THE Nol MONTHLY FOR THE ELECTRONICS \& MUSIC HOBBYIST

PA SIGNAL PROCESSOR HIGH QUALITY AUDIO CONTROL WITH LIMITER PPM \& ACTIVECROSSOVER
HEXADRUM
A NEW STYLE TOUCHSENSITIVE ELECTRONIC MUSIC MAKER
CAR AERIAL BOOSTER BOOST YOUR CAR RADIO AM/FM RECEPTION
POWERCOMP
MICRO-PERIPHERALS POWER SUPPLY UNIT
PLUS

* MODEL CAR RACE STARTER * CASIO VL~TONE REVIEW * INSTRUMENT SYNTHESIS FOR MICROCOMPUTERS
* IRMIN SCHMIDT COMPOSING ON HIS PLANET

HOME * WORKSHOP *VEHICLE *EDUCATION * COMPUTING * ELECTRO~MUSIC

"Mighty Mite Products are Distributed Exclusively in the U.K. by Rosetti Limited. For full details, write or phone, The House of Music, 138/140 Old Street, London ECIV 9BL

August 1981

Editor

Mike Beecher
Art Editor
Peter Blackmore
Production Manager
Brian Searle
Editorial Secretary
Sue Forster
Technical Illustrators
John Dudley
David Stacey
Roy Smith
Photography
lan James
Consultants
Projects
Robert Penfold
Circuit Design
Chris Lare
Electro-Music
Vince S. Hill
David Ellis
Microprocessors
Peter Kershaw
Music Synthesis
Tim Souster
Studio Recording
Mark Andrews
Education
Steve Leverett
Hi - Fi
Jeff Macaulay
TV \& Video
Andy Emmerson
Stage Equipment
Ben Duncan
Organ Electronics
Ken Lenton-Smith
Guitar Electronics
Adrian Legg
Percussion Electronics
Warren Cann
Electronics News
Mark Space
Book Reviews
Nigel Fawcett
Microcomputers
Graham Knight
Software
Graham Daubney
Course Writers
Norman Butler
Graham Hall
Technical Lab
Bob Kirsch
Dave Goodman
Studio Technician
Glenn Rogers

100 Pages for the Electronics and Music Hobbyist!

Editorial Offices

282 London Road
Westcliff-on-Sea
Essex SS0 7JG
Tel: (0702) 338878
Advertisement Manager
Alan Gibbs. Tel. 01-527 3376
Advertisement Sales
Terry Day
Dennis Hill
Advertisement Offices
Electronics \& Music Maker
Hillcroft House
16 The Avenue
Highams Park
London E4 9LD
Tel: 01-527 3376

Published by

Maplin Publications
282 London Road
Westcliff-on-Sea
Essex SS0 7JG
Tel: (0702) 338878
Distributed by
Cemas Limited
24 Bridge Street
St Ives
Huntingdon
Cambridgeshire PE17 4EG
Tel: (0480) 63942

Printed by

Eden Fisher (Southend) Limited
Typeset by
Quillset Typesetting

Subscriptions

Rates for 12 issues:
UK \& Overseas Surface: $£ 9.90$
Europe: $£ 11.64$
Airmail: $£ 25.20$
Special Offers (Overseas)
LP - extra 56p on price Cassette - extra 19p on price

Copyright

All material is subject to world wide Copyright protection, and reproduction or imitation in whole or part is expressly forbidden. All reasonable care is taken to ensure accuracy in preparation of the magazine but Maplin Publications cannot be heid legally responsible for its contents Where errors occur corrections will be published as soon as possible afterwards. All prices and data contained in advertisements are as ascertained to be correct at the time of going to press. Permission to reproduce printed circuit board layouts commercially or marketing of kits must be sought from the Publisher. © Copyright 1981 Maplin Publications.

CONTENTS

ELECTRONICS Page
PA Signal Processor Chris Lare 6
Powercomp Trev Miller 14
Car Aerial Booster Robert Penfold 18
Hexadrum 21
The Matinée Organ 26
Model Car Race Starter 38
Circuit Maker 42
Project Wiring 46
COMPUTINGMicro-Music
Graham Knight 49
Basically BASIC Graham Hall 52
Wordmaker Extra 53
MTU Instrument Synthesis David Ellis 54
Software 57
ELECTRO-MUSIC
Resynator Synthesiser Review 60
Casio VL-Tone Review 61
Irmin Schmidt on his Toy Planet 62
Organ Talk 67
Harmonics 69
Working with Video 73
Hot Wiring your Guitar 74
Hi - Fi 75
Are all those microphones necessary? Mike Skeet 76
NEWS
Education 78
Book Reviews 79
Music Maker Equipment Scene 80
E\&MM Subscriptions, Binders 81
America 82
E\&MM Cassettes 83
Record Reviews 84
Industry Profile - Fane Acoustics Ltd 86
Pink Floyd - 'The Wall' concert Glenn Rogers 90
Events 91
E\&MM Special Offers 91
New Products 92
Next Month 93
E\&MM Classified 94
Musing 95
E\&MM T-Shirts 95
Advertisers Index 95

ETI VOCODER

COMPLETE KIT ONLY $£ 195$ + VAT!

Features as a construction article in Electronics Today International this design enables a vocoder of great versatility and high intelligibility to be built for an amazingly low price. 14 channels are used to achieve its high intelligibility, each channel having its own level control. There are two input amplifiers, one for speech either from microphone or a high level source e.g. mixer or cassette deck and one for external excitation the substitution signal) from either high or low level sources. Each amplifier has its own level control and a rather special type of tone control giving varying degrees of bass boost with treble cut or treble boost with bass cut. The level of the speech and excitation signals are monitored by LED PPM meters with 10 lights - 7 green and 3 red which indicate the level at 3 dB steps. There are three internal sources of excitation-a noise generator and two pulse generators of variable frequency and pulse width. Any of the internal sources and the external source can be mixed together. There is a voiced/unvoiced detector which substitutes noise for the excitation signal at the points in speech where the vocal chord derived sounds of the speaker are substituted for by the unvoiced sounds of sibilants, etc. There is a slew rate control which smooths out the changes in spectral balance and amplitude enabling a change of the speech into singing or chanting and other speclal effects. A foot switch is provided to permit a complete freeze in spectral balance and amplitude whenever required. An LED on this indicates when the freeze is in operation.

An output mixer allows mixing of the speech, external excitation and vocoder output. The majority of the components fit into the large analysis/synthesis board with the rest on 8 much smaller boards with the controls and sockets mounted on them for ease of construction. Connectors are used for the small amount of wiring between the boards.
The kit includes fully finished metalwork, professional quality components (all resistors 2% metal oxide), nuts, bolts, etc-even a 13A plug!

TRANSCENDENT 2000 SINgLE BOARD

Designed by consultant Tim Orr (formerly synthesiser deslgner for EMS Ltd.) and featured as a constructional article in ETI, this live performance synthesiser is a 3 octave instrument transposable 2 octaves up or down giving sweep control, a noise generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precislon components to ensure tuning stability amongst its many features.
The kit Includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film), and it really is complete - right down to the last nut and bolt and last piece of wirel There is even a 13A plug in the kit - you need buy absolutely no more parts before plugging in and making great musicl Virtually allthe components are on the one professional quality fibreglass PCB printed with component locations. All the controls mount directly on the main board, all connections tothe board are made with connector plugs and construction is so simple it can be built in a few evenings by almost anyone capable of neat solderingl When finished you will possess a synthesiser comparable in performance and quality with ready-built units selling for synthesiser comparable
many times the price.
many times the price.
Comprehensive handbook supplied with all complete kitsl This fully describes Comprehensive handbook supplied with all complete kitsl this fully describes
construction and tells you how to set up your synthesiser with nothing more elaborate than a multi-meter and a pair of ears!

Cabinet size 24.6"

CHROMATHEQUE 50005 CHANNEL LIGHTING

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward. Kit includes fully finished metalwork.
 fibreglass PCB controls, wire etc. - Complete right down to the last nut and boit!

MANY MORE KITS AND ORDERING INFORMATION ON PAGE 33

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3WW
(STD 0264) 64455 (STD 0264) 64455

DJ90 STEREOMIXER as being featured in Electronics Today International - July issue! COMPLETE KIT ONLY $£ 97.50$ + VAT!
This versatile new mixer, shown fitted to our console, has 2 stereo inputs for magnetic cartridges, a stereo auxilliary (e.g. cassette or jingle machine) input and a microphone input. The decks can be automatically panned either fast or slow and all 3 music inputs can be mixed with slider controls. There is a $\mathbf{5}$-section graphics equaliser and a beat-lift control. Also there is a voice-over unit (ducking) and an override button for interrupt announcements. The microphone input can be modulated at a variable rate to produce 'growl' effects and there is monitoring of any music input (pre-fade listen) via the stereo headphone socket and a pair of LED PPMs. The kit includes fully finished metalwork fibreglass, PCBs, of LED PPMs. The kit includes fuly finished metatwork fibreglass, PCBS, controls, wire etc. - complete down to the last nut and bolt the console
is shown fitted with two $19^{\prime \prime}$ panel units.- a Chromatheque 5000 lighting is shown fitted with two 19 "panel units-a Chromatheque 5000 lighting
controller and an SP2.200 stereo $100 \mathrm{~W} /$ channel power amplifier. For a controller and an SP2.200 stereo $100 \mathrm{~W} /$ channel powe
$200 \mathrm{~W} /$ channel system two SP2-200s could be fitted.
Power supply for mixer with screening metal box $\mathbf{£ 9 . 9 0 + V A T}$. Console complete with switch panel, lid feet and carrying handles $\mathbf{E 6 9 . 5 0 + V A T}$ BSR P256 - their latest belt-drive disco turntable $£ 29.90+\mathrm{VAT}$.

POWInut and bolt!

SYNTHESISER

$15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)

1024 COMPOSER

COMPLETE KIT ONLY $£ 89.50$ + VAT!

Programmed from a synthesiser, our latest design to be featured in Electronics Today International, the 1024 COMPOSER controls the synth. with a sequence of up to 1024 notes or a large number of shorter sequences e.g. 64 of 16 notes all with programmable note length. In addition a rest or series of rests can be entered. It is mains powered but an automatically trickle charged Nickel-Cadmium battery, supplying the memory, preserves the program after switch off.
The kit includes fully finished metalwork, fibreglass PCB, controls, wire etc. complete down to the last nut and boit!

POWEFTRRAM

EFFECTS SYSTEM COMPLETE KIT ONLY $£ 49.50$ + VAT!

TEAC Portastudio

At last, affordable multitrack for every musician. TEAC's new Portastudio combines a mixer and multitrack tape recorder in one compact unit. The solenoid, cassette transport runs at twice normal speed and with the built in Dolby system produces remarkable sound fidelity. Precision heads enable four tracks to be recorded with full sel-sync and ping-pong facility. The mixer section accepts any signal with bass, treble, echo send and pan or each channel. These are switched from laying tracks to performing mixdown. The simplified monitoring allows you to listen to the mix you are recording, plus the tracks already on tape. Use the powerful internal headphone amplifier or an external speaker/ amp system. Track bouncing, signal
£539
£579 including
mike and cans processing, memory rewind and varispeed are more facilities that put this remarkable unit on par with what you will get from systems costing many times the price. Just plug in a microphone and a pair of cans and you have your own four track demo setup. You make the music, Portastudio does the rest. Full details on request.
specialise in professional audio equipment from major manufacturers. Call us with your system requirements. Our business is helping you with yours.

Comp-Cards

A new concept in neat and efficient parts storage. File your small components in these vacuum formed trays, each with 24 compartments, with see through, snap-on lids. The modified ring binder takes up to 7 cards - that's 168 orderly locations in the size of a book. Ideal for servicing, constructors and research work.
A unique range of add-on signal processors for

Compressor $£ 31.97$ Variable threshold and speed give scope for effects Parametric $£ 31.97$ Low and high band, tunable equaliser design Booster $£ 33.12$ Four way line amplifier solves all matching problems Compander $£ 34.27$ Up to 30 dB of noise reduction for semi-pro recorders Reverb $£ 33.12$ Custom spring and variable EQ ensure a natural sound Power Supply £28.52 Mains operated, will power up to four Accessit units RacKit £19.55 Mounts three Accessit units to standard 19in rack
Send for the new data folder including specification cards, application notes, review reprints and details of the 21 day free trial offer.

£35.95 Microchip

The revolutionary musical instrument that turns you into an instant musician. Order the Casio VL-Tone now, and try it out at no obligation for 14 days.

SECK

£108. 33
Professional
Mixer in
Kit Form ASSEMBLED

A six input stereo mixer featuring wide range gain, treble, bass, echo, foldback and pan on each channel. For compact PA, keyboards, stage monitoring or recording, the ultra slim design is at home anywhere.

Books

"Are you ready for Multitrack?" explains recording techniques from sound on sound through to eight track, with many pages about The equipment to use.

"The Multitrack

 Primer" from TEAC is a practical guide to setting up a home studio with many tips on wiring, acoustics, mike placement etc. The book is packed with superb illustrations. The best guide around by far.$£ 3.50$

ecechaniles

For the electronic hobbyist, from beginner to skilled enthusiast, E\&MM provides building projects for the home, workshop and vehicle as well as its specialist area of electro-music.

Even prior to the start of E\&MM in February this year, the magazine's launch publicity resulted in our projects research team being inundated with offers from established and prospective writers

The general reader with good experience of electronics design and construction may not realise that we are pleased to consider and even develop, whenever possible, projects that will be of value to hobbyists.

Our contributors come from all walks of life and have included teenagers who have plenty of ideas but not always the knowledge to utilise latest devices, specialist

Projects in the Making!

by Mike Beecher, Editor Electronics \& Music Maker.

engineers who present their projects

 immaculately, musicians with a host of interfacing, effects and instrument designs to be solved, and senior citizens having years of involvement in dabbling with electronics.A major consideration for a project submitted is that they are tried and tested designs. Our contributors have to follow a publication plan that guarantees the project definitely works and ensures that the circuit diagrams, printed circuit boards and parts allocated for it are correct.

First, the design, description and circuit diagrams are checked by myself and the projects team for preliminary approval as to its suita-
bility for publication. Computer filing of many published electronics projects allows us to check the originality of the proposed project.

The next stage is for the author to submit his prototype and this is thoroughly tested in our technical lab against the specification and for faults.

An important extra stage in the development of a project follows - the building of a second 'production' model using our own specially designed printed circuit boards or Veroboard etc, plus components that have been checked for availability.

We always provide a supply source to enable readers to buy all the necessary electronic components and ready-made printed circuit boards. Everything down to the last
nut and bolt is specified as far as possible by the contributor.

Finally, the text for the article to be published is checked by the projects editor and along with sufficient photographs is prepared for printing by our editorial staff.

Having a technical lab, as well as an electro-music studio as part of our overall publication resources, en sures that the latest circuit components are used and serves to update not only the reader, but our contributors as well with the most suitable devices.

Projects always aim to be of good quality and low cost, providing a direct benefit for the hobbyist in making with electronics.

Dear Editor,

The balanced-line system described by Chris Lare should be very useful, but I think the battery-switching arrangements could cause problems. In the line driver a par-tially-inserted (or half-pulled-out) jack-plug will put the right-channel microphone in series with the battery supply, when the tip of the plug touches the 'ring' contact of the jack. Some microphones can stand this, but others most definitely can't. Likewise in the line receiver a partially-inserted plug puts 9 V on to the input of the following mixer or amplifier - and that could do somebody's speakers a power of no-good Further, in both units the whole supply current always has to flow through a plug. and-socket connection that is directly in series with the signal circuit, and so the slightest movement of the plug will cause noise.
Fortunately these defects can all be eliminated very simply by transferring the switching action to the 5 -way DIN connectors. In each unit, battery negative is removed from the 'sleeve' contact of the stereo jack socket and transferred to pin 2 of the DIN socket, from which the existing earth connection is removed. (The earth connection is not removed from the shell of the socket.) Then in each DIN plug pin 2 and the shell are connected together as well as to the screen of the cable. The stereo jack sockets may be left as they are, or replaced with mono ones (cheaper!)
E. Jones

Shropshire
All the high impedance microphones used with the prototype boxes utilised an output transformer, and thus any problems due to partially Inserted jack plugs were not relevant since no DC path to the 'works' existed. However, many microphones, most notably low impedance types without a transformer may be damaged if plugged in by mistake. In addltion, although the ring
of the plug will be at 9 volts, it is fed through a high impedance. Having said this it is wise to accept that accidents and abuses do occur, and the idea of using the DIN Iconnector is interesting. This will avoid any problems with the microphones, but will not really help at the receiver end since a large $D C$ surge will appear on the output as the capacitors charge up anyway. To add a slow switch on circuit would add as many components as the basic clicuit and was not considered reasonable. Like all audio, connections must be made with the volume down.
If a DIN style switch is used, very high quality connectors must be used, the cheaper plastic style tarnish very quickly resulting in poor chassis connections while the pin 2 connection is still good resulting in far more noise than would ever occur through using the jack switch.
The ideal solution, and one whichavoids all these problems is a simple switch added to the circuit at the relevant point; or is so ideal after all - having left it on overnight a couple of times and found the batteries flat Chris Lare

Dear Sir,
I have been a 'fan' of electronic music for many years now. As a matter of fact it was Kraftwerk that sparked my interest off in 1974 with the famous "Autobahn". One item of interest is that on this LP Kraftwerk. used an electronic drum system of their own design. In this system there is an electrical contact between the drum stick and a 'conductive' drum pad. The drum stick itself was connected to the system by an ordinary guitar type lead. All this long before the electronic drum machines we know so well today.
Kraftwerk are now touring Britain, so how about a feature on this remarkable group?

Send to: Reader's Letters, Electronics \& Music Maker 282 London Road, Westcliff-on-Sea, Essex SSO 7JG.

I have just purchased a Moog Prodigy synthesiser but I find that I am the only person I know who likes this area of music. Therefore, I feel it would be useful to people like myself if you ran a section where budding musicians could write in, to make contact with fellow electro-musicians, perhaps indicating their level of skill, thus encouraging the formation of new groups or people to play together just for the fun of it.
D. Jones

Bangor-on-Dee, Clwyd
An interview with Kraftwerk is planned and we've taken you up on your second sugges. tion as you'll see in our new Classified section this month.

Dear Sir

I have recently made two of your car battery monitors (E\&MM March 1981) and । require help on two points
First, I notice that LED 1 tends to glow faintly permanently, although the opera tion of the remainder of the LEDs appears normal. Is this correct? Or, what should I do to correct it. (Incidentally, I have added $2.2 u F$ tant. to the supply leads to absorb supply spikes and this appears to have made no difference.)

Second, I notice that the LEDs are sometimes a little too faint to see in sunlight conditions. R2 is the brightness control. What are the permissible limits to brighten the LEDs without over-running either the chip or the LEDs? (I am operating the chip In the dot-mode.) If i can brighten the LEDs I intend to use a CMOS switch with a control from the lights to vary the LED brightness.

Richard Grant
Newcastle-on-Tyne
Assuming that there are no wiring errors in your unit the most likely cause of the
problem is a faulty LM3914. The maximum LED current the LM3914N can supply is 30 mA and this would require R2 to have a value of 400 ohms (390 ohms is the nearest preferred value). This current is only available if the device is used In the 'dot' mode, since its maximum dissipation would probably be exceeded if it were to be used at maximum current in the 'bar'mode.

Dear Sir,
Please could you answer the following: Would the MOSFET amp featured in your June issue be suitable for a Bass Guitar? Secondly can you recommend a suitable Pre-Amp with Volume-Bass-Treble?
K. Ritch

Deerness, Orkney Isles
The Mosfet Amp has been tried with Gibson and Fender guitars along with various speaker cabinets and produces a 'Punchy sound at low frequencies and high sensitivity to the upper harmonics. Ideal for use with bass-lead guitars and all keyboard instruments.
A pre-amp with volume, bass, treble and many extras specifically for use with guitars keyboards will soon be published in E\&MM, so keep watching!

Dear Editor

Congratulations on a superb magazine. It's just what I have been looking for something constructional as well as good write-ups on electronic music. It would be great if you could publish a rhythm box or just a circuit similar to the one used in the Matinée Organ. Good luck in the future and keep up the good work.
P.S. Great sweatshirts!
C. J. Nash

Cardiff

PA. SIGNAL PROCESSOR

 Part 1

 Part 1

 by Chris Lare

 by Chris Lare}

A professional quality stereo audio control system for group and theatre PA use featuring:
 * Audio Limiter
 \star LED Peak Program Meters
 * 3-way Active Crossover \star Balanced Line Output

Nowadays it is usual for a rock group to perform on stage with a high power sound system termed the 'PA'. This two part article describes designs for an audio limiter, a peak program meter and a three band active crossover to help exploit the full capabilities of small and medium sized PA rigs. Although the prototypes were built as stand alone pieces of equipment containing all these functions, there is no reason why the individual designs cannot be installed in existing equipment thereby providing a cheaper form of upgrade.

Many smaller PA rigs used for Pub and Club work expand as and when money is available and as a result are often not as efficiently organised as they would have been had the entire sum of money been available at one time. Often, the quest for higher powers will have resulted in several amplifiers and speakers being purchased and run directly in parallel. The next step to change this form of system into a more orderly arrangement is often avoided because of an assumption of great cost (probably true) and a lack of suitable parts or designs. The E\&MM Signal Pro-

figure 1. PA Signal Processor block diagram.
cessor is intended to be added to such a system and will generally give a considerable improvement in sound quality, and possibly surprisingly, an increase in apparent volume level. The processor consists of three functional blocks: limiter, peak program meter and active crossover together with a power supply. The function of each block will be covered in some detail before the actual design and construction are described.

Figure 1 shows the block diagram of the stereo prototypes which were built into a $19^{\prime \prime}$ rack case. It is intended that this case should be used next to the mixer (or even disco deck), although there is no reason why it should not be used stage side, or why the various functions should not be split up, since each function is self contained. The high impedance input of -14 dB sensitivity is connected directly to a level control and thence to $a \times 1$ buffer to drive the limiter. The limiter can be disabled as required. The output from the limiter is available directly (PA Slave Output) to drive additional PA systems or tape recorders, or via a three band crossover with individual level controls on each band. A peak program meter (PPM) uses a convenient output from the limiter (although it also may be used on its own) and displays the audio level as a moving dot on a line of light emitting diodes. Two extra switches are included, a mono switch which is very necessary if the signal source should fail in one channel, and a mute switch which simply switches off all the sound outputs without affecting the meter - useful for setting up levels.

The limiter and PPM will be covered in this part, the active crossover, a suitable power supply and an optional balanced line driver in the second and final part next month.

In the circuit diagrams which follow only the right hand channel is drawn. The components for this channel all have a fixed offset numbering starting at 100 , whereas those in the left channel start at 200 . Some components do not have an offset, these are common to neither channel and are all to do with the power supply or decoupling.

During construction, particularly if the complete unit is to be built, it is suggested that each board (or set for the PPM) is tested before final installation because it is much easier to debug on a bench. Testing procedures for each board are given after the constructional description, although final calibration is

Figure 2. Ideal limiter characteristics

Figure 3. Limiter block diagram.
left until the end of the second article.

It is strongly suggested that only new and branded components are used in the construction of this equipment since it must be reliable even after a few years on the road.

The Limiter

A Limiter is inserted into the audio path to prevent overload of the PA system caused by sudden peaks in level (e.g. shouting down a microphone). In this way a limiter performs no action upon the audio signal, until the level of that signal reaches a pre-determined threshold. Once the threshold is exceeded the limiter progressively attenuates the signal keeping the output constant at the threshold level. The response of an ideal limiter is shown in Figure 2.

A limiter should not be con fused with a compressor, although the action is very similar. A compressor reduces the dynamic range of the signal over the entire range and does not have a defined threshold like the limiter. As a result the effect of a compressor is much less obvious, but generally compressed music is much less exciting to listen to because of the lack of dynamic range. Compression is nearly always used when a record is cut, since the dynamic range of a record is low. As stated, in the PA facility the limiter is used more for protection and does not act on the music if the system is properly set up. Thus a limiter is more suited to the requirements here.

A limiter must be capable of reducing the level of music quickly, so as to prevent the overload; 10 ms is usually considered a suitable time. The decay time (time to return the level to its original level) must be reasonably
long to help avoid sudden shifts in music level. It is important to note that the attack time should not be less than 10 ms because the bass response will be affected.

The effect of a limiter is audible since the music level will dip (the effect known as 'breathing'), but the overall effect is far less objectionable than the distortion generated by overload.

A block diagram for a limiter is shown in Figure 3. The output from the voltage controlled attenuator is fed to a precision rectifier, and thence to an attack/ decay time constant. The voltage output of the time constant reduces the signal level if the threshold is exceeded by increasing the attenuation. This system is a feedback control path, essential because the VCA chosen does not have a linear voltage/attenuation characteristic.

Stereo Limiters

In the PA signal processor a stereo limiter is required and the best way to do this is open to some debate. A compound limiter with a common rectifjer/time con-
stant is apparently the best way since any gain reduction will occur on both channels, thus preserving the stereo image. However, such a system will not detect overload in one channel if the other is lightly driven because of the combined nature of the control path. The logical development is to provide a peak detector for each channel and develop a common control voltage from this. When additional circuits are added to allow differences in the VCA module to be cancelled out, the circuit becomes very cumbersome. Accordingly a pair of identical but separate limiters were used. This proved to perform as well as the complex limiter in actual use. Obviously, the image problem still exists, but this was not very noticeable; again it should be remembered that the limiter will not operate during normal performance.

The Circuit

Figure 4 shows the circuit of the right hand channe! of the limiter. The V.CA employs a common and cheap 2 N3819 FET. Experiments were done with a new generation VCA integrated circuit (the B\&B audio 1537) but this was found to generate immense distortion under severe overload, most probably due to cross-modulation in the input stage. Admittedly, this limiter will distort at the same level, but the distortion is much less objectionable and may be regarded as 'soft'.

The source of the 2 N3819 FET is held about 4 volts off ground by the resistor capacitor combination. Now, as the FET control voltage (on the gate) starts to rise above the pinch off level the FET resistance starts to fall, thus attenuating the signal by virtue of R103. Since the FET resistance is determined by the gate/source voltage, it is obvious that by increasing the source voltage the

Figure 4. Limiter circuit.
effect of a given gate voltage is reduced. The source voltage is determined by the preset position, and hence the preset serves to set the limiting threshold. It is well known that the distortion produced by an FET can be much reduced by superimposing half the drain voltage on the gate voltage - C102, R104.

The output from the VCA is fed to the $\times 5$ buffer to increase the signal level to OdB, which in turn feeds the following stages and the precision rectifier, built around IC101. The operation of such a rectifier is slightly tricky and it will be more fully understood if it is realised that the positive and negative signal paths are completely different. If the input is negative, then D102 and R112 conduct creating a virtual earth at pin 6 of IC101. This effectively 'earths' the end of R116. The negative signal is also fed to pin 2 of IC101 and thus emerges as a positive signal, of the same amplitude. A positive signal, however, causes D101 and R113 to conduct, hence the input end of R116 goes negative. The positive signal is also routed by R114 and R115 and the resultant summation gives one 'unit' of negative signal since R116 is half R115 plus R114. This negative 'unit' is inverted by IC101a to again give a positive output. Thus both negative and positive inputs give positive outputs with the gain determined by R117). The output from this rectifier is smoothed by the time constant (D103, R120, C106 and R121) and fed to the gate of the FET. The limiter is disabled by shorting the time constant to ground, hence turn-
ing the FET hard off.
A bonus is available in that the precision rectifier output is always present and exactly follows the output signal level. As such, the output from the rectifier can be very conveniently used to drive the PPM, thus avoiding the need to provide another rectifier. The output level from the rectifier is reduced by R118 and R119 to a level suitable for the PPM.

The circuit diagram also shows the input buffer and the low pass filter. R102 is included to prevent damage to the IC when the mono switch is used. Note that the level input to the limiter should not exceed 200 mV RMS and an attenuator must be used if higher levels are required.

Construction

All the components for the stereo limiter and the buffers are mounted on one circuit board (Figure 5). The board is designed so that all the switch functions are available at the front of the board, thus minimising wiring. Note that alternative packages for 2N3819s exist and not all have the same pin layout.

Testing

Testing will be more easily accomplished if a scope and signal generator are available, but a meter can be used with less accuracy. Connect the board to a current limited supply and switch on. Check that the power rails are correct on each IC and then connect an audio input. Disable the limiters by linking the appropriate pins on the PCB. Check that the output is present and five
times larger than the input. Enable the limiter. Adjust the input level to be larger than 200 mV and then alter the presets. At some point it should be noticed that the output starts to be attenuated. Repeat for both limiters. If nothing happens check the output of the rectifiers

Limiter pin connections.

PARTS LIST FOR LIMITER BOARD AND BUFFER

Notes:

1. Component numbering for left and right channels runs 101, 102, etc and 201, 202, etc respectively. Components numbered $1,2,3$, etc are common to both channels).
2. All totals are for stereo.

Resistors - all $5 \% 1 / 3 \mathrm{~W}$ carbon unless specified

R101,111,112,113	220k	8 off	(M220K)
R102	5k6	2 off	(M5K6)
R103	47k	2 off	(M47K)
R104, 105,107	1 MO	6 off	(M1 MO)
R106	560 R	2 off	(M560R)
R108,119,120	1 kO	6 off	(M1KO)
R109,114	100k	4 off	(M100K)
R110,118	22k	4 off	(M22K)
R115	12k	2 off	(M12K)
R116	56k	2 off	(M56K)
R117	390k	2 off	(M390K)
R121	2M2	2 ff	(M2M2)
RV107	4 k 7 min . hor. preset	2 off	(WR57M)
Capacitors			
C101	22p polystyrene	2 off	(8×248)
C102	15 n polyester	2 oft	(8×71N)
Cl 103	47 u 10 V tantalum	2 off	(WW75S)
C104	150 u 16 V axial electrolytic	2 off	(FB55K)
C105,11,13	100 n polyester	40 ff	(BX76H)
C106	10 u 16 V tantalum	2 off	(WW68Y)
C12,14	100 u 16 V axial electrolytic	2 off	(FB49D)
Semiconductors D101,102	1N4148	4 off	(QL80B)
0103	0 A91	2 off	(QH71N)
TR101	2N3819	2 off	(QR36P)
\|C101,1,2	LF353	4 off	(WQ31J)
Miscellaneous			
\$2	SPST miniature toggle		(FH00A)
S3	DPOT miniature toggle		(FH04E)
	Printed circuit board		(GAO7H)

Figure 5. Limiter component overlay and PCB.

Figure 6. PPM circuit.
and the time constant, remembering that a standard meter will alter the time constant. The final setting up of this module will be covered in the last stages, once it is installed.

The Peak
 Program Meter

The peak program meter uses a string of 16 LEDs, of which the bottom 12 are green, followed by one orange and three red. The orange will be set to indicate an output of 0 dB , and thus the reds will indicate degrees of overload.

In this PPM only one led is lit at a time rather than the usual bar graph display, where all the leds up to the level point are lit. This means that the colour change that occurs indicating an overload is much more obvious particularly out of the corner of the eye when attention is focused on the stage. This type of display is termed a 'moving point' for obvious reasons. The PPM uses the output of the precision rectifier in the limiter section, but it is worth noting that the circuit will work with any audio signal, not necessarily rectified; in this case
only the positive peaks in the audio will register.

The Circuit

The LED string is driven by a Siemens UAA170L bargraph driver (Figure 6). This was chosen in preference to the LM3914 series because it offered a 16 LED resolution rather than just 10 from the National chip. The integrated circuit is connected according to the application notes, where $V_{\text {ref }}$ min and $V_{\text {ref }}$ max refer to the minimum display voltage and maximum voltage respectively. R130 determines
the LED current, which should not exceed 50 mA .

A PPM should have a fast attack time and a slow decay time, and since both are different from those used in the limiter, a different and slightly more complex peak detector is used to achieve an attack time of 5 ms and a decay time of 2 seconds. The detector employs a 311 com parator. When the voltage on pin 2 is lower than that on pin 3 the output of the comparator goes low, charging the capacitor by means of TR102 and the attack defining resistor R125. Obviously,
when the converse is true the open collector output of the comparator is held high by R123 and nothing further happens. The preset RV126, reduces the proportion of the capacitor voltage to allow calibration of the complete unit.

Construction

Three printed circuit boards are used, of which two are identical driver circuits. It is suggested that a socket be used for the driver ICs. The third board houses both sets of LEDs (Figure 7). Assemble the driver boards noting that the top board uses double-sided PCB pins for supply connections and insert the wire links into the display board, but do not insert the LEDs until the front panel is complete and final assembly is under way. Then, the LEDs should be fitted into the holes on the display board, but not soldered in. The board is then offered up to the front panel and bolted to the pillars. The LEDs are then guided into the relevant holes with a screwdriver, pressed into place and their wires soldered to the board and trimmed. Note that no LED holders were used in the prototype. The bottom driver board should now be bolted to a bracket, thence to the display board, and linked in with 8 pieces of bare wire. Test this board. The upper board may now be mounted in the same way and a $1 / 2^{\prime \prime}$ 6BA pillar mounted between the two boards to keep them steady. Three pieces of bare wire were used to connect the power to the bottom driver board, the wires being soldered to three doublesided PCB pins inserted into the top board.

PA Display component board.

Testing

Connect to a power supply and switch on. The bottom LED should light. Apply an audio signal and confirm that the display point moves. If nothing happens check the peak detector and if the display performs erratically a short between two drive lines or a broken drive line is nearly always the cause.

Resistors - all 5\% 1/3W carbon untess specified		
R122 56k	2 off	(M56K)
R123 1k0	2 off	(M1 KO)
R124 1k5	2 off	(M1K5)
R125 220R	2 off	(M220R)
R127 100k	2 off	(M100K)
R128,130 10k	4 off	(M1OK)
R129 8k2	2 off	(M8K2)
RV126 1 MO min. vert. preset	2 off	(WR77J)
Capacitors		
C107 22.16 V tantalum	2 off	(WW72P)
C108,110 100n polyester	4 off	(BX76H)
$\mathrm{C} 109 \quad 47 \mathrm{u} 25 \mathrm{v}$ axial electrolytic	2 off	(FB39N)
Semiconductors		
TR102 BC214L	2 off	(QB62S)
1 Cl 02 LM311	2 off	(QY09K)
IC103 UAA170L	2 off	(QY14Q)
LED 101-112 LED green 2.9 mm	24 off	(WL33L)
LED 113 LED orange 2.9 mm	2 off	(WL34M)
LED 114.116 LED red 2.9 mm	6 off	(WL32K)
Miscelianeous		
16 pin DIL socket	2 off	(BL19V)
Display PCB		(GA15R)
Display component PCB	2 off	(GA14Q)
Double-sided Veropins		(FL23A)
Brackets		
Bolt 6BA 1/in.		(BF05F)

AMPLIFIER WITH HEAT SINK

Which amplifier?

I.L.P. Amplifiers now come in three basic types, each of which is available with or without heatsink. Having decided the system you want - home hi-fi (models HY30, 60 or 120 for example), super quality hi-fi with extra versatility (MOS 120, MOS200) or Disco/PA/Guitar (HD120, HD200 or HD400) you will then decide whether amplifiers housed within their own heatsinks or plate amplifiers for bolting to a metal chassis will suit. With choice such as this and a brilliant new range of I.L.P. functional modules to choose from you now have the chance to build the finest audio system ever offered to the constructor.

BIPOLAR S		Standard, with heatsinks							Without heatsinks				
		OIST	drtion										
$\begin{aligned} & \text { MODEL } \\ & \text { MUMBER } \end{aligned}$	output POWER Watts rms	$\begin{gathered} \text { T.H.O. } \\ T_{48} \\ \text { of } 1 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \text { I.M.D. } \\ 60 \mathrm{H} 217 \mathrm{kHz} \\ 4: 1 \\ \hline \end{gathered}$	SUPPIY voltage TYPIMAX	S12E	${ }^{W}$ ams	PRiCE	vat	$\begin{aligned} & \text { MODEL } \\ & \text { NUMBER } \end{aligned}$	$\begin{gathered} \text { SIZE } \\ \text { in } \mathrm{mm} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { WT } \\ \text { gms } \end{array}$	PRICE	vat
hY30	15w/4.8	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	67.29	$\{1.09$					
нубо	$30 \mathrm{w} / 48 \Omega$	0.015\%	<0.006\%	$\pm 25 \pm 30$	$76 \times 68 \times 40$	240	c8.33	11.25					
HY120	$60 \mathrm{w} / 4.8 \Omega$	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	¢17.48	¢2.62	HY120P	$120 \times 26 \times 40$	215	[15.50	12.33
HY200	120wi4.88	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	f21.21	13.18	HY200P	$120 \times 26 \times 40$	215	[18.46	12.77
HY400	240w/4S2	0.01\%	$<0.006 \%$	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	[31.83	[4.77	HY400P	$120 \times 26 \times 70$	375	¢28.33	¢4.25

Protection: Load line, momentary short circuit (typically 10 sec Slew rate: $15 \mathrm{~V} / \mu \mathrm{s}$ Rise time: $5 \mu \mathrm{~s}$
S/N ratio: 100 db Frequency response $(-3 \mathrm{~dB}): 15 \mathrm{~Hz}-50 \mathrm{kHz}$
input sensitivity: 500 mV ms input impedance: $100 \mathrm{k} \Omega \quad$ Damping factor: $\left(8 \Omega / 100 \mathrm{H}_{2} \mid>400\right.$

HEAY	DUTY	with heatsinks						Without heatsinks					
H0120	60w 4.8 /	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	f22.48	[3.37	H0120P	$120 \times 26 \times 50$	265	¢19.84	12.98
H0200	120w/4.8ת	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 60$	620	127.38	¢4.11	H0200P	$120 \times 26 \times 50$	265	123.63	13.54
H0400	240w:4ת	0.01\%	<0.006\%	$\pm 45+50$	$120 \times 78 \times 100$	1025	[38.63	[5.79	HD400P	$120 \times 26 \times 70$	375	134.28	15.14

Protection: load line, PERMANENT SHORT CIRCUIT (ideal for discolgroup use should evidence of short circuit not be immediately apparent).
The Heavy Duty range can claim additional output power devices and complementary pratection circuitry with performance specs. as for standard types.

Profection: Able to cope with complex loads, without the need for very special protection circuitry (fuses will suffice).
Ultra.fi specilications:
Slew rate: $20 \mathrm{~V} / \mu \mathrm{s}$ Rise fime: $3 \mu \mathrm{~s} \quad$ S/N ratio: 100 db Frequency response (-3 dB): $15 \mathrm{~Hz}-100 \mathrm{kHz}$
Slew rate: $20 \mathrm{~V} / \mu \mathrm{s} \quad$ Rise time: $3 \mu \mathrm{~s} \quad$ S/N ratio: $100 \mathrm{db} \quad$ Frequency response $1-308): 15 \mathrm{~Hz}$ - 100 k
input sensitivity: 500 mV rms input impedance: $100 \mathrm{k} \Omega \quad$ Damping factor: $(8 \Omega) 100 \mathrm{~Hz})>400$

POWER SUPPLY UNITS

MODEL NO. FOR USE WITH		PRICE	VAT
PSU30	$\pm 15 \mathrm{~V}$ combinations of HY6/66 series to a maximum of 100 mA or one HY67 The following will also drive the HY6/66 series except HY67 which requires the PSU30.	¢ 4.50	£0.68
PSU36	1 or 2 HY 30	¢8.10	f 1.22
PSU50	1 or 2 HY 60	£10.94	£1.64
PSU60	$1 \times$ HY120/HY120P/HD $120 / \mathrm{HD} 120 \mathrm{P}$	£13.04	£ 1.96
PSU65	$1 \times \mathrm{MOS} 120 / 1 \times \mathrm{MOS} 120 \mathrm{P}$	£13.32	£2.00
PSU70	1 or 2 HY 120/HY 120P/HD $120 / \mathrm{HD} 120 \mathrm{P}$	£15.92	£ 2.39
PSU75	1 or 2 MOS $120 / \mathrm{MOS} 120 \mathrm{P}$	£ 16.20	£ 2.43
PSU90	$1 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{HD} 200 \mathrm{P}$	£16.20	¢ 2.43
PSU95	$1 \times$ MOS 200/MOS200P	£16.32	¢. 2.45
PSU180	$2 \times$ HY200/HY200P/HD200/HD200P or $1 \times$ HY400/ $1 \times$ HY400P/HD $400 /$ HD 400 P	£21.34	¢3.20
PSU185	1 or 2 MOS $200 / \mathrm{MOS} 200 \mathrm{P} / 1 \times \mathrm{MOS} 400 /$ $1 \times$ MOS 400 P	£21.46	¢3.22

FP480 BRIDGING UNIT FOR DOUBLING POWER

Designed specially by I.L.P. Ior use with any two power amplifiers of the with any two power amplifiers of the
same type to double the power output same type to double the power output
obtained and will function with any obtained and will function with any
I.L.P. power supply. In totaliy sealed case, size $45 \times 50 \times 20 \mathrm{~mm}$, with edge connector. It thus becomes possible to obtain 480 watts rms (single channel) into 8Ω. Contributory distortion less than 0.005%.
Price: $£ 4.79+72$ p. V.A.T.
£ 21.46

- - ELECTRONICS LTD.
 fREEPOST 2 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.

Telephone (0277154778 (Technical (0227) 64723) Telex 965780
Available also from MARSHALLS, TECHNOMATIC, WATFORD ELECTRONICS and certain other selected retailers.

OFA NEW Bra

Which modules?

In launching eighteen different units all within amazingly compact cases to help make complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the most versatile modular assembly scheme ever for constructors of all ages and experience. Study the list - see how these modules will combine to almost any audio project you fancy - and remember all I.L.P. modules are compatible with each other, they connect easily. Modules HY6 to HY 13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year no quibble guarantee.

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	MODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT	
HY6	MONO PRE AMP	Mic/Mag. Cartridge/Tuner/Tapel Aux + Volume/Bass/Treble	10 mA	f6.44	¢0.97	
HY7	MIONO MIXER	To mix eight signals into one	10 mA	£5.15	¢0.77	
HY8	STEREO MIXER	Two channels, each mixing five signals into one	10 mA	£6.25	£0.94	encapsulated and include latest design high quality
HY9	STEREO PRE AMP	Two channels mag. Cartridge/ Mic + Volume	10 mA	£6.70	£ 1.01	clip-on edge connectors.
HY11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	£ 7.05	¢1.06	
*HY12	MONO PRE AMP	To mix two signals into one + Bass/Mid-range/Treble	10 mA	£6.70	f 1.01	For easy mounting we recommend
* HY13	MONO VU METER	Programmable gain/LED overload driver	10 mA	$£ 5.95$	£0.89	B6 Mounting board for
HY66	STEREO PRE AMP	Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	£12.19	£1.83	$\begin{aligned} & \text { modules HY6 - HY } 13 \\ & 78 p+12 p . \text { V.A.T. } \end{aligned}$
HY67	STEREO HEADPHONE	Will drive headphones in the range of $4 \Omega-2 K \Omega$	80 mA.	£12.35	f 1.85	B66 Mounting board for HY66 - HY77
HY68	STEREO MIXER	Two channels, each mixing ten signals into one	20 mA	£7.95	f1.19	99p+13p. V.A.T.
HY69	MONO PRE AMP	Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£ 10.45	f 1.57	All I.L.P. modules include
HY71	DUAL STEREO PRE AMP	Four channels of mag. Cartridge/Mic + Volume	20 mA	£10.75	f 1.61	full connection data.
* HY72	VOICE OPERATED STEREO FADER	Depth/Delay	20 mA	Tobe	ounced	
*HY73	GUITAR PRE AMP	Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	£12.25	£ 1.84	
†HY74	STEREO MIXER	Two channels, each mixing five signals into one + Treble/Bass	20 mA	£11.45	£1. 72	
†HY75	STEREO PRE AMP	Two channels, each mixing two signals into one + Bass/Mid-range/Treble	20 mA	£10.75	£ 1.61	
†HY76	STEREO SWITCH MATRIX	Two channels, each switching one of four signals into one	20 mA	Tobe	ounced	I.L.P. Products are of British
†HY77	Stereo vu METER DRIVER	Programmable gain/LED overload driver	20 mA	£9.25	£1.39	Design and Manufacture.

*Ready August - may be ordered now
+Ready September - may be ordered now
All the above modules operate from $\pm 15 \mathrm{~V}$ minimum to $\pm 30 \mathrm{~V}$ maximum - higher voltages being
accommodated by use of dropper resistors. HY67 can only be used with the PSU 30 power supply unit.

TO ORDER USING OUR FREEPOST FACILITY

Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. If sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order. When ordering, U.K. customers must include the appropriate V.A.T. as shown.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

OF REEEINIIG YOUR ORDER

ALL WITH IIP ' 5 YEAR NO QUIBBLE GUARANTEE

POWERCOMP

\star Multi-purpose

* Overload indication on $\pm 5 \mathrm{~V}$ rails
* Current limiting
* Fully floating

by Trev Miller

Many constructors with micros are probably now considering adding peripherals to their systems, such as the Wordmaker, published in the June issue of E\&MM. The power supply for the central processor of such systems will rarely be capable of supplying the additional voltage and current requirements of peripherals. To overcome this problem a general purpose peripheral power supply (Powercomp) has been designed which should satisfy most micro users' additional requirements.

The power supply unit has four regulated voltage rails, whose outputs are fixed at $+12 \mathrm{~V},+5 \mathrm{~V}$,

-5 V and -12 V . The $+12 \mathrm{~V},-5 \mathrm{~V}$ and -12 V rails are current limited at 1 A , with fold back protection to $240 \mathrm{~mA}, 750 \mathrm{~mA}$ and 350 mA respectively. The +5 V line will supply up to $2 A$ continuous with a short-circuit current limit of 4A. The supplies are fully floating, with provision on the front panel for tying to mains earth. An indication that each line is up to its specified nominal voltage is provided by an LED above each output terminal. The LEDs on the two

5 V lines remain lit until the supplies are loaded down to about 4.5 V . No-load ripple on the lines is less 10 mV RMS, and at full load on every line, less than 50 mv RMS.

Circuit

The circuit diagram of the power supply unit is shown in Figure 1. A 60VA transformer (T1) provides outputs of 10 V and

15 V symmetrically about a centre 0 V tap. The 15 V and 10 V outputs are rectified separately by BR1 and BR2 respectively, providing $\pm 21 \mathrm{~V}$, smoothed by Cl and C 4 , and $\pm 14 \mathrm{~V}$, smoothed by C7, C8 and C11, under no-load conditions. When loaded, more than one volt may be dropped across each bridge diode and several volts of ripple will remain on each

Figure 1. The power supply circuit.

Figure 2. PCB Track and component layouts.

Completed power supply showing internal layout.
raw supply line. This ripple is normally rejected by the regulators, provided it remains above their minimum input voltage threshold. On each of the one amp lines, current fold back occurs at loads sufficient to cause ripple to appear on the outputs. The luF capacitors on the input and output of each regulator reduce the possibility of high frequency oscillation occurring.

Since no cheap, plastic case, two amp, five volt regulator is readily available, the five volt positive rail is regulated by a small 100 mA device boosted by a power transistor. The diode in the sense line of the regulator raises the voltage at its output by 0.7 V to compensate for the power transistor's Vae drop. The specified power transistor has sufficient gain to provide a current in excess of the rated output before the regulator is loaded to its limit. Ripple breakthrough on the +5 V line does not occur until the current drawn exceeds two amps, at which point indicator D5 will extinguish, giving a visual warning of overload.

Indication on the 12 V lines is provided by simple, series LED, Zener resistor networks. The knee in low-voltage Zener characteristics is not sufficiently defined to give good switching of the 5 V indicator LEDs, and since only 2.6 V of a 5 V supply remains after dropping 2.4 V across a green LED, a 2.7V Zener is hardly adequate. The step in the current to forward voltage relationship of simple diodes is similarly too illdefined to provide a sharp switchoff. The network used in the cir-
cuit provides a better cut-off to supply-undervoltage relationship. Considering the +5 V supply, as the voltage at the junction of R5 and R6 approaches the base voltage of TR2, the transistor switches off, reducing the current through D5 to almost zero. R5 provides the required load for D6 and R4 limits the 'on' current through D5.

Construction

The prototype was housed in a sturdy metal cabinet. Since the unit contains parts that are connected to the mains, operation without the cabinet securely tied to earth can be dangerous. One of the mains input plug mounting points, a transformer fixing point and the earth terminal on the front panel should all therefore be used as earth points. A metal washer used in place of the plastic insulator on the back of the earth terminal will effect the required earth when the terminal is wired.

The printed circuit board (Figure 2) carries all parts except the transformer and the other mains components, the LEDs and the output terminals. The board is mounted onto, the heatsink bracket, which also has the three one amp regulators, the power transistor and the two bridge rectifiers bolted to it. The heatsink bracket and heatsinks are best mounted on the backplate before assembly to the PCB. The two heatsinks are each held in place by a single No. 8 selftapping screw, also securing the heatsink bracket to the backplate. The aluminium plate sup-

Figure 3(a). Drilling and cutting of back panel.

Figure 3(b). Drilling and cutting of front panel.

Figure 3(c). Drilling of base plate.
plied with the case kit was used as the backplate, having better heat conduction than the plastic coated steel panel which was used as the front panel instead. The back panel must be drilled as shown in Figure 3(a) and the holes transferred to the heatsinks, located clear of the mains plug and the edges of the panel. A thermally conductive compound (e.g. Thermpath) should be used between all heatsink parts and the backplate as well as between the devices and the heatsink bracket. Mica insulators and plastic bushes (for nylon screws)
must be used to mount the regulators and power transistor to the bracket. Where tracks on the board pass close to the mounting holes. Insulating washers should also be used.

Front panel, bottom plate, back plate and a side plate all need to be drilled. Details are given in Figure 3 for all but the side plate, in which the holes provide ventilation for the transformer. A row of holes should be drilled near the top and bottom of this particular plate.

The only wiring for the unit is mains to fuse, switch, neon and

Figure 5. Pianola wiring diagram.
transformer, and output terminals and LEDs to PCB. Figure 5 is a pianola wiring diagram, as used in commercial wiring. The points that are wired together are given but routing of cables is left to the discretion of the constructor. The internal photograph of the unit will give an indication of how this could be accomplished. The transformer connections are shown in Figure 4. Heavy gauge wire, e.g. $32 / 0.2,1 \mathrm{~mm}^{2}$ (6 A rating), should be used for all connections except to the LEDs, for which $7 / 0.2,0.22 \mathrm{~mm}^{2}$ wiring is ample.

Testing

After assembly, switch the unit on with no load and check
that all indicator LEDs are brightly lit. The output lines should be well within 0.5 V of their nominal voltage. The heatsinks and transformer should remain quite cool without load.

Check all lines for ripple with a 'scope if available. A full load may be placed on each 12 V line using $15 \Omega, 10 \mathrm{~W}$ resistors to 0 V . The -5 V line may be simultaneously loaded with a 4.7si, 7W resistor and the +5 V line with a $2.2 s_{2}, 10 \mathrm{~W}$ resistor.

Under short circuitconditions, some regulators may oscillate at high frequencies. To reduce coupling of this oscillation to the other supply lines, a 10 nF polyester capacitor can be added between the back of each output terminal and OV terminal. E\&MM

PARTS LIST

Resistors - all 5\% 1/2W carbon film			
R1, 2	27 R	2 off	(S27R)
R3	4 k 7		(S4K7)
R4,5,8,9	100 R	4 off	(S100R)
R6,7	1k0	2 oft	(S1KO)
Capacitors			
Cl, 4	2200 40 V axial electrolytic	2 off	(FB91Y)
C7,8	4700 u 25 V axial electrolytic	2 ff	(FB96E)
$\mathrm{C} 2,3,5,6,9$, 2200u 25 V axial electrolytic (FB90x)			
$\begin{array}{r} C 2,3,5,6,9 \\ 10,12,13 \end{array}$	1435 V tantalum bead	8 off	(WW60Q)
Semiconductors			
BR1	S005 2A 50V Bridge rectifier		(QL.09K)
BR2	PWOL 6A 100V Brigge rectifier		(WQ57M)
REG1	UA7812UC $1 \mathrm{~A}+12 \mathrm{~V}$ regulator		(QL32K)
REG2	uA7912UC 1A -12V regulator		((W0938)
REG3	UA78L05AWC $100 \mathrm{~mA}+5 \mathrm{~V}$ regulator		(QL26D)
REG4	uA7905UC 1A -5V regulator		(WQ92A)
TR1	T1P31A NPN power transistor		(QL15R)
TR2	BC182L PNP transistor		(Q855K)
TR3	BC212L. PNP transistor		(QB60R)
01,3,5,7	LED, Green, standard size	4 off	(WL28F)
02,4	BZY88C9V1 Zener	2 off	(QH13P)
06,8	BZY88C4V3 Zener	20 ff	(QH05F)
D9	1N4148 diode		(QL80B)
Miscellaneous			
S1	DPDT racker switch		(FH34M)
${ }_{\text {LPl }}$	Neon square		(RX81C)
FS1	Fuse 500 mA		(WR02C)
	Fuse holder		(RX96E)
SK1	Eurostyle mains socket		(HL16S)
PLI	Eurostyle mains plug		(HL15R)
SK2	Terminal post, red		(HFO7H)
SK3	Terminal post, yellow		(H509K)
SK4.6	Terminal post, green	3 off	(HFO5F)
SK7	Terminal post, blue		(HFO3D)
SK8	Terminal post, black		(HF02C)
	PCB		(GA34M)
	LED clip	4 off	(YY40T)
	Insulating set	4 off	(WR23A)
	Case Wx3 (Centurion)		(XY64U)
	Heatsink type 2 E	2 off	(HQ70M)
	Heatsinkoracket		(HQ69A)
	Self-tapping screws No. 8, 12 in .	2 off	(8F69A)
	Bolt, 4BA 12in.	8 off	(BF030,
	Nut 4BA	8 off	BF171)
	Washer 4BA, shakeproof	8 off	(BF25C)
	Cabinet feet	4 oft	(FW19V)
	Boit 6BA lin.	2 off	(BF07H)
	Bott 68A 12 in .	6 off	(8F06G)
	Nut 6BA	8 off	(BF18U)
	Washer 68A, shakeproof	8 off	(BF26D)
Tl	60 VA, 15,10, 0, 10,15V (Type 60 FE75)		

Transformer available from Fladar Electric, PO Box 19, Brooksíde Engineering Industrial Units, Springfield Drive, Westcliff-on-Sea, Essex. Price $£ 6.10$ including VAT, postage and packing.

\star Basic but functional design
 \star AM and FM reception
 * Ideal for areas with poor signal reception

* Low cost
\star Easy to install

by Robert Penfold

AIthough a normal car aerial has the useful feature of being omnidirectional, it is less than ideal in terms of signal pick-up. This often results in weak and noisy reception on both the AM and FM bands, especially in areas of relatively low signal strength.

This aerial booster is simply inserted between the aerial lead and the car radio aerial socket, the only other connection that is required is one to the positive side of the car battery. The booster is only suitable for 12 volt negative earth systems but this system is used in most vehicles today. The unit is effective over medium, long, low frequency short wave, and VHF broadcast bands. The degree of improvement obtained depends on a number of factors but in general there would be a substantial improvement in results if the booster was employed with an insensitive receiver in a poor reception area, and little or no improvement if it was used with a receiver having "state of the art" design in a strong recep tion area.

Figure 2. Car aerial booster: circuit diagram.

Figure 1. Block diagram of the car aerial booster.
arrangement to ensure that the two amplifiers hinder each other as little as possible. The block diagram in Figure 1 outlines the system used.

A high-pass filter blocks AM
band signals from the VHF amplifier while a low-pass filter blocks VHF band signals from the AM amplifier. This ensures that no significant amounts of aerial sig. nal are wasted by being fed to the

wrong amplifier stage. Both amplifiers are simple broadband, untuned types. The high-pass and low-pass filters at the outputs prevent either amplifier from feeding any significant amount of its output signal into the other amplifier stage, which would obviously give reduced gain. It also prevents VHF noise from the AM amplifier reaching the output and effectively reducing the noise performance of the FM amplifier stage. Noise from VHF over the AM bands is not really a problem, but the high-pass filter at the output will tend to block any noise of this type that is produced.

Circuit

Figure 2 shows the complete circuit diagram of the booster.

TR1 is used in the VHF amplifier and is a dual gate MOSFET used in the common source mode of operation. A dual gate MOSFET is used as it gives good gain and low noise at VHF. A choke load (Ll) is used for TRI but in other respects it is quite conventional.

The high-pass filter action at the input and output is provided by using low value capacitors (Cl and C 4 respectively) at these points. C4 also provides DC blocking at the output. This very simple method of filtering seems to be more than adequate in practice.

TR2 is used in the common emitter mode and is the AM amplifier. It is run at a fairly high collector current (about 8 mA) and has a fairly low collector load resistor value so that it maintains good voltage gain up to frequencies of several megahertz. This enables the unit to be used on the low frequency, short-wave
broadcast bands (25, 31, 39 and 49 metre bands) if desired.

L2 and L3 have high impedances at VHF, and therefore give the low-pass filtering at the input and output of the AM amplifier. C5 merely provides DC blocking at the output of TR2 and is not a filter component.

R7 and C6 form a supply decoupling network and these prevent the inevitable noise spikes on the vehicle's supply from degrading the noise performance of the booster. No on/off switch is needed since the current consumption of the circuit is only around 10 mA and this is negligible to a car battery which has a very high capacity (in the order of 38Ah or more).

Construction

The aerial booster is built on a printed circuit board, the track and component layouts for which are shown in Figure 3. TR1 is a MOSFET device but as it has internal protection diodes, does not require any special handling precautions.

A small aluminium box makes an inexpensive and practical case for the project, but a non-metallic case could be used if preferred. SK1 is mounted at one end of the box and a solder tag is fitted onto one of its mounting bolts. The opposite end of the case is drilled to produce an exit hole for the output lead which is a coaxial type. This hole should be fitted with a grommet to protect the lead. It should b, possible to use this hole as an exit point for the positive supply lead also, without any difficulty.

If Veropins are used on the printed circuit board to carry the
 lead and the booster is ready for installation and use.

E\&MM

PARTS LIST

Resistors - all $1 / 3$ watt 5%			
R1	470 R		(M470R)
R2,3	120k	2 off	(M120k)
R4	220R		(M220R)
R5	680R		(M680R)
R6	100k		(M100k)
R7	560R		(M560R)
Capacitors			
Cl	47p ceramic plate		(WX52G)
C2,3	10 n ceramic plate	2 off	(WX77J)
C4	82 p ceramic plate		(WX55K)
C5	470 p ceramic plate		(WX64U)
C6	10 U 16 V tantalum bead		(WW68Y)
Semiconductors			
Tr1	40673		(QX34M)
Tr2	2N2369A		(QR12N)
Inductors			
41	1 HH		(WH29G)
12	47uH		(WH39N)
L3	100 uH		(WH41U)
Miscellaneous			
	Case type AB9		(LF10L)
$\begin{aligned} & \text { SK1 } \\ & \text { PLI } \end{aligned}$	Chassis Car Aerial Socket		(HH14Q)
	Sheleton Car Plug		(HH13P)
	Coax cable 1 metre		(XR30H)
	Bolt 6BA $1 / \mathrm{in}$	2 off	(BF06G)
	Nut 6BA	4 off	(BF18U)
	Spacer 6BA 1/ain	2 off	(FW34M)
	Grommet		(FW59P)
	Printed circuit board		(GA40T)
	Washer, shakeproof 6BA	2 off	(BF260)

CALL IÑ TO SEE OUR COMPLETE RANGE OF ADVANCED ELECTRONIG PRODUCTS, ALL ON FULL DEMONSTRATION. BEST RANGE IN MANCHESTER AND AT THE LOWEST PRICES! ALL OUR PRODUCTS CARRY A FULL 12 MONTHS GUARANTEE.
we are open:
TUESDAY-FRIDAY: 10am-1pm \& 2pm-5pm SATURDAY: 10-3pm PLEASE NOTE - CLOSED MONDAYS

Dept. E\&MM/8, 50 Newton St. (off Piccadilly), Manchester. Tel: 061-236 3083.

WE ARE AT THE CORNER NEWTON ST. HILTONST.

HEXADR make as drumming your fingers on this novel instrument!

\star Six electronic bongo tones \star Touch sensitive \star Battery powered \star Ideal for home, education and studio

Until recently, many electronic percussion instruments have been little more than impact-triggered synthesisers of varying complexity, all subject to the disadvantage that the nature of the shock causing their sound in no way affects the character of the sound produced. To vary the loudness or timbre of the sound, some control must be adjusted, an action not exactly compatible with the fluent playing of percussion.

Hexadrum is a different kind of electronic percussion instrument: it is touch sensitive. The six sensors are arranged to be beneath the fingertips of a comfortably placed hand and are played by simply tapping with the fingertips. A harder tap produces a louder sound; a tap with an object harder than a fingertip produces a sharper sound. Any number of sensors may be struck at any time to produce a composite sound. The only electronic control is to set the overall signal level output, in other words, a volume control.

When played through an amplifier and speaker system designed to give faithful reproduction of audio, the sounds of Hexadrum are best described as similar to bongoes, though the lower range drums are of a lower range than normally encountered in bongoes and more like a bass drum. Like all other electronic instruments, Hexadrum may be played through any special effects unit, such as reverberation, echo, phaser, flanger or synthesiser external input, to obtạin a different sound.

Its use is not restricted to trained percussionists, for the 'hand' layout virtually gives all 'finger-tappers' opportunity to experiment with rhythms. The potential of this low cost instrument makes it ideal for the music room - be it in school, home or studio. The touch sensitive pads

Figure 1. Output stage of 4069 inverter. give the Hexadrum some of that creative dynamic feel of the skin drum. Being battery powered, the unit can be connected via guitar coiled cable to group amplifier for on-stage performance. In the home or classroom, the output plugs direct into tape, mic or line inputs of your stereo (or mono) unit.

Piezo-ceramic Pick-ups

The touch sensors employed in Hexadrum are piezo-ceramic wafers deposited on thin brass plates about the size of twopenny pieces. Striking such a brass plate causes it to vibrate, distorting the ceramic layer attached to it and creating a small piezoelectric potential across the cera-
mic. This voltage, of the order of millivolts, is picked off from the brass backplate and another very thin electrode deposited on top of the ceramic.

As the voltage across the ceramic is proportional to its distortion, the signal produced by striking the brass plate contains all the frequencies of vibration of the plate. Amplified and reproduced in its raw form, this signal sounds (not surprisingly) like the sound actually made by the brass plate when struck: a short burst of almost white noise with a sharp attack and relatively rather longer decay. Though the plates do resonate, this is at several kilohertz, as they are far too small and rigid to mimic exactly the vibrations of the skin of a drum. However, the envelope of the sound is similar to that of a drum, and contained within the noise are the frequencies required to simulate the timbral qualities of a drum.

Filters, logically!

The way the sound of Hexadrum is extracted from the noisesignal produced by the piezo transducers is, of course, by filtering. To implement six largegain filter preamplifiers as cheaply as possible, a single CMOS hex-inverter pack is used. Placing DC feed back around each inverter converts the digital gates to simple large-gain, analogue, inverting amplifiers. Since the output from the amplifiers is not intended to be a faithful, amplified reproduction of their input
signal, the limitations of the gates as amplifiers are acceptable in this application.

A problem associated with the novel use of CMOS logic to perform analogue functions occurs as a result of the transfer characteristics and the biasing, or rather the lack of biasing, of the FETs making up the device used. The output section of each inverter is shown in Figure 1. The gates of the two FETs are also DC coupled to the input of the inverter. When an input voltage within the noise margin of the inverter, a band between the two supplies, is applied to the gate both FETs wifl. be partially on together. Such a condition exists when the inverter is included in a feedback loop. The result is that a quiescent current that is substantially larger than quoted for the pack flows through the FETs. This mode of operation is analagous to amplifier class A operation.

To minimise the FET bias current, the inverter pack is run from a 5.6 V supply provided by a Zener. This reduces its quiescent current from about 20 mA at 9 V to 5 mA compared to a manufacturers quoted value of 10 nA !

The circuit diagrams of the Hexadrum and the component. values for each drum are shown in Figure 2.

The frequency response of the filters is bandpass, with a 12 dB per octave cutoff except in the case of the lowest range drum in' which the roll-off is not so steep. RV11-61 provide some control of

Figure 2(a). Circuit of upper range drums.

Component ref.	R1	R2	R3	R4	R5	R6	R7	R8	Cl	C2	C3	C4	C5	C6
Drum 1	180k	68k	10k	180k	68k	68k	180k	150k	15n月	4 n 7	$4 \mathrm{n7}$	12nF	12nF	$\ln 5$
Drum 2	Values as for drum 1								27nF	10 nF	10 nF	27nF	27nF	1 n 5
Drum 3								470 K	39 nF	15 nF	15 nF	39 nF	39nF	4 n 7

Figure 2(b). Resistor and capacitor values for Figure 2(a).

Figure 2(d). Resistor and capacitor values for Figure 2(c).

Figure 2(e). Circuit of transistor buffer stage and supply wiring.
the resonance of each filter. At their resonant frequencies, the filters have a gain of about 40 dB . The frequencies covered by the drums encompass several octaves, from 40 Hz up to 5 kHz .

Although the filters may look a little unorthodox, they can be regarded as modified versions of the well known multiple feedback/bandpass type with adjustable resonance.

Construction

Assembly of the printed circuit board is straightforward, following the normal practice of installing pins, passive components and finally the integrated circuit which should be mounted in a socket. The output jack socket is best fitted first to the side panel, the tags then bent to lay flat against the circuit board and only soldered in place when the board is screwed down.

Before undertaking any work on the case, double check the layout of all parts to be mounted on it. The reasons for this are that the circuit board and its mounting points are assymetrical, in addition to which the two case halves only fit together one way round. For the orientation of the board and non-board mounted components, check the photographs and diagrams given. Note that some of the unused board mounting pillars on the base and lid sections of the suggested case must be cropped off to allow room for the volume control potentiometer and switch.

No layout for the pick-ups is given as the constructor is the best person to ascertain this from the most comfortable position of the hand of the player. However, ensure that no pick-up is to be located over one of the circuit board mounting pillars before beginning cutting. If the lid of the case is covered with masking tape or self adhesive plastic film to prevent damage to it during construction, the outline of the player's hand may be marked out directly onto this. An effective method of cutting the holes for the pick-ups is to use a sheet metal punch of diameter 20 23 mm . In order to attach the earth wire to the brass plate, a small notch must also be made in the edge of the hole, either by drilling a small hole of diameter less than 3 mm adjacent to the edge of the punched hole or simply filing. The earth leads themselves must be soldered very cleanly to the brass rims of the pick-ups before they are installed. This is shown in the photograph. The brass area is a large heat sink and so therefore requires quite a lot of heat but the minimum of solder. The pick-ups

Soldering to the piezo transducers.

ABonein

-

${ }_{500}^{13} D_{0}^{12} 1.5$
$v_{00 \cdot 14}$
$v_{55} \%$
IC1 pinout (viewed from bélow)
can then be fixed in place using a cyanoacrylate adhesive, such as Loctite Super Glue 3. Soldering to the silvered electrode must be done with the minimum of heat for a fraction of a second, or destruction of the silvering begins to occur. Connections from inputs to pick-ups are neatly made with ribbon cable. The inputs are numbered from the highest pitch to the lowest. Since hum was a slight problem in the prototype (cured by sticking earthed aluminium foil inside the case and earthing the metal panels), the constructor may find screened leads to the pick-ups reduce the problem.

Assuming completion of all other mechanical work on the case, the circuit board may now be screwed down and hardwired to the pick-ups, potentiometer, battery and switch.

The artwork on the case of one prototype was made by cutting the shape of the hand out of coloured, self-adhesive plastic. Another case was sprayed using a matt black cellulose aerosol, then a mask in the shape of the player's hand was cut with a scalpel from an outline drawn on self-adhesive film initially applied to the case. Finally, fix the sponge rubber 'Trimseal' pads over the pick-ups and screw the case together to complete construction. The presets may need to be adjusted to damp the resonance of some of the drums (anticlockwise) and peak the resonance of others.

Figure 3(a). Drilling of case side panel for volume control.

Figure 3(b). Drilling of case side panel for jack socket.

Figure 3(c). Drilling of case bottom moulding for adjustment of presets.

Figure 4. Battery box aperture. The cut-outs must be made in the top moulding end with the groove joint and bottom moulding end with the tongue.

Wiring of the piezo transducers.
PARTS LIST

Resistors - all $1 / 2$ or $1 / 2$ Watt, 5\% carbon			
R1,38,57,67	470k	4 off	(S470K)
R2	180R		(S180R)
$\begin{gathered} \mathrm{R} 3,13,23,33 \\ 42,52,62 \end{gathered}$	10k	7 off	(S10K)
R4	270R		(S270R)

R11,14,17,21
$24,27,31,34$
37,41,43,46
51,53,56,61
63,66
R12,15, 16,22
$25,26,32,35$
$36,44,45,54$
36,44,45,54 55
R18,28
R47
RV1 $1,21,31$
41,51,61
Capacitors
Electrolytic
C2
C2
Polycarbonate
C1,3,52,53
C11,32,33
C12,13,36
C14,15
C16.26
C21,24,25
C22,23
C31,34,35
C41,42
C43,44
C51, 52
C54,64
C61,62
Semiconductors
IC1
TR1
D41,51,61
Miscellaneous
XL11,21,31,41,
SK1

81
-
Piezo transoucer 27 mm
Jack socket
14 pin DIL Socket
Knob K15
Verobox type 201
PP3 Battery holder
PP3 Batery
Hexadrum PCB
Rubber disc 27 mm
$3 / \mathrm{m}^{\prime \prime}$ nut for RV1 stem
Veropins fype 214 S
10 -way ribbon cable 1 m

18 off ($\$ 180 \mathrm{~K}$)

68k	13 off	(S68K)
150k	20 ff	(S150K)
680k		(S680K)
Switched pot. 4k7, linear		(FW41U)
470k Hor. S-min preset	6 off	(WR63T)

47u, 10V axial	
100 n	4 off
$15 n$	3 off
$4 \mathrm{n7}$	3 off
12 n	2 off
1 n 5	2 off
27n	3 ff
$10 n$	2 off
$39 n$	3 off
22n	2 off
68 n	2 off
$33 n$	2 ff
$150 n$	2 off
47n	2 off

(3838R)

(WW26D)
(WW3OH)
(WW23A)
(WW34M)
(WW29G)
(WW36P)
(WW33L)
(WV 39N)
(WW s50)
(WW36S)

CD4069UBE
(Q×25C)
(QB32K)
(OHO8J)
3 of

6 off (QY13P)
(HF90X)
(BL18U)
(HB36P)
(HB36P)
(XX33L)
(GA32K)
6 off (QY16S)
14 off (FL248)
(XR06G)
Note: The parts list and ready-made circuit board have the component reference number prefixed by the number of the drum circuit in which it is used, e-g. drum 1 , R3 becomes R13.

Internal layout of completed unit.

AUTOWAH UNIT

Automatically gives wah or swell sounds with each guitar note played. Kit order code =

M-SET-58 £16.04

GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources producing 8 different switchable sounds that can be further modified by manual controls

M-SET-42 £14.11

GUITAR FREQUENCY DOUBLER

Produces an output one octave higher than the input Inputs and outputs may be mixed to give greater depth Kit order code $=$

M-SET-98 $£ 10.55$

GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb. fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments. Some SW's not incl. in kit - see list for selection.
Kit order code $=\quad$ M-SET-85 $£ 72.90$

GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering

GUITAR PRACTICE AMPLIFIER

A 8 watt mains powered amplifier suitable for instru ment practise or as a test gear monitor. Drives 8 or 15 ohm speakers (not incl. in kit)
Kit order code $=\quad$ M-SET-106 $\mathbf{~ 1 1 8 . 7 2 ~}$
GUITAR SUSTAIN
Maintains the natural attack whilst extending note duration.

Kit order code $=$
M-SET-75 £11.77
PHASER
An automatically controlled 6 stage phasing unit with internal oscillator. Depth can be increased with extension.
Main kit code =
M-SET-88 £18.34
Extension kit =
M-ADN-88 £7.31

PHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing and vibrato. Capable of superb full sounds. A separate power supply is included
Kit order code $=\quad \mathrm{M}-$ SET-70 $\quad \mathbf{~} 42.85$

SMOOTH FUZZ

As the name implies!
Order code $=\quad$ M-SET-91 $£ 11.68$

SPLIT-PHASE TREMOLO

The output of the internal generator is phase-split and modulated by an input signal. Output amplitudes, depth and rate are panel controlled. The effect is similar to a rotary cabinet.

Kit order code =
M-SET-102 f27.55
SWITCHED TONE TREBLE BOOST
Provides switched selection of 4 preset tonal responses.

Kit order code $=\quad$ M-SET-89 \quad £10.51
AUDIO EFFECTS UNIT
A variable siren generator that can produce British and American police sirens, Star Trek Red Alert, heart beat monitor sounds, etc.

Kit order code =
M-SET-105 $\mathbf{f 1 2 . 9 1}$

FUNNY TALKER

Incorporates a ring modulator, cho pper and frequency modulator to produce lascinating sounds when used with speech and music.

M-SET-99 £15.43
WIND \& RAIN EFFECTS
As the name says!
M-SET-28 £9.94
DISCOSTROBE
A 4 -channel 200-watt light controller giving a choice of sequential, random or full strobe mode of operation. Kit order code $=\quad$ M-SET-57 $\mathbf{f 3 6 . 5 2}$

LIST

Send stamped addressed envelope with all U.K. requests for free list giving fuller details of PCBs, kits and other components. Overseas enquiries for list - Europe send 50 p, other countries send $£ 1.00$

All kits include custom designed printed circuit boards

KIMBER-ALLEN KEYBOARDS

Claimed by the manufacturers to be the finest moulded plastic keyboards available. All octaves are c-c, the keys are plastic, slope fronted, spring loaded, fitted with actuators and mounted on a robust aluminium frame. 3 -octave $£ 25.50,4$-oct $£ 32.25,5$-oct $£ 39.50$. Goldclad contacts (1 needed for each note) type GJ (SPCO) $33 p$ each. Type GB ($2-P R N / O$) $38 p$ each.

CHOROSYNTH

A standard keyboard version of the published Elektor 30 -note chorus synthesiser with an amazing variety of 30-note chorus synthesiser with an amazing variety of
sounds ranging from violin to cello and flute to clarinet sounds ranging from viol
Kit plus keyboard \& contacts $=$ M-SET-100 $£ 114.12$

FORMANT SYNTHESISER

For the more advanced constructor who puts performance first. This is a very sophisticated 3 -octave synthesiser with a wealth of facilities including 6 oscillators, 3 waveform converters, voltage controlled filter, 2 envelope shapers and voltage controlled amplifier. Case and hardware not included - see our lists for further details.
Kit plus keyboard \& contacts $=$ M-SET-66 \quad £323.35 P.E. MINISONIC SYNTHESISER

A very versatile 3 -octave portable mains operated synthesiser with 2 oscillators, voltage controlled filter, 2 envelope shapers, ring modulator, noise generator, mixer, power supply and sub-min toggle switches to select the functions. A case is excluded, but the text gives comprehensive constructional details.
Kit plus keyboard \& contacts $=$ M-SET-38 \quad £169.69

Prices include 15\% VAT \& U.K. P\&P

128-NOTE SEQUENCER
Enables a voltage controlled synthesiser, such as the P.E. Minisonic, to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are initiated trom the 4 -octave keyboard and note length and rhythmic pattern are externally variable.
Kit plus keyboard \& contacts $=$ M-SET-76 $£ 114.09$ 16-NOTE SEQUENCER
Sequences of up to 16 notes long may be pre-programmed by the panel controls and fed into most volt-age-controlled synthesisers. The notes and rhythms may be changed whilst playing making it more versatile than the name would suggest.
Kit order códe $=$ M-SET-86 $\quad \mathbf{f 6 0 . 1 3}$
DIGITAL REVERB UNIT
A very advanced unit using sophisticated I.O. techniques instead of noise-prone mechanical spring lines. The basic delay range of 24 to 90 ms can be extended up to 450 ms using the extension unit. Further delays can
be obtained using more extensions.
Main kit order code $=\quad \mathrm{M}$-SET-78 $\quad \mathrm{f67.22}$
Extension kit $=\quad$ M-ADN-78 $£ 45.94$

BASIC COMPONENT SETS

Include specially designed drilled \& tinned fibreglass printed circuit boards, all necessary resistors, capacitors, semiconductors. potentiometers and transformers. They also include basic hardware such as knobs, sockets, switches, a nominal amount of wire and solder, a photocopy of the original published text, and unless otherwise stated, a robust aluminium box. Most parts may be bought separately. For fuller kit and component details see our current lists.
Kits originate from projects published in PE, EE and Elektor.

SMERICPS
 FXPBESS

Terms: C.W.O., MAIL ORDER OR COLLECTION BY APPOINTMENT TEL.: 01-302 6184 (MONDAY-FRIDAY)

RING MODULATOR

Compatible with the formant and most other synthesisers.
Kit order code $=\quad$ M-SET-87 $£ 11.69$
WAVEFORM CONVERTER
Converts saw-tooth waveform into sinewave, markspace sawtooth, regular triangle, or squarewave with variable mark-space. Ideally one should be used with each synthesiser oscillator
Kit order code
M-SET-67 £20.13

RHYTHM GENERATORS

Two different kits - the control units are designed around the M252 and M253 rhythm-gen chips which produce pre-programmed switch-selectable rhythms driving 10 effects instrument generators feeding into a mixer.
12-rhyihm unit $=\quad$ M-SET-103-258 - 64.10
15-rhythm unit $=\quad$ M-SET-103-252 $£ 57.26$
6-CHANNEL MIXER
A high specification stereo mixer with variable input impedances. Specs given in our lists. The kit excludes some SW's - see lists for selection. The extension gives
two extra channels.
Main kit code =
M-SET-90 £88.99
Extension kit = M-ADN-90 £11.74

3-CHANNEL STEREO MIXER
Full level control on left and right of each channel, and with master output control and headphone monitor.
Kit order code $=\quad \mathrm{M}-\mathrm{SET}-107$ £18.68
3-MICROPHONE STEREO MIXER
Enables stereo live recordings to be made without the hole in the middle effect. Independent control of each microphone.
Kit order code $=\quad$ M-SET-108 $\mathbf{~ 1 1 2 . 3 1}$
HEADPHONE AMPLIFIER
For use with magnetic, ceramic or crystal pick-ups, tapedeck or tuner, and for most headphones. Designed with RIAA equalisation.

Kit order code =
M-SET-104 f18.10

VOICE OPERATED FADER

For automatically reducing music volume during disco talk-over
Kit order code $=\quad$ M-SET-30 $£ 7.80$
DYNAMIC NOISE LIMITER
Very effective stereo circuit for reducing noise found in most tape recordings.
Kit order code $=\quad$ M-SET-97 12.67

DYNAMIC RANGE LIMITER

Automatically controls sound output levels
Kit order code $=\quad \mathrm{M}-\mathrm{SET}-62 \quad \mathrm{EP.51}$
TUNING FORK
Produces 84 switch-selectable frequency-accurate tones with LED monitor displaying beat-note adjustments.
Kit order code $=$
M-SET-46 $\mathbf{£ 3 4 . 5 6}$
TUNING INDICATOR
A simple octave frequency comparitor for use with synthesisers where the full versatility of Kit 46 is not needed.
Kit order code $=\quad$ M-SET-69 $£ 14.41$
PULSE GENERATOR
Produces controllable pulse widths from 100 NS to
2 sec . variable frequency range of 0.1 HZ to 100 HZ .
Kit order code =
M-SET-115 £21.45

SIGNAL TRACER \& GENERATOR
Allows audio signals to be injected into circuits under test, and for tracing their continuity. Includes frequency \& level controls.
Kit order code =
M-SET-109 E15.31

WAVEFORM GENERATOR

Provides sine, square and triangular wave outputs variable between $1 \mathrm{HZ} \& 100 \mathrm{KHZ}$ up to 10 V P-P
Kit order code $=\quad$ M-SET-112 E21.58
SPEECH PROCESSOR
Improves the intelligibility of noisy or fluctuating speech signals, and ideal for inserting into P.A. or C.B. radio systems.

Kit order code =
M-SET-110 £9.21
FREQUENCY COUNTER
A 4 -digit counter for 1 HZ to 99 HZ with 1 HZ sampling Kit order code $=$

M-SET-79 £43.30

EXPOSURE TIMER

Controls up to 750 watts in 0.5 sec. steps up 1010
minutes, with built-in audio alarm
Kit order code =
$\begin{array}{ll}\mathrm{M}-\text { SET-98 } & \text { £36.44 }\end{array}$

More kits and Components are in our Lists

Th鬲

A complete electronic organ to build at low cost

PART 6:

Rhythm voicing Final effects and output circuits Explanation of controls

Rhythm Voicing Circuit

The outputs of the rhythm unit from ICs 21 and 22 as shown in Figure 40 are fed to the rhythm voicing circuits shown in Figure 42. These outputs go high to trigger the relevant instrument. The characteristic sound of the bass drum, low bongo, conga drum, claves and high bongo are all produced by versions of the same type of circuit.

For example, when the input to the low bongo is low, the circuit is just prevented from oscillating as set by RV21. When the input pulses high, TR22 is triggered into oscillation. The incoming pulse is given the required duration by C80 and R295 and then fed to the complex network that determines the characteristic frequency and envelope of the sound required. In this circuit (and the conga drum) a second preset, in this case RV20, is provided to adjust the length of the resonating period and thus the overall tonal quality of the instrument. The output is then mixed with the other four circuits and fed via C121 to the rhythm volume drawbar RV18.

The white noise required for the cymbal and snare sounds is produced from the reverse biased junction of TR29 whose collector is not connected. This noise is fed via ClO4 to the base of the amplifying transistor TR27. This transistor is turned on when any one of the three inputs to snare and cymbals is triggered by the rhythm unit. In the case of short cymbals, for example, the pulse from the rhythm unit is levelshifted by TR30 and lengthened by TR31 and C112. The pulse also controls the two filter circuits around TR28 and TR34 which give the characteristic tonal quality of the instrument with a rapid attack and a decay time set by

C103, C113 and C115.
RV27 controls the overall level of the white noise and RV26 controls the lével of the snare white noise only. Note that when the snare drum is triggered, not only is the white noise triggered, but the high bongo is also triggered. The outputs of the two filters are coupled via C111 and C120 to the rhythm volume drawbar RV18.

Master Mixer Circuit

The outputs of all the circuits so far described are connected to the inputs of the master mixer shown in Figure 43. There are two signal paths through the mixer; the main path carrying flutes and/or strings which can be switched through the wah, reverb and rotor circuits and a "strings direct" path which allows the strings to bypass the wah, reverb and rotor circuits.

Figure 43 shows S19, "strings direct", operated and in this condition the collector of TR55 is high and IC17 a and d are on (and therefore b and c are off). The strings from the upper and lower manual are therefore connected to the strings balance control RV47 and mixed together by

R569 and R570 and then go to the final output pre-amp via R581.

The flute voices from the upper and lower manuals are connected to the main path and if S19 is not operated (i.e. IC17 b and c are on), the strings will be mixed with them and the composite signal connected to the main path via the balance control, RV46.

The lower manual main path is connected via R576 to the premixer IC46a. The upper manual main path, however, is connected via S34a, the wah on/off switch and R575 to IC46a. Thus the manual and auto wah only operate on the upper manual. The output of IC46a now goes to the reverb circuit.

If S34, wah on/off, is operated and S35 released (auto), the upper manual main path is connected to the wah bandpass filter TR52 and associated components. The signal is amplified at mixer TR53 and reconnected to R575 via S34c. The auto wah envelope is triggered from the upper manual envelope shaper TR45 via S34d and S35c to TR5 1 which shapes the pulse. This signal controls the feedback of the bandpass filter.

If S35 is operated (manual), the foot pedal becomes a manual
wah control and the volume function of the pedal is replaced by preset RV48. The upper manual envelope trigger is now disconnected from the wah envelope shaper and replaced by the foot pedal via S34b and S35a to the bandpass filter.

Reverb Circuit

The reverb circuit is shown in Figure 44. The input from the premixer, IC46a (Figure 43), bypasses the reverb driver amp IC38 via R396 and R402 if the reverb drawbar RV34 is fully in. If the reverb drawbar is fully out the bypass line is connected to ground via the wiper of RV34, allowing the signal to go to the spring line driver power amp IC38. The output from the spring line is amplified by mixer IC39. In addition, C140 and R401 provide a high frequency bypass to give a more natúral sound at full reverb. The output of IC39 is connected to the rotor on/off switch S17a.

Rotor Circuit

With reference to Figure 45, $\mathbf{S} 17$ is shown in the off position, in which case the rotor is bypassed by R412 and returned to the fina! mixer C230 in Figure 43. With the rotor switched in, a percentage of

the signal is connected to IC30 which is a series of phase-shift filters and another part of the signal passes to the rotor output via C64 and R251. The remainder of the input signal passes to IC32a and b which are phaseshift filters running 180° out of phase with IC30. The outputs of IC30d and IC32b are re-mixed with the direct signal and are then connected through S17b to the final mixer C230 in Figure 43.

IC31 contains six elements that are used as voltage-controlled resistors which, when changing value, alter the phase relationship between the inputs and outputs of each of the six opamps in the signal path to give the characteristic swirling sound of a mechanical "Leslie"-type rotor.

IC43a and b and TR20 form a voltage-controlled oscillator that runs at one of two selectable rates: 1 Hz and 7 Hz . The rate is selected by S18, rotor fast/slow. When changing between fast and slow and vice versa, R265,6,7 and C70 give a slow transition to simulate more accurately a mechanical rotor.

R275 feeds the ramp oscillator output to IC31 by DC blocking capacitor C72. R275 also feeds the signal to an inverter formed by IC33, whose output is fed to IC31 via DC blocking capacitor C73. RV52 applies a bias voltage to IC31 but when adjusting you will note that the change takes place after a delay, due to the charge or discharge time of C72 and C73. This ramping input to IC31 controls the resistance change in the elements and thus the rate of phase change in the signal.

Final Mixer and Power Amp Circuits

Figure 43 shows IC46b which is the final mixer. All the signals previously described are mixed together here and applied to pin 6 of IC46b. The output is connected via the potential divider R583 and R597 to the swell pedal (unless rianual wah is selected) and then to the master volume control RV50.

Figure 46 shows the main power amp. IC16 is an IC power amp type TDA2030, giving around 15W output into 4 ohms. Pins are provided on the main PCB that may be connected (using screened leads) to an external power amp or the line input of a hi-fi amplifier should additional power be required. The output of IC16 is connected via C201 to a headphone jack for connection to a pair of stereo headphones and then tothe main loudspeaker. This completes the description of all the circuits in the Matinee organ.

Figure 43 . Circuit diagram of the master mixer.

Figure 44. Circuit diagram of the reverb unit.

PARTS LIST FOR MASTER MIXER CIRCUIT

Resistors - all $5 \% 1 / 1 \mathrm{~W}$ carbon unless specified			
R282	6k8		(M6K8)
R558	33k		(M33K)
R559,561,574,593	22k	4 off	(M22K)
R564,568.586	100R	3 off	(M100R)
$\begin{gathered} \text { R } 565,567,569-71 \\ 579,582,596 \end{gathered}$	100k	8 off	(M100K)
R566,584,588,590.			
R572,587	220k	2 off	(M220K)
R573	680k		(M680K)
R575,576,585	4k7	3 off	(M4K7)
R577	470R		(M470R)
R578,583,592,595	1 k 0	4 off	(M1K)
R580,589	47k	2 off	(M47K)
R581	68k		(M68K)
R597	180R		(M180R)
RV46/47	10k lin dual pot		(FW85G)
RV48	4k7 Hor S-min preset		(WR57M)
RV49	Swell pedal (part of)		(XY89W)
RV50	10k log pot		(FW22Y)

PARTS LIST FOR REVERB CIRCUIT

Resistors - all. $5 \% 1 / 3 \mathrm{~W}$ carbon unless specified			
R397	27k		(M27K)
R398	6R8		(M6R8)
$R 399$	220R		(M220R)
R400	10R		(M10R)
R401	820k		(M820K)
R402	220k		(M220K)
R403-405	10k	3 off	(M10K)
R406	100k		(M100K)
R407.562	3 k 3	2 ff	(M3К3)
R563	22k		(M22K)
RV34	Drawbar blue, 22k lin		(8R98G)

PARTS LIST FOR ROTOR CIRCUIT

Resistors - all $5 \% 1 / 3 \mathrm{~W}$ carbon unless specified

Resistors	
R158,268-272, 274	47 k
R241,412	18 k
R242	82 k
R243,253,264	10 k
R244-250, 252,	
$254-263,273,277$	100 k
R251,278	1 kO
R265	4 k 7
R266,276	33 k
R267	$6 \mathrm{k} 21 / 2 \mathrm{~W}$
R275	1 M
R279	220 k
R280,281	330 k
RV52	100 k Hor S.min preset

Capacitors

Figure 45. Circuit diagram of the rotor unit.

Figure 46. Circuit diagram of the power amp.

PARTS LIST FOR POWER AMP CIRCUIT

Resistors - all 5\% R211	carbon unless specified 150 k		(M150k)
R238	$1 \mathrm{R} 3 / 2 \mathrm{~W}$		(S1R)
R525,552,556	100k	3 off	(M100K)
R557	4 k 7		(M4K7)
R600,601	2R2 3W	2 off	(W2R2)
R604,605	47R 1/2W	2 off	(S47R)
Capacitors			
C196	luF 63 V axial elect.		(FB12M)
C197	2 L 2 F 63 V axial elect.		(FB15R)
C198	100 F 40 V axial elect.		(FB50E)
C199	22 uF 63 V axial elect.		(FB31J)
C200	220 nF polyester		(BX78K)
C201	1000uF 25 V axial elect.		(FB83E)
C202	100 nF polyester		(BX76H)
C211	33 pF ceramic		(WX50E)
Semiconductors			
D85,86	1N4001	2 off	(QL730)
IC16	TDA2030		(WQ67X)
Miscellaneous			
JK1	DPDT jack socket		(BW80B)
LS1	Loudspeaker TC30		(XG02C)
PL8	Minicon latch plug 5 -way		(FY93B)
PL9	Minicon r .angle latch plug (2-way)		(FY92A)
SK9	Minicon latch housing (2-way)		(HB59P)
	Minicon terminal	2 off	(YW25C)
	Bolt 6BA 1/in.		(BF05F)
	Washer 6BA, shakeproof		(BF26D)*
	Nut 6BA		(BF18U)
	Veropin 2141	2 off	(FL21X)

PARTS LIST OF MISCELLANEOUS ITEMS

SK7/SKA	Jumper cable (17-way) Screened cable black Hook-up wire orange Hook-up wire violet Hook-up wire yellow Strapping wire 22swg Tie-wrap 92 Knob M2 Rct.latchbutton black Rct. latchbutton red Rct. latchbutton white Rct. latchbutton grey Latchbracket (16-way) Reset bar (15.way) Latchbracket (9-way) Reset bar (6-way) Latchbracket (5-way) Reset spring Push-on receptacle Push-on cover Matinee main PCB Pot mounting bracket 6BA bolt $1 / \mathrm{in}$.	$\begin{aligned} & 3 \mathrm{~m} \\ & 2 \mathrm{~m} \\ & 5 \mathrm{~m} \\ & 4 \mathrm{~m} \\ & 2 \text { off } \\ & 3 \text { off } \\ & 21 \text { off } \\ & 3 \text { off } \\ & 2 \text { off } \\ & 4 \text { off } \\ & \\ & \\ & 2 \text { off } \\ & 4 \text { off } \\ & 4 \text { off } \\ & 2 \text { off } \end{aligned}$	$\begin{aligned} & \text { (BX98G) } \\ & \text { (XR12N) } \\ & \text { (BLO5F) } \\ & \text { (BLO8J) } \\ & \text { (BL10L) } \\ & \text { (BL14Q) } \\ & \text { (BF91Y) } \\ & \text { (RW89W) } \\ & \text { (FH61R) } \\ & \text { (FH63T) } \\ & \text { (FH64U) } \\ & \text { (FH62S) } \\ & \text { (HY26D) } \\ & \text { (HY27E) } \\ & \text { (HY28F) } \\ & \text { (HY29G) } \\ & \text { (HB60Q) } \\ & \text { (FH86T) } \\ & \text { (HF10L) } \\ & \text { (HF12N) } \\ & \text { (XY86T) } \\ & \text { (YK05F) } \\ & \text { (BF05F) } \end{aligned}$
	6BA bolt $1 / 2 \mathrm{in}$. 6BA nut 6BA washer, shakeproof Veropin 2141	$\begin{aligned} & 2 \text { off } \\ & 2 \text { off } \\ & 2 \text { off } \\ & 20 \text { off } \end{aligned}$	(BF05F)* (BF18U)* (BF26D)* (FL21X)
Miscellaneous	Track pins Iso bolt M3 $\times 9 \mathrm{~mm}$ Steel washer 4BA Component schedule	11 pks 5 pks 22 pks 1	

*For fixing pot bracket
** For flixing d/bars

> SNEW!

- 4 channel - Sound modulation - Forward/ reverse chase : Random direction chase Sound on chase modulation "Audio AGC or
The Multi-4 is a comprehensive sound and chase module, offering a wide range of forward reverse or random effects, with additional sound modulation facllities. Modes of operation are set on control pots which act as electronic switches. The unit has a wide speed range and will accept virtually any sound level input. The multi-4 also provides moniro cised to drive up 40400 W of lightingorup to 70 metres of rope lights.

Multi-4 panels $£ 9.70$
Attractlve blue panels with white letters, complete with LED monitors, knobs and mains illuminated switch.

PROGRAMMABLE-8
Slave power controllers (SPC) Controls up to 1000 W via the slider. RFI suppressed/fused. Master controllers(MC) Will master dimfrom 1 to a bank of 20 SPC units.
Remote slaves (RS)
Will override an SPC at a remote location to the main system. Supply/reference board
Provides the necessary supply voltages and signals to all units. Facilities for "Kill" and "all on." Supplies up to any combination of 50 modules.

L\&B Electronic Modules
Professional Engineering by Professionals
Dept E\&MM /8, 45 Wortley Road, Croydon. Surrey CRO 3EB
£114.90
8.8 channel-400w each 3 NEW!

* 16, 32, 64, 128 patterns
* Automatic program recycle
- Adjustable cycle on/off speed
- Optically isolated, suppressed
* Either common neutral or live lamps

An advanced lighting module allowing any chase or sequence effects to be保 stored order, with control over the cycle on and off time. At the end of the program the system re-cycles to the start to maintain a continuous display. Full monitoring on the control panel over and outputs and control status is provided and the program may be halted at any time. Although removing the mains supply to the module will delete the stored patterns the use of calculator type push buttons allows speedy programming ready for the following nights performance. The module obviously provides unlimited effects and is a must for all serious lighting shows.

COMPLETE KIT $f 320$ (single vo icel

var
plug in extra e $£ 52$ + VAT voices - kit price if ordered with kit) (£48

purine IIIIII

EAT POLVSYNTH

 INDENT
TRANCE

 ADSRS, ards are alsted to a key voice. All consist mechanically. All conkets. The voice botically all VCO of ea nd to ensure. he kitisme connectors andsonal quails. controls for ease of conanced elect with ribbon moth mourninet. 5% and voices for using very ad of which is fit with solid teak cal film
 By brillian brings to of sounds in by syn,
 persatilnds of potionics to a octave to 4 vorventionals may be plugged thous ard in Electrify is anally up whereas conte and to 3 more may be whit the teared tangent tain internally Transcesiser synthesise simultaneous ty
 The basicinstrum vices mar be the chichis design e

Kit als

kit includents components.

 POLY $22 \begin{aligned} & \text { Ribbon cable metalwork and } \\ & \text { mains finished min et }\end{aligned}$

 Portal cost for ind instrument
voice

vial kit for 4 Total cost | voice |
| :---: |
| Special kit it tor |

Spenectors
conn
 PRICE STAB all prices int in Electrocuted.
 pack Pair of P sockets. RS Keyboard. poly 2 superior dual bus bars
poly poly 3 Contacts and bus ted through PCB fort.... 10.50

price

ADS
CE
3310
$\vee C \mathrm{Cl}_{3}^{1 C}$
${ }^{4} 4.00$

ICS and details of all

Figure 47. Layout of controls.

Get to know your Matinée Organ

The following text in conjunction with Figure 47 describes and identifies the switches and controls fitted to the Matinee Organ.

1. 16' Organ Bass drawbar. The deepest sounding pedal voice. In auto mode this stop is inoperative. 2. 8' Organ Bass/Auto Bass drawbar. A similar pedal voice to 16 $^{\prime}$, but one octave higher. In auto mode this drawbar sets the volume of the auto bass line still using the 8^{\prime} Organ Bass voice.
2. Sustain drawbar. Gives a fully variable delay on both Organ Bass voices. In auto mode sustains the auto bass line.
3. 8' Bass Guitar drawbar. A pedal voice designed to simulate the characteristic sound of a bass guitar. In auto mode this stop is inoperative. Any of the pedal voices can be used together, for instance to simulate a string bass use the 16^{\prime} Organ Bass with Sustain and a small amount of 8^{\prime} Bass Guitar.
5.16' Flute accompaniment drawbar. The lowest harmonics in this voice have been removed to make it more useful as an accompani-
ment voice. In auto mode this stop is inoperative.
4. $\mathbf{8}^{\prime}$ Flute/Piano Vamp accompaniment drawbar. When the Vamp button is pressed, this drawbar sets the volume of a vamping piano sound.
5. 8' String/Guitar Vamp accompaniment drawbiar: When the Vamp button is pressed, this drawbar sets the volume of a vamping guitar sound,
6. 4^{\prime} Flute accompaniment drawbar. Ṫhis stop is inoperative in auto mode.
7. 4' String/Countermelody accompaniment drawbar. In auto mode this drawbar sets the volume of the countermelody. Note that in auto mode all accompaniment voices are 8^{\prime} only.
8. Sustain accompaniment
drawbar. In auto mode this stop is inoperative.
9. Rotor on/off switch. Controls an electronic rotor effect, but has no effect on pedal or preset voices. 12. Rotor fast/slow switch.

Changes the speed of the rotor effect with the advantage of slow transition as with a mechanical type.
13. Strings Direct switch. When operated, any string voice bypassés the reverb, wah and rotor effect. When playing with a com-
bination of string and flute voices and rotor on, a pleasing effect can be obtained with this switch. For the best effect set the string drawbars to about half the setting of the flutedrawbars. In automode this switch has the effect of enhancing the vamping guitar voice.
14. Vibrato on/off switch.
15. Vibrato Delay switch. When vibrato is on, this switch has the effect of delaying the onset of vibrato after a first key is pressed on the upper manual only. This effect is best used with a single solo voice when it helps to achieve a sound closely resembling an acoustic instrument being played. 16. Vibrato Rate drawbar. When vibrato is on, this drawbar varies the speed of the effect.
17. Vibrato Depth drawbar. With vibrato on, sets the depth of the vibrato effect in the overall sound. 18. Rhythm Volume drawbar. Sets the level of the drum accompaniment.
19. Presets Volume drawbar. Sets the volume of the banjo, accordion, harpsichord, piano and percussion stops.
20. Bánjo Repeat drawbar. Controls the rate of repeat of the banjo and percussion voices. There is no repeat when drawbar fully in.
21. Reverb Depth drawbar. Sets the depth of the reverb effect in the overall sound. Has no effect on pedal or preset voices.
22. 16' Flute solo drawbar.
23. 16' Cello solo drawbar.
24. 8' Flute solo drawbar.
25. 8' String solo drawbar.
26. 8' Clarinet solo drawbar.
27. 4' Flute solo drawbar.
28. 4' String solo drawbar.
29. Sustain solo drawbar.
30. Tempo control. Adjusts the speed of the accompaniment rhythm.
31. Balance control. Sets the relative levels of the upper and lower manuals.
32. Master Volume control. Sets the final output level of the whole organ.
33. Waltz switch.
34. Jazz Waltz switch.
35. Slow Rock switch.
36. Country switch.
37. Swing switch.
38. Rumba switch.
39. March switch.
40. Tango switch.
41. Disco switch.
42. Funk switch.
43. Reggae switch.
44. Cha-cha switch.
45. Bossa Nova switch.
46. Samba switch.
47. $5 / 4$ switch.
48. Group Select switch. Selects the second variation of each rhythm. An interesting effect can be created by switching between rhythms whilst playing a tune.
49. Downbeat Indicator. On 5/4 time only, flashes on the last and first beat of each bar.
50. Beat Indicator. When autostart selected, rhythm speed can be gauged whilst organ is silent prior to playing. Note that when rhythm stop/start and auto stop/ start are both released, this lamp mady remain on depending on the point at which the rhythm was stopped.
51. Rhythm Stop/Start switch. With this switch selected and auto stop/start not selected, the rhythm starts immediately on the downbeat and remains running. See also 52.
52. Auto-Stop/Start switch. Note that this switch has nothing to do with the automatic mode, but simply provides automatic stopping and starting of the rhythm unit. With this switch selected and rhythm stop/start not selected, the downbeat and beat lamps function but sound is only heard when keys on the lower manual are pressed. Also the rhythm always starts on the downbeat. When all keys are released on the lower manual the rhythm stops at once. However, when the rhythm stop/start switch is also selected the rhythm will continue to theend of the bar after the last key is released on the lower manual. Also in this condition, beginners may find it an advantage that the rhythm unit continues running whilstchanging chord. Shouldyou wish the rhythm unit to start playing when you press a lower manual key and continue to run, then it is necessary to start playing with rhythm stop/start and autostop/start selected and then release auto-stop/start shortly after beginning. Then the rhythm can be stopped in the usual way by switching the rhythm stop/start switch off.
53. Auto Accompaniment on/off switch. When this switch is selected the function of the lower manual changes. If any single key in the lowest octave is pressed, an 8^{\prime} chord with that key as the root note is generated (or the most left key if more than one key is pressed). The second octave repeats this function and the chord is the same, not an octave higher. Note that whilst not normally used in auto mode, the right-hand two octaves do repeat the sound of the last key, played in the lower octaves. The volume and tonal quality of the chord is set by the 8 Flute and 8' String accompaniment drawbars. Also when this switch is selected the normal pedal function is cut off (but see

69 and 70). When rhythm stop/start and/orauto-stop/start is also selected, the countermelody is available (see 9) and auto bass is available (see 2)
54. Vamp on/off switch. This switch only functions if rhythm stop/start and/or autostop/start is also selected. If auto accompaniment is off, then any manual chord played will be vamped and if auto accompaniment is on then the automatic chord will be vamped.
55. Memory on/off switch. If auto accompaniment is off, then all last notes played on the lower manual will continue to sound after key(s) released. If auto accompaniment on and rhythm stop/start and/or auto-stop/start are selected, the countermelody is memorised and if vamp is on, the vamping chord is also memorised.
Important note: when memory has been used with auto accompaniment it is important to switch memory off before auto accompaniment is switched off, otherwise a discord may be generated. 56. Preset Voices Cancel switch. This switch releases any previously pressed preset voice switch and must be selected if no preset voice is selected otherwise the upper manual may not sound at all
57. Banjo Preset Voice solo switch. (See 19 and 20.) Note that this stop must be played by lifting all fingers from the solo manual before playing the next note or chord.
58. Accordion Preset Voice solo switch. (See 19.) Note that this stop must be played by lifting all fingers from the solo manual before playing the next note or chord.
59. Harpsichord Preset Voice solo switch. (See 19.) A longer sustain can be achieved by holding down the note. Remember that this stop must be played by lifting all fingers from the solo manual before playing the next note or chord.
60. Piano Preset Voice solo switch. (See 19 and 73). A longer sustain can be achieved by holding down the note. This stop must be played by lifting all fingers from the solo manual before playing the next note or chord
61. Percussion (4') solo switch. (See 19.) The repeat drawbar also operates with this stop although it would not normally be used with it. The stop produces a very fast initial attack and is best used to complement the solo manual drawbar voices i.e. with drawbars add switch also selected.
62. Drawbars Add solo switch. When selected, the upper manual voices on drawbars sound in addition to any preset voice selected.
63. Wah on/off switch. This only
operates on the upper manual drawbar voices.
64. Wah Auto/Manual switch. When wah is on and this switch is not selected, wah occurs whenever a new key is pressed on the upper manual after all keys have been released. When wah is on and this switch is selected, the swell pedal becomes a wah pedal and the organ's output volume is now under control of the master volume only.
65. Headphone Socket. For use with any stereo headphone with a standard stereo $1 / 4 \mathrm{in}$. jack plug. When a headphone is connected, the main loudspeaker is switched off.
66. Solo or upper manual.
67. Accompaniment or lower manual.
68. Mains on/off switch.
69. Minor Chord. Changes any automatic chord to minor. (See 70.)
70. Seventh Chord. Changes any automatic chord to seventh. Note that if minor and seventh are pressed together, a minor seventh chord is produced
71. Pedalboard. Only one note plays at a time and if more than one note pressed only the lowest one sounds
72. Swell Pedal/Wah Pedal. Normally a volume control used whilst playing, but if wah is on and manual wah is selected, the pedal generates a wah effect when moved.
73. Glide/Piano Sustain switch. Except when piano switch selected, the pitch of the whole organ is shifted down by one semitone. Normally used to create a Hawaiian Guitar effect e.g. with harpsichord and selected drawbar voices. When piano is selected, the switch sustains notes after the keys have been released similar to the loud pedal on a piano.

Amendments and Corrections

Since the original circuits and parts lists were prepared for publication, we have made many improvements. These, plus any errors and omissions, are given in the following lists.

Part 1 (March issue)

Page 7. Parts list for master oscillator R370 should be 330 k (was 68k).
R373 should be 470 (was 1k0)
R374 should be 47 k (was 10k).
R375,6 should be 47k (were 4k7)
R607 should be 100k (added).
RV29 should be 10k (was 220k)
RV31 should be 10k (was $1 \mathrm{k0}$).
Cl23 should be 3.3uF at 63V (was 10 uF at 25 V)
C126 should be 100 uF at 6.3 V (was 22 uF at 10V).
C127 should be 33 pF (was 100 pF). Cl 28 should be 330 nF (was 100 nF)
Page 10. Figure 2.
Make all changes as for page 7 R607 is in parallel with C126.

The two wires to S36 should be shown via PL6.
S20 and S21 should be S20b and S21b. Add note: S20a and S2la unused.
S3ld should be shown as a latchswitch.

Part 2 (April issue)

Page 37. Text.
Just prior to heading "Organ Voice Cir
cuits", the pulse is provided by C208
and R379 (not C212).
Page 37. Fig. 7.
Circuit around 1 C 44 redrawn, see Fig. ure 48.
C212 is in parallel with R485.
C213 is in parallel with R493.
C217 is connected between IC.42 pin 8
and OV, positive end to IC
TP1 added at IC43 pin 9.
TP2 added at IC43 pin 8.
TR45 emitter goes to R603 in preset voice circuit.
TR45 collector, R507, D148 and D149 junction connected to S34d in master mixer circuit.
Make all changes as for page 38 parts list
Page 38. Parts list for upper manual.
R413-R417 should be 5k6 (added)
R418-R423 should be $1 k 0$ (added).
R437 should be $22 k$ (was $27 k$).
R473 should be 8 k 2 (was 47 k).
R484 should be 10k (was 100 k)
R485 should be 220k (was 470 k).
R487 should be 470R (was 150R)
R490 should be 100 k (was 10 k).
R492 should be 1 kO (was 100k)
R493 should be 150k (was 470 k).
R494 should be 10k (was 27k).
R500, 502 should be 100 R (were 2 k 2).
R501 should be 1k0 (was 8k2).
R503 should be 10k (was 8k2).
R505 should be 150R (was 100R)
RV35 should be 100k (was 10k).
Cl41 should be $10 n \mathrm{~F}$ (was 3 n 3)
Cl 42 should be 100 nF (was 22 nF)
C143 should be 100 nF (was 68 nF)
C1 44 should be 39 nF (was 15 nF).
Cl 45 should be 470 pF (was 330 pF).
C147,8 should be 100 nF (were 10 nF)
C1 49 should be 120 nF (was 68 nF).
C1 150 should be 47 nF (was 22 nF).
C153,154 should be 100 nF (were 10 nF).
C156 should be 82 nF (was 47 nF).
C161 should be 820pF (was 1n5).
C 164 should be 12 nF (was 100 nF).
Cl 65 should be 12 nF (was 22 nF).
C212 should be 100 pF ceramic (added)
C213 should be 120 pF ceramic (added).
C 217 should be 1000 uF 6.3 V axial (added).
C221, 2 should be 3 n 9 ceramic (added).
C237.C241 should be 220pF ceramic (added).
Page 38. Figure 8.
D76 and D77 are removed and re. placed by R603. The junction of R603 and C167 is also connected to the emitter of TR45 in the upper manual circuit Figure 7.
On 1C45, pins 9 and 10 are linked, pins 13 and 14 are linked and pin 6 is connected to -6 V
Lower end of RV17 should be connec. ted to OV (not-6V).
The wipers of S 27 a and S 33 b should be shown connected to 6 V (not 0 V).
R509 shown connected between KPS rail and .6 V should be shown connected between TR46 emitter and KPS rail. C227 should be between 1C45 pin 6 and $0 V$.
C 215 should be between 1 C 45 pin 8 and top end of RV17, positive to 1 C .
C224 should be between 1C40 pin 14. R510 junction and top of S32b (was shown linked).
C226 should be between TR44 emitter and -6 V .
TP3 added at 1C45 pin 8.
Make all changes as for parts list page 39.

Page 39. Parts list for preset voices circuit. R411 should be 390R (was 47R) R509 should be 270 R (was $1 \mathrm{k0}$). R521 should be 22 k (was 39 k).
R526 should be 680R (was 1k0).
R537 should be 270R (was 560R)

Figure 48. Amended upper manual M108 circuit.

R540 should be 47 k (was 100k).
R541 should be 5 k 6 (was 12 k).
R553 should be 10k (was 22k). R554 should be 10k (was 4k7)
R603 should be 47R (added).
C171,174,180 should be 22uF 10 V axial (was 470uF 16V).
Cl 77 should be $47 n F$ carbonate (was 100 nF).
C215 should be 2.2 uF 35 V tantalum (added).
C224 should be 15 nF polyester (added). C226,227 should be 100 nF disc (added).
D76,77 deleted
TR50 should be BC548 (was BC108C). S31 should be latchswitch 4 -pole (added).
Page 39. Text.
In last paragraph before heading "preset voice circuits", C166 charges via D149 and R505 (not D19)
Part 3 (May issue)
Page 25. Fig. 16.
R2 should be 4 k 7
R3 should be 2 k 7 .
R4 should be 5 k 6 .
Page 26. The 4 -pole latchswitch mentioned in the text should read ' 2 -pole latchswitch'
Page 28. Fig. 23.
In connections to PLl, pins 1 and 2 are transposed.
Page 28. Parts list banjo repeat circuit R390 should be 68 k (was 33 k).
C130 should be luF carbonate (was axial).
Page 29. Fig. 24
Make all changes as parts list page 28.

Part 4 (June issue).
Page 34. Figure 34.
PLI and SK1 connections to pins 1 and 2 transposed.
TP7 added to IC3 pin 9.
Page 35. Parts list for pedalboard circuit. RV124 should read RV12.

Part 5 (July issue).

Page 33. Figure 39.
There should be no vertical line connecting the 0 V line under C22, C23 etc. and the junction of R109,R110 and the junction of R111,R112.
There should be no vertical line connecting the 0 V line under C28, C27 etc. and the junction of R122, R123 etc. C220 should be connected between 1 Cl 4 pin 11 and -6 V and not between pin 9 and -6 V . On 1C15, pins 9 and 10 are linked and pins 13 and 14 are linked.
TP4 added at IC15 pin 8.
TP5 added at IC14 pin 8.
TP6 added at IC14 pin 9.
Page 36. Figure 40.
On 1C24, pins 1 and 2 are transposed and pins 22 and 23 are transposed. Pins 18 and 20 should be shown connected to 6 V and pin 21 should be connected to -1 V .
1C29, pin 3 should be connected to . IV and pins 4 and 12 should be connected to -6 V .
Page 38. Parts list for lower manual. R120,213 should be $4 \mathrm{k7}$ (were 390k). R126, 132 should be 390k (added). R202 should be 1 k (was 10 k).

And Finally

One final item that we have omitted to mention previously is the strapping required as shown in Figure 49. The EPROM is preprogrammed with 30 rhythm patterns and this strap is required in order that the downbeat light

Figure 49. Strapping for EPROM.
functions correctly. The strap required might be different if the chip contained different rhythms. Maplin can provide charts for you to fill in if you wish, to write your Own rhythms for use with the Matinee and they will program a chip for you at a small charge.

Maplin have set up a technical enquiry desk for Matinée constructors, so if you have any technical problems with your

Matinée organ, please telephone (0702) 554155 and ask for Matinée technical enquiries. A very reasonably pricedorgan stool is available from Maplin to go with the Matinée. The order code is XB95D and the current price is £29.50.

Now that the organ is built, we are sure many of you will be interested in our special offer set of books that will help you learn to play the Matinee. An excellent set of books that will guide you to greater enjoyment of this superb instrument. Finally, may we wish you many happy hours at the keyboard.

E\&MM

FREE OUR CURRENT BARGAIN LIST WILL
TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can be made in a matchbox - all electronic parts and circuit. $£ 2.30$.
RADIO MIKE
Ideal for discos and garden parties, allows complete freedom of SAFE BLOCK
SAFE BLOCK
Mains quick connector will save you valuable time. Features include quick spring connectors, heav
switch. Complete kit. f1.95.
6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering 13.5 to 32 metres. Based on circuit which appeared in a recent issue of Radio Constructor. Complete kit includes case materiats, six eransistars, and diodes, condensers, resist amplifier to connect it to or a pair of high resistance headphones. Price £11.95.
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $£ 2.30$. Crystal earpiece 65p. High resistance headphones (gives best results) $\mathbf{E 3} .75$. Kit includes chassis and front but not case.
RADIO STETHOSCOPE
Easy to fault find - start at the arial and work towards the speaker

- when signal stops you have found the fault. Complete kit $£ 4.95$. INTERRUPTED BEAM
This kit enables you to make a switch that will trigger when a
steady beam of infrared or ordinary light is broken. Main components - relay, ohoto transistor, resistors and caps etc. Circuit diagram but no Case. Price $\mathbf{E} 2.3$
OUR CAR STARTER AND CHARGER KIT has no doutt saved many motorists from embarrassment in an emergency you can start car off mains or bring your battery up to full charge in a couple bridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage, whichever suits you best. Price $£ 11.50+£ 2.50$ post. GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring state amplifier designed for use as a signal tracer on GPO cables, etc With a radio it functions very well as a signal tracer. By connecting a simple coil to the input socket a useful mains cable tracer can be made. Runs on standard 4 \%v battery and has input, output sockets and on-off volume control, mounted flush on the top. Many othe bargain at only $£ 1.85$. Sultable 800 hm earpiece 69 p .

```
NEW KIT THIS MONTH!
CB RADIO - Listen in with our 40-channel monitor
Unique design ensures that you do not miss sender or
caller.
```

g POWERFUL BATTERY MDTORS
For models, Meccanos, drills, remote control planes, boats etc. $\mathbf{E 2 . 5 0}$ WATERPROOF HEATING WIRE
60 ohms per yard, this is a heating element wound on a fibre glass coil and then covered with p.v.c. Dozens of uses - around wat
pipes, under grow boxes in gloves and socks. 23p per metre. COMPONENT BOARD Ref. W0998
This is a modern fibreglass board which contalns a multitude of very useful parts, most important of which are: 35 assorted diodes
and rectifiers including 43 amp 400 v types (made up in a bridge) 8 and rectifiers including 43 amp 400 v types (made up in a bridge) 8
transistors type BC107 and 2 type BFY- 51 electrolytic condensers. transistors type BC107 and 2 type BF Y-51 electrolytic condensers.
SCR ref 2N 5062, 250uf 100v DC and 100 uf 25 vDC and over 100 SCR ref 2 N 5062 , 250 uf 100 v DC and 100 uf 25 v DC and over
other parts Including variable, fixed and wire wound resistors, electrolytic and other condensers. A real snip at $£ 1.15$.
FRUIT MACHINE HEART. 4 wheels with all fruits, motorised and with solenoids for stopping the wheels with a little ingenuity you can defy your friends getting the "iackpot". £9.95. + £4 carrlage. 4-CORE FLEX CABLE
White pvc for telephone extensions, disco lights, etc. 10 metres $£ 2$, MUGGER DETERRENT
A high-note bleeper, push latching switch, plastic case and battery connector. Will scare away any villain and bring help. $£ 2.50 \mathrm{com}$ plete kit.
EXTRACTOR FANS - Mains Voltage Ex-computer, made by Woods of
ideal as blower: central heating
ideal as blower: central heating
systems, fume extraction etc. Easy flxing systems, fume extraction etc. Easy fixing
through panel, very powerful $2,500 \mathrm{rpm}$ through panel,
but quiet running. Choice of 2 sizes,
$5^{\prime \prime} £ 5.506^{\prime \prime} £ 6.50$. post $£ 1$ per tan.
POCKET AUDIO
COMPONENT TESTER

With it you can quickly test diodes, rectifiers, transistors, capacitors, check wiring and p.c. boards for open circuits, find the is PNP or NPN, which are the base collector and emitter connections. Condensers, if bad give a continuous signal but if good, give intermittent signals of varying length depending on their value. The test current is very low (2uA) and the voltage only 1.4 v , so it is also possible to check MOS devices, as well as sensitive transistors with out fear of damaging them. The unit Is supplied complete with
Price $£ 3.45$ p.

SUPER HI-FI SPEAKER CABINETS
Made for an expensive $\mathrm{Hi} \cdot \mathrm{Fi}$ ourtit - will suit any decor. Resonance
free cut-outs for $8^{\prime \prime}$ woofer and $4^{\prime \prime}$ tweeter. The front material is carved Dacron, which is thick and does not need to be stuck in and the completed unit is most pleasing. Colour black. Supplied in pairs, price $£ 6.90$ per pair (this is prob

LOUDSPEAKERS

 power rating $\mathbf{6} 6.90$ per pair Ditto but 8 ohms, $£ 11.50$
per pair. Post $£ 2.00$.

Vu METER SNIP.
Approximately $15 / 8^{\prime \prime}$ square, suitable for use as a recording level meter power output infront, cover easily removable if you wish to front, cover easily removabie if you wish to
alter the scale. Special snip price $£ 1.00$, or 10
 for $£ 9.00$.

MOTORISED DISCO SWITCH With 10 amp changeover switches. Multiadjustable switches all rated at 10 amps,
this would provide a magnificent display. For mains operated 8 switch model $£ 6.25,10$ switch model $£ 6.75,12$ switch £6.25, 10
model $£ 7.25$.
3 CHANNEL SOUND TO LIGHT KIT Complete kit of parts for a

three-channel

sound to light
unit controll-
ing over 2000
watts of light-
watts of light
ing. Use this
ing. Use this
at home if

0.084

Is plenty rugged enough for disco work. The unit is housed in an attractive two-tone metal case and has controls for each channel and a master on/off. The audio input and output are by $1 / /^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socket facilitate ease of conn
ing lamps. Special snip price is $\mathbf{£ 1 4 . 9 5}$ in kit form or $\mathbf{£ 1 9 . 9 5}$ ing lamps. Special snip
assembled and rested.

THIS MONTH'S SNIP

REED SWITCHES
Wire ended, glass encapsulated. Contacts make when magnet brought near. Very many uses, i.e. combina direction indieator, computer keyboard, secret switches, etc. etc. SNIP OFFER: 10 SWITCHES FOR $£ 1.00$, ine post and VAT.
Purchasers receive circuits and details of some suggested

FLUORESCENT TUBE INVERTER
For camping - car repairing - emergency lighting from a 12 v battery you can't beat fluorescent lighting. It will offer plenty of well distributed light and is economlcal. We
offer an inverter for $12^{\prime \prime} 8$ watt miniature tube for only $£ 5.25$.
(With tube and (With tube and

12v MOTOR BY SMITHS

Made for use in cars, these are series
wound and they become more power
ful as load increases - they will
in fact burn themselves out if overloaded to stopping point.
$31 / 2^{\prime \prime}$ long by $3^{\prime \prime}$ dia. These have length of $1 / 4^{\prime \prime}$ spindle - price $£ 3.4$ Ditto, but double ended $\mathbf{E 4 . 2 5}$

MINI-MULTI TESTER Deluxe pocket size precision mov ing coil instrument, lewelled bearings - 2000 o.p.v. mirrored
11 instant range measures: DC volts $10,50,250,1000$. AC volts $10,50,250,1000$
$A C$ volts $10,50,25$
$D C$ amps $0-100 \mathrm{~mA}$.
Continuity and resistance 0.1 meg ohms in two ranges. Complete with test prods and in-
struction book showing how to measure capacity and inductance as well. Unbelievable value at only $£ 6.75+50$ p post and insurance.

FREE Amps range kit to enble you to read DC current from 0.10 amps, directly on the 0-10 scale. It's free if you purchase quickly, but of you alread
own a Mini-Tester and would like own a Mini-Test.
one, send $£ 2.50$.

J.BUILL(Electrical) Ltd.

(Dept. EM), 34-36 AMERICA LANE, (Dept. EM), 34-36 AMERICA LANE,
HAYWARDS HEATH, SUSSEX RH16 3QU.

Young Odeas

This series will present a variety of projects designed to appeal to the younger reader but not necessarily suitable for the complete beginner. We shall be pleased to receive articles or project ideas for possible use in this feature.

CAR RACE STARTER

STAND-BY . . ." Engines roar as race-drivers rev up in anticipation of the start of 'Grand Prix 1981'. All eyes are on the red flashing lights and the track siren blares out - suddenly lights are green and the crowd cheers for the "GO"!

This simple timer unit is designed to provide a start indication for slotcar races and a display of three LEDs provides the main indication. When the unit is first switched on, two red LEDs flash on alternately at a rate of a little more than one Hertz, and this continues for about ten seconds. The red LEDs are then cut off from the power supply, and a green LED is switched on to mark the beginning of the race. A buzzer is pulsed in sym. pathy with one of the red LED indicators and gives an audible warning that the race is about to start.

The unit is powered by an internal 9 volt (PP3 size) battery and is therefore completely self contained.

The Circuit

Two 555 timer integrated circuits are used in the circuit; one to flash the two red LEDs, and the other to give the ten second delay before the start indication is produced. The full circuit diagram of the unit is shown in Figure 1.

IC1 is used as an astable (oscillator) and its operating frequency is set at a little over 1 Hertz by the values of timing components R3, R4, and C1. The value of R4 has been made high in relation to that of R3 so that the charge and discharge times of Cl are virtually identical and a rough squarewave output is produced at pin 3 of IC1.

D1 and D2 are driven from the output of ICl and these have R1 and R2 as their respective current limiting resistors. These two resistors are not of equal value because ICl can sink a much higher current than it can source. R2 has therefore been made slightly lower in value than R1 in order to balance the LED operating currents and brightness. The ICM7555 CMOS version of the 555 device is used in the ICl position as this has a current consumption of only about 80 uA , as opposed to a current con-
sumption of approximately 8 mA for the standard device and this helps to keep the current consumption of the unit down to a reasonable level (about 12 to 15 mA). D1 will be switched on when IC1's output goes low and D2 will be switched on when its output goes high, thus giving the required alternate flashing action.

IC2 is used in the monostable mode and gives a single output pulse when its trigger input (pin 2) is taken below one third of the supply voltage. C2 will be totally uncharged at switchon and this gives a suitable trigger. pulse as soon as $S 1$ is switched to the on position. The output at pin 3 of IC2 then goes high for a period which is determined by the values of R8 and C3. The specified values give an output pulse of around ten seconds in duration and this positive pulse is used to power the astable circuitry. At the end of the pulse the astable circuitry is switched off and power is applied to the start LED which is D3.

R7 rapidly discharges C 2 when the unit is switched off and ensures that the circuit is triggered again when S1 is returned to the on position.

The audible alarm signal is produced by WD1 which is an electronic buzzer. This is connected so that it is switched on at the same time as D1.

Note that IC2 should not be an ICM7555 device, as the latter cannot provide sufficient output current to drive the astable circuitry.

Veroboard and other parts wired up.

Rear view of unit showing Veroboard, buzzer, etc. in position.

Construction

The unit will fit neatly into an inexpensive plastic box type PB1, but any case of a similar size should be usable. The case is used vertically and S1 plus WD1 are fitted on the right hand side of the unit. WD1 requires 8BA fixings, and a small hole must be drilled in the case at the rear of WD1 to enable its leadout wires to pass through to the interior of the case. The three LEDs are mounted on the front panel and the holders for these must be mounted in positions that match the spacing of the LEDs, which are mounted on the component panel. The component panel is mounted only by means of the three LEDs. Square LEDs fitted in grommets of a suitable size are used on the prototype, but the LEDs can be any types of the appropriate colours.

Figure 2 gives details of the component panel and wiring of the unit. The component panel is a Veroboard having 11 copper strips by 37 holes, and this can conveniently be a strip cut from a $95 \times 63 \mathrm{~mm}$ or $95 \times 95 \mathrm{~mm}$ piece of board. There are fifteen breaks in the copper strips to be made before the components and link wires are soldered into place. Be careful to connect the semiconductors and C3 the right way round. Note that although IC1 is a CMOS device, the special handling precautions that are normally associated with CMOS devices are not necessary due to the internal protection circuitry of the ICM7555. Leave the leadout wires of D1 to D3 reasonably long or it may be found that some of the other components on the board will get in the way and make it impossible to fit the board into the case.

Once the component panel has been completed, wire in S1, WD1, and the battery clip (making sure that WD1 and the battery clip are connected with the correct polarity), and then thoroughly check all the wiring two or three times before fitting the component panel into place and testing the unit.

We've supplied the front panel legend for you to use or copy to complete the project. You'll soon find that the Race Starter will make an exciting 'lead-in' to your races. E\&MM
Figure 2. Car Race Starter: Veroboard, component layout and wiring details.

THE MDOERN BOOK COMPANY

THE PLL SYNTHESIZER COOKBOOK by H. Kinley Price: $£ 5.25$
INTRODUCING AMATEUR ELECTRONICS byI. R. Sinclair Price: $£ 4.00$ ELECTRONICS FAULT DIAGNOSIS by I. R. Sinclair Price: $£ 3.50$ UNDERSTANDING MICROPROCESSORS by Texas Inst.

Price: $£ 4.50$ HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS
by J. W. Streater
Price: $£ 4.25$ GUIDEBOOK TO SMALL COMPUTERS by W. Barden

Price: $£ 3.50$
THE COMPLETE H/B OF MAGNETIC RECORDING by F. Jorgensen Price $£ 7.25$ p SOUND RECORDING PRACTICE by J. Borwick

Price: $£ 20.50$ WORLD RADIO TV HANDBOOK by J. M. Frost

Price: $£ 10.50$
1981 THE RADIO AMATEUR'S H/B by A.R.R.L.

Price: $£ 8.00$
TOWERS' INTERNATIONAL TRANSISTOR SELECTOR by T. D. Towers

Price: $£ 10.50$
THE MODERN BOOK CO.
15-21 PRAED STREET
LONDON W2 1NP. TEL: 01-4029176

AFFECTED BY

Over 800 bands of equalisation
More than 90 seconds of delay. A staggering $21 / 2$ minutes of decay +5 or- 6 octaves of pitch change. Eight channels of aural excitation Limiters, Compressors, Stressers

PSP's PROFESSIONAL \& HOME RECORDING EFFECTS GUIDE includes

* Specifications and descriptions of over 200 rack/ cabinet EFFECT devices in a liberally illustrated directory
* Articles on EFFECT usage.
* A glossary of EFFECT terminology

Available from
PROGRESSIVE SOUND PUBLICATIONS DEPT E\&MM/8
GALMA COURT FRAMPTON ROAD. LITTLE HEATH, HERTS. EN6 1JT 4.50 inc. $p \& p$

 applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

One of the nice features about a magazine such as this is the way readers can contribute, thus presenting their ideas to a large number of people. Each contribution may be a full feature or constructional article describing some piece of electronic, electro-musical
equipment, or more probably, a short piece containing the circuit diagram and a short piece of explanatory text. It is thus our intention to set aside pages in each issue for 'Circuit Maker', a feature dedicated to short ideas, mostly sent in by readers.

Car - Automatic Aerial Controller

The more expensive car aerials have switches built into them, which together with a relay, enables the aerial to be raised or lowered in response to an on/off signal such as the radio circuit supply. Cheaper aerials use a dashboard mounted changeover switch which is pressed by hand long enough to raise or lower the aerial. This is not only inconvenient but tends to result in the aerial being left up when the car is unattended thereby defeating the object of an electric aerial. Such aerials may be made fully automatic with the addition of couple of relays and a CMOS monostable.

The circuit consumes only 20uA in its' quiescent state and should be left connected to the battery at all times. An additional connection to the radio is needed, and should be made to the radio side of the on/off switch so that it goes high when the radio is switched on (assuming negative earth). This connection is used to trigger two monostables, both contained in a 14528 (4098) integrated circuit; the capacitor and 10 volt Zener are included to help remove any surges or
spikes that might damage the CMOS inputs.

One of the relays is used to switch on the aerial motor, the other to determine the direction of travel by simply reversing the motor supply. When the radio is first switched on the 'a' monostable is triggered for a predetermined period and closes the motor drive relay. The aerial will be raised because the up/down relay is still in the up mode (open). The monostable period should be set to allow the aerial to extend fully. When the radio power is removed the second monostable is triggered (off the -ve edge) and closes both relays by virtue of the diode OR gate to the motor relay. The aerial thus retracts, and again the time should be set on the relevant preset. Two diodes are included across the presets to protect the CMOS device if the battery is removed from the car but no reset is included and so the aerial will do funny things for a short time after power is first applied.

It is important to note that certain makes of electric aerial do not like continually being put up and down.

This circuit contains no protection for such actions; personally, I am usually too busy driving to play with the aerial at three second intervals. By omitting such protection a tremendous saving in component cost can be obtained unlike another version published recently

Workshop - Simple op-Amp tester

Many designs have been pub lished for op-amp testers, often with multi-state outputs to indicate how the device has failed. These are largely meaningless since if the device has failed it is useless. This tester design simply lights an LED if the opamp is functional, and will suffice for 99% of the occasions a tester is required. A much more sophisticated tester would obviously be required to check for bias currents, offsets and noise.

Workshop - Inverse RIAA source

Testing RIAA equalised phono in- a point of little consequence when it is puts on an amplifier is rather tedius remembered that typical phono in due to the level of bass boost in- puts require a signal level in the order volved, and this means that the test of 3 mV .
tone level must be continuously altered as the frequency is changed. Furthermore, a suitable level at 2 KHz will overload and possibly damage an amplifier if the frequency is accidentally changed to 200 Hz .

An ideal source for this purpose should offer the exact inverse of the defined RIAA equalisation so the overall output of the amplifier will be flat across the audio band. The simple passive circuit described here offers a reasonable approximation to the required response using standard value components. Close tolerance parts will obviously improve the situation. The circuit is connected between the signal source and the phono inputs under test. The fact that the network is passive indicates that the input signal level will be considerably attenuated,

The component values chosen set the response breakpoints at 49.8, 498 \& 2116 Hz , whereas the specification states $50,500 \& 2120 \mathrm{~Hz}$ so the total error is quite small (less than 0.5 per cent)

Studio - Patch Bay

D. Ward Hunt, Sheffield

After a few weeks of continually having to plug and unplug various items of equipment in order to connect them up in different ways, decided to look for a way of overcoming the problem. Professional studios use a 'jack field' where all the inputs are arranged down one side of a panel and all the outputs down another side, each intersection having a simple jack-socket fitted. Any patch may be quickly set up by plugging shorted jack-plugs in at the required intersection. The cost of this is very high indeed.

In the end a patch bay was designed, using 2.5 mm jack-plugs and sockets. Each input and output is
bought to the bay and terminated in a jack-socket, and the patching is achieved by using leads terminated at both ends with a jack-plug. The panel should be designed to suit the particular studio, but a typical example is shown.

The following points should be borne in mind when designing and building the patch bay:
A metal box should be used to ensure good screening.
Screened patch-cords must be used. Leave some spare input and output sockets available for future expansion.
Use different sized sockets, if speakers and power amp levels are to be patched on the same board to prevent accidental patching of incompatible voltages.

Workshop - Capacitor Bridge

A. E. Thompson, Wolvercote, Oxford.

Capacitance bridges and the more recent digital capacitance meters cover a wide range of capacitance, but are generally quite expensive. Fortunately another well established method of such measurements is to use a beat frequency oscillator (BFO); these devices have been available for many years using LC oscillators. The problems of such oscillators is that they tend to lock due to stray coupling, thus great care is needed in their construction. This design is for a very low-cost alternative, using two RC oscillators and digital-integrated circuits. The accuracy of the instru ment is limited only by the linearity of two potentiometers and the ability of the constructor to mark the front panel accurately.

The circuit consists of two astable multivibrators running at a frequency determined by potentiometers and the 1000 p capacitors. The 50 K pot is calibrated $0-500 p$, and with this to zero resistance a 4 kHz oscillation is obtained. The 5 K pot is calibrated \pm $25 p$, and with this in its centre position, the preset is adjusted for zero beat in the absence of Cx so that both oscillators run at the same frequency. The presence of a capacitor $C x$ causes the relevant oscillator torun at a slower frequency, a difference cor-
responding to $3 \mathrm{~Hz} / \mathrm{p}$.
The beat frequencies are detected by a D-type flip-flop, acting as a true frequency subtractor (IC3). The out put from this flip-flop will be a fre. quency equal to the difference of the two input frequencies, when the input frequencies are equal the flip-flop output frequency will be zero. To raise the output from the flip-flop to a convenient audio level it is amplified by the BC107 before being fed to a miniature loudspeaker

The circuit is used by adjusting the 50 K pot ($0-500 \mathrm{p}$) to give zero beat output, the value of the unknown capacitor being directly read from the calibrated dial. Capacitors of a few Picafarads can be measured with fair resolution by turning the 50K pot to zero and using the calibration of the 5 K pot ($\pm 25 \mathrm{p}$).

Obviously high stability components are required for the construction and scrap, junk box bits should not be used; the stability over a long period is good. The circuit will operate with supplies ranging from 4 to 12 volts with no drift at all so a PP3 or PP6 battery may be used. The current consumption is about 1 mA at balance and some 14 mA out of balance, due to the speaker consumption, this may be reduced by increasing the value of the series 270R resistor shown fitted

Car - LCD clock supply

The Maplin LCD clock module (Maplin reference XLO7H) makes a very attractive car clock, and can be run from the car battery. This is not quite as simple as it may be though because any conventional three diode shunt regulator will consume too much standing current, tending to drain the battery. The best solution appears to be a supply dropper calculated for 12 volts with plenty of decoupling and a series diode to hold the output in event of a short period voltage drop (such as starting). A 13
volt Zener should be added to clamp the input voltage if it rises above 13 volts, this will probably occur once the engine is running and the battery is being charged. The losess in a shunt regulator are naturally not important then. The backlight supply for the clock is separate, thus it will not affect the main part of the decoupling.

Using the values shown the clock will run for 13 seconds or so if the supply is removed, and should not be affected by voltage drops that may occur.

- new extended 1981 range

PS12 POWER SUPPLY MODULE

Power supply for AL20A-30A

PA12. S450 etc.

input A.C. Voltage $15-20 \mathrm{~V}$ Output D.C. Voltage 22-30V
approx. (Dependent upon
input.)
Output Cu
maximum
Dimensions $60 \times 43 \times 26 \mathrm{~mm}$
£ 1.65
PA12
stereo
PRE-AMPLIFIER

58.55

MPA 30

MAGNETIC CARTRIDGE PRE-AMPLIFIER
£ 3.27

BP1 24 SIREN ALARM MODULE

American Police screame
powered from any 12 volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm,
freezer break-down, and other security purposes.

GE100 Mk2. 10 CHANNEL MONOGRAPHIC

f23.00

VPS30
REGULATED VARIABL STABILISED POWER SUPPLY
57.60

STA5. 5 watts per channel Stereo Amplifier. Kit consisting of $2 \times$ AL 20 a mplifiers, $1 \times$ PA 12 pre-amplifier, $1 \times$ PS 12 power supply, 1×2036 transformer and necessary wiring diagram
819.52

STA10. 10 watrs per channel Stereo Amplifier. Kit consisting of: $2 \times A L 30$ amplifiers. $1 \times P$ A 12 pre-amplifier. 1xPS 12 power supply, 1×2036 transformer and neces. sary wiring diagrams.
$£ 20.63$
STA15. 15 watts per channel Stereo Amplifier. Kit consisting of: $2 \times A$ L60 amplifiers, $1 \times$ PA 100 pre-amplifier, $1 \times$ SPM 80 power supply, 1×2034 transformer, $2 \times$ coupling capacitors for 8 ohms 470 mfd 30 v and necessary wiring diagram.
STA25. 25 watts per channel Stereo Amplifier. Kit consisting of: $2 \times$ AL 60 amplifiers, $1 \times$ PA100 pre-amplifier xSPM 120/45 power supply, 1×2040 transformer, coup ling capaciors for 8 ohms 470 mfd 45 v , 1 xreservoir capacitor 2200 mid 100 v and necessary wiring diagram.
STA35. 35 watts per channel Stereo Amplifier. Kit consisting of: $2 \times A L 80$ amplifiers, $1 \times P A 200$ pre-amplifier, 1×2035 transtormer, $2 \times$ coupling capacitors 470 mfd at 50 v for 8 ohms, $1 \times$ reservoir capacitor 2200 mfd 100 v and necessary wiring diagram.
145.7

STA50. 50 watts per channel Siereo Amplifier. Kit consisting of: $2 \times A L 120$ amplifiers. $1 \times$ PA200 pre-amplifier, 1×2041 rransformer, $2 \times$ coupling capaciors 1000 mfd 63 v, $1 \times S P M$ 120/65. $1 \times$ reservoir capacitor 3300 mfd 100 v and necessary wiring diagram.
659.89
\square Transformers are not included with power supplies.
 VPS30 Vien ply $2.30 \mathrm{v} 0-2 \mathrm{amps}$
PS250. Consists - 1 capacitor \& 4 diodes for constructing unstabilised power supply for AL250 to 125 watts

TRANSFORMERS

2034. 1.7 amp 35 v . Suit SPM80. 2035. 2 amp 55 v
2035. $750 \mathrm{~mA} 17 v$. Suit: PS12 2040. $1.5 \mathrm{amp} 0-45 v-55 v$. Suit: SPM120/45 SPM120/55v $£ 6.45$

Full data sheets are available FREE on request, please enclose a S.A.E

Access and Barclaycards accepted - just telephone our Orderline - Ware ISTD 092013182 All prices exclude VAT, add 50p postage per order. Terms: C.W.O., cheques, STOP! PRESS! Postal Orders payable to Bi-Pak at address below.

SEMICONDUCTORS
Dept. EMM/8 P.O. BOX 6, WARE, HERTS Tel: Ware (STD 0920) 3442. Telex: 817861. Giro No. 3887006.
Visit our shop at: 3, Baldock St, Ware, Herts.

CB ACCESSORIES

105 Adjustable Aerial Gutter Mount Adiustable Aerial Gu
CBMobile Antenna
Mobite or CB Mike CB Mobile Antiannater Moun
Mobile or CB Mike 600 ohms obile or CB Mike 600 ohms Suodel 4 hole fixing
Socket single nole
Socke 4 hole fixing
Sockel single hole Tixing
Double Ended Femate
L258 Doube Ended Femate Couple
NC55 Reduce for
N55659 Remail NC55 R Reducer for PL259 (Small|
NC55 Reducer for PL259 (Larged
M 359 Right Angle Coupler PL259 M359 Right Angle Cuopler H 259 So
 1775 BNC1502 Chassis mountigg socket
1726 BNC1503 Chassis mouting soget 1726 ENC1503 Chassis mounting socket single 1727 BNC1520 BNC male to SO239 female
1728 BNC1521 BNC female to PL259 male

Project Wining

Perhaps the most neglected part of any amateur project, is the project wiring itself. The object of this article is to show that given a little time, practice and patience, it is a fairly simple exercise to produce a neat wiring layout, for any
piece of equipment; whilst at the same time adding to the pleasure that can be derived from, the hobby.

Planning a layout

One of the first things to be considered when planning a layout is neatness, whilst allowing provision for circuit boards, etc, to be removed at a later date if necessary. In the majority of cases, the positions of the various boards and other components, such as switches and potentiometers, will dictate the wiring layout; but there is usually scope for individual requirements. A few minutes spent in preplanning can save time and trouble later.

As to the loom itself, try to ensure that the individual wires run parallel to each other, with sufficient slack being left at the ends, to enable any soldered joint to be removed and replaced at least once if necessary. Direct point to point wiring should be avoided and it is best to run any cable form at chassis level so that it can be fixed down at regular intervals. It is often a good idea to run one or more spare leads within the loom, for use in case of failure or modification of the equipment. Sharp bends, in the wires, should be avoided and where a cable crosses a hinged portion of a chassis, it should be flexible enough so as not to be put under any strain. Any loom passing through a chassis should be suitably protected from abrasion by the use of a protective grommet. Another point for consideration, is that of individual wire identification especially when a loom consists of a large number of wires. One obvious method of identification is the use of different coloured wires; and if this method is adopted it is useful to follow some type of sequence. For myself, I use the standard resistor colour code, working from brown (no. 1) to black (no. 10); so that if, for example, I am wiring a multiway connector, then pins 1, 11, 21, etc will be wired in brown; pins $2,12,22$, etc will be wired in red, and so on.

An alternative method is to employ the use of plastic cable markers, which are numbered or lettered as to requirements. These markers are made so as to slide onto the ends of individual wires. When a cable form is comprised of many wires, then a combination of these two methods can be time saving. For example, wire no. 35 is green with a no. 3 cable marker fixed on the end, so that both the colour of the wire and the marker, together, identify the wire. As a last resort, a piece of numbered tape attached to the ends of the wires will suffice. If a wiring or circuit diagram is to hand, it is a good idea to mark the
various wire colours or numbers onto it, so that it is easy to see where individual wires run from and too. In this way the chances of wiring mistakes are minimised.

As most amateur projects are fairly small and usually 'one-offs', preformed looms are unnecessary, so that most wiring is usually formed and laced; or tie wrapped, directly into the chassis. Lacing a loom is fairly simple and straightforward, but the use of this technique will add a professional finish to any project, and with a little practice it is possible to produce a piece of equipment that not only works as intended but does not resemble a mare's nest of wiring when the back panel is removed. A well thought out loom is a compliment to a well designed project

The basics of lacing

Lacing is just one method of holding a wiring loom together, but it is probably the one which produces the most pleasing results. There are two popular methods of lacing, both of which can be used to good effect. In the first method one end of the lacing cord is tied firmly to the cable form. The cord is then pulled up into a loop (A), and a second loop (B) is passed down behind the loom (Figure 1).

Loop (B) is then pulled up in front of the loom, level with loop (A) (Figure 2).

The free end of the lacing cord is then passed through loop (B) and then loop (A) (Figure 3)

The cord is then pulled tight, pulling the two loops together, around the cable form (Figure 4)

This action is repeated for each subsequent lace, along the length of the cable form, whilst trying to keep the lacing evenly spaced. The cord is pulled tight enough so as to grip the cable, but not so tight as to damage the insulation. At the end of the loom the cord is again 'tied off'. The second method of lacing is as simple as the first. One end of the lacing cord is again tied to the cable form, as in Figure 5.

The free end is passed down behind the loom. A loop (A) is then formed as before. The loop is then twisted one complete turn (i.e. 360°) anticlockwise - as in Figure 6

The free end of the cord is then passed through the loop and pulled tight - Figure 7

The finished lace is then as shown in Figure 8.

Although complete in their entirety, both types of lacing can be improved

by the addition of a simple whip at the beginning and end of the loom. Again the process of making a whip is simple and straightforward but the results can be very pleasing and professional.

To begin a whip, first take an offcut of lacing cord and tie the two ends together so as to form a loop about 2 inches in length. The loop is then laid along the loom, at the point where the lacing is to start, with the nose of the loop pointing in the direction that the lacing is to run - Figure 9.

Next take a length of lacing cord, which is long enough to lace the loom with and lay it against the cable form as shown in Figure 10.

Whilst holding the cord at ' X ', with the tip of the thumb, begin winding the short end of the cord around the cable form, working the windings towards the nose of the loop, and ensuring that each successive turn around the loom butts up to the preceding one. Continue winding for about 8 turns but do not overlap the nose of the loop and ensure that after the last turn of cord, there is at least a $1 / 2$ inch of cord still unwound. See Figure 11

The short piece of unwound cord is then pushed through the nose of the loop and the loop is then pulled free, in the direction of the arrow Figure 12.

Figure 7

Figure 8

Figure 13

As the loop is pulled free, it has the effect of pulling the free end of the cord underneath the windings of the cord. All this takes longer to describe than to actually complete, and is a fairly simply operation to perform after a little practice. When the whip is completed, either of the two methods of lacing already described may be used to complete the lacing. At the end of the finished loom, a whip may be used to 'tie-off' the lacing cord.

Wiring a

practical layout

Consider the layout shown in Figure 13. It comprises two circuit boards, two wafer switches and three potentiometers; and is possibly medium sized for an amateur project.

With the circuit diagram to hand, the wires are identified by colour or number and the cable layout is then decided upon. In this case, wires run from both the boards to the switches and there are several routes that they
might follow. It is simply a matter of personal preference that they are laid as shown. In my opinion, when circumstances permit, a single larger loom often looks heater than several smaller ones. Having decided upon the cable runs, the next step is to decide at which point on the layout to begin the actual wiring. In this particular project, the wires running from the two circuit boards were soldered on first, so that the boards could then be fixed to the chassis. With the boards in position the wires are tidied up and held with a few tie-wraps in preparation for lacing. See Photograph 1. Note how the wires are brought out from the board in such a way so as to leave sufficient slack, for later removal if necessary. With the wires from both boards fixed in this way, the loom is ready for lacing

As can be seen from Figure 13, the loom consists of several branches which are numbered from one to five. This is the order in which they are laced. Beginning then with branch

Photograph 1
no. 1. This is iaced up to the point at which it joins branch no. 2. Branch no. 2 is then laced up to this point and the two branches are brought together. Branch no. 3 is laced next and the three combine to form the single loom. See photograph 2.

Where the branches come together, several laces are placed one on top of the other so as to strengthen the loom at these points. In this way the loom is built up, working from the circuit boards, towards the switches, with each branch being fixed down to the chassis with plastic ' P ' clips. As the name suggests, these are plastic clips in the shape of the letter ' P ', which are slipped around the loom and fixed to the chassis to provide support.

The last components to be wired are the switches, after each branch of the loom has been laced. As with the circuit boards, sufficient slack is left in the wires to allow for later removal. See photograph no. 3. Notice how the wires are made to 'flow' around the switches; rather than having them simply soldered on in any old fashion. Note also the use of protective sleeving over each of the soldered joints. This is to prevent short circuits between neighbouring connections and the sleeving is usually made of rubber or is of silicon composition. The sleeving may be eased over the joints by the discreet use of a small amount of lubricant, such as olive oil. Another type of protective sleeving that can be used is heat shrink sleeving. As the name suggests, this type of sleeving shrinks over the joint upon the appli-

Photograph 2
cation of heat from a hot air gun or even a soldering iron. When using this type of sleeving be careful not to damage the wire insulation by excessive heating. The completed loom can be seen in photograph no. 4

There are other methods of holding a loom together, apart from the use of lacing cord. As already mentioned, plastic tie wraps can be used. These are self locking cable ties which are slipped around the cables; the tip is passed through the head and is pulled tight and the excess is then cut off. Tie wraps are available in several sizes. A suitable alternative to tie wraps is spiral cable wrap. This is an expandable plastic spiral binding which wraps around the cable form to grip it tightly. It is flexible and will follow any cable route. Short lengths of rubber sleeving can also be put to.

PERSONAL SERVICE FROM SHARP'S BIG DEALER

SHARP MZ80K 24k £389+VAT SHARP MZ80K $48 \mathrm{k} £ 439+$ VAT

COMING SOON!
4MHz SUPER CPU - LIGHT PEN - RTTY TRANSMIT/RECEIVE PEN

Write for full details and our latest newsletters

KNIGHTS COMPUTERS
 E\&MM8

108 ROSEMOUNT PLACE, ABERDEEN TEL.: 0224630526

E\&MM PROJECTS

Synwave Percussion	ZF21	July 1981	$£ 16.00$
Car Digital Petrol Gauge	ZF20	July 1981	£16.50
Guitar Tuner	ZF19	June 1981	£13.30
Select-A-Match	ZF18	June 1981	$£ 9.00$
Mosfet Amp Ex. Case P.S.W.	ZF17	June 1981	£11.50
Wordmaker Speech Synthesiser	ZF16	June 1981	£100.00
MW Radio (on Vero)	ZF15	May 1981	$¢ 9.50$
Scratch Filter (on Vero)	ZF14	May 1981	$£ 5.50$
Signal Mixer (on Vero)	ZF13	May 1981	$£ 6.50$
Metronome (on Vero)	ZF12	May 1981	$£ 7.50$
Test Amplifier (on Vero)	ZF11	May 1981	£6.35
Tone Generator (on Vero)	ZF10	May 1981	¢7.00
Car Digital Tachometer	ZF9	May 1981	£22.25
Power Controller	ZF7	April 1981	£8.70
Direct Inject Box	ZF6	April 1981	£8.60
Car Ignition Timing Strobe	ZF5	April 1981	$£ 17.90$
Syntom Drum Synthesiser	ZF4	April 1981	$£ 14.85$
Car Battery Monitor	ZF3	March 1981	¢7.50
Balanced Line System	ZF2	March 1981	£16.00
Continuity Tester	ZF1	March 1981	$£ 8.50$
OTHER KITS			
Sound to Light		ZB127	$£ 19.00$
R/C Speed Controller - designed specially to control Model Cars - AV5 to 12 V up to			
15 Amp (no case)		2D3	£13.50
Weird Sound Effects Generator		ZB113	£6.00

Weird Sound Effects Generator
ZB113
£6.00
All Prices Include Post \& VAT
Callers Please Ring To Check Availability Of K its

IONISER KIT ZD13

This negative ion generator gives you power to saturate your home or office with millions of refreshing ions. Withpleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels like fresh ocean air, pure crisp and wonderfully refreshing. All parts PCB and full instructions $£ 12.50$. A suitable case including front pane!, neon switch. etc. Available at $£ 10.50$

T. POWELL

Dept E\&MM, Advance Works 44 Wallace Road, London N1 Tel: 01-226 1489
HOURS: Mon-Fri 9-5.30p.m. Sat 9-4.30p.m.

Micromusic

A series that focuses on using the popular microcomputers for making music．

Music on the Screen

Graham Knight

Anumber of readers have written in asking for an example pro－ gram to be published which would draw the music on the screen and play a tune．The program printed draws the stave and the notes of the beginning of the tune＂Amaz－ ing Grace＂and as the tune starts the appropriate notes light up as they play．The printout from the screen shown in Figure 1 illustrates the type of display you can expect to see on the Sharp MZ－80K microcomputer．

The MZ－80K screen display is made up of 25 lines of 40 charac－ ters thus giving a possible 1,000 characters on the screen．Each character is made up of an 8×8 dot matrix and，using the SET and RESET commands，it is possible to define to a quarter of a letter giving a reso－ lution of 4,000 programmable points． The picture element positions on the screen are allocated as decimal ad dresses from 53248 and to light up the notes as they are played it is necessary to use POKE statements． Many users get confused using this special command on the MZ－80K，but it is easy if you type the following statement：POKE $53248+\mathrm{X}, \mathrm{Y}$ ；X cor－ responds to the location on the screen and will be a number between \emptyset for
top left and 999 for bottom right．The value of Y will be between \emptyset and 255 and this number selects the charac－ ter to appear on the screen and is de－ tailed in the display code table in the MZ－80K manual．

The program given here starts by assigning X as 53248，allowing the user to simply say POKE X instead of having a much longer line each time saying POKE 53248．The tempo is also defined in the first line．Lines 15 to 25 display the first five bars with the appropriate notes of＂Amazing Grace＂ on the screen．Line 26 shows the equi－ valent notes in Sharp Music notation． Line 28 has been included to display the chord sequence on the screen so that if you are feeling ambitious you
can accompany your microcomputer with guitar，organ or piano．Lines 30 to 42 are the POKE commands to light up each note as it is played and then to return that note to normal be fore going on to light up and play the next．

You can hear one of our readers playing a guitar accompaniment to a tune composed by his MZ－80K on E\＆MM＇s Demo Cassette 3

Programs of this type can be ex tended and whole tunes can be pro－ grammed to be played and displayed Many schools are now using this method to assist in teaching music and modern＇video＇age pupils seem to respond well to this new tuition method．

Figure 1．Screen display（using a printer in double size character mode to simulate results）

\square^{r}revious issues of Electronics and Music Maker have detailed the special commands in the Sharp SP－ 5025 Basic which allows the pro－ grammer to select tempo，note and rest durations．A number of readers have written in with requests for certain tunes to be transcribed to a Sharp Basic program．A traditional tune like＇Greensleeves＇is fairly simple especially as it has repeating sequences which can be assigned as a string．Three strings（ $G \$, H \$$ and $J \$$ ） are used in the＇Greensleeves＇pro－ gram thus enabling it to be written within 15 lines．Without the use of this technique writing music programs on the Sharp MZ－80K would be tedious and very repetitive．

The same string principle is applied in program 2，the＇Sailor＇s Hornpipe＇－here all the music notes apart from those in lines 7 and 8 are in strings and assigned $\mathrm{J} 1 \$, \mathrm{~J} 2 \$$ ，J $3 \$$ ， L1\＄，L2\＄，L3\＄．Some readers have written in asking how the tempo can be changed without continually writ－ ing tempo statements．Readers who are experiencing this difficulty should study lines 5,6 and 10 of the＇Sailor＇s Hornpipe＇program as these lines contain the three changes of tempo required for this tune．The third pro－ gram shown will play the＇Can Can＇for you．

Careful study of these musical programs will soon allow readers to write far more complicated tunes as a Sharp Basic program．

E\＆MM
 4 F＇FIINT＂ F＇FIIdT＂
 F＇Fr＇If 4 ＂ \square

 F＂ドE

 4 FINE Sample Music on the Screen program．

2 PRINT＂GREENSLEEUES－－－TRADITIONAL＂
3 J $=$＝＂月

5 MUSIC＂G4月183 C5A3＂
6 MUSIC＂A4G1AKBS\＃G3E4
6 MUSIC 8 MUSIC J
9 MUSIC＂G4月1BSC4B1A3\＃G4\＃F1\＃G3A5A3AE＂
12 G＊＝＂－G4－\＃F1－ESDSE3G4A183＂
$13 \mathrm{Ht}=$＂R4G1R3B5 G G 3 ESE： 3
14 MUSIC＂－G6＂，G\＄，＂CSA3＂，H\＄，＂－G6＂，G
15 MUSIC＂－C4B1 A3 \＃G\＃F\＃GASA3A4＂
Program 1．＇Greensleeves＇

2 J1\＄＝＂ーE1－\＃が\＃CB \＃CBA\＃GA\＃G\＃FE
3 J2＝＂E1\＃D\＃C—B\＃CE\＃D\＃FE\＃G\＃FR\＃G3E＂
4 J3事＝＂E3＂
5 FOR K＝3 TO 5
6 TEMPO K

3 MUSIC＂\＃D1\＃FB＂RBS \＃C1－\＃D＂
9 MUSIC J1年，J2\％，J3\＄
10 NEXT K：REM K ASSIGNS TEMPO CHANGE

Program 2．＇Sailor＇s Hornpipe＇
1 TEMPO 5 ：REM CRN CAN

6 MUSIC＂C5＂

8 MUSIC G
9 MUSIC＂－ES CAG\＃FSGRE O＂C＂，＂－C5＂
10 MUSIC G
11 MUSIC＂－ES CAG\＃F 3 GAB $D^{-C ", ~ "-C 5 " ~}$
12 FOR T＝1 TO 3
13 MUSIC＂F5＂，＂F＂
13 MUSIC＂F5＂，＂F＂，＂G3\＃RAGC5＂，＂C＂，＂C 5 DA＂AG5＂，＂G＂，＂G3\＃ARG＂
14 MUSIC＂FSFED－C\＃RAG＂
15 NEXT T T
16 MUSIC＂F5＊CF＂，＂Fア＂
Program 3．＇Can Can＇．

New! Sinclair 2X81 Personal Computer. Kit: $£ 49$. ${ }^{5}$ compele

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough-the Sinclair ZX80, world's first complete personal computer for under $£ 100$. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX81 kit means an even bigger saving. At £ 49.95 it costs almost 40% less than the ZX80 kit!

Lower price: higher capability

 With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.
Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The $\mathrm{ZX81}$ reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the $\mathrm{ZX80}$!

Proven micro-processor, new 8KBASIC ROM, RAM - and unique new master chip.

Built: £69.5

complete

Kit or built -

 it's up to you!The picture shows dramatically how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version)

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

New

Sinclair teach-yourself BASIC manual

Every ZX81 comes with a comprehensive, specially written manual - a complete course in BASIC program-
 ming, from first principles to complex programs. You need no prior knowledge - children from 12 upwards soon become familiar with computer operation

```
\(I \leqslant N, 1 R I=N\) THEN GCS D E G
    \(x=1\)
\(B(x)=1 \mid(x)\)
\(\boldsymbol{x}^{\top} \quad \stackrel{x}{=}\)
    \(\prime=\lrcorner+\)
```



```
NロT ロ (J) ) R(T) THEN CD TD
    \(P=日 1 」!\)
    日(J) = 回(T)
    ロ (T) =
    \(K=J-1\)
Kく1 THEN G口 Tロ 1E
```

New，improved specification
－Z80A micro－processor－new faster version of the famous $Z 80$ chip，widely ＊－recognised as the best ever made －Unique＇one－touch＇ key word entry the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT． etc．）have their own single－key entry
－Unique syntax－ check and report codes identify programming errors immediately．
－Full range of mathematical and scientific functions accurate to eight decimal places
－Graph－drawing and animated－ display facilities．
－Multi－dimensional string and
numerical arrays．
－Up to 26 FOR／NEXT loops
－Randomise function－useful for games as well as serious applications．
－Cassette LOAD and SAVE with named programs．
－1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack．
－Able to drive the new Sinclair printer （not available yet－but coming soon！）
－Advanced 4－chip design：micro－ processor，ROM，RAM，plus master chip －unique，custom－built chip replacing 18 ZX80 chips．

Einclair ZX8I

Sinclair Research Ltd，
6 Kings Parade，Cambridge，Cambs．，
CB2 1SN．Tel： 027666104
Reg．no： 214463000

If you own a Sinclair ZX80．．．

The new 8K BASIC ROM used in the Sinclair ZX81 is available to $Z \times 80$ owners as a drop－in replacement chip． （Complete with new keyboard template and operating manual．）

With the exception of animated graphics，all the advanced features of the $\mathbf{Z X 8 1}$ are now available on your ZX80－including the ability to drive the Sinclair ZX Printer．

Coming soon－ the IX Printer．

Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC ROM）， the printer offers full alphanumerics across 32 columns，and highly sophisti－ cated graphics．Special features include COPY，which prints out exactly what is on the whole TV screen without the need for further instructions．The ZX Printer will be available in Summer 1981， at around $£ 50$－watch this space！

16K－BYTE RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair ZX80 or ZX81，the RAM pack simply plugs into the existing expansion port at the rear of the com－ puter to multiply your data／program storage by 16 ！

Use it for long and complex pro－ grams or as a personal database．Yet it costs as little as half the price of com－ petitive additional memory．

How to order your ZX81

BY PHONE－Access or Barclaycard holders can call 01－200 0200 for personal attention 24 hours a day，every day BY FREEPOST－use the no－stamp needed coupon below．You can pay by cheque，postal order，Access or Barclaycard．
EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14－day money－back option，of course．We want you to be satisfied beyond doubt－and we have no doubt that you will be

BASICALIY BASIC

This regular series will attempt to teach BASIC to those who would like to use it for any home, business, scientific or musical application, but have no previous programming experience.

The RND and INT Functions

The RND function is a feature of the BASIC language that generates numbers that seem to be selected at random. It is one of the set of BASIC library functions which have been pre-written and stored in machine language to enable the programmer to perform common mathematical operations. The use of functions saves a large amount of space in a program and a corresponding amount in the computers memory. Later in this series the full set of mathematical functions, print functions and string functions will be described.

The following short program illustrates the use of the RND function to generate random numbers:

```
10 REM - PRESS BREAK TO STOP
20 PRINT RND (1)
30 GOTO 20
4 0 ~ E N D
```

To execute the program type the BASIC command 'RUN'. The output to the terminal will be a continuous list of numbers between zero and one (but not including zero or one). Mathematically this can be stated as: $\theta<\operatorname{RND}(1)<1$. Lines 20 and 30 of the program compose an 'endless loop' - when line 30 is reached the program execution is directed back to line 20 by the GOTO statement, ad infinitum. Consequently the END statement is never reached. However, the program can be stopped by pressing the 'BREAK' key. The program could be modified to perform a controlled loop by using an IF THEN statement together with a counting variable as described in previous parts of BASICALLY BASIC.

Each time the program is run a different list of numbers is output. The distribution of the numbers is even - that is each number is as likely (or unlikely) to occur as any other. You may wish to write a small BASIC program to prove this. The program should calculate the average of say, one thousand random numbers generated by the RND function and print out the result. You will find that the result is approximately 0.5 since the distribution between zero and one is even.

It is not always convenient to use random numbers between zero and one. Different sets of numbers can be generated by combining the RND function with BASIC operators and other functions. For example, to generate random numbers between zero and ten but not including zero or ten:

10 REM - PRESS BREAK KEY TO STOP
20 PRINT 10*RND(1)
30 GOTO 20
40 END
This program multiplies the random numbers generated by the integer 10 so that they are in the range $\emptyset<10 * \mathrm{RND}(1)<10$. Once again, after starting the program by typing 'RUN', execution will be stopped by pressing the BREAK key. A possible list of numbers generated could be:
6.0087325
0.1324011
5.9763204
4.5331688
9.8752493
2.0467382

STOPPED AT LINE 10
The message 'STOPPED AT LINE 10' is output by the computer after the BREAK key has been pressed. The numbers consist of two parts, an 'integer' part to the left of the decimal point and a 'fractional' part to the right of the decimal point. For example, the integer part of the number 6.0087325 is 6 and the fractional part is .0087325 .

The BASIC INT function separates the integer part of a decimal number from the fractional part. For example:
INT (0.1324011) is 0 , and
INT (9.8752493) is 9
The contents of the brackets immediately following the word INT are called the 'argument' of the function. The INT function will accept a constant, variable, function or any expression as its argument. The following example generates a list of random integers (an integer is a number without a fractional component).

10 REM - PRESS BREAK TO STOP
20 PRINT INT (10ं*RND(1))
30 GOTO 20
40 END
The argument of the INT function is ' 10 * $\mathrm{RND}(1)$ ' which is an expression consisting of a constant, 10 , multiplying a random number generated by the RND function. The program prints a list of random integers between zero and nine ($0 \leqslant 1 \mathrm{NT}(10$ *RND(1)) $\leqslant 9$). It contains an endless loop so execution must be terminated using the BREAK key.

Now suppose that, instead of random integers within the range zero to nine, a program requires integers within the range one to twenty inclusive. The statement:
10 PRINT INT (20*RND(1))
prints a random integer between zero and nineteen when included in a BASIC program. To change the range to one to twenty the constant, one, must be added to each of the numbers generated. The one can be added to the random number either before or after taking the integer part of ' 20^{*} RND(1)'. For example, the statements:
10 PRINT INT (20*RND(1)+1) and
10 PRINT INT (20*RND(1))+1
both generate a random number within the range one to twenty inclusive (i.e. $1 \leqslant \operatorname{INT}\left(2 \theta^{*} \operatorname{RND}(1)+1\right) \leqslant 2 \theta$ and $\left.1 \leqslant \operatorname{INT}\left(2 \theta^{*} \operatorname{RND}(1)\right)+1 \leqslant 2 \theta\right)$

Many BASIC games programs make extensive use of the RND function. A
simple example would bea program which included a statement that generates integers from one to six. This could be the computer's equivalent of casting a die. For example, the statement:
10 LET $\mathrm{D}=$ INT (6*RND(1))+1)
assigns to D an integer value between one and six.
Later in this article the above statement will be used in a BASIC program with the ON GOTO statement in order to check that each number is generated with the same probability (frequency of occurrence).

The ON GOTO Statement

The GOTO statement has already been used to implement an unconditional branch and with an IF THEN statement to implement a conditional branch. Now we will look at how the GOTO statement can also be used as a semi-conditional branch by writing it as 'ON GOTO'. With the ON GOTO statement, a branch can be made to one of a list of specified lines depending on the result of an expression. A BASIC statement line with ON GOTO has the general form line number ON variable or equation GOTO list of line numbers.
For example:
10 ON X GOTO 50, 70, 100, 300
Based on the value of the variable X, the program branches to one of the list of alternative line numbers. This selection is made in numeric order. So, for the above example:
if X is 1 - the program branches to line 50
if X is 2 - the program branches to line 70
if X is 3 - the program branches to line 100
if X is 4 - the program branches to line 300
The number of alternative lines to be branched to is only limited by however many can be written on one program line. If the value of X is zero, negative or larger than the number of alternative lines, program execution will stop and an error message will be output by the computer

RND Verification Program

The following program illustrates the use of the RND and INT functions and the ON GOTO statement. It uses the RND and INT functions to generate a random integer between one and six. This is repeated a pre-determined number of times and the probability of each number occurring is then output to the terminal.
10 REM RND VERIFICATION PROGRAM
20 PRINT "NUMBER OF TIMES FOR DIE TO BE CAST";
30 INPUTC
35 IF C $<=100$ THEN PRINT "INPUT A LARGE NUMBER": GOTO 20
40 FOR L=1 TOC
50 LET $D=$ INT (6*RND(1))+1
60 ON D GOTO $70,80,90,100,110,120$
70 LET N1=N1+1:GOTO 130
80 LET N2=N2+1:GOTO 130
90 LET N3 $=$ N $3+1$:GOTO 130
100 LET N4=N4+1:GOTO 130
110 LET N5=N5+1:GOTO 130
120 LET N6=N6+1
130 NEXT L
140 PRINT "PROBABILITY OF ONE OCCURRING=";N1/C
150 PRINT "PROBABILITY OF TWO OCCURRING=";N2/C
160 PRINT "PROBABILITY OF THREE OCCURRING=";N3/C
170 PRINT "PROBABILITY OF FOUR OCCURRING=";N4/C
180 PRINT "PROBABILITY OF FIVE OCCURRING=";N5/C
190 PRINT "PROBABILITY OF SIX OCCURRING=";N6/C
999 END
The program is composed of the following lines
Line 10 - The REM statement (REMARK) identifies the program. The characters following REM are ignored by the computer.
Line 20 - The PRINT statement outputs the message contained in quotation marks to the terminal. The semi-colon at the end of the message causes the INPUT statement on line 30 to output its question mark prompt on the same line as the message.
Line 30 - The INPUT statement halts program execution and awaits a response from the user. You should type in a large number (say, 5000) followed by the RETURN key. Program execution will then continue.
Line 35 - The IF THEN statement restricts the input to a number which is greater than 100 . If the user inputs a number less than 100 the input request is repeated.
Line 40 - The FOR statement is a concise, convenient way of implementing a loop in a BASIC program. Previously an IF THEN statement, together with a counting variable, have been used to construct a loop. The FOR statement will be fully described later in this series. In this program the FOR statement with its associated NEXT statement on line 130 controls how many times lines 50 to 120 are executed.
Line 50 - This line generates a random integer between one and six and assigns it to the variable D
Line 60 - This is the ON GOTO statement line which makes a semi-conditional branch based on the value of D. If the value of D is 1 , the program is directed to line 70. If the value of D is 2 , the program is directed to line 80 and so on.
Lines 70 to 110 - These are multiple statement lines. The variables N1 to N6 are used to store a count of how many times each number is generated by line 50 . For example, initially N1 to N6 each contain zero (because the BASIC
interpreter program automatically assigns the value zero to each variable when it is first used, unless it is initialised to another value). Now, say that line 50 generates a four. The ON GOTO statement directs the program to line 100 . Line 100 increments the value of the variable N4 by one. The GOTO statement at the end of line 100 directs the program to line 130 . N4 now contains the value 'one' showing that a four has been generated once. When another four is generated N4 will be incremented again so its value becomes 'two'. Each variable is incremented in this way when the appropriate integer is generated by line 50. Line 120 - N6 is the variable which contains a count of how many times line 50 generates a six. Unlike lines 70 to 110 it is not followed by a GOTO statement to direct the program to line 130 , since line 130 is the next line to be executed. Line 130 - The NEXT statement increments the value of the FOR variable by one each time through the loop. In this case the FOR variable, which counts how many times the loop has been executed, is ' L '. When L reaches the value of C (the number which was typed as the number of times the die is to be cast), the loop is automatically stopped and program execution continues with line 140.
Lines 140 to 190 - The PRINT statements output the messages contained in quotation marks. The probability of each of the numbers between one and six occurring is given by the expression: (number of times number occurred)/ (number of times any number was generated). For example, to calculate the probability of a six occurring, the contents of the variable N6 are divided by the contents of the variable C (N6/C). The probability value is calculated for each number and printed after its corresponding message on the same line by the PRINT statements.
Line 999 - The END statement signifies program completion. It is labelled with a high line number so that modification lines can be inserted if necessary.

If the RND function is generating random numbers with an even distribution the probability of each of the integers between one and six occurring is $1 / 6$ (0.1677 ...). Thus, when the program is run the answers should all be about 0.1678 (within the limits of statistical deviation). The higher the number input to the program, the closer the probability of each number occurring will be to 0.1678 .

Number Guessing Game Program

Last month a BASIC 'number guessing game' program was described. The suggested modifications to the program will now be given. A variable ' N ' has been added so that a count can be kept of how many attempts the program user takes to guess the number correctly. The program is stopped by inputting any negative number (a number less than zero), in response to the prompt which requests a 'guess'. The program can also be stopped, at any time, by pressing the BREAK key.
10 REM NUMBER GUESSING GAME
20 REM NUMBER TO BE GUESSED IS GENERATED BY THE RND + INT FUNCTIONS
30 LET X=INT (100*RND(1))+1
$4 \emptyset$ LET $N=\emptyset$: REM N STORES GUESS COUNT
50 PRINT "I'M THINKING OF A NUMBER FROM 1 TO 100"
60 PRINT "GUESS MY NUMBER"
70 INPUT "YOUR GUESS";G:N=N+1
80 IF G<0 THEN PRINT "GAME OVER": GOTO 999
90 IF G<X THEN PRINT "TRY A BIGGER NUMBER": GOTO 70
100 IF G > X THEN PRINT "TRY A SMALLER NUMBER": GOTO 70
110 PRINT "THATS RIGHT! YOU GUESSED MY NUMBER "
120 PRINT "IN"; N:" GUESSES":GOTO 30
999 END

WORDMAKER EXTRA

Following the tremendous response to E\&MM's Wordmaker project in the June 1981 issue, here is a program written for the Tangerine Microtan 65 that was submitted by Chris Savage, Basildon, Essex

1 REM E\&MM WORDMAKER/MICROTAN PROGRAM (NO BUSY CHECK)
4 GOTO 150
8 REM SELECT I/O PORTS \& SET TO OUTPUT MODE
9 REM PORTA=OUTPUT PORTB=CONTROL
$10 \mathrm{PA}=49091$
$20 \mathrm{~PB}=49090$
25 POKE 49100,153
30 POKE 49089,0: POKE 49088,0
35 REM POWER UP RESET
$4 \emptyset$ FOR $1=1$ to $3: A=4$: POKE PB,A: $A=A-4$: POKE PB,A: NEXT
50 POKE PA, 255
60 FOR $1=1$ TO 3: $A=7$: POKE PB, $A: A=A-4$: POKE PB,A: NEXT
70 REM END OF RESET
90 RETURN
100 POKE PA,255.WL: POKE PB,20: POKE PB,4
110 POKE PA, 255-WH: POKE PB,12: POKE PB, 4
120 POKE PB, 1: POKE PB,5: POKE PB, 1
130 RETURN
140 REM WORD ADDRESS INPUT
150 GOSUB 10
160 INPUT "WORD ADDRESS (LOW BYTE)"; WL
170 INPUT "WORD ADDRESS (HIGH BYTE)";WH
180 GOSUB 100
190 GOTO 160

MTU Instrument Synthesis Software Package

The Past

A computer may produce musical sounds either by controlling the operation of external analogue modules or by computing the sound waveform itself and outputting binary data to the outside world using a digital-to-analogue (D/A) converter to make it audible. The Microtan-based system 'Alphadac' featured last month in E\&MM as a constructional project uses the former mode of operation and will probably offer some of the most sophisticated control options possible from a marriage between digital and analogue systems.

However, there is much satisfaction, of both a practical and aesthetic nature, to be gained from actually computing waveforms without the cost and complexity of patching the computer to analogue modules. Because of the difficulties in computing waveforms fast enough for real-time performance, the application of D/A converters and attendant software to single-board computers and the lower-price home computers has been somewhat limited. One problem is that the theoretical bandwidth (Nyquist frequency) of D/A conversion is approximately half the sampling rate, the frequency with which the output of the converter is updated. To get an acceptable frequency range with currently available 8 -bit microprocessors requires highly efficient programs and, generally speaking, a few compromises as well. Micro Technology Unlimited first produced a high quality 8 -bit D/A converter with filter and output amplifier in 1979. This hardware peripheral comes in two versions: one for the Commodore PET and the other for any computer having an 8 -bit parallel output port. The principle of the D/A converter is perfectly straightforward and, in its simplest form, can take the form of a R/2R ladder converter that outputs a particular voltage in response to a
particular numerical value sent along data lines. If the computer is outputting data from a list of numbers (waveform table) that has been calculated on the basis of a sine wave, then the waveform emerging from the basic converter would look something like that in Figure 1. If heard in this raw state, the waveform would appear 'rough' or distorted as the D/A converter is generating a stair-step approximation to the normal smooth audio waveform. To fill in these gaps and smooth-out the output waveform, a low-pass filter is mandatory. All multi-section filters with a sharp cutoff oscillate or "ring" when given the edge of a pulse wave, and it's this ringing that fills in the gaps between the samples outputted from the D/A converter. More trouble arises from the approximation or quantisation applied to the amplitude of the waveform (the so-called "round-off error") which produces quantisation noise throughout the audio spectrum. This limits the S / N ratio of the system, and, in the case of an 8-bit resolution system, is approximately 48dB.

MTU use a sampling rate of approximately 8 kHz , which gives a theoretical frequency response of 4 kHz , and, in practice, since no filter is 100% perfect, a usable response of 3.5 kHz . This is obviously fairly restrictive and represents one of the compromises that is necessary in implementing real-time digital synthesis in a low-cost system, but it's worth remembering that AM radio rarely goes beyond a bandwidth of about 5 kHz .

The original music software package produced by MTU in 1979 had the capacity to calculate a single waveform table, given the desired har. monic composition of a voice, and then use that table and three others as the instruments with which to play a 4-part musical score. Photo A shows the list of MTU files in present software. The first group of files, Mus

Figure 1. Stair-step sine wave from D/A converter.

Monitor / Mus Entertainer / Mus 76 Trombones, refers to the original 'Advanced Music Software', with the Monitor program including the machine language monitor (MLM), music playing routines, Fourier synthesis routines, and four voice tables. The remaining two files provide music data.

The synthesis routine is fairly simple and allocates 3 bytes of data to

Figure 2. Hexadecimal pitch coding.
particular memory locations representing harmonic number, amplitude and phase shift. The Fourier coefficients provide the conditions needed to set-up an unscaled waveform, which, after construction, has to be 'scaled' so that the sum of amplitudes of all harmonics at any point on the waveform does not exceed a certain value, as this overflow can lead to gross distortion of the audio output. The music playing routine incorporates a sequencer subroutine that interprets a string of commands relating to the use of refrains, dynamic tempo changes, voice assignments, and so on

Putting all this into practice demands a considerable amount of time and patience, and the manual accompanying this original software package doesn't make any conces sions to the interested non-musician unfamiliar with harmonic synthesis and the like. Hexadecimal is also required for the creation of music files with pitches and duration entered according to the coding shown in Figure 2. Taking the first few measures of J. S. Bach's Chorale No 2, this is inputted using a hexadecimal sequence as follows:
bar/ measure

20	44	$3 A$	34	$2 C$	$0 / 1$
20	44	$3 A$	34	$2 B$	
40	44	$3 E$	34	26	$1 / 1$
20	44	$3 A$	34	$1 C$	$1 / 2$
20	44	$3 A$	30	$1 C$	
20	44	$3 A$	$2 C$	$1 E$	$1 / 3$
20	44	$3 E$	$2 B$	$1 E$	$1 / 4$
40	46	$3 E$	26	20	$1 / 4$

duration/part: 1,2,3,4
With the ' 79 software, the duration of an event is set by the shortest note; thus a group of two quavers played against crotchets requires all four parts for that event to be repeated as groups of quavers, with the result that the Bach in Figure 3 a gets transmog. rified into something like that in Figure 3 b . Such decomposing is best left for Bach to get on with (sorry), and, with this brief 'historical' survey completed, it's time to look at MTU's latest software packages.

The Present

MTU's Instrument Synthesis Software Package was released in October, 1980 and really represents a considerable evolutionary step up the digital synthesis ladder. Like the ' 79 incarnation, the synthesis program acts as an interpreter in that it looks at binary coded strings of bytes in memory for instructions about what to do next. Also, implementation of the
system requires some knowledge of memory mapping, hexadecimal coding of data, and use of the machine language monitor in whatever computer you're using.

The early MTU software, like that of Mountain Hardware (Apple Music System) and Syntauri (alphaSyntauri System) constructs waveforms on the basis of a 256-byte waveform table that is repeatedly scanned for the duration of a particular pitch. The sound is harmonically static in all three cases, but Mountain and Syntauri get around this to some extent by applying a sequence of amplitude and frequency offsets to each note's envelope which tricks the ear into thinking that harmonics are changing dynamically. These variations are all applied to the data once it has been accessed from the waveform table and each note is still described by only a single table. At present, to my knowledge, there are only three systems which provide dynamic harmonic changes: the Fairlight CMI, the Synclavier III (version 2.0) and this new MTU package. To get this 'timbral envelope' it's necessary to use a sequence of waveform tables. If the waveform tables are used properly, the envelope sampling need not be uniform over the required duration of a note; for instance, a number of waveform tables can be compressed into a short period of time('squashed') when there's a lot of harmonic change, or expanded over a longer period of time ('stretched') when there's little harmonic movement. Sequenced tables actually kill two birds with one stone, as prescribing harmonic amplitude levels determines the amplitude envelope (ADSR equivalent) as well as the timbral envelope. In setting-up a waveformsequencing routine, MTU use a wave-form-sequence table holding 256 entries with each number corresponding to the page address of a waveform table (a typical instrument configuration uses around 20 tables). While notes are being played, a wave-form-sequencer pointer moves through the sequence table, and, according to whether entries are stretched (lots of duplicate entries for a particular waveform table) or

(a)

(b)

Figure 3. J. S. Bach, Chorale No. 2. before (a) and after (b) coding.
squashed (rapid movement from one table to another), the end product should be a reasonable approximation of 'real' instruments. However, the proof of the pudding is in the eating, and some price is paid for using such expensive ingredients. These harmonic subtleties take time to turn into sound generation, and, using a clock frequency of 1 MHz on the 6502 processor, the waveformsequencing sample period takes about 128 microseconds, a sample rate of 7.81 kHz , which limits the upper frequency response to something less than 3.9 kHz .

The inevitable consequence of this upper limit is a restriction on the harmonic input to a particular sequence of waveform tables. Taking A above middle C as an example, you'd be restricted to the fundamental (880 Hz), the $2 \mathrm{nd}(1760 \mathrm{~Hz})$, 3rd $(2886 \mathrm{~Hz})$ and 4th (3520 Hz) harmonics. Obviously, then, the limited high-frequency response limits the notes playable by instruments that have a reasonably complex harmonic spectrum, and these limitations have to be assiduously born in mind when orchestrating a piece.

With a system like this that's totally honest about its limitations, I wasn't really prepared for the surprising quality of the two examples (Bach: Sinfonia No. 14; Tchaikowsky: Dance of the Reed Flutes) that come with the present software. These are included on the 3rd E\&MM demonstration cassette

Photo A. MTU Music Software files.

Of course, there's quantisation noise and noise resulting from wave-form-pointer truncation and wave-form-table switching, but the real point is that the sounds are interesting and that's really half the battle in additive synthesis!

Putting Theory Into Practice

The construction of a timbral envelope is performed by a number of different command strings. Firstly, there's the Construct Waveform Set Command which specifies the envelope of each harmonic as a piecewise linear approximation. This avoids having to define the harmonic make-up of each waveform in the set individually. The format of this com mand string goes as follows:

F5 SS EE $\begin{aligned} & \text { HN (PG AM), (PG AM),FF } \\ & H N(P G A M),(P G A M), \ldots . . F F\end{aligned}$

00

where F5 is the operation code byte, SS is the 'start' byte specifying the address of the first waveform, EE is the 'end' byte specifying the address of the last waveform in the
set, HN specifies the harmonic number in binary code, and (PG AM) are pairs of bytes used for specifying, respectively, the X -coordinate of the harmonic breakpoint as a waveform address relative to SS, and the Y-coordinate of the breakpoint which corresponds to the harmonic amplitude at that moment in time. Once a waveform set has been constructed in this way, it's then necessary to construct a companion waveform sequence table. The music interpreter program provides three different commands for implementing this in a less laborious fashion than actually filling in the 256 entry waveform sequence table by hand (so to speak) with the addresses corresponding to the components of a waveform set.

MTU D/A Converter.
The first, the Arbitrary Waveform Sequence Table Command, simply uses the waveforms in sequential order but compresses the time scale at the beginning and end whilst expanding it in the middle. The second, the Build Waveform Sequence Table Command, moves away from the linear time scale in the previous command, and allows a much more dramatic sort of timewarping with a couple of nibbles specifying the amount of stretch or squash (real Einsteinian time dilation stuff, this!). Finally, the Modify Waveform Sequence Table Command can be used to modify an existing 'source' table by copying a waveform sequence table into a 'destination' table but only for the first 50 or so entries in order to produce percussive sounds of limited duration.

The MTU software includes a very decent library of instrument definitions produced using the commands outlined above. Those relevant to the two examples on the demo cassette are listed below:

Sinfonia No. 14

1. Plucked catgut string instrument: harmonics $1,2,3,4,5,6,7$.
2. Plucked metallic string instrument: harmonics $1,3,5,7,9,11,13$. 3. "Watery" instrument: harmonics 2,3,4,5,6,7

Dance of the Reed Flutes

1. Flute-like instrument: harmonics 1,2.
2. Reed instrument: harmonics 1,2 , 3,4,5,6,7.
3. String bass-like instrument: harmonics 1,2,3,4.
4. Clarinet-like instrument: harmonics $1,3,5,7,9$

Music Files are created in the form of a Note String which the music interpreter uses in conjunction with the Command String and Instrument Codings to produce music. A processing loop (SOUND) is constructed during which the duration and pitch
bytes of the next event are interpreted and various pointers are set up. The finite time taken to execute this loop actually introduces a gap in the sound generation and can be heard occa sionally as a click, particularly when there's a change in tempo or voicing. This is where it would be ideal to have two processors sharing memory, with one generating the sound and the other interpreting the note and command strings (cf. the back-to-back 6800 s in the Fairlight CMI).

Entering music is a rather more demanding operation than with the ' 79 software. As before, each event in the note string has a duration byte and as many pitch bytes as there are active voices. Where things really start to get complicated is in the coding of pitches; this time there's a choice of four different hexadecimal codings corresponding to three different attack modes and a sustain mode. The selection of certain attack modes allows a tone envelope to be continued from a previous event into a current event thereby tying notes and producing a more musical counterpoint of different duration values between parts.

The Future

On the music entry side, a music compiler, or "human interface", is promised by MTU in the very near future. We hoped to have this update for the present review, but development problems appear to have put its launch rather behind schedule. How ever, it will probably allow two methods of music entry: a graphical entry mode and a more conventional alphanumeric entry mode for large pieces. This software should also fully implement a stereo facility, whereby, at the top of the SOUND processing loop, voices 1 and 2 are averaged together and sent to one D/A converter, and, later on in the program, voices 3 and 4 are sent to another D/A converter. There's still the problem of the limited bandwidth to be considered, and it's difficult to see how MTU can significantly improve on this in an 8-bit system if they stick to their guns in using a time-consuming waveform-sequencing program for timbral variety.

The Instrument Synthesis Software Package was developed and written by Frank Covitz and Cliff Ashcraft, though much of the praise due to them should also go to their associate, Hal Chamberlin, who has probably made a greater contribution than anyone else to this exciting field His superb book, "Musical Applications of Microprocessors" (Wiley, 1981), demonstrates this (reviewed last month) and should be required reading for every contemporary musician!

Dr David Ellis

E\&MM
Acknowledgements: to Baroness Interna tional for loan of the Pet 3032, to Commodore for the 3040 Disk Drive, and to IJJ Design Ltd. for the MTU D/A converter and software packages.
Cost and availability: the Advanced Syn thesis Software (1979) and D/A converter is priced at $£ 57+$ VAT, and the instrument Synthesis Software (1980) at $£ 30+$ VAT. This pricing is likely to change (for the better) in the near future and enquiries should be directed to IJJ Design Ltd., 37 London Road, Marlborough, Wilts SN8 2AA (0672 54487).

Serial I/O
RS232 Software selectable baud rates
Cassette I/O
Software controlled
Expansion
32K ROM BOARD, TAN RAM, PARALLEL
I/O CARD, SERIAL I/O CARD, HI-RES GRAPHICS
SPECIFICATION

CPU
Clock
RAM
ROM
Parallel I/O
Price:

6502 (1, 2 or 3 MHz versions) crystal controlled 1 K to 8 K Bytes Static 2716 or 2732 up to 16 K One or Two VIA type 6522 providing up to 32 1/O lines with handshake and 4 sixteen bit counter timers from $£ 60.00$ to $£ 120$ (includes TANBUG) ex VAT

Fully expanded, the 6502 Controller board can provide 16K RAM, 32 I/O lines with handshake, serial I/O port and a cassette interface.
The architecture is identical to the Microtan/TANEX combination, enabling TANBUG V2.3, X Bug and Microsoft BASIC to be used. Furthermore, the O.E.M. can develop software on a Microtan System and transfer the firmware to the controller board with confidence.

For further information call PAUL KAUFMAN at

TANGERINE

COMPUTER SYSTEMS LIMITED
Forehill Works
Forehill, Ely, Cambs., England
Telephone: (0353) 3633

Please send me full information on the NEW 6502 CONTROLLER BOARD.

Name:
Address

E\&MM/8
Please enclose $12 p$ stamp - Thank You

Software

Congratulations to Mr W．Smith，of Sheffield，who after much delibera－ tion，is declared winner of the June Software competition；your prize will shortly be on its way．I must thank everybody who sent in their entries and gave me many hours of enjoyable sorting．It is a great pity that only one person can win，but I am sure that you will agree that both Mr Smith＇s pre－ sentation and solution to the problem are elegant and above all very usable．

This month＇s problem：
Write a program that will perform all the common Ohm＇s law calcu－ lations，i．e．work out voltage from current and resistance，power from current and voltage etc

Colour code program

The main object of my program （which is written for the Sharp MZ 80 K ）is to make it as easy as possible for an uninitiated operator to enter the correct value．The values entered
are all in the modern format i．e． $2 k 7$ instead of 2.7 k ，as are the values which are returned by the program．

A brief description of the DATA is in order because it looks so meaning－ less．The DATA consists of all pos－ sible answers to function 1 and works like this：the first number in a block of data is the total number of resistors needed to give that particular solu－ tion，call this A．Then there will be A more numbers which give the actual tens and units values of the resistors．

A final character（S or P）gives the method of connection（series or parallel）．For an example，the data which would be stored in row 85 or TA\＄（ ）．The first figure is a 3 so there are 3 more numbers： $82,1.2,1.8$ These when totalled give 85 ．The multiplier is the same as the multi－ plier of the value entered by the operator．The final character is S which means that the above values have to be connected in series to give 85.

E\＆MM

```
10 REM****RESISTOR CRLCULATOE:****
GOSUE16000
40 DIMTA* (99,5),B(3),B(3),R(5),P(4),COL$(11)
50 FORAA=10TU99
7O FORC=2TOUFAL (THt (A,1))+2
80 RERDTA& (A,C)
30 NEXTC
100 NEXTA 
120 INPUT"Eniter the function number";
130 ONFGOTO150,850,17090
140 PRINT "FLnGt ion out of runse":GOSUB 11020:FOR C=1 TOि 2000:NEXT:GOT0120
50 REP*****FLHCTION 1 - COLOUR COOES FROM RESISTANCE:****
169 PRINT"gEnter the value of rour resistor"
70 PRINT"using the modern format on the left.
190 PRINT""
00 PRINT", 4TOF = 470 Ohms"
210 PRINT""
230 PRINT" 
49 PRINT" 4M17 = 4.7" Ohms""
INPUT"Enter your value now. "; R$
    PRINT"The value you have infut is ";R&;","
```



```
    99 IFLEFT% (YT,1)="N"THEN160
300 FRINT"Please ariswer the auestion usinis y or N. ":GOT0260
FORA=1 TOLEN(R!)
340 IFA=1THENIF(T<48)+\langleT\rangle57)THEN12000:FEM***FIFST CHḦRACTER IS NOT R NUMRER***
50 IF(T\rangle=48)*(T<57) THENR 1 s=R1 $+11ID: (R&, A, 1): NEYTA:GOTO400
360 IF(T=75)+(T=169)THENL=L+1:P=3:R!*=R!t+".":NEXTA:GOT0400
3%0 IFT=77THENL=L+1:P=6:R1%=R1 + +",":NEXTH:GOT04001
OMO
90 GOTO1206U: REN+****CHARACTER URONG****
410 IFL=GTHEN12190:REM****NOO MANY LEITE
20 REM*****UALIO NO. IN RI% & FOWER OF IO
20 REM*****UALIO NO. IN R1% & FOWER OF 1G IN F*****
440 REM****FIRST CONUERT FRON STRINGIFICANT FIGURES
50 R=UPL (R1$)
460 IFR>=1G0THENR=R/10:P=F+1:GOT0460
47G IFR<10THENF =R*10:P=P-1:G0T04PE
475 R=INT(R+0.5):REM*****ROUNDED TO TWO SIG. FIGS.****
480 IF (R>10)*(P>=6) THENFRINT"The value is invalid as it is >1gM":GOTO 510
490 IFP<UTHENFRINT"The value is immalid becaus= it is <10R":GOTO 510
0. GOTO 540
10 REM****SET UARIRBLES TO ZERO****
530 GOSUS10020:GOTO120:REM****GOE:L=6
S0 GOSUB1002G: GOTO120: REM****GOT EACK TU "IHPUT FUHICTIOH"*****
560 FOR H=2TOURL (TA* (R,1)) +1
570 R(A-1) =UAL (TAF(R,R))
5 8 G ~ H E X T ~ A ~
590 M$=TA$(R,A)
6G0 REM****UECTUR R() CONTAINS UALUES GF FESISTORS WHICH EIUE &*****
610 REM ****A-2=NUMBER OF RESISTORS*:***
620 REM*****HE=HODE (SERIES OR FRRRLLEL)****
30 REI******MAKE H UECTOR FOR F AS WELL***
640 FOR C=1 TO A-2
IF R(C)<10 THENR(C)=R(C)*1日ै&P(C)=P(C)-1
$70 IF R(C)>=100 THEN R(C)=R(C)>10:F(C)=P(C)+1
```



```
    IF M&="S"THEN M&="SERIES"
    IF M1:="P"THEN M13="PARALLEL"
    PRINT"EThie following";A-2;" colour codes mepresent
    PRINT"resistors whiden wheri connected in
    PRINTM&;" 沙 ";R{
    PRINT "gHaRES UGLL", "BHND 1", "EIHMD 2","BHNG 3
    FOR C=1 TO A-2
    T$=COL (INT (R(C)/10))
    U*=COL &(R(C)-(INT (R(C)<1可)+15))
    IF P(C)=-1 THEN F:="GOLD":GOTO 730
    Pt=COL (P(C))
    80 GOSUB 13009: NEXT C
*RINT "HENA fourth band of 3010 will Give a qoler-ance of 5%
R00 REM ****FUNCTION ! TERMINATED****
IS REM ****SET RLL UHRIRBLES ERCK TO ZERO****
20 R1ま="":L=9
SOTO 120:REM****GO ERCK TO "INFUT FUNCTION"****
50 REM*****FUNCTION 2-UALUE FROM COLOUR CUDE*.****
PRINT"GEnter the colour code segaratina this colours with com"as
```



```
910 FOR C=1 T0 3
30 IF LEFT&(PE(C),3)=LEFT*(COL (D),3)THEN S(C)=0:OK=1
940 IF (LEFT?(EF(C), 3)="GOL")*(C=3)THENR(J)=-1:0K=1
345 IF LEFT*(E& (C),3)="PUR"TMEN B(C)=7:OK=1
```

950 NEXT D
960 IF OK $=1$ THEN OK= $:$ NEXT C:GOTU 9 GK

980 REM****THREE UFL ID COLOURS*****
390 PRINT"The value is

1010 PRINTE(1); "R";E(2):GOTO 1130
1 1926 FRINTE(1$) * 10+$ B(2); "R": GOT0 1139
1030 PRINT(E(1)*1日+8(2))*10;"R":GUT0 1130
1040 PRINTE(1);"k"; B(2):GOTO 1130
1050 FRINTE (1) + 10 + E (2): "k ": G9T0 1130
1860 FRINT $(B(1) * 19+B(2))+10 ;{ }^{2} k=$ GOTO 113E
1070 PRINTE (1); "M"; E(2):GOTO 113 E
1080 PRINTE (1) w $10+E(2)$; "11": GOTO 1130
1090 PRINT $(E(1) * 10+B(2)) * 10 ; " 11 ": G 0 T 01130$
1090 PRINT (E(1)*10+B(2))*10; "1":GOTO
110 PRINTS(1);"G";E(2):GOT0 1130
1110 PRINTE (1)* $10+B(2) ; " G ": G 4 T 01130$
$1120 \operatorname{FRINT}(B(1) * 10+B(2)) * 1$! ; "G"
1120 FRINT (B
113 GOTO 126
10090 PRINT"
1 BE1 10 FORC $=1$ TO2G0 1 : NEXTC
10020 FRINT"ฮgMgsthe Eroz ram haz the followins functions
10025 PRINT"- - - - - - - - - - - -- -- - - -
10030 PRINT"1-To calculate the colour code(s) of a"
10040 PRINT" resistor or resistor combiriat ion, of a iven"
10050 PRINT"a valué
10058 FRINT "2-To calculate the walue of a resistor"
10079 PRINT""iven its colour code."
10075 PRINT"3-To terminate the fros ram.
10080 PRINT" 10 terminate the Fircis ram.
10990 PRINT"Flease note that for function 1 , the"
10996 PRINT"Flease note that for function 1 , t
10100 PRINTwalue entsred widl be rounded of
10100 PRINT"value enttred will be rounded off"
10110 PRINT"Internally io 2 siznificant figurss.
10120 FRINT"This sives at mast an error of 5% (when"
10120 FRINT"This sives at mast an error of 5% (when
10130 PRINT"the first thiree disits are 165), but"
10130 PRINT"the first three disits are 165), towt"
10149 PRINT"this is offset oy the 5% tolerance of
10140 PRINT"this is offset by the 5\% tolerance of "
1 10150 PRINT "nomal. 3h resistars. The calour codes"
1016可PRINT"siven all oceur in the E12 ranse of
10170 PRINT" resistors. The limits on function are"
1017 PRINT"resistors. Thie limits sn function
10180 PRINT" $190 \mathrm{hms}=$ =value $<=10 \mathrm{HOhms}$
11000 REM *****ENTER THELE OF COLOURS****
11020 FORA $=970 \%$

11040 NEXTA
1105 R RETUR
12000 REM ****ERROR FOR FIRST CHARACTER EEING H NLINEEF****
12010 PRINT"Ualue irvalid as the firit character"
12020 PRINT"should be a number. There moy be other"
12039 PRINT"errors. Please check."
12050 FOR $Z=1$ T0 $300 \mathrm{O}:$ NEXT: GOTO12240
12060^{9} REM****ERROR ROUTINE FOR TOTHLLY WRONG CHARACTEF ***
1266 REM ****ERROR ROUTINE FOR TOTHLLY URONG CHARACTEF ****
12070 FRINT"Ualue inval id as the fires ram does not"
12080 FRINT"recosnize the eharacter you rave inpue"
12080 FRINT"recosnize the character you have inmue"
12880 PRINT"recosmize the character you trave irimue"
12090 PRINT"at character oosition "!A;". The"
12106 FRINT"programme only recognises the digits"
12109 FRINT"orosramme only recomnises the dipits"
12110 PRINT"ard K (or k) \mathbb{R} and iq. There may
12110 PRINT"arid K (or k) R and IN. There
12120 PRINT"other errors. Flease check."
12120 PRINT"other errors. Flease check
12130 FOK $Z=1$ TO roaut NEXT: GOTU 1224 at
12130 FOF $Z=1$ TO ROD日: NEXT: GOTU 1224 G
12140 REM****ERROR ROUTINE FOR TUO MANY LETTERS****
1215 REM****ERROR ROUTINE FOR TUOO MANY LETTERS****
12150 FRINT"Walue invalid as there should onis be"
12160 PRINT"one letter in the walue. There may be
12170 PRINT"Other Errors. Please check.
12170 PRINT"Other Errors. Please check."
12180 FOF $Z=1$ TO 50 Qu:NEXT:GUTO 12240
12190 REM***ERROR ROUTINE FUR NO LETTEF****
12190 REM****ERROR ROUTINE FÜR MO LETTEF:****:
12200 PRINT"Ual ine invali id as there should be ene"
12210 PRINT" letter in the value to represent the"
12216 PRINT"letter in the value to represent the"
12220 PRINT"multiplier. There may be sener errorg.
12220 PRINT"Multiolier. Th
12230 FRINT"Please check.
12235 FOR $Z=1$ TO 5000: NEXT
12235 FOR $Z=1$ TO 5000: NEXT
12240 RETM***SET USED URRIGELES TÖ ZERO****
12240 RET****SET
$12250 \mathrm{~L}=0: \mathrm{R} 1 \mathrm{~s}=\boldsymbol{\prime}$
$12250 \mathrm{~L}=0$: R1s=
122601 GOTO 150
12260 GOTG 150
13000 REM
13010 ON P F SUERUUTINE TO PRINT "RES UHL "****
13000 REM****SUEFEUTINE TO PRINT "RES UML "****
13010 ON P(C) +2 GOTO $13015,13020,1303 * 1,13 * 140,13050,13060,130701,13080$

13040 FRINTINT R (C) / 10); "K"; R(C)-(INT (

13060 PRINTR(C)*10; "k", T\$, (1),P\&:RETURN
13070 PRINTINT (R (C) / 10); "M";R(C)-(IHT

13080 FRINTR(C); "F", T末, U\$, Fi:RETUFN
140619 REIH****ERROR HANOLING FOR FUNCTION 2*****
14019 REM****ERROR HPNOLING FOR FUNCTION 2*:***
14019 PRINT"The Frograine does not accert the"
14920 PRINT"colour ";BF(C);" de band"ic;". Plea
14820 PRINT"colour ";BS(C);" at band"; C;". Flease"
14030 FRINT"recheck. ":FORSS=1T03000:NEXTSS:GOTG900
14030 FRINT" recheck. ": FORSS= 1 TO3000:NEXTSS: GOTO900
15000 DATA1,10, $5,2,10,1,5,1,12,5$
15001 DHTA $, 12,1,5,3,1,8,2,2,10,5,1,15,5$
15001 DHTA2,12,1,5,3,1,8,2,2,11,5,1,15,
15012 DATA2,15,1,5,3,1,1,15,5,1,15,5
15462 DATA2,15,1,5,3,1,1,15,5,1,15,5
15013 DATA2,18,1,S,2,10,10, $, 3,1,18,10,1,5,1,22, \mathrm{~S}$
15013
15014
$15 A T A 2,22,1,5,5,2,12,10,5,3,10,10,1,5,1,22,5$
15405 DATA1, $^{2}, 5,2,10,15,5,3,22,1,8,2.2,5$
15005 DATA1,27,5,2,14,15,5,3,27,1,1,5

15606 OHTA $2,15,15,5,3,27,1.8,2,2,5,2,22,14,5$
15007 DHTR1, 33, $5,2,33,1,5,3,33,1,1,5,2,16,13, \mathrm{E}$
15048 DATR2, $27,10,5,3,27,10,1,5,1,39,3$
15499 OATH2 $, 39,1,5,2,82,82, F, 2,21,15,5,2,35,16,5$
15016 DATA $2,22,22,5,2,16,27,5,3,18,27,1,5$
5111 DATA $1,47,5,2,33,15,5,2,39,10,5,2,11010,106, F$
15012 DHTA $2,18,33,5,3,18,33,1,5,3,35,16,10,5$
15014 OATR2,56,1,S, $3,54,1,1,5,2,47,12,5,2,27$
15015 DATR2 $22,39,5,2,47,15,5,3,47,15,1,5$
15015 DATA2, 22, $39,5,2,47,15,5,3,47,15,1,5$
15017 OHTA3. $3,3,3,1, s, 1,65, s, 2,65,1, s, 3,65,1,1, s$
15018 OATA $2,56,15,5,2,33,39,5,3,33,39,1,5$
15019 DHTA $2,47,27,5,3,27,47,1,5,3,33,33,16,6$
15010 OHTA $3,47,18,12,3,2,56,22,5,3,5,22.1,5$
15021 OATH $2,68,12,3,3,12,68,1,3,1,82,5$
15022 DATA $2,82,1,5,3,32,1,1,5,3,82,1,2,1.8,2$
15023 DATA2,63,18,5,3,68,18,1,5,3,82,2.7,3.3,5
15624 (0НTA $, 56,33,2,3,56,33,1,5,3,6 \xi, 1,22,5$
15025 DATA $2,82,16,5,3,82,10,1,5,2,82,12,5$
15027 DATA $3,82,15,1,5,5,56,33,10,5$
15028 DATAELACK, EROLN, RED, ORGHGE, YELLOW, GREEN, ELUE, UIOLET, GREY, WHITE 16000 REM****ON LINE 360 THE SECOND ERHCHET SHOULD REHC 〈T=197〉 BHT SHARP**** 16901 REM W + + WISE THEIR GUN FORTM OF THE ASCII COOE*:*** 17990 EHD

Flow diagram for colour code program.

'ALPHADAC 16'

FIRST U.K. OFF-THE-SHELF MICROPROCESSOR CONTROLLER FOR SYNTHESISERS

- The intelligent method of achieving polyphonic control
- Up to sixteen voice capability
- DIGI-1 program also includes routines for tune; keyboard split; portamento select; transpose and several arpeggiation techniques.
- Effects operate in real time and in any combination
- Great when used with one or two voices and magic with three or more
- Major expansion capability which will give greater value for money than stand alone sequencers and other hardware add-ons
- More playing power for skilled and unskilled keyboardists
- Suitable for all synths. having exponential control. Keyboard controller easily retro-fitted to most instruments
* DIGI-1 now occupies full $2 k$ EPROM with addition of two sequencer programs
Only available from Digisound Limited
Send $2 \times 14 p$ stamps for pricing information and advice on 'ALPHADAC 16' options; for DIGISOUND 80 modular synthesiser; for special ELECTROMUSIC ICs; and for TANGERINE COMPUTER SYSTEMS parts which we are proud to add to our range of products stocked. Fast and personal service with technical back-up.

DIGISOUND LIMITED,

DEPT. E\&MM/8, 13 THE BROOKLANDS, WREA GREEN, PRESTON.
LANCS. PR4 $2 N Q$
Tel: 0772683138
(MAIL ORDER - VISITORS BY APPOINTMENT)

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR! BAF, LONG FIBRE WOOL, FOAM, CROSSOVERS, FELT PANELS, COMPONENTS, SPEAKER STANDS \& BRACKETS ETC. LARGE SELECTION OF GRILLE FABRICS (send 30p in stamps for fabric samples).

HI-FI
 DRIVE UNITS

AUDAX HD12.9D2
AUDAX HD100D 2 AUDAX HD11P25EBC AUDAX HD20B25H4 AUDAX HD13D34H AUDAX HD24S45C. AUDAX WFR15S
COLES 4001
COLES 3000
COLES 3100
COLES CE2000 8"
CELESTION HF1300 ॥
CELESTION HF2000.
DALESFORD D10 ferrofluid DALESFORD D30/110 DALESFORD D50/153. DALESFORD D50/153 polymer DALESFORD D50/200 \qquad DALESFORD D 100/250 DALESFORD D300 DALESFORD D300...... ISOPHON KK8/8 ISOPHON KK10/8. JORDAN 50 mm unit. JORDAN Crossover pair JORDAN Watts module Mk III JORDAN Watts HF kit
KEF T27.
KEF 8110
KEF B200
KEF 8139
KEF DN12
KEF DN13 SP1 106
KEF DN13 SP1017.
LOWTHER PM6
LOWTHER PM6 Mk I LOWTHER PM7
PEERLESS K01ODT
PEERLESS DT1OHFC
PEERLESS KO4OMRF RICHAD ALLAN CG8T RICHARD ALLAN CG12T super RICHARD ALLAN HP12B RICHARD ALLAN DT2O RICHARD ALLAN DT3O SEAS H107
SEAS H211 ferrofluid. SHACKMAN ES units pair SHACKMAN ES with cabs, pr TANNOY DC386 TANNOY DC316 TANNOY DC296 VOLT B250 VOLT 10" ABR VOLT B220 VOLT 8" ABR

PA GROUP \& DISCO UNITS

Abstract

CELESTION G12/50TC CELESTION G12/80CE CELESTION G15/100CE CELESTION G15/100TC CELESTION G18/200 CELESTION G18/250. FANE CLASSIC $10 / 100$ FANE CLASSIC $12 / 50$ FANE CLASSIC $12 / 50 \ldots$ FANE CLASSIC $12 / 100$ FANE CLASSIC $15 / 100$ FANE CLASSIC 15/150 FANE CLASSIC 15/200 FANE CLASSIC 18/200 FANE CLASSIC $18 / 250$ FANE DISCO 100/2 FANE GUITAR 100 L FANE GUITAR 1008 FANE PA 100 FANE BASS 100 FANE STUDIO 12L, 12 B GAUSS $12^{\prime \prime}$ models GAUSS $15^{\prime \prime}$ models GAUSS 18" models GOODMANS PP12 GOODMANS D:12 GOODMANS GR12 GOODMANS Hifax 50 HX GOODMANS Hifax 100 HX MCKENZIE C12/100GP MCKENZIE C $12 / 100$ TC MCKENZIE C12/100 Bass f19.50

MCKENZIE C12/125GP MCKENZIE C12/200. McKENZIE GP15 McKENZIE TC15 McKENZIE C15 Bass McKENZIE C15/200 McKENZIE C15/200 MCKENZIE C10/100 MOTOROLA PIEZO $2^{\prime \prime} \times 6^{\prime \prime}$ RCF L1 2P24 RCF L1 2P24 RCF L12P11C RCF L15P03. RCF L15P/100A RCF L15P/06C RCF TW101 RCF TW25 RCF TW105 RCF H2010 flare RCF H4823 flare £8.75 RICHARD ALLAN HD8, HD8T ... $£ 21.25$ RICHARD ALLAN HD10. HD $10 \mathrm{~T} £ 22.95$ RICHAD ALLAN HD12Pf31.25 RICHARD ALLAN HD12 super .. $\{41.75$ RICHARD ALLAN HD15.............. 555.25 $£ 39.95$ $f 54.25$ $f 54.25$ $f 35.10$. $£ 35.10$. 59.60 . 163.25 ∓ 22.50 f8.75 £63.50 $£ 63.50$ f 82.75 f68.95 $£ 85.50$ $\leftarrow 87.75$ $+39.95$ $\uparrow 21.95$ $\mathcal{L} 8.75$. 32.50 £24.50 -37. . $£ 38.50$ L64.75 181.75 f15.75 $f 21.75$ f29.75 $£ 38.50$ 144.00 £47.95 58.75

L28.75 f2750 526.75 $£ 39.00$. 45.50 f146.00 $\begin{array}{r}162.00 \\ \hline 220.00\end{array}$. $£ 22.50$ £25.50 . 124.95 £21.85 $£ 24.50$ ᄃ24.45 $\uparrow 24.45$ $£ 24.45$ $f 39.95$

18.75
18.75
17.50
. 114.95
£12.95
f21.95
. $£ 23.95$
$〔 7.65$
$£ 765$
17.65
67.95
£14.95
\&13.60
f13.60
.. 18.95
f11.95
I 15.25
f12.95
f15.25
$f 29.95$
$£ 35.75$
. $£ 8.25$
f8.75
531.50
f31.90 £28.50
$f 10.50$
69.45
f12.25
f13.50
$£ 27.75$
. $£ 9.95$
f 7.75
16.95
163.00
f67.75
699.90
f11.50
f10.95
f14.75
14.75
$f 14.25$
$\mathbf{f} 30.95$
$\mathbf{f} 35.75$
$f 10.75$
f11.50
t 1.5
c 18.95
$f 10.95$ $€ 136.00$ £ 170.00 f199.00 £159.00 159.00
$\mathbf{1} 18.00$
158.00
£32.00
$£ 49.00$
$£ 25.00$

Send 50 p for our 80 page catalogue - (or price list only free of charge) packed with pictures and specifications of speakers, kits, cabinets, crossovers, mics, amps, mixers, grilles, effects etc. Export catalogue $\mathbf{f 1}$ or $\$ \mathbf{3}$ U.S

Tel: 0625-529599 for speaker drive units, kits, PA equipment, mail order enquiries, and all export enquiries.
Tel: 0625-526213 for $\mathrm{Hi}-\mathrm{Fi}$ equipment and complete speaker enquiries. \square Lightning service on telephoned credit card orders!

WILMSLOW AUDIO
 SPEAKER KITS

KITS FOR MAGAZINE DESIGNS etc.

Kits include drive units, cross-

 overs, BAF/Long fibre wool etc for a pair of speakersCarriage $£ 3.95$
unless otherwise stated
Prices per pair
Everyday Electronics EE70......£144.00 Everyday Electronics E E20........ $£ 29.95$ Hi-Fi Answers Monitor $£ 148.00$ Hi-Fi for Pleasure Compact Monitor
[116.00
Hi-Fi for Pleasure ECM inc foam, felt panels etc.

. 177.50

 Hi-Fi News State of the Art..... $£ 205.00$ Hi-Fi News Midiline 119.75 Hi-Fi News Miniline \quad \&49.00 Hi-Fi News Tabor with J4 bass unitsf69.00
Hi-Fi News Tabor with H4 bass units
$£ 73.50$ Popular Hi-Fi Boxer $\mathbf{£ 9 9 . 0 0}$ Popular Hi-Fi Boxer cabinets, pair

1/8109.00 Popular Hi-Fi Jordan system 1£120.00 Popular Hi-Fi Mini Monitor $£ 84.00$ Practical Hi-Fi PR09TL inc. felt panels
and level controls...............f156.75 Practical BSC3 $\quad \mathbf{6 8 . 0 0}$ Wireless World T.L. Kef units .f 125.00

Flat-pack cabinet kits are available for LS3 micromonitor, BSC3, HFP com pact monitor, EE20. EE70. Wharfe dale E50. E70, E90 (also E90 in Pro disco style).

Wilmslow Audio BA1 sub bass ampli fier/crossaver
$£ 37.95$ plus $£ 1$ carriage

Building speakers

 is easy with the new WILMSLOW AUDIO FLAT PACK CABINET KITS!
ALL PRICES INCLUDE VAT AT 15\% AND ARE CORRECT AT 1.7.81

Speaker kits. Prices per pair. Carriage £ 3.95 unless otherwise stated. COLES NUMBUS mounted an baffle . $\mathbf{f 6 9 . 0 0}$ DALESFORD D including cabinets 669.95 DALESFORD ROCK kit inc. flatinack. $£ 139.00$ DALESFORD ROCK kit inc. flatpack cabinet kit
KEF Ref 104AB (carr. E5) 133.00

KEF Cantata
£199.00
LS3 Micro Monitor LS3 Micro Monitor inc. cabinets etc. $£ 103.95$
LOWTHER PM6 kit
\& 132.75 LOWTHER PMG Mk ; kit 139.95 LOWTHER PM6 Mk \boldsymbol{i} kit 139.95
LOWTHER PM 7 kit RICHARD ALLAN Tango Twin $\quad 58.00$ RICHARD ALLAN Maramba Triple $8 \ldots \mathrm{E} 83.00$ RICHARD ALLAN Charisma Triple.... $£ 119.50$ RICHARD ALLAN RA8 RICHARD ALLAN RA82 $£ 106.50$ RICHARD ALLAN RA82L \quad …........ $£ 16.50$ RICHARD ALLAN Super Sarabande II 169.95 SEAS 223 ... 42.50 SEAS 253
SEAS 403
SEAS 603
SEAS Disco 47............................... 167.50
(isco 47 cabinets, pair. assembled
(carr. $\mathbf{E 1 5)}$
WHARFEDALE Denion XP2

WHARFEDALE Shelion XP2 \ldots| | 10.40 |
| :---: | :---: |

WHARFEDALE Linton XP2
WHARFEDALE L60 52.50
WHARFEDALE L80 $£ 72.00$
WHARFEDALE L100
WHARFEDALE E50...
WHARFEDALE E7O
f129.00

WHARFEDALE 70
$£ 160.00$
WILMSLOW Audio WE50 Total kit - Wharte. dale E50 kit plus WE50 flat-pack cabinet kit including reflex port trims, acoustic wadding grille fabric. nuts, bolts, terminals, etc. . $£ 182$ WILMSLOW Audio WE70 Total kit as above but with $\mathbf{E} 70$ WILMSLOW Audio WE90 Total kit as above but with E90 MLMSLOW Carriage f 10 Wharfedale E90 kit plus WE90 flatpack grille fabric, heavy duty handles, castors with brakes, protective corners, black vynide cabinet covering, input panels, protective fuses, nuts, bolts etc. An ideal high quality disco speaker for amplifiers up to 150 watts (disco) or 200 watts (domestic Hi-Fi)each $£ 187$ CARRIAGE \& INSURANCE Tweeters/Crossovers70p each Speakers
4" to $6 \frac{1}{2}$ "
.90p each £1.10 each $12^{\prime \prime}, 13^{\prime \prime} \times 8^{\prime \prime}, 14^{\prime \prime} \times 9^{\prime \prime} £ 2.00$ each $18^{\prime \prime}$ $\$ 3.00$ each

Spe
Mag. Design Kits
Mag. Design Kits
unless otherwise stated

ع3.95 pair £3.95 pair

Each month we review the latest Electro-Music Equipment - from synthesisers to sound reproduction and effects!

E\&MM's special in-depth reviews look at what's new in the world of commercial music - a vital updating for both electronics designers and musicians.

MuMusico Resynator itch to voltage converters and envelope followers are conventionally those synthesiser peripherals that attract little interest from most musicians, possibly because the average synthesist and synthesiser manufacturer is more concerned with trying to extract the maximum information from the way the keyboard is played than considering any other type of human input. Moving away from this restricted point of view, there's obviously great potential in providing an interface between the sounds of the in strument, with the human input that initiates it, and a synthesiser to reinterpret the original musical intentions. A number of manufacturers, Gentle Electric, for instance, make very good pitch to voltage converters that-will more or less faithfully track any pitched information fed into it from voice or instrument, and then produce a control voltage with which to control a chosen synthesiser. This sounds fine in theory, but many musicians that aren't suckled on synthesisers find problems in relating their technique to an electronic in strument that needs a considerable amount of knob-pushing to get anything interesting or useful out of it. I wouldn't be surprised if this explains the rather chequered career of guitar synthesisers and the like.
So, the first step that Musico have taken with their Resynator is to integrate a synthesiser section within the same package as the interface and then normalise the functions of the synthesiser so that it is totally geared towards the performing musician wishing to expand his instrumental
horizons without subverting his tech nique to the potentially (for him, at least) dehumanising demands of syn thesisers.

Pitch to voltage conversion can be effected by a variety of means, including the use of a phase-locked loop which locks onto an input frequency and adjusts an internal VCO until the frequency difference is nulled. The voltage necessary to do this can be sampled and then used as a control voltage for a synthesiser, but the limitations imposed on the sampling technique and rate invariably lead to mistracking of the input frequency.

Musico go way beyond this level of technology by using a Digital Frequency Analyser that converts pitch to bits of digital information at a fast but variable sampling rate for processing by a microprocessor. Sampling of the input occurs every 40 microseconds, which results in very accurate pitch tracking. I couldn't ascertain what routines were being used to process the pitch data, but I presume that a clean-up operation is performed, the fundamental pitch being sorted out from overtones. The digital data from the CPU is then converted to an analogue control voltage with which a principal VCO, offering sawtooth, square or variable pulse waveforms, is controlled, in addition to a second VCO, called a 'FXO' (effects oscillator), which can be configured to provide harmonising, phase-synching, or various types of overtone synthesis as a result of being modulated by the principal VCO.

An excellent facility that the Resynator possesses is the ability to set the tuning relationship between the two VCOs by merely pressing a footswitch and playing a note which is
then compared to an internal A440 reference, the FXO then being automatically returned to the new interval.

A standard analogue envelope follower, patched to a VCA, tracks the dynamics of the input signal pretty accurately as far as I could tell from the demonstration I heard using guitar and voice input. An important feature is that decay time follows the input signal unless it's overriden by using a footswitch.

So far, we've covered the pitch and envelope analysis performed by the Resynator; what about timbral considerations? It's here that I feel that Musico haven't gone far enough. Practically everyone must have heard the products of analysis of voice formants in the shape of that pie in the blue sky, the vocoder. In analogue terms, this involves a lot of bandpass filters and envelope followers and is usually pretty limited in terms of sampling accuracy. Digital frequency analysers, on the other hand, produce some fairly remarkable results when applied as vocoders, as evinced from work being currently carried out at Stanford University in the States. I'd have thought that it would be valuable to use the DFA in the Resynator for VCF control by using the processor to analyse harmonic or timbral information. This doesn't mean that one is forced to copy the input signal faithfully; instead, really interesting and potentially useful sounds could be derived from digitally cross-patching the results of timbral analysis, i.e., low harmonics could trigger a high filter sweep and high harmonics a low filter sweep.

What Musico do use, though, is a VCF that can be patched to eight different 'filter envelopes' ("Select a

Shape" in the photo)
The filter envelopes consist of a variety of more or less complex filter sweeps initiated by respective step ped control voltage patterns stored in ROM and controlled by a second microprocessor. Musico call this their 'Timbral Image Modulator', and it is very effective in animating the output of the synthesiser in a way that's far less predictable and infinitely more interesting than most filter sweeps. The idea isn't unique, though, as the Phase-filter produced by Blacet Music Research in the States uses the same principle: in their case a 14 -step variable digital waveform generator controls a Curtis Electro-Music VCF chip to shape the frequency content of a signal fed into it. To sum up: the Resynator tracks a variety of input sources with terrific accuracy, though I haven't heard its performance with signals of high transient content or ultra-rapid pitch variation, but it is strictly a monophonic device and makes no attempt to perform any timbral analysis on the input signal which, it seems to me, is a serious omission considering that its main selling point is the digital frequency analyser. As a live performance addition its range of footswitch controls and easily-comprehended panel controls must make it a very attractive proposition to the musician normally scared-off by synthesisers. To my ears, the basic sound isn't wildly different to that from other quality monophonic synthesisers controlled by an external input, and for a UK price of approximately $£ 1,200$ it is very expensive.

David Ellis
The Musico Resynator is distributed solely by Syco Systems, 20 Conduit Place, London W. 2 (telephone: 01.723 3844).

CASIO VL-TONE

t's hard not to feel incredibly jealous of a company like Casio; packing all that the VL-Tone does in one 64-pin chip is pretty remarkable by any standards of such VLSI technology, and doubtless the age of the technodegradable, if not biodegradable, keyboard is close at hand. The VL-Tone may also be a manifestation of the inscrutable Japanese sense of humour, in that it's taunting both the consumer as to what the future holds from Casio and their competitors to come up with something better.

One of the many interesting features provided by the VL-Tone is a numerical read-out of the pitches entered from the push-button keyboard. The display shows the last three notes entered with the last note pressed on the right. However, the numeric code doesn't follow the standard alphanumeric convention for designation of notes, though it's perfectly easy to understand, and I wonder how useful it is in practice. Playing the keyboard in real time demands super-agile fingers, as the inter-octave distance is only about half that of a normal keyboard, and digital flights of fancy aren't really practical or to be recommended unless you've got halfsize hands

The presets on offer give a reasonable variety of sounds that are fairly usuable as they stand, though the quality tends to depend on the octave setting chosen. The five pre-program med instruments are: Guitar (good in low register, but poor elsewhere), Flute (fairly rich in low and middle registers, but thin in high), Violin (rather unpleasant throughout all registers, but just about okay in low register), Fantasy (better in high than low register, but doesn't do anything for my fantasies), and, finally, Piano (the best of the lot as far as all three registers are concerned). All these presets in their various registers can be heard on the 3rd E\&MM demonstration cassette, and the low piano is used to provide the top line in the Bach example.

The sixth position on the instrument select switch points to the feature that sets the VL-Tone apart from other regurgitating music machines. This option provides the user with the ability to program the chip to produce sounds with a prescribed envelope, vibrato and tremolo. Casio split the standard ADSR into five different parameters (see Figure 1), each of which can be assigned a value of 0 to 9 . To perform this envelope shaping, you first have to catch your waveform, and Casio provide another nine varieties of this, ranging from those used in the presets to cor anglais and three falling under the description of "electro-sound". The list of programmable variables is completed by values for vibrato and tremolo, which gives you in toto
a = waveform type
b = attack time
c = decay time
$d=$ sustain level
e = sustain time
$f=$ release time
$g=$ vibrato speed
$\mathrm{h}=$ tremolo speed

Inside the VL-Tone - the VLSI chip can be seen to the left of the ribbon cable.

Figure 1.
By selecting the 'CAL' function at the same time as 'ADSR', after pressing ' $M C$ ', the string of eight values can be entered from the keyboard and then stored, by pressing ' $\mathrm{M}+$ ', in the same memory as that used for the VLTone's alter ego, the calculator, of which the less said the better. Switching back to 'PLAY' or 'REC' then allows you to use the newly programmed instrument. Some typical programmed examples might consist of the following values:
Cor anglais: 61079130
Synth: 70099924
Flute: 33099130
As Casio point out in their multilingual instruction booklet, there are an awful lot of combinations possible; they suggest a figure of 80 million, which is fine if you're a pedant, but optimistic in practice. Anyway, it all goes to make the VL-Tone less of a toy
and more a real instrument. However, this impression of its capabilities doesn't extend to the auto-rhythm side. The usual quasi-percussive fodder is provided, with some quirky additions like "Beguine" probably designed to beguile you (sorry). The chiffs of digital noise are better than normal in producing hi-hat sounds, but the armoury is let down by some awful bongo sounds which are too high and too tuned to be comfortable.

As there's no attempt to produce any bass sounds, let alone a kick drum, the whole thing sounds rather tinny and lacking in substance. It's a great shame that Casio haven't extended the VL-Tone's programmability to the percussion side as well

The VL-Tone also incorporates a 100 -note sequencer that can be programmed and run in a variety of ways. After selecting 'REC', entry of a
sequence can be effected either by real-time playing or by a one-note-at-a-time mode of entry. If the former method has been used, selecting 'PLAY' and pressing 'AUTO PLAY' will result in the sequence playing back as recorded. The tempo of playback can be adjusted from -9 to +9 and the instrumentation and octave select varied during playback. There's also a "one key play" feature that allows a sequence to be stepped through, note by note. Given the limitations imposed by the keyboard on virtuosity, it's actually more practical to enter notes step-wise and then rhythmically step through the sequence using the two "one key play" keys. Apart from a single run-through of a sequence, the VL-Tone can also be programmed, by pressing 'DEL' and then 'AUTO PLAY', to repeat the sequence four times. With the right ADSR programming, the VL-Tone would make a pretty reasonable general purpose sequencer but for the fact that the sequence stops after four plays; a big drawback, this.

The VL-Tone offers a tremendous amount for its low cost, although several of its limitations could have been put right in the design stage from a few chats with musicians. Certainly, it includes facilities that will no doubt be developed by Casio to make it the 'record a tune anywhere' instrument. Over 100,000 VL-Tones are being sold per month in Japan alone and in the UK, reports from Turnkey Ltd. and Tempus Ltd. show outstanding sales, in particular to younger musicians
David Ellis
E\&MM

IEMITV CTIMIUT OITIICOULLAKET

0ne of Irmin Schmidt's concepts about making music is putting people together in a group who would not normally play together in order to induce new musical ideas. For example, in his last piece of film music for TV, he took an accordionist from a Belgian dance orchestra and put him with a free jazz trumpet player. The mix of different styles, personalities and musical experience initiated new ideas.

Spontaneity and collaboration are therefore key words for Irmin. His background as a classical musician and member of the German 'Can' group has given him a unique wealth of musical experience. He has been influenced in many directions: by Can's approach to playing modern music in a free spontaneous way; by his association in New York during the '60's with La Monte Young, Terry Riley and other 'avant-garde' composers; by his performing and conducting

TAT PLANET

"Basically, I still feel I'm a rock musician (it is the element of rhythm that is important) even though my background is classical
'Here's a point about listening and evaluating. You must listen from a distance. When I lived in Bruno's house in the basement room with the studio right above, I used to hear my recorded music in a different way, and what I had considered to be the strongest rhythms were often dominoted by other elements I had not even thought about. If you're sitting in front of the loudspeakers, you can easily focus on particular sounds which become the main rhythmic elements, whilst the general listener will have a different impression altogether.'

Instruments and Equipment

Irmin is the first to admit that the musical equipment used to make Toy Planet was nothing out of the ordinary. There was a Prophet 5 synthesiser along with the large EMS Synthi 100 studio model which Bruno had much improved to reduce system noise. Its dual 60×60 patchboards are very versatile and the peculiar interfacing has its advantages for Irmin.
'That's what I mean by pre-concepions - if you just use the electronic equipment you have to create your sound, forgetting anyone elves "interesting ideas" and simply see what you can get out of your equipment. Even noise inherent on an inferior setup can be utilised as part of the music!'

All the choirs on Toy Planet are done by a special keyboard that uses disc programs - one for violin and one for choir were used on the recording. 'Aah' sounds were changed later with filtering techniques so you might think you are hearing vocal words, but in fact it is all from this basic 'aah'. With the piece Toy Planet, I began to imagine certain words myself and probably people would quickly begin to make their own native language connections.

Other instruments that are importan on the LP are the Eminent Organ, which incidentally did not give the strong plane rumbling between two tracks on side two as you might suppose. This was a combination of
low pitched choir voices, a deep tone made through various filters, and also sounds from the Prophet and EMS synthesisers. De-tuning is employed to create the pulsating, phasing effect. The superb reverberation depth throughout the record comes from the Lexicon Digital Prime Time delay. The reverberation created gives the necessary depth to the images, making the sounds stretch to a distant aural horizon

Multi-Layering

asked Irmin how he created sounds that appeared to contain vast amounts of multi-tracking
'A lot of this is obtained from using such effects as the British AMS delay and harmoniser, as well as the Syntovox Vocoder from Holland which was used for the "train" piece for example. Here it was triggered from a real train recording inputted to the Prophet, Vocoder and then to tape. Both phasing and frequency shifting were used throughout the album, and the complex rhythms were derived from three different drum machine outputs. These were controlled by Bruno using triggered filtering from the EMS Synth 100 (which also sent triggers to control the drum machines) and this would take out certain patterns and allow considerable changes to be made. Meanwhile, was working with the Frequency Shifter, moving the pitch of congas, bongoes and other drum sounds up and down. "Seven Game" gets most of its rhythm from my spontaneous reaction to the rhythms being generated
'Sometimes we would make up tape loops with these recorded rhythms. In "Toy Planet" piece we used the tape loops that were recorded as individual tracks at full volume on our 24-track machine and then faded these in and out at mix-down stage. The problem with this technique is the same as adding drum machine layers - getting accurate synchronisation of these from one trigger pulse. In "Seven Game", 12 complete "percussionist" tracks were merged together and this was quite a difficult task as our trigger pulse was operating at high speed and tape dropouts or any fluctuations would cause errors in synchronisa ton. This meant starting over and
over again to get it right.
'Once again, we might find by chance a new combination of rhythms would be created through these errors and so we would keep these.
'Bruno plays both Lyricon instruments (1 and 2) on the record, along with Tenor Sax and Sopranino, the latter only used on "You Gov" for the solo and on "When the Waters Came To Life". The more metallic highpitched filtered sounds came from the Lyricon or the Prophet 5. Otherwise all other sounds are electronical. ly derived (except for the rhythm guitars on You Tow).

Planet Making

Bruno's studio, where Toy Planet was recorded, is in fact quite small and not over-sophisticated. Irmin reminisced to the days when Can started by making records just on two Revox stereo tape machines and little supplementary technical equipment. Irmin emphasised, 'As long as you accept the limits of your instruments, then any music can be made. Toy Planet would be absolutely impossible to reproduce again - for a live performance or even another studio recording.

This record is done in a way live never tried before and the next will be different again.' A. sign of the times surely, for so many electronic music composers feel this way.

I'm always seeking adventure and exploring new methods and I'm not interested in repeating previous ideas. Often there is pressure on a composer to repeat a successful style or approach, but even when Can started over 12 years ago, we tried different styles on each of our early albums and yet they all retained the feeling of Can and couldn't be anyone else.

The record took around four months to complete, for Bruno and I had other work to do in between. I always have quite a lot of film music to prepare and I enjoy this very much the scripts give me so many new ideas to work with. My approach to composing for films is to find musical themes and ideas that inter-relate and thus link up scenes and the whole film generally.'

Exploring the Planet

I discussed my own general anallysis of pieces on Toy Planet with Irmin, who commented as I went along.

The Seven-Games

This begins with a 'water bubbling' background that is purely electronic and a 'whistle' motive repeated freely. Free drum rhythms emerge from the constant 'crickets' buzz as the volume of the forest life on the Planet increases. Slowly a steady rhythm becomes a driving force for a haunting synthesiser theme accompanied by off-beat Prophet 5 chords. The theme is repeated à la Ravel with
multi-textured sounds. The Tenor Saxophone from Bruno (who in many ways provided the main ideas for this track), plays a series of syncopated notes interjected through the continuing percussion and chords.
irmin pointed out: 'The first technocal step was to record a "pulse track" which came from hearing one day a record with a bass drum line that made us try and get a more realistic effect, yet still electronic. It is at times like this when trying to choose the best effect that Irmin's wife, Hildegarde, also adds her criticisms and ideas.

I like my pieces to generally start and end in the same key and I enjoy quoting from other works.

So the piece starts and ends in A minor and at this point. it begins its first change of key (up) for a repeat of the melody again - sax improvising with it. Another change of key again upwards and a full band effect provides the melody, almost like a trumpet line-up (it's actually the Lyricon with nine overlays). On the third change of key, as the music works to a climax, the added rever beration gives a feeling of space from the 'forest' as the sax improvises and the electronic drum soars up in pitch

The next change of key uses synthesiser strings; flute and other preset sounds that improvise weaving melodies with the sax and finally reach a major triad ending, reminiscent of Beethoven's Pastoral Symphony (last movement). The saxophone has the last word on a very smooth sustained echo (a seventy second delay on the Lexicon) that leaves a gentle tinkling and atmospheric rustling in the distance.

I asked Irmin whether he felt that his wide musical experience gave him more scope for 'producing better music': 'I wouldn't really judge it in terms of quality, because there are plenty of younger composers who are untouched by classical music and yet come out with music that is so surprising and contains such strong ideas.
'The complex rhythm track (built up on our 24-track machine) inspired us with the idea of a melody that comes again and again over this rhythm, and the actual theme was eventually derived from Bruno's experimentation. Wherever Bruno imp provised solos, these often took place at widely spaced periods of time and then one day it would turn out to be the right one.
'Being aware of time is another important aspect of composition. You feel this in ethnic African tribal, Balkan folk and Red Indian music which I listen to frequently. Because a piece often contains al 16 -bar theme, you already have some indication of timing and formal patterri but it is still an instinctive feeling that a musician gets for the need to change or end a piece. You could say that this opening

music on Toy Planet has a structure that rises to a peak and then fades away. This process of fading out the end of a piece still has to make musical sense. For example, a fade is ideal for giving the feeling that the music can go on for ever.'

Toy Planet

From the atmospheric rustling, distant voices approach (like Holst 'Planets'), forming a beautifully refreshing and space-like sound that stretches across the stereo field, and ebbs and flows through a mixture of echoed chords and solo voices. The echo effect gives the momentum for the piece, making the tinkling percussion "beat" in time. Filtered peaks wander through harmonics as the voices continue - a new chord is heard that returns with harmonics built up through the centre voices echoing with left and right melodies. The music reaches a hilltop and then sinks again to start once more. It's hard to define a key feeling, but all the time the music seems to move to another tonal level. As it dies away, voices almost produce words and finally wander away, leaving the tinkling.

I questioned Irmin about the harmonic structure. 'This track took several weeks to produce and the first harmonies came from us playing melodic lines that were made into tape loops for layering into sequence patterns and chords. By changing the playback speed of the loops and mixing these with the original, we produced a very complex harmonic structure. For each loop and each step we overlaid as many as 16 loops and of course you then create some strong dissonance effects. Don't forget that every loop had its own specific pattern to begin with as well! The choir voices also are always single lines that have been overlaid to achieve harmonies.

An interesting point is that all the overlays get their own particular position in the stereo field, from left to right with the pan control, and front to back by using increased reverberation depth.
'When you work with electronics, there are strong psycho-acoustic effects created which come much more from what you associate - from your brain picking up certain patterns that are associated with natural events, and this makes you feel that a sound is far away or near to you when its aural proximity has not really changed at all! Just as visual patterns can suggest shapes that really don't exist. The secret of making, say, 20 loops is to make just one, listen to it, experiment and then decide on whether you want another loop or not to go with it. This way, every element, every step is spontaneous and of your creation - but still balanced with your awareness of building a form.
'When Bruno and I were working on the record in Zurich, we always started at 10.00 a.m. and worked all day until around 8.00 p.m. Sometimes I worked with the sound engineer, who played an important part in setting up the levels and images for the LP, but most of it was done with Bruno working alongside. The recording was made on a 24 -track- A800 Studer machine with a large MCI mixing desk (see photo), with the final mix in stereo.

Two Dolphins Go Dancing

This has strong Euro-disco style drums from the EMS with a dominating metallic 'scrape' that adds to these rhythms. There's a short theme on typically filtered synthesiser sounds from the Prophet against steady 2 -beat Prophet chords, whilst the rhythm continues against plenty of syncopation in the background. The Tenor sax melody contains a Ravel quote (produced spontaneously here by Bruno) and finally becomes an improvisation over what appears to be a repeated 2 -chord pattern a semitone apart.

Irmin explains: "The metallic scrape came from some 30 overlays that included tracks from the "tinkling" effect in "Toy Planet" and a number of "horror" type rattling, screaming sounds. These were pulsegated to achieve the metallic "slice"
'The final dual chord effect is really just a single B major seventh chord that has its alternating feeling from emphasising lowest or highest notes of the chord.

Yom Tov

This is an old Russian gypsy theme based on the chords: Cm G7 Cm C Fm F G G. A romantic saxophone theme opens with strings accompanying. Irmin gets this superb string effect from at least six overlays done with separate deep, mid and high tracks with or without phasing. High pitches are particularly important and very gently provide that extra realism.
'When I came to Bruno's studio, I was in fact intending to make a solo record and I had already recorded this gypsy piece for use as a basic track. The three guitars from the gypsy band were treated through the vocoder and the Prophet was added as well.'

The title is a Hebrew one meaning 'Happy Day' and certainly the piece contains this feeling and excitement from the various Lyricon and Prophet solos against the persistent guitar theme. After this seemingly wild improvisation there's an abrupt yet typical folk ending to this exciting dance style piece (that might seem out of place here), but it has a warm and enjoyable effect that is an ideal contrast at this point.

Springlight Rite

The whole record is like a fantasy of invented cultures, feast and rites and in the previous track 'Yom Tov'
you have perhaps an ethnic flavour for the Planet. Now 'Springlight Rite' provides the ritual spring feast and, although formalised like the 'Toy Planet' piece, uses sequences created over several days that all tend to merge their rhythms and harmonies at particular points. Here's one instance where you could just not have recorded this piece in a studio when time is a premium. 'Tibetan horns' come from the Lyricon and seem to echo to each other from mountain tops in different spatial positions.
'Writing and notation is so difficult, we even tried to photograph the settings with a Polaroid so that we'd get it right the next day - yet temperature, minute adjustments and even your own listening can still change the whole sound image. Reverberation is added here on the individual-tracks although it's sometimes left until mixdown of a larger group of sounds. It ends with a magical "fire" and "bubbling" effect, which came by chance during a recording of the Eminent organ using several mics. As we played it back, we heard this "whispering" effect from the tape that was really a subtle feed back from the mics and unanimously decided to use it. Irmin appreciates that "music, like emotion, is often dependent upon the inter-action of people"

Rapido de Noir (Last Train To

Eternity)

Irmin has always been facinated by the sound of trains. 'I have always heard voices from train sounds and wanted to use this "train" element on the record. Bruno happened to have this "train-over-the-tracks" sound on tape. All through the piece, the rhythm of the train wheels on the railway line is evident.
Initially, we built up a six-minute train sound from various recorded loops of the real thing. Two methods of treatment were then used - first we sent the sound through various devices including Vocoder, EMS and Frequency Shifter. We then kept overlaying these train sounds so that we created an interesting image. Second, by filtering we removed certain parts of the train sound and used this as a trigger for gating sustained Prophet chords. The Vocoder chords were also triggered in this way. The result was to make all the music appear to become part of the train noise. The last stage was to mix these in various forms so that the listener finds it hard to perceive music/train changes.

Hildegarde was in London at the time and when she received a copy of the tape, did not like it at all so that Irmin felt obliged to do it all again!

After a short time, a distorted guitar/violin solo sound (actually done on the Prophet) has wah-wah treatment and the strong resonance. produced from the peaked overtones
gives movement to the sounds. 'Rapido de Noir' is a fascinating atmospheric piece which musically conjures images of travelling across a mysterious Toy Planet.

When the Waters came to Life

Irmin achieved the largest number of overlays he has ever created in this piece - 112 layers! So the 24 -track was used five times over for mix downs. The more common orchestral kind of sound available on preset synthesisers just didn't provide enough animation for Irmin and this was the only way he could achieve his orchestral images. Once again, spacial placement of sounds is important and moving images can be heard that are overlaid at twice speed. These were gradually multi-tracked into two tonal groups and as this 'backing' was playing, Bruno would improvise.
'Whenever I felt it was right, I would change tonalities by fading in the other group of channels. So here I was playing "Sliders"! The last chord of B major has 112 layers to achieve this very rich feeling and was a conscientious reference to Wagner.
'The track begins with a link from the previous train piece that has a deep melancholy sound. For me, it's as if the whole sky held this rumbling intense tone under its dome - a sound of some huge plane.'

Once again, getting final balance just right is so important. 'Using electronics is inventing instruments at every step - not using them just as a "brave new world" feeling that we all have when playing new instruments. The basic problem of working with synthesisers is that you don't work with a musical instrument that has grown over hundreds of years - each time you use a synthesiser you invent an instrument and in that moment you use it.

Irmin is now in his early 40's (and Bruno too) and it is likely that he and the other members of Can will come together in the not too distant future to make another record. For the present, he plans to build himself a new home in France.

Through his Toy Planet he has shown that experience, coupled with spontaneity and collaboration, can offer the dedicated musician new possibilities in the creation of electronic music.
Mike Beecher
E\&MM
Toy Planet is available from Making Waves Distribution, 10 Southwick Mews, London W2 1JG. Tel: 01-262 7377.

the Crême de La Crême of electronic organs

Easier to own than you think!

Believe it or not WERSI organs were designed for those who wanted to build their own organ but never conceived it possible. The WERSI concept is to make assembly an automatic step-by-step procedure. NOW even the humblest do-it-yourselfer can construct a WERSI organ experience isn't necessary, just the desire to own an organ which is technically brilliant and is guaranteed to produce the world renowned WERSI sound.
Perhaps you have toyed with the idea but are still hesitant about taking the plunge - Electro-Voice are WERSI specialists and whilst giving you the opportunity to see, hear and play the complete range of WERSI instruments at any one of our fully equipped showrooms, we will be more than happy to discuss in full the advantages of building your own organ.
Seeing plus hearing equals believing, so, why not come along to one of our studios and meet one of our resident

Head Office \& Showroom: Maple Cross Industrial Estate, Denham Way,
Rickmansworth, Herts.
Tel: (Rickmansworth) 75381

Nottingham:

389 Aspley Lane,
Nottingham
Tel: (Nottingham) 296311

Ipswich:
486 Felixstowe Road,
Ipswich, Sulfolk
Tel: (Ipswich 0473) 710051
demonstrators who will be delighted to demonstrate any instrument. Additionally, talk with one of our engineers who will show you one of the WERSI kit-pack systems. (Electro Voice customers are guaranteed full after sales service plus engineering support).
WERSI . . . one of the world's most desirable instruments - easier to own than you thought!!
P.S. Home Construction offers you the bonus of saving at least 60% of the completed instrument price.

WERSI HOLIDAYS AT PONTINS

See the full range of Wersi electronic organs \& kit packs at the PONTINS PRESTATYN Organ Festival (29th August to 5th September). Details of the Festival Programme and Accommodation are available from ELECTRO VOICE head office.

Organ Talk
 CARE \& MAINTENANCE

Electronic keyboard instruments are somewhat like cars in that maintenance can tend to be neglected if all is going well. In both cases, this policy is short-sighted for fairly obvious reasons so it seems well worth while mentioning a few points concerning the care and maintenance aspect.

The condition of the cabinet will largely determine the trade-in value of any instrument: its covering is usually a high-quality wood veneer, which can be damaged easily. Some instruments are finished in laminates similar to Formica and, although cheaper and more durable than wood, are possibly less attractive to the eye. An organ is often the focal point of a room's furnishings and should be accorded the same treatment as a good suite of furniture.

Woodwork

The owners guide may contain recommendations but otherwise a proprietary wax polish will be suitable. A secondhand instrument in dirty condition should first be wiped down with a wash leather, then given a wax polish treatment.

If a veneer is struck hard enough by anything - including a vacuum cleaner - it may lift locally. In due course this will catch on clothing or a duster and probably come adrift and a piece will get lost. At the first indication of loose veneer, mix up a small quantity of warmed Araldite and insert it between veneer and body woodwork with a thin knife blade. Press the surfaces into close contact and Sellotape the edge tightly until the epoxy resin has set. Excess resin can be taken off with a damp rag at the time or removed before the resin has fully cured.

The factory finish is often a sprayed mixture of stain and polish, so that scratches will often appear lighter than the surrounding woodwork. These call for patient work with a very fine brush (say No. 0) and a suitable wood stain to disguise the blemishes. The same brush can be used again later to apply a line of polyurethane varnish over the stain: eggshell varnish will probably be less noticeable than the gloss variety. AIthough dents on a level surface can be 'filled' with a blob of varnish, rubbing down the work will disturb the neighbouring finish so they are probably best ignored.

Installation

Avoid a position with nearby radiator. Heat should not affect solid-state electronics up to a point but it will damage woodwork eventually. The height of the pedals above floor level varies slightly from make to make. If the instrument can be played.comfortably on a parquet floor but the pedals feel spongy in a carpeted room, cut pieces of thick plywood which will not be noticeable when placed under the ends of the console.

If the organ is constantly transported for 'gigs', cabinet work is at risk unless it uses a strong vinyl finish designed for this purpose. Shuffling down a passageway with a heavy instrument is hard work and usually results in bruised ankles. If two large pipe brackets are screwed to the back of the console, a pole can be passed through them and the organ carried in 'Sedan Chair' mode. A piano or organ trolley makes lighter work of the task, as does a tail-lift truck. Road surfaces and cornering make it essential to rope the instrument inside the van. Most organs are completely top-heavy and only a few weeks back I heard of an organ toppling over in transit, with consequent damage to the pedalboard.

Always keep the instrument's back in place when moving it as it is only too easy to damage circuit boards when trying to find a good handhold. Spring reverberation units should be locked to avoid damage when moving and owners of tone-wheel organs must lock the generators. In.these earlier Hammonds, the generator assembly is suspended on coil springs: by reversing the sleeves on four bolts found under the generator shelf, the generator is pulled down into contact with the shelf for transportation. Without this precaution, the valuable (and now irreplaceable) tone-wheel generators will be free to react to every bump in the road, with consequent damage to frame and drive mechanism.

Keyboards \& Controls

Relatively few commercial instruments have a fall to cover the keyboards, which does help in excluding dust from the contacts. Keys and controls are best kept clean by occasional use of a damp cloth. Unless trying to repair minor damage, abrasive polish should be avoided as it can remove the lettering from tabs and controls. Naturally, water should not be allowed to run between the playing keys but other liquids spilled accidentally can be very troublesome as they are likely to be sugary. Performers with a glass of beer perched on the keyboard cheek should definitely be discouraged: they might also be chain smokers and it is impossible to disguise cigarette burns on playing keys!

The key itself is usually a plastics casting with a metal extension to the pivot point. Though fairly robust, the key surface can become scratched. Gentle polishing with a small amount of 'Bluebell' will remove anything less serious than a major scar. In a solidstate organ, these are the moving parts and have to take punishment. Really heavy-handed players have been known to break keys: replacement by a competent serviceman will be the remedy here although a clean fracture might be suitable for the use of cyanoacrylate glue (which has no
filling power).
Intermittent contacts can usually be accessed by lifting the keyboards on their hinges. As plastics are used extensively, carbon tetrachloride is not the best choice for key contacts. The precious metal surfaces (rhodium, gold or silver) can be treated with a brush moistened in methylated spirit until the fault has cleared. Tabswitch contacts are usually accessible but rocker switches often have their contacts buried in a plastics casting: sometimes it is possible to remove the rocker itself, by pushing out the pivot, so exposing the contacts inside the box.

Both the clearances and shaping of contact springs are often critical so the cleaning operation demands great care.

Circuitry

Owners of self-designed instruments will know this aspect intimately, possibly having dreamed up the whole system while having a bath! Commercial organs are not always accompanied by circuit diagrams when purchased but it is well worth trying to obtain this information even if only to be warned where CMOS devices are incorporated.

Maybe you have used 4011s, treated them with abandon and got away with it but the complex LSI devices in organs cost considerably more than 20p to replace! The connecting comb on a PCB should be regarded as an extension of the IC, so tread warily. Your nylon carpet cannot be changed in a few seconds, but it takes no time to get out of a nylon shirt and put an earthed bracelet on the wrist.

Today's trend towards digital operation results in fewer connectors. Even so, the likely cause of missing notes or functions is normally due to poor connections, so PCB sockets should be checked to ensure that vibration from the internal speaker has not disturbed them. Manufacturers sometimes use solid conductors and, if the wiring to a plug is bent too frequently, it can break inside the p.v.c. covering. If the suspect can be traced from the circuit diagram, sharp needles on the ends of a meter's probes can be used to pierce the p.v.c. and diagnose lack of continuity.

Filter components are unlikely to fail (unless the op. amp. of an active filter has given up) so that an inoperative stop is normally due to a poor connection somewhere. Missing notes can be due to connectors in mother/daughterboards systems.

Voltage regulators are normally very reliable but any failure here can cause untold damage to the rest of the circuitry. Today's sophisticated instrument requires accurate voltages for its divider/keyers, T.O.S. etc, so that any sudden surge in voltage levels can lead to a very expensive
result. For these reasons it is worth checking voltages from the PSU, assuming the correct figures are known.

The earthing system, especially when stereo channels are involved, is usually complex. A form of 'pink noise' can be caused when the bare screens of adjacent coaxial cables touch each other, or a screen becomes disconnected.

Most swell controls work on the lamp and I.d.r. principle so that, if the instrument suddenly develops uncontroliable full volume, a circuit. diagram is hardly required to faultfind here. Simply check that the lamp operates and that the light path to the I.d.r. is clear of dust and dirt. With a top octave synthesiser, tuning presents no problems: vibration, either from the speaker or the effects of transportation, may have shifted pitch very slightly, calling for a small adjustment, usually by means of a preset internally.

Faulty potentiometers become so because they are frequently used. The speed control of the Rhythm Unit is a likely candidate here and at the first hint of an erratic set of speeds it should be replaced (making sure the law is correct). Although it may seem desirable to leave pots and drawbars in set positions ready for the next gig, this can cause extra wear and possible noise at these points. A few rapid turns of a pot may help to clear any noise present.

Lubrication

A trace of oil on the Swell pedal pivots (and also on the pedalboard pivots if they are accessible) is a useful exercise. Leslie tone cabinets also need lubrication occasionally Apart from the rotor and horn bear ings, the motors themselves require oiling. These are fitted with porous bearings with felt oil reservoirs and it is necessary to look closely to find the oil holes: they are often underneath so it is best to remove the motor temporarily to lubricate it.

Tone-wheel generators of earlier Hammonds need to be oiled annu ally, filling each cup on top of the housing about threequarters full. These are only funnels and, if filled repeatedly, the inside of the cabinet and amplifier chassis will become saturated with oil. If the generator cover is removed to carry out this operation, take great care with the capillary threads which feed oil to the motors and various shafts. Breaking them can cause the system to seize up.

Most of the foregoing is obvious and common sense, but there may be something here that eluded the reader previously. Anyway, I have no doubt that it pays to look after an instrument that can give the owner and his family so much pleasure.

E\&MM

The WERSI Concept

HARMONICS

Anote of the same fundamental pitch sounds quite different when played on a violin, a trum. pet, or a flute. This is because all musical instruments produce notes of other frequencies along with the fundamental note. These are called harmonics or overtones. Strings and columns of air (brass and woodwind) produce harmonics whose frequencies are simple numerical multiples of the fundamental, whereas drum skins and solid objects (bell, cymbal and triangle) produce harmonics with no simple relationship, so their sounds are musically discordant. The character of an instrument's tone depends on the presence and relative intensity of these harmonics and is called the timbre of that sound. Fourier's theorem shows that any sound wave can be built up using a sufficient number of pure tones of the correct frequencies and amplitudes. It is these harmonically related frequencies whose amplitudes are controlled by the drawbars on large organs, which allow the player to build up any sound he wishes.

Let us examine first the waveforms which can be produced electronically. The Sine Wave: this is the basic pure tone, the most simple form of vibration possible. Mathematically the sine wave describes the oscillations of a pendulum or any similar object. Musically, the only instrument which produces a sine wave is a tuning fork or a softly blown flute.

The Triangle Wave: This is the waveform produced by an integrator ramping alternately positive and negative by equal amounts and at the same rate. Analysis of its harmonics shows that it coritains only odd multiples of the fundamental frequency, i.e. a triangle wave of frequency 100 Hz contains sine waves of $100,300,500$, $700,900 \ldots . \mathrm{Hz}$ (f, 3f, 5f, 7f, 9f...). The amplitude of each harmonic is inversely proportional to the square of its harmonic number, i.e. if the fundamental is at relative amplitude A, then $3 f$ is at $A / 9,5 f$ is at $A / 25,7 f$ is at $\mathrm{A} / 49$. This can also be expressed by saying that the harmonics decrease by 12 dB per octave. Thus although it contains all the odd harmonics, most of them are too faint to be heard; however beats between adjacent harmonics may contribute to the overall sound. Something approaching a triangle wave is produced when a string is plucked exactly at its mid-point. Figure 1 shows how the triangle wave can be built up.

Square and Rectangle (pulse) Waves:

These are all members of the same family and a simple rule explains their harmonic content. The ratio of the proportions of high and low, or on and off is called the duty cycle or mark:space ratio. Thus a wave which is high for 25% of the time has a duty cycle of 25% and a mark:space ratio of $1: 3$. The reciprocal of the duty cycle is called the Lnumber, and for a duty cycle of $25 \%(=1 / 4), L=4$. A rectangular wave contains all the harmonics except
 3: 5th Harmonic 4:7th Harmonic 5 : Resultant
Flgure 1. Frequency spectrum of triangle wave, showing harmonic content.

(a) Synthesis of square wave from sine waves. (b) harmonic composition of square wave,

1: Fundamental 2: 2nd Harmonic added
3: 3rd Harmonic added
5 : 5th Harmonic added
6 : Up to 10th harmonic added
Figure 3. (a) Synthesis of sawtooth (ramp) wave, showing number of harmonics present. (b) Harmonic composition of sawtooth wave

Figure 4. Op-Amp circuits giving (a) 'staircase' and (b) square wave.

those divisible by the L-number, in this case $4 f, 8 f, 12 f$ etc. The amplitudes of the high harmonics are very strong.

The square wave is a special case; its duty cycle is 50%, giving $L=2$, so it contains only odd harmonics. Their amplitudes are inversely proportional to the harmonic number ($3 \mathrm{f}=\mathrm{A} / 3$, $5 f=A / 5$ etc.). This means that the harmonics fall off at 6 dB per octave (compare with the triangle wave). See Figure 2.

The Sawtooth (ramp) Wave:

This very useful waveform contains all odd and even harmonics, and their amplitudes are inversely proportional to the harmonic number, just like the square wave (6 dB per octave fall-off). In a good quality sawtooth up to about the thirtieth harmonic will be detectable. See Fig. ure 3 .

Interconversion of waveforms

Most organs use bistable dividers and therefore have available large numbers of harmonically related square waves, but no sawtooths. Proper synthesis of many instrumental tones requires even as well as odd harmonics i.e. sawtooths but these can be created electronically by staircasing. A 200 Hz square wave contains odd multiples of $200 \mathrm{~Hz}(600$, $1000,1400 \mathrm{etc}$.) which are even harmonics of a 100 Hz tone; similarly a 400 Hz square wave contains also $1200,2000,2800 \ldots$ Thus by adding together square waves of 100 Hz at amplitude $\mathrm{A}, 200 \mathrm{~Hz}$ at $\mathrm{A} / 2$, and 400 Hz at $\mathrm{A} / 4$ a staircase with 8 steps is produced, which contains all the harmonics required in a 100 Hz sawtooth except for the 8 th, 16 th, 24 th, etc., and they are all of the correct amplitude. A simple circuit for doing this can be made from a 741 op-amp. See Figure 4(a). A similar circuit can be used to produce a square wave from two sawtooths an octave apart; all the harmonics of the higher sawtooth are even harmonics of the lower one, so by subtracting $2 f$ at amplitude A/2 from f at A, only the odd harmonics are left, and this constitutes a square wave. See Figure 4(b).

Consider now the sounds of actual instruments: their timbre depends not only on the harmonics present in the waveform, but also on the effect of the formant. This is a band of frequencies, fixed for each instrument but varying even between different specimens of the same type of instrument, and any harmonics falling into this frequency band sound at a loudness level higher than that expected for their harmonic number. This effect is a form of resonance, and it explains why a Stradivarius has a richer tone than a cheap fiddle - the formant of the Strad is unusually wide and extends to higher frequencies. The same effect can be applied to an electronically produced sound by the use of a resonant band pass filter with
adjustable centre frequency and ' Q '.
E\&MM

1978 saw a genuine breakthrough in synthesiser technology. The world's first synthesiser for under £200. The 'Wasp' offers a quality and performance which has remained unchallenged. Many well known recording artists and personalities perform with this instrument. Now at last the 'Gnat', with the following facilities, is available.
*Easy to play, one finger, touch sensitive two octave keyboard incorporating a new digital breakthrough which holds the oscillator constantly in tune. The oscillator has sawtooth, squarewave and enhance positions. The enhance 'feels' like two oscillators.
*Digital white noise.
*A five position wave form control oscillator incorporating the famous random sample and hold.
*A powerful 'low pass' filter with 'Q' resonance and a control oscillator and control envelope to the filter for those rich synthesiser sounds.
*A unique control envelope which on one knob gives you many shapes for the filter.
*Envelope with attack and decay/release.
*Preset sustain and volume.
*A full digital coding interface link for connection to any of the products (Wasps, Spiders, Caterpillars, Fleas) and Micro Computers.
Plus line output for amplification, and a 9 volt power input adaptor socket.
*Housed in a durable, light weight (1 KILO) plastic case with battery compartment for six HP11 type batteries.
*Internal practice speaker.
*Every Gnat comes with a comprehensive specially written manual-a complete course in synthesiser technique, from the first principles to advanced performance.

The Wasp

($£ 199$ inc. VAT) Incorporating everything in the Gnat plus the following features -2 oscillators with pulse and width control and variable pitch. Separate digital white noise and control. Filter A three band filter consisting of low pass, band pass and high pass. Separate positive and negative controls from the low frequency oscillator and the second envelope shaper. Both envelope shapers have individual sustain, repeat and delay functions. Two link outputs and headphone outputs.

Coming Soon

The Flea Sequencer ($£ 99$ inc. VAT) A smaller version of the Spider Sequencer.

The Spider

(1199 inc. VAT) A digital micro computer based sequencer designed for use with the Gnat and the Wasp synthesisers. Two modes of operation-

1. Pulse Tinye with 252 nete storage capacity.
2. Real/time with 84 note storage capacity.
Variable speed playback in both modes. Note editing facilities, tape syýchronising facilities (sync/pulse input) Digital to anologue voltage Converter which producgs trigger and control voltágé lor other makes of synthesiser, Memory is retained when power is tukned off.

The Caterpillar

($£ 149$ inc. VAT) A three octave four voice digital moving keyboard controller designed for use with Gnat and Wasp synthesisers. Up to four synthesisers can be connected and played polyphonically. Three modes of key assignment unison, normal polyphonic, and cycle polyphonic.
Completely portable-Long life from a PP3 internal battery. The caterpillar allows the Gnats and Wasps to be built up polyphonically as required, simply by adding more together. Thus making a very cheap and versatile four voice synthesiser at a fifth of the cost of other makes.

SpecialOffer

Available for every unit purchased. A free holder bag for your instrument. Specially custom designed to protect against dust.

How to order

Telephone onders for payment by Barclaycard/Access, tel 01-584 1008 Ext 1620
By post-payable by cheque, P.O. Barclaycard or Access; by filling out the couponbelow. Either wayplease allow 14 days for delivery.

All products are fully guaranteed against normal use for 12 months. I

里

Andy Emmerson

This month's article is concerned with tape and value for money I guess most video enthusiasts should be involved with these. Do you buy pre-recorded films? I don't think anyone will deny these are quite expensive items, and after you have handed over your £30 or more you do at least expect to get what you paid for. Unfortunately this is not always the case, and several of the films on sale are 'mutilated'. For one reason or another they have been cut from the original length and various scenes are missing. If you compare the stated running time with the original length as quoted in the reference books you can rapidly assess whether you are getting the whole film or a shortened version. Sometimes the scenes have been taken out in order to make the action snappier, sometimes they have been 'censored' to make the film acceptable for screening on TV. Occasionally the original version is no longer available, so the curtailed version is the only one available.

Now, however, another complication emerges. Warner Home Video in the States had a problem in that films were just too long to fit onto the normal length tape cassette, which in the States is two hours. They were reluctant to issue films as twin-packs because this raised the cost price to an uneconomic level and the public would never pay the eventual retail price. Their first reaction was not to release films lasting longer than 120 minutes, but that was short-sighted. There were many excellent films
which would sell well but lasted longer than the prescribed 120 minutes. With typical American ingenuity they have now come up with an answer. The problem was partially solved by producing longer blank tapes lasting 150 minutes - pretty obvious that, the clever bit is a new time compression technique which enables more viewing time to be put onto a tape. By speeding up the projection of the film during the film to video transfer they can now get almost 65 minutes' worth of action into 60 minutes playing time on tape. Speech and other sound is digitally processed to maintain normal pitch; voices sound normal, though in fact the performers are talking slightly faster.

In the past year Warner Brothers' and VidAmerica have applied this technique to literally thousands of cassettes sold and presumably nobody has complained. It has to be used very carefully in musical programmes and has created a new dilemma for the marketing people: which running time do you put on the cassette? If you put the original running time of the film you are liable to offend the trading standards people for misrepresentation, and if you put the shortened time you could lead film buffs to think they are getting a cut version of their favourite film.

As you may well know, there are far more films available on sale in the USA than over here. Prices are lower and feature films are generally available on tape at the same time as they are released in the cinemas. In fact the American video public is getting quite accustomed to buying films for their entertainment - it may have something to do with the mediocre
level of television programming in general. Over there considerable interest also exists in old films and even TV programmes from the vintage years of the fifties. This has led to a small boom in backstreet film to video transfer merchants, peddling dubious copies of ancient films. I am not sure what the copyright situation is there, but as far as the advertisements would lead you to believe, it is no problem. One outfit calls itself Public Domain Video, which of course leaves you in no doubt as to where they got their material but even then it is no guarantee of quality. In fact the old film business has got itself such a poor reputation, most collectors will only buy at shops where they can view the tape first. Prices are higher than the mail order merchants but at least you can avoid being ripped off.

If you wish toget a bit of this action, as we have said before, you will need a multistandard video recorder. This usually adds about $£ 150$ to $£ 200$ to the price, and many of the specialist dealers in London have these converted machines in stock. In addition you will also need a dual standard TV set, though if you are prepared to forego colour, you can get a black and white picture on most modern UK standard sets. Of course, you may only be interested in black and white films...!

In May I told you that head-cleaning tapes were not 100% effective and a dealer could probably do a better job of head-cleaning than you could. (This assumes he does not just run a head-cleaning tape through a couple of times...). Earlier than this, the leading manufacturers in the VHS camp had issued a very strong con-
demnation of head-cleaning tapes The distributors of the Allsop headcleaner - which uses fluids - made a complaint which, surprisingly, was sufficient to make the VHS manufacturers issue a revised statement. In the public interest it is set out here and says "The Allsop, if used correctly, will not cause damage to either the record/replay heads of VHS machines or to tape used in current models. If used incorrectly, the Allsop product and other head-cleaners currently available are, in our opinion, not only ineffective but may cause damage. We reiterate that we cannot endorse the use of head-cleaning products as a substitute for regular servicing by a qualified and VHS. approved engineer'

Those are the words of the oracle. I would just add that if you do use the Allsop, let the alcohol dry off completely before you run a tape through the machine. Otherwise the tape might stick to the wet head-drum, and that would not be nice.

Finally, here is a word of advice to anyone trying to track down the new E 240 four hour VHS tapes - and, I suppose, for National Panasonic who make them. In London's Tottenham Court Road, arguably the videocapital of Europe, the going price for these is £18.95. Now I am prepared to concede this represents only the normal retail markup on the trade price, but it does seem excessive. Considering that you can get an E-180 by the same manufacturer just across the road for $£ 8$ it would appear that your money would be better spent on two E-180s, with more than enough change to buy your lunch at Macdonald's at the top of the road!

E\&MM

0ne of our recent readers letters, from deepest Wales, asks for general advice on rewiring a Wilson Rapier 33 (does he mean the revered and historic Watkins, I wonder?) from three pick-up to two, the object being a general and experimental hot-up. The letter highlights a whole area that deserves discussion here rather than on a few bits of Basildon Bond and I'd be interested to hear from anyone else with ideas on an overall approach to this type of project.

So meanwhile, dear Mr. Wilson or Watkins owner, and fellow enthusiasts.

I don't know the Wilson Rapier 33 particularly, but I would guess that it would benefit from some physical sorting out before you start on the electrics. As you have other guitars around to cover your gigs, you may as well take your time and go the whole hog on this one. As far as brass hardware is concerned, expert (and "expert") opinion is fairly evenly divided for and against. What I would say is that some guitars have physical characteristics that give good enough results without the help of brass, but most don't, and there's not a lot of point in going to town on your wiring if the guitar is physically stodgy. So I would go for a brass nut right away, fatter frets, and as much brass mass as is practicable at the bridge. All these things have, in my certain experience, the ability to at least lift top end and even-out (rather than necessarily increase) sustain. While on the bridge, check out your string earth. You must have a good contact with the bridge (or the tail:piece, usually done through the guitar body to one of the pillars, and therefore usually not a problem) and if you have gone for plenty of mass, you'll probably end up effectively trying to solder a wire to a very efficient heatsink. A better way of attaching the string earth firmly to the bridge is to drill and tap a small hole somewhere discreet for a more reliable screw contact. I would suggest M3 size, which requires a 2.50 mm drilled hole. An M3 taper and plug tap pair will set you back somewhere between one and two pounds for HSS, but if you only intend to use it once or twice on brass, then the cheaper carbon steel types will do. Make sure you oil the taps when cutting.

I assume you're going to go for humbuckers - personally I see no point in limiting the guitar to two single coil pick-ups. However, I would recommend that you retain the centre pick-up as you already have the space; it is a very valuable mixer. ! don't think you need a humbucker here. I have a centre humbucker and find I rarely use it untapped, and a single coil will save space and money. The Dimarzio SDSI is powerful enough here to mix reasonably comfortably with humbuckers. Alternatively, the Lawrence Strat type pickup is in fact a centre weighted humbucker, with the appearance of a single coil. It also collects harmonics from a small area like a single coil and thus has some similar tonal characteristics. Top end is not a major consideration in the centre slot, as top will

Jack Bruce with Aria SB 1000 bass guitar.

Figure 1. Centre pick-up wiring details. dominate a pick-up mix more effectively than sheer volume and generally speaking, you don't really want this position to do any dominating, rather it is a good place to collect a few extra harmonics to influence the sound of another pick-up.

I think you should be able to mix a centre pick-up with either front or back pick-up separately, and have
found that the simplest control set-up to use is to rig the guitar as a normal two pick-up system but with a routeable centre, so the centre should be wired to an on/off/on SPDT as shown in Figure 1. I don't believe that a separate volume or tone control for centre serves any useful purpose whatsoever (musically).

I have already covered a number of partial and complete humbucker taps in earlier issues of E\&MM, I think you'll also find some useful ideas in a little book I have written, Customising Your Electric Guitar, which will be published around August/September by Kaye and Ward, and distributed by Stentor Music - your local music shop should be able to get hold of it for you.

If you really don't want to use a
centre pick-up, then the siting of your rear (bridge) pick-up requires thought. Siting close in to the bridge will give you more high harmonics, and a sharper edge to the sound. Siting further forward can, with the right tap, take you closer towards a Strat centre and rear mix (the classic "out of phase Strat sound") but will gradually lose the high, sharp harmonics. Using a phase reverse switch on this pick-up in conjuriction with an earth-type tap can help cover the area a little better as you will then have a choice of coils but experimenting to find the best spot will entail extra routing of body cavities and recutting of scratchplates. Which is precisely why I recommend going for a centre pick-up and a close set rear pick-up in the first place!

In fact the more I think about what to suggest, the more a centre pickup seems essential if you want a wide range of sounds. For example, coil phase reverse on a front pick-up can add some useful nasal qualities to a sound, but sounds weedy on a solo, pick-up, and doesn't mix terribly well with just a rear pick-up. However, mix a centre pick-up in with it, and if you've got the overall phase of the front pick-up the right way round, you're half-way to a Dobro sound. Or maybe add a parallel coils option to the front humbucker's reversed coil phase, and you can slip a breathy little razor edge into a three pick-up mix whilst retaining the body of the sound and the essential quality of the rear pick-up. If you start juggling the mix a little, or biasing it, thạt is, a . 001 bypass on one pick-up and not the other two, or vice versa, life can start to get very exciting tonally.

Compared with the possibilities available from a three pick-up rig, a two pick-up guitar is positively mundane - and remember, this is all still without batteries. On choice of pickups, the loading and cancellation effects of some of the more complex parallel mixes and phase reverses can cause volume drops, so go for powerful pick-ups. High-power pickups also allow you to exploit a treble bypass capacitor more effectively.

Also, when using in-phase coils on a front pick-up (normal humbucker is out, remember) volume drop as you bend away from a pole-piece will be more than usually severe, so use bar pick-ups if you're a bender. Note that when choosing a production custom humbucker, variation in the number of conductors fitted may restrict your options. High power humbuckers, for example the Dimarzio X2N comes four conductor and shield as standard, so all the options are open; the Schecter Superock comes three conductor and shield for overall phasereverse and tap, but is very easily rewired to either: three conductor and shield, suitable for series/parallel/ tap without overall phase reverse, or fully ta four conductor and shield. The Lawrence L500 comes three conductor and shield for overall phase reverse and tap, and cannot have its conductors re-attached or added to as the whole unit is sealed in epoxy. Other makes also vary, so check out carefully as you buy.

What motivates someone to do-it-themselves? This may at first seem a strange question to ask in a Hi-Fi column, but it has some relevance. In an age when the market is saturated with relatively inexpensive imported equipment it is surprising the number of people that are still prepared to spend plenty of spare time building kits or projects from journals.

Mind you it's much easier for the home constructor now that most projects come complete with their own PCB and the easily obtainable parts. at comparatively low cost. Bearing this in mind I feel that there is another market yet to be exploited in the DIY electronics field. I refer to making equipment completely from ready assembled modules.

At first sight this may seem a strange idea, but consider the attractions. First, the specifications can be guaranteed from unit to unit. Second, the actual amount of hard graft in making, for example, a tuner amplifiep is reduced to correctly interwiring PCBs. Since this is so, the constructor whose competence would not stretch far enough to correctly assemble a kit amp would have little difficulty in assembling a complex piece of equipment. Last, but by no means least, this method is sometimes çeaper than actually building everything from scratch.

In any case a saving over buying the shop-built equivalent will be made. This method of construction takes us into system building where the important thing is to correctly interface the modules. Unfortunately the last thing usually considered is the interfacing and a little work on this aspect of design often works wonders!

Getting away from this idea, slightly at least, I thought that I might turn to the problems of interfacing from another angle. In particular, the equalisation required by magnetic pick-up cartridges.

The modern microgroove record poses many problems for the designer which range from getting large amplitude signals onto the vinyl, to the flatness or otherwise of the completed product. Unfortunately this last problem appears to have become insoluble within the last few years.

Since the oil crisis, vinyl has become increasingly more expensive. The record companies' response has been to decrease the thickness of the record. Inevitably the quality has suffered. Modern pick-up cartridges are easily capable of reproducing warp signals. These are subsonic and of large amplitude.

Once they have entered the stereo system they cause havoc. Being subsonic they cannot be directly heard. However the wanted signal is 'carried 'piggyback' fashion on top of them. The result is premature clipping. Where this occurs on the waveform being reproduced is dependent on the amplitude of the warp.

Large subsonic signals are also bad news for the output stage of the amplifier which wastes power repro-

Jeff Macaulay

ducing them. Possibly more important is the intermodulation distortion between these signals and the bass. It must be said though, as a rider to the last observation, that little research has been done in this area. The usual solution to such problems is to use a high-pass filter or a rumble filter in front of the power amp. Unfortunately, these are often badly designed. Either the cut-off frequency is too high, losing valuable bass, or the rate of cut-off is too low resulting in inadequate rejection of unwanted signals.

A simple rumble filter that can be constructed on a piece of Veroboard is shown in Figure 1. A word of explanation is in order.

Most musical signals contain little information below 40 Hz . The main exceptions to this rule are organs and bass drums. For example, the bottom note from an organ can be as low as 16 Hz . Orchestral bass drum has a fundamental down to 35 Hz .

Record warps however occupy the $2-10 \mathrm{~Hz}$ region. A suitable compromise cut-off frequency for our filter is 20 Hz . This coincides with the low frequency limit of human hearing. The rate of cut-off can be $12 \mathrm{db} /$ octave allowing the use of the well tried Sallen and Key filter configuration. It is also important that the device used doesn't degrade the per-

1 ICs

Figure 1. Suggested rumble filter circuit (one channel shown).
formance of the amplifying chain in any way. For this reason a J-fet opamp (the LF351) is used. This device has a fast slew rate, $12 \mathrm{~V} / \mathrm{us}$, and used in the 100% feedback mode, has a distortion of less than 0.002% at 2 V RMS output across the audio band.

No problems should be encountered as long as the output and input are well separated physically. Power can usually be obtained from the power line in the amplifier or preamp. The unit should be placed between the pre-amp and power amp.

In order to preserve a good S / N
ratio, records are cut with treble preemphasis and bass de-emphasis. The latter is required since bass signals generally have a larger amplitude than those in the mid-range and treble.

If the bass were to be recorded at its normal level then the groove spacing would have to be greater to prevent breakthrough between tracks.

In order to reproduce a flat signal from, a record, a filter network is required to de-emphasise the top and emphasise the bass. The required curve is standardised with the turnover frequencies being set at 50 Hz , 500 Hz and 2.1 kHz . What happens is that the response is flat from 20.50 Hz and then falls at $6 \mathrm{~dB} /$ octave. At 500 Hz the response is 3 dB up with reference to 1 kHz . Between 500 Hz and about 1.5 kHz the response is flat but falls away again towards the top end being 3 dB down with reference to 1 kHz at 2.2 kHz .

Since the introduction of linear ICs, manufacturers have aimed to produce high quality devices that would simplify the design of audio front ends. Until recently their efforts have only approached the performance that can beobtained from a good discrete design. Within the last year though, Hitachi have introduced the first of a new generation of front end ICs.

The new device is the HA12017. The distortion generated by this device is extremely small - 0.002% at 20 kHz ! Combine this with a 10 V RMS output capacity and a quoted signal to noise ratio of -72 dB giving you a potential world-beater. Moreover the device is not that expensive being in the region of a pound. Unlike the now familiar dual pre-amps, you'll need two ICs for stereo and the circuit is slightly more complex than usual. Even so the chip is certainly value for money.

Whilst we're on the subject of front
ends it may be as well to dispel one myth in particular - disc signal to noise ratio. Most people would assume that the lower the noise from the pre-amp the better. In general terms this is sound logic but there are special considerations which apply to disc inputs.

All pick-up cartridges generate their own noise which is proportional to their impedance. Without filling the page with calculations it can be shown that about $l u V$ is generated by the average moving magnet designs

This means that the best signal to noise ratio that can be obtained practically is -65 dB for a 2 mV input. Unfortunately to obtain this level of performance the pre-amplifier must be noiseless!

By an extraordinary set of coincidences I met Simon Bantly recently, the designer of the Black Triangle speaker system. These were recently demonstrated at a London exhibition and showed their unusual performance and excellent bass response.

The speaker system itself is a three drive unit design with infinite baffle loading on the bass unit. Despite the loading and relatively small volume, the speaker can deliver a usable output at 20 Hz ! Not unnaturally, Simon did not care to divulge how this was accomplished and several patents are pending on the principles involved. Since we live only ten minutes walk from one another, I took the opportunity to go and listen to a pair in domestic surroundings. I was impressed with the overall response and the only fault that I could hear was some slight sibilance on vocals. The mid-range was nicely detailed and the bass was reproduced with its proper weight and without any boominess.

One of the major problems encountered by those who possess speakers with a good bass response is the excitation of room resonances. this problem has been to a large extent overcome in this design by employing a 'suck-out' filter that operates in the 40 Hz region. This frequency coincides with the main resonance of many domestic rooms.

As with all things audio, the only way that it can be properly assessed by the potential purchaser is to listen closely and judge by what you hear. As these speakers are expensive ($£ 1,400$ per pair), nothing less than a home demonstration should be demanded before parting with your money.

Another interesting characteristic of these speakers is that they are at least partially omnidirectional. Stereo, as we have come to know it, is light years away from the live experience where direction location information is largely absent. How much the image means is dependent on the individual listener. As an interesting footnote to the above Simon uses as his reference source a VMS20E MkIl fitted in the Acos Lustre arm. This combination he believes offers all that can reasonably expected from disc. As I use this combination myself I tend to agree!

E\&MM

HI-FI SUPPLTMENT

This article by Mike Skeet sug. gests that simple techniques using just a few microphones can produce fine results even in the "pop" field, the most likely place to find "the mic for every instrument situation". His specialisation in 'Dummy Head Bi naural' is well known in the $\mathrm{Hi}-\mathrm{Fi}$ world and this introduction should give some ideas for making lower budget recordings.

Having begun my own small record label three years ago with the main objective of issuing material recorded with more simple microphone techniques (which generally means less microphones) than other studios, I was attracted to try binaural recording with a Dummy Head. The results proved that here was a low cost means to assist in launching recordings of new composers and performers in modern and classical music. Moreover, using bi naural techniques retained signifi cantly the original atmosphere of the location, from churches, concert halls to clubs and pubs.

Mic Placement

It does of course depend on what is being recorded, i.e. the instrumental line up. For this article I have in mind the "pop" music line up of lead, rhythm, bass, drums, vocals and possibly keyboards

My drawing in Figure 1 shows a likely Multimic layout and Figure 2 shows the proposed set-up using fewer mics based on the use of a couple of crossed directional pairs with additional "spot" mics for bass, drum and vocals

In case it is necessary to cover the point I must define Multimic and Multitrack. The latter implies the use of the former of course, but where the individual mic outputs are kept separate for later mix down to panpotted 'stereo' or by 'simulsync' overdub of individual musicians. For both Figure 1 and 21 am assuming a direct mix into two track stereo of the "live" performance. As far as multitracking with microphones is concerned, I feel that 16 track is a minimum (not forgetting that many studios exist as 24 or 46 track) and that 8 track is too restricting, with 4 track not worth considering

Crossed Pairs

Cardioid or Hyper Cardioid pick-up pattern mics are required as the stereo information is directly achleved by the intensity differences produced by their polar patterns, provided that the diaphragms are as coincident as possible. The best that can be obtained is to mount them one above the other at around 110° as shown in Figure 3. Crossed figure of eight mics are also possible and here 90° crossing is the norm - care must be taken to keep in the 90° quadrant

ARE ALLTHOSE MICROPHONES NECESSARY?

Figure 1. Multimic layout.

Figure 2. Crossed pair layout.
as out of phase signals are produced outside this, although it only becomes a real worry if analogue disc cutting is finally envisaged.

Why Dummy Heads?

Being a bit of a fan of headphone listening is the main reason. It is probably not all that well known that a couple of omni microphones spaced around 140 mm apart and separated from each other by a baffle of approximately 190 mm diameter (see Figure 4) can produce surprising "out of head" or binaural effects when listened to on headphones and also a very effective "stereo" on loudspeakers.

The Means!

Now I'm not going to suggest that one takes any old pair of mics and a portable cassette recorder and straightaway you are the new recording vogue of the 80s! The minimum one needs is around five low impedance mics, a mixer with at least
that number of channels, a couple of reel to reel recorders (to allow copy overdubbing), suitable mic stands and booms, long enough mic leads to reach a separate room for monitor-

Figure 3. Crossed 'coincident' pairs. Shown above is AKG C414 Capacitor (switched to Cardioid or Hypercardioid or even figure of eight'), and below: Calrec CM652 Cardioid Capacitor pair.

Figure 4. Omni mics baffled from each other for 'dummy head' binaural. Sennheiser MKE203 Electret Capacitor (left) and AKG C414 Capacitor set to omni

ing, a means of monitoring on site, preferably with decent loudspeakers and amplifiers. Then there is "talkback" to instruct the performers and even "foldback" of what is being recorded on headphones. This latter can however often be done by the band themselves - preferably on phones as foldback loudspeakers can "colour" the sound in the "studio"

On quality aspects, each link in the chain will need a pedigree at least up to the standards expected. Notwithstanding that however, there's nothing like gaining experience with what one has got around you. I've found that good results can be obtained using just two omni mics (in a dummy head) and a stereo cassette recorder, provided that instruments have been carefully positioned, along the lines of Figure 2, and the control levels of each instrument have been suitably adjusted.

How is Balance Obtained?

Straightaway it must be stated that BALANCE is the operative word. One is trying to achieve a balance of the
Figure 5. A really effective low cost dummy head using Omnitie clip (RS components 249463) element mics in chlpboard/foam/windshield construction.

Figure 6. Even low budget recordings can amass some gear! Used for a Whitetower session with 'The Crew' band.
relative levels and perspectives of the instruments against each other and in the case of crossed pairs or dummy heads, also against the acoustics of the room being used. With the multimic approach, the closeness of the mics (usually themselves directional) means that the room acoustics recede in the pickup. The resultant panpotted stereo presentation produces, for me, the abhorant leaping out of 'unrelated to each other' sounds. My favouring simpler mic techniques is not just on possible economic grounds - it's more to feel on playback that the sound stage is a unified whole and not a fragmented jigsaw of close-up sounds.

So to balancing when crossed pairs or dummy head pairs are in use. The separate miking of the drums and vocals allows conventional "mixer" level control. The instrumentation grouped around the main mic has to be balanced by the performers, al-
though basically with a layout like that in Figure 2 they need to be at a high enough level relative to the drum kit, to prevent the main mic acquiring too much drum sound. With directional crossed pairs one could place the drum kit behind the main mic and take advantage of the 20 dB or so back rejection available. However, in small rooms this is only partially achieved due to reflections (the whole room becomes a sound box) and also, if omni mics are used in a dummy head, one has not got any directional effect in terms of pick-up level.

Giving the performers "control" of the balance can be the death knell of the good intentions! Each musician will in turn, after every subsequent playback, try and get his or her instrument loudest! While I certainly favour the band having their say about the balance, there has to be a discipline about how it is done. Initially I get them to play at a normal practice level or moderate "gig" level and balance, record it and judge the changes needed on playback. Then leaving the bass alone, if satisfactory relative to the drums, I appropriately make adjustments to the other instruments. It's a good idea to get players to note their level settings. They soon learn that an otherwise good take can be ruined by an accidental change in someone's level and the engineer can do nothing but wish possibly that he had multimiked the whole affair!

Remember also that in crossed pair or dummy head main mic situations, moving an instrument's cabinet position can also be used to "adjust" its level, provided the change in perspective is acceptable.

Finally, some kindred aspects. Some amplifying systems produce annoying hiss, or worse, hum levels. In my experience this can often be due to inappropriate settings on "pre" and "main" amps. Also I like the cabinets to be raised off the floor to avoid honking. The aim is to get the high frequency output "firing" straight at the main mic.

E\&MM

Should any reader want to sample the ideas described, there are several sampler cassettes available on Mike Skeet's own Whitetower record label. Problems normally encountered with high speed cassette duplication (both sides at once) are avoided by copying in 'real time'. The quality and variety of examples should convince you of the merits of binaural techniques. Listening on headphones can give a very strong sensation of sounds all around you. Mike has kindly offered his 'This is Binaural' cassette to readers at the special price of £3.75 including VAT, post and packing. Send your cheque made out to 'Whitetower Records' (E\&MM Offer), to 2 Roche Gardens, Bletchley, Milton Keynes, MK3 6HR. It contains 40 minutes of music and sound effects, with church, classical, pipe band, jazz, pop pieces recorded at different locations that impose their own spe. cial atmosphere through these tech niques, and trains, cars, planes, speech and fireworks showing the realistic sound fields created.

EDUCATION

Electronics \& Music Maker looks to the future by choosing projects that use up-to-date technology and features that inform its readers of the latest developments in electronics and electro-music.

Education in its broadest sense is therefore one of the key aspects of this magazine.

It is also exciting that it will be read by teachers and pupils alike through its wide circulation in this country and many subscriptions abroad.

COUNTER MELODY is created by a movement of notes underneath a melody.

 If the notes move in Semitones it if referred to as a 'Chromatic Movement', if the notes move in Tones it is referred to as a 'Tonal Movement'. COUNTER MELODY is usually played as a descending movement of notes on either the upper or lower manuals. COUNTER MELODY should be used sparinglyOne form of COUNTER MELODY is created underneath a molody when the 3rd Note of one chord resolves to the ' 7 ' Note of the next chord. In the following illustration a 'Chromatic Movement' is created between the ' G^{\prime}, ' F '', ' F ' and ' E ' Notes as each note movement is in Semitones.

In the lat Bar the COUNTER MELODY Note is 'E', the 3rd Note of the 'C' Chord

IIIIIIIMTH IIIII
 NCTE NUMBERS:
 THE 'A" MA OR CHOMD THE AHO CHORD: THE 'A MMas CHORD THE ' $\hat{\sim}^{\prime \prime}$ MINOR CHORDS. -

Morning Has Broken

represent the 'Beats in each Bar'. Two new keys of music, 'Bb' and 'D' are' introduced and one arrangement is written with a change of key.

A special feature, which makes the Organ Master a complete self-teaching system, is the cross reference between the music and theory books. As each new item of musical information
is introduced in the music books a reference is made to 'Suggested Reading' in the theory books, where a more detailed and fully illustrated explanation is given including Left Hand Chord formation, Right Hand Chords, Counter Melody and Bass Pedal sequences to name but a few.

Brenda Hayward has written the course as a result of her long experience in teaching music and has realised the difficulty that beginners experience when following estab. lished organ tutor books that do not |teach traditional theory, but rely on colours, labels, shapes or numbers to get you started. The main problem here is that once you have played the set of books using a particular method you may not have enough knowledge to turn to other music in traditional notation

Whilst modern electronic music performance on synthesisers does not always seem to require a good training in the fundamentals of musical theory, playing an electronic organ well certainly needs this requirement. Most music schools in the UK expect students to know their theory as well as their practical playing on or chestral instruments (and piano) and for classical (church) organ pupils, a level of Grade V Associated Board of

the Royal Schools of Music on piano and theory would be suitable preparation before even beginning to play the organ.

Most of us play the organ at home as a hobby and therefore do not want this kind of training - all we want to do is play well enough to enjoy all kinds of music. We'll keep you informed of new music courses and in the meantime the Organ Master will help you find all those intriguing left hand chords that make playing so much more interesting as well as giving you ladvice on right hand 'counterpoints' (adding extra melodies to the main tune) and solo playing.

Brenda Hayward will be teaching at the first National Home Electronic Organ Festival being held at Pontin's Tower Beach Holiday Camp, Prestatyn, North Wales, from the 29th August to 5th September 1981 (see Events).

The two music books, two theory books and two free chord posters are available as a complete box pack in this month's special offer. Individual books (price $£ 2.50$ each plus 50 p p\&p) can be obtained from Organ Master Publications, Metfield, Harleston, Norfolk IP20 OLH. These publications can also be purchased from most organ dealers.

E\&MM

The Source (a book of patching and programming) Published by Polyphony Price $\$ 4.00$

This is a compilation of the best synthesiser patches devised by Polyphony readers from 1975 to 1978. Polyphony is the house magazine of the PAiA Company which

manufactures synthesiser and computer/synthesiser modules (see April's E\&MM for a review of their 8700 computer/controller). It is a fun book!

The Source, quite naturally, has a heavy tendency towards PAiA equipment and, in fact, all the patches are designed to be used with PAiA modules but don't let that put you off. The patches are presented in a schematic and symbolic form so rather than show the front panel of a particular synthesiser, symbols are used to represent the VCOs, VCFs, ADSR units and trigger sources etc. A list of 'symbology' is included and the universal patch diagrams really are easy to follow. Allowances will have to be made depending on your synthesiser but all the basics are there.

The book is in five main parts. Part one consists of tonal-melodic patches resulting in sounds you would use in tunes (hopefully). Part two consists of atonal patches and sound effects. My favourites include a jungle patch complete with drums and flying birds - a laughing hyena (I kid you not) and a drill (this won't hurt a bit . . .). Part three describes various techniques usually incorporated into a patch rather than resulting in a sound themselves, although many do. This section applies more to the characteristics of the PAiA modules than the others but there are goodies here too including a "Beat the Sequencer" game. Section four is concerned solely with the Gnome, a ribboncontrolled micro-synthesiser manufactured by PAiA (selling for $\$ 59.95$ in kit form). In spite of the specialisation of this chapter, you can usually follow the signal path to create similar effects on other synths. I can recom mend the bull frog and the helicopter but didn't quite manage to squeeze a sneeze out of my synth. The last chapter is devoted to software for their computer equipment and in cludes a program for composing 4-part harmonies.

As far as I am aware, The Source is only available directly from Polyphony (which involves sending a dollar.draft - no trouble, see your bank). It's worth every penny. If, like me, you enjoy experimenting and generally messing about with synthesisers to see what happens (very unprofessional, I know, but we need some relaxation), then The Source will provide you with dozens of ideas to use, develop and improve upon. Anyone with even basic synthesiser knowledge should be able to adapt the diagrams to their own equipment.
Buy this; you will use it and enjoy it. Ian Waugh
PAiA Electronics address: 1020 W. Wilshire, Oklahoma City, OK 73116.

Oscilloscopes How To Use Them, How They Work
by Ian Hickman
Published by Newnes
Technical Books
Price $£ 4.20$

Many amateur constructors have reservations about purchasing an oscilloscope, feeling that either it is too complicated to use or that it is an over-estimated luxury for the cost incurred. I think lan Hickman has managed to put the record straight in an admirable and

concise manner when compiling this book.

In his opening paragraph, the author proves his authority not only in the subject matter, but of etymology and route derivation (this is totaliy by-the-way and of no practical value to the average reader). The first two chapters describe the basic theory and application of the instrument, with chapter three culminating in an overview of the more dedicated and expensive scopes that are not often seen or used outside the profession. The fourth chapter examines the many specialised accessories that can be purchased to compliment the oscilloscope. This section tackles not only probes but cameras, which can be used to make a photographic record of the trace, calibrators and graticules. To most people the graticule is simply a grid from which the measurement can be expressed in real terms, however, the text accompanying this heading proves that this small part of the overall unit
can play a large part in the usefulness of the instrument

The next two chapters detail the use and handling of 'scopes and are as explicit as most of the instruction booklets that would accompany your purchase as far as modus operandi is concerned. It is in the final chapter that the author briefly discusses how the circuitry is actually employed and delves a little into the electronics behind the screen. All-in-all a useful book for the constructor's bookshelf. Nigel Fawcett

Auto Electrics

by Joss Joselyn and Bob Krafft Published by Newnes Technical Books
Price $£ 5.65$

This book is a must for the practical car owner. It assumes no previous knowledge of wiring or electrical equipment associated with cars and starts with an explanation of basic electronics, which can probably be skipped by most amateur constructors. The authors have taken a very systematic and logical approach which ensures complete understanding, and with some of the regular maintainance procedures included, will enable the reader to get their car in perfect working order and free from unnecessary electrical failure. The authors have impressed that practical maintenance, fault-finding and repair can be done cheaply.

Briefly, the main points covered are: wiring, battery, starter-motor, dynamo, alternator, ignition, lighting, instruments and wipers and other accessories. The following two chapters deal with the optional extras that can be added such as radios and tape cassettes. The final chapter in addition to giving a trouble-shooting guide, explains where you stand with your car electrics and the law.

The general layout of each chapter is bold, easy to follow text and a profusion of excellent diagrams on the right-hand side of the page leaving the left-hand column for clear reference headings and the occasional schematic that would have been distracting or isolated if carried on to the next page. (This is an excellent approach and one I have rarely seen elsewhere - it is perpetually annoying to find figures referenced within the text located on a completely

different page, which constantly causes one to lose one's place.)

If I were asked to judge the book on its merits I would award it top marks, for it is excellently presented and easily digested.
Nigel Fawcett

Electronic Projects For Beginners by F. G. Rayer
Published by Bernard Babani Price $£ 1.35$

AII newcomers to the subject of electronics seem to effervesce with an unrestrained enthu. siasm that can only be satiated by wielding the soldering iron and churning out forms of electronic contrap-

tions that seem to mystify all bar the budding constructor himself. With this pent-up eagerness and the need to keep on building, it is imperative that the overall cost of each project should be minimal and that the required literature to provide the en: thusiast with his construction data should be within the range of his pocket. Here's an inexpensive book that's packed full of simple but useful projects.

The book has been divided into four sections, the first of which is devoted to projects that can be built without the aid of a soldering iron. The author describes how to construct baseboards with nuts and bolts to act as terminals and yet, with this 'StoneAge' approach manages to outline 12 circuits including an intercom, a simple radio and some amplifiers. The second section headed 'Miscellaneous Devices' gives a brief introduction to soldering and is followed by some of the usual projects to be found in this type of book (water level indicator, flashers, sirens and treasure locator)

The third section is concerned with radio and audio frequency circuits and explains how to build radio signal boosters, pre-amplifiers, tone controls and mixers as well as three different amplifiers. The final pages are assigned to power supply circuits, the last chapter giving a table of semiconductor equivalents.

I think it is an excellent book for the price and should give the new constructor hours of fun as well as a greater insight into the subject.
Nigel Fawcett
E\&MM

FORMULA SOUND QUE-4. The QUE-4 represents a new approach in monitoring techniques. It is a stereo studio foldback system for use with medium impedance (200st) headphones into which it can deliver six watts per channel. The system is designed to interface directly with the studio mixing console and is usually connected to four foldback send outputs from the mixing desk. Recommended price $£ 185$ ex VAT.

From Formula Sound Limited,
3 Waterloo Road, Stockport SK1 3BD
ROLAND JUPITER 8. The Jupiter 8 is an 8 -voice polyphonic synthesiser with 16 oscillators, 64 user-programmable memories and a 5 -octave computer assigned keyboard which may be split into two polyphonic synthesisers with different patches, used in dual mode for layering two patches for each key, or played as a whole with up to eight fully independent notes from the same patch. The keyboard computer also provides an arpeggio section, which operates in real-time from keyboard notes played - a useful effect in the split keyboard mode. Synthesiser functions are user-programmable and can be stored through a built-in interface on to external tape. A 'verify' button confirms correct tape storage. The synthesiser has a full range of functions and also offers 8 preset patches. Recommended Price: $£ 3,499$ inc. VAT
From Roland (UK) Ltd., Great West Trading Est. 983 Great West Road, Brentford, Middx. TW8 90N

MXR MICRO CHORUS. The Micro Chorus is designed for in-line connection between a musical instrument and an amplifier or mixer. The unit is battery powered and provides a range of chorus and vibrato effects with analogue delay circuitry; the controls are a bypass switch and a rate control. The rate control reduces the sweep width as the sweep rate is increased. The Micro Chorus works well with guitar, thickening the sound considerably at slow rates and providing vibrato at faster rates. Its usefulness with keyboards is limited to the slowest rates. A nice feature is the rubber top supplied to enable foot control of the rate. Recommended Price: $£ 71.40$ inc. VAT.

From Atlantex Music Ltd, 34 Bancroft, Hitchin, Herts SG5 1LA

NOVATRON T550. The Novatron T550 is a portable Mellotron. It is built into a sturdy flight case which features a hinged keyboard lid, top panel, and back panel and the front panel can be removed to provide "knee room" when sitting at the machine. The Novatron is a series of controlled tape machines manipulated by the keyboard. Each key relates to, and, when played, activates a tape on which a single note of an orchestral instrument has been pre-recorded. The standard unit comes with three basic sounds: Flute, Violins and Cello recorded on three tracks of a $3 / 8$ " wide magnetic tape.

From Streetley Electronics Ltd., 338 Aldridge Road, Streetly, Sutton Coldfield, West Midlands B74 2DT

ELECTRO-HARMONIX MINI-SYNTHESISER (MODEL EH0400). The Mini-Synthesiser is attractively presented in a light weight, slim, black case and is powered by two 9 v batteries. Its main features are the easy-to use controls and flat keyboard. The keyboard is touch-sensitive with the generated control voltage available for pitch and tone modulation. In addition, by sliding your finger along the upper portion of the white notes you have continuous pitch change instead of an individual note glissando. From Electro-Harmonix, 27 West 23rd Street, New York NY 10010

RAVEN EQ27. Peavey's EQ- 27 is a $1 / 3$-octave single channel graphic equaliser where the audio spectrum is split up into 27 bands each providing a $\pm 15 \mathrm{~dB}$ control range. The unit is a sturdy 19" rack unit with a cast front panel and features balanced inputs and outputs to enable interfacing with other professional grade equipment.

From Peavey Electronics (UK) Ltd., Unit 8, New Road, Ridgewood, Uckfield, Sussex TN22 5SX

SEQUENCE SYNTHESISER SQ.01. The SQ-01 lets you perform by easy score-processing, storing and retrieving each note. The memory capacity is 1024 notes, which are divided into 16 channels and sequenced controls consist of tempo, release, bar, play, write, transpose etc. and the synthesiser has filter, oscillator and envelope controls. From Firstman International. All Firstman products are available from John Hornby Skewes, Salom House, Garforth, Leeds, LS25 1PX

ZEUS MINI-AMP 8401. The Mini-Amp is a versatile miniature amplifier which is designed to produce true guitar sound with all the tone, sustain, and variable distortion of a full-size amplifier, yet small enough to fit into a guitar case of pocket. It delivers a clean 1 watt of power and features separate volume, tone, and pre-amp controls. The unit can be powered from its internal batteries or an AC adaptor and there are also external speaker and pre-amp out sockets.
From Zeus Audio Systems, 511 S. Palm Av. Alhambra, CA. 91803

SPEECHINME

"PRESS BUTTON FOR CLOCK TO SPEAK"

SPECIFICATIONS

Stylish slimline stainless steel silver/black case.
Fits into top pocket.
Size: $4.8^{\prime \prime} \times 2.7^{\prime \prime} \times 0.8^{\prime \prime}$
Computer technology micro chips - electronically synthesized speech - quartz accuracy

ALL KITS

Includes battery, solder, comprehensive instructions everything an evening Price: $\mathbf{f} \mathbf{2 9 . 5 0}$ including VAT for the complete kit
$£ 34.95$ including VAT for the ready built model CARRIAGE FREE

MONEY BACK GUARANTEE
It you are not completely satisfied writh vour Speechtume, return if
within 10 davs in its writun 10 days in its orignal con-
dhion and your money will he dhion and vour money will be

ORDERING: Cheque/Postal Order/or Access to: SILICON SPEECH SYSTEMS DEPT: E\&MM/8
Portway Industrial Estate
Hampshire SP10 3WW. Tel 026464455

SUBSCRIBE!

to ELECTRONICS \& MUSIC MAKER the No. 1 Monthly for the Electronics and

Music Hobbyist
For 12 issues:
UK and overseas surface£9.90
Europe£11.64
'Airmail (excluding Europe).....£25.20
Overseas payments including Republic of Eire should be covered by Bankers draft in pounds sterling.
Subscriptions normally commence from the current issue of E®MM Back copies can be obtained from E\&MM at $£ 1$ each inc. postage.

E\&MM Subscriptions Dept., Maplin Publications
282 London Road, Westcliff-on-Sea, Essex SS0 7JG
E\&MM Subscriptions Dept., Maplin Publications, 282 London Road, Westcliff-on-Sea, Essex SSO 7JG.
Please send me the next 12 issues of Electronics \& Music Maker.
I enclose a cheque/postal order* for $£ 9.90 / £ 11.64 / £ 25.20^{*}$ made payable to Electronics \& Music Maker.

- DELETE AS APPROPRIATE

PLEASE PRINT
Name ..
Address ..
\qquad

SPECIAL PARTS FOR PROJECTS IN THIS MAGAZINE

The following items shown in parts lists in this issue of Electronics and Music Maker are not listed in the current Maplin Catalogue, but are available from Maplin Electronic Supplies Ltd at the following prices:-

BH49D	Tablet rocker grey
8H50E	Tablet rocker orange.....................90p
BX98G	Jumper cable 17-way.................£2.95
FB99H	Right-angle latched minicon plug
	6-way ...40p
FH86T	Reset spring2p
FY91Y	Right-angle latched minicon plug
	4-way..33p
FY92A	Right-angle latched minicon plug
	2-way..26p
FY93B	Minicon latched plug 5-way26p
GA07H	PA Controller limiter PCB£2.63
GA140	PA Controller display component
	PCB .. 11.15
GA15R	PA controller display LED PCB£1.35
GA32K	Hexadrum PCB..........................¢2.49
GA34M	Powercomp Peripherals PSU PCB $£ 3.55$
GA40T	Car aerial booster PCB............... $£ 1.18$
HB58N	Minicon latched housing 4-way 10 p
HB59P	Minicon latched housing 2-way8p
H8600	Latchbracket 5-way20p
HY26D	Latchbracket 16-way46p
HY27E	Reset bar 15-way20p
HY28F	Latchbracket, 9-way21p
HY29G	Reset bar 6-way............................9p
HY3OH	Isobolt M3x9mm (pk of 10)............11p
HY31J	Steel washer 48A (pk of 10)...........11p
OY13P	Piezo transducer 27mm26p
QY140	UAA170L................................. $\mathbf{1 2 . 3 5}$
QY16S	Rubber disc 27 mm 5p
X895D	Organ stool.............................. $£ 29.50$
XG02C	Loudspeaker TC30 $£ 19.75$
'XY86T	Matinee main pcb..................550.00†
YK05F	Matinée pot mounting bracket72p

\dagger Carriage is charged extra on this item. Please add $f 6$ towards the cost of carriage.
Send orders to:
Maplin Electronic Supplies Ltd.
P.O. Box 3, Rayleigh. Essex.

BINDERS NOW AVAILABLE

Keep your copies of ELECTRONICS \& MUSIC MAKER in this elegant silver binder (holds 12 copies) with our special E\&MM logo in blue and red on the cover and spine.
Price $£ 3.95$

Please allow 28 days for delivery.
Overseas payments including Republic of Eire should be covered by Bankers draft in pounds sterling - subject to availability.

Send this coupon and cheque/P.O. to:
ELECTRONICS \& MUSIC MAKER (Binders)
282 London Road, Westcliff-on-Sea, Essex SSO 7JG.
Please send me the E\&MM Binder @ $£ 3.95$

I enclose a cheque/P.O. payable to
Electronics \& Music Maker for: f
PLEASE PRINT
Name: Mr/Mrs/Miss
Address

E\&MM8/81
The price shown includes VAT, postage and packing
Overseas orders - add 11p extra for postage

America

Tim Schneckloth

AIl those mallet percussionists who feel inferior to their synthesist friends can take heart Star Instruments have come up with a mallet-activated instrument that can sound just as peculiar as a keyboard synth. It is a four-octave, polyphonic instrument called the SYNARE MP, and it's capable of doing most of the things expected of a keyboardactivated model. The marimba-like keyboard can be split, allowing the player to sound two distinct voices at once - one in the top two octaves, the other in the bottom two. The SYNARE MP also boasts a four note polyphonic sequencer that is capable of remembering up to 16 different patterns of 32 notes each.

Other U.S. synthesiser manufacturers have been busy as well lately, trying to come up with competitive, low-priced models. Sequential Circuits' entry is the Pro-One, a mono synthesiser that puts a wide range of features into a compact package. It includes 2 VCOs with sawtooth, square and pulse width wave shapes, not to mention a 24 dB low pass filter with its own 4 -stage envelope generator.

The Pro-One's digital sequencer is built-in and features 2 sequences and up to 40 note storage between them. Other standard features include an arpeggiator for up or up/down arpeggios, pitch and mod wheels, single and multiple triggering modes, etc. Its audio input with pre-amp lets the musician use microphones, guitars, other keyboards and instruments in conjunction with the Pro-One.

The latest idea from Oberheim is a polyphonic axe called the OB-Xa. It retains all the capabilities of Oberheim's OB-X while adding a few extras.

One of the new additions is a split keyboard function that allows the user to play one sound on the lower half of the keyboard and another sound on the upper half. There is also a doubling mode that lets the synthesist make two sounds with one finger. Other features include two-pole and four-pole filters, programmable transposition of either half of the keyboard, improved noise generator, filter envelope generator, pitch modulation of VCO 2 and a hold footswitch. The OB$X a$ is available in four, six and eightvoice models.

E-mu Systems, a company known for its big, elaborate synthesiser setups, has come up with a small keyboard unit that does a lot. They call it the Emulator and say that it's 'a computer-based instrument that allows the musician to digitally record any sound - either live from a microphone or from a line level source with up to eight-note polyphonic capability.'

It has a split keyboard function and a built-in disk drive that allows the player to store sounds on convenient
'diskettes' for recall later. The Emulator includes a library of pre-recorded sounds, more of which will be available from E-mu later. The company also plans to make some special function software (including a real time multi-track sequencer) available in the future.
U.S. sound modification people have been trying to stay on top of things, too. One of the newest devices from MXR, for instance, was created to meet the demand for a 'compact and cost effective chorus unit that produces realistic chorus effects and vibratos with a unique, automatic, one-control format.' MXR calls the product the 'Micro Chorus' and it has proved an instant success in the States. Also new from MXR are the Distortion II (which, the company believes, sets a new standard for approximating that warm, tube-amp distortion) and the Limiter, which produces a remarkably noise-free sustain.

Analog/Digital Associates, a small firm that has been making innovative devices in Berkeley, California, put a new flanger on the market recently. It includes an even/odd harmonic selector that 'brings a new dimension to flanging the ambience simulation,' according to the company. The flanger also has a voltage control input which lets the user control the delay time with either an externally applied voltage or the A/DA control pedal. And, the company feels, the flanger's special circuitry has totally eliminated background noise.

Another California manufacturer, Morley, also has a new line of effects boxes. The unique thing about them is the fact that they are both battery and

Demonstrator with SYNARE MP.

E-mu Emulator.

Sunn 10-band Equaliser.

AC operable. The six models include a

 compressor, deluxe phaser, noise gate/line drive, flanger, distortion plus and deluxe distortion.All models include two light emitting diodes. One indicates that the effect is being used; the other indicates that the power is on but the effect is not in use. According to Morley, this feature helps eliminate battery and power drain.

New from Sunn is the SPL 4120 Dual 10 -Band Equalizer, which is suitable for sound reinforcement and recording applications. It has two identical channels that feature a 15 dB cut or boost at ten ISO center frequencies, a level control with a 40 dB range, dual LED level sensing, balanced and unbalanced inputs, and a bypass switch that completely disconnects all electronics from the signal path, allowing level matching between the equalised and unequalised signal.

Whirlwind, a Rochester, New York firm that specialises in cords and

Morley Noise Gate/Line Drive unit.
reliefs. Each lead at the console end is reinforced at the stress points and provided with in-line cable grips and neoprene heat shrink jackets to provide reliable connections. The cable systems are all colour-coded for easy identification and all connectors for bi, tri and five-way systems are individually stamped for easy identification.

Acoustic guitar players who yearn for a natural sound at extreme volumes will be interested in two new transducers from California companies. One is the Barcus-Berry 'Insider', which is designed for permanent installation. The actual transducer mounts quickly inside the instrument without any need for tools or modification of the instrument, since a special water-activated adhesive holds the transducer beneath the bridge of the guitar. The output jack can be clamped to the rim of the
sound hole or, for those who insist on complete invisibility for output jacks, an optional strap button jack is available.

Another transducer for acoustic pickers is the Dean Markley 'Artist' model, which boasts 'Inertia Mass Construction design for reproduction of both horizontal and vertical planular vibrations,' according to the company. The model is compatible with any amplifier; a preamp is not necessary. A special adhesive, which will not harm the instrument's finish, is used for temporary installation; and kits are available for permanent installation.

Companies and manufacturers mentioned:
Star Instruments, Inc., P.O. Box 145, Stafford Springs, CT 06076.
Sequential Circuits, Inc., 3051 N. First Street, San Jose, CA 946-5240. Oberheim Electronics, Inc., 1455 19th Street, Santa Monica, CA 90404. E-mu Systems, Inc., 417 Broadway, Santa Cruz, CA 95060.
MXR Innovations, Inc., 740 Driving Park Ave., Rochester, NY 14613. Analog/Digital Associates, 2316 Fourth Street, Berkeley, CA 94710. Morley, 6855 Vineland Ave., North Hollywood, CA 91605.
Sunn Musical Equipment Co., 19350 S.W. 89th Ave., Tualatin, OR 97062. Whirlwind Music Dist., Inc., P.O. Box 1075, Rochester, NY 14603.
Barcus-Berry, Inc., 5381 Production Drive, Huntington Beach, CA 92649. Dean Markley Strings, Inc., 3350 Scott Blvid., Santa Clara, CA 95051.

E\&MM

Electronics \& Music Maker is the first monthly publication to produce its own cassettes that will provide a unique aural complement to the magazine. Produced in our own recording studio, these C60 cassettes will allow you to hear the sound of instruments and electro-musical effects in our projects and reviews.

Demo Cassette No. 1 (March/April issues) contains:

1. The sounds of the Matinée Organ. 2. Musical extracts played on the Yamaha SK20 Synthesiser reviewed last month. 3. Examples of the basic waveforms and effects discussed in 'Guide to Electronic Music Techniques'. 4. Music and sound effects played on the Sharp MZ-80K Microcomputer. 5. Warren Cann demonstrates the Syntom Drum Synthesiser. 6. The PAIA8700 Computer/Controller. 7. Frankfurt Music Fair: the Yamaha GS-1, Electro-Harmonix Clockworks Controller.
Cassette Price: $£ 2.45$ inc. VAT and p\&p.
Demo Cassette No. 2 (May/June issues) contains:
2. Tim Souster 'feature' examples from his electronic music studio. 2. Electronic Dream Plant: Adrian Wagner plays the Wasp/ Spider and some of his music. 3. Lowrey MX 1 Electronic Organ - the essential music complement to the review! 4. Apple Music System polyphonic computer music. 5. E\&MM Word Synthesiser - speech from our friends in Texas. 6. Fairlight Computer Musical Instrument

ELECTRONICS \& MUSIC MAKER DEMONSTRATION CASSETTES

review - because of its price, very few have heard this amazing instrument. 7. Sharp 'Composer' and 'Morse' programs. 8. Yamaha PS20 keyboard - a complete piece on this portable play anywhere instrument. 9. Vero projects: Radio/Metronome/Oscillator 10. Some extraordinary sounds from the creative David Vorhaus.
Cassette Price: $£ 1.99$ inc. VAT and p\&p.
Demo Cassette No. 3 (July/August issues): 1. The unique sounds of the new PPG Wave 2 synthesiser. 2 Synwave sea effects and other sound possibilities. 3. Wersi Pianostar - the versatile kit instrument demonstrated by German demonstrator Hady Wolff, who also shows some of the special sounds from the Wersi organ range. 4 Musical examples of the immense possibilities from the Alphadac 16 synthesiser controller. 5. Atari's new Music Cartridge programming 4 -part compositions. 6. Duncay Mackay makes creative sounds from his 'Visa' LP keyboard set-up. 7. Dynamic bongo sounds from the Hexadrum. 8. MTU Music Synthesis in action. 9. Casio VL-Tone. 10. Extracts from Irmin Schmidt's 'Toy Planet'
Cassette Price: $£ 1.99$ inc. VAT and p\&p.

 by Terry Riley CBS 73929

For an artist and musician with relatively few record releases and very little publicity - Terry Riley is one of the better-known musical revolutionaries of the age
"Shri Camel" is the first generallyavailable record by Terry for about ten years and develops the musical style evident in "Rainbow in Curved Air". For the pigeon-holers, it could be classed as trance-music with floating, swirling figures and percussive riffs darting over a drone-bass, but its apparent simplicity can be misleading. The music is often structurally quite complex.

The whole album was recorded live, in real time, with Terry playing his Yamaha YC-45-D electronic organ. His friend and technical advisor, Chet Wood, modified the organ in two ways. First, he added a computerised digital delay device which enabled Terry to play duets, trios etc. with himself. In fact, several times during the record there are up to sixteen different organ voices and figures playing together. Their relationships are obviously complex but they combine to an overall simplicity which makes the music very accessible and easy to listen to. You can also dissect the more involved sections for a greater understanding of the harmonic and melodic structure.

The second modification involved the alteration of the organ to produce a scale of just intonation as opposed to the equal tempered scale we are more used to in the West. The scale of just intonation only employs intervals found in the harmonic series and is harmonically more accurate but problems arise because about 30 discrete frequencies would be required per octave to play in different keys. Our scale of equal temperament simply divides the octave into 12 equal tones and is a good compromise. Terry's scale of just intonation gives a distinctly Eastern flavour to the music and some of the intervals sound almost micro-tonal to our ears. Me studied North Indian raga singing for many years and the influence of the East is quite evident.

The subject of just intonation and
different tunings is a very interesting one and certainly an area in which digital synthesis has a lot to offer. Some computer-controlled synthesisers already offer the musician a variety of tunings and as these instruments become more widely available (and cheaper) we may hear more music composed around such tunings. This opens up a whole new world of 'harmony' without resorting to atonal notation and thus keeping the music within a tonal frame and it could well be one of the more promising paths to be taken by musical pioneers.

The album has a mix similar to "Rainbow" - the individual voices bounce across the stereo image adding yet another dimension to the music. Wait until Terry Riley goes quad!

The numerous Terry Riley fans, followers and devotees will already have this record. To anyone interested in music in any shape or form, theyowe it to themselves to listen. You can approach it on two levels: what you hear and what you feel. The listener will find it interesting and if you can both listen to it and absorb it, you will want to repeat the experiences.
Ian Waugh

$\ln C$

Terry Riley
CBS 61237

Many years ago, before I had heard any Terry Riley compositions (about the time, in fact, when Mike Oldfield was being accused of plagarizing "Rainbow in Curved Air" for "Tubular Bells"), asked a friend to describe his music. He said, "Riley writes the sort of music that goes on and on and on, eventually ending up where he began;" from which description I can now infer that he knew as much about Terry Riley at that time as I did. It is one man's view, of course, but unfortunately, the sort of description which evokes little in the way of musical comprehension. It did at least make me listen to Terry Riley.
"In C" is one of his '60's compositions (as is "Rainbow in Curved Air") and features Terry on saxophone along with members of the Center of the Creative and Performing Arts in the State University of New York and it is performed on a variety of instruments: oboe, bassoon, Jon Hassell on trumpet, clarinet, flute, trombone, David Rosenboom on viola, vibraphone and marimbaphone.

The percussion begins (and ends) the work with the repetition of a single note and this forms the foundation upon which the other instruments build. They all play short rhythmic phrases, often only 2 or 3 notes long, each interweaving with the other so that at most points in the performance you can usually discern a basic $4 / 4$ or $3 / 4$ time signature. The 'beat' is constant throughout. As you listen, you hear the instruments go 'out of sync' and the accents will shift from the 1 st and 3 rd beats to the 2 nd and 4th. Then perhaps, the shift in
phase results in a $3 / 4$ figure or something which you are unable to work out at once but which resolves itself a few beats later.

There is a sense of growth and progress right through the piece. It is concerned with the pattems and textures of sound which can be built up using the instruments primarily in a solo capacity (but playing ensemble) and it is concerned with the motions of these patterns and textures as the piece progresses. The changes are changes of evolvement rather than development resulting in something merely different as opposed to something necessarily more complex.

So often do we play records as background music, as an accompaniment to other activities; eating, reading, talking etc. So rarely do we give a piece of music our full attention. "In $\mathrm{C}^{\prime \prime}$ is not musak. It demands attention. An effort must be made to become involved with the music and this is something we are not accustomed to doing. Many people will find it difficult a few, impossible. Do not play this while chatting to friends - there is no point. Do play it with friends, sitting silently, and observe reactions.

The covernotes (by Paul Williams, 'Editor and Publisher of "Crawdaddy" Magazine) begin; "I'm not here to justify this record, or to explain it, or to in any way connect it with anything else that already exists on the face of this earth." (It is, of course, a compliment). Further comments refer to "In C" as an 'experience' and a 'trip'. An 'experience' - yes, I would certainly agree. It could possibly be classed as 'trance' music as other Terry Riley works have been classed, but is of the 'native drum' type as opposed to the more lyrical 'floating melody' type.

It was new and different when it was written and it is still defying classification - for those with pigeonhole minds. I feel some of the epithets attached to Ravel's Bolero could apply even more literally to "in C": 'hypnotic', 'boring', 'nerve-wracking' and 'captivating'. As might have been said, "It's certainly art, but is it music?" I suggest you experience it for yourself and find out.
Ian Waugh

"Masterworks"

K-tel ONE 1093

Since Walter Carlos proved it could be done, and done well, all manner of 'classics' have been recorded and interpreted by synthesists. Impressionist works, by their nature, have generally adapted well, especially under the direction of such synthesists as Tomita.

Music is, usually written for the instruments of the time and apart from improvements in instrument manufacture and artistic ability, we hear classical music as it was intended to be heard by the composer. If Beethoven or Ravel or Borodin were writing music today they would undoubtedly write for the piano or for the orchestra or for the synthesiser. Different instruments require different
compositional techniques and although piano works have been orchestrated (and vice versa) it is difficult to imagine how 'normal' classical performances can be improved.

All the tracks on this album are 'conventional' classics: Also Sprach Zarathustra, Widor's Toccata, Adagio from Beethoven's Sonata Pathetique, Eine Kleine Nachtmusik, Ravel's Bolero, Grieg's Piano Concerto in A minor, Borodin's Polovtsian Dances, March of the Toreadors, Flight of the Bumble Bee and the 1812 Overture. All rely for their appeal upon their melodies which, perhaps with the exception of Flight of the Bumble Bee, most people could hum or sing.

It is difficult to adapt these works or otherwise alter their 'orchestration' without producing something which appears a parody of the original or without producing something 'disagreeable' to anyone who knows the originals. A lot of time was spent in recreating the sounds of real instruments and most tracks, noticeably Zarathustra, Polovtsian Dances, Bolero and March of the Toreadors sound so much like a real orchestra that you may wonder why they both ered with synthesisers at all. Une must admire the programming expertise of the synthesists but thanks to digital technology (none of which is mentioned on the album) it is now possible to produce sounds completely indistinguishable from real sound sources.

The equipment used on the album is mainly Roland with a Sequential Circuits Prophet 5 and additional instruments by Polyfusion, Moog, Korg, Yamaha, Oberheim and R.M.I. The synthesists are credited as follows: Richard Harvey, Nick GlennieSmith, Andrew Pryce-Jackman, Jeff Jarratt and Don Reedman with additional programming by Mel Wesson.

I doubt if any of the interpretations could be called 'offensive' all are tastefully and carefully worked out. Choirs are added, percussion is added and artistic licence is taken with most tracks - noticeably the Pathetique as it was originally written for piano, and Flight of the Bumble Bee, much, I feel, to its credit. Electronic arpeggios, the swish of white noise in Grieg's Piano Concerto, the lilt of portamento in Ravel's Bolero, and the sweep of voltage across filter are all evident in small degrees, only enough, perhaps, to barely qualify the album as sounding electronic

Because of the very conservative approach, necessitated perhaps by choice of music, there is little new or different to excite the listener

The performances, synthesiser programming and playing, and technical production cannot be faulted. Such an approach and attitude towards original compositions or works which are not, by their nature, so restrictive should reap rewards.

As a technical exercise, "Masterworks" undoubtedly succeeds but it is neither an 'electronic' nor a 'classical' record and, failing to bridge the gap, it hovers quite indifferently on the fringes of interest.
Ian Waugh
lan Waugh
E\&MM

CLEF electronic MUSIC

MASTER RHYTHM
As published in Practical Electronics

KIT: £79 BUILT: $£ 114$

PIANOS

Specialists since 1972
Stage and
Domestic Types
The most advanced form of Touch Sensitive action simulating piano keyinertia by patented technique. Four mixable voices for serious tone variation plus electronic chorus and flanger effects. See lists for CabiSix Octaves $£ 207$ nets. P.A. \& Manu71/4 Octaves $£ 232$ facture.

FULLY PROGRAMMABLE TWENTY-FOUR PATTERNS EIGHT PARALLEL TRACKS TWELVE INSTRUMENTS SEQUENCE OPERATION
Kit includes all components to build this comprehensive User Program mable Rhythm Generator in an attractive metal case with finished case, hardware and wire.

STRINGS £174
 Versatile String Synthesiser with solit

 keyboard facility and impressive voices 49 note organ diode keyswitch plus two phase ChorusROTOR-CHORUS $£ 89$
Two-speed Rotor simulation plus Three Phase Chorus on a single $8^{\prime \prime} \times 5^{\prime \prime}$ PCB Mains PSU included.

KEYBOARDS

Square Front with two hole actuator easily cut.

49 NOTE-£25; 73 NOTE-£41 88 NOTE-£49.50

OUR PRICES INCLUDE VAT, CARRIAGE \& INSURANCE
Please send s.a.e. for complete lists or use our telephone BARCLAYCARD service. Very competitive EXPORT rates - in Australia please contact JAYCAR in Sydney ALL INSTRUMENTS MAY BE SEEN IN OUR SHOWROOM
CLEF PRODUCTS (Electronics) LTD., Dept. M.. E\&MM/8
44 A BRAMHALL LANE SOUTH, BRAMHALL, STOCKPORT, CHESHIRE SK7 1AH. - TEL: 061-4393297

THE POWERFET AMPLIFIER

The PFA is perhaps the perfect realisation of the classic powerfet amp design. The superb PCB allows the use of either one or two pairs of output devices, providing easy expandability for those starting with the smaller system. (The extra cutput pair of the PFA120 results in lower distortion and improved efficiency, particułarly into low impedance loads).
The components used in the PFA have been chosen with extreme care. The lowest noise input devices and lowest distortion gain stage devices were selected regardless of cost. 140 V powerfets were chosen against the more usual 120 V to give improved safety margins.

Specification Bandwith	PFA80 10hz -	$\begin{aligned} & \text { PFA120 } \\ & \text { 100KHz } \mathbf{1 d B} \end{aligned}$
Output Power R.M.S. into 892	80 W (Vs $= \pm 50 \mathrm{~V}$)	$120 \mathrm{~W}(\mathrm{Vs}= \pm 55 \mathrm{~V})$
$\begin{aligned} & \mathrm{THD} \\ & \left(20 \mathrm{OH}_{z}-20 \mathrm{KHz}\right) \end{aligned}$	<0.008\%	$\leqslant 0.005 \%$
(KHz at rated output)	0.004\% typ.	0.002\% typ.
SNR	120 dB	
Slew Rate	>20V/4S	
Gain	$\times 22$	
Rin	30 K	
Vs max	$\pm 70 \mathrm{~V}$	
Cost		
(built)	$¢ 15.95$	¢22.85
(kit)	¢13.95	$¢ 20.85$

A high quality 20W roviding high powers from low supply voltages.
Specification
Specification
Oulput power RMS
THD
SNR
Cost (Built)
20 W into 8Ω at $\pm 22 \mathrm{~V}$
PAN

0ne of the most vital links in any sound reproduction system is the loudspeaker and yet, because most people buy the finished product, the design and craftmanship used in its manufacture is often overlooked.

Very few manufacturers of hi-fi, PA, disco and group equipment actually make the loudspeaker for their systems and thus rely on specialist companies to supply this product. One such company is Fane Acoustics, who have been making loudspeakers for the home hi-fi and television industries since their establishment in 1958 by Dennis Newbold and Arthur Falkus. Leading hi-fi manufacturers at the time, such as Daystrom, Tannoy and B \& W, used Fane's early 12 inch diameter hi-fi loudspeakers and gradually the range was increased to cover $8,10,13 \times 8$, 15 and 18 inch models as well.

However, the outstanding success of the company came from its decision to specialise in high power loudspeakers in 1967, when Arthur Falkus designed the present highly successful high power voice coil.

Fane Acoustics is based at Batley in West Yorkshire, England with over 120 staff employed at its large manufacturing plant, nearby administration offices and despatch warehouse. Recently, I was privileged to spend an informative day at the plant with Dennis Newbold and David Briggs.

Making a Loudspeaker

First, the chassis is made up from pressed sheets, strips or blanks of steel. Up to eight operations produce the chassis which has been shaped
up, trimmed and pierced. This is sent via an overhead conveyer system to the magnet assembly area. The magnet, together with front and rear plates and pole piece (also made in the press shop) are glued together using special adhesive or a semiautomatic machine. The whole unit is electrostatically sprayed and passed (on the conveyer) through an infrared oven and out to the start of the main assembly line.

Glass Fibre Voice Coils

Fane's special high power voice coils are made of glass fibre (instead of having wire wound on the standard paper former) in another section of the factory. Aluminium has been tried as an alternative former, but although quite successful was subject to huge eddy current losses resulting in less power output.

The main advantages of the glass fibre coil is its ability to withstand the high temperatures developed from high power outputs, its minimal distortion without bubbling or even burning as some plastic or paper formers can do, and its consequent greater reliability. It has enabled Fane to put a lifetime guarantee on their products in recent years. Incidentally, it is very easy to see whether a speaker has been 'abused' by stripping it down and examining the layers of wire on the voice coil which will show a distinct pattern of burn marks.

In production, the thin fibre glass former is treated with an epoxy resin - one of the few materials that will adhere to it. The problem is to hold the turns of wire in the epoxy resin (which. has a consistency that's little thicker than water) whilst it cures and hardens over 45 minutes, without
sticking the holding device at the same time!

The prepared voice coil is inserted into the chassis - other manufacturers put in the complete cone, suspension and voice coil as one piece at this stage - but Fane's way is to use the mechanical unit as the 'jig'

The large machine shop for chassis pressing.

Gluing the magnet pieces to the chassis.
for assembly. Then follows the suspension and the cone, with the latter already having had its two connecting leads threaded into its surface. Adhesive is applied to secure these and the 'gasket' material is also glued round the front edge of the chassis.

Chassis being conveyed into paint spray and drying units.

Next the loudspeaker is air dried over some 24 hours and any dust present is blown off the magnet and the front dome is glued in place to avoid particles of metal re-entering after the next step - 'magnetising the magnet pieces. The machine for this operation generates a large amount of energy with a copper coil that weighs almost half a ton. The

Voice-coil winding area.

Loudspeaker cones.

Soldering wire connections to cone.

Production line for HF250 dome tweeter

E\&MM AUGUST1981
process takes about three seconds whilst the current rises to between 70 and 80 amps on a two-phase 400 V supply before cutting out. The strength of magnetisation has increased dramatically over the years with a pre-war pound weight magnet now equivalent to juist one ounce of ceramic. It is interesting to note that both top and bottom plates are made with a smaller diameter than the magnet to actually increase the flux strength.

All finished speakers are checked in the test room for correct frequency range, impedance and sensitivity and also to ensure that no defects are present in the electro-mechanical construction. Spot checks are also made on batches to ensure the frequency response characteristic matches the original specification (any discrepancy is unlikely unless by chance a wrong component has been used). This is done in an anechoic chamber which is also necessary for the initial research and development that produces the final loudspeaker design.

Fane's Loudspeaker History

From the outset of producing a domestic hi-fi speaker system in 1958, the company carried out much further development with its small group of research engineers. Many of the industrial loudspeakers are 'made to measure' from the basic range of over 50 models, with specifications agreed by sampling to cover the variations of cones, cone weights,

Completed voice coil on glass-fibre former.

Loudspeaker prior to voice coil insertion.
coils, dust domes etc. required by the customer. The 12" speaker alone can be produced from over 1000 different types!

The voice coil is made in different weights to suit its power/instrument application and this affects the coil's movement through the centre hole of the magnet assembly. Lead guitar will use a light weight and bass guitar has a heavier coil.

The special plasticised paper or linen edge of the cone is designed to allow large cone excursions without breaking the cone itself, or inducing distortion through movement out of alignment or actually touching the magnet assembly. The cone centre dome often simply fills the gap with minimal effect on performance and is made from aluminium or linen - with the latter sprayed silver if required.

Cones are made for Fane from different types of pulp, so that fibres can be of varying length and additives can be put into the 'mix' to strengthen cones, as well as coloured dyes. Cone edges can be of different material and characteristics: both the edges and the cone itself have to be of a certain thickness to suit the resonance required; damping of the natural resonance of the cone by use of a thicker pulp mix allows higher power outputs; the plasticising treatment of the cone edge helps to overcome 'dips' in the response (from the edge and cone area being out of phase with each other).

Chassis are usually made from pressed steel using girder construction for extra strength, although an alternative has been aluminium to reduce weight. Another factor is impedance which should be maintained at the speakers rated 8 or 16 ohms and Fane's experience has proved invaluable in the design of speakers that keep inductance down and provide flat impedance over the frequency range.

Attention to the appearance of the loudspeaker has been an important feature as well and the Fane chassis now uses standard black stove enamel finish with an optional new metal grille that is glued on to 10,12 or 15 inch speakers. This not only adds the finishing touch but gives extra protection on the road.

Surprisingly, the speaker parts are mainly glued together - the ceramic magnet, the front plate, the base plate and the pole piece all fit concentrically together. Things that can go wrong with a speaker are the cone, the voice coil, the suspension, or the leads coming out, but if the magnet has been constructed so that it is concentric there is no reason why the unit should ever need 'ungluing'. Once the magnet moves out of concentricity then it is not likely to be of any use. However, cones on the more expensive speakers can be re-centred if necessary after a period of time.

Two lines of distribution are pursued by Fane - one to the hobbyist or musician through retail outlets and the second is to the industrial user with 'custom building' to a specification.

Five main groups of loudspeakers are produced by Fane:
a) Classic series - which are produced in various types for group and

The magnetising unit.

Final gluing of magnet outer case.

Checking completed loudspeaker.
disco covering full or mid-range.
b) Specialist series - these are professional quality and finish, with high sensitivity.
c) Crescendo 'E' series - give extra high power and sensitivity and in clude the large 15 and 18 inch 300 watt 'Colussus' units often used for outdoor concerts
d) 'J' series horns - includes horns, drivers, tweeters that extend the high frequency range, and passive crossover 12 or 18 dB filters for linking low/ mid/high units together.
e) Studio series - primarily for tailored flat response systems that cover full range monitor applications, like the American JBL and ElectroVoice speakers.

The Studio 12 L speakers are 200 watt rated and with the new HF 250 dome tweeter make a very powerful monitor/performance combination (see Figure 1). We'll be presenting

Making reference charts in the anechoic chamber.

Inside the anechoic chamber.

Figure 1. Response chart for Studio 12L \& HF250 Crossover HPX4 taken at 1 watt/1 metre in the anechoic chamber. (The dip in response at 600 kHz is due to the very small $1 / 1 / \mathrm{cu}$. ft. cabinet used in the test.)
these as a complete speaker system project that's ideal for the electromusic studio or concert PA

Future Plans

It is unlikely that the fundamental design of a loudspeaker will change in the near future. For example, using rarer magnets instead of the moving coil implies the use of a moving magnet system. With the present techniques the mass of the moving parts would be too great.

Naturally, one of the main aims of the company's research and development team is to continue to produce speakers that outperform equivalents from other manufacturers. Every facet of their design is carefully considered and even though the result may be only a half decibel improvement in power output, over a longer period this will significantly increase the overall sensitivity - a prime factor. This attention to the engineering of magnet assembly has helped to increase the average sensitivity and total sound pressure levels and explains why some 100 watt loudspeakers sound louder than other 200 watt units. Alternatively, and of course more desirable, is the situation where a 200 watt unit is only being used at half-power output, yet outperforms another similarly rated speaker that is used 'flat out'. Fane's policy is to under-rate loudspeakers in terms of RMS output which usually enables good matching to amplifiers (also often conservatively rated).

The cosmetic appearance of a loudspeaker is considered important for the future. As well as the new grilles, new 12 and 15 inch chassis of cast alloy reduce weight whilst maintaining strength through 8 ribbed arms.

It's quite probable that at one time or another nearly every leading UK musician has played through a Fane unit - including Pink Floyd, Genesis and The Who - although the particular loudspeaker cabinet is manufactured elsewhere.

David Briggs, Arthur Barnes and Dennis Newbold.

David Briggs, the Sales Director, exports over 50% of Fane products to more than 50 countries, directly as separate items or indirectly in speaker cabinets. Recently, very large orders have come from Latin America and two areas that offer new markets for the company are East Africa and the Far East.

Dennis Newbold is still the driving force behind the company as its present Technical Director and Company Secretary and enthusiastically comments that 'with only one exception, every main UK equipment manufacturer uses Fane loudspeakers'. Quite an achievement, that's come from much research and development or to put it more bluntly, through plain hard work and dedication!
Mike Beecher
E\&MM

BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY
The success story of 1981. Hundreds sold already As teatured on "Tomorrow's World" Create your own music with a VL-Tone. You combine the sound, rhythm and tempo and the VT-1 plays it back beautifullyi
CASIO VL-TONE (VL-1)
Electronic Musical Instrument and calculator

 1 11 है

(RRP $£ 39.95$
ONLY £35.95 V1-1 records and plays back up to 100 notes as a melody One Key Play or Auto Play of Piano, Violin, Flute, Guitar and Fantasy, or create your own unique sounds with A.D.S.R. 10 built-in Auto Rhythms and Tempo control LCD digital readout of notes and tempo. Also a calculator Battery powered with memory and program retention
Integral amplifier/speaker. Output jack. With Song Book Dims: $1^{1 / e} \times 11^{3 / 4} \times 3^{\prime \prime}$. Output jack.

CASIOTONE POLYPHONIC

KEYBOARDS
With buitt-in amplifier and loudspeaker

(RRP $£ 115$)
ONLY $£ 95$ 22 instruments over 3 octaves. 4 -position sound memory
Battery or mains. $0 / P$ jack. Dims: $2^{1 / 9} \times 22^{3 / 4} \times 6^{1 / 2^{\prime \prime}} .61 \mathrm{~b}$ NEW CASIOTONE CT-202
"Son of success... The two harpsichords demonstrate the Casiotone's talent for sparkling, crystal clear tones
Even more impressive is the clav..." (Melody Maker).

(RRP E325)
DISCOUNT PRICE $£ 275$
49 instruments over 4 octaves. 4 voice memory function with push button selection. 3 vibrato settings and sustain 15.8 lbs

ONLY, $£ 245$
14 instruments over 4 octaves. 8×2 rhythm accompaniments. Vibrato and delayed vibrato. Start/stop. synchro start, tempo control, tempo indicator, and rhythm volume. Pitch control. AC only. O/P jacks. $45 / 8 \times 31^{3 / 8} \times 127 / 6^{\prime \prime} .27$ Ibs

ONLY 1295
As 301 plus following: 16 rhythm accompaniments, with fill-in. Caslo Auto Chord for one finger or auto accompaniment. Plays major, minor and 7th chords with bass. Balance control, C.A.C. lever, chord lever, memory leve
and octave switch. Dims as 301 . Weight 28.2 lb .

CASIO MELODY ALARM CLOCK

CALCULATORS

MQ1200 12 melodies, 2 alarms, hourly chimes, diate memories, anniversary memories, calendar. $19 / 16 \times 6 \times 23 / 4^{\prime \prime}$. ML-90. Wallet version of above, with stopwaich $\quad 19.95$ ML-75. Card version of ML-90. $3 / 16 \times 3$ 有 $\times 23 / \mathrm{s}^{\prime \prime}$ £ 15.95 ML2000 Office version of MQ-1200 $13 / 4 \times 4 \times 61 / 4^{\prime \prime} \subset 22.95$.

UC365. 3 melodies, unlversal caiendar, date memories, two date alarms, daily alarm, hourly chimes, countdown alarm
 UC3000. Office version. $1^{3 / 4} \times 4 \times 61 / 4^{\prime \prime} \quad \mathbf{~} 27.95$

CASIO SCIENTIFIC CALCULATORS WITH LIQUID CRYSTAL DISPLAY for long, long battery life

FX81

FX100

(FX550)

FX81. 8 digits. 30 scientiflc functions. 4,000 hours battery life. Auto Power Off. $3 / 4 \times 3 \times 5 \%{ }^{\prime \prime}$ FX100. $10 \mathrm{~d}, 44 \mathrm{f} .7 .600 \mathrm{hrs}$. A.P.O. $3 / 4 \times 3 \times 57 / \mathrm{m}^{\prime \prime} \quad £ 16.95$ FX550. Replaces FX510 shown above. 1 lithium battery lasts
$13,000 \mathrm{hrs.A.P.O}. \mathrm{100,50} \mathrm{\% .3/8} \times 2^{2 / 8} \times 51 / 4^{\prime \prime} \quad \mathbf{~} 19.95$

SUPER SCIENTIFICS WITH TIME DIMENSION Fx8100. 46 f. Clock, calendar, alarm, hourly chimes, count-
down alarm, stopwatch, $1 / 4 \times 2^{3 / 4} \times 5^{1 / 8}$ down alarm, stopwatch, $1 / 4 \times 23 / 4 \times 51 / 8$ 524.95
$\mathbf{5} 24.95$ FX6100. Hand held version of FX7100

CASIO PROGRAMMABLES
with A.P.O. and memory and programme retention.

FX180P

FX3600p

(FX602P)

FX180P. 10d, 55f. 2 programmes, 38 functional steps Integrals and Regressional analysis, $3 / 4 \times 3 \times 5 \frac{1 / s^{\prime \prime}}{} \quad 19.95$ FX3500P. As FX180P but 61 f. $9 / 32 \times 2 \% \times 514^{\prime \prime} \quad \mathbf{E 2 2 . 9 5}$ FX602P. As FX501P shown above but with alpha-numeric display. $10+2$ d, 51 f .256 steps, 22 memories. 10 unconditiona jumps, 9 subroutines (9 levels) 18 parentheses (6 levels) $\begin{array}{r}\mathbf{E 7 4 . 9 5}\end{array}$

THESE SPACE INVADERS WILL ALARM YOU - THE PRICE WON'T Casio's most amazing watches ever!

CA- 90 (left)
$\Sigma 24.95$

CA. 901 (right)
$\int 29.95$

Time and auto calendar, calculator, alarm, hourly chimes stopwatch, dual time. DIGITAL SPACE INVADER
GAME.

100 METRE WATER RESISTANT WATCHES with alarm and stopwatch

Time and auto calendar, alarm, hourly chimes, countdown alarm timer with repeat memory function, stopwatch. Time is always on display, regardless of mode. Stainless steel.

W100 Resin case/strap version cation). UC50W. 50 metre water resistant with universal full month calendar display with forward/backward stepping. Alarm, hourly chimes and stopwatch. Stalnless steel

12 MELODY ALARMS AND STOPWATCH

M 12 (left)
Resin £ 17.95

M1200 (right) S/S
$\mathbf{C} 29.95$

7 daily melodies, one for each day, 3 anniversary melodies, 2 date memories, hourly chimes, countdown alarm timer with countup after zero, or stopwatch.

LCD ANALOGUE/DIGITAL with amazing "slarburst" display. Dual time (analogue and digital), alarm, hourly chimes, countdown alarm tlmer, stopwatch, auto calendar. AA81 Chrome £29.95. AA82 s/s f39.95. AA81G gold $£ 49.95$

MA-1
f9.95 Mozart No 40 or buzzer. Hourly chimes Snooze facility $13 / 4 \times 4 \frac{1}{2} \times 3^{\prime \prime}$.

SEND 20p FOR OUR ILLUSTRATED CATALOGUE OF SELECTED CASIO AND SEIKO PRODUCTS

Price includes VAT and P\&P Send vour, company order. chequer. P O or phome vour ACCESS or BARCLAY CARD number to

TEMMPUS

Dept E\&MM/8, FREEPOST,
164-167 East Road, Cambridge CB1 10B Tel: 0223312866

"THE WALL" concert by 'Pink Floyd'

June 13th Earls Court, London

$\underset{\substack{\text { link } \\ \text { noys }}}{ }$

excellent animations were projected onto a large screen behind the band During this half the wall on the stage was gradually added to, obscuring the band, until, just on the interval, the last brick was fitted precisely into the wall.

For the second half most of the action took place in front of the wall, where the band had since moved all their instruments. This half included some very good solo pieces, one of which takes place in a lounge scene set into the wall, with an armchair, coffee table and TV showing a war film, the sound track of which was heard over the PA. There was one heavy rock number that made use of a very large batten of lights controlled by a sound to light system. Once again, this was complemented with
images from three movie projectors using the wall as a screen with pictures and animations including the well known sequences as seen on BBC TV's 'Top of the Poos'. The appearance of a huge pig from behind the wall was spectacular to say the least as it proceeded to dance about above the audience. In the finale, the wall was pushed down and the evening ended with the band walking on as strolling players with acoustic instruments including an accordion, guitars and an oboe. This last scene earned the band a standing ovation.

The sound quality was very good, with just a few first night 'rumbles' at the start. The PA was not too loud (even at 120 kW for the bottom, flying and back stacks). and the multichannel system gave tremendous
interest to the music, especially when the sound was swept from one PA stack to another. The dynamics achieved were strong and the interrelation of acoustic and electronic instruments portrayed the enormous range of emotion that Pink Floyd create in their music

The effects gave plenty of variation, with echo, ADT and Leslie rotor sounds the most noticeable, as well as flanging and phasing. The keyboard players shared between them instruments that included an acoustic Grand Piano, a Yamaha CP80 Electric Grand, a Fender Rhodes Piano, a Wurlitzer Organ. a Solina String Synthesiser and a Prophet Synthesiser.

The control desk of the concert was also impressive with five mixing boards and rack upon rack of amplifiers, crossovers and control units. The mixing boards made use of the Midas mixer modules and the mixers were grouped for various applications. The control area (shown in the photograph) included a large lighting board and several tape decks which ranged from a cassette deck to large multi-track machines used for play. back of the numerous sound sequen ces and live recording

The concert was very impressive and it was well received by the huge audience. There was certainly never a dull moment and if your interest wandered you may easily have missed something.

Glenn Rogers
E\&MM

James Guthrie, Robbie Williams and Nigel Taylor with Britannia Row's 106 channels of Midas used to mix 'The Wall'

EVENTS

AUDIO VISUAL EQUIPMENT EXHIBITION, World Trade Centre, Singapore. Further information from Bob Hackett, European Sales Manager, ITF International, Ratcliff House, Blenheim East, Solihull, W. Midlands. Tel. 021-705 6707. NATIONAL FESTIVAL OF MUSIC FOR YOUTH, Fairfield Hall, Croydon. Tickets $£ 1.50$ (60 p under 19) at the door.
SUSSEX MOBILE RALLY, Brighton Race Course Trade stands dealing in all forms of electronics, including amateur radio, microprocessors, components and C.B. Entrance 50 p (with free lucky draw ticket). Commences 10.30 a.m.- 6.00 p.m. AMERICAN THEATRE ORGAN SOCIETY, London Chapter presents Hector Olivera at the Granada Kingston. Commences 1.00 p.m. admission $£ 1.50$ Further details from Mrs J. Taylor, 19 Holroyd Road, Putney SW15.
MICRO COMPUTER SHOW, Wembley Conference Centre, London. Aimed at both the hobbyist and trade. Tickets $£ 1.50$ on the day or three for $£ 1.00$ from Online Conferences Ltd, Argyle House, Joel St, Northwood Hill, Middx. (cash and S.A.E. required with order).
HOME, LEISURE AND MOTOR SHOW, Leisure Centre, Haslet Ave, Crawley. Entrance 50 p. NATIONAL ELECTRONIC ORGAN FESTIVAL, Pontins Tower Beach, Prestatyn, North Wales. The programme for this residential event will include: daily concerts by "star" organists - teach-in sessions - sheet music and book sales - exhibitions and demos by leading manufacturers - synthesisers, rhythm units and rotary speakers. Accommodation from $£ 78$ for two people. Ring (07456) 2244

Courses
STUDIO ENGINEERS COURSE, University of Surrey Guildford. This residential/non residential course provides information on a wide range of technical subjects relating to recording operations and by bringing together engineers of differing skills and specialities from all over the world, create a forum for interactive discussion in the exchange of ideas and experience. Further information from The Secretary, APRS, E1L. Masek, 23 Chestnut Avenue, Chorleywood, Herts WD3 4AH
'O' LEVEL ELECTRONICS. St. Vincent Centre, Gosport, is offering a one year ' O ' Level Electronics course beginning in September 1981 and leading to the A.E.B. examination in June 1982. The course, which is on Wednesday evenings 7.9 p.m., is suitable both for those who are interested in electronics as a hobby, and wish to pursue their interest and share their enthusiasm, and those who wish to gain a qualification. The course fee is $£ 20.75$ ($£ 10.38$ for under 18's and O.A.P.'s). Leaflets with full details are available from. Mrs. Thorpe, St. Vincent Centre, Mill Lane, Gosport.
INTERNATIONAL SYNTHESISER TAPE CONTEST. Roland (U.K.) Ltd. are currently holding their 5th Synthesiser Tape contest. This contest is open to anyone interested in synthesiser music. Full details can be obtained from Roland (UK) Ltd., 983 Great West Road, Brentford, Middlesex TW8 9DN. Tel. $01-5684578$. Closing date is August 31 st 1981 DENNIS EMSLEY presents a small item about electronic music every Wednesday evening on the local community radio station in Milton Keynes on cable radio. The item lasts about 15 minutes and goes out at approximately 5.15 p.m. as part of the programme 'Ad Lib'

We shall be pleased to publish news of forthcoming electronic and electro-music exhibitions, clubs - also special electronic music concerts.

THIS MONTH'S SPECIAL OFFERS

Each month, Electronics \& Music Maker gives special offers to its readers that represent a substantial saving on normal retail prices.
Two of our offers are shown here and details of our third offer are given on Page 77.

DRILL PACK

An indispensable tool for the hobbyist. This drill includes the Reliant Mini-Drill, mains adaptor (240VAC), four collets to fit any drill up to $1 / 8$ th inch, sixteen twist drills, one radial and one axial brush, and one polishing pad.

Normally £19.78
Offer Price £14.95

(Overseas customers please add 34p extra for postage-surface mail only)

ORGAN MASTER BOX PACK

Here's the teachyourself organ compendium reviewed on our Education page that will help budding organists get started. It comprises two music books, two theory books and two chord posters.

Normally £10.00
 Offer Price $£ 8.00$

Closing date 31st August 1981 - Subject to availability

Send this coupon and cheque/P.O. to: ELECTRONICS \& MUSIC MAKER (Special Offers) 282 London Road, Westcliff-on-Sea, Essex SS0 7.JG.			
Please send me:			
Quantity	Item	$\underset{£}{\text { Item Price }}$	$\begin{gathered} \text { Total } \\ £ \\ \hline \end{gathered}$
	DRILL KIT	14.95	
	ORGAN MASTER PACK	8.00	
I enclose a cheque/P.O. payable to: Electronics \& Music Maker for: £.. PLEASE PRINT			
Name: Mr/Mrs/Miss			
Address			
All prices shown include VAT, postage and packing			

SPEAK AND MATHS

Texas Instruments Ltd have just introduced a new electronic teaching 'aid called 'Speak and Maths', designed to be used by children aged 5 onwards. The child is familiarised with mathematical expressions through the electronic voice, as well as the visual display.
'Speak and Maths' is pre-programmed with over 100,000 randomly selected problems, covering basic arithmetic and decimals as well as introducing the more advanced subjects of geometry and algebra. One of three levels of difficulty may be
selected so that problems can be made progressively more difficult as the child's ability develops. Learners can therefore go at their own pace.

Operation is simple. The unit sets a problem, the child keys in an answer, and 'Speak and Maths' announces whether the attempt was right or not - praising correct answers and encouraging another try when answers are wrong. After two tries the correct answer is displayed and announced; a score is displayed after 5 problems.

There are a number of special features: 'Word problems' helps strengthen recognition of common spoken expressions related to mathematical concepts, such as decimals, remainders and basic geometry. 'Greater than/less than' helps compare totals rather than merely calculate them, and 'Write it' helps sharpen the ability to write spoken numbers in numeral form. Also included is the 'Number Stumper' game in which the operator is asked to guess a secret number in as few attempts as possible.

For further info contact Nick Hills, MS36, Consumer Marketing Dept., Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA.

VIDEO WITH STYLE

Using their expertise, acquired as one of the largest manufacturers of professional TV broadcast video cameras, Hitachi have developed a brand new colour camera for the domestic market which embodies professional style features and facilities. The camera is aimed at the serious video enthusiast who wants the best results possible from a lightweight camera.

In their new camera, model VKC 800, Hitachi have used a saticon pickup tube, a type normally associated with cameras designed to meet broadcast standards. This type of tube ensures a high standard of picture clarity and resolution even in dim lighting conditions and eliminates residual picture lag when panning.

The high picture quality also results from the use of a high grade, f1.4 zoom lens which has a 6:1 ratio12.5 mm to 75 mm . It is coupled to an
electronic auto-focus mechanism using micro-chip control. Alternatively the user can operate the focus manually and, using the macro facility, focus down to a closeness of 4 tenths of an inch!

Also features two-speed zoom, multi-function electronic viewfinder, fitted uni-directional microphone, left and right handed user option, battery power and automatic picture fade.

The camera can be mounted on a tripod for studio use but for on location filming, can be shoulder mounted. An adjustable shoulder pad enables the camera to be adjusted for comfort and stability is achieved by adjusting the wrist strap.

The VKC 800 weighs only 6.83 pounds and has a power consumption of 9.5 watts with a power requirement of 12 volt DC or can be used via a Hitachi AC mains adaptor. The price is $£ 799$ inc VAT.

VOLT LEADER

Leader have recently released a highvoltage meter probe with a built-in meter movement.

The unit measures up to 40 kV , has an input impedance of $20 \mathrm{k} \Omega$ per volt and an accuracy of $\pm 3 \%$.

Manufactured in high impact polystyrene, the LHM-80A is 385 mm long, weighs 300 g and costs $£ 16+$ VAT.

For further details contact:
Sinclair Electronic Ltd., London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ.

MORE SPEECH

Campbell Collins Ltd., franchised distributors for General Instrument Microelectronics, have recently released the G.I. speech synthesiser module VSM2032. The module is supplied, built and tested with an onboard audio amplifier and a 32 k ROM containing the 32 word vocabulary.

The 'clever bits' in the module are the PIC1650A microcomputer and the SPO250 speech synthesiser, making interface quite simple, requiring only one 8 -bit PlO for both control lines and address lines, and for monitoring the busy line. The module would normally require 7 address lines but with the vocabulary supplied, the two most significant bits are always zeros, therefore freeing two PIO lines for other tasks.

On power-up, the module requires resetting which is simply two successive low to high transistors on the reset line. This could be achieved using software control of the PIO, but could also be taken care of by a small hardware reset.

After resetting, making the board speak is simply a matter of checking the status of the busy line and waiting for it to go high, then setting up the address and taking the strobe from high to low.

The vocabulary supplied with the module is designed such that any number less than one billion can be enunciated, as well as the four

arithmetic operators, and the words equals, error, it is, AM, PM and OH . Power supply requirements are +5 V $\pm 5 \%$ at a maximum current of 210 mA (assuming full audio output).

The user guide for the VSM2032 gives connection details and a short program for interfacing the module to the printer part of the TRS-80 model 1 and information on word addresses, etc.

The VSM2032 measures only 5 " x $3 \frac{1}{4} 4^{\prime \prime}$ and costs $£ 49.50$ built and tested.

A compatible 15 -pin edge connector and speaker plus full operating instructions are also available from: Campbell Collins Ltd, 162 High Street, Stevenage, Herts.

READ ALL ABOUT IT

John Bull News
John Bull Electrical Ltd have recently released a new form of bimonthly newsletter, giving information about new lines and helpful hints for the hobbyist.

Copies of current newsletters are available free of charge to our readers and may be obtained from:
J Bull Electrical Ltd, 34/6, America Lane, Haywards Heath, W Sussex RH16 3QU.

Doram News

Another new publication for the electronics hobbyist is the Doram summer '81 catalogue. Included in the 44 pages are comprehensive ranges of.discrete components and semiconductors and over 70 'project packs' based on both magazine
articles and in-house designs
The catalogue costs $40 p$ and is available from:
Doram Electronics Ltd, Fitzroy House, Market Place, Swaffham, Norfolk, PE37 7QH.

West Hyde News

West Hyde Developments Ltd have recently announced the release of their latest ' 81 catalogue.

The catalogue includes 75 pages of stock items with a host of new products added to the current ranges and new lines such as Mentor Optoelectronic components and computer terminal housings from Bopla. This new 'cat' should provide the answer to hobbyists enclosure problems. Available from:
West Hyde Developments Ltd, Unit 9, Park Street Ind Est, Aylesbüry, Bucks, HP20 1ET.

NEXT MONTH - September Issue

on sale at your newsagent from August 14th

Ł THE PARTYLITE

Add this exciting low cost light unit to your home entertainment equipment. No connection to your sound system required - simply plug into mains supply. Automatic level adjustment eliminates all controls and provides bright 3 -channel operation from any level of music.

*TAPE-SLIDE SYNC

Sit back and enjoy your slide shows by synchronising each slide with your recorded dialogue and music using this straightforward project.

* NOISE GATE

Use this popular studio device to reduce background noise during pauses in performance or recording. Ideal for organ, synthesiser and other electronic keyboards, percussion and guitar.

* BATTERY ELIMINATOR

The "Starting Point" series for newcomers to electronics shows you how to construct a battery eliminator to cut down expenditure on batteries. Suitable for use with our popular Syntom and Synwave projects.

ELECTRO-MUSICIANS DIRECTORY FREE FOR SEPTEMBER!!

We have had many requests from readers to run a column that enables musicians interested in making electronic music to contact each other. E\&MM invites you to submit your contact information in a way that should allow us to insert a large number of musicians names each moth. If you feel that important classification names have been omitted we shall be pleased to hear from you.
To fit the maximum information on a line please use the following codes:

| INSTRUMENT | $D=$ DRUMS | LEVEL | TYPE OF MUSIC |
| :--- | :--- | :--- | :--- |\quad E=EXPERIMENTAL

Send your information in the format below for your FREE directory ad next month (closing date 25 th July). (Fictitious example)

NAME	TOWN	COUNTY	TELEPHONE	INSTRUMENT	LEVEL	TYPE OF MUSIC
BILL JONES	SOUTHEND	ESSEX	$0524-61232$	K	M	E

Offer subject to available space.

Rates: Semi-display $£ 4.00$ per scc; Classified lineage 20 p per word (min. 15 words); Box No. 60p extra. All advertisements must be pre-paid. Closing date: 25 th July for September issue.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

SEMI-DISPLAY

single column $£ 4.00$

2 cm single column $£ 8.00$

3 cm single column $£ 12.00$

DISPLAY

$3 \mathrm{~cm} \times 2$ columns $£ 25.00$
$4 \mathrm{~cm} \times 2$ columns £33.00

8 cm single column $£ 33.00$
 GOOD LOOKS AT LOW PRICES

The picture above shows our guitar synth, the sort of finish your projects deserve. Cabs for mixers, keyboards etc. Our guitar synth kit with chords, walking bass and sequencer is only $£ 166$ or build it a little at a time at no extra cost. Just send $£ 3.60$ for the complete plans or a large S.A.E. for our catalogue.

CAMPBELL CLARK CABINETS 2 Arden Court, Church Road, Perry Barr, Birmingham B42 2LF.

APPLE MUSIC

 Interested in hearing what the Mountain HardwareMusicSystem is really capable of If so, a 25 -minute MusicSystem is really capable of If so, a 25 -minute
cassette of pieces ranging from Bach to Debussy cassette of pieces ranging from Bach to Debussy E2.50. And, for MusicSystem owners, a disk of stunning PLAY files is available for $£ 15.00$; this also includes some useful IDEF files and membership of the Apple Music Synthesis Group. Write to: DR DAVID ELLIS, 22 Lennox Gardens, Londón SW1 (telephone: 01-584 5816).

LOVELY JAPANESE WATCHES

with 28 keyboard calculator alarm. Square root; $\mathrm{M}+\mathrm{M}-\mathrm{MRC} ; \% 12 \mathrm{hr}$ A.M., P.M., and 8 digit display. All for only $£ 25$ including VAT \& P\&P. Calculator probe fits into watch bracelet. Refund if not satisfied. London. NW1 6DT. 01-723 8605.

LET US CONSTRUCT YOUR ELECTRONIC KIT! Fully tested with one year's guarantee for only 60% of the kit price.

Ring (0604) 56248, (0908) 564542.

All types of Kits constructed (Maplin, Wersi, etc.). All types of Kits constructed (Map
Competitive prices. For quotation:

Ring Newtown (0686) 28646

CALSCOPE SUPER 10

from Maplin, totally new \& unused, still in original box, $£ 180$.

Chris Jordan, Cambridge (0223) 316910

MAPLIN MES53 ORGAN

completed and workIng to Stage 3. Rhythm unit and mixer built but not working. Cabinet partly built bu requires completion
Price negotiable around cost of components. Telephone: 01-668 1719.

STUDIO HIRE

8 track studio including synthesisers, free tea and a handy musician/engineer, $\mathbf{5 2 0}$ per 6 -hour ses
sion. ldeal for composers, sythy Dlayers

ATTENTION ORGAN BUILDERS!
Surplus keyboards, tone generators, swell pedals, Leslie motors, rhythm unlts etc. New high quality units at bargain prices. SAE for list.
RON COATES. 2. Boxhill Nurseries. Boxhill Road, Tadworth, Surrey KT20 7JF.

ELECTRO-MUSICIANS DIRECTORY

Remember to send your Free Directory
Advertisement for September issue

CLASSIFIEDS ORDER FORM

Please insert the advertisement below in the next available issue of E\&MM for

I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be made payable to Maplin Publications)

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15
16	17	18
19	20	21
22	23	24

Enter each
word of your Tel. No. (Day) lineage in each block

Sue Forster

Name
Address

Send together with your cheque to:
E\&MM Classified
282 London Road, Westcliff-on-Sea
Essex SSO 7JG
Up to 15 words free on any classified lineage (i.e. run-on advert). Thereafter, 20p per word. Underline words required in bold. Add $5 p$ extra per word.
All adds to be received by 25 th July for September issue.
Classified Lineage only. Submit Semi and Full Display separately with this Order Form.

MUSING by STICHOS

We applaud the kind of music that microchips attain,
Though the Muse's scornful voices unite to make it plain
That sterile syncopations of electrons in a can
Are broken-tongued harbingers of the Spirit that is Man.
Send 'Woofers' back to the Dog Pound
Make 'Tweeters' fly only in trees,
Restore to country-quiet the sound
Of 'Hum-buckers' corralling their bees.
Electrons, all unfeeling in their sub-atomic flight
Are as remote from human warmth as stars that stud the night.
Their actions are predictable - obey the Law they must -
Knowing naught of Pain or Mercy, but only what is Just.
This is a Drum - and you thump it -
And this is a Bugle to blow,
Just as you should with a Trumpet,
And all Woodwinds, too, as you know
When pipes are made from spire-clumped reeds where rippling waters run Each chosen wind-tossed stem has been star-stroked and soaked in sun. Then heart and art combined can make an instrument unique
Through which the sharp-eared Listener can hear Man's Spirit speak.
'Smooth Fuzz' are better on beat-time;
With quiet, knee-bending coimposure
Arresting those committing crime -
Such as 'Digital Exposure'.
Now give that sound to experts in modern compuphonics
To analyse and dissever into sine-waves and harmonics
And produce, semper fidelis, the patterns they have 'scoped;
The sounds they'll do quite nicely; but the Spirit has eloped.
A Harp is just a hole with strings
That you cuddle close and stroke;
But the silvery song it sings
Pale Naiads of the hills evoke
"It's wasting bloomin' time then, is the nub of your harangue?"
Not quite: for paying Mammon homage by the cash-desk's clang
As the Moguls and Performers exploit each new-found toy
Forces Commerce ever onwards fresh wonders to employ.
Not juice in our 'Apples', but noise
'Floppy Tapes' that can't tie up bibs;
Let's gather up all of our toys,
And out 'Wah-Wahs' back in their cribs
There'll be a fertile future-time, whether far off or near,
When quiet-eyed men of music who possess the Inward Ear
Will come and make Computers blazon forth the Spirit's fires;
As they have done with Vibraphones, Pianos, Harps and Lyres.
This is a Band for the joining
By those mortal earthlings who choose
To lay the Joys they are coining
As gifts at the feet of the Muse.

CORRIGENDA

The following errors and omissions have been noted in previous issues of E\&MM and are brought to your attention:

IMAY issue

NOISE REDUCTION UNIT. Page 7, Figure 2. 'C30 should read C20. Page 10, Parts list. R7....etc., quantity should be $26 ; \mathrm{C} 6 . .$. etc., quantity should be 34 ; C29,30 should be 100 n .
CAR DIGITAL TACHO. Page 11, Figure 1. Add capacitor C 6 between pin 5 of IC 3 and. -IN Line. Page 12, Figure 2. I/P and transposed on the legend.

ADVERTISERS INDEX

Akhter Insiruments Lid 72 Ambit International 40
Aura Sounds Ltd 68
Bi-Pak Semiconductors ... 44,45
B.K. Electronics 41
J. Bull (Electrical) Ltd 37

Campbell Clark Cabinets 94
Clef Products (Elec) Ltd 85
Comp-Shop Ltd . 96,Inside Back
Digisound Ltd 58
Electro Voice 66
Gemini Electronics 20
ILP Electronics Ltd 12,13
Knights Computers 48
Kramer \& Co 85
L\&B Electronic Modules 32

JUNE ISSUE

MOSFET AMPLIFIER. Page 22, col. 1, line 11. 2 S 348 should read 2 SJ 49 .

JULY ISSUE.

SYNWAVE. Page 21. Figure 2. Insert Cl 2 between junction of C6,R12 and junction of R16. TR4 base and TR1 collector. Page 22. Figure 3. C9 shown with reversed polarity. USING MICROPROCESSORS. Page 55 Figure 2. IC10 pinout was incorrectly given: IC10 pin 11 should go to IC4 pin 14; !C10 pin 16 should go to ICl pin 22; IC10 pin 1 should go to OV.
The address for Steve's Electronics Supply Co. was incorrect. It should be 45 Castle Arcade, Cardiff CF1 2BW. Tel: 0222-41905.

The Editorial staff apologise for any inconvenience that may have been caused to our readers.
Maplin Electronic Supplies Lto 81, Back Cover
Modern Book Co 40
Phonosonics 25
T. Powell
... 48
Powertran Electronics 2,3,33
Progressive Sound Pub (PSP) 40
Quasar
70,71
J.W. Rimmer 85

Rosetti 'House of Music' Ins. Frt
Silica Shop Ltd
Silicon Speech Systems 81
Sinclair Research Ltd 50,51
Tangerine Comp. Systems Ltd56
Technomatic Ltd
29
Tempus
89
Turnkey 4
Wilmslow Audio 59

LOOK TO THE FUTURE

by wearing a T-shirt with the special Electronics \& Music Maker symbol.
These superior quality T-shirts have our symbol printed in white on the front, and come in red or black and S, M, L or XL sizes, price $£ 2.75$ inc. VAT \& p\&p. Sweatshirts are also available in the same colours and sizes, price $£ 5.99$ inc. VAT \& p\&p.
Overseas payments including Republic of Eire should Overseas payments including Republic of Eire
be made by Bankers Oraft in Pounds Sterling.

T-Shirt size guide:

S 28-34; M 34-36; L 36-40; XL 40-44
Sweat Shirt size guide:
S 30-34; M 36-38; L 38-42; XL 40-44
E\&MM T-shirts Dept., Maplin Publications, 282 London Road, Westcliff-on-Sea,
Essex SSO 7 JG . Please allow 28 days for delivery
Subject to a vailability
Please send me:

	Red/Black/S/M/L/XL	Quantity	Price	Total	
T-shirt				$£ 2.75$	
Sweatshirt				$£ 5.99$	

I enclose a cheque/postal order payable to: Electronics \& Music Maker PLEASE PRINT
Name ...

E\&MM8/81
E\&MM8/81

THE VIDEO GENIE SYSTEM

16K £559
32K £589
48K £619
The Radio Shack TRS-80TM Model III is a ROM-based computer systern consisting of: - A 65 -key console keybaard for inputting programs and data the system A Real-Time Clock - Read Only Memory (ROM) containing the Model III BASIC Language (fully compatible with most Model I BASIC programs) Random Access Memory (RAM) for storage of programs and data while the Computer is on (amount is expandable from " 16 K "
to " 48 K ". Optional extra) A Cassett Interface for long-term to
storage of programs and data frequires a separate cassette recorder, optionat/extral - A Printer Interface for hard-copy output of programs and data (requires a separate 1 ne palisk-
optional/extral - Expansion area for upgrading to a disk based system (optional/extra) Expansion area for an RS232.C serial communications interface (optional/extra) All these components are contained in a single moulded case and all are powered via one power cord.


```
DP9500 - ONLY \(£ 795\) DP9501 - ONLY £845
DP9501 - ONLY 2845 + VAT
```


THE NEW ANADEX DP9500 and DP9501

A PROFESSIONAL PRINTER

VIDEO GENIE EXPANSION BOX

controiler. O memory. £225 +
vernory expansion card (S100) 16K E110 32K E15
Further S 100 cards available later in the year

WE ARE NOW STOCKING THE AUTOSTART APPLE II AT REDUCED PRICES
 16K £549 32K £579 48K £599)
Gerting Started APPLE II is faster, smaller, and more powerful than its predecessors. And it's more fun to use too because of builr-in teatures like: - BASIC - The Language that Makes Programming fun - High-Resolution Graphics (in a 54,000 -Point Array) for Finely-Detailed Displays. Sound Capability that Erings Programs to Life. Hand Controls for Games and Other Human-Input Applications. Internal Mernory Capacity of 48K Bytes or in a Small Packag. Eight Accessory Expansion Slots to let the System Grow With Your Needs.
You don't need to be an expert to enjoy APPLE II. It is a complete, ready-to-run computer. Just connect it to a video display and start using programs lop writing your ownl the first day. You'll find that its tutorial manuals help you make it your own personal problem solver.

APPLE DISC II

3.3 Dos

$\mathbf{f} 299$ +

Powerful Disk Operating Software Supports up 106 drives Name Access to Files for Ease of Use BASIC Program Chaining to Link Software Together Rando - Dynamic Disk Space Allocation for Efficient Stora - Individual file Write-Protection Eliminates Accidental File Alterations Loads an 8K Byte Binary Image in 6.5 sec . (1.2 sec , in Pascal) - Storage Capacity of 116
Kilobytes 1143 K Bytes with Pascal) on Standard 5 k Kilobytes (143K Bytes with Pascal) on Standard $5 / /^{\prime \prime}$
Diskettes Powered Directly From the APPLE (Up to 6 Drives) for Convenlence and High Reliability Packaged in Heavy-Duty, Colour-Coordinated Steel Cabin
 - Selectable line spacing Condensed, double width print lower case Centronics parallel interface

NASCOM 2 GAMES TAPE
featuring Space Invaders and Android Nim,
Re-numbering program and other goodies! $£ 7.50$ +VAT

MINI KIT - PCB, sound $\boldsymbol{\&}$ vision modulator, memory chip and de-code chip. Very simple to construct. $£ 14.90$ +
OR PCB $£ 2.90$ MAIN LSI 88.50 Both plus VAT

ENGLISH COLOUR TV/ AMERICAN NTSC COLOUR MONITOR

Suitable tor Apole, Atari and Texas $99 / 4 \mathrm{E}^{2} 95$
 KX－T1520 AUTOMATIC INOW AVALARL TELEPHONE ANSWERING SYSTEM

One of the most technically advanced telephone answering units available，the KX－ 11520 features a double cassette system，a C60 cassette for incoming calls，which and a 20 sec continuous loop cassette for your outgoing messages which are recorded through the built－in microphone．Your telephone conversations can also be ecorded after a bleep tone has notified your caller they are being taped．Incoming calls can be monitored and the fing control is adjustable． The remote call－in pick－up with Playback／Reset／Repeat messages to you over the the system to play back your messag

PANASONIC

> WE HAVE ONE OF THE LARGEST COLLECTIONS OF COMPUTER BOOKS UNDER ONE ROOF, ALONG WITH RACKS OF SOFFWARE FOR THE GENIE AND TRS80.
> COME AND SEE FOR YOURSELF.

Illustrating Basic	3.90
Basic Handbook	11.00
6502 Software Gourmet Guide \＆Cookbook	8.50
Programming the 6502	9.20
6502 Assembly Language Programming	12.90
32 Easic Programs for the PET Computer	10.50
PET／CBM Personal Computer Guide	12.00
PET Revealed	10.00
Library of PET Subroutines	10.00
Apple II User＇s Guide	12.00
Beginner＇s Guide for the UCSD Pascal System	7.90
280 Microcomputer Handbook	7.50
Programming the 280	10.60
TRS80 Basic：A Self－Teaching Guide	7.20
TRS80 Interfacing Book i	7.50
TRS80 Interfacing Book 2	7.50
32 Basic Programs for the TRS80 Level II	10.50
Microsoft Basic Decoded \＆Other Mysteries	18.50
2X80 Pocket Book	5.00
30 Programs for the Sinclair $\mathrm{ZX80}$	7.00
Making the Most of Your ZX80	7.90
PLEASE ADD 40p P\＆P	

EUROPE＇S FASTEST SELLING ONE BOARD COMPUTER

mproved Basic function－revised GARBAGE routine．Allows correct use of STRING ARRAYS This chip can be sold separately to existing Compukit and Super board users．

FOR THE COMPUKIT－Assembler Editor $£ 14.90$ Screen Editor Tape $£ 1.90$
GAME PACKS－11．Four Games $£ 5.00$ 21．Four Games $\mathbf{6 5 . 0 0}$ 31．Three Games 8 K only $\mathbf{5 5 . 0 0}$ Super Space Invaders $\mid 8 K$ ） $\mathbf{5 6 . 5 0}$ Chequers $\mathbf{£ 3 . 0 0}$ Realtime Clock $\mathbf{£ 3 . 0 0}$
Case for Compukit $£ \mathbf{2 9 . 5 0}$ 40 pin Expansion Jumper Cable $\mathbf{8 8 . 5 0}$

YOUR ZX80 IS NOW NO LONGER REDUNDANT

Upgrade your $\mathbf{Z X 8 0}$ to the full animated graphics o the ZX 81 ．（No screen flicker）．

FOR ONLY £12．95＋VAT IN KIT FORM Works only in conjunction with NEW 8K ROM from Sinclair（Not Included）．

IF IT WASN＇T FOR THE LOWEST PRICES，
 THE BIGGEST CHOICE AND THE BEST
 AFTER SALES SERVICE， WE JUST WOULDN＇T BE COMP SHOP

SHARP
PC1211
£79．90

COMPUTER POWER THAT
ONCE FILED A ROOM
CAN NOW BE CARRIED IN YOUR POCKETI
－Programs in BASIC •＂OWERTY＂Alphabetic Keyboard 1.9 K Random Access Memory －Long Battery Life．
Computer power that once filled a room can now be carried in your pocketl l＇s easy to load with ready－to－run software
from casserte tape finterface and recorder untonall or from casserte zape linerface and recorder optionall）or
program it yourself in easy－to－learn BASIC program it yourseif in easy－1－0－1earn BASIC． 24 －character
liquid crustal readout displays one line at a time．Special feature is advanced non－volatile memory allows you to power on and off without losing the comentis of memory Note：Memory must be transferred to tape before changing batreries．Automatic statement compaction squeezes every
ounce of memory space Features power－oft retention of
 programs and data．Powerful resident BASIC language includes multiple statements，math functions，editing，
strings，arravs and much more．Multiole program loadind strings，arrays and much more Multitie program loading
caanability subiect to RAM availability．Carrving case and batteries included．

We give a full one year＇s guarantee on all our products，which normally only carry 3 months guarantee．

A SELECTION OF APPLE INTERFACES ARE NOW AVAILABLE AT OUR EDGWARE ROAD SHOWROOM

ATARI CARTRIDGES IN STOCK

Phone for availability
MEMORY UPGRADES
$16 \mathrm{~K}(8 \times 4116) \quad £ 15.90+$
4 K Compukit $(8 \times 2114) £ 15.90$

＂Europes Largest Discount Personal Computer Stores＂

Delivery is added at cost．Please make cheques and postal orders payable to COMPSHOP LTD．，or phone your order quoting BARCLAYCARD，ACCESS，DINERS CLUB or AMERICAN EXPRESS number MAIL ORDER AND SMOP：CREDIT FACILITIES ARRANGED－send S．A．E．for application form． DEPT E\＆MM／8 14 Station Road，New Barnet，Hertfordshire，EN5 1 OW Close to New Barnet BR Station－Moorgate Linel Telephone：01－441 2922 （Sales）01－449 6596 Telex： 298755 TELCOM G TELEPHONE SALES OPEN（BARNET）－10am－7pm－Monday to Saturday NEW WEST END SHOWROOM：
311 Edgware Road，London W2．Telephone：01－262 0387 OPEN（LONDON）－10am－6pm－Monday to Saturday教 IRELAND： 80 Marlborough Street，Dublin 1．Telephone：Dublin 749933 ．COMPSHOP USA， 1348 East Edinger，Sania Ana，California，Zip Code 92705
TELEPHONE SALES
OPEN 24 hrs： 7 days a week
01－449 6596
USA

[^0] of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

Over 100,000 copies sold already! Don't miss out on your copy, On sale now in all branches WH Smith price $£ 1$.
In case of difficulty check the coupon below.

* Same day service on in-stock lines
* Very large percentage of our stock lines in stock
* All prices include VAT
* Large range of all the most useful components
* First class reply paid envelope with every order
* Quality components-no rejects-no re-marks
* Competitive prices
* Your money is safe with a reputable company

On price, service, stock, quality and security it makes
 first choice for components every time!

[^0]: ＊＊＊
 ＊＊＊

