

Circuil Description

In Figure l, ICl is a linear pulse width amplifier and expands the incoming signal at pin 14 into a pulse train whose MARK/SPACE ratio can be varied between zero (0 V) and one (+V). Preset RV2 and C4 set the internal monostable timing period and input pulses less than or greater than this period determine motor speed. Because both forward and reverse drive are necessary, a 'no drive' or zero position is required and RV2 can be adjusted to determine this. RVI sets the 'dead band' area, or the relationship between motor speed and control 'stick' movement. Along with the pulse expan-
sion component, C 3 , this preset can be adjusted for maximum speed and zero positions. ICl pin 4 output determines motor direction and has a high (+V) output in one direction and a low (0 V) output in the other.

One of two links A or B are inserted for operating RLA via TR1, TR2, and IC2b or IC2c, and are fitted according to the required direction of rotation of the motor armature. Pins 5 and 9 are NANDed by IC2a and produce a positive pulse train which switches TR3, TR4 and TR5. Either pin 5 or pin 9 is active, but not both together, and each signal is complementary to the other depending on forward or reverse direction signals. TR5 must be capable of switching high currents to the motor and R10 will supply drive signals to external NPN transistors if larger current handling becomes necessary (pin 10). Pin 4 output is either high or low with a selected direction and could be buffered for reversing-lights on a model car for example. Both relay contacts reverse connections to the motor when operated by RLA from ICl pin 4, so that the same drive signal at TRS

Figure 1. Circuit Diagram

Figure 2. Artwork
collector is available for both forward and reverse modes. Output pin 9 may be connected to an externally mounted relay if larger current switching is required.

Construction

Two links are initially required to be inserted directly into the PCB and are best formed from 24swg tinned copper wire. Excess lengths removed from resistor leads could be utilised for this. Next fit Rl to R9 and standard resistors R10 and R11 followed by D1, which must be correctly aligned as per the PCB legend. It may be convenient at this stage to solder these components and cut off excess leads, thus avoiding the inevitable jungle that would otherwise result.

Fit the fourteen Veropins from the track side and push the heads down to the respective pads with a soldering iron and apply solder. Fit both presets RVl, RV2 and ICl, IC2. Be sure to fit IC's correctly by aligning the end notch with the legend otherwise they will be damaged in use and are not easy to remove after soldering! Fit all capacitors and note that Cl and C 3 are polarised and must be fitted correctly with the +V markings in line. Polycarbonate capacitors C4 and C5 can have their terminals broken quite easily, so exercise care when fitting both to the PCB. Again, solder all components in place, remove surplus wires and fit RLA, which can only be inserted in one position.

The parts list offers both 6 volt and 12 volt versions for the relay and is a matter of choice to suit individual requirements, but note that only the 6 V version is supplied in the kit. Next, mount the five transistors. TR5 is positioned with its mounting bracket facing outwards, away from the PCB and the plastic body facing inward towards RLA. Later on, it may be necessary to heatsink TR5, so ensure reasonable length leads between the PCB and bottom of TR5. This will allow it to be manoeuvred over the edge of the PCB for easier mounting.

Finally, solder all remaining components, clean the track surface with solvent, to remove flux and solder splashes, and inspect the work. When satisfied that all is correct, proceed with testing the module. It is worth pointing September 1984 Maplin Magazine

Remove power and meter, reconnect the supply $+V$ to P in 1 on the PCB and connect the meter with $+V$ lead to Pin 1 and $-V$ lead to Pin 7. Re-apply power and check the meter for a zero reading. Temporarily connect Link A and listen for a click in the relay. The meter should read approx. 10 mA when using the 12 V relay, or $55-60 \mathrm{~mA}$ when using the 6 V relay. Remove Link A. The meter should drop to zero and the relay should click as it releases. These checks should give an indication that the module is basically functioning, providing the above figures correspond to within a few percent.

With the absence of a suitable $+V$ pulse PWM system, such as a radio control Tx and Rx, a simple CMOS test circuit is shown in Figure 3. This too requires a 5 V supply and serves as a 20 ms frame generator and variable monostable. Please note that the Figure 3

Figure 4. PCB Wiring \& Legend
circuit is not a project or kit and exists solely as a guide to assist with testing the module. Whatever system is used, connect the PWM O/P to Pin 3 on the module, and ensure a signal retum path exists along Pin $2(0 \mathrm{~V})$ connection. Figure 8 can be used for reference. Fit Link B only onto the module and apply both low and high power supplies as shown.

It is certainly not advisable to take the motor supply $+V$ from module input or receiver supplies, as large current surges will affect both, causing glitching at least, or battery failure at worst. In use, low power Nicads (4.8-6V) are perfectly adequate for the input supply, but larger battery packs (if used) will need to be either high power Nicads or Lead Acid/Cadmium varieties for driving the motor. Remuinber to choose the motor supply voltoge to suit both relay and motor ratings (6-12V). Do not connect the motor just yet, but switch on all supplies. Adjust either the appropriate transmitter stick, or preset (in the case of Figure 3) from centre zero, which should correspond to an approximate 1.5 ms frame pulse down to 0.5 ms , whereupon the relay should operate with a click. Reverse stick or preset back through zero in the opposite direction, and the relay will release. When using Link A instead of Link B the relay will normally be in the operated state at first, and release during the test; this being the opposite condition. So Link A holds the relay operated for release mode and Link B holds the relay released for operate mode. In either case, connect a voltmeter adjusted to read $10-20 \mathrm{~V}$ between 0 V and PCB pin 4. The reading should be normal at 0 V and +5 V when moving the stick (pot!).

Cornect a motor to PCB pins 5 and 6, and again with all supplies connected ensure full forward, zero and full reverse conditions can be established by varying the control stick or pot. It may be found necessary to re-adjust RV1 and RV2 on the module to ensure these conditions are met with a wide zero or motor off position, therefore trial and error settings will indicate optimum performance for your particular system.

Figure 5. Relay Pinouts

Figure 6. Motor Suppression
Mofors
Owing to the wide variety of motors and applications that could be used, it would be best to examine the limitations of the module rather than discuss individual requirements. For instance, Bullett type motors used with large model aircraft can draw 30 Amps or more and relays, drive transistors and PCB tracks must be capable of handling this for long periods. On the module, RLA can comfortably switch 5 Amps although TR5 will dissipate large amounts of power, especially under low speed or stall conditions, so without extra relays and drive transistors fitted, smaller motors of 1 to 2 Amps only should be used. As explained previously, Pin 10 can supply a further three or four NPN power transistors, and Pin 9 a second relay, should it be required to drive larger motors. Simply connect the transistor's emitter to Pin 8, base to Pin 10, and collector to
collector of TRS: in other words in parallel with TRS. Figure 6 offers a simple suppression circuit which should prove adequate for most motors without adversely affecting performance too much. Excessive capacitive loading will affect the pulse waveform at low speeds, so bear this in mind when using suppression.

Heatsinks

TR5 may tend to run hot under heavy load conditions and heatsinking will have to be used to prevent damage or loss of power. Any method used will depend entirely on the space available, and the weight allowance within the model. Model boats generally have plenty of space and buoyancy, and a large heatsink may add ballast for stability. One eighth and half scale cars often have a metal chassis and this could be utilised for heatsinking, but plastic kits may melt around TRS or its heatsink, so allow plenty of airflow to keep temperatures down.

In conclusion, always keep batteries for the motor drive supply and logic drive separate; only use low power 1-2 Amp motors unless adding further power transistors; ensure adequate heatsinking and ensure all supplies are switched off after use.

Figure 7. Control Waveform

Figure 8. Block Diagram

PWM MOTOR DRIVE PARTS LIST

by Robert Penfold Part One

Although the constructional information provided in electronics magazines and books is generally very concise and easy to follow, probably every electronics constructor is sooner or later faced with the problem of a newly constructed project that fails to work properly. Most projects these days (including virtually all the Maplin projects) are based on a custom printed circuit board, and these certainly help to greatly reduce the likelyhood of a new project failing. However, they are not as 'foolproof' as many people seem to imagine, and do not eliminate the problem.

Ideally when fault-finding on a project one should understand the precise way in which each stage operates, and should have the necessary test equipment to methodically check each stage until the fault is located. Looking at things realistically, probably few constructors are in a position to undertake fault-finding in this way. However, even with the aid of little or no test equipment it should in most cases be possible to locate the fault. This is due to the fact that September 1984 Maplin Magazine
the majority of newly constructed projects that fail to operate do so because of an error in construction rather than a design error or a faulty component. At one time there was no shortage of genuine 'duds' in circulation, but at present it-is very rare indeed for faulty components to slip through the battery of tests at the factory, or for unscrupulous dealers to sell faulty components as tested and operational components. Of course, it is not advisable to use untested components obtained cheaply unless you have the facilites to test them for yourself and discard any that fail to reach a suitable standard. All Maplin supplied components are of good quality and from reputable manufacturers.

With modern semiconductors it is possible to design repeatable projects that do not require a lot of experimentation with component values before they will operate properly. If a project fails to work properly first time it is only human nature to think that it is due to someone elses mistake, but this really is unlikely to be the case. Those who have checked
faulty projects invariably find that more than nine times out of ten the problem is due to something like a component not fitted correctly, or a badly soldered joint.

Checking

The inference of this is clear: if you construct a project and it does not work, the chances are very much in favour of it being possible to discover the error and rectify the fault without resorting to any test equipment at all. The first job is to read the description of the project thoroughly to make quite sure that you are using the unit correctly, and have not misunderstood something. This may seem a silly point, but as projects become increasingly complex and difficult to understand, the faulty project that isn't becomes less rare. Pay particular attention to any setting up or adjustment instructions, as this is where difficulties and misunderstandings are most likely to occur.

The next step is simply to check the unit against the construction diagrams to ascertain that there are no discrepancies

The correct appearance for soldered joints.
here. In particular check that components which must fit onto the printed circuit board the right way round (e.g. most semiconductors, and polarised capacitors) are indeed fitted correctly. Few projects have all the components mounted on the printed circuit board, and it is easy to make a mistake in the wiring to off-board components such as switches, potentiometers, and sockets. There is a lot to be said in favour of using connecting wires of different colours or multicoloured ribbon cable when wiring up projects, since errors are then less likely, and any that do occur are easily spotted.

If a thorough check of the wiring etc. fails to show up the cause of the problem it is still quite likely that the fault is due to a mechanical problem of some kind, rather than a faulty component or design fault. With a project constructed on stripboard a common problem is that of minute blobs of excess solder producing short circuits between adjacent copper strips. With printed circuit boards the copper tracks are mostly much more spaced out, and this is a less common problem. It is not one that can be totally ignored though, and with most printed circuit boards there are areas of the board where the track spacing is minimal. This occurs principly around DII integrated circuits.

The offending pieces of solder might be easy to spot with the naked eye, but often they are very small and difficult to spot. They can also be hidden under excess flux, of which there is usually no shortage on a completed printed circuit board. It is advisable to use a de-greasing solvent to remove any excess flux from the board prior to making a careful inspection of the underside of the board. Alternatively, a continuity tester can be used to check for short circuits between closely spaced printed circuit tracks, and this is the only certain way of finding any accidental short circuits.

With modern components and solders there is usually no difficulty in producing neat and effective soldered joints. Even so, 'dry' joints are not totally a thing of the past, and these inevitably occur from time to time. It can easily happen, for example, if a lot of flux is
allowed to build up on the bit of the soldering iron, or if joints are made by using the bit to transfer solder to the joint rather than adding the bit and then the solder to the joint. It is often possible to find a 'dry' joint simply by looking at the board. A good connection should look like the illustration of Figure l(a), but a 'dry' joint usually looks more like the shape in Figure l(b). There is often a lot of excess flux around the joint as well. In fact the flux is often all that holds the board, solder, and leadout wire together.

With a fresh soldered joint the solder should have a shiny surface. A dark and dull surface to the solder is another tell-tale sign of a 'dry' joint. There can be two causes of this, one of which is movement in the joint as it solidifies. This causes the solder to crack and craze, producing an electrically poor connection as well as a mechanically weak one. The other main cause of this type of thing is having the iron applied to the solder for too long so that the flux burns away. This is also something that is likely to happen if soldered joints are made using the soldering iron bit to transfer molten solder to the joint.

To check for a 'dry' joint, a continuity tester (a multimeter set to a low resistance range will do) is used to check for a low resistance between the component's leadout wire and the appropriate

Figure 1(a) A good joint (b) A solder blob printed circuit track. When a 'dry' joint is discovered the solder should be removed from the joint using a desoldering tool or solder wick. Clean the printed circuit track and the end of the leadout wire using something like fine sandpaper or a miniature file, and then solder the connection again. Do not simply try re-applying the soldering iron and some more solder to the joint as this is unlikely to produce a reliable connection.
'Dry' joints do not only occur on the
printed circuit board, and can also be produced when making connections to off-board components. In fact this is probably when they are most likely to be produced. Prevention is better than cure, and provided the tags of the components and the ends of the connecting wires are generously tinned with solder prior to making the connections, there should be no problems of this type. A continuity tester can be used to test for these 'dry' joints, and the tell-tale signs are again a dull surface to the solder and probably a lot of excess flux as well. Also as much as before, to remedy the situation the solder should be removed from the joint, and the component tag plus the end of the lead then cleaned and tinned vith solder before remaking the connection.

Component Testing

If a thorough check for mechanical faults fails to bring results, then a check for faulty components is the next step. A visual inspection of the components may show up a possible fault. For instance, a resistor or capacitor that has gone rather dark in colour might be indicative of overheating when it was soldered into circuit, with a consequent change in value.

Assuming that there is no clue of this type, it is then a matter of going through the components and testing them one by one. This task can obviously only be undertaken with the aid of some test equipment, but an ordinary analogue multimeter (which is something no electronics constructor should be without) is probably a little more versatile in this respect than most people realise.

Any multimeter should be equipped with a few resistance ranges, and should be capable of testing any resistance value within reason. An important point to bear in mind if you try measuring resistances with the component in-circuit is that other resistances in the circuit could shunt the component you are testing, and give a low resistance reading. If the reading obtained is higher than the marked value of the component then it is certainly faulty. If the reading obtained is much lower than the marked value try reversing the test prods. If a semiconductor junction was shunting the Maplin Magazine September 1984

resistor and giving a low reading, reversing the test prods will reverse bias the junction so that it has a much higher resistance and does not significantly shunt the resistor. Of course, there could still be resistances in parallel with the resistor under test, but if the expected value is obtained with the test prods one way round or the other then the component is probably alright. If in any doubt, simply desolder one leadout wire so that the resistance can be measured in isolation from the rest of the circuit.

Potentiometers and preset resistors are also easily tested with a multimeter, but check that the resistance from the wiper terminal to each track connection varies properly, and do not merely check for a suitable track resistance. Bear in mind that the tolerances of potentiometers are quite high, being typically about plus and minus 20%, and that the track resistance may therefore be substantially different to the marked value.

Capacitors

Capacitors are difficult to test using just a multimeter, and low values cannot be checked properly. A check that can be made on any capacitor is a leakage test. Simply set the multimeter to a high resistance range and connect it across the capacitor. Apart possibly, from an initial 'kick' from the meter, a very high resistance reading should be obtained. In fact an infinite resistance reading should be obtained when testing non-polarised types. This test almost invariably has to be carried out with one leadout wire disconnected from the printed circuit as stray resistances in the circuit otherwise September 1984 Maplin Magazine
prevent a suitably high reading from being obtained.

With electrolytic and tantalum capacitors the test prods must be connected to the test capacitor with the correct polarity. Although one might expect the positive test prod to connect to the positive terminal of the multimeter's battery, it actually connects to the negative terminal. Therefore, connect the negative test prod to the positive leadout of the capacitor, and the positive test prod to the negative leadout of the capacitor. Due to the relatively high values of electrolytic and tantalum capacitors it may take some time for the capacitor to fully charge, and for the meter reading to reach a very high value.

Electrolytic types generally have small but significant leakage currents, and for low value types a reading of several megohms or more is satisfactory. For high value types a reading of about a hundred kilohms or more is satisfactory as these should never be used in a part of a circuit where low leakage is important. In order to give a reasonably short charge time when measuring high value capacitors it might be necessary to switch to a lower resistance range.

The 'kick' of the needle when a capacitor is connected to the multimeter can be used as a rough test of a capacitor's value. It is just a matter of first short-circuiting the capacitor to ensure it is fully discharged, and then connecting it to the multimeter (being careful to use the correct polarity where appropriate). Make a note of the peak reading obtained. You can gauge whether or not the component has roughly the correct
value by subjecting capacitors of the same value to this test and comparing the peak readings obtained. This is admittedly only a very rough and ready check, and it will only work for capacitors of about 10 nF or more in value, but it is better than nothing.

Semiconductors

Diodes and rectifiers are easily checked using a multimeter set to any resistance range. With an analogue type there should be a high resistance reading with the positive test prod connected to the anode and the negative test prod connected to the cathode (the leadout which comes from the end of the component having the coloured band). The reading should be infinity with silicon devices, but with germanium types a reading of a few hundred kilohms or more is acceptable. With the test prods reversed a much lower reading should be obtained, and the precise reading produced is of no importance.

The procedure is much the same with a digital multimeter, but initially a low resistance reading should be obtained, followed by a high resistance reading when the test prods are reversed. A few digital multimeters use an inadequate voltage for this test to work properly with silicon devices, but it will operate properly with the vast majority of digital multimeters.

Transistors

Some multimeters have a built-in transistor checker facility, but most transistors can be tested satisfactorily using an analogue multimeter that does not Continued on page 57.
from Robert Penfold

Personal MW Radio

The ZN414 radio integrated circuit has been popular with the homeconstructor for a number of years now, but recently two improved versions of the device have been released. One of these is the ZN415, which is basically just the familiar ZN414, but in an 8 pin DIL encapsulation, and including a built-in bias resistor, a load resistor, and a two transistor output stage. In the circuit diagram the area within the broken lines represents the ZN 415 .

VCl and Ll are the medium wave ferrite aerial plus tuning capacitor, and the input of the device is biased through the aerial coil in order to minimise loading on the aerial (and give good selectivity). C3 is the RF filter capacitor at the output of the detector. Like the ZN414, a supply potential of about 1.2 to 1.6 volts is needed. This is provided from a small 9 volt battery via a simple voltage regulator which consists of D1, D2, and R1. Alternatively, a single 1.5 volt cell can be used as the power source, in which case D1 and D2 are omitted, while R1 is replaced with a shorting link. The current consumption of the circuit is only about 4 milliamps incidentally.

The output stage of the unif may seem a little strange, consisting of a very low gain common emitter amplifier followed by an emitter follower stage which provides only a modest maximum output current. It is in fact designed specifically to drive medium impedance headphones of the type used with personal stereo cassette players and radios. The maximum drive available is rather limited, and the very high volume levels that can be achieved using this type of headphone cannot be obtained from this circuit. However, the volume from any reasonably strong station is sufficiently loud for most requirements, and the audio quality is suprisingly good provided headphones of adequate quality are used. For best results the headphones should be connected in series and not in parallel.

C5 is an RF filter capacitor and is needed to prevent instability. The bandwidth of the receiver is quite wide, which helps to give good treble response and audio quality. On the other hand, this can often result in a quite high level of interference. Closing Sl shunts C 6 across the headphones and gives a reduction in the treble response.

Ll can be any medium wave ferrite aerial. The position of the coil on the rod is adjusted to give full coverage of the medium waveband. Most aerials of this type have a low impedance coupling

winding, but in this case the coupling winding is not needed and is either removed or just ignored. The specified aerial includes a longwave winding which is removed from the rod. It would be perfectly feasible to have a changeover switch to select either the medium or
longwave winding, and thus provide dual band operation. However, the ZN4l5 is not at its most sensitive at the frequencies involved in longwave reception, and as reception conditions on this band are very poor in many areas anyway, this is probably not a worthwhile modification.

Telephone Amplifier

A telephone amplifier is simply a device which boosts the audio output of a telephone to a sufficient level to drive a small loudspeaker at reasonable volume to enable several people to follow a telephone conversation. The normal method of connection to the telephone is via a special pick-up coil which receives the signal radiated by an inductive component inside the telephone. Apart from avoiding possible legal problems associated with direct connections to the telephone system, this is a very conve-
nient way of doing things since the telephone amplifier can be set up ready for use in a matter of a few seconds. One slight problem with this system is the need for a high gain amplifier to boost the minute output signal of the pick-up coil to a sufficient level to drive a loudspeaker.

This telephone amplifier is based on the very useful LM389N audio amplifier device. This is very similar to the well-known LM380N integrated circuit, but it has three transistors in addition to the audio power amplifier section. This gives great versatility and the LM389N is

well-suited to an application such as this. To make the operation of the unit clearer the three transistors have been shown as if they were discrete components in the circuit diagram, but the pin numbers have been included alongside each one.

TRl is used as a common base input stage. This effectively acts as a step-up transformer which takes the low level, low impedance output from the pick-up and provides a higher voltage, higher impedance output signal. This is coupled to the next stage of the unit which is a 12 dB per octave highpass filter. There is little point in having a good low frequency response as these frequencies do not contribute to the intelligibility of a
voice signal, and are unlikely to be present on the input signal anyway. The use of highpass filtering helps to give an improved signal to noise ratio, and in particular it helps to reduce any mains 'hum' that is picked up by the unit. The cut off frequency of the filter is about 300 Hz .

The output of TR2 is coupled to volume control RV1, and then the signal is taken to the input of a high gain common emitter amplifier based on TR3. C9 provides a certain amount of low-pass filtering, as does C 2 at the input stage, and this helps to give an improved signal to noise ratio with reduced background 'hiss'. The output from TR3 is coupled by

Cl 0 to the input of the power amplifier which is a conventional class B type. An output power of about 200 to 300 milliwatts RMS into an 8 ohm impedance loudspeaker is available.

The pick-up coil is mounted on the base section of the telephone by means of the built-in suction cup. A little experimentation will soon determine the position that gives optimum signal pickup, but for the current (standard style) telephones this will be roughly at the centre of the right hand side. Keep the loudspeaker reasonably well away from the handset and do not advance the volume control too far or there may be problems with acoustic feedback.

Opto-Coupled RPM Meter

Most RPM meters are designed for use in cars and obtain the input pulses from the ignition circuit of the car. This is obviously a technique which cannot be applied to most other applications where an RPM meter would be of use. There are two common ways of obtaining suitable timing pulses where none are produced by the machine being monitored. One is to use an optical circuit and the other is to use a system based on magnetic sensors (with suitable activating magnets positioned on the rotating shaft). The optical method is generally the more simple and inexpensive, and one that can be applied to virtually any set up.

The pulse counting section of this circuit is a conventional type based on the LM2917N frequency to voltage converter chip. With the specified values the circuit has a nominal full scale frequency of 333.33 Hz . This corresponds to 20000 RPM with one pulse per revolution, or more realistically, 10000 RPM with two pulses and 5000 RPM with four pulses per revolution. However, the full scale frequency/RPM value can easily be modified by changing the value of C 6 (reduced value giving a proportional increase in full scale frequency).

The sensor circuit consists of photo transistor TRl and load resistor R2. The base terminal of TRl is left unconnected, and the collector to emitter terminals are connected to form a sort of light dependent resistor. The BPX25 phototransistor has a built-in lens which makes the device highly directional and helps to avoid spurious trigger pulses from being generated. The Maplin 'Low Cost Phototransistor'(YY66W) also seems to work quite well in the circuit, and is a useful low cost altemative to the BPX25.

The output from the sensor circuit is likely to be far too small to directly drive ICl, and TR2 is therefore used as a high gain common emitter amplifier which boosts the signal to a suitably high amplitude. Dl prevents the input of ICl from being taken strongly negative, which would cause a malfunction in the device.
September 1984 Maplin Magazine

The circuit is very sensitive, and in order to produce usable results it is merely necessary to have patches on the monitored shaft that contrast with the shaft itself. For instance, with a highly reflective metallic shaft, spots of matt black paint would be used. The reduction in the light level received by TRl as these spots pass in front of it would then generate the required timing pulses. The circuit does not require a high light level
in order to produce proper operation, but it obviously cannot operate in total darkness.

If the circuit proves to be oversensitive, connecting a resistor of about 470Ω in series with the emitter of TR2 should cure the problem. An easy way of obtaining a calibration signal for the unit is to simply aim TRl at a mains powered tungsten light. This gives a 100 Hz calibration frequency.

Tremolo Unit

A tremolo unit is one of the most simple types of musical effects unit, although one would probably not guess this from the prices of ready-made units. The design featured here can be built at low cost but it nevertheless has a high level of performance.

The function of a tremolo unit is to amplitude modulate an input signal, with the modulation frequency being variable from typically about 0.5 to 5 Hz or so. The modulation waveform must be one that has a low harmonic content, such as a sine or triangular type, so that a smooth and pleasant effect is produced. In this circuit the modulation signal is generated by IC2 which is a dual operational amplifier used as a conventional triangular waveform generator. This is a form of relaxation oscillator which uses IC2a as a Miller Integrator, and IC2b as a Schmitt Trigger. This gives a squarewave output from IC2b, and the required triangular
waveform from IC2a. Timing capacitor C3 charges and discharges via R6 and RV2, and the operating frequency of the oscillator can therefore be controlled using RV2. This gives an approximate frequency range of 0.5 Hz to 10 Hz .

The modulator uses MOSFET ICl as a simple voltage controlled resistor. ICl is a CMOS 4007UBE device, which contains two complementary pairs and an inverter. In this design, only one (N channel) transistor of one complementary pair is used and the other parts of the device are totally ignored. The drain to source resistance of ICl forms an attenuator in conjunction with Rl. However, R2 is connected in parallel with ICl , and this ensures that there is always a loss of 20 dB or more through the attenuator. This is to keep the signal voltage across ICl at a low level so that good distortion performance is obtained. The losses through the attenuator reach a maximum of about 50 dB with ICl biased
into saturation. The gate of ICl is driven from the output of the modulation oscillator via RV1. The latter is adjusted to give an input voltage range to ICl that gives good symmetrical modulation, and this is really just a matter of adjusting RVI to obtain what is judged to be the best effect, unless suitable test gear (an AF signal generator and an oscilloscope) is to hand.

IC3 is used as an amplifier and buffer stage which compensates for the losses through the attenuator and provides the unit with a low output impedance. Sl is a bypass switch, and in practice this is a heavy duty (latching) push button switch mounted on the top panel of the case so that it can be foot operated. The case must be a strong type, such as a diecast aluminium box. The current consumption of the circuit is very low at only about 4 milliamps.

The noise generator is a high quality digital type using a clock oscillator and shift register arrangement. R7 is part of the clock oscillator circuit, while R8 and C 3 are discrete components in the noise filter. These give a small amount of low-pass filtering which gives a slightly lower pitched sound that is better for this application. R9 and C4 are the timing components for the VCO, and these have quite high values in order to provide a suitably low output frequency range. R10 controls the amplitude of the output signal while R5 and R6 control the timbre (the on to off ratio of the noise signal). The SN76477 has a built-in driver stage, but an external complementary output stage (TR2 and TR3) is required. R12 is the load resistor for the driver stage and R1l is a bias resistor. An output of around two or three hundred milliwatts RMS is provided into an 8 ohm impedance loudspeaker. The SN76477 has numerous control inputs, and these are either tied to earth or the stabilised 5 volt supply output at pin 15 in order to program the correct operating mode for this application.

The frequency of the VCO is controlled by the voltage fed to pin 16 of ICl. This voltage must be in the range 0 to 2.4 volts, with maximum voltage corresponding to minimum frequency. The track voltage, which may well be a pulsed DC signal, is smoothed by Rl and Cl. Dl to D4 form a bridge rectifier which ensures that the voltage applied to the next stage is of the correct polarity. This stage is an inverter which uses TR1 in the common emitter mode. This converts the track voltage, which will be in the range 0 to about 15 volts, into a (roughly) 2.4 to 0 volt control voltage for the VCO. RV1 is adjusted so that the VCO switches on at the same track voltage that causes the train to start. Incidentally, there is a steady 'hissing' steam sound when the train is stationary and the VCO is cut off. RV2 is adjusted so that the VCO only just achieves maximum frequency with the train at full speed. After repeating adjustment of RV1 and RV2 two or three times the 'chuff' rate should vary realistically in sympathy with the speed of the train.
give the 'chuffing' effect.

MODEL TRAIN CHUFFER PARTS LIST

RESISTORS: All 0.4W 1\% Metal Film

R1	2k7	1	(M2KT)
R2,5	3k3	2	(M3k3)
R3	4 k 7	1	(M4K7)
R4	6 k 8	1	(M6K8)
R6	812 2	1	(M8R2)
187,8	39k	3	(M39K)
R9	470k	1	(M470K)
R10	100k	1	(M100K)
R11	47k	1	(M4TK)
R12	31×9	1	(M3K9)
RV1	10k Sub-Min Hor Preset	1	(WR58N)
RV2	100k Sub-Min Hor Preset	1	(WR61R)
CAPACITORS			
Cl	22 μ F Reversolytic	1	(FB08])
C2,5	100μ F 10V Axial Electrolytic	2	(FB48C)
C3	InF Polystyrene	1	(BX350)
C4	680 nF Polycarbonate	1	(WW51F)
SEMICONDUCTORS			
1 Cl	SN76477	1	(\%H32K)
TR1,2	BC547	2	(QQ14Q)
TR3	BC557	1	(QQ165)
D1,2,3,4	1N4148	4	(QL80B)
MISCELLANEOUS			
B1	9 Volt (PPT) Battery	1	
S1	Min SPST Toggle	1	(FH975)
	Battery Clips	1 pr	(HF2TE)
	28-pin DHI IC Socket	1	(BL21X)

TRJMOLO UNIT PARTS LIST

RESISTORS: All 0.4W 1\% Metal Film

R1,5,6	100k	3	(M100K)
R2,8	10k	2	(M10K)
R3,4	6 k 8	2	(M6K8)
R7	470k	1	(M470K)
R9	270k	1	(M270K)
RV1	47k Sub-Min Hor Preset	1	(WR60Q)
RV2	2M2 Lin Pot	1	(FW09K)
CAPACITORS			
C1,2	100 F F 10V Axial Electrolytic	2	(FB48C)
C3	$1 \mu \mathrm{~F}$ Polycarbonate	1	(WW53H)
C4	$2 \mu 363 \mathrm{~V}$ Axial Electrolytic	1	(FB15R)
C3	10んF 25 V Axial Electrolytic	1	(FB22Y)

SEMICONDUCTORS

ICl	4007UBE	1	(QX04E)
1C2	1458C	1	(QH46A)
$1 C^{3}$	μ M.741C	1	(QL22Y)
MESCELIANEOUS			
S1	DPDT Push Button	1	(FH93B)
S2	SPST Min Toggle	1	(FH97F)
B1	9 Volt (PP3) Battery	1	
SK1,2	Standard Jack	2	(HF90X)
	14-pin DL IC Socket	1	(BL18U)

TELEPHONE AMPLIFIER PARTS LIST
RESISTORS: All 0.4W 1\% Metal Film

R1	120k	1	(M120K)
R2	39k	1	(M39K)
R3	10k	1	(M10K)
R4	3k3	,	(M3E3)
R5,12	4kT	2	(M4E7)
R6,7	47k	2	(M47K)
R8	1k	,	(MIK)
R9	8 k 2	1	(M8E2)
R10	$820 n$	1	(M8201)
R11	1M5	I	(M1M5)
R13	3.6,	1	(M5R6)
RV1	4k7 Log Pot	1	(FW21X)
CAPACTTORS			
Cl,14	$220 \mu \mathrm{~F}$ 10V Axial Electrolytic	2	(FB600)
C2	10 nF Polycarbonate	1	(WW296)
C3,4	10بF 25V Axial Electrolytic	2	(FB22Y)
C5,6	100 nF Polycarbonate	2	(WW4IU)
C7,8	$1 \mu \mathrm{~F} 63 \mathrm{~V}$ Axial Electrolytic	2	(FB12N)
C9	100pF Ceramic	1	(WX56L)
C10	47nF Polycarbonate	,	(WW37S)
C11,12	100 nF Ceramic	2	(BX03D)
Cl3	$100 \mu F$ Axial Electrolytic	1	(FB48C)
SEMICONDUCTORS			
1 Cl	LM389N	1	(WO36P)
MISCELLANEOUS			
LSI	76 mm dia 8Ω Speaker	1	(YW53H)
SK1	3.5 mm Jack		(HF82D)
Sl	SPST Sub-Min Toggle	1	(FH97F)
B1	9 Volt (PP3) Battery	1	
	Telephone Pick-up Coil	1	(LB92A)
	18-pin DIL IC Socket	1	(HQ76H)
	Battery Connector	1	(HF28F)

The IC used in the MW Radio is not shown in our current catalogue. Order As QY61R ZN415E Price $£ 1.95$

OPTO-COUPLED RPM METER PARTS LIST

RESISTORS: All	0.4W 1\% Metal Film			CS	$1 \mu \mathrm{~F}$ 63V Axial Electrolytic	1	(FB13N)
R1,10	1 k	2	(MIK)	C6	2 n P Polycarbonate	1	(WW24B)
R2,9	10k	2	(M10K)	C7	$22 n 5$ Polycarbonate	1	(WW33L)
R3	$1 \mathrm{M8}$	1	(M1M8)				
R4	4k7	1	(M4K7)	SEMICONDUCTORS			
R5	8k2	1	M8K2)	ICI	LM2917N	1	(WQ38R)
R6	47k	1	(M47K)	TR1	BPX25	1	(QF30H)
R7	22k	1	(M235)	TR2	BC549	1	(0015R)
R8	680Ω	1	(M680R)	D1, 2	1N4148	2	(QL80B)
RV1	22k Sub-Min Hor Preset	1	(WR59P)				
				MLSCELANEOUS			
CAPACITORS				S1	SPST Sub-Min Toggle	1	(FH975)
C1,2	100 1 F Axial Electrolytic	2	(FB49D)	B1,2	9 Volt (PP3) Battery	2	
\bigcirc	$1 \mu F$ Polycarbonate	1	(WW53H)	ME1	100μ A Panel Meter	1	(RW92A)
C4	100pF Ceramic	1	(WXS6L)		14 pin DIL IC Socket	1	(BL18U)

The telephone has for many years been something most people have taken for granted both at home and in the office. The recent loss of monopoly by British Telecom, (formally the Post Office) has generated a new interest in telephony by the general public as they may now buy and install their own approved telephone equipment.

This article describes briefly the history and operation of the telephone as we know it today. Information about the use of the new Line Jack units is also included although it must be noted that only British Telecom may install the Master Line Jack unit and no connections may be made to the P.S.T.N. (Public Switched Telephone Network) without British Telecom approval.

Mistory

The origins of the telephone can be traced as far back as 1854 when a Frenchman called Charles Bourseul suggested that it was possible to transmit speech "by electricity". Phillip Reis, a German physicist, produced the first transmitter (microphone) in 1861 but it

by Robert Kirsch

was not until 1875 that the first practical telephone was developed by Alexander Graham Bell. The principle of Bell's first instrument was that when sound waves vibrate a magnetic diaphragm in the field of an electro magnet, the current flowing through the coils of the electro magnet would vary in sympathy with the sound. The principle is still used today in the receiver (telephone earpiece). This device, although making a good receiver, was not very sensitive as a microphone. The problem was overcome by the invention, in about 1880 by the Reverend Hunnings, of the variable resistance microphone using carbon granules. This type of transmitter is still in use in many of the older telephones although the electret and dynamic microphone are now being used as their relatively low output car be amplified in the telephone by semiconductor devices powered from the line current.

How the Telephone Works

Figure 1. shows a basic telephone circuit using carbon microphones and electromagnetic receivers. This system will work, but there are several disadvantages. One problem is that direct current flows through the receiver which is undesirable. Another is that speech from one transmitter will be received at the same volume by both receivers, giving an unacceptable sound level at the sending end. This effect is called 'sidetone' and all telephones are fitted with an anti-sidetone circuit to reduce the level.

Figure 2 shows the block diagram of

Figure 1. Simple Telephone Circuit

a practical telephone including transmitter, receiver and anti-sidetone circuit as well as the contacts, called the 'switch hook springs' operated by the handset when in its cradle. Figure 3 is the circuit of an actual telephone of older design.

Dialling is accomplished by discon-

Figure 2. Simplified schematic of standard telephone
necting the loop through the telephone (when the handset is raised) for a short duration (67 ms), for a number of times depending upon the number dialled. The telephone dial is a clockwork device that is wound by the clockwise rotation of the finger plate and is returned by the action

$$
2 \mathrm{~m}
$$

thus preventing an annoying clicking caused by the dial pulses. There are also contacts to short the transmission circuits during pulsing, to provide a lower loop resistance to the exchange during the 'on' time of the dial. The standard dial rate in this country is 10 pulses per second.

The telephone bell is rung by an A.C. signal of about 90 volts sent from the exchange. This relatively high voltage was used to provide sufficient energy to ring bells over long distances. The capacitor provided in the bell circuit presents a low impedance to A.C. ringing but prevents the bell causing a permanent D.C. loop across the line and thus calling the exchange, as in the case of the handset being lifted. When more than one telephone is used, one capacitor is provided and all the bells are wired in series.

Modern Developments

A telephone system designed today, would be very different from the present one, due to advances in technology. The existing system is so large that it would be impossible to change all the equipment at one time, although work has already begun on upgrading the system in some parts of the country. This means that modern telephones, used on the old system, use new technology to produce improved results, but must be compatible with techniques in use at the beginning of the century. There follows a brief description of areas in which new techniques have benefitted the performance of the telephone. Figure 4 shows a typical block diagram of a modem telephone.

The transmission system has been greatly improved by the use of dynamic or electret microphones with solid state amplification and sidetone suppression within the telephone, powered by line current. This results in a better quality and level of speech even over long lines.

Most modern telephones have push button dialling. This is usually accomplished by using a dedicated IC (e.g.the AY-5-9158 or the Mullard PCD3320 series). This device converts the keypad information into loop disconnect pulses of the same form as those of the rotary dial. These IC's often have the facility to store the last number dialled and to re-dial it at the press of a single key. The actual pulsing is accomplished by a reed relay or a transistor in series with the telephone loop. When a transistor is used it is connected across the DC side of a bridge rectifier and the loop across the AC side. This is to ensure the correct polarity for the transistor irrespective of the line connection to the telephone. The bridge rectifier is also used to provide the DC supply for the internal circuits.

Tone Dialling is now slowly replacing the old loop disconnect system and it is called DTMF (dual tone multi-frequency) and has been in use in America for many years. This system enables rapid dialling and is particularly suited to microprocessor applications.

The modern telephone no longer uses a bell; instead another IC is commonly used to provide indication of an

incoming call. This IC also is usually fed from a bridge rectifier, but in this case the AC ringing is fed to it via a capacitor. The rectified output is then used to supply the ringer IC whose output is connected to a small loudspeaker or piezo sounder. Due to the relatively low current required for the electronic ringer compared with the conventional bell, the
ningers are now connected in parallel, but a single capacitor is still used, fitted in the master jack unit.

Microprocessors are used in many modern telephones and these can provide many new features including multinumber storage and call metering; allowing the customer to know the cost of a call as it is being made. Figure 5 shows a

Figure 4. Block diagram of modern telephone
typical state of the art telephone using Mullard IC's.

Line Jack Units

Modern telephone installations use Line Jack sockets. This system has several advantages as customers may now buy and install their own (approved) telephone apparatus and simply plug it in. Also if several sockets are fitted, the customer can move the telephone from room to room or have as many instruments as he requires. This system also helps in the tracing of faults on an installation as customers equipment can be easily disconnected.

The Master Jack Unit is fitted by B.T. and contains the ringing capacitor and a discharge tube (for line and equipment protection against high voltages), see Figure 6. The two wires from the exchange are referred to as the A and B wires and it will be seen that all telephones are connected between A and B wire but all ringers are connected between the shunt wire (via the capacitor) and the \bar{A} wire.

Several accessories are now available to plug into the line jack sockets including adaptors for various types of telephone and a dual outiet adaptor which is particularly suited for the use of direct connect modems where it is desirable to have the telephone and the modem in parallel.

Figure 5. Microprocessor controlled telephone

Figuxe 6. Line jack wiring

PROJECT FAULT FINDING Continued from page 49.

have this facility. To test npn transistors for leakage, set the multimeter to its highest resistance range, and then connect the emitter and collector terminals to the positive and negative test prods respectively. The test is basically the same for pnp transistors. The only difference is that the test prods are connected around the other way (positive to the collector, negative to the emitter). Silicon transistors should give an extremely high resistance reading, probably with no noticeable deflection of the meter at all, but be careful not to touch the base leadout wire when making this test or erroneous results could be produced. Germanium transistors often have significant leakage currents, and this test is of little worth with these devices.

It is easy to make a rough check to see if a transistor has a reasonable level of current gain, and the basic set-up is similar to that used for leakage tests. It is better to use a lower resistance range though, so that the transistor is tested at a reasonable collector current. A resistance range having a half scale value of around 100Ω to 1 k should suffice. A resistor of about 100 k in value is connected between the collector and base terminals of the transistor under test, and there should be no difficulty in making up a set of test leads which include this resistor. If the test device is serviceable the resistance reading obtained should September 1984 Maplin Magazine
be much lower than the 100 k resistance of the base feed resistor. The lower the resistance reading obtained, the higher the gain of the device under test. A high reading of about 30 k or more indicates that the transistor under test has little or no current gain, and is unusable. This test may not be effective with some germanium devices due to their high leakage currents, and it may not be effective with some power transistors as these are designed to operate at much higher currents than the test currents used with this set-up. This simple method of testing will work well with the vast majority of transistors though.

Most other semiconductor devices cannot be checked easily, and must be tested using in-circuit voltage checks or by building a simple test circuit. Assuming that you are unable to undertake this type of check, there is little alternative to replacing a semiconductor such as an integrated circuit, which is a suspected 'dud'.

Switches can easily be tested using a continuity tester or a multimeter set to a low resistance range. Due to their mechanical nature switches are amongst the components that are most likely to fail. Apart from checking for a fault, using a continuity tester also enables you to check whether or not you have correctly identified the tags of the component.

A multimeter set to a low resistance
range can also be used to give transformers and inductors a rough check. With small inductors there should be no significant resistance through the components. Similarly, with RF coils there should be no significant resistance through each winding, but there should, of course, be an extremely high resistance between one winding and another. Things are much the same with large inductors and low frequency transformers, but a resistance of a few tens of ohms (or even a few hundred ohms) may be present across the windings. The most common fault in transformers and inductors is a break in the winding, and this should be readily shown up by a continuity check (and the lack of continuity). More complex faults such as shorted turns are not likely to be brought to light by a continuity check, unless a large winding has a suspiciously low resistance.

The methods of checking described here have the advantage of needing little or no test equipment, and a similar degree of technical knowledge. These methods are rather 'hit and miss' though, and if the fault is traced rapidly this is achieved by sheer luck. In the next article we will look at logical methods of fault finding which require slightly more equipment and technical know-how, but should give much speedier fault diagnosis.

measurements in (2)

By Graham Dixey C.Eng., M.I.E.R.E. Part Four

Introduction

The testing of digital equipment requires a slightly different approach from the testing of linear circuits. The approach still has to be a logical one, of course, and disciplined but there is unlikely to be the multiplicity of instruments to choose from. Therefore, it is not so much the correct choice of instrument that matters as knowing how to use the basic few that are normally accepted as being required. A real advantage of digital testing is that quite useful pieces of test equipment can be assembled at little cost; nonetheless they can be used to test a variety of circuits such as counters, registers, microcomputer inputs and outputs, indeed quite complex digital systems. Naturally, there are other more sophisticated items of test equipment such as logic analysers that can be very useful at times but most work can be done very simply. For this reason this article will include a number of circuits that can be made up cheaply but which will allow a variety of digital circuits to be examined for correct functioning.

Digifal versus
 Analogue Signals

The clue to the differing degrees of complexity in digital and analogue test equipment lies in the 'signals' themselves. An anologue signal may occupy a wide range of amplitudes from a few micro-
volts to many volts; its frequency may lie between a fraction of 1 Hz and many MHz . For this reason a voltmeter of high sensitivity and wide bandwidth may be needed in order to measure it. Its waveform, if it is not a pure sinewave, may also be a complicating factor. Digital signals, on the other hand, occupy only one of two possible levels - in theory anyway. These levels may be continuous i.e. d.c. or may consist of pulses varying in length from a few seconds down to nanoseconds.

On the face of it the digital input signals to a system may be synthesised by either a switched level (to give either logic 0 or logic 1) or by a pulse generator. An output indicator has only to differentiate between these two levels and can be a simple two-state device such as an LED, rather than the costly moving-coil meter of the analogue system.

Inputs and Outpuls

A desirable characteristic of any indicator is that it does not load the test point, a requirement met, in the case of an LED, by driving it from a high-gain transistor (Figure 1(b). The input resistance is, in this case, 33 k , sufficiently high to avoid loading the test point. The two input levels, logic 0 and logic l, can be developed using the circuit of Figure l(a), consisting of no more than an SPST toggle switch and a pull-up resistor. This is about as simple as you can get so
naturally there are limitations to what can be done with it. The switch, being a mechanical device with spring contacts, suffers from 'contact bounce' i.e. when the contacts close a short series of pulses is generated. These occupy only a very short period of time. Nonetheless, when the response times of TTL devices are measured in nanoseconds, the test circuit may well 'catch' all of the pulses. In the case of a counter the indication will be a false one. What is needed is a bouncefree switch and this is provided by the circuit of Figure 2. Half of a 7400 chip is wired as a simple latch. The SPCO switch 'sets' or 'resets' the latch giving either logic 1 or logic 0 levels at Q . The latch operates as soon as the switch closes either way and having flipped over into its new state then ignores the spurious pulses that follow. If the switch is a push-button type then regular operation generates a series of slow pulses, useful for studying counter operation; etc.

The indicator can also be improved. A simple logic probe can be made in which a positive indication of logic 0 or logic 1 is made on one or other of two separate LED's. Actually the design of logic probes is not as simple as may seem at first sight. The problem is that it actually has to recognise THREE separate conditions:
(i) probe connected to logic 1 (one LED lit).

Figure 1. Simple input/output devices
(a) switched logic levels (b) logic level indicators.

58

Figure 2. A de-bounced TTL switch.
(ii) probe connected to logic 0 (other LED lit).
(iii) probe not connected at all (neither LED lit).
The design of Figure 3 shows a simple circuit that meets all three of these conditions, which it does by a bit of honest cheating. Each of the NAND gates, Gl and G2, has an input held at logic 0 by the normally-closed push-button switch. Therefore, the outputs of both G1 and G2 are at logic 1 , ensuring that both latches G5/G6 and G7/G8 are re-set i.e. neither LED is lit.

However, when the switch is pressed the above mentioned inputs to Gl and G2 rise to logic 1 level and either Gl or G2 will then have a logic 0 output, depending upon the logic level at the probe input. The appropriate latch will then be set, lighting one LED or the other. It is a simple three chip design with obvious limitations but justified by its extremely low cost.

A more useful probe would perform the following functions:
(i) indicate logic 0 and logic 1 levels within recognised thresholds e.g. logic 0 between 0 V and 0.8 V , logic 1 between 2.5 V and 5 V .
(ii) indicate the presence of a pulse train by flashing LED's at a constant rate, irrespective of the frequency of the pulse train.
(iii) incorporate a 'memory' LED to signify that a level transition has occurred; this is useful when the speed of the level change is too great to be detected with the human eye.
\AA probe incorporating all of these features can become quite sophisticated in design. There are a number of kits available for less than $£ 20$, that go some way towards meeting these requirements. In fact, a kit is available from Maplin (order no. LKl3P) that at the moment sells for $£ 10.95$. It has the following features:

Detects HI, LO and Open Circuit (Floating Input) states and Pulse trains from Hz up. The display is novel in that a seven-segment display is used to indicate the states by the letters H, L, F or P, corresponding to those listed above.

Testing a System

Suppose that the items of Figures 1, 2 and 3 have all been constructed. How can they be used in practice? Figure 4 shows a circuit for a code converter; in fact it converts 2421 BCD numbers into their 8421 BCD equivalents. In this system the 2421 BCD number 1101 (ABCD) is equivalent to the 8421 BCD number 0111 (WXYZ), both equalling decimal 7. It is possible to check the logic of the unit by wiring in the switch units of Figure 1 (a) as inputs and the LED units of Figure $l(b)$ as outputs. It is well worth making up two boxes - one with eight switches and one with eight LED's. This will cover the checking of almost any logic circuit including the inputoutput functions of September 1984 Maplin Magazine

Figure 3. A simple EI-LO logic probe.

Figure 4. Checking the logic of a code converter.

Figure 5. The wrong way of checking chip supplies.
8 -bit microcomputers. The switches Sl , S3 and S4 are closed to set up the 2421 BCD number 1101 as the input to the circuit. If the converter is working correctly then the LEDs will light up to give $\mathrm{WXYZ}=0111$. All other combinations in the set can be input in this way on Sl - S4 and the outputs checked. However, these will not be given here as this is just an illustrative example.

Suppose that the circuit doesn't work. There are several possibilities. The original design may be incorrect; the circuit may be wired up incorrectly; there may be a chip fault or the board may have a fault. Assuming that the first two can be eliminated by checking the design procedure and visually examining the circuit layout, this leaves the question of a physical fault. The test items used in Figure 4 have established the existance of a fault but do not actually locate the fault. At this point diagnostic testing takes over from functional testing. This implies some degree of knowledge - in this case a knowledge of the logic levels throughout the circuit for a given input.

Consider the input number already mentioned i.e. 1101. The correct logic levels at the inputs and output of each gate are shown circled. Enter the logic probe! By placing the probe at each of these test points in turn, the faulty area can be quickly found. Suppose, for example, that the input to gate G2 was found to be logic 0 (correct) and its output was also logic 0 (wrong), then G2 may well be faulty, possibly shorted, or have an errant earth at its output.

But another possibility is that the lower input to G 6 is faulty. If the IC's are in sockets a quick substitution check will reveal which chip is faulty but if IC's are soldered straight into the board, this procedure is not convenient. What is needed is another instrument.

The Logic Pulser

The logic pulser may be thought of as the digital equivalent of the analogue signal injector. When it is applied to a test
point in a circuit and a push-button switch depressed, it sends a very short, highcurrent pulse into the test point. This is sufficient to change the state of a working gate even when held in a given state by a fault. Thus, in Figure 4, the pulser will test gate $G 2$ by sending a pulse into its input at the same time that a logic probe is applied to its output. If the probe's LED's flash momentarily, the gate is alright. A kit for a logic pulser is also available from Maplin (order no. LK19V) which at present costs $£ 5.95$. This design has the added feature that if the push-button is held depressed it will deliver a stream of pulses, making it useful for checking sequential circuits such as counters, etc. Furthermore, it has a built-in logic level indicator (effectively a simple probe) that makes a separate probe unnecessary for the type of test just described.

Power and Board Faulis

Digital circuits tend to be fairly complex, leading to PCB's that have intricate patterns of very fine tracks, perhaps double-sided. In the event of a board failure the temptation to pull out all the IC's and 'twiddle with every pot' in sight should be resisted. The first thing to be checked is the power. It may be present at its entry point on the board but disappear somewhere along a track leading to one or more IC's. It is, therefore, necessary to check the power at every chip separately. On the face of it, this is simple enough to do; however, it is quite easy to get the wrong results without realising it. Imagine how you might proceed to carry out such a test yourself. You take your voltmeter, clip the negative lead onto the earth track and, in tum, put the positive lead on each plus supply pin on all of the chips. Every one shows a correct reading, yet the circuit doesn't work. You conclude that the fault lies elsewhere. Yet it may not be so at all. To see why not, look at Figure 5.

This particular chip has a minute

LED unit

Figure 6. Testing the sequence of a counter manually.
break in the earth track right near the pin. By placing the negative lead on the main earth track, this break has been effectively 'bridged', thus allowing the voltmeter to read the supply voltage even though the chip actually lacks an earth return. If, however, the supply is checked directly between the IC pins (usually 14 and 7 on a 14-pin DIL TTL chip), any break like this soon shows up. Or at least the lack of supply to the chip is soon found, which should mean the same thing to the keen-eyed! The moral is - always check the supplies right at the chip pins. And that really means the pins of the chip themselves, not the track adjacent to the pins because another sort of break that can easily occur is a badly fitting pin in an IC socket. This also applies to the checking of logic levels at gate inputs and outputs.

Counters and Registers

These are examples of 'sequential' circuits i.e. those in which the current state of the circuit is dependent upon the number of inputs (pulses) received. After the design of a counter to a specified sequence, this sequence can be checked by noting the states that the Q outputs assume in turn, by using LED indicators of the type of Figure l(b), while the input is being pulsed repeatedly by either the bounce-free switch of Figure 2 or the 1 Hz TTL oscillator of Figure 7. This latter uses the well-known 555 chip and actually has two speeds. The 1 Hz speed is used where the operation has to be slow enough to allow observation of the changing states of the LED's and the 1 kHz speed is used when a CRO is used to look at the waveform at any stage in the counter.

Synchronous counters using extra gating can be more difficult to fault-find than simple 'ripple-through' counters because there is both sequential logic and combinational logic to deal with. If they seem to 'stick' or avoid some states completely, chip changes should be tried if at all feasible. If a JK flip-flop has both of

Figure 7. A two-speed TTL oscillator.
($\mathrm{Z}=0$ (normal) ; $\mathrm{Z}=1$ (reset))

Figure 8. A divide-by-eight resettable counter.
the sequence is wrong.
Suppose that the counter gets to a state where flip-flop FFC is 'set', but taking the control input Z up to logic 1 fails to reset it. The question is whether gate $G 6$ is receiving this transition or, if it is, whether it is responding to it. The logic pulser is applied to the input of $\mathbf{G 6}$, the logic probe is placed on G6's output and the integrity of this gate is thus checked.

It is possible to give numerous examples of digital circuits which can be
analysed with the test items described in this article. However, what it usually comes down to is that one proceeds logically through the system testing power, checking logic levels with the logic probe and eliminating chips by substitution or by means of the logic pulser. Many quite complex digital circuits are nothing more than large-scale repeats of smaller ones. If you can trouble-shoot the latter, you can deal with the former. It just takes a little longer!
be counted at the input, and can also be used for checking the logic of the gates if
its J and K inputs connected to logic 1 , it should toggle whenever clocked. If it doesn't, try the logic pulser on the clock input to see if it responds; if it does, look for a missing clock pulse. An example of a gated synchronous counter is shown in Figure 8. A logic pulser, together with the LED indicators on the flip-flop Q outputs, will test the counter for correct sequencing. The pulser will provide the pulses to

CLASSIFIED

VARIOUS FOR SALE

MAPLIN STEREO Disco Console, with built in amplifiers and sound to light unit. £200. Tel. St. Helens (0744) 811490 FIVE-BAND STEREO Frequency Equaliser, good condition, boxed, etc Only £25. Also Stereo Bass Enhancer, very good condition and boxed. Ony £1S. Tel. Bristol (0272) 772965
S.W.L. REPORT Forms designed for maximum information from your listening post. Give real meaning to your D.X. reports. Details to: IRC, Rout, 3-137 Champion St., Christchurch, New Zealand.
150W STEREO DISCO, Case, all printed circuit boards, both transformers, one gooseneck lamp and all discrete components. Value approx. $£ 170$, offers around $£ 100$ inc. carriage. Tel. 061-773-5237.

CLUBS

ATARI OWNERS issue 6 of the U.K. Atari Computer Owners Club newsletter is now available. It contains tutorials on High-res Graphics dumps to a printer, 80 column text display, Adventure column, a review of 'Fun with Art' from $E P Y X$, reviews of new software including BOULDER DASH, BRUCE LEE and JAVA JIM, and much more. Send for your copy to P.O. Box 3, Rayleigh, Essex at only $£ 1.00$ plus 30 p postage

COMPUTERS FOR SALE

ATARI 400, data recorder, joysticks, manuals, etc. £95 o.n.o. Sony Betamax VCR, 10 blank tapes, unused $£ 280$ o.n.o. Phone: Mrs. Grayson, Canterbury 65066 (evenings) or 65367 (daytime).

If you would like to place an advertisement in this section, here's your chance to tell Maplin's 200,000 customers what you want to buy or sell, or tell them about your club's activities - absolutely free of charge. We will publish ás many advertisements as we have space for. To give a fair share of the limited space, we will print 30 words free of charge. Thereafter the charge is 10 p per word. Please note that only private individuals will be permitted to advertise.

Commercial or trade advertising is strictly prohibited in the Maplin Magazine.
Please print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send replies to Box Numbers to the address below. Please send your advertisement with any payment necessary to: Classifieds, Maplin Mag., P.O. Box 3, Rayleigh, Essex SS6 8LR.
For the next issue your advertisement must be in our hands by 5th October 1984.

DRAGON 32 Computer with joysticks, £95. Many games and peripherals also for sale. D.Kavanagh Tel: Tiptree 817124
ZX81 + 16K RAM with Maplin full-size Keyboard with a Modified socket. Hardly used, good condition, £45's worth of software, PSU, leads and manual, cost over $£ 150$. Sell for $£ 75$ o.n.o. Sae to Ifan Williams, Maescriau, Llanwrin, Machynlleth, Powys, SY20 8NB.
SECONDHAND ZX Spectrum tapes for sale, all originals, packs of four tapes from $£ 10$. Send sae for lists to: M. Graham, 1 The Cottages, Dovenby Cockermouth, Cumbria, CB13 0PN. COLOUR GENIE 16K Computer +16 K RAM chips, upgraded BASIC, circuit diagrams for micro and interfaces, still in box $£ 150$ o.n.o. Phone (02273) 69108 after 5 pm weekdays or any time weekends.

MUSICAL FOR SALE

RARE OPPORTUNTTY due to unforseen infirmity new 'Wersi' Cosmos electronic organ, normally retails at $£ 4000+$, bargain $£ 2,300$. Tel: 0222 766414 (Cardiff). Will consider good video in part exchange.
MAPLIN MES53 Organ, partially assembled to good standard. All circuit boards, DMO2T master oscillator and instruction leaflets MES 51-55. Component value over $£ 300$. Detailed list available. Offers? Chippenham (0249) 650926.

MAPLIN MATINEE Organ, good working order, hardly used, $£ 475$, Archer, Felixstowe 283452. CRUMAR COMPOSER Polysynth, mono, poly, organ and strings + 4 octave keyboard. Touch and breath modulation etc. Home use only, 1 yr old, cost $£ 800$ sell $£ 350$. Tel: Bradford (0274) 685926 evenings/weekends.

SYNTHESISER, based on 4600. Mostly working but not completely finished. Large wooden case with internal amps and speakers. Plug in PCBs, huge patchboard. £220 o.n.o. Cambridge (0223) 893593.

MAPLIN 5600 S Stereo Synthesiser,
fully tuned, perfect condition, plus demonstration cassette, books, pedals etc. offers around $£ 500$. Tel: Birmingharn (021)-523-7240
MAPLIN 5600 S , save $£ 200$ on the kit price and get a superbly built example - £495, Alphadac complete, cased, power supplies for all the modules you will ever want - $£ 250$, RSD Studiomaster Studio 4, the ultimate cassette multitrack -.$£ 595$, Synctrack - $£ 35$, Roland TB-303 - £155, Roland TR-606 - 1135 E\&MM 1.6 second DDL - $£ 225$, Cle master rhythm - $£ 60$. Comber, Tel: Ramsey (0487) 813961 - offers/package deals; genuine reason for reluctant sale.

WANTED

WANTED: MAPLIN touch sensitive electronic piano, complete and working. V.Hulme, 26 Lincoln Green Chichester, Sussex P019 4DN. WANTED: COPY of circuit diagram and/or PCB layout of a FM-transmitter $88-108 \mathrm{MHz}$ approx. 3 watt output: Please write to: Kristiansson, Kastrupgatan 9, S-16342 Spånga, Sweden. ALI REZA MAHABADI of 121 Emam Mousasadr Street, Rey Avenue, Tehran 11797, Iran, would very much like the gift of any of the following: TMS1000, AY-3-8710, TMS1601NLL, HM6147P, 7555.

With the increased price of petrol, it is now essential that the engine performance should be kept at its peak to give economical consumption. To obtain maximum combustion of the fuel, the ignition system must be maintained to the manufacturer's specification, the most important factor being the correct gap of the contact breaker points on the distributor. The most common method of measuring this gap is by a feeler gauge, which is not very accurate, because it does not allow for any wear or back lash on the distributor and can only give approximate results, which can be detrimental to engine performance, especially at higher speeds.

A more accurate method of measuring the gap is by using a dwell meter and measuring the number of degrees during which the contacts are closed, which is referred to as the dwell angle. Figure 1
closed. This angle can be increased by closing the gap, or decreased by opening the gap. See Figure 1. A Dwell Meter could be purchased at a cost of $£ 12$ upwards, but the dwell angle can be measured using a multimeter in conjunction with the simple circuit shown in Figure 2. The principle on which the dwell angle is measured, is by observing the duty cycle of the voltage waveform across the points. When points are open, the multimeter will read zero and when the points are closed, the multimeter will read 90.

Therefore, with the engine running the needle will take up a position on the scale proportional to the number of degrees in which contact points are closed, which is the dwell angle. Figure 3 shows the multimeter adjusted to 90 divisions and an indication of the reading with the engine running (as for a Vauxhall

owell Aivie MEASUREMENTS

illustrates the contact breaker points, cams, lobes and angles for points opened and closed as given for a Vauxhall Viva. This measurement is taken with the engine running which will compensate for any wear on the distributor components such as the spindle and cam lobes, thus averaging the error and obtaining the maximum results. The dwell angle varies with different ignition systems, but they are all designed with a dwell angle which will allow the ignition coil sufficient time to give maximum build up of the magnetic field, to produce the strongest spark at the plug points. The correct dwell angle for a particular make of car can be obtained by referring to the maker's Workshop Manual. For example:- Vauxhall Viva 1256 cc Engine number 1639738 onwards, the Cam Dwell Angle is 49 to 51 degrees.

In brief, the dwell meter measures the angle in degrees through which the cam rotates whilst the contacts are

Figure 1.

Figure 2.

Figure 3.
Viva). The circuit consists of a 47 k pot or preset connected in series with a diode BY127. Point (A) is connected to the C.B. terminal of the ignition coil and point (B) to the negative terminal of the multimeter. The multimeter is switched to 5 or 10 volts, and the positive lead of the multimeter is connected to the positive pole of the car battery. If the contacts are closed a reading will be obtained on the multimeter. If no reading is obtained the engine should be turned over until the
contact points are closed. With the contact points closed and a reading on the multimeter, switch on the ignition and adjust (Rl) until a reading of 90 is obtained on the multimeter. Start the engine at a normal tick over speed and you will note that the needle will drop back to a position on the scale proportional to the number of degrees in which the contact points were closed. i.e. The dwell angle.

If the dwell angle is not in accordance with the dwell angle stated in your repair manual, the points must be adjusted to give the correct dwell angle by closing the points to increase the dwell angle and opening the gap to decrease the dwell angle. If the reading is unsteady, you may be able to improve the condition by putting in a capacitor of about $0.047 \mu \mathrm{~F}$ to smooth the circuit as shown by dotted lines (C) in Figure 2. The

Figure 4.
diode BY127 prevents any current from feeding back from the ignition coil, so it is essential that it is fitted the correct way round with the cathode to the 47 k pot.

The above circuit can be accommodated in a small box as shown in Figure 4. A knob is fitted to the 47 k pot, and points (A) and (B) brought out on two terminals. The multimeter could also be used to carry out the following tests: Continuity Test, Circuit Tracing, Current Leakage, Battery Voltage and condition, together with testing for high resistance of any leads, switches or contacts. All of the examples shown applied to four cylinder engines. To measure the dwell angle on engines with more than four cylinders, the multimeter adjustment should equal the number of degrees between the lobes, which are as follows:
4 cylinder: 360 divided by $4=90$ (adjusted reading on meter) 6 cylinder: 360 divided by $6=60$ (adjusted reading on meter) 8 cylinder: 360 divided by $8=45$ (adjusted reading on meter)

To complete the engine tune, the checking of the dwell angle is followed by checking the timing with a timing light, adjusting the valves, cleaning and adjusting the plugs and setting the carburettor with a Colortune, or similar appliance.

by D. H. Jennings

Marketing Director, H\&T Components

ID Connector/Flat Cable, Design and Use

The development of flat cable technology in the early 1970's created problems of wire termination which remained largely unsolved until the introduction of insulation displacement termination techniques.

The requirement was to achieve simultaneous termination of a number of wires simply, quickly, cheaply and reliably. Insulation displacement connector technology or IDC as it is termed, has met all these requirements. This article attempts to help the reader to understand what it is, how it works and where and when it can be used. More ambitious readers can perform their own cable harness construction with relatively low cost tools but for the majority the quickest and simplest way is to purchase a ready made harness with the knowledge that it is easy to specify, well constructed and very reliable in use.

What is IDC?

To understand the what we need to consider the why; the evolution of IDC stems from the need to join together printed circuit boards and/or sub assemblies as well as peripheral equipment, with anything from five to sixty wires. The cables had to be compact and lightweight and to some extent replace co-axial and twisted pair as well as round harnesses. The superior mechanical and electrical performance of flat cable (Figure 1) as well as its improved flexibility made it ideal for use in interconnections in hitherto unattempted areas, including home computers, video
games, hi-fi equipment, apart from the traditional commercial and military electronics applications.

Having established the cable suitable for these applications the need arose to terminate the ends with some form of connector. To strip and solder up to sixty wires at either end of a short cable is extremely time consuming and fraught with problems of quality. Likewise, stripping and crimping wires, or stripping and wire-wrapping is equally time consuming, added to which there is the further need to provide some form of strain relief to prevent the connector and cable termination interface being compromised during use.

The solution when it came seemed so obvious that many users questioned its originality. In fact the concept used a combination of many ideas including crimping, wire wrapping, and clamping wires onto terminals. What was significantly different was that the technique enabled reliable connections to be made between the wire and connector without pre-stripping the insulation. It also enabled all of the wires in the cable to be connected at the same time.

Figure 1. Cross section through flat cable
September 1984 Maplin Magazine

Figure 2. Contact point between forks and wire

The principle of the contact termination is a ' V ' shaped slot into which the plastic coated stranded wire is forced. The insulation is displaced (hence the name) and the wire core is compressed between the forks of the contact, thus creating a number of contact points with the wire. The joint is similar in conception to a wire wrap termination, except in this case the contact surrounds the wire rather than the reverse (Figure 2).

In practical terms a connector, be it plug, socket, PCB transition, dip, card edge or input/output is identical in terms of termination and consists of a number of forks, a plastic cover, and in some cases a strain relief member. The flat cable is laid onto the back of the connector after which the cover is assembled. This sandwich is then placed in a press which is closed thus forcing the wires down into the forks and making an instant and complete termination.

Lest anyone think this technology low level; examination of the components will show precisely manufactured plastic and metal parts, which in themselves have to displace the insulation without shorting the wires together or creating open circuits (Figure 2).

Types of Connector

Differing needs inside and outside electronic equipment have generated a

Figure 3. P.C. Board header/socket
whole family of connector shapes and sizes. The two most commonly used connectors are the header and its mating socket (Figures $3 \& 4$). The header is mounted on the end of the printed circuit board and has conventional solder terminations which connect with the tracks on the board. The mating end of the header consists of pins to which the socket is plugged and secured with end latches (Figure 3). The header and socket are polarised to prevent reversed mating which could have disastrous effects on the equipment being connected.

Other members of the family include

PCB transition connectors which enable permanent connection to be made between flat cable and boards, dual in line plugs which provide a connection to the ubiquitous DIL socket (Figure 5), flat cable card edge connectors and the ever popular ' D ' miniature complete the family.

IDC Benefits

In conclusion, ID connectors and flat cable harnesses provide a reliable means of interconnecting electronic equipment and sub assemblies whilst eliminating time consuming cable preparation and
potentially unreliable connection points. The result is gas tight high speed termination interconnections, that can be relied upon to continue to give problem free service throughout their installed life. Furthermore they can be of particular help to the home constructor in providing a simple and reliable method of connecting flat multi-way cable to his PC board.

Maplin stock a wide range of IDC's, flat IDC cable and accessories (in 0.1 \& 0.05 inch spacing), for full details please see pages 82,179 and 185 of the 1984 Catalogue and the new products in the last issue of this magazine.

ONLY £2.80 A YEAR

The best way to buy a quarterly magazine is by subscription, because it's hard to remember when new editions are due.

And it's just as hard for newsagents to remember, which is why you may find our magazine hard to get. So make sure you get every issue of 'Electronics' by sending a subscription now. Clip the coupon below and we'll ensure that you get every issue of Britain's 'biggest selling electronics magazine in the UK', as soon as it's published.

P.S. Don't forget to renew your subscription, either!

Don't delay, send your cheque or postal order now to: Maplin Magazine Subscriptions Dept., Maplin Electronic Supplies Ltd., P.O. Box 3, Rayleigh, Essex SS6 8LR.

I enclose $£ 2.80$ (Overseas: surface $£ 3.24$, air $£ 6.84$) for 1 year's subscription to the Maplin Magazine.

Please start from Issue No. \qquad
Customer No. (if known) \qquad
Name
Address

Issue 13 on sale 9th November 1984.

1985 CATALOCUE

 On Sale IOHh November 1984The amazing Maplin Catalogue is here again! The new edition is packed with hundreds and hundreds of new electronic components to bring you right up to date with all the latest developments. As all home constructors agree (and a good many professionals too) the Maplin Catalogue is the one essential piece of equipment they need for their hobby. And now with all our
 prices on the page the Maplin Catalogue is better value than ever.

Pick up a copy as soon as it's published at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$. Alternatively, you can order a copy by post by sending $£ 1.75$ (including postage) to our Rayleigh address and quoting CA02C.

Overseas Prices

Europe surface mail

Project Book 6

VIC20 and 2X81 Talkbacks. Projects to enable these micro's to speak! Allophone based system gives unlimited vocabulary. Plus a fascinating article on speech synthesis techniques using allophones.
Scratch Filter. This tunable design will make those old scratched records playable again.
Bridging Module. Use this kit and two Maplin 75W MOSFET amplifier modules to make a superb 400 W amp. - with loudspeaker protection. Moisture Meter. A low cost project which enables you to check walls and floors for damp.
ZX81 TV Sound and Normal/Inverse Video. Your ZX81 can now give you sound directly on a TV, plus inverted video display facility.
Four Simple Veroboard Projects:- Portable Stereo Amplifier, Sinewave Generator, Headphone Enhancer and Stylus Organ
All this for only 70p. Order As XA06G (Maplin Project Book No. 6) Price 70p NV.

Electronics Issue 8

Copies of issue 8 are still available, contents include:

Modem/RS232 Interface for Spectrum computers, operates up to 2400 Baud, has self contained operating system. Synchime. Simulate bells, gongs, etc., with this interesting project.
Dragon 32 RS232/Modem Interface. Plugs directly into ROM expansion port, has programmable word format
 Codelock. A programmable electronic lock which has many applications. Logic Probe. Digital display instantly shows CMOS logic states Minilab Power Supply. A versatile unit for your test bench. Dragon 32 I/O Ports. Two 8 bit ports; plugs into cartridge socket. Doorbell for the Deaf. Flashes a bulb to attract attention.

All this for only 70p. Order As XA08J (Maplin Magazine Volume 2 Issue 8) Price 70p NV.

Electronics Issue 10
 Copies of issue 10 are still available, contents inc/ude:

Spectrum Easyload. Novel battery powered unit will enhance cassette loading with the Spectrum.
80 m Receiver. Single-sideband, direct conversion, easy to build and align. Fluorescent Tube Driver. An 8 Watt 12 Volt unit; ideal for camping, etc. 2.8kW Power Controller. A versatile device which will handle up to 2.8 kW . Auto-Waa. Automatically produces Waa-Waa type effects. Digi-Tel Expansion. Enables the Maplin Digi-Tel telephone exchange to be expanded to accommodate 32 extësions. Oric 1 Modem Interface. Connect the Maplin Modem to an Oric. Dragon Extendiport. This project enables the cartridge socket on the Dragon 32 to be brought to a more accessible position.

All this for only 70p. Order As XA10L (Maplin Magazine Volume 3 Issue 10). Price 70p NV.

Electronics Issue 7

Copies of issue 7 are still
available, contents include.

CMOS Crystal Calibrator. A device which enables Radio Amateurs to check receiver calibration \& Amateur Band positioning.
DX'ers Audio Processor. Improve the performance of your communications receiver - no modifications needed. Enlarger Timer. An accurate timer with a display that allows it to be used for colour enlarging.
Sweep Oscillator. A useful easy-to-build item of test equipment. VIC20 \& ZX81 Interfaces. Connect either of these computers to modems, printers, VDU's or any other RS232 compatible device.

All this for only 70p. Order As XA07H (Maplin Magazine Volume 2 Issue 7) Price 70 p NV.

Electronics Issue 9

Copies of issue 9 are still available, contents include:

Spectrum Keyboard. 47 full size, full travel, keys; including single key Graphics, Shift lock, Delete, etc. Plugs directly into expansion port, VIC Extendiboard. Provides three expansion ports - one switchable. Oric Talkback. A speech synthesiser for the Oric 1 with vast vocabulary. Infra-Red Movement Detector. Fitted
 outside can detect people 30 m away.
 TDA7000 FM Radio. Easily built radio - requires no alignment. ZX81 High Resolution Graphics. Full 256×192 fine pixel display, draw patterns, textures, etc. Operates from extended BASIC. Ten More Projects! including; Dynamic Noise Limiter for personal stereo, Logic Pulser, 1 K Extendi-RAM for ZX81, TL/RS232 Convertor, Pseudo Stereo AM Radio, plus lots more.

All this for only 70p. Order As XA09K (Maplin Magazine Volume 3 Issue 9) Price 70p NV.

Electronics Issue 11

Copies of issue 11 are still available, contents include:

Mapmix. Six channel mono/stereo, battery operated audio mixer. Xenon Tube Driver. Compact driver, module with internal strobe oscillator Enlarger Exposure Meter. A simple \& inexpensive meter with a wide range. 8 Channel Fluid Detector. Monitor fluid level with 8 LED display or check for fluid level in up to 8 containers. Servo \& Driver Module. Complete
 servo mechanics \& driver module kit. Mark II Noise Reduction Unit. An enhanced design of the Noise Reduction Unit, improves signal-to-noise ratio by 30 dB . Cautious Ni-Cad Charger. This advanced design features; multiple cell charging, auto discharge, fast charge \& much more Motherboard for the BBC Micro. Gives easy access to ports.
All this for only 70p. Order As XA11M (Maplin Magazine Volume 3 Issue 11) Price 70 p NV.

[^0]: Maplin Magazine September 1984

[^1]: A complete kit of parts (excluding Optional items) is available. Order As LK52G (Comprtadrum Kit) Price $\mathbf{£ 9 . 9 5}$
 The Printed Circuit Board used in this project is available separately. Order As GB72P Computadrum PCB Price $£ 2.95$

