RCA

FOR APPLICATIONS WHERE EXTREME DEPENDABILITY AND UNIFORMITY ARE PARAMOUNT.

5691

5692

5693

TUBE DEPARTMENT

RADIO CORPORATION of AMERICA

HARRISON. N. J.

5691, 5692, 5693

SPECIAL RED TUBES

The present "Special Red Tubes" include a high-mu twin triode, 5691; a medium-mu twin triode, 5692; and a sharp-cutoff pentode, 5693. They are for industrial applications where 10 000-hour life, rigid construction, uniformity, and stability are paramount. The electrical characteristics, of the 5691, 5692, and 5693 are very similiar to those of the 6SL7-GT, 6SN7-GT, and 6SJ7, respectively.

RCA - 5691

HIGH-MU TWIN TRIODE

RCA-5691 is a high-mu twin triode designed and manufactured for critical industrial applications. In such service, it is particularly useful as a voltage amplifier.

In addition to the features illustrated on page 8 this type has its heaters for the two triode units connected in series so that failure of either heater in bridge circuits makes both units inoperative.

The 5691 is similar to the 6SL7-GT except that it has twice the heater current (0.6 ampere). It is recommended as a replacement for the 6SL7-GT only where provision for the increased heater current can be made, only where the operating conditions are within the ratings of 5691, and only where long life, rigid construction, extreme uniformity, and exceptional stability are needed. If the 5691 is operated at the higher maximum ratings of the 6SL7-GT, the full advantages of the 5691 will not be obtained.

GENERAL DATA

Electrical:

Voltage (AC or DC)		5%* V	
Direct Interelectrode Capacitances:			
Triode Unit No. 1— Min.	12.	Max.	
Grid to Plate 3.1	3.6	4.1	$\mu\mu f$
Grid to Cathode 1.9	2.4	2.0	$\mu\mu f$
Plate to Cathode 1.8	2.3	2.8	$\mu\mu\mathbf{f}$
Triode Unit No. 2—			
Grid to Plate 3.1	3.6	4.1	$\mu\mu f$
Grid to Cathode 2.2	2.7	3.2	$\mu\mu f$
Plate to Cathode 2.1	2.6	3.1	$\mu \mu f$
Plate of Triode Unit No. 1 to			
Plate of Triode Unit No. 2. 0.27	0.32	0.37	$\mu\mu f$

^{*}May deviate $\pm 10\,\%$ from rated value provided such deviation occurs for less than $2\,\%$ of the operating time.

GENERAL DATA (Cont'd)

Mechanical:

Mounting Pos	ition	Any
	rall Length	
Maximum Sea	ted Length	2-5/16"
Maximum Dia	meter	1-9/32"
Bulb		T-9
Base	Short Interr	nediate-Shell Octal
	8-Pin	Non-Hygroscopic

INDUSTRIAL SERVICE

Includes applications such as dc and audio amplifiers

Values are for Each Unit

Maximum Ratinas, Absolute Values:

maximom kamigs, historica i arocs.						
DC PLATE VOLTAGE.	275	max.	Volts			
DC PLATE SUPPLY VOLTAGE.	330	max.	Volts			
GRID VOLTAGE:						
Negative bias range −1 • min. to −1						
Negative peak value —	200	max.	Volts			
DC GRID CURRENT	2	max.	Ма			
DC CATHODE CURRENT.	10	max.	Ma			
PLATE DISSIPATION	1	max.	Watt			
PEAK HEATER-CATHODE VOLTAGE:						
Heater negative with						
respect to cathode	100	max.	Volts			
Heater positive with						
respect to cathode						
Ambient Temperature Range	55	to +90	$^{\circ}$ C			
Maximum Circuit Value (for any operating condition):						
Grid-Circuit Resistance	2	max.	Meg			

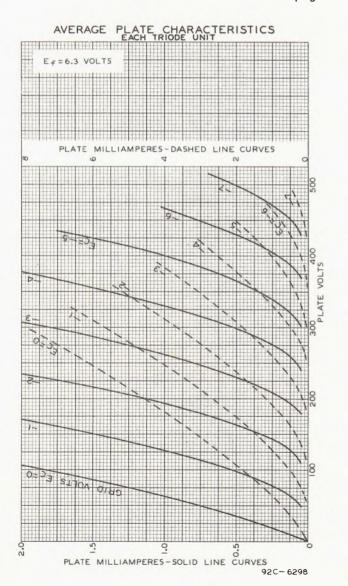
Characteristics and Range Values:

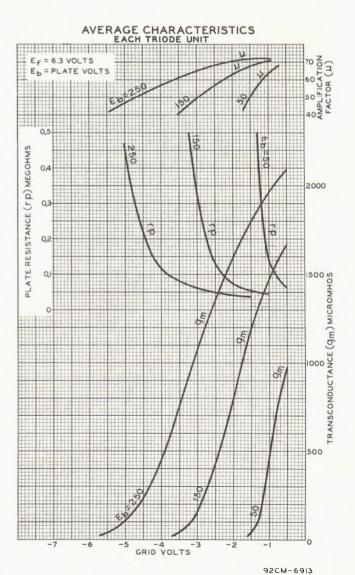
Heater Volts, 6.3; Plate Volts, 250; Grid Volts, -2

Min An Ma

	IVI IN.	217.	Max.	
Heater Current	0.55	0.6	0.65	Amp
Heater-Cathode Current with				-
heater-cathode voltage of				
±100 volts			5	μa
Plate Current	1.7	2.3	2.9	Ma
Plate Current for grid volt-				
age of -5.5 volts		_	15	μa
Difference in Plate Current				
between triode units	_	_	0.9	Ma
Reverse Grid Current			0.2	μa
Amplification Factor	60	70	80	
Plate Resistance	_	44000	_	Ohms
Transconductance	1300	1600	1900	μ mhos

[·] For resistance-coupled amplifier applications, the negative bias may be as low as -0.5 volt


Typical Operation—Resistance-Coupled Amplifier (Each Triode Unit):


Plate-Supply Voltage		90			180			300		Volts
Plate Load Resistor	0.1	0.22	0.47	0.1	0.22	0.47	0.1	0.22	0.47	Megohm
Grid Resistor (of following stage)	0.22	0.47	1.0	0.22	0.47	1.0	0.22	0.47	1.0	Megohm
Cathode Resistor	4700	7400	14400	2600	4600	9000	2180	3970	7550	Ohms
Cathode Bypass Capacitor‡	2.1	1.3	0.7	2.8	1.6	0.9	3.1	1.8	1	$\mu \mathbf{f}$
Blocking Capacitor‡	0.014	0.0065	0.0035	0.014	0.0065	0.0035	0.014	0.0065	0.0035	$\mu \mathbf{f}$
Peak Output Voltage†	9	13	17	30	37	44	59	76	88	Volts
Voltage Gain	27	$35\S$	$40\S$	$33\P$	42¶	$46\P$	$36\P$	$45\P$	$50\P$	

[†]This peak output voltage is obtained across the grid resistor of the following stage at any frequency within the flat region of the output vs frequency curve, and is for the condition where the signal level is adequate to swing the grid of the resistance-coupled amplifier tube to the point where its grid starts to draw current.

§At an output voltage of 4 volts rms.

for the 5691 are the same as those shown on page 5 for the **5692**

[‡]The cathode bypass capacitors and blocking capacitors have been chosen to give output voltages at $100~\rm cps~(f_1)$ which are equal to $0.8~\rm of$ the mid-frequency value. For any other value of (f_1) , multiply the values of cathode bypass and blocking capacitors by $100/f_1$. At an output voltage of 3 volts rms.

¶At an output voltage of 5 volts rms.

DIMENSIONAL OUTLINE and SOCKET CONNECTIONS

• RCA - 5692 •

MEDIUM-MU TWIN TRIODE

RCA-5692 is a medium-mu twin triode designed and manufactured for critical industrial applications. It is particularly useful as a balanced dc amplifier, multivibrator, blocking oscillator, and resistance-coupled amplifier.

In addition to the features illustrated on page 8, this type has its heaters for the two triode units connected in series so that failure of either heater in bridge circuits makes both units inoperative.

The electrical characteristics of the 5692 are similar to those of the 6SN7-GT. The 5692 is recommended as a replacement for the 6SN7-GT only where the operating conditions are within the ratings of the 5692 and only where long life, rigid construction, extreme uniformity, and exceptional stability are needed. If the 5692 is operated at the higher maximum ratings of the 6SN7-GT, the full advantages of the 5692 will not be obtained.

GENERAL DATA

Electrical:			
Heater, for Unipotential Cathodes:			
Voltage (AC or DC)	6.3	± 5%* V	olts
Current	0.6	A	Amp
Direct Interelectrode Capacitances:			_
Triode Unit No. 1— Min.	Αv.	Max.	
Grid to Plate 3.0	3.5	4.0	$\mu\mu f$
Grid to Cathode 1.8	2.3	2.8	$\mu\mu f$
Plate to Cathode 2.0	2.5	3.0	$\mu\mu f$
Triode Unit No. 2—			
Grid to Plate 2.8	3.3	3.8	$\mu\mu f$
Grid to Cathode 2.1	2.6	3.1	$\mu\mu\mathbf{f}$
Plate to Cathode 2.2	2.7	3.2	$\mu\mu\mathbf{f}$
Plate of Triode Unit No. 1 to			
Plate of Triode Unit No. 2. 0.27	0.32	0.37	$\mu\mu\mathbf{f}$

Mechanical:

Mounting	Position	Any
Maximum	Overall Length	2-7/8"
Maximum	Seated Length	2-5/16"
Maximum	Diameter	1-9/32"
Bulb		T-9
Base	Short Intermediate-She	ell Octal
	8-Pin Non-Hyo	rosconic

INDUSTRIAL SERVICE

Includes applications such as dc amplifiers, audio amplifiers and relaxation ascillators

Values are for Each Unit

Maximum Ratings, Absolute Values:

between triode units.....

Reverse Grid Current...... Amplification Factor

Plate Resistance

Transconductance 1825

Maximum Runnys, Absolute V	11003.			
DC PLATE VOLTAGE		275	max.	Volts
DC PLATE SUPPLY VOLTAGE		330	max	Volts
GRID VOLTAGE:				
Negative bias value —1•	min.	to —100	max.	Volts
Negative peak value		—200	max.	Volts
DC GRID CURRENT		2	max.	Ma
DC CATHODE CURRENT		15	max.	Ma
PLATE DISSIPATION		1.75	max.	Watts
PEAK HEATER-CATHODE VOLTAG	GE:			
Heater negative with				
respect to cathode		100	max.	Volts
Heater positive with				
respect to cathode				
AMBIENT TEMPERATURE RANGE	₹	— 55	to +90) °C
Maximum Circuit Value (for an	y opei	ating con	dition) .
Grid-Circuit Resistance		2	max.	Meg
Characteristics and Range Val	ues:			
Heater Volts, 6.3; Plate Vo		Grid Volts,	9	
	Min.		Max.	
Heater Current	0.55	0.6	0.65	Amp
Heater-Cathode Current with				
heater-cathode voltage of				
±100 volts		_	5	μa
Plate Current	4.8	6.5	8.2	Ma
Plate Current for grid volt-				
age of -24 volts		_	15	μa
Difference in Plate Current				

2.0

0.2

22

20

9100

2200

18

Ma

Ohms

2575 µmhos

Typical Operation—Resistance-Coupled Amplifier (Each Triode Unit):

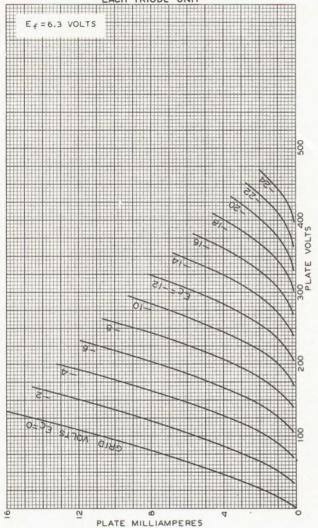
/ 1	•									
Plate-Supply Voltage		90			180			300		Volts
Plate Load Resistor	0.05	0.1	0.25	0.05	0.1	0.25	0.05	0.1	0.25	Megohm
Grid Resistor (of following stage)	0.1	0.25	0.5	0.1	0.25	0.5	0.1	0.25	0.5	Megohm
Cathode Resistor	2070	3940	9760	1490	2830	7000	1270	2440	5770	Ohms
Cathode Bypass Capacitor	2.66	1.29	0.55	2.86	1.35	0.62	2.96	1.42	0.64	$\mu \mathbf{f}$
Blocking Capacitor	0.029	0.012	0.007	0.032	0.012	0.007	0.034	0.0125	0.0075	μf
Peak Output Voltaget	14	17	18	30	34	36	51	56	57	Volts
Voltage Gain¶	12	13	13	13	14	14	14	14	14	

 $^{^{\}circ}$ For resistance-coupled amplifier applications, the negative bias may be as low as $-0.5~\mathrm{vort},$

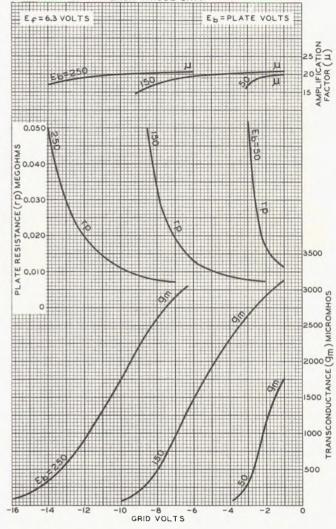
[†]This peak output voltage is obtained across the grid resistor of the following stage at any frequency within the flat region of the output vs frequency curve, and is for the condition where the signal level is adequate to swing the grid of the resistance-coupled amplifier tube to the point where its grid starts to draw current.

^{*}May deviate $\pm 10\,\%$ from rated value provided such deviation occurs for less than $2\,\%$ of the operating time.

*With no external shield.

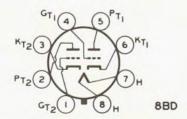

¶At an output voltage of 5 volts rms.

The cathode bypass capacitors and blocking capacitors have been chosen to give output voltages at 100 cps (f_1) which are equal to 0.8 of the mid-frequency value. For any other value of (f_1) , multiply the values of cathode bypass and blocking capacitors by $100/f_1$.

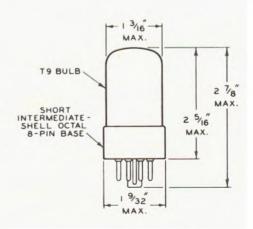

5692

AVERAGE PLATE CHARACTERISTICS

92CM-6257


AVERAGE CHARACTERISTICS EACH TRIODE UNIT

92CM-6914


SOCKET CONNECTIONS

Bottom View

Pin 1: Grid of Triode Unit No. 2 Pin 2: Plate of Triode Unit No. 2 Pin 3: Cathode of Triode Unit No. 2 Pin 4: Grid of Triode Unit No. 1 Pin 5: Plate of Triode Unit No. 1 Pin 6: Cathode of Triode Unit No. 1 Pin 7: Heater Pin 8: Heater

DIMENSIONAL OUTLINE

RCA - 5693

SHARP-CUTOFF PENTODE

RCA-5693 is a sharp-cutoff pentode designed and manufactured for critical industrial applications. In such service, it is particularly useful as a high-gain resistancecoupled amplifier.

Electrical

This tube can be operated with a grid-No.1 resistor having a value as high as 40 megohms depending on the operating conditions as given on page 7.

The electrical characteristics of the 5693 are similar to those of the 6SJ7. The 5693 is recommended as a replacement for the 6SJ7 only where the operating conditions are within the ratings of the 5693, and only where long life, rigid construction, extreme uniformity and exceptional stability are needed. If the 5693 is operated at the higher maximum ratings of the 6SJ7, the full advantages of the 5693 will not be obtained.

GENERAL DATA

Electrical:				
Heater, for Unipotential Cathode	e:			
Voltage (AC or DC)		$6.3 \pm$	5%* T	Volts
Current		0.3		Amp
Direct Interelectrode Capacitance	es:°			•
-	Min.	47.	Max	
Grid to Plate	—	-	0.005	$\mu\mu f$
Input	4.8	5.3	5.8	$\mu\mu f$
Output	5.6	6.2	6.8	$\mu\mu\mathbf{f}$
Mechanical:				
Mounting Position				Any
Maximum Overall Length				
Seated Length		1-31/3	$32'' \pm 3$	/32"
Maximum Diameter			1-5	/16"
Bulb				
Base				
		Non-l	Hygroso	opić

Typical Operation—Resistance-Coupled Amplifier:

Plate & Grid-No. 2 Supply Voltage		90		
Plate Load Resistor	0.1	0.25	0.5	0.1
Grid-No. 1 Resistor	0.25	0.5	1	0.25
Grid-No. 2 Resistor	0.29	0.92	1.7	0.31
Cathode Resistor	880	1700	3800	800
Grid-No. 2 Bypass Capacitor	0.085	0.045	0.03	0.09
Cathode Bypass Capacitor	7.4	4.5	2.4	8
Blocking Capacitor •	0.016	0.005	0.002	0.015
Peak Output Voltage†	23	18	22	60
Voltage Gain¶	68	93	119	82

¶At an output voltage of 5 volts rms.

*May deviate $\pm 10\%$ from rated value provided such deviation occurs for less than 2% of the operating time. *With shell connected to cathode.

"The 5693 may be operated at a grid-No.2 voltage as high as the maximum rated grid-No.2 supply voltage (330 volts) when the grid-No.2 dissipation is not exceeded for any signal conditions and when a resistor is used in series with the grid-No.2 and its supply voltage.

 $\blacksquare For resistance-coupled amplifier applications, the negative grid-No.1 bias may be as low as <math display="inline">-0.5$ volt.

INDUSTRIAL SERVICE

Includes applications such as do and resistance-coupled amplifiers

Maximum Ratings, Absolute Values:	
DC PLATE VOLTAGE	max. Volts
DC PLATE SUPPLY VOLTAGE	max. Volts
DC GRID-No. 3 (SUPPRESSOR) VOLTAGE:	
Negative bias value $\left\{ egin{array}{c} 0 & 1 \\ -100 & 1 \end{array} \right\}$	min. Volts
DC GRID-No. 2 (SCREEN) VOLTAGE125** 1	max. Volts
DC GRID-No. 2 SUPPLY VOLTAGE	max. Volts
GRID-No. 1 (CONTROL-GRID) VOLTAGE:	
Negative bias range —1■ min. to —50 1	max. Volts
Negative peak value	max. Volts
DC CATHODE CURRENT 10 1	max. Ma
PLATE DISSIPATION 2 1	max. Watts
GRID-No. 2 DISSIPATION 0.3 1	max. Watt
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode	max. Volts
Heater positive with	
respect to cathode 100	max. Volts
Ambient Temperature Range —55 t	
Maximum Circuit Value:	
See curve on page 7 for max. values of grid-Ne	o.1 resistor.

Heater Volts, 6.3; Plate Volts, 250; Grid-No. 3 Volts, 0; Grid-No. 2 Volts, 100; Grid-No. 1 Volts, -3

Characteristics and Range Values:

180

0.25

0.94

1060

0.06

0.004

6.6

47

131

0.5

0.5

2.2

2180

0.04

0.002

3.8

44

192

1

-	Min.	A1.	Max.	
Heater Current	0.275	0.3	0.325	Amp
Heater - Cathode Current				
with heater-cathode volt-				
age ±100 volts	-	-	5	μa
Plate Current	2.3	3.0	3.7	Ma
Plate Cur. for grid-No.1				
voltage of -7.5 volts	2	30	80	$\mu \mathbf{a}$
Plate Cur. for grid-No.3				
voltage of -70 volts	150	450	750	μa
Grid-No. 2 Current	0.60	0.85	1.10	Ma
Reverse Grid No.1 Cur	_		0.1	μa
Plate Resistance	1.0	_		Meg
Transconductance	1400	1650	1900	µmhos

0.1

0.25

0.37

530

0.09

10.9

96

98

0.016

• The cathode and grid-No.2 bypass capacitors and blocking capacitors have been chosen to give output voltages at 100 cps (f ₁) which are equal to 0.7 of the mid-frequency value. For any other value of (f ₁), multiply the values of cathode bypass, grid-No.2 bypass, and blocking	
capacitors by 100/f ₁ .	

300

0.25

0.5

1.10

860

0.06

7.4

88

167

0.004

Volts

μf

 μf

 μf Volts

Megohm

Megohm

Megohms Ohms

0.5

2.2

1410

0.05

0.002

5.8

79

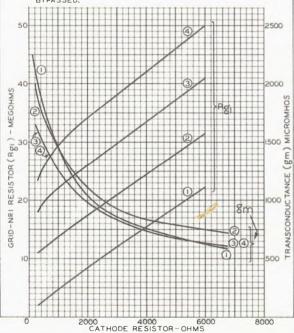
238

1

[†]This peak output voltage is obtained across the grid resistor of the following stage at any frequency within the flat region of the output vs frequency curve, and is for the condition where the signal level is adequate to swing the grid of the resistance-coupled amplifier tube to the point where its grid starts to draw current.

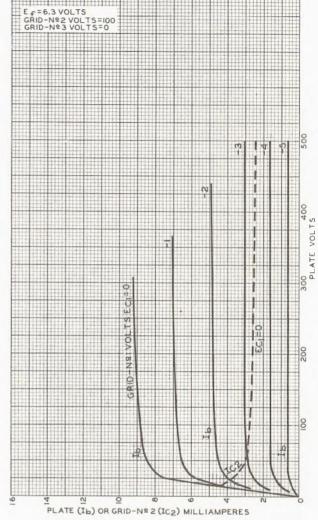
5693

OPERATION CHARACTERISTICS


Ef=	6.3 VOLTS	PLATE VOLTS = 3	000 GRID-Nº	
CURVE	GRID-Nº2 RESISTOR	GRID-Nº 2 SUPPLY VOLTS	ON THE FOL	
1	0 MEG.	100	ΔΙκ=300μΑΝ	
2	0.25 MEG.	300	AS A RATIO,	
3	0.5 MEG.	300	ΔI _K 30	
4	0.75 MEG.	300	ΔIg, 0.1	

GRID-Nº 3 VOLTS = 0

THESE CURVES ARE BASED ON THE FOI LOWING VALUES: $\Delta I_R = 300 \mu AMP$, $\Delta I_g = 0.1 \mu AMP$ EXPRESSING THESE VALUES AS A RATIO, WE HAVE: $\frac{\Delta I_R}{\Delta I_g} = \frac{300}{0.1} \text{ OR } 3000$


FOR THOSE APPLICATIONS PERMITTING OTHER VALUES OF ΔI_{K} , A NEW RATIO OF $\Delta I_{K}/\Delta I_{Q}$ CAN BE CALCULATED. THE VALUES OF RG, AS READ FROM THE CURVE MUST BE MULTIPLIED BY A FACTOR WHICH IS THE QUOTIENT OF THE NEW RATIO DIVIDED BY THE OLD RATIO. FOR EXAMPLE, IF THE NEW RATIO IS 6000 THE MULTIPLYING FACTOR IS 6000/3000, OR 2, AND VALUES OF Rg, AS READ FROM THE CURVE ARE THEREFORE MULTIPLIED BY 2.

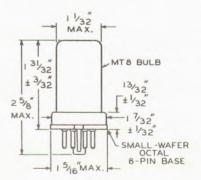
NOTE: TRANSCONDUCTANCE CURVES WERE OBTAINED WITH GRID-Nºº 2 RESISTOR AND CATHODE RESISTOR SUITABLY BYPASSED.

92CM-6920

AVERAGE PLATE CHARACTERISTICS PENTODE CONNECTION

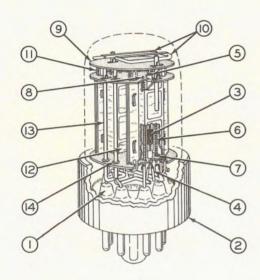
92CM-4939RI

SOCKET CONNECTIONS


Bottom View

8N

Pin 1: Shell Pin 2: Heater Pin 3: Grid No. 3 Pin 4: Grid No. 1 Pin 5: Cathode Pin 6: Grid No. 2 Pin 7: Heater Pin 8: Plate


DIMENSIONAL OUTLINE

RCA Special Red

TUBES

for 10,000 Hours of

- 1—Low-leakage button stem.
- 2—Non-hygroscopic base.
- 3—Pure-tungsten heater for high mechanical strength.
- 4—Sleeves on heater legs insure good mechanical and electrical bond between heater and heater leads.
- 5—Cathode sleeves locked to mica insulator.
- 6—Grid plated to minimize variation in contact potential.
- 7—"Stops" prevent vertical movement of grid rods.
- 8—Grid rods fit tightly into mica insulators.
- 9—Extra mica insulator provides getter shield.
- 10—Two getters for long life.
- 11—Plates held rigid by plate ears wedged into mica insulators.
- 12—Plates are designed to minimize electron coupling between units.
- 13-Mount secured by five supporting rods.
- 14—Twelve reinforcing eyelets provide a firm bond between mica insulators and five supporting rods.

Structure of RCA-5691 and RCA-5692

Dependable Service

- when the proper operation of vital manufacturing, communications, laboratory, and other industrial equipment depends on tube uniformity and stability.
- when tube failure means factory shutdown or hazardous operation.
- when initial tube cost is secondary to cost of maintenance.
- WHENEVER the accent is on quality—
 and quality alone—

USE RCA "Special Red" Tubes: RCA-5691, RCA-5692, or RCA-5693. They are skillfully engineered, ruggedly designed, precisely manufactured, exactingly processed, and rigorously tested, and will withstand impact shocks of 500g for short periods, and 2.5g of continuous vibration for hundreds of hours.