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Introduction and Summary. 

The transmission of radio waves in inhomogeneous media is a 
problem of considerable theoretical and practical interest. An im-
portant contribution to the subject was made in 1930 by P. S. Er-

'STEIN [ 1]. EPSTEIN'S work which was based on what might be called 
an EPSTEIN layer was further developed in 1939 by K. RAWER [2] 
with special reference to practical applications. At about the same 
time the present author studied the transmission properties of the 
parabolic layer in the penetration frequency region. The results 
were subsequently published [3]. 
In the present memoir the transmission properties of the para-

bolic layer are studied throughout the long, medium, and short wave 

ranges. Suitable expansions of the wave functions are developed 
for this purpose and it is also possible to investigate the accuracy 
of the phase integral method originally developed by T. L. ECKERS-
LEY [4]. 
The transmission of radio waves round the earth surrounded by 

a concentric parabolic layer is a problem of considerable interest in 

this connexion. General formulae are obtained for the transmission 
of hórizontally and vertically polarized waves. These formulae are 

applicable to any kind of layer provided its wave functions and their 
circuit relation have been found. The original series solution has 
been transformed into the physically simplest possible form. This 

makes it possible to split up the solution in subsidiary waves. This 
has already been done in the reflector free case by B. VAN DER Poi, 
and H. BREMMER in 1937 [5]. Following G. N. W ATSON [6] the series 
solution is transformed into a contour integral in the long wave 

case. The residue series subsequently obtained is studied in detail 

and numerical examples are shown. For medium and short waves 
the subsidiary waves are transformed by the stationary phase method 
to yield the amplitude and phase of the geometrical optical ray. 
The bridging between the long wave and the medium wave cases 

is also discussed. 
It is also of considerable interest to study the attenuation coeffi-

cient in long wave transmission. In the case of horizontal polariza-
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tion for example it is found that there normally is little difference 
between the inhomogeneous and homogeneous layers in the true 
long wave case. Reasonable D-layer data yield attenuation coeffi-
cients in good agreement with the empirical AusTar ones. As an 
illustration of the actual nature of the propagation the magnitude 
of the ratio between the actual field and the so called primary field 
has been plotted as a function of the sender-receiver distance in a 
typical long wave case. This demonstrates the crude approxima-
tion of the AUSTIN formula. A further study of the individual terms 

of the residue series then shows how radially standing waves arer 
produced between reflector and ground as selected by the proper e 
values or poles of the residue series. It is found that low order waves 
are guided mainly by the reflecting shell contrary to the high order 
waves where ground and reflector have a symmetrical attenuation 
influence. 

Finally the transmission properties of the parabolic layer are 
studied from an ionospheric point of view. The influence of the 
electronic collisional frequency upon the transmission coefficients 
and the so called virtual height is discussed theoretically and nu-
merically with special reference to practical conditions. Numerical 
results are shown for layers of variable thickness. In conclusion as 
a by-product the transmission properties of the extremely thin layer 
have been deduced with special reference to the discussion of the 
nature of the so called abnormal E-reflections. 

This investigation has partly been the result of a Swedish Govern-
ment Grant for technical research. The author's thanks are due, 
and are cordially extended, to H. L. KNUDSEN, E. E., who assisted 
with some of the numerical computations, and to TORSTEN JÓNSSON, 
M. PH., who kindly assisted in correcting the proof. 

Finally the author wishes to express his thanks to the Chalmers 
Publications Committee which generously facilitated the publication 
of this memoir. 

O. E. H. R. 

Laboratory of Electrical Communication and Electronics 1944. 



General Considerations. 

To begin with we introduce the following notations, viz. 

magnitude of the charge of electron, 
mass of electron, 

the velocity of light, 
electron density in electrons cm- 3, 

angular wave frequency, 
angular gyro frequency of the electron in the terrestrial 

magnetic field, of strength Hm, coll = eHm\ ( 
m col ' 

electron collisional frequency, 

Op angle between the wave normal and Hm, the propagation 

angle, 

É = electric field vector of the wave, 

H =- magnetic field vector of the wave, 

the polarization vector and 

D = the displacement vector. 

As an introduction we make a short recapitulation of the equa-
tions of motion of the electron. We assume that all dependent 

variables contain time only in the factor e—i'. The equations of 
motion of an electron with displacement components, e, .,,-, along 
the z, x, and y axes then become 

co eHm 
_ mcoze _ eEz ¡ corn y e j _ _ sin Op • 

co 

co el-1. co e 
— m(0297.—eEx+ jcontvn-- j  • cos Op • 4- — j  • sin Op • e, co co 

co e H 
— m(024 = ¡coral/ m4"—j • cos Op• e. co 

Here we have chosen the z axis to be the direction of propagation 
and x is given such a direction that Hm has no component along it. 

(1) 

(2) 
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Since P, = — N e e, P, = — N en, P y = — Nec, the equations 
of motion become 

E  

— ,4ez = xo2 (1 + co) Pz IT Px 

471 = X02 (1 + —.(o ) Px YT P z YL P y , 

E x 

E  

— 747 x22 (1 + j--,)) PI/ 7 L P x, 

, 

where 

r X02 =- 

co2 

z2 

1 

:y 
co H -1/4( y  

721 Xê -a) • sin Op , and yL = x02 —0) • cos ep . 

(47r e2 N) 2 
Wc —   is the so-called critical frequency at which the 

refractive index of the friction-free ionized medium is reduced to 
zero when coH = O. 
We assume that the electron density is a function of z only, i. e., 

we have a plane ionosphere. Since div (b) = 0, this means that 
ô 

-- (De). 0, or D, = E,± 4 n = 0, as constant fields are out 

of consideration. By (3) the expressions for E, and Ey then become 

E, = jx02 ( 1 + 

- 47r cyo  

?1,2 

1 13 + i P, 1 

I 1— xo2 (1 + j(7 .) 

v ) L 

(3 a) 

— 47r 
x02 (i j) Pî, 7'L P. 

Now for a certain value, i, of the ratio P ylPx, the ratios E xIP„ 

and E ylPy become identical and consequently belong to the same 
wave-solution. One immediately finds that two it values are poss-
ible, viz. 

= j — (ôt2, + 1)71 rt2 = [a. ± (e + 1)7], and Tr, 172 = 1, 

where 

7'T2 1 1 sin2 A  

'ti= 2 IL v ) 2 cos & 
X02 

CO 0.)H icoc2 —. 0.)2 «._, i WI, ' 

(4) 
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As co, is a function of z, the ratios iZ are not independent of 
height. This means, as we shall see, that the two wave-solutions 
corresponding to Tci and 2 generally are not independent of each 
other. Since ErIP,c=- EylPy, we have 

E(1))/E(2) = , E(2)/Ee  = (4 a) 

Neglecting for a moment the collisicia1 friction (1)2 generally <<. co2), 
one finds from (4) that wave-solution 2 has right-hand polarization 

Fig. 1. The Polarization of the Waves. 

for co < ci, plane polarization for co = coi, and left-hand polarization 
for u) > we as is well known. For wave-solution 1 the conditions 
are reversed because -el rt2 = 1, i. e. the polarization is left-hand, 

when co < co c etc. In both cases the polarization is elliptical when 
co w0, except if Op = 0, 7c/2, n, 37c/2 etc. Finally reference is 
made to Fig. 1 which illustrates the orientation of the axes and the 

polarization of the waves. 
Since — 7c/2 < Op < 7c/2 for down-coming waves in the northern 

hemisphere and er/2 < Op < 37c/2 in the southern hemisphere, the 
polarization is left-handed in the northern hemisphere when it is 
right-handed in the southern hemisphere and vice versa. 
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Fig. 2.1) 

1) Computed by the author's former colleague, J. DE BETTENCOURT, S. M., Harvard 

University. 
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Remembering that ./5 =- i+ 4 n /7', we obtain from (3 a) and (4) 

yT2 }- n)• (z) 

o (1 + v YL x2 

(c) 

D(2) = e • 11 — 
1 

(5) 

ex2) = Elz) .{ 1 - 
4 ( v ) 

1 
y2,2 

4 YL 
V I rti 

— '+ i— ) 

82 (z) 

where e (z) denotes the »dielectric constant». 
For the sake of completeness we have as figs 2 and 3 included 

the familiar graphical representation of el and 82 as functions of 

(/)2 for the two characteristic cases corf/co = 1/2 and 2. 
Let us now make use of MAXWELL'S equations. They can in 

this case be written 
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d d 
— ¡co Dz = — co c (Hi,), — 1a) Dy = co -c-ii (Hz), 

d d 

2c° = e° (EY), 2a) H Y (Ex). 

They yield 

(02 d2 

CO2 d2 
D — (E ) . 

co2 Y dz2 

and 

I (6 a) 

But as Dz -= el 4') ± 62 ez2), etc., (6 b) yields') 

d d2 ft d2 it dit dE(2) v (7,2) 
dz d CO2 dz2 ) d2 E(1) ' ' 4 1) ( • 81 x —dZ2 • E 11(2) ± 2 —dz dz 

E(1) —   — dz2 1 — re dz ± c2 1 — u2 e 1— TO 

d d2U 

d2 E(2) dz ' ' dE(2) CO2 dZ2 1/ Y 1 
.  -r e  • 62 — , -2 4 2) — — dz2 1 — T.G2 dz 

d2U du dE(1) 
Eu)  + 2.   e 

dz2 z dz dz 

1 — r.G2 

To get rid of the first-order derivative we make the following 
substitution, viz. 

fd d—z (u2) ie dz 1 r 
• file = (1 — it2) ï • H1, and similarly (7) 

gyz) =. (1 u2). H2 

The wave-equations therefore reduce to 

(dU\ 2 dit d 112 dit 

d2 co2 d ( dz dz • -di 

dz2 cg + (1 u2) 2) 171 112 dz 1 — u22 — 21 — 7à2 

i 
d2 H2 e 2 (Ch  n du 

d ( 71Z dill dit 
dz Tcz 

2 6,2 ± 2 — dz2 Co (1 — 2 1 dz 1 — 2 1 — T.12 

1 Note: it = 

(8) 
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We get two coupled wave-equations. We first of all wish to find 
out when the coupling terms disappear. To that end it is conve-
nient to express u in Su. From (4) we have 

dic d S. 

dz dz 

1 — 1c2 2 (1 (SD • 

This expression and its derivative are equal to zero only when 
er 3 7c 

Op = 0, er and —2 —2. In the first cases, longitudinal transmission, 

both waves are circularly polarized. In the second cases, transverse 
transmission, which corresponds to the condition at the magnetic 

equator, the two components are plane polarized at right angles. 
For the two cases, longitudinal and transverse transmission, the coup-

ling between the equations disappear and we have 

d2 /11 co2 
dz2 erni = 0, 

d2 11 2 (.02 

dZ2 e 2 112 = ° • [Op = 0, 7L/2 , 7c, 3/2] 

and, 

(9) 

(8 a) 

When Op does not have any of the above values the coupling has 
to be considered. The problem, however, is extremely, complicated 
on account of the fact that e (z) is not a simple function of z even 

for linear electron density distributions. As a matter of fact (8 a) can 
be solved exactly in a few cases only when e has the values corre-
sponding to Op = 0, 7c/2, el, 3 n/2. When this is the case the phase 
integral equations connecting the true and virtual heights for one of 
the waves can be solved as has already been shown [3]. These 
cases, viz, transverse and longitudinal transmission, are therefore of 
most immediate interest. They are of practical importance at or 
near the magnetic equator and the magnetic poles. 

When Op does not have the above characteristic values the wave-
equations (8) in the first approximation have to be solved by the 
W.K.B.-method neglecting the coupling terms. The approximate 

solutions when the coupling is considered are then obtained in the 
usual way by the method of the variation of the constants. A treat-

ment of this case, which always must be approximate, is outside the 
scope of the present communication. The reader is referred to an 
interesting paper by FÓRSTERLING [7] on this subject. 
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Let us now return to the cases of transverse and longitudinal 
transmission. We obtain from (4) and (5) the familiar relations, 

wo2  
1 w (a) j y), for the transverse case, (10 a) 

and 
co 2 

82 = 1 — , for the longitudinal case. (10 b) 

(CO COH ) 

ei refers to the ordinary wave and 82 to the extra-ordinary one. 
It is clear from (10 a) and (10 b) that we only need to study the 
transmission of the extra-ordinary wave in the longitudinal case as 
we then mere put co H = O in order to get the ordinary wave in the 
transverse case. 

On the Wave Functions of the Parabolic Layer. 

For the parabolic layer we write 

(02 =._ we: 
A h. 

)2 

where A h» is the layer half-thickness and z is counted from the 
apex of the layer, positive downwards. Eq. (8 a) then becomes 

d2 11 V2 

— —4 ) 2 11 == °' d V 
where 

(12) 

e = a [e— i. r — x2 A e+ i 1 , (13) 

i 7r z 1 qf • 7. 
— 

V = e 4 — (4 a) 28 2 -, e7 --,f u, (14) 
A h. 

Ico (co — coH )1 co ,.2 
x2 — _ (15) 

co 2 2 ' 

cm ( % 
CO 

1 V 

P = ---2 arctan ) ' i) (16) 
co — coil  

1 
)2t 

A = [1 (1  e (17) 

1) Note: When io < cog, we define 2 F = 7r — arctan   
cur( — w) • 
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lc  [ Ito (0) . 
2 n co 

a m 1(11 , with = (18)7» 

We know already that the solutions of ( 12) are W EBER'S func-

tions of the parabolic cylinder, viz., in the notation of W HITTAKER, 

e 

D el+) , 

1 P- 7 

D (ue +) , and D ‘u e' \ 
1 1 

-- T 

(19) 

Due . 4 , f or example, represents the up-going, primary 
— 

iP 
wave when co > coH. The author has alredy shown [3] that in that 
case the important circuit relation connecting the waves is 

D (u ei 4 
1 

1 

up-going wave 

7r 

  e 2 2 4 1 
(2 70-1 

. r 

• D (ue— 

reflected wave 

r (je+ --)— — 
1  e 

(2 n) 2 

. 3 ri 

D el 4 I . 

1 

refracted wave 

(20) 

This circuit relation only connects one up-going wave with its 
reflected and refracted components. Actually, there is an infinite 
number of waves (generally with decreasing amplitude) since the 

waves always experience a slight reflection at the bottom and top 
de 

of the layer, if d—z- has a discontinuity there. We must, therefore, 

before we proceed discuss the influence of the reflection at the boun-
daries of the layer. To that end we refer to Fig. 4. This shows 
plots of e (z) for y = 0. When coc.< co < coil the layer is optically 

denser than the surrounding medium for the extra-ordinary compo-
nent corresponding to e 2 (z) (see fig. 3). When co> c H the layer 
is optically thinner. The last case is the important one as far as • 
the. present ionospheric exploration is concerned. 
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-cis 45- eo g5- 0 2,.5- E----

Fig. 4. A schematic representation of the transmission of waves through the 

inhomogeneous layer. 

Our immediate task is to find a relation between the incident 
wave, 177, the reflected wave, 11,, and the refracted wave, H. 

At the boundaries we require that the tangential components of 

E— and 17/ be continuous. 
Since by (6 a) 

S Ey d Hx 
_i co Hz. (3z , and — ejcoEy= êz 

Ey 1 ÔHx 
this further means that —(5 z —e —Ôz' etc. are continuous. 

The wave functions II 2, Hs, /74 and /76 are parabolic cylinder 
functions when e (z) is parabolic. 

Let us for the moment throw the up-going wave, which in the 
r. 

case of w > (or/ is Du e' 4 I, in the form 

iP--§-

D(u ei 7r4) = A (e) e— 0 (z) (21) 

I p 
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which we assume will hold near the boundaries. The other compo-
nents accordingly become 

3 r 
— D e—  4 ) -= A e+ (z), and D e. 4 ) -= A e+ (— z) (21 a) 

Since the first two of these wave functions are complex conjugates 
when Im (e) = 0, we infer that 

[Tm {0 (z)}] = 0. 
= o 

The internal complex reflexion factor, R, according to the circuit 

(20) therefore becomes 

(i e + -21-) 
R —  exp. 

(2) 

Making use of the multiplication rule for the F-f unction we obtain 

R  = r (2 ie) ne 
z r (i e) (22) exp. [ 2- IT + 2 (z) — ln 4 1 . 

The reflection factor, 1RI, consequently becomes 

IRI = 22 exp. b- — 2 Im {0 (z)}1. (22 a) 
Ir (2 i e)I  

(i e )1 

In the non-dissipative case Im (9) = 0, Im {0 (z)} -=- 0, and 

erp 1 

2 - o ' y=o' (22 b) 
2 cosh n e 1 + e 

This result is immediately obtained from the circuit relation when 
y = 0, since from it 

IR12 - 

Five ± 1274_ ± 2 0 (z)111 . 

IRl I 2 p I 
1 — IRI2 — le l' v= 

(22 c) 

which is the same as (22 b). The internal refraction coefficient, 
T, by the circuit relation becomes 

et 
(23) 

2 
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Introducing the notation 

(24) 

where 2 is the wave-length in the surrounding medium, we write 
the advancing wave on top of the layer, 

exp. [— {cot k(z± hm) — (A hm)}1, 

and the other waves 

Ey. = /72 e = Ay exp. [— j {cot ± (— z) — 2 0 (A hm)}], 

= 118 e— iw t = A3 exp. [— j {cot — (— z) } 

Ey. = /74 e— iw t = 24 4 exp. [— j { cot — (z) ± 2 0 (A hm) }], 
Ey. = /75 e— iw t = A5 exp. [— j {cot ± (z)}], 

Ey, = 116 e— iw t = A6 exp. [— j { cot — k (z — hm) ± 0 (A 

and 

Ey7 = 11, e— iw g = A, exp. [— j {cot k (z — hm) + 0 (A hm)1]. 

Our boundary requirements at the top yield A1 = 24 2 ± A3 and 

(25) 

1 f5 o (— zfl 1 fa o (z)} 
A1 = (A-2— A-3) k (3z j = (A3 —  A2) k 1 (3z 

z — lem z = line 

Further introducing 

we have 

and 

16 0 (z)1 

t Sz f 
z = hm 

2 
A=A81+14 -A3t0, 

1 — iu 
A2 A3 1 + du As ro, 

(26) 

where to is the transmission factor and r 0 the reflection factor in 
direction out of the layer. We next obtain from the circuit relation 
(20) 

113 = 172 R H5 1? e-7, and 114 = 175 ± 112R 
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This yields 
1 — roR 

As = Ag R exp. { 5; j 2 (A hro)} 

and (27) 

A4 = A5 { R  ± 1 —roRe 

ro R2 _ 27.} 

At the bottom of the layer the boundary conditions yield 

A, + A8= A5+ A4, and (A,—A,),u= A5-24 4, e., 

ro R2 e— 
r, R 

1 — ro R 
A6= A 7   A • R 

r; ro R2 e- 2r 
1—roR +  

and 

1 — ro R 

-j2ø(hm)  ti to T 
Ai= A7 e = 

1   R(ro—ri)—ri ro R2 (1 — 2r) 

—i20( Ali«) 
A7e T ell> 

(28) 

where ri= — ro= reflection factor in direction into the layer, 

ti = ,uto= transmission factor into the layer, 

Re, = effective reflection factor of the layer in the surround-
ing medium, 

and Tel = effective refraction or transmission factor of the layer 
in the surrounding medium. 

It is immediately clear from (28) that these effective coefficients 

contain a complexity of waves. After expansion and collection of 
the first few terms only we obtain 

Rey ri ti to [R ± R2 ro R3 ro2 . . . 

± R2 ro e-27 { 1 + 3Rro + ...} ± .R4 ro2 e-4 11 + . 1 + . . .], (28 a) 

and 

Tell = tiRe— f to [l + R2ro+R23rg+ + 

± R2 e-25.; { 1 + 4 Rro ...} ± R4 rt ...]. (28 b) 
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Refracted Waves - 
. Upper Boun of_re Layer 

h„, 

Lower Boundary of the Layer 

Incident Wave Reflected Waves 

Fig. 5. 

The paths corresponding to these waves are schematically shown 
in fig. 5. In the case of the optically thin layer, i. e., Re (e) < 1, 
which is the common case in the radio exploration of the ionosphere, 
Iro I generally is very small and e real when y =- 0. In most practi-
cal cases the layer also is many critical wavelengths thick and so 

only the term ti to R R in Roll is of importance, i. e., only the first 
reflexion within the layer is considered. In the exceptional case, 
coo. < co < COfi,e is purely imaginary when y = 0. The consequence 

of this is that several waves in (28 a) and (28 b) have to be con-
sidered, i. e. the layer can show the colour effect of thin or of thick 

plates. This is characteristic for the denser layers. To this we 

will have occasion to return later. 
Relation (22 c) can be thrown into the more instructive form 

1 

7e hm  1 ill  IR1 =[1  \ 2 (1 —  x2)1 7 

e Acns ‘.—wa I ; y = 0, co> (Off. (29) 
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R .2 

00 

07 

00 

05 

04 

03 
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af 

The Reflection Coefficient for a 17'iction 

Free Parabolic Layer as a Function of 

the Wave Frequency. 

m Ah.- Layer haff Thickness 

Fig. 6. 

(Note: f = 7c) 

(6é)f  nt ) 2 

In order to demonstrate the character of relation (29) we repro-
w 2 

duce in fig. 6 a plot of I R12 for cozr = 0, as a function of x2 = 1— co 2' 
cm 

which has already been shown in earlier communications [3]. 

In this connexion it should not be out of place to discuss the case 
of oblique incidence briefly. To that end we have to put coH --- O. 
For the sake of simplicity we only discuss horizontal polarization, 
viz, the electric vector perpendicular to the stratification of the layer. 
We arbitrarily denote the axis of the electric vector the y-axis. More-
over, we consider only plane waves parallel to the direction 

y so that —(3 y = O. MAXWELL'S equations become 

co e(z) S Hx 

Co BY=  (3Z (3X 
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co 

co (3z ' 

S Ey 

These equations obviously lead to the rigorous equation of wave 
motion 

Co ) 2 
V 2 Ey (— e (z) Ey = 

Ev 
with boundary requirements that Ey and be continuous. 

ê z 

Giving the separation constant such a value that the wave gets an 
angle of incidence, fp, we accordingly write 

and 

E y -= H exp. {— j (cot — k x sin 92)}, (30) 

d2/1 (c./\21. 2 e-129 (1_ 1 z \ 2\1 

dz2 ‘co j tec's x2 A ‘A kni 0. (31) 

4 r 

The wave functions become D (l.c , etc., as before, where 

7 P 

we instead of 0 (z) write 0 (9), z). With the exception of x2 the 
parameters remain unchanged. We find 

( co cos cp\ 2. 
x2 — co, j (32) 

Whenever y = 0, the other parameters will not contain co, and there-
fore with respect to the wave functions 

F92 .—tanfp•a)Fc0, (33) 

when y = O. This is an important relation. 
Let us for the sake of simplicity only study one of the primary 

waves. At the lower boundary we have the incident wave 
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11 e— it) t= A1 exp. [— j {loat k z cos cp — k x sin 99 ± (q), 

the reflected wave 

flse_iwt -=- A. 2 exp. [ — j lad — k z cos q) k x sin gp ± ((p, A h.)}], 

and the refracted wave 

fJ3 iwt = A3 exp. [— j {cot + (q), z) — k x sin q)}]. 

The boundary requirements yield 

and 

1 ± y cos q) • 

92 1 (35) 
2 ,u cos 

1 + y cos (p ' 

As before Iri I generally is small. 
The internally reflected, down-coming wave will be 

ri =— 

ti = 

1 — cos cp 

-114 e = to R e+ hz'sin9' • H e— iwt (36) 

where x1 is the distance between the points of entrance and with-
drawal. The reflection factor becomes 

r=titoBe+ 1"1 8". (36 a) 

When y = 0, Im (ti) = 0 and Im (to) = O. Thus when y = 

er = Phase (r) =Phase (R) k x1 sin 99. 

If the time of travel is z, the total phase change becomes 

— co = r0. 
At the point of withdrawal the following relations must hold, viz. 

ro ro 
co — 0, and —67 = 0, 1). (37) 

By (33) this yields 
1 

r  cos2g, { Phase (R)} , (38 a) 
co 

and x1=c0r sin q). (38 b) 

1) This relation has to be used with great care whenever I R varies consider-

ably within the main spectrum of the transmitted signal. 

(34) 
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This proves the BREIT-TUVE theorem [8] when y = 0 also for the 
general case that the methods of the geometrical optics cannot be 

appliedl). It should be stressed, however, that relations (37) are the 
general relations from which the point of withdrawal (x1) is deter-
mined even in the moderately dissipative case. 

The methods we have used in this section are, of course, generally 
applicable even to layers of different shape. When the wave func-

tions corresponding to ( 19) have been found the main problem is 
to find the circuit relation. The R and y values determined from 
such a relation can equally well be used in relations (28), (36), etc. 
Returning to the parabolic layer, our next step will be to obtain 

suitable expansions of the wave-functions from which 0 (z) and 
R can be obtained. 

On the Expansions of the Parabolic Wave Functions. 

The parameters e and u, ( 13), ( 14), are small or large depending 

upon the wave frequency used and the dimensions of the layer. It 
is obvious that the properties of the wave functions will depend to 

a great extent upon the magnitude of  , . When A 1 (low 
A cm 

losses) and W > WE , the character of the solution w ill be notably 
different if e. .2 < 1 or > 1. 

ez A h. 
a)  < 1. This case (thin layer) is not of immediate prac-

,Cm 

tical interest. For the sake of completeness, however, we write 
down WHITTAKER'S expression in KummER-functions [ 10]. 
One has with the notation ln = log nat. 

1 
i ) 2 - — 2 j e 1 u2) 

4- 1-r 1 4 ; 2 ; 
 -- 24 ue• 4 

P 
. ' 1 r (3 — 2 j p\ 

4 / 1E1{3 — 2 j p_ 3 u21 
4 ' 2' ' j1 

, — < Phase (u) < —2-- . (39) 
er 

(1-21 

4 

1) Compare D. R. HARTREE: Optical and Equivalent Paths in a Stratified Me-
dium, [9]. 
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We check this relation by letting co,. tend to zero. Although 

Ico z\2 Z 2 

U2 A . Therefore 
Co 

(1-21e 1 ) .u2 2 :,-rz 2 (2z\\ ( 2 , and IF,. (3 — 2j (2 3 u2 
4 , 2 2 —› 2 z sin  1 ) 

Since 

(3 _2) 

4 

(1 — 2 je\ 4 / 

1 
. r 
el 4 , the terms within the brackets 

1 2 r z 
— — 2 4 e 

tend to (3 — 2 je) , which shows that relation (39) yields the 

4 

proper up-going wave. 

b) u is large and e is small, i. e. the layer is many critical wave-
lengths thick, x2 1, and y limited. This means that co (a) -- coH) 

we:, which expresses that co lies in the penetration frequency 

region. 

By W HITTAKER'S integral representation [ 11],,) 

r, e + U,42 (0 .4-) 

D G• t,t2 1 
el —4-) = — 2 n j e 2 (— t)—ie dt, (40) 

1P - 7 00 

and the HANKEL formula, 

co +) 

1 1 
(z) — — 2 n j Z e— t dt, we immediately obtain, after ex-

00 

12 

pansion of e 2 in powers of t2, the asymptotic expansion of 

W HITTAKER, 

') Note: ln (— t) is defined purely real when t is on the negative side of the real 

axis. 
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/ ti 2 

r ) e it (e-1-i12) (e+i -23) D et e l 4 
1 1 1 — 2  

(u)1 2u 

(e +ii1)(e+i-1)(e± 
2 

2 • 4 u 

j) (e+)] 
+.. ; — < Phase (u) , 1 

This expansion is useful only when lei < 12 u21, which limites the 
practical frequency range of the solution. 

u2 
C) Both u and e are large, but e <-4. This corresponds, for 

example, to the general cases of a thick layer and a wave frequency 

lower than the penetration frequency but higher than the gyrofre-
quency, or a wave frequency higher than the penetration frequency. 

We make the following transformation, viz. t = r e4' 4 . Relation 

(40) then becomes 

(41) 

1 (0 +) 

r P± — ) 1 r • ( u2 ± 3 1 • f ei (— T.)} dr, (4: 114 
  e e e 

2 et . 1 
• e•--, . ° 00  —4- 

where  1 
ei= e • (43) 

In order to obtain a suitable expansion from this we have to use 
the classical method of steepest descents [12]. We introduce the 

notation 
2 

W = — jiu r ± el in (-01. (44) 

Now we try to select a contour of integration such that it passes 
dW 

through a point, where —dr -= 0, and further has the property that 

Im ( W) = const. 

1) To obtain the form of the expansion for values of Phase u not comprised in 

this sector it is practical to make use of the circuit relation (20). 
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d W 
The points, where —dz = 0, are saddle points or passes on the 

Re ( W)-surf ace. Our choice of the contour is finally determined from 
the consideration that the curve must descend on both sides of the 
pass. Generally if the curve ascended, Re ( W) would tend to ± 00 

and the integral would diverge. 
The physical interpretation of the choice of contour is that on it 

the interference effects have been evaded because Im ( W) = const. 

We obtain the stationary points from 

d W . f Q1.1 
= tu .71 = 0, which yields two points, 

d z 

and 

— —2- — 

u2 

4 — el)+' 

( U2 

4 — el)f • 

It is further convenient to introduce 

(45 a) 

(45 b) 

S21 W (r A) — W (r) = IVA — W, 
and (46) 

Q2 = W (TB) — W (r) = WB — W • 

This transformation is of course a conformal representation except 
at the stationary points. Since 

d2 w j 
dr2 — ti — 

d2 W 

(47) 

u2 
then —de # 0 at the stationary points, except when ei = —4 . 

u2 
When pl # —4 ' therefore, the stationary points are branch points 

. u2 
of the first order. In the special case, —4' which from the 

beginning was excluded (wave frequency equal to magnetic gyro 
frequency), a special treatment is needed. To this we will return 

later on. 
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Fig. 7. The contours Im (W) = const. through the stationary points. 

{Im (W)z = TA , for Fig. 7 shows a plot of the contours Im  ( W) = 
Im ( W)z TB 

= 30 and e = 25. Point zB must be discarded as it does not 
yield a proper contour. 

Fig. 8 shows the contours close to the origin. The proper bran-
ches are marked by I and /2. A few adjacent constant phase curves 

have also been plotted in order to show the nature of the saddle-

region. A further discussion of the contour for complex u is outside 
the scope of the present communication, even though it is an inte-
resting mathematical topic. 
At the stationary point 

u2 u (u2 7 / 1 \ ) 

W W (rA) "--= WA ± — es) + ei ln {— TAI —i-)1 • (48) 

The integral representation (40 a) then becomes 
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Fig. 8. The 1m (W) = const. contours near the origin. [Note: W o = W (ri)] 

i 

. 1 

11 ( e + 1,, a0 
4 

1 1 

e • e 
2 n 

However, 

je -.Q1( d r —) d Di 

Proper contours 

7 ± Pi (111 {— TA } — 

o 

f e dr\ ds21== l e— Qii d r' d s.21. le — Qii d r ds2i= 

‘d ‘d Di) ‘d S211 

Proper contours 
oo oo 

Contour I Contour I, 

(49) 
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d 
Next we discuss the expansions of r or of d  in ascending 

powers of D for the two branches, from the stationary point. Since 

d S21 
Di and —dz vanish at the stationary point, the expansion of D 

in z begins with a term in (r — TA)2. By reversion we can write 

00 an 2 (n + 1) 

T — TA =-  S2 n  1 

n = 

for branch /I, and 

r — TA =  E 

n = 

co 1— (n + 1) j 77. (n + 1) 
an 2 

n + 1 Ill e 

(50 a) 

(50 b) 

for branch 12 since a half circuit round the stationary point in the 
z-plane corresponds to a single circuit round the origin in the Q1-plane. 

d r 

d S2 
This expansion should be valid almost up to zB, where 

We have from (50 a) and (50 b) 

(d r 
— = a25 Q1 

d z 2 
co 

w — 1 /2 n = 0 

But 
+ > 0 +) d r 

1 d S21 

a25 — 2 er j J 7, + _1 " 1 
ni 2 

Since 

1 
n--

(TA+) 

1 d 

2 n 2 r L 1,1)• 
fv,- wr ± 

n _1 

= r.4.)2n + 11 1 (2 w) 
2 ! d r2 

(W WA) 2 ( 

= 

(52) yields the familiar relation 

a — 

1 d2n (r _ 2.4 )2 n + 1 

(2 n) d r2n W) 2 1 n + — 
(WA — 

= TA 

(51) 

(52) 

(53) 

1) The double circuit in the û rplane is necessary in order to dispose of the frac-

tional powers of Qv 
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This yields the following values of the first coefficients, viz. 

1 1 

ao = e 4 (2) 2 (n — 1) 2 , 

— 
a2 =- el 4 (2) 2 (7) — i) 2 Li 2 n (1) ± 9) —6 , 

e i_54r (2)_21 (i) — 1)_ 13 _ 4 i 173 89 1 
n ± 40 , j 2 z.  A n \-18 ± 9)2 ± —2 a 4 = 

th. 
where n -= —2-. 

TA 

1 

1. (54) 

d r . 7r 

Since --> 0 and (W — WA) --> -- co, when r --> r 74 • 00 

d 

irrespective of the phase of u, we get by W ATSON'S lemma [13] 

— a2n r + —2 ) • 
1 

n = 

We therefore obtain the following asymptotic expansion of the 

wave function, viz. 

,;)  e f fu ( 942_ 0 7  + (ln {— 

(2 707 
— 

— 3 

• [1 + e 2 (17 _ 1) .1- A 

— 2 1 

I 7t - 6 — 4 ( 173 89 
+ e (n—') TA n + 172+ n + 40) 1 -1-6- (55) 

To convince us that the expansion actually represents the lip-going 

wave, we let co,. -› 0, i. e. we reduce the electron density to zero. 

Making use of relations (13) to ( 18) one finds that the parts of the 
2 n z 

wave-phase containing z--h. tend to — 1 as expected. 

u2 
d) Both u and e are large but ei This case has to be treated 

4 
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u2 d2 W 
separately on account of the fact that for p1=-4 ,—dr2 = 0, and 

the stationary point becomes a branch point of the second order. 

We introduce 

u2 
(56) 

= 4 el* 

u 
This yields rA = — —2 + (/3)7 , and the new stationary point 

u 
becomes TA = TA — (13)7 = — —2 = TB. We also introduce the no-

tations 

.1 z2 2 

w = — 2{ur + iln{—r}}, (57 a) 

and 

3u2 u2 u 
WA= WA— jflln = 

We further introduce D, --- WA —  W. Accordingly 

r e + 
Du e ' 4J = — e e . 

2 7i 

f — Q e , 
where J3 =  • Oo (Qs) d S2 3, and 00 (DO — 

. u2 u2 u , 3 
—2 1—  —4— el 

Proper Contours 

(57 b) 

¡pin {- 77} 
e 

u2 • 

4 ri 

In order to secure a wider selection of proper contours we write 
jP 

Q3 e D4,1) (58) 
3 

— — a x2 sin W 

Since 1(eo (Q4)I ITI 2 • exp. )— (a x2 cos P) , when 
4 

• r 

=- A hm, and r---> œ•e-1 T, we only have to require that cos 4" < 
in order to be able to use WATSON'S lemma on a contour where 

1m (D 4) = const. = O. 

1) This method is used for instance to avoid two stationary points on the contour 
for one of the DEBYE expansions of the cylinder functions of large argument and order. 
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Fig. 9. The 1m (Q4) = 0 contours through the stationary point. 

(Note: TA means .721 , Q means — Q3) 

X 

3 
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Fig. 9 shows a plot of the contour through the stationary point, 

, for u = 30, and e = o, (e -,:.-.-.., 225). Since u2 is equal to the layer 

thickness in radians (o)rf = 0), at the critical frequency, the above 

case corresponds to a layer about 144 critical wave-lengths thick. 

J3 gets the form 

j3=.1e—ei C.Q4 ( +i.: ) iC, r, — ei; D4 ( + le: ) 1; 2 rl 
00 e Q4 Je a .344 +1 e 00 e .Q4 e u, .144 • 

Branch 1 Branch 2 

(d S24\ (d2 Q4\ 
Since (Q4) i.4 = 0_ et  / = 0. e J = 0, but 

' ' d 
T = - 

T = iA T = TA 

1613 S2 4\ 1 
\ ) "••• 0, the same applies to the derivatives of — and we 
d z3 00 

T = 7.4 
get by inversion 

oo n i 

° 0 = 1,7 bn e 4 .5 (59) 
n - 1 

As further 
oo . 4 r 

°O —  0 0 = Q4-3 1 — e 3 ni (60) 
Branch 1 Branch 2 n-1 

in accordance with fig. 9, we finally get 

co 

f e i : s2 GO n ... i ._¡ 7en n 7C — 
j 3 _= — 2 i ei e: — e - 4 rb P ' 3 sin —3 • r24 3 • d S2 4. 

n =1 

o 
By W ATSON'S lemma, therefore, 

n J,— — b„ e • 2 je r 3 sin —3 • r —3) — en P(j-) • 

This time we have to make a triple circuit round the image of 

the stationary point in the S24-plane in order to determine b„. 

We accordingly have 

+, o -I-, +) (TA +) j (inn {— + 

1 (PodS24 e 
bn —  .   dr, (61) 

6 n j (s24)÷ — 6 7C j 
(WA— W—)1 
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or in analogy with (53) 

1:: f da-' ei fl in { T} rdir 
b 
n 3 (n - 1)! 1 [WA ii]÷ 

T = A 

This relation then yields 

= 1 • 
2 uy= - e 6 2 ± 2 6 

0 
6 

• 3 u 8) -• 11 9 
e- 3r (.-) [(i 3 — — • 

8 
jI3 67127 

= (3 e) -3- [(j /9)4 - — fl) 2 + —2- + —560 -4 • 

0. 

(62) 

U 7/ 
l(flin-F T >)• • e 

i3uU 

2 / 3 • 

(63) 

We therefore get the following asymptotic expansion, viz. 

e 41 
i \ r - 7 4 

2n 2 3 e e • 

1\ I 3 r 

1 
P 

- j{-ç n-,6) in -u2- ± A ,v} 1 2 
e (i) - r (i e « 6 • 

2 
3u - 3 u 6- 

(i fi) 3 (ie 3 ± ) [ 11 
3 3 _20 u __47)   ] 3 

2 

jfl 61 9 
— r (1) e-i47r (321 -38- [(iP)4 P)3 ,c)2 + —2 -I-60 -2 • • • • • ( 64) 
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The last two expansions, (55) and (64), of the function of the para-
bolic cylinder correspond to the DEBYE expansions of the functions 
of the circular cylinder, Z, (z), for p and z large, when p < z or 
p Z .  

It should be pointed out already here that expansion (64) is use-
ful only in a very narrow frequency range. In its limited usefulness 
it is strikingly similar to the DEBYE expansion in the exceptional 

case p z. Since (64) has such a narrow frequency range we will 
find it desirable to secure a bridging relation between (55) and (64). 
To this problem we will return in a later section when the general 
characteristics of the transmission of radio waves round the world 
have been discussed. It is namely advantageous to obtain first the 
general expression for the spherical reflection coefficient of the para-

bolic layer. 
We have not endeavoured to make a theoretical investigation of 

the expansions (55) and (64) when Im (u) 0 and Im (e) 0, i. e., 
when y > O. Such an investigation would chiefly concern the Im 
(W) = const. paths and it must be considered outside the scope of 
the present communication which mainly deals with problems where 
the phase angles of u and e are quite small. 

The Transmission of Radio Waves round a Spherical 

Earth surrounded by a Radially Inhomogeneous 
Concentric Reflecting Shell. 

So far we have only discussed the transmission of waves in the 
inhomogeneous plane layer. From the point of view of ionospheric 
investigation this is the important case. For long-distance radio 
communication, however, the reflecting earth also has to be con-

sidered. The dominant wave functions of the appropriate solutions 
are few for the longest radio waves in practice. For the shorter 

waves, however, each solution is made up of a very large number of 
important wave-functions which give the wave its ray-like charac-
ter. For numerical calculations the transition from diffractional 
waves to ray waves presents difficulties. Unfortunately, the transi-

tion occurs in a widely used wave range. 
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Transmission of Radio Waves 

round the Earth 

-Reflecting Shell 

The problem of the transmission of vertically polarized radio waves 

between the earth and a concentric, homogeneous reflector of finite 
conductivity was treated in 1919 by WATSON [6] in a classical paper. 
The results were, however, not established in a form useful for imme-
diate numerical computation. In the light of our present knowledge 
of the inhomogeneous character of the reflecting shells Watson's 
original treatment has to be extended. KENRICK indicated in 1928 
[14] that the general characteristic of Watsons result should not be 
invalidated by the presence of an inhomogeneous reflecting shell. 

In the present section we wish to incorporate, as completely as the 
present available space permits, the reflecting properties of the 
inhomogeneous layer into the wave solution. This solution is further 
presented in a new and simplified form which permits a more 

physical interpretation of the solution. 



38 CHALMERS TEKNISKA HÓGSKOLAS HANDLINGAR NR 34 

Let us first consider the simplest case, viz. horisontal polarization. 

In this case the waves are transmitted by a small horizontal loop 
carrying an electric current. Such a loop is equivalent to a fictitious 
magnetic dipole perpendicular to the plane of the loop. 
The radiation field is symmetrical to the dipole-earth centre axis. 

The electric field lines are circles around this axis and the magnetic 
field lines are contained in the meridian planes. This problem has 
already been treated by miss M. GRAY [ 15] hi the reflector free case. 
We express the field of the current loop in terms of a radial 

HERTZIAN vector. We have in m. k. s. units 

JSk r 

11 = 11' (r' e) — 4 n • ;I* 7) • U = A • 7) • U' 
(65) 

where r denotes the distance to the centre of the spherical earth of 
radius a (see fig. 10), 8 is the angular distance from the sender, zo is 
the characteristic impedance of free space, 120 n ohms, and J is the 
electric current in the small loop of area S. The »primary field» is 

U = Up,. --=" kRlikR. 

In spherical coordinates we further have 

and 

Ô2 1 (52 
= k2 H + .2(H); Ho — 

r br(50 

j co A SU 
E,. = E0 =- 0; E 9) = el) co b ê 0. (66) 

One further finds that U satisfies the rigorous wave-equation 
also when e is a function of r, i. e., when the reflector is radially 

inhomogeneous. This is a characteristic feature when the polariza-
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tion is horizontal as is already well known from the oblique incidence 
case of the plane reflector (compare p. 20). 
Thus 

72 U k,2 U = 0, 

where 

and k = k4 = k for r > d. Here c and d denote the radial distance 
from the centre to the lower and upper boundaries of the reflecting 
shell. 

Since the time factor is 6— lc", we have 

co2 

42 =- --(e1 ± i 60 012) = k2 (el 60 
co 

032 

/C32 = 6 (r) • co 

(67) 

As before e denotes the dielectric »constant » (terrestrial magnetic 
field assumed zero) and a, is the conductivity in mhos per meter. 

Separating the wave-equation we get 

00 

U = ' f7, (kr)Pn (cos 0) , (68) 
o 

where f„ (kr) = f (2) is a solution of 

d2 

cFz2 {2 fit ± 

n (n 1) 
_ 2«I in (2) = o. (69 ) 

When the layer thickness is small compared to r it is apparent 
from (69) that there is little difference between the plane and sphe-
rical cases as far as the reflector is concerned. 
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The general notation Et (r) =- e (r) j 60 (711 has been introduced for 
the sake of convenience. For et (r) =- constant (i. e. for r ( c, r > d) 

the radial functions are the well-known three dimensional functions 

Z"!.,1) (kr) T 1 2) (kr) 1 
1-1(1) (kr);  -2-. H(2) (kr) ; 

kr ‘2 kr n -2- kr 2 kr n+ -2-

and 

gin (kr) ( 7 t )-2-1 1 
(kr) = _2 fria 1 (kr) + H(2) 1 (kr)]. 

kr 2 kr n + n+ 

) 

n + — 
2 

(70) 

In the range c < r < d (the reflecting layer) we assume that the 
radial functions corresponding to the incident, the reflected and the 
refracted waves, viz. 

E') (kr) 42) (kr) 43) (kr) 
  and   (71) 

kr ' kr ' kr ; 

are known. Since these solutions are not linearly independent we 
must have 

41) (kr) = An e(:) (kr) ± Br, 43) (kr). (72) 

When the reflection at the boundary of the layer is neglected (this 
is a permissible approximation for most wave-lengths) then the 
internal spherical reflection factor of the layer becomes 

A 4(2) (k c) 
R3= ele3 = — n 

(k c) 

A.42) (k c) 

ni) (k c) ejRe (88), (73) 

For the parabolic layer the radial functions (71) can be obtained 
with sufficient approximations from the parabolic cylinder functions. 
Since p kni << c, (69) becomes 

d2 {z ft. (z)} ± [1 _ n (n 1) In (n 1) }2,A x2 e+ 2 e. (A11,3)2 
dz2 k2 p2 k2 p2 p 

1;1 

e— i 2 r f z 
A e 1 1 — (A  hm )2 1] fri (Z) = 

n (n 1) 
where p =- e ± L km c and z, = z — hm   e el" . 

p k2 p2 

lig 

(70 a) 
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The corrections vi and v2 generally can be neglected for the dimen-
sions obtaining in the radio case and it appears from a comparison 
with (31) that the spherical and the plane reflection coefficients even 
for a fairly thick layer are approximately identical to this degree of 
approximation when n (n + 1) k2 p2. It further appears the well-
known fact that 1 ) 

(n, 1) (n 

sin2 (74) k2 p2 k2 2)2 • 

1 
Except for small angles n> 1 and therefore n —2 ^. k p sin pp. 

If the HERTziAN-function were unaffected by the presence of the 
earth of the reflecting shell, the value of U should be 

ejkR 
U = UPr = . (75) 

jkR 

the so-called »primary field ». By the well known addition theorem 
for the three-dimensional, spherical functions one has 
ejkR 1 00 

j kR k2 r b ,,0 
eikR 1 (76) 

1 (2 n + 1) „(1) (kb)F. (k r) P. (cos 0), (r b) . 
jkR k2 r b n=0 

If we take account of the presence of the earth and of the re-
flecting shell we denote the disturbance in the primary function by 
U1, U2, etc. The appropriate forms are 

1 00 

k2 r b 
 ,L1 (2 n + 1) a. W. (ki r) P„ (cos 0), 

„=0 

1 
U2 — k2 r b (2 n + 1) { b. Wn (k r) + c. fl(1) (k r)} P. (cos 0), 

1 
U3 — L W k2 r b (2 n + 1)d. {en(1) (k r)— An en(2) (k r)} P. (cos 0), (77) 

n=0 near the lower boundary in the reflecting shell, 
1 '''' 

U3 — ,:-; (2 n + 1) d. • Bn ene) (k r) P. (cos ()), 
k2 r b n=0 near the upper boundary in the reflecting shell, 
1 .. en(3) (k d) 

U4 — .E (2 n -+ 1) d. B. en(1) (k d) • 4'.(1) (k r) P. (cos 0),I) 
k2 r b n=0 

I) Note: For the sake of simplicity the upper boundary reflection is neglected. 
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The boundary requirements that the tangential components of E 

and II - be continuous, i. e. U and —6r (r U) be continuous, therefore 

yield for the determination of the coefficients a, b, c, d the equations 

• + U, = U, ; (r = a), 

(r Up,. r U2) = —Ôr (r U,) ; (r = a), 

• ± U2 = U3; (r = c), 

(r U7„. r U2) = —(5r (r U3) ; (r = c). 

(78) 

Remembering the WRONSKIAN 

Wn (z) en(1) ' (z) — Wn' (z) fl(1) (Z) = 

we find the wave function U at the surface of the earth (U = 

= pr ± U2) 

u _ k2 a b 2 1(2 n 1) — P. (cos 0), 
gn 

where 

(79) 

(k c) 
en = Yin (k b) (k c) — Pa' (k c) 4(1) (k b) — 4..(1) 

— (k c) 4".(1) (k b)} ,(k c) I 17/ (k b) 4".“) (k c) 
(80 a) 

and 

gn (k a) 4',(1)' (k c) — V1 (k c) (k a) ± /3„ Wn' (k c) 4*.(1) (k a) — 

— (k a) 4"„(1)' (k c)} — 

(k c) 
4.,(1) (k e) an [q1„' (k a) 4..(1) (k e) — Yin (k e) 4.14(1» (k a) ± 

± fin { Yin (k c) en(i) (k a) --- gin (k a) ena) (k c)}] , (80 b) 

where 

.(2)' (k c) 
k 3 e (kc) e2 ), (kc) 1 — (k c) Sy 
  •   — tan ; (80 0) 

an k • (kc) e2) (kc) 7,(2) (k c) 

— A n .(1) (k c) 
and 
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When 

k, (k, a) 

k (k I a) • 
en(2» (2) (ei)() z-na» (k c) 

, as 

(80 d) 

generally is the case in 

an important region of the — plane, it appears from (73 a) that 

• Since a factor of the type el es indicates reflection in the 
shell, it is advantageous to rearrange (80 a) and (80 b) somewhat 

so that the various waves contained in — will be easily separated. 
en 

gn 
Making use of (79) we obtain after several transformations 

en en(i) (k b) 
qn en(1) ' (k a) — fin a) • j Ôy ( 2  ) (k a) 

1 j e 4.7 .) —(--4;74 (k c) 

where R1 is a complex reflection factor to be specified shortly and 
1 

— 1411) (k c) 41f» (k c) 4•;,1) ' (k c) e ) (k c)} which generally is a 2 

very small quantity and therefore often can be neglected (generally 

of the order of magnitude —). The solution therefore finally 
2 er c 

becomes 

U k2 a b 

I en(2) (k b) 

1 e (k b) (k c) (k c) — 

n=co 

2 -7 (2 n, + 1) (k b) 

n•=0 

Pn (cos 0) 
e (k a) e' (k a) 

(k a) 

kn . (82) 

k P,z (k, a) 

With the reflecting shell absent, kn. 1, we are returned to the 
familiar solution of the diffraction of electromagnetic waves round 
the earth. In this case 41,1) (k b)/411) (k a) evidently becomes the 
height-gain factor. 

We further have 

R, 

(k a) k1 (k, a) 

• 
e.;,1) (ka) k W (k, a) 

(83) 

, (81) 



44 CHALMERS TEKNISKA HOGSKOLAS HANDLINGAR NR 34 

This complex reflection-refraction factor must contain all reflected 
and refracted waves in the earth. One finds that (83) permits the 
expansion 

00 4.2) (k a)1"+1 
— R21 ± 121 112 2 1 Rijn lee (k a)j ' (83 a) 

m=o 

where R21 and T21 are the spherical reflection and refraction coeffi-

cients in direction into the earth, and R/2, T12 are the corresponding 
coefficients in direction out of the earth, viz. 

412» (k a) k1 e), (k, a) 
(k a) ± k•  e ) (k, a) 

R21 — 4.2)' (k a) k1 (k1 a) ' 

i41) (k a) k•  e ) (k a) 

T21 "=, 1 + R21) 

and 

R12 — 

(k a) k, (k1 a) 

en,- l) (k a) -0.) k (k, a)  

4'2» (k a) k, en2)' (k a) ' 

4•(„1) (k a) k (k I a) 

1712 = 1 + R12. 1 

(83 b) 

Generally — en2)' (k a) I en2) (k a) (k a) I (k a) (i. e., A 0) 
and R12 — R21. 

Since n I k a sin (pa < 1 and both n and ka are very large, it is 
necessary to make lise of the appropriate DEBYE-WATSON expansions 

of the BEssm-functions. In the region of the n / 2-plane of most 
immediate interest in this connexion they are 

(2) / (n ± «1. )21— T f f ( 1 )21 
n + T  

tl  11 
e j exp • [ i t) ( 1 — x2  d x — —4 li . (84) 

1 
n + —2 
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Remembering that (2) is a solution of (69) for et (r) = 1, it is 
at once apparent that (84) is nothing else but a W.K.B.-
approximation. It therefore breaks down in the bridging region 
where n/2 1 and where the NicnoLson-WATsoN formulae will 
have to be used. We will have occasion to return to this question 

later. 
As further for n very large and real 

',,, (cos 0)-
1 

1 / 1'  2 n (n, ± — 22) sin (i f 

(0 not to near 0 or er) 

waves travelling clockwise round the earth will be of the type 

kr 1 2 1 

il l (n+  
x2 dx1i= exp. (j S). 

.. 

[ exp. ji(n ± .1) 0 T 

1 
n+-

2 

But this is nothing else than the abbreviated action function S 
which is the solution of the HAMILTON-JACOBI differential equation 

[3] 
(S) 2 

= 1 . 

y, (5X 

This illustrates the physical character of the asymptotic solution 
involving the DEBYE-expansions. The factor e (ki a) / (ki a) 
oecuring in (83) thus denotes the phase retardation and attenuation 
experienced by a wave of incidence characterized by n when traver-
sing the earth. 

We proceed with the transformation of the solution and introduce 
the notation. 

1 + 1  

— ks • 
1 + 113 ((kk Cc)) ?,2)) ((kk CC)) • 

(86) 

(85) 
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We thus obtain from (80 c). 

42» (k c) 4;p' (k c) 
j (Sy j •  ( 1) e(ni.) (k c) i (k c) 

e (k c) _ e )' (k c) • 

e ) (k c) ±  7" • Z2) (k c) 

(87 a) 

Again remembering the W RONSKIAN and observing that 
= — j 411» (k c) e ) (k c), we further find 

er (k c) e )' (k c) 

(5„ (k c) —  P 4(„2) (k c) 
1 + j A ei = — j (k c) en2) (k c) - (87 b) 

(k c) 42» (k c) • 
41) (k c) (k c) 

Relation (81) therefore after transformation yields the important 
result 

e) (k b) 4i1) (k c) 
1 + R4 4.2) (k b) e) (k c) 

k,, — (.1) (lc c) e) ( ka) 

1 — R1 e) (k C) en1) (k a) 

where 

(k c) e )' (k e) 

e2) (k c) (k C) 

R4 - e(:)' (k c) _ e )' (k C) • 

e2) (k e) (k e) 

Introducing the spherical boundary reflection coefficients 

(k c) k e), (k c) 
(1) (k c) k• , 411) (k C) 

R23 -  e2.» (k c) k e )' (k c)' 

e2) (k e) k• 3 • e• ) (k e) 

and 

R32 - 

k 4-;.2» (k c) 

42) (k c) k•  3 • e• ) (k 

e2.» (k c) k e )' (k c)' 

ez,i) (k c) k• 3 • e• 2) (k e) 

(88) 

(89) 

(90 a) 

(90 b) 
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we find that (89) permits the expansion 

(1 + R23) ( 1 ± R32) in ", fry D D2 D2 
?4 R23 -I- R3 — 11231- 2-1•3 23 32 (ii 11.3 -". 23 1- 113 £43 

— Rs R23 
+ ...) . (91) 

It is thus apparent from relation (91) that the complex reflection 
factor R 4 contains all waves due to internal reflection and lower 

boundary reflection in the layer. Further putting = oo in (28) we 

infer that _Rot is the plane equivalent of the spherical coefficient R 4. 

If we have two reflecting shells, (A) (radii c, d) and (B) (radii 

41P (k e) en2) (k d) 
e, f), and ) (k d) (k e) — Aa , we similarly obtain 411 e )  

R(B) A (,,(A) 2 
-R4 B(4A) 4. 4 )  

— R(A) B(B) A  • 
4 ed 

Therefore for short waves (no boundary reflection) 

R4 4A) ± R(3/3) Aed (T(3.4))2 = B v.) es) . 

(91 a) 

(91 b) 

It is sometimes convenient to separate the ground and sky waves 

in (82), (88). To make the result more general, we raise the receiver 

to a point a distance r — a above the ground. We therefore get 

1 r.2) (ka) e 

(ka) R1 ) + (cos 2 11 Pn 0 k R 1  c't2' (2 n+ 1) e:) (kb) (j) (kr) _   
(r,°/\ = jkR k2rbtro 

»The ground waves • 

1 co 1 le) (kr) el) (kr) 1 • e ) (kc) 
  )-1 (2 n + 1) (kb) e ) (ka) 2 4..(2) (ka) e) (ka) Ri I R4 fl2) (k c) + k2 rb 

n=0 

• 

en2) (kb) e ) (ka) 

I 4.2) (kb) + e ) (ka) 1e1 'P I& (cos e) 

(n2) (ka) ;z.1) (k C) • (a < r < o) (92) 
1 —R1 R. 

en1) (ka) e  (k c) 

.The sky waves. 
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The ground waves have been treated thoroughly by VAN DER PoL 
and BREMMER in the case of vertical polarization [5]. We therefore 
leave them aside. So much more so as this communication prima-
rily deals with the transmission of radio waves in the atmosphere. 

Grouping the reflection factors in a physical order we can write 
the sky waves as 

(kc) ,(2) (k h) 
(k h) e ) C;'(2 (k a) • 

1 
(2 n 1)  (kb) )(k c) " = 2 k2 rb — 

n=0 

00 v°.,0 (ka) + 1 en1) (kc) 412) (k a) 7' 
[1 ± [ R21. + 71 21 111 2 p=0 n=0 -R712{ 11.2) (ka) I   R4 (i) (ka) (k a) 

(kr) 4(:) (kr) 1 Rang+ Ili 
(ka) („1) (ka) 1R21 ± 121 111 2 112 k(n2.) (ka)i P" (cos e) q=0 

1 CO (ka) + It 
± 2 k2 rb 27 (2 n ± 1) e  (kb) en2) (ka) 1R21 T21 T12  r 4•2) (kc) (n2) (ka)f 4V (ka) R4 

n=0 q=0 

42) (k a) I 00 D. 142) (ka)r + 11  (kc) R4 

• n2) (k c) p0 m=0 1 ± {[R + 7121 12 al2 a,2) (ka) e  (ka) 
=  

a,2) (k a)lpi re) (kr) (kr) 9̀, le.1) (ka)1 ' 111 
(k T 2 Rq • e ) (k c)f I_C;,,2) (ka) ± 4'2) (ka){.R21 21 1 2 12 .(2) jiPn (cos (5) ). q=0 (ica) 

The first group of waves contains all those which experience their 
first reflection in the shell. The waves in the second group experi-
ence their first reflection (and refraction) at the earth. 
At the earth the wave is broken up in one direct reflected wave 

(R 21) and indirect reflected waves which are twice refracted (T21, — 

( The L(1) (kang ÷ 1) 
T12) and q times reflected on the inside .R¡2  ({ ka)I -2 . in-

en ) 
direct reflected waves are, of course, unimportant in the radio 

(92 a 
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Fig. II. 

Reflecting Shell 

Virtual Reflecting Sphere 

case. Finally as a demonstration of the separation of the various 
waves fig. 11 depicts the first few waves of each group. This 
should not be taken to mean that actual ray treatment is permissible. 

2 (c — a) 2 h 
As will be shown  — 1 in order that the ray me-

thods may be used. 

Next let us study the case of vertical polarization. The waves 
are transmitted by a small vertical current element, a fictitious 
electric dipole. The radiation field is symmetrical to the dipole — 
earth centre axis as before. The magnetic field lines are circles 
around this axis and the electric field lines are contained in the me-
ridian planes. 

4 
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If the strength of the current element is K meter-amperes we 
have the HERTZLAN vector (radial) 

zo r 

111 = 11:: = 7) • U = 7; • ul' (93) 

with a primary field Ut,. = el k RIjk R, in the homogeneous medium. 
This time one finds that U does not satisfy the rigorous wave-

equation when the medium is radially in homogeneous. With 

00 

= (kr) P n (cos e) 
o 

we have instead of (69), (2 -= kr) 

et. 

d2 1 d et d n(n+ 1) 
[Et (r) — 22 2 gi (2) = 0. (94) 

sin2 99, 

One further easily finds that 

12 1 d Et d 

cz2 {2 1111 (2)} — e • di t — 1 - 
z fn (z)} esn • (2) = 0, t.  

(94 a) 

d 
is satisfied by —di {2 fn (2)}, where fn (2) is a solution of (69). Thus 

d 
2 g (z) = const. {i f° (2)}. This holds for n 0, i. e., for vertical 

incidence as expected. 
Similarly to (71) we introduce three radial functions 

e2,) (kr) e;,2,) (kr) en3) (kr) 
and ' kr (95) 

kr ' kr ' 

which build up in'. (kr). In the circuit relation similar to (72) the 
coefficients may be Al and /3.1, i. e., the internal spherical reflection 

coefficient of the layer becomes 

ei) (kr) 

/4 = ei (4. — — ev.i) (kr) (96) 
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Utilizing the fact that when 2 e A h. (short wave case) as will la-
ter be shown on p. 97 

1 d eni 1 
_;42) —dr k cos 9)2,, (97) e2) 

we obtain from (94) and (94 a) the approximate result 

1 
e 

f (kr) t const. • d (98) 

when cos2 <Pr> 0 and not too small. When (97) holds we have 
Ani z', An and therefore by virtue of (97) R — R3. Therefore 
when the layer is very many wave-lengths thick (approximately 

diffraction-free transmission) the ionospheric reflection properties 
for horizontal and vertical polarization are practically identical. 

In spherical coordinates we further have 

1 62 lll 1 6 et â fil 1 62 Ill 
E, = k2 .11 1 — et — — — , Eo — „ e; E9, = 0; 

st Ór Sr Sr at r 

and 

H, = H = 0; 
. k A S Ul 

(99) 

1 
At the boundaries u1 and —et —Sr (r U1) must be continuous. This 

yields 

1 n (2) (k a) e ) (k r)1 
U — k2 a b (n ± 1/2 ) e (kb) ;s2) (k r){1± 

1 ;P (k a) • e (k r)f 
n = 0 

(k e ) (k b) 
1 + R41 41,2) (Ice) (k b) 

e2) (k c) e) (k a) • Pn (cos (9), 
1 — 

1 4 e) c o k • e.2) (k a) (b > r> a) 

(100) 
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where 

e  (k a) k YI; (k1 a) 

e  (ka) ± ici • (1c1 a) e' (ka) e  (k a)pl   , 
_ 

e  (k a) k W  (k1 a) — en2) (k a) ;.,1). (k a) In, ( 101) 

(ka) — k1 • (1c1 a) 

and 

— 

with 

e2Y (k c) 2)• (k c) _ 
e(1) (k c) ' r 7, 1(k c) 

(k c) ;.„2)• (k c)' 

(k c) (k c) 

k3 1 + R 731 13. 
— •   ee). (k c) (k c) • 

eg) (kc) e.L22 (kc) 

Similarly to R1, RI permits the expansion 

where 

Rl = Rh + T1 T12E(R12)m 

pl 
21 — 

mO= 

m + 1 c2) (k a)1 
141,2) (ka)f 

(k a) k (k, a) 
•  2 

e ) (k a) + Ici (ki a)  

(k a) k (ki a) 

e  (ka) —  k1 • ;.,2) (ki a) 

(102) 

(103) 

(104) 

(105) 

(1 + 4), etc. (106) 

These are the spherical reflection and refraction coefficients for 

vertical polarization. 

The Transformation of the Series. 

The series for U (r, 0) converges very slowly, since the main cont-
ribution comes from terms with n of order ka. It is therefore con-

venient to follow W ATSON and transform the series into a continuous 
integral over n. We obtain 
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1  e 1 e 1 e c n 0° 
1 r n fg ._ j n—i 

 P 1 n k2 ab j cos (n n)in  (a, 0) — k2 abj cos (n {cos ( — 0)} dn ± n) • g„_. 1 "- - 1 g_ 1 

• 13,, _12,_ { cos (n — 0)} dn (107) 

The contour of integration c in the complex n-plane lies wholly 
in the first quadrant and encloses all poles lying there since there 
are no poles in the fourth quadrant. The last integral is zero when 

en_ 1- is an even function of n. 
gn— .1 

An approximation especially suitable when lc, a has a great ima-
ginary part (i. e., the radio case) is 

en. (k, a) _ e (k, a) 

Yin (k, a) —  e ) (k, a) 

which means nothing else than that the indirect reflected waves are 
very weak. 

Since 
(1) + • n 27 (1) I 4.(2) (,) e (2) (z) 

and by ( 13) e_ n 12- = 

we have by virtue of (40) under these circumstances 

e, e _ 

gy —1' • 
1 

where y = n — 

In the radio case, therefore, we should be sufficiently justified in 
neglecting the last integral of ( 107). 

To evaluate the contour integral of (107) we need a knowledge 
e, 

of the poles of — . Apparently the only poles are those of 

J (1) ' (ka) k, (k, a)t e (k c) (k a) 

1 C.,1) (ka)• k • t (k, a)1 11 — R, R4 e) (k c) (k a)} — g. 

0, 

The poles of (1)]. and R, are the same, viz, the poles corresponding 
to the case without reflecting shell. These poles have been investi-

gated thoroughly by VAN DER Por., and BREMMER [16] for vertical 
and by Miss M. GRAY for horizontal polarization [15]. When the shell 
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is poorly reflecting, I R4 I < 1, the poles of 0, are only slightly 
displaced from those of 0i. When the reflecting power increases 
the poles of 02 are found on a curve entirely different from that 
of Or One similarity remains, however, viz, that the important 
poles are found near n — ka as in the reflector-free case. This intro-
duces certain difficulties as will presently be shown. WATSON in his 
original contribution to the subject, for example, did not proceed 
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Fig. 12. The division of the —z — plane for 2 real and positive. 

so far as to make a closer examination of these important poles 
possible. Without a sufficient knowledge of these poles the nu-
merical computation of the transmission problem becomes approxi-

mate and uncertain. 
Before we proceed let us study briefly the types of expansions we 

have to use in the first and fourth quadrants of the nri-plane. Intro-

ducing the notation 1 
(2) n2r n2 }-2- 
(2) = — • exp. [T j f{1 — dx —A, (108) 
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we get the following asymptotic DEBYE-WATSON representation [17] of 
the three-dimensional functions in the regions a), c), and d) of fig. 12, viz. 

Function Region a) Region c) Region d) 

1 
jer 2)7_0.) (i) 

2 li 
S1) (2) AS;(.1) (-2) -- 1.%2) (2) e.,1) (2) 

1 

(7_12)-2- u(2) 1...;\ 
2 '''' "/ 

s- (2) sp (2) 42)(2) _ „sti.) (2) 

1 
(11 1.11, (2) 2 —1 {el) (2) + ev2) MI 2 ' 

—1 4 (2) 2 21) — 42) (2) 

TABLE I 

Region a), where the majority of the poles will be found, evidently 
corresponds to the earlier mentioned (84). 

{Z-2 1 
It is to be no ted --that the root — 1 7 is defined as lying in 

the same quadrant as —n . Writing 

kr 1 
n2 

f — eJ — 1 dx =_ ei (109) 

this leads to the orientation of the conformal representation of the 
y-plane as shown by the boundary lines and dashed lines in fig. 12. 

Along the dashed lines, therefore, I e ) (2) I =- I $e ) (i) I, and one 
of the three-dimensional functions has an oscillatory character. 
4;1) (2), for example, is oscillatory on the branch b) — C). This is 
of importance also in the study of the shadow side of the caustic. 

The DEBYE-WATSON expansions break up in the neighbourhood of 

the branch-point =- 1. In the transition region b) we therefore 

have to make use of the NICHOLSON-WATSON formulae [18] involving 
1 

cylinder functions of order —3 ' 1). They are preferably transformed 

in the following suitable form, viz. 

1) For a comparative study of the bridging problem the reader is referred to the 

Transactions of Chalmers University, 3, p. 30, 1942 and to p. 86 of this communication. 
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1 1 3 

(71; iy (2) 7L 2- 2 I n2 r (2) 5 (2) 
-- )1) (2) — — 1 — H(1) ( n eT (12 s;1) (2), (110) 
2 6 n 1 

-à-

where 

n j(k r)2 3 

er — 31  n2— 1 , and as before kr = 2. 

Since 

d jij „ ((i)) 
—de e -al (e) -= e e- H2 (e), one has 

2 (2) 

(2)e 1 11(1) (0r) 
(il) (2) 1 2 
(2) _ 1 3-er + i-3 ir 2 3 2 

1 (2) 
Oil) (2) n n er7 R(1.1) ( Cr) 

a 

where the first term may safely be neglected. 

Finally 
(2) (2) i 2 Yr 
(1) (2) (2) e (112) 

Let us next investigate a few of the reflection coefficients. Making 

use of (83 b) and ( 110), ( 111) we get for example 

k 
1 — — a* 

(2) (k a) 1 (,2) ' (k a) lc, e )' (k a) 
1 (113) C1 ) (k a) B21 — — jj1)' (k a) •  k — — y , (k 0)  • '/21 > a) 

1 + —ki a 

where 
1 

2 

(k1a)2r . e± —73 . 

n  

1 

— 112  (k a)2y 

(2) 

ell) (ea) 3 
n 1(k a)2 2 

(2)  e and ea _ n2 _ 1}. (114) 3  
Ho.)  le ina/\ 
2  
-3 

When nlk a lies in section a) of fig. 12 and Cal >> 1, it is obvious 

that the expression for Rh reduces to the plane FRESNEL coeffi-

cient for vertical polarization, i. e., 
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pl 

1 1 

k 1 {1 — (k ar — k 11 —  
(k, a)f 

1 1 

n2 Ii [ n2 17 

(k a)2 k {1 — (k, a)2 

n2 r n2 r 

57 

(113 a) 

Region a); 
not too close to b). 

When n//ca lies in section c) of fig. 12, it is convenient to write 

1 
n2 

11 —  
(k, a)21-2- a *_ 1 

f 

}÷ a 
n2 
 — 1 
1(k a)2 

. 3 

where -è",. = ea e / ti 1r . 

„ 1 1 (z, a) + e 3 / 1 («M 

eT 6   

— 
.1_ 2. (&) e± 3 /2 (é«) 

(114 a) 

When the losses are moderate, and this is the only case to be 

n2 li 
discussed in this connexion, I k1 al > n, and 11 — (ki a )2  

For n = k a, 71 therefore becomes 

k k a 1 -1 • r 

1 «dT) r G){17 (-1)} el 6 
(n12.1 )n--& a — 

1 

1 • 
k k a 3- 1 — n. 

7c7G-) r(){11 (-)} 

For the homogeneous reflector (WATSON-case) we get similarly to 
(113) from ( 102) that 

4(,1)e (lc 

= R23 = e) (k c) e) e 

where 

(k c) 1 (k c) (2) (k c) 

e (k c) e' (k c) 1123 (k c) k 
1 - 13* 
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When further nlkc lies in section a) of fig. 12 and I ee l>. 1, 143 
reduces to the plane FREsNEL-coefficient. 
When nlkc lies in section c) it is convenient to write similarly 

to (92 a) 

1 

n2 1-2"  fl 1 i 1 — (k3 c)2f . z 1. .1. (éc) + eTi 3 / 1 (éc) 
3 i  eT2 —6 

17 . r fi*i — 1 j  n.2 1 cm+ e± 1 —3 1 2 (éc) 

1 (k c)2 — 1 1 3 

. 3 ir 

where é, =- e, • el 2 . 

It is also convenient to write 

R1 ei 9713 1 
23 7)23 • 

When n real = n° < k c, e, = d, and 

(117 a) 

(118 a) 

io 1) 0 
23 7,23 — —3 2 [Phase 11/1/8 ( e, )} — Phase {Hi1) (e0 )1] . 

3 e 

For no > kc the above expression is conveniently written 

I__ 2 ( I del I) + e' 3- 12 (I d 1) 
n -2-  

(pU = ± 2 Phase i .7r I. 
/ I. ( 1 e I) + e ' ill (I e I) 
— -3- 3 

Fig. 13 shows a plot of 4 3, I 77h I and Phase {21} as functions of 

n° — he = A no, for = 5 km and — 0,125, which roughly 
/c3  

corresponds to co, = 2 n • 0,762 • 106 sec — 1 and V = 106 sec — 1 for 

the D-layer. 
41,2) (ka) 

It is also convenient to throw  (ka) e in the form e) 21 

e ) (ka) . ( 9) 2 y a) „  /721 (ka) 21 e I 
(118 b) 
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Spherical Reflection Coefficient Rh as a Function of an° for 

h-60 km, À-5km, 4-2TrA768•10' sec" and v-10' sec" 
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Fig. 13. 
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For n real and < ka we find by means of (88), (89) that 

7 
9921? = --- n ± 2 e?. -- 2 Phase VP) 2 a 

or 12 when n = ka. 1'1'21°11 decreases monotonically to become Y'21 

zero when pa > I. For e. = 1, pe ,u7r (or — 4,5°). 

The Poles of the Watson Case. 

1 
Quite generally the poles or proper values, n, =- vs ± —2 ' of the 

solution, for vertical polarization for example, must satisfy the relation 

(2) (k a) (k c) 
ln R l I 8) (k a) i 2 sn. (s = ...., 2, 1, 0, — 1, — 2, ....) ( 119) 

e 442) (k c)} 1)8 1,8 
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The physical interpretation of this important relation is simple. 
The proper values select only those waves which do not cancel out 
by mutual radial interference. 

In the W ATSON case the pole selecting relation can also be written 

(k c) e s» (k a) 
ln trii . (k 3-(1))  — j 2 8 7r, 

(,,,s a) 

where is defined by relation ( 101). 
Making use of relations ( 110) and ( 111) we have 

(120) 

(k c) Z42» (k a) le (ec) 11(:) (ea) 
3 3  

exp. j 2 {(Ye — Ya) — (ec — ea)} • 41,22' (k c) e (k a) ---- HT (ec) (ea) 
3 

These expressions yield the formal Phase Integral Relations 

kc 1 

I { 1 — n-21 2 dx s + 
x2 

ka 

kc 1 

I• n2 
1 — — x 2 } dx = 8 et + (3,4 , Ike> Re (n) > ka , 
{  7 

where 

ô14 iRe (n) ka} , 

le (ea) I-1(:) (ec) 
— (514 j In  3 3 2 ii(:) (e.) • le (ee) + — e C —2 in 111. 172'3; {Re (n)< ka}, 

3 

and 

(e.) 1-1(:) (ea) 
- ô14 = j —2 ln (e.) • (ec) — e, — j —2 ln 111 nL; {kc> Re (n) > ka} . 

7 

1 
When 0141 j —2 In 9j1. i, i. e., when Re (n) < ka, the proper 

values are selected by the radial phase integral of the geometrical 
optics already demonstrated on p. 45. 

(121) 

(122) 
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When n real and < ka, we denote â14 by e4 and obtain 
— âcl4 = Phase {HT (,(2)} _ Phase Ile (e(a))} + ea° — e, 

and when further n real and ka < n < kc we find 

3-2 12 (1 e _ 
3  

— Phase {1-e (e)} ± —2 — arctan o , o oil — e,. — 14 — 
h, I 2 11 ea -I- '2 ea I, 

3 

11 n 
Since ka Z—a , it is obvious that even for waves as long 

km  

as 5 km, b?4 is with a good degree of approximation given by 

08 

0.7 

06 

05 

0.4 

ai 

02 

ai 

o 

7 
— ô14 = — —12 7r ± — Phase {H(1) (e)} 2 a 3 

Graphical Representation of the Solution 

of the Phase Integral 

(123 a) 

i --------,..„. 

_  r   

n: 

. 
7;150 Wax <510 8020 8030 86;40 eolo eo 

1 
1 
i 

71 e 
i 

7 

e dn.n* 

o 5 4 2 

Fig. 14. A plot of 4 4 as a function of n. {Im (n) = O. 

[Note: (e c) p r_a means 
r) n = ka] 

t9c)n..n. 

4 

17 
6 

12 

(123) 
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when n real and '< ka. It is further apparent from (123) that 

e —▪ midway between ka and Ice for waves which are not too 4 4 

long, since /2 (I ea I) I 2 ( 1 ea j) when I e, I > 1. 
-3 - -3-

Fig. 14 shows a plot of « 4 as a function of n, when Im (n) =- O. 
This plot was made with the aid of tables of BESSEL functions of 

2 
order ± —3 , presented at the end of this communication. 

For poles with Re (n) sufficiently smaller than ka (i. e. the 
majority of the poles) « 4 = 0 and (122) yields 

kc 

{ 

n21.21. 

1 1--x2 dx =- 8 n j —2 ln i 3. 

where s necessarily is a positive integer (in accordance with the orien-

tation of fig. 12) and sufficiently large, so that I ea l> 1. Since under 
these circumstances RI- = n1 and 4 2 = {i. e., we are well inside 
region a) and the first term in the asymptotic expansion of H(11) ( ea) 

occurring in the NICHOLSON-WATSON formula leads to 41) MI we 
have proved that, when s is sufficiently large, the poles are actually 
determined by the phase-integral which has been used so successfully 
by ECKERSLEY in the treatment of radio transmission problems. 

Written in the familiar manner the phase-integral relation there-

fore becomes 

kc 1 

{1 — —n2r d x — j ln R1 — • 1 x2 in R23 = 8 n, (124) 

when I ea I > 1. Even for waves as long as 5 km the 8-value corre-
sponding to the pole closest to k a, i. e. 2, makes s n considerably 

larger than —12 and it is therefore almost possible to use this phase 

integral relation up to ka. Unfortunately the most important poles 
(i. e. the poles with the smallest imaginary part when losses are 
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introduced) may lie between ka and kc where the application of this 
classical phase integral relation ( 124) is no longer permissible. 

For the higher order poles' it is, however, an extremely useful 
relation. Since 

4n2 
  kh 

k (a ± c)2 

— 
is a very close approximation to the phase integral when c a 1, 

the phase-integral relation yields 

i 
k(c+a) 1 1 87r 

2 [1 1 1 i  — (k lt)2 18 2 7g — 2 1n2n (k h) , 7)23 -- ) 2 in n /7 i 23 (125) 4 1 1 •  

which we call Relation I. 

When 8 is not too large and the losses are moderate a good ap-
proximation to ( 125) is 

k(c+a) 1 1 
  [1 — (k hr {82 7C2— 4 'n27/1711 - 2 

i t 
[1 — —(kh)2 is2 

4 1 23 

1 

Neglecting the losses for a moment we infer from ( 125) that the 

maximum number of proper values corresponding to real no-loss 
poles is 

kh 2h 
8max = — a • 

as was already shown by WATSON 
Long-wave transmission therefore 

poles which is an indication of 

formed. Finally ( 125) shows that 
along the positive imaginary axis. 

unimportant. 

Denoting the no-loss pole by ns° 

[6]. 

has comparatively few important 
the fact that no real rays are 

there are infinitely many poles 

These are, of course, practically 

we write 

ns = ns° n,, 

i. e., n, is the change in n„ due to the introduction of the 
For s not too large we therefore have 

(126) 

losses. 
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a ± c cot 9)8 1) 
An8,--r.j 2 •   ln /I; /).3 , 

h 2 

2n8 
where q28 = arcsin   I 

lk (c ± a)) 

For long-waves rc, 

This yields for vertical polarization 

and 

a ± c cos2 g)„1 
Im (p n„) 8 h cot 9),• ln   

ICOS2 (ps3 
+ ln   

I cos2 9)83 + 

cos299,1 

k3 

k3 

2 

9,8i 

(126 a) 

92811 

(126 b) 

where 9)81 -= arcsin (ji); etc. This relation is identical with WAT-
a 

soN's which, however, only considered the ground losses. It is shown 
by the above relations that the ground and reflector losses are con-
tained symmetrically in p n,. It is apparent from ( 126 b) that there 
is a number of poles with only slightly increasing imaginary part. 
This is most easily seen for small losses when 

a  17T-  { , - k t(k1 jk 
17 < 1 11 1, ' —3 k ) . 

Im (°n.) ▪ 4 h sin 9)„ 71 1- k3 

(126 a) 

since g)„1 (• A, (1983. As sin g), 1 for the lower order poles, 
Im (p n,) is changing rather slowly and consequently for shorter 
waves a considerable number of terms must be evaluated in the 

residue series. 
The remaining poles n°, close to ka and between ka and kc are 

easily obtained from relations ( 122), ( 123), and ( 123 a). 
Since in the region ka — kc 

kc 1 

f nÏ d — —x2 dx ec, (127) 
I 
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the no-loss poles between ka and kc are simply obtained graphi-
cally from 

= (ec). 
The construction of the poles is shown in fig. 14 for h = 60 km 

and 2= 5 km. 
The remaining important task is to find expressions for the core-

sponding L. ne-values. 
We must have 

n Os ± A  ns 

kc 1 
n _ 
2 2 

i 7 hi 771 nh = 1 --) dx — (314. 
fa x 2 

nos 

Fortunately it is not necessary to make use of many terms in the 

expansion of the above relation when the losses are small. Making 
use of the WRONSKIAN and remembering the derivation rules for order 
1 2 
—3 and —3 functions we get for the two cases: 

1) We < ka 

— L ne 

1 [12 (kc — ne°)1i 2  1 

kc Jn 111-n) (e2)112 • 
—3- 

1 ( 3 y  1 1 
cos ( ficl) (e0)-3- 3 " kc 3 (3 eà 2 (k e  1 } nit} 

i 3  

Sc 

f 2 (ka - 2  1  
1 kc e2 •{IH! (e)I}2 

3 
1 

3 \ 1 1 
cos ( 3 + fia (P. (c)t) 3 U74 2 1 } 

(3 e)1 (ka)3 

Sa 

5 

1 
_1114,1 441 

I 2 q23 , (128) 
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where 

and 

Phase {Fe (e:()} 

= Phase {le (d)} 
-3-

— Phase Hg) cee», 
-3-

- Phase Ile (d)}. 

The correction terms ea and ea are very small for normal losses 
when n° < kc and ka respectively. For I e I 0 one has e 0. 
e gets its maximum for e 0,4 where era. 0,15. 

Since normal reflection losses may correspond to I A n, I 5 for 
a wave-length of 5 km the order of magnitude of the error omitting 
e is about 5-6 It can therefore often be neglected for practical 
purposes. 

2) /2,(8) > ka. 

E12 (kck—a n?)}7 2 

e? • {I IC (el? 

3 

cos (  I ifkc 3 

3c 

1 ii 

2 1} n s} 

(3 0) 3 (1c c) 3 

1 2 

ka f e‘11 II /n) ( 1e2 I)}2 

2 / 
_ {1 COS iv) (i ecoil)-1 (kW_ 1  1 

(3 Id.11)3 (ka) 
— ea 

1 
ln (129) 
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where I-1(p (I e I) is defined by 

e°,, D + / d I) 
(I e°.i) 

3 
21 

sin — 
3 

. „ 
Q + I1 (I el) 

3 -3-

- r 

/ 2 (1 e?, I) + e+ ' —3- 1 2 (I ea l) 
3 

and 
Phase (a1). 

ea is much larger in this case when j pa I "> 1. 

As 

2 1 

n ea {M ) (I ea. D}2 

— 2 I ea I 
e 

(129 a) 

when I ea I 1, this increase in ea is not important. 
As as primary and very useful approximation we therefore have 

Relation II 

1 
— —2 ln in123 

ns (128 b) 

12 (k ek—c n?)t-2- 2 1 (ka—nDri 2 1  

{ li(e) ita 1 ka f da) (e2) 112 (n'a) 

and Relation III 

— 4lnn n23 

3 

na 1  . (129 b) 

(2 (k c — 2 1 

+ 12 (n?—ka)t7 2 1  

kc ne° (C) 112 I ka f 21 01 ille(leo‘zi)112  (n≥ k a) 
-3-
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In order to make Relations I and II useful even for slide-rule 

computations we have in fig. 15 plotted 

2 1 2 1 
— • 
/r e H() (e)115 and — el lei 0012 

3 

through the necessary range of lei-values. 
It is also convenient to be able to estimate quickly the magnitude 

of the corrections introduced by cc, and ea. To that end we have 
further in fig. 16 plotted e as a function of e for the important 

range of values. 
It is further easily shown (compare fig. 15) that Relation II yields 

the same results as Relation I in the form (125 a) when leal >> 1. 
Our present results have all been based on the NICHOLSON-W ATSON 

formulae. For the higher order poles these formulae become iden-
tical with the DEBYE-WATSON representations, as has already been 
mentioned. The highest order poles (which are the least important 
ones) will, however, be situated near the imaginary axis in region c) 
where formally a different DEBYE-W ATSON representation holds. 
Since S;,2) () in this region, the result is in reality correct. 

The Numerical Evaluation of the Poles. 

In the deduction of Relations I and II we have tacitly assumed 

the losses to be so small that 

{In nl nL}oz5 lin 

When this is not the case the corrections may be worked out by 
successive approximations. To estimate the corrections we evaluate 

d 
—dn (in ill ilL) • 
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We find 

d 

dn 
(ln 771,- 7g) 

k ay 
— 

(1 _ -_a*) ( 1 + a (d) P2 (e2) ) 3 } -- 

I 

( k 
1 — Tc--3- fl 1 + —Ic3 is* 

k ip, (e?) -- .-k ( —3-) P2 (el, 
k 3 k k c 3 

where H(1.1) (,) ) 2 _ fie (01 2 , 

ï 1. _, i i. e—i''T 

e 

Pl (e) = ll—r--)(e) e 6 m  14)(0) - 
ï ï 

and 

P2 (e) = e 
(e) ir e)(e) 7,1 17 (e) (e)1 

3  

(4) (Q) e 11(22) (e) e I 1 H(2') (e) (e)j 
7 

(130) 

(130 a) 

(13o In 

i 

2 

il I 

O eo (2 0,5 04 o 04 08 (2 (6 2( 

---/p/ 

/7.< Z 

.19,— 

2 

- 

Fig. 17. 
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9000 
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Since for long-waves -- --c e and —k3 —103 e Ii ki 
both pi. and ,u2 will tend to change Im (An8). For the sake of con-
venience for numerical computations we have in fig. 17 shown pi 
and ,u2 as functions of e. 

It is obvious that the corrections become considerable when the 
losses are no longer small. Writing therefore our original Relations 
II and III as 

1 
— —2 1ln 911 /71¡ 

n, = j   (n = n8), 
All III 

(131) 
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Comparison of the Position 

of the more Important Poles 
A-5 km a-6360 km h= 60 km 
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(Vertical polarization) 

7800 

we therefore get the parallell relation 

1 
__ 

2 fin 771 1A} 

A (n = n?), 
Bn III 

where 

li d 
B11 in ± i 2 [ (in fin 7/23} 

d ni 

ne's . 

The numerical evaluation of the lower order poles is quite con-
veniently made if curves of BII III are first plotted throughout the 
necessary range. Fig. 18 shows a plot of the poles for transmission 
at a wave-length of 5 km between water and a D-layer with height 
60 km and reflection characteristics as shown in fig. 13. In this 
case the dominating losses are ionospheric which makes the compu-
tation fairly simple. The corresponding poles for transmission round 

nr.n:n: 
8000 

(132) 

(132 a) 
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a reflector-free, perfectly reflecting sphere are shown for comparison. 
ka 1 
CI n2}i 

They are all situated on the curve Phase J{1 — dx = — . 

Fig. 19 finally shows the lower order poles near ka and kc. Poles 
of order 0, 1, 2 have been computed by means of Relation. III in 
the form ( 132), poles of order 3, 4 have been computed by means 
of Relation II, and poles 4, 5, 6,. .. finally by means of Relation I. 
Relations II and I yield the same result for 8 = 4. The order of 
magnitude of the correction due to IL, and 142 is a few per cent 

for the lowest order poles. 
It should be pointed out in this connexion that the character of 

the curve on which the poles are situated becomes different round 
ka if the ground losses dominate. This is immediately clear from an 

inspection of fig. 13. 

The Residue Series. 

The next and final step when the poles have been determined 

is to evaluate the residue series ( 107). Developing {cos n 1 as 

1 00 
eirt(2n+ 

cos  n — 2 eien 
o 

(133) 

which is valid over the integration path, we get from ( 107) in the 

familiar way 

470 00 Go e„8 
k2 ab 1= 0   * -1) (cos (ir — e» , (134) =. 8=1 0 1 (n8) 03 (ne) 1)8 

where 
lo 

0 3 (ne) = (U• 0 2 (n)1 • 
ns 
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One finds for vertical polarization for example that 

ees (n,) 2 (kc — ns)t 2 1 .12 (ka — ns)2 t 2 1 

¡cc .71 ec .11(") (ec) 1-1(:) ( 0e) 1 ka 1 .7r ea H(2) ( ea) 1-1(:) ( ea) 
7 

- i 

1 

k k 
1 a*) (1 — a 

k, k, 

1 
k I ka\i 1 

1111 (ea) + 3 ) p2 (e.)f — 2 

k (ke )i 
• 1,111 (ea) — ,u 2 (ea) (135) 

It should be remarked here that it is generally sufficiently accu-
rate to put 

0 3 (n8) 0 3 (n?) 

for normal losses. An approximation of this kind naturally is not 
permissible as regards the evaluation of A n3. When the losses are 
moderate and the above approximation therefore can be used the 

evaluation of ( 135) is at least comparatively simple. 
For larger 8-values, when Relation I can be used, one finds for 

moderate losses that 

0 3 (n8) = 2j 

1 
n8 ¡ch 1 . ¡chj 1 kh\ 2 ili (13 . 

jk (a + c)Ii2 • 9C. 11-7 2j k(a+c) seTilsnl 
1 

I 2 { I k (a + c)\)2 2 

‘ 2  

This can also be obtained from ( 135) when 0„ >.• 1 and dui and it, 
can be put equal to zero. 

When 0 is not too close to 0 or et, and since n is of the order of 
magnitude of ka for the important terms we make use of the asymp-

totic expansion of Pn (cos (9), (85). Remembering that the time 
factor is e— 1wg the sum of the waves travelling clock-wise round 
the earth becomes 
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.3 7r 
1 4 2_ 

n e 09 111:.1 1 ins (0 ± /27r)  er.s  
(sin 0 "2" k2 ab 1: i,/ e 2, 928-2- e 

1= o 8=0 • °I (n8) ° 3 (n8) • 

In the radio case we neglect waves which have made complete 

revolutions round the earth and therefore finally have, 

.37r 1 y_ mi 
8 er yi e 4 v  i (n8 e) -2- 

e— iw t U (a, 0) --   (137) 
sin 0/ k2 a b ns 01 (n3) 03 (928) e  

8=1 

which is a familiar form. /If is taken sufficiently large to include 

all important poles. 
The attenuation is Im (A ns) • 0 and the tangential phase-velocity 

ka 
Re (n s) c0. The important terms therefore have a surface phase-

velocity practically equal to co. 
For small losses we have for the higher order poles and vertical 

polarization according to ( 126 a) an attenuation coefficient 

Im (6, n8) 1 

/38 — a h sin cps 

or for long waves 
1 1 

1 — +•  co • 
h 2 a, 2 we 

I( 1 y v y} 

This is similar to the well-known attenuation coefficient from the 

AUSTIN-COHEN formula in its original form. This formula had 
1 

/3 2,75 • 10-6 • /2 km- 1 for transmission over sea-water. For a 

collision frequency of 0,25. 106 sec- 1, fc must be about 0,85 Mc/s 
for a layer height of 60 km in order to be in rough accord with 

the AUSTIN-COHEN value. 
For horizontal polarization we similarly to (138 a) obtain 

2 fps ki ± /7.3 
cos2q), j k 

v h sin  — 

, (138 a) 

(138 b) 

(138 c) 

i. e., a considerably smaller attenuation coefficient than in the case 

of vertical polarization. 
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For the inhomogeneous layer, ô14 in the phase relation gets a differ-
ent value with a correspondingly different A n8. We will return to 
this question later after we have made use of the parabolic cylinder 
functions to determine the actual value of the reflection coefficient. 
For short waves the number of necessary terms of the residue 

series becomes very large and the evalution of the series becomes 
completely unpractical. Therefore it becomes necessary and practical 
to treat separately each wave contained in (92 a). It is convenient 
to make use of the stationary phase treatment of the wave functions. 

The Treatment of the Separate Wave Groups. 

We arbitrarily pick out a wave group which has experienced p 1 
reflections at the surface of the earth and p 1 reflections including 
the last one, in the reflecting shell. From (86) and the relation 
following, this wave group becomes 

1 00 

(2 n ± 1) ;,a) (kb) e  (k a) le  (k c) 41,2) (ka) I' 1 
2 k2r2bn_o 21 (2.1.) ( a)k 3 (n2) (k c) 

e ) (k r) 

4..(2) (ka) P. (cos 0). (139) 

As a consequence of the relation 
(1) . (,) 

4.(2) (z) e± y n 4.(2) (,) 

(compare p. 53) the sum ( 139) transforms to the integral 

+0.+ix 
Zer (k a) (1̀) (k c) p+1 

= h (n 1) e) (k b) e ) (k r) .11 el Re . 1 . 

(k a) ;,2) (k c) 2 
X 

where 

n d n 
• Py {cos — 0)1 cos n ' 

1 p + 1 - (p + 1) I. (al) 
h (n 1 ) —   ) 2 k2 r b e 

and x is a small positive quantity. 

(139 a) 
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It is convenient to make use of KELVIN'S principle of the stationary 

phase in order to evaluate ( 139 a) when the angle of incidence at the 

earth is less than e. when n<ka. When this is the case, and when 

( 1 o.),.> co sin W n — c. , h 2— is varying so slowly through the station-

ary phase region that one is well justified to treat it as a constant, 

which is a considerable simplification. 

Remembering that 

le (ea) 
(k a) ï — j (45- — 2 ea) 42) (k a) — i2 (Ya+ 13a) 

,t)• (k a) — 7-n ) (ea) e • AS,1) (k a) — (140) e 

-à-

with 
-lig) ( ea) 

'7 . , 3 
.11(p (Ca) (140 a) 

and further dropping the counter clock-wise waves and neglecting 

waves with more than one revolution, we obtain 

1 
1 î  h(n — n-12- Ini / /nkxy n \-3- 

1 
6 3 • 

(2 n sin 0)-2 Lb, r  

--

ex 3- -FC (es) 
1 j (kr + F) dn (141) 
i.e 

where 

= 72 e 2 (P + 1) Ya+ 2 (p + 1) {va+ Re (4)} (P+ 1) fia+ (56 Ôr) (141 a) 

5 1 
and = — — eb -I- Phase leb-i (eb)} • (141 b) 

b 12 3 

Introducing 

kb. cos Wb = k a • cos Wa = kc • cos = k r • cos P,. = n, (142 

making use of a relation which is an alternative form of (109) 

(143) 
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further of (33), and of (38 a) one finds since .4 — B 3 that the 

stationary phase point n = no (or the corresponding angles Woo, 

ê F 
Yiao, etc.), which is obtained from —Sn = 0, for vertical or horizon-

tal polarization must satisfy the approximate relation 

Yib fcc‘  
e + 2 (p + 1) ¡Via + eb r_,(9 p 2 ) — 2 (p + 1) 

2 (ea) --+ wai n ea re (ea) In) (ea) 
2 3-

(144) 
A h, 

4- • cot —  
(2) 

er (e,) .H1 (e,) n no 
2 3 

xi 
where Ah is the virtual ionospheric height (A hi, 7  tan gic, with 

xi as defined on p. 23 and q9a = —2 — Pa). When ea > 1, i. e., when 

1 

a>(3 )7 2 ez a ' 

or for a wave-length of about 600 m when Pa > 2°, then 

e = 2 (P ± 1) Pa. ± (7) ± 1) {2 gfc Yir. • 0 e 
x, 

With ( 142), which is nothing else than the law of refraction, ( 145) 
is readily interpreted as determining the geometrical properties of a 

ray between the sender and the receiver. This is demonstrated by 
fig. 20. 

The smaller 2 is the smaller will be the lower limit of Yia and the 
approach to geometrical optics becomes better. 
When (145) holds we have 

{ ô 0 (A n)2 S2 o (An )3 
exP• 7 -- + (571,2  3 — • • • • } • d (A n), (146) 

—00 

1 

u 1 1 ka cos Pa. y pis° 
\sin Yibe sin Yire • 

(2 n sin 0)1 

e 
( 1) 
o 2 

(145) 

A TF 
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P=2 

Fig. 20. 

where 

A n = no n, 

= kb • sin P h° — 2 (p 1) ka • sin (p 1) {2 kc • sin P c0 ± Re (e3)} — kr • sin Pro , ( 147) 

S 0 1 2 (p + 1)  
(3n = — kb • sin gib° ± ka • sin Pao — 2 (P + 1)1 kc • 

hv dh„ \1 1 

le' • sin3P Co 
(1 — co82 P c° hv d co) kr • sin Wro 

and 

(147 a) 

(32 — 1 2 (/9 + 1) 1 3 h., 

(3 n2 = n° [(kb)3  sins , (ka)3 sin3 2 (P + 1) { (kc)3 sins W eo k3 c4 sin° W • Co 

dk, cos2 c 2 

(147 b) 
• (1 — +  os PC. .d2 4'1\1 , 1 

dht, d col jj (kr)3 sin3 W • 3 3 To 

Regarding the path of integration we require Im (A F) = 0 at 
least in the neighbourhood of no. Examples of such paths will be 
shown in connexion with the discussion of the bridging approxima-
tion of the parabolic -cylinder functions. 
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Neglecting higher than third order terms in the phase expansion 
we obtain the third order approximation 

(3 0 
sp+I (p+I)Im(81) 

Tri vi2i) e ka cos Poo in 

j k2 r b 1 6 sin Poo sin sin ej • S2 

t n2 

exp. j 1 

When 

(148) becomes 

H) ' 

\31 

3/(249\ 2 f 
5 1 Vn (. eise. 
12 7I 1 :32 ne 2 • 5   

3 (b) (Ô n2) I 

/(30\3 

1 ‘(397, 
3 (Ô2 — f 1, 

n2 

1 _ (R2.1)7)+1 (I 4 1)7,44 , j  tan (poo li i so 
ui ...... 
P 1 • t (lei • e ' 

j k (r b)2 sine. 
.5 99, 

(148) 

(148 a) 

which is the result of the second order approximation. Thus (148 a) 
yields the amplitude and phase, i. e. the iconal So of the geometrical 
optical ray. This amplitude is as a matter of fact also easily obtained 
from elementary geometrical considerations. The ray formula breaks 

e 
down, however, in the neighbourhood of the caustic where —Sn 

and ( 148) has to be used. 

On the other side of the caustic, where In) (I') is oscillatory, we 

find 

(41) +1 (I R Ir' (—tan we,. -2- is0 2j (ri-LD1 
u 

e • e •{1 — e 1, 
j k (rb)2 r sin 0 

92r 

when r — 1. (148 b) 
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(50 
When — < O, the receiver is generally reached by two rays. 

99? 
When further 1' — 1, the phase difference between these two rays 

becomes — 2 (/' — —4 ). By purely geometrical considerations one 

finds that on this side of the caustic the geometrical phase difference 
actually equals — 2 F. This was shown already by VAN DER PoL and 
BREMMER [5]. The geometrical treatment, however, does not yield 

the constant phase difference —2 . 

It is of considerable interest to investigate if actual focusing 
of the ray is possible or not. From ( 147 a) we have approximately 

S 0 2 (p + 1) dh,)1 
( ,›t (ke sin3 , 1h + h1 1 — cos2 W 0 —  . (149) 

d 1 o 

It is immediately clear that in the case of negligible dispersion 
focusing is never possible. 

For a parabolic layer. of half-thickness i h., we find 

where 

with 

S 0 2 (p + 1) A hm i h 
 + W (a y)} (149 a) 

ê n (kc)2 sins WC. uA — ' 

" 1 + ay 
2 ) y — Y2 

W  Y) in n a y — 2 a—  — 1 — (a y)2) ' _ _ 

a -= 
— cocm 

and y = sin Pc.. 

Fig. 21 shows a plot of W (a, y) for various values of a. It is seen 

that for  — 2,5 (a typical day-time value for the F2-layer in 
h„, 

the equatorial regions) focusing never occurs when penetration 
is impossible at any angle, i. e. when a < 1. Focusing becomes 

6 
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possible first when a considerable proportion of the high elevation 

rays escape into space. The focusing angle further does not differ 
much from the critical or penetration angle. The difference between 
them becomes very small in the case of the E-layer, for which 

 --- 20. 

The silent zone will therefore be surrounded by a concentric caustic 
circle. It should not be forgotten, however, that the generally rapid 
increase of Im (Ss) near penetration makes the focusing effect practi-
cally unimportant. 
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So far we have not said anything about the wave-length limit of 
the ray treatment. We have seen that the second order approxima-

tion yields the ray amplitude and ray phase of geometrical optics 
â 

as expected (when F it > 0). 

The wave-length limit therefore is determined by the requirement 
that r > 1, say r > 7C. Considering the practically important case 
that a y < 1, we have approximately from (147 b) and (149) that 

2 h 13,5 e°82 fete ip > 0) (150) 
smax = p 1 • sin Pao ao 

Thus we have found an approximate expression for the minimum 

number of poles or proper values required in order to justify the ray 
treatment (compare p. 63). When therefore the long wave formulae 
(the residue series) become unpractical to handle the ray method 
automatically becomes permissible. It should be noted that this is 
true even though the ray treatment is not permissible within the 

inhomogeneous ionized shell itself. Its proporties (which depend 
upon its inhomogeneous character) are contained in S3, which has 

to be obtained from the circuit relation (72) which holds under all 

circumstances. 

The Field Strength from the Dipole Element. 

Applying (99) to (148 a) one easily finds for vertical polarization 
for example when the ray treatment is permissible that 

E,. A, k2 • cos2 • (7)- U1); E A, k2 • sin giro • cos Pro • U1); 

1 r • AI 
Et = 4)-2- A1 k2 • cos • -i ; k2 cos W,.. • 7) U1 , ( 151) 

indicating that POYNTINGeS vector is parallel to the ray direction in 

fig. 20. 
So far we have only studied one of the four different wave groups 

which may reach the receiver after p 1 reflections in the shell. 
Collecting the wave groups we get instead of (139) the complete ex-

pression 
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P-2 

Fig. 22. 

1 00 

2Orb 27 
-,-- 0 

e ) (k ane (k r) 

• e (k (k a) 

(k a) I e (k c) 
(2 n + 1) (k b) e (k .4 4(2) (k c) (k a) R3 • 

+Rh 12) (kb) e ) (k a)} 
1 

>(kb) 4>;, l) (k a) 
•;11) (k r) ee) (k  
;.42) (k r) e (k a)f Pn ("8 e) • 

(152) 

Of the last two bracketed expressions the first one introduces the 
influence of the ground at the sending side and the other one 

quite similarly introduces the influence of the ground at the receiv-
ing side. As a matter of fact ( 152) is symmetrical in r and b, as is 
(139), proving the reciprocity, i. e. that receiver and sender may be 
exchanged without affecting the result. 

Again making use of the principle of the stationery phase we obtain 
from ( 134) the four rays shown in fig. 22. Introducing the iconal 

Si. for the ray with p ground reflections, S, = S, + A S2, and Ss= 
= A S3 for the two rays with p 1 ground reflections, and finally 

+ A S2 ± A S3 for the fourth ray, which experiences p + 2 

S 0 
ground reflections, and remembering that   is to a close 

ê 99? 
approximation the same for the four rays, we obtain 
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1 

A .E,. 30kAK r tan 'Pb. 12 ej ± R12 p 

AE0 j (r b) 21 b (4)P (1 41)P 1-1 60 • COS P ba • 
sin A 

(Pro 

}-

'411 30 k 
o II a (1-Rii (1R1 I)P+1 

111 

• A K • { 1 ± 4 2 ei S3} 
cos W,.. 
sin Pro 

(153) 

(*) 
r/2(0) 

where A K is the strength of the dipole element. It is of special in-
terest to note that the directive radiation characteristic of the ver-

tical dipole element above ground in ( 153) is • cos P be or practi-

cally the same as in the plane case. 
For a vertical wire of length 2/ (with arbitrary current distribu-

tion) we consequently find, if So is the iconal referred to the centre 

of the antenna, that 
+ 

30 k r tg rho  
 1 b (Rhr (I B1 If 4-1  e I 2e) 6,, so s (5i— s) /I cos Vibe d K, (153 a) 

j (rb)-2- sin 0 
(5 (Pro 

where 
+1 

cs, — so) ni cos Wbo dK = ib„) 'max , (153 b) 

—/ 

is the effective vertical radiation characteristic of the antenna with 

maximum current Imo.. 
3 1 

Since bi- 2 J r2 a, we finally obtain 

{ tan gObo (r) 
 ao 1 2 / bo • ' • • V) (0) • I f (P ) 1/max Volts/meter, (153 c) 

sin e A 
(Pro 

with 2, (r b)-2«, I h (W 0) in meters and Imox in amperes. Similar for-

mulae are easily obtained for horizontal polarization. 
In order to compare (153 c) with the result of the plane case we 

write 

30 k2 
I Er (I R11 If (I 14 If +1 ie > I•I f (Po 0) Iniox • cp , . . Volts/meter 

o 

with Solk in meters, and where cp is a focusing or convergence factor, 

(153 d) 
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j St tan 991,0 ti 

r b (3 0 I 

sin 0 e 99r„ 

If cp 1 the result is approximately the same as that of the plane 

case. 

(154) 

Neglecting the dispersion d h.„ i. e., we find from ( 147 a) that 
du) 

S, sin épaoti 

cP ka sin 0 1 

h h, 
Since —a .< 1, the above expression yields cp 1 as expected 

in the case of negligible dispersion. 
Finally it should be emphasized again that when focusing becomes 

appreciable, i. e. cp >> 1, the formulae ( 153) which are second order 
approximations break down and the more accurate third order 

approximation ( 148) has to be used. 

The Reflection Coefficient of the Parabolic Layer. 

In order to consider the case of radio wave propagation round a 
homogeneous earth surrounded by a concentric parabolic layer we 

have to study the parabolic wave-functions more closely. If we 
omit the in this connexion unimportant frequency range near pene-
tration we can make use of expansions (55) and (64) for the thick 

layer. 
Unfortunately expansion (64) has properties very similar to the 

DEBYE-expansion for 1-/;.2) (z) in the exceptional case z n >> 1. This 
seems to lie in the nature of the method of expansion used. It should 

be remarked at this point that it was therefore necessary to use the 
NicnoLsoN-WATsoN-approximation (110) (HANKEL-approximation) 
instead of the corresponding DEBYE-expansion (Tangent-approxima-

tion) in order to obtain the poles of the residue series in the 
exceptional region n ka. 
We will accordingly find it convenient to investigate the possibi-

lities of finding a suitable bridging approximation between the more 
exact (55) and (64). We once more turn to the method of the station-
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ary phase and the third order approximation leading to the AIRY-

type integrals. The integral appearing in (42) can then be written 

WA f {d20 (A tr d3 (A -c)3 
— (zA) 2e exp. 2 de • 2! ± de • 3! } -1 • d (Az), (155) 

c, 

where 

u2 u { u2 
ñ n 

d20 4 2 4 

d e 

and 

A 

d3 

2 • 
TA 

1 
_ T A 2 4 _e} 2 

I. 

= if* + e (- 7 A) — --21-11. 

(155 a) 

(155 b) 

The slow variation of (r)— has been neglected in the bridging 
region. 

The next problem concerns the path of integration. A glance 

at fig. 8 shows that we have to approach YA along the axis of reals 

from the positive side { Re (WA) = 0 in this contour} and then 

take the first Re (WA) = 0 contour to the left. 

In the same 
becomes 

manner the integral corresponding to D 4 e 4 j 

12 z5 (7,4)_ e 4 /7A exp. { d2 (A -c)2 d3 (A 1.)3} 

c, dr2  2! de 3! I • d (A T). (156) 

The contours which have a familiar shape are shown slightly de-

formed in fig. 23. For these contours the result is well known and 
we have 
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AZ- Plane 

Fig. 23. Paths of integration for the third order bridging approximations. 

/1 } 
— 

/2 

where 

d20 

7( (2; 
(1) 

• —1 • —d3 • exp 1± ±i (r--6 )} • H (r), (157) 
3 2 

d 1-3 

id2 \ 3 

1 del 
r _   

3 id30\ 2 • 

de/ 

(157 a) 

Integration along path c3 yields a wave of oscillatory amplitude. 
d 

When —dn < 0 [in ( 148)] the path of integration is switched from 

c, to e3, i. e., one is on the oscillatory side of the caustic. 
In accordance with (42) our bridging approximations thus become 
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r (± ie++) 
Due —  • 2 1 

2.31 

d2 

de 

d3 

de 

17 13 n 942 11 (2) 

• exP' e W-4 ± I 24 • 11(11.) (n  
(158) 

(2) 
Using the HANKEL-expansion for Hi when r >> 1, we find that 

3 

(147) becomes 

D e i÷\ r e (1)- — 1) vi —   1 2 

1 

(2 n)i 

— 1—  Lr (u2 7L 

) 2 • exp. [ 4 e w., — —4 + —8 • 

— 3 — 2 10T7 2 

• [1 + el 7((flfl-1) • y,t •  12 . . , (158 a) 

where TT = 
r A 

This differs from (55) only in the second and following terms. 
In the bridging region however, n 1, and 10 712 (n+ 9). 
When r .<<. 1, 

r 1 

H (2) (I') e 2 • —2 
— 

3 

This yields when ly I < 1 

r (1) I — 3r(f) ii(ry} 
n l l e . 

(i) 

-11—e1+ 3(31-1=r* + • • • 
(¡) 

u2 
where = — — e . 

4 

(158 b) 
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This differs from (64) only in the third and following terms. The 
bridging approximation therefore must be considered good. 

Let us first determine the internal reflection coefficient, R. 
The circuit relation (20) immediately yields (co > (OH) 

r(--jed- 1  2) 

1 
(2 n)7 

7L 1.1.2 

exp. 1 2 e+i( 2 ± 2 — 2 WA 

(r) 5 
e — 1 (2r— -(T7r) 

(r) • 

When r >> 1 and I Phase r j < 7r, we therefore have 

r(— je 
1) 

r u2 \ 
R = 1 exp. 1 — 2 ij -TA . ( 159 a) 

(2 7r)i 

When the losses are small (sin W W) and x2 z" 1 (penetration 
y  

(frequency region) we find n ;-_—_-, 2 j 97 + —4 a • 

the layer is thick, Iyil> 1 and 

n(n + 9) 2 

r3a (97 — 1)3 1 ± 4 aY1' • 

Therefore when 

When the losses are small (55) thus is not quite reliable in the 
penetration frequency region. The same is especially true of (159 a). 
As the study of the reflection coefficient in that particular region is 
of interest only in connexion with ionospheric investigations we 

preferably defer it to a later chapter. The transition from (159 a) 
to the corresponding relation in the penetration frequency region 
will there be shown. 
When IeI >> 1 we have 

This yields 

1 
r(— ie+) 

2 i{e— elne} 
e —e • 

(2 n)2 

R = ei 2 e 27 

(160) 

(161) 

(1. 
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with 

and 

1 
u2 

2e=u(--i—e -1-oni(—-7.11)2} 
2 ' 

27-- [2r --- n+ ¡ in  3  
5 tiiie  .i. (r)1 

,2) (r) . 
T3-

(161 a) 

(161 b) 

Except for very long waves (when the boundary reflection domi-

nates as will soon be shown) we therefore have 

(161 c) 

Introducing y2 = x2 A , and -9- y eif" , we have 

— 1 _ 2 ct e— e 2 y—(1— y2) hil l+1 91] - 7- ,1. • (*) (162) 
— y 

and 

2 i 2 qr 1 - y 
y3r-=—a e •  
3 (1 ± ' 

Further (if the oblique incidence case is included) 

idd eZ iz = A hm 
k 

MO\ 

C°S = ‘W) 

(163) 

(164) 

which by (35) indicates that except for long waves there is no bound-

ary reflection. 

From (162) we obtain 
a . 

2 y — — sin e" • ( 1+ y2) 

1.1 +   cos gi 
I R I -•:----' e—  Im (2E)  1 -I- y2 — 

1 — 2 y cos P I 2 
I -I- y2 

• exp. Ict cos Yi • ( 1 — y2) • 

( 2 y ) } 
• arctan sin W • 1 — y2 , (y < 1) 

*) For oblique incidence y has to be replaced by y cos 9). 

(165) 
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and 

R z; 

I RI 

a  2 y — —2 sin . ( 1 + y2) 
1 ±  

1 + y2 2 y cos P 
exp. a cos P • (2 _ 1) arctan sin P •  2 

y — ) 

2 y  

1 —  cos P 
1 ± y2 

— a et cos Y-1 • (y2 — 1) } • ( y > 1) (16i 

For y= 0 (no losses), ( 165) yields I R I 1 and (166) yields 

R I z; exp. {— an (y2 — 1)} = exp. (7c e). Contrary to the classical 
theories there thus still is some reflection for frequencies consider-

ably above the penetration frequency (at which y2 = 1). 

This is entirely consistent with (22) which yields 

IRI exp. (7r e) 
when e — 1. 

1 
When the losses are so low that q' 

practically always the case, then 

1 ± (0— wH 

1 — 

and 

1 + y2 
a  2 

. e 
ay 

2 w — c9H 
and this is 

' {Y< 1 , (w _ to13)2 1} • 
(165 

1 + y2 Penetration coefficient 
  a 

± 1 } — 2   ay—ar(Y2 — 1) w _ túlt 

. (166 1 B I y — 1 • e • >,  1,2  <  i —,„»)2 } 

I TI 

According to (23) we have the internal refraction coefficient 

fl+y WWff 

—yi 

1+ y2 
a   

2 a y — a rr (1 — y2) 
• e (167 t 

< 1 ,  } 
(a) — wH)2 < 1 

I ± Y2 
  a 

2 
1TIZ iy+ 1} .ew — wit 

— 1 

ay 

y2  
( — wH)2 < to  

(167 I 
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It is of interest to study — Im (2 e) for small y-values. One finds 

from (165) that when 

Y< 1, 2 eZ:r. (168) 

According to (159) therefore when 

when 

(1) 
H 1 (f) 

y <<. 1 , R (32)  • e 
H1 ) 

iî 

2 r () 6 _2_ i 12r_ 

R e 3 • exp.  31 36 a3 e ± e 1 2 3 / 
r 

(IrD2 c 1. 

On the Application of the Phase Integral. 

Consider the solution of 

d2 17 
k2 e (z) 17 = 0, 

d z2 

(169) 

(169 a) 

where e (z) is a slowly varying function with zero at z = z1, such 
that e > 0 for z > z1 and e < 0 for z < z,. 
The asymptotic solutions in the form of W.B.K.-approximations*) 

are joined in the region of z = z, by expressions involving HANKEL 
1 

functions of order —3. One asymptotic form for z > z/ is 

1 • 
(k2 e)— cos{ k dz — 

4 
(170) 

containing the standing wave produced by imaginary reflection at 
1 

the branch point of ei. The complex phase difference between the 
up-going and down-coming waves is 

*) They should be called Jetfrey8'-approximations, since H. JEFFREYS seems 

to have used them first (Proc. Lond. Math. Soc., ser. 3, 23, p. 428, 1924). 
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k dz — = 2 0 , (170 a) 

where the contour e, must be chosen from z round the branch point 
1 

of eZ and back. This differs from the result of the ray treatment 
which does not contain the constant phase factor due to the expo-
nential tail (in the region z > z„), and which further only has any real 
significance for a path along the axis of reals. When the medium is 
dissipative, therefore, the ray theory cannot be used [3]. 
We have for a parabolic layer 

)21 
e =- 1 — (y-)2 {1 —   , 

so that the vertical incidence phase difference becomes 

1 — ()2 1 
— k  - (u2 — 1) 2 d u 2 -e, (170 b) 

where 

u  z 
— A hn, {1 — (:Tei 

One immediately finds 0 = e. For the thick layer, therefore, 

phase integration round the branch point of Ye generally is a 

very good approximation (even for considerable losses).*) 
We have so far not said anything about the fact that the symme-

trical layer actually has two branch points z, and — z1. 

We have the incident wave fi (z) = Jr') , the reflected wave 

Ir (z) = • exp. If ka r dz_ —2 , and the refracted wave h (z) = 
— 

=e exp.& k e2 d zl= fr (— z). 
Cg 

The corresponding connexion formula is**) 

ci • ir 

z>z1 z < — z1 
(171) 

*) Except for very long waves when 1/1 < 1 ( 169). 

**) This is nothing else than the asymptotic form of the circuit relation of the wave-

equation. 
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Fig. 24. Countours of integration for the phase integrals. 

An examination of the so-called STOKES regions will show that if 
there is a good path c2 passing around the reflection (branch) points 
z, and — z, from the lower to the upper layer boundary without 
enclosing other possible zeros of e, the existence of this connection 
formula can be established [19]. The derivation of such connection 
formulae is the important question in the treatment of the trans-
mission of matter-waves through potential barriers. 
One finds that in the non-dissipative case 

1 _ (Kr = exp. if k 82 d 4 . 

I i In the case of the parabolic layer 1 exp. k e2 d z 1 =.  — 2 n e. 

Thus 
1  

(IRD2 — _ 2" • 
1 + e 

This is identical with the exact relation (22 b). 

(v = 0) 
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In the discussion of the transmission of radio waves round the 
earth we found that the proper values ns (proper angles) were selected 
according to the relation 

18) (k C) e 8) (k a)1 

j 2 a 8 = ln{ RI R4 ,.(2) (k c) ,1-8) (k a)j • 
41,8 

(172) 

When n < ka and the DEBYE-(W. K. B.-) approximation can be 
used, the relation selecting the proper angles therefore becomes 

2 .7-c 8 = th ke2 dr — Tt (173) 

corresponding to the familiar BOHR-SOMMERFELD phase integral 
relation 

(8+ 1..) h= pdq. 
(174) 

The exact relation (172), however, selects not only the elevation 
of the wave front but also determines the intensity of the wave 
which is expressed by the residue series. In that respect it corre-
sponds to the later wave mechanical improvements of (174). 

The Boundary Reflection of the Parabolic Layer. 

When the main portion of the energy is returned at the boundary 
of the layer we speak of boundary reflection. It is of importance 
for long waves when in < 1. 

We find 

id r) Ii — cos cPc 2 

‘ _= k cos (Pc • 1 + y cos 99, dz 
z = A hm 

Applying (89) we therefore find 

(175) 

(2) 

[1 d 4 r 1 
Tc • cT z" ln ID (u fi_ (1 cos 99)2 H (21) (r) -3- —r 6 • e 

t cos (pc ± (2) 
±i j z=11171 11`) (r) 
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(2) 
(1) 

(r) i 7: 

(1 — y cos (pc 6 
• e • cos (2)  1 ± y - cos cpc)21 cos (pc T 2 0.) 

Hi (r) 
7 

. 1 
'Pc = T- (176) 

A (1) 

The complex reflection coefficient for horizontal polarization thus 
becomes 

where 

and 

R4 =   ' 

r 

I - 
H (11.) 

-3-

1 + R, 
— A (2) • 

(ec) 

(177) 

(178) 

(179) 

Since ec> 1, except for the first pole, we put 37- = 1 = f-* in 

order to be able easily to study the qualities of the layer as a 
boundary reflector. 

Thus 

1 — A (2) 

R23 1 + A (2) (99c < 900 ). (177 a) 

For In 1, M2) = 1 and R23 -= 0. Appreciable boundary reflection 
only occurs when Iri < 1. 

When y 1, ( 169) and ( 179) yield 

(1) 
. H 1 (r) 

+ e 7 -3-  
1  (2) 

H1 (I') 
-3  
(1) 

. 2 H (r) 
—1  ± e ï(2) 

H 2 (r) 

7 

(179 a) 
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When iri < 1, therefore 

- e 
and 

1 j y cos 

1 - j y cos 

When co -> oo em 

99e • 

97e • 

(cz ei")-13-r (-13) 3 r (1) 

(a ei 2 qt)_31._ r (1) • 

 3 r () arl 1) 

(sharp layer), R4 ->- . 

(180) 

This represents the true long wave case when the polarization is 

horizontal and coH = 0. We may arbitrarily make the distinction 

that for long wave transmission I r I < 1 and for medium and short 

wave transmission ri> 1. 

It is of particular interest to study the boundary reflection for a 

layer with linear increase in electron density, an especially simple 

case. 
The circuit relation connecting the waves (horizontal polariza-

tion) is [3] 

1 (2) 1 )3_ 
1:7 (1) ( • 

Ï•2- H 1 2 2 e- j 6 .= H 1 2 2 e, 6 ± 

-3 

where 

and cl 

up-going wave down-coming wave 

3 
- (- K 1 

3 

surface-wave (exponential 
tail in non-classical region) 

42 
3 

(-3 i)-2- 
(181) 

1 - 
2 G- = -2-kf etn:2 dz=0±--. (181 a) 

4 

is the usual contour round the branch point. Therefore 

- (—dz = k cos cpc, (181 b) 
c/ 

z = 0 
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and 

By ( 163) 

n 2 co3 A €12 9. 
+ —4 = —3 cos3 q9, •   

d 
Co (w" ) 

2 w 3 

cos3 92, • a — el 2 F , (tog  =- 0) 
.5 cocm 

(181 c) 

when ri < 1. This differs from only in the value of the layer 
constant. For the parabolic layer, however, 

d e 1 (£02 

z = hm 

and therefore, as expected, the boundary reflecting power of the 
parabolic layer is the same as that of the linear layer, provided the 
boundary gradient is the same. We therefore conclude that all 
layers with a linear term in the electron density distribution function 
of the boundary region have similar properties as long wave reflectors. 

A Short Note on the Reflection Coefficient of a Layer 
with Quadratic Increase in Electron Density. 

Since the quadratic case is as simple practically as the linear one it 
is worth while to consider the corresponding reflecting property 
briefly.*) 
Counting z positive from the boundary we have 

coc2 = (z > 0)1 
(182) 

wc2 = 0 • (z < 0)1 

The wave equation becomes (horizontal polarization) 

(12 H 1 x2 
4- in } 

d x2 
(183) 

*) Reference should here be made to the early but different treatment of this case 

by HARTREE [20]. 



100 CHALMERS TEKNISKA 1105GSKOLAS HANDLINGAR NR 34 

where 

and 

1 k cos2.Te 
1 — r0, 

2 di 

1 1 
x = z (2 k)i 

—i 2r 
d —  2 • e 

cu A 

The circuit relation becomes 

(183 a) 

(183 b) 

(183 c) 

1 
1 1 --nrj —nrj (27)2. 

e 2 D (— j x) = — e2 D (j x)— I' (n ± 1) D„ (x). (184) 
—n-1 —n-1 

up-going wave down-coming wave 

This immediately yields 

R=  einz — n — 1 jn 

D (j x) 

e = 
z 

D (— j x) 
—n-1 

X = 

exponential tail. 

( ir 1.0 — 
e (185) 

Performing phase integration round the branch point in the usual 

manner we obtain 

2 0 + —2 = k et n2 dz ro (186) 

For the quadratic layer the W.K.B.-approximation is correct for 

all wave-lengths. 
For the linear oscillator in wave mechanics, therefore, ( 185) imme-

diately yields the correct energy levels, viz., 

1 
147„ = (M, h vo, 

where y, is the classical frequency of free oscillation. 
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According to (39) 

iln D (— j x)} 
—n-1 z.= 

r(ro+ 312) 
i • 2  2 ( u y 

• 2  o o + 1/2) e (187) co A 

2 

Making use of the STIRLING expansion for the r-function we find 

that for medium waves, when Iro 1, 

[cdi—z iln D (— j x)} 1 -= j k cos cp, • 

—n-1 z = 

There is therefore appreciable boundary 

jr, j< 1, which corresponds to the requirement 

and parabolic layers. 

Since re 7C ) 

— j tan (-2 ± —4-

rol 1) • 

reflection only when 

I r I < 1 for the linear 

for the quadratic layer, and when further 7 = 1, we have 

R4 = 

(0+ 112 

r 2 ) \-1 e et 
+ jtan —4 ) C°8 (Pc • ( r0 + 31 2 )• (c2 DI • 

0 

2 

i 
e 

—2-

rorc 7C (r0 + h/ 2) A 1 

1—jtan(--i ± —4 ) cos (Pc• r + 3/ ) • (Fic ) • 
r o 2 0 

( 2 

When b ---> oo (sharp layer), R, ---> iz as expected 

zontal polarization. 

e 

qr 
2 co 

2 

for hori-

A Short Discussion of the Case we < w < wt, for the n, 
Parabolic Layer. 

We have 

2 
1 
  arctan   
2 coli — co 

PI 

(189) 

(188) 
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It is convenient to select the plus sign (the other sign will only 
transform the progressive wave into a standing wave and vice versa), 
thus 

We find 

j e = a [( 1 + y2) cos j (1 — y2) sin 771] = n, 

Further 

(n) 
1 

0= a ( 1 + y2) — —2 

1 . 
V —   (4 a) i e 2 

1 
, 

(189 a) 

(190) 

(191) 

The circuit relation 

r (n ± 1)1 j-n -- rj 1 nrj 
D (V) —   e 2 D(j V) + e 2 D(—  j V)} , (192) n 1 

(2 71)i —n-1 —n-1 

yields waves progressing in both directions between the branch points, 
1 

ei -= 0, i. e., between 

z = (1 + y2 e" Fill 

Partial reflection thus does not take place within the layer. 
Therefore 

1R coeni< Co< coH = 

and the internal transmission (refraction) coefficient 

D (— j V)1 

We have 

where 

T = —n-1 
ID (± j V) 
—n-1 z = hne 

2 
r = ay3e—i2ei l—i-gl le 

(1 + -y 1)2 e 

Yi = ye 

fir 
e r1, 

(193) 

(194) 
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Further 

a 2 y 
Re (e) — -2- 2 y — cos P 1 ( 1 + y2) arctan i cos WI •  1 — y 

sin P,  2 (1 — y2) in j 1 -I- 1 ± e sin PI I 
2 y n 

P 2 ' 
1 — — 1 ± y2 sin i f  

and 

(e) 

2 y 

-= a [cos P I 2 2 (1 + y2) in j 1 4-' 1 ± y2 sin P 

11 -- 2 y sin Y1 
1 ± y2 1 

2 y 
— sin P1 (1—y2) arctan I cos W 1 • 1 y2 11. 

Thus 
a 2 y 

{Re (e)} = o [2 y — ( 1 -F y2) arctan  y21 , 

and 

Im (e)},  0= 0. 

Making use of ( 158), remembering that 

and introducing 

we obtain 
(2> 

H (1'1) 
5 

T=e i(2 72:- e++jr,o) • exp. [j I/1 -F r,* — 11 —6 • (1)  , ( 197) 
1 (re) 

Él) H ( e —  2) Olt 1'1=  ) 3 1 

2 r 1 +  
r ,* = —3 ay3e—" i• 

(11 — Yi.) 2 

(195) 

(196) 

(194 a) 
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and 

(ITI) = 1. v o 

For very long waves therefore (ir,1 <<. 1) 

(197 a) 

When ir11 1, 
.f ( I\ , t 

T e, + + + 

which can also be obtained by phase integration along c2. 
Finally 

1 d JD 
dz v, 11 

(1 hni = 1   11 - 
(2) 

I  I — j  . 3  
H 2 (Ti) 

j-¡,1 j — 2 (2) 
11 1 (r1) 

(2) 

H 2 (r 1) • •• 

+ (2) e 6 
11 1 (ri) 

and 

Introducing 

and 

- A <12) 
ri =   

1 ± A (12) r° • 

T = e 117' , 

*) 

7.0 = e , [Im (1)r) > Re (14)] 

6 e 

(197 b) 

(198) 

(199) 

the effective transmission and reflection coefficients by (28) approxi-
mately become 

T sin 17,. 
T ell (1— 1.02) 1 _ r2 T2 — sin (11, + r)T)' 

1 — T 2 

r0 • 1-4, T 2 — 

— sin 1)2, 

sin ('Jr nr) • 

*) Only vertical incidence considered when cuLt O. 

(200) 
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In the particular case y = 0, 1m (nT) = 0, and the weak reflected 
wave exhibits the »colours» of thick plates. Since IRett i .e I Te l, 

this is not true of the transmission coefficient. 

It is interesting to compare the result of (200) to that of EPSTEIN 

on p. 633 in his fundamental paper Reflection of Waves in an Inhomo-

geneous Absorbing Medium [ 1]. 
In the corresponding case EPSTEIN'S numerator in the expres-

sion for Reti is 
— sin (— n d), 

where 

{ 1 + 82 6312- 1 

The variation in dielectric constant is expressed by 

83 ( k z)-
1 ± —4 • cosh. — . 

2 8 

The thickness of the layer in —2 n units therefore is proportional to 

s. The boundary region may arbitrarily be placed at 

4 s 
Z = A hm, = —k . 

For long waves and no absorbtion this yields 

2/ h \2 

m i. (_con.) , 
cm 

which substantially corresponds to the dominant term in 

2 

1 ) n2 A hm CO 2 

/OH  cm  

112') 

On the Poles when the Reflecting Shell is Radially 
Inhomogeneous. 

We have for horizontal polarization 

C;,l) (k c) (k a) 
0 2 = 1 — 774  2 e(,), (k c) evi) (k a) , 

where 71, as before is expressed by (83) and 274 by ( 177). 

(201) 
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Since 

(1) 

H (0) 
3  

41,2) (k e) H (2) exP• [ 2 (Ye — ± —3- , -} (e) 
these expressions yield the Phase Integral Relations 

kc _1  

f {1 d x = S14, {Re (n) k a} 
n2 2 

ka 

kc 1 

n2 rdx 87r - S,4, {Icct_Re(n)_kc} 

where 

(202) 

(1) (2) 

11 1 (ea) 11 1 (ea) 
1 1 

-3-  -3-  
(314 = ec — ea ± j ln (2) (1) 2 In 17,114, {Re (n) < k a} 

H1 (ea) 111 (ea) 
3 -3-

and 

(1) (2) 

(e)Hi (ea) 

1 -3- 1 
(314 =- lnIH1 (2)  (1) I- In )), 714 • {k. a < Re (n)< k cl 

H 1 (Qc) H (ea) 

Relations ( 122) and (203) thus are practially identical for the high 
order poles. 

Let us now for the sake of completeness show roughly that there 
can be no poles for n°> k c (no-loss case). For the sake of conveni-
ence we further limit ourselves to the parabolic case. We have 

1 

(203) 
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(1) 
11 1 ( Iec°1 e 1-ï— e 

- 3 ) 

(2) 
H (lee I 

• 3 ) 

A nt, 

and therefore 

(1) 

(e) H(11) (ea) 
-3- 

,;(2) 
n 

exp. / j (— 71. — 2 arctan 

— [ exp. j 2 arctan 

2/ (VD+ W I) )1' e _ c 
3 3 

1 
(IQC:1) 

-3-

3-2- / 1 (16) 
3 

2/ oeD+ii (19°I) __ a _ la 
3 3 

(205) 

1 
3 - -2- (le) I 

3-  
— 2 arctan= exp. (j F). (n> kc) (206) 

2/ 31 ( ie°1)+/31. MI] _ 

Since 0 < F < —3 when lei > 0, (201) has no zeros for n° > kc. 

For the higher order poles and horizontal polarization for example 

we have the same Relation I as ( 125). 

Relation II becomes in the parallell form for the parabolic layer 

(compare p. 65) 

(2 (k c — 2 
kc 

f2 (k a — 2 

ka • 
n ea° 

2 

n e? 

1 

1 
1 — (1)  1 

H (e?) 2 
-3-

(1) 

Hi (e2) 

(1) 
H 2 (e) 

1 (C) 

(1) 
H, (e.) 
7  
(I) 

H1 (e2) 
7 

cos (-i- fi (o°)31 (1 )3 A — 
kc 

cos (-7 ± i%) (f.) 31• ) A nil + 

(1) (2) 2 
7_ 1 11 2 (ea)H, (ea) 
k(3e)iJ 7 7 

.171 ka H 1 (1)(e,i) 117) (ea) 2. 
1 7 7  f o k /3 ea' 

+ 5 2 / k 1 \ I k 1 ) r (ea) — ,2 ()} _i_ 
v— Icia*) ‘ 1 + Ici-je 
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2 ( 1 — -p A (2) /3) ( 1 ± .71) A(2) /34) • 

(1) (1) 

f H2 (e?)11 2 [ 11 11 2 (e?) 12 1 
1  -i  f 0 k cy , o‘ 

1 141) (e) , 1 "(2)P "s 'e ' (1) • ri (ec) — (-3 cosa (pc • ,( 2 ,„, — 
I I 1 (en 

ï ï 
(1) (2) (2) 

H 1 (ec) u 0 — 1 ec ,H 1 (r) 2 1 
fi' -3- r: —  i —  -3 3 l' 

[1 ] ____ r  3 —or— — e 3 (2) ,. f • —k- • 1 (2) I = 

H 2 (e) H 2 (en ) 'H2 (T) ) 
3 .3- .3 

1 f 
1 = ii- iln (Th n4)1 (207) 
'n -- n,? 

where 91, is obtained from (83) and n, from ( 177). The variation of p 
has been neglected in the range of Relations II and III. Relation III 

is not written out. It is easily obtained from (209) when compared 
with ( 134). 

Further Notes on the Residue Series. 

If we desire to raise the receiver above ground, i. e. r > a, we 
obtain the general expression 

e, 1 e (k a) . ;.,1) (k r)} 1 + R4' (2 { 4.;,1) (k c) 4(,2) (kb)1 
  — . • (1) (k b) 4e) (k r) • 11 ± R   
°i(n) 2 2 y t 1 1) (k a) 4e) (k r) ) (kc).  (1) (kb)!' 

and (b>r>a) 

ev 1 f 4(,2) (k a) e (k bfl f 41,1) (k c) e ) (k r)1 

Pi (n)   — 2) . • (1) (kr) ' (2) (k b) • il + R„) (k a) ) (• kb), 2 1 + R4 (1,2) (k c) 1,(1) (k r)! • ( v " ,41, ( 

(r>b>a) 
Placing the sender on the ground one obtains 

1 

1°1 (n8)j 1/8 
• 441) (ka) l,1,28) (k a) ( 1 + R1) ( 1 + R1) 

r = a 

and 

ei v(ans 
(kc) 41,22 (ka) ( 1 ± R1) ( 1 ± R4). 

r c 

1 

R1 1 (209 a) 

(21 



RYDBECK, ON THE PROPAGATION OF RADIO WAVES 109 

Placing the sender close to the reflector we further obtain 

"  — (k c) (ka) ( 1 ± R1) (1 R 4) , 
1)1 (n4) 2j 8 

r -- a 

and 

ev. 1 1 1 
— (kc) ‘,`1,28) (kc) ± R4) ( 1 ± R 4) • .7?-4 • 

0 1(718)1 22 8 
C 

(209 b) 

From these relations we find that the influence of the reflecting 
properties of ground and shell (layer) is symmetrical when the sender 
and receiver are placed on the opposite surfaces. When they are 

placed on the same surface the local reflection coefficient dominates. 
This holds of course only for a constant 0-value. 

Returning to the practical case of (209 a) we infer that for high 

angle (high order) waves and vertical polarization there is not much 

difference in intensity at the two surfaces when the losses are small. 
We have already seen that R1 and R 4 appear symmetrically in the 

pole relation. From this one may perhaps be inclined to believe that 
the reflecting properties of ground and layer have a symmetrical 
influence upon the attenuation. It is true that the influence is 
symmetrical for higher order waves. For the lowest order waves, 
however, the ground properties are only of secondary importance. 
For the lowest order pole we have very approximately 

— [ A no cos Pe • o • ( Ro) ((2 0) 
'Éc il 1 c 

7 

1 
2 j —2— ln 714. (210) 

2 

It is worth noting that for this pole 1), 1. This is borne out 
by figs. 13 and 14. It is a consequence of the fact that, according 

Ç 2 1 to table I on p. 55, when ea =_ lea l• exp. — j —3 71 J , (n > k a) , 

and ka1 >> 1, 
(,).)• ( lea) (,)2 (k a) 

e (k a) —  (k a)• 

The reflecting property of the ground therefore should not notably 

affect the intensity of the lowest order waves. If we put k1 -= k, i. e., 
the reflecting sphere is removed, the result is substantially the same. 
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Fig. 25. 

The physical meaning of this is clear if we study fig. 25 which 
depicts how a ray from a point source forms its own virtual reflecting 
shell. If the wave-length is extremely short a sharp shadow sphere 

is formed. If a smaller sphere with arbitrary k is placed concentri-
cally in the shadow sphere it will disturb the picture only if the wave-

length is so long that the shadow edge is not sufficiently sharp. 
If we make use of the addition theorem (76) we infer that the 

radially standing wave produced by virtual reflection is 

4.(j) (k b) (1)2) (k r) ± P (k r) 

kb • k r 

The phase change down and up becomes 

A' = Phase { (k r)/ e ) (k r)} . 
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Since the important n-values are large we have, when kr> n, by 
(84) that 

=-_ 2 yr — --2 

The W.K.B.-phase change comes from the exponential tail in the 
shadow sphere. 

When kr < n we have by table I p. 55 

1 n 1-71- 1(,2) (k r) 41,1) (k r) 2 
. 1 f 1 . 

1 

exp. { — — 1) -2-d al. 
kr 

— I Yr 
3 1 

3 2 -2- — 
Since  -3 (n) • (k t r)-1, where k r =-- In—krI, one 

infers that the sharpness of the shadow edge increases very rapidly 
with the wave frequency. 

The value of -Tc- corresponding to a certain ye value for the lowest 

order poles is 

2 

This is the radius of the virtual reflecting shell. For short waves 
c — nlk << h, and the lowest order waves (which are guided practi-
cally exclusively by the outer shell) will not contribute appreciably 
to the signal strength even for very long distances. In the long-

wave case, however, the low order waves will be important on 
account of the slow decay of the exponential tail. 

Let us consider eps1 P (ns) for the lowest order terms in the residue 
series. Remembering that 

41,2) (k a) Z1,12 (k c) 

R ' R4 • -4418)—(ka) • == 

j28r 
e e 
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we find from (208) for vertical polarization after a few trans-

formations 

eys 2 44,,18) (k c)( k b) , (k a) e 

(el. (228) — i 4 eiZ) (kc) 8 
R1 • •-  e (k b) ' 

y . 

1C(1) (kb) ± (.1) (ka) ''s l. V, V 

• ev18) (kr) i,.-(1) (kr) ± 41) ' R ) (ka) 1j8 ' 

r y, (k r) yvs (k a) i 
(211) 

(ka) k 1):,, (k, a) 

Yvg (ka) ± ki VI), (Ici a) N (1?;:,.) 

e9Y (ka) k 14, (k, a) D (.1i1,8) 

41,18) (k a) k„ • wp8 (k, a) 

For the lowest order wave I ea l >> 1, and 

Di 
k (kia) ( 7•C 

— , 2 
_ 1 • 

1 ± • (k la) k2 a2 

1 k .1P „ (kia) { 71: } 

k, Ippa (k a) k2 a2 — 1 

(212) 

It is especially interesting to note that b and r appear symmetric-

ally in (211) indicating the self-evident fact that it is equally profit-

able to raise the receiver as it is to raise the sender. 

After a slight transformation one obtains 

(kr) (k a) • '[11 („18) (ka)}2 • D (.1? + 

(k r) tp (k a) 
422 (k r)   (2.8) (k r\ 

± 1 eq) (k r) (k a)}] 
2 4?) (k r) 41!) (k a) 14:,8. (213) 

For the lowest order waves I ea l > 1, and 1 el Yri -2 iYal 
1 

Ic i— j 

(e2 (I7aI — Yri) 1)] 
2 

f n82 11-7 1k2 a2 -j 

(213 a) 
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First when exp. (2 lyal — 2 Iy,.1) >> 1, is it possible to neglect 
the ground influence in (213). Since 

(  4 ns2 

lIal k2 (a ± r)2 1) • k (r a) ' 

very long low order waves will keep their surface characteristic a 

considerable distance above ground. When r = c we have 

4• 1) (k e) (2) (k a) 
R I ( 1 + RI4) • 

—  8 •   
2 418) (k a) 

This does not contradict what has just been said regarding the 
ground influence, since RI — 1 for the lowest order wave. Hence 
we infer that the propagation of the lowest order wave is mainly 

governed by the properties of the reflecting shell. The ground 
properties are influential only in the ground neighbourhood. 
The intensity of the lowest order wave generally decreases very 

rapidly when r < n, as shown by (213 a). Only for very long waves, 
for which the decrease is comparatively slow, are the lowest order 
waves of importance (0 fairly large). The contribution from the 

low order waves appears to be a characteristic feature of the long 
distance propagation of very long radio waves. 
For the higher order waves (high angle) we obtain 

, 
1 n2 1— i (7,— 2 7 — (2 7,— 2 

— -- 1 — • e a - 
7'8 2 I k2 r2J e I • 

Since 
r — a 
  (2 Ye — 2 Ya) 

we have 

1 9 — 4 r 1 ( 1 c— r 1 r — a 

a 71-) ei n rclaa 
1V8 — 2 i er2J • e 

I 1 
R1—  2 c — a RI :«T 8 • c — a;• 

4 
) 

8 

(214) 
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Introducing 

r — a { 1 1 c — r 
cto—  n 8 — 4 Phase ( )1 +   • Phase (Ri) , 

c — a 2 I 2 c — a 

and 

1 c — r 1 r — a 
= —  in 1E1 ±   ln I1R4.1, 

2 c — a • 1 2 c — a 

1 
IL,81 - -2-

1 1 

{1 — •  n2 e—  • ( a I 4 • RI 2 
k2 r2 

y  .1. 

• 2 {cos2a0+ sinh2/30}i (214 a) 

This demonstrates how radially standing waves (selected by means 
of the phase integral relation) are set up between ground and shell. 
In the non-dissipative case equidistant node surfaces are produced 
in the propagation space. When Ri =- R it appears from ( 196 a) 

that the intensity is practically the same at the ground and at the 
reflector. 

So far we have not said anything about the field strength. Making 
use of (99) we find that the original residue series (214) can be used 
providing the following e„.10„ (n,) expressions are used. 

For Er: 

ey. 2 Air / n8 \2 (k c) {y„. (k b) (k a) 
R'  • ?.;(1) (k b)     • .1?;, 

(ns) j b \k r • 4 (2) (k c) (1) (k b) (1) (k a) pr  „ 

fy„i, (k r) y„. (k a) 
( k r),1,0,8)  

(k r) +  „(1.) (k a) • Ie").91 ' 

for E0: 

ep8 2 A,r n, e) (k c) (k b) y,. (k a) 
R'.  8  Z"(1) (k b)   

0 1 (n8) b k r 4 (k c) (k b) ± (k a) "sj 

(y,.' (k r) yy. (k a) ) 
-(1)' (k r) '  
• * 1;.,18)'(k r) ±  (k a) • >8J ' 

and for Hq,: 

e„ 1 = kr e>8 1 

l(ei (n8)1 zons •  10 1 (ns)1 • 
Er 

( 
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We introduce the notations A E,., A E 0 , A119, for the field strength 
components corresponding to the individual waves of the residue 

series. Thus 

and 

where 

A E,. n. 

A H ep kr 
=-. 

A E,. (k r) i t es) (k r) 

A E 0 j kr • IA); (k r) (k r)' 

(k a) 

-12 —  (1) (k a) V8 

(216) 

We can, of course, also write 

)2.,) (k a) 1 ;,2,$) (k r) ;.,28) (k c) „(2) (k r) 

E. n, e ) (k r)   • le 4";,18) (k a) 1 4. ±  (1) (k r) ns es) (k c) -1-- R4 • (1) (k r) v, 
. . Ee j kr ;1,12' (k r) • e,(„28) (k a) e;,22, (k r) — jkr 41,2s) (k C) )2) ' (k r)• i. .  8  

Ce) (k a) i. --1- j_. 4.0.)' ( kr) 4(1) (k c) + R 4 (1) ' (k r) p, Y8 Y8 Y8 

In the W ATSON-Case one easily obtains 

IA E,.\ n, k1 VI), (k1 a) 
•• ‘A E 0 I  k y„'s (k, a) k a k 

and 

E,.\ n, k3  (1c3c) n, k, 

‘A Eo — — 5 k c • k • •,(,1) (k3c) k c k 
8 r c 

{i 

1 
ns2 

— (kia)2 , 

1 
n82 17, 
(k3c)2J 

i. e., the electric field of the wave at the surface is rotational and 

(216 b) yields the familiar ellipses of the electric vector. 
Let us further consider the general case a < r < c for the higher 

order waves. With the notations of p. 114 we find 

A Er 

A Et? 
— j tan • cot (ao j j%). (216 c) 

(216 a) 

(216 b) 
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Fig. 26. The low and high order waves in the propagation of long vertically 

polarized radio waves. 

This can also be written 

A E; sinh2 cos2 aori sin 2 ao 
— tan (p,. • {sinh2 ± sin2 ao) exp. [j arctan (sinh 2 fle d A E0 . 

In the nodal surfaces where sin% or cosao is zero, one of the axes is 
vertical. When the losses are small the electric field is practically 
a purely alternating one in these surfaces. 

Denoting the axes of the vector ellipse by dr and do one further 
easily finds in the non-dissipative case that 

dr2 d02 = const. • sin2 2 99,, 

i. e., the intensity of the individual wave is practically the same from 

ground to reflector. 
As a final illustration of ;the radial nature of the high and low 

order waves we have in fig. 26 plotted the variation of A Er with 

height for the two cases. The reflecting shell is homogeneous and 
the reflection losses have been neglected for the sake of simplicity. 
The layer height is 60 km and the wave-length is 5 km. The 
order of the wave, denoted by 8, is also shown in fig. 26. 
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Making use of the notation a 0 =- D, we have 

1 a= oo ej(leD—cot) 8er Oy a v-, 1 e,8 5 Ana 
U (r, 0) — • -- -• .,„ (n, 0)-2- •   • ei (-4r + D) 

j D sin 0 r b 8 0, (n,) Os (n,) . =0 

Accordingly in practical units (all lengths in meters) 

1 8 = 00 
1 ( ns 2 120 7r j (k D — t) ( e ) 2 v alb 

E, (r, 49) — K • ra--b • e 
• sin 0 • k b (2n ° n8)2 • kr • 8=o 

evs i dr. Ans D i 

  • e 5 a . Volts/meter (217) 
0 1 (n8) 0 3 (n8) 

AUSTIN'S formula yields 
1 

1E1 = A K • 120n ( 0 ) 2 qD • r. Volts/meter 
D sin 

AUSTIN'S attenuation coefficient e P  D thus must be considered an 

approximate average of the above sum. 
In the case of increased attenuation only the first few terms in 

the residue series have to be considered and in such a case 

120n 1 U1 1 
1E, (r, A K • It • I 2 tr, I . Volts/meter (218) 

The power radiated by the vertical current element and by the 

horizontal loop in free space is 

zo (A 1 2 nzoiJSkr 
P watt = —3 -71 , and Pwatt — 3 / • 

Relation (218) can therefore also be written in the familiar form 

1 
U 

Upr 

U 1 

Upir 

. ,u Volts/meter 

We find for the high order waves when the ionospheric 

can not be neglected 

2j   • tan q2, • 
„) 

(si n n g9, 

(219) 

intrusion 

(219) 
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Putting 92c 92„ = 92„, we have for the high order waves when 

1c1 00 and the polarization is vertical 

ev, 
 92., (220) sin  

a cos (Ya —  Ya) • COS (Yr Ya) 

and the contribution to Er (r, 0) from the high-order terms (8> M.) 
becomes 

1 8= co 1 
120g ej(k D e )2 2 , (27r Oy  a 

A .K.m) — A K • 
j 2 D sin 0 k a h h„ 8 = 3,1 

2 

• sin% • cos (Yb — ya) cos (Yr — Ya) • el ( 4 D) . (221) 

The Limiting Case of a Plane Boundary. 

In this section we will show how the solution of the problem of 
the plane boundary can be obtained as a limiting case of the sphe-
rical solution. To that end we let a oo while keeping constant 
the quantities a (9 = D, a = hew b a = hba, r — a = hra, etc. 

Introducing the new variable 2 = k sin = —a , we have 

Lim (k b) 

a el) (k a) 
a = hba v 

— a2 hba 
e e 

1 
where a, = (21— k2)- 2. Further introducing the quantity al = 

1 
= (4. — lei, we find for vertical polarization 

Lim e, k e— a2 hrb (1 ± 41e—  a2 2 hba) ( 1 ± 9.1 e—  a2 2 her) 
a ---> oo gy 2 a, 1 — r41. e— a2 2 hca 

(hra> hba) 
where 

1.2 
71, -1 -2 “1 
0  1,2 „ 

"1. '2 
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is the plane FRESNEL coefficient for vertical polarization and ri is 4 

the plane coefficient for the reflector. In the WATSON case 

1 1 a2 — k2 « 
4. 3 
' 4 = ' 4. 23 — a2 . 1,„  03 

2 

where a3 = 
1 

(?1 — 14)-i • 
n d n 

Since Tar el, and 

Lim P2, {cos (7r — 0)} Lim 
  a 00 

cos n er cos n n 
Im (n) > 0 Im (n) < 0 

[5] we obtain from relation ( 107) 

oo a2 hrb ( 
A1 1 + f 2, d 21 e 
= • Jo (D 2.1) •   

k Cr2 

{cos (7E — On 
— 2jJ0 (21D), 

— a2 2 hba\ 1 1 ce2 2 e 1 ± r4 e 

1 — a2 2 it,' 

(r > b) (222) 

If we consider the transmission of waves between two identical 

reflectors, i. e., 711 = r, and if we further place the sender mid-
way between them, we observe that 

1 + e — a, 2 hba 
1 

— a2 2 hea — a2 • hat 
1 — 1 ri — 1 ri • 1 • e 2 4  4 

We thus see that this case is identical with the case of a trans-
1 

mitter on a perfect reflector a distance —2 hea from the other re-

flector as expected for symmetrical reasons. 
In the special case hba = 0, rh = 1, and r =- 7123 , we find 

00 A1 ej k R 
2 A1 r 21 d À1  .17 = j k R jk a2 • Jo (D 21) • e— a2 2 hca 1  cosh (a2hra) 
_ • r23 • — a2 2 hca ' 

1 — r2-3 e 

since according to SOMMERFELD 

jkR 00 
e I Â1 d 11 — a2 /bra 

Jo (D 21) e 
a2 

o 

(hra > 0) . 
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This result is found in a slightly different form by ECKERSLEY 
— a2 h ca 

[4] who, however, appears to have lost a factor e in the 
numerator. 

In the case of perfect reflectors (r123 = 1 = 711) we finally obtain 
the elementary result 

p-œ jklep 
H= A-1 

j k Rp 
p=o 

where k RI, denotes the iconal of a ray of order p. 

A Short Discussion of the Case of the Poor Reflector. 

When the reflecting power of the shell decreases and e < 1 

it does not appear to be an easy matter to obtain the corresponding 
value of the low order poles from the previous relation 

8 V8 

1 
(k a) (1) (k c) 

— R1 0 
1 4 Ve' UV V‘ 141) 342) IL c ) 

(>1)8  

It is obvious that the zeros of ( 01 • 02) are also the zeros of 

1 ey12 (k a) 4 ) (k e) 

e (k a) Vt; e) 
 — Ri •   (223) s) IL 

‘1,8  

which is a more suitable expression when 141 is small. Introduc-
ing a new reflection factor 

(k a) 

Py8 (k a) 13n N (RI) 

(k a) D (Ri)' (224) 

(ka) +  13" 

it is easily shown that 
(2) 

(k a) (718 1) i ,,,(k a) D (Ri) 
(2) — Pn —  1 —  e  • RI • 8-1 (k a) •  (2) . (22 

cos v (k a) 1 v 
(k a) —vs-1 4";,18) (k a) 
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This immediately yields 

. (k a) 
(res ± 1) 71'   1— e D1 

—v8-1 (k a) '1 4.12) (k a) 
8  Dl 

. (k a) 441) (k a) 1 — (ns + 1) r V8 • 

1 — e 
(k a) 1 

(226) 

which inserted in (223) leads to the following pole-relation, viz. 

4(1) (k c) y8  n e . ei 
— (n8 ± 1) r   8;7 

1 + 
: j !Pv8 (k a) 4v. (2) (k c) 4 

e . R I. .  
P — y8-1 (k a) ' ,-(1) le , L. c-) 

4 8  
1 +  e. 

e 2) (k C) 4 1)8 

— j 23 e  r (227) 

It is to be noted, that 8 here is not the same s as appeared in the 

previous pole relations. When RI -= 0, we are left with the relation 

„ . (k a) —(ns ;71  vs 12 
e  

• y8- 1 (k a) 1 
(228) 

This relation which has been found by VAN DER Poi, and BREMMER 

[21] yields the poles of the reflector-free case. These poles are all 
1 

situated in region c) where P„. (k a) —2 S;,18) (k a) (except for the 

lowest order pole where the HANKEL formula has to be used). When 

this approximation holds one immediately finds RI equal to the 

plane FRESNEL coefficient for vertical polarization. One further 
obtains the familiar phase integral relation 

ka 1 

y. = {1 — d x -=- — 4 ) + —2 ln RI 
n„2 }-2- 
x 1 • (229) 

ns 
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Removal of the spherical earth is formally effected by putting 
k. When this is the case we have 

and therefore 

(k a) 

RI —  8 ) (k k1) • --
) e 8 VC a 

e (k c) 

8  2 81r 
4 ,28) (k c) e • (k == kà) 

For poles not too close to kc we therefore have 

(230) 

(231) 

k c 1 

.= . }11 d x n (8 ± 1)ln . 
j 

(232) 
7i8 

Since the first phase integral relation (229) only holds in region 
c) of fig. 12, 8 may in this case be restricted to the values 8 -= 0,-1, 
1-2,-3, .... The second phase integral relation (232), however, 
only holds in region a) and in this case 8 may therefore be restricted 
to the values 8 -= 0, 1, 2, 3, . . 

It is of particular interest to note that formally identical phase 
integral relations hold for the proper values of the waves guided 
by the inside of the spherical surface and for the waves diffracted 
over the outside of the spherical surface. 

Returning to the complete pole relation (227) we note that the 
correction in RI due to the poor reflector approximately is 

— RI 

n, 
since e <<. 1. 

441) (k c) 
Y, 

(k 
  R 

C) Y, 4 

)1.) (k c) ' 
8  R 4 i 1 + (2) 

(k c)  
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When the earth is considered a perfect reflector and .R1 = 0, one 

has the familiar relation for the lowest order pole 

1 . r 

= k a + 0,808 • (ka)i el -3- . 

Therefore for waves not much longer than 1000 m and when h 

at least 60 km 

3 

ka y 3 (hy —1h 6, — • 2-2- • — • 
3 a e 

where 

(k a) 3 3 
e • — • 0,808. 
h kh 4 

Thus for 2, -= 1000 m 

„(1) (k c) .  -8  
4 ,-(2) k c) 

2 Im (Ye) R141 900 • 1R 
e 11 • 

This means that even a numerically very small R1 will tend to 

displace the zero order pole considerably. For 2 = 100 m, — Im (ye) 

is ( 10)3 times greater and this effect is even more pronounced as 

expected. 
In the case of a strongly absorbing sphere [5] 

ir 

no = ka ± 1,856 • el , 

and the influence of the reflector is still greater. It has thus been 
shown that even a very poor reflector will tend to change the proper 
values considerably. This effect is especially considerable for the 

shorter waves. 
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On the Attenuation Coefficient in Long Wave 
Transmission. 

We have already discussed the attenuation coefficient of the high 

order waves in the special case of a homogeneous reflector (WATSON-

case). We are now in a position to extend our study of the attenua-

tion coefficient also to the case of the inhomogeneous reflector 

when the polarization is horizontal. 

Returning to (210) and remembering that for very low losses 

(1) 
H2 (ea) 

with 

1 + iBe iTe • • 2 cos 13e) ' 

1 r i 1 \ r ) 
3 

B (11 3 • 3 — y cos g),( a 2  , 
\ 2 / r(23) 3 ) 

3 

(233) 

(233 a) 

we obtain the attenuation coefficient 

  7r ec° , 0.) (1) 
Pi (e) I -H 2 (e ) I cc's   (234) 

cos q), • 2 a 2 -3- 6 — 2 cos q), • a• 

Further neglecting the ground losses we get for the higher order 

waves, in accordance with Relation I, for low losses 

r 
1 ) 2 1 1 I, 

cos (1) ' 99, 1 a \-2- cos2 (pc (Il i. f7C A 3 

2 h sin q;,, 3 / r  (1 ) " h sin 92e wen 1 3 A, y  ( 2 ) 
Cm 

>> 1. (235) 

In accordance with ( 138 c) we therefore find 

1 r )(fis)inhomogeneous ( w y  ki (7r A  ) 3  i"  
, (e.)„ >.>. 1. (236) 

(I31)homogeneous V 3 Ac,,, r  3 \ 

2 I  

i. e., there is not much difference between the two long wave cases. 
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An inspection of ( 188) further shows that (236) holds for the qua-

dratic layer too. 
In accordance with (70 a), cos (pc actually is 

n2 
8 it: 1,2 ei2tem\212 (239) 

C To = {1 — (k 

So far we have neglected the last term in (239). For s = 1 we have 
ec 1 or 2, i. e., 1-4/ (k c)2 • > 1/192, when 2 = 5 km. Since 

A h,olc 10— 3 , if A h„, = 6 km, we have been well justified, howe-

ver, in neglecting the last term. This holds even for a half-

thickness of as much as 60 km. 

For low losses in accordance with (234) we have very approxima-

tely 

1 2 1 
y (a/3) 3 1 hne 

 • a a 6 co 2 

3 Cm  

It is especially interesting to note that the frequency dependence 

differs but slightly from the later AUSTIN formula for long distance 

day-time transmission which has 

0,73 • 10-6 . / 0.6 km-1 (241) 

(240) 

for transmission over sea water. This coefficient is assumed to be 

independent of y , the height of the sun. 
For the E-layer as well as the D-layer we may put 

1 
tcm = (fcm)max • (sin yo)i. (vo > 0) • 

The density at the level of maximum ion production of the absorb-

ing gas roughly is 

eo = (e0)... • sin yo • (Yo > 0). 

Putting as an approximation y proportional to eo, we have 
ymax • sin yo , 
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/31 

1 2 1 

1 IA hne  i 3 ViL, 1 

2 • (sin 7o)i- • (Yo > 0) a 6 co j (242) 

According to this approximation 13, is practically independent of yo 
when yo > 0, in complete aggreement with the AUSTIN formula and 

later field-strength data. 

It next remains to be seen if acceptable values of (f ) 
Cm  max 

and you,x yield the proper attenuation or not. If we assume 

that 2 = 5 km and (fil),00x 0,3 • 10', we find (f cm). 300 kc/s 

when youtx = 5 • 107 (a reasonable value for the D-layer) and 

Ah, = 6 km. This value of (f )max is not at all improbable. 

AUSTIN'S formula (241) yields ie 0,5 • 10-3 for the same wave-
length. 

Making use of ( 188) we find for the high angle terms in the case 

of a quadratic layer when the losses are small, 

r (1) 
cos2 9,8 1 3 1 

p   .  3 

2 h sin q). r (4 zi)1, • co-4- yi • sin —8 . 

since a is proportional to co,m, we have the approximation 

1 

/5', (/3,)max • (sin 70) 8 (ro > 0) 

(243) 

(244) 

which corresponds to (236). 

Sa far we have only attempted a discussion of the day-time trans-
mission (A> 0). At the present stage it is not possible to say much 

about the transition from day to night conditions. During the night 

transatlantic field strength data yield a much smaller fl-value. This 

is perhaps an indication of reflection in the E-region where y only is 

of the order of 3 • 105. For very long waves the sun-set transition 
takes place quite smoothly whereas for shorter long waves (2z; 5000m) 

this transition is marked by a very pronounced field strength mini-

mum as shown in fig. 27 reproducerad from ESPENSCHIED, ANDER-
SON. and BAILEY [22]. 
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Fig. 27. Diurnal field strength data for transatlantic long wave transmission. 
Entire path in daylight. Entire path in darkness. 

When the entire path is in daylight typical field strength 

constancy is observed. The field strength minimum is observed 
only in the sunset zone and not in the sunrise zone. This pheno-
menon so far does not seem to have been satisfactorily explained. 
One remarkable feature of this field strength minimum should be 
mentioned, however. It appears to be more pronounced at the equi-
noxes than at other seasons. It is interesting to compare this 
circumstance with the fact that the ozon density of the .D-region 
has its maxima and minima at these seasons. 

It is evident that the field cannot be dependably predicted by a 
formula as simple as the AUSTIN one. The comparison between the 
attenuation coefficient of this formula and fl i therefore should not be 
taken too seriously. ESPENSCHIED, ANDERSON and BAILEY for 
example suggest /3 4 • 10' • P.25, where fin kc/s. This coefficient 
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is supposed to represent the experimental data better than does the 
AUSTIN coefficient. 

Experimental data on the lower ionosphere unfortunately are 

extremely rare on account of the fact that the conventional echo-

method of BREIT and TUVE cannot be used. BEST, RATCLIFFE and 

W ILKES [23] measuring the phase change of ground and sky waves 

in long wave transmission estimate a day-time reflection level of 74 

km for 2. = 18,8 km. Further research in this direction is desirable. 

Finally we have computed U/Up,. I for O ranging from 15° to 150° 

for transmission over sea water and a homogeneous layer with 

= 2 n • 0,768 • 106, = 106, = 5 km and h = 60 km. The 

result is shown in fig. 28. 

For real long distance ((9 > 110°) only the first three terms in 

the residue series have to be considered. This means that the 

ground influence is quite small as we have already seen. Even 
if a comparison cannot be made it should be mentioned that 

FASSBENDER, EISNER and KURLBAUM [24] making field strength 

measurements in over land long wave transmission find but little 
difference between their attenuation coefficient and the AUSTIN value 

for 2 3750 m. 

For 0 < 60° the high angle waves also have to be considered and 

for O 15° it is necessary to consider twenty terms in the residue 
series. The high angle waves produce quite complicated interference 

phenomena. For 0 < 15° so many terms have to be considered in 

the residue series that the numerical complutation becomes quite 

cumbersome. Fig. 29 finally demonstrates the evaluation of the 

residue series for 0 = 45°. 

It is interesting to note that even for distances as long as 45° the 

third order term is the largest one numerically. For the case in 
question this term has n, practically equal to ka as shown by fig. 

14. For still longer distances the first and second order waves will 

become relatively more important. 

In the case of the inhomogeneous layer the high angle waves may 

be less important than in the present case. Equally complicated 
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7 

interference phenomena are to be expected when 9 is relatively small, 
however. 

It is finally of some interest to note the striking similarity be-
tween the I U/ U2„.1-curve in the neighbourhood of 0 = 15° and the 
common medium and short wave fading curves. 

The Reflection Coefficient of the Parabolic Layer in 
the Penetration Frequency Region. 

So far we have not discussed the value of the reflection coefficient 
in the penetration frequency region. This frequency range is of 
considerable interest in connexion with investigations of the upper 
ionosphere. 
The actual investigation of the reflection coefficient is somewhat 

complicated by the fact that the magnitude of the quantity n 
appearing in (55) becomes very large in this region when the losses 
are small. One finds (when a > 1) 
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2 1 
(1/71)max -=--; sin v , if (I e Dmin> 

and (245) 
1 

n 8 a , if (I e 1)„,in < • 

• 
When the losses are small (as is the case in the upper ionosphere) 

expansion (55) therefore does not yield correct results in the penetra-
tion frequency region. This is also the region where the main 
deviation from the geometrical optics occurs. 

Let us study the value of I n I in the penetration frequency region 
for the Fr and E-layers. From reflection coefficient measure-
ments the corresponding v-values are roughly known, viz., 2 • 103 

and 3 • 106. One finds e Dmin 0,4 for the F2-layer of half-

thickness 120 km (such a value is not at all unusual) and a penetration 
wave-length of 30 m, a typical day-time value. This yields 
(In Dmax 0,32 • n • 105. For the E-layer with a half-thickness of 
12 km and a penetration wave-length of 90 m one further finds 

(I e Dmin 12, j. e., (I n I )max Zr, 200. Expansion (55) is much less 
accurate for the F2-layer than for the E-layer. For the D-layer on 
the other hand expansion (55) always appears to be a sufficiently 

accurate approximation (except of course for very long waves when 
the bridging approximation has to be used). 

Of the quantities u and e appearing in the wave functions u is 
practically constant in the penetratiem frequency region whereas e 
generally is varying within very wide limits. 

We had 

e = a {(1 — y2) cos y — j ( 1 ± y2) sin y}. 

Therefore I e I is practically independent of the wave frequency in 

the penetration frequency region (y 1) when 

1 — y2 < 2 tan y . (246) 

For the Fr and E-layers, where tan y  , we thus 
2 (co — coH) 

obtain the »band-width » 

2 z co (coe,.„ — wa) 
1 

— 2 tan y 
2 CO COc — OJH 
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COc 2m 
2 A 

(wen, — (OH/2) (eoc„,, (ort) > v . 

(247) 

For the F2-layer a typical day-time »band-width» becomes about 
159 c/s, whereas a typical day-time value for the E-layer is approxi-

mately 16 kc/s. 
This means that it is possible to measure the maximum electron 

density of the F-region extremely accurately. Even for the E-layer 

this measurement is quite accurate, since a band-width smaller than 
the frequency width of the reflected pulse cannot be measured. 

For the D-region, however, y —4 ' and it is obvious that the criti-

cal frequency conception has lost its meaning. In the lower ionos-
phere where the reflection is mainly »metallic » it is impossible to 
measure the maximum electron density (even if the reflection coeffi-

cient were numerically sufficient). The following table of I R I for 
a layer with typical D constants serves to illustrate the situation. 

A h. = 6 km, 2cm = 0,75 km, y -=- 107 sec- 1. 

TABLE II. 

cokoc„, 0,125 0,250 0,500 

I RI 1,3 • 10-1 3,5 10—  4 1,8 10-13 

Fortunately expansion (41) is well suited for application in the 

penetration frequency region when the losses are small. It is especi-

ally useful when 

02 
1 

I 2 (01 ( 8 
< 1, i. e., when < —a — sin 2 2 y ) • (wit = 0) (248) 
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For F 2- and E-layers with day-time characteristics as before we 
have 

(2 A f)F2 < 250 kc/s, 

and 

(2 A f ) < 460 kc/s. 

This means that the two expansions (41) and (55) overlap as will 

soon be shown in more detail. 

In accordance with (41) one finds in the vertical incidence case 
when y = 1, that 

dI • 77 \1 2n 
—dz D ‘u el,  

ie Acm 

proving again that there is no boundary reflection. 
Denoting all terms containing e within the main brackets of (41) 

by — j 0, we immediately obtain the reflection coefficient 

r e + 
R — 1 exp.{ 2 + j 2 — eln u2 + ) 2 j • 1— jo , (249) 

er (u2 1 1 4 j 0* n  

(2 7) 2 

where (0*) = is the conjugate of (0) 
v 0 v 0 • 

After a simple transformation of the /1-function we obtain 

u2 
exp. {ln r (2 j e) — r e) 7±;(,___ 2e in 2 u+ --i)} • 

1 + j0* 
(249 a) 

• 1 — j • 

A f 
a) lei small, i.e., small losses and  sufficiently small. The 

/"C. 
magnitude of the reflection coefficient is conveniently written 

lei n ere u2 
IRI = exp. { 2 — 2 1m — e In 2 u , 
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where 

n ere 
2 

e=e—i?oe .11 
00 j 

1 
  2 2 + 

2e 
m=o 2 m+ 1 

and yo is EIMER'S constant. 

We further have 

1 

U2 

— 2 • Im (74 — e ln 2 u) = a [cos y • ( 1 — y2) • — sin y { ( 1 + y2) In 16 a 2} — 

— (1—y2) y cos y]. (250) 

For small losses sin y y and therefore 

lei 
IRI exP• [-- 2 (co coH) (1 ± y2) iln ( 16 a) — 1} (1 y2)1 

Remembering that 
co 

1 1 

/1 
4 e  

 1 " „2 
1 cos 7L e„}-2- m=0 {i 

(2 m 1)2j 

and further in accordance with (22 b) that the no-loss coefficient 

= o= iRoi , is 

a —2 (1 — y2) 
e 

iRoi —   

we finally obtain 

¡RI iRoi e 

{2 cos a n 
«i (I> — 

a • 1ln ( 16e) + yo_11 

a 

co 1 
4 v a 

1 +  
co — a)H 

m=o 

a 
1 + 

(0— W H m ± 1  r-2 oi_coH• m + 1 
4 a2 

2m+ 1 -1- 2m+ 1 (1—y2)21 e 

(251) 
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When  a < 1 ( leim l << 1) the penetration value thus be-

cornes 

1 
IRI • e 

4 v a \if 
co_ wzr • a fln ( 16 a)— 11 fr(i +  

.  co  
+  2 v a \ 

co -we Cy = 1) 
1 

(251 a) 

For a thick layer even a relatively low eollisional frequency reduces 
IRI considerably. Thus for an F2-layer with the same day-time 

characteristic as before a value of v as low as 200 reduces IRI with 
about 36 %. 

b) 19> 1. This covers the case of f in the overlapping regions 

of (41), (45) and further the case of f arbitrary when the losses are 
considerable. 

Making use of the conjugate relation of ( 160) we obtain from (249) 

± n 
— exp. j[a e {2 y — (1 — y2) ln ( 1 — j + —2 I • exp. {— j a ( 1 — y)2 • 

Since in the useful range of (41) by (248) I a (1 — g)2 I < 2, the 
result obtained is substantially the same as ( 161), i. e., 

j 2 e 
R e . 

When v so low that sin y y, we have approximately 

A 14 
o — 2 A co, (A co =- co — co) re cm 

C 0 
and (253) 

A h. 
— • v. 
2 co 

For layers with A h. • r = constant, parameters 

acmi; 2c„,2; • • • • ; vi ; V2 e   

3 
-.-4 1. (252) 
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and frequency deviations A /1, A /2, , we find in accordance 
with (247) that 

(I -R I) ; 
hm\ el/ 

(I -R I) 2'2 2 co ) 
2 A At2 = • 

For a layer with changing 2cm but with A hm and v constant the 

relative variation in I R I with A / always is the same. 

A few typical examples of the variation of the reflection coefficient 
in the penetration frequency region are shown in figs 30-33. 

Figs 30 and 31 show typical F2-layer values. Since it is possible 

to determine coo. very accurately from ionospheric sweep frequency 

records we infer that y must be of the order of 103. Generally it 

does not seem to be much in excess of this value. This is in sub-
stantial agreement with the results of FARMER and RATCLIFFE. 
They find y = 1,6 • 103 for the F2-layer. 

Fig. 32 depicts typical F1-layer values. Since it is possible to 

determine coom practically as accurately for the F1-layer as for the 

F2-layer, we further infer that for the F1-layer y probably is less than 
about 104. It should be mentioned that at an estimated F1-height 
of 265 km, ECKERSLEY finds 2, = 3,6 • 103. 

Fig. 33 finally is plotted with special reference to the normal 
E-layer. The critical frequency generally cannot be measured very 

accurately for the E-layer. This holds for virtual height measure-
ments as well as for reflection intensity measurements. Therefore 
it seems probable that y is 104 or more for the E-layer. This agrees 
fairly well with the value calculated for this atmospheric level. 

(254) 

The Virtual Height of the Parabolic Layer. 

If the wave reflected from the ionosphere experiences an increase in 
phase A (co), one finds the time of travel of a wave-train with inten-

(d A 
sity maximum at co = coo to be approximately r -,.:-..;- —do) at verti-

= (00 

cal incidence (38 a). This relation is extremely accurate under most 

conditions. When the relative change of I Rus considerable within 
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the main part of the frequency spectrum of the wave-train it 

has to be used very carefully, however. In this connexion the reader 

is referred to the fundamental papers by SOMMERFELD and BRILLOUIN 
concerning similar problems [25]. 

Except when if J < 1 (which is of no interest in this connexion), 
when further f lies in the penetration frequency region, and the 

losses are small, we have at vertical incidence 

d d el = 2 — Re (r e). = 2 Re {—i (255) 

i. e., the virtual height is 

d e 
A Ito co • Re ifT -07)} . 

Relation ( 161 a) then yields 

Ah 
m • A- 7 
2 a),. 

A — 2 
CO — COli  1 Ii 

ln 
2 co,. + 4 a) co 2 2 cm  r 

• [ cos y • { co,.2 A [3 (0)— cord ± o) A— 2] _ o)cm2 (0) _ (011 _ 0.) A— 2,1 ) — sin y • fico,m2 — co,.2 A-.1 • 

• — 2 2y  1 • O./ — Wli • a)] — arctan isin y 1 _ y2j • [ sin y fa,r2 A [3 (0) LOH) + 002 A— 1 ± 
v f  

(255 a) 

1 + 2ycosy 
1 + y2 

2y cos y 
1 —  

1 y2 

+ 042 (a) ____ 01H (.0 A— 2)) cos . (wem2 + 042 A) A— 2  • all (256) 
— w; 

where a),.2 =- co (o) — coH ). 

When sin y y, (256) is conveniently transformed and reduced to 

A hm co 
A ho 2 [ln 

wen, 

.7E 

+ 4 1 2 — 

1 + y 

{(l _Y)2+ Y4 ( v ) 2}1 
Ol — • 

arctan 
(1— y2 co— col} 

col/ a), 

2 (012 • 

1 
2 2 

CO,. (CO — coH) + coc • — a)H m 4  

cor3 

(siny) (257) 
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From this relation it is immediately found that 

Jim (A ho) = . (258) 

When y = 1, A ht, becomes very large when y is low. For y 
it becomes infinite. But this is in the region where we know that 

(252) cannot be correct. 
In this region (249 a) yields 

A 
1 d e ( 2 e\d u 

Im [{2 y (2 j e) — j (j e) • — j ln 4 u2i • cu u — —JP/ co + 

co d 
co (± 0*) 

where y (z) is the logarithmic derivative of I' (z). 
When sin y y this finally yields 

°' 4 (2 le — eiM • M) 
hIn {1n ( 16a) + Yo (m — 2 ci„,)2 ± (2 A c)2he,2-; coem 

2 1 2 1 
19 12 eint . m (CO (Off) — we. ,T (0/1 :r 

2 • 3 4. 4 (a)—(oH)1 2 - (m eim)2 e. co , 
1 

(.0 — 2 W H 

4 ere • m ere • in  1 Cm ((o-r 7 coir) — (012, (co — 7 0)a) 
00 2 i 1 3 

._. X  _ 

(fle — 2 Qint)2 ± (2 C„)2 — (m — einir + cr2e1 •  0.);.  m-1 , _.„... — 
2 coif 

cohi (w,2+ coe2.) 

4 (O3 

col/ 

— 2 wr 

The close similarity between (259) and (257) is apparent. 

(259) 
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At the classical penetration frequency y = 1 and co,. = i. e., 

coli 
(w)y = 1 = —2 + icoL (w)2}ï = wel (260) 

At this frequency ere = 0 and therefore 

m co: coem — 7 coil m 
2  • (0,7,4 • Uhl ( 16 a) — 2 (— 2 cini) + v (— c,.)} • 

wen, 

2 coH t coa 
4 ( • — —1. (y = 1) (261) co — cold a) c cm m 2 2 cocm 

The no-loss virtual height accordingly becomes 

A 

I ,., z 
A hm  Weem '''cm — 7 W H CO 

2 co coem 2 co H  }   • • {(ln ( 16 a )+ yo) •   —  (y =- 1; y = 0) (262) 
,. ,. 

This generally is very large though not infinite as one might expect 
from (257). 

For a thick layer y does not have to increase very much before 

— >> 1. When this is the case it is convenient to use the asymp-
totic form 

2 tp (— Cim) — v ci.) — in (— 4 Cim), (263) 

i. e., 

A /Iv 
A h wo-21 e [ {4 (a) — coH)} — coa 2 coH er 

- — ln   
Cm  2 V COCm 4 (W,1 — coH) wen, 2 

coH 
— • (y = 1, — ei„„ >>, 1). 
2 co,. 

(264) 

We immediately see that this result is the same as that of (257). 
When therefore — eim >> 1 in the penetration frequency region, (257) 

can be used throughout, i. e., the phase integral method is correct. 

Denoting the distance between the branch points by 1, we further 
1 

find that when this method can be used Z>> A hm (2 a) T. 
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Classical and Exact 14rtual 1-/eight for 

a Parabolic Layer of lialf-ThiCkness áh„, 

a h. - 120 km 

30 m 

5 

Fig. 34. 
-2 .10' 

A hv Introducing the notation virtual penetration for we find 

2 P 
that the reduction in virtual penetration due to the introduction 
of y is 

13.-1-1) {{ Ce)ce — (OH Cm  

o cm 

wfi) co,. 2 

2 coli 

For coH 0 we therefore obtain the convenient expression 

(2 ,A h„) 

o A 2 V (— 2 Pint) — tP( aim)• 

(265) 

(265 a) 

When cori 0 all layers with A hnz • y = constant experience the 
same reduction in virtual penetration and this reduction is indepen-
dent of Acm. 

A number of virtual height plots based on relations (257) and (259) 
are shown in figs. 34 to 41. 

4h---Offx/o3 
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Fig. 34 shows the discrepancy between the classical and exact 
virtual heights for a thick 2-layer when y = 0. The transition 
from reflection to penetration is extremely sharp. Fig. 35 shows 
the same thing for a considerably thinner layer. 
For thin layers as shown in figs 36 and 37 the deviation from 

geometrical optics cannot be neglected. 

Fig. 38 depicts the intrusion reducing influence of the collisional 
friction for the 1'2-layer. On account of the fact that y (as mentioned 

before) probably is not much larger than 2 • 103 it is possible to obtain 

experimentally practically the entire classical virtual height curve. 
This is extremely important, since the calculation of the true electron 
density distribution of the upper ionosphere is based on the classical 
height curve. 

For a layer ten times thinner the height reducing influence of the 
collisional friction is about ten times smaller as shown in fig. 39. 

Fig. 40 depicts the virtual height for a thick E-layer. Since y is 
3 • 105 or more the characteristic increase in virtual height near pen-

etration generally is suppressed. It is not possible to determine the 
true electron density distribution with reasonable accuracy. For a 
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thin layer the collisional friction can assume considerable values 
before any appreciable reduction in virtual height is observed as 

shown in fig. 41. 
Finally the reduction in virtual intrusion is shown in fig. 42 for the 

special case con = O. The corresponding no loss height has also 
been plotted for three characteristic y values. 
A typical night-time virtual height curve for the F-layer obtained 

by the author at Harvard University is shown in fig. 43. This curve, 
which depicts the case con = 0, was transformed from the original 
virtual height data of the extra-ordinary component by a method 
already described [3]. 
The electron density distribution was found to be practically para-

bolic from the true height curve. In accordance with fig. 43, 
A hin 70 km and 2.e. 47,2 m. The no-loss virtual height 

A hm, 
at y -= 1 therefore becomes i ht,-;--..;   • 2 11,75. The recording 

was made with a very sensitive equipment and the highest redu-
A h. 

ced virtual height recorded was —2 • 9,20. We thus find from 
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Fig. 44. Fixed frequency recording from Chalmers Ionospheric Observatory. 

Fig. 45. Fixed frequency recording from Chalmers Ionospheric Observatory. 
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fig. 42 that must have been less than 1,7, i. e., y must have 

been less than about 15000. 
This method thus gives an idea of the upper limit of v. Sweep 

frequency records technically cannot be made sufficiently sensitive 
to register the delayed echo tail at the penetration frequency which 

generally is overtaken too rapidly. 
A much better way to measure the night-time delay of the dispersed 

echo tail is to run an abnormally sensitive fixed frequency recording 
equipment when the signals just begin to penetrate at that frequency. 
A sweep frequency recording is made at the same time. From this 

recording A h„, is calculated. One then finds that the upper limit of 
y certainly is appreciably lower than 15000. 

Typical examples of this are shown as figs 44 and 45. 
Fig. 44 shows a quiet evening recording. The dispersed pulse tail 

of the ordinary component at penetration was delayed to a virtual 

height of about 1100 km. Fig. 44 represents normal quiet conditions 
at the equinox sunrise. In this particular case the ordinary pulse 
tail was delayed to a maximum virtual height of about 1350 km. 
In both cases the virtual height is counted from the lower boundary 
of the layer. These tremendous virtual heights indicate a y value 
probably less than 3000 at the level in question. 

The Reflection of Radio Waves from an Extremely 

Thin Layer. 

In connexion with studies of abnormal E-layer reflections it is of 
particular interest to investigate the reflection of radio waves from 
very thin layers. It is therefore not out of the place to study briefly 
the reflection of waves from a very thin parabolic layer. 

(7r 
For the extremely thin layer we have   < 1. When this 

2C„,, 
e u2 1 

is the case and —i--- < 1, i. e., y2 the following approxi-

mation for relation (39) certainly is sufficiently accurate, viz., 
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ír j In 2 D ( 12 ue  2- i 
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where 

One further finds 

e U2 e e U2 
(266) 
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13-21 e\ 

(1 — 2 j o)• 4 

du  d ID Ge l :11 e 2 jL' In 2 1 

• P 2 
1 (3_211 •7r-i[1 
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7r 
eue 1 { U2 

(e 
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This yields (26) 

with 

—  d . 
j cqn D T 

. 1 
p —7 

n, j— 
fl e 4 

e u2 
2 

1 . I 
a2 y  ei +  

e 13 

eto _ p 
1.71- 1 + — e 1 + 

We further have 

.27 

u2 u e4 I u2 ( 2)1 

13 27 

— 1 
when •<<. 1 , 

• 

(267) 

(268) 
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and 

e y(— i when lei 1. 

1 
When y2 << , e 1, and 

a 

Y 

1 •ír 
) (a\ 2 e 4 2 

2 fi 

Putting for example a = 0.08, we thus find 

6 • y • el ± 4  (268 a) 

when y < 1. 
Making use of (266) and the circuit relation we find the internal 

reflection coefficient 

r (ie+ 1) 
R =  

where 

(2 e.t)2 
e 

7re 
T H- j(ï—eln 2) r 

_ 
1 — fi* u —4- • 

_ . z 
1 — 22 fi u el —4 

1+ e u2/6 
1 + e u2/2 
1 ± e u2/6 

1 -I- e u2/2 

r
 (3 ± 2 j\ 
\ 4  

— ( 1 + 21 e\ • 
4 / 

i3-2je\ 

4 / 

(3 ± 21e\ 

4 / 

Fortunately this expression for R can be simplified considerably. 

Making use of the duplication formula for the r-functions it is 

possible to show that 
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(2 7)2 

13-2 j9\ 
4 ) 

(3 + 2 ie) 
4 2 Isin2 — sinh2 7-1 1  

2 2 2 

7r ere 

[ exp. i e ln 2 — arctan { tanh 2 

tan ; ( — eim)1] 

We thus finally obtain 

7r Pre 

e 2 • exp. j —4 + - ..L" — arctan no 
2 

R = —  

( 2 {sin2 1 - —1 — ei + sinh2 e.l .ell 
2 2 in 2 j 

1 
When y2 —a , (233) reduces to 

,; :7T ere _L n Cim) 
1 R 7r ere 7r Qirn) ( 4 m  2 2 

— —T• 2 e • 4- , 
2 -2-

and we further obtain 

-O-re- + 7r Pint 1 — 22 ) • 

4.. (269) 

(269 a) 

. 7r n ere n eim) 

— 2—  2 • 4' . (270) 

1 
If y increases so that y2 >, but still 

:7r ere + - 
R = — e 2 

U2 

4 
1, we find 

int) 1 ± j2 ay c„ --F j ± 4 a y) 2j e 

1 — j 2 ay 
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Fig. 46. Sweep frequency recording from Huancayo (Carnegie Institution), July 
1 st, 12°°, 1939. 

We have already seen that in the case of a = 0,08, one has 

f zT zr ,u 0,6 • y • exp. j ± —2 . Since 0 < < it is apparent that 

r 7L- 0, and ti 0 through a considerable frequency range. When 
1 

y2 >> —a , however, y 1 = k I (d eidz) r0 = 0. From 
z = hm 

(271) we further have I R I = exp. ( ) <<. 1. This means that 
boundary and internal reflections for the thin layer slowly disappear 
through about the same wide frequency range. 

We find from (268 a) that ti is small only when y is small. This 
means that incident waves penetrate the thin layer practically 
throughout the entire frequency range. 

1 
The reflected wave, which disappears first when y2 >> —a , is prac-

tically independent of cuff as long as > Wff. This is a characteristic 
feature of the thin layer. 

Fig. 46 shows a sweep frequency recording from the Huancayo 
Magnetic Observatory. The record has kindly been placed at the 
author's disposal by DR. J. A. FLEMING. It is especially interesting 
because it shows abnormal E (E1) and abnormal D reflections. D 
signals from a cloudy but thick region should be too much absorbed 
(compare table II on p. 132). It is not unlikely that the ab-
normal D-layer is thin, perhaps also patchy. A very thin abnormal 
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E-layer (perhaps thin reflecting strata of locally greater electron 
density embedded in the E-region) is not unlikely as it would trans-
mit and reflect signals as shown in fig. 46. If we assume that fen, of 

a thin abnormal E-layer is about 3 Mc/s at the time of the Huancayo 
recording, then from fig. 46 very roughly 

3 

/13\2 
— 1 

= 18,8 
a 

Since at least a < 1, a 0,5 perhaps is a reasonable guess. This 
makes the layer (stratum) thickness about 30 meters. 
In fig. 47 is shown a fixed frequency recording from Chalmers 

Ionospheric Observatory of abnormal E-signals shortly before 
sunrise. The recording receiver was equipped with a polari-
zation preselector. The difference in intensity between the ordinary 
and extraordinary components is considerable. It was further 
found that low level absorption very probably was not responsible 
for this intensity difference. In this particular case one therefore 
has to assume that the reflector was an electronic cloud of moderate 
thickness. 
A further discussion of this interesting problem is outside the 

scope of the present communication. For extended knowledge of the 
abnormal E-layer phenomena the reader is referred to the ionospheric 
literature. Here may especially be mentioned The Critical-Frequency 

• 
Method of Measuring Upper-Atmospheric Ionization by APPLETON, 
NAISMITH and INGRAM [26]. 

b) w < < coH. 

This case is of limited practical interest. It will therefore be dis-
cussed very briefly. Mailing use of the notations of p. 102 and of 
relation (266) one immediately infers that the circuit relation yields 
waves progressing in both directions between the branch points. 
In this respect the thin and thick layers behave olike. 

Thus {R}(0,. < co < (01/ =- 0, and D (j V) represents the up-going 
—n-1 

wave. One finds 

n + 1 

—n— 

D (± j V) — 2 2 1 [ 71) V2 1 
717 1 —  2 j 22 /3 V {1 —  

_. n ( ) 1721 

6 , (272) 

F(1 j) 

V2 
(n + 1/2) " when 



Fig. 47. Abnormal E-reflections recorded with a polarization receiver at the Chalmers Ionospheric Observatory. 

R
Y
D
B
E
C
K
,
 
O
N
 
T
H
E
 
P
R
O
P
A
G
A
T
I
O
N
 
O
F
 
R
A
D
I
O
 
W
A
V
E
S
 



158 CHALMERS TEKNISKA HÜGSKOLAS HANDLINGAR NR 34 

This yields 

T — 
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3 _ 1 • ei 
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1 
When y2 >. —, but 

we obtain 

T > o < 1. 
v 

(273) 

(273 a) 

still appreciably less than 1, 

j 2 a y ei 4 ay = ei{r. (n + + 2e + :+1, (273 b) T   
1 _ j 2 ay 

i. e., ( 197) and (273) overlap. 

We further finally find. 

= Y • 

where 

' 
(274) 

(n"  1 V2 i 2_21_ .1.4 v {1 _T76_2(n + )1 

1 2 
—  

(n + 71) V2 (n + v _ 17_2 in + 2  

1 )1 1  — j 1 _ 2 6 \ n + 7 
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.vi 
For a -= 0,08, (274) yields tt 0,6 y • exp. -2-1. When 

1 
y2 >> —a , 1 and the boundary reflection disappears. It is further 

apparent from (273 a.) and (273 b) that within the frequency range 

of appreciable boundary relection the phase of T is less than —2 . If 

we consult (200) we find that this means that the reflected light of 

the extremely thin layer exhibits no colour effects. 
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Tables of Cylinder Functions of Order 

2 
-3- and 

Bessel functions J (x), J (x), I (x), and I (x) have been tabulated 
± ± ± 

3 

by DINNIK, Archiv der Math. u. Phys., XVIII, 1911, pp. 337-338 
to four places of decimals from x = 0 to x = 8,0 with interval 
0,2. This interval is not sufficiently small for our purpose, i. e., the 
computation of the low order poles etc. We have therefore prepared 
a preliminary complementary table of cylinder functions with 0,02 
interval from x = 0 and x = 1. This is the region where con-
siderable accuracy is required. The functions tabulated are 

2 3 r.• 3 r. 

J (x), Y 2 (X), IC, I (x), I (x), Y1 (x T ), y (x 
2 

-3- -3- -L 1- -L 2 
-3 -L 3 

fl(1) (x e- - 2 T.) , andli (1)(x e---- I 7). J 1 (x)' Y 1 ' (x) H(1) (x) are tabu- 1 2 1 

-3- 3- -3- -3- 

lated with 0,02 interval in WATSON'S Theory of Bessel Functions, p. 714. 
It was further found practical to compute the HANKEL and second 
kind functions for the range of x values used by DINNIK. 
Making use of the familiar relations (*) 

H ) (z ) = le) (z)*, 

. 3 3 r) * 

H (2) (x e - 2—) = — (1)(x e -2 — 1 - , 1 11 1 
3 

. 3 r 3 zi * 

H (2) (xe -  = .1-1(1) (xe-1 71 , 
2 2 

-3-

and 
(2) (2) 

H(1)v (z) (z) 

one easily obtains the second kind HANKEL function and HANKEL 
1 2 

functions of order — —3 and — —3 from the following tables. 

*) * denotes the conjugate quantity. 
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TABLE III 

x J2 (x) 
- - 
3 

J (x) 
2 

- - - 
Y2 (x) H 2 (z) Phase H2 (x) 

3 

0,00 0,0000 00 00 00 -90° 0' 
0,02 0,0514 8,0398 -9,3133 9,3134 --89° 41' 
0,04 0,0816 5,0603 -5,8901 5,8901 --89° 12' 
0,06 0,1069 3,8559 --4,5141 4,5154 --88° 39' 
0,08 0,1294 3,1763 -3,7423 3,7446 -88° 1' 

0,10 0,1501 2,7298 -3,2388 3,2423 -87° 21' 
0,12 0,1694 2,4094 --2,8800 2,8849 --86° 38' 
0,14 0,1876 2,1656 -2,6089 2,6156 --85° 53' 
0,16 0,2049 1,9721 -2,3955 2,4042 -85° 7' 
0,18 0,2214 1,8137 -2,2222 2,2332 --84° 19' 

0,20 0,2372 1,6808 -2,0779 2,0914 -83° 29' 
0,22 0,2525 1,5673 -1,9554 1,9717 -82° 40' 
0,24 0,2672 1,4684 -1,8499 1,8691 -81 ° 47' 
0,26 0,2814 1,3814 -1,7575 1,7799 -80° 54' 
0,28 0,2952 1,3037 -1,6758 1,7017 -80° 1' 

0,30 0,3085 1,2338 -1,6027 1,6322 -79° 6' 
0,32 0,3215 1,1701 -1,5368 1,5701 --78° 11' 
0,34 0,3341 1,1121 -1,4770 1,5144 -770 15' 
0,36 0,3463 1,0585 -1,4222 1,4637 -76° 19' 
0,38 0,3582 1,0088 -1,3717 1,4177 -75° 22' 

0,40 0,3698 0,9625 -1,3248 1,3755 -74° 24' 
0,42 0,3811 0,9191 -1,2814 1,3368 --73° 26' 
0,44 0,3921 0,8782 -1,2405 1,3011 -72° 27' 
0,46 0,4028 0,8397 -1,2022 1,2679 -71 ° 29' 
0,48 0,4131 0,8031 -1,1660 1,2370 -70° 29' 

0,50 0,4233 0,7684 -1,1317 1,2083 --69° 29' 
0,52 0,4332 0,7352 -1,0990 1,1813 -68° 29' 
0,54 0,4428 0,7035 -1,0680 1,1561 -67° 29' 
0,56 0,4521 0,6730 -1,0382 1,1324 -66° 28' 
0,58 0,4612 0,6437 -1,0097 1,1100 --65° 27' 

0,60 0,4701 0,6156 -0,9822 1,0889 --64° 25' 
0,62 0,4787 0,5884 -0,9557 1,0690 -63° 24' 
0,64 0,4870 0,5620 -0,9302 1,0501 --62° 22' 
0,66 0,4951 0,5366 -0,9054 1,0320 --61 ° 20' 
0,68 0,5030 0,5119 -0,8815 1,0149 --60° 17' 

0,70 0,5106 0,4879 -0,8582 0,9986 -59° 15' 
0,72 0,5180 0,4645 -0,8355 0,9830 -58° 12' 
0,74 0,5252 0,4418 -0,8134 0,9682 -57° 9' 
0,76 0,5322 0,4196 -0,7918 0,9540 -56° 6' 
0,78 0,5389 0,3980 -0,7707 0,9404 -56° 2' 

0,80 0,5453 0,3769 -0,7501 0,9274 -53° 59' 
0,82 0,5516 0,3563 -0,7299 0,9149 --52° 55' 
0,84 0,5576 0,3361 -0,7100 0,9028 -51 ° 51' 
0,86 0,5635 0,3163 -0,6906 0,8913 -50° 47' 
0,88 0,5890 0,2970 -0,6714 0,8801 -49° 43' 
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Table III (contd.) 

x J (x) 
2 

i 

J Y (x) 
2 

7 

(1) 
11 2 (x) 
7 

(1) 

Phase 11 2 (x) 
7 

0,90 0,5744 0,2780 -0,6526 0,8694 -48° 39' 

0,92 0,5796 0,2594 -0,6341 0,8591 -47 ° 34' 

0,94 0,5845 0,2411 -0,6159 0,8491 -46° 30' 

0,96 0,5892 0,2232 -0,5979 0,8394 -45° 25' 

0,98 0,5937 0,2056 -0,5802 0,8301 -44° 21' 

1,0 0,5980 0,1883 -0,5627 0,8212 -43° 16' 

1,2 0,6200 +0,0309 -0,3986 0,7446 -32° 22' 

1,4 0,6392 -0,1033 -0,2498 0,6862 -21 ° 21' 

1,6 0,6295 -0,2163 -0,1137 0,6397 -10° 14' 

1,s 0,5975 -0,3093 +0,0122 0,5976 + 1° 10' 

2,0 0,5570 -0,3823 0,1190 0,5697 12° 9' 

2,2 0,4978 -0,4355 0,2154 0,5424 23° 24' 

2,4 0,4266 -0,4689 0,2951 0,5187 34° 41' 

2,6 0,3450 -0,4831 0,3581 0,4979 45° 59' 

2,8 0,2589 -0,4789 0,4035 0,4794 57° 19' 

3,0 0,1684 -0,4578 0,4312 0,4629 68° 40' 

3,2 +0,0776 -0,4209 0,4412 0,4480 80° 1' 

3,4 -0,0105 -0,3708 0,4342 0,4343 91 ° 23' 

3,6 -0,0932 -0,3008 0,4115 0,4220 102° 45' 

3,8 -0,1679 -0,2405 0,3746 0,4105 114° 9' 

4,0 -0,2325 -0,1657 0,3256 0,4000 125° 32' 

4,2 -0,2851 -0,0882 0,2663 • 0,3902 136° 56' 

4,4 -0,3246 -0,0110 0,2001 0,3812 148° 20' 

4,6 -0,3497 +0,0631 0,1290 0,3727 159° 45' 

4,8 -0,3602 0,1329 +0,0546 0,3643 171 ° 23' 

5,0 -0,3571 0,1925 -0,0161 0,3575 182° 34' 

5,2 -0,3400 0,2434 -0,0847 0,3505 194° 0' 

5,4 -0,3105 0,2834 -0,1480 0,3440 205° 29' 

5,6 -0,2703 0,3105 -0,2025 0,3377 216° 50' 

5,8 -0,2209 0,3249 -0,2476 0,3318 228° 16' 

6,0 -0,1646 0,3262 -0,2816 0,3262 239° 42' 

6,2 -0,1038 0,3149 -0,3037 0,3209 251 ° 8' 

6,4 -0,0409 0,2916 -0,3132 0,3158 262° 34' 

6,6 +0,0216 0,2579 -0,3102 0,3110 273° 59' 

6,8 0,0814 0,2150 -0,2953 0,3063 285° 25' 

7,0 0,1364 0,1651 -0,2694 0,3019 296° 51' 

7,2 0,1844 0,1101 -0,2342 0,2981 308° 13' 

7,4 0,2241 +0,0524 -0,1899 0,2937 319° 43' 

7,6 0,2539 -0,0058 -0,1399 0,2899 331 ° 9' 

, 7,8 0,2729 -0,0623 -0,0856 0,2861 342° 35' 

8,0 0,2808 -0,1149 -0,0294 0,2823 354° 1' 
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TABLE IV 

X i (X) 
2 

1. (X) 
2 

3 7: 

Y2 x - 5 2 ) 
(1) 3 '.‘ 

H ( xi ; ' -21 
2 

r 
Phase H o Ge ,-  ' -2) 

0,00 0,0000 oo 00 oo 90° 0' 
0,02 0,0514 8,0446 9,3187 9,3180 90° 19' 
0,04 0,0816 5,0724 5,8971 5,8978 90° 48' 
0,06 0,1070 3,8787 4,5382 4,5396 91° 21' 
0,08 0,1297 3,2060 3,7779 3,7802 91° 58' 

0,10 0,1506 2,7710 3,2866 3,2901 92° 37' 
0,12 0,1701 2,4620 2,9411 2,9460 93° 19' 
0,14 0,1887 2,2301 2,6840 2,6907 94° 1' 
0,16 0,2065 2,0493 2,4855 2,4940 94° 45' 
0,18 0,2236 1,9039 2,3275 2,3383 95° 29' 

0,20 0,2401 1,7848 2,1995 2,2126 96° 14' 
0,22 0,2562 1,6853 2,0939 2,1006 96° 59' 
0,24 0,2718 1,6010 2,0057 2,0240 97° 43' 
0,26 0,2872 1,5289 1,9312 1,9525 98° 28' 
0,28 0,3022 1,4665 1,8678 1,8922 99° 12' 

0,30 0,3170 1,4123 1,8138 1,8412 99° 55' 
0,32 0,3316 1,3648 1,7674 1,7982 100° 38' 
0,34 0,3459 1,3230 1,7274 1,7616 101° 20' 
0,36 0,3601 1,2861 1,6030 1,7309 101° 58' 
0,38 0,3741 1,2534 1,6633 1,7049 102° 41' 

0,40 0,3880 1,2244 1,6379 1,6837 103° 20' 
0,42 0,4018 1,1987 1,6161 1,6654 103° 59' 
0,44 0,4155 1,1758 1,5976 1,6508 104° 35' 
0,46 0,4292 1,1554 1,5819 1,6301 105° 11' 
0,48 0,4428 1,1372 1,5688 1,6301 105° 46' 

0,50 0,4563 1,1212 1,5580 1,6235 106° 19' 
0,52 0,4698 1,1069 1,5494 1,6100 106° 52' 
0,54 0,4833 1,0944 1,5427 1,6167 107° 24' 
0,56 0,4967 1,0825 1,5368 1,6151 107° 55' 
0,58 0,5102 1,0738 1,5345 1,6171 108° 23' 

0,60 0,5237 1,0655 1,5327 1,6197 108° 52' 
0,62 0,5372 1,0585 1,5325 1,6239 109° 19' 
0,64 0,5507 1,0526 1,5334 1,6293 109° 45' 
0,66 0,5643 1,0477 1,5356 1,6360 110° 11' 
0,68 0,5780 1,0437 1,5388 1,6437 110° 35' 

0,70 0,5915 1,0406 1,5432 1,6527 110° 58' 
0,72 0,6052 1,0386 1,5487 1,6628 111° 21' 
0,74 0,6190 1,0373 1,5552 1,6739 111° 42' 
0,76 0,6329 1,0368 1,5628 1,6860 112° 3' 
0,78 0,6468 1,0370 1,5709 • 1,6989 112° 23' 

0,80 0,6609 1,0379 1,5801 1,7127 112° 42' 
0,82 0,6751 1,0395 1,5901 1,7274 113° 0' 
0,84 0,6892 1,0417 1,6008 1,7430 113° IS' 
0,86 0,7036 1,0446 1,6123 1,7592 113° 35' 
0,88 0,7180 1,0480 1,6247 1,7763 113° 51' 
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Table IV (contd.) 

x I (x) I (x) 
2 

- - 
3 

__ i 3 71 

Y2 (x e 2 

i 

(1)( __, 2n) 

H 2 x e 7 2 
-3-

(1)( ...q 3 7r) 
Phase H 2 xe 7 

0,90 0,7326 1,0520 1,6377 1,7942 114° 6' 

0,92 0,7473 1,0566 1,6515 1,8127 114° 21' 

0,94 0,7621 1,0617 1,6660 1,8320 114° 35' 

0,96 0,7771 1,0674 1,6811 1,8522 114° 49' 

0,98 0,7922 1,0735 1,6970 1,8729 115° 2' 

1,0 0,8075 1,0801 1,7135 1,8942 115° 14' 

1,2 0,9701 1,1720 1,9134 2,1453 116° 53' 

1,4 1,1547 1,3067 2,1755 2,4632 117° 58' 

1,6 1,3678 1,4836 2,5028 2,8522 118° 39' 

1,8 1,6166 1,7055 2,9027 3,3223 119° 7' 

2,0 1,9089 1,9778 3,3859 3,8869 119° 25' 

2,2 2,2547 2,3081 3,9647 4,5613 119° 38' 

2,4 2,6650 2,7065 4,6638 5,3718 119° 45' 

2,6 3,1528 3,1856 5,4987 6,3386 119° 50' 

2,8 3,7002 3,7343 6,4484 7,4346 119° 54' 

3,0 4,4289 4,4495 7,6949 8,8794 119° 56' 
3,2 5,2592 5,2755 9,1280 10,536 119° 57' 

3,4 6,2530 6,2655 10,845 12,519 119° 58' 
3,8 7,4423 7,4535 12,903 14,898 119° 59' 

3,8 8,8698 8,8841 15,379 17,757 119° 59' 

4,0 10,580 10,587 18,333 21,167 119° 59' 
4,2 12,634 12,637 21,886 25,268 120° 0' 
4,4 15,107 15,112 26,172 30,214 120° 0' 

4,6 18,060 18,064 31,285 36,120 120° 0' 
4,8 21,621 21,621 37,449 43,242 120° 0' 

5,0 25,90 25,90 44,86 51,80 120° 0' 
5,2 31,05 31,05 53,78 62,10 120° 0' 
5,4 37,25 37,25 64,52 74,50 120° 0' 

5,6 44,72 44,72 77,46 89,44 120° 0' 

5,8 53,71 53,71 93,03 107,42 120° 0' 

6,0 64,54 64,54 111,79 129,08 120° 0' 
6,2 77,60 77,60 134,41 155,20 120° 0' 
6,4 93,34 93,34 161,67 186,68 120° 0' 

6,6 112,33 112,33 194,56 224,86 120° 0' 
6,8 135,24 135,24 234,24 270,48 120° 0' 

7,0 162,89 162,89 282,13 325,78 120° 0' 
7,2 196,25 196,25 339,91 392,50 120° 0' 
7,4 236,55 236,55 409,72 473,10 120° 0' 
7,8 285,20 285,20 493,98 570,40 120° 0' 
7,8 343,99 343,99 595,81 687,98 120° 0' 

8,0 415,01 415,01 718,82 830,02 120° 0' 
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TABLE V 

X I (X) 1 
«i- 

I (X) 1 
3 

j_3 

i • Y Ge- 2 1 1 

-3- 

(i) ( 

LI x e 7) 1 ---
3 

(1)( xe •3 ) 
Phase II - P-7 

1 
-3-

0,00 0,0000 00 00 00 0° 0' 
0,02 0,2413 3,4283 4,0979 4,1050 -- 3° 22' 
0,04 0,3041 2,7222 3,3189 3,3328 -- 5° 14' 
0,06 0,3482 2,3800 2,9491 2,9696 -- 6° 44' 
0,08 0,3834 2,1645 2,7208 2,7477 -- 8° I' 

0,10 0,4133 2,0121 2,5620 2,5951 -- 9° 10' 
0,12 0,4396 1,8966 2,4438 2,4830 --I0° 12' 
0,14 0,4632 1,8051 2,3518 2,3969 --11 ° 9' 
0,16 0,4840 1,7304 2,2780 2,3288 --12° I' 
0,18 0,5049 1,6680 2,2175 2,2743 --12° 50' 

0,20 0,5237 1,6150 2,1871 2,2295 --13° 35' 
0,22 0,5415 1,5693 2,1247 2,1926 --14° 18' 
0,24 0,5583 1,5297 2,0887 2,1620 --I4° 58' 
0,26 0,5745 1,4949 2,0579 2,1366 --I5° 37' 
0,28 0,5901 1,4643 2,0315 2,1154 --16° 11' 

0,30 0,6051 1,4371 2,0089 2,0955 --I6° 47' 
0,32 0,6197 1,4129 1,9893 2,0836 --17° 18' 
0,34 0,6339 1,3914 1,9726 2,0720 --17° 49' 
0,36 0,6478 1,3721 1,9584 2,0627 --18° 18' 
0,38 0,6614 1,3550 1,0464 2,0556 --M c. 46' 

0,40 0,6747 1,3395 1,9362 2,0504 --19° 13' 
0,42 0,6879 1,3257 1,9279 2,0470 -19° 38' 
0,44 0,7008 1,3134 1,9212 2,0451 --20° 2' 
0,46 0,7137 1,3026 1,9160 2,0448 --20° 26' 
0,48 0,7264 1,2928 1,9122 2,0455 --20° 47' 

0,50 0,7390 1,2843 1,9096 2,0478 --21 ° 9' 
0,52 0,7515 1,2768 1,9082 2,0508 --21° 29' 
0,54 0,7640 1,2703 1,9079 2,0552 --2I° 49' 
0,58 0,7764 1,2647 1,9086 2,0805 --22° 8' 
0,58 0,7888 1,2600 1,9104 2,0668 --22° 26' 

0,60 0,8013 1,2561 1,9131 2,0741 --22° 44' 
0,62 0.8137 1,2530 1,9166 2,0822 --23° 0' 
0,64 0,8261 1,2507 1,9211 2,0912 --23° 16' 
0,68 0,8386 1,2490 1,9264 2,1010 --23° 31' 
0,68 0,8511 1,2480 1,9324 2,1115 --23° 46' 

0,70 0,8636 1,2476 1,9393 2,1229 --24° 0' 
0,72 0,8763 •1,2479 1,9468 2,1350 --24° 14' 
0,74 0,8890 1,2487 1,9551 2,1477 --24° 27' 
0,76 0,9017 1,2501 1,9642 2,1613 --24° 40' 
0,78 0,9146 1,2521 1,9739 2,1755 --24° 52' 

0,80 0,9276 1,2546 1,9842 2,1903 --25° 3' 
0,82 0,9407 1,2576 1,9953 2,2059 --25° 14' 
0,84 0,9539 1,2612 2,0070 2,2221 --25° 25' 
0,86 0,9672 1,2652 2,0193 2,2300 --25° 36' 
0,88 0,9807 1,2697 2,0323 2,2565 --25° 46' 
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Table V (contd.) 

X (x) 

3 

3 7t 

• Y (xe-i 2 ) 

-3 

(1)( 
1  Ix ' 2 

3 

7 (1)( 3 
II Phase x e 2 
j ' 

0,90 
0,92 

0,94 
0,96 

0,98 

1,0 
1,2 
1,4 
1:6 

1,s 

2,0 
2,2 
2,4 

2,6 
2,8 

3,0 
3,2 
3,4 
3,6 
3,8 

4,0 
4,2 
4,4 
4,6 
4,8 

5,0 
5,2 

5,4 
5,0 
5,8 

6,o 
6,2 
6,4 

6,6 
6,8 

7,0 
7,2 
7,4 

7,6 
7,s 

8,0 

0,9943 
1,0080 

1,0219 
1,0360 

1,0502 

1,0646 

1,2199 
1,4002 
1,6118 

1,8817 

2,1588 
2,5224 

2,9340 
3,4370 

4,0379 

4,7773 
5,8147 
6,6426 
7,8727 

9,3473 

11,114 
13,234 

15,775 
18,827 
22,493 

26,90 
32,19 
38,56 
46,22 
55,45 

65,55 
79,93 

96,05 
115,47 

138,00 

167,15 
201,24 
242,37 
292,02 

351,97 

1,2747 
1,2801 

1,2880 
1,2923 

1,2991 

1,3063 

1,4018 
1,5386 

1,7181 

1,9442 

2,2231 
2,5728 

2,9733 
3,4681 

4,0824 

4.7967 
5,6303 
6,6547 

7,8831 

9,3548 

11,120 
13,238 
15,779 

18,831 
22,494 

26,90 
32,19 
38,56 
46,22 

55,45 

65,55 
79,93 

96,05 
115,47 

138,90 

167,15 
201,24 

242,37 
292,02 

351,97 

424,40 424,40 

2,0459 

2,0601 
2,0749 
2,0904 

2,1064 

2,1231 

2,3230 
2,5850 

2,9143 

3,3188 

3,8134 
4,4269 

5,1272 
5,9890 
7,0221 

8,2909 
9,7430 
11,5193 

13,8479 
16,1984 

19,257 
22,927 
27,328 
32,614 
38,900 

46,59 
55,75 
66,79 
80,06 
96,04 

113,54 
138,44 

166,36 
200,00 
240,58 

289,51 
348,56 
419,80 
505,79 
609,63 

735,09 

2,2747 
2,2935 

2,3129 
2,3330 

2,3537 

2,3751 

2,6234 
2,9404 

3,3304 

3,8064 

4,3825 
5,0958 

5,9070 
6,9044 
8,1001 

9,574 
11,245 
13,298 
15,758 
18,708 

22,240 
26,479 

31,56o 
37,661 
44,99 

53,80 
64,38 
77,12 
92,44 

110,90 

131,10 
159,86 
192,10 
230,94 
277,80 

334,30 
402,48 
484,74 
584,04 
703,94 

848,80 

--25° 55' 
--26° 4' 
--26° 13' 
--26° 22' 
--260 29' 

--26° 38' 
--27° 43' 
--280 26' 
--28° 56' 
--29° 17' 

--29° 31' 
--29° 40' 
--29° 47' 
--29° 51' 
--29° 54' 

--29° 56' 
--29° 57' 
--29° 58' 
--29° 58' 
--29° 59' 

--29° 59' 
--29° 59' 
--29° 59' 
--30° 0' 
--30° 0' 

--30° 0' 
--30° 0' 
--30° 0' 
--30° 0' 
--30° 0' 

--30° 0' 
--30° 0' 
--30° 0' 
--30° 0' 
--30° 0' 

--30° 0' 
--30° 0' 
--30° 0' 
--30° 0' 
--30° 0' 

--30° 0' 
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Postscript. 

Attention is called to the following errata in the former paper [3] 

in these transactions: 

1. Page 17, in formula (31) read instead of f . 

ro sin yo o 

e2 2u2 

2. Page 67, in formula (94) read .<< 1 instead of << 1. 
2 u 

y 2 

3. Page 72, line 11 from the bottom, read When (70 .<<. 1 it is ( 

formally introduced instead of It is formally introduced. 
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Summary. 

The problem of determining the variation with height of the 
density of the free electrons of the upper ionosphere has attracted 

a great deal of interest during the past two years. The same is 
true of the problem of determining the variation of the electronic 
collisional frequency with height, a problem of a very similar na-

ture. This communication is a theoretical survey of the fundamen-
tals which are of main interest in connexion with these problems. 
The measurement of the travel-times of electromagnetic wave-

packets forms the basis of almost all ionospheric measurements. 
As an introduction, therefore, the propagation and dispersion of the 
wave-packet is treated by means of well known optical methods. 
Several examples are shown of the actual dispersion of down-coming 

wave-trains. Under most conditions the dispersion is not serious 
and the determination of the time of travel is fairly accurate. 
In a following section a closer approximation to the actual wave 

solution than that afforded by the geometrical optics is studied 
by means of B. W. K.-approximations. A practical example of 

standing waves between the ionosphere and ground is shown. As 

the difference between the classical phase and the B. W. K.-phase 
is independent of the wave frequency, the time of travel becomes 
the same in both cases. When the time of travel is known as a 
function of the wave frequency it is generally possible to determine 

the distribution of the free electrons over most of the lower part 
of the ionized layers. The various mathematical methods to be 
used for this purpose are studied fairly thoroughly. It is shown 
that quite accurate solutions can be obtained at places where the 
magnetic inclination is either great or small. 

The next problem to be discussed is the calculation of the varia-
tion of the collisional frequency with height. It is interesting to 
find that it can be determined from sweep frequency reflection 
coefficient measurements, if the electron density distribution is de-

termined at the same time. So far the method has not been applied 
in practice. Even though the necessary measuring equipment is 

fairly complicated the prospects of getting valuable results are good. 
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A number of ionospheric records have been examined and the 
corresponding electron density distribution studied. It is shown that 
it generally is parabolic over a quite wide density range. Examples 

are shown where the parabolic representation is a very good approxi-
mation for practically the whole layer. The characteristic frequen-
cies have been obtained for each distribution and it is shown that 
it generally is not a permissible approximation to use a fixed cha-
racteristic frequency to critical frequency ratio in the routine scaling 
of ionosphere records. The total number of electrons has been 
integrated for several cases and it is shown that this number may 
decrease even though the maximum electron density increases as 
is often the case in the afternoon in the equatorial regions. This 
strongly supports the various hypotheses of the expansion of the 

upper atmosphere. 
Finally the exact wave functions for a parabolic layer are studied 

briefly. It is shown that the travel time and the dispersion are 
finite at the critical frequency and that the reflection coefficient 
differs appreciably from the classical one only when the layer thick-
ness becomes less than about four wave lengths. Asymptotic ex-
pansions of the wave functions will appear in a later communication. 



A general survey of the situation. 

The problem of determining the electron distribution of the upper 
atmosphere has been studied with a great deal of interest in recent 
years by a number of investigators engaged in ionospheric research 
[1]. The F-region of the ionosphere, especially its upper part 

the F2-layer, has attracted the main interest. Several factors 
make the investigation of the electron distribution of the F 2-layer 

fairly easy and profitable. Its main ionization is spread over a great 
height interval and its collisional frequency is low. Furthermore 
the maximum ionization of the F 2-layer generally exceeds that of 

the lower layers very much. 
The determination of the true electron distribution of the F2-

layer appears to be one of the most important problems of the phy-
sics of the upper atmosphere. The experimental data on the electron 
density variation of the lower layers (the E- and the F1-layers) is in 
accord with the hypothesis of ion production in a static atmosphere 

by solar ultra-violet light and recombination of the two-body colli-
sion type. This, however, is not true of the 1'2-layer which shows 

a character different in several respects. 
The reader not familiar with the essential features of the ionosphere 

may find a reference to the general literature useful [2]. It should 
suffice here to state the main result of the experimental data so far 
collected in various parts of the world. The E- and F1-maximum 
ionizations are in fair accord with the following expressions, viz. 

Nmaz = 1.45 • 105 • (sin y) 112 electrons cm- 3 for the E-layer ( 1) 

and 
N„,„,e= 2.55 • 105 • (sin 7) 112 » » » F1-layer (2) 

according to Hulbert. y denotes the height of the sun. The true 
heights of the maximum ionization varies with y • Heights of 100 

and 180 km respectively may be mentioned as typical noon values 

for the two layers. 

Partly communicated at the joint meeting of the International Scientific Radio 

Union American Section and the Institute of Radio Engineers at the National Aca-

demy of Sciences, Washington, D. C. April 26, 1940. 
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As shown by (1) and (2) the ultra-violet light theory of the static 

atmosphere yields a single maximum in the daily variation of N. 
In the F,-layer, however, a double maximum is observed in tropical 
latitudes. The decrease in ionization is different from day to day. 
If the average decrease were attributed to recombination only not 
affected by other factors, which is a questionable assumption, the 

corresponding value of the recombination coefficient would differ 
very much from the present theoretical value. However, the photo-
electric action of the solar ultra-violet radiation seems to be adequate 
to produce an ionization at F2-levels of the observed order of magni-
tude [3]. To explain the F 2-variations, therefore, an additional 

hypothesis is necessary. One of the most probable ones is the assump-
tion of a day-time expansion of the F2-atmosphere due to heating 
and dissociation of the molecules. The 1'2-ionization would cen-
ter about a 275-km level in the absence of the expansion and it 
would increase to a maximum in the early afternoon. The ex-
pansion, however, spreads the ionization to say 375 km or higher 

and therefore reduces the ionization density. The expansion is very 
slight during days when y never approaches 45° and N reaches its 

maximum shortly after noon. When y approaches 90° at noon /V 
increases very rapidly in the morning. Soon, however, in spite of 
the fact that the total number of electrons continues to increase, 
the expansion is so rapid as really to make N decrease. N will there-
fore pass through one maximum in the morning and another maxi-
mum in the afternoon. 

Owing to the expansion of the F2-atmosphere it appears likely 
that winds will blow away in all directions in levels about 275 km 
directly beneath the sun. In the morning hemisphere a stream of 
»F2-air » should move against the rotation of the earth and gradually 

become turbulent whereas one expects a stream moving with the 
rotation of the earth in the afternoon hemisphere. It is believed by 
many that such an eastward wind would displace the afternoon 
maximum in N one hour or more towards evening. 

The two hypotheses, ionization by solar ultra-violet light and 
expansion of the F2-atmosphere, appear to be able to account for 

the main features of the F2-ionization. Very probably too the F 2-
atmosphere contracts slowly as the night progresses. This may 
account for the irregular recrudescence of the F2-ionization fre-
quently observed in the small hours of the morning. 
The F2-layer generally is quite disturbed during magnetic storms, 
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though not necessarily so. On some occasions the electron density 

of the .F2-layer is so reduced during magnetic disturbances that it 
tends to fall below the value of the maximum electron density of 

the F1-layer. At the same time the virtual heights of reflection 
become abnormally great. They become much greater than should 
be expected by the retardation in the F1-layer and therefore 
indicate an extensive expansion and diffusion of the F2-region. 
A thorough and accurate study of the electron density and colli-

sional frequency distributions of the F2-layer therefore is very desi-
rable as it would give us more reliable information concerning the 
upper atmosphere and the magnetic storms. As practically all 
transatlantic short wave radio communication is conveyed by means 
of the F2-layer a deeper study of its properties, especially during 

magnetic storms, is of technical importance. 
After this survey of the general situation it should be proper to 

study briefly the application of well known optical methods to the 
description of the propagation of the radio wave-packet. This should 
be a fitting introduction to the following problems since the practi-
cal way of exploring the upper atmosphere is by means of recording 

the times of travel and the intensity of radio signals reflected from 
the various ionized regions. 

The Propagation of the Wave-Train. 

As a further introduction to the following sections we make our-
selves a little bit more familiar with the essential facts governing 

the transmission of arbitrary wave-trains in a dispersive medium. 
We restrict ourselves to the ordinary form of the wave equation, 
where // is a function from which the characteristic quantities of 
the wave may be derived by suitable operations, 

\-72/1 k02 n 2 H  0 (3) 

27 
The notations are the general ones, viz. /co = and n = the re-/.0 

fractive index. Here n in general is a function of the coordinates. If 

the change in n is sufficiently slow we may seek an approximate 

solution of the classical form 

11 — els, (4) 
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where S represents the phase of the wave. Inserting this in (3) one 
gets that 

( SS 2 
iv2s = ko2 n2 (5) 

y, z 

If 
\ 

17S < (Tx), i. 
1 

e. 71, • grad (n) • A. • cos .e 2 et, (5 a) 

where Yi is the angle between the direction of the ray and grad (n), 
then Eq. (5) reduces to 

/05 \ 2 = 
ko2 • n2, (6) 

(5x 
X. y, z 

which in geometrical optics is called »equation of the iconal ». By 
(5 a) a reduction to the iconal equation is possible only when the 

relative change of the refractive index within a wavelength is very 
small, as is well known. Such a reduction generally is possible over 

most wave paths in the ionosphere. It is obvious, however, that 
the apex-region of a ray, especially at vertical incidence, may form 
an exception. Another exceptional example is the level of maximum 
electron density for a ray in the penetration frequency region. 
An integral of the equation of the iconal will have the form 

S = S (x, y, z, c1, c2) c3 . (7) 

If we write (7) in differential form it becomes 

OS OS SS 
• dx • dy Tz • dz = O, (8) 

showing that the rays are everywhere normal to the wave surfaces. 
The equation of the ray is 

dx dy dz 

I OS \ I bs 
Ox I I ) • 

(8 a) 

If the medium is absorbing n becomes complex and we conse-
quently get two characteristic wave surfaces. One is the surface 

of equal phase and the other one is the surface of equal amplitude. 

S = si + is2 • 
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It is of interest to investigate briefly how much the direction of 
the ray actually departs from the normal to the surfaces S,= const.. 

To fix our definitions we say that the ray is the curve in which the 
energy travels. If we have electromagnetic waves the direction 
of energy flow is given by the direction of Poynting's vector. Let 
us consider a two-dimensional case as outlined by Epstein [4] in 
which the index of refraction is independent of the coordinate z. If 
the electric vector is parallell to z (Ex= Ey= 0) we get from Max-
well's equations that rs, ,u• ko • Hx= exp. (— So) • —Sy • cos (Si— coo t) — • sin (Si— coot) , 

Sy 

681 , Ô S2 .,, [ (9) 
it • ko • Hy = — exp. (— So) • —Sx • cos (Si — wo t) — 75—x • sin p31— coot) . 

The Poynting vector has the components 
co 

P= —4n [— EzHy,EzHz,0 1 

and its direction therefore is given by the ratio 

Pyipx Hx17., 
n Y • 

(10) 

In the case of a non-dissipative medium this ratio is independent 
of time. We can therefore compute the curves of energy flow. In ab-
sorbing media, however, grad (So) 0 and Poyntings vector oscillates. 
In this case it is not possible to compute the curves of energy flow 
from the vector direction. When the absorbtion is considerable 

there is not much left of the conception of a ray. Although it is 
not too important in this connexion to make a detailed study of 
the ray equation in the dissipative case a short survey of the essen-
tials certainly has some educational value. Let us therefore study 

the propagation of a wave-packet produced by letting an interrupted 
radiation pass through a suitable aperture. If we observe the inter-
rupted ray-pencil at sufficient distance from the slit (Fraunhofer 
diffraction) we remember from theoretical optics that it can be 
represented the following way, viz. 

+ na + nb .-E 
11 (x, y, z, t) = Affj exp. (j [27c (7),, • x 11, • y ± qz • z) — 

— 

— coo t]) • y (?1) • di x • clily • 4, . (11) 
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(riz, ny, liz) is the vector wave number. 27a and no are small if 
the ray is directed along the z-axis. We now wish to study the be-

haviour of this wave-packet impinging upon an arbitrary discon-
tinuity surface, which for example may be the boundary of an ion-
ized medium. It is practical to change to new coordinates x„, Yi 
and z1 where x, and Yi are in the plane of the discontinuity surface. 
Defining the new axis by their direction cosines with respect to the 
old system, viz. 

= [cos az, cos ay, cos azi, = [cos /3z, cos fly, cos fie], i = 

we have 

H = A rr 
range as 
befort 

[cos 7x, cos yu, cos yz] (12) 

fexp. (j [2n (x, ( iix • cos az ± ny • cos cei, nz • cos az) ± 

e2 

+ Yi(I/. • cos fl + ny • Cos /3 y ± nz • cos fle) 

Z 1 (n2 • cos yz ny • cos Yy nz • cos 7:)) — 
— coo t]) • q, (n) • drjz • dny • dliz . (13) 

According to the well known rules for the reflection of plane waves 
the coefficients of x, and y, remain unchanged when the wave enters 

the second medium. If n, is the wave number of the second medium 
corresponding to n in the first medium we must have that 

H = A fif exp. (j [2 n (xl• ei + Y e2 + Z1• 177/12 — e12 — e22) — 
— coot 1) • (i) (11) • dliz • driy • cbiz (14) 

in the second medium if we neglect the change in amplitude of the 
refracted ray for the time being. Because riz and riy < nz in the 

important range of wave numbers, we can write that 99 (22) = cp. (nz), 
and 

Yrh.2 ei2 — e22 n2 — [77x (cos ax • cos az ec's flz • cos i3z) + 
972 

911/ (cos ay • cos az cos 131, • cos flz)] 

where ri22 = 1712 — re • sin2 yz. 
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Introducing 

[ 71z qz 
T, = 2 zr x, — z, • cos az • — cos az ± y1— z„ • cos flz • — cos 13z 

i'i a V12 
and 

71z 1), 
T2 = 2 n[(x„ — • cos; • —) cos ay ± (y1.— z, • cos flz • cos pi 

n2 n2 

and remembering that %I%  n/ni =- n/221 , where n and ni are 

the respective refractive indices, ( 14) reduces to 

+ 00 
sin (T1 • na) sin (T2. nb)f 

H 4 A •   T2  exp. y  2 n • 9) { x„ • cos a, + 

yi • cos fl, z, jf(—n ) — sin2 yz}— C001) • Gp ( q) • d)) . (15) 
ni 
2 

In order to find the direction of the ray we have to search for the 

direction that makes 

sin (T1 • /la) 

Ti 

sin (T2. no) 

T2 

as large as possible. In this direction the real part of Ti and T2 

will vanish. 
Therefore 

xi 

cos az 
= zr Re 

cos flz 

1 

(_n1) 2 sin2 yz) 

that is the direction of the ray is given by the set 

[ dx dy dz  

Re (19 Sx SS 114 ÔS áz 

(16) 

(16 a) 

in a homogeneous medium as was originally shown by Epstein. 
In general orthogonal coordinates, with the absorbtion constant for 

U3 r=" const.1), the direction is given by 

1) The surfaces U 3 = const. are constant intensity surfaces. 



Re (38 IS% (58 bu, (38 I Su3 
As 92 ( ) is the shape of the packet in the non-dispersive medium we 

put n = 1. We introduce the absorbtion by writing 
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r12 • du, , 142 • du2 he • dul. 

n12 = a ± ifl • 

(161» 

(17) 

After a little bit of juggling we get the following direction cosines 
of the refracted ray, viz. 

[cos a2 cos fiz 
[cos a2', cos /3:, cos 2/21 =-- -- —=-  , 

Ye, , Ye (18) 

Y-(a — j2 y)2 /32 

y% (a — sin2 yz) (2 a — sin2 Y,) fl2 % sin2 y y(a — sin2 yz)2 fi2 

where 

e _ 
a — sin2 yz vca—sin2 yz)2 /32 

e3 

2 es 

It is especially convenient to change from cos y: to tang yzy. It is 
easily established that 

a — sin2 yz Y (a — sin2 y2)2 fl2 
tg yf = sin yz   . (18 a) 

2 (a — yz)2 ± 2 /32 

From this expression we see that the ray never becomes horizontal 

when the medium is dissipative)) At the classical reflection level 

a = sin2 yz 
and 

1 
tang y: sin yz •   . 

V 2 fi 
(19) 

Practically always /3 •<< 1, i. e. the absorbtion is negligible in a 

wavelength, and y: therefore approximately 90°. Below the classi-
cal reflection level the correction is even smaller, so we are fairly well 

2) This is not unexpected as the lower rays of the pencil travel greater distances to 

reach the same height and consequently become more absorbed than the higher ones. 
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justified in computing the ray-path neglecting the absorbtion. (One 
always has to be careful, of course, when speaking of the ray path 
near the reflection level. It happens that inequality (5 a) does not 

hold and then the ray treatment is no longer correct). It is apparent 
from the direction expressions so far deduced that it is a great compli-

cation to consider the absorbtion in computing the ray paths. To 
illustrate this further we calculate the signal velocity along the path 
of maximum intensity. 
We assume that q) (n) has a maximum for n = no which is the 

carrier wave number of the sender. We further suppose that it approa-
ches zero monotonically as I n—noI increases. To have a definite 
limit we state that go (n) is practically zero outside the wave number 
range n, to n". The wave function ( 15) therefore gets the following 
form, if lo carrier carrier frequency and 17 = no + 12, viz. 

• exp. (j 2n fo 

e4  

• f exp. j 2 n .Q[xi. • cos ce, y, • cos i3z + zi ( -17%2 — sin21/1 

11 r.-_-- 4 A • 
T, • T, • 

• cos flz + z1 ifni2 — sin' y, [ x, • cos a, ± y, 

co 

sin (T1 • no) sin (T2 .74) 

f d—  (v n — y„)) — Co t 
f 

d 

f lo 

d2 
z, • n • S22 • co 2-61 ifn 2 — sin2 yz f • —df2 1rn12 — sin2 y2 ± 

df 

e5 = /0 

  ) • 4'0 (//0 ± (2) • d S2 . (20) 

At the center of the wave-packet Re (e4) = 0. Following the 
ray direction x1= r • cos a,v, etc., Re (Q4) gets the following form, viz. 

Re (ea) = (r Ivg—t) • co , (21) 

where v0 is the group velocity and is equal to 
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Vg — co • Y 
(da /3  (1,6\ 

sin2 yz «V(a — sin2 yz)2 flz 
af + a — sire yz if(a — sin2 yz)2 + /32 

(21 a) 

For negligible absorbtion it reduces to the well known 

co • n 
—  

d (n2) • 
n2 + 

2 df 

(21 b) 

The introduction of absorbtion complicates matters very much 

as was stated before. In the .F-layer of the ionosphere the electronic 
collisional frequency is so low that we are practically always justi-
fied in neglecting the absorption for most angular frequencies wo 
of the ray used for the exploration of the layer. The corrections 

in our expressions so far deduced therefore generally will be so small 
that they are insignificant compared to the error involved in the 
experimental methods used for the exploration of the ionosphere. 
The length of the wave-packet is determined by the fact that the 

principal phase factor 27cS2e, should not range through more than 
about 2 er from end to end of the packet if the various components 
are not to cancel each other mutually through interference. Calling 
the length of the packet A s and the corresponding time of travel 
r this means that 

(72' -- n") • As. C0 '8.1As • f • 1. vg Vg 
(22) 

of which the last expression is familiar as the wave-mechanical un-
certainty relation. This expression shows us that it is impossible to 
make the experimental error as small as possible. If we for example 
wish to register the time of travel of the signal it is desirable to make 
A r as small as possible. The smaller A r is compared to the actual 
time of travel the more accurate will be the determination of that 
time. If Az is made very small, however, the frequency width of the 
packet or pulse becomes so large that it is comparable to to and it 
becomes difficult to produce the packet. In practical applications 
r is made as small as the limitations of the sender and the re-

cording receiver will permit. 
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Finally let us study briefly the dispersion the wave-packet will 
suffer in a friction free ionosphere. Then 

n2 1 ___ 1,7/2 , 
(23) 

where fe is the so called critical frequency of the medium. If the 
dispersion is to be negligible the magnitude of the phase correction 

z1 • et • D2 • co • p5 

should not increase to more than about 2 n from center to end of the 
packet. For negligible dispersion, therefore, 

¡2  
• 8 cos2 / c /02./03 itc2 

r • Vg 
cos2 7z (24) 

As a typical example we take vertical incidence with a carrier 
frequency of 4 me/8 and a frequency width of 10 kc/s. If a) fe 0.7 fo, 
the dispersion is negligible as long as 

r < 70000 km 

and b) if fe= 0.95 fo, the same is true if 

r e 3000 km. 

The dispersion, therefore, always is negligible except very close 
to the apex of the ray where fe = fo • cos yz. The actual path-
length in the principally dispersing region generally is so small, when 

the electronic gradient is of average magnitude, that the total dis-
persion is unimportant. During magnetic storms, however, when 
the F 2 electronic gradient may be abnormally low dispersion is 

frequently noticeable. The calculation of the total dispersion from 

experimental travel-time data is shown in the following section. 

The propagation of the wave-packet will, under certain circum-
stances, be reduced to a mechanical problem when the medium is 

non-dissipative. This analogy is, of course, quite accidental and 
presents nothing new. It was known already to Hamilton that there 
generally is a close analogy between geometrical optics and mechanics. 
In modern times a treatment similar to Hamilton's was introduced 
by Brunn about 1872 and has been extensively used ever since. 
The mechanical interpretation offers many advantages to the practi-
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cal engineer even though it is an approximation in practical applica-

tions. A short recapitulation of the essential transformatiori there-
fore must have its educational value. To fix our ideas we introduce 
the mass m of the electro-magnetic photon 

m • e02 = h • 4 to • (25) 

If we further write n12 = 1 — e, where p e is the reduction of 
the dielectric constant, e, and Si = S • 1112n, the iconal equation 
gets the following form 

(5-8-j 2 = 2m (E — V) bx (26) 

X. y, z 

where E = h • fo/2 is the initial energy and V -= pe•h•fol2 is the 
potential energy of the representative particles. Eq. (26) can also 
be written 

h2 
2 = 2 m. (E — V) . 

ni (26 a) 

Another expression for the signal velocity equivalent to (21 b) is 

(dt 

d ni)/0 v = (27) 

It is, as has been shown on page 10, normal to the constant phase 
surface in the non-dissipative case. Making use of (26 a) the mo-
mentum of the representative particles turns out to be 

S Si 2  r d 
P=--m•v (28) 

br h • ej [d (E • v)] j, 

directed along the normal to the constant phase surface. When 

either V = 0 or the product E • V is independent of frequency, the 
momentum is equal to the gradient of S, and (26) is the Hamilton-

Jacobi differential equation for the abbreviated action function Si, 
of a masspoint of energy E and mass m moving in a force field with 
potential energy V. The only time when E • V is independent of 
frequency is when n2 is of the form given by (23). V then becomes 

v _ h • lc le 

2 to • 
(29) 
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As fa2 =-- e2 Npr mo, where e and mo are charge and mass of the 
electron, we may visualize the wave-packet as a masspoint m experi-
encing a force 

h, • e2 
  • grad N (30) 2 7r • mo • fo 

In the case of a symmetrical, spherical ionized region as shown on 
Fig. 1 the propagation is a case of central motion. 

Fig. 1. 

In this case the Hamilton—Jacobi equation has the following 
solution 

-= Ci • 0 ± f 2 m (E — V (r)) — Ci2 • dr . (31) 
o 

Th e angular angular momentum Po is constant as is always the case at 
central motion. This determines the integration constant c1. 

(3 8, 
Pe 6-7-0 ci " 2— m—E • r 0 • sin yo (31 a) 
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As vg= co • n, the appropriate form of Snellius law means nothing 
else than that Pe or the surface velocity is constant. At the apex 
of the ray P,, is zero. This determines the electron density needed 

to return the ray. 

a Sir0 21 04 
P = = { 2 m [E — V — E • (7. sin yo) I (31 b) 

At the apex 

72 — r 02 
V =- E • cos2 yo+ r2 • E • sid y0 (32) 

which is the initial radial kinetic energy plus the work performed 
on the wave-packet by the centrifugal force. This relation is the 
same as 

(n)apex = ro/r • sin 'yo, (32 a) 

which is immediately obtained from Snellius' law. Finally reference 
should be made to de Groot [6] who wrote one of the first notes 
on the mechanical interpretation of the propagation of electromag-
netic waves with special reference to radio waves. Communications 
of similar kind have also been given by Eckersley [6]. 

It should be stressed again that the mechanical analogy should 
not be pushed too far. The wave equation is not equivalent to the 
motion of one particle but to the motion of many, a so called statis-
tical ensemble. It is, as we have seen, only in the non-dissipative 
case that the iconal equation gives correctly the direction of the ray 

and even when it so does the mechanical interpretation is only cor-
rect when E • V is independent of frequency. 

The Dispersion of the Down-Coming Radio Echoes. 

In the exploration of the ionosphere short wave-trains are trans-
mitted from the sending station. Their eventual return is then re-
gistered by some kind of recording device which records the time 
of travel as a function of the carrier frequency of the sending sta-
tion. The frequency range generally is so wide that the rays always 
penetrate at the highest frequencies. When the time of travel is 
known as a function of frequency it is possible to calculate the 



RYDBECK, A SURVEY OF THE ELECTRON DENSITY DISTRIBUTION 19 

actual electron density distribution fairly accurately. The accuracy 
of these calculations depends upon the accuracy with which the 
time of travel of the wave-train can be determined. A computa-
tion of the actual dispersion of the down-coming wave-trains there-

fore is of interest. 
To begin with let us study the dispersion of a simple wave-train 

of rectangular envelope. At the time t = 0 the key is pressed at 
the sending station and a wave-train is sent out. At time r the 

key is opened and we get a train r seconds long. 

Thus 

(t) eiW° • t 0 < t< 

H o (t) = 0 t<Oandt> t. 

Next we form the image of H, i. e. 

+CO 1 — e 

((o) j — jD r — rot e. o(t) • dt  j 

(33) 

(34) 

where D = — coo. 

Now, every component experiences a change in phase S (x, y, z, co) 

which we write as 
1 1 

(w) = S (we) + s2 . S' ((o0) S22. S" (wo) ,Q3 • 8"' (coo) + • • • 

The resultant wave-train at the receiving station therefore is of 

the form 

(t) = — exp. [coo t — S ((00)] ) • 
1 

A s 

(35) 

Q 

e j.11 S2 — e s22 S23 j(T x).S2 
exp. S" (we) — S"' (we) — .1 • d 



20 CHALMERS TEKNISKA IlÓGSKOLAS HANDLINGAR NR 3 

The time of travel times the velocity of light in vacuum gene-
rally is called the virtual path-length, L v. 

Lv = co • to. (36) 

If we only consider the first term of the phase correction the solu-

tion of (35) becomes 

exp. (i e — ni4Br / T — r 

C 
(t) — [a   

(37) 

where S(u) and C(u) are the Fresnel integrals') to argument u. 
B is given by the relation 

(dL,) 
B = — • 

co dco coo 
(37 a) 

Now, let us take a typical example from vertical incidence F-layer 
*sounding ». Lv then means twice the so called virtual height h,. 

dh 
A very normal value of ' i. e. the tangent of the virtual height 

df  
versus frequency curve of the recorder2), is 30 km/mc/s. Fig. 2 
shows a plot of the envelope of the received wave-train when the 
original envelope is 0.5 • 10-4 seconds long. 
The upper part of Fig. 2 shows the received envelope after one 

reflection. Tail A consists of the lowest frequency components of 
dh 

the wave train and B the highest as -2  is positive. A normal re-

ceiver does not have transmission characteristics to reproduce 
much of the tails and ripples of A and B. If the tuning of the 

receiver circuits is too sharp one has to be careful to adjust the 
tuning to the point of maximum response. Otherwise the time of 
travel might be slightly too great or too small. 
The lower part of Fig. 2 shows the appearance of the envelope 

after four reflections. The dispersion is worse but it still holds that 
a tuning for maximum intensity gives the correct time of travel. 
The dispersion, therefore, is not serious as was indicated on page 15. 

1) Jahnke 8t Emde: Tables of Functions, p. 35. 

2) By many writers called P' — f recording which in terms of our symbols might 

be called an S' —f recording. 
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DISPERSION or WAVE TRAINS REFLECTED FROM 

THE IONOSPHERE 

Fig. 2. 

Generally the wave-train is modulated. As almost all envelopes 
lie somewhere between the rectangular and the sinusoidal shape an 
investigation of the dispersion of the latter type should complete 

our study. 
The original train thus is of the form 

[ Ho (t) = eiwd • sin ( t\ = —1 e i (w° + -IT) t _ ei (w° — •.r) t (38) 
‘r / 2 j 

for 0 <t < z and 

Ho (t) = O for t < 0 and t > z. 

The resultant pulse at the receiver is produced by interference 
between the two wave-trains of angular frequency coo n/r and 
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dh, 
wo—nlr respectively. The greater —df the greater will be the 

difference in time of arrival between the two trains and the broader 
will be the recorded pulse. Adding the two solutions for the re-
spective wave-trains it is not difficult to show that the resulting 
wave-train is expressed by 

• ( [ 1 (clh, n 2 
H o (i) — (2) „/. exp. j coo t — S (coe)—z ci--(7))coo • (7 )1) 

YB É 
[ «fir".11 —) T—r 17 

—C (ifi ---77)±  

+18
 IT YB\ ¡T—r _YB)}1 

r 

T T—z j/:\r • LC (•./ C 17.8 
v B 

. --- Í I T YB)-8(17 )11] 
T—r Y7B 

2. 18± 7 . 
(39) 

If we use the same train-length as before, i. e. 50 ,uS, and the 

slope of the virtual height curve is 30 km/mc/s, the time difference 
between the two components is as little as 4 ,uS. For a slope of 
480 km/mc/s, which may be found on the rising part of the curve 
near the F2-critical frequencies, the time difference is 64 y8 and 
this is 14 FS more than the original train-length. It might be of 
interest to examine the shape of the received envelope under this 
condition of appreciable dispersion. 

The upper part of Fig. 3 shows a plot of the received pulse. The 

pulse is broadened approximately four times, i. e. from 50 to 200 
pS. The lower part of Fig. 3 shows the dispersion of a rectan-
gular wave-train under the same conditions. It has a more pro-

nounced energy peak but it is broader at the same time with tails 
of appreciable energy peaks. Typical peaks are shown at A and B. 
They appear about the time of arrival of energy pulses of frequency 
co0 — 3 exit and co0 3 tfr respectively. These »sideband» compo-
nents are prominent in the rectangular pulse of width T. At such 
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a high dispersion the pulses more and more look like their original 

Fourier image. For the rectangular pulse its magnitude is 

2 sin (12— 

with »sideband » peaks at Q — (2 n 1). (n = 1, 2, ...) 

7: 
1) Note: a = -- and col = wo• 

(40) 



24 CHALMERS TERNISKA ID5GSKOLAS RANDLINGAR NR 3 

Finally it should be mentioned that the lower part of Fig. 3 also 

represents the wave-train of Fig. 2 after sixteen reflections. The 
comparison is interesting. It gives a good picture of the dissolution 
of a wave-train. 

Finally we study briefly the case when the second term of the 

phase correction A S dominates. In this case the curvature of the 
virtual height curve is a measure of the dispersion. The received 
wave-train becomes 

+ cc 
1 .Q 3 

TI (t) = 2.7r i exp. (j [w0 t — S (cuo)i) exp T — 6 • co L," (cool) — 

— 00 

Q3 l 
— exp. ( j [ D (T — r) — (%)1) d (41) 

in the rectangular case. The solution can easily be expressed by 
means of .Airy's rainbow integral, A (u), where 

00 

A (u) = f cos (-2 (u • w — w3)) • dw (42) 

o 

It first appeared in a study of the rainbow by Airy in 1838 [8]. 
It is easily verified that 

17 (t) = exp. ( j {w0 t— S (con)]) A (u)du, (43) 

where 

T — r Lvn Po) • n2 

Co • 24 

A (u) was first tabulated by Airy for values of u ranging from 

— 5.6 to + 5.6. Later it was found that A (u) could be expressed 
by Bessel functions of order ± 1/3.1) 

F21 2/, 
A ( u = 

2 us ..7c f r 1. 
) • • 1.1+1 

( 2 [1 8/2) (44) 

1) See Theory of Bessel Functions by Watson, pp. 188 and 712, where Bessel 
functions of order 1/3 are tabulated. 



4,6 MINN.« 

RYDBECK, A SURVEY OF THE ELECTRON DENSITY DISTRIBUTION 25 

ORIGINAL ENVELOPE ENVELOPE or Tilt WAVE I 

.CNVELOPE OF THE DISPERSED WAVE' 

A 

42 4 6 -66 

21>due•TIME• ARRIVAL OF 

THE unvispresED 

WAVE TRAIN 

5 

(ek. 2O JenewcAf 

DISPERSION OF RADIO ECHOES 

FROM THE /0NOSPHE PE. 

Fig. 4. 

( 

elb Fig. 4 shows a plot of the received envelope for --L) ---= 120 
d co2 coo 

km/(mc/s)2. For the sake of convenience the original wave-

train was made 50.7 ,ta long. The result is quite different from 
Figs. 2 and 3. The received envelope is not symmetrical any longer 
due to the fact that both the low and high frequency components 

of the wave-train are more delayed than the components around 
the carrier frequency. Therefore the beginning of the pulse is a 
smooth rise followed by a typical diffraction ripple. The lowest 
and highest frequency components of the original wave-train appear 
in the tail A where they form a complex pattern. 
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Fig. 5 shows the appearance of the ionosphere record to which 
the pulse shapes on Figs. 2, 3, and 4 refer. As a conclusion we can 

say that under most practical conditions the dispersion is not serious. 
Comparing the arguments of the Fresnel and the Airy integrals one 
finally easily finds that the Fresnel integral is the proper form of 
the solution when 

( 1 d 11'12 ( 1 d2 h,\ 113 > 
co - dco co d co2 ) 

and the Airy integral when 

( 1 d hay= (1 12 1'13 

co - dco co (10)2 

The Phase Relations and the Virtual Path-Length. 

As long as inequality (5 a) holds the phase-integral is obtainable 
from the iconal equation. In the regions where this is not the case 
a different treatment has to be used. An exact solution of the wave 
equation can be obtained only for certain kinds of electron density 

distributions. To begin with we will have to seek a solution that 
is the closest possible approximation as we do not know anything 
about the distribution. 

Let us study the two-dimensional case of the plane homogeneous 
ionosphere. The electron density is a function of z only and the 
wave normal is parallell to the z — x plane. If we split the phase 
in its two components we can write 

11 = exp. (j (So (z) Sb (X))) = exp. (j (So (z) ko • sin yo • x)), (45) 

where yo is the angle of incidence and x is the distance from the 
z— y plane through the apex of the ray. Eq. (3) thereby gets the 
following form, where the arbitrary constant, â, has to be put 
equal to unity, viz. 

id sa\ 2 (3 d2 s a 

 — ko2 (n2 — sin2 Vol = ko2 • q2  
dz j d z2 

d Sa 
This is a first-order Riccati equation in —dz . If we put â 

equal to zero (46) reduces to the iconal equation. Using therefore 
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d S 
the methods of Brillouin, Wentzel and Kramers [9] --a- is ex-

d z 
panded in a power series in (3. Using only the first two terms of 
an expansion of the form 

00 

d Sa = Sa • a, (z) 
d z 

n =o 

d So 
and inserting the value of —dz for ô = 1 in (45), the wave func-

tion is obtained in the form of a B. W. K.-approximation, viz. 

// = a • (ko • q)-112exp. ( j [ko • (sin yo • x • dz)]) 

b • (ko • q)'12 • exp. ( j [4 • (sin yo • x — f q • dz)i) . (47) 

Multiplied by the time factor (47) yields progressive waves in the 
classical region travelling up and down respectively. One has to 
put b equal to zero in the non-classical region (z > he, where it, is the 
true classical height of reflection) because the probability of pene-
tration must decrease very rapidly with depth. The solutions 
in the two regions have to be joined at the classical reflection level 
at h,. This is difficult, however, on account of the fact that the 
B. K. W.-approximations generally »blow up » near 111. This gap 
therefore must be bridged. 
In the case of the ionosphere it is practically always a permis-

sible approximation to write 

Id N\ 

N  (N)h ±  —dz) (z hi) (48) , 11,1  

for the electron density in the bridging region. Remembering that 

4 n Ne2 1 
a = 1 —  (49) mo • coo2 ± 12 

and 

47r N e2 
- • CO 2 ± ' 

(50) 
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where y is the collisional frequency, the wave equation is easily trans-
formed to 

Here 

d2 e u 

d tê  

e . exp. (j • Sa) and 
u = (3 (3)1/3 [kg— z ± p] 

is the new variable with 

and 

11 dN . 1_ icroo 
ô ' 42 • c°82 Yo • VV-d Z hi 

) 

+ i r/.. ri 1 d N1 hel— 1 
1-1 — i — i v/wo l_\N d) zI 

d2 u 
It was already noted by Stokes that the operator — + — anni-

d u2 3 

( 2 )2/3 
hilates Airy's integral to argument u —n . The solution in the 

classical region suitable to our special case is 

u n 
11 = A • (u)1 I 2 I exp. ( j [ko • x • sin y 0 — 1) • Hi#), (2 8i2 ) + 

n u 812 
+ exp. ( j [ko • x • sin yo + 1) • 1-11- 8) (2[3-] )1 , (52) 

which in fact for x = 0 is equal to the Airy integral according 
to (44). The Hankel function of the second kind yields the up-
going wave and the first kind function the down-coming wave. 

In the non-classical region at the top of the rays the solution is 
the surface wavel) 

k 3/2 j • o • x • sin yo 
.il --= A • —3 • (— u)112 • K,1, (2 [— —3 1 • e , (53) 

n 

which for x = 0 is another expression of Airy's integral when the 
real part of the argument is negative. 

1) The symbol K is that of Basset, see Theory of Bessel Functions, p. 78, and 

p. 714 where Kv3 is tabulated. 
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For large values of the argument in the classical region we can 

use the Hankel asymptotic series for both Hankel functions. To 
begin with we note that 

____, A 
u 3/' h 

2 ( ) —3 --= j k -4- ô''o • q • dz lz . 1,312, 1,-- 
3 - 

lit 

4:7 (Y/400)3/2  — I + i (54) --.-- 1 ko • q • dz + —3 • cos yo 
z i 1 dNi . 1 • 1/-2 • 

‘N d z Iht ."° 

Putting the arbitrary phase, y, of the time factor equal to the 
classical phase difference between the bottom and the reflection level 
our solution in the classical bridging region therefore gets the form 

e — j (0'0 t -- V) n 
• „, -.... 

z 
A • (81 • 6) 1/. 

--- (..7 . ko . q) ,,, exp. ( j [ fko • q • dz ± ko • sin yo • x — A + - - — (00 t j) + 
o 4 

:r 

up-going wa ve 

exp. ( j f ko • q • dz ko • q • dz ko • sin yo • x — IT- / 

u  4 

down-coming wave 
if 

U )'/ . _2 4 z le, — Z 1 dN) h 1 I' 2 

>> 
2 (--3- >> 1, i. e. . cos 70 . __ t___ 1. (56) 

3 4 (h_4 (N dz t 

If this is the case at the boundary of the bridging region we do 
not have to bother about connecting our solution to the B. K. W.-
approximations because it reduces to the same as is evident when 
comparing Eqs. (47) and (55). 

If we for example assume that the relative change in N is 10 % 
per km, and such a value is not abnormally high in the lower por-
tion of the layer, and if further 4 —-. 86.5 m, then 

(-l-uiy2 
2  ---- cos yo • 5.4 . 

3 

( 
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500 m above and below the reflection level. As N in most cases is 

very well represented by (48) through an interval of this length we 
are justified in considering ( 52) the proper solution in the whole 
classical region. 500 m above the reflection level the disturbance 

is reduced to about one three hundredth of its maximum value and 
therefore can be neglected for heights above this level. Practically, 
therefore, no disturbance penetrates more deeply than this into the 
layer for the values given. 

(74 e,iZ- 0 

CLACSICAL LEVEL 

OF QEFLECTION 

REFLECTION OF ELECTRO MAGNETIC 

WAVES IN THE IONOSPHERE. 

Fig. 6. 

Fig. 6 shows a plot of the standing wave between the arbitrary 
bottom and the reflection level at vertical incidence for the non-

dissipative case, i. e. y -= 0. If we have another classical region 
higher up, as marked by the dashed boundary line, transmission 
through the layer is possible if the distance between the boundaries 
is less than about 500 m. To many physicists this transmission 
through the non-classical region is also known as the »tunnel effect ». 

It will be treated exactly for a parabolic layer in the last section 
of this communication. 
The complex phase difference between the down-coming and the 

up-going waves at the bottom is 
h, 

AS -= 21ko•q•dz-l-ko• sin yo . 2x— 4- + 2 A. (57) 

0 

Using the mechanical notations of Eqs. ( 26) and ( 28) for the non-
dissipative case the conditions for standing waves between two 
ionized regions as obtained from (57) 
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ht 
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e P,. • dr -= h (n 1/2) (57 a) 

is formally identical with the Bohr-Sommerfeld phase integral as 
expected. 

The total phase difference between the down-coming and the up-
going waves is 

hi 
• a — sin2 70 1 
c, 2 .   + —2 y S, = 2 jk (a — sin2 yo)2 P2 • dz 

± 2 x • ko • sin yo — —2- ± Re (2 A) (58) 

= 2 fd—wo (coo • 
d — sire yo 1 

 2 ' (a ___ sin2 70)2 ± /32 dz + 
2 

3 
-I- 2 x • sin — Re (2 A) —47I • 20 . (59) 

In the F-layer the following approximation therefore often is 
sufficient, viz. 

fht C052 yo • dz 
2   ± 2 x • sin 70, 

If a — sin2 yo 

further 

(59 a) 

2 x 
Lv = — for v = 

sin yo 

as immediately follows from the mechanical interpretation. This 

result was given by Breit and Tuve already in 1926 [ 10]. 
The total attenuation is 

ht 

A S2 = 2 2 
o co (a sin2 70)2 ± /32 

2 

0)0 y2 i6 • dz 

a — sin2 yo 1  
Im (2 A). 

(60) 

') The last term is unimportant even when the collisional frequency is fairly high. 

For our example on p. 29 it becomes about 14 • cos yo • (v/co0)3/2 km, which is negligible 

even for n as high as 106. 
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Using the approximate refraction relations one gets the classical 

attenuation expression 

A S, (0° 1,3,— • dr f y • dr, 
2. c„ • V a 

Path Path 

where y is the so called attenuation coefficient. 
As a conclusion we may say that even the more exact treatment 

of the wave equation justifies the use of the classical attenuation 
and path-length formulae. It should be remarked at this point, 

however, that this may not necessarily be true in the region of maxi-
mum electron density near the critical penetration frequencies of 
the ionized layer. In this region a somewhat different treatment has 
to be used as is shown in the last section. In the following sec-
tions we will proceed to determine the actual electron and collisional 
frequency distribution using the phase and attenuation relations 

just shown. 

The Calculation of the True Height of Reflection 

and the True Electron Density Distribution. 

Let us to begin with assume that the square of the collisional 
frequency is negligible compared to the square of the important 
wave frequencies of the exploring spectrum. This must be a per-
missible approximation at least for the F 2-layer under most condi-
tions. Thereby a is reduced to n for the friction free medium. To 

accentuate the historical background of the problem we use the 
mechanical interpretation. This we are free to do because E • V 
is independent of frequency. 
The vertical incidence virtual height then gets the form 

ht ( V = E) 

hr (E) = h (0) ± 
V 1 — VIE 

dz 

h(o) 

where h (0) is the distance from ground to the lower boundary of 

the ionized layer. 
A h, (E) = hi. (E) — h (0) (61 a) 

is the increase in virtual height for a given primary energy, E. 

(61) 
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The problem of finding the height of return of a particle sent 
vertically upwards into a gravitational field of unknown character 

is exactly the spine. Once the heights of return are known as a 
function of the initial energy, the potential energy is known as a 
function of height and thereby the gravitational force. It is quite 

well known that mechanical problems of this kind lead to Abel's 
integral equation [11]. Abel's equation was developed for the pur-
pose of finding that form of friction free path for which the time 
of fall is a given function of height; a problem similar to ours. 

A very similar problem occurs in seismology [ 12] when the depth 
of penetration of a seismic wave has to be determined. To this 
problem we will have occasion to return briefly a little later. 

Quite recently, too, Abel's equation has found another entirely 
different application, viz, to determine the pitch-function of a va-
riable-,u vacuum tube grid so that the tube gets a predetermined 
control-grid characteristic [ 13]. 

It is of historical interest to study Abel's problem briefly in this 
connexion. Assume that the height of fall is h, the vertical axis 
z and the horizontal x. Under friction free fall we have 

dt = 
dl 

V 2 g (h — z) 
where g is the acceleration of the gravitational force and di' = dx' dz". 

As the velocity of arrival is if2 gh we get the following expression 
for the virtual path-length, viz. 

z h V=E 

= dl 
= dl  

mgz 1/1 — V/E 
z o 1 -- mgh v o 

When this is solved the true path-length, Li = S dl becomes known 
as a function of h. Thereby the shape of the path is known. It is 
evident that Abel's original problem is formally identical with ours. 

Appleton and de Groot were the first to apply Abel's integral 
equation to problems of the propagation of electromagnetic waves 
[14]. It has been frequently used by the present author in con-

nection with the study of ionosphere records [15]. Lately Pekeris 
has made use of Appleton's solution in a study of the electron 
density distribution [1]. 

3 (E S) 
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Before we extend our study to the more general cases of the wave 
propagation let us examine the mathematical side of the vertical 
incidence problem a little bit more carefully. Thiq will give us a 
wider basis when trying to solve the more general problems. 
We will find it convenient to introduce the following notation, 

viz. 

A k(°0, (o«) = hi, (wo, a) a) — h (0), (62) 

for the increase in virtual height for a wave-train of angular fre-

quency coo travelling from the bottom of the ionosphere to an elec-
tron density corresponding to an angular critical frequency coa. 
If we regard the true height, hi, as a function of the electron density, 
as we very well can do, then (61) can instead be written 

2 

A k (coo, 0)0) — A k (coo, (oa) = coo (042 (0,2)14 , 
T (W e2) • d (w) 

2 
COa 

(63) 

d hT 
where h'2, (wc2) d (0,2) and wa is the lower limit of integration, 

usually somewhat higher than the critical frequency of the nearest 
layer below. 
Multiplying the identity 

(002 

hT (wo2) — Z.hT (0)2) = J1»T (0-'02) •d (We2) 
2 

01a 

with a suitable form of the B-function (Eulerian Integral of the 
First Kind), viz. 

then 

0)02 

IB (%, %) = (0)2 ___ 0)02)il, (0)02 _ (02)1/2) 
d (w2) 

(0 2 

2 c0 2 
(00 0 

1 

A h (w02) — A it2, (w 2) = — d ( co ,2) 
7L 

h, ((002) d (co2) 

2 (0 21/, (0)02 (02)1/2 • 
e 
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If we assume that h'2, is continuous for values of co, ranging from 
wa to coo we can apply Dirichlet's formulai) to the inversion of the 
integral equation. Under this condition then it can be inverted to 

0102 0)2 

e. /.. 1 el, (wc2) . d (wc2) 

A hT (£002) — A hT ((),22) -= — j d (c02) I (c02_ 0)e2)112 (0)02_ (02)1/2 • 

2 (02 Wa 

But by Eq. (63) this yields 

coo 

2 -  12'1)(04 40)—  hv (co, co)] • dco 
A 11T (e002) = hT (wa2) (0)02 ___ a (64) 0)2y/2 

Wa 

which is the required solution. 
It very often happens that the retardation caused by the electrons 

below kr (W2) and in the lower layers is so small compared to the 

retardation for the rest of the path that it is a good approximation 
to replace A hi, (co, (0a) by A ki, ((oa, coa). Eq. (64) then gets the 
simple form 

coo 

2 A h0 • d co 
h2, ((0e) = h2, ( co a2)  ( (02),/ 

02 
(65) 

where A h„ is the increase in virtual height when the frequency of 
the wave is increased from coa to w. . This is the quantity actually 
registered on the ionosphere records. It may also happen that coa 

is so low and the character of the kv-curve is such in that region that 
it is a permissible approximation to extend the curve by its tangent 
down to zero frequency. Under such a condition A h„ may be re-
garded as known down to the lowest frequencies and (65) can be 
written 

2 n/2 2 /2 

hT (coo2) -=- h (0) 4- — J  i2 hv ( co, sin e)de= 7.1. h,, ( 0)0 sin e)•de . (66) 
o 

1) Whittaker & Watson: A Course of Modern Analysis, p. 77. 
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which is the Schlómilch integral equation. This is a very useful 

form of the solution. It neglects the influence of the low-density 
electrons at the bottom of the layer and therefore does not give 
the correct distribution of the electrons there. These electrons are 
»shadowed» by the lower layers and therefore their distribution 
can never be obtained exactly. Usually, however, one is interested in 
obtaining the general character of the main portion of the layer and 
for these purposes (66) is very useful provided it is carefully applied. 

Applications of this will be shown. 

Of theoretical interest is the oblique incidence case for a symmetri-
cal, spherical ionosphere as being the most general one. From Eq. 
(31 b) the following expression for the virtual path-length is obtained, 
viz. 

ro+11,2, 
dr 

Lo= 2 lc° • dt = 2 '0)0\2 ro \ 2 yoy, • (67) 

V)0) r ) • 
sin2 

ro ro 

It is suitable to rewrite it in the following form 

ro + h2, 

fd (9.11.0)2 

where 

ro 

ro 

(coé yo-

2 
x2 = 1 (_r ) 2 ____ Hi. 

ro °Jo 

(67 a) 

In order to adopt our pre-

vious method of solution we have to restrict ourselves to a range of 
integration where (r/ro)2 is a single valued function of x. Calling 
the lower limit of integration for rz, we therefore get that 

rx = rein (ri) . (68) 

rz thus is the radial distance to the apex of the path of a ray sent 
horizontally from the transmitter as shown by Fig. 7. We also 
have to assume that the electron density increases at least at such 
a rate that the refractive index will decrease more rapidly than r0/r. 
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Fig. 7. 

Otherwise no rays will return to the earth. In the limiting case 
that n, decreases as roir the ray path will be an exponential spiral. 

It is useful to introduce a notation similar to the one in the previous 
example, viz. L, (cos y0, cos yi) for the virtual path of a ray leaving 
the earth at a normal angle y0 to an electron density level where 
a ray of initial normal angle y, is returned. L, (cos y„, cos y0) there-
fore is the complete virtual path of the ray. The integral equation 

thus gets the following form 
0052 y0 

L„ (cos 70, cos y0) — L„ (cos yo, 0) (e) • d (Z2)  , (69) 

r, J (cos2 y, — x2)1/2 
o 

where (rir)2 = t1 (X ) Comparing this to Eq. ( 63) we see that the 

solution is 

76 12 

( rr )2 (r, )2 2 j cos y, • sin e _  =  L, (cos y, • sin e, cos y, • sin e) — 
r0 r, n r0 

o 

— L, (cos y, • sin e, 0)]• d e . (70) 

In this case the curvature of the layer »shields » the low density 
electrons even if we do not have any layers below. 
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For reasons just discussed in connexion with the plane vertical case 
it generally should be a good approximation to replace Lv (cos yo, 0) 
by L (0) which is the path-length between the earth and the lower 

boundary of the layer. If we neglect the retardation caused by the 
lower layers this is equal to 2 (S — P) on Fig. 7. For practical pur-
poses we therefore get the following solution 

2 It (0) -I-- A 4, (coo, cos ro)) 
A he (coo, cos yo) (1 

2 ro 

7L/2 
2 c A (cos yo • sin e) • cos yo • sin e  • d e (71) 

j • 2 
o 

where A Lt, is the virtual path in the ionized layer. Therefore the 
electron distribution is determined for all penetrations up to an 
initial normal angle of yo when the time of travel or the virtual 

path is known for all angles of arrival from yo to 90°. In the case of 
the plane ionosphere (ro 00) it is easily seen that (71) reduces to 

27/2 
2 

A hz, (0)o, cos Yo) = hv (cos Yo • 
o 

For the special case of cos yo= 1, i. e. vertical incidence, we get 

2 7r/2 

hT (%) = A hi, (sin e) • d e • 
u 

This shows us that the true penetration at vertical incidence at a 
given angular frequency coo is the average of the virtual penetrations 
for all angles of incidence. This gives a physical significance to the 
Schlifemilch integral. 

sin e) • d e . (71 a) 

The time of travel or the virtual height, which is the quantity ge-
nerally measured, has always been the essential thing in our previous 
calculations. As the virtual path has to be known as a function of 
the angle of arrival it is more practical to use the fact that the angle 

of arrival is known as a function of the distance (angular) from the 

the sender. This makes the travel time determination unnecessary. 
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It is easy to deduce from Eq. ( 31) that the central angle of the 

ray path (see Fig. 7) is 

ro + hr 

2 sin yo  d (ln (r1r0)) 

(cos2 yo— 

ro 

(72) 

Using the same range of integration as before we introduce 

in (tiro) = (z2) and by this (72) yields 

cos- yo 

[(9 (cos ro, cos — e (cos Yo, 0)1 /2' (z2) • d  (i) (72 a) 
(c0s2 yo 

2 sin yo 

For the same reasons as before we can pût O (cos yo, 0) =- 9 (0). 
This is the central angle covered by the path between the earth and 
the bottom of the ionized layer. Applying the same method as before 
we get the following solution, viz. 

h2, ( co,, cos yo) 

ro h (0) — 

2 

1 e (cos yo • sin e) • cos yo • sin e • e 
exp. [ — — 1 . (73) 

(1— cos2 yo • sin2 e).12; 
"to 

Therefore, if we know the angle of arrival (of the first reflection) 
as a function of the angular distance from the sender the electron 

density distribution is determined with the same exception as before 

of the lowest electron densities at the bottom of the layer. 
This corresponds closely to the problem of determining the paths 

of seismic rays. When the virtual surface velocity, i. e. the angle of 
arrival, is known as a function of the angular distance from the 
source of the disturbance then the true depths of penetration will 
be known providing the interior of the earth is symmetrical and 
homogeneous. The practical aspects of this problem are discussed in 

the literature given by the reference [12]. 
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Although the application of the spherical solution does not seem to 
be of any practical value at present its study is worth while from a 
theoretical point of view. It makes the treatment complete. 

When the effect of the terrestrial magnetic field is taken into 
account conditions become more complicated. First of all only 

vertical incidence paths have to be selected as the angle between the 
direction of propagation and the magnetic field otherwise will change 
appreciably over the path. Strictly speaking the vertical incidence 
integral (65) can be used only at the magnetic equator where the 

direction of propagation is perpendicular to the magnetic field. The 
virtual height data to be used are those of the ordinary ray, of course. 
Most ionospheric observatories, however, are located far from the 
magnetic equator and therefore cannot use Eq. (65) for the ordinary 
ray if accuracy is desired. Very often the propagation angler) is as low 
as 20° to 15°. Under such conditions a solution for the extra-ordi-
nary ray must be found. It can be obtained reasonably simply as 
has already been shown by the present author ( 16). 

In the longitudinal case, where ()prop = 0, it is well known that 

97,2 = 1 
coe2 

C.00 ( C00 — (OH ) 
(75) 

e • H 
for the extraordinary ray. Here oil/ —  is the gyro frequency 

mo • co 
of the electrons in the terrestrial magnetic field of strength H. The 
phase integral therefore becomes 

he 
2 ) 1/2 coo (00 

S (%) -= 2 [h (0)  + (1   dz — . (76) 
o (coo — WH) co co co  

h (0) 

This leads to the following expression for the virtual height, viz. 

1) The propagation angle is the angle between the direction of the terrestrial 
magnetic field and the wave normal. 
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kr (coo) = h (0) ± 

=w0 (wo WE 

dz 1 . O4, WE  

± 1 1  lie • [ 1. 2   , • 2 

Coe2 

W O (W O WE) W H • *_  
W O ( W O WH) = 0 (  

This is much more complicated than the previous integral equa-
tions. However, we can solve it in a somewhat different way. 
We introduce an »effective » frequency co„ defined by 

== (C°0 (W 0—  (OH)) 112 . (77) 

Multiplying the phase integral by 

d co, 

dor 

and remembering that 

d cur d 

de), too — (01112 dcoo' 

we get 

wH Fs (w0) ± h,, (wo) 
2 coo — w 2 coo  kv -- — co 

2 2 
w e = W r 

k (0) 1 d z 

co + co (1 — c)c21w,.2)112 
2 n 

W e 

But as we must have that 

2 h(0) • cuo 2 
  + —co hr (w) • d w , 

co 

H 

we finally get 
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CO0 

2 coo — a)H 
A h (w — — A 14, ( co) • d co] H  1(00 

or 

2 2 
COc == CO? 

=f d z  (1— co c210),.2Y12' 

(002 -= 

coc2 = cor2 

A H , (we) = A h, (0)0) — A H (e)o) = J (1 

where 

and 

H 
H (we) — 

2 co, — 

coc2 o 

dz 
wc2icor2)1/ 

  [A h„ (c)o) — A h,. (col 

co, 

(78) 

(78 a) 

1 
A he (coo) = —coo .A h,. (w) • d . (78 b) 

(Off 

A H (too) thus is the correction we must apply to A h„ before we 

can translate it into the effective frequency, co,., for application of 

the solution in the form of the Schliimilch integral. 

At Cambridge, Mass., for example 

(Off 
0.68, 0.26 and 0.13 

2 0)0— cori 

for a wave frequency of 2, 4 and 7 mc/s respectively. This should 

give an idea of the magnitude of the correction. 

Comparing Eq. (78 a) to Eq. (66) we immediately see that the 

solution is 

O 

2 
H 

e CO, (CO, — )17 ) • sin2 e + —4 • d • 

• 
(79) 



RYDBECK, A SURVEY OF THE ELECTRON DENSITY DISTRIBUTION 43 

For the sake of simplicity we have considered the values of A h,, 
•known down to co, =- con. as they of course never are. Our method 
does not give us any information about the very lowest density 
electrons at the bottom of the layer as before. It is in the nature 
of things that they must be shadowed by the lower layers. 
The value of the present solution lies in the fact that it can be 

applied with surprisingly small errors even up to propagation angles 
as large as 25°. A computation of the error will be shown on 

page 64. 

The Calculation of the Variation of the Collisional 
Frequency with Height. 

From the close similarity between the virtual height integral (59 a) 
and the attenuation integral (60) one naturally expects that the 
collision frequency distribution will be determined by similar me-
thods as the electron density distribution, as soon as the latter is 
known. This was noticed by Pekeris [1]. Quite generally, when 
the integral equation of the electron distribution has been solved, 

the collisional frequency distribution can be obtained when the 
attenuation is known for the frequency range or, at a fixed frequency, 
for all angles of incidence throughout the range. 

In accordance with Eq. (60) the attenuation at vertical incidence is 

hT hT 

1  co, • 13 • dz 1 co, • 13 • d z 
A = — 

CO 1/- ± I a2 132 Y a 
0 2 2 0 

Let us study the ease of longitudinal transmission for the extra-
ordinary ray. Then 

c2 

a   1 (80 a) 
coo ( coo — coH) ' 

and 

V 

fi = (0)0_ wiz? coo • (80 b) 
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This makes 

(or 
8 2 (wr2) = — 

co 

I W c2 • V (W c2) • le T (W 02) • d (0-'02) 
(coo _ coll )2 (o)r2  (0c2)1/2 • 

o 

2 
017. 

We consider v (cocI2) a function of the electron density ( a)02) which 
we can do whenever hp (C002) is a single valued function. Comparing 
the integral equation to our earlier ones we easily see that the solu-
tion is 

2 • co 
V ( 2 

W r ) c° 2•2 (W r2) 

1 

(Or 

d2 .A S2 (W r 2) • Wri4 

d (co,.2) I 

d 01,., 

/coil . (a)" ± 2 0)172 1/2 2 (cor2 _ 

0 2 +  4 

°)ri2)1/ 
(81) 

Therefore, when the absorbtion A S 2 is known throughout the 
frequency range the variation of the collisional frequency with height 
is also known by Eq. (81). 
Next let us study briefly the case of oblique incidence at a fixed 

frequency (a)li necessarily = 0). From Eq. (60). 

coo2 cos2 yo 

1 r (w02) • wc2 • h' (c o02) • d (co02) 
82 ( 02 cos2 Yo) —   

• w0 (w02  cos 2 Yo c°02)1/2 

0 

In the same way as before we get the solution 

2 co 1 
V (0)02 COS2 y2) — 

n • (2)• 02 • cos2 yo • hp' (w02 cos2 yo) 

d 
• d (cos2 70) [ cos yo • sin e • .A S 2 (cos2 yo • sin2 e) • del. (82) 

o 

n/2 

Therefore, when the attenuation is known for all angles of incidence 

from er/‘, to 70 the variation of the collisional frequency is known 
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for all levels of reflection up to the level where a ray of incidence 
yo is reflected. 
Even for simple electron distributions the calculation is not not-

ably easy. Let us take an example. 
If the attenuation is of the following form, viz. 

n 'Po • h F 1h • wo 
A S 2 -= — • -- • CO0 • COS2 yo /0" H  • cos yo — 

2 co 

h • wo 
— Lo"  H  cos yo)i, (83) 

where Lo (u) bears the same relation to Struve's function Ho (u) as 

/0 (u) bears to Jo (u)1), then by means of Theisinger's integral2) 

h • wo 

V ( C°02 COS2 y.0) • hp' ((.002 C052 yo) VO • h e 
2 wo • Cos Yo 

H 

If the electron distribution is such that for hT < hTi 

then hT' (co,2) 

4n e2 N 2 

—  oie= 
M o 

h 
  and (84) yields 
2 co, 

ihrr 

khi' 

hT 
vo • e H 

COS yo 

. ( 84) 

(85) 

for all penetrations hr < hTi. Under this condition the absorbtion 

can also be written 

1.0 hT hp(— )] 
A S2 -- cos yo • -- • hT • fl " — L." o H - H 2 co 

(86) 

indicating the fact that for the same intrusion, the oblique ray suf-
fers less attenuation than the vertical one. 

It is clear from the following that an experimental determination 
of the attenuation, especially as a function of frequency for the 
application of Eq. (82), should be very valuable. If we possessed 

sufficient knowledge regarding the distribution of r in the F-layer, 

1) G. N. Watson: Theory of Bessel Functions, p. 329. 

2) G. N. Watson: 1. c., p. 338. 
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we should no doubt be helped a great deal towards a better under-

standing of its iihysics. This should be of value also to the cosmic 
ray research. It is to be hoped that radio exploration will some day 
give us the desired information about the attenuation function. 
At present there are some experimental difficulties to be overcome. 
However, they are not serious and the problem is a question of 
experimental facilities and time rather than anything else. 

Finally it should be mentioned that a few experimental determi-
nations of the collisional frequency have already been carried out 
under the simple assumption that it is constant through the impor-
tant part of the layer. It is easily established that the attenuation 
relation can be written in the following approximate form when 
this is the case, viz. 

V A Si 
•--Ft (2  ko o 

By measuring corresponding time-changes of A S 2 and Ahe,, and 

Si 
neglecting changes of the optical path, , Eckersley has found 

that in the F1-layer, at an estimated height of 265 km, y = 3.6 • 103. 
Farmer and Ratcliffe, working along similar lines, have found the 
value r = 1.6 • 103 for the F2-layer. This should at least give an 
idea of the order of magnitude of the collisional frequency. 

Typical Electron Density Distributions. 

The ionospheric records from the magnetic equator are fairly 

simple to analyze because the Schliimilch equation (66) can be used 
for the ordinary component. A number of typical smooth records 

from quiet days at Huancayo (12° S, 75° W) have kindly been 
placed at the author's disposal by the director of the Department of 
Terrestrial Magnetism of the Carnegie Institution, Dr J. A. FLEMING. 
Several typical ones will be shown in what follows. 
As is evident from the Schlómilch equation one simply has to 

plot the virtual heights as functions of 0)0 • sin e and then take the 
respective mean values (by a good planimeter) which are the true 
heights. 

Fig. 8 shows the virtual height curve for the ordinary ray at 
Huancayo, Jan. 2nd 1515 local time, 1939. The virtual height curve 
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was extended by its tangent at its lowest point. There is no di-
stinct difference between the 171- and 1'2-layers and the true height 

is fairly large. 
Fig. 9 shows the electron density distribution as obtained from 

the true height curve. The reliable limits of the curve are marked 
by m. The upper portion of the distribution, i. e. the distribution 
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mainly of F2-character, is essentially parabolic as shown by the 
dashed parabola drawn for comparison. 

Now for a Chapman layer the ionization N in the vicinity of the 
level of maximum ionization varies as 

2 
N = N„,„x (i— (2 H)2) • (86) 

A h' 
H thus should be equal to about  2 , 1). For the electron 

distribution just shown it becomes about 76 km. This determina-
tion of H is, of course, very approximate subject as it is to the 
individual selection of the comparison parabola, 2). However, it 
should serve as an indication of the magnitude of H. 

Three hours later the same day, as shown on Fig. 10, the vir-

tual and true height curves were slightly different, the change in 
the virtual height curve being more noticeable of course. 

Fig. 11 shows the corresponding electron density distribution. 

The upper part, as before, is represented reasonably well by a para-
bola. It yields H equal to about 56 km, a fairly low value. 

1) H is the local scale height of the gas from which the layer is formed. 

9 It should also be added that it always is very difficult to record the virtual 

heights near the critical frequency. The true electron density distribution near the 

maximum level therefore can not be determined accurately. 
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Fig. 12 indicates a not inconsiderable expansion of the F2-layer. 

It is noticeable that the true heights still are great. 

4 (E SI 
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Fig. 13, showing the corresponding electron density distribution, 

indicates this even more clearly. The parabolic approximation is 
fairly good over an appreciable frequency range and it yields H 

about 105 km. 
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Fig. 14 shows a virtual height record three hours later the same 

day. The general characteristic is the same. The true height still 

is fairly great. 
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Fig. 15 shows the corresponding electron density distribution. 

It remains essentially parabolic over an important frequency range 
and the dashed parabola yields H about 76 km. 

Fig. 16 shows a noon recording obtained on July 1st at 1215. 
The expansion is considerable. In order to show how much the 

final result is affected by the direction of the tangent extending 
the virtual height curve to zero frequency, plots were made for two 
drastically different cases. 

1) The lowest portion of the virtual height curve was extended 
by a suitable tangent to a zero frequency height of about 150 km, 
a fairly probable direction. 

2) Another tangent was drawn to the curve extending it down 
to zero height at zero frequency, this being the most unprobable 
direction. 

It is clearly shown, as is also demonstrated by the nature of the 
integral equation, that the true height curve is not affected very 
much in the higher frequency region near the penetration frequency. 
The probable electron density distribution, corresponding to the 

more probable case 1), is of the same character essentially as the 
distributions just shown. H becomes approximately 130 km. 
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Fig. 18 shows a smooth »mid-winter* afternoon recording from 
Huancayo. It is very similar in appearance to the quiet Cambridge 

recordings shown later. 
The corresponding electron density distribution is practically 

parabolic over the entire frequency range. The dashed parabola 
yields H approximately 86 km. The deviation from the parabola 
is of the same order of magnitude, generally, as the experimental 

error although greater. 
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Fig. 20 indicates a very great expansion, the maximum true height 
being more than 500 km. Consequently the corresponding H value 
is great as indicated by Fig. 21. The approximate value is 165 km. 
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This seems very great compared to values normally obtained at 
northern observatories. The uncertainty regarding the construc-
tion of the tangent extension was especially troublesome in this 
case. The low density distribution therefore is very uncertain. 

The expansion was much smaller in the early evening the same 
day as indicated by Fig. 22. The distribution function, shown by 
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Fig. 23, did not change much. The corresponding value of H is 98 

km, approximately, a fairly great value so late in an undisturbed 
day. 

!* 

Next, let us for comparison study a few records from Cambridge, 
Mass. (42° N, 71° W), obtained by the author at Harvard University. 

As the propagation angle is about 16° at Cambridge we have to 

use Eq. (79) as the proper solution. The solution, strictly speaking, 
applies only to the extraordinary ray when the angle of propagation 

is zero and the path is assumed to be vertical. However, the error 

we make by applying Eq. (79) to the Cambridge recordings is very 
small, in fact smaller than the experimental error. A plot of the 

errors will be shown at the end of this section for two typical pro-
pagation angles, viz. 15° and 25°. 

The first thing to do is to construct the corrected virtual height in 
accordance with Eq. (78 a). 

Fig. 24 shows a quiet afternoon recording from Cambridge ob-
tained on April 20th, 1939, at 1700. The corrected height curve 

clearly indicates the importance of the correction. The corrected 
virtual height is then plotted against the »effective » frequency, 
as shown by Fig. 25. 

From this the true height curve is obtained in the usual manner 
by plotting the virtual heights against co,. • sin e and integrating the 
mean value. The result is shown by the dashed curve. The maxi-

mum increase in true height is slightly more than 140 km while the 
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corresponding increase in virtual height is about 475 km. Fig. 26 

shows the electron density distribution drawn from the true height 
curve. 

The essential portion of the distribution (the F2-layer) is fairly 
closely represented by a parabola. This yields H about 60 km. 

Fig. 27 is another Cambridge example taken a few days later one 
hour past mid-night (local time). The corrected height curve is 
constructed as before and the true height is plotted against the 
»effective » frequency as shown by Fig. 28. 
Fig. 29 finally shows the resulting electron density distribution. 

It is essentially parabolic throughout the frequency range. To 

represent such a layer by a parabola should be a very good approxi-
mation. The approximate value of H is 58 km. 
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Fig. 30 shows the virtual height curve in the early morning a day 

later. The height correction is about the same as before. The virtual 
and true heights plotted against the »effective frequency » are shown 
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by Fig. 31. The maximum increase in true height is very small, 
approximately 70 km. At the same• time the increase in virtual 
height is about 310 km. 

The electron density distribution is shown on Fig. 32. As before 

it is essentially parabolic throughout the frequency range. H is 
small, or only about 37 km. 

Finally another typical Cambridge distribution is shown on Fig. 

33. This one too is a typical parabolic distribution with an H value 
of about 58 km. 
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As a conclusion a few words should be said about the interpreta-
tion of the Cambridge recordings. Naturally it often happens that 
the lower part of the virtual height curves is registered by the ordi-
nary ray and not by the extra-ordinary ray which may be much 
absorbed at frequencies in the neighbourhood of the gyro-frequency. 
As the sweep-frequency equipment used by the author had no pola-
risation indication (such an indication should, although it makes 
the apparatus more complex, be of value even for the attenuation 
measurement discussed on page 46), a low frequency virtual height 
curve might have been recorded even if the extra-ordinary ray 
were absent. As the difference in retardation between the compo-
nents is very small, even though the difference in attenuation may 
be great, one is allowed to make use of the virtual height curve down 
to the very vicinity of the gyro-frequency. The tangent to the 
virtual height curve is thereby, so to speak, drawn by the ordinary 
ray itself. 

The total number of electrons in the F2-layer is of special interest 
as is obvious from our earlier discussions. A study only of the varia-
tion of the maximum electron density may be misleading on account 
of the expansion. We have therefore computed the total number 
of electrons, Ni, in a column of 1 cm2 cross section for the Huancayo 
recordings. The variation in Nmak has also been tabulated for 
comparison. 
We have also tabulated the ratio between the so called charac-

teristic frequency, fk, and the critical frequency, f . This indi-

cates the shape of the layer. The characteristic frequency of the 
distribution is the frequency at which the virtual height equals the 
true height of the maximum electron density. The assumption that 

the electron density distribution is parabolic is especially convenient 
as was pointed out by Booker and Seaton [1]. For a parabolic layer 

such that 

N = Nmat [1 — (A hm— z 2 

hm 

the classical virtual height is given by the familiar relation 

A h he . In tic- + 1°) 
v 2 /cm Ve -- to/ • 

(87) 
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Booker and Seaton selected three characteristic frequencies, viz. 
0.648 /cm, 0.834 fern, and 0.925 fe., at which the virtual height is 

equal to 

Aka 3 
h (0) ± h (0) + A h„„ and h (0) + —2 • A h. 

respectively. Rawer, in Germany [17], working with the so called 

Epstein distribution mentions 0.707 fe. as a characteristic frequency, 

corresponding to 0.834 fe. in the parabolic case, but points out 

that the magnitude of this characteristic frequency is liable to change 
quite a lot with the layer shape. 

Huancayo (1939) 

Day 
Local 

Time 
Nt 

Change in 

At • 
Nmar 

Change in 

Nmax 
H 

ik 
- 

fcm 

Jan. 2nd 151à 2.50 • 10's 0 pct. 2.06 • 106 0 pct. 76 km 0.58 

Jan. 2nd 1814 1.97 • 1016 —22 » 2.08 • 106 1 » 51 * 0.60 

April 4th 131à 2.19 • 10,6 0 » 1.45 • 106 0 » 105 * 0.78 

April 4th 171k 1.96 • 10,6 —11 » 1.79 • 106 23 » 76 » 0.81 

July 1st 121à — — — — — — — 125 e 0.81 

July 2nd 171à — — — — — — — — 86 » 0.80 

Oct. 1st 1511 3.68 • 10's 0 pct. 1.53 • 106 0 pct. 165 » 0.75 

Oct. 1st 1811 2.30 • 10'3 —38 » 1.71 • 106 12 » 99 » 0.79 

It is interesting to see from the table that the variation in N, 
and H show a similar character. It is further clearly demonstrated 
how different the variations in N, and N maz are. This indicates 
the importance of the expansion, the nature of which we do not 
know much about at present. A very typical example is furnished 

by the October recordings. In spite of the fact that the total number 
of electrons actually decreased about 38 pct. in the late afternoon 
the maximum electron density increased 12 pct. The decrease in H 

was of the same order of magnitude as the decrease in N„ viz. 
about 40 pct. 

It should be evident from these results that it is necessary to 
compute the true electron density distribution from hour to hour 
if misleading conclusions regarding the essential processes in the 
F2-layer are to be avoided. The construction of a suitable inte-
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grating machine should facilitate this very much. When the pre-
sent serious times so will permit we hope to present an account of 
the hourly and daily variation of the total number of electrons of 
the F2-layer in Sweden. 
The ratio between the characteristic frequency and the critical 

frequency is far from constant as shown by the table. The use of 
a fixed characteristic frequency ratio in the routine scaling of iono-
sphere records as suggested by Booker and Seaton (fk = 0.834 fe.) 

therefore easily leads to erronous conclusions, convenient as the 
method otherwise may be. The method of using the integral equa-
tions is not as cumbersome as it may appear. Once one is used to 
the procedure it works quite fast. 

ik 
The Cambridge ratios are tabulated below together with the 

Tern 
corresponding H-values for the sake of completeness. It should be 

Cambridge ( 1939)1) 

Date Time H 2) 
tem 

April 20th 1791 56 km 0.75 

April 21st 1791 58 » 0.83 

April 23rd 0114 58 » 0.84 

April 24th 06W 37 » 0.82 

added that the quantity H may be entirely fictitious as in the 
earlier case. It serves merely as an indication of the thickness of 
the layer or of the expansion of the F2-air. We do not yet possess 

sufficient knowledge about the formation of the F2-layer to state 
anything definite about H or the temperature of the F2-air. It 
is possible that, at least in the daytime in summer, the temperature 
attains high values, perhaps exceeding 1200° K. The probability 
of such high temperatures in the upper atmosphere was originally 

suggested by Maris and Hulburt [18]. The temperature gradient in 
the F-atmosphere therefore may be considerable since the tempera-

1) On account of the limited frequency range of the recording equipment used 

by the author at Cambridge no complete noon-time sweeps could be taken at the 

year in question. 

2) Referred to the effective frequency. 
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ture at 120 km probably is less than 300° K. Vegard [2], on the 

other side, considers that the higher layers of the atmosphere ex-
tend far upwards on account of electrical forces, and that they 
are not at a high temperature. This would, of course, also lead to 
an abnormal increase in H. Although the temperature expansion 
seems very probable it is not unlikely that the great H-values of 
the F,-layer indicate not only such an expansion but also the ex-

pansion suggested by Vergard. One therefore has to be very careful 
not to draw too rapid conclusions regarding the temperature from 

the H-values. Further research is needed regarding this matter. 

In order to study the general usefulness of Eq. (79) we have plotted 
the phase integral as a function of frequency for a parabolic layer. 
The propagation angle is zero and the gyro-frequency is put equal to 
1/6 • fe, an arbitrary typical value. Making use of the complete 
expression for the refractive index of the extraordinary ray,') viz. 

2 x ( 1 — x) 
n 2 = 1 _    (89) 

2 (1 — x) — y2 sid — 17y4 sin4 0 ± 4 y2 0052 0 (1-42 

co" 
where x = y = — and 0 = the angle of propagation, the cor-

coo wo 
rection in the phase integral for 0 = 15° and 25° has been plotted 
on the same chart as a function of frequency as shown on Fig. 34. 
The correction is somewhat smaller than was originally expected. 

A S' 
It is easy to construct the error e -= —i--S' in the virtual height 

from these data. A plot of the error is shown on Fig. 35 where the 
original virtual height curve for 0 -= 0 has also been drawn. 
The correction curves are fairly accurate except near the pene-

tration frequency. The error for a propagation angle of 15° is in-

significant compared to the experimental errors in determining A h,. 
At a propagation angle of 25° the errors are much greater, of course, 
but still generally not as large as the experimental error. Eq. (79) 

therefore must be useful even at observatories where the magnetic 
dip is as low as 65°. 

1) For a deduction of this expression see for example H. R. Mimno: The Physics 

of the Ionosphere, Rev. Mod. Phys., Vol. 9, Jan. 1937. 
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The Exact Wave Functions for a Parabolic Layer. 

As we have seen, the undisturbed F2-layer very often is essen-
tially parabolic, at least at sufficient distances from the equator. 
However, the electron density distributions in the equatorial regions 
too appear to be notably parabolic at the level of maximum electron 
density. The main results of the following calculation can there-
fore be applied to equatorial cases as well. 
Let us assume a parabolic electron density distribution of half-

thickness, A h., L e. 

2 
IC2 = [I. h.) 1, 

where z is counted from the level of maximum electron density. 
Let us further, for the sake of simplicity, study the case of ver-

tical incidence upon a non-dissipative layer. 

It is convenient to introduce the following notations, viz. 

42 
fe 

2 , 
em 28 = 1. 2 •   ¡. cm 

to2 28 ' 

( 4 er • A h.) 112 z j j 
V —   •e = u•e 

2, A h. 

Thereby the wave equation can be written 

d2fl I V2\ 
d V2 + /9_).J1 =Ø. 

(90) 

(91) 

A hm /2c always is large, 2 to 5 • 103 is a typical day-time value. 

9 is large except near the penetration frequency. Eq. (91) is sa-
tisfied by Weber's parabolic cylinder functions. One of them is') 

= D ( u • ei +) . 

P-1 12 

(92) 

1) The symbol used is that of Whittaker. See Whittaker & Watson: A Course of 

Modern Analysis, p. 347. 



RYDBECK, A SURVEY OF THE ELECTRON DENSITY DISTRIBUTION 67 

From Whittaker's integral representation one easily gets the 

following asymptotic expansion, viz. 

D (u • e 71 ) 
P 12 

Phase angle — 

e 
— j (-12 —  e • ln u ± 

e 

• u 

e 4 ( 1 — j (e + 1 1/2)ie + 3/2) 
lf  

rc p 

2 u2 

As u always is large the only restriction is that e must be suffi-
ciently small. A safe limit is marked by 

2u2 ( 2 co )1/, 
<<. 1 or I A to = — to I <<.   • (ferny/2 . (94) 

a e ne n • A h . 

For f 107 c/s and A h„, =- 100 km, A fo becomes less than co, 
about 1.4 • 105 c/s. The present expansion, therefore, can only be 
used in the neighbourhood of the penetration frequency, f cm, of the 

layer. As this is the frequency range where we know that our 
earlier methods are likely to be too approximate we do not have 
to develop another expansion in this connexion, although a com-

plete study of the solution should make it necessary. 
Multiplying by the time factor we see that 

. r 
— icoo • t 

• D (u • e ) 

ip 1/2 

yields an up-going wave. 
Another solution is 

j (71112 — e • In u + 

71 
D (u • e) 

II 2 

Phase angle ± 

(93) 

7. p 

e 4  I . (e — 112) (e — 31 2) 
• 1/Z ‘1 2 u2 — .) , (95) 

which multiplied by the same time-factor yields a down-coming 

wave. 
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Next we have to find a suitable »circuit relation » of the differen-
tial equation connecting the incident, the reflected and the refracted 
wave. Fortunately enough, there exists a fairly simple one, viz. 

D (tc • ei e4) rue+ 112) 27Ï + -Tr' D (u • e— 
e -- — 7L e e —112 
incident wave reflected wave 

7:p 

r el- 112) — 2 4 D(u.eijr) 

17- r e — ie — '12 • 
refracted wave 

(96) 

Mathematically speaking, the above expression gives the analy-
tical continuation of the function of the refracted ray, represented 
by an asymptotic series for instance, beyond the region for which 
this special representation is valid. The law of reflection gives us, 
therefore, a physical visualization of the rather abstract concept of 
analytical continuation. This was mentioned already by Epstein 

[19] in a fundamental paper on the reflection of waves in an 
inhomogeneous medium. 

We are primarily interested in the phase difference between the 
up-going and down-coming rays at the bottom of the layer (z = 
= A h.). This is 

U2 

AS —= — e • ln u2 ± phase [/' (je 1/2)] ± 2 •0+7r/2 ; 

2 e2/u2 

But by Gauss' multiplication theorem it becomes 

2 u e s — e • ln (4 u2) ± phase [r (2 i2  

The virtual height therefore becomes 

co d .z\ co ln (4 u2) 

hv 2 dco0  

de 
± Re (2 111(2 j e)— 1 P (i el 

(97) 
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where P (a) is the logarithmic derivative of (a). This finally yields 

h t ln (16 • 71 • ) 
m o A h. 

2 to. 2, rn 

— e ( 2 00 3n± 2je + Re E i • e)/ (98) u 2 ' 
n=1 

where y is Euler's constant =- 0.5772. 

At the penetration frequency the exact virtual height becomes 

= A hm [n ( A 
h, 2 / ln 16 • n •   (98 a) 

i'cm 

This is not infinite. The classical virtual height expression for a 

parabolic layer 

A h. f (te. to\ 

A — 2 tcm fe. — to/ 

yields infinite virtual height at the penetration frequency. The 
exact virtual height is very great. For a half-thickness of 100 km 
and a critical wave-length of 107r m it becomes about 630 km. It 

should be noted that this is the increase in virtual height and the 
total virtual height therefore, as registered on the ionosphere re-
cords, should become 900 or 1000 km depending upon the value of h (0). 

As the absorbtion is too strong for these signais to be recorded, 
except perhaps when the transmitter is very powerful, it generally 
is impossible to note the correct critical height even on the very best 
records. As an example let us return to Fig. 26. The maximum 

virtual height is about 680 km. Eq. (98 a) yields a height of 950 

km for the corresponding parabolic layer as shown on Fig. 29. 
Similarly for the recording shown on Fig. 27 the maximum virtual 
height is about 550 km whereas the exact virtual height turns 
out to be 670 km. The absorbtion at the penetration frequency 
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is so strong for the recordings in question that it is never possible 
to register the discrepancy between classical and exact virtual heights 
near the penetration frequency. 

That the dispersion becomes finite at the penetration frequency 
is obvious from Eq. (98). When the wave frequency equals the 

penetration frequency, however, only the lower side-bands of the 
Fourier representation of the wave-train are reflected with noticeable 
intensity. Fig. 36 shows a plot of the classical and exact virtual 
heights in the neighbourhood of the penetration frequency, 

fcm = 107 c/s, for a layer of 120 km half-thickness. It should be noti-

ced that the deviation from geometrical optics is of importance only 
in a very narrow frequency region for such a thick layer. We are 
therefore very well justified to use our integral equations for the 

determination of the true electron density distribution. It should 
further be added that it is easily proved from Eq. (98) that 

(A kv) exact  
hm 
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This shows mathematically the transition to diffractionless optics 

when the geometrical dimensions become infinitely large. 
Finally it should be noted that results closely similar to Eq. (98) 

were obtained already in 1939 by Rawer in an excellent paper trea-
ting the general wave propagation in dissipative Epstein layers 
[20]. The interested reader is referred to his paper for a comple-

mentary study. 
As the medium is non-dissipative one immediately obtains from 

the circuit relation that the reflection coefficient, R, is determined 

by the relation 

A h ic2 /02 

2 7re 4n 2   o e  •  m 
R2 • Â, 

— e = e m. 
1— R2 

(99) 

This holds throughout the frequency range. Fig. 37 shows se-
veral plots of the reflection coefficient for layers of different thick-

ness. The critical frequency is 10' ois, i. e. 4. = 30 m. The de-

viation from geometrical optics is practically noticeable first for a 
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half-thickness of about three to four wave-lengths. As the thickness 

becomes even smaller (maximum electron density constant) appre-
ciable reflection appears at frequencies well above the critical fre-

quency. It is obvious that the critical frequency conception may 
be misleading for a very thin layer. 

The night-time abnormal E-layer reflections often appear to come 
from such thin layers and reflection is obtained over a surprisingly 
wide frequency range. 

When the layer is parabolic only in its upper part, as shown on 
Fig. 13, it is convenient to use the parabolic wave functions in the 
upper part and the BKW-approximations in the lower part. They 
have to be joined at the proper level, about 275 km on Fig. 13 
for example, which is a fairly simple matter. 

An extended study of the parabolic solutions for other values of 
frequency, i. e. frequencies not necessarily close to the critical fre-
quency of the layer, necessitates the expansion of the parabolic 
wave functions in asymptotic series which can be used when not 
only u but also e is large. Interesting as such a study may be, it 
is outside the scope of the present communication. An account of 
these expansions will be given in a later communication to which 
those especially interested are referred. . . 

In conclusion a few words should be said about the collisional 
friction. It is formally introduced in the wave functions if fe. is 

1 v 
replaced by le.=-- fe. • exp. (— j a), where a = —2 arc tan —coo . When 

( v 2 

— < 1, as is generally the case in the F2-layer, the introduction 
wo 

of y is hardly noticeable as far as A It, is concerned. The mathema-
tical results, which therefore are of mainly theoretical interest, will 
appear in a forthcoming paper. 

The author wishes to express his thanks to Alice and Knut Wal-

lenberg's Foundation, Stockholm, for their generous support of the 
investigation. The author's thanks are also due, and are cordially 
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correcting the proof. 
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Introduction and summary 

The propagation of waves through inhomogeneous or stratified media was studied 
already by RAYLEIGH in 1912 [1] and by FÔRSTERLING [2] and GANS [3] 1913/1915. FORSTER-
LING later, in 1931, returned to the same theme with application to the new problem, 
the propagation of short radio waves in an inhomogeneous atmosphere [4]. Slightly 
earlier EPSTEIN published a fundamental paper concerning the same problem with exact 
results for certain types of dielectric constant variation profiles [5]. 

In the following years with the rapid advance of quantum mechanics and of the 
experimental investigation of the propagation of radio waves in the inhomogeneous 
upper atmosphere a great number of papers appeared concerning special kinds of wave 
propagation or wave functions. The problems were attacked by various methods and 
this, no doubt, frequently was due to the fact that very different physical quantities 
were desired. 

In the subsequently developed theory of reaction rates [6] problems very similar to 
those of the radio case have been studied by the introduction of ECKART-EPSTEIN type 
potential energy profiles. 

In a comparatively recent communication SCHELKUNOFF considered the problem of wave 
propagation in a slightly inhomogeneous medium [7]. It seems that there is a definite 
need for a further development of the various theories both for propagation in slightly 
inhomogeneous media as well as in strongly inhomogeneous media and also for a deeper 
discussion of the connection between the different theoretical methods. When, for 
example, does the elementary form of phase integration originally developed by ECKERS-
LEY yield a sufficiently accurate result? 

In the present communication first and higher order approximations for the reflection 
eoeffcient are developed for slightly inhomogenous media. The results of these approxi-
mations, applied to cases which can be solved exactly, demonstrates the usefulness and 
range of the former. 
The methods of ZWAAN, KEMBLE [8] and others of connecting the layer or barrier 

boundaries with a so called good path is discussed as an introduction to the connection 
of wave function's of LANGER type developed from the branch points of the refractive 

index, n. The general agreement between the two methods when the branch points are 
sufficiently apart is shown and it is further demonstrated that the complete method of 
phase integration must consider all waves "running" up and down between the branch 
points. The result is physically clear. 
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In a following section it is proved that the reflection intensity as calculated by the 

good path method is correct even when the branch points come very close (transition 

from reflection to penetration or vice versa) if only the minimum in n2 is parabolic. In 
practically all applications this is the case. A complete expression for the wave phase 
is shown. 

In the -final section of this communication the application of the circuit relation of 

the wave equation is demonstrated in two topical applications, viz, the propagation of 
.ALETÉN'S magneto hydro dynamic waves in the Sun [9] and the duct propagation of 
micro waves in the lower troposphere. 

It is shown that from the circuit relation the actual value of the reflection coefficient 

can be obtained for any level even though the wave functions, forming the circuit relation, 

themselves can not be considered as purely progressive waves well inside the inhomo-

geneous medium. As RAYLEIGH once remarked: In the full sense of the phrase there is not , 

such a thing as a progressive wave (in an inhomogeneous medium). By means of the 
methods demonstrated in this communication, however, it is possible to follow the con-

tinuous deformation and reflection of the progressive wave if only the circuit relation 
is known. 

O. E. H. R. 
Research Laboratory of Electronics 
May 1948. 



Fundamental theory 

Let us start with the one-dimensional monochromatic wave equation 

d2 H 
d x2 kO2n2 11=0 , (1) 

where /7 is a wave potential, k 0 = 2nRo and 2,) the vacuum wave length. The refractive 

index n is supposed to be a function n(x) of the coordinate x. 
The first-order approximation to a solution of (1) is the so called W ENTZEL-KRAMER-

BRILLOU1N-JEFFREYS approximation* 

(2) 
"77-( 1) = „z-'b eTjjkof n(s)(18 
1 • (2) 

Making use of the time-factor e—i°" we note that /711)represents a wave traveling in 
the positive x-direction. 

The general solution of (1) thus takes the form 

17—a(1) (x)1111)(x)i- a(2)(x) 11(2) (x), (3) 

where the coefficients a(1) (x) and a(2) (x) change very slowly except in regions of con-
siderable reflection. 

The first order approximations (2) do not themselves give us any information about 
the partial reflection in the medium. However, they contain the "impedance" transforming 
factor e h so that for sufficiently short waves 

i. e. the energy flow 

1 del)  , „ H o) 
jk, dx 1 ' 

1 (1-11(11) 77(1):.1 
iko dx 

1 = constant. 

(4) 

(5) 

. { 1 d I /2 
Thus if n(x) is a slowly varying function — d < 1 one can ignore the reflections 

in I x 

* As a matter of fact used long ago by RAYLEIGH and CANS. 
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and in the first approximation oonsider the medium as continuously "matched" and thus 
acting as a transformer. 

Let us now return to Equation (3). We will necessarily have to complement it by 

dH cill o.) (x) d.17 (2) (x) 

(6) -c17-7a(1)(x)  dix + am (x)  

Eqs. (3) and (6) are evidently the equations we should have to employ if we were fitting 

a fixed linear combination to 11 at the point x and wished the combination to cling to H 
as closely as possible in the neighbourhood of x. We assume that the coefficients ct(1)(x) 
and am(x) thus defined reduce to A(1) and A(2) at one end of the path (the incidence 
side) and to B(1) and .8(2) at the other. 

Introducing 

we find from (3) and (6) 

a' 

TV (x, b)-=k0 f n (s)ds —7E/4, 

da(1) dam — j2 

dx dx 

We further find from (3) and (6) that* 

As further 

where 

we finally have 

and 

(2) (1) (1) 

(x)=k 
rT ' rr, H22)}1). au) 

2 o 

(2) (2) 
/7(1.1.)" (k20 122 o /pit) = 0 

3 /WV 1 12" 

da(1) 2 {a(') a(2) e— en 
dx = 2 ko n 

da(2) —j • p(1) ej2W+ a(2)I 

dx 2ko n 
which also proves (8). 

It is convenient to introduce 

(2) (2) 
b(1)— a 0.) .,„.± Ms)* (2) ± 

b =awe 31 / 

where 
Q (x)  
2 ko n (x) . 

dfi d' H 
* Note: Hi = dx ' Hll —dx2 • 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(14 a) 
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Eqs (12) and (13) thus yield 

(2) 
db(1)=Hb((12)) e±j2e 

and 0. -w+ 

(15) 

(16) 

Eqs (15) describe the partial or infinitesimal reflection in the medium and prove that 
a change in n, even if small and slow, always produces a fractional reflection. 
When n real, one further easily finds from (15) that 

I bW 2_I b(2) 12 ==const., (17) 

proving that the net energy transfer through the medium is constant. If we select the 
fundamental case of waves incident from one direction only, for example in positive 

direction, we evidently have B(2)=0, and 

I b(') 12 — I 0)12=113ml', (18) 

i. e. the magnitude of the reflection coefficient becomes 

R l=j7 1— l B(1) 12/ b(') 12. (19) 

This demonstrates how the reflection coefficient gradually falls to zero as we leave the 

inhomogentous region in positive direction. 

Introducing b=00, 
z=He+i2e and He—i2e , (20) 

we obtain from (15) after successive integrations 

b(2) (x)=B(1) • {/, (x)-F /3 (X)+ /5 (X)± }, (21) 
where 

/1(x). fzdx, /2„+ Z/2„* (x) dx , (21 a) 
00 00 

and 

/2*„(x)=p* I2n — 1 (x)dx. (21 b) 

Similarly 
bo.) (x) {1+ 1-; (x) I: (z) ...} (22) 

j. e. the reflection coefficient becomes* 

  .2e 
B UT) == +4. (x)+ /4* (X)+ e 

This formula, however, is useful only when the variations in n are relatively small 
as will be shown in the following section. 

* Note: Time factor e—i°'. 

(23) 
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we have 

However, as 

but 

Propagation in a medium with small variations in refractive index 

As an introduction let us study the nature of Q briefly. With 

n=1/1-kf (x), 

Q  1L1 lje" (;(X)) ± 156 { 1—I— f1 ;()X)}2 ±  • 

12" 1 r f"(x) 1 I (x)  121 

n 2 Li ±f(x) 2 1+ f(x)f j 

n" 1  .P' (x) 1-Ff (x)I2 ' if n_i±f(x)/2; 
n 2  

(24) 

(25) 

(25 a) 

(26) 

we infer that neglect of the last term in (25) practically is the same as assuming that 
1-1-f(x)/2 is a good approximation for (24). 

Let us next consider two typical cases, viz. 

a) f(x)=6, tanli x/x0, (27) 
and 

1  
b) f (x)— (52 (28) 

4 cosh 2 X/X0 

as depicted in fig. 1. Cases a) and b) can also be written 

1.5 

I0 

05 

Si. Q30 

L20 

-4 -3 -2 -I 0 I 

Fig. 1. 

2 

f(x)--(51+1-7,, 

4 

(27 a) 
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and 
e—n  

(1 +e—n)2' 

where 
n-2x/x0. (29) 

Both are special cases of the general EPSTEIN-ECKART function (or potential-function) [5,6] 

C  
,M7))= -4+ B _L (30) 1±e—n ' (1+e—'7)2 • e—9,  

(28 a) 

for which the wave equation can be solved in terms of hypergeometric functions. 
Returning now to case a) we assume that (Si •<  1, i. e. 

1 
and 0 ko(x — 1)) — 7r/4. 

The first. order approximation for R, i. e. R('), in accordance with (23) becomes 

e—inoxf  
Ra)(x)= one j (x)clx. 

00 

(31) 

If we assume that we are well on the negative x-side of the main reflection region 
x0), the upper limit x can safely be replaced by — 00. Therefore, after partial 

integration, 

00 

e—j2 (kce — as/4)f 
R(1) (a) == I dt k0 x — —e .12(korc— 70) â1  n 0  

2 (1+ t)2 2 sinh nkoxo• 
o 

(32) '" 

(—x> xo) 

The reflected wave thus appears to come from the level x= 0 with a BKW-type phase 
shift of 2. n14. The amplitude of the first order reflection coefficient 

S  x R(1)  o o  
' 2 sinh nkox, 

for very long waves becomes IR(1)1 ç≥ 1(51/21, i. e. the discontinuity result as one should 
expect. 

The exact value of the reflection coefficient can be obtained from the circuit relation, 
involving hypergeometric functions, of the differential equation. One finds [5] 

sinh {nk xo(V-1 ± 61—V 1— Ô1)/2} 

I RI= sinh fe0 x0 (/ 1+ St ± "1/ 1— di)/21 

l and thus for very long waves the discontinuity result I RI=Vi ± a  — Vi — (51 
-171±(51+1/1—(31 

00 dt  r(z+1) F(w — 2) 
* Note: (Re it.> Re z>-1). 

(1+ t)"' +1 r(w ± I) 

(32 a) 

(33) 

at 
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When 81 < 1, and (3, << 21n2xo, (33) thus is identical with (32a). This demonstrates the 

usefulness of the first order approximation of (23) for small steps, (51. 
Next, let us study case b) briefly. Integrating partially twice we find 

i. e. 

k x t- Jo 2.0 dt Sa. ko Xo  nkoxo  R1) (x) .= _. o o e-j2koxf e - j2 ko xo 
2 2 (1 + t)2 2 2 sinh erk x o o o 

— X0) 

koxo  nkoxo  
JR(1)1=1 2'l 

2 shah nkoxo• 

(34) 

(34 a) 

For very long waves we thus have IR(1)1`._'d2lcoxo/4. For very low frequencies I/V)1 thus 
is proportional to the wave frequency (d2, as ô„ have throughout been assumed indepen-

dent of frequency) and not constant as in case a). This is due to the fact that the wave 
groups reflected at the rear of the hump (x> 0) will be practically out of phase with 
the groups reflected at the front. 

The same is true in the case of real discontinuities. If for example n=1, for x < xi 
and x>xi-l-s; n=171±b, for xi < x < xi+s, and (3-< 1 we find 

I R1=1 7f) sin (ko s) , (35) 

showing the characteristic colour effects except for long waves, when INIc)Skos/2. The 
low frequency dependence therefore is the same as in case b). 

Finally, let us for comparison consider the result of the exact theory for case b). 
One finds 

cos n(I 
I-R1= 

-where 

Vcos2 7U1 sinh'etkoxo 

1   d.-2VI. ± (koxo)2(52. 

(36) 

(36 a) 

When (32-‹ 221(2=0)2 therefore (36) reduces to (34a), proving again the usefulness of 
the first order approximation when the (3 is small. 

In ALFVEN'S theory of the development of solar magneto-hydrodynamic waves [9] 
these waves propagate from the photosphere towards the chromosphere in a medium with 
decreasing refractive index approximately of the type 

n=-171+ Ue-eixo, (37) 

where xo may be regarded as a scale-height of the medium. It is of particular interest 
to investigate how much of the wave will reach the chromosphere and at what level the 
main reflection will take place. As U is very large we can use our first-Order appraxi-

* It is interesting to note from (36) that the colour effects disappear when the minimum in 
refractive index is sufficiently low, i. e. when — â, > 1/(kox0)2. 
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mation only when x> xo, j. e. for the weak, remaining reflection when n 1. In a 

following section we will study the reflection in a much wider x-range. 
As 

U 
H(x)2 — x02 e-eixo, 

8k.o  

when x> xo, we have 

tre—j2koz f 1 Ue-x fro  
Ro.) =-- — e-c-i21:0+11.rox dx= i  

16/c02 x0211-pl2kox,' 8k-ox02 
00 

(38) 

(39) 

The reflecting power, which at this level is very small, thus falls exponentially with 

distance. Relation (39) will be compared with the result of the exact theory in a following 
section. 

Propagation in a medium with large variations in refractive index 

So far we have only considered small changes in n' which has been assumed > 0. 

If, however n becomes very small, or zero for real values of x, the propagation problem 
has to be attacked by different methods. 

Let us assume that n' has two zeros, z, and z,, at x=— x, and -1-x. respectively. 

This corresponds to the problem of the transmission of matter waves through a potential 

barrier or normal incidence transmission of electro-magnetic waves through an io.nized 
layer at frequencies below the critical frequency. 

Instead of considering n(x) as a function of x only we now consider it as a function 

n(z) of z=x-F. jy. We assume that it is possible to select in the z-plane a good path, 

P, connecting the regions — x> x, and x>x, such that. H is small over the entire 
path. This means that the variation in r can be neglected and consequently 

(2) 
dam 

= Ha(2) e±i"- 7ci2) . 
dx 

(40) 

As before we use the time factor e-i-1 so that a wave incident from the negative x 
side is represented by a(2)(x)110)(x)*. We further choose such a path, P, that e±i2W is 

dominant over e- i2W (b> x„). We have in fig. 2 sketched such a path for a parabolic 

barrier or layer as a typical example. Several curves Re(n2)=const.= c, and Im(n2). 
=const..d have also been drawn in the picture, based on the general form 

f (z). — m2 {1 — (j 2} , (m2> 1) (41) 

where xo is the semi-thickness of the barrier (layer). In order to make n(z) one valued 

over the entire plane cuts have been made round its branch points z, and z2. 

* Note: n real and negative on the negative side of the axis of reals when — x >xl. 
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C < 0 
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\ / 
\ I 
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I 

Fig. 2. The parabolic barrier in the z/xo-plane (m2 = 1.25). 

As e÷i2W is dominant over e-ew 

—da(1)eke, 0, i. e. aw—const..A(1)=13(1) 

and 
dam — A (') He- H (2 II' — n12) . 
dx 

•••• 

-086 
-056 
-033 
-0.25 
-0.17 
0.00 
006 

036 

031 
OD8 
ODO 
- Ce08 
- a 31 

- 05/ 

m2=125 

(42) 

Now if we follow P from right (positive x-side) to left am according to (42) changes from 

O to Am, because there is no wave assumed to approach the barrier from the right and 
we remain on the + j• 0 side of the cuts so that n is real and negative for x> x2. With 

(1 
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Fig. 3. The parabolic layer in the z/xo-plane (m2 = 0.84). 

0.31 
0.08 
0.00 
0.08 
0.31 

0.61 

frP= 0.84 I 

the time-factor chosen/Z(2)(x) thus always represents a wave penetrating into the barrier, 
from the left or right. 

The important change in a(2) takes place in the STOKES' region where e÷i2W is dominant. 
We have approximately 

a(2) Ale+ 117 ni2) H dx , (43) 
oo 

where we again recognize the first order approximation. If, however, path P is good 
enough this is a very good approximation. Thus 
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— 00 

if e+i (2W— .12) H dxi 

CO 

(44) 

Although formally simple this relation is not very useful. 
However, as n is one valued over the z-plane 

en (4 ) I Lip) (4 ) I V 192(x ) e—ko'1: n I dx (45) 
n (xb) 

where — xa> xi and x b> x2, and as both H (')-functions represent waves leaving the 
barrier (layer), viz, the xa-one the reflected wave and x b-one the transmitted wave, 
we must have 

i. e. 

2.2 

1 A(2) 12 I A(1) 12 + I A(1) 12 e—aof n I dx , 
,r1 

IRI= 
A(1) 

A(2) 

1 

1[ 1+  2kor e InI cix 

(46) 

(47) 

This is the familiar expression for the reflection coefficient of the potential barrier. 
Except when the branch points, levels of geometrical reflection, are very close (fraction 
of wave-length), the reflection, according to (47) is practically total. 
The transmission coefficient is 

I T I = 
Au) 

A(2) 

lee fin' dx 1  
e x, = .1r  

V ± e+2k.f 1"1 

(47 a) 

In the general cases of wave propagation we are also interested in the problem of 
transmission through a minimum in n, even though n never becomes zero for real values 
of x. This corresponds to ne < 1 (but positive) in (41) for the parabolic case as shown 
in fig. 3 where the c- and d-curves are drawn for ne -= 0.84. As before the good path, P, 
must approach the cuts from the + j•0 sicle. If we deform the cut round z, to enclose 0, 
we immediately infer that this time 

or 

117(1) ()1 = I -nw I (x«)I (x 
1 Ív n(xab) e+2kof inidx , (48) 

112 

I RI= 
A(1) 

A(2) 

1 
=_-   

1/1 

if  1 ± e24 f In I dY 
9/2 

because n is negative along the negative real axis on the + j• 0 side of the cut. 
Results (47) and (49) can of course be combined in one formula 

I R I = 
1 

Z2 

1/- 1 ± 1 eik° f " de 12 

(49) 

k50) 
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which holds quite accurately as long as path P is good enough. The quality of the 
path has to be examined in dubious cases. 

Even if one à priori is doubtful as to the application of (50) in the case z..z„ it 

nevertheless yields the physically proper result IR1=1/Vi. In the following section 
we will return to this question and show that (50) is substantially correct even if the 
branch points are very close together. 

Relation (50), however, only yields the amplitude of the reflection coefficient not. 

the phase. In order to estimate the phase one can, of course, as a first order approxi-
mation make use of expressions involving BESSEL functions of order ±-1/3. Wave approxi-

mations of this kind were used already in 1915 by GANS in a fundamental paper, Fort-
pflanzung des Lichts durch em n inhomogenes Medium [3]. They have been used in much 
later applications by several writers including the present author [ 10, 11] and they have 
been discussed in mathematical detail by LANGER in several papers [ 12,13, 14]. 

If n2 has a zero of the first order at z=z., we introduce the following approximate. 
wave function 

where 

(2)  (2) 

,(1) ( 2 (14T )1/2 H(1) ( w 2 ) eT):216 . 
,13  

147.2 -= fn (z) dz 
.Z*2 

One easily finds that (51) is a solution of 

d2y , 
(ko2 n2 — Q 2) y = 0 , 

dx 

where 

5 1/172' \2 
Q2— `e 4--->W2/ 

(51) 

(52) 

(53) 

(54). 

The last term in (54) normally is very small except at or near the first order zero of 

n at z‘, where it is cp 5/8(z — z2) and thus serves to make (2 equal to zero or very 
small. 

(2) 

At the other branch point this is by no means the case and the IP(,11)( W2)— function 

(2) 
can not be used. The proper form of course is V, 1)(W1) where W 1 denotes 

fs  

z2 

W 1=k0 f n(z)dz=1V,±ko f n(z)dz. (55), 

(2) (2) 
The connection of the y(1)( W,)— and y(1) (W,)— functions requires special considera-

tion on account of the STOKES phenomenon. 

a) Considerable reflection (m2> 1 in the parabolic case) 
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For the sake of simplicity we assume that the transmission is loss-less so that z, 
and 22 are situated on the axis of reals. If thus 2,=-x„ and 2, = x, we have 

and 

nr I I wi 1 eiel2, x > xi — 
I — I WI I ei2:` , x < xi 

W 1 -W21 , x > 
2 I W21 en12) x < x2 

(56) 

With the same time factor, e-P"1, as before vi,130)(TV 2) represents a wave approaching the 
barrier (layer) from the right, and y 13(W,),  a reflected wave. As further 

(2) ( W il ei27()=  eie(12 IP(.118) (I wi I) Y,i3 
IA( 122 (W 1) represents the wave penetrating the barrier, i. e. the connection relations become 

where 

,Ip(2) 4 w o e i3.7/2) v (1)„s(i w o ei:S7r12) Bv,(2)2b ( wo epo.) 

I wo = 
2'2 

Ín(x)dx 

ip?) (I WO I ei3:(12) 4-11 IP(.P3 (I WO I e32) -=- B  V (.;2), (I wc.I ei:r12) I 
(57) 

(57 a) 

The above relations are good approximations only when the branch points x, and 
121 

2., are so distant from each other (counted in wavelengths) that both 11113' (W2) and 
(2) 

11),(11: (WO are good approximations to the solutions of (1) at the connection level 
w, 

As 

(2) e±:i:rr2I n 1-'121 1,. i A - w a) ( w  \ , 2I i -_--f:i_ e I 21 (58) 
(7C/2 P (a " 2 I 

when x < x2 and 1W,1> 1, we have the connection formula from right to left (.r > X., ---
--> x < x2) 

I -izel . 1 ' ".21 -T 3 e—  I W2 I}. { 

(2) 
From right to left of x, we similarly have { for y )1, (W,) } 

1 
I n I- 'I.{ el H'I I + ,)* _ e- I 11'11 _.> ei.-(12 I n I—  12 ei ( I 11 '11 —  egi4) . 

' 2 

Relations (57) therefore yield 

9,5 
A   and B 

1 ± 1 IA' 

(59) 

(60) 

(61) 
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where 

Thus 

and the transmission coefficient 

â= e_ 2 1 ¡Vol . 
2 

1 — 62 . 
r,, 

1 ± 62 

T  ei ( I + 
1 ± S2 

17 

(62) 

(63) 

(64) 

It is well illustrated by fig. 4 that (63) yields substantially the same le-value as (50) 

=-1/1/1+4(52) even when IWol is fairly small. 
It is quite interesting to note that the result of (63) and (64) really can be inter-

preted in "geometrical" terms with the reflection virtually concentrated to the two 
branch points. If the virtual wave impedance at x=x2±1z1x1 is represented by zo the 

corresponding impedance at x=x2-1.4x1 should be — jzo. 
Denoting the intervals x> x2, x1 < z < x2, and x < xl by 1, 2 and 3 respectively 

we are led to introduce the following reflection and transmission coefficients, viz. 

1±,j 
R12 — 1 — j R32— e— frgi2 

gi 
T12 = e— ier'4,  etc. 

T21 = 

R21=-: 

1—j 
2 =_- e+jeci4, 

1 

ejaj2 , 

(65) 

R1, denotes the branch point reflection coefficient for a wave approaching the branch 
point in interval 1, R2, the corresponding coefficient for a wave approaching the same 
branch point in medium 2, etc. If the virtual amplitude and phase change of the wave 
when progressing from branch point to branch point is represented by the coefficient 

e we can collect the following waves returning from the layer, viz. 
1— e2 . 

ei n"' [R12+ T12 eR23 eT2i {1 + (R21 R23 e2)2+( )+...}] •= e.1 ( 1 ni2) (66) 1 e2 

In this particular case the transmission of waves through the layer apparently roughly 
corresponds to transmission through three successive high pass ladder networks of 

which the central one has a cut off frequency above the wave frequency. 

The reflection coefficient thus becomes 

R--=e2i(i — eri4) 1— e2  
1+ ev 

i. e. e = S. The wave thus experiences no phase change when progressing from branch 
point to branch point but an attenuation 

d=-1n e.21 TV, I -I- 1 n 2. (67) 

b) Considerable transmission (m2 < 1 in the parabolic case) 

2 
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Fig. 4. RI= (1 - b2)1 (1 + 'RI = lfr 1 ± 4a2 as functions of 21W01. 

This time we have z1 = jy 1, z2=—jy2 (compare fig. 3). We assume y, = y, (> 0) 
and have along the axis of reals 

(+j• 0 side of cut when x > 01 
x 

11 7 1=- e.i3 70. IV 0+1 ko f n(x)(1x I , 
— o 1—,j • 0 » » » » x < 0 1 

ITV:el t. 

Phase ( W I) =-- f 2n — arctan ( I Wo GV, I )= 2.7r —9, x > 01 

W2 eini2 Wo+ Wx 1+j•0 side of cut when x > 0 
-» » » » » x < 0 

Phase ( (0+arctan ( I Wo I/I WxI )=O+(p X > 

X < 0 

(68) 

(e) 
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If we this time for a change select the conjugate time factor e+iwt we find that 

e )( W1) =  — 143) ( W I. (x > 0) (70) 

represents a wave approaching the layer from the right (x < 0) whereas 

( I v2) = ( W 2 I ) ei°2 > 0) 

represents a reflected wave. On the other hand 

"1/ —  
)_ 41/1. ), 

I /V 1 (x < 0) (71) :2 

represents a wave transmitted through the layer. 

Our connection equations therefore become 

V(.123) ( I W 0 I ei8è 17) + A V(.,2%) ( I W 01 ei12) = B IP(.113)(F W01 e"'") 

As 

Y. ( I W o eig:ri2) -41, 2) ( W . I e l/2) =— BY • ( IW ieeri2) _2/3 0 tts 

(2) 
(1) Trr ;. ,„, n 12 1 1/4 /3 vv 0 ± {1 j _ e— 2 I Iro ej3714 

(n/2)V2 2 

(2 n—  ) 1 V./, ( Wo 6-4:r/2) e`J (Ira) + j -2 e- 2 1 W o } ete.f 

we obtain from (71) 

9(5 
 - and B= 1 — (52 

Therefore, with the time factor e- kin't 

and 

9Ô 
R   - j(2 I 11", I - zr/2) ) 

1 + Ô2 

/"..) 1  2 4_62 e- i(lirxi+lw,ri) 

(72) 

(73) 

(74) 

(75) 

(76) 

It appears that even in this ease the expressions for R and T can be interpreted in 
geometrical terms. Denoting the intervals y > — y2< y < yi, and y<— y, by 1, 2 

and 3 respectively we see that (74) can be interpreted as a. series of reflections between 

the branch points according to the formula 

.R=e—i2 IwxI [R 23 e {1 —HR21 R 29 e2)+( 
+.R21 efil--(143 '?21 ¿2)+( )2+- • ) 1 • (77) 

If the branch points are sufficiently remote, i. e. (52 1, which means that e-4114 < 4, 
it appears that it is sufficient to consider only the first terms in the expansions of R 

and T. When therefore le-24,find21 < 4, R and T can be obtained by elementary phase 

integration, in the case of Fir round the nearest branch point and back to the incidence 
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boundary, in the case of T from boundary to boundary. The older methods of phase 
integration, used by ECKERSLEY and others, which as a matter of fact do not explain the 

reflection phase shift — n/2, thus only are first arder approximations of the complete 
method of phase integration which consider all waves running between the branch 
points. 

A few words should be said about the wave propagation in dissipative media. Al-
though the ray concept and a law such as SNELL'S hardly are applicable, as discussed 
in detail by the present author in a previous communication [ 10, 11], the approximate 

method of phase integration nevertheless generally can be used with an accuracy better 
than in the non dissipative case. This is due to the characteristic circumstance that the 

introduction of losses prevent the branch points from coming very close to each other 
in the critical case when conditions shift from reflection (mainly) to penetration. This 
is well illustrated by a typical example, the parabolic ionized layer, for which 

)2 
O C 2 1- 

n2=1 X0  
w2± iv/co (time factor (78) 

where y is the collisional frequency of the free electrons, co en, the maximum angular 

critical frequency, i. e. the vertical incidence "penetration" angular frequency, and x0 
as before the layer half thickness. Also according to (41) 

m2= co2n, / co2 ( 1 jy/(0)=x2/(1 iv/co). (78 a) e 

As the no — loss branch point is x2=x0V1 — 1/x2, we have for moderate losses 
(y2< (02) and z>l 

-,jv12(0 X2 1/1 - 

The shortest distance between the branch points (x e-k4 1) approximately becomes 

e2 — et Imin 2x0 V7. 

(79) 

(80) 

For the E-layer of the ionosphere with y .c) 2.105 and a wave frequency of 3 Mc/s we 

find ]z2—zlimin 0.2xo. As x0 at least of the order 10 km the minimum distance at the 

frequency chosen is about 20 wave lengths. The phase int ral therefore can be used 
as a first order approximation practically through the entire frequency range in this 
particular case. 
A few examples 

1) Let us consider ease (27), viz, n=1/1-1-ô, tanh x/xo. The proper branch points 
are easily verified to be 

zi=x0(-1- j7(12—aretan bi). 
2 

One further after elementary transformations finds 

Re {2 jkof 1171 tanh (z/x0)dx = nkox0V-1— (51 
—x 
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and thus as a first order approximation of the phase integral method 

I I r,) e— zee — (82) 

This is identical with the exact result (33) when the wave length is so short that 

etkox08,12> 1. 

2) In the friction free parabolic case with the branch points zi -=±117142— 1 < 1) 
2 

we easily find 
e.1 

Re{ 2jko f (z) dz ko cc, (—) 
—x X  

and thus as a first order approximation of the phase integral method 

RI e— korocix — x) 

Formula (50) Accordingly yields 

e —ezkox0(11z—z) 
IR  I2 1 -4- e—,Ekoro(iix— x) 

(83) 

(84) 

which is exact as previously shown by the author [11]. The close agreement between 
E33) and (84) is evident. In the communication just referred to the parabolic case has 
been considered in detail for various degrees of friction and it has been proved that 
generally the phase integral method yields a sufficiently accurate approximation. 

3) In ALFVÉN'S case (37) we have n= 1/14-Ue-xiso with the proper branch points 

zi= xo (ln +X. (85) 
2 

The first order approximation of the phase integral method becomes for a wave coming 

from the right (x > xo) 

— 21 Rej f 11(z) dz 
-R e z — e-21:020ee (86) 

It will later be shown that this is identical with the exact result when the wave length 

is short. 

Transmission properties when the waves begin to penetrate the 
reflecting barrier 

So far we have not thoroughly discussed the transmission properties when the branch 

points are very close to each other, i. e. when, roughly speaking, the layer transmits 

and reflects equally well. 
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It is only natural and practical to assume that the branch points are now located 
in a region where n' is parabolic. For a so called CHAPMAN layer in the ionosphere, for 
example, we have 

n2 
2 1 — (TRY 

(V C», 

CO2 1 +iV/CO (e—)coo) 

if lz12<(2H)2, where H is the local scale height of the gas from which the layer is 
formed. When therefore the wave frequency lies in the vicinity of the penetration fre-

quency (co eu,/2.:7==fcm) the branch points of n are very close and located in a parabolic 

region: 

In the case of (28) we have a similar example with xo roughly corresponding to 2H. 

It should also be noted in this connection that for the F.,-layer of the upper ionosphere 

we.' frequently has a parabolic, variation practically through the entire layer. 
We now introduce the parabolic wave equation 

(12,n, 

(87) 

v=x/x0, (87 a) 

W C», 

— • (8. ) a) V 

1 
arctim (v/(0), (89) 

and 

1 ± (v/co)". (9O) 

The case of wave transmission through a non dissipative parabolic barrier has been 

studied by Voss [ 15] and in the general dissipative case under widely different con-
ditions by the present author [ 10, 11, 16] who has shown that the following parabolic 
cylinder functions* 

D (tte.kii4), D (ue—i7(14), and D (108'714) (91) 

ie '12 — 12 — — '12 

represent the incident, the reflected and the penetrating wave respectively if the time 
factor is e-jws. We have 

u= v1/ 4a e— k12, 

e=ae— i'r (1-1/Z2), 
where 

a = nxo 1 — ko xo 
A. 2 I X I ' ( Âcn, = co/fem) Co,  

The notation of WHITTAKER is used. 

1 (92) 
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The circuit relation connecting these three waves is [ 10] 

r(ie+V2) D (uejel4). eel2+ i7rI4 D (u e- i'r14)± e- ne12 jeri4 D (ueiszr14), 
— '12 V2z ‘1' — — 

from which it immediately appears that in the case of zero losses 

(9)=0) when D(ue- in:4)=conjug. D(ueizr14) 

I RP= 
1  1  

1+e— 2ne — 1 ± eerko xo (1IX z) 

(93) 

(94) 

in complete agreement with (50). 
In order to "connect" equation (87) with the actual wave equation we introduce 

W.= ko xofn (v)dv = k" x° X/{vvv2— — /32 in (v V v2— /32)} 
2 

where 

\Ve further assume that 

(95) 

i32=- 1 — 1/x2. (95 a) 

IV= kofn (x)dx. (96) 
2.2 

Denoting the solutions (91) of (87) by Ipm(v), ipm(v) and y(3)(y) respectively we 

easily find that 

(3) (2) 
(2) (2) 

\(1) 
Vo ILà)  = V V V.)) 

where 

au = x1/ V2 n  (X ) 

satisfies the wave equation 
Q (u) 

d2 Vo {k 2 2 I II" 3 (It' )2 
dx2 ' .0 n ± Ti ee • 

In the parabolic range, where we assume that z2 and y2 are located, we thus have 
x2/x0 and y xixo. Within this range therefore y 1 and Q= O. If the zeros of 

n as assumed are located within the parabolic range Q(,u) is very small outside this 

range, where y is no longer equal to xlxo. When therefore the zeros of n2 lie within the 
parabolic range yo(v) is a very good approximation to the proper wave function. 

The reflection coefficient thus becomes 

(97) 

(97 a) 

(98) 

R= r(ie+112).1p(2)(v) 
eete/2 jef4 (99) 

(v) • 1/-2n 

For a thick layer lei is very large except in the penetration-reflection range where 

1x1 1. Therefore when lei >> 1, (99) should yield the same result as the phase integral 
method. It is easy to show that this is the case. 
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With 

we have by (95) 
v2=d-ij 

wo(4=k0 x0{1 x22-1 k x x-1 °J n(x)dx. 
xo 

(100) 

(101) 

Let us first consider the case of a non-dissipative medium, i. e. Naturally we 

assume that the layer (or barrier) is many penetration wave lengths thick. This means 
that a > 1. We can then use asymptotic expansions for D(tteini4) already developed 

by the author [11]. Two different expansions have to be used, viz, one type when 
jetel < 1 (wave frequency lies in the penetration region) and another one when this 
is not the case (lel very large). 

However, it is possible, by several transformations, to obtain a bridging formula 
which can be used practically without restrictions in the no loss case. One finds 

where 

B—  1  ei[21v0(x)— n 12 ± , 
1/ 1 ± 2er° (So=0) 

(102) 

e=Phase 111(2je)Inje))+e(1—ln (4 l e 1)) . (102 a) 

10(5 

5 c 

f (In (4s)- / 

Fig. 5. Phase fr(2je)tr(je)) as a function of e. 
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it is interesting to note that ( 102), as far as I RI is concerned, yields identically the 
same result as (50) of the "good path" method. Relation (102) only holds when the 

branch points are inside the parabolic range. When they are outside this range, how-
ever, the complete method of phase integration can be used. As has been shown the 
results of this method are identical with (50) to a high degree of accuracy. We have 
therefore proved that the result of the "good path" method 

IRI= 
1 

Z2 

V I ± I eedZI2 

is an extremely good approximation for all layers or barriers for which the zeros of 
n2 approach each other in a parabolic region. This covers the main cases of practical 
interest. It should be stressed in this connection that we have throughout assumed the 
layer to be many wave lengths thick, i. e. xo> 2.0. In the case of atmospheric radio wave 

propagation this is practically always the case. In the rare cases of very long waves 
(.2 •••-• 20000 m) the wave equation has to be examined separately for each kind of n2-
variation. If this variation can be represented (approximately) by the general EPSTEIN-
ECKART function the wave equation is easily solved. 

It appears from (102) that in the penetration-reflection range layers with the same 
xo have the same reflection properties in the no loss case. This is important. This means 
that layers with the same curvature at the n2-minimum level change their transmission 

properties from reflection to penetration and vice versa in the same fashion because 
e is proportional to 177, where L is the radius of curvature of the ecurve at the 
minimum level. 

Next let us discuss the phase angle of R. This is equal to the phase of the complete 
phase integral method, 2{W0(x) — z/4} when e is very small. One immediately finds 
from the STIRLING expansions of Phase {F(2/e)/f(j,Q)} and from fig. 5 that e c> 0 when 
!o! > 12, i. e. when 

I zi z2 12 1 

2x, I koxo• 

The shorter the wave length the closer will it be possible for the branch points to come 
without correction in the geometrical phase 2{W0(x) — et/4}, as expected. 

In the field of radio wave propagation the time of travel t=dida){1Phase (R)I} is 

frequently measured. One defines the virtual height of the reflector as h = cot/2. If the 
e-term in (102) is not considered this height becomes infinite at the penetration frequency. 
When the e-term is considered, however, one obtains a finite but considerable height 
as already demonstrated by the author [ 10]. 

When the losses are considered we obtain in stead of (102) the useful formula 

r( + 11 2) ere /2 -1-ip (1- ln j2{ivo(x)_ 14} 
—  • e (103) 

-1727E 

where this time, as ip$0, both W0(x) and e are complex according to (88) and (101). 
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As exp. [j2{Wo(x)-7E/4}] is the first order approximation of the complete method 
•of phase integration and 

r(ie + 1/2) ere -Fie (1 — In e) (-.) 1 
2yc 

when !el > 1 and as further according to (92) e never becomes small when the losses are 
considerable we find that for a thick layer with at least moderate losses 

B csj ei2{11-0(.0 -,14) . 
(103 a) 

When the losses are moderate we find from (92) that the minimum lei-value becomes 

k x v 
I e 1.1. — • (£0 (Dom ) . (104) 2 co 

When therefore the loss angle of the medium 

2 2 C 
> c\D M 

koxo axo 
(co c) co% ) 

the first order approximation (103 a) of the complete phase integral method is a good 
approximation even through the penetration frequency range. 

Let us consider two examples from the ionosphere. For an E-layer with 2% =100m 

and 4=20 km we find that (103a) can be used even through the penetration frequency 
range if y > 3.104. For a low E-layer where y at least 3.10 (103a) thus can be used 

with considerable accuracy. For a F2-layer with 2en, = 30 m and x0=100 km, on the 
other hand, we find that y›.• 6.103 if (103a) could be used. As 6.103 just is about the 
order of 3, for the F2-layer we infer that for this layer the exact result (102) has to be 
used for detailed reflection property studies in the penetration frequency range. Com-
pare On the propagation of radio waves [11] p. 143 et seq. 

Finally the general formula for the transmission coefficient T should be written 
down. From (93) we have for the path v1 —>-- vo 

or 

As 

r= rtie+ 112) e_ e_i„1421)(8) (— yo) (105) 
V-Fr vw(vi) • 

_r(je+112) eere12 -1-19 a— e) ei{ ire(xi)+ wo(-2.0)}— ,re . (106) 
1/27c 

—X0 

livo(xi)± Wo(— xo) — are jko r 71(4 dz 
= e (107) 

Xi 

is equal to the first order approximation of the complete phase integral method we find 
again that when le! 1 this method is a goad approximation. 
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Application of the circuit relation of the wave equation 

27 

When the exact solution of the wave equations is known the remaining problem 

simply is to find the circuit relation, for example (93) in the parabolic case, which 

connects the incident, the reflected, and the penetrating waves. It is then possible to 
investigate in detail how the reflection coefficient varies in the medium. 

a) The ALFVÉN case 

This case has already been studied approximately by two different methods, p. 20. 
The corresponding wave equation 

ell -pko2(1±.1—r: dx2 u1 ) (108) 

is satisfied by the following wave functions, viz. H(1)(2koxo U,), H(2)(2kox / U), and 
j2k03-0 .i2koxo 

J(2k0X0 V U1) representing the incident wave (traveling in positive x-direction, i. e. 
j2k070 

towards the chromosphere), the reflected wave and the transmitted wave respectively 

(time factor eiwi). Naturally the circuit relation connecting these wave functions is 

-- 
H(1) (2k x0 1,7 U,) ± H(2) (2k0 x017 Ui)= 2 2 ko x01/ U1) . 

.i2koxo 72k0 To j2koxo 

(109) 

In order to allow also such short waves that 2koxo> 1 we make use of the proper 
DEayE-expansions of the HANKEL functions which can be written in the following suitable 

form, viz. 

(2) Tko.ro:r 
11(1) Pk° Xo U i) ji[2koxo{V 1+ + in (V 1+111 -i+ 'rift-0}  e  (110) 
m ox0 17k0 xon11/-1± U 

• (2k„ x0-1/ U 1> 1) 

It is readily seen that these expansions are of B-K-W-J-type (2). When therefore 

2k0xe-U, > 1 the reflection coefficient becomes 

where 

(fi J/) 
1 e—i[219 v1+ in (V 1+1/1.71+ - .121— rtfl 

H (fi V 7';:) 
(9124 < 1317r) 

fl=2k0x0. 

When U1> 1 this result is the same as the first order approximation of the phase 
integral method (86). With the phase included (86) namely becomes 

e— [24 9{VJ.+ u, in + 2/vq}i — (86 a) 



28 CHALMERS TEKNISKA HCIGSKOLAS HANDLINGAR NR 74 

Let us next consider the transmitted wave penetrating into the "thin" medium where 
Ul< 1. As 

and 

when /3> 1, we obtain 

1  _ 1 sm h 70 j Phase (r (Mg ± 1)1 

r(e ± 1)—  V 7‘13 

Phase{f(j/3+1)} er/4-h3(ln i3-1) 

2J(f3v Ui) e- j [kok - 2x0 { in ( I) + 1}1 nI4 :re V e_ 2„fl 

ifi 17 4 1 

(112) 

(113) 

(114) 

(13 riTà2 1 

1 
1+0 

(/3> 1, e2 0 ,/91/U) 

The transmission coefficient (counted from x=0 to x>zo) thus becomes 

J13(PV r_2 J 1  c„,..,"1/ e- 2.7q3 e- jko[x-1-2r0{Y1 U+ln {W-1- l+U1)}-1} . 
H ((1) RVV) 

‘r (j9 1, exi270 /3' U). 

(115) 

Thus IR12+ITI2=1 as expected. 

One naturally raises the question where does the main reflection take place? In order 
to investigate this matter we have to resort to relation (9) because we do not know 
what the HANKEL and BESSEL functions really represent in the transition range where 

fil/U, is neither large nor small. Due to the partial reflection in the medium these 
functions gradually change character. 

In accordance with (9) we therefore introduce 

a (1),,z\ rr ( 1) tx \ (2)/ (2) 
k  = R (x).  /71 / H 1 —  17' Iii 

a t2)(x ) a (2) (z ) 1/ a l/ 

(2) 

where H=2J-ifl (/31771-1) and Hin) are the B-K-W-J-approximations 

It is easily shown from (116) that in our specific case we obtain the general resnit 

— —n —jko n±jko k0-17-Fi • 

— —n ±jko n±jko — kol/ • 111 

where te=dnIdx, n=j71+ Up and 

(116) 

31=J(p VrI)/eT(13-Vv1). 
Jfl + 1 ifi 

1) exi2xo .‹ /3 I/TT 

(2). 

(117) 

(118) 
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Applying the DEBYE-expansions to the evaluation of M we find 

1— (ie 17 1)/ 11()Y 017-Fi) 
(2) 

1+ II»  (13 17  1)/ 11;(1V (13171TIY 

i. e. 

R(x) j5) ( 13 u R.e) (13 "Vt—ri 

as expected 
2) exi22.0> 16-re 

1 
We now have n 1+ 5. U1, and, as is easily shown, 

k° jr/7",/li 13171 { 1 ( U1 ...» 
2 ji3 + 1 

Relation (117) therefore yields 

.  Ue—eleo 
B 4/32(1_ 

(e/2x0 < )31/-71) 

(119) 

(120) 

(ex/24)/31/- il) (121) 

This result is identical with the first order approximation R(1) of (39) deduced for the 

conjugate time factor. This demonstrates the usefulness of approximations of this type 
(31) for weak reflectors when n 1. 

The variation of 1R: with x is sketched in fig. 6. As R(x) is defined as the ratio be-
tween the down-coming (reflected) and up-going waves the main reflection thus takes 

place in the region where it' decreases rapidly as x is increased. Roughly speaking the 

main reflection takes place in the neighbourhood of the level where Ue-xixo = 1//32, i. e. 
where n2= 1+1/e. 

Returning to the DEBYE-forms of the wave functions ( 110) we notice that the deno-

minator term V 1+U, may be regarded as an impedance transforming factor (see also 

page 5). It might therefore be of interest to study briefly the "reduced" field strength 
4 

IHÍV 1+ Ui — IHred(x)1, where IT=Jifl (f3V—ITI). 

When C/lX0 < fi vr we find 
17red (X) I V -1 — S1112ço /cos h2/37t/2 

1/7,,d ( 0) I 1 — sin' çoi/cos h2137c12' 

and when ex/2x° VTT 

Wred (x) I V- I 1-1/ cos h2flet/2  ,-  
1/ cot h ig7t12, fired (0)1‘j 1— sin2 9), / cos 112/3n/2 

where 

= 131 / 1:1— er/4, and 99/ = fl -1/-1 il— n/4. 

These results are sketched in fig. 7 which demonstrates how the "standing wave" 

portion disappear as one proceeds into the "thin" medium where n L 
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Hen Zone of Reflex/on 

Fig. 6. Sketch of IR(x)i as a function of x. 

b) Duct propagation of micro waves 

Not only the upper atmosphere (the ionosphere) but also the lower troposphere, ac-
cording to radar experiments, can act as a wave guide under certain circumstances. 
Such duct propagation has been studied during the war by several authors using phase 
integral methods and mode theories [17, 18]. 

The radio wave transmission theory developed by the present author 1943-1944 [ 11], 
which in a closed formula contains the degree of excitation of each mode, is especially 
suited for an exact study of this kind of propagation. To this question we will probably 
return in a later communication in this series. For the present we are only interested 
in a study of the circuit relation connecting the radial waves of the spherical propa-
gation case. 

The essential features of the inhomogenity of the lower troposphere under meteoro-
logically very stable conditions can be described by the following height function for 
the dielectric constant, viz. 

)2 
e=8„{1 — 21 4-2 }. (122) 

In this expression ro=a-Fh is the radial level (counted from the centre of the earth) 

below which rising rays can be bent down towards the earth. According to geometrical 
optics the penetration elevation angle of the ray (counted at the earth) becomes 

h/a 
(pp=are sin 

if e (a)= 1 . 
VI + 2 (h/a)2+ 2hla c\)hla, (123) 

At this limiting angle the ray leaving the transmitter approaches ro asymptotically. 
The approximate cut off wave length, 2,, is easily calculated when one remembers 

that the vertical distance between consecutive constant phase surfaces 2/4 apart should 
never be more than about h, i. e. 

4h2/a. (124) 
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2 3 5 7 

Fig. 7. "Reduced" wave field. strength as a function of distance x. 

Thus for a duct width of about 300 m we find 2 "-• 6 cm proving that only micro waves 

are short enough for this kind of propagation. The corresponding cut off or limiting 
wave length for the transmission of very long radio waves between D- or E-layer (of 

the ionosphere) and ground was discussed by the author in connection with the develop-

ment of the radio wave transmission theory already mentioned [ 111. 
Inserting the dielectric profile (122) in the wave equation we immediately find that 

the wave functions describing the propagation are of the type 

(2) 

17t=P„ (cos e) e(i)(kor).* (125) 

(2) 
where 0 is counted from the transmitter and e(1)(kor) are the radial wave functions 
satisfying 

1 d (de 
wi.)+ k02 €0{1. 2 ro /(l-1-1) 

r e.o. (126) 

In the above equation 1(1+1) denotes 

1(1±1)=1a(n+1)-2(koro)2=n(n+1)-2e02. (126 a) 

The circuit relation connecting //(1)(r) and 17(2)(r) formally is almost as simple as (109) 

of ALFVEN'S case. However, in order not to complicate the situation in this connection 

* This actually describes waves running in both clock wise and counter clock wise direction as 
Pn (cos e) is an angular standing wave function. 
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we select the simplest circuit relation which we know connects the waves from the crut-
side, viz. 

where 

Introducing 

we have 

r(— e (8) 2 -File2+e0)) [FE {e2+ eon e(1)—  •2 
e (1+j22)' e(2)+ il r 

e2 — e01) 

Q2 = 17402— n(n+1) — 1/4 . 

kl=k01/70 

ej {ki r -1- * In (24 r) n/4} -I- Xe2212 

e(8)   • 1F1{ 1 ±i (e2 +eo); 1 +i2e2; 2jki r} 
.172kir 

where 1F, denotes a KUMMER function. 
Let us introduce 

(127) 

(127 a) 

(128) 

(129) 

n(n+1)=Q02 sin2 eo, (le) 

where eo to a very high degree of approximation represents the angle between the wave 
direction and fo. When e22 _ e02 < eo. i. e. when 

cos 4",:, < 14.0 (131) 

we can use the following asymptotic expansions for e(i) and em, viz. 

(2) eTj(ki r — go In (2ki r) — n/2 ;r,90/2 2 2 

(ko r\ 1 --L1   +... 1. (1'e2) 
' 2k r 2r eo I 

As Co > 1, cos 4.0 therefare must be very well when (132) is used. This means that 
(132) can only be used with reasonable accuracy when the ray elevation is close to the 
limiting angle (pp. However, it is in this ray direction that the sudden change from 
reflection to penetration takes place when wp is increased and it is therefore completely 
sufficient for our present purpose to limit ourselves to the limited direction range for 

which (132) can be used. When Q22-002 no longer < Co the saddle point method has to 
be used to obtain the proper expansion of e(i). However, it is outside the scope of the 
present cammunication to discuss this question further. In conclusion it should be men-

tioned that exactly the same problem is encountered in the discussion of the trans-
mission of waves through a barrier or layer with parabolic maximum in potential function 
(or parabolic minimum in dielectric constant). Outside the penetration frequency region 
special saddle point expansions of the wave equation have to be used as shown by the 
present author [ 11]. Relation (112) actually is a bridging expression connecting the 
results of the saddle point series and the penetration range expansion corresponding 
to (132). 
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(2) 

It appears from (132) that when kJ is very very large ei), as expected, reduce to 

ordinary spherical waves with the minor correction of a slowly changing phase factor. 

At the top of the duct, however, where the wave penetrates or breaks through, r=ro, 

and 

In (2k, =0, (133) 

(r= r0) 

i. e. with the time factor eiwe(r) represents a wave approaching the duct boundary 
r„ from the outside or from the inside. This is a very interesting property. The reverse 

is true of e(kor). 
(2) 

in this respect em closely resemble the wave functions (93), (97) of the parabolic 
barrier. When therefore eo>, 1, and this is always the case, circuit relatian (127) can 

be used to study transmission properties up and down through the duct boundary. 

By (127) and ( 132) the reflection coefficient therefore becomes 

R.=/1 fv2-1-i(e,--e0)} • e- zr92 r — r) rt14 (134) 

Using the multiplication rule of the F-functions we easily verify from ( 134) that very 
accurately 

I R  12 = I ± e2,7 (92 - 9o) • 

1 
(135) 

As 

sin 4'0 = cos (p/cos ço,„ (136) 

where g is the elevation of the wave normal at ground level, we have 

cos2 99--e0S2 9,p cos g)— cos (p„ 
2 n(ü2 — 00)= — 71"k o • 2 2nkiro cos 9), cos (pp • 

As further kir„ is a very very large quantity we see that according to (135) there is 

an almost sudden (very Shari)) transition from reflection to penetration when the 
elevation increases above the limit direction p. 

It is easily shown that phase integration between the branch points yields 

eJkojn(/:: 12  

(137) 

I. e. the results of (135) and (50) are identical. This is not surprising because we have 
already shown that (50) holds good for a thick layer with parabolic minimum in e, 

such as in the present case with profile ( 122). 

3 
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