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PREFACE 

r-In HE material formerly presented by the author of this book 
as a practical home-study course is now offered as a series 

of radio and communication engineering books. These volumes 
may serve as a refresher course for persons already familiar 
with the subject, or as a study guide in correspondence' or 
residence school courses for those desiring a comprehensive 
treatment. The reader is more likely to learn correctly and 
rapidly if this material is used in a plan of directed study. How-
ever, for those who do not have time to take advantage of avail-
able courses, the books should prove valuable for reading and 
reference purposes. 

This first commercial edition of "Applied Mathematics" has 
been preceded by four private editions used in a practical home-
study course of the Smith Practical Radio In,stitute. The 
preparation of this course was started in 1934 to meet the needs 
of a group of radio broadcasting operators and engineers who 
had irregular working hours. The course is for the student 
who has a high-school education or the equivalent and is familiar 
with the popular terminology used in radio. 

Chapters 9 and 10 cover the requirements of simultaneous 
equations in mesh circuits and quadratic equations in• complex 
circuits having multiple resonance frequencies. The author is 
indebted to Mr. Daniel B. Hutton for assisting with the prepa-
ration of the material in these two chapters. 
The advanced section, Chaps. 12 to 15 inclusive, presents a 

simplified treatment of calculus, series, and wave forms. Ele-
mentary calculus concepts assist in understanding the theory, 
such as that di/dt expresses the rate of current change with 

These books are a part of the general plan for a practical home study 
course offered by the Cleveland Institute of Radio Electronics Cleveland, 
Ohio. Further information is available upon .request. 

vii 
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respect to time. Another illustration is the determination of 
impedance matching by maximizing the power transfer. The 
material on series is given because of their use in evaluating 
functions and making simple engineering approximations. The 
treatment of wave forms gives the underlying mathematics for 
analyzing and synthesizing wave shapes found in television and 
pulse techniques. 
The section devoted to tables and formulas is included to 

make this mathematics handbook self-contained. The other 
books of this series will refer to this material whenever it is 
needed. 
The author wishes to acknowledge the helpful cooperation 

which has been received from all sides. In particular, he wishes 
to thank the many students who by their constructive criticisms 
have helped to mold this course into its present form, and Beverly 
Dudley for his careful reading of the manuscript and for the 
suggestions that he has made for the improvement of the text 
in a number of places. 

CARL E. SMITH. 
THE PENTAGON, 
WASHINGTON, D.C., 
July, 1945. 
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APPLIED MATHEMATICS 

CHAPTER 1 

ARITHMETIC 

Mathematics is one of the most valuable tools possessed by the 
engineer. This is especially true of the radio and communication 
engineer because the analysis of electric circuits is largely a study 
of linear equations. An example is the linear relation of Ohm's 

law, 

E = IR (1) 

The simplicity of this law and its extensive use when working out 
electric problems have in a large measure been responsible for 
the rapid advance of the electrical industry. 
Communication systems in general depend upon three things: 

(1) sending facilities; (2) transportation facilities in the. form of 
telephone lines and radio links; and (3) receiving facilities. 
The study of the networks involved in such systems is nothing 
more than a study of alternating current at audio and radio 
frequencies. Such a study is materially clarified and simplified 
if one has the ability to apply the essential mathematics. The 
mathematics presented in this book is not difficult but must be 
thoroughly mastered if real progress is to be made through the 
rest of this series of books. Since many of the readers will have 
already had this mathematics it should not be a burden for 
them to answer the exercises at the end of each chapter as a 

matter of review. 
Signless Numbers.—The child makes his first acquaintance 

with numbers in counting the objects of a group. These are 
simple signless numbers made up of arabic numerals or combi-
nations of arabic numerals, thus 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, etc. 
1 



2 APPLIED MATHEMATICS. 

These signless numbers obey the arithmetic processes of addition 
and multiplication. 

Example 1. Add 3 to 6. 
Solution. 3 + 6 = 9. Ans. 
Example 2. Multiply 2 by 6. 
Solution. 2 X 6 = 12. Ans. 

Real Numbers.----As the child's experience increases he will 
soon desire to use the arithmetic processes of subtraction and 
division. Occasionally the result cannot be expressed in the 
simple system of signless numbers. For instance, if the mercury 
in the thermometer drops below zero, or if he wishes to subtract a 
large number from a small number, the result is no longer in the 
simple system of signless numbers. 
To expand the number system to take care of all four arith-

metic processes, it is necessary to include a zero and negative 
numbers. The signless numbers will then be considered posi-
tive numbers even though no sign is used. This system of real 
numbers considered thus far is one of whole numbers called 
"integers" or "integral numbers." Whole numbers are called 
"even numbers" when exactly divisible by 2 and " odd numbers" 
when not exactly divisible by 2. 
The real number system consists of zero; all whole numbers; 

all rational numbers, which can be expressed as whole numbers in 
fraction form; and all irrational numbers, which cannot be 
expressed as simple fractions. For instance, the diagonal of a 
square having sides one unit in length can be expressed as .the 

square root of 2, thus; -0. The Vi is an irrational number 
which cannot be expressed as a simple fraction. 

Example 3. Harry has $9 but owes Tom $12. What is Harry's financial 
status? 

Solution. $9 — $12. = —$3. Ans. 
This means that he is $3 in debt. Harry actually owns less than nothing. 
Example 4. Divide 6 by. 2 and state the kind of number that results. 
Solution. 6 ÷ 2 = 3. Ans. 
The answer is a rational odd integral number. In this example, 6 is 

the dividend, 2 is the divisor, and 3 is the quotient. 

Example 5. Divide 4 by 6 and state the kind of number that results. 
2 

Solution. 3.! —2- Ans. 
er 3 
3 • 

The answer is a rational number expressed in fraction form. 
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Graphical Representation of Real Numbers.—Real numbers 
can be considered as points along a straight line as shown in 
Fig. 1. These points are a measure of the distance from the 
reference point O. The negative numbers are in the opposite 
direction to the positive numbers. For instance, if the numbers 
represent miles along a road that runs from west to east the 
positive numbers represent mileage east of the reference point 
and the negative numbers represent the mileage west of the 
reference point. A person starting at 0, the reference point, 
going 8 miles east, in the positive direction, and then turning 
around and going 18 miles west, in the negative direction, will be 
10 miles west of the starting point, in the negative direction. 
In equation form, this is expressed 

+8 miles — 18 miles = —10 miles Ans. 

As another instance, consider a 4-volt and a 6-volt battery 
connected in series. If the positive terminal of the 4-volt battery 

I I I I I I I 11111  
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

Fro. 1.—Graphical representation of real numbers. 

is connected to the negative terminal of the 6-volt battery and 
the reference point 0 is considered at the negative end of the 
4-volt battery, then the voltage at the positive end of the 6-volt 
battery is 

+4 volts + 6 volts = 10 volts Ans. 

which is with respect to the reference point O. Now, if the 
6-volt battery is turned around so that the positive terminals of 
the 4-volt .and 6-volt batteries are connected together, the voltage 
at the negative end of the 6-volt battery, with respect to the 
reference point 0 at the negative end of the 4-volt battery, is 

+4 volts — 6 volts = —2 volts Ans. 

Smaller values will always be found to the left of the beginning 
point and larger values will always be found to the right of the 
beginning point, as shown in Fig. 1. 

Example 6. Is the fraction —h a larger number than the fraction -%? 
Illustrate graphically. 
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Solution. The fraction —% is larger than the fraction —% because it 
lies to the right as represented graphically in Fig. 2. Ans. 

Rules for Addition and Subtraction.—Adding a negative 
number (-3) is equivalent to subtracting a positive number 

(+3). 

Thus 
or 

2 + ( —3) = —1 
2 — (+3) = —1 

When two numbers of unlike sign are to be added, subtract the 
smaller from the larger and place 

1 —4 . p o 4.1 the sign of the larger in front of 
the answer. Fm. 2.—Position of negative fractions 

with respect to —1, 0, and +1. If there are several numbers 
to be added, first, add all the 

positive numbers; second, add all the negative numbers; and 
third, subtract the smaller sum from the larger sum and place the 
sign of the larger in front of the answer. 

Example 7. Add —1, —6, +4, —3, +8, +2. 
Solution, —1 +4 14 + ( —10) = +4 Ans. 

—6 +8 
—3 +2 

—10 +14 

• Subtracting a negative number, such as —3, is equivalent to 
adding a positive number, such as 3. The rule for subtraction is 
to change the sign of the subtrahend and add. 

Example 8. Subtract ( —6) from 4. 
Solution. 4 minuend 

—6 subtrahend 

10 remainder Ans. 

or, in equation form, 

4 — ( —6) -= 10 Check. 

Addition can be performed in any order, but subtraction must 
be performed in the order given. For instance, in addition, 

2 + 3 = 3 + 2 = 5 

while, in subtraction, 

2 — 3 3 — 2 

In connection with the above rules, it is well to keep the 
following facts in mind: 



4 
ARITHMETIC 5 

1. Adding a positive number gives a larger value. 
2. Subtracting a positive number gives a smaller value. 
3. Adding a negative number gives a smaller value. 
4. Subtracting a negative number gives a larger value. 
Rules for Multiplication and Division.—l. The product or 

quotient of two positive numbers is always a positive number. 
For instance, in multiplication, 2 X 4 = 8, and, in division, 
12 4- 3 = 4. 

2. The product or quotient of two negative numbers is always 
a positive number. For instance, in multiplication, 

—2 X —4 = 8, 

and, in division, —12 ÷ —3 = 4. 
3. The product or quotient of a positive and negative number 

is always a negative number. For instance, in multiplication, 
—2 X 4 = —8, and, in division, —12 ÷ 3 = —4. 

4. Multiplication can be performed in any order while division 
must be performed in the order written. For instance, in 
multiplication, 2 X 4 = 4 X 2 = 8, but, in division, 

12 ÷ 3 0 3 ÷ 12. 

5. In a series of different operations, the multiplications are 
performed first, the divisions second, the additions third, and 
the subtractions fourth. Terms of a grouping, such as between 
parentheses, should be solved before performing the operation 
on the grouping. 

Example 9. Solve: 12 ÷ 3 — 2 X 9 ÷ 3 ± 10 X 2 — 2. 
Solution. Performing the multiplications, 12 4- 3 — 18 4- 3 + 20 — 2 

Performing the divisions, 4 — 6 ± 20 — 2 
Performing the additions, 24 — 6 — 2 
Performing the subtractions, 16 Ans. 
Example 10. Solve: [(2 X 6) — (5 — 8)] ÷ (3 ± 2). 
Solution. Performing the operations within the parenthesis groupings, 

[(12) — ( —3)] 4- (5) 

Combining terms in the bracket, 15 ÷ 5 
Performing the division, 3 Ans. . 

Cancellation.—Cancellation is a process used to shorten 
mathematical problems involving a series of multiplications 
and divisions. The following are rules for cancellation: 

1. Any factor below the line can be divided into any factor 
above the line, or any factor above the line can be divided into 
any factor below the line. 
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2. Any factor common to factors of a term above and factors 
of a term below the line can be divided into each. 

3. After canceling all factors possible, the answer is obtained 
by dividing the product of all the factors above the line by the 
product of all the factors below the line. 

5 X 3 X 16 X 8 
Example 11. Solve 

15 X 8 X 4 X 3 

Solution. Divide 5 into 15, 8 into 16, and 4 into 8, thus 

2 2 
gx3xXfix$ 3x2x2 
JOxgx0x3 = 3x3 
3 

Divide 3 into the 3 in the numerator and the 3 in the denominator, and, 
after multiplying the resulting terms in the numerator, perform the division 
to obtain 

1 
g X 2 X 2 2 X 2 4 1 
g X 3 3 3 3 
1 

Ans. 

With a little practice all the operations can be done without 
rewriting the fraction. 

Fractions.—Fractions are valuable to represent numbers 
between consecutive whole numbers or a certain portion of a 
whole number. A fraction is an indicated division with the 
denominator below the line representing the number of equal 
parts into which the whole number is divided and the numerator 
above the line representing the number of these equally divided 
parts to be taken. A fraction that has a numerator smaller 
than the denominator is called a "proper fraction," while a 
fraction that has a numerator equal to or greater than the denomi-
nator is called an "improper fraction." A proper fraction, 
therefore, is less than 1 and an improper fraction is equal to or 
greater than I. Equivalent fractions are fractions that have the 
same value. 

If a whole number is associated with a fraction, the number 
is called a "mixed number." The answer to Example 11 is a 
mixed number and means 1 ± %. A mixed number can be 
converted into an improper fraction by multiplying the whole 
number by the denominator of the fraction and adding this 
number to the numerator, thus 
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1 3 X 1 + 1 3 -F 1 4 
1 — 3 3 3 -- 3 Ans.  

The following are some useful principles for fractions: 
1. If the numerator and denominator are multiplied or 

divided by the same number, the value of the fraction does not 
change. Thus 

6 X 2 12 6 3 A 

8 X 2 — 16 8 — `'n8. 

3 
or = Check. 

2. If the numerator is multiplied by a number, or the denomi-
nator is divided by it, the fraction is multiplied by the number. 
Thus 

6 —s 6 X 2 12 3 — — _ 1 X 2 =  8  A 8 2 -ans. 

Or 6 u X 2 = z= 6 3 Check. 

3. If the numerator is divided by a number, or the denomi-
nator is multiplied by it, the fraction is divided by the number. 

6 ÷ 2 = U = 3 Ans 
g 8 g --- . 

6 6 6 3 
• or -g ÷ 2 Check. 

8 X 2 16 g 

4. To add fractions, first, convert all the fractions to the same 
denominator; second, add all the numerators, and third, place 
this sum over the denominator. Thus 

1 1 1 6 14 21 41 
-42 + U +-42 = 42. 

Ans. 

Since 42 is the smallest denominator that caii be used for 
these fractions, it is called the "L.C.D." (the least common 
denominator). 

5. To subtract one fraction from another, first convert both 
fractions to the same denominator; second, subtract one 
numerator from the other numerator; and third, place the 
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remainder over the denominator. Thus 

1 1 6 5 1 
5 630 3030 

Ans. 

6. To multiply fractions, multiply the numerators together for 
the new numerator and the denominators together for the new 
denominator. Thus 

2 \, 3 2 X 3 2 A 

—ns. 

7. To divide fractions or to simplify complex fractions, invert 
the divisor and multiply, thus 

• h_ 2 3 2 ,,. 5 10 , 1 A 
% 

The reciprocal of a number is the fraction that has the number 
as the denominator and 1 as the numerator. Thus, the recipro-
cal of 3 is X. The reciprocal of a fraction is 1 over the fraction, 
or the fraction inverted, thus 

The reciprocal of is 1 12133 = Ans. 
3 1 3 1 2 2 

• 
The sign of a fraction depends upon three signs, (1) the sign in 

front of the fraction, (2) the sign of the numerator, and (3) the 
sign of the denominator. The sign of the fraction is positive if 
the product of these three signs is positive and the sign of the 
fraction is negative if the product of these three signs is negative. 
Thus, for a positive fraction, 

+3 —3 +3 —3 = = 
+5 —5 —5 +5 

= (+)(±)(±) = (+)(—)(—) = (—)(±)(—) = (—)(—)(±) 

and for a negative fraction, 

— 3 = 3 = 3 = 3 

—5 +5 +5 — 5 

(—) = (—)(—)(—) = (—)(±)(+) 
= (+)(—)(+) = 

Decimal Fractions.—Decimal fractions have denominators 
that are multiples of 10. Thus, -f (), 4% 00, and 6,f000 are 
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decimal fractions. For convenience, they can be written 
omitting the denominator if a decimal point is placed in the 
numerator so that there will be as many digits to the right of 
the decimal point as there are zeros in the denominator, thus 

a 47 63 —2 = 0.2, — = 0.47, — — 0.063 
10 100 1,000 

The zero is written at the left of the decimal point for clearness. 
This is not necessary but is a very good practice to follow. 
When there are fewer figures in the numerator than there are 
zeros in the denominator, zeros are added to the left of the 
number figures to make the required number of digits. 
Every time the decimal point is moved one place, the number 

changes by 10 times its value. If the decimal point is moved to 
the right, the number increases; if it is moved to the left, it 
decreases. The relative value of the digits on either side of the 
decimal point is illustrated in the following table: 

TABLE 1.—RELATIVE VALUE 

1,000,000,000 
100,000 , 000 
10,000 , 000 
1,000 , 000 

100,000 
10,000 
1,000 

100 
10 
1. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 

1 
01 
001 
0001 
00001 
000001 
0000001 
00000001 
000000001 

OF DIGITS ON EITHER SIDE OF THE DECIMAL 
POINT 

Billions 
Hundreds of millions 
Tens of millions 
Millions 
Hundreds of thousands 
Tens of thousands 
Thousands 
Hundreds 
Tens 
Units 
Tenths 
Hundredths 
Thousandths 
Ten thousandths 
Hundred thousandths 
Millionths 
Ten millionths 
Hundred millionths 
Billionths 

Engineers usually simplify the reading of decimal numbers. 
Instead of reading 342.79 as "three hundred and forty-two and 
seventy-nine one-hundredths," they usually read it "three, four, 
two, point, seven, nine." Another common practice is to 



10 APPLIED MATHEMATICS 

express small numbers less than unity up to hundredths in per cent 
of unity by moving the decimal point to the right two digits, 
thus, 0.79 may be written 79 per cent of unity. 
Exponents.—The exponent of a number is a small figure placed 

to the right and above the number and mewls that the number is 
to be taken that many times as a factor, hence the square of the 

number 10 is 

102 = 10 X 10 = 100 
Similarly, 108 = 10 X 10 X 10 = 1,000 

102 is read "10 cube," or "10 raised to the third power." 
When no exponent is written, it is understood to be 1; hence, 
10' = 10. Positive exponents give results greater than unity, 
if the number raised to the power is greater than unity. 
A number raised to a negative power is equivalent to the 

reciprocal of the number (1 over the number) raised to a positive 
power, hence 

1 _ (7:11 x 61 x T(51 1 
108 — 

Negative exponents give results between zero and unity when 
the number raised to the negative power is greater than unity. 

Since positive exponents are for results greater than unity 
and negative exponents are for results less than unity, the 
system can be made complete if the exponent zero always gives 
unity. Hence, any number raised to the zero power is defined 
to be unity; thus, 10° = 1. 
IR order to state general laws for exponents, it is convenient 

to substitute letters for the numbers as is done in algebra, thus 

A. = (A multiplied by itself n times) 

Hence, when n= 4, we have A4=A•A•A•A. Using this 
notation, we can write the following laws of exponents: 

1. Addition of Exponents. 
Am An = Am-Fre (2) 

This means that (A multiplied by itself m times) (A multiplied 
by itself n times) = (A multiplied by itself m n times). 

• Example 12. 23 X 24 = 23+4 = 23. Ans. 
Example 13. 6-8 x 66 x 6-8 x 6-6 = 6-13. Ans. 
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It should be noted that this law is for like numbers raised to 
the same or different powers. If unlike numbers are raised to 
powers, it is necessary to raise the respective numbers to the 
power of their respective exponent before multiplying. 

Example 14. 42 X 23 = 4 X4 X2 X2 X2= 16 X8= 128. Ans. 

2. Subtraction of Exponents. 

Am 1 

An = Am—n — An—m 

A. 1 
when m = n; , , T. „ = A n—n = A° = Tio = 1. 

23 
Example 15. —22 = 23-2 = 22 = 2. Ans. 

116 
Example 16. = 11 6 X 112 = 11". Ans. 

11-7 
54  1  1 

Example 17. - 56 X 5-4 - 52 - 5-2. Ans. 56  

(3) 

These examples show that a number in the numerator can be 
moved to the denominator if the sign of the exponent is changed. 
Likewise, a number in the denominator can be moved to the 
numerator if the sign of the exponent is changed. 

3. Multiplication of Exponents. To find the power of a power, 
we multiply the exponents, thus 

(Am)n = Amn 

Example 18. (36)3 = 36 X 36 X 36 = 3". Ans. 
Example 19. (2-3)-4 = 222. Ans. 
Example 20. (4-4)2 = 4-6. Ans. , 
Example 21. (62)-2 = 6-14. Ans. 

(4) 

4. Power of a Product. The power of a product can be written 
as the product of the various factors raised to that power, thus 

(ABC • • •)m = AmBmCm , • • (5) 

Example 22. (3 • 4 • 5)2 = 32 • 42 • 52 = 3600. Ans. 

5. Power of a Fraction. The power of a fraction can be written 
as the power of the numerator divided by the power of the 
denominator, thus 

(A)m Am BBm (6) 
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3 \ 2 32 g Ans. 

Scientific 

23. G) = = -s. 

Scientific Notation.---Any number can be expressed by, scien-
tific notation if it is written as a decimal number between 1 and 10 
multiplied by 10 raised to the proper exponent. The use of 
scientific notation materially simplifies the writing of many num-
bers used in electrical engineering. It is recommended that the 
student use scientific notation wherever it will simplify the 
numbers. 

Example 24. Write the following numbers in scientific notation: 

6,000,000 = 6 X 106 Ans. 
0.000 000 34 = 3.4 X 10-7 Ans. 

This example shows that the decimal point can be shifted as 
many places as necessary if the new quantity, or answer, is multi-
plied by 10 raised to a power equal to the number of places the 
decimal point is shifted. The power of 10 in the answer is posi-
tive if the decimal point is moved to the left and negative if the 
decimal point is moved to the right. 

Example 25. Simplify the following fraction and express the answer in 
scientific notation: 

4,000 X 5 X 10-12 X 2 X 106 4 X 5 X 2 X 101-'2+6 
0.0000005 X 4 X 1016 — 5 X 4 X 10"-1 

2 X 10-8 
= 2 X 10-1-1 = 2 X 10-12 Ans. 

109 
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quite commonly on typewritere not having et and even in printed 
matter to stand for microfarad. 

Inductance values in radio and communication engineering 
are usually expressed in micromicrohenrys (»ph), microhenrys 
(.th), or millihenrys (mh). One millihenry is one thousandth of 
a henry, that is 

1 mh = 0.001h = 10-3h 

Resistance values are usually larger than unity and may be 
very large. ka is often used for kilohms, meaning "thousands 
of ohms," while MO is used for megohms, meaning "millions of 
ohms." • 
High voltage or wattage is ordinarily expressed as kilovolt 

(kv) or kilowatt (kw). A kilovolt or kilowatt is one thousand 
times greater than the volt or watt. 
When changing from one size of unit to another, the conversion 

table on page 243 is very convenient to use. The table on 
page 239 gives other useful quantitative electrical abbreviations. 

Radicals.—If a quantity is divided into n equal factors, then 
one of the factors is said to . be the n" root of the quantity. In 
other words, 

1 
(A/s multiplied by itself n times) = A (7) 

The nth root of the quantity A can be written as a fractional 
exponent or as the nth root of the radical A, thus 

(8) 

Example 26. e= = 3. An.. 

In Eq. (8), A = 9, n = 2; hence, by Eq. (7), 

1+1 
(91/2 X 91/2) = 9 2 = 9 or 3 X 3 = 9. 

When expressing square root, the 2 is usually omitted; hence 

= (9) 

but for other roots it must be indicated. 
The number under the radical sign is called the "radicand." 
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If a quantity is to have a root extracted and also be raised to a 
power, the following general form is applicable: 

A '7 = •Y74.7's (10) 

The numerator of , the exponent indicates the power and the 
denominator of the exponent indicates the root. 

Example 27. A; = = \VP = NY7t1 =" 4 = (,e)2 = 22 = 4. Ans 

Square Root of Numbers.—The extraction of the square root 
is a relatively simple process but that of higher roots is more 
complicated and calls for the use of logarithms. If the number 
is expressed in scientific notation, the root can be taken directly 
providing the exponent of 10 is even. However, if the exponent 
is odd the decimal point must be shifted one digit. When the 
exponent of 10 is even, the root of this part of the number is 
10 raised to one half the value of the original exponent. If the 
exponent of 10 is odd, it cannot be divided by 2 to get a whole 
number. This is the reason for shifting the decimal point. 

Example 28. -V1.44 X 104 = Vr..r4 X = 1.2 X 102. Ans. 

Example 29. -V6.4 X 10' = V64 X 102 = N/64 = 8 x 10. 
Ans. 

The extraction cf the square root of a whole number will be 
explained in the following example: 

Example 30. Extract the square root of 69,573. 
Step 1. Start at the decimal point and divide the number into groups of 

two, thus 

6'95'73' 

Step 2. Find the largest squared number that will be less than the first 
group. In this case 2 square gives 4, which is the largest squared number 
less than 6. Place this 2 to the right as shown and subtract the square of 
this number from the first group, thus 

6'95'73/2 

4 

Step 3. The second group is brought down with the remainder, in this 
case giving 295. 

Step 4. The number in the answer is doubled and brought down as a 
trial divisor. 
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Step 5. Another number is added to this trial divisor. This number is 
so selected that• the product of it by the trial divisor will be the largest 
number that will go into the remainder, thus 

6'95'73'/26 

4 

46/295 

— 276 

19 

Step 6. The process is now repeated, that is, the next group. of figures 
is brought down with the remainder, the aniwer is doubled and one figure 
added to it of such a value that the product of the two numbers will be the 
largest number that will go into the remaider, thus 

6'95'73/263 

4 

46/295 

276 

523/ 1973 

1569 • 

404 

The answer for this problem is 263 with a remainder of 404. If more 
accuracy is desired, it can be obtained by bringing down two ciphers and 
repeating the above process. Ans. 

In the above example we had a whole number, but the process 
would not be changed if we had a decimal quantity to deal with. 
It is only necessary to keep in mind that the number must be 
pointed off in groups of two, starting at the decimal point. 
Examples of pointing off are 

43'97'32'98'73 0.00'07'56 0.78'03 

The student should work a considerable number of these 
problems to become familiar with the procedure. 

Exercises 

1. Add: 119, —34, 23, 56, —90, —43. 
2. Add: —78, 89, 64, —34, 20, —85. 
3. Add: 97, 44, —63, —56, —89. 
4. Add: 45, —70, —54, 34, 24, —89, 865. 
5. Subtract (-78, 87, —43) from —98. 
6. Subtract (34, 67, —91, —52) from (45, —19, —65, —78). 
7. Subtract —89 from (13, —76). 
8. Multiply: 18 X —5 X 6 X —13. 
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9. Solve 18 X 103 
6 X 102 

10. Solve 8 X —6 X 10-43 X 10-4 
—4 X 10" X 32 

6» X 6-6 x 6-18 
11. Solve 

6" X 6-46 
12. Express the following in scientific notation: 987,000; 76.456; 0.0007; 

9,000.00; 8,976,500.01; ,12,000,000,000,000,000,000. 

18. Solve 0.0000006 X 106 X 100,000.00 
0.48 X 10-1 X 0.0000004 

14. Express each of the following in units, micro units and in mteromicro 
units: 0.0000009 farad; 1,000 mh; 6mf; 67gpf; 104ph; 0.0003pf; Old; 
0.008 farad. 

15. Find the square root of the following numbers: 889,635; 9,976; 
9,940.09; 5.890331; 0.0000000009; 0.00047; 0.004978. 



CHAPTER 2 

LOGARITHMS 

Where four or more significant figures are required, logarithms 
may be used to advantage in all computations except addition 
and subtraction. Every engineer should be proficient in their 
use; hence the following notes and definitions are given to 
refresh the memory.' 
A Logarithm is an exponent; therefore the same laws apply to 

logarithms as to exponents in general. This statement must be• 
qualified slightly, because the base must be positive and other 
than 1. 
To a person who thoroughly understand exponents, logarithms 

should be very easy to understand. Common logarithms are 
based upon the use of 10 raised to positive and negative powers. 
In Chap. 1, 10 was raised to positive and negative powers. 
This chapter goes one step further and introduces decimal 
powers. A table of logarithms is merely the systematic arrange-
ment of the value of 10 raised to decimal powers. The base of 
common logarithms is 10. 

The logarithm the power to which 
of any number = 10 must be raised to 
to the base 10 produce the number 

This may sound complicated, but it is really quite simple; for 
instance, 100 = 102. Now the logarithm of 100 to the base 10 
is 2, the, power to which 10 must be raised to produce 100. 
Consider another illustration which is more general, 

102.457882 = 287 

Certain portions of this chapter have been taken with permission from 
Dana and Willmarth, "Engineering Problems Manual," published and 
copyrighted by McGraw-Hill Book Company, Inc., New York. 

17 



18 APPLIED MATHEMATIÇS 

This equation says that the logarithm of 287 is written 

log 287 = 2.457882, 

which means that 10 must be raised to the 2.457882 power to 
produce 287; this was obtained from the logarithm tables. 

If 10 is raised to the third power, the result is 1,000. • From this 
it is seen that the logarithm of any number between 100 and 
1,000 will be a decimal number between 2 and 3. If 10 is 
raised to the first power, the answer is 10, so that log 10 = 1, and 
the logarithm of any number from 10 to 100 will be decimal 
numbers between 1 and 2. 

10° = 1; not 0, which is a common mistake. This says in 
terms of logarithms that log 1 =-. 0, so numbers between 1 and 
10 have logarithms between 0 and 1. 
The discussion so far has dealt with positive exponents of 10. 

That is, all numbers greater than 1 have positive logarithms. 
Now consider 10-1. From the theory of exponents this can be 

written 10-1 = 1/101 = 0.1. This says that log 0.1 = —1. 
Likewise, 10-2 = 1/102 = 0.01, or log 0.01 = — 2. A more 
general casç. is 10-1+•55145° = 0.356, or log 0.356 = —1.1-.551450. 
This was taken from the logarithm table. It is seen from the 
above illustrations that any number between 0.1 and 1 will have 
a logarithm of —1+. decimal. Between 0.01 and 0.1 the 
logarithm will be —2+. decimal; between 0.001 and 0.01 the 
logarithm will be —3+. decimal. 
The logarithm of a number is made up of two parts; a decimal, 

called the "mantissa," and a whole number (which may be 
positive, negative, or zero), called the "characteristic." 
The mantissa determines the sequence of digits, and is all that 

is given in logarithm tables. It is always positive. 
The characteristic determines the position of the decimal 

point. 
Consider the illustration given above, log 287 = 2.457882. 

Here 2 is the characteristic and 0.457882 is the mantissa. In 
the other illustration log 0.356 = —1 +.551450 where —1 is the 
characteristic and +.551450 is the mantissa. 
The following simple computations may serve to clear up some 

confusion regarding the meaning of logarithms and the character-
istic numbers: 
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Base Raised to Logarithm of Number 
Exponent = Number = Exponent 

(10) 3 = 1,000 log 1,000 = 3.000 
(10) 2 = 100 log 100 = 2.000 
(10)' = 10 log 10 = 1.000 
(10)° = 1 log 1 = 0.000 
(10)-' =_ 1/10' = 31.0 = 0.1 log 0.1 = —1.000 
(10)-2 = 1/102 = 

= 0.01 log 0.01 = —2.000 
(10)-3 = 1/102 = 1/1,600 

= 0.001 log 0.001 = —3.000 

A brief study of this table of logarithms shows that the decimal 
point shifts as the characteristic changes. To illustrate this, 

(10)" = (10)% = \AP = 3.1623, 

(10)" = (10)% = = 31.623, 

(10)2.5 = (10)% = NAP = 316.23, 

or log 3.1623 = 0.500 

or log 31.623 = 1.500 

or log 316.23 = 2.500 

The characteristic of numbers from 1.0 to 9.99 is 0; from 10 to 
99.99, 1; from 100 to 999.99, 2, etc. We can, therefore, make 
the following simple rule: 

RULE FOR CHARACTERISTICS 
Numbers Characteristic 

One or over  One less than the number of digits to the left of the 
decimal point 

Less than one  One greater than the number of ciphers between 
the decimal point and the left-hand digit; nega-
tive in sign 

The characteristic of a number, written in scientific notation, 
is the exponent of 10. For instance, the characteristic of the 
number 8.394 X 10° is 9. Likewise, the characteristic of the 
number 1.743 X 10-2 is —3. 

It will be noted in the above illustration that 3.1623, 31.623, 
and 316.23 all have the same mantissa of +0.500 but that the 
characteristic numbers of the logarithms of these numbers, 
according to the rule, are 0, 1, and 2, respectively. As the 
decimal point is shifted, the following result occurs: 
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Number Log 
316.23 2.500 
31.623 1.500 
3.1623 0.500 
0.31623 —1 + 0.500 
0.031623 —2 + 0.500 

Example 1. Determine the logarithm of 2,873. 
Solution. The desired portion of a logarithm table is found below.' 

N 0 1 2 3 4 5 6 7 8 9 Diff. 

286 45 4845 
6 6366 
7 7882 8033 8184 8336 8487 8638 8789 8940 9091 9242 151 

8 9392 9543 9694 9845 9995 0146 0296 0447 0597 0748 151 

9 46 0898 

The figure 287 is found in the left column under N and the figure 3 is found 
at the head of one of the columns. The mantissa of this number 2873 is 
then found across from 287 and down from 3, and is 0.458336. Always place 
a decimal point in front of the mantissa. The zero is placed to the left of the 
decimal point in front of the mantissa when there is no characteristic or 
when the characteristic is zero. The characteristic is always determined by 
inspection. From the rule for characteristics, ewe the number is greater 
than 1 the characteristic is I less than the number of digits to the left of the 
decimal point and in this case is 3. Then log 2873 = 3.458336. Ans. 

The characteristic could also have been determined by taking 
the exponent of 10 when the number was written in scientific 
notation; thus 2,873 = 2.873 X 103, where the characteristic is 3. 
By the above portion of logarithm table another point can be 

illustrated. It will be noted that the mantissa corresponding 
to 2,884 is +0.459995 and the one corresponding to the next 
number 2,885 is +0.460146. There has been a change from 
0.459999 to +0.460000 between these two numbers. Now, for. 
convenience of finding this place, there are dashes under the 
numbers across to this point, and then above the numbers on 
across. All numbers above this line must use +0.45, while all 
numbers below this line must affix +0.46. 

Multiplication by Logarithms.—From Chap. 1 it was learned 
that to multiply the same numbers raised to various powers it 
was necessary merely to add their exponents. Since common 
logarithms are exponents of the same number (in this case, of 10) 

Allen's "Six-place Tables," McGraw-Hill Book Company, Inc., New York. 
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it is necessary only to add the logarithms of the numbers to 
multiply them. To find the product after the logarithms have 
been added, it is necessary to determine the number that has a 
logarithm equal to this sum. This reverse process is called 
"taking the antilogarithm." To take an antilogarithm, first 
look up the mantissa of the logarithm in the logarithm table and 
find the number that gives it. The characteristic of the loga-
rithm merely tells where to place the decimal point. 

Example 2. Multiply 6 X 48. 
Solution. log 6 = 0.778151 mantissa from logarithm tables 

log 48 = 1.681241 characteristic by inspection 

Adding, log (6 X 48) -= 2.459392 

Look up the mantissa + 0.459392 in the logarithm table (this mantissa 
can be found in the portion of logarithm table given above). The number 
having this mantissa is 2880. Since 2 is the characteristic, point the number 
off and get 288.0. Ans. 

Logarithms are useful in multiplying large numbers, where 
accuracy to four or five places is sufficient. 

Example 3. Multiply 7,864,591 X 198,642. 
Solution. log 7,864,591 = 6.895644+ mantissa from table 

log 198,642 =  5. 297979+ with characteristic affixed 

log (7,864,591 X 198,642) = 12.193623+ 
antilog 12.193623 = 1,562,000,000,000 

= 1.562 X 10 12 Ans. 

The 'student should check all these examples to familiarize 
himself with the method of using the logarithm table. It will 
be noted in working the above problems that no interpolation 
was made. When looking up the antilogrithm, the number 
giving the nearest to the mantissa was used. 
Logarithms are useful in multiplying very small numbers, 

as illustrated in Example 4. 

Example 4. Multiply 0.000000946 X 0.00087. 
Solution. log 0.000000946 = —7+0.975891 = 3.975891 — 10 

log 0.00087 = —4 + 0.939519 =  6.939519 — 10 

log (0.000000946 X 0.00087) 
-= —11 + 1.915410 = 10.915410 — 20 

= 0.915410 — 10 
antilog (0.915410 — 10) = 8.2302 X 10-2° Ans. 

It will be noted in this example that instead of using a negative 
characteristic with the mantissa, it is more desirable to use a 
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positive characteristic with the smallest available multiple of 
( —10) placed on the right-hand side. Since the mantissa is 
always positive, it is confusing to associate with it a negative 
characteristic and then always have to remember this detail. 

If several numbers are to be multiplied, one addition of their 
logarithms is sufficient. The antilogarithm of this sum gives 
their product. 

Example 5. Multiply 0.00004871 X 6497 X 1.984. 
Solution. log 0.00004871 = 5.687618 — 10 

log 6,497 = 3.812713 
log 1.984 = 0.297542 

9.797873 — 10 
antilog (9.797873 — 10) = 0.627875 Ans. 

Raising numbers to higher powers is accomplished by multiply-
ing the logarithm of the number by the power and taking the 
antilogarithm. 

This operation would be quite a task to multiply out long-
hand, but by logarithms it is easily done as follows: 

Example 6. Find the fifth power of 638, that is, 6384. 
Solution. log 638 = 2.804821 

Multiplying by the power 5 

log 6385 = 14.024105 
antilog 14.024105 = 105,700,000,000,000 = 1.057 X 1014 Ans. 

In this example the effect is the same as that of adding the 
logarithm of 638 five times and then taking the antilogarithm to 
obtain the fifth power of the number 638. 

Division by Logarithms.—Division of numbers by logarithms 
is accomplished by subtracting the logarithm of the divisor from 
the logarithm of the dividend. The antilogarithm of this 
remainder is the quotient. 

Example 7. Divide 8,964 by 479. 
Solution. log 8,964 = 3.952502 

log 479 = 2.680336 
8,964 

Subtracting, log —479 = 1.272166 

antilog 1.272166 = 18.71+ the quotient Ans. 

The plus sign means that the quotient is greater than indi-
cated owing to not interpolating. Interpolation will be discussed 
later. 
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Example 8. Divide 0.000371 by 791. 
Solution. log 0.000371 = 6.569374 — 10 

log 791 = 2.898176 

Subtracting, log 0.000371 791 — 3.671198 — 10 

antilog (3.671198 — 10) = 4.69027 X 10-' Ans. 

Extracting the root of a number is accomplished by dividing the 
logarithm of the number by the root and taking the antilogarithm. 

Example 9. Solve NY976. 
Solution. log 976 = 2.989450 

Dividing, 3)2.989450 

log N'ffl = 0.996483 

antiiog 0.996483 = 9.919 Ans. 

After the student thoroughly understands the use of positive 
and negative exponents, logarithms become a convenient tool 
in solving many problems. Only practice is then needed to 
make the solution of these problems rapid. Logarithms can be 
used to save considerable time in multiplying and dividing large 
numbers and the use of logarithms offers the only practical way 
to raise numbers to high powers and extract roots larger than 2. 

Interpolation.—In order to increase the accuracy to more 
significant figures, beyond the values read directly from th È table, 
resort is made to interpolation. Interpolation is used in many 
types of work and should be familiar to the student. Interpo-
lation can be used with logarithm tables because the small 
difference between numbers is approximately proportional to 
the difference between their logarithms. 
A practical illustration of interpolation is to find the capacity 

of a variable capacitor when set at 53 degrees. Since the capacity 
at 50 degrees is 278 micromicrofarad and at 55 degrees is 284 
micromicrofarad, the capacity change from 50 degrees to 55 
degrees is 284 -- 278 = 6 micromicrofarad or % = 1.2 micro-
microfarad per degree change of the capacitor dial. Then the 
capacity for 3 degrees is 3.6 micromicrofarad and is added to the 
capacity 278 micromicrofarad at 50 degrees to get 281.6 micro-
microfarad, the capacity at 53 degrees. This applies only to 
straight-line variable capacity capacitors. 

Applying this principle of interpolation to logarithms, consider 
the log 78,634. The mantissa of 7863 from the logarithm table 
is 0.895588, but it is still necessary to obtain the 4 by interpo-
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lation. The figure 56 will be found as the "duff" in the right-
hand column. At the bottom of the page will be found a table 
of proportional parts and going across from the "diff" 56 in the 
left-hand column to the column headed 4. Therefore 22.4 is 
the proportional part to be added to the above mantissa giving 
log 78,634 = 4.8956104. 
Some logarithm tables do not have proportional parts, so 

in such cases it will have to be figured out each time. Consider-
ing the above illustration, 

log 78,630 = 4.895588 (from log tables) 
log 78,634 = 4.8956104 (by interpolation) 
log 78,640 = 4.895644 (from log tables) 

Here the logarithms of 30 and 40 are given in the last two 
digits of the number but it is desired to secure the logarithm of 
34 in these last two digits. The corresponding mantissas for 
30 and 40 are 0.895588 and 0.895644 respectively. The differ-
ence between 30 and 40 is 10, while the difference in the corre-
sponding mantissa is 56. This is the way to secure the number 
in the right-hand column under "diff." Corresponding to 34 
take 0.4 of 56, which is 22.4 and is the proportional part worked 
out at the bottom of the page.' The logarithm by interpolation 
is log 87,634 = 4.8956104. 
To find the antilogarithm, the above process must be reversed. 

For illustration, find the antilogarithm of 3.657488. From the 

logarithm tables, 

antilog 3.657438 -- 4,544 
antilog 3.657488 = 4,544.521 (by interpolation) 
antilog 3.657534 = 4,545 

Subtract 3.657438 from 3.657488, giving 50, the proportional 
part. The difference in this case, as noted in the right-hand 
column, is 96. Across from 96 on the next page find under 5, 
not 50 but 48, the nearest number to 50, so the answer will not be 
exact. To make it exact, take the ratio 

9506 _x IT) 
Solving for x, 

500 
x = —9-é- = 5.21 

1 See Allen's "Six-place Tables," McGraw-Hill Book Company, Inc., 
New York. 
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Now antilog 3.657488 = 4,544.521, while if the 48 from the 
table was used, the result would be 4,544.5. Ordinarily the 
accuracy of the proportional parts table is sufficient, but it can 
be seen that greater accuracy sometimes can be obtained by 
using exact proportion. 
The student with a thorough understanding of exponents 

should find that what has been presented on logarithms here is 
sufficient to enable him to handle any ordinary problem in 
logarithms. However, it may be well to illustrate by example 
how to handle the characteristic in extracting the root of small 
numbers. 

Example 10. Extract the fifth root of 0.0004466. 
Solution. log 0.0004466 = 6.649919 — 10 

Dividing by 5, log NV0.0004466 = 1.3299838 — 2 
= 9.3299838 — 10 

antilog (9.3299838 — 10) = 0.213788 Ans. 

It should be pointed out that the negative characteristic 
placed on the right-hand side (-10 in this case) should always 
be divisible by the root to be extracted. This number is usually 
made 10 for convenience in routine work. 

Example 11. Extract the fourth root of 0.0004466. 
Solution. log 0.0004466 = 0.649919 — 4 

Dividing by 4, log N4/0.0004466 = 0.1624797 — 1 
= 9.1624797 — 10 

antilog (9.1624797 — 10) = 0.145372 Ans. 

Operating the Slide Rule.—The slide rule is a graphic logarithm 
table. Many users of the instrument do not realize this and as 
a result are not able to make full use of its possibilities. 
To multiply numbers, simply add their logarithms. To do it 

graphically on the slide rule, add the distances that are marked 
off proportional to the logarithm. To divide, subtract distance 
corresponding to the dividend. The resulting distance corre-
sponds to the quotient. 
The accuracy of a slide rule depends upon the precision with 

which it is made. A longer slide rule will give better accuracy 
than a short one, but the accuracy does not increase in direct 
proportion to the length of the scale. Common 10-inch slide 
rules will give an accuracy to three significant figures, and on 
the lower end of the scale it is possible to estimate to the fourth 
digit. 
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C and D Scales.—These are the most commonly used scales on 
the slide rule. An inspection of these scales shows that they 
start with 1 at the, left end, known as "the initial index," and 
are marked off with consecutive numbers to 10 at the other end, 
which is marked with 1 and is the "right-hand, or final, index." 
This is a complete graphic logarithm table giving the mantissa 
which determines the sequence of digits in the number. The 
decimal point is determined by the characteristic, just as was 
explained earlier in this chapter. Usually it can be readily 
determined by inspection. 
Rule for Multiplication on the Slide Rule.-1. Lay off the 

mantissa of the first number on scale D by setting the initial 
index of scale *C over the graduation corresponding to the first 
number. 

2. The mantissa of the second number is now added by shifting 
the runner so that its initial index comes over the graduation cor-
responding to the second number on scale C. 

3. The mantissa of the product is the sum of the two distances 
and the answer is read on scale D under the hairline of the runner. 

Example 12. Multiply 2 X 4 on the slide rule. 
Solution. The answer 8 is indicated in Fig. 3 by following the above steps. 

Rule for Division on the Slide Rule.-1. Lay off the mantissa 
of the numerator (dividend) on 
the fixed D scale by- setting the 
hairline of the runner on its value. 

2. The mantissa of the denomi-
nator (divisor) is subtracted by 
moving the slider so that the value 
of the divisor is under the hairline 
too. 

3. The mantissa of the quotient is the difference and is found 
opposite the initial index of scale C on scale D. 

Example 13. Divide 8 by 4 on the slide rule. 
Solution. Figure 3 also illustrates this problem, which is the reverse of 

the multiplication. The answer 2 is obtained by following the above steps. 

Square Root Rule.—If the characteristic of the number is 0 
or an even number, then the square root is found under the left 
portion of scale A on scale D. Divide the characteristic by 2 
and place the decimal point in the square root according to the 

multi-
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result. If the number was originally written in scientific 
notation, then the exponent of 10 is divided by 2 and the answer 
is still in scientific notation. 

Example 14. Find the square root of 97,969. 
Solution. Since the characteristic 4 of this number is even, place the 

hairline over 97,969 to the left of the center on scale A and read 313 the 
answer on scale D. The characteristic of the answer is 2, just half that of the 
original number. Actually only the first three digits of the original number 
can be read on scale A of the slide rule. 

If the characteristic of the number is an odd number, then 
the square root is found under the right-hand portion of the A 
scale on the D scale. Subtract 1 from the characteristic of the 
number and divide by 2 to find the characteristic of the root. 

Example 15. Find the square root of 1.56816 X 106. 
Solution. Below 1.56816 on the right-hand side of scale A find the answer 

3.96 X 107. The characteristic 2 was found by subtracting 1 from 5 and 
dividing by 2. 

Square Rule.—When the hairline is to the left of the middle 
of the A and B scales (roots less than 3.1623), the square of the 
number on the D scale is found on the A scale. The character-
istic of the squared number is twice that of the original number. 
If the original number is written in scientific notation, then the 
answer will also be in scientific notation. 

Example 16. Square 240. 
Solution. Above 240 on scale D read the answer 57,600 on scale A. The 

characteristic doubled since the answer was on the left-hand side. 

When the hairline is to the right of the middle on scale A and 
B, the characteristic is found by multiplying the characteristic 
of the original number by 2 and adding 1. Again, if the original 
number was in scientific notation, then the answer will also be 
in scientific notation. 

Example 17. Square 6.2 X 107. 

Solution. Above 6.2 on scale D read the answer 3.844 X 107 on scale A. 
The characteristic 7 was obtained by multiplying 3 by 2 and adding 1. 

The student must use the slide rule at every opportunity if 
he wishes to become familiar with its operation and feel confidence 
in its results. 
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Folded Scales.—Sometimes when two numbers are being 
multiplied the second number appears beyond the right-hand 
index of scale D. Rather than sliding the other index of scale C - 
over the first number and reading the answer at the other end, 
merely read opposite the second number on the CF scale the 
answer on the DF scale. For instance 2 X 6 permits the use of 
the folded scale to get 12 on scale DF opposite 6 on scale CF. 
This could have been obtained by placing the other index of 
scale C over 2 on scale D and reading the answer 12 on scale 
D opposite 6 on scale C. 

It will be of interest to note that the CF and DF scales are 
folded at ir, which is 3.1416. This permits the index to fall 
about the center of the rule and in addition permits rapid 
calculations which involve ir.. For instance, a circle has a 
diameter of 6 inches. What is its circumference? Set the 
hairline over 6 on scale D and read the answer (67r = 18.85) 
under the hairline on scale DF. In other words it is not necessary 
to use the slider. 

Inverted Scales.—Labor may be saved in many problems 
through the use of reciprocals. A problem of division may be 
converted into a problem of multiplication by using the recipro-
cal of the denominator. (Note: The reciprocal of a number is a 
fraction with 1 over the number.) Thé CI and CIF scales, 
which are usually printed in red, are reciprocal scales. 

Reciprocal Rule.—When moving a number from the numerator 
to the denominator of a fraction, or vice versa, write the recipro-
cal of the number in the position and change the sign of the 
characteristic of the number. When the initial index of the 
inverted scale (the CI to the right of the final index of D scale, 
and the CIF to the left of the DF index) projects, subtract 1 
from the characteristic of the number causing the index to project. 

Example 18. Multiply 6 X 4 X 3. 
Solution. Divide 6 on scale D by 4 on scale CI (which causes multiplica-

tion), then slide hairline to 3 on scale C and read the answer 72 on scale D. 
Since the initial index on the right-hand end of the CI scale is to the right 
of the final index on scale D, 1 must be added to the characteristic. 

The student can get along without these inverted scales but if 
he is interested in short cuts he can read the instruction book 
with the slide rule for further information. 
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A and B Scales.—The A and B- scales consist of two complete 
logarithm scales, each half as long as scale D. Since the values of 
the logarithm increase twice as fast on scale A as on scale D, 
the means of securing square roots and square powers is pro-
vided. Opposite a number on scale D the square is found on 
scale A. Conversely, a number on scale A will have its square 
root opposite it on the D scale. 

K Scale.—The K scale consists of three complete logarithm 
scales, each one third as long as scale D. The K scale gives cubes 
and cube roots in the same manner as scale A gives squares and 
square roots. 

L Scale.—This scale is a complete logarithm table. To take 
the logarithm of a number, place the hairline of the slider over 
the number on scale D and read the mantissa under the hairline 
on scale L. 

The following facts are important to keep in mind when using 
a slide rule: 

1. The slide rule is a graphic logarithn\table. 
2. The mantissa only is determined from any logarithm table, 

including the slide rule which is a graphic one. 
3. The mateissa determines only the sequence of digits. 
4. Characteristics are not given in any logarithm tables. 
5. The characteristic is determined by inspection. It is the 

exponent of 10 when the number is written in scientific notation. 
6. The characteristic determines the decimal point. 
When multiplying very large or very small numbers on the 

slide rule, it is convenient to use 10 to some power and place the 
decimal point after the first digit. 

Example 19. Multiply 0.00000027 X 96000. 
Rewrite 2.7 X 10-7 X 9.6 X 104 
Rewrite and multiply 2.7 X 9.6 X 10-8 = 25.92 X 10-7 Ans. 

This makes it easy to keep track of the decimal point by 
inspection when scientific notation is employed. 
Decimal Point and the Slide Rule.—The last example illus-

trates how the decimal point can be easily found by inspection. 
A definite procedure will now be given for keeping track of the 
decimal point when using the slide rule. 
When using numerical logarithms the characteristic is added 

to the mantissa, but when using the slide rule this cannot be 
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done. However, keeping track of the characteristic is the eaâest• 
way of determining the decimal point when using a slide rule. 
When multiplying by means of numerical logarithms the sum 

of the mantissas is often more than 1.0 and so 1 must be carried 
over into the column of the characteristics. If this same problem 
is solved with a slide rule, it is found that there is an exact 
parallel between the numerical and graphic methods. The 
distances representing the mantissas will add to one full scale 
length or more. This corresponds to carrying 1 into the char-
acteristic column; hence a note should be made each time this 

occurs. 
There is a simple, quickly applied, and absolutely accurate 

rule for decimal points based upon the foregoing facts. This 
Method completely does away with the need of longhand check-

The Initial Index 

iI 2 
I 1,1'1,1,1,1 
3 4 5 6 7 8 9 1 

C  a I 1 e I I I 
" 1 , 1 .1 ,1 

2 3 I 4 5 6 7 

144 36 
FIG. 4.—Slide-rule scale showing the initial index projecting. 

ing, mental shifting of the decimal point, approximate cal-
culation, or any other so-called "system" not based upon 
logarithms. 
The Initial Index.—In the following rules for location of the 

decimal point, reference is made to "the initial index." There 
are many indexes on a rule; those at the beginning end of any 
scale are initial indexes, and those at the far end are final indexes. 
There is one initial index, however, which is so important that 
it is the initial index. When using the C and D scales, the initial 
index is the left end of the C scale for all operations. The gradu-
ations begin at the initial index and have increasing values as 
the final index is approached. 
When the slide is in the position shown in Fig. 4, it is said that 

the initial index projects and a change must be made in the charac-
teristic. The initial index never projects unless such a change 
should be made. 

Rules for Locating the Decimal Point When Using the C and 
D Scales.-1. Note the position of the initial index as soon as 
each new term in the problem has been set on the rule 
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2. If the initial index projects, add 1 to the logarithmic 
characteristic of the term which caused the index to project. 
Thus, for multiplication, add 1 to the logarithmic characteristic 
of the multiplier which caused the index to project. The 
characteristic of the answer is the algebraic sum of the character-
istics of the terms plus the "added characteristics." For 
division, add 1 to the logarithmic characteristic of the divisor 
which caused the index to project. The characteristic of the 
answer is the algebraic difference of the characteristics of • the 
divisor and dividend. 

3. When the initial index does not project, make no changes in 
the characteristics. 

4. For continued operations, note the position of the initial 
index as soon as each new term is set on the rule, and record 
any necessary addition to the characteristics at once. 

Sequence of Operations.—While becoming familiar with this 
method, the beginner should form the habit of going through the 
following steps in his slide-rule work: 

1. Set the work up in a suitable form for a slide-rule compu-
tation. (See examples below.) 

2. Indicate the logarithmic characteristic of each term some-
where close by. (Just above the multipliers and below the 
divisors is convenient.) 

3. Note the position of the initial index as soon as each new 
factor is set on the rule. 

4. Record the "added characteristic" if the initial index 
projects. 

5. Determine the characteristic of the answer. 

Multiplication. 

Example 20. Multiply 36 by 0.0004. 
1. Set the work up in a suitable form. 
2. Indicate the logarithmic characteristic above each multiplier. 

+1 
+1 —4 +1 — 4 + 1 = —2 
(36)(0.0004) = 0.0144 = 1.44 X 10-2 Ans. 

3. Referring to Fig. 4, it is seen that the initial index projects. 
4. Hence 1 must be added to the characteristics. 
5. Adding the characteristics gives 1 — 4 ± 1 = —2 as the charac-

teristic of the answer. The answer is now pointed off according to this 
characteristic. 
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Division. 

Example 21. Divide 0.512 by 800. 
1. Set the work up in a suitable form. • 
2. Indicate the logarithmic characteristic above the dividend and below 

the divisor. 

—1 
0.512 —1 — 3 = —4 

0.00064 = 6.4 X 10-4 Ans. 
800 
+2 
+1 

3. The initial index projects. 
4. Hence 1 must be added to the characteristic of the divisor giving 

2 + 1 = 3. 
5. The characteristics of the divisor are subtracted from the characteristics 

of the dividend giving —1 — 3 = —4 as the characteristic of the quotient. 
The answer is now pointed off according to this characteristic. 

Multiplication and Division. 
—4 +3 

Example 22. solve (0.0003X1440) — 7.2 X 10-2 Ans 

o 
6 .0 

+1 

Place the characteristics above the respective numbers of the numerator 
and below the respective numbers of the denominator. Place the hairline 
over 3 on the D scale for the first number of the numerator. Slide the 
C scale until 6 is under the hairline to make the division. Since the initial 
index projects, add +1 below the 0 of the denominator. Next slide the 
hairline over 144 on the C scale. Since this cannot be done, the initial index 
is moved to the same point on the D scale that the final index was located. 
Now the hairline can be placed over 144 on the C scale. The initial index 
does not project, so no characteristic is added. The answer is now found on 
the D scale under the hairline and is 72. The characteristic of this answer is 
obtained by adding those of the numerator and subtracting those of the 

denominator, thus 

(-4 + 3) — (0 + 1) = ( —1) — (+1) = —2 

The answer is then 0.072 or 7.2 x 10-2 
As another example, let us solve 

+1 
+2 —4 —3 
(256)(0.0008)(0.0012)  
(0.0048)(3200)(96) 
—3 +3 +1 
+1 +1 

Place the characteristics above the respective numbers of the numerator 
and denominator. In this example place the hairline over 256 on the D 

= 1.666 X 10-7 Ans. 
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scale and slide 48 of the C scale under the hairline to divide. The initial 
index projects;. hence +1 must be added below the -3. Now slide the 
hairline to 8 on the C scale which is for the next number in the numerator. 
The initial index projects, so add +1 above -4. Next slide the C scale 
until 32 is under the hairline. This is for the next number in the denom-
inator. Since the initial index does not project, no characteristic is added. 
Now slide the hairline to 12 on the C scale for the next number in the numer-
ator. The initial index does not project, so no characteristic is added. 
Move the C scale until 96, the next number of the denominator, is under the 
hairline. The initial index projects, so add +1 to the 1 below 96. The 
final index of the C scale is over the answer on the D scale and is 1666. 
The characteristic is obtained by adding those of the numerator and sub-
tracting those of the denominator, thus 

(2 - 4 + 1 - 3) - ( -3 1 + 3 + 1 + 1) 

The answer is then 

0.0000001666 or 1.666 X 10-7 Ans. 

The following problems \ are given to be worked on the slide 
rule, the accuracy of the answer then to be checked by the use of 
a logarithm table. 

Multiply: 

1. 296 X 265 9. 462 X 0.00091 
2. 197 X 334 10. 17,900 X 264,000 
3. 486 X 361 11. 0.49000 X 0.00017 
4. 87.6 X 7.12 12. 0.00042 X 0.0000084 
5. 1.91 X 0.629 13. 897,000 X 0.000063 
6. 0.0534 X 0.00617 14. 11,100 X 99.9 
7. 967 X 0.000316 15. 191.00 X 919,0® 
8. 41,900 X 264,000 16: 0.00000013 X 798 

In each of the above problems, divide the first number by the second 
number. Then extract the square mot of the second number. Then 
square the first number. See answers on page 317. 

Suggestions in the Use and Care of the Slide Rule.-1. Do 
not memorize special "trick" settings. They are of value only in 
routine work where the same type of computation is used many 
times. 

2. Use fixed scales to read answers. The slide is used only for 
adding or subtracting logarithms. Acquire the correct method 
and stick to it. 

3. For continued operations, involving multiplication and 
division, take a zigzag path through the problem. Divide the 
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first number in the numerator by the first term in the denomi-
nator, then multiply by the second term in the numerator and 
divide by the second term in the denominator. This will save 
several settings and lessen chances to error. 

4. Avoid longhand checking, as confidence cannot be gained in 
this way. If there are several numbers, take them in a different 
order as a check. 

5. Keep your slide rule clean and away from dampness. Wipe 
off the face with a damp cloth occasionally, but never use 
alcohol or strong soap, as either of these may remove the markings. 

6. Keep scales and runner properly adjusted as accurate results 
depend on this. 

Exercises 

1. 961 x 378 11. 
2. 14.7 X 7.917 12. -11. 

3. 0.00049 X 7,411 13. V0.0001392 

4. 9,376 X 1,375 X 0.0006134 14. -‘3/0.0027965 

5. 8,761 ÷ 1,942 15. ./0.00039 X 6972 
1,918,000 16. 8,9673. 

6. 
0.0002834 

0.0002978 17. 4922 X 7893 
1,162 

962 X 6,443 •N/763 8. 18. 
248 4,9674 

0.00092 X 7,134 19. R10.0067] 3 
9. 345 X 0.71 476 

. [ 0.0034 1' 
10. -0T(,ei 20 0.0004962 



CHAPTER 3 

ALGEBRA 

We must study the fundamentals of algebra if we are to get 
anywhere with radio and communication principles. This 
review of algebra will consider only the fundamental principles 
met in everyday engineering work. Nearly all radio engineering 
involves algebra in some form. Enough of the subject will be 
treated here to enable the student to handle circuit theory and 
vacuum tube operation. The work presented will be as simple as 
ordinary arithmetic and should not baffle any student desiring 
to take the subject. 

In this book algebra will be used to show derivations of useful 
radio equations. By this means, the student should be better 
prepared to use such equations than if he were simply given 
them to memorize. Equations can often be rearranged and 
solved for a desired term. 

In arithmetic figures are used in equations, while in algebra 
letters are used in order to express more general conditions. 

For, instance, in algebra we can write Ohm's law by the 
expression 

E = IR (I) 

By simple algebra this same law can be written in the fractional 
equations 

E 
= 

E 
R = 

In some problems one expression will be more desirable than 
the others. 
When studying tuned circuits, we deal algebraically with 

XL = Xe, where XL is the inductive reactance and X c is the 
capacitive reactance. The following equation is true for 
resonance no matter what the numerical values happen to be. 
It is 

35 
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f - 2r \FCC 
(4) 

This is the familiar equation used to determine the frequency of 
resonance. If we know the inductance L and the capacity C, 
we can determine f, the frequency at which the circuit will freely 
oscillate. 
Equations.—We have so far cited several equations, which are 

merely expressions of equality between two quantities. This 
equality is denoted by (=), the sign of equality. In Ohm's law 
E = IR states that the voltage E has the same numerical value 
as the current multiplied by the resistance. An equation is an 
expression having the same value on both sides of the sign of equality. 
If this is not true, we do not have an equation but an inequality. 
The value of one side of an equation may be changed or varied if the 
other side is changed the same amount. Such quantities are called 
"variables." In this case we are changing the numerical value 
on both sides but maintaining equality; hence, we still have an 
equation. We can apply multiplication, division, addition, or 
subtraction to one side of the equation if we do the same thing 
to the other side. 

Illustration of Addition. 

Given 
Then 

x + y = z 
1+x+y=l+z 

If x = 4, y = 3, and z = 7, the above equations read respec-
tively, "Each side is equal to 7, or (4 ± 3 = 7)," and, "Each 
side is equal to 8 or (1 + 4 + 3 = 1 + 7)." 

Illustration of Subtraction. 

Given x y — 3 = z — 3 
Substituting values 4 + 3 — 3 = 7 — 3 
Each side is equal to 4. 

Illustration of Multiplication. 

Given 2(x + y) = (z)2 
Substituting values, 2(4 -I- 3) = 7 X 2 
Each side is equal to 14. 
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Illustration of Division. 

Given 

Substituting values, 

Each side is equal to 1. 

We see from these illustrations that if an operation is performed 
on one side, it must also be performed on the other, or the 
equality of the equation will be destroyed.. 

Equations usually can be written in several forms and still 
maintain equality. This often permits us to simplify a compli-
cated expression. Before going farther we must learn how to 
write algebraic expressions properly. 
Addition.—We may add like terms if we prefix the common 

term with the number of terms added. 

Illustrations. 
x x = 2x 

ab + ab + ab = 3ab 
n n 
711. + n 2 —m = m— 

(a — b) + (a — b) + (a — b) = 3(a — b) 

When no number is prefixed it is understood to be 1 of that 
quantity; thus, P means 1P. 

Unlike terms must be written out, thus 

x -F y + z 

x y _ z 
7 7 

4 + 3 7 
7 — 

and cannot be simplified. 
Subtraction.—We may subtract like terms if we prefix the 

common term to the remainder obtained. 

Illustrations. 
4a — a = 3a 

9xy — 7xy = 2xy 
• 
m 8m 7m 
—n — -71-1  n 

In the last illustration we have to subtract 8 from 1 which 

leaves —7. 
Unlike terms cannot be handled this way. They must be 

written out; thus, 4x — y cannot be simplified. However, the 
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expression can be rearranged, giving — y + 4x, without changing 
its value. 

Positive and negative number rules, as already given, will 
always hold true in algebra. What is called " algebraic addition" 
takes into account all signs and may in some cases actually 
involve subtraction. 
As an illustration, the impedance of a circuit can be expressed 

D.= R2 + X2 (5) 

where R is the resistance, X is the reactance, and Z is the imped-
ance. Extracting the square root of both sides, we get 

z .= .VR2 ± x2 (6) 

In this form we can solve for the impedance, while in the 
original equation we had to deal with the square of the impedance. 

If this circuit contained inductive reactance, XL, and capaci-
tive reactance Xe, this expression can be written 

z = vR2 (XL _ Ife)2 (7) 

In this case the capacitive reactance must be subtracted 
from the inductive reactance and then the quantity squared 
before being added to the square of the resistance to obtain the 
square of the impedance. 
We see that the algebraic language in the above equation is 

very clear and simple in comparison with the expression of the 
relationship in a sentence. The exact and simple statement of 
relationships is one of the main objectives in mathematics. 

Multiplication.—We may multiply like terms by raising the 
like term to the power corresponding to the number of terms 
multiplied. 

Illustrations. 
NXNXN=N3 

ab X ab = (ab) 2 

We may indicate the multiplication of unlike terms by simply 
writing the terms to be multiplied in succession with no sign 
between terms. 

Illustrations.—To multiply /, the current, by R, the resistance, 
to obtain the voltage, E, we write 

E = IR 
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As another illustration, for resonance, 

XL = Xc 

but XL = cuL, where w is the angular velocity in radians per 
second and L is the inductance in henrys, and Xc = 1/c0C where 
C is the capacity in farads. Since things equal to the same thing 
are equal to each other, we can write 

1 
wL = 

coC 

or, multiplying both sides of the equation by w, we get 

Now, if we multiply both sides by 1/L, we get 

1 2 - 

- Lc 
but w=2rf 

so (Id) 2 = 

1 
Multiplying through by (2702 we get 

1 

• 

e (2ar) 2le 

Now, if we take the square root of both sides, we have 

1  
f - 

2ir N/LC 

which is the familiar equation to determine the resonant fre-
quency of a circuit. 

In this development we have had several occasions to multiply 
unlike terms such as co X L, written simply caL. Several times 
we have multiplied both sides of the equation by the same thing 
so the equation must still hold true. Then in the last step we 
took the square root of both sides to get the answer in a familiar 
form. 
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Let us now apply the above rules to some more problems. As, 
an illustration, 

2adc X 3abc = 6a2bdc2 

Here we note that the numerical coefficients 2 and 3 are 
multiplied to get. 6. Then we have a X a = a2 and c X c = e2. 
The d and b must appear in the answer because they are unlike 
terms, and hence the multiplication can only be indicated. 

This same type of reasoning is applied to the following illus-
tration: 

(4x2e)(5xyz) = 20xxxyyyyzz 
= 20x 4z2 

It will be noted that the theory of exponents comes into play 
here; that is, when like terms are multiplied their exponents are 
added. 

pair of parentheses indicates one quantity. If we should 
have (4a2b)3 it weld mean that every unlike term in the quantity 
must be raised to the third power, thus getting 

43(a2)3b2 = 64a6b2 

An exponent foil—owing a letter refers to that letter only. 
For example, xy2 means that only the y is raised to the second 
power. If we want the x also raised to second power we must 
write x2y2 or (xy) 2, which are the same and mean xxyy. 
So far we have dealt with single terms. We must learn how 

to deal with quantities with more than one term. 

Illustrations. 
abc (single term) 
a — be . (two terms) 
a + b — c • (three terms) 

This illustration shows that several terms in a quantity are 
grouped together by plus and minus signs. One quantity 
multiplied by another quantity, as (a -F b) multiplied by c, can 
be expressed e(a b) and if multiplied out gives ca cb. 
This shows that each term in the quantity must be multiplied 
individually. To multiply more complicated quantities where 
the answer is not so evident, the following method is suggested: 
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a ± b 
c multiplier 

ac bc answer 

As another illustration, 

c(ab + cd — e2) = abc ± c2d — ce2 

To show this ab + cd — e2 

abc ± c2d — ce2 

• 

After the multiplication has been performed there are still 
three terms, but the parentheses have been removed, and the 
multiplication by c has been indicated in each term. 

Careful attention must be given to the signs when multiplying. 
The following rules are, therefore, important to keep in mind. 

1. Multiplication of terms with like signs gives a plus product. 
2. Terms with unlike signs give a minus product. 

Illustrations. 

z(x + y) = Zr yz 
—z(x + y) = —Zr — yz 

z(x — y) = Zr — yz 
—z(x — y) = —xz yz 

The application of these rules can be extended to expressions 
having more than• one term, as illustrated by the following: 

(x + y)(x + y) = x2 ± 2xy + y2 

To show this x + y 
x + y  

(x + y) multiplied by x x2 + xy 
(x ± y) multiplied by y  + xy + y2  

Adding x2 -I- 2xy ± y2 total product 

(x y)(x — y) = x2" — y2 

To show this x y 
x — y  

(x ± y) multiplied by x x2 ± xy 
(x + y) multiplied by —y  — xy — y2  

Adding . x2 - y2 total product 
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To show this 

(x — y) multiplied by x 
(x — y) multiplied by — 

Adding 

(x — y)(x — y) = x' — 2xy y' 
x — y 
x — y  

x 2 x y 

x y + y2 

X 2 - 2xy y' total product 

•(a — c)(d f) = ad — cd af — cf 

To show this a — c 
• d f  

(a — c) multiplied by d ad — cd 
(a — c) multiplied by f  af — cf  

Adding ad — cd ± af — cf total product 

In the first three examples common terms were placed in the 
same column and added, but in the last example there were no 
common terms, so the complete expression had to be written out. 

Particular care must be taken to keep the signs of the individual 
terms correct. If the student follows this procedure, very little 
trouble should be experienced, because each step in itself is 
very simple. - 

Division.—To reverse the above process, the law of exponents 
is readily applied. 

Illustrations. 

-û = C ° = 1 

C 4 CCCC ry2 

2 = CC = 

abc2 abcc 
• = — = ac 

bc be 

(by cancellation) 

(by cancellation) 

The first illustration is an important one to remember. As 
mentioned in the previous lessons, any quantity raised to the 
zero power gives 1. In the second example the two C's in 
the denominator canceled the two C's in the numerator, giving 
1 to be multiplied by C', but to simplify, the 1 is dropped in the 
answer and it is understood that the coefficient of C' is 1. The 
1 is used only when there are no other factors in the product. 
The division of unlike terms must be indicated because they 

cannot be further simplified. 
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Illustrations. 
X 1 E 
Ti 472Lc 

As in multiplication, if a quantity is to be divided by a term, 
each term in that quantity must be divided by that term. As 
an illustration, 

x2 + xy + x3z= ± y ± x2z 

In this illustration the division could actually be performed, 
but when there are unlike terms the division must be indicated. 
To illustrate, 

ab + ccl = b + —ccl 
a a 

The second term in the numerator did not contain a, so 
the division was indicated. 

Reciprocals.—Reciprocals are very convenient in problems 
involving fractions. As shown before, the reciprocal of 10 is 

= 0.1. 
Extending this principle, we get illustrations like the following: 

. 1 . 1 1. 1 
The reciprocal of y -; that of ho — = 10' of - —1/x = x fo x  
Instead of dividing by a number, multiply by its reciprocal. 

To illustrate, 

1. 

2. 

3. 

= 1 y - = yx 
1 1 x  

1-00 I  = I (—) = 0.011 100 
xy zy  _ (xy + zy)(x + z) 
y/(x z) 

= (x + z)(x + 
= x2 ± 2xz z2 

Removal of Parentheses.—A single pair of parentheses can 
always be removed from an algebraic expression. In case the 
sign before it is plus, no change is necessary; but if a minus is 
before it, the sign of all the terms within it must be changed. 
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Illustrations. 
a + (b — cd) = a + b — cd 

a— (—b+cd) = a+b— cd 

It will be noted that rio signs were changed in the first illus-
tration, but because of the negative sign in the second illustration 
before the parentheses, the signs between them had to be changed 
when they were removed. 

Factoring.—Already, in division, some factoring in effect has 
been done. For example, we wish to remove x from within the 
following parenthesis without changing the value of the quantity. 

(ax b2x2 _ axy) 

Since x appears in each term, we can divide each term by 
x; thus 

ax 
a 

is the way the first term is handled. Applying this to each term, 
we have 

ax + b2xx — 
x 

Y = a + b2x — cy 

Since x is now divided out, 

ax + b2x2 — cxy a + b2x — cy 

This unequal sign, 0 , means that one side is not equal to the 
other side. To make it equal we must multiply the right-hand 
side by x, thus 

ax + b2x2 — cxy = x(a + b2x — cy) 

From multiplication we see that if x is multiplied by the 
quantities in the parenthesis, the left-hand side of the equation 
is obtained. So, factoring is really the reverse of multiplication. 
It is usually done to obtain a desired result which will be illus-
trated later. 

Substituting Terms.—Terms may be substituted in an equation 
provided each term substituted has the same value as the term 
it replaces. To illustrate, the formula for the velocity of light is 
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1  
Now in the equation, f — we can substitute for/and 

21r.N/LC 
have 

Complex expressions are often simplified by substitution 
when several operations are to be performed, thus saving the 
labor of writing the whole expression out each time. The 
impedance of an alternating current circuit can be expressed 

Z = ± (2irfL —  1  2 
2irfC) 

This can be simplified by making the following substitutions: 

XL = '27rfL 
and 

1 
Xe — 

2/rfC 
which give 

Z = N/R2 ± (XL — X0)2 
Now if we let X = XL — Xe we can simplify still further and 
have 

Z =- -VR2 -I- X2 

In this case we assume XL larger than Xc. If XL were smaller 
than X0, the value of X would be negative, but X multiplied by 
itself, X2, would be positive. This means that the assumption is 
not necessary to get the correct answer. 

Solving Equations.—All the necessary theory has now been 
covered to solve equations. Summarizing, these rules are 

1. The same quantity can be added to both sides of an 
equation, without destroying the equality of the equation. 

2. The same quantity can be subtracted from both sides of an 
equation, without destroying the equality of the equation. 

3. A teijm can be transposed from one side of an equation to the 
other, if the sign is changed, without destroying the equality of 
the equation. (This is a result of Rules 1 and 2.) 

4. If all the signs in an equation are changed, the equality of 
the equation will not be destroyed. 
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5. Both sides of an equation can be multiplied by the same 
quantity without destroying the equality of the equation. 

6. The same quantity can be divided into both sides of an 
equation, without destroying the equality of the equation. In 
other words, terms can be canceled. 

7. Both sides of an equation can be raised to the same power 
without destroying the equality of the equation. 

8. The reciprocal of one side of an equation is equal to the 
reciprocal of the other side. 

9. Both sides of an equation can have the same root extracted, 
without destroying the equality of the equation. 

10. Terms in an equation can be replaced by terms that are 
equal in value. 
To solve or evaluate an equation we use the above rules in 

order that the term for which we are solving can be placed on only 
one side of the equation. With all other terms of known value on 
the opposite side, we have a solution and thus know the value of 
the unknown quantity in terms of known quantities. The usual 
practice is to arrange unknown terms on the left-hand side of 
the equation and all known terms on the right-hand side. 

For example, E = IR is an expression of Ohm's law. If 
/ = 8 and R = 6, we can replace / and R by the values they 
equal and then solve for the unknown value of E, thus 

E = (8)(6) = 48 

Sometimes an algebraic equation is indeterminate; that is, it 
cannot be solved as explained above. To illustrate, 

/XL = 
where L = 30. 

f = 60. 
1r --= 6.28. 
XL = 11,300. 

Substituting 11,3001 = (6.28)(60)(30)/ 
11,3001 = 11,3001 

/ = / 
1 = 1 

on 
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Illustrations of the Use of Above Ten Rules. 

Given 
add 

x — y =-. z 
+ y = + y (Rules 1 and 3) 

X = z y 

To make this perfectly clear, let x = 10, y = 8, and z = 2. 
Then, substituting, 

10 — 8 = 2 
or 10 = 2 + 8 

Now, use Rule 2 and subtract x from each side of the equation. 

Given x — y = z 
Subtract +x =+x 
giving —y z — x 
Substituting, —8 .= 2 — 10 

This is seen to be true. 
Changing all signs, 

or 
y= —z -F x 
8 = —2 -I- 10 

(Rule 4) 

This also is true. 
Even though the value of both sides of the equation is changed 

in each of these cases, the equality is not destroyed. 
For an example in multiplication and division we have the 

general form of Ohm's law, 

E 
= 

It is desired to solve for the voltage E. Multiply both sides 
by Z, giving 

E 
I Z = 7 (Z) (Rule 5) 

EzZ  On the right-hand side, (Z) = = E 

But we want E on the left-hand side so we turn the equation 
around and have 

E = IZ (the solution) 
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Now let us solve this equation f or Z. Dividing both sides by 
/ gives 

By canceling /, 

As above, turning the equation around gives 

E 
Z 

(Rule 6) 

(the solution) 

As another illustration, the Q of a circuit is given by the equation 

27rfL 
= R 

If we know the figure of merit Q, the frequency f, and the resist-
ance R, we can solve for the inductance L as follows: 

27fL 
Q = R 

Multiplying both sides by R removes the denominator on the 
right-hand side, thus 

RQ = 2,7rfL 

Dividing both sides by 27f transfers the 27f from the right side of 
the equation to the left. Thus 

2arf — 

Then, by turning the equation around, 

RQ 
L = (the solution) 

27f 

Suppose we wish to find the plate resistance (Rn) in a vacuum 
tube from the following equation: 

A   
R R2, 

Clearing of fractions, by multiplying both sides by the denomi-
nator on the right side, gives 
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Removing the parentheses and multiplying each term inside 
them by A, we get 

AR ± = ihR 

Subtracting AR frém both sides, 

AR,, = — AR 

Dividing both sides by A, 

—A AR 

This is the required solution for R,,. 
The procedure of removing the denominator and clearing of 

fractions, shown above, is one of the most useful in solving 
equations. When any equation with fractions is to be solved 
they should be removed by this means. 
The last step is also important, for the desired term is often 

multiplied by other known factors. In such cases dividing both 
sides of the equation by this known term will leave the unknown 
alone on the left-hand side and give the desired answer. 

Solve the above equation for R. 

A _  
R R,, 

Clearing of fractions, 

(R = 1.tit 

Removing the parentheses, 

AR + = IÁR 

Subtracting AR from both sides, 

AR?, = — AR 

Factoring the right-hand side by dividing through by R and 
multiplying by R, 

AR?, — R(ee Aitl) - R(.t — A) 
.8 

Turning the equation around to get R on the left-hand side, 
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Dividing both sides by (it — A), 

A, R - R  
- A 

Solving for R was slightly more complicated but each step in 
itself was quite simple. The student should write out each step 
when solving problems until the procedure is thoroughly under-
stood. If the steps are written out in detail, mistakes will be 
less likely to occur. 
In an alternating current circuit, 

i 
E  

— VR2 + X2 
To solve this equation for X, proceed as follows: 

Clearing of fractions and turning the equation around, 

E = I N/ R2 + X2 
Dividing by I, 

E = -VR2 + X2 

Squaring both sides (Rule 7) and turning the equation around, 

R2 -I- X2 = 

Transposing R2 (subtracting R2 from both sides), 
E2 

X2 = - - R2 12 
Reducing to a common denominator, 

E2 R212 E2  
X2 = - - - /2 /2 /2 

R2I2 

Extracting the square root of both sides (Rule 8), 

x = \ IE2 - R212 VE2 - R2I2 N/E2 - R2I2 
or X 

Nfri 

The student should become familiar with these proçesses and 
be able to prove such problems. To prove this problem, take 
the answer and solve for I. 
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X --VE2 - R2/2 

Clearing of fractions, 

/X = -VE2 - R2/2 
Squaring both sides to remove the radical, 

Transposing /2R2, 

Factoring /2, 

I2X2 = E2 - R2I2 

PX2 I2R2 = E2 

/2(X2 + R2) = E2 
Dividing by (X2 + R2), 

/2 -  E2  X2 + R2 
Extracting the square root of both sides by rule 9, 

NÍR2 ± x-2 — .vR2 ± x-2 .vR2 x-2 

Which is the original equation and indicates that the solution is 
correct. 
Another help is to substitute known values in the equation 

and prove the answer is correct for a particular case. If it is 
true for a particular case, it will likely hold in the general solution. 
Thus, let E = 100 volts, R = 8 ohms resistance, and X = 6 
ohms reactance. 
Then 

E2  _ E I - 

/ - E  100 100 100 
—  — = 10 amp yR2 X2 .V82 62 v64 36 10  

Substituting these values in the answer and solving for X give 

X 
.i/E2 _ /2R2 = .y1002 _ (10à 2 = 2(8, ) -00,000 — 6,400 

= " " I 10 10 
-V3 600 60 =  ' = - = 6 ohms reactance 

10 10 

This checks the value given above. 
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In case the student may not know when to square or when to 
extract a square root, it may be helpful to 'remember that 
X = 2 so if X2 is given, extract the square root to get 
X and if V.—X is given, square the quantity to get X. Of course 
rules 7 and 8 must be remembered when performing these 
operations on equations. Both sides of the equation must be 
treated alike. 

In the equation, 
= lc° 

we know that 
1 

X/ = 27rfL and X. — zric 

Therefore, by substituting as pointed out in rule 10, we can write 

1 
2efL — 27,fc 

Exercises 

1. x + y = a — b. Find y, b. 
2. ax + by — ez = R. Find b, z. 
3. RST XY — JQ. Find S, Q. 

4. -12 -= ab. Find z, y. 

x + y 
5. — a + bz. Find x, b. 

6. = az + e. Find y, a. 
— y 

7. X  +  — PQ. Find M, Y. 
M — N 

8. 0-1-P _R —S Find 7,, a  
X T 

a  T2  R — SP 
T  Find T, P. 

10. xy2 z N/a ± b. Find a, y. 

11. I = E R + ix Find R. 

4. 1 1 , 1 
-r Find C, CI. 

a2n2  
13. L — 9a + 10b Find a, n. 

N  
14. e = Find t. 

t X 108 

15. W = 70-g-7/2Rt • Find /. 
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16. F 2rr 1-1- Find r. 

17. T = 2T NU. Find H. 

18. K —  Find Le. 
Níreer; 

1.9. Re = R.(1 ± at). Find t. 

20. X = 1884 -VTLUi. Find C. 



CHAPTER 4 

GEOMETRY 

This lesson will be concerned with the study of the right 
triangle. Conventional geometry as given in high school is not 
touched upon in this lesson. All the student need remember 
from high-school geometry is how to find the hypotenuse of a 
right triangle if the two legs are given. 

In studying electrical engineering, it is often desirable to add 
voltages and currents that are not alvkays in phase. These 
voltages and currents can be represented by means of vectors 
and added by means of geometric addition. 

Arithmetic addition concerns itself with adding positive num-
bers only. Graphically, this means that only numbers from the 
origin out along a positive axis can be considered. This permits 
the addition of vectors in only one direction. 

Algebraic addition concerns itself with adding both positive 
and negative numbers. Graphically, this means that all num-
bers on a straight line through the origin can be handled. This 
number system is twice as large as that of arithmetic addition. 
This permits the addition of vectors acting in the same direction 
or in exact opposition. 

Geometric addition concerns itself with adding vectors in a 
plane and hence has generalized algebraic addition much as 
algebraic addition has generalized arithmetic addition. 
A vector is a quantity which has both magnitude and direction. 

Quantities such as dimensions, weight, and temperature have 
magnitude only. Quantities with magnitude only are called 
"scalar quantities." Quantities such as displacement, velocity, 
force, voltage, current, and impedance have direction in addition 
to magnitude. These quantities are called "vector quantities"; 
they are represented by directed lines called "vectors." The 
length of the line represents the magnitude, and the line is 
drawn in the direction of the vector. An arrow on the end of 
the line indicates its sense. 

54 
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Arithmetic Addition.—Let us consider a force vector A = 6 
pounds, and another force vector B = 8 pounds, acting in the 
same direction on point 0 (the origin), as illustrated in Fig. 5. 

O A=6 ' B=8 

AB =14 
FIG. 5.—Arithmetic addition of vectors. 

In this case arithmetic, algebraic, and geometric addition are 
the same. The point 0 is acted on by the total force, 

A B = 6 + 8 = 14 pounds Ans. 

Example 1. An automobile going east is stuck in the mud. A tractor 
coupled to the front of the automobile exerts a pull of 400 lb. If the car is 
able to exert an aiding force of 300 lb., what is the total force, acting in an 
easterly direction moving it out of the mud? 

Solution. Let A = 400 lb., the tractor force. 
B = 300 lb., the auto force. 
C = A + B = 400 + 300 = 700 lb. Ans. 

Algebraic Addition.—Now let the force A act in the opposite 
direction as shown in Fig. 6. The resultant force is in the direc-
tion of vector B. That is, A + B = -6 + 8 = 2 pounds. Ans. 

A=-6 O B=8 

A-E= 2 
FIG. 6.—Algebraic addition of vectors. 

"a. 

Since A in this case is a negative quantity, arithmetic addition 
does not apply in this case, but algebraic and geometric addition 
do apply. 

Example 2. If the tractor is connected to the back of the auto in Exam-
ple 1, determine the total force acting on the auto in a westerly direction. 

Solution. C = A B = —400 + 300 = —100 lb. Ans. 

Geometric Addition.—Now let the force A = 6 act at right 
angles to the force B = 8 as shown in Fig. 7. 1 

Since vectors A and B are not in the same straight line, neither 
arithmetic nor algebraic addition applies, so we must rely upon 
geometric addition in this case. Our common sense tells us that 
with these forces acting on the point 0 it will tend to move in the 
direction of both forces A and B and the resulting movement 

1 The complete expression for a vector will be given later, see p. 80. 
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will be in a direction somewhere between vectors A and B. 
If vectors A and B were of the same magnitude, the resulting 
movement would take place halfway between the two vectors, 
but since vector B is greater than A the movement will be in a 
direction nearer to the direction of vector B than in the direction 
of vector A. 

o 
FIG. 7.—Geometric addition of vectors. 

Geometric sum of 
+B 

A 

Fro. 8.—Geometric addition of vectors 
by completing the rectangle. 

The geometric sum of vectors A and B is obtained by com-
pleting the parallelogram (rectangle, in this case) and drawing 
the diagonal from the origin 0 to the opposite corner. This 
diagonal of the parallelogram is in the correct direction and has 
the correct length to represent the geometric sum of vectors 
A and B. Figure 8 illustrates this geometric addition. The 
geometric sum of A + B is the hypotenuse of a right triangle 
made up of vèctors B and A as the two sides shown in Fig. 9. 

Resultant =hypotenuse = 
Geometric sum of A+B 

o 
A= altitude-. side 

B= base= side 

FIG. 9.—Geometric addition of vectors by using the right triangle. 

Figure 8 gives the same result as Fig. 9, but Fig. 9 gives the 
true vector triangle for addition geometrically. Vector A can 
be moved from its position in Fig. 8 to its position in Fig. 9 
without altering its magnitude or direction and therefore is the 

same vector. 
The hypotenuse of a right triangle is equal to the square root 

of the sum of the squares of the other two sides. 
If C is the hypotenuse with A and B the two sides, then 

C = .VA 2 ± B2 (1) 

Applying this basic principle of geometric addition to the above 
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illustration we find that the magnitude of the resultant in terms 
of the magnitude of the sides is' 

Resultant = viAi2 igi2 = .v82 ± 82 .= V36 64 

N/100 = 10 Ans. 

Then the total force acting on the point 0 is 10 pounds and 
will be in the direction of the resultant vector A B as shown 
in Fig. 9. Note: "A ±B" in this case means geometric addition 
and is equal to 10 instead of 14, the algebraic sum of the magni-
tude of A = 6 and B = 8. 
The hypotenuse of a right triangle must always be longer than 

either of the other two sides. It is always the side opposite the 
right angle (90 degrees) in the triangle. 

Example 3. If the tractor is connected to the side of the automobile of 
Example 1 and pulls due north, determine the magnitude of the force acting 
on the automobile in a northeasterly direction. 

Solution. 
ICI = 'OAP + IBI2 = N/4002 ± 3002  
= N/160,000 + 90,000 = V250,000 
= 500 lb. Ans,. 

Parallelogram Law.—This law is the fundamental principle on 
which it is possible to determine the effect of a group of vectors 

no. 10.—Semicircular protractor. 

(forces). The law states that the resultant of two vectors (forces) 
which act at any angle upon a rigid body, or point, is represented in 
magnitude and direction by the diagonal of a parallelogram, the 

1 The vertical bars placed on both sides of A and B are used to denote 
magnitude only of the quantity between them. 
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sides of which represent the magnitude and direction of the two 
vectors (forces). The diagonal representing the resultant starts 
from the corner where the two vectors start and extends to the 
opposite corner. The parallelogram is constructed by drawing 
lines through the end of each vector parallel to the other vector. 
Usually dotted lines are employed. The end of the resultant 
will then be at the point where the dotted lines intersect. The 
angle of the resultant can be determined by means of a pro-
tractor as shown in Fig. 10. 

Example 

B=7.07 

4. The magnitude 

.R — 10 

of vectors A and B is 7.07 and the angle 
between them is 90 degrees as shown in 
Fig. 11. Determine the direction and 
magnitude of the resultant. 

Solution. First, always draw a vector 
diagram, to scale, of the given relations, 
in this case vectors A and B. 

Second, complete the parallelogram by 
A=7.07 means of dotted lines as shown in Fig. 11. 

Third, draw the resultant vector, R, 
from the intersection of the two vectors 
to the intersection of the two dotted 

lines. This is the desired diagonal of the parallelogram. 
Fourth, calculate the magnitude of the resultant, thus 

Fro. 11.—Geometric addition of 
vectors by completing the square. 

In this case, 
IR1 = -VIA12 + IR12 

IRI = V(7.07)2 ± (7.07)2 

= V50 ± 50 

= V1.970 = 10 Ans. 

Fifth, measure the angle of the resultant, which in this case is 45°. Ans. 

The above example is of special importance. 
forces act at right angles to each 
other the resulting movement is 
halfway between them, that is, 45 
degrees from either force. 
For a general case, let us consider 

vector A and vector B with an 
angle of O degrees between A and B 
as shown in Fig. 12. 
From the parallelogram law, the resultant vector R in Fig. 12 

is the geometric sum of vectors A + B. But A and B cannot 

When two equal 

0 10° 

A 

••• 

FIG. 12.—Geometric addition 
of vectors by completing the 
parallelogram. 
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be added as in the above example, since they are not at right 
angles. Such problems can always• be worked graphically but, 
since it is seldom convenient to do so, the necessary mathematics 
will be given to handle them analytically. Since geometric 
addition depends upon right triangles, this problem must be 
broken up into right triangles. 

Resolution of a Vector.—So far it has been shown that two 
vectors can be added to get the resultant vector. The reverse 
of this process—namely, the resolution of a vector—is also of 
great importance. taking a horizontal line, called the x-axis, 
and cutting it at right angles by a vertical bisector, called the 
y-axis, gives us a basis on which to work to resolve the vectors 
into other vectors at right angles to each other. In Fig. 12 
the vector A is drawn acting on the point 
0, called the origin, where the y-axis 
intersects the x-axis. Dotted perpen-
dicular lines are drawn from the extreme  A x X 

end of vector A to the two axes. The 
dotted lines that are perpendicular to 
one axis are parallel to the other. The 
dotted perpendicular to the x-axis in 
Fig. 13 marks off the vector A x on this FIG. 13.—Resolution of 
axis and the dotted perpendicular to the vector A into its x and y 

y-axis marks off At, on this axis. It can components. 
be seen that A. and A„, being at right angles, can be added geo-
metrically to obtain the diagonal vector A which is the resultant 
of their sum. That is, the magnitude of' 

iAi = / + (2) 
These vector forces A. and At, are known as the "vertical" 

or "y-component" and "horizontal" or "x-component" of A. 
The vector A can then be replaced by vectors Ax and Ay acting 
at right angles to each other.2 

Similarly, vector B of Fig. 12 can be drawn from the origin 
0 as shown in Fig. 14 and be resolved into its components B. 

The components A. and A v are also vectors; hence, by rights, they 
..hould be expressed as magnitudes IA xi and !Ail in this equation. For the 
sake of simplicity, however, and where it will not cause confusion, these 
components which have their direction specified by the subscript will be 
written without vertical bars to designate magnitude. 
2 The subscripts are used here to designate the direction of the vectors. 
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along the horizontal or x-axis and By along the vertical or y-axis. 
Now we have in place of B its components B. and B„ which are at 
right angles and can be handled in geometric addition. In this 
case, the magnitude of vector B is 

IBI = (3) 

To solve the general case as illustrated in Fig. 12 we can corn-
bine the results of Fig. 13 and Fig. 14. 
We add algebraically the vertical or 
y-axis component § to get the total y-

By x component and the horizontal or x-axis 
O B, components to get the total x-compo-

FIG. 14.—Resolution of nent. The geometric sum of the total 
vector B into its x and y y-component and the total x-component 
components. gives the same resultant as was ob-

tained by using the parallelogram law graphically. That is, the 
magnitude of the resultant 

IRI = (A. ± B.)2 -I- (24,, B„)2 (4) 

The combinéd results of Fig. 13 and Fig. 14 are shown in 
Fig. 15. It should be noted that these components must be 

Fro. 15.—Geometric addition of the A and B components to determine the 
resultant vector R. 

added algebraically. For instance, in Fig. 15, A„ must be actually 
subtracted arithmetically from By to obtain their algebraic sum, 
A„ + By because 21„ is a negative number. Distances measured 
to the right of the origin 0 on the x-axis are positive and those 
measured to the left are negative. Distances measured up fróm 
the origin 0 on the y-axis are positive while those measured down 
are negative. The resultant vector R forms the hypotenuse of a 
right triangle with sides of length Az + B. and A„ B„. 
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By using the x-axis and y-axis as a framework or reference 
system, it is possible to determine accurately not only the 
magnitude of the resultant but also its direction. The direction 
is usually expressed in degrees measured from the positive 
x-axis in a counterclockwise direction. Figure 16 plainly 
illustrates four examples. 

Y 

X 

Y 

(a) (b) (e) (d) 
16.—Vectors in the first, second, third, and fourth quadrants. 

Since the resultant of two vectors can be added to another 
vector geometrically, it is possible to add any number of vectors 
geometrically by the above scheme. Let us consider vectors 
A, B, and C, as shown in Fig. 17. Resolving these vectors into 
their respective components gives A, A5, B, B„, C, and C,„ 
along the two axes. A. and C„ 
are the only negative components, 
and hence they must be subtract-
ed from the others when added 
algebraically. The horizontal 
components along the x-axis give A 1 
A. + Br -F C. and the vertical 
components along the y-axis give 
A„ By C„. In writing the 
algebraic expression all signs are 
positive but, as in this example, 
when numerical values are substituted some of these terms (A r 
and Cy) will be negative. The geometric sum of vectors A, B, 
and C is given by the resultant magnitude of vector R, thus 

+ B. + C.) 2 + (Ay + Bv Cy)2 (5) 

This scheme can be extended to add geometrically any number 
of vectors. We must remember that each vector must be resolved 
into its two components along the x-axis and the ji-axis. Vectors 
along the axis in the same direction are added arithmetically 
and those in the opposite direction are subtracted. To illustrate, 

FIG. 17.—Geometric addition of 
three vectors. 
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if the magnitude of A. = 6, B. = —8, C. = 4, and D. = —1 are 
the components of A, B, C, and D along the x-axis, the algebraic 
sum gives the magnitude 

A. B. + C. + D. = 6 — 8 -F 4 — 1 = 1 

These vectors are shown in Fg. 18. 

Y 

B. D, C, A, 

)')t >  

FIG. 18.—Algebraic addition of four vector components along the x-axis. 

In order to classify the directions of vectors acting on a point 
the circle is divided into four quadrants as shown in Fig. 19. 
This is easier than stating the angle in degrees between the 
vector and the base line (positive x-axis). The first quadrant 
extends from 0 to 90 degrees, between the positive y-axis and 
the positive x-axis. The second quadrant extends from 90 to 
180 degrees between the positive y-axis and the negative x-axis. 
The third quadrant extends from 180 to 270 degrees between the 

Y o 

Second Quadrant First Quadrant 

1800 0° X 
360° 

Third Quadrant Fourth Quadrant 

2700 

X 

19.—The four quadrants of a circle. 

negative x-axis and the negative y-axis. The fourth quadrant 
extends from 270 to 360 degrees between the negative y-axis 
and the positive x-axis. The 360 degree line coincides with the 
0 degree line or the positive x-axis; the 90 degree line coincides 
with the positive y-axis; the 180 degree line coincides with the 
negative x-axis and the 270 degree line coincides with the negative 
y-axis. 

In Fig. 16, diagram a illustrates a vector in the first quadrant, 
diagram b illustrates a vector in the second quadrant, diagram 
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c illustrates a vector in the third quadrant, and diagram d 
illustrates a vector in the fourth quadrant. 

Example 5. Vectors A, B, and C have the following components: 

A. = 10, A.„ = 26, B. = —20, B,,, = —20, C. = 6, Cv = —3. 

Determine: 
1. The components of the resultant vector R. 
2. The quadrant of each vector. 
3. The magnitude of each vector. (four-place accuracy) 
Solution. 
1.R,xAx+Bx+Cx 

.= 10 — 20 -I- 6 = —4 
R,, = Ai, •+ By + C. 
= 26 — 20 — 3 = 3 

2. A is in the first quadrant. 
B is in the third quadrant. 
C is in the fourth quadrant. 
R is in the second quadrant. 

3. IAI -- VA! +Az = Vur + 262 -- 27.86 
IBI = B:  = (-20)2 ± (-20)2 = 28.28 
ICI = "s,/C1 C:,  = N/62 ( —3)2 = 6.04 

IRI = R: R12, = / (- 4)2 + 32 = 5 

Summary.—The resultant of a group• of vectors (forces, 
voltages, impedances, etc.) is obtained by the following procedure: 

First, draw a diagram showing the vectors to be added geo-
metrically, drawn from a common point 0, the origin. This 
diagram should represent the magnitude of these vectors to a 
convenient scale and the actual _direction with their angle 
designated. 

Second, draw perpendiculars from the extreme end of each 
vector to the x-axis and the y-axis. Mark these components 
with the vector subscribed with x or y as the case may be. 

Third, "add algebraically the x-components together and the 
y-components together. 

Fourth, determine the magnitude of the resultant by 

1R/ = ,‘/( algebraic sum algebraic sum \ 2 

\of x-components)2 ( of y-components/ 

If one component of a vector is known the other component 
can be easily determined, for if the magnitude 

IAl = VA! + A: then = VIA12 At2/ and 
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The reader should go through this development. However, if 
the vector and its angle are given, the problem must be worked 
out graphically with a rule and protractor by means of the 
parallelogram law. Simple trigonometry is valuable to work 
this type of problem, for by means of it the x- and y-components 
are readily obtained. This type of problem will be treated in 
the next chapter. 

Exercises 

1. Right triangles. 
a. Altitude -- 40. b. Altitude = 5. 

Base -- 30. Base = 8.66. 
Find the hypotenuse. Find the hypotenuse. 
c. Altitude = 5. d. Altitude -- 18. 

Hypotenuse = 7.07. Hypotenuse = 30. 
Find the base. Find the base. 

e. Base = 1.3. f. Base = 678. 
Hypotenuse = 1.7. Hypotenuse = 843. 
Find the altitude. Find the altitude. 

2. In each of the following examples, find the resultant vector and state 
in which quadrant it lies. The directions of the vectors are along the x and y 
axes as shown in Fig. 20. The magnitude of the vectors, if drawn to scale 
such as 10 to 1, 20 to 1, 100 to 1, etc., on a large sheet of paper, will help 
you to understand the problem clearly and solve it correctly. 

a. Al = 6, IBI = 10. 
CI = 14, IDI = 11. 

b. A = 49, IBI = 99. 
C -- 391, IDI = 441. A< >B X 

c. A =- 7.0, = 3.4. 0 
C = 9.9, IDI = 16.3. 

d. A = 900, IBI = 750. 
C = 1,325, DI = 475. 

e. A = 0.2, IB = 0.6. 
C = 0.1, ID = 0.45. Fm. 20.—Direction of vec-

tors in exercise problem 2. 

3. In each of the following problems draw a vector diagram (not neces-
sarily to scale) showing the various vectors, their component magnitudes 
along the x- and y-axis, and the resultant: 

a. IA = 100, A. = 86.6, = 100, B. = 70.7 (vectors A and B in 
the first quadrant). 

b. IA = 60, A,, = 30, IBI = 80, B. = 60 (vectors A and B in the 
second quadrant). 

c. IAI = 1.2, A. = 1.2, IBI = 3.2, By = 1.6 (vector A in first quadrant, 
vector B in fourth). 

d. lAi = 8, A. = 6, IBI = 3, B,, = 2 (vector .A in second quadrant 
vector B in fourth). 

Y 

D 
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e. IAI 340, A, = 100, IBI = 180, B. = 80 (vector A in third quad-
rant, vector B in first). 

f. IAI = 400, A. = 150, IBI = 500, B. = 250, ICI 300, C. = 200 
(vector A in first quadrant, vector B in second, and vector C in 

third). 
Note: All the x- and y-components are expressed as positive numbers in 

the problems above. The actual sign is to be determined by the student 
from a knowledge of the quadrant in which the vector lies. 



CHAPTER 5 

TRIGONOMETRY 

In the last chapter we learned how to resolve a vector or force 
into its horizontal component along the x-axis and its vertical 
component along the y-axis. After this operation had been 
performed to each vector to be added, the algebraic sum of the 
x-components gave a resultant x-component and the algebraic 
sum of the y-components gave a resultant y-component. The 
hypotenuse of the triangle formed by the resultant x-component 
and the resultant y-component is called the geometric or vector 
sum of all the vectors or forces added. But this gives us no 
information concerning the value of the angles in this triangle. 
We also mentioned in the last chapter a problem that had an 
angle given, but we could not solve it with the tools we then had. 

Trigonometry is the tool that deals with the angles of a right 
triangle and their relationship to the sides of the triangle. If we 
have one angle and one side of a right triangle given, we can 
determine the other two sides and angle by using simple trigo-
nometry. We can now appreciate the value of this new tool and 
how by its use we can solve practical vector problems involving 
forces, impedances, voltages, currents, etc. 

Trigonometric Functions.—Trigonometry deals with what are 
known as "trigonometric functions" of the angle. Such a 
function is a ratio between two sides of the right triangle. 

In Fig. 21, a line is drawn through the point 0 at an angle a 
(alpha) with the horizontal line the x-axis. At some point 
R1 on this line drop a perpendicular to X1 on the x-axis. This 
perpendicular of course, cuts the x-axis at right angles, and we 

have the right triangle with sides a, b, and c. In this right 
triangle it is possible to make three different ratios of the sides, 
that is, a/b, c/b, and c/a. 
Now, let us take some other point R2 on this line and drop 

another perpendicular to X2 on the x-axis. In this case we have 
formed another right triangle with sides A., B, and C. It is 

66 
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also possible in this triangle to form the different ratios of the 
sides, that is, AIB, C/B, and C/A. 
We could continue to drop more perpendiculars from this line 

to the x-axis, forming more triangles, but the results would not 
be different, so we will consider the two right triangles abc and 
ABC. If we compare these ratios it will be found that a/b is 
the same as A/B, that c/b is the same as C/B, and that c/a is the 
same as C/A. Referring to Fig. 21, we find that both sides A 
and B are straight lines. Therefore, a proportion exists such 
that if a point is moved a unit distance along the side B it moves 
to the right a proportional amount, which if extended by a 
perpendicular to the x-axis, cuts off the proportional distances 
on the x-axis. Similarly, the movement of this point a unit 
distance along the side B raises the point a proportional distance 

R2 

a X1 A X 2 

Fro. 21.—Relationship between similar triangles. 

which in the above example was measured by c and C. The 
important thing to see, however, is that when these ratios are 
equal, regardless of the size of the right triangle, the correspond-
ing angles of the two triangles are also equal. The triangles are 
said to be "similar" triangles. 

If we are given a voltage Vi and the ratio between it and 
another voltage V2, it is easy to find the other voltage. For 
instance, if Vi = 10 volts and we know that y2 is five times as 
large as Vi, then V2 = 50 volts. Mathematically, we say 

,. V2 50 
nauo Vi— = — = 

10 

Now if we have the ratio of a to b equal to one third and know 
that b is 27, then a must be 9. Since the ratios of the sides of a 
right triangle remain fixed for a given angle, we can find the other 
sides of this triangle if we know the various ratios and one side. 

If we have any two straight lines intersecting to make some 
angle a, it is always possible to drop a perpendicular from a point 
on one line to the other and the result will then be a right triangle. 
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In this right triangle we have the hypotenuse (the longest side, 
which is always opposite the right angle) ; the adjacent side (the 
side next to the angle in question); and the opposite side (the side 
opposite the angle in question). In Fig. 21, the hypotenuse of 
triangle abc is b, the adjacent side is a and the opposite side is c. 
In triangle ABC the hypotenuse is B, the adjacent side is A and 
the opposite side is C. 

Since the ratios hold the same for a given angle regardless of 
the length of the three sides, we can always form this angle by 

using a protractor to determine 
the correct angle between two 
. intersecting straight lines. Now, 

Hypotenuse Opposite 
B=10 Side drop a perpendicular from a point 

C-= 6 on one of the lines to the other 
line to complete the right tri-
angle. The three sides of the 
triangle can then be measured 
and the ratios worked out from 

0.8 
10 these measurements. This will 
6 0 6 result in the following ratios: . 
10 adjacent side to hypotenuse, oppo-

Adjacent Side 
4= 8 

A adjacent side 
Ratio B hypotenuse 

Ratio 
C opposite side 
B hypotenuse 

C opposite side 6 
Ratio . . — — 0.75 site side to hypotenuse, and 

A adjacent aide 8 
Pm. 22.—Names of the sides of a opposite side to adjacent side. 

right triangle with respect to the acute Knowing the angle and ratios, we 
angle a. 

can determine the length GI the 
other sides if the length of one side is given. This can be applied 
to any other triangle having the same angle and, provided one side 
is known, the other sides can be determined. Figure 22 represents 
the relations discussed in this paragraph. 
Now, if we have another triangle with the same angle a and 

the adjacent side equal to 40, the other two sides can be deter-
mined from the above ratios. 

This problem is shown in Fig. 23. From the above problem 
we know that the ratio A / B = 0.8 where A = 40. Solving, we 
get B = 50, the length of the hypotenuse. From the ratio 
C/A = 0.75 we can solve for C and get C = 30, the length of the 
opposite side. To prove this we can take the other ratio 

C/B = 30/50 = 0.6 

which checks with the ratio obtained above for this case. 
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This type of problem can always be worked graphically by 
using a rule and protractor as outlined above. For that matter, 
a table of these ratios could be made in this manner for all 
angles from 0 to 90 degrees, but there is no need of this, since 

they have been computed very 
accurately and compiled in mathe-
matical tables called "natural trigo-
nometric functions of angles" or 
natural sines, cosines, and tangents. 
When speaking about the trigo-

nometric functions of an angle, we 
are talking in terms of right tri-
angles as discussed above, but it is 
not always necessary to draw in the perpendicular to form the 
opposite side. 

Definitions of Trigonometric Functions.—In order to simplify 
expressions we define the ratios by giving them names, as follows: 

Cosine = 

Sine = 

Tangent = 

The reciprocal 
follows: 

A= 40 
Adjacent 
Side 

Hypotenuse 
23.—The names of the 

respective sides of a right triangle 
are not altered by its position. 

Opposite 
Side 

(ratio of adjacent ) adjacent side 
\side to hypotenuse = hypotenuse 

(ratio of opposite _ opposite side 
side to hypotenuse — hypotenuse 

(ratio of opposite _ opposite side 
\side to adjacent side) — adjacent side 

of these ratios gives three other functions, as 

Secant = 

Cosecant = 

Cotangent = 

(ratio of hypotenuse) _  hypotenuse  
to adjacent side adjacent side 

(ratio of hypotenuse) _ hypotenuse  
\to opposite side — opposite side 

(ratio of adjacent \ _ adjacent side 
\side to opposite side) opposite side 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

These last three functions can always be replaced by the first 
• three, and since they are used very seldom they will not be 
treated here. However, they can be found in tables and used 
just like the other functions in problems. Instead of writing out 
the whole word for these functions they are usually abbreviated 
as follows: 
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Sine = sin 
Cosine = cos 

Tangent = tan 

Cosecant = csc 
Secant = sec 

Cotangent = cot 

Value of Function as the Angle Varies.—The above relation-
ships can be associated with the radius of a circle as it moves 
around the circle making a varying angle with a fixed line called 
the " base line" or "positive x-axis," as shown in Fig. 24. 
The hypotenuse of the triangle in any event is the radius of 

the circle and is always the same length. As it rotates from its 
position oa on the x-axis to the position oe on the y-axis, the 
angle it makes with the x-axis varies from 0 to 90 degrees. 

FIG. 24.—Value of tr.gonometric functions vary as the hypotenuse of a triangle 
traces the arc of a circle. 

In the position oa, the hypotenuse coincides with the adjacent 
side and is equal to it, while the opposite side is zero. In this case 
the ratio of the adjacent side to the hypotenuse is 1 (cos 0° = 1), 
and the ratio of the opposite side to the hypotenuse is zero 
(sin 0°= 0), and the ratio of the opposite to the adjacent side is 
also zero (tan 0° = 0). Note: Zero divided by any number is 
zero. 

In the position ce, the hypotenuse coincides with the opposite 
side and is of the same length, the length of the adjacent side 
being zero. Then the ratio of the opposite side to the hypotenuse 
is 1 (sin 90° = 1), the ratio of the adjacent side to the hypotenuse 
is zero (cos 90° = 0), and the ratio of the opposite side to the 
adjacent side is infinity (tan 90° = co). Note: Any number 
divided by zero gives infinity, which is larger than any number, 
much as zero is smaller than any number. Zero and infinity are 
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really not numbers and hence must not be handled as numbers in 
mathematical operations. 

If the hypotenuse (radius) is made of unit length, the ratio of 
the adjacent side to the hypotenuse is equal to the length of the 
adjacent side and the ratio of the opposite side to the hypotenuse 
is equal to the length of the opposite side. 

Referring to Fig. 24, we can see that the adjacent side decreases 
from oa, which is 1, to os when the hypotenuse is in the position 
ob. As the hypotenuse takes on the positions oc, od, and lastly oe 
the adjacent side decreases from no to mo and then finally becomes 
of zero length. This means that the cosine of the angle varies 
from unity for 0 degrees to zero for 90 degrees, decreasing as the 
angle increases. 
The opposite side is of zero length when the hypotenuse is in 

position oa and increases to be when the hypotenuse takes on the 
position ob. As the hypotenuse takes on the positions oc, od, 
and finally oe, the opposite side increases in length from en to 
dm and lastly is of unit length oe. This shows that the sine 
of the angle varies from zero at 0 degrees to unity at 90 degrees, 
increasing as the angle increases. 

Consider the ratio of the opposite side to the adjacent side as 
the angle varies from 0 to 90 degrees. This ratio varies from 0 
when the hypotenuse is in position oa to 00 (infinity) when the 
hypotenuse is in position oe. When the hypotenuse makes an 
angle of 45 degrees with the x-axis this ratio is unity, so the 
tangent of the angle varies from zero to unity in the first 45 
degrees and from unity to infinity in the next 45 degrees. The 
tangent of the angle increases as the angle increases. 

It is of interest to note that the sine and cosine, opposite and 
adjacent sides in Fig. 24, never grow larger than the hypotenuse, 
which is 1, but the tangent, which is the ratio of the opposite 
side to the adjacent side, or sine to cosine, has both terms in the 
ratio varying. The opposite side grows larger while the adjacent 
side grow smaller. The result is that the tangent grows larger 
rather slowly up to 45 degrees but then grows larger rapidly as 
the angle increases to 90 degrees. In the case of the sine and 
cosine, only one term in the ratio varied. 
The student should now inspect a table of trigonometric 

functions (a brief table is at the back of this book). These 
functions may be listed as natural sines and cosines in one table 
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and natural tangents and cotangents in the other table. The 
investigation of these tables should verify the above discussion. 
When the student is in doubt about trigonometric functions it 

will often help to draw a figure of a quadrant, as in Fig. 24. 
Other aids are given on page 304. 

In trigonometric tables, angles up to 90 degrees only are 
given. That is one reason for dividing the circle into four 90-
degree quadrants. In case an angle between 90 and 180 degrees 
is given, the trigonometric function of that angle is equal to 
180 degrees minus the angle in question. Then this angle will 
be between 0 and 90 degrees. The rule is to measure the angle 
to the nearest base line—that is, to the x-axis. For an angle lying 
in the third quadrant subtract 180 degrees and then look this 
angle up in the tables. In the fourth quadrant, subtract the 
angle from 360 degrees, which will again give angles between 
0 and 90 degrees. This shows that tables from 0 to 90 degrees 
are sufficient to handle any angle one may meet in practice. 
As shown before, the trigonometric functions are expressed in 

terms of ratios. Each function can be expressed in three differ-
ent ways by changing the equation. Using the abbreviations 

hyp = hypotenuse sin = sine of angle 
adj = adjacent side cos = cosine of angle 
opp = opposite side tan = tangent of angle 

we can now write 

sin = opp (7) 
hyp 

hyp = °P. P (8) 

opp = sslinn hyp (9) 

adj 
cos = (10) 

hyp 
hyp = adj (11) 

cos 
adj = cos hyp (12) 

opp 
tan = (13) 

adj 

oPP adj = (14) 
tan 

opp = adj tan (15). 
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The above equations are valuable when solving for unknown 
sides or angles in a right triangle. If any two sides of a right 
triangle are given the angles can be found by using one of the 
above equations and then looking in a table of trigonometric 
functions for the angle. 

Example 1. In Fig. 25 iffe have given 
adjacent side a = 8 
hypotenuse c = 10 

Find 
_opposite side b 
angle a (alpha) 
angle p (beta) 

Solution. By Eq. (10), 

adj a 8 
cos a - _ - — = u.o 

hyp c 10 

Adjacent side 
for 13 

Opposite side 
for st 

Irypotenuse for both 
angles a and e 

a Adjacent side for 
Opposite side forl3 

Fm. 25.—The names of the sides of a right triangle in terms of either acute angle. 

Looking in a six-place trigonometric table, we find that the cosine of 
36°52' (36 degrees 52 minutes) gives 0.800034, which is close enough for 
practical purposes. Hence 

a 36°52' Ans. 

The opposite side b can now be found by means of Eq. (9) or (15) given 
above. Using Eq. (9), 

opposite side b = sin « hyp 
= (0.6)(10) 
= 6 Ans. 

By application of Eq. (15), 

opposite side b = tan a adj 
= (0.75)(8.0) 
= 6 Ans. 

(tari a was found for 36°52' in the tables) 

Angle 13 can be found by using Eq. (7), (10), or (13), but it must be 
remembered that when using angle 13 the adjacent side is b and the opposite 
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side is a. Using Eq. (7), 

sin/3 = 131). •— 8 — 0.8 
hyp 71) — 

Then, from the table, 
= 53°08' (nearly) Ans. 

Note: This must be read up from the bottom of the page. 
The minutes are given on the right-hand side instead of the 
left-hand side when the angles at the top are used. (See Allen's 
"Six-place Tables.") 

It will be noted that cos « = 0.8 and sin fi = 0.8. This is due 
to the fact that the sum of the interior angles of a triangle is 180 
degrees. Since we are using right triangles, one of these angles 
equals 90° and hence the sum of the other two angles equals 
180° — 90° = 90°. This says that a ± p = 90°, so if « = 36°52', 
fl = 90° — « = 90° — 36°52' = 53°08'. Since the sum of a and 
fi is 90° they are called "complementary angles." That is, if 
one angle increases a certain amount the other angle must 
decrease the same amount and vice versa. 

If one side and an angle of a right triangle are given it is 
possible to find the value of the other sides and angles by means 
of trigonometry. 

Example 2. In Fig. 25, let b = 20 and = 30°. Find a, c, and 13. 

Solution. 

Angle 19 = 90° — « = 90° — 30° = 60° Ans. 

By Eq. (11) and the use of the trigonometric tables, 

= —h _ adj = b 
cos cos s 

20 20 
cos 60° — 0.5 — 40 Ans. 

By Eq. (15), 

a = opp = adj tan = 20 tan 13 = (20)(1.732) 
= (20)(1.732) = 34.64 Ans. 

The work can easily be checked by using other equations such as Eq. (12), 
as follows: 

Substituting, 

/ 
adj = hyp cos « 

34.64 = (40)(cos 30°) 
= (40)(0.866) 
= 34.64 Check. 
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Applying this knowledge of trigonometry, we are able to work 
the problems mentioned in the preceding chapter. In other 
words, if we have a vector or force with magnitude and direction 
given, it is a simple matter to find its components along the 
x-axis and the y-axis. This type of problem will be handled in 
the next chapter on vector addition. 

Inverse Trigonómetric Functions.—In logarithms we used the 
antilogarithm, which is the number corresponding to a certain 
logarithm. In trigonometry it is advantageous to use similar 
expressions. The angle corresponding to a given ratio can be 
expressed in three ways, as follows: 

tan-1 0.5 = 26°34' 
sin-1 0.5 = 30° 
cos-1 0.5 = 60° 

These equations can be rewritten in the familiar form as follows: 

tan 26°34' = 0.5 
sin 30° = 0.5 
cos 60° = 0.5 

The student should not confuse the above forms tan-1, sin-1, 
and cos-1 with negative exponents—they are merely abbrevi-
ations to simplify the mathématics. 

Logarithms of Trigonometric Functions.—Also, the student 
should not confuse logarithmic sin, cos, tan, and cot with the 
natural functions. This table (such as found in Allen's "Six-
place Tables") of logarithmic trigonometric functions is merely 
a table of logarithms of ratios for use in problems when dealing 
with logarithms and will not be referred to in this book unless 
so specified. 

Exercises 

In each of the following problems, construct the triangle, showing values 
of all the sides and angles. In solving them, use the equations on page 72 
and the fact that the sum of the angles of a triangle equals 180°. 

1. Hypotenuse = 60, angle = 40°. 
2. Opposite side = 35, angle = 25°. 
8. Adjacent side •=-- 7.07, angle = 45°. 
4. Adjacent side = 10, opposite side = 20. 
5. Hypotenuse = 15, adjacent side = 5. 
6. Opposite side = 50, hypotenuse = 90. 
Each of the above problems should be checked by several other'equations 

until he student is positive that he is familiar with each type of problem. 



CHAPTER 6 

VECTOR ADDITION 

Already we have been using vectors in geometry but could 
not in all cases arrive at a solution until the principles of trigo-
nometry were introduced. We are now ready to solve any such 
vector problems. 

Reviewing, we remember that vectors in the same direction 
can be added arithmetically, vectors in the same direction or in 
exact opposition can be added algebraically, and vectors at 
right angles to each other can be added geometrically. General-
izing still another step, vectors in any direction can be added 
vectorially. 

Perhaps the simplest geometric addition is when the two 
vectors are of equal magnitude and at right angles. In this 
case the resultant lies halfway between the two vectors (45 
degrees from either one) and has a magnitude of 

IR1 + 'al' = V2a2 = lal 

when a represents the magnitude of either vector. In words this 
says that the resultant magnitude 

Y 
is equal to the square root of the 
sum of the squares of the magni-
tudes of the two vectors. See Fig. 
11 for a similar illustration. 

Vectorial Addition.—When the 
X 

0 vectors are not at right angles, as 

26.—Vector forces P and Q illustrated in Fig. 26, it is ciistom-
acting on the point 0 at angles of ary to resolve the vectors into 
is and p respectively, their components along the x-axis 

and the y-axis. The algebraic sum of the x-components gives a 
resultant x-component and the algebraic sum of the y-component 
gives a resultant y-component. These resultant x- and y-compo-
nents are added geometrically to obtain the resultant vector. 

Graphically, the vectors P and Q are resolved into their 
components P., P., Q. and Q5 as shown in diagrams a and b of 

76 
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Fig. 27. If these two diagrams are superimposed the result 
shown in Fig. 27e is obtained. Here the resultant magnitude 
of the x-component is obtained by algebraic addition of the 
x-components, thus 

Sum of x-components = R. = P. ± Q. (1) 

Y 

o 
(a Components of vector P. 

Resultant y -component 

= Pv+ 

Y 

Y 

Y 

Qv 

(b) Components of -vector Q. 

7 
X 

Resultant x-component Rz 

Rx=Px+Qz 
(c) Components of vectors P (d) Algebraic sum of P and Q components 

and Q. to determine geometric resultant vector R. 
27.—Steps in resolving vectors into their components, which are added 

geometrically to determine the resultant vector sum. 

Similarly, the resultant magnitude of the y-component is 
obtained by algebraic addition of the y-components, thus 

Sum of y-components = R5 = P5 ± Qy (2) 

The geometric sum of the resultant x- and y-components 
(R. and R) gives the resultant vector R as shown in Fig. 27e. 
Since vectors Rx and R,, are at right angles to each other the 
resultant magnitude can be written 

RI = 1/RI 42, (3) 
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Substituting for the magnitude of R. and Rs, in this equation we 
have the magnitude of the resultant 

¡RI = ± (2.)2 ± (Ps, Q„) 2 (4) 

The complete graphical solution to the problem is shown in 
Fig. 28. 

Since it is usually inconvenient to work problems out graphi-
cally, we shall proceed to solve this problem analytically by 
using our new tool, trigonometry. 

Figure 27a shows that vector P makes an angle of a with the 
x-axis. ,If a perpendicular is drawn from the extreme end of 

o 
28.—Complete graphical solution for the vector addition of two vectors. 

P to the x-axis it will cut the x-axis at P. This gives us a right 
triangle with vector P as the hypotenuse and having sides of 
length P. and Ps,. But this vector makes an angle a with the 
x-axis, so by trigonometry we have 

cos a adj = P. 
hyp I 

or P. = IPI cos a 
Similarly, 

sin a = oPP 
hyp 1/3 

or Ps, = ¡PI sin a (6) 

Similarly, in Fig. 27b we have a right triangle with hypotenuse 
= Q, opposite side = Q„, and adjacent side = Q. This will 
give 

(5) 

or 

„ adj Qx 
cos p = 71 - _ 17) — 

Q. = IQI cos 0 (7) 



and 

or 

VECTOR ADDITION 

sin = c-21)- = 911 
hYP IQ! 
= IQ! sin 

Substituting Eqs. (5) and (7) in Eq. (1) gives 

R. = P. + Q. =PI cos « IQI cos # 

Substituting Eqs. (6) and (8) in Eq. (2) gives 

R, = Pi, + Qu = IPI sin a -I- IQ! sin # 

Now, by substituting Eqs. (9) and (10) in (3), we get the 
resultant magnitude of the vector R in terms of the magnitude 
of vectors P, Q and trigonometric functions of the angles a and 
13, that is, 

'RI = VP' cos a ± IQ' cos + (IPI sin a ± IQI sin 13)2 (11) 

This equation is perfectly general for finding the magnitude of 
the vector R, which is the sum of any two vectors, P and Q, 
making angles a and 13 respectively with the positive x-axis. 

It is of interest to note that in Fig. 27 we have a right triangle 
with the magnitude of vector R the hypotenuse, the magnitude 
Ru the opposite side equal to PI sin a + IQI sin 0, and R. the 
adjacent side equal to !PI cos a ± IQ! cos 0. If we call the 
angle that vector R makes with the positive x-axis "7" (gamma), 
we have 

tan = opp = R, (12) sin a ± IQ! sin /3 
'y 

adj R. = IPI cos a.+ IQI cos 13 

Since we know the length of the opposite and adjacent side, 
the angle 7 can be found by referring to any trigonometry 
table. 

Equation (11) gives the magnitude of the resultant vector and 
Eq. (12) gives the angle; therefore, the resultant vector is com-
pletely determined. 

Example 1. Referring to Fig. 26 we have given 

IF1 = 10 
= 5 

Determine the resultant vector R. 

a = 30° 
= 60° 
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Solution. Since P and Q are not at right angles with each other, we 
must use the above method to determine the resultant, that is, find the x-
and y-components, which will be at right angles and hence can be added by 
geometric addition to obtain the final resultant. 
The x-component of P by Eq. (5) is 

= IPI cos a= 10 cos 30° -- 10(0.866) = 8.66 

The x-component of Q by Eq. (7) is 

Q. = IQI cos tit = 5 cos 60° = 5(0.5) = 2.5 

The resultant x-component by Eq. (1) is 

R. = P. -I- Q. .= 8.66 -F 2.5 = 11.16 

Now, the y-component of P by Eq. (6) is 

P,, = IPI sin a -= 10 sin 30° = 10(0.5) = 5 

and the y-component of Q by Eq. (8) is 

(20 = IQI sin = 5 sin 60° -- 5(0.866) = 4.33 

The resultant y-component by Eq. (2) is then 

R„ = Pi, = 5 -I- 4.33 = 9.33 

Equation (3) will now give us the magnitude of the resultant, thus 

IRI = N/R! = N/(11.16)2 (9.33)2 

= N/124.6 -I- 87.04 = NP2T.F.6 
= 14.54 Ans. 

Now that we have the magnitude we will solve for y (gamma), the angle 
the resultant vector R makes with the positive x-axis. 
From Eq. (12) we have 

R„ 9.33 
tarfhy = rFit3 = 0'836 

From trigonometric tables, y 39°54' Ans. 

This gives the complete solution of the resultant vector R which is often 
written in engineering form as follows:' 

R = IRII-y 

= 14.54/39°54' Ans. 

This answer is read, "magnitude R at an angle of gamma," or "14.55 at 
an angle of 39 degrees 54 minutes." 

This form of notation is adopted here because of its common use in 
engineering. Furthermore, it lends itself readily to handwriting. Some-
times vectors are noted by boldface type or by a dot or bar placed above the 
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Since a vector has both magnitude and direction, the above way 
of writing vectors is very convenient; it gives the magnitude 
(14.55) and the direction with respect to the positive x-axis 
(39°54'). 
This problem was worked on the slide rule and hence the 

answer is not absolutely correct, but for ordinary engineering 
work it is entirely satisfactory. 

It could have been solved by substituting directly in Eqs. (11) 
and (12) thus 

IR1 = V(IPI cos a + cos i3)2 + (IPI sin a + pi sin 0)2 
Substituting the numerical values, 

¡RI = V(10 cos 30° + 5 cos 600)2 + (10 sin 30° ± 5 sin 600)2 

Looking up the trigonometric functions, 

I RI = V[10(0.866) + 5(0.5)]2 + [10(0.5) + 5(0.866)12 

Performing the indicated multiplication, 

IRI = 1/(8.6,6 ± 2.5)2 + (5 + 4.33)2 

Adding inside the parentheses and squaring, 

'RI = V(11.16)2 + (9.33)2 = V124.6 + 87.04 

Adding under the radical and extracting the square root, 

IRI = V211.6 = 14.54 Ans. 

This answer is the same as was obtained above. Now, 
substituting in Eq. (12) we have 

'PI sin a + pi sin (3 
tan -y — 

WI Cos a +1Q1 cos 0 
symbol. Then the equation can be written without vertical bars to denote. 
magnitude, thus 

R=É=R=R/7 

Using this notation requires boldface type, a dot, or a bar to denote every 
vector quantity. With such a system, the boldface type could be used in 
print and the dot or bar placed above the vector symbol when written 
longhand. From the standpoint of making the system consistent in both 
print and script, and in order to save time and effort, it is more convenient 
to use the vertical bars the few times that they are needed to denote the 
absolute value or magnitude only. 
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Substituting numerical values, 

10 sin 30° ± 5 sin 60° 
tan -y — 

10 cos 30° ± 5 cos 60° 

Looking up angles in trigonometric tables, 

10(0.5) ± 5(0.866) 
tan y = 10(0.866) + 5(0.5) 

Performing the indicated multiplication, addition, and division, 

5 + 4.33 9.33 
tan -y =- 8.66 + 2.5 — = 0.836 

From tables y = 39°54'. Ans. 
This answer also checks with the above results. 
We will now work some examples to illustrate how vectors 

in quadrants other than the first are handled. 

Example 2. Find the vector sum of A = 8/20° and B = 20/120°. 
Solution. As in the preceding prob-

Y lem we find the magnitude of the x-
and y-components; thus, by Eq. (5), 

A. lAl cos 
= 8 cos 20° 
= 8(0.9397) = 7.5175 

By Eq. (6), 

= lAl sin « 
= 8 sin 20° 
= 8(0.545) = 2.737 

It will be noted that vector B is 
in the second quadrant, so the x-com-
ponent will be along the negative x-

B= 20 /120° 

Era. 29.—Vector diagram for Ex-
ample 2. 

axis. In this case we subtract the angle from 180° and get 

180° — 120° = 60° 

This is the angle that vector B makes with the negative x-axis. 
'Proceeding as before, using Eq. (7), we get 

B=IBj cos 5 • 
= 20 cos 120° 
= 20( — cos 60°) 
= 20( —0.5) = —10 
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By inspection of the problem we can see that this must be negative. Now, 

by Eq. (8), 

BY = IBI sin 
= 20 sin 120° 
= 20 sin 60° 
= 20(0.866) = 17.32 

The sum of the x-components by Eq. 
(1) is 

R. = A. ± B. 
= 7.515 — 10 = —2.485 

The sum of the y-components by Eq. 
(2) is 

= AY + BF 
= 2.737 -I- 17.32 = 20.057 

These components are shown in Fig. 30. 

The magnitude of the resultant vector R by Eq. (3) is 

IRI = VR: 

FIG. 30.—Vector diagram for 
Example 2. 

= —2.485)2 (20.057)2 

• Note: The square of a negative number is a positive number. 
Squaring and adding under the radical sign, 

IRI = V6.175 402.5 

V408.675 

Extracting the square root, the magnitude is 

IRI = 20.22 Ans'. 

The angle of the resultant vector R by Eq. (12) is 

tan 7  

20.057  
= —2.485 — "62 

Note: This is negative because it is in the second quadrant instead of the 
first. From trigonometric tables, 

= 82°56' 

This, however, is the angle vector R makes with the negative x-axis. If we 
subtract this from 180° we get the angle vector R makes with the positive 
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x-axis, thus 

-y = 97°04' Ans. 

The complete result (resultant vector) can be written 

R = 
= 20.22/97°04' Ans. 

The complete vector diagram of this problem is shown in 

Fig. 31. 
It is of interest to note that graphically the resultant vector 

R can be found by completing the 
Y parallelogram having sides A and 

B, as shown in Fig. 31. 
A thorough understanding of 

B By these two problems is sufficient to 
work most vector problems. One 
must be very careful tó note the 
sense of the x- and y-components 
so that they can be added algebrai-

\ 
A cally. Drawing a vector diagram 
X will make this part of the problem 

Bo Ego O A. clear. " 
We can generalize and handle 

any number of vectors by this 
process. Each vector must be reduced to its x- and y-components 
and the resultant vector will be the geometric sum of the resultant 

x- and y-components. 

Example 3. We have given the following vectors: 

A = IAIL = 16/45° 

B = !BIM = 20/330° or 20/30°* 

C = ICl/w = 5/200° 

Find the resultant sum R = 1R/'y.  
Solution. Draw the vector diagram as shown in Fig. 32. The magnitude 

of the resultant vector R for three vectors is given by 

FIG. 31.—Complete vector 
gram for Example 2. 

dia-

(IAI cos a + IBI cos 13 + ICI cos (.0)2 
IBI = ± (IA' gjn a IBI sin d + ICI sin co)2 

* It is common practice to use the symbol/ — to denote that the angle is 
negative, while the symbol is used to express positive angles. 

03) 
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It will be noted that this equation is like Eq. (11) with the exception that 
ICI cos co and ICI sin Co are added. If more vectors were to be added they 
too would be included in each term under the radical, like C/c0. 

Substituting in the values of this example, we get 

IRI (10 cos 45° ± 20 cos 330° 5 cos 2000)2 
NI -I- -1- (10 sin 45° ± 20 sin 330° -I- 5 sin 2000)2 

It will be recalled that if the vectors are not in the first quadrant we must 
find the angle they make with the x-axis and attach the correct sign. The 

Y 

200° 

C / 200° 

A =, IOLA°, 

a = 45° 

— 30° 

13=20 F3F 

FIG. 32.—Vector diagram for Example 3. 

sign to be attached depends on the sense, thus 

cos 330° = cos (360° — 330°) = cos 30° 
cos 200° = — cos (200° — 180°) = — cos 20° 

Note: This is along the negative x-axis. 

sin 330° = — sin (360° — 330°) = — sin 30° 

Note: This is along the negative y-axis. 

sin 200° = — sin (200° — 180°) = — sin 20° 

Note: This is also along the negative y-axis. 
Looking up these angles in a trigonometric table gives 

IRI = [10(0.707) ± 20(0.866) — 5(0-.9397)12 
\I+ [10(0.707) — 20(0.5) — 5(0.342)12 

Performing the indicated multiplication, 
• 

I RI = / (7.07 -I- 17.32 — 4.698)2 + (7.07 — 10 — 1.71)2 

Adding terms within each parenthesis, 

IRI = N/(19.692)2 ± (-4.64)2 

Squaring the term in each parenthesis and adding, 

I RI = 1/387.7 ± 21.53 
= VV:1-9.23 
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Extracting the square root, 

= 20.23 Ans. 

Now the angle -y for three vectors is determined by 

ta 1A1 sin a 1/31 sin -F ICI sin co n -y 
= 1A1 cos « 1/31 cos /3 + ICI cos w (14) 

This equation is similar to Eq. (12) with the exception that another 
vector's components are added. If more than three vectors are to be added, 
their components are simply added to the numerator and denominator as 
shown in Eq. (14) for 

C = IcIA0 

It will be noted that the numerator is the opposite side and the denom-
inator is the adjacent side. These terms were found when solving for the 
magnitude of R and hence we can take from that work 

R„ -4.64 
tan y - =  = -0.2358 

R. 19.692 

From trigonometric tables we find tan-1 (0.2358) is 13°16'. Since the 
quantity is negative, the resultant is located -13°16' from the positive 

Y 

Cx 

A=10 /45° 

I \'• 
I  lAz \ 

C=5 /200° • • • • • 

R=20.23/346 °44' 

B=20 /IF 

Resultant sum of vectors 
B and C 

33.—Vector diagram showing vectors A, B and C, their x- and y-com-
ponents, the resultant vector sum of vectors B and C, and the resultant sum R for 
all three vectors in Example 3. 

• 
x-axis. Drawing the vector diagram is the best way to make this clear 
(See Fig.°33). Then, 

= -13°16' or 346°44' Ans. 

The vector sum can now be exprelsed 

R = IRI/7 = 20.23/346°44' 

= 20.23/13°16' Ans. 
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Graphically, if there are three vectors, two (such as (BI and 
ICI in Fig. 33) can be added by the parallelogram law to get 
their tesultant. Then this resultant can be added to the remain-

FIG. 34.—Vector diagram showing the magnitudes and angles of vectors A, B, C, 
and R for Example 3. 

ing vector to get the total vector sum. The three vectors A, B, 
C and their sum R are' shown in Fig. 34. 

Solution of Right Triangles with the Slide Rule.—There is a 
short-cut method of obtaining the hypotenuse of a right triangle 
when the two sides are given. Since we shall 
be solving many right triangles, the develop-
ment will be given here. 

Referring to the right triangle in Fig. 35, we 
have 

a2 b2 = 62 

or c = -Va2 b2 

Always select a as the shortest side. Then 
since multiplying both numerator and denomi-
nator of a fraction by the same thing (a2 in this 
case) does not change the value of a fraction, the 
above equation can be written 

c = 

This may then be. written 

c=a 

V a2(a2 b2) 
a2 

\ /a 2 b2 

az 

a 
FIG. 35.—Right 

triangle for slide-
rule solution by 
Eq. (15) when 
b > a. 
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Making two separate fractions under the radical gives 

\la2 b2 

c = 
Ft2 Ft2 
b2  = a \ri + 1 a 

Since both numerator and denominator are squared under the 
radical, we can write 

b)2 
c = a NK—a ± 1 (15) 

This is the desired equation. Let us take an illustration to show 
how it is used. 

Illustration.—Let a = 6, b = 8; to find c the hypotenuse. 
Solution. First, set the hairline over b, (8), on scale D and 

move the slider so that a, (6), is also under the hairline. (Scale C 
on the slider.) 
The quotient of b divided by a will be found opposite the 

initial index of Scale C on Scale D. In this case it will be 1.333. 
(The student should follow this on the slide rule.) 

Second, move the hairline over the initial index and read the 
square of the quotient 1.333 on scale A under the hairline. In 
this case it will be 1.777 and is 

( ab) 2 

Third, add 1 to this number and slide the hairline to that 
value on scale A, which in this case will be 2.777. We now have, 
on scale A, the quantity 

(!)-)2 + 1 a 

Fourth, take the square root by looking under the hairline on • 

scale D. In this case you will find 1.666, which is 

Fifth, move the initial index of scale C under the hairline and 
then move the hairline to a on scale C, which in this case will be 
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6. The answer will be found on scale D under the hairline and in 
this case will be 10. We then have the complete expression 
solved for c, that is, 

c = a j -
i2t)2 ± = 6.\1()  = 

10 Ans. 
ct  

Note: In the development a was the shortest side, while in 
some of the above examples this is not true. Therefore, the 
a and b will have to be interchanged in these cases. 

Exercises 

In each of the following problems, draw a vector diagram approximately 
to scale and solve for the resultant vector sum (magnitude and angle): 

1. Voltage vector V1 = 110/0° (110 volts at an angle of 0° with positive 

x-axis). 
Voltage vector V2 = 115/75° (115 volts at an angle of 75° with posi-

tive x-axis). 
2. Impedance vector Z1 = 100/40°. 

Impedance vector Z2 = 50/15° or 50/345°. 

3. Current vector II = 3/215°. 

Current vector /2 = 4/300°. 

4. Voltage vector V1 = 150/60°. 

Voltage vector V2 = 100/180°. 

Voltage vector V3 = 50/300°. 

5. Force vector F1 = 17/110°. 

Force vector F2 = 15/320°. 

Force vector F2 = 10/190°. 

Work each of the following exercises by the slide-rule method and 
check for the resultant hypotenuse by the kinger method: 

6. a = 3, b = 4. Find c. 
7. a = 5, b = 5. Find c. 
8. a = 14, b 11. Find c. 
9. a = 76, b = 21. Find c. 

10. a = 1.28, b = 0.91. Find c. 



CHAPTER 7 

COMPLEX QUANTITIES 

The title of this chapter should not frighten the student, 
because we have been studying complex quantities in the last 
chapter. The vectors of the last lesson were complex quantities, 
because they had two components at right angles. In other 
words, a complex qugntity may be represented as a vector resolved 
into two components 90 degrees apart, the x-component and the 
y-component. 

In the last chapter ,the x-components were designated by 
using x as a subscript to the vector and the y-components were 
designated by using y as a subscript to the vector. The only 
way we could represent the complete vector was in engineering 
form as 

c =_ icl ia (1) 

It would often be an advantage to represent the vector in 
terms of the x and y-components. To do this with a minimum 
of labor the x-components are written without subscripts and the 
y-components are prefixed with the letter j. The above vector c 
can then be written 

c = a ± jb (2) 

Where a is the adjacent side and b is the opposite side of a right 
triangle, as shown in Fig. 36. 

Y In Eq. (2), the vector a always lies 
along the x-axis. When numerical val-
ues are substituted they are either 
positive or negative numbers which 
measure a magnitude along the x-axis. 
Since the magnitude and direction are 
specified by the numerical number, it in 
effect is a vector; however, it is not 
ordinarily written as a vector in bold 

face type or with a dot or dash over it. When using complex 
numbers it is understood to be a real number along the x-axis. 

90 

o 
Fro. 38.—Graphical repre-

sentation of a complex 
quantity. 
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The letter jis known as an "operator" much like the operators 
of algebra already familiar to the student, for example, the plus 
(+) sign, minus ( — ) sign, division (÷) sign, multiplication 
(X) sign, and radical (V-) sign. 
As the above signs tell us the operation to perform, so does the 

j operator tell us what to do. Thus the j operator, when multi-
plied by a number, has the effect of turning the vector 90 degrees 
counterclockwise from its original 

Y position. 
In Eq. (2) and Fig. 36 the vector 

b is a real number which always j 2 a or - a a 

lies along the x-axis. Multiplying 
this real number by the operator j .1. 3 a or - ja. 

makes it lie along the y-axis. When 
FIG. 37.—Graph showing effect 

a numerical value is substituted for of j operator when successively 

b it is not ordinarily written as a applied to the vector a. 

vector, but understood to lie along the y-axis when multiplied by j. 
Let us apply the operator j to the vector a along the positive 

x-axis as shown in Fig. 37. The vector ja must lie along the 
positive y-axis. Now if we apply another j we get j'a which 
rotates vector ja 90 degrees and hence it will lie along the negative 
x-axis, but according to ordinary algebra this vector is negative 
and must be — a; therefore 

i2a = _a 

Dividing by a, we get 
j2 = _ 

or, taking the square root, 

j = V -1-1. (a definition of j) (3) 

If we multiply j'a by j the line is turned through another 
90 degrees and will lie along the negative y-axis as shown in 
Fig. 36. If the j2 is replaced by —1, we have 

= j2ja = — ja 

Again, if — ja is multiplied by j the vector along the negative 
y-axis will be rotated 90 degrees and will lie along the positive 
x-axis. That is 

j'a = (— ja)j = —j'a = — (-1)a = a 



92 APPLIED MATHEMATICS 

and we have returned to the starting point again to get the same 
vector a. This shows that the system is consistent. 

Expressing Vectors in Complex Notation.—We can now repre-
sent vectors not only in the first quadrant, as shown in Fig. 36, 
but in all four quadrants. Figure 38 shows impedance vectors 
in each quadrant. Z is the hypotenuse of a right triangle having 
sides R and jX, where R = the resistance component and 
X -= the reactance component. (Large X, which is the react-

38.—Impedance vector Z represented in all four quadrants. 

ance, is not the same as small x, which is the x-axis.) The 
impedance vector Zi can be written 

Z1 = R jX (first quadrant) (4) 

the impedance vector Z2 can be written 

Z2 = —R jX (second quadrant) (5) 

the impedance vector Z3 can be written 

Z3 = —R — jX (third quadrant) (6) 

and the impedance vector Z4 can be written 

Z4 = R — jX (fourth quadrant) (7) 

Just as in the last chapter the magnitude of the Z vector is the 
square root of the sum of the squares of the two sides of the right 

triangle, that is 
IZI = N/R2 + X2 (8) 

Also the angle 41 (phi) is determined, as it was in the last 

chapter, by the equation 
opp X 

tan = a7lf = R 

The above equations for Zi, Z2, Z3 and Z4 are valuable for 
adding vectors because the x- and y-components are at right 

(9) 
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angles. The resultant x- and y-components can then be added 
geometrically to obtain the resultant. 

Example 1. Add vector Z4 to vector Z2. 
Solution. Zi = R + iX 

Z2 = —R + jX 

Z1 + Z2 = 2jX. Ans. 
Example 2. Subtract vector Z3 from vector Z4. 
Solution. Z4 = R — iX 

Z3 = —R — jX 

Z4 — Z3 = 2R. Ans. 

•Multiplication of Vectors in Polar 
multiplication the other form A = 
IAI/a is advantageous. For illustra-

tion, multiply vector A by vector B 
where, A = AI 

B = 1./31/t3 

These vectors are expressed in polar 
coordinates; that is, they are expressed 
as a magnitude rotated through an 
angle from the base line. 

To multiply two vectors expressed 
in polar coordinates, obtain the prod-
uct of their magnitude and add the 
angles. 
Thus 

Y 

Form.—However, 

C=50/80° 

B=5LLO° 
A=I0 

for 

X 
o 
FIG. 39.—Multiplication of 

vectors A and B, which result,. 
in vector C. 

C = AB = (IAI/ a)(1B1/13) = ± 13 (10) 

Example 3. Multiply vector A by vector B where A = 10/30° and 
B = 5/50°  

Solution. Substituting these values in Eq. (10), 

C = (10)(5)/30° ± 50° 
= 50/80° the product Ans. 

Division of Vectors in Polar Form.—The division of vectors is 
just as easy as their multiplication. The rule is to divide one vector 
by another in polar coordinates, obtain the quotient of the magnitudes 
and subtract the angle in the denominator from the angle in the 
numerator. Applying this rule, let vector C be the quotient of 
vector A divided by vector B, thus 
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A IAI/a IAl 
C = = —   

B 1B1/13 iBi / a 13 

Example 4. Divide vector E by vector Z where E = 100/60° and 
Z -= 5/5° 

Solution. Substituting these values in Eq. (11), 

i
E — 1001600 

=  
Z 5/5° 

Dividing the magnitudes 10% = 20 and subtracting the denominator angle 
from the numerator angle gives 

60°— 5° = 55° 

Hence I = E = — 100/60° 100 /60° — 5° 
Z 5/5° 5 

= 20/55° the quotient. Ans. 

Example 5. Divide vector E by vector I when E = 8/10° and / = 16/40° 

Solution. Substituting these values in Eq. (11), 

E 8/10° 8 
Z   — 16 /10° — 40° I — 16/40°  

= 0.5/30° or 0.5/330° the quotient Ans. 

Trigonometry Applied to Complex Numbers.—According to 
what we learned in the last chapter, the magnitude of the 
x-component of c is Ici cos a and the magnitude of the y-com-
ponent of c is Ici sin a. In complex numbers we write 

c -= a ± jb 

but a is the x-component ici cos a and b is the y-component Ici 
sin a; therefore, we can write 

c = ici cos a + jici sin a 

Factoring out the ici on the right-hand side gives 

c = Ici (cos a j sin a) (12) 

In this equation ici is the magnitude of the vector and 

(cos a ± j sin a) 

is the trigonometric operator which rotates the vector through 
the angle a in a counterclockwise direction from the positive 
x-axis. 
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The quantity (cos j sin a) always has a magnitude of 
unity. It is a unit vector specifying the 
direction the magnitude must take. It 4e.e. 
can be thought of as the radius of a unit sin 

circle, as illustrated in Fig. 40. 
Relationship between Polar and Rec-

tangular Forms.—The above relationship FIG. 40.—Unit vector as 
provides a method of changing from geometric sum of cos a -I-

j sin a. the rectangular form (a jb) to the 
polar form ici/a or vice versa. We can now write /« = cos « 
j sin «, hence, 

cos 

= ici/a = ici (cos « j sin a) = Ici cos « icij sin «, 

but a = ici cos 
and b icl sin a 

Therefore, c = a ± jb 

Example 6. Given c = 20/30° (polar form) 

Change to rectangular form. 
Solution. Replacing by the operator, (cos a j sin a) and substitut-

ing the trigonometric values, 

c = 20(cos 30° j sin 30°) = 20(0.866 -I- j0.5) 

Multiplying, 

Example 7. 

c = 17.32 j10 (rectangular form) Ans. 

Give c = 30 ± j50 (rectangular form) 

Change to polar form. 

Solution. The magnitude of c is 

c= given by the relationship of Eq. (8). IcILL(e. 
= a+ jb Thus 

O a=icicos a 

FIG. 41.—Polar and rectangular forms 
of representing a vector. 

Ici = V al 52 

Substituting numerical values, 

Ici = N/(30)2 + (50)2 

Squaring the terms under the radical 

and adding, 

Ici = N/900 + 2500 = -V3400 

Extracting the square root, 

Ici = 58.33 (the magnitude) 



az a4 
Cos a = — — — • • • 

1_2 ILI 
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The angle is obtained by Eq. (9), thus 

opp b 50 
tan « — — = — = 1.666 

adj a 30 
From trigonometric tables, 

a = 59°02' (approx.) (the angle) 

Then the complete answer in polar form. is 

o = ici/ce = 58.33/59°02' Ans. 

It is important to note that the magnitude 

cos a= cos 59°02' = 0.514539 
sin « = sin 59°02' = 0.857467 

Hence, a = Ici cos « 
Substituting numerical values, 

a = 58.33(0.514539) 
--- 30, which checks Check. 

and, b = ici sin « 
Substituting numerical values, 

b = 58.33 (0.857467) 
= 50, which also checks Check. 

This process of changing from polar to rectangular form and 
vice versa will be used to advantage later in the study of alter-
nating current circuit theory. 
True Mathematical Polar Form.—The polar form c = ici/ct 

has been adopted because of its convenience in expressing a vector 
which has a magnitude ici and makes an angle a with the reference 
axes. From pure mathematics it is easy to develop the exact 
character of this quantity. 
The magnitude of ex, sin x, and cos x can be defined by the 

following series: 

(13) 

(,14) 

(15) 

In these equations the three dots at the end indicate that only 
a few terms of the series are written. Enough terms are usually 
written to indicate how the rest of the series can be written. 
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The expressions 12, 13, etc., in the denominator mean factorial, 
thus 

12 = 2 • 1 = 2, 13 = 3 • 2 • 1 = 6, 14 = 4 • 3 • 2 • 1 = 24, etc. 

Now if ja is substituted for x in Eq. (13), it can be written 

, • , (ia) 2 I ( ja) g ja) 4 
= -r — -r — -r — -r • • • (16) 

12 13 14 
but, 

j = 
j2 = 1 

ja = — 

j4 = 1 

j6 

j6 = 1 

Substituting these values in (16) gives 

2 3 ± °* 4 C5 • • 

Separating the j terms; gives 

ja = (1 — + É — 
12 14 

(17) 

(18) 

But the two series of (18) are the same.as those of (14) and (15), 
hence, 

= cos a j sin a (191 

This shows that the true mathematical polar form of c is Icleice 
where e = 2.718 • • • the base of natural logarithms. This 
establishes the exponential character of the angle, showing why 
the angles are added when vectors are multiplied. The vector 
c can be written in several forms, as follows: 

c = Ici /a = = Ici (cos a j sin a) 

= 1cl cos a + ilel sin ce (20) 

Multiplication of Vectors in Rectangular Form.—The multi-
plication of vectors in rectangular form is more cumbersome than 
the multiplication of vectors in polar form. Usually it is easier 
to change from rectangular to polar form for multiplication than 
to perform the multiplication in rectangular form. However, 
in some cases, such as certain theoretical developments, multi-
plication in rectangular form is valuable, and it should therefore 
be understood by the student. 



98 APPLIED MATHEMATICS 

Illustration. Multiply (a + jb)(c jd). 
Solution. Performing the algebraic multiplication, as out-

lined in Chap. 3, results in 

(a ± jb)(c jd) = (ac — bd) + j (ad ± be) (21) 

In checking this equation the student must remember that j2 
can be replaced by —1. 

Example 8. Given: 
a +16 = 3 + 14 = 5/53°08' 

c + jd = 8 +16 = 10/36°52' 

First multiply these vectors in rectangular form and then check by using 
polar form. 

Solution. By rectangular multiplication, 

(3 +14)(8 +16) = (3)(8) — (4)(6) +1(3)(6) +1(4)(8) 
= 0 +150 = 50/90° Ans. 

Checking by polar multiplication, 
(5/53°08')(10/36°52') = 50/90° = 0 -1- j50 Check. 

Division of Vectors in Rectangular Form.—The division of 
vectors in rectangular form is even more cumbersome than their 
multiplication in that form. In order to divide two vectors, it 
is necessary to rationalize the fraction, as follows: 

Illustration. Divide (a + jb) by (c jd). 
Solution. First, set up the problem in fraction form. 
Second, multiply both numerator and denominator by the 

denominator with the j term sign changed. 
Third, multiply out both numerator and denominator. 
The operations are illustrated as follows: 

a ± jb _ (a ± jb) (e — jd) _ (ac ± bd) + j (be — ad)  
jd - (c jd) (e — jd) e2 cl2 

The term c — jd is called the "conjugate" of c jd because 
it has the same magnitude but its angle is the negative of c jd. 
The product of a number by its conjugate is a real number since 
the j term disappears. This removes all j operators from the 
denominator and makes a rationalized complex number. 

Fourth, the quotient can be written in rectangular form as 
follows: 

a + jb _ ac bd be—ad 
c jd c2 d2 3 c2 d2 

(22) 
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Example 9. Given: a ± jb = 3 ± j4 = 5/53°08'  

c + jd = 8 + j6 = 10/36°52' 

First divide these vectors in rectangular form and then check by using 
polar form. 

Solution. 

3 + j4 _ (3 +j4)(8 — j6) _ 24 ± 24 + 1(32 — 18) 48 + 114 

8 + (8 +16)(8 — 16) (64) + (36) — 100 
= 0.48 + 10.14 = 0.50/16°16' Ans. 

Checking by polar division, 

5/53°08' 
— 0.5/1t°16' = 0.48 j0.14 Check. 

10/36°52' 

Exercises 

1. Write c = jell_o_e = 50/30° in rectangular form, (a + jb). 

2. Write c = jcj La = 10/300° in rectangular form. 
3. Write c = a + 16 = — 20 +j30 in polar form. 
4. Multiply A = 25/15° by B = 60/80°. 

5. Divide A = 25/15° by B = 60/80° and express in rectangular form. 



CHAPTER 8 

CURVES AND GRAPHS 

Curves and graphs are widely used to show relationships 
clearly. They bring together the principles of both algebra and 
geometry in a pictorial way that greedy increases their utility. 
A curve is a smooth line representing the relationship between 

two or more variables. Such curves are often used by engineers 
for visualizing design relationships. A common procedure to 
obtain a curve is to vary one quantity and note the simul-
taneous values of the other quantities. After sufficient data 
have been obtained, the points are plotted on appropriate graph 
paper and a smooth line is drawn through them to show the 
relationship. Algebraic equations can also be solved by plotting 
curves. These methods are not so readily adapted to high 
accuracy as pure algebraic methods, yet they often permit the 
solution of problems so difficult that pure algebraic methods 
become impractical. A curve is a special type of graph. A 
graph is a pictorial representation showing the• relationship 
between two or more quantities. Graphs are used extensively by 
newspapers, magazines, technical journals, engineers, and busi-
ness people concerned with relative values. In one of the most 
common types of graphs, the adjacent points are joined by 
straight lines. This should be done unless there is a good reason 
for drawing a smooth curve through them. Common graphs of 
this type are those that show temperature plotted against time, 
stock market values plotted daily, and volume of business 
plotted monthly. Business men often base important decisions 
upon information obtained from graphs. 

Engineering curves are usually plotted on cross-section paper. 
Cross-section paper comes in a variety of forms to meet various 
needs. Some of the more common forms are rectangular 
. coordinate paper, logarithmic paper, and polar coordinate paper. 

System of Rectangular Coordinates.—We have already been 
using a system of coordinates. Such a system is shown in 

loo 
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Fig. 42. Here we have the x- and y-axes at right angles. Let 
each axis be considered as a number scale with the intersection 
of the axes as the zero point of each scale. The point P, any 
point on the plane, can be located by dropping perpendiculars to 

the two axes as shown in Fig. Y 
42. Let x represent the dis- -3 

tance to the y-axis and y repre- -2 

sent the distance to the x-axis. -1 
The point P given in Fig. 42 can  -4 -3 -2 -1 1 2 8 4 x 11111 1 I t 
be represented by the symbol 0 - 
(3, — 2) which means that start-
ing at the origin the point P is 

--3 
located by going a distance +3 
along the positive x-axis and FIG. 42.—Rectangular coordinate sys-

then going down a distance of tem. 

— 2 parallel to the negative y-axis. The +3 and —2 are often 
referred to as the coordinates of the point P. 

In order to make it easy to locate any such point P (the point P 
is said to be plotted), it is very convenient to use cross-section 

43.—Rectangular coordinate system superimposed on cross-section paper. 

paper, as shown in Fig. 43. Such paper is made by ruling off the 
plane into equal squares with sides parallel to the axes. The side 
of a square may be taken as unit length to represent a number. 

If we do not know the coordinates of a point P we can refer to 
them as (x, y). In the above • case x = +3 and y = — 2 and 
hence the coordinates are (3, —2). Note: The first number in 
the parenthesis is always the x dimension and the second number 
is the y-dimension. The point is often subscribed with the 
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symbol (x, y), thus: P(.,„). To illustrate, the point P(3,-2) 

definitely locates the point P on the plane shown in Fig. 43. 
Figure 43 illustrates the way to place the axes if all four 

quadrants are to be used in plotting a curve. The point Q(.4,) 
shown in Fig. 43 is located by going +5 units along the positive 
x-axis and +2 units parallel to the positive y-axis. Therefore 
both numbers are positive in the first quadrant. Thus, Q is repre-
sented by the symbol (5, 2). To locate a point R(.) in the 
second quadrant we must go —3 units along the negative x-axis 
and up +4 units parallel to the positive y-asis. The .x value 
is negative and the y value is positive in the second quadrant. 
Thus, R(.,„) is represented by the symbol ( —3, 4). To locate a 
point S(x,y) in the third quadrant we must go —4 units along the 
negative x-axis and —4 units along (or parallel) to the negative 
y-axis. Therefore, both numbers are negative in the third quadrant. 
Thus S(x.„) is represented by the symbol (-4, —4). The point 
P(.,5) in the fourth quadrant is represented by a positive x value 
and a negative y value. As mentioned above the symbol in this 
case for P(.,5) is (3, —2). 

RECTANGULAR COORDINATE SIGNS 

Quadrant Sign of X 

First 
Second 
Third 
Fourth 

Sign of Y 

It should now be clear to the student that every point on the 
plane can be found by substituting definite values for x and y 
in the symbol (x,y). 

An illustration of curves in all four quadrants is found in 
magnetic circuit theory. The curves are known as B-H curves 
where B represents the lines of induction and H represents the 
magnetic field strength. In Fig. 44 the magnetic force H is 
along the x-axis and the magnetization B is along the y-axis. 

Usually it is not necessary to ase all four quadrants to plot a 
curve. When only one quadrant is needed the usual practice 
is to use the first. In this case all numbers will be positive. 
When negative numbers are involved, other quadrants must be 
used. Usually some study of the problem will result in a 
judicious selection of quadrants. 
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Vacuum tube characteristic curves furnish a good illustration of 
using the first and second quadrants. When the plate voltage is 
held constant, the plate current can be plot-
ted as a function of the grid voltage. This 
means that a current meter is placed in the 
plate lead and a volt meter connected from 
the grid to the cathode or filament. The 
grid voltage is changed in steps and for each 
grid voltage reading a corresponding plate cur-
rent reading is recorded. These coordinate 
points are plotted on cross-section paper 
marked off in the first and second quadrants. 
Such curves can be found in vacuum-tube books. 

It will be noted that the curves found in vacuum-tube books 
are smooth lines. This means that the values change gradually 
between points. When taking data to obtain such a curve, any 
irregular points should be checked to be sure that they are not 
errors in taking the readings. It is always a good practice to 

FIG. 44.—Typical 
B-H curve. 
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Fro. 45.—Three-cycle semi ogarithmic graph paper. 

plot the curve as the data is taken, so any irregularities can be 
checked before destroying the experimental setup. 
When a wide range of values are to be plotted it is often 

desirable to use a logarithmic scale or scales. This type of 
paper has other distinct advantages, such as that of keeping the 
percentage accuracy the same for all values. An illustration 
of the use of this type of paper is to show the frequency character-
istics of an audio amplifier. Semilogarithmic cross-section paper 
is generally used for these curves. It has a logarithmic scale 
along only one side, as shown in Fig. 45. 
The y-axis values are usually marked voltage amplification, or 

db gain. The x-axis values are marked in cycles per second along 
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a logarithmic scale. Typical examples are to be found in the 
other books of this series. 

Since curves are so frequent in radio and communication 
engineering practice, the student should have a thorough under-
standing of how to make and use them. It will often require 
considerable ingenuity to select proper scales so that the curves 
will not be crowded. The following pointers are given to guide 
the student in making any graphical representations. 

Y 

o 
12 14 16 18 20 

II I I II X 

46.—Selection of scales. 

17 

Scale Selection.—A scare should be selected so that the curve 
will cover the limits of the paper. However, care should be 
taken to keep from using fractional divisions, as this will make the 
curve difficult to plot. To illustrate, suppose we have a curve 
having a maximum x value of 17 and the cross-section paper has 
only 10 lines. If 17 is plotted on the tenth line, each line will 
represent 1.7 and it will be difficult to find points from 0 to 17. 
If each division were marked to represent 2, the 17 would not 
cover the whole scale but it would be easy to plot the points. 
This is illustrated in Fig. 46. Each major division is marked 
with even numbers. 

Desirable Slope.—The scales should be selected so that any 
change in slope can be easily and accurately determined. Also, 
if the slope is too steep or not steep enough, the readings on one 
or the other scale will be crowded and thus the accuracy in 
reading will be lowered. Therefore, the scales should be selected 
so that the curve is as nearly 45 degrees with the x-axis as 
practicable. This is especially true if the curve is a straight 
line. Note: A curve is a general expression for a line of any 
shape, so a straight line is a curve. As an example, a straight-
line capacity capacitor gives a straight-line curve when capacity 
is plotted against the dial setting. 
Not only should the proper slope of a curve be obtained, but the 

student should be familiar with just how it can be determined. 
As a practical illustration, consider the curve in Fig. 47, which 
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is the plate characteristic for a type 250 vacuum tube with zero 
grid voltage. It is desired to find the plate conductance of th 
tube when the plate current varies from 60 to 80 mils. As will be 
given later, the plate conductance is the slope of the 1„— E„ charac-
teristic curve as presented in Fig. 47. In other words, the slope of 
a curve is the angle it makes with the positive x-axis. It can 
also be thought of as the tangent of the angle the line makes with 
the positive x-axis. In this particular case the slope is tan O 
given in Fig. 47, but tan O = opposite side/adjacent side. Per-
haps the best way to determine this is to form the triangle as 
shown in Fig. 47. The opposite side has a length of 80 — 60 = 20 
mils change in plate current. The adjacent side has a length of 
190 — 160 =- 30 volts. The slope of this curve is then 

12 -  I 0.08 — 0.06 
Slope — 

E2 E1 - 190 — 160 

"2  — 0• 000666 mho, = 666 g mho 
— 30 —  

which is a measure of the plate conductance of the vacuum tube. 
The slope of a curve is of great importance in many engineering 

problems. Calculus, for example, is 120 

based upon this fundamental idea, so e100 
the student should learn all he can 

In the above illustration we had a 60 (k. 

02 80 
about it. 

change in plate current for a given .52 40 

change in plate voltage. A -in. ore 1: 20 
familiar ratio is that of the miles 
covered in an hour, commonly called 
"miles per hour." Many engineer-
ing problems have to deal with ratios 
and each of these ratios or rates can be represented graphically 
as the slope of a curve. 
Many Points Are Desirable.—When taking data to plot a 

curve it is advantageous to plot many points. This is especially 
true when the values do not fall on a smooth curve. The general 
practice in such cases is to plot many points and then draw a 
smooth curve through the greatest number of points in order to 
minimize any errors in obtaining the data. The simplest curve 
to plot j straight line, which requires a minimum of only two 

points, ' 

O 

100 200 300 
Volts Ep 

Fro. 47.—Slope determination. 

400 
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that will help to convey a complete picture of the conditions 
and the results of the experiment. 
System of Polar Coordinates.—Some data are best presented 

on polar coordinate paper. Common illustrations are field 
patterns of microphones, loud-speakers, and directional antennas. 
To specify a point P by polar coordinates it is necessary to 

know the distance from the reference point to the point P and the 
angle this line makes with the reference line. In the mathematical 
form, as shown in Fig. 48a, the reference point corresponds to the 
origin used in rectangular coordinates and the reference line 
corresponds to the positive x-axis. To each the point P the 
distance r is laid off along the x-axis and then the line is rotated 
counterclockwise through the positive angle O. The same point 
could be reached by rotating the line clockwise through a negative 
tingle which would be equal to — (360° — 0). 

In commercial practice, such as navigation and directional 
antenna design, the reference line is north and the angles are 
measured clockwise. Figure 48b illustrates a commercial form 
of polar coordinate system. The true azimuth of the point is 
measured by 4, and its distance from the reference point is d. 
A sample of polar coordinate paper for commercial applications 
is shown in Fig. 49. 
The point P can be represented in polar coordinates by the 

symbol (r, 0) or (d, iliuserated in Fig. 48. To make it easy 
to locate any such point, um polar coordinate paper can be 
printed with many radial lines along which the distance can 
be measured and many circles around which the angle can be 
measured. 

Exercises 

1. Experimental data give the following information in regard to a sample 
of transformer steel: 

H B H 

0 1.0 0 —1.0 
2,000 1.3 —2,000 —1.3 
4,000 1.7 —4,000 —1.7 
6,000 2.2 —6,000 —2.2 
8,000 3.4 —8,000 —3.4 
8,300 4.0 —8,300 —4.0 
8,000 2.2 —8,000 —2.2 
6,000 0.0 —6,000 0.0 
4,000 —0.6 —4,000 0.6 
2,000 —0.8 —2,000 0.8 

0 —1.0 0 1.0 
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Plot the B-H curve on cross-section paper, as shown in Fig. 50. 
2. Field intensity measurements on a radio broadcasting station are 

made by going due north of the transmitter. Plot the ground wave field 
intensity on log-log paper' from the following data: 

Millivolts Millivolts 
Miles  per Meter Miles per Meter  

1 94 
1.5 61 12 5.0 
2 45 14 3.9 
3 28.5 16.5 3.0 
4 20.5 20 2.1 
5 15.5 25 1.4 
6 12.5 30 1.0 
8 8.6 40 0.55 
10 6.4 60 0.26 

80 0.12 

What is the distance to the 25, 10, 5, 2.5, and 0.5 mv per m contours? 
Draw the inverse distance curve through the point 100 mv per m at 1 mile. 

3. The computation of field intensity measurements at 1 mile for a 
1-kw broadcast transmitter using a three-tower directional antenna system 
results in the following data: 

Azi-
muth 

Millivolts Azi-
per Meter muth 

o 
10 
20 
30 
40 
50 
so 
70 
so 

369.5 90 
337.5 100 
288.3 110 
228.5 120 
175.0 130 
126.6 140 
88.1 150 
65.9 160 
33.7 170 

Millivolts flo5i-
per Meter muth 

33.3 180 
58.6 190 
87.3 200 
108.1 210 
113.6 220 
100.2 230 
64.5 240 
27.0 250 
67.5 260 

Millivolts Azi-
per Meter muth 

129.6 270 
182.6 280 
220.0 290 
229.3 300 
222.2 310 
194.3 320 
157.4 330 
116.0 340 
76.6 350 

Millivolts 
per Meter 

29.2 
61.5 
99.5 
150.2 
208.4 
268.5 
320.6 
361.4 
378.1 

Plot these data on polar coordinate paper. Draw the root-mean-square 
field intensity circle at 191 mv per m. The area of this circle is the same as 
the area within the irregular pattern. This value can be checked by squar-
ing the thirty-six readings of millivolts per meter, dividing their sum by 36, 
and extracting the square root. A sample of suitable polar coordinate 
paper is shown in Fig. 49. 

' To plot such data, the Federal Communications Commission normally 
uses Logarithmic, 7 X 2.2 cycles, No. 358-127, printed by Keuffel and 
Esser Co., N.Y. 



CHAPTER 9 

SIMULTANEOUS EQUATIONS 

In radio and communication engineering, problems often arise 
in which two desired unknown quantities can be determined when 
two sets of conditions are known. This method of attack is very 
powerful and can be expanded to find an n number of desired 
unknowns if a set of n independent conditions are known. 

Sets of Two Linear Equations.—The following illustration 
shows how a problem may lead to a set of two linear equations, 
sometimes called "simultaneous equations." Let us consider 
the formula 

Rk — at = 1 (1) 

where R = resistance of a metal after being heated through t. 
k = constant, the reciprocal of the resistance at the 

initial temperature. 
a = constant, the temperature coefficient of the resist-

ance. 
t = temperature change in degrees centigrade. 

It is found by trial that R = 108 when t = 20 and that 
R = 128 when t = 70. With these two sets of conditions, it is 
desired to find the constants k and a. Substituting the two sets 
of information in Eq. (1) results in 

108k — 20a = 1 (using first set of conditions) (2) 
128k — 70a = 1 .(using second set of conditions) (3) 

It is easy to find numbers for k and a that will satisfy Eq. (2) 
but not Eq. (3), and to find other numbers for k and a that will 
satisfy Eq. (3) but not Eq. (2). There is only one pair of numbers 
for k and a that will satisfy both equations at the same time and 
this pair is the solution of the set of two equations. There are 
three methods of finding these values of k and a and these 
methods will be given later. The solution to this problem is 

k = 0.01 Ans. 
a = 0.004 Ans. 



x 1-2y=3 
x y 
- 3 
- 2 
-1 
o 
1 
2 
3 

3.0 
2.5 
2.0 
1.5 
1.0 
0.6 
0.0 
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The student can check these answers by substituting them 
back in Eqs. (2) and (3) and finding that both sides of the 
equations are equal. 

This is a practical illustration, showing that the resistance of 
copper changes 0.4 per cent per degree centigrade. 

Equations (2) and (3) represent straight lines. The one 
point at which they cross in a plane gives the solution. In this 
case k is plotted along one axis and a is plotted along the other. 
Methods of Solving Simultaneous Equations.—There are 

four ways of solving simultaneous equations, the graphical 
method, the multiplication-addition method, the substitution method, 
and the determinant method. The determinant method is the 
result of a systematic application of the multiplication-addition 
method. 

Illustration of the graphical method.—The following set of two 
equations is to be solved by the graphical method: 

x + 2y = 3 (4) 
x — 2y = 2 (5) 

First, make a table of values for each equation as shown in 
Fig. 51a. When making a table of values it is convenient to 
solve the equation for y. 

3 — x 
Thus x 2y = 3 is written y — 2 

— 2 + x 
and x — 2y = 2 is written y = 2 

Y 3 
x -2y=2 
x y 
-3 
-2 
-1 
o 
2 
3 

(a) Table 

-2.5 
-2.0 
-1.6 
-1.0 
-0.6 
0.0 
0.6 

(6) 

(7) 

Intersection 
2 gives the 

8 solution 

(b) Graph of Equations 
FIG. 51.—Graphical method of solving two shnultaneous equations. 

Second, draw on one set of axes the two graphs as shown in 
Fig. 51b. The two lines cross at only one point, the point where 

x = 2.5 Ans. 
y = 0.25 Ans. 
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This pair of numbers is the solution to the set of simultaneous 
equations. They give the point of intersection of the two straight 
lines. 

In plotting a linear (straight-line) equation it is only necessary 
to solve the equation for two points and draw a straight line 
through these two points. The line can be drawn more accu-
rately if the two points are not too close together. 

Example 1. Solve the following si-
multaneous equations by the graphical 
method: 

x — y + 1 = 0 
4x -F y — 16 = 

Solution. 
y = x + 1 

o 
5 

1 
6 

y = 16 — 4x 

x y 

4 0 
3 4 

52.—Graphical solution for x = 3 Ans 
Example 1. y = 4 Ans 

Illustration of Multiplication-addition. Method.—The following 
set of two equations is to be solved by the multiplication-
addition method: 

5x + 3R = 14 
4x + 7R = 2 

(8) 
(9) 

First, to eliminate R, inspection of the terms +3R and +7R 
reveals that 21 is the L.C.M. (least common multiple) of 3 and 7. 
Equation (8) should be changed to contain +21R by multiplying 
both sides by +7. Equation (9) can be changed to contain 
—21R by multiplying both sides by —3. This gives 

35x + 21R = 98 (10) 
—12x — 21R = —6 (11) 

Adding 23x+ O = 92 

Dividing both sides by 23 gives x = 4 Ans. 
Second, in order to determine R, substitute the answer 4 for 

x in Eq. (8), giving 

20 + 3R = 14 

Adding — 20 to both sides 

gives 3R = —6 
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Dividing both sides by 3 

gives R = —2 Ans. 

Check: Substitute 4 for x and —2 for R in both Eqs. (8) and 
(9), thus 

5x + 3R = 14 
20 — 6 = 14 

14 = 14 

4x + 7R = 2 
16 — 14 = 2 

2 = 2 

Hence, the solution x = 4 and R = —2 has just been proved 
correct. 

Example 2. Solve the following simultaneous equations by the multi-
plication-:addition method: 

5x + 7y = 3 
3x + 14y = 6 

Multiplying the first equation by —2 and adding the second gives 

—10x — 14y = —6 
3x + 14y = 6 

gives 
Hence, 

— 7x = 
x = 0 Ans. 

Substituting x = 0 in the first equation, y = ,¡ Ans. 

Illustration of the Substitution Method.—The following set of 
two equations is to be solved by the substitution method: 

4x + 3? = 5 (12) 
6x — 7R = 19 

First, solve Eq. (12) for R, obtaining 

R= 
5— 5 — 4x 

(13) 

(14) 

Second, copy Eq. (13) but in the place of R write the fraction 
as given in Eq. (14). This is permissible because R is equal to 
this fraction. The result of this substitution is then 

7(5 — 4x) 
6x — 19 (15) 

3 

This equation contains only one unknown number, x. The 
unknown number R has been eliminated by substitution. Multi-
ply both sides of the equation by 3, giving 

18x — 7(5 — 4x) = 57 



114 APPLIED MATHEMATICS 

Removing the parentheses 

gives 18x — 35 ± 28x = 57 
Collecting terms, 46x = 92 
Hence, x = 2 Ans. 

Third, substitute 2 for x in Eq. (14), giving 

R = 5 — 4x 5 — 8  
3 = 3 

= —1 Ans. 

Check: Substitute x = 2 and R = —1 in Eqs. (12) and (13), 
thus 

4x + 3R = 5 
8 — 3 = 5 

5 = 5 

6x — 7R = 19 
12 + 7 = 19 

19 = 19 

Hence, x = 2 and R = --1 is the one and only solution to this 
set of simultaneous equations. 
The -substitution method, just shown, can be used in more 

difficult situations than the multiplication-addition method. 
This can be illustrated by noting the following pair of equations: 

3x + 2R = 4 
x2 + R2 5 

(16) 
(17) 

Equation (16) is a linear equation (of the first degree, since 
x and R appear to the first power). Equation (17) is a quadratic 
equation (of the, second degree, since x. and R appear to the 
second power). 

First, solve Eq. (16) for R, obtaining 

R = (18) 
2 

Second, substitute this value of R in Eq. (17) to obtain 

x2 + (4 - 31 = 5 or 
\ 2 4 

Multiplying both sides by 4, 

4x2 + 16 — 24x -F 9x2 = 20 
Collecting terms, 13x2 — 24x — 4 = 0 (19) 

This is an equation in x only and can be solved for x very 
easily by the methods of the next chapter. The above set of 
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simultaneous equations could not be solved by the multiplication-
addition method. 

Example 3. Solve by the substitution method the following problem: 
The sum of the three angles of a triangle is 180°. If one acute angle of 

the right triangle is four times the size of the other, determine the size of 
the two acute angles. 

Solution. From the first statement let a and t3 be the two acute angles 
to get 

« +13 + 90° = 180° 
or a -I- p = 90° 

From the second statement, 
« = 40 

Substituting this value of « in the first equation gives 

4r9 + = 90 
a = 18° Ans. 

and « = 4$ = 4(18)° = 72° Ans. 

Classification of Linear Simultaneous Equations.—Some sets 
of equations have no solution. To illustrate, the equations 

2x ± 3R = 5 
2x ± 3R = 7 

contradict each other, and are inconsistent. The graphical 
method shows that they are parallel lines and hence do not meet 
to give a solution. 
Some sets of equations are dependent, because one equation 

can be made exactly like the other by multiplying by some 
number. To illustrate, the first equation of the set, 

3x ± 6R = 7.5 
2x + 4R =. 5 

becomes the second when it is multiplied by h. The graphical 
method shows that both equations represent the same straight 
line, hence they have an infinite number of solutions. Such 
equations are sometimes called "indeterminate equations." 

All sets of equations that are neither inconsistent nor dependent 
are called "independent." Their graphs are distinct nonparallel 
lines and they always have a single solution. That is, they 
cross at only one point. If the equations are written in general 
form, we have 

bly = ci (20) 
ct2x b2y = c2 (21) 
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where al, b1, c, a2, b2, and c2 are any numbers. It can be shown 
that the equations are independent if 

aib2 — a2bi 0 0 (22) 

and either dependent or inconsistent if aib2 — a2bi = 0 (23) 
Illustration of Independent.—Consider the simultaneous equa-

tions 
2x + 4y = 10 (24) 
5x — y = 8 (25) 

From the notation of Eqs. (20) and (21), the quantity 

alb2 — a2bi, 

for example, can be written 

(2)( —1) — (5)(4) 0 0 or — 2 — 20 0 0 

Hence the equations are independent and have only one solution. 
Illustration of Dependent.—Consider the simultaneous equations 

2x ± 4y = 10 
5x ± by = 25 

(26) 
(27) 

From the above notation, aib2 — a2bi for this illustration is 

(2)(10) — (5)(4) = 0 or 20 — 20 = 

Hence the equations are either dependent or inconsistent. In 
this case we see that they are dependent because, if Eq. (26) is 
multiplied by 2.5, Eq. (27) results. 

Illustration of Inconsistent.—Consider the simultaneous equa-
tions 

2x ± 18y = 9 
X 9y = 10 

(28) 
(29) 

From the above notation, aib2 — a2bi for this illustration is 

(2)(9) — (1)(18) = 0 or 18 — 18 = 

showing that the equations are either dependent or inconsistent. 
In this case multiplying Eq. (29) by 2 gives 2x ± 18y = 20 
which does not check with the right-hand side of Eq. (28); hence 
the equations are inconsistent. 

Second-order Determinants.—From the multiplication-addi-
tion method, a handy tool known as a "determinant" can be 
developed. 
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Two simultaneous equations can be written in general form, 
as follows: 

aix biy = ci (20) 
b2y = c2 (21) 

To develop this new tool multiply the general Eq. (20) by b2 
and Eq. (21) by —b1 giving 

aib2x bib2y = ci.b2 (30) 
and 
Adding, 

or 

—a2bg — bibe = —c2bi  
(aib2 — a2bi)x = b2ci — bic2 

— b2ci — bic2  
x  

alb2 a2b1 

(31) 

(32) 

Similarly, multiply Eq. (20) by — a2 and Eq. (21) by al giving 

—alazx — azbiy = —azci 
and alazx aibzy aicz  
Adding, (aib2 — a2b1)Y = ctic2 — a2ci 

alc2 — a2ci  or 
= aibz — azbi 

(33) 
(34) 

(35) 

Equations (32) and (35) are the desired equations which will 
give the solution of the general Eqs. (20) and (21). 

It is more convenient to write these solutions by the notation 
of determinants, as follows: 

Y — 

The term 

c1 bli 

C2 b2  

al 611 
az b21 

al cl 
az c2 

bi 
az bz 
c1 bl 

c2 b2 

(36) 

(37) 

is called a determinant and is equal to cib2 — bic2. In other 
words, from the product of the two elements cib2 in the principal 
diagonal the product of the elements be2 in the other diagonal 
is subtracted. This is the numerator in the fraction of Eq. (32) 
expressed in plain algebra and also the numerator of Eq. (36) 
expressed in determinant notation. 
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Illustration of Determinants.—The following two equations are 
to be solved by the method of determinants: 

2x + 3y = 6 (38) 
3x — 8y = 24 (39) 

Substituting in Eq. (36) for x gives 

I 6 3 
124 — 8 _ (6)( —8) — (3)(24) = —48 — 72 120 

x = 
2 3 (2)( —8) — (3)(3) —16 — 9 — 25 
3 — 8 

= 4.8 Ans. 

Substituting in Eq. (37) for y gives 

2 6 
3 24 (2)(24) — (6)(3) _ 48 — 18 30 

Y = 2 3 (2)( — 8) — (3)(3) —16 — 9 —25 
3 — 8 

= —1.2 Ans. 

The student should substitute these values in the original 
equation to check that they are correct. 

Example 4. Solve by determinants 

2x — y = 1 
X 3y = 11 

Solution. 

By Eq. (36) x 

By Eq. (37) Y 

1 —11 
11 31 3 11 14 
2 —11 6 + 1 7 
1 31 

2 1 
1 11 22 — 1 21 
2-1 — 6 + 1 7 
1 3 

— 2 Ans. 

— 3 Ans. 

Sets of Three Linear Equations.—With three linear equations 
it is possible to solve for three unknowns, provided the equations 
are independent. 
One linear equation constitutes a line (one dimension). Two 

linear equations define a surface (two dimensions). Three 
linear equations define a solid (three dimensions). The graphical 
method is not so useful with three linear equations since it is 
normally only two dimensional; hence it will not be treated here. 
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The multiplication-addition method and the substitution method 
will be treated by means of examples. 

Illustration of Multiplication-addition Method.—The following 
set of three equations is to be solved for x, y, and z: 

2x — 3y z = —4 (40) 
3x + y + 2z = 7 (41) 

4x — 2y + 3z = —1 (42) 

The plan is to eliminate x from the first two equations and 
then from the last two equations of the above set. This will 
result in a new set of two equations in two unknowns, namely y 
and z. This set can then be solved by any of the methods just 
explained. 

Proceeding with the solution, 

Multiply Eq. (40) by —3 —6x + 9y + 3z = 12 (43) 
and multiply Eq. (41) by 2  6x + 2y + 4z = 14 (44) 
Adding, 11y + 7z = 26 (45) 
Now multiply Eq. (41) by 4 12x + 4y + 8z = 28 (46) 
and multiply Eq. (42) by —3 —12x + 6y — 9z = 3 (47) 
Adding, lOy — z = 31 (48) 

The new set of Eqs. (45) and (48) when solved give 

y = 3 Ans. 
z=-1 Ans. 

Substituting these values in Eq. (40) shows that 

x = 2 Ans. 

The check consists of substituting these values in all three of 
the original Eqs. (40), (41), and (42) to see if they are true. 
This is left to the student. 
There are many possible ways of using this method. In the 

above example, what multipliers should be used to eliminate y 
from Eqs. (40) and (41); and from Eqs. (41) and (42)? What 
multipliers should be used to eliminate z from Eqs. (40) and 
(41); and from Eqs. (41) and (42)? 

Illustration of Substitution Method.—The following set of three 
equations is to be solved for x, y, and z: 

3x + 2y — 4z = 3 (49) 
2x + y + 3z = 8 ' (50) 
5x + 3y + 2z = 14 (51) 
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The method is to solve for one of the numbers x, y, or z in one 
of the equations, substitute its value in the other two equations, 
and then solve the resulting set of two equations. 

For illustration, solve Eq. (50) for y, since its coefficient is 
unity. 

y = 8 — 2x — 3z (52) 

Substituting this value of y in Eqs. (49) and (51) and simplifying 
gives 

3x + 2(8 — 2x — 3z) — 4z = 3 or x 10z = 13 (53) 
5x + 3(8 — 2x — 3z) + 2z = 14 or x + 7z 10 (54) 

Solving Eqs. (53) and (54) yields 

x = 3 Ans. 
z = 1 Ans. 

Substituting these values of x and z in Eq. (52) results in 

y = 8 — 6 — 3 = —1 Ans. 

The student can now check these answers by substitution in 
the original Eqs. (49), (50), and (51) to verify the work. 

Third-order Determinants.—In a manner similar to the 
development of second-order determinants, it is possible to set 
up determinants for the solution of three simultaneous equations. 
The three simultaneous equations c'an be written in general 

form, as follows: 
aix bly + ciz = dl (55) 
azx + b2y + c2z = d2 (56) 
a3x + b3y + c3z = d3 (57) 

The solution of these equations is given by the following 
determinants and the corresponding algebraic equations: 

x — 

dl b1 ci 
d2 b2 c2 
d3 b3 Cs  

b1 cl 
a2 b2* e2 
as b3 c3 
ai dl cl 
a2 d2 e2 
a3 d3 c3  

b1 cl 
a2 b2 c2 
a3 b3 c3 

dib2c3 + bic2d3 + cid2b3 
—dic2b3 — bid2c3 — cib2d3 

aib2c3 + bic2a3 + cla2b3 
—alc2b3 — bla2c3 — cib2a3 

ald2c3 HF dic2a3 HF cla2d3 
—aic2d3 — dia2c3 — cid2a3 

a4b2c3 blc2a3 HF cla/b8 
—alc2b3 — bet2c3 — cib2a3 

(58) 

(59) 
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z — 

al bi d1 
az bz dz ailhd3 bidza3 dia2b3 
a3 b3 d3 —aid2b3 — biazd3 — dib2a3 
al b1 c1 - althea ± bicza3 cia2b3 
az bz _2 —aiczb3 — bia2c3 — cib2a3 
a3 b3 c3 

(60) 

The positive terms are obtained from the product of the 
three elements in the diagonals running down from left to right 
and the negative terms are obtained from the product of 
the• three elements in the diagonals running down from right to 
left. 

It will be noted that the denominators are the same in each 
case, being the coefficients of x, y, and z of the original Eqs. (55), 
(56), and (57). The numerators can be obtained from the 
denominators by replacing the coefficients of the unknowns in 
question by the known terms dl, dz, and da. 

Illustrations of . Determinants.—The following set of three 
equations is to be solved by the method of determinants: 

• x — y — z = —6 (61) 
2x + y + z 0 (62) 

3x — 5y + 8 = 13 (63) 

Substituting the coefficients in Eq. (58) gives x. 

x = 

—6 —1 —1 
0 1 1 
13-5 8 —78 
1 —1 —1 39 
2 1 11 
3 — 5 81 

= —2 Ans. 

Substituting the coefficients in Eq. 59 gives y. 

Y= 

1 —6 —1 
2 0 1 
3 13 8 
1 —1 —1 
2 1 1 
3-5 8 

39 
— —  39 1 Ans. 
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Substituting the coefficients in Eq. 60 gives z. 

1 — 1 — 6 
2 1 0 
3 — 5 13 117 

z = 1 — 1 —1 — 9 = 3 Ans. 

2 1 1 
3 — 5 8 

The student can verify these answers by substituting them 
back in the original Eqs. (61), (62), and (63). 

After a little experience with using determinants, the tool 
becomes well polished and easy to operate in solving otherwise 
rather tedious problems. 

Example 5. Solve by determinants, 

2x + 3y + z = 4 
x + 2y + 2z = 6 

5x + y + 4z = 21 

Solution. 

BY Eq. (58), ec — 

By Eq. (59), y = 

By Eq. (60), z — 

4 3 1 
6 2 2 
211 4 
2 3 1 
1 2 2 
5 1 4 

2 4 1 
1 62 
5 21 4 
2 31 
1 22 
5 14 

23 4 
12 6 
5 1 21 
23 1 
12 2 
51 4 

32  + 126 + 6 — 42 — 8 — 72 
16 + 30 + 1 — 10 — 4 — 12 

42 
= 2 Ans. 

21 

48 + 40 + 21 — 30 — 84 — 16  
16 + 30 + 1 — 10 — 4 — 12 

21 
— — = —1 Ans. 

21 

84 + 90 + 4 — 40 — 12 — 63 
— 16 + 30 + 1 — 10 — 4 — 12 

63 
= 2-1 = 3 Ans. 

Any Number of Linear Equations.—From the discussion of 
sets of two and three equations, it becomes apparent that the 
number of independent equations is the same as that of unknown 
numbers. The multiplication-addition and substitution meth-
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als, or a combination of the two, can be applied to any number 
of equations. One equation is necessarily used in eliminating 
each unknown number until there remains only one equation in 
one unknown, which can be solved for that unknown. If one 
equation of the set can be changed into the exact form of another 
equation of the set, then they are dependent. If two of the equa-
tions of the set contradict each other, then the set is inconsistent. 

Determinants are especially convenient in solving simultaneous 
equations of the higher order. The procedure is to set down the 
general form of the set of equations, then form the denominator 
by setting up the array of coefficients of the unknowns. The 
numerators can be made from the denominators by replacing 
the coefficients of the unknown with the known terms. The 
diagonals running down from left to right are positive and those 
running down from right to left are negative. Furthermore, 
the theory of minors must be used to secure all the terms. For 
illustration a fourth order determinant will contain 24 terms. 
In the fourth order determinant, 

al bl c,. dl 

a2 b2 C2 d2 

as bit eg ds 
a4 b4 e4 d4 

the term al must be multiplied by its minor which is the determi-
nant remaining when the row and column containing al is 
removed. This gives 6 terms. Performing this operation for 
the terms b1, cl, and d1 results in 18 more terms to make the total 
of 24 terms. 
Summary.—First let us define some of the terms used in this 

chapter. 
1. A linear equation is a statement of equality with the un-

knowns only of the first degree. In other words, it states that 
everything on the left side of the equal sign is exactly equal to 
everything on the right side of the equal sign; and if there are 
two unknowns (such as x and y), they are only of the first power, 
not squared (such as x2 or y2) or multiplied by each other (such 
as xy). 

2. Simultaneous equations are statements of equality that are 
true at the same time and have a common solution. 
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3. Independent equations are statements of equality that are 
all different, but have a single common solution. 

4. Dependent equations are statements of equality that are 
alike and therefore have an infinite number of solutions. 

5. Inconsistent equations are statements of equality that cannot 
both be true at the same time, and therefore do not have a 
common solution. 
Now, with these five definitions clearly in mind, you can see 

what the problems at the end of this chapter are like. For 
example, suppose you have two equations that are not alike and 
do not disagree. Then they fit definitions 1, 2, and 3 above and 
are called "independent linear simultaneous equations." If 
both of them have x and y and there are no other unknowns, then 
the two equations can be solved for x and y. You will be able to 
find one and only one value of x and one and only one value of 
y that will make both equations true at the same time. 

If the equations are dependent you will fini that any set of 
values for x and y that suit one equation will also suit the other 
equation. This means that you really have only one equation 
and not two. 
But if the equations are inconsistent you cannot find one set of 

values for x and y that will suit both equations at the same time. 
Hence you do not have a problem that you can solve. 
Many students have trouble trying to solve dependent and 

inconsistent sets of equations. The fact is that they are not to 
be solved. The student must understand this or he will be 
held back in his later work. The only kind of simultaneous 
equations that can be solved are independent ones. The exer-
cises of this chapter are made to help you pick out the inde-
pendent sets of equations from the dependent and inconsistent 
ones. 
Students and teachers are often called upon to solve practical 

problems. In doing so they might be required to set up a set 
of simultaneous equations. As an illustration, the currents of a 
network can be found if the voltages and impedances are known. 
What is to be done if the equations made up turn out to be 
dependent or inconsistent? If they are dependent, it means that 
the student has not obtained enough independent equations. 
Hence he will have to set up more equations until he has as 
many independent equations as he has currents (or unknowns) 
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to be determined. If the equations are inconsistent, it means 
that he has taken some wrong steps. Therefore, he must go 
back and correct the equations that he set up wrongly. 
Now that it is clear that you must have independent simul-

taneous equations before you can solve them properly, you will 
see that this chapter tells you how to solve for them in four 
different ways. Sometimes one way is better than another. 
Therefore, you should become acquainted with all of the methods 
of solving simultaneous equations. 

1. The graphic method is used only with two equations involving 
only two unknowns, but it is very useful in helping to understand 
the meaning of independence, dependence, and inconsistence. 
Try it on each kind of problem and see for yourself. 

2. The multiplication-addition method is not very often used 
except for the more simple problems. Sometimes, however, 
you will find that it will.save you time, and you should practice 
it until you know how it works. 

3. The substitution method is more useful because it can be used 
in all problems of simultaneous equations. Therefore you must 
become thoroughly acquainted with it. 

4. The method of determinants is quite fully , explained in this 
chapter. There are no tricks intentionally not told to you, but 
the more you use this method the more you will see that it is a 
very practical method to use in solving sets of equations. It is 
very important that you get the equations in the standard form 
before you start to apply this method. Then the expansion of 
the determinants by diagonals must be thoroughly understood. 
The following illustration should make this clear for you. 

Rewrite the first two columns on the right-hand side of the 
determinant and draw diagonals as indicated, the product of the 
terms in the right-hand diagonals being positive and those in 
the left-hand diagonals negative. 

1 2 3 4 5 6 
-F + — — •-• 

a' b' 1 2 3 4 È 6 

e = + aei 4- bfg + cdh ceg — afh — bdi 

Instead of rewriting the columns the arrows can be curved around 
to get the same terms, as follows. 



126 APPLIED MATHEMATICS 

1 2 3 4 5 6 

= + aei + bfg + chd - ceg - bdi - ah! 

The arrows show you how to write down the plus and minus signs 
as the chapter explains. The method of determinants avoids 
much of the algebraic work that is required in the other methods. 
Learn to use it. 

Exercises 

Inspect the following sets of equations for dependence or inconsistence 
and solve the independent sets: 

1. x + 3y = 7. 
4x + 12y = 28. 

2. x -I- 2y = 13. 
2x - y = 1. 

3. 3x + y = 10. 
9x + 3y = 13. 

4. 3R1 4- R2 2R8 = 5. 
12R8 + 4E2 - 8E8 = 20. 

5. IR + 2E - IZ = 21. 
E 

2Z - 2 - - 8E = 16. 

31E + IZ -, E =7. 

6. 2x + 3y + z = 17. 
x + y + 2z = 23. 

14x + 5y - 3z = 3. 
5 

7. 7 - - - = 
X y 
2 4 
- + - = 11. 
X y 

8. ax + by = 2ab. 
bx + ay = a2 + b2. 

9. 1.2x - 1.7y = 8. 
0.4x + 1.1y = 5. 

10. 10 = 0.5E1 + 0.25E2. 
20 = 10E1 - 4E2. 

The student should use all the methods outlined in order to become 
familiar with them. 



CHAPTER 10 

QUADRATIC EQUATIONS 

Many problems arise in engineering which can be worked by 
an equation containing the unknown quantity squared. The 
quadratic equation is an equation which contains the unknown 
quantity to the second power. The values of the unknown quantity 
which will satisfy this equation are called " roots of the equation." 
There are in general two roots that will satisfy the equation. 
The simplest type of quadratic equation is called a "pure 

quadratic." In the pure quadratic equation the unknown term 
is squared and there is no unknown term raised to the first 
power. The general form of a pure quadratic is 

ax2 c = 0 (1) 

The solution of this equation is to solve for x by transposing c 
to the right hand side, dividing both sides by a, and extracting 
the square root of both members, thus 

Example 1. Solve: 2x2 — 8 = O. 

Solution. Transposing, 2x2 = 8 
Dividing by 2, x2 = 4 
Extracting the square root of both sides, x = 
or x = 

Illustration of a Quadratic Equation. 
tion shows how a problem may lead 
to a quadratic equation. Referring 
to Fig. 53, it is desired to select the 
resistance R such that the resistance 
between terminals 1 and 2 is 4 ohms. 
The conditions of the problem can 

be expressed by the equation 

+2 Ans. 
—2 Ans. 

—The following illustra-

6 
1 —vvvvvv—vvm— 2 
o  

FIG. 53.—Series-parallel resis-
. tors. 

R(R + 6)  
4 — R (R + 6) 

127 

(3) 
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Multiplying both sides of the equation by 2R -I- 6, to clear the 
equation of fractions, 

4(2R + 6) = R2 + 6R 

Transposing all terms to the left-hand side, 

R2 — 2R — 24 = 

(4) 

(5) 

This is a quadratic equation in R. If factored, it can be written 

(R — 6)(R + 4) -- 0 (6) 

This equation is true if R = 6, hence (6 — 6) = 0 or if R = — 4 
so that ( —4 ± 4) = O. The resistance R can then be either 
6 ohms or —4 ohms. The value normally selected would be 
6 ohms, because it is easier to obtain than a —4 ohm resistance 
device. The two answers are the two roots of the equation. 

Example 2. Solve the following equation by factoring. 

x2 — 4x — 21 = 0 

The product of the two factors must equal —21 and their sum must equal 
—4. It is soon discovered that +3 and —7 are factors that meet this 
condition, hence the equation can be factored and written 

The solutions, then, are 

or 

(x + 3)(x — 7) = 

x = —3 Ans. 
x = 7 Ans. 

Methods of Solution.—Quadratic equations can be solved by 
the methods of graphing, factoring, completing the square, or 
using the quadratic formula. The most useful method is the 
quadratic formula. 
The factoring method is illustrated above. The other methods 

will be illustrated below. 
Illustration of the Graphic Method.—Solve the quadratic 

equation, x2 — 2x — 3 = 0 by graphing the curve 

y x2 — 2x — 3. 

Since the zero is replaced by y, the solutions of x will be the 
value of x when y = O. 
To draw the graph of y = x2 — 2e- 3 the values of y are 

obtained when x is given values as shown in Fig. 54a. The 
solution will be the values of x when y = O. In this case x = —1 
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and x = 3 are the desired roots. Moreover, if 0 is substituted 
for y in the equation these same roots can be obtained by .any 
of the other methods of solution. 

x2-2x-3=y 

x y 

-3 12 
-2 5 

Ans.-1 0 
0 -3 
1 -4 
2 -3 

Ans. 3 0 

o +3 X 

(a) (b) 
54.—Graphical method of solving a quadratic equation. 

The solution can be checked by substituting first one root and 
then the other to see if the original equation is satisfied, thus: 

For x = —1 

(-1)2 — 2( —1) — 3 = 0 or 1 + 2 — = 0 Check. 

and x = 3 

(3)2 — 2(3) — 3 = 0 or 9 — 6 — 3 = 0 Check. 

Illustration of Completing the Square.—Solve 

x2 + 6x — 16 ----

by completing the square. 

Transposing, —16 x2 + 6x = 16 (7) 
Adding 9 to both members x2 ± 6x ± 9 = 25 (8) 

Taking the square root of both members, 

x + 3 = +5 (9) 
Hence, x = 5 — 3 = 2 Ans. 
Or x = —5 — 3 = —8 Ans. 

Another method of checking by multiplying the factors is as 
follows: If x = 2, then x — 2 = 0; if x = —8, then 

x + 8 = 0; 
and the product 

(x — 2)(x + 8) = x2 + 6x — 16 = 0 (10) 

This checks the original equation. 
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Quadratic Formula.—The general form of the quadratic 
equation can be expressed 

ax2 bx c (11) 

In the above illustration, x2 -F 6x - 16 = 0, we have a = 1, 
b = 6, and c = -16. 
Dividing the general quadratic equation by a, 

x2 + -a x + -a = 0 (12) 

Transposing c/a 

x2 -I- a- x = - -a (13) 

This corresponds to Eq. (7) in the above illustration. Adding 
to both members the square of b/2a, 

, b b2 c b2 
x- -r- - x , — = - - + — 

a 4a2 a 4a2 
(14) 

In the above illustration note that 34 of 6 when squared gives 
9. See Eq. (8). 

Find the square root of both members of the equation, using 
both + and - roots of the right-hand member, thus 

-r 
, b i , b2 c 

= — 
"N4a2 - a 

(15) 

This corresponds to Eq. (9) of the illustration. Using first the 
positive value and then the negative one results in two new 
equations of x, 

and 

-b Ib2 c 
x = 

2a 4a2 a 

-b b2 c 
x =  

2a 4a2 a 

These equations correspond to x = 5 - 3 = 2 and 

x = -5 - 3 = - 8 

(16) 

(17) 

in the above illustration. 
If the b/2a of Eq. (15) is transposed to the other side, the 

c/a term multiplied by 4a in both numerator and denominator, 
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and the two terms under the radical reduced to a common 
denominator, then 

—b , \ib2 — 4ac 
x = 

2a — 4a2 
(18) 

Since the square root of 4a2 is 2a, it can be written outside the 
'radical as a common denominator, thus 

—b + b2 — 4ac 
X — (19) 

2a 

This is the quadratic formula, which should be memorized. In 
words it is usually stated "x equals minus b plus or minus the 
square root of b squared minus four ac, all divided by two a." 

Example 3. Solve the following equation by means of the quadratic 

formula: 
3R2 - 7R + 4 = 0 

In applying the formula it is noted that a is +3, b is —7, and c is +4, the 
unknown number being R instead of x. Making these substitutions in 
Eq. (19), the formula gives 

— (- 7) R —  ± *V( — 7)2 — 4(3)(4) 
2 (3) 

Simplifying further, 

Hence 

and 

R — 6 

7 + 1 4 
R = — — Ans. 

6 3 
7 — 1  

Ans. 
6 

7 ± V49 — 48 

Check by the sum and product of the roots method is done as follows: 
Adding the two roots as given in Eqs. (16) and (17), 

—b —b —b 
2a 2a = a 

Adding the two roots in the answers, 

or 

4 7 

— ( — 7) — b 
3 a 

Multiplying the two roots as given in Eqs. (16) and (17) by the method as 
illustrated on page 41 for (x + y) (x — y) = x2 — y2, 

2 b2 !N2 = 

'-;:i 4a2 a) ei 
(20) 
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In this example the product of the two roots is (%)(1) = which should. 
and does equal c/a. 

The quadratic equation will now be explained in more detail. 
The general form of the quadratic equation is 

ax2 bx c = 0 (11) 

The first term ax2 is made up of a product of a known number 
a and the unknown number x raised to the second power, (x2). 
The second term is also a product of a known number, b, and 
the unknown number, x. The third term is simply another 
known number, c. It might be asked why these terms, added 
together, make a quadratic quantity that is equal to zero. 
That will be seen to be true when a, b, c, and x are explained. 
First, a is a known. jiinmber. It can be a positive number (greater 
than zero) or a negative number (less than zero). It can never 
be zero (see definition at end of the chapter). Second, b can 
also be a positive or negative number, but it can also be zero. 
Third, c can be a positive or negative number or zero. Now if 
a, b, and c are integer numbers it is easy to find a value of x that 
will make the quadratic quantity 

022 bx c 

equal to zero. To illustrate, if a = 2, b = —5, and c = 3, then 
ax2 bx c will be the quadratic quantity 2x2 — 5x ± 3. 
Hence it is plainly possible to find a value for x that will make 
this quadratic quantity in x equal to zero. In fact there are 
two values of x that will make 2x2 — 5x + 3 equal to zero. 
But instead of going into the methods of finding these values 

of x it is more important at this point of the discussion to under-
stand what the problem is. These coefficients a, b, and c, even 
though they are known numbers, might cause the student con-
siderable trouble unless he realized what they meant. Instead 
of being numerals, each of them might be a quantity, so we should 
really consider them as expressions. Just as a stands for the 
whole thing by which x2 is multiplied, b stands for the whole 
thing by which x is multiplied, and c stands for the whole thing by 
which unity (1) is multiplied. Since c is made up of the constant 
terms, it is often referred to as the constant of the equation. If 
the quadratic equation is not arranged so that the coefficient of 
x2, which is a, can be seen and dealt with as a term or quantity, 
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it must be rearranged. Likewise the coefficient of x, namely b, 
must be rearranged and collected into a quantity. When a, b, and 
c can be written down and the equation is arranged according 
to the descending powers of x with the right side of the equation 
zero, then the quadratic equation is in its standard form and is 
ready to solve. To illustrate, the quadratic equation 

7 kx 9x2 k = 17x ± 8 kx2 6 

is rearranged as follows: 

(9 — 8k)x2 -F (k — 17)x (k 1) = 

This rearranged equation is the same as the other quadratic 
equation but is in its standard form with a equal to (9 — 8k), 
b equal to (k — 17) and c equal to (k 1). When the student 
is able to rearrange any kind of quadratic equation so that it 
will be in its standard form, which is the general form 

ax2 -F bx c = 0, 

then he is ready to solve any quadratic equation he may encounter. 
Use of the Discriminant b2 — 4ac.—The quantity b2 — 4ac 

under the radical in the quadratic formula is called the dis-
criminant because its value decides whether the roots are equal 
or unequal, real or complex, rational or irrational. 

Case I. If b2 — 4ac is zero the roots are equal and real. 
For illustration, in the equation 

4x2 — 12x -F 9 = 
• 

a = 4, b = —12, c = 9 and b2 — 4ac = 144 — 144 = 0. 
The usual solution is written 

12 -F 12—VO 
x — and x — 

8 8 

both of which reduce to 1.5. Hence the roots are equal and real. 
Case IL. If b2 — 4ac is positive (greater than zero) the roots 

are unequal and real. For illustration, in the equation 

3x2 — 7x — 20 

a = 3, b = —7, c = —20 and b2 — 4ac = 49 -I- 240 = 289. 
The roots are 
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7 + V289 7 + 17 
x = — 4 

6 6 

7 — Vig 7 — 17 = — and x = 
6 6 

which are unequal and real. 
Case III. If b2 — 4ac is negative (less than zero) the roots are 

unequal and complex numbers. For illustration, in the equation 

3x2 — 2x + 1 = 

a = 3, b = —2, c 1, and b2 — 4o,c = 4 — 12 = —8. The 
roots are 

and 

— 2 + -V-8 1 j  
x  

6 3 

2 —  1 — j  
x — 

6 3 

where j2 = —1 or, taking the square root, j = 
These roots are unequal and complex numbers. 
Case IV. If b2 — 4ac is an exact square or zero the roots are 

rational, otherwise they are irrational. For illustration, in the 
equation 

x2 — 5x + 4 = 

a = 1, b = —5, c = 4 and b2 — 4ac = 25 — 16 = 9. 
The roots are 

and 

x —  
2 

5 —  
X = = 1 

2 

These roots are rational numbers. But in the illustration of 
the equation 

x2 — 5x — 3 = 

a = 1, b = —5, c = —3, and b2 — 4ac = 25 + 12 = 37 
The roots are 

and 

5 -I--  x = 
2 

5 — Nrs-7  x - 
2 
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These roots are irrational numbers, because N/-3-77 cannot be 
expressed as a fraction. 

It is very important to have a clear understanding of what the 
solution of a quadratic equation means. A further discussion 
of the discriminant should assist in giving a clear meaning of the 
solution. 
A quadratic equation in one unknown number has two values 

of that unknown that will make it true. If x is the unknown 
number, there will always be two values of x that will satisfy 
the equation, but they don't have to be integers. They can be 
fractions, irrational numbers, or complex numbers. There is 
only one case in which the two values of x are equal and that is 
when the quadratic in x, namely, ax2 bx c, is a perfect 
square. Probably the best way for the student to understand 
the meaning of all these different situations is by graphing the 
quadratic as illustrated in this chapter. Then the student will 
see for himself that the curve of the quadratic function y (y 
being the value of ax2 bx c) crosses the x-axis twice in all 
cases but two. One is when the two values of x are equal and in 
this case the curve just touches the x-axis. The other case is 
when the curve does not touch or cross the x-axis. In this case 
both values of x that make y equal zero are complex numbers. 
One way of expressing the meaning of this solution is to say that 
the curve crosses the x-axis in two imaginary places, because the 
complex numbers involve the imaginary number -V —1. 

Example 4. Solve the following equations by the quadratic formula: 

X2 - 8x + 15 = 0 (a) 
x2 — 8x + 16 = 0 (b) 
x2 — 8x + 17 = 0 (c) 

Determine from the value of the discriminant the case number. Plot 
a graph of the equations. 

Solution. By the quadratic formula the solutions are 

8 ± N/64 — 60 — 4 ± 1 = 3 or 5 Ans. For Eq. (a), 
2 

8 ± N/64 — 64 
For Eq. (b), x = — 4 Ans. 

2 

8 ± N/64 — 68 
For Eq. (e), x = — 4 ± /1 Ans. 

2 
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The values of the discriminant are: For Eq. (a), 52 — 4ac = 4, 
a positive number; hence the roots are unequal and real.— 
Case II. Ans. 
For Eq. (b), b2 — 4ac = 0; hence the roots are equal and real. 

—Case I. Ans. 
For Eq. (c), b2 — 4ac = —4, a negative number; hence the 

roots are unequal and complex numbers.—Case III. Ans. 
By Case IV, the roots of Eq. (a), (b), and (c) are rational. 
The graphical solutions are as follows: 

Eq. (a) Eq. (b) Eq. (c) 
y x2 — 8x + 15 y = x2 — 8x + 16 y = x2 — 8x + 17 

O the quadratic formula and 
should be treated here, since 
the method will be useful for 

solving a few problems later in the course. These special equa-
tions can be reduced to 

af4 + bf2 + c = 0 (21) 

y 
8 
3 
o 

—1 
O 
3 
8 

2 
3 Ans. 
4 
5 Ans. 
6 
7 

F 
4 

1 

0 

1 

4 

9 

y 
10 

2 5 
3 2 
4 Ans. Imaginary 1 
5 2 
6 5 
7 10 

2 
3 
4 Ans. 
5 
6 
7 

See Fig. 55 for the graphs of these equations. It will be noted 
that the imaginary solution lo-
cates the vertex of the para-
bola. 
Higher Powered Equations. 

It is possible to solve equations 
to the third power in a manner 
similar to the above method of 
solving an equation to the sec-
ond power, but, since this meth-
od will not be needed, it will not 
be treated here. 
Some problems involving the 

 X fourth power can be worked by 

(c) 

FIG. 55.—Graphic solutions of Eqs. (a), 
(b), and (c) in Examp e 4. 
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In this type of problem let x = f2 and the general form of the 
quadratic formula results, that is, 

ax2 + bx + c = (11) 

Example 5. In a certain series parallel circuit it is found that the fre-
quency f can be expressed as 

2 2 X 10-1 j,4 _ 6f2 ± 4 X 1012 = 0 

It is desired to solve this equation for f since this solution will give the 
frequency at which the circuit is resonant. At present we are interested 
only in the method; later in the course we shall be interested in the 
results of such a solution. 

Solution. Applying the quadratic formula, 

/2 6 ± V62 — 4(2 x 10-12)(4 X 1012) 
2(2 X 10-12) 

6 + N/36 — 32 6 + 2  =  — 
4 X 10-12 4 X 10-12 

f2 = 2 X 1012 or f2 = 1 X 1012 
Then, f = 1.414 X 108 or f = 1 X 106 Ans. 

Some Useful Definitions. 

1. A quadratic equation is an equation of the second order. 
In other words, it is an equation in which the unknown number 
is raised to the second power (squared) and no higher power. 
The first power of the unknown can also be present in the equa-
tion but it doesn't have to be present. The second power must 
be present; if only the first power of the unknown is present, the 
equation is linear and not quadratic. 

2. A quantity is a product or sum of numbers. These numbers 
may be known or unknown. Notice that a quantity is not an 
equation because it is not a statement of equality, and that it 
therefore does not have an equal sign in it. 

3. A term is a product of numbers. These numbers may be 
known or unknown. Notice that a term can be a quantity, 
but that a quantity that is a sum is not a term. 

4. An expression is a term or quantity, except that we think of 
an expression as a symbol that stands for something else or 
possibly for a class of things. 

Exercises 

1. x2 — 6x — 7 = 0. Solve by the factoring method. 
2. x2 12x = 28. Solve by completing the square. 
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3. x2 — 6x — 4 = O. Solve by using the quadratic formula. 
4. 5x2 — 3x — 4 = O. Solve by any method. 
5. x 1/x = 1/. Solve by any method. 
6. 2x2 — (V-27* V)x = O. Solve by any method. 
7. rsx2 rs = x(r2 s2). Solve by any method. 
8. Solve the following equation for x by using the quadratic formula: 

kx2 — 3kx + 9 = O. Then find the value of k that will make the roots 
equal. This is done by setting the discriminant equal to zero and solving 
for k. 

9. z2 — (2 k)x ± 4 = O. Follow the procedure used in Exercise 8. 
10. Solve the following equation for the resonant frequencies f. 

2f4 + 4608 = 200f2. 

• 



CHAPTER 11 

HYPERBOLIC TRIGONOMETRY 

Since traveling waves on a transmission line are very con-
veniently expressed in terms of hyperbolic functions, this chapter 
will be devoted to the mathematics of these functions. To 
simplify the presentation, certain parallels will be made with 
circular trigonometry as studied in Chapter 5. Hyperbolic 
functions also have valuable applications in the design of attenu-
ation networks and electric wave filters; hence they should be 
mastered before proceeding further in the course. 

Real Circular and Hyperbolic Angles.—In Fig. 56a, a circle 
with a unit radius is drawn. The equation of this circle with its 
center at the origin is 

x 2 + y2 = 1 (equation of a circle) (1) 

If values of y from —1 to +1 are substituted in this equation 
the values of x obtained from the equation will vary from —1 
to +1 and the points (x, y) will be on the circumference of the 
circle, hence this equation locates all points on the circumference 
of the circle and is known as the equation of this circle. 

If the sign of y2 is changed from ± to — the equation will no 
longer be the equation of a circle but that of a hyperbola as 
shown in Fig. 565. 

x2 — y' = 1 (equation of a hyperbola) (2) 

If values of y from — co to ± co are substituted in Eq. (2) 
the corresponding values of x will vary from — 00 to ± co and 
the points (x, y) will lie only on the curve as plotted in Fig. 565 
and a similar branch on the other side of the y-axis not shown. 

If a line is drawn from the origin 0 to some point P on the 
circumference of the circle it will make an angle /3 with the 
positive x-axis, as shown in Fig. 56a, If the radius of the circle 
is 1 inch and the shaded area AOP is 0.5 square inches, the angle 
/3 is 1 circular radian. Or, in equation form, 

p = 2 (shaded area) circular radians (3) 

when radius OA = unity. 
139 
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When p = 1 radian the arc AP is 1 in; hence for the above case 
the angle p is equal to the length of the arc in inches. If 13 
is to be expressed in degrees the conversion can be made by 
recalling that in half a circle there are ir radians or 180 degrees; 
hence 

1 circular radian = 57.296° (4) 

If a line is drawn from the origin 0 to some point P on the 
hyperbola in Fig. 565 an angle will be made with the positive 

••••• 

(a) Equation of Circle (b) Equation of Hyperbola 
x2-1-y2=1 2 2 

13=2 (Shaded Area) a= 2 (Shaded Area) 

FIG. 56.—Comparison of circular and hyperbolic angle. 

x-axis. If the distance from the origin 0 to the hyperbola along 
the x-axis is 1 in. and the shaded area AOP is 0.5 sq in., the 
measure is 1 hyperbolic radian. Or, in equation form, 

a = 2 (shaded area) hyperbolic radians (5) 

when distance OA = unity. 

Example 1. In Fig. 56 if y = 0.5 determine the value of x for the circle 
and for the hyperbola. 

Solution. Substituting y = 0.5 in Eq. (1) for the circle, 

(0.5)2 = 1  
or z = Vi — (03)2 = N/0.75 -= +0.866 Ans. 
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Substituting y = 0.5 in Eq. (2) for the hyperbola, 

x2 _ (0.5)2 = 1 

or X = + (0.5) 2 = = ±1.118 Ans. 
Construction of Trigonometric Circular and Hyperbolic Angle. 

Figure 57 illustrates a portion of Fig. 56, showing the con-
struction of trigonometric functions for the circular angle p in 
Fig. 57a and hyperbolic angle a in Fig. 57b. 

(a) Circular _Angle f3 
PQ=sin 
OQ = cos fi 
TA=tan 

e 

sinh a 

\\ cosh a 
• 

\ ex • 
,o45•\ 

eoec,\ 
• 
• 
• 
• 
• 

(b) Hyperbolic Angle a 
PQ= sinh a 
OQ = cosh a 
TA= tanh a 

Fro. 57.—Construction of trigonometric function from circular and hyperbolic 
angle. 

It will be recalled that the circular functions were explained in 
Chapter 5. A review will be given here. The circle of Fig. 57a 
is constructed with a radius of unity, then the hypotenuse of 
the triangle OP is unity and the sine of f3 is the distance PQ over 
OP (which is unity) hence 

PQ PQ 

Similarly the cosine of pis 0Q/OP, or simply 

OQ OQ 
COS/3_p_ _ = o--p- = T. - = OQ 
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The tangent of 13 is the ratio PQ/OQ or if the similar triangle 
TAO is used the base OA = unity and the tangent is simply 

sin 13 PQ • TA TA _ 
tan /3 = — = = _ TA (8) 

cos a QQ OA 1 

Referring now to Fig. 57b, similar relationships are drawn. 
In order to distinguish the trigonometric functions in a hyperbola 
the letter "h" (for hyperbola) is added and the functions are 
called 

sinh = hyperbolic sine 
cosh = hyperbolic cosine 
tanh = hyperbolic tangent 

If the hyperbola is drawn from Eq. (2) such that OA = unity 
the hyperbolic functions are readily drawn as shown in Fig. 57b. 
In this case the hyperbolic sine is simply the distance PQ, that is 

PQ PQ 
sinh a = = = PQ (9) 

OA 1 

The hyperbolic cosine is simply the distance OQ, that is 

OQ OQ 
cosh a = = = °Q (10) 

The hyperbolic tangent is the ratio PQ/OQ or, if the similar 
triangle TAO is used, the base OA = unity and the hyperbolic 
tangent is simply 

• sinha PQ TA TA 
tanh a = — — = TA (11) 

cosh a OQ OA 1 

Example 2. Using the positive value of x in Example 1, determine the 
value of the trigonometric and hyperbolic functions. 

Solution. The trigonometric functions are 

By Eq. (6) 
By Eq. (7) 

By Eq. (8) 

sin 13 = PQ = y = 0.5 Ans. 
cos t1 = OQ = x = 0.866 Ans. 

PQ Y tan 13 = (..72 = 7 = 0.577 Ans. 

The hyperbolic functions are 

By Eq. (9) sinh a = PQ = y = 0.5 Ans. 
By Eq. (10) cosh a = OQ = x = 1.118 Ans. 

By Eq. (11) tanh = ' PQ — — 0 447 Ans. 
OQ x  
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It should be noted that the circular angle is measured in 
circular radians, while the hyperbolic angle a is measured in 
hyperbolic radians. These definitions are given in equation form 
in Eqs. (3) and (5), respectively. However, forepractical:purposes 
of determining the circular angle or the hyperbolic angle a, 
it is usually more convenient to use one of the trigonometric or 
hyperbolic functions given above. 

Y 

1.0 

(a) Circular Radian 

1.0 

Hyperbolic 
radians 

0.5 

(b) Hyperbolic Radian 
FIG. 58.—A circular and hyperbolic radian subdivided into 10 equal sectors of 

0.1 radian each. 

Figure 58a illustrates how a circular angle corresponding to 1 
circular radian can be divided into 10 equal parts, each of 0.1 
radian. If the radius is unity, each arc will be of a constant 
length of 0.1. Figure 58b illustrates how a hyperbolic angle 
corresponding to 1 hyperbolic radian can be divided into 10 
equal hyperbolic angles, each of 0.1 radian. The arc corre-
sponding to each subdivision increases as the hyperbolic angle 
increases. The length of the radii also increases (distance OP) 
with the angle. In this illustration the circular and hyperbolic 
radian are similarly defined on the basis of equal area of circular 
and hyperbolic sectors. 

Example 3. Determine the circular angle 13 and the hyperbolic angle « 
when y = 0.5 and x is positive. 

Solution. From Example 2, 

sin fi = 0.5 

Then, from the tables of trigonometric functions, 

30  
13 30° —  — 0.5236 circular radians Ans. 

57.296 
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tan f3 tan 
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Also, from Example 2, 
sinh a = 0.5 

Then, from the tables of hyperbolic functions and interpolating, 

= 0.4810 hyperbolic radians. Ans. 

Graphs of Circular and Hyperbolic Functions.—Already 
circular functions have been used to express the phase relations 
of voltage and current, but they cannot be used to express their 
magnitude. Hyperbolic functions, not being periodic, but 
continuously increasing or decreasing in nature, can be used to 
express the magnitude of voltage and current in a long line or 

4.0 

3.6 
tan ti tan fi 

ir 27 g 3.0 
sin 13 COS /32 

  8° 2.5 

2.0 
o 
00 1.5 

1.0 

0.5 

0° 90° 180° 270° 360° 0 
/3 in degrees or O 1 0 2 0 3 0 

O 2 /I. a in Hyperbolic Radians 
$ in Circular Radians 
(a) Circular Functions (b) Hyperbolic Functions 

FIG. 59.—Graphical representation of circular and hyperbolic functions. 

other networks requiring .a change of magnitude of voltage and 
current. 

Figure 59a illustrates trigonometric circular functions. The 
functions are periodic in nature. The sine function starts at 
0, increases to +1, returns to 0, continues to —1 and returns to 0 
ready to start another cycle of 360 degrees or 2./r radians. The 
cosine function starts at +1, drops through 0 to —1, and returns 
through 0 to +1, re? dy to start another cycle of 360 degrees 
or 2« radians. The tangent function starts at 0, goes to + 00, 
jumps to — 00, and comes back to 0 ready to start another cycle 
of 180 degrees or ir radians. 

Figure 59b illustrates trigonometric hyperbolic functions. 
These functions are continuously increasing in nature. The 

cosh a 

tanh a 
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hyperbolic sine function starts at 0 and increases to ± 00 as the 
hyperbolic angle in radians increases to 00. The hyperbolic 
cosine function starts at +1 and increases to ± 00 as the hyper-
bolic angle in radians increases to ± 00. For a given value of «, 
cosh « is always greater than sinh «, which in turn is always 
greater than tanh «. 
The hyperbolic tangent function starts at 0 and increases to 

+1 as the hyperbolic angle in radians increases to ± 00 

(a) Exponentials (b) Exponentials 
Maud e-ji3 di..« and ia 
PIG. 60.—Geometric interpretation of exponentials. 

Geometrical Interpretation of the Exponentials 
e, and will be recalled that e-HP multiplied by a vector 
will rotate the vector -FP radians in a counterclockwise direction. 
Similarly, E-ifi multiplied by a vector will rotate the vector . —13 
radians in a clockwise direction. Figure 60a illustrates the 
effect of multiplying e-Flo and e-in by a unit vector (OA) originally 
lying along the positive x-axis. 

If the points on the hyperbola of Fig. 60b corresponding to 
various hyperbolic angles are projected on the asymptote (the 
line bisecting the first quadrant—the hyperbola curve approaches 
this line and joins it at 00) as shown in the figure, the distance 
from the origin to the respective projection will be a measure of 
Ea . It will be noted that for positive values of a the value of 
e+a is greater than unity and that negative values of a give 
E—a which is less than 1 but never less than O. 
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Exponentials Applied to Circular Functions.—For our use, 
trigonometric functions do not need to be given a geometrical 
interpretation. In fact, they are sometimes defined by an alge-
braic exponential form. For example, the identity for changing 
from polar to rectangular form, which is 

e+e = cos j sin e (12) 

is added to the form when the sign of 13 is made negative, thus 

= cos (-0) + j sin (--e) = cos e - j sin e (13) 

the result is 
eFio 

(Ho + -= 2 cos e or cos fi -  2 (14) 

cos fi is sometimes defined by this equation. Now, if Eq. (13) 
is subtracted from Eq. (12), 

e+is - -- 2j sin e or sin fi -   (15) 2j 

sin e is sometimes defined by this equation. Tan e can be 
defined by the ratio, thus 

el-or e-itc sin e 
tan /3 - cos /3 - 3 €4113 _  (16) ± E-10 

Also, cot fe can be defined as 
1  cos A 

cot 13 = (17) tan si . n e — 
Exponentials Applied to Hyperbolic Functions.—From analogy 

with the circular trigonometric functions, the hyperbolic functions 

can be defined as follows: 

= cosh « + sinh « (18) 
e-a = cosh a - sinh « (19) 

Subtracting Eq. (19) from Eq. (18) gives 

- 6-«  
sinh « - 2 (20) 

sinh a can be defined by this equation. Adding Eq. (18) and 
Eq. (19) gives 

±  
cosh a = 2 

(21) 
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cosh « can be defined by this equation. Tanh a can be defined 
by the ratio 

sinh « _ tanh « - 
cosh « e ± 

Ea E—« 
(22) 

In some equations it is more convenient to use the reciprocal 
of tanh a which is known as "hyperbolic cotangent" and can be 
defined as follows: 

1  cosh a ea + E—a 
coth « = -   tanh a s., - 

mn a ea — 6-« (23) 

Example 4. Determine the values of the exponentials for circular and 
hyperbolic functions when y = 0.5 and x is positive. 

Solution. From Examples 2 and 3 and the use of Eq. (12), 

cos /3 + j sin 
(i0.6236 = 0.866 ± j0.5 = 1/30° Ans. 

From Examples 2 and 3 and the use of Eq. (18), 

Ea = cosh a sinh 
,0.4812 = 1.118 + 0.5 = 1.618 Ans. 

Circular and Hyperbolic Identities.—These identities are 
tabulated on page 307, primarily for reference purposes. The 
proof of many of these identities can be made by substitution of 
the exponential forms given above. In these equations a is 
not necessarily a hyperbolic radian nor is 13 necessarily a circular 
radian. In general they can be considered as two different 
angles measured in radians. 

Example 5. Develop the equation 

cosh' 5 — sinh2 5= 1 

from the circular function identity 

sin213 = 1 

Solution. In the circular function.identity, replace 5 with jet to get 

sin' jfl + cos2 ji3 = 1 
But, sinj5 = j sinh ift 
and cos jti = cosh /3 
Hence, j2 sinh2 5 + cosh' 5 = 1 
or cosh' _5inh25 = 1 Ans. 

Example 6. Determine the circular sine and hyperbolic sine of the 
complex quantity 

= a + /13 = 0.4812 -I- /0.5236 
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• ...Solution. Referring to the list of identities, 

sin y = sin (a +i) --- sin a cosh # + j cos a sinh 
= sin (0.4812) cosh (0.5236) j cos (0.4812) sinh (0.5236) 

Converting from radians to degrees, 

sin y = sin (27.57°) cosh (0.5236) + j cos (27.57°) sinh (0.5236) 

Finding the values from the tables, 

sin y-= (0.4628)(1.14025) + j(0.8865)(0.54786) 
= 0.5277 + j0.4857 = 0.7172/42°38' Ans. 

From the list of identities, 

sinh y = sinh (« +j) = sinh a cos 13 + j cosh a sin # 
sinh (0.4812) cos (0.5236) + j cosh (0.4812) sin (0.5236) 

= (0.5) (0.866) +1 (1.118) (0.5) 
= 0.433 + j0.559 = 0.7071/52°15' Ans. 

Exercises 

1. If a circle has a radius of 1 in. and the vector OP (Fig. 56) is rotated 
so that the shaded area is 2 sq. in., what is the value of f3 ? 

2. If a hyperbola measures 1 in. from 0 to A and the vector OP is turned 
clockwise so that the shaded area is 3 sq in., what is the value of « and Ea 

(see Fig. 56)? 
3. In Eq. (1) if x -= 0.707 what are the possible values of y? 
4. In Eq. (2) if x = 2.0 what are the possible values of y? 
5. How does the value of cosh « compare with sink « as « is varied? 

What are the corresponding values of tanh a? 
6. Between what limits do sin 13 and cos # vary? What are the limits 

of tan 13? 
7. What valuable property does eel have when multiplied by a vector? 

How is this property different from eu multiplied by the same vector? 
8. If tanh « = 0.76159, determine sinh «, cosh «, coth «, and «. 



CHAPTER 12 

DIFFERENTIAL CALCULUS 
TREATING ALGEBRAIC FUNCTIONS 

Arithmetic deals with the use of numbers, which are constant 
quantities, while algebra deals with the use of symbols repre-
senting either constant or variable quantities. Calculus, going 
one step farther, deals with the nature and variation of these 
quantities. Since calculus uses both arithmetic and algebra, it 
is studied last. 
The basic ideas of calculus are simple and fascinating when one 

has a good working knowledge of such subjects as algebra and 
trigonometry. However, the large amount of detail and the 
abstract approach that is often made lead to disinterest and to a 
false notion that the subject is extremely difficult. 

Calculus in its elementary forms can be divided into differential 
calculus and integral calculus, much as arithmetic processes 
can be divided into subtraction and addition. In both the 
calculus and the arithmetic the processes are inverse operations. 
The purpose of studying calculus at this time is to become 

familiar with the nature of changing electrical quantities. Not 
that the student will be able to work out all calculus problems, 
because even the best mathematicians cannot do this, but that 
the student can work simple problems and be able to understand 
the meaning of calculus terms when they are found in the litera-
ture. This chapter will deal with differential calculus in ele-
mentary and graphical forms which treat algebraic functions, 
while the next chapter will deal with transcendental functions in 
a similar fashion. Then a treatment of elementary and graphical 
forms of integral calculus will be presented. 

All algebraic functions of x are rational functions, while all 
other functions of x are transcendental or irrational functions of 
x: An algebraic function of x can in its most complicated form 
be expressed as a fraction with values of x in both the numerator 
and denominator. 

149 
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Calculus Symbols.—The letter d is used in differential calculus 
to mean "a little bit of," hence "dx" means "a little bit of x." 
This little bit of x is a difference quantity, commonly called the 
"differential" or "element" of x. d can be remembered as the 
first letter of "difference" or "differential." "dx" is actually of 
indefinitely small size. Differential calculus cau be simply 
explained as a mathematics of making and using indefinitely 
small difference calculation. 
The symbol f as used in integral calculus is merely an elongated 

letter S which means "the sum of." This symbol which stands 
f or the first letter of sum is usually called "the integral of," 
which means the whole or total. Integral calculus can be 
simply explained as the mathematics of making and using large 
sum calculations. 

Integral and differential calculus symbols are often used in 
combination to express a quantity, thus f dx means "the sum of 
all the little bits of x." In other words, the whole quantity can 
be found by adding up all the indefinitely small little bits of x. 

Limits.—In reality quantities must be finite or zero. In other 
words, we have something or we have nothing. This concept 
seems simple. The mathematician, however, has complicated 
the matter by devising two fictitious quantities, as it were, which 
are used to aid him in his reasoning processes. One is called 
"infinity," and is greater than any number or quantity. The 
other is called "an infinitesimal" and is smaller than any number 
or quantity. 
How do we arrive at these fictitious quantities of infinity and 

an infinitesimal? The answer to this question is found in the 
use of limits. A variable quantity, if it increases indefinitely in 
size, is said to reach infinity in the limit. Likewise, if a variable 
quantity decreases indefinitely in size it becomes an infinitesimal 
and is said to reach zero in the limit. In the precise language of 
the mathematician, a variable is said to approach a limit when 
its value becodes and remains arbitrarily close to the limit. " Arbi-
trarily close" means that we can assign a number as close as we 
please to the limit and the variable will ultimately become and 
remain closer to the limit than this arbitrary or assigned number. 

If the variable x approaches infinity as the limit, the fact is 
stated mathematically as 

lim x = co 
X-) 00 
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This states in words that the limit of the variable x equals 
infinity as x approaches infinity. 
On the other hand if the variable x approaches zero as the 

limit it is called an "infinitesimal." This means that the 
variable becomes and remains as close as you please to zero. 
In mathematical language, 

hm x = 

This says in words that the limit of x equals zero as x approaches 
zero. 
The quantity dx is known as an infinitesimal, because in the 

calculus process of differentiation it approaches zero as the limit. 
By this limiting method the calculus process becomes an exact 
process. For illustration, the ratio dy/dx pronounced "dee-wy 
by dee-ex" is made up of two differential quantities each of 
which approaches zero in the limit to give 0/0, which as such 
cannot be evaluated. Here is where the mathematician's 
reasoning process with infinitesimals comes to the rescue. The 
value of y is related to the value of x so long as values can be 
assigned to either one. For illustration, y may always be twice 
the value of x no matter how small x is made. In this case the 
ratio is 2 right up to the limit 0/0, so it is reasonable to believe 
the value of 0/0 for this case is 2. In other words, the indeter-
minate 0/0 is evaluated by this limiting process.. 
The idea of limits is often useful, as illustrated by the following 

mathematical statement: 

lim x2 = 4 

This states in words that the limit of the variable x2 equals 4 
as x approaches 2. It is easy to see that x2 = 2' = 4 in the limit. 
The differential sign d is closely related to the incremental 

sign A (the Greek letter delta). The basic difference is that .à.x 
stands for a finite increment of x while dx stands for an infini-
tesimal increment of x. • 

Relative Smallness.—Our calculations will deal with small 
quantities having various degrees of smallness. It is, therefore, 
important to know what degrees of smallness we can omit and 
still arrive at an answer with the required accuracy. 
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The size of a quantity depends upon the measuring stick. 
The earth is very small in comparison to our solar system, yet 
the earth is very large in comparison to a baseball. When 
dealing with the solar system, the earth should not be omitted, 
but the baseball could for most purposes be neglected. The 
earth, in this case, is said to have a first degree of smallness, while 
the baseball has a second degree of smallness. A flea on the 
baseball would then have a third degree of smallness. 

Ax 

(a) Square 

[loci<It. 

Ax 

1 -

x x 
(b) Enlarged square 

x•Ax 

X 2 

(o) Area of Enlarged 
square 

FIG. 61.—A square enlarged to show degrees of smallness. 

The degree of smallness can be illustrated by enlarging the 
square of Fig. 61a. The area of this square is x • x = x2. If the 
square is enlarged by adding a strip having a width of Ax on 
the two sides as shown in Fig. 61b, then the total area is 

(x Ax)2 = x2 + 2x • Ax (A:z)2 (1) 

To illustrate the geometry, let x = 5 and Ax = 1, then the 
area of the original square is x • x = 5 • 5 = 25 and the area of 
the enlarged square is (x Ax)2 = (5 ± 1) 2 = 36. Adding the 
areas of the enlarged square of Fig. 61b gives x2 = 52 = 25, 
2(x • Ax) = 2(5 • 1) = 10, and (Ax)2 = 12 = 1, thus 

x2 ± 2x • 3,x ± (àx) 2 = 25 ± 10 ± 1 = 36, 

which checks the above value. 
Now if Ax is made very small in comparison to x, as shown in 

Fig. 61c, it is readily seen that (Ax)2 is of second order in small-
ness and can be omitted, thus 

(x Ax) 2 = x2 ± 2x • Ax (2) 

with an accuracy of the first order. To illustrate, let x = 1,000 
and Ax = 1, then the area of the enlarged square by Eq. (1) 
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with accuracy to the second order is 

(x ,e.x)2 = (1,001)2 = 1,002,001 

and by Eq. (2), the accuracy to the first order is 

x2 ± 2x ,à.x = 1,000,000 ± 2,000 = 1,002,000 

By neglecting the second-order term (Ó.x) 2, the answer has 
changed approximately one part in a million. This makes it 
clear that if ha is made small enough, by approaching the value 
of dx, the second, third, and higher order terms can be omitted. 
Rates.—One of the most familiar illustrations of rate is the 

movement of an object which takes a certain amount of time. 
An automobile, for example, travels at a rate of 60 miles per 
hour. If the automobile has a uniform speed the whole distance, 
x = 60 miles, and the total time, t = 1 hr, can be used to express 
the rate mathematically, thus 

x distance 
Rate = —  . (3) 

t time 

Using the above values, Eq. (3) gives 

60 miles  
Rate = — 60 mph 

1 hr 

Since it is unusual to have a constant rate of speed for such a 
long period of time, it is logical to look for a way to express this 
rate at any particular instant. By writing dx as an incremental 
distance corresponding to an incremental interval of time, dt, 
the rate at any instant can be expressed by 

dx 
Rate = (4) 

dt 

where dx = differential of x, pronounced "dee-ex." 
• dt =- differential of t, pronounced "dee-tee." 

This equation states that the mathematical rate of x at the 
particular instant is the ratio of the differentials dx divided by dt. 
The differential of any variable quantity is indicated by writing 
the letter d before the quantity, thus in this equation the symbol 
dx is not the product of d and x but represents an incremental 
difference quantity. . This difference quantity dx known as a 
differential corresponds to the distance covered during the 
corresponding incremental difference quantity dt the time 
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elapsed to cover that distance. Even though dx and dt are 
correspondingly very, very small quantities, the ratio will not be 
altered. This means that the automobile rate at any instant 
during the whole hour will be 60 miles per hour, since it has a 
uniform speed. However, if the automobile speed is not uni-
form, Eq. (3) cannot be used and resort must be made to Eq. (4), 
which is a simple differential calculus expression of rate. This 

equation will hold true no matter 
Ax how rapidly the rate or speed of 
A t the automobile is changing, be-
-I-Ax cause it considers such very, very x  

small difference quantities. 
This is the heart of the calculus 
method, which makes it a most 

F/G. 62.—Triangle representation of useful tool in expressing ideas and 
a constant rate. 

solving problems involving rates. 
If the time t represents the base of a right triangle and the 

altitude is a measure of the distance x covered by the automobile 
from the beginning of the hour, as shown in Fig. 62, then the 
instantaneous rate at the end of an hour can be represented by 
the small similar triangle having a base of At and an altitude of Ax. 

This triangle in Fig. 62 shows that as time t passes to become 
t + At, the distance grows from x to become x Ax. In this 

t -1-At 

60 

so 
e 
e 40 

el 30 

20 

ga 10 
0 02 0.4 0.6 

Time t in hours 
no. 63.—A constant-slope curve. 

case, the distance x depends upon the time t and the small 
distance Ax depends upon the small time At. An important 
thing to note is that the ratio still has a definite value even though 
both Ax and At become indefinitely small. . 

Slopes.—Differentiation is the process of finding or calculating 
differentials of variables. This can be accomplished graphically 

 o 

At 

T x2 

1̀' x 

ti 2 

0.8 1.0 
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by plotting the curve of the variable and then determining the 
slope of the curve. Consider the above illustration of an auto-
mobile traveling 60 miles per hour. This information if plotted 
will give the straight line curve shown in Fig. 63. By substituting 
in Eq. (3), the slope of this curve is found to be 60 miles per hour. 
Now, instead of considering all of the graph, use the portion of 
the curve between points P and Q. The slope of this portion of 
the curve is the change in distance Ax = x2 — x1 divided by the 
corresponding change in time At = t2 - ti, or, in equation form, 

Ax X2 Xj—  Slope — — 
At t2 — ti 

where .à.x = the change in x, pronounced "delta ex." 
At = the change in t, pronounced "delta tee." 

If the values on the curve are substituted in Eq. (5), the result is 

48 — 30 18 
Slope — — = 60 mph 

0.8 — 0.5 0.3 

• (5) 

This checks with the solution obtained by using Eq. (3) for the 
whole curve. 

If the quantity Ax is made smaller and smaller, it can be .made 
to approach the differential d,x. Similarly At can be made to 
approach the differential dt. For illustration move the point Q 
closer and closer to the point P and the triangle will become 
smaller and smaller with the result that the slope or rate at the 
point P can be expressed in differential form by Eq. (4). This 
reveals that there are two types of rates, an average rate which is 
computed over a definite interval, such as from P to Q in the 
above illustration, and an instantaneous rate which is computed 
at one particular point such as P in the above illustration. 
For a curve that is not a straight line the ratio of Ax to At 

as illustrated in Fig. 63 will not always give the slope at the 
point P. The slope of the curve, at the point P, is called the 
"tangent" to the curve. Hence, to find the derivative dx by 
dt at the point P, draw a tangent to the curve at that point and 
find the slope of this tangent. 

Slope = tangent = derivative 

The slope can also be expressed in terms of the limiting process 
as follows: es' 
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. àx c/x 
Slope = hm —AA = 

at CLG 
(6) 

This says in words that the limit of the ratio of delta x to delta t 
as delta t approaches zero is the ratio of the differential of x to 
the differential of t. 

Consider any curve such as the one shown in Fig. 64. Select 
any two points on the curve such as P and Q. The slope of the 
line joining these two points is the ratio ày/Ax as shown in the 

Y 

I Enlarged dy 
Enlarged dx 

FIG. 64.—A variable-slope curve. 

figure. It will be noted, however, that this line is not tangent to 
the curve at either point P or point Q. Now move the point Q 
down to Q', which is a step in the process of making ix—O. The 
slope of the line j oining P and Q' is now ày'/x', which is approach-
ing the slope of the tangent to the curve marked PT. As the 
point Q is moved closer and closer to the point P, the slope of the 
line joining the two points will approach the tangent. In 
the limit it will equal the tangent to the curve at point P. The 
slope of the curve at point P is then dy/dx. 

Example 1. A diode vacuum tube obeys the square law curve i = e2 as 
shown in Fig. 65. Determine the slope of the curve at point P when the 
voltage is 5 volts and the current is 25 ma. 

Solution. Draw the straight line ab tangent to the curve and through 
the point P. The slope of this straight line by Eq. (3) is 

50-5 45 
Slope = 7.5 _ 3 = 4.5 = 10 

measured in milliamperes per volt. Ans. 
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Function s.—When two variables are related in such a way that 
if the value of the first variable is furnished, it is possible to 
determine the value of the second variable, then the first variable 

4.1 

tio 50 
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10 

i=e2 

e i 
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6 7 8 9 10 

Diode voltage e in volts 
FIG. 65.—The square law curve of a diode vacuum tube. 

is said to be a "function" of the second. In the diode vacuum 
tube of Example 1, it is possible to determine the voltage e if 
the current is known, hence i is a function of e. In this example, 
the voltage e can be applied at will; hence it is known as the 
"independent variable" while the current i depends upon the 
voltage e that is applied and is called the "dependent variable" 
or "function." To make this state-
ment mathematically, Y 

4 

= f(e) (7) 3 

This equation states that i is a function 2 

of e. It does not mean that f is multi-
plied by (e), but that if e is known, it X 

0  is possible to determine the dependent 0 1 2 3 
variable i. Substituting the value of FIG. 66.—Here y = c, a 

f(e) = e2 from Fig. 65 gives the exact 
expression from which i can be determined if e is given, that is, 

i = e2 

Derivative of a Constant.—As shown in Fig. 66, when y is 
equal to a constant, which does not change in value, it has no rate 
or differential. The slope is zero because if the line ab is drawn 

yc 

4 

constant. 

6 
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, through the point P tangent to the curve the slope is given by 
Eq. (5), thus 

Slope — y2 — yi _ 3 — 3 _ _ o 
x2 — x1 5 — 1 4 

Therefore, for the equation y = c, the differential of a constant is 
zero, thus 

dy = dc = 

and the derivative of a constant is zero, thus 

dx dy _ de 
c17 = ° (I) 

(8) 

(9) 

This merely states that the slope of a horizontal line is zero. 
Since there is no change in y as x varies, there is no change in 
dy for the change c/x. 

Derivative of a 

Y 

6 

4 

a 
2 

1 

oo  

Variable with Respect to Itself .—When 
y = x as shown in Fig. 67 the slope at 
point P by Eq. (5) is 

Ay 4 — 2 2 
Slope — — — — 1 Ax 4 — 2 2 

a 

45, 

1 2 3 4 5 X 

For this curve dy = dx, hence the deriv-
ative 

(II) 
FIG. 67.—Here y x, a 

This equation states that when the x and 
y scales are alike the slope of a line making an angle of 45 degrees 

with the x-axis is unity. 
Derivative of a Variable Multiplied by a Constant.—In the 

equation y = cx let the value of y and x increase by an increment, 

thus 

variable. 

(10) 

y Ay = cx -F c 

Subtracting y --= cx  
gives Ay = c Ax 

Dividing through by Ax, the slope is a constant. 

Ax 
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Now, if the limit of this fraction is taken, the derivative form can 
be obtained, thus 

(III) lim = d=Y c (11) 
ax—> 0 3.2 dx 

This equation states that the derivative of a variable multiplied 
by a constant is equal to the constant multiplied by the deriva-
tive of the variable. Referring to Fig. 68, the derivative or 
slope of the line y = 0 is dy/dx = 0, of the line y = 0.5x is 
dy/dx = 0.5, of the line y = xis dy/dx -= I, of the line y = 2x is 
dy/dx = 2 and of the line y = CO x, dy/dx = co. In other 

words, the derivative is the slope of the 
Y line which is the coefficient or constant 4 

multiplied by the variable. 
The above method of adding an More- 3 

ment to each variable, subtracting the 
2 original function, and then taking the 

limit of the increment is the basic meth-
od for finding the derivative of a func- y =0 

tion. For practical purposes this 00 

procedure can be simplified by using FIG. 68.—Here y = cx, 
curves of various constants 

differential quantities at the beginning multiplied by a variable. 
instead of incremental quantities. Ap-
plying this idea, the above derivation is as follows: 
Let the value of y and x increase by differential amounts, thus 

y ± dy = cx c dx 
Subtracting the original function y = cx  
Then the differential dy = c dx 

and the derivative 
dy 
dx c 

This checks the above solution. 

Eiample 2. State the derivative of the function 

y -= —2x 

Solution. dy _ d( —2x) _ 2 dx dx 2. Ans. 
dx dx  

Derivative of a Variable with a Constant Exponent—When 
y = x2, a curve similar to the one in Fig. 65 results. The thing to 
remember is that as x increases, x2 increases more rapidly, and 

1 2 3 4 X 
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hence y also increases more rapidly since it is equal to x2. In 
Example 1, the slope of the curve at point P was found to be 10. 
At any other point it will not be this value, as was the case for a 
straight line, so it is desired to determine the value of dy/dx. 
This can be done very simply as follows: To the value of x, 
add a little bit to make it x dx, and to y add a little bit to make 
it y -I- dy. Substituting these values in the above equation gives 

y + dy = (x dx)2 

Squaring the right-hand side gives 

y + dy = x2 ± 2x dx (dx)2 

Since (dx)2 is a little bit of a little bit, it is of second order in 
smallness and can be neglected. Leaving this term out and 
subtracting the original equation y = x2 results in 

y ± dy = x2 ± 2x dx 
y = x2 

dy = 2x dx 

or dividing both sides by dx gives the desired derivative 

dy _ d(x2) _ 
dx dx 

(12) 

This analytical method is a basic procedure for finding the 
derivative of a function. 

Example 3. Determine the derivative of the curve at point P in Fig. 65. 
Solution. Applying Eq. (12), 

di 
c• = 2e = 2 • 5 = 10 Ans. 

This checks the graphical solution of Example 1. 
As another illustration let y -= x2. Then, as before, let both 

y and x increase a little bit to give • 

y ± dy = (x dx) 3 
= x3 3x2 dx 3x(dx)2 (dx)3 

subtracting the original equation and neglecting the terms of 
second or higher order of smallness give 

dy = 3x2 dx 
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Dividing both sides by dx gives the desired derivative 

dy _ d(x3) _ 2 
(13) dx dx °x 

From Eqs. (10), (12), and (13), the following table can be made: 

dy 

lx° 
x 2 2x1 

3x2 

This table shows a sequence which would lead us to guess that 
the derivative of x4 is 4x'. To check this, differentiate the 
equation y = x4 as shown above by adding a little bit of y and a 
little bit of x to get 

y ± dy = dx)4 = x4 + 4x3 dx 6x2(dx)2 4x(dx) 8 (dx)4 

Neglecting second or higher order terms and subtracting the 
original equation gives 

dy = 4x2 dx 
dy d(x4) 

or, in derivative form, crx- _ — c—T—T = 4x3 (14) 

Generalizing this procedure, let n be the exponent of x. Then 
the derivative must have n multiplied by x and the new exponent 
will be one less than n, thus 

dy _ d(xn) 
dx dx 

(IV) = nxn—i 05) 

Example 4. Find the derivative of y = x7. 

Solution. Applying Eq. (15) 2= 7x6. Ans. 

This rule applies as well to negative and fractional powers, as 
shown in the following examples: 

Example 5. Find the derivative of y = 
dy 

Solution. Applying Eq. (15) (T-x —2x-3. Ans. - 

Example O. Find the derivative of y = •‘/ = 
dy 1 1 

Solution. Applying Eq. (15) d—x = -2 orki = Ans. 
2 •\/ 
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Derivative of a Sum.—Let y = u ± y and, by the basic pro-
cedure, let these variables grow to give 

y -F dy = u + du + y ± dv 
Subtracting the original func-

tion, y = u + v  
Hence the differential of y is dy = du + dv (16) 

Dividing both sides of the equation by dx gives the derivative 

(V) 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 
o 

dy _ d(u v) _ du , dv 
dx dx dx 

Y 

LyV 

It 

al 
AVI 

• e 
a, 

P 

ti 
(S, ,C S2 

ax _ 

X 
2 3 4 5 7 

69.—Here y = yi -I- y2, a sum. 

(17) 

Example 7. Find the derivative of the sum of yt = x and y2 = 4 — 0.5x 
bctth analytically and graphically. 

Solution. y = y + y2 -= x -I- 4 — 0.5x 
dy dx d(4) d(0.5x) 

By Eq. (17) c-u  = (Tx ± dx dx = 1 + — 0.5 = 0.5 Ans. 

Referring to Fig. 69, 

Then 
Ay 

Ax 

Ay, 5 — 3 2 _ 1 
= 5 — 3 2 

Ay2 1.5 — 2.5 _ —1 _ 0.5 
Ax 5 — 3 2 

Ans. 
Ax Ax 

Solving for the slope, 

AY 6'5 — 53 — 0.5 Check. 
Ax = 5 — 3 
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Equation (17) is more general than the example for straight 
lines because it holds for any curve. However, for any curve, it 
is possible to draw a tangent to the curve at the point of interest 
and then find the slope of the tangent to get the derivative for 
that point. If this is done, it will be found that the curve 
resulting from the sum of the other variables has the same slope 
as the sum of the slopes of the various variables. This is another 
way of stating Eq. (17). 

Derivative of a Product.—Let y = uy and as each variable 
grows 

y + dy = (u + du) (v dv) 
= uy udv v du ± du dv 

Subtracting the func-
tion, • Y = Uy  

The differential of y is dy = u dv du (18) 

The product du dv was omitted because it is of the second order 
of smallness. Dividing both sides of the equation by dx results 
in the derivative of a product 

dy _ d(uv) dv du 
(VI) u — , v — (19) 

dx dx dx dx 

This equation states that the derivative of a product is equal to 
the first variable multiplied by the derivative of the second vari-
able plus the second variable multiplied by the derivative of the 
first variable. 

Example 8. Find the derivative of the product (x + 1)x2. 
Solution. Let u x -I- 1 and v = x2 

Then du _ d(x 1) _ 
dx dx 

and dv _ d(x2) 2x 
dx dx 

Substituting in Eq. (19), 

d(x + 1)x2 
— (x + 1)2x + x2. 1 = 3x2 + 2x Ans. 

cis 

Derivative of a Quotient.—Let y = 

As each variable grows, 
u+ du 

y+dy — 
v+dv 

Performing the division indicated on the right-hand side to 
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obtain all terms of the first order of smallness and neglecting all 
terms of the higher orders of smallness are done as follows: 

y ± dylu ± du -u "1". — u dv , du 
1,2 7 

u + u dv 

u dv 
—-+ du 

u dv u(dv)2 
V V2 

+ du 

+ du + du dv 

u(dv)2 du dv 
The terms and were neglected in this division y2 y 

because of their higher order of smallness. 

Thus 

Subtracting, 

u , v du u dv 
v v2 

u 
= 

dy = 
V du — u dv 

1,2 

and dividing both sides by dx gives the derivative 

(VII) 

du dv 

dx dx v2 

This equation states that the derivative of a fraction is equal to 
the denominator multiplied by the derivative of the numerator 
minus the numerator multiplied by the derivative of the denomi-
nator all divided by the denominator squared. 

x2 + 2 
Example 9. What is the derivative of  _ ? 

•1/4  
Solution. Let u =z2 + 2 and y = = x1/2 

(20) 

Then 
du 
dx 

and 
dv 1 _ 
(-Tx = x 

(21) 
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Substituting in Eq. (21), 

d (Z2 + 2) Vi • 2x — (x2 + 2)  3 17; 1 Ans. 

dx Nfx.  z 2 x 

Thus far we have developed the important derivatives for 
algebraic functions. In most cases graphs have been furnished 
to illustrate more clearly what happens. Now, to make use of 
this knowledge, some practical applications will be treated along 
with some more ideas about differential calculus. In other 
words, we have the tools; let's learn how to make good use of 
them. 

Successive Derivatives.—The idea that a derivative may 
represent a rate of change has already been given. It is the 
ratio of the little bit of space covered in the corresponding little 
bit of time. Let us apply this idea to a freely falling object. 
From physics, the equation for a freely falling body is 

s = 16t2 (22) 

where s = space covered by the freely falling body, in feet. 
t = time after the body begins to fall, in seconds. 

This curve is plotted in Fig. 70 for a time period of 8 seconds. 
As time increases the space is covered more rapidly. This 
means that the velocity must be increasing. The velocity, if 
scientifically expressed, is the derivative of space with respect 
to :time. If applied to Eq. (22), it gives 

ds v = 32f (23) 
dt 

where y = velocity in feet per second. 
When this curve is plotted, as shown in Fig. 70, it is noted that 

the velocity is steadily increasing. Now the rate at which the 
velocity is increasing is called the "acceleration." Taking the 
derivative of Eq. (23), which is the second successive derivative, 
results in 

dv a = = — = 04 (24) 
dt dt2 

where a = acceleration in feet per second per second, and 
d2s/dt2 = the second derivative of s with respect to t. It can 
also be read "dee squared ess over dee-tee squared." This 
equation shows that the acceleration, due to the force of gravity, 
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is a constant equal to 32 feet per second per second. This is 
represented in Fig. 70 by a horizontal straight line. 
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&FIG. 70.—Derived curves. 

9 10 

Example 10. Determine the fifth derivative of the quantity 

y = x5 + 42 x. 

Solution. Applying Eq. (15) successively, 

dy The first derivative is — = 5x4 + 8x ± 1 
dx 
da, 

The second derivative is = 20x3 ± 8 
dx2 
d3y 

The third derivative is 37,3 = sox= 

d'y 
The fourth derivative is --= 120x 

dx" 
dsy 

The fifth derivative is = 120 Ans. 
clx5 
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There are three other quite common ways of expressing succes-
sive derivatives which are simpler to write as shown in the 
following table: 

TABLE or SUCCESSIVE DERIVATIVES 

y y f(x) x x f(t) 
dy 
71X 
d'y 
de 
d'y 

yi 

et 

f (x) 

f" (x) 

(z) 

dx 
Tc 
d'x 
dt2 
d3x 

i 

z 

.i. 

f' (t) 

f"(t) 

rii(t) 

de 
yin fill 

dt 3 

Maxima and Minima.—One of the principal uses of differential 
calculus is to find maximum or minimum values. A maximum 
point has a greater value than the immediately preceding or 
following points while a minimum point has a smaller value than 
the immediately preceding or following points. 

-4 -8-2 -1'0 1 2 3 4 X 
v '2x_'x2_2 Mnxinia 

point 

e ti 
-1 
0 

1 
2 

3 

-6 
-2 
-1 
-2 
-5 

At _2 

' 2 

de, 

_2,,_ 
I y - e- - 

y is a maximum 

0 
-1 

5 

FIG. 71.—Curve with a maxima point. 

In many practical engineering problems we are concerned with 
finding the conditions that will give the greatest (maximum) 
value or the least (minimum) value. To illustrate, it may be 
desired to find the conditions for the maximum efficiency of a 
machine or it may be desired to determine the conditions that 
will make the cost a minimum. 
As a concrete case, consider the equation y -= 2x — x2 — 2 

as plotted in Fig. 71. It appears from the curve that y reaches a 
maximum value when x = 1. This can be checked by solving 
for points very close to x = 1 and finding that they all have 
smaller values. Instead of doing all this guessing, differential 
calculus can be used to determine the maximum directly. It 
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will be recalled that the derivative of a constant is zero. Such 
a curve is horizontal, that is, its slope is zero. Now, at the 
maximum height of the curve in Fig. 71, the slope is zero, that 
is, the curve is horizontal. Therefore, if we set the derivative 
dy/dx = 0 and solve for x, it is possible to determine the maxi-
mum' value of y by substituting this value of x in the original 
equation. 
Performing these operations on the equation, 

y = 2x — x2 — 2 
dy 

The derivative is = 2 — 2x 

Setting this quantity equal to zero, 

2 — 2x = 
Solving for x, x = 1 Ans. 

This means that the maximum will occur when the value of x 
is exactly equal to 1. Substituting this value of x into the 
original equation, 

y = 2 — 1 — 2 = — 1 Ans. 

This means that the maximum value of y is exactly equal 
to —1. 

y =•. x2 — 2x + 2 
w y 

5 -1 
0 
1 

5 
2 
1 4 

2 2 
3 5 3 
e=2,2 =0 

x=1, y-1 d 2v 2 

•az2 =-1-2 1 
Minima Point y is a minimum 

Y 

—4-3-2-1 0 1 2 3 4 
FIG. 72.—Curve with a minima point. 

Example 11. Find the maximum load power PL and value of load 
resistance Rx, when the generator resistance is Ito and the equation of power 
transfer is 

R1' 
PL — (14 +14)2 

In some cases, as will be shown later, this procedure may give a minimum 
or inflection point. 



DIFFERENTIAL CALCULUS: ALGEBRAIC 169 

Solving this equation, 

Solution. Since this equation is a fraction, let u = RL and y = (R, R.L) 2 
in Eq. (21). The derivatives are then 

du dR.L 
and dv d(R, RL)2  dRz, dRL = 2(R, + RL) 

Now, substituting these values into Eq. (21) results in 

d/I'L (Rg Rz)2 — RL2(Rg RL) _  ± — 214 
— 0 

dRL, = (R, RL)4 (R, RL) 8 

This equatior. is true when the numerator is zero, hence 

R, — = 0 or RL = R, Ans. 

As another case, consider the equation y = x2 — 2x ± 2 which is plotted 
in Fig. 72. The curve appears to reach a minimum value of y = 1 when 
x -= 1. To check this, take the first derivative and equate it to zero, thus 

du 
= 2x — 2 = 

dx 
Hence, x = 1 Ans. 

Substituting this value in the original equation. 

y = 1 — 2 + 2 = 1 Ans. 

Example 12. The cost C of handling vacuum tubes in a factory varies 
with the output N per day according to the relation 

C=a-1- 17.-1-cN 

where a, b, and c are constants. For what output will the cost be least? 
Solution. Taking the first derivative and equating to zero, 

de —b 
- 

dN = N2 

N  _ rb 
c 
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If di. d2Y = 0 and =' y is a minimum. 
dx dx  

Applying these rules, the curve in Fig. 71 results in a negative 
second derivative, thus 

y = 2x — x2 — 2 

First derivative dy = 2 — 2x 
dx 
d2y 

Second derivative = —2 
dx2 

Hence y is a maximum. 
Similarly, applying these rules to the curve of Fig. 72 results 

in a positive derivative, thus 

y = X2 — 2x + 2 

First derivative dy = 2x — 2 
dx 
d2y 

Second derivative dx- 2 = +2 

Hence y is a minimum. 
Inflection Point.—The above test for a maximum or minimum 

fails when the second derivative is zero. Resort should then be 

6x2+ 9x 

A=3x2-12x+ 9=0 
(Ix 
x=1 or 3 

d2y 
cyx2= 6x-12 

For x-1, e s — 6 

y = +4 a maximum 

For x=3, d<2-e2.= +6 

y = 0 a minimum 

For e= 0, 

Max. 

—3 
Infle 
Po 

—2 il 
X 

Il 
2 3 4 
I Tangent c 
curve at il 
point 

tion 
it 

rosses 
fleetion 

x=2) i 
y = 2 an nflection point 

FIG. 73.—Curve with maxima, minima, and inflection point. 

made to sketching the curve near the point in question. If the 
curve bends in opposite directions on either side of a given point 

- 
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that point is called an "inflection point." In other words, an 
inflection point separates an upward concave portion of a 
curve (---) from a downward concave portion of the curve 
At an inflection point a tangent to the curve will cross the curve. 
The rule can be stated as follows: 

d2y 
If cd--111-=Oand Ei = 0, y is an inflection point, a maximum, or 

a minimum. In this case, the curve should be plotted to deter-
mine its exact nature. 

Example 13. Find the maximum, minimum, and inflection-point values 
and plot the curve 

y = x3 - 6x2 + Dx 

dy 
Solution. The first derivative - 3x2 - 12x + 9 = 

dx - 
By the quadratic formula, x = 1 or 3 

The second derivative is — = 6x - 12 
d,x2 

If x = 1' _ -6, hence a maximum at 
dx2 

y = 1 - 6 + 9 = +4 Ans. 

d'y  H _ = 3, — - +6, hence a minimum at 
dx2 

Let 

Then 
and 

y = 27 - 54 + 27 = 0 Ans. 
d'y 

= 6x - 12 = 
dx2 

x = 2 
y = 8 - 24 + 18 = +2 Ans. 

From the plotted curve as shown in Fig. 73, we see that the last point 
is an inflection point. 

y = x3 - 6x2 + 9x 
du 
-Y- = 3x2 - 12x -F 9 = 
dx 
x = 1 or 3 
= 

c " " 

For x = 1, ds- 2 = -y = + 4 a maximum 

city 
For x = 3, die- 2 = +y = 0 a minimum 

d2y 
For 

dx2 = 
x = 2 
y = 2 } an inflection point 
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Summary. 

1. Algebraic differentiation formulas: 
dc 

° dx 
dx 

(II) dx = 1 

(I) 

d 
(III) -d—x (cx) = c 

(IV) —d (xn) = nxn-1 
dx 
d du dv 

(V) T(x (u v) = + 

d dv du 
(VI) c-F (uv) =u c-rx +v ci-x 

du dv 

(VII) 
dx \vl v2  

2. Successive differentiation is the process of repeating the 
operation of differentiating a function. These successive oper-
ations result in the "first derivative," "second derivative," and 
so on to the "nth derivative." 

3 .If—=Oand—dd—x'y' =, y is a maximum. 
dy 
dx 
dy d'y 

4. If dx = 0 and — = , y is a minimum. 

5. If = 0 and d--1/ = 0, y is an inflection point, a maximuln, 
dx de 

or a minimum. In this case, the curve should be plotted to 
determine its nature. 

Exercises 

Differentiate the following five equations: 
1. y = ax2 bx c 
2. y  
3. y = (a + x) 2  
4. y = x •Va bx 

a —  5. y  x— 
a + x 

6. What is the second derivative of y = VFc? 
7. The current I depends upon the temperature t of an incandescent 

lamp by the equation 
I = a ± bt Ce 
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What is the expression for the variation of the current corresponding to a 
variation of the temperature? 

8. If the space covered is given by the equation 
• 

8 = 412 — 6 

find the velocity and acceleration when t = 2. 
9. Find the value of x and the value of y for the maximum and minimum 

values of the curve y = x3 — 3x + 4 
10. If the current i = 16 •Vi 8 is expressed in amperes and the time t 

in seconds, what is the time when the current changes at the rate of 2 amp 
per sec? 



CHAPTER 13 

DIFFERENTIAL CALCULUS 
TREATING TRANSCENDENTAL FUNCTIONS 

As pointed out in the last chapter, a transcendental function 
is any function that is not a simple algebraic function. Transcen-
dental functions are irrational functions such as Ez, sin x, and 
log x. 
The Law of Natural Growth.—The law of natural growth 

results when the increase in size of a quantity is always propor-
tional to the size of the quantity. This is illustrated by nature 
when an organism's growth is proportional to the size of the 
organism. This could also be called a "logarithmic rate" of 
growing because the percentage increase is always proportional 
to the magnitude at that instant. 

Studying two cases will help to clarify this law. Consider the 
difference between constant and natural growth as illustrated 
in simple and compound interest. With simple interest, the 
capital grows arithmetically at unit rate while with compound 
interest the capital grows logarithmetically at unit rate. 

Simple Interest.—Start with a capital of $1 and let the interest 
rate be 3'ío or 10 per cent per year. The owner will then make 
10 cents on this dollar each year. By saving this interest each 
year he will have a total capital of $2 at the end of 10 years, to 
double his property. 

Stating this problem in general terms, let / be the original 
capital and 1/n be the yearly interest rate, then it will take n 
years to double his property, that is 

x + n () = 2x (1) 

For the first year the owner has $1. At the end of the year he 
receives 10 cents in interest. He saves this 10 cents during the 
following year and collects another 10 cents at the end of the 
second year. This process is shown graphically in Fig. 74 for 

174 
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the whole 10 years. The total capital of the owner at any time 
is represented by the stair step curve. 
' Compound Interest.—As before, start with a capital of $1 and 
let the interest rate be Yio or 10 per cent 
per year. If the interest is corn- 
pounded every 10 years, then the owner 

-8 
will receive all the interest at the end of me 
10 years. This will amount to $1, mak- 9. .., e• 1 
ing, with the original investment, a total P 

El. 
capital of $2. In equation form, this g 
can be stated, II a o 2 4 6 8 10 

( n=number of years 
xi = xo + = xo 1 + —1 = xo (2) Fie. 74.—Curve of simple 

interest at the rate of 10 per 
(2) cent for 10 years. 

where x1 = capital at end of 1 operation. 
xo = original capital. 

Now consider compounding the interest every 5 years for 
two operations. The initial capital is xo, the interest for the 

first 5 years is one half the above amount or Xi and for the next 

, X0 
X0 -t- •-i 

5 years, the interest is — 2--; hence, in equation form, 

xo 
x2 = xo -I- x2° ± 2 2 — xo (1 ± 2 • ± 

2 4 

(1 + 1)2 = xo(2.25) • (3) 

If the interest is compounded three times in 10 years, this 
reasoning leads to the following equation; 

xo xo , xo xo/3 
, -r -r xo xo  

X0 °  3 3 
X3 = X3 + 3 , 3 3 

= xo (1 -F = 2.37 (4) 
3 

If the interest is compounded yearly, the equation is 

xio = xo (1 -I- = 2.594 (5) 
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A similarity will be noted among Eqs. (2), (3), (4), and (5). 
Generalizing for n operations, 

= xo (1 + —1)n (6) 

where x„ = capital at end of n operations. 
x = original capital. 
n = number of operations. 

Now if n is made larger and larger, the value of x„ comes closer 
and closer to a limiting value which is the natural number 

E = 2.7182818 • • • (7) 

This number is even more important than ir, which equals 
3.141592 • Let us summarize what e (epsilon) means. As 

shown above, if $1 grows at simple 
3 e —2.718 • interest, it will become $2, but if 

7f) 
^c 2 
e 

Tçi 

1 
e 

0 
0 2 4 6 8 10 
n=number_of years 

Fm. 75.—Curve of true com-
pound interest at the rate of 10 
per cent for 10 years. 

the interest is truly compounded 
2 for this same period of time, it will 

become $2.718 . . . or e times the 
original capital. If this truly com-
pounded curve is drawn graphically, 
the curve of Fig. 75 results. 

Exponential Series.—There is an-
other way of determining the value 
of the natural number e. From the 
Eq. (6), we see that the quantity 
(1 + 1/n). will become equal to e 

if the number n is made indefinitely large. But by the binomial 
theorem, this quantity can be written 

1 

1 n — 1 1 (n — 1)(n — 2) + (8) 
(1 =ii -I- o +la 

- n' 

But, to express e, n becomes very great, hence (n — 1) and 
(n — 2) are for all practical purposes equal to n, hence, we can 
write the series 

E =- 1 + 1 — — -r • • • 
L2_ L3_ 

which will give the value of e to any desired accuracy by taking 
the required number of terms. 

(9) 
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Carrying this reasoning one step farther, e can be raised to the 
x power by expanding the expression 

(1 + .10 nx + nx ifix-i (1/n) nX (nx \   . 1"e-2 (1/n) 2 

IL  " 

By making n indefinitely large, we reduce this equation to the 
exponential series 

X 2 X 3 
Ex = 1 -I- X — — + • • • (10) 

This series represents a natural growth curve as shown in 
Fig. 76 where y = e. At x = 1, the value of y is the natural 
number e. 

y 
or 
dy 

dx 

4 
Natural 

curve 
growth 

3 
in ii=x 

2 çu 
a e Vt„4, Natural 

curve 
V= e 

decay 

- 
—2 à 

FIG. 76.—Curves of natural growth and of natural decay 

X 

Example 1. Compute the value of e to five decimal places by using the 
exponential series. 

Solution. 

Then 

1 ± 1 = 2.00000 

1/132 = 0.50000 
1/ = 0.16667 

1/4— = 0.04167 

1/ 5— = 0.00833 

= 0.00139 

1/ 7— = 0.00020 

1/ 8— = 0.00002 

e = 2.71828. Ans. 
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The Law of Natural Decay.—Since the reverse process of 
growth is decay, consideration will now be given to natural decay 
or die-away curves. Just as e is the measure of natural growth, 
so 1/E or e-1 is the measure of natural decay. Applying this 
reasoning to the exponential series by changing the sign of x 

results in 

= 1 - X - - --r • • • 
12 13 

Then, making x = 1, the value of 6-1 becomes 

1 , 1 1 
- = E-1 = 1 - 1 -r — —  ,— 

12 13 
• • • = 0.36788 • • • (12) 

Now, just as a quantity of unit size naturally grows to 2.71828, 
so does a quantity of unit size naturally die-away to 0.36788. 
As a practical illustration, the natural cooling of a hot body 

obeys the law 
y = ae-bi (13) 

where y is the temperature at any given time t while a and b are 

constants. 
To illustrate the nature of this natural decay curve, it has been 

plotted in Fig. 76. 
Both the natural growth and decay curves have very important 

electrical engineering applications. As for example, the change 
in signal strength along a telephone line obeys these natural 
laws, and the natural time constant of circuits also can be 

explained by them. 
Derivative of the Exponential Function ex.—When y = ex, the 

curve of Fig. 76 results. It will be noted that this is simply an 
extension of the curve of Fig. 75. A further study will reveal 
that this curve has very special properties. Using the expo-
nential series as given in Eq. (10), it is found that the derivative 
is the same as the original value. 

d 2x 3x2 4x3 
Thus (ex) = 0 ± 1 — — — -I- • • • 

dx 12 13 14 

= 1 x -Ê -I- • • • (14) 
12 
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This series is the same as that given in Eq. (10); hence 

d „ (VIII) = EX (15) dx 

The derivative of the exponential function e remains unchanged. 
In other words, the slope of the curve y = e is always dy/dx = ex. 

Example 2. What is the derivative of e--"? 
Solution. Taking the derivative of the series in Eq. (11), 

d 2x 3x2 4x3 
= + dXe 

= (1 — x + — + • • • ) = —6-. Ans. 

Derivative of the Exponential Function ex.—When a constant 
is multiplied by the variable exponent of an exponential function, 

y =ea x + ax + (ax)2 ()3 

The derivative of the series is then 

2 . = 2a2x 3a3x2 
(Eae) = o + a + + 12 + 

(ax)2 (ax) 3 
= a (1 ax 12 + ± 

By Eq. (16), the series in the parenthesis is ea"; hence 

(IX) d 
(ex) = a fax 

(16) 

(17) 

The derivative of an exponential function ex where a is a 
constant is equal to the constant a multiplied by the exponential 
¿cm. 

Example 3. Find the derivative of y = €2z and plot the curve of both 
functions. 

dy d 
Solution. By Eq. (15), — — (es") = 2E2e. Ans. 

dx dx 

For the curves see Fig. 77. It will be noted that for each 
value of x, the slope of the derived curve is twice that of the 
original curve. 
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Natural and Common Logarithms.—The natural number e is 
also important because of its mathematical use as the base of 
natural logarithms. The equation y = Ex can be written 

ln y = x (18) 

because the natural logarithm of y is equal to the power x to 
which the base e must be raised to produce the number. 

Y 

Y = E 2x 
____5 

du =.2e 2x 
dx 

N 
74 4 

3 

2 

1 

0 1 n 1 «4' 
X 

Fro. 77.—Exponential curves of e" and 2e". 

The relationship between natural and common logarithms is 
often of interest. A natural logarithm can be changed to a 
common logarithm by multiplying it by the common logarithm 
of e, that is 

log x = log e ln x = 0.4343 ln x • (19) 

Conversely the common logarithm of x can be converted to the 
natural logarithm of x by multiplying it by the natural logarithm 

of 10, that is, 
ln x = ln 10 log x = 2.303 log x (20) 

Example 4. Find the natural logarithm of x = 6 and then convert to 

find the common logarithm. 
Solution. From tables, In = 1.7918 

By Eq. (19) log 6 = (0.4343)(1.7918) = 0.7782. Ans. 
From tables log 6 = 0.7782. Check. 

Example 5. Find the common logarithm of x e and then convert to 
find the natural logarithm. 
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Solution. From tables, log 25 = 1.3979 

By Eq. (20) ln 25 = (2.303)(1.3979) = 3.2193. Amt. 

From tables, ln 25 = in 2.5 ln 10 

= 0.9163 ± 2.303 = 3.2193. Check. 

Derivative of a Natural Logarithm.—The problem is to find 
the derivative of the natural logarithm of x. The equation is 

y in x 

From the definition of logarithms, 

X -= EY 

Taking the derivative, 

dx d = (0) = Ev = 
dy dy 

Inverting the terms in this equation, 

dy _ 1 = 1 _ 1 x-i 
- 

dy 

Therefore, substituting y = ln x, we 

have 2 

(X) d (In x) = -1 Fro. 78.—Curves of the CTX (21) natural logarithmic function of 
x and its derivative. 

The curve of y = In x and its derivative are shown in Fig. 78. 
It will be noted that the slope of the original curve keeps decreas-
ing as the value of x increases. The magnitude of this slope is 
• expressed by the derived curve. 

• Example 6. Find the derivative of y = ln (ax b). 

Solution. Now, ev= ax b 

1 b Solving for x, 

dx 1 d(o) 1 
Then _ ± O = (ax b) 

dy dy 
dy  a  
dx ax +b Ane. 

dy 
dx y 
3 

2 

Inverting, 

Derivative of Sin 0.—The problem is to find the derivative 
of the equation y = sin O. Resorting to the basic idea of 
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increasing each variable a little bit and subtracting the original 
function as shown in Fig. 79, we have 

y ± dy = sin (0 + dO) 
y = sin 0 

Fm. 79.—Geometry 
to find the derivative 
of sin O. 

dy = sin (0 dO) — sin 0 

But there is a trigonometric identity that can 
be written 

sin a — sin b -- 2 cos  2 a ± b • si.n a —2 b 

Now, making a = 0 ± dO and b = 0, we get 

0 + dO -I- 0 0 ± dO — O 
dy = 2 cos sin 

2 2 
( = 2 cos 0 ± -y • sin T  

dO) . dO 

dO dO 
When dO is made to approach zero, sin 7  ---> 7 - Also, as dO —*I) 

the term cos ( 0 + -c-1:2) —> cos O; hence, the differential is 

de 
dy --- 2 cos 0 • .7  = cos 0 • dO (22) 

and 
dv 
de 

o 

1 

y= sin 9 

90° 180° 270° 360° 

dv 
dB = cos   

Fro. 80 —A sine curve and its derivative, a cosine curve. 

The derivative of sin 0 is therefore 

d 
(XI) (To- (sin 0) = cos 0 

O 

(23) 
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The curve of sin O with its derived curve cos O is shown in Fig. 
80. 

Example 7. A sinusoidal voltage in a circuit can be expressed by the 
equation E -= sin cot where the constant co is the angular velocity of a vector 
and t is the time. 
Determine the expression for the rate at which the voltage E changes 

with respect to time. 
Solution. Applying the above procedure, 

E -I- dE = sin (cot + co dt) 

Subtracting 
dE = sin (cot + w dt) — sin cot 

Letting a = cot + co dt and b = cot 

and using trigonometric identities, we get 

dE = 2 cos cot + co& wt sin cut codt — wt 
2 2 

E sin cot 

In this expression the cosine term approaches cos cot as dt —› 0 and the sine 
w dt 

term approaches as dt O. 

Hence, 

dE = 2 cos cot • writ = cos t dt 
" 

d  jé (sin cot) = w cos cot Ans. 

Derivative of cos O.—Following a procedure similar to that 
used for finding the derivative of sin 0, we have 

y dy = cos (0 ± dO) 
Subtracting y = cos 

dy = cos (0 + dO) — cos O 

From the trigonometric identity, 

a+b .sin a—b 
cos a — cos b = —2 sin 

2 2 

let a = O ± dO and b = 0; then 

—2 sin ° + d° + 0.+ 0 dO — 0 dy = • sin 
2 2 

( = —2 sin 0 + -ce • sin cl-

dO dO . dO 
Neglecting in comparison to O and making sin result in 
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the differential 
de 

dy = —2 sin 0 —2 = — sin O dO 

The derivative of cos O is therefore 

(XII) 
d 

(cos 0) = — sin 0 

(24) 

(25) 

Successive Derivatives of sin O and cos 0.—By using Eqs. (23) 
and (25), it is possible to take successive derivatives of these 
functions, thus 

Original function y = sin 

dy  First derivative — _ — cos 0 
de 

• d'y 
Second derivative —d02 = — sin 0 

day 
Third derivative — = — cos 0 

d03 
d4v 

Fourth derivative = sin e, the original function 

The second derivative of sin 0 or cos O is equal to the original 
function but of opposite sign. 

Example 8. Find the values of y = sin e when sin O is a maximum and 
a minimum. 

Solution. Setting the first derivative equal to zero gives the requiréd 
values of e. Thus 

= (sin 0) = cos e = 
de de 

cos e is zero when e = 90° and 270°. For these values of e the second 
derivative will indicate maximum or minimum values. 

d2y d 
c-ffi (cos 0) = —sin e 

d2y 
When O = 90° ' = —1; hence, a maximum. (102 

d2y  When O = 270°, _ — +1; hence, a minimum. 

The maximum value of y = sin 90° = +1. Ans. 
and the minimum value of y = sin 270° = —1. Ans. 

sin 0 
Derivative of tan 0.—Let y = tan 0 = 

cos El 
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Using the formula for finding the derivative of a fraction, 

d d cos O — (sin 0) - 0 — (cos 0) 
dy  de . de  

cos2 
cos2 O ± sin2 0 1  

— sec2 
0082 0 cos2 

Therefore, 
d 

(XIII) a (tan 0) = sec2 0 (26) 

Derivative of sinh 0.—Let y = sinh B. Resorting to the basic 
idea of increasing each variable a little bit gives 

y ± dy = sinh (0 ± de) 
Subtracting y = sinh O 

dy = sinh (0 ± de) - sinh 

Now let a = e + de and b = 0 

From the hyperbolic function identity, 

a ± b • sinh a - b sinh a - sinh b 2 cosh 
2 2 

0 + de ± 0 inh O + dO - 0 dy = 2 cosh • s 
2 2 

de de de 
But for small values of dO, sinh -2- = -2- and can be neglected 

in comparison to 0, to give the differential 

dy = 2 cosh 0de —2 = cosh 0 dO (27) 

Hence, the derivative is 

d 
(XIV) (sinh 0) = cosh 0 (28) 

Example 9. By the use of exponentials find the derivative of sinh O. 
Co — 6-0 

Solution. y = sinh O — 
2 

By Eq. (15) and Example 2 or using Eq. (17), 

dy e° e-te  
— cosh 0 Ans. 

de 2 
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This method is much easier than using the basic idea as it was 
given in the development. 

Derivative of cosh 0.—Let 

y = cosh 0 
Then y + dy = cosh (0 ± de) 

and subtracting the original function gives 

dy = cosh (0 + de) — cosh 0 

Let a = O dO and b = O in the hyperbolic identity 

cosh a — cosh b = 2 sinh a +  2 b • sinh a —2 b 

0 + d ± 0 sinh  ± dO — 0 Hence, dy = 2 sinh 2 2 

dO de de . 
Neglecting 7  in the first sinh and letting sinh 7 7 in the 

second sinh results in the differential 

dy = 2 sinh O• = sinh O dO (29) 

and the derivative is 

d 
(XV) cTé (cash °) = sinh O (30) 

Successive Derivatives of sinh O and cosh 0.—By using Eqs. 
(28) and (30), the successive derivatives of these functions are 

Original equation y = sinh 
dy 

First derivative = cosh 0 

. el/ . 
sinh derivative — =inh 0, the original function 

de2 
. day 

Third derivative — = cosh 0, the first derivative 
dea 

This shows that the second and third derivatives of sinh 0 and 
cosh 0 repeat the original function and first derivatives. 
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Derivative of tanh 0.—Taking the derivative of the fraction 

sinh 
y = tanh O = 

cosh O 
d . 

cosh —B (sinh 0) — sinh O —d (cosh 0) 
d dy  . dO  

dx cosh2 O 
cosh2 0 — sinh20 1  

— sech2 
cosh2 O cosh' O 

Hence, 
d 

(XVI) (tanh 0) = sech2 (31) 

Partial Derivatives.—In many engineering problems the value 
of the dependent variable depends upon more than one inde-
pendent variable. In such cases, the common practice is to 
treat all but one of the variables as constants. As a concrete 
illustration, the area A of a rectangle is the product of the length 
id the two sides x and y, thus 

= xy (32) 

The area depends upon the length of the two sides. As sug-
gested above, if one side, say x, is held constant, the rate of area 
change can be written in differential form, thus 

dAx=x dy (33) 

where the x subscript to A means that x is held constant during 
this operation. 

Similarly, if y is held constant the differential change in area 
is 

dA„ y dx (34) 

Another common way to make this statement is by using 
partial derivative signs (a), thus 

aA 
(35)= x 

This says that partial of A by partial of y is equal to x for 
this illustration. When partial derivative signs are used, only 
those terms to which the partial is applied are permitted to vary. 

ax Y 
Similarly, (36) 



188 ,APPLIED MATHEMATICS 

means that all terms by A and x are held constant during this 
operation. 
The total differential of the area A is the sum of the differential 

when x is held constant plus the differential when y is held 
constant, thus 

dA = dA. dA y (37) 

Substituting for dA. and dA y from the above equations gives 
the total differential of A 

dA = x dy + y dx (38) 

Now if the area changes size at a given rate of time, we can divide 
both sides of this equation by dt to get 

dA dy (ix 
dt x dt Y dt (39) 

But, as given above, x and y can be replaced by the respective 
partial derivatives to get 

dA aA dy aA dx 
dl = ay CV axdt 

This is the total derivative of A. 

Example 10. The volume of a cylinder is given by the expression 

V = irr2h 

where V = volume in cubic inches. 
r = radius in inches. 
h = height in inches. 

At a particular instant r -- 10 in. and is increasing 2 in. per sec, while at 
this same instant h = 20 in. and is increasing 0.5 in. per sec. Determine 
the rate at which the volume is changing. 

Solution. —8V = Irrh 
ar 
av 
ah 

Substituting these values in Eq. (40) gives 

dV n 7.dt dr , dt dh = erra — -r 7rr - — 
dt 

Substituting the values given in the problem, 

dV 
--d-t- = 2(3.1416)(10)(20)(2) -F (3.1416)(100)(0.5) 

= 2513.28 157.08 = 2670.36 cu in. per sec. Ans. 

(40) 

r r 2 
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Summary. 
1. The natural growth curve is given by the exponential series, 

x2 X3 
y =ex=1+x+ T2- - + + • • • 

When x = 1, y = E = 2.71828 • • • the natural growth number e. 
2. The natural decay curve is given by the exponential series, 

x2 x3 
y = E—e = 1 — z + —  Tg- • • 

When x --= 1, y = = 1/e = 0.36788 • • • the natural decay 
number 1/e. 

3. Conversion equations for natural and common logarithms: 

log x = log e In x = 0.4343 ln x 
ln x = In 10 log x = 2.303 log x 

4. Transcendental differential formulas: 

d 
(es) = 

d 
(IX) d7x (Eae)= ClEae 

d (X)  
c-rx 
d 

(XI) Fié (sin 0) = cos O 

d « 
(XII) (cos 0) = — sin 

d 
(XIII) -d-à (tan 0) = sec2 O 

d 
(XIV) c-ré (sinh 0) = cosh 

d (Xy) a (cosh 0) = sinh O 
d 

(XVI) (tanh 0) = sech2 

5. The second derivatives of sin and cos functions produce the 
original function but with the opposite sign. 

6. The second derivatives of sinh and cosh functions produce 
the original function with the same sign. 

(VIII) 
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7. Partial derivatives are useful in treating engineering prob-
lems having more than one independent variable. 

Exercises 

1. Determine the value of et to five decimal places when x = 2. 
2. Find the derivative of y = eae+fie. 

3. Find the derivative of y = ln x2. 
eix — e-i2 

4. Find the derivative of y = sin x —  2i  by using exponentials. 

5. Find the natural logarithm of 8 and then convert to find the common 
logarithm. 

6. In an electrical circuit, the voltage 

di 
E = L —dt 

Where i = I sin cot, determine the value of the voltage E. 
7. Find the derivative of y -= cos' O. 

cos e 
8. Find the derivative of y = cot 0 = sal 0 
9. What is the second derivative of y = cosh ax? 

10. Find the maximum or minimum of the function F = x 2xy y. 



CHAPTER 14 

INTEGRAL CALCULUS 

The word "integral" means the whole or sum of all the little 
bits. Therefore, integral calculus is the mathematics of calcu-
lating the sum of all the little bits. The integral sign f, as 
already explained, is an elongated letter S, meaning "the sum of." 
Mathematicians usually prefer to read this sign "the integral 
of." Thus, f dx means the sum of all the little bits of x but is 
usually read "the integral of dx." It may be written in the form 

of an integral equation, thus 

y f dx (1) 

This equation states that y is equal to the sum of a vast number 
of very small quantities dx. In fact, these dx quantities are so 
indefinitely small that it requires the sum of an indefinitely large 
number of them to make up the total or integral quantity y. 
The integral sign is quite closely related to the summation 

sign (the Greek letter sigma). The basic difference is that 
stands for the sum of a few or finite number of terms, while 
f stands for the sum of an indefinitely large number or infinite 
number of terme. It may be written in the form of a summation 
equation, thus 

y = Zyk (2) 

where y is the sum of all the yk terms that are to be added together. 
Integration as used in integral calculus can be thought of as 

the inverse operation of differentiation as used in differential 
calculus. This can be compared to division as the inverse 
operation of multiplication. Integration is more difficult than 
differentiation, much as division is more difficult than multi-
plication. In general, integration of a variable cannot be 
performed unless the variable has already been found by the 
process of differentiation. For differentiation, the symbol of 

operation is —d ( ) where the quantity to be operated on is 
dx 

191 
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placed between the parentheses. The symbol of operation for 
integration is f ( ) dx where the quantity to be operated on is 
placed between the parentheses. 

In this chapter we shall deal with several practical ways of 
making approximate sums. Then some of the integral formulas 
obtained directly from differentiation will be treated so that, in 
simple cases, it will be possible to find the exact sums. 

Trapezoidal Rule.—The area enclosed by a curve can be 
approximated by dividing the area with a number of evenly 
spaced parallel lines and then adding together the area of each of 

Y 
5 

4 

3 

2 

1 

Area = ax [Ye + y1+ iy2+y3+ /4+!J 

<-4(X x—• 

b 
ri, 4 

d 
i 

Y2 ' Ys 
. 
Y4 7'`‘ 111 

y a : . ; 
, 

I 

) 1 2 3 4 5 6 7 R gi 11 

y5 

o . X 

Fn. 81.—Area measured by the trapezoidal rule. 

these individual strips. For illustration, it is desired to measure 
the area under the curve, that is, between the curve and the 
x-axis from ordinate yo to ordinate y6 as shown in Fig. 81. First, 
consider the area of the trapezoid a, P, b, 3,1, which is a strip of 
width àx and of average height ya. Since the area in the shaded 
triangle acP above the curve is equal to the shaded triangle 
Pbd below the curve, the area of the trapezoid a P, b, 3,1 is the 
same as the area of the rectangle c, d, 3,1 which is equal to (Ax)y1. 
The area under the curve from x = 3 to x = 9 can be measured 
in this fashion and is equal to (ax) (y2 ya y4). The area of 
the end strips, which are one half the width of the other strips, 

is equal to (-2 yo and (—tix) y6. 2 The total area in this case 
àx) 
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where A = approximate total area. 
= width of strips. 

y = height of strips. 
n = number of strips. 

By using the summation sign this same equation can be 
expressed as follows: 

k=n-1 

A = Az (Y. + yo) + Yki (4) 
1 

k=1 

k=n-1 

where the summation sign S is read "the summation of all 
k=1 

the yk terms from k = 1 to k = n — 1." In words Eqs. 
and (4) can be written 

sum of 
extreme 

(Approximate) (width 
\ total area = of 

) ordinates sum of 

strip 
2 + remaining (5) 

ordinates 

The trapezoidal rule as expressed by these three equations 
assumes that the curve is a straight line across the top of each 
strip. If this is not so, the answer will approximate the total 
area. The accuracy of this approximation will increase if the 
number of strips for a given area are increased. The answer can, 
therefore, be made as accurate as you desire providing you are 
willing to do the extra work of adding the increased number of 
strips. 
Example 1. If the scales in Fig. 81 are measured in inches, what is the 

area under the curve? 
Solution. Substituting values in Eq. (4) 

A = 2[%(1 ± 4) + 2 ± 3.5 -I- 3 + 3] = 28 sq in. Ans. 

This can be checked by counting the squares. 

Simpson's Rule.—Simpson's rule assumes that the curve 
between any three consecutive points is a parabola. This in 
general gives a better approximation than assuming that adjacent 
points are connected by a straight line as was done in the trape-
zoidal rule. This is due to the fact that if the points are chosen 
reasonably close together, the portion of the parabola between 
these points will practically coincide with any reasonable curve 
drawn through the points. 

(3) 
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The area under any portion of a parabola is exactly 3 of the 
enclosing rectangle as illustrated in Fig. 82. The area under 

any three points on a parabola is 
Y y =1 —x2 

Area = (ye 4y1+ y2) given by 

1 
Area = —3 (y,, + 4y ± Y*2) 

If these are the first three points 
0.5 giving the area in the first two 

strips, then the area in the second 
two strips is 

o 0.5 1 
Area = —1 Ax (y2 + 4y8 ± 114) 

x 3 

FIG. 82.—Area under a parabola In general, these areas can be 
measured by Simpson's rule, added together to give the total 

area under the curve, thus 

1 
A = —3 Ax (Y0 ± 4y1 2y2 4y$ 24 ± • • • + yn) (6) 

where A = approximate total area. 
= width of strips. 

y = height of strips. 
n = number of strips (n being even). 

Equation (6) may be expressed by using the summation sign, 
as follows: 

k= n k= ta —1 

A = 3 + Yn) 4 E Y(2k-1) + 2 y2ki 
, 

k=11. 

(7) 

In words, this equation can be expressed 

À = 1 [wid,1 [(orclinates sum of extreme sum of remaining ) 
-à °I + 4 odd-numbered 

strip ordinates 

sum of remaining 
-I- 2 ( even-numbered (8) 

ordinates  

Example 2. Determine the area under the parabola of Fig. 82 if the 
scales are in inches. 
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Solution. Substituting in Eq. (6), 

1 1 2 
A = - (0.5)[1 + 4(0.75) + 0] - (1 + 3) = - sq in. Ans. 

3 6 3 

Example 3. If n = 8, write out the summation quantities in Eq. (7) and 
then express the whole equation. 

8 
k=--4 
2 

y(75-7) = Y(2.1-7) + Y(2.2-7) + y(2. 3-1) + y(2.4-1) 
k 1 

+ Y3 + Ys + y7 Ans. 

Y2k, = Y2.1 + Y2.2 + Y2.2 

= Y2 + Y4 + ye Ans. 
Ax 

A = —3 (Yo + y8) + 4(yi + ya + y, + y7) + 2(fix ± 114 + 116)) Ans. 

Area Integration.—The trapezoidal rule gives a roughly 
approximate area, while Simpson's rule gives a more accurate 
approximation. The next step is to find the exact area by using 
integral calculus. This can be done by using the integral 
equation 

= j: y • dx (9) 

where, A = the exact area. 
y = the ordinate or height of infinitesimal strip. 

dx = width of infinitesimal strip. 
This equation says that the area under the curve from x = a to 
x = b is the sum of all the infinitesimal areas which are y dx. 
Referring to Fig. 78, the infinitesimal area y • dx has a height of 
y and a width of dx. Substituting the limits a = 2 and b = 6, 
and the value of y = 4, Eq. (9) becomes 

A = fe".6 4 dx x=2 

The constant 4 can be moved outside the integral sign without 
altering the value of the equation, thus 

= 4 dx 
J =2 

Now, the integral of dx must be a function of x such that when 
x = 2 is substituted the area from x = 0 to x = 2 is given by the 

(10) 
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equation. Let us make a guess and assume that the integral of 
dx is x. Now when x = 2, the area A = 4 2 = 8 which 
checks the area under the curve up to this point. Next sub-
stitute the value of x = 6 to get A = 4 • 6 = 24 which checks 
the area under the curve up to this final point. This shows that 
our guess was correct, so integrating Eq. (10) results in 

A = 4x lb = 4x lx=6 
a x=2 

(11) 

which says that the lower value x = 2 is substituted in the 
equation to give the area under the curve up to the point of 
interest. The upper value x = 6 will give the above area plus 
Y the area of interest so we subtract 
5 a=2 y=4 b=6 the above area from the total area 
4  to get the area of interest, thus 

3 

2 
A = 4 • 6 — 4 • 2 = 24 — 8 = 16 

Ans. 

1  This answer gives the area under 
 X the curve from x = 2 to x = 6 as 
0 1 2 

shown in Fig. 83. Fro. 83.—Integration of the 
constant y = 4 between the limits Integral calculus enables us to get 
a = 2 and b = 6. the exact area under any curve that 
we can integrate. Without it we would have to satisfy ourselves 
with approximate results or perform an infinite number of opera-
tions. Now that we see the usefulness of this new tool let us 
learn how to integrate. 

Example 4. Find the area under the curve y = 2 from a = 1 to b = 4. 
Solution. By Eq. (9), 

3 4 5 6 7 

4 4 4 
A = 2 clx 21  dx 2x = 2 • 4 — 2 • 1 = 6 Ans. 

Infinitesimals.—In order to get an exact answer, integration is 
used to add the infinite number of infinitesimal quantities making 
up the variable. Thus, dx is an infinitesimal part of the variable 
x. Or in other words, x is the integral sum of all the infinitesimal 
dx quantities in the variable x. 

This can be visualized by considering a simple case. A bug 
walking down a string goes 1 inch the first minute, the second 
minute he goes AI inch, the third minute, he goes inch, and 
thus each succeeding minute he travels just one half as far as he 
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did the previous minute. How far will he travel if the time is 
increased without limit? The answer is 2 inches as shown in 
Fig. 84, because each minute the bug goes halfway to the final 
value of 2 inches. 

Furthermore, the bug always has as far to travel as he went 
during the last minute. During the first minute he went 1 file, 
which is halfway to the 2-inch mark. The second minute 'he 
went AI inch farther, leaving 14 inch yet to go. During the 

o  1-1 

FIG. 84.—Graphical representation of the geometric series 
S. = 1 ± + I ± • • • 

third minute, he went AI inch farther, leaving Yi inch yet to go. 
The bug can spend as much time as you can think of and he will 
not be to the limiting value of 2 inches. However, if he could 
perform this operation an infinite number of times, the value of 
2 inches would actually be reached. The last space covered in 
doing this an infinite number of times would be infinitesimally 
small. So it is no wonder that an integral will give an exact 
answer, since it evaluates an infinite number of infinitesimally 
small quantities. 

Example 5. Find the ultimate sum of 

2 . 1 1 1 1 
Sn=u+u -Ful-i-g-1-ii+ • • • 

Solution. From this series we see that the first space covered is h; the 
next space covered is 34 of this value or h. Since each succeeding step 
covers 34 the previous distance, then the remaining distance must be equal 
to the distance covered in the last step. Hence, the ultimate sum of 

Constant of Integration.—Differentiation can be visualized as 
the process of finding the slope of a curve. Then, integration, 
the reverse process, can be visualized as the process of finding a 
curve when the slope is given. But knowing the slope is not 
enough information to locate a single curve. In fact, many 
reverse processes do not give a definite result as does the first 

process. For illustration, 22 = 4 which is definite but Vi is 
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either +2 or —2. Consider the equation of a horizontal line 

= C 

The derivative or slope of this line is 

dy _ o 
dx 

Referring to the family of curves in Fig. 85, we see that they all 
have a zero slope. Hence with the information of a zero slope, 

we know only that the line is horizontal; 
to locate it, we must know its distance 
from the x-axis. This distance can be 

5 represented by C, the distance to the 
4 C 4 curve along the y-axis. This means that 
3  — =2 to every quantity that is integrated a con- 
y C c  

2 stant must be added to locate the curve. 
1 C-0 This constant may be zero or some other 

x value. 
Algebraic Integrals.—In the treatment 

that is to follow each algebraic integral 
equation will be given along with a brief 

proof, some graphical representation, and typical examples. 

8-Y 

6 

FIG. 85.—A family of 
lines with the same zero 
slope. 

(I) f 0 • dx =_ C (12) 

This equation merely says that the integral of any quantity, 
even of zero, must have a constant added to locate the curve. 
In other words, at any value of x the value of y = C as shown in 
Fig. 85. 

(II) • f I • dx x C (13) 

Consider the equation y=x-FC as shown in Fig. 86 for 
three values of C. Taking the differential of both sides of this 
equation gives 

dy = dx 

It will be noted that the constant C was lost in this operation, 
so in reversing the operation, the constant must be added. 
Now taking the integral of both sides gives 

y = f dy = f dx = x C 
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which proves Eq. (13) and says that the integral of dx is equal to 
x + C. The slope is determined by the coefficient of x, which 
in this case is one, and the constant C determines where the line 
crosses the y-axis. 

Example 6. When the slope of a line is —1, give the integral equation. 
Solution. This statement can be written 

dy _ 
dx 

or, in differential equation form, dy = —1 dx. 
Taking the integral of both sides, 

y dy = f — 1 d,x = — x C Ans. 

(III) fadx=ax+C (14) 

Consider the equation y -= ax +C as shown in Fig. 87 for 
two different values of the slope a and two different values of 

SY 

7 

6 6 

e   x 
xel, 
o x 

ct, ei, 
e 

5 5 

4 4 

3 3 

2 2 

1 1 
X 0  X 

0 4 5 6 7 °O 1 2 3 4 5 6 7 
Fm. 86.—A family of 

lines with the same unity 
slope. 

FIG. 87.—Two famil'es 
of curves having different 
slopes. 

the constant C, which gives the point at which the curve inter-
sects the y-axis. The differential equation is 

dy = a dx 

and the integral of this equation is 

y = f dy = f a dx = ax + C 

Thus the integral of the product a dx is ax + C. 

Example 7. What is the integral of dx? 
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Solution. By Eq. (14), 

fdx = + C Ans. a a 

Example 8. An automobile has a velocity of y = 10 mph. If the 
mileage indicator already reads 20 miles, integrate to find what the reading 
will be after 3 hr and show the results graphically. 

Solution. The differential equation is de =y dt 
Taking the integral of both sides, the space covered is given by 

S= fds= fyd,t=et+C 

Now the velocity y = 10 mph, the time t = 3 hr and the constant C = 20 
miles already traveled, hence the speedometer reading will be 

S = 10 • 3 -I- 20 = 50 miles Ans. 

See Fig. 88 for graphical representation. 

n 

5 
.'otk e  

el0 

0 

al 
v= zi• =10 mile1 p r hour 

0 
0 1 

t = time in hours 
FIG. 88.— A graph which illustrates both integral and differential equations. 

A study of Example 8 and the curve's in Fig. 88 should help to 
clarify what is happening. The slope of the curve S = vt C is 

dS 
= v 

a constant velocity represented by the horizontal line. Changing 
this equation from an expression of a slope to differential form 
and then integrating give the area under this curve for any 
time t. At time t = 1 hr, for illustration, the area is 10 • 1 = 10 
miles traveled in this hour. This is represented by the S curve 
going from 20 miles at time t = 0 to 30 miles at time t = 1 hr. 
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This S curve starts at 20 because the mileage indicator originally 
had that reading. 

(IV) 
1 

f x dx = -2 x2 ± C (15) 

Integral equations can be solved only if some function is 
known which yields the desired differential equation. The 
process is then to determine the differential equations for all 
known functions. Reversing the process and adding a constant 
will then give the desired integral equation. This we have done, 
giving the answer first, and then checking it by differentiation. 
Thus, let 

Hence, 

y = -1 x2 + C 
2 

dy = 2 (1) x dx = x dx Check. 
2 

1 
y = f dy = f x dx =.5 x2 + C 

Example 9. Solve f ax dx. 
Solution. Moving the constant a outside the integral sign and using 

Eq. (15), 

1 
ax dx = a xdx = i o,x2 C Ans. 

(V) xn dx -  1 xn+1 C 
n + 1 
1  

Let, y - n xn+1 + 

Then, dy = xn dx 

This checks the integral. 

Hence, y = f dy = f xn dx n +1 i xn+' C 

Example 10. Solve f x2 dx. 

1 
Solution. By Eq. (16) f x2 dx = 5 x3 ± C. Ans. 

dx 
(VI) f x- dx = f — = ln x + C 

(16) 

(17) 
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This is an exceptional case to Rule V, because here we deal with 
infinite values for which Rule V does not apply. A search of 
derivatives will give a function, y = in x C the differential of 
which is 

dy = -1 dx 

so the problem is solved, and 

y = f dy = f x-i dx = ln x C 

This solution is a striking example of a problem that cannot be 
solved until the corresponding differentiation is found. This can 
be further illustrated by the differential equation 

dy = a--x' dx 

which even today has not been integrated because no one has 
found a-z2 when differentiating some other. function. 

(VII) f (u v) dx = f u dx f y dx (18) 

This merely states that the integral of an algebraic sum (u v) 
is the same as the sum of the integrals of u and v. This is a useful 
equation to reduce equations to standard forms which can be 
recognized and integrated. 

Example 11. Find the integral of f(x ± 1)(x 2) dx. 
Solution. Multiplying, (x 1)(x + 2) = x2 + 3x + 2 

Then, by Eq. (18), 

f (x2 + 3x + 2) dx f x2 dx f3x dx f2 dx 

(VIII) 

1 3 
- x' + C Ans. 3 2 

fu dx = ux — fx du + C (19) 

This is one of the most useful algebraic integrals and is known 
as "integration by parts." It says that if x du can be found then 
u dx can also be found. The equation can be derived as follows: 
The differential of a product is 

d(uv) = u dv y du 

Rearranging this equation, 

u dv = d(uv) — v du 

and integrating both sides of the equation results in 

fu dv = uy — fv du -I- C (20) 
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This is the same as Eq. (19) but with y instead of x as the variable. 

Example 12. Find fxex dx. 

Solution. Let u = x dv = ex dx 
du = dx v = 

Making these substitutions in Eq. (20) gives 

Ans. 

(IX) Eax dx = 1 -a eax C 

Differentiating, 
d (7t 1 5ax _ 

Hence the above equation must be correct. 

Example 13. The current in a circuit is given by the equation 

. 
z = Tz (1 — e L ) 

What charge of electricity Q = fi, dt has passed through the circuit in t 

seconds? 
Solution. Substituting for i, 

Q = lEz- (1 — leg) dt 

Q = fd — fe1tdt 

Et EL — let 
+ L +C Ans. 

To make this a useful engineering answer, other information is needed to 
evaluate C. 

Applying Eq. (18), 

(21) 

(X) flnxdx=x(lnx-1)+C (22) 

To prove this, take the derivative 

d (x ln x - 1) = x • x- 1 +ln x - 1 = in x Check. 

(XI) f sin ax dx = 1 cos ax 
a 

(23) 
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Taking the derivative of the answer, 

d( _ _cos ax = _ -(1 1 , __ a) sin ax = sin ax Check. dx a a 

Making a = 1 gives the answer for f sin x = - cos x -I- C 

(XII) f cos ax dx = -1 sin ax + C (24) 
a 

d 1 
Similarly,  ( -it sin ax) = COS ax Check. 

(XIII) f tan ax dx = - -1 ln (cos ax) ± C (25) 
a 

To prove this, write 

sin ax 1 d(cos ax) f ax dx = — dx - 
cos ax aj cos ax 

Now, by applying Eq. (17), 

1 d(cos ax) 1 
- ln (cos ax) C Check. aj cos ax a 

Multiple Integrals.—We have already discussed partial 
differentiation when there were several variables. The inverse 
process is called partial integration. When making a partial 
integration all variables but one are held constant for the first 
integration and then in the second integration only one other 
variable is allowed to vary. This is continued until all the 
variables are allowed to vary during tlie integration. When 
performing multiple integration there are as many integral signs 
as there are variables to be integrated. 

Consider the multiple integral 

z = ff (x2 + Y2) dx dY (26) 

Holding y2 and dy constant while integrating with respect to x, 

z = f [f (x2 + y2) dx] dy = f [fx2 dx f y2 dx] dy 
= f [h x8 + y2x] dy 

Now, holding xs and x constant while integrating with respect 
to y, 

1 
z = -1 xay + -3 ysx C 

3 (27) 
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Double integrals are useful in determining areas. The 
general equation for an area is given by the equation 

A = f f dy dx (28) 

where the inner integral f dy gives the total length of the y line 
by summing up all the little dy bits. Y 
Then this line is moved in the x direc- 6 
tion by a small amount dx and summed 
over the total x distance involved. 5 

Another way to visualize this is to 4 
consider an elemental area dy • dx as cP 
shown in Fig. 89. This elemental area 3 c-D 
is summed from the x-axis to the curve 
along the dx strip. Then the strips are 
summed in the x direction from the y-
axis to the end of the area, which is 
x = 3 in this case. 

Example 14. By double integration, find 

the shaded area between the line y = 6 - 2x, the x and y axes. 

Solution. By Eq. (28) the area is, 

(x=3 ry = 6 — 2x 
A x=o iv-o dy dx 

f3 16-2x 3 
o dx fo (6 - 2x) dx 

f r 3 6 dx - 2x dx 6x - x213 
JO o o 

= (6 • 3 - 0) - (32 - 0) = 9 Ans 

This simple example illustrates the process of substituting the 
limits for a double integral and solving the integral equation for 
the area. 

Triple integrals are useful in determining volumes. The 
general equation for a volume in Cartesian coordinator is given by 

V =7. fff dx dy dz (29) 

This type of equation is used, for example, to find the electric 
charge p in space. In such a case the equation is written 

V --- fffp dx dy dz (30) 

where p is the charge density in the increment of volume dx dy dz. 

0 1 2 3 4 X 
Fio. 89.-.-Double integration 

of an area. 
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Some of the more elementary ideas of calculus have been 
presented, to enable the reader to follow better the reasoning of 
authors who resort to calculus in their technical articles or books. 
Calculus can be considered as an art that is acquired only by 
continued study and by solving many problems. It is used as a 
practical tool by many research and desitn engineers. To those 
desiring to pursue the subject further, a few references are given 
along with a well known table of integrals. A short table of 
derivative and integral tables for ready reference will be found 
on page 308 in the appendix. 
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Exercises 

1. Determine the average current of the sine curve i = sin cot by 
taking values every 10° up to 90° and using the trapezoidal rule. 

2. Determine the average current I., of the sine curve i = sin cot by 
taking values every 15° up to 90° and using Simpson's rule. 

8. Integrate the sine curve i = sin cot from cot = 0 to cot = ; radians 

to determine the average current I a„. Compare the accuracy of the three 
methods used above to four decimal places. 

4. Find the value of the series 

Sn = 1 — + h — 31. + • • 
to eight terms.i 

dx 
5. Integrate 1— and fax dx. 

x2 

6. Integrate f2(x + 1) dx and f4(x2 ± 2)(x — 1) dx. 

dx 
7. Integrate i a2 —• 

X 
8. Integrate fx2ez dx 

9. Integrate f cos 6cot d(£01) and 1162° dx. 

10. Integrate fa ln (10x) dz. 



CHAPTER 15 

SERIES AND WAVE FORMS 

The use of series makes possible the numerical solution of 
many problems that would otherwise be extremely difficult. 

This chapter will deal with some of the more useful series 
and wave forms encountered in engineering work. Particular 
attention will be given to practical applications of power series 
and the use of Fourier's series to express wave forms. 

Definitions.—A series is the sum of a sequence of terms. 
"Sequence" means that the terms are formed according to some 
fixed rule. Thus, the sequence of terms 

1, 2, 3, 4, etc. 

can be written into the series 
k=n 

Sn = 1 + 2 + 3 + 4 + • • • ±k+ • • +n= k (I) 
k=1. 

where S. -= a series of n terms. 
. k = a general or representative term in the series. 

n = the last term. 
A. finite series has a limited number of terms. For illustration, 

the series 
(a + b)3 = a' + 3a2b + 3ab2 + b3 (2) 

is a finite series containing only four terms. 
An infinite series has an unlimited number of terms. The 

fraction 
= 0.3 + 0.03 + 0.003 + 0.0003 + • • • (3) 

is a good illustration of an infinite series when the fraction is 
expressed decimally because no matter how many decimal terms 
you add the sum will never quite reach the value of %. In 
other words, an infinite number of terms must be added to give 
the desired answer. 
A convergent series approaches a finite value as the number of 

terms are increased. Equations (2) and (3) are convergent 
207 
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series. Equation (2) reaches the final finite value with only 
four terms. 
A divergent series approaches an infinite value as the number of 

terms is increased. Equation (1) is a divergent series because 
the sum of terms becomes increasingly large as the number n 
is made larger. 

Example L Write down three more terms and the kth term, and also 
express as a summation, the series 

S„ = 2 + 4 + 8 -I- 16 + • • • 

Solution. It is noted that each succeeding term doubles. The second 
term is the square of the first term and the third term is the cube of the 
first term. Hence the desired series is 

S„ = 2 + 4 + 8 + 16 + 32 + 64 + 128 + • • • 
k=n 

± 2k ± • • • + 2k = E 2k Ans. 
k 

Comparison Test for Convergence or Divergence.—Since .a 
converging series has a definite value, it is of far more practical 
importance than a diverging series. It is therefore important to 
know if the series is convergent or divergent. One of the 
simplest ways to test this is to compare the given series with a 
series that is known to converge. Two series are frequently 
used to apply this test. The geometric (or power) series 

S„ --= a+ ax ax2 + • • • -I- ax.-1 
a(1 — xn) a(xn — 1) 
1 — x x — 1 (4) 

converges when x is less than 1 and diverges when x is equal to 
or greater than 1. If x is less than 1, then x. will become very 
small as n is increased, hence xn can be neglected, with the result 
that the series converges to the value 

Sn —  a  
1 — x 

when x < 1 (5) 

When x is greater than 1, the term xn in the last fraction of 
Eq. (4) becomes increasingly large as n is increased, with the 
result that no definite value can be given to the fraction. This 
means that the series is divergent for x > 1. 
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When x equals 1, the series reduces to a sum of a terms. 
Hence as n is increased the sum will continue to increase. There-
fore, the series is divergent when x = 1. 
The p series which is frequently used in the comparison test is 

k=n 

1 1 1 1 
Sn = 1 + + • • • ± + • • • ± — = 1 (6) 2P 3P nP kP 

k=1 

which is convergent for p > 1 and divergent for p 1. 
The comparison test states that a given series converges if 

corresponding terms are smaller than those of a converging series. 
Likewise, a given series diverges if corresponding terms are larger 
than those of a diverging series. 
Applying these rules and Eq. (4), let us see if the following 

series is convergent: 

9  = ± ( 9 \) 2 

f(e) 1 F)"  + • 
Then S„ = 1 x + x2 + • • • is the value of Eq. (4) when 
a = 1. Equating corresponding terms, x = % 0; hence x <.1 
and the series converges by the comparison test. 

Example 2. Test the following series for convergence or divergence. 

k= 

f(k) = 2 ()k 

Solution. Comparing this series with Eq. (4) when a = 2 and x is less 

than 1, we have 

test series S. = 2 + 2x + 2x2 + 2x3 + • • • + 2x. 

and given series f(k) = 2 + 2 ()2 + 2 (02 + 2 (1)2 + • • • + 2 ‘in" n 

Comparing term by term, the first terms are equal, the second term of the 
given series is less than the second term of the test series when x is slightly 
less than 1, and so on for the rest of the terms, hence the series converges. 

Ans. • 
Note: The given series could be shifted to the right one place so the 

exponents would be similar; then the terms of the given series would all be 
less than corresponding terms of the test series with the exception of the first 
term of the given series. Since the first term is finte, the series must 
converge, because the rest of the series converges. 
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Example 3. Test for convergence or divergence the following•series: 

Q. = 
n=1 

Solution. Comparing this with Eq. (6) when p = 1 gives 

1 1 1 
test series S.=1±i-1-5+ • • • 7I-• 

1 1 1 
and given series Q. = + • • • + 

Since the test series diverges for p = 1, the given series must also diverge, 
because, when the factor X is removed, the corresponding terms are identi-
cal. Ans. 

Ratio Test for Convergence or Divergence.—If the test ratio 
of the (n + 1)th term divided by the nth term is less than 1, a 
series of positive terms is convergent. If this ratio is greater 
than 1, the series is divergent. If the ratio equals 1, the test fails. 
• In equation language, the test ratio for a series of positive 
terms is 

X18+1 
p = 

xn 

when p < 1 the series is convergent. 
p > 1 the series is divergent. 
p = 1 the test ratio fails. 

Example 4. Test the following series for convergence or divergence: 

1 11 13 11 -F 1 
S' Îö +i+103+ • • • + + 10"41 

Solution. By Eq. (7), 

fri + 1  

x,.+L 10" 1-1 n 1  
X. 10 > 1 

'on 

(7) 

Hence, the series is divergent. Ans. 

A good general rule is first to apply the test ratio and then, 
if p = 1, to resort to the comparison test. 
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Power Series.—The power series 

Sn, = ac, aix a2x2 a8x3 + • • • -I- ccen 

211 

(8) 

Where the a terms are independent of the x terms, the series 
may converge or diverge depending upon the values of the a and 
x terms. The above tests should be applied to determine these 
properties. 
The sum of two converging power series is another converging 

power series. For illustration, add 

2 X3 X4 ± 
e  [4: ex=1-Fx+ 2- 11 
2 8 x4 

E-x = 1 — z + —  v_t 
2x2 21:4x: , 

2 cosh x 

The product of two converging power series is another con-
verging power series. For example, multiply 

by 

Then 

X5 X5 X7 
Sill X = X — — — — — ± • • • 

11 É C_7_ 
X2 , x4 x6 , 

cos x 1 — — - - - • • • 
1± 

1 1 1 1  ± 1) _ 
sin x cos x = x — eg= -F — -F n • 

8 32 
2 sin x cos x = 2x — x3 wo x5 — • • • 

(2x)8 (2x)5 
= 2x — • • 120 • = sin 2x 6 •  

If a converging power series is divided by another converging 
power series, the quotient must be tested for convergence, since 
it may be divergent. To illustrate, divide the series cos x by x, 
thus 

and 

cos x = 1 — —x2 -1-• -x4 - • • • [2_ 
cos x 1 x x3 
X X E 
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This is not a power series, because the !7 term is present, but the 

rest of the series after this term is a power series. 
Power series are very useful in engineering to express binomials 

such as 

(a -I- x)n = -I- nan-le n(n — 1) an-2x2 . . . (9) 

= a. + alx a2x2 + • • • 

In this equation the a terms are defined thus: a. = a", al = na n-1, 
etc. 

Example 5. In an artificial transmission line, express the characteristic 
impedance 

Z. = 'Ne2• +'Z" 

• by a power series to two terms. 

Zi Z 1 
Solution. Let — = a and k 7)2 n s, then - the above binomial 

Z2 AZ,2 2  

expansion gives 

Z. (pyi (2Zziy . Ans. 

Maclaurin's Series.—Many functions can be expressed as a 
power series if the a terms can be evaluated. We have already 
treated the binomial series method which works in some cases. 
We will now treat Maclaurin's series, which works in other cases. 

Consider the power series 

f(x) = ao aix a2x2 (ha' + • • • (10) 

The first term ao can be determined by letting x = 0, thus 

1(0) = ao (11) 

Now, if the first derivative is taken and then x is set equal to 
zero, we have 

d 
[f(x)] = (x) = O + a1 -F 2a2x 3a2x2 + • • • 

Setting x = 0 results in f (0) = a (12) 
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'raking the second derivative and then setting x = 0 gives 

f"(0) = 2a2 = 12 a2 (13) 

Similarly, f"(0) = 6a3 =13_a3 (14) 

In general, P.)(0) = Éan (15) 

Making these substitutions for the a terms in Eq (10) results in 
Maclaurin's series 

f(x) = f(0) + (0) x2 + f"(0) —12 + fm (0) 

Example 6. Use Maclaurin's series to express the function 

1 
f(x)  

Solution. 

By Eq. (11), f(x) = (1 — x) -3 
By Eq. (12), f (a) = (1 — x) -2 

By Eq. (13), f"(x) = 2(1 — x)-3 

By Eq. (14), f"(x) = 6(1 — x)-4 

By Eq. (15), foo(x) = 1Li(1 — 

- (1 _ x)-1. 

f(0) = 1 
f'(0) = 1 = 11 

f"(0) = 2 =T2 

ru(0) = 6 = 

f (4) (0) .11 

• (16) 

Substituting these values in Eq. (16), 

f(x) = 1 +x + x3 + • • • + een Ans. 
1  

This example can be checked by performing the division _ x or by 

using the binomial expansion of (1 — 

Approximate Formulas by Using Maclaurin's Series.—One of 
the most common uses of the power series is to evaluate functions. 
The accuracy of the evaluation depends upon the number of 
terms taken in the converging series. Such approximate 
formulas are widely used in engineering. A few cases will be 
given. 

1. When x is small and n is positive, 

First approximation Second approximation 

(1 ± x). 1 + ni = 1 + nx + n(n — 1) x2 (17) 
2 

2. When x is small and n is positive, 

First approximation Second approximation 

1 n(n — 1) 
— 1 nx — 1 nx -T- 2 x2 (18) 

(1 + x). 
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3. When x is small, 

First approximation Second approximation 

x3 sin x = x = x — (19) 

Example 7. State the error by using the second approximation of sin x 

when x = 45° = '-r•• 
4 

Solution. sin x = — = 0.785368 — 0.0807746 
4 6 • 43 

= 0.704622 

From the tables, sin x = 0.707107 

The error is less than 0.002485. Ans. 

In this example, x was not small enough to give good accuracy. 
Taylor's Series.—Sometimes it is desired to evaluate a function 

near some value other than zero. Taylor's series is a generali-
zation of Maclaurin's series which permits the evaluation of a 
function near some fixed value such as a. If the power series is 
written in the form 

f(x) = bo -F b1 (x — a) + b2 (x — a)2 + • • • (20) 

Then x can be evaluated for (x — a), as was done in the case of 
Maclaurin's series, to get 

bo = f(a), ,bi = f' (a), b„ — 

Making these substitutions results in Taylor's series 

f" (a)(x — a) 2 
f(x) = f(a) f'(a)(x — a) -I-  , + • • • 

Le-
f(n) (a)(x — a)n 

f (n) (a) 

Example 8. Evaluate cos x when a = = 45° by Taylor's series. 

1 
f(x) = cos x f(a) = cos a = vi-

f'(x) = — sin x f'(a) = — sin « = —  

1 
f"(re) — — cos x f"(a) = — cos a = — :ji 

f"(x) = sin x .f"' (a) = ce = ..--./i• 

(21) 
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Then, by Taylor's series, 

(x) = cos x = cos a — sin a S-EL-- cos a  

+ sin a — a)3 

P. 

1 1 1 tx—i) + 1  + 

r 2 r 3 

Vi V2. 

= 0.70711 — — — — — 70 3 + • • I 

In this answer the angles must be expressed in radians. 

Approximate Formulas by Using Taylor's Series.— Taylor's 
series is particularly useful in evaluating functions for making 
tables with high accuracy. Much greater accuracy can be 
secured with a given number of terms than is usually obtained 
from using Maclaurin's series. To illustrate, a few cases will be 

given. 
1. When x is nearly equal to «, 

First approximation 
sin x -A sin a ± (x — «) cos « 

Second approximation 

A sin a (x — a) cos a (x — a)2 . (22) 12 Sill a 

215 

2. When x is nearly equal to a, 

First approximation 

cos x COS a — (X — a) Sill a 

Second approximation 

cos a — (x —«) sin « (x — «)2 

L? 
3. When x is nearly equal to a, 

First approximation 

exa + (x - «)e 

Second approximation 

ea (x — a)2 
± — a) + L?. 

cos a 

Ans. 

(23) 

(24) 



216 APPLIED MATHEMATICS 

Example 9. Calculate cos 50° to the second approximation when a 45° 
and indicate the error. _ • 

Solution. Substituting 50° in Eq. (28): 

(571-,. \2 

1 (57 \ 1  — 4) 1 
COS = 

•‘/Î ‘18 4/ Nr2 • )2 •‘/Î 

= 0.70711 (1 - •-• 2 -;7-2) - 0.70711(1 - 0.08727 - 0.00381) 

= 0.70711(0.90892) = 0.64271 Ans. 

The tables give cos 50° = 0.64279 

or an error of 0.00008 Ans. 

This example shows an accuracy to four places using a second 
approximation, as compared to Example 7 which gave an accuracy 
to only two places. This shows that Taylor's series can be 
chosen to converge rapidly so only a few terms need be used to 
give a required accuracy. 

Sine and Cosine Integral Functions.—Since some radiation 
problems are simplified by the use of these functions, a brief 
treatment is in order. 
The sine integral function is defined 

l'  a e sin a x3 x6 si(x) = da --= x — ug + 75, _ • • • (25) 
J° 

cosine integral function is defined 

ci(x) f e = e" a a da — 7 +  ln x + f oe COS 

X2 x 4 
=- 7 ± x - — — - • • • 

212 411 
where, 

a — 

a 

1 da 

(26) 

• f o u 1 — 5-« da — f " da 'Y = a a 

• = 0.796599599 — 0.219383934 
= 0.577215665 Euler's constant (27) 

Euler's constant can also be defined by the series 

1 1 1 
-y [1 -Pid-u+ • • • + - log ni 

n-+ 

Example 10. Show that the integral function in Eq. (25) can be written 
in a series. 
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sin a 
Solution. The series for — is the sin a series divided by a, thus a 

and 

sin a = a -5+5-5+.- 
sin a « 4 « 6 

— 1 73 +5-77 4 . ..• 

Integrating term by term and substituting the limits results in 

x «4 x ce6 
fet22, a • f —clot f — dct+ • 

8i(x) = fox (1) deg r§a Jo IA Oil . 

— X3 + 1-3 5 7 — - + • • • 21/28. 
313 51_ . 7117. 

Bessel Functions.—These functions often appear in engineer-
ing literature to solve practical problems dealing with such 
things as frequency modulation, acoustics, loading transmission 
lines, and eddy current loss in the core of a solenoid. 
The Bessel functions are solutions to the differential equation 

d2y dy 
x 2 ± (x 2 n2)y = O (28) 

dx2 dx 

The solution of this differential equation is accomplished by 
evaluating the a terms of a power series,' which results in the 
following series when n = 

x2 x4 x6 
Jo(x) — 1 22 ± 22 . 42 22 . 42 . 62 ± • • • (29) 

which is the Bessel function of the first kind of zero order. When 
n. is a positive real number or zero in Eq. (28), we have the more 
general form 

J(x) = [1 
X2 x4 

2(2n + 2) + 2 • 4(2n + 2)(2n + 4) 

6 
2 • 4 • 6(2n + 2)(2n + 4)(2n + 6) 

k= 
— 1)k (er 

= e  ̀ 4 ik In k 2 
k = 0 

(30) 

The solution of this differential equation is beyond the scope of this 
book. Those interested in the subject might consult Reddick and Miller, 
"Advanced Mathematics for, Engineers," John Wiley and Sons. 
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which is the Bessel function of order n where n is a positive 
integer. 

d 
Example Jo(x) 11. Show that — J(x) —J1(x). 

dx 

Solution. Performing the indicated differentiation on successive terms 
of the series in Eq. (29) gives 

d 2x 4x3 f3x3  
— o(x) = O — 22 ± 22 • 42 22 • 42 • 62 + d,x 

Now substituting n = lin Eq. (30) gives 

x x3 ,  x5 
2512 [?. 

A close inspection of each term of these two series reveals that the second 
series is the negative of the first, hence 

d 
—o (x) = — 11(x) Ans. dx 

Periodic Functions.—A periodic function can be represented 
by a curve that repeats the same shape for each period. Refer-
ring to Fig. 90, the sine wave is a simple periodic function that 

M1 
+ 

y 
— 

— 

(5 1 2 3 
Harmonics_ 
Frequency 
ppectrum. >< > 

— ir 27r 3v 47r 

y = MI sin x = MI [x — — — — — + • xs xs xs 

1.1 

= M (-1)*  
pn + 1  

n=0 
Odd or sine function curve. 
FIG. 90.—Sine wave. 

o 

(31) 

repeats its shape each period T. The wave starts at x = 0, 
following a definite shape until x = 2r is reached. From 
x = Zr to x = 47 exactly the same curve is repeated. In other 
words, each time the curve is ready to repeat itself it fias com-
pleted a period of T = 2ir. It should be noted that the series 
as given in Eq. (31) is made up of odd numbered powers of x 
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which results in a curve that is positive just to the right of the 
y-axis and negative just to the left of the y-axis, hence an anti-
symmetrical function. An antisymmetrical function is a 
function that is symmetrical about the origin. To illustrate, the 
curve to the right of the origin in Fig. 90 can be swung around 
the origin as a hinge point and it will exactly fit the curve to the 
left of the origin. 
The cosine wave of Fig. 91 is another illustration of a simple 

periodic function. It is the same as the sine wave except that 

Y T ---*1 41j a -e--- 

1111 

x 
e.l. 
g 
e0 1 

Harmonics' 
Frequency 
Spectrum 

2 . 

- 

—ir o ir 2ir Sir 4r 

X4 X6 
y =Micosx = [1— Í1 2 +14 + • • • 2 lo 

n= 

M1 E (-1)" 
n —0 

Even or cosine function curve. 
FIG. 91.— Cosine wave. 

(3) 

it is shifted to the left ir/2 radians or 90 degrees to make a func-
tion that is symmetrical about the y-axis. A symmetrical 
function about the y-axis is a curve such that if the portion to the 
right of the y-axis is swung around the y-axis as a hinge it will 
exactly fit the curve to the left of the y-axis. In a symmetrical 
function the powers of x in the series are even numbers. 
The variable x in Eqs. (31) and (32) can be made proportional 

to a single frequency by the equation 

x = cut = Irft (33) 

where co = the angular velocity in radians per second 
f = the frequency in cycles per second 
t = time in seconds 

Since both Eqs. (31) and (32) contain only one frequency, it is 
known as the first harmonic or fundamental frequency and can 
be plotted in a frequency spectrum as shown in Figs. 90 and 91. 
The M 1 is defined as the magnitude of the first harmonic. It 
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will be noted that both the sine and cosine wave have the same 
magnitude. The frequency spectrum does not give information 
as .6:5 whether the curve is a sine or a cosine wave. 

Constant Component.—If a wave is not balanced about the 
x-axis—that is, if the area under the curve above the x-axis is 
not equal to the area above the curve below the x-axis--then 
there will be a steady or constant component. The sine and 
cosine wave of Figs. 90 and 91 have a zero steady component; in 
other words, they, are balanced about the x-axis. 
For illustration, if the cosine curve of Fig. 91 is raised above 

the x-axis as shown in Fig. 92, then there is a steady component of 

Y r 
r 

1 0 31 .0 1 -t 1 
eivi 0 

i r 1 t 
X. Harmon 

2 8 
Cal 1 

t 1 1 Frequency Spectrum 

ir 27r 3/r 
x2 x4 x, 

y = Mo MI cos x = Mo MI [1 — — + • • • 
É F. 

91.. 0. 

X" 
= MO + MI 1)" — 

I2n 
5000 

no. 92.—Cosine wave plus a constant component. 

(34) 

magnitude M o, the height of the shaded area. The cosine wave 
balances itself about the dashed line as can be seen in the figure. 
The area marked 1 can be turned around point a as a hinge and 
fitted in the area marked 1'. Since the area marked 1 is positive 
and the area marked 1' is negative, they cancel. Now the 
area marked 2 above the dashed line if turned around point *a 
as a hinge will fit into the area marked 2' thus showing that the 
constant component height is M o. The frequency spectrum in 
Fig. 92 shows a zero frequency magnitude M o to represent the 
constant component. Equation (34) also has this constant 
component. 

Example 12. Integrate the curve of Eq. (34) from 0 to ir, and show that 
the average height is Mo. 
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Solution. The average height-is 

area A 1 fir 
Yo length _ _ir Jo ° C°8 x) dx 

= — (Mo X + M 1 sin an (Mo — Mo + M1 sin — sin CO 
ir ir 
1 

= — (Mo + — 0) = Mo Ans. 

Harmonic Components.—Any periodic wave can be analyzed 
in terms of a constant and harmonic components. To do this, 
the magnitude and phase of each component must be properly 
selected. To illustrate how a square wave can be synthesized, 
the magnitude and phase will be properly selected to give the 
correct result. Later a method of determining the values will be 
given. . 

Referring to Fig. 93a, we have redrawn one half the sine wave 
as shown in Fig. 90. The magnitude of this wave is 3/1 = 4E/7, 
as shown in the figure, which represents the magnitude of the 
fundamental or first harmonic. If the third harmonic M 3 sin 
3x is added to the first harmonic M1 sin x the resulting wave will 
be as shown in Fig. 93b. In this case M 3 --= 4E/37 which is 
one third of the magnitude of the fundamental as shown in the 
•frequency spectrum. Since x = 27fit by Eq. (33) where h. 
represents the first harmonic frequency, then 

3x = 27(3fi)t = 27f31 (35) 

where fa = the third harmonic frequency. , 
If this process of adding odd harmonics of decreasing magnitude 

is continued the curve approximates closer and closer to that of 
a square wave as shown in Fig. 93. A careful inspection of Fig. 
93 will reveal how the various harmonics add to make closer 
approximations to a square wave. - 

Square Sine and Square Cosine Waves.—The square sine wave 
of Fig. 93f has been redrawn in Fig. 94a to show its general shape 
over more than two periods. It will be noted that this curve is 
antisymmetrical about the y-axis and is made up of sine terms, 
hence is often referred to as a square sine wave. 

If the square sine wave is moved over so that it is symmetrical 
about the y-axis, as shnwn in Fig. 94b-, the terms of the series 
change from sine to cosine as shown in Eq. (42) and the series is 
often referred to as a square cosine *ave. The reason for the 
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terms in Eq. (42) can be visualized if the y-axis of Fig. 93 is 
imagined shifted to the 7/2 position which makes the funda-
mental or first harmonic symmetrical about the new y-axis, hence, 
cos x which is the first term of Eq. (42). It will be noted in 
Fig. 93b that the third harmonic is a negative maximum at ir/2, 
hence is written —% cos 3; which is the second term in Eq. (42). 
Continuing this process, the fifth harmonic component is a 
positive maximum at this midpoint in Fig. 93c. • It is therefore 

Y 

1 

o o 

Y 

1 

o 

Y 

1 

o 

M1 

ir 

 fs;  

r X 0 1 2 8 4 6 6 7 8 9 10 
Harmonics 

Frequency Spectrum 

4E 
y = MI sin x = — sin x 

a. Fundamental or first harmonic sine wave. 

(36) 

. a 
M1 

.... 
. •.. 

‘ \ t ] 
§— MI 

4'" ----, 
„. / / 

/- ••••\8 3" 

i 
1 2 8Bil 5017 91 

o X tir 
Frequency Spectrum 

4E 1 
y = MI sin x + Ms sin 3x — (sin x + —3 sin 3x) 

b. Fundamental plus third harmonic sine waves. 

(37) 

0 1 2 8 4 5 6 7 8 9 1) 
Harmonics 

0 .i. T X Frequency Spectrum 
2 

y = M1 sin z + Ma sin 3z + Ms sin 5x 
1 

= 4- (sin x + —3 sin 3x + 1 sin 5x) (38) r 5 
e. Fundamental plus third and fifth harmonic sine waves. 

Fie. 93.—Approximations 
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written +h cos 5x to make up the third term of the series 
in Eq. (42). 
The frequency spectrum is the same for both the square sine 

and square cosine waves. This is because the series in Eqs. 
(41) and (42) both have the same values of M. The fact that 
they are negative or multiplied by a cosine rather than a sine 
term does not alter their magnitude, hence the frequency spec-
trum of Fig. 93f also holds for a square cosine wave. 

Y 

1 

o 

• ..-.„ ./ •ri 
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o 

Frequency Spectrum 
y = Mt sin x + Ma s n 3x + Ms sin 5x + M7 sin 7x + /1/9 sin 9x 

1 1 1 1 
= l!' . (sin x -I- - sin 3x + - sin 5x + - sin 7x + - sin 9x) (40) 
r 3 5 7 9 

e. Fundamental plus third, fifth, seventh, and ninth harmonic sine waves. 

Y 

1 

Frequency Spectrum , 
y --= Mt sin x + Mt sin 3x + Mt sin 5x + Mt sin 7x 

4E1 . 1 1 1 
= —ir (sin x -I- -3 sin 3x + - sin 5x + -7 sin 7x) 

5 
d. Fundamental plus third, fifth, and seventh harmonic sine waves. 

(39) 
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f. Square sine wave (fundamental plus all odd harmonics). 

for a square sine wave. 

(41) 



224 APPLIED MATHEMATICS 

Fourier Series.—Thus far, we have examined waves made up 
of a constant component, harmonic sine components, and 
harmonic cosine components. Generalizing, the equation for 

Y 

A.E 
X 

o ir ?ir 
4 1 1 

= E — sin x — sin 3x — sin 5x + • • .) 
11- 3 5 

a. Square sine wave. 

Y 

X 

—27r —7r o 7r 2r 

4E, 
V (COS — — COS 3x — cos 5x — • ") 

r • 3 5 
b. Square cosine wave. 

94.—Comparison of square sine and square cosine waves. 

(41) 

' (42) 

any periódic wave can be written by substituting the proper 
values in Fourier 's series, which is written as follows: 

'  Y = f(x) . = A —o + Ai cos x + A2 cos 2x + As cos 3x + • • • 
- 2 

+ B1 sin x + B2 sin 2x + B3 sin 3x + • • • (43) 

Since this equation can be used to express any periodic wave, the 
major task reduces to that of finding the values of the A and B 
terms. In the previous illustrations the values of the A and B 
terms were furnished. In Eq. (31) B1 = M 1 and all other A 
and B terms of Eq. (43) are zero. In Eq. (32) M 1 = A1 with 

all other A and B terms zero in Eq. (43). In Eq. (34) A° = Mo 2 

and A1 = M I, with all other terms in Fourier's series equal to 
zero. In Eq. (41) all of the A terms are zero and all of the odd 
B terms exist. 
Then in Eq. (42) all the B terms are zero and all but the 44.0 

and even A terms exist. 
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If the shape of the desired curve is known, it is possible to 
determine the value of the A and B terms by the following 
definite integrals. The integrals are followed by a word state-
ment of their meaning. The constant or zero frequency com-

ponent is 

1 2e 
AO = f — y dx 71" o 

/average value of y 
= 2 taken over one period 

or cycle 

The nth cosine term of the nth harmonic is 

(44) 

1 f 21. 
A. = — y cos nx dx 

ir o 

/average value of y cos nx 
= 2 taken over one period or . (45) 

cycle 

, The nth sine term of the nth harmonic is • 

1 f 2r 
B. = — y sin nx dx 

ir o 

( in average value of y s nx 
= 2 taken over one period or (46) 

cycle 

If n = 0 in Eq. (45), cos 0 • x = 1 and the equation reduces 
to Eq. (44). If n = 0 in Eq. (46), sin 0 • x -= 0 and the value is 
zero. That is the reason for the absence of the Bo term in Eq. 
(43). 

Example 13. Determine the A and B terms for the wave illustrated in 
Fig. 92. _ 

Solution. Substituting in Eq. (44) the value of y given in Eq. (34) for 
the cosine wave above the x-axis, we have for the A. 0 term 

Ao = 21. dx "f lr (Mo ± M1 cos- x) dx 
r o o  

= 1.2w Mo dx f Mit COO x dx = Moxl2r + -I- M 1 sin xi . 
e ir ir 0 ir 0 

1 1 
= — (Mo• 27r — M o • 0) — (0 — 0) = 2Mo Ans. 
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For the A1 term we have 

j2 w 
Al = 1 - y cos x dx = -1 f 27 (Mo + M 1 cos x) cos x dx 

w  w o 
11 2or 

= - Mo cos x dx + -1 f M I COS2 x dx 
Ir 0 7 0 

.= 1 mo sin x12. i +_1 . 2. mi 1 o ir  2 (1 -F cos 2x) dx 
r 

= 1 mo _ 0\ '- _L _1 m 1 1 i pr dx + f h 2w cos 2x dx) 
r ' T 2 vh  
1 
- M I 1 - [ (27 - 0) - -l oin 2x1221 = M I Ans. 
Ir 2 2 

AR other A and B terms are zero, so these substitutions can be made in 
Eq. (43) to get the complete equation of the wave, thus 

Ao 2M0 
y = — .41. 1 COS X = — M I COS X = o ± Mi. CO8 x Ans. 

2 2 

The value of y can often be expressed by a simple equation over 
various portions of the period. In such cases the integration 
can be added over these various portions. This is illustrated in 
the following example: 

Example 14. Determine two A and three B terms for a square sine wave 
of amplitude E. 

Solution. Referring to Fig. 94a, y = E from x = 0 to x = ir and y = -E 
from x = ir to x 
Substituting these values in Eq. (44) for Ao, 

Ao= 1 F T ECOSO•XdX+ 1 1 2 (-E cos 0 • x) dx 
ir 71" 

= — Ex — Exl2e 
r Or 

1 1 
= - Er - - E(2r - 7) = 0 Ans. 

7r 

• 
This means that the wave is balanced around the x-axis. Substituting 

the above values in Eq. (45) for A1, 

1 jar 1 12ir 
A1 = - E cos x dx + - (-E cos x) dx 

7r 0 7 T 

e 1 127 
.... —1 E sin xi - - E sin x 
y 0 ir .-

= 1 E(0 - 0) - -1 E(0 - 0) = 0 Ans. 
Ir 7r 

Since the sign of any multiple of ir is zero, all the rest of the A» terms in 
Eq. (43) will be zero. 
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Substituting the above values in Eq. (46) for B1, 

1  E l =•• 127 ysm . xdx = - 1 7 - f E sin x dx + -1 f lr ( -E sin z) dx 
w o 7r o ir ir 

y E 2ir 
= -E (- cos x)i + - cos x 

ir 0 ir lir 
4E 

Ans. 
7 ir y 

Substituting the above values in Eq. (46) for Bs, 

By = 1 21. II Sin 2x dx = E sin 2x dx + V 22. (-E sin 2x) dx 
r o 70 T 

E w E 21r E E 
= (- cos 2x)10 + 27i. (cos 2x)I = — (-1 + 1) + rr (1 - 1) = 0 

24r 
Ans. 

Since the cosine of any even multiple of 7 results in zero over these limits, 
all the rest of the even B. terms in Eq. (43) will be zero. 
Substituting the above values in Eq. (46) for By, 

By = 1 12r y sin 3x de = 1 17 .E sin 3x dx + -11 21. ( - E sin 3x) dx 
r 0 7 0 ir 
E 
— (- cos 3x)lw - —E (- cos 3x) 122. 
37r o 32- 
E 4E = Fr (+1 + 1) - —E (-1 - 1) = —  Ans. 

3r 

This indicates that only odd B terms will have values in Eq. (43). Now, 
substituting the above values in Eq. (43) gives two terms of the series, thus 

4E 1 
y = — (sin x + -3 sin 3x + • • .) Ans. 

Magnitude and Phase of Harmonic Components.—The corre-
sponding terms in Fourier's series of Eq. (43) can be combined 
into single terms, by using the equation 

ilf„ sin (nwt + = An cos net ± B. sin nod (47) 

where, as shown in Fig. 95, 

= VA! ± Be, (48) 
B. 

cos = (49) 

An 
sin in = (50) FIG. 95.—Relation of 

phase and magnitude of 
an nth harmonic corn-

To prove Eq. (47), consider the trigono- ponent. 

metric identity 

sin (a + b) = sin b cos a + cos b sin a, 

and let a = not, b = 1P„; then 

sin (nwt -I- en) = sin gin cos ned + 008 ifrn sin not 
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Now substituting the value of sin tii„ and cos 1/4, as given in 
Eqs. (49) and (50) and multiplying both sides by Mn results in 
Eq. (47) and completes the proof. 

Fourier's series of Eq. (43) can, with the use of Eq. (47), be 
converted to read 

= Ax) = Mo M1 sin (cot ± %Pi) + M2 sin (2wt + 4/2 + • • • 
n = 

= M o Mn sin (mot ip„) (51) 

Since M o of this series equals 4 9 of the original series, it can 

be. evaluated by converting the definite integral of Eq. (44) to 
read 

Mo = 1 f 2'r y dx 
27r o 

(average value of y takén\ 
(52) over one period or cycle 

In this equation the integral gives the area under the curve from 
0 to 27. This area can be converted to an equivalent rectangle 
having a base of 27 and an altitude of M o, hence as given in 
Eq. (52), the altitude of the rectangle is 

area of equivalent rectangle 
Mo — (53) base of rectangle 

By using the vectors of Fig. 95, it is possible to express the 
magnitude (M) term and phase angle (#) term by definite 
integral. Multiplying both sides of Eq. (45) by j and adding to 
Eq. (46) gives, for n --- 1, 2, 3 . . 

Ms = B. ± jAn 

1 
= — f y(sin nx j cos nx) dx 

11 Jo 

f 27 y(cos nx — j sin nx) dx 
1r 0 

...= i 2. 
7  fo ye-inz dx 

( 
average value of ye-in. taken over one period) ( nilsee angle of\ = 2 

nth harmonic ) or cycle 
(54) 
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In other words, this equation states that 

( area of ¡¡ii,,,,My, = 2 equivalent rectangle) (phase angle of\ (55) 
nth harmonic ; 

base of rectangle 

The area of the equivalent rectangle is given by the integral, 
which also gives an angle. The base of the rectangle is 2er, 
hence M„ is twice the altitude of the rectangle. The angle 
given by the integral when multiplied by j gives the phase term. 

Example 15. Determine the first harmonic term for a square sine wave 
of amplitude E. 

Solution. Dividing the integral of Eq. (54) into two parts, the first from 
0 to or and the second from ir to 2w, results in 

T • 2. mibpi =4 EE— ie dx + 1 — Eei. dx 
o 

— — C-11 — 
ir 10 ir e 

r 7 

E 4E 

The second term in Eq. (51) is then 

4E 4E 
M I sin (ait #,) = — sin (wt ± 0) = — sin oit Ans. 

11" 

This checks the s^lution for the first harmonic term in Example 
14, which used x in place of wt. Since = 00, the j component is 

4E 
absent and the B„ term of Eq. (54) is equal to —  

Y 

2irk 
E 

X 

 2r  

y = kE (sin irk cos x —1 sin 2rk cos 2x 4- • • .) 
2 

n = 

kE + 1 sin nrk cos nx 
ir z  n 

n-1 
FIG. 96.—Short rectangular pulse. 

(56) 

Example 16. Evaluate the first two terms for a short rectangular pulse 
as shown in Fig. 96. 
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Solution. By Eq. (52), 

1 f +irk E Irk 
Mo = E = 27; x kE Ans. 

Checking by Eq. (53), 
ark)(E) 

0 = = kE Check. 
27r 

By Eq. (54), 

M del = f +7k Ee-tx dx = -E e 
—ir 1 7k 

2Ej eivk -  
2jeirk - 2E sin irk/90° 

Hence, substituting in Eq. (51), 

MI sin (x #i) = sin irk sin (x + 90°) 
I. 
2E 
— sin irk cos x Ans. 
ir 

A square cosine wave was illustrated in Fig. 94b. It is a 
special case of the short rectangular pulse of Fig. 96. If k = 
and the M o term is made zero, Eq. (56) reduces to Eq. (42). 

Y 

E 
I + 

1 X 0 1 2 3 4 5 6 7 8 *---27r > Harmonics 

Frequency Spectrum 
y = kE 2kE(cos X -I- cos 2x + cos 3x + • • • ) (57) 

FIG. 97.—Thin line pulse. 

Thin Line Pulse.—Another case of interest is to narrow the 
width of the rectangular pulse until it is essentially a single line 
pulse. As the pulse width of Fig. 96 is made narrow k becomes 
very small, with the result that for small values of n, the term 
sin nrk nrk in Eq. (56). With this substitution Eq. (56) can 
be expressed as Eq. (57), which is illustrated in Fig. 97. It is 
interesting to note that the harmonics have the same magnitude, 
hence giving a frequency spectrum as shown in Fig. 97. If this 
series is carried to a very large number of terms, the pulse width 
must be very small for the above approximation to hold with 
reasonable accuracy. Also, the value of each harmonic com-
ponent will be very small. The height of the pulse will be 
approximately the sum of the harmonic components. It is of 
importance to note that all harmonics are present and of equal 
amplitude in the frequency spectrum of Fig. 97. 

9 10 
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Exercises 

1. Write the nth term for the series 

and test the series for convergence or divergence. 
1  1 1  

2. Test the series S. = (yip ± (op + 

for convergence or divergence and write the nth term. 
1 1 1 

3. Test ratio the series S. = 1 -I- g -I- g + • • • 

4. Find the approximate value of V .87 by applying the binomial series. 
5. Expand the function sin x into a series. 

• 

sin x  
6. What is the third approximation value of 1 — x? 

7. Give the second approximation value of e2.1 when e2 .= 7.3891 and 
note the error. 

8. Determine the third harmonic term for a square sine wave of ampli-
tude E. 

9. Evaluate the second harmonic of a scanning voltage when the wave 
form is 

E 
y = — x from to -Hr. 

ir 

10. An antisymmetrieal sawtooth wave has the following wave form: 

2E ir y — x from — +11 
22E ir  2 

y = .2E — x from to 1;. 

Determine the first harmonic term in the series. 



I 
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1. GREEK ALPHABET 

Letters 
Name Pronunciation Equivalent 

Capital Small 

A « Alpha tillà a 

B 13 Beta betis. or Wtá b 

r -y Gamma Om% g 
A 8 Delta déPtit d 

E e Epsilon épielén e (short) 

Z r Zeta zetà or MU. z 

H n Eta é'tà, or AU e (long) 

e O Theta theta or thA'tà, th 

I t Iota 1-ietà i 

K k Kappa kgp'à k, 0 

A X Lambda litm'dà 1 

M 
N 

ii 
V 

Mu 
Nu 

mn, mc7), or mtl 
nù or nü 

m 
n • 

Z. E xi zI or ksé x 

0 0 Omicron 6m1-krÔn or 23-mIltrÔn o (short) 

II ir Pi pi or pé p 
P p Rho ri5 r 

Z cr Sigma sIg'init s 

T r Tau tó or t,ou t 

T u Upsilon tip's1-1,5n u, y .. 

.1> e Phi fl or fé ph 

X X Chi kI, ké, or ICA kh, ch 

‘I, 
n 

Ifr 
0 

Psi 
Omega 

psé or Ed 
te-megà 

>Ps 
o (long) 

6-még'à, or erne...et 

At, OM, opera; 
'At, me, pin, pine; 
Mg, Orb, náte, f cród, up, lute, menit; 
s-oh, in German act: • 

233 
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2. MATHEMATICAL SYMBOLS AND ABBREVIATIONS 

Symbol Name Uses 

1, 2, 3, 4, 5, 
6, 7, 8, 9, 0 

00 

• 

X 
a • b 
(2 • 1)(3 • 4) 

a/b 
a 

a:b 

Arabic numerals 
Infinity 
Decimal point 
Plus 
Minus 
Plus or minus 
Minus or plus 
Multiply by 
a is multiplied by b 
2.1 multiplied by 3.4 
Divided by 
a is divided by b 

a is divided by b 

a is to b 
Equal to 
Identical to 
Approximately 
equal to 
Not equal to 
Less than 
Greater than 
Equal or less than 
Equal or greater 
than 

Proportional to 
Proportional to 
Approaches 

Perpendicular 
II Parallel to, or in 

parallel with 
Positive angle sign 
Negative angle sign 
Triangle 

0 Circle 
Therefore 
Number 
Per cent 

. . . Continued 

Pi 

The numerals used in mathematics 
A quantity larger than any number 
A period used to point off numbers 
Addition, positive 
Subtraction, negative 
Addition or subtraction 
Subtraction or addition 
Multiplication 
Multiplication 
Quantity multiplication 
Division 
Division (fraction form), or per 

Division (fraction or ratio form) 

Ratio form of division 
Equality in equation form 
Identity in equation form 
Approximate equality in equations 
(sometimes used for approaches) 

Inequality in equation form 
Inequality in equation form 
Inequality in equation form. 
Equality or inequality in equation form 
Equality or inequality in equation form 

Proportionality used in equation form 
Proportionality used in equation form 
To express that a quantity approaches 
in equation form 
Geometry 
Geometry, or parallel electrical circuits 

Geometry, vector quantities 
Geometry, vector quantities 
Geometry 
Geometry 
Geometry 
When placed before figures 
Placed after number expressing per cent 
To indicate the continuation of a number 
or series 
r = 3.1416 • • • radians, the circumfer-
ence of a circle divided by its diameter 
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Symbol Name Uses 

e 

3! or 11 

1± 

( ) 
[ 
1 1 

NY-A- or tei 

A2 

IA! 

A or A or ji 

A 

A. 

a 

a b 
cd 
Ax 
dx 
ax 

V 

Epsilon 

Factorial 

Summation 

Summation from o 
ton 

Parentheses 
Brackets 
Braces 
Vinculum 
Radical 
Radical and vin-
culum 
3 is the root of the 
quantity A 
2 is the exponent 
of the quantity A 
A has a magnitude 
only 
A is a vector 

A is a vector 

x is a subscript 

Operator j 

Degree sign 
Minute sign 
Second sign 
Determinate sign 

Increment of x 
Differential of x 
Partial differential 
of x 
Del 

6 = 2.71828 • • • , the base of natural 
logarithms 
To express the fact that a number is 
multiplied by all smaller numbers, thus 
= = 3 X 2 X 1 = 6 

To add a series of terms 

To add a series of terms from o to n 

A sign placed at both ends of a grouping 
A sign placed at both ends of a grouping 
A sign placed at both ends of a grouping 
A line placed over a grouping 
Extract the root of a number 
Extract the square root of a quantity 
or number 
Expressing the root to be extracted, or 
is the power to which it must be raised 
Expressing the power to which a quan-
tity is to be raised 
To express only the magnitude of a 
quantity 
To express a quantity that has both 
magnitude and direction 
When the magnitude is expressed !Alt 
the A can be used to express a vector 
quantity 
To identify the quantity A, as, for 
example, lying along the x-axis 
To express quantities in the direction 
of the y-axis. (In pure mathematics, i 
is used for this operator and is called 
an imaginary number.) 
To express angles in degrees 
To express angles in minutes 
To express angles in seconds 
To express the solution of simultaneous 
equations 

Small changes, in calculus 
Differential, in calculus 
Partial differential, in calculus 

Differential operator, in differential cal-
culus 
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Symbol 

K(x) 

Name Uses 

Integral 
Integral between 
the limits of a and b 
Function of x 
Bessel function of 
the first kind of 
order n 

Bessel function of 
second . kind of 
order n 
Gamma function 

Integral calculus 
Integration between limits 

Algebra or calculus 
Higher mathematics—Frequency modu-
lation 

Higher mathematics 

Higher mathematics 

Abbrevia-
tion 

ln, log 

log or log ic 

in or log6 

colog 

antilog 

sin 
sin-1 

sinh 
sinh-1 

cos 

cos-1 

cosh 
cosh-1 

tan 
tan-1 

ianh 

Name Uses 

Logarithm 

Logarithm to base 
10 

Logarithm to base E 

Cologarithm 

Antilogarithm 

Sine of 
Arc whose sine is 

Hyperbolic sine of 
inverse hyperbolic 
sine of 
Cosine of 
Arc whose cosine is 

Hyperbolic cosine of 
Inverse hyperbolic 
cosine of 
Tangent of 
Arc wheese tangent 
is 
Hyperbolic tangent 

of 

Express the natural and common loga-
rithm of a quantity, respectively 
This is the common base and is usually 
written log 
This is the natural base and is usually 
expressed ln (sometimes called " Napier-
ian") 
The logarithm of the reciprocal of a 
number 
To express a number in terms of its 
logarithm (the reverse operation of 
taking the logarithm of a number) 

Circular trigonometry 
Antisine of, inverse of sine (circular 
trigonometry) 
Hyperbolic trigonometry 
Hyperbolic trigonometry 

Circular trigonometry 
Anticosine of, inverse cosine of (circular 
trigonometry) 
Hyperbolic trigonometry 

Hyperbolic trigonometry 
Circular trigonometry 
Antitangent of, inverse of tangent (circu-
lar trigonometry) 

Hyperbolic trigonometry 



Abbrevia-
tion 

tanh-1 

cot 
cot-1 

coth 

coth-1 

ese 

ese-1 

csch 

csch-1 

sec 
sec-1 

sech 
sech-1 

vers 

covers 

hYP 
oPP 
adj 
L. C.D. 

APPENDIX 

Name 

Inverse hyperbolic 
tangent of 
Cotangent of 
Arc whose tangent 
is 
Hyperbolic cotan-
gent of 

Inverse hyperbolic 
cotangent of 
Cosecant of 
Arc whose cosecant 
is 

Hyperbolic cosecant 
of 
Inverse hyperbolic 
cosecant of 
Secant of 
Arc whose secant is 

Hyperbolic secant of 
Inverse hyperbolic 
secant of 
Versed sine 

Coversed sine 

hypotenuse 
opposite side 
adjacent side 
least common de-
nominator 
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Uses 

Hyperbolic trigonometry 
Circular trigonometry 
Anticotangent of, inverse of cotangent 
(circular trigonometry) 

Hyperbolic trigonometry 

Hyperbolic trigonometry 
Circular trigonometry 
Anticosecant of, inverse of cosecant 
(circular trigonometry) 

Hyperbolic trigonometry 

Hyperbolic trigonometry 
Circular trigonometry 
Antisecant of, inverse of secant (circular 
trigonometry) 
Hyperbolic trigonometry 

Hyperbolic trigonometry 
vers /3 = 1 — cos /3 (circular trigonom-
etry) 

covers p = 1 - sin e (circular trigonom-
etry) 
Trigonometry 
Trigonometry 
Trigonometry 
Algebra 

3. ENGINEERING SYMBOLS AND ABBREVIATIONS 

a. Greek alphabet symbols: 
« Angles, attenuation factor, radiation 
13 Angles, wave length constant, radiation 
I' Complex Hertzian vector 
y Angles, propagation constant, conductivity, radiation, Euler's constant 
à Increments, variation 

Decrement, density 
e Base natural logarithms, very small quantity, inductivity, permit-

tivity 
n Efficiency, elliptic coordinate 
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• Angles, temperature 
O Angles, elevation angle, time constant, phase displacement 
K Boltzmann's constant, dielectric constant 

A, X Wave length of electric waves 
• Amplification factor, permeability, prefix micro 
le Frequency of radiation 
k Elliptic coordinate 
II Hertz vector 
y Circumference of a circle divided by its diameter 
p Resistivity, specific resistivity, charge density 
Z Summation 
• Conductivity 
T angles, tangent vector, surface density 
• Scalar velocity potential, magnetic flux 
ft. Angles, flux, power factor angle, true azimuth, electric potential 
• Magnetic susceptibilities 
* Angles, phase difference, scalar function 
• Resistance in ohms 
co Resistance in ohms, angular velocity 

b. English alphabet symbols: 
A Area, current electromagnetic vector potential 
a Dimensions, amperes 
B Susceptance, magnetic inductance, magnetic flux density 
b Susceptance 
C Capacity, centigrade 
c Constant, velocity of light 
D Electric displacement, electrostatic flux density 
d Distance, diameter 
E Effective voltage, emf, electric field intensity 
e Instantaneous voltage 
F Force, electrostatic field intensity 
f Frequency, force, farad 
G Conductance measured in mho 
g Conductance, acceleration due to gravity, gram 
H Magnetic field intensity 
h Height, Plank's constant, henry 
I Effective current 
i Instantaneous current 
• Poynting's vector, current density vector, intensity of magnetization 
j Operator 
K Constant, dielectric constant, stacking factor 
k Susceptibility, prefix "kilo-" 
L Self inductance 
1 Length 
M Mutual inductance, meters, induced polarization, prefix "mega-" 
m Mass, prefix "milli-" 
N Number of conductors or turns, Avogadro's number 
n Number, velocity of rotation 
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O Origin of coordinate system 
o Origin of coordinate system 
P Power 
p Sound pressure, instantaneous power 
Q Quantity of electricity, ratio of reactance to resistance 
q Electric charge 
R Resistance, reluctance 
✓ Resistance, radius 
S Sensitivity, surface area 
s Transconductance 
T Absolute temperature, periodic time, absolute temperature, tension 
t Time 
U Energy 
u Particle velocity 
✓ Voltage, volume, reluctivity 
• Velocity 
W Energy 
w Watts 
X Coordinates, reactance 
• Coordinates, reactance 
Y Coordinates, admittance 
y Coordinates, admittance 
Z Coordinates, impedance 
z Coordinates, impedance 

c. Quantitative electrical abbreviations: 
Capacitance 

ppf Micromicrofarad (one-millionth of a millionth part of 
a farad) 

,if Microfarad (one-millionth of a farad) Nom: In some 
cases, mf d or mf are used instead of if to indicate 
one millionth of a farad. It is always safe to 
assume that mfd or mf means microfarad and not 
millifarads. 

f Farad Nom: The letter f is rarely used alone. It is 
preferable to spell the word out when it is used. 

Current 
aa Microampere (one-millionth of an ampere) 
ma Milliampere (one-thousandth of an ampere) 

a or amp Ampere 
Frequency 

cps Cycles per second 
kc Kilocycles per second 
Mc Megacycles per second 

Inductance 
ph Microhenry (one-millionth of a henry) 
mh Millihenry (one-thousandth of a henry) 
h Henry 
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Power 
itw Microwatt (one-millionth of a watt) 
mw Milliwatt (one-thousandth of a watt) 
w Watt 
kw Kilowatt (one thousand watts) 
Mw Megawatt (one million watts) 
kva Kilovolt ampere—apparent power 

kwhr Kilowatt hour 
Resistance 

n Ohms NOTE: In some cases co is used to express ohms. 
k fl Kilohm (one thousand ohms) 
M11 Megohm (one million ohms) NOTE: In some cases Meg 

is used to express megohms. 
Voltage 

/.4v Microvolt (one-millionth of a volt) 
mv Millivolt (one-thousandth of a volt) 
▪ Volt 
kv Kilovolt (one thousand volts) 

d. Circuit Symbols: 
Admittance 

Y Admittance in mhos 
B Suseeptance in mhos 
Bc Capacitive susceptance in mhos 
BL Inductive susceptance in mhos 

Constants 
G Conductance in mhos 
C Capacitance in farads 
L Inductance in henrys 
M Mutual inductance in henrys 
R Resistance in ohms 
G Conductance in mhos 

Current 
Effective (or rms) current in amperes 
Maximum (or peak) current in amperes' 
Average current in amperes2 
Instantaneous current in amperes 

Impedance 
Z Impedance in ohms 
X Reactance in ohms 
Xe Capacitive reactance in ohms 
Xr, Inductive reactance in ohms 
R Resistance in ohms 

Miscellaneous 
Ant Antenna 
Gnd Ground 
Mod Modulator 
Spkr Loud speaker 

" See footnotes on page 241. 
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Power supply 
A Filament power supply 
B Plate power supply• 
C Grid-bias power supply 

Tube 
Fil Filament 

K or k Cathode 
H or h Heater 
G or g Grid 

S, Screen grid 
P or p Plate 

Voltage 

E Effective (or rms) voltage in volts 
E. Maximum (or peak) voltage in volts' 
Ea. Average voltage in volts' 
e Instantaneous voltage in volts 

e. Abbreviations:' 
Current .% 

ac Alternating current 
de Direct current 

Frequency 

af Audio frequency 
if Intermediate frequency 
rf Radio frequency 

trf Tuned radio frequency 
bf Beat frequency 

bfo Beat-frequency oscillator 
lf Low-frequency (30 to 300 ke band) 
mf Medium-frequency (300 to 3,000 ke band) 
hf High-frequency (3,000 kc to 30 Mc band) 

vhf Very-high-frequency (30 to 300 Mc band) 
uhf Ultra-high-frequency (300 to 3,000 Mc band) 

Miscellaneous 
ow Continuous wave 
icw Interrupted continuous wave 
am Amplitude modulation 
fm Frequency modulation 

In some cases the subscript "max" is used to indicate maximum or 
peak current or voltage. For example, when the subscript "min" is used 
to indicate minimum current or voltage, the subscript "max" will probably 
be used for maximum current or voltage. 

2 In some cases the subscript "avg" is used to express average current or 
voltage. 

3 The abbreviations as given here are used as nouns. When they are 
used as adjectives, it is common practice to use a hyphen, thus 

ac Alternating current (noun) 
a-c alternating-current (adjective) 
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pm Phase modulation 
ptm Pulse time modulation 
emf Electromotive force in volte 
mmf Magnetomotive force in gilberts 
aye Automatic volume control 

davc Delayed automatic volume control 
mopa Master-oscillator power-amplifier 

f. Measurement abbreviations: 
Metric prefixes 

ei Micro.- (one-millionth) 
Milli- (one-thousandth) 

c Centi- (one-hundredth) 
d Deci- (one-tenth) 

Uni- (one) NOTE: This prefix is usually omitted. 
dk Deka, (ten) 
h Hekto- (one hundred) 
k Kilo- (one thousand) 
M Mega- (one million) 

Metric measure 
mm Millimeter (one-thousandth of a meter) 
cm Centimeter (one-hundredth of a meter) 
km Kilometer (one thousand meters) 

sq cm Square centimeter or cm2 
sq cm Square meter or m2 
sq km Square kilometer or km3 
Cu cm Cubic meter or m3 

cgs Centimeter-gram-second system of units 
mks Meter-kilogram-second system of units 

English measure 
in. Inch 
ft Foot 
yd Yard 

mile Mile NOTE: This unit is always spelled out. 
sq in Square inch 
sq ft Square foot 
en in Cubic inch 
eu ft Cubic foot 
sec Second 
min Minute 
hr Hour 
yr Year 
lb Pound 

rps Revolutions per second 
rpm Revolutions per minute 
mph Miles per hour 

g Miscellaneous abbreviations: 
A.W.G. or B.&S. American wire gauge or Brown and Sharpe wire 

gauge. NOTE: These gauges are commonly used 
for copper, aluminum, and resistance wire. 
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db Decibel 
deg Degree 

diam Diameter 
dcc Double cotton covered 
dsc Double silk covered 
ec Enamel covered 

mlt Mean length of turn 
p., pp. Page, pages 

rms Root mean square 
rss Root sum square 

temp Temperature 
vol Volume 
vs. Versus 
wt Weight 

4. CONVERSION TABLE 

Multiply 
number 

by of 

to\\ 
obtain 

pp units 
micro- 

micro 
units 

µ units 
micro 
units 

m units 
milli 
units 

units 
k units 
kilo 
units 

M units 
mega 
units 

pp units 
micromicro 

units 1 106 109 1012 10 16 10is 

p units 
micro units 

m units 
milli units 

10-6 1 103 10 6 102 10 1' 

10-2 10-3 

10-6 

10-2 

1 10 , 106 102 

units 10-12 10-3 1 103 106 

k units 
kilo units 

M units 
mega units 

10-16 10-6 10-3 1 103 

10-18 10-12 10-3 10-6 10-3 1 
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5. LOGARITHMS OF NUMBERS .FP.OM 1 TO 100 

n lop; n n kg n n 14 n n kg n n 4n 

1 0.000000 21 1.322219 41 1.612784 61 1.785330 81 1.908485 

2 0.301030 22 1.342423 42 1.623249 62 1.792392 82 1.913814 

3 0.477121 23 1.361728 43 1.633468 63 1.799341 83 1.919078 

4 0.602060 24 1.380211 44 1.643453 64 1.806180 84 1.924279 

5 0.698970 25 1.397940 45 1.653213 65 1.812913 85 1.929419 

6 0.778151 26 1.414973 46 1.662758 66 1.819544 86 1.934498 

7 0.845098 27 1.431364 47 1.672098 67 1.826075 87 1.939519 

8 0.903090 28 1.447158 48 1.681241 68 1.832509 88 1.944483 

9 0.954243 29 1.462398 49 1.690196 69 1.838849 89 1.949390 

10 1.000000 30 1.477121 50 1.698970 70 1.845098 90 1.954243 

-11 1.041393 31 1.491362 51 1.707570 71 1.851258 91 1.959041 

12 1.079181 32 1.505150 52 1.716003 72 1.857332 92 1.963788 
13 1.113943 33 1.518514 53 1.724276 73 1.863323 93 1.968483 

14 1.146128 34 1.531479 54 1.732394 74 1.869232 94 1.973128 

15 1.176091 35 1.544068 55 1.740363 75 1.875061 95 1.977724 

16 1,204120 36 1,556303 56 1.748188 76 1.880814 96 1.982271 

17 1.230449 37 1.568202 57 1.755875 77 1.886491 97 1.986772 

18 1.255273 38 1.579784 58 1.763428 78 1.892095 98 1.991226 

19 1.278754 39 1591065 59 1.770852 79 1.897627 99 1.995635 

20 1.301030 40 1.602060 60 1-778151 80 1.903090 100 2.000000 

6. BRIEF TABLE OF TRIGONOMETRIC FUNCTIONS 

Degrees Sine Cosine Tangent Cotangent 

C) o.0000 - 1.0000 0.0000 co 

10 0.1736 0.9848 0.1763 5.6713 

20 0.3420 0.9397 0.3640 2.7475 

30 0.5000 0.8660 0.5774 . 1.7321 

40 0.6428 0.7660 0.8391 1.1918 
_ . 

, 
50 0.7660 0.6428 1.1918 . 0.8391 

60 0.8660 0.5000 1.7321 0.5774 

70 0.9397 0.3420 2.7475 0:3640 

80 0.9848 0.1736 5.6713 0.1763 

90 Loom 0.0000 e 0.0000 
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7. TABLE OF NATURAL LOGARITHMS* 

These four pages give the natural logarithms 
of numbers between 0.2 and 20, correct to four 
places. Moving the decimal point n places to 
the right in the number, i.e, multiplying the 
number by Ion, requires the addition of n times 
2.3026 to the logarithm; values are given in the 
accompanying tables. SincetfœnumberSinthe 
first two pages are less than 2, the logarithms 
are all negative and should be preceded by a 
minus sign. The baseise = 2.72828. 

loge x = log, so logis x = 2.3026 logo x 
logs, x = logo e log. x 0.4343 log. x 

2 

3 
4 

5 
6 
7 
8 
9 

(52.3026) 

2.3026 
4.6052 
6.9078 
9.2103 

5(0.6974-3) 

0.6974-3 
0.3948-5 
0.0022-7 
0.7897-10 

11.5129 
13.8155 
16.1181 
18.4207 
20.7233 

0.4871-12 
0.1848-14 
0.8829-27 
0.5793-10 
0.2767-22 

Number o 2 2 3 4 5 6 7 8 0 Avg. duff. 

• 
.20 2.3026 2926 2828 2730 2634 2538 2443 234922562164 95 
.12 .2073 2082 2893 2804 2726 1628 2542 24561372 2280 87 
.22 .1203 1120 2037 0956 0875 0794 0715063605570479 80 
.13 .0402 0326  0250 0174 0099 0025 095298789805 9733 74 

1.9661 9590 9529 9449 9379 9310 .24 9241 917392059038 69 

.15 2.8971 8905 8839 8773 8708 8643 8579851584528389 65 

.26 8326 8264 8202 8240 8079 8028 7958 7898 7838 7779 62 

.27 7720 7662 7603 7545 7487 7430 7373 732672607204 57 

.28 7248 7093 7037 6983 6928 6874 6820 6766 6713 6660 54 .19 0007 6555 6503 6451 6309 6348 6296 6246 6195 6145 52 

.20 1.6094 6045 5995 5945 5896 5847 5799 5750 5702 5654 49 .22 5600 5559 5512 5465 5418 5371 5325 52795233 5187 47 

.22 5141 5096 5051 5006 4961 4917 4872 4828 4784 4740 44. 

.23 4697 4653 4610 4567 4524 4482 4439 4397 4355 4313 4.3 .24 4271 4230 4/88 4147 4100 4065 4024 3984 3943 3903 4r 

.25 

.26 
1.3863 
3471 

3823 
34.32 

3783 
3394 

3744 
3350 

3704 
3313 

3665 
3280 

3626 
3243 

3587 
3205 

3548 
3/68 

3509 
3230 

39 
38 

.27 3093 3056 3020 2083 2946 2910 2874 2837 2802 2765 36 

.28 2730 2694 2658 2623 2588 2553 252824832448 2413 35 .20 2379 2344 2310 2276 2242 2208 2174214021072073 34 

.30 

.31 
2.2040 

1722 
2006 
2680 

2973 
2648 

1940 
2616 

2907 
1584 

2874 
1552 

1842 
1520 

28092777 
1489 1457 

1744 
1426 

33 
32 

.32 1394 2363 1332 2302 2270 2239 2209 22782147 1127 32 

.33 1087 2056 2026 0996 006 0036 00060877084708/8 30 

.34 0788 0759 0729 0700 0672 0642 0623058405560527 29 

.35 1.0498 0470 0442 0423 0385 0356 0328030002720244 28 

.36 0217 0189 0161 0134 0106 0079 0051 002499979970 27 

.37 0.9943 9916 9889 9862 983576i 9782 975597299702 27 

.38 9676 9650 9623 9597 9571 9545 9519 9493 9467 9442 26 

.39 9416 9390 9365 9339 9314 9289 9263 9238 9223 9288 25 

.40 0.0163 9238 9223 9088 9063 9039 9024898989658940 25 
•41 8910 8892 8867 884,3 8829 8795 8771874787238699 24 
.42 8675 8652 8627 8604 8580 8337 8533851084868463 23 
.43 8440 8416 8393 8370 8347 8324 8302 8278 8255 8233 23 
.44 8220 8187 8264 8142 8229 8097 8074805280308007 22 

.43 0.7985 7963 7941 7929 7897 7875 7853 7832 7809 7787 22 

.46 7765 7744 7722 7700 7679 7657 7636761475937572 21 

.47 7550 7529 7508 7487 7465 7444 7423 7402 7381 7361 21 

.48 7340 7319 7298 7277 7257 7230 7225719571747154 20 

.49 7133 7113 7093 7072 7052 7032 7012 6992 6972 6951 20 

*This page and the following are from Allen's "Six-Place Tables," published 
by the McGraw-Hill Book Company, Inc., New York, 
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Number o z 2 3 4 5 6 7 8 9 

, 

Avg. dig, 

.50 

.51 

.52 

.53 

.54 

.55 

.56 

.57 

.58 

0.6931 
6733 
6539 
619 
61 2 

0 .5978 
5798 
5621 
5447 

6921 
6724 
6520 
6330 
6143 

5960 
5780 
5604 
5430 

6892 
6694 
65or 
6312 
6125 

5942 
5703 
5550 
5413 

6872 
6675 
6482 
6292 
6106 

5924 
5745 
5569 
5396 

6852 
6655 
6463 
6274 
6o88 

5906 
5727 
5551 
5379 

6832 
6636 
6444 
6255 
6070 

5888 
5709 
5534 
5361 

6812679267736753 
6616 
6425 
6236 
6051 

58705852583458/6 
5692 
5516549954825465 
53445327532125293 

6597 
6406 
6228 
603360155997 

5674 

6578 
6387 
6199 

5656 

6559 
6368 
6180 

5639 

20 
29 
19 
28 
28 

28 
18 
17 
27 

.59 5276 5259 5243 5226 5209 5192 5175 515851425125 27 

.6o 0.5208 5092 5075 5038 5042 5025 5009 4992 4976 4959 26 

.61 4943 4927 4910 4894 4878 4861 4845 4829 4813 4796 26 

.62 4780 4764 4748 4732 4716 4700 4684 4668 4652 4636 26 

.63 4620 4604 4589 4573 4557 4541 4526451044944479 26 

.64 4463 4447 4432 4416 4401 4385 4370435443394323 25 

.65 0.4308 4292 4277 .4262 4246 4231 42164201 41864170 1$ 

.66 4155 4.140 4225 4210 4095 4080 4065 405040354020 IS 

.67 4005 3990 3975 3960 3945 3930 3916 3901 3886387x zs 

.68 3857 3842 3827 3813 3798 3783 3769375437493725 Is 

.69 3721 3696 3682 3667 3653 3638 3624361035953581 14 

.7o .2.3567 3552 3538 3524 3510 3496 3481 346734533439 14 

.71 3425 3411 3397 3383 3369 3355 3341 332733/33299 14 

.72 3285 3272 3257 3243 3230 3226 320232883175 3161 14 

.73 3247 3233 3220 3206 3092 3079 3065 305230383025 23 

.74 3021 2998 2984 2971 2957 3944 2930 2927 2904 2890 23 

.75 0.2877 2863 2850 2837 2824 2820 2797 2784277/ 2758 23 

.76 2744 2732 2728 2705 2692 2679 2666265326402627 x3 

.77 2614 2601 2588 2575 2562 2549 2536 2523 2510 2497 :3 

.78 2485 2472 2459 2446 2433 2421 2408 2395 2383 2370 23 

.79 2357 2345 2332 23/9 2307 2294 2282 2269 2256 2244 12 

.8o 0.2232 22/9 22426 2194 2182 2169 2257 21442/32 2120 12 

.81 2107 2095 2083 2070 2058 2.246 2033 2021 2009 1997 12 

.82 1985 2972 196o 2948 2936 2924 1912 1900 1888 2875 12 

.83 1863 1851 1839 2827 1815 1803 1792 1779 2767 2755 12 

.84 1744 1732 1720 1708 1696 1684 2672 166/ 16492637 12 

.85 0.2625 1613 1602 1590 1578 /567 1555 1543 1532 1520 12 

.86 1508 2497 1485 1473 1462 1450 1439 2427 1416 1404 12 

.87 1393 1381 1370 x358 1347 2335 13241322 1302 1290 zx 

.88 1278 1267 1256 2244 1233 1222 1210 2299 1188 1177 22 

.89 2166 1154 1143 1132 II20 1109 1098 1087 1076 1065 II 

.90 0.1054 1043 1031 1020 1009 0998 098709760965 0954 II 

.92 0943 0932 0921 0920 0899 0888 0877 0866 0856 0845 21 

.92 0834 0823 0812 0801 0790 0780 0769 0758 0747 0736 Ir 

.93 0726 0715 0704 0694 0683 0672 066, 065, 0640 0629 II 

.94 0629 o6o8 0598 0587 0576 0566 0555 0545 0534 0523 II 

.95 0.0513 0502 0492 0481 0471 0460 0450044004290419 zo 

.96 0408 0398 0387 0377 0367 0356 034603360325 0325 io 

.97 0305 0294 0284 0274 0263 0253 0243 0233 02220212 IO 

.98 0202 0192 0182 0171 0161 OISI 0141 013101210/11 ro 

.99 0102 0090 0080 0070 oo6o 0050 004 003000200010 IO 
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Number o z 1 3 4 5 6 7 8 9 Avg. diff. 

1.o o.0000 ozoo 0298 0296 0392 0488 0583 0677 0770 0862 95 
z.z 0953 1044 1133 1222 13/0 1398 1484 1370 1655 1740 87 
I.2 1823 I906 1989 2070 2151 2231 2311 2390 2469 2546 80 
2.3 2624 2700 2776 2852 2927 3002 3075 3148 3222 3293 74 1.4 3365 3436 3507 3577 3646 3726 3784 3853 3920 3988 69 

2.5 0.4055 4121 4287 4253 4318 4383 4447 45114574 4637 65 
2.6 4700 4762 4824 4886 4947 5008 5068 5228 5288 5247 62 
2.7 530 5365 5423 5481 5539 sue 5653 5720 5766 5822 57 1.8 5878 5933 5988 604,3 6098 6/52 6206 6259 6313 6366 54 1.9 64/9 6472 6523 6575 6627 6678 6729 6780 6831 6581 51 

2.0 0.6931 6982 7032 7080 7229 7178 72277275 73247372 49 2.1 7419 7467 7514 7562 7608 7655 7701 7747 7793 7839 47 2.2 7885 7930 7975 8o2o 8065 8209 8254829882428286 44 2.3 8329 8372 8416 8459 8502 8544 8587 8629 8672 8713 43 2.4 8755 8796 8838 8879 8920 8962 9002 9042 9083 9123 42 

2.5 0.9163 9203 9243 9282 9322 9361 9400 9439 9478 9527 39 2.6 9555 9594 9632  9670 9708 9746 97839822 9858 9895 38 
2.7 o •9933 9969 0006 0043 oo8o 6226 0152 0188 0225 0260 36 
2.8 1.0296 0332 0367 0403 0438 0473 0508 0543 0578 0623 35 2.9 0647 0682 0716 0750 0784 0828 0852 0886 0919 0953 34 

3.0 2.0986 2019 2053 2086 1219 1131 zIgt 2217 1249 1282 33 
3.2 1324 2346 2378 2410 1442 2474 15 1537 1569 2600 32 
3.2 1632 1663 1694 2725 2756 2787 2827 2848 2878 2909 31 
3.3 1939 2969 2000 2030 2060 2090 2119 2149 2179 2208 30 
3.4 2238 2267 2296 2326 2355 2384 2413 2442 2470 2499 29 

3.5 1.2528 2556 2585 2623 2642 2669 2698272627542782 28 
3.6 2809 2837 2865 2892 2920 2947 2975300230293056 27 
3.7 3083 31Io 3137 3164 3192 3228 32443272 32973324 27 
3.8 3350 3376 3403 3429 3455 3481 3507 3533 3558 3584 26 
3.9 3620 3635 3062 3086 3712 3737 3762 3788 3813 3838 25 

4.0 1.3863 3888 39/3 3938 3962 3987 4012 4036 40624085 25 
4. 1 
4.2 

4110 
4351 

4134 
4.375 

4159 
4.398 

4183 
4422 

4207 
4.446 

4231 
4469 

4255 
44934526 4540 

4279 4303 4327 
4563 

24 
23 

4.3 4580 4609 4643 4656 4679 4702 47254748 4770 4793 23 
4.4 4816 4839 48l 4884 4907 4929 495/ 49744996 5019 22 

4.5 2.5041 5063 5085 5207 5129 5251 52735195 52275239 22 
4.6 5261 5282 5304 5326 3347 3369 5390 5412 5433 5454 22 
4.7 5476 5497 3518 5539 5500 5581 5602 5023 5644 5065 21 
4.8 5686 5707 5728 574 5769 5790 58zo 5832 5852 5872 20 
4.9 5892 3913 5933 5953 5974 5994 6014 6034 6034 6074 20 

5.0 2.6094 6114 6134 6154 6174 6294 6214 233 6253 6273 20 
5.2 6292 6312 6332 6351 6371 6390 6409 429 6448 6467 29 
5.2 6487 6596 6525 6544 6563 6582 6602 620 6639 0058 19 
5.3 6677 6696 6725 6734 6752 6772 6790 808 6827 6845 g8 
5.4 6864 6882 6901 6919 6938 6956 6974 6993 7021 7029 18 

5.5 1.7047 7066 7084 7102 7220 7238 725672747192 722o 18 
5.6 7228 7246 7263 7282 7299 7317 7334 7352 7370 7387 28 
5.7 7405 7422 7440 7457 7475 7492 7509 7527 75447562 17 
5•8 7579 7596 7013 7030 7647 7664 7682 7699 7716 7733 17 
5.9 7750 7766 7783 7800 7817 7834 7852 7867 7884 7901 27 

'Pages 247 and 248 are taken from Marks' 'Mechanical Engineers' Hand-
book," published by the McGraw-Hill Book Company, Inc., New York. 
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Number o 1 2 3 4 5 6 7 8 g Aorg.diff. 

6.o 2.7928 7934 7951 7967 7984 8001 8017803480508°66 26 
6.2 8o83 8099 8126 8132 8148 8265 8182 8197 8223 8229 26 
6.2 8245 8262 8278 8294 8310 8326 8342 8358 8374 8390 26 
6.3 8405 8421 8437 8453 8469 8485 8soo 85268532 8547 26 
6.4 8563 8579 8594 8620 8625 8642 865686728687 8703 zs 

6;5 2.8728 8733 8749 8764 8779 8795 8820 8825 88408856 25 
6.6 8872 8886 8902 8926 8931 8946 8962 8976899 9oo6 25 
6.7 9021 51036 9052 9066 9081 9095 9220 9125 914 9155 15 
6.8 9269 9184 9199 9213 9228 9242 9257 9272 928 9501 IS 

6.9 - 9315 9330 9344 9359 9373 9387 9402 9426 943 9445 14 

7.0 1.9459 9473 9488 9502 9526 9530 9544 9559 9573 9587 14 
7.2 9601 9615 9629 9643 9657 9671 9685 9699 9713 9727 14 
7.2 9741 9755 9769 9782 9796 9820 98249838 985 9865 14 
7.3 2.9879  9892 9906 9920 9933 9947 9961 9974 998 000i 23 
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2.0015 0028 0042 0055 0069 0082 00960,090x220136 13 

2.6249 0262 6176 6189 0202 0215 0229024202550268 13 

0281 0295 0308 0321 0334 0347 0360037303860399 23 
.2412 0425 0448 0451 0464 0477 0490050305260528 23 
0541 
0609 

0554 
0681 

0507 
0694 

0580 
0707 

0592 
0719 

oóos 
0732 

0618663206430656 
0744075707690782 

23 
12 

2.0794 0807 0819 0852 0844 0857 08696882089409126 22 
0929 0931 0943 0956 0968 0980 0992 /oos 2017 1029 12 

1041 1054 1006 107 1090 1102 21242226 2138 1250 12 

2163 2175 2187 1199 1211 1225 1255 1247 1258 1270 12 

1282 1294 1306 1518 1530 1542 /353 1365 1377 1589 12 

2.1401 1412 1424 1436 2448 1459 2471 2483 14942506 12 

1518 1529 1541 1552 1564 1576 1587 15992620 2622 II 

1653 1645 /656 2668 2679 1692 2702 1713 1725 2736 Ix 
17g8 1759 1770 1782 1793 1804 2815 2827 1838 2U zt 
281 2872 2883 2894 1905 1917 2928 1939 1950 1 ix 

2.1972 2983 2994 2006 2027 2028 2039 2050 2061 2072 II 

2083 2094 2205 2116 2127 2158 2148215921702181 Ix 
2192 2203 2214 2225 2255 2246 2257 2268 2279 2289 II 

2300 2311 2322 2332 2343 2354 2364 2375 2386 2396 II 
2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 xx 

2.2523 2523 2534 2544 2555 2565 2576 2586 2597 2607 xo 
2628 2628 2638 2649 2659 2670 268026902702 2711 xo 
2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 IO 

2824 2834 2844 2854 2865 2375 2885 2895 2905 2915 10 

2925 2935 2946 2956 3966 2976 2986299630063.226 io 

2.3026 



APPENDIX 249 

8. TABLE OF EXPONENTIAL AND HYPERBOLIC FUNCTIONS IN 

TERMS OF NEPERS* 

x e. e-. sinh x cosh x tanh x 

.00 1.0000 x.0000 o.0000 Iffloo 0.0000 

.01( .010I 0.9900 .0100 .0001 .0100 

.02 .0202 .9802 .0200 .0002 .0200 

.03 .0355 .9704 .0300 .0005 .0300 

.04 .0408 .96o8 .0400 .0008 .0400 

.05 .0513 .9512 .0500 .0013 .0500 

.o6 .0628 .9428 .o600 .0028 .0 599 

.07 .0725 .9324 .0702 .0025 .0699 

.08 .0833 .923/ .080x .0032 .0798 

.o9 .0942 .9 139 .0902 .0041 .0898 

.xo 1.1052 0.9048 0./002 1.0050 0.0997 

.11 .1163 .8958 .1102 .0061 .1096 

.12 .1275 .8869 .2203 .0072 .1194 

.13 .1388 .8782 .1304 .0085 .1293 

.14 .2503 .8694 .1405 .0098 .1391 

.1s .2628 .8607 .2506 .0113 .1489 

.26 .2735 .8522 .2607 .01/8 .1587 

.27 .1853 .8437 .2708 .024s .2684 

.28 .1972 .8353 .1810 .0162 .1781 

.19 .2092 .827o .2912 .0181 .1878 

.20 1.2214 0.8187 0.2013 1.0201 0.1974 

.21 .2337 .8106 .211$ .0221 .2070 

.22 .2461 .8025 .2218 .0243 .2155 

.23 .2586 .7945 .2320 .0266 .2260 

.24 .271 .7856 .2423 .0289 .23$$ 

.2$ .2840 .7788 .2526 .0314 .2449 

.26 .2969 .7711 .2629 .9849 .2543 

.27 
.3200 

.7634 .2733 .0367 .2636 

.28 .3231 .7558 .2837 .039s .2729 

.29 .3364 .7483 .2941 .04/3 .2822 

.30 1 .3499 0 .7408 0 .3045 2.0453 0.2923 

.3 1 .3034 .7334 .3Iso .0484 .3004 

.32 .3772 .7261 .32ss .0526 .3095 

.33 .3910 .7189 .336o .0549 .3 185 

.34 .4049 .7218 .3466 .0584 .3275 

.35 .4191 .7047 .3572 .0629 .3364 

.36 .4333 .6977 .3678 .0655 4452 

.37 77 
..1g23 

.6907 .3785 .0692 .3540 
.38 .6839 .3892 .0732 .3627 

.39 .4770 .6771 .4000 .0770 .37 14 

.40 2.4918 0.6703 0.4208 2.0812 0.3800 

.41 .5068 .6637 .4226 .0852 .388s 

.42 .5220 .6570 .432s .0895 .3969 

.43 .5373 .6505 .4434 .0939 .4053 

.44 .5527 .6440 .4543 .0984 .4 136 

.45 .5683 .6376 .4653 .103o .4229 

.46 .5841 .6323 .4764 .2077 .43ox 

.47 .6000 .62so .4875 .1125 .4382 

.48 .6261 .6,88 .4986 .1174 .4462 

.49 .63/3 .6126 .5098 .2225 .4542  

.50 2.6487 0.6065 0.5221 1.1276 0.4622 

.51 .6653 .60os .5324 .13/9 .4700 

.52 .682o .5945 .5438 .2383 .4777 

.53 .6989 .5886 .5552 .1438 .4854 

.54 .7260 .58/7 .5666 .1494 .4930 

*From Allen's "Six-Place Tables,- published by the McGraw-Hill Book Company, 
Inc., New York. 
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x e e-. shah x cosh x Utah x 

.55 .7333 .5769 .5782 .255x .5005 

.56 .7507 .5722 .5897 .1609 .5080 

.57 .7683 .5655 .6014 .1669 .5254 

.58 .786o .5599 .6131 .1730 .5227 

.59 .8040 .5543 .6248 .1792 .5299 

.6o 1.8221 0.5488 0.6367 x.1855 0.5370 

.6r .8404 .5434 .6485 .1919 .5441 

.62 .8589 .5379 .6605 .2984 .5511 

.63 .8776 .5326 .6725 .2051 .5581 

.64 .8965 .5273 .6846 .2219 .5649 

.65 .9155 .5220 .6967 .2288 .5727 

.66 .9348 .5169 .7o90 .2258 .5784 

.67 .9542 .5117 .7223 .2330 .5850 

.68 .9739 .5066 .7336 .2402 .5918 

.69 .9937 .5016 .746x .2476 .5980 

.70 2.0138 0.4966 0.7586 1.2552 0.6044 

.71 .0340 .4916 .7722 .2628 .6107 

.72 .0544 .4868 .7838 .2706 .6169 

.73 .0751 .4819 .7966 .2785 .6231 

.74 .0959 .4771 .8094 .2865 .629x 

75 
: 76 

.1170 

.1383 
.4724 
.4677 

.8223 

.8353 
.2947 
.3030 

.6352 
 .64rx 

.77 .2598 .463o 1 84 .3 224 .6469 

.78 .1815 .4584 .8 Is .3199 .6527 

.79 .2034 .4538 .8748 .3286 .6584 

.8o 2.2288 0.4493 0.888r 1.3374 0.6640 

.81 .2479 .4449 .9025 .3464 .6696 

.82 .27435 .4404 .9250 .3585 .675x 

.83 .2933 .436o .9286 .3647 .6805 

.84 .3264 .43 17 .9423 .3740 .6858 

.85 .3396 .4274 .956r .3835 .6911 

.86 .3632 .4232 .9700 .3932 .6965 

.87 .3869 .4190 .9840 .4029 .7024 

.88 .4209 .4248 .998x .4228 .7064 

.89 .4352 .4107 1.0122 .4229 .7114 

.90 2.4596 0.4066 2.0265 2 .4332 0.7163 

.91 .4843 .4025 .0409 .4434 .7211 

.92 .5093 .3985 .0554 .4539 .7259 

.93 .5345 .3946 .07.20 .4645 .7306 

.94 .5600 .3906 .0847 .4753 .7352 

.95 .5857 .3867 .0995 .4862 .7398 

.96 .6117 .3829 .1144 .4973 .7443 

.97 '6379 .379x .2294 .so8s .7457 

.98 .6645 .3753 .1449 .5199 .7531 

.99 .6912 .3726 .2598 .5314 .7574 

r.00 2.7283 0.3679 2./752 2.543r 0.76,6 
.05 .8577 .3499 .2539 .6038 .7815 
ace 3.0042 .3329 .3356 .6685 .8005 
.15 .z582 .3266 .4208 .7374 .8178 
.20 .3201 .3012 .5093 .8107 .8337 

.25 .4903 .2865 .6019 .8884 .8483 

.3o .6693 .2725 .6984 .9709 .8617 

.35 .8574 .2592 .7991 2.0583 .8742 

.40 4.0552 .2466 .9043 .1509 .8854 

.45 .2631 .2346 2.0143 .2488 .8957 
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x e e-. sinh x cosh x tanh x 

1.50 4.4817 0.2231 2.1293 2.3524 0.9052 
.55 .7115 .2122 .2496 .4619 .9138 
.6o .9530 .2029 .3756 .5775 .9227 
.65 5.2070 .1920 .5075 .6995 .9289 
.70 .4739 .1827 .6456 .8283 .9354 

.75 .7546 .1738 .7904 .9642 .9414 

.8o 6.0496 .1653 .9422 3.1075 .9468 

.85 .3598 .1572 3.1023 .2585 .9528 

.90 .6859 .1496 .2682 .4177 .9562 

.95 7.0287 .1423 .4432 .5855 .9603 

2.00 7.3891 0.1353 3.6269 3.7622 0.9640 
.05 .7679 .2287 .8296 .9483 .9674 
.20 8.2662 .2225 4.0229 4.1443 .9705 
.25 .5848 .2265 .2342 .3507 .9732 
.20 9.025 .1108 .457 .568 .9757 

.25 .488 .1054 .692 .797 .9780 

.30 .974 .2003 .937 5.037 .9802 

.35 10.486 .0954 5.195 .290 .9820 

.40 11.023 .0907 .466 .557 .9837 

.5 22.282 .0821 6.050 6.132 .9866 

.6 ' 13.464 .0743 .695 .769 .9890 

.7 14.880 .0672 7.406 7.473 .9920 

.8 16.445 .0608- 8.192 8.253 .9926 

.9 18.174 .0550 9.060 9.125 .9940 

3.0 20.086 .0498 20.018 10.068 .9951 
.2 22.198 .0450 11.076 11.121 .9959 
.2 24.533 .0408 12.246 22.287 .9967 
.3 27.223 .0369 13.538 13.575 .9973 
.4 29.964 .0334 14.965 14.999 .9978 

.5 33.115 .0302 16.543 16.573 .9982 

.6 36.598 .0273 28.285 28.313 .9985 

.7 40.447 .0247 20.211 2.2.236 .9988 

.8 44.701 .0224 22.339 22.362 .9990 

.9 49.402 .0202 24.691 24.722 .9992 

4. 0 54.60 .0183 27.29 27.32 .999 
4.1 60.34 .0266 30.16 30.18 .999 
4.2 66.69 .0250 33.34 33.35 r.000 
4.3 73.70 .0136 36.84 36.86 2.000 
4.4 81.45 .0223 40.72 40.73 2.000 

4.5 90.02 .0222 45.00 45.01 e.000 
4.6 99.48 .oxox 49.74 49.75 2.000 
4.7 209.95 .0092 54.97 54.98 2.000 
4.8 121.51 .0082 • 60.75 60.76 1.000 
4.9 234.29 .0074 67. 14 67.15 2.000 

5.0 148.41 .0067 74.20 74.21 Ifflo 

6.o 403.4 .0025 201.7 1.000 
7.0 1096.6 .00091 548.3 2.000 
8.o 2981.0 .00034 1490.5 1.000 
9.0 8103.1 .00012 4051.5 r.000 
20.0 22026.5 .0004345 21023.2 2.000 

In the compilation of this table, extensive use was made of Kennelly's Tables 
of Complex Hyperbolic and Circular Functions. 
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9. TABLE OF EXPONENTIAL AND HYPERBOLIC FUNCTIONS 
IN TERMS OF DECIBELS 

Ne 
N epers 

ot 

k 

,a 

1 
Tc 

,-a 

k2 

,2a 

 k2 - 1 le + 1 k2 - 1 k - 1 
k + 1 

tanh 2 
2 

2k 

sinh a 

2k 

cosh a 

k2 -1- 1 

tanh a 

0.05 0.005757 1.00577 0.99426 1.01158 0.005756 1.00002 0.005756 0.002878 
0.1 0.011513 1.01158 0.98855 1.02330 0.011513 1.00007 0.011512 0.005756 
0.2 0.023024 1.02329 0.97724 1.04713 0.023028 1.00027 0.023022 0.011512 
0.3 0.034539 1.03514 0.96605 1.07152 0.034546 1.00060 0.034525 0.017268 
0.4 0.046052 1.04713 0.95499 1.09648 0.046067 1.00106 0.046019 0.023022 

0.5 0.057565 1.05925 0.94406 1.12202 0.057597 1.00166 0.057502 0.028774 
0.6 0.069078 1.07152 0.93325 1.14815 0.069131 1.00238 0.068968 0.034525 
0.7 0.080591 1.08393 0.92257 1.17490 0.080679 1.00325 0.080418 0.040274 
0.8 0.092103 1.09648 0.91201 1.20227 0.092236 1.00425 0.091846 0.046019 
0.9 0.103626 1.10917 0.90157 1.23027 0.103797 1.00538 0.103249 0.051763 

1.0 0.11513 1.12202 0.89125 1.25893 0.11539 1.00664 0.11463 0.057502 
1.1 0.12664 1.13501 0.88105 1.28825 0.12697 1.00803 0.12597 0.063237 
1.2 0.13816 1.14815 0.87096 1.31826 0.13860 1.00956 0.13728 0.068968 
1.3 0.14967 1.16145 0.86099 1.34896 0.15023 1.01122 0.14956 0.074695 
1.4 0.16118 1.17490 0.85114 1.38038 0.16188 1.01301 0.15979 0.080418 

1.5 0.17269 1.18850 0.84139 1.41254 0.17356 1.01495 0.17100 0.086132 
1.6 0.18421 1.20227 0.83176 1.44544 0.18525 1.01701 0.18215 0.091846 
1.7 0.19572 1.21618 0.82224 1.47911 0.19697 1.01922 0.19326 0.097551 
1.8 0.20723 1.23027 0.81283 1.51356 0.20872 1.02155 0.20432 0.103249 
1.9 0.21876 1.24452 0.80353 1.54882 0.22050 1.02402 0.21532 0.108939 

2.0 0.23026 1.25893 0.79433 1.58489 0.23230 1.02662 0.22627 0.11463 
2.2 0.25328 1.28825 0.77625 1.65959 0.25600 1.03225 0.24800 0.12597 
2.4 0.27631 1.31826 0.75858 1.73780 0.27984 1.03841 0.26948 0.13728 
2.5 0.28782 1.33352 0.74989 1.77828 0.29181 1.04171 0.28013 0.14293 
2.6 0.29934 1.34896 0.74131 1.81970 0.30383 1.04514 0.29071 0.14856 

2.8 0.32236 1.38038 0.72444 1.90546 0.32798 1.05241 0.31164 0.15980 
3.0 0.34539 1.41254 0.70795 1.99526 0.35230 1.06024 0.33228 0.17100 
3.2 0.36841 1.44544 0.69183 2.08930 0.37681 1.06864 0.35261 0.18215 
3.4 0.39144 1.47911 0.67608 2.18776 0.40151 1.07759 0.37260 0.19326 
3.5 0.40295 1.49623 0.66834 2.23870 0.41394 1.08229 0.38246 0.19879 

3.6 0.41447 1.51356 0.66069 2.29086 0.42645 1.08714 0.39226 0.20432 
3.8 0.43749 1.54882 0.64565 2.39884 0.45157 1.09722 0.41156 0.21532 
4.0 0.46052 1.58489 0.63096 2.51188 0.47697 1.10793 0.43051 0.22627 
4.5 0.51808 1.67880 0.59566 2.81837 0.54158 1.13724 0.47622 0.25340 
5.0 0.57565 1.77828 0,56234 3.16228 0.60798 1.17032 0.51950 0.28013 
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Na, 
Nepers 

« 

k 

e 

1 
; IT 

,-a 

k2 

êa 

k2 - 1 k2 -I- 1 k2 - 1 k - 1 
2k 

sinh « 

2k 

cosh « 

k2 +1 

tanh a 

k+ 1 

tanh -c! 
2 

5.5 0.63321 1.88365 0.53088 3.5481 0.67637 1.20726 0.56026 0.30643 
6.0 0.69078 1.99526 0.50119 3.9811 0.74705 1.24823 0.59848 0.33228 
6.5 0.74834 2.11349 0.47315 4.4668 0.82016 1.29331 0.63415 0.35764 
7.0 0.80591 2.23872 0.44668 5.0119 0.89603 1.34272 0.66732 0.38246 
7.5 0.86347 2.37137 0.42170 5.6234 0.97483 1.39652 0.69804 0.40677 

8.0 0.92103 2.51190.39811 6.3096 1.05689 1.45500 0.72639 0.43051 
8.5 0.97860 2.6607 0.37584 7.0795 1.14246 1.51830 0.75246 0.45366 
9.0 1.03616 2.8184 0.35481 7.9433 1.23178 1.58659 0.77637 0.47622 
9.5 1.09373 2.9854 0.33497 8.9125 1.32520 1.66016 0.79823 0.49817 

10.0 1.15129 3.1623 0.31623 10.0000 1.42302 1.73924 0.81818 0.51950 

10.5 1.20886 3.3497 0.29854 11.220 1.52551 1.82404 0.83633 0.54020 
11.0 1.26642 3.5481 0.28184 12.589 1.63313 1.91497 0.85282 0.56026 
11.5 1.32399 3.7584 0.26607 14.125 1.74609 2.01216 0.86777 0.57969 
12.o. 1.38155 3.9811 0.25119 15.849 1.86494 2.11612 0.88130 0.59848 
12.5 1.43912 4.2170 0.23714 17.783 1.98992 2.22706 0.89352 0.61664 

13.0 1.49668 4.4668 0.22387 19.953 2.12154 2.34542 0.90455 0.63416 
13.5 1.55425 4.7315 0.21135 22.387 2.26007 2.47142 0.91448 0.65105 
14.0 1.61181 5.0119 0.19953 25.119 2.40617 2.60570 0.92343 0.66733 
14.5 1.66937 5.3088 0.18836 28.184 2.56028 2.74864 0.93147 0.68298 
15.0 1.72694 5.6234 0.17783 31.623 2.72282 2.90065 0.93869 0.69804 

15.5 1.78450 5.9566 0.16788 35.481 2.89435 3.06223 0.94517 0.71250 
16.0 1.84207 6.3096 0.15849 39.811 3.07555 3.23404 0.95099 0.72639 
16.5 1.89963 6.6834 0.14962 44.668 3.26690 3.41653 0.95621 0.73970 
17.0 1.95720 7.0795 0.14125 50.119 3.46910 3.61035 0.96088 0.75246 
17.5 2.01476 7.4989 0.13335 56.234 3.68281 3.81616 0.96506 0.76468 

18.0 2.07233 7.9433 0.12589 63.096 3.90870 4.03460 0.96880 0.77637 
18.5 2.12989 8.4139 0.11885 70.795 4.14760 4.26645 0.97214 0.78755 

19.0 2.18746 8.9125 0.11220 79.433 4.40017 4.51237 0.97514 0.79823 
19.5 2.24502 9.4406 0.10593 89.125 4.66734 4.77327 0.97781 0.80844 

20.0 2.30259 10.0000 0.10000 100.000 4.95000 5.05000 0.98020 0.81818 

21.0 2.41771 11.2202 8912.5* 125.893 5.56554 5.65467 0.98424 0.83634 
22.0 2.53284 12.5893 7943.3* 158.490 6.25506 6.33450 0.98746 0.85282 
23.0 2.64797 14.1254 7079.5* 199.527 7.02761 7.09841 0.99003 0.86777 
24.0 2.76310 15.8489 6309.6* 251.188 7.89293 7.95602 0.99207 0.88130 
25.0 2.87823 17.7828 5623.4* 316.228 8.86324 8.91947 0.99370 0.89352 

*Multiply by 10-5. 
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N ab 
1•T epers 

« 

k  

e 

1 
le 

ea 

k2 

êa 

k2 - 1 k2 + 1 k2 - 1 
k2 + 1 

tanh a 

k - 1 
2k 

sinh a 

2k 

cosh a 

k + 1 

tanh cl 
2 

26.0 2.99336 19.953 5011.9* 398.11 9.951 10.001 0.99499 0.90455 
27.0 3.10849 22.3874466.8* 501.19 11.171 11.216 0.99602 0.91448 
28.0 3.22362 25.119 3981.1* 630.96 12.540 12.579 0.99684 0.92343 
29.0 3.33875 28.184 3548.1* 794.33 14.074 14.110 0.99749 0.93147 
30.0 3.45388 31.623 3162.3* 1000.00 15.795 15.827 0.99800 0.93869 

31.0 3.56901 35.481 2818.4* 1258.9 17.726 17.754 0.99841 0.94518 
32.0 3.68414 39.811 2511.9* 1584.9 19.893 19.918 0.99874 0.95099 
33.0 3.79927 44.668 2238.7* 1995.3 22.324 22.346 0.99900 0.95621 
34.0 3.91439 50.119 1995.3* 2511.9 25.049 25.069 0.99920 0.96088 
35.0 4.02952 56.234 1778.3* 3162.3 28.108 28.126 0.99937 0.96506 

36.0 4.14465 63.096 1584.9* 3981.1 31.540 31.556 0.99950 0.96880 
37.0 4.25978 70.795 1412.5* 5011.9 35.390 35.404 0.99960 0.97214 
38.0 4.37491 79.433 1258.9* 6309.6 39.710 39.723 0.99968 0.97513 
39.0 4.49004 89.125 1122.0* 7943.3 44.557 44.568 0.99975 0.97781 
40.0 4.60517 100.000 1000.0* 10000.0 49.995 50.005 0.99980 0.98020 

41.0 4.72030 112.20 891.25* 12589. 56.095 56.104 0.99984 0.98233 
42.0 4.83543 125.89 794.33* 15849. 62.944 62.956 0.99987 0.98424 
43.0 4.95056 141.25 707.95* 19953. 70.627 70.634 0.99990 0.98594 
44.0 5.06569 158.49 630.96* 25119. 79.242 79.248 0.99992 0.98746 
45.0 5.18081 177.83 562.34* 31623. 88.911 88.916 0.99994 0.98887 

46.0 5.29595 199.53 501.19* 39811. 99.77 99.76 0.99995 0.99003 
47.0 5.41107 223.87 446.68* 50119. 111.94 111.94 0.99996 0.99111 
48.0 5.52620 251.19 398.11* 63096. 125.59 125.60 0.99997 0.99207 
49.0 5.64133 281.84 354.81* 79433. 140.92 140.92 0.99997 0.99293 
50.0 5.75646 316.23 316.23* 100000. 158.11 158.11 0.99998 0.99370 

55.0 6.33211 562.3 177.83* 3.162f 281.17 281.17 0.99999 0.99645 
60.0 6.90776 1000.0 100.00* 10.000f 500.00 500.00 0.99999 0.99800 
65.0 7.48340 1778.3 56.23* 31.623f 889.14 889.14 0.99999 0.99888 
70.0 8.05905 3162.3 31.62* 100.000t 1581.13 1581.13 1.00000 0.99937 
75.0 8.63469 5623.4 17.78* 316.228f 2811.71 2811.71 1.00000 0.99964 

80.0 9.21034 10000. 10.000* 1000. t 0.5000 t 05000f 1.00000 0.99980 
85.0 9.78599 17783. 5.623* 3162. t 0.8891t 0.8891 t 1.00000 0.99989 
90.0 10.36163 31623. 3.162* 10000. t 1.5811 t 1.5811 t 1.00000 0.99994 
95.0 10.93728 56234. 1.778* 31623. t 2.8117t 2.81171* 1.00000 0.99996 
100.0 11.51293 106000. 1.000* 100000. t 5.0000 t 5.0000.1. 1.00000 0.99998 

*Muitiply by 10-5. 
t Multiply by 10+5. 
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Bessel Function Curves 

.74 (X) =- Bessel function of first kind and fourth order 
=multiplier for amplitude of fourth order side band 

components in frequency modulation 

J s (X) =Bessel function of first kind and fifth order 
=multiplier for amplitude of fifth order side band 

components in frequency modulation 

X = Argument measured along the X-axis 
.,-_- modulation index for frequency modulation 
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Bessel Function Curves 

J6 (X) = Bessel function of first kind and sixth order 
,-... multiplier for amplitude of sixth order side band 
components in frequency modulation 

j 7 (X) =- Bessel function of first kind and seventh order 
=multiplier for amplitude of seventh order side band 

components in frequency modulation 

X = Argument measured along the X-axis 
= modulation index for frequency modulation 

7 5013 • 8.5778 

15.2682 16.5294 

ir c.... 

9.9361 

13.5893 

14.8213 

17.003 
18.2878 

0864 

-t-- 
9419 11.7349 12.324 

18.637419 

2 3 4 5 6 7 8 9 10 11 

Value of X or modo ation index 

lb 10 20 



258 APPLIED MATHEMATICS 

Bessel Function Curves 
jg (X)= Bessel function of first kind and eighth order 

=multiplier for, amplitude of eighth.order side band 
components in frequency modulation 

Jg (X)= Bessel function of first kind and ninth order 
= multiplier for amplitude of ninth order side band 

components in frequency modulation 
X = Argument measured along the X-axis 

=modulation index for frequency modulation 
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jiex) =-- Bessel function of first kind and tenth order 

= multiplier for amplitude of tenth order side band 
components in frequency modulation 

J11(I) =Bessel function of first kind and eleventh order 
= multiplier for amplitude of eleventh order side band 

components in frequency modulation 

X =Argument measured along the X-axis 
=modulation index for frequency modulation 
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b. Table of Bessel functions, Jo(x) and Ji(x) :* 

259 

x .1. o(x) -.1- i(x) x 10(x) --.1.1(x) 

0.00 1.000000 0.000000 0.25 0.984436 -0.124026 

0.01 0.999975 -0.005000 0.26 0.983171 -0. 128905 

0.02 0.999900 -0.010000 0.27 0.981858 -0. 133774 

0.03 0.999775 -0.014998 0.28 0.980496 -0. 138632 

0.04 0.999600 -0.019996 0.29 0.979085 -0. 143481 

0.05 0.999375 -0.024992 0.30 0.977626 -0. 148319 

0.06 0.999100 -0.029987 0.31 0.976119 -0. 153146 

0.07 0.998775 -0.034979 0.32 0.974563 -0. 157961 

0.08 0.998401 -0.039968 0.33 0.972960 -0. 162764 

0.09 0.997976 -0.044954 0.34 0.971308 -0. 167555 

0.10 0.997502 -0.049938 0.35 0.969609 -0. 172334 

0.11 0.996977 -0.054917 0.36 0.967861 -0. 177100 

0.12 0.996403 -0.059892 0.37 0.966067 -0.181852 

0.13 0.4)95779 -0.064863 0.38 0.964224 -0. 186591 

0.14 0.995106 -0.069829 0.39 0.962335 -0. 191316 

0.15 0.994383 -0.074789 0.40 0.960398 -0. 196027 

0.16 0.993610 -0.079744 0.41 0.958414 -0.200723 

0.17 0.992788 -0.084693 0.42 0.956384 -0.205403 

0.18 0.991916 -0.089636 0.43 0.954306 -0.210069 

0.19 0.990995 -0.094572 0.44 0.952183 -0.214719 

0.20 0.990025 -0.099501 0.45 0.950012 -0.219353 

0.21 0.989005 -0. 104422 0.46 0.947796 -0.223970 

0.22 0.987937 -0. 109336 0.47 0.945533 -0. 228571 

0.23 0.986819 -0. 114241 0.48 0.943224 -0.233154 

0.24 0.985652 -0. 119138 0.49 0.940870 -0.237720 

0.25 0.984436 -0. 124026 0.50 0.938470 -0. 242268 

* This table is a simplification of Dr. Meissel's "Tafel der Bessel'schen Functionen," 
originally published in Berlin, 1888. These twelve place tables have been reprinted in 
" Bessel Functions" by Gray, Mathews, and Macrobert, published by Macmillan 4r Company, 

Ltd., in 1931. 
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x Jo(x) -Ji(x) x jo(x) --.11(x) 

0.50 0.938470 --0.242268 0.80 0.846287 --0.368842 

0.51 0.936024 --0.246799 0.81 0.842580 -0.372681 
0.52 0.933534 --0.251310 0.82 0.838834 --0.376492 
0.53 0.930998 --0.255803 0.83 0.835050 --0.380275 
0.54 0.928418 --0.260277 0.84 0.831228 --0.384029 

0.55 0.925793 --0.264732 0.85 0.827369 --0.387755 

0.56 0.923123 --0.269166 0.86 0.823473 --0.391453 
0.57 0.920410 -0.273581 0.87 0.819541 --0.395121 
0.58 0.917652 --0.277975 0.88 0.815571 -0.398760 
0.59 0.914850 --0.282349 0.89 0.811565 --0.402370 

0.60 0.912005 --0.286719 0.90 0.807524 -0.405950 

0.61 0.909116 --0.291032 0.91 0.803447 --0.409499 
0.62 0.905184 --0.295341 0.92 0.799334 --0.413018 
0.63 0.903209 --0.299628 0.93 0.795186 --0.416507 
0.64 0.900192 -0.303893 0.94 0.791004 --0.419965 

/ 

0.65 0.897132 --0.308135 0.95 0.786787 --0.423392 

0.66 0.894029 --0.312355 0.96 0.782536 --0.426787 
0.67 0.890885 --0.316551 0.97 0.778251 --0.430151 
0.68 0.887698 -0.320723 0.98 0.773933 --0.433483 
0.69 0.884470 --0.324871 0.99 0.769582 --0.436783 

0.70 0.881201 --0.328996 1.00 0.765198 --0.440051 

0.71 0.877890 -0.333096 1.01 0.760781 -0.443286 
0.72 0.874539 --0.337170 1.02 0.756332 --0.446488 
0.73 0.871147 -0.341220 1.03 0.751851 --0.449658 
0.74 0.867715 --0.345245 1.04 0.747339 -0.452794 

0.75 0.864242 --0.349244 1.05 0.742796 -0.455897 

0.76 0.860730 --0.353216 1.06 0.738221 -0.458966 
0.77 0.857178 -0.357163 1.07 0.733616 --0.462001 
0.78 0.853587 -0.361083 1.08 0.728981 -0.465003 
0.79 0.849956 --0.364976 1.09 0.724316 --0.467970 

0.80 0.846287 --0.368842 1.10 0.719622 --0.470902 
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x Jo(x) - Ji(x) x jo(x) -./.1(x) 

1.10 0.719622 --0.470902 1.40 0.566855 --0.541948 

1.11 0.714898 --0.473800 1.41 0.561427 --0.543726 

1.12 0.710146 -0.476663 1.42 0.555981 -43.545464 

1.13 0.705365 --0.479491 1.43 0.550518 --0.547162 

1.14 0.700556 --0.482284 1.44 0.545038 --0.548821 

1.15 0.695720 -4).485041 1.45 0.539541 -0.550441 

1.16 0.690856 -0.487763 1.46 0.534029 -4).552020 

1.17 0.685965 --0.490449 1.47 0.528501 --0.553559 

1.18 0.681047 --0.493098 1.48 0.522958 -0.555059 

1.19 0.676103 -4).495712 1.49 0.517400 --0.556518 

1.20 0.671133. -0.498289 1.50 0.511828 --0.557937 

1.21 0.666137 -0.500830 1.51 0.506241 --0.559315 

1.22 0.661116 --0.503334 1.52 0.500642 --0.560653 

1.23 0.656071 --0.505801 1.53 0.495028 --0.561951 

1.24 0.651000 --0.508231 1.54 0.489403 --0.563208 

1.25 0.645906 -0.510623 1.55 0.483764 -4).564424 

1.26 0.640788 -4).512979 1.56 0.478114 --0.565600 

1.27 6.635647 --0.515296 1.57 0.472453 -4).566735 

1.28 0.630482 -4).517577 1.58 0.466780 -0.567830 

1.29 0.625295 -0.519819 1.59 0.461096 --0.568883 

1.30 0.620086 -4).522023 1.60 0.455402 --0.569896 

1.31 0.614855 --0.524189 1.61 0.449698 --0.570868 

1.32 ' 0.609602 --0.526317 1.62 0.443985 --0.571798 

1.33 0.604329 --0.528407 1.63 0.438262 --0.572688 

1.34 0.599034 -0.530458 1.64 0.432531 --0.573537 

1.35 0.593720 --0.532470 1.65 0.426792 -4).574344 

-1.36 0.588385 --0.534444 1.66 0.421045 --0.575111 

1.37 0.583031 --0.536379 1.67 0.415290 --0.575836 

1.38 0.577658 --0.538274 1.68 0.409528 --0.576520 

1.39 0.572266 --0.540131 1.69 0.403760 --0.577163 

1.40 0.566855 --0.541948 1.70 0.397985 --0.577765 
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x jo(x) --ji(x) x jo(x) --.1.1(x) 

1.70 0.397985 --0.577765 2.00 0.223891 --0.576725 

1.71 0.392204 --0.578326 2.01 0.218127 --0.576060 
1.72 0.386418 --0.578845 2.02 0.212370 --0.575355 
1.73 0.380628 -0.579323 2.03 0.206620 --0.574611 
1.74 0.374832 --0.579760 2.04 0.200878 -0.573827 

1.75 0.369033 --0.580156 2.05 0.195143 --0.573003 

1.76 0.363229 -0.580511 2.06 0.189418 -0.572139 
1.77 0.357422 --0.580824 2.07 0.183701 --0.571236 
1.78 0.351613 -0.581096 2.08 0.177993 --0.570294 
1.79 0.345801 -0.581327 2.09 0.172295 --0.569313 

1.80 0.339986 --0.581517 2.10 0.166607 -0.568292 

1.81 0.334170 --0.581666 2.11 0.160929 --0.567233 
1.82 0.328353 --0.581773 2.12 0.155262 --0.566134 
1.83 0.322535 --0.581840 2.13 0.149607 --0.564997 
1.84 0.316717 --0.581865 2.14 0.143963 --0.563821 

1.85 0.310898 --0.581849 2.15 0.138330 --0.562607 

1.86 0.305080 --0.581793 2.16 0.132711 -0.561354 
. 1.87 

.. 
0.299262 --0.581695 2.17 0.127104 -0.560063 

1.88 0.293446 -0.581557 2.18 0.121509 --0.558735 
1.89 0.287631 -0.581377 2.19 0.115929 --0.557368 

1.90 0.281819 --0.581157 2.20 0.110362 --0.555963 

1.91 0.276008 --0.580896 2.21 0.104810 --0.554521 
1.92 0.270201 --0.580595 2.22 0.099272 -0.553041 
1.93 0.264397 --0.580252 2.23 0.093749 --0.551524 
1.94 0.258596 --0.579870 2.24 0.088242 -0.549970 

1.95 0.252799 --0.579446 2.25 0.082750 -0.548378 

1.96 0.247007 --0.578983 2.26 0.077274 --0.546750 
1.97 0.241220 --0.578478 2.27 0.071815 --0.545085 
1.98 0.235438 --0.577934 2.28 0.066373 -0.543384 
1.99 0.229661 --0.577349 2.29 0.060947 --0.541646 

2.00 0.223891 --0.576725 2.30 0.055540 --0.539873 
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X Jo(x) -./1(x) Jo(x) - .11(x) 

2.30 0.055540 --0.539873 2.60 --0.096805 -4).470818 

2.31 0.050150 --0.538063 2.61 --0.101499 --0.468025 
2.32 0.044779 --0.536217 2.62 --0.106165 --0.465202 
2.33 0.039426 -0.§34336 2.63 -0.110803 --0.462350 
2.34 0.034092 --0.532419 2.64 --0.115412 --0.459470 

2.35 0.028778 --0.530467 2.65 --0.119992 --0.456561 

2.36 0.023483 -43.528480 2.66 --0.124543 --0.453625 
2.37 0.018208 --0.526458 2.67 --0.129064 --0.450660 
2.38 0.012954 -0.524402 2.68 -43.133557. --0.447668 
.2.39 0.007720 -0.522311 2.69 --0.138018 --0.444648 

240 0.002508 -0.520185 2.70 --0.142449 --0.441601 

2.41 --0.002683 -4).518026 2.71 --0.146850 --0.438528 
2.42 --0.007853 --0.515833 2.72 --0.151220 -0.435428 
2.43 --0.013000 -43.513606 2.73 -43.155559 -43.432302 
2.44 --0.018125 --0.511346 2.74 -43.159866 -0.429150 

2.45 -43.023227 --0.509052 2.75 --0.164141 -0.425972 

2.46 --0.028306 -0.506726 2.76 --0.168385 --0.422769 
2.47 --0.033361 --0.504366 2.77 -0.172597 --0.419541 
2.48 --0.038393 --0.501974 2.78 --0.176776 --0.416288 
2.49 --0.043401 --0.499550 2.79 --0.180922 --0.413011 

2.50 --0.048384 -0.497094 2.80 --0.185036 --0.409709 

2.51 --0.053342 -0.494606 2.81 -0.189117 --0.406384 
2.52 --0.058276 --0.492086 2.82 -43.193164 -43.403035 
2.53 --0.063184 --0.489535 2.83 -43.197177 --0.399662 
2.54 -0.068066 --0.486953 2.84 --0.201157 --0.396267 

2.55 --0.072923 -0.484340 2.85 --0.205102 --0.392849 

2.56 --0.077753 --0.481696 2.86 --0.209014 --0.389408 
2.57 -0.082557 --0.479021 2.87 --0.212890 --0.385945 
2.58 --0.087333 --0.476317 2.88 --9.216732 --0.382461 
2.59 --0.092083 --0.473582 2.89 --0.220540 --0.378955 

2.60 -0.096805 --0.470818 2.90 --0.224312 --0.375427 
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Jo(z) 

2.90 

2.91 
2.92 
2.93 
2.94 

2.95 

2.96 
2.97 
2.98 
2.99 

3.00 

3.01 
3.02 
3.03 
3.04 

3.05 

3.06 
3.07 
3.08 
3.09 

3.10 

3.11 
3.12 
3.13 
3.14 

3.15 

3.16 
3.17 
3.18 
3.19 

3.20 

--0.224312 --0.375427 3.20 -4).320188 

--0.228048 --0.371879 3.21 --0.322781 
--0.231749 --0.368311 3.22 --0.325335 
--0.235414 --0.364722 3.23 --0.327847 
--0.239043 --0.361113 3.24 --0.330319 

--0.242636 --0.357485 3.25 --0.332751 

-43.246193 --0.353837 3.26 --0.335142 
-4).249713 --0.350170 3.27 --0.337492 
-4).253196 --0.346485 3.28 --0.339801 
-4).256643 --0.342781 3.29 --0.342069 

-4).260052 --0.339059 3.30 --0.344296 

-4).263424 --0.3à5319 3.31 --0.346482 
--0.266758 -0.331563 3.32 --0.348627 
--0.270055 --0.327789 3.33 --0.350731 
--0.273314 --0.323998 3.34 --0.352793 

--0.276535 --0.320191 3.35 --0.354814 

--0.279718 --0.316368 3.36 --0.356793 
--0.282862 -4).312529 3.37 --0.358731 
--0.285968 -4).308675 3.38 --0.360628 
--0.289036 -43.304805 3.39 --0.362482 

--0.292064 -4).300921 3.40 -4).364296 

--0.295054 --0.297023 3.41 --0.366067 
--0.298005 --0.293110 3.42 --0.367797 
--0.300916 --0.289184 3.43 -1).369485 
--0.303788 --0.285244 3.44 -4).371131 

-0.306621 --0.281291 3.45 --0.372735 

--0.309414 -1).277326 3.46 --0.374297 
-4).312168 -0.273348 3.47 --0.375818 
-1).314881 -1).269358 3.48 --0.377296 
--0.317555 -4).265356 3.49 -0.378733 

-0.320188 -0.261343 3.50 --0.380128 

--0.261343 

--0.257319 
--0.253284 
--0.249239 
--0.245184 

--0.241120 

--0.237046 
--0.232963 
--0.228871 
--0.224771 

--0.220663 

--0.216548 
--0.212425 
--0.208296 
--0.204160 

-41200018 

--0.195870 
--0.191716 
--0.187557 
--0.183394 

--0.179226 

-0.175054 
-0.170878 
-0.166699 
-0.162516 

-0.158331 

--0.154144 
--0.149954 
--0.145763 
--0.141571 

--0.137378 
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X jo(x) --.1.1(x) x jo(x) -41(x) 

3.50 -0.380128 --0.137378 3.80 -4).402556 -4).012821 

3.51 -0.381481 --0.133183 3.81 -0.402664 --0.008766 

3.52 . --0.382791 --0.128989 3.82 --0.402732 --0.004722 

3.53 --0.384060 --0.124795 3.83 --0.402759 --0.000687 

3.54 --0.385287 --0.120601 3.84 --0.402746 +0.003337 

3.55 --0.386472 --0.116408 3.85 --0.402692 14).007350 

3.56 --0.387615 --0.112216 3.86 --0.402599 1-0.011352 

3.57 --0.388717 --0.108025 3.87 -0.402465 +0.015343 

3.58 --0.389776 --0.103836 3.88 --0.402292 +0.019322 

3.59 -40.390793 --0.099650 3.89 --0.402079 1-0.023289 

3.60 -4).391769 --0.095466 3.90 --0.401826 +0.027244 

3.61 --0.392703 --0.091284 3.91 --0.401534 +0.031186 

3.62 -43.393595 --0.087106 3.92 --0.401202 1-0.035115 

- 3.63 --0.394445 --0.082931 3.93 -0.400832 14).039031 

3.64 -4).395253 --0.078760 3.94 --0.400422 +0.042933 

3.65 --0.396020 -4).074593 3.95 --0.399973 14).046821 

3.66 --0.396745 -0.070431 3.96 -4).399485 14).050695 

3.67 --0.397429 --0.066274 3.97 --0.398959 1-0.054555 

3.68 --0.398071 --0.062122 3.98 -43.398394 +0.058400 

3.69 -4).398671 --0.057975 3.99 --0.397791 143.062229 

3.70 --0.399230 -40.053834 4.00 --0.397150 14).066043 

3.71 --0.399748 --0.049699 4.01 --0.396470 1-0.069842 

3.72 --0.400224 --0.045571 4.02 --0.395753 14).073624 

3.73 --0.400659 --0.041450 4.03 --0.394998 14).077390 

3.74 --0.401053 --0.037336 4.04 --0.394205 14).081140 

3.75 -10.401406 -4).033229 4.05 --0.393375 140.084873 

3.76 -4).401718 --0.029131 4.06 --0.392508 +0.088588 

3.77 -4).401989 --0.025040 4.07 --0.391603 1-0.092286 

3.78 --0.402219 -4).020958 4.08 --0.390662 +0.095967 

3.79 -4).402408 --0.016885 4.09 --0.389684 14).099629 

3.80 -4).402556 --0.012821 4.10 --0.388670 14).103273 
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Jo(x) 

4.10 

4.11 
4.12 
4.13 
4.14 

4.15 

4.16 
4.17 
4.18 
4.19 

4.20 

4.21 
4.22 
4.23 
4.24 

4.25 

4.26 
4.27 
4.28 
4.29 

4.30 

4.31 
4.32 
4.33 
4.34 

4.35 

4.36 
4.37 
4.38 
4.39 

4.40 

-0.388670 +0.103273 4.40 -0.342257 

-0.387619 +0.106899 4.41 -0.340214 
-0.386532 +0.110505 4.42 -0.338142 
-0.385409 +0.114093 4.43 -0.336041 
-0.384250 +0.117661 4.44 -0.333912 

-0.383056 +0.121209 

-0.381826 +0.124738 
-0.380561 +0.128246 
-0.379261 +0.131734 
-0.377926 +0.135201 

-0.376557 +0.138647 

-0.375153 +0.142072 
-0.373716 +0.145475 
-0.372244 +0.148857 
-0.370739 +0.152216 

-0.369200 +0.155553 

4.45 -0.331753 

4.46 -0.329567 
4.47 -0.327352 
4.48 -0.325110 
4.49 -0.322840 

4.50 -0.320543 

4.51 -0.318218 
4.52 -0.315868 
4.53 -0.313491 
4.54 -0.311088 

4.55 -0.308659 

-0.367628 +0.158868 4.56 -0.306204 
-0.366022 +0.162160 4.57 -0.303725 
-0.364385 +0.165429 4.58 -0.301220 
-0.362714 +0.168674 4.59 -0.298691 

-0.361011 +0.171897 4.60 -0.296138 

-0.359276 +0.175095 4.61 -0.293560 
-0.357509 +0.178269 4.62. -0.290959 
-0.355711 +0.181420 4.63 -0.288334 
-0.353881 +0.184546 4.64 -0.285687 

-0.352020 +0.187647 4.65 -0.283016 

-0.350128 +0A90723 4.66 -0.280323 
-0.348206 +0.193775 4.67 -0.277607 
-0.346253 +0.196800 4.68 -0.274870 
-0.344270 +0A99801 4.69 -0.272111 

-0.342257 14).202776 4.70 -4).269331 

+0. 202776 

+0.205724 
+0.208647 
+0.211543 
+0.214412 

+0.217255 

+0.220071 
+0.222860 
+0.225621 
+0.228355 

+0.231060 

+0.233738 
+0.236388 
+0.239010 
+0.241603 

+0.244167 

+0.246703 
+0.249209 
+0.251686 
+0.254134 

+0.256553 

+0.258942 
+0.261301 
+0.263630 
+0.265928 

+0.268197 

+0.270435 
+0.272643 
+0.274820 
+0.276966 

+0.279081 
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x Jo(x) -J1(z) x jo(x) - J i(x) 

4.70 --0.269331 1-0.279081 5.00 --0.177597 1-0.327579 

4.71 --0.266530 14).281165 5.01 --0.174315 140.328683 

4.72 --0.263708 14).283217 5.02 -40.171023 +0.329753 

4.73 --0.260865 +0.285239 5.03 --0.167720 140.330790 

4.74 --0.258003 44).287229 5.04 --0.164408 1-0.331792 

4.75 --0.255121 14).289187 5.05 --0.161085 140.332761 

4.76 --0.252219 14).291113 5.06 --0.157752 14).333696 

4.77 --0.249299 14).293008 5.07 --0.154411 14).334597 

4.78 --0.246359 1-0.294871 5.08 -0.151061 A-0.335465 

4.79 --0.243401 14).296701 5.09 -43.147702 +0.336298 

4.80 --0.240425 14).298500 5.10 --0.144335 140.337097 

4.81 --0.237431 14).300266 5.11 --0.140960 +0.337863 

4.82 -0.234420 +0.302000 5.12 --0.137578 A-0.338594 

4.83 -4).231392 14).303701 5.13 --0.134188 A-0.339292 

4.84 --0.228346 A-0.305370 5.14 --0.130792 +0.339955 

4.85 -0.225284 +0.307006 5.15 --0.127389 +0.340535 

4.86 -4).222206 1-0.308610 5.16 --0.123980 140.341180 

4.87 --0.219112 140.310180 5.17 --0.120566 +0.341742 

4.88 -4).216003 14).311718 5.18 --0.117146 +0.342269 

4.89 --0.212878 14).313223 5.19 --0.113720 A-0.342763 

4.90 --0.209738 14).314695 5.20 --0.110290 140.343223 

4.91 --0.206584 A4).316133 5.21 -4).106856 A43.343649 

4.92 --0.203416 14).317539 5.22 --0.103418 A4).344041 

4.93. --0.200233 1-0.318911 5.23 --0.099975 140.344399 

4.94 --0.197038 14).320250 5.24 --0.096530 A40.344723 

4.95 -43.193829 140.321555 5.25 -4).093081 143.345014 

4.96 --0.190607 A-0.322827 5.26 --0.089630 14).345271 

4.97 -4).187372 140.324065 5.27 --0.086176 A40.345494 

4.98 --0.184125 143.325270 5.28 --0.082720 143.345683 

4.99 --0.180867 14).326441 5.29 --0.079262 -F0.345839 

5.00 -4).177597 +0.327579 5.30 --0.075803 14).345961 
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x Jo(s) -Ji(x) x Jo(x) - Ji(r) 

5.30 --0.075803 +0.345961 5.60 -F0.026971 +0.334333 

5.31 -0.072343 +0.346049 5.61 +0.030310 +0.333451 
5.32 -40.068882 +0.346104 5.62 +0.033640 140.332538 
5.33 -40.065421 +0.346126 5.63 +0.036961 -F0.331595 
5.34 --0.061960 +0.346114 5.64 140.040272 140.330621 

5.35 -40.058499 -F0.346069 5.65 140.043573 -F0.329617 

5.36 --0.055039 +0.345990 5.66 140.046864 +0.328583 
5.37 --0.051579 +0.345879 5.67 +0.050144 143.327518 
5.38 -40.048121 +0.345734 5.68 +0.053414 +0.326424 
5.39 -40.044665 140.345556 5.69 +0.056673 -F0.325301 

5.40 --0.041210 +0.345345 5.70 +0.059920 140.324148 

5.41 --0.037758 +0.345101 5.71 140.063156 +0.322965 
5.42 -0.034308 +0.344824 5.72 +0.066380 +0.321753 
5.43 -0.030861 140.344515 5.73 +0.069591 140.320513 
5.44 -0.027418 143.344173 5.74 +0.072789 14).319243 

5.45 --0.023978 140.343798 5.75 140.075975 +0.317945 

5.46 --0.020542 +0.343390 5.76 +0.079148 +0.316618 
5.47 --0.017110 +0.342951 5.77 +0.082308 +1).315262 
5.48 --0.013683 +0.342479 5.78 +0.085453 140.313879 
5.49 -40.010261 14).341975 5.79 140.088585 14).312467 

5.50 --0.006844 14).341438 5.80 +0.091703 140.311028 

5.51 --0.003432 +0.340870 5.81 +0.094806 143.309561 
5.52 --0.000027 +0.340270 5.82 143.097894 +0.308066 
5.53 +0.003373 +0.339638 5.83 143.100967 140.306544 
5.54 +0.006766 +0.338974 5.84 +0.104024 140.304995 

5.55 +0.010152 +0.338279 5.85 143.107067 14).303419 

5.56 +0.013532 143.337552 5.86 +0.110093 140.301817 
5.57 +0.016903 +0.336794 5.87 14).113103 140.300187 
5.58 +0.020267 140.336004 5.88 140.116096 14).298532 
5.59 +0.023623 140.335184 5.89 -FO.119073 +0.296850 

5.60 -F0.026971 -F0.334333 5.90 -FO.122033 140.295142 
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x Jo(x) -J1(x) x jo(x) --J i(x) 

5.90 14).122033 1-0.295142 6.20 1-0.201747 143.232917 

5.91 -F0.124976 +0.293409 6.21 14).204064 +0.230514 
5.92 +0.127901 14).291650 6.22 1-0.206357 +0.228093 
5.95 1-0.130800 1-0.289866 6.23 +0.208626 +0.225654 
5.94 +0.133699 140.288056 6.24 1-0.210870 14).223196 

5.95 1-0.136570 1-0.286222 6.25 1-0.213090 A4).220721 

5.96 +0.139423 140.284363 6.26 1-0.215285 140.218228 
5.97 14).142257 A-0.282479 6.27 A-0.217455 1-0.215718 
5.98 +0.145072 +0.280572 6.28 +0.219599 +0.213191 
5.99 143.147869 1-0.278640 6.29 1-0.221718 14).210647 

6.00 -F0.150645 14).276684 6.30 14).223812 14).208087 

6.01 140.153402 +0.274704 6.31 +0.225880 1-0.205510 
6.02 +0.156139 140.272702 6.32 14).227922 +0.202918 
6.03 +0.158856 +0.270676 6.33 143.229938 140.200310 
6.04 140.161553 +0.268627 6.34 A-0.231928 14).197686 

6.05 +0.164229 +0.266555 6.35 14).233892 -FO.195048 

5.05 1-0.166884 A-0.264461 6.36 +0.235829 1-0.192394 
6.07 -FO.169518 143.262345 6.37 1-0.237740 14).189726 
6.08 +0.172131 143.260207 6.38 +0.239624 -FO.187044 
6.09 14).174722 +0.258046 6.39 +0.241481 14).184348 

6.10 14).177291 A-0.255865 6.40 14).243311 A-0.181638 

6.11 14).179839 A-0.253662 6.41 +0.245113 -FO.178914 
6.12 A-0.182365 140.251438 6.42 14).246889 14).176177 
6.13 A-0.184868 14).249193 6.43 1-0.248637 140.173427 
6.14 A-0.187348 140.246927 6.44 A:0.250357 14).170665 

6.15 14).189806 14).244642 6.45 14).252050 +0.167890 

6.16 +0.192241 1-0.242336 6.46 44).253715 +0.165104 
6.17 +0.194653 14).240010 6.47 145.255352 1-0.162305 
6.18 +0.197041 145.237665 6.48 +0.256961 145.159495 
6.19 4-0.199406 14).235300 6.49 +0.258542 145.156674 

6.20 14).201747 44).232917 6.50 14).260095 14).153841 
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6.50 

6.51 
6.52 
6.53 
6.54 

6.55 

6.56 
6.57 
6.58 
6.59 

6.60 

6.61 
6.62 
6.63 
6.64 

6.65 

6.66 
6.67 
6.68 
6.69 

6.70 

6.71 
6.72 
6.73 
6.74 

6.75 

6.76 
6.77 
6.78 
6.79 

6.80 

Jo(x) -.T1(z) Jo(x) 

1-0.260095 +0.153841 6.80 +0.293096 

+0.261619 -F0.150998 6.81 143.293733 
A-0.263115 A-0.148145 6.82 +0.294339 
+0.264582 A4).145282 6.83 A43.294916 
+0.266020 143.142409 6.84 143.295462 

+0.267430 +0.139526 6.85 +0.295978 

+FO.268811 +0.136634 6.86 A-0.296463 
+0.270162 -FO.133733 6.87 +0.296919 
+0.271485 A-0.130824 6.88 +0.297343 
A-0.272779 -FO.127906 6.89 A4).297738 

+0.274043 +0.124980 6.90 +0.298102 

+0.275279 143.122047 6.91 +0.298436 
143.276484 A4).119105 6.92 14).298739 
14).277661 A43.116157 6.93 14).299013 
+0.278807 +0.113202 6.$4 A-0.299256 

+0.279925 +0.110204 6.95 +0.299468 

+0.281012 +0.107272 6.96 143.299651 
44).282070 141104298 6.97 +0.299803 
14).283098 140.101318 6.98 +0.299925 
14).284096 A-0.098333 6.99 A-0.300017 

+0.285065 -0.095342 7.00 

1-0.286003 -F0.092347 
+0.286912 +0.089347 
+0.287790 +0.086343 
+0.288638 +0.083335 

+0.289457 +0.080323 

-F0.290245 +0.077308 
A4).291003 +0.074289 
A-0.291731 +0.071268 
+0.292428 +0.068245 

+0.293096 +0.065219 

+0.300079 

7.01 +0.300111 
7.02 +0.300113 
7.03 A-0.300085 
7.04 +0.300026 

7.05 1-0.299938 

7.06 +0.299820 
7.07 A-0.299673 
7.08 A-0.299495 
7.09 +0.299288 

7.10 -F0.299051 

+0.065219 

+0.062191 
+0.059161 
i43.056131 
A-0.053099 

+0.050066 

A-0.047033 
A-0.044000 
A-0.040967 
+0.037934 

+0.034902 

+q. 031871 
143.028841 
+0.025813 
A-0.022787 

1-0.019762 

+0.016740 
+0.013721 
+0.010705 
+0.007692 

+0.004683 

A-0.001677 
--0.001324 
--0.004321 
--0.007313 

--0.010301 

--0.013283 
--0.016259 
--0.019230 
--0.022195 

-0.025153 
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x jo(x) -JI (x) x Jo (x) --ji(x) 

7.10 +0.299051 -0.025153 7.40 14).278596 --0.109625 

7.11 A-0.298785 --0.028105 7.41 1-0.277487 --0.112256 

7.12 A4).298489 --0.031050 7.42 14).276351 --0.114872 

7.13 -143.298164 --0.033987 7.43 A4).275189 --0.117473 

7.14 14).297810 --0.036918 7.44 1-0.274002 --0.120059 

7.15 -F0.297426 --0.039840 7.45 14).272788 -0.122630 

7.16 14).297013 --0.042755 7.46 14).271549 --0.125186 

7.17 14).296571 --0.045661 7.47 +0.270285 -4).127726 

7.18 14).296100 --0.048559 7.48 +0.268995 --0.130249 

7.19 1-0.295600 --0.051448 7.49 +0.267680 --0.132757 

7.29 14).295071 --0.054327 7.50 14).266340 --0.135248 

7.21 A-0.294513 --0.057198 7.51 A43.264975 -0.1i7723 

7.22 1-0.293927 --0.060059 7.52 14).263585 --0.140181 

7.23 A-0.293312 --0.062910 7.53 A-0.262171 --0.142622 

7.24 -F0.292669 --0.065751 7.54 1-0.260733 --0.145046 

7.25 14).291997 --0.068582 7.55 +0.259270 --0.147452 

7.26 14).291297 --0.071402 7.56 +0.257784 --0.149840 

7.27 +0.290569 --0.074211 7.57 A-0.256274 --0.152211 

7.28 +0.289813 --0.077009 7.58 14).254740 --0.154564 

7.29 14).289029 --0.079795 7.59 A-0.253182 --0.156898 

7.30 14).288217 --0.082570 7.60 14).251602 --0.159214 

7.31 14).287377 --0.085334 7.61 +0.249998 -0.161511 

7.32 A-0.286510 --0.088084 7.62 1-0.248372 -0.163789 

7.33 +0.285616 --0.090823 7.63 +0.246722 --0.166048 

7.34 A-0.284694 --0.093549 7.64 14).245051 --0.168288 

7.35 A4).283745 --0.096262 7.65 14).243357 --0.170509 

7.36 14).282769 --0.098962 7.66 +0.241641 --0.172710 

7.37 14).281766 --0.101648 7.67 14).239903 --0.174891 

7.38 A-0.280736 --0.104321 7.68 14).238143 --0.177052 

7.39 14).279679 --0.106980 7.69 A40.236362 --0.179192 

7.40 A-0.278596 --0.109625 7.70 140.234559 --0.181313 
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7.70 

7.71 
7.72 
7.73 
7.74 

7.75 

7.76 
7.77 
7.78 
7.79 

7.80 

7.1 
7.82 
7.83 
7.84 

7.85 

7.86 
7.87 
7.88 
7.89 

7.90 

7.91 
7.92 
7.93 
7.94 

7.95 

7.96 
7.97 
7.98 
7.99 

8.00 

10(x) -Ji(z) Jo(x) 

+0.234559 -4).181313 0 8.00 +0.171651 

1-0.232735 --0.183413 8.01 +0.169297 
14).230891 --0.185492 8.02 14).166930 
+0.229026 -0.187550 8.03 1-0.164549 
14).227140 --0.189587 8.04 1-0.162154 

+0. 225234 -0.191603 8.05 14).159746 

1-0.223308 --0.193597 8.06 1-0.157325 
14).221362 --0.195570 8.07 1-0.154892 
140.219397 --0.197521 8.08 +0.152446 
1-0.217412 --0.199450 8.09 1-0.149988 

14).215408 

+0. 213385 
+0.211343 
+0. 209283 
+0. 207204 

1-0.205108 

--0.201357 II 8.10 

--0.203242 
--0.205104 
--0.206944 
--0.208761 

8.11 
8.12 
8.13 
8.14 

1-0.147517 

1-0.145036 
1-0.142542 
+0.140038 
i-0.137522 

-4).210555 8.15 1-0.134996 

14).202993 --0.212327 8.16 1-0.132460 
140.200861 -0.214015 8.17 +0.129913 
140.198712 --0.215800 8.18 1-0.127357 
141196545 -4).217501 8.19 140.124791 

+0.194362 --0.219179 8.20 I 14).122215 

1-0.192162 --0.220834 8.21 14).119631 
A-0.189945 --0.222464 8.22 1-0.117038 
1-0.187713 --0.224071 8.23 +0.114436 
14).185464 --0.225653 8.24 14).111826 

+0.183200 -0.227212 8.25 II +0.109207 

1-0.180920 --0.228746 8.26 1-0.106582 
14).178625 --0.230255 8.27 14).103948 
14).176315 -0.231740 •8.28 14).101308 
14).173990 -0.233201 8.29 14).098660 

+0.171651 -0.234636 8.30 I 14).096006 

-0. 234636 

--0.236047 
--0.237433 
--0.238794 
--0.240129 

--0.241439 

--0.242724 
--0.243983 
--0.245217 
--0.246425 

--0.247608 

--0.248764 
--0.249895 
--0.251000 
--0.252078 

--0.253131 

--0.254157 
--0.255157 
--0.256131 
--0.257078 

--0.257999 

--0.258893 
--0.259761 
--0.260602 
--0.261416 . 

--0.262204 

--0.262964 
--0.263698 
--0.264406 
--0.265086 

--0.265739 
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x jo(x) -.11(x) x jo(x) - .11(x) 

8.30 +0.096006 --0.265739 8.60 14).014623 -4).272755 

8.31 1-0.093346 --0.266366 8.61 14).011896 --0.272571 

8.32 +0.090679 --0.266965 8.62 +0.009172 --0.272360 

8.33 14).088006 --0.267538 8.63 A4D.006449 --0.272122 

8.34 +0.085328 --0.268083 8.64 1-0.003729 --0.271858 

8.35 1-0.082645 --0.268601 8.65 1-0.001012 --0.271567 

8.36 14).079956 --0.269092 8.66 --0.001702 --0.271250 

8.37 +0.077263 --0.269557 8.67 --0.004413 --0.270907 

8.38 14).074565 --0.269994 8.68 --0.007120 --0.270537 

8.39 +0.071863 --0.270403 8.69 --0.009823 --0.270141 

8.40 A-0.069157 --0.270786 8.70 --0.012523 --0.269719 

8.41 14).066448 -0.271142 8.71 --0.015218 --0.269271 

8.42 A4).063735 --0.271470 8.72 --0.017908 --0.268796 

8.43 14).061018 --0.271772 8.73 -0:020594 --0.268296 

8.44 A4).058299 --0.272046 8.74 --0.023274 --0.267770 

8.45 +0.055577 --0.272293 8.75 --0.025949 --0.267218 

8.46 +0.052853 -0.272513 8.76 -0.028618 --0.266640 

8.47 +0.050127 --0.272706 8.77 -0.031282 --0.266037 

8.48 14).047399 --0.272872 8.78 --0.033939 --0.265408 

8.49 14).044670 --0.273010 8.79 --0.036590 --0.264753 

8.50 140.041939 --0.273122 8.80 --0.039234 --0.264074 

8.51 +0.039208 --0.273207 8.81 --0.041871 --0.263369 

8.52 140.036475 --0.273264 8.82 --0.044501 --0.262638 

8.53 14).033742 --0.273295 8.83 --0.047124 --0.261883 

8.54 A40.031009 --0.273298 8.84 --0.049739 --0.261103 

8.55 A-0.028277 --0.273275 8.85 -4).052346 --0.260298 

8.56 14).025544 --0.273224 8.86 --0.054945 --0.259468 

8.57 -F0.022812 --0.273147 8.87 --0.057535 --0.258613 

8.58 1-0.020081 --0.273043 8.88 -40.060117 -0.257784 

8.59 140.017351 --0.272912 8.89 --0.062690 --0.256830 

8.60 A4).014623 --0.272755 8.90 --0.065253 --0.255902 
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Jo(x) -Ji(x) Jo(x) 

8.90 --0.065253 --0.255902 9.20 --0.136748 

8.91 --0.067808 --0.254950 9.21 --0.138914 
8.92 --0.070352 -4).253974 9.22 -4).141064 
8.93 --0.072887 --0.252974 9.23 -40.143198 
8.94 --0.075412 --0.251950 9.24 --0.145314 

8.95 --0.077926 --0.250902 9.25 -4).147414 

8.96 --0.080430 --0.249831 9.26 -0.149497 
8.97 --0.082922 --0.248736 9.27 --0.151563 
8.98 --0.085404 --0.247618 9.28 --0.153611 
8.99 --0.087875 --0.246476 9.29 -43.155642 

9.00 --0.090334 --0.245312 9.30 --0.157655 

9.01 --0.092781 --0.244124 9.31 -4).159650 
9.02 --0.095216 --0.242914 9.32 --0.161627 
9.03 --0.097639 --0.241682 9.33 -0.163586 
9.04 -4).100050 --0.240426 9.34 --0.165526 

9.05 --0.102447 -4).239149 9.35 -4).167448 

9.06 --0.104832 --0.237849 9.36 --0.169351 
9.07 --0.107204 --0.236527 9.37 --0.171235 
9.08 --0.109563 --0.235183 9.38 --0.173100 
9.09 --0.111908 --0.233818 9.39 -4).174945 

9.10 --0.114239 --0.232431 9.40 -4).176772 

9.11 -49.116557 -40.231022 9.41 --0.178578 
9.12 --0.118860 --0.229592 9.42 --0.180365 
9.13 --0.121148 --0.228142 9.43 --0.182132 
9.14 -40.123422 -0.226670 9.44 --0.183878 

9.15 --0.125682 -0.225177 9.45 --0.185605 

9.16 --0.127926 --0.223664 9.46 -41187311 
9.17 --0.130155 --0.222130 9.47 --0.188997 
9.18 --0.132368 --0.220577 9.48 --0.190661 
9.19 --0.134566 --0.219003 9.49 -4).192306 

9.20 --0.136748 -0.217409 9.50 -0.193929 

--0.217409 

--0.215795 
-4).214162 
--0.212509 
--0.210837 

--0.209147 

--0.207437 
--0.205709 
--0.203962 
--0.202197 

--0.200414 

--0.198613 
--0.196794 
-4).194958 
--0.193105 

-4).191234 

--0.189347 
--0.187443 
--0.185522 
--0.183585 

--0.181632 

--0.179663 
--0.177679 
--0.175679 
--0.173664 

--0.171633 

-43.169588 
-4).167529 
-0.165455 
-4).163367 

-0.161264 
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x Jo(x) -Ji(x) x Jo(x) --ji(x) 

9.50 --0.193929 --0.161264 9.80 --0.232276 --0.092840 

9.51 
' 

--0.195531 --0.159149 9.81 --0.233192 --0.090419 
9.52 -0.197112 --0.157019 9.82 --0.234084 --0.087992 
9.53 --0.198671 --0.154877 9.83 --0.234952 --0.085558 
9.54 --0.200209 --0.152721 9.84 --0.235796 --0.083119 

9.55 --0.201726 --0.150552 9.85 --0.236615 --0.080674 

9.56 --0.203220 --0.148371 9.86 --0.237409 --0.078223 
9.57 --0.204693 --0.146178 9.87 --0.238179 --0.075767 
9.58 --0.206144 -43.143972 9.88 743.238924 --0.073306 
9.59 --0.207572 --0.141754 9.89 --0.239645 --0.070840 

9.60 -43.208979 -43.139525 9.90 -4).240341 --0.068370 

9.61 --0.210363 --0.137284 9.91 --0.241012 --0.065895 
9.62 --0.211724 --0.135032 9.92 --0.241659 --0.063417 
9.63 --0.213063 --0.132769 9.93 --0.242281 --0.060934 
9.64 --0.214380 --0.130495 9.94 --0.242878 --0.058448 

9.65 --0.215673 -43.128211 9.95 --0.243450 -43.055959 

9.66 -43.216944 --0.125916 9.96 --0.243997 --0.053467 
9.67 -0.2181'92 --0.123611 9.97 -0.244519. --0.050972 
9.68 --0.219416 --0.121296 9.98 --0.245016 --0.048474 
9.69 --0.220617 --0.118972 9.99 --0.245489 -0.045975 

9.70 --0.221795 --0.116639 10.00 --0.245936 --0.043473: 

9.71 -43.222950 --0.114296 10.01 --0.246358 --0.040969 
9.72 --0.224081 -40.111944 10.02 --0.246755 --0.038464 
9.73 --0.225189 -70.109584 10.03 -0.247127 --0.035957 
9.74 --0.226273 --0.107215 10.04 --0.247474 --0.033450 

9.75 -43.227333 -0.104839 10.05 --0.247796 --0.030941 

9.76 --0.228370 -43.102454 10.06 -0.248093 --0.028432 
9. ;77 -0.229382 --0.100061 10.07 --0.248365 --0.025923 
9.78 --0.230371 -43.097661 10.08 -4).248612 --0.023414 
9.79 ' -0.231336 --0.095254 10.09 --0.248833 --0.020904 

9.80 -4).232276 -0.092840 10.10 -0.249030 --0.018396 
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oe Jo(x) -Ji(x) x 10(x) 

10.10 --0.249030 -0.018396 10.40 --0.243372 +0.055473 

10.11 -0.249201 -0.015887 10.41 --0.242805 +0.057849 . 
10.12 --0.249347 -0.013380 10.42 --0.242215 +0.060218 
10.13 --0.249469 -0.010874 10.43 --0.241601 +0.062578 
10.14 --0.249565 -0.008369 10.44 --0.240963 +0.064930 

10.15 --0.249636 --0.005866 10.45 --0.240302 +0.067273 

10.16 -0.249682 --0.003365 10.46 --0.239618 A-0.069607 
10.17 --0.249703 --0.000866 10.47 --0.238910 +0.071932 
10.18 -0.249700 +0.001631 10.48 --0.238179 +0.074248 
10.19 --0.249671 +0.004121 10.49 --0.237425 A4).076554 

10.20 -0.249617 +0.006616 10.50 --0.236648 +0.078850 

10.21 -0.249538 +0.009104 10.51 -0.235848 +0.081136 
10.22 -0.249435 A-0.011589 10.52 --0.235026 +0.083413 
10.23 --0.249307 +0.014070 10.53 --0.234180 +0.085078 
10.24 -0.249154 +0.016547 10.54 -0.233312 +0.087933 

10.25 --0.248976 +0.019020 10.55 -0.232421 +0.090178 

10.26 -0.248773 -14).021489 10.56 --0.231508 +0.092411 
10.27 --0.248546 -F0.023954 10.57 -0.230573 +0.094633 
10.28 --0.248294 +0.026414 10.58 --0.229616 +0.096843 
10.29 --0.248018 +0.028868 10.59 --0.228636 +0.099042 

10.30 --0.247717 +0.031318 10.60 -0.227635 -F0.101229 

10.31 -0.247391 +0.033762 10.61 --0.226612 -14).103403 
10.32 --0.247042 +0.036200 10.62 --0.225567 +0.105566 
10.33 --0.246667 +0.038632 10.63 --0.224501 +0.107716 
10.34 --0.246269 +0.041059 10.64 -0.223413 +0.109853 

10.35 -0.245846 +0.043478 10.65 -0.222304 +0.111978 

10.36 -4).245399 -14).045891 10.66 --0.221173 +0.114089 
10.37 --0.244928 +0.048298 10.67 --0.220022 +0.116187 
10.38 --0.244433 +0.050697 10.68 -0.218850 +0.118272 
10.39 --0.243915 A-0.053089 10.69 -0.217656 -F0.120342 

10.40 --0.243372 1-0.055473 10.70 --0.216443 +0.122399 
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x .10(x) -‘1 i(x) x Jo(x) --ji(x) 

10,70 -0.216443 A-0.122399 11.00 --0.171190 1-0.176785 

10.71 --0.215209 141124442 11.01 --0.169415 14).178327 
10.72 --0.213954 1-0.126471 11.02 --0.167624 143.179850 
10.73 --0.212679 44).128485 11.03 --0.165818 143.181353 
10.74 --0.211384 143.130485 11.04 --0.163997 14).182837 

10.75 --0.210069 1-0.132470 11.05 --0.162161 +0.184302 

10.76 --0.208735 44).134440 11.06 --0.160311 44).185747 
10.77 -0.207381 143.136395 11.07 --0.158446 1-0.187172 
10.78 --0.206007 44).138334 11.08 -0.156567 44).188577 
10.79 -0.204614 44).140258 11.09 --0.154675 14).189963 

10.80 --0.203202 443.142167 11.10 --0.152768 1-0.191328 

10.81 --0.201771 44).144059 11.j1 --0.150848 443.192673 
10.82 --0.200321 A4).145935 11.12 --0.148915 +0.193998 
10.83 --0.198852 4-0.147796 11.13 --0.146968 440.195303 
10.84 --0.197365 1-0.149639 11.14 --0.145009 4-0.196587 

10.85 --0.195859 4-0.151467 11.15 --0.143037 44).197850 

10.86 --0.194336 141.153277 11.16 --0.141052 14).199093 
10.87 -4).192794 +0.155071 11.17 --0.139055 +0.200314 
10.88 --0.191234 14).156848 11.18 --0.137046 44).201515 
10.89 -43.189657 4-0.158607 11.19 --0.135025 4-0.202695 

10.90 -43.188062 A-0.160350 11.20 --0.132992 443.203853 

10.91 --0.186450 +0.162074 11.21 --0.130948 443.204990 
10.92 --0.184821 44).163782 11.22 --0.128892 A-0.206106 
10.93 --0.183175 +0.165471 11.23 --0.126826 14).207201 
10.94 --0.181511 143.167142 11.24 --0.124748 4-0.208274 

10.95 --0.179832 1-0.168795 11.25 --0.122660 14).209325 

10.96 --0.178136 14).170430 11.26 -(1120562 1-0.210355 
10.97 --0.176423 44).172047 11.27 --0.118453 140.211363 
10.98 --0.174695 143.173645 11.28 --0.116335 4-0.212349 
10.99 --0.172950 14).175225 11.29 -4).114206 +0.213313 

11.00 -4).171190 4-0.176785 11.30 -4).112068 14).214255 
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x Jo(x) -Ji(x) x Jo(x) - J1(x) 

11.30 --0.112068 40.214255 11.60 --0.044616 14).232000 

11.31 --0.109921 14).215175 11.61 --0.042294 14).232235 
11.32 --0.107765 14).216073 11.62 --0.039971 14).232446 
11.33 -4).105600 14).216949 11.63 --0.037646 +0.232634 
11.34 --0.103426 1-0.217802 11.64 --0.035138 +0.232799 

11.35 --0.101244 +0.218633 11.65 -0.032990 1-0.232941 

11.36 --0.099054 1-0.219442 11.66 --0.030660 -F0.233059 
11.37 --0.096855 14).220228 11.67 --0.028329 143.233154 
11.38 --0.094649 +0.220991 11.68 --0.025997 A-0.233226 
11.39 --0.092435 14).221732 11.69 --0.023664 443.233275 

11.40 --0.090215 +0.222451 11.70 --0.021331 14).233300 

11.41 --0.087986 1-0.223146 11.71 --0.018998 1-0.233303 
11.42 --0.085752 1-0.22à819 11.72 --0.016665 +0.233282 
11.43 --0.083510 140.224469 11.73 --0.014333 +0.233238 
11.44 --0.081262 14).225097 11.74 --0.012001 +0.233171 

11.45 --0.079008 +0.225701 11.75 --0.009669 A-0.233081 

11.46 --0.076748 +0.226282 11.76 --0.007339 1-0.232967 • 
11.47 --0.074483 A-0.226841 11.77 --0.005010 1-0.232831 
11.48 --0.072211 A-0.227377 11.78 --0.002683 +0.232672 
11.49 --0.069935 4-0.227889 11.79 --0.000357 14).232490 

11.50 --0.067654 143.228379 11.80 +0.001967 143.232285 

11.51 --0.065368 14).228845 11.81 -F0.004289 14).232057 
11.52 --0.063077 +0.229288 11.82 4-0.006608 A-0.231806 
11.53 --0.060782 140.229708 11.83 1-0.008925 A-0.231532 
11.54 --0.058483 +0.230106 11.84 +0.011239 14).231236 

11.55 --0.056180 14).230479 11.85 14).013550 +0.230917 

11.56 --0.053874 +0.230830 11.86 44).015857 44).230575 
11.57 --0.051564 +0.231157 11.87 +0.018161 +0.230211 
11.58 --0.049250 1-0.231462 11.88 140.020461 +0.229824 
11.59 --0.046934 A-0.231743 11.89 140.022757 140.229415 

11.60 --0.044616 +0.232000 11.90 +0.025049 +0.228983 
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X Jo(z) -Ji(x) x To(x) - Ji(x) 

11.90 149.025049 +0.228983 12.20 1-0.090770 149.205982 

11.91 +0.027337 1-0.228529 12.21 14).092825 1-0.204896 
11.92 -F0.029620 +0.228053 12.22 14).094868 14).203790 
11.93 143.031898 1-0.227554 12.23 1-0.096900 14).202665 
11.94 149.034171 140.227033 12.24 +0.098921 1-0.201521 

11.95 +0.036439 -F0.226490 12.25 14).100931 +0.200357 

11.96 +0.038701 14).225926 12.26 14).102928 +0.199175 
11.97 149.040957 14).225339 12.27 14).104914 14).197974 
11.98 +0.043207 +0.224730 12.28 1-0.106888 +0.196754 
11.99 141045452 +0.224099 12.29 14).108849 +0.195516 

12.00 +0.047689 +0.223447 12.30 14).110798 +0.194259 

12.01 1-0.049920 1-0.222773 12.31 1-0.112734 140.192984 
12.02 14).052145 14).222078 12.32 1-0.114658 -FO.191691 
12.03 +0.054362 1-0.221361 12.33 +0.116568 149.190380 
12.04 14).056572 14).220623 12.34 14).118465 14).189051 

12.05 143.058774 14).219863 12.35 +0.120349 1-0.187704 

12.06 1-0.060969 +0.219082 12.36 149.122219 +0.186340 
12.07 +0.063156 1-0.218280 12.37 +0.124076 14).184958 
12.08 +0.065335 +0.217457 12.38 +0.125918 +0.183559 
12.09 141067505 14).216614 12.39 14).127747 +0.182143 

12.10 +0.069667 +0.215749 12.40 +0.129561 1-0.180710 

12.11 1-0.071820 +0,214864 12.41 141131361 143.179261 
12.12 149.073964 14).213958 12.42 +0.133146 +0.177794 
12.13 14).076099 1-0.213031 12.43 14).134917 149.176311 
12.14 +0.078225 1-0.212085 12.44 149.136672 1-0.174812 

12.15 14).080341 +0.211118 12.45 1-0.138413 +0.173297 

12.16 1-0.082447 +0.210130 12.46 14).140138 14).171766 
12.17 14).084543 1-0.209123 12.47 141141848 -14).170219 
12.18 +0.080029 14).208096 12.48 14).143543 1-0.168656 
12.19 +0.088705 14).207049 12.49 +0.145221 1-0.167077 

12.20 14).090770 1-0.205982 12.50 1-0.146884 14).165484 
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Jo(x) 

12.50 A-0.146884 

-Ji(x) 

12.51 +0.148531 
12.52 +0.150162 
12.53 +0.151776 
12.54 +0.153374 

12.55 +0.154955 

12.56 +0.156519 
12.57 +0.158067 
12.58 +0.159598 
12.59 A-0.161111 

12.60 +0.162607 

12.61 +0.164086 
12.62 +0.165547 
12.63 +0.166990 
12.64 +0.168416 

12.65 +0.169824 

12.66 +0.171213 
12.67 -F0.172584 
12.68 +0.173937 
12.69 +0.175272 

12.70 +0.176588 

12.71 +0.177885 
12.72 +0.179164 
12.73 +0.180423 
12.74 +0.181664 

12.75 -F0.182885 

12.76 +0.184087 
12.77 +0.185270 
12.78 +0.186433 
12.79 +0.187577 

12.80 +0.188701 

+0.165484 

+0.163875 
+0.162251 
A-0.160613 
-FO.158959 

+0.157292 

12.80 

12.81 
12.82 
12.83 
12.84 

12.85 

Jo(x) -Ji(z) 

+0.188701 

+0.189806 
+0.190890 
-F0.191955 
A-0.193000 

+0.194024 

+0.155610 12.86 +0.195029 
+0.153914 12.87 +0.196013 
-F0.152204 12.88 H-0.196976 
+0.150480 12.89 A-0.197920 

+0.148742 12.90 +0.198842 

+0.146992 12.91 +0.199745 
1-0.145228 12.92 +0.200626 
A-0.143451 12.93 A-0.201487 
+0.141661 12.94 A-0.202327 

+0.139858 12.95 +0.203146 

+0.138043 12.96 A-0.203944 
+0.136216 12.97 A-0.204721 
+0.134376 12.98 +0.205477 
-F0.132525 12.99 +0.206212 

+0.130662 13.00 +0.206926 

1-0.128788 13.01 A-0.207619 
+0.126902 13.02 +0.208290 
+0.125005 13.03 +0.208940 
-FO.123097 13.04 +0.209568 

+0.121179 13.05 +0.210176 

A-0.119249 13.06 +0.210761 
+0.117310 13.07 +0.211325 
+0.115360 13.08 -F0.211868 
-F0.113401 13.09 +0.212389 

+0.111432 13.10 A-0.212888 

+0.111432 

+0.109453 
+0.107465 
+0. 105467 
+0.103461 

+0.101446 

+0.099423 
+0.097391 
+0.095351 
+0.093304 

+0.091248 

+0.089185 
+0.087115 
+0.085038 
+0.082954 

+0.080863 

+0.078766 
A-0.076663 
+0.074554 
+0.072439 

+0.070318 

+0.068192 
A-0.066061 
+0.063925 
A-0.061784 

+0.059639 

+0.057489 
+0.055336 
+0.053178 
+0.051017 

+0.048852 
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x Jo(x) - Ji(x) x Jo(x) -Ji(x) 

e  

13.10 14).212888 A-0.048852 13.40 140.217725 -0.016599. 

13.11 1-0.213366 1-0.046685 13.41 -F0.217548 --0.018762 

13.12 140.213822 140.044514 13.42 14).217350 --0.020922 

13.13 +0.214256 140.042341 13.43 14).217130 -0.023078 

13.14 A4).214669 140.040164 13.44 +0.216888 --0.025230 

13.15 140.215059 143.037986 13.45 143.216625 --0.027378 

13.16 1-0.215428 140.035806 13.46 140.216341 --0.029522 

13.17 143.215776 1-0.033623 13.47 140.216035 --0.031661 
13.18 -F0.216101 140.031439 13.48 143.215708 0.033795 

13.19 .1-0.216404 1-0.029254 13.49 140.215359 --0.035925 

13.20 +0.216686 1-0.027067 13.50 14).214989 --0.038049 

13.21 1-0.216946 +0.024879 13.51 141214598 --0.040168 

13.22 14).217183 +0.022690 13.52 140.214186 --0.042282 

13.23 +0.217399 1-0.020501 13.53 +0.213752 --0.044389 

13.24 1-0.217594 14).018311 13.54 1-0.213298 --0.046491 

13.25 1-0.217766 1-0.016121 13.55 140.212823 --0.0485g7 

13.26 14).217916 1-0.013932 13.56 14).212326 --0.050676 

13.27 1-0.218044 +0.011742 13.57 14).211809 --0.052758 

13.28 140.218151 +0.009553 13.58 +0.211271 --0.054834 

13.29 143.218235 +0.007365 13.59 1-0.210713 --0.056903 
• 

13.30 140.218298 1-0..005177 13.60 1-0.210133 --0.058965 
• 

13.31 14).218339 +0.002991 13.61 +0.209533 --0.061019 

13.32 44).218357 14).000806 13.62 +0.208913 --0.063065 

13.33 14).218355 --0.001377 13.63 14).208272 --0.065104 

13.34 1-0.218330 --0.003559 13.64 1-0.207611 -0.067135 

13.35 14).218284 --0.005738 13.65 140.206929 --0.069158 

13.36 4-0.218216 --0.007916 13.66 1-0.206228 --0.071173 

13.37 14).218126 --0.010091 13.67 14).205506 --0.073178 

13.38 14).218014 --0.012263 13.68 +0.204764 --0.075176 

13.39 14).217880 -0.014433 13.69 44).204002 --0.077164 

13.40 14).217725 --0.016599 13.70 143.203221 --0.079143 
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x Jo(z) -J1(x) x jo(x) --.1.1(x) 

ii 
13.70 +0.203221 --0.079143 14.00 1-0.171073 --0.133375 

13.71 44).202420 --0.081113 14.01 +0.169732 --0.134983 
13.72 14).201599 --0.083073 14.02 A40.168374 --0.136577 
13.73 4-0.200758 --0.085023 14.03 -F0.167000 --0.138156 
13.74 1-0.199898 --0.086964 14.04 14).165611 --0.139720 

13.75 A-0.199019 --0.088895 14.05 1-0.164206 -0.141269 

13.76 14).198120 --0.090815 14.06 +0.162785 -43.142803 
13.77 140.197203 --0.092725 14.07 140.161350 --0.144322 
13.78 +0.196266 --0.094624 14.08 +0.159899 -0.145825 
13.79 +0.195310 --0.096513 14.09 +0.158433 --0.147312 

13.80 ,-F0.194336 --0.098391 14.10 A-0.156953 --0.148784 

13.81 A-0.193342 --0.100257 14.11 14).155458 --0.150240 
13.82 1-0.192331 --0.102112 14.12 143.153948 --0.151681 
13.83 14).191300 --0.103956 14.13 +0.152424 -0.153104 
13.84 140.190251 --0.105788 14.14 14).150886 --0.154512 

13.85 143.189184 -4).107608 14.15 A-0.149334 --0.155904 

13.86 +0.188099 --0.109416 14.16 -F0.147768 --0.157279 
13.87 +0.186996 --0.111212 14.17 14).146188 --0.158637 
13.88 +0.185875 --0.112995 14.18 14).144595 --0.159978 
13.89 +0.184736 --0.114767 14.19 +0.142989 --0.161303 

13.00 14).183580 --0.116525 14.20 A-0.141369 --0.162611 

13.91 A-0.182406 --0.118270 41.21 +0.139737 --0.163901 
13.92 14).181214 --0.120003 14.22 143.138091 --0.165175 
13.93 +0.180006 --0.121722 14.23 -F0.136433 --0.166431 
13.94 +0.178780 -4).123428 14.24 A40.134763 --0.167669 

13.95 14).177537 --0.125121 14.25 A-0.133080 --0.168891 

13.96 1-0.176278 -0.126800 14.26 A4).131385 --0.170094 
13.97 +0.175001 --0.128465 14.27 +0.129678 --0.171280 
13.98 -F0.173708 -4).130116 14.28 +0.127960 -4).172447 
13.99 +0.172399 -0.131753 14.29 -FO.126229 --0.173597 

14.00 A40.171073 -4).133375 14.30 140.124488 -0.174729 
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x jo(x) - .11(x) x I o(x) -.11(x) 

14.30 14).124488 -4).174729 14.60 +0.067864 --0.199853 

14.31 14).122735 --0.175843 14.61 143.065863 --0.200384 
14.32 +0.120971 --0.176938 14.62 14).063856 --0.200896 
14.33 +0.119196 --0.178015 14.63 +0.061845 --0.201387 
14.34 1-0.117411 --0.179073 14.64 -F0.059829 --0.201857 

14.35 14).115615 --0.180113 14.65 +0.057808 --0.202307 

14.36 1-0.113808 --0.181135 14.66 +0.055783 --0.202737 
14.37 143.111992 --0.182137 14.67 1-0.053753 --0.203146 
14.38 14).110166 --0.183121 14.68 +0.051720 --0.203535 
14.39 14).108330 --0.184086 14.69 +0.049683 --0.203904 

e 
14.40 +0.106484 -0.185032 14.70 140.047642 --0.204251 

14.41 +0.104629 --0.185958 14.71 140.045598 --0.204578 
14.42 14).102765 --0.186866 14.72 +0.043550 --0.204885 
14.43 14).100892 --0.187755 14.73 +0.041500 --0.205171 
14.44 +0.099010 --0.188624 14.74 143.039447 --0.205436 

14.45 14).097119 --0.189473 14.75 140.037391 -0.204681 

14.46 +0.095221 --0.190304 14.76 +0.035333 --0.205905 
14.47 +0.093313 -0.191115 14.77 -F0.033273 --0.206109 
14.48 +0.091398 -0.191906 14.78 +0.031211 -40.206292 
14.49 +0.089475 --0.192678 14.79 +0.029148 -43.206454 

14.50 +0.087545 --0.193429 14.80 -F0.027082 --0.206596 

14.51 +0.085607 --0.194162 14.81 140.025016 --0.206716 
14.52 140.083662 --0.194874 14.82 -F0.022948 --0.206817 
14.53 +0.081709 -4).195566 14.83 140.020879 --0.206896 
14.54 +0.079750 --0.196239 14.84 +0.018810 --0.206955 

14.55 +0.077785 --0.196891 14.85 +0.016740 --0.206994 

14.56 140.075813 -0.197524 14.86 +0.014670 --0.207011 
14.57 +0.073834 --0.198136 14.87 +0.012600 --0.207008 
14.58 143.071850 --0.198729 14.88 143.010530 --0.206985 
14.59 +0.069860 --0.199301 14.89 +0.008461 --0.206941 

14.60 +0.067864 --0.199853 14.90 14).006392 --0.206876 
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x Jo(x) - Ji(x) x Jo(x) -.71(x) 

14.90 +0.006392 --0.206876 15.20 -0.054421 -4).195545 

41.91 14).004323 --0.206791 15.21 --0.056372 --0.194863 
14.92 +0.002256 -0.206685 15.22 --0.058317 --0.194162 
' 14.93 143.000190 --0.206559 15.23 -4).060256 --0.193442 
14.94 --0.001875 --0.206412 15.24 --0.062187 --0.192703 

14.95 --0.003939 --0.206245 15.25 --0.064110 --0.191945 

14.96 --0.006000 --0.206058 15.26 --0.066025 --0.191169 
14.97 -0.008060 --0.205850 15.27 --0.067933 --0.190374 
14.98 -0.010117 --0.205621 15.28 --0.069833 --0.189561 
14.99 --0.012172 --0.205373 15.29 --0.071724 --0.188729 

15.00 --0.014224 -0205104 15.30 --0.073608 --0.187879 

15.01 --0.016274 --0.204815 15.31 --0.075482 --0.187012 
15.02 --0.018321 --0.204506 15.32 -4).077348 -0.186126 
15.03 --0.020364 -0.204176 15.33 --0.079204 --0.185222 
15.04 --0.022404 -4).203827 15.34 --0.081052 --0.184300 

15,05 --0.024441 --0.203457 15.35 -4).082890 --0.183360 

15.06 -0.026473 -0.203068 15.36 --0.084719 --0.182403 
15.07 --0.028502 --0.202658 15.37 --0.086538 -0.181428 
15.08 --0.030526 --0.W32229 15.38 --0.088348 --0.180436 
15.09 --0.032546 --0.201779 15.39 --0.090147 --0.179427 

15.10 --0.034562 --0.201310 15.40 --0.091936 --0.178400 

15.11 --0.036573 --0.200821 15.41 --0.093715 --0.177357 
15.12 --0.038578 --0.200313 15.42 --0.095483 --0.176296 
15.13 --0.040579 --0.199785 15.43 --0.097241 -0.175218 
15.14 --0.042574 --0.199237 15.44 --0.098988 -4).174124 

15.15 --0.044563 -0.198670 15.45 -4).100723 -43.173013 

15.16 --0.046547 --0.198084 15.46 --0.102447 -0.171886 
15.17 --0.048525 --0.197478 15.47 --0.104161 --0.170742 
15.18 -0.050497 --0.196853 15.48 -0.105863 -0.169582 
15.19 --0.052462 -43.196209 15.49 --0.107553 --0.168405 

15.20 --0.054421 --0.195545 15.50 -0.109231 --0.167213 
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c. Table of Bessel functions, .12,(1) to .4(29): 

P Ji, (1) tip (2) JP (3) Ji, (4) fp (5) 

o +0.7652 +0.2239 -0.2601 -0.3971 -0.1776 
0.5 +0.6714 +0.5130 +0.06501 -0.3019 -0.3422 
1.0 +0.4401 +0.5767 +0.3391 -0.06604 -0.3276 
1.5 +0.2403 +0.4913 +0.4777 +0.1853 -0.1697 
2.0 +0.1149 +0.3528 +0.4861 +0.3641 +0.04657 
2.5 +0.04950 +0.2239 +0.4127 +0.4409 +0.2404 

3.0 +0.01956 +0.1289 +0.3091 +0.4302 +0.3648 
3.5 +0.027186 +0.06852 +0.2101 +0.3658 +0.4100 
4.0 +0.022477 +0.03400 +0.1320 +0.2811 +0.3912 
4.5 +0.03807 +0.01589 +0.07760 +0.1993 +0.3337 
5.0 +0.032498 +0.027040 +0.04303 +0.1321 +0.2611 
5.5 +0.014 +0.022973 +0.02266 +0.08261 +0.1906 

6.0 +0.042094 +0.021202 +0.01139 +0.04909 +0.1310 
6.5 +0.066 +0.03467 +0.025493 +0.02787 +0.08558 
7.0 +0.061502 +0.031749 +0.022547 +0.01518 +0.05338 
8 +0.079422 +0.042218 +0.034934 +0.024029 +0.01841 
9 +0.085249 +1).062492 +0.048440 +0.039386 +0.025520 

10 +0.0°2631 +0.062515 +0.041293 +0.031950 +0.021468 
11 +0.01°1198 +0.072304 +0.061794 +0.043660 +0.033509 
12 +0.0 125000 +0.081933 +0.062276 +0.066264 +0.0/628 
13 +0.0'31926 +0.0°1495 +0.072659 +0.069859 +0.041521 
14 +0.016689 +0.01°1073 +0.082880 +0.061436 +0.062801 

15 +0.0 1623 +0.0127183 +0.0°2908 +0.071948 +0.064797 
16 +0.0771 +0.0134506 +0.01°2749 +0.082472 +0.077675 
17 +0.0142659 +0.0 712444 +0.0°2947 +0.071153 
18 +0.0 16148 +0.0'22050 +0.07°3313 +0.031631 
19 +0.0778 +0.0131628 +0.0113525 +0.0°2183 

20 +0.01'1228 +0.0 123560 +0.01°2770 
21 +0.01688 +0.0133420 +0.0 113344 

, 22 +0.0176 , +0.013134 +0.0123848 
23 +0.016275 +0.0134231 
24 +0.0 1623 +0.01'4454 

25 +0.0'2 +0.016450 
26 +0.01644 
27 +0.0174 

285 
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P Jp (6) JP (7) JP (8) JP (9) JP (10) 

0 +0.1506 +0.3001 +0.1717 -0.09033 -0.2459 
0.5 -0.09102 +0.1981 +0.2791 +0.1096 -0.1373 
1.0 -0.2767 -0.024683 +0.2346 +0.2453 +0.04347 
1.5 -0.3279 --0.1991 +0.07593 +0.2545 +0.1980 
2.0 -0.2429 0.3014 -0.1130 +0.1448 +0.2546 

'2.5 0.07295 -0.2834 -0.2506 -0.02477 +0.1967 
3.0 +0.1148 -.0.1676 -0.2911 -0.1809 +0.05838 
3.5 +0.2671 -0.023403 -0.2326 -0.2683 -0.09965 
4.0 +0.3576 +0.1578 -0.1054 -0.2655 -0.2196 
4.5 +0.3846 +0.2800 +0.04712 -0.1839 -0.2664 

5.0 +0.3621 +0.3479 +0.1858 •-0.05504 .•-0.2341 
5.5 +0.3098 +0.3634 +0.2856 +0.08439 -0.1401 
6.0 +0.2458 +0.3392 +0.3376 +0.2043 -0.01446 
6.5 +0.1833 +0.2911 +0.3456 +0.2870 +0.1123 . 
7.0 +0.1296 +0.2236 +0.3206 +0.3275 +0.2167 

7.5 +0.08741 +0.1772 +0.2759 +0.3302 +0.2861 
8.0 +0.05653 +0.1280 +0.2235 +0.3051 +0.3179 

8.5 +0.03520 +0.08854 +0.1718 +0.2633 +0.3169 
9.0 +0.02117 +0.05892 +0.1263 +0.2149 +0.2919 
9.5 +0.01232 +0.03785 +0.08921 +0.1672 +0.2526 

10.0 +0.026964 +0.02354 +.06077 +0.1247 +0.2075 

10.5 +0.023827 +0.01421 +0,04005 +0.08959 +0.1630 

11.0 +0.022048 +0.028335 +0.02560 +0.06222 +0.1231 

11.5 +0.021069 +0.024763 +0.01590 +0.04188 +0.08976 
12.0 +0.035452 +0.022656 +0.029624 +0.02739 +0.06337 

12.5 +0.03272 +0.021446 +0.025680 +0.01744 +0.04344 

13.0 +0.031327 +0.037702 +0.023275 +0.01083 +0.02897 
13.5 +0.0463 +0.03402 +0.021846 +0.026568 +0.01884 

14.0 +0.042976 +0.032052 +0.021019 +0.023895 +0.01196 

15 +0.0%192 +0.045059 +0.032926 +0.021286 +0.024508 
16 +0.061202 +0.041161 +0.047801 +0.033993 +0.021567 

17 +0.062187 +0.062494 +0.041942 +0.031120 +0.035056 

18 +0.073746 +0.065037 +0.064538 +0.042988 +0.081524 

19 +0.086062 +0.079598 +0.069992 +0.067497 +0.044315 

20 +0.099296 +0.071731 +0.062081 +0.061777 +0.041151 
21 +0.091355 +0.082966 +0.074110 +0.063990 +0.062907 

22 +0.0'01882 +0.094839 +0.087725 +0.078515 +0.066969 

23 +0.0"2497 +0.0107535 +0.081385 +0.071732 +0.061590 
24 +0.0123168 +0.01°1122 +.092373 +0.083364 +0.073463 
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- P J1, (6) JP (7) JP (8) 
• 

.r, (9) JP (10) 

25 +0.0'33855 +0.0"1602 +0.01°3895 +0.0°6257 +0.087215 
26 +0.0'44415 +0.01°2195 +0.01'6135 +0.0°1116 +0.081441 
27 +0.016507 +0.0'32893 +0.0 129289 +0.01°1913 +0.082762 
28 +0.01655 +0.01°3673 +0.0 121354 +0.0"3154 +0.01°5094 
29 +0.0176 +0.016450 +0.0'31903 +0.0125014 +0.01'9050 

30 +0.0171 +0.01653 +0.0'42583 +0.0'1692 +0.0111551 
31 +0.0'76 +0.0'6339 +0.0131140 +0.0122568 
32 +0.0'71 +0.01643 +0.0"1636 +0.0'84112 
33 +0.0175 +0.0'6227 +0.01°6376 
34 +0.0 171 +0.01631 +0.018958 

35 +0.0'74 +0.0'6140 
36 +0.01620 
37 +0.0'73 

p ji, (11) .1", (12) Jp (13) Jp (14) J, (15) 

0 -0.1712 +0.04769 +0.2069 +0.1711 -0.01422 
0.5 -0.2406 -0.1236 +0.09298 +0.2112 +0.1340 
1.0 -0.1768 -0.2234 -0.07032 +0.1334 +0.2051 
1.5 -0.02293 -0.2047 -0.1937 -0.01407 +0.1654 
2.0 +0.1390 -0.08493 -0.2177 -0.1520 +0.04157 

2.5 +0.2343 +0.07242 +0.1377 -0.2143 -0.1009 
3.0 +0.2273 +0.1951 +0.0°3320 -0.1768 -0.1940 
3.5 +0.1294 +0.2348 +0.1407 -0.06245 -0.1991 
4.0 -0.01504 +0.1825 +0.2193 +0.07624 -0.1192 
4.5 -0.1519 +0.06457 +0.2134 +0.1830 +0 .027984 
5.0 -0.2383 -0.07347 +0.1316 +0.2204 +0.1305 
5.5 -0.2538 -0.1864 +0.087055 +0.1801 +0.2039 
6.0 -0.2016 -0.2437 -0.1180 +0.08117 +0.2061 
6.5 -0.1018 -0.2354 -0.2075 -0.04151 +0.1415 
7.0 +0.01838 -0.1703 -0.2406 -0.1508 +0.03446 
7.5 +0.1334 -0.06865 -0.2145 -0.2187 -0.08121 
8.0 +0.2250 +0.04510 -0.1410 -0.2320 -0.1740 
8.5 +0.2838 +0.1496 -0.04006 -0.1928 -0.2227 
9.0 +0.3089 +0.2304 +0.06698 -0.1143 -0.2200 
• 9.5 +0.3051 +0.2806 +0.1621 -0..01541 -0.1712 

10.0 +0.2804 +0.3005 +0.2338 +0.08501 +0.09007 
10.5 +0.2433 +0.2947 +0.2770 +0.1718 +0.05862 
11.0 +0.2010 +0.2704 +0.2927 +0.2357 +0.09995 
11.5 +0.1593 +0.2351 •+0.2854 +0.2732 +0.1794 
12.0 +0.1216 +0.1953 +0.2615 +0.2855 +0.2367 



288 APPLIED MATHEMATICS 

P J, (11) J, (12) J„ (13) Jp (14) Jp (15) 

12.5 +0.08978 +0.1559 +0.2279 +0.2770 +0.2692 

13.0 +0.06429 +0.1201 +0.1901 +0.2536 +0.2787 

13.5 +0.04477 +0.08970 +0.1528 +0.2214 +0.2693 

14.0 +0.03037 +0.06504 +0.1188 +0.1855 +0.2464 

14.5 +0.02011 +0.04591 +0.08953 +0.1500 +0.2155 

15.0 +0.01301 +0.03161 +0.06564 +0.1174 +0.1813 

15.5 +0.028237 +0.02126 +0.04691 +0.08931 +0.1474 

16.0 +0.025110 +0.01399 +0.03272 +0.06613 +0.1162 

16.5 +0.023108 +0.029017 +0.02232 +0.04777 +0.08905 

17.0 +0.021856 +0.025698 +0.01491 +0.03372 +0.06653 

17.5 +0.021086 +0.023532 +0.029760 +0.02330 +0.04853 

18.0 +0.036280 +0.022152 +0.026269 +0.01577 +0.03463 

18.5 +0.03366 +0.021288 +0.023955 +0.01047 +0.02419 

19.0 +0.031990 +0.0/590 +0.022452 +0.026824 +0.01657 

20 +0.045931 +0.032512 +0.038971 +0.022753 +0.027360 

21 +0.041670 +0.01839 +0.033087 +0.021041 +0.023054 

22 +0.064458 +0.042315 +0.031004 +0.033711 +0.021190 

23 +0.051132 +0.066491 +0.043092 +0.031251 +0.034379 

24 +0.062738 +0.051733 +0.069060 +0.044006 +0.04527 

25 +0.076333 +0.064418 +0.062532 +0.041221 +0.045060 

26 +0.071403 +0.061078 +0.066761 +0.063555 +0.041599 

27 +0.082981 +0.072521 +0.061730 +0.069902 +0.04829 

28 +0.046092 +0.085665 +0.074249 +0.062645 +0.061398 

29 +0.091198 +0.081225 +0.04004 +0.076790 +0.063883 

30 +0.0102274 +0.092552 +0.082283 +0.071678 +0.061037 

31 +0.0'4165 +0.0105133 +0.095009 +0.083995 +0.072670 

32 +0.0127375 +0.01'9976 +0.091062 +0.099187 +0.086632 

33 +0.0121264 +0.0"1876 +0.01°2176 +0.092042 +0.081591 

34 +0.0132100 +0.0123417 +0.0114320 +0.01°4392 +0.093693 

35 +0 .0143383 +0.0 136035 +0.0 128310 +0.0119155 +0.0"8301 

36 +0.012529 +0.0'31035 +0.0121551 +0.0"1851 +0.010/809 

37 +0.0 1680 +0.0 141723 +0.0132812 +0.0'23632 +0.0113827 

38 +0.01612 +0.0'6279 +0.0144956 +0.0136928 +0.0127863 

39 +0.0"2 +0.01644 +0.016850 +0.0131285 +0.0 121571 

40 +0.011 +0.016142 +0.0 142320 +0.0133054 

41 +0.0171 +0.0 1623 +0.016408 +0.0145781 

42 +0.0174 +0.01670 +0.0141067 

43 +0.0171 +0.01612 +0.0'6192 

44 +Q.0172 +0.0 1634 

45 +0.0176 

46 +0.0171 
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p Jp (16) Jp (17) Jp (18) Jp (19) jp (20) 

0 --0.1749 --0.1699 --0.01336 +0.1466 140.1670 
0.5 --0.05743 --0.1860 --0.1412 14).02744 1-0.1629 
1.0 14).09040 --0.09767 --0.1880 --0.1057 +0.06683 
1.5 1-0.1874 +0.04231 --0.1320 --0.1795 -0.06466 
2.0 +0.1862 -FO.1584 -0.027533 --0.1578 --0.1603 

2.5 1-0.09257 143.1935 A-0.1192 --0.05578 --0.1726 
3.0 -4).04385 -FO.1349 +0.1863 14).07249 --0.09890 
3.5 -4).1585 143.01461 +0.1651 1411649 +0.02152 

4.0 --0.2026 --0.1107 14106964 14).1806 +0.1307 

4.5 --0.1619 --0.1875 --0.05501 +0.1165 A-0.1801 

5.0 --0.05747 --0.1870 --0.1554 140.023572 -F0.1512 
5.5 +0.06743 --0.1139 -4).1926 --0.1097 1-0.05953 
6.0 140.1667 A-0.027153 --0.1560 --0.1788 --0.05509 
6.5 14).2083 +0.1138 --0.06273 --0.1800 --0.1474 
7.0 1-0.1825 +0.1875 1-0.05140 --0.1165 --0.1842 

7.5 +0.1018 14).2009 14).1473 --0.01350 --0.1553 
8.0 --0.027021 14).1537 -FO.1959 14109294 --0.07387 
8.5 --0.1128 14).06346 1-0.1855 1-0.1694 143.03088 
9.0 --0.1895 --0.04286 -0.1228 +0.1947 1-0.1251 
9.5 --0.2217 --0.1374 140.02786 +0.1650 1-0.1816 

10.0 --0.2062 --0.1991 -4).07317 1-0.09155 1-0.1865 
10.5 --0.1504 --0.2171 --0.1561 -0.024326 140.1416 
11.0 --0.06822 --0.1914 --0.2041 --0.09837 +0.06136 
11.5 14).02427 --0.1307 --0.2100 --0.1698 --0.03288 
12.0 +0.1124 --0.04857 --0.1762 --0.2055 --0.1190 

12.5 1-0.1853 1-0.04024 --0.1122 --0.2012 --0.1794 
13.0 140.2368 14).1228 --0.03092 --0.1612 --0.2041 
13.5 143.2653 +0.1899 14105414 --0.09497 -0.1914 
14.0 +0.2724 +0.2364 14).1316 --0.01507 -0.1464 
14.5 A-0.2623 1-0.2613 140.1934 143.06627 --0.07897 

15.0 140.2399 140.2666 14).2356 140.1389 -0.038121 
15.5 +0.2102 143.2559 +0.2575 1-0.1961 +0.07689 
16.0 143.1775 140.2340 +0.2611 140.2345 14).1452 
16.5 1411450 +0.2054 +0.2500 140.2537 14).1982 
17.0 +0.1150 A-0.1739 1412286 14).2559 +0.2331 

17.5 +0.08876 +0.1427 1-0.2009 14).2445 +0.2501 
18.0 +0.06685 14).1138 14).1706 140.2235 1-0.2511 
18.5 +0.04920 14).08844 143.1406 140.1968 14).2395 
19.0 1-0.03544 140.06710 +0.1127 14).1676 143.2189 
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P J, (16) 4 (17) J, (18) J, (19) erp (20) 

20 +0.01733 +0.03619 +0.06731 +0.1116 +0.1647 
21 +0.027879 +0.01804 +0.03686 +0.06746 +0.1106 
22 +0.023354 +0.028380 +0.01871 +0.03748 +0.06758 
23 +0.021343 +0.023651 +0.028864 +0.01934 +0.03805 
24 +0.035087 +0.021500 +0.023946 +0.029331 +0.01993 

25 +0.031828 +0.035831 +0.021658 +0.024237 +0.029781 
26 +0.046253 +0.032154 +0.036607 +0.031819 +0.024524 
27 +0.0%042 +0.01586 +0.032504 +0.04412 +0.021981 
28 +0.026380 +0.042553 +0.09057 +0.032877 +0.038242 
29 +0.051912 +0.068228 +0.03133 +0.081066 +0.033270 

30 +0.065505 +0.062546 +0.041039 +0.043785 +0.031240 
31 +0.061525 +0.067577 +0.023313 +0.041289 +0.044508 
32 +0.074078 +0.062172 +0.061016 +0.064223 +0.01574 
33 +0.071052 +0.076009 +0.063005 +0.021333 +0.065289 
34 +0.082625 +0.071606 +0.078583 +0.064057 +0.021713 

35 +0.096339 +0.084153 +0.072370 +0.061193 +0.065358 
36 +0.091484 +0.081040 +0.086335 +0.073396 +0.061620 
37 +0.01°3368 +0.0°2526 +0.081641 +0.0%362 +0.04742 
38 +0.0117426 +0.01°5956 +0.0°4126 +0.082503 +0.071345 
39 +0.0111591 +0.01°1364 +0.0°1007 +0.0°6496 +0.083704 

40 +0.0123317 +0.0113039 +0.01°2391 +0.0°1638 +0.099902 
41 +0.0136733 +0.0126590 +0.0 115520 +0.01°4018 +0.092574 
42 +0.0131331 +0.0121392 +0.0111241 +0.0 119594 +0.01°6510 
43 +0.0'42567 +0.0132865 +0.0122719 +0.0112231 +0.01°1604 
44 +0.016483 +0.0145752 +0.0135810 +0.0125059 +0.0113849 

45 +0.01689 +0.0"1127 +0.0131211 +0.0121119 +0.0129011 
46 +0.01616 +0.016216 +0.0142466 +0.0132416 +0.0122059 
47 +0.0'73 +0.01640 +0.016490 +0.0'45096 +0.0134594 
48 +0.0177 +0.01695 +0.0141051 +0.0131002 
49 +0.0171 +0.01618 +0.016212 +0.0"2135 

50 +0.0173 +0.01642 +0.016445 
51 +0.0178 +0.01691 
52 +0.0172 +0.01618 
53 +0.0174 
54 +0.0171 
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P J„ (21) Jp (22) J„ (23) Jp (24) 

0 140.03658 --0.1207 --0.1624 --0.05623 

0.5 +0.1457 --0.021506 --0.1408 --0.1475 

1.0 +0.1711 +0.1172 --0.03952 --0.1540 

1.5 -FO.1023 +0.1700 14).08253 --0.07523 

2.0 -40.02028 14).1313 +0.1590 44).04339 

2.5 -4).1311 140.02469 +0.1516 +0.1381 

3.0 --0.1750 --0.09330 1-0.06717 AD.1613 

3.5 --0.1335 --0.1644 --0.04958 A-0.1040 

4.0 --0.02971 --0.1568 --0.1415 --0.023076 
4.5 140.08656 --0.07701 --0.1666 --0.1078 
5.0 14).1637 +0.03630 --0.1164 --0.1623 

5.5 140.1706 44).1329 --0.01563 --0.1444 

6.0 14).1076 4-0.1733 14).09086 -.0.06455 

6.5 140.022808 +0.1435 -F0.1592 +0.04157 

7.0 --0.1022 -F0.05820 +0.1638 +0.1300 
8 --0.1757 --0.1362 +0.028829 -FO.1404 

9 --0.3175 --0.1573 --0.1576 -4).03643 

10 14).1485 14).027547 --0.1322 --0.1677 
11 140.1732 +0.1641 +0.04268 -4).1033 

12 14).03293 14).1566 -FO.1730 14).07299 
13 --0.1356 14).026688 +0.1379 -F0.1763 
14 --0.2008 -411487 --0.01718 +0.1180 

15 --0.1321 --0.1959 --0.1588 --0.03863 
16 14).01202 --0.1185 --0.1899 --0.1663 
17 140.1505 +0.02358 --0.1055 --0.1831 
18 140.2316 4).1549 +0.03402 --0.09311 
19 +0.2465 14).2299 A-0.1587 +0.04345 

20 A-0.2145 A-0.2422 14).2282 140.1619 
21 +0.1621 +0.2105 1-0.23i1 140.2264 
22 -P0.1097 +0.1596 +0.2067 A-0.2343 
23 +0.06767 +0.1087 1-0.1573 +0.2031 
24 44).03857 +0.06773 4-0.1078 +0.1550 

25 -F0.02049 1-0.03905 44).06777 A4).1070 

26 140.01022 140.02102 4D.03949 A4).06778 
27 1-0.024806 +0.01064 +0.02152 1-0.03990 
28 +0.022143 +0.025084 44).01104 140.02200 

29 +0.029094 +0.022307 1-0.025357 14).01143 

30 +0.023682 +0.029965 +0.0D2470 +0.025626 
31 +0.021427 44).024113 44).021085 +0.022633 
32 +0.045304 +0.021626 +0.024561 A40.021176 
33 4-0.041895 140.046171 -F0.021837 +0.025024 
34 +0.026521 440.042253 440.047110 +0.022060 
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P fp (21) Jp (22) 
.., 

..Tp (23) JP (24) 

35 +0.052164 +0.057927 +0.042649 +0.048119 
36 +0.026941 +0.052692 +0.059516 +0.03083 - 
37 +0.082153 +0.0°8839 +0.053302 +0.041130 
38 +0.076471 +0.042890 +0.051108 +0.054000 
39 +0.071886 +0.078652 +0.043603 +0.051371 

40 +0.085336 +0.072586 +0.0°1136 +0.044553 
41 +0.081467 +0.087506 +0.073476 +0.0°1467 
42 +0.023922 +0.082118 +0.071034 +0.074590 
43 +0.021021 +0.025816 +0.082989 +0.071396 
44 +0.01°2589 +0.021555 +0.028417 +0.084133 

45 +0.0116402 +0.01°4054 +0.022309 +0.081191 
46 +0.0 111544 +0.01°1031 +0.01°6175 +0.023347 
47 +0.0123637 +0.0112557 +0.0 121611 +0.01°9172 
48 +0.0128368 +0.0126196 +0.0114105 +0.01°2453 
49 +0.0181882 +0.0121467 +0.0"1022 +0.0"6409 

50 +0.0 144139 +0.0"3397 +0.0122486 +0.0111636 
51 +0.015891 +0.0 147696 +0.0 185917 +0.0124085 
52 +0.015188 +0.0141706 +0.0"1378 +0.0189976 
53 +0 .01639 +0.015370 +0.0'43142 +0.0 132385 
54 +0.0'78 +0.01°79 +0.015702 +0.0145585 

55 +0.0172 +0.01°16 +0.0'5154 +0.0"1281 
56 +0.0'73 +0.01°34 +0.015288 
57 +0.0"1 +0.0'77 +0.01°64 
58 +0.0171 +0.01°14 
59 +0.0'73 
60 . +0.0171 

P 4 (25) Ji, (26) .4 (27) tip (28) ' 4 (29) 

C
O
 

G
A
 

+0.0963 +0.1560 +0.0727 -0.0732 -0.1478 
-0.1254 +0.0150 +0.1366 +0.1306 +0.0069 
-0.1063 -0.1548 -0.0626 +0.0825 +0.1483 
+0.1083 -0.0389 -0.1459 -0.1188 +0.0135 
+0.1323 +0.1459 +0.0302 -0.1079 -0.1455 

-0.0660 +0.0838 +0.1548 +0.0879 -0.0537 
-0.1587 -0.1137 +0.0271 +0.1393 +0.1270 
-0.0102 -0.1362 -0.1428 -0.0282 +0.1062 
+0.1530 +0.0403 -0.1012 -0.1534 -0.0757 
+0.1081 +0.1610 +0.0828 -0.0595 -0.1480 
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p ' J, (25) Jp (26) Jp (27) J, (28) Jp (29) 

10 -0.0752 +0.0712 +0.1564 +0.1152 -0.0161 

11 -0.1682 -0.1063 +0.0330 +0.1418 +0.1369 

12 -0.0729 -0.1611 -0.1295 -0.0038 +0.1200 

13 +0.0983 -0.0424 -0.1481 -0.1450 -0.0376 

14 +0.1751 +0.1187 -0.0131 -0.1309 -0.1537 

15 +0.0978 +0.1702 +0.1345 +0.0142 -0.1108 

16 -0.0577 +0.0777 +0.1625 +0.1461 +0.0391 

17 -0.1717 -0.0745 +0.0582 +0.1527 +0.1539 

18 -0.1758 -0.1752 -0.0893 +0.0394 +0.1414 

.19 -0.0814 -0.1681 -0.1772 -0.1021 +0.0216 

20 +0.0520 -0.0704 -0.1601 -0.1779 -0.1131 

21 +0.1646 +0.0597 -0.0600 -0.1521 -0.1776 

22 +0.2246 +0.1669 +0.0668 -0.0502 -0.1441 

23 +0.2306 +0.2227 +0.1688 +0.0732 -0.0410 

24 +0.1998 +0.2271 +0.2209 +0.1704 +0.0790 

25 +0.1529 +0.1966 +0.2238 +0.2190 +0.1718 

26 +0.1061 +0.1510 +0.1936 +0.2207 +0.2172 

27 +0.06778 +0.1053 +0.1491 +0.1908 +0.2176 

28 +0.04028 +0.06776 +0.1045 +0.1473 +0.1881 

29 +0.02245 +0.04063 +0.06773 +0.1038 +0.1456 

30 +0.01181 +0.02288 +0.04096 +0.06769 +0.1030 

31 +0.025889 +0.01217 +0.02329 +0.04126 +0.06763 

32 +0.022795 +0.026147 +0.01253 +0.02368 +0.04155 

33 +0.021267 +0.022957 +0.026400 +0.01287 +0.02405 

34 +0.03550 +0.021360 +0.023118 +0.026648 +0.01320 

35 +0.03229 +0.03599 +0.021453 +0.023278 +0.026891 

36 +0.0492 +0.032M +0.03650 +0.021548 +0.023437 

37 +0.0436 +0.08103 +0.03279 +0.08701 +0.021642 

\ 38 +0.0413 +0.0441 +0.03116 +0.03306 +0.03754 

39 +0.055 +0.0415 +0.0446 +0.03128 +0.03333 

40 +0.052 +0.056 +0.0418 +0.0452 +0.03142 

41 +0.051 +0.052 +0.057 +0.0420 +0.0458 

42 +0.051 +0.052 +0.058 +0.0423 

43 +0.051 +0.053 +0.069 

44 +0.051 +0.053 
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b. Sine and cosine integral tables: 

.r Si(z) Ci(x) MW Ei(-x) 

0.00 +0.000000 - co - co - cc, 

0.01 +0.010000 -4.0280 -4.0179 -4.0379 

0.02 •+0.019999 -3.3349 -3.3147 -3.3547 

0.03 +0.029998 -2.9296 -2.8991 -2.9591 

0.04 +0.039996 -2.6421 -2.6013 -2.6813 

0.05 +0.04999 -2.4191 -S.3679 -2.4679 

0.06 +0.05999 -2.2371 -2.1753 -2.2953 

0.07 +0.06998 -2.0833 -2.0108 -2.1508 

0.08 +0.07997 -1.9501 -1.8669 -2.0269 

0.09 +0.08996 -1.8328 -1.7387 -1.9187 

0.10 +0.09994 -1.7279 -1.6228 -1.8229 

0.11 +0. 10993 -1.6331 -1.5170 -1.7371 

0.12 +0.11990 -1.5466 -1.4193 -1.6595 

0.13 +0. 12988 -1.4672 -1.3287 -1.5889 

0.14 +0. 13985 -1.3938 -1.2438 -1.5241 

0.16 +0.14981 -1.3255 -1.1641 -1.4645 

0.16 +0.15977 -1.2618 -1.0887 -1.4092 

0.17 +0.16973 -1.2020 -1.0172 -1.3578 

0.18 +0.1797 -1.1457 -0.9491 -1.3098 

0.19 +0.1896 -1.0925 -0.8841 -1.2649 

0.20 +0.1996 -1.0422 -0.8218 -1.2227 

0.21 +0.2095 -0.9944 -0.7619 -1.1829 

0.22 +0.2194 -0.9490 -0.7042 -1.1454 

0.23 +0.2293 -0.9057 -0.6485 -1.1099 

0.24 +0.2392 -0.8643 -0.5947 -1.0762 

0.25 +0.2491 -0.8247 -0.5425 -1.0443 

0.26 +0.2590 -0.7867 -0.4919 -1.0139 

0.27 +0.2689 -0.7503 -0.4427 -0.9849 

0.28 +0.2788 -0.7153 -0.3949 -0.9573 

0.29 +0.2886 -0.6816 -0.3482 -0.9309 

0.30 +0.2985 -0.6492 -0.3027 -0.9057 

0.31 +0.3083 -0.6179 -0.2582 -0.8815 

0.32 +0.3182 -0.5877 -0.2147 -0.8583 

0.33 +0.3280 -0.5585 -0.17210 -0.8361 

0.34 +0.3378 -0.5304 -0.13036 -0.8147 

0.35 +0.3476 -0.5031 -0.08943 -0.7942 

0.36 +0.3574 -0.4787 -0.04926 • -0.7745 

0.37 +0.3672 -0.4511 -0.00979 -0.7554 

0.38 +0.3770 -0.4263 +0.02901 -0.7371 

0.39 +0.3867 -0.4022 +0.06718 -0.7194 

0.40 +0.3965 -0.3788 +0.10477 -0.7024 

0.41 +0.4062 -0.3561 +0. 14179 -0.6859 

0.42 +0.4159 -0.3341 +0. 17828 -0.6700 

0.43 +0.4256 -0.3126 +0.2143 -0.6546 

0.44 +0.4353 -0.2918 +0.2498 -0.6397 

0.45 +0.4450 -0.2715 +0.2849 -0.6253 

0.46 +0.4548 -0.2517 +0.3195 -0.6114 

0.47 +0.4643 -0.2325 +0.3537 -0.5979 

0.48 - +0.4739 -0.2138 +0.3878 -0.5848 

0.49 +0.4835 -0.1956 +0.4211 -0.5721 
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x Si(x) Ci (x) E(x) Ei( -x) 

0.50 +0.4931 -0.17778 +0.4542 -0.5598 
0.51 +0.5027 -0.16045 +0.4870 -0.5478 
0.52 +0.5123 -0.14355 +0.5195 -0.5362 
0.53 +0.5218 -0.12707 +0.5517 -0.5250 
0.54 +0.5313 -0.11099 +0.5838 -0.5140 

0.55 +0.5408 -0.09530 4 0.8153 -0.5034 
0.56 +0.5503 -0.07999 +0.6467 -0.4930 
0.57 +0.5598 -0.06504 +0.6778 -0.4830 
0.58 +0.5693 -0.05044 +0.7087 -0.4732 
0.59 +0.5787 -0.03619 +0.7394 -0.4636 

0.60 +0.5881 -0.02227 +0.7699 -0.4544 
0.61 +0.5975 -0.028675 +0.8002 - 0.4454 
0.62 +0.6069 +0.024606 +0.8302 -0.4366 
0.63 +0.6163 . +0.01758 +0.8601 -0.4280 
0.64 +0.6256 +0.63026 +0.8898 -0.4197 

0.65 +0.6349 +0.04265 +0.9194 -0.4115 
0.66 +0.6442 +0.05476 +0.9488 -0.4038 
0.67 +0.8535 +0.06659 +0.9780 -0.3959 
0.68 +0.6628 +0.07816 +1.0071 -0.3883 
0.69 +0.6720 +0.08946 +1.0361 -0.3810 

0.70 +0.6812 +0.10051 +1.0649 -0.3738 
0.71 +0.6904 +0.11132 +1.0936 -0.3668 
0.72 +0.6996 +0.12188 +1.1222 - 0.3599 
0.73 +0.7087 +0. 13220 +1.1507 -0.3532 
0.74 +0.7179 +0.14230 +1.1791 - 0.3467 

0.75 +0.7270 +0.15216 +1.2073 -0.3403 
0.76 +0.7360 +0.16181 +1.2355 -0.3341 
0.77 +0.7451 +0.17124 +1.2636 -0.3280 
0.78 +0.7541 +0.1805 +1.2916 -0.3221 
0.79 +0.7631 +0.1895 +1.3195 -0.3163 

0.80 +0.7721 +0.1983 +1.3474 -0.3106 
0.81 +0.7811 +0.2069 +1.3752 -0.8050 
0.82 +0.7900 +0.2153 +1.4029 -0.2996 
0.83 +0.7989 +0.2235 +1.4306 -0.2943 
0.84 +0.8078 +0.2318 +1.4582 -0.2891 

0.85 +0.8166 +0.2394 +1.4857 - 0.2840 
0.86 +0.8254 +0.2471 +1.5132 -0.2790 
0.87 +0.8342 +0.2546 +1.5407 - -0.2742 
0.88 +0.8430 +0.2619 +1.5681 - 0.2694 
0.89 +0.8518 +0.2691 +1.5955 -0.2647 

0.90 +0.8605 +0.2761 +1.6228 -0.2602 
0.91 +0.8692 +0.2829 +1.6501 -0.2557 
0.92 ' +0.8778 +0.2896 +1.6774 -0.2513 
0.93 +0.8865 • +0.2961 +1.7047 -0.2470 
0.94 +0.8951 +0.3024 +1.7319 -0.2429 

0.95 +0.9036 +0.3086 +1.7591 -0.2387 
0.96 +0.9122 +0.3147 +1.7864 -0.2347 
0.97 +0.9207 +0.3206 +1.8136 -0.2308 
0.98 +0.9292 +0.3263 +1.8407 -0.2269 
0.99 +0.9377 +0.3319 +1.8679 -0.2231 
1.00 +0.9461 +0.3374 +1.8951 -0.2194 
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x Si(x) Ci(x) ri(x) Ei(- x) 

1.0 +0.9461 +0.3374 +1.8951 -0.2194 

1.1 +1.0287 +0.3849 +2.1674 -0.1880 

1.2 +1.1080 +0.4205 +2.4421 -0.1584 

1.3 +1.1840 +0.4457 +2.7214 -0.1355 

1.4 +1.2562 +0.4620 +3.0072 -0.1162 

1.5 +1.3247 +0.4704 +3.3013 -0.1000 

1.6 +1.3892 +0.4717 +3.6053 -0.08631 

1.7 +1.4496 +0.4670 +3.9210 -0.07465 

1.8 +1.5058 +0.4568 +4.2499 -0.06471 

1.9 +1.5578 +0.4419 +4.5937 -0.05620 

2.0 +1.6054 +0.4230 +4.9542 -0.04890 

2.1 +1.6487 +0.4005 +5.3332 -0.04261 

2.2 +1.6876 +0.3751 +5.7326 -0.03719 

2.3 +1.7222 +0.3472 +6.1544 -0.03250 

2.4 +1.7525 +0.3173 +6.6007 -0.02844 

2.5 +1.7785 +0.2859 +7.0738 -0.02491 

2.6 +1.8004 +0.2533 +7.5761 -0.02185 

2.7 +1.8182 +0.2201 +8.1103 -0.01918 

2.8 +1.8321 +0.1865 . +8.6793 -0.01686 

2.9 +1.8422 +0.1529 +9.2860 -0.01482 

3.0 +1.8487 +0.1196 +9.9338 -0.01304 

3.1 +1.8517 +0.08699 +10.6263 -0.01149 

3.2 +1.8514 +0.05526 +11.3873 -0.01013 

3.3 +1.8481 +0.02468 +12.1610 -0.028939 

3.4 +1.8419 -0.004518 +13.0121 -0.027890 

3.5 +1.8331 -0.03213 +13.9254 -0.026970 

3.6 +1.8219 -0.05797 +14.9063 -0.026160 

3.7 +1.8086 -0.08190 +15.9606 -0.025448 

3.8 +1.7934 -0.1038 +17.0948 -0.024820 

3.9 +1.7765 -0.1235 +18.3157 -0.024267 

4.0 +1.7582 -0.1410 +19.6309 -0.023779 

4.1 +1.7387 -0.1562 +21.0485 -0.023349 

4.2 +1.7184 -0.1690 +22.5774 -0.022969 

4.3 +1.6973 -0.1795 +24.2274 -0.022633 

4.4 +1.6758 -0.1877 +26.0090 -0.022336 

4.5 +1.6541 -0.1935 +27.9337 -0.022073 

4.6 +1.6325 -0.1970 +30.0141 -0.021841 

4.7 +1.8110 -0.1984 +32.2639 -0.021635 

4.8 +1.5900 -0.1976 +34.6979 -0.021453 

4.9 +1.5696 -0.1948 +37.3325 -0.021291 

5.0 +1.5499 -0.1900 +40.1853 -0.021148 

8 +1.4247 -0.06806 +85.9898 -0.023601 

7 +1.4546 +0.07670 +191.505 -0.021155 

8 +1.5742 +0.1224 +440.380 -0.043767 

9 +1.6650 +0.05535 +1037.88 -0.041245 

10 +1.6583 -0.04546 +2492.23 -0.054157 

11 +1.5783 -0.08956 +6071.41 -0.051400 

12 +1.5050 -0.04978 +14959.5 -0.054751 

13 +1.4994 +0.02676 +37197.7 -0.051622 

14 +1.5562 +0.06940 +93192.5 -0.0,5566 --

15 +1.8182 +0.04628 +23495.6 -0.0,1918 
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x Si(x) Ci(x) x Si(x) Ci(x) 

20 +1.5482 +0.04442 140 +1.5722 +0.007011 
25 +1.5315 -0.00685 150 +1.5862 -0.004800 
30 +1.5668 -0.03303 160 +1.5769 +0.001409 
35 +1.5969 -0.01148 170 +1.5653 +0.002010 
40 +1.5870 +0.01902 180 +1.5741 -0.004432 

45 +1.5587 +0.01863 190 +1.5704 +0.005250 
50 +1.5516 -0.00563 200 +1.5684 -0.004378 
55 +1.5707 -0.01817 300 +1.5709 -0.003332 
60 +1.5867 -0.00481 400 +1.5721 -0.002124 
65 +1.5775 +0.01285 500 +1.5726 -0.0009320 

70 +1.5616 +0.01092 600 +1.5725 +0.0000764 
75 +1.5586 -0.00533 700 +1.5720 +0.0007788 
80 +1.5723 -0.01240 800 +1.5714 +0.001118 
85 +1.5824 -0.001935 900 +1.5707 +0.001109 
90 +1.5757 +0.009986 108 +1.5702 +0.000826 

95 +1.5630 +0.007110 104 +1.5709 -0.0000306 
100 +1.5822 -0.005149 108 +1.5708 +0.0000004 
110 +1.5799 -0.000320 108 +1.5708 -0.0000004 
120 +1.5640 +0.004781 107 +1.5708 +0.0 
130 +1.5737 -0.007132 oo X *8" 0.0 

X 

ir 

Max. 
Min. (Ci x) . 

Max. 
Min. (Si x) 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
8.5 
9.5 
10.5 
11.5 
12.5 
13.5 
174.5 
15.5 

1-0.472 00 1 
-0.198 41 2 
1-0.123 77 3 
--0.089 564 4 
1-0.070 065 5 
-0.057 501 6 
1-0.048 742 7 
-0.042 292 8 
1-0.037 345 9 
--0.033 433 10 
+0.030 260 11 
--0.027 637 12 
A-0.025 432 13 
--0.023 552 14 
1-0.021 931 15 
--0.020 519 

+0.281 14 
--0.152 64 
1-0.103 96 
-0.078 635 
+0.063 168 
--0.052 762 
+0.045 289 
--0.039 665 
+0.035 280 
--0.031 767 
+0.028 889 
--0.026 489 
+0.024 456 
--0.022 713 
+0.021 201 
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12. FACTORIALS OF NUMBERS FROM 1 TO 20 AND THEIR 
RECIPROCALS 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

n! or 

1 
2 
6 
2.4 
1.2 

10 
102 

7.2 102 
5.04 102 
4.032 106 
3.6288 109 
3.6288 106 

3.9916 8 107 
4.7900 16 106 
6.2270 208 109 
8.7178 2912 101° 
1.3076 7437 1012 

2.0922 7899 10" 
3.5568 7428 10" 
6.4023 7371 10" 
1.2164 5100 10" 
2.4329 0201 10" 

1 1 
or Ft 

1. 
5. 10-1 

1.6666 6667 10-1 
4.1666 6667 10-2 
8.3333 3333 10-2 

1.3888 SS&D. 10-6 
1.9841 2698 10-6 
2.4857 0718 10-9 
2.7557 3192 10-6 
2.7557 3192 10-7 

2.5052 1084 10-6 
2.0876 7570 10-9 
1.6059 0438 10-1° 
1.1470 7456 10-11 
7.6471 6373 10-12 

4.7794 7733 10-" 
2.8114 5725 10-16 
1.5619 2069 10-16 
8.2206 3525 10-16 
4.1103 1761 10-19 

13. USEFUL CONSTANTS 

(1) e = 2.71828183 
1 

(2) - = 0.36787944 
e 

(3) h)ge= 0.43429448 
(4) logloge = 9.63778431 - 10 
(5) ir= 3.14159265 

1 
(6) - = 0.31830989 

(7) e2 -= 9.86960440 
(8) NAT- = 1.77245385 
(9) log ir = 0.49714987 

(10) lnir = 1.14472989 
(11) log2 = 0.30103032 
(12) log3 = 0.47712125 
(13) 1112 = 0.69314718 
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(14) In 3 = 1.09861229 
(15) In 10 = 2.30258509 
(16) • = 0.57721566 

= Euler's constant 
Ndb decibels 

(17) - - 8.68588964 
nepers 

a nepers 
(18) - 0.11512925 

Nab decibels 
180 

(19) 1 radian = — = 57°17'44.8" 

57?295'77951 

(20) 1° = ir = 0.01745329 radians 
180 

(21) = 1.41421356 
(22) 1/U = 1.73205081 

14. ALGEBRAIC FORMULAS 

a. Miscellaneous Formulas: 
(1)a+b=b+a 
(2) (a + b) -F c = a c) 
(3) a + c = b + d, if a = b and c = d 
(4) ab = Sa 
(5) (ab)c = a(bc) 
(6) a(b + c) = ab + ac 
(7) ac = bd, if a = b and c = d 
(8) a + (-b) = a - b 
(9) a - (-b) = a -F b 

(10) 0 • a -= 

0 
(11) a- = 

(12) co • a = co 
aco 

(13) __ 

(14) 0 • co = indeterminate 

(15) t(!ii = indeterminate 

(16) = indeterminate co 

(17) a( -b) = -ab 

(18) (- a)(--b) = ab 
(19) -(a - b c) = -a -I- b - c 

(20) ( -46 •Ice• 

-a a a 
.(21) = -b = 

(22) (1 + 1, _a-Fb 
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a  (23) b a b - - - = 
c c 

(24) ab = ad  
bd 

(25) (feb)(â) = 

a 

(26) ((i)(c ad c.!) 

(27) (am)(a") = 
(28) (a"')" = am. 
(29) (abc)". = amb".cm 

(30) (16)'  

_ 
(31) -i- = a'^ ^ = 

(32) a° = 1 
tn 

(33) a = •V7c. 

(34) c‘-'" = 

a"-m 

(35) (a + b)(a b) = a2 2ab 1,2 
(36) (a b)(a - b) = a2 - 
(37) (a - b)(a - b) = a2 - 2ab b2 
(38) (a b) (e - d) = ac be - ad - bd 
(39) Factorial number n! = 1 • 2 • 3 • 

b. Simultaneous equations: 
1. The solution of the two simultaneous equations 

by determinants is 

aix bly =cl 
asx ± b2y= c2 

e, ill 

C2 b2 
ai bl 
a2 1)2 

CI 

1:2 C2 

a z bz 
az bz 

2. The solution of three simultaneous equations 

(n - 1)n 

eta ± be + ciz = dl 
a2x + be + c2z= (12 
a3x be c3z = d3 
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by determinants is 

X = 

Y = 

c. Quadratic equations: 
For the quadratic equation 

-Fbx + c = 
the solution by the quadratic formula is 

-b ± -Vb2 - 4ac x - 
2a 

If the discriminant b2 - 4ac is positive, zero, or negative, the roots are 
accordingly real and unequal, real and equal, or unequal and complex 
numbers. 

d. Binomial theorem (n being a positive integer): 

(a + b) n = an + na"-lb 

+ n(n 1) a,.-2b2 ± n(n - 1)(n - 2) a"-3bs ± • • • 
12 13 

d1 b1 e1 
d2 its c2 
d3 b, C3 

al b1 Ci 

a2 b2 c2 

a3 b3 

a, di. ci 
2 C12 C2 

3 d3 C3  

al bi 
a2 b3 C2 

b3 Ca 

al bp dl 
a2 b3 (12 
a3 b3 d3  
at b1 Ci 

a3 b,, C2 
3 14 C3 

e. Trapezoidal rule: 

where A -= area 
= width of strips 

yk = height of kth strip 
n = number of strips 

f. Simpson's rule: 

k =n-1 

A = [h(y. yn) Yk] 
k =1 

k=- k=--1 
2 2 

A = [(y. + y.) + 4 / y(2k-i) -I- 2 / 112k]k = 1 k-1 

where the letters have the same meaning as given above in the trapezoidal 
rule. 
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15. LOGARITHMIC FORMULAS 

(1) In = natural logarithm to base E 
(2) log = common logarithm to base 10 
(3) log 1 = 0 ln 1 = 0 
(4) log 10 = 1 in E = 1 
(5) log ab = log a -I- log b In ab = ln a ± in b 
(6) log a's n log a in = n in a 

1 —1 1 

(7) log an = ie log a in an —n In a 

(8) If y = log x If y = ln x 
10v = X 

(9) log x = log e in x = 0.4343 in x 
(10) ln x = ln 10 log x = 2.3026 log x 
(11) The characteristic of a number is the whole number part of the common 

logarithm and is the exponent of 10 when the number is written in 

scientific notation. 
(12) The mantissa of a number is the decimal part of the common logarithm 

found in the tables. 
(13) Example of characteristic and mantissa 

log (3.1623)102 = 2.500 

where 2 = the characteristic, from exponent of 10 
0.5 = the mantissa, from logarithm tables 

Thus 316.23 = 102.5 

16. COMPLEX QUANTITIES 

(1) j = Nr--1. or 

(2) a -1- jb = Va2 + b2 (cos « j sin «) 
= CEi« = C/a 

where C = N/a2 b2 
b sin a 

tan « — = 
a cos a 

(3) (a -I- jb) + (c - - jd) = (a -I- c) j(b d) 
(4) (a + jb) — (c -1- jd) = (a — c) + j(b d) 
(5) (a ± jb)(c jd) = (ac — bd) + j(bc + ced) 
(6) (a -1- fb)(c — jd) = (ac -1- bd) +j(bc — ad) 

(7) a jb a +  c — jd ac + bd .bc — ad 
c + jd c + jd c — jd c2 + d2 c2 d2 — 

a + jb Ceja C . C . C 
E (8) = _ 1(a-0) _ 8 113 E e E" (3)+JE sin 

c j e 

where C = Va2 1)2; tan « = 
a 

E = c2 + d2; tan 13 = cic 

(9) If a + jb c jd 
then a= c 
and b=d 

- 0) 
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17. TRIGONOMETRIC CHARTS AND FORMULAS 

a. Chart of fraction values for trigonometric functions: 

Degrees Sine Cosine Tangent Cotangent 
0 0 1 0 co 

30 
1  

1/ 

45 1/i 1/i 1 1 
1 

-‘7à 
90 1 0 ce 0 

120 i'N/à —IA — 1/-3.  
1  

1/3 
135 *1/-j — 1/i —1 —1 

1/3 
180 0 —1 0 c.0 

b. Chart for reducing angles 

Angle Sine Cosine Tangent Cotangent 

+ a ± sin a + COS a + tan a -H cot a 
90° + a + cos a ---i-- sin a ItI etn a IH- tan a 

180° + a +- sin a — cos a + tan a ± cot a 
270° + a — cos a + sin a - + ctn a + tan a 
360° + a + sin a ± cos a + tan a + cot a 

Y 
Second Quadrant First Quadrant 

4- sin a 4- sin a 
—cosa + cos a +1 
— tan a + tan a 

—sna 
— cos a 
+tan a 

X 

—sna 
+ cos a 
—tan a 

Third Quadrant Fourth Quadrant 

A 

a 

O 90 ° 180° 270° 360° 
First Second Third Fourth 

FIG. 98.—Algebraic signs and graphs of trigonometric functions in the various 
quadrants. 



c. Trigonometric functions in terms of each other: 

Sine Cosine Tangent Cotangent Secant Cosecant 

sin a tan « 1 1 Vsec2 a — 1 
Vi COS2  — a 

Vi ± tan2 « -V1 + cote a sec a 

1 

CSC a 

cosa  1 cot a VCSC2 a — 1 
S "Vi — W a 

Vi + tan2 a -Vi + cot2 « sec a C8C a 

sin « V1 — cos2 « 
tan a 

1 1 
Vsec2 « 1 

V1 — sin2 « cos a Cot a VCSC2 a — 1 

V1 — sin2 a CO8 a 1 
Cot a 

1 

sin a -V1 — cos2 a tan « Vsec2 a — 1 
-Vesc2 a — 1 

1 1 -V1 ± cote a 
sec a 

CSC a 

—cota V1  sm2 a cos a N/1 ± tan2 « 
N/C8C2 a — 1 

1 1 N/1 -I- tan2 a sec  a CSC a V1 + COP a sin a N/I. — COS2 a tan a Vsec2 a — 1 

X
I
G
N
a
d
d
V
 

o 
Ca 
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d. Trigonometric formulas: 

(1) sin a = - cos 0 

a 
(2) cos a = - = sin 0 

e 

(3) tan a = a-b = cot ft 

Sin a cos 13 
tan a = — = 

cos a sin 0 
Sa -  

sin « 2j 

(4) 

(5) 

(6) COIS a = 2 
. éa L cja (17) sin cl = "V-1 (1 - COS a) 

(7) tan a = 2  2 2 
- eia + (-va 

(18) cos i = \fi (8) sin ( - a) = - sin « (1 ± cos a)« 1 

(9) cos (--a) = cos a a 1 - COS a sin a  
(19) tan 2 - 

sin a = 1 ±  COS a (10) tan ( -«) = - tan a 

()11 sin ( ± a) = cos a (20) sin 2a = 2 sin a cos « 1-r-
2 (21) COE1 2« = 1 - 2 sina a = 2 cos2 a - 1 

(12) cos (-2 ± a) = :F. ain a (22) tan 2« - 
2 tan «  
1 - tana a 

r  

cot « (23) sin 3a = 3 sin a - 4 Bina a (13) tan (-2 ± a) = T- 
(24) cos 3a = 4 cosa a - 3 cos a 

7  

(14) sin (w- ± a) =F sin « 1 - cos 2« 
(25) Sin2 a - 

(15) cos (Ir ± a) = - cos a 2 ' 

1 ± cos 2«  
(26) cosa a - 2 
(27) sina ce + cosa a = 1 

3 sin a - sin 3« 
(28) sin; a = 4 

3 cos « ± cos 3«  
(29) cosa « - 4 

(30) sin (« -I- 0) = sin « cos 0 + cos « sin 0 
(31) sin (a - 0) --= sin a cos fi - cos a sin # 
(32) cos (a -I- 0) = cos a cos 0 - sin a sin 0 
(33) cos (a - p) = cos a cos e + sin a sin 0 

tan a ± tan 0  
(34) tan (« + p) - 1 - tan a tan 0 

tan « - tan e  
(35) tan (a - 0) = 1 ± tan a tan p 
(36) sin (a -I- 0) -I- sin (a - (3) = 2 sin a cos 0 
(37) sin (a + 0) - sin (a - 13) = 2 cos a sin # 
(38) cos (« -I- p) + cos (« - 0) = 2 cos a cos 0 
(39) cos (a - 0) - cos (a + p) = 2 sin a cos p 

Sa ± 

a 
Fio. 99.—Right tri-

angle for use with trigo-
nometric formulas. 

(16) tan (7i- ± a) = tan « 
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18. EXPONENTIAL AND HYPERBOLIC FORMULAS 

a. Exponential formulas: 
(1) eifi = cos a ± j sin a 
(2) e-ile = cos - j sin fi 
(3) ect = cosh « sinh « 
(4) e-a = cosh « - sinh a 
(5) ea+i13 cos 13 + je* sin 

= (cosh a cos a sinh a cos a) 
i(cosh « sin e) + sinh « sin a) 

b. Relation between hyperbolic and circular functions: 
(1) sinh jii = j sin /3 
(2) cosh je = cos 13 
(3) sin 113 = j sinh 
(4) cos j13 = cosh a 
c. Hyperbolic functions: 

- E-0 
(1) sinh - 

2 
€15 e--0 

(2) cosh a 
2 
- 

(3) tanh /3 = o  

(4) sinh ( -0) - sinh a 
(5) cosh ( -a) = cosh # 
(6) cosh2 - sinh2 13 = 1 
(7) sinh (« + 13) = sinh a cosh /3 -{- cosh « sinh e 
(8) sinh (« - 13) sinh a cosh 13 - cosh a sinh 
(9) cosh (« /3) = cosh a cosh 13 sinh « sinh 
d. Circular and hyperbolic functions of complex quantities: 
(1) sinh (a ± j13) = sinh a cosh ja ± cosh « sinh je 

= sinh « cos e ± j cosh « sin 
= •Vennh2 « sin2 /3 ± tan-,  tan a  

tanh « 

(2) cosh (a ± ja) = cosh a cosh ja ± sinh a sinh je 
= cosh a cos /3 ± j sinh a sin /3 
= N/sinh2 « 0082 a/ ± tan-2 (tan 13 tanh a) 

(3) sin (« ±j) = sin « cos ja ± cos a sin je 
= sin « cosh e ± j cos a sinh # 

= N/sin2 « sinh2 a ± tan-2 tan 8 
tan a" 

(4) cos (« ± = cos a cos ja T- sin a sin ja 
= cos a cosh a j sin a sinh 

N/cos2 a + sinh2 eiT- tan-1 (tanh a tan «) 
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19. STANDARD ELEMENTARY CALCULUS FORMULAS 

Derivative 
dy 
dx 

Function Integral 

fY dx 

o 
o 
o 
1 
a 
2x 

nx 

du dv 
Tx + crx 
dv , du 

.1 -ry Tcz 

du dv v — ud7x 

du 
dv 

+ a)2 

(a2 + x2)% 
_ b 

(a ± bx)2 
—3a2x 

(a2 + x2)% 

aye' 

ax in a 

babx ln a 

x-1 
0.4343x-i 
CO8 X 

Algebraic 

o 

a 

ax 
x2 

x^ 

x-1 

+ 

uy 

V 

Va2 + x2 
1  

a + bx 
a2 

(al + x2)% 

Transcendental 

ax 

abz 

ln x 
log x 
sin z 

z + C 
ax + C 

+ C 
axs _FC 

1 
n 

x' 11 
+ 1 

In x + C 

fu dx 1.11 dx 

No general form 

No general form 

u dv uy — fv du ± C 

ln (x + a) + C 

ln (x ..Vc --x2) C 

1 
± In (a + bx) C 

N/a2 + x2 ± e 

bina C 

x (ln x — 1) + C 
0.4343 (In x — 1) + C 
— cos x + C 
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19. STANDARD ELEMENTARY CALCULUS FORMULAS.—(Continued) 

Derivative 
dy 
dx 

Function Integral 

.1.1/ dx 

a cos ax 

- sin x 

-a sin ax 

sec2 x 

a sec2 ax 

cosh x 

a cosh ax 

sinh x 

a sinh x 

sech2 x 

a sech2 ax 

sin ax 

cos x 

cos ax 

tan x 

tan ax 

sinh x 

sinh ax 

cosh x 

cosh ax 

tanh x 

tanh ax 

- -1 cos ax C 
a 

sin x C 
1 
-a in  ax C 

- in cos x C 
1 

- - In cos as C 
a 

cosh x 

-1 cosh ax C 
a 
sinh x C 
1 
-sinh ax C 
a 
in cosh x C 
1 

- - In cosh ax C 
a 

20. OTHER USEFUL INTEGRALS 
1 

xeax dx = ea '(Crx — 1) 

at sin (cut + 1k) dt = a2 e±at (02 [a sin (tot + ‘,) - co cos (Wt #)] 

at cos (Cut + 1,1") dt - a2 e: co2 [a cos ((et +1,0 ± co sin (cut +1,)1 

Si(s) = foe Sije dx 

Ci(x) = f e x 
J 0(x) = 2'r cos (x sin 0) clO = f02  cos, (x cos 0) do 

1 r 
cos (x cos 0) de 

ir o 

= j- f 2w sin (x sin 0) do 
27 o 

= 1 FT i 1 I . 
e z 6 de - 1 1 21. ei' ece ° de = - ez» coo 8 de 

2ir o - 2or o ' r o 

.1.(x) = -1 IT cos (nO -, x sin 0) do 
r 0 

= jrsin (n0 - x sin 0) dO 
ir o 

= 1 fr 2i(.8-x sin 8) do 
ir o 
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21. SERIES 

a. Exponential: 
2 X3 (1) e = 1 + x + + • • 7 

(x log a)2 (x log a)3 
(2) a = 1 + x log a + 13. + + 

b. Trigonometric: 
X3 X6 X7 

(1)sinx.---x 

(2) cos x 

x6 2x5 17x7 
(3) tan x x + -17 + 

c. Hyperbolic: 

(1) sinh x x + + + 5+••• 
(2) cosh x = 1 erei2- + +N+••• 

X3 2x5 17x2 
(3) tanh x x — + -f-5- — 315 -F 

d. Logarithmic: 

ln (1 + x) = x — x2 + xs — x4 + • • 

e. Sine and cosine integral: 

si(x) = fox suix dx x 3T!.x2 3x2 

x2 x4 xe 
cj(z) ro cc.--3xx dx = 7 ± ln x — -F — e  + • • • 

f. BessePs: 
X  

(1) J°(x) -1 ' 1« + 2:•442 22 • 42 • 62 -I-
e r,  xf x.  

(2) jn(e) 2'In L` 2(2n ± 2) ± 2 • 4(2n -1- 2)(2n -1- 4) 

X6  
2 • 4 6(2n + 2)(2n + 4)(2n + 6) + 

g • 

k= 
(-1)k An+2k 

k - 
S 'kin +k k2f 

— 

Binomial: 

(n an integer) 

n(n — 1) n(n — 1)(n — 2) 
(1 ± x)n = 1 ± nx x2 + x3 + • • 

12 

h. Power: 

f(x) = a. + a2x2 -1- a3x3 + • • • 



j. Taylor's: 

APPENDIX 311 

i. Maclaurin's: 

f(x) = fie)) e(0) + 21"(o) + fm(o) + • • • 
12 

(1) f(x) = f(a) + (x — a)f'(a) + (x —a)2 f"(a) +   f"'(a) + 

h' h3 
(2) f(x + h) = .f(x) (x) ± f"(x) + —13 ,f"(x) 

k. Fourier's: 
Ao 

(1) f(x) = —2 + Ai sin x + 142 cos 2x + A 3 COS 3x 

+ B1 cos x + B2 cos 2x + B3 cos 3x 

Ao nv= ' 
= ± 4 (A, cos nx + B. sin nx) 

n = 

where Ao = 1 1.2' f(x) dx 
ir 

A„ = f f(x) cos nx dx 
ir 

B. = f f(x) sin nx dx 
ir 

(2) f(x) = Mo + M I sin (cot ± 1,1,1) ± M2 sin (cot ih) 
n = 

/ M. sin (cot + tk.) 
n = o 

where n = 

= fo f(x) dx 
1  

and for n = 1, 2, 3, • • • 

M. Lk„ = 1 f f(x)E—i"' dx 
7r 0 

22. WAVEFORMS 

a. Square sine wave: 

E 0 •0 o 

1 

Q 7r 2r X 
O Z 4 

Harmonics 
6 8 . 10 

= 
4E n 1  . 

y = 2n — 1 —r sin (2n — 1)x 
n = 1 

= 4E rsin x 1 
sin 3x + É sin 5x + • • • 3 
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b. Square cosine wave: 
4E 

Y ir 

t 
E 

I
 
I
 

1, 

0 7 ?ir X 
0 2 4 6 

Harmonics 
8 10 

nr--
4E 1 

Y 2 1 sin (2n — 1)x = n —  
n 1 

4E 1 , 1 
= — [cos x — COS OX I- -5- COS 5X • • • 

c. Sawtooth sine wave: 
sÉ 

Y e 
t 
E 

0 .0 
A 
g 

. 

e 

Q 7r ? 71" X 
0 2 4 6 8 

Harmonics 
10 

n 
8E ( —1)"+1  

Y = 72 Lw (2n — 1)2 sin (2n — 1)x 
n 1 

1 . 
= [sin x — sin 3x + 2-5 sin 5x — • • • 

d. Sawtooth cosine wave: 
8E 

Y 
e 

t 0 .0 E 

1, ; 
>I 

\ 

0 •:r 2ir X 
0 2 4 

?arir 
6 

°nice 
8 10 

8E n 'e  1 
= 7r2 Li (2n 1)2 cos (2n — 1)x 

n =- 1 

= 81 1 [cos 1- cos 3x + 1  cos 5x + • • • 
9 25 72 
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e. Positive scanning wave: 

4E 

Y 7 

.. 

5 x 
I I i 

0 r 2 ir X 
o 2 

Harmonica 
4 6 8 10 

n = 
2E s sin nx 2E [ 

± -1 sin 2x + sin 3x + • • • y —  sin x 
ir n 7r 2 3 n 

f. Negative scanning wave: 

4E 
Y Y 

t o 
E 
4 

-0 0 
e 

5 x 
/ I I 1 i. 

Q r 2.1* X 
0 2 4 

Ham 
6 8 

onics 
10 

313 

it- 00 2E ssin nu 2E i 1 . 1 . — - — [ - sn x - - sin eX — — 8111 ôX - • • • I n 2 3 n = I 

g. Half-wave rectifier pulse wave: 

Waveforms 

Y r 

n Et 0 ni 

4. 
:..-1. 

5 
-,,----7-). X 

0 'Tr 27r X 

0 2 4 6 8 
' Harmonics 

10 

E E 2E n= os 
—1)a41 cos 2nx y = -1-5- cos x — S   

ir 
7 n=1 4n2 - 

E 2 
= - [1 + cos x + -3 cos 2x - —2 cos 4x + • • • 

r 2 15 
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h. Full-wave rectifier pulse wave: 
2E 

Y 71' 

o 
ne 
e 

la 

-(--- r --› 
r 27r X 

0 2 4 
Harmonics 

6 8 10 

n = 
-2—E + (-1)n+1 cos 2nx 

4n 2 — 1 
" n = 1  

[ 1 + cos 2x — A- cos 4x + â = cos 6x — • • • 

i. Unsymmetrical sawtooth wave: 
2E Sin 

Y  

H =36 1 
. 

ffri 

E  

r"— • 
.12 

_I , o 

0 ir 2 7r X 
0 2 4 

Harmonics 
6 8 10 

n = 
2E (-1)"+1 Y s. n 

(.1 sin nx (ir e) nL1=1 n2 

1  2E — 3) [sin /3 sin x — sin 20 sin 2x + -9 sin 30 sin 3x — • • • 
1 

Scanning wave with LI flyback time: 
2E Sin 0 

Y re 

'1 
I 

t 
, 
/ 

o' i 1.  'd 

5' 
0=36° 

I 
I t4 e 
i , i . . 

9 ir 2 ir X 
0 2 4 6 8 

Harmonics 
10 

y ---  n1 '  sin n0 sin nx 
n 

= LE [sin 0 sin x — -4 sin 20 sin 2x + -1 sin 3e sin 3x — • • • 
7T13 9 
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k. Rectangular pulse wave: 

Y 
v zz, 

0.1 

t 2 Irk . -0 E 

1, 
.e 

O ir 2r X 1 

0 2 4 
Harmonics 

6 8 10 

2E n --- ' 1 . 
y = kE ± — - sin nkr cos n(x) 

r n=i n 
2E 1 

= kE + — [ sin kw cos (x) + - sin 21cr cos 2(x) + • 
/I* 2 

1. Symmetrica trapezoidal pulse wave: 

Y  cx ..(--
U. U4, 

ce=45° 

\ 
t 
E I 

1 
1 . i3 - 45° 

0...÷1 ..0 
e 
•E 

z 

o ir 27r X 
0 2 4 6 

Harmonics 
8 10 

315 

n = 00 
E 

Y 8 (.(cï s) s (a e) cos nx in sin 7 .-i 
n =1 

= E(a + 0) 4E + [. . (a + 0) 
sin - sin cos x 7/3 2 2 

± -I sin 0 sin (a ± 0) cos 2x • • • 1 4 
m. Symmetrical triangular pulse wave: 

Y 

--A -1 
,I, 

0 'CS 
e 
•E 

-(-2irk-0. cl 
S 

0 r 27r X 
1 

0 2 4 6 
Harmonics 

8 10 

2E n 1  y = kE —kr2 —n2 (sin nicir) 2 cos nx 
n =1  

2E 
= kE + 

W 2 [sini2 kir cos x+ - s n2 2kr cos 2x + • • • 
k 4 
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n. Fractional cosine pulse wave: 
V Cl.Ei 

t n -,, , 
; 

I 
i 

1424,a'; 
/ î 
1.< Ir 

IIII / 
)1 

? 
Ir 21- X o 2 4 

Harmonie 
6 8 
a 

10 

E  
[sin kir — kw cos kir + (kir — sin kw cos ken-) cos x 

Y = ( 1 — cos kir)  
n = ce 

s Isin (n 1)lor sin (n — 1)kir 2 sin nkir cos kir } cos nx] 
1 n + 1 n — 1 n= 2 

E 
= cos kr) [sin — kir cos irk + (kir — sin kir cos kir) cos x 

sin 3kor ± sin Ir4r — sin 2kir cos kir) cos 2x 

+ (1. sin 4kir sin 21er — sin 31or cos kir) cos 3x + • 
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A 

Abbreviations, list of, 234-243 
engineering, 239 
mathematical, 236 

Acceleration, 165 
Accuracy in interpolation, 23 
Addition, algebraic, 37, 54 

arithmetic, 4, 54 
of complex numbers, 92 
of exponents, 10 
of fractions, 7 
geometric, 54-56 
of like terms, 37 
of mixed terms, 6 . 
of negative terms, 3 
of positive terms, 1 
of real numbers, 2 
rules, 4 
of unlike terms, 37 
of vectors, 54, 58, 76, 92 

Adjacent side of right triangle, 68 
Algebra, 35-53, 110-138 

addition, 37, 55 
cancellation, 42 
division, 42 
exponents, 40 
integrals, 198 
multiplication, 38 
substitution, 39, 44 
subtraction, 37 

Algebraic formulas, binomial theo-
rem, 302 

miscellaneous, 300 
quadratic equations, 127-138, 302 
Simpson's rule, 193, 302 
simultaneous equations, 110-126, 

301 
trapezoidal rule, 192, 302 

Algebraic functions, defined, 149 
Alternating current, 50 

Altitude, of right triangle, 56 
Angles, azimuth, 108 

complimentary, 74 
interior, 74 
measurement of, 57 
negative, 108 
notation of, 234 
positive, 108 
sign of, 234 
of vector, 79 

Answers to exercises, 327 
Antilogarithm, 21 
Approximations, using Maclaurin's 

series, 213 
using Taylor's series, 215 

Arabic numerals, 1, 234 
Area, integration, 195, 205 
by Simpson's rule, 193 
by trapezoidal rule, 192 

Arithmetic, 1-16 
rules, 4, 5 

Arithmetic addition, 54, 55 
Attenuation networks, 139 

Base, of logarithms, 17, 97, 180 
of right triangle, 56 

Bessel functions, 217, 310 
curves, 255-258 
tables, 259-293 

Binomial theorem, 302 
Binomials, 212 
Braces, 235 
Brackets, 235 

Calculus, defined, 149 
formulas, 172, 189, 308 
integral, 191-206 

317 



318 APPLIED MATHEMATICS 

Calculus, symbols, 150 
Cancellation, 5 
Capacity, 12, 23, 239 

reactance, 35, 240 
Characteristics, diode vacuum tube, 

105, 157 
Circle equation, 139, 140 
Circuit, parallel, 127 
Circular angle, 70, 139, 140 
Circular angle construction, 70, 141 
Circular function, 144 

identities, 147, 306 
Circular radian, 140. 143 
Circumference, 238 
Common logarithms, 17, 180 
Communication systems, 1 
Comparison test, for convergence or 

divergence, 208 
Complex fractions, 8 
Complex notation, 92 
Complex quantities, 90-99, 303 

defined, 90 
notation, 90 

Components of vector, 59 
Compound interest, 175 
Conjugate, complex numbers, 98 
Constant, integral of, 199 

of integration, 197 
table of useful, 299 

Convergent series, 207 
Conversion, between natural and 

common logarithms, 180, 189 
table, 243 
of units, 12 

Coordinates, polar, 90, 96, 106, 108 
rectangular, 59, 90, 100 
signs used for, 239 

Cosecant, defined, 69 
Cosine, defined, 69 

integral of, 204 
series, 96, 211, 310 

Cotangent, defined, 69 
Coversed sine, 237 
Cross-section paper, 100, 101, 107 
Cube, 10 
Curve, 100, 102 

defined, 100 
labeling, 106 

Curve, plotting, 105 - 
of sine and cosine integrals, 294 

square law, 157•  ' 
variable slope, 156 

Curves and graphs, 100-109 

D 

Decimal fractions, 8 
Decimal point, 9 
Decimal slide rule, 29 
Denominator, 6 

least common, 7 
Dependent equations, defined, 124 
Dependent variable, 157 
Derivative, basic method, 159 

of constant, 157 
of cos 0, 183 
of cosh 0, 186 
of curve, 155 
of exponential functions, 178, 179 
of natural logarithm, 181 
partial, 187, 188, 190 
of product, 163 
of quotient, 163 
of sin 0, 181 
of sinh 0, 185 
successive, 165, 184 
of sum, 162 
of tan 0, 184 
of tanh 0, 187 
total, 188 
the variable, 158 
with constant exponent, 159 
multiplied by constant, 158 

of xn, 161 
Determinant, 111 

elements, 117 
of higher order, 123 
of principal diagonal, 117 
of second order, 116 
of third order, 120 

Differential calculus, 149-190 
treating algebraic functions, 149-

173 
treating transcendental functions, 

174-190 
Differential sign, defined, 150 
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Differentiation, partial, 204 
Direction, vector, 54 
Discriminant, 133 
Divergent series, 208 
Dividend, 2 
Division, 2, 5 
complex numbers, 93 
fractions, 8, 42 
law of exponents, 11 
rules, 5 
using logarithms, 22 
using slide rule, 26 
of vectors, 93 

Divisor, 2 
Double integrals, 205 

E 

Electric wave filters, 139 
Equal roots, 133 
Equality, 36 
Equations, addition, 36 

canceling terms, 45 
changing signs, 45 
containing decimals or fractions, 

42-43 
dependent, 115 
division, 42 
exponentials, 46, 96 
fractional, 35 
illustration of rules, 47 
inconsistent, 115, 124 
independent, 115 
linear, 1, 110, 115, 118 

defined, 123 
sets of three, 118 
sets of two, 110 

multiplication, 36 
quadratic, 127-138 

completing the square, 129 
defined, 127, 137 
factoring method, 128 
formula, 130, 131 
general form, 132 
graphical method, 128, 
higher powered, 136 
pure quadratic, 127 
simplest form, 127 

Equations, rules for solving, 45 
simultaneous, 110-126 

classification, 115 
defined, 123 
dependent, 115, 116 
determinant method, 116, 117, 

120, 122 
graphical method, 111, 125 
inconsistent, 115, 116 
independent, 115, 116 
multiplication-addition method, 

112, 119, 125 
substitution method, 113, 119, 

125 
solution, 45 
subtraction, 36 

Euler's constant, 216 
Evaluation, 46 
Exercise answers, 327 
Exponential, applied to circular 

function, 146 
applied to hyperbolic function, 146 
geometrical interpretation, 145 

Exponential formulas, 307 
Exponential series, 96, 176, 310 
Exponents, 10, 17 

addition, 10 
defined, 10 
fractional, 13 
inverted, 13 
law of, 10 
multiplication, 11 
negative, 10 
positive, 10 
power, 11 
subtraction, 11 
zero, 10 

Expression, algebraic, 35, 137 
defined, 137 

Factorial, defined, 97, 235 
table, 299 

129 Factoring, 44 
Farad, 12-13, 239 
Figures, significant, 23 
Finite increment, 151 
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Finite series, 207 
Formulas, algebraic, 300 

miscellaneous, 300 
calculus, 172, 189, 308 
exponential, 307 
hyperbolic, 307 
logarithmic, 303 
trigonometric, 306 

Fourier series (see Series, Fourier) 
Fractions, 6 

addition and subtraction, 7 
complex, 8 
decimal, 8-9 
defined, 6 
denominator, 6 
division, 7 
equivalent, 6 
improper, 6 
inverted, 8 
mixed numbers, 6 
multiplication, 7 
numerator, 6 
proper, 6 
reduction to L.C.D., 7 
sign of, 8 

Frequency, resonant, 39 
Functions, 157 

Bessel, 217, 255-258, 310 
first kind n order, 217 
first kind zero order, 217 
table of, 259-293 

circular, 144 
cosine, 69, 219 
cosine integral, 216 

curve, 294 
tables, 295-298 

exponential, series, 176, 211, 310 
table in terms of decibels, 252 
table in terms of nepers, 249 

hyperbolic, 144 
table, 249, 252 

logarithmic, 18, 180 
table, .244, 245 

periodic, 218 
sine, 69, 218 
sine integral, 216 

curve, 294 
tables, 295-298 

Functions, transcendental, defined, 
149 

trigonometric, of angles, 66, 70, 71 
complex numbers, 94 
computation, 73 
cosecant, 69 
cosine, 69 
cotangent, 69 
inverse, 75 
secant, 69 
sine, 69 
table of, 244 
tangent, 69 

of x, 236 

G 

Geometric addition, 54, 55 
Geometry, 54-65 . 
Graph paper (see Paper) 
Graphical numbers, 3 
Graphical representation, 3, 90 
Graphs, 100-109 . 

defined, 100 
labeling, 106 
linear equations, 111 
plotting, 100-108 
scale selection, 104 
slope, 104 
solving problems by, 111, 128 

Greek alphabet, 233 

H 

Henry, 13, 239 
Higher powers, by logarithms, 22 
Horizontal components of vector, 59 
Hyperbola, curve, 140, 141 

equation, 139, 140 
Hyperbolic angle, 139> 140 

construction of, 141 . 
Hyperbolic copine, 142 
Hyperbolic formulas, 307 
Hyperbolic functkes, 144 ., 

identities, 146i .147, 307 
table in terms of4lecibels, 252-254 
table in terms of eepers, 249-251 

Hyperbolic radian, 140, 143 
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Hyperbolic sine, 142 
Hyperbolic tangent, 142 
Hyperbolic trigonometry, 139-148 
Hypotenuse of right triangle, 56 
Hysteresis (or B-H cürve), 102, 103, 

322 

Identities, circular and hyperbolic, 
306, 307 

circular function, 147, 306 
hyperbolic function, 147, 307 
trigonometric, 305, 306 

Imaginary numbers, 235 
representation of, 90 

Impedance, 38 
Impedance vector, 92 
Improper fraction, 6 
Inconsistent equations, 115, 124 
Incremental sign, 151 
Independent equation, defined, 124 
Independent variable, 157 
Infinite series, 207, 310 
Infinitesimal increment, 151 
Infinitesimals, 151, 196 
Index, initial, on slide rule, 30 
Inductance, 13 
Inductive reactance, 35, 92 
Inflection point, 170 
Integrals, 308, 309 

algebraic, 198, 308 
of algebraic sum, 202 
calculus, 191-206 

defined, 191 
of constant, 199 
of cosine, 204 
multiple, 204 
of natural logarithm, 203 
of one, 198 
sign, 191, 236 

defined, 150 
of sine, 203 
of tangent, 204 
transcendental, 203, 308 
triple, 205 
of variable, 201 
of zero, 198 

Integration, partial, 204 
by parts, 202 
volume, 205 

Interest, simple, 174 
Interior angle, of triangle, 74 
Interpolation, 23 
Inverse trigonometric functions, 75 
Irrational numbers, 2 

j, operator, 90 

Kilohm, 13, 240 
Kilovolt, 13, 240 
Kilowatt, 13, 240 

Law, of natural decay, 178 
of natural growth, 174 

Least common denominator, 7, 237 
Less than, sign, 234 
Limits, 150 
Linear equation, 1, 110 
any number of, 122 
defined, 123 
sets of three, 118 
sets of two, 110 

Logarithm, 17-34 
base of, 17, 97, 180, 236 
characteristics for, 18 

rules for, 19 
cologarithm, 236 
common system, 17 
defined, 17 
division by, 22 
extracting roots by, 23 
fractional exponents, 19 
graphical, paper, 103, 109, 322 

slide rule, 25 
interpolation, 23 
mantissa, defined, 18 

rules, 19 
multiplication by, 20 
napierian, 236 
natural, 97, 180, 236 

table of, 245-248 
of numbers from 1 to 100, 244 
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Logarithm, raising to power by, 22 
table, 20, 244 

use of, 20 
of trigonometric function, 75 

See also Antilogarithm, 21, 236 
Logarithmic formulas, 303 
Logarithmic graph paper, 103, 322 
Logarithmic rate, 174 

Maclaurin's series, 212, 311 
Magnitude, 54, 79 

signlesa numbers, 1 
of vector, 79 

Mantissa, of logarithms, 18 
rules, 19 

Mathematical polar form, 96 
Maxima, 167 
Maximum load power, 168 
Mega, units, 13, 243 
Megohm, 13, 240 
Mho, conductance, 238 
Microfarad, 12, 239 
Microhenry, 13, 239 
Micromicrofarad, 12, 239 
Micromicrohenry, 13, 239 
Micromicro units, 12-13, 243 
Micro units, 12, 243 
Milli units, 12-13, 243 
Minima, 167 
Minuend, 4 
Mixed number, 6 
Multiple integrals, 204 
Multiplication, 5 
complex numbers, 93, 97 
of exponents, 11 
of fractions, 7 
law of exponents, 10 
by logarithms, 20-21 
rules, 5 
of vectors, 93 

N 

Napierian, logarithms, 236 
Natural logarithms, 180, 236 

integral of, 203 

Natural number e, 176 
Negative angle symbol, 84, 234 
Negative exponents, 10 
Networks, attenuation, 139 
Notation, polar coordinates, 108 

rectangular coordinates, 100-102 
scientific, 12 

Numbers, arabic, 1, 234 
complex, 90 
even, 2 
fractional, 2 
imaginary, 90, 235 
integers, 2 
integral, 2 
irrational, 2 
mixed, 6 
negative, 3, 234 
odd, 2 
positive, 3, 234 
rational, 2 
real, 2 
signless, 1 
whole, 2 
zero, 2 

Numerator, 6 

O 

Ohm's law, 1, 35, 46, 47 
Operator j (or i), 90, 91, 235 
Origin, 101 

Paper, cross section, 100, 101, 107 
linear graph, 107 
logarithmic, 322 
polar graph, 106 
semilogarithmic graph, 103 

Parallel circuit, 127 
Parallelogram law, 57 
Parenthesis, 235 
removal of, 43 

Partial derivatives, 187 
Partial differentiation, 204 
Partial integration, 204 
Plot, 100 
Polar coordinates, 106, 108 
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Polar coordinates, engineering form, 
80, 90 

mathematical form, 96 
paper, 106 
reference line, 106, 108 
reference point, 108 
systems, 106, 108 
vector, 90 

Polar form, 90, 95 
of vector, 93 

Positive exponents, 10 
Power, decimal, 17 • 

exponent, 10 
of fraction, 11 
higher, 22 
of product, 11 
series, 211, 310 

Product, 5 
algebra, 38 

Proportional parts, 24, 67 
Protractor, 57 
Pulse, short rectangular, 229, 315 

thin line, 230 

Quadrants, 62 
of circle, 61, 62 

Quadratic equation, 127-138 
completing the square, 129 
defined, 127, 137 
discriminant, 133 
factoring method, 128 
formula, 130, 131 
general form, 132 
graphic method, 128 
graphical solution, 129 
higher powered, 136 
pure quadratic, 127 
simplest form, 127 

Quantity, 40 
defined, 137 

Quotient, 2 

Radian, 234 
circular, 140, 143 
hyperbolic, 140, 143 

Radical, 13, 235 

Radical, extracting square root, 14 
simplification, 14 

Radicand, 13, 235 
Rates, 153 
Ratio, test for convergence or di-

vergence, 210 
trigonometric, 67 

Rational numbers, 2 
Rationalized complex numbers, 98, 

303 
Reactance, capacitive, 35, 92 

inductive, 35, 92 
Real numbers, 2, 3 
Reciprocal, 8, 43 

Rectangular coordinates, 59, 90, 100 
origin, 101 
signs, 102 
x-axis, 101 
y-axis, 101 

Rectangular forms, 95 
Reference line, 108 
Reference point, 108 
Relative smallness, 151 
Remainder, 4 
Resistance, 13 

equation, 38 
parallel, 127 
series-parallel, 127 

Resolving vectors, 77 
Resonance, 35, 36, 39 
Resultant, 57, 79 
Right triangle, 54, 56, 306 
hypotenuse, 56 

Roots, 13 
equal and real, 133 
of equation, 127, 133, 134 
irrational, 134 
by logarithms, 23 
rational, 134 
square, 2, 13, 14 
unequal and complex, 134 
unequal and real, 133 

Rule, Simpson's, 193 
trapezoidal, 192 

S 

Scalar quantity, 54 
Scale selection, 104 
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Scientific notation, 12 
Secant, defined, 69, 237 
Semilogaiithmic graph paper, 103 
Sequence, defined, 207 
Series, convergent, 207 

defined, 207 
Bessel's, 310 
binomial, 310 

divergent, 208 
exponential, 96, 310 
finite, 207 
Fourier, 311 

coefficients of, 224, 225, 227, 
228, 229 

components of, 225, 228, 229 
with constant components, 220 
with harmonic components, 221 
magnitude of harmonic com-

ponents, 227 
magnitude of zero component, 

228 
phase of harmonic components, 

227 
hyperbolic, 310 
infinite, 207 
logarithmic, 310 
Maclaurin's, 212, 311 
power, 310 
sine and cosine integral, 310 
Taylor's, 214, 215, 311 
trigonometric, 96, 310 
and waveforms, 207-231 

Significant figures, 23 
Signless numbers, 1 
Signs, of fractions, 8 

mathematical, 234 
Similar triangles, 67 
Simple interest, 174 
Simpson's rule, 193 
Simultaneous equations, 110-126 

classification, 115 
of three unknowns, 118 
•of two unknowns, 110 

defined, 123 
dependent, 115, 116, 124 
determinant method, 111, 116, 

117, 120, 125, 301, 302 
graphical method, 111, 125, - 

Simultaneous equations, inconsis-
tent, 115, 116, 124 

independent, 115, 116, 124 
multiplication-addition method, 

111, 112, 119, 125 
substitution method, 111, 113, 

119, 125 
Sine, curve, 218 

defined, 69 
integral, 216 

tables, 295-298 
curves, 294 

series, 96, 310 
Slide rule, A and B scales, 27, 29 

accura cy, 25 
C and D scales, 26 
cube, 29 
cube root, 29 
decimal point, 29 
final index of, 30 
folded scales, 28 
hair line, 26 
important facts, 29 
initial index, 30 
inverted scales, 28 
K scale, 29 
L scale, 29 
logarithmic scale, 29 
multiplication and division, 32 
operation, 25 
reciprocals, 28 
rules, for division, 26, 32 

for multiplication, 26, 31 
for solution of right triangle, 87 
for square, 27 
for square root, 26 

sequence of operations, 31 
use and care, 33 

Slopes, 104, 154 
determination, 105, 154-156 
selection, 104 

Smallness, first order of, 152 
second order of, 152 
third order of, 152 

Space covered, 165 
Square, 10 

law curve, 157 
Square root, 2, 13 
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Square root, extraction of, 14 
of numbers, 14 

Subscript; 235 
Subtraction, 4 

of complex numbers, 92 
of exponents, 11 
of fractions, 7 
of like terms, 37 
of negative numbers, 4 
of positive numbers, 4 
rules, 37 
of unlike terms, 37 
of vectors, 92 

Subtrahend, 4 
Successive derivatives, 165, 167 

of sin 0 and cos 0, 184 
of sinh 0 and cosh 0, 186 

Sum, 4 
Summation sign, defined, 191, 235 
Symbols, engineering, 237 
Greek alphabet, 237 
English alphabet, 238 
circuit, 240 
mathematical, 234 

Tables, Bessel functions, 259-293 
brief, trigonometric function, 244 
conversion, 243 
exponential function, 249, 252 
factorial, 299 
logarithm, 20, 244, 245 
sine and cosine integral, 295-298 
useful constants, 299 

Tangent, to curve, 155 
defined, 69 

Taylor's series, 214, 311 
Terms, 40 

defined, 137 
Transcendental functions, defined, 

149 
Transmission lines, 139 
Transposition of terms, 45 
Trapezoidal rule, 192, 302 
Traveling waves, 139 
Triangle, altitude, 56 

base, 56 

Triangle, interior angle, 74 
opposite side, of right triangle, 68 
right, 56, 87, 306 
sides, 56 

abbreviations, 72 
Trigonometric charts, 304 

algebraic signs, 304 
fraction values, 304 
reducing angles, 304 

Trigonometric circular angle, 141 
Trigonometric formulas, 306 
Trigonometric functions, 66 

abbreviations, 70 
defined, 69 
inverse, 75 
table, brief, 244 
in terms of each other, 305 
value of, 70 

Trigonometric hyperbolic angle, 141 
Trigonometric identities, 305, 306 
Trigonometric operator, 94 
Trigonometry, 66-75 
complex numbers, 94 
defined, 66 
functions, 66, 69 
hyperbolic, 139-148 
inverse functions, 75 
logarithmic, 75 

Triplé integrals, 205 

U 

Unequal sign, 44, 234 

V 

Variable, 36 
Variable-slope curve, 156 
Vector, 54 

addition of, 58, 76-89 
analysis, 76-89 
complex notation, 90 
components of, 59 
defined, 54 
diagram, 83-87 
direction, 54 
division, 93, 98 

in polar form, 93 
in rectangular form, 98 



326 APPLIED MATHEMATICS 

Vector, expressed in complex no-
tation, 92 

horizontal component of, 59 
magnitude, 54 
multiplication of, 93, 97 

in polar form, 93 
in rectangular form, 97 

notation, 81 
quadrants, 61, 92 
resolution, 59 
sense of, 54 
vertical component of, 59 

Vectorial addition, 76-89 
Vectorial component of vector, 59 
Velocity, 165 
Vinculum, 235 
Volume integration, 205 

Wave forms, 207 
fractional cosine pulse wave, 316 
full-wave rectified pulse wave, 314 
half-wave rectified pulse wave, 313 
negative scanning wave, 313 
positive scanning wave, 313 
rectangular pulse wave, 229, 315 
sawtooth cosine wave, 312 
sawtooth sine wave, 312 

Wave forms, scanning wave with p 
flyback time, 314 

square cosine wave, 221, 224, 312 
square sine wave, 221, 224, 311 
symmetrical triangular pulse wave, 

315 
unsymmetrical sawtooth wave, 

314 
Waves, square cosine, 221 

square sine, 221 
traveling, 139 

Whole numbers, 2 

X-axis or x-axis, 59, 91, 101, 239 

Y 

Y-axis or y-axis, 59, 91, 101, 239 

Z-axis or z-axis, 239 
Zero, 2 

as exponent, 10 
figure, 3 
integral of, 198 

Zero power, 10 



ANSWERS TO EXERCISES 
Chapter 1 

1. +31 5. -64 
2. -24 6. -75 
3. -67 7. +26 
4. +755 8. +7020 

12. 9.87 X 106; 7.6456 X 10; 7 X 10-6; 
9 X 102; 8.97650001 X 106; 1.2 X 1016. 

13. 3.125 X 1012 
14. 9 X 10-7 farad 

0.9 
9 X 106 ¡Ltd 

1 henry or 1000 mh 
1 X 106 ph 
1 X 1012 pph 

6 X 106 ppf 
6 id 
6 X 10-6 farad 

9. 30 
10. 1.333 X 10-21 
11. 6-26 

104 X 106 i.g.th 
104 ph 
104 X 10-6 henrys 

300 muf 
0.0003 I.tf 
3 X 10-1° farad 

100,000 gpf 
0.1 d 
1 x 10-7 farad 

67 f 8 X 109 ppf 
67 X 10-6 pf 8000 mf 
67 X 10-12 farad 0.008 farad 

15. 943 with a remainder of 386 
99 with a remainder of 175 
99.7 
2.427 with a remainder of 0.000002 
3 X 10-6 
0.021679+ 
0.070 with a remainder of 0.000078 

Chapter 2 

SLIDE-RULE EXERCISES 

Square 
Multiply Divide Root Square 

1. 78,440 1.117 16.28 87,620 
2. 65,800 0.5898 18.28 38,810 
3. 175,446 1.346 19.0 236,200 
4. 623.7 12.3 2.668 7,674 
5. 1.201 3.037 0.7931 3.648 

327 
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6. 3.29 X 10-6 
7. 0.3056 
8. 1.106 X 1010 
9. 0.4204 

10. 4.726 X 100 
11. 8.33 X 10-6 
12. 3.528 X 10-2 
13. 56.51 
14. 1.109 X 108 
15. 1.755 X 108 
16. 1.037 X 106 

1. 363,250 
2. 116.38 
3. 3.6314 
4. 7,907.96 
5. 4.5113 
6. 6.7678 X 10° 
7. 2.5628 X 10-2 
8. 24,992.6 
9. 0.026794 

10. 310.54 

1. y=a -b-x 
b=a-x-y 

2. b - R - ax cz 

- -R ax 4- by z  

XY - JQ 
RT 

XV - RST 
= j 

xY 4. z _ 
- ab 

abz = 

= z(a bz) - y 
X -F y - as 

zz 
azz cx - z 

as ± c 
cx - Cy - z 

yz - xz 

7 M NPQ X Y . = 
PQ 

Y = PQ(M - N) - X 

5. x 

6. y - 

a - 

8.655 
3.06 X 106 
0.1587 
507,700 
0.0678 
2,882 
50 
1.424 X 101° 
111.1 
2.078 X 10-6 
1.629 X 10-10 

0.07855 0.002852 
0.01778 935,100 
513.8 1.756 X 102 
0.03017 213,400 
513.8 3.204 X 108 
0.01304 0.2401 
0.002898 1.764 X 10-7 
0.007937 8.04 X 1011 
9.995 1.232 X 108 
958.6 36,480 
28.25 1.69 X 10-14 

CHAPTER EXERCISES 

11. 0.35475 
12. 7.82520 
13. 0.0117985 
14. 0.140887 
15. 1.22147 
16. 5.7974266 X 10" 
17. 1.18894 X 10" 
18. 7.5333 X 10-12 
19. 5.280829 X 10-8 
20. 8.5306 X 1028 

Chapter 3 

8. T - 
X(R - S) 
o + 
RX - T(0 P) 

X 

9. T = NV(X Y)(R - SP) 
R(X -I- Y) - T° 

S(X ± Y) 
10. a = -b z2y4 2xy2z z' 

NiVa b - z 

P - 

a2n6 - 10bL 
13. a 

9L 

= .\IL(9a 10b) 
71  

N  
14. t -  

e X108 
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_ , V/clew M 2 15. I 18. LI = 
Rt K2L2 

2rna 
16. r = 19. t —  

F aR. 
41.21 X2  

17. H =- 20. C = 
T2m (1,884)2L 

1. (a) 50 
(b) 10 

(c) 5 

A=6 

Chapter 4 
(d) 24 
(e) 1.0955 
(f) 500 

C=14 

R=5 /3652' 
B=10 
o  

a=36 52' 

D =11 

A= 49 

C=391 

ot = 315° 
B= 99 

R= 70.7 

D= 441 

2. (a) Resultant in first quadrant 2. (b) Resultant in fourth quadrant 
(a = 36°52' = 36°.87) 

C=9.9 

a= 24038 

A=7.0 B=3.4 

R=7.343 /240°38' 

D=16.3 

2. (c) Resultant in third quadrant (a = 240°38' = 240°.64) 



A = 900 B=750 

D- 475 
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C=1325 

R=863.1 /100 'C=0.1 
a=318°48' 

(a=100° 
A=0.2 B=0.6 

R= 0.5323 /318°48' 

D -= 0.45 

2. (d) Resultant in second quadrant 2. (e) Resultant in fourth quadrant 
(a = 318°48' = 318°.81) 

3. a. Resultant vector length = 198.3 
b. Resultant vector length = 139.3 
c. Resultant vector length = 4.28 
d. Resultant vector length = 5 
e. Resultant vector length = 252.8 
f. Resultant vector length =- 368.0 

Chapter 5 

1. sin 40° -= Y/R 
0.64279 = Y/60 
Y = 60 X 0.64279 = 38.57 
cos 40° = X /R 
0.76604 = X./60 
X = 60 X 0.76604 
X = 45.96 

2. sin 25° = Y/R 
0.42262 -= 35/R 
R = 35/0.42262 = 82.8 
cos 25° = X/R 
0.90631 = 1/82.8 
X = (82.8)(0.90631) 
X = 75 

3. sin 45° = Y/R 
0.70711 = 7.07/R 
0.70711R = 7.07 
R = 10 
cos 45° = X /R 
R = 10 
sin 45° = Y/R 
0.70711 = Y/10 
7.0711 = Y 

45.9 

38.5 
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4. tan 8 = Y/X 
tan 0 = 2% 0 = 2 26°31' 

= 63°26' = 6e43 
sin 63°26' = Y/R 
0.89441 = 20/R 22.3 20 
0.89441R = 20 
R = 22.3 
26°34' = 26%7 

5. cos O = X/R 
cos = '1 5 1928' 

cos O = 0.33333 
o = 70°32' = 70%3 = Y/R 
0.94284 = Y/15 16 14.1 
Y = 14.1 
19°34' = 1e47 

70°32' 

5 

10 

6. sin O = Y/R 
sin O = 5%0 56'15' 

9 = 33°45' = 3e75 
cos 33°45' = XIR 90 
0.83147 = X/90 50 
X = 74.8 

56°15' = 5625 33 45' 90° 

74.8 

Chapter 6 

The student should draw the vector diagrams, which have been omitted 

here. , 
1. VI? = 178.4/3e47 6. c =.5 

2. ZR = 134.9/22%5 7. c = 7.07 

3. IR = 5.205/264%5 8. c = 17.8 

4. VR = 86.6/90° 9. c = 78.8 

5. FR = 6.229/13240 10. c = 1.57 

Chapter 7 

1. c = 43.3015 + j25.000 
2. c = 5.0000 0.6603 
3. c = 36.05/123.68  

4. A X B = -130.74 + j1494.285 
5. A/B = 0.1758 - j0.3770 
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Chapter 8 

10000 

8000 

6000 

4000 

2000 

o 
—2000 

—4000 

—6000 

—8000 

—10000 

H 
12 3 « 4 —4 —3 —2 1 o 

1. Plot of B-H curve 

10 100 
Miles from transmitter 

2. Plot of field intensity measurements, along a radial 

1000 





334 APPLIED MATHEMATICS 

Chapter 11 

1. )3 = 4 circular radians. 
2. « = 6 hyperbolic radians. 

= 403.4 
3. y = ±0.707 
4. y = +1.732 
5. cosh « varies from 1 to co as « is increased from 0 to co while sinh 

varies from 0 to co as a is increased from 0 to co. 
6. sin 13 and cos 13 vary between the limits of ±1. The limits'of tan 13 

are 
7. e0 multiplied by a vector will rotate the vector 13 radians. Ea multiplied 

by a vector will change only its magnitude. 
8. tanh a = 0.76159 

sinh « = 1.17520 
cosh a = 1.54308 
coth « = 1.313 

= 1 radian. 

dy 
1. = 2ax b 

dx 

\fr-
dx 2 
dy 

3. -dx 2(a x) 

bx  

dx 2Va bx 
dy =  -2a  

5.  
dx (a + x)2 

1. e2 = 7.38905 
2. dyldx = (a ± /3)e<"+0)' 
3. dyldx =21x 
4. d(sin x)/dx -= cos x 
5. log 8 = 0.9031 

Chapter 12 
1 

6. -d2Y = - dx2 4 • 

dl 
7. Tit = b 2ct 

8. y = 16; a = 8 

9. For x = 1, y = 2, a minimum 
x -1, y =.6, a maximum 

= 16 sec 

Chapter 13 
6. E = Llw cos cut 
7. dylde = -2 cos O sin 
8. dy/d0 = - cse° 
9. d2y1dx2 = a2 cosh «a; 

10. F = a minimum 

Chapter 14 
A 10°(5.7149) 

- = 0.6349 
av = total x 90° 

15° -F  (11.4592) 
A 

-----  - 0.6366 
total x 90° 
A 1 2 

3. = - = - =. - 0.6366 
total x r/2 

The trapezoidal rule using nine strips gives an accuracy to two decimal 
places. Simpson's rule using only six strips gives an accuracy to four deci-

mal places. The integral gives the exact answer --
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4. S. = 0.6345 

5. 15 C 

faxa dx = xio 

6. f 2(x + 1) dx = ± 2x C 

f4(x2 + 2)(x — 1) dx = x4 — + 4x2  

7. f a2 = a2 ln + C 

8. f X2 Ez de = Xi e — 2xe' + 2ex + C 

9. f cos 6 cot d(wt) = it¡ sin 6f.ot + C 

162e 
f 162' dx —   C 

2 ln 16 

10. f a ln 10x dx = ax(ln 10x — x) C 

Chapter 15 
xn  

1. The nu. term is ne" or 
11, In — 1  

The given series is 
x2 =0-Fx-FT+r, 

while the convergent test series is — 

S. = 1 x + x2 + xa -I- • • • ± nn 
Comparing term by term, the given series is equal or less than correspond-

ing terms of the test series; hence the series is convergent. 
1 1 1 

2. Given series S. = 1 ± ± • • • ± 
2 — 3 — n — 
3 3 3 

Test series S. = 1 ± I + + • • • + n—P 2P 3P 1 

Comparing terms, the exponent p is less than 1; hence the series is con-
vergent and the nth term is given by the first equation. 

3. Ratio test 

1 

+  ' 

  1 
— < 1; hence the series is convergent. 

1 

4. 

= 6.082754 accurate to four decimal places . 
= 6.082763. Check by extracting the square root. 

5. f(x) = sin x f(0) = 
f'(x) = cos x f (0) = 1 
f'(x) = — sin x f"(0) = 
f" (x) = — cos x f"(0) = —1 
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From these values 
x3 x' 

sinx= 

xs x' = x - r3..4. 11 - • • • 

6. Dividing the series of sin x by 1 - x gives 

sin x  
- x + x2 ± x3 ± • • • 

1 
+ (2.1 - 2)2 o 

7. e2.1 = ê -I- (2.1 - 2)e2 

= 7.3891(1 + 310 + hoo) = 7.3891(1.105) = 8.1670 

The tables give Oa = 8.1660, or an error of 0.0008. 

8. m ai,p8 dr f 2T E«-j3,e dx  
T e — 

31. sin (3i.ot ± 4,3) = 1411. sin 3,d) 

9. M2/4,3 ir f -Eir "! XE-i2e dx = /0° 
71" 

-E 
M g sin (2Kut ± #2) —  sin lot 

ir 
ir 

+- 2E .... LE x 
10. mi/ei - i I. 2 — ze— i» d., + i f;-'r (2E -i. d,' . it ir 2r jir r 

- i 
8E 

... r2 
8E 

mi sin (wt = —,2 sin cot 
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