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PREFACE 

It is the purpose of this book to present the basic principles of electro-
magnetic-field theory with approximately equal emphasis on the various 
branches that find application in such divers areas as electronics, power, 
radiation, and propagation. Although the field point of view is stressed, 
the close interrelation of field and circuit theory is also pointed out, as, for 
example, in the development of field equations from circuit theory and 
by the very useful concept of the curvilinear square volume or field cell. 
The first seven chapters are written for an introductory field-theory 

course in physics or electrical engineering at about the third- or fourth-
year college level. The subjects covered include static electric and 
magnetic fields, steady currents, and changing electric and magnetic 
fields.  The last seven chapters form a continuation and are written for a 
somewhat more advanced field-theory course at about senior or first-
year-graduate level. These chapters treat plane waves in dielectric and 
conducting media, transmission lines, wave guides, antennas, and 
boundary-value problems.  Each set of seven chapters includes enough 
material for a course of about one semester. 
The material in the book has been used in courses in electrical engi-

neering at the Ohio State University for several years. The first seven 
chapters are covered in a course given in the last part of the junior year, 
while the last seven chapters are treated in a course given in the first part 
of the first year of the graduate program. 
As a prerequisite for the introductory field course the student should 

have completed a first course in general physics and mathematics through 
the differential and integral calculus.  A course in vector analysis is 
desirable either beforehand or concurrently, but is not a necessity since 
most of the vector concepts are developed as they are needed. 
The rationalized mksc system of units is used. This system is rapidly 

coming into almost universal use and has many practical advantages. 
Throughout the book the dimensional equality of equations is stressed 
as a necessary condition for correctness.  In this connection the dimen-
sional relations are frequently expressed in the appropriate mksc units. 
A complete table of units is given in the Appendix. 
A feature of the book is the large number of worked examples. These 

examples are stated in problem form, and many of them serve not only to 
apply the theory but also to develop it further.  Complete problem sets 
are to be found at the end of each chapter.  Many important results not 
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given in the text are stated as exercises in these problem sets. Answers 
are also included for many of the odd-numbered problems. 
The presentation of magnetic fields is based on the actual physical 

situation rather than on fictitious magnetic charges.  Furthermore, 
particular attention is given to the fact that it is the flux density B that 
occurs in the force relations involving the magnetic field. 
Space vectors are always indicated by boldface symbols.  Complex 

quantities, or phasors, are sometimes indicated by a dot (') over the 
symbol where it is desired to indicate explicitly that a quantity is com-
plex.  However, for simplicity of notation the dot is usually omitted 
where it is obvious that the quantity is complex. 
An aim throughout the book has been to approach a new subject 

gradually.  For example, wherever possible, simple special cases are 
considered first, and then with these as background the general case is 
developed. 
Although great care has been exercised, some errors in the text or 

figures will inevitably occur. Anyone finding them would do the author 
a great service to write him about them so that they can be corrected in 
subsequent printings. 
In conclusion the author wishes to express his appreciation to many of 

his associates and students for numerous helpful suggestions and also for 
confirming the answers to many of the problems. 

JOHN D. KRAUS 
COLUMBUS, OHIO 
October, 1952 
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CHAPTER 1 

THE STATIC ELECTRIC FIELD. PART 1 

X  1-1. Dimensions and Units. Lord Kelvin is reported to have said: 
" When you can measure what you are speaking about and express it in 
numbers you know something about it; but when you cannot measure 
it, when you cannot express it in numbers your knowledge is of a meagre 
and unsatisfactory kind; it may be the beginning of knowledge but you 
have scarcely progressed in your thoughts to the stage of science whatever 
the matter may be." To this it might be added that before we can meas-
ure something we must define its dimensions and provide some stand-
ard, or reference, unit in terms of which the quantity can be expressed 
numerically. 
A dimension defines some physical characteristic.  For example, length, 

mass, time, velocity, and force are dimensions.' The dimensions of 
length, mass, time, and electric charge will be considered as the funda-
mental dimensions since other dimensions can be defined in terms of these 
four. This choice is arbitrary but convenient. Let the letters L, M, T,  
and Q represent the dimensions of length, mass, time and electric charge, 
respectively. Other dimensions are then secondary dimensions. For 
eTrample,—ai -ea is a secondary dimension which may be expressed in terms 
of the fundamental dimension of length squared (L2). As other examples, 
the fundamental dimensions of velocity are LIT and of force are ML/T2. 
A unit is a standard, or reference, by which a dimension can be expressed 

numerically. Thus, the meter is a unit in terms of which the dimension 
of length can be expressed, and the kilogram is a unit in terms of which 
the dimension of mass can be expressed. For example, the length 
dimension of steel rod might he 2 meters and its mass dimension 5 kg. 
y1-2. Fundamental and Secondary Units. The units for the funda-
mental dimensions are called the fundamental units. In the meter-kilo-
gram-second, or Giorgi, system of units (abbreviated mks) the meter, 
kilogram, and second are the fundamental units. Taking the coulomb 
as the fourth fundamental unit, the complete system of fundamental 
units is the meter-kilogram-second-coulomb system (mksc system). 
The definitions of these four fundamental units are: 

The term quantity is often used synonymously with dimension. 
1 
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Meter: Length between two marks on the international prototype meter, 
a platinum-iridium bar.  (39.37 in. = 1 meter.) 
Kilogram: Mass of international prototype kilogram, a platinum-

iridium mass.  (2.2 lb  1 kg.) 
Second: 1/86,400 part of a mean solar day. 
Coulomb: 1 international ampere-second, where 1 international ampere 

is the current that, flowing steadily through a solution of silver nitrate, 
will deposit silver at the rate of 1.11800 X 10-6  kg per sec. 
The units for dimensions other than mass, length, time, and charge are 

called secondary, or derived, units and are based on the above funda-
mental units. 
In this book the rationalized mksc system of units is used. The 

rationalized system has the advantage that the factor 4ir does not appear 
in Maxwell's equations although it does appear in certain other relations. 
A complete table of units in this system is given in the Appendix.  In 
the table there is an alphabetical listing of dimensions or quantities 
under each of the following headings: Fundamental, Mechanical, Elec-
trical, and Magnetic. For each quantity the symbol, description, mksc 
unit, equivalent units, and fundamental dimensions are listed. 
It is suggested that as each new quantity and unit is discussed the 

student refer to the table and, in particular, become familiar with the 
fundamental dimensions for the quantity. 
1-3. Dimensional Analysis. It is a necessary condition for correctness 

that every equation be balanced dimensionally.  For example, consider 
the hypothetical formula 

M   — DA - (1-1) 

where M = mass 
L = length 
D = density (mass per unit volume) 
A = area 

The dimensional symbols for the left side of (1-1) are M/L, the same as 
those used.  The dimensional symbols for the right side are 

148 L 

Therefore, both sides of this equation have the dimensions of mass per 
length, and the equation is balanced dimensionally. This is not a guar-
antee that the equation is correct, that is, it is not a sufficient condition 
for correctness.  It is, however, a necessary condition for correctness, 
and it is frequently helpful to analyze equations in this way to determine 
whether or not they are dimensionally balanced. 
Such dimensional analysis is also useful for determining what the 

dimensions of a quantity are.  For example, to find the dimensions of 
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force, we make use of Newton's second law that 

Force = mass X acceleration 

Now acceleration has the dimensions of length per time squared so that 
the dimensions of force are 

Mass X length 
Time' 

or in dimensional symbols 
ML 

Force = y 2 

X 1-4. Electric Charge. The fourth fundamental dimension, or quan-
tity, in the mksc system is electric charge.  Whereas mass is only of one 
type (positive mass), electric charge is of two kinds, positive and negative. 
The natural elemental unit of negative electric charge is that possessed 
by an electron and is equal to —1.6 X 10-" coulomb.  The designation 
of the electron charge as negative is entirely arbitrary and is the result 
of definition. 
A neutral, or normal, atom consists of one or more orbital electrons 

(negatively charged) and a much heavier nucleus of equal positive charge. 
The total, or net, charge of the normal atom is zero.  If one or more 
orbital electrons is removed, the atom is ionized.  A singly ionized atom 
(one electron removed) has a net charge of +1.6 X 10-" coulomb. A 
doubly ionized atom (two electrons removed) has a net charge of +3.2 X 
10-J° coulomb, etc.  While negative charge is associated with electrons, 
positive charge may be associated with atoms having a deficiency of 
electrons.  Thus, an object with an excess of electrons possesses a nega-
tive charge and an object with a deficiency of electrons a positive charge. 

x 1-5. The Force between Point Charges and Coulomb's Law.  A 
group of charged particles, that is, atoms or electrons, occupies a finite' 
volume.  Even a single electron has a finite size.  However, it is often 
convenient to regard a small, concentrated region of charged particles 
as a point charge. This assumption leads to no appreciable error provided 
the size of the volume occupied by the charged particles is small compared 
with the other distances involved. 
The basic experiment of electrostatics was first performed by Coulomb 

about 1785, using small charged bodies which may be regarded as point. 
charges. The results of this experiment are given by Coulomb's law, 
which states that the force F between two point charges Qi and Q2 is 
proportional to the product of the charges and inversely proportional 
to the square of the distance r between them.  That is, 

121Q2 F = n L , —  newtons 
r2 

I By "finite" is meant "not infinitesimal." 

(1-2) 
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where k = a constant of proportionality.  Because of the inverse-square 
effect of distance this law is said to be an inverse-square law. The force 
is in the direction of the line connecting the charges. As suggested in 
Fig. 1-la the force is outward (repulsive force) if the two charges are of 
the same sign, but as suggested in Fig. 1-lb the force is inward (attrac-
+  + a, F  tive force) if the two charges are of oppo-

(a) site sign. 
Q2 

In the mksc system the constant of pro-
portionality is given by 

P  — a,  1 
(6)  k 

Q2 
FIG. 1-1. Two point charges of  where e = permittivity' of the medium in 
same sign (a) and of opposite  which the charges are situated.  By di-
sign (b).  mensional analysis of (1-1) we find that 
e has the dimensions of capacitancet per length, or in dimensional symbols 
T2Q2/mLe. The mksc unit for permittivity is the farad per meter. The 
permittivity of vacuum is designated eo and has a value of 

8.85 X 10  -12 1 367 10-2 farads/meter 

The permittivity of air is substantially the same as for vacuum. 
Force is a vector, that is, it has both magnitude and direction.  In this 

book boldface letters designate vectors. Thus, the vector force is indi-
cated by F and its scalar magnitude by the lightface italic quantity F, 
that is, F = IFI.  Rewriting (1-2) as a vector equation and also sub-
stituting the value of k, we have 

F = a, Qaz 
4/rer2 

(1-3) 

where F = force (newtons) 
a, = unit vector (see Fig. 1-1) pointing in direction of line joining 

the charges (thus, F = a,F) 
Qi = charge 1 (coulombs) 
Q2 = charge 2 (coulombs) 

•  e = permittivity of medium (farads/meter) 
r = distance between point charges (meters) 

1 Also called the dielectric constant.  For a further discussion of permittivity see 
Sec. 2-2. The term capacitivity is also used for permittivity. 
t For a discussion of capacitance see Sec. 2-7. The significance of e should become 

clearer after reading the portion of Sec. 2-26 on the field cell capacitor. 
One newton equals the force required to accelerate 1 kg 1 meter per sec per sec. 

1 newton = 10' dynes = weight of 0.102 kg 
.• weight of 0.224 lb avoirdupois 
= weight of 3.6 oz avoirdupois 
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This is the complete vector expression for Coulomb's law as expressed in 
the rationalized mksc system. To demonstrate the application of this 
law let us consider the following problem. 

Example.  A negative point charge of 10-6 coulomb is situated in air at the origin 
of a rectangular coordinate system.  A second negative point charge of 10-4 is situated 
on the positive x axis at a distance of 50 cm from the origin.  What is the force on the 
second charge? 
Solution.  By Coulomb's law the force 

( —10-')( —10-4 )  
F  I 4T X 0.52 X 10-9 /36T 

+i3.6  newtons 

That is, there is a force of 3.6 newtons (0.8 lb) in the positive x direction on the second 
c harge. 

1-6. Electric Field Intensity.  Consider a positive electric point 
charge Qi situated at the origin of a polar coordinate system.  If another 
positive point charge Q2 is brought into the vicinity of Q1, it is acted 
upon by a force. This force is directed radially outward and becomes 
greater as Q2 approaches Q1. It is 
said that Q1 is surrounded by afield, 
that is, a region in which forces 
may act. The nature of this field 
is indicated by the vector diagram of 
Fig. 1-2, the length of the vector 
being proportional to the force at the 
point.  .11m•  • 

Dividing (1-3) by Q2 puts the equa-
tion in the dimensional form of force  /  I \ 
per charge, that is, 

force  
Qs  charge 

which has the dimensional symbols 

ML 
T2Q 

Now if Q2 is a positive test charge, the resulting force per unit charge is 
defined as the electric field intensity' E. Thus, from (1-3) 

Q1 (1-4) 
*€2  4./rer2 

4 

no. 1-2. Point charge Q1 with vectors 
indicating magnitude and direction of 
associated electric field. 

where Qg = positive test charge. The mksc unit of electric field intensity 
is the newton per coulomb.  As will appear after the discussion of electric 
potential (Sec. 1-8), an equivalent unit for the electric field intensity is 
the volt per meter. 
Also called the eledrie field strength. 
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According to (1-4) the point charge Q1 is surrounded by an electric 
field of intensity E which is proportional to Qi and is inversely propor-
tional to r2. The electric field intensity E is a vector having the same 
direction as the force F but differs in numerical magnitude and in 
dimensions. 
It is not implied by (1-4) that the positive test charge has a value of 

1 coulomb.  It may have any convenient value since the ratio of the 
force (newtons) to the test charge (coulombs) is independent of the size 
of the charge provided the test charge does not disturb the field being 
measured.  Now 1 coulomb represents a much larger charge than is 
ordinarily encountered in static problems.  For example, we note by 
Coulomb's law that the repulsive force of two positive charges of 1 
coulomb separated by 1 meter is 9 X 109 newtons (or 1 million tons). 
This is an enormous force, and it follows that if we attempted to use a 
test charge of 1 coulomb we should tend to disturb the charges whose 
field we seek to measure. Therefore, it is necessary to use small test 
charges; in fact, the test charge should be sufficiently small that it 
does not appreciably disturb the charge configuration whose field is to 
be measured. 
If the test charge is made small enough, it may be regarded as of 

infinitesimal size so that the ultimate value of the electric field intensity 
at a point becomes the force AF on a positive test charge MI divided 
by the charge with the limit taken as the charge approaches zero. That 
is, 

E = lim — Al' (1-5) 
aci,-.0 AQ 

Actually the smallest available test charge is an electron. Since this is 
a finite charge, it follows that E cannot be measured with unlimited 
accuracy. Although this is of importance in atomic problems, it need 
not concern us in the large-scale, or macroscopic, problems treated in 
this book.  In practice, E would be measured with a small but finite 
test charge, and if this charge is small enough, E would differ inappreci-
ably from that measured with an infinitesimal or vanishingly small test 
charge as implied in (1-5). 
A sample calculation of electric field intensity is given in the following 

problem. 

Example.  A negative point charge 10-' coulomb is situated in air at the origin of 
a rectangular coordinate system.  What is the electric field intensity at a point on the 
positive x axis 3 meters from the origin? 
Solution. By (1-4) the field intensity is given by 

10-g   
E =  i 41 X 32 X 10-2 /3137 

i• —110  newtons/coulomb 
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That is, the electric field intensity is 10 newtons per coulomb (or 10 volts per meter) 
and is in the negative x direction. 

1-7. The Electric Field of Several Point Charges and the Principle of 
Superposition of Fields. Since the electric field of a point charge is a 
linear function of the value of the charge, it follows that the fields of 
more than one point charge are linearly superposable by vector addition. 
As a generalization, this fact may be stated as the principle of superposi-
tion applied to electric fields as follows: 
The total or resultant field at a point is +Q2 

the vector sum of the individual component 
fields at the point. 
Thus, referring to Fig. 1-3, the field in-

tensity of the point charge (21 at the point 
P is El and of the point charge Q2 is EY. 

The total field at P due to both point +Q1 
charges is the vector sum of El and E2, or  FIG.  1-3. Vector addition of 
E as indicated in the figure.  fields due to two equal point 
A further illustration is given in the fol-  charges of the same sign to give 

lowing example.  resultant or total field E. 

Example.  A positive point charge of 10-9 coulomb is situated in air at the origin 
(x = 0, y = 0), and a negative point charge of —2 X 10-9 coulomb is situated on the 
y axis 1 meter from the origin (x = 0, y = 1) as shown in Fig. 1-4.  Find the total 

-2x 10-' coulomb 

120.7° 

+10-9 coulomb 

Fm. 1-4. Vector addition of fields due to two unequal point charges of opposite sign 
to give resultant or total field E. 

electric field intensity at the point P on the x axis 2 meters from the origin (x  2, 
y = 0). 
Solution.  The vector value of the electric field El due to the charge at (0, 0) is, 

from (1-4), 

10-9   
Ei = i 47 X 29 X 10-9 /36T 
= i2.25  newtons/coulomb 
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The magnitude of the field El due to the charge at (0,1) is 

—2 X 10-2   
E2 4r X 2.242 X 10-2 /367 
= —3.58 newtons/coulomb 

The vector value of E2 is given by 

E2 —i3.58 cos a  j3.58 sin a 
2 1 

—13 "."' 2.24  'I"—cia  2.24 
= —13.2  j1.6  newtons/coulomb 

where i is a unit vector in the x direction and j a unit vector in the y direction.  The 
total vector field E may be obtained by graphical vector addition of E1 and E2 or 
analytically as follows: 

E  1(2.25 — 3.2) + j1.6 

and in both rectangular and polar forms 

E = —i0.95  j1.6 = 1.86/120.7° newtons/coulomb 

X 1-8. The Electric Scalar Potential.  It has been shown that an 
electric charge produces an electric field and that a test charge brought 
into this field is acted on by a force. Let us now consider the work or 
energy required to move the test charge from one point to another in the 
electric field. 
A point charge produces a nonuniform field since its magnitude varies 

inversely as the distance squared.  However, if we confine our atten-
tion to a small portion of the field at a great distance from the charge, the 

field is substantially uniform.  Con-
sider two points, x1 and xs, situated in 

.  •  such a uniform electric field E parallel • 4 4   
•  Path  22 to the x direction. Let a positive test 

charge at xs be moved in the negative x 
Flu. 1-5. Linear path in uniform  direction to x1 as in Fig. 1-5. The field 
electric field. 

exerts a force on the charge so that it 
requires work to move the charge against the force. The amount of work 
per unit charge is equal to the force per unit charge (or field intensity E) 
times the distance through which the charge is moved. Thus, 

E(x2 — xi) = work per unit charge  (j oules/coulomb)  (1-6) 

The dimensions of (1-6) are 

Force work  
X length — 

Charge  charge 
or 

ML L _ MV 
T2 Q  T2Q 
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In mksc units the relation is 

Newtons joules  
X meters ---. 

Coulomb  coulomb 

9 

(1-7) 

The dimensions of work per charge are those of potential.  In our 
example (Fig. 1-5), the work or energy per unit charge required to trans-
port the test charge from x2 to x1 is called the difference in electric poten-
tial' of the points x2 and xl. The point x1 has the higher potential since 
it requires work to reach it from point x2. Thus, moving from x2 to xl 
(opposite to E), we experience a rise in potential. The unit of electric 
potential V in the mksc system is the volt and is equal to 1 joule per 
coulomb. Hence, electric potential is expressible either in joules per 
coulomb or in volts. The relation of (1-7) can then be extended to 

Newtons joules  
X meters —   = volts 

Coulomb  coulomb 

Dividing by meters, we obtain 

Newtons — —volts = electric field intensity 
Coulomb  meter 

Thus, the electric field intensity E is expressible in either newtons per 
coulomb or in volts per meter.  With E expressed in volts per meter the 
dimensional form of (1-6) becomes 

Volts  
X meters = volts  (1-8) 

Meter 

Example. Let the uniform electric field in Fig. 1-5 have an intensity E of 10 volts/ 
meter.  If the distance x2 — xi is 10 cm what is the potential difference of the two 
points? 
Solution.  From (1-8) the electric potential is given by 

V  10 X 0.1 = 1 volt 

That is, the potential of xi is 1 volt higher than the potential-of x2. 

Consider next the case of a nonuniform field such as exists in the 
vicinity of the positive point charge Q (Fig. 1-6). The electric field E 
is radial and is inversely proportional to the square of the distance r 
from the charge Q. The energy per coulomb required to move a positive 
test charge from r2 to ri along a radial path equals the potential differ-

I Potential, in general, is a measure of energy per some kind of unit quantity.  For 
example, the difference in gravitational potential at sea level and 100 meters above 
sea level is equal to the work required to raise a 1-kg mass from sea level to a height 
of 100 meters against the earth's gravitational field.  Potential is a scalar quantity, 
that is, it has magnitude but no direction. 
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ence or rise V21 between the points. This is given by 

V21 = fri dV -= — i r2  E dr  volts  (1-9) 
r,  r, 

The negative sign takes into account the fact that the motion from r2 to 
ri is opposite to the direction of the field. Substituting the value of E 

from (1-4) yields 
If 

4-  .4-  4-.--.  •+Q . —..--4—• 
rl Path  7.2 

\ 

fr, Irer2 dr  
?I  Q 

Q 1" dr  Q (1  1 
47€ r, r2 47re ri  r2 

(1-10) 

where Vi = potential at point ri 
\  V2 = potential at point r2 

The potential difference or rise in It 
Fm. 14. Linear path in nonuniform  (1-10) is positive since work must be 
electric field,  expended to move the test charge from 

r2 to ri against the field.  However, 
if the motion is from ri to r2, the field does work on the charge and there 
is a fall in potential (negative potential difference). 
If the point r2 (Fig. 1-6) is removed to infinity, we can consider that it 

is at zero potential. Thus, (1-10) becomes 

Q  Vi = (1-11) volts 
4ireri 

This potential is called the absolute potential of the point ri due to the 
charge Q. It is inversely proportional to the distance from Q to the 
point ri and is, by definition, the work per coulomb required to bring a 
positive test charge from infinity to the point ri. For the sake of brevity 
the potential at a point will hereafter be understood, unless otherwise 
specified, to mean the absolute potential of the point. 
X 1-9. The Electric Scalar Potential as a Line Integral of the Electric 
Field.  In Sec. 1-8 the test charge is moved via the shortest path between 
two points.  Actually, the path followed is immaterial since the potential 
difference is determined solely by the difference in potential of the two 
end points of the path. Thus, referring to Fig. 1-6, the potential at the 
point 7.1 with respect to the potential at r2 is said to be single-valued, 
that is, it can have only one value regardless of the path taken from r2 
to 2.1. In Sec. 1-8 the test charge is moved parallel to the electric field 
E. When the path of the test charge is not parallel to E but at an angle 
0, as in Fig. 1-7, the potential difference V21 between the points x2 and xi 
is equal to the path length (x2 — xi) multiplied by the component of E 
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parallel to it. Thus, 

V21 =  (x2 —  Xi) E cos 0  (1-12) 

It is assumed here that E is uniform. 
If the test charge is moved perpendicular to the direction of the field 

(0 = 90°), no work is performed and hence this path is said to be an 
equipotential line.  It is an important prop-
erty of fields that equipotential and field lines 

E 

are orthogonal.  •  •  • 

Let us consider next the case where the x1X2 

path of the test charge is curved. Then the  FIG. 1-7. Linear path in uni-
form electric field at angle O. 

potential difference between the end points 
of the path is given by the product of the infinitesimal element of path 
length dl and the component of E parallel to it, integrated over the length 
of the path.  Referring to the path in the uniform field E in Fig. 1-8, the 

infinitesimal potential rise dV be-
tween the ends of the path element 
dl is given by 

dV = —E cos 0 dl (1-13) 

where 0 = angle between the path 
x element and the field (0 < 0 < 90°). 
A potential rise (positive potential 
difference dV) requires that the 
component of the motion parallel to 
E be opposed to the field.  Hence 

Flo. 1-8. Curved path in a uniform elec-  the negative sign in (1-13).  By in-
tric field. 

tegrating (1-13) between the limits 
a and b, we obtain the potential rise Va, between the points a and b. 
Thus, 

=  fab dV =  Vb  Va =  lab E cos 0 dl  (1-14) 

The integral involving dl in (1-14) is called a line integral.  Hence the 
potential rise between a and b equals the line integral of E along the 
curved path between a and b. 

Example 1. In Fig. 1-8 let E be everywhere in the +x direction and equal to 
10 volts/meter (a uniform field). Let xi .= 1 meter.  Find V. 
Solution.  From (1-14) 

to 0 
— Ecos 0 dl = — E dx  Exi ng, +10 volts 

a  JXa 

As a variation of the above example, suppose that the path is from 
b to a. Then Vb,, = —10 volts.  As a third variation, let the direction 
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of E be reversed (negative x direction) but the path be from a to b. Then, 

Vab =  f b (— E) cos 0 dl = f ° E dx = — 10 voltsa x 

Finally, let us consider the situation where the path of the test charge 
is curved and also where the electric field is nonuniform.  For instance, 
let the nonuniform field be produced by a point charge +Q as in Fig. 1-9. 
The field intensity due to a point charge is given by (1-4). Substituting 
this in (1-14) and also putting dr = cos 0 dl, where dr is an infinitesimal 
element of radial distance, 

r''b  dr  Q  1  i\ 
4we  -6 1. 4we b  a 

17.e = —  f _2 - _ - volts  (1-15) 

Putting b = r1 and a = r2 makes this result identical with (1-10) where 
the path is along a radial line. 

Example 2. Let the positive charge Q, Fig. 1-9, be equal to 2.23 X 10-10  coulomb. 
Also let a  40 cm and b  10 cm. The medium is air.  Find the absolute potential 

V. at a, the absolute potential 171, at b, and the poten-
tial rise V.b. 
Solution: 

5 volts 
4re. a 
Q 1  

V  VOILS 
4700 b 

Va6  Vb —  V  15 volts 

In the above example the potential at any 
point 10 cm from Q has an absolute potential 

5  of 20 volts.  Therefore, a circle of 10 cm 
radius around Q is a 20-volt equipotential con-
tour (see Fig. 1-9).  In three dimensions a 

sphere of 10 cm radius around Q is a 20-volt equipotential surface. Like-
wise, a sphere of 40 cm radius around Q is a 5-volt equipotential surface. 
It follows that the equipotential surfaces around a point charge are con-
centric spheres. 
The work to move a test charge along an equipotential contour or 

surface is zero (0 = 900). The maximum amount of work per unit dis-
tance is performed by moving normal to an equipotential surface. This 
coincides with the direction of the field. 
The work to transport a test charge around any closed path in a static 

field is zero since the path starts and ends at the same point. Thus, the 
upper and lower limits of the integrals in (1-14) become the same, and 
the result is zero.  Suppose the path starts and ends at a (Fig. 1-9). 

Fla. 1-9. Curved path 
nonuniform electric field. 

in a 
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ja  dV = — f a E cos 0 dl = — 96 E cos 0 dl = 0 volts  (1-16) 
a 

A property of the static electric field is, then, that the line integral of this 
field around a closed path is zero.  It follows that the potential difference 
between any two points is independent of the path, as was mentioned at 
the beginning of this section. 
X 1-10. Scalar, or Dot, Product. In vector analysis the scalar, or dot, 
product of two vectors is a scalar and is equal to the product of the 
vector magnitudes times the cosine of the angle 0 between the vectors. 

Referring to Fig. 1-10, the dot product of A and B is 

A • B = AB cos 0  (1-17) 

where A = vector 
A  A = IAI = scalar magnitude of A 

Flo. 1-10. B = vector Vectors 
at angle 0.  B = IBI = scalar magnitude of B 

0 = angle between A and B 
If A • B = 0, the two vectors are perpendicular, provided, of course, 

that neither is zero. 
Introducing the vector notation of the dot product into (1-14), we 

obtain 

= fab dV = — fab E cos 0 dl = — Lb E • dl  (1-18) 

where E = electric field intensity (vector) 
E = lEl = scalar magnitude of E 
dl = infinitesimal element of path length (vector) 
dl = Idll = scalar magnitude of dl 

In vector notation the line integral (1-16) around a closed path is 
written 

IE cos 0 dl = fE • (/1 =  ( 1-1) 

X 1-11. Relation of Electric Field Lines and Equipotential Contours. 
A field line indicates the direction of the force on a positive test charge 
introduced into the field.  If the test charge were released, it would 
move in the direction of the field line. 
In a uniform field the field lines are parallel as in Fig. 1-11. A single 

field line gives no information as to the intensity of the field.  It indi-
cates only the direction.  However, by measuring the work per coulomb 
required to move a positive test charge along a field line the potential 
differences along the line can be determined.  The larger the potential 
difference between two points a unit distance apart, the stronger the field. 
The symbol f  indicates a line integral around a closed path. 
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In a uniform field the potential difference per unit length is constant so 
that the equipotential lines (which are orthogonal to the field lines) are 
equally spaced.  In the example of Fig. 1-11, the electric field intensity is 
2 volts per cm so that the equipotential contours at 1-volt intervals are 
parallel lines spaced 4- cm apart.  One of the lines is arbitrarily taken as 

I 1  I  1 i  ,  < I  I ,  
1  1  1  1 
I  I  1  I  I  I 
I  I  I  I  . I  I  I  I  
I 1 I I  I I I I 
I  I  I  /  A  I I  / 

I  I  I  I 
I  I  I  I  I  I 

I I  I 
I  i  I  I  A I I I 
I I  I I  I  I  I 
I  i  I  I  I  1  I 4 1 I 
I  I  I  I  I  I  I 
I  I  I  I  I  I  I  1 
I  I  I  I  I  4 I I  I  I 

I  I I  I  I  I  I  I  I  I  

I  I  I  1  1  I 
0   I 2  3  4  6  7  8  9  10 volts 

I I 
0  1  2I l   3  il  5 cm 

Flo. 1-11. Field lines (solid) and equipotential lines (dashed) of a uniform electric 
field. 

Scale of distance 
i  

0  1  2  3 cm 
no. 1-12. Field lines (solid) and equipotential lines (dashed) of a nonuniform electric 
field. 
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having a zero potential so that the potentials shown are relative to this 
line. 
Consider now the case of a nonuniform field such as exists in the 

vicinity of the positive point charge Q in Fig. 1-12.  If a positive test 
charge were released in this field, it would move radially away from Q, 
so that the field lines are radial.  The field intensity varies inversely as 
the square of the distance as given by (1-4).  In Fig. 1-12 this is sug-
gested by the fact that the field lines become more widely separated as 
the distance from Q increases.  The absolute potential is inversely pro-
portional to the distance from Q as given by (1-11).  If Q = 10-" cou-
lomb, the equipotential contours for 20, 10, 5, and 3 volts are then as 
shown by the concentric circles in Fig. 1-12. 
It is to be noted (Figs. 1-11 and 1-12) that a potential rise is always in 

the opposite direction to E. 
)< 1-12. Charge Density and Continuous Distributions of Charge. The 
electric charge density p is equal to the total charge Q in a volume v 
divided by the volume.  Thus, 

(1-20) 

The value of p in (1-20) is an average charge density. 
Electric charge density has the dimensions of charge per unit volume, 

or in dimensional symbols Q/Ls.  In the mksc system the unit of charge 
density is the coulomb per cubic meter. 
By assuming that electric charge may be continuously distributed 

throughout a region we can also define the value of the charge density 
p at a point P as the charge AQ in a small volume element Av divided 
by the volume, with the limit of this ratio taken as the volume shrinks 
to zero around the point P.  In symbols, 

AQ 
p = am 

av 
(1-21) 

This gives the value of p at a point and hence defines p as a point function. 
It will be convenient to use this definition of p, but it is to be noted 

that it is based on the assumption that the electric charge is continuously 
distributed.  Actually electric charge is not continuously distributed but 
is associated with discrete particles (electrons or atoms) separated by 
finite atomic distances.  Nevertheless, the assumption of a continuous 
charge distribution leads to no appreciable error provided the region con-
tains many atoms or electrons and the distances involved are large com-
pared with atomic dimensions. The assumption of continuous charge 
distribution can be applied to the large-scale, or macroscopic, problems 
treated in this book but would not be applicable to problems on atomic 
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structure, where the noncontinuous nature of the charge distribution 
must be taken into account. 
The charge density p, discussed above, is sometimes called a volume 

charge density to distinguish it from surface charge density and linear 
charge density. The surface charge density ps gives the charge per unit 
area (coulombs per square meter) at a point in a continuous surface dis-
tribution of charge. The linear charge density pi, gives the charge per 
unit length (coulombs per meter) at a point on a continuous line dis-
tribution of charge. Both pa and pi, are point functions which can be 
defined as in (1-21), with a surface or line element substituted for the 
volume element. 
1-13. Electric Potential of Charge Distributions and the Principle 

of Superposition of Potential. Since the electric scalar potential due to 
a single point charge is a linear function of the value of its charge, it 
follows that the potentials of more than one point charge are linearly 
superposable by scalar (algebraic) addition. As a generalization, this 
fact may be stated as the principle of superposition applied to electric 
potential, as follows: 
The total electric potential at a point is the algebraic sum of the individual 

component potentials at the point. 
Thus, if only the three point charges Q1, Qz, and Q3 are present in 

Fig. 1-13, the total electric potential (work per unit charge) at the point P 
is given by 

=  -r TT, 
1 ( Q1  j_ Q2  Q3) 

—  — 
owe  ri r2 r3 

where r1 = distance from (23. to P 
r2 = distance from (22 to P 
r3 = distance from Q3 to P 

This may also be expressed with a summation sign. Thus, 

V p =  —  — 
+re  r„ 

(1-22) 

(1-23) 

If the charge is not concentrated at a point but is distributed along a 
line as in Fig. 1-13, the potential at P due to this linear charge distribu-
tion is 

(1-24) 
4re  r 

where pL = linear charge density (coulombs/meter) 
dl = element of length of line (meters) 

The integration is carried out over the entire line of charge. 
' Although "electric scalar potential" is implied, the word "scalar" will usually be 

omitted for brevity. 
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When the charge is distributed over a surface as in Fig. 1-13, the 
potential at P caused by this surface charge distribution is 

V. = —1 if (' ds  volts  (1-25) 
4se  r 

where pa = surface charge density (coulombs/meter2) 
ds = element of surface (meters') 

The integration is carried out over the entire surface of charge. 

Point charges 

Q3 

S 

Surface charge 
distribution 

dl  Linear cha e 
distribution 

, 

Volume 
charge 
distribution 

Fm. 1-13. Electric potential at P is the algebraic sum of the potentials due to the 
point, line, surface, and volume distributions of charge. 

For a volume charge distribution as in Fig. 1-13 

V, = 477 —rel N 217. dv  volts  (1-26) 

where p = (volume) charge density (coulombs/meter') 
dv = element of volume (meters') 

The integration is taken throughout the volume containing charge. 
If the point charges, the line charge distribution, the surface charge 

distribution, and the volume charge distribution of Fig. 1-13 are all pres-
ent simultaneously, the total electric potential at the point P due to all 
of these distributions is by the superposition principle the algebraic sum 
of the individual component potentials. Thus, 
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.  P 
V = 4-7-el (n2 3 T.Q:: +  1  -- dl + ff el de + N E di)  (1-27) 

r  r  r 
.- I 

If all of the charge distributions are considered to occupy finite vol-
umes instead of being idealized to points, lines, and surfaces, then (1-27) 
reduces to (1-26). 

Example.  As shown in Fig. 1-14 a square 1 meter on a side in air has a point charge 
Qi = +10- ' coulomb at the upper left corner, a point charge Q2 = -10-11  coulomb 

at the lower left corner, and a line distribution of charge 
1 meter  of uniform density 

PL = +10-11  coulomb/meter 

along the right edge.  Find the potential at the point 
P at the center of the square. 
Solution.  The potential at P due to the point charges is 

1 (10-11  1011\ 
VP 4reo k0.707 - 0.707/ = -0.115 volt 

The potential at P caused by the line distribution of 
FIG. 1-14. Line and point  charge is 
charges for example illus-
trating superposition of  VL = 
electric potential. 

The total potential at P is then 

V .. V, -I- V L = +0.043 volt 

The principle of superposition stated for the special cases of potential 
in this section and for fields in Sec. 1-7 can be applied, in general, to 
any quantity which is linearly related to its cause. The electric fields 
or potentials at a point are linear functions of the charge producing them 
and hence are superposable (by vector addition for fields and scalar addi-
tion for potential). 

,K 1-14. Gradient. The potential rise between two points along an 
electric field line is a measure of the gradient of the potential in the same 
way that the elevation rise between two points on a slope is a measure of 
the gradient of the slope.  More specifically the gradient of the potential 
at a point is defined as the potential rise AV across an element of length 
Al along a field line divided by Al, with the limit of this ratio taken as 
A/ approaches zero.  In symbols 

P 

Q2. 

Pc 

y••0.5 

4Tto  I  0 151 + y1 
1 10-"  

dy = + 0.158 volt 

y - -0.5 

Gradient of V = 
,. AV 
nm — 
ea.o  

By definition this is also the ratio of the infinitesimal potential rise dV 
to the infinitesimal length dl. Thus, 

(1-28) 
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dV AV 
Gradient of V = — = Jim 

.11-0 
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(1-29) 

The gradient of V expressed as dV/d1 is said to be in differential or 
infinitesimal notation. 
If the element of length dl is at an angle 0 with respect to the electric 

field E, we have from (1-13) that 

dV _ 
— E cos 0  (1-30) 

dl 

If 0 = 0, dl is along a field line and the ratio dV/dl is a maximum. Thus, 
from (1-29) and (1-30) we have, when 0 = 0, that 

dV 
Gradient of V = —dl = —E  (1-31) 

Hence, the gradient of the potential (or maximum rise in potential with 
distance) is equal in magnitude to the electric field intensity and has a 
direction opposite to the electric field. Since the gradient has both mag-
nitude and direction, it is a vector equal to —E. Thus, 

grad V = —E  (1-32) 

where "grad" stands for the gradient of V. As will be shown in the 
next section, (1-32) can also be written with the operator del, or nabla 

(V), as 
VV = —E  (1-33) 

The significance of the negative sign in (1-32) and (1-33) is that to 
experience a rise in potential a positive test charge must be moved 
opposite to the electric field direction. 

Example. Let the potential along a field line vary with x as shown in Fig. 1-15a. 
The potential rises uniformly with distance from a to b, is constant from b to c, 
decreases uniformly from c to d (but at a more rapid rate than the increase from a to b), 
and is zero from d to e. Find the gradient of V and the electric field intensity E from 
a to e. 
Solution.  From (1-29) 

dV 
grad V  

Therefore, 

From a to b: grad V = + V = +1.25 volts/meter 
From b to c: grad V = 0 
From c to d: grad V = — V = — 5 volts/meter 
From d to e: grad V = 0 

The variation of grad V with xis illustrated in Fig. 1-15b.  From (1-31), E = —grad V. 
Thus, the variation of the field is as shown in Fig. 1-15e. 



20 ELECTROMAGNETICS  [CHAP. I 

The analogy between electric potential V and elevation and between 
grad V and the gradient of the slope may also be illustrated with the 
aid of Fig. 1-15. Thus, if the ordinate in Fig. 1-15a were elevation in 
meters instead of V in volts, the ordinate in Fig. 1-15b would become the 
gradient of the slope in meters elevation per meter of horizontal distance. 
From a to b the gradient is positive (uphill), while from c to d the gradient 
is negative (downhill). 

I  I 

Ele
ct
ri
c 
fiel
d 
E 

— 5 
v/m 

+ 5 
v/m 

0 

x 

2  4  6 10  12  14 cm 

lE=0 
 lb  c ii 

(a) 

(b) 

C 

—5 
vim 

Fig. 1-15. Gradient of V and electric field E for an assumed variation of the electric 
potential V. 

X  1-15. Gradient in Rectangular Coordinates. In this section a relation 
for gradient will be developed in rectangular coordinates. To do this, 
consider the electric potential distribution of Fig. 1-16. The work per 
coulomb to bring a positive test charge to the point P (at origin of 
coordinates) is 104 volts. This is the absolute potential V at P. The 
potential elsewhere is a function of both x and y, and its variation is 
indicated by the equipotential contours. The field is uniform. Thus, 
the contours are straight, parallel, and equally spaced. There is no 
variation with respect to z (normal to page). At P the electric field is 
as indicated by the vector E, perpendicular to the equipotential line. 
Consider now the change in potential along an infinitesimal element of 
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104  103  102  V=101 
V=105 

Fm. 1-16. Potential distribution with electric field E at a point P. 

path length in the x direction (y = constant). Then 

aV 
— — = E cos a = E, 
ax 

(1-34) 

where a = angle between E and the x axis 
E, = component of E in x direction 

Likewise, for an infinitesimal element of path length in the y direction, 

av 
(1-35) — ay 

where ft = angle between E and the y axis 
E„ = component of E in y direction 

The relation of (1-34) is a scalar equation.  It may also be expressed 
as a vector equation. Thus, 

av   -1 -  = .v  (1-36) 
Ox 

where i = unit vector in x direction. Likewise (1-35) may be written 

—j av  j —8y = E„  (1-37) 

where j = unit vector in y direction. 
By the principle of superposition the total field E at the point P is the 

vector sum of the component fields at the point.  Hence, 

av  .av 
E = iE,  jE„ = —  j  (1-38) 

Comparing (1-38) with (1-32), it follows that 

. av  .av 
(1-39) 

1 Ti  -ai = grad  V 
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Thus, the gradient in this rectangular two-dimensional case is equal to 
the x and y derivatives of the potential added vectorially. 

Example 1. Suppose that in Fig. 1-16 the potential decreases by 2 volts/meter in 
the x direction and by 1 volt/meter in the y direction.  Find the electric field E. 
Solution: 

grad V = —i2 — jl  volts/meter 

E = —grad V = i2  jl =. 2.24/27° volts/meter 

Therefore, E has a magnitude of 2.24 volts and is directed at an angle of 27° with 
respect to the positive x axis (a = 27°). 

The two-dimensional case discussed above can readily be extended to 
three dimensions.  Thus, as shown in Fig. 1-17 there are field components 

at the origin in the three coordinate 
directions as follows 

and 

.av 
iE, = iE cos a = —1 — 

ax 
.av 

jE,, = jE cos  =  (140) 

av 
kE, = kE cos 7 = —k —az 

By the principle of superposition the 
total field E at the origin is the vector 
sum of the component fields, or 

(1-41) 
av  .av  av 

FIG. 1-17. Components of electric  where the relation in the parentheses is 
field in rectangular coordinates, 

the complete expression in rectangular 
coordinates for the gradient of V.t It is often convenient to consider 
that this expression is the product of V and an operator del (V). Thus, 
in rectangular coordinates 

. a , . a , , a 
(142) 

ax  ay  az 

The operator V is a quasi vector.  It is meaningless until applied. 
Taking the product of V and V yields the gradient of V. That is, 

av , jav , AL,av vv =1 —  —  —  = —E  (1-43) 
ax  ay  az 

or we can write 
VV = grad V = —E  (1-44) 

t The two-dimensional example of Fig. 1-16 is a special case of (1-41) where 
av 0 
az  • 
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The electric potential is a scalar function. Taking its gradient results 
in a vector that indicates the magnitude and direction of the maximum 
rate of change of the potential with distance. This vector is equal and 
opposite to the electric field E. In general, taking the gradient of a 
scalar function yields a vector that indicates the magnitude and direc-
tion of the maximum rate of change with distance of the scalar function. 
Equation (1-44) is expressed in a concise vector notation that implies 

no particular coordinate system.  In rectangular coordinates it has the 
form of (1-43). 
A further illustration of gradient is provided by the following example. 

Example 2. Consider a nonuniform field with a potential distribution given by 

10   
V 

1/2 

where V is in volts and z and y are in centimeters. There is no variation of V with 
respect to z. Hence the distribution is two-dimensional.  The potential variation is 
illustrated by the equipotential contours in Fig. 1-18.  Find (a) the expression for the 
gradient of the potential; (b) the value of the gradient at the point (2, 1) cm; (c) 
the electric field intensity at this point. 
Solution.  a. Since the potential distribution is 

independent of z, aviaz = 0 and 

iaV 
grad V = 17V =  i  + ax  ay 

20   
( (xi + y1)2ix + 

b. At the point (2, 1) 

V V  — t (l2 + j1) = 1.79/206° volts/cm 

c. The electric field has the opposite direction. 
Thus 

E = —TV  —1.79/206° = 1.79/26° volts/cm 

4 

2 
Point (2,1) 

1 2 3 4 
Fm. 1-18. Potential distribu-
tion showing gradient of V 
and electric field E at a point 
P. 

X 1-16. Electric Flux. A point charge is surrounded by an electric 
field as discussed in Sec. 1-6. Thus, an isolated, positive point charge Q 
has a radial field as indicated by the lines radiating from Q in Fig. 1-19. 
These lines indicate the direction of the electric field, that is, the direc-
tion of the force on a positive test charge. 
The electric field intensity E at the radius r from Q (see Fig. 1-19) is, 

by (1-4), 

E = a, 4Ter2  (145) 

where a, = unit vector in radial direction.  Multiplying (1-45) by e, we 
obtain 

4„r2 (1-46) 
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The dimensions of (1-46) are 

Charge 

Flo. 1-19. Electric field lines 
originating on a charge Q. 

the flux of the vector over 
a surface S at a constant radius r from the 
point charge Q (Fig. 1-20). D everywhere 
on the surface S is a constant and is normal 
to S; so the flux of D over S is simply S 
times the magnitude of D. That is, 

Flux (of D over S) = SD  (1-48a) 

Since D has the dimensions of charge density 
(Q/L2), the flux of D has the dimensions of charge density times area or 
the dimensions of charge (Q).  Thus, the dimensional form of (1-48a) is 

Charge = area charge 
area 

1 As a nonelectrical example, consider the case of the frictionless flow of water 
through a pipe of uniform cross section. Let the velocity of the water in the pipe be 
the same everywhere and equal to v. A cross section through the pipe has an area A 
and is normal to v. Hence the flux of the velocity vector over the cross-sectional area is 
the integral of v over the surface or in this case simply the product of A and v. Thus 

Flux (of v over A) = Av 

which is equal to the total flow of water through the pipe in cubic meters per second if 
A is in square meters and v in meters per second. 

= surface charge density 
Area 

Hence, the product eE has the dimensions of surface charge density. (Q/L2). 

The product eE may be designated by the symbol D, called the electric 
flux density. Thus 

D = eE  coulombs/meter2 (1-47) 

where D = electric flux density (coulombs/ 
meter2) 

e = permittivity of medium (farads/ 
meter) 

E = electric field intensity (volts/ 
meter) 

According to (1-47) the flux density and 
field intensity are vectors with the same 
direction.  This is true for all isotropic 
media, that is, media whose properties do 
not depend on direction. 
Now the integral of the normal compo-

nent of a vector over a surface is defined as 
that surface. Let us apply this definition 

to D by integrating it over 

• 
+Q 

Fin. 1-20. Electric flux over 
surface S due to a point 
charge Q is equal to SD. 
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The flux of D over a surface is called the electric flux, designated by 
Thus 

= flux (of D over S) = SD  (1-48b) 

Electric flux has the dimensions of charge. The mksc unit is the coulomb. 
The electric flux per unit area is the electric flux density designated by D. 

Thus, from (1-48b) 

D = — = flux density (1-49) 

Electric flux density has the dimensions of charge per area. The mksc 
unit is the coulomb per square meter. 
Substituting E from (1-45) into (1-47), we obtain the flux density D 

for a point charge Q. That is, 

D =  = a,  €C2 =  Q (1-50) 
4Ter2 4arr2 

Hence the flux density depends on the charge and the radius but is 
independent of the permittivity of the medium. 
Since 4irr2 equals the area of a sphere of radius r, it follows from (1-50) 

that the magnitude of D at the radius r is identical with the surface 
charge density which would occur if the charge Q were distributed uni-
formly over a sphere of radius r instead of concentrated at the center.' 
This is illustrated by Fig. 1-21.  From this example it is evident that 

+Q distributed 
over sphere 

r 
+Q 

(a)  (b) 
Fm. 1-21. Flux density D at radius r is the same for the charge Q concentrated at a 
point as in (a) or distributed uniformly over a sphere as in (b). 

the term "apparent surface charge density" might be appropriate for D 
since it represents the surface charge density which would be present if 
Q were redistributed.  However, the term "flux density" is used. 
X 1-17. Flux Lines. Referring to Fig. 1-19, the lines in this diagram 
may now be given another interpretation.  Thus, each line may be 
imagined as emanating from a certain amount of positive charge and 
ending on an equal amount of negative charge. In the figure the lines 

1The surface charge density p. = Q/4prs = D. 
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all emanate from a positive point charge and end on an equal negative 
charge situated on a sphere at infinity. The number of lines passing 
through a normal surface (Fig. 1-22) then indicates the flux density D, 
and the individual lines are flux lines, each associated with a certain 
fraction of the charge Q. The number of flux lines used is arbitrary, 

but it is always proportional to the charge Q. 

Example.  A point charge has a value Q = +10-10  cou-
lomb.  Arbitrarily taking 10" flux lines per coulomb of 
charge, find the number of lines per square meter at a dis-
tance of 10 meters.  Find also the flux density D at this 
distance. 
Solution: 
Total no. of lines = 10-10  X 10" = 10" 

no. 1-22. Number 
of flux lines per unit 
area normal to the 
field equals the flux 
density. 

1010 
Lines/meter' at 10 meters =   = 7.95 X 106 

477.2 

D = 7.95 X 106 X charge/line = 7.95 X 106 X 10-60  
= 7.95 X 10-" coulomb/meter2 

or, directly from (1-50), 

Q  10-"  
D = —  —  = 7.95 X 10--" coulomb/meter' 

4714 4r106 

>, 1-18. Flux Tubes.  It should be noted that the field intensity at a 
constant radius from a point charge as in Fig. 1-19 is the same between 
the lines (point a) as it is on a line (point b). The field intensity E and 
the flux density D are continuous functions of position around the point 
charge, and both are constant for a fixed radius. Thus, if no flux lines 
pass through a certain area in a diagram, this does not necessarily imply 
that the flux density there is zero.  It may be that some lines would 
pass through the area if a larger number of flux lines had been assumed. 
This difficulty can be avoided by a simple extension of the concept of 
the flux line to the flux tube. 
A flux tube is defined as an imaginary tube with walls that are every-

where parallel to D and with a constant electric flux over any cross sec-
tion. The requirement that the flux over any cross section be a constant 
actually is a necessary consequence of the fact that D is parallel to the 
sides of the tube and, therefore, that the flux over the side walls is zero. 
Using a flux-tube representation, we have the flux tubes of Fig. 1-23b 
instead of the flux lines of Fig. 1-23a.  Each tube in Fig. 1-23b has the 
same total flux as represented by each line in Fig. 1-23a.  The cross sec-
tion of a tube may be of any convenient shape.  However, tubes of tri-
angular, square, or hexagonal cross section have the advantage that their 
walls can be made to coincide, and hence all of space can be filled with 
tubes of the same kind. 
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Flux Ines 

(a)  (b) 
FIa. 1-23. Flux lines (a) and flux tubes (b). 

In Fig. 1-24 a single flux tube of square cross section is shown which 
originates on a certain fraction of the charge +Q and ends on an equal 
fraction of the charge —Q. The magnitude of the flux density D varies 
along the tube, but the integral of the normal component of D over any 
cross section of the tube is constant.  In Fig. 1-24 the flux density D is 
indicated at three points along the tube.  Where the magnitude of D is 
large, the cross-sectional area is small, and where D is small, the area is 
large, the integral of D over each cross-sectional area being a constant. 
All of space can be divided up into 

tubes of equal flux originating on the 
positive charge of Fig. 1-24 and ending 
on the negative. The tubes never 
cross. The number of tubes into +Q  —Q 
which space is divided is arbitrary.  Fla. 1-24. Flux tube extending from a 
As a matter of convenience the num-  positive charge Q to an equal negative 
ber is sometimes taken as 47 so that  charge. 
near each charge a single tube subtends a solid angle of 1 rad2. Near a 
charge the field is not appreciably affected by the remote charge, and 
hence near a charge each tube is like a pyramid. The number of tubes 
might, on the other hand, be taken as 100.  Or the number could be 
41,253 so that near each charge a single tube subtends a solid angle of 1 
square degree.t 
X 1-19. Electric Flux over a Closed Surface. Gauss's Law. Consider 
an infinitesimal surface element ds as in Fig. 1-25a.  The infinitesimal 
amount of electric flux  over this surface element is, by an extension 
of (1-48b), 

= D cos a ds = D • n ds  coulombs  (1-51a) 
t In two dimensions a circle subtends an angle of 2T rad or 360° with respect to a 

point inside; so 1 rad = 360°/2T  57.3°.  In three dimensions, a sphere subtends, 
with respect to a point inside, a solid angle of zlir square radians (steradians) or 

41,253 square degrees. 
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where D = flux density at the surface element (coulombs/meter') 
a = angle between D and normal to surface element (dimension-

less) 
n = unit vector normal to the surface element (dimensionless) 
ds = area of surface element (meters') 

D 
This notation may be shortened if we ...)...,.,.. 

a (a) write 
ds = n ds 

where ds (see Fig. 1-25b) is considered 
to be a vector having a direction nor-

[i ] I.r ,r D mal to the surface and a magnitude 
to ds.  Introducing this nota-

ds (normal to surface) tion into (1-51a), we have 

Infinitesimal surface  (b)  dly = D • ds  (1-51b) 
of area de  Referring  now  to  Fig.  1-26, let a 

no. 1-2.5. Relation of vectors to in-
finitesimal surface element.  positive point charge Q be situated at 

the center of an imaginary sphere of 
radius r. The infinitesimal amount of electric flux d4, over the surface ele-
ment ds is as given by (1-51b).  Integrating this over the sphere of radius 

a  fl  (unit normal) 

Fm. 1-26. Point charge Q at origin of spherical coordinate system. 

r then gives the total flux over the sphere, or 

= f f D • ds (1-52) 

Since D everywhere on the sphere is normal to ds, cos a = 1, and there-
fore, in this case, 

D • ds = D ds (1-53) 
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where D = IDI = scalar magnitude of the vector D 
ds = Ids1 = scalar magnitude of the vector ds 

Introducing (1-53) into (1-52) and also the magnitude of D from (1-50) 
yields 

0=P-d8 42-r2 

From Fig. 1-26 
ds = (r d0)(r diA sin 0) = r2 sin 0 dO c14,  (1-55) 

The surface area divided by the square of its radius yields the solid angle 
subtended by the surface area in square radians (steradians). Thus, the 
solid angle dfl subtended by the spherical element of surface area ds is 

(1-54) 

ds 
—r2 = (RI = sin 0 dO dcl) 

Substituting (1-56) in (1-54), we obtain' 

fr = 2T  fir sin do 46 
4yr jj  47 Jo  Jo 

(1-56) 

2r 

[—cos 0];) f dçb = —Q X 2 X 27 = Q  (1-57) 

Thus, tthhee  total electric flux over the sphere (obtained by integrating the 
normal component of the flux density D over the sphere) is equal to the 
charge Q enclosed by the sphere.  We could have obtained the result in 
this case more simply by multiplying D = Q/47rr2 by the area of the 
sphere (47cr2). However, the above development serves to illustrate a 
more general procedure which can also be applied to cases where D is not 
constant as a function of angle. 
The result in the above example is a statement of Gauss's law for a 

special case.  A general statement of Gauss's law for electric fields is: 
The surface integral of the normal component of the electric flux density D 

over any closed surface equals the charge enclosed. t 
Thus, in symbols 

f f D cos e ds = f JD • ds = Q  (1-58a) 

where Q is the total or net charge enclosed.  This charge may also be 
expressed as the volume integral of the charge density p so that (1-58a) 

' The first integral with limits 0 and 27 is associated with the second differential 
dck and the second integral with the first differential. 
t This statement of Gauss's law applies specifically to the rationalized mksc system. 

In general, Gauss's law states that the surface integral of the normal component of the 
electric flux density over a closed surface is proportional to the charge enclosed (or 
equal to the charge times a constant, this constant being unity in the rationalized 
mksc system). 
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becomes 
f fD • ds = f f fp dv = Q 

[CHAP. 1 

(1-58b) 

where the surface integration is carried out over a closed surface and the 
volume integration throughout the region enclosed.  An alternative nota-
tion for (1-58b) is 

96. D • ds = 96. p dv = Q  (1-59) 

where fi indicates a double, or surface, integral over a closed surface and 
8 

96. indicates a triple, or volume, integral throughout the region enclosed. 

From (1-47) Gauss's law may also be expressed as 

e 96 E • ds = Q  coulombs  (1-60) 

where E = electric field intensity (volts/meter) 
e = permittivity of medium (farads/meter) 

Gauss's law is the basic theorem of electrostatics.  It is a necessary 
consequence of the inverse-square law (Coulomb's law).  Thus, if D for a 
point charge did not vary as 1/r2, the total flux over a surface enclosing 
it would not equal the charge (see Sec. 2-36). 
If a volume contains no charge, the electric flux over the surface of the 

volume is always zero, even though the volume may be in an electric 
field.  In such a case, the inward flux equals the outward flux (net flux 
zero) ; in other words, the number of flux tubes entering equals the number 
leaving. 
To illustrate the utility of Gauss's law, several situations will be 

analyzed with its aid in the next sections. 
.>< 1-20. Single Shell of Charge. Referring to Fig. 1-27a, suppose that a 
positive charge Q is uniformly distributed over an imaginary spherical 
shell of radius 7.1. It is assumed that the medium everywhere is air 
(e = to). Applying Gauss's law by integrating D over a spherical surface 
(radius ri — dr) just inside the shell of charge, we have 

e 96 E • ds = 0  (1-61) 
a 

since the charge enclosed is zero.  It follows that E inside the shell is 
zero.  Applying Gauss's law to a spherical shell (radius r1 ± dr) just out-
side the shell of charge, we have, neglecting infinitesimals, 

e  E • ds = 0E41712 = Q 
.1- a 

E —  Q (1-63) 
4reori2 

or 

(1-62) 
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/-. 
ri+dr 

r,—dr 

Ps 

E=0 

,- Spherical shell of 
charge 

ri 

TI 

TI  r 

V are 

(a) 

(b) 

(c) 

(d) 

FIG. 1-27. Uniformly charged spherical shell with graphs showing variation of electric 
field intensity E, electric potential V, and surface charge density p. as a function of 
radial distance r. 

This value of field intensity is identical with that at a radius ri from a 
point charge Q.  We can therefore conclude that the field outside the 
shell of charge is the same as if the charge Q were concentrated at the 
center.  Summarizing, the field everywhere due to a spherical shell of 
charge is 

E = 0 inside (r < ri)  (1-64) 

E = a, 4reor2 outside (r > ri)  (1-65) 

The variation of E as a function of r is illustrated by Fig. 1-27b.1 
The absolute potential at a radius r outside the shell is given by 

V = — f r E • dr  (1-66) 

Introducing the value of E from (1-65), 

Q '  Q  
47reo  r2 4ireor 
Q ('   

1 Note that a point charge at the origin gives an infinite E as r --• 0 but a surface 
charge of finite area at a radius r1 gives a finite E as r —+ r1. This is because the 
volume charge density p of a point charge is infinite, whereas the surface charge 
density p, of the shell of charge is finite.  In the present case p. = Q /4rr 12. 

(1-67) 



32  ELECTROMAGNETICS 

At the shell where r = r1 we have 

v= 
47reori 

[CHAP. 1 

(1-68) 

Since E inside the shell is zero, it requires no work to move a test charge 
inside and therefore the potential is constant, being equal to the value at 
the shell.  Summarizing, the electric potential everywhere due to a 
spherical shell of charge of radius r1 is 

✓ —  Q inside (r < ri)  (1-69) 
'WW 2 

✓  —  Q  outside (2. >  ri) %wee  (1-70) 

The variation of V as a function of r is illustrated by Fig. 1-27c.  The 
variation of the surface charge density p. is shown by Fig. 1-27d.  The 
surface density is zero everywhere except at r = r1, where it has the value 
Q/4/rri2 as indicated by the vertical line, or spike. 
It is to be noted that the potential is continuous, both (1-69) and (1-70) 

being equal at the shell (r = ri). However, the electric field is discon-
tinuous, jumping abruptly from zero just inside the shell to a value 
Q/47eori2 just outside the shell. This results from the assumption that 
the shell of charge has zero thickness.  If a shell of finite thickness is 
assumed, the field is also continuous (see Prob. 1-15). As the shell thick-
ness is decreased, the change in E becomes very rapid, ultimately becom-
ing an abrupt change as the shell thickness approaches zero. 
1-21. Two Concentric Spherical Shells of Charge. Let two imaginary 

concentric spherical shells have radii r1 and r2 with a charge Q1 uniformly 
distributed over the shell of radius r1 and a charge Q2 uniformly dis-
tributed over the shell of radius r2, as suggested in Fig. 1-28a.  It is 
assumed that the medium everywhere is air. Applying Gauss's law in 
a similar manner to that used for the single shell, it may be shown that 
the electric field intensity everywhere is given by 

E = 0 inside both shells (r < r1)  (1-71) 
Qi E = a,.4ireor2 between shells (ri < r < r2)  (1-72) 

E = a, Q1 + Q2  outside both shells (r > r2)  (1-73) 
4ireor2 

The variation of E as a function of the radius r is shown by Fig. 1-28b. 
The potential everywhere is 

▪ ri)  for r < ri (1-74) 

▪ r  for r1 < r < r2  (1-75) 
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1 (22 + Qi v = ,  for r > r2 (1-76) 
-krreo  r 

The variation of V as a function of r is illustrated by Fig. 1-28c and of the 
surface charge density p, by Fig. 1-28d.  It is again to be noted that V is 
continuous, since (1-74) equals (1-75) when r = r1 and (1-75) equals 
(1-76) when r = r2. The verification of the above results (1-71) through 
(1-76) is left to the reader as an exercise (see Prob. 1-22). 

E — 
4760 rf 

1  (Q2  Q1  
v —  4 7 E0 r2 + 

V 

19,3 

Shells of charge 

7:4 r 2 
4Q   

—   

4reor2 
E -0 

V  " Q2  
4,e, r2 

(a) 

(b) 

Q +Q I  2  

4 Ye0 r 

 L L  (c) 
r1 r 

Q2 
"Pa  a  (d) 4sr, 

1 
.4 - - r ,,, _  Q , 

4r, 
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Furthermore, the electric field between shells 2 and 3 is the same as if the 
charges on shells 1 and 2 were concentrated at the center. 
It is but a small additional step to consider an infinite number of 

imaginary concentric shells with uniformly distributed charge, each of 
slightly different radius.  The charge on each shell may be any function 
of the radius.  If the spacing between shells is made as small as we please, 
a volume charge distribution is obtained which is some function of r but 

is independent of angle (latitude 
and longitude).  At a radius rl the 

Shells of electric field intensity then depends charge 
only on the charge at radii for which 
r < r1 and is independent of the 
charge at radii for which r > r1. 
Thus, for any spherical volume 

distribution of charge (which is a 
function only of r) the electric field 
intensity E everywhere is given by 

E = a,.  QR for r > R (1-77) 
4reor2 

Qr  Fin. 1-29. n concentric shells of charge.  E = ar 42.for2  for r < R (1-78) 

where R -= radius of spherical volume distribution of charge 
QR = total charge in the spherical volume of radius R 
Q, = charge within a radius r (r < R) 

For the case where the charge is uniformly distributed throughout the 
sphere so that the volume charge density p is constant,' the electric field 
intensity outside the sphere (r > R, Fig. 1-30a) is the same as given by 
(1-77).  To find the field intensity inside the sphere (r < R), we use 
(1-78) where for Q, we have 

(1-79) 

Thus 

E — a, 4ireoR3  for r < R  (1-80) 

The variation of p as a function of r is shown in Fig. 1-30d, and the 
variation of E as a function of r is illustrated by the solid curve in Fig. 
1-30b.  It is to be noted that if QR were concentrated at the center of 
the sphere the field at radii less than R would follow the dashed curve to 
an infinite E, while if QR were all uniformly distributed over an imaginary 
I In this case 

QR 
P larR3 
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shell of radius ft the field at radii less than R would be zero, as indicated 
by the dash-dot curve. The variation of E for the uniform volume dis-
tribution of charge (solid curve) lies between these extremes. 

V 

Sphere of charge 

QR p   
.17 R3 

(a) 

(b) 

(c) 

(d) 

Fm. 1-30. Solid sphere of charge with graphs showing variation of electric field E, 
potential V, and volume charge density p as a function of radial distance r. 

The absolute potential at any radius r is given by integrating the work 
per unit charge required to bring a positive test charge from infinity to 
the radius r. Hence, integrating (1-77), we obtain 

QR  V — A for r > R  (1-81) 
,fireor 

Inside the sphere (r < R) the potential is equal to that at the sphere, 
as given by (1-81) where r = R, plus the additional work required to 
move the test charge from R to a radius r inside.  This extra work is 
given by integrating the negative of (1-80) from R to r. Thus, 

QR QR  V =  r dr 
LiireoR  4ireoR3 fR 
QR QR  (R2 -  r2) 
41reoR  EiireoR3 

(1-82) 

The variation of V as a function of r is presented by the solid curve in 
Fig. 1-30c.  It is to be noted that if QR were concentrated at the center 
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the potential at radii less than R would follow the dashed curve to an 
infinite V, while if QR were all uniformly distributed over an imaginary 
shell of radius R the potential at radii less than R would be a constant, 
as shown by the dash-dot curve. The variation of V for the uniform 
volume distribution of charge (solid curve) lies between these extremes. 
1-23. Conductors and Induced Charges. A conductor can conduct, or 

convey, electric charge.  In static situations a conductor may be defined 
as a medium in which the electric field is always zero.  It follows that 
all parts of a conductor must be at the same potential.  Metals such as 
copper, brass, aluminum, and silver are examples of conductors. 
When a metallic conductor is brought into an electric field, different 

parts of the conductor would assume different potentials were it not for 
the fact that electrons flow in the conductor until a surface charge dis-
tribution is built up that reduces the total field in the conductor to zero.' 
This surface charge distribution is said to consist of induced charges. 
The field in which the conductor is placed may be called the applied 
field E., while the field produced by the surface charge distribution may 
be called the induced field E.  The sum of the applied and induced fields 
yields a total field in the conductor equal to zero.  Although the total 
field inside the conductor is zero after the static situation has been 
reached, the total field is not zero while the induced charges are in 

motion, that is, while currents are 
flowing. 

Conducting 
shell  To summarize, under static conch-

tions the electric field in a conductor 
is zero, and its potential is a con-
stant.  Charge may reside on the 
surface of the conductor, and, in 
general, the surface charge density 
need not be constant. 
1-24. Conducting Shell. An ii-

Induced charges  tially uncharged conducting shell of 
inner radius a and outer radius b 
(wall thickness b — a) is shown in 
cross section in Fig. 1-31. Let a point 
charge +Q be placed at the center of 

the shell.  This might be done by introducing the charge through a hole 
in the shell which is plugged after the charge is inside.' The point charge 
has a radial electric field. Let this be called the applied field E.. For 

1 The electrons in the outermost shell of the atoms of a conductor are so loosely held 
that they migrate readily from atom to atom under the influence of an electric field. 
2 This is an idealized version of an experiment first performed by Faraday, using 

an ice pail. 

FIG. 1-31. Conducting shell of wall 
thickness b — a with point charge Q at 
center. 
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the total field E in the conducting wall to be zero requires an induced 
field Ei inside the wall such that 

(1-83) 
or 

Ei = —E. (1-84) 

The induced field E, is produced by a distribution of induced negative 
charges on the inner shell wall and induced positive charges on the outer 
shell wall as suggested in Fig. 1-31. Let us apply Gauss's law to this 
situation to determine quantitatively the magnitude of these induced 
charges. 
Suppose that an imaginary sphere 

designated S1 with a radius a — dr is 
situated just inside the inner wall of 
the shell as in Fig. 1-32.  By Gauss's 
law the surface integral of the normal 
component of D over this sphere must 
equal +Q. That is, 

56s, D • ds = +Q  (1-85) 

Applying Gauss's law to the sphere S2 

of radius a + dr just inside the con-
ductor, we have, since the total field E 
in the conductor is zero, 

96s, D•ds =e96 E • ds = 0 Si  (1-86) 

Thus, the total charge inside the sphere S2 must be zero.  It follows that 
a charge —Q is situated on the inner surface of the shell wall. Since the 
shell was originally uncharged, this negative charge Q, produced by a 
migration of electrons to the inner surface, must leave a deficiency of 
electrons or positive charge Q on the outer surface of the shell.  It is 
assumed that the surface charges reside in an infinitesimally thin layer. 
Applying Gauss's law to the sphere S3 of radius b + dr just outside 

the outer surface of the shell, we then have 

96s. D • ds = +Q  (1-87) 

To summarize, the charge +Q at the center of the shell induces an 
exactly equal but negative charge (—Q) on the inner surface of the shell, 
and this in turn results in an equal positive charge (+Q) distributed over 
the outer surface of the shell. The flux tubes originating on +Q at the 
center end on the equal negative charge on the inside of the shell.  There 

Conducting 
shell 

-- - 

Fla. 1-32. Conducting shell of wall 
thickness b — a with surfaces of 
integration. 
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is no total field and no flux in the shell wall.  Outside the shell the flux 
tubes continue from the charge +Q on the outer surface as though no 
shell were present. The variation of the component fields E. (applied) 
and Ei (induced) as ,a function of r is illustrated by Fig. 1-33b. The 
variation of the total field E is shown in Fig. 1-33c. For r < a and 
r > b, E = E„, while for a < r < b,  ± Ei = E = O. 

Component 
fields 

Potential 

Surface 
charge 
density 

e 8 

Total 
field 

(c) 

Conducting shell 

(d) 

(e) 

E. 

P$ 

(g) 

(b) 

(i) 

FIG. 1-33. Conducting shell of wall thickness b — a with graphs showing variation of 
applied field E., induced field Ei, total field E, potential V, surface charge density p. 
with charge Q at center (b, c, d, and e) and with charge only on outside of shell (f, g, 
h, and i). 

If a conducting wire is connected from the inner surface of the shell to 
the charge -1-Q at the center, electrons will flow and reduce the charge 
at the center and on the inner surface to zero.  However, the charge -1-Q 
remains on the outer surface of the shell. This results in an applied field 
only external to the shell (r > b) and of the same value as before. There 
is no induced field whatsoever.  Thus, the total field is identical with the 
applied field, as shown by Figs. 1-33f and g, and is zero for r < b. This 
final result might have been achieved more simply in the first place by 
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applying the charge  to the outside of the originally uncharged con-
ducting sphere. 
The variation of V and p, as a function of r when the charge +Q is 

at the center of the sphere is indicated in Figs. 1-33d and e, while the 
variation when the charge is only on the outside of the shell is shown by 
Figs. 1-33h and i. 
1-25. Conducting Box and Plates.  Instead of the spherical conducting 

enclosure discussed in the previous section, let us consider an initially 
uncharged conducting enclosure of the shape shown by the cross section 
of Fig. 1-34a. This enclosure consists of two large flat parallel con-

End plate 

Component 
fields 

Total 
field 

Potential 

---71.arge flat plates 

Axis 

a 

(a) 

(b) 

(c) 

(d) 

Surface 
dharge   I   (e) 
density 
Ps 

FIG. 1-34. Cross section through rectangular metal box with large flat sides in uniform 
applied field E.. Graphs show variation of applied field E., induced field E, total 
field E, potential V, and surface charge density p. as a function of distance along axis 
through center of box. 
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ducting plates of thickness a with conducting plates along all four edges 
so as to make a complete enclosure, or box. Let this box be placed in a 
uniform applied field E.. This field induces negative charges on the left 
side of the left plate and positive charges on the right side of the right 

Large flat plates 

E,  E. 

Ax is 

(a) 

Component 
fields 

Total 
field 

Potential 
V 

E. 

_ 
(b) 

(c) 

(d) 

Surface  (e) 
charge   
density 
Ps 

Fig. 1-35. Cross section through two large flat metal plates in uniform applied field 
E..  Graphs show variation of applied field E., induced field Ei, total field E, poten-
tial V, and surface charge density p. as a function of distance along axis through center 
of plates. 

plate, producing an induced field Ei opposite to E.. Since no charge is 
enclosed by a surface just inside the walls of the box, it follows from 
Gauss's law that the total field E inside the box is zero and hence that 
Ei = —E.. In general, the field inside of any hollow conducting enclosure 
is always zero under static conditions provided no charge is present inside 
the shell. 
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The variation of the applied field E. and induced field E, along the axis 
(normal to the center of the large flat sides of the box) is illustrated by 
Fig. 1-34b and of the total field E by Fig. 1-34c. The variation of the 
potential V and surface charge density is presented in Figs. 1-34d and e. 
Let us consider next two large flat parallel conducting plates as in 

Fig. 1-35a. The two plates are initially uncharged and are not connected. 
Let the plates be introduced into a uniform applied field E.. This field 
induces negative charges on the left side and positive charges on the right 
side of each plate so that the variation of the induced field Ei along the 
axis is as shown in Fig. 1-35b and the variation of the total field as in 
Fig. 1-35c. The potential and surface-charge-density variations are 
presented in Figs. 1-35d and e. 
If now a wire is connected between the plates, the electrons on the 

inside surface of the right plate can flow to the left plate, reducing the 
charge on the inside surfaces to zero. The induced field now extends 
from the right side of the right plate to the left side of the left plate, and 
the total field between the plates vanishes like inside a conducting 

Total 
field 

Potential 
(c) V  A   

Surface  (d) 
charge   
density 
Ps 

Fro. I-36. Cross section through two large fiat metal plates with applied potential 
difference VI. Graphs show variation of total field E, potential V, and surface 
charge density P. as a function of distance along axis through center of plates. 

•••••11 

Axis 

(a) 

(b) 
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enclosure.1 If the wire is disconnected again after the flow of charge has 
ceased, the total field inside remains equal to zero, unless the applied 
field is removed, in which case the induced field remains. However, 
when the external field is removed, the charges migrate from the outer to 
the inner surfaces of the plates so that the induced field extends only 
between the inner surfaces of the plates. 

Let us consider finally two large flat parallel 
conducting plates, initially uncharged, and placed 

14—dl  in a field-free region.  If the plates are charged, 
as shown in Fig. 1-36a, by a battery, charges 
appear on the inner surfaces of the plates and an 
electric field is applied between the plates.2 If 
the plates are large compared with their spacing, 
the field outside is negligibly small. The total 

Area A  field variation along the axis would then be as 
indicated in Fig. 1-36b, the potential variation 

.4"—Volume  as in Fig. 1-36c, and the surface charge density 
element  as in Fig. 1-36d. 

1-26. Boundary Relations at a Conducting 
Surface. Referring to Fig. 1-37, let a thin imag-

Conductor  Air  inary volume element be constructed at the sur-
FIG. 1-37. Conductor-air  face of a conductor. The medium outside the 
boundary with cross sec-  conductor may, for example, be air. The volume 
tion through small vol-  element is half in the conductor and half in air. 
time element half in the 
conductor and half in air.  The volume element has an area A parallel to 

the conductor surface but has an infinitesimal 
thickness dl normal to the surface. According to Gauss's law the normal 
component of the flux density D over the volume element must equal the 
total charge Q enclosed. Thus, if p, is the surface-charge density, we have 

56 D • ds = Q = p.A (1-88) 

Now D in the conductor is zero, and so the integral reduces to the normal 
component D. of the flux density in air multiplied by the area A.  Hence 

DA = p,A 
or 

Da = P. (1-89) 

This important boundary relation states that the normal component of 
the flux density D at a conducting surface equals the surface-charge 

I This is not strictly true because of fringing of the field around the edges, but pro-
vided the plates are sufficiently large the field at the center will be substantially zero. 
I Here E = E., and E, = 0. 
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density.  Both D„ and pa have the dimensions of charge per area and are 
expressed in coulombs per square meter. 
If a thin conducting sheet is introduced  Thin sheet 

- + 
normal to an electric field, surface charges 
are induced on the sheet so that the origi-  - + 
nal field external to the sheet is undis- - + 
turbed. The value of the induced surface 
charge density p. is, by (1-89), equal to the  - + 
flux density D at the sheet.  Hence, one  - +  jj 
can interpret the flux density D at a point 
as equal to the charge density p. which  - 
would appear on a thin conducting sheet —  Surface charge + 
introduced normal to D at the point,  density ps 
Referring, for example, to the thin con-  - + 
ducting sheet normal to the field in Fig. 
1-38, the relation of D and p. is as follows:  FIG. 1-38. Thin conducting sheet 

placed normal to field has an 
On left side:  D = — np,  induced surface charge density 
On right side: D = +np.  p equal to the flux density D of 

the field at the sheet. The surface 
where n = unit vector normal to the sur-  charge densities on the two sides 
face. Thus D is normally inward on the  of the sheet are equal in magni-

tude but opposite in sign. 
left side and normally outward on the 
right. The magnitude of the flux density on each side is equal to the 
charge density p.. 

PROBLEMS 

1-1. What are (a) the dimensional description, (6) the dimensional formulas in terms 
of the symbols M, L, T, and Q, (c) the mksc units for each of the following: 

di  L meters 
— where / = length  Ana.: Velocity;  : 
di  T' second 

/ = time 

f (force) dl  Ana.: Work; —ML22; joules. 
T 

dl 
Tcx  Ana.: Ratio; dimensionless. 

1-2. Give the same information as requested in Prob. 1-1 for each of the following: 

pdv• •  8p• V• eE• f D • ds iv I   

1 
f E • dl;  VV; Tire; E 

1-3. Find the force F on a positive point charge of 10-0  coulomb at a distance of 
10 cm in air from a positive point charge of 10-2 coulomb. 

Ans.: 9 X 10-2 newton = 0.09 dyne (repulsive). 
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1-4. A positive point charge of 10-10  coulomb is located in air at x = 0, y = 0.1 
meter and another such charge at x = 0, y = —0.1 meter.  Find the magnitude and 
direction of the force F on a positive point charge of 10-3 coulomb at x = 0.2 
meter, y = 0. 
1-5. Find the electric field strength E and the absolute potential V at a distance of 

10 cm in air from a positive point charge of 10-0 coulomb. 
Ans.: E = 9 X 103 volts/meter; V = 900 volts. 

A 1-6. Repeat Prob. 1-4 for the case where the positive charge at x = 0, y = —0.1 
meter is replaced by an equal but negative charge. 
X 1-7. A positive point charge of 10-10  coulomb is located in air at x = 0, y = 0.1 
meter and another such charge at x = 0, y — —0.1 meter.  What are the magnitude 
and direction of the electric field intensity E, and what is the absolute potential V, at 
x 2. 0.2 meter, y  0? 
1-8. Repeat Prob. 1-7 for the case where the positive charge at x  0, y  —0.1 

meter is replaced by an equal but negative charge. 
x 1-9. A potential distribution is given by V = 5x + 2. What is the expression for 
the gradient of V? What is its vector value (magnitude and direction) at the point 
(0, 0 and at (10, 0), that is, (x = 0, y = 0) and (x = 10, y  0)? 
1-10. A potential distribution is given by V = 2y1. What is the expression for the 

electric field intensity E?  What is its vector value (magnitude and direction) at the 
points (0, 0), (4, 0), and (0, 4)? 
x 1-11. A potential distribution is given by V = 5y1 -I- 10x.  What is the expression 
for the electric field intensity E? What is its vector value (magnitude and direction) 
at the points (0, 0), (10, 0), (0, 2), and (10, 2)? 
x 1-12. A potential distribution is given by V = 10/(x  y2 + z1). What is the 
expression for the electric field intensity E? What is its vector value at the points 
(0, 0, 2) and (5, 3, 2)? 
1-13. A spherical conducting shell 20 cm in diameter has a positive charge of 10-10  

coulomb.  Calculate and plot the absolute potential V (ordinate) as a function of the 
distance from the center of the sphere (abscissa) to a distance of 1 meter.  Do the 
same for the magnitude of the electric field intensity E. 
1-14. A positive charge of 10-10  coulomb is uniformly distributed throughout a 

spherical volume 30 cm in diameter.  Calculate and plot the variation of the electric 
field intensity E and the absolute potential V as a function of the radius r from the 
center of the sphere to a distance of 1 meter. 
1-15. An electric charge Q is distributed with uniform volume density between two 

imaginary spherical shells of radius a (inner shell) and b (outer shell).  Find the 
expressions for E and V everywhere (0 < r <  ). Plot the variation of E and V as 
a function of the radial distance r for 0 < r < 5b. 
1-16. Positive electric charge of density 10-° coulomb/meters is distributed uni-

formly over a volume located between two concentric imaginary shells with diameters 
of 10 and 20 cm.  What are the magnitude and direction of D at a distance of 50 cm 
from the center of the shells? 
1-17. Calculate and plot the variation of E and V as a function of the radius r from 

the center to a distance of 1 meter from the shells of Prob. 1-16. 
1-18. A spherical volume of radius R has a volume charge density given by p  kr, 

where r = radial distance and k = constant.  Find the expressions for E and V 
everywhere (0 < r < 20).  Plot the variation of E, V, and p as a function of r for 
0 < r < 5R. 
1-19. Repeat Prob. 1-18 for the case where p  k/r3. 
1-20. A spherical volume of r  1 meter has a uniform charge density p = 1 cou-

lomb/meters.  What is Vat r -2 50 cm?  Ara.: V = 11/24e volts. 
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1-21. Find the field strength E if V m.  Q/Irer by taking the gradient of V in rec-
tangular coordinates (r  N/x2  yl  z2) and also by taking the gradient in spherical 
coordinates.  (See expression for VV in spherical coordinates in Appendix.) 
1-22. Verify Eqs. (1-71) to (1-76) inclusive. 
1-23. At the surface of the earth the gravitational field G (force per unit mass) has 

a value of 9.8 newtons/kg. The field is normal to the earth's surface.  A gravita-
tional vector W analogous to D in the electric case (eE = D) is obtained by multiply-
ing the gravitational field G by the universal gravitational constant 7. The value of 
7 is 1.2 X 109 kg-FRO/meter'. Thus 7G = W. The direction of W is normal to the 
earth's surface. The dimensions of W are 

M TI L  Al = — 
L3 T2 L2 

These are expressed in mksc units as kilograms per square meter.  Thus W has the 
dimensions of mass surface density and in this example has a value equal to the mass 
per unit area which would result if the mass of the earth were distributed uniformly 
in a thin spherical shell of the same diameter as the earth. The magnitude of W in 
our example is W  7G = 1.2 X 109 X 9.8 = 1.17 X 10" kg/meter'.  Assume that 
the earth is spherical with a radius  = 6.36 X 109 meters. Apply Gauss's law to 
this gravitational problem to show that the mass of the earth is 5.98 X 1024 kg. 
1-24. An imaginary cubical volume element is oriented with its sides parallel to a 

uniform field IC in a charge-free region. Prove that the net flux over the volume is 
zero. 
1-25. Point charges in air are located as follows: +5 X 10-8 coulomb at (0, 0) 

meters; +4 X 10-9 coulomb at (3, 0) meters; —6 X 10-9 coulomb at (0, 4) meters. 
(a) Find V, E, and D at (3, 4).  (b) What is the total electric flux over a sphere of 
5-meter radius with center at (0, 0)? 
1-26. Four positive point charges are situated at (0, 0), (0, 1) (1, 1), and (1, 0) 

meters, that is, at the corners of a square 1 meter on a side.  (a) Find E and V at 
(, 4.) (at center of the square).  (b) Find E and V at ,1, 4). 



CHAPTER 2 

THE STATIC ELECTRIC FIELD. PART 2 

2-1. The Electric Dipole and Electric Dipole Moment. When two 
point charges +Q and — Q are superposed, the resultant field is zero. 
However, when the charges are separated by a small distance 1, there is a 
finite resultant field.  This combination of two point charges of opposite 
sign separated by a small distance is called an electric dipole, and the 
product Ql is called the electric dipole moment.  By regarding the separa-
tion between the charges as a vector 1, pointing from the negative to the 
positive charge' as in Fig. 2-1, the dipole moment can be expressed as a 

vector Q1 with the magnitude Ql and the 

Axis of  P  direction of 1. 
dipole I,  r  Referring to Fig. 2-1, the potential of 

the positive charge at a point P is 

+Q 

Fn;. 2-1. Electric dipole. 

-  Q 
•Iirert 

The potential of the negative charge at 
P is 

V2 — A  
,tirer2 

The total potential V at P is then 

V = Vi + V2 = 4(1 (-1 — 
-22re ri  , 

If the point P is at a large distance compared with the separation 1, so 
that the radial lines r1, r, and r2 are essentially parallel, we have very 
nearly that 

(2-1) 

(2-2) 

and 

r1 = r — — cos 0 
2 

r2 = r  2-/ cos 0 

(2-3) 

(2-4) 

(2-5) 

The vector I may be regarded as a unit vector al pointing in the direction from 
the negative to the positive charge multiplied by the magnitude of the separation /. 
Thus, I ad. The symbol p is often used to designate the electric dipole moment. 
Thus, p Ql. 

46 
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where r = distance from center of dipole to the point P 
0 = angle between axis of dipole and r 

Substituting (2-4) and (2-5) into (2-3), we obtain for the potential V at 
a distance r from an electric dipole the expression 

Q1 cos 0 
V —  (2-6) 

41-er2 

where it is assumed that r is much greater than 1 (r >> 1) so that terms in 
12 can be neglected compared with those in r2. V is in volts if Q is in 
coulombs, 1 and r in meters, and e in farads per meter. 
According to (2-6) the potential of a dipole varies as the inverse square 

of the distance, whereas according to (2-1) the potential of a single point 
charge varies as the inverse distance. The potential of the dipole is also 
a function of the angle 0. At a fixed radius the potential is a maximum on 

the axis of the dipole (0 = 0) and 
is zero normal to the axis (0 = 90°). 

P  This could have been anticipated 
since, when 0 = 90°, the point P is 

E,  exactly equidistant from the two 
+ Q  charges so that their effects cancel. 

To find the electric field intensity 
E at the point P, we take the nega-
tive gradient of the potential given 
by (2-6), obtaining' 

av  1 av 
E =  — a„  —  ae - —  

FIG. 2-2. Component fields and total  ar  r ae 
field E at a distance r from an electric  Ql cos 0 + a, Ql sin 0 
dipole.  = ar 2rer 3 4 3  (2-7) 

where a, = unit vector in r direction (see Fig. 2-2) 
a• = unit vector in 0 direction 
1 = separation of dipole charges Q 

According to (2-7) the electric field has two components as shown in Fig. 
2-2, one in the r direction (Er) and one in the 0 direction (Eo). Thus 

or 
= Ql cos 0 

Er  
2Ters 

and 

a, 
E, 

E = arE, ± a8E0  (2-8) 

(2-9) 

Ql sin 0 
E. —  (2-10) 

4re' 
'See Appendix for gradient in spherical coordinates.  Equation (2-7) can also be 

expressed with the dot-product notation as follows: 

Q  E —   (2a, • 1 — ae • 1) 
trers 
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The field components of a dipole vary as the inverse cube of the distance, 
whereas the field of a point charge varies as the inverse square of the 
distance. 
In (2-9) and (2-10) the restriction applies that r >> 1 since this condi-

tion is implicit in the potential expression (2-6) used in obtaining the field. 
2-2. Dielectrics and Permittivity. A conductor is a substance in which 

the outer electrons of an atom are easily detached and migrate readily 
from atom to atom under the influence of an electric field.  A dielectric, 
on the other hand, is a substance in which the electrons are so well bound 
or held near their equilibrium positions that they cannot be detached by 
the application of ordinary electric fields.  Hence, an electric field pro-
duces no migration of charge in a dielectric, and, in general, this property 
makes dielectrics act as good insulators.  Paraffin, glass, and mica are 
examples of dielectrics. 
An important characteristic of a dielectric is its permittivity' e. Since 

the permittivity of a dielectric is always greater than the permittivity of 
vacuum, it is often convenient to use the relative permittivity e, of the 
dielectric, that is, the ratio of its permittivity to that of vacuum. Thus 

Sr = — 
eo 

where e, = relative permittivity of dielectric 
e = permittivity of dielectric 
eo = permittivity of vacuum 

As mentioned earlier, 

(2-11) 

10-9 
eo = 8.85 X 10-12  farads/meter 

36T 

Whereas e or eo is expressed in farads per meter, the relative permittivity 
er is a dimensionless ratio. 
The relative permittivity is the value ordinarily given in tables. The 

relative permittivity of a few media is given in Table 2-1, with media 
arranged in order of increasing permittivity.  The values are for static 
(or low-frequency) fields and, except for vacuum or air, are approximate. 
2-3. Polarization. Although there is no migration of charge when a 

dielectric is placed in an electric field, there does occur a slight displace-
ment of the electrons with respect to their nuclei so that individual atoms 
behave as very small, or atomic, dipoles.'  When these atomic dipoles are 
The term dielectric constant is also used synonymously with permittivity. How-

ever, the permittivity is not always a constant as might be inferred from the term 
"dielectric constant" but may depend on the temperature and, as discussed later, on 
the frequency. The term capacitivity is also used for permittivity. 
*The dipoles may also be of molecular size.  In a liquid the molecules are free to 

turn when a field is applied, and this may result in a relatively large permittivity. 
Water is an example. 
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TABLE 2-1 
PERMITTIVITIES OF DIELECTRIC MEDIA 

Relative 
Medium  permittivity e, 

Vacuum   1 (by definition) 
Air (atmospheric pressure)   1.0006 
Paraffin   2 . 1 
Polystyrene   2 . 7 
Amber   3 
Rubber   3 
Sulfur   4 
Quartz   5 
Bakelite   5 
Lead glass   6 
Mica   6 
Marble   8 
Flint glass   10 
Ammonia (liquid)   22 
Glycerin   50 
Water (distilled)   

8891-173f Rutile (TiO2)   
Barium titanate (BaTiO3)   1,200$ 
Barium strontium titanate (2BaTiOs: 1SrTiO3)   10,000 t 
t Crystals, in general, are nonisotropic, that is, their properties vary with direction. 

Rutile is an example of such a nonisotropic crystalline substance.  Its relative permit-
tivity depends on the direction of the applied electric field with relation to the crystal 
axes, being 89 when the field is perpendicular to a certain crystal axis and 173 when 
the field is parallel to this axis.  For an aggregation of randomly oriented rutile 
crystals e, = 114.  All crystals, except those of the cubic system, are nonisotropic to 
electric fields, that is, their properties vary with direction. Thus, the permittivity of 
many other crystalline substances may vary with direction.  However, in many cases 
the difference is slight.  For example, a quartz crystal has a relative permittivity of 
4.7 in one direction and 5.1 at right angles. The average value is 4.9. The nearest 
integer is 5 and this is the value given in the table. 
t The permittivity of these titanates is highly temperature-sensitive. The above 

values are for 25°C.  See, for example, E. Wainer, High Titania Dielectrics, Trans. 
Electrochem. Soc., 89, 1946. 

present, the dielectric is said to be polarized or in a state of polarization. 
When the field is removed and the atoms return to their normal, or 
unpolarized, state, the dipoles disappear.' 
Consider the dielectric slab of permittivity e in Fig. 2-3 situated in 

vacuum. Let a uniform field E0 be applied normal to the slab.  This 
polarizes the dielectric, that is, induces atomic dipoles throughout the 
slab.  In the interior the positive and negative charges of adjacent dipoles 
annul each other's effects. 'rhe net result of the polarization is to produce 

1 When polarization in a dielectric persists in the absence of an applied electric field, 
the substance is permanently polarized and is called an electret.  A strained piezoelec-
tric crystal is an example of an electret. 
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a layer of negative charge on one surface of the slab and a layer of positive 
charge on the other as suggested in Fig. 2-3. 
The effect of the atomic dipoles can be described by the polarization P 

or dipole moment per unit volume. 
Thus, 

Area A 

Atomic 
dipoles 

E0  iUT•11 E. 

a, 

(2-12) 

where p = Ql = net dipole moment in 
volume v. For example, consider the 
rectangular volume of surface A and 
thickness 1 (v = Al) in Fig. 2-3. For 
this volume 

= All =  (2-13) 

Vacuum  Dielectric  Vacuum  where Q = charge on area A of one face 
of volume v. But Q/ A is charge per area. 
Hence P has the dimensions both of 
dipole moment per volume and charge 

field,  per area (QL/L3 = Q/L2). The charge 
per area equals the surface charge density p„ of polarization charge 
appearing on the slab face. Thus 

Fio. 2-3. Dielectric slab in uniform 

P =  = Pep 
A 

(2-14) 

The value of P in (2-12) is an average for the volume v. To define the 
meaning of P at a point, it is convenient to assume that a dielectric in an 
electric field has a continuous distribution of infinitesimal dipoles, that is, 
a continuous polarization, whereas the dipoles actually are discrete polar-
ized atoms.  Nevertheless, the assumption of a continuous distribution 
leads to no appreciable error provided that we restrict our attention to 
volumes containing many atoms or dipoles, that is, to macroscopic 
regions.' Assuming now a continuously polarized dielectric, the value of 
P at a point can be defined as the net dipole moment p of a small volume 
Av divided by the volume, with the limit taken as Av shrinks to zero 
around the point. Thus, 

P = lim 
£v—'O IXV 

(2-15) 

In a dielectric the flux density D is related to the polarization P by the 
equation 

D = e0E  P  (2-16) 

The reasoning here is similar to that in connection with continuous distributions of 
charge (Sec. 1-12). 
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where eo = permittivity of vacuum 
E = field in dielectric 

From (2-16) we have 

D = (0  EP) E  (2-17) 

Comparing (2-17) with the relation given in (1-47) that 

D = eE  (2-18) 

it follows that' 

P 
e = eo -r — E 

(2-19) 

where e = permittivity of dielectric.  In isotropic media P and E are in 
the same direction so that their quotient is a scalar, and hence e is a 
scalar.  In nonisotropic media, such as crystals, P and E are, in general, 
not in the same direction so that e is no longer a scalar but becomes a 
nine-component quantity called a tensor.' If E is applied parallel to 
certain crystal axes, P and E may be in the same direction and for this 
direction e is also a scalar quantity.3 Thus, it appears that (2-16) is a 
general relation, while (2-18) is a more concise expression, which, how-
ever, has a simple significance only for isotropic media or certain special 
cases in nonisotropic media. 
The flux density D, which is normal to the slab face (Fig. 2-3), is the 

same in the vacuum as in the dielectric. 4 Hence (2-16) can be expressed 

e0E0 = toE  P 
or 

P = to(E0 — E)  (2-20) 

where E0 = field in vacuum (applied field) 
E = field in dielectric (resultant field) 

According to (2-20) the polarization P equals the difference of the applied 
and resultant fields multiplied by 60. This difference is due to the 
induced field E, opposing E0 which is produced by the polarization charge 
on the slab surfaces. Thus, 

and 
E0 — E = —Ei or  E = Eo  Ei (2-21) 

P = —€0E1 (2-22) 

The ratio P/E may be written as xeo, where x is called the electric susceptibility 
(dimensionless).  Thus, from (2-19) e = tea  X)• 

2 A vector is expressable by three components. 
3 See footnote for rutile in Table 2-1. 
' This is demonstrated in Sec. 2-4 on Boundary Relations. 
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But from (2-14) P also has the same value as the polarization charge 
surface density pip; so 

P = —toEi = P•12  (2-23) 

In a conductor the induced field equals the applied field so that the 
resultant field is zero.  On the other hand, in a dielectric the induced 
field Ei is always less than the applied field E0 so that the resultant field 
E is not zero. This may be illustrated by expressing (2-19) as 

Pieo E =   (2-24) 
E   

If the relative permittivity of the dielectric is large, E may be small, but 
not zero.  For E to be zero would require an infinite e,. However, no 
dielectrics of infinite e, are known. 
Although the polarization P is based on the actual polarization phe-

nomenon, it is usually simpler and more convenient in most practical 
problems with isotropic dielectrics to ignore the mechanism of the 
phenomenon and employ only the permittivity e to describe the character-
istics of the dielectric.  In this case, e is determined experimentally from 
a slab of the dielectric, and it is not necessary to consider the polarization. 
If we wish to calculate e, however, we must consider the polarization. An 
example of such a calculation is given in Sec. 2-6 on Artificial Dielectrics. 
)( 2-4. Boundary Relations. In a single medium the electric field is 
continuous. That is, the field, if not constant, changes only by an 
infinitesimal amount in an infinitesimal distance.  However, at the 
boundary between two different media the electric field may change 
abruptly both in magnitude and direction.  It is of great importance in 
many problems to know the relations of the fields at such boundaries. 
These boundary relations are discussed in this section. 

an,Y 

Medium 1 
e,  cr, 

Ea Medium 2 

ea  04 
FIG. 2-4. The tangential electric field is continuous across a boundary. 

It is convenient to analyze the boundary problem in two parts, con-
sidering first the relation between the fields tangent to the boundary and 
second the fields normal to the boundary. 
Taking up first the relation of the fields tangent to the boundary, let 

two dielectric media of permittivities ei and e 2 be separated by a plane 
boundary as in Fig. 2-4.  It is assumed that both media are perfect 
insulators, that is, the conductivities' az and az of the two media are zero. 

1For discussion of conductivity see Sec. 3-7. 
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Consider a rectangular path, half in each medium, of length dx parallel 
to the boundary and of length Ay normal to the boundary. Let the 
average electric field intensity tangent to the boundary in medium 1 be 
En and the average field intensity tangent to the boundary in medium 2 
be E n.  The work per unit charge required to transport a positive test 
charge around this closed path is the line integral of E around the path 
(fE • dl).  By making the path length Ay approach zero, the work along 
the segments of the path normal to the boundary is zero even though a 
finite electric field may exist normal to the boundary.  The line integral 
of E around the rectangle in the direction of the arrows is then 

Es, A.T — E 2 LILT =  0 

or 
Ell =  Et2  (2-26) 

According to (2-26) the tangential components of the electric field are the 
same on both sides of a boundary between two dielectrics.  In other words, 
the tangential electric field is continuous across such a boundary. 
If medium 2 is a conductor (az 0), the field E 2 in medium 2 must be 

zero under static conditions and hence (2-25) reduces to 

(2-25) 

Egt = 0 (2-27) 

According to (2-27) the tangential electric field at a dielectric-conductor 
boundary is zero.' 
Turning our attention next to the fields normal to the boundary, con-

sider two dielectric media of permittivities ei and E2 separated by the 
x-y plane as shown in Fig. 2-5.  It is assumed that both media are perfect 
insulators (al = az = 0). Suppose that an imaginary box is constructed, 
half in each medium, of area Ax Ay and height Az. Let D,11 be the average 
flux density normal to the top of the box in medium 1 and D,.2 the average 
flux density normal to the bottom of the box in medium 2. D., is an 
outward normal (positive), while D .2 is an inward normal (negative). 
By Gauss's law the electric flux or surface integral of the normal com-
ponent of D over a closed surface equals the charge enclosed.  By making 
the height of the box Az approach zero the contribution of the sides to the 

1 This assumes that no currents are flowing.  If currents are present, then E in the 
conductor is not zero, unless the conductivity is infinite, and (2-26) applies rather than 
(2-27).  In Chap. 7 the relations of (2-26) and (2-27) are extended to include time-
changing fields, and it is shown that the relation En  Et: of (2-26) holds with static 
or changing fields for the boundary between any two media of permittivities, perme-
abilities, and conductivities el, Al, al and tg, µ2, 02. Furthermore, for changing fields 
the relation E,1  0 of (2-27) is restricted to the case where the conductivity of 
medium 2 is infinite (472 .• co).  This follows from the fact that a time-changing 
electric field in a conductor is zero only if the conductivity is infinite. 



54 ELECTROMAGNETICS 

Ay 
Medium 1 

el  a; 

- - 

Medium 2 

Az  D.2 e2  412 

(CHAP. 2 

Flo. 2-5. The normal component of the flux density is continuous across a charge-
free boundary. 

surface integral is zero. The total flux over the box is then due entirely 
to flux over the top and bottom surfaces.  If the average surface charge 
density on the boundary is p,, we have on applying Gauss's law 

D.1 Ax Ay — D.2 Ax Ay = p, Ax Ay 
or 

D n2  D n2 = Ps  (2-28) 

According to (2-28) the normal component of the flux density changes at a 
charged boundary between two dielectrics by an amount equal to the surface 
charge density. This is usually zero at a dielectric-dielectric boundary 
unless charge has been placed there by mechanical means, as by rubbing. 
If the boundary is free from charge, p, = 0 and (2-28) reduces to 

Dni = Dn2  (2-29) 

According to (2-29) the normal component of the flux density is continuous 
across the charge-free boundary between two dielectrics. 
If medium 2 is a conductor, D.2 = 0 and (2-28) reduces to 

D., = p.  (2-30) 

According to (2-30) the normal component of the flux density at a dielectric-
conductor boundary is equal to the surface charge density on the conductor.' 
It is important to note that p, in these relations refers to actual electric 

charge separated by finite distances from equal quantities of opposite 
charge and not to surface charge pa, due to polarization. The polarization 
surface charge is produced by atomic dipoles having equal and opposite 
charges separated by what is assumed to be an infinitesimal distance. 
It is not permissible to separate the positive and negative charges of such 

At a conductor-conductor boundary with currents present E is not zero in either 
medium unless the conductivity is infinite so that (2-28) applies rather than (2-30). 
In Chap. 7 it is pointed out that the relation D., — D.2 = p. of (2-28) and D., = 
of (2-29) hold with static or time-changing fields for any two media of permittivities, 
permeabilities, and conductivities el, pi, al and et, 122, .72. 
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a dipole by a surface of integration, and hence the volume must always 
contain an integral (whole) number of dipoles and, therefore, zero net 
charge. Only when the positive and negative charges are separated by a 
macroscopic distance (as on the opposite surfaces of a conducting sheet) 
can we separate them by a surface of integration. This emphasizes a 
fundamental difference between the polarization, or so-called "bound," 
charge on a dielectric surface and the true charge on a conductor surface. 
To illustrate the application of these boundary relations, two examples 

will be considered. 
Normal 

Example 1. Boundary between two dielec-
trics. Let two isotropic dielectric media 1 
and 2 be separated by a charge-free plane 
boundary as in Fig. 2-6. Let the permittiv-
ities be el and es, and let the conductivities 
oi = er: = 0. Referring to Fig. 2-6 the prob-
lem is to find the relation between the angles 
al and a: of a static field line or flux tube 
which traverses the boundary.  For exam-
ple, given al, to find a:. 
Solution. Let 
Di = magnitude of D in medium 1 

D2 = magnitude of D in medium 2 
El = magnitude of E in medium 1 

E2 = magnitude of E in medium 2 
In an isotropic medium, D and E have the 
same direction.  According to the boundary 
relations, 

Field line 
E or D 

Medium 1 
CL cr, 

Boundary 

Medium 2 

cr2 

FM. 2-6. Boundary between two 
dielectric media showing change in 
direction of field line. 

D.1 D.:  and  En = ES2  (2-31) 

Referring to Fig. 2-6 

D„1 DI cos al and  D.: = D2 cos a:  (242) 
while 

Est El sin al and  Bi2 = E2 sin as (2-33) 

Substituting (2-32) and (2-33) into (2-31) and dividing the resulting equations yields 

DI cos al _ D: cos a: 
EI sin al E2 sin a: 

But DI — eiEl, and D: = 52E2, so that (2-34) becomes 

tan al = Si = 5,15o = 5,1 
tan C22  E2  er e0  5.2 

(2-34) 

(2-35) 

where e,i= relative permittivity of medium 1 
5,2 = relative permittivity of medium 2 
to = permittivity of vacuum 

Suppose, for example, that medium 1 is air (Sri = 1), while medium 2 is a slab of 
sulfur (E,.: = 4). Then when ai = 30°, the angle a: in medium 2 is 66.6°. 
Example 2. Boundary between a conductor and a dielectric. Suppose that medium 2 

in Fig. 2-6 is a conductor. Find al. 
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Solution.  Since medium 2 is a conductor, D2 = E2 .2. 0 under static conditions. 
According to the boundary relations, 

and 

Therefore 

D,,1 p.  or  E1— 

E,, = 0 

Ee oti = tan-1 l ton-1 0  0 

It follows that a static electric field line or flux tube at a dielectric-con-
ductor boundary is always perpendicular to the conductor surface (when 
no currents are present). This fact is of fundamental importance in field 
mapping (see Sec. 2-27). 
y 2-5. Table of Boundary Relations. Table 2-2 summarizes the bound-
ary relations for static fields developed in the preceding section. 

TABLE 2-2 
BOUNDARY RELATIONS FOR STATIC ELECTRIC FIELDSt 

Field 
component 

Boundary relation Condition 

Tangential E, 1 El,  (1) Any two media 

Tangential = 0  (2) Medium 1 is a dielectric 
Medium 2 is a conductor 

Normal — D, = Ps  (3) Any two media with charge at boundary 

Normal = D 2 (4) 
(eLE.1  esE.2) 

Any two media with no charge at boundary 

Normal D.1 = p.  (5) 
= 

Medium 1 is a dielectric 
Medium 2 is a conductor with surface charge 

t Relations  (1), (3), and (4) apply in the presence of currents and also for time-
varying fields (Chap. 7).  The other relations, (2) and (5), also apply for time-chang-
ing situations provided (T2 =  00. 

2-6. Artificial Dielectrics. Certain of the properties of a dielectric 
material may be simulated with artificial dielectrics. These were devel-
oped as a material for lenses for focusing short-wavelength radio waves.' 
Whereas the true dielectric consists of atomic or molecular particles of 
microscopic size, the artificial dielectric consists of discrete metal particles 
of macroscopic size. For example, the artificial dielectric may consist of 

1 W. E. Kock, Metallic Delay Lens, Bell System Tech. J., 27, 58-82, January, 1948. 
See also discussion by J. D. Kraus, "Antennas," McGraw-Hill Book Company, Inc., 
New York, 1950, p. 390. 
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a large number of metal spheres, as in Fig. 2-7, arranged in a three-
dimensional or lattice structure which simulates the arrangement of the 
atoms of a true dielectric but on a much larger scale.' 
The permittivity of an artificial dielectric made of metal spheres will 

now be calculated. This calculation is approximate but provides a good 
illustration of the significance of polarization  Metal 
and its application in a practical problem.  spheres 
Let a uniform electric field E be applied, as 
in Fig. 2-7, to a slab of artificial dielectric 

individual spheres  E 
o 61; 1 

E induces charges on the in 
as suggested in Fig. 2-8a. Thus, the 

consisting of many metal spheres.  The field 

spheres become analogous to the polarized  z 
atoms of a true dielectric, and each sphere  FIG. 2-7. Slab of artificial di-
may be represented by an equivalent dipole  electric  consisting of metal 
of charge q and length 1 as in Fig. 2-8h.  spheres in lattice arrangement. 

The polarization P of the artificial dielectric is by (2-12) equal to the net 
dipole moment per unit volume, or 

P = Nql  (2-36) 

where N = number of spheres per unit volume (meters-3) 
ql = dipole moment of individual sphere (coulomb-meters) 

From (2-19) the permittivity is 
given by 

(a) (2-37) 

Introducing the value of P from (2-36) 
into (2-37), 

, Nql , Nql 
= eo -r E  E 

(2-38) 

(b)  The last step in (2-38) follows from 
the fact that 1 and E are in the same 

Axis of  direction, and hence their ratio (as 
E  1  +q  dipole  vectors) equals that of their scalar 
Fla. 2-8. Individual sphere of arti-  magnitudes (1 and E). 
ficial dielectric (a) and equivalent  According to (2-38) the permittiv-
dipole (b). ity of the artificial dielectric can be 
determined if the number of spheres per unit volume and the dipole 
moment of one sphere per unit applied field are known. Proceeding now 

1 If the spheres are hollow (or if metal discs or strips are used), the artificial dielec-
tric slab can be made much lighter in weight than the corresponding slab of true 
dielectric.  This is a principal advantage of the artificial dielectric material. 
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to find the dipole moment of one sphere, it is assumed that each sphere is 
in a uniform field. This neglects the interaction of spheres, but this is 
negligible provided the sphere radius is small compared with the spacing 
between spheres. 
From (1-14) the potential Vo at a point in a uniform field is given by 

Vo = — for E cos 0 dr = — Er cos 0  (2-39) 

where r = radial distance from origin (taken at center of dipole) 
0 = angle between field direction or axis of dipole and radial line 

(see Fig. 2-8h) 
According to (2-39), Vo = 0 at all points in a plane through the origin and 
normal to E. Equation (2-39) gives the potential at a point in a uniform 
field. Assuming that r >> 1, the potential Vd of a dipole in air is, from 

(2-6 ), 
ql cos 0 

Vd — 
4Teor2 

(2-40) 

The total potential V is, by superposition, the sum of (2-39) and (2-40), or 

V = V 0 -I- V d 
ql cos 0 

= —Er cos 0 +  (2-41) 
4Teor2 

The metal sphere has only induced charges on its surface (equal amounts 
of positive and negative charge) so that its potential is zero.  Thus, for 
r = a, (2-41) reduces to 

l cos 0 0 = — Ea cos 0 + q (2-42) 
47reoa2 

Solving (2-42) for ql/E, we have 

21- = 47e0a3 (2-43) 
E 

Introducing (2-43) into (2-38), we obtain 

e = eo ± 4TeoNa3 (244) 
or 

er = 1 + 4rNaa  (245) 

where e = permittivity of artificial dielectric 
e,. = relative permittivity of artificial dielectric 
N = number of spheres/unit volume 
a = radius of sphere 

Both the unit volume and the radius are expressed in the same unit of 
length. 
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Since the volume v of the sphere is 47ra3/3, (2-45) can also be written as 

e, = 1 ± 3vN  (2-46) 

where N = number of spheres/unit volume 
v  volume of sphere (in same units as unit volume) 

Thus, the permittivity of the artificial dielectric depends on both the 
number of spheres per unit volume and the size of the spheres. 
2-7. Capacitors and Capacitance. A capacitor' is an electrical device 

consisting of two conductors separated by an insulating or dielectric 
medium. 
By definition the capacitance of a capacitor is the ratio of the charge on 

one of its conductors to the potential difference between them. Thus, 
the capacitance C of a capacitor is 

vci = c 

where Q = charge on one conductor 
V = potential difference of conductors 

Dimensionally (2-47) is 

Charge  _  charge   = charge2 
Potential  energy/charge  energy 

or in dimensional symbols 
Q2  Q 2 T2 

ML2/T2 - ML2 

— capacitance 

(2-47) 

The mksc unit of capacitance is the farad. Thus, 1 coulomb per volt 
equals 1 farad, or 

Coulombs 
— farads 

Volt 

In other words, a capacitor that can store 1 coulomb of charge with a 
potential difference of 1 volt has a capacitance of 1 farad.  A capacitor of 
1 farad capacitance is much larger than is ordinarily used in practice so 
that the units 

and 
Microfarad = 10-6 farad 

Micromicrofarad = 10-12  farad 

are commonly employed. 
2-8. Capacitance of Isolated Sphere. A very simple capacitor of 

theoretical interest consists of a single isolated conducting sphere. The 
sphere may be solid or hollow. Let the radius of the sphere be r1. Since 

1 Also called a condenser. 
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a capacitor must have two conductors, the second conductor in this case 
can be regarded as a sphere of infinite radius and zero potential. Let a 
charge Q be placed on the sphere of radius r1. From (1-11) the potential 
of the sphere (work per unit charge to bring a positive test charge from 
infinity to the sphere) is given by 

V =   (2-48) 
4weri 

where e = permittivity of medium filling all of space surrounding sphere. 
Since V in (2-48) represents the potential or voltage difference between 

the infinite sphere and the isolated sphere of radius r1, the capacitance of 
the isolated sphere is obtained by substituting (2-48) for V in (2-47), which 
yields 

C = -v = 4weri (2-49) 

The capacitance C of the isolated sphere is in farads if ri is in meters and 
e in farads per meter. 
2-9. Capacitor of Two Concentric Spherical Shells. Consider now a 

capacitor consisting of two spherical conducting shells of radius r1 and 
r2 arranged concentrically as in Fig. 2-9. This capacitor is similar to the 

isolated sphere of Sec. 2-8 but with the 
radius of the outer conductor reduced from 
infinity to r2. 
Assume that a charge Q is placed on the 

outer surface of the inner shell (radius r1). 
There will then be induced an equal charge 
of opposite sign on the inner surface of the 
outer shell (radius r2). The electric field 
extends radially between the two shells and is 
of the same intensity as the field at the same 
radius from a point charge Q. Thus, from 
(1-4) the radial component E, of the field is 

Er =  (2-50) 

FIG. 2-9. Capacitor consisting 
of two concentric spherical 
shells. 

where r1 < r < r2. The potential difference V21 between the shells is 
then the same as the work per unit charge required to bring a positive 
test charge from a radius r2 to a radius r1 in the field of an isolated point 
charge Q. The result is identical with that of (1-10) and is given by 

Q f" dr  Q (1  1  Q r2 — ri 
V21 =  =  -  /we „ r2 4we ri  772) =  4we  rir2 (2-51) 

The capacitance C of the spherical shell capacitor is the ratio of the 
charge 9 to the voltage difference Vu, or 
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C =  = 47e 
Y 21 

rir2 
r2 — 

(2-52) 

Thus, the capacitance of the spherical shell capacitor is proportional to 
the product of the shell radii and inversely proportional to the difference 
of the radii. 
2-10. Parallel-plate Capacitor. The capacitors described in the above 

sections are not commonly used, whereas the parallel-plate capacitor such 
as shown in Fig. 2-10 is a very common type. This capacitor consists of 
two parallel flat plates of area A sepa-
rated by a distance /. The capacitor 
can be charged or discharged by wires 
connected as indicated. 
Suppose that a potential V applied 

to the capacitor plates results in a 
charge +Q on one plate and —Q on 
the other. Assuming that the charge is uniformly distributed (edge 
effects' neglected), the surface charge density p, is uniform and is given by 

Pe = 

Fia. 2-10. Parallel-plate capacitor. 

(2-53) 

where A = area of plates. The flux density D between the plates is 
equal to pa. Thus 

V 
Q = Ap, = AD = AtE  Ae— (2-54) 

where E = field strength between plates 
e = permittivity of medium between plates 

The capacitance C of the parallel-plate capacitor equals Q/V.  Intro-
ducing the value of Q from (2-54), we have 

eA 
C = —  (2-55) 

where e = permittivity of medium between capacitor plates (farads/ 
meter) 

A = area of plates (meters2) 
1 = separation of plates (meters) 

Introducing the relative permittivity e, and the value of co, we obtain 
for the capacitance of the parallel-plate capacitor 

Ae 
C = 8.85 X 10-12  farads 

or  (2-56) 
8 85A er 

C —  •   micromicrofarads (144f) 

The edge effects decrease in importance as the size of the plates is increased com-
pared with the spacing. 
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where er is the relative permittivity of the medium between the plates. 
As mentioned above, this formula neglects the electric field fringing the 
edge of the capacitor so that C by (2-56) is slightly less than the actual 
capacitance. 

Example.  A parallel-plate capacitor consists of two square metal plates 50 cm on 
a side and separated by 1 cm.  A slab of sulfur (er = 4) 6 mm thick is placed on the 
lower plate as indicated in Fig. 2-11a.  This leaves an air gap 4 mm thick between the 

mm  Air  C. 
Sulphur 

C. cf,mm 
(a)  (b) 

FIG. 2-11. Parallel-plate capacitor with sulfur slab and air gap (a) and equivalent 
series capacitor (6). 

sulfur slab and the upper plate.  Find the capacitance of the capacitor.  Neglect 
fringing of the field at the edges of the capacitor. 
Solution.  Imagine that a thin metal foil is placed on the upper surface of the sulfur 

slab.  The foil is not connected to either plate.  Since the foil is normal to E, and 
assuming that it is of negligible thickness, the field in the capacitor is undisturbed. 
The capacitor may now be regarded as two capacitors in series, an air capacitor of 
4 mm plate spacing and capacitance C., and a sulfur-filled capacitor of 6 mm plate 
spacing and capacitance C„ as suggested in Fig. 2-1 lb.  The capacitance of the air 
capacitor is, from (2-56), 

8.85iler 8.85 X 0.52 X 1 
C. —  = 553 14 

0.004 

The capacitance of the sulfur-filled capacitor is 

8.85 X 0.52 X 4 
=  — 1,475 ispi 

0.006 

The total capacitance of two capacitors in parallel is the sum of the individual capaci-
tances.  However, the total capacitance of two capacitors in series, as here, is the 
reciprocal of the sum of the reciprocals of the individual capacitances.  Thus, the 
total capacitance C is given by 

1  1  1 

or 
C.C. 553 X 1 475 
C. -I- C. C =  553  1', 475 — 402 i.A.f 

2-11. Action of Dielectric in a Capacitor. In the above relations 
for the capacitance of capacitors it is to be noted that the capacitance is 
proportional to the permittivity e. For example, if the capacitance of a 
parallel-plate capacitor with air as the dielectric medium is 1 f then 
filling the space between the plates with paraffin (e, = 2.1) raises the 
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capacitance to 2.1 pf. That is, with the paraffin dielectric the capacitor 
plates can store 2.1 times as much charge for a given applied potential. 
The reason for this increase in the charge storage capacity is to be found 
in the polarization of the paraffin. 

".—Plates 

+ 
— Q 

Axis 

4-

Air 

+Q 

v  t• 

Plates 

/ çParaffin \ 

--) 

Pal   Ps I  
or I 

-Q 

Axis 

(a)  (b) 
FIG. 2-12. The variation of the flux density D, electric field intensity E, polarization 
P, potential V, and surface charge density p, along the axis between the plates of an 
air capacitor is shown at (a). The variation after a paraffin slab has been introduced 
is illustrated at (b). 

Referring to Fig. 2-12a, let the medium between the plates be air. 
Let a potential or voltage difference V be applied to the plates, as with a 
battery, resulting in charges +Q and —Q on the plates. The battery is 
then disconnected. The resulting variation of the flux density D, field 
intensity E, polarization P, potential V, and surface charge density p, as a 
function of distance along the capacitor axis (normal to the center of the 
plates) is presented by the graphs in Fig. 2-12a. Since th.e permittivity 
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of air is nearly unity, the polarization is substantially zero. The surface 
charge density is due to true charge on the capacitor plates and is indi-
cated by vertical lines in the graph. 
Consider now the situation when a slab of paraffin (e,. = 2.1) is intro-

duced between the capacitor plates as in Fig. 2-12b.  It is assumed that 
the slab is substantially as thick as the spacing between the plates. 
However, for clarity the air gaps between the plates and the paraffin slab 
are exaggerated in Fig. 2-12b. Since the battery was disconnected 
before the paraffin was introduced, the charge on the plates is the same as 
previously.  Therefore, the flux density D is the same as before and is 
constant between the plates.  However, the total field intensity E in 
the dielectric is reduced to 0.475 of its value in the air capacitor 
(E = D / eoe,. = 0.475D/e0). The polarization P has a value in the 
paraffin such that P  eoE = D or 

P = D (1 — —1) = 0.525 D 

Since E in the paraffin is reduced, the potential difference of the plates 
is also reduced as indicated in Fig. 2-12.  With the paraffin dielectric 
there is not only the true surface charge of density p. on the capacitor 
plates but also the polarization charge of density P., on the surface of the 
paraffin.  It is to be noted that D = p., while P = p.o. The polarization 
charge does not affect D, but it does reduce E in the dielectric by partially 
neutralizing the effect of the true surface charge on the plates. As a 
result the potential difference of the plates is only 1/2.1 = 0.475 of its 
value for the air capacitor (the effect of the air gap in the paraffin capaci-
tor being neglected). Therefore, if the battery with potential V that was 
originally applied to the air capacitor is now connected to the paraffin 
capacitor, the true charge stored on the plates can be increased to 2.1 
times its original value. Accordingly, the capacitance (charge per unit 
potential) is 2.1 its value with air. The field E in the paraffin capacitor 
is now equal to its value in the air capacitor, but the flux density D is 2.1 
times as much. 
2-12. Dielectric Strength. The field intensity E in a dielectric cannot 

be increased indefinitely.  If a certain value is exceeded, sparking occurs 
and the dielectric is said to break down.' The maximum field intensity 
that a dielectric can sustain without breakdown is called its dielectric 
strength. 

1 As E is gradually increased, sparking occurs in air almost immediately when a 
critical value of field is exceeded if the field is uniform (E everywhere parallel), but a 
glowing, or corona, discharge may occur first if the field is nonuniform (diverging) 
with spark-over following as E is increased further.  For a detailed discussion see, for 
example, F. W. Peek, Jr., "Dielectric Phenomena in High Voltage Engineering," 
3d ed., McGraw-Hill Book Company, Inc., New York, 1929. 
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In the design of capacitors it is important to know the maximum 
potential difference that can be applied before breakdown occurs.  For a 
given plate spacing this breakdown is proportional to the dielectric 
strength of the medium between the plates. The radius of curvature of 
the edge of the capacitor plate is another factor, since this curvature 
largely determines the maximum field intensity that occurs for a given 
potential difference (see Sec. 2-28). 
Many capacitors have air as the dielectric. These types have the 

advantage that if breakdown occurs the capacitor is not permanently 
damaged. For applications requiring large capacitance or small physical 
size or both, other dielectrics are employed. The dielectric strength of a 
number of common dielectric materials is listed in Table 2-3. The 
dielectric strengths are for a uniform field. The materials are arranged 
in order of increasing strength. 

TABLE 2-3 
Material  Dielectric strength, volts/meter 

Air (atmospheric pressure)   3 X 106 
Oil (mineral)   15 X 106 
Paper (impregnated)   15 X 106 
Polystyrene   20 X 106 
Rubber (hard)   21 X 106 
Bakelite   25 X 106 
Glass (plate)   30 X 106 
Paraffin   30 X 10° 
Quartz (fused)   30 X 106 
Mica   200 X 106 

2-13. Energy in a Capacitor. It requires work to charge a capacitor. 
Hence energy is stored by a charged capacitor. 
To determine the magnitude of this energy, consider a capacitor of 

capacitance C charged to a potential difference V between the two con-
ductors. Then from (2-47) 

q = CV  (2-57) 

where q = charge on each conductor. Now potential is work per 
charge.  In terms of infinitesimals it is the infinitesimal work dW per 
infinitesimal charge dq. That is, 

,  dW 
r = — 

dg 

Introducing the value of V from (2-58) in (2-57), we have 

dW =  dq 

(2-58) 

(2-59) 

If the charging process starts from a zero charge and continues until a 
final charge Q is delivered, the total work 117 is the integral of (2-59), or 
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1 f Q 1Q2 
W = —  a da = C - —  (2-60) 

C 0  2  

This is the energy stored in the capacitor.  By (2-47) this relation can be 
variously expressed as 

tu  1Q2 1  1 
rr  = 2  = 2 CV2 = 2 QV  (2-61) 

where W = energy (joules) 
C = capacitance (farads) 
V -= potential difference (volts) 
Q = charge on one conductor (coulombs) 

2-14. Energy Density in a Static Electric Field.  Consider the parallel-. 
plate capacitor of capacitance C shown in Fig. 2-13.  When it is charged 

to a potential difference V between 
the plates, the energy stored is 

Area A 
W = 1C172  = -INV  (2-62) 

IE D, -A,  The question may now be asked: 
+ + +  In what part of the capacitor is 

the energy stored? The answer 
is: The energy is stored in the 

FIG. 2-13. Energy is stored in the electric  electric field between the plates. 
field between the capacitor plates.  To demonstrate this, let us proceed 

as follows: Consider the small cu-
bical volume Av( = AP) between the plates as indicated in Fig. 2-13. This 
volume is shown to a larger scale in Fig. 2-14.  The length of each side 
is Al, and the top and bottom faces (of area Al2)  are parallel to thesapac-
itor plates (normal to the field E).  If 
thin sheets of metal foil are placed coin-
cident with the top and bottom faces of 
the volume, the field will be undisturbed  Thsinh emeetstal 
provided the sheets are sufficiently thin. 
The volume Av now constitutes a small  L1 
capacitor of capacitance 

AC = —eAl2 = e A/  (2-63)  Fm. 2-14. Small cubical volume 
A/  of capacitance ad. 

The potential difference AV of the thin sheets is given by 

(2-64) 

Now the energy AW stored in the volume hw is, from (2-61), 

ATV = tLC AV2 (2-65) 
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Substituting (2-63) for AC and (2-64) for AV in (2-65), we have 

AW = lreE2 Ay  (2-66) 

Dividing (2-66) by Av and taking the limit of the ratio A W/ iv as Av 
approaches zero, we obtain the energy per volume, or energy density, to at 
the point around which Av shrinks to zero. Thus' 

AW  1 
to = lim —A =  EE2 (2-67a) 

Av.() 

Now the total energy W stored by the capacitor of Fig. 2-13 will be 
given by the integral of the energy density to over the entire region in 
which the electric field E has a value. 

W =  to dv =  j €E2 dv  (2-68) 

where the integration is taken throughout the region between the plates. 
For simplicity it is assumed that the field is uniform between the plates 
and that there is no fringing of the field at the edges of the capacitor. 
Thus, evaluating (2-68), 

W = i€E2A1 = DA El = iQV  joules  (2-69) 

where A = area of one capacitor plate (meters2) 
1 = spacing between capacitor plates (meters) 

This result, obtained by integrating the energy density throughout the 
volume between the plates of the capacitor, is identical with the relation 
given by (2-61). 
2-15. Fields of Simple Charge Configurations. In many problems it 

is desirable to know the distribution of the electric field and the associated 
potential. For example, if the field intensity exceeds the breakdown 
value for the dielectric medium, sparking, or corona, can occur. From a 
knowledge of the field distribution, the charge surface density on con-
ductors bounding the field and the capacitance between them can also be 
determined. 
In Secs. 2-16 to 2-25 the field and potential distributions for a number 

of simple geometric forms are discussed.  The field and potential dis-
tributions around point charges, charged spheres, line charges, and 
charged cylinders are considered first. The field and potential distribu-
tions of these configurations can be expressed by relatively simple equa-
tions. The extension of these relations by the method of images to 
situations involving large conducting sheets or ground planes is then 
considered. Finally, in Sec. 2-26, the field and potential distributions for 
some conductor configurations, which are not easily treated mathe-

For the more general case of a nonisotropic medium in which D and E may not be 
in the same direction, 

w  iD • E  (2-67h) 
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matically, are found by a simple graphical method known as field 
mapping. 
2-16. Fields of Point Charges and Conducting Spheres.  The fields of 

point charges and conducting spheres have already been discussed, but 
the relations will be summarized in this section. 
The electric field of an isolated point charge is everywhere radial and 

is given in volts per meter by 

E,. =  Q  
4rer2 

(2-70) 

where Q is the charge in coulombs and r is the distance from the charge in 
meters. 

r, r 

Equipotentiels 

(a) 

(b) 

Fla. 2-15. Variation of electric field E and potential V for an isolated charged con-
ducting sphere of radius rl. 



SEC. 2-18]  THE STATIC ELECTRIC FIELD. PART 2  69 

The absolute electric potential V of an isolated point charge is given 
in volts by 

v = Q 
41-er 

(2-7 1) 

The electric field of an isolated conducting sphere (hollow or solid) of 
radius r1 with a total charge Q is everywhere radial and is also given by 
(2-70) for all values of r larger than r1. For values of r less than ri 
(inside sphere) E = 0. 
The electric potential V of such an isolated conducting sphere is given 

by (2-71) for all values of r larger than r1. For values of r less than r1 
(inside sphere) the potential is constant and has the same value as the 
potential of the sphere. 
Field and potential distributions may be presented in various ways. 

For example, a graph of the variation of the magnitude of the electric 
field E and of the electric potential V along a reference line may give the 
desired information. This is illustrated by the curves for E and V in 
Fig. 2-15a for the field and potential along a radial line extending from 
the center of a charged conducting sphere of radius r1. Or the field and 
potential distribution may be indicated by a contour map, or graph, as in 
Fig. 2-15b.  In this map the radial lines indicate the direction of the 
electric field, while the circular contours are equipotential lines.  In this 
diagram the potential difference between contours is a constant. 
2-17. Field of Two Equal Point Charges of Opposite Sign (Electric 

Dipole). The electric field at a point P due to two point charges +Q 
and -Q is equal to the vector sum of the fields at P due to each of the 
charges alone. This is illustrated in Fig. 2-16. The potential V at P 
is equal to the algebraic sum of the potentials at P due to each charge 
alone.  The field can also be obtained from the gradient of the potential 
(E = -VV) if the potential distribution is known. 
A map of the field lines (solid) and equipotential contours (dashed) is 

shown in Fig. 2-16 for the case of point charges +Q and -Q separated 
by 12.7 cm.  The equipotential contours are given in volts for 
Q = 1.4 X 10-1 ° coulomb. The charge configuration in Fig. 2-16 con-
stitutes an electric dipole with a charge separation of 12.7 cm.  The 
expressions for E and V of an electric dipole given by (2-7) and (2-6) 
would not apply to the map shown in Fig. 2-16 since these are restricted 
to distances that are large compared with the charge separation. 
2-18. Field of Two Equal Point Charges of Same Sign. In contrast to 

the configuration in Sec. 2-17 let us consider the situation of two positive 
point charges of equal magnitude as in Fig. 2-17. A map of the field 
lines (solid) and equipotential contours (dashed) is shown for a charge 
separation of 12.7 cm.  The equipotential contours are given in volts for 
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Fm. 2-16. Electric field and potential variation around an electric dipole consisting 
of a positive and negative charge of 1.4 X 10-10  coulomb separated by 12.7 cm 
(5 in.).  The solid lines are field lines, and the dashed lines are equipotential contours, 
with their potential level indicated in volts. 

Q = 1.4 X 10-1 ° coulomb. The only difference between the charge 
configuration of Fig. 2-17 and that in Fig. 2-16 is that the lower charge is 
positive. 
At distances from the charges that are large compared with their 

separation the equipotentials become circles, while the field lines become 
radials as though the field were caused by a charge of +2Q situated at P 
midway between the charges. At large distances this point appears to be 
the center of charge, or " center of gravity," of the charge configuration. 



- 
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Near each charge the effect of the other charge is small, and the equi-
potentials are circles like around an isolated point charge. For inter-
mediate distances the equipotentials have the shapes shown in Fig. 
2-17. Of particular interest is the figure-eight-shaped equipotential 

FIG. 2-17. Electric field and potential variation around two equal positive charges 
of 1.4 X 10-1° coulomb separated by 12.7 cm (5 in.). The solid lines are field lines, 
and the dashed lines are equipotential contours, with their potential level indicated 
in volts. 

(V = 39.5 volts) that crosses itself at the point P. At the point P the 
gradient of V is zero, and hence E = 0. A point such as this is called a 
singular point. 
2-19. Field of a Number of Point Charges and Conducting Spheres. 

The electric field E at a point P due to a number of point charges is equal to 
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the vector sum of the fields at P due to each of the charges alone. The 
potential V at P is equal to the algebraic sum of the potentials at P due 
to each charge alone. 
The electric field E at a point P due to a number of charged conducting 

spheres is approximately equal to the vector sum of the fields at P due to 
each sphere alone, while the potential V at P is approximately equal to 
the algebraic sum of the potentials at P due to each sphere alone.  It is 
assumed that the spheres are small compared with their separation so 
that the charge distribution on each sphere is substantially uniform. 
2-20. Field of a Finite Line of Charge.  Consider now the field pro-

duced by a thin line of electric charge. Let a positive charge Q be dis-
tributed uniformly as an infinitesimally thin line of length 2a with center 

z-axis 

dE,. 

dE 

Line of charge 

r-axis 

Fm. 2-18. Thin line of charge of length 2a. 

at the origin as in Fig. 2-18. The linear charge density pq, (charge per 
unit length) is then 

Pc = 2—a (2-72) 

where pi, is in coulombs per meter when Q is in coulombs and a is in meters. 
At the point P on the r axis, the infinitesimal electric field dE due to an 

infinitesimal length of wire dz is the same as from a point charge of mag-
nitude pi, dz. Thus, 

Pr, dz dE = aj 4irep  (2-73) 
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where 1 = y r2 z2 

ai = unit vector in direction of 1 
The z axis in Fig. 2-18 is an axis of symmetry so that the field will have 
only z and r components. These are 

and 

dE, = dE cos 0 = dE 

dE = dE sin 0 = dE T 

(2-74) 

(2-75) 

The resultant or total r component E, of the field at a point on the r axis 
is obtained by integrating (2-74) over the entire line of charge. That is, 

E = pLr f +a  dz _  r a  dz   
4ire —a  13  — 47re —a  /(r2 +z2)1 

and 

Er —  pLa   (2-76) 
2Ter N/r2 a2 

By symmetry the resultant z component E, of the field at a point on the 
r axis is zero.  Hence the total field E at points along the r axis is radial 
and is given by 

lEl = Er —  pat   (2-77) 
2rer Vr2 a2 

This relation gives the field as a function of r at points on the r axis for a 
finite line of charge of length 2a and uniform charge density PL.  For the 
potential V at any point see Prob. 2-28. 
2-21. Field of an Infinite Line of Charge. Consider that the line 

of charge in Fig. 2-18 extends to infinity in both positive and negative 
z directions.  By dividing the numerator and denominator of (2-77) by a 
and letting a become infinite, the electric field intensity due to an infinite 
line of positive charge is found to be 

lEl = E, =  2Ter (2-78) 

The potential difference V21 between two points at radial distances r2 
and ri from the infinite line of charge is then the work per unit charge 
required to transport a positive test charge from r2 to r1. Assume that 
r2 > r1. This potential difference is given by the line integral of E, from 
r2 to r1, the potential at r1 being higher than at r2 if the line of charge is 
positive. Thus 

T1 

v 21  f  fri 
2ire  r 

Er  dr  =  dr 
r: 
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rt 

PL 1  PL  r2 
V21 =  n r  = — in — 

27re I in  I  27re  r1 

[CHAP. 2 

(2-79) 

2-22. Infinite Cylinder of Charge. If the charge is distributed uni-
formly along a cylinder of radius rl instead of concentrated along an 
infinitesimally thin line, the field external to the cylinder is given by 
(2-78) for r > r1. Inside of the cylinder, E = 0. 
The potential difference between the cylinder and points outside the 

cylinder is given by (2-79), where r2 > rl and pi, is the charge per unit 
length of the cylinder.  Inside of the cylinder the potential is the same 
as the potential at the surface (r = ri). 
2-23. Infinite Coaxial Transmission Line. A coaxial transmission 

line consists of two conductors arranged coaxially as shown by the cross 
section of Fig. 2-19a. This is a common type of transmission line, and 
much can be learned concerning its properties from a consideration of its 

Outer 
conductor 

(a)  (b) 
FIG. 2-19. Coaxial transmission line. 

behavior under static conditions. Let a fixed potential difference be 
applied between the inner and outer conductors of an infinitely long 
coaxial line so that the charge Q per unit length 1 of one line is PL. The 
field is confined to the space between the two conductors. The field 
lines are radial and the equipotential lines are concentric circles as 
indicated in Fig. 2-19b.  The magnitude of the field at a radius r is given 
by (2-78), where a < r < b and where pi, is the charge per unit length 
on the inner conductor. The potential difference V between the conduc-
tors is, from (2-79), 

V =  ,.,'  
,are  a 

(2-80) 

1 The abbreviation In indicates the natural logarithm (to base e). The abbreviation 
log indicates the common logarithm (to base 10). That is, 

In x ... log. x ... 2.3 log,. x .E. 2.3 log x 
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Now capacitance is given by the ratio of charge to potential.  Thus 

C= 

Dividing by length 1, we have 

C _ Q/1 
1 — V 

The ratio Q/1 equals the linear charge density pi, (coulombs per meter). 
Hence, the capacitance per unit length, C//, of the coaxial line is 

C  p =  2ire  
farads/meter  (2-81) T = V  in (b / a) 

where e = permittivity of medium between conductors.  With e in farads 
per meter, C is also in farads per meter. The radii a and b are expressed 
in the same units of length. 
Since e = eoe,, where eo = 8.85 X 10-12  farad/meter, (2-81) can be 

expressed more conveniently as 

C _ 55.6er  _  24.2e,  
/  in (b / a)  log (b / a) 

where t = relative permittivity of medium between conductors 
wsf = micromicrofarads 
b = inside radius of outer conductor 
a = radius of inner conductor (in same units as b) 
In = natural logarithm 
log = logarithm to base 10 

2-24. Two Infinite Lines of Charge. Let two infinite parallel lines 
of charge be separated by a distance 2s as in Fig. 2-20.  Assume that the 
linear charge density of the two lines is equal but of opposite sign. The 
resultant electric field E at a point P, distant r1 from the negative line 
and r2 from the positive line, is then the vector sum of the field of each 
line taken alone. 
Let the origin of the coordinates in Fig. 2-20 be the reference for 

potential. Then the potential difference between P and the origin pro-
duced by the positively charged line is 

V + =  in —8 
hire  r2 

miif/meter  (2-82) 

and the potential due to the negatively charged line is 

V_ = —  in —8 
2we  r1 

(2-83) 

(2-84) 
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Eq uipotential 

Flo. 2-20. Two infinite lines of charge separated by a distance 2s. 

[CH \P. 2 

The total potential difference V between P and the origin is the algebraic 
sum of (2-83) and (2-84), or 

V =  -I- V_ =  ln 7.1 
27re  r2 

(2-85) 

If V in (2-85) is a constant, (2-85) is the equation of an equipotential 
line.  The form of the equipotential line will be more apparent if (2-85) is 
transformed in the following manner: From (2-85) 

and 

2we V 
In r1 (2-86) 
r2  Pc 

ri 
— = e 2treV/pL,  (2-87) 
r2 

Since 22reV/p/, is a constant for any equipotential line, the right side of 
(2-87) is a constant K.  Thus 

e2..v/pf. = K and  r1 = Kr2  (2-88) 

The coordinates of the point P in Fig. 2-20 are (x, y) so that 

2-1 = V(8 + x)2 + y2 (2-89) 

and 
r2= /(8  x)2 d- y2 (2-90) 

Substituting (2-89) and (2-90) in (2-88), squaring, and rearranging yields 

K2 + 1  
X2 — 2xs K2 — 1 + 82 + y2 = 0 (2-91) 
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Adding s2(K2 1)2/(K2 — 1)2 to both sides of (2-91) to complete the 
square on the left side, we have 

(X   K 2 -  + y 2  -  2Ks 1/  (2-92) K2 —   

This is the equation of a circle having the form 

(x — h)2 (y -  = 1.2  (2-93) 

where x and y are the coordinates of a point on the circle, h and 1 are the 
coordinates of the center of the circle, and r is the radius of the circle. 
Comparing (2-92) and (2-93), it follows that the equipotential curve pass-
ing through the point (x, y) is a circle of radius 

2Ks  
r =  K2 1  (2-94) —  

with its center on the x axis at a distance from the origin 

K2 + 1 
h = 8 K2  1  (2-95) 

An equipotential line of radius r with center at (h, 0) is shown in 
Fig. 2-20.  As K increases, corresponding to larger equipotentials, r 
approaches zero and h approaches s so that the equipotentials are smaller 
circles with their centers more nearly at the line of charge. This is 
illustrated by the additional equipotential circles in Fig. 2-21. 
The potential is zero along the y axis. Potentials to the right of the y 

axis are positive and to the left are negative. 
Field lines are also shown in Fig. 2-21. These are everywhere orthog-

onal to the potential circles and also are circles with their centers on the 
y axis. 
2-25. Infinite Two-wire Transmission Line. The discussion of two 

infinite lines of charge in the previous section is easily extended to the 
case of an infinite line consisting of two parallel cylindrical conductors or 
wires. This is a type of transmission line commonly used in practice, 
and much can be learned concerning its properties from a consideration of 
its behavior under static conditions. Let a fixed potential difference be 
applied between the conductors so that the charge per unit length of each 
conductor is PL. 
The surface of the wire is an equipotential surface, and therefore an 

equipotential circle in Fig. 2-21 will coincide with the wire surface. 
Thus, the heavy circles of radius r and center-to-center spacing 2h can 
represent the two wires. The field and potential distributions external 
to the wire surfaces are the same as if the field were produced by two 
infinitesimally thin lines of charge with a spacing of 28.  The field inside 
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V= 0 
FIG. 2-21. Field and equipotential lines around two infinite parallel lines of charge 
or around an infinite two-conductor transmission line. 

the wires is, of course, zero and the potential the same as on the surface. 
The charge is aot uniformly distributed on the wire surface but has higher 
density on the adjacent sides of the conductors. 
The potential difference Vc between one of the conductors and a point 

midway between them is, from (2-85) and (2-88), 

V =  In K 
27e 

(2-96) 

The value of K can be expressed in terms of the radius r and half the 
center-to-center spacing h by eliminating s from (2-94) and (2-95) and 
solving for K, obtaining 

h  .‘lh2 
K = -r  — 1 

The potential difference V2c between the two conductors is then 

PL 
172c = —  In -   re  r  r2 

(2-97) 

(2-98) 

To find the capacitance per unit length, C/1, of the two-conductor line, 
we take the ratio of the charge per unit length on one conductor to the 
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difference of potential between the conductors. That is, 

or 

C  PL =  = 

1 V2c 

TE 

{ ,J(1)2 _ 1] 
r  r 

C =  12.1e,   

log [h - ± •\10)2— 11 
r  r 

farads/meter  (2-99) 

µµf/meter  (2-100) 

where er = relative permittivity of the medium surrounding the con-
ductors (dimensionless) 

h = half center-to-center spacing 
r = conductor radius (same units as h) 

2-26. Infinite Single-wire Transmission Line. Method of Images. 
A single-wire transmission line with ground return is another form of line 
sometimes used. Let the conductor radius be r and the height of the 
center of the conductor above ground be h. Assume that the conductor 
has a positive charge pi, per unit length and that the ground is at zero 
potential. 
The field and potential distribution of this type of line is readily found 

by the method of images. Thus, if the ground is removed and an identical 
conductor with charge — PL per unit length placed as far below ground 
level as the other conductor is above, the situation is the same as for a 
two-conductor line (Fig. 2-21). The conductor which replaces the 
ground is called the image of the upper conductor.  The field and 
potential distribution for the single conductor line is then as illustrated by 
Fig. 2-22. 
The difference in potential between the single conductor and the 

ground is as given by (2-96) or by one-half of (2-98).  The capacitance 
per unit length, C//, is twice the value given by (2-99), or 

2re   
farads/meter  (2-101) 

1  
r  r 

or 
C _   24.2e,.   

log [-h Nf(i--)2 — 1] 
r  r 

1.44/meter  (2-102) 

The surface charge density p. on the conducting ground plane is not 
uniform.  It is a maximum directly below the wire and is zero at an 
infinite distance. The variation of pg as a function of distance along the 
ground plane is given in Prob. 2-34. 
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Fla. 2-22. Infinite single conductor above ground with eleetrieal image 

2-27. Graphical Mapping of Static Electric Fields. Field Cells. 
Not all conductor configurations can be treated mathematically as readily 
as those in the preceding sections. Although it is theoretically possible 
to find the potential distribution for any configuration of conductors by 
means of Laplace's equation, as will be discussed later, such an approach 
may be impractical and other methods must be used.  In two-
dimensional problems' a very effective graphical method, known as field 
mapping,' is applicable. 
In graphical field mapping the following fundamental properties of 

static electric fields are useful: 

G und 

(CHAP. 2 

1. Field and potential lines intersect at right angles. 
2. The surface of a conductor is an equipotential surface. 

By a two-dimensional problem is meant one in which the conductor configuration 
can be shown by a single cross section, all cross sections parallel to it being the same. 
A uniform coaxial transmission line is an example of a two-dimensional configuration. 
Thus, the cross section of Fig. 2-19 is representative of any cross section of the line. 

2 A. D. Moore, "Fundamentals of Electrical Design," McGraw-Hill Book Com-
pany, Inc., New York, 1927. 
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3. The field meets a conducting surface normally. 
4. In a uniform field, the potential varies linearly with distance. 
5. A flux tube is parallel to the field,' and the electric flux is constant 
over any cross section of a flux tube. 

6. A tube of flux originates on a positive charge and ends on an equal 
negative charge. 

Graphical field mapping will be introduced with the aid of an example. 
Consider two charged sheet conductors 1 and 2 as shown in cross section 
in Fig. 2-23. The sheets extend infinitely far to the left and right and 
also normally to the page. This is a two-dimensional problem, all cross 

/ Conductor 1 

-:';"  Tentative field and 
,,  1  equipotential lines  
.  i 

'I i '1 . W W V 

ft:, 

-.. ,..... , 

40 volts 

30 volts 

20 volts 

10 volts 

  0 volts 
'1. • Conductor 2 

FIG. 2-23. Cross section of two sheet conductors with partially completed field map. 

sections parallel to the page being the same. Therefore, the field and 
potential distribution everywhere between the sheets will be known if it 
can be found for a two-dimensional cross section such as shown in Fig. 
2-23. Let the potential difference between the conductors be 40 volts, 
with the upper conductor positive and the lower conductor at zero 
potential. To the left of a and to the right of b the field is uniform so 
that equipotential surfaces 10 volts apart are equally spaced as indi-
cated, the conductor surfaces being equipotentials at 0 and 40 volts. 
Between a and b the conductor spacing changes, and the equipotentials 
may be drawn tentatively as shown by the dashed lines. 
The next step in the mapping procedure is to draw field lines from con-

ductor 1 to conductor 2 in the uniform field region to the left of a with 
the spacing equal to that between the equipotentials.  In this way the 
region is divided into squares.  Each square is the end surface of a 
rectangular volume, or cell, of depth d into the page. A stack, or series, 

1 The side walls of a flux tube are field lines. 
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of squares bounded by the same field lines represents the side wall of a 
rectangular flux tube extending between the positive charge on one con-
ductor to the negative charge on the other. The field map is next 
extended to the right by drawing field lines as nearly normal to the equi-
potentials as possible, with the field lines spaced so that the areas formed 
are as nearly square as possible. After one or two revisions of the 
tentative equipotentials between a and b and also of the field lines, it 

Flux tube with 
4 cells in series 

Conductor 1 

Conductor 2 

Flux tube 
with 4 cells 
in series 

Remainder 
Flux tube 
with 91/4 
cells in series 

Fm. 2-24. Cross section of two sheet conductors with completed field map.  A three-
dimensional view of a field cell is also given. 

should be possible to remap the region to the right of a so that field and 
equipotential lines are everywhere orthogonal and the areas between the 
lines are all squares or curvilinear squares.' The completed field map is 
shown in Fig. 2-24. The remainder tube at the right of the map is 
explained in the example on p. 86. 
By a curvilinear square is meant an area that tends to yield true squares as 

it is subdivided into smaller and smaller areas by successive halving of the 
equipotential interval and the flux per tube. A partially subdivided 
curvilinear square is illustrated in Fig. 2-25. 
A field map, such as shown in Fig. 2-24, divides the field into many 

squares each of which represents a side of a field cell. These field cells 
have a depth d (into the page) as suggested by the three-dimensional view 

A more accurate technique of field mapping involving circling of the squares is 
described in the Appendix. 



SEC. 2-271  THE STATIC ELECTRIC FIELD. PART 2  83 

of the typical field cell in Fig. 2-24. The cell has a length 1 (parallel to 
the field) and a width b. The side walls of a field cell are the walls of a 
flux tube (parallel to the field), while the top and bottom coincide with 
equipotential surfaces.  As curvilinear cells are subdivided into smaller 
cells, their end areas tend to become true squares. The subdivided cells 

Field lines 

/  ( 

Equipotential 
lines 

FIG. 2-25. Partially subdivided curvilinear square. 

are always of depth d (into the page) the same as the larger cells. Thus, 
a field cell, or simply a cell, may be defined as a curvilinear square volume. 
If thin sheets of metal foil are applied to the equipotential surfaces of a 

field cell, we have a field cell capacitor. The capacitance C of a parallel-
plate capacitor is from (2-55) 

eA C = -  (2-103) 

where e = permittivity of medium 
A = area of plates 
/ = spacing of plates 

Applying this relation to a field cell capacitor with a square end (b = 1), 
we have for the capacitance Co of the field cell 

ebd 
Co = — = ed 

1 
(2-104) 

Dividing by d, we obtain the capacitance per unit depth of a field cell as 

co 
= (2-105) 

where e = permittivity of medium (farads/meter). 
Thus, the significance of the value of e is that it is the capacitance per 
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unit depth of a field cell capacitor. For example, a field cell capacitor of 
unit depth in a medium of air (or vacuum) has a capacitance of 8.85 Apf. 
Such a capacitor is illustrated in Fig. 2-26. 
Any field cell can be subdivided into smaller square-ended cells with as 

many cells in parallel as in series.  Hence the capacitancet per unit depth 
of any field cell, large or small, exactly square or curvilinear is equal to e. 

In a field map, such as in Fig. 2-24, 
most of the area is divided into " reg-
ular" cells with four in series for each 
flux tube. These cells all have the 
same potential difference across them 
(10 volts).  Hence these cells may be 

'Conducting  defined as cells of the same kind.  The 
sheets  remaining area of the map consists of 

a fractional, or remainder, flux tube. 
This tube is also divided into cells. 
These cells are of two kinds, both dif-
ferent from those in the rest of the 
map.  One kind of cell in the remain-
der flux tube has about 4.3 volts 

tor of unit depth having a capacitance  across it and the other kind about 1 
of 8.85 wif.  Volume between plates  volt & MSS it. There are nine 4.3-
is / X / X 1 meter.  volt cells and four 1-volt cells. 
Any field cell has the same capacitance per unit depth.  Many addi-

tional properties are common to field cells of the same kind. These cells of 
the same kind have the same potential difference across them.  In uni-
form fields the areas of the ends of those cells are the same, but in non-
uniform fields the areas will not be the same. 
Since the capacitance per unit depth of any cell of the same kind is the 

same, it follows that the electric flux through any cell of the same kind is 
the same (Q/d = VC/d). Thus, the 10-volt cells in Fig. 2-24 have a flux of 
Os coulombs per unit depth, while the 4.3- and 1-volt cells have 4.3e and 
e coulombs per unit depth, respectively. 
Now the average flux density D at the equipotential surface of a field 

cell is given by 

D = — Q = pa  coulombs/meter2 (2-106) 
bd 

The capacitance of an isolated capacitor such as shown in Fig. 2-26 is somewhat 
greater than 8.85 apf because of fringing of the field.  However, a field cell represents 
only a portion of a more extensive field, and its sides are parallel to the field (no 

fringing). 
It is understood that this capacitance is that which would be obtained if the field 

cell is made into a field cell capacitor by placing thin sheets of metal foil coincident with 
its equipotential surfaces (if no conductor is already present). 

/ 
FIG. 2-26. Air-filled field-cell capaci-
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where Q = total charge on foil at equipotential surface of field cell (also 
equal to total flux 4, through cell) (coulombs) 

b = width of cell (meters) 
d = depth of cell (meters) 
Pa = average surface charge density on foil at equipotential surface 

(coulombs/meter2) 
Hence, the average flux density is inversely proportional to the field cell 
or flux tube width. Also the average surface charge density p, at a con-
ducting surface is inversely proportional to the width of the field cell or 
flux tube at the surface. For example, the spacing of conductors 1 and 2 
to the right of b in Fig. 2-24 is four times that to the left of a; so in the 
uniform field region to the left of a the surface charge density p, is four 
times the value of ps in the uniform field region to the right of b. The 
surface charge density is even smaller than to the right of b in the region 
of concave conductor curvature near b and somewhat larger than to the 
left of a in the region of convex conductor curvature near a. 
Since E = D/e, the field intensity is also inversely proportional to the 

cell width, or length (E = V / l). Furthermore, the energy W( =-1-Q V) 
stored in any cell of the same kind is the same.  It follows that the 
average energy density w is inversely proportional to the area of the end 
of the cell (= bl for a square-ended cell). For example, the energy 
density in the uniform field region to the left of a in Fig. 2-24 is 16 times 
the energy density in the uniform field region to the right of b. 
To summarize, the properties of an accurate electric field map' are as 

follows: 

1. The capacitance of any field cell is the same. 
2. The capacitance Co per unit depth of any field cell is equal to the 
permittivity e of the medium. 

3. The potential difference across any field cell of the same kind is the 
same. 

4. The flux ii, through any field cell of the same kind is the same. 
5. The flux 4, over any cross section of a flux tube is the same. 
6. The average flux density D in any cell of the same kind is inversely 
proportional to the width of the cell or flux tube. 

7. The average charge density p, at the conducting boundary of any 
cell of the same kind is inversely proportional to the width of the 
cell or flux tube at the surface. 

8. The average field intensity E in any cell of the same kind is 
inversely proportional to the cell width. 

9. The energy stored in any cell of the same kind is the same. 
10. The average energy density w in any cell of the same kind is 

'In a single medium of uniform permittivity. 
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inversely proportional to the area of the end of the cell.  (This is 
the area that appears in the field map.) 

In order to test the accuracy of a field map, and hence the accuracy 
with which the above properties hold for a particular map, the curvilinear 
squares of the map can be further subdivided by halving the equipotential 
interval and halving the flux per tube as in Fig. 2-25.  If the smaller 
regions so produced tend to become more nearly true squares, the field is 
accurately mapped.  However, if the regions tend to become rectangles, 
the map is inaccurate and another attempt should be made. Often it is 
preferable to erase and begin again than to attempt to revise an inaccurate 
map.  In field mapping an eraser is as important as a pencil. 
Field and equipotential lines should intersect orthogonally.  It is 

especially important that this rule be observed at all stages of making a 
field map.  If this is done it is possible to determine what modifications 
are necessary to make all areas squares or curvilinear squares.  However, 
if the intersections are not right angles, it may be very difficult to deter-
mine how to proceed in correcting the map.  Additional details on field 
mapping techniques are given in the Appendix. 
To illustrate the utility of graphical field mapping in solving a practical 

problem, consider the following example. 

Example.  Referring to Fig. 2-24, let the conductor separation at if be 1 cm and at 
gg be 4 cm, and let the conductors have a depth (into the page) of 20 cm.  If the con-
ductors end at if and gg and if fringing of the field is neglected, find the capacitance 
C of the resulting capacitor.  The medium in the capacitor is air. 
Solution.  The method of solution will be to evaluate the series-parallel com-

bination of capacitors formed by the individual cells. 
Each cell has a capacitance 

Co = eod = 8.85 X 0.2 = 1.77 AO 

The capacitance between the ends of each flux tube with 4 cells in series is then 

1.77 
—4 - 0.442aaf 

The capacitance between the ends of the remainder flux tube with 9.25 cells in series is 

1.77 
= 0.191 ;4 

There are fifteen 4-cell tubes and one remainder (9.25-cell) tube.  Hence the total 
capacitance C between if and gg is the sum of the capacitances of all the flux tubes, or 

C = 15 X 0.442 ± 0.191 = 6.82 ptof 

The above calculation is somewhat simplified if each cell is arbitrarily assigned a 
capacitance of unity.  On this basis the total capacitance in arbitrary units is given by 

15  1 
-,--4 +  --5- ... 3.86 units 
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and the total actual capacitance C is the product of this result and the actual capaci-
tance of a cell, or 

C = 3.86 X (8.85 X 0.2) = 6.82 pmf 

Yet another method of calculation is to use the relation that the total capacitance C 
is given by 

C = —n Co (2-106a) 

where N = number of cells (or flux tubes) in parallel 
n = number of cells in series 
Co = capacitance of one cell 

and where all cells are of the same kind. Thus in the above example, counting in 
terms of the 10-volt cells, we have 

15.43 
C =,  X 8.85 X 0.2 = 6.82 ppf 

4 

Note that if the capacitance had been desired of a capacitor with con-. 
ductors coinciding with the equipotentials m and n (Fig. 2-24) and of 
20 cm depth, the cells in series would be reduced to two and the capaci-
tance doubled.  In this way the capacitance of any conductor configura-
tion conforming to the equipotential surfaces of a field map can be easily 
calculated. 
2-28. 90° and 270° Corners. As a further illustration of field mapping 

consider a long trough of two conducting sheets intersecting so as to form 
a 90° corner as shown in cross section in Fig. 2-27a. The flux tubes 
(solid lines) and equipotential surfaces (dashed lines) are shown in the 

Quadrisector 

- 

Efisector 

90* 

Conducting 
sheet 

a 
no. 2-27. Field maps in the vicinity of a 90° corner (a) and a 270° corner (b). 

vicinity of the corner of the trough as produced by a region of positive 
charge at a large distance above. The opposite situation of a long prism, 
or 270° corner, is illustrated in cross section by Fig. 2-27b.  If the corners 
are perfectly sharp, the flux density and field in the corner of Fig. 2-27a 
will be zero, while at the apex in Fig. 2-27b they will be infinite. The 
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large field or high-potential gradient near a sharp point will result in an 
electrical discharge to the point rather than to nearby conducting regions 
when the field is increased above the dielectric strength of the medium. 
This is the principle of the lightning rod.' Conversely, in a corner as in 
Fig. 2-27a the field is weak, and it is said that the region near the corner is 
shielded, at least partially, from the field above. 
In mapping near corners, as in Fig. 2-27a, one can take advantage of the 

symmetry by drawing, as the first field line, the bisector of the corner. 
The field is symmetrical around this line so that it is necessary to con-
struct a field map for only one octant, the other octant being a mirror 
image of the first in the bisector line. The lines that bisect the octants 
(or quadrisect the corner) are also lines of symmetry but with the differ-
ence that the equipotentials in one-half of the octant are mirrored as 
field lines in the other half, and vice versa.  It is helpful to construct 
these quadrisectors temporarily while drawing the map in order to ensure 
symmetry. Quadrisectors are shown in both Figs. 2-27a and b (see also 
Appendix, Sec. A-2). 
It is to be noted that in approaching the corners along the bisector lines 

E approaches zero in Fig. 2-27a, while E approaches infinity in Fig. 2-27h, 
it being assumed that both corners are perfectly sharp. 
x 2-29. Divergence of the Flux Density D. In Sec. 1-19 Gauss's law is 
applied to surfaces enclosing finite volumes, and it is shown that the 
normal component of the flux density D integrated over a closed surface 
equals the electric charge enclosed.  By an extension of this relation to 
surfaces enclosing infinitesimal volumes, we are led to a useful relation 
called divergence. 
Let Av be a small but finite volume.  Assuming a uniform charge 

density throughout the volume, the charge AQ enclosed is the product of 
the volume charge density p and the volume Av.  By Gauss's law the 
charge enclosed is also equal to the integral of the normal component D„ 
of the flux density over the surface of the volume Av. Thus, 

96 D. de = AQ = p At)  (2-107) 
8 

and 

96.D. de 

Av 
(2-108) 

If the charge density is not uniform throughout Av, we may take the limit 
of (2-108) as Av shrinks to zero, obtaining the charge density p at the 
point around which Av collapses. The limit of (2-108) as Av approaches 

If the corner is rounded, E is reduced.  In general, to increase the breakdown 
voltage of high-voltage electrical equipment, the conductors are made with rounded 
edges of relatively large radius of curvature. Sharp edges are assiduously avoided. 
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zero is called the divergence of D, written div D or V • D.  Hence 

96 D„ ds 
lim  s   — div D = p coulombs/meter:  (2-109) 
-.0  Av 

Whereas the integral of the normal component of D over a finite volume 
yields the charge enclosed, the divergence of D gives the charge density at a 
point.  If the charge is zero at a point, it follows that the charge density is 
zero and also that the divergence of D is zero at that point.  It is impor-
tant to note that the divergence of D is a scalar point function. 
Let us now discuss divergence in a more formal way, developing it as 

a differential expression. A small volume Ax Ay Az = iv is placed in an 
electric field with flux density D, having components D„ Dv, and D, 
in the three coordinate directions as shown in Fig. 2-28. The total flux 

-Dy 

3D. 
Dz+ Tx-A 

Ay 

aro, 
-T T A  Y 

Fin. 2-28. Construction used to develop differential expression for divergence of D. 

density D is related to its components by 

D = iD.  jD„  kD,  (2-110) 

The normal outward component of D at the back face is —Di since the 
field is directed inward.  If the field changes between the back and front 
faces, the normal component of D at the front face can, by Taylor's 
theorem, be represented by an infinite series, 

aD. x  a2D. Ax2 a3D. Az' 
ai T ± ax2 2!  ax3 3! 

+ • • • •  (2-111) 

When Ax is very small, the square and higher-order terms may be neg-
lected, so that at the front face we have for the normal component of D 

, aD. 
-r — 

ax 
(2-112) 
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In like manner the normal component of D at the left side face is —D„ and 
at the right side face is 

D  aD. „ + 7,i- Ay 

Similarly at the bottom face it is —D. and at the top face is 

D, + — aD, Az 
az 

(2-113) 

(2-114) 

Now the outward flux of D over the back face is 

—D. Ay Az  (2-115) 
and over the front face is 

(D, ± — ap. Ax) Ay Az  (2-116) 
ax 

Adding up the outward flux of D over the entire volume, we obtain for the 
total flux 

aD, 

aD 
+ (—D. + D„ + c ' Ay) Ax Az 

-I- (_D. + D, ± aD, Az) Ada Ay (2-117) 
az 

whitl eimplifies to 

'6*  = (.-  , ± W  + aD,  -50 Ax  AY  Az  
aD  aD.   

From Gauss's law we know that the total electric flux over the surface of 
the volume (or integral of the normal component of D over the surface of 
the volume) is equal to the charge enclosed.  The charge enclosed is also 
equal to the integral of the charge density p over the volume.  Therefore 

(2-118) 

Ao aD, , aD . , -I-= 96  aD,  . . D. ds =  -1- ( —  —   — ) iv = 96v p dv 
ax  ay  az  (2-119) 

Dividing by Av and taking the limit as Av approaches zero, we obtain the 
divergence of D.  Thus, 

96 D. ds  aD.  aD. , aD, 
Urn   + —  +  = P  (2-120) 

ax  ay  az av--o  ay 
and 

aD, ap„  ap, 
div D =   

ax  ay  aZ 
(2-121) 
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The center member of (2-121) is a differential relation for the divergence 
of D expressed in rectangular coordinates. The divergence of D can also 
be written as the scalar, or dot, product of the operator V and D.  That 
is, 

div D= V•D  (2-122) 

This may be more readily seen by expanding (2-122) into the expressions 
for V as given in (1-42) and for D as given by (2-110). Then 

V • D =  a +i a +k —a) • (iD  iD  kD ) 
ax  ay  az  - 

D 
V 

(2-123) 

Performing the multiplication indicated in (2-123), nine dot-product 
terms are obtained as follows: 

anz . ap.  . ap,  . ap„  . op, 
V•D =i•i —  +j•i —ay 1-k•i —Oz -Fi•j — A-j•j ax  ax  ay 

+k•j —az +i•k - -1-j•k —ay +k•k —az  (2-124) ax 

The dot product of a unit vector on itself is unity since the angle between 
the vectors is zero.  Hence 

i • i = ii cos 0° = 1 

On the other hand, the dot product of vector with another vector at 
right angles is zero since the angle between the vectors is 90°. Thus 

i•j =ij cos 90° -= 0 

Accordingly, six of the nine dot products in (2-124) vanish, but the three 
involving i • i, j • j, and k • k do not, and the product indicated by (2-123) 
becomes 

ap,  az)  op, 
V • D=  (2-125) 

ax  ay  az 

The dot product of the operator V with a vector function is the diver-
gence of the vector.  The quantity V • may be considered as a divergence 
operator. Thus the divergence operator applied to a vector function 
yields a scalar function. For example, V • D (divergence of D) is given 
in rectangular coordinates by the right side of (2-125) and is a scalar, 
being equal to the charge density p. 
If D is known everywhere, then taking the divergence of D enables us 

to find the sources (positive charge regions) and sinks (negative charge 
regions) responsible for the electric flux and, hence, for D. The sources 
or sinks of D are in those regions where div D is not zero 
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2-30. Maxwell's Divergence Equation. The relation of (2-120) or 
(2-121) that 

V • D = p  (2-126) 

was developed by an application of Gauss's law to an infinitesimal 
volume.  It is the fundamental differential relation for static electric 
fields. This relation is one of a set of four differential relations known as 
Maxwell's equations. The other three equations are developed in later 
chapters. 
In a region free from charge p = 0, and 

V • D = 0  (2-127) 

2-31. Example of Divergence. As a simple nonelectrical example of 
divergence consider that a long hollow cylinder is filled with air under 
pressure.  If the cover over one end of the cylinder is removed quickly, 

 z 

(a) 

_ 

(b) 

(c) 

Fm. 2-29. The velocity v of air rushing from a tube has divergence (a and b).  When 
air flows with uniform velocity through a tube open at both ends as at (c), the diver-
gence of v is zero. 

the air rushes out.  It is apparent that the velocity of the air will be 
greatest near the open end of the cylinder as suggested by the arrows 
representing the velocity vector v in Fig. 2-29a.  Suppose that the flow of 
air is free from turbulence so that v has only an x component. Let us 
assume that the velocity v in the cylinder is independent of y but is 
directly proportional to x as indicated by the following relation, 

iv! = v, = Kx  (2-128) 

where K is a constant of proportionality. The question, what is the 
divergence of v in the cylinder, can be answered by applying the diver-



SEC. 2-331  THE STATIC ELECTRIC FIELD. PART 2  93 

gence operator to (2-128). This gives 

ay.   V • v = — = .a,.  ox (2-129) 

Hence, the divergence of v is equal to the constant K. 
A velocity field may be represented graphically by lines showing the 

direction of v with the density of the lines indicating the magnitude of v. 
The velocity field in the cylinder, when represented in this way, is 
illustrated in Fig. 2-29h.  We note that v lines originate (that is, have 
their source) throughout the cylinder, the number increasing with x. 
This indicates that v increases as a function of x. This situation is 
concisely expressed by div v = K. That is, the divergence of v has a 
constant value K throughout the cylinder, and this tells us that [assum-
ing (2-128) to be correct] the source of the velocity field provided by the 
expanding air is uniformly distributed throughout the cylinder. 
If, on the other hand, both ends of the cylinder were open and air 

passed through with the same velocity everywhere, v. equals a constant 
and the divergence of v is zero in the cylinder.  In this case, the source of 
the velocity field must be somewhere external to the cylinder and the 
velocity field diagram would be as shown in Fig. 2-29c. 
If more lines enter a small volume' than leave it or more leave it than 

enter, the field has divergence.  If the same number enter as leave the 
volume, the field has zero divergence. 
X 2-32. Divergence Theorem. From Gauss's law (1-59) we have 

96. D • ds = 96. p dv  (2-130) 

where D is integrated over the surface s and p is integrated throughout 
the volume v enclosed by s. 
From (2-126) let us introduce V • D for p in (2-130), obtaining 

96 D • ds = 96v V • D dv  (2-131) 
8 

The relation stated in (2-131) is the divergence theorem as applied to the 
flux density D, or Gauss's theorem (as distinguished from Gauss's law). 
This relation holds not only for D as in (2-131) but also for any vector 
function.  In words, the divergence theorem states that the integral of the  
normal component of a  vector function over a closed surface s equals the 
integral of the divergence of that vector throughout the volume v enclosed by 
the surface 8. 
2-33. Divergence of D and P in a Capacitor. As further illustrations 

of the significance of divergence let us consider the charged parallel-plate 
capacitor of Fig. 2-30. A slab of paraffin fills the space between the 
1 In the limit an infinitesimal volume. 
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plates except for the small air gaps. True charge of surface density p. is 
present on the surface of the plates.  Polarization charge of surface 
density p., is present on the surface of the paraffin. 

D 

17-1)...p 

E 

Capacitor plates 

( — Air gaps —_ 

141"--- — Charge layers  _L } , 
1 
, 
, 

II 
Ii 

11 
0 i 
i I i 

I  I i  I i 1 

P 

-V•P=p, 1 1 
I 
II 

: I 

II „ , 
4 !! ii 
II 
II 

ii 

il 
1 
1 
1  1 
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I  I 

II : 
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FIG. 2-30. Cross section through parallel-plate capacitor with paraffin slab showing 
the variation of the flux density D, charge density p, electric field E, polarization P, 
and polarization charge density pp along the axis between the plates. The thickness 
Az of the charge layers is greatly exaggerated. 

According to (3) of Table 2-2 the relation of D at a boundary is given by 

D n1 —  Du2 =  Pa  (2-132) 

where (in this case) D.1 = flux density in air gap 
D n2 =  flux density in conducting plate = 0 
p. = true surface charge density 

Suppose that the surface charge is distributed uniformly throughout a 
thin layer of thickness Ax as suggested in Fig. 2-30. Then the total 
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change AD„ in flux density from one side of the layer to the other is given 
by 

D.1 — Dn2 = AD. = AD:  (2-133) 
But when ,LT is small, 

dD 
AD. -=  Ax 

dx 

Therefore, (2-132) becomes 
dD. _ p, _ 

dx  Ax  P 

where p = volume charge density in the charge layer. 
Since D has only an x component, dDx/dx = div D. Thus, 

dDx 
=V•D = p  (2-136) 

dx 

Hence the change of D with distance (in the charge layer) equals the 
divergence of D and also the volume charge density.  It follows that if 
the charge layer is infinitesimally thin (AT  0), then V • D and p approach 
infinity.  However, it is more reasonable to consider that the charge 
layer is of small but finite thickness so that although V • D and p may 
be large, they are not infinite. The variation of D and V • D along the 
x axis of the capacitor is shown graphically in Fig. 2-30. 
At the paraffin surface D is constant, but both E and P change. From 

(2-16) 

P = D — eoE  (2-137) 

Now the change in polarization P is equal to the surface charge density 
p.„ due to polarization. Thus 

(2-134) 

(2-135) 

Px1 — Pn2  pit9 (2-138) 

where P.1 = polarization in paraffin 
P.2 = polarization in air gap ,L‘_•, 0 
p,„ = polarization surface charge density 

Assume that the polarization surface charge is uniformly distributed 
throughout a thin layer of thickness Ax at the paraffin surface as sug-
gested in Fig. 2-30.  Then the total change AP. in polarization from one 
side of the layer to the other is given by 

But when ix is small, 
Pnl — Px2 = AP,, = APz 

dP 
AP. =  Ax 

dx 
Therefore, (2-138) becomes 

dP. =  P.p 
dx  =  PP 

(2-139) 

(2-140) 

(2-141) 
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where p„ = volume density of polarization charge in the layer at the 
paraffin surface (coulombs/meter').  Polarization charge differs from 
true charge (p) in that it cannot be isolated, whereas true charge can. 
In this sense it is a fictitious charge. Since P has only an x component 
which is a function only of x, dPx/dx = div P. Thus, 

(2-142) 

Hence the change of P with distance (in the charge layer) equals the 
divergence of P and also the volume density p, of polarization charge. 
The assumption of a polarization charge layer that is of small but finite 
thickness results in a value of V • P that may be large but not infinite. 
The divergence of D yields the sources of the D field (true charge), 

while the divergence of P yields the sources of the polarization field. 
The variation of E, P, and — V • P along the x axis of the capacitor is 

illustrated graphically in Fig. 2-30. 
It may be shown (see Prob. 2-66) that the potential Vp due to a 

polarization distribution is given by 

1 f V • P dv 
V p = 

4/reo 
(2-143) 

Thus, when both true charge and polarization are present and the dis-
tribution of both are fixed, the total potential V, is 

VT = 1 PC121- 1 o f  V • P  dv 
4-ffeo r  4re  r 

fp — V•P dv  
=    1A 

%Ireo Jo  r 
(2-144) 

where p =- true charge volume density (coulombs/meters) 
P = polarization (coulombs/meter') 
eo = permittivity of vacuum (8.85 X 10-12  farad/meter) 
r = distance from volume element containing charge or polariza-

tion to point at which Vr is to be calculated (meters) 
The volume integration is taken over all regions containing charge or 
polari zation. 
The field intensity E is then 

E = —VV  (2-145) 

Whereas (1-26) applies to a single homogeneous dielectric medium of 
permittivity e, (2-144) is more general since it can be applied also to 
space with several different dielectric media, that is, a nonhomogeneous 
medium.  For the case of a single homogeneous medium, (1-26) and 
(2-144) are equivalent. 
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X 2-34. The Laplacian Operator and Poisson's and Laplace's Equations. 
As an extension of the divergence operator we are led to the Laplacian 
operator.  Equation (2-126) states that 

V • D = p  (2-146) 

Now D = eE, and also E = —VV. Thus, 

D = — VV  (2-147) 

Substituting D in (2-147) into (2-146), we have 

1 v • vv = — e 
S 

(2-148) 

This is Poisson's equation. The double operator (divergence of the 
gradient) is also written as V2 (del squared) and is called the Laplacian 
operator. Thus Poisson's equation can be written 

If p = 0, (2-149) reduces to 

v2v = — e 
S 

1 VV = 0 

which is known as Laplace's equation. 
In rectangular coordinates 

V =i 1--1-i-cl +k-a— ax  ay  az 

Therefore, in rectangular coordinates 

a  a v2v = v • vv = (i — + i — + k —19) ax  ay  az 
. (i av 4_ i av 4_ k av\ 
\ ax  ' ay  az / 

Carrying out the dot product gives 

a2v  a2v  a2v 
v2 v = -, + v  + az2  (2-153) 

or the Laplacian operator alone in rectangular coordinates is given by 

(2-149)' 

(2-150) 

(2-151) 

(2-152) 

2 82  82  82 

°  =  ax2 +  ay2 +  az2 (2-154) 

X 2-35. Isolated Conducting Sphere.  As mentioned earlier, the static 
potential distribution for any conductor configuration can be determined 
if a solution to Laplace's equation can be found which also satisfies the 
' Equation (1-26) is a solution to this equation. 
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boundary conditions.  For many conductor configurations it may be 
impractical to use this method.  However, it is a basic method of 
approach of great importance in static problems. As an illustration, a 

very simple application of Laplace's equation 
will be considered in this section. 
Consider an isolated metal sphere of radius 

r1 with a uniformly distributed charge Q as in 
Fig. 2-31. The sphere is situated in an un-
bounded dielectric medium of permittivity e. 
This problem has been discussed previously 
but will be reconsidered here with the aid of 
Laplace's equation. The problem is to find a 
solution of Laplace's equation, V2V = 0, for 
the space outside the sphere which gives a 

potential distribution satisfying the boundary conditions. These bound-
ary conditions are that the potential V is constant over the sphere and is 
zero at infinity. 
Since the conductor has spherical symmetry, it will be advantageous to 

expand V2V in spherical coordinates (see Appendix). Thus 

s 
1 =  a r ( 2 av 

ar)  r2 sin e ae 
1  a (in a av) _L.  1  a2v 2-17 ao r2 . sin 2 0 04,2  (2-155) 

where the spherical coordinates r, 0, 4, are as, for example, in Fig. 1-26. 
By virtue of the symmetry of the sphere, the potential V is independent 
of angle (0 and 4.) and is a function only of r. Hence (2-155) reduces to 

1 d ( 2 d V\  d2V  2 dV _ 
V2V  =  (T•  T/T.) = -cffr  u 

(2-156) 

This is an ordinary second-order differential equation.  It is the most 
general way of expressing the potential variation with respect to the 
radius r. However, to determine the particular distribution of our 
problem, we need to obtain a solution of the differential equation.  In 
this case we may proceed as follows: Since V2V = 0, it follows that 

d  2 dV\ 
dr dr k r 

in (2-156) must be zero, or that 

dV 
= C1 

where C1 = a constant.  Then 

dV = Cir-2  dr 

(2-157) 
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Integrating, 

CI  V = CI f r-2  dr = — , —  1,2 (2-158) 

where Cy = another constant.  Both C1 and C2 must be determined from 
the boundary conditions.  Since V = 0 at infinity, C2 = 0 and (2-158) 
therefore reduces to 

V -=  C — — 
rI 

By comparison with (1-11) the constant must have the value 

CI = — 
4/re 

so that the solution for V becomes 

V = Q 
4/fer 

(2-159) 

(2-160) 

(2-161) 

where r > r1. 
It is to be noted that this is a three-dimensional problem so that the 

graphical approach of Sec. 2-27 is not applicable. 
Further illustrations of Laplace's equation are given in Probs. 2-61 and 

2-67.  Problem 2-61 illustrates the principles involved in applying 
Laplace's equation with a minimum of mathematics and is recommended 
as an exercise for the reader. 
2-36. Dependence of Gauss's Law on the Inverse-square Law. 

Gauss's law as in (1-59) or (2-130) states that the surface integral of the 
normal component of the flux density D over a closed surface equals the 
charge enclosed.  If the enclosed charge is zero, the surface integral is 
zero.  This conclusion depends on the fact that D varies inversely as the 
square of the distance from a point charge (Coulomb's law). 

r,  r2 

Flo. 2-32. The integral of the normal component of D over the surface of the volume 
Av is zero because D varies inversely as the square of the distance r from the charge Q. 

As an illustration consider a small volume Av in the field of a point 
charge Q as in Fig. 2-32.  By Gauss's law the flux of D over the surface of 
the volume equals the charge enclosed.  This we should expect to be zero 
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since all of the charge is at Q and none is in the volume.  However, let 
us carry through the calculation to verify this result. 
The flux over the surface of the volume will be given entirely by the 

flux over the two curved surfaces AS1 and AS2. The flux over the four 
flat faces of the volume is zero since D is parallel to them, and hence has 
no normal component. 
The area of the surface AS1 at a distance r1 is given by 

AS1 = r12 sin 0 AO AO  (2-162) 

and the area of AS2 at a distance r2 by 

AS2 = r22 sin 0 AO AO  (2-163) 

The total flux Ai over the surface of the volume is 

AO = —D.1 AS1 + D n2 AS2  (2-164) 

where D.1 = magnitude of normal component of D at r1 
D.2 = same at r2 

Substituting (2-162) and (2-163) into (2-164) yields 

AO = (—D.iri2 ± D.2r22) sin 0 AO AO  (2-165) 

From (1-50) D = Q/4214 so that 

Q  D 1 — n  4irri2  

Q  Dn2 — 
4Tr22 

Substituting (2-166) and (2-167) into (2-165) gives 

(2-166) 

(2-167) 

Alp = (— 1— 2 ri2 + --21 r22) ,f1  sin 0 AO AO  (2-168) 
ri r2  'kr 

The expression in the parentheses of (2-168) is zero, so that Ali, = 0 as 
anticipated.  However, if, instead of (1-50), 

Q D =  (2-169) 
47rrn 

where n is not equal to 2, then AO would not be zero. 
This result is also readily deduced from the fact that the surfaces AS1 

and AS2 subtend the same solid angle. The flux over the two cross-
sectional areas is equal in magnitude but opposite in sign only if D varies 
as 1/r2. 
Since the net electric flux over any volume not enclosing electric 
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charge is zero, it follows that the divergence of D is zero in all space free 
from charge. 
Gravitational forces vary inversely as the square of the distance 

between masses, and Gauss's law also applies to these fields (see Prob. 
1-23). 

PROBLEMS 

2-1. If two point charges +Q and —Q are attached to the ends of an axis 10 cm 
long, what is the dipole moment of the combination? Q  10-10  coulomb. 

Ans.: 10-11  coulomb-meter. 
2-2. Repeat Prob. 2-1 for the case where the axis is 1 cm long and Q  10-4  coulomb. 
2-8. Confirm Eq. (2-7). 
2-4. Four equal charges of magnitude Q and of sign indicated are arranged in air as 

shown in Fig. 2-33, forming a quadripole (double dipole). Show that at a large dis-
tance r (that is, r >> 1 and r >> a) the potential due to this quadripole is 

V
Qla sin 0 cos 0 

= 
2reors 

where r = radial distance and 8 = angle from axis to radial line (see Fig. 2-33). 

Axis 

• —Q 

s  +Q 

FIG. 2-33. Quadripole or double dipole for Prob. 2-4. 

2-5. A dipole in a uniform field experiences no translational force.  However, it 
does experience a torque tending to align the dipole axis with the field.  Show that 
for a dipole of moment ql in a uniform field E this torque is q1E sin 8, where 8 is the 
angle between the dipole axis and the field. 
2-6. Show that P  — 1/e,). 
2-7. A flat slab of dielectric (e, = 5) is placed normal to a uniform field with a flux 

density D = 1 coulomb/meters.  If the slab occupies a volume of 0.1 meters and is 
uniformly polarized, what are (a) polarization in the slab; (b) total dipole moment of 
slab?  Ans.: (a) P = 0.8 coulomb/meters; (b) moment = 0.08 coulomb-meter. 
2-8. A flat slab of sulfur (e, = 4) is placed normal to a uniform field. If the 

polarization charge surface density p. on the slab surfaces is 0.5 coulomb/meters, 
what are: 
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a. Polarization in the slab 
b. Flux density in the slab 
c. Flux density outside of slab (in air) 
d. Field intensity in slab 
e. Field intensity outside slab (in air) 
2-9. Two cavities are cut in a dielectric medium (e,  5) of large extent.  Cavity 1 

(see Fig. 2-34) is a thin disc-shaped cavity with flat faces perpendicular to the direction 

<  
/  />4Cavity l 

/ / / ,vLk4 y 

FIG. 2-34. Disc-shaped and needle-shaped cavities in dielectric for Prob. 2-9. 

of D in the dielectric.  Cavity 2 is a long needle-shaped cavity with its axis parallel to 
D.  The cavities are filled with air.  Given that D = 10-6  coulomb/meter'.  What is 
the magnitude of the electric field intensity E (a) at the center of cavity 1; (b) at the 
center of cavity 2? 
2-10. The electric field E in air above a block of paraffin (e,  2.1) is at an angle of 

45° with respect to the plane surface of the block.  Find the angle between E and the 
surface in the paraffin. 
2-11. An isolated positive point charge has a value of 10-1 ° coulomb.  What is the 

magnitude of E and D at a distance of 20 cm when the charge is located (a) in air; (b) 
in a large tank of glycerin (e,  50)? 

AM.: (a) E = 22.5 volts/meter, D = 2 X 10-0  coulomb/meter'; 
(b) E = 0.45 volt/meter, D = 2 X 10-10  coulomb /meter2. 

2-12. What is the force on a positive point charge of 10-10  coulomb at a distance of 
30 cm from a positive point charge of 10-10  coulomb when both charges are located 
(a) in air; (b) in glycerin (er = 50)? 
2-13. What is the relative permittivity of an artificial dielectric consisting of a 

uniform cubical lattice with metal spheres 2 cm in diameter spaced uniformly 5 cm 
between centers in the x-, y-, and z-coordinate directions? 
2-14. Show that the maximum possible permittivity of an artificial dielectric of 

metal spheres arranged in a uniform cubical lattice is 2.57.  It is assumed that there 
is no interaction between spheres and that they are almost touching.  The space 
between the spheres is air (or vacuum). 
2-16. A capacitor of two large horizontal parallel plates has an internal separation 

d between plates.  A dielectric slab of relative permittivity e, and thickness a is 
placed on the lower plate of the capacitor.  Neglect edge effects.  If the potential 
difference between the capacitor plates is V, show that the electric field intensity Ei 
in the dielectric is 

era  V  
— a  — 1) 
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and that the electric field intensity E0 in the air space between the top of the dielectric 
slab and the upper capacitor plate is 

er V   
E0 e,E = 

erd — a(e, — 1) 

2-16. In Prob. 2-15 let the slab be of sulfur (e, = 4), V = 10 volts, and d = 10 cm. 
Plot a graph of the potential as a function of the distance between plates for a  0, 1, 
5, 9, and 10 cm.  Take the potential of the lower plate as zero. 
2-17. What is the capacitance of a capacitor consisting of two parallel metal plates 

30 by 30 cm separated by 5 mm in air? Neglect fringing of the field. 
2-18. What is the energy stored by the capacitor of Prob. 2-17 if the capacitor is 

charged to a potential difference of 500 volts? What is the energy density? 
2-19. What is the capacitance of the capacitor of Prob. 2-17 if a sheet of flint glass 

(er = 10) is introduced between the plates under the following conditions: 
a. Glass sheet 1 mm thick (remaining 4 mm between plates is air) 
b. Glass sheet 2.5 mm thick 
c. Glass sheet 4 mm thick 
d. Glass sheet 5 mm thick (glass entirely fills space between plates) 
2-20. With flint glass (or = 10) completely filling the space between the plates of 

the capacitor of Prob. 2-17 what is the energy stored if the capacitor is charged to a 
potential difference of 500 volts? What is the energy density? 
2-21. What is the capacitance of the capacitor of Prob. 2-17 if a pressed sheet of 

powered rutile (take e, = 114) is introduced between the plates under the following 
conditions: 
a. Sheet 1 mm thick (remaining 4 mm between plates is air) 
b. Sheet 2.5 mm thick 
c. Sheet 4 mm thick 
d. Sheet 5 mm thick 
2-22. Develop the relation for the capacitance of a parallel-plate capacitor from 

(2-52) by considering an area A of the double spherical-shell capacitor for the case 
where r1 is very large and r2 — ri 3.. 1 is small by comparison. 
2-23. What is the maximum potential to which an isolated metal sphere can be 

charged if the sphere is 20 cm in diameter and situated in air? Take the dielectric 
strength of air as 3 X 106 volts/meter. 
2-24. What is the voltage between the plates of a parallel-plate air capacitor if it is 

first charged to 100 volts, the potential source disconnected, and the plates then 
separated to twice their original spacing? What is the energy stored in the two cases? 
2-25. A capacitor of two infinite parallel conducting plates spaced 10 cm apart is 

half filled with a dielectric medium (e, == 10). The remaining space is air filled. 
The potential difference between the plates is 100 volts.  What is the magnitude of: 
a. Din air 
b. D in the dielectric 
c. E in air 
d. E in the dielectric 
2-26. Develop Eq. (2-78) by applying Gauss's law to a cylindrical volume of length 

1 and radius r concentric with the uniform line of charge. 
2-27. A charge of 10-1 ° coulomb is distributed uniformly along a thin line 1 meter 

long. The line is coincident with the y axis and its center is at the origin.  Calculate 
and plot the variation of the potential V along the x axis from the origin to a distance 
of 2 meters. 
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2-28. A thin line of charge of length 2a is coincident with the y axis with its center 
at the origin.  The charge is uniformly distributed along the line and has a value of 
p r, coulombs/meter.  Show that the potential V at any point (x, y) is given by 

V =  In V ix2  (y — (1)2  — (y — 
+  + a)1 — (y + a) 

where a is the permittivity of the medium. 
2-29. What is the capacitance per kilometer of length of an air-filled coaxial line 

with an inner conductor diameter of 3 mm and an outer conductor with an inside 
diameter of 1 cm? 
2-30. What is the capacitance of the coaxial line of Prob. 2-29 if the inner conductor 

is covered with rubber insulation (a, = 3) to a diameter of 7 mm and the remainder of 
the space (to a diameter of 1 cin) filled with a dielectric of permittivity a, m. 6? 
2-31. What is the energy stored per meter of length of the coaxial line of Prob. 2-29 

if 500 volts is applied to the line?  What is the energy stored under these conditions 
for the line of Prob. 2-30? 
2-82. What is the capacitance per kilometer of length of a two-wire line of No. 8 

gauge (B. & S.) wire (3.26 mm diameter) with a center-to-center spacing of the wires 
equal to  meter? The wires are sufficiently high above ground that its effect may 
be neglected. 
2-33. What is the capacitance per kilometer of length of a single-wire line of No. 8 

gauge (B. & S.) wire spaced an average distance of 10 meters above the ground? 
2-34. Show that the surface charge density p. on a flat conducting ground plane due 

to an infinitely long positively charged thin wire parallel to the ground plane and at a 
height a above it, as in Fig. 2-22, is 

- PLS   
Ps  sr(X2 + 82) 

where pi, is the charge per unit length along the wire and x is the distance along the 
plane, perpendicular to the wire direction and measured from the point on the plane 
nearest to the wire. 
2-35. Draw a graph of the variation of p, given in Prob. 2-34 as a function of x for 

distance of 10s. 
2-36. Show that the surface charge density is. on a flat conducting ground plane due 

to a positive point charge Q at a distance a from the plane is 

— Q8   
Pa "' 

21'(z2 + 82), 

where x is the distance along the plane measured from the point on the plane nearest 
to the charge. 
2-37. Draw a graph of the variation of pa given in Prob. 2-36 as a function of x for a 

distance of 10s. 
2-38. The outer conductor ot a coaxial line has an inner radius b and the inner con-

ductor an outer radius a. If a voltage V is applied to the line, find the expression for 
the maximum field intensity E in the line.  At what radius is E a maximum? 
2-39. A high-voltage conductor is brought through a grounded metal panel by 

means of the double concentric capacitor bushing shown in Fig. 2-35.  The space 
between the concentric metal sleeves is a dielectric (a, = 3) with a working dielectric 
strength of 100 kv/cm.  Neglect fringing.  Also neglect the thickness of the sleeves. 
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Metal panel 

High voltage 
conductor 

14 1 [7 1 
 15 cm 

Fla. 2-35. Capacitor bushing for Prob. 2-39. 
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(a) What must be the length L of the outer sleeve in order to equalize the voltage 
across each dielectric space?  (b) What is the maximum working voltage of the 
bushing? 
2-40. If the inner sleeve (15 cm longrof Prob. 2-39 were removed, what would be 

the maximum working voltage of the bushing? 
2-41. If the number of concentric sleeves in the bushing of Prob. 2-39 were increased 

in number so that the spacing between sleeves becomes smaller, what is the ultimate 
working voltage of such a bushing?  Neglect the thickness of the sleeves, and assume 
that the sleeve lengths are adjusted so that the voltage across each dielectric space is 
the same. 
2-42. Map the field of a coaxial line consisting of a circular inner conductor of 

diameter d symmetrically located inside of an outer conductor of square cross section 
with an inner side dimension of 3d.  Note that because of symmetry only one octant 
(45° sector) needs to be mapped. 
2-43. What is the capacitance per meter of length of the line of Prob. 2-42? 
2-44. Map the field between two infinite parallel conductors of square cross section 

with adjacent sides separated by a distance equal to one side of the square. 
2-45. What is the capacitance per meter of length of the two-conductor line oi 

Prob. 2-44? 
2-48. In Sec. 2-14 the energy-density relation w El is developed from the 

expression AW =  AC AV'.  Develop the same energy-density relation from the 
expression AW =  AQ AV by expressing AQ in terms of D. 
2-47. A grid of parallel metal rods is introduced between the plates of a large 

parallel-plate air capacitor as shown in the cross section in Fig. 2-36.  Map the field 
in the capacitor with rods and without rods.  By what factor is the capacitance 

Rod co  

4/ 
FIa. 2-36. Capacitor with metal rods for Prob. 2-47. 

Plates 
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increased by the rods? What is the effective permittivity of the space (with rods) 
between the capacitor plates? 
2-48. A coaxial transmission line consists of an inner conductor of diameter d and 

a symmetrically situated outer conductor having the cross section of an equilateral 
triangle with a side length of 2.5d.  Map the field in the line, and find the ratio of the 
surface charge density at the center point of a side of the outer conductor to the sur-
face charge density at a point midway from the center to a corner. 
2-49. What is the capacitance per meter for the line of Prob. 2-48 if it is filled with 

polystyrene? 
2-50. A long, thick ribbonlike metal electrode is situated 1 cm from a large con-

ducting ground plane as indicated in the cross section in Fig. 2-37. If 1,000 volts is 

 10 cm 

.............................................   
2 mm 

1 cm  radius 

Electrode 

1 -Ground plate 
Flo. 2-37. Electrode near ground plane for Prob. 2-50. 

applied between the electrode and ground plane, what is the maximum field intensity 
occurring at the electrode? 
2-51. Map the field and equipotential lines for two point charges +Q and +IQ 

separated by 10 cm. Let Q = 10-1 ° coulomb. 
2-52. Map the field and equipotential lines for two point charges +Q and - 4-Q 

separated by 10 cm. Let Q 10-1 ° coulomb. 
2-53. Map the field and equipotential lines of four equal charges of magnitude 

Q = 10-1 ° coulomb situated at the corners of a square 10 cm on a side.  The charges 
at two diagonal corners are positive and at the other two diagonal corners are negative. 
2-54. Construct a three-dimensional clay or plaster model of the potential distribu-

tion of the two equal positive charges of Fig. 2-17.  Make the elevation dimension of 
the model correspond to the potential V.  Since the potential at the charges is infinite, 
it is necessary to limit the maximum elevation at some arbitrary level such as 100 volts. 
2-55. What is the divergence of the following vector functions: 

A = i0  j cos ax  k0;  B = cos ax  JO  Ic0 

Ana. V • A = 0; v • B = —a sin ax. 
2-56. A two-dimensional scalar distribution is expressed by the function 

U  1/(x' ± 0) 

(a) What is the gradient of this function?  (b) What is the divergence of the gradient 
of this function? 
2-57. What is the Laplacian of the scalar function f = a + bxt? 
2-58. What is the divergence of: 
a. A = 12x + j3y3 k4z3 
b. A = i4zs  j2x  k3y3 
c. A = i2x  j4z3 k3y3 
d. A = 12x  j3y3 k2x 
2-59. What is the divergence of the gravitational field at a point just below the 

surface of the ocean and at a point just above? 
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2-60. A parallel plate capacitor has a plate area of 1 meter2 and a plate separation 
of 1 cm. The plates are maintained at a potential difference of 100 volts.  Neglect 
fringing.  Calculate the capacitance C, flux density D, field intensity E, polarization 
P, and surface charge density p. for the case where the dielectric medium between the 
plates is (a) air (take e, = 1); (19) paraffin (er = 2.1); (c) rutile (take er = 114). 
2-61. A large parallel-plate capacitor has its plates normal to the x axis.  Plate 1 

with a potential V = 0 is at the origin.  Plate 2 with a potential V = VI is at x = xl. 
Express Laplace's equation in rectangular coordinates, and solve it for this problem 
by the same procedure as used in Sec. 2-35, obtaining as the solution for the potential 
distribution, V = (V / xi)x. 
2-82. Make a field map for the case of an infinitely long positively charged cylin-

drical conductor of radius r and charge Pt. per unit length. The conductor is parallel 
to an infinite ground plane. The center of the conductor is at a height h above the 
plane. 
2-63. Compare the relative charge density on the ground plane as obtained from 

the field map of Prob. 2-62 with that calculated, using the relation given in Prob. 2-34. 
2-64. Why can a solution by means of field mapping be obtained for the con-

figunit ion of Prob. 2-34 but not for the configuration of Prob. 2-36? 
2-65. Show that V • P  (e, — 1)eo V • E. 
2-66. Given that the potential V., due to polarization is related to the polarization 

P hv 
1 P • a, 

V,  — 4Tio  dv 

show that this can be reexpressed as 

V, = 
1 fv•P 

dv 
'twee fe  r 

2-67. Derive the expression for the electric field intensity everywhere due to a 
uniform spherical distribution of charge of density p and radius a by applying Poisson's 
equation or its equivalent div D = p both inside and outside the sphere.  One con-
stant is evaluated by matching solutions at the boundary of the sphere, and the other 
constant is evaluated by noting that D is zero at the center of the sphere. 
2-68. A parallel-plate capacitor has a plate separation d. The capacitance with 

air only between the plates is C. When a slab of thickness t and relative permittivity 
e, is placed on one of the plates, the capacitance is C'. Show that 

C'  erd 
C  t e,(d — I) 

Draw a graph of C'/C vs. t as based on this relation.  Discuss the effect of the air gap 
(d — t) on the capacitance. 



CHAPTER 3 

THE STEADY ELECTRIC CURRENT 

3-1. Introduction. Electric charge in motion constitutes an electric 
current.  In metallic conductors the charge is carried by electrons.  One 
electron has a negative charge of 1.6 X 10-1 " coulomb.  In liquid con-
ductors (electrolytes) the charge is carried by ions, both positive and 
negative. 
In this chapter the important relations governing the behavior of 

steady electric currents in conductors are discussed.  By "steady" cur-
rent is meant one that is constant with time.' The fields associated with 
steady currents are also constant with time and, hence, are static fields. 
In Chaps. 1 and 2 the discussion is almost entirely concerned with static 
fields having all associated charges stationary, that is, with no currents 
present.  In this chapter the fields are also static, but steady direct cur-
rents may be present. 
3-2. Conductors and Insulators. In some metals, like silver and 

copper, there is but one electron in the outermost occupied shell of the 
atom. This electron is so loosely held that it migrates easily from atom 
to atom when an electric field is applied.  As mentioned previously 
(Secs. 1-23 and 2-2) materials that permit such motion of electrons are 
called conductors. Silver and copper are examples of good conductors, 
their resistance to such electronic motion being relatively slight.  Not all 
good conductors have only one electron in the outermost occupied shell. 
Some have two, and a few, such as aluminum, three.  However, in all 
conductors these electrons are loosely bound and can migrate readily 
from atom to atom. Such electrons are often called true charges. 
In other substances, however, the electrons may be so firmly held near 

their normal position that they cannot be liberated by the application of 
ordinary fields.' These materials are called dielectrics or insulators. 
Although a field applied to an insulator may produce no migration of 
charge, it can produce a polarization of the insulator, or dielectric (Sec. 
2-3), that is, a displacement of the electrons with respect to their equi-

1 Specifically, a ateady direct current is meant. This should not be confused with a 
"steady-state" current, which may imply a time-changing current that repeats itself 
periodically. 

2 However, they may be torn off by mechanical means such as rubbing. 
108 
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librium positions. The charges of an insulator are often called bound or 
polarization charges in contrast to the free, or true, charges of a con-
ducting material. 
Certain other materials with properties intermediate between con-

ductors and insulators are called semiconductors.  Under some condi-
tions such a substance may act like an insulator but with the application 
of heat or sufficient field may become a fair conductor. 
3-3. The Electric Current. When an isolated conducting object is 

introduced into an electric field, charges migrate (currents flow) until a 
surface charge distribution has been built up that reduces the total field 
in the conductor to zero.  This was discussed in Sec. 1-23.  If, however, 
the conducting object is not isolated and the applied field is maintained, 
current will continue to flow in the conductor. 
For example, consider an infinitely long conductor, such as a metal wire, 

in a uniform field E as in Fig. 3-1.  The field E in the conductor is not 

Wire 

"11-  Electron 

4-- I  •—(-10-

V 
Fm. 3-1 Infinite conductor in uniform field. 

zero if current is flowing.  Rather, E is the same inside and outside of 
the conductor.  This follows from the boundary relation (1) of Table 2-2 
that the tangential component of the electric field is continuous across a 
boundary. The field causes the electrons in the conductor to migrate 
parallel to the field. Since the electrons are negatively charged, they 
move in a sense opposite to the field direction.  If there are n electrons 
per meter of length of the conductor and their average velocity is v meters 
per sec, then the total charge per second passing a fixed point on the 
wire is 

nqv 

where q = charge of each electron. The electric current / in the wire is 
then defined as 

I = —nqv  (3-1) 

The electric current is, by definition, taken to be in the opposite direction 
to the electron motion.  Hence the negative sign in (3-1).  Electric cur-
rent has the dimensions of charge per time, or in dimensional symbols 
Q/T. The mksc unit of current is the ampere. Thus, 

Coulombs 
— amperes 

Second 
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That is, charge flowing by a fixed point at the rate of 1 coulomb per sec 
constitutes a current of 1 amp. 
3-4. Resistance and Ohm's Law. Referring to Fig. 3-1, it is found 

that at a constant temperature the potential difference V over a length d 
of the conductor is proportional to the current I. The constant of pro-
portionality between V and I is called the resistance R of the length d of 
conductor.  Thus 

or 

or 

V = IR  (3-2) 

V 
R=  (3-3) (3-3) 

V 
/ =  (3-4) 

These relations are expressions of Ohm's law.  In words, Ohm's law states 
that the potential difference or voltage V between the ends of a conductor is 
equal to the product of its resistance R and the current I. 
Resistance has the dimensions 

Potential 
Current 

or in dimensional symbols 

T  MV 
Resistance =   QT2 Q  TQ2 

The mksc unit of resistance is the ohm. Thus 

volts  
Ohms — 

ampere 

That is, the resistance of a conductor is 1 ohm if a current of 1 amp flows 
when a potential difference of 1 volt is applied between the ends of the 
conductor. 
3-5. Power Relations and Joule's Law. Referring again to Fig. 3-1, 

the potential difference or voltage V across the length d of the conductor 
is equal to the work per unit charge required to move a charge through 
the distance d. Multiplying by the current I (charge per unit time) 
yields the work per unit time or power P.  Thus, 

Work charge work 
X  .  — — power 

Charge  time  time 
or 

P = VI  (3-5) 

This is the power dissipated in the length d of the conductor. The mksc 
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unit of power is the watt.  Hence, 

Watts = volts X amperes 

or in dimensional symbols 
ML2 Q _ MV 

Watts = 
QT2 T  T3 

Introducing the value of V from Ohm's law (3-2) into (3-5) yields 

P = I2R (3-6) 

According to (3-6) the work or energy dissipated per unit time in the con-
ductor is given by the product of its resistance R and the square of the 
current I. This energy appears as heat in the conductor. 
The energy W dissipated in the conductor in a time T is then 

W = PT = PRT  (3-7) 

where W = energy (joules) 
P = power (watts) 
/ = current (amp) 
R =- resistance (ohms) 
T = time (sec) 

This relation is known as Joule's law. It is assumed in (3-7) that P is 
constant over the time T. If it is not constant, PR is integrated over the 
time interval T. 
3-6. The Electric Circuit. The discussion in the preceding sections 

concerns an infinitely long conductor along which a field E is applied 
(Fig. 3-1). Consider now a cylindrical conductor of finite length d as in 
Fig. 3-2a. The conductor is in the uniform field E between two large 
conducting blocks of negligible resistance maintained at a constant 
potential difference V by a battery.  If the ends of the conductor were 
separated from the blocks by small insulating gaps, current would flow in 
the conductor only while a surface charge distribution was being built up 
that neutralizes the applied field.  However, with the conductor connected 
to the blocks as in Fig. 3-2a a neutralizing surface charge cannot be built 
up, and the total field in the conductor is equal to the applied field. 
This field is given by 

E = (3-8) 

As long as this field is maintained in the conductor, current flows that has 
a value 

V  Ed 
(3-9) 

If the end blocks are removed and the battery connected as in Fig. 
3-21), the field is no longer uniform over the entire cylindrical conductor 
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but becomes nonuniform near the ends of the conductor.  As a result the 
resistance R' between the terminals of the conductor is greater than the 
resistance R of the conductor when situated in the uniform field between 
the end blocks. This effect is discussed in more detail in Sec. 3-16. The 
current I' in the conductor connected as in Fig. 3-26 is then 

(3-10) 

Assuming that the resistance of the wires connecting the battery to 
the cylindrical conductor is negligible compared with R', the potential 

Cylindrical 
conductor 

(b) 

(a) 

 4\AA/VvVv 

no. 3-2. Cylindrical conductor of length d between end blocks (a), modified arrange-
ment (b) and schematic diagram (c). 

difference V is equal to the voltage appearing across the terminals of the 
battery. The arrangement of Fig. 3-26 may then be represented by the 
schematic diagram of Fig. 3-2c. 
This is a diagram of a closed electric circuit of the most elementary form. 

It consists of a resistor of resistance R and a battery of voltage V.  It is to 
be noted that in the circuit representation no information is given 
explicitly concerning the field or its distribution, the circuit being 
described only in terms of the lumped quantities of resistance and voltage. 
It is, of course, true that the potential between two points is equal to the 
line integral of the field, but only the result of the integration is given and 
not the field distribution itself. 
3-7. Resistivity and Conductivity. The resistance of a conductor 

depends not only on the type of material of which the conductor is made 
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but also on its shape and size.  To facilitate comparisons between differ-
ent types of substances, it is convenient to define a quantity which is 
characteristic only of the substance. The resistivity S is such a quantity. 
The resistivity of a material is numerically equal to the resistance of a 
homogeneous unit cube of the material with a uniform current distribu-
tion.  The current distribution is uniform if the field is uniform.  This 
condition may be produced by clamping the cube between two heavy 

blocks of negligible resistance as 
Unit cube 

in Fig. 3-3, with contact made 
over the entire surface of both end 
faces.  With a current I through 
the cube, the resistivity S of the 
material is given by S = V /I, 
where V is the potential between 
the blocks. 
In mksc units, this measure-

/ 
Fia. 3-3. Unit cube between end blocks.  Flo. 3-4. Block of conducting material. 

ment is in ohms for a cube of material 1 meter on a side.  If two cubes 
are placed in series between the blocks, the resistance measured is 2S, 
while if two cubes are placed in parallel, the resistance is S. It follows 
that the resistance R of a rectangular block of length land cross section 
a, as in Fig. 3-4, is 

S1 
R = —a 

where S = resistivity of block material. 
Dimensionally (3-11) has the form 

resistivity X length 
Resistance = 

area 

from which we have 

(3-11) 

resistance X  area 
Resistivity =  — resistance X length 

length 

Thus, resistivity has the dimensions of resistance times length and in 
mksc units is expressed in ohm-meters.  For the special case of a unit 
cube (that is, a cubical block 1 meter on a side) the resistivity is numeri-
cally equal to the resistance. 
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The resistivity is a function of the temperature.  In metallic con-
ductors it varies nearly linearly with absolute temperature.  Over a 
considerable temperature range from a reference or base temperature To 
the resistivity S is given approximately by 

S = So[l  a(T — To)]  (3-12) 

where T = temperature of material (°C) 
To = reference temperature (usually 20°C) 
So = resistivity at temperature To (ohm-meters) 
a = temperature coefficient of resistivity (numerical units/°C) 

Example.  For copper the resistivity So at 20°C is 1.77 X 10-8 ohm-meter, and the 
corresponding coefficient a = 0.0038 reciprocal degree.  Find the resistivity at 30°C. 
Solution.  The resistivity S at a temperature T is 

S = 1.77 X 10-8 [1  0.0038(T — 20)]  ohm-meters 

At a temperature of 30°C, 

S  1.77 X 10-1 [1 + 0.0038(10)] = 1.84 X 10-8 ohm-meter 

This is an increase of nearly 4 per cent over the resistivity at 20°C. 

The reciprocal of resistance R is conductance G. That is, G = 1/R. 
Since resistance is expressed in ohms, conductance is expressed in recip-
rocal ohms. A reciprocal ohm is called a mho (ohm spelled backward) so 
that conductance is given in mhos. 
The reciprocal of resistivity S is conductivity a. That is, a = 1/S. 

Although the resistivity is convenient in certain applications, it is often 
more convenient to deal with its reciprocal, the conductivity, as, for 
example, where parallel circuits are involved.  Since resistivity is 
expressed in ohm-meters, the conductivity is expressed in mhos per meter. 
The resistance R of a rectangular block, as in Fig. 3-4, of material of 

conductivity a is 

R = —1  ohms  (3-13) 
Gra 

or the conductance G of the block is 

1  aa 
R  1 

mhos  (3-14) 

For the special case of a unit cube, the conductance is numerically equal to 
the conductivity.' Conversely, the conductivity of a material is numeri-
cally equal to the conductance of a homogeneous unit cube of the material 
with a uniform current distribution. 

I Note that the unit cube is a special case of the square-sided block or cell (h = 1). 
For such a cell, or block, of unit depth (d = 1 meter) the resistance R of the block is 
numerically equal to the resistivity S of the material, while the conductance G of the 
block is numerically equal to the conductivity a of the material (see Sec. 3-16). 
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From (3-12) the conductivity of a metallic conductor as a function of 
the temperature is 

TO   

6 = 1  a(T — To) 
(3-15) 

where ao = conductivity at the temperature To (mhos/meter) 
a = same coefficient as in (3-12) 
T = temperature (°C) 
To = reference temperature (°C) 

3-8. Table of Conductivities. The conductivities CIo of some common 
materials are listed in Table 3-1 for a temperature of 20°C.  By way of 

TABLE 3-1 

TABLE OF CONDUCTIVITIES 

Substance Type 
Conductivity, 
mhos/meter 

Quartz, fused   Insulator 
Ceresin wax   Insulator 
Sulfur   Insulator 
Mica   Insulator 
Paraffin   Insulator 
Rubber, hard   Insulator 
Glass   Insulator 
Bakelite   Insulator 
Distilled water   Insulator 
Sea water   Conductor 
Tellurium   Conductor 
Carbon   Conductor 
Graphite   Conductor 
Cast iron   Conductor 
Mercury   Conductor 
Nichrome   Conductor 
Constantan   Conductor 
Silicon steel   Conductor 
German silver   Conductor 
Lead   Conductor 
Tin   Conductor 
Phosphor bronze   Conductor 
Brass   Conductor 
Zinc   Conductor 
Tungsten   Conductor 
Duralumin   Conductor 
Aluminum, hard-drawn   Conductor 
Gold   Conductor 
Copper    Conductor 
Silver   Conductor 

10-17  approx 
10-17  approx 
10-" approx 
10-16  approx 
10-16  approx 
10-16  approx 
10-12  approx 
10-2 approx 
10-' approx 
4 approx 

5 X 10° approx 
3 X 10 approx 
106 approx 
10° approx 
10 6 

106 
2 X 106 
2 X 106 
3 X 106 
5 X 106 
9 X 106 
107 

1.1 X 107 
1.7 X 107 
1.8 X 107 
3 X 107 

3.5 X 107 
4.1 X 107 
5.7 X 107 
6.1 X 107 
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contrast, both insulators and conductors are listed.' The materials are 
arranged in order of increasing conductivity. 
> 3-9. Current Density and Ohm's Law at a Point. If the current is 
distributed uniformly throughout the cross section of a wire, then the 
current density J is uniform and is given by the total current I divided by 
the cross-sectional area of the wire.  That is, 

I 
J = -a  (3-16) 

Current density has the dimensions of current per area and in mksc units 
is expressed in amperes per square meter. 
If the current is not uniformly distributed, (3-16) gives the average 

current density.  However, it is often of interest to consider the current 
density at a point. This is defined as the current AI through a small area 
As divided by As, with the limit of this ratio taken as As approaches zero. 

Hence, the current density at a point is 
given by 

Fin. 3-5. Block of conducting 
material with small imaginary 
cell enclosing the point P. 

a 
J = lirn --A 

tia-.0 I-18 
(3-17) 

It is assumed that the surface As is nor-
mal to the current direction.  By this defi-
nition the current density J is a vector 
point function having a magnitude equal 
to the current density at the point and the 
direction of the current at the point. 

Consider now a block of conducting material as indicated in Fig. 3-5. 
Let a small imaginary rectangular cell of length 1 and cross section a be 
constructed around a point P in the interior of the block with a normal to 
J as indicated.  Then on applying Ohm's law (3-2) to this cell we have 

V = IR  (3-18) 

where V = potential difference between ends of cell.  But V = El and 
I = Ja; so 

Solving for J, we have 
El = JaR  (3-19) 

1 , 
J = — r, 

aR 
(3-20) 

I The large difference in conductivity between the insulators and conductors listed 
makes the distinction between the two on the basis of the conductivity alone relatively 
easy.  The division in the table is made arbitrarily between 10-4 mho per meter for 
distilled water and 4 mhos per meter for sea water. This is for the case of a constant 
current or field.  In the a-c or high-frequency situation, however, the conductivity 
alone is usually not sufficient, and it is often more useful to make a distinction as to 
whether a material behaves like a conductor or a dielectric, basing this arbitrarily 
on the ratio a/coe, where co  21r X (frequency). This is done in Chap. 11. 
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By making the cell enclosing P as small as we wish, this relation may be 
made to apply at the point P, and we may write 

J = crE  (3-21) 

Equation (3-21) is Ohm's law at a point  and relates the current density 
J at a point to the total field E at the point and the conductivity a of 
the material.  It is to be noted that J and E have the same direction 
(medium assumed to be isotropic). 
3-10. Kirchhoff's Voltage Law and the Difference between Potential 

and EMF. Consider the simple electric circuit shown by the schematic 
diagram in Fig. 3-6. The circuit consists of a resistor Ro 
and the battery. The current is I at all points in the 
circuit.  At any point in the conducting material of the 
circuit we have from Ohm's law at a point (3-21) that 

FIG. 3-6. Series  = E  (3-22) 
a 

circuit of bat-

tery and exter- where E = total field at the point. 
nal resistance. 

In general the total field E may be due not only to static 
charges but also to other causes such as the chemical action in a battery. 
To indicate this explicitly, we may write 

E = E. + E.  (3-23) 

where E, = static electric field due to charges; the subscript c is to indi-
cate explicitly that the field is due to charges 

E. = electric field generated by other causes as by a battery; the 
subscript e is to indicate explicitly that it is an emf-producing 
field (see below) 

Whereas E. is derivable as the gradient of a scalar potential due to 
charges (E. = — V V), this is not the case for E.. Substituting (3-23) 
in (3-22), writing J = I/a, where a is the cross-sectional area of the con-
ductor, and noting the value of a from (3-13), 

(3-24) 

where R/1 = resistance/unit length (ohms/meter).  Equation (3-24) 
applies at any point in the circuit.  Integrating (3-24) around the com-
plete circuit, 

56Ec•dl-F 4E.•dl =l hdl (3-25) 

From (1-19) the first term is zero, that is, the line integral of a lamellar 
field due to charges is zero around a closed circuit.  However, the second 
term (in 3-25), involving the line integral of E. around the circuit, is not 
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zero but is equal to a voltage called the total electromotive force, or emf, 
'Or of the circuit.' The field E. is produced, in the present example, by 
chemical action in the battery.  If it were absent, no current would flow 
since an electric field E, due to charges is not able to maintain a steady 
current.  The right-hand side of (3-25) equals the total IR drop around 
the circuit.  Hence (3-25) becomes 

= JR. (3-26) 

where Rr = total resistance of circuit ( = Ro if internal resistance of 
battery is zero). 

In general, for a closed circuit containing many resistors and sources of 
emf, 

=  (3-27) 

This is Kirchhoff's voltage law.  In words it states that the algebraic sum 
of the emfs around a closed circuit equals the algebraic sum of the ohmic or 
IR drops around the circuit.2 As a corollary, Kirchhoff's voltage law 
states that the algebraic sum of all the emfs and IR drops around a closed 
circuit is zero.  Kirchhoff's voltage law applies not only to an isolated 
electric circuit as in Fig. 3-6 but to any single mesh (closed path) of a 
network. 
To distinguish emf from the scalar potential V, the symbol '0 (script V) 

is used for emf.  Both V and '0 are expressed in volts so that either may 
be referred to as a voltage if one does not wish to make a distinction 
between potential and emf. 
It is to be noted that the scalar potential V is equal to the line integral 

of the static field Ec, while the emf '0 equals the line integral of E..  Thus, 
between two points a and b,3 

Vab = Vb — Va =  . • dl a  E (3-28a) 
and 

ab = Vb — V. = 4 b E. • dl (3-286) 

In (3-28a) V ab is independent of the path of integration between a and b, 
but '0„b, in (3-286), is not. 

1 Emf is also called eledromotance. 
2 In time-varying situations, where the circuit dimensions are small compared with 

the wavelength, Kirchhoff's law is modified to: The algebraic sum of the instantaneous 
emfs around a closed circuit equals the algebraic sum of the instantaneous ohmic drops 
around the circuit. 
3 An open-circuited battery (no current flowing) has a terminal potential difference 

V equal to its emf V. The potential V is as given by (3-28a). As explained in the 
examples that follow, E, and E. have opposite directions in the battery. Therefore, 
in order that V at, =  VA for an open-circuited battery, (3-286) has no negative sign. 
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For closed paths 
f E, • dl = 0 

and 
f E, • dl = yr  (3-28d) 

where '07. = total emf around the circuit. 
Referring again to (3-23) and (3-25), it is to be noted further that since 

5 Ec • dl = 0 the line integral of the total field E around a closed circuit 
equals the line integral of E„ around the same closed circuit. This, in 
turn, equals the total emf of the circuit. That is, 

FE • dl = .seEe • dl = VT  (3-29) 

The difference between potential and emf is explained further in the 
following examples illustrating applications of Kirchhoff's voltage law. 

Example 1. Let the circuit of Fig. 3-6 be redrawn as in Fig. 3-7a. The battery 
has an internal resistance RI, and it will be convenient, in this example, to assume 
that the field E. in the battery is uniform between the terminals (c and d). The point 

/  icr=o0 
oi 

(3-28c) 

Potential 
V 

C LI]  

V_t ai e Lo  1 o... 11L. 
—  

1 Ec 1 i 
i  ,  I  I 
IF - go ,M1  'V 1 

a --r  b 

i 
1 

(a) 

(b) 

a  b  c d 
Flo. 3-7. Series circuit of battery and external resistance (a) with graph showing 
variation of potential around circuit (6). 

b (or c) is taken arbitrarily to be at zero potential. The resistor has a uniform resist-
ance Ro, and the wires connecting the resistor and the battery are assumed to have 
infinite conductivity (a = co ).  Hence, in the wire, E, = 0. The field E. has a value 
only in the battery, being zero elsewhere. Let the problem be to find the variation 
of the potential V around the circuit. 
Solution.  By Kirchhoff's voltage law the sum of the emfs around the circuit equals 

the sum of the IR drops. Thus 

1) .... IR0 ± IRi  (3-30) 
or 

'0   
/ =  Ro ± R  (3-31)I 

In the resistor E. = 0, but 11, has a value (as discussed in connection with Fig. 3-2) 
Applying Ohm's law (3-21) in the resistor (between a and b), we have 

J  Ro (3-32) 
Uo  /o 

where ao = conductivity of resistor material (assumed uniform) 
/0 = distance from a to b 
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Integrating (3-32) from a to b yields 

jb E. • di = 1-12 b 
io  a 

or 

Vab = —/R0 (3-34) 

where Vol, = potential difference between a and b. Since point a is connected to d 
and b to c with infinitely conducting wires, 17,a =  Vob, where V al is the potential 
difference appearing across the terminals of the battery.  Therefore, from (3-34) and 
(3-30) we have 

(3-33) 

or 

V =  IRi 

V ca = V — /RI 

(3-35) 

(3-36) 

According to (3-36) the potential difference appearing between the terminals of the 
battery is equal to the emf V of the battery minus the drop IRI due to the internal 
resistance of the battery.  Assuming that R. is uniform in the battery, the variation 
of the potential V around the circuit is as indicated in Fig. 3-76. 
To recapitulate, there is a static electric field E. in the resistor such as is discussed 

in connection with Fig. 3-2.  Integrating E. across the resistor yields the potential 
difference V,1.  Likewise in the battery there is a static field E. due to the charges on 
the electrodes.  Assuming that E. is uniform inside the battery, we have on integrat-

ing E. between c and d 

E. • dl  E.11 = V..,  (3-37) 

There is also the field E. in the battery, 
which has the opposite direction to E,. 
Assuming that E, is uniform, we have 
on integrating E. from c to d the emf V. 

V  That is, 

/47=00 

Ro= o (-0Ec=0 everywhere  c  d 
'V 

r -V=0 

(a) 

(b) 

FP3. 3-8. Circuit of battery and no ex-
ternal resistance (battery short-circuited) 
(a), and graph indicating that potential 
is constant (equal to zero) around cir-
cuit (b). 

d 
E. • di = El1 = '0  (3-38) 

Introducing (3-37) and (3-38) into (3-36), 
we find that 

RI 
(3-39) 

According to (3-39) E. is larger in magnitude than E, by an amount /Ri//i.. That 
is, the field E. is enough larger than E. so that it can move a positive charge against E. 
while at the same time overcoming the internal resistance of the battery.  In over-
coming E. the battery does work on the charge and hence delivers energy into the 
circuit.  In the resistor (Ro) the charge moves with E. and gives up energy which 
appears as heat in the resistor. 
Example 2. Let the external resistor Ro of Fig. 3-7a be removed and the battery 

short-circuited as in Fig. 3-8a.  Find the variation of the potential V around the 
circuit.  It is again assumed that E. in the battery is uniform and constant. 
Solution.  According to Kirchhoff's voltage law we have 

V = PRI  (3-40) 

where I' = current flowing in battery 
RI = internal resistance of battery 
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This current is larger than the current I with Ro connected.  Since the terminals c 
and d of the battery are at the same potential, the field E, in the battery is zero.  Also, 
since there is no external resistor, E, is zero everywhere.  However, 111 in the battery 
is the same as before, and integrating it from c to d (or all the way around the circuit) 
yields the emf U.  Since E,  0 everywhere, the potential V is constant (equal to 
zero) around the entire circuit as suggested by Fig. 3-86. There is an emf in this 
circuit, but V = 0 everywhere. 

It is instructive to compare the electrical circuits of the above examples 
with the analogous hydraulic systems. Thus, a hydraulic system analo-
gous to the circuit of Example 1 (Fig. 3-7) is shown in Fig. 3-9a.  Between 

Trough (upper level) 

(a) 

'Trough ( lower level) 

Trough - 

Pump d ( 6) 

FIG. 3-9. Hydraulic analogue for electric circuit of Fig. 3-7 is shown at (a), and hy-
draulic analogue for electric circuit of Fig. 3-8 is shown at (b). 

b and c there is an open horizontal trough at what may be called a lower 
level, corresponding to the ground potential in Fig. 3-7.  Between c and 
d there is a pump which raises the water or other liquid against the gravi-
tational field in the same manner as the battery in Fig. 3-7 raises positive 
charge against the static electric field E,.  Thus, the water in the upper 
trough has a higher potential energy than the water in the lower trough 
in the same way as the charge in the wire between d and a in the electric 
circuit of Fig. 3-7 is at a higher potential than the charge in the wire from 
b to c. From d to a the water moves in a horizontal frictionless trough at 
an upper level corresponding to the perfectly conducting wire between 
these points in Fig. 3-7. From a to b the water falls through a pipe to 
the lower level and in so doing gives up the energy it acquired in being 
pumped to the upper level.  The pipe offers resistance to the flow of 
water, and the energy given up by the water appears as heat.  This 
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energy is analogous to that appearing as heat in the resistor of Fig. 3-7 
owing to charge falling in potential from a to b. In this analogy the 
pump does work, raising the water against the gravitational field in the 
same manner as the chemical action in the battery does work per unit 
charge (against the electrostatic field E,, and internal resistance RI) equal 
to the emf of the battery. 
A hydraulic analogue to the circuit of Example 2 (Fig. 3-8) is shown in 

Fig. 3-9b.  Here the entire circuit is at the same level.  The trough is 
assumed to be frictionless, so that the water has the same potential 
energy at all points of the system in the same manner that V = 0 in Fig. 
3-8.  The pump does work equal to that required to move the water 
from c to d against the friction of the pipe in the same manner as the 
battery in Fig. 3-8 does work per unit charge (against the internal resist-
ance) equal to the emf of the battery. 
In a single-cell battery with two electrodes the field Ee is largely con-

fined to a thin layer at the surface between the electrode and the electro-
lyte and is zero in the electrolyte between the two electrodes.  Thus, the 
potential variation assumed in the preceding examples is not representa-
tive of an actual two-electrode cell although it could be approached if 
each battery consists of a large number of cells of small emf connected in 
series between c and d in Figs. 3-7 and 3-8. 
A picture somewhat closer to the actual situation in a two-electrode cell 

is portrayed in Fig. 3-10.  Three conditions are shown.  At (a) the 
battery is open-circuited (I = 0).  At (b) the battery is connected across 
a large resistance (I small).  At (c) the battery is short-circuited (I a 
maximum).' In each section of Fig. 3-10 the cell is shown in the upper 
part of the figure with the potential variation across the cell directly 
below it. For clarity the layers where Ee is not zero are shown with 
appreciable thickness, and for convenience the emf at both layers is 
taken to be of the same magnitude and sign.  It is further assumed that 
the electrolyte and also the layers containing Ee have a uniform resistivity. 
Since, the layers containing Ee are thin, the IR drop is considered, for 
convenience, to be confined to the electrolyte region (see Figs. 3-10a and 
b). 
It is to be noted that if the elements of a closed circuit containing emfs 

are separate from those containing resistance, the relation of (1-19) 

f Ec • dl = 0  (3-41) 

gives the same result as Kirchhoff's voltage law.  Thus, according to 
(3-41) the sum of the potential rises and potential drops around a closed 
circuit is zero.  This version of Kirchhoff's voltage law is often con-
venient, but it is not always applicable.  For instance, it is not applicable 

The emf of the cell is considered to be a constant and independent of the current. 
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where E. = 0 (as in Example 2) unless the sources of the emfs and the 
resistances are separated by assuming an equivalent circuit.  For 
example, a source of emf V with internal resistance Ro may, by Thevenin's 
theorem, be considered equivalent to two elements in series, one of emf 
and zero internal resistance and the other of resistance Ro and zero emf. 

V 

Open-circuited 
cell 

(a) 

Large resistance 
across cell 

(b) 
Cell short circuited 

(0) 
Fla. 3-10. Two electrode cell showing regions where emf-producing field E. and field 
E. due to charges are present under three conditions of cell operation.  In the lower 
half of the figure the idealized potential variation is shown as a function of position 
along the cell axis for the three conditions. 

Example 3. Consider the closed circuit, or mesh, shown in Fig. 3-11, which is a 
part of a more complex network, as suggested.  Apply Kirchhoff's voltage law to 
this mesh. 
Solution. Let us assume that the current in the circuit flows clockwise, the currents 

in each leg being as indicated. The direction assumed is arbitrary.  For example, if 
II actually flows opposite to the direction shown, it will be found to be negative. A 
priori the actual direction is not known so that one must be assumed.  Starting at the 
point a, let us proceed toward b. Thus, traversing RI in the same direction as the 
current, we experience a potential drop equal to — /iRi. In crossing the battery we 
encounter a potential rise equal to the emf Vi. In this case the battery is assumed to 
have zero internal resistance, or else its resistance is combined in RI. Applying 
Kirchhoff's voltage law in this way around the entire closed circuit, we obtain 

I1 R  +  — /2/ii — isits —  = 0 (3-42) 
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or 
V1 — Vs ..., /iRi + /2R2 + /aRa 

[CHAP. 3 

(3-43) 

If Vi, .0 3, RI, R:, and R2 are known, we need two more independent equations to find 
the three currents Ii, /2, and /2.  That is, we need to know more about the adjoining 
circuits in order to find these currents. 

Fie. 3-11. Closed circuit, or mesh. 

As a variation of the above problem, suppose that we have an isolated series circuit 
consisting of the circuit around the closed path abca in Fig. 3-11 with all adjoining 
circuits disconnected.  Then 

/2 =  /2 =. /2 (3-44) 

Hence, if V:, Us, R1, R2, and H2 are known, we can find the current from the relation 

'Lls — V,   
/1 —   RI + R2 + R3  (3-45) 

If '01 > Vi, the current flows clockwise as assumed.  However, if 1.), > '01, the cur-
rent is negative, that is, it flows counterclockwise. 

3-11. Tubes of Current.  In Chap. 1 we discussed tubes of flux. Let 
us now consider an analogous concept, namely, that of tubes of current. 
A tapered section of a long conductor is shown in Fig. 3-12a. Let all the 
space in the conductor be filled with current tubes. Each tube is every-

Fro. 3-12a. Tapered section of a long conductor showing current tube. 
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where parallel to the current direction and hence, from the relation 
J = qE of (3-21), is also parallel to the electric field.  Since no current 
passes through the wall of a current tube, the total current /0 through 
any cross section of a tube is a constant. Thus 

Jo =  • ds = constant  (3-46) 
a 

where J = current density (amp/meter') 
a = cross section of tube (over which J is integrated) (meters') 

If J is constant over the cross section and normal to it, then 

Jo = J a  (3-47) 

or referring to the current tube of rectangular cross section in Fig. 3-12a, 

/0 = Jbd  (3-48) 

where b = thickness of tube (meters) 
d = depth or width of tube (meters) 

If all of the conductor is divided up into current tubes, each with the 
same current /0, then the total current I through the conductor is 

I = Ion  (3-49) 

where n = number of current tubes. 
Surfaces normal to the direction of the current (or field) are equi-

potential surfaces.  The potential difference V between two equipoten-
tial surfaces separated by a distance 1 is by Ohm's law equal to the current 
/0 in a current tube and the resistance R of a section of tube of length 1. 
Thus, 

V = /oR  (3-50a) 

If the current density is uniform (field uniform), the resistance R is, from 
(3-13), given by 

1 
R = —  ohms  (3-50b) 

cra 

where / = length of tube section (meters) 
= conductivity of conducting medium (mhos/meter) 

a = cross-sectional area of tube (meters') 
3-12. Kirchhoff's Current Law. Whereas flux tubes in a static electric 

field begin and end on electric charge and hence are discontinuous, the 
tubes of a steady current form closed circuits on themselves and hence 
are continuous.  To describe this continuous nature of steady currents, 
it is said that the current is solenoidal.  That is, it has no sources or 
sinks (ending places) as do the flux tubes, which start and end on electric 
charges in a static electric field.  As a consequence as much current must 



Ay 

126  ELECTROMAGNETICS [CHAP. 3 

flow into a volume as leaves it. Thus, in general, the integral of the 
normal component of the current density J over a closed surface s must 

equal zero, or 

Fm. 3-12b. Junction point of sev-
eral conductors. 

96.J • ds = 0  (3-51) 

This relation is for steady currents and 
applies to any volume.  For example, the 
volume may be entirely inside of a con-
ducting medium, or it may be only par-
tially filled with conductors.  The con-
ductors may form a network inside the 
volume, or they may meet at a point. 
As an illustration of this latter case, the 
surface S in Fig. 3-12b encloses a volume 

that contains five conductors meeting at a junction point P.  Taking 
the current flowing away from the junction as positive and the current 
flowing toward the junction as negative, we have from (3-51) that 

/1 — 12 —  13 +  14 —  13 =  0  (3-52) 

In other words, the algebraic sum of the currents at a junction is zero.  This 
is Kirchhoff's current law, which may be expressed in general by the 
relation 

I/ = 0 (3-53) 

3-13. Divergence of J and Continuity Relations for Current.  Consider 
the small volume element iv shown in Fig. 3-13 located inside of a con-
ducting medium. The current density J is a vector having the direction 

Az 

W ay 

Il 

Fla. 3-13. Construction used to develop differential expression for divergence of J. 

of the current flow.  In general, it has three rectangular components that 
vary with position as indicated in Fig. 3-1.3.'  The product of the current 
The development here is formally the same as in Sec. 2-29. 
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density and the area of a face of the volume element yields the current 
passing through the face.  Current flowing out of the volume is taken as 
positive and current flowing in as negative.  The integral of the normal 
component of J over the surface of the volume is equal to the sum of the 
outward currents for the six faces of the volume element, or 

Now Ax Ay Az = Av.  Dividing by iv and taking the limit as iv 
approaches zero, we obtain the divergence of J at the point around which 
Av collapses.  Thus 

or 

(3-54) 

lurn96 J • ds  aJ.  a.i.  ..i. 
8 A = y ..j . ___ .4.. _  + _ a_ = 0  (3-55) 

,iv—sa  aV  aZ  ay  aZ 

V • J = 0  (3-56) 

This is a point relation.  It applies, for example, to any point in a con-
ductor where current is flowing.  It states that steady currents have no 
sources or sinks.  Any vector function whose divergence is zero, as in 
(3-56), is said to be solenoidal. 
Let us digress briefly to consider the situation if the current is not 

steady as assumed above.  Then (3-51) does not necessarily hold, and the 
difference between the total current flowing out of and into a volume must 
equal the rate of change of electric charge inside the volume.  Specifically, 
a net flow of current out of the volume (positive current flow) must equal 
the negative rate of change of charge with time (rate of decrease of charge). 

Now the total charge in the volume Av of Fig. 3-13 
is p Av, where p is the average charge density. 
Therefore 

Fin. 3-14. Construction 
for the continuity rela-
tion between current 
and charge. 

96 J • ds = — Av  (3-57) 
• 

Dividing by Av and taking the limit as Av ap-
proaches zero, we obtain 

V • J = — IP  (3-58) 

This is the general continuity relation between current density J and the 
charge density p at a point.  For steady currents as much charge enters 
a volume as leaves it so that ap/at = 0 and (3-58) reduces to (3-56). 
Consider now the situation shown in Fig. 3-14 where a wire carrying a 

current I terminates inside a small volume Av.  Applying (3-57) to this 
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situation, the integral of J over the volume yields the net current entering 
or leaving the volume. Assuming that / is entering the volume, we have 

J • ds = — / 

Now p Av equals the total charge Q inside the volume.  Hence 

(2E Av — d(2  at  — dt 
Substituting (3-59) and (3-60) in (3-57) yields 

dQ 
I = — 

dt 

(3-59) 

(3-60) 

(3-61) 

This is the continuity relation between the current and charge in a wire. 
3-14. Current and Field at a Conductor-Insulator Boundary. The 

relation between the current density J and the electric field intensity E in 
a conductor is, from (3-21), 

J = crE  (3-62) 

where a = conductivity. Thus, when current flows in a conductor, 
there must be a finite electric field present in the conductor (unless the 
conductivity is infinite'). 
Consider now the situation at a conductor-insulator boundary as in 

Fig. 3-15.  Assuming that the conductivity of the insulator is zero, 

Insulator 
Et 

/ /. 7 1-0 Et 7 / 

Cyndu/ctor 

Fm. 3-15. Insulator-conductor boundary. 

J = 0 in the insulator.  At the boundary, current in the conductor must 
flow tangentially to the boundary surface. Thus, on the conductor side 
of the boundary we have 

(3-63) 

where E, = component of electric field tangential to boundary = lEl 
Jg = component of current density tangential to boundary = IJI 
a = conductivity of conducting medium 

By the continuity of the tangential electric field at a boundary, the 
tangential field on the insulator side of the boundary is also E. 
When current flows, a conductor of finite conductivity is not an equi-

potential body as it is in the static case with no currents present.  For 

1 If a is infinite, an infinitesimal field can produce a finite current density. 
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example, the potential varies along a current-carrying wire with uniform 
current density as suggested in Fig. 3-16. The arrows indicate the field 
and current directions, while the transverse lines are equipotentials. 
Since E is uniform, the potential difference V of two points separated by 
a distance 1 along the wire is El. This potential difference is also equal 
to the IR drop, that is, V = IR, where I is the current in the wire and 
R is the resistance of a length 1 of the wire. The field is the same both 

Wire 

Cc ./   

  Equipotentials 

Fm. 3-16. Section of long wire. 

inside and outside the wire and is entirely tangential (and parallel to 
the axis of the wire). 
If superimposed on this situation there is a static electric charge dis-

tribution at the boundary surface due to the proximity of other con-
ductors at a different potential, a component of the electric field E. 
normal to the conductor-insulator boundary may be present on the 
insulator side of the boundary. The total field in the insulator is then 

Outer 
conductor 

Inner 
conductor 

Equipotentials 

FIG. 3-17. Longitudinal cross section of coaxial transmission line.  Equipotentials 
are shown by the dashed lines. The arrows indicate the direction of the normal and 
tangential field components, E. and Z, and the current density J. 

the vector sum of the normal component E„ and the tangential com-
ponent Es. In the conductor, En = 0, and the field is entirely tangential 
to the boundary.  For instance, consider the longitudinal cross section 
shown in Fig. 3-17 through a part of a long coaxial cable.  Current flows 
to the right in the inner conductor and returns through the outer con-
ductor. The field in the conductor is entirely tangential (and parallel 
to the axis of the cable) and is indicated by E.  Since the conductivity 
of the conductor is large, this field is relatively weak as suggested by the 
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short arrows for E.  In the insulating space between the inner and 
outer conductors there may exist a relatively strong field due to the 
voltage applied at the end of the cable.  This field is a static electric 
field (such as shown in Chap. 2 by Fig. 2-19).  It originates on positive 

charges on the inner conductor and 
ends on negative charges on the inside 
surface of the outer conductor. It is 

E,  entirely normal to the surfaces and 
is indicated by E. It is relatively 
strong as suggested by the long arrows 
for E.  At a point P at the surface 

Insulator   of the inner conductor (Fig. 3-17) the 
77  Conductor  total field E is then the sum of the two 

components E„ and Et added vectori-
ally as in Fig. 3-18.  If the conduc-
tivity of the metal in the cable is high, 
Et may be so small that E is substan-

tially normal to the surface and equal to E.  However, the size of Et has 
been exaggerated in Fig. 3-18 in order to show the slant of the total field 
more clearly.  The shape of the total field lines across the entire insulating 
space between the inner and outer conductors is suggested in Fig. 3-19 

FIG. 3-18. Total field E at insulator-
conductor boundary resolved into 
normal and tangential components. 

Equi—  Outer 
potentials  conductor 

Inner 
conductor 

Field lines 

Fig. 3-19. Longitudinal cross section of coaxial transmission line showing equipoten-
tials (dashed) and total field lines (solid). 

with the slant of the field at the conductors greatly exaggerated.  Equi-
potential surfaces are indicated by the dashed lines. 
Two extreme cases of conditions at a conductor-insulator boundary 

have been described in the above examples.  In one the total field on 
both sides of the boundary is entirely tangential (Figs. 3-15 and 3-16). 
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In the other the total field on the conductor side is entirely tangential, 
while the total field on the insulator side is substantially normal to the 
boundary (Figs. 3-17 to 3-19 inclusive).  The electric field at a conductor-
insulator boundary will always be of a type similar to or somewhere 
between these extremes. 
A 3-15. Current and Field at a Conductor-Conductor Boundary. Con-
sider the conductor-conductor boundary shown in Fig. 3-20 between two 
media of constants al, el and a2, €2. In general, the direction of the cur-
rent changes in flowing from one medium to the other.' 

Pa , * 

E2 

Current or 
field line 

Medium 1 
01  6', 

,,--Boundary 

Medium 2 

Cr2  6 2 

Fm. 3-20. Boundary between two different conducting media showing change in 
direction of current or field line. 

For steady currents we have the boundary relation 

Jnl = Jn2 (3-64) 

where Jni = component of current density normal to boundary in 
medium 1 

Jn2 =  component of current density normal to boundary in 
medium 2 

From relation (1) of Table 2-2 we also have 

Eel = E t2 (3-65) 

where En = component of field tangent to the boundary in medium 1. 

E 2 =  component of field tangent to the boundary in medium 2 
From (3-65) it follows that 

Jt1  J12 
= 

02 
(3-66) 

1 Note that if el = 02 = 0, then J1 = J2 =  0 and the problem reduces to that con-
sidered in connection with Fig. 2-6. 
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where 41 = component of current density tangent to boundary in 
medium 1 

J,2 =  component of current density tangent to boundary in 
medium 2 

Dividing (3-66) by (3-64), 
tl (3-67) 

tidal  ad n2 
or 

tan ai _ al 
(3-68) 

tan a2  a2 

where al and a2 are as shown in Fig. 3-20. 
According to (3) of Table 2-2 we also have the relation that 

EiEni — €2En2 = Ps  (3-69) 

where p, = surface charge density at boundary.  This may be reexpressed 
as 

Jill  n2 
— ez — = Ps 
al  az 

and since J„i = J.2, we have 

•  e2) 
Ps = Jill  — 

•  02 

(3-70) 

(3-71) 

According to (3-71) there will, in general, be a surface charge present on 
the boundary between two conductors across which current is flowing. 
If the currents are steady, the density of this charge is a constant.  If 
both media are solid metallic conductors, ei  eo  €2 so that (3-71) 
reduces to 

1  1 
Ps — eojni  — 

al  02 
(3-72) 

3-16. Current Mapping and the Resistance of Simple Geometries. 
Conductor Cells.  If the current density is uniform throughout a con-
ductor, its resistance is easily calculated from its dimensions and con-
ductivity.  For example, consider the homogeneous rectangular bar of 
conductivity 0. shown in Fig. 3-21.  It has a length /' = 100 cm, a thick-
ness or width b' = 40 cm, and a width or depth d = 40 cm.  If the end 
faces of the bar are clamped against heavy high-conductivity blocks, as 
in Fig. 3-3, the field and current density throughout the bar will be uni-
form.  From (3-13) the resistance R of the bar is given by 

R = 
  ohms  (3-73) 

adb'  0.16ff 

where a = conductivity of bar (mhos/meter). 
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Current 
tube 
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na. 3-21. Conductor divided into current tubes.  Vertical lines are equipotentials. 

Clamping blocks 

Conductor cell 

(a)  (b) 

no. 3-22. Cell of unit depth and of conductance equal numerically to the conductivity 
ff of the material.  This cell also has a resistance equal numerically to the resistivity S 
of the material.  Method of clamping cell between large high-conductivity blocks to 
measure conductance or resistance is shown at (b). 

The resistance of the bar can also be calculated by dividing the side of 
the bar into square areas each representing the end surface of a conductor 
cell. The sides of the cells are equipotentials.  The top and bottom 
surfaces of the cell are parallel to the current direction. The resistance 
Ro of such a cell is given by 

1  1  S =  =  = — 
crdb  crd  d 

(3-74a) 

where S = resistivity of the bar material.  Hence the product of Ro and 
the depth d equals the resistivity S of the bar material, or 

Rod = S  (3-74b) 

For example, the resistance of a conductor cell of unit (1 meter) depth as 
in Fig. 3-22a is numerically equal to the value of the resistivity of the bar 
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material.  Figure 3-22b shows the method of clamping the cell to measure 
its resistance. 
Taking the reciprocal of (3-74b) yields 

Go _ 
d  r̀ 

(3-74c) 

That is, the conductance per unit depth of a conductor cell is equal to the 
conductivity of the medium.  For instance, the conductance in mhos of a 
cell of unit depth, as in Fig. 3-22a, is equal numerically to the value of the 
conductivity a of the medium. The above relations apply to conductor 
cells of any end area provided that this area is a true or a curvilinear 
square. 
Returning to the bar of Fig. 3-21, let each cell be arbitrarily assigned a 

conductance of 1 mho.  On this basis the total conductance of the bar 
equals 

or 

Number of cells (or current tubes) in parallel 
Number of cells in series 

4 
TO 

From (3-74c) the conductance per unit depth of a conductor cell is a so 
that the actual conductance Go of a cell of bar material is given by 

Go = dcr = 0.4a  mhos  (3-75a) 

The actual value of the total conductance of a bar is then 

G = /400.4a = 0.16a  mhos  (3-75b) 

The actual value of the total resistance is the reciprocal of (3-75b), or 

1  
R =  0.  — 6.25S  ohms  (3-75c) 16a 

The method of calculating the resistance or conductance of the bar by 
means of evaluating the series-parallel combination of conductor cells is 
more general than the method used in arriving at (3-73) since it can be 
applied not only to uniform current distributions (as here) but also to the 
more general situation where the current distribution is nonuniform. 
In a nonuniform distribution the sides of many or all of the conductor 
cells will be curvilinear squares. Their area and arrangement may be 
determined by graphical current-mapping techniques that are like the 
field mapping procedures discussed in Sec. 2-27 (see also Sec. 5-20 and the 
Appendix). 
Graphical current-mapping techniques can be applied to any two-

dimensional problem, that is, to a conductor whose shape can be described 
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by a single cross section with all other cross sections parallel to this one 
being identical to it. Current mapping is actually electric field mapping 
in a conducting medium since the current and the field have the same 
direction in isotropic media (J = aE). 
The following fundamental properties are useful in current mapping: 

1. Current lines and equipotentials intersect at right angles. 
2. Current flows tangentially to an insulating boundary. 
3. The total current through any cross section of a continuous current 
tube is a constant. 

4. In a uniform current distribution the potential varies linearly with 
distance. 

5. Current tubes are continuous. 

With these properties in mind a conductor cross section is divided into 
current tubes and then by equipotentials into conductor cells with sides 
that are squares or curvilinear squares, using the same trial-and-error 
method described in Sec. 2-27 in connection with field mapping in an 
insulating medium. The tubes and equipotentials are revised until all 
of the cells become curvilinear squares.  By curvilinear square is meant 
an area that tends to yield true squares as it is subdivided into smaller 
and smaller areas by successive halving of the equipotential interval and 
the current per tube. 
All cells with the same current through them may be defined as con-

ductor cells of the same kind.  It follows from Ohm's law that the potential 
drop across all cells of the same kind is the same. 
In calculating the conductance of a conductor with a nonuniform cur-

rent distribution a current map is first made, as discussed above.  The 
conductance G is then given by 

N 
G = —n Go (3-76) 

where N = number of cells (or current tubes) in parallel 
n = number of cells in series (equals number of cells per tube) 
Go = conductance of each cell (= do) 

The accuracy of the conductance (or its reciprocal, the resistance) depends 
primarily on the accuracy with which the curvilinear squares are mapped. 
In conclusion the properties of an accurate current map' may be stated 

as follows: 

1. The conductance Go of any conductor cell is the same. 
2. The conductance per unit depth of any conductor cell is equal to 
the conductivity a of the medium. 

3. The resistance Ro of any conductor cell is the same. 
1 In a single medium of uniform conductivity. 
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4. The resistance-depth product for any conductor cell is equal to the 
resistivity S of the medium. 

5. The current I through all conductor cells of the same kind is the 
same. 

6. The current through any cross section of a conductor tube is the 
same. 

7. The potential drop across all conductor cells of the same kind is the 
same and is equal to the /Ro drop across the cell, where I is the 
current through the cell and Ro is the resistance of the cell. 

8. The average current density J in any cell of the same kind is 
inversely proportional to the thickness or width of the cell (or 
current tube). 

9. The average field intensity E in any cell of the same kind is 
inversely proportional to the thickness or width of the cell (or cur-
rent tube).' 

10. The power dissipated as heat in all conductor cells of the same kind 
is the same ( = PRo)• 

11. The average power density (watts per cubic meter) in all cells of the 
same kind is inversely proportional to the area of the end of the 
cell.  (This is the area that appears in the map.) 

Example.  A homogeneous rectangular bar of conductivity o has the dimensions 
shown in Fig. 3-23a.  This bar is identical with the one of Fig. 3-21 except that two 
cuts have been made across the full width of the bar, as indicated.  Find the resistance 
of the bar when its ends are clamped between high-conductivity blocks as in Fig. 3-3. 
Solution.  A longitudinal cross section of the bar is drawn to scale and a current 

map made with the result shown in Fig. 3-236.2 A portion of one quadrant has been 
further subdivided to test the accuracy of the curvilinear squares.  From (3-74a) or 
(3-75a) the resistance Ro of one conductor cell is 

1  
Ro 

0.4a 
ohms 

There are 13 cells in series in a tube, and there are 4 tubes in parallel.  Hence, from 
(3-76) the resistance R of the bar is 

13  0 , R  13Ro  —  0.1 0  ohms  (3-77) 
4  1.6a 

Thus, comparing this result with (3-75c) for the uniform bar, the slots in the bar pro-
duce an increase of 30 per cent in its resistance. 

1 It is also to be noted that the conductance (or the resistance) of any cell is the 
same for current flow in either direction across the cell.  Furthermore, the conductance 
of any cell of unit depth is the same as the conductance of a unit cube since a cube is 
merely a special case of a cell. 
I Although the entire cross section of the bar has been mapped, the symmetry is 

such that a map of only one quadrant would have sufficed. 
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(a) 

Curvi inear 
cell 

Equipotenbals  (b) 

Fm. 3-23. Conducting bar with notch (a) and current map (b).  Resistance of bar 
equals ratio of cells in series to cells in parallel multiplied by the resistance of each cell. 
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3-17. Laplace's Equation for Conducting Media. According to (3-56) 
we have the relation for steady currents that 

V • J = 0 (3-78) 
From (3-21) 

J = aE  (3-79) 
so that (3-78) becomes 

aV• E =0  (3-80) 
But from (1-33) 

E = —VV  (3-81) 

Introducing this value of E in (3-80) yields 

CT V  • (V V) =  0  (3-82) 
or 

= 0  (3-83) 

This is Laplace's equation. It was derived previously in Sec. 2-34 for 
static electric fields, and since it also applies here, it follows that problems 
involving distributions of steady currents in conducting media can be 
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handled in the same way as problems involving static field distributions 
in insulating media.  If we have a conductor with an unknown current 
distribution and if a solution to Laplace's equation can be found that also 
satisfies the boundary conditions, we can obtain the potential and current 
distribution in the conductor.  If this is not possible, we can nevertheless 
find the approximate potential and current distribution in two-dimen-
sional problems by graphical current mapping as discussed in Sec. 3-16. 
From a knowledge of the current distribution, the resistance, the maxi-
mum current density, and other items of practical importance can be 
determined for a given conductor configuration. 
In conducting media, current tubes and the conductivity iT are analo-

gous to the flux tubes and permittivity e in insulating media. Thus in 
conducting media we have 

J = aE  amp/meter'  (3-84) 

while in insulating media we have 

D = eE  coulombs/meter' (3-85) 

It is also to be noted that in a conducting medium the conductance per unit 
depth of a conductor cell equals the conductivity of the medium, or 

Go 
= a 

mhos/meter  (3-86) 

where d = depth of cell (see Fig. 3-21), while in an insulating medium the 
capacitance per unit depth of a dielectric field cell equals the permittivity 
e of the medium, or 

co 
= farads/meter  (3-87) 

In the case of a static electric field in a dielectric medium of permittivity 
e there are no currents, but there is a flux density D = E. In the case of 
a static electric field in a conducting medium of conductivity a there is 
current of density J = aE. Since both fields obey Laplace's equation, a 
solution in the conductor situation is also a solution for the analogous 
dielectric situation, and vice versa.  For example, if the medium between 
conductors 1 and 2 in Fig. 2-24 is a conductor of conductivity a, the con-
ductance per unit depth between if and gg is given by 

G  15.43  a  =  — 3.86a  mhos/meter 
d  4 

It is assumed that plates 1 and 2 are perfect conductors.  A further dis-
cussion of fields that obey Laplace's equation is given in Chap. 14. 
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PROBLEMS 

3-1. What is the power lost in heat in a No. 10 B. & S. gauge copper wire (2.59 mm 
diameter) 100 meters long if 20 volts is applied between the ends? Assume that 
the wire temperature is 20°C.  Ans.: 1,205 watts. 
3-2. What will the power loss for the wire of Prob. 3-1 be if the wire temperature is 

40°C? 
3-3. What is the energy lost in heat in the wire of Prob. 3-1 in 1 hr? 

Ans.: 4.34 X 10' joules. 
3-4. What is the resistance between metal electrodes 1 meter square located at 

each end of a tank with nonconducting walls 1 meter square in cross section and 
10 meters long when filled with a conducting liquid having a conductivity of 10 mhos/ 
meter? 
3-5. What is the current density in the tank of Prob. 3-4 if 10 volts is applied 

between the electrodes at the ends of the tank? 
3-6. What is the current density in a No. 10 B. & S. gauge copper wire (159 mm 

diameter) carrying a constant current of 10 amp at a temperature of 20°C? 
3-7. a. A resistance R. and three batteries are connected in series as shown in 

Fig. 3-24.  For the first battery the emf Vt = 1.5 volts and the electrolyte or internal 
resistance R1 = 1 ohm, for the second battery the emf 1)2 = 2 volts and the internal 

'V, = 1 5 "V2= 2  14=3 

 4VVVVVVVV   
a  Ro b 

RI R2  R 3 

Fxa. 3-24. Series circuit for Prob. 3-7. 

resistance R2 = 0, and for the third battery the emf V = 3 volts and the internal 
resistance R3 = 1 ohm. The first two batteries have single cells, while the third 
has three cells in series, each cell of 1 volt emf and  ohm internal resistance. Assume 
that half the total emf of a cell occurs at each electrode, and assume that all con-
nections between cells have negligible resistance. Draw a graph such as in Fig. 
3-7, showing the variation of potential with position between points a and c when 
Ro = 4.5 ohms and also when Ro = 0. Take V = 0 at the point b. 
b. Referring to the circuit of Fig. 3-24, let the emfa be as indicated, and let 

RI = 1.5 ohms, R2 .• 2 ohms, and R3 = 3 ohms.  Draw a graph of the variation of 
potential with position when Ro = 6.5 ohms and also when R0 =- 0. 
3-8. What is the current magnitude in the series circuit of Fig. 3-25a?  What is the 

current direction (clockwise or counterclockwise)? The batteries have negligible 
internal resistance. 

'V=10 volts  1 ohm  'V•,5 volts  3 ohms 

2 
ohms 

1 ohm 
 VVV\A.,  

Fla. 3-25a. Series circuit for Probs. 3-8 and 3-9. 
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3-9. What are the current magnitude and direction in the series circuit of Fig. 3-25a 
if each battery has an internal resistance of 2 ohms? 
3-10. Four wires meet at a common junction point.  The current in wires 1 and 2 

is 5 amp each and flowing away from the junction, while the current in wire 3 is 6 amp 
flowing toward the junction.  What are the current magnitude and direction in the 
fourth wire? 

3-25b. Circuit for l'rob. 3-11. 

9)=2 volts  1 ohm  11 

2 ohms 
5 ohms 
 AIWNAA,  

 —I 4. 

Fia. 3-26. Two mesh circuit for Prob. 
3-12. 

— 'V= 
c;\tlms  ÷ 6 volts T=2 volts 

3-14. What length of straight 
right-angle section of Prob. 3-13? 

3-11. If 11 = /2 = /3 = /4 = 1 amp in 
the circuit of Fig. 3-256, what are the 
magnitude and direction of /a 
3-12. What are the magnitude and di-

rection of the current /2 in the circuit of 
Fig. 3-26?  The batteries have negligible 
internal resistance. 
3-13. A 1-cm-square copper conductor 

has a right-angle bend.  What is the 
resistance of a section of the conductor in-
cluding the bend that is 5 cm long each 
way from the bend, measuring from the 
outside corner? The temperature of the 
conductor is 20°C. 

copper conductor has the same resistance as the 

Fin. 3-27. Notched block for Probs. 3-15, 3-16, and 3-17. 
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3-15. How much greater is the resistance of the block of Fig. 3-27 as compared with 
a uniform rectangular block without the notches? The resistance to be determined 
is that between the left and right ends of the block.  It is assumed that the block is 
clamped between two large high-conductivity blocks.  Ans.: 2.6 times. 
3-16. If the conductivity of the material used for the block of Fig. 3-27 is 104 mhos/ 

meter, what is the resistance of the block? 
3-17. How much greater would the resistance of the block of Fig. 3-27 be as com-

pared with a uniform rectangular block if the height of the center section is reduced 
from 2 to 1 cm so that the distances from the center section to the top and bottom 
of the block are increased to 4.5 cm? 

Bar 

10 cm 

Fm. 3-28. Bar with hole for Prob. 3-18. 

3-18. A rectangular nichrome bar 10 cm long by 4 cm high by 4 cm wide has a 
hole 3 cm in diameter located symmetrically as shown in Fig. 3-28.  Find the resist-
ance of the bar at 20°C. 
3-19. A bar and strip are connected as shown in Fig. 3-29a. The bar has finite 

conductivity, while the strip conductivity is assumed to be infinite.  If the end of the 

F-1-1 

,--t\  Block 

\B ock position 
equivalent to strip 

7 mm 
Bar 

(b) 
Fm. 3-29. Bar and strip for Probs. 3-19 and 3-20. 

bar is clamped against a large, infinitely conducting block as in Fig. 3-29b instead of 
connected to the strip as in Fig. 3-29a, determine by what length 1 the bar would 
need to be lengthened in order that its resistance be the same as when connected to 
the strip?  Ans.: About 7 mm longer. 
3-20. Why is the resistance of the bar of Fig. 3-29 larger when it is connected to the 

strip than when contact is made with the block? 
3-21. Deduce the relation V • J = 0 by applying the divergence theorem to 

96 J • de = 0. 

3-22. Show that the definition of current given by Eq. (3-1) leads to the con-
tinuity relation I  dQ/dt, where Q = positive charge. 
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3-23. Demonstrate that the source of the eta energizing the coaxial line of Fig. 3-19 
is at the left end by showing that if the source were at the right end the field lines 
would be bowed in the opposite direction. 
3-24. Show that, at a conductor-conductor boundary, cri/0'2  E,.,/E,,1 41/42. 
3-25. A wire 2 mm in diameter has a resistance of 1. ohm per 100 meters.  A cur-

rent of 20 amp is flowing in the wire.  What is the field intensity in the wire? 
3-26. If there is a static surface charge on the current-carrying wire of Prob. 3-25 

with a uniform density of 5 X 10-12  coulomb/meters, what are the magnitude and 
direction of the field intensity just outside of the surface of the wire? The medium 
outside of the wire is air. 
3-27. The current direction at the boundary surface between two media makes an 

angle of 45° with respect to the surface in medium 1; what is the angle between the 
current direction and the surface in medium 2? The constants for the media are as 
follows: 

Medium 1: Crj  =  102 mhos/meter 
= 1 

Medium 2: 02 = 1 mho/meter 
er2 •• 2 

3-28. If the total current density J in medium 1 is 10 amp/meter', what is the sur-
face charge density at the boundary in Prob. 3-27? 
3-29. Two long, parallel, zinc-plated iron pipe lines have a spacing of 4 meters 

between centers. The pipes are half buried in the ground as indicated in Fig. 3-30. 

4 meters 
Pipe lines 

FIG. 3-30. Pipe lines for Prob. 3-29. 

The diameter of the pipes is 50 cm. The conductivity of the ground (sandy soil) is 
10-4 mhos/meter.  Without drawing a field map, find the resistance between the two 
pipes per meter of length.  Hint: Note the analogy between this situation and the 
static electric field between two parallel cylindrical conductors. 

M'  N' 

FIG. 3-31. Conducting sector for Prob. 3-30. 

3-30. A conducting 45° sector of thickness d has inner and outer radii r, and r2 as 
shown in Fig. 3-31.  If the conductivity is a mhos/meter, show that the resistance R 
between the curved edges MM' and NN' is given by 

4 , r2 
R  — in—  ohms 

Taa  r 

Hint: Set up a 45° sector of infinitesimal radial thickness dr. 



CHAPTER 4 

THE STATIC MAGNETIC FIELD OF 

STEADY ELECTRIC CURRENTS 

)t' 4-1. Introduction. A static electric charge has an electric field, as 
discussed in Chaps. 1 and 2. An electric current, on the other hand, 
possesses a magnetic field.  For instance, a wire carrying a current I has 
a magnetic field surrounding it, as suggested in Fig. 4-1a.  If this field is 

Wire 
Magnetic 
field lines Compass 

needles 

(a)  (b) 
FIG. 4-1.  (a) Magnetic field around wire carrying 
a current.  (6) Cross section perpendicular to the 
wire.  The current is flowing out of the page. 

Field or 
flux line 

,7 
FIG. 4-2. Right-hand rule 
relating direction of field or 
flux line (fingers) to direc-
tion of current I (thumb). 

explored with a compass, the needle always orients itself normal to a 
radial line originating at the center of the wire.  If one moves in the 
direction of the needle, it is found that the magnetic field forms closed 
circular loops around the wire. 
The direction of the magnetic field is taken to be the direction indicated 

as " north" by the compass needle, as in Fig. 4-1b.  The relation of the 
magnetic field direction to the current direction can be easily remembered 
by means of the right-hand rule.  With the thumb pointing in the direc-
tion of the current, as in Fig. 4-2, the fingers of the right hand encircling 

143 
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the wire point in the direction of the magnetic field or lines of magnetic 
flux. 
4-2. The Force between Current-carrying Wires. A current-carrying 

wire produces a magnetic field. If a second current-carrying wire is 
brought into the vicinity of the first, each wire is surrounded by two mag-
netic fields, its own and that due to the other wire. The result is that a 
force acts on the wires. 

(a) 

Fields 
opposed 

Field lines 

Fm. 4-3. (a) Magnetic field or flux lines around two wires carrying currents in the 
same direction.  (b) Resulting field around wire 2 with increased magnetic flux density 
at the right of the wire causing a force F to the left. 

This may be illustrated with the aid of Fig. 4-3a.  Consider two wires 
1 and 2 normal to the page with currents flowing out of the page (indi-
cated by dot or head of an arrow in the wire).  The magnetic fields of the 
two wires are then as shown.  In order to simplify the figure, only a few of 
the field lines produced by wire 2 are shown. 
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At the right of wire 2 the two magnetic fields are in the same direction 
and add to give a stronger field, while at the left of wire 2 the fields are 
opposed and result in a weaker field.  If the field lines are considered to 
represent magnetic flux lines, it may be said that the magnetic flux 
density is greater to the right of wire 2 than to the left.  This is illus-
trated in Fig. 4-3b, where the magnetic flux density, designated by the 
symbol B, is seen to be greater at the right of wire 2 because the lines are 
more closely bunched.  There results a force F on wire 2 to the left as 
though the magnetic flux lines reacted on it like stretched rubber bands. 
If the current in wire 2 is reversed, the direction of the force F is to 

the right. This is illustrated in Fig. 4-4, where the current direction in 
wire 2 is into the page (indicated by an X or tail of an arrow in the wire). 
Hence, wires carrying currents in the same direction are attracted, while 
wires carrying currents in opposite directions are repelled. 
It is to be noted that the force F is perpendicular to the current 

direction. 

c r -Wires)0  

Current 
1  2  element 

Fm. 4-4. Wires carry-  Fm. 4-5. The force on a current 
ing currents in oppo-  element is normal to the plane 
site directions,  containing the element and B. 

4-3. Force on a Current Element.  Referring to Fig. 4-5, the quanti-
tative relation for the magnitude of the force on a current element in a 
magnetic field is 

dF = I B dl sin 41.,  (4-1) 

where dF = infinitesimal force on element dl (newtons) 
I = current in element (amp) 
B = magnetic flux density (newtons/amp-meter) (See Sec. 4-4) 
dl = length of element (meters) 
= angle between direction of current and magnetic field 
(dimensionless) 

The direction of the force dF is normal to the plane containing the element 
and B. The magnitude of the force, as given by (4-1), is proportional to 
the current, to the length of the element, and to the magnetic flux density 
B. The quantity B may be regarded as a measure of the strength of the 
magnetic field. The force is also proportional to sin 4) so that it is a 
maximum when the element is normal to B. 
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It is to be noted that (4-1) applies to a current element. To find the 
force on an actual circuit, it is necessary to integrate (4-1) over the length 
of the current-carrying conductor, which for a steady current must form 
a closed loop or circuit. 
X 4-4. The Force per Current Element, or Magnetic Flux Density B. 
A conductor of length dl with a current I possesses a current moment 
given by I dl. That is, 

I dl = current X length = current moment 

The dimensional relation for current moment is QL/T. 
In electrostatics the electric field intensity E is defined as the force per 

unit charge.  In magnetic situations the magnetic flux density B is 
  defined as the force per current moment. Thus, 
North pole  B  if 4, = 90°, we have, from (4-1), 

F B = dF  force 
I dl = current moment 

(4-2) 

The unit for B is the newton per ampere-meter 
or, as will be shown later, the weber per square 
meter. 

...—Magnetized 
needle  Electric charge, positive and negative, can 

be separated.  The poles of a magnet, how-
II  cannot be separated (see Chap. 5). 
II u South pole  Althoug h as  a consequence an  isolated mag -

netic pole is not physically realizable, its effect 
may be approximated by confining our atten-

FIG. 4-6. Long magnetized 
tion to the region close to one pole of a very needle in magnetic field. 
long, magnetized needle. Thus, as suggested 

in Fig. 4-6, the north pole of a long, magnetized needle, when introduced 
in a magnetic field, will be acted on by a force F. This force is propor-
tional to B and to the strength of the pole, or 

F = BQ.  newtons  (4-3) 

where Q„,= pole strength. The pole strength Q. has the dimensions of 
current moment (see Chap. 5) and is expressed in ampere-meters. 
Dividing by Q., 

F force 
114 = — — 

Q.  pole 

where B = force per pole (newtons/amp-meter) 
F = force (newtons) 
Qm = pole strength (amp-meters) 

(4-4) 
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Thus, B can be regarded either as the force per unit current moment or as 
the force per unit pole.  The relation of (4-4) is analogous to that in 
Sec. 1-6 for the electric field intensity E or force per unit charge.  That is, 

F  force  
E —  —  (4-5) 

Q  charge 

where E = field intensity (newtons/coulomb) 
F = force (newtons) 
Q = electric charge (coulombs) 

Because of the analogy bet \\ yen ( I-1) and (4-5), B might appropriately 
be called the magnetic field in if nsity.  However, it is customary to call it 
the magnetic flux density.' 
)( 4-5. The Flux Density Produced by a Current Distribution. Mag-
netic fields are produced by electric currents (or their equivalent).  The 
basic relation for the magnetic flux density at a point P as produced by a 

current-carrying element (see Fig. 4-7) is 

dB  dB = k I dl sin 0 (4-6) 
( inward) 

r2 

1 

Fin. 4-7. The flux density at I' 
due to a current element is 
given by the Biot-Savart rela-
tion (4-7). 

The quantity k is 

where dB = infinitesimal flux density at 
point P 

k = constant of proportionality 
I = current in element 
dl = length of element 
= angle between current direc-
tion and radius vector to P 

r = distance from element to P 
a constant of proportionality given by 

k = 

where µ = permeability of the medium.  By dimensional analysis of 
(4-6) we find that p has the dimensions of flux per current divided by 
length. It will be shown in Sec. 4-15 that inductance has the dimensions 
of flux per current. Therefore permeability has the dimensions of 
inductance divided by length. The mksc unit for permeability is the 
henry per meter.t The permeability of vacuum is designated pp and 
has a value of 

X 10-7 henry/meter < 

1 It is also sometimes called the magnetic induction.  For a detailed discussion of 
magnetic units see, for example, Erik Millen, Some Units in the Giorgi System and the 
C.G.S. System, Trans. Roy. Inst. Techn. (Stockholm), No. 6, 1947. 
t Recall that permittivity e has the dimensions of capacitance per length and is 

expressed in farads per meter. 
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The permeability of air and also of most nonferrous materials is nearly the 
same as for vacuum. 
It is assumed in (4-6) that the medium has a uniform permeability. 

In effect this restricts us to nonferrous media, for which j is nearly equal 
to /.40 (see Table 5-1). 
Introducing the value for k in (4-6), we obtain 

81014—Scivetvt /010 
P 

r  B 
I 
I 
i 
I 

dl 

I I 
FIG. 4-8. Construction 
for calculating flux den-
sity B at a point P due 
to a current I in a long 
conductor. 

where B = 

A = 
I= 
dl = 
r = 
0 = 

1  µI dl sin 0 
dB —  421 .2 (4-7) 

Equation (4-7) is often referred to as the Biot-
Savart law.  The direction of dB is everywhere 
normal to the element of length dl, as suggested 
in Fig. 4-7.  In fact, dB forms circular loops con-
centric with dl, as suggested in Fig. 4-1a. 
In case we wish to know B at a point P, as in 

Fig. 4-8, due to a current I in a long, straight or 
curved conductor contained in the plane of the 
page, we assume that the conductor is made up of 
elements or segments of infinitesimal length dl con-
nected in series.  The total flux density B at the 
point P is then the sum of the contributions from 
all these elements, and is expressed by the integral 
of (4-7).  Thus 

B = P I f sin  0 dl 
4r j r2 

(4-8) 

flux density at P (newtons/amp-meter) 
permeability of medium (henrys/meter) 
current in conductor (amp) 
length of current element (meters) 
distance from element to P (meters) 
angle measured clockwise from the positive direction of cur-
rent along dl to direction of radius vector r extending from dl 
to P 

The integration is carried out over the length of the conductor. 
Both (4-8) and (4-1) constitute the basic magnetic field relations as 

stated in a simplified scalar form. These relations are restated in more 
general forms in later sections. 

X  4-6. Magnetic Flux 114,.  The magnetic flux density B or force per 
pole is also a measure of the density, or number, of magnetic flux lines 
passing per unit area through a surface normal to the lines. Hence the 
total flux or number of lines through a given area is equal to the product 
of the area and the component of B normal to it. Thus, referring to 



SEC. 4-61  MAGNETIC FIELD OF A STEADY CURRENT  149 

Fig. 4-9, we have 
= BA cos a  (4-9) 

where 0. = magnetic flux through area A' 
B = magnitude of the magnetic flux density B 
a = angle between a normal to the area A and the dirention of B 

It is assumed in (4-9) that B is uniform over the area A. 
Dimensionally we have 

Magnetic flux density X area = magnetic flux 
or 

Force — force X length mechanical moment 
area X 

Current X length  current  current 

Thus, magnetic flux has the dimensions of mechanical moment per cur-
rent. The dimensional symbols for magnetic flux (O.) are ML2/QT. 

Lsc 
Normal to  r— ,' 

A 

Fm. 4-9. Flux lines and area A. 

Magnetic 
f  flux lines 

Area A 

The mksc unit for magnetic flux is the weber.  Hence 

Newtons newton -meters  
X meters' =  — webers 

Ampere-meter  ampere 

For the flux density B we have 

flux  webers 
Flux density = — or 

area  meter' 

Thus, the magnetic flux density B can be expressed in webers per square 
meter as well as in newtons per ampere meter. 
Instead of flux lines it is frequently more convenient to imagine that 

there are tubes of magnetic flux, in the same way that tubes of electric 
flux are often more convenient than lines of electric flux (see Sec. 1-18). 
A tube of magnetic flux is defined as an imaginary tube having walls every-
where parallel to B and with a constant total magnetic flux IPm over any 
cross section. The requirement that the flux over any cross section of a 
tube be a constant is a necessary consequence of the fact that B is parallel 
to the sides of the tube so that the flux over the side walls is zero. 
The subscript m is used to distinguish magnetic flux (CO from electric flux (#). 
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If B is not uniform over an area, the simple product (4-9) must be 
replaced by a surface integral so that, in general, we have 

1/1„, = JI B cos a ds  (4-10) 

where ds = infinitesimal element of surface area 
B = magnitude of B 
a = angle between normal to ds and the direction of B 

The integration is carried out over the surface through which we wish to 
know the total flux ik„,. 
Equation (4-10) can also be written as a scalar or dot product.  Thus, 

ik. = f J. B • ds  (4-11) 

where 1,1.„, = magnetic flux (webers) 
B = magnetic flux density (webers/meter2 or newtons/amp-

meter) 
ds = a vector with direction normal to the surface element ds and 

a magnitude equal to the area of ds (meters') 
)( 4-7. Magnetic Flux over a Closed Surface. The flux tubes of a static 
electric field originate and end on electric charges.  On the other hand, 
tubes of magnetic flux are continuous, that is, they have no sources or 
sinks. This is a fundamental difference between static electric and mag-
netic fields. To describe this continuous nature of magnetic flux tubes, 
it is said that the flux density B is solenoidal. Since it is continuous, as 
many magnetic flux tubes must enter a volume as leave it. Hence, when 
(4-11) is carried out over a closed surface, the result must be zero, or 

96 B • ds = 0 (4-12) 1 

This relation may be regarded as Gauss's law applied to magnetic fields 
[compare with (1-59) for electric fields]. 
It follows, in the same manner as shown for J in Sec. 3-13, that the 

divergence of B equals zero. That is, 

V • B = 0  (4-13) 

Both (4-12) and (4-13) are expressions of the continuous nature of B, 
(4-12) being the relation for a finite volume and (4-13) the relation at a 
point. 
X 4-8. The Flux Density Produced by an Infinite Linear Conductor. 
The flux density B at a distance R from a thin linear conductor of infinite 
length with a constant current I can be readily obtained by an applica-
tion of (4-8). This case is one of considerable interest since the flux 
density at a distance R from a long, straight wire is nearly the same as 
for an infinitely long conductor provided that R is small compared with 

1The symbol 56. indicates an integral over a closed surface. 
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the length of the wire. It is assumed that the conductor diameter is 
sufficiently small compared with R so that it can be neglected. 
The geometry is shown in Fig. 4-10.  With the current I as indicated, 

B at the right of the wire is into the page. This is according to the right-
hand rule. Since dl sin 0 = r do and R = r sin 0, (4-8) in this case 
becomes 

B = tg I -1 d0 = AI   f r sin 0 d0  (4-14) 
47r 0 r  4rR o 

where the integration is between the angles 0 = 0 and 0 = 7, that is, over 
the entire length of an infinite wire.  Integrating (4-14), we have 

B =  AI  [r — cos 0] = AI4rI  t 2  (4-15) 4wR 0  
or 

B = AI  
27R 

(4-16) 

where B = flux density (webers/meter2 or newtons/amp-meter) 
A = permeability of medium (henrys/meter) 
I = current in conductor (amp) 
R = radial distance (meters) 

Equation (4-16) gives the flux density at a radius R from an infinite (or 
very long) linear conductor carrying a current I. It is assumed that the 
conductor is in a medium of uniform permeability pt. 

dl 

Infinite linear 
conductor 

P 
B(inward) 

0=0 
F 

1 

R 
t 

1  Y 1  i2 
I  I 

1  I 

F 

Fro. 4-10. Construction for finding flux  Fui.  4-11. Force between 
density B near a long, straight wire.  two long parallel conductors. 

4-9. The Force between Two Linear Parallel Conductors.  Consider a 
length of two very long parallel linear conductors separated by a distance 
R as in Fig. 4-11.  The conductors are situated in air and are in a region 
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free from fields. Assume now that conductor 1 carries a current I and 
conductor 2 a current I' in the opposite direction. The flux lines due to 
conductor 1 are into the page at conductor 2. Applying the reasoning of 
Sec. 4-2 (see Fig. 4-4), it follows that there is a force to the right on con-
ductor 2 and a force to the left on conductor 1. That is, the conductors 
are repelled.  If the currents were in the same direction, the forces would 
be reversed and the conductors would be attracted. 
Let us now calculate the magnitude F of the force on a length 1 of con-

ductor 2. From (4-1) we have 

F = l'B fol dl =  (4-17) 

where /' = current in conductor 2 
B = flux density at conductor 2 produced by current I in con-

ductor 1 
Introducing the value of B from. (4-16) gives 

F, _ moll'  
2wR 

(4-18) 

where F = force on length 1 of conductor 2 (newtons) 
I = current in conductor 1 (amp) 
I' = current in conductor 2 (amp) 
R = separation of conductors (meters) 
AO =  permeability of air = 4w X 10-7 henry/meter 

Since (4-18) is symmetrical in I and I', the force on a length 1 of con-
ductor 1 is of the same magnitude as the force F on conductor 2. 
Dividing (4-18) by 1 yields the force per unit length on either conductor 

as 
F 
1  2TR 

If I' = I, and introducing the value for ho, (4-18) becomes 

I21 
F = 2 X  

(4-19) 

(4-20) 

Example. Two long parallel wires separated by 2 cm in air carry currents of 100 
amp.  Find the force F on 1 meter length of a conductor. 
Solution.  Evaluating (4-20) for these conditions, 

F  0.1 newton ..1%2  oz avoirdupois 

4-10. The Flux Density Produced by a Current Loop. As another 
application of the flux density relations of Sec. 4-5, let us derive an expres-
sion for the flux density produced by a single current loop.  As a simpli-
fication the problem will be restricted to finding B at points on the loop 
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axis. Let the- loop be in the x-y plane with its center at the origin, as in 
Fig. 4-12, so that the z axis coincides with the loop axis.  The loop has a 
radius R and current / and is situated in air. 
At the point P on the loop axis the infinitesimal flux density dB pro-

duced by an infinitesimal element of length dl of the loop is, from (4-7), 

µI dl sin 0 
dB —  (4-21) 4 .2 

where 0 = angle between dl and radius vector of length r. It is assumed 
that the loop is in a medium of uniform permeability Au.  The direction of 
dB is normal to the radius vector of length r, that is, at an angle E with 
respect to the loop or z axis. 

Loop axis 

dB, 

P 

dl' 

Loop with 
current I 

VS =0 
FIG. 4-12. Construction for finding flux density B on axis of current loop. 

Z 
dBn 

0=90° 

Y 

The component dB, in the direction of the z axis is given by 

dB. = dB cos E = dB —R 
r 

From Fig. 4-12 we note that 

(4-22) 

0 = 90° 
dl = R dq$ 

r = -VR2  ± z2 
Introducing these values into (4-21) and substituting this value for dB 
in (4-22), we have 

dB, — 4  (4-23) T(R142IR-1-2 z2)1 " 
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The total flux density B. in the z direction is then the integral of (4-23) 
around the entire loop. 
The element dl also produces a component of flux density dB„ normal 

to the axis to the loop.  Integrating this component for all elements 
around the loop yields zero because of symmetry.  This may be seen by 
noting that the normal component dB„ of any element of length dl is 
canceled by the normal component of the diametrically opposed element 
dr.  Hence, B. equals the total flux density B at the point P as given by 

/dB 2  2r  AIR 2 

B = B . —   do  
41-(R2 z2)1 fo  2(R2 z2)i 

The point P is at an axial distance z from the center of the loop.  At 
the center of the loop, z = 0, and 

B = 
2R 

(4-25) 

where B = flux density at center of loop (webers/meter2) 
= permeability of medium (henrys/meter) 

I = current in loop (amp) 
R = radius of loop (meters) 

)( 4-11. The Vector, or Cross Product. A linear current-carrying con-
ductor placed in a uniform magnetic field experiences a force F on a 
length 1 of conductor that is given, from (4-1), by 

F = IB sin 4) fol dl = IB1 sin 41  (4-26) 

where F = force (newtons) 
I = current in conductor (amp) 
B = flux density of field (webers/meter2) 
/ = length of conductor (meters) 
= angle between I and B 

Equation (4-26) is a scalar equation and relates only the magnitudes of 
the quantities involved.  The force F is perpendicular to both I and B. 
For example, let the conductor be normal to a uniform magnetic field of 
flux density B as in Fig. 4-13a.  If the current in the conductor is flowing 
out of the page, it produces flux lines, as indicated, so that the flux 
density is increased below the wire and weakened above. The resulting 
force is therefore upward, as suggested in Fig. 4-13b. 
Relating the directions to the coordinate axes as in Fig. 4-14a, we have 

F in the positive z direction when I is in the positive x direction and B in 
the positive y direction.  If the direction of I is not perpendicular to the 
direction of B but is as shown in Fig. 4-14b, the force F is still in the posi-
tive z direction with a magnitude given by (4-26), where 4) equals the 
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(a) 

(b) 
Fla. 4-13. Force F on current-carrying conductor in uniform magnetic field. 

II 

(a) 

Conductor of 
length i 

(b) 

Fm. 4-14. Relation between current direction, field direction, and force. 

angle measured from the positive direction of I to the positive direction of 
B (counterclockwise in Fig. 4-14b).  With 4, measured in this way, the 
force F is in the positive z direction if sin 4, is positive. 
Although with this convention concerning directions (4-26) is definite 

and unambiguous, a more concise and elegant method of expressing the 
relation is by means of the vector, or cross product. 
The cross product of two vectors is defined as a third vector whose magnitude 

is equal to the product of the vector magnitudes and the sine t?f the angit. 
between them.  The direction of  Ow third rector is perpe_ndicular to the plane  
of the two vectors and in such a sense that the three vectors form a right-handed  
set. 
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For example, the cross product of A into B means that the resulting 
vector C is in the direction that a right-handed screw' would advance if 
rotated in the same direction as when A is turned toward B. The cross 
product of A into B is written 

AxB =C  (4-27) 

If A is in the positive x direction and B in the positive y direction, then C 
is in the positive z direction as in Fig. 4-15.  These three vectors form a 
right-handed set.  (No physical significance is here attached to A, B, 
and C.) 

z 

C 

71k 

B  11  )1  I 01 
i  B  Y 

x  x 
FIG. 4-15. A x B = C.  Fm. 4-16. Illustration for 

Example 1. 

Example 1. Vector A has a magnitude of 2 units and is in the positive x direction, 
while vector B has a magnitude of 3 units and is in the positive y direction as shown in 
Fig. 4-16.  That is, 

A = i2 
and 

B = j3 

where i and j are unit vectors in the x and y directions, respectively.  What is the 
resultant vector C equal to the cross product A x B? 
Solution.  The magnitude of C is given by 

C = AB sin 0 = (2)(3) sin 90° m. 6 

The angle 0 from A to B is, in this example, equal to 90°. 
The direction of C is at right angles to the plane containing i and j or in the z 

direction. Furthermore, a rotation from i into j would cause a right-handed screw 
to advance in the positive z direction.  The direction of C is therefore in the 
positive z direction, and this is indicated by the unit vector k. Accordingly, the cross 
product of A and B is 

A x B =- (iA) x (jB) = kAB sin 0 = k6 sin 90° = k6 = C 

1 A right-handed screw advances in the direction of the thumb of Fig. 4-2 when the 
screw is turned in the direction of the fingers. 
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If A is not perpendicular to B, the angle (1) is not 90° and sin 0 is less 
than unity (Fig. 4-17).  In general, the cross product of A into B is 

therefore given by 

Fia. 4-17. Example of cross prod-
uct (A x B) where A and B are 
not normal to each other. 

A x B = nAB sin 0 = C (4-28) 

where n is a unit vector normal to the 
plane containing A and B and 0 is the 
angle between A and B. The magnitude 
of C is given by AB sin ct• and is represented 
by the area of the rectangle in Fig. 4-17. 
In writing the scalar, or dot, product of 

two vectors (Sec. 1-10) the order is imma-
terial.  Thus, 

A•B =B•A 

The dot product is said to obey the com-
mutative law since the order of the oper-

ation can be reversed without affecting the result. 
On the other hand, the cross product does not obey the commutative 

law since 

A x B = —B x A 

Ax B = C 

B x A = —C 

Example 2. Work out the relations for the cross products of the unit vectors i, j, 
and k of the rectangular coordinate system. 

then 

Ism. 4-18. Examples of cross products of unit vectors. 
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Solution.  The vector products are as follows: 

i X i = (1) (1) sin 0° = 0 
i X j = k (1) (1) sin 90° = k  (see Fig. 4-18a) 
i x k = —j 
j x i = —k  (see Fig. 4-18b) 
jxj = 0  (4-29) 
jxk =i 
kxi = j 
k x j = —i 
k x k = 0 

X 4-12. Magnetic Field Relations in Vector Notation.  Making use of the 

vector product, (4-1) may now be expressed' (see Fig. 4-19) in a more 

general form as 

dF = I (d1 x B)  (4-30) 

where dF = vector indicating magnitude and direction of force on ele-

ment of conductor (newtons) 

I = scalar magnitude of current in conductor (amp) 

dl = vector whose magnitude (Id11) equals the length dl of the 

conductor element and whose direction is in the positive 

direction of the current (meters) 

B = vector indicating magnitude and direction of the flux density 

(webers/meter2) 

x \ 1 
Fio. 4-19. dF = 1(d1 x B).  FIG. 4-20. Relation for finding B at a point P due 

to a current I in a conductor of any shape. 

Equation (4-30) combines in one expression the relations between both 

the magnitudes and the directions of the quantities involved, whereas 

(4-1) related only the magnitudes. 

1 For a volume distribution of current we have 

dF = (J x B) dv  (4-31) 

where dF is the force on the volume element dv at which the current density is J. 
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For a linear conductor of length 1 in a uniform field B, (4-30) becomes 

F = /(1 x B)  (4-32) 

Equation (4-8) gives the magnitude of the flux density at a point as 
produced by a current I in a straight or curved conductor contained in a 
single plane. A more general relation applying to a conducting wire of 
any shape, as in Fig. 4-20, can be stated with the aid of the vector product 
as follows, 

B =Ail (ai xar di 
r2 (4-33) 

where B = flux density at P (webers/meter') 
= permeability of medium (henrys/meter) 

I = current in conductor (amp) 
al = unit vector pointing in the positive direction of the current 

at element dl of conductor (dimensionless) 
a, = unit vector pointing from element dl to point P (dimension-

less) 
r = distance from dl to P (meters) 
dl = infinitesimal element of length of conductor' (meters) 

The integration in (4-33) is carried out over the length of conductor under 
consideration. 
If the current is distributed throughout a volume, the flux density B is 

given by 

B =  fif J x a, dv 
2 (4-34) 

where J is the current density in a volume element dv at a distance r. 
Equations (4-30) and (4-33) are the basic magnetic field relations. If 

B is eliminated between these equations, an equation can be obtained 
that expresses the force between two current elements (see Prob. 4-16). 
4-13. Torque on a Loop. Magnetic Moment. When a current loop is 

placed parallel to a magnetic field, forces act on the loop that tend to 
rotate it. The tangential force times the radial distance at which it acts 
is called the torque, or mechanical moment, on the loop.  Torque (or 
mechanical moment) has the dimensions of force X distance and is 
expressed in newton-meters. 

I Note that dl  la, dll, where dl equals an infinitesimal vector element 
of length pointing in the direction of the current.  Thus, another way of writing 
(4-33) is 

B dl x ar 
41r  r2 (4-33a) 
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Consider the rectangular loop shown in Fig. 4-21a with sides of length 
land d situated in a magnetic field of uniform flux density B. The loop 
has a steady current I as suggested in the figure.  According to (4-30) the 
force of any element of the loop is 

dF = I (d1 xB)  (4-35) 

If the plane of the loop is at an angle /3 with respect to B, as indicated in 
the cross-section view of Fig. 4-21b, the tangential force is 

F, = Ill cos i3 = IB cos # 101 dl = IBI cos #  (4-36) 

The total torque on the loop is then 

T = 2F,  —d = IBld cos 13  (4-37) 
2 

But Id equals the area A of the loop; so 

T = JAB cos 13  (4-38) 

According to (4-38) the torque is proportional to the current in the loop, 
to its area, and to the flux density of the field in which the loop is situated. 

Axis of 
rotation 

Axis of 
rotation 

(a) (b) 
Fm. 4-21. Rectangular loop in field of uniform flux density B. 

Now the product IA in (4-38) has the dimensions of current X area and 
is the magnetic moment of the loop.  Its dimensional symbols are QL2/T, 
and it is expressed in amperes X square meters. Let us designate mag-
netic moment by the letter m. Then' 

m = IA  (4-39) 

T = mB cos 13  (4-40) 

T = mB sin 7  (4-41) 

and 

or 

where 7 = angle between normal to plane of loop and direction of B (see 
Fig. 4-21b).  If the loop has N turns, the magnetic moment m = NIA. 

' Although the loop in Fig. 4-21 has a rectangular area, the relation m = IA applies 
regardless of the shape of the loop area. 
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If the magnetic moment is regarded as a vector m with direction a. 
normal to the plane of the loop and with its positive sense determined by 
the right-hand rule (fingers in direction of current, thumb in direction of 
a.), the torque relation of (4-41) can be expressed in a more general form 
using the vector product. Thus 

T =mxB  (4-42) 

where T = torque on loop (newton-meters) 
m = :ton = a„I A = magnetic moment of loop (amp-meters') 
B = flux density of field in which loop is situated (webers/meter2) 

The torque T is considered to be a vector coinciding with the axis of 

The direc-
 B  by turning 

Axis 

+c),„ 
— 

rotation of the loop as given by m x B. 
tion of the torque on the loop is obtained 
m into B. 
When 7 = 90°, (4-41) becomes 

it  m =  (4-43) 

Thus the magnetic moment of a loop is proportional 
F  Q  to the torque, or mechanical moment, on the loop per 

unit of magnetic flux density.  Magnetic moment, 
FIG. 4-22. A bar  then, has the dimensions not only of current X area 
magnet has a mag-

but also of mechanical moment per magnetic flux den-netic moment Q.1. 
sity. That is, 

mechanical moment  
Magnetic moment — — current X area magnetic flux density 

A current loop is equivalent in its effect to a short magnetized bar or 
magnetic dipole. This is discussed in more detail in Chap. 5. It may 
be noted here, however, that the maximum torque on a bar magnet of 
pole strength Q„, and length 1 (see Fig. 4-22) is 

1 
T = 2Q„,B -2 = Q„,1B (4-44) 

Equating this to the maximum torque on a loop from (4-38), we have 

IA = Q„,1  (4-45) 

The magnetic moment of a current loop is IA, so that for a bar 
magnet to be equivalent to the loop its magnetic moment Q„,1 must be 
equal to I A. 
4-14. The Solenoid. A helical coil, or solenoid, is often used to 

produce a magnetic field. Let us calculate the flux density for such a coil. 
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Let the coil consist of N turns of thin wire carrying a current I. The 
coil has a length land radius R (Fig. 4-23a). The spacing between turns 
is small compared with the radius R of the coil. A cross section through 
the solenoid is shown in Fig. 4-23b.  If the spacing between turns is 
sufficiently small or if the wire is replaced by a thin conducting strip of 
width //N, and with negligible spacing between turns as in Fig. 4-23c, 
one may consider that the current in the coil produces a current sheet 
with a linear current density _IC = NI/lamp per meter. 

0  0  0  0  0  0  0  0  0  0 

0  0  0  0  0  0  0  0  0  0  0 

LN H  H  X 

(c) 

-- ---0-
2  2 

Fia. 4-23. Solenoidal coil. 

Axis 

To find the flux density B at the center of the solenoid, let a section of 
the coil of length dx, as in Fig. 4-23c, be regarded as a single turn loop 
with a current equal to 

NI 
K dx = — 1 dx (4-46) 

From (4-24) the flux density dB at the center of the solenoid due to this 
loop of length dx at a distance x from the center is 

µ NIR2   
dB — 21(R' ± x2) dx  (4-47) 

The total flux density B at the center of this coil is then equal to this 
expression integrated over the length of the coil.  That is, 

B _ AN I R2 f+1/2  dx   
21  J —1/2  (R2 + x2)1 

(4-48) 
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Performing the integration, 

B — µNI 
V4R2 + /2 

If the length of the solenoid is much greater than its radius (1>> R), 
(4-49) reduces to 

B = µNI = AK  
1 

where B = flux density (webers/meter') 
µ = permeability of medium (henrys/meter) 
N = number of turns on solenoid (dimensionless) 
I = current through solenoid (amp) 
1 = length of solenoid (meters) 
K = sheet current density (amp/meter)  Top 

d 

(4-49) 

(4-50) 

Equations (4-49) and (4-50) give the flux  view 
density at the center of the solenoid. By 
changing the limits of integration in (4-48) to 
0 and 1 we obtain the flux density at one end 
of the coil (on the axis) as 

B   µNI 
—  (4-51) side 2 N/R2 + /2 view 

For 1>> R this reduces to  B 

B _ ,NI _ 1 K (4-52)  Axis of 
—  II 2/ —   rotation 

which is one-half the value at the center of the  Single 
turn 

coil as given by (4-50). 
Let us now calculate the maximum torque 

Solenoid axis 
tending to rotate a solenoid placed in a mag-  Fm. 4-24. Solenoid in field 
netic field of uniform flux density. The torque  of uniform flux density B. 
is maximum when the solenoid axis is normal 
to the direction of B as in Fig. 4-24. The axis of rotation is at the center 
of the solenoid. Assuming that the solenoid is of square cross section, 
the tangential force Fs on a single straight segment of 1 turn is given by 

F, = IBd cos 13  (4-53) 
The net torque due to 2 turns, one at a distance x above the center of the 
solenoid and another at an equal distance below, is then 

T ,---- 4IBrd cos #  (4-54) 
But cos # = d/2r; so 

d 
B 

Single 
turn 

T = 2Id2B = 2IAB  (4-55) 
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where A = d2 = area of solenoid. This torque is independent of the 
distance of the turns from the center of the solenoid.  Hence, the total 
torque on the solenoid is equal to (4-55) times N/2, where N is the 
number of turns. This is the maximum torque, T,„. That is, 

T. = NIAB = m'B  (4-56) 

where m' = NIA = magnetic moment of solenoid.  The magnetic 
moment of the solenoid is thus N times the magnetic moment of a single 
loop of the same area A and carrying the same current I. 
For a bar magnet to be equivalent to a current solenoid its magnetic 

moment Q.l would need to be equal to the moment NIA for the solenoid. 
4-15. Inductors and Inductance. An inductor' is a device for storing 

energy in a magnetic field.  It may be regarded as the magnetic counter-
part of a capacitor, which stores energy in an electric field. As examples, 
loops, coils, and solenoids are inductors. 
The lines of magnetic flux produced by a current in a solenoidal coil 

form closed loops as suggested in Fig. 4-25.  It is said that each flux line 

FIG. 4-25. Solenoid and flux lines. 

that passes through the entire solenoid as in the figure links the current 
N times.  If all of the flux lines link all of the turns, then the total mag-
netic flux linkage A (capital lambda) of the coil is equal to the total mag-
netic flux ik,„ through the coil times the number of turns, or 

Flux linkage = A =  weber-turns  (4-57) 

Since the number of turns N is dimensionless, flux linkage has the same 
dimensions as flux. 
By definition the inductance L of an inductor is the ratio of its total 

magnetic flux linkage to the current I through the inductor, or 

L =  =  (4-58) T 

1 An inductor is sometimes called an "inductance."  However, it is usual practice 
to refer to a coil or solenoid as an inductor.  This makes for uniform usage when we 
speak, for example, of an inductor of 1 henry inductance, a capacitor of 1 pi capacitance, 
or a resistor of 1 ohm resistance. 
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This definition is satisfactory for a medium with a constant perme-
ability, such as air. As discussed in Chap. 5, however, the permeability 
of ferrous media is not constant, and in this case the inductance is defined 
as the ratio of the infinitesimal change in flux linkage to the infinitesimal 
change in current producing it, or 

dA 
L = dl (4-59) 

In linear media both (4-58) and (4-59) lead to the same result. The 
inductance as given in (4-59) is discussed further in Sec. 7-16. 
Inductance has the dimensions of 

Magnetic flux (linkage) 
Electric current 

The unit of inductance is the henry. Thus, 

webers newton-meters 
Henrys = 

ampere  ampere2 

The dimensional symbols for inductance are ML2/Q2. 
4-16. Inductance of Simple Geometries. The inductance of many 

inductors can be readily calculated from their geometry.  As examples, 
expressions for the inductance of a long solenoid, a toroid, a coaxial line, 
and a two-wire line will be derived in this section.' 
In Sec. 4-14 it is shown that the flux density B at the end of a long 

solenoid is less than at the center. This is caused by flux leakage near 
the ends of the solenoid.  However, this leakage is mostly confined to a 
short distance at the ends of the solenoid (see Prob. 4-10) so that if the 
solenoid is very long, one may, to a good approximation, take B constant 
over the entire interior of the solenoid and equal to its value at the center 
(4-50). The total flux linkage of a long solenoid is then 

A = NO„, = NBA = AN2/A (4-60) 

Thus, the inductance of a long solenoid (see Fig. 4-25) is 

A  AN2A  
L —  —  (4-61) 

For the inductance of other geometrical configurations see, for example, F. E. 
Terman, "Radio Engineers' Handbook," McGraw-Hill Book Company, Inc., New 
York, 1943, pp. 47-64; E. B. Rosa and F. W. Grover, " Formulas and Tables for the 
Calculation of Mutual and Self-inductance," Natl. Bur. Standards (U.S.) Bull., Jan. 1, 
1912, pp. 1-237; and " Radio Instruments and Measurements," Naa. Bur. Standards 
(U.S.) Cite. 74, pp. 242-296. 
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where L = inductance of solenoid (henrys) 
A = flux linkage (weber-turns) 
I = current through solenoid (amp) 
µ = permeability of medium' (henrys/meter) 
N = number of turns on solenoid (dimensionless) 
A = cross-sectional area of solenoid (meters2) 
1 = length of solenoid (meters) 

Example.  Calculate the inductance of a solenoid of 2,000 turns wound uniformly 
over a length of 50 cm on a cylindrical paper tube 4 cm in diameter. The medium is 
air. 
Solution.  From (4-61) the inductance of the solenoid is 

4w X 10-7 X 4 X 106 XT X4 X 10-4 
L —  12.6 millihenrys (mh) 

0.5 

If a long solenoid is bent into a circle and closed on itself, a toroidal 
coil, or toroid, is obtained.  When the 
toroid has a uniform winding of many 
turns, the magnetic lines of flux are 
almost entirely confined to the interior 
of the winding, B being substantially 

N turns  zero outside.  If the ratio R/r (see Fig. 
4-26) is large, one may calculate B as 
though the toroid were straightened 
out into a solenoid. Thus, the flux 
linkages 

0N2h.r2 ..N2b.2 
A = Nik„, = NBA =  _ P   

2TR  2R 
(4-62) 

The inductance of the toroid is then 

A   L  AN2r2 
=  = 
I  2R 

(4-63) 

where L = inductance of toroid (henrys) 
µ = permeability (uniform and constant) of medium inside coil 

(henrys/meter) 
N = number of turns of toroid (dimensionless) 
r = radius of coil (see Fig. 4-26) (meters) 
R = radius of toroid (meters) 

Consider next a coaxial transmission line constructed of conducting 

1 It is to be noted that this relation applies only for the case where the medium 
has a uniform, constant permeability as is the case for air or vacuum (for which 
ti ... mo = tir X 10-7 henry/meter). 
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cylinders of radius a and b as in Fig. 4-27. The current on the inner con-
ductor is I. The return current on the outer conductor is of the same 

Longitudinal section Inner 
conductor 

fb ta  tr  

d 

Outer 
conductor 

Flo. 4-27. Coaxial transmission line. 

Cross 
section 

magnitude. The flux density B at any radius r is the same as at this 
radius from a long straight conductor with the same current, or 

B (at r) =  (4-64) 
2irr 

The total flux linkage for a length d of line is then d times the integral 
of (4-64) from the inner to the outer conductor, or 

dµl fb dr  did  b 
a A =d i B dr = —27  a  = —27 in -a  (4-65) 

Hence, the inductance of a length d of the coaxial line is 

L =  =  in -b henrys  (4-66) 
/  27  a 

or the inductance per unit length (Lid) for the coaxial line is given by 

L  b 
-  — in -  henrys/meter  (4-67) 
d  2r  a 

where µ = permeability (uniform and constant) of medium inside coaxial 
line (henrys/meter) 

b = inside radius of outer conductor 
a = outside radius of inner conductor (in same units as b) 

It is assumed that the currents are confined to the radii a and b. This is 
effectively the case when the walls of the conductors are thin.' 
Evaluating (4-67) for an air-filled line (A = Ao), we have 

-d- = 0.2 ln -b = 0.46 log -a  microhenrys/meter (Ah/meter)  (4-68) 
a 

At high frequencies the currents are effectively confined to these radii by the skin 
effect so that (4-67) is also applicable at high frequencies to a solid inner conductor and 
a thick outer conductor of inner radius b. 
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Let us consider finally a two-wire transmission line as illustrated in 
Fig. 4-28.  The conductor radius is a, and the spacing between centers 
is D.  At any radius r from one of the conductors the flux density B 
due to that conductor is given by (4-64).  The total flux linkage due to 

Longitudinal section 

7   

Conductors 

Cross section 

2a 

B 

I   
I(inward) 

Fm. 4-28. Two-wire transmission line. 

both conductors for a length d of line is then d times twice the integral 
of (4-64) from a to D, or 

A = 2d f D  B dr = Mid  D dr  µId in  D 
Tf.  r  T  a  (4-69) 

Hence, the inductance of a length d of the two conductor line is 

A  Ad  D 
L = — = — in — 

I  w  a 

or the inductance per unit length of line (L/d) is given by 

L D 
= In —a henrys/meter  (4-71) 

where /1 = permeability (uniform and constant) of medium (henrys/ 
meter) 

D = spacing between centers of conductors 
a = radius of conductors (in same units as D) 

It is assumed that the current is confined to a radius r. This is 
effectively the case when the walls of the conductors are thin.' 
Evaluating (4-71) for a medium of air (A = AO, we have 

-(-1 = 0.4 In —r = 0.92 log —r  Ah/meter  (4-72) 

(4-70) 

X 4-17. Ampere's Law and H. According to (4-16) the flux density B 
at a distance R from a long, straight conductor (Fig. 4-29) is given by 

µI 
B =  2TR (4-73) 

Equation (4-71) also applies to solid conductors at high frequencies.  For the 
case of solid conductors and steady or low-frequency currents, see for example, E. W. 
Kimbark, "Electrical Transmission of Power and Signals," John Wiley & Sons, Inc. 
New York, 1949, Sec. 2-11. 
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where A = permeability of medium 
/ = current in wire 

If B is now integrated around a path of radius R enclosing the wire once, 
we have 

B • dl =  6 dl =  mi  2rIt = 
2rR  2TR 

or 

(4-74) 

B • dl = I  (4-75) 

The relation (4-75) holds not only in the example considered but also in 
all cases where the integration is over a singly closed path. It is to be 
noted that the line integral of B in (4-75) has the 
dimensions of force per pole multiplied by distance 
or of work per pole. Hence the line integral of B 
around the closed path in Fig. 4-29 yields the work 
per unit pole required to move one pole of a long 
magnetized needle around this path. 
Equation (4-75) may be made independent of the 

medium by introducing the vector H defined as 
follows: 

H = — B 
A 

(4-76) 

According to (4-76) H and B are vectors having 
the same direction. This is true for all isotropic media. 
The quantity H is called the magnetic field H, the vector H, or simply 

H.t It has the dimensions of 

Flux density _ current 
Permeability  length 

Fla. 4-29. Relation of 
flux density B to cur-
rent I. 

/ 

The dimensional symbols for H are Q/TL.  In mksc units H is expressed 
in 

Webers/meter2  _ amperes 
Webers/ampere-meter  meter 

Introducing (4-76) into (4-75) yields 

sCH • dl = I 

where H = H vector (amp/meter) 
dl = infinitesimal element of path length (meters) 
I = current enclosed (amp) 

t The term "magnetic field intensity" has been used for H. This name, however, 
is not particularly appropriate since it implies that H is analogous to the electric 
field intensity E, which is not the case since in electric fields E enters in the force rela-
tions, whereas in magnetic fields it is B that enters the force expressions. The name 
"magnetizing force" is sometimes used for H. 

A tr. ps  ict iet) (4-77) 
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This relation is known as Am*re's 
integral of H around a single closed 

Wire 

(a) (6) 

(c)  (d) 

(CHAP. 4 

law.  In words it states that the line 
path is equal to the current enclosed.' 

In the case of a single wire the 
integration always yields the cur-

H rent I in the wire regardless of the 
path of integration provided only 
that the wire is completely en-
closed by the path. As i)lustra-
tions, integration around the two 
paths at (a) and (b) in Fig. 4-30 
yields /, while integration around 
the paths at (c) and (d) yields zero 
since these paths do not enclose 
the wire. 

Fin. 4-30. Line integral of H around closed 
paths equals current in wire when paths 
enclose the wire, (a) and (b), but is zero 
when the paths do not enclose the wire, 
(c) and (d). 

I = j'H • dl = H X 2rR = 2r amp 

Example 2. A solid cylindrical conductor of radius R has a uniform current 
density.  Derive expressions for H both inside and outside of the conductor.  Plot 
the variation of H as a function of radial distance from the center of the wire. 
Solution.  See Fig. 4-31a.  Outside 

the wire (r  R)  Wire 

Example 1. The magnitude of H at 
a radius of 1 meter from a long linear 
conductor is 1 amp/meter.  Find the 
current in the wire. 
Solution.  According to (4-77) the 

current in the wire is given by 

H = — 
2rr 

(4-78) 

Inside the wire the value of H at a 
radius r is determined solely by the cur-
rent inside the radius r. Thus, inside 
the wire (r < R) 

2irr 
(4-79) 

where l' = 1(r/R)' = current inside 
radius r. Therefore, inside the wire 

H = —  
2r/t2 

(4-80) 

21rR 

Current 
out of page 

(a) 

(b) 

Fin. 4-31. H inside and outside of current-
carrying wire (Example 2). 

At the surface of the wire r = R, and (4-80) equals (4-78).  A graph of the variation 
of H with r is presented in Fig. 4-311). 

Equation (4-75) is another form of Ampere's law and may be stated thus: The 
line integral of B around a single closed path is equal to the permeability of the 
medium times the current enclosed. 



SEC. 4-19]  MAGNETIC FIELD OF A STEADY CURRENT  171 

X 4-18. Ampere's Law Applied to a Conducting Medium and Maxwell's 
Equation. Ampere's law as discussed in the preceding section may be 
applied to the more general situation of a path inside of a conducting 
medium. Thus, suppose that the origin of the coordinates in Fig. 4-32 
is situated inside a conducting medium of large extent. Let the current 
density in the medium be J (amperes per square meter) in the positive 
y direction as shown. According 
to Ampere's law the line integral 
of H around the rectangular path 
enclosing the area A (Fig. 4-32) is 
equal to the current enclosed.  In 
this case, the current I enclosed by 
the path is given by the integral of 
the normal component of .1 over the 
surface A, or 

96 H • dl =  J • ds =/  (4-81) 
A 

This expression is a generalization 
of Ampere's law and constitutes 
one of Maxwell's equations in 
integral form. The corresponding 
equation in differential form in-
volves the curl of H and is discussed in Sec. 4-23. 
)<- 4-19. Magnetostatic Potential U and MMF F. According to (3-28c) 
the line integral of the static electric field Ec around a closed path is zero.' 
That is, 

Path 

no. 4-32. Rectangular path in medium 
with current density J. 

fE, • dl = 0 (4-82) 

Fields of this type are called lamellar and can be derived from a related 
scalar potential function. Thus, E„ which is due to charges, is derivable 
as the negative gradient of a scalar potential V, or 

Ec = —VV  (4-83) 

Between any two points along a path in the field we have 

2 E .•  dl = V 1 — V2  (4-84) 

Although the static magnetic field is not lamellar, since magnetic flux 
lines form closed loops, it can be treated like a lamellar field if paths of 

The symbol E, indicates explicitly a static electric field as produced by electric 
charges, as distinguished from an emf-generating field E., as, for example, in a battery. 
In Chaps. I and 2 only Ee fields were considered, and so for simplicity no subscript 
was used, it being understood in those chapters that E means E. 
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integration are entirely outside of current regions and do not enclose any 
current.  Thus, when no current is enclosed, 

fH • dl = 0  (4-85) 

Under this condition, H can then be derived from a scalar magnetic 
potential function (or magnetostatic potential) U.  That is,' 

H = —VU 

Between any two points along a path in the field we have 

f 2 
H • dl = Ul — U2 

The scalar potential U has the dimensions of 

Current  
X distance = current 

Distance 

(4-86) 

(4-87) 

Hence, U is expressed in amperes. 
Returning now to a further consideration of electric fields, we have 

learned from (3-29) that if emfs exist in a path of integration, 

fE • dl ='0  (4-88) 

where E = total field (volts/meter) 
'0 = total emf around path (volts) 

In a magnetic field we may write an analogous relation, based on 
Ampere's law, that when current is enclosed by a path of integration 

fH • dl =I =F  amp  (4-89) 

where the quantity F, called the magnetomotance, magnetomotive force, 
or mmf, is equal to the current enclosed.  If the path of integration in 
(4-89) encloses a number of turns of wire each with a current I in the same 
direction, (4-89) may be written 

fH • dl = NI = F  amp-turns  (4-90) 

where N = number of turns of wire enclosed (dimensionless) 
I = current in each turn (amp) 

The product NI is expressed in ampere-turns, and the mmf in this case has 
the same units. 
The above relations for electric and magnetic fields are summarized in 

Table 4-1. 

1 Since V • D = 0 in charge-free regions, we obtain Laplace's equation V217 = 0. 
In a magnetic field we always have V • B = 0; so if no current is enclosed, we may 
write Laplace's equation in the magnetostatic potential as v2U = 0. 
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TABLE 4-1 

COMPARISON OF ELECTRIC AND MAGNETIC FIELD RELATIONS 

Relation Electrostatic fields Magnetostatic fields 

Closed path 

Gradient of scalar 
potential 

Integral between 
two points 

f E. • dl = 0 

E. = —VV volts/meter 

:2 
E. • dl = V1 — V2 volts 

fH • dl = 0. No current enclosed 
(Fig. 4-33) 
H = —VU amp/meter.  In current-
free region 
J:2 
H • dl = Ui — U2 amp.  Path 

avoids all currents 

Closed path fE • dl = 1.) volts fH • dl =I = F amp.  Path  en-
closes currents (Fig. 4-34a) 
or 
/II • dl = NI = F amp-turns. 
Path encloses current N times (Fig. 
4-34b) 

Path of 
integration 

Wires 
of loop 

Path of 
integration 

(a) 

(0 

FIG. 4-33. Path of integration en-  FIG. 4-34. (a) Path of integration enclosing 
closing no current (see Table 4-1).  current I. (b) Cross section through 5-turn 

loop showing path linking the 5 turns (see 
Table 4-1). 

When the integration is restricted to current-free regions and to paths 
that are not closed, the potential U and mmf F are the same. The 
requirement that the path not link the current can be met by introducing 
a hypothetical barrier surface in the magnetic field through which the 
path is not allowed to pass.  For example, imagine that a long conductor 
normal to the page as in Fig. 4-35 carries a current I. Let a barrier 
surface be constructed that extends from the wire an infinite distance to 
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To infinity — — — —7 — 
Barrier/ 
surface 

Path of integration 
FIG. 4-35. Conductor and barrier surface. 

the left as suggested in the figure.  Now the integral of H from points 1 
to 2 yields the current I provided 2 and 1 are separated by an infinitesimal 
distance. Thus 

2 H • di = U1 — U2 = F1 — F2 =  /  amp  (4-91) 

The requirement of (4-85) is still satisfied since the line integral of H 
around the closed path 1231 that avoids crossing the barrier is zero. 
That is, 

96 H • di = 0  (4-92) 
1231 

Both U and F are scalar functions. The potential U is independent of 
the path of integration, that is, U is a single-valued function of position. 
This follows from the fact that the path of integration never completely 
encloses the current and is restricted to current-free regions.  If a cur-
rent-carrying wire is encircled more than once by the path of integration 
(multiple linking), the result is called the mmf F. It is multiple-valued 
since its magnitude depends on the number of times the path encircles 
the wire.  Hence F is not, in general, independent of the path of 
integration. 
In Fig. 4-35 the barrier surface represents a magnetic equipotential 

plane.  If point 1 is taken arbitrarily as zero potential, then the potential 
of point 2 on the other side of the barrier is I. Hence, we may construct 
two surfaces as in Fig. 4-36, one with U = 0 and the other U = I. Other 
equipotential surfaces are also drawn in Fig. 4-36 for U = //4, U = 1/2, 
and U = 3/14.t The equipotential surfaces are everywhere normal to 
H and extend from the surface of the wire to infinity.  They do not extend 
into the interior of the wire.  However, if the equipotential surfaces were 
extended into the wire (shown dashed) and were everywhere normal to 

t Potential is a measure of work per some quantity. The potential U is propor-
tional to the work per unit magnetic pole required to move a magnetic pole from one 
point to another. 



SEC. 4-19] MAGNETIC FIELD OF A STEADY CURRENT 

= I i 
4 

175 

FIG. 4-36. Current-carrying wire showing magnetic equipotentials (radial) and field 
lines (circles). 

Toroid 

(b) 

(a) 

FIG. 4-37. (a) Long solenoid.  (b) Solenoid bent into toroid. 

H, they would meet at a point called the kernel where B and H are both 
zero. 

Example.  Find the value of H in a long solenoid of length 1 and of N turns, carry-
ing a current I (see Fig. 4-37a), by evaluating the mmf. The diameter of the solenoid 
is small compared with 1. 
Solution.  For a long solenoid the field inside is essentially uniform and will not be 

appreciably changed if the solenoid is bent into a circle and closed on itself, forming a 
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toroid (as in Fig. 4-376).  Then, integrating H once around a path entirely inside the 
coil (at a radius R), we link all of the turns obtaining the mmf, or 

fH • dl -= F = NI  (4-93) 

Let the magnitude of H inside be H.  Then (4-93) becomes 

sCH • dl = II, fill = HairR 

= 11,1 = .V/  (4-94) 
or 

(4-95) 

The identical result was obtained in (4-50), as may be noted by dividing (4-50) by µ. 

4-20. Field Cells and Permeability. In Sec. 4-16 the inductance was 
calculated for a unit length of transmission line consisting of two parallel 

•40.5 .°6  er 
OW 0 0 0 00  

k   

Transmission 
line cell 

Equipotentials 

Metal 
strips 

Metal strips 

(c) 

Metal 
strips 

(a) 

(6) 

Fie. 4-38. Parallel-strip transmission line (a) in perspective and (b) in cross section. 
(c) Magnetic field cell (or transmission-line cell) with strips of width equal to spacing. 

conducting wires. Let us consider now a transmission line of two flat 
parallel conducting strips as in Fig. 4-38a and calculate its inductance 
per unit length. The strips have a width to and a separation 1. Each 
strip carries a current I. The transmission line is shown in cross section 
in Fig. 4-38h. The field between the strips is uniform, except near the 
open sides. If equipotentials are drawn in the uniform field region with 
a spacing equal to the separation 1 of the line, we may regard the line as 
being composed of a number of field-cell transmission lines (or transmis-
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sion-line cells) arranged in parallel.  Each transmission-line cell has a 
square cross section as in Fig. 4-38c. 
The current in each strip of a line cell is 

(4-96) 

where / = current in entire line. 
Thus, across one cell 

Hl = I'  (4-97) 

Now the total flux linkage per length d of line is given by 

A = Bid  (4-98) 

The inductance of this length of line is then 

A  Bid 
L°  = l' = Hl = Ad 

or the inductance per unit length is 

Lo _ 
d - A 

(4-99) 

(4-100) 

For air A = Ao = 4v X 10 —7  henry per meter so that a field-cell 
transmission line with air as the medium has an inductance per unit 
length of 47 X 10-7 henry per meter 
or 1.26 ph per meter. 
Thus, the permeability p of a 

medium may be interpreted as the 
inductance per unit length of a trans-
mission-line cell filled with this me-
dium.  Another interpretation is 
given in Sec. 5-19. 

Example.  Using the field-cell concept, 
calculate the inductance and also capaci-
tance per unit length of the coaxial trans-
mission line shown in cross section in Fig. 
4-39.  The line is air-filled. 
Solution.  The  inductance per unit 

length of the coaxial line is given by 

L  1 LO AO 
(4 = TI 71- - Ti henrys/meter  (4-101) 

Outer 
conductor 
Fm. 4-39. Coaxial 
divided into 9.15 
parallel. 

Field cell 
transmission line 
field-cell lines in 

where Lo/d = inductance per unit length of transmission-line cell 
n = number of line cells in parallel 
Ao =  permeability of air = 47 X 10-7 henry/meter ( — 1.26 Agh /meter) 
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Dividing the space between the coaxial conductors into curvilinear squares, we 
obtain 9.15 line cells in parallel.  Thus 

L  1.26 
0.138 ph/meter 

- 

As a cheek, we note that the radius of the outer conductor is twice the radius of the 
inner so that from (4-68) we get 

= 0.46 log 2 = 0.138 ph/meter 

which is the same result as obtained above.  Equation (4-68) is exact for this case. 
The accuracy of the cell method depends on the accuracy of construction of the 
curvilinear squares.  IIowever, the cell method (or field-mapping method) is applica-
ble to conductor configurations that might be very difficult to handle mathematically. 
For a further discussion of the mapping of magnetic fields see Sec. 5-20. 
The capacitance per unit length of the coaxial line of Fig. 4-39 is given by 

c  co a ...it  net)  farads/meter  (4-102) 

where Co/d = capacitance per unit length of line cell (same as capacitance per unit 
length of field-cell capacitor; see Sec. 2-27) 

n = number of line cells in parallel 
to = permittivity of air = 8.85 ppf /meter 

Thus 

-d- = 9.15 X 8.85 = 81 ppf /meter 

Using the exact relation of (2-82), 

C  24.2  
d =  log 2 — 81 Ad /meter 

which is the same as obtained by the cell method. 

4-21. Energy in an Inductor.  Inductance L has the dimensions of 
magnetic flux per current (force X distance/current2). Thus, the prod-
uct L/2 has the dimensions of energy since 

Force X distance 
X current' = force X distance = energy 

Current' 

Hence we might properly expect the relation for the energy stored in an 
inductor to involve the product L/2, and in Sec. 7-14 it will be demon-
strated that this is the case.  More specifically the magnetic energy W. 
stored by an inductor is given by 

(4-103) = IFLP  joules 

Now, from (4-58), L = A/I so that the energy stored by an inductor can 
be variously expressed as 

1 
Wrn = -2 LP = -1 Al = -1 A' j oules  (4-104) 

2  2 T,   



SEC. 4-221  MAGNETIC FIELD OF A STEADY CURRENT  179 

where W. = energy stored (joules) 
L = inductance of inductor (henrys) 
I = current through inductor (amp) 
A = flux linkages (weber-turns) 

4-22. Energy Density in a Static Magnetic Field. The energy 
possessed by an inductor is stored in its magnetic field.  Let us find the 
density of this energy as a function of the flux density B.  Consider a 
small unit cube of side length Al and 
volume Av = At situated in a mag-
netic field as in Fig. 4-40a.  Let thin  sheets 
metal sheets be placed on the top and 
bottom surfaces of the cube, each with 
a current Al as indicated. Also let all 
of the surrounding space be filled with 
such cubes as suggested by the cross 
section of Fig. 4-40b. The directions 
of the current flow on the sheets are 
indicated by the circles with dot (cur-

(current into page).  Metal 
rent out of page) and circles with cross  )  

Each cube can be regarded as a  sheets 

magnetic field-cell transmission line of    
length (into page) of Al.  Each cell has   o   

Current an in - -•- B  ( b) directions 

At 

AL = u Al  (4-105) 

The field H is related to the current 
At by 

H Al = Al  (4-106) 

The energy stored in each cell is, from 
(4-104), 

= 4 AL A/2 joules  (4-107) 

(a) 

0  0 
0  0 

— o- B 

FIG. 4-40. (a) Small cubical volume 
in a magnetic field.  (b) Cross sec-
tion through region filled with many 
such cubes. 

Introducing the value of AL from (4-105) and Al from (4-106) into 
(4-107) yields 

Awm = 4,4H2 Ala = tra p Av (4-108) 

Dividing (4-108) by Av and taking the limit of the ratio AW./Av as Av 
approaches zero, we obtain the energy per volume, or energy density, tv,, 
of the magnetic field at the point around which the cell of volume Av 
shrinks to zero.  Thus 

. ATV  1 
w„, =  —  = - 

2 
(4-109) 
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Since H = Bhi, we have 

w 1   =  -,,  1 B22 - = joules/meter' 

[CHAP. 4 

(4-110) 

where w„, = energy density of magnetic field (joules/meters) 
= permeability of medium (henrys/meter) 

H = H field (amp/meter) 
B = flux density (webers/meter2) 

The total energy W„, stored by an inductor is then the integral of (4-110) 
over the entire extent of its magnetic field, or 

1 
W,,, 1 - w dv = 

2  2 . 
-1 B2 — "'  dv  joules 

(4-111) 

>1 4-23. Curl. Equation (4-75) relates the line 
integral of B around a finite closed path, or loop, 

Conductor  to n/, where I is the current enclosed by the 
loop. The line integral of B may be regarded 

magnetized needle  as the work per unit pole required to move a 
pole around the closed path.  For example, 
the work per unit pole required to move a long 
magnetized needle once around a wire, as in 
Fig. 4-41, equals n/, where I is the current in 
the wire. The other pole of the needle is at a 
large distance and in a field that is substanti-
ally zero. 
Although relations involving finite paths are 

useful in circuit theory, it is frequently desira-
ble in field theory to be able to relate quantities 
at a point in space.  Curl, which is discussed in 
this section, is such a point relation and can be 
regarded as an extension of Ampere's law so 
that it applies at a point. 

Fm. 4-41. Long magnetized  Consider a small plane area is in a conduct-
needle near current-carrying  ing medium with a current A/ flowing through 
conductor. 

the area and normal to it. The meaning of the 
curl of B may then be expressed as follows: The magnitude of the curl of B is 
equal to the ratio of the work per unit magneric  pole (carried around the 
boundary of the area) to the area is as As approaches zero. Further, the curl 
of B is a vector with a direction normal to the plane of the area.  Thus, the 
magnitude of the curl of B is given by 

/ . B • dl ,. h  A/ m  = nm  =  (4-112) 
As--. 0  AS  ,18-0  as 

Pole 

Path of pole 
around 
conductor 

'r 
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where J = current density = A//As as is --* 0 
A/ = current through area As 

The direction of the curl of B is normal to the area As. 
Equation (4-112) gives the total curl of B if J is normal to the plane of 

the loop.  If J is not normal to the plane of the loop, (4-112) gives only 
one component of the total curl expression, which will be developed in 
the following paragraphs. 
Suppose that the rectangular coordinate system shown in Fig. 4-42 is 

situated inside of a conducting medium of large extent. Let the current 
density in the medium be J and the component of the current density in 

Fm. 4-42. Construction for finding x component of curl of B. 

the x direction J. The permeability is uniform and equal to AL The 
total current M through the small area Ay Az (Fig. 4-42) is then 

Jz Ay Az = A/  (4-113) 

This current produces a magnetic field. Let the flux density along edge 
1 of the area at the y axis be B„ and the flux density along edge 4 at the 
z axis be Bs. If the field is not uniform, its value at edges 2 and 3 may 
be expressed to a first approximation by 

and 

aBz 
B, -I- -4vi Ay  (4-114) 

B, + 813, Az (4-115) 
dz 

as indicated in Fig. 4-42. 
Consider now the work performed per unit magnetic pole carried 

around the periphery of the area.  The total work is equal to the sum of 
the increments of work along each of the four edges.  Each increment of 
work equals the force per unit pole (B) multiplied by the distance the 
unit pole moves.  The total work will be calculated per unit magnetic 



182  ELECTROMAGNETICS  [CHAP. 4 

pole moved around the path in a counterclockwise direction, as shown in 
Fig. 4-42. This is the positive direction around the path since a right-
handed screw rotated in this direction will advance in the positive x 
direction.  The work to move the unit pole along edge 1 is B„ Ay and 
along edge 2 is 

(  aB, 
By + —ay Ay) Az 

The work along edge 3 is 

aBy — (B. +  

the minus sign indicating that the motion is against the field.  The work 
along edge 4 is -By Az.  The total work equals the sum of these four 
increments and this is equal to µ times the total current through the area 
as given by (4-113).  Thus, 

B • dl = By Ay ± By Az ± --,,——aBys Ay Az 

aBy 
- By Ay — —az Ay Az — By Az = µJr Ay Az  (4-116) 

The terms with B,, Ay and By Az cancel, leaving only the differential 
terms.  Thus 

B • dl = (OB. a8 - -a-;) Ay Az = 1.4.1y Ay Az  (4-117) 

Let us now divide by the area Ay Az and take the limit of the ratio 

Work done around periphery of  area 
Area 

as the area approaches zero.  By definition this is the curl of B.  In this 
instance it is the x component of the curl of B, written curlx B.  There-
fore, we have 

f B • dl aB,  aBy iim  —  — Au I y = curlx B  (4-118) 
Ay Ps--.0  Ay Az  ay  az 

Each term in (4-118) has the dimensions of permeability times current 
density. 
Equation (4-118) would be the complete differential expression for curl 

B if the current flows only in the x direction.  However, if the current also 
has components flowing in the y and z directions, curl B also has com-
ponents in these directions. Let us then derive the differential expres-
sions for these components, considering next the component in the 
y direction.  Assume now that the coordinate system of Fig. 4-43 is set 
up inside of a conducting medium of large extent as before and that the 
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component of the current density in the y direction is J. The total 
current through the small area Ax Az is J„ Az Az. Let the components 
of the magnetic flux density along the edges of the area be as indicated in 
Fig. 4-43. The work accomplished per unit magnetic pole moved 

Flo. 4-43. Construction for finding y component of curl of B. 

around the periphery of the area in the positive direction is then 

aB. 
B •  

— B, Az — —aB,  — B  x = AJ, Ax Az  (4-119) 
8x 

This reduces to 

B • dl = (a—Bx —  Ax Az =  az  ax  (4-120) 

Dividing by the area of the loop Ax Az and taking the limit of the ratio as 
the area approaches zero yields the component of the curl in the y direc-
tion.  Thus 

JCB • dl aB. aB, 
az 

= curl. B —  (4-121) 
ax Az tor.° 

In a similar way we obtain the differential expression for the com-
ponent of curl B in the z direction' as 

aB, aB. 
curl. B  _  = Ad.  (4-122) 

ax  ay 

Adding Vectorially the three rectangular components of curl B as given by 
(4-118), (4-121), and (4-122), we have 

curl B = i curl. B  j curly B  k curl. B  (4-123) 
or 

(3A —aBY) . (aB.  aB,)  k (aB,  aB.) 
curl B = i  —   (4-124) 

ay  az  ± 3 az  ax  ax  ay 

I The student should construct the figure and confirm the result. 
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The curl of B may also be expressed in determinant form as 

i  j  k 
a  a  a 
5-z- ay  ai 
B.  B„  B. 

In these equations, curl B is equal to it times the vector sum of the 
component current densities in the three coordinate directions so that we 
have 

curl B = 

[CHAP. 4 

curl B = n(iJ,  jJ,  kJ,) = 4 
or 

curl B = 4 

(4-125) 

(4-126) 

(4-127) 

Dividing (4-127) by 0, we have 

curl H = J  (4-128) 

Writing out the components for curl H and J, 

curl H = i    + ; (all z — °H3 \ + k (all,,  — all  
ay  az I  ' az  ax) \ az  ay 

= iJ.  jJ„ ± kJ,  (4-129) 

It is to be noted that (4-129) yields three scalar equations obtained by 
equating the components in each of the three coordinate directions. 
The curl of a quantity is a point function.  Therefore, according to 

(4-128) the curl of H has a value only at points where the current density 
J is not zero.  At a point inside of a wire carrying a steady current, curl 
H equals the current density J at the point, but at a point outside the 
wire curl H = 0.t 
The curl of H may be indicated in different ways.  Three shorthand 

notations for the curl of H are: 

curl H 
x H 

rot H 

All three have identical meanings.  Thus 

cur1 H = Vx H =rot H = J (4-130) 

The notation rot H is often used in the European technical literature. 
The form V x H involves the cross product of the operator V and the 

t In the case of time-changing fields, as discussed in Chap. 7, there may be a "dis-
placement" current at points outside the wire, and consequently curl H need not be 
zero in this situation. 
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vector H.  In the next section it will be demonstrated that this cross 

product is equivalent to (4-129). 

>(• 4-24. V x H.  Referring to the discussion on the cross product in 

Sec. 4-11, let us show that the cross product of the operator V into H, 
written V x H, is equal to the curl of H.  To do this, we write V and H 
out in terms of their three rectangular components and take the indi-

vidual products.  Thus 

Vx H 

ixi atiz -Fjxi —aH. +kxi a—H. 
ax  ay  _  az 

aH, aH,  aH, +ixi   +jxj  +kxj 
ax  ay  as 

+ixk  + x  -I-kxk —alis j k   am, 
ax  ay  az  (4-131) 

Introducing the values of the cross products for the unit vectors as given 

in (4-29), Eq. (4-131) becomes 

aH,  aH  aH . aH a 
Vx H =  .az +k -1! —  —j  1+1 H (4-132) 

ay  ax  -az  ax  ay 

Collecting terms, 

V xH = aH,  aH.)  ▪ ;(aH, _ all) ±k (aH, _aH) 
(4-133) 

ay  az  j \ az  ax  ax  ay 

This is identical with the expression for curl H in (4-129).  We conclude, 

therefore, that the cross product of V into H equals curl H or, more 
generally, that the operator V x applied to vector function yields the curl 
of that vector.  The operator V x may, accordingly, be regarded as the 
curl operator. 
4-25. examples of Curl.  In this section four examples are given to 

illustrate the significance of curl. 

Example 1. A rectangular trough carries water in the x direction.  A section of 
the trough is shown in Fig. 4-44a, the vertical direction coinciding with the z axis. 
The width of the trough is b. Find the curl of the velocity v of the water for two 
assumed conditions: 
a. The velocity is everywhere uniform and equal to a constant, that is, 

v = iK  (4-134) 

where i = unit vector in positive x direction (dimensionless) 
K = a constant (meters/sec) 

A top view of the trough is shown in Fig. 4-44b with the positive x direction downward. 
The fact that the velocity v is constant is suggested by the arrows of uniform length 
and also by the graph of v, as a function of y in Fig. 4-44c. 



186  ELECTROMAGNETICS  [CHAP. 4 

b. The velocity varies from zero at the edges of the trough to a maximum at the 
center, the quantitative variation being given by 

v = iK sin TY  (4-135) 

where K = a constant (meters/sec) 
b = width of trough (meters) 

The sinusoidal variation of v is suggested by the arrows in the top view of the trough 
in Fig. 4-44e and also by the graph of v. as a function of y in Fig. 4-44f. 

V xv 

Vertical 
or z axis 

Top view 
.... /of trough 

v, 

y 

'c7xv =c) (d) 

0  b 

Trough 

y 

(a) 

0  b 

FRI. 4-44. Water trough for Example 1. 

Solution.  a. Equation (4-134) may be reexpressed 

(e) 

y —6 

(f) 

(g) 

v = iv.  (4-136) 

where v. = component of velocity in x direction.  Thus v. = K.  Now the curl of v 
has two terms involving v., namely, ay./az and av,/ay.  Since v. is a constant, both 
terms are zero and hence v x v = 0 everywhere in the trough (see Fig. 4-44d). 
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b. Equation (4-135) may be reexpressed 

V — iv. 
Thus 

v. ... K sin li  
b (4-137) 

Since v,, is not a function of z, the derivative ay./az -= 0. However, v. is a function 
of y so that 

and we have for the curl of v 

aV.  Kr  ry 
-81/ ''' T cos  T 

K r  7 Y V x v = —a. — cos — 
b  b 

(4-138) 

(4-139) 

where a. ... unit vector in positive z direction (k might also be used, but it. is con-
venient here to avoid confusion with the constant K). That is, at the left of the 
center of the trough the curl of v is in the negative z direction (downward in Fig. 
4-44a), while to the right of the center it is in the positive z direction. The variation 
of the curl of v across the trough is presented graphically in Fig. 4-44g. 

A physical interpretation of the curl of v in the above example may be 
obtained with the aid of the curl-meter, or paddle-wheel, device' of Fig. 
4-45.  If this device is inserted with its shaft vertical into the trough with 
the assumed sinusoidal variation for the velocity of the 

'--Holder water (Example lb), it would spin clockwise when at the 
left of the center of the trough (position 1 in Fig. 4-44e) 
and would spin counterclockwise when at the right of the  I Shaft 

center of the trough (position 2 in Fig. 4-44e), correspond-
ing to negative and positive values of curl.  At the center 
of the trough (position 3 in Fig. 4-44e) the curl meter would 
not rotate since the forces on the paddles are balanced. 
This corresponds to the curl of v being zero. The rate of 
rotation of the paddle-wheel shaft is proportional to the 
curl of v at the point where it is inserted. Thus, it would 
rotate fastest near the edges of the trough. At any point 
the rate of rotation is also a maximum with the shaft vertical (rather than 
inclined to the vertical), indicating that V x v is in the z direction.  It is 
assumed that the paddle wheel is small enough so that it does not appre-
ciably affect the flow and also that it is small enough to indicate closely the 
conditions at a point. 
If the curl meter with shaft vertical is inserted in water with uniform 

velocity, as assumed in Ex. la, it will not rotate (curl v equals zero). 

Example 2. A rectangular trough of width b carries water in the x direction. The 
velocity is uniform over half the trough (0 < y < 6/2) and equal to v1 and also uni-
form over the other half (b/2 < y < b) but equal to a smaller velocity vs. At the 

1 H. H. Skilling, "Fundamentals of Electric Waves," 2d ed., John Wiley & Sons, 
Inc., New York, 1948, p. 24. 

Fxa. 4-4 5. 
Paddle wheel 
for measuring 
curl. 
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center of the trough (y = b/2) the velocity changes abruptly from vi to v..  The 
variation of the velocity as a function of y is suggested by the arrows in the top view 
of the trough in Fig. 4-46a and also is indicated in the graph of Fig. 4-466.  Find the 

curl of v. 
Solution.  The curl of v is zero either side of the 

center of the trough since the velocity is a constant 
To  in these regions.  However, at the center of the p view 
of trough  11  "  (a)  trough the velocity changes from v1 to v2. That is, 

v,  For y <  V. = vi 

b22 For y >  V. = V, 

If this change is perfectly abrupt, ay./ay is infinite 
at the center of the trough and hence V x v is 
infinite.  It is more plausible to suppose that v. 

(b)  changes at a rapid but finite rate at the center of 
the trough.  Thus, if we assume v to vary at a 
constant rate over a small zone of width Ay at the 
center of the trough, as indicated by the dashed 
line in Fig. 4-466, we have in this zone that 

(c) 

V2  

Ay 

VX V 

1/-6. 
FIG. 4-46. Trough with water 
of two different velocities for 
Example 2. 

aV.  V  V2 
ay  Ay 

Therefore in this zone 

(4-140) 

aV.  VI V2 
V x v = —a.  = a.  (4-141) 

Ay 

That is, in the zone of width Ay at the center of the trough the curl of v has a constant 
magnitude of (vi — v3)/Ay and is zero either side.  This variation is shown graphically 
in Fig. 4-46c.  The curl of v in the center zone has the direction of the positive z axis. 
This may also be noted from the fact that a curl meter at the center rotates counter-
clockwise (see Fig. 4-46a) and a right-handed screw turned in this manner advances 
in the positive z direction (out of the page). 
Example 3. Referring to Fig. 4-47a, a cylindrical cup of radius R is rotated 

around its vertical, or z, axis f rps.  The cup contains water.  Find the curl of the 
velocity v of the water for two assumed conditions: 
a. No slippage, so that the water has an angular velocity ve that is proportional to 

the radius r. Thus 

ve = 2wfr  meters/sec  (4-142) 

This type of variation is suggested by the arrows in the top view of the cup in Fig. 
4-476 and also is shown by the graph of Fig. 4-47c. 
b. Slippage is present such that the water has an angular velocity ve that is inversely 

proportional to the radius r. Thus, 

2wf 
ve  — 

r 
meters/sec  (4-143) 

This type of variation is illustrated by Figs. 4-47e and I. 
Solution.  a. This problem has cylindrical symmetry, and hence it is most con-

venient to use curl as expressed in cylindrical coordinates (see Appendix; also Fig. 4-56 
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Vertical or 
z axis 

t.„ 

4rj, 

V xv 

Cup 

(a) 

Top view 
of cup 

t'a 

C'xv 
‘Vx v =0 

(e) 

(f) 

(g) 

FIG. 4-47. Water rotating in a cylindrical cup (Example 3). 

with Prob. 4-30).  Only two terms involve the 0 component of the vector.  The first 
one (ave/az) is zero since ve is assumed not to vary in the z direction.  The second one 
is 

1 ()(ry.) 
a. r ar (4-144) 

where a, = unit vector in positive z direction.  Introducing the value of ve given in 
(4-142), we have for the curl of v 

V x v = a.4,rf  (4-145) 

Hence, the curl of v is constant throughout the cup.  This is indicated by the graph 
in Fig. 4-47d.  The magnitude of v x v is 4711, and its direction is that of the positive 
z axis.  A curl meter introduced in the cup (with axis normal to the water surface) 
would rotate counterclockwise and at the same rate regardless of its position in the 
cup. 
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b. Introducing (4-143) in (4-144), we obtain 

1 a(27f) 
V x v  a, —  0  (4-146) 

r Or 

Hence, the curl of v is zero throughout the cup as indicated in Fig. 4-47g.  A curl 
meter introduced (with axis normal to the water surface) would not rotate.  In 
general, any vector which is an inverse function of the radius (as v in this problem) 
has zero curl. 
Example 4. Consider finally a current-carrying conductor of radius R as shown in 

cross section in Fig. 4-48a. The current is uniformly distributed so that the current 

VXH 

0o 

He 

r 

rR 

(a) 

(b) 

(c) 

Fla. 4-48. Conducting wire (Example 4). 

density j is a constant. Taking the axis of the wire in the z direction, 

J = a, .1 = a. —/  amp/meter  (4-147) 
TR' 

where I = total current in conductor (amp).  Find the curl of H both inside and 
outside of the wire. 
Solution.  The variation of H as a function of radius was worked out for this case 

in Example 2 of Sec. 4-17.  The variation found for H is shown in the graph of Fig. 
4-486.  Since H is entirely in the 0 direction, we have 

H  aelh  (4-148) 

where Ho = //ZIT outside conductor 
Ho = (I /2rR2) r inside conductor 

Using the expression for curl in cylindrical coordinates (see Appendix), we have 

V x H  0  outside conductor  (4-149) 

V x H  as  J  inside conductor  (4-150) 
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Hence, the curl of H has a value only where there is current, being a constant in the 
conductor and zero outside (see Fig. 4-48e). 

)(4-26. Maxwell's First Curl Equation. The relation derived from 
Ampere's law in Sec. 4-23 that 

VxH =J  (4-151)' 

is one of Maxwell's equations.  Equation (4-151) is a differential expres-
sion and relates the field H to the current density J at a point. The 
corresponding expression in integral form, as given by (4-81), relates H 
around a finite closed path to the total current passing through the area 
enclosed. 
Thus far, we have encountered three of Maxwell's four equations apply-

ing at a point. They are V • D = p, V • B = 0, and (4-151).  The fourth 
relation, (7-60), is also an equation involving curl so that (4-151) may be 
referred to as Maxwell's first curl equation and (7-60) as the second. 
)( 4-27. Summary of Operations Involving V. We have discussed four 
operations involving the operator V (del or nabla), namely, the gradient, 
divergence, Laplacian, and curl. Although the Laplacian can be resolved 
into the divergence of the gradient (V2f = V • Vf), this operation is of 
such importance as to warrant listing it separately. Let us summarize 
these operations with their differential equivalents in rectangular coordi-
nates. Let f represent a scalar function and F a vector function. 

Gradient 

grad f = Vf = i — af ± j —a f +  
ax  ay  az 

Gradient operates on a scalar function to yield a vector function. 

Divergence 

aF  aF  OF  
div F = V • F = —2- -I- --t -I-  ' 

ax  ay  az 

(4-152) 

(4-153) 

Divergence operates on a vector function to yield a scalar function. 

Laplacian 

82/  a2f  a2f 
div (grad.° = V • (VD = rf = a- + (v, 2. + -e ii (4-154) 

' Equation (4-151) is a special form of the more general relation given in (7-127). 
The more general equation has an additional term involving the displacement cur-
rent density.  However, a displacement current is present only for time-changing 
fields so that for steady fields, as considered here, (7-127) reduces to (4-151). 
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The Laplacian operates on a scalar function to yield another scalar 
function.' 

Curl 

= i(aF.  aFz) . (aF, 
curIF =VxF 

ay  az  J az  Ox 

(aF  aF z 
+ k  — — ) ax  (4-155) 8y 

or 
i  j  k 

V x F = 
a  a  a 
Ox  -5 Oz 

(4-156) 

F.  F,  F, 

Curl operates on a vector function to yield another vector function. 
)( 4-28. A Comparison of Divergence and Curl. Whereas divergence 
operates on a vector function to yield a scalar function, curl operates on a 
vector function to yield a vector function. There is another important 
difference.  Referring to the differential relation for the divergence in 
(4-153), we note that the differentiation with respect to x is on the x com-
ponent of the field, the differentiation with respect to y is on the y com-
ponent, etc. Therefore, to have divergence the field must vary in mag-
nitude along a line having the same direction as the field.' 
Referring to the relation for curl in (4-155), we note, on the other hand, 

that the differentiation with respect to x is on the y and z components of 
the field, the differentiation with respect to y is on the x and z com-
ponents, etc. Therefore, to have curl the field must vary in magnitude 
along a line normal to the direction of the field.' 
This comparison is illustrated in Fig. 4-49. The field at (a) is every-

where in the y direction.  It has no variation in the x or z directions but 
varies in magnitude as a function of y. Therefore this field has diver-

1 In rectangular coordinates it is also possible to interpret the Laplacian of a vector 
function as the vector sum of the Laplacians of the three scalar components of the 
vector. Thus 

V2F  VW: j V2F,  k V2F, 

However, in no other coordinate system is this simple interpretation possible. 
2 This is a necessary but not a sufficient condition that a vector field has divergence. 

For example, the D field due to a point charge is radial and varies as 1/r2 but has no 
divergence except at the charge. IfL however, the field is everywhere in the y direction, 
as in Fig. 4-49a, and varies only as a function of y, then this field does have divergence. 
3 This is also a necessary but not a sufficient condition that a vector field has curl. 

For example, the H field outside of a long wire varies in magnitude as 1/r and has a 
direction normal to the radius vector; yet H has no curl in this region. If, however, 
the field is everywhere in the y direction, as in Fig. 4-496, and varies only as a function 
of z, then this field does have curl. 
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gence but no curl.  The field at (b) is also everywhere in the y direction. 
It has no variation in the x and y directions but does vary in magnitude as 
a function of z. Therefore, this field has curl but no divergence. 
Let us now discuss the significance of operations involving v two times. 

First consider the divergence of the curl of a vector function. That is, 

V • (V x F)  (4-157) 

where F is any vector function given in rectangular coordinates by 

F =  jF,  kF. 

If we first take the curl of F, we obtain another vector.  Next taking the 
divergence of this vector, the result is identically zero. Thus 

V • (V x F)  0  (4-158) 

This may be proved by carrying out the operations indicated. This is 
left as an exercise for the reader (see Prob. 4-28).  In words (4-158) 

, 10.  . 1.  . .. A. 

.4.  - 11. 

.....  - -1.  - 1.  - I.  

..11.  - -.4.  . -...  -I.  -11.  

-II.  - 0.  -4 -  .1 -

.-1v.  - 1.  - .....  .4 -  .1 -  ..1.-... 

-N.  - -1.  

-1.  - -.. 

V ector field with divergence  Vector field with curl 

(a)  (b) 
Fm. 4-49. Examples of fields with divergence and with curl. 

states that  the divergence of the curl of a vector function is zero. As a 
corollary we may say that if the divergence of a vector function is zero, 
then it must be the curl of some other vector function. 
For example, the divergence of B is always zero everywhere. That is, 

V • B = 0  (4-159) 

Therefore, B can be expressed as the curl of some other vector function. 
Let us designate this other vector function by A. Then 

B= VxA  (4-160) 
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The function A in (4-160) is called the vector potential and is discussed in 
more detail in the next section. 
Let us consider another operation involving V twice, namely, the curl 

of the gradient of a scalar function f. That is, 

V x (Vf)  (4-161) 

Taking first the gradient of f and then the curl of the resulting vector 
function, the result is found to be identically zero. Thus 

V x (Vf) = 0  (4-162) 

The steps are left to the reader as an exercise (see Prob. 4-29).  In words 
(4-162) states that the curl of the gradient of a scalar function is zero. As a 
corollary any vector function, which is the gradient of some scalar func-
tion, has no curl. 
For example, we recall from (1-33) that the static electric field due to 

charges Ec is derivable as the gradient of a scalar potential V. Thus 

E. = —VV  (4-163) 

It follows, therefore, that the curl of Ec is zero, or 

V x Ec = 0  (4-164) 

If a vector field has no curl, it is said that the field is lamellar. Thus 
the electric field Ec is lamellar. The flux tubes of such fields are discon-
tinuous.  They originate on positive charges (as sources) and terminate 
on negative charges (as sinks).  On the other hand, if a vector field has no 
divergence such as B, it is said that the field is solenoidal.  Its flux tubes 
are continuous, having no sources or sinks. 
Finally let us consider the relation (involving V twice) of the diver-

gence of the gradient of a scalar function f. This is the Laplacian of the 
scalar function.  Thus 

V • Vf = V2f  (4-165) 

The differential expression for the Laplacian in rectangular coordinates 
is given in (4-154).  In general, the Laplacian of a scalar is not zero. 
For example, the Laplacian of the electric scalar potential V is 

V2V = — (4-166) 

This is Poisson's equation (2-149). If the charge density p is zero, 
V2V = 0, which is Laplace's equation. 
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4-29. The Vector Potential. According to (4-34) the magnetic flux 
density B at a point P produced by a current distribution, as in Fig. 4-50, 
is given by 

B = 415 fif Jxat  dv  (4-167) 
717r  r2 

where B = flux density  (webers/ 
meter') 

= permeability of medium 
(uniform) (henrys/meter) 

J = current density at volume 
element (amp/meter2) 

a, = unit vector in direction of 
Volume element dv 

radius vector r (dimen-
sionless) 

r = radius vector from vol-
ume element to point P 

(meters)  Current-carrying 
dv = volume element (meters')  conductor 

By carrying out the integration over 
the entire volume occupied by the 
current-carrying conductor the total  FIG. 4-50. Construction for finding 
flux density B at P due to the cur-  flux density B at P. 
rent is obtained. 
In Sec. 4-28 we noted that since the divergence of B is always zero, it 

should be possible to express B as the curl of some other vector. Thus 
from (4-160) we can write 

B= VxA  (4-168) 

where A is called a vector potential since it is a potential function that is 
also a vector.' If we also make 

inside conductor 

V • A = 0 

A is completely defined. Taking the curl of (4-168) yields 

V xVxA = VxB = 4 

(4-169) 

(4-170) 

By the vector identity for the curl of the curl of a vector (see Appendix) 
equation (4-170) becomes 

V(V • A) —  = 4  (4-171) 
Introducing the condition of (4-169), this reduces to 

V2A = -4  (4-172) 
1 The potential function V from which the electric field B. can be derived (by the 

relation E. = — VV) is a scalar quantity, and hence V is a scalar potential. 
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or in terms of the three rectangular components of A and J 

(CHAP. 4 

v2A2, j vity  k V2A. = —tt(Liz jJ„  kJ,)  (4-173) 

Equation (4-173) is the vector sum of three scalar equations.  Hence, 

v 2A . =  1 

v2 A y = 

v2 A y 

(4-174) 

Each of these relations has the same form as Poisson's equation (4-166) 
or (2-149).' Therefore solutions to the three equations of (4-174) are 

A =  fit!! dv 
r 

A„ =  fff dv 
4r  r 

A = 1-L̀-  fff dv 
r 

Taking the vector sum of the components for A in (4-175) gives 

A = kL-  dv 
r 

(4-175) 

(4-176) 

According to (4-176) the vector potential A at a point due to a current 
distribution is equal to the ratio Pr integrated over the volume occupied 
by the current distribution, where J is the current density at each volume 
element dv and r is the distance from each volume element to the point 
P where A is being evaluated (see Fig. 4-50).  If the current distribution 
is known, A can be found.  Knowing A at a point, the flux density B at 
that point is then obtained by taking the curl of A as in (4-168).  It is 
left as an exercise for the student to show that taking the curl of A as 
given in (4-176) yields B as in (4-167) (see Prob. 4-35). 
From (4-168) we note that A has the dimensions of 

magnetic flux force  
Magnetic flux density X distance — 

distance  current 

From (4-176) A also has the equivalent dimensions of 

current volume  
Permeability X  X .  = permeability X current 

area  distance 

Hence, the vector potential A can be expressed in webers per meter, 
newtons per ampere, or henry-amperes per meter.  The dimensional 
symbols for A are ML/TQ. 

It follows that (4-172) may be called Poisson's equation for the vector potential A. 
In current-free regions J  0, and (4-172) reduces to VIA  0, which is Laplace's 
equation for the vector potential. 
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As an illustration of the utility of the vector potential A let us consider 
the following example. 

Example.  Consider a short copper wire of length 1 and a cross-sectional area a 
situated in air coincident with the z axis at the origin as shown in Fig. 4-51. The 

II 

X 
Fla. 4-51. Construction for finding the vector potential A and flux density B due to a 
short current-carrying wire. 

current density j is in the positive z direction.  Assume the hypothetical situation 
that J is uniform throughout the wire and constant with respect to time.  Find the 
magnetic flux density B everywhere at a large distance from the wire, using the vector 
potential to obtain the solution. 
Solution. The vector potential A at any point P produced by the wire is given by 

(4-176), where the ratio J/r is integrated throughout the volume occupied by the wire. 
Since we wish to find B only at a large distance r from the wire, it suffices to find A at 
a large distance.  Specifically the distance r should be large compared with the length 
of the wire (r >> 1). Then, at any point P the distance r to different parts of the wire 
can be considered constant and (4-176) written as 

Line of 
magnetic flux 

A = Z N Jdr (4-177) 

Now J is everywhere in the z direction and also is uniform. Thus J = kJ., and 

iff  k ff„22 if 
a 

J ds dl  k 11/2 I dl 
—1/2 

(4-178) 

where I = J,a = current in wire.  Completing the integration in (4-178) and sub-
stituting this result in (4-177), we obtain 

A = k  = kA,  (4-179) 
4wr 
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where A = vector potential at distance r from wire (webers/meter) 
k = unit vector in positive z direction (dimensionless) 
A') = permeability of air (4r X 10-7  henry/meter) 
/ = current in wire (amp) 
= length of wire (meters) 

r = distance from wire (meters) 
Equation (4-179) gives the vector potential A at a large distance from the wire.  It 
is everywhere in the positive z direction as indicated by the unit vector k and is 
inversely proportional to the distance r from the wire.  It is not a function of angle 
(0 or 0 in Fig. 4-51). 
Having found the vector potential A, the flux density B is obtained by taking the 

curl of A.  In rectangular components the curl of A is given by 

itaA,  8A 0) , . (aA,  aA,  ,  aA„  aA,  ,„„, 
v x A  —  —  — — )  IC  — —  VI-1161.1) 

aZ  aX k ay — az  az  ay ) 

Since A has only a z component, (4-180) reduces to 

vxit -1 - -j -
81,  ax 

Now r  -Vx2 + y2 -I- z2. Therefore 

aA,  poll a (xo  yl  =  pa/ y 
ay  4r 4 

and 

". Aort a , 
ax  4„. 5; kr-  Poi/ X + y2 ±   

47r rs 

(4-181) 

(4-182) 

(4-183) 

Introducing these relations in (4-181) and noting the geometry in Fig. 4-51, we have 

or 

V x A =  + i —  pon   
4i-r' r  - r  4Tr2 r 

poi/ sin 0 
B= VxA -act, 

477.2 

(4-184) 

(4-185) 

where B = magnetic flux density (webers/meter2) at distance r and angle 8 
act, = unit vector in 4) direction (see Fig. 4-51) (dimensionless) 
= angle between axis of wire and radius vector r (dimensionless) 

Aso = permeability of air (= 4r X 10-7 henry/meter) 
/ = current in wire (amp) 
/ = length of wire (meters) 
r = distance from wire to point where B is being evaluated (meters) 

According to (4-185), the flux-density B produced by the wire is 
everywhere in the  direction. That is, the lines of magnetic flux form 
closed circles concentric with the z axis.  The planes of the circles are 
parallel to the xi-y plane.  One such line of magnetic flux at a distance r 
from the origin is indicated in Fig. 4-51.  According to (4-185), B is 
also proportional to sin 0 and inversely proportional to r2. By way of 
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comparison, the vector potential A from which B is obtained is every-
where in the z direction, is inversely proportional to r, and is independent 
of angle. The magnitude and direction of both B and A are illustrated in 
Fig. 4-52a for points in the y-z plane at a fixed radius r. The vector 
potential A is shown by dashed arrows.  It is everywhere in the z direc-
tion and of constant magnitude. The flux density B is normal to the 
y-z plane, being in the negative x direction at points for which y is positive 
and in the positive x direction at points for which y is negative.  The flux 
density B is a maximum in the x-y plane and is zero at the z axis. 

no. 4-52. (a) Vector potential A (dashed arrows) and flux density B (solid arrows) 
at a large distance in the y-z plane from a short current element.  (b) Corresponding 
polar patterns for A and B. 

The variation of the magnitude of B and A is also effectively presented 
as a function of 0 by a polar diagram, or pattern, as in Fig. 4-52b.  Here 
the radius vector from the center of the diagram to a point on the curve 
is proportional to the magnitude of the quantity at that angle 0 from the 
z axis. The B pattern is a figure of eight with a maximum at 0 = 90°, 
while the A pattern is a circle. Both patterns are arbitrarily adjusted to 
the same maximum value.  It is to be noted that although the diagrams 
in Fig. 4-52b are shown for the y-z plane, they also apply to any plane 
through the origin that is parallel to the z axis or axis of the wire. 
Although the result of (4-185) could have been written down almost 

directly from (4-167), without using the vector potential explicitly, the 
above example serves to illustrate the manner in which the vector poten-
tial can be applied.  Employing the vector potential in the above example 
is analogous to using a 10-ton steam hammer to crack a walnut. How-
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ever, on many problems of a more difficult nature the vector potential is 
indispensable. 
4-30. A Comparison of Static Electric and Magnetic Fields. It is 

instructive to compare electric and magnetic fields and to note both their 
differences and their similarities. A partial comparison is given in this 
section, involving relations developed in the first four chapters for static 
fields. A comparison of relations for nonstatic fields is given in Sec. 7-25. 
In making a comparison it is possible to see certain analogies. For 

example, we have noted in electric fields that E is involved in the force 

TABLE 4-2 
A COMPARISON OF STATIC ELECTRIC AND 

MAGNETIC FIELD EQUATIONS 

Description of equation Electric fields Magnetic fields 

Force F = QE dF = /di x B 
F = Q,,B 

Basic relations for lamellar 
and solenoidal fields 

V x E. = Ot V • B = 0 

Derivation from scalar or vec- 
tor potential 

Relations for D and H 

E. = — v V 

V= —,1 I 2idv 
't iff('  v r 

B —vxa 

A= A- 1-1(// , 
4i• ,, r 

D = ,E 

D = p, 

V • D = p 

H = —B 
A4 

H = —/ 
27rIt 

VX H =J 

Energy density 
W.  =  if E S 

I B2 
W..  =  74 

Capacitance and inductance c = Q 
V 

... 7 L  A 

Capacitance and inductance 
per unit length of a cell 

C 
if ." 

L 
a = P 

Closed path of integration fE • dl = 1) 
f E, • dl = 0 

III • dl = F = NI 
f H • dl = 0 (no current enclosed) 

Derivation from scalar poten- 
tials 

E, = —VV H = —VU (in current-free region) 

E. is the static electric field intensity (due to charges).  E (without subscript) 
implies that emf-producing fields (not due to charges) may also be present. 
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relations, while in magnetic fields B is involved in the force relations. 
Hence, B may be considered as the magnetic quantity that is analogous 
to the electric field intensity E. Furthermore, in a capacitor D is 
directly related to the electric charge on the plates (D = p,) and is inde-
pendent of the medium, while near a long current-carrying wire H is 
directly related to the current (H = I/2TR) and is independent of the 
medium. Thus, D and H may be regarded as analogous quantities. 
In some other instances we may note an analogy of H to E. For 

example, the line integral around a closed path of the total electric field 
intensity E yields the emf (5E • dl = 1.)), while the line integral of H 
around a closed path yields the mmf (fH • dl = F). Furthermore, com-
paring the divergence relations V • D = 0 and V • B = 0 for charge-free 
space, we note a mathematical similarity of B to D.  If this analogy of H 
to E and B to D is pursued, it is possible to achieve a formal, or mathe-
matical, symmetry between many of the electric and magnetic field equa-
tions. However, electric and magnetic fields are fundamentally different, 
and the first analogy of B to E and H to D has more physical significance. 
Static electric fields are due to electric charge, a scalar quantity, while 
static magnetic fields are due to electric current, a vector quantity. 
In Table 4-2 many of the electric and magnetic field relations developed 

in the first four chapters are summarized. The analogy of B to E and 
H to D will be noted in many of the equations, while the other analogy 
may be observed in a few of the relations. The first column describes the 
nature of the relation, the second column gives the relation for static 
electric fields, and the third column gives the corresponding relation or 
relations for static magnetic fields.  The relations apply to static and 
slowly time-varying situations. They also apply in more rapidly time-
varying situations with the exception of those relations involving the curl 
or the line integral (H = —v U also does not apply in rapidly time-vary-
ing cases).  See Table 7-2 for the corresponding more general relations 
that apply in time-varying cases. 

PROBLEMS 

4-1. A linear conductor carries a current of 100 amp in the positive x direction.  If 
the flux density everywhere is uniform with a magnitude B = 2 webers/meter' and 
has a direction parallel to the x-y plane and at an angle of 45° with respect to the 
x axis, find the magnitude and direction of the force on a 2-meter length of the con-
ductor.  Ans.: 282.8 newtons in the positive z direction. 
4-2. A thin linear conductor situated in air has a current of 10 amp.  What is the 

flux density produced by a section of the conductor 1 cm long at a distance of 2 meters 
normal to the 1 cm section? 
4-3. A current of 100 amp flows in the positive z direction in a long wire coincident 

with the z axis as shown in Fig. 4-53.  A rigid square-frame loop of 1 turn carries a 
current of 10 amp.  The loop is in the y-z plane with its center at the origin (see 
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, ,,  find the total flux over a plane area of 2 meters2 when 
'x  the area is (a) parallel to the y-z plane; (b) parallel to 

the x-z plane; (c) parallel to the y axis and at an angle 
of 45° with respect to the x axis. 

Ans.: (a) 2 webers; (b) 0; (c) 1.414 webers. 
4-6. Consider a square area with corners at the 

origin (0, 0), and at (xi, 0) (0, y2), and (xi, y2). If B normal to the area is given by 

[CHAP. 4 

Fig. 4-53). The loop is 1 meter square.  Find the 
magnitude and direction of the force on the loop. 

An.,.: 8 X 10-4 newton in positive y-direction. 
4-4. A thin linear conductor situated in air has a 

current of 50 amp.  What is H due to a section of 
the conductor 2 meters long at a distance of 50 cm 
normal to the center of the 2-meter section? 
4-5. The flux density B is everywhere uniform and 

in the positive x direction.  If B = 1 weber/meter2, 

Fla. 4-53. Loop and wire for 
Prob. 4-3. 

B = 3 sin (-7 2) sin (Ir y)  webers/meter' 
xi  Yt 

find the total magnetic flux over the square area. 
4-7. A thin linear conductor of length land carrying a current / is coincident with 

the y axis.  The medium surrounding the conductor is air.  One end of the conductor 
is at a distance yl from the origin and the other end at a distance y2. Show that the 
flux density due to the conductor at a point on the x axis at a distance x1 from the 
origin is 

B = 4 _P°1  r  112 yl   
‘111-X1  L V "1' + ys'  Vx12 + Yid 

Note that if the center of the conductor coincides with the origin (—yi = 111) and if 
x1 >> 1, the expression reduces to B = isoll/47xii. 
4-8. Two long thin parallel wires separated by 1 cm in air carry currents of 100 amp 

in opposite directions.  Find the magnitude and direction of the force on a 5-meter 
length of one wire. 
4-9. A uniform cylindrical coil, or solenoid, of 1,000 turns is 50 cm long and 5 cm 

in diameter.  If the coil carries a current of 10 ma, find the flux density (a) at the cen-
ter of the coil; (b) on the axis at one end of the coil; (c) on the axis halfway between 
the center and end of the coil. 
4-10. Calculate and plot a graph of B as function of position along the axis of the 

solenoid of Prob. 4-9 from the center of the solenoid to a distance of 50 cm beyond 
one end. 
4-11. A solenoid 20 cm long and 1 cm in diameter has a uniform winding of 1,000 

turns.  If the solenoid is placed in a uniform field of 2 webers/meter' flux density and 
a current of 10 amp is passed through the solenoid winding, what is the maximum 
(a) force on the solenoid; (b) torque on the solenoid? 

An.,.: (a) F = 0; (b) T = ir/2 newton-meters. 
4-12. Show that the flux density at a point P on the axis of a uniform solenoid is 

given by 
B ... 0 NI (..  III + OA 

0 -T.I 4r  ) 

where DI = solid angle subtended from the point P by the left end of the solenoid 
(equals 2r if P is at the left end of the solenoid) and 02 = solid angle subtended 
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from the point P by the right end of the solenoid (equals 2r if P is at the right end 
of the solenoid).  Note that at the center of a long slender solenoid ill —t, << 47 
so that B = µo(N I /1)  
4-13. (a) What is the maximum torque on a square loop of 100 turns in a field of 

uniform flux density B = 3 webers/meters? The loop is 10 cm on a side and carries 
a current of 6 amp.  (b) What is the magnetic moment of the loop?  (c) What is the 
magnetic moment of the solenoid of Prob. 4-11? 
4-14. What is the maximum torque on a small coil of magnetic moment 10-' amp-

meter' situated near the center of a long air-filled solenoid of 1,000 turns/meter with a 
current of 1 amp? 
4-15. What is the magnetic moment of a coil of 10 turns and area of 100 cm' carry-

ing a current of 1 amp? 

dF 
d/1 

'Current 
element 1 

4-16. Referring to Fig. 4-54, show that the force between the two current elements 
situated in air is given by 

dF  1.40/2 di: I, d11  al x (a, x a,) 
41-11 (1) 

where dF = force on element 1 due to current 19 in element 2 (newtons) 
--- permeability of air (henry/meter) 

d11 and dl, = lengths of current elements 1 and 2, respectively (meters) 
1, and /2 = currents in elements 1 and 2, respectively (amp) 

r = distance between elements (meters) 
al = unit vector in direction of current It and in element 1 (dimensionless) 
a, = unit vector in direction of current 12 in element 2 (dimensionless) 
a, = unit vector in direction from element 2 to 1 (dimensionless) 
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Show further that dF = apdF, where dF is given by 

dF = idFi _ A012 d12 Ii dli sin 02 sin 01 
41-r2 

where 02 = angle between az and a. (see Fig. 4-54) and 01 = angle between al and 
az x a„ and 

al x (as x a,) 
a z,—  sin 02 sin 01 

where ap = unit vector in direction of force dF. 
It is to be noted that these equations give the force on element 1 due to the presence 

of element 2, but not vice versa.  That is, they are not symmetrical with respect to 
elements 1 and 2. However, with two closed circuits the force, as given by an integral 
of (1), is the same for both circuits.  Thus, in the case of actual circuits Newton's 
third law, that to every action there is an equal (and opposite) reaction, is satisfied. 
4-17. Two loops are arranged as shown in cross section in Fig. 4-55.  If the separa-

tion s is large compared with the size of the 
Cr—Loop 1  Loop 2  loops, show that the torque T on loop 2 due to 

loop 1 is given by 
i  

 .1  2,r 8. 
where m = magnetic moment of loop 1 and 

FIG. 4-55. Loops for Prob. 4-17.  m' = magnetic moment of loop 2. 
4-18. Calculate the inductance of a uniform, 

5,000-turn solenoidal coil 50 cm long and of 1 cm radius.  The medium is air. 
4-19. Calculate the inductance of an air-filled toroidal coil of 10 cm2 cross-sectional 

area with a mean radius of 60 cm.  The toroid has a uniform winding of 10,000 turns. 
4-20. Find H at the center of a circular 100-turn coil 1 meter in diameter situated in 

air and carrying a current of 10 amp. 
4-21. Two identical 100-turn circular coils 1 meter in diameter have their axes 

coincident and are spaced 1 meter apart, forming a " Helmholtz pair."  Both carry 
10 amp in the same sense.  Calculate and plot the variation of H along the axis of 
the coils from the center of one coil to the center of the other.  Also calculate and 
plot the variation of H, along the axis of a single 100-turn coil 1 meter in diameter, 
due to a current I in the coil.  Let the single coil be situated halfway between the 
coils of the Helmholtz pair and with its axis coincident with the axis of the pair.  Also 
let I have such a value that H at the center of the single coil is the same as H from 
the Helmholtz pair at this point.  Assume that the coils have negligible cross-
sectional area so that each may be represented by a thin single-turn loop. 
4-22. A transmission line consists of two long, thin parallel conductors that carry 

currents of 10 amp in opposite directions.  The conductors are spaced a distance 2s 
apart.  Draw a field map for a plane normal to the wires.  Show both H lines and 
lines of equal magnetic potential.  Indicate the value of potential for each equipoten-
tial line.  Let the line joining the wires be aribitrarily taken to have zero potential. 
(Compare this map with Fig. 2-21 for two parallel lines of charge spaced a distance 2s.) 
4-23. Neglecting edge effects, calculate the inductance per unit length of a d-c 

transmission line consisting of two parallel conducting strips 30 cm wide situated in 
air.  The separation everywhere between the strips is 2 cm. 
4-24. An air-filled coaxial d-c transmission line has an inner conductor of circular 

cross section (diameter = 3 cm) situated symmetrically inside of an outer conductor 
of square cross section (side dimension  5 cm).  Find the inductance per unit length 
of line. 
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4-25. A long, straight tubular conductor of circular cross section with an outside 
diameter of 5 cm and wall thickness of 0.5 cm carries a direct current of 100 amp. 
Find H (a) just inside the wall of the tube; (b) just outside the wall of the tube; (c) 
at a point in the tube wall halfway between the inner and outer surfaces. 
4-28. A toroidal air-filled coil has a uniform winding of 5,000 turns.  If the coil 

cross section is 15 cm2, the mean radius 1 meter, and the current 2 amp, find (a) the 
inductance of the coil; (b) the energy stored by the magnetic field of the coil; (c) the 
magnetic energy density inside the coil. 
4-27. A transmission line consists of two parallel conducting strips 30 cm wide 

situated in air with a uniform separation of 2 cm. The line carries a direct current 
of 100 amp.  Neglecting edge effects, find the magnetic energy density at a point 
between the strips. 
4-28. Prove that V • (V x F) = 0, where F is a vector function given by 

F = iF.  jF„  kF, 

4-29. Prove that V x (vf) = 0, where f is a scalar function. 
4-30. Develop curl B in cylindrical coordinates by applying the procedure of 

Sec. 4-23 to three sides of the volume shown in Fig. 4-56. 
4-31. For steady currents J = v x H.  Show that 

V • J = 0 

4-32. For static fields E, = -VV. Show that 

v x E, = 0 

4-33. Given that B = V x A, show that v • B = 0. 
4-34. Derive (4-185) for the flux density due to a short 

linear conductor using the vector potential and spherical 
coordinates.  Hint: Convert A, into its spherical com-
ponents, and then apply curl A in spherical coordinates (see 
Appendix). 
4-35. Show that the curl of vector potential A as given 

in (4-176) yields the flux density B as in (4-167).  Hint: Note the vector identity: 

V x (fF) = (Vf) x F  f(V x F) 

where f is a scalar function and F a vector function. 
4-36. Find the curl of the vector function A = ix2y2 jzi. 
4-37. A vector field is given by F  jx2. Find the curl of the curl of F. 

Ans.: -j6x. 
4-38. If H has only a z component given by H, = 3 cos Etx + 6 sin -yy amp/meter, 

what is the expression for the current density J? The field is steady with respect to time. 
4-39. A vector field G = j (sin x)2. Find (a) the curl of G; (b) the value of the curl 

of G at x = 7/4.  Ans.: (a) k sin 2x; (b) k. 
4-40. A vector function F = i2x  j3xy2z. (a) Find the curl of the curl of F. 

(b) Evaluate the curl of the curl of F at the point x = 2, y = 2, z = 2. 
4-41. If the vector potential A = 15(x2 + y2 -I- z2)-1 weber/meter, what is the 

relation for the flux density B7 
4-42. Prove that V x H  0, where H is the field outside of a long, straight wire 

carrying a current I. 
4-43. A vector function F = ix + jxy  kn..  Find the curl of F. 
4-44. What is the flux density at the center of a square loop of 10 turns carrying a 

current of 10 amp? The loop is in air and is 2 meters on a side. 

rA9 

0 
r (rft,r)A0 

Fm. 4-56. Volume ele-
ment for Prob. 4-30. 



CHAPTER 5 

THE STATIC MAGNETIC FIELD OF 

FERROMAGNETIC MATERIALS 

5-1. Introduction. Magnetic fields are present around a current-
carrying conductor. They also exist around a magnetized object such as 
an iron bar magnet. Although the field of the iron bar is not produced 
by current circuits of the type considered in Chap. 4, we may regard cur-
rents as the cause.  However, in the bar the current circuits are of 
atomically small dimensions.  In contrast to these microscopic circuits, 
the circuits considered in Chap. 4 are of macroscopic size. 
An electron revolving in its orbit around the nucleus of an atom forms 

a tiny electric current loop. Since a current loop has a magnetic field 
and all atoms have revolving electrons we might suppose that all sub-
stances would exhibit magnetic effects.  However, such effects are very 
weak in most materials.  There is a group of substances, however, includ-
ing iron, nickel, and cobalt, in which magnetic effects are very strong. 
These substances are called ferromagnetic materials.  Both the orbital 
motion and the electron spin (or rotation of the electron around its own 
axis) contribute to the magnetic effect, the spin being particularly impor-
tant. This electron, or charge, motion is equivalent in its effect to an 
exceedingly tiny current loop.  This tiny loop is in effect a miniature 
magnet or magnetic dipole with magnetic moment (Q.l) equal to the 
moment (IA) of the current loop. Although the moment of each atomic 
current loop is very small, the combined effect of billions of them in an 
iron bar results in a strong magnetic field around the bar. 
5-2. Bar Magnets and Magnetic Poles. If an iron bar magnet is 

freely suspended, it will turn in the earth's magnetic field so that one end 
points north. This end is called the " north-seeking pole" of the magnet 
or simply its north pole.  The other end of the magnet has a pole of 
opposite polarity called a south pole.' 
All magnetized bodies have both a north and a south pole. They can-

not be isolated.  For example, consider the long magnetized iron rod of 
Fig. 5-la. This rod has a north pole at one end and a south pole at the 

1 It is sometimes convenient to call a north pole a positive pole and a south pole a 
negative pole. 

206 
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a north and a south pole.  There-
S N 

fore, even if the cutting process  (6) 
could be continued to atomic dimen-  N  S N  S N  S N (C) 
sions and a single iron atom iso-  Fio. 5-1. New poles appear at each point 
kited, it would still have a north  of division of a bar magnet. 
and a south pole. 
The fact that magnetic poles cannot be isolated, whereas electric 

charges can, is an important point of difference between electric charges 
and magnetic poles. 
5-3. Magnetic Materials. All materials show some magnetic effects. 

With the exception of the ferromagnetic group these effects are weak. 
Depending on their magnetic behavior, substances can be classified as 

diamagnetic, paramagnetic, and ferromagnetic.  In diamagnetic materials 
the magnetization (see Sec. 5-7) is opposed to the applied field, while in 
paramagnetic materials the magnetization is in the same direction as the 
field.  The materials in both groups, however, show only weak magnetic 
effects.  Materials in the ferromagnetic group, on the other hand, show 
very strong magnetic effects. The magnetization is in the same direction 
as the field, the same as for paramagnetic materials.'  Most of this 
chapter deals with the magnetic fields of the ferromagnetic materials. 
A number of substances are classified in Table 5-1 according to their 

magnetic behavior.  Many substances show such weak magnetic effects 
that they are called "nonmagnetic."  However, vacuum is the only truly 
nonmagnetic medium. 
5-4. Relative Permeability. In dealing with many media, it is often 

convenient to speak of the relative permeability Mr  defined as 

Air =  (5-1 ) 
Mo 

where A, =- relative permeability (dimensionless) 
= permeability (henrys/meter) 

µ0 = permeability of vacuum (47 X 10-7 henry/meter) 
It is to be noted that the relative permeability is a dimensionless ratio. 
The relative permeability of vacuum or free space is unity by definition. 

The relative permeability of diamagnetic substances is slightly less than 
1, while for paramagnetic substances it is slightly greater than 1. The 

Ferromagnetic materials are sometimes classed as "strongly paramagnetic." 

other.  If the rod is cut in half, new poles appear as in Fig. 5-lb so that 
there are two magnets.  If each of these is cut in half, we obtain four 
magnets as in Fig. 5-1c, each with a north and a south pole.  The reason 
for this is that the ultimate source of the ferromagnetism is a moving 
electron or atomic current circuit 
which acts like a tiny magnet with N   (a) 
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relative permeability of the ferromagnetic materials is generally much 
greater than 1 and in some special alloys may be as large as 1 million. 
The relative permeability of diamagnetic and paramagnetic substances 

is relatively constant and independent of the applied field much as the 
relative permittivity of dielectric substances is independent of the applied 
electric field intensity.  However, the relative permeability of ferro-
magnetic materials varies over a wide range for different applied fields. 
It also depends on the previous history of the specimen (see Hysteresis, 
Sec. 5-13).  However, the maximum relative permeability is a relatively 
definite quantity for a particular ferromagnetic material although in 
different materials the maximum may occur at different values of the 
applied field. This subject is considered in more detail in Sec. 5-12. 
In Table 5-1, the relative permeabilities ji, are listed for a number of 

substances.  The substances are arranged in order of increasing perme-
ability, and they are also classified as to group type.  The value given 
for the ferromagnetic materials is the maximum relative permeability. 

TABLE 5-1 

Substance Group type Relative permeability µ, 

Bismuth   
Silver   
Lead   
Copper   
Water   
Vacuum   
Air   
Aluminum   
Palladium   
2-81 Permalloy powder (2 Mo, 81 Ni)t 
Cobalt   
Nickel   
Ferroxcube 3 (Mn-Zn-ferrite)   
Mild Steel (0.2 C)   
Iron (0.2 impurity)   
Silicon irons (4 Si)   
78 Permalloy (78.5 Ni)   
Purified iron (0.05 impurity)   
Supermalloy (5 Mo, 79 Ni)   

Diamagnetic 
Diamagnetic 
Diamagnetic 
Diamagnetic 
Diamagnetic 
Nonmagnetic 
Paramagnetic 
Paramagnetic 
Paramagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 
Ferromagnetic 

0.99983 
0.99998 
0.999983 
.999991 
.999991 

1 (by definition) 
1.0000004 
1.00002 
1.0008 
130 
250 
600 

1,500 
2,000 
5,000 
7,000 

100,000 
200,000 

1,000,000 

t Percentage composition.  Remainder is iron and impurities. 
Used in power transformers. 

5-5. The Force between Bar Magnets and Coulomb's Law. Although 
a magnetic pole cannot be isolated, an equivalent effect may be obtained 
with two very long, uniformly magnetized needles as in Fig. 5-2. Here 
two north poles of strength Q„,i and Qm2 are separated by a distance r. 



SEC. 5-51  MAGNETIC FIELD OF FERROMAGNETIC MATERIALS  209 

If this distance is small compared with the distance to the south poles at 

the other ends of the magnets, the effect of the south poles may be 

neglected.  Under these conditions it was found by Coulomb that the 

force between the needles suspended in air is proportional to the product 

of the pole strengths and inversely proportional to their separation r. 

The quantitative relation is known as Coulomb's law for magnetic poles 

-(4.1  +42.1 'Kap 
- 4  r   

a,. A 

Magnetized 
needles  

; 

FIG. 5-2. Two long magnetized needles used in determining Coulomb's law. 

and in the mksc system is expressed by 

PO Q m1 Qm2 
F = a„ 4r  r2 (5-2) 1 

where  F = force (newtons) 

a,. = unit vector along line joining poles 

mo = permeability of air (4w X 10-7  henry/meter) 

(2.1 and Q.2 = strength of north poles of needles (amp-meters) 
r = distance between poles (meters) 

As suggested in Fig. 5-2, the force is outward (repulsive) if the two poles 

are of the same kind, but the force is inward (attractive) if the poles are 

unlike. 

1 In order to achieve complete mathematical symmetry with Coulomb's law for 
electric changes, Coulomb's law for magnets is sometimes written 

1 (4,1(42 
F .= a, 

4trao r2 

where ori,t, and Q*„„ are fictitious magnetic charges expressed in webers. This pro-
cedure, however, leads to inconsistencies. See Erik Hallett, Some Units in the Giorgi 
System and the C.G.S. System, Trans. Roy. Inst. 7'echn. (Stockholm), No. 6, 1947. 
See also J. A. Stratton, "Electromagnetic Theory," McGraw-Hill Book Company, 
Inc., New York, 1941, p. 242. 
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Dividing (5-2) by Qm2, we obtain the force per unit pole as 

Qin2 
— 

Qtral 
a., Tr• r2 

[CHAP. 5 

(5-3) 

From (4-4) the force per unit pole is a measure of the flux density B. 
Thus 

Qm 
B = a,. Tr T2 (5-4) 

where B = flux density at distance r from pole of strength Q„, (newtons/ 
amp-meter or webers/meter2). 

Example.  Find the flux density at a distance of 10 cm in air from a north pole 
with a strength of 1,000 amp meters.  Also find the force on another north pole of 
equal strength at this distance.  Assume that the south poles are at a large distance. 
Solution.  From (5-4) the magnitude of the flux density is 

B =  Q„,  4r X 10-3 103 
= 10-2  newton/amp-meter 

47 r2 4r  10-2  

Since the pole is positive, the direction of B is radially away from the pole.  Another 
pole of equal strength at this point is acted on by a force of magnitude 

F = Q B  10g X 10's = 10 newtons 

The direction of the force F is the same as for the flux density B. 

5-6. Magnetic Dipoles and Magnetization. According to (4-45) a 
loop of area A with current I has a magnetic moment of IA. The fields 
at a large distance from this loop are identical with those of a magnetic 
dipole of pole strength Q„, and length 1 as in Fig. 5-3 provided the mag-

netic moment of the bar is equal to that of the 
Magnet  loop, that is, provided 

Area A 

Loop 

FIG. 5-3. Bar magnet of 
moment Q„,1 and equiv-
alent current loop of 
moment IA. 

Q„,1 = /A  (5-5) 

Although in the case of an actual magnet .the 
value of the pole strength Q„, and pole separation 1 
may be indefinite, their product, or magnetic 
moment Q„,1, is a definite quantity and is sufficient 
to specify the fields of a magnet at a large distance 
from it. 

It was Ampere's theory that the pronounced magnetic effects of an 
iron bar occurred when large numbers of atomic-sized magnets associated 
with the iron atoms are oriented in the same direction so that their effects 
are additive. The precise nature of the tiny magnets is not important if 
we confine our attention to regions containing large numbers of them. 
Thus, they may be regarded as tiny magnets or as miniature current 
loops.  In either case, it is sufficient to describe them by their magnetic 
moment, which can be expressed either as Q.1 or as IA. 
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Consider the long iron rod shown in cross section in Fig. 5-4. Assume 
that all of the atomic magnets are uniformly distributed throughout the 
rod and are oriented in the same direction as suggested in the figure. 
This state of affairs may be described as one of uniform magnetization. 
The effect of the atomic magnets (or magnetic dipoles) can be con-

Axis of rod 

---(-•— 1=1 a = = 1 = 1 CC M =1 =1 =1  —• — 
.....:1 = 1 1=1 =1 1 = 1=1 1= = 1 = JILL).  

= 1 lill = 1 Li = 1=3 = I 1 = 1=1 a Area 4 
k   /  I 

Fro. 5-4. Uniformly magnetized rod with elemental magnetic dipoles. 

veniently described by a quantity called the magnetization M, which is 
defined as the magnetic dipole moment per unit volume.' Thus 

m  Q.1 m =  = (5-6) 

where m = Q.1 = net magnetic (dipole) moment in volume v. 
By regarding the separation between the poles of a magnetic dipole 

as a vector 1, pointing from the south or negative pole to the north pole, 
as in Fig. 5-5, the dipole moment m is a vector of magnitude Q.1 with the 
direction of 1. 
If the volume v includes the entire rod of length 1 and 

area A, we have  Magnetic 
dipole 

M = — =  7) 
Al  A  (5-  

Hence, magnetization has the dimensions of both mag-
netic dipole moment per volume and of magnetic pole 
strength per area (QV/TL = Q/TL). It is expressed in 
amperes per meter. 
The magnetic pole strength per unit area may be 

regarded as a pole surface density pa.. Thus, at the ends 
of the long, uniformly magnetized iron rod there is a pole 
surface density equal to the magnetization M. That is, 

Qm   Pam  — T  Af  

1.4 — Axis of 
dipole 

Fro. 5-5. Mag-
netic dipole. 

(5-7a) 

The value of M in (5-6) is an average for the volume v. To define M 
at a point, it is convenient to assume that the iron rod has a continuous 
distribution of infinitesimal magnetic dipoles, that is, a continuous 
magnetization, whereas the dipoles actually are of discrete, finite size. 
Nevertheless, the assumption of continuous magnetization leads to no 

The magnetization M is analogous to the electric polarization P (Sec. 2-3). The 
polarization P  p/v = QI/v, where p  QI = net dipole moment in the volume v. 
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appreciable error provided that we restrict our attention to volumes con-
taining many magnetic dipoles. Then, assuming continuous magnetiza-
tion, the value of M at a point can be defined as the net dipole moment m 
of a small volume Av divided by the volume with the limit taken as Av 
shrinks to zero around the point. Thus 

M = lim —mA amp/meter  (5-8) 
zw-o hV 

If M is known as a function of position in a nonuniformly magnetized 
rod, the total magnetic moment of the rod is given by 

m = fM dv  amp-meters2 (5-9) v 

where the integration is carried out over the volume of the rod. 

Example.  If the long, uniformly magnetized rod of Fig. 5-4 has N' elemental 
magnetic dipoles of moment Am, find the magnetization of the bar. 
Solution.  From (5-6) the magnetization is 

N' 
M = —v  = aA"' Am 

where M = magnetization (amp/meter) 
N" = N'/v = number of elemental dipoles per unit volume (meterss) 
a = unit vector in direction of rod axis, pointing from the south to the north 

pole (dimensionless) 
In this case the magnetization M is both an average value and also the value anywhere 
in the rod since the magnetization is assumed uniform. 

5-7. Uniformly Magnetized Rod and Equivalent Solenoid. Instead 
of regarding that the magnetization of the rod magnet of Fig. 5-4 is 
caused by tiny bar magnets or magnetic dipoles, we can consider, as done 
by Ampere, that it is produced by miniature current loops as in Fig. 5-6.1 

That is, in place of each dipole of Fig. 5-4 there is a current loop in Fig. 
5-6, their magnetic moments being equal. Thus 

Q„,1' = IA'  (5-10) 

where Q„,1' = magnetic moment of elemental magnetic dipole of pole 
strength Q„, and length l' 

IA' = magnetic moment of equivalent current loop of area A' 
with current / 

Assuming that there are n loops in a single cross section of the rod (as in 
end view in Fig. 5-6), we have 

nA' = A  (5-11) 

where A' = area of elemental loop 
A = cross-sectional area of rod 

1 It is assumed that the rod is uniformly magnetized. 
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Further, let us assume that there are N such sets of loops in the length of 
the rod (see side view in Fig. 5-6).  Then 

nN = N'  (5-12) 

where n = number of loops in a cross section of rod 
N = number of such sets of loops 
N' = total number of loops in rod 

It follows that the magnetization M of the rod is given by 

m  N'IA' NI nA' NI 
m =  =  = —1 = K'  (5-13) 

lA  1 A 

where K' = equivalent sheet current density on the outside surface of the 
rod (amp/meter). 

Side view Uniformly 
magnetized rod 

Nuts  Area A 
of loops 

na. 5-6. Uniformly magnetized rod with elemental current loops. 

Referring to the end view of the rod in Fig. 5-6, it is to be noted that 
there are equal and oppositely directed currents wherever loops are 
adjacent so that the currents have no net effect with the exception of the 
currents at the periphery of the 
rod. As a result there is the  ) 
equivalent of a current sheet flow-
ing around the rod as suggested in  ) )1(a) ) ) ) )  )) 

Fig. 5-6 and also Fig. 5-7a. This 
sheet has a linear current density  0 .-r y\+-'s V ,1:\ 1.\ 
K' amp per meter. Although the 
sets of current loops are shown for ILL/   

clarity in Fig. 5-6 with a large  (b) 
spacing, the actual spacing is of 
atomic dimensions so that macro- and (b) equivalent solenoid. 

scopically we can assume that the current sheet is continuous. 
This type of a current sheet is effectively what we also have in the case 

of a solenoid with many turns of fine wire, as in Fig. 5-7h.  The actual 

End view 

n loops 

Flo. 5-7. (a) Uniformly magnetized rod 
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sheet current density K for the solenoid is 

NI 
K = 7 -  amp/meter  (5-14) 

where N = number of turns in solenoid (dimensionless) 
I = current through each turn (amp) 
= length of solenoid (meters) 

The sheet current density K may be expressed either in amperes per 
meter or in ampere-turns per meter. 
If the solenoid of Fig. 5-7b is the same length and diameter as the rod 

of Fig. 5-7a, and if K = K', the solenoid is the magnetic equivalent of the 
rod. 
At the center of a long, slender solenoid the magnitude of the flux 

density B is, from (4-50), 

NI 
B=1.40-- =A0K  webers/meter2 (5-14a) 

At the center of a permanently magnetized, long, slender rod 

B = moK'  webers/meter2 (5-14b) 

If the rod is inside the solenoid, the magnitude of B at the center of the 
rod is 

B = Ao(K  K')  webers/meter2 (5-14c) 

where K' is not, in general, the same as in (5-14b).  In (5-14b) K' is due 
only to permanent magnetization, while in (5-14c) it also includes the 
induced magnetization (see Sec. 5-11). 

Example.  A uniformly magnetized rod 20 cm long and with a circular cross-sec-
tional area of 10 cm' has a pole strength of 100 amp-meters.  Find the equivalent 
sheet current density K'.  Also find the current I required for a 1,000-turn solenoid of 
the same size to be magnetically equivalent. 
Solution.  From (5-13) 

K' =  Q.I  100 X 0.2 X 0.2 = 106 amp/meter v  v  10-1  

For the solenoid to be equivalent we put K = K', or 

N I 
K  = K' = 10' 

from which 
' K'l   10 X 0.2 =  =  — 20 amp 
I 03 

5-8. The Magnetic Vectors B, H, and M.  Equation (4-76) states 
that, in general, 

H =  or  B = 1.4H  (5-15) 
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where H = H field, or vector Ht (amp/meter) 
B = flux density (webers/meter') 
= permeability of medium (henrys/meter) 

In nonferromagnetic media µ is substantially the same as the perme-
ability of vacuum µ0. Hence, in nonferromagnetic media 

(5-16) 

In ferromagnetic media p is not equal to WI, and H is defined by a 
modification of (5-16) that involves the magnetization M.  That is, 

Mo 

where M = magnetization of ferromagnetic material (amp/meter). 
From (5-17) 

B  mo(H  M) = 0 (1 ± :76 H  (5-18) 

By comparison of (5-18) with (5-15) it follows that, in general, the perme-
ability is given by' 

(5-17) 

(5-19) 

In isotropic media M and H are in the same direction so that their 
quotient is a scalar, and hence µ is a scalar.  In nonisotropic media, such 
as crystals, M and H are, in general, not in the same direction, and p is 
not a scalar but becomes a nine-component quantity, or tensor.  Only 
when H is parallel to a crystal axis of a nonisotropic medium will both 
M and H be in the same direction and µ a scalar.  Hence, (5-17) is a 
general relation, while (5-15) is a more concise expression, which, how-
ever, has a simple significance only for isotropic media or certain special 
cases in nonisotropic media, that is, wherever M, H, and B are parallel. 
A single iron crystal is nonisotropic, but most iron specimens consist of 

an aggregate of numerous crystals oriented at random so that macro-
scopically such specimens may be treated as though they were isotropic. 
In such cases (5-15) can also be applied as a strictly macroscopic, or 
large-scale, relation. 
Since V • B = 0, we have, on taking the divergence of (5-17), 

V• H = —V• M  (5-20) 

t H is sometimes called the "magnetizing force." 
1 The ratio M/H is a dimensionless quantity and is called the magnetic susceptibil-

ity  that is M/H  x. Therefore, from (5-19) µ " (1  x„,). The analogous 
electrical quantity is the electric susceptibility.  See footnote concerning Eq. (2-19), 
p. 51. 
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If the divergence of a vector field is not zero, the field has a source, or 
place of origin.  We recall from the polarized dielectric case (Sec. 2-33) 
that V • P = p, which indicates that the polarization field originates on 
the polarization charge (of apparent volume density pp) at the dielectric 
surface.  In an analogous manner, (5-20) indicates that the H field 
originates where the magnetization field M ends and that the H field 
ends where the M field originates.  This occurs at the ends of the rod in 
Fig. 5-4.' 
The dimensions of (5-20) are current per area (amp/meter') or pole 

strength per volume (amp-meters/meters3). Thus, div H or div M has 
the dimensions of pole volume density, and we may write 

V• H = —V •M = pm  (5-22) 

where p. = pole volume density (amp-meters/meters). 
The locations where V • H, or V • M, is not zero may be regarded as the 

locations of the magnetic poles of a magnetized object. Thus the poles 
of a uniformly magnetized rod, as in Fig. 5-4, are at the end faces of the 
rod.' 
The quantity p. is like the polarization volume density pp in that it 

cannot be isolated and, in this respect, is fictitious.  By assuming that 
pm exists in a layer of small but finite thickness at the ends of a mag-
netized rod, V • H or V • M may be large but not infinite. 
For a uniformly magnetized rod, as in Fig. 5-4, we have, from (5-7), 

that 

IMI =  = (5-23) 

where Q. = pole strength of the rod (amp-meters) 
A = area of rod (meters') 
M = magnetization of rod medium (amp/meter) 
= pole surface density at ends of rod (amp-meters/meter') 

The magnetization M has the dimensions of current per length (amp/ 
meter).  Equivalent dimensions are magnetic moment per volume 

Since H  —VU, we have, from (5-20), 

V2U = V • M  (5-21) 

This indicates that the magnetic potential U for a magnetized object is related to the 
source of the magnetization. 

2 In ordinary magnets with flat ends the magnetization tends to be nonuniform 
near the edges.  Entirely uniform magnetization is possible in spherically or ellip-
tically shaped magnetic objects.  However, the assumption of uniform magnetization 
is a good approximation for a long homogeneous rod magnet, since the magnetization 
is nearly uniform over all of the rod except near the edges at the ends of the rod.  In 
actual magnets with flat ends the effective separation between the pole centers is 
slightly less than the physical length of the magnet. 
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(amp-metersVmeter3) and pole surface density (amp-meters/meter2). 
It follows that the pole strength of a uniformly magnetized rod is given 
by 

Q. = iMi A = P=4  (5-24) 

Taking the curl of (5-18), we have 

V x B = Ao V X H + µ0 V x M  (5-25) 
or 

V x B = /20.1 -I- Ito V X M  (5-26) 

Where there is no magnetization, (5-26) reduces to V x B -= poJ as in 
(4-127).  The curl of M has the dimensions of current density (amp/ 
meter') and represents the equivalent current of density J' (amp/meter') 
flowing, for example, in a very thin layer around the cylindrical surface of 
a uniformly magnetized rod.  The linear current density for this sheet is 
K' (amp/meter) given by' 

K' = J' Ax  (5-27) 

where Ax = thickness of layer of current of average density J'.  Thus 
(5-26) becomes 

V x B = Ao(J + J')  (5-28) 

where J = actual current density, as in a current-carrying wire (amp/ 
meter') 

J' = equivalent current density, as at the surface of a magnetized 
bar (amp/meter') 

The flux density B is always the result of a current or its equivalent. 
For example, the magnitude of B at the center of a long, slender iron rod 
surrounded by a long solenoid is, from (5-14c), 

B = mo(K + K')  webers/meter'  (5-29) 

where K = sheet current density due to solenoid current (amp/meter) 
K' = equivalent sheet current density due to magnetization of rod 

(amp/meter) 
In many cases we can conveniently express B directly in terms of the 

currents producing it as in (5-29).  In general, we can also express B in 
terms of the vector potential A, which in turn is related to the currents. 
Thus 

B= VxA 

If both conduction currents and magnetization are present, 

A = A° f J ± '7' dv 
4ir  r 

(5-30) 

(5-30a) 

' For a current sheet of infinitesimal thickness K' may be defined as in (5-27) with 
Az —• 0 and J' --, 00.  However, we will assume that Ax is small but finite, with M 
varying continuously over this layer. 
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where J = V xH (amp/meter) 
J' = V x M (amp/meter) 

To illustrate further the significance of B, H, and M, three situations 
will be analyzed in the following examples. These situations involve an 
air-filled toroidal coil (Fig. 5-8a), a magnetized iron ring of the same shape 
as the coil (Fig. 5-8b), and the iron ring with the toroidal coil wound over 

Air core  Iron ring  Iron ring 
with winding 

Area 
A 

Fro. 5-8. a) Toroidal coil with gap.  (b) Permanently magnetized iron ring with 
gap.  (c) Iron-cored toroidal coil with gap. 

it (Fig. 5-8c).  In all three cases there is a narrow gap as indicated in the 
drawings. 

Example 1. Referring to Fig. 5-8a, a toroidal coil has a radius R and a cross-sec-
tional area A = Tr1. The coil has a very narrow gap as shown in the gap detail in 
Fig. 5-9a.  The coil is made of many turns N of fine insulated wire with a current I. 
Draw graphs showing the variation of B, M, H, and µ along the line of radius R at the 
gap (center line of coil). 
Solution.  Neglecting the small effect of the narrow gap, B is substantially uniform 

around the inside of the entire toroid.  Since li >> r, its magnitude is, from (4-50), 
given approximately by 

N I Po   B =   uoK  webers/meterl  (5-31) 
2TR 

where K = magnitude of linear sheet current density (amp/meter).  A graph of the 
magnitude B along the center line of the coil at the gap is shown in Fig. 5-96. 
No ferromagnetic material is present so that the magnetization is negligible and 

M = 0 as indicated in Fig. 5-9c.  It follows that V • M = 0 and also V • H = 0. 
Since M = 0, we have, from (5-17) and (5-31), that 

H _11 = uoK .. K NI 
'' 

pi)  Po  2rR 

Therefore, the magnitude of H is constant and equal to the sheet current density K 
of the coil winding as indicated in Fig. 5-9d. 
The permeability everywhere is po (Fig. 5-9e).  This also follows from (5-19) since 

M = 0. 

amp/meter  (5-32) 
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It is to be noted that B is continuous (no abrupt changes) and that in this case H is 
also continuous since there is no ferromagnetic material present.  Both B and H have 
the same direction everywhere in this case. 

Center line 
of coil 

0 

#o 

du 
0 

Gap 
Toroid (- winding 

7 -M=0 

(a) 

Air core 

(d) 

(e) 

Fin. 5-9. Magnitudes of magnetic quantities along the coil center line at the gap in a 
toroid (see Fig. 5-8a) (Example 1). 

Example 2. Consider now that the toroidal coil of Example 1 is replaced by an 
iron ring of the same size and also with a gap of the same dimensions, as suggested in 
Fig. 5-85 and Fig. 5-10a.  Assume that the ring has a uniform permanent magnetiza-
tion M that is equal in magnitude to K for the toroid in Example 1. Draw graphs 
showing the variation of B, M, H,  and V • H along the center line of the ring at the 
gap. 
Solution.  The ring has a north pole at the left side of the gap and a south pole at 

the right side.  Neglecting the small effect of the narrow gap, B is substantially uni-
form around the interior of the entire ring and also across the gap.  It is due entirely 
to the equivalent sheet current density K' on the surface of the ring.  From (5-13), 
K' = M. Thus 

B = goM = AhoK'  webers/meters  (5-32a) 
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where M and K' are, according to the stated conditions, equal to K for the solenoid 
in Example 1. Hence, B is the same in both examples.  Its value at the gap is illus-
trated in Fig. 5-106. 

Center line 
of ring 

K' 

.11 

0 

—14 

North pole 

Gap South 
pole 

(a) 

H 

-Iron ring 

-14 
I I 
II I 
II I 
II  

11 

(b) 

(c) 

(d) 

(f) 

Flo. 5-10. Variation of magnetic quantities along the center line at the gap in a 
permanently magnetized iron ring (see Fig. 5-811) (Example 2). 

In the ring, M  K', but outside the ring and in the gap M = 0. Suppose that 
the change in M from zero to K' at the gap occurs over a short distance Ax rather than 
as a square step function.  The graph for M is then as shown in Fig. 5-10c. 
Outside the ring and in the gap M = 0; 80 

H = — = K'  amp/meter  (5-33) 
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Inside the ring 

or approximately 

H = —B — M  amp/meter  (5-34) 

H = K' — K' = 0  (5-35) 

The exact value of H is not zero' but is small and negative.  The variation of H 
across the gap is illustrated in Fig. 5-10d. 
From (5-19) the permeability in the ring is large and negative because H is small 

compared with M and is negative.  In the air gap µ = mo.  The variation of µ across 
the gap is suggested in Fig. 5-10e. 
According to (5-22) the divergence of H equals the negative divergence of M, and 

this equals the apparent pole volume density p,, in the ring on both sides of the gap. 
Thus 

V • H = —v • M = p„,  (amp-meters/meters)  (5-36) 

This is zero everywhere except at the layers of assumed thickness Ax at the gap. 
Assuming that M changes linearly in magnitude over this thickness and assuming also 
that Az is very small compared with the cross-sectional diameter (2r) of the ring, we 
have on the center line 

or 

dM K' 
V • M =  (5-37a) 

dx  41,x 

V • H  ±K' =-- (5-376) 
Ax 

where the upper sign in front of K' applies if M decreases and H increases in proceed-
ing across Az in a positive direction (from left to right).  The variation of V • H along 
the center line is illustrated in Fig. 5-101.  Hence the pole volume density p„, has a 
value only in the layers of assumed thickness Az at the sides of the gap.  This locates 
the poles of the ring magnet at the sides of the gap, and, for this reason, the iron sur-
faces of the gap are called "pole faces." 
From (5-7a) 

p.„, = M = K'  (5-38a) 

where p.. is the pole surface density at the pole faces (see Fig. 5-10a).  The pole sur-
face density is expressible in ampere-meters per square meter or in amperes per meter. 
Assuming that p,,, extends over a thickness Ax of the pole face, we have 

P.m 
—x = Pm (5-386) 

where  = apparent pole volume density at a pole face (amp-meters/meters or 
amp/meters). 
Since K' in this example equals K in Example 1, B and H in the gap have identical 

values in both examples.  In the gap, the directions of Band Hare the same.  In the 
iron ring B is the same as in the toroid of Example 1, but H is smaller and is also in 
the opposite direction.  An H direction opposite to that of B is characteristic of condi-

The above analysis is approximate since it neglects the effect of the gap.  See 
Sec. 5-25. 
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tions inside of a permanent magnet.  For similar reasons the direction of E inside of 
a permanent electret' is opposed to D. 

VXM= 
K' K  Gap VXH=J 

Center line (a) 
of coil and ring 

V•H= 

5,u0K 

0 

4K 

0 

5K 

0 

4K 

V•11= ...v.m=p.  0 

North pole--'1 South pole 

Lx -9-114--1414-Lx   

Iron ring 
with 
winding 

(b) 

(c) 

(d) 

(e) 

(f) 

6,z 
Fm. 5-11. Variation of magnetic quantities along coil center line at the gap in an 
iron-cored toroid (see Fig. 5-8c) (Example 3). 

Example 3. Suppose now that the iron ring of the previous example has wound 
over it the toroidal coil of Example 1 with the gap in the toroid coinciding with the gap 
in the ring as shown in Fig. 5-8c and also in the gap detail of Fig. 5-Ha. The com-
bination constitutes an iron-cored toroid as contrasted with the air-cored toroid of 
Example 1. Let the sheet current density for the toroid winding be K as in the first 

' A permanent electret, or simply an electret, is a dielectric body that is permanently 
polarized in the absence of an applied electric field. It is the electrical analogue of a 
permanent magnet. See footnote, p. 49. 
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example.  Further, let the induced magnetization added to the permanent magnetiza-
tion in the ring yield a total uniform magnetization (permanent and induced) that is 
equal in magnitude to 4K.  Draw graphs showing the variation of B, M, H,  and 
V • H along the center line of the ring at the gap. 
Solution.  In this case the total magnetization 

1W  K'  4K  amp/meter  (5-39) 

Neglecting the small effect of the narrow gap, the flux density is substantially uniform 
around the inside of the ring and across the gap.  From (5-14c) and (5-39) it is given 
by 

B = uo(K  K') = 51.40K  webers/meter  (5-40) 

as illustrated in Fig. 5-11b. 
In the ring M  4K and in the gap M = 0 as shown in Fig. 5-11c. It is again 

assumed that M changes linearly over a short distance Ax at the pole faces. 
In the gap 

In the ring 

H = — = 5K 
Mo 

H  — — M 
;so 

(5-41) 

(5-42) 

and so we have very nearly that 

H  5K — 4K = K  (5-43) 

The variation of H across the gap is depicted in Fig. 5-11d. 
In the gap  Mo.  In the ring 

A  Ao  (1 +  mo  (1 + 4K\  5o  
K I  m  (5-44) 

The variation of Ai is shown in Fig. 5-11e. 
The divergence of H or pole volume density p,,, is given by the negative of the diver-

gence of M.  This has a value of ±4K/Az over the assumed pole thickness ta at the 
pole faces.  This is illustrated in Fig. 5-11f. The fact that V • H = p„, at the pole 
faces is also indicated in Fig. 5-11a.  Elsewhere V • H  0. 
The pole surface density pU,,  in this example is equal to 4K. 
In this example, B and H have the same direction both in the gap and in the ring. 

In the ring, however, H is weaker than in the gap. 
In this example, the toroid has a sheet current density of K (amp/meter), and 

the ring has an equivalent sheet current density around its curved surface of 

K' = 4K (amp/meter) 

Inside a wire of the toroidal coil v xH = J (amp/meter2) as suggested in Fig. 5-11a. 
Elsewhere v x H  0. At the curved surface of the ring v x M = J' (amp/meter'). 
Elsewhere v x M = 0. 

In the last two examples involving ferromagnetic material it is to be 
noted that the magnetization, or M, lines originate, or have their source, 
on a south (negative) pole and end on, or have as a sink, a north (positive) 
pole.  The H lines, on the other hand, originate, as in Example 2, on a 
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north pole and end on a south pole.  Thus, V • H has a positive value at 
a north pole, while V • M has a positive value at a south pole. 
As a final example let us compare the fields around a solenoid and the 

equivalent permanently magnetized rod. 

Example 4. A long, uniform solenoid, as in Fig. 5-12a, is situated in air and has NI 
amp-turns and a length 1. A permanently magnetized iron rod, as in Fig. 5-12e, has 

South  Magnetized rod  ,North 
Solenoid  VxH=.1 pole  VXM=JV Pole 

Axis  B— .M=0 1 H   Laj  Axis  (e) 
lh  V•H=-17•M 

V•H=-V•M=-p„,-.11.-

( M=0 (c) 

(d) 

 tin 

(g) 

(h) 

Fia. 5-12. Solenoid and equivalent permanently magnetized rod showing fields along 
axis (Example 4). 

the same dimensions as the solenoid and has a uniform magnetization M equal to 
NI/1 for the solenoid.  Draw graphs showing the variation of B, M, and H along the 
axes of the solenoid and the rod.  Also sketch the configuration of the fields for the 
two cases. 
Solution.  Since the rod and solenoid have the same dimensions and 

NI M K' = K = 1 
the two are magnetically equivalent.  The B fields for both are the same everywhere, 
and the H fields for both are the same outside the solenoid and rod.  Assuming that 
the toroid is long compared with its diameter, the flux density at the center is nearly 
given by 

NI 
B = po  uoic 

At the ends of the solenoid 
B = luoK  (5-46) 

The magnitude of B at other locations along the solenoid axis can be obtained from 
(4-48) with a suitable change in limits.  The variation of B along the solenoid axis is 
shown graphically in Fig. 5-126.  The variation along the rod axis is the same (Fig. 
5-12f). 
For the solenoid case M = 0 everywhere (Fig. 5-12c).  In the rod the magnetiza-

tion M is assumed to be uniform as in Fig. 5-12g. 
For the solenoid ease H = B/A0  everywhere so that H = K at the center and 
H =IFK at the ends.  The variation of H along the solenoid axis is shown in Fig. 

(5-45) 
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5-12d.  Outside the rod, H is the same as for the solenoid.  Inside the rod 

H = (B/m0) — M 

so that the variation is as suggested in Fig. 5-12h.  It is assumed that M changes from 
0 to K over a short distance dz at the ends of the rod.  The direction of H in the rod 
is opposite to that for B. 
Inside the wires of the solenoid winding vx H =J as indicated in Fig. 5-12a. 

On the cylindrical surface of the rod v x M =J' as suggested in Fig. 5-12e.  In the 
solenoid case v • B = 0 and v • H = 0 everywhere.  In the rod case V • B = 0 every-
where, but v• H = —v .M = p„, at the end faces of the rod. 

A field 

(d) 

M field 

M field zero 

Solenoid 
( air core) 

(6) 

Rod 

S  eN 

(e) 

H field 

(f) 
—M 

P  (g) 

Fla. 5-13. Fields of solenoid and equivalent permanently magnetized rod.  The B 
fields are the same for both solenoid and rod [see (a) and (d)].  The M field is zero 
everywhere except inside the rod [see (b) and (e)].  The H fields are the same outside 
both solenoid and rod but are different inside [see (c) and (f)]. 

The B, M, and H fields for the two cases are sketched in Fig. 5-13.  It is to be 
noted that inside the rod H is directed from the north pole to the south pole.  Since 
M and B have, in general, different directions in the rod, µ loses its simple scalar 
significance in this case.  Here H can be obtained by vector addition, using (5-17). 
As an example, H at the point P in Fig. 5-13f is obtained by the vector addition of 
B/ao and —M as in Fig. 5-13g. 

Magnetic poles always appear in pairs. They cannot be isolated.  In 
this sense, they are of an apparent, or fictitious, nature.  However, they 
are real in the sense that they act as the centers of force near the ends of a 
magnet as in the above example. 
Although the magnetization is based on the actual magnetization 

phenomenon, it is often simpler and more convenient to ignore the 
mechanism of the phenomenon and use the permeability µ to describe 
the characteristics of the magnetic medium.  This is particularly true 
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where µ can be treated as a scalar.  In this case  is determined experi-
mentally from a sample of the material.  However, since µ is not a con-
stant for ferromagnetic materials but a function of H, and also the 
previous history of the sample, the methods for dealing with ferromag-
netic materials require special consideration (see Sec. 5-11 and following 
sections). 
5-9. Boundary Relations. In a single medium the magnetic field 

is continuous. That is, the field, if not constant, changes only by an 
infinitesimal amount in an infinitesimal distance.  However, at the 
boundary between two different media, the magnetic field may change 
abruptly both in magnitude and direction.  It is important in many 
problems to know the relations for magnetic fields at a boundary. These 
boundary relations are discussed in this section. 
It is convenient to analyze the boundary problem in two parts, con-

sidering separately the relation of fields normal to the boundary and 
tangent to the boundary. 
Taking up first the relation of fields normal to the boundary, consider 

two media of permeabilities mi and Ay separated by the z-y plane as shown 
in Fig. 5-14. Suppose that an imaginary box is constructed, half in each 

Medium 1 
AL. 

Medium 2 

Air 
Bm2 

X 

FIG. 5-14. Construction for developing continuity relation for normal component of B. 

medium, of area Ax Ay and height Az. Let B.1 be the average com-
ponent of B normal to the top of the box in medium 1 and Bn2 the average 
component of B normal to the bottom of the box in medium 2. B.1 is an 
outward normal (positive), while B.2 is an inward normal (negative). 
By Gauss's law for magnetic fields (4-12), the total magnetic flux over a 
closed surface is zero.  Expressed in other words, the integral of the out-
ward normal component of B over a closed surface is zero.  By making 
the height Az of the box approach zero, the contribution of the sides of the 
box to the surface integral becomes zero even though there may be finite 
components of B normal to the sides.  Therefore the surface integral 
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reduces to 
B., Ax y — Bn2 41X  y = 0  (5-47) 

or 

B n i =  Bn2  (548) 

According to (5-48) the normal component of the flux density B is continuous 
across the boundary between two media.' 
Turning now to the relation for magnetic fields tangent to the bound-

ary, let two media of permeabilities µI and E2 be separated by a plane 
boundary as in Fig. 5-15.  Consider a rectangular path, half in each 

1.1 -11.T 
••••••• 

Ay 

.:•:tinear density  . 
•• • • ••• • • 

Medium 1 

FIG. 5-15. Construction for developing continuity relation for tangential component 
of H. 

medium, of length Ax parallel to the boundary and of length Ay normal 
to the boundary. Let the average value of H tangent to the boundary in 
medium 1 be 1/1, and the average value of H tangent to the boundary in 
medium 2 be H12.  According to (4-77) the integral of H around a closed 
path equals the current I enclosed.  By making the path length Ay 
approach zero, the contribution of these segments of the path becomes 
zero even though a finite field may exist normal to the boundary.  The 
line integral then reduces to 

1/1, Ax — H12 Ax = I  amperes  (5-49) 
or 

1/1, — H12 =  —/  =  K  amp/meter  (5-50) 
Ax 

where K is the linear density of any current flowing in an infinitesimally 
thin sheet at the surface.2 
According to (5-50) the change in the tangential component of H across a 

boundary is equal in magnitude to the sheet current density K on the bound-
ary.  It is to be noted that K is normal to H, that is, the direction of the 
current sheet in Fig. 5-15 is normal to the page. 

This relation applies at the boundary of any two media for both static and time-
changing fields. 

2 If J is the current density in amperes per square meter in a thin sheet of thickness 
Ay', then K is defined by 

K  J Ay'  amp/meter  (5-50a) 

where J  cc as Ay'  0. 
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If K = 0, then (5-50) reduces to' 

1-111 = Hi2 

According to (5-51a) the tangential components of H are continuous across 
the boundary between two media provided the boundary has no current sheet 
of infinitesimal thickness. 
If H22 = 0, (5-50) becomes 

Hu = K2  (5-51b) 

where K2 = sheet current density (amp/meter) in medium 2 at boundary. 
When medium 1 is air and medium 2 

Normal to 
boundary  is a conductor, (5-51b) is approxi-

mated at high frequencies because the 
Medium 1  skin effect restricts the current in the 

conductor to a very thin layer at its 

Bounda  surface (see Chap. 10). 
To illustrate the application of these 

Medium 2  boundary conditions, let us consider 
the following examples. 

Field line 
B or H  Example 1. Consider a plane boundary 

between two media of permeability µi and 
Fro. 5-16. Boundary between two 

A2 as in Fig. 5-16.  Find the relation between 
media of different permeability show-

the angles al and at. Assume that the 
ing change in direction of magnetic 

media are isotropic with B and H in the 
field line, 

same direction. 
Solution.  From the boundary relations, 

From Fig. 5-16, 

and 

Au = 5n2  and  Ho = lin (5-52) 

B„, = /31 cos al  and  B„2 = 52 cos at (5-53) 

lin = HI sin al  and  1-1,2 = H2 sin a:  (5-54) 

where Bi = magnitude of B in medium 1 
B2 = magnitude of B in medium 2 
= magnitude of H in medium 1 

H2 = magnitude of H in medium 2 
Substituting (5-53) and (5-54) into (5-52) and dividing yields 

tan al  

tan a:  AL 2  Air 2 
(5-55) 

where 142 = relative permeability of medium 1 (dimensionless) 
= relative permeability of medium 2 (dimensionless) 

1 Equations (5-50) and (5-51a) apply at the boundary of any two media (that is, 
two media of any permeabilities, permittivities, and conductivities) for both static and 
time-changing fields. 
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Equation (5-55) gives the relation between the angles al and a2 for 
B and H lines at the boundary between two media.' 

Example 2. Referring to Fig. 5-17, let medium 1 be air (Air -= 1) and medium 2 be 
it on with a relative permeability of 7,000. 

(a)  ( to) 
Fm. 5-17a and b. B lines at air-steel boundary. 

a. If B in the iron is incident normally on the boundary (as = 0), find am. 
b. If B in the iron is nearly tangent to the surface at an angle am = 85°, find al. 
Solution.  a. From (5-55) 

tan al =  tan as —  1  4t an a2 
A4+2  7,000 

(5-56) 

When am = 0, al = 0, so that the B line in air is also normal to the boundary (see 
Fig. 5-17a). 
Solution.  b. When as = 85°, we have, from (5-56), that tan al = 0.0016 or 

al = 0.1°.  Thus, the direction of B in air is almost normal to the boundary (within 
-Ay°) even though its direction in the iron is nearly tangent to the boundary (within 5°) 
(see Fig. 5-17b).  Accordingly, for many practical purposes the direction of B or H in 
air or other medium of low relative per-
meability may be taken as normal to the 
boundary of a medium having a high relative 
permeability.  This property is reminiscent 
of the one for E or D at the boundary of a 
conductor. 

Air gap 

The property that B or H in air is 
substantially normal to the boundary 
of a highly permeable medium has .. •.  • ... ArMature 

important applications in mapping 
magnetic fields.  For example, this  Fla. 5-17c. Field lines at air gap of d-c 
property permits one to predict that  machine. 
the magnetic field lines at the air gap between the iron pole and armature 
core of a simple two-pole d-c machine may be as suggested in Fig. 5-17c. 
The mapping of magnetic fields is discussed further in Sec. 5-19. 

This relation applies only if B and H have the same direction (A a scalar).  In 
the absence of magnetization, as in air, B and H have the same direction. When 
magnetization is present, as in a soft iron electromagnet, B and H also tend to have 
the same direction.  However, this is not the situation in a permanent magnet. 

Pole*::* 

(c) 



230 ELECTROMAGNETICS [CHAP. 5 

5-10. Table of Boundary Relations for Magnetic Fields. Table 5-2 
summarizes the boundary relations for magnetic fields developed in Sec. 
5-9. 

TABLE 5-2 
BOUNDARY RELATIONS FOR MAGNETIC FIELDSt 

Field 
component 

Boundary relation Condition 

Normal   B., = B.,  (1) Any two media 

Normal   will., = Agr2H.2  (2) Any two media 

Tangential   Hi, — Ht2 = K (3)$ Any two media with current sheet of infini-
tesimal thickness at boundary 

Tangential   H,, m. lig,  (4) Any two media with no current sheet at 
boundary 

Tangential   Hu = K4  (5) t 1112 = 0. Also medium 2 has a current sheet 
of infinitesimal thickness at boundary.  lin 
and K2 are normal to each other 

$ These relat'ons apply for both static and time-varying fields (see Chap. 7). 
$ Note that although K and the components of H are measured parallel to the 

boundary, they are normal to each other. Thus, in vector notation (5) is expressed 
by K =nx H, where n = unit vector normal to the boundary. 

5-11. Ferromagnetism.  Magnetic effects in most substances are 
weak.  However, a group of substances known as ferromagnetic materials 
exhibits strong magnetic effects (see Sec. 54).  The permeability of these 
materials is not a constant but is a function both of the applied field and 
of the previous magnetic history of the specimen.  In view of the variable 
nature of the permeability of ferromagnetic materials, special considera-
tion of their properties is needed.  This is given in the following sections. 
In ferromagnetic substances the magnetic effects are produced by the 

motion of the electrons of the individual atoms. The net effect is to 
make an atom of a ferromagnetic substance act like a miniature bar 
magnet. In a ferromagnetic substance such as iron these atomic mag-
nets over a region of many atoms tend to orient themselves parallel to 
each other, with north poles pointing one way. This region is called a 
magnetic domain and is spontaneously magnetized. The size of a 
domain depends on conditions but usually contains millions of atoms. 
In some substances the shape appears to be like a long, slender rod with 
a transverse dimension of microscopic size but lengths of the order of a 
millimeter or so. Thus, a domain acts like a small, but not atomically 
small, bar magnet. 
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In an unmagnetized iron crystal the domains are parallel to the direc-
tion of easy magnetization, but as many have north poles pointing one 
way as the other so that the external field of the crystal is zero.  In an 
iron crystal there are six directions of easy magnetization. That is, 
there is a positive and negative direction along each of the three mutually 
perpendicular crystal axes (Fig. 5-18). 
Therefore the polarity of the domains in 
an unmagnetized iron crystal may be as 
suggested by the highly schematic dia-
gram of Fig. 5-19a.  A single N repre-
sents a domain with a north pole pointing 
out of the page and a single S a domain 
with a south pole pointing out of the page. 
If the crystal is placed in a magnetic field 
parallel to one of the directions of easy 
magnetization, the domains with polarity 
opposing or perpendicular to the field 

X 

Al 

N S N.4—S S-0.N 

N 

t 
S 
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I 
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N 

f 
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4 
N 
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N S 
S 

'I 
N. 

N 

f 
S 

S —0. N S —I. N S — , N S —1. N 

S--0.N S -1.1,4 S -4"N S --0.N 

S—w-N S -0.N S --I.N S —A.N 

S—I.N S--*N S---0.N S —>•N 

x  Applied magnetic field 
Fia. 5-18. Six directions of easy  Flo. 5-19. (a) Domain polarity in 
magnetization in an iron crystal.  an  unmagnetized  iron  crystal. 

(b) Condition after crystal is satu-
rated by a magnetic field directed 
to the right. 

become unstable and a few of these may rotate so that they have the same 
direction as the field. With further increase of the field more domains 
change over, each as an individual unit, until when all of the domains are 
in the same direction, magnetic saturation is reached as suggested by Fig. 
5-19b. The crystal is then magnetized to a maximum extent.  If the 
majority of the domains retain their directions after the applied field is 
removed, the specimen is said to be permanently magnetized.  Heat and 
mechanical shock tend to return the crystal to the original unmagnetized 
state.  In fact, if the temperature is raised sufficiently high, the domains 
themselves are demagnetized and the ferromagnetism disappears.  This 
is called the Curie point (about 770°C for iron). 

(a) 

(b) 
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The magnetization which appears only in the presence of an applied 
field may be spoken of as the induced magnetization as distinguished from 
the permanent magnetization, which is present in the absence of an 
applied field. 
5-12. Magnetization Curves. The permeability p. of It substance is 

given by 
B 

µ = -17 = mom,  (5-56a) 

where B = magnitude of flux density (webers/meter2) 
H = magnitude of field H (amp/meter) 
Ao = permeability of vacuum (47- X 10-7 amp/meter) 
p, = relative permeability of substance (dimensionless) 

The permeability µ or the ratio B/H is not a constant for ferromag-
netic materials.  Therefore, to illustrate the relation of B to H, a graph 
showing B (ordinate) as a function of H (abscissa) is used. The line or 
curve showing B as a function of H on such a B-H chart is called a 
magnetization curve (see Fig. 5-21a).  It is to be noted that µ is not the 
slope of the curve, which is given by dB/dH, but is equal to the ratio 
B/H. 

Secondary 

Iron ring 
Fm. 5-20. Rowland-ring method of obtaining magnetization curve. 

To measure a magnetization curve for an iron sample, a thin, closed 
ring may be cut from the sample. A uniform primary winding is placed 
over the ring, forming an iron-cored toroid as in Fig. 5-20.  If the 
number of ampere turns in the toroid is NI, the value of H applied to 
the ring is 

NI 
H = —1  amp-turns/meter  (5-57) 

where 1 = 27-R and R equals the mean radius of the ring or toroid.  This 
value of H applied to the ring may be called the "magnetizing force." 
Hence, in general, H is sometimes called by this name.  The flux density 
B in the ring may be regarded as the result of the applied field H and is 
measured by placing another (secondary) coil over the ring, as in Fig. 

Fluxmeter 

Cross sectional 
area A 
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5-20, and connecting it to a fluxmeter.'  For a given change in H, pro-
duced by changing the toroid current I, there is a change in magnetic 
flux 1,G„, through the ring.  Both H and B are substantially uniform in the 
ring and negligible outside.  Therefore the change in flux vim = BA, 
where A is the cross-sectional area of the ring, and the resulting change in 
the flux density B in the ring is given by 

B =  webers/meter2 (5-58) 
-A-

where 0„, is measured by the fluxmeter.  This ring method of measuring 
magnetization curves was used by Rowland in 1873. 
A typical magnetization curve for a ferromagnetic material is shown 

by the solid curve in Fig. 5-21a. The specimen in this case was initially 
unmagnetized, and the change was noted in B as H was increased from 0. 
By way of comparison, four dashed lines are also shown in Fig. 5-21a, 
corresponding to constant relative permeabilities (Air) of 1, 10, 100, and 
1,000.  The relative permeability at any point on the magnetization 
curve is given by 

Mr = —B = 7.9 X 10' —H (dimensionless)  (5-59) 

where B = ordinate of the point (webers/meter') 
H = abscissa of the point (amp/meter) 

A graph of the relative permeability µ, as a function of the applied field 
H, corresponding to the magnetization curve in Fig. 5-21a, is presented 
in Fig. 5-21b.  The maximum relative permeability, and therefore the 
maximum permeability, is at the point on the magnetization curve with 
the largest ratio of B to H.  This is designated "max At" it occurs at the 
point of tangency with the straight line of steepest slope that passes 
through the origin and also intersects the magnetization curve (dash-dot 
line in Fig. 5-21a). 
The magnetization curve for air or vacuum would be given by the 

dashed line for µ, = 1 (almost coincident with the H axis) in Fig. 5-21a. 
The difference in the ordinate B between the magnetization curve of the 
ferromagnetic sample and the ordinate at the same H value on the 
Fir = 1 line is equal to the magnetization M of the ferromagnetic material 
times Mo. 
The magnetization curve shown in Fig. 5-21a is an initial magnetization 

curve.  That is, the material is completely demagnetized before the field 
H is applied.  As H is increased, the value of B rises rapidly at first and 
then more slowly.  At sufficiently high values of H the curve tends to 

I The fluxmeter operates on the emf induced in the secondary when the magnetic 
flux through it changes (see Sec. 7-19). 
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Fm. 5-21. (a) Typical magnetization curve and (b) corresponding relation of relative 
permeability to applied field H. 
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become flat as suggested by Fig. 5-21a.  This condition is called magnetic 
saturation. 
The magnetization curve starting at the origin has a finite slope called 

the initial permeability. Therefore the relative permeability curve in 
Fig. 5-21b starts with a finite permeability for infinitesimal fields. 

The initial magnetization curve may be divided into two sections, (1) 

the steep section and (2) the flat section, the point P of division being on 
the upper bend of the curve (Fig. 5-22).  The steep section corresponds 
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to the condition of easy magnetization, while the flat section corresponds 
to the condition of difficult, or hard, magnetization. 

Easy 
magnetization 

Hard magnetization 

Ji 

Barkhausen 
steps 

FIG. 5-22. Regions of easy and hard magnetization of initial magnetization curve. 

Ordinarily a piece of iron consists not of a single crystal but of an 
aggregate of small crystal fragments with axes oriented at random. The 
situation in a small piece of iron may be represented schematically as in 
Fig. 5-23.  Here a number of crystal fragments are shown, each with a 
number of magnetic domains, represented in most cases by a small square. 
The boundaries between crystal fragments are indicated by the heavy 
lines, and domain boundaries by the light lines which also indicate the 
direction of the crystal axes.  In Fig. 5-23a, not only is the piece of iron 
unmagnetized, but also the individual crystal fragments are unmag-
netized. The domains in each crystal are magnetized along the directions 
of easy magnetization, that is, along the three crystal axes.' However, 
the polarity of adjacent domains is opposite so that the total magnetiza-
tion of each crystal is negligible. 
With the application of a magnetic field H in the direction indicated 

by the arrow (Fig. 5-23) some domains with polarities opposed to or per-
pendicular to the applied field become unstable and rotate quickly to 
another direction of easy magnetization in the same direction as the field, 
or more nearly so. These changes take place on the steep part of the 
magnetization curve. The result, after all domains have changed over, 
is as suggested in Fig. 5-23b.  This condition corresponds roughly to 
that at the point P on the magnetization curve (Fig. 5-22). 

Iron crystallizes in the cubic system with three mutually perpendicular axes. 
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A domain may contain millions of atoms, and since it flops from one 
direction of easy magnetization to another in an interval measured in 

thousandths of a second, the mag-
netization proceeds by steps rather 
than in a smooth, continuous 
manner. These steps are called 
Barkhausen steps or jumps. The 
stepped characteristic can be ob-
served by sensitive measurements. 
A much enlarged portion of the 
magnetization curve showing the 
Barkhausen steps is presented in 

(a) Fig. 5-22. The Barkhausen jumps 
are largest on the steep part of the 
magnetization curve. 
With further increase in the ap-

plied field, the direction of mag-
netization of the domains not 
already parallel to the field is 
rotated gradually toward the di-
rection of H. This increase in 
magnetization is more difficult, 
and very high fields may be re-

(b) quired to reach saturation, where 
all domains are magnetized paral-
lel to the field, as indicated in Fig. 
5-23c.  This accounts for the flat-
ness of the upper part of the mag-
netization curve. 
This picture of the magnetiza-

tion process is an oversimplified 
one, but it accounts qualitatively 
for many of the important phe-
nomena. Another phenomenon, 
which was not mentioned, is the 
change in size of domains during 
the magnetization process.  Not 
only do domains change in size, 
but the entire specimen changes 
in length during magnetization. 

This effect is called magnetostriction. 
5-13. Hysteresis.  If the field applied to a specimen is increased 

to saturation and is then decreased, the flux density B decreases, but not 

Unmagnetized 

Partly 
magnetized 

FIG. 5-23. Success've stages of magnetiza-
tion of a polycrystalline specimen with 
increasing field. 
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as rapidly as it increased along the initial magnetization curve. Thus, 
when H reaches zero, there is a residual flux density, or remanence, B, 
(Fig. 5-24). 
In order to reduce B to zero, a negative field —H, must be applied 

(Fig. 5-24).' This is called the coercive force.  As H is further increased 
in the negative direction, the specimen becomes magnetized with the 
opposite polarity, the magnetization at first being easy and then hard as 
saturation is approached.  Bringing the field to zero again leaves a 

Flux density B 
(webers/meter 2) 

Residual 
flux density 

Coercive 
force 

H.   

Fin. 5-24. Hysteresis loop. 

(amperes/meter) 

residual magnetization or flux density —Br, and to reduce B to zero, a 
coercive force -FH, must be applied.  With further increase in field, the 
specimen again becomes saturated with the original polarity. 
The phenomenon which causes B to lag behind H, so that the mag-

netization curve for increasing and decreasing fields is not the same, is 
called hysteresis, and the loop traced out by the magnetization curve is 
called a hysteresis loop (Fig. 5-24).  If the substance is carried to satura-
tion at both ends of the magnetization curve, the loop is called the 
saturation, or major, hysteresis loop.  The residual flux density B, on the 

By reversing the battery polarity (Fig. 5-20). 
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Flo. 5-25. Hysteresis loops for soft and hard magnetic materials. 

Flo. 5-26. (a) Hysteresis loop.  (b) Corresponding permeability curve. 



SEC. 5-13]  MAGNETIC FIELD OF FERROMAGNETIC MATERIALS  239 

saturation loop is called the retentivity,' and the coercive force Hc on this 
loop is called the coercivity. Thus, the retentivity of a substance is the 
maximum value which the residual flux density can attain and the 
coercivity the maximum value which the coercive force can attain.  For 
a given specimen no points can be reached on the B-H diagram outside of 
the saturation hysteresis loop, but any point inside can. 
In " soft," or easily magnetized, materials the hysteresis loop is thin as 

suggested in Fig. 5-25, with a small area enclosed.  By way of com-
parison, the hysteresis loop of a hard magnetic material is also shown, 
the area enclosed in this case being greater. 

B 

Retentivity — 

Coercivity 

Normal 
magnetization 

curve 

Saturation loop 

Fic. 5-27. Normal magnetization curve with relation to hysteresis loops. 

Turning our attention to the permeability ii, consider the hysteresis 
loop of Fig. 5-26a.  The corresponding graph of µ as a function of H is as 
shown in Fig. 5-26h.  At H = 0, it is apparent that µ becomes infinite. 
On the other hand, when B = 0, µ = 0. Under such conditions, the 
permeability is becomes meaningless. Therefore the use of µ must be 
confined to situations where it has significance, as, for example, to the 
initial magnetization curve.  It is to be noted that the term "maximum 
permeability" signifies specifically the maximum permeability for an 
initial magnetization curve and not for a hysteresis loop or other type of 
magnetization curve. 

I The term "retentivity" is also sometimes used to mean the ratio of the residual 
flux density B, to the maximum flux density B.. 
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Another type of magnetization curve for which j. has a definite meaning 
is the normal magnetization curve.  This curve is the locus of the tips of a 
series of hysteresis loops, obtained by cycling the field H over successively 
smaller ranges.  Thus, as shown in Fig. 5-27, the field is changed slowly 
over the range + HI, obtaining the saturation hysteresis loop.  The field 
is next cycled slowly several times over a range ± H2, obtaining after a 
few reversals a repeatable hysteresis loop of smaller size. This process is 
repeated for successively smaller ranges in H, obtaining a series of loops 
of decreasing size. The curve passing through the tips of these loops is 
the normal magnetization curve (Fig. 5-27). This curve is useful since it 
is reproducible and is characteristic of the particular type of ferromag-
netic material. The normal magnetization curve is actually very similar 
in shape to the initial magnetization curve. 
5-14. Energy in a Magnet. A specimen of iron with residual mag-

netization contains energy since work has been performed in magnetizing 
it. The magnetic energy w„, per unit volume of a specimen brought to 
saturation from an originally unmagnetized condition is given by the 
integral of the initial magnetization curve expressed by 

H dB w, =  joules/meter' (5-60) 

The dimensional relation for (5-60) is 

Q  Al _ M 
TL TQ — LT2 

where M/LT2 has the dimensions of energy density which is expressed in 
the mksc system in joules per cubic meter.  Thus, the area between the 
curve and the B axis is a measure of the energy density. This is indicated 
in Fig. 5-28a for an easily magnetized, (magnetically soft) substance 
which has been carried to the point P in the magnetization process.  A 
magnetically hard substance takes more work to magnetize, as indicated 
by the larger shaded area in Fig. 5-28h.  On bringing H to zero some 
energy is released, as indicated by the crosshatched areas in Fig. 5-28. 
If H is increased and decreased so that the magnetization of a specimen 

repeatedly traces out a hysteresis loop as in Fig. 5-29a, the area enclosed 
by this loop represents the energy per unit volume expended in the mag-
netization-demagnetization process in one complete cycle.  In general 
the specimen retains some energy in stored magnetic form at any point in 
the cycle.  However, in going once around the hysteresis loop and back 
to this point, at which the energy will again be the same, energy propor-
tional to the area of the loop is lost.  This energy is expended in stressing 
the crystal fragments of the specimen and appears as heat.  If no 
hysteresis were present and the initial magnetization curve were retraced, 



SEC. 5-15]  MAGNETIC FIELD OF FERROMAGNETIC MATERIALS  241 

the area of the loop would be zero (Fig. 5-29b). The magnetization-
demagnetization process could then be accomplished with no loss of 
energy as heat in the specimen, assuming that eddy currents (see Sec. 
7-18) are negligible. 

(a) 

(a) 

(6) 

(b) 

FIG. 5-28. Energy density areas for (a)  Fla. 5-29. Energy lost in magnetization 
soft and (6) hard magnetic materials,  cycle is proportional to area enclosed by 

hysteresis loop. 

6-16. Permanent Magnets.  In many applications permanent magnets 
play an important part.  In dealing with permanent magnets the section 
of the hysteresis loop in the second quadrant of the B-H diagram is of 
particular interest.  If the loop is a saturation or major hysteresis loop, 
the section in the second quadrant is called the demagnetization curve 
(Fig. 5-30a). This curve is a characteristic curve for a given magnetic 
material. The intercept of the curve with the B axis is the maximum 
possible residual flux density B,, or the retentivity, for the material, and 
the intercept with the H axis is the maximum coercive force, or the 
coercivity.  It is usually desirable that permanent magnet materials 
have a high retentivity, but it also is important that the coercivity be 
large in order that the magnet will not be easily demagnetized. 
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In Fig. 5-30b, three demagnetization curves are shown.  Curve 1 
represents a material having a high retentivity but low coercivity, while 
curve 2 represents a material which is just the reverse, that is, it has a 
low retentivity and high coercivity.  Curve 3 represents a material which 
is a compromise between the other two, having relatively high retentivity 
and coercivity. 

Demagnetization 
curve 

_ 

Retentivity 

Coercivity 

H 

Saturation 
hysteresis 
loop 

(a) 

(6) 

Fm. 5-30. Demagnetization curves.  (B is positive and H is negative.) 

The maximum BH product, abbreviated BH.,.., is also a quantity of 
importance for a permanent magnet.  In fact, it is probably the best 
single " figure of merit," or criterion, for judging the quality of a perma-
nent magnet material.  Referring to Fig. 5-30b, it is apparent that 
BH. is greater for curve 3 than for either curves 1 or 2. The maximum 
BH product for a substance indicates the maximum energy density (in 
joules per cubic meter) in the magnet.  A magnet at this point delivers a 
given flux with a minimum of magnetic material. 
Since the product BH has the dimensions of energy density, it is some-

times called the energy product and its maximum value the maximum 
energy product.  The product BH for any point P on the demagnetization 
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curve is proportional to the area of the shaded rectangle, as shown in 
Fig. 5-30a. 
Figure 5-31 shows the demagnetization curve for Alnico 5, which is one 

of the best permanent magnet materials. This is an alloy containing 
iron, cobalt, nickel, aluminum, and copper. A curve showing the BH 
product is also presented. The maximum BH product is about 36,000 
joules per meter' and occurs at a flux density of about 1 weber per meter' 
(see point P). 

1.4 

1.2 

2 w 0.8 

4:1 0.6 

g 0.4 
-12 

g 0.2 rz 

§  §  0 0 

6 6 60 m  •-• 
I  I 

CD 

0  0  6 
CD  0 0 
6  6  6 rn 

BH product 
(amperes/meter)  (joules/meter') 

no. 5-31. Demagnetization and BH product curves for Alnico 5. 

A discussion concerning the operating point of permanent magnets is 
given in Sec. 5-26. 
5-16. Table of Permanent Magnetic Materials. Representative 

materials for permanent magnets are given in Table 5-3.  The materials 
are listed in the order of increasing maximum BH product, which, inci-
dentally, is also the chronological order of their discovery. The composi-
tion of the materials is given in per cent. 

TABLE 5-3 
PERMANENT MAGNETIC MATERIALS 

Material 
Retentivity, 
webers/meter' 

Chrome steel (98 Fe, 0.9 Cr, 0.6 C, 
0.4 Mn) 

Oxide (57 Fe, 28 0, 15 Co) 
Alnico 2 (55 Fe, 12 Co, 17 Ni, 10 Al, 
6 Cu) 

Platinum cobalt (77 Pt, 23 Co) 
Alnico 5 (Mcomax) (51 Fe, 24 Co, 14 
Ni, 8 Al, 3 Cu) 

1.0 

.2 

.7 

0.4 
1.25 

Coercivity,  BH,,,, 
amp/meter  joules/metera 

4,000  1,600 

72,000  4,800 
44,800  13,600 

200,000  30,400 
44,000  36,000 
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5-17. Demagnetization. A bar of ferromagnetic material that has a 
residual flux density tends to become demagnetized spontaneously. The 
phenomenon is illustrated by Fig. 5-32, which shows a bar magnetized so 
that a north pole is at the left and a 
south pole at the right.  The orienta-  Iron keeper 
tion of a single domain is indicated, 
and it is evident that the external field 
of the bar magnet opposes this domain 

FIG. 5-32. Demagnetization effect of bar 
magnet field. 

(a)  ( b ) 
Fm. 5-33. U-shaped magnet with 
and without keeper. 

and, hence, will tend to turn it, or reverse its polarity, and thereby parti-
ally demagnetize the bar. The tendency for this demagnetization is 
reduced if the magnet is in the form of a U as in Fig. 5-33a, since in this 
case there is but little demagnetizing field along the side of the magnet. 
The demagnetizing effect can be still further reduced by means of a soft 

iron keeper placed across the poles as in Fig. 5-33h. 
The process of removing the permanent mag-

netization of a specimen so that the residual flux 
density is zero under conditions of zero H field is 
called demagnetization or deperming.  It is evident 
that B can be reduced to zero by the application 
of the coercive force He, but on removing this field 
the residual flux density will rise to some value Bo 
as suggested in Fig. 5-34.  Although it might be 
possible to end up at B = 0 and H = 0 by in-
creasing H to slightly more than the coercive force 
and then decreasing it to zero as suggested by the 
dashed lines, the process requires an accurate 

knowledge of B and H and the hysteresis loop. 
A longer but more simply applied method is called demagnetization or 

deperming by reversals.  In this method, H is brought to a smaller 
maximum amplitude on each reversal so that eventually the specimen is 
left in a demagnetized state at zero field as suggested by Fig. 5-35. 
Although such a demagnetization procedure can be completely carried 
out in a matter of seconds with a small magnetic specimen such as a 
watch (using a-c fields), many seconds or even minutes may be required 
for each reversal for large magnetic objects because of the slow decay of 
the induced eddy currents and the reluctance of the domains to 

Fm. 5-34. 
esis loop. 

Partial hyster-
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change polarity. The matter of eddy currents is discussed further in 
Sec. 7-18. 

FIG. 5-35. Demagnetization by reversals. 

5-18. The Magnetic Circuit. Reluctance and Permeance. An elec-
tric circuit forms a closed path or circuit through which the current flows. 
Magnetic flux tubes are continuous and form closed paths.'  Hence, 
by analogy, we may consider that a single flux tube is a magnetic circuit, 
although nothing is actually flowing.  Or all of the flux tubes of a mag-
netic circuit, taken in parallel, may be considered as a magnetic circuit. 
Consider first an electric circuit carrying a current I. By Kirchhoff's 

law the total emf in the circuit is equal to the total IR drop. Thus 

'Or = IRr  volts  (5-61) 

where 'Or = total emf (volts) 
RT = total resistance (ohms) 

From (5-61) the total resistance is 
VT Rr = T  (5-62) 

Consider now a magnetic circuit.  Corresponding to the resistance of 
an electric circuit as given by (5-62), we may, by analogy, define a quan-

1 The continuous nature of steady currents in an electric circuit is expressed by 
V • J .•• 0, where J .= current density. The analogous magnetic relation is V • B = 0. 
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tity for the magnetic circuit called the reluctance (R. Thus 

F r 
61 T  (5-63) 

where 612. = total reluctance of magnetic circuit 
FT =  total mmf of magnetic circuit (amp) 
= flux through magnetic circuit (webers) 

In general, the total flux 1,t,„, in a magnetic circuit is given by 

= ff B • ds  webers  (5-64) 

where B = flux density (webers/meter') 
ds = element of surface (meters') 

The integration is carried out over the cross-sectional area of the flux tube 
or tubes that constitute the circuit.  If B is uniform over the entire cross 
section, 

= BA  webers  (5-65) 

where A = cross-sectional area of circuit (meters2). 
Reluctance has the dimensions of current per magnetic flux, or in 

dimensional symbols 
Q  TQ _ Q2 
T  ML2 

The relation (22/ML2 has the dimensions of the reciprocal of inductance. 
Thus the unit for reluctance is the reciprocal henry. 
The reciprocal of reluctance (R is called the permeance 63, which is 

expressed in henrys.  Hence, from (5-63), 

1 
(Pr =  =  (5-66) 

r 

where (Pr = total permeance of circuit (henrys). 
The total mmf of a magnetic circuit is, from (4-90), equal to the line 

integral of H around the complete circuit, and this in turn is equal to the 
ampere-turns enclosed.  Therefore, (5-63) becomes 

1  FT fH • dl NI 
=  1/henrys  (5-67) 
Wr  Om 

where NI = ampere-turns. 
The above discussion concerns the total reluctance of a circuit. Let us 

consider next the reluctance of a portion of a magnetic circuit.  In an 
electric circuit, the resistance Ft between two points, having no emfs 
between them, is given by 

V 
R =  ohms  (5-68) 
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where V = potential difference between the points (volts) 
/ = current in circuit (amp) 

In the analogous magnetic case, the reluctance 61 between two points in a 
magnetic circuit is given by 

U 
61 =  1/henrys  (5-69) 

where U = magnetic potential difference between the points (amp). 
From (4-87) for U and (5-64) for II,„, we have 

/2 H.  dl 

61 - h (5-70) 
f f B • ds 

where H is integrated between the two points (1 and 2) between which 
we wish to find the magnetic potential difference U. 
When the circuit has a uniform cross section of area A and the field is 

uniform, (5-70) reduces to 
HI  I 

42 = —  = —  1/henrys  (5-71) 
BA  µA 

where a = reluctance between points 1 and 2 (1/henrys) 
/ = distance between points 1 and 2 (meters) 
A = cross-sectional area of magnetic circuit (meters') 
A = permeability of medium comprising the circuit (henrys/ 

meter) 
The permeance 6' between the points 1 and 2 is given by 

1  AA 
6) = 1(1 = T  henrys  (5-72) 

Reluctances in series are additive in the same way that resistances in 
series are additive.  For reluctances in parallel the reciprocal of the total 
reluctance is equal to the sum of the reciprocals of the individual reluc-
tances.  For reluctances in parallel it is usually more convenient to use 
permeance, the total permeance being equal to the sum of the individual 
permeances. 

Example 1. Find the reluctance and permeance between the ends of the rectangu-
lar block of iron shown in Fig. 5-36a, assuming that B is uniform throughout the block 
and normal to the ends. The permeability of the block is uniform and has a value 
Asi = 500µ0, where $10 is the permeability of vacuum. 
Solution. The reluctance of the block is from (5-69) 

/   0.1  61 =  =  - 1.06 X 10' reciprocal henrys 
µA  500 X 47 X 10-7 X 15 X 10-4 

The permeance (P is the reciprocal of (St; so 

1  
a> -  1.06  10 - 9.4 X 10-, henry 

X  4 
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3 cm 
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Block 2 B -0. 
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3 ern 

5 cm 

(b) 

[CRAP. 5 

20 cm 

Fur. 5-36. Rectangular iron blocks. 

Example 2. Find the total reluctance and permeance between the ends of the 
aeries-connected rectangular iron blocks shown in Fig. 5-36b, assuming that B is 
uniform throughout the blocks and normal to the ends.  The permeability of each 
block is uniform, the value in block 1 being Ati = 500ao and in block 2, a2 = 2,000/40. 
Solution.  The reluctance 611 of block 1 is given in Example 1. The reluctance of 

block 2 is 

£2   0.2   
612 -  = 2,000 X 4r  10-T X 15 X 10-' - 0.53 X 106 reciprocal henrys A42.1  X   

The total reluctance Mr equals the sum of the individual reluctances; so 

(112, = 61 -1- 612 = (1.06  0.53) X 10' = 1.59 X 106 reciprocal henrys 

The total permeance 
1   1   

= 6.3 X 10-6 henry 
(Pr  - 61T - 1.59 X 106 

Example 3. Find the total reluctance and permeance between the ends of the 
parallel-conneded rectangular iron blocks shown in Fig. 5-36c, assuming that B is 
uniform in each block and normal to the ends.  The permeability of each block is 
uniform, the value in block 1 being al = 500A0 and in block 2 being A2 =  2,000A°. 

Solutiton.  Since the blocks are in parallel, it is more convenient to calculate the 
total permeance first.  The permeance Mi of block 1 is 

alit' 500 X 4r X 10-7 X 20 X 10-4 
6,1 - 6.28 X 10-6 henry 

0.2 

The permeance of block 2 is 

PM: 2,000 X 4r X 10-T X 10 X 10-4 
0.2  -  12.6 X 10-6 henry 

The total permeance equals the sum of the individual permeances; so 

(Pr = (Pi + 6'2 = (6.28 + 12.6) X 10-6 = 1.89 X 10-6 henry 
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The total reluctance is then given by 

1   1   
5.3 r  1.89 X  X 104 reciprocal henrys (P  10-6 

In the above examples, it is assumed that B and µ are uniform through-
out each block.  It follows that H (= Bh.t) is also uniform and that the 
end surfaces are equipotentials. For instance, if H is 1,000 amp per 
meter, the magnetic potential difference between the ends of the bar in 
Example 1 (Fig. 5-36a) is U = H1 = 1,000 X 0.1 = 100 amp. The flux 
density B =-- µill = 500mo X 1,000 = 6.28 X 10-' weber per square 
meter. The total flux iii„, through the block is then equal to BA, where 
A is the area of the block. Thus, 

4',,, = BA = 6.28 X 10-' X 15 X 10-4 = 9.4 X 10-4 weber 

In Example 2 (Fig. 5-36h) it follows from the boundary condition for 
the normal component of B that the flux density is the same in both 
blocks. Suppose that it is equal to 1 weber per square meter. Then in 
block 1, HI = Bhil = 1/500Ato = 1.59 X 10' amp per meter, and the 
potential difference Ul between the end faces of block 1 is given by 
Ul = Hall = 1.59 X 10' X 0.1 = 159 amp. In block 2, 

B   1  
- 3.97 X 102 amp per meter 

A2  2,000ASO 

and the potential difference U2 between the end faces of block 2 is 

U2 = H212 = 3.97 X 10' X 0.2 = 79.4 amp 

The total potential difference U across both blocks is then given by 
U = Ui ± U2 = 159 -I- 79.4 = 238.4 amp. 
In Example 3 (Fig. 5-36c) it follows from the boundary condition for 

the tangential components of H that H is the same in both blocks. Sup-
pose that it is equal to 1,000 amp per meter. Then in block 1, 

B1 = mill = 500po X 1,000 = 0.628 weber per square meter 

and the magnetic flux in block 1 is 

IPm 1 =131/11 = 0.628 X 20 X 10-4  = 1.26 X 10-11 weber 

In block 2, B2 = 1.1211 = 2,000A0 X 1,000 = 2.52 webers per square 
meter, and the flux in block 2 is 0.2 = /32/12 = 2.52 X 10--' weber. The 
total flux through both blocks in parallel is then given by 

= IP„,i -I- 1P.,2 = (1.26 ± 2.52) X 10'4 = 3.78 X 10-8 weber 

5-19. Magnetic Field Mapping. Magnetic Field Cells. The examples 
in the preceding section illustrate how the reluctance or permeance may 
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be found for sections of a magnetic circuit that have a uniform cross sec-
tion and uniform field.  In two-dimensional problems where the field 
and cross section are nonuniform the magnetic field configuration, and 
consequently the reluctance or permeance, can also be found provided 
the permeability may be considered constant.  Graphical field-mapping 
techniques such as are employed in Secs. 2-27 and 3-16 are applicable to 
such situations. 
The following basic properties are useful in magnetic field mapping: 

1. The field (H or B) lines and the magnetic potential (U) lines inter-
sect at right angles. 

2. At the boundary between air and iron (or other high-permeability 
medium) the field lines on the air side of the boundary are sub-
stantially perpendicular to the boundary surface. 

3. The boundary between air and iron (or other high-permeability 
medium) may be regarded as an equipotential with respect to the 
air side of the boundary but not, in general, with respect to the iron 
side. 

4. In a uniform field the potential varies linearly with distance. 
5. A magnetic flux tube is parallel to the field, and the magnetic flux 
over any cross section of the tube is a constant. 

6. Magnetic flux tubes are continuous. 

With these properties in mind a two-dimensional magnetic field may 
be divided into magnetic flux tubes and then by equipotentials into mag-

Equi-
potentials 

Walls of flux tube 

FIG. 5-37. Magnetic field cell. 

netic field cells with sides that are squares or curvilinear squares, using the 
trial-and-error method described in Sec. 2-27 in connection with electric 
field mapping. 
A magnetic field cell is bounded on two sides by equipotential surfaces 

and on two others by the side walls of a flux tube. For instance, the 
sides of the magnetic field cell in Fig. 5-37 are the walls of a flux tube, 
while the top and bottom surfaces are equipotentials. The field is 



SEC. 5-19]  MAGNETIC FIELD OF FERROMAGNETIC MATERIALS  251 

parallel to the sides and normal to the top and bottom surfaces.  The 
permeance of a magnetic field cell, as measured between the equipotential 
surfaces, is, from (5-72), 

,2,4  Aid 
6,0 = ---F = 7  = p.d  henrys  (5-73) 

and the permeance per unit depth is 

(Po 
=  henrys/meter  (5-74) 

where & = permeability of cell medium (henrys/meter). Thus, the 
value of µ for a medium is equal to the permeance per unit depth of a 
magnetic field cell of that medium.  For example, a magnetic field cell in 
air has a permeance per unit depth of 47 X 10-7 henry per meter, or 
1.26 Ah per meter. Thus, if din Fig. 5-37 equals 1 meter and the medium 
is air, the permeance of the cell is 1.26 Ah. 
Any field cell can be subdivided into smaller square-ended cells with as 

many cells in parallel as in series.  Hence the permeance per unit depth 
of any field cell, large or small, exactly square or curvilinear, is equal to µ. 
All cells with the same flux through them may be defined as magnetic 

field cells of the same kind.  It follows that the magnetic potential differ-
ence across all cells of the same kind is the same. 
To illustrate some of the principles of magnetic field mapping, let us 

consider three examples involving three variations of a two-dimensional 
problem. 

Example 1. A magnetic circuit has an air gap of nonuniform separation as sug-
gested in Fig. 5-38a.  The iron has a uniform depth d into the page of 1 meter. The 

(a)  (6) 
FIG. 5-38. Magnetic field in air gap (Example 1). 

geometry of the gap is identical with the region between if and gg in the capacitor of 
Fig. 2-24.  Find the permeance of the air gap, neglecting fringing of the field. 
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Solution.  It may be assumed that the iron permeability is much greater than )40 
so that the field lines in the gap will be perpendicular to the air-iron boundary, and 
this boundary can be treated as a magnetic equipotential.  Since the geometry of the 
gap is the same as that for the capacitor in Fig. 2-24, the field map in Fig. 2-24 may 
also serve in the present case, noting that the field lines here are B or H lines and the 
equipotentials are surfaces of equal magnetic potential U as shown in Fig. 5-38b. 
With the exception of the cells in the remainder flux tube all of the field cells are of 

the same kind, and the permeance of the air gap is given in terms of cells of the same 
kind by 

N 
— tro  (5-75) 

where N = number of field cells (or flux tubes) in parallel (dimensionless) 
n = number of field cells in series (dimensionless) 
6'0 = permeance of one cell (henrys) 

The remainder flux tube has  cells in series, while the other flux tubes have 4. 
Hence the remainder tube is 

4 
— = 0.43 

of the width of a full tube, and N = 15  0.43 = 15.43.  The total permeance of the 
gap is then 

15.43 
6'r —  6,0 = 3.866,0 

4 

Since the depth of each cell is 1 meter, the permeance of one cell is 

6'0 = pod = 1.26 X 1 = 1.26 ph 

and the total permeance is 

= 3.86 X 1.26 = 4.86 ph 

It is assumed in this example that there is no fringing of the field. For an actual 
gap there would be fringing at the edges, and the actual permeance of the gap 
would be somewhat larger than given above. 
Example 2. Let the problem of the above example be modified to that shown in 

Fig. 5-39.  Here the gap of the first example is replaced by iron and the iron poles by 
air.  The iron may be regarded as part of a magnetic circuit of iron extending further 
to the left and to the right as suggested by the dashed lines in Fig. 5-39.  The iron 
extends to a depth of 1 meter normal to the page, with the cross section at any depth 
identical to that in Fig. 5-39.  Assume that the iron has a uniform permeability µ 
which is much larger than 440. Find the permeance between the surfaces indicated by 
the dash-dot lines if and pg. 
Solution.  The field map for this problem is the same as for Example 1 (Fig. 5-38b) 

except that the field and equipotential lines are interchanged as shown in Fig. 5-39. 
It is assumed that p is so much greater than 440 that in the iron the H field at the air-
iron boundary is substantially parallel to the boundary as indicated by the map. 
The total permeance between if and gg is, from (5-75), 

6' =   = 0.259 X44 X 1 15.434  

= 0.259 X 1.2644, = 0.326p,  ph 

where mr m. relative permeability of iron. 
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Fio. 5-39. Iron bar of nonuniform cross section with internal field (Example 2). 

Example 3. Let the problem of the preceding example be modified to that of a 
two-strip transmission line having the same cross section as the gap of Example 1 and 
the iron circuit of Example 2. As shown in Fig. 5-40 the two conducting strips extend 
normal to the page with a sheet of steady current flowing outward on the upper strip 

Conducting 
strip 

Conducting 
strip 

Equipotentials 

Sheet current 
K amp./meter 
(out of page) 

11 

Sheet current 
K amp./meter 
( into page) 

Fro. 5-40. Cross section of strip transmission line (Example 3). 

and an equal current flowing inward on the lower strip.  The medium in which the 
strips are located is air.  Neglect edge effects.  Find the inductance of a 1-meter 
length of the line. 
Solution.  Neglecting edge effects,' the field map between the strips is identical 

with that for the iron circuit in Fig. 5-39. 

If the conducting strips are extended an infinite distance to the left and right, as 
suggested by the dashed lines in Fig. 5-40, the field configuration is precisely as indi-
cated.  The field between the strips is produced by the currents on the strips.  In 
Example 2 the field in the iron may be regarded as due to an equivalent current sheet 
at the surfaces of the iron bar normal to the page (Fig. 5-39). 
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If each cell in the map is regarded as a strip transmission line with sheet currents 
along its upper and lower surfaces, the inductance Lo for a length d of 1 meter of the 
single-cell line (normal to the page in Fig. 5-40) is, from (4-100), given by 

Lo = pod = 1.26 ish 

The total inductance Lr of a meter length of the line is then 

4 
Lr = X 1.26  0.326 µ11 

At any point on either strip in Example 3 we have the boundary con-
dition that the tangential component of H is equal in magnitude to the 
linear sheet current density K at the point, that is, He = K. Since the 
average H field for any cell of the same kind is inversely proportional to 
the cell width, it follows that the linear current density K at the left, 
where the strip spacing is small, is four times the density at the right, 
where the spacing is large, the spacing ratio being 4. The variation in K 
along the strips is the same as for the change density Po in the capacitor 
problem of Fig. 2-24. 
In conclusion the important properties of an accurate magnetic field 

map in a single medium of uniform permeability may be stated as follows: 

1. The permeance 6'0 of any magnetic field cell is the same. 
2. The permeance per unit depth of any magnetic field cell is the same 
and is equal to the permeability A of the medium. 

3. The reluctance ao of any magnetic field cell is the same. 
4. The reluctance-depth product for any magnetic field cell is the 
same and is equal to the reciprocal of the permeability µ for the 
medium. 

5. The magnetic potential difference across any magnetic field cell of 
the same kind is the same and is equal to ',,,Ro. 

6. The magnetic flux 0„, through any magnetic field cell of the same 
kind is the same. 

7. The magnetic flux 0„, over any cross section of a flux tube is the 
same. 

8. The average flux density B in any cell of the same kind is inversely 
proportional to the width of the cell or flux tube. 

9. The average field H in any cell of the same kind is inversely pro-
portional to the cell width. 

10. The magnetic energy stored in any cell of the same kind is the 
same. 

11. The average magnetic energy density in any cell of the same kind is 
inversely proportional to the area of the end of the cell.  (This is 
the area that appears in the field map.) 

5-20. Comparison of Field Maps in Electric, Magnetic, and Current 
Cases. Graphical field mapping was discussed in Sec. 2-27 for electric 
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fields, in Sec. 3-16 for currents in conductors, and in Sec. 5-19 and also to 
some extent in Sec. 4-20 for magnetic fields. The technique is similar in 
all these cases.  Of particular significance is the fact that a field map for a 
certain two-dimensional geometry may be applied to numerous problems 
having this geometry. An illustration of this was provided by the three 
examples in Sec. 5-19, in which the field map of Fig. 2-24 for a capacitor 
yielded the solution for the permeance of the volume with the field 
applied both transversely and longitudinally.  The map also gave the 
inductance of a conducting-strip transmission line. 
The same map can, in addition, supply the value of the conductance of 

a conducting bar with the current flowing transversely and with the cur-
rent flowing longitudinally. The same map can also be applied to heat-
and fluid-flow problems. 
To summarize, sketches are given in Fig. 5-41, showing six different 

problems of the same geometry for which solutions are supplied by one 
field map.  The actual map is shown in Fig. 5-41a, being omitted in the 
other sketches. The geometry of the problems is that of the capacitor of 
Fig. 2-24, which was also used in the problems of Figs. 5-38 to 5-40. 
In Fig. 5-41a the map represents the electric field in a capacitor with 

the field transverse.  In Fig. 5-41b the map represents the electric field 
in a conducting bar with current flowing transversely, while in Fig. 5-41c 
the current flows longitudinally.  In Fig. 5-41d the map represents the 
magnetic field in the air gap between two iron pole faces, while in Fig. 
5-41e it represents the magnetic field in an iron bar with the field applied 
longitudinally.  In Fig. 5-41f the map represents the field between two 
conducting strips acting as a transmission line with current flowing 
normal to the page.  For each case the capacitance, conductance, 
permeance, or inductance per unit depth (normal to the page) is given, as 
appropriate for the particular problem.  Fringing of the field is neglected 
in all cases. 
It is also of interest to compare the significance of the cells (square or 

curvilinear) of the field maps for the different problems we have con-
sidered. Thus, the capacitance per unit depth of an electric field cell 
equals the permittivity e of the medium; the conductance per unit depth 
of a conductor cell equals the conductivity ff of the medium; the per-
meance per unit depth of a magnetic field cell equals the permeability µ 
of the medium; and the inductance per unit length of a transmission line 
cell equals the permeability µ of the medium. These relationships are 
summarized in the last column of Table 5-4. This table also has columns 
headed Flow lines, Flow tubes, and Equipotentials.  By flow lines are 
meant the lines, such as field lines, that are analogous to the lines of 
flow of a fluid in the analogous fluid-flow situation.' Under flow lines 

1See discussion of fluid mappers in Appendix. 
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are listed the quantities having the direction of flow lines and under flow 
tubes the quantities equal to the total flux through a tube. 

TABLE 5-4 
IMPORTANT FIELD-MAP QUANTITIES 

Field Flow lines Flow tubes 
Equipo- 
tentials 

Value of cell 
(per unit depth) 

Electric   D or E Electric flux II, V (volts) Permittivity e 
(farads/meter) 

Current   J or E Current I V (volts) Conductivity Cr 

(mhos/meter) 
Magnetic   B or H Magnetic flux 0. U (amp) Permeability a 

(henrys/ 
meter) 

Heat   Temperature 
gradient 

Heat per time Temperature Thermal con-
ductivity 

Fluid flow (non- 
turbulent; in- 
compressible) 

Velocity Mass per time Velocity po- 
tential 

Density 

Example.  Apply the above analogies to find the capacitance of an air capacitor 
by a resistance measurement. 
Solution.  The capacitor plates are immersed in a large tank filled with a liquid of 

uniform conductivity a, and the d-c resistance R is measured between the plates. 
In general, the conductance G of a certain geometry is given by 

G =. ad —n (5-76) 

where N = number of cells in parallel 
n = number of cells in series 
d = depth of cells 

An actual capacitor with the same geometry has the same field configuration (com-
pare Figs. 5-41a and 6); so the capacitance 

C  eod —n (5-77) 

where N and n are the same as in (5-76).  Hence, on dividing (5-77) by (5-76), 

C =  = 
oR (5-78) 

where C = capacitance of actual capacitor (farads) 
eo = permittivity of air (8.85 X 10-'2 farad/meter) 
= conductivity of liquid (mhos/meter) 

= 1/G = measured resistance (ohms) 
Thus knowing a (which also can be measured with a rectangular volume), the capaci-

tance of an air capacitor can be obtained from (5-78) by a resistance measurement. 

5-21. Fields of Currents near an Air-Iron Boundary. Another type 
of problem not discussed previously is that involving a current-carrying 
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conductor situated near an air-iron boundary. This situation may. be 
treated analytically by the method of images.' The images are such that 
boundary conditions at the air-iron surface are satisfied. 

Image-% (-Wire in air 

re / 

Air 

iao 

Image 

(a) 

FIG. 5-42. Magnetic field lines (Ns hit arrows) and equipotentials for current-carrying 
wire in air near an iron boundary. 

Two cases will be considered.  In the first case the conductor, or wire, 
is in air at a distance 8 from a plane air-iron boundary as suggested in 
Fig. 5-42a.  In the second case the wire is in iron at a distance s from a 
plane air-iron boundary as shown in Fig. 5-43a. The current in the wire 
in both cases is I. The iron is assumed to have a uniform finite perme-

1 This method was applied in the case of an electric field in Sec. 2-26. 
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ability is in both cases, a somewhat dubious assumption in view of the wide 
range in applied field H to which it is subjected.  In both cases the wire 
is parallel to the boundary so that the problems are two-dimensional. 
Treating first the case where the wire is in air, let an image conductor 

with current I' be situated at a distance s below the boundary in the iron, 
as in Fig. 5-42a, and a second image with current I" be situated at the 
wire in air.  On the air side of the boundary the field is given by I and I', 
both assumed to be in air, and on the iron side by I and I", both assumed 
to be in iron.  The magnitudes and directions of the currents in the 
images must be such as to satisfy the boundary conditions at the air-iron 
surface. Assuming, a priori, that all currents are outward, we have at 
any point on the air side of the boundary 

H „ =  8 (I —  r)  (5-79) 
270•2 

and at the same point on the iron side of the boundary 

Hg2 =  — 8 (I +  I" )  (5-80) 
27r2 

Since Hil = ling it follows that 

I' = —I"  (5-81) 

On the air side we also have 

Bni = 21.1:2 (I ± I')  (5-82) 

and on the iron side 

B.2 =  2 .7..r2 (I + I")  (5-83) 

Since B,11 = B .2, it follows that 

ig  _ 14 - AL0 1  (5-84) 
L ± PO 

and 

in —  P  —  110 j  (5-85) 
A ± Ao 

Thus, if the iron has a high permeability (a >> AO, the field on the air side 
of the boundary is that of two parallel conductors with nearly equal cur-
rents (I and I') flowing in the same direction in air.  On the iron side of 
the boundary the field is that of a very small current (sum of I and I") 
assumed to be in iron. The field and equipotential lines for this case 
(A large) are as suggested in Fig. 5-42h. 
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In the second case, where the wire is in the iron medium, let an image 
conductor with current /' be situated at a distance s above the boundary 
in air, as in Fig. 5-43a, and a second image with current I" be situated at 
the wire in the iron.  On the air side of the boundary the field is given by 

Fm. 5-43. Magnetic field (with arrows) and equipotentials for current-carrying wire 
in iron near an air boundary. 

/ and I", both assumed to be in air, and on the iron side by / and /', both 
assumed to be in iron. It may be shown for this case (see Prob. 5-34) 
that 

r, -  A" 
A -r As 

(5-86) 
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and 

—  —  P I Oj 
± Lo 

(5-87) 

Thus, if the iron has a high permeability (A >> Ao ), the field on the iron 
side of the boundary is that of two parallel conductors with nearly equal 
currents (/ and /') flowing in opposite directions in a medium of perme-
ability A.  On the air side of the boundary the field is that of a current 
almost twice / at the wire location but assumed to be in air.  Hence the 
presence of the iron results in a field on the air side of the boundary 
nearly double that which would be obtained if no iron were present. The 
field and equipotential lines for this case (A large) are as suggested in Fig. 
5-43b.' 
It is to be noted in both of the above cases that close to the wire itself 

the field configuration is symmetrical, the same as for an isolated linear 
conductor. 
5-22. Gapless Circuit.  Consider the magnetic circuit of a closed 

ring of iron of uniform cross section A and mean length 1. Suppose that 

(b) (a) 

FIG. 5-44. Closed iron ring (a) with uniform winding and (b) with concentrated 
winding. 

a coil of insulated wire is wound uniformly around the ring and that we 
wish to know how large the product (NI) of the number of turns and the 
current must be to produce a flux density B in the ring. 
The coil on the ring in Fig. 5-44a forms a toroid, that is, a solenoid 

closed on itself.  From (4-50) the flux density B in the toroid is 

µNI  ANI 
B =  =  webers/meter'  (5-88) 

1  2711 

1 For a more detailed discussion of the magnetic fields of conductors near iron sur-
faces see, for example, S. S. Attwood, "Electric and Magnetic Fields," 3d ed., John 
Wiley & Sons, Inc., New York, 1949, Chap. 15. 
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where µ = permeability (assumed uniform) of medium inside of toroid 
(henrys/meter) 

N = number of turns (dimensionless) 
I = current (amp) 
1 = mean length of toroid (meters) 
R = mean radius of toroid (meters) 

Dividing by µ, we have 

NI = H1  amp-turns (5-89) 

If a certain flux density B is desired in the ring, the corresponding H value 
is taken from a B-H curve for the ring material and the required number 
of ampere-turns calculated from (5-89). 

Example 1. An iron ring has a cross-sectional area A = 10 cm' and a mean length 
1 = 60 cm.  Find the number of ampere-turns required to produce a flux density 
B = 1 weber/meter.'  From a B-H curve for the iron, H = 1,000 amp/meter at 
B = 1 weber/meters. 
Solution.  From (5-89) 

NI = 1,000 X 0.6 = 600 amp-turns 

The coil could be 100 turns with a current of 6 amp or 1,000 turns with a current 
of 0.6 amp.  The coil may be uniformly distributed around the ring as in Fig. 5-44a 
or concentrated in a small sector as in Fig. 5-44b.  With a uniformly distributed wind-
ing the magnetic field is confined to the ring.  However, with the concentrated wind-
ing there is some flux density in the air outside of the ring.  This flux is a leakage flux, 
having escaped from the principal magnetic circuit formed by the iron ring.  Owing 
to the large permeability of iron compared with that of air, the effect of leakage flux in 
the case of a concentrated winding may in many cases be neglected. 

The required number of ampere-turns can also be found by calculating 
the reluctance of the ring circuit.  This is illustrated by the following 
example. 

Example 2. Find the number of ampere-turns required for the ring of Example 1 
for B = 1 weber/meters by first evaluating the reluctance of the ring. 
Solution.  From (5-70) 

.grH • dl 
61 = 

BA 
We also have 

fil • dl - HI = NI 
Substituting (5-91) in (5-90) yields 

NI = MBA 
where, from (5-71), 

l 61 .... — 
µA 

Since H ... 1,000 amp/meter when B --- 1 weber/meters, 

B  1 
is = Ti = 1,1: ,)  - 10-3  henry/meter 

(5-90) 

(5-91) 

(5-92) 

(5-93) 

(5-94) 



SEC. 5-23]  MAGNETIC FIELD OF FERROMAGNETIC MATERIALS  263 

It is to be noted that the relative permeability for this case is 

10-3   
Ar — 795  (5-94a) 

/AIN  42- X 10-7 

Introducing (5-94) in (5-93) and also the value of 1 and A, the reluctance of the ring is 

0.6   
61 = 0   - X  — 6 X 106 1/henrys  (5-95) 

1 1 10-3  

Hence, from (5-92) the required number of ampere-turns is 

NI = (RBA .• 6 X 103 X 1 X 10-3  = 600 

as obtained in Example 1. 

5-23. Magnetic Circuit with Air Gap. Let a narrow air gap of thick-
ness g be cut in the iron ring of Sec. 5-22 as shown in Fig. 5-45a.  The gap 
detail is presented in Fig. 5-45b.  By the 
continuity of the normal component of B 
the flux density in the gap is the same 
as in the iron, if fringing is neglected. 
Neglecting the fringing involves but little 
error where the gap is narrow, as assumed 
here.  The field H. in the gap is then 

AO 

while the field H in the iron is 

Hi  = _13 = B = H,  (5_97)  

ArA 0  Ar 

(5-96) 

from which  Gap detail: 
Ho 
=  (5-98) 

Hi  

The number of ampere-turns required 
to produce a certain flux density B in a 
magnetic circuit with gap, as in Fig. 
5-45a, is a problem for which the solution 
may be obtained directly.  For instance,  j H, 

according to (4-90) the line integral of H 
Fia. 5-45. Iron ring with air gap. 

once around the magnetic circuit equals 
the total mmf F, or ampere-turns enclosed.' That is, 

IH • dl =F = NI  (5-99) 

Example. Let the iron ring of Fig. 5-45 have a cross-sectional area A = 10 ems, 
an air gap of width g = 2 mm, and a mean length 1 = 27rIt = 60 cm, including the 

1 This relation for a magnetic circuit is analogous to Kirchhoff's voltage law (Sea. 
3-10) for an electric circuit. 

(a) 

(b) 
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air gap.  Find the number of ampere-turns required to produce a flux density 

B  1 weber/meter2 

The iron ring is the same as considered in Sec. 5-22 except that it has an air gap. 
Solution.  From (5-99) 

NI = .0CH • dl  Hi(1 — g) + H9g  (5-100) 

where Hi = H field in iron 
H. = H field in gap 

From a B-H curve for the iron, Hi = 1,000 amp/meter, and from (5-98) we know H. 
in terms of Hi.  Hence (5-100) becomes 

NI =  — g)  u,g]  (5-101) 

where a, = 795 = relative permeability of iron ring at B  1 weberimeter2 [see 
(5-94a)].  Therefore, 

NI = 1,000[(0.6 — 0.002) + 795 X 0.002] = 2,188 amp-turns 

The introduction of the narrow air gap makes it necessary to increase the ampere-
turns from 600 to 2,188 to maintain the flux density at 1 weberimeter2. 
The above problem may also be solved by calculating the total reluctance of the 

magnetic circuit.  Thus, from (5-100) we have 

µA  µoA 
NI =  Ili(1 — g)  , Hog  (5-102) 

A,4  moA 
and 

NI = BA(titi 61)  (5-103) 

where Ri = (1 — g) /1.A = reluctance of iron part of circuit 
R, = g/u0A = reluctance of air gap 

In the above problem, B is given and the required NI found. The con-
verse problem where NI is given and the resulting B is to be found cannot 
be solved directly since in (5-103) there are two unknowns B and µ. 
However, we can assume a value of B and calculate the total NI as in the 
above example.  If NI is calculated in this way for several assumed 
values of B and a curve plotted of B vs. total NI, the approximate value 
of B may be interpolated for any given NI. 
5-24. Magnetic Gap Force. Referring to Fig. 5-45, the effect of the 

magnetic field is to exert forces which tend to close the air gap. That is, 
the magnetic poles of opposite polarity at the sides of the gap are attracted 
to each other.  Such forces as are produced by magnetic fields find 
application in numerous electromechanical devices.  In this section an 
expression for the force between magnetic pole pieces is developed. 
The density of energy stored in a magnetic field is, from (4-110), 

1 B2 
= joules/meters  (5-104) 

If the gap is small, we may assume a uniform field in the air gap. The 
total energy W„, stored in the gap is then 
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B2Ag 
W„, = tv„,Ag — 

2µo 

where A = area of gap 
g = width of gap 

Suppose now that the iron ring in Fig. 5-45 is 
gap must be held open by a force F as 
increased so as to increase the gap by an 
infinitesimal amount dg, while at the same 
time the current through the coil is in-
creased to maintain the flux density B 
constant, the energy stored in the gap is 
increased by the infinitesimal amount 

dW„, = —BM dg  joules  (5-106) 
2i.to 

Equation (5-106) has the dimensions of 
energy. But energy may also be expressed 
as force times distance, which in this case 
is F dg, where F is the attractive force 
between the poles.  It is equal in magnitude 
them apart.  Thus 

265 

joules  (5-105) 

perfectly flexible so that the 
in Fig. 5-46.  If the force is 

-1 91-

or 

F dg = —B2A dg 

B2A 
F = 

2tio 

F 

kI   •-•Gap 
Fio. 5-46. Forces at air gap. 

to the force required to hold 

where F = attractive force (newtons) 
B = flux density (webers/meter2) 
A = area of gap (meters2) 
= Permeability of air (41- X 10--7 henry/meter) 

Dividing by the gap area A yields the pressure P.  That is, 

F  B2 
A  2A0 

5-25. Permanent Magnet with Gap. Suppose first that a closed iron 
ring is magnetized to saturation with a uniform toroidal coil wound on the 
ring. When the coil is removed, the flux density in the iron is equal to 
the retentivity (see Fig. 5-48).  If, however, the system has an air gap as 
in Fig. 5-47, the flux density has a smaller value as given by a point P 
which lies somewhere on the demagnetization curve (Fig. 5-48) (see also 
Sec. 5-15). Further information is needed to locate this point. This 

(5-107) 

newtons/meter'  (5-108) 
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may be obtained as follows: From (5-99) the line integral of H once 
around a magnetic circuit is 

• dl = NI 
Since NI = 0, 

SH • dl = H.(1 — g)  ,g = 0 
or 

(5-108a) 

H1(1 — g) = —110g  (5-109) 

where Hi = H field in the iron 
1 = 2wR = total length of magnetic circuit (including gap) 

g = width of gap 
H. = H field in gap 

Thus Hi and 110 are in opposite directions as indicated in Fig. 5-47.  If 
leakage is neglected, B is uniform around the circuit.  Multiplying 

+ /3 

Retentivity 

Coercivity 

FIG. 5-47. Permanently magne-
tized ring with air gap. 

FIG. 5-48. Demagnetization curves 
manent magnet. 

Demagnetization 
curve 

Shearing 
line 

for per-

(5-109) by Ao and solving for the ratio B/Hi, or the permeability of the 
iron, we obtain 

1 — g 
ii; = —Po g (5-110) 

This ratio of the flux density B to the field Hi in the iron gives the slope of 
a line called the shearing line as shown in Fig. 5-48. The intersection of 
this line with the demagnetization curve determines the position of the 
iron on the magnetization curve (point P). This location is a function 
of the ratio of the iron path length (1 — g) to the gap length g. 
In most permanent magnet applications, where it desired that B 

remain relatively constant, a moderate demagnetizing field is applied to 
the iron, moving the position of the iron to P' (Fig. 5-48).  On removing 
the field, the iron moves to the point P" on the shearing line. The ring 
magnet is now said to be stabilized, and when fields less than about the 
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difference of H between points P' and P" are applied to the ring and then 
removed, the iron will always return to approximately the point P". 
Under these conditions the iron moves along a minor hysteresis loop as 
suggested by the dashed lines in Fig. 5-48. 
5-26. Comparison of Electric and Magnetic Relations Involving Polari-

zation and Magnetization. It is interesting to compare the magnetic 
relations where magnetization M is present with the corresponding elec-
tric relations where polarization P is present (see Chap. 2). This is done 
in Table 5-5. 

TABLE 5-5 
COMPARISON OF EQUATIONS INVOLVING POLARIZATION P AND 

MAGNETIZATION M 

Description of equation Electric case 

Dipole moment relations 

Flux density 

Permittivity and permeability 

Relation to polarization charge 
density and to equivalent 
current density 

Poisson's equations 

Scalar and vector potentials 

P = p = Q1 
v  v 

D = (to 4- 11) 

, P 
e = to -r- k 

v • P = p, 

— e 

V = — 1 fp — V•P dv  

4Teo fp  r 

Magnetic case 

vst/ = v • M = —V • H 

A = P° P ±VX M dv 
47r 

PROBLEMS 

5-1. A magnetized needle of 10 amp-meters magnetic moment is situated in a uni-
form magnetic field of 2 weber/meters flux density.  Find the torque Ton the needle. 

Ana.: T = 20 newton-meters. 
5-2. A needle of magnetic moment Q.' Ppivots freely about its center point.  Assume 

that the center of the needle is located at the origin and that there is a magnetic field 
of flux density B in the positive y direction.  What angle 0 does the needle assume 
with respect to the y axis if a short bar magnet of moment Q,,,1 is placed coincident 
with the x axis at a large distance r from the origin? 
5-3. A uniformly magnetized bar with a volume of 1,000 cm 3 has a magnetic moment 

of 800 amp-meterss.  If the flux density B = 0.1 weber/meters in the bar, find the 
value of H in the bar. 
5-4. A bar magnet in a uniform magnetic field is acted on only by a torque, there 

being no translational force on the magnet. In a nonuniform field, however, there is 
a net translational force.  Find the maximum value of this force on a uniformly 
magnetized bar magnet 1 cm long with a magnetic moment of 1 amp-mete & situated 
20 cm from one pole of a very long magnet having a pole strength of 1,000 amp-meters. 
5-5. Two ferromagnetic media are separated by a plane boundary.  Medium 1 has 

a relative permeability of 500 and medium 2 a relative permeability of 5,000.  If the 
magnetic field direction in medium 2 is at an angle of 80° with respect to the normal 
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to the boundary, find the angle al between the field direction and the normal to the 
boundary in medium 1.  Ans. al = 29.6°. 
5-6. If the direction of the magnetic field in air near the plane surface of a large 

block of iron is 10° from the normal to the surface, find the angle of the field with 
respect to the normal in the iron.  The relative permeability of the iron is 1,000. 
5-7. Magnetic field lines on the air side of an air-iron boundary are usually sub-

stantially normal to the boundary.  Why is this not the case in Fig. 5-43b? 
5-8. A small bar magnet with a magnetic moment of 200 amp-meters2 is situated 

parallel to a very long wire carrying a steady current of 100 amp. If the bar magnet 
is 1 meter from the wire, find the torque on the bar magnet. 
5-9. The flux density in a ferromagnetic medium of large extent and permeability 

IA is B as shown in Fig. 5-49. Two cavities are cut in the medium as illustrated. 

/ 

/Cavity 1 

Fin. 5-49. Cavities for Prob. 5-9. 

Cavity 1 is shaped like a thin disc, while cavity 2 is long and needlelike. The cavities 
are air filled.  (a) What is the magnetic field H1 at the center of cavity 1?  (b) What 
is the magnetic field H 2 at the center of cavity 2?  (c) What is the ratio of H1 to H2? 
5-10. Show that at the center of a long, uniformly magnetized bar of uniform cross-

section area A the magnitude of H is given closely by 2M A IT/I, where M = magneti-
zation and 1 = length of bar. 
5-11. Show that the permeability µ at the center of a long, permanently magnetized 

rod of uniform magnetization is given by poll — (1-12/2A)j, where 1 = length and 
A = cross-sectional area of rod. 
5-12. A copper conductor of radius 5 cm is enclosed by a concentric iron tube of 

inner radius 10 cm and outer radius 15 cm.  If the total current in the copper con-
ductor is 100 amp and p = 500 for the iron tube, find B and H at radii of 2.5, 5, 10, 
12.5, 15, and 20 cm.  Assume that the current density in the conductor is uniform 
and also that p,. in the iron tube is uniform. 
5-13. Sketch the variation of B and H as a function of radius from 0 to 25 cm for 

Prob. 5-12. 
5-14. Show that at a large distance r from a bar magnet of dipole moment Q.1 the 

magnetic potential U = (Q„,1 cos 0)/(42-r1), where 0 is the angle between the bar axis 
and the radius vector of length r. It is assumed that r >> 1. 
5-15. Show that at a large distance r from a bar magnet of dipole moment Q.I the 

flux density B has an angular component 

B  uolfj./ sin 0 
e = ' 4111.3 
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and a radial component 
B, poQ.1 cos 0 

21-ra 

where 0 is the angle between the bar axis and the radius vector of length r. It is 
assumed that r >> 1. 
6-16. Show that at a large distance from a single-turn wire loop of area A with cur-

rent / the flux density B has an angular component 

Bs  po/A sin 0 
41-r8 

and a radial component 
= uo/A cos 0 

2Tr3 

where 0 is the angle between the axis of the loop and the radius vector of length r. It 
is assumed that r is much greater than the diameter of the loop. 
5-17. A magnetized rod 1 cm in diameter and 20 cm long has a uniform magneti-

zation of 1,000 amp/meter.  Find the magnetic moment of the bar. 
5-18. A uniformly magnetized rod 2 cm in diameter and 50 cm long has a magnetic 

moment of 10,000 amp-meters'.  Find the equivalent sheet current density K' at the 
surface of the rod. 
5-19. Assuming that the demagnetization curve of a certain ferromagnetic material 

is a straight line, what is the maximum BH product if the retentivity is 1 weber/meter' 
and the coercivity is 20,000 amp/meter? Prove that this is the maximum value. 
6-20. According to Lord Rayleigh the bottom part of the normal magnetization 

curve is given by B  µal  cH2, where pi is the initial permeability (at H = 0, 
B  0) and c is a constant. Assume that this relation applies to the initial magnetiza-
tion curve of an iron specimen.  What is the expression for the energy density in the 
iron after the field is raised from H = 0 to H = HI? Assume that the specimen is 
initially unmagnetized. 
5-21. An iron ring has a uniform cross-sectional area of 1 cm' and a mean radius of 

10 cm. The ring is continuous except for a single air gap 1 mm wide.  Find the 
number of ampere-turns required on the ring to produce a flux density B = 0.5 
weber/meter' in the air gap.  Neglect fringing. When B = 0.5 in the iron, the 
relative permeability of the iron A. =. 300. 
5-22. Find the total reluctance measured between the ends of two parallel iron 

bars, each 1 by 1 cm in cross section and 10 cm long, if one bar has a relative permeabil-
ity of 500 and the other of 1,000. 
5-23. Find the reluctance and permeance between the ends of an iron bar having 

the dimensions shown in Fig. 3-27, assuming a uniform relative permeability of 5,000. 
6-24. How much greater is the reluctance of the block of Fig. 3-27 as compared 

with a uniform rectangular block without the notches? The permeability is assumed 
to be the same in both cases. 
5-25. Find the permeance per unit depth between the ends of a block of iron of 

uniform permeability it having the cross-sectional dimensions shown in Fig. 3-28. 
5-26. Find the permeance per unit depth between the top and bottom faces of a 

block of iron of uniform permeability µ having the cross-sectional dimensions shown 
in Fig. 3-28. 
5-27. A cyclotron magnet has the dimensions shown in Fig. 5-50. The pole pieces 

are cylindrical with tapered ends. The diameter at the gap is 1 meter and the gap 
width 0.15 meter as indicated.  Approximately how many ampere-turns are required 
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in each of the two windings shown to produce a flux density of 1 weber/meterl in the 
air gap? Assume that the magnet is made of iron with a constant relative permeabil-
ity of 3,000 and that there is no fringing at the gap.  Also neglect any leakage along 
the magnet structure.  As a further simplification take the effective length of sections 

4 
0.5 m 

1.8 m 

2.8 m 

0.5 m 

3.8 m 

Side view 

0.15m1 

1-* -1.2 m -0.1 
 2 m   

End view 

(a)  (b) 
Flo. 5-50. Cyclotron magnet for Prob. 5-27. 

as the length measured along the center line (dashed line in Fig. 5-50a). Take the 
diameter of the tapered section of the poles as the average diameter. 
5-28. An electromagnet consists of a U-shaped iron yoke and iron bar as shown in 

Fig. 5-51.  A thin copper sheet on the top of the bar prevents an iron-to-iron contact 
between the bar and yoke. If the magnetic flux 
through the circuit is 0.01 weber and the yoke-bar 
contact area is 100 cm2 per pole, what is the weight 
which the yoke will support (including the weight of 
the bar)? Neglect the effect of any fringing of the 
field. 
6-29. (a) If the contact area of the electromagnet of 

Prob. 5-28 is reduced to 50 cm' by means of tapered 
sections on the yoke, what is the weight which the 
yoke will support? Assume that the total flux in the 
circuit is the same as before and neglect the effect of 
any fringing of the field.  (b) In practice what pre-
vents the attractive force from increasing indefinitely 
as the contact area is reduced? 
6-30. What is the contact pressure in Probs. 5-28 

and 5-29a? 
5-31. A ring magnet with an air gap 1 mm wide 

has a uniform cross section of 10 cm' and a radius of 
20 cm.  If the flux density in the gap is 1 weber/ 

meterl, find the force tending to close the gap.  Neglect fringing. 
5-32. Show that the permeability of a permanent magnet with air gap may be 

expressed by p = — A0(6)17/6), where Ago = permeability of air, 6),,  permeance of air 
gap, and 6'  permeance of the empty space occupied by the magnet. 
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5-33. A long conducting tube of negligible wall thickness carries a longitudinal 
current of uniform sheet density K = I /(2irR), where I = total current and R 
radius of tube. Find H inside the tube (r < R), at r = R, and outside the tube 
(r > R).  What boundary relation is obviously satisfied at r  R? 
5-34. Referring to Fig. 5-43a, show that to satisfy the boundary conditions the 

image currents I' and I" are related to the current I in the wire in the iron by (5-86) 
and (5-87). 
5-35. A long, thin linear conductor carrying a current I extends along the plane 

boundary between 2 media, air and iron.  Assuming that the permeability L of the 
ron is uniform, show that the H field in air at a radius r from the conductor is 

µ   I 
Ho 

A + Ao wr 

while in the iron at a radius r from the conductor it is 

=  °  _",_  I 
P -r  Jr* 



CHAPTER 6 

CHARGED PARTICLES IN ELECTRIC AND 

MAGNETIC FIELDS 

6-1. Introduction.  In this chapter the motion of charged particles 
in vacuum in the presence of electric and magnetic fields is considered. 
It is assumed that the velocity of the particles is small compared with the 
velocity of light and that the effect of the particles on each other can be 
neglected. 
6-2. Charged Particle in a Static Electric Field. Let a particle of 

charge et be placed in a uniform electric field E. Since E is the force per 
unit charge (newtons per coulomb), the force F on the particle is 

F = eE  (6-1) 

The force is in the same direction as the field if the charge is positive and 
opposite to the field if the charge is negative.  If the particle is at rest and 
the field is applied, the particle is accelerated uniformly in the direction of 
the field. According to Newton's second law the force on a particle is 
related to its mass and acceleration by 

F = ma  (6-2) 
where F = force (newtons) 

m = mass (kg) 
a = acceleration (meters/sec2) 

Therefore the acceleration of the particle is 

a = —eE 

The velocity v of the particle after a time t is then 

v = at = —e Et 

where v = velocity of particle (meters/sec) 
e = charge of particle (coulombs) 
m = mass of particle (kg) 
E = electric field intensity (volts/meter or newtons/coulomb) 
= time (sec) 

t The symbol e will be used to designate the charge of a particle instead of q since e 
is more commonly employed in dealing with the charge of a particle. 

272 



SEC. 6-21  CIIARGED PARTICLES  273 

The field imparts energy to the charged particle.  If (6-3) is reexpressed 

ma = eE  (6-5) 

it has the dimensions of force.  Integrating this force over the distance 
moved yields the energy W acquired.  Thus 

W = m f2a• dl = —e f2E•d1 1  1  (6-6) 

as 

The line integral of E between two points, 1 and 2, may be recognized as 
the potential difference V between the points.  Substituting a = dv/dt 
and dl = v dt, (6-6) becomes 

W = m 12v•dv = eV  (6-7) 

or 

W = im (v22 _ v12, ) = eV  (6-8) 

where W = energy acquired (joules) 
v2 = velocity at point 2, or final velocity (meters/sec) 
v1 = velocity at point 1, or initial velocity (meters/sec) 
e = charge on particle (coulombs) 
V = potential difference between points 1 and 2 (volts or joules/ 

coulomb) 
If the particle starts from rest, the initial velocity is zero so 

W = eV = imv2 (6-9) 

where v = final velocity.  Equation (6-9) has the dimensions of energy. 
The dimensional relation in mksc units is 

meters2  
Joules = coulombs X volts = kilograms seconds2 

Thus the energy acquired by a particle of charge e starting from rest and 
passing through a potential drop V is given either by the product of the 
charge and the potential difference or by one-half the product of the mass 
of the particle and the square of the final velocity. 
Solving (6-9) for the velocity, 

2e V 
m 

v = meters/sec  (6-10) 

The energy acquired by an electron (e = 1.6 X 10-'9 coulomb) in 
"falling" through a potential difference of 1 volt is 1.6 X 10-19  joule. 
This amount of energy is a convenient unit in designating the energies of 
particles and is called one electron volt. 
In the case of an electron e = 1.6 X 10-'9 coulomb and m = 0.91 X 

10-" kg so that (6-10) becomes 

v = 5.93 X 106 -Vr7 meters/sec  (6-11) 
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Thus, if V = 1 volt, the velocity of the electron is 5.9 X 108 meters per 
sec, or 590 km per sec.  It is apparent that a relatively small voltage 
imparts a very large velocity to an electron.  If V = 2,500 volts, the 
velocity is 3 X 10 meters per sec, or about one-tenth the velocity of 
light. As mentioned in Sec. 6-1, the above relations are based on the 
assumption that the particle velocity is small compared with that of 
light. This is because the mass of a particle approaches an infinite value 
as the velocity approaches that of light (relativistic effect), whereas the 
above relations are based on a constant mass.  Actually, however, the 
mass increase is of negligible consequence for most applications unless 
the velocity is at least 10 per cent that of light.  The relation between 
the mass m of the particle and its mass mo at low velocities (rest mass) 
is given by 

m — 
Hto 

V1 — (v2/c2) 

where v = velocity of particle (meters/sec) 
c = velocity of light (3 X 108 meters/sec) 

If the velocity is one-tenth that of light, the mass is only one-half of 1 per 
 E  cent greater than the rest mass. 

If the particle has an initial velocity which is not 
parallel to the field direction, as assumed above, 

v the particle describes a parabolic path (Fig. 6-1). 
F  The deflection of an electron by a transverse elec-

Flo. 6-1. Path of poa - tric field is discussed in a later section on the 
tively charged particle  cathode-ray tube. 
in electric field. 

6-3. Charged Particle in a Static Magnetic Field. 
From (4-30) the force F on a current element of length dl in a uniform 
magnetic field is 

dF = dl (I x B)  (6-13) 

where I = current (a vector indicating magnitude and direction of the 
current) 

B = flux density 
This is the fundamental motor equation of electrical machinery. It also 
applies to moving charged particles in the absence of any metallic 
conductor. 
The current I in a conductor or in a beam of ions or electrons can be 

expressed in terms of the current density J, the charge (volume) density 
p, the beam area A, and the velocity v by 

I = JA = pv A  (6-14) 

Substituting (6-14) for I in (6-13), 

dF = pA dlv xB 

(6-12) 

(6-15) . 
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But pA dl = dq, the charge in a length dl of the beam. Thus 

dF = dq v x B  (6-16) 

For a single particle of charge e, we have 

F = ev x B  (6-17) 

Consider now the motion of a particle of charge e in a uniform magnetic 
field of flux density B. The velocity of the particle is v. From Newton's 
second law the force on the particle is equal to the product of its mass m 
and its acceleration a(= dv/dt). Thus 

or 
ma =evxB  (6-18) 

a = —e vxB 
m 

(6-19) 

According to (6-19) the acceleration is normal to the plane containing the 
particle path and B.  If the direction of the particle path (indicated by 
v) is normal to B, the acceleration is a maximum.  If the particle is at 
rest, the field has no effect. Likewise, if the particle path is in the same 
direction as B, there is no effect, the particle continuing with this velocity. 
Only when the path or the velocity v has a component normal to B does 
the field have an effect. 
If a magnetic field of large extent is at right angles to the direction of 

motion of a charged particle, the particle is 
0  o deflected into a circular path. Suppose  ®  e 

that in a field-free region a positively +  v  P  v 
charged particle is moving to the right as  ®  0 

indicated in Fig. 6-2 and that when it 
reaches the point P a magnetic field is ap-  e 0 

plied.  The direction of B is normally out-
ward from the page.  According to the cross 
product of v into B in (6-19) the accelera-
tion a is downward so that the particle 
describes a circle in the clockwise direction 
in the plane of the page. 
Let us determine the radius R of the circle. The magnitude of the 

force F (radially inward) on the particle is, by (6-19), 

This force is also given by 

B(out) 
0  0  0  0 

Fm. 6-2. Path of positively 
charged particle in magnetic 
field. 

F = ma = evB  (6-20) 

= mv2 
F  

It 
(6-21) 
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Equating (6-20) and (6-21) yields 

or 

my' 
R 

R = ""' i-f-3 

[CHAP. 6 

(6-22) 

(6-23) 

where R = radius of particle (meters) 
m = mass of particle (kg) 
v = velocity of particle (meters/see) 
e = charge of particle (coulombs) 
B = flux density (webers/meter') 

Thus, the larger the velocity of the particle or the larger its mass, the 
greater the radius.  On the other hand, the larger the charge or the flux 
density, the smaller the radius. 
The number of revolutions per second of the particle in the circular 

path is called the frequency f of the particle. The frequency is 

v  eB 
f = 2TR = 2arm 

rps (6-24) 

Example. An electron has a velocity of 104 meters/sec normal to a magnetic field 
of 0.1 weber/meters flux density.  Find the radius of the electron path and also its 
frequency. 
Solution.  From (6-23) the radius 

0.91 X 10-s° X 104 
R = 1.6  lir = 5.7 X 10-7 meter 

X  " X 10-s 

This is a very small circle.  The frequency 

10'   
f — 27r X 5.7 X 10-7 .2. 2.8 X 10s rps 

If the particle in the above example had an initial velocity component 
parallel to B as well as perpendicular to B, the particle would move in a 
helical path with the axis of the helix parallel to B. 
To illustrate applications of the relations of this and the preceding 

section, the operation of three electronic or ionic devices is described in 
the next sections. These devices are the cathode-ray tube, the cyclotron, 
and the mass spectrograph (Prob. 6-5). 
6-4. The Cathode-ray Tube.' A cathode-ray tube is a device for 

observing rapid voltage variations.  In a cathode-ray tube (Fig. 6-3) a 
beam of electrons is emitted from a cathode, is accelerated by an electrode 
A, and impinges on a fluorescent screen. By means of either a transverse 
electric or a transverse magnetic field the beam may be deflected so that 

I Sometimes called a Braun tube after Carl F. Braun. 
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it strikes the screen at a distance y from the undeflected position. The 
spot on the screen is visible, and the particular usefulness of the cathode-
ray tube is that, because of the small inertia of the electron beam, it can 
follow very rapid changes in the applied deflecting field. This is a some-
what oversimplified description of a cathode-ray tube but will suffice for 
the following brief analysis of some of its characteristics. 

C E.  A 
+ + v 

Ti- d'''' 

Va 

l 

( Deflecting plates  Screen 
FIG. 6-3. Cathode-ray tube with electrostatic deflection. 

The positive accelerating potential V. is applied to the electrode A. 
This produces an accelerating field E. that imparts a velocity v. to the 
electrons.' From (6-10) 

v. = 
la 

(6-25) 

After an electron leaves the accelerating electrode, it maintains this 
velocity v.. 
Let us consider the effect of electrostatic deflection with two plates at a 

potential difference Vd as in Fig. 6-3. The path of an electron in the 
transverse deflecting field is a parabola.  Neglecting fringing of the field 
at the edges of the plates, the electron is subjected to the deflecting field 
Ed for a distance 1 or for a time t = //v.. The field Ed produces an 
acceleration a. in the y direction which, from (6-3), is 

eV,' 
av = WI 

(6-26) 

Thus, the electron acquires a velocity component th, in the y direction 
given by 

_ ,  eVal 
V' = ' = truly. 

(6-27) 

1 Actual cathode-ray tubes usually have several accelerating electrodes in a tandem 
arrangement.  These serve the dual purpose of accelerating the electrons and of 
focusing them. The value of V. used in (6-25), in the case of an actual tube, should 
be the total effective accelerating voltage. This is often called the electron beani 
voltage. 
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The deflection angle a (Fig. 6-3) is then 

v„  eVd1  
a = arctan — = arctan indv.2 

v. 
Or 

(CHAP. 6 

(6-28) 

Vd/ 
a = arctan 2 Vad  (6-29) 

But from the tube geometry, assuming x>> 1, the angle a is also given by 

a = arctan 2 (6-30) 
x 

and so, equating the arguments in (6-29) and (6-30), 

Vdix 

Y — 2Vad 
meters  (6-31) 

where y = deflection distance at screen (meters) 
Va = deflecting potential (volts) 
1 = length of deflecting plates (meters) 
x = distance from deflecting plates to screen (meters) 
V. = accelerating potential (volts) 
d = spacing of deflecting plates (meters) 

Solving for the volts per meter of deflection (ratio Vd/y), we have 

Vd  2Vad 
volts/meter 

Y =  lx 
(6-32) 

Example 1. A cathode-ray tube with electrostatic deflection has an accelerating 
voltage V., = 1,500 volts, a deflecting-plate spacing d = 1 cm, a deflecting-plate 
length 1 = 1 cm, and a distance x = 30 cm from deflecting plates to the screen. Find 
the voltage Vd required to deflect the spot by 1 cm on the screen. Neglect fringing 
of the field. 
Solution.  From (6-32) 

Va  2 X 1,500 X 10-2 
10,000 volts/meter 

y  10-2 X 30 X 10-2  — 
or 

= 100 volts/cm 
y 

To increase the sensitivity, that is, to decrease the number of volts per 
meter of deflection, V. or d should be decreased or an increase made in 1 
or x. 
Let us consider now the effect of a magnetic deflecting field. Suppose 

that the deflecting plates and electric field Ed of Fig. 6-3 are replaced by a 
magnetic field of flux density B normal to the page as in Fig. 6-4. The 
direction of B is outward from the page.  In this case the acceleration due 
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to the magnetic field is not in the y direction but is normal to the circular 
path of the electron.  Assume, however, that 1 is so small that as an 
approximation the acceleration can be taken in the y direction. Then 

O  0  o 

O  0  0 

O  e  e 
in a 

vz 

O  0  0 

•  0  0 
B (out) 

O  0  0 

Fm. 6-4. Cathode-ray tube with magnetic deflection. 

the velocity component in the y direction is 

v„ = at = Tr1.  (6-33) 

Thus from (6-20) 
eviB 1  eB1 

V y  =  (6-34) 
m v.  m 

The deflection angle a (Fig. 6-4) is 

or 

v„ 
a = arctan —v. = arctan —eB1 

vim 

a = arctan (B/ .\/ ) 
2m V. 

But we have also a = arctan y/x, and so 

= r131. V2n:Va 

(6-35) 

meters  (6-36) 

where y = deflection distance at screen (meters) 
x = distance from magnetic deflecting field to screen (meters) 
B = flux density of deflecting field (webers/meter2) 
e = charge on particle (coulombs) 
m = mass of particle (kg) 
V. = accelerating voltage (volts) 
1 = axial length of deflecting field (meters) 

Solving for the flux density per meter of deflection (ratio B/y), we have 

B = 1 I2mVi 
y  xl  e 

(6-37) 
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where the ratio B/y is in webers per square meter per meter of deflection. 
For an electron (6-37) becomes 

B  3.38 X 10-6  — 
-  z/  A/ V' (6-38) 

where x = distance from deflecting field to screen (meters) 
1 = axial length of deflecting field (meters) 
V. = accelerating voltage (volts) 

Example 2. A cathode-ray tube with magnetic deflection has an accelerating volt-
age V. = 1,500 volts, a magnetic deflecting field axial length 1 = 2 cm, and a distance 
x = 30 cm from the deflecting field to the screen.  Find the magnetic field flux 
density B required to deflect the spot of an electron beam 1 cm on the screen. 
Solution.  From (6-38) 

or 

B  3.38 X 10-4  X 1,5001  
— 2.18 X 10-2  weber/meter'/meter y 30 X 10-2  X 2 X 10-2  

—B  2.18 X 10-4  weber/meters/cm 

6-5. The Cyclotron. The cyclotron is a heavy particle accelerator, 
invented in 1929 by Ernest 0. Lawrence, for obtaining a beam of high-
energy ions.  Particles such as protons, deuterons, or alpha particles are 
given multiple accelerations in a resonance chamber. Referring to Fig. 
6-5, two hollow D-shaped copper electrodes, or dees, are between the pole 
pieces of a large electromagnet. The region between the poles pieces is 
evacuated.  In Fig. 6-5 the walls of the vacuum chamber are omitted. 
The two dees are connected to a high-frequency source of alternating 
voltage.  In the case of deuteron operation, ions in heavy hydrogen gas 
at low pressure are produced at the center of the chamber by electrons 
emitted from a filament. 
Starting with a deuteron at the point P, a negative potential on the 

right-hand dee accelerates the deuteron to the right.  Entering the dee, 
the deuteron is in a region free of electric field but still in the magnetic 
field between the pole pieces. Suppose that the lower pole is a north pole 
so that B is upward. The deuteron then moves in a circle in a clockwise 
direction. If the timing is proper so that when the deuteron again 
reaches the gap between the dees the electric field has reversed, it will be 
accelerated to the left.  Having acquired additional energy, it moves in a 
circle of larger radius.  By repetition of this process the energy of the 
deuteron is increased in steps until it reaches the periphery of the dees. 
Here a deflecting electrode at a high negative potential pulls the deuteron 
through an opening in the dee so that it can impinge on a specimen 
placed outside the dee. 
The frequency in revolutions per second of a particle moving normal to 
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the magnetic field in a cyclotron is given by (6-24).  That is, 

4.  eB 
2w-m 

(6-39) 

Provided the particle velocity is small compared with light, m is sub-
stantially constant. Since e and B are also constant, f is a constant 

Deflecting 
electrode 

Ion paths 

Dees 

Top view 

(a) 

Magnet pole 

North pole \..:. 

.:•-•:.:;:-...::.. 

Filament.' 

FIG. 6-5. Cyclotron. 

Side view 

(b) 

regardless of the velocity of the particle.  However, from (6-23) the 
radius of the circular path is proportional to the particle velocity. 

Example 1. Find the frequency for a deuteron (e s• 1.6 X 10-" coulomb, an 
3.34 X 10-27  kg) in a cyclotron with a flux density B = 1.5 webers/meter2. 
Solution.  From (6-39) the frequency 

1.6 X 10-" X 1.5  
— 27 X 3.34 X 10-2 — 1.14 X 107 rps 

7 

This is the frequency that is required of the oscillator connected to the dees.  Accord-
ingly, the oscillator frequency must be 11.4 Mc/sec for accelerating deuterons. 
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The final energy of a particle is determined by the radius R and the 
flux density B.  From (6-23) 

R = mu  
eB 

The energy W of the particle is 

ReB 
or  V = (6-40) 

1 \l2W 
W = —2 mv-.  or  V =  (6-41) 

m 

Equating these relations for v and solving for the energy W of the particle, 

1 (ReB)2 
W —  (6-42) 

2 m 

Example 2. A cyclotron has a maximum working radius R =. 50 cm, a flux density 
B = 1.5 u ebers/meter2. Find the energy which may be imparted to deuterons. 
Solution.  From (6-42) the final energy 

(0.5 X 1.6 X 10-12  X 1.5)2 
W —  = 2.15 X 10-" joule 

2 X 3.34 X 10-22  

Since 
Energy in electron volts  energy in joules 

1.6 X 10-12  

this result in electron volts is 

2.15 X 10-12  
W.. —  = 1.33 X 102 electron volts 

1.6 X 10-" 

or an energy of 13.3 million electron volts. 

If either alpha particles or protons had been used, the energy would be 
doubled.  In the above discussion relativistic effects have been neglected 
as have also interaction effects of the ions in the beam. Corrections for 
these effects are usually small except in the larger high-energy cyclotrons. 
If the voltage V applied between the gap of the dees is small, a large 

number n of revolutions is required before the particle reaches the 
periphery.  However, to reduce the dispersion of the beam it is desirable 
to make n small and, hence, V as large as possible. The total energy W 
acquired in n revolutions is 

W = 2nVe  (6-43) 

Thus, for a given energy W as determined by (6-42) and for a particular 
voltage V, the number of revolutions is 

(6-44) 
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where W is in joules.  If the energy is expressed in electron volts, 

W.. 
n = -- X 1.6 X 10-" 

2eV 

we,„ 

(6-45) 

where e = charge of particle (coulombs) 
V = dee voltage (volts) 

6-6. Table of Charge and Mass for Common Particles.  The charge 
and mass for a number of common particles are listed in Table 6-1.  The 
mass given is the rest mass, or mass at zero velocity. 

TABLE 6-1 

Particle 
Charge e, 
coulombs 

Mass in, kg 
Ratio elm, 
coulombs/kg 

Electron   —1.602 X 10-" 9.107 X. 10-" —1.76 X 10" 
Positron   +1.602 X 10-" 9.107 X 10-" +1.76 X 1011 
Neutron   0 1.6747 X 10-" 0 
Proton (hydrogen nucleus)   +1.602 X 10-" 1.6725 X 10-'1 +9.6 X 101 
Deuteron (heavy hydrogen 
nucleus)   +1.6 X 10-" 3.34 X 10-" +4.8 X 10' 

Alpha particle (helium nucleus) +3.2 X 10-" 6.644 X 10-" +4.81 X 107 

PROBLEMS 

6-1. A particle with a negative charge of 10-" coulomb and a mass of 10-" kg is at 
rest in a field-free space.  If a uniform electric field of intensity E = 100 volts/ 
meter is applied at a time  = 0, what is the velocity of the particle 1 asec later? 

Ans. (a) v = 100 meters/sec. 
6-2. An electron beam with electrons of 1,000-electron-volt energy enters the trans-

verse static electric field of a pair of deflecting plates.  The plates are spaced 1 cm 
and are 2 cm long parallel to the beam direction.  If 10 volts is applied between the 
deflecting plates, find how far away the screen must be to obtain a deflection of 1 cm. 
Assume that the field is uniform between the deflecting plates.  Neglect fringing. 
6-3. If the electrostatic deflecting-plate system of Prob. 6-2 is replaced by a uniform 

magnetic field 2 cm long in the beam direction, find how far away the screen must be 
to obtain a deflection of 1 cm when the flux density B = 10-4  weber/meter'. 
6-4. a. What is the maximum energy in millions of electron volts for alpha particles 

in a cyclotron with a maximum usable radius of 50 cm?  The flux density in the air 
gap is 1 weber/meter'. 
b. What is the maximum energy if protons are used? 
c. What is the maximum energy for deuterons? 
d. What is the resonant frequency in each case? 
e. How many revolutions does each particle make if the peak potential between 

dees is 10,000 volts? 
6-5. A mass spectrograph is a device for separating particles of the same charge but 

different mass.  Referring to Fig. 6-6, the particles are injected with a known veloc-
ity v into a uniform magnetic field of flux density B.  Particles with larger mass strike 
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the fluorescent screen or photographic plate at a greater distance from the point of 
entry, as suggested.  Show that two particles of the same charge e and of masses m 1 
and m: injected with the same velocity v are separated at the screen by a distance d 
given by d  (2v/Be)(m2 — m1), where m: > 

0  0  0  0  0 
B(out) 

0  0 

Screen 

FIG. 6-6. Mass spectrograph. 

8-8. In Millikan's oil-drop experiment a tiny charged droplet of oil of mass m is sus-
pended in equilibrium in the gravitational field (of acceleration g) by an electric field 
of intensity E between two horizontal capacitor plates. If the droplet has N electron 
charges, show that the magnitude of the charge eon an electron is given by e = mg/NE. 
How can the polarity of the charge on the droplet be determined by this experiment? 



CHAPTER 7 

TIME-CHANGING ELECTRIC AND MAGNETIC 

FIELDS 

)( 7-1. Introduction. In the preceding chapters the principles of static 
electric and magnetic fields were considered.  In this chapter electric and 
magnetic fields that change with time are discussed, and a number of new 
relations and concepts are introduced. Some of the more important 
of these are (1) Faraday's law, which gives the emf induced in a closed 
circuit due to a change of magnetic flux linking it; (2) a relation giving the 
emf induced in a conductor moving in a magnetic field; (3) Maxwell's dis-
placement current, which represents an extension of the current concept to 
include charge-free space, and (4) an extension of the boundary relations 
developed in earlier chapters to include time-varying situations. 
7-2. Faraday's Law. In Chap. 4 we observed that a current-carrying 

conductor produces a magnetic field.  About 1831 Michael Faraday in 
London and Joseph Henry in Albany found independently that the 
reverse effect was also possible.  That is, a magnetic field can produce a 
current in a closed circuit but with the important 
qualification that the magnetic flux linking the circuit 

Wire loop,. 
must be changing. 
Consider, for example, the closed wire loop in Fig. 

7-1.  A magnetic field with flux density B is normal to 
the plane of the loop.  If B is directed upward and  B ( decreasing) 
decreasing in magnitude, a current I flows in the wire  FIG.  7-1. Relation 

in the direction indicated.' It is said that the cur-  between decreasing 
flux density B and 

rent is induced by the magnetic field. The relation induced current / in 
between the direction of B and I is given by the right-  loop. 
hand rule (Fig. 4-2).2 This is for the case where B is 
decreasing in magnitude.  If B is directed upward as before but is increas-
ing in magnitude, the direction of the induced current is opposite. 

The direction is that of the conventional current, which is opposite to the direction 
of motion of the electron current. 

I Here, however, it is more convenient to take B in the direction of the thumb and I 
in the direction of the fingers.  Both this rule and that of Fig. 4-2 relate B and I in 
the same way. 

285 
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When the applied flux density B is decreasing in magnitude, the current 
induced in the loop is in such a direction as to produce a field which tends 
to increase B (Fig. 7-2a).  On the other hand, when B is increasing, the 
current induced in the loop is in such a direction as to produce a field 
opposing B (Fig. 7-2b). Thus the induced current in the loop is always in 
such a direction as to produce flux opposing the change in B (Lenz's law). 

B ( dec easing)  B(( increasing) 

( a )  ( b) 
Fm. 7-2. Induced currents for decreasing and 
increasing flux density B. 

Wire 
loop 

E. 

FIG. 7-3a. Single-turn loop. 

The changing magnetic field produces an electric field E..  Integrating 
this field around the loop yields an emf V. That is 

V = "E. • dl  (7-1) 

When the loop is open-circuited as in Fig. 7-3a, this emf appears between 
the terminals. 
The electric field E. should be distinguished from an electric field E. 

due to charges.  Whereas E. can be described as the gradient of an 
electric potential V, that is,' 

E. = —VV  (7-2) 

the field E. cannot. The electric field E. may be regarded as an emf-
producing field. This type of field can result from the chemical action in 
a battery as discussed in Sec. 3-10.  It also results, as we see here, from a 
changing magnetic field. 
The electric potential V is a single-valued function of position. That 

is, a point P in an electric field E. due to charges has a single potential 
value V with respect to some reference point P', such as infinity or the 
ground. This value of V given by 

V = — IP Ec • dl  (7-3) 
P 

is independent of the path by which E. is integrated from P' to P. How-
ever, the emf V is not a single-valued function. That is, the emf V 
between two points 1 and 2 as given by 

v = f 2 E.  . 4 
(7-4) Jr 

does depend on the path by which E. is integrated from 1 to 2. For 
1 E, is a lamellar field. 
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example, if the terminals 1 and 2 of the wire loop in Fig. 7-3a are infini-
tesimally close together, the emf V between them as obtained by inte-
grating E. from 1 to 2 around the loop is equal to the line integral of E. 
around the closed loop.  But if E. is integrated from 1 to 2 directly across 
the gap, the result is zero. 
With the loop terminals open (Fig. 7-3a) a potential difference V equal 

to the emf V appears between the terminals.  A field E. is then present 
due to the electric charges on the terminals. The configuration of this 
field is different from the field E..  However, when the terminals are 
closed, there is no potential difference between any parts of the loop and 
no field E. 
The quantitative relation between the emf induced in a closed loop and 

the magnetic field producing the emf is given by Faraday's law.  Accord-
ing to this law, the total emf induced in a closed circuit is equal to the time 
rate of decrease of the total magnetic flux linking the circuit. Thus, in 
symbols, 

_ 
(7-5) 

dt 
I-0 k a 01 a  ct where I) = total emf (volts)  tl 

= total flux (webers) 
t = time (sec) 

The negative sign indicates that the emf and current direction is positive 
(the right-hand rule relates positive directions) with respect to the direc-
tion of the field when the field, and hence the flux, is decreasing with time. 
This situation is indicated in Fig. 7-2a. 
Equation (7-5) applies to a single-turn loop as in Fig. 7-1, 7-2, or 7-3a. 

For a loop of more than one turn, where all turns are linked by the same 
flux Om, Faraday's law may be expressed 

(7-6) 

where N = number of turns. 
If every turn is not linked by the same value of flux, we may write 

Faraday's law as follows, 
dA 

V =  dt  (7-7) 

where A = total flux linkage (weber-turns).  That is, for the case of N 
turns, 

j I  \A)=  • • • ±  OmN  (7-8) 

where 0„, 1 = flux linked by first turn 
= flux linked by second turn 

OmN = flux linked by Nth turn 

t it is assumed that the resistance per unit length of the loop conductor is uniform. 
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Now the total flux through a circuit is equal to the integral of the 
normal component of the flux density B over the surface bounded by the 
circuit.  That is, the total magnetic flux 1,P„, is given by 

0. = 1 B • dst (7-9) 

The surface may be any continuous surface bounded by the periphery of 

Wire loop 
This flux line  circuit 

links 
circuit once 

2 turn loop 
Surface bounded 
by loop circuit 

Each of these flux  1 -This flux line links 
lines links circuit twice  circuit once 

FIG. 7-3b. Circuit with 2-turn loop showing six flux-line linkages.  Each passage of 
a flux line through the surface constitutes one linkage. 

the circuit (see Fig. 7-3b). Substituting (7-9) in (7-5) yields 

V = — —d f B • da dt  (7-10) 

where V = induced emf (volts) 
B = flux density (webers/meter2) 
ds = surface element (meters2) 
t = time (sec) 

This relation was derived by F. E. Neumann about 1845 and may be 
regarded as a more general form of Faraday's law.  It gives the emf 
induced in a closed stationary circuit by a changing field. Equation 
(7-10) may also be applied to circuits in motion (with respect to the 
observer), with B constant or time-varying, provided that the motion of 
the boundary of the surface in (7-10) coincides at every instant with the 
motion of all parts of the physical circuit. Thus (7-10) can be applied to 
a loop or coil translated, rotated, or deformed in a magnetic field.  How-

t The symbol f indicates a double or surface integral (if) over a surface s. 
s 

Although it is simplest to consider (7-9) in connection with a single-turn loop, it also 
applies to a closed single conductor circuit of any number of turns or loops, the bound-
ary of the surface s coinciding with the conductor.  In this case 1,(,.. = A. Thus, 
referring to Fig. 7-3h, the surface integral of B over the surface bounded by the 
circuit yields the total flux linkages A, no consideration of the number of turns 
being necessary. 
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ever, in cases where the motion of the boundary of the surface of integra-
tion is not identical with the motion of all parts of the physical circuit 
(see Example 4, Sec. 7-6) Eq. (7-10) may not yield the correct induced 
emf. For such cases, one should use the general relation of (7-18) for 
the induced emf. 
When the loop or closed circuit is stationary or fixed, (7-10) reduces to 

aB 
= — f .ds (7-11) 

This form of Faraday's law gives the induced emf due specifically to a 
time rate of change of B for a loop or circuit that is fixed with respect 
to the observer. This is sometimes called the transformer induction 
equation. 
7-3. Maxwell's Equation from Faraday's Law. Integral Form. 

From (7-1) and (7-11) we have 

V = 96 E • dl = — P B • ds at  (7-12) 

where V = induced emf (volts) 
E = E. = emf-producing electric field' (volts/meter) 

dl = element of path (meters) 
B = flux density (webers/meter2) 
ds = element of area (meters2) 
t = time (sec) 

This relation is referred to as Maxwell's equation as derived from Faraday's 
law. It appears in (7-12) in its integral form. The corresponding 
differential relation is given in Sec. 7-9. 
According to (7-12) the line integral of the electric field around a fixed 

closed loop or circuit is equal to the normal component of the time rate 
of decrease of the flux density B integrated over a surface bounded by 
the circuit.  Both are also equal to the total emf V induced in the circuit. 
7-4. Moving Conductor in a Magnetic Field. In the preceding sec-

tions the emf induced by a change in flux linkage is discussed.  In some 
situations it is convenient or desirable to consider specifically the emf 
induced in a conductor moving in a magnetic field. 
From (6-17) the force F on a particle of electric charge e moving with a 

velocity v in a magnetic field of flux density B is 

F = evxB  newtons (7-13) 

1 To simplify the notation, the symbol E. will be used only where it is desirable to 
indicate explicitly that the field is an emf-producing type.  Since in (7-12) the integral 
of the electric field is an emf '0, it is obvious that E is emf-producing and to be explicit 
could be written L. 
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Suppose that the charged particle is situated in a wire moving with a 
velocity v through a magnetic field of flux density B as suggested in Fig. 
7-4.  Dividing (7-13) by e, we obtain the force per charge or electric field 
intensity E., or 

E. = —e = v x B  volts/meter  (7-14) 

The magnitude of E. is given by 

E, = vB sin 0  (7-15) 

where 0 = angle between v and B (Fig. 7-5).  The electric field E. is of 
the emf-producing type and is normal to the plane containing v and B. 

Z (out) 

0 

0 
Ee 
0 

0 

0 
2 

O  0  0 

0  0  0 

O  0  0 

O  0  0 

O  0  0 
B (out) 

Fla. 7-4. An emf is induced in 
moving across a magnetic field. 

A  A 

V 

Wire 
a wire  FIG. 7-5. Relation between direction of 

motion of wire and direction of B. 

For example, in Fig. 7-4, v is in the positive y direction, and B is in the 
positive z direction.  Hence, crossing v into B yields E„ in the positive x 
direction or along the wire. The emf V induced between two points 1 
and 2 on the wire (Fig. 7-4) is then 

V =  2 E • dl = f(vxB)• dl  volts  (7-16a) 

where V = emf induced over a length 1 of wire (volts) 
E = E. = electric field along wire (volts/meter) 

dl = element of length of wire (meters) 
v = velocity of wire (meters/sec) 
B = flux density of magnetic field (webers/meter2) 

For a straight wire where v, B, and the wire are mutually perpendicular, 
B is uniform, and v is the same for all parts of the wire; (7-16a) reduces to 

V = El = vB1  volts  (7-16b) 

where 1 = length of wire (meters). 
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Equations (7-16a) and 7-16b) are motional induction or flux-cutting 
laws giving the emf induced in a conductor moving with respect to the 
observer in a magnetic field.  Equation (7-16a) is the more general form, 
while (7-16b) applies to the special case where the directions of the wire, 
its motion, and the magnetic field are all mutually perpendicular.  It is 
also assumed in (7-16b) that all parts of the wire have the same value of 
v and that B is uniform. 
These relations may be used to find the emf induced in any part of a 

circuit due to its motion through a magnetic field.  They also can be 
applied to find the total emf induced in a closed circuit that is moved or 
deformed in a magnetic field that does not change with time. For a 
closed circuit (7-16a) becomes 

V = is • dl = f(v x B) • dl  (7-17) 

where V = total emf induced in circuit. 
7-5. General Case of Induction. Equation (7-12) gives the emf 

induced in a closed circuit due to the time rate of change of B (trans-
former induction).  Equation (7-17) gives the emf induced in a closed 
circuit due to its motion. When both kinds of changes are occurring 
simultaneously, that is, when B changes with time and the circuit is also 
in motion, the total emf induced is equal to the sum of the emfs given by 
(7-12) and (7-17), or 

as = 96(v x B) • dl — „ — • ds  (7-18) at 
The first term of the right-hand member gives the emf induced by the 
motion, while the second term gives the emf induced by the time change 
in B. The line integral in the first term is taken around the entire circuit, 
while the surface integral in the second term is taken over the entire 
surface bounded by the circuit. 
Equation (7-18) is a general relation and gives the correct value of total 

induced emf in all cases.  For the special case of motion only, aB/at = 0, 
and (7-18) reduces to 

V = f (v x B) • dl  (7-19) 

For the special case of time change of flux density only, v = 0, and (7-18) 
reduces to 

= - jas .ds  (7-20) 

In many situations the total emf induced in a closed circuit is given 
correctly by the flux-linking relation of (7-10). This relation states that 

V = — —d f B • ds 
dt 

(7-21) 
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Although (7-21) may be derived formally from (7-18), the explicit form of 
(7-21) is inadequate (without the introduction of relativity considera-
tions) to problems of motion where the motion of all parts of the physical 
circuit is not the same as the motion of the boundary of the surface of 
integration in (7-21). 
In the next section a number of examples are worked out to illustrate 

the applicability of the above four induction relations to various situa-
tions. To summarize, the four induction relations are 

(I)  V = 96 (v x B) • dl —  (I • ds  general case 

(II)  'U = 96 (v x B) • dl 

(III) 1.) = — 1.871 -t- • ds 
aB 

(IV) V = — ;rid f B•ds  flux linkage 

7-6. Examples of Induction. In this section seven examples are given 
in which the total emf induced in a closed circuit (total induction) is 
calculated by each of the four induction relations listed at the end of the 
preceding section. The general relation (I) gives the correct result in all 

A  A  cases. The other relations lead to the correct rea   
result in some cases but not in all cases, and the 
reasons for this are discussed. 

Fla. 7-6. Fixed loop of 
area A (for Example 1). 

nitude of B 

motion only (motional in-
duction) 

B change only (transformer 
induction) 

Example 1. Consider the fixed rectangular loop of 
area A shown in Fig. 7-6. The flux density B is normal 
to the plane of the loop (outward in Fig. 7-6) and is 
uniform over the area of the loop.  However, the mag-

varies harmonically with respect to time as given by 

B = Bo cos Lai  (7-21a) 

where Bo = maximum amplitude of B (webers/meter2) 
= radian frequency ( = 2irj, where f = frequency) (reciprocal seconds) 
t = time (sec) 

Find the total emf induced in the loop. 
Solution.  This is a pure case of B change only, there being no motion.  Hence, 

from (III) the total emf induced in the loop is 

aB 
— • ds = Awfio sin 0.4  volts  (7-22) 

This emf appears at the terminals of the loop (Fig. 7-6). Since the velocity v == 0, 
the emf calculated by (II) is zero and by (I) is identical with that in (7-22). The emf 
calculated by (IV) is also the same as given in (7-22). 
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Example 2. Consider the rectangular loop shown in Fig. 7-7. The width 1 of the 
loop is constant, but its length x is increased uniformly with time by moving the 
sliding conductor at a uniform velocity v. The flux density B is everywhere the same 
(normal to the plane of the loop) and is 

0B 

constant with respect to time.  Find the 
total emf induced in the loop.   

only, the flux density B being constant. 
Solution.  This is a pure case of motion  v 

Hence, from (II),  Sliding conductor 
FIG. 7-7. Sliding conductor for increas-

D = f(v x B) • dl = vB1  volts  (7-23)  ing loop area (for Examples 2 and 3). 

The entire emf in this case is induced in the moving conductor of length I. Since 
aB/at — 0, the emf by (III) is zero and by (I) is identical with (7-23).  The emf as 
calculated by (IV) is 

dx 
1) = — - ifB • de  — B1 Tft = — Bit'  volts  (7-24) 

This is the same as given by (7-23) except for the sign, which is arbitrary. 
Example 3. Consider again the same loop with sliding conductor discussed in the 

preceding example (Fig. 7-7). The flux density B is normal to the plane of the loop 
and is uniform everywhere. The sliding conductor moves with a uniform velocity v. 
These conditions are the same as in the preceding example.  However, in this case 
let the magnitude of the flux density B vary harmonically with time as given by 

B  Bo cos wi  (7-25a) 

Find the total emf induced in the loop. 
Solution.  This is a case involving both motion and a time-changing B. The emf 

1). due to the motion is given, from (II), by 

= (v X B) • dl =-- vBI = vlBo cos ca  (7-256) 

The emf V, due to a time-changing B is, from (III), 

- fas w - • de = corlBo sin wt  (7-26) 

According to (I) the total emf 1) is the sum of the ends of (7-256) and (7-26), or 

aB 
— 96(v x B) • dl —  -57- • ds 

= v/30/ cos wi  wxBo/ sin (a 
Bol V v2 (WX) 2 sin (wt + 5)  (7-27) 

where 6 = arctan (v/wx) 
x = instantaneous length of loop 

The emf from (IV) is the same as given in (7-27) except that 5 = arctan ( —v/wx). 
Example 4. The circuit for a rectangular loop of width land length x, is completed 

by sliding contacts through a thin conducting strip as suggested in Fig. 7-8. The 
loop is stationary, but the strip moves longitudinally with a uniform velocity v. The 
magnetic flux density B is normal to the strip and the plane of the loop.  It is con-
stant with respect to time and is uniform everywhere. The width of the strip is I, 
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the same as for the loop, although for clarity the loop is shown with a slightly greater 
width in Fig. 7-8.  Find the total emf induced in the circuit. 
Solution.  This is another case of motion only. Therefore from (II) the total emf 

is given by 
= .0.(v X B) • dl  vBl  (7-28) 

The entire emf in this case is induced in the moving strip and appears at the terminals. 
Since asiat = 0, the emf by (III) is zero and by (I) is identical with (7-28). 

Conducting 
strip 

Sliding 
contacts 

lop 
view 

Side 
view 

Fla. 7-8. Fixed loop with sliding strip (for Examples 4 and 5). 

The emf according to (IV) is zero. This is a situation involving motion where the 
boundary of the surface of integration is stationary although there is physical motion, 
and hence (IV) is not applicable. A variation of the arrangement of Example 4 is 
provided by the Faraday disc generator (see Prob. 7-14). 
Example 5. Consider now the same loop and strip as in the preceding example 

(Fig. 7-8), but let the magnitude of the flux density vary harmonically with time as 
given by 

B = Bo cos wt  (7-29) 

Find the total emf induced in the circuit. 
Solution.  This case involves both motion and a time-changing B.  From (II) the 

emf 1)„, due to the motion is 

= .f(v x B) • dl = vBl = vBol cos cot  (7-30) 

From (III) the emf V. due to a time-changing B is' 

as = —  • ds =wxiBol sin wi  (7-31) 

According to (I) the total emf '1.) is the sum of (7-30) and (7-31), or 

• V = 1)„,   vsot cos wt  wx,B0/ sin cut 
B01-Vv2 (wx,)2 sin (wt + 5)  (7-32) 

where 5 = arctan (v/wx1). 
For the same reason as in Example 4 relation (IV) is not applicable in this case, an 

emf being obtained that is the same as given in (7-31). 
Example 6. Consider next a rotating rectangular loop in a steady magnetic field 

as in Fig. 7-9a. The loop rotates with a uniform angular velocity w in radians per 
second. This arrangement represents a simple a-c generator, the induced emf appear-

I At low frequencies the effect of eddy currents in the strip can be neglected. The 
effect of addy currents will be even less if the strip is very thin and its conduc-
tivity poor. 
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ing at terminals connected to the slip rings. If the radius of the loop is R and its 
length 1, find the total emf induced. 

(a) 

B 

(b) 
Fia. 7-9. Alternating-current generator.  (a) Perspective view.  (b) Cross section 
perpendicular to axis. 

Solution.  This is a case of motion only so that the total emf may be obtained from 
(II). Referring to Fig. 7-96, it is given by 

V = .0.(v x B) • dl z.. 2vB1 sin 0  (7-33) 
Since 8 = cot, we have 

V = 2coli1B sin cut  (7-34) 

The factor 2 is necessary because there are two conductors of length 1 moving through 
the field, the emfs in both aiding. Since 2R1 = A, the area of the loop, (7-34) reduces 
to 

V = coBA sin 0.4  (7-35) 

Since as/at = 0, the emf calculated by (III) is zero.  Hence from (I) the emf is as 
given by (7-34) or (7-35).  In this case the motion of the surface of integration of (IV) 
coincides with the physical motion of the loop so that (IV) also gives the same emf as 
in (7-34).  Thus, from (IV), 

d  d 
V — —  i B • ds = —2R113 —ta cos 0 

— 2,0R1B sin tot 

(7-36) 
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Example 7. Consider finally the same rotating loop as in the preceding example 
with the modification that B varies harmonically with time as given by 

B = Bo sin cot  (7-37) 

Thus, when t = 0, B = 0, and 0 = 0 (Fig. 7-9b).  Find the total emf induced. 
Sol idion.  This case involves both motion and a time-changing B.  From (II) the 

emf 'U„, due to the motion is 

0̀„, = loR1B0 sin' a 
= wlaBo — wRIB0 cos 2cot  (7-38) 

From (III) the 4U, due to a time-changing B is 

= —2wR1Bo cos' wt 
= —wRIBo — coRlBo cos 2a  (7-39) 

From (I) the total emf  is given by the sum of (7-38) and (7-39), or 

= '1)„,  — 2W R1 Ba cos 2a  (7-40) 

The total emf may also be obtained from (IV).  Thus 

1.1 = — — d   d f B • ds = —2R1/30 —at (sin cot cos cot) at , 
—2wRIB.(cost wt — sini cot) 

= —2colaBo cos 2a (7-41) 

The emf in this example is at twice the rotation, or magnetic field, frequency.  It is 
to be noted that the emf calculated from either (II) or (III) alone contains a d-c 
component.  In adding the emfs by (II) and (III) the d-c component cancels, yielding 
the correct total emf given by (7-40). 

In the above examples we note that the general relation (I) always 
yields the correct total emf.  The flux-linking relation (IV) gave the 
correct total emf in all cases except Examples 4 and 5. It is also to be 
noted that if the emf calculated from (II) is zero, the emf from (III) 
equals the total emf, or, conversely, if the emf from (III) is zero, the total 
emf is given by (II). 
7-7. The Betatron.  We have seen that a time-changing magnetic 

field produces an electric field.  When a loop of wire is placed in the 
changing magnetic field, an emf is induced in the loop that is equal to the 
line integral of the electric field around the loop.  Thus, according to 
(7-12), 

aB = 96E•d1 = — .1 73.1-•ds  (7-42) 

With the loop open this emf appears at the loop terminals. 
It is highly significant to note that the induced electric field E exists 
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whether the wire loop is present or not.  This fact is well illustrated' by 
an electron-accelerating device called a betatron.2 
In a betatron electrons are accelerated by an electric field induced by a 

time-changing magnetic field. The magnetic field is produced by an 

Poles 

(b) 
(a) Circular electron Fla. 7-10. Betatron. 

betatron. 

(a) 

Evacuated 
doughnut 

orbit.  (b) Cross section through 

a-c electromagnet with laminated iron core.  Electrons are injected 
between the pole pieces of the magnet and are accelerated during a frac-
tion of one a-c period. 
Let a magnetic field of flux density B be directed out of the page from a 

pole piece as suggested in Fig. 7-10a. The time-changing B induces an 

The fact that an electric field is produced in empty space by a changing magnetic 
field is also illustrated by a traveling electromagnetic wave, which may be said to 
propagate through space because an electric field is produced by a changing magnetic 
field, with this electric field, in turn, producing another magnetic field, etc. See 
Chap. 9. 

2 The betatron was developed by Donald W. Kerst about 1940, a device of this type 
having been proposed earlier by Max Steenback. 
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electric field E. According to (6-1) an electron in this field experiences a 
force 

F = eE  newtons (7-43) 

where E = electric field (volts/meter) 
e = charge on electron (coulombs) 

Since the electron is in a magnetic field, it tends to move in a circle. 
Thus, if B in Fig. 7-10a is outward as shown and is increasing with time, 
the electron will rotate counterclockwise. 
The energy per unit charge acquired by an electron in traveling once 

around a circular orbit of fixed radius R is equal to the total induced emf 
around the path, which, from (7-42), is 

4. 
'0 = 2TRE = —  volts  (7-44) 

dt 

where 4,„, = total magnetic flux through the electron orbit (inside radius 
R). Disregarding the sign, the magnitude of the electric field is 

E—  1 d4',,,, 
= — — 2rR dt 

Substituting (7-45) for E in (7-43) yields a force of magnitude 

F 
e 4. 

= eE = —  — 
2rR dt 

By Newton's second lawl 
F — d(mv) 

dt 
Equating (7-46) and (7-47), 

d(mv) _ e 4. 
dt  2rR dt 

(7-45) 

(7-46) 

(7-47) 

(7-48) 

Referring to Fig. 7-11, suppose that the total flux 4, „, through the elec-
tron orbit varies harmonically as given by 

= 0„,,, sin wt  (7-49) 

where 4,„,„ = maximum magnetic flux (webers) 
co = 2rf = 2r/ T = radian frequency (reciprocal seconds) 
f = frequency 
T = period 

1 This form of Newton's second law is used since sufficiently large electron velocities 
may be involved in the betatron that the mass m of the electron may become signifi-
cantly greater than its rest mass [see (6-12)1.  If m is a constant, (7-47) reduces to 
F  m dv/dt = ma. 
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Electrons from a hot cathode may be injected into the betatron at a 
radius R at a time t = 0 when the flux 1/./m is zero, as indicated in Fig. 7-11. 
Then, if an electron is removed at some later time t less than one-quart er 
period (T/4), its momentum is, by integration of (7-48), 

my =  newton-sec  (7-50) 
2TR 

where 4,„, = total magnetic flux at time I through the electron orbit. 
Neglecting the initial momentum of the electron, (7-50) gives the 

Injection 

Fm. 7-11. Flux variation as a function of time in a betatron, showing times of injection 
and removal of electrons. 

momentum my of the electron at some time t after injection which occurs 
at t = 0 (see Fig. 7-11). The velocity of the electron is 

64 v —  4.  meters/sec  (7-51) 
22Rm 

According to (6-40) the radius R of the electron is given by 

= my  
eB 

where m = mass of electron (kg) 
v = velocity of electron (meters/sec) 
e = charge of electron (coulombs) 
B = flux density at radius R (webers/meter') 

From (7-50) and (7-52) we obtain 

B
ly„, 1 O.  1 

=    
27R2 2 A  2 

(7-52) 

(7-53) 

where A = area of electron orbit 
= average flux density inside electron orbit 

Both B and B.. are instantaneous values.  Hence, according to (7-53) 
the instantaneous flux density B at the electron orbit (radius R) must be 
one-half the average flux density inside the orbit at the same instant. 
When this condition is fulfilled, the radius R remains constant as the 
electrons are accelerated. To obtain the 2 to 1 ratio of B. to B, the 
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poles of the magnet can be tapered as indicated in the cross-sectional view 
in Fig. 7-10b.  This cross section also shows the hollow, ring-shaped glass 
enclosure, or "doughnut," which is pumped out to provide an evacuated 
space for the electron orbit. 
To utilize the accelerated electrons, they may be made to impinge on a 

target and produce X rays.  The target is placed near the orbit radius R, 
and a radial displacement of the orbit is caused by upsetting the 2 to 1 
relation of B.. to B. This may be accomplished by having saturation of 
the poles occur sooner at one radius than at another.  For example, if 
saturation occurs earliest at the center of poles, the electron beam tends 
to spiral inward.  The radial displacement of the electrons so that they 
impinge on a target is designated as the removal time in Fig. 7-11.  Owing 
to resistance of the magnet winding and to core saturation the total mag-
netic flux in an actual betatron may depart from a sinusoidal variation at 
large values of flux as suggested by the dashed line in Fig. 7-11. 
7-8. Stokes' Theorem.  In Sec. 7-3 Maxwell's equation from Fara-

day's law is stated in integral form. This equation may be transformed 

Ey1 

As 

Er 

ill 

Ey1 wit 

Fm. 7-12. Small rectangular area.  Fm. 7-13. Illustration for Stokes' theo-
rem. 

from an integral to a differential form by means of Stokes' theorem. 
This theorem is developed in this section and applied to Maxwell's equa-
tion in Sec. 7-9. 
Consider a square of area As in the x-y plane as in Fig. 7-12. Let the 

electric field E have components E. and E„ as shown.  Now the work per 
coulomb required to move a charge around the perimeter of the square 
is given by the line integral of E around the perimeter. This work equals 
the total emf around thd perimeter. That is, 

= fE • dl  (7-54) 

Dividing by the area As and taking the limit of this ratio as As approaches 
zero yields the curl of E normal to As at the point around which As 



(a) 

Sec. 7-8]  TIME-CHANGING FIELDS  301 

shrinks to zero (see Sec. 4-23). Thus 

Jim  E • dl 
= curl. E  (7-55) 

6.1-..o  As 

where curl . E = component of the curl of E normal to the area As. 
Consider now a surface of area xiyi as shown in Fig. 7-13.  Let the 

area be divided into infinitesimal areas as suggested.  From (7-55) the 
work per coulomb to carry a charge around an infinitesimal loop divided 
by its area is equal to the curl of E at the point.  If the curl of E is 
integrated over the entire area xiyi, all contributions to the total work 
cancel except for the work along the periphery of the area 
The situation here is analogous to that of a single current loop with 

current I, Fig. 7-14a, whose effect is the same as a mesh of current loops, 

kr 

Fm. 7-14. (a) Single current loop and (b) equivalent mesh of small current loops. 

each with a current I, as suggested in Fig. 7-14b.  It is assumed that the 
adjacent sides of the small loops are very close together. Since the cur-
rents in adjacent sides are oppositely directed, their fields cancel. The 
only currents whose effects are not canceled are those along the periphery 
of the area of radius It. 
Returning now to the area xiyi in Fig. 7-13, the integral of the normal 

component of the curl over the area xiyi must equal the line integral of E 
around the periphery of the area.  That is, 

96 E • dl = fa (curl E) • ds  (7-56) 

Dimensionally (7-56) is of the form 

Force work/charge 
X distance —   X area 

Charge  area 

Since force X distance = work, (7-56) is balanced dimensionally.  In 
(7-56) it is understood that if the curl of E is integrated over an area s, 
the line integral of E is taken around the periphery of the same area s. 
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That is, 

96  E • dl =  f (curl E) • ds  (7-57) 
Periphery  surf ace 
of s  of s 

Using the notation V x E for the curl of E, (7-56) becomes 

96 E • dl = is (V x E) • ds  (7-58) 

The relation expressed by (7-56) or (7-58) is called Stokes' theorem as 
applied to electric fields.  In general, Stokes' theorem states that the line 
integral of a vector function around a closed contour C is equal to the integral 
of the normal component of the curl of that vector function over any surface 
having the contour C as its bounding edge. 
7-9. Maxwell's Equation from Faraday's Law. Differential Form. 

By means of Stokes' theorem (7-58), let us substitute the surface integral 
of the curl of E for the line integral of E in (7-12).  That is, 

ff(v x E) • ds = — ff aaBt_ • ds  (7-59) 

Since ds in (7-59) applies to any surface element, it is arbitrary and there-
fore the integrands in (7-59) are equal.  Thus 

a v xE = — —at  (7-60) 

This is Maxwell's equation, in differential form, as derived from Faraday's 
law.  The integral form of the equation was given in (7-12). 
In words, (7-60) indicates that if B is changing with time at some 

point P, then the curl of E has a value different from zero at that point. 
7-10. The Series Circuit.' Inductance Only.  According to Faraday's 

law a change in the total flux through a coil induces an emf in the coil. 
Consider now that instead of an emf being induced in the coil it is situ-
ated in a field-free region and that an emf V. is applied to the terminals 
of the coil.  This emf causes a current I to flow, which in turn produces a 
counter emf V.  By Kirchhoff's voltage law the sum of the emfs around 
a circuit equals the total IR drop.  Assuming that the resistance of the 
coil is zero, it follows that 

From (7-7) 

'O. ± V = 0 

dA 
dt 

(7-61) 

(7-62) 

I The circuits considered in this chapter are small compared with the wavelength 
(see Chap. 13). 
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where A =- total flux linkages of coil.  According to (4-58), A = LI; so 

d(LI)  dl 
dl  dl 

where L = inductance of coil (henrys) 
I = current through coil (amp) 

It is assumed that no ferromagnetic material is present so that the 
inductance L is constant.  From (7-61) and (7-63) we have 

or 

volts  (7-63) 

dl 
=  (7-64) 

dt 

dl 
dl = 7; (7-65) 

According to (7-65) the time rate of change of the current is equal to the 
ratio of the applied emf to the inductance. 

Example.  Consider the hypothetical circuit of Fig. 7-15a containing a coil of 
inductance L.  The emf 1),, of a battery is applied by closing the switch S. The coil 
and battery are assumed to have zero resistance.  It is further assumed that ferro-

(b) 
Fla. 7-15. Circuit with inductance. 

magnetic materials are absent so that L is a constant.  Let the switch S be closed at 
the time t = 0. Find how I varies with time. 
Solution.  The current at any later time t is obtained by integrating (7-65).  That 

is, 
, 

A  =  -  A (7-66) 

The current increases linearly with time, as indicated in Fig. 7-156.  The slope of the 
line is equal to V./L.  Thus the angle 

a = arctan —v. (7-67) 

As time increases, the current I increases indefinitely at a constant rate. 

7-11. The Series Circuit.  Resistance Only.  Consider a circuit con-
taining a resistor only.  By Kirchhoff's voltage law an emf 'U. applied to 
the resistor is equal to the IR drop across the resistor Thus 

= IR  (7-68) 

If V. and R are constant, the current I is constant. 
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Example.  The hypothetical circuit of Fig. 7-16a has a resistor of resistance R. I. 
Let the switch S be closed at time / = 0, applying the emf V,, to the circuit.  Find 
how I varies with time. 

It 
1 

"Va 

(a)  (6) 
Flo. 7-16. Circuit with resistance. 

Solution.  From (7-68) 
V. 

amp (7-69) 

That is, the current jumps instantaneously to a value Vs/R when the switch is closed. 
The current vs. time relation is indicated graphically in Fig. 7-16b.  In this hypo-
thetical circuit containing resistance only, the rate of increase of the current is infinite 
when V. is applied and the current reaches its final value instantaneously. 

7-12. The Series Circuit. Resistance and Inductance.  If a circuit 
contains both resistance and inductance connected in series, we have, 
from Kirchhoff's voltage law, that 

V. = RI  L — dI 
dt 

(7-70) 

where V. = total applied emf (volts) 
R = total resistance (ohms) 
L = total inductance (henrys) 
I = current (amp) 
I = time (sec) 

Example.  Consider the series circuit containing both resistance and inductance 
shown in Fig. 7-17a.  For convenience it is assumed that all of the resistance of the 
circuit is lumped in a single resistor of resistance R and that all of the inductance of 
the circuit is lumped in a coil of inductance L.  If the switch S is closed at the time 
t = 0, applying the emf V. to the circuit, find how I varies with time.  In particular 
find the value of the current at a time I = LIR. 
Solution.  Equation (7-70) may be reexpressed as 

dl , R , V. 
Tit  L = 7;  (7-71) 

t This circuit and the one in Fig. 7-15a are "hypothetical" in the sense that actual 
circuits are not purely resistive or inductive.  Thus a coil will have some resistance, 
and a resistor will have some inductance. 
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which may be recognized as a first-order differential equation.  The solution of this 
equation for the current I at any time tie 

=  —  (7-72) 

where e  base of natural logarithms (= 2.718).  When t = 0, the current I = 0 
the same as for a purely inductive circuit.  As time increases, the current starts to 
increase at the same rate as for the pure inductance.  However, this rate of increase 
(slope of current-time curve) approaches zero as the time increases.  After a long 
time the current approaches a constant value of Va/R.  This is the same value 
of current as would be obtained in a circuit containing only a pure resistance R.  The 
variation of I with time is illustrated graphically by Fig. 7-176. 

(6) 

Fia. 7-17a and b. Circuit with inductance and resistance. 

To demonstrate that when the switch is closed the current starts to increase at flu 
same rate as for a pure inductance circuit, the slope of the curve may be obtained by 
differentiating (7-72) with respect to time.  Thus, the slope at any time t is 

dl  e-(R/L)t -  (7-73) 
L 

and at time t = 0 the slope is 
dl 
di = L 

which is the same as (7-65) for the pure inductance case. 
Focusing attention on the term 

e- (5/1,41 

in (7-72), its value at t = 0 is unity.  Thus, when t = 0, 

Now when the time t = L/R, 

e-tRizog  1 

R L 

= e--' -1 = 0.368 

(7-74) 

(7-75) 

Thus, when t = L/R, the value of the term has decreased to lie (or 36.8 per cent) of 
its original value.  The current I in the circuit has accordingly risen to 

100 — 36.8 = 63.2 per cent 

of its final value (Fig. 7-176).  Therefore, the ratio L/R determines the length of time 
for the current to reach 63.2 per cent of its final value.  The ratio L/R is called the 
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time constant of the circuit and is a convenient quantity for comparing such circuits. 
In mksc units the dimensional relation for the time constant L/R is 

Henrys  
= seconds 

Ohms 

7-13. The Series Circuit. Resistance, Inductance, and Capacitance. 
If an emf 't.)„ is applied to a capacitor of capacitance c, 

Q 
Va — z; (7-76) 

where Q = charge on capacitor plates.  For an infinitesimal change in 
end cet.)„ we have an infinitesimal change in charge dQ, or 

1 
do. = —c dQ (7-77) 

From the continuity relation (3-61) between charge and current, (7-77) 
becomes 

1 
d.0a =  c— I dt (7-78) 

where I = current to capacitor.  If '1.). = 0 at t = 0, then at some later 
time t we have, on integrating (7-78), that 

1 t 
= -c„ f  0 / dt  (7-79) 

In a series circuit containing resistance, inductance, and capacitance it 
follows from Kirchhoff's voltage law and Eqs. (7-70) and (7-79) that the 
total applied emf is 

v. = RI + L — dl -I- —1 f̀ I dt  volts  (7-80) 
dt  C 0 

where R = total resistance (ohms) 
L = total inductance (henrys) 
C = total capacitance (farads) 
I = current (amp) 
I = time (sec) 

The emf 1%, and the current I in (7-80) are instantaneous values. The 
solution for the current I at any time t is discussed in texts on circuit 
theory and will not be considered here.' 
7-14. Energy in an Inductor. A circuit element possessing inductance 

stores energy in its magnetic field. This may be readily demonstrated 
experimentally by the circuit of Fig. 7-17c.  A large inductance coil is 

' See, for example, K. Y. Tang, "Alternating Current Circuits," International 
Textbook Co., 1940, p. 374. 
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connected in parallel with an incandescent lamp.  With the switch S 
closed, current passes through both the coil and lamp. Suppose that 
under these conditions the lamp is dimly lighted.  When the switch is 
opened, disconnecting the battery, the lamp, instead of going out, 
increases momentarily in brilliancy because the magnetic field of the 
coil induces a current through the circuit as the field around the coil 
collapses. To light the lamp requires energy, and it 
therefore follows that energy was stored in the magnetic 
field of the coil. Let us now calculate the value of this 
energy. 
The instantaneous power P delivered to a circuit ele-

ment is 
P = VI 

where V = voltage across the element 
I = current through the element 

The increase (or decrease) in the magnetic energy 
in the element between time  and time £2 is the integral 
of the power P between these times. Thus 

=  VI dt  (7-80a) 

Suppose that the circuit element under consideration is 
ance L. Now the voltage V across the coil is 

dl 
V =  — 

dt 

FIG. 7-17c. Cir-
cuit for demon-
strating energy 
storage in a mag-
netic field. 

a coil of induct-

Substituting this value of V in (7-80a), changing limits, and integrating 
yields 

Wm = 112LI dl = irL(122 — 112) 
1, 

It is assumed that L is constant.  If L = 0, (7-80b) reduces to 

= iL/22 joules 

where /2 = final current (amp) 
L = inductance (henrys) 

Since L = A//, this energy relation can be expressed variously as 

W = 1L/2  .1 Al — 1A2 . 
Wm  2  — —  joules 

(7-80b) 

(7-80c) 

Example.  A coil has an inductance of 2 henrys. If the current through the 
coil is 1 amp, find the energy stored. 
Solution.  From (7-80c) the energy stored is 

W,,,  4/./1 u. 1 joule 
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If L is not a constant as in an inductance coil with iron core, the energy 
must be obtained by integration of (7-80a), which may be reexpressed as 

=  I dA  joules  (7-80d) 

where W. = increase (or decrease) of energy between the times Li and £2 
(joules) 

A1 = flux linkages at time Li (weber-turns) 
A2 = flux linkages at time £2 (weber-turns) 
I = current (amp) 

7-15. Mutual- and Self-inductance. Consider that two uniform 
toroidal coils are interwound as in Fig. 7-18a.  Coil 1 of N1 turns is 

2 s 

(a) 

(b) 
Fro. 7-18. Toroidal coil with 2 windings. 

indicated by a heavy wire and coil 2 of N2 turns by a fine wire. There is 
no electrical connection between the coils. The ring-shaped form on 
which the coils are wound is assumed to have a constant permeability A. 
Coil 1 will be called the primary winding and coil 2 the secondary. A 
schematic diagram of the arrangement is shown in Fig. 7-18b. 
If the primary current /2 is constant in value, the emf V2 appearing at 

the terminals of the secondary coil is zero, since the flux 4/.2 produced by 
the primary coil is not changing.  It is assumed that all of the magnetic 
field produced by /2 is confined to the region inside the toroidal windings. 
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This may be realized with a uniform winding of sufficient turns.  How-
ever, to simplify the drawing, only a few turns are shown in Fig. 7-18a 
although both windings are assumed to be uniform and consist of many 
turns. 
Suppose now that the resistance 1? is decreased at a constant rate so 

that I increases. This increases the magnetic flux 0„, . Disregarding 
the negative sign, we have from Faraday's law that the magnitude of the 
emf '02 induced in coil 2 and appearing at its terminals is 

dik„,1 
'02 = 11,2  (7-81) 

dt 

where Ik„si = magnetic flux produced by primary coil.  If a long solenoid 
is closed on itself, we obtain a toroid.  Assuming that the radius r of the 
toroid is large compared with the radius s of the winding (Fig. 7-18a), the 
flux density B may be considered constant over the interior of the wind-
ing. Obtaining the magnitude of B from (4-50), the total flux #„81 
through the toroid is 

AIN iTs2 if iA  
= Birs2 =  webers 

2Tr  1 

where A = area of winding cross section (A = irs2) 
1 = mean length of the toroidal coil (1 = 2wr) 

Substituting (7-82) in (7-81) gives 
= N N IAA rill 

2 1 dt 

(7-82) 

(7-83) 

According to (7-83) the secondary emf V2 is proportional to the number of 
primary turns NI, the number of secondary turns N 2, the permeability At 
of the medium inside the winding, the cross-sectional area A of the wind-
ing, and the time rate of change of the primary current II and is inversely 
proportional to the average length 1 of the winding.  Putting 

xr A 
M = NIIV 2IA —  (7-84) 

(7-83) reduces to 
d11 

V2 = M — dt 
Dimensionally (7-85) is 

Emf = M current 
time 

or 
emf  

M =  X time = resistance X time 
current 

In mksc units 
M = ohm-seconds = henrys 

(7-85) 
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Thus, M has the dimensions of inductance, and since M involves two 
coils, it is called the mutual inductance of the two coils. 
The inductance L discussed in previous sections involves a single coil. 

Therefore, in contrast, L is called the self-inductance.  From (7-64) the 
emf VI applied to a coil of self-inductance Li is 

u 
V1 = L c, i —  (7-86) 

dt 

where II = current in coil.  This relation involving the self-inductance of 
a coil is similar in form to (7-85), which involves the mutual inductance of 
two coils. 
From (4-63) the self-inductance of a toroid is' 

AA  2 N2 L = N2 N  -1- = 1/ 021 — —ea  henrys  (7-87) 

where N = number of turns of toroid (dimensionless) 
61 = //HA = reluctance of region enclosed by toroid winding 

(1/henrys) 
From (7-84) the mutual inductance M of two coils (as in Fig. 7-18) is 

,T µ / A  NiN2 NiN2 
M = NliV 2 — = //AA  GI 

where NI = number of primary turns (dimensionless) 
N2 = number of secondary turns (dimensionless) 
61 = reluctance of magnetic circuit linking primary and secondary 

windings (1/henrys) 
Consider next the converse of the situation described above.  That is, 

let the battery and resistance be connected across coil 2 (Fig. 7-18), and 
let the terminals of coil 1 be left open.  Then the emf VI at the terminals 
of coil 1 is 

4.2 
'01 = Ni 

dt 

where im2 = magnetic flux produced by secondary coil.  But 

and so (7-89) becomes 

or 

IPm2 
_ AN2I2A 

l 

Vi = iv , la ,, 2 —I  AA ddIt 2 

7,, dls 
Vi = ivi — 

dt 

(7-89) 

(7-90) 

(7-91) 

' See Sec. 7-17 for the significance of µ with iron-cored coils under a-c conditions. 
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Thus, from (7-85) and (7-91), 

'01  'Us  =  _ 
d12/dt  dli/dt 

(7-92) 

Therefore, if a given time rate of change of current in the primary induces 
a certain voltage in the secondary, the same time rate of change of current 
applied to the secondary will induce the same voltage in the primary.  In 
effect this is a statement of the reciprocity theorem as applied to a special 
case. 
If the current I varies harmonically with time (alternating current), 

we have 

Ii = 1 oeiwi  (7-93) 

For harmonic variation of /2 and /2, (7-92) becomes 

and 

.01  .02 
jcad 2 'col 

VI  V2  • 
T2  =  T  = JCUM =  Z . 

(7-94) 

(7-95) 

where Z. = mutual impedance (ohms). 
The above relations were developed for the case where all of the flux 

links all of the turns.  In this situation the mutual inductance can be 
calculated readily by (7-88).  If the flux leakage can be neglected, this 
relation also can be applied to con-
centrated coils wound on an iron core 
as in Fig. 7-19, where the reluctance 01 
is that of the iron core.  If the flux 
leakage is appreciable, the mutual 
inductance is not readily calculated in 

Pri.  Sec. 
this way but is nevertheless a definite 
quantity and can be measured with 
the aid of (7-92). 
7-16. The Transformer. Suppose that the two-coil arrangement 

of Fig. 7-19 has the secondary coil open, as shown, while the primary coil 
is connected to an alternating emf VI. The emf '02 appearing at the 
secondary terminals has a magnitude 

7. d1P. 
'02 =  12 2 

Iron core 

Fm. 7-19. Transformer. 

(7-96) 

where N 2 = number of turns of secondary coil 
= magnetic flux through transformer core 

If the primary resistance is negligible, the counter emf across the primary 
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terminals is equal in magnitude to the applied emf 0̀1, or 

ik„, = N d I 
dt 

[CHAP. 7 

(7-97) 

where N1 = number of turns of primary coil.  Dividing (7-96) by (7-97) 
yields 

U 2  N 2 

-  N1 

According to (7-98) the ratio of the secondary to the primary emf is equal 
to the ratio of the number of secondary turns N 2 to the number of the 
primary turns N I. The ratio is the same for effective (rms) voltages as 
for instantaneous. 
Because the arrangement of Fig. 7-19 (or Fig. 7-18) can transform an 

emf or voltage from one value to another, it is called a transformer.  In 
the present discussion the transformer is an ideal one in the sense that 
flux leakage is assumed to be zero so that Om links all primary and second-
ary turns.  It is further assumed that the resistance of the primary is 
very small and that negligible current is drawn from the secondary. 
This condition may be approached in practice where a transformer 
secondary is connected to a high-resistance circuit. 

Example.  An ideal transformer has a turn ratio of 2, that is, N2/NI = 2. An a-c 
emf of 10 volts rms is applied to the primary.  Find the emf or voltage appearing at 
the secondary terminals. 
Solution.  From (7-98) the secondary voltage is 

0̀2  —N 2 VI -= 2 X 10 = 20 volts rms 
N 

(7-98) 

7-17. Alternating-current Behavior of Ferromagnetic Materials.  We 
noted in Chap. 5 that the permeability of iron is not a constant.  In spite 
of this, the permeability of the iron in an iron-cored coil carrying alter-
nating current may be taken as a constant for certain applications, but its 
value, in this case, needs further explanation. 
Where µ is not a constant, we have from (4-59) that the inductance L 

of a coil is given by 
dA 

= — 
dl 

henrys  (7-99) 

If there is no flux leakage, A = NO.; so 

L 
diP„, 

=  — 
dl 

(7-100) 

For a toroidal type of coil, 4. = A dB, and dl = 1dH/N, where A 
equals the area and 1 equals the mean length of the coil.  Therefore 
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. (7-100) becomes 
=N'A dB  
-  
I dH 

(7-101) 

Now dB/dH in (7-101) has the dimensions of permeability.  It is equal to 
the slope of the hysteresis curve.  At some point P, as in Fig. 7-20, this is 
different from the ordinary permeability, B1/H1, which is equal to the 
slope of the line from the origin to the point P. Since dB/dH involves 
infinitesimals, it is sometimes called the infinitesimal or differential 
permeability. 

slope—ordinary 
permeability 
at Bmax. 

dB 
Slope—  

Slope-ordinary permeability 
at (B1,111) 

Fm. 7-20. Hysteresis loop illustrating ordinary and differential permeabilities. 

If alternating current is applied to an iron-cored coil so that the condi-
tion of the iron moves around a hysteresis loop (Fig. 7-20) once per cycle, 
the slope dB/dH varies over a wide range and the instantaneous value of 
the inductance will, from (7-101), vary over a corresponding range. 
Under these conditions it is often convenient to consider the average 
inductance (over one cycle) as obtained from (7-101), using the average 
value of the slope dB/dH. This is equal to the ordinary permeability at 
the maximum value of B attained in the cycle (see Fig. 7-20). Thus 

IsPA (dB)  IsPA 
L ' a = 1  = - - A (7-102) VIH a,  l 

where A = B./Hmaa  = ordinary permeability at B.. 
The above discussion is for alternating current only through the coil. 
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If a small alternating current is superimposed on a relatively large 
steady, or direct, current through the coil, the situation is as suggested in 
Fig. 7-21. The magnetic condition of the iron then follows a minor 
hysteresis loop as indicated.  In this case the average value of the slope 
dB/dH is given by the line passing through the tips of the minor hysteresis 

Fm. 7-21. Minor hysteresis loop illustrating incremental permeability. 

loop and is called the incremental permeability ;h.,.  Referring to Fig. 
7-21, 

_ (dB)  AB _ 
(7-103) - VII at, — MI 

The incremental permeability is much less than the ordinary permeability 
BiHi for a point at the center of the minor loop in Fig. 7-21. 
In (7-87) the self-inductance L of a toroidal coil of N turns is given as 

mA 
L = N2 —1  henrys  (7-104) 

and in (7-88) the mutual inductance M of two coils mounted, for example, 
on a ring-shaped core is given as 

x, mA 
M = N "iv 2 -  

I 
henrys  (7-105) 

where N1 = number of primary turns 
N 2 = number of secondary turns 

For iron cores and a-c operation these relations may be used to calculate 
the average L or average M provided the appropriate value of u is used. 
As discussed above, this value of m is equal to the average value of dB/dH 
over the operating range of the iron on a B-H diagram. 
Although the above discussion has concerned toroidal coils with uni-

form core cross section A, Eqs. (7-104) and (7-105) may be applied in the 
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more general case, where the iron core is of nonuniform cross section and 
the magnetic circuit may include an air gap, by reexpressing them as 
follows, 

N' 
L =  henrys (7-106) 

where 61 = reluctance of closed magnetic circuit through coil, and 

_ NiN2 
henrys  (7-107) 

where 61 = reluctance of closed magnetic circuit linking the primary and 
secondary coils.  The above relations are applicable to both uniformly 
distributed coils and to concentrated coils (as in Fig. 7-19) provided that 
flux leakage is negligible.  The reluctance of the magnetic circuit is 
calculated as discussed in Secs. 5-18, 5-19, 5-22, and 5-23. 
7-18. Eddy Currents. When large conducting specimens are sub-

jected to transformer or motional induction, currents tend to be induced 
in the specimen.  These currents flow in closed paths in the specimen and 
are called eddy currents.  In accordance with Lenz's law the eddy current 
tends to oppose the change in field inducing it. 
Eddy currents result in Joule heating in the conducting specimen. 

The energy loss due to eddy currents in the ferromagnetic cores of a-c 
devices is in addition to the energy lost in the magnetization-demagnetiza-
tion process (proportional to the area of the hysteresis loop), as discussed 
in Sec. 5-14.  In order to reduce the eddy currents in iron-cored a-c 
devices, the core is commonly made of thin sheets or laminations of iron 
insulated electrically from each other.  Thus the eddy currents are con-
fined to individual sheets, and the power loss is reduced.  Each sheet is 
continuous in the direction of the magnetic flux through the core, but 
because of its thinness it has a relatively large reluctance.  By stacking a 
sufficient number of sheets in parallel the total reluctance of the magnetic 
circuit may be reduced to the desired 
value.  To reduce eddy currents to a  p   A  ) 

minimum, iron wires are sometimes used 
• in place of sheets, while at radio fre-  Ballistic  Search coil 

quencies powered-iron cores are com- galvanometer 

monly employed. Fm. 7-22. Search coil and ballistic 
galvanometer. 

7-19. Measurement  of  Magnetic 
Fields. The Fluameter. A steady magnetic field may be explored or 
measured by means of a search coil connected to a ballistic galvanometer' 
as in Fig. 7-22. From (7-70) we have for this circuit that 

' A ballistic galvanometer is a galvanometer whose deflection is proportional to the 
charge Q passing through it provided the time interval for the passage of the charge is 
sufficiently short. 
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dl 
RI + L d—t = —N 

1CHAp. 7 

(7-108) 

where R = total resistance of circuit (ohms) 
I = current through circuit (amp) 
L = total inductance of circuit (henrys) 
%Gm = magnetic flux through search coil (webers) 
N = number of turns of search coil (it is assumed that #,, links 

all turns) 
This may also be expressed 

dI 
RI  L — = —NA dB  

dt 
(7-109) 

where A = area of search coil 
B = component of flux density B normal to the plane of the search 

coil 
It is assumed that the coil is small enough so that B is substantially uni-
form over the area of the coil. Suppose the coil is in a magnetic field of 
flux density B and that the plane of the coil is normal to the direction of 
B. Then, if the coil is quickly removed to a location of negligible mag-
netic field, the deflection of the ballistic galvanometer will indicate the 
passage of a charge Q obtained by integrating (7-109) over a time interval 
from t = 0 to t = T that includes the entire action.  Thus 

I  B 
(at g  (at g 

f  I dt + —  f  dI = — —R  f  dB (7-110) 
NA 

gm0  1-0  B B 
t —0)  (at — 0) 

Since I = 0 at t = 0 and also at t = T, the second term yields zero and 
we have 

or 

NAB 
Q - 

QR 
B = 

NA 

where B = flux density at initial location of coil (webers/meter2) (normal 
to plane of coil) 

Q = charge passed through ballistic galvanometer (proportional 
to deflection) (coulombs) 

R = resistance of circuit (ohms) 
N = number of turns of coil (dimensionless) 
A = area of coil (meters') 
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The product BA equal to QR/N in (7-111) equals the total flux change 
through the coil.  Hence, the search-coil and ballistic-galvanometer 
arrangement of Fig. 7-22 is often called a flux-meter. 
Another procedure for measuring the field is to keep the coil at the 

location where the field is to be measured and quickly to flip it over or 
rotate it through 180°.  Under these conditions it is sometimes called a 
flip coil, and the ballistic-galvanometer deflection is doubled for the same 
flux density B. That is, . 

QR B = 
2NA 

(7-112) 

If the restoring torque on the galvanometer coil is removed so that its 
deflection is proportional to the net charge passed after some reference 
time Li, then the net change in flux density between this time and some 
later time is is given by 

(Q2 — Qi)R Bs — B1 —   
NA 

(7-112a) 

where B2 — B1 = net change in flux density in time interval between ts 
and ts (webers/meter') (plane of search coil normal 
to B) 

Q2 — Q1 = net charge through galvanometer in same interval 
(coulombs) (proportional to net change in deflection 
of galvanometer) 

R = total circuit resistance (ohms) 
N = number of turns of search coil (dimensionless) 
A = area of search coil (meters') 

This type of fluxmeter is often referred to as a Grasoot fluxmeter. 
Thus, if a charge 2q passes through the galvanometer in one direction and 
then a charge q passes through it in the opposite direction, all in the time 
interval between ti and is, the net change in B in this same interval is 
proportional to 2q — q = q. 
In an alternating magnetic field where B = Bo sin cut a peak voltmeter 

may be connected to the search coil. Then, if the plane of the coil is 
normal to the flux density B, we have 

Vo 
Bo = 

NAco 
(7-113) 

where Bo = peak flux density (webers/meter') 
V 0 = peak emf (volts) 
N = number of turns of search coil (dimensionless) 
A = area of search coil (meters') 
co = radian frequency (reciprocal seconds) ( = 2srf, where f = fre-

quency) 
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7-20. Displacement Current.  In this section a new concept is intro-
duced, namely, that of displacement current.  Consider a voltage applied 
to a resistor and a capacitor in parallel as in Fig. 7-23a.  The nature of 
the current flow through the resistor is different from that through the 
capacitor.  Thus a constant voltage across a resistor produces a continu-
ous flow of current of constant value.  On the other hand, the current 
through a capacitor will be constant only while the voltage is changing. 
For a voltage V across a resistor of resistance R and capacitor of 

capacitance C in parallel as in Fig. 7-23a we have a current through the 
resistor given by 

.  V 
= —R 

and a current through the capacitor given by 

dQ _ c dV 
22 

= 
dt  dt 

The instantaneous charge Q in the capacitor is given by Q = CV. 

Resistance  I Capacitance 

(7-114) 

. 4 E  d • 
q,.c.o.n.41L0Z  Ydisp 

i, 
(a)  (b) (c) 

(7-115) 

Fin. 7-23. Illustration for discussion on conduction and displacement currents. 

The current through the resistor is a conduction current, while the cur-
rent "through" the capacitor may be called a displacement current. 
Although the current does not flow through the capacitor, the external 
effect is as though it did, since as much current flows out of one plate as 
flows into the opposite one.  This circuit concept may be extended to 
three dimensions by supposing that the resistor and capacitor elements 
each occupies a volume as in Fig. 7-23b.  Fringing of the field is neglected. 
Inside of each element the electric field E equals the voltage V across the 
element divided by its length d. That is, 

V 
E = (7-116) —d 

From (3-21) the current density J1 inside the resistor equals the product 
of the electric field E and the conductivity u of the medium inside the 
resistor element, also it divided by the cross-section area A.  Or 

J1 = Ea =  (7-117) 
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The dimensional form of (7-117) in mksc units is 

Amperes volts mhos  
X 

Meter2 meter  meter 

From (2-55) the capacitance of a parallel-plate capacitor is C =  
where A is the area of the plates and d is the spacing between them. 
Substituting this value for C, and from (7-116) for V, into (7-115) yields 

.  eAd dE , dE 
t2 = —  — d dt  dt 

(7-118) 

Dividing (7-118) by the area A gives the relation that the current 
density J2 inside the capacitor equals the permittivity of the nonconduct-
ing medium filling the capacitor element multiplied by the time rate of 
change of the electric field. Thus 

i2 _ , = _ dE 
"  e at 

The dimensions of (7-119) in mksc units are 

Amperes farads volts/meter 
X 

Meter2 meter  second 

Recalling that D = eE, (7-119) becomes 

dD 
J2 = it  

In this example J1 is a conduction current density Je„„d, while J2 is a 
displacement current density tidies). Also, since the current density J, 
the electric displacement D, and the electric field intensity E are actually 
space vectors, which all have the same direction in isotropic media, 
(7-117) and (7-120) may be expressed in more general form as 

and 
jeond = (7E 

dE dD 
e  dt  _ dt 

(7-119) 

(7-120) 

(7-121) 

(7-122) 

As a final step, suppose that instead of having two separate elements in 
parallel, one of which acts like a pure resistance and the other like a pure 
capacitance, we have only one, which has both capacitance and resistance. 
Thus, as in Fig. 7-23c, there is a single element filled with a conducting 
dielectric so that both conduction and displacement currents are present. 
Then the total current density j tow is 

L ola = jeond  Jdisp (7-123) 
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The concept of displacement current, or displacement current density, 
was introduced by James Clerk Maxwell to account for the production of 
magnetic fields in empty space.  Here the conduction current is zero, 
and the magnetic fields are due entirely to displacement currents. 
7-21. Maxwell's Equation from Ampere's Law. Complete Expression. 

According to Ampere's law the line integral of H around a closed contour 
is equal to the current enclosed.  Where both conduction and displace-
ment currents are present, this current is the total current. Thus (4-81), 
which applies only to conduction currents, may be extended as follows 
when both conduction and displacement currents are present, 

or 

96 H • dl = f (Tama +  • ds  (7424) 

H • dl = f (E  e 2(-E) • ds 
at 

(7-125) 

The line integral of H on the left side of (7-125) is around the boundary of 
the surface 8 over which the surface integral is taken on the right side of 
(7-125).  Each term in (7-125) has the dimensions of current. The con-
duction current through the surface s is given by 

L GE • ds 

while the displacement current through the surface 8 is given by 

fOE e -cTi • ds 

Equation (7-125) is the complete expression in integral form of Max-
well's equation derived from Ampere's law.  It is also often written 

96 H • dl = f  + -a-apt) • ds  (7-126) 

wherel without a subscript is understood to refer only to conduction cur-
rent density. 
By an application of Stokes' theorem to (7-126) or by an extension of 

(4-130) to include displacement currents the complete expression in differ-
ential form of Maxwell's equation derived from Ampere's law is 

or 

, ap 
vx H =J-1- - 

at 

V x H = aE  e — aE 
at 

(7-127) 

(7-128) 
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It should be noted that when the electric field varies harmonically with 
time (E = E0 sin cot), the conduction and displacement currents are in 
time phase quadrature. That is, 

J = crE = 0E0 sin cot  (7-129) 
and 

8D _ aE 
at —  = coeE0 cos cot (7-130) 

Thus, when cot = 0, the displacement current is a maximum and the 
conduction current is zero.  On the other hand, when cot = 7/2, the con-
duction current is a maximum and the displacement current is zero. 
Since the displacement current is a maximum one-quarter cycle (cot = 7/2) 
before the conduction current, it is said that the displacement current 
leads the conduction current by 90°. This is similar to the situation in a 
circuit having a resistor and a capacitor in parallel (Fig. 7-23a) in which 
the current "through" the capacitor leads the current through the 
resistor by 90°. 
This phase difference can also be readily shown by expressing the time 

variation of the field by' 
E = E °ea." 

The displacement current is then 

e —at = eiwEe2"a = jcueE 

Maxwell's equation (7-128) then becomes 

Vx H = A-Fjco€E = (a. + jcoe)E 

(7-131) 

(7-132) 

(7-133) 

The operator j in the displacement current term and its absence in the 
conduction current term signifies that the displacement current is ad-
vanced in phase by 90° with respect to the conduction current. 
7-22. Dielectric Hysteresis. In dielectrics that are good insulators 

the d-c conduction current may be negligible.  However, an appreciable 
a-c current in phase with the applied field may be present because of 
dielectric hysteresis. This phenomenon is analogous to magnetic hystere-
sis in ferromagnetic materials.  Materials, such as glass, which are good 
insulators under static conditions may consume considerable energy in 

In using this notation it is understood that the instantaneous value of the field is 
given by the imaginary part of (7-131). Thus 

E (instantaneous) .• E0 Im  E0 sin wt 

One might also use the real part of  which is equal to cos cut (that is, Re ew = 
cos cut). However, in any given analysis one convention or the other should be 
adopted and used consistently.  Here it is understood to be the imaginary part. 



Since 5 is usually not more than 2 or 3°, the power factor is small even in 
the case of poor high-frequency dielectrics such as glass. For example, 

the power factor for crown glass 
is 0.01 at 1 kc per sec.  Cellulose 
nitrate has an even higher power 

jam/.  factor at 1 kc per sec, being about 
0.05 (8 = 3°). On the other hand, 
the power factor for quartz at 
1 kc per sec is only 0.0003 and of 
polystyrene  0.0002.  Therefore, 
these materials find wide applica-
tion as dielectrics at this and also 

cr 1,  E  x much higher frequencies. 
Fm. 7-24. Time-phase diagram for di-  It is sometimes convenient to as-
electric with losses.  sume an equivalent conductivity for 

the dielectric which would produce the same heating as the dielectric 
hysteresis. Thus, although the dc conductivity of the dielectric is 
negligible, the equivalent conductivity o' may be significant and is sub-
stituted in relations involving the ordinary conductivity a. Expressing 
the total conduction currentf J6,44 in terms of its component parts as in 
(7-133), 

Jew.' = a'E  jweE  (7-135) 

I The dielectric behavior is also sometimes expressed in terms of tan a. For small 
values of 15 this is the same as cos 0. 

t Sometimes the total conduction current is expressed as .1(.4.1 =  —  jcoE, 

which is equivalent to (7-135). Then defining e* as the complex dielectric constant, 
8.4.1 = jcues E, where the complex dielectric constant e* has a "real" part e' e and 
an "imaginary" part e" = eel°, as given by 
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alternating fields.  The heat generated in this way is sometimes applied 
in industrial radio-frequency heating processes. 
In dealing with a-c dielectric losses, the dielectric power factor is a con-

venient quantity.  Referring to the time-phase diagram of Fig. 7-24, the 
total current density Jeoka in a dielectric will lead the applied field E by an 
angle 0 which is less than 90°. Thus 0 = 90° — b. The power factor 
(PF) is given by the cosine of 0. Thus' 

PF =- cos 0 (7-134) 

total 

_ je ,) e (7-134a) 

The terms real and imaginary are used in the mathematical sense. Both parts have 
a real physical significance, the so-called "real" part e' being associated with the 
component of current density in phase quadrature with the field and the so-called 
"imaginary" part being associated with the component of current density in phase 
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The component parts are added like vectors to obtain Jogai . Now, from 
Fig. 7-24, 

tan ô = —a'  cos 0  (7-136) 

or 
a'  we cos 0  (7-137) 

Example.  Find the average power dissipated per cubic meter in a nonconducting 
medium with a relative permittivity of 4 and power factor of 0.001 if E  1,000 
volts/meter rms and the frequency is 10 Mc/sec. 
Solution.  From (7-137) the equivalent conductivity is 

a' =  cos 8  27107 X 4 X 8.85 X 10-ss X 10-s 
= 2.22 X 10-' mhos/meter 

The power W dissipated per unit volume is then 

W = Eke =. 104 X 2.22 X 10-8 
= 2.22 watts/meters 

It is to be noted that the current density and the field intensity have 
the same space direction in isotropic media. Although both may have 
the same space direction, their scalar magnitudes may have different 
time phase. Thus, in the above discussion the space directions are the 
same and are fixed, but the scalar magnitude Jgotai of the total current 
density leads the scalar magnitude E of the electric field intensity in time 
by the phase angle O. Thus, on a time-phase diagram, such as Fig. 7-24, 
Jtotai and E may be represented by vectors separated in direction by an 
angle O. Such a pseudo vector used to represent the time phase of a 
scalar quantity is often called a phasor. A dot (') is sometimes added 
when it is desired to indicate explicitly that the quantity is a complex 
function of time (that is, a phasor). 
Thus' 

E = aE = aEoehit  (7-138) 

where a = unit (space) vector in direction of E 
E = Eoem = vector representation of time phase (phasor) 
E0 = amplitude of E 

with the field.  See for example, S. Roberts and A. von Hippel, A New Method for 
Measuring Dielectric Constant and Loss in the Range of Centimeter Waves, J. 
Applied Phys., 17, 610, July, 1946. 
s The quantity E is not only a space vector but also a function of time (phasor). 

Thus, it may be called a vector-phasor and designated by k( = aE).  In general, we 
shall use the dot over a quantity only where we wish to indicate explicitly that it is a 
complex function of the time (that is, a phasor). The fact that a quantity is a space 
vector is indicated by using boldface (heavy) type.  In longhand notation a space 
vector may be designated by a bar placed above or below the letter. 
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In (7-138) the quantity Eoeh" is a scalar function of the time.  However, 
it may be represented on the complex plane by a vector (or phasor) of 
magnitude E0 that rotates counterclockwise one revolution per cycle. 
This may be made more obvious by writing E in its equivalent polar 
form. That is, 

E = Eo/cut  (7-139) 

which is interpreted to mean a vector (or phasor) of magnitude E0 at 
an angle cot with respect to some reference direction (usually the real or x 
axis).  Hence, when t = 0, the phasor is in the positive x direction. 
One-quarter of a period later (t = T/4 and cot = 7/2) the phasor has 
rotated 90° to the positive y direction. At t = T/2 the phasor has 
rotated a total of 180° to the negative x direction, etc. 
It is understood that the instantaneous magnitude of the electric field 

intensity E is given by the real (Re) part or imaginary (Im) part of E. 
Taking it equal to the imaginary part, the instantaneous value of the 
electric field intensity is 

E = a Im t = a Im Eoeic" = aEo sin cot  (7-140) 

Referring to (7-135), it is understood that E in this equation is a phasor 
as given by Eoeii" or E0/0.4.  It follows that Fig. 7-24 shows the position 
of E and the other phasors at t = 0. As a function of time the entire 
diagram rotates counterclockwise one revolution per cycle, and the 
instantaneous value of any of the quantities is given by its projection on 
the y axis. 
7-23. Boundary Relations. The boundary relations given in Tables 

2-2 and 5-2 for the tangential and normal components of static electric 
and magnetic fields also hold for time-varying fields. This may be shown 
as follows: Consider first the tangential components Et of the electric 
field (see Fig. 2-4).  Instead of using the relation that fE • dl = 0 for a 
closed path, which is true for static fields due to charges, we should, in 
the time-varying case, use Maxwell's equation from Faraday's law 

56E • dl = — i —aB  • ds at  (7-141) 

If there is a flux density B normal to the rectangular path (half in each 
medium) and B changes with time, then f E • dl is not zero if the path 
encloses a finite area.  However, it is assumed that the dimension Ay 
approaches zero so that En and En are separated by only an infinitesimal 
distance. Therefore the area of the rectangle approaches zero, and the 
surface integral of aB/at vanishes.  Thus the work around the path is 
given by En ,da — E2 461x = 0, as before, and it follows that Ee1 = ES2 
holds for both static and time-varying situations.  The two media may 
have any permittivities, permeabilities, and conductivities. 
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Consider next the tangential components of the H field (see Fig. 5-15). 
Instead of using the relation JCH • dl = HJ • ds for steady fields, we 
should, in the time-varying case, use Maxwell's equation from Ampere's 
law in its complete form, 

ap OH • dl =  —.37 ) • ds (7-142) 

If there is a time-changing D normal to the rectangular path (half in 
each medium), then there will be a contribution due to D.  However, it 
is assumed that the dimension Ay approaches zero so that the surface 
integral of arot vanishes.  Now in (7-142) the conduction current 
density J may also change with time.  However, its surface integral also 
vanishes as Ay approaches zero unless the conduction current is assumed 
to exist in an infinitesimally thin layer at the conductor surface. Thus, 

TABLE 7-1 
BOUNDARY RELATIONS FOR ELECTRIC AND MAGNETIC FIELDS 

Field 
component 

Boundary relation Condition 

Tangential   B,, = Et, (1) Any two media 

Tangential   

Tangential   

Ell — 0 (2) Medium 2 is a perfect conductor (a: = eci) t 

H:, — Ht2 (3) Any two media 

Tangential   Hu — 11,2 K (4): Current sheet at boundary 

Tangential   Hu = K (5): Medium 2 is a perfect conductor (a: = 00) 
with current sheet at surface 

Tangential   th, = 0 (6) Medium 2 has infinite permeability (µ2 = ee ) 
(no currents) 

Normal   D., — A s 2 = pa (7) Any two media with charge at boundary 

Normal   D., = D., (8) Any two media with no charge at boundary 

Normal   D.i — Ps (9) Medium 2 is a perfect conductor with charge 
at surface 

Normal   B., .= B.: (10) Any two media 

Under static conditions it suffices for medium 2 to be a conductor (0.2 finite). 
However, for Et, to be zero under time-varying conditions requires that a:  00 (see 
Chap. 10). 
: Note that although K and the components of H are measured parallel to the 

boundary, they are normal to each other. Thus, in vector notation (5) is expressed 
by K  n x H, where n = unit vector normal to the boundary. 
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for a sheet current of linear density K at the surface 

— Hes = K  (7-143) 

as before, while in the absence of such a sheet 

Hit =  He2  (7-144) 

as before.  Thus, the relations for the tangential H field of Table 5-2 
hold for both static and time-changing situations.  The two media may 
have any permeabilities, perrnittivities, and conductivities. 
The formal approach in obtaining the continuity relations for the 

normal components of D and B is the same under time-varying conditions 
as for static conditions, and the relations given in Tables 2-2 and 5-2 
apply under both conditions.  The two media may have any permit-
tivities, permeabilities, and conductivities. 
Table 7-1 summarizes the boundary relations developed for electric and 

magnetic fields.  These relations apply under all situations, except as 
noted. 
7-24. General Field Relations.  In Chap. 4 it is shown that the 

divergence of the curl of a vector function F is zero.  Thus, 

V • ( V x F) = 0 

As a corollary, any vector function with no divergence must be the curl of 
some other vector function. Thus, if V • G = 0, then we can write 
G= VxF, where F is some other vector function.  As an example, 
V • B = 0 so that B may be expressed as the curl of a vector potential 
(B = V x A). 
It is also shown in Chap. 4 that the curl of the gradient of a scalar func-

tion f is zero.  Thus V x (Vf) = 0. As a corollary, any vector function 
with no curl is the gradient of some scalar function.  Thus, if V x F = 0, 
then we can write F = Vg, where g is a scalar function.  As an example, 
the curl of the static electric field due to electric charges' is zero (V x E 
= 0).  It follows that a static electric field due to charges may be 
expressed as the gradient of a scalar function. That is, E = —VV, where 
V is the electric scalar potential. 
According to Maxwell's equation derived from Faraday's law we note, 

however, that in time-changing situations the curl of the electric field is 
not zero but is equal to the time rate of decrease of B. Thus 

as v xE = — —  (7-145) at 
Since V X E is not zero, the relation E = —VV is not sufficient for time-
varying fields.  An additional term is required. This may be found as 

To indicate explicitly this type of field, we have sometimes used the symbol E. 
This type of field is said to be lamellar (see Sec. 4-28). 
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follows: Since B = V x A, (7-145) becomes 

a(v x A)  
V x E = —  (7-146) at 

from which 

V x  + 11--) = 0  (7-147) 

Now since the curl of the expression in parentheses in (7-147) equals zero, 
it must be equal to the gradient of a scalar function. Thus we can write 

aA 
E ± --,-,i = Vf (7-148) 

where f is a scalar function.  If the electric scalar potential V is taken to 
be this scalar function, then a relation is. obtained that satisfies the 
requirements for both static and time-varying situations.  Thus let 
f = —V so that from (7-148) we have 

aA 
E =  at (7-149) 

For static fields this reduces to E = —VV, as it should.  In the general 
case, where the field may vary with time, E is given by both a scalar 
potential V and a vector potential A as in (7-149). If the time variation 
is harmonic, (7-149) becomes 

E = —VV — j0.4  (7-150) 

Knowing the vector potential A and the scalar potential V, the electric 
and magnetic fields may now be obtained under static or time-varying 
situations from the relations 

aA 
E = —VV — —  volts/meter  (7-151) at 

and 
B =VxA  webers/meter2 (7-152) 

where  V = 1 f 6- dv  volts 
4reo . r 

A = 11- P  dv  webers/meter 
4ir v r 

It is assumed that the distance r in the expressions for V and A is small 
compared with a wavelength so that propagation time effects can be 
neglected.  If this is not the case, the propagation time must be con-
sidered and the more general retarded form used for p and J as explained 
in Chap. 13.  (See Secs. 13-3 and 13-5.) 
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7-25. Comparison of Electric and Magnetic Field Relations.  In 

Table 4-2 a comparison is made of electric and magnetic field equations. 

All of these apply in static or slowly time-varying situations.  Under 
rapidly time-varying conditions certain of the relations may be extended 
so as apply under these conditions. These relations are listed in Table 
7-2.  It is to be noted that under static conditions the time derivatives 
are zero, and these relations reduce to the corresponding special cases 
given in Table 4-2. These static relations (Table 4-2) are also applicable 
in time-changing situations provided the variations are slow enough so 
that the time derivatives can be neglected.  In more rapidly time-varying 
situations where the time derivatives cannot be neglected the expressions 
of Table 7-2 must be employed. 

TABLE 7-2 
COMPARISON OF ELECTRIC AND MAGNETIC FIELD RELATIONS 

FOR TIME-CHANGING SITUATIONS 

Description of 
equation 

Electric field 

Curl equations 
(point relations). 

aB 
v x E  — — at 

Magnetic field 

ato 
v x H  + —at 

Closed path of in-
tegration   

aB 
= 96 E • dl = —  — 8 • ds at 

F  9611 • dl = f (J+ ap  —) • ds 
8  at 

Derivation of 
fields from 
scalar and vec-
tor potentialst. 

aA 
E = —v1 — 

at 
B= VxA 

t V and A are as indicated in connection with (7-151) and (7-152). 

PROBLEMS 

7-1. A 1-turn loop with an area of 1 meter' is situated in air with a uniform magnetic 
field normal to the plane of the loop.  If the flux density is changing 2 webers/meter,/ 
sec, what is the emf appearing at the terminals of the loop?  Ana.: 2 volts. 
7-2. How many turns are required in a loop of 10 cm radius to develop a maximum 

emf of 0.1 volt rms at the loop terminals if the loop rotates 30 rps in the earth's mag-
netic field? Take the flux density B of the earth's field at 6 X 10-2  weber/meterl. 
7-3. A 1-turn wire loop of 0.1 meter2 area is situated in air in a 10-Mc/sec radio-

frequency field.  If 1 volt rms is induced in the loop, what is the rms value of H 
normal to the plane of the loop?  Ana.: 0.126 ampere/meter. 
7-4. A short bar magnet of 10 amp-meters2 magnetic moment rotates around its 

center point at 1 rps.  A 100-turn loop of 0.1 meter, area is located 2 meters from the 
bar magnet.  What is the largest peak emf which the field of the magnet can induce 
in the loop?  Note: When the circuit is fixed but the field moves, causing B at the 
circuit to change, Eq. (II) of Sec. 7-5 yields zero and the resultant emf is given 
by (III). 
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7-5. A toroidal coil of 1,000 turns has a mean radius of 20 cm and a radius for the 
winding of 2 cm.  What is the average self-inductance (a) with an air core and (6) 
with an iron core having an average relative incremental permeability of 800? 

AIM: (a) 1.26 mh; (b) 1.006 henrys. 
7-8. What is the mutual inductance of an ideal transformer if a 60-cps current of 

1 amp rms applied to the primary induces 10 volts rms at the secondary terminals? 
7-7. A fixed, square 5-turn coil with lower left corner at the origin has sides of 

length xl and y 1. If x1 = yl  1 meter and if the magnetic flux density B is normal 
to the plane of the coil and has a space variation of amplitude 

TX ry 
B. = 3 sin — sin —  webers/meter' 

Xi  1/1 

find the rms emf induced in the coil if B varies harmonically with time 1,000 cps. 
Ans.: 27,000 volts rms. 

7-8. What is the displacement current density of a magnetic field in free space 
given by Ho Ho sin (04 — fix)? Ho H, = 0. 
7-9. An air capacitor consisting of two flat, parallel, square plates measuring 

20 by 20 cm and spaced 2 cm apart has a 1,000-ohm resistor connected between the 
centers of the plates.  A 10-Mc/sec emf of 10 volts peak is applied to the capacitor. 
Neglect fringing of the field.  Find (a) the rms displacement current through the 
capacitor, (b) the rms conduction current, and (c) the total current. 

Ans. (c) 10.6 ma. 
7-10. A capacitor consisting of two flat parallel plates 50 by 50 cm square and 

spaced 10 cm apart is completely filled with a slab of dielectric material.  An emf of 
2,000 volts rms at 1 Mc/sec is applied to the plates.  Find the power dissipated as 
heat in the dielectric if the dielectric has a power factor of 0.005 and a relative dielec-
tric constant of 8. 
7-11. A 10-turn coil of 0.01 meter' area rotates 3,600 rpm (60 rps) in a uniform field 

of flux density B = 0.1 weber/meter2. Find the peak induced emf. The coil axis is 
normal to B.  Ans.: 3.77 volts. 
7-12. Given that the average power dissipated per unit volume of a medium is 

E(aD/81) cos 0 watts/meter', where 0 = time-phase angle between E and D. Show 
that the total average power dissipated in a parallel-plate capacitor is VI cos 0 watts, 
where V = voltage across capacitor and I  current through capacitor. The medium 
filling the capacitor is nonconducting.  Neglect fringing. E, D, V, and I are rms 
values. 
7-13. Show that  Brush  Shaft 

-if • ds  96 -cv  • dl  — Brush 
as  aA 

7-14. A thin brass disc 20 cm in diameter is 
situated with its plane normal to a magnetic field of 
constant flux density B = 1 weber/meter'. The 
magnetic field is everywhere uniform (see Fig. 7-25). 
If the disc rotates 1 rps, find the emf V developed at 
the terminals connected as shown to brushes, one 
placed against the periphery of the disc and the other 
against the shaft.  This arrangement is called a Faraday disc generator. 
7-15. Repeat Prob. 7-14 with the modification that the magnetic field varies with 

time as given by B = Bo sin og, where Bo = 1 weber/meters and co  2ir X 10 tad/sec. 

Fio. 7-25. Faraday disc gen-
erator. 
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7-18. In a betatron the average flux density inside the electron orbit is given as a 
function of time by B = Bo sin wt, where Bo = 0.05 weber/meter2 and co = 2r X 60 
rad/sec. The radius of the electron orbit is 10 cm.  Neglect relativistic effects. 
a. Find the velocity v of the electrons at a time t = 1 millisec if v =" 0 at 1 = 0. 
b. Find the energy per unit charge imparted to the electron in one revolution in its 

orbit. 
c. Find the number of revolutions in 1 millisec. 
d. Express the electron energy after 1 millisec in electron volts. 
7-17. Show that a field given by B = k/r, where k is a constant and r is the radial 

distance, is a field satisfying the 1 to 2 condition at any radius in a betatron. Note: 
In practice a field B = k/r", where n is less than 1, is used. The 1 to 2 condition is 
still satisfied at the electron orbit (r = R), but this type of field also focuses the beam 
in such a way as to provide radial and axial stability to the electron orbit. 
7-18. A vector field is of the form F = iF. ± jF, + kFs, where F. = F. = 0 and 

F. = sin x. (a) Find curl F.  (b) Find div (curl F).  (c) Draw a diagram showing 
F and curl F as a function of x over a distance of at least 2er rad. 
7-19. A magnetic field varying harmonically with time 106 cps induces a peak emf 

of 5 volts in a single-turn square loop of 10 meters2 area. The plane of the loop is at 
an angle of 45° with respect to the direction of the field.  Find the peak value of B. 
7-20. A 1-henry inductance has a resistance of 5 ohms. If a steady emf of 10 volts 

is applied at t = 0, find the length of time required for the current in the inductance 
to reach 80 per cent of its final value. 
7-21. A small flip coil used to measure magnetic fields has 50 turns and an area of 

10 cm'.  The field is normal to the plane of the coil. If a ballistic galvanometer con-
nected to the coil indicates the passage of 10-4  coulomb when the coil is flipped 180°, 
find the flux density B. The coil-galvanometer circuit has a resistance of 500 ohms. 



CHAPTER 8 

THE RELATION BETWEEN FIELD AND 

CIRCUIT THEORY. MAXWELL'S EQUATIONS 

8-1. Introduction. In circuit theory we deal with circuit elements, 
the voltage V across them, and the total current I through them.  In 
field theory we deal with the field vectors (E, D, B, H, and J) and their 
values as a function of position. 
Consider, for instance, a short rod  Cr  j 

\   

of length 1 and cross-sectional area 
FIG. 8-1. Conducting rod. 

A in Fig. 8-1. In low-frequency-
circuit theory it is convenient to describe the rod in terms of one quantity, 
its resistance R. Its length, area, and shape are of secondary importance. 
Thus the voltage difference between the ends of the rod is, from Ohm's law, 

V = IR  (8-1) 

where I = current through rod. 
From the field-theory point of view we consider the value of the electric 

field E at a point in the rod. From Ohm's law at a point 

E =  volts/meter  (8-2) 
cr 

where J = conduction current density (amp/meter2) 
a = conductivity (mhos/meter) 

Now, integrating (8-2) over the length of the rod, we obtain the voltage 
difference V between the ends. That is, 

v = f E • dl =f_.d1  (8-3) 

For a uniform rod with uniform current density this becomes 

V = —.11 = JA —aA  volts  (8-4) 
a 

where JA = I = current through rod (amp) 

—/ = R = resistance of rod (ohms) 
eA 

A = cross-sectional area of rod (meters') 
331 
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Thus, from (8-4) we have 

V = IR  (8-5) 

Starting with field theory we have arrived at the circuit relation known as 
Ohm's law. 
Historically this and other circuit relations were postulated and veri-

fied first. Then, as a generalization, they were extended so as to apply 
to the more general field situation.  It follows, therefore, that circuit 
relations are simply special cases of field equations and may be deduced 
from them.  Although field relations are more general, it is usually much 
simpler to use circuit equations wherever these are applicable. 
Equation (8-1) is a pure circuit relation.  On the other hand, (8-2) is a 

pure field relation.  Many equations are not purely one or the other but 
are a combination or mixture.  Such mixed relations are necessary, for 
example, in order to provide a connection between field and circuit 
theory. Two important equations that provide such connecting links 
are 

and 

V = fE • dl  volts 

/ = 5CH • dl  amp 

(8-6) 

(8-7) 

Equation (8-6) relates V (a circuit quantity) between two points to the 
line integral of E (a field quantity), between those points. Likewise 
(8-7), which is Ampere's law, relates I (a circuit quantity) to the line 
integral of H (a field quantity) around a closed path. 
8-2. Applications of Circuit and Field Theory. While field relations 

are applicable in general, circuit relations are usually more convenient 
wherever V and I have a simple, well-defined significance. 
Thus, in determining the capacitance of a capacitor of irregular shape 

with the aid of a graphical field map (see Fig. 2-24) we are in effect direct-
ing our attention to the field and its value as a function of position in the 
capacitor.  However, once we have determined the capacitance, we may 
at low frequencies consider it as simply a two-terminal circuit element of 
capacitance C with a voltage difference V. The physical size and shape 
of the capacitor and the field configuration within it are then relegated to 
positions of secondary importance. 
As another illustration let us consider the coaxial transmission line, 

shown in cross section in Fig. 8-2, under two conditions, one where V and 
I are useful quantities and one where they are not. The coaxial line has 
an inner conductor of radius a and an outer conductor of inside radius b. 
With a steady potential difference between the conductors the electric 
field lines are radial as shown.  If a current I is flowing, the magnetic 
field lines H are circles as indicated.  Now by (8-6) the potential differ-
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ence between the inner and outer conductors is 

V = fb E • dr a  volts  (8-8) 

Likewise from (8-7) the current I in the inner conductor is 

/ = 56 H • dl = .12r Hr dO  amp (8-9) 

In (8-8) V is independent of the path between the conductors, while in 
(8-9) I is independent of the radius r provided it 
is between a and b. Hence, V and I have a simple, 
definite significance in this case and are useful 
quantities. 
The field configuration shown in Fig. 8-2 is called 

a Transverse Electro Magnetic field (abbreviated 
TEM) because the electric and magnetic field are 
entirely transverse (no component in the axial 
direction). This type of field is the only configura-
tion or field mode possible under steady conditions 
and also for time-varying situations where the 
wavelength is of the order of 4b or greater.' At 
higher frequencies (shorter wavelengths) more complex field configurations 
known as higher-order modes become possible. These modes are charac-
terized by having some field components in the axial direction. Although 
coaxial lines are seldom used under such conditions, suppose that the fre-
quency is sufficiently high for the mode or configuration shown in Fig. 8-3 
to exist.  Both a cross (or transverse) section and a longitudinal (or axial) 
section are needed to show the field configuration. This field may be called 
a Transverse Magnetic (abbreviated TM) mode because the magnetic field 
is entirely transverse, while the electric field has a longitudinal component. 
Now, for this mode, the voltage V between the conductors as obtained by 
(8-8) may become negligible, while the current / obtained by (8-9) depends 
on the radius r at which H is integrated.  Hence V and I no longer have a 
simple significance and are not as useful as the field quantities them-
selves. The breakdown of the circuit concept occurred here when the 
transverse dimensions became comparable with the wavelength. 

Fla. 8-2. Coaxial trans-
mission line with TEM 
mode. 

' That is, the frequency is so high that a disturbance traveling with the velocity of 
light can travel only about a distance equal to the diameter (26) in one-half period. 
In free space a wave has a wavelength X in meters that is related to the frequency f in 
cycles per second by the velocity of light c as follows: 

X  c/f,  where c  3 X 108 meters/sec 

For a further discussion of field modes in lines and guides see Chaps. 11 and 12. 
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Cross section  Longitudinal section 
at A A'  iA' 

(a)  ( b) 
FIG. 8-3. Coaxial transmission line with higher-order (TM) mode. 

8-3. The Series Circuit.  Comparison of Field and Circuit Theory.' 
From (7-151) the electric field E may be expressed in terms of a scalar 
potential V due to electric charges and a vector potential A due to cur-
rents by 

aA 
E = —VV — at (8-10) 

At a point on or in a conductor the electric field is related to the current 
density J and the conductivity cr by Ohm's law at a point.  That is, 

Et =  (8-11) 

where Et = total electric field at the point.  This total field is equal to E 
as given by (8-10) plus any additional applied or impressed field E. due, 
for example, to a generator whose charges or currents are excluded from 
consideration in determining V and A in (8-10). Thus 

E + E = Et (8-12) 
and 

=-  — E  volts/meter  (8-13) 

Substituting from (8-10) and (8-11) in (8-13), we obtain 

j aA 
E. = -0: + —at + vv  (8-14) 

Consider now the application of this field relation to the stationary 
series circuit of Fig. 8-4 containing resistance, inductance, and capaci-
tance.  The total length of the circuit is assumed to be small compared 

'See John R. Carson, Electromagnetic Theory and the Foundations of Circuit 
Theory, Bell System Tech. J., 6, 1-17, January, 1927. 
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with a wavelength so that the current I has the same value, at any 
instant, at all points of the circuit.  A generator impresses an applied 
field E. between terminals 1 and 2. If no capacitor is present (terminals 
3 and 4 connected together) and the field relation (8-14) is integrated 
around a closed path that follows the conduct-
ing circuit, we obtain 

E. • dl =  • di +96 --aA  • dl (8-15) 
Cr  at 

There is no contribution from the third term 
of the right-hand side of (8-14) since the line 
integral around a closed path of a field due to a 
scalar potential is zero.  It is assumed that E. 
exists only between terminals 1 and 2. Hence Fla. 8-4. Series circuit with 

resistance, inductance, and 
•  = f 2 E. • dl = '1)  volts (8-16) capacitance. 

where 1.) = emf applied (at terminals 1 and 2) by generator. The 
generator is assumed to be impedanceless. 
Now f(J/cr) • dl in (8-15) yields the total IR drop around the circuit. 

In Fig. 8-4 the total resistance R of the circuit is assumed to be lumped in 
a single resistor. 
The last term in (8-15) may be reexpressed asi 

Ea 

3 4 

96 A • dl = dI—  56 A — • dl =L dI  — 
dt  I  dt 

(8-16a) 

A 
where L = 56 —I • dl = inductance of circuit 

A =  dv = vector potential 
47r  r 

In Fig. 8-4 the total inductance L of the circuit is shown lumped in a 
single inductor.  Since A is proportional to the current, it follows that 
A// and hence L is independent of the current. Thus, for the case of a 
closed circuit consisting of a generator, a resistor, and an inductance the 
field relation (8-15) reduces to the circuit equation 

v = IR  L — dI (8-17) 
dt 

The transformation of (8-16a) may be also made with the aid of Stokes' theorem, 
recalling that B = Vx A and A = LI, as follows, 

d—i dA = L dl 96 A • dl  (v x A) • ds  5 d f  !  B • ds 
di  Tit  a 

where L is the inductance of the loop and I the current through it.  It is simplest 
here, though not essential, to think of the inductor as a single-turn loop. 
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Let us now reintroduce the capacitor between terminals 3 and 4 
(Fig. 8-4).  If we integrate (8-14) for this case around a closed path that 
follows the conducting circuit and across the gap in the capacitor, the 
contribution of the term involving J/u becomes indeterminate because in 
the capacitor J and a both approach zero.  Hence let us integrate all 
terms in (8-14) around a path that is closed except for the small gap 
across the capacitor (between terminals 3 and 4). This gives 

dI 
'U = IR + L —dt +  (8-18) 

Assuming that the gap is very small, (8-18) is identical with (8-17) except 
for the additional term V, representing the instantaneous potential 
difference between the plates of the capacitor. This was obtained by 
integrating VV around the conducting path from terminal 3 to 4. If we 
integrate V V from 4 to 3 across the capacitor, we obtain — V. Thus, 
the line integral of VV around a closed path from terminal 3 back to 
terminal 3 yields V, — V, = 0. Now V, in (8-18) may be expressed in 
terms of the charge Q on the plates and the capacitance C by 

f I dt  (8-19) 
C  C 

Thus, the field equation of (8-14) can be applied to a series RLC circuit 
to yield the familiar circuit equation' 

dI  1 
(8-20) 

For harmonic variation with respect to time (8-20) reduces to 

= IR +  (8-20a) 
PA; 

or 

= IR + jl (coL — —1)  (8-20b) 
wC 

In deriving (8-20) from (8-14) the assumption was made that at any 
instant the current is the same at all parts of the circuit. This implies 
that a disturbance is propagated around the circuit instantaneously.  If 
the circuit length is small compared with the wavelength, this is a satis-
factory assumption.  However, if the circuit length is appreciable com-
pared with the wavelength (say at least  wavelength), the variation in 
current and phase around the circuit may become significant. Under 
these circumstances the simple circuit concepts tend to become inade-
quate and inaccurate.  It is also to be noted that the above circuit 

Compare with (7-80). 



SEC. 8-4]  MAXWELL'S EQUATIONS  337 

treatment ignores the phenomenon of radiation, which is so important 
at high frequencies (see Chap. 13). 
There are certain exceptions to the above statement that circuit con-

cepts become inadequate when the circuit length is comparable with the 
wavelength. For example, circuit concepts are successfully applied to 
the long transmission line.  In this case, the distributed inductance and 
capacitance are represented by suitable lumped elements (see Chap. 11). 
Although the length of the line can be many wavelengths, it is significant, 
however, that even in this extension of circuit theory the treatment is 
adequate only for lines with transverse dimensions that are very small 
compared with the wavelength. 
8-4. Maxwell's Equations as Generalizations of Circuit Equations. 

In the remainder of this chapter a number of relations developed in the 
preceding chapters are brought together and considered as a group. 
These relations are known as Maxwell's equations and consist of four 
expressions: one derived from Ampere's law, one from Faraday's law, and 
two derived from Gauss's law. These equations are of profound impor-
tance and, together with boundary, continuity, and other auxiliary rela-
tions, form the basic tools for the analysis of most electromagnetic 
problems. 
In Chap. 4 Ampere's law relating the line integral of H around a closed 

path to the current I enclosed is given as 

fi H • dl = /  (8-21) 

Replacing the current / by the surface integral of the conduction current 
density J over an area bounded by the path of integration of H, we have 
the more general relation 

96H•d1 = isJ•ds  (8-22) 

In Chap. 7 this relation was made even more general by adding a displace-
ment current density to the conduction current density so that (8-22) 
becomes 

a 96 H • dl = f (J + l w  • ds 
8 

(8-23a) 

This relation is called Maxwell's equation as derived from Ampere's law. 
In (8-23a) it is given in its integral form, the line integral of H being 
taken over a closed path bounding the surface s. In circuit parlance a 
closed path or loop is often called a "mesh." Hence, (8-23a) is a mesh 
relation.  Applying Stokes' theorem to (8-23a), we obtain the correspond-
ing point relation 

OD 
Vx H =J -1--cii (8-23b) 
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Equation (8-23b) is a differential relation and relates the field quantities 
at a point.  It is the differential form of Maxwell's equation as derived 
from Ampere's law. 
In Chap. 7 Faraday's law relating the emf V induced in a circuit to the 

time rate of decrease of the total magnetic flux linking the circuit is given 
as 

dA 
dt 

(8-24a) 

Replacing the flux linkage A by the surface integral of B over the area 
bounded by the circuit, we have the more general equation 

= —  f B • ds (8-24b) 

Replacing V in (8-24b) by the line integral of E around the circuit, we 
have the still more general relation (for stationary circuits) that 

96 E • dl = — f —aB • ds  (8-25) , at 
This field relation is a generalization of Faraday's circuit law (8-24a). 
Equation (8-25) is called Maxwell's equation as derived from Faraday's 
law.  It is given in (8-25) in integral form, that is to say, it is a mesh 
equation.  The corresponding point relation may be obtained from (8-25) 
by an application of Stokes' theorem, yielding 

aB v xE = — —at  (8-26) 

Equation (8-26) is a differential relation and relates the field quantities at 
a point.  It is the differential form of Maxwell's equation as derived 
from Faraday's law. 
In Chap. 1 Gauss's law relating the surface integral of the electric flux 

density D to the charge Q enclosed is given as 

96. D • ds = Q  (8-27) 

Replacing Q in (8-27) by the volume integral of the charge density p 
throughout the volume enclosed by the surface s, (8-27) may be written 
in a more general form as 

96. D • ds =  p dv  (8-28) 

This field relation is a generalization of Gauss's law and is called Max-
well's electric field equation as derived from Gauss's law.  In (8-28) it 
appears in integral form and applies to a finite volume v. Applying 
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(8-28) to an infinitesimal volume, we can obtain the corresponding 
differential relation that relates the field quantities at a point as given by 

V • D = p  (8-29) 

Equation (8-29) is Maxwell's electric field equation as derived from 
Gauss's law in differential form. 
In the case of magnetic fields the surface integral of B over a closed 

surface s yields zero.  Thus the magnetic counterpart of Gauss's electric 
field relation (8-27) is 

96. B • ds = 0  (8-30) 

The corresponding differential or point relation is 

V • B = 0  (8-31) 

Equations (8-30) and (8-31) may be referred to as Maxwell's magnetic 
field equations as derived from Gauss's law.  Equation (8-30) is the 
integral and (8-31) is the differential form. 
The development of Maxwell's equations as generalizations of circuit 

relations involves both inductive and physical reasoning.  It is not 
implied that the "derivation" is rigorous.  Maxwell's equations are 
justified by the fact that conclusions based on them have been found in 
innumerable cases to be in excellent agreement with experiment, in the 
same way as the earlier circuit relations are justified within their more 
restricted domain by the excellent agreement of conclusions based on 
them with experiment.  It is perhaps worth recalling that Maxwell's 
equations were not generally accepted for many years after they were 
postulated (1873).  His curl equations (involving V x E and V x H) 
implied that time-varying electric and magnetic fields in empty space 
were interdependent, a changing electric field being able to generate a 
magnetic field, and vice versa.  The inference from this is that a time-
changing electromagnetic field would propagate energy through empty 
space with the velocity of light (see Chap. 9) and, further, that light is 
electromagnetic in nature.  Radio waves were unknown at the time, and 
it was 15 years (1888) before Hertz demonstrated that electromagnetic 
(or radio) waves were possible as predicted by Maxwell. 
There is no guarantee that Maxwell's equations are exact.  However, 

in so far as the precision of experimental measurements allow, they appear 
to be, and therefore we may regard them as exact. 
Along with Maxwell's equations certain other fundamental relations 

are of importance in dealing with electromagnetic problems. Among 
these may be mentioned Ohm's law at a point (3-21) 

J = aE  (8-32) 
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the continuity relation (3-58) 

the force relations 

op 
V • = — —di 

ICHAp. 8 

(8-33) 

F = qE  (8-34) 
dF =/d1xB  (8-35) 

and the relations between E and D and between B and H as given by 

D = €E = e0E  P 
B =  = µ0(11  M) 

(8-36) 
(8-37) 

8-5. Maxwell's Equations in Free Space.  In the preceding section, 
Maxwell's equations are stated in their general form. For the special 
case of free space, where the current density J and the charge density p 
are zero, the equations reduce to a simpler form.  In integral form the 
equations are 

sfi H • di = f —aD • ds at  (8-38) 

96E•d1 =  as  (8-39) 

96. D • ds = 0  (8-40) 

96. B • ds = 0  (8-41) 

In differential form the equations are 

ap v x , = -  (8-42) at 
aB v x E = — —  (8-43) at 

r • D = 0  (8-44) 
v • B = 0  (8-45) 

8-6. Maxwell's Equations for Harmonically Varying Fields. If we 
assume that the fields vary harmonically with time, Maxwell's equations 
may be expressed in another special form.  Thus, if D varies with time as 
given by 

then 

D = Doe."'  (8-46) 

or)  ..  . = 30.1Doew = 303D (8-47) 

Making the same assumption for B, Maxwell's equations in integral form 



TABLE 8-1 
MAXWELL'S EQUATIONS IN INTEGRAL FORM 

From Ampere From Faraday From Gauss From Gauss 

Magnetic flux Dimensions Mmf Emf Electric flux 

mksc . 

Case  nita  Amperes Volts Coulombs Webers 

General. .   
aro 

F= 96 H • dl = fa (J ± 73T ) • ds = le,44 
aB 

V = 96E • dl = — is w  • ds tk= 96. D • ds — is p dv lk„, = 96. 11 • ds = 0 

Free space  F = 9S  H • dl = f —ar• • ds .= /asp . at V = 96 E • dl = — 1 —aB • ds 8 at q, = 96 D • ds = 0 
8 

%,c„, = 96. B • ds = 0 

Harmonic 
van 
• =ation. F  96 H • dl = Or + jam) is E • ds = /t„,„I V — 96 E • dl — —jaw 1 H • ds 

8 
1,1, = fis D • ds = 1 p dv 

• 
0,,, = 968 B • ds -= 0 

Steady   F = 96 H • dl = f J • ds = Lo„d 
8 

V = 96 E • dl --= 0 i,,t'= 96 D • ds = i p dv 
8 • 

1,1,,,, = 96 B • ds = 0 8 

Static   U = fi H•d1 =0 V = 96 E • dl = 0 0 = 96 D • ds = i p dv 
•  • 

V,. = 96 B • ds = 0 
8 

sm
o
u
v
at
o 
s
m
a
m
x
v
w 
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reduce to 

96 H • dl = (a + jcoe)  E • ds  (8-48) 

E • dl = --icop j H • ds  (8-49) 

96. D • ds =  p di'  (8-50) 

96 B • ds = 0  (8-51) 

In differential form they are 

V x H =(o ± jcot)E  (8-52) 
V x E = —j04.414  (8-53) 
V • D = p  (8-54) 
V • B = 0  (8-55) 

8-7. Tables of Maxwell's Equations.  Maxwell's equations are sum-
marized in Tables 8-1 and 8-2.  Table 8-1 gives Maxwell's equations in 
integral form and Table 8-2 in differential form.  The equations are 
stated for the general case, free-space case, harmonic-variation case, 
steady case (static fields but with steady conduction currents), and 
static case (static fields with no currents).  In Table 8-1 the equivalence 
is also indicated between the various field quantities and the electric 
potential V, the emf V, the magnetic potential U, the mmf F, the total 
current /tow, the displacement current hu.„, the conduction current  
the electric flux  and the magnetic flux 0„,.  It should be noted that 
Maxwell's equations as tabulated here apply specifically to stationary 
systems or bodies at rest. 

TABLE 8-2 
MAXWELL'S EQUATIONS IN DIFFERENTIAL FORM 

Case 

Dimen-
sions 

General   

Free space... 

From Ampere From Faraday From Gauss 

Electric current 
area 

Electric potential 
area 

V xH = J  — aD 
at 

aB 
v xE = — — 

at 

Electric flux 
volume 

From Gauss 

Magnetic flux 
volume 

v• D v•B —0 

Vx H = aD 
at 

Harmonic 
variation.. 

Steady   

V x H = (a + jcoe)E 

aB 
v xE = — — 

at 
v• D —0 v•B =0 

vxE =  V • D a.•• p 

vx H =J vxE =0  v•D =p 

Static   vx H 

v•B = 0 

v•B = 0 

vxE =0  v•D v•B = 0 
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PROBLEMS 

8-1. State Maxwell's equations in their general integral form.  Derive their form 
for harmonically varying fields. 
8-2. State Maxwell's equations in their general differential form.  Derive their 

form for harmonically varying fields. 
8-8. (a) Obtain the integral form of Maxwell's equation from Ampere by generaliz-

ing Ampere's law.  (b) Obtain the corresponding differential or point relation by 
applying Stokes' theorem. 
8-4. Develop Maxwell's equation involving V x E from fundamental considerations 

of a closed circuit of infinitesimal area. 
8-5. Show that the expression for the low-frequency inductance as given in (8-16a) by 

A 
L = 96 - dl 

/ 

reduces for a conducting circuit to Neumann's low-frequency inductance formula, 

L =  9696  • dl 
4r  r 

8-6. A transmission line consisting of two parallel conductors has a length 1 and a 
conductor separation D (center to center). The conductors are thin wall tubes of 

I Y 

I dl' 

dl 

2 conductor 
transmission line 

FIG. 8-5. Two-conductor transmission line. 

radius a (see Fig. 8-5).  Apply Neumann's low-frequency inductance formula 
(Prob. 8-5) to show that the inductance of the line is 

L = — go/ In -D  henrys 
r  a 

2a 1 
+ 

Compare with (4-71).  Assume that 1 >> D, and neglect end effects.  Hint: Note that 
dl'/r in Neumann's formula may be expressed in this problem (see Fig. 8-5) as 

- ;) dx 

where r'  and r" = ‘,/ x2 -1- D1. 



CHAPTER 9 

PLANE WAVES IN DIELECTRIC MEDIA 

>( 9-1. Introduction. The interdependence of electric and magnetic 
fields is demonstrated in a striking manner by an electromagnetic wave 
propagating through space.  In such a wave the time-changing magnetic 
field may be regarded as generating a time-varying electric field, or vice 
versa, with the result that energy is propagated through empty space at 
the velocity of light. 
In this chapter we begin the study of electromagnetic waves by con-

sidering the simplest case, namely, that of a plane, linearly polarized 
wave in a lossless dielectric medium. 
A plane wave may also be called 
a principal, zero-order, or TEM 
(transverse electromagnetic) wave 
since E and H are transverse to the 
direction of propagation.  A study 
of plane waves forms an excellent 
introduction to wave phenomena in 
general and to such systems in par-
ticular as wave guides and transmis-
sion lines. 
Although the following discus-

sion deals largely with a plane wave 
in free space (vacuum), it is more 

general.  It also applies for any lossless (nonconducting) dielectric 
medium which is isotropic, that is, one having properties that are the same 
in all directions. 
The field lines for a wave propagating toward the reader (out of page) 

are indicated in Fig. 9-1. The directions of E and H are everywhere 
perpendicular.  In a uniform plane wave E and H lie in a plane and have 
the same value everywhere in that plane. 
y 9-2. Plane Waves and the Wave Equation. Referring to the right-
handed coordinate system in Fig. 9-2, assume that a plane wave is travel-
ing in the direction of the positive x axis. The electric field E has only a 
component E, in the y direction and the magnetic field H only a corn-

344 

Flo. 9-1. Plane traveling wave approach-
ing reader (out of page). 
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ponent H. in the z direction.'  It is said that this wave is polarized in the 
y direction (vertically polarized). 
Since we are dealing with a nonconducting medium, the conduction 

current density J is zero. Thus Maxwell's equation from Ampere's law 
reduces to 

OD 
v x H = —at 

or in rectangular coordinates 

aitax,_ aH) . . (H.  OH,  k (aH,  all) 
+ 1 k ay  Oz  az  az)  \ az — ay 

(9-1) 

a . = Tit (iD. ± JD, -I- k/).)  (9-2) 

For a plane wave traveling in the x direction the only components of (9-2) 
that contribute are  

. aii,  . ap. 
—3  •: = 3 at 

Therefore.  

aii. = —e 0E, 
Ox at 

(9-3) 

(9-4) 

Maxwell's equation from Faraday's 
law is 

as v xE = — at 

or in rectangular coordinates 

(9-5) 

Ey 

Direction of 
propagation 

1 

x 

z 

Fin. 9-2. Field components of plane 
wave with relation to coordinate 
system. 

I aE  \  / aE  aE\  / aE  \ 
i----'  aE—  5 ) ±  j k-! - 3) + k  v  aE — —! \  ) ay  Oz  az  ax  ax  ay 

a .  . = — yt (1E. + JE„ + ki3.)  (9-6) 

For a plane wave traveling in the x direction the only components of (9-6) 
which contribute are2 

k 1' = —k aB' ax  at (9-7) 

I The wave in Fig. 9-2 is traveling in the positive x direction since, applying the 
right-hand rule, E turned into H advances (as a right-handed screw) in the positive 
x direction. 
If it had been specified originally that the wave is linearly polarized with E in 

the y direction and that the wave travels in the x direction, it follows from (9-6) and 
also from (9-2) that H must be in the z direction. 
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Therefore 
aE _  ax, I 
ax  AL at ' 

[CHAP. 9 

(9-8) 

Equation (9-4) relates the space derivative of H, to the time derivative 
of Ev, while (9-8) relates the space derivative of E„ to the time derivative 
of H,. By differentiating (9-4) with respect to the time and (9-8) with 
respect to distance x, H, can be eliminated and an expression obtained 
for Ev in terms of t and x. Proceeding in this way, we obtain, from (9-4), 

a (ail) = 
Tt\ax J  at. 

and from (9-8) 

a.Ei, =  a (OH, 
ax.  ax\ at J 

at2 = me  ax2 
1 

Equation (9-12) relates the space and time variation of the scalar mag-
nitude Ey of the electric field intensity and is called a wave equation in E. 
It is, in fact, a scalar wave equation of the simplest form. 
Differentiating (9-4) and (9-8) in the reverse order, that is, (9-4) with 

respect to x and (9-8) with respect to t, we can eliminate E„ and obtain a 
wave equation in H, as 

(9-9) 

(9-10) 

Dividing (9-10) by —,u yields 

—   1 a2E = ( „ a aH) 0-11) 
8X2 ax at   

Since in (9-9) it does not matter whether we differentiate first with respect 
to x and then with respect to t, or vice versa, the left-hand side of (9-9) is 
equal to the right-hand side of (9-11) and it follows that 

a2E„  1 a2E, 
(9-12) 

[
02H.  1 a2H, I 
at2 me ax 2 I 

(9-13) 

Both (9-12) and (9-13) are of the same form.  A wave equation such as 
given by (9-12) and (9-13) has many important physical applications and 
is sometimes called D'Alembert's equation, having been integrated by him 
in 1747.  If Ey in (9-12) is a transverse displacement, the equation can 
represent the motion of a disturbance on a stretched string.  This was 
D'Alembert's problem.  If E„ is a mechanical compression, then the 
equation can describe the motion of small oscillations of air in a narrow 
pipe.  In our case E„ represents the scalar magnitude of the electric field 
intensity of a plane electromagnetic wave progressing in the x direction, 
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and the equation is the most general way of describing the motion of this 
field as a function of time and space. 
A uniform plane electromagnetic wave with both E and H transverse 

(perpendicular) to the direction of propagation is approximated by a 
small section of a free-space wave at a great distance from a source.  As 
previously mentioned this type of wave may be called a principal or TEM 
wave. This kind of wave is usually the type found on two-wire or coaxial 
transmission lines, although on these lines the field is nonuniform, that is, 
E and H vary in direction and magnitude from point to point in a trans-
verse plane.  It will be noted, however, that a TEM wave cannot 
propagate in a hollow pipe or wave guide, since in such guides E and H 
are never both entirely transverse, there being always one field com-
ponent in the direction of propagation.  Such waves are called higher-
order modes (see Chap. 12). 
Let us now introduce a quantity r in (9-12) such that 

v' = — 1 (9-14) 

Equation (9-12) then becomes 

Dimensionally (9-15) is 

so that 

a 2Ev  
ag2 =  V2 a2 E li 

aX2 

Volts 2 v volts  
Meter-second2 - meter' 

meters 
v =   

second 

(9-15) 

Thus, it appears that v has the dimensions of velocity. This velocity is 
a characteristic of the medium, being dependent on the constants µ and 
e for the medium.  For free space (vacuum) v is approximately equal to 
3 X 10' meters per sec. 
X 9-3. Solutions of the Wave Equation. The wave equation (9-15) is a 
linear partial differential equation of the second order. To apply the 
equation, a solution must be found for E.  Methods of solving this type 
of equation are discussed in texts on differential equations.  It will 
suffice here to say that if we take the following trial solution 

Ea 
E. = sin gx  mt)  (9-16) 

where  = 27r/X 
X = wavelength 
m = a constant (to be determined) 
= time 

we find on substitution in (9-15) that 

m = ±r  (9-17) 
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where v = velocity.  Hence a general solution for (9-15) is 

E, = sin (3(x  vt) + sin  — vt)  (9-18) 

Either term alone is a solution, or the sum, as in (9-18), is a solution. 
This can be verified by taking the second derivatives of the solution in 
terms of t and x and substituting them in (9-15).  Since v = fX, it follows 
that 

fly = —X .fX = 24rf = co 

Thus, (9-18) can also be expressed 

E, = sin (fix  + cut) -I- sin (13x — cut) 

(9-19) 

(9-20) 

Suppose that the first term of (9-18) is considered by itself as a solution. 

That is,  eQ 
E„ = sin 0(x  vt)  (9-21) 

The significance of (9-21) can be illustrated by evaluating E„ as a function 
of x for several values of the time t. First let us take t = 0. Then 
E, = sin fix.  The curve for this instant of time is shown by Fig. 9-3a. 

+1 
6 • .44; 4) 

E y  0 

4'-1  0 

—1 

FIG. 9-3. Curves for E = sin (fix + wt) at three instants of time: I =- 0,  7'/4, and 
I 2= T/2.  A constant phase point P moves to the left as time progresses. 

t = 0 (a) 

(b) 

t=-2  (c) 

Next consider the situation one-quarter period later, that is, when 
t = T/4, where T is the time of one period.  Then 

flvt 27  2r T  r = cot = (24rf)t =  t =  = (9-22) 

The curve for t = T/4 or cut = T/2 rad is shown in Fig. 9-3b.  One-half 
period later, t = T/2, and cot = 7, yielding the curve of Fig. 9-3c.  Focus-
ing our attention on the crest of one of the waves, as indicated by the 
point P, we note that as time progresses, P moves to the left.  From Fig. 
9-3 we can thus interpret (9-21) as representing a wave traveling to the 
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left, or in the negative x direction. The maximum value of A, for this 
wave is unity. 
The point P is a point of constant phase and is characterized by the 

condition that 7 a  44 rt  Vi t  a that 
X + vi = constant  (9-23) 

Taking the time derivative of (9-23) gives 

dx + v = 0  (9-24) 

dx 0 -ebb" h 
f) = —v  ve itd (9-25)  

In (9-25), dx/dt is the rate of change of'stance with respect to time, 
or velocity, of a constant phase point.  Hence, v is the velocity of a 
constant phase point and is called the p ase velocity.  We note also that 
v is negative, which means that the wave is traveling in the negative x 
direction. 
Next consider the last term of (9-18) as a solution by itself. Then 

Ey = sin ft(x — vi) = sin (fix — cut)  (9-26) 

Putting in values for t = 0, T/4, and T/2, we obtain from (9-26) the 
curves of Fig. 9-4.  Here a constant phase point P moves to the right as 

and 

+1 

Ey 0 

-1 

Ey 0 
a. 

t -0  (a)  4 y 

(C)  40 4 13 X  -7 0 

—1 
Ful. 9-4. Curves for E,  ▪ sin (3x — wt) at three instants of time t = 0, t = T/4, and 
t = T/2.  A constant phase point P moves to the right as time progresses. 

time progresses.  Hence (9-26) represents a wave traveling in the positive 
x direction. 
If we set x — vi equal to a constant and proceed in the same manner 

as for (9-24) and (9-25), we find in this case that 

dx 
= +v (9-27) 

Thus, the wave travels with a velocity v in the positive x direction. 
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To summarize, a negative sign in x ± vt or in fix ± cot is associated 
with a wave to the right, while a positive sign is associated with a wave to 
the left. Accordingly, when solutions with both positive and negative 
signs are given, as in (9-18), two waves are represented, one to the left 
and one to the right, and the complete solution is equal to the sum of 
both waves. 
Let us now treat in somewhat more detail the wave traveling in the 

positive x direction as given by (9-26). A number of other forms can 
also be used which are equivalent except for a phase displacement. 
Three equivalent forms are 

E„ = sin (cot — fix) ) 
E. = cos (fix — cot)  (9-28) 
E. = cos (cot — fix) 

These may be rewritten so that their relation to the first is more apparent. 
Thus, recalling that sin ( —u) = — sin u = sin (u -I- 7) and cos ( — u) = 
cos u 

E. = sin (cot — fix) = sin (fix — cot ± r) 

E. = cos (fix — cot) = sin (fix — cot -1-; 

E. = cos (cot — fix) = sin (fix  — cot -1-; 

The relation of the three forms of (9-29) to (9-26) is illustrated graphically 
in Fig. 9-5.  Here the four forms are compared for t = 0. On sub-

; o 

- 

cos( gx-wt) 
and 

,. ...cos(cot-lit) 

sin (wt-/ix) 
Fio. 9-5. Four forms of wave expression at t ... 0. 

sin(Px-wt) 

r  /ix 

(9-29) 

stituting other values of t into the four equations, it is seen that in each 
case the equation represents a wave traveling to the right.  The only 
difference between them is that in some cases there is a phase displacement 
of r/2 or 7. 
If the phase displacement is disregarded, any of the four forms given 

by (9-26) and (9-28) can be selected to represent a wave traveling in the 
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positive x direction. Suppose, then, we choose the form 

E, = sin (wt — fix) 

351 

(9-30) 

This choice has the advantage that the term with the time t is positive for 
waves traveling in either the positive or the negative x direction. 
Thus far, it has been assumed that the maximum amplitude of Ev is 

unity. If now we specify the maximum amplitude as Eo, we have 

E„ = E0 sin (cot — 13x)  (9-31) 

Since f = 1/T, (9-31) can be expressed in a form in which the period T 
appears explicitly. For the sake of symmetry, let us also put  = 27/X, 
obtaining 

= Eo sin (27r  — 2T -x) (9-32) 
X 

These expressions, (9-31) and (9-32), represent a wave traveling in the 
positive x direction. The corresponding expressions for a wave traveling 
in the negative x direction are 

Ei, = Eo sin (cot -I- /3x)  (9-33) 
and 

Ev = Eo sin (27 yi 27r  (9-34) 

The solutions of the wave equation given by (9-31) and (9-33) are 
trigonometric solutions.  We may also express the solution in exponential 
form. Thus 

E„ = E0e'±ft)  (9-35) 

where it is understood that the instantaneous value of the field is given 
by the imaginary (or real) part of the exponential function. Thus, 
taking the imaginary part (Im) we have 

Ei, = E0Im ei4"-Pi) = Eo sin (cot — Ox)  (9-36) 

If the real part (Re) is taken, we obtain 

E„ = Eo Re ei(*"--ox) = E0 cos (cot — Ox)  (9-37) 

Taking the second derivatives of (9-35) with respect to t and x, it may be 
verified that (9-35) is indeed a solution. 
y 9-4. Table of Solutions of Wave Equation. In Table 9-1 both 
trigonometric and exponential solutions are given for a plane wave in a 
lossless medium. Solutions are listed for waves traveling to the left 
(negative x direction) and to the right (positive x direction).  Solutions 
given by the sum of two such independent solutions are also included. 
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TABLE 9-1 
TABLE OF SOLUTIONS OF WAVE EQUATION 

Trigonometric form Exponential form 

Wave to 
right.. Ey -= El sin (cut — ax) = Eiet(i-Pz) 

Wave to 
left.... Ey = Ey sin (tot -I- fix) Et, = Eoeio.e4-8.) 

Two 
waves. 

------40 

Eo sin (cut + 13x) + El sin (wi — fix) Ey = Eyei(w+fix)  Eieicw-th) 

9-5. Phase Velocity. We have seen that x — vt is a constant for a 
point of constant phase in a traveling wave.  It follows that cut — x is a 
constant. That is, t and x must vary together so that 

cot — ftx = constant  (9-38) 

Differentiating (9-38) with respect to time to find the velocity of the 
constant phase point, as done in (9-24), yields 

or 

dx 
— p — = u 

dt 

dx _ co 
dt 

Thus, the phase velocity, or velocity of a constant phase point, is given 
by 00. That co/13 has the dimensions of velocity is more apparent if it is 
reexpressed 

(9-39) 

w  21rf  = xf 
#  2.7r/X 

(9-40) 

(9-41) 

where X = wavelength 
f = frequency 

The product Xf has the dimensions of wavelength (distance) times fre-
quency (reciprocal of time). Thus, Xf has the dimensions of distance per 
time or velocity. 
From (9-14) we have that the phase velocity is 

I 1 6.1 
ei = v — 

VT:ie 
(9-42) 

Equation (9-42) gives the phase velocity of a wave in an unbounded 
medium of permeability la and permittivity e. For free space (vacuum) 
the velocity is a well-known constant (usually designated by c and usually 



SEC. 9-5]  PLANE WAVES IN DIELECTRIC MEDIA  353 

called the velocity of light). Thus 

1  
c =   - 2.998 X 108 meters/sec 

Vi-Aoeo 

In the mksc system of units the permeability of vacuum is 

= 41. X 10-7 henry/meter 

Therefore the permittivity of vacuum is 

1 
eo = —  = 8.85 X 10-12  farad/meter mo o 

For other media the phase velocity relative to the velocity 
relative phase velocity, is 

NN, V  *'VItoeto   1  
(dimensionless) 

c  V ia  1/.1ter 

(9-43) 

(9-44) 

of light, or 

(9-45) 

where AT = relative permeability of medium 
e, = relative permittivity of medium 

The phase velocity of a plane wave in an unbounded lossless medium is 
equal  to or less than the velocity of light (p < 1).  In general, however, 
the phase velocity niTik--have values -both greater and less than the 
velocity of light. For example, in a hollow metal wave guide v is always 
equal to or greater than c (see Chap. 12). 
If two waves of the same frequency travel with the same velocity in 

opposite directions or with different velocities in the same direction, the 
phase velocity of the resultant wave is not a constant but varies as a 
function of position.  In measuring the velocity it is usually most con-
venient, at radio frequencies, to determine the electrical phase shift (by 
phase-comparison methods) between two points, one of which is taken as 
a reference. 
For a wave traveling in the positive x direction there is an infinitesimal 

phase lag chi:, or phase advancement - dO in a positive distance dx. The 
time required for a constant phase point to move this distance is then 

dl = - - T sec  (9-46) 
2w 

where T = time for one period. Therefore the phase velocity as a func-
tion of position is given by 

dx  dx _ _   (9-47) dl  v =  = (T/27) dcp  dqS/dx 

For a wave traveling in the positive x direction d4,/dx is negative, and 
hence v is positive. 



354  ELECTROMAGNETICS  [CHAP. 9 

As compared with (9-47) the phase velocity w/i3 as in (9-42) is an 
average phase velocity as averaged over an integral number of wave-
lengths.  Thus, dividing (9-47) by co//3, we obtain a relative phase 
velocity p which is a function of position as given by 

0  
P =  chk/dx (9-47a) 

where /3 = 27/X 
X = wavelength in free space 

Both v in (9-47) and p in (9-47a) are useful where the phase velocity is a 
function of position. 
X 9-6. Index of Refraction.  In optics the index of refraction n is defined 
as the reciprocal of the relative phase velocity p. That is, 

1  1 
n =  =  =  =  We, 

p  v/c  v 
(9-48) 

For nonferrous media A, is very nearly unity so that 

=  (9-49) 

Example 1. Paraffin has a relative permittivity er = 2.1.  Find the index of refrac-
tion for paraffin and also the phase velocity of a wave in an unbounded medium of 
paraffin. 
Solution.  The index of refraction 

The phase velocity 
n =  — 1.45 

v    = 2.07 X 108 meters/sec 
V271 

Example 2. Distilled water has the constants a  0, e, = 81, µ, = 1. Find n 
and v. 
Solution: 

—  = 9 

.111c = 3.33 X 107 meters/sec 
V81 

The index of refraction given for water in the above example is the 
value at low frequencies (f --0 0).  At light frequencies, say for sodium 
light (X = 5,893 angstroms), the index of refraction is observed to be 
about 1.33 instead of 9 as calculated on the basis of the relative permit-
tivity.  This difference was at one time cited as invalidating Maxwell's 
theory. The explanation for the difference is that the permittivity e is 
not a constant but is a function of frequency.  At zero frequency 0, = 81, 
but at light frequencies e,. = 1.332 = 1.77. The index of refraction and 
permittivity of many other substances also vary as a function of the 
frequency. 



and 

SEC. 9-7]  PLANE WAVES IN DIELECTRIC MEDIA  355 

NA 9-7. Group Velocity.' Consider a plane wave traveling in the positive 
x direction as in Fig. 9-2. Let the total electric field be given by 

E. = Eo cos (cot — ,Rx)  (9-50) 

Suppose now that the wave has not one but two frequencies of equal 
amplitude expressed by 

wo -I- ,10, 

coo — Aco 

It follows that the 13 values corresponding to these two frequencies are 

Po ± AP corresponding to coo + Aco 
and 

So — A$ corresponding to Wo — Aco 

For frequency 1 

E; = Eo cos [(WO + AC M — WO + A0)4  (9-51) 

and for frequency 2 

= Eo cos [(oh — Acu)t — (tio — Ai3)x]  (9-52) 

Adding gives the total field 

E, = g + E;'  (9-53) 
or 

E„ = E0 icos [(WO ± A O — (Po ± Af3)x] 
+ cos [(coo — Aco)t — ($0 — 443)4}  (9-54) 

Multiplying out (9-54) and by trigonometric transformation 

E„ = 2E0 cos (coot — fox) cos (Aw t — 41 x)  (9-55) 

The two cosine factors indicate the presence of beats, that is, a slow 
variation superimposed on a more rapid one. 
For a constant phase point 

coot — Oox = constant 
and 

dx  coo 
—  — = v = foXo  (9-56) 
dt  i3o 

where v = phase velocity. Setting the argument of the second cosine 
factor equal to a constant, 

Aw t — Aft x = constant 

1 Leon Brillouin, " Wave Propagation in Periodic Structures," McGraw-Hill Book 
Company, Inc., New York, 1946, Chap. 5. J. A. Stratton, "Electromagnetic Theory," 
McGraw-Hill Book Company, Inc., New York, 1941, p. 330. 
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(9-57) 
dt 

where u is the phase velocity of the wave envelope, which is usually called 
the group velocity.  In the above development we can consider coo + Acu 
and coo — Aco as the two side-band frequencies due to the modulation of a 
carrier frequency coo by a frequency Aco, the carrier frequency being 
suppressed. 
In nondispersive media the group velocity is the same as the phase 

velocity. Free space is an example of a lossless, nondispersive medium, 
and in free space u = v = c. However, in dispersive media the phase 
and group velocities differ. 
A dispersive medium is one in which the phase velocity is a function of 

the frequency (and hence of the free-space wavelength).  Dispersive 
media are of two types: 

1. Normally dispersive.  In these media the change in phase velocity 
with wavelength is positive, that is, dv/dX > 0. For these media 
U < v. 

2. Anomalously dispersive.1 In these media the change in phase 
velocity with wavelength is negative, that is, dv/dX < 0. For these 
media u > v. 

The terms "normal" and " anomalous" are arbitrary, the significance 
being simply that anomalous dispersion is different from the type of dis-
persion described as "normal." 
For a particular frequency (band width vanishingly small) 

Aco  dco 
u = um — = 

Aft  d# 
(9-58) 

But co = 2rf = 27rfX/X = /3v; so 

dco  d(fiv) — # —dv  v  (9-59) 
u = C-171 =  d# 

or 
dv 

u = v  13 wc3  (9-60) 

It may also be shown tl4it 
dv 

u=v — X  (9-61) 
_ - 

Equations (9-60) and (9-61) are useful in finding the group velocity for 
a given phase velocity function. 

A conductor is an example of an anomalously dispersive medium. However, 
conductors are absorptive (not lossless), and in media where the absorption is not 
small, the group velocity tends to lose its simple meaning. 
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Example.  A 1-Mc/sec (300 meters wavelength) plane wave traveling in a normally 
dispersive, lossless medium has a phase velocity at this frequency of 3 X 108 meters/ 
sec. The phase velocity as a function of wavelength is given by 

v = kNlik 

where k = constant.  Find the group velocity. 
Solution.  From (9-61) the group velocity is 

dv  k ,-u=v —X — =v -- v  
dX  2 

or 
U = v(1 — 

Hence 

u  n. 1.5 X 108 meters/sec 

To illustrate graphically the difference between phase and group 
velocity, let us consider a wave of the same phase velocity characteristics 

  u 

Ey 

Time 
t=0 

Ey 

-4- period 
later 

Ej 
1 •i period 
later 

1500 

Flo. 9-6. Constant phase point P of the wave proper moves with phase velocity v, 
while point P' on the envelope moves with group velocity u. In this example the 
group velocity is one-half the phase velocity. 

as in the above example and assume, further, that the wave has two fre-
quencies fo  if and fo — Af of equal amplitude where fo = 106 cps and 
Af = 106 cps. This is equivalent to a 106-cps carrier modulated at 
106 cps with the carrier suppressed. From (9-55) graphs of the instan-
taneous magnitude of Ey as a function of distance (plotted in meters) are 
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presented in Fig. 9-6 for three instants of time, t = 0, t = T/4, and 
t = T/2.  The point P is a point of constant phase of the wave proper 
and moves with the phase velocity v. The point P' is a point of constant 
phase of the envelope enclosing the wave and moves with the group 
velocity u. It is apparent that in one-half period (T/2) the point P' has 
moved a distance d' which is one-half the distance d moved by the 
point P.  That is to say, the group velocity u is one-half the phase 
velocity v. The intelligence conveyed by the modulation moves with 
the velocity of the envelope, that is, at the group velocity.' 
The difference between phase and group velocities is also illustrated by 

a crawling caterpillar.  The humps on his back move forward with phase 
velocity, while the caterpillar as a whole progresses with group velocity. 
For a single-frequency constant-amplitude (steady-state) wave the 

group velocity is not apparent.  However, if the wave consists of two or 
more frequencies, or a frequency group, as in a modulated wave the 
group velocity may be observed because the wave amplitude is non-
uniform and the individual waves appear to form groups that may be 
enclosed by an envelope, as in Fig. 9-6. 
y 9-8. Impedance of Dielectric Media. Thus far our attention has been 
focused on the electric field E. Let us now consider also the magnetic 
field H, of the same plane wave (see Fig. 9-2) and, in particular, find how 
H, is related in magnitude to E.  A solution of the wave equation (9-13) 
in H, is 

H, = Ho sin (cot — ft)  (9-62) 

This solution represents a wave traveling in the positive x direction.  A 
solution for E„ representing a wave in the positive x direction is given 
by (9-31) as 

Ey = Eo sin (cot — fix) 

To find how H. in (9-62) is related to Ey we recall from (9-8) that 

aE, — = -- all, A-ax  at 

(9-63) 

(9-64) 

Substituting (9-63) for Ey in (9-64), performing the indicated differentia-
tion, and then integrating with respect to time yields 

0 H, = — Eo sin (cot — Ox)  (9-65) 
Igo 

Taking the ratio of Ey to H. for a single traveling wave, as given by the 
ratio of (9-63) to (9-65), we obtain 

E, = Eo _ ma) _  A  _ hi- _ Eo 

1 In a lossless medium the energy is also conveyed at the group velocity. 

(9-66) 
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or 

=  H, (9-67) 

For comparison we can now write 

E„ = Eosin (cot — i3x)  volts/meter  (9-68) 
and 

H, =  Eo sin (cut — 13x)  amp/meter  (9-69) 

It is apparent that E„ and H. are identical functions of x and t, but their 

magnitudes differ by a factor /a/e or its reciprocal. 
The dimensions of (9-66) expressed in mksc units are 

Volts/meter  _ volts 
Amperes/meter  ampere 

Thus, Va/e has the dimensions of an impedance, and we may write 

(9-70) 

where Z is called till intrinsic impedance of the medium.  For free space 
(vacuum) 

4. 
Z = Zo =  = 376.7  120r  ohms  (9-71) 

eo 

If E and H are in time phase, Z is a pure resistance.  This is the case 
for free space and all lossless dielectric media. To emphasize the fact 
that the impedance is a pure resistance, one can speak of the intrinsic 
resistance (instead of impedance) of free space and of lossless dielectric 
media.  If E and H are not in time phase, as in conducting media, the 
ratio of E to H is complex, so that the more general term intrinsic imped-
ance must be used in connection with such media. 
Introducing (9-70) in (9-66), we have 

_  _ z _ f-A-
1/ e (9-72) 

Example.  If the magnitude of H in a plane wave is I amp/meter, find the magni-
tude of E for a plane wave in free space. 
Solution.  From (9-72) 

E = ZH = 376.7 X 1  376.7 volts/meter 

The instantaneous values of E„ and H, along the x axis for a plane 
wave progressing in the positive x direction are illustrated in Fig. 9-7. 
Figure 9-7a shows the condition at the time t = 0, while Fig. 9-7b shows 
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the conditions one-quarter period later (t = T/4). The maximum values 
of E, and H. (Eo and Ho) are shown to be equal.  Hence, if the medium 
is free space, the scale in volts per meter along the y axis should be 377 
times the scale in amperes per meter along the z axis. The scales would 

Il 

Direction of propagation 

(a) 

(6) 

Fm. 9-7. Instantaneous values of E. and H. along x axis at time t 0 (a) and  period 
later (b).  In this interval the point P has advanced % wavelength to the right. 

be equal, however, if the medium had an intrinsic impedance of 1 ohm. 
In Fig. 9-7 both the magnitudes and directions of E„ and H. are shown for 
points along the x axis. Since we are considering a plane wave traveling 
in the direction of the x axis, the relations of E, and H. along all lines 
parallel to the x axis are the same as those shown. 
X 9-9. Impedance of Transmission-line Cell. Imagine a plane wave 
traveling out of the page (toward the reader) with space divided up by 

A 

Current on  Transmission 
strips  I  line cell 

4E -6- 20-

1 

Conducting 
strips 

Fro. 9-8. Plane wave traveling out of page with space divided by conducting strips 
into transmission-line cells. 

thin conducting strips into transmission-line cells as suggested in Fig. 
9-8. The strips are normal to E, and they extend infinitely far normal to 
the page. The field H is parallel to the strips.  At the surface of each 
strip there is a current sheet of linear density K (normal to the page) that 
is equal in magnitude to H. The currents on opposite sides of one strip 
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are opposed as shown.  A plane (TEM) wave traveling through space 
divided up into line cells as in Fig. 9-8 has the same values of E and H 
everywhere as a wave in empty space (no strips present as in Fig. 9-2), it 
being assumed that the strips are of infinitesimal thickness.  Assuming 
also that the strip width and spacing are equal (both equal to 1) so that 
the cell cross section is square and the edges of the strips are infinitesimally 
close together, the voltage V between two strips of one cell is 

V = El  (9-73) 

The total current / flowing on the bottom surface of the top strip of a cell 
(or top surface of the bottom strip of a cell) is given by 

/ = HI  (9-74) 

Dividing (9-73) by (9-74) yields 

E  V  „ 
X = I = (9-75) 

Thus, for a single traveling wave the intrinsic impedance E/H of a wave is 
equal to the characteristic impedance VII of a single transmission-line cell. 
Furthermore, from (9-72) we have 

(9-76) 

Now in the case of a transmission-line cell we have from (4-100) that the 
inductance of the line per unit depth (normal to the page) is equal to the 
permeability of the medium, that is, 

= 
(9-77) 

while we have from (2-105) that the capacitance of the line cell per unit 
depth equals the permittivity of the medium, or 

Accordingly, we can write 

Z =  = 
e  C/d 

(9-78) 

(9-79) 

where Z = characteristic impedance of line cell (ohms) 
Lid = inductance per unit length of line cell (henrys/meter) 
C/d = capacitance per unit length of line cell (farads/meter) 

To summarize, the characteristic impedance of a transmission line cell is 
equal to the intrinsic impedance of the medium filling the cell.  If the 
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medium is free space, µ = Ao and e = co; so the characteristic impedance 
of the line is 

Z = ,\P±"-) = 376.7 ohms eo  (9-80) 

lane Waves Traveling in Opposite Directions.  Standing 
Waves. Thus a , e have considered only a single traveling wave, such 
as a wave moving in th • ositive or the negative x direction. Let us now 
examine the situation whi  exists when there are two waves traveling in 
opposite directions, such  the negative and positive x directions. 

Medium 2 

Transmitted wave 

il  Medium 1 

1 EL,1 
I Incident wave 

Reflected wave 

7
-_ -cv -,o-  

, 

Boundd'y between 
media 

Fm. 9-9. Relation of incident, reflected, 
and transmitted waves. 

Assume that the two waves are of 
the same frequency and of sinusoi-
dal form. The condition that the 
waves be of the same frequency and 
form is automatically fulfilled if one 
wave is a reflection of the other since 
both then originate from the same 
source. 
Referring to Fig. 9-9, assume that 

space is divided into two media, 1 
and 2, with a plane boundary be-
tween as shown.  A wave originat-
ing in medium 1 and incident on the 
boundary is said to be the incident 
wave. The wave reflected from the 
boundary back into medium 1 is 

called the reflected wave.  If the reflection of the incident wave at the 
boundary is not complete, some of the wave continues on into medium 2 
and this wave is referred to as the transmitted wave. 
In the solution of the wave equation for Ei, as given by (9-20) there 

are two terms, the first representing a wave in the negative x direction (to 
the left) and the second a wave in the positive x direction (to the right). 
Referring now to the exponential solution in Table 9-1, let the incident 
wave (traveling to the left) be given by 

chrectl fri E 0 = Eoei(wt-F8x) (9-81) 

and the reflected wave (traveling to the right) by 

#x tv(/1  .ty1 =  /x- (9-82) 

where 5 is the time-phase lead of to with respect to two at x = 0. That 
is, 5 is the phase shift at the point of reflection. E0 is the amplitude of 
the incident wave, and E1 is the amplitude of the reflected wave. The 
dot C) is used here to indicate explicitly that t„o and to are complex 

I _ 10 k- S 
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functions of 1, x, and at The total electric field E. is 

E,,,i  (9-83) 
LJ 

The instantaneous magnitude oi the fields is obtained by taking either 
the real (Re) or imaginary (Im) parts of (9-81) and (9-82).  Thus, taking 
the imaginary parts, the total instantaneous electric field is 

y„ = Im E = E0 sin (cot + fix) + El sin (cot — fix + i5)  (9-84) 

To simpWfy the present discussion, assume that 5 in (9-84) is either 0° 
or 180°.  Then, 8 need not appear at all, EI being negative if 3 = 180°. 
On this basis, (9-84) may, be expanded as follows:' 

E, = Eo sin cot cos fix + Eo cos cot sin sx  Pi 
+ El sin wt cos fix — El cos cat sin fix  (9-85) 

Collecting terms 
11,  1-6 

E, = (E0 + El) sin cot cos fix ± (E0 — El) cos wt sin fix  (9-86) 

If medium 2 is a perfect conductor, the reflected wave is equal in magni-
tude to the incident wave.  If x = 0 is taken to be at the boundary 
between media 1 and 2, the boundary relation for the tangential com-
ponent of E requires that E„ = 0 so that EI = — El) at the boundary 
(5 = 180°). Thus (9-86) becomes 

?vb .) ‘, iAia V e-

E,„ =PE° cos wt'sin fix  (9-87) 

This represents a wave which is stationary in space.  The values of 
E„ at a particular instant are a sine function of x. The instantaneous 
values at a particular point are a cosine function of t. The peak value of 
the wave is the sum of the incident and reflected peak values or 2E0.  A 
stationary wave of this type for which lEil = lEol is a pure standing wave.  
This type of wave is associated with resonators. 
The space and time variations of E, for a pure standing wave are shown 

by the curves of Fig. 9-10.  It is to be noted that a constant phase point, 
such as P, does not move in the x direction but remains at a fixed position 
as time passes. 
Now let us examine the conditions when the reflected wave is smaller 

than the incident wave, say one-half as large.  Then, El = —0.5E0. 
Evaluating (9-86) for this case at four instants of time, the curves of Fig. 
9-11 are obtained.  The curves show the values of Ey as a function of 
fix at times equal to 0, if, f, and  periods.  The peak values of Ey range 
from 1.5E0 at t = 0 to 0.5E0 at t = I period.  The peak values as a func-

t However, both two and Po are scalar space components of the total field vector E. 
In the case being considered, E has only one component. Thus E = jEw. 
I sin (a ± b) =-- sin a cos b ± 008 a sin b. 
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tion of x as observed over an interval of time greater than one cycle cor-
respond to the envelope as indicated. This envelope remains sta-
tionary, but focusing our attention on a constant phase point P of the 
wave, we note that the total instantaneous wave travels to the left.  It 
will also be noted that the velocity with which P moves is not constant. 
Between time 0 and if period P moves about 0.05 wavelengths (0.1r), 

Flo. 9-10. Pure standing wave showing Er at various instants of time. 

Ey 

1.5E0 

1.0E0 

0.5E, 

—0.5E, 

—1.0E0 

—1.5 E0 

?let of wa rt ; 4 (.401i 

Enveloprv, 

Envelope 

2r 

ax 

FIG. 9-11. Standing-wave envelope for Ei = —0.5E0 with associated (traveling) wave 
at four instants of time: t = 0, 1 = T/8, t .. T/4, and t = 3T/8. 

while in the next I- period P moves about four times as far, or about 0.2 
wavelengths (0.4T). Although the average velocity of the constant 
phase point is the same as for a pure traveling wave, its instantaneous 
magnitude varies between values which are greater and less. 
To summarize, there are two E„ waves, one traveling in the negative 

x direction and another one-half as large traveling in the positive x direc-
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don.  The waves reinforce each other at some points and subtract from 
each other at other points.  The resultant wave travels in the negative 
x direction. This obviously must be the case since the larger wave is in 
the negative x direction. 
The envelope of the instantaneous curves in Fig. 9-11 can be called a 

standing-wave curve, or envelope.  An instrument reading the rms values 
of E„ along the x axis would yield values proportional to those shown for 
the envelope. At any position Ox the maximum value of the field at some 
time during the cycle is equal to the ordinate value of the envelope. 
To calculate the value of the standing-wave envelope, we may proceed 

as follows: In (9-86) put 

A = (E0 E1) cos ifix  (9-88) 
B = (E0 — E1) sin fix  (9-89) 

Expanding sin cot and cos cot in terms of exponentials, it can be shown 
that 

A sin cot  B cos cut =  A2 + B2 cos (cot — 6)  (9-90) 

Equation (9-86) can then be written as 

E„ = /A2  B2 cos (cut — 6)  (9-91) 

The value of 6 is not significant in our application. 
Expanding (9-91) by means of (9-88) and (9-89) yields 

E„ = V(Eo  E1)2 cos2 i3x  (Eo — E1)2 sin2 $2 cos (cot — 6) (9-92) 

The maximum value of E, at some position $x as observed over an interval 
of at least one period occurs when cos (cot — 6) = 1. Thus for the shape 
of the standing-wave envelope of E„ we have 

E, =  (E0  E1)2 cos2 13x  (E0 — E1)2 sin2 13x  (9-93) 

Ordinarily we are not so much interested in the shape of the standing-
wave envelope as given by (9-93) as in the ratio of the maximum to 
minimum values for the envelope, which is called the standing-wave 
ratio (SWR). The maximum value of the envelope corresponds to the 
sum of the amplitudes of the incident and reflected waves (Eo  E1), 
while the minimum corresponds to the difference between the two 
(E0 — E1). With this information we can determine the fraction of the 
incident E, wave which is reflected, forming the reflected wave, and also 
that which is transmitted (see Fig. 9-9).  As will be noted later on, this 
knowledge is of value in determining the nature of the conditions at the 
point of reflection. 
Thus, for the standing-wave ratio we can write 

Eo —  El SWR =  =  (9-94) 
A-4111in  Z40   
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When the reflected wave is zero (E1 = 0), the SWR is unity.  When the 
reflected wave is equal to the incident (E1 = E0), the SWR is infinite. 
Hence for all intermediate values of the reflected wave, the standing-wave 
ratio lies between 1 and infinity. 
The ratio of the reflected wave to the incident wave is defined as the 

reflection coefficient.  Thus, at the point of reflection (x = 0) and at the 
time t = 0, the ratio of (9-82) to (9-81) is 

. Eieg El/5 p =  =  =  — = plo  

E.° E0  E0 

The dot 0 indicates that  is a complex function. Thus, in general, 
expresses both the magnitude of the reflected wave with respect to the 
incident and also the phase shift ö at the point of reflection. The mag-
nitude of g5 can range between 0 and 1 with phase angles between 0 and 
± 180°. 
In this discussion, we are dealing with the values of the electric field. 

Hence, more specifically h may be called the field reflection coefficient. 
Rewriting (9-94) and substituting (9-95), 

SWR = 1  (E1/E0) 1  1151 96) (9 1 — (E1/E0)  1 — 1,51  - 

Solving for  gives an expression for the magnitude of the reflection 
coefficient in terms of the standing-wave ratio. That is, 

Co e4;jc /11 I 151 p SWR — 1 = =   SWR  1 (9-97) 

In Fig. 9-12, standing-wave envelopes are presented for three magni-
tudes of the reflected wave as given by reflection coefficients, p = 0, 0.5, 
and 1. The amplitude of the incident wave is taken as unity. The 
curves show EL, as a function of position in terms of both fix and wave-
length. For complete reflection (p = 1) we have a pure standing wave 
with a SWR of infinity. For zero reflection (p = 0), the SWR is unity, 
and E„ is constant as a function of position. For a reflection coefficient 
of 0.5, the curve varies between 1.5 and 0.5 so that SWR = 3. In 
general, the standing-wave envelope is not a sine curve, the minimum 
being sharper than the maximum. This is illustrated by the curve for 
p = 0.5.  However, in the limiting condition of p = 1 the curve does 
have the form of a rectified sine function (lsin fix D. Also, as the condi-
tion p = 0 is approached, the curve approximates a sinusoidal variation 
(see Prob. 9-15). 
The standing-wave envelopes in Fig. 9-12 illustrate the peak magnitude 

of the electric field as a function of position.  Figure 9-13 shows the time 
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phase of the total field E5 as a function of distance from the point of 
reflection.  Here the distance and time phase are expressed in degrees. 
The different curves show the phase variation for different conditions of 
reflection. When A = 0, the phase variation is a linear function of dis-
tance and is shown as a straight line at a slope of 45°. For a reflection 
coefficient ii = 1 the phase variation is a step function which jumps in 
steps of 180° at distance intervals of 180°.  For A = j, which signifies a 
phase shift of 90° at reflection, we also have a step function which is dis-
placed 45° in both time phase and distance from the curve for A = 1. 
Likewise, j, = —1, and ii = —j yield other displaced step functions. 
For reflection coefficients between zero and unity, the phase variation is 
given by smooth curves which fall between the straight line of A = 0 and 
the step functions for which A equals unity. For example, note the curve 
for ii = 0.5.  When p is fractional and b is not equal to 0 or 180°, the 
curves are smooth but are displaced along the A = 0 line, as illustrated by 
the curve for A = 0.5/45° = 0.35 ± j0.35. 
In a standing wave the velocity of a constant phase point is not uni-

form, as may be noted by the variable rate of progress of the point P in 
Fig. 9-11. From (9-47) the phase velocity as a function of position is 
inversely proportional to the slope (dO/dx) of the phase-distance curve 
for the total field. The SWR in Fig. 9-11 is 3, and the corresponding 
reflection coefficient p = 0.5.  Referring to the A = 0.5 curve in Fig. 9-13 
the phase velocity is seen to be largest where the slope of this curve is 
smallest, as at 0° and 180°, and vice versa.' The average phase velocity 
co/$, in this instance, is inversely proportional to the average slope of the 
4) vs. x curve over an integral number of wavelength. This is seen to be 
the same as the slope of the A = 0 line (SWR = 1) so that the average 
phase velocity in a standing wave is equal to the phase velocity for a pure 
traveling wave. 
If the phase velocity is plotted as a function of position in a standing 

wave, a curve is obtained that oscillates between a maximum and a 
minimum value of velocity in a manner that is analogous to a standing-
wave envelope for field in a wave, or voltage on a transmission line. 
Hence, by analogy we may call the ratio v./v.i. the standing-wave ratio 
for phase velocity.  It has been shown by Marsh2 that, in a standing wave 
due to two waves of uniform but, in general, unequal amplitude traveling 
with equal velocity in opposite directions, the standing-wave ratio of the 

In this graph the abscissa is in degrees as obtained by multiplying the distance x 
by 3607X.  The wavelength X is always equal to the distance between any point and 
the next point having the same phase. 

2 J. A. Marsh, "A Study of Phase Velocity on Long Cylindrical Conductors," Ph.D. 
dissertation, Department of Electrical Engineering, Ohio State University, 1949; 
Measured Current Distributions on Helical Antennas, Proc. I.R.E., 39, 668-675, June, 
1951.  See Probs. 9-31 and 11-17 for more general relations. 
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phase velocity v as in (9-47) or of the relative phase velocity p as in 
(9-47a) and the standing-wave ratio for the field E or the voltage V are 
related by 

pSWR = (VSWR)2 (9-98) 

where pSWR is the SWR for the velocity and VSWR is the SWR for the 
field or voltage. That is, 

pSWR  = VEDAS PITIAZ 

where v... = maximum phase velocity 
= minimum phase velocity 
= maximum relative phase velocity 
= minimum relative phase velocity 

PMIDS 

and 

(9-99) 

Em" = + El V. 
VSWR = L-i E,   (9-100) 

mio  Ed 0 - 1 V min 

where E. = maximum resultant field 
= minimum resultant field 

E0 = amplitude of first traveling wave 
El = amplitude of second traveling wave 
V„.„ = maximum resultant voltage 
Vmin = minimum resultant voltage 

Example.  The SWR of the envelope of the resultant wave in Fig. 9-11 is 3. This 
is also the SWR for the p =  envelope in Fig. 9-12.  Find the ratio of maximum to 
minimum phase velocity of the resultant wave corresponding to this SWR ( =3). 
Solution.  From (9-98) 

pSWR = (VSWR)2 = 32 = 9 

Hence the maximum phase velocity (at E.,„) is nine times the minimum phase 
velocity (at 

9-11. Energy Relations in a Traveling Wave. From (2-67a) the 
energy density w„ at a point in an electric field is 

A(4-ivefi  Sp rs  w. = icE2 joules/meter' 

where E = permittivity of medium (farads/meter) 
E = electric field intensity (volts/meter) 

From (4-110) the energy density tv„, at a point in a magnetic field is 

w. = 61-12 joules/meters  (9-102) 

where ts = permeability of medium (henrys/meter) 
H = H field (amp/meter) 

In a traveling wave 

(9-101) 
vo  „‘,/„( z coulo,n6 

L 
cot luhlb 

(9-103) 
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Substituting for H from (9-103) in (9-102), we have 

= 4JAH2 = ieE2 = w.  (9-104) 

Thus the electric and magnetic energy densities in a plane traveling wave 
are equal, and the total energy density w is the sum of the electric and 
magnetic energies.  Thus 

W = w.  = -ieE2 -6112 (9-105) 
or 

w = EE2 = /LIP I joules/meter'  (9-106) 

9-12. The Poynting Vector. Continuing the discussion of the preced-
ing section, any increase in the energy per unit volume must be produced 
by an inflow of energy.  Likewise any decrease must be equal to an out-
flow.  Thus, for a small volume Av the decrease in energy as a function of 
time may be expressed as 

— —a 01 (1. eE2 ± - 1  2)  = f S • ds at 2  2  8  watts  (9-107) 

where S = energy per unit area passing per unit time through the surface 
of the volume Ay (watts/meter2). 
Dividing (9-107) by iv and taking the limit as hiv approaches zero, we 

obtain 

a 1 v • s = — ( —at -2eE2 ± -1 A1112)  (9-108) 2 

The quantity S has the dimensions of power per unit area and is expressed 
in watts per square meter.  It is a vector since it indicates not only the 
magnitude of the energy flow but also its direction.  It is usually called 
the Poynting vector.' 
Returning to Maxwell's equations for nonconducting media, we have 

V x H = — aD  as and  V x E = -   -(9-109)at-at 
Writing the scalar product of the first equation with E and of the second 
with H, 

E • (V x H) = E • — aD  as and  H • (V x E) = -H • w - (9-110) at 
Subtracting the first from the second, 

ap 
H • (V x E) - E • (V x H) = - (E • w  H • -a-aBt)  (9-111) 

I J. H. Poynting, On the Transfer of Energy in the Electromagnetic Field, Phil. 
Tram., 174, 343, 1883.  Oliver Heaviside, "Electromagnetic Theory," Ernest Henn, 
Ltd., London, 1893, Vol. 1, p. 78. 
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By means of the conversion formula 

G • (V x F) — F • (V x G) = V • (F x G)  (9-112) 

the two terms on the left side of (9-111) can be expressed as one.  Thus 

V • (E x H) =  OaDt H  aaBt) (9-113) 

For isotropic media, D = eE and B = AH, and (9-113) takes the form 

V • (E x H) = — [E • a( a6Et ) H • a(Aalit )]  (9-114) 

Recalling from calculus that 

(9-115) 

(9-116) 

aw 1 aw2 
w —at =  

(9-114) can be written as 

ía V • (E x H) = —  (f -E'2 ) +  K 12 )] 

Taking the time derivative operator outside the brackets, 

V • (E x H) = —  G 6E2 ± ,H2)  (9-117) 

Comparing (9-117) with (9-108), it follows that 

Ex H =S  (9-118) 

where E = electric field intensity (volts/meter) 
H = H field (amp/meter) 
S = Poynting vector (watts/meters) 

The dimensional form of (9-118) in mksc units is 

Volts amperes watts  
X Meter  meter  meters 

In words, this important relation indicates that the rate of energy flow 
per unit area in a wave is directed normal to the plane containing E and 
H and has a magnitude in watts per square meter equal to EH sin 0, 
where 0 is the angle between E and H.  It is often helpful to regard the 
Poynting vector as a surface power density. 
For a plane wave traveling in the positive x direction, as in Fig. 9-2, 

(9-118) becomes 
jE„ x kHz = iS, = S  (9-119) 

It should be mentioned that in some situations E x H does not repre-
sent energy flow, as, for example, in a static magnetic field superimposed 
on a static electric field.  However, the integral of the normal component 
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of E x H over a closed surface always gives the total power through the 
surface.  That is, 

s • ds = P •  watts  (9-120) 

where P = power flowing out of closed surface 8. The Poynting vector 
S in the above relation is the instantaneous power density, and P in 
(9-120) is the instantaneous power. 
When E and H are changing with time, we are often interested in the 

average power.  This is obtained by integrating the instantaneous 
Poynting vector over one period and dividing by one period.  It is also 
readily obtained using complex notation as follows: In complex notation 
the complex Poynting vector is given by 

S =  x H*  (9-121) 
where E = sEE = agEoei"g 

ag = unit vector in E direction 
H* = auk* = aHH0e-)0"-1)  
aH = unit vector in H direction 
= phase angle between E and II* 

In (9-121) H* is called the complex conjugate of H, where 

H = amHoe  (9-122) 

The quantity H and its complex conjugate H* have the same space 
direction and the same amplitude Ho, but they differ in sign in their phase 
factors.  Assuming that the space directions of E and H (or H*) are 
normal to each other, the complex Poynting vector is normal to the plane 
containing E and H* and is 

S = ia„EoHoe:E  (9-123) 

where aft = unit vector normal to E and H*. 
Now the average Poynting vector S,„ is given by the real part of the 

complex Poynting vector, or 

S. = Re S = ia„Eollo cos  watts/meter'  (9-124) 

where  = time-phase angle between electric and magnetic fields.  It is 
understood that Eo and Ho are the amplitudes or peak magnitudes of the 
fields.  If, instead, one uses the rms values, the factor  in (9-124) is 
omitted. 
Taking the imaginary part of (9-123) yields the so-called "reactive" 

power per unit area. 
The average power P. flowing outward through a closed surface may 

now be expressed as 

= 96, Re S • ds =  96. Re (E x H*) • ds  (9-125) 
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Dividing the Poynting vector by the energy density, we obtain a 
quantity with the dimensions of velocity. Thus 

Poynting vector 
- velocity 

Energy density 

or in dimensional symbols 
MT-3 _ L 
ML-IT-2 T 

(9-125a) 

This is the energy velocity v„„.  In nondispersive media the energy velocity 
is equal to the phase velocity v. In a nondispersive lossless medium we 
have 

EH  1 
Vim  = e—E2 =  Vi = v  

In dispersive media that are also lossless the energy velocity is equal to 
the group velocity.  In absorbing media (not lossless) where the absorp-
tion is not small the group velocity tends to lose its simple significance. 
However, the energy velocity still has a simple, definite meaning. 
Whereas the phase velocity (and also the group velocity) may assume 

values greater or less than the velocity of light, the energy velocity never 
exceeds the velocity of light (3 X 108 meters per sec). 

Example 1. A plane traveling wave in free space has an average Poynting vector 
of 1 watt/meters.  Find the average energy density. 
Solution.  The average energy density 

1 

I NV  velocity  X 10-s joule/meters 3 
go erg/meters 

The energy density w.s. is an average value. The instantaneous value 
may be any value between zero and twice the average value.  The 
difference between the average and instantaneous values is discussed in 
more detail in the following paragraphs. 
Returning now to a further consideration of a plane wave traveling in 

the positive x direction in a lossless medium, let us substitute (9-68) and 
(9-69) in the Poynting-vector equation (9-119). This yields 

Sr. = V - --e- E02 sin2 (cot - 0x)  watts/meter2 (9-126)  
A 

This is the instantaneous power per unit area. At a fixed position, 
= constant, this power pulsates with the passage of time as a sine 

squared function. The peak power per unit area occurs when 

sin2 (cot - 0x) = 1 
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giving 

E02 
Peak S. -= Nr-6 Eol =  (9-127) 

where R = intrinsic resistance of the medium. To find the average power 
per unit area, the instantaneous value given by (9-126) is integrated over 
one period and divided by the length of one period, which yields' 

1 
Average S. = -2 -p E02 = —E02 (9-128) 

2R 

Comparing (9-128) and (9-127), it follows that 

Peak S. = 2 (average S.)  (9-129) 

The energy flow per unit time per unit area, or power surface density, 
of a plane wave traveling in the positive x direction is illustrated in Fig. 
9-14.  Here the instantaneous values of S. are shown at two instants of 

s, 

1.0 

05 

Watts per 
square meter 

Average 

Peak 

Lix 

Direction of 
power flow 

2 

'0 1  1  3  A —4 X  —A 2  4 
FIG. 9-14. Instantaneous Poynting-vector magnitude for plane wave traveling in 
positive x direction at two instants of time: 1 = 0 and % period later. 

time t =- 0 and t = T/8. The values of the instantaneous power per 
unit area are given over a distance of 1 wavelength in the x direction. 
Confining our attention to one of the curves, say for t = 0, we note that 
the power surface density is a pulsating quantity, with two pulses per 
wavelength.  Hence, at a fixed position there are two pulses per period 
or cycle.  Comparing the curves for t = 0 and t = T/8, we note that the 
pulses move to the right a distance of if wavelength in the interval of 
period, indicating a power flow in the positive x direction. 
To obtain the instantaneous energy density of the wave, the instan-

taneous Poynting vector is divided by the velocity of the wave. Thus 

1 The same result may be obtained from (9-124) by noting that in a lossleas medium 
E = 0. 
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the instantaneous energy density is given by 

S   1 ji 
w  - = - - So sin' (cot - flx) 

v  v M 

Since 1/v = VW.t, (9-130) becomes 

W = fE02 12  (cot - )9x)  joules/meter' 

(9-130) 

(9-130a) 

By steps similar to those for (9-127) and (9-128) the peak and average 
energy densities are 

Peak w = eE02 joules/meters 
Average w = eE02 joules/meter' 

(9-131) 
(9-132) 

Table 9-2 summarizes the relations developed above for the Poynting 
vector and energy density of a single plane traveling wave. 

TABLE 9-2 
POYNTING-VECTOR AND ENERGY-DENSITY RELATIONS FOR A PLANE 

TRAVELING WAVE IN A DIELECTRIC MEDIUM 

Condition 

Instantaneous   

Poynting vector S, 
watts/meter' 

Total energy density w, 
joules/meter a 

Eol sin' (cot — fl.r) 
A 

Peak   Eo2 =  Ho' 

Average   5 \F.; E02 Ho2 

eE02 sin' (wi — fix) 

tE02 = AH02 

The instantaneous energy-density distribution of the plane wave 
traveling in the positive x direction has the same form as the Poynting-
vector curves shown in Fig. 9-14. The ordinate, however, for energy-
density curves is expressed in joules per cubic meter. 
From the energy point of view, it is interesting to consider the energy 

per pulse of the wave.  Here we consider that 1 pulse is -IF wavelength 
long. Its boundaries are defined by the positions where the energy 
density is zero. Since we are dealing with a plane wave of infinite extent, 
let us confine our attention to a volume 1 meter square (parallel to the 
wave front) by 1 pulse length (in the x direction). Since 1 pulse length is 
wavelength long, the energy in this volume (1 pulse long) is obtained 

by multiplying the average energy density by -} wavelength expressed in 
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meters.  Thus 

X 
Energy = (average w) .2-  joules  (9-133) 

where X = wavelength. 

Example 2. The average energy density of a plane traveling wave is 1 joule/ 
meters.  If the wavelength is 0.5 meter, find the energy in a volume 1 pulse length by 
1 meter 2. 

Solution.  From (9-133) 
Energy  joule 

This is the energy in a volume 1 meter square by 1 pulse length long, or the energy in a 
volume of 0.25 meterz. 

It is to be noted that the instantaneous values of E, and H. have a sine 
distribution as a function of x. The Poynting vector S and the energy 
density to, however, have a sine squared distribution. 

The energy density w which we have been discussing is the total energy 

density of the plane electromagnetic wave.  This energy density in the 

case of the plane traveling wave is equally divided at all times between 

the electric energy density and the magnetic energy density.  This rela-

tionship is given by (9-105). 

Equation (9-126) for the Poynting vector of a plane traveling wave is 

written in terms of E. Since the power is equally divided between elec-
tric and magnetic forms, we can write 

1  e 
S: = —2 \I—µ E02 sin2 (cut — ftx)  (9-134) 

and 

\FL . s'„, =  -E- Ho2sm2 (cot — /3x)  (9-135) 

where AS: = electric power per unit area 

= magnetic power per unit area 

The phase factors for both S and S's, are identical.  Since AS: = S'„, for 

the plane traveling wave, the total power can be expressed as twice the 

value of S.  Thus 

S =  = 2S  (9-136) 

where the Poynting vector S is equal to the total power per unit area. 
Likewise, the energy density is equally divided between the electric 

(to.) and magnetic (Wm) so that 

we = 40E02 sin' (cot — Ox)  (9-137) 

and 

w„, = blio2 sin2 (cot — #.1-)  (9-138) 
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Since w. = tv,, for a plane traveling wave, the total w is twice w..  Thus 

w = We  tv. = 2we = 2w„,  (9-139) 

)( 9-13. Energy Relations in a Standing Wave.  Next let us consider 
the energy and power relations for two plane waves traveling in opposite 
directions.  Assume that both waves are polarized with E in the y direc-
tion. Assume further that one wave travels in the negative x direction 
and has an amplitude Eo, while the other wave travels in the positive 
x direction and has an amplitude El. In this case the instantaneous 
value of E., resulting from the two waves, is given by 

E. = E0 sin (cot + 13x)  E1 sin (cot — t3x)  (9-140) 

We may find a corresponding relation for H. as follows: Let us start with 
(9-8). That is, 

aE, = — OH, _ 
az  at (9-141) 

Substituting E„ from (9-140) into (9-141), differentiating with respect 
to x, and integrating with respect to 1, we obtain 

H. = —  Eo sin (cot + lax) + JiEi sin (cot — ax)  (9-142) 
The magnitude of the Poynting vector is 

Sz = E.H.  (9-143) 

Substituting (9-140) and (9-142) in (9-143) yields 

S. = — [E02 sin2 (cot + fix) — E12 sin2 (cot — /3x)]  (9-144) 
A 

According to (9-144) the net Poynting vector is in the negative x direction 
provided Eo > El. Furthermore, the net Poynting vector is equal to the 
difference of the Poynting vectors for the two traveling waves. Suppose 
that the wave to the left is incident on a plane boundary at x = 0 (as in 
Fig. 9-9). The wave to the right then becomes a reflected wave.  If the 
medium to the left of the boundary is a perfect conductor, we have the 
condition at the boundary that E1 = —Eo, resulting in a pure standing 
wave to the right of the boundary. We note that for this condition the 
net Poynting vector is zero and, hence, no power is transmitted. Further-
more, it follows from (9-144) that, in general, the  larger the standing-wave 
ratio, the smaller the net power transmitted for a given value of E. Con-
versely, the smaller the standing-wave ratio, the larger the net power 
transmitted for a given value of Eo. 
It is interesting to examine the condition of a pure standing wave 

(E1 = —Eo) in more detail, particularly from the standpoint of con-
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centrations of energy.  Accordingly, let us find the values of the electric 
and magnetic energy densities separately.  Substituting (9-87) into 
(9-101), we obtain, for the electric energy density of a pure standing wave, 

we = 2fE02 cos2 cot sin2 (9-145) 

Taking (9-142), expanding, collecting terms, and putting E1 = HO; 

Hs = —2110 sin cot cos 9x  (9-146) 

Substituting this in (9-102) yields the value of the magnetic energy 
density of a pure standing wave, 

tv. = 41-102 sin2 cot cos2 9x  (9-147) 

Comparing (9-145) and (9-147), the electric energy density is a maximum 
when the magnetic is 

p 
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FIG. 9-15. Total electric and magnetic energy densities at three instants of time for a 
pure standing wave.  Conditions are shown over a distance of 1 wavelength (13x = 27). 
There is no net transmission of energy in a pure standing wave. 

where they are maximum are  wavelength apart.  In other words, the 
electric and magnetic energy densities of a pure standing wave are in 
space and time quadrature.  This condition is typical of a pure resonator. 
The energy oscillates back and forth from the electric form to the mag-
netic.  Energy in this condition is often spoken of as reactive or stored 
energy.  It is not transmitted but circulates from one form to the other. 
Simultaneously with the change from the electric to the magnetic form of 
energy there is a space motion of the energy back and forth over a distance 
of j wavelength.  These relations are shown graphically in Fig. 9-15. 
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Here the energy densities are shown at three instants of time, t = 0, T/8, 
and T/4. The dashed curves show the instantaneous electric energy 
density w. as evaluated from (9-145) and the solid curves the instan-
taneous magnetic energy density w., as evaluated from (9-147). 
Finally, let us find an expression for the magnitude of the Poynting 

vector of a pure standing wave.  To do this, we substitute (9-146) and 
(9-87) in (9-119), obtaining 

Sx = —4E0110 cos cot sin cot cos fix sin fix  (9-148) 

Putting Ho in terms of Eo, 

S. = —4 Vi- E02 cos wt sin cot cos fix sin fix  (9-149) 
A 

and the peak value of the Poynting vector is 
- 

Peak Sx = \II EV 
A 

(9-150) 

From an inspection of (9-149) it is clear th at S. is a maximum at cot = 7/4 
(i period). At this instant the position of one maximum is at 13x = 7/4 
(i wavelength) and is directed to the left as shown by the arrow in Fig. 
9-15. The other arrows indicate other Poynting-vector maxima and 
illustrate that at t = T/8 the energy is flowing from the regions of electric 
energy density to those of magnetic energy density. 
Referring to Fig. 9-11, we note that in a standing wave, a constant 

phase point does not move with uniform velocity.  As a result, the 
energy tends to bunch up or localize. This condition becomes extreme 
with a pure standing wave for which a constant phase point is stationary. 
Hence, localized concentrations of energy are associated with a non-
uniform or stationary phase velocity. 
)( 9-14. Wave Polarization.' Consider a plane wave traveling out of 
the page (positive z direction) as in Fig. 9-16a, with the electric field at all 
times in the y direction. This wave is said to be linearly polarized in the 
y direction.  As a function of time and position the electric field of a 
linearly polarized wave (as in Fig. 9-16a) traveling in the positive z 
direction (out of the page) is given by 

E„ = E2 sin (cot — j3z)  (9-151) 

In general, the electric field of a wave traveling in the z direction may 
have both a y component and an x component, as suggested in Fig. 9-16b. 
In the general situation, such a wave is said to be elliptically polarized. 

1 For a more detailed treatment of wave polarization see, for example, J. D. Kraus, 
"Antennas," McGraw-Hill Book Company, Inc., New York, 1950, pp. 464-484. 
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At a fixed value of z the electric field vector E rotates as a function of 
time, the tip of the vector describing an ellipse called the polarization 
ellipse. The ratio of the major to the minor axis of the polarization  
ellipse is called the axial ratio (AR). Thus, for the wave in Fig. 9-16b, 

Ey 
AR = (9-152)  

The axial ratio of a linearly polarized wave is infinite. 

Linear  Elliptical 
polarization  polarization 

Circular 
polarization 

(a)  (6)  (c) 
Fm. 9-16. Linear, elliptical, and circular polarization. 

In general, an elliptically polarized wave may be expressed in terms of 
an x component given by 

E. =- E1 sin (cot — Oz)  (9-153) 

and a y component given by 

E„ = Ey sin (cot — Oz ± 5)  (9-154) 

where El = amplitude of linearly polarized x-component wave 
Ey =  amplitude of linearly polarized y-component wave 
= time-phase angle by which E. leads E. (the "x wave" is 
taken as the reference for phase) 

The instantaneous total vector field E resulting from the two linearly 
polarized component waves is 

E = iEi sin (cot — 0z)  jE2 sin (cut — /3z + 8)  (9-155) 

Evaluating (9-155) as a function of time t at a fixed value of z and 
plotting the values for E, the locus of the tip of E is obtained as a function 
of time.  In general the locus is an ellipse.  If E1 = Ey and 8 = 90°, the 
locus described by the tip of E is a circle (Fig. 9-16c) and the wave is said 
to be circularly polarized. On the other hand, if 5 = 0° or ± 180° or if 
El or Ey equals zero, the wave is linearly polarized.  Both linear and 
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circular polarization may be regarded as special (limiting) cases of 
elliptical polarization. 
The fact that the locus is in general an ellipse may be demonstrated by 

proving that (9-153) and (9-154) with z = 0 are the parametric equations 
of an ellipse.  Thus we have 

Ex = El sin wt  (9-156) 
Ey = Ey sin (cot ± 6)  (9-157) 

where (ot is the independent variable.  The procedure used in the proof 
will be to eliminate cot and rearrange the resulting expression into the form 
of the equation for an ellipse.  First we expand (9-157).  That is, 

E„ = Ey (sin wt cos 6 + cos cot sin 5)  (9-158) 
From (9-156) 

Ex 
sin cot = 

ri 
We also can write 

cos cut = -V1 — sin2 cot = V1 — (E) 2 
El 

Substituting these relations for sin cot and cos cot in (9-158), rearranging, 
and squaring yields, 

E2  2E,E„ cos 5 E 2 
E2E2 

± E22 = sin2 5  (9-159) 
E22  

Dividing by sin2 5, this can be reduced to 

aE 2 — bExE„ ± cE„2 = 1  (9-160) 

where a = 1/(E12 sin2 5) 
b = (2 cos 6)/(E1E2sin2 5) 
c -= 1/(E22 sin2 5) 

Equation (9-160) may be recognized as the equation for an ellipse in its 
most general form, the axes of the ellipse, in general, not coinciding with 
the x or y axis. 
Finally, let us develop an expression for the average Poynting vector 

of an elliptically polarized wave. For this it will be convenient to use 
complex notation and to indicate all complex quantities (phasors) explicitly 
by a dot 0. 
Now the complex Poynting vector is 

(9-161) 

and the average Poynting vector is the real part of it, or 

S., = Re g = 4 Re A x il *  (9-162) 
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Referring to Fig. 9-16b, let the elliptically polarized wave have x and y 
components with a phase difference 6 as given by 

= Elei(64-8 1) (9-163) 
:Ey  =  E 2 e't -I3Z +6)  (9-164) 

At z = 0 the total electric field (vector) is then 

A =  =  jEze(wt-14)  (9-165) 

where i = unit vector in x direction 
j = unit vector in y direction 

Note that A is a complex vector (phasor-vector) which is resolvable into 
two component complex vectors iEz and jEy, where each component has a 
vector part (indicating space direction) and a complex part or phasor 
(indicating time phase).  Thus, in iEz, i is the vector and Ez is the phasor. 
The H-field component associated with E. is 

XA • 7  (? 7)  fly =  ieg 1-t) (9-166) 

where t = phase lag of fr„ with respect to Ey. The H-field component 
associated with ky is 

= H2eg's-0 •+") (9-167) 

The total H field (vector) at z = 0 for a wave traveling in the positive z 
direction is then 

= jil„ — iliz = jl- leg.g-t) — iH2e(wg+t-t) (9-168) 

Now the complex conjugate of iii is equal to (9-168) except for the sign 
of the exponents.  That is, 

= jfile-gwe-1)  —  (9-169) 

Substituting (9-165) and (9-169) in (9-162) gives the average Poynting 
vector at z = 0 as 

S.„ = if Re [(i x  — (j x 
= -IFIE Re (ES: +  (9-170) 

where k = unit vector in z direction (direction of propagation of wave). 
It follows that 

S. =  Re ell  E2H2 Re et) 
= 4-k(E 11 I  E2H2) cos t  (9-171) 

It is to be noted that S. is independent of 6.  
In a lossless medium t = 0 (electric and magnetic fields in time phase) 

and E1/H1 = E2/H2 = Z, where Z, the intrinsic impedance of the 
medium, is real; so 

= ik(Eilli E2H2) 

= Ik(1/12 H22)Z = 4-1cH2Z  (9-172) 
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where H = VH12 + H22 = amplitude of total H field.  We can also 
write 

1 E12 E22 1 E2 
2 k  — 2 k  (9-173) 

where E = VE12 + E22 = amplitude of total E field. 
Example.  An elliptically polarized wave in air has x and y components 

E. = 3 sin (wt — (32)  volts/meter 
E„ = 6 sin (cot —  75°)  volts/meter 

Find the average power per unit area conveyed by the wave. 
Solution.  The wave is traveling in the positive z direction. The average power per 

unit area is equal to the average Poynting vector, which from (9-173) has a magnitude 

1.E2  1 Ell + E22 
Sav  2  Z 

From the stated conditions the amplitude E1 = 3 volts/meter, and the amplitude 
E2 = 6 volts/meter. Also for air Z = 376.7 ohms. Hence 

1 32 + 62 1  45  
=  2 376.7  376 r= 0.06 watt/meter' 2  .7 

9-15. Cross-field. The discussion in the preceding sections has dealt 
with elliptical polarization and its two special limiting cases of linear and 

Wave 
direction 

Plane containing E 

(a) 

clE Wave 

direction 

(Plane containing E 

(b) 
Fla. 9-17. Plane containing E for case of elliptical polarization (a), and plane contain-
ing E for case of cross-field (b). 

circular polarization.  In all of these cases the directions of the electric 
field vector at a given point are confined to a plane perpendicular to the 
direction of propagation, as indicated in Fig. 9-17a. 
Another situation often occurs in which the electric vector rotates in a 

plane parallel to the propagation direction (Fig. 9-17b). This condition 
is called cross-field.' This situation can occur if there is a component of 
E in the direction of propagation. This situation never exists in the case 

I A. Alford, J. D. Kraus, and E. C. Barkofsky, Chap. 9, "Very High Frequency 
Techniques," Radio Research Laboratory Staff, H. J. Reich (ed.), McGraw-Hill 
Book Company, Inc., New York, 1947, p. 200. 
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of a single plane wave in free space since such a wave has no field com-
ponent in the direction of propagation.  However, in the near field of an 
antenna there are field components in both the direction of propagation 
and normal to this direction so that cross-field is present (Fig. 9-18a). 
Cross-field may also be present where two waves of the same frequency 

and traveling in different directions cross. Thus, in the region exposed to 
radiation from two antennas as in Fig. 9-18b there is cross-field.  Both 

/ 

( h... 

/  Et, 

(a) 

\  /  
Cross field 

region 

Cross field 
region 

77 
(b) 

L'-line 

Air  E l 

Wave 
direction 

Conducting  Et 
medium 

(c)  (d) 

Flo. 9-18. Situations in which cross-field may be present. 

antennas are linearly polarized in the plane of the page, and both are con-
nected to the same generator so that both radiate the same frequency. 
In general, the tip of E describes a locus that is an ellipse in a manner 
similar to that in elliptical polarization except that E is confined to the 
plane containing the antennas (plane of the page). 
As another illustration, cross-field is present wherever a wave is 

reflected so that waves of the same frequency and traveling in different 
directions cross (Fig. 9-18c).  Still another situation in which cross-field 
is present is near the surface of a conducting medium along which a plane 
wave is traveling (Fig. 9-18d).  If the medium is not infinitely conducting, 
the E line is tilted forward near the surface of the medium so that E has 
a component normal to the surface (E.) and a component parallel to the 
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surface (Et). Since, in general, these components are not in time phase 
there is elliptical cross-field present (see Sec. 12-7, Fig. 12-21). 
In general, the tip of E describes an ellipse (elliptical cross-field).  In 

special cases the ellipse becomes a straight line (linear cross-field) or a 
circle (circular cross-field). This may be shown as follows: 
Consider two plane traveling waves linearly polarized in the plane of 

the page (Fig. 9-19), one wave traveling in the y direction (y wave) and a 
second wave in a direction making an angle 4) with the y direction 
(0 wave). The electric field of the y wave has only a component in the 
x direction with an instantaneous 
value 

Exs = E1 sin tot  (9-174) 

The instantaneous value of the total 
electric field of the 4) wave is 

ET, = Ey sin (cut -I- 6) (9-175) 

where 6 = phase lead of ET, over 
E.  The total 0-wave field Er, can 
be resolved into two components, one 
in the x direction E.4, and one in 
the y direction Es.. Thus 

Erb = Er, cos qts 
= Ey cos 41 sin (cut + (5) (9-176) 

and 

E,,,, = ET, sin 4) 
= Ey sin 4) sin (cot -I- 6) (9-177) 

Now adding the instantaneous fields 
in the x direction gives the x component E. of the resultant field. That is, 

E. = E.s + E.. = El sin cot ± Ey cos 41 sin (cot ± (3)  (9-178) 

Similarly we have for the y component Ei, of the resultant field 

E. = —E.. = —E2 sin 4, sin (cat + 6)  (9-179) 

Equations (9-178) and (9-179) are the parametric equations of an ellipse 
since by eliminating col they can be reduced to an equation for an ellipse 
of the form 

AE.2 + BE,E. ± CE.2 = 1 

where A = 1/(E12 sin2 6) 

B — 2(E1 cos 6 ± Ey cos 4.)  
E12E2 sin2 6 sin ct) 

E12 + 2E1E2 cos 0 cos 6 -I- E22 COS2 4) 
E,2E22 sin2 4 thn2 6 

FIG. 9-19. Construction for discussion 
on cross-field ellipse. 

C= 

(9-180) 
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The steps required to arrive at (9-180) are left as an exercise for the 
student (see Prob. 9-26). 
As a special case of (9-180) let the two wave directions be at right 

angles (cP = 900), of the same amplitude (E1 = Ey = 1), and in phase 
quadrature (6 = 90°) at the point P. Then A =- 1, B = 0, and C = 1 so 
that (9-180) reduces to 

Ez2 + E2 = 1 (9-181) 

This is the equation of a circle, and hence, under these conditions we have 
circular cross-field.  Referring to Fig. 9-19, a linearly polarized receiving 
antenna in the plane of the page could be turned through 360° at the 
point P under these conditions and no change be observed in output. 
The rotation direction for E is counterclockwise for 6 = 90° and clockwise 
for 6 = —90°. 
As another special case let cb = 90° and EI = Ey = 1, but let S = 0°. 

Then (9-180) reduces to 
Ez = E„  (9-182) 

which is the equation of a straight line of slope +1, that is, a line at an 
angle of +45° with respect to the positive x axis. Therefore, in this case 
the cross-field ellipse has collapsed to a straight line and we have linear 
cross-field. 
As a still more general situation consider the case where the two waves 

of Fig. 9-19 are not linearly polarized but are elliptically polarized.  In 
such a situation we have a combination of elliptical polarization and 
elliptical cross-field called space polarization.  If these two waves inter-
secting at P are of the same frequency, E will be confined to a single plane, 
the tip of E describing, in general, an ellipse.' The plane of the ellipse 
passes through the point P and, in general, may assume any orientation. 
If the plane is parallel to the page (Fig. 9-19), we have pure cross-field. 
When the two waves are elliptically polarized, the plane will lie, in general, 
at some angle with respect to the page.  If the frequencies of the two 
waves are not the same, the tip of E vector will, in general, describe a 
three-dimensional Lissajous figure. 

PROBLEMS 

X9-1. Find the velocity of a plane wave in a lossless medium having a relative permit-
tivity of 5 and relative permeability of unity.  Ans.: 1.34 X 108 meters/sec. 
X 9-2. (a) From Maxwell's curl equations derive the wave equation in E for a plane 
wave traveling in the positive y direction in an isotropic homogeneous lossless medium. 

1 C. W. Chandler, "Analysis and Measurement of Elliptically Polarized Electro-
magnetic Waves," master's thesis, department of electrical engineering, Ohio State 
University, 1948.  M. G. Morgan and W. R. Evans, Synthesis and Analysis of 
Elliptic Polarization Loci in Terms of Space-quadrature Sinusoidal Components, 
Proc. I.R.E., 39, 552-556, May, 1951. 
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The electric field is in the z direction.  (b) Assuming harmonic variation, state a solu-
tion of this equation, and prove that it is a solution. 
-NC 9-3. A plane wave is traveling in the positive x direction in a lossless unbounded 
medium having a permeability the same as free space and a permittivity nine times 
that of free space.  (a) Find the phase velocity of the wave.  (b) If the electric field 
intensity E has only a y component with an amplitude of 10 volts/meter, find the 
amplitude and direction of the magnetic field intensity.  r' • 0  9: • 

Ans.: (a) v = 102 meters/sec.; (b) 111 = 0.08 amp/meter. 
9-4. A plane wave in a lossless dielectric medium has an electric field given by 

E. = E. sin 2w( ft — x/x), where f = frequency. Obtain an expression for the phase 
velocity of the wave. 
9-5. Find the impedance of a lossless medium for which e, = 8 and AT = 2. 

A ns .: 188 ohms. 
1( 9-6. A lossless medium has a relative dielectric constant of 81 and a relative perme-
ability of unity.  These conditions are closely met by distilled water.  (a) Find the 
impedance of the medium.  (b) Find the velocity of a low-frequency radio wave in the 
medium. 
9-7. (a) Find the phase velocity of a wave in a medium having a relative permittiv-

ity of 9 and a relative permeability of unity.  (b) Find the index of refraction of this 
medium.  Ans. (a) v  100 meters/sec.; (b)  = 3. 
9-8. A plane 2,000-Mc/sec wave is incident normally on a slab of polystyrene 
= 2.7) of large extent.  How thick must the slab be to retard the wave in phase 

by 90° behind a wave which passes through a large hole in the slab? 
9-9. From Maxwell's curl equations derive the wave equation in E for a plane 

wave in free space traveling parallel to the x-y plane and at an angle of 45° with respect 
to the positive x axis. The electric field is in the z direction. 

)4 9-10. Compute and plot curves for the amplitude of the resultant electric field due 
to two plane waves traveling in the positive and negative x direction at three instants 
of time t 0, T/8, and T/4. The waves have only E. components. The wave in 
the positive x direction has an amplitude Eo = 1 volt/meter and the other wave an 
amplitude E1 = I volt/meter.  Extend the plot over a distance of at least one wave-
length in the x direction.  (a) In which direction does a constant phase point move? 
(b) What is the standing-wave ratio?  (c) Assuming that the smaller wave is a reflec-
tion of the larger, what is the magnitude of the reflection coefficient? 
9-11. A plane wave in free space is reflected at normal incidence from an infinite, 

perfectly conducting sheet producing a standing wave. The amplitude of E of the 
incident wave is 5 volts/meter.  (a) How far from the sheet is the Poynting vector a 
maximum?  (b) What is the average value of the Poynting vector?  (c) What is the 
maximum value of the Poynting vector? 
Ans.: (a) (2n + 1)X/8, where n  0, 1, 2, 3, etc.; (b) zero; (c) 6.63 X 10-2 

watt/meter'. 
9-12. A plane wave is reflected at normal incidence from a boundary surface. The 

amplitude of E of the incident wave is 1 volt/meter and of the reflected wave is El. 
(a) Under what conditions is there a pure standing wave?  (b) Find the standing-wave 
ratio when E1 —  volt/meter.  (c) Find the value of E . and E.g. when 

= I volt/meter 

9-13. (a) Find the average Poynting vector for a plane wave of amplitude 

Ho =, 1 amp/meter 
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in a homogeneous isotropic medium for which pr = 1 and t, = 4. (b) Find the maxi-
mum energy density of this wave. 

Ans.: (a) 94.25 watts/meters; (b) 1.26 X 10-6  joule/meters. 
9-14. The earth receives from the sun 2.2 g-cal/min/cms.  (a) What is the corre-

sponding Poynting vector in watts per square meter?  (b) What is the power output 
of the sun assuming that it is an isotropic source?  (c) What would the rms electric 
field intensity be at the earth due to the sun's radiation, assuming that all of the sun's 
energy is at a single frequency?  Note: 1 watt = 14.3 g-cal/min.  Distance earth to 
sun = 149 X 106 km. 
9-15. Show that when the incident wave amplitude Eo is much greater than the 

reflected wave amplitude Ei, the standing-wave-envelope expression of (9-93) becomes 
approximately Ev = Eo + El cos 2Ox. 
9-16. A 10-Mc/sec plane traveling wave in free space has an amplitude 

Eo  1 volt/meter 

a. What is the average energy density of the wave? 
b. What is the peak energy density? 
c. What is the average Poynting vector? 
d. What is the peak Poynting vector? 
e. How much energy is contained in a cubical volume 10 km on a side? 
9-17. Given a plane wave E  E0 Re eg."-Ps).  Show that the resultant of two 

waves of this type of equal amplitude and of two frequencies given by coo -I- col and 
— oh (and two corresponding wave numbers given by Po + Pi and Oo — PI) may be 

expressed E  2E0 cos (coot — 80) cos (wit —  
9-18. The group velocity u = df.r/d8.  Show that u can also be expressed in the 

following forms, 
dv  dv  df  

u=v-1- 8-- =t)  X = 
dp  dX  d(1/X) 

where v = phase velocity. 
9-19. Find the group velocity of a wave 10 meters long in a normally dispersive, 

lossless medium for which the phase velocity v is given by v = 2 X 107 xi meters/sec. 
9-20. Show that, for a plane wave in a dielectric medium, the energy velocity can 

be expressed as 1/a or Z/p, where Z  intrinsic impedance of the medium. 
9-21. A wave traveling normally out of the page (toward the reader) has two 

linearly polarized components E. = 2 cos wt, E. = 3 cos (wt  90°).  (a) What is the 
axial ratio of the resultant wave?  (b) In what direction is the major ax81 of the 
polarization ellipse?  (r) Does E rotate clockwise or counterclockwise? 

Ans.: (a) AR = 1.5; (b) y direction; (c) clockwise. 
9-22. A wave traveling normally outward from the page (toward the reader) is the 

resultant of two elliptically polarized waves, one with components of E given by 

= 2 cos cot 

= 6 ecos (wt  1;) 

and the other with components given by 

Ey" = 1 cos cut 

= 3 cos (0,1 — 

(a) What is the axial ratio of the resultant wave?  (b) Does E rotate clockwise or 
counterclockwise? 
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9-23. An elliptically polarized plane wave traveling normally out of the page 
(toward the reader) has linearly polarized components E. and E. Let E.,. = B,, = 1 
volt/meter and E,, lead E. in the time phase by 72°.  (a) Calculate and draw the 
polarization ellipse.  (b) What is the axial ratio?  (c) What is the angle between the 
major axis and the x axis?  Ans.: (b) AR = 1.38; (c) 45°. 
9-24. Answer the same questions as in Prob. 9-23 for the case where E, leads E. 

by 72° as before but E. = 2 volts/meter and E„ -= 1 volt/meter. 
9-25. The resultant magnitude of E for a cross-field ellipse is given by 

E =V[E. sin (we  45°)12 (E„ sin cut)! 

Show that E is a maximum when 

cot  arctan R IZY ± \ PL Y  I] 

9-26. Confirm (9-180) and the values given for A, B, and C. 
9-27. Two circularly polarized waves of equal magnitude intersect at the origin. 

One (y wave) is traveling in the positive y direction with E rotating clockwise as 
observed from a point on the positive y axis. The other (x wave) is traveling in the 
positive x direction with E rotating clockwise as observed from a point on the positive 
x axis.  At the origin, E for the y wave is in the positive z direction at the same instant 
as E for the x wave is in the negative z direction.  What is the locus of the resulting E 
at the origin? 
Ans.: Straight line (linear space polarization) in x-y plane at angle of 45° with 

respect to x axis. 
9-28. Prove that the instantaneous Poynting vector of a plane traveling wave is a 

constant when the wave is circularly polarized. 
9-29. Prove that the average Poynting vector of a circularly polarized wave is 

twice that of a linearly polarized wave if the maximum field intensity is the same for 
both waves. 
9-30. Show that by taking the absolute value of R, in (9-83) the standing-wave 

envelope is obtained as given in (9-93). That is, show that lE„I gives the standing-
wave envelope as a function of position. 
9-31. The resultant field of a standing wave due to two traveling waves is given by 
E Eoei(w+Pai  Elei(",-0,), where EI < Eo. Marsh' has shown that the phase veloc-
ity v as a function of position (x) is given by 

(E01 B11 + 2E0E, cos 2fix )  
(E01 — E1') 

(a) Confirm this result.  (b) Also confirm Marsh's relation (9-98) that 

(Bo + Ely  = (VS W R) 1 
Vmin  V E0 — 

Hint for (a): Note that  arctan B / A, where B = Im k and A = Re E. Note 
also that 

d4,  A(dB/dx) — B(dA /dx)  
dx  Al + B S 

1 J. A. Marsh, " A Study of Phase Velocity on Long Cylindrical Conductors," Ph.D. 
dissertation, Department of Electrical Engineering, Ohio State University, 1949; 
Measured Current Distributions on Helical Antennas, Proc. I.R.E., 39, 668-675, 
June, 1951. 
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9-32. Two uniform waves of the same frequency and velocity and of amplitudes 
E0 and Ei traveling in opposite directions form a standing wave.  If E1 0.5E0, 
make a graph showing the standing-wave envelope for the resultant field as a function 
of distance (abscissa) for several wavelengths.  Also draw a curve on the same graph 
showing the velocity of the resultant field as a function of distance (see Prob. 9-31). 
9-33. Show that in a standing wave the average phase velocity of the resultant 

field is equal to the geometric mean of the maximum and minimum velocities. That 
is, Vav = 

9-34. A plane traveling wave is incident at an angle of 45° to an infinite, perfectly 
conducting flat sheet. The electric field is everywhere contained in a plane normal 
to the sheet and parallel to the direction of wave propagation.  Plot the axial ratio 
of the cross-field ellipse as a function of distance from the sheet for a distance of 
1 wavelength. 
9-315. An elliptically polarized wave in an unbounded lossless medium of relative 

permittivity 4 has H-field components (normal to the direction of propagation and 
normal to each other) of amplitude 2 and 3 amp/meter.  Find the power conveyed 
through an area of 10 meters' normal to the direction of propagation. 



CHAPTER 10 

PLANE WAVES IN CONDUCTING MEDIA 

N' 10-1. Conductors and Dielectrics. In Chap. 9 the discussion was 
confined to waves in nonconducting or lossless media, that is, the con-
ductivity 0 was assumed to be zero. Let us now consider the more 
general situation where a is not zero. 
Assume that a plane traveling wave strikes the boundary of a conduct-

ing medium at normal incidence as shown in Fig. 10-1.  A portion of the 

Ey 

2 

ti 

Incident wave 

H, x 
-4- -

Reflected wave 

Boundary of 
conducting medium 

Fm. 10-1. Plane wave entering conducting medium at normal incidence. 

/  /  /  / Conducting mediu 

/  /  

Wave transmitted into 

/ 
-,  )"conducting medium 

/ 
incident energy is reflected, while the remainder enters the conducting 
medium. Let us disregard the reflected wave and focus our attention on 
the transmitted wave. 
According to Maxwell's first curl equation, 

al) rxH=J+  (10-1) 

In nonconducting media J = 0, but in conducting media J may not be 
negligible. Recalling that J = crE, (10-1) becomes 

ap v xil = crE + —at  (10-2) 

For a linearly polarized plane wave traveling in the x direction with E 
in the y direction, the vector equation (10-2) reduces to the following 
scalar equation involving the field components E„ and H.: 

391 
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aH,  aE, 
(10-3) 

ax  at 

This equation has two terms in E.  Assuming that Ev is a harmonic 
function of time, that is, Ev = Eoei(", (10-3) becomes 

etir " ?' 4 (1.'$'  aH, — —a = crE,  jcoeEv (10-4) 
co,idit r tuk-ret.--"/ okr/9/0ee,,.0.,-( ruere),4 

The terms in (10-4) each have the dimensions of current density, which is 
expressed in amperes per square meter. The term aE„ represents the 
conduction current density, while the term jwtE„ represents the displace-
ment current density.' Thus, according to (10-4) the space rate of change 
of H equals the sum of the conduction and displacement current densi-
ties.  If the conductivity is zero (cr = 0), the conduction current term 
vanishes and we have the condition considered in Chap. 9. If cr is not 
equal to zero, there are three conditions, which can be listed as follows: 

1. we >> 
2. we  cr 
3. we << a 

When the displacement current is much greater than the conduction 
current, as in condition 1, the medium behaves like a dielectric.  If 
a = 0, the medium is a perfect, or lossless, dielectric. For a• not equal to 
zero the medium is a loasy, or imperfect, dielectric.  However, if we >> 
it behaves more like a dielectric than anything else and may, for practical 
purposes, be classified as a dielectric. On the other hand, when the con-
duction current is much greater than the displacement current, as in 
condition 3, the medium may be classified as a conductor. Under condi-
tions midway between these two, when the conduction current is of the 
same order of magnitude as the displacement current, the medium may 
be classified as a quasi conductor. 
We can be even more specific and arbitrarily classify media as belonging 

to one of three types according to the value of the ratio a/we as follows: 

Dielectrics: — <  1  
ezk b -ten  a we  100 

1 
Quasi conductors: -F-00 < —e < 100 

Conductors:  100 < 
we 

where 0 = conductivity of medium (mhos/meter) 
a = permittivity of medium (farads/meter) 
co = radian frequency ( = 27f, where f is the frequency) 

The ratio cr/we is dimensionless. 
The operator j( =  i) in the displacement current term indicates that the 

displacement current leads the conduction current by 90° in time phase. 
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It is to be noted that frequency is an important factor in determining 
whether a medium acts like a dielectric or a conductor.  For example, 
take the case of average rural ground (Ohio) for which er = 14 (at low 
frequencies) and cr = 10-2 mho per meter.  Assuming no change in these 
values as a function of frequency, the ratio a/ we at three different fre-
quencies is as tabulated below. 

Frequency, cps  Ratio a/cue 
102 1.3 X 104 
107 1.3 
3 X 1010(X = 1 cm)  4.3 X 10-4 

At 1 kc per sec (102 cps) rural ground behaves like a conductor, while at 
the microwave frequency of 30,000 mc per sec (3 X 10" cps) it acts like a 
dielectric. At 10 mc per sec (107 cps) its behavior is that of a quasi 
conductor. 
As another example, consider the case of copper, which is ordinarily 

regarded as an excellent conductor.  Taking q = 5.8 X 10' mhos per 
meter and er = 1, the ratio o/ we is very large at ordinary radio fre-
quencies.  Even at 30,000 mc per sec the ratio is 3.5 X 10', which still 
classes copper as a good conductor.  However, at a frequency of 10" cps 
corresponding to short X rays, the ratio olcoe is about 10-2 , which classifies 
copper as a dielectric.  In other words, copper behaves like a dielectric 
for X rays, which is a crude way of explaining why X rays can penetrate 
considerable thicknesses of a metal such as copper.' 
In Fig. 10-2 the ratio cr/coe is plotted as a function of frequency for a 

number of common media.  In preparing Fig. 10-2 the constants were 
assumed to maintain their low-frequency values at all frequencies. The 
curves in Fig. 10-2 should therefore not be regarded as accurate above the 
microwave region since the constants of media may vary with frequency, 
particularly at frequencies of the order of 109 cps and higher.  A list of 
the low-frequency constants for the media of Fig. 10-2 is presented in 
Table 10-1. 

TABLE 10-1 
TABLE OF CONSTANTS FOR SOME COMMON MEDIA 

Medium 
Relative permittivity e, 

(dimensionless) 
Conductivity o, 
mhos/meter 

Copper   1 5.8 X 107 
Sea water   80 4 
Rural ground (Ohio)   14 10-2 
Urban ground   3 10-4 
Fresh water   80 10-2 

The penetration of X rays occurs because the wavelength is comparable with or 
smaller than the atomic spacing. 
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Referring to Fig. 10-2, we note that copper behaves like a conductor at 
frequencies far above the microwave region.  On the other hand, fresh 
water acts like a dielectric at frequencies above about 10 mc per sec. 
The olwe ratios for sea water, rural ground, and urban ground are between 
the extremes of copper and fresh water.  ot 

v;.0-t,   

M=6 

5 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 

Dielectric 
region 

ble kx _-rays 

Low, medium, and high_ +_MicnS.,14 _ Infra red — 1.14— Ultra  —01 
violet radio frequencies  waves 

I I I  I  I  I  I  I  t  ! l i f t   

N=1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Frequency -10" cps 

no. 10-2. Ratio rr/we as a function of frequency for some common media (log-log plot). 

)( 10-2. Wave Equation for Conducting Media.  An electromagnetic 
wave is rapidly attenuated in a conducting medium.  In fact, in a good 
conductor the attenuation is so rapid that at high radio frequencies the 
wave penetrates the conductor only to a very small depth. 
This depth of the penetration is a matter of considerable interest.  To 

calculate it, let us first develop a wave equation in Ey for a plane wave in 
a conducting medium.  From a solution of this equation, an expression 
for the depth of penetration is then obtained. 
From Maxwell's curl equations we have for a linearly polarized wave 

traveling in the x direction with E in the y direction 

and 

__aHz = a.Ey+  eaE, 
ax  at 

aEy  ax. 
ax = — P at 

(10-5) 

(10-6) 
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Differentiating (10-5) with respect to t and (10-6) with respect to x, we 
obtain 

and 
a (aH,) aE„  a2E„ 
ax — —a at — e at2 

_1 a2Ei, = a (a l 
ax2  at 

(10-7) 

(10-8) 

Since the order of differentiation is immaterial, the left side of (10-7) is 
equal to the right side of (10-8) so that 

1 a2E„ _ a2E„ aE„ 
A ax2  e at2 — a at = (10-9) 

This is the wave equation in E. for a plane wave in a conducting medium. 
It is more general than the wave equation (9-12), developed for the case of 
a nonconducting medium.  Whereas (9-12) has two terms, (10-9) has 
three, the third one involving the conductivity. 
Assuming harmonic variation of E„ with respect to I, we may write 

E„ = Eoe,'"  (10-10) 

Taking the first and second derivatives of (10-10) with respect to t and 
substituting these values in (10-9), 

ia2E 
co2eE — juurE, = 0 

A ax 2 

Rearranging terms, this becomes 

crE  
ax 2 — .1wAicr  co2Aie)Ey = 0 

Let 

Then (10-11a) reduces to 

7 2 = juq.w . 

a2E1'  — -y2E„ = 0 
ax2 

(10-11) 

This equation is a simplified form of (10-9).  The time t does not appear 
explicitly, harmonic variation with time being assumed. 
A solution of (10-13) for a wave traveling in the positive x direction is 

E. = Eoe—rx  (10-14) 

For conductors, a>> coe so that (10-12) reduces to 

7 2 ••••..., jwiw .  (10-15) 
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and' 

7  Vico  = (1 + i) •\1°2-r  (10-15a) 

Thus, 7 has a real and imaginary part.  Putting 7 = a  jt1, a, the real 
part, is associated with attenuation, and 5, the imaginary part, is associ-
ated with phase. 
Substituting the value of 7 from (10-15a) in (10-14), 

= Eoe -u+a) .  - NF2. 
2 = Eoe  2 e  2 

In (10-16) the attenuation factor is given by 

and the phase factor by 

s 

V —ape 

2 

.,\ Foimr 
—  —z 2 

(10-161 

(10-17) 

(10-18) 

where co = radian frequency (=211) (reciprocal seconds) 
= permeability of medium (henrys/meter) 

a = conductivity of medium (mhos/meter) 
x = distance (meters) 
j = complex operator (dimensionless) 

Equation (10-16) is a solution of the wave equation for a plane wave 
traveling in the positive x direction in a conducting medium.  It gives 
the variation of E„ in both magnitude and phase as a function of x. The 
field attenuates exponentially and is retarded linearly in phase with 
increasing x. 
10-3. Depth of Penetration.  Continuing the discussion of the preced-

ing section, let us now obtain a quantitative measure of the penetration 
of a wave in a conducting medium.  Referring to Fig. 10-1, consider the 
wave that penetrates the conducting medium, that is, the transmitted 
wave. Let x = 0 at the boundary of the conducting medium so that x 
increases positively into the conducting medium. 
Let (10-16) be written in the following form, 

E„ = Eoe-ziae-i(x16) (10-19) 

where ô = V P-E.—qua..  At x = 0, E„ = Eo. This is the amplitude of the 
field at the surface of the conducting medium. Now 5 in (10-19) has the 

1 Note: 

V:i  2  If  2 

= 1 + j 1/45° 
V-2 
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dimension of distance.' At a distance x = 5 the amplitude of the field is 

lE„I = Eoe-i = E0!  (10-20) 

Thus, E„ decreases to 1/e (36.8 per cent) of its initial value, while the wave 
penetrates to a distance 6. Hence 6 is called the 1/e depth of penetration. 
As an example, consider the depth of penetration of a plane electro-

magnetic wave incident normally on a good conductor, such as copper. 
Since co = 27f, the 1/e depth becomes 

1  a =  (10-21) 
11.-ri —riza 

For copper tir = 1 so that µ = 1.26 X 10-6 henry per meter. The con-
ductivity cr = 5.8 X 107 mhos per meter.  Putting these values in 
(10-21), we obtain for copper, 

6.6 X 10-2 a —  (10-22) 
11 

where 6 = 1/e depth of penetration (meters) 
f = frequency (cps) 

Evaluating (10-22) at specific frequencies, it is found that 

At 60 cps, 6 = 8.5 X 10-2 meter 
At 1 Mc/sec, 6 = 6.6 X 10-6 meter 

At 30,000 Mc/sec, 6 = 3.8 X 10-7 meter "-

Thus, while at 60 cps the 1/e depth of penetration is 8.5 mm, the penetra-
tion decreases in inverse proportion to the square root of the frequency. 
At 1 cm wavelength (30,000 Mc/sec) the penetration is only 0.00038 mm, 
or less than 4 micron. This phenomenon is often called skin effect. 
Thus, a high-frequency field is damped out as it penetrates a conductor 

in a shorter distance than a low-frequency field.2 
In addition to the 1/e depth of penetration, we can speak of other 

depths for which the electric field decreases to an arbitrary fraction of 
its original value.  For example, consider the depth at which the field is 
0.01 (1 per cent) of its original value. This depth is obtained by multiply-
ing the 1/e depth by 4.6 and may be called the 1 per cent depth of penetration. 
Phase velocity is given by the ratio co/#.  In the present case, ft = 1/5 

1 In dimensional symbols a is given by 

,V  Q 2 ML3 
L 

2 This is analogous to the way in which a rapid temperature variation at the surface 
of a thermal conductor penetrates a shorter distance than a slow temperature variation. 
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so that the phase velocity in the conductor is 

2co 
v. = cob = (10-23) 

Since the 1 /e depth is small, the phase velocity in conductors is small. 
It is apparent from (10-23) that the velocity is a function of the fre-
quency and, hence, of the wavelength.  In this case, dv/dX is negative, 
where X is the free-space wavelength.  Hence, conductors are anoma-
lously dispersive media (Sec. 9-7). 
The ratio of the velocity of a wave in free space to that in the conduct-

ing medium is the index of refraction for the conducting medium.  At low 
frequencies the index for conductors is very large. 
To find the wavelength X,, in the conductor, we have from (10-23) that 

fike = 0.76, or 
Xe = 2T5  (10-24) 

In (10-24), both Xe and 6 are in the same units of length.  Hence the 
wavelength in the conductor is 27 times the 1/e depth. Since the 1/e 
depth is small for conductors, the wavelength in conductors is small. 
Values of the 1/e depth, 1 per cent depth, wavelength, velocity, and 

refractive index for a medium of copper are given in Table 10-2 for three 
frequencies. 

TABLE 10-2 
TABLE OF PENETRATION DEPTHS, WAVELENGTH, VELOCITY, AND 

REFRACTIVE INDEX FOR COPPER 

Frequency   60 cps 106 cps 3 X 100 cps 

Wavelength in free space X (meters)   5,000 km 300 meters 1 cm 

lie depth, meters   8.5 X 10-3  6.6 X 10-5  3.8 X 10-7 
1 per cent depth, meters   3.9 X 10-6  3 X 10-6  1.7 X 10-6  
Wavelength in conductor X., meters   5.3 X 10-6  4.1 X 10-6  2.4 X 10-6  
Velocity in conductor v., meters/sec   3.2 4.1 X 106 7.1 X 104 
Index of refraction (dimensionless)   9.5 X 107 7.3 X 106 4.2 X 106 

It is interesting to note that the electric field is damped to 1 per cent of 
its initial amplitude in about  wavelength in the metal. 
Since the penetration depth is inversely proportional to the square root 

of the frequency, a thin sheet of conducting material can act as a low-
pass filter for electromagnetic waves. 
10-4. Relaxation Time. Thus far, the behavior of electromagnetic 

waves in conducting media has been discussed from the standpoint of 
depth of penetration, velocity, and so forth.  It is instructive to consider 
the problem from another point of view, namely, from that of the behavior 
of a charge configuration placed in the conducting medium. 
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Consider a conducting medium of infinite extent, in which is placed a 
charge of arbitrary shape and density.  Imagine that the charge is 
released and, because of the mutual repulsion of the like charges of which 
it is composed, spreads out through the conducting medium.  Now let us 
determine how long it takes for such a charge of density p to decrease in 
density to 1/e of its original value. 
According to (3-58) the continuity relation between current density 

and charge density is 

V • J = —  (10-25) 

From Maxwell's equation V • D = p, and from D = E. 

v • E =  (10-26) 

But J = aE so that (10-26) becomes 

V • J = 

From (10-25) and (10-27) it follows that 

op  cr 
= at 

A solution of this equation is 
p = poe -ceos 

as may be readily verified by taking the first derivative with 
time and substituting in (10-28). 
Let us put 

T, = 

(10-27) 

(10-28) 

(10-29) 

respect to 

(10-30) 

T, has the dimension of time.  At t = 0, p = po, which is the initial 
charge density.  When t = T„ 

1 
P = poe-I = Poi  (10-31) 

Thus, T„ is the time required for the charge density to decrease to 1/e of 
its initial value.  The quantity T, is called the relaxation time. 
In a perfect dielectric a = 0 so that T, is infinite.  Hence the charge 

maintains its original density indefinitely.  On the other hand, for a 
conductor such as copper for which a = 5.8 X 107 mhos per meter and 
e = 8.85 X 10-12  farad per meter, we find that 

T, = 1.5 X 10-'9 sec 

This very short interval corresponds to the length of one period for 
X rays. Thus, at radio and microwave frequencies the relaxation time 
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is much less than the period.  The result of the short relaxation time is 
that the conductor cannot maintain a charge configuration long enough 
to permit propagation of a wave more than a very short distance into the 
conductor.  When the frequency is sufficiently high, of the order of 
10'9 cps, the relaxation time is about the same length as the period and 
propagation is possible.  This is another way of looking at the phenom-
enon of X-ray penetration of metals.  We noted in an earlier section that 
copper begins to act like a dielectric when the frequency is raised to 
about 102° cps. 
10-5. Impedance of Conducting Media. The behavior of conducting 

media toward plane electromagnetic waves can be considered from yet 
another point of view.  This is from the standpoint of impedance. 
A solution of the wave equation for the electric field of a linearly polar-

ized plane wave traveling in the x direction in a conducting medium with 
E in the y direction is of the form 

E y  =  Eoe Tz  (10-32) 

while for the magnetic field a solution is 

= H oei(40-0-7x (10-33) 

where E is the lag in time phase of 1.1, with respect to t„ or the lead of E y 

with respect to ii,.t 
Taking the ratio of (10-32) to (10-33) yields the intrinsic impedance 

Zc of the conducting medium.  Thus 

= Et, =  E0  _  E0 Eo/E 
Hoe—is — Ho/ —E — Ho = Z /̀E  (10-34) 

According to (10-34) the magnitude or modulus of the intrinsic impedance 
is equal to the ratio of the electric to the magnetic field, and the phase 
angle of the impedance is equal to E. 
To evaluate Z, in terms of the constants of the conducting medium, we 

proceed as follows: Maxwell's equation from Faraday's law for a plane 
wave with components E, and H, is 

at, _ _ aft, 
— I4 at (10-35) 

Taking the x derivative of (10-32) and the t derivative of (10-33) and 
substituting in (10-35) yields 

l'Ev = jtitolis 

t The dot (.) is used to indicate explicitly that E, and H. are complex functions of 
t, x, and E. The instantaneous values of the field components are given by either the 
real or the imaginary parts of E, and i 
$ The dot on Z„ indicates explicitly that the impedance is also a complex quantity. 

However, it is a complex function only of the phase angle E. 
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The intrinsic impedance 2, is then given by  J. 

20 =  =  I  4•"  --v 
7 

Recalling from (10-15a) that for a good conductot/ 

(10-36) becomes 

Since 

7 (1 + 

= =  + b z  a = (1 -F 

1+  j = 1/45° 

the intrinsic impedance can also be expressed as 

2, = 2,/t =  /45° 

(10-37) 

(10-38) 

It follows that the magnitude of the intrinsic impedance of a conductor is 
given by 

and the phase angle by 
0  A-, 

(10-39) 

(10-39a) 

Whereas the intrinsic impedance of a perfect dielectric medium is a 
pure resistance (Ey and H, in time phase), we note from (10-38) that the 
intrinsic impedance of a conductor is a complex quantity, H, lagging Ey 
in time phase by very nearly 45°.  This is analogous to the situation in a 
circuit having resistance and inductance in series where the current lags 
the applied voltage.  Therefore the conducting medium behaves like an 
inductive impedance.  This may be expressed explicitly by writing Z, 
in terms of its resistive, or real, part R and its reactive, or imaginary, 
part X. That is, 

2, = R  jX = • i Nit (10-40) 

The intrinsic impedance may be expressed in yet another form, as 
follows: Multiplying and dividing in (10-37) by e, eo, and Alo, 

2. _1 +  \IA° eo we 
N/  eo e Ao (10-41) 

(. 
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Substituting er and µ, for the ratios in (10-41), 

2, =1 j±ce 
q/  Er N 

(10-42) 

But I.Nri o is the intrinsic resistance of free space, which equals 376.7 
ohms, so that 

2c — 1 +—j X 376.7  \r-Le 
Er a 

ohms  (10-43) 

where µ, = relative permeability of medium (dimensionless) 
= relative permittivity of medium (dimensionless) 
= radian frequency (= 27f) (reciprocal seconds) 
E = permittivity of medium (farads/meter) 
CT =  conductivity of medium (mhos/meter) 

The magnitude or modulus of 2, is 

2, = 12,1 = 376.7 Nii-±  (10-44) 
Er cr 

The ratio we / cr or its reciprocal was discussed in Sec. 10-1. For good 
conductors we/a is very small (a/we very large).  Take, for instance, 
copper.  At a frequency of 3,000 Mc/sec (wavelength 10 cm), 

WE 
—  =  2.9 X l0-

Taking Air and e„ as unity, the intrinsic impedance of copper at 10 cm is 

2 — 1 ± j X 376.7 X 5.4 X 10-6  
V  2 

or 

2, — 1 ± j X 0.02 = 0.02/45° ohms 

The magnitude of the intrinsic impedance of copper is 

Z, = 12,1 = 0.02 ohm 

These results indicate that for a conducting medium such as copper the 
ratio of E. to H. is much less than for free space.  If 0- were infinite 
(perfect conductor), then Z. = 0 and E vanishes.  The small value of 
Z, for copper suggests that the conducting medium behaves like a short 
circuit to the electromagnetic field. 
In the above discussion on the impedance of conducting media, we 

introduced a value of 7 into (10-36) based on the assumption that 
>> we.  However, in the case of a dielectric medium we >> G., and 
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7 =  = jcu -s,/7i.  Substituting this value of 7 into (10-36) gives the 
intrinsic impedance for a dielectric medium equal to N/p/e as obtained in 
Chap. 9. 
Some of the important relations for conductors developed in this and 

preceding sections are summarized in Table 10-3. 

TABLE 10-3 
PENETRATION DEPTHS, VELOCITY, WAVELENGTH, INDEX OF 

REFRACTION, IMPEDANCE, AND RELAXATION TIME IN 
CONDUCTING MEDIA (cr >> toe)t 

1 .\/- depth = 5 =  _1  

e  NAr.fma  W W1 

11 

1 per cent depth = 4.66  meters 

,\Fu 
Phase velocity = r, = A (.0- =  —  

all 

Wavelength = x, = 27r6  meters 

meters 

meters/sec 

Index of refraction =  =  = (dimensionless) 
Cc 

Relaxation time = T, =  sec 
a 

Impedance =  = NIT-2=' /45°  ohms 

t In the table 
w = 2rf = radian frequency 
f = frequency (cps) 
m = permeability ("=4ar X 10-7 henry/meter if no ferromagnetic material is 

present) 
t = permittivity (farads/meter) 

contluetivity (mhos 'meter) 

10-6. Reflection and Transmission of Waves at a Boundary.  The 
situation of a plane traveling wave incident normally on a boundary 
between two media of infinite extent is discussed in this section. Let the 
wave be linearly polarized and traveling in the positive x direction with 
E in the y direction and H in the z direction.  Assume that the incident 
traveling wave has field components E, and H, at the boundary as in 
Fig. 10-3a.  At the boundary between the two media part of the incident 
wave is, in general, reflected while another part is transmitted into the 
second medium.  The reflected traveling wave has field components E, 
and H, at the boundary.  The transmitted wave has field components 
Et and He at the boundary.' 

7 The dot () on Ea, E„,  and H, indicates explicitly that, in general, they 
are complex functions of 1, x, and 5 or E (that is, phasors), where 5 is the time-phase 
difference between E, and E, (same as between reflected and incident waves in Sec. 
9-10) and E is the time-phase difference between E, and H,.  Taking the fields at the 
boundary (x = 0) and at f 0, they are functions only of 6 and E. 
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Medium 1 

E, 

Incident 

Reflected E- 1 

/1, 

z=.0 

Medium 2 

Z2 

21 
Z2 

(b) 

FIG. 10-3. Plane wave incident normally on boundary (a) and analogous transmission 
line (b). 

From the continuity of the tangential field components at a boundary, 

+ Er =  (1045) 

111  =  (10-46) 

The electric and magnetic fields of a plane wave are related by the 
intrinsic impedance of the medium.  Thus 

and 

E. 
- 7-  =  1 
111 

= - 
H, 

E t 
(10-47) 

The impedance of the reflected wave (traveling in the negative x direc-
tion) is taken to be negative Z1 and of the incident wave, positive Zi. 
From (10-46) and (1047) 

or 

E,  ki Er =  =  - 
Z2  Z1  Z1 

•  22  22 
Et = 2-1E ; - 

zi 

(10-48) 

(10-49) 
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Multiplying (10-45) by 22/21, 

22  = 22  , 2 2 LS 
.11,1  AZds  rir (10-50) 

Zi Z1  21 

Adding (10-49) and (10-50), 

2, (1  = _2E. 
22  22 

222  _   _ 
Z2 +  2 1 

where # is called the transmission coefficient.  It follows that 

or 

2Z2 
— • — .  . 
Ei Z2-1- Zi 

_J 
Subtracting (10-49) from (10-50), 

• E g ( 22 —  1) =  222 E,  

Z, 
Substituting Et from (10-52) into (10-54) and solving for E„ 

2•  , = 22  — 2' — kEi 
2 2 +  2 1 

where  is called the reflection coefficient.'  It follows that 

(  E  22 — 22 

— E: — 22 + 22 

(10-51) 

(10-52) 

(10-53) 

(10-54) 

(10-55) 

(10-56) 

The situation (Fig. 10-3a) of a plane wave incident normally on a 
boundary between two different media of infinite extent, with intrinsic 
impedances Z1 and Z2, is analogous to the situation of a guided wave on 
an infinite transmission line having an abrupt change in impedance from 
Z1 to Z2 (Fig. 10-3b).  The transmission and reflection coefficients for 
voltage across the transmission line are identical to those given in (10-53) 
and (10-56) if the intrinsic impedance Z1 of medium 1 is taken to be the 
characteristic impedance of the line to the left of the junction (Fig. 10-3b) 
and the intrinsic impedance Z2 of medium 2 is taken to be the character-
istic impedance of the line to the right of the junction.  This is discussed 
further in Chap. 11. 
The above relations apply to any media, conducting or dielectric 

(lossless), the nature of the medium being specified in every case by its 
intrinsic impedance Z. 

"This is the same as the reflection coefficient j discussed in Sec. 9-10. 



406  ELECTROMAGNETICS  [CHAP. 10 

Returning now to the case of a plane wave incident normally on the 
boundary between two media of infinite extent as in Fig. 10-3a, let us 
consider several special cases. 
Case 1. Assume that medium 1 is air and medium 2 is a conductor so 

that Z1 >> Z2.  Then, from (10-52) we have the approximate relation 

But from (10-47) this becomes 

from which 

11 ,2 2 2 .2 2 fis2, 1 

2, 

c-_-• 214 

(10-57) 

(10-58) 

(10-59) 

Thus, for a plane wave in air incident normally on a conducting medium, 
the magnetic field is, to a good approximation, doubled in intensity at 
the boundary.  It also follows that II,.  Hi so that there is a nearly pure 
standing wave to the left of the boundary (in medium 1). 
Case 2. Consider now the opposite situation where medium 1 is a 

conductor and medium 2 is air so that Z1 << Z2.  Then, from (10-52) we 
have approximately 

E,  22,  (10-60) 

Thus, for a wave leaving a conducting medium, the electric field is nearly 
doubled at the boundary.  It follows that E,  E. so that there is a 
nearly pure standing wave (SWR = 00) immediately to the left of the 
boundary (in medium 1).  However, owing to the attenuation of waves 
in medium 1, the SWR decreases rapidly as one moves away from the 
boundary (to the left). 
Case 3. In Case 1 it is assumed that Zi >> Z2.  Consider now that 

Z2 = 0 (medium 2 a perfect conductor).  Then from (10-56) the reflec-
tion coefficient p = —1, and from (10-53) the transmission coefficient 
= 0. Thus, the wave is completely reflected, and no field is trans-
mitted into medium 2. Further E, = —E„ and H„ = Hi so that the mag-
netic field intensity exactly doubles at the boundary. This situation is 
analogous to a short-circuited transmission line. 
Case 4. In Case 2 it is assumed that Z1 << Z2.  Consider now the 

hypothetical situation where Z2 is infinite.' Then from (10-56) p = +1 
and from (10-53) T = 2. Thus the wave is completely reflected, but 
E, = +Ei so that the electric field intensity at the boundary is exactly 
doubled.  This situation is analogous to an open-circuited transmission 
line. 

1 It is to be noted that for free space the intrinsic impedance is only 377 ohms. To 
obtain a higher impedance would require that lar > 1 such as in ferromagnetic media. 
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Case 5. Take now the case where 22 = 21. Then p = 0, and 7 = 1 
so that the wave propagates into medium 2 without any reflection.  This 
situation is similar to that on a continuous transmission line of uniform 
characteristic impedance. 
10-7. The Terminated Wave.' In the preceding section we con-

sidered various reflection and transmission situations at a boundary. In 
all cases there was a reflected wave except where the two media were of 
the same impedance, and in this case the wave was entirely transmitted. 
No case was considered in which the incident wave is terminated so that 

Zero resistance 
bars 

(a) 

Space 376.7 ohms 

(b) 
Fla. 10-4. Space cloth has a resistance of 376.7 ohms per square. 

no wave will be transmitted or reflected.  This case deserves special 
mention and is considered in this section. 
The intrinsic impedance of free space is 376.7 ohms. This concept of 

an impedance for free space takes on more physical significance if we 
consider the properties of a resistive sheet having a resistance of 376.7 
ohms per square.  Material so treated is often called space paper or space 
cloth.  It should be noted that the resistance is not per square centimeter 
or per square meter but simply per square. This is equivalent to saying 
that the resistance between the edges of 
any square section of the material is the 
same.  Hence the resistance between the 
opposite edges of the small square of space 
cloth in Fig. I0-4a is 376.7 ohms, as is also 
the resistance between the edges of the 
large square in Fig. 10-4b. In this illustra-
tion it is assumed that the edges are 
clamped with zero-resistance bars and that the impedance of the leads is 
negligible. 
The conductivity of the material required for a sheet of the space cloth 

S. Ramo and J. R. Whinnery, "Fields and Waves in Modern Radio," John Wiley 
& Sons, Inc., New York, 1944, p. 277. 

a 

Fla. 10-5. Square of space cloth 
of thickness h. 
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depends on the thickness of the sheet.  Thus the resistance R of a square 
section as in Fig. 10-5 is expressed by 

/  /  1 
ohms  (10-61) 

aa  ahl 

where 1 = length of side (meters) 
a = area of edge (meters2) 
h = thickness of sheet (meters) 
a = conductivity of sheet (mhos/meter) 

It follows that the required conductivity is 

1  1 
a =  =   

Rh  376.7h 
mhos/meter  (10-62) 

Consider now the behavior of a sheet of space cloth placed in the path 
of a plane wave.  Suppose, as shown in Fig. 10-6a, that a plane wave in 

'Infinite sheet 
/ of space cloth 

Ei=1 Er = 

Incident  Reflected 
wave  wave 

1; =1 

-••• ••111. 

2 Ey= 

Transmitted 
wave 

2 
= T 

zo 
1 

Fio. 10-6. (a) Plane wave traveling to right incident normally on sheet of space cloth, 
and (b) analogot.s transmission-line arrangement. 

(a) 

Infinite  (6) 
transmission line 

free space traveling to the right is incident normally on a sheet of space 
cloth of infinite extent. 
Taking the amplitude of the incident wave as 1 volt per meter, we have 

from (10-53) that there is a transmitted wave continuing to the right 
of the sheet of amplitude 

2 X 188.3 2 
= rEi —  — volt/meter 

188.3 + 376.7  3 

and from (10-56) that there is a reflected wave to the left of the sheet of 
amplitude 

188.3 — 376.7 1 
E,  i —  3— volt/meter = pE — 

188.3 + 376.7 
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It is to be noted that the impedance presented to the incident wave at 
the sheet is the resultant of the space cloth in parallel with the impedance 
of the space behind it. This is one-half of 376.7, or 188.3 ohms. 
It is apparent that a sheet of space cloth by itself is insufficient to 

terminate a wave. This may also be seen by considering the analogous 
transmission arrangement as shown in Fig. 10-6b. 
In order completely to absorb or terminate the incident wave without 

reflection or transmission,' let an infinite, perfectly conducting sheet be 
placed parallel to the space cloth and 1 wavelength behind it, as por-

Incident 
wave 

Incident 
wave 

x 
4 

(a) 

*--Infinite sheet ''"----Infinite perfectly 
of space cloth  conducting sheet 

zo zo 
1   

ke--- A a  . 
FIG. 10-7. (a) Plane wave traveling to right incident normally on sheet of space cloth 
backed by conducting sheet is absorbed without reflection.  (6) Wave traveling to 
right on transmission line is absorbed without reflection by analogous arrangement. 

trayed in Fig. 10-7a.  Now the impedance presented to the incident wave 
at the sheet of space cloth is 376.7 ohms, being the impedance of the sheet 
in parallel with an infinite impedance. As a consequence, this arrange-
ment results in the total absorption of the wave by the space cloth, with 
no reflection to the left of the space cloth. There is, however, a standing-
wave and energy circulation between the cloth and the conducting sheet. 
The analogous transmission-fine arrangement is illustrated in Fig. 10-7b. 
In the case of the plane wave, the perfectly conducting sheet effectively 

isolates the region of space behind it from the effects of the wave. In a 
roughly analogous manner, the shorting bar on the transmission line 
reduces the wave beyond it to a small value. 
A transmission line may also be terminated by placing an impedance 

across the line which is equal to the characteristic impedance of the line, 

1 This result may also be approximated by the use of a large stack of parallel sheets 
of suitable resistance and spacing extending an appreciable distance, as measured in 
wavelengths, in the direction of travel of the incident wave, the wave being gradually 
absorbed as it penetrates the stack. 

Shorting 
bar —v- (b) Infinite 

transmission 
line 
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as in Fig. 10-6b, and disconnecting the line beyond it. Although this 
provides a practical method of terminating a transmission line, there is no 
analogous counterpart in the case of a wave in space, because it is not 
possible to "disconnect" the space to the right of the termination. A 
region of space may only be isolated or shielded, as by a perfectly con-
ducting sheet. 
10-8. The Poynting Vector in Conducting Media. Assume that a 

plane wave is traveling in a uniform conducting medium. Let us find the 
value of the Poynting vector S for the 
wave. Suppose that the wave is linearly 
polarized and traveling in the positive x 
direction with E in the y direction and H 
in the z direction, as in Fig. 10-8. Let the 
boundary of the conducting medium be 
at x = 0, and let 

E y  =  Eoem  (10-63a) 

H. = Hoei6"-E) (10-63b) 

From (9-124) the scalar magnitude of the 
average Poynting vector is 

= Re S = 4 Re tv11: = -i-E0H0 Re  
(10-64) 

= 4E01/0 cos E watts/meter2 
(10-65) 

where E0 = amplitude of electric field 
(volts/meter) 

Ho = amplitude of magnetic field 
(amp/meter) 

= phase difference between elec-
tric and magnetic fields (rad 
or deg) 

The Poynting vector is entirely in the x direction in this case. If E0 and 
Ho are rms values, the factor 4 in (10-65) is omitted. For a conduct-
ing medium,  is very nearly 45°. Returning to a further consideration 
of the average Poynting vector, the intrinsic impedance Z. is equal to 
Ev/H. so that (10-64) can be expressed 

= 4 Re /1,11:2e = 41f1. 12 Re 2 = -41102 Re 2c watts/meter2 (10-66) 
This is a very useful relation since, if the intrinsic impedance 2, of a 

conducting medium and also the magnetic field Ho at the surface are 
known, it gives the average Poynting vector (or average power per unit 
area) into the conducting medium. 

x=0 
FIG. 10-8. Field components of 
wave in conducting medium. 

and 

or 
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Example.  A plane 1,000 Mc/sec traveling wave in air with peak electric field 
intensity of 1 volt/meter is incident normally on a large copper sheet.  Find the aver-
age power absorbed by the sheet per square meter of area. 
Solution.  First let the intrinsic impedance of copper be calculated at 1,000 Mc/sec. 

From (10-43) 

- 1 +i3767 \Fir \117..1  
V2  tr 

For copper IL, = e,  1 and a = 5.8 X 107 mhos/meter.  Hence the real part of 2. is 

.\/27 X 103 X 8.85 X 10-'3 
Re 2, = (cos 45°)(376.7) 

5.8 X 10' 
= 8.2 X 10-3  ohm 

Next we find the value of Ho at the sheet (tangent to the surface).  This is very 
nearly double H for the incident wave.  Thus 

E  2 X 1  
Ho •• 2  =  amp/meter 

Z  376.7 

From (10-66) the average power per square meter into the sheet is then 

S,„ =  2 )2 8.2 X 10-3 = 1.16 X 10-' watt /meter2 
2 k376.7 

The power from a wave absorbed by a conducting medium may also be 
conveniently regarded in terms of the current induced in the medium. 
Since J = ffE, the current density J in the medium varies in the same 
manner as the electric field E. Thus for a plane wave incident normally 
on a conducting medium, as in Fig. 10-8, the current-density variation is 
expressed by 

= j oe --x/de—j(shE amp/meter2 (10-67) 

where Jo = current density at surface of the medium (x = 0).  The 
variation of the magnitude of J (or E) as a function of the distance x is 
portrayed by the exponential curve in Fig. 10-9.  Assuming that the 
conducting medium extends infinitely far in the positive x direction, the 
total current per unit width (in z direction) induced in the conducting 
medium by the wave is given by the integral of the magnitude of J from 
the surface of the medium (x = 0) to infinity.  That is, 

K = IJI  dx = Jo " e-x/6 dx = Job  (10-68) 

where K = current per unit width (sheet current density) (amp/meter) 
Jo = current density at surface (amp/meter2) 
5 = 1/e depth of penetration (meters) 

Thus the area under the exponential curve in Fig. 10-9 is equal to the area 
under the step curve.  It follows that the total current K per unit width 
is equal to what would be obtained if J maintained the constant ampli-. 
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26  36  46  56  66 
— I,-

FIG. 10-9. Relative magnitude of electric field E or current density J as a function of 
depth of penetration 5 for a plane wave traveling in x direction into conducting medium. 
The abscissa gives the penetration distance x and is expressed in 1/e depths (5). The 
wavelength in the conductor equals 2T5. 

tude Jo from the surface to a depth 6 and was zero elsewhere.  This gives 
added significance to the 1/e depth of penetration 6. 
Now the average power absorbed per unit area of the conducting 

medium is, from (10-66), 
=  Re 4  (10-69) 

or since Ho = K and Re 2c = R, 

= 4K2R  watts/meter'  (10-70) 1 

where K = Jo6 = current per unit width, as in (10-68) (amp/meter) 
R = 1/a6 = resistance of a square sheet of conducting medium of 

thickness 6 (ohms per square) 
The resistance R in (10-70) is sometimes referred to as the skin resist-

ance, since at high frequencies the current may be confined to a very thin 
layer.  Referring to Fig. 10-5, R is the resistance of a square sheet of the 
medium of thickness 6 = h as measured between two opposite edges. 
10-9. Circuit Application of the Poynting Vector.  In field theory we 

deal with point functions such as E, H, and S. Thus, E and H give the 
electric and magnetic fields at a point and S the power density at a point. 
In dealing with waves in space it is convenient to use such point func-

I Note the similarity between (10-70) and the circuit relation for the power dissi-
pated in an impedance with a real part (resistance) R as given by P  11102R watts. 
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tions. On the other hand, in dealing with circuits it is usually more 
convenient to employ integrated quantities such as V, I, and P. That is, 
V is the voltage between two points and is equal to the line integral of E 
between the points, or 

V = f2E•d1  (10-71) 

The quantity I is the current through a conductor which is equal to the 
integral of H around the conductor or 

/ = f H • dl  (10-72) 

The quantity P is, for example, the power dissipated 
in a load and is equal to the integral of the Poynting 
vector over a surface enclosing the load, or 

P = 9S.S • ds  (10-73) 

As an illustration let us find the average power 
flowing into a load of impedance Z, using the field 
approach. Suppose that the load is a long, slender, 
rod-shaped device, as suggested in Fig. 10-10. Let 
an imaginary cylindrical surface be constructed, as 
indicated, that encloses the load. The average 
power in the load is, from (9-125), 

Ps. = 56 Re S • ds — i 96 Re (E x H*) • ds 
I  I 

(10-74) 

From the geometry E and H are normal to each other 
and both tangent to the curved surface of the 
imaginary cylinder. The contribution of the flat 
end surfaces of the cylinder to (10-74Y is zero since E is normal to these 
surfaces. Thus, the total average power P.., in the load is given by the 
surface integral of the real part of the complex Poynting vector over 
the curved surface of the cylinder. From the geometry this reduces to 
the real part of the line integral of E between the ends of the cylinder 
multiplied by the line integral of H* around the cylinder. That is,' 

P.. = --IF Re fE • dl .56' H* • dl  (10-75) 
or 

P., = --i Re VI*  watts  (10-76) 

where V = fE • dl = voltage between the ends of the cylinder (or load) 
(volts) 

I* = fH* • dl = current through load (amp) 

1E, H*, V, and 1* are complex quantities (phasors).  For simplicity the dot C) is 
omitted. 

T 
I 

Imaginary 
cylinder 

FIG. 10-10. The power 
in a load is equal to 
the integral of the 
normal component of 
the Poynting vector 
over a surface enclos-
ing the load. 
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The negative sign in (10-75) and (10-76) results from the fact that 
E x H* on the cylindrical surface is inward, making S negative with 
respect to ds.  Thus, from the field point of view the power entering a 
load is negative power.  Conversely, the power leaving a generator is 
positive power.  Omitting the negative sign and noting that I* in (10-76) 
is the complex conjugate of I, we have 

P.. = V0I0 Re eat = ;FIT of 0 cos t  watts  (10-77) 

where t = time phase angle between current and voltage.  Note that 
V = V oem and /* =  In (10-77) Vo and /0 are amplitudes 
(peak values).  If rms values are used, the factor is omitted.  Equation 
(10-77) is a familiar circuit relation.  It has been developed here as a 
special case of the more general field relation of (10-74). 
The quantity cos t in (10-77) is called the power factor.  Hence, by 

analogy cos t in (10-65) may be called the power factor of the medium. 
Since the load impedance Z = V/I, we also have from (10-76) (omit-

ting the negative sign) that 

= 4/02 Re Z = 4/02R  (10-78) 

where R = resistance of load (real part of Z) (ohms). 
10-10. General Development of the Wave Equation.  In this chapter 

and in Chap. 9, we have dealt entirely with plane waves traveling in the 
x direction.  The wave equation was developed for this special case, and 
appropriate solutions were obtained.  A more general development of 
the wave equation will now be given, and it will be shown that for a plane 
wave it reduces to the expressions obtained previously. 
Maxwell's curl equations are 

and 

, ap  , aE 
Vx H =J-r — =0E-re — at  at 

aB  ax v xE = — — = — ai-  
at  at 

(10-79) 

(10-80) 

Taking the curl of (10-80) and introducing the value of v x H from 
(10-79), 

V x (V x E) =  a(v x11)  —  —a (o-E  —aE ) (10-81) at  at  at 
But by a vector identity, meaningful only in rectangular coordinates, the 
left-hand side of (10-81) can be expressed 

V x (V x E) = V(V • E) — V2E  (10-82) 

Eq.uating (10-82) and (10-81), and noting that in space having no free 
charge V • E = 0, 

82E  aE v2E = ge  gcr Tt- (10-82a) 
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Assuming harmonic variation of the field with time, (10-82a) reduces to 

= ( - cepe  jcalla)E = 72E  (10-83a) 
or 

V2E — 72E = 0 

From (10-82) we can also write 

VxVxE-F-y2E= 0 

(10-83b) 

(10-83c) 

All of the above four equations are vector wave equations in E.  In 
(10-82a) the time is explicit, while in the other three it is implicit, har-
monic variation with time being assumed.  The equations (10-83) incor-
porate all four of Maxwell's equations.  Maxwell's two curl equations 
are the starting point for the wave equation, and the equations of (10-83) 
satisfy them.  Maxwell's two divergence equations are also satified. 
For a plane wave traveling in the x direction with E in the y direction 

(E = jE,,,) Eq. (10-82a) reduces to 

a2E,  a2E, aE, 
ax2 at2  ± Aur —at  

which is the same as (10-9).  If o= 0, 

a2Ev (32E, 

ax2 at2 

(10-84) 

(10-85) 

which is the same as obtained for a lossless medium in Chap. 9. These 
are scalar wave equations. 
If E does not change with time (E static), 

v2E = 0  (10-86) 

If E is a harmonic function of time, then (10-84) becomes 
a2E, 

= --cemeEy  jwacrE,  (10-87) 
ax2 

or 
.92E 2 _ ,y2Ev = 0 (10-88) 
ax 

which is the same as (10-13). 

PROBLEMS 

10-1. A medium has a conductivity a = 10-, mho/meter and a relative permittivity 
e, = 50.  Assume that these values do not change with frequency and that a, = 1. 
Does the medium behave like a conductor or a dielectric at a frequency of (a) 50 kc/sec; 
(b) 104 Mc/sec? 

AIM.: (a) r / we  720 = conductor; (b) o/w  3.6 X 10-3  = dielectric. 
10-2. A plane 1,590-Mc/sec wave is traveling in a medium for which e, 

and a = 0.1 mho/meter.  If the rms electric field intensity of the wave is 10 volts/ 
meter, what are (a) the conduction current density, (b) the displacement current 
density, and (c) the total current density? 
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10-3. What is the 1/c depth of penetration of a 159-Mc/sec wave into a medium for 
which a = 106 mhos/meter and µ, = 1 ?  Ans.: 4 X 10-6 meter. 
10-4. Determine the 1/e depths and the 1 per cent depths of penetration of a wave 

into an infinite medium for which a = 106 mhos/meter and a., = 2 at the following 
frequencies: (a) 60 cps; (b) 2 Mc /sec; (c) 3,000 Mc/sec. 
10-5. (a) Develop the wave equation in E for a plane wave traveling in the y direc-

tion in a conducting medium. Take E in the z direction.  Assume harmonic variation 
of E.  (b) State a solution for a wave traveling in the negative y direction.  Prove that 
it is a solution. 
10-6. A plane 159-Mc/sec wave is traveling in a medium for which er = µ, = 1 and 
=  106 mhos/meter.  How far must the wave travel to decrease in amplitude to 

13.5 per cent (l/O) of its original value? 
10-7. How long does it take for the charge density in a medium, with constants 

a  106 mhos/meter, e, =  = 1, to decrease to 1 per cent of its original value? 
Ans.: 4.07 X 10-17  second. 

10-8. What is the intrinsic impedance of the medium of Prob. 10-7 for a 30,000-
Mc /sec wave? 
10-9. A 159-Mc/sec plane wave traveling in a lossless dielectric medium with 

er = 4 and µr = 1 is incident normally on a large, thick conducting sheet. The con-
stants for the sheet are a 3= 106 mhos/meter and e, = M= 1. If the amplitude of the 
incident traveling wave is 10 volts/meter, what is the average Poynting vector into 
the sheet? 
10-10. A half space of air and a half space of a lossless dielectric medium M are 

separated by a sheet of copper.  A plane 1,000-Mc/sec traveling wave in the air 
space is incident normally on the copper sheet. The amplitude of the electric field 
intensity of the incident traveling wave is 100 volts/meter. The copper sheet has a 
thickness of 9.6 X 10-6 meter and has constants a = 5.8 X 107 mhos/meter and 
e,  = 1. The constants for the dielectric medium Al are e, = 4 and p= 1. 
Determine (a) the rum value of the electric field in the copper sheet just inside the 
surface adjacent to the dielectric medium M; (b) the rms value of the electric field at 
a point in the dielectric medium M at a distance of 1 meter from the copper sheet; (c) 
the rms value of the magnetic field H at a point in the dielectric medium M at a 
distance of 1 meter from the copper sheet. 
10-11. A plane traveling wave with an rms electric field intensity of 1 volt/meter is 

incident normally on a large body of salt water with constants a -= 4 mhos/meter, 
e, = 80, and  =  1. At what depths is the rms field intensity equal to 10 pv/meter 
at frequencies of (a) 100 kc /sec and (b) 10 Mc/sec? 

Ans.: (a) 4.3 meters; (b) 0.62 meter. 
10-12. A plane traveling wave in air with magnetic field amplitude HI is incident 

normally on the boundary of a large conducting medium. The frequency and the 
constants of the medium are such that Z. = 0.02L4_5° ohms for the conducting 

medium.  Calculate without approximation the magnitude of the magnetic field II, 

at the conducting boundary, and compare with the approximation that HI 2H1. 
What is the error involved in the approximation? 
10-18. Calculate the conductivity required for a sheet of space cloth  mm in 

thickness. 
10-14. A medium has the constants µ  X 10-7 henry/meter, e  10-11  farad/ 

meter, and a = 10-6 mho/meter.  At a frequency of 159 Mc/sec find (a) the intrinsic 
impedance of the medium; (b) the phase velocity of a plane wave in the medium. 



CHAPTER 11 

TRANSMISSION LINES 

11-1. Introduction. As mentioned in Chap. 10, there is a close analogy 
between plane waves in unbounded media and guided waves on trans-
mission lines. The subject of transmission lines is considered further in 
this chapter, and additional comparisons are made between waves in 
space and waves on transmission lines. 
A transmission line may be defined as a device for transmitting or guid-

ing energy from one point to another.  Usually it is desired that the 
energy be conveyed with maximum efficiency, losses in heat or radiation 
being as small as possible. 
Transmission lines may be of many forms and shapes.  It will be con-

venient to classify transmission lines on the basis of the field configura-
tions, or modes, which they can transmit.  Thus transmission lines may 
be divided into two main groups, (1) those capable of transmitting trans-
verse electromagnetic (TEM) modes and (2) those able to transmit only 
higher-order modes.  In a TEM mode both the electric and the magnetic 
fields are entirely transverse to the direction of propagation. There is no 
component of either E or H in the direction of transmission.  Higher-
order modes, on the other hand, always have at least one field component 
in the direction of transmission.  All two-conductor lines such as coaxial 
or two-wire transmission lines are examples of TEM-mode types, while 
hollow single-conductor wave guides (see Chap. 12) or dielectric rods are 
examples of higher mode types. 
To summarize, transmission lines may be classified as follows: 

1. TEM-mode type: E and H entirely transverse 
Examples: All two-conductor types such as coaxial and two-wire 
lines 

2. Higher mode type: E or H or both have components in the direction 
of transmission 
Examples: Hollow single-conductor wave guides and dielectric rods 

In the above discussion we have used the term " transmission line" as a 
general, all-inclusive expression.  In common present-day usage, how-
ever, the term "line" or "transmission line" is usually restricted to those 
devices which can transmit TEM modes, while the term "guide" or 

417 
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"wave guide" is employed for those devices which can transmit only 
higher-order modes.  The remainder of this chapter deals specifically 
with transmission lines of the two-conductor type, wave guides being dis-
cussed in Chap. 12. 
11-2. Coaxial, Two-wire, and Infinite-plane Transmission Lines. 

The most common forms of TEM-mode transmission lines are the coaxial 

E line  H line 

Infinite 
conducting 
sheets 

(d) 

(e) 

(c) 

(g) 

FIG. 11-1. Evolution of two-wire and coaxial transmission lines from infinite-parallel-
plane type by means of transitional forms. 

and two-wire types.  Many other forms, in fact an infinite variety of 
them, are also possible.  However, all may be regarded as derived from a 
basic or parent form.  Thus let us consider the infinite-parallel-plane 
transmission line as the basic two-conductor type.  This type consists of 
two parallel-plane conducting sheets of infinite extent.  A cross section 
through such a line is shown in Fig. 11-1a.  Considering only a TEM 
wave, E is everywhere normal and H everywhere parallel to the sheets. 
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An approximation to the infinite-parallel-plane transmission line is pro-
vided by the parallel-strip line shown in perspective in Fig. 11-1b.  Here 
the sheets have been reduced to form long parallel strips of width b. A 
cross section of this line is portrayed by Fig. 11-1c.  In the region 
between the strips E and H are oriented the same as for the infinite-sheet 
line.  However, E and H also extend outside the region between the 
strips, the H lines forming loops that enclose each strip. 
Now let the strips of the line of Fig. 11-1c be curved away from each 

other at the edges, as suggested by Fig. 11-1d.  Continuing this process, 
we end up with the two-conductor transmission line shown in Fig. 11-1e. 
As another variation, let the strips of the line of Fig. 11-1c be bent in 

the same direction, as suggested in Fig. 11-1f.  Continuing this process, 
we arrive at the coaxial transmission line portrayed in Fig. 11-1g. 
Thus we may regard both the two-wire transmission line (Fig. 11-1e) 

and the coaxial line (Fig. 11-1g) as forms that can be derived from the 
parallel-plane type. 
In the following sections of this chapter the properties of two-conductor 

transmission lines are developed by an extension of ordinary circuit 
theory to take into account the finite velocity of propagation along the 
line, and comparisons are made with corresponding relations for plane 
waves in space.  The development applies to coaxial, two-wire, or any 
two-conductor type of transmission line carrying only TEm waves. 
11-3. The Infinite Uniform Transmission Line.  Consider the uniform 

two-wire transmission line shown in Fig. 11-2.  In earlier chapters 
expressions were developed for the capacitance and inductance per unit 
length of such a line.  If the line is not lossless, the line will also have a 
series resistance and a shunt conductance that may need to be considered. 
The net effect of the series resistance and inductance can be expressed by 
the series impedance Z per unit length. Thus' 

Z = R  juL = R  jX  ohms/meter  (11-1) 

where R = series resistance (ohms/meter) 
L = series inductance (henrys/meter) 
= radian frequency (= 22-f) 

X = series reactance (ohms/meter) 

The net effect of the shunt conductance and capacitance may be 
expressed by the shunt admittance Y per unit length.  Thus 

Y = G  jue = G  jB  mhos/meter  (11-2) 

1. In previous chapters such quantities as the series inductance are expressed as 
Lido,- L11, where L is inductance and d or 1 is length.  However, to simplify the equa-
tions, L will he understood here to mean inductance per length. 
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where G = shunt conductance (mhos/meter) 
C = shunt capacitance (farads/meter) 
co = radian frequency (= 2Tf) 
B = shunt susceptance (mhos/meter) 

Consider now an infinitesimal section dx of the line, and let a harmoni-
cally varying wave be present on the line. Let the voltage across the 
line be V and the current through the line be I (Fig. 11-2).  The voltage 

1 
(1  ) 

I  IdV 
V 

i   
0  ) 

H(12 '1 
Flo. 11-2. Two-wire transmission line. 

drop dV over the length of the section dx is equal to the /Z drop per unit 
length multiplied by the length of the section, or 

dV = IZ dx  (11-3) 

where I = line current.  Thus 

dV _ 
IZ 

dx — 
(11-4) 

The change in current dl between the ends of the section dx is equal to 
the shunt current V Y flowing across the line from one wire to the other, 
multiplied by the length of the section, or 

dl = VY dx 

where V = voltage across the line.  Thus 

dl   — vy 
d x   

Differentiating (11-4) and (11-6) with respect to x, we obtain 

d2V  dZ  dI  dZ 
dx 

=I --1-Z — =I — +ZVY 
de  dx  dx 

d21  dY  v dV  dY 
dx2 = V dx m  ' dx = V dx ± YIZ 

(11-5) 

(11-6) 

(11-7) 

(11-8) 

On a uniform line Z and Y are independent of x (do not vary along the 
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line), and so dZ/dx and dY /dx are zero.' Thus, for a uniform line (11-7) 
and (11-8) reduce to 

d2V 
— ZY V = 0 

dx2 
and 

d'I 
— ZY I = 0 

Equations (11-13) and (11-14) are the basic differential equations or 
wave equations for a uniform transmission line.  In mathematical 
terminology they are linear differential equations of the second order 
with constant coefficients. They are the most general way of expressing 
the natural law relating the variation of voltage and current with distance 
along a uniform transmission line.  However, they tell us nothing 
specifically about the voltage or current distribution on a particular 
transmission line.  For this we must first obtain a solution appropriate 
to the imposed conditions.  As a trial solution of (11-13) let us substitute 

from which 

Thus, (11-13) becomes 

and 

V = 

d2V   , 2eyx 

dX2 

(72 — ZY)evr = 0 

1 2 —  ZY = 0  (11-18) 

For a nonuniform (tapered) transmission line the terms with dZ /dx and dY /dx 
must be retained.  From (11-4) 

I dv 
= Z- dx 

so that the first term on the right side of (11-7) can be written 

IdZ  1 dZ dV  d(ln Z)dV 
= 

dx  Z dx dx  dx  dx 

Substituting (11-10) in (11-7), 

(1217 d(In Z)dV 
ZY V = 0 

dx2 dx  dx 

In a like manner (11-8) becomes 

di/  clan Y) dl 
ZY I = 0 

de  dx  dx 

(11-9) 

(11-10) 

Equations (11-11) and (11-12) are basic differential equations for a nonuniform trans-
mission line.  For a uniform line they reduce to (11-13) and (11-14). 
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Equation (11-18), known as the auxiliary equation, has two unequal 
roots + VZ Y and — VZY, so that the general solution for (11-13) is 

V = Cior-zY z  C 2e- Nr- (11-19)zY 

where C1 and C2 are constants. 
If (11-14) is solved in the same fashion as (11-13), we obtain a solution 

for / similar in form to (11-19) but having two more constants.  Instead 
of solving for / in this manner, let us proceed along another avenue of 
approach and obtain a solution for / from (11-19).  To do this, let (11-19) 
be differentiated with respect to x. Recalling also (114), we obtain 

dV 
= Ci / Y e"  — C2 N/-7  er-VzY = IZ  (11-20) 

dx 

from which it follows that 

I —  Cl C2 C2  '  (11-21) 

This is a solution for the current. To evaluate the constants, we note 
from (11-19) that when x = 0 

V = C1 + C2  (11-22) 

where V is the instantaneous voltage at the point x = 0 on the line.  We 
may regard this voltage as the sum of two voltages which, in general, are 
unequal in amplitude and vary harmonically with time. Let VI and 
V2 be the amplitudes of the voltages.  The quantities C1 and C2 are 
constants with respect to x but may be regarded as variables with respect 
to time.  Thus we may put 

C1 = V leiwg  (11-23) 
and 

C2 = V 2e2.'  (11-24) 
Therefore (11-22) becomes 

V = V low' ± V 20"  (11-25) 

at x = 0. Substituting (11-23) and (11-24) into (11-19) and (11-21) 
yields 

and 

= v ieiwto,/217 x  2eme-  x (11-26) 

/ Vie"  evn -,  V sew' e_vz--p. =  (11-27) 
NAZTY  Nrtj" 

The quantity NT H = -y is called the propagation constant.  In general 
it is complex, with a real part a called the attenuation constant and an 
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imaginary part fi called the phase constant.  Thus 

(11-28) 
or 

a = Re N721-7  (11-28a) 
and 

= Im VZY  (11-28b) 

Introducing (11-28) into (11-26) and (11-27) and rearranging, we obtain 

V = V lealeJt'il-Pz) + V 2e-aze)(‘"-Pz) (11-29) 
and 

V1 / —     easej(cri+Ps )   V2 e—azej(tut—/h) 

VZ/ Y  

Equation (11-29) is the solution for the voltage on the transmission 
line.  The solution has two terms.  The first term, involving cot + 
represents a wave traveling in the negative x direction along the line. 
The magnitude of this wave at x = 0 and t = 0 is VI, and the factor eax 
indicates that this wave decreases in magnitude as it proceeds in the 
negative x direction.  The second term, involving 0.4 — $x, represents a 
wave traveling in the positive x direction along the line.  The magnitude 
of this wave at x = 0 and t = 0 is V2, and the factor e—ax  indicates that 
this wave decreases in magnitude as it proceeds in the positive x direction. 
The factors eax and e-ax are attenuation factors, a being the attenuation 
constant.  The factors ei(at4-8x) and egai-rix> are phase factors, fi being the 
phase constant. 
If the voltages in (11-29) were replaced by electric fields, the equation 

would apply to two traveling waves in a conducting medium.' 
The solution for / in (11-30) also has two terms, the first term repre-

senting a current wave traveling in the negative x direction and the 
second term a current wave traveling in the positive x direction.  The 
total current at any point is the resultant of the two traveling-wave 
components. 
Confining our attention now to a single wave traveling in the negative 

x direction as represented by the first terms of (11-29) and (11-30), we note 
that V and I are identical functions of x and t. The amplitudes differ. 
Taking the ratio of the voltage V across the line to the current / through 
the line for a single traveling wave, we obtain the impedance, Zo, which 
is called the characteristic, or surge, impedance of the line.  That is, 

7 =\ = zo 
V  lz 

1For a wave in a conducting medium (a >> we) we have a =  = 1/6, where a is 
the attenuation constant, 13 the phase constant, and 6 the 1/e depth of penetration. 
Compare (10-16). 

(11-30) 

ohms  (11-31) 
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This impedance is a function of the series impedance Z per unit length 
and shunt admittance Y per unit length.  Expanding Z and Y as in 
(11-1) and (11-2), we obtain, from (11-31), 

R + jcoL 
Z 0 — G + jcoe  ohms  (11-32) 

Where R and G are small or where the frequency is large so that 01/, >> R 
and coC >> G, (11-32) reduces to 

Zo =  —  ohms  (11-33) 

where Zo = characteristic impedance (ohms) 
L = series inductance (henrys/meter) 
C = shunt capacitance (farads/meter) 

In (11-33) Zo is entirely real, or resistive, so that in this case we may, to 
be explicit, speak of the characteristic resistance Ro of the line.  That is, 
for this case 

Zo =  — = Ro ohms  (11-34)  

In general, where R and G cannot be neglected, Zo is complex and the 
term "characteristic impedance" should be used.  However, if R and G 
are negligible, Zo is real (= Ro) and the term "characteristic resistance" 
may be used. 
When R and G are small, but not negligible, (11-32) may be reexpressed 

approximately in the following form: 

R )] 
Z  1 =  [  j  -  

a  G 
2wC  2coL 

Thus Zo for this case is, in general, complex.  However, if 

G _ R 
C L 

Zo is real. 
The relations developed above for the characteristic impedance of a 

uniform transmission line are summarized in Table 11-1. 

(11-35) 

(11-35a) 

TABLE 11-1 
CHARACTERISTIC IMPEDANCE OF TRANSMISSION LINES 

Condition  Characteristic impedance, ohms 

General case   Zo —  = \JR +   
Y  G  jo,,C 

\i—Lc [1 (2wG  2Rj] 
Small losses    Zo — 

Lossless case,t R = 0, G  0   Zo Ro 

t This case also applies where the losses are not zero but (0./. >> R and oiC >> G. 
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The phase velocity v of a wave traveling on the line is given by w/t1. 
That is, 

CO  CO   CO   
V -  -  - 

0  1m7  Im N/21, 

If the line is lossless or R <<caL and G << coC, 

(11-36) 

co 1  
v =  —  meters/sec  (11-36a) 

co V a.' V. CC 

where L = series inductance (henrys/meter) 
C = shunt capacitance (farads/meter) 

11-4. Comparison of Circuit and Field Quantities. It is interesting 
to compare some of the relations for transmission lines developed in the 
preceding section with corresponding relations for waves developed in 
earlier chapters. For example, consider the transmission-line equations 

and 

dV 
—dx = ZI = (R ± jcoL)I  volts/meter  (11-37) 

dI 
-c&  = Y V = (G ± jcoC)V  amp/meter  (11-38) 

The corresponding relations for a plane wave traveling in the x direction 
with E in the y direction, as obtained from Maxwell's two curl equa-
tions, are 

and 

dE, 
= —jcopli, 

dx 

dll. 
dx = (cr + jcoe)E„ 

volts/meter2 

amp/meter2 

(11-39) 

(11-40) 

In these relations harmonic variation with time is assumed, and the 
differentiations with respect to time have been performed. 
Comparing (11-37) with (11-39), we note that -MI in the wave case 

corresponds to Z = R + jcol, for the line.  Comparing (11-38) with 
(11-40), we see that a + jam for the wave corresponds to Y = G ± jcuC 
for the line. 
Further comparisons of the circuit relations used for lines and the field 

relations employed for waves are made in Table 11-2. The first column 
gives the circuit quantity and the last column the corresponding field 
quantity. The center column indicates the mksc units, which are the 
same for corresponding circuit and field relations. 
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Flo. 11-3.  Coaxial trans-
mission line of noncircular 
cross section. 
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TABLE 11-2 
COMPARISON OF CIRCUIT AND FIELD RELATIONS 

[CHAP. 11 

Circuit relation 
for transmission line 

mkac units Field relation for space wave 

Z = R  jcuL 
Y •=g G  jue 

Characteristic impedance 

1 
Velocity =r, 

\a-0 

Series inductance = L 
Shunt capacitance 
Voltage  _ V 
Distance  x 
Current _ I 
Distance  x 

c 

ohms/meter 
mhos/meter 

ohms 

meters/sec 

henrys/meter 
farads/meter 

volts/meter 

amp/meter 

—jcoµ 

± :Ude 

Intrinsic impedance = 

Velocity =  1 

Permeability = 
Permittivity = e 

Electric field = E 

Magnetic field = H 

11-5. Characteristic -impedance Determinations. The correspondence 
of L to µ and C to e (see Table 11-2) is of particular interest.  Thus, if 
space is divided up into transmission-line cells, µ is the series inductance 
per unit length (or depth) of a cell, while e is the shunt capacitance per 
unit length (or depth) of a cell.' 
The transmission-line-cell concept (see Secs. 4-20 and 9-9) is of con-

siderable value in connection with the determi-
nation of the characteristic impedance of lossless 
transmission lines operating in the TEM mode. 
For instance, consider the transmission line 
portrayed in Fig. 11-3. Let the space between 
the conductors be divided into curvilinear 
squares by graphical-field-mapping methods. 
Each square represents the end of a transmis-

sion-line cell of characteristic impedance Z'c, = V i-Ve. Then, the char-
acteristic impedance of the line is given by 

Zo = —n  ohms  (11-41) 

where N = number of cells in series 
n = number of cells in parallel 
= characteristic impedance of one cell (= ..VI7-t/e, where  is 
permeability and e is permittivity of medium filling line) 

In earlier discussions (see, for example, Secs. 2-27, 4-20, 5-19, and also 9-9) series 
inductance in henrys per meter is written as LI1 or Lid, while shunt capacitance in 
farads per meter is written as C// or C Id.  To simplify the equations in this chapter, 
the letter L by itself is understood to be the series inductance in henrys per meter and 
the letter C the shunt capacitance in farads per meter. 
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This method may be applied to two-conductor transmission lines of any 
shape.  The characteristic impedance of lossless high-frequency lines of 
any shape can also be obtained by a simple d-e measurement.  For 
example, if we wish to find the characteristic impedance (or resistance) of 
the line shown in Fig. 11-3 by this method, the conductor cross section is 
drawn to scale' with conducting 
paint (such as silver paint) on a sheet 
of resistance cloth or paper of uni-
form resistance R. per square as sug-
gested in Fig. 11-4.2 Then by con-
necting the terminals of an ohmmeter 
to the inner and outer conductors, as 
indicated, a d-c resistance R„, is 
measured.' The characteristic im-
pedance of the line is then 

Zo = kR.  ohms  (11-42) 

where k = ZVR. = Vi—i/e/R. (di-
mensionless). The quantity k is a 
constant factor that is equal to the ratio of the intrinsic impedance Nii—.4/e 
of the medium in the line to the resistance R. per square of the resistance 
cloth or paper used in the measurement.  Thus, if the line is air-filled, 
= 376.7 ohms and (11-42) becomes 

Resistance paper 
Rs ohms/square 

a 376.7 
LI 0 - 

R. 

Ohmmeter 

Fig. 11-4. Determination of character-
istic impedance of transmission line by 
simple d-c measurement. 

ohms (11-43) 

Hence, if space cloth (R. = 376.7) is used as the resistance cloth, 

Zo = R.  ohms  (11-44) 

and the ohmmeter reads directly the characteristic impedance of the line. 

Example 1. Find the characteristic impedance (or resistance) of the lossless coaxial 
line shown in Fig. 11-5. The line is air-filled. 
Solution.  Dividing the space between the conductors into curvilinear squares or 

cells by graphical field mapping, we obtain a total of 18.3 squares in parallel and 2 in 

Since only the shape is important, the cross section may be scaled to any con-
venient size. 

2 It is important that there be good contact between the conductor cross section 
and the resistance material.  One of the simplest ways of ensuring this is by the use 
of silver paint. 

3 Supposing that the resistance paper between the conductors were marked off in 
curvilinear squares, R„, would be given by R„,  (N/n)R., where N = number of 
squares in series, n = number of squares in parallel, and R. = resistance per square 
(that is, resistance of one square). 
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series.  The characteristic impedance 

Outer  Transmission 
conductor  line cell 
Fin. 11-5. Coaxial transmission line 
with 18.3 transmission-line cells in 
parallel and 2 in series. 

ICHAp. 11 

of each cell is 376.7 ohms.  Hence, from 
(11-41), the characteristic impedance of 
the line of Fig. 11-5 is 

N ,  2 
Zo = ,-7 Z° = -1-8.3 376.7 = 41.2 ohms 

If a cross section of this line is drawn to 
scale with conducting paint on a sheet of 
space cloth, the value 41.2 ohms would be 
measured directly on an ohmmeter con-
nected between the inner and outer 
conductors. 

When the above resistance-meas-
urement method is applied to open 
types of line, such as a two-wire line, 
the sheet of resistance material 
should extend out to a distance that 
is large compared with the line cross 
section if accurate results are to be 
obtained. 

Although the graphical and d-c measurement methods can be applied 
to two-conductor lines of any shape, there are some configurations that 
yield to a simple calculation.  Thus, for the case under consideration 
where the characteristic impedance 

zo= Nrf, ohms  (11-45) 

the value of Zo can be determined by a knowledge of L and C for the line. 
Thus, obtaining L from (4-67) and C from (2-81), the characteristic 
impedance of a coaxial line (as in Fig. 11-5) is given by 

Zo = 1 N  .N? in 21- = 0.367 .N? log -b r e  a  e  a  ohms  (11-46) 

If there is no ferromagnetic material present, µ = 
to 

Ao and (11-46) reduces 

138 b 
Zo = VZ. log a-  ohms 

where e, = relative permittivity of medium filling line 
a = outside radius of inner conductor 
b = inside radius of outer conductor 

log = logarithm to base 10 = 0.4343 natural logarithm (1n) 
For an air-filled line e, = 1, and (11-47) becomes 

b 
Zo = 138 log -a  ohms 

(11-47) 

(11-48) 
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Example 2. The air-filled coaxial line in Fig. 11-5 has a radius ratio b/a = 2. Find 
its characteristic impedance. 
Solution.  From (11-48) 

Zo = 138 log 2 = 41.4 ohms 

The value obtained previously by graphical methods agrees well with this exact value. 

In a similar way, the characteristic impedance 
may be obtained for a two-wire line, as in Fig. 
11-6.  Thus, if D >> a, we have 

- 
Zo= \?- ln —D = 0.73 .\1-m log D ohms 

T  e  a  e  a 
(11-49) 

Flu. 11-6. Two-wire 
transmission line. 

If there is no ferromagnetic material present, µ = µ0 and (11-49) reduces 
to 

276 
Zo = ,  log  ohms 

Ver a 

where Cr = relative permittivity of medium 
D = center-to-center spacing (see Fig. 11-6) 
a = radius of conductor (in same units as D) 

If the medium is air, e,. =- 1 and (11-50) becomes 

Z 0 = 276 log 7.1-  ohms 

(11-50) 

The characteristic impedances obtained above are summarized in Table 
11-3. 

TABLE 11-3 
CHARACTERISTIC IMPEDANCE OF COAXIAL AND TWO-WIRE LINES 

Type of line Characteristic impedance, ohmsf 

Coaxial (filled with medium of relative permittivity Z. = 138  b 
log - (see Fig. 11-5) a   

Coaxial (air-filled) Zo  138 log a- (see Fig. 11-5) 

Two-wire (in medium of relative permittivity Er) 
(D >> a) 

276 D 
Z. = .V; log —a (see Fig. 11-6) 

Two-wire (in air) (D >> a) = 276 log — (see Fig. 11-6) 
a 

t Logarithms are to base 10. 

It is assumed throughout this section that the line is lossless (or 
R <<wL and G << coC) and also that the currents are confined to the con-
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ductor surfaces to which the radii refer.  This condition is approximated 
at high frequencies owing to the small depth of penetration. This con-
dition may also be approximated at low frequencies by the use of thin-
walled tubes.  It is also assumed that the lines are operating in the TEM 
mode. 
11-6. The Terminated Uniform Transmission Line. In Sec. 11-3 

the line was considered to be of infinite length. Let us now analyze the 
situation where a line of characteristic impedance Zo is terminated in a 
load impedance ZL as in Fig. 11-7.  The load is at x = 0, and positive 

Component waves 

Total  Incident  Reflected 
wave  wave  wave 

/0 / 1 

t  _L. 
zo 

110 

Z=2 z=0 
Fla. 11-7. Terminated transmission line. 

distance x is measured to the left along the line. The total voltage and 
total current are expressed as the resultant of two traveling waves 
moving in opposite directions as on an infinite transmission line.  How-
ever, on the terminated line the wave to the right may be regarded as the 
incident wave and the wave to the left as the reflected wave, with the 
reflected wave related to the incident wave by the load impedance ZL. 
At a point on the line at a distance x from the load let the voltage 

between the wires and the current through one wire due to the incident 
wave traveling to the right be designated Vo and /0, respectively.' Let 
Vi and Ii be the voltage and current due to the wave traveling to the 
left that is reflected from the load.  The resultant voltage V at a point on 
the line is equal to the sum of the voltages Vo and VI at the point.  That 
is, 

= 1%0 + fTi (11-52) 

where To = Voe7: (the factor eh" is understood to be present) 
VI = Vie-7 x+it (the factor eh" is understood to be present) 
-y = propagation constant = a ± 
= phase shift at load 

The dot () indicates explicitly that lo and Jo are complex functions of position 
(phasors).  The modulus, or absolute value, of Vo is V 0 (that is, Vo = 11.701). Like-
wise the absolute value of Jo is 10 (that is, /0 = 1101). 
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At the load (x = 0) we have Vo = Vo and 17.i =  = VIA so that at 
the load 

jr  vi . 
1-70=Tioa=P. (11-53) 

where i1, -= reflection coefficient for voltage (dimensionless).  It follows that 

1.7 = V o(e7. (11-54) 

The resultant current 1 at a point on the line is equal to the sum of the 
currents to and I at the point.  That is, 

= 10 + 
where to = /0e7x-0  

/1 = 

= phase difference between current and voltage 
At the load 

(11-55) 

To = To It = Pi  (11-56) 

where Ai = reflection coefficient for current (dimensionless).  It follows 
that 

1 = /oe-A(e7z  ine—rx)  (11-57) 

Now ii, and  may be expressed in terms of the characteristic imped-
ance Zo and the load impedance ZL.'  Thus we note that at any point on 
the line 

1,0 vo  V1 V1 
Zo =  =  /6 =  = — — /6 

10 IO  Ii — 

while at the load (x = 0) 

It follows from (11-55) that at the load 

V _ Vo  _ Vo —  
ZL Zo  Zo  Zo 

But 1.7 = V0 ± VI; so we have 

fo + Vi _ fo —  
zo 

(11-58) 

(11-59) 

(11-60) 

1 Although the impedances ZL and Zo are (in general) also complex quantities, the 
dot over the letter will, for simplicity, be omitted.  If it becomes necessary to indicate 
the absolute value, or modulus, of ZL, this will be done by the use of bars (thus the 
absolute value of ZL equals IZLI = VRL2 XL2 ). 
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Solving for T1/P0 yields 
1.1.1 ZL — Zo 

_   _ . 
fo ZL ± Zo — P' 

For real load impedances ZL ranging from 0 to 00, p, ranges from —1 to 
+1 in value. 
In a similar way it can be shown that 

ZL— Zo 
ki = - IN  (1143) ZL + Zo 

Now the ratio 1.7/1 at any point x on the line gives the impedance Z. at 
the point looking toward the load.  Taking this ratio and introducing the 
relation (11-63) in (11-57) for 1, we obtain 

f  vo „ el' ± kee—rz  
Zz =  —  = (11-64) 

Noting (11-58) and (11-62), this can be reexpressed as 

ZL -I- Zo tanh -yx 
Z. = Zo ohms  (11-65) 

Zo + ZL tanh 7x 

where Z. = impedance at distance x looking toward load (ohms) 
Zo = characteristic impedance of line (ohms) 
ZL = load impedance (ohms) 
-y = propagation constant (a ± jig) 
x = distance from load 

This is the general expression for the impedance Z. at a distance x from 
the load. 
If the line is open-circuited, ZL = 00 and (11-65) reduces to 

Zo  
Z. =  — Zo coth -yx  (11-66) 

tanh -yx 

If the line is short-circuited, ZL = 0 and (11-65) reduces to 

Z. = Zo tanh -yx  (11-67) 

It is to be noted that, in general, 7 is complex (= a -I- 0). Thus' 
sinh ax cos $2; -I- j cosh ax sin 13x  

tanh 7x =  (11-68) 
cosh ax cos 0x ± j Binh ax sin 0x 

tanh ax -I- j tan fix  
tanh 7x =  (11-69) 

1 + j tanh ax tan Ox 

It is to be noted that the product of the impedance of the line when it is 
open-circuited and when it is short-circuited equals the square of the 

I See Appendix for other hyperbolic relations. 

or 
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characteristic impedance. That is, 

Zo2 = (11-70) 

where Zo. = Z. for open-circuited line (ZL = co) 
Z.. = Z. for short-circuited line (ZL = 0) 

If the line is lossleas (a = 0), the above relations reduce to the follow-
ing: In general, 

z.  = ( zo  ZL  jZo tan /3x  11-71) 
Zo jZL tan /3x 

When the line is open-circuited (ZL =  

Zo  
Z. = j tan I3x —  jZo cot /3x  (11-72) 

When the line is short-circuited (ZL = 0), 

Z. = jZo tan tix  (11-73) 

We note that (11-70) is also fulfilled on the lossless line.  Furthermore, 
the impedance for an open- or short-
circuited lossless line is a pure reactance. 

zL The impedance relations developed za, 
above apply to all uniform two-con- •   
ductor lines, such as coaxial and two-

FIG. 11-8. Terminated transmission 
wire lines. They give the input imped-  line. 
ance Z. of a uniform transmission line 
of length x and characteristic impedance Zo terminated in a load ZL (see 
Fig. 11-8). These relations are summarized in Table 11-4. 

TABLE 11-4 
INPUT IMPEDANCE OF TERMINATED TRANSMISSION LINEt 

Load condition 
General case 
(a  0) 

Lossless case 
(a = 0) 

Any value of load ZL 
ZL + Zo tanh Tx 

Z.  Zo 
ZL ± jZo tan Sx 

Z.  Zo ,= 
Zo + ZL tanh 7x 

.:. 
Zo 4-/ZL tan fix 

Open-circuited line (ZL = co) Z. = Zo coth 7x Z. = —jZo cot fix 

Short-circuited line (ZL = 0) Z. = Zo tanh -yx Z. = jZo tan Px 

t In the table 7 = a + jfi, where a — attenuation constant (nepers/meter) and 
p - 2./x = phase constant (rad/meter), where X is the wavelength. 

On a lossless line the standing-wave ratio (SWR) is given by 

swR = VOIAZ = /0112 
Vmin  / mu, 

(11-74) 



and so 
1 ± 10.1 SWR —  (11-77) 
1 — 10,1 

where i, = reflection coefficient for voltage.  This relation is identical 
with that given by (9-96) for the SWR of plane waves. Solving (11-77) 
for the magnitude of the reflection coefficient, 

SWR — 1 
10.1 = SWR  1 

It is often of interest to know the voltage D at the load in terms of the 
voltage Vo of the incident wave.  This is given by the transmission 
coefficient for voltage r,. That is, at the load 

or  T, =  -r-

V 0 

The load impedance may be a lumped element as suggested in Fig. 11-7 
or Fig. 11-8, or it may be the impedance presented by another line of 

FIG. 11-9. Junction of transmission lines of different characteristic impedance. 

characteristic impedance Z1 as suggested in Fig. 11-9.  In the latter case 
(11-79) gives the voltage V of the wave transmitted beyond the junction. 
It may be shown that the coefficient r,, is related to ZL and Zo by 

2ZL  
—  ZL Zo = 1 ± 0.  (11-80) 

where ZL = load impedance presented to line of characteristic impedance 
Zo 

0„ = reflection coefficient for voltage 
As ZL ranges from 0 to CO  ranges from 0 to 2. 
It also follows that the transmission coefficient for current  is given by 

2Z o  
— 1 + 0.  (11-81) 

jo Zo ZL 

As ZL ranges from 0 to co, i varies from 2 to 0. 

= 
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It follows that 
Vo  VI 1  (V1/V0)  SWR —  (11-75) 
Vo — V1 = 1 — (V1/V0) 

But 
V1 . 
— = 10.1 Vo  (11-76) 

1.7 = #,,f0 

(11-78) 

(11-79) 
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The relations for reflection and transmission coefficients developed in 

this section are summarized in Table 11-5. 

TABLE 11-5 
RELATIONS FOR REFLECTION AND TRANSMISSION COEFFICIENTS 

.  ZL — Zo 
Reflection coefficient for voltage   

17' — Z.  Zo 

,  Zo —  Z1, 
Reflection coefficient for current   = Zo 

2ZL  
Transmission coefficient for voltage   = Zo  ZL  1 ±k " 

2Z0  
Transmission coefficient for current   = Zo ZL  1 + II' 

1 +   I + lk.I Standing-wave ratio (SWR)   
1 — lk.I — 1 — lk.I 

Magnitude of reflection coefficient   SsW RR  +— 

11-7. Transmission-line Charts.  Transmission-line calculations are 

often tremendously facilitated by the use of transmission-line charts.  In 

particular, the rectangular and the Smith impedance charts are extremely 

useful in making calculations on uniform lossless transmission lines. 

A rectangular impedance chart is illustrated in Fig. 11-10.'  The 

rectangular coordinates on this chart give the normalized resistance R. as 
abscissa and the normalized reactance X„ as ordinate for points on the 

transmission line, while the closed circles indicate the SWR on the line 

and the partial circles the distance in wavelengths from the load.  The 

normalized resistance R. is equal to the actual resistance R divided by 
the characteristic resistance Ro of the line.  That is, 

R = —  (dimensionless)  (11-82) 
Ro 

The normalized reactance X„ is equal to the actual reactance X divided 

by Ro, or 

X 
Xn =  (dimensionless)  (11-83) 

Ro 

Thus, the normalized impedance Z„ is related to the actual impedance Z 

by 

z = Z = R ±i X 
Ro Ro Ro  (dimensionless)  (11-84) 

1 For methods of constructing this chart see, for example, M.I.T. Radar School 
Staff, "Principles of Radar," J. F. Reintjes (ed.), McGraw-Hill Book Company, Inc., 
New York, 1946, pp. 8-64. 
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FIG. 11-10. Rectangular impedance chart. 

The chart may also be used for admittances, the normalized admittance 
Y„ being given by 

Ro 
Y. = G. ± jB, = YR() = T- (dimensionless)  (11-85) 

An example will be given to illustrate the use of the rectangular chart. 

FT°. 11-11. Terminated transmis-
sion line with single matching 
stub.  Both the stub position (d1) 
and its length NO are adjustable. 

Example 1. Referring to the terminated 
transmission line with short-circuited stub 
shown in Fig. 11-11, the load ZL = 150  j50 
ohms.  The line and stubs have a characteristic 
impedance Zo = Ro = 100 ohms.  Find values 
for di and d: such that there is no reflected 
wave at A (SWR = 1). 
Solution.  The normalized value of the load 

is 
ZL   Z = — = 150  j50 = 1.5 + j0.5 

"  Ro  100 

The chart is then entered at the point 1.5 -I- P.5 
as indicated by Pi in Fig. 11-12.  For clarity 
most of the rectangular and circular coordinate 
lines are omitted in this figure.  Point Pi is on 
the SWR circle for which SWR = 1.77.  Hence, 
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the SWR at B is 1.77.  Now, moving along the SWR = 1.77 circle away from the load 
(clockwise), we proceed to the point P2. This is just  wavelength (90 electrical 
degrees) from the point P3 that lies on the SWR = 1.77 circle at R. = 1. At PI, 
which is 0.194 wavelength from the load, the normalized impedance is 0.78 - j0.41. 
Moving  wavelength farther on the chart gives the impedance  wavelength farther 
from the load or the admittance at the same location (0.194 wavelength from the load). 

- j0.58 

2 

1 

x,, 

1 

0 
0.194X 

n 

  SWR =1 77 

To Yn = -ea 
Fut. 11-12. Worked example using rectangular impedance chart. 

Since the stub is connected in parallel to the line, it is convenient to deal in admit-
tances.  To do this, the chart is now considered to be an admittance chart, the point 
P, giving the normalized admittance at a distance of 0.194 wavelength from the load as 

Y„ = 1.0 + j0.58 

The actual admittance is 1/R0 times this value, or 

0.01 + j0.0058 mhos 

For there to be no reflection at A (Fig. 11-11) requires that the stub present a normal-
ized admittance to the line of -j0.58, so that the resultant Y. = 1.0 + j0 and, hence, 
the impedance looking to the right at the junction is 100  j0 ohms.  A normalized 
admittance Y. u. -j0.58 (pure susceptance) is indicated at 134, and we note that 
the distance required from a short circuit (Y„ = ± o) to obtain this value is 
wavelength.  Thus the required stub length 

d2 = 14- = 0.167 wavelength 

The required distance of the stub from the load as obtained above is 

d, = 0.194 wavelength 
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A Smith chart' is illustrated in Fig. 11-13.  In this chart the rec-
tangular diagram has been transformed (see Prob. 14-11) so that all 
impedance values fall within the circular periphery.  The chart coordi-
nates give the normalized resistance and reactance.  The SWR circles 
are usually not included but may be constructed as needed with a compass 
centered on the center point of the chart. For example, the SWR = 2 
circle is shown in Fig. 11-13. The SWR is unity at the center of the 

0.40  0.35 

FIG. 11-13. Smith impedance chart. 

chart and infinity at the periphery. The distance from the load is indi-
cated around the periphery of the chart. For instance, at a distance of 
110 wavelength from a load for which R„ < 1 and X. = 0 the impedance 
must correspond to some value on the straight line constructed from the 
center of the chart to the peripheral point marked 0.1 wavelength as 
indicated in Fig. 11-13.  The fact that distance is proportional to angular 
position around the periphery is one of the principal advantages of this 
type of chart. 

1 P. H. Smith, Transmission Line Calculator, Electronics, 12, 29-31, January, 1939. 
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An example will be given to illustrate the use of the Smith chart. 

Example 2. Consider the terminated line with two short-circuited stubs portrayed 
in Fig. 11-14.  The position at which the stubs connect to the line is fixed, as shown, 
but the stub lengths, di and d2, are adjustable.  This kind of arrangement is called a 
double-stub tuner.  The load ZL = 50 + j100 ohms.  The line and stubs have a 
characteristic impedance Zo = Ro = 100 ohms.  Find the shortest values of di and d2 
such that there is no reflected wave at A. 

Flo. 11-14. Double-stub tuner with short-circuited stubs. 

Solution.  The normalized value of the load impedance is 

50 -I- j100 
Z. =  — 0.5 -I- j1.0 

100 

The chart (Fig. 11-15) is entered at this normalized impedance as indicated by the 
point Pi. Constructing a SWR curve through PI, we note that the SWIl. at B (Fig. 
11-14) is 4.6.  Next, constructing the diametric line through PI, we locate P2 halfway 
around the constant SWR circle from Pi.  Thus, the normalized load admittance is 
0.4-j0.8.  Now, moving clockwise along the constant SWR circle from P2 a distance 
of  wavelength away from the load (toward the generator), we arrive back at Pi. 
Thus at the point D the normalized admittance of the main line (looking toward the 
load) is 0.5 + P.O.  Since the reflection at A must be zero, we may anticipate the 
fact that the admittance of the main line at A (without the stub of length di connected) 
must fall on the circle marked CI (Fig. 11-15).  Therefore, at the junction of the stub 
of length d2 the admittance must fall on this circle rotated back (counterclockwise) 
I wavelength to the position indicated by the circle marked C2. 

The admittance added by the stub of length d2 will cause the total admittance to 
move from Pi along a constant conductance line.  In order to end up on the circle C2, 

we can move either to the left, arriving at P3, or to the right, arriving at P4.  Moving 
to P3 results in shorter stubs; so we will make the stub of such length as to bring the 
total admittance to Pg. This requires a stub admittance (pure susceptance) of 

Y.  —j(1.0 — 0.14) = —j0.86. 

A short-circuited stub has an infinite SWR so that the admittance at points along the 
stub are on the circle at the periphery of the chart.  At the short circuit the admit-
tance is infinite (point Pi).  Therefore, in order to present a value 

Y„  —j0.86 (point P.) 
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the stub length must be given by 

d, = 0.388 — 0.25 = 0.138 wavelength 

Next, moving along the constant SWR curve from Pa to P1, we find that the line 
admittance at A is Y„ -= 1.0 + j0.73.  Hence a stub admittance of Y„  —j0.73 is 

<*t.6  e\e. 
4,•3•1 0.10  0.15 

FIG. 11-15. Worked example using Smith chart. 

required in order to make the total normalized admittance at A equal to 1.0 ± j0, 
and therefore the actual impedance at A equal to 100 + 10 ohms.  A value 

Y. = —j0.73 

falls at point Ps. Therefore the length of the stub is given by 

d1 .= 0.40 — 0.25 = 0.15 wavelength 

Connecting this stub brings the total admittance (or impedance) to the center of the 
chart (point P9). 
To summarize, the required stub lengths are 

d1 = 0.15 wavelength 
d, = 0.138 wavelength 



- 
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If we had moved to P. instead of to P h we would have ended up with longer stubs, 
namely, 

d1 = 0.443 wavelength 
d: = 0.364 wavelength 

11-8. One-fourth-wavelength Transformer.  There are many situa-
tions where a section of transmission line k wavelength long may be useful. 
Such a section is called a 1-wavelength transformer. 
Consider, for instance, that we wish to connect a transmission line of 

100 ohms characteristic impedance to a load of 200 ± j0 ohms, as shown 
in Fig. 11-16. This may be done with a 4-wavelength transformer of 

I ' ÷ ' I 
—L— 

Zo•. 100  4, 4=200+10 

•   -T-

Fio. 11-16. One-fourth-wavelength transformer. 

suitable characteristic impedance Z'o. From (11-71) we note that when 
x = i wavelength (fix = r/2) 

Z (Z;)  = 2  or  Z;) = N/Z a.  (11-86)' 
z Zz, 

In the present example ZL = 200 + j0 ohms, while Z. must be equal to 
100 + j0 ohms.  It follows that 

= V200 • 100 = 141 ohms 

Therefore, a 4-wavelength section of line of characteristic impedance 
= le, = 141 ohms provides the desired transformation, eliminating a 

reflected wave on the 100-ohm line. 
Although the reflected wave is eliminated at the design frequency (or 

wavelength), there will be reflection at slightly different frequencies.  In 
other words, the transformer is a frequency-sensitive device.  All trans-
formers or matching devices are frequency-sensitive although some are 
more so than others.  Those devices which can provide approximately 
the desired transformation over a considerable band of frequencies are 
called broad-band transformers, while those which can do it over only a 
small band are called narrow-band transformers. 
An interesting application of the 4-wavelength transformer principle is 

to the I-wavelength plate, which can be used to eliminate plane wave 
reflection.  Thus, for example, a plane wave in air incident normally on 
a half space filled with a lossless dielectric medium of relative permittivity 
er = 4 will be partially reflected and partially transmitted.  The reflec-

1 Z,', here is the geometric mean of ZL and Z.. 
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tion may be eliminated, 
wavelength thickness' 

Air 

er= 1 

FIG. 11-17. One-fourth-
wavelength plate. 

as shown in Fig. 11-17, by placing a plate of 
between the air and the dielectric medium pro-
vided the plate has an intrinsic impedance 

= VZ0Z1 (11-87) 
where Zo = intrinsic impedance of air 

Z1 = intrinsic impedance of dielectric 
medium 

In the present example, 

Zo =  = 376.7 ohms 
eo 

Zo  376.7 -  - 188 ohms 
N/T1 

Therefore the intrinsic impedance of the plate 
must be 

Z; =  = 266 ohms 

and hence its relative permittivity must be 

( Z ) 2 

er = 4 = 2 

It is assumed in this illustration that no ferromagnetic material is present 
and so µ = µo• 

PROBLEMS 

11-1. A transmission line of 100 ohms characteristic resistance is terminated in an 
impedance of 150 — j100 ohms.  Calculate the impedance at a point on the line -1 
wavelength from the load.  The calculation should be checked using an impedance 
chart. 
11-2. The SWR on a lossless line is 5. Find the magnitude of the reflection 

coefficients. 
11-3. A line of 100 ohms characteristic impedance is terminated in a load of 100 
j100 ohms.  Find the reflection and transmission coefficients for voltage.  Also 

find the SWR 
11-4. Confirm Eq. (11-35). 
11-5. A uniform transmission line has constants 

R = 10-2  ohm/meter 
G = 10-6 mho/meter 
L  10-6  henry/meter 
C = 10-2  farad/meter 

At a frequency of 1,590 cps find (a) the characteristic impedance of the line; (b) the 
phase velocity of wave propagation on the line; (c) the percentage to which the voltage 
of a traveling wave decreases in 1 km. 

Ana.: (a) 37.5/ —20'; (b) 2.96 X 102 meters/sec; (c) 85 percent. 

'It is to be noted that the plate thickness is measured in terms of the wavelength 
in the plate. 
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114. Find the high-frequency characteristic impedance of an air-filled coaxial 
transmission line having a radius ratio b/a = 4, where b is the inside radius of the 
outer conductor and a is the outside radius of the inner conductor. 
11-7. Find the high-frequency characteristic impedance of a two-wire transmission 

line in air with a conductor radius of 1 mm and a center-to-center spacing of 5 cm. 
11-8. A transmission line consists of two parallel wires of diameter d symmetrically 

located inside of a cylindrical conductor or shield.  The wires are separated by a 
center-to-center distance of 2d.  The inside diameter of the outer conductor or shield 
is 5d.  Find the high-frequency character-
istic impedance of this line for two different 
TEM modes of operation, (a) with the 
generator connected between the wires 
(shield not connected), as suggested in Fig. 
11-18a; and (b) with the generator con-
nected between both wires and the shield, 
as in Fig. 11-18b.  (a) 
11-9. The maximum electric field in-  Flo. 11-18. Shielded two-wire trans-

tensity in a coaxial cable is 10,000 volts/  mission line with two TEM modes of 
meter when a constant voltage of 100 volts  operation. 
is applied between the conductors.  If the 
outside radius of the inner conductor is 1 cm, find the inside radius of the outer 
conductor.  Ana.: 2.7 cm. 
11-10. A coaxial transmission line consists of an inner conductor of diameter d and 

A  a symmetrically situated outer conductor 

(b) 

 —t—  having the cross section of an equilateral 
z  triangle with a side length of 2.5d.  Find 

Ro  y the high-frequency characteristic imped-
 - r— ance of this line when it is air-filled and 

when it is filled with polystyrene. 
FIG. 11-19. Illustration for Prob. 11-11.  11-11. Referring to Fig. 11-19, R0 = 100 

ohms, and ZL = 150 -I- j50 ohms.  Find d and /4, such that there is no reflected wave 
at A.  Ans.: d = 0.348x;  = 141 ohms. 
11-12. Referring to Fig. 11-20, Ho = 200 ohms, 14, = 100 ohms, and ZL = 50 + 

j50 ohms.  Find Z. when the wavelength is 5 meters. 
11-18. Confirm the fact that when 

(It = 0.443 wavelength and d2 = 0.364   4   
X  )1;. 

wavelength there is also no reflection 
at A for the double-stub tuner of Z0 
Fig. 11-14. 
11-14. Referring to the double-

stub tuner of Fig. 11-21, Zo = R0= 50 

z, 
•  

2 meters  c  1 meter 

—t— 

Ro  14; z, 
-r 

FIG. 11-20. Illustration for Prob. 11-12. FIG. 11-21.  )ouble-stub tuner with 
open-circuited stubs for Prob. 11-14. 

ohms and ZL = 125 — 365 ohms.  Find the shortest lengths d1 and c12 so that there is 
no reflected wave at A.  Note that the stubs are open-circuited. 
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11-15. A plane 300-Mc/sec wave is incident normally on a large slab of material 
having a,  1 and e , = 6. Find the thickness (in meters) and relative permittivity 
required for a plate placed on the slab in order to eliminate reflection of a wave incident 
normally on the slab. 
11-16. Show that when the series resistance R and the shunt conductance G of a 

transmission line are small, but not negligible, the attenuation constant may be 
expressed by 

a  -  -  -  - 
2 L  2  C 

and the phase constant by 
11-17. Consider that the resultant current distribution along a transmission system 

is the resultant of two traveling waves of different mode but of the same frequency as 
given by 

I = heio.1-0o.)  ',egos-As-0 

where /0 = amplitude of first wave 
/1 = amplitude of second wave 
00 = 2T/X0 
= wavelength of wave 1 

01 = 2r/Xi 
XI = wavelength of wave 2 
= 2rf 

f = frequency 
= phase angle (arbitrary) 

Confirm Marsh's result1 that in the general case where /0 and /1 are functions of x 
and where /30 and 131 may be of opposite sign (waves in opposite directions) or of the 
same sign (waves in same direction), phase velocity of the resultant wave is given by 

coA  
v 

B  C 
where A = 102 + It'  2I Olt cos D 

B = /0100 -I- /1201  /0/1(01 A- 00) cos 14 
C (, dl  ,_1, dI 0) . /./ 

o dx  1 dx  sin   

D = (131 — t3o)x + 8 
11-18. Two traveling waves (different modes) of constant amplitude and the same 

frequency are traveling in the positive x direction with different velocities along a 
transmission line. Let the current amplitude due to the first wave be /0 and its wave-
length X0 and the amplitude due to the second wave be II and its wavelength Xt. For 
the case where 01 = 4130 and It = 0.5/0 make a graph showing the resultant current 
distribution I/I as a function of x (abscissa) for a distance of several wavelengths.  Also 
draw a curve on the same graph showing the velocity of the resultant wave as a 
function of distance. 
11-10. Prove that for a uniform lossless transmission line the normalized impedance 
wavelength from the load equals the normalized admittance at the load.  This is 

useful in converting impedances to admittances (or vice versa) on impedance charts. 

1 J. A. Marsh, " A Study of Phase Velocity on Long Cylindrical Conductors," Ph.D. 
dissertation, Department of Electrical Engineering, Ohio State University, 1949; 
Measured Current Distributions on Helical Antennas, Proc. I .R.E., 39, 668-675, 
June, 1951. 



CHAPTER 12 

WAVE GUIDES 

.\1(  12-1. Introduction. In Chap. 11 we considered the subject of two-
conductor transmission lines which are capable of guiding energy from 
point to point in TEM modes. This chapter deals with the transmission 
of energy in higher-order modes. Those devices which can transmit 
energy only in higher-order modes are usually called wave guides. 
Although waves can be guided along two-conductor transmission lines 

in higher-order modes, we shall not consider this type of operation except 
in the case of the infinite-parallel-plane transmission line, and it will be 
convenient to use this type of line transmitting a higher-order mode as 
the starting point for our discussion of wave guides. 
12-2. TE Wave in the Infinite-parallel-plane Transmission Line. 

Consider the two conducting sheets in Fig. 12-1 representing a portion of 
an infinite-parallel-plane transmission line. As discussed in Chap. 11, 

Direc ion of 
propagation 

Fm. 12-1. Infinite-parallel-plane transmission line. 

these sheets can transmit a TEM wave with E in the z direction. They 
may also be used to transmit higher-order modes provided the wavelength 
is sufficiently short. 
Let us consider the higher-order mode where the electric field is every-

where in the y direction, with transmission in the x direction.  That is, 
the electric field has only an Ey component. Since Ey is transverse to the 
direction of transmission, this mode may be designated as a transverse 
electric, or TE, mode.  Although E is everywhere transverse, H has 
longitudinal, as well as transverse, components. Assuming perfectly 
conducting sheets, boundary conditions require that E, vanish at the 

445 
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sheets.  However, E„ need not be zero at points removed from the sheets. 
It is possible to determine the properties of a TE wave of the type under 
discussion by regarding it as made up of two plane TEM waves reflected 
obliquely back and forth between the sheets. 
First, however, let us consider the situation that exists when two plane 

TEM waves of the same frequency traveling in free space intersect at an 
angle, as suggested in Fig. 12-2. It is assumed that the waves are 
linearly polarized with E normal to the page.  Wave fronts or surfaces 
of constant phase are indicated for the two waves. 
The solid lines (marked "max") show where the field is a maximum 

with E directed out from the page. These lines may be regarded as 
Max  Max 

Mai 

Zero field 
lines 

Maximum 
field 

Wavefronts 
of wave A 

min  Wave A 

Wave B. 

Wavefronts 
of wave B 

Fio. 12-2. Two plane TE M waves traveling in free space in different directions. 

representing the crests of the waves.  The dashed lines (marked "mm ") 
show where the field is a minimum, that is, where E is of maximum 
absolute magnitude but directed into the page.  These lines may be 
regarded as representing the troughs of the waves.  Now wherever the 
crest of one wave coincides with the trough of the other wave there is 
cancellation, and the resultant E at that point is zero.  Wherever crest 
coincides with crest or trough with trough there is reinforcement, and the 
resultant E at that point doubles.  Referring to Fig. 12-2, it is therefore 
apparent that at all points along the dash-dot lines the field is always zero, 
while along the line indicated by dash and double dots the field will be 
reinforced and will have its maximum value. 
Since E is zero along the dash-dot lines, boundary conditions will be 
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satisfied at plane, perfectly conducting sheets placed along these lines 
normal to the page. The waves, however, will now be reflected at the 
sheets with an angle of reflection equal to the angle of incidence, and 
waves incident from the outside will not penetrate to the region between 
the sheets.  But if two plane waves (A and B) are launched between the 
sheets from the left end, they will travel to the right via multiple reflec-
tions between the sheets, as suggested by the wave paths in Fig. 12-3a. 

Conducting sheet 

Wave B 

Wave A 

Conducting sheet' 

Conducting sheet-.. 

Conducting sheet, 

\ B 

(a) 

(b) 

Flo. 12-3. (a) Wave paths and (Is) wave fronts between infinite parallel conducting 
sheets acting as a wave guide. 

The wave fronts (normal to the wave paths) for these waves are as indi-
cated in Fig. 12-3b.  Here the field between the sheets is the same as in 
Fig. 12-2, with solid lines indicating that E is outward (a maximum) and 
dashed lines that E is inward (a minimum).  At the sheets the resultant 
E is always zero. 
Although the two component waves we have been considering are plane 

TEM-mode waves, the resultant wave belongs to a higher-order TE mode. 
It is an important property of the TE-mode wave that it will not be 
transmitted unless the wavelength is sufficiently short. The critical 
wavelength at which transmission is no longer possible is called the 
cutoff wavelength.  It is possible by a very simple analysis, which will now 
be given, to calculate the cutoff wavelength as a function of the sheet 
spacing. 
Referring to Fig. 12-4, let the TE wave be resolved into two component 

waves traveling in the x' and x" directions. These directions make an 
angle 0 with respect to the conducting sheets (and the x axis). The 
electric field is in the y direction (normal to the page). The spacing 
between the sheets is b. From Fig. 12-4 we note that Eti, of the x' wave 
and Et", of the x" wave cancel at a point such as A at the conducting sheet 
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and reinforce at point B midway between the sheets provided that the 
distance 

CB = BD = C'B = X0 (12-1) 

where X0 = wavelength of TEM wave in unbounded space filled with 
same medium as between the sheets. Thus, if  is into the page (nega-
tive) at the point C and E; is out of the page (positive) at the point D, the 
two waves will cancel at A. They will also reinforce at B since by the 

A'  Conducting sheet  A 

Wavefront of 
x"wave 

Conducting sheet 
FIG. 12-4. Component waves between infinite-parallel-plane conducting sheets acting 
as a wave guide. 

time the field — E„" moves from C to B the field —E; will have moved 
from C' to B.  More generally we may write 

nX0 
CB = —4  (12-2) 

Wavefront of 
x' wave 

where n = an integer (1, 2, 3, . . . ).' It follows that 

b .  nX0 
AB sin 0 = sin 0 = 

or 
2b . 

X0 = —n sin 0 

(12-3) 

(12-4) 

where )to = wavelength (meters) 
b = spacing of conducting sheets (meters) 
n = 1, 2, 3, . . . 
0 = angle between component wave direction and conducting 

sheets 
According to (12-4) we note that for a given sheet separation b the longest 
wavelength that can be transmitted in a higher-order mode occurs when 

1 For n even, the field halfway between the sheets is zero, with maximum fields 
either side of the center line. 
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0 = 90°. This wavelength is the cutoff wavelength X. of the higher-
order mode.  Thus, for 0 = 90°, 

2b 
X. = —n (12-5) 

Each value of n corresponds to a particular higher-order mode.  When 
n = 1, we find that 

X. = 2b (12-6) 

This is the longest wavelength which can be transmitted between the 
sheets in a higher-order mode.  That is, the spacing b must be at least 
i wavelength for a higher-order 
mode to be transmitted. x0= X.. 0=90° 

.. 
When n = 1, the wave is said to  0  (a) 

be the lowest of the higher-order 
types.  When n = 2, we have the 
next higher-order mode and for this 
case 

X. = b  (12-7) 

Thus the spacing b must be at least 
1 wavelength for the n = 2 mode to 
be transmitted.  For n = 3, X., = lb, 
etc. 
Introducing (12-5) in (12-4) yields 

X0 sin 0 = .7— x00  (12-8) 

or 
. Xo 

0 = arcsm —  (12-9) 
X. 

Hence, at cutoff for any mode 
(X0 = X0) the angle 0 = 90°.  Under 
these conditions the component 
waves for this mode are reflected 
back and forth between the sheets, 
as in Fig. 12-5a, and do not progress 
in the x direction.  Hence there is 
a standing wave between the sheets, 
and no energy is propagated.  If the wavelength Xo is slightly less than 
X., 0 is less than 90° and the wave progresses in the x direction although 
making many reflections from the sheets, as in Fig. 12-5b.  As the wave-
length is further reduced, 0 becomes less, as in Fig. 12-5c, until at very short 
wavelengths the transmission for this mode approaches the conditions in 
an unbounded medium. 

- 

A0 < ke, 0<90° 

A° < < Am 0 << 90° 

(6) 

(c) 

(d) 

Ful. 12-5. (a, b, c) Reflection of waves 
between walls of wave guide.  (d) Trian-
gle showing relative magnitude of phase 
velocity v, group velocity u, and energy 
velocity v,0 in the guide, to phase velocity 
vo of the component wave (equal to 
phase velocity of wave in an unbounded 
medium). 
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It is apparent from Fig. 12-4 that a constant phase point of the TE 
wave moves in the x direction with a velocity v that is greater than that of 
the component waves.  The phase velocity vo of the component waves is 
the same as for a wave in an unbounded medium of the same kind as fills 
the space between the conducting sheets.  That is, 

1 
1, 1 1 -  lt.10 = meters/sec  (12-10) 

• 
where A = permeability of medium (henrys/meter) 

e = permittivity of medium (farads/meter) 
From Fig. 12-4 it follows that 

ve A 'C 
— = A'A—   = cos 0 
v   

or 

vo  1   
v — cos 8  V COS  meters/sec  (12-12) I;  

According to (12-12) the phase velocity v of a TE wave approaches an 
infinite value as the wavelength is increased toward the cutoff value.  On 
the other hand, v approaches the phase velocity vo in an unbounded 
medium as the wavelength becomes very short.  Thus, the phase velocity 
of a higher-order mode wave in the guide formed by the sheets is always 
equal to or greater than the velocity in an unbounded medium.  The 
energy, however, is propagated with the velocity of the zigzag component 
wave.  Thus v„, = vo cos 0. Accordingly, the energy velocity ven is 
always equal to or less than the velocity in an unbounded medium.' 
When, for instance, the wavelength approaches cutoff, the phase velocity 
becomes infinite, while the energy velocity approaches zero.  This is 
another way of saying that the wave degenerates into a standing wave 
and does not propagate energy at the cutoff wavelength or longer wave-
lengths.  The relative magnitudes of the various velocities are shown by 
the triangle in Fig. 12-5d. 
Since the wavelength is proportional to the phase velocity, the wave-

length X of the higher-order mode in the guide is given in terms of the 
wavelength Xe in an unbounded medium by 

X0  X —  (12-13) 
cos 0 

1 The waveguide behaves like a lossless dispersive medium. It follows that 

Vol 
U = V,. = 

V 

where u = group velocity, v.. = energy velocity, vo = phase velocity in an unbounded 
medium, v = phase velocity in guide. 
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The infinite-parallel-plane transmission line we have been considering 
is obviously not a type that can be applied in practice. Actual wave 
guides for higher-order modes usually take the form of a single hollow 
conductor. The hollow rectangular guide is a common form.  The 
above analysis for the infinite-parallel-plane transmission line is of prac-
tical value, however, because the properties of TE-mode waves, such as 
are discussed above, are the same in a rectangular guide of width b as 
between two infinite parallel planes separated by a distance b. This 
follows from the fact that if infinitely conducting sheets are introduced 
normal to E between the parallel planes the field is not disturbed. Thus, 

v 

Conducting 
sheets 

tEY 

(c) 

II 

Fut. 12-6. (a) Infinite-parallel-plane transmission line acting as a wave guide for TE 
wave. E is in y direction.  (b) Sheets introduced normal to Ev. (c) Hollow rectan-
gular wave guide. 

if a TE-mode wave with electric field in the y direction is traveling in the 
x direction as indicated in Fig. 12-6a, the introduction of sheets normal to 
Ey, as in Fig. 12-6b, does not disturb the field. The conducting sheets 
now form a complete enclosure of rectangular shape.  Proceeding a step 
further, let the sheets beyond the rectangular enclosure be removed, 
leaving the hollow rectangular wave guide shown in Fig. 12-6c. The 
cutoff wavelengths for the TE modes as given by (12-5) for the infinite-
parallel-plane line also apply for this rectangular guide if the width b is 
the same as the spacing between the planes.  For the type of TE modes 
we have thus far considered (E, component only) the dimension d (Fig. 
12-6c) is not critical.  . 
Although the above simple analysis yields information about cutoff 

wavelength, phase velocity, etc., it gives little information concerning the 
field configuration and fails to consider more complex higher-order modes 
in which, for example, E is transverse but with both y and z components. 
To obtain complete information concerning the waves in a hollow wave 
guide, we shall solve the wave equation subject to the boundary condi-
tions for the guide. This is done for the hollow rectangular guide in the 
next section. 
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12-3. The Hollow Rectangular Wave Guide.' In Sec. 12-2 certain 
properties of an infinite-parallel-plane transmission line and of a hollow 
rectangular guide were obtained by considering that the higher mode 
wave consists of two plane TEM component waves and then applying the 
boundary condition that the tangential component of the resultant E 
must vanish at the perfecting conducting walls of the guide. This 
method may be extended to provide more complete information about the 
waves in a hollow wave guide.  However, in this section we shall use 
another approach, which involves the solution of the wave equation sub-
ject to the above-mentioned boundary condition for the tangential com-
ponent of E. 
In this method we start with Maxwell's equations and develop a wave 

equation in rectangular coordinates.  This choice of coordinates is made 
in order that the boundary conditions for the rectangular guide can be 
easily applied later.  The restrictions are then introduced of harmonic 
variation with respect to time and a wave traveling in the x direction 
(direction of guide). Next a choice is made of the type of higher-order 
mode to be analyzed. Thus we may consider a transverse electric (TE) 
wave for which E. = 0 or a transverse magnetic (TM) wave for which 
H. = 0. If, for example, we select the TE type, we know that there 
must be an H. component since a higher mode wave always has a longi-
tudinal field component and E. being zero means that H. must have a 
value.  It is then convenient to write the remaining field components in 
terms of H.  Next a solution of a scalar wave equation in H. is obtained 
that fits the boundary conditions of the rectangular guide. This solution 
is substituted back into the equations for the other field components 
(E„, E., H„, and H.). In this way we end up with a set of equations 
giving the variation of each field component with respect to space and 
time. This method of solution is very general and may be applied to 
many problems. 
We shall develop the method in detail for TE waves in a hollow rec-

tangular wave guide.  First, however, the procedure will be outlined in 
step form as follows: 

1. Start with Maxwell's equations. 
2. Apply restriction of harmonic variation with respect to time. 
3. Apply restriction of harmonic variation and attenuation with 
respect to x. 

4. Select the type or mode of wave (TE in this case; so E. = 0 and 
H.  0). 

1 L. J. Chu and W. L. Barrow, Electromagnetic Waves in Hollow Metal Tubes of 
Rectangular Cross Section, Proc. I.R.E., 26, 1520-1555, December, 1938. See also 
references in Bibliography. 
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5. Find equations for other four field components (E„, E,, H,, and H,) 
in terms of 111. 

6. Develop scalar wave equation for H. 
7. Solve this wave equation for H. subject to boundary conditions of 
wave guide. 

8. Substitute H, back into equations of step 5, giving a set of equations 
expressing each field component as a function of space and time. 
This constitutes the complete solution of the problem. 

Beginning now with step .1 of the procedure, we have from Maxwell's 
curl equations in rectangular coordinates the following set of six scalar 
equations: 

OH, aH —  — E — ay  Oz 
aH, OH,  x,  aE 
az — ax — a."  e atv = n 
OH, aH,  OE 

— aE, — e  = 0 
Ox  ay  at 

OE,  aE,  ▪ OH,  n 
ay  = 
OE,  OE,  ▪ OH,  n 
az — az  at = " 
aE,  OE,  • OH,  n 

= 

From Maxwell's divergence equations in rectangular coordinates we 
have in space free from charge the following two scalar equations: 

(12-14)  I 

(12-15) 2._ 

(12-16) 3 

(12-17) y 

(12-18) J— 

(12-19) 

aE,  —aE, aE, = 0  (12-20) 
Ox  ay  Oz 
Oil, , aH, , aH, —  — = 0  (12-21) cr 
ax  ay  az 

5:  ) Let us assume now that any field component varies harmonically with 
time and distance and also may attenuate with distance. Thus, con-. 
fining our attention to waves traveling in the positive x direction, we 
have, for instance, that the field component E, is expressed by 

E, = Eiem-7x  (12-22) 

where 7 = propagation constant = a ± jfi.  Introducing the restriction 
of (12-22) into the equations, (12-14) through (12-21) reduce to 

OH,  aH, 
—ay — —az — (a ± jcoe)E. = 0  (12-23) /6  

aH, +.y11, — (a + jcae)E, = 0  (12-24) / 
az 
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OH, 
—711, — —ay — (a ± jcoe)E, = 0  (12-25) 

aE,  .9E„  . 
Jwidi x = °  (12-26) 

aE, 
± 7E, +iwMH = 0  (12-27) 

az 
aEz  . 

—7E, — -r-+ 3(41.1H, = 0 /:r  (12-28) 

aE,  aE,  1(  (12-29) —7E, + Ty - ± --wi - = 0 

_7H.  + aH, = 0 
(12-30) 

ay  az 

The above eight equations may be simplified by introducing a series 
impedance Z and shunt admittance Y, analogous to a transmission line 
(see Table 11-2), where 

/) 
Z = —jcop  ohms/meter  (12-31) 
Y =  jcoe  mhos/meter  (12-32) 

Substituting these relations in (12-23) through (12-30) yields 

aH,  aH„ —  — YE. = 0  /  (12-33) 
ay  az 
aH, 

± -y11, — YE, = 0  /  (1244) 
Oz 

--yH„ —  — YE, = 0 

aE,  aE, —  — ZH. = 0 
ay  az 
aE, 
Oz  -▪ yE, — ZH„ = 0 

aE, 
—7E, — —ay — ZH, = 0 

7.0 
v , aE„  

—  x  
ay  az 
aH,  aH, 

(12-35) 

(12-36) 

(12-37) 

(12-38) 

(12-39) 

2 Y  (12-40) 

These are the general equations for the steady-state field of a wave 
traveling in the x direction.  No restrictions have as yet been made as to 
the mode of the wave or the shape of the guide.  We are now ready to 
proceed with step 4 and introduce the condition for a TE wave that 
= 0. The equations then reduce to 
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aH. _ OH, = 0 
(12-41) 

ay  az 
am 

+ 7H. — YE„ = 0  (12-42) 
az 

aH. 
— —ay — YE. = 0  (12-43) 

aE,  aE„  29 (12-44) —  — ZHz = 0 az 
7E, — ZH„ = 0  37 (12-45) 

—•yE„  ZH, = 0  3  (12-46) 
(3E„  aE,  0 
ay  az  3 2. 
ail  ail 

—7111 z = 0  32  (12-48) 
ay  az 

Proceeding to step 5, let us rewrite these equations so that each field 
component is expressed in terms of Hz. To do this, we note from (12-45) 
and (12-46) that 

E. _  E„ _ Z 
H„ —  H. — 

The ratio E,/ H„ or E,,/HZ is a quantity which corresponds, in the case of a 
wave guide, to the characteristic impedance of a transmission line.  Since 
(12-49) involves only transverse field components, it may be called the 
transverse impedance Z„„ of the wave guide.' Thus 

Z Ey  E.  Z  =  = —  =  = j(oki  ohms  (12-50)/7;  T/y  7 

Introducing (12-50) into (12-43) and solving for Hy yields 

(12-47) 

ohms  (12-49) 

—1  a, 
111 ' =   ll(7 — YZ„ ay 

In a like manner we have, from (12-42), 

H 
—1   M. 

= 8 I — YZ„ az 

Now, substituting (12-52) into (12-50), we obtain 

—Z„,  
E — 
"  7 — YZ„ (3z 

and substituting (12-51) into (12-50) 

E. =  4   
-y — YZ„, ay 

z.. is also often called the "characteristic impedance" (of the guide). 

(12-51) 

(12-52) 

(12-53) 

(12-54) 

; 
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Equations (12-51) through (12-54) express the four transverse field 
components in terms of H.  This completes step 5. 
Proceeding now to step 6, we can obtain a wave equation in Hz by 

taking the y derivative of (12-51), the z derivative of (12-52), and sub-
stituting both in (12-48).  This yields 

1   1 aw. a_ 021-1,) 
— 7Hz  — YZ„,\ ay  2 az2 f = -  (12-55) 

or 
au x a2H. +  az2  + y(y — YZ„,)Hz = 0  512  (12-56) 
ay2  

c 
Putting k2 = 7(7 — YZ„,), (12-56) reduces to 

32H.  a2H. +   + k2Hz = 0  '•/  (12-57) ay2  az2 

This is a partial differential equation of the second  order and first —  
c _.•ee._ It is a scalar wave equation in H.  It applies to a TE wave in a 
—Cuid-e—of any cross-sectional shape.  This completes step 6. 

)  Step 7 is to find a solution of (12-57) that satisfies the boundary condi-
tions for the wave guide under consideration, which is a hollow rectangular 

Direction of 

propagation 

FIG. 12-7. Coordinates for hollow rectangular wave guide. 

type as shown in Fig. 12-7.  The width of the guide is z1, and the height is 
yi. Assuming that the walls are perfectly conducting, the tangential 
component of E must vanish at the guide surface.  Thus, at the side 
walls E,, must be zero, and at the top and bottom surfaces E, must be 
zero.  The problem now is to find a solution of (12-57) subject to these 
boundary conditions.  The method of " separation of variables" may be 
employed in obtaining the solution.  Thus, Hz in (12-57) is a function of 
y and z. Hence we may seek a solution of the form 

Hz = YZ  r47  (12-58) 

where  Y = a function of y only, that is, Y = f(y) 
Z = a function of zOi1T   

1 Sometimes the notation f(y) or Y(y) is used to represent a function of y only, and 
or Z(z) a function of z only. However, to simplify notation, the symbols Y and 
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Substituting (12-58) in (12-57) gives 

Z —dy2  Y —d2Z  1c217Z = 0 
dz2 

d2Y 

Dividing by YZ to separate variables, 

1 d2Y 1 d2Z 
- + - -  k 2 dy2 Zdz2 

The first term is a function of y alone, the second term is a function of z 
alone, while k2 is a constant.  For the two terms (each involving a differ-
ent independent variable) to equal a constant requires that each term be 
a constant.  Thus we can write 

1 d2Y 
1--  = —Ai  (12-61) 
7 dy2 

1 d2Z 
= —A 2 dz2 

and 

1'5- (12-59) 

(12-60) 

(12-62) 

where A1 and A2 are constants.  It follows that 

A1 A2 =  k2 (12-63) 

Equations (12-61) and (12-62) each involves but one independ,e,r -- ' 
variable.  A solution of (12-61) is 

Y = el sin bay z C, .re  X) (12-64) 

Substituting (12-64) in (12-61) yields 

ba =  (12-65) 

Hence (12-64) is a solution provided (12-65) is fulfilled.  Another solu-
iion is 

Y = c2 Cos by (12-66) 

If (12-64) and (12-66) are each a solution for Y, their sum is also a solu-
tion, or 

Y = c1 sin Nr2f1 y  c2 cos V ri y  (12-67) 

In the same manner a solution may be written for Z as 

Z = ea sin N/T2 z  c4 cos -Vita z  (12-68) 

Substituting (12-67) and (12-68) into (12-58), we obtain the solution 
for 1-1. as 

11. = cics sin N/A ism VA 2 Z  CAI COS 'VA y sin VA-2 z 
cic4 sin  y cos V -A-2z  c2c4 cos N/TI y cos -V742 z (12-69) 

Z are used in Eqs. (12-58) to (12-68), inclusive, to indicate functions only of y or z, 
respectively.  Y and Z in these equations should not be confused with admittance 
and impedance, for which these symbols are also used. 
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Equation (12-69) is a solution for H, but any term is also a solution. 
Taking the last term as the solution, we note that on introducing this 
solution for Hz into (12-53) and (12-54) the boundary conditions for the 
hollow rectangular guide can be satisfied provided that 

and 

N/A 2 ="1-7 
Zi 

)1  (12-70) 

CO  (12-71) 

where m and n are integers (0, 1, 2, 3, . . . ). They may be equal to the 
same integer or to different integers.  The solution for Hz now assumes 
the form 

nyy  ntrz 
= Ho COS 1 cos —  

Z1 
(12-72) 

where Ho = c2c, = a constant.  If (12-72) is multiplied by a constant 
factor, it is still a solution.  That is, the factor should not involve y or z 
although it may involve x and the time (t). Accordingly, (12-72) may 
be multiplied by the exponential factor in (12-22) since this gives the 
variation assumed for the fields with respect to x and t. The complete 
solution for Hz then becomes 

it= Hz = Ho cos niry  cos  C1 8-12 
Yi  zi 

1- (12-73) 

This completes step 7. To perform step 8, Eq. (12-73) is substituted 
into (12-51) through (12-54), giving the solutions for the transverse field 
components as 

711, fir. wry  mrz 
Hy =  —  sin — cos 

h  Yi  Yi  zi 

H = 7110  my  nry r mz —    em _7x cos  sin 
z1 Y  zi 

= •yZ„Ho mr 4.2  - cos  nry  sin mzz  

z 1  y  z 
=  -y Zyj 0 nr  t—yz . nry  mrz 

k2  — sin — CO8  eiw  
yi  zi 

y 
(12-74) 

(12-75) 

(12-76) 

(12-77) 

Equations (12-73) to (12-77), inclusive, to which may be added Ez = 0, 
are the solutions that we have sought for the field components of a TE 
mode in a hollow rectangular guide of width zi and height yi. This com-
pletes step 8. 
Turning our attention now to an interpretation of the solutions for the 

field components, let us consider the significance of the integers m and n. 
It is apparent that for m = 1 and n = 0 we have only three field corn-
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ponents H, H„ and E„ and, further, that each of these components has 
no variation with respect to y but each has a half-cycle variation with 
respect to z. For example, E, has a sinusoidal variation across the guide 
(in the z direction), being a maximum in the center and zero at the walls, 
and has no variation as a function of y. 
If m = 2, there is a variation of two half cycles (full cycle variation) of 

each field component as a function of z. When n = 1, there is a half-
cycle variation of each field component with respect to y. Hence we 
may conclude that the value of m or n indicates the number of half-cycle 
variations of each field component with respect to z and y, respectively. 
Each combination of m and n values represents a different field configura-
tion or mode in the guide. Since we are dealing here with TE modes, it 
is convenient to designate them by adding the subscript mn so that, in 
general, any TE mode can be designated by the notation TE.„, where 
m = number of half-cycle variations in the z direction (usually taken as 
the larger transverse dimension of the guide) and n = number of half-
cycle variations in the y direction (usually taken as the smaller transverse 
dimension of the guide). 
Thus, for a TEio mode m = 1, and n = 0, and we have, as mentioned 

above, only three components E„ Hi, and H, that are not zero. The six 
field components for the TElo mode are 

E, = 0 

E = 7   s Z„Ho w . wz 
k,  2  m — eNi-71  

Zi  Z 

E, = 0 

H, = Ho 

H„ = 0 

H = 7H°  7 
z1 

72 . 
Cos — ev"--

51 

sin — 
zi 

(12-78) 

The variation of these components as a function of z is portrayed in 
Fig. 12-8a. There is no variation with respect to y. This mode has the 
longest cutoff wavelength of any higher order mode, and hence the lowest 
frequency of transmission in a hollow—red-angular wave guide must be in 
the TElo mode. 
The variation of the field components as a function of z for the TEE, 

mode (m = 2, n = 0) is shown in Fig. 12-8b. 
In Fig. 12-9a the field configuration of the TEio mode is illustrated for a 

guide cross section and in Fig. 12-9b for a longitudinal section of the 
guide (top view).  The field configuration for a TEN mode is shown in 
cross section in Fig. 12-9c and in longitudinal section (top view) in Fig. 
12-9d. 
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z=b z=0 z=b Z=0 
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m=1 
n=0 

(a) 

m=2 
n=0 

(b) 

ICtiAP. 12 

Flo. 12-8. Variation of field components for TElo and TE20 modes in a hollow rectan-
gular wave guide.  (Wave traveling out of page.) 
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FIG. 12-9. Field configurations for TEio and TE2o modes in a hollow rectangular 
wave guide. 
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Consider next the TEii mode (m = 1, n = 1). The field components 
are given by 

E. = 0 

E, = 7Z "Ho  r cos rl--'1 sin Ir—Z eiwa-7z 
V  z1 Y1  zi 

E, —  -yZ Hor . Ty  ii-.. 

H. = Ho 

H = 711°  74-
k2 yi 

H = 711°  
*  k2 

y sin — cos — em-ix yi  zi 
lry  irz . 

cos —  cos — eì" "z 
Yi  zi 

sin 7-1.—Y cos —1rz  
yi zi 

rz . 
cos —y1 sin  zi 

For this mode five field components have 
where and always zero. The variation of 
respect to z and y is shown in Fig. 
12-10.  It is assumed that the guide 
has a square cross section (yi = zi). 
The field configuration for the TEii 
mode in a square guide is illustrated 
in cross section in Fig. 12-11a and in 
longitudinal section (side view) in Fig. 
12-11b. 
The solution we have obtained tells 

us what modes are possible in the 
hollow  rectangular  wave guide. 
However, the particular mode or 
modes that are actually present in 
any case depend on the guide dimen-
sions, the method of exciting the 
guide, and the irregularities or dis-
continuities in the guide. The re-
sultant field in the guide is equal to 
the sum of the fields of all modes 
present. 
Returning now to a consideration 

of the general significance of the solu-
tion, we have from (12-63), (12-70), 
and (12-71) that 

23 
(nir)2 (mry —  —  = k2 (12-80) 
Yi 

(12-79) 

a value, only E. being every-
the five field components with 

E y 

Hz 

Hy 

H. 

FIG. 12-10. Variation of field com-
ponents for TEii mode in a square 
wave guide. (Wave traveling out of 
page.) 
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Flo. 12-11. Field configurations for TEu mode in a square wave guide.  E lines are 
solid, and H lines are dashed. 

From (12-56), (12-31) and (12-32) k2 is given by 

k2 =  jwµ(o.  jco€) (12-81) 

Assuming a lossless dielectric medium in the guide, we can put a = 0. 
Then equating (12-80) and (12-81) and solving for 7 yields 

i1 2 ( M1 ) 2 =  cosis,  (4  4- t; :-2 (12-82) 
y  zi 

At sufficiently low frequencies the last term in (12-82) is smaller than 
the sum of the first two terms under the square-root sign.  It follows that 
for this condition 7 is real and, therefore, that the wave is attenuated. 
Under this condition it is said that the wave (or mode) is not propagated. 
At sufficiently high frequencies the last term in (12-82) is larger than 

the sum of the first two terms under the square-root sign.  Under this 
condition 7 is imaginary, and therefore the wave is propagated without 
attenuation. 
At some intermediate frequency the right-hand side of (12-82) is zero, 

and hence 7 = 0. This frequency is called the cutoff frequency for the 
mode under consideration.  At frequencies higher than cutoff this mode 
propagates without attenuation, while at frequencies lower than cutoff 
the mode is attenuated. 
To summarize: 
At low frequencies, ca small, 7 real, guide opaque 
At cutoff, co intermediate, 7 = 0, transition condition 
At high frequencies, w large, 7 imaginary, guide transparent 

Referring to (12-82), it is to be noted that V(7—)21.4e is equal to the phase 
constant fib for a wave traveling in an unbounded medium of the same 
dielectric material as fills the guide.  Thus we can wqe 

- •  =  — fi2o  reciprocal meters N,  (12-83) 
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where fto = N/co2a€ = 2r/X0 = phase constant in an unbounded medium 
Xo = wavelength in an unbounded medium 

2 

k =  + ( )2  zi 

Thus, at frequencies higher than cutoff $o > k, and 

= Vic2 13032 =  (12-84) 

where f3 = 2r/X = phase constant in guide 
X = wavelength in guide 

At sufficiently high frequencies ($o >> k) we note that the phase constant 
13in the guide approaches the phase constant Po in an unbounded medium. 
On the other hand, at frequencies less than cutoff 00 < k, and 

'Y = 1/k2 — 002 = a  (12-85) 

where a = attenuation constant. 
At sufficiently low frequencies ($o k) we note that the attenuation 

constant a approaches a constant value k. 
At the cutoff frequency, po = k, and -y = 0. Thus, at cutoff 

nr O w =  + 

VY1/ 

It follows that the cutoff frequency is 

fe —  1 .4 ( 12 + ("1 2 2 Vue  YI  Zi 

-7 ) (12-86) 

cps  (12-87) 

and the cutoff wavelength is 

2r 2   
Xo. =    meters (12-88) 

V(nr/yi)2 (MT/E1) 2 V(n/yi)2 (M/E1) 2 

where X., = wavelength in an unbounded medium at the cutoff frequency 
(or, more concisely, the cutoff wavelength).'  Equations (12-87) and 
(12-88) give the cutoff frequency and cutoff wavelength for any TE,.ft mode in 
a hollow rectangular guide.  For instance, the cutoff wavelength of a TT, 
mode is 

X.. = 2zi (12-89) 

This is identical with the value found in the last section since zi = b. 
At frequencies above cutoff (so > k) 

,  2  /m l-\ 2 
-01 =  02 — 1c2 = Niw2tit — (it= )  (— 

Y  zi 
(12-90) 

I Note that k =  Introducing this value of k, (12-84) can he used to relate 
X, Xo, and X„ when X. <X. 
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It follows that the phase velocity v in the guide is equal to 

or 

vo   

=  • = V1 — (nX0/2yi)2 — (mX0/2zi)' 

V = 
Vo 

•  — (x0/x„e)2 

meters/sec  (12-91) 

(12-92) 

where vo = 1/Nrµ; = phase velocity in an unbounded medium (for air 
vo = 3 X 10' meters/sec) 

Xo = wavelength in an unbounded medium (in same units as yi and 

Xoc = cutoff wavelength (in same units as Xo) 
The ratio v/vo as a function of the wavelength Xo is shown in Fig. 12-12 for 
several TE modes in a hollow wave guide of square cross section (yi = z1)• 

Z). 
- or V0 4d 

2.5 

2.0 

1.5 

1.0 
0  0.5z,  1 0 z,  1.5z,  2.0z, 

Wavelength No 

Fra. 12-12. Relative phase velocity (v/v,) or relative transverse impedance (Z,./Zd) as 
a function of the wavelength X1) for TE modes in a hollow square guide (height y, equal 
to width z1). 

In the above analysis there is no attenuation whatsoever at frequencies 
above cutoff. Thit itaironL.the assumption of perfectly conducting 
guide walls and a lossless dielectric medium filling the guide. However, 
if the walls are not perfectTY-condUctint r the medium is not lossless, or 
both, there is attenuation.' Thus, in actual wave guides there is attenua-
tion at frequencies greater than cutoff although it is usually small com-
pared with the attenuation at frequencies less than cutoff. 
If the guide is filled with air, the dielectric loss is usually negligible com-

pared with losses in the guide walls, so that the attenuation at frequencies 

1 That 7 may have both a real and an imaginary part at frequencies greater than 
cutoff may be shown by solving (12-81) for 7 under these conditions, with a not equal 
to zero. 
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greater than cutoff is mainly determined by the conductivity of the guide 
walls. The fact that the guide walls are not perfectly conducting means 
that the tangential component Et of the electric field is not zero at the 
walls but has a finite value.  However, for walls made of a good con-
ductor, such as copper, Eg will generally be so small that the above 
analysis (based on Et = 0) is not affected to any appreciable extent. 
However, as a result of the finite wall conductivity a is not zero.  Thus, 
in most practical problems where the wall conductivity is high (but not 
infinite) the field configuration in the guide, the wavelength X, the phase 
constant II, the phase velocity v, etc., can all be calculated with high 
accuracy on the assumption that the walls have infinite conductivity, as 
done earlier in this section. The small (but not zero) attenuation may 
then be calculated separately, using (10-66) to find the power lost per unit 
area in the guide wall, it being assumed that the H-field distribution is 
the same as with perfectly conducting walls. 
Finally, let us determine the value of the transverse impedance Z„ for 

TE modes in a rectangular hollow guide.  Thus, from (12-50), 

Z  =  i  C . *  
V S  , y 

At frequencies higher than cutoff 7 = 0; so 

On.l  Zd   
z vs  —  =    

#  V 1 —  (X0 Acte) 2 

(12-93) 

ohms  (12-94) 

where Zd =intrinsic impedance of dielectric medium filling guide 

( = ViiTe) (for air, Zd = 376.7 ohms) 
Xo = wavelength in an unbounded medium 
= cutoff wavelength (in same units as Xo) 

The ratio of Z„ (transverse impedance) to Zd (intrinsic impedance) as a 
function of the wavelength Ao is shown in Fig. 12-12 for several TE modes 
in a hollow wave guide of square cross section (yi = zi)• 
Thus far only TE-mode waves have been considered. To find the field 

relations for transverse magnetic (TM) mode waves we proceed precisely 
as in the eight-step list given earlier in this section except that where TE 
appears we substitute TM and where E. appears we substitute H, and 
vice versa.  In the TM wave H. = 0, and the longitudinal field com-
ponent is E.. This analysis will not be carried through here (see Prob. 
12-6).  However, it may be mentioned that (12-88) for the cutoff wave-
length applies to both TE and TM waves as does (12-91) for the phase 
velocity, but this is not the case with (12-94) for the transverse impedance 
(see Prob. 12-8).  The notation for any TM mode, in general, is TM.. 
where m and n are integers (1, 2, 3, . . . ). It is to be noted that neither 
m nor n may be equal to zero for TM waves. Thus, the lowest frequency 
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TM wave that will be transmitted by a rectangular wave guide is the 
TM1, mode. 
We have seen that each mode in a 

Y1  wave guide has a particular cutoff 
( a ) wavelength, velocity, and impedance. 

When the frequency is high enough to 
permit the transmission of more than 
one mode, the resultant field is the sum 

(b)  of the fields of the individual mode fields 
in the guide.  If the fields of one 
mode are much stronger than those of 
the others, this mode predominates. 
Whether a certain mode will predomi-

nate or not, when a guide can also transmit other modes, depends largely 

on the method of excitation and on the symmetry of the guide.' 
For example, suppose that a rectangular wave guide, as shown in cross 

section in Fig. 12-13a, is excited in the 
TEN mode.  The variation of E„ 
across the guide is sinusoidal, as shown  (a) 
in Fig. 12-13b.  Suppose now that z1 
exceeds 1 wavelength so that the TE20 
mode can also be transmitted.2 If 
only the TEN mode is excited, no TEN  Total 
will appear provided that the guide is  (b) 
perfectly regular.  However, in prac-
tice certain asymmetries and irregu-

tig 
ID 

z, 

FIG. 12-13. Rectangular wave guide 
with TEzo mode only. 

Ey of 
larities will be present, and these will  TE,0 (c) 
tend to convert some of the TEN-mode  mode 
energy into TE20-mode energy.  Thus, 
if an asymmetrically located screw  E„ of 
projects into the guide as in Fig.  TE20 

12-14a, the total E„ field will tend to  mode 
become asymmetrical, as suggested in  FIG. 12-14. Rectangular wave guide 
Fig. 12-14b.  This total field may be  with TE20 mode induced from TE10 

mode by asymmetrically placed pro-
resolved into TEN and TEN compo-

jection (screw). 
nents as shown in Fig. 12-14c and d. 
If both TEN and TEN modes can be transmitted, the field in the guide 
beyond the screw location will have energy in both modes.  In effect 

1 Nonpropagating modes may also be present (near irregularities or discontinuities) 
in addition to the propagating modes, but the nonpropagating modes attenuate 
rapidly with distance. The lowest frequency mode that a guide can transmit is often 
called the dominant mode.  However, if the frequency is h;gh enough to transmit other 
modes the dominant mode does not necessarily predominate. 

2 But yi < X0/2 so that no TE,), mode (E in z direction) is transmitted. 

Screw 
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the screw is a receiving antenna that extracts energy from the inci-
dent TEN-mode wave and reradiates it so as to excite the TE20 
mode.  However, if the frequency is decreased so that only the 
TEN wave can be transmitted, the asymmetric field (Fig. 12-14b) will 
exist only in the vicinity of the screw and farther down the guide the field 
will be entirely in the TEN mode.  To avoid the problems of multiple-
mode transmission, a wave guide is usually operated so that only one mode 
is capable of transmission.  For instance, to ensure transmission only in 
the TEN mode, zi must be less than 1 wavelength and yi less than wave-
length.  But to allow transmission of the TEN mode, z1 must exceed 
wavelength.  Hence zi must be between IF and 1 wavelength, and a 

value of 0.7 wavelength is often used since this is well below 1 wavelength 
and yet enough more than 4 wavelength so that the velocity and trans-
verse impedance values are not too critical a function of frequency.  We 

TABLE 12-1 
RELATIONS FOR TE„,,, MODES IN HOLLOW RECTANGULAR 

WAVE GUIDESt 

Name of relation 

Cutoff frequency 

Relation 

2 N 16Tie \ Ns ± 
cps 

Cutoff wavelength 2 
meters 

Ni( ) + (7Y 
Phase velocity v Vo 

inXoN2 intX0V 
k2y,  k 2z, 
vo meters/sec 
0,0 V 
X,/ 

where v = I /Vim 

Transverse impedance 
z oo 

Zd 

.‘11 - - 
Zd 

\11 — C d2 

where Zd  

ohms 

t All of the relations also apply to TM„,,, modes except for the transverse-impedance 
relation.  The velocity and impedance relations involving (Xo/X0.)2 apply not only to 
rectangular guides but also to TE modes in hollow single-conductor guides of any 
shape. 
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recall that at cutoff (z, = i wavelength) the velocity and impedance 
approach infinite values.  The height y I may be as small as desired with-
out preventing transmission of the TEio mode.  Too small a value of yi, 
however, increases attenuation (because of power lost in the guide walls) 
and also reduces the power-handling capabilities of the guide.  It is often 
the practice to make yi = zi/2. 
The relations derived in this section for TE modes in a hollow rec-

tangular wave guide (see Fig. 12-7) are summarized in Table 12-1. 
12-4. Hollow Wave Guides of Other Shape.  In Sec. 12-3 we con-

sidered the rectangular wave guide.  This is only one of an infinite 
variety of forms in which single-conductor hollow wave guides may 
be made.  For example, the wave guide could have a circular' cross 
section as in Fig. 12-15c, an elliptical' cross section as in Fig. 12-15d, or a 
reentrant' cross section as in 12-15f. 
All of these forms and many others may be regarded as derivable from 

the rectangular type (Fig. 12-15a).  Thus the square cross section (Fig. 
12-156) is a special case of the rectangular guide.  By bending out the 
walls the square guide may be transformed to the circular shape (Fig. 
12-15c).  By flattening the circular guide the elliptical form of Fig. 12-15d 
is obtained.  On the other hand, by bending the top and bottom surfaces 
of the rectangular wave guide inward the form shown in Fig. 12-15e is 
obtained.  A still further modification is the reentrant form in Fig. 12-15f. 
The value of regarding these as related forms is that often certain proper-
ties of a guide of a particular shape may be interpolated approximately 
from the known properties of wave guides of closely related shape. 
For example, the longest wavelength that the square guide (Fig. 12-156) 

will transmit is equal to 2b.  This is for the TEio mode.  This informa-
tion may be used to predict with fair accuracy the longest wavelength 
that a circular guide can transmit.  Thus, if the cross-sectional area of 
the square guide is taken equal to the area of the circular guide, 

b2 = T (d-2)2  (12-95) 

where d = diameter of circular guide.  It follows that 

d = 1.136  (12-96) 

Since X.. = 26 for the square wave guide, we obtain as the cutoff wave-

' G. C. Southworth, Some Fundamental Experiments with Wave Guides, Proc. 
I.R.E., 25, 807-822, July, 1937. 
2 L. J. Chu, Electromagnetic Waves in Hollow Elliptic Pipes of Metal, J. Applied 

Phys., 9, September, 1938. 
3 S. B. Cohn, Properties of Ridge Wave Guide, Proc. I.R.E., 35, 783-789, August, 

1947. 



SEC. 12-51  WAVE GUIDES  469 

length for the circular wave guide 

2  
X., = 1.13 d = 1.77d (12-97) 

This approximate value exceeds the exact value by 4 per cent. 
The procedure for carrying out a complete analysis of the properties of 

a wave guide of any shape is formally the same as in Sec. 12-3 for the 
rectangular guide.  It is usually most convenient, however, to set up the 
equations in a coordinate system such that the wave-guide surfaces can 

(a) 

(b) 

(c) -I J LL 

C D Id) 

Fm. 12-15. Forms of hollow single-conductor wave guides. 

be specified by a fixed value of a coordinate. Thus, as we have seen, a 
rectangular guide is conveniently handled with rectangular coordinates, 
the guide surfaces being specified by y = 0, y = y', z = 0, and z = zi. 
Likewise, a circular wave guide is readily analyzed using cylindrical 
coordinates, the guide surface being specified by r = rt. Referring to 
Fig. 12-15d and e, these shapes can be analyzed using elliptical-hyperbolic 
coordinates.  However, if the guide surface cannot be specified in a simple 
manner, as in the above-mentioned cases, the application of the boundary 
condition (Et = 0) may become so difficult as to make an exact mathe-
matical analysis of prohibitive complexity. 
12-5. Attenuation at Frequencies Less than Cutoff.  It has been 

shown that at frequencies less than cutoff, waves are not transmitted 



470  ELECTROMAGNETICS  [CHAP. 12 

through hollow single-conductor guides but are attenuated. Let us now 
calculate the magnitude of this attenuation.  From (12-85) the attenua-
tion constant for a rectangular guide at frequencies less than cutoff is 

2  27A2 

a  =  \I(nYr1 ( 71) 2 — (-X°- ) 

Noting (12-88), this can be reexpressed as 

a = 22r\[('!°-)2 — 1 = 00.\1(,0)2 — 1 
Vtoci 

(12-98) 

nepers/meter  (12-99) 

where X0 = wavelength in an unbounded medium (meters) 
= cutoff wavelength (meters) 

The attenuation constant a as given in (12-99) applies not only to rec-
tangular guides but to hollow single-conductor guides of any cross-sec-
tional shape. 
If the frequency is much less than cutoff (Xo >> Xoc), Eq. (12-99) reduces 

to the approximate relation 

22-
a •-•-• —  nepers/meter (12-100) 

where Xoc = cutoff wavelength (meters).  Since, in dealing with voltage, 
1 neper equals 8.68 decibels (db),' 

2r X 8.68 54.5 
a =  db/meter  (12-101) 

Aoc  xoc 

Example.  A certain wave guide has a cutoff wavelength x.,‘ of 10 cm.  Find the 
attenuation per meter along the guide for an applied wavelength X0 of 1 meter. 
Solution.  Since x. >> x„,, Eq. (12-100) or (12-101) can be used, yielding 

a = 20T nepers/meter, or 545 db/meter 

This is a very high rate of attenuation, the applied field falling to a negligible value in 
a very short distance. 

A simple attenuator operating at frequencies less than cutoff is illus-
trated in longitudinal section in Fig. 12-16. A metal tube, acting as a 
wave guide, has loops arranged at each end, as shown, to couple from 
coaxial transmission lines into and out of the wave guide.  One of the 
loops is mounted on a movable plunger so that the distance between the 
loops is variable.  If the applied wavelength Xo is much longer than the 
cutoff wavelength X„c of the guide, and the loops are not in too close 
proximity, the attenuation is as given by (12-100) or (12-101).  For 

1 Note that a 1-neper attenuation means a reduction to 1/e of the original value. 
Conversely, an increase of 1 neper means an increase to e(=2.7183) times the original 
value.  Hence, for voltages 1 neper is equal to 20 logio e = 8.68 db. 
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instance, if Xo,  10 cm and Xo is much greater (1 meter or more), the 
attenuation increases 5.45 db per centimeter of outward movement of 
the plunger.  This type of attenuator is very useful but has the dis-
advantage of a high insertion loss, that is, a large initial attenuation when 
inserted in a coaxial line.  Since 13 = 0, there is no change in phase with 
change in plunger position. 

Coupling loops Moveable plunger 

/-Coaxial 
line 

Coaxial line  wave guide 

Fia. 12-16. Attenuator for use at frequencies less than cutoff. 

12-6. Attenuation at Frequencies Greater than Cutoff.  If the wave 
guide has perfectly conducting walls and the medium filling the guide is 
lossless, there is no attenuation at frequencies greater than cutoff.  Thus, 
a = 0, and from (12-84) we have for a rectangular guide that 

or 

7 =  = .\1/71 2  (m7 N2  0 21A2 

kY1  zi)  kx./ 

= _ ())2 = 00 \J (x.) x   - 
2 

(12-102) 

(12-103) 

The phase constant fi as given in (12-103) applies not only to rectangular 
guides but to hollow single-conductor guides of any cross-sectional shape. 
The behavior of the phase constant ft for this case and for the case dis-

cussed in Sec. 12-5 is compared on the composite graph in Fig. 12-17. 
Here the propagation constant 7 is shown as ordinate vs. the wavelength 
Xo in an unbounded medium as abscissa.  The real part of -y (=a) is 
plotted as the solid curve above the x axis and the imaginary part ( =13) 
as the dashed curve below the axis.  At very short wavelengths (Xo  0), 
a is zero, and 13 approaches an infinite value that is equal to i3o for an 
unbounded medium.  As Xo increases, decreases until at cutoff (Xo = 
is zero.  At still longer wavelengths,  remains zero, but a does not. 

At sufficiently long wavelengths (X0 >> X..), a approaches a value of 
21-/X.c as indicated.  This diagram applies to lossless hollow single-
conductor guides with cross sections of any shape. 
Actual guides are not lossless so that a is not zero for Xo < X. as 

indicated in Fig. 12-17.  However, for air-filled guides of a good con-
ducting material, such as copper, ti is substantially as indicated for 
X0 < X.., while a is small but not necessarily negligible.  To calculate a 
for this ease, we note (see Fig. 12-18) that the average power in the guide 
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Flo. 12-17. Composite graph showing attenuation constant a and phase constant /3 for 
a lossless hollow single-conductor waveguide as a function of the wavelength X0 in an 
unbounded medium. 
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FIG. 12-18. Power lost in walls of wave guide results in attenuation. 

varies with the distance x in the direction of transmission as given by 

p =  poe-2ax  watts (12-104) 

where average Po = power at reference point (x = 0) 
x = distance in direction of transmission through guide 

(meters) 
The factor 2 in the exponent is present because power is proportional to 
field squared.  It follows that 

_1 —dP/dx 
a 2  P 

nepers/meter  (12-105) 
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In (12-105) —dP/dx represents the decrease in power per unit distance 
along the guide at a particular location, while P is the power transmitted 
through the guide at that location.' 
Thus, in words the attenuation constant in nepers per unit distance is 

expressed by 
power lost per unit distance 

a — 
twice the power transmitted 

If the medium filling the guide is lossless, the decrease in power per unit 
distance is equal to the power lost per unit distance in the walls of the 
guide. This is 

dP  1 if (S.,),. ds = f dl (12-106) 

where (S..). = average Poynting vector into wall (average with respect 
to time). The surface integral in (12-106) is taken over a strip of length 
dx of the interior surface of the wave guide (Fig. 12-18).  The line 
integral in (12-106) is taken around the inside of the guide (same path as 
that for strip). In general, the average Poynting vector is 

= Re E x H*  (12-107) 

Since E and H are normal, the magnitude of the average Poynting vector 
into the conducting wall medium is (see Fig. 12-18) 

(&)„ = Re linHAZc = litii2 Re Z.  (12-108) 

where iihil = absolute value (or magnitude) of the component of H tan-
gent to the conducting surface of the guide walls 

Re Z. = real part of the intrinsic impedance of the conducting wall 
medium (=  

Introducing (12-108) in (12-106) yields 

dP  Re Zc f IHt112 dl  (12-109) 
dx  2 

Now the power traveling through the guide (in x direction) is 

P = f f  ds  watts (12-110) 

where in this case the surface integral is taken over the guide cross sec-
tion.  It follows that 

P = -1 Re Z,,, If 111,212 ds  (12-111) 

1It is to be noted that the attenuation in this case is due to an aetual power loss 
(Joule heating of guide walls), whereas at frequencies less than cutoff no Joule heating 
effect is involved, the attenuation being due to the inability of the guide to transmit 
the higher-order mode. 
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where II-1,21 = absolute value of component of H tangent to a cross-
sectional plane through the guide (Fig. 12-18) 

Re Z„, = real part of transverse impedance of guide 
Therefore, the attenuation constant a is, in general, given by 

_  Re Z,  dl  
— 2 Re Z., ff IHI212 ds 

nepers/meter  (12-112) 

where Re Z, = real part of the intrinsic impedance of guide walls (con-
ductor) 

Re Z. = real part of transverse impedance of guide 
11-1,11 = absolute value of component of H tangent to the conduct-

ing surface of the guide walls (integrated around interior 
surface of guide) 

IHt21 =  absolute value of component of H tangent to plane of 
cross section through guide (integrated over the cross-
sectional area) 

Equation (12-112) applies to any mode in any guide.  For each mode the 
attenuation constant must be calculated using (12-112), with values of 
IH,II and IH,21 corresponding to the field distribution for that mode.  If 
the guide walls are of good conducting material, we may assume, with but 
little error, that the H-field distribution used in (12-112) is the same as for 
perfectly conducting walls.  The following example illustrates an applica-
tion of (12-112) to a simple problem. 

Example.  Find the attenuation constant for a 300-Mc/sec TEM wave in an 
infinite-parallel-plane transmission line with a spacing between planes of 10 cm.  The 
planes or walls are made of copper, and the medium between the planes is air. 
Solution.  For a TEM wave the transverse impedance equals the intrinsic imped-

ance; so (12-112) becomes 

a = f2 ReZd 10 0 111,21 2 dz dy 

2 Re  dy 
0 

(12-113) 

where yi = arbitrary distance along conducting wall (see Fig. 12-1) 
zi = spacing between walls (meters) 

Re L = real part of intrinsic impedance of conducting walls (ohms) 
Re Z d =  real part of intrinsic impedance of dielectric medium between walls 

(Zd is entirely real for lossless medium) 

The integral with Hi, involves the power lost in one wall of the line.  The total power 
lost in both walls is twice this; hence the factor 2 in the numerator.  For a TEM wave 
H is everywhere parallel to the walls and normal to the direction of propagation so 
that both 11,1 and lin are perpendicular to the page instead of as suggested in Fig. 
12-18.  It follows that 'Hal IH,,I = a constant.  Hence, (12-113) reduces to 

ReZ,,yi Re Z,,  
a 

Re Z yiz,  zi Re Z 
(12-114) 
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For copper at 300 Mc/sec, Re 2, — 4.55 X 10-3 ohm, while for air Re Za  376.7 ohms. 
Therefore 

or 

a  1.2 X 10-• neper/meter 

a = 1.04 x 10-3 db/meter 

Thus, the attenuation amounts to about 1 db for 1,000 meters of line. 

12-7. Waves Traveling Parallel to a Plane Boundary. In the previous 
section we considered the attenuation of a guided wave due to the power 
lost in the walls of the wave guide.  In this section some of the phe-
nomena associated with this power loss or power flow are discussed in 
more detail. 
Consider the plane boundary between two media shown in Fig. 12-19a, 

assuming that medium 1 is air and medium 2 is a perfect conductor. 

Medium 1 
(air) 

14 ® 
. • • 
. Medium 2 (perfect conductoW:• 

a = oo 

Direction of 

energy flow 

• 

(a) 

Medium I 
(air) 

Direction of 
flow 

,..E, 
Medium 2 (conductor with 
finite conductivity a) 

(b) 
Flo. 12-19. TEM wave traveling to right along surface of perfectly conducting 
medium. 

From the boundary condition that the tangential component of the elec-
tric field vanishes at the surface of a perfect conductor, the electric field 
of a TEM wave traveling parallel to the boundary must be exactly 
normal to the boundary as portrayed in the figure.  However, if medium 
2 has a finite conductivity a there will be a tangential electric field Ez at 
the boundary, and, as a result, the electric field of a wave traveling along 
the boundary has a forward tilt, as suggested in Fig. 12-19b.  From the 
continuity relation for tangential electric fields, the field on both sides of 
the boundary is E. 
The direction and magnitude of the power flow per unit area are given 

by the Poynting vector.  The average value (with respect to time) of the 
Poynting vector is 

S.. =  Re E x H*  watts/meter'  (12-115) 

At the surface of the conducting medium (Fig. 12-19b) the power into the 
conductor is in the negative y direction, and from (12-115) its average 
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value per unit area is' 
S„ =  Re E.H:  (12-116) 

The space relation of E„ H. (or 11:), and S„ is shown in Fig. 12-20a.  But 

_ z 
(12-117) 

where Z. = intrinsic impedance of conducting medium, so that (12-116) 
can be written 

S,, = --1111,11: Re Z, =  Re Ze (12-118) 

where H. = 11,0eg )-7x 
= H.oe-rowi-t)-711 = complex conjugate of H. 
= phase lag of H, with respect to E. 

The relation for the Poynting vector in (12-118) is the same as given in 
(12-108). 

Medium 1 
(air) 

H,  E,  H,  S. 

Medium 2 

(a) 

r===r 

FIG. 12-20. Fields and Poynting vector at surface of a conducting medium with wave 
traveling parallel to surface. 

At the surface of the conducting medium (Fig. 12-19b) the power per 
unit area flowing parallel to the surface (x direction) is 

Sz = Re EH  : (12-119) 

The space relation of E, H. (or 11), and S. is illustrated by Fig. 12-20b. 
But 

E„ 
—  Zd (12-120) 
H, 

where Zd = intrinsic impedance of dielectric medium (air).  It follows 
that 

S. = 41/,02 Re Zd  (12-121) 

The total average Poynting vector is then 

II 02 
= iS.  jS, =  (i Re Zd — j Re Z.)  (12-122) 

The relation of Sa, to its x and y components is illustrated in Fig. 12-20c. 
It is to be noted that the average power flow (per unit area) is not parallel 

The component of the average Poynting vector in the y direction is M O" but 
to simplify notation we shall write 2,, for (S,,,),. 
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to the surface but inward at an angle 7. This angle is also the same as the 
angle of forward tilt of the average electric field (see Fig. 12-19b).  If 
medium 2 were perfectly conducting, r would be zero. 
It is of interest to evaluate the tilt angle r for a couple of practical situa-

tions. This is done in the following examples. 

Example 1. Find the forward tilt angle r for a vertically polarized 3,000-Mc/sec 
wave traveling in air along a sheet of copper. 
Solution.  From (12-122) the tilt angle r is given by 

Re Z. 
r  arctan 

Re Ze 
(12-123) 

At 3,000 Mc/sec, we have for copper that Re Z,  1.44 X 10-2  ohms.  The intrinsic 
impedance of air is independent of frequency.  (Re Z d =  376.7 ohms.)  Thus 

1.44 X 10-2 
=  arctan  = 0.0022° 

376.7 

Although 7 is not zero in the above example, it is very small, so that E is 
nearly normal to the copper surface and S nearly parallel to it. This 
small value of tilt is typical at most air-conductor boundaries but accounts 
for the power flow into the conducting medium.  If the conductivity of 
medium 2 is very low or if it is a dielectric medium, 7 may amount to a few 
degrees. Thus the forward tilt of a vertically polarized radio wave 
propagating along poor ground is sufficient to produce an appreciable 
horizontal electric field component.  In the Beverage or wave antenna 
this horizontal component is utilized to induce emfs along a horizontal 
wire oriented parallel to the direction of transmission of the wave. 
In contrast to Example 1, in which medium 2 is copper, the following 

example considers the case of fresh water as medium 2. 

Example 2. Find the forward tilt angle 7 for a vertically polarized 3,000-Mc/sec 
wave traveling in air along the surface of a smooth fresh-water lake. 
Solution.  At 3,000 Mc/sec the conduction current in fresh water is negligible 

compared with the displacement current (see Fig. 10-2), 80 that the lake may be 
regarded as a dielectric medium of relative permittivity e,  80.  Thus 

r  1 arctan  = 6.4° 
N/T.0 

In this case the forward tilt of 6.4° is sufficient to be readily detected by a direct 
measurement of the direction of the electric field. 

The angle 7 discussed above is an average value.  In general, the 
instantaneous direction of the electric field varies as a function of time. 
In the case of a wave in air traveling along a copper sheet, E. and E. are in 
phase octature (45° phase difference), so that at one instant of time the 
total field E may be in the y direction and  period later it will be in the x 
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direction.  As a function of time the locus of the tip of E describes a cross-
field ellipse (see Sec. 9-15), as portrayed in Fig. 12-21, for a 3,000 Mc per 
sec wave in air traveling along a copper sheet (in the x direction) as in 
Example 1.1 The ellipse is not to scale, the abscissa values being mag-

Relative electric field intensity 

(a) 

360 405 
tot in degrees  202.5 337.5' 

147.5' 
180' 

r = 0.002' 
90' 112.V 67.5' 135 45' 
22.5' LI 

225' 247.5' 270' 
315' 
292.5' 

(b) 
Fm. 12-21. (a) Magnitude variation with time of E, and E. components of E in air 
at the surface of a copper region for a 3,000-Mc/sec TEM wave traveling parallel to 
the surface.  (b) Resultant values of E (space vector) at 22.5° intervals over one cycle, 
illustrating elliptical cross-field at the surface of the copper region.  The wave is 
traveling to the right.  Abscissa values are magnified 5,000 times as compared to the 
ordinate values. 

0 

lf 

147.5° 
135° 

22.5  r=0.002° 

C.:re" 45 ° 67.5°  90 
Fin. 12-22. Poynting vector in air at a point on the surface of a copper region for a 
3,000-Mc/sec TEM wave traveling along the surface (to right).  The Poynting vector 
is shown at 22.5° intervals over one-half cycle.  The ordinate values are magnified 
5,000 times as compared to the abscissa values. 

nified 5,000 times.  The positions of E for various values of cot are indi-
cated.  The variation of the instantaneous Poynting vector for this case 
is shown in Fig. 12-22.  Here the ordinate values are magnified 5,000 
times.  It is to be noted that the tip of the Poynting vector travels around 
the ellipse twice per cycle. 

1 P. Epstein, Kraftliniendiagramme fiir die Ausbreitung der Wellen in der drahtlosen 
Telegraphie bei Berucksichtigung der Bodensehaffenheit, Jarhb. drahtlosen T. u.  
4, 176-187, 1910. 
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Whereas copper has a complex intrinsic impedance, fresh water, at 
the frequency considered in Example 2, has a real intrinsic impedance. 
It follows that the E. and E„ components of the total field E are in time 
phase so that the cross-field ellipse in this case collapses to a straight 
line (linear eross-field) with a forward tilt of 6.4°. 
12-8. The Single-wire Open Wave Guide.  In the previous section 

we have seen that a wave traveling along an air-conductor or air-dielectric 
boundary has a longitudinal (E.) component of the electric field, resulting 
in a forward tilt of the total electric field.  Hence the Poynting vector is 
not entirely parallel to the boundary but has a component directed from 
the air into the adjacent medium, as suggested in Fig. 12-20c. This tends 
to keep the energy in the wave from spreading out and to concentrate it 
near the surface, resulting in a bound wave, or surface wave.  The phase 
velocity of such a bound wave is always less than the velocity in free 
space. Although the field of this guided wave extends to infinity, such a 
large proportion of the energy may be confined within a few wavelengths 
of the surface that the surface can be regarded as an open type of wave 
guide.  It should be noted, however, that even though the forward-tilt 
effect is present along all finitely conducting surfaces, the bound wave 
may be of negligible importance without a launching device of relatively 
large dimensions (several wavelengths across) to initiate the wave.  If 
the surface is perfectly smooth and perfectly conducting, the tangential 
component of the electric field vanishes, there is no forward tilt of the 
electric field, and no tendency whatever for the wave to be bound to the 
surface. 
In 1899 Sommerfeld' showed that a wave could be guided along a round 

wire of finite conductivity.  Zenneck2 pointed out that for similar reasons 
a wave traveling along the earth's surface would tend to be guided by the 
surface.  More recently Goubaua has shown that the guiding action of a 
single round conducting wire can be greatly enhanced by a thin dielectric 
coating, the radial extent of the strong field being sufficiently small 
that the coated wire forms a relatively efficient open type of wave guide. 
Modification of the surface, as by corrugation, can also enhance the guid-
ing action.  However, to initiate the guided wave along the wire with 
good efficiency requires a relatively large launching device, its function 
being to excite a mode, closely related in form to the guided mode, over a 

A. Sommerfeld, Fortpflanzung elektrodynamischer Wellen an einem zylindrischen 
Leiter, Ann. Phys. u. Chem., 87, 233, December, 1899. 
J. Zenneck, Uber die Fortpflanzung ebener elecktromagnetischer Wellen langs 

einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie, Ann. Physik., 
Ser. 4, 28, 846-866, Sept. 20, 1907. 

G. Goubau, Surface Waves and Their Application to Transmission Lines, J. 
Applied Phys., 21, 1119-1128, November, 1950. 
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diameter of perhaps several wavelengths.  Hence this type of guide is 
practical only at very high frequencies. 
A dielectric-coated single-wire wave guide with typical dimensions is 

illustrated in Fig. 12-23.  The dielectric coat consists of a layer of 
enamel of relative permittivity e,. = 3 having a thickness of only 0.0005 
wavelength. The wire diameter is 0.02 wavelength. The configuration 
of the electric field lines in the launcher and along the wire guide is sug-
gested in the figure.  The mode on the wire is a TM type, but it is like a 
plane TEM wave to a considerable distance from the wire. 

,E  xial  lines 
line 

Horn type 
launcher 

Coaxial oaxial 
Long 

[
Long coated 
conducting wire  -r  

1 Wire diameter  3X f 
0.02X  Horn type 

with coating  collector 
0.0005A thick 
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12-3. Find the phase velocity of the TE10-mode wave in Prob. 12-1 at a frequency 
of 1.5 times its cutoff frequency.  Ans.: 4 X 10s meters/sec. 
12-4. Find the reflection angle 0 of the TE,o-mode wave in Prob. 12-1 at a frequency 

of 2.5 times its cutoff frequency. 
12-5. A plane 1,590-Mc/sec wave in air is traveling parallel to the boundary of a 

conducting medium with H parallel to the boundary. The constants for the con-
ducting medium are u = 108 mhos/meter and or = µ, = 1.  If the rms field intensity 
of the traveling wave is 5 volts/meter, find the average power per unit area lost in 
the conducting medium.  Ans.: 1.4 X 10-2 watt/meter'. 
12-6. Show that the field components for a TM wave in a hollow rectangular single 

conductor wave guide (see Fig. 12-7) are given by 

E. = E 0 sin nj --rY  sin m" eh.,8-7. 
Ill z, 

Ey  .. —7E0 mr  nry . mrz el cos — sin —   
k2 y,  1/1  z, 
7E0 my . nry  ma 

Es = — kl zi sin —y, cos --z---,  

= 0 
Hz  „.   . nry  mrz 

z, sin —y, cos  

H.  = 7Y ogEo nyr  nry . mrz . cos  sin  eog-T. 
y, Lu zi 

12-7. Show that the transverse impedance of a TE wave in a rectangular guide is 
equal to Z.,. = Zo(X/X0), where Zo is the intrinsic impedance of the medium, X the 
wavelength in the guide, and X0 the wavelength in an unbounded medium of the same 
material as fills the guide. 
12-8. Show that the transverse impedance of a TM wave in a rectangular guide is 

equal to 

Z„ = Zo — ( i7/11° )2 — (mX° Y  Zo — (X° Y 
2z, 

12-9. Show that the attenuation constant for a TE,0 wave at frequencies above 
cutoff in an infinite-parallel-plane transmission line or guide is 

a 
2 Re Z.  (X,/2d)' 
d Re Za •Vi — (x,/2d)' 

nepers/meter 

where Re Z. = real part of intrinsic impedance of wall medium (conductor),  Re Za 
= real part of intrinsic impedance of medium filling guide (dielectric), d = wall 
spacing, and No = wavelength in unbounded medium. 
12-10. Show that the attenuation constant for a TE„,„ wave at frequencies above 

cutoff in an infinite-parallel-plane transmission line of spacing d is 

a  Re Z.  2(X 0/X„)2 
d Re Za  _ (xop1/4 ): 

where X = cutoff wavelength. 
12-11. A TEM wave is traveling in air parallel to the plane boundary of a conduct-

ing medium.  Show that if K = NV, where K = sheet current density (amp/meter), 
p. = surface charge density, and v = velocity of wave, it follows that K = H, where 
H is the magnitude of the H field of the wave. 
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12-12. Write the equations giving the variation of each field component with y and z 
for a TE12 wave in a square conducting guide (yi = zi)• 
12-13. Sketch the variation of the field components as functions of y and z for the 

guide and mode of Prob. 12-12. 
12-14. In an infinite-parallel-plane air-filled transmission line of 2 cm spacing find 

the attenuation constant a for a TEM wave and for a TE10 wave at 10,000 Mc/sec. 
The planes are made of copper. 
12-15. Find the attenuation constant a for a hollow single-conductor wave guide 

at an applied frequency of 0.75 of the lowest cutoff frequency for the guide. 
12-16. In an infinite-parallel-plane transmission line show that at a wavelength 

Xo, less than cutoff, the attenuation constant for a TMio mode is 

2a 

V1 — (X0/2b)' 

where a = attenuation constant for TEM wave. 
12-17. An air-filled hollow rectangular wave guide has cross-sectional dimensions 

yi = 6 cm and zi = 10 cm.  Find the cutoff frequencies for the following modes: 
TM 10, TM2o, TM11, TM21. 

Ans.: TMio and TM20 not passed; TMii 2,920 Mc/sec; TM21 3,940 Mc/sec. 
12-18. A hollow rectangular wave guide of dimensions yi = 3 cm and zl = 10 cm is 

filled with a lossless dielectric of relative permittivity 2. (a) Find the transverse 
impedance for a TE2o mode at twice its cutoff frequency.  (b) Find the phase velocity 
of the TE20 mode at twice its cutoff frequency. 
12-19. A TEM wave is traveling in an infinite-parallel-plane transmission line with 

10 cm wall separation.  Given that the peak value (in time) of the electric field is 
100 volts/meter and that the wall conductivity is 5.7 X 107 mhos/meter, find (a) the 
average Poynting vector into the walls; (b) the attenuation constant in decibels per 
meter.  The frequency is 300 Mc/sec. 
12-20. Show that the solutions for the field components of a TE mode in a rec-

tangular guide satisfy Maxwell's equations. 
12-21. A 100-Mc/sec TEM traveling wave in an infinite air-filled parallel-plane 

transmission line with 5 cm separation has an electric field intensity of 100 volts/meter 
at a point P.  If the guide walls have an intrinsic impedance whose real part is 
0.1 ohm, (a) find the average power at P in the direction of transmission per meter 
width of guide; (b) find the average Poynting vector into one wall at P; (c) find the 
electric field intensity at a point 500 meters from P in the direction of transmission. 
12-22. In a hollow rectangular wave guide with TEio mode show that the ratio of 

the voltage V between the top and bottom of the guide (at the middle) to the longi-
tudinal current I on the upper or lower inside surface is an impedance given by 
Z  V / I  (Ty1/2zi)Z„, where yi = height of guide, zi = width of guide, and 
Z„ = transverse impedance. 
12-23. Show that the attenuation constant for a TE„,„ wave at frequencies above 

cutoff in a hollow rectangular wave guide of height yi and width zi is 

a 2 Re Z,[(XoPto,)! (z1/2 01 

z1 Re Zd V 1 — (X0 /X002 

12-24. Show that the group velocity n in a hollow rectangular single-conductor 
wave guide (equal to the velocity of energy transport) is given by 
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vo 1— (421 2 — (" 2.)2 2y, 2zi 

vo  — (ty 

where X0 = wavelength in unbounded medium and X. = cutoff wavelength.  Both 
Xo and X should be distinguished from X, the wavelength in the guide. 
Note that it follows that ut, = v.2, where v = phase velocity in guide and 14 = phase 

velocity in an unbounded medium. 
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CHAPTER 13 

ANTENNAS 

13-1. Introduction. In previous chapters our attention has been 
focused on situations where the energy is confined within a system or is 
guided along it. No consideration has been given to radiation, that is, 
the loss of energy from a system into free space.  While transmission 
lines or wave guides are usually made so as to minimize radiation, 
antennas are designed to radiate energy as effectively as possible.  In 
fact, radiation is the primary function of a transmitting antenna. 
In general, a transmitting antenna may be defined as the structure associ-

ated with the region of transition between a guided wave and a free-space wave, 
or vice versa for a receiving antenna.  In this chapter a few of the funda-
mental properties of antennas are discussed.' 
13-2. Propagation Time and Wavelength. The wave radiated from 

an antenna spreads out in all directions much like an expanding spherical 
soap bubble having the antenna at its center.  The time it takes this 
wave to reach a distance r from the antenna (or source) is 

seconds 

where r = distance (meters) 
c = velocity of light (= 3 X 108 meters/sec) 

The quantity r/c is the propagation time for the wave. 
All points at a distance r from the antenna have the same phase.' 

Other points of identical phase are situated at a radial distance of 1 wave-
length (or integral multiples thereof) as suggested in Fig. 13-1, the wave-
length being given by 

X = = cT  meters  (13-1) 

where c = velocity of light ( =3 X 10 meters/sec) 
f = frequency (cycles/sec) 
T = 1/f = period (sec) 

1 For a more detailed treatment of antennas see, for example, J. D. Kraus, "An-
tennas," McGraw-Hill Book Company, Inc., New York, 1950. 

2 It is assumed that r is large compared with the size of the antenna and also that r 
is measured from the phase center of the antenna. 

484 
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Flo. 13-1. Constant phase circles of field radiated from source. 

13-3. Retarded Potentials. In dealing with antennas or radiating 
systems the propagation time is a matter of great importance. Thus, if 
an alternating current is flowing in the short element in Fig. 13-2, the 
effect of the current is not felt instantaneously at the point P but only 
after an interval equal to the time required for the disturbance to propa-
gate over the distance r. 
Accordingly, instead of writing the current 

/ as 
I = /0 sin wt (13-2) 

which implies instantaneous propagation of the 
effect of the current, we can introduce the time 
of propagation (or retardation time 1),  as done 
by Lorentz, and write 

[i] = /0 sin w  —  (13-3) 
no.  13-2. Short current-
carrying element. 

where [I] is called the retarded current. The brackets [ J may be added, 
as here, to indicate explicity that the current is retarded. 
Equation (13-3) is a statement of the fact that the disturbance at a time 

t and at a distance r from the element is caused by a current [I] that 
occurred at an earlier time t — (r/c). The time difference r/c is the 
interval required for the disturbance to travel the distance r. 
It is to be noted that we dealt with retarded quantities in Chap. 9 in 

connection with wave propagation, although the term "retarded" was 

Called retardation time because the phase of the wave at P is retarded with respect 
to the phase of the current in the element by an angle off/c. 
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not used.  For example, in Chap. 9 a solution of the wave equation is 
given that involves sin (cot - fix) which is similar in form to the trigo-
nometric function in (13-3) since' 

sin w  - -r) = sin (cot - fir) 

where /3 = w/c = 2r/X = phase constant 
In complex form (13-2) is' 

[I] = ioejw (g = Ioe i(wg—Pr) (13-4) 

In the more general situation where the current is distributed we may 
write for the retarded current density 

[J1 = Joei“(g  -̀) = jea(.(-Pr) (13-5) 

Introducing this value of current density in (4-176) for the vector 
potential, we obtain a retarded vector potential that is applicable in time-
varying situations where the distances involved are significant in terms of 
the wavelength.  That is, the retarded vector potential is 

[Al = IL) dv = q Joeiw(e  re) 
4 W Jv r  4r , 

dv  (13-6) 

Likewise the scalar potential V may be put in the retarded form 

[V] = --Al 1-2(-1 dv  (13-7) 
+Imo r 

where [V] = retarded scalar potential 

" [p] = poej  (t-1c )= retarded change density (coulombs/meters) 

13-4. The Small Loop Antenna.3 In Chap. 8 it was shown that the 
inductance L of an inductor that is very small compared with the wave-
length is 

A 
L = 96 — • di henrys  (13-8) 

The expression sin (cot - 0x) in Chap. 9 refers to a plane wave traveling in the x 
direction. The relation sin (00 - ?lc) or sin ((4 - 0r) refers to a spherical wave 
traveling in the radial direction. An important point of difference between a plane 
and a spherical wave is that a plane wave suffers no attenuation (in a lossless medium) 
but a spherical wave does because it expands over a larger and larger region as it 
propagates. 

2 It is understood that the instantaneous value of current is given either by the 
imaginary (Im) or the real (Re) part of the exponential expression in (13-4). 

3 S. Ramo and J. R. Whinnery, "Fields and Waves in Modern Radio," John Wiley 
& Sons, Inc., New York, 1944, p. 189. 
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where A// is integrated along the entire length of the conductor of which 
the inductor is made. This relation neglects the effects of propagation 
time. 
Suppose that the inductor consists of a single-turn wire loop situated in 

air as illustrated in Fig. 13-3. At low frequencies, where the loop circum-
ference is very small compared with the 
wavelength, the inductance L is as given by 
(13-8). Assuming that the wire is perfectly 
conducting, the loop has zero resistance, and 
therefore the impedance Z appearing at the 
loop terminals is a pure reactance (that  I  
is, Z = jcoL). 
Consider now that the frequency is raised  ) 

sufficiently so that the loop circumference  - 
is a significant fraction of a wavelength (say 
of the order of wavelength or more). As  Terminals 
it stands, (13-8) is not adequate for this  FIG. 13-3. Wire loop. 
situation since it neglects the propagation 
time.  However, by replacing A by the retarded vector potential [A], as 
given in (13-6), Eq. (13-8) may be applied to this situation.  It is assumed 
that the loop is small enough so that the current is substantially of uniform 
amplitude and in phase around the loop.  This is a good approximation 

for a small loop with a circumference of less than 4- wavelength. Thus, 
(13-8) becomes 

[A] 
L =  — • di henrys  (13-9) 

joeicw-so 
where [A] =   dv  henry-amp/meter 

4ir 

I = Ice"  amp 
For the case of a wire loop with current of amplitude /0, [A] reduces to 

uo/ 56   [A] =  dl'  (13-10) 
42-  r 

where the integration is carried out around the entire loop.  The infini-
tesimal element of path length dl' is at a distance r from the element dl, 
appearing in (13-9), as shown in Fig. 13-3. 
Substituting (13-10) for [A] in (13-9) yields 

or 

L =  e-10 * r dr • di 42.   

L = Tic° 9696  cos 0 dl' dl (13-12) 
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Expressing e-io in terms of its real and imaginary parts, 

L = 110  cos Or - j sin Or cos 0 dl' dl 

4w Tr 

[CHAP. 13 

(13-13) 

When a is much smaller than the wavelength (r  X), fir is much less 
than unity Or << 1).  It follows that cos 'fir then approaches unity, and 
sin Or approaches zero, so that 

L =  96  cos 0 dl' dl  henrys  (13-14) 

This is Neumann's low-frequency inductance formula for a wire loop. 
This relation is actually (13-8) applied to a wire loop. 
However, at higher frequencies fir may become significant so that it is 

seen from (13-13) that L has both real and imaginary parts.  That is, 

L = L'  jL"  henrys  (13-15) 
where L' = Re L 

L" = Im L 
It follows that the terminal impedance of the loop is 

Z = jcoL = - coL"  jai'  ohms  (13-16) 

Thus, the real part of L (= L') is the true inductance, while co times the 
imaginary part of L (= coL") is a resistance.  This resistance is not due to 
the resistivity of the wire of the loop but is in addition to any such resist-
ance.  In fact, in the present discussion the resistivity of the wire is 
assumed to be zero (0. = 00).  Therefore a," is called a radiation resist-
ance, since the power dissipated in this resistance (= 1/02wL" watts) is 
equal to the power radiated into space. 
Let us now proceed to find the value of this radiation resistance for a 

loop that is small but not negligibly small compared with the wavelength 
(circumference about 1 wavelength or less).  From (13-16) this radiation 
resistance is given by 

8 R =  co Im L = cow, sin   r' r cos 0 dr di  (13-17) 

Using the first two terms of the series expansion for sin 8r, 

R = -47w 9696  - -17r1 cos 0 ell' dl  (13-18) 

Noting that r = 2a sin (0/2) and that dl' = a c10, 

2. -4(3a)8 
R =  r 96  JO 31  sin'  cos 0 d0 dl (13-19) 
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or 

= coiloVia) 3 -4 R  12  T al  (13-20) 
Also, since dl = a do, 

R = "4463(1)3  f 2' a a — nomoire (13-21) 
12  0 6 

or 

2 

R = 31,171 (,i)  ohms  (13-22) 

where A = ire = area of loop (meters2) 
X = wavelength (meters) 

Equation (13-22) gives the radiation resistance of a small loop antenna. 
It is about 2 per cent in error when the loop area is 0.01 wavelength2 
(circumference about 4 wavelength). For smaller loops the error 
decreases.  Equation (13-22) was developed here for a circular loop. 
However, it also applies to loops of other shape (square, triangular, etc.) 
provided the area is equal to A. 

Example.  Find the radiation resistance of a single-turn circular loop with a cir-
cumference of i wavelength. 
Solution.  The area of the loop is 

A = re = r W s ... 0.00497X2 

Hence the radiation resistance is 

R = 31,171 (0.00497) 2 — 0.77 ohm 

This is a small value of radiation resistance.  However, if the resistance 
of the loop due to the resistivity of the wire is small compared with the 
radiation resistance, the loop may be an efficient radiator.  As the fre-
quency is decreased (circumference in wavelengths less), the radiation 
resistance rapidly reduces to such a small value that for practical pur-
poses radiation is negligible. 
The change in behavior of the loop as the frequency is increased may 

also be explained qualitatively as follows.  Consider the small square 
wire loop shown in Fig. 13-4. The loop is in the x-y plane with its center 
at the origin. Assuming that the loop is small compared with the wave-
length (1 << X), an alternating emf applied at the terminals will cause an 
alternating current I of uniform amplitude at all points of the loop. 
According to (7-151) this time-changing current produces an electric 
field E. At a large distance x1 along the x axis the total electric field is 
the resultant of contributions El and E3 caused by the current in sides 
1 and 3.1 These component fields are substantially equal in magnitude 

2 Sides 2 and 4 yield no field at xl. 
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but opposite in phase as indicated by the phase diagram in Fig. 13-5a, 
so that the total field is negligible. 
Suppose now that the size of the loop is not negligible compared with 

the wavelength but that each side is, say, 42' - wavelength long.  It is still 

Square loop 

Terminals 
Fm. 13-4. Square loop. 

assumed that the instantaneous current is uniform around the loop.  In 
this case the field component E3 at x1 is not in opposite phase with 
respect to Ei but is retarded by 30° (= 3600/12), as indicated in Fig. 
13-5b.  This retardation results from the fact that side 3 of the loop is 
farther from xi than side 1, so that the component field E3 takes longer 
to reach x1 and hence is delayed in time or retarded in phase with respect 
to El. The resultant electric field E is not negligible and represents a field 

E3 

E3 

(a) (6) 
Fm. 13-5. (a) Phase relation of electric fields at x1 due to square loop (Fig. 13-4) 
when 1 is small compared with a wavelength and (6) when 1 is about  2 wavelength 
(0.083X). 

that is radiated by the loop.  In this case the loop may be regarded as an 
antenna. 
The above picture is oversimplified, but it serves to illustrate the fact 

that although radiation is negligible when the loop is small compared 
to the wavelength (1 << X), the radiated field may be significant when the 
loop perimeter is wavelength.  If the perimeter (and area) is increased 
further the radiated field becomes even more important. 
13-5. The Short Dipole Antenna. A short linear conductor is often 

called a short dipole.  In the following discussion, a short dipole is always 
of finite length even though it may be very short.  If the dipole is 
vanishingly short, it is an infinitesimal dipole. 
Any linear antenna may be regarded as composed of a large number_ of 

short dipoles connected in series.  Thus, a knowledge of the properties 
of the short dipole is useful in determining the properties of longer dipoles 
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or conductors of more complex shape such as are commonly used in 
practice. 
Let us consider a short dipole such as shown in Fig. 13-6a.  The length 

1 is very short compared with the wavelength (1 << X).  Plates at the ends 
of the dipole provide capacitance loading.  The short length and the 

{ .—End plate 

d 0-

/ 
Transmission 

line 

, 

II 1 t 

A + q 

1, 

—4 

(a)  (b) 
Flo. 13-6. (a) Short dipole antenna and (b) its equivalent. 

presence of these plates result in a uniform current I along the entire 
length 1 of the dipole.  The dipole may be energized by a balanced trans-
mission line, as shown.  It is assumed that the transmission line does not 
radiate, and its presence will therefore be disregarded.  Radiation from 
the end plates is also considered to be negligible.  The diameter d of the 
dipole is small compared with its length (d <<1).  Thus, for purposes of 
analysis we may consider that the 
short dipole appears as in Fig. 
13-6b.  Here it consists simply of 
a thin conductor of length 1 with a 
uniform current I and point 
charges q at the ends.  According 
to (3-61) the current and charge 
are related by 

dq  _ I 
(13-23) 

dt — 

Let us now proceed to find the 
fields everywhere around a short 
dipole.  Let the dipole of length 1  T 

be placed coincident with the z no. 13-7. Relation of dipole to coordi-
axis and with its center at the  nates. 
origin as in Fig. 13-7.  At any point P the electric field has, in general, 
three components, Es, Eo, and E,, as shown.  It is assumed that the 
medium surrounding the dipole is air or vacuum. 
From (7-151) the electric field intensity E at any point P is expressed by 

E = —VV — —aA  volts/meter at  (13-24) 
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where V = electric scalar potential at point P (volts) 
A = vector potential at point P (henry-amp/meter) 

From (4-168) the magnetic field H at any point P is 

H = —1 V x A  amp/meter  (13-25) 

where i.to = permeability of air 
A = vector potential at point P (henry-amp/meter) 

If the scalar potential V and the vector potential A at the point P are 
known, the electric and magnetic fields E and H at P can then be deter-
mined by means of (13-24) and (13-25).  Since we are interested in the 
fields not only at points near the dipole but also at distances that are 
comparable to and larger than the wavelength, we must use the retarded 
potentials given in (13-6) and (13-7). Thus we have 

a[A] 
E = — V[ V] —  = — V[ V] — jw[A]  volts/meter (13-26) at 

and 

where 

1 poe a t-r) 
[V] —  dv  volts 

4re o 1  
[A] = 2" °  Joe   jw(g-0 dv  henry-amp/meter 

4w f„ 

The electric and magnetic fields due to any configuration of currents 
and charges are given by (13-26) and (13-27), where the retarded scalar 
potential [V] is a quantity that depends only on the charges (stationary), 
and the retarded vector potential [A] is a quantity that depends only on the 
currents.  Equation (13-27) indicates that the magnetic field H depends 
only on the currents, while (13-26) indicates that the electric field E depends 
on both the currents and the charges.  However, the effect of the charges 
decreases more rapidly with distance than the effect of the currents so 
that in determining the radiation field (at large distances from a current 
and charge distribution) only the currents need be considered.  Since 
the retarded potentials will be used exclusively in the following develop-
ment the brackets will be omitted for the sake of simplicity, it being 
understood that the potentials are retarded. 
We shall now proceed to find the electric and magnetic fields every-

where from a short dipole by first determining the retarded vector and 
scalar potentials and then substituting these values in (13-26) and (13-27) 
and performing the indicated operations. 

H = — 1 V x [A]  amp/meter  (13-27) 
AO 
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Referring to Fig. 13-7 or 13-8, the current is entirely in the z direction. 
Hence, it follows that the retarded vector potential has only a z com-
ponent.  Its value is 

f 

1/2  '  P 1 

A, = lAt =  -1/2  S dz  (13-28) 

where /0 = amplitude (peak value in time) of current (same at all points 
along dipole) (amp) 

= permeability of free space (= 4yr X 10-7 henry/meter) 
dz = element of length of conductor (meters) 
= radian frequency (= 2s1 where f = frequency in cps) 
t = time (sec) 
8 = distance from dz to point P (see Fig. 13-8) (meters) 
/3 = phase constant (rad/meter) (= 22r/X, where X = wavelength 

in meters) 
If the distance from the dipole is large compared with its length 

(r >> 1) and if the wavelength is large com-
pared with the length (X >> 1) we can put 
s = rand neglect the magnitude and phase 
differences of the contributions from the 
different parts of the wire.' Thus (13-28) 
becomes 

A.  = mo ideicwt-0,) 

Irr 

The electric charge is confined to the 
ends of the dipole; so turning our attention 
now to the retarded scalar potential, its 
value is 

v =  go  [egwt-8 .0 ei(.t-0.2) 1 
47ao  81  82  j 

(13-29) 

zjt 

h+-d 
volts  Fio. 13-8. Geometry for 

dipole. 
(13-30) 

short 

where qo = amplitude (peak value in time) of charge at ends of dipole 
(coulombs) 

si = distance from upper end of dipole to P 
82 = distance from lower end of dipole to P 

From (13-23) 

q=  I dt = — 
iw 

(13-31) 

1 If r is large compared with / but ). is not large compared with /, we may put a 2= r 
in the denominator in (13-28) and neglect the differences in magnitude.  However, 
in such cases we should retain s in the exponential expression since the difference in 
phase of the contributions may be significant. 
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where q = qoei(44 ' = retarded charge (coulombs) 
I = I oei(w--01) = retarded current (amp) 

It follows that 
/0 

qo = 
3w 

so that (13-30) can be reexpressed 

V = 
47reoico L s1 82 

When r >> 1, the lines of length si and s2 from the ends of the dipole to 

[CHAP. 13 

(13-32) 

—cos 0 
2 

Dipole 

I o eg.e—s..)] 

—2COS 

FIG. 13-9. Relations for short dipole when r >> 1. 

-\\
To point P 

(13-33) 

the point P may be considered parallel, as shown in Fig. 13-9, so that 

si = r — — cos 0 
2 

and 

82 = r  —2 cos 0 

(13-34) 

(13-35) 

Substituting (13-34) and (13-35) into (13-33) and clearing fractions yields 

V —   e  co. ] I oei("4-0 ') ± (1/2) cos Ole 2cos  e — [r — (1/2) cos 01e 2 

4reojw L  r2 
(13-36) 

where the term (12 COS2 0)/4 in the denominator has been neglected in 
comparison with r2 since r>> 1. By de Moivre's theorem, (13-36) 
becomes 

V — I oeg.t—or) 01 cos 0 . . 131 cos 0) (  1 
4/reojoo2  cos  j sin  2  r  cos 0) 2 

— (cos cos 0 . ft/ cos 0) / j sin  r — — cos 0)1  (13-37) 
2  2  2 
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Since it is assumed that the wavelength is much greater than the length 
of the dipole (X >> /), 

and 

0/ cos 0 cos  — cos rl cos 0  1 
2 

./ 0 cos 0 /3/ cos 0 
sin 

2  2 

(13-38) 

(13-39) 

Introducing (13-38) and (13-39) into (13-37), the expression for the 
scalar potential reduces to 

V = /0/egwt-P)  cos 0 (1  c 1 
4reoc  r jo) r-r ', volts  (13-40)' 

where to = amplitude (peak value in time) of current (amp) 
/ = length of dipole (meters) 
4.7 =  radian frequency (= 271f, where f = frequency in cps) 
= phase constant (rad/meter) (= 27/X, where X = wavelength 
in meters) 

= time (sec) 
= angle between dipole and radius vector of length r to point P 
(dimensionless) 

eo = permittivity of free space (= 8.85 X 10-" farad/meter) 
c = velocity of light (= 3 X 108 meters/sec) 
j = complex operator (= N/71-1) 
r = distance from center of dipole to point P (meters) 

Equation (13-40) gives the retarded scalar potential and (13-29) the 
retarded vector potential at a distance r and at an angle 0 from a short 
dipole.  The only restrictions are that r >> 1 and X >> /. Before sub-
stituting these values in (13-26) and (13-27) 
let us express E in polar coordinates.  Thus, 
in polar coordinates (see Fig. 13-7), 

E =  EieEe  a.E.  (13-41) 

Now in polar coordinates 

A =  aeAe  asoito  (13-42) 

FIG.  13-10. Resolution of 
vector potential into A, and 
Ae components. 

In our case A has only a z component so that 21, = 0, and from Fig. 13-10 

Ar = A, cos 0  (1343) 
= —Az sin 0  (13-44) 

In polar coordinates we also have for the gradient of the scalar potential 

aV , ae  1 av  8V VV =  --r  (13-45) - , r  sin 0 04 , 

I Note that 1/eoc = ',Joe  N/A4Q/e0 = 376.7 ohms. 
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It follows from (13-26) and the above relations that the components of E 
are 

av  av 
E, = —jcoA, — = —jcoA, cos 0 —  (13-46) 

1 aV aV E. =  — 7. = jcoA, sin 0 —  (13-47) 

1  a V  1  av 
E4, = —jcoA4, —  (1348) 

r sin 0 acte  r sin o 

Now introducing the value of A, from (13-29) and V from (13-40) into 
these equations, we find that E, = 0 (since V is independent of  so that 
av/ao = 0) and also that 

and 

= Iolei(ws-sr) cos 0 ( 1  1 
E,   m • 3) 2ireo cr  par 

E8 = I olei(wt-so sin 0 ( rit°  
41 re0  C j_ 1 j_ ' 1 ) 

2 —I— 2  • cr  cur: 

(13-49) 

(13-50) . 

Turning our attention now to the magnetic field, this may be calculated 
by (13-27).  In polar coordinates the curl of A is 

v x A — a,  [8(sin 0 4) 0( 1 
r sin e  ae 

+ as  [ail,  a(r sin 0)A4,1 + a. [a(rAe) °A,  (13 51) 
r si  r Or   00  n -e  Or 

Since A, = 0, the first and fourth terms of (13-51) are zero.  From 
(13-29), (13-43), and (13-44) we note that A, and A. are independent of 
cA, so that the second and third terms of (13-51) are also zero.  Thus, only 
the last two terms in (13-51) contribute so that V x A has only a com-
ponent.  Introducing (13-43) and (13-44) into (13-51), performing the 
indicated operations, and substituting this result into (13-27), we find 
that H, = He = 0 and that 

= IHI lole 0 sin 0 (co  1) 
(13-52) 

cr  r 

Thus the electric and magnetic fields from the dipole have only three com-
ponents E,, E., and 14.  The components Eo, H,, and He are everywhere 
zero. 
When r is very large, the terms involving 1/r2 and 1 /r' in (13-49), 

(13-50), and (13-52) can be neglected in comparison with terms in 1/r. 
Thus, in the far field E, is negligible and we have effectively only two field 
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components, Ee and I-1,, given by 

= jc0/0/ei(**-or) sin 0 .3010,8l - 3  -sr) sin 0  (13-53) 
4weee'r 

jaelegwi-P) sin • /oil/ egeer .-) =  -  sin 0  (13-54) 
4W 4wr 

Taking the ratio of Ee to 114, as given by (13-53) and (13-54), we obtain 

= — =  - = 376.7 ohms Ee 1  \IAto  (13-55) 
H,  toe  eo 

This is the intrinsic impedance of free space. 
It is to be noted that Ee and 1-14, are in time phase in the far field. 

Thus, E and H in the far field of the spherical wave from the dipole are 
related in the same manner as in a plane 
traveling wave. Both are also proportional 
to sin 0. That is, both are maximum 
when 0 = 90° and a minimum when 0 = 0 
(in the direction of the dipole axis). This 
variation of Ee (or ILO with angle may be 
portrayed by a field pattern as in Fig. 13-11, 
the length p of the radius vector being pro-
portional to the value of the far field 

D 
(Ey or H,$) in that direction from the dipole.  tpole 

The pattern in Fig. 13-11a is one-half of a 
three-dimensional pattern and illustrates 
that the fields are a function of 0 but are 
independent of fp. The pattern in Fig. 
13-11b is two-dimensional and represents a 
cross section through the three-dimensional 
pattern. The three-dimensional far-field 
pattern of the short dipole is doughnut-

(a) 

(b) 

shaped, while the two-dimensional pattern  \ Dipole 
has the shape of a figure of eight.  FIG. 13-11. (a) Three-dimen-
From (13-49), (13-50), and (13-52) we  sional and (b) two-dimensional 

field pattern of far field (Ee or 
note that for a small value of r the electric  He) from a short dipole. 
field has two components, Er and Ee, both 
of which are in time phase quadrature with the magnetic field H,. Thus, 
in the near field, E and H are related as in a standing wave. At intermedi-
ate distances, E. and Er can approach time phase quadrature with each 
other so that the total electric field vector rotates in a plane parallel to the 
direction of propagation, exhibiting the phenomenon of cross-field (see 
Sec. 9-15). 
In the far field the energy flow is real. That is, the energy flow is 
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always radially outward.  This energy is radiated.  As a function of 
angle it is maximum at the equator (0 = 90°).  In the near field the 
energy flow is largely reactive.  That is, energy flows out and back 
twice per cycle without being radiated.  There is also angular energy 
flow (in the 0 direction).  This energy picture is suggested by Fig. 13-12, 

Polar axis 
0=0° 

Near field 
Far 
field 

i eRneeragyct fi ivoil 7 .1  ..-.......-.„--  R a diated__ -1.  

I  flo 

dipole I  
Short  ,  w 

I 

I 

I 

Fm. 13-12. Energy flow in near and far regions of short dipole. 

where the arrows represent the direction of energy flow at successive 
instants.' 
Let us now consider the situation at very low frequencies. This will 

be referred to as the quasi-stationary case.  Noting (13-32), the field 
components can be expressed 

Er = qolc'' ;:rore:cos 0 (jw  1) 
& ± 773  (13-56) 

E0 
42rE0  2 -1—  2 —I— 3 c r  cr  7 

0)2 _t_ jut ,_ 1) 
(13-57) 

= qolei(.4-0 ") sin 0 

Ho = /0/0"4—4Pw  cr) sin 0 (r0.)  1) 
r 

+ -i (13-58) 

ETiator 

As the frequency approaches zero (co  0), the terms with w in the 
numerator can be neglected.  Also ei(‘"--00  approaches unity.  Thus, for 
the quasi-stationary (or d-c) case2 the field components become 

= qol cos 0 
2weor3 
got sin  0 

E8 = 
4weor3 

Ho  = 101 sin 0 
4irr2 

The instantaneous direction and time rate of energy flow per unit area is given by 
the instantaneous Poynting vector (= E x H). 

I For this case the wavelength is very large (X —.  ) so that X > > > 1. We also 
have r >> 1 and hence in this case X >> r. 

(13-59) 

(13-601 

(13-61) 
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The electric field components, (13-59) and (13-60), are the same as 
(2-9) and (2-10) for a static electric dipole, while the magnetic field com-
ponent 114, in (.1.3-61) is equivalent to (4-7) for a current element. Since 
these fields vary as 1/r2 or 1/r', they are effectively confined to the 
vicinity of the dipole and radiation is negligible.  At high frequencies in 
the far field, however, we note from (13-53) and (13-54) that the fields 
(Ee and H,0) vary as 1/r. These fields are radiated and hence are often 
called the radiation fields of the dipole. 
The expressions for the fields from a short dipole, developed above, are 

summarized in Table 13-1.  In the table the restriction applies that 
r >> 1 and X >> 1. The three field components not listed are everywhere 
zero, that is, E, = H, = He = 0. 

TABLE 13-1 
FIELDS OF A SHORT DIPOLE 

Corn-
ponent 

General expression Far field Quasi-stationary 

E, 
I olei(4"-130  cos 0 r 12 0 gel cos 0 ± .11 

2reo L Cr  jcur2 _I 2Ter3 

Es 
I olei(wg-Po sin 1I jr.0 j_ 1 _i_ 1 i j60 hei( --8.) sin 01 qd  sin 0 

4rto  Or ' cr2 ' jcarz  r  X 4vers 

110 
bole'' ' sin 0  1 jloei -(.0' 1 ) sin 81 /0/ sin 0 + rt.) 

47r  cr  1 2r  x 4Irri 

If we had been interested only in the far field, the development follow-
ing (13-29) could have been much simplified.  The scalar potential V does 
not contribute to the far field so that both E and H may be determined 
from A alone. Thus, from (13-26), Eo and Ho of the far field may be 
obtained very simply from 

Eo jEl = — jr.0A  (13-62) 

Ho = 1111 = TE°  = — 4j) o  (13-63) 

where Zo = VIT:reo = 376.7 ohms.  Or Ho may be obtained directly 
from (13-27) and Ee from this. Thus 

and 

1 
Ho = IHI = — Vx A  (13-64) 

and neglecting terms in 1/r2, 

Ee = lEl =  = p—oV x A  (13-65) 
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The field relations in Table 13-1 are those for a short dipole. Longer 
linear antennas or large antennas of other shape may be regarded as made 
up of many such short dipoles.  Hence the fields of these larger antennas 
may be obtained by integrating the field contributions from all the small 
dipoles making up the antenna. 
13-6. Radiation Resistance of a Short Dipole. By taking the surface 

integral of the average Poynting vector over any surface enclosing an 
antenna the total power radiated by the antenna is obtained. Thus 

P = f S., • ds  watts  (13-66) 

where P = power radiated (watts) 
S.,. = average Poynting vector (watts/meter2) 

The simplest surface we might choose is a sphere with the antenna in 
question at the center.  Since the far-field equations for an antenna are 
simpler than the near-field relations, it will be to our advantage to make 
the radius of the sphere large compared with the dimensions of the 
antenna.  In this way the surface of the sphere lies in the far field, and 
only the far-field components need be considered. 
Assuming no losses, the power radiated by the antenna is equal to the 

average power delivered to the antenna terminals. This is equal to 
/02R, where /0 is the amplitude (peak value in time) of the current at the 
terminals and R is the radiation resistance appearing at the terminals. 
Thus 

P = 4102R  (13-67) 

and the radiation resistance is 

2P 
R = J 2  ohms  (13-68) 

where P = radiated power (watts). 
Let us now carry through the calculation, as outlined above, in order to 

find the radiation resistance of a short dipole. The power radiated is 

P =  S.. • ds =  j Re (E x H*) • ds  (13-69) 

In the far field only Et and 1/0 are not zero so that (13-69) reduces to 

P =  f Re E.H:a,. • ds  (13-70) 

where a,. = unit vector in radial direction. Thus the power flow in the 
far field is entirely radial (normal to surface of sphere of integration). 
But a,. • ds = ds; so 

P =  Re Eell: ds  (13-71) 
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where Ett and H: are complex, H: being the complex conjugate of 14. 
Now E. = HoZ; so (13-71) becomes 

P =  j Re 114,11:Z ds =  IH012 Re Z ds  (13-72) 

Since Re Z = VA0/eo and ds = r2 sin 0 d0 dct.,̀ 

1 Vigo 
P = - — f  11412r2 sin 0 de del) 

2 fo o 
(13-73) 

where the angles 0 and 4, are as shown in Fig. 13-7 and IH4,1 is the absolute 
value (or amplitude) of the H field.  From (13-54) this is 

w/o/ sin 0 
IH•1 =  (13-74) 

Substituting this into (13-73), we have 

P = 1 \ii° (111 °1)2 f 2r ir sin' 0 d 0 dcp 
32  eo  0  Jo 

(13-75) 

Upon integration (13-75) becomes 

P =  War watts  (13-76) 
to  12T 

This is the power radiated by the short dipole. 
Substituting the power P from (13-76) into (13-68) yields for the radia-

tion resistance of the short dipole 

R = .‘fT° (131)2  ohms  (13-77) 
eo enr 

Since Nr—tgo/eo = 376.7  120w ohms, (13-77) reduces to 

R = 20(131)2 = 8072 ()2 ohms (13-78) 

Example.  Find the radiation resistance of a dipole antenna -/16 wavelength long. 
Solution.  From (13-78) 

R  800 ('Ay)' =, 7.9 ohms 

The radiation resistance of antennas other than the short dipole can be 
calculated as above provided the far field is known as a function of angle. 
Thus, from (13-68) and (13-72) the radiation resistance at the terminals 

Since Vpoiec. 120w =-'Ee/li, we may also write 

f  f 
p  =  1  r 

0 lEe  clif llr2 sin 0  dq 
24Gr 0 
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of an antenna is given by 

120T 
R = y  2 f 11112 ds  ohms  (13-79) 

where IHHII  = amplitude of far H field (amp/meter) 
Jo = amplitude of terminal current (amp) 

In Sec. 13-4 the radiation resistance of a small loop antenna was 
obtained by a vector potential integration.  If the far field of the loop is 
known, the radiation resistance can also be obtained from (13-79). 
If we integrate the complex Poynting vector ( = 11-E x H*) over a 

surface enclosing an antenna, we shall obtain, in general, both a real part 
equal to the power radiated and an imaginary part equal to the reactive 
power.  Whereas the real part, or radiated power, is the same for any 
surface enclosing the antenna, the imaginary, or reactive, power obtained 
depends on the size and shape of the surface enclosing the antenna.  For 
a large surface lying only in the far field the reactive power is zero, but 
for a surface lying in the near field it may be of considerable magnitude. 
In the case of a very thin linear antenna, it turns out that if the surface of 
integration is collapsed so as to coincide with the surface of the antenna 
the complex power so obtained divided by the square of the terminal 
current yields the terminal impedance (R  jX), where R is the radiation 
resistance. 
13-7. Directivity and Gain. The power radiated by an antenna is 

equal to the surface integral of the average Poynting vector over a surface 
enclosing the antenna, as given by (13-66).  Consider that the surface is 
a large sphere in the far field with the antenna at the center.  Then 
(13-66) may be written 

P = ffSrr2 sin 0 d0 thrt•  watts  (13-80) 

where S,. = radial component of average Poynting vector (watts/meter2) 
r = radius of sphere (meters) 

The angles 0 and do are as shown in Fig. 13-7.  Now Sr varies as 1/r2 so 
that the product Srr2 is independent of r. This product Si.r2 is called the 
radiation intensity U.  That is, 

Radiation intensity = U = Srr2 (13-81) 

Whereas 5,. has the dimensions of power per area and is expressed in watts 
per square meter, the radiation intensity U has the dimensions of power 
and is expressed in watts per unit solid angle (watts per square radian or 
steradian). 1 Thus, (13-80) becomes 

P= 55U d11  watts  (13-81a) 

where dit = element of solid angle (= sin 0 d0 c/c6 steradians). 

I Since radians are dimensionless, U has the dimensions of power. 
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Confining our attention, as above, to the far field, U is independent of 
r but, in general, is a function of angle (0 and 0). 
Antennas are often applied to concentrate energy in a certain direction. 

A quantitative measure of an antenna's ability to perform this function is 
given by its directivity, which is defined as the ratio of the maximum 
radiation intensity to the average radiation intensity. That is, 

maximum radiation intensity 
Directivity = D —  (13-82) 

average radiation intensity 

If the radiation intensity is the same in all directions from the antenna' 
and equal to Uo, the power radiated is 

P = if Uo d12 = 4rUo (13-83) 

Now Uo is also the same as the average radiation intensity.  Therefore 
the directivity is given by 

Um 
D =  (dimensionless)  (13-84) 

Uo 

where U„, = maximum radiation intensity 
Uo = average radiation intensity 

But from (13-83), Uo = P/4r so that (13-84) becomes 

4T (maximum radiation intensity) 
D —   (13-85) 

power radiated 
or, in general, 

D — 41-U m (13-86) 
ffU ciS1 

Any of the above relations (13-84), (13-85), or (13-86) may be used to 
calculate the directivity of an antenna. 

Example.  Calculate the directivity of a short dipole. 
Solution.  From (13-81) and (13-72) 

U = S,r2 6071H4,12r2 (13-87) 
where from (13-74) 

Substituting this in (13-87), 

an/ sin 
= 

III   
47cr 

U  607 n 2 sin' 
4wc 

and the maximum value of U is given by 

2 
Urn = 607 (" 1) 

47c 

(13-88) 

(13-89) 

(13-90) 

' An antenna having a uniform radiation intensity in all directions is called an 
isotropic antenna.  It is a hypothetical type.  The directivity of an isotropic antenna 
is unity.  This is the smallest value that the directivity can attain. 
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Introducing (13-89) and (13-90) into (13-88) yields for the directivity 

D =  2r 
sins de de, J o 

4v .1v  3 
8 2 

(13-91) 

Hence, the directivity of a short dipole is 4. That is, the maximum radiation intensity 
is 1.5 times as much as if the power were radiated uniformly in an directions. 

Directivity is based entirely on the shape of the far- (or radiated-) 
field pattern. The antenna efficiency is not involved.  However, the 
power gain, or simply the gain, of an antenna does involve the efficiency. 
It is defined as follows: 

maximum radiation intensity   
Gain = G — (13-92) 

maximum radiation intensity from a refer-
ence antenna with the same power input 

Any convenient type of antenna may be taken as the reference.  If the 
reference antenna is a lossless isotropic type (radiation intensity uniform 
in all directions), then the gain (designated Go) is given by 

U' = (13-93) 

where U:„ = maximum radiation intensity from antenna under considera-
tion 

Uo = radiation intensity from a lossless (100 per cent efficient) 
isotropic antenna with same power input. 

Now U:, is related to the radiation intensity U. of a 100 per cent efficient 
antenna by a radiation efficiency factor k. Thus, 

kU 
Go =  = kD  (13-95) 

Uo 

Thus, the gain of an antenna over a lossless isotropic type equals the 
directivity if the antenna is 100 per cent efficient (k = 1) but is less than 
the directivity if any losses are present in the antenna (k < 1). 
The directivity D is never less than unity.  Its value must lie between 

1 and infinity (1 < D < 00).  On the other hand, the gain (G or Go) may 
lie between 0 and infinity. 
13-8. Receiving Antennas and Aperture. A transmitting antenna 

radiates energy.  A receiving antenna, on the other hand, collects energy. 
In this connection it is often useful to consider that the receiving antenna 
possesses an aperture or equivalent area over which it extracts energy 
from a passing radio wave. 
Thus, suppose that a receiving antenna is immersed in the field of a 
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plane traveling wave as suggested in Fig. 13-13a. The antenna is termi-
nated in a load of impedance Zr = Rr  jXr. Let the effective aperture 
A. of the antenna be defined as the ratio of the received power to the 
power density (or Poynting vector) of the incident wave. The received 
power is equal to ITT, where I is the terminal current. Therefore 

A  /2R =  received power   96) (13 
, = power density of incident wave  - 

where A, = effective aperture (meters2) 
I = rms terminal current (amp) 
S = Poynting vector (or power density) of incident wave (watts/ 

meter2) 
Rr = terminal resistance (ohms) 

Replacing the antenna by its equivalent, or Thevenin, generator having 
an equivalent emf V and impedance ZA (= RA ± jX.4), we may draw the 
equivalent circuit shown in Fig. 13-13b. 
The terminal current I is 

V   
amp 

Zr ZA 

where V = rms emf induced by pass-
ing wave (volts) 

ZT = terminal or load imped-
ance (ohms) 

ZA = antenna impedance (ohms) 

(13-97) 41:1/ tF 
'Receiving 
antenna 

Direction of 

propagation of 

plane wave 

(a) 

Substituting (13-97) into (13-96), it  (b) 
follows that  Fla. 13-13. (a) Terminated receiving 

,o2 RT 

A° = SKR A ± Rr)2 ± (X A ± X)2] 
(13-98) 

antenna immersed in field of plane 
traveling wave and (b) equivalent 
circuit. 

Assuming that the antenna is lossless so that RA is entirely radiation 
resistance (RA = R,), the maximum power will be transferred to the load 
when 

XT = —X 4 (13-99) 
and 

RT = R,  (13-100) 

Under these conditions the effective aperture is a maximum, A,„„ as 
given by 

Vnir V'  
A  —  = 

4SR,2 4SR, 
(13-101) 

The effective aperture A. (or maximum effective aperture A.) has a 
definite, simply defined value for all antennas. 
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Example 1. Find the maximum effective aperture  of a short dipole antenna. 
Solution.  From (13-101) 

0̀2 
= 4SR, 

(13-102) 

The emf induced in the short dipole is a maximum when the dipole is parallel to the 
incident electric field E.  Hence 

The Poynting vector 
= El  volts  (13-103) 

E2 s = — 
ZII 

watts/meter2 (13-104) 

where Zo intrinsic impedance of medium (air or vacuum) (= VIZTe0).  From 
(13-77) the radiation resistance 

(1302 R, =  ohms  (13-105) 
Se  6w 

Substituting these values for 1.), S, and /I, into (13-102), the maximum effective 
aperture of a short dipole is 

3 
A.,  — X1 = 0.119)0  (13-106) 

Thus, regardless of how small the dipole is, it can collect power over an aperture of 
0.119 wavelength2 and deliver it to its terminal impedance or load.  It is assumed 
here that the dipole is lossless.  However, in practice, losses are present due to the 
finite conductivity of the dipole conductor so that the actual effective aperture is 
less than 

There is an interesting relation between the maximum effective aper-
ture and the directivity of an antenna.  If the directivity of an antenna 
is increased, the aperture is increased in direct proportion.  It follows 
that the directivities, D1 and D2, of two antennas are in the same propor-
tion as their maximum effective apertures, Acmi and A  Thus 

or 

D I A e„,i 
D2 — A em2 

A e,,,1 = A em 2LI 

(13-107) 

(13-108) 

If antenna 1 is isotropic, D1 = 1 and the maximum effective aperture of 
an isotropic antenna is then given by the ratio of the maximum effective 
aperture to the directivity of any antenna (antenna 2).  We have 
previously calculated the maximum effective aperture and the directivity 
of a short dipole.  Introducing these values into (13-108) gives 

6X2  X2 

A,,,,1 =   = 42r (13-109) 

Substituting this back in (13-108), we obtain the relation that the 
directivity of any antenna is equal to 47/X2 times its maximum effective 
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aperture.  That is, 

D = —47 A x2  4m, (13-110) 

Or the maximum effective aperture of any antenna is equal to X2/4r times 
its directivity.  That is, 

x2 
Ae„, = — D = — D X2  (13411) 

4r  4r 

Example 2.  An antenna operating at a wavelength of 2 meters has a directivity 
of 100.  Find the maximum effective aperture of the antenna. 
Solution.  From (13-111) the maximum effective aperture of the antenna is 

100 X 4 
A .,,, =  =  31.8 meters2 

4T 

13-9. The Antenna as a Terminated Transmission Line.  In this 
section it is shown that an antenna behaves in certain respects like a 
section of transmission line.  Consider, for instance, the coaxial trans-
mission line shown in longitudinal section in Fig. 13-14a.  This line has 
Inner  truter 
conductor\ r conductor 

TEM 
mode 

•   
_ •  

Energy 
flow 

•  420.---

t br"-E 

TEM 
mode 

A 

Energy flow 

Coaxial line 

A 

TEM 
mode 

(a)  (b) (c) 

A 

TEM 
mode 

Ground plane 

Antenna 

Outer 
region 

TEM  Antenna 
mode  region 

(d) 
FIG. 13-14. Coaxial transmission line (a) with steps in transition to stub antenna (d). 

an abrupt discontinuity at the point A, the diameter of the outer con-
ductor being increased at this point.  As a result, energy fed into the line 
from the bottom is partially reflected at A, producing a standing wave 
below A.  This is suggested in the figure by the arrows, which indicate 
the direction of energy flow.  Thus, below A there is energy flowing 
upward and also reflected energy flowing downward (away from A). 
Above A the energy flow is only upward, it being assumed that the line 
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is infinitely long.  Above and below A the field in the line is of the TEM 
(transverse electromagnetic) type, the direction of the electric and mag-
netic field lines E and H being as suggested in Fig. 13-14a. 
Suppose now that the inner conductor of the coaxial line is ended at the 

point B, as shown in Fig. 13-14b.  If the line is energized from the bottom 
as before, there will now be a reflection not only at A but also at B. 
Furthermore, there will be no transmission of energy above B unless the 
conductor diameter is sufficient to accommodate a higher-order mode. 
Assuming that the conductor diameter is sufficient, the mode excited is 
of the TM (transverse magnetic) type as portrayed in Fig. 13-14b. 
Below A the mode is still of the TEM type. This is also the predominant 
mode between A and B. 
Let us now proceed a step further and consider the situation portrayed 

by the longitudinal section in Fig. 13-14c, where the outer conductor 
flares out into a conical, or funnel-shaped, surface.  Here the situation is 
much as in Fig. 13-14b except that the wave above B spreads out into a 
larger region as it moves upward. 
Finally, suppose that the outer conductor is formed at A into an 

infinite flat sheet, as indicated in Fig. 13-14d.  We have here arrived at a 
familiar antenna arrangement which may be described as a stub (or 
unipole) antenna of length 1 with ground plane, the antenna being 
energized by a coaxial transmission line. The wave spreads out above A 
and is radiated into half of space. There is still a reflection at A. There 
is also a reflection at B although in this case it is more convenient to 
think of the reflection as occurring in varying amounts over an imaginary 
hemispherical surface of radius 1 with center at A. This hemispherical 
surface may be regarded as the boundary between the " antenna region" 
and the "outer region" as indicated in Fig. 13-14d. Below A the wave 
Is of the TEM type. This is also the predominant mode in the antenna 
region.  However, in the outer region the wave is of the TM type.' 
If the wave reflected at B (or at the boundary hemisphere) arrives back 

on the coaxial line at A with equal magnitude but opposite phase as com-
pared with the wave reflected at A, the net reflection at A is zero and all 
of the energy traveling up the coaxial line continues beyond A into the 
antenna region. The antenna is then said to be matched to the line 
(SWR = 1 below A).  In order that the reflections be in opposite phase 
at A, the antenna length 1 may be adjusted to  wavelength.2 With 1 

1 In a coaxial transmission line energy is conveyed in the dielectric medium between 
the conductors.  The conductors serve only to guide the energy. Likewise, the con-
ducting structure of an antenna guides the energy in the surrounding dielectric 
medium during its transition from a transmission-line mode to a radiated mode. 

2 In going from A to B and back to A the wave travels  wavelength and hence is 
in opposite phase with respect to the wave reflected at A.  Owing to end effects the 
length required is actually a few per cent less than  wavelength. 
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fixed, even a slight change in frequency puts the reflections in other than 
phase opposition. Thus, although the standing-wave ratio may be 
unity at some frequency F, it tends to increase as the frequency departs 
from F. However, there may be a certain frequency band over which the 
SWR remains below some acceptable value. This is called the impedance 
band width of the antenna. The band width of a thin-stub antenna, as in 
Fig. 13-14d, is small. By increasing the thickness of the stub the band 
width may be increased. This is discussed further in the next section. 
Referring again to Fig. 13-14d, we may imagine that the space outside 

the boundary sphere acts like a terminating impedance ZL placed between 
the end of the antenna and the flat conducting sheet, as suggested in Fig. 
13-15a.  Proceeding a step further, the antenna itself may be regarded as 
a transmission line of length 1, the equivalent circuit being as indicated in 

Fig. 13-15b. A stub of uniform cross 
section has a nonuniform character-
istic impedance.  Hence, the equiva-
lent transmission line is drawn as a 
diverging (nonuniform) line.  A coni-

(a)  cal-stub antenna, as in Fig. 13-16a, 

Ground 
plane 

(b) 

Ground l 
plane 

Conical 
antenna 

(a) 

Transmission 
line  Antenna  (b) 

Flo. 13-15. (a) Stub antenna of uniform  Fla. 13-16. (a) Conical antenna and (b) 
cross section and (b) equivalent trans-  equivalent transmission line. 
mission line. 

Z„ 

however, has a uniform characteristic impedance as indicated by the 
equivalent line in Fig. 13-16b.  If the terminating or load impedance 
ZL (equivalent to the boundary hemisphere) and the characteristic 
impedance Zk of the antenna are known, the input impedance of the 
antenna at A may be calculated using ordinary transmission-line rela-
tions, such as (11-71).' 
Referring to Figs. 13-15b and 13-16b, the antenna has been replaced 

by an equivalent transmission line which acts as a transformer or match-

' This procedure has been used by Schelkunoff to calculate the input impedance of 
conical antennas; S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand 
Company, Inc., New York, 1943, Chap. 11. 
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ing section between the terminals and space as represented by a load ZL. 
Thus, the antenna itself may be regarded as a transformer (or matching 
section) between a two-terminal input and space or, in the receiving case, as 
a transformer between space and the terminals. 
13-10. Shape-Impedance Considerations. The calculation of the 

input (or terminal) impedance of antennas of even the simplest shape is 
tedious at best, while for antennas of complex shape the calculation may 
be of prohibitive difficulty. Fortunately it is possible in many cases to 

Irifler 
conductor 

Outer 
conductor 

(b) 

Ground  101 
plane 

71-- 1 
(a)  (c)  (d)  (e)  (f) 

Ft°. 13-17. Derivation of thin-stub antenna (f) from basic broad-band type (a). 

obtain a good qualitative idea of the impedance characteristics of an 
antenna from its shape. This morphological approach may be illustrated 
with the aid of the antennas portrayed in Fig. 13-17.  At (a) a coaxial 
transmission line (shown in longitudinal section) is flared out, with the 
ratio D/d of the conductor diameters maintained constant. Thus the 
characteristic impedance of the line is constant.  If the taper is gradual 
and D is large where the line ends, this device radiates with little or no 
reflection on the line at frequencies ranging from some lower or cutoff 
frequency to an indefinitely high frequency. This is the ultimate in band 
width. At frequencies above the cutoff frequency the impedance tends 
to approach a constant value equal to the characteristic resistance Ro of 
the transmission line as indicated by the point (Ro, 0) on the impedance 
diagram in Fig. 13-18. 
By bending the outer conductor into a ground plane having the shape 

of a volcanic crater, shown cut away in Fig. 13-17b, with inner conductor 
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of inverted teardrop form, the band width is somewhat reduced, but 
above the cutoff frequency the input impedance still tends to remain 
close to the characteristic resistance of the feed line. 
Modifying the antenna further to the form of Fig. 13-17c, the imped-

ance shows greater variation with frequency, with an impedance fre-
quency curve as suggested by curve C in Fig. 13-18.' Below the lowest 
frequency (F) at which the impedance is a pure resistance the curve tends 
rapidly toward a small resistance and large negative reactance. The 

no. 13-18. Terminal-impedance diagram. A point on the diagram gives the resis-
tance R and reactance X of the terminal impedance 2  R  jX) at a particular 
frequency. 

frequency F, or one somewhat below it, may be regarded as the cutoff 
frequency for the antenna. As the frequency is increased above F the 
impedance frequency curve spirals in toward the characteristic resistance 
value of the transmission line. This impedance frequency behavior is 
very similar to that for an open-circuited transmission line having con-
siderable loss. 
With each further modification of the antenna to the forms of Fig. 

13-17d, e, and f the impedance variation with frequency increases, the 
impedance of the thin stub of Fig. 13-17f varying with frequency over a 
wide range as suggested by the curve f (Fig. 13-18).2 This impedance 
frequency behavior is very similar to that for an open-circuited trans-
mission line having but small loss. 

1 The maximum resistance may be a few hundred ohms. 
2 The maximum resistance may be many thousands of ohms. 
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If the gradually flared antenna of Fig. 13-17a is regarded as the basic 
form (widest band type), the thin stub of Fig. 13-17f represents the most 
degenerate form (narrowest band type). As we depart more from the 
basic form, the discontinuity in the line becomes more abrupt at what 
eventually is the junction of the ground plane and transmission line. 
This discontinuity causes some energy to be reflected back into the line. 
The discontinuity and reflection at the end of the antenna also increase 
for thinner antennas.  At some frequency the two reflections may com-
pensate, as discussed in Sec. 13-9, but the band width of compensation is 
narrow.  Antennas with large and abrupt discontinuities have large 
reflections and act as reflectionless transformers or matching sections only 
over narrow frequency bands, where the reflections cancel.  Antennas 
with discontinuities that are small and gradual have small reflections 
and are, in general, relatively reflectionless transformers over wide fre-

quency bands. 
The antennas of Fig. 13-17 are 

Cone  of the unbalanced (unipole) type. 

1 > 1   stance, the biconical dipole antenna 

also applicable to balanced or sym-
(a) 

metrical (dipole) types.  For in-

However, the conclusions reached are 

Biconical  of Fig. 13-19a has a greater band 
antenna  width than the thin dipole type of 

Fig. 13-19b.  It is to be noted that if 
a conducting sheet (or ground plane) 
is placed coincident with the image 
plane (plane of symmetry) one cone 

Thindipole antenna  I I  (b)  in Fig. 13-19a is equivalent to a coni-
cal antenna as in Fig. 13-17d except 
for details of the method of feed. 
Similarly one-half of the dipole 

Fm. 13-19. Biconical and thin dipole  antenna of Fig. 13-19b (with ground 
antennas. 

sheet at the image plane) is equiva-
lent to the stub (unipole) antenna of Fig. 13-171  It should be noted 
that the terminal impedance of a dipole antenna is twice the terminal 
impedance of the corresponding unipole type. 
13-11. Receiving-Transmitting Considerations. In the foregoing 

sections we have discussed both transmitting antennas that radiate 
energy and receiving antennas that collect energy.  In this section it is 
shown that the pattern, directivity, aperture, and impedance of an 
antenna are the same when it is used for either transmission or reception. 
However, it is also pointed out that the current distribution on the 
antenna is, in general, not the same when transmitting as it is when 
receiving. 

1-4—Image plane 
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In order to demonstrate that the pattern, directivity, etc., are the same 
for both transmission and reception, it is necessary to show that reciproc-
ity applies to antennas.  Thus, consider two antennas 1 and 2, as in Fig. 
13-20, with media everywhere that are linear, 
passive, and isotropic.  Since the antennas  \ntenna 2 
have terminals and reciprocity is to be dem-
onstrated with respect to the two sets of 
terminals, let the antennas and the linear, 
passive, and isotropic media be replaced by  Antenna 1 
an equivalent network of linear, passive, and 
bilateral impedances.  This network may  FIG.  13-20. Two  antennas 

used in discussion of reci-
then be reduced to an equivalent T network, 

procity theorem. 
as in Fig. 13-21.  Finally, reciprocity is easily 
demonstrated for this network by simple circuit analysis' and it follows 
that if an emf VI applied at the terminals of antenna 1 (see Fig. 13-20) 
produces a current 112 at the terminals of antenna 2, then a current 121 equal 

'2 

Terminals 
of 

antenna 1 

•  • 

Terminals 
of 

antenna 2 

Flo. 13-21. Equivalent T network for two coupled antennas. 

to 112 (in both magnitude and phase) will be obtained at the terminals of 
antenna 1 when an emf U2 equal to V is applied at the terminals of antenna 
2.2 This is the reciprocity relation or theorem for antennas.  In symbols it 
states that 

402 
112 /21 

(13-112) 

The ratio '01//12 is a transfer impedance, being the ratio of the emf 
applied at antenna 1 to the resulting current at antenna 2. Thus, 

VI 7 
= 12 

112 
(13-113) 

Likewise, the ratio '02/121 is a transfer impedance, being the ratio of the 
emf applied at antenna 2 to the resulting current at antenna 1. Thus, 

r  =  Z2I  (13-114) 
21 

I See, for example, J. D. Kraus, "Antennas," McGraw-Hill Book Company, Inc., 
New York, 1950, p. 253. 
2 It is assumed that the emfs are of the same frequency. 
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From the reciprocity relation (13-112) it follows that 

Z12 =  Z21  (13-115) 

It is to be noted that, in general, the transfer impedances are complex. 
Pattern.  If all media involved are linear, passive, and isotropic, reci-

procity holds, and it follows directly that under these conditions the trans-
mitting and receiving patterns of an antenna are identical. Pattern here 
may refer either to the field pattern or to the power pattern, which is pro-
portional to the square of the field pattern.  Confining our attention to 
the field pattern, this is measured for a transmitting antenna, as antenna 

Generator 

A 

Nt Current 
meter 

Observation--
circle 

Fm. 13-22. Pattern measurement on observation circle. 

A in Fig. 13-22, by observing its field intensity with a receiving antenna 
B at points around an observation circle having antenna A at its center.' 
The reading of the current meter at the terminals of antenna B is a 
measure of the field intensity at the observation circle. If the measure-
ment procedure is reversed by interchanging the generator and current 
meter (Fig. 13-22) so that antenna B on the observation circle transmits 
and antenna A receives, it follows from the reciprocity theorem that the 
field pattern of antenna A, observed by moving antenna B as before, will 
be identical to that obtained when antenna A is transmitting. 
Directivity and Aperture.  Directivity was discussed in Sec. 13-7 for a 

transmitting antenna.  In general, the directivity is equal to 

D 47U„,  
ffUdcz 

The same result is obtained by keeping the position of antenna B fixed and rotating 
antenna A about its center point. 

(13-116) 



SEC. 13-12]  ANTENNAS  515 

where U„, = maximum radiation intensity 
U = radiation intensity 
dl = sin 0 d0 d4) = element of solid angle 

Now U is a function of angle (0 and 0, see Fig. 13-7) so that we can write 

U = U„,f(0, 4))  (13-117) 

where f(0,  = normalized relative space (three-dimensional) power pat-
tern of antenna (equal to field pattern squared).  Introducing (13-117) 
into (13-116), the directivity is 

D —   
!Me, ) 6/2 

(13-118) 

Hence, D is dependent only on the shape of the power pattern.  As shown 
in the preceding subsection, an antenna has the same pattern for both 
transmission and reception.  Hence, the directivity determined with an 
antenna's transmitting pattern is identical with the directivity deter-
mined with the antenna's receiving pattern.  Accordingly, the term 
directivity can be applied to both transmitting and receiving antennas, 
the directivity of an antenna being the same for both situations. 
According to (13-111) the maximum effective aperture A.„, of an 

antenna is equal to the directivity of the antenna times a constant. 
Hence, the term maximum effective aperture may be applied to both 
transmitting and receiving antennas, it being understood that the maxi-
mum effective aperture of a transmitting antenna is the same as its 
maximum effective aperture when receiving. 
Impedance.  When an antenna is transmitting, it may be excited at 

only one point.  However, when used for reception the antenna is 
excited over its entire extent by the received wave.' As a consequence 
the current distribution on the antenna is, in general, not the same for 
transmission and reception.  However, the antenna always behaves as 
the same circuit regardless of the mode of excitation, so that the impedance 
of an antenna is the same for transmission and reception. This means 
that if the terminal impedance of a transmitting antenna is Zr, the load 
impedance required for maximum power transfer when the antenna is 
receiving is equal to its complex conjugate Z. 
That Zr must be the same for transmission and reception may also be 

seen by considering a circuit or network of many meshes.  Although the 
currents in the network are dependent on the location or locations of the 
emfs, the circuit impedances are independent of the distribution of the 
emfs. 
13-12. Network Representation.  In this section the usefulness of 

the four-terminal network representation of Fig. 13-21 is illustrated in 

1 Furthermore, the manner in which the receiving antenna is excited depends on 
the direction of the incident wave. 
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connection with the development of an equation for the effect of one 
antenna on the terminal impedance of another antenna. 
Let us consider the case of any two antennas. The impedance Z„, 

in Fig. 13-21 represents the mutual impedance' of the antennas.  Further, 
let the current at the terminals of antenna 1 be Ii (flowing upward at the 
terminals, to the right into the network, and back through Z„,) and the 
current at the terminals of antenna 2 be /2 (flowing upward at the termi-
nals, to the left into the network, and back through Z„,).  Also let 

and 

where Z11 

Z22 
Then, from Kirchhoff's law we have 

= /iZil  /2Z„, 
and 

= Z11 — Z,.  (13-119) 

Z2 = Z22 -  Z m 

= self-impedance of antenna 1 (that is, 
antenna 1 when located remote from 
objects) 

= self-impedance of antenna 2 

V2 = 12Z22  /1 ZNi 

(13-120) 

the impedance of 
other antennas or 

(13-121) 

(13-122) 

where '01 = emf applied at the terminals of antenna 1 
V2 =  emf applied at the terminals of antenna 2 

Dividing (13-121) by Ii we obtain for the terminal impedance of antenna 1 

, 
Zrt =  =  Z11 1- -r  (13-123) 

Li 

Thus, if /2Z„,//1 is appreciable compared to Z11 the presence of antenna 2 
produces an appreciable effect on the terminal impedance of antenna 1. 
Similarly, dividing (13-122) by /2 we have for the terminal impedance 

of antenna 2 
V2  7 

ZT2 =  7 =  -r- - 
/2  /2 

If antenna 2 is short circuited (V2 = 0) it follows that 

Z.2 
" Ti =  Z II — 

L,22 

(13-124) 

(13-125) 

Now the mutual impedance of two antennas becomes less as the distance 
between the antennas is increased.  Hence, it follows from (13-125) that 
if antenna 2 is moved far away from antenna 1, Z„, approaches zero and 

'The mutual impedance equals the negative of the ratio of the emf at the terminals 
of antenna 2 (when it is open circuited) to the terminal current of antenna 1 (that is, 
Z. = —1)2//i with antenna 2 open circuited). 
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the input impedance of antenna 1 approaches its own self-impedance. 
If losses are zero the real part of the self-impedance is then equal to the 
radiation resistance of the antenna (that is, Re Z11 = radiation resistance). 
The mutual impedance Z. of two antennas is usually a complicated 

expression involving the size, separation, and orientation of the antennas. 
However, in the case of two short dipole antennas the relation is relatively 
simple and illustrates clearly the effect of these variables. Thus, as indi-
cated in Prob. 13-10, the mutual impedance of two short dipoles can be 
resolved into three factors. The first is a magnitude factor involving the 
length of the dipoles and their separation, the second is an orientation 
factor, and the third is a periodic or complex factor (with real and 
imaginary parts) involving the separation of the dipoles. 

PROBLEMS 

13-1. Show that the far-field pattern of a small square loop is given by 

E  12001/ I sin 0 A 
X2 

where 111 = retarded current on loop, 0 = angle from axis of loop, A = area of loop, 
and X = wavelength.  Consider that the loop is made of four short dipoles as in 
Fig. 13-4.  The axis of the loop coincides with the z axis (normal to the plane of the 
loop).  The pattern to be obtained is that in the x-z plane. 
13-2. Using a Poynting-vector integration, show that the radiation resistance of a 

small loop is equal to 

3200 (—A )1 ohms 
X2 

where A = area of loop and X = wavelength. 
13-3. Show that the instantaneous value of the far electric field of a short dipole is 

.607/o 
Es  b, sin 0 cos (cut — fir)  volts/meter 

where h = length of dipole in wavelengths ( 
13-4. Develop the expression for the far-field pattern of a thin linear dipole antenna 
wavelength long with the current in phase over the entire length of the antenna but 

with a sinusoidal variation in magnitude.  The current is a maximum at the center of 
the antenna and zero at the ends.  Calculate and plot the relative field pattern. 
13-5. An antenna has a unidirectional power pattern given by U = cos 0, where 

is as in Fig. 13-7.  U has a value only for 0 < 0< 7/2 and is zero elsewhere.  Find 
the directivity of the antenna.  Ana.: D = 4. 
13-6. An antenna has a far-field pattern expressed by E = cos 20 cos 0. Find the 

directivity of the antenna. 
13-7. An antenna that is a 90 per cent efficient radiator has a gain of 250.  Find the 

maximum effective aperture of the antenna. 
13-8. Show that the ratio of the maximum power P, in the load of a receiving 

antenna to the power P, radiated by a transmitting antenna is equal to 

P,    
Pt rsX° 
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where A.„„ = maximum effective aperture of receiving antenna, A,„,, = maximum 
effective aperture of transmitting antenna, r = distance from receiving antenna to 
transmitting antenna, and X = wavelength.  This is the Friis transmission formula. 
It is assumed that both antennas are situated in free space and are remote from other 
objects. 
13-9. Show that the maximum mutual impedance Z„, of two antennas separated by 

a large distance is Z„, = (Vr)11-12 Vka7-2)/2/rrx, where Di = directivity of antenna 1, 
D2 = directivity of antenna 2, RI = radiation resistance of antenna 1, R2 = radiation 
resistance of antenna 2, and rx = r /X = separation of antennas (wavelengths).  It 
is assumed that the receiving antenna is terminated for maximum power transfer. 
13-10. Demonstrate that the mutual impedance of two short dipoles of length I 

separated by a distance r (Fig. 13-23) is equal to 

z.  = (607/2) 
(sin 8 sin 8') (sin  j cos i3r) k rX 

Note that the first factor on the right-hand side is a magnitude factor, the second an 
orientation factor, and the third a periodic, or complex, factor with real and imaginary 

Fla. 13-23. Two short dipole antennas of length 1 and separation r for Prob. 13-10. 

parts.  Note also that when r = nX/4, where n = 1, 3, 5 . . . , Z„, is real, while if 
r = nX/4, where n = 2, 4, 6 . . . , Z„, is imaginary.  The angles 8 and 8' are as in 
Fig. 13-23.  Both dipoles lie in the same plane.  It is assumed that X >> 1 and r >> 1 
and also that the current is of uniform magnitude and constant phase on each dipole. 
13-11. The variation with angle and time of the far-field components from an 

antenna is given by E',/, = sin 8 cos c6 sin 0.11 and Ee = sin 8 sin 4) cos wt.  Find the 
directivity of the antenna. 
13-12. Show by means of an equivalent network that at the terminals of a receiving 

antenna the equivalent or Thevenin generator has an impedance Z22 — (Z„.2/Zil) and 
an emf '01Z./Zii, where Zii = self-impedance of transmitting antenna, Z22 = self-
impedance of receiving antenna, Z„, = mutual impedance, and V I = emf applied to 
terminals of transmitting antenna.  What load impedance connected to the terminals 
of the receiving antenna results in maximum power transfer? 



CHAPTER 14 

BOUNDARY-VALUE PROBLEMS 

14-1. Introduction. The solution of an electromagnetic field problem 
consists, in general, of finding the space and time variation of the electric 
and magnetic fields appropriate to the particular configuration of dielec-
tric and conducting objects under consideration.  More specifically a 
solution is obtained to Maxwell's equations or the wave equation, and the 
arbitrary constants of the solution are then evaluated so as to satisfy the 
boundary conditions imposed by the dielectric and conducting objects 
involved.  Because of the important part that the boundary conditions 
play, the problems are often called boundary-value problems. 
The solution of a boundary-value problem is usually facilitated if it is 

set up in a coordinate system in which the boundaries can be specified in a 
simple manner. For instance, a problem involving a rectangular object 
is usually most readily handled with rectangular coordinates, a cylindrical 
object by cylindrical coordinates, a spherical object by spherical coordi-
nates, an ellipsoidal object by elliptical-hyperbolic coordinates, etc. The 
boundaries in many practical problems are not simply expressed in any 
coordinate system, and often in such cases resort must be made to 
methods that are not purely analytical.  (See the second from the last 
paragraph of Sec. 14-5.) 
In this chapter we shall consider a number of electrostatic field prob-

lems and their solution. In the examples given it is assumed that space 
is free from charge (p = 0) so that the problem becomes one of finding a 
solution to Laplace's equation that satisfies the boundary conditions. 
Since Laplace's equation may be regarded as a special case of a wave 
equation (where co = 0), it is instructive, before proceeding to the static 
cases, to consider methods of solution for the more general wave-equation 
case where co is not zero. This is done in Secs. 14-2 through 14-4, solutions 
to the scalar wave equation being obtained in rectangular, cylindrical, 
and spherical coordinates. Then in the sections that follow we consider 
the static case (0) = 0), where the wave equation reduces to Laplace's 
equation, and work through a number of examples. The use of complex 
functions and conformal transformations for two-dimensional problems 
are also considered. 

519 
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14-2. Solution of Wave Equation in Rectangular Coordinates.  In 
Chaps. 9 to 12 we have dealt with wave equations of various forms, the 
most general type considered being the vector wave equation for a con-
ducting medium (10-83c).  For the problems of this chapter the wave 
equation of interest is the scalar wave equation in the electric scalar 
potential V.  Assuming that the medium is lossleas, this is (see Prob. 
14-1), 

V2V + )92V = 0  (14-1) 
where /32 = co2ge 

w = 27rf (where f = frequency) 
= permeability of medium 

e = permittivity of medium 
Harmonic variation of V with time is assumed.  In static situations 
/3= 0 so that (14-1) reduces to Laplace's equation 

V2V = 0  (14-1a) 

Equation (14-1) is a second-order linear partial differential equation. 
Expanding it in terms of rectangular coordinates, we have 

= _my ax2  ay2  az2_____   

Using the method of separation of variables to solve (14-2), let 

V = XYZ 

(14-2) 

(14-3) 

where X = a function of x only 
Y = a function of y only 
Z = a function of z only 

Substituting (14-3) in (14-2) yields 

v7 2d  X d2Y  d2Z 
dx2 + XZ  ± X Y  = —02X YZ  (14-4) 

Dividing by X YZ, to separate the variables 

1 d2X j_ 1 d2Y j_ 1 d2Z 
X dx2 dy2 -1- 2 dz2 = 

Since the sum of the three terms on the left-hand side is a constant and 
each variable is independent, each term must equal a constant. That is, 
we may write 

or 

1 d2X 
X dx2 = 

d2X 
dx2 

(14-5) 

(14-6) 

ai2X  (14-7) 
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and similarly 
d2Y 

= a22Y  (14-8) 
dy2 

and 
d2Z 

= a32Z  (14-9) 
dz2 

where 
a1 2  a2 2  a3 2 =  _ 02  (14-10) 

A solution of (14-7) is 
= leo,.  (14-11) 

where C1 and C2 are arbitrary constants that must be evaluated from the 
boundary conditions.  Either term in (14-11) is a solution, or the sum is a 
solution as may be verified by substituting the solution in (14-7). 
It follows that a general solution of (14-2) is 

V = (Cie"'  C2e-''')(Clealv  C4e-aw)(C3e0 + CV-au)  (14-12) 

where C1, C2, etc., are constants. 
14-3. Solution of Wave Equation in Cylindrical Coordinates.'  Let 

the wave equation of the scalar 
potential (14-1) be expanded in terms 
of cylindrical coordinates (see Fig. 
14-1).  That is, 

a2V  1 aV  1 82V 
ap2 ; op I-  -pi 30 2 I-  az2 

=  —02V (14-13) 

Using the method of the separation 
of variables, let 

V = Rcl,Z  (14-14) 

where R = a function of p only 
= a function of  only 

Z = a function of z only 
Substituting (14-14) in (14-13) yields FIG. 14-1. Cylindrical coordinates. 

1 d2R  1 dR  1 d24, 1 d2Z 
R dp2 pR dp + 01,2 do2  iY  —#2  

The last term on the left-hand side is a function of z only; so we can write 

1 d2Z  2 

dz2 = al 

I See, for example, A. B. Bronwell and R. E. Beam, "Theory and Application of 
Microwaves," McGraw-Hill Book Company, Inc., New York, 1948, p. 301. 

(14-15) 

(14-16) 
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or 
d2Z = a,2Z 
dz2 

where a, = a constant.  A solution of (14-17) is 

Z = Cie''  Cze-a's 

where CI and C2 are arbitrary constants.  Substituting a,2 for the last 
term on the left-hand side of (14-15) and multiplying by p2, we have 

p2 d2R  1 d24, 
(14-19) -r .1-7? -d;  -r- d-70  (a.2  41%32 =  0 

The third term on the left-hand side is a function only of (1); so we can 
write 

d24) 
=  pat 

dO2 
(14-20) 

where v = a constant.  A solution of (14-20) is 

= Ca cos PO ±  C4 sin yip  (14-21) 

Now substituting — v2 for the third term on the left-hand side of (14-19) 
and multiplying by R yields 

d2R dR 
p  2 d p 2  p   + Ras 2 02) p 2  p21 R = 0  (14-22) 

This is a form of Bessel's equation. Let 

k2 = (a.2 + )32 ) 

and 
u = kp  (14-24) 

Using these relations, (14-22) becomes 

2 d2R dR 
u du2 u d—u  (142  — p2)R = 0 (14-25) 

This is the standard form of Bessel's equation.  A solution is 

R = C5.I,(kp)  C I _,(kp)  (14-26) 

where v has nonintegral values, or 

R = C 5.1 .(k p)  C 6Ar  n(k p)  (14-27) 

where' v = n = integer 
J(kp) = Bessel function of first kind and of order n, with argument kp 
Nn(kp) = Bessel function of second kind and of order n, with argument 

kp 

I See Appendix, Sec. A-11, for a discussion of Besse] functions; also Prob. 14-12 for 
an application. 

(14-23) 
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It follows that a general solution of (14-13) (for v = n) is 

V = Z(1)R = (Cies'  C 2e-a's)(C a cos n4) + ('4 sin n4))1C n(kP) 
+ C 6N „(kp)]  (14-28) 

where CI, C2, etc., are constants. 
14-4. Solution of Wave Equation in Spherical Coordinates.' Starting 

once more with the wave equation of the scalar potential (14-1), let us 
expand this relation in terms of 
spherical coordinates (see Fig. 
14-2).  That is, 

1 82v   1 82v, 
ap  P 2 -1-  — 2 802  -1-  p 2  sin2 0 00 3 

, 2 av , cot e av 
-r —  
P aP  P 

= —132V (14-29) 

Using again the method of separa-
tion of variables, let 

V = RIM)  (14-30) 

where R = a function of p only 
P = a function of 0 only 
cl) = a function of q!) only 

Substituting (14-30) in (14-29), we obtain 

1 d  2 dli\   1   d r a idP\1 
p2R 71; \P dp 1  Pp2 sin 0 d0 Ls'n " van 

Fla. 14-2. Spherical coordinates. 

1   d24, 
—  /32 (14-31) p24, sin2 0 dos 

Multiplying by p2 and setting terms that are a function only of p equal to 
a.% we have 

ct(p2 daRp)_ (ap2  02p2)R  = 0 

Let 
a,2 = n(n + 1) 
x = 

where a, = a constant and n = an integer. 
Using these relations, (14-32) becomes 

d2R  dR 
x2 —dx2 + 2x —dx + [x2 — n(n + 1)]li = 0 

(14-32) 

(14-33) 
(14-34) 

(14-35) 

A. B. Bronwell and R. E. Beam, "Theory and Application of Microwaves," 
McGraw-Hill Book Company, Inc., New York, 1947, p. 311. J. A. Stratton, 
"Electromagnetic Theory," McGraw-Hill Book Company, Inc., New York, 1941, 
p. 399. 
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Let 
R = x-iW  (14-36) 

Then 

2 d2W  dW  1 
x  x  + [x2  n(n  1) — -411V = 0  (14-37) 

This is Bessers equation of order n  A solution is 

W = Ci./ (x)  C2J_(..1.)(x)  (14-38) 

But R = W/ VX, and x = Op; so R = WIV;57p.. Therefore 

R = C3 .‘121 .1„+;(13p)  (— 1)-( a-"C4 2kr Na+1(flP)  (14-39) 

and 
R = Cajn(i3p)  (-1)-( "--°C4n.(13p)  (14-40) 

where j, and n, are spherical Bessel functions.' 
Now introducing a„' for terms which are a function of p only and 

multiplying by sin' 0, (14-31) reduces to 

sin 0 d [sin  (dP)1  
P  -a] ±  +  2 0 a,2 = 0  (14-41) 

The second term is a function of (fr only.  Thus we can write 

d2c1) 
= —  (14-42) 

de 

where m = a constant.  A solution of (14-42) is 

= C5 cos 7n4) + C6 sin nuts  (14-43) 

where m is an integer if V repeats every 2r as a function of 4). Substi-
tuting — m2 for the second term of (14-41), multiplying by P, and dividing 
by sin2 0 yields 

OP  1  dP (ap2  .m2 
d e 2  tan 0 d0 sm2 0) p  =  0 (14-44) 

This is called the associated Legendre equation.  If we put 

a,2 = n(n  1)  (14-45) 
where n = integer and 

x = cos 0  (14-46) 
Eq. (14-44) can be written 

d2P  dP  m2 
— 2x  [n(n  1) —  x2 1 P = 0 (14-47) 

I See Appendix, See. A-13. 
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If V is independent of 4), m = 0 and we have 

dP 
(1 — x2)  — 2x Tx  + n(n  1)P = 0  (14-48) 

This is Legendre's equation. 
A solution of the associated Legendre equation (14-44) (for m = integer) 

is 
P = CsP„'"(cos 0) ± C8Q.'"(cos 0)  (14-49) 

where' P„'"(cos 0) = associated Legendre function of the first kind 
Qnm(cos 0) = associated Legendre function of the second kind 

n = integer 
A solution of Legendre's equation (14-48) (for n = integer) is 

P = CP„(cos 0) + CV26(cos 0)  (14-50) 

where2 P,,(cos 0) = Legendre function of the first kind 
Q„(cos 0) = Legendre function of the second kind 

It follows that a general solution of (14-29) is 

V = IMP -= [C8j6(4)  C 0,6(3p)1(C cos m4) 
+ C6 sin m40)[C7Pn'n(eos 0) -I- CsQm(cos 

where Cs, C4, etc., are constants. 
The above general solution of the wave equation in spherical coordi-

nates and the solutions of the preceding sections in rectangular and 
cylindrical coordinates are not directly applicable in many special prob-
lems.  However, they illustrate the method of analysis for the most 
general type of problem. 
In the next four sections examples are given to illustrate the methods of 

solution of some typical boundary-value problems involving static fields 
(co = # = 0). One problem is handled in rectangular coordinates, two 
in cylindrical coordinates, and one in spherical coordinates. 
14-5. Example 1. Conducting Sheet between Two Conducting Planes.' 

Referring to Fig. 14-3, two infinite parallel conducting plates are spaced 
a distance a. An infinitely long conducting strip is placed between the 
plates and normal to them, as shown in the figure. 
The width of the strip is only very slightly less than the spacing between 

the plates. The strip is insulated from the plates. Let the two plates be 

P„'̂ (cos 8) is also called a solid zonal harmonic of the first kind.  Q„." (cos 8) is 
also called a solid zonal harmonic of the second kind.  See Appendix, Sec. A-14. 

2 P„ (cos 8) is also called a surface zonal harmonic of the first kind.  Q. (cos 8) is 
also called a surface zonal harmonic of the second kind.  See Appendix, Sec. A-14. 

3 W. E. Byerly, "Fourier Series and Spherical Harmonics," Ginn & Company, Bos-
ton, 1893, p. 4. 

(14-51) 
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connected together and a constant potential V be applied between the 
plates and the conducting strip. The medium between the plates is air. 
Suppose that the plates are at zero potential and that the strip is at a 
positive potential of 1 volt (V = 1).  The problem is to find the potential 
distribution in the region M between the plates to the right of the strip, 
as indicated in the cross section of Fig. 14-36. 

(b) 
FIG. 14-3. Infinite conducting strip between two infinite parallel conducting plates 
in perspective view (a) and cross section (b). 

Since this is a static problem /3 = 0 and the wave equation reduces to 
Laplace's equation 

V2 V = 0 (14-52) 

it should be possible to find the potential distribution by solving this 
equation subject to the boundary conditions. The analytical procedure 
for doing this will now be discussed.' 
It is most convenient to handle this problem in rectangular coordinates, 

the relation of the conductor boundaries to the coordinate axes being as in 
Fig. 14-4a.  Expanding (14-52) in the two rectangular coordinates of the 
problem (x and y), we have 

a2v 

ax2 ay2 ° 

This differential equation is the most general way of expressing the 
variation of potential with respect to x and y. It is a partial differential 
equation of the second order and first degree.  However, this equation 

The problem is 2-dimensional (V independent of z, normal to the page) so that 
a solution could also be obtained by graphical field-mapping methods. 

(14-53) 
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does not tell us anything about the particular potential distribution in the 
problem.  For this we must obtain a solution of the differential equation 
which is appropriate to the boundary conditions of the problem.  These 

111 

a 

V-1  Strip  Plates 
at z —** 
V=0 y„.. 

x (0,0) 

(a) 

Intermediate x 

(4) 

z large 

(b) 
FIG. 14-4. (a) Boundary conditions for potential-distribution problem of Fig. 14-3. 
(b) Potential variation between plates as obtained from solution of Laplace's equation. 

boundary conditions are 

V = 0  at y = 0 
V = 0  at y = a 
V = 1  at x = 0 
V = 0  at x = 

(14-54) 

Proceeding now to find a solution of (14-53) by the method of separa-
tion of variables, let us assume that a solution for V can be expressed as 

V = XY  (14-55) 

where X = a function of x alone 
Y = a function of y alone 

Substituting (14-55) into (14-53) and dividing by X Y, we have 

1 d2X  1 d2Y 
dx2 -I- dy2 = 

In (14-56) the variables are separated.  Since X and Y are independent 
and the sum of the two terms is a constant (zero), each term alone must 
equal a constant.  Thus, we can write 

1 d2X _ k2 
dx2 

(14-56) 

(14-57) 
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and 
d2Y 
dy2 = -42  

where k equals a constant and  — k2 = 0. 
These equations may be rearranged to the form 

cl2X 
— k2X = 0 

(1,x 2 

and 
d2Y 

k2Y = 0  (14-60) 
dy2 

Thus, the second-order partial differential equation of (14-53) has been 
reduced to two second-order ordinary differential equations, each involv-
ing but one variable.  These equations, (14-59) and (14-60), have the 
solutions 

(CHAP. 14 

(14-58) 

(14-59) 

X = Cie" ± C2e-ks  (14-61) 
and 

Y = Cse1"  C4e-i"  (14-62) 

One may readily confirm that these are solutions by substituting them 
into (14-59) and (14-60), in each case obtaining an identity.  Introducing 
(14-61) and (14-62) into (14-55) yields the general solution 

V = C iC sekzejley  C2C3e—ksejky  Claiekse—floy  C 2C 4e—kze—jky (14_63) 

which reduces to 
V  =  Clek(s±iv)  C;e—k(x±iio (14-64) 

where CI = C2C2 or C2C4 and C; = C2C3 or C2C4, depending on which 
sign is chosen in x ± jy. 
Because of the boundary condition V = 0 at x = co, C = 0 so that 

only the second term of (14-64) applies in our problem.' Also, using 
de Moivre's theorem, (14-64) then becomes 

V = Cite-kx(cos ky ± j sin ky)  (14-65) 

To satisfy the boundary condition V = 0 at y = 0, we should retain only 
the imaginary part of (14-65).  That is, 

V = qe-kx sin ky  (14-66) 

This is a particular solution of Laplace's equation appropriate to our 
problem.  It indicates that the potential V falls off exponentially with x 
and also that it varies as a sine function of y. To satisfy the boundary 

1 If we were interested in the potential distribution to the left instead of to the right 
of the strip (Fig. 144), the boundary condition is V = 0 at x = — so that C.J2 0. 
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condition V = 0 at y = a requires that 

k = 7  (14-67) 

where n = positive integer (1, 2, 3, . . . ). Introducing (14-67) into 
(14-66) yields 

nry V = C121e—nr" sin  (14-68) 

All of the boundary conditions of (14-54) are now satisfied except for the 
condition that V = 1 at x = 0, that is, V = 1 at x = 0 for all values of y 
between 0 and a. Obviously (14-68) does not satisfy this requirement, 
and hence a more general solution is required.  Since Laplace's equation 
is linear, a more general solution can be obtained by taking the sum of 
expressions like (14-68) for different integral values of n. We then have 

27ry 
V =- Cie-riva sin l2  -I- C2e-2,, zia sin —a a 

37ry 
± C se—"zia sin --.71, - ± • • • (14-69) 

where CI, Cs, etc., are new constants. 
Equation (14-69) may be expressed more concisely by 

V = 

n  . E Cne-îrzia sin n--TY  
a 

(14-70) 

The solution for V given by (14-69) or (14-70) is still incomplete since the 
coefficients CI, C2, etc., are not evaluated.  To find their values, we 
impose the boundary condition that V = 1 at x = 0 so that (14-69) 
reduces to 

1 = CI sin 12  ± C2 8 sin 2--1. + C sin  ± • • •  (14-71) 
a  a   a 

Now by the Fourier sine expansion 

f(y) = al sin y + a2 sin 2y ± a. sin 3y -1- • • • -I- a, sin ny  (14-72) 

where a. = -21r f(y) sin ny dy.  It follows that for f(y) = 1 
W  0 

4 
a„ = —  for n odd 

n7r 
and 

a. = 0  for n even 
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Therefore, for f(y) = 1, (14-72) reduces to 

4 .  1  1 
1 = (sin y  •a sin 3y ±  sin 5y + • 

Comparing (14-73) with (14-71), it follows that 

=  =  0, Cs =  FT)  n =  =  .rir t ebc. 
7 

Introducing these values into (14-71), we have 

4  7u .17 = _4 e 4_ — .1. sin  e--3./. sin 3 ., 
a ' 37  a 

[CHAP. 14 

(14-73) 

, 4  57ry 
-t- e-5 "ia sin —rt • (14-74) 
57 

This is the complete solution of Laplace's equation for the potential V 
appropriate to the boundary conditions of the problem.  It gives the 
potential V as a function of position between the plates and to the right 
of the strip (Fig. 14-3). 
Although an infinite number of terms is required for an exact repre-

sentation of the potential distribution as a function of x and y, an approxi-
mate solution of practical value may be obtained with a finite number of 
terms.  Each term attenuates at a different rate.  Since the higher terms 
fall off more rapidly with x, only a few terms are needed to give a good 
approximation except where x is small.  At x = 0, V = 1 for all values of 
y between 0 and a. When x is very large, the distribution is very nearly 
equal to sin Ty/a, since the contribution of the harmonics higher than 
the first may be neglected.  The variation of V as a function of y at 
x = 0 and at a large value of x is shown at (1) and (4) in Fig. 14-4b. 
The distributions at two intermediate values of x are presented at (2) and 
(3).  The actual distribution is shown by the solid curves, the dashed 
curves giving the approximate distribution as obtained by four terms 
(n = 1, 3, 5, 7) of the series at (2) and by two terms (n = 1 and 3) at (3). 
It is apparent that as x decreases the effect of the higher terms becomes 
more important. 
The potential distribution can also be presented by means of equi-

potential contours with orthogonal field lines as suggested in Fig. 14-5. 
It is apparent that graphical field-mapping methods could have been used 
instead of the above analytical method to obtain an engineering solution 
for the potential distribution.  Both are procedures for solving Laplace's 
equation.  In general, two-dimensional problems can be solved by either 
the graphical or the analytical approach.  The analytical method is also 
applicable to three dimensional problems.  However, the graphical 
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method is not, without modifications. Experimental methods are applica-
ble to both two- and three-dimensional problems.' 

Field line 

Strip 

Equipotential 

FIG. 14-5. Electric field lines (with arrows) and equipotentials in space between 
conducting plates. 

ates  
xl" 

To measure the potential distribution of the above problem in a simple 
experimental manner the setup shown in Fig. 14-6 can be used.  Here the 
plates are replaced by heavy copper bars and the conducting strip by a 
heavy copper bar insulated from the side bars. A resistance strip of 
width a is clamped to the bars as shown. The side bars are grounded so 
that the edges of the strip are at zero potential.  A generator or battery 
supplies a constant emf between the end bar and the ground. The 
potential distribution can then be mapped with the aid of a probe and a 
high-resistance (vacuum-tube) voltmeter. To avoid end effects, the 

1 volt DC 
generator 

Heavy copper bar (grounded) 

Heavy copper bar (grounded) 

Voltmeter 

FIG. 14-6. Experimental method for determining potential distribution. 

length (x dimension) of the side bars and resistance strip should be large 
compared with the width a. The curved lines with arrows in Fig. 14-6 
suggest the paths of the electric field (and current) between the end bar 
and the side bars. As mentioned in Sec. 3-17, a solution of Laplace's 
equation for a steady current distribution (as obtained here experimen-
tally) constitutes a solution for the analogous static field problem of Fig. 
14-3. 
If any function V satisfies Laplace's equation (V W = 0) and the 

Ernst Weber, "Electromagnetic Fields," John Wiley Sr Sons, Inc., New York, 
1950, Chap. 5. 
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boundary conditions, it is a unique solution.' No other function will 
satisfy the conditions, with the possible exception of functions differing 
from V by an additive constant.  Hence, (14-74) must be a unique solu-
tion. An experimental verification of a solution, such as (14-74), is a 
verification of Laplace's equation as well as of the solution. 
144. Example 2. Coaxial Line.  Consider the section of coaxial 

transmission line shown in Fig. 14-7a.  One end (at the origin) is short-

Longitudinal section Cross section 

Longitudinal section Cross section 

(b) 
FIG. 14-7. (a) Section of coaxial transmission line.  (b) Field distribution showing 
field lines (with arrows) and equipotentials. 

circuited, and the other end is open.  The outside radius of the inner 
conductor is a, and the inside radius of the outer conductor is b. The 
conductivity of the inner conductor is finite, but the conductivity of the 
outer conductor and of the short-circuiting disc is assumed to be infinite. 
A constant voltage V1 is applied between the inner and outer conductor at 
the open end of the line.  The length z1 of the line is long compared with 
its radius (z1 >> b). The problem is to find the potential V everywhere 
inside the line, except near the open end. 

1 A graphically obtained field map of a two-dimensional problem is likewise a 
unique solution. 
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The boundary conditions for this problem are 

(1) V = 0 at z = 0 
(2) V = 0 at p = b 
(3) V = VI at z = 

(and a < p < b) 
(and 0 < z < zr) 
(and p = a) 

There is also the condition that at any distance z from the origin the 
electric field inside the inner conductor and also along its surface (p = a) 
is given by 

8V _ V1 
Oz zi 

from which we have on integration that 

V --- — z zi 

(14-75a) 

(14-75b) 

At z = zl (14-75b) reduces to the third boundary condition above. 
This is a static problem (0) = 0) so that the wave equation reduces to 

Laplace's equation V2V = 0. We wish to find a solution of this equati on 
that satisfies the boundary conditions. By symmetry V is independent 
of (A; so expanding Laplace's equation in the other two cylindrical coordi-
nates of the problem (p and z), we have' 

a2V , 1 aV , a2v -r- — —  -  = 
81)2 p op  Oz' 

Using the method of separation of variables, let 

V = RZ  (14-77) 

where R = a function only of p 
Z = a function only of z 

Introducing (14-77) into (14-76) and dividing by RZ yields 

1 d2R  1 dR  1 d2Z 
dp2 pR dp  dz2 = " 

The last term is a function only of z. Thus we can write 

d2Z 
2Z 

dz2 = as 

(14-76) 

(14-78) 

(14-79) 

where a, = a constant. From (14-75a) it follows that since Vi/z, is a 
constant the second derivative in (14-79) must be zero and, hence, as 

I Although V is dependent only on p and z, this problem is not two-dimensional in 
the sense that the problem of Example 1 is two-dimensional.  Here the potential dis-
tribution for a longitudinal plane through the axis differs from the distribution for 
all planes parallel to it. 
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must be zero. A solution of (14-79) for a. = 0 is 

Z = Ciz -I- C2  (14-80) 

The last term of (14-78) may now be set equal to zero so that the equation 
reduces to 

d2R + dR _ 0 
P dp2 dp — 

A solution is 

[CHAP. 14 

(14-81) 

R = Cain p + C4  (14-81a) 

Introducing (14-81a) for R and (14-80) for Z in (14-77), the solution for 
the potential is 

V = (Ciz -I- C2)(Cs In p -I- C4)  (14-81b) 
or 

V = Ca In p ± Cez ± C7 in p ± Cs  (14-81c) 

where C5, C6, etc., are new constants.  To evaluate these constants, we 
introduce the boundary conditions.  Introducing the first condition 
V = 0 at z = 0, (14-81c) becomes 

0 = C7 in p ± Cs  (14-81d) 

For (14-81d) to be satisfied for all values of p requires that C7 = Cs = 0. 
Thus our solution reduces to 

V = Cfrz in p ± Cez  (14-81e) 

Introducing now the second boundary condition that V = 0 at p = b, we 
have 

0 = Co ln b ± Csz  (14-81f) 

As the third boundary condition, V = V1 at z = z1 and p = a, which 
yields 

VI = CEA' in a -I- Cszi  (14-81g) 

From (14-81f) and (14-81g) we find that 

VI  
c, — z1 in (a/b) 

and 
V1 in b  

C6 — 
zi In (a/b) 

Introducing the values for these constants into (14-81e), the complete 
solution for the problem is 

V = V1 
z in (b/p)  
z1 in (b/a)  (14-81h) 

This solution satisfies Laplace's equation and the boundary conditions 
and, hence, must represent the potential distribution at all points between 
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the inner and outer conductors (a < p < b) except near the open end. 
This potential distribution is portrayed in Fig. 14-7b, the relative poten-
tial being indicated for the equipotential lines.  Electric field lines (with 
arrows) are also shown, being normal to the equipotentials. 
It is interesting to note in Fig. 14-7b that although the field lines are 

normal to the perfectly conducting surfaces (outer conductor and short-
circuiting disc) they are not normal to the finitely conducting inner con-
ductor. The current and field direction in the inner conductor is to the 
left ( —z direction).  Comparison of Fig. 14-7b should be made with Figs. 
3-17 and 3-19.  In Figs. 3-17 and 3-19 both inner and outer conductors 
are assumed to have finite conductivity. 
14-7. Example 3. Uncharged Conducting Cylinder in Originally 

Uniform Field.  Consider an infinitely long conducting cylinder of radius 
a as shown in Fig. 14-8a. The cylinder is at zero potential and is situated 
in a field that had a uniform static field intensity E0 before the cylinder 
was introduced.  That is, the original potential distribution is given by 

V = Eop cos 4)  (14-82) 

This must also be the distribution for large p after the cylinder is intro-
duced.  Hence (14-82) for large p and also the fact that V = 0 at p = a 
constitute the boundary conditions.  The problem, then, is to find V 
everywhere outside the cylinder, the potential and field being zero inside 
the cylinder. 
There is no z variation of potential so that the problem is two-dimen-

sional. It is also a static problem (co = 0) so that the wave equation 
reduces to Laplace's equation.  Expanding Laplace's equation in the two 
cylindrical coordinates of the problem (p and 0), we have 

a2 +  p  +V  aV  a2V 
p 2 ap  =  0  (14-83) 2  ap 80 2 

Proceeding now to find a solution of (14-83) by the method of separation 
of variables, let 

V = R4)  (14-84) 

where R = a function only of p 
= a function only of 

Substituting (14-84) into (14-83) and dividing by R4), we have 

p2 d2R j_ p dR  1 d24)  n 
R dp2 dp  4) di62 = 

The first two terms are a function of p only so that we can write 

p2 d2R  p dR _  2 

Tt dp2 dp 

(14-85) 

(14-86) 
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Conducting 
cylinder 

(a) 

(b) 

Flo. 14-8. (a) Cross section of conducting cylinder. (b) Field distribution showing 
field lines (with arrows) and equipotentials. 

or 
d2R  dR 

p2 —  ± p — — a„2R = 0 
dp2 dp 

A solution of (14-87) is 
R = CiPIs 

(14-87) 

(14-88) 

provided 
a,2 = n2 (14-89) 

where n is an integer.  From (14-86) and (14-89), (14-85) 'reduces to 

1 d24, 
n2  ± 4; ci-P = 0 

d24) 
(102 = _n24)  

or 

(14-90) 

(14-91) 
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A solution of (14-91) is 

4, = C2 cos nC1) + C3 sin n4,  (14-92) 

For V to vary as in (14-82) at large values of p, where the field is undis-
turbed by the presence of the cylinder, requires that C3 be zero.  Since 
Laplace's equation is linear, the solution may be written as the sum of an 
infinite number of particular solutions given by the product of R from 
(14-88) and 4, from (14-92) with C3 = 0, each for a different value of n. 
Thus a general solution for the potential is 

V = R$ = 1 A.p" cos ,a4, + 1 B.p-11 cos n.  (14-93) 
n 0  n 0 

where A. and B. are new constants.  When p is large, the field is undis-
turbed and must be as in (14-82).  Thus for large values of p (14-93) must 
reduce to the form 

V = Alp cos 4, 

By comparison with (14-82) it follows that 

A1 = E0 

(14-94) 

(14-95) 

Furthermore, for V to vary as in (14-82) when p is large requires that 
A. = 0 for all values of n except n = 1. Thus (14-93) reduces to 

(14-96) V = Eop cos 4) -I- 1 13,0-* cos 714) 
n o 

Introducing the last boundary condition that 

V = 0  (14-97) 
at 

p = a  (14-98) 
we have from (14-96) that 

Bi By 
0 = Eoa cos 4) -I- Bo + —a cos 4, ± —a2 cos 24) + • • • (14-99) 

For (14-99) to be satisfied for all values of 4) requires that B. = 0 for all 
values of n except n = 1 and also that 

B1 = — E  (14-100) A'  

The complete solution for the potential is then 

V = (Eop —  (14-101) —E0a2) cos 4) 
P 

or 
2 

V = 11 — (IL)  I Eop cos 4)  (14-102) 
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The potential V equals zero at the cylinder and also inside the cylinder. 
This solution satisfies Laplace's equation and also the boundary condi-
tions and, hence, must represent the potential distribution at all points on 
and outside of the cylinder (a < p < co). This potential distribution is 
shown in Fig. 14-8b.  Field lines (with arrows) are also shown. These 
lines are normal to the equipotentials. All squares in this map are either 

true or curvilinear squares. 
14-8. Example 4. Dielectric 

Sphere in Originally Uniform Field. 
Consider a dielectric sphere of per-
mittivity 62 and radius b as in Fig. 
14-9a. This is a three-dimensional 

(a) 
problem.  The sphere is situated in 
a field that had a uniform static elec-
tric field intensity E2 before the 
sphere was introduced. That is, the 
original potential distribution is 
given by 

Dielectric 
sphere 

v iE lines 

Equi-
_potentials 

V = Eop cos 0  (14-103) 

The medium outside the sphere has 
a permittivity el.  The problem is to 
find V everywhere, both outside and 

Dielectric  inside the sphere. 
sphere —  The boundary conditions are that 

V must be as in (14-103) at large p 
(b) and also that the tangential com-

ponent of E and normal component 
of D are continuous at any point on 
the surface of the sphere (p = b). 
The problem is a static one (4) = 0) 

so that the wave equation reduces to Laplace's equation.  By symmetry 
the distribution is independent of 0. Expanding Laplace's equation in 
the other two spherical coordinates (p and 0), we have 

Flo. 14-9. Dielectric sphere in originally 
uniform field. 

a2v  1 a2v  2 av  cot e av w _______ 4. _  = 0 
p 2 ae2 p  a p  p 2  ao (14-104) 

Using the method of separation of variables, let 

V = RP  (14-105) 

where R = a function only of p 
P = a function only of 0 
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Introducing (14-105) into (14-104) and dividing by RP yields 

1 d i 2di) dR\ +  1  d l .n 0 dP\  0 
\P ,  P sin 0 de V i dej _ - 

The first term is a function only of p.  Thus we may write 

(-17) P2 cV) = Ra °2 
d ( dR 

where a, = constant. Letting a,' = n(n + 1), where n is an integer, 
(14-107) becomes 

2 d 2R 4_  2_ dR _ 
n(n + 1)R = 0 

p dp2 " dp 

A solution of (14-108) is 

(14-106) 

(14-107) 

(14-108) 

R = Cip" + C2P-("+"  (14-109) 

Introducing a,' into (14-106) for the first term and multiplying by P, we 
have 

d2P  _i_  _, 1  dP 
d02 -I-  tan 0 d0 -F  '2°2'p = n 1'  (14-110) 

A solution is that of Legendre's equation, or 

P = C3P„(cos 0) ± C4Q,.(cos 0)  (14-111) 

At 0 = 0 and 0 = r, Qn(cos 0) becomes infinite.  Since V remains finite, 
C4 = 0 and 

P = C3P,,(cos 0) 

Thus, the solution for the potential is 

V = RP = (Cip" -I- C2P-("+")C sP(cos 0) 
or 

V = (Con ± C5p-(̂4-0 )P.(cos 0)  (14-114) 

where C4 and C5 are new constants.  To make V = Eop cos 0 as in 
(14-103) when p is large requires that n = It and C4 = E0.  Thus, 
external to the sphere (p > b), the potential is apparently given by 

(14-112) 

(14-113) 

C b 
Ve = ( Eop -I-  cos 0  (14-115) 

P 

Inside the sphere V must remain finite so that C5 = 0 and the potential 
inside (0 < p < b) is apparently of the form 

Vi = Cop cos 0  (14-116) 

The constants Cb and C. must satisfy the boundary condition at the 
surface of the sphere that the tangential component of E and normal corn-

t For is = 1, P. (cos 8) — P, (cos 8) = cos 8 (see Appendix, Sec. A-14). 
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ponent of D are continuous.  That is,' 

= Et2 (14-117) 
or 

aV„ _ aVi 
at p = b  (14-118) 

pee  p a° 
and 

Dni = D62 (14-119) 
or 

av, = -  at p = b  (14-120) 

Substituting (14-115) and (14-116) in (14-118), we have 

Cf,  
bs  L., 1,6 — Ea0  (14-121) 

Substituting (14-115) and (14-116) in (14-120), we have 

C6 = — (20 — 
2C5) 

e2 

Introducing bS from (14-121) into (14-122) yields 

3e1E0 ce —   
62 

Putting this value for C6 in (14-121), we obtain 

Cs = bsEs (26:1 ±-62  
62 

Hence, the potential distribution outside the sphere (p > b) is 

V. = E0  [p b3 erl  6,1)] 
p2 241 er2  cos 0 

and the potential distribution inside the sphere (0 < p < b) is 

v _ 3e,iEop cos 0 
24,1 -I- eel 

= relative permittivity of medium outside of sphere -= edeo 
relative permittivity of medium inside of sphere = 62/60 

= radius of sphere 
= original value of electric field (or value at a large distance 
from sphere) 

1 In place of the boundary condition En = E82 we could use the boundary condition 
that V. = Vi at any point on the surface of the sphere since if V. = V; is satisfied 
En = Eg2 is also satisfied. 

where 6,1 
6,2 

Es 

(14-122) 

(14-123) 

(14-124) 

(14-125) 

(14-126) 
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These solutions satisfy Laplace's equation and the boundary conditions 
and, hence, must represent the potential distribution in the presence of 
the dielectric sphere. 
The equipotentials, as given by (14-125) and (14-126), are shown by 

dashed lines in Fig. 14-9b.  The field lines (solid) are everywhere normal 
to the equipotentials.  Note that because this is a three-dimensional 
problem the areas are, in general, not curvilinear squares. 
14-9. Conformal Transformations. Introduction. The solution of 

many two-dimensional field problems is greatly facilitated by the use of 
complex function theory with which one can transform the geometry of 
a problem into a simpler geometry or one for which the field and potential 
distribution is known.  Because the shape or form of an infinitesimal area 
is preserved, these transformations are called conformal transformations. 
When this method can be applied, we may obtain an exact solution. 
Any point in a plane is specified by two coordinate values. Thus the 

point P in the x-y plane is specified if x and y are given.  In complex 
notation the position is designated by x  jy.  Now x jy is a complex 
quantity.  Calling this quantity z (that is, z = x  jy) we may refer to 
the x-y plane as the z plane.' 
Let us begin by considering some relations between two complex func-

tions z and w where 
z = x jy  (14-127) 

and 
w = u  jv  (14-128) 

If w = z, then u = x and v = y. It follows that any point on the z plane 
(coordinates x and y) transforms to the same point on the w plane 
(coordinates u and v).  Thus, as shown in Fig. 14-10, the square ABCD 
in the z plane transforms to the same square in the w plane.  Hence there 

D  C 

Transforms 
to 

A  B  .c 

z plane  w plane 

(a)  (b) 
Fm. 14-10. Conformal transformation for w  z (no change). 

The absolute value (magnitude) of z is 

Izi  1/4 2 1/2 NAx  jy)(x — jy) 

where (x — jy) = z' is called the complex conjugate of z. 
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is no change (w = z).  It is assumed that the scales for the z and w planes 
are the same. 
Consider next the case where 

Then 

and 

w = 2z 

u = 2x 

v = 2y 

(14-129) 

(14-130) 

(14-131) 

For this case there is a magnification of 2, the square ABCD in the z plane 
transforming, as shown in Fig. 14-11, to the square ABCD of twice the 
side length in the w plane. 

Transforms 
to —.-

A  B A  •  13 I' 

z plane  w plane 

(a)  (b) 

FIG. 14-11. Conformal transformation for w = 2z (linear magnification). 

Consider now the case where 

w = zi  or  z = w2 (14-132) 
Then 

w2 = (u iv)2 = u2  j2uv — v2 (14-133) 

and 
z = x + jy  (14-134) 

so that, equating real parts, 
x = u2 — v'  (14-135) 

and equating imaginary parts, 

y = 2uv  (14-136) 
It follows that 

Y2 
U2 = V2 + X =  x  (14-137) 

4u2 
or 

4u4 — 4xu2 — y2 = 0  (14-138) 
so that 

u — V -x  Vx2 + y2 
2  (14-139) 

v =  = N/u2 — x  (14-140) 
2u 

and 



a plane 

(a) 
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In this case (w = zi) the square ABCD in the z plane transforms, as 
portrayed in Fig. 14-12, to the figure ABCD in the w plane.  Here the 
figure shown has been compressed from a 90° sector into a 45° sector.  It 
is to be noted that except at A the angles are preserved. 

Transforms 
to --r-

w plane 

(b) 
Fm. 14-12. Conformal transformation for w = zi (angular compression). 

Thus far we have considered the cases 

w = z 
w = 2z 
w = zi 

(no change) 
(linear magnification) 
(angular compression of first quadrant) 

Let us now proceed to the general case where w is some arbitrary function 
of z. That is, 

w = f(z)  (14-141) 

As we have seen, this relation defines a transformation of a certain figure 
or geometry in the a plane to another figure when mapped in the w plane. 
Of the many functions possible those which produce a conformal trans-
formation' are those for which w is an analytic function of z. The real 
and imaginary parts of an analytic function satisfy Laplace's two-dimen-
sional equation, and hence such functions are useful in solving many two-
dimensional field problems.  Thus, before using a function, we must 
determine that it is analytic.  The necessary criteria for doing this will 
now be developed. 
Let the derivative of a complex function w be defined as follows, 

dw  Aw  f(z + Az) — f(z)  
— = hm  = urn f(z  
dz  c.—o Az  ez-.o  Az 

where Az = Ax ± j Ay.  For dw/dz to have a unique value for a given 
argument requires that 

i,.  Aw 
mi —.. 
az-.0 az 

I In a conformal transformation the angles and hence the shape of an infinitesimal 
area are preserved except at certain points.  That is, the presentation in one plane is a 
map of the other. 
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be independent of the path by which Az approaches zero. That is, it is 
necessary that 

u•rn A—TA_ = lim  = thi n .AAtv 
AZ-0  j LAY 

or that 
dw _ aw _  . aw 
dz  ax  ay 

Thus, if w has a unique derivative with respect to z, 

Ow  dw az _ dw _ au j_ . av 
ax  dz ax  dz  ax  j  a X 

a W =  dw az  .dw = au  . av 
ay  dz ay = dz  ay  3 ay 

From (14-145) and (14-146) we have 

dw _ au  av 
dz  ax  3 ax 

dw =  _au  av  av  . au 
dz j  +  = 6 aY  aY  3 aY 

It follows from (14-147) and (14-148) that 

au _ av 
ax  ay 

au _  au 
ax —  ay 

Equations (14-149) and (14-150) are known as the Cauchy-Riemann con-
ditions.  A complex function w = u  jv whose partial derivatives are 
continuous and satisfy these conditions is analytic, that is, it has a unique 
derivative with respect to z. t For example, w = Ciz2 and w = 2(x + jy) 
are analytic, but w = 2x  jy is not, as may be noted by applying the 
Cauchy-Riemann conditions to these functions. 
Eliminating v from the Cauchy-Riemann conditions by taking the 

partial derivative of (14-149) with respect to x and the partial derivative 
of (14-150) with respect to y, we obtain 

and 

and 

and 

(14-143) 

82u 82u 
= v2u = 0 

dx2  ay2 

(14-144) 

(14-145) 

(14-146) 

(14-147) 

(14-148) 

(14-149) 

(14-150) 

(14-151) 

t Such a function to that possesses a derivative at every point of a region is said to 
be analytic over that region.  It turns out that simple functions of the algebraic, 
trigonometric, or exponential type are analytic. Thus, the functions to = z, w = 2z, 
and to  z, considered at the beginning of this section, are all analytic. 
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In like manner we have, on eliminating u, 

82v , 82v 
(14-152) 

azi  ay2 

Both (14-151) and (14-152) have the form of Laplace's equation.  Hence 
every analytic function automatically yields two functions each of which 
is a solution of Laplace's equation. 
Since angles are preserved, the constant z and constant y lines are 

orthogonal not only in the z plane but also when mapped in the w plane. 
Therefore, if the constant x lines represent the electric field and the 
constant y lines the equipotentials of a uniform field distribution they 
continue to represent field and equipotential lines when mapped in the w 
plane.  It is this property which makes conformal transformations so 
useful in solving two-dimensional field problems. 

Example. Two perfectly conducting sheets intersect at right angles, forming a 
corner as shown in cross section in Fig. 14-13. If a potential difference is applied 
between the sheets and another conductor 
at a large distance in the direction of the 
bisector of the corner, find the field and 
potential distribution in the vicinity of 
the corner.  •/Bisector 

Solution.  The field distribution in a 
90° corner was solved graphically in Sec.  ./. 
2-28 (see Fig. 2-27a). A solution may  ./ 
also be obtained by means of a conformal ./ transformation, the solution in this case 
being exact.' Proceeding to obtain a 
solution by the conformal-transformation 
method, we recall (see Fig. 14-12) that the  Conducting sheets 
transformation w xi transformed a 90° 
sector into 45° or a 180° sector into 90°. 
Hence this transformation can be applied to our problem. 
In the z plane let the line y = 0 represent a flat conducting sheet. Then a poten-

tial difference applied between this sheet and another parallel one a large distance 
above it will produce a uniform field distribution as shown in Fig. 14-14a. The dashed 
lines (y = constant) are equipotentials, and the solid lines (x = constant) are field 
lines. 
The transformation w xi was discussed earlier in this section, and it was shown in 
(14-139) and (14-140) that u V(x ± N/x2  yl)/2 and v = y/2u  -s/u'  — z. By 
means of these relations we can obtain the coordinates (u, v) in the w plane for any 
point (x, y) in the z plane. In this way the uniform field (Fig. 14-14a) may be trans-
formed point by point to the nonuniform field in the 90° corner, as shown in Fig. 
14-14b, the dashed lines being equipotentials and the solid lines electric field lines. 

The transformation used in the above example is of the exponential 
type.  Other transformations of this type are listed in Fig. 14-15, with 
the nature of the transformation shown graphically.  In all cases the 

I However, in many applications a graphical solution may be equally satisfactory. 

no. 14-13. Ninety-degree corner. 
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z plane  w plane 

(a)  (b) 

Flo. 14-14. Uniform field in z plane (a) transforms into nonuniform field of 90° 
corner (b). 

upper half of the z plane undergoes either an angular compression or an 
angular expansion when mapped in the w plane.  When the exponent is 
less than 1, there is angular compression and when the exponent is 
greater than 1, there is angular expansion.  It follows, in general, that 
to bend the x axis so as to make an angle a in the w plane requires a trans-
formation of the form 

W =  ClZair  ±  CS  (14-153) 

where C1 is a magnification factor and C2 involves displacement. 

w=z 1/4 transforms 

w=z 1/2 transforms 

w=:' transforms 

W =2 3/2 transforms 

w=s2 transforms 

to 

to 

to 

Z,--(a=f) 

• 
• 

to  \ 

(a=ir) 
(no change) 

( a= —3 7) 2 

to  c.c (a = 2r) 

z plane  w plane 

Fici. 14-15. Transformations of exponential type. 
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More generally the function 

w = (z - xl)air  (14-154) 

results in a transformation of the z plane, when mapped in the w plane, 
as suggested in Fig. 14-16. Taking the z derivative of (14-154) to obtain 

x, 

plane  u. plane 

Fm. 14-16. Conformal transformation for w  (z — xi)a/r  uj. 

the w variation with respect to z yields 

_dw_ = _a (z _ xi) (a/19-1 

dz  w • 
(14-155) 

In the more general situation where the x axis is bent so as to form a 
polygon with n angles (al, as, as, . . . , a.), when mapped in the w plane, 
we have 

dw 
—dz = C 1(z - xii)(avir)-1 (z - x2) (aor)-qz - xs)(ailf)-1  • • • 

—  (14-156) 
Integrating (14-156), 

w = CI J.[(z - xi)ailf)-1 (z - x2) (ailv)-1  • • • (z   dz (14-157) 

This is the Schwarz-Christoffel transformation.  For a single positive 
angle al and x1 = 0, (14-157) reduces to the same form as (14-153): 
That is, 

w = Cif  dz = Clzaor  C',  (14-158) 

14-10. Example 6. Slot in Infinite Flat Sheet.  Consider the uni-
form field in a parallel-plate capacitor with plates of infinite extent.  If a 
slot is cut in the lower plate as shown in Fig. 14-17, the resulting field 

1E0 

4 slot 
Capacitor 
plates 

Fia. 14-17. Capacitor with slot in lower plate. 

distribution may be found by an application of the Schwarz-Christoffel 
transformation.  It is assumed that the spacing between the capacitor 
plates is large compared with the width of the slot. 
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We wish to find a function that transforms the uniform (z-plane) field 
in such a manner that its map in the w plane is the field with the slotted 
plate. As illustrated in Fig. 14-18a, let the x axis represent the unslotted 
lower plate of the capacitor.  The slot is to be introduced between the 
points x1 and xs. By an appropriate transformation a map can be 
obtained in the w plane in which that part of the x axis between x1 and x: 

(a) 

lo plane 

(b) 

FIG. 14-18. z plane partially transformed, as shown by dashed lines (a), and com-
pletely transformed (b). 

is stretched downward, as suggested by the dashed lines in Fig. 14-18a, 
until the point x: is at v = - cc and the x axis is folded back on itself, 
leaving a gap of width s, as in Fig. 14-18b. As mapped in the w plane, 
the point x1 appears at ui and the point xs at us. 
The appropriate function is obtained from (14-157) by noting that 

ai = 21-, a: = -w, a: = 2ar and also that x: = -x1 and x: = 0. There-
fore, in this case (14-157) becomes 

w = C1 f Rz - xi)(2*/*)-iz-(rh)-qz + x1)(2*/*)-1] dz  (14-159) 

or 
X 2 W = CI f z2 -z2 xi2  dz = C 1 (z + ---1-) ± C2 2  (14-160) 

When z = ±x1 ± j0, it is required that w = ± (s/2) ± j0, where 8 is the 
slot width. Therefore 

8 

and we have for C2 = 0 that C1 = 8/4x 1, or 

_) 
4 xi z 
8 (z  x1 

The z-plane field is uniform so that the potential V = Eoy, where Eo is the 
uniform field between the unslotted capacitor plates.  Now if ai = 8/4; 
(14-162) becomes 

(14-161) 

(14-162) 

(14-163) 
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or 

1   Z =  [ W ± .V W2 —  (8-) 2] (14-164) 

The potential in the z plane is given by 

V = Eoy = Eo Im z  (14-165) 

Therefore, the potential distribution as a function of position in the w 
plane is 

V = —E 0 [v + Im •Vu2 + j2uv — 0 — (- 
2  82)2] 

(14-166) 

This is the solution to the problem.  Introducing particular values of u 
and v into (14-166), the potential at these points is found.  Connecting 

- - 
-i-
_ 
- _ 

s plane  Conducting i /  
sheet  1 

%  i w plane 
\  . 

(a)  ‘ ̀- -- .- (6) 
Flo. 14-19. Conformal transformation of uniform field (z plane) above continuous 
flat sheet (a) to field for slotted sheet (w plane) (b). 

\ 

points of equal potential with dashed lines yields the equipotential con-
tours of Fig. 14-19b. The solid lines represent the electric field. 
14-11. Other Conformal Transformations.  The Transformation w = e. 

Consider the function 
w = es  (14-167) 

where w = u ± iv 
8 = z ± jy 

By de Moivre's theorem (14-167) becomes 

w = u -I- jv = ez(cos y -I- j sin y) 
It follows that 

U = e CO8 y 
and 

v=9 sin y 

Dividing (14-170) by (14-169) yields 

v = u tan y 

(14-168) 

(14-169) 

(14-170) 

(14-171) 
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Thus, a constant y line transforms to a radial line when mapped in the w 
plane.  Squaring (14-169) and (14-170) and adding, we have 

U = V ex  112 (14-172) 

Hence, a constant x line transforms to a circle when mapped in the 
w plane.  The transformation by this function (14-167) of the z plane 
when mapped in the w plane is suggested in Fig. 14-20. The rectangle 

11 

A 

z plane  w plane 

(a)  (61 
Fm. 14-20. Conformal transformation of rectangle to sector. 

ABCDEFGA in the z plane appears as a sector ABCDEFGA in the 
plane. 
The Transformation z = ew.  The inverse of (14-167) is 

or 

z = ew 

w = in z 

where w = u  iv 
z = peo 
p = radial distance 
0 = angle with respect to x axis 

Now 

It follows that 

and 

In z = In p  j0 

u = In p = In (x2 -I- y2) 

V = 0 = arctan - 
x 

(14-173) 

(14-174) 

(14-175) 

(14-176) 

(14-177) 

Hence (14-173) transforms a sector in the z plane to a rectangle when 
mapped in the w plane. 
The Transformation w = tan z. Consider the function 

w = tan z = tan (x  jy)  (14-178) 
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where w = u + jv.  Since 

It follows that 

and 

tan x ± j tanh I/  
tan (x + ill) — 1 — j tan x tanh y (14-179) 

u — tan x (1 — tanh' y) 
(14-180) 

1 + tan' x tanh2 y 

v = tanh y (1  + tan' x) 
(14-181) 

1 + tan' x tanh2 y 

Adding u2 and v2 yields the radius p2. That is, 

tan' x + tanh2 y  
1 ± tan' x tanh2 y 

Hence, a coaxial transmission line in the w plane as shown in cross section 
by Fig. 14-21a is transformed, when mapped in the z plane, into a slab 
transmission line as in Fig. 14-2 lb.' This line has two flat parallel sheets 

U2 +  112 = p 2 - (14-182) 

to plane  z p ane 

(a)  (6) 
Fla. 14-21. Conformal transformation of coaxial transmission line (a) to slab line (b). 

of infinite extent (corresponding to the outer conductor) and an elliptical 
inner conductor. 
If the radius p of the outer conductor is unity (see Fig. 14-21a), then at 

y = 0 the outer conductor is at ±T/4, while at x = 0, it is at y = ± GO . 

It follows that the p = 1 circle in the w plane (outer conductor) is 
transformed, when mapped in the z plane, into the two constant x 
lines x = ±7/4.  If the radius of the inner conductor is a, then at 
y = 0 the inner conductor is at x = ± arctan a, while at x = 0 it is at 
y = ± arctanh a. It follows that the p = a circle (inner conductor) in 
the w plane is transformed, when mapped in the z plane, into an ellip-
tically shaped figure. 

1 W. B. Wholey and W. N. Eldred, A New Type of Slotted Line Section, Proc. 
I.R.E., 88, 244-248, March, 1950. 
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Conformal transformations are applicable to static two-dimensional 
fields, but, in general, they cannot be used for time-changing fields 
(Laplace's equation no longer holds).  However, conformal transforma-
tions can be employed to find the fields of waves traveling on a two-con-
ductor transmission line provided the wave is of the TEM type, the line 
has a constant cross section, and there is negligible conductor and radia-
tion loss.  Under these conditions the transverse electric field configura-
tion is identical with the static field distribution. Hence a solution of 
Laplace's equation via conformal transformations can be used to design 
a high-frequency transmission line where the above conditions are met. 
This has been done in the case of the slab line by Wholey and Eldred. 
The Transformation w = (h/r)(ez — z jr).  Consider finally the 

function 

w = —h (ez — z jr)  (14-183) 

u = —h (ez cos y — x)  (14-184) 
7 

v = —h (ex sin y — y  7)  (14-185) 
7 

For y = 0, u = (h/r)(ex — x), and v = h, while for y =w, 

u = (h/r)(—ex — x) 

and v = 0. Thus the y = 0 line, when mapped in the w plane, is folded 
back on itself and turned around so as to lie at v = h and at u values 
equal to or greater than h/r. The y = 7 line is transformed so as to lie 
along the u axis (v = 0).  It undergoes also a scale change and reversal of 
direction.  This transformation is illustrated in Fig. 14-22. The rec-
tangle ABCDEFA in the z plane is transformed to the figure ABCDEFA 
when mapped in the w plane. 

and 

from which 

s pane 

(a) 

to plane 

(b) 
Flo. 14-22. Transformation to = (h/T)(9 — a + jr). 
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This transformation is useful for mapping the field at the edge of a 
capacitor plate situated above a ground plane, the field distribution being 
as portrayed in Fig. 14-23. The dashed lines are equipotentials, and the 

Capacitor 
plate 

Ground plane 

Fm. 14-23. Fringing field at edge of capacitor plate. 

solid lines are field lines.  (Applying the method of images to this figure 
we can obtain the field at the edge of a two-plate capacitor.) 
For y = 0 we have, on taking the x derivative of u, 

du  h 
— = — (9 — 1)  (14-186) 
dx  w 

It follows that the relative electric field intensity E, normal to the top 
capacitor plate is expressed by 

1  r   
E ,=  du/dx — h(e — 1)  (14-187) 

The relative surface charge density on the top plate is 

Pa = D. = foE, =  (14-188) 
h(ez — 1) 

where to = permittivity of the medium (air).  We note from (14-187) 
and (14-188) that the electric field intensity and the surface charge 
density are infinite at the edge of the capacitor plate (point A in Fig. 
14-22b) since x = 0 at this point.  The infinite charge density results, of 
course, from the implicit assumption that the plate is infinitesimally 
thick.  If a thick plate is used and its surface coincides with one of the 
equipotentials in Fig. 14-23 (for example, the heavy dashed contour), the 
field configuration outside of the plate is undisturbed and it is apparent 
that the surface charge density remains finite since the edge is no longer 
perfectly sharp. 

PROBLEMS 

14-1. Show that the relations V • D = 0, E = —VV — jtuA, and v • A = —jonsfEV 
may be combined to yield the scalar wave equation vIV + (02/..e V = 0. Note that 
when 0 = 0, V • A = 0, as assumed in (4-169) for static fields. 
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14-2. A conducting wire of radius a is placed in air in an originally uniform field E0. 
The wire is coated with an insulating layer of outer radius b and permittivity el, as 

Air 

Fio. 14-24. Cross section of insulated wire for Prob. 14-2. 

shown in Fig. 14-24.  Find the potential Vo everywhere outside the insulating layer 
and the potential V,' everywhere inside the insulating layer. 
14-3. The electric field is uniform and equal to E0 above an infinite plane sheet con-

ductor and zero below the sheet.  If a slot of width s is cut in the conductor find the 
surface charge density on both sides of the sheet. The medium above and below the 
sheet is air. 

Ans.: p. = (o0E0/2)11  u/[u2 — (8/2)9i above sheet. 
P. = (e0E0/2)11 — u/[u2 — (8/2)1J11 below sheet. 

14-4. Using a Schwarz-Christoffel transformation, map the field in a (V conducting 
corner formed by two flat conducting sheets if a potential difference is applied between 
the corner and another conductor at a large distance in the direction of the corner 
bisector. 
14-5. A conducting hemisphere is placed on a flat conducting infinite sheet, as 

shown in Fig. 14-25.  Before the hemisphere was introduced, the electric field every-
where above the sheet was normal to it and equal to Eo. The radius of the hemisphere 

Hemisphere 

Sheet 

Flo. 14-25. Hemisphere for Prob. 14-5. 

is a. The angle 8 is measured from the normal to the sheet. The medium above the 
sheet is air.  Assume the potential V of the hemisphere and sheet to be zero.  (a) 
Find V everywhere above the sheet and hemisphere.  (b) Find the surface charge 
density at all points on the hemisphere and flat sheet.  (c) Plot a graph of the surface 
charge density along the hemisphere and flat sheet to a distance of 5a. 
Ans.: (a) V = —11 — (0/0)1 Eo cos 8; (b) p. = 300E0 cos 8 on sphere and p. 

eoE011 — (as/p3)] on sheet. 
14-5. A uniformly charged linear wire is situated at a distance d from two flat con-

ducting sheets of infinite extent which intersect to form a square corner. The wire 
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runs parallel to the corner.  (a) Find the potential V everywhere in the corner, and 
draw a map of the equipotential contours.  (b) Find the surface charge density along 
the sheets, and plot a graph of this variation to a distance of 5d from the corner. 
14-7. What spacing D is required between the plates of a transmission line consisting 

of two infinite parallel plates with a symmetrically located center conductor of radius 
r1 in order that the characteristic impedance of the line be 100 ohms? The parallel 
plates are at the same potential. 
14-8. A thin conducting spherical shell of radius r1 is cut into two hemispheres 

separated by a very small air gap.  If one hemisphere is charged to a potential V1 
and the other hemisphere to a potential V2, derive the expression of the potential at 
any point outside of the sphere. 
14-9. A slot of width s is cut in an infinite flat conducting sheet.  Before the slot 

was made, the electric field above the sheet was everywhere perpendicular to the 
sheet and of intensity E0, while the field below the sheet was zero. At what distance 
below the center of the slot (and normal to the sheet) is the electric potential equal to 
one one-hundredth of its value at a distance a above the sheet and remote from the 
slot? 
14-10. The electric field intensity in the uniform field region between the two hori-

zontal plates of a large parallel-plate capacitor is 10,000 volts/meter. Find the field 
intensity at a point in the fringing field halfway between the plates and at a horizontal 
distance d from the edges of the plates, where d is the plate spacing.  It is assumed 
that the plates are infinitesimally thick and that they are located in air. 
14-11. The reflection coefficient for voltage on a line of characteristic impedance 
z. is 

Z — Z. (Z/20) — 1 Z. — 1 

Z  Zo  (Z/Z0) + 1  Z,, + 1 

where Z = load impedance (ohms) and Z.  normalized impedance (dimensionless) 
( = R„  jX,,).  It follows that 

— 1 +  
1 — p, 

Show that if R„ and X„ are obtained as functions of the real and imaginary parts of 
p, a map of R. and X. in the p, plane yields the Smith impedance chart (see Sec. 11-7). 
14-12. A half-cylindrical metal tube of radius a, as shown in Fig. 14-26, is at zero 

Metal tube 
Fio. 14-26. Cross section of half-cylindrical tube for Prob. 14-12. 

potential.  If a plate at a constant potential greater than zero is placed across one 
end of the tube, but not in contact with it, show that the potential inside the tube at a 
large distance z from the plate is of the form 

, RI, 
V .= Ce --0 sin cP  ( —p) a 

where C = a constant, p = radius of point inside of tube, J1 = first-order Bessel 
function (of first kind), and R11 = 3.832 = first root of J1 [that is, first value of u after 
u = 0 for which J1(u) = 0].  Assume that the tube is infinitely long. 
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APPENDIX 

A-1. Table of Units. In the following table dimensions or quantities 
commonly used in electromagnetics are listed alphabetically under the 
headings Fundamental, Mechanical, Electrical, and Magnetic.  In the 
first column the name of the dimension or quantity is given and in the 
second column the common symbol for designating it. In the third 
column (Description) the dimension is described in terms of the funda-
mental dimensions (mass, length, time, and electric charge) or other 
secondary dimensions. The fourth column (Mksc unit) lists the rational-
ized mksc unit for the dimension, and the fifth column gives equivalent 
units. The last column indicates the fundamental dimensions by means 
of the symbols M (mass), L (length), T (time), and Q (electric charge). 
For a discussion of dimensions and units see Secs. 1-1 to 1-3, inclusive. 
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FUNDAMENTAL UNITS 

Name of dimension 
or quantity 

Symbol Description 
Mksc 
unit   

coulomb 

Equivalent units 
Fundamental 
dimensions 

Charge (electric) Q, q  current X time 6.25 X 100 electron charges 
= ampere-second = 3 X 102 
cgs esu t = 0.1 cgs emu: 

Q 

Length L, 1 meter 100 centimeters  L 

Maas M, m kilogram 1,000 grams  M 

Time 7', t second 1I   
hour 

7' 
f/mi nute = 3,600  

1 
day 

= 86,400  

MECHANICAL UNITS 

Acceleration a 
velocity _ length 
time  time' 

meter  
second' 

Area A, a, s length' meter' L2 

Energy or work force x length 
= power x time 

joule newton-meter = watt-second 
= volt-coulomb = 10' ergs 
= 107 dyne-centimeters 

ML' 
T 2 

Energy density 
energy  
volume 

joule  
meter' 

10 ergs/centimeter' 
LT' 

t cgs esu = centimeter-gram-second electrostatic unit (stat unit). 
cgs emu = centimeter-gram-second electromagnetic unit (ab unit). 



MECHANICAL UNITS. —(Continued) 

Name of dimension 
or quantity 

Symbol Description 
Mksc 
unit 

Force mass X acceleration newton 

Equivalent units 

kilogram-meters joule  
seconds  meter 
106 dynes 

Frequency cycles/second  cps (hertz 

Fundamental 
dimensions 

ML 
T2 

Length L, meter 100 centimeters 

Mass 

Moment (torque) 

Momentum 

M, m kilogram 1,000 grams 

force X length newton-
meter 

kilogram-meterssecond    — joule ML' 
TI 

My mass X velocity 
•• force X time 
energy  
velocity 

newton-
second 

kilogram-meter 
second 
joule-second 
meter 

ML 

Period 
1   

frequency 
second 

Power force X length 
time 
energy 
time 

watt joule _ newton-meter 
second  second 

kilogram-meters 
seconds 

ML' 
Ts 

X 
IG
N
ac
hi
V 



MECHANICAL UNITS.—(Continued) 

Name of dimension 
or quantity 

Symbol 
I 

Description 
Mksc 
unit 

Equivalent units 
Fundamental 
dimensions 

Time T, t second hour T 

L 
T 

gib min ute = 3,6001 

1 
day 

= 86,400 

Velocity 

(velocity of light in 
vacuum = 3 X 10' 
meters/sec) 

v 
length meter 
time second 

Volume 

• 

v length' meter' La 

ELECTRICAL UNITS 

Admittance Y 
1   

impedance 
mho 
(siemens) 

ampere _  coulomb'  
volt  joule-second 

TQ2 
ML' 

Capacitance C 

Charge Q, q 

charge  
potential 

farad 
coulomb coulomb' 
volt  joule 
ampere-second mr 

volt 
= 9 X 1011 cm (cgs esu) 

current X time coulomb 6.25 X 10" electron charges 
= ampere-second = 3 X 10" cgs 
esu 
= 0.1 cgs emu 

TaQ2 
ML' 

Q 



ELECTRICAL UNITS.—(Continued) 

Name of dimension 
or quantity 

Symbol Description 

Charge (volume) density 

Conductance 

Conductivity 

Current 

P 
charge  

-V D 
volume 

Mksc 
unit 

Equivalent units Fundamental 
dimensions 

coulomb 
meter' 

ampere-second 
meters 

0 
Li 

1   
resistance 

mho 
(siemens) 

ampere  coulomb' 
volt  - joule-second 

T(22 
ML' 

a 
1   

resistivity 
mho  
meter 

1   _ 1  mho   
ohm-meter - 100 centimeter 

TQ2 
ML' 

1, i 
charge 
time 

ampere 
coulomb 

- 3 X 109 cgs eau 
second 

= 0.1 cgs emu 

Current density J 

Dipole moment 

Emf 

Energy density (electric) 

Field intensity 
(E vector) 

current 
area 

ampere 
meter' 

coulomb   
second-meter' 

p ( = ql)  charge x length coulomb-
meter 

ampere-second-meter 

V  f E. • dl volt 
,  weber _  joule  
second - coulomb 

Q 
T 

0 

  >, 
LQ 

ML' 
T2Q 

w. 
energy 
volume 

joule  
meter' 

10 ergs/centimeters 

E 
potential _  force  
length  charge 

volt  
meter 

newton _  joule   
coulomb  coulomb-meter 
= 4 X 10-4  cgs esu 
= 106 cgs emu 

z i I  
LT' 

ML 
T2Q 



ELECTRICAL UNITS.—(Continued) 

Name of dimension 
or quantity   

Flux 

Symbol Description 
Mksc 
unit 

Equivalent units 
Fundamental 
dimensions 

tif charge = ffD • de coulomb I ampere-second 

ampere-second -  ampere 

Q 

Q 
L2 

Flux density 

(displacement) 
(D vector) 

Impedance 

D 
charge coulomb 
area meters meters  meters/second 

Z 
potential 

ohm 
volt ML' 

current ampere T(22 

Linear charge density pi, 
charge coulomb ampere-second Q 

L 

TsQs 

length meter meter 

coulomb Permittivity 

(dielectric constant) 
(for vacuum, 
to = 8.85 X 10-" 
= 10-0 /367 farad/meter) 

Polarization 

o 
capacitance farad 
length meter volt-meter ML' 

P 
dipole moment coulomb ampere-second Q 

L2 volume meter' meters 

Potential V 
work 

volt 

' 

joule  newton-meter MD 
charge 

' 

coulomb  coulomb 
watt-second  watt 

Tki 

- 
coulomb  ampere 
weber  1 

- 
_ 
second  300 cgs  esti  

= 108 cgs emu 

CJ1 



ELECTRICAL UNITS.—(Continued) 

Name of dimension 
or quantity 

' Symbol 

S 

1 
Description 

Mksc 
unit 

Equivalent units 
Fundamental 
dimensions 

Poynting vector (power sur- 
face density) 

1 power watt joule M 
Ts area meters second-meters 

Radiation intensity U 
power watts ML'  

unit solid anglet steradian T3 

Reactance 

Relative permittivity (rel- 

ative dielectric constant) 

X 
potential 

ohm 
volt MIA' 

current ampere TQl 

e, 
S 

ratio — 
to dimensionless 

ML' Resistance 

Resistivity 
(specific resistance) 

R 
potential 

ohm 
volt ' joule-second 

current ampere  coulomb' 

= i X 10-" egs esu 
= 10-s cgs emu 

TQ2 

AS 
resistance X length 
= 1/conductivity 

ohm-meter 
volt-meter ML' 
ampere TO 

Sheet current density 

Susceptance 

K 
current ampere ampere Q 

TL length meter 
X meter 

meters 

B 
1 

mho 
ampere 7'Q 1 

reactance volt MLs 

Wavelength X length meter L 

Solid angle is dimensionless. 



MAGNETIC UNITS 

Name of dimension 
or quantity 

Dipole moment 
(magnetic) 

Symbol 
1 Mksc 

Description 
1  unit 

Equivalent units 
Fundamental 
dimensions 

QL1 
T 

M 
LT2 

m ( = Q.1) 
pole strength x length 
= current X area 

=  torque 

ampere- 
meter' 

coulomb-meter! 
second 

magnetic flux density 

Energy density 
(magnetic) 

w. 
energy joule 

10 ergs/centimeters 
volume meters 

Flux (magnetic) C. f f B • de weber volt-second 
= 10s maxwells (cgs emu) 
= newton-meter 

ML2 
TQ 

ampere 

Flux density 
(B vector) 

force  force weber volt-second 
10 ' 

M 
TQ pole  current moment 

magnetic flux 
meters meters  =  gauss (cgs emu) 

newton = 
area 

= 
ampere-meter 

Flux linkage A flux X turtle weber-turn 
ML2 
TQ 

H field (H vector) (magnet- 

izing force) 
H  mmf ampere newton  watt Q 

TL length meter 
— 

weber  volt-meter 

= 47 X 10-s oersted (cgs emu) 
= 400y gammas 

t Turns are dimensionless. 

SD
I
I
H
N
OI
TI
A1
01
1.
1
2
H
T3 



MAGNETIC UNITS. —(Continued) 

Name of dimension 
or quantity 

Symbol Description 
Mksc 
unit 

Inductance 
magnetic flux linkage 

current 
henry 

Equivalent units Fundamental 
dimensions 

weber joule  
- ohm-second ampere  amperes 

=  X 10-11  cgs esu 
= 109 centimeters (cgs emu) 

ML2 

Qt 

Magnetization 
(magnetic polarization) 

magnetic moment 
volume 

ampere 
meter 

ampere-meters 
meters 
ampere-meter 
meters 

TL 

Mmf f H • dl 
ampere-
(turn) 

coulomb 
second 

Permeability (for vacuum iso 

= 4w X 10-7 
= 1.257 X 10-4 
henry/meter) 

inductance 
length 

henry 
meter 

Permeance 6' 
magnetic flux _  1 

mmf  reluctance 
henry 

weber   
ampere-meter 

volt-second  
ampere-meter 

weber  
ampere 

Pole density 
pole strength  
volume 
current 
area 

= V • H = -V • M 

ampere 
meters 

ML 

Q2 

MLs 
QS 

TLs 

XI
at
i
a
d
d
V 

Cli 



MAGNETIC UNITS.—(Continued) 

Name of dimension 
or quantity 

Symbol Description 
Mksc 
unit 

ampere- 
meter 

Equivalent units 
Fundamental 
dimensions 

Pole strength Q., q. current X length 

= fffp. dv 

coulomb-meter QL 
T 

Q 
T 

second 

Potential 
(magnetic) 
(for H) 

Relative permeability 

u work 
ampere 

joule  watt  coulomb 
pole X permeability 

= f H• dl 

weber  volt  second 
47 
—10 gilberts (cgs emu) 

mr ratio II 
MO 

Dimensionless 

Reluctance 61 
mmf 1 ampere Q' 

magnetic flux 
1 

henry weber ML2 

permeance 

Vector potential A current X permeability 
weber henry-ampere  newton ML 

TQ meter meter  ampere 

SD
I
I
H
NI
O
V
W
0I
I
I
D
a
l
a 
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A-2. Graphical Field-mapping Techniques. Some further techniques' 
of graphical field mapping may be illustrated by considering an example. 
Let the problem be to map the electric field in a square corner.  It is 
assumed that the sides of the corner 
consist of two flat, perfectly con-
ducting sheets of infinite extent 
intersecting at 90° and that a poten-
tial difference is applied between 

-----Q the corner and another conductor  uadrisector 
Step 2 

at a very large distance in the direc-
tion of the corner bisector. 
Step 1 in the procedure is to con-

struct the corner bisector (Fig.  Flat sheets 
A-la).  By symmetry the field  (a) 
above the bisector is a mirror image 
of the field below so that it suffices 
to map only the field below the 
bisector. 
Step 2 is to construct the quadri-

sector as shown in Fig. A-la. This 
is also a line of symmetry but differs 
from the bisector in that, although 
the field in the 22-1° sector above the  A 
quadrisector is a mirror image of 
the field in the 224° sector below, 
equipotentials are mirrored as field 
lines and field lines as equipoten-
tials. This property, however, is 
very useful in constructing the  . Step 4 
map. 

Step 3 is to sketch a field and an 
equipotential line intersecting at 
right angles at the quadrisector as 
indicated by the solid lines in Fig. 
A-lb. The starting points B and D  (C) 
for these lines should be chosen so  Fin. A-1. Steps in mapping field in a 

square corner. 
as to make the figure ABCDA as 
nearly a curvilinear square as possible. To test whether or not ABCDA 
is a curvilinear square,2 it can be subdivided as shown by the dashed lines 
in Fig. A-lb into four areas, each of which should be a curvilinear square. 
If the subdivided areas appear to depart from curvilinear squares, the field 

I See Secs. 2-27 and 2-28. 
2 For definition of curvilinear square see Sec. 2-27. 

Bisector 
Step 1 

Bisector 

Field line 
Step 3 

Quadrisector 

Equipotential 
Step 3 

Bisector 

(b) 
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and equipotential lines, including if necessary their starting points B and 
D, should be relocated. 
Assuming we are satisfied that ABCDA is a true curvilinear square or 

very nearly one, step 4 is to sketch in more field and equipotentials as in 
Fig. A-1c.  It is to be noted that the equipotentials and field lines should 
always intersect normally, with one set of intersections falling on the 
quadrisector.  Also the equipotentials should be normal to the bisector 
and the field lines normal to the side of the corner. As an aid in deter-
mining whether or not these requirements have been met, it is frequently 
desirable to turn the drawing and look at it from different directions.  It 
is particularly helpful to sight along the bisector or quadrisector.  If any of 
the areas do not appear to be curvilinear squares or if any of the intersec-
tions are not orthogonal, the map should be revised.  It is often better 
under such circumstances to erase the entire map and start afresh than 
to try and correct only those areas where inaccuracies appear to exist. 
Proceeding in the above manner, it should be possible after several 

attempts to arrive at an accurate field map. The making of accurate 
field maps is an art that requires long practice. One who has acquired 
such skill can produce field maps of very good accuracy that are satis-
factory for many engineering applications.  Practice in graphical field 
mapping is valuable experience, if for no other reason, because it develops 
a sense of how fields should flow or be shaped in problems involving 
various geometries.  Even if the field can be calculated analytically, the 
number of field points that need to be calculated can be minimized by 
utilizing graphical mapping methods to complete the map. 
As described above, graphical field mapping is to a large extent a free-

hand art.  It may be largely transformed, however, into a precise draft-
ing technique by a circle method introduced by Moore.' In this method a 
circle is used to ensure that an area departs but little from a true curvi-
linear square.  For instance, consider the two field lines and equi-
potential shown in Fig. A-2a. A circle is drawn that touches both field 

( .. 1.  Field lines 

Equipotential 

Equipotential 
i   

(a) (b) 
FIG. A-2. Circle technique. 

1 A. D. Moore, Mapping Techniques Applied to Fluid-mapper Patterns, Proc. 
AIEE, 71, 1952. 
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lines and the equipotential as indicated. The curvilinear square is then 
completed by fairing in another equipotential tangent to the circle, as in 
Fig. A-2b.  It has been shown by Moore that an area with right-angle 
intersections which is fitted by a circle in this way is very nearly an exact 
curvilinear square provided that the 
sides of the area do not diverge too 
rapidly.  Thus in Fig. A-3 the distance 
AA' along the mid-line of the area that 
fits the circle is less than about  per 
cent longer than the value AA" along 
the mid-line of an exact curvilinear 
square provided the angle of divergence 
(3 is less than 20°. The error is less for 
smaller divergence angles but is more 
for larger angles, being about 1.5 per 
cent for ô = 30°. To avoid excessive 
error on areas having sides with a large 
divergence angle or areas which are 
otherwise highly distorted, further sub-
division into smaller areas is advisable. 
An exception, however, is an area with 
diagonal symmetry such as ABCDA in 
Fig. A-lc, in which case a perfect fit is 
possible. 
Applying the circle technique to the 

rMudline 
•A'  Equipotential 

tangent to circle 

Fta. A-3. Circle 
square. 

Equipotential for 
true curvilinear 

Square 

Bisector 

(a) 
QuadriseCtOf 

(h) 

(c) 

B  E 
and curvilinear  FIG. A-4. Circle method of mapping 

field in square corner. 

square corner discussed above, steps 1 and 2 are the same as previously. 
That is, step 1 is to construct the bisector and step 2 the quadrisector. 
Step 3 is to draw a circle of convenient size as in Fig. A-4a.  Although the 
circle may be drawn with a compass, the circle method is greatly facilitated 
by the use of a " circle guide," consisting of a sheet of celluloid punched 
with holes that differ in diameter by small increments. Several makes are 
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commercially available. Since the holes differ in diameter by finite incre-
ments, it is sometimes necessary to use a hole that is too small, in which 
case the circle is spaced by the same amount from all sides of the area. 
Step 4 is to draw a field line starting from B and an equipotential from 

D, each tangent to the circle and intersecting normally at the quadri-
sector, as in Fig. A-4h. Step 5 is to draw the smaller circles as in Fig. 
A-4c. Step 6 is to fair in an equipotential starting from F and a field 
line starting from E as in Fig. A-4d. The other equipotential and field 
line are also extended and then circles drawn at G, H, and I. This 
process is continued until the map extends over the area desired. 
In field-mapping work where one set of lines, such as the field lines, is 

given the circle method is particularly valuable.  Consider, for example, 
the fluid-mapper pattern in Fig. A-5 as obtained by Moore.' This pat-
tern shows the flow or field lines that may be regarded as extending from a 
circular inner conductor to a rectangular outer conductor of a transmis-
sion line. Here the field lines are provided by the fluid mapper, and it is 
necessary only to draw in the equipotentials. The technique for han-
dling this map differs from that described above in that each flux tube 
can be treated independently of all others so that equipotentials need not 
be continuous. Take tube A as an example.  Circles are drawn as indi-
cated, and the equipotentials extend only the width of the tube. Assum-
ing that the line is filled with a medium of permittivity e, the capacitance 
of tube A is e/4.18 farads per meter depth of line (into the page). For 
tube B it is e/3.13 farads per meter, and for tube C it is e/4.33 farads per 
meter. Mapping all tubes, the total capacitance per unit depth of line is 
equal to the sum of the capacitances of the individual tubes.' Owing to 
symmetry a vertical center line Y Y' may be drawn dividing the diagram 
in half as indicated and only those tubes mapped in either the left or the 
right half. The total capacitance is then twice the value obtained for 
either half. However, higher accuracy is usually obtained by completing 
the map for the entire diagram. 
The above procedure is somewhat simplified if we imagine that the 

region between the inner and outer conductor (Fig. A-5) is conducting. 
If the resistance per unit depth of a cell is Ro, then the normalized resist-
ance R. of a cell is unity or 

Ro 
R. = — = 1  (dimensionless) 

Ro 
A. D. Moore, Fields from Fluid Flow Mappers, J. Applied Phys., 20, 790-804, 

August, 1949; Mapping Techniques Applied to Fluid-mapper Patterns, Proc. AIEE, 
71, 1952. 
* Or the characteristic impedance of tube A is 376.7 X 4.18 ohms (assuming that 

the medium is air), and the characteristic impedance of the entire transmission line 
is equal to the reciprocal of the sum of the reciprocals of the characteristic impedances 
of all the individual tubes. 
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1 Tube B) 1 
Tube A  Tube C 

Flo. A-5. Circle method applied to fluid-mapper pattern (after A. D. Moore).  Tube A 
has 4.18 cells in series, tube B 3.13 cells in series, and tube C 4.33 cells in series. 
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Thus the total normalized resistance /int of the transmission line is 

1  
Rfle —  (dimensionless) 

(1/R)  (1/IL) (1 /  ± • • • 

where R.. = normalized resistance of tube A (Fig. A-5) = 4.18 
R„b = normalized resistance of tube B = 3.13 
R., = normalized resistance of tube C = 4.33 

The reader should check these values by counting the cells in Fig. A-5. 
The total actual resistance per unit depth of the transmission line (if it 
were filled with a conducting medium) is then Re = RoRie ohms/meter. 
If the transmission line is filled with a lossless medium having a per-
mittivity e and permeability po, the capacitance per unit depth of the line is 
given by 

C = e farads/meter 

the inductance per unit depth of the line is given by 

L = uoRni henrys/meter 

and the characteristic impedance' of the line is given by 

ohms 

For an air-filled line this becomes 

Z = jr±) R., = 376.7R,,, ohms 
eo 

Problem A-1.  Assuming that Fig. A-5 is a cross section of an air-filled 
transmission line, complete the map, and determine the characteristic 
impedance of the line. Something of a check on the accuracy of the 
determination is afforded by comparing the normalized resistance 
obtained for the left half with that obtained for the right half of the line. 
Problem A-2.  What is the capacitance per unit length and also the 

inductance per unit length of an air-filled transmission line with the cross 
section shown in Fig. A-5. 
Problem A-3. Locate the 25, 50, and 75 per cent equipotential lines in 

Fig. A-5.  Hint: By counting the number of squares of the same kind in a 
given tube a 50 per cent potential point, for instance, is located halfway, 

' Note that by using conducting cloth or paper with a resistance per square equal 
to Vi-42/e ohms, as in Sec. 11-5, the characteristic impedance of the line is numerically 
equal to the measured resistance between the inner and outer conductors.  Note also 
that if conducting paper of any resistance R. (ohms per square) is used, the capacitance 
per unit depth is given by C = el:4/Rm farads per meter and the inductance per unit 
depth by L  µDR.' R. henrys per meter, where R„, is the measured resistance between 
the inner and outer conductors (R„,/  R„,). 
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in terms of these squares, from the inner to the outer conductor.  After 
locating this point on a sufficient number of tubes, the equipotential line 
can be sketched in. 

A-3. Trigonometric Relations 

sin (x ± y) = sin x cos y ± cos x sin y 
cos (x ± y) = cos x cos y  sin x sin y 
sin (x  y)  sin (x — y) -= 2 sin x cos y 
cos (x  y) + cos (x — y) = 2 cos x cos y 
sin (x  y) — sin (x — y) = 2 cos x sin y 
cos (x  y) — cos (x — y) = —2 sin x sin y 
sin 2x = 2 sin x cos x 
cos 2x = cos' x — sin' x = 2 cos' x — 1 = 1 — 2 sin2 x 
cos x = 2 cos' x — 1 = 1 — 2 sin' ix 
sin x = 2 sin irx cos Ix 
sin' x  cos' x = 1 

tan x + tan y  
tan (x  y) — 

1 — tan x tan y 
tan x — tan y  

tan (x — y) — 
1  tan x tan y 

2 tan x  
tan 2x — 

1 — tan' x 
xs _L  X 5 X 7  

sin x = 

x 2  x 4  x 6 

COS X =  1 -  ±  • 

x3 2x3 17x' 62x9 
tan x = x  —  —  • 

3  15  315  2,835 
7 = 3.1416 
72 = 9.8696 
1 rad = 57.296° 

A-4. Hyperbolic Relations 

ex — e-x X3 X 6  X 7 

sinh x =  2  — x 1- -E -E 11 -E • • 
ex ± e-z x 2  x 4  x 6 

cosh x —  2  — 1 4- -E 41 -E 1 -E • • 
sinh x  

tanh x — 
cosh x 
cosh x  1  

coth x = . 
sinh x  tanh x 

sinh (x ± jy) = sinh x cos y + j cosh x sin y 
cosh (x ± jy) = cosh x cos y ± j sinh x sin y 
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cosh (jx) = i(e+ix  = cos x 
de Moivre's theorem 

sinh (jx) =  -  = j sin x 
= cos x ± j sin x 

x2 x3 , x' . x6 
= 1 ± jx -  5! - 

cosh x = cos jx 
j sinh x = sin jx 

sinh 2x sin 2y   
tanh (x ±jy) - cosh 2x  cos 2y ± cosh 2x  cos 2y 

Binh 2x sin 2y  
coth (x ±jy) = cosh 2x - cos 2y ± j cosh 2x - cos 2y 

A-6. Logarithmic Relations 

logo x = log x  common logarithm 
log. x = in x  natural logarithm 
logio x = 0.4343 log. x = 0.4343 in x 
in x = log. x = 2.3026 logo x 
e = 2.7183 

A-6. Approximation Formulas for Small Quantities (5 is a small quantity 
compared with unity) 

(1 ± 6)2 - 1 ± 26 
(1 ± a)" = 1 ± no 

= 1 + 46 
1  

  - 1 - 21 
N/1 
= 1 ± 

in (1  0) = 

J  =  for 101 << 1 
n12̂ 

where J. is Bessel function of order n. Thus 

a 
Ji(o) = 

A-7. Series 

n(n - 1) 
Binomial: (x  y)" = x"  nx"-„  Y -I-  2!  z-

+ n(n - 1)(n - 2) ( ) 
3!  x "8 - y + • • • 

Taylor's: f(x  y) = f(x)  df(x) y  d'f(x)  y2 -L-  daf(x)  ys 
dx 1 -1 dx2 21  dxs 3! 
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A-8. Solution of Quadratic Equation 

If ae + bx + c = 0, then 
— —b ± Vb2 — 4az 

x  
2a 

A-9. Vector Identities (f and g are scalar functions; F, G, and H are 
vector functions) 

F • G = FG cos 0  scalar or dot product 

= arccos (F • G)/FG. 

F x G = nFG sin 0 

= arcsin (F x G)/nFG. 

where 0 

where 0 

V • (V x F) = 
V • Vf = 
V x Vf = 

V(f +g) = 
V • (F + G) = 
V x (F + G) = 

V(fg) = 
V • (fG) = 
V x (fG) = 

V x (V x F) = 
V • (F x G) = 
F • (G x H) = 

o 

vector or cross product 

V2f 
0 
Vf + Vg 
V•F +V•G 
VxF-i-VxG 
gVf-FfVg 
G • (V f) + f(V • G) 
(VD x G ± f(V x G) 
V (V • F) — V2F 
G • (V x F) — F • (V x G) 
G • (H x F) = H • (F x G) 

A-10. Gradient, Divergence, Curl, and Laplacian in Rectangular, 
Cylindrical, and Spherical Coordinates (f is a scalar function; F is a vector 
function) 
a. Rectangular Coordinates (unit vectors are i, j, k; the vector F = 

iF„ + jF„ + kFx) 

.af -1-j . af  a Vf=1  -a-1-1-1-1E f.5i  

aF.  aF  OF, 
V • F= --1- — 1 ± — 

Ox  ay  az 

vx F  = i eF, _aF) ± . (aF.  aF) 
ay  az  3 az — ax 

.  a y  a2f a2f 

vi  = ax2+  ay2+  az2 
V-F = i V2Fx + j V2F„ + k V2F„ 

) + k (aF  aF-.1 — 
ax  ay 

i 
a 

= 

-al 
F. 

i 
a 
ail 

Ey 

k 
a 

F. 
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b. Cylindrical Coordinates (unit vectors are ar, a0, a„; the vector 
F = a,F,  agFe  al.) (related to rectangular coordinates by x = r cos 0, 
y = r sin 0, z = z) 

Vf = a„ a—Of r  -1 —af  a. — 
Or 

Of 
r ae  as 

1 a  10F,  OF, 
V • F =  (rF,.)  --r- 730-

(71. OF, — F0) + • (OF, OF,) _L  a(r Fe)  1 aF,1 
az [r  Or  r ae 

a ( af)  a2f  ay 
v2f  r ri 002  +052 

c. Spherical Coordinates (unit vectors are a„, ae, Lb; the vector 
F = arF„  a•F • ± ad,F.) (related to rectangular coordinates by x =- r 
sin 0 cos 0, y = r sin 0 sin 0, z = r cos 0) 

Of  lOf  1  of 
vf  = ar  a8  -r ags r sin 0 ad, 

la  i  a   aF. 
V • F =  (r2Fr) 

r sin 0 ae" 'sin a\   "  4_r sin e ad, 

1  a  a N ± Ito 1 [  .1  aF, 
a (rF,$)] V x F = a,  . [ (F., sin 0) 

r tan e au  r sin e ad,  ar 

i[a  err] 
(rFe) — 

v2f = - 1 a (r 2 af ) +  1 a (sin  al +  1  02f 
75 \ T'r)  r2 sin e ae  ae,  r2 sin2 e 002 

A-11. Bessel Functions. Solutions of Bessel's equation (14-25) are 
called Bessel functions.  One solution, known as a Bessel function of the 
first kind, is designated by J ,(u).  Another solution, known as a Bessel 
function of the second kind, or Neumann function, is designated by 
N,(u).  A Bessel function of the third kind, or Hankel function, is given 
by a linear combination of J,(u) and N,(u).  Hankel functions are 
designated by H (u). 
The subscript p denotes the order of the function.  The quantity u is 

the argument.  The order may, in general, be integral, fractional, or 
complex.  When this is the case, the subscript p is used.  However, if the 
order of the function is an integer, the subscript n is used. 
Bessel Functions of the First Kind.  When the order is integral,' the 

value of the Bessel function of the first kind is given by an infinite series 

This is the case when the field varies with 4, an integral number of cycles in an 
angle of 2r.  If there is no  variation, the order is zero. 
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which can be expressed as 

J(u) = 
( —1)ns(u/2)̂ 4-2'n 
m!(m  n)! 

Curves for Bessel functions of orders n = 0, 1, 2, and 3 and also v = 0.5 
are presented in Fig. A-6.  The Jo(u) curve is unity at u = 0. For 
increasing u it follows a periodic variation similar to that of a cosine 
curve with attenuation. The higher-order Bessel function curves are 
zero at u = 0. For increasing u they follow a similar periodic variation. 
At large values of u the interval between points at which a Bessel-func-
tion curve intersects the u axis [J,(u) = 0] is approximately 7. 

The following table gives the first few values of u for which Bessel func-
tions of the first kind of order 0, 1, 2, and 3 are zero, a maximum, and a 
minimum. Following the value of u for a maximum or a minimum the 
corresponding value of J(u) is given in parentheses, it being understood 
that the minimum values are negative. 

Jo(u) J i(u) 

Zero Max Min Zero Max Min 

2.405 0  (1.00) 3.832(0.403) 0 1.84(3.582) 5.33(0.346) 
5.520 7.016(0.300) 10.173(0.250) 3.832 8.54(0.273) 11.71(0.233) 
8.654 13.323(0.218) 16.471(3.196) 7.016 14.86(0.207) 18.02(0.188) 
11.792 19.616(0.180) 22.761(3.167) 10.173 21.16(3.173) 24.31(3.162) 
14.931 13.323 
18.071 16.471 
21.212 19.616 
24.353 22.761 

J2(u) ja(u) 

Zero Max Alin Zero Max Min 

0 3.054(0.486) 6.706(0.314) 0 4.201(0.434) 8.015(0.291) 
5.135 9.969(0.255) 13.170(0.221) 6.379 11.346(0.241) 14.586(0.211) 
8.417 16.348(3.198) 19.513(0.181) 9.760 17.789(0.190) 20.972(0.175) 
11.620 13.017 
14.796 16.224 
17.960 19.410 

For small arguments Cu << 1) the Bessel functions of the first kind are 
given approximately by 

un 
j"(u)  n!2n 
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For large arguments (u >> 1 and also u )> n) the Bessel functions of the 
the first kind are given approximately by 

1 
J.(u) •••-• .\ 1  cos (u 

Tu  4 
2 n 2 -I-1 

According to this relation a Besse' function of large argument varies as a 
cosine function of u that is damped or attenuated as 1/Nru. 

0.6 
Flo. A-6. Curves for Bessel functions (of the first kind) of order 0, 0.5, 1, 2, and 3. 

Bessel Functions of the Second Kind. These are often called Neumann 
functions, and when this is done, Bessel functions of the first kind can be 
referred to simply as Bessel functions. A Bessel function of the second 
kind (Neumann function) of integral order n is given (using L'Hopital's 
rule) by' 

J(u) cos Pr — J _,(u) 
Nn(u) = lim 

r—on sin PT 

Curves for Neumann functions of order n = 0 and n = 1 are presented 
in Fig. A-7.  Whereas Bessel functions of the first kind are equal to zero 
or unity at u = 0, the Neumann functions approach minus infinity as u 

This is Weber's definition of a Bessel function of the second kind.  Hence it is 
sometimes called a Weber function.  However, it is commonly called a Neumann 
function although Neumann's definition of a Bessel function of the second kind differs 
slightly from Weber's. The notation Y.(u) is used by some authors for N„(u).  How-
ever, this notation may be confusing because of the existence of other Y functions. 
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approaches zero.  At large values of u the Neumann function curves are 
similar to sine curves with attenuation.  When u is large, the interval 
between zero points of a Neumann function is approximately 71", the same 
as for a Bessel function (of the first kind). 

0.6 

OA 

NOul 

02 

—0.2 

—04 

—0.6 

—08 

—1.0 

n,•0 

6  7 

n=1 
n =0 

10 

Fio. A-7. Neumann function curves of order 0 and 1. 

The following table gives the first few values of u for which Neumann 
functions (Bessel functions of the second kind) and order 0 and 1 are zero, 
a maximum, and a minimum. Following the value of u for a maximum 
or a minimum the corresponding value of Nn(u) is given in parentheses, it 
being understood that the minimum values are negative. 

Zero Max 

Ni(u) 

Min Zero Max Min 

0.894 
3.958 
7.086 
10.222 
13.361 

2.20(0.521) 
8.60(0.272) 
14.90(0.207) 

0(00)  2.20 
5.43(0.340)  5.43 
11.75(0.233)  8.60 

11.75 
14.90 

3.69(0.417) 
10.13(0.251) 

0( co) 
6.94(0.303) 
13.29(0.219) 

For small arguments (u << 1) the Neumann function of zero order is 
given approximately by 

No(u)  — —2In —2 
Ifu 
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where 7 = 1.781, and for orders n = 1 and higher by 

N(u)   1)1  \ " 
7  ILI 

For large arguments (u >> 1 and also u >> n) the Neumann functions 
are given approximately by 

N„(u)  j • sin ( 2n + 1 u 
7r1Z  4 

According to this relation a Neumann function of large argument varies 
as a sine function of u that is damped or attenuated as 1/Nru.  It is 
identical in form to a Bessel function (of the first kind) of the same order 
but is in phase quadrature with it in the same way that a sine function 
is in phase quadrature with a cosine function. 
Since Neumann functions become infinite when u = 0, they are not 

useful in representing fields that are finite at u = 0. 
Basel Functions of the Third Kind (Hankel Functions). Trigonometric 

and exponential functions are related by 

e+-iu = cos u ± j sin u 

In an analogous manlier Bessel functions are related to Hankel functions 
by 

H„")(u) = J(u)  jN„(u) 
and 

H„")(u) = J„(u) — jN„(u) 

where lino)(u) = Hankel function of type 1 and order n 
H 2(u) = Hankel function of type 2 and order n 

The Hankel function of type 2 is the complex conjugate of the Hankel 
function of type 1. 
Hankel functions may be plotted on a complex plane having J(u) as 

abscissa and N(u) as ordinate.  This has been done for Hankel func-
tions of type 1 of orders 0 and 1 in Fig. A-8.  The curves are spirals with 
the values of u indicated along the curves.  Curves for Hankel functions 
of type 2 would appear as mirror images of Hankel functions of type 1 
with respect to the N(u) = 0 line [J(u) axis]. 
For large values of u the Bessel functions of the first and second kind 

of the same order are in phase quadrature so that the Hankel-function 
curves intersect the axes normally (see Fig. A-8). 
In contrast to the Hankel-function curves, which are spirals in the 

complex plane, a plot of the exponential function eiu = cos u + j sin u 
in the complex plane is a circle with center at the origin.  If we imagine 
a three-dimensional graph of e)u with cos u plotted along the x axis, sin u 
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Nn(u) 
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FIG. A-8. Hankel function curves of type I and orders 0 and I plotted in terms of 
Bessel functions of the first and second kind. 

IN0( ) 

Jo( u) 

(a)  (b) 

FIG. A-9. Three-dimensional graphs of (a) the exponential function ei" and (h) the 
!Janke! function Ho(1)(u). 
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along the y axis, and u along the z axis, we obtain a right-handed helix in 
space as indicated in Fig. A-9a.  The helix has uniform diameter and 
pitch. The exponential function e-iu yields a left-handed helix.  In a 
similar way a three-dimensional graph of a Hankel function of type 1 
yields a tapered right-handed helix as shown in Fig. A-9h for n = 0. The 
helix diameter decreases with increasing u. A Hankel function of type 
2 yields a tapered left-handed helix. 
A-12. Recurrence Relations for Bessel Functions. Equations express-

ing Besse' functions or their derivatives in terms of Bessel functions of the 
same or different order are called recurrence formulas, or relations.  A 
few of these formulas are listed below for reference.' 

dJ,(u)  
- P J,(u) - J,.+I (u)  (1) 

du  u 
dJ,(u)  

-  P  du  J,(u) ± J,_1(u)  (2) u 
dJ ,(u)  
du  - 2 [J,--i(u) - J.-1-1(u)]  (3) 

J,(u) =  1-[J,i-i(u) ± J.-1(u)]  (4) 

= 2n J. ,u, _ j.  i(u)  
J.+1 (u)  (5) 

U ' ' 

From (1) we have for v = n = 0, 

dJo(u) _ 
J1(u)  (6) du 

That is, the slope of the Jo(u) curve is equal to -Ji(u). 
A-13. Spherical Bessel Functions. Bessel functions of order n 

are sometimes called spherical Bessel functions and are designated by 
lower-case letters. Thus' 

in(u) =  J.+4(u) 
and 

nn(u) =.jEi N, (u) 
2u  -1-*  

These functions are given by series involving a finite number of terms. 

All of these formulas also apply to Bessel functions of the second and third kind. 
See N. W. McLachlan, "Bessel Functions for Engineers," Oxford University Press, 
New York, 1934, p. 24. 

P. M. Morse, "Vibration and Sound," 2d ed., McGraw-Hill Book Company, Inc., 
New York, 1948, pp. 316, 446. 
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For orders n = 0 and n = 1 these are 

sin u  cos  u 
jo(u) =  - no(u) = - 

u  u 
sin u cos u sin u cos u 

ji(u) =  n1(u) -  - 
U2 it2  U  U 

A-14. Legendre Functions. Solutions of Legendre's equation (14-48) 
are called Legendre functions or surface zonal harmonics.  One solution, 
known as a Legendre function (or surface zonal harmonic) of the first 
kind, is designated by Pn(cos 0). Another solution, known as a Legendre 
function (or surface zonal harmonic) of the second kind, is designated by 
Qn(cos 0). 
For integral values of n the Legendre functions of the first kind are 

given by Rodrigue's formula 

1  ds(C0828 —  1)" 
Pn(cos 0) -   

2nn!  d(cos 0)* 

and of the second kind by 

Qn(cos 0) = -2 P„(cos 0) In 1 + cos 0 Z  1 1 - cos 0  - P„,_1(cos 0)P.,(cos 0) 

The latter functions are infinite when 0 = 0 and  so that they are not 
useful in representing fields that are finite in these regions. 

1.0 

0.5 

P„ (cos 0) 

0 

—0.5 

—1.00° 

n=4 

n=3 
n=3 

30°  60° 90° 120° 150° 180° 
0 

Fro. A-10. Curves for Legendre functions of orders 0, 1, 2, 3, and 4. 

Curves for Legendre functions, or surface zonal harmonics, of the first 
kind and orders n = 0, 1, 2, 3, and 4 are presented in Fig. A-10. 
Legendre functions, or surface zonal harmonics, of the first kind and 

first few orders are listed below in polynomial form. 
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Po(cos 0) = 1 
Pi(cos 0) = cos 0 
Po(cos 0) = 1(3 cos' 0 — 1) 
Po(cos 0) = 1(5 cos' 0 — 3 cos 0) 
P4(cos 0) = 1(35 cos4 0 — 30 cos' 0 -I- 3) 
Po(cos 0) = 1(63 cos5 0 — 70 cos' 0 ± 15 cos 0) 

Solutions of the associated Legendre equation (14-44) are called 
associated Legendre functions or solid zonal harmonics of the first and 
second kind.  Associated Legendre functions (or solid zonal harmonics) 
of the first kind are designated by P.'" (cos 0) and of the second kind by 
Q„'" (cos 0). 
For integral values of n and m the associated Legendre functions of the 

first kind are given by 

P..(cos 0) = (1 — cos' 0)m/2 d"P„(cos 0) 
d(cos 0)m 

and of the second kind by 
dmQ„(cos 0) 

Q„m(cos 0) = (1 — cos' 0)'̂ „ 
d(cos 0)'" 

The latter functions are infinite at 0 = 0 and w so that they are not useful 
in representing fields that are finite in these regions.  When m = 0 (no 

30° 60° 90° 120° 150° 180° 
0 

FIG. A-11. Curves for associated Legendre functions. 

variation with 4)) the associated Legendre functions reduce to the ordinary 
Legendre functions, or surface zonal harmonics. 
Curves for a few associated Legendre functions of the first kind are 

shown in Fig. A-11. 
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A number of associated Legendre functions (or solid zonal harmonics) 
of the first kind are listed below in polynomial form. 

Piqcos 0) = sin 0 
P2'(cos 0) = 3 sin 0 cos 0 
P3'(cos 0) =  sin 0 (5 cosg 0 — 1) 
P4t(cos 0) =  sin 0 (7 cos' 0 — 3 cos 0) 
P22(cos 0) = 3 sing 0 
P32(cos 0) = 15 sing 0 cos 0 
/342(cos 0) =  sing 0 (7 cosg 0 — 1) 
P33(cos 0) = 15 sin3 
P43(cos 0) = 105 sin' 0 cos 0 
P44(cos 0) = 105 sin' 0 

A-15. Table of Dielectric Materials. The following table presents 
data on the relative permittivity, dielectric strength, power factor, and 
resistivity of a number of common dielectric materials. The power 
factor is given in per cent at three frequencies 60 cps, 1 Mc per sec 
(= 106 cps), and 100 Mc per sec (= 108 cps). 

TABLE OF DIELECTRIC MATERIALS 

Material 

Relative 
pe llll ittivity 
(relative 
dielectric 
constant) 

Air (atmospheric pressure)   
Amber   
Ammonia (liquid)   
Bakelite   
Cellulose acetate   
Cellulose nitrate   
Glass (plate)   
Glycerine   
Halowax   
Mica   
Oil (mineral)   
Paper (impregnated)   
Paraffin   
Polyethylene   
Polystyrene   
Quarts   
Rubber   
Rutilet (titanium dioxide, TiO2) 
Sulfur   
Water (distilled)   

Dielectric 
strength, 
megavolts/ 
meter 

Power factor per cent 

80  1  100 
cpe  Mc/see  Me/sec 

Resistiv-
ity, ohm-
meters 

1.0006  a 
3  ....  0.2  1014 
22 
5  25  2  1  1014 
7  12  7  5  5  10a 
5  7  5 
6  30  ....  0.5  1014 
50 
4  ...  0.2  0.2  10  10" 
6  200  0.5  0.03  0.03  10" 

2.2  15  0.01  0.01  0.04  10" 
3  50 

2.1  10  0.02  0.02  0.02  10i5 
2.2  40  0.03  0.03  0.03  WI 
2.7  20  0.02  0.02  0.03  1014 
5  40  0.09  0.02  0.02  1014 
3  21  1  1  1044 

89-173  ...  ....  0.06 
4  ....  10" 
81  104 

t See footnote for Table 2-1, p. 49. 
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471 
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injection in, 299 
removal time, 300 
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Bibliography, 587 
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at conductor-conductor boundary, 131 
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magnetic, 249 
transmission-line, 176, 428 

Chandler, C. W., 386 
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Characteristic resistance, 424 
Charge, concentric shells of, 32 
electric, 3 
induced, 36 
infinite lines of, 75 
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point, 3, 68-69 

Charge configurations, fields of, 67 
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Charge distributions, 15, 16 
volume, 34 
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in magnetic field, 274 
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Circle technique, 568 
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Circuit application of Poynting vector, 
412 

Circuit and field relations, 425, 426 
table, 426 

Circuit and field theory, 331, 332 
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with R and L, 304 
with R, L, and C, 306 
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field relations, 328 
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Complex function, 323, 403 
Complex Poynting vector, 372 
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Concentric shells of charge, 32 
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Conducting cylinder, 535 
Conducting media, impedance, 400 
Conducting shell, 37 
Conduction current, 318 
Conduction-current density, 392 
Conductivity, 112, 115 
Conductor cells, 132 
Conductors, 36, 108, 392 
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infinite linear, 150 
intrinsic impedance, 401 
moving, 289 

Conformal transformations, 541 
Conical antenna, 509 
Constants of media, table, 393 
Continuity relation, current, 126 
Coulomb, definition of, 2 
Coulomb's law, 3 
for magnets, 208 

Cross field, 383 
Cross product, 154 
Cup, curl example, 189 
Curl, 180, 192, 575 
examples, 185 

Curl meter, 187 
Current, conduction, 318 

density of, 392 
continuity relation, 126 
density of, 116 
displacement, 318 
eddy, 294, 315 
electric, 109 
induced, 286 
mapping of, 132 
retarded, 485 
solenoidal, 125 

Current element, 145, 203 
Current loop, 152 
Current sheet, 213 



Current tubes, 124 
Curvilinear square, 82 
Cutoff frequency, 462 
Cutoff wavelength, 447, 463 
Cyclotron, 280 
Cyclotron magnet, 270 

D 

D, divergence of, 88 
D vector, 27 
D'Alembert's equation, 346 
Debye, P., 480 
Dees, 280 
Del, 19, 22 
operations involving, 191 

Demagnetization, 244 
Deperming, 244 

Depth of penetration, 396 
Diamagnetic, 207 
Dielectric, 392 
cavity in, 102 
polarization of, 48 

Dielectric constant, 4 
complex, 322 
(See also Permittivity) 

Dielectric hysteresis, 321 
Dielectric materials, 585 
Dielectric sphere, 538 
Dielectric strength, 64 
table, 65 

Dielectrics, 108 
artificial, 56 
table, 49, 585 

Differential permeability, 313 
Dimension, 1 
Dimensional analysis, 2 
Dipole, electric, 46 
magnetic, 210 
short, 490 

Dipole antenna, 490, 512 
fields of, table, 499 

Dipole moment, 46 
D-c machine air gap, 229 
Directivity, 502, 514 
Dispersive medium, 356 
Displacement current, 318 
density of, 392 

Divergence, 88, 575 
of D, in capacitor, 93 
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Divergence, example of, 92 
of J, 126 

Divergence theorem, 93 
Domain, 230 
Dot product, 13 
Double dipole, 101 
Double-stub tuner, 439 
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Easy magnetization, 235 
Eddy currents, 294, 315 
Eldred, W. N., 551 
Electret, 49, 222 
permanent, 222 

Electric and magnetic field equations, 
200 

Electric charge, 3 
Electric circuit, Ill 
Electric current, 109 
Electric dipole, 46 
Electric field intensity, 5 
Electric field strength, 5 
Electric flux, 23 
Electric scalar potential, 8 
Electric susceptibility, 51 
Electrical units, 560 
Electromagnet, 270 
Electromotance, 118 
Electromotive force (emf), 118 
Emf-producing field, 117, 286 
Electron beam voltage, 277 
Electron charge, 3, 283 
Elliptical polarization, 379 
Elliptical wave guide, 468 
Energy, in capacitor, 65 
in inductor, 178, 306 
in magnet, 240 
per pulse, 375 
in standing wave, 377 
in wave, 369 

Energy density, electric, 66 
magnetic, 179 

Energy product, 242 
Energy velocity, 373 
Epstein, P., 478 
Equipotential line, 11 
Equipotential surface, 12 
Equivalent area, 505 
Equivalent current sheet, 213 
Equivalent transmission line, 404 
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Evans, W. R., 386 
Exponential function, 580 
Exponential transformations, 546 

Far field, dipole, 499 
Faraday, Michael, 285 
Faraday disc generator, 329 
Faraday's law, 285, 287 
Ferromagnetic materials, 206, 207 
Ferromagnetism, 230 

Field, of currents, 257 
fringing, 553 
lamellar, 326 
between sheets, 526 
superposition of, 7 
TEM, 333 
in wave guide, 452 

Field cell, 82, 176 
capacitor, 84 
magnetic, 249 

Field and circuit theory, 331 
Field mapping, 80, 249, 567 
Field maps, 254, 256, 257 
Field relations, comparison, 328 
general, 326 

Field strength, 5 
Flip coil, 317 
Fluid-mapper pattern, 571 
Flux, electric, 23 
magnetic, 148 
tube of, 149 

Flux-cutting law, 291 
Flux density, electric, 27 
magnetic, 147 
residual, 237 

Flux lines, 25 
Flux linkage, 164, 287 
Flux tubes, 26 
Fluxmeter, 233, 315 
Grassot, 317 

Force, 4 
gap, 265 
gravitational, 45, 101 
magnetic, 264 
per charge, 4 
per pole, 146, 210 
between wires, 144 

Formulas, approximation, 574 

Formulas, Neumann's, 343 
Neumann's inductance, 488 

Friis transmission formula, 518 
Fringing field, 553 
Fundamental dimensions, 1 
Fundamental units, 1, 2, 5, 58 

Gain, 502 
Galvanometer, ballistic, 315 
Gap force, 264 
in permanent magnet, 265 

Gapless circuit, 261 
Gauss's law, 27 
dependence on inverse-square law, 99 

Giorgi, 1 
Goubau, G., 479 
Gradient, 18, 20, 191, 575 
Grassot fluxmeter, 317 
Gravitational forces, 45, 101 
Group and phase velocity, 357 
Group velocity, 355 
Grover, F. W., 165 

H vector, 169 
Hallen, Erik, 147, 209 
Hankel function, 580 
Hard magnetization, 235 
Heaviside, 0., 370 
Helical wave guide, 480 
Helmholtz pair, 204 
Henry, Joseph, 285 
Henry (unit), 165 
Hertz, H., 339 
Higher mode, 417 
Hondros, D., 480 
Hydraulic analogue, 121 
Hyperbolic relations, 573 
Hysteresis, 236 
dielectric, 321 

Ideal transformer, 312 
Image plane, 512 
Impedance, of antennas (see Antenna, 

impedance of) 
characteristic, 424, 426 



Impedance, charts, 435 
of conducting media, 400 
input, table, 433 
intrinsic, 359 
conductors, 401 

of lines, 429 
of media, 358 
mutual, 311 
series, 419 
transmission-line-cell, 360 
transverse, 464 

Incident wave, 362 
Incremental permeability, 314 
Index of refraction, 354 
Induced charges, 36 
Induced current, 286 
Induced emf, 290, 292 
Induced magnetization, 232 
Inductance, 164 
self- and mutual, 308-311 
of simple geometries, 165 

Induction, examples of, 292 
general case of, 291 
magnetic, 147 

Induction relations, 292 
Inductor, 164 
energy in, 178, 306 

Infinite line, 419 
Infinite linear conductor, 150 
Infinite lines of charge, 75 
Infinite-plane transmission line, 418 
Infinitesimal permeability, 313 
Initial magnetization curve, 233 
Injection in betatron, 299 
Input impedance, table, 433 
Insulated wire, problem, 554 
Insulators, 108 
Intrinsic impedance, conductors, 401 
Inverse-square law, 99 
Iron bar, map, 253 
Iron crystal, 231 
Iron ring, 218 
Isolated sphere, 59, 98 
Isotropic antenna, 503 

Joule's law, 110 

Keeper, 244 
Kelvin, Lord, 1 
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Kernel, 175 
Keret, D. W., 297 
Kilogram, definition, 2 
Kimbark, E. W., 168 
Kirchhoff's current law, 125 
Kirchhoff's voltage law, 117, 302 
Kock, W. E., 56 

Lamellar field, 326 
Laplace's equation, 80, 97, 526 
application of, 98 
for conducting media, 137 

Laplacian, 191, 575 
Laplacian operator, 97 
Lawrence, E. 0., 280 
Legendre equation, 524, 525 
Legendre function, 525, 583 
table, 584, 585 

Lightface letters, meaning of, 4 
Line of charge, field of, 72 
Line integral, 10, 11 
around closed path, symbol, 13 

Linear polarization, 379 
Logarithmic relations, 574 
Loop antenna, small, 486 
Loop and equivalent mesh, 301 
Lorentz, 485 

McLachlan, N. W., 582 
Magnetic circuit, 245 
with air gap, 263 

Magnetic dipoles, 210 
Magnetic field equations, 158 
Magnetic field intensity, 169 
Magnetic flux, 148 
Magnetic flux density, 146 
Magnetic gap force, 264 
Magnetic induction, 147 
Magnetic materials, 207 
Magnetic moment, 159, 210 
Magnetic susceptibility, 215 
Magnetic units, 564 
Magnetic vectors, compared, 214 
Magnetization, 210 
hard and easy, 235 
induced, 232 
and polarization, table, 267 

Magnetization curve, initial, 233 
normal, 240 
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Magnetized rod and equivalent solenoid, 
212 

Magnetizing force, 169 
Magnetostatic potential, 171 
Nlagnetostriction, 236 
Magnets, Coulomb's law for, 208 
cyclotron, 270 
permanent (see Permanent magnets) 
stabilized, 266 

Mapping of fields, 80 
Mapping techniques, 567 
Marsh, J. A., 368, 389, 444 
Mass of particles, table, 283 
Mass spectrograph, 283 
Maxwell, J. C., 320 
Maxwell's equation, from Ampere, 320 
involving curl, 191, 302, 320 
involving divergence, 92 
from Faraday, 289, 302 

Maxwell's equations, 337-342 
table, 341-342 

Mechanical units, 558 
Mesh, 124 
loop and equivalent, 301 

Mesh relations, 337 
Meter, definition, 2 
Millikan oil-drop experiment, 284 
Mksc system of units, 2, 557 
Mmf, 171 
Modes, 417 
higher, 417 
nonpropagating, 466 
TEM, 417 
TM, 333 

Modulus, 430 
Moment, electric dipole, 46 
magnetic, 159, 210 

Moore, A. D., 80, 568, 570 
Morgan, M. G., 386 
Morse, P. M., 582 
Motional induction law, 291 
Moving conductor, 289 
Mutual impedance, 311 
of antennas, 516 

Mutual inductance, 308-311 

N 

Nabla, 19, 22 
Nabla operations, 191 

Narrow-band transformer, 441 
Near field, dipole, 498 
Neper, 470 
Network representation of antenna, 515 
Neumann, F. E., 288 
Neumann function, 578 
table, 579 

Neumann's formula, 343 
Neumann's inductance formula, 488 
Newton's second law, 298 
Nonpropagating modes, 466 
Nonuniform line, 421 
Normal dispersion, 356 
Normal magnetization curve, 240 
North pole, 206 
Notched block, 136, 140 

0 

Ohmmeter measurement, 427 
Ohm's law, 110 
at a point, 117 

Open wave guide, 479 
Ordinary permeability, 313 

P 

Paddle wheel, 187 
Parallel conductors, force between, 151 
Parallel plane line, 445 
Parallel strip line, 176 
Paramagnetic materials, 207 
Paths of integration, 173 
Pattern, 514 
Pattern measurement, 514 
Peek, F. W., Jr., 64 
Penetration depth, 397 
table, 398, 403 

Permanent electret, 222 
Permanent magnetization, 232 
Permanent magnets, 241 
with gap, 265 
materials for, table, 243 

Permeability, differential, 313 
and field cell, 176 
incremental, 314 
infinitesimal, 313 
ordinary, 313 
relative, 207 
table, 208 

Permeance, 245, 246 
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Permittivity, 4, 48 
relative, 48 
table, 49 

Phase constant, 423 
wave guide, 472 

Phase factor, 396, 423 
Phase velocity, 349, 352, 464 
average, 390 
relative, 353 

Phasor, 323, 403 

Plane waves, in conducting media, 391 
in dielectrics, 344 
in opposite directions, 362 

Point charge, 3 
Point relation, 337 
Poisson's equation, 97 
Polarization, circular, 380 
of dielectric, 48 
elliptical, 379 
and magnetization, table, 267 
space, 386 
of wave, 379 

Pole surface density, 211 
Pole volume density, 216 
Poles, 146, 206, 208 
Potential, 9 
distribution, measurement of, 531 
magnetostatic, 171 
retarded, 485 
superposition of, 16 

Power factor, 414 
Poynting, J. H., 370 
Poynting vector, 370 
applied to circuit, 412 
complex, 372 
in conductors, 410 
relations, table, 375 

Principle of superposition, of fields, 7 
of potential, 16 

Propagation constant, 422 
Propagation time, 484 

Quadratic equation, 575 
Quadripole, 101 
}-wavelength plate, 441 
}-wavelength transformer, 441 
Quasi conductor, 392 
Quasi-stationary field, dipole, 499 

Radiation, 484 
Radiation field, dipole, 499 
Radiation intensity, 502 
Radiation resistance, 488 
dipole, 500 

Ramo, S., 407, 486 
Rationalized units, 2 
Rayleigh, Lord, 269 
Receiving antenna, 504, 512 
Reciprocity theorem, 311, 513 
Rectangular impedance chart, 436 
Rectangular wave guide, 452 
Recurrence relations, 582 
Reentrant wave guide, 468 
Reflected wave, 362 
Reflection coefficient, 366, 405, 431 
table, 435 
of waves at boundary, 403 

Refraction index, 354 
Reintjes, J. F., 435 
Relative permeability, 207 
Relative permittivity, 48 
Relative phase velocity, 353 
Relaxation time, 398 
Reluctance, 245, 246 
Remanence, 237 
Removal time, betatron, 300 
Residual flux density, 237 
Resistance, characteristic, 424 
Resistance paper, 427 
Resistivity, 112 
Retardation time, 485 
Retarded current, 485 
Retarded potential, 485 
Retentivity, 239 
Right-hand rule, 143 
Roberts, S., 323 
Rodrique's formula, 583 
Rosa, E. B., 165 
Rowland ring, 232 

Saturation, 231 
Scalar, symbol for, 4 
Scalar potential, electric, 8 
retarded, 486 

Scalar product, 13 
Schelkunoff, S. A., 509 
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Schwarz-Christoffel transformation, 547 
Search coil, 315 
Second, definition, 2 
Secondary units, 2 
Self-inductance, 308, 311 
Semiconductors, 109 
Series, 574 
Series circuit, 302-306, 334 
Series impedance, 419 
Shearing line, 266 
Shell, conducting, 37 
Short dipole, 490 
Shunt admittance, 419 
Single shell of charge, 30 
Single-valued potential, 10 
Single-wire wave guide, 479 
Singular point, 71 
Skilling, H. H., 187 
Slab line, 551 
Sliding strip, 294 
Slotted sheet, 547 
Smith, P. H., 438 
Smith chart, 438 
Solenoid, 161, 175 
and equivalent rod, 224 

Solenoid inductance, 165 
Solenoidal currents, 125 
Solid zonal harmonics, 584 
Sommerfeld, A., 479 
South pole, 206 
Southworth, G. C., 468 
Space cloth, 407, 427 
Space paper, 407 
Space polarization, 386 
Spherical Hemel functions, 524, 582 
Spherical coordinates, 28 
Stabilized magnet, 266 
Standing-wave envelope, 365 
Standing-wave ratio (SWR), 368, 433 
for phase velocity, 368 

Standing waves, 362 
Steenback, M., 297 
Stoke's theorem, 300 
Stratton, J. A., 209, 355, 523 
Stub antenna, 509, 510 
Superposition, of fields, 7 
of potential, 16 

Surface charge, 17 
Surface power density, 371 
Surface wave, 479 
Susceptibility, electric, 51 

Susceptibility, magnetic, 215 
Symbols, meaning of, 4, 557-566 

Tables, Bessel functions, 577 
spherical, 582-583 

boundary relations, 325 
electric, 56 
magnetic, 230 

charge and mass of particles, 283 
circuit and field relations, 426 
coaxial and two-wire lines, 429 
comparison of field relations, 328 
conductivities, 115 
constants of media, 393 
dielectric materials, 49, 585 
dielectric strength, 65 
electric and magnetic fields, compari-

son, 173 
equations, 200 

field-map quantities, 257 
fields of dipole, 499 
impedance, characteristic, 424 
input, of lines, 433 

Legendre functions, 584, 585 
Maxwell's equations, 341, 342 
Neumann functions, 579 
penetration depths, 398, 403 
permanent magnetic materials, 243 
permeabilities, 208 
permittivities, 49 
polarization and magnetization, 267 
Poynting vector, 375 
reflection and transmission coefficients, 

435 
units, 557-566 
wave-equation solutions, 352 
wave-guide relations, 467 

Tang, K. Y., 306 
Taylor's series, 574 
TE wave, 445 
TEM field, 333 
TEM mode, 417 
TEM wave, 344 
Terman, F. E., 165 
Terminated line, 430 
Terminated wave, 407 
Tilt of wave, 475 
Time-changing fields, 285 
Time constant, 306 
Time-phase diagram, 322 
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TM mode, 333 
Toroid, 175 
inductance of, 166 

Toroidal coil, 308 
with gap, 218 

Torque on loop, 159 
Transformations, conformal, 541 
exponential, 546 
Schwarz-Christoffel, 547 

Transformer, 311 
broad-band, 441 
ideal, 312 
induction equation, 289 
narrow-band, 441 
I-wavelength, 441 

Transmission of waves at boundary, 403 
Transmission coefficient, 405, 434 
table, 435 

Transmission-line cell, 176, 360, 428 
Transmission lines, 417 
analogous, 404 
charts, 435 
coaxial, 167 
equivalent, 404 
infinite, 419 
infinite-plane, 418 
map, 253 
terminated, 430 
transitional forms, 418 
two-wire, 77, 168 

Transmitted wave, 362 
Transverse impedance, 464 
Trigonometric relations, 573 
Tube, of current, 124 
of flux, 26 
of magnetic flux, 149 

Two-wire line, 168, 418 

U 

Unit vectors, products of, 158 
Units, 1, 2, 557 

V 

Vector, 323 
symbol for, 4, 323 
unit, products of, 158 

Vector identities, 575 
Vector-phasor, 323 
Vector potential, 195 
retarded, 486 

Vector product, 154 
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Velocity, energy, 373 
group, 355 
phase, 349, 352 

Volume charge distributions, 34 
von Hippel, A., 323 

W 

Wainer, E., 49 
Water trough, 186 
Wave antenna, 477 
Wave equation, 344 
for conducting media, 394 

Wave-equation solution, 347 
in cylindrical coordinates, 521 
in rectangular coordinates, 520 
in spherical coordinates, 523 
table, 352 

Wave guide, 445 
attenuation in, 469, 471 
attenuator, 471 
circular, 468 
elliptical, 468 
helical, 480 
impedance, characteristic, 455 
transverse, 455 

infinite-plane, 445 
open, 479 
parallel-plane, 445 
rectangular, 452 
reentrant, 468 
ridge, 468 
single-wire, 479 

Wave-guide relations, table, 467 
Waves, bound, 479 
at boundary, 403 
component, 448 
in conducting media, 391 
incident, 362 
plane (see Plane waves) 
polarization of, 379 
reflected, 362 
standing, 362 
surface, 479 
TE, 445 
TEM, 344 
terminated, 407 
tilt of, 475 
transmitted, 362 
traveling parallel to boundary, 475 
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Weber, E., 531 
Weber function, 578 
Whinnery, J. R., 407, 486 
Whitmer, R. M., 480 
Wholey, W. B., 551 

X 

X rays, 393 

Y function, 578 

Y 

Z 

Zenneck, J., 479 
Zonal harmonics, 583 
solid, 584 






