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PREFACE 

It is the purpose of this book to present the basic theory of antennas with 
emphasis on their engineering applications. An effort has been made to 
give a unified treatment of antennas from the electromagnetic theory point 
of view while keeping in mind the aspects of engineering importance. 
The principles given are basic and are applied to antennas for all fre-

quencies. The first four chapters deal with the fundamental theory of 
point sources and of the antenna as an aperture. These are followed by 
three chapters on linear, loop, and helical antennas in that order. The 
theories of the biconical antenna and of the cylindrical antenna are then 
discussed. The self and mutual impedance of antennas and the theory of 
arrays of linear antennas are taken up in the next chapters, and these are 
followed by chapters on reflector-type antennas, slot, horn, complementary, 
lens, long wire antennas, and many other types. The final chapter describes 
methods and techniques of antenna measurements and includes a discussion 
of wave polarization. The Appendix has a number of useful tables for 
reference. 
Antennas form the dominant theme of the book, and other subjects are 

placed in a subordinate position. For example, transmission lines are not 
considered per se but are discussed in connection with impedance measure-
ments and matching arrangements for antennas. 
The book is an outgrowth of lectures given in recent years by the author 

in a course on antennas at The Ohio State University. The material is 
suitable for use at about senior or first-year graduate level and is more than 
sufficient in amount for a one-semester course, allowing considerable lati-
tude as to the subjects treated. Problem sets are given at the end of each 
chapter. As preparation for the course on antennas, it is desirable that 
the student have a knowledge of elementary electromagnetic theory, trans-
mission lines and wave guides, and vector analysis. 
"Antennas" has been written to serve not only as a textbook but also, it 

is hoped, as a reference book for the practicing engineer and scientist. As an 
aid to those seeking additional information on a particular subject, the 
book is well documented with footnote references. Some of the material in 
the book is published here for the first time. This refers particularly to 
portions of the treatments on point sources and on helical antennas. 

V 



yi  PREFACE 

An aim throughout the book has been to approach a new subject grad-
ually. For example, wherever possible, simple special cases are considered 
first, and then with these as background the general case is developed. 
The rationalized mks system of units is employed. This system, which 

is rapidly coming into almost universal use, has many practical advantages. 
A very complete table of units in this system is included in the Appendix. 
Although great care has been exercised, some errors in the text or figures 

will inevitably occur. Anyone finding them would do me a great service 
to call them to my attention so that they can be corrected in subsequent 
printings. 
I wish to express my appreciation to many of my associates and students 

for helpful suggestions. In particular I greatly appreciate the comments 
and criticisms of Professor John N. Cooper, of the Department of Physics, 
and of Professors Victor H. Rumsey and Sidney Bertram, of the Depart-
ment of Electrical Engineering, at The Ohio State University. 

JoaN D. KRAUS 
COLUMBUS, OHIO 
August, 1950 
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CHAPTER 1 

INTRODUCTION 

1-1. Definitions. A radio antenna' may be defined as the structure 
associated with the region of transition between a guided wave and a free-
space wave, or vice versa. 
In connection with this definition it is also useful to consider what is 

meant by transmission line and by resonator. A transmission line is a 
device for transmitting or guiding radio-frequency energy from one point 
to another. Usually it is desirable to transmit the energy with a minimum 
of attenuation, heat and radiation losses being as small as possible. This 
means that while the energy is being conveyed from one point to another 
it is confined within the transmission line or to the vicinity of the line. 
Thus, the wave transmitted along the line is one-dimensional in that it 
does not spread out into space but follows along the line. From this 
general point of view the term transmission line includes not only coaxial 
and two-wire transmission lines but also hollow pipes, or wave guides. 
A generator connected to an infinite, lossless transmission line produces 

a uniform traveling wave along the line. If the line is short-circuited, a 
standing wave appears because of interference between the incident and 
reflected waves. A standing wave has associated with it local concentra-
tions of energy. If the reflected wave is equal to the incident wave, we 
have a pure standing wave. The energy concentrations in such a wave 
oscillate from entirely electric to entirely magnetic energy and back twice 
per cycle. Such energy behavior is characteristic of a resonant circuit, or 
resonator. Although the term resonator, in its most general sense, may 
be applied to any device with standing waves, the term is usually reserved 
for devices with stored energy concentrations that are large compared 
with the inflow or outflow of energy.' When there are no internal con-

1 In its zoological sense, an antenna is the feeler, or organ of touch, of an insect. 
According to usage in the United States the plural of "insect antenna" is "antennae," 
but the plural of "radio antenna" is "antennas." However, the usage in England makes 
no distinction, the plural of both "insect antenna" and "radio antenna" being 
"antennae." 
' The ratio of the energy stored to that lost per cycle is proportional to the Q, or 

sharpness of resonance of the resonator. 

1 



2 ANTENNAS  [C m.P. 1 

ductors, as in a short-circuited section of wave guide, the device is called 
a cavity resonator. 
As illustrations of these definitions, consider Fig. 1-1. A generator or 

R.F 
Generator 

Traveling wave 

I t 
Transmission line 

Transition 
region or 
antenna 

Resonator 
Standing wove 

A 

Free-space 
wove 

Fm. 1-1. The antenna is a region of transition between a wave guided by a trans-
mission line and a free-space wave. 

transmitter is connected to a two-wire transmission line AB. Assuming 
that the line is properly matched, it carries a single outward-traveling 
wave and behaves as a pure transmission line. At A there is a short-
circuited section of line connected in parallel. This line has a standing 
wave and acts as a resonator or resonant line. Beyond B the transmission 
line spreads out gradually until the separation between conductors is many 
wavelengths. In this region the wave guided by the transmission line is 
radiated into a free-space wave. This region of the line acts as an antenna. 
Let the transmission line now be connected to a dipole antenna as in 

Fig. 1-2. The dipole acts as an antenna 

l 

because it launches a free-space wave. 
Generator  aDntipeonlnea  However, it may also be regarded as a 
0   section of terminated transmission line 

Tran,ss,on hre  (see Sec. 1-2). In addition, it exhibits 
many of the characteristics of a reso-
nator, since energy reflected from the 

Fm. 1-2. Dipole antenna,  ends of the dipole gives rise to a stand-
ing wave on the antenna.  Thus, a 

single device, in this case the dipole, exhibits simultaneously properties 
characteristic of an antenna, a transmission line, and a resonator. 
The energy radiated by antennas oscillates at radio frequencies. The 

associated free-space waves range in wavelength from thousands of meters 
at the long-wave extreme to fractions of a centimeter at the short-wave 
extreme. The relation of radio waves to lengths in general is illustrated 
by the length chart of Fig. 1-3. Short radio waves and long infrared 
waves overlap into a twilight zone that may be regarded as belonging to 
both. 
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4  ANTENNAS  [CHAP. 1 

1-2. The Antenna as a Terminated Transmission Line.' According to 
this analogy the space around an antenna may be separated into two 
regions: one next to the antenna known as the "antenna region" and one 
outside known as the "outer region." The boundary between the two 
regions is a sphere whose center is at the middle of the antenna and whose 
surface passes across the ends of the antenna.  The relation of this 
"boundary sphere" to a symmetrical, biconical i-wavelength antenna is 
shown in Fig. 1-4. 

Polar axis 
or 

axis of cones 

\  Outer 
\ region 

Antenna  \ 

region  \ 

Terminals 

gu torjgjj _  - -  —I—  --- 
plane  \ 

lines 

Boundary 
sphere 

Biconicol 
antenna 

Fm. 1-4. Schelkunoff's biconical antenna with boundary sphere. 

The wave caused by a very brief voltage pulse applied to the terminals 
travels outward with the electric field, or E lines, forming concentric 
circles as shown in Fig. 1-4. The magnetic field, or H lines, are normal 
to the E lines and are concentric with the axis of the cones. The field has 
no radial component. It is strictly transverse (TEM)! It is said that 
these fields belong to the principal, or zero-order, mode. 
After a time t = L/c, where L equals the length of one cone and c equals 

the velocity of light, the pulse field reaches the boundary sphere. At the 
end of the cones there is an abrupt discontinuity, while at the equator 
there is none. Hence, there is a large reflection at the end of the cones, 
and little energy is radiated in this direction. On the other hand, at the 

S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Company, Inc., 
New York, 1943, Chap. 11. 
TEM  Transverse Electro Magnetic. 



SEC. I-2)  INTRODUCTION 5 
equator the energy continues into the outer region without reflection, and 
radiation is a maximum in this direction. 
The energy flow around a I-wavelength cylindrical dipole antenna is 

similar. This is indicated by the arrows in Fig. 1-5a. Most of the energy 

Equatorial 

plane 

Outer 
region 

, Half-wove cylindrical 
/r  dipole antenna 

/ -1 1' , ,  , 
,, li t1 . , , 
, 

i  1 ,...,__ , „... .4. _.. 
I Ant nn ‘, region  IIPNBoundory sphere 

transparent 
/ 

\ 
\  / 

‘ .1 /1---- /  
••----Boundary sphere 

opaque 
(a) 

(6) 

Fm. 1-5. Energy flow near a dipole antenna (a) and radiation field pattern (b). 

guided from the terminals close to the antenna is reflected at the ends as 
though the boundary sphere were opaque. Energy traveling out in the 
equatorial plane, however, continues on into the outer region as though 
the boundary sphere were transparent. This explanation accounts in a 
qualitative way for the field pattern of the I-wavelength dipole shown in 
Fig. 1-5b. 
The E lines of principal-mode fields must end on conductors and, hence, 

cannot exist in free space. The waves which can exist and propagate in 
free space are higher mode forms in which the E lines form closed loops. 
The principal-mode wave is called a zero-order wave, and higher order 
waves are of order 1 and greater. The configuration of the E lines of a 
first-order wave in the outer region is illustrated in Fig. 1-6. This wave has 
been radiated from a short dipole antenna. The wave started on the 
antenna as a principal-mode wave, has passed through the boundary 
sphere, and has been transformed.' The field has a radial component 

'Some first-order mode is also present inside the antenna boundary sphere as a re-
flected wave. This and higher order modes may exist both inside and outside of the 
boundary sphere in such a way that there is continuity of the fields at the boundary 
sphere. 
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which is largest near the polar axis. At the equatorial plane the radial 
component is zero, and the E lines at this plane travel through the boundary 
sphere without change. Since the radial components of the field attenuate 
more rapidly than the transverse components, the radial field becomes 
negligible in comparison with the transverse field at a large distance from 
the antenna. Although the field at a large distance from the antenna is 
of a higher order type, the measurable components are only of the trans-
verse type. To suggest the fact that the radial field components are weak 
and become negligible at large distances, the E lines in the polar region 
in Fig. 1-6 are dashed. 

% 
) 

Fro. 1-6. 

Polar 
or 

antenna 

axis 

Dipole 

1̀ 
\\N., Out  Antenna  )  

reg 
region ion  

Equatorial 

plane 

Field configuration near dipole antenna. 

The distinction between the fields at a large distance and those nearer 
to the antenna may be emphasized by subdividing the outer region into 
two regions, the one near the antenna called the "near field," or Fresnel 
region, and the one at a large distance called the "far field," or Fraunhofer 
region. The boundary between the two may be arbitrarily taken to be 
at a radius R = 2L2/X as shown in Fig. 1-7. In the Fraunhofer region the 
measurable field components are transverse, and the shape of the field 
pattern is independent of the radius at which it is taken, while in the 
Fresnel region the radial field may be appreciable and the shape of the field 
pattern is, in general, a function of the radius. 
Returning now to a further consideration of the biconical antenna, this 
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type is particularly convenient in the transmission-line analogy because 
it has a constant characteristic impedance Z, given by 

Z. = 120 In cot Ili 
2 

where 0 = one-half of the cone angle (see Fig. 1-4) 

Boundary sphere 
of antenna region 

Antenna 
region 

. 20 
A 

Near field 
or 

Fresnel region 

To 
infinity 

Far field 
or 

Fraunhofer 
region 

Fresnel-Fraunhofer 
boundary sphere 

Fla. 1-7. Antenna region, Fresnel region, and Fraunhofer region. 
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Flo. 1-8.  Biconical antenna with boundary sphere (a) and as a terminated trans-
mission line (b) and (c). 

According to Schelkunoff's theory the boundary sphere (Fig. 1-8a) may 
be replaced by an equivalent load impedance ZL connected between the 
ends of the cones by zero impedance leads as suggested in the schematic 

• This relation is derived in Chap. 8. 
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at (b). The effect of the end caps is here neglected. The equivalent 
transmission-line circuit is shown in Fig. 1-8c. If ZL can be determined, 
the input impedance Z1 may be obtained by ordinary transmission-line 
relations for a line of characteristic impedance Zo and length L terminated 
in an impedance ZL. Thus, the antenna has been replaced by an equivalent 
transmission line, the antenna acting as a matching section, or trans-
former, between the terminals and space.  Based on this analogy, the 
general definition of an antenna in Sec. 1-1 may be specialized to the 
following: An antenna is a transformer (or matching section) between a 
two-terminal input and space or, in the receiving case, is a transformer 
between space and the terminals. 
The reflected wave in the antenna region gives rise to standing waves 

and energy storage in this region. It is as though the boundary sphere 
forms a spherical shell resonator that reflects effectively in polar zones 
but not at all in the equatorial zone. In a I-wavelength dipole antenna 
the energy is stored at one instant of time in the electric field mainly near 
the ends of the antenna, while  cycle later the energy is stored in the 
magnetic field mainly near the center of the antenna, or maximum current 
region. If the biconical antenna is made very thin, the reflection at the 
ends is increased and the stored energy in the antenna region is relatively 
large. However, the reflection at the ends of a biconical antenna of wide 
cone angle is less so that the stored energy is smaller. Thus, this antenna 
is less frequency-sensitive' than the thin one and is better suited for wide-
band applications. It also follows that a thick cylindrical dipole is less 
frequency-sensitive than a thin dipole. 
1-3. Shape-impedance Considerations? It is possible in many cases to 

deduce the qualitative impedance behavior of an antenna from its shape. 
This may be illustrated with the aid of Fig. 1-9. At (a) a coaxial trans-
mission line is flared out with the ratio of the conductor diameters Did 
maintained constant. Thus, the characteristic impedance of the line is 
constant.  If the taper is gradual and D is large where the line ends, this 
device radiates with little or no reflection on the line over a frequency range 
extending from some lower or cutoff frequency to an indefinitely high 
frequency. This is the ultimate in band width.  By bending the outer 
conductor into a ground plane as at (b) with the inner conductor formed as 
shown, the band width is nearly as wide as for the type at (a).3 Modifying 

1 Q is smaller. 
2 Chap. 1 by Andrew Alford, "Very High Frequency Techniques," by Radio Research 

Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947. 
3 The wide-band characteristics of an antenna of the general appearance of (6) have 

been discussed by N. E. Lindenblad, Antennas and Transmission Lines at the Empire 
State Television Station, Communications, 21, 10-14, 24-26, April, 1941. 
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this antenna to the conical type at (e) or cylindrical type at (d) further 
reduces the band width. The band width is still narrower for the thin 
stub antenna at (e) which represents an extreme to which the modification 
may be carried. If the type at (a) is regarded as the basic form, the thin 
type at (e) is the most degenerate form. 
As we depart more from the basic type, the discontinuity in the line 

becomes more abrupt at what eventually becomes the junction of the 
ground plane and transmission line. This discontinuity is caused by the 
change in the ratio Did and results in some energy being reflected back 

(a) (b) 

7 

(j)  --- N  

(k)  (1) 

----- N ,', 0  A 
(0  A (m)  (n)  — I (o) 

Fia. 1-9.  Derivation of thin wire antennas from basic broad-band types. 

into the line. The discontinuity and reflection at the end of the antenna 
also increase for thinner antennas. At some frequency the two reflections 
may compensate, but the band width of compensation is narrow. An-
tennas with large and abrupt discontinuities have large reflections and 
act as reflectionless transformers or matching-sections only over narrow 
frequency bands where the reflections cancel.  Antennas with discon-
tinuities that are small and gradual have small reflections and are, in 
general, relatively reflectionless transformers over wide frequency bands. 
The antenna types at (f), (g), and (h), in Fig. 1-9 are similar to those 

shown above them except that the ground plane is modified into a sleeve. 
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In a similar way to that discussed for the coaxial types, the thin wire 
V antenna at (1) and the thin dipole at (o) may be derived by successive 
steps from a balanced two-wire transmission line with a constant char-
acteristic impedance that is gradually flared out as suggested at (i). The 
types tend to be of progressively narrower band width as we proceed from 
left to right in the figure. 



CHAPTER 2 

POINT SOURCES 

2-1. Introduction. Let us consider an antenna contained within a 
volume of radius b as in Fig. 2-1a. Confining our attention only to the 
far field of the antenna, we may make observations of the fields along an 
observation circle of large radius R.  At this distance the measurable 
fields are entirely transverse, and the power flow, or Poynting vector, is 
entirely radial.  It is convenient in many analyses to assume that the 
fields of the antenna are everywhere of this type. In fact, we may assume, 
by extrapolating inward along the radii of the circle, that the waves 

(6) 

Observation 
circle 

Fro. 2-1. Antenna and observation circle. 

originate at a fictitious volumeless emitter, or point source, at the center 
0 of the observation circle. The actual field variation near the antenna, 
or "near field," is ignored, and we describe the source of the waves only 
in terms of the "far field" it produces. Provided that our observations 
are made at a sufficient distance, any antenna, regardless of its size or 
complexity, can be represented in this way by a single point source. 
Instead of making field measurements around the observation circle with 

the antenna fixed, the equivalent effect may be obtained by making the 
measurements at a fixed point Q on the circle and rotating the antenna 

11 
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around the center 0. This is usually the more convenient procedure if 
the antenna is small. 
In Fig. 2-la the center 0 of the antenna coincides with the center of 

the observation circle.  If the center of the antenna is displaced from 
0, even to the extent that 0 lies outside the antenna as in Fig. 2-1b, the 
distance d between the two centers has a negligible effect on the field 
pattern at the observation circle provided R >> d, R >> b, and R >> X. 

Z 

Polar 
OX'S 

z 
Polar 
a XIS 

( b) 
Pro. 2-2. Spherical coordinates for a point source of radiation in free space. 

r sin Odie, 

ra 0 

Element of 
area ds 

However, the phase patterns' will generally differ depending on d. If 
d = 0, the phase shift around the observation circle is usually a minimum. 
As d is increased, the observed phase shift becomes larger. 
A complete description of the far field of a source requires a knowledge 

of the electric field as a function of both space and time.  For many 
purposes, however, such a complete knowledge is not necessary. It may 

1 Phase variation around the observation circle. 
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be sufficient to specify merely the variation with angle of the power 
density' from the antenna. In this case the vector nature of the field is 
disregarded, and the radiation is treated as a scalar quantity. This is 
done in Sec. 2-2. The vector nature of the field is recognized in the dis-
cussion on the magnitude of the field components in Sec. 2-16. A com-
plete description of an elliptically polarized field, for example, requires 
that the variation of the field components be known as a function of time. 
This may be conveniently accomplished by specifying one or two phase 
angles. Although the cases considered as examples in this chapter are 
hypothetical, they could be approximated by actual antennas. 
2-2. Power Patterns. Let a transmitting antenna in free space be repre-

sented by a point-source radiator located at the origin of the coordinates 
in Fig. 2-2. The radiated energy streams from the source in radial lines. 
The time rate of energy flow per unit area is the Poynting vector, or power 
density. The Poynting vector of a point source has only a radial com-
ponent P. with no components in either the 0 or the 95 directions (P. = 
P* = 0). Thus, the magnitude of the Poynting vector, or power density, 
is equal to the radial component (I P I = Pr). 
A source that radiates energy uniformly in all directions is an isotropic 

source. For such a source the radial component P,. of the Poynting vector 
is independent of 0 and 4). A graph of P. at a constant radius as a func-
tion of either 0 or 4) is a Poynting-vector, or power-density, pattern 
but is usually called a power pattern. Referring to Fig. 2-2a, consider P. 

Pr 

r 

(b) 

Fla. 2-3.  (a) Rectangular power pattern of isotropic source. (b) Polar power pattern 
of isotropic source. 

as a function of 0 in the y-z plane (96 = ±90°). The power pattern for 
the isotropic source is a straight line on a rectangular graph as shown in 
Fig. 2-3a or a circle on a polar graph as shown in Fig. 2-36. In the polar 
graph the magnitude of the Poynting vector P. is proportional to the 
length of the radius vector. The three-dimensional power pattern for an 
isotropic source is a sphere of which the circle of Fig. 2-36 is a cross section. 

1 Power per unit area. 
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Although the isotropic source is convenient in theory, it is not a physi-
cally realizable type. Even the simplest antennas have directional prop-
erties, that is, they radiate more energy in some directions than in others. 
In contrast to the isotropic source, they might be called anisotropic sources. 
As an example, the power pattern of such a source is shown in Fig. 2-4a. 

0=0 

(a) 

8=0 

(c) 

0=0 

(b) 

(d) 

FIG. 2-4.  Power pattern (a), relative power pattern (b), radiation-intensity pattern (c), 
and relative radiation-intensity pattern (d) for the same directional or anisotropic source. 
All patterns have the same shape. The relative power and radiation-intensity patterns 
(b and d) also have the same magnitude and, hence, are identical. 

If P. is expressed in watts per square meter, the graph is an absolute 
power pattern. On the other hand, if P. is expressed in terms of its value 
in some reference direction, the graph is a relative power pattern.  It is 
customary to take the reference direction as that in which P. is a maxi-
mum. Thus, the radius vector for a relative power pattern is P,/P,„, 
where P,„, is the maximum value of Pr. The maximum value of the 
relative power pattern is unity as shown in Fig. 2-4h. A pattern with a 
maximum of unity is also called a normalized pattern. 
2-3. A Power Theorem' and its Application to an Isotropic Source. If 

the Poynting vector is known at all points on a sphere of radius r from a 

1 This theorem is a special case of a more general relation for the complex power flow 
through any closed surface as given by 

W'  i f f (E X H5) • ds  (2-1) 

where W' is the total complex power flow and E and H* are complex vectors representing 
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point source in a lossless medium, the total power radiated by the source is 
the integral over the surface of the sphere of the radial component P. of the 
average Poynting vector. Thus, 

W = ff P • ds =  P, ds  (2-3) 

where W = power radiated, watts 
P. = radial component of average Poynting vector, watts per 

square meter 
ds = infinitesimal element of area of sphere (see Fig. 2-2h) 
= r2 sin 0 dO (145 

For an isotropic source P. is independent of 0 and 0. Thus (2-3) becomes 

W = P, if d8  (2-4) 

The integral is equal to the area of the sphere so that 

W = PArr2 (2-5) 

or 

D  T 

— 
4rri 

(2-6) 

Equation (2-6) states that the magnitude of the Poynting vector varies 
inversely as the square of the distance from a point-source radiator. This 
is a statement of the well-known inverse-square law for the variation of 
power per unit area as a function of the distance from a point source. 
P. is in watts per square meter if W is in watts and r in meters. 
2-4. Radiation Intensity. Multiplying the power density P. by the 

square of the radius r at which it is measured, we obtain the power per unit 
solid angle or radiation intensity U. Thus, 

r2P, = U = radiation intensity  (2-7) 

Whereas the power density P. is expressed in watts per square meter, the 
radiation intensity U is expressed in watts per unit solid angle (watts per 
square radian or steradian).2 The radiation intensity is independent of the 
radius. 

the electric and magnetic fields, H* being the complex conjugate of H. The average 
Poynting vector is 

P =  He (E X IP)  (2-2) 

Now the power flow in the far field is entirely real; hence, taking the real part of (2-1) 
and substituting (2-2), we obtain the special case of (2-3). 
I Dimensionally, U is simply power since radians are dimensionless. Numerically, 

U is equal to P, at unit radius. 
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Substituting (2-7) into (2-3), the power theorem assumes the form 

W = ff U sin 0 de dcb = if U d  (2-8) 

where di/ = sin 0 cl0 d = element of solid angle 
Thus, the power theorem may be restated as follows.  The total power 
radiated is given by the integral of the radiation intensity U over a solid 
angle of 47. A pattern of U as a function of angle is a radiation-intensity 
pattern as shown by Fig. 2-4c. The maximum radiation intensity U,,, is 
in the direction 0 = 0. A relative radiation-intensity pattern is given 
by U/U., and has a maximum value of unity as shown by Fig. 2-4d. 
Relative power and radiation-intensity patterns are identical.  Hence 
for brevity both will often be referred to as power patterns. 
Applying (2-8) to an isotropic source gives 

W = 4TU.  (2-9a) 

where Uo = power per square radian 
Equation (2-9a) may also be expressed asi 

W = 41,253 U:  (2-9b) 

where U: = power per square degree 
Equations (2-9a) and (2-9h) also apply for a nonisotropic source provided 
that U. is the average power per square radian and U: the average power 
per square degree. 
2-5. Source with Hemisphere Power Pattern. As further illustrations of 

the power theorems, let us apply (2-8) to a number of sources with different 
types of assumed power patterns. Consider, for example, a source with a 
power or radiation-intensity pattern which is a hemisphere. That is, the 
power per unit solid angle, or radiation intensity, U equals a constant 
U. in the upper hemisphere (0 < 0 < 7/2 and 0 <  < 27) and is zero 
in the lower hemisphere. This is illustrated by the three-dimensional or 
space power pattern of Fig. 2-5a and the two-dimensional power pattern of 
Fig. 2-5h. Then the total power radiated is the radiation intensity inte-
grated over a hemisphere, or 

V/2 

f f  = 4 f  sin  dB d4) = 24rU„,  (2-10) 
0  0 

Assuming that the total power W radiated by the hemispheric source is 
the same as the total power radiated by an isotropic source taken as a 
reference, (2-10) and (2-9a) can be equated, yielding, 

2TU„, = 41W,  (2-11) 

147 square radians (steradians)  47 X 57.32 square degrees  41,253 square degrees. 
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U 
" = 2 = directivity  (2-12) 
Uo 

The ratio of U., to U0 in (2-12) is called the directivity of the hemispheric 
source. The directivity of a source is equal to the ratio of its maximum 
radiation intensity to its average radiation intensity. Or the directivity 
of a source may be stated as the ratio of its maximum radiation intensity 
to the radiation intensity of an isotropic source radiating the same total 
power.' By (2-12), the directivity of the hemispheric source is 2. That 
is to say, the power per unit solid angle U., in one hemisphere from the 
hemispheric source is twice the power per unit solid angle Uo from an 
isotropic source radiating the same total power. This we would expect, 
since a power W radiated uniformly over one hemisphere will give twice 
the power per unit solid angle as when radiated uniformly over both 

8.0 

(a) 

8=o 

(b) 

Hemispheric 

Isotropic 

( c ) 
Flo. 2-5. Hemispheric power patterns, (a) and (6), and comparison with isotropic 
pattern (c). 

hemispheres. The power patterns of a hemispheric source and an isotropic 
source are compared in Fig. 2-5c for the same power radiated by both. 
2-6. Source With Unidirectional Cosine Power Pattern. Let us con-

sider next a source with a cosine radiation-intensity pattern, that is, 

U = U,. cos 0  (2-13) 

where U,,. = maximum radiation intensity 
The radiation intensity U has a value only in the upper hemisphere 
(0 < 61 < 212 and 0 < ib < 2r) and is zero in the lower hemisphere. The 
radiation intensity is a maximum at 0 = 0. The pattern is shown in 

' One can also compare the power W' radiated by the source to the power W" that 
must be radiated by an isotropic source to give the same radiation intensity. Then 
Uo = U,o, and the directivity is given by D = W"/W'. For instance in the above case 
(Sec. 2-5), W" = 4vUo and W' = 21rUar.. For Uo = U.„ the directivity D = W"/W' = 2. 
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Fig. 2-6. The space pattern is a figure of revolution of this circle around 
the polar axis. 
To find the total power radiated by the cosine source, we apply (2-8) 

and integrate only over the upper hemisphere. Thus 

W = j.2r j.r12 U. cos 0 sin 0 d0 cid) = TU„,  (2-14) 
0  0 

If the power radiated by the unidirectional cosine source is the same as 
for an isotropic source, then (2-14) and (2-9a) may be set equal, yielding 

TU. = 47W. 

Or 

U. 
Directivity = — = 4 

Uo 
(2-15) 

Thus, the maximum radiation intensity U. of the unidirectional cosine 
source (in the direction 0 = 0) is four times the radiation intensity Uo 

8=0 
Polar 
axis 

8=0 
Polar 

axis 
1 

Half-power 
points 

Fla. 2-6. Unidirectional cosine power 
pattern. 

Cosine 

Isotropic 

Flu. 2-7. Power patterns of unidirec-
tional cosine source compared with iso-
tropic source for same power radiated by 
both. 

from an isotropic source radiating the same total power.  The power 
patterns for the two sources are compared in Fig. 2-7 for the same total 
power radiated by each. 
2-7. Source with Bidirectional Cosine Power Pattern. Let us assume 

that the source has a cosine pattern as in the preceding example but that 
the radiation intensity has a value in both hemispheres, instead of only in 
the upper one. The pattern is then as indicated by Fig. 2-8. It follows 
that W is twice its value for the unidirectional cosine power pattern, and 
hence the directivity is 2 instead of 4. 
2-8. Source with Sine (Doughnut) Power Pattern. Consider next a 

source having a radiation-intensity pattern given by 
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U = U. sin 0  (2-16) 

The pattern is shown in Fig. 2-9. The space pattern is a figure of revolu-
tion of this pattern around the polar axis and has the form of a doughnut. 
Applying (2-8), the total power radiated is 

r  r 

W  =  U. f2  f  8in2 0 c10 chk = T2U. 
0  0 

(2-17) 

If the power radiated by this source is the same as for an isotropic source 
taken as reference, we have 

and 

72U. = 4rU, 

U.  4 
Directivity = —, = - = 1.27 

(Jo  7 

8=o 

Mo. 2-8. Bidirectional cosine power pat-
tern. 

Pm. 2-9. Sine power pattern. 

2-9. Source with Sine-squared (Doughnut) Power Pattern. Next con-
sider a source with a sine squared radiation-intensity or power pattern. 
The radiation-intensity pattern is given by 

U = U. sin2 0  (2-20) 

The power pattern is shown in Fig. 2-10. This type of pattern is of con-
siderable interest because it is the pattern produced by a short dipole 
coincident with the polar axis in Fig. 2-10. Applying (2-8), the total power 
radiated is 

8 
W = U,,, f  sin' 0 d0 clq5 = -31-U. 

0 0 
(2-21) 
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If W is the same as for the isotropic source, 

frU„, = 47U0 

and 

— Directivity =-  = -?  1.) 
U0 2 —  ̀ 

0-0 

= 0 

(2-22) 

Flo. 2-10. Sine squared power pattern.  Flu. 2-11. Unidirectional cosine squared 
power pattern. 

2-10. Source with Unidirectional Cosine Squared Power Pattern. Let 
us consider next the case of a source with a unidirectional cosine squared 
radiation-intensity pattern as given by 

U = Urn cos' 0  (2-23) 

with the radiation intensity having a value only in the upper hemisphere. 
The pattern is shown in Fig. 2-11. The three-dimensional or space pattern 
is a figure of revolution of this pattern around the polar axis and has the 
form of a prolate spheroid (football shape). The total power radiated is 

/2  2 
W = U„, 0 0  cos2 0 sin 0 dO dct. = -  (2-24) Urn! !  

If W is the same as radiated by an isotropic source, 

ITUrn = 41410 

and 

U. 
Directivity =  = 6 

0   (2-25) 

Thus, the maximum power per unit solid angle (at 0 = 0) from the source 
with the cosine squared power pattern is six times the power per unit 
solid angle from an isotropic source radiating the same power. 
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2-11. Source with Unidirectional Cosine" Power Pattern. A more gen-
eral case for a unidirectional radiation-intensity pattern which is sym-
metrical around the polar axis is given by 

U = U, cos" 0 (2-26) 

where n is any real number. In Fig. 2-12, relative radiation-intensity or 

9-0 

oos4 

cos30 

cos20 

cos 0 
(circle) 

n=0 
(hemisphere) 

Fm. 2-12.  Unidirectional cos" 0 power patterns for various values of n. 

power patterns plotted to the same maximum value are shown for the 
cases where n = 0, I, 1, 2, 3, and 4. The case for n = 0 is the same as 
the source with the hemispheric power pattern discussed in Sec. 2-5. The 
cases for n = 1 and n = 2 were treated in Secs. 2-6 and 2-10. When n = 

14 

i 2 

2-'10 

f7' 8 
! 6 

5 4 

2 

Fm. 2-13.  Directivity vs. n for unidirec-
tional sources with cos" 0 power patterns. 

Polar 
axis 

X 

Flo. 2-14.  Unidirectional source radiat-
ing maximum power in the direction 0 n• 
90°, ep -• 90°, or y axis. 

3, and 4, the directivity is 3, 8, and 10, respectively.' These calculations 
are left to the reader as an exercise. A graph of the directivity of a uni-
directional source as a function of n is presented in Fig. 2-13. 

It may be shown that the directivity of sources with power patterns of the type given 
by (2-26) can be reduced to the simple expression, directivity  2(n + 1). The proof is 
left to the reader as an exercise. 
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2-12. Source with Unidirectional Power Pattern That Is Not Sym-
metrical. All the patterns considered thus far have been symmetrical 
around the polar axis. That is, the space pattern could be constructed as 
a figure of revolution about the polar axis. Let us now consider a more 
general case in which the pattern is unidirectional but is unsymmetrical 
around its major axis. In discussing this type of pattern it will be con-
venient to shift the direction of the major axis or direction of maximum 
radiation from the polar axis (0 = 0) to a direction in the equatorial plane 
as shown in Fig. 2-14 (0 = 90°, 4, = 90°). The 0 = 90° plane coincides 
with the x-y plane and the 4) = 90° plane with the y-z plane. A rather 
general expression for the radiation intensity with its maximum at 0 = 90° 
and (1) = 90° is then given by 

U = U„, sin" 0 sin" 4,  (2-27) 

where n = any real number 
m = any real number 

and the radiation intensity U has a value only in the right-hand hemisphere 
(Fig. 2-14) (0 < 0 < 711 0 <  4) < 7).  When m = n, (2-27) becomes the 
equation for a symmetrical power pattern of the same form as considered 
in Sec. 11. When m and n are not the same (2-27) represents the general 
case in which the pattern has different shapes in the 0 = 90° and 4) = 90° 
planes. The total power radiated in this general case is 

W = U. f .1 sin"' 0 sin' 4) d0 d4. '  (2-28)' 0 0 

2-13. General Case of Source with Power Pattern of Any Shape. In the 
preceding sections the radiation-intensity or power patterns are all repre-
sented by sine or cosine functions of angle. Some actual antenna patterns 
can be so represented. For example, the power pattern of a short dipole 
has a sine squared power pattern as discussed in Sec. 2-9. In general the 
radiation intensity may be any function of 0 and 4, as given by 

U = U,, f(0, 4))  (2-29) 

where U„ = a constant 
To find the total power radiated, U is substituted into (2-8), that is, 

W = if U„ f(0, (A) sin 0 de dAt•  (2-30) 

If this expression cannot be integrated analytically, W may be obtained by 
a graphical integration (see Prob. 2-5), or approximately by selecting 
n and m in (2-28) to give a sine-function power pattern which approximates 
the actual pattern. 
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The mathematical expression for the power pattern may be unknown, 
but the pattern may be measurable. In measuring patterns which have a 
maximum in the y direction, it is customary to take two patterns, one as 
a function of 4) in the 0 = 90° plane and the other as a function of 0 in 
the 0 = 90° plane. From these patterns the space pattern may be esti-
mated and W calculated by graphical integration, or values of n and m 
in (2-28) may be selected to give integrable sine functions which approxi-
mate the measured patterns. By assuming that the same power is radiated 
by an isotropic source, the directivity may be obtained as in the preceding 
sections. Another very simple but approximate method for obtaining the 
directivity is discussed on page 25. 
2-14. Directivity. The concept of directivity, treated above in some 

special cases, may be extended to several more general expressions which 
will now be developed. 
In Sec. 2-5 directivity was defined as the ratio of U„, to U. where U„, 

is the maximum radiation intensity or watts per square radian from the 
source under consideration and U. is the radiation intensity from an 
isotropic source radiating the same power (or U0 is the average radiation 
intensity from the source under consideration). Thus, 

U"' maximum radiation intensity 
D —  —  (2-31) 

U0 average radiation intensity 

where D = directivity 
Multiplying numerator and denominator of (2-31) by 4r gives 

4r ' U 4rU„, 4r (maximum radiation intensity) 
D —  (2-32) 

4r U0 — W  —  total power radiated 

Let us now develop a more general expression for the directivity. Let 
the radiation-intensity pattern be expressed as in (2-29) by 

U = U. f(0, 0) 

and its maximum value by 

U„, — U „ f(0, cp)„,.x 

where U. = a constant 
For the special case where 

f(0, 0).. = 1 

then U.. = U. and (2-33) can be written 

U = U. f(0, 4)) 

(2-33) 

(2-34) 

(2,35) 

(2-36) 
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The average radiation intensity is 

IV  ff U„ f(0,   
U0 = Ti ; =  

4ir 

where W = total power radiated 
c/S2 = sin 0 d0 d = element of solid angle 

The directivity D is then given by 

U  U f(0   41- f(0,   
U0 If U. AO, il))   ff f(o, ck) dIz 

4ir 

Equation (2-38) can be reexpressed as 

47r 
D =   

f(0, (1)) dft B 

f(0, 

where B is defined as the beam area. It is given byl 

B _ ff f(0, c6) c/S2 

f(0, 

From (2-31) and (2-39) 

(2-37) 

(2-38) 

(2-39) 

(2-40) 

UD =  ,,,  4w  

47U, = (.1„,B  (2-42) 

W = U„,B  (2-43) 

where W = total power radiated 
Therefore, the beam area B is the solid angle through which all the power 

radiated would stream if the power per unit solid angle equaled the maximum 
value U„, over the beam area. 

I Note that f(0, 0)4(0, cb),.. is the relative (normalized) total power pattern. Thus, 
(2-40) may also be written 

Since U0 = W/4T, 

B = If (0, 0) sin o c10 
f(0, 0)... 

The integration may be done analytically or graphically, or it may be done approxi-
mately by (2-44). Graphical integration procedures for a special case are discussed in 
Prob. 2-5. If the total far-field pattern is given it should be noted that the relative total 
power pattern in (2-40) is equal to the square of the relative total field pattern [see 
Eq. (2-58c)]. 
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From (2-42) 

POINT SOURCES  25 

4T o U 
B = - - - square radians = 41,253 °- square degrees  (2-43a) 

U.  U. 

Consider the unidirectional power pattern shown in Fig. 2-15.  The 
pattern is a figure of revolution around the y axis. The included angle 0' 
of the corresponding beam area is also shown. If the power per unit solid 
angle over the beam area were equal to the maximum value U. of the 
directional source, the power through the beam area would equal that 
radiated by the source. 
From this it is only a step to a very simple  z 

approximate method of calculating the direc-  Polar 
tivity for a single lobed pattern, based on an 
estimate of the beam area from the half-power 
beam widths of the patterns in two planes at 
right angles. Thus, suppose that 0, is the beam 
width between half-power points in one plane 
and 4), is the width in a plane at right angles. 
Then, approximately 

FIG  2-15.  Unidirectional 
B '-' Ookl  (2-44)  power pattern in cross sec-

Substituting (2-44) in (2-41) gives  tion with included angle er of 
the beam area.  The space 

47  patterns are figures of revolu-
D =  (2-45)  tion around the y axis. 

Oicki 

where 01 and 0, are the half-power beam widths expressed in radians. 
Equation (2-45) may also be expressed as 

0%15 

D _ 41,253 

KO° 

where 0? and ce, are the half-power beam widths in degrees.1 

'For the special case of a doughnut-type pattern (as in Secs. 2-8 and 2-9) Eq. (2-45) 
reduces to D =. 4/r/27r01 2/01, or D .- 114.6/01°. A somewhat better approximation 
for doughnut patterns is given by D — 1/[sin (01/2)]. When 01 is small the two approxi-
mations are equivalent. 
For the special case of a bidirectional pattern with two identical lobes, as in Fig. 2-8, 

it is to be noted that the directivity is half that obtained on the basis of a single lobe. 
If (2-45) or (2-46) is applied to a unidirectional beam type of pattern with minor 

lobes, these lobes are neglected and the calculated directivity is usually too high. To 
improve the accuracy, (2-46) may be multiplied by a correction factor. The value 
of this factor (usually between 0.6 and 1.0) depends in each case on the characteristics 
of the pattern but may be relatively constant for patterns of a certain class of antennas. 

(2-46) 
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As an illustration let us find the directivity of the source of Sec. 2-6 
by this method. This source has a unidirectional cosine power pattern 
given by U -= U„, cos 0 and an exact value of directivity of 4. The half-
power beam widths are 120°. Thus 

41 253 41 253 
D —  '  —  ,  — 2.87 

0?4,?  12°2 

This approximate value is about 35 per cent in error. 
As another illustration, consider a source with a unidirectional power 

pattern given by U = U„, cos' 0 which has an exact directivity of 8. The 
half-power beam widths are 75.2°, and 

D — 41 '253  — 7 3 
75.22 ' 

which is about 10 per cent in error. 
2-15. Gain. The definition of directivity in the preceding section is 

based entirely on the shape of the radiated power pattern. The power 
input and antenna efficiency are not involved. A quantity called gain 
will now be introduced which does involve the antenna efficiency. The 
gain' G of an antenna is defined as 

maximum radiation intensity   
G =  (2-4'0 

maximum radiation intensity from a 
reference antenna with same power input 

Any type of antenna may be taken as the reference. Often the reference 
is a linear 1-wavelength antenna. Gain includes the effect of losses both 
in the antenna under consideration (subject antenna) and in the reference 
antenna. 
It will be convenient in some of the following discussion to assume that 

the reference antenna is an isotropic source of 100 per cent efficiency. 
The gain so defined for the subject antenna is called the gain with respect 
to an isotropic source and is designated Go. Thus, 

G  maximum radiation intensity from subject antenna 2-48) ( 
o —   radiation intensity from (lossless) isotropic 

source with same power input 

Let the maximum radiation intensity from the subject antenna be U:„. 
Let this be related to the value of the maximum radiation intensity U„, 

1 The gain G as here defined is sometimes called power gain. This quantity is equal 
to the square of the gain in field intensity G f.  Thus, if Et is the maximum electric field 
intensity from the antenna at a large distance R and Eo is the maximum electric field 
intensity from the reference antenna with the same power input at the same distance R, 
then the power gain G is given by G ... (E,/E,)' ..• Gf2. 
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for a 100 per cent efficient subject antenna by a radiation efficiency factor k. 
Thus, 

U = kU„,  (2,49) 

where 0 < k < 1 
Therefore, (2-48) may be written 

U. kU„, 
=  = Uo 

(2-50) 

where Uo is the radiation intensity from a lossless isotropic source with 
the same power input. If W is the power input, U0 = W/47. But the 
ratio U,./Uo is by (2-31) the directivity D so that (2-50) becomes 

Go = kD  (2-51) 

thus, the gain of an antenna over a lossless isotropic source equals the 
directivity if the antenna is 100 per cent efficient (k = 1) but is less than 
the directivity if any losses are present in the antenna (k < 1). 
The directivity D and gain Go imply the maximum values for an antenna. 

The directivity or gain in a direction for which the radiation intensity U 
is not a maximum may be designated by specifying the angle  at which 
it is measured or, in general, by the symbol D(0, 4)) or G0(0, y6). That is, 

and 

D(0, ck) =  D 

Go(0, (I)) =  

where U = radiation intensity in the direction (0, lb) 
U„, = maximum radiation intensity 

Both directivity and gain may be expressed as a decibel 
10 times the logarithm to the base 10. That is, 

Db directivity =- 10 log10 D 

Db gain = 10 log. G 

Since the power gain G is equal to the square of the gain 
Cf, we also have 

Db gain = 20 log10 Gf 

Thus, db gain is the same, whether based on power gain 
intensity. 
2-16. Field Patterns. The discussion in the preceding 

chapter has been based on considerations of power. This has afforded a 

(2-52a) 

(2-52b) 

ratio by taking 

(2-53a) 

(2-53b) 

in field intensity 

(2-53c) 

or gain in field 

sections of this 
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simplicity of analysis, since the power flow from a point source has only a 
radial component which can be considered as a scalar quantity.  To 
describe the field of a point source more completely, let us consider the 
electric field intensity,' or E vector of the field, which is usually called 
simply the electric field, or E. 
Since the Poynting vector around a point source is everywhere radial, 

it follows that the electric field is entirely transverse, having only Et, and 
E, components. The relation of the radial component P. of the Poynting 

vector and the electric field compo-
Z Polar  nents is illustrated by the spherical 
axis  coordinate diagram of Fig. 2-16. 

The conditions characterizing the 
far field are then: 

X 

Flo. 2-16.  Relation of the Poynting vec-
tor and the electric field components of the 
far field. 

‘2,\ 9 
Equal 

The relation between the average 
at a point of the far field is 

1. Poynting vector radial 
component only) 
2. Electric field transverse (E, 

and E, components only) 
The Poynting vector and the elec-

tric field at a point of the far field are 
related in the same manner as they 
are in a plane wave, since, if r is 
sufficiently large, a small section of 
the spherical wave front may be con-
sidered as a plane. 
Poynting vector and the electric field 

(12 ; 

1E' Pr= .5-z-0 (2-54) 

where Zo = intrinsic impedance of free space* and 

E = VE:  E:  (2-55) 
where E = total electric field intensity 

E, = amplitude of 0 component 
E. = amplitude of component 

The field may be elliptically, linearly, or circularly polarized • 

We could equally well use the magnetic field intensity, or H vector. However, in 
the far field the magnitude of the magnetic field ia related to the electric field by the 
intrinsic impedance Z of the medium (H  E/Z). The two fields at each point are in 
time phase and in space quadrature. Since the magnetic field can be obtained from the 
electric, we shall, for simplicity, consider only the electric field patterns. 
• Zo is a pure resistance  377 ohms). 
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A pattern showing the variation of the electric field intensity at a 
constant radius r as a function of angle (0, 0) is called a field pattern. In 
presenting information concerning the far field of an antenna, it is cus-
tomary to give the field patterns for the two components, E, and E,„ of 
the electric field since the total electric field E can be obtained from the 
components by (2-55), but the components cannot be obtained from a 
knowledge of only E. 
When the field intensity is expressed in volts per meter, it is an absolute 

field pattern.' On the other hand, if the field intensity is expressed in 
units relative to its value in some reference direction, it is a relative field 
pattern.  The reference direction is usually taken in the direction of 
maximum field intensity. The relative pattern of the E, component is 
then given by 

E, 

and the relative pattern of the E0 component is given by 

E,. 

(2-56) 

(2-57) 

where  = maximum value of E, 
= maximum value of E, 

The magnitudes of both the electric field components, E, and E,, of the 
far field vary inversely as the distance from the source. However, they 
may be different functions, F, and F,, of the angular coordinates, 0 and 
0. Thus, in general, 

1 
Eo = — F1(0, 4)) 

E. = 7-17. F2( 0, (h) 

(2-58a) 

(2-58 b) 

Since P,. = 4/2Z, where E„. is the maximum value of E, it follows on 
dividing this into (2-54) that the relative total power pattern is equal to the 
square of the relative total field pattern. Thus, 

P, _ U _ 
Pr„, — U.  \E„,I 

(2-58c) 

Example 1. Consider first the case of an antenna whose far field has only an 
E, component in the equatorial plane, the E, component being zero in this plane. 

1 The magnitude depends on the radius, varying inversely as the distance, (E a 1/r). 
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Suppose that the relative equatorial-plane pattern of the E, component (that is, E,, 
as a function of 4. for 8 = 90°) is given by 

E 
cos (2-59a) --t --  4) 

E.. 

This pattern is illustrated by Fig. 2-17a.1 The length of the radius vector in the 
diagram is proportional to E. A pattern of this form could be produced by a short 
dipole coincident with the y axis. 

Half-power 
points 

x  x 
(a)  (b) 

Fla. 2-17. Relative 4 pattern of Example 1 at (a) with relative power pattern at (b). 

The relative power pattern in the equatorial plane is equal to the square of the 
relative field pattern. Thus 

P, = U . my 
P,,,.  U „,  \E,,„,1 

and substituting (2-59a) into (2-59b) we have 

—P , = c08 2 4. 

P, . 

(2-59 b) 

This pattern is illustrated in Fig. 2-17b. 
Example 2. Consider next the case of an antenna with a far field that has only 

an Et component in the equatorial plane, the E. component being zero in this plane. 

1 Another method of presenting the variation of field with respect to if, and 0 is by con-
tours of constant absolute or relative field intensity on a spherical surface, or the 
contours may be mapped on a flat projection of the spherical surface. 
A graph showing contours of constant field intensity is commonly used to show the 

coverage of broadcasting stations in a horizontal plane. Here the contours are functions 
of one angle 4, and of distance r. 



Sec. 2461 POINT SOURCES  31 

Assume that the relative equatorial-plane pattern of the 4 component (that is, E, 
as a function of 4) for 0 = 90°) for this antenna is given by 

= sin40 (2-60) 

This pattern is illustrated by Fig. 2-18a and could be produced by a small loop 
antenna, the axis of the loop coincident with the x axis. 

0.0 
(a) 

FIG. 2-18. Relative E, pattern of Example 2 at (a) with relative power pattern at (b). 

The relative power pattern in the equatorial plane is 

P, 
—D = sin 2 (/) 
= 

This pattern is shown by Fig. 2-18b. 
Example 3. Let us consider finally an antenna whose far field has both Et 

and E. components in the equatorial plane (0 = 90°). Suppose that this antenna is 
a composite of the two antennas we have just considered in Examples 1 and 2 and 
that equal power is radiated by each antenna. It then follows that at a radius r 
from the composite antenna, 4„, = E... The individual patterns for the 4 and E. 
components as given by (2-60) and (2-59a) may then be shown to the same scale by 
one diagram as in Fig. 2-19a. The relative pattern of the total field E is 

—E. = Vs in' 4) ± cos2 = 1 

which is a circle as indicated by the dashed line in Fig. 2-19a. 
For this antenna, we may speak of two types of power patterns. One type shows 

the power variation for one component of the electric field. Thus, the power in the 
E, component of the field is as shown by Fig. 2-18b and the power in the E. compo-
nent by Fig. 2-17b. The second type of power pattern shows the variation of the 
total power. This is proportional to the square of the total electric field intensity. 
Accordingly, the relative total power pattern for the composite antenna is 

The relative pattern in the equatorial plane for the total power is, therefore, a circle 
of radius unity as illustrated by Fig. 2-19b. 
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We note in Fig. 2-19a that at(/' = 45° the magnitudes of the two field components, 
Et and E4„ are equal. Depending on the time phase between Et and E0 the field in 
this direction could be plane, elliptically or circularly polarized. To determine the 
type of polarization requires that the phase angle between Et and E, be known. 
This is discussed in the next section. 

x 
( a)  0=0 

x 
(b)  0=0 

no. 2-19. (a) Relative patterns of E1 and E4 components of the electric field and the 
total field E for antenna of Example 3. (b) Relative total power pattern. 

2-17. Phase Patterns. Assuming that the field varies harmonically 
with time and that the frequency is known, the far field in all directions 
from a source may be completely specified by a knowledge of the following 
four quantities:I 

1. Amplitude of the polar component Et of the electric field as a function 
of r, 0, and 0 

2. Amplitude of the azimuthal component .E, of the electric field as a 
function of r, 0, and 0 

3. Phase lag 5 of E• behind Et as a function of 0 and 0 
4. Phase lag v of a field component behind its value at a reference point 
as a function of r, 0, and ib 

Since we regard the field of a point source as a far field everywhere, the 
above four quantities can be considered as those required for a complete 
knowledge of the field of a point source. 

1 In general, for the near or far field, six quantities are required. These are Eo, 4, 
3, and n each as a function of r, 8, 0 and in addition the amplitude of the radial compo-
nent of the electric field E, and its phase lag behind E• both as a function of r, 8, 0. 
Since E, = 0 in the far field, only four quantities are needed to describe completely the 
field in the Fraunhofer region. 
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If the amplitudes of the field components are known at a particular 
radius, from a point source in free space, their amplitude at all distances 
is known from the inverse-distance law. Thus, it is usually sufficient to 
specify Et and E, as a function only of 9 and 41 as, for example, by a set 
of field patterns. 
As shown in the preceding sections, the amplitudes of the field com-

ponents give us directly or indirectly a knowledge of the peak and effective 
values of the total field and Poynting vector.  However, if both field 
components have a value, the polarization is indeterminate without a 
knowledge of the phase angle 5 between the field components. Focusing 
our attention on one field component, the phase angle n with respect to 
the phase at some reference point is a function of the radius and may also 
be a function of B and 4). A knowledge of ti as a function of 0 and  is 
essential when the fields of two or more point sources are to be added. 
We now proceed to a discussion of the phase angles, 5 and n, and of 

phase patterns for showing their variation. Let us consider three examples. 

Example 1. Consider first a point source that radiates uniformly in the equa-
torial plane and has only an E, component of the electric field. Then at a distance r 
from the source, the instantaneous field E,, in the equatorial plane is 

V2E,  E,, —  sin (cot — Lir) (2-61) 

where E. = rms value of O. component of electric field intensity at unit radius from 
the source 

co = 2T/ 
/3 = 2TA 

The relation given by (2-61) is the equation for the field of a spherical wave 
traveling radially outward from the source. The equation gives the instantaneous 
value of the field as a function of time and distance. The amplitude or peak value 
of the field is •/ E,/r. The amplitude is independent of space angle (0 and q!)) 
but varies inversely with the distance r. The variation of the instantaneous field 
with distance for this example is illustrated by the upper graph in Fig. 2-20 in which 
the amplitude is taken as unity at a distance r. When r = 0, the variation of the 
instantaneous field varies as sin cot. It is often convenient to take this variation as a 
reference for the phase, designating it as the phase of the generator or source. The 
fact that the amplitude at r = 0 is infinite need not detract from using the phase at 
r = 0 as a reference. The phase at a distance r is then retarded behind that at the 
source by the angle /3r. A phase retardation or lag of E• with respect to a reference 
point will, in general, be designated as n. In the present case the reference point is 
the source;1 hence 

21-r 
n = t3r = —X  radians  (2-62) 

I If the phase is referred to some point at a distance rt from the source, then (2-61) 
becomes E.,  (V2E./r) sin (cot — id), where d  r — r1. 
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Thus, the phase lag n increases linearly with the distance r from the source. This 
is illustrated by the chart of phase lag vs. distance in Fig. 2-20. 
The phase lag n in this example is assumed to be independent of 4). To demon-

strate experimentally that n depends on r but is independent of 4), the arrangement 
shown at the lower left in Fig. 2-20 could be used. The outputs of two probes or 
small antennas are combined in a receiver. With both probes at or very near the 
same point, the receiver output is reduced to a minimum by adjusting the length 
of one of the probe cables. The voltages from the probes at the receiver are then in 

Minima or 
constant phase 
contours 

Output 
indicator 

Fro. 2-20. Illustration for Example 1. Phase of 4 of point source radiating uni-
formly in tp plane is a function of r but is independent of rp. Phase lag 7, increases 
linearly with distance r. 

phase opposition. With one probe fixed in position, the other is then moved in such 
a way as to maintain a minimum output. The locus of points for minimum output 
constitutes a contour of constant phase. For the point source under consideration, 
each contour is a circle of constant radius with a separation of 1 wavelength between 
contours. The radius of the contours is then given by r, ± tult, where r, is the radius 
to the reference probe, and n is any integer. 
Example 2. Consider next the case of a point source that has only an 4 

component and that radiates nonuniformly in the equatorial or 0 plane. The 
instantaneous value in the equatorial plane is 
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E,, =  cos ck sin (cot — 13r) (2-63) 

where Es„,. = rms value of E• component at unit radius in the direction of maximum 
field intensity 

Let a point at unit radius and in the direction 4) = 0 be taken as the reference for 
phase. Then at this radius, 

E,, = ViE,„, cos 4) sin wt  (2-64) 

Setting sin cot = 1, the relative field pattern of the E, component as a function of 4) 
is, therefore, 

.E„ = cos 4,  (2-65) 

as illustrated in Fig. 2-21a. A pattern of this type could be obtained by a short 
dipole coincident with the y axis at the origin. The phase lag n as a function of 

Ø=I80 

360' 
0 
t 270' 

180' 

• 90' 

0'0' 

(b) 

90  180'  270'  360'  90'  180' 

Fla. 2-21. Illustration for Example 2. Field pattern is shown at (a), the phase pattern 
in rectangular coordinates at (b), and in polar coordinates at (c). 

is a step function as shown in the rectangular graph of Fig. 2-21b and in the polar 
graph of Fig. 2-21c. The variation shown is at a constant radius with the phase in 
the direction ct, = 0 as a reference. We note that n has an apparent discontinuity of 
180° as 4. passes through 90° and 270° since at these angles cos 4) changes sign while 
passing through zero magnitude. The phase angle n is accordingly a continuous, 
linear function of r but a discontinuous, step function of ck. To demonstrate this 
variation experimentally, the two-probe arrangement described in Example 1 may 
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be used. In practice, attenuators, not shown, would be desirable in the probe leads 
to equalize the probe outputs. Referring to Fig. 2-22, if both fixed and movable 
probes are in the lower quadrants (1 and 4), a set of constant or equiphase circles is 
obtained with a radial separation of 1 wavelength. If one probe is fixed in quadrant 
1 while the upper quadrants are explored with the movable probe, a set of equiphase 
circles is obtained which have a radial separation of 1 wavelength !-Iit are displaced 
radially from the set in the lower quadrants by i wavelength. Thus, the constant 
phase contours have an apparent discontinuity at the y axis, as shown in Fig. 2-22. 

Quadrant 3  Quadrant 2 

Quadrant 4  Quadrant I 
Output 

X  indicator 
0 ..0 

Fm. 2-22. Constant phase contours for source of Example 2. 

The phase of the field of any linear antenna coincident with the y axis exhibits this 
discontinuity at the y axis.' 
Example 3. Consider lastly a point source which radiates a field with both 

Et and E, components in the equatorial plane, the instantaneous values being given 
by 

and 

NfiEe„,  
Bei =  sin cf) sin (cot — Or) 

r 

A li 

•ViE,., 

r 
cos 4) sin (o)t — Pr — 11) 

2 

(2-66) 

(2-67) 

Referring to Fig. 2-23, a field of the form of the Et component in the equatorial 
plane could be produced by a small loop at the origin oriented parallel to the y-z 
plane. A field of the form of the E, component in the equatorial plane could be 
produced by a short dipole at the origin coincident with the y axis. Let a point at 

1 It is to be noted that this phase change is actually a characteristic of the method of 
measurement, since by a second method no phase change may be observed between the 
upper and lower hemispheres. In the second method the probe is moved from the upper 
to the lower hemisphere along a circular path in the x-z plane at a constant radius from 
the source. However, for a linear antenna the second method is trivial since it is 
equivalent to rotating the antenna on its own axis with the probe at a fixed position. 
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unit radius in the first quadrant be taken as the reference for phase. Assuming that 
loop and dipole radiate equal power, 

E0„, =  

Then at unit radius the relative pat-
terns as a function of 0 and t are given by 

Eti = sin 4, sin cot  (2-69) 

and 

E., = cos (i) sin (cot — li) 

= — cos <6 cos cut  (2-70) 

The relative field patterns in the 
equatorial plane are shown in Fig. 2-23. 
The field components are in phase quad-
rature (a= T/2). In quadrants 1 and 3, 
E# lags E1 by 90°, while in quadrants 2 
and 4, E# leads E• by 90°. The phase 
patterns in the equatorial plane for E• Fm. 2-23. Field patterns for  of 
and E# are shown in polar form by Fig.  Example 3. 
2-24 and in rectangular form by Fig. 2-25a. 
Since Eo, E#, and 6 are known, the polarization ellipses may be determined. 

Quadrant 3 

(2-68) 

E0 
Quadrant 2 

E0 lags 90°  E0 leads 90° 

0=270° 

Quadrant 4  Quadrant I 

E0 leads 90° E0 lags 90* 

x 
0-0 

source 

0•'0* 
Fm. 2-24. Phase lag as a function of 40 for field components of source of Example 3. 
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These polarization ellipses (see Secs. 15-10 to 15-17) for different directions in 
the equatorial plane are shown in Fig. 2-256. It is to be noted that in quadrants 
1 and 3, where E. lags Et, the E vector rotates counterclockwise, while in quadrants 
2 and 4, where E. leads Et, the rotation is clockwise. 
At four angles the polarization is circular, E rotating counterclockwise at = 45° 

and 225° and rotating clockwise at = 135° and 315°. The polarization is linear at 
four angles, being horizontally polarized at 0° and 180° and vertically polarized at 
90° and 270°. At all other angles the polarization is elliptical. 

360° 
Phase lag 

270° 

180° 

90° 

E0 

45°  90°  I 35°  1 80'  225°  2 70°  325'  360° 
96' 

(a) 

— CD  0  I 0 (D-' —  (.-D- 0  I 0 0 
0° 223° 45° 61.5° 90°  135°  150° 225° 210°  315° 3er 

(6) 
Flo. 2-25. Phase patterns in rectangular coordinates for source of Example 3 at 
(a) with polarization ellipses for every 22.5° interval of 46 at (b). 

2-18. General Equation for the Field of a Point Source. Both compo-
nents of the far field of a point source in free space vary inversely with 
the distance. Therefore, in general, the two electric field components may 
be expressed as 

and 

Et. 
Et =  i1(0, 4)) 

E. =  f2(0, 

(2-71) 

(2-72) 

where Et. = rms value of E f component at unit radius in the direction of 
maximum field 

= rms value of E. component at unit radius in the direction of 
maximum field 

f' and 12 are, in general, different functions of 0 and  but of maxi-
mum value unity 
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The instantaneous values of the field components vary harmonically 
with time and are given by (2-71) and (2-72) multiplied, in general, by 
different functions of the time. Thus, for the instantaneous field com-
ponents 

and 

V2E8. 
—  fi(0, 95) sin (cot — 71) 

=  f2(0, (I)) sin (cut  — 

(2-73) 

(2-74) 

where n =  — r,)  f,(0, 4)) 

a = f4(0, (1)) 
r = radius to field point (r, 0, q5) 
ri = radius of point to which phase is referred 
h and h are, in general, different functions of 0 and 4, 

The instantaneous value of the total electric field at a point (r, 0, 4)) 
due to a point source is the vector sum of the instantaneous values of the 
two components. That is, 

(2-75) 

where a, = unit vector in 0 direction 
= unit vector in 4) direction 

Substituting (2-73) and (2-74) into (2-75) then gives a general equation 
for the electric field of a point source at any point (r, 0, 0) as follows: 

V2E8.  
E, = a,  r MO, 4)) sin (cot — 7,) 

a•   f2(0, 0) sin (cot —  —  (2-76) 

In this equation the instantaneous total electric field vector B. is a function 
of both space and time, thus 

Ei = ffr, 0, (6, 0 (2-77) 

The far field is entirely specified by (2-76). When f, and fl are complicated 
expressions, it is often convenient to describe E. by means of graphs for 
the four quantities Eo, E,, 9, and 5, as has been discussed. It is assumed 
that the field varies harmonically with time and that the frequency is 
known. 
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PROBLEMS 

2-1. a. Calculate the exact directivity for three unidirectional sources having the 
following power patterns: 

U = U. sin 0 sin2 
U = U,,, sin 0 sins(/' 
U = U„, sin' 0 sin' 4) 

U has a value only for 0 < 0 < r and 0 < 4, < 7 and is zero else-. 
where. 

b. Calculate the approximate directivity from the product of the half-
power beam widths for each of the sources. 

c. Tabulate the results for comparison. 
2-2. Show that the directivity for a source with a unidirectional power pattern 

given by U =  cos" 0 can be expressed as D = 2(n + 1). U has a value only for 
0 < 0 < 7/2 and 0 <  < 2r and is zero elsewhere. 
2-3. The earth receives from the sun 2.2 gram calories/min/cm2. 

a. What is the corresponding Poynting vector in watts per square meter? 
b. What is the power output of the sun, assuming that it is an isotropic 
source? 

c. What is the rms field intensity at the earth due to the sun's radiation, 
assuming all the sun's energy is at a single frequency? 

Note: 1 watt = 14.3 gm cal/min. 
Distance earth to sun = 149 X 106 kilometers. 

2-4. Prove the following theorem: If the minor lobes of a radiation pattern re-
main constant as the beam width of the main lobe approaches zero, then the direc-
tivity of the antenna approaches a constant value as the beam width of the main 
lobe approaches zero. 
2-5. a. Calculate by graphical integration the directivity of a source with a uni-

directional power pattern given by U = cos 0. Compare this directivity 
value with the exact value. U has a value only for 0 < 0 < r/2 and 
0 <  < 2r and is zero elsewhere. 

b. Repeat for a unidirectional power pattern given by U = cos' 0. 
c. Repeat for a unidirectional power pattern given by U = cos' 0. 

Note that the directivity in each case is given by D = 2/(f  U sin 0 d0). To 
evaluate the integral graphically lay off 0 to r/2 (0° to 90°) as abscissa and 0 to 1 
as ordinate on rectangular graph paper. The value of the integral is then the ratio 
of the area a under the curve U sin 0 to the total area A of the rectangle (0 to r/2 
by 0 to 1), both in the same arbitrary units, multiplied by a/2. That is, f c',̀" U 
sin 0 d0 = (a/ A)(7/2). The evaluation of the area a may be done by square 
counting or by dividing the area into vertical strips and taking the area of any strip 
as the product of its base width and average ordinate. 



CHAPTER 3 

THE ANTENNA AS AN APERTURE 

3-1. Introduction. In this chapter an antenna will be regarded as pos-
sessing an aperture or equivalent area over which it extracts energy from 
a passing radio wave.' 
The concept of aperture is most simply introduced by considering a 

receiving antenna.  Suppose that the receiving antenna is an electro-
magnetic horn immersed in the field of a plane wave as suggested in 
Fig. 3-1. Let the Poynting vector, or power density, of the plane wave 

• Direction o propagation 

o plane wave 
I  I 

Ma. 3-1. Plane wave incident on electromagnetic horn of mouth aperture A. 

be P watts/meter2 and the area of the mouth of the horn be A meters'. 
If the horn were able to extract all the power from the wave over its entire 
area A, then the total power W absorbed from the wave would be 

W = PA  watts  (3-1) 

I J. C. Slater, "Microwave Transmission," McGraw-Hill Book Company, Inc., 
New York, 1942, P. 235. 
Chap. 10 by Kraus, Clark, Barkofsky, and Stavis, "Very High Frequency Tech-

niques," by Radio Research Laboratory staff, McGraw-Hill Book Company, Inc., 
New York, 1947, pp. 225-228. 
H. T. Friis, A Note on a Simple Transmission Formula, Proc. I.R.E., 34, 254-256, 

May, 1946. 

41 
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Thus, the electromagnetic horn may be regarded as an aperture, the 
total power it extracts from a passing wave being proportional to the 
aperture or area of its mouth.* 
It will be convenient to distinguish between several types of apertures, 

namely, effective aperture, scattering aperture, loss aperture, collecting 
aperture, and physical aperture. These different types of apertures are 
defined and discussed in the following sections. 
In the following discussion in this chapter, it is assumed, unless other-

wise stated, that the antenna has the same polarization as the incident 
wave and is oriented for maximum response. 
3-2. Effective Aperture. Consider any type of collector or receiving 

antenna which is situated in the field of a passing electromagnetic wave 
as suggested in Fig. 3-2a. The antenna collects power from the wave and 

Terminating 

impedance 

(a) 

Antenna 

Incident 

plane wove 

Flo. 3-2. Schematic diagram of antenna terminated in impedance Zr with plane wave 
incident on antenna (a) and equivalent circuit (b). 

delivers it to the terminating or load impedance Z. connected to its 
terminals. The Poynting vector, or power density of the wave, is P watts/ 
meter2. Referring to the equivalent circuit of Fig. 3-2h, the antenna 
may be replaced by an equivalent or Thevenin generator having an 
equivalent voltage V and internal or equivalent antenna impedance 2. 4. 

The voltage V is induced by the passing wave and produces a current / 
through the terminating impedance ZT given by 

V 
I = 

Zr ZA 

where / and V are rms or effective values. 

(3-2) 

• Actual electromagnetic horns have effective apertures which are smaller than the 
physical area of the mouth, being usually 0.5 to 0.7 of this value. 
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In general, the antenna and terminating impedances are complex, thus 

Zr = Rr + jX?  (3-3) 

and 

ZA = RA +  j XA (3-4) 

The antenna resistance may be divided into two parts, a radiation resist-
ance R, and a loss resistance RL, that is, 

RA =  R, +  14  (3-5) 

Let the power delivered by the antenna to the terminating impedance 
be W. Then 

W = I2RT 

From (3-2), (3-3), and (3-4) the current magnitude 

I — 
V(R, -I- RL -I- R)2 + (XA ± X)2 

V 

Substituting (3-7) into (3-6) gives 

(3-6) 

(3-7) 

W 
V 2R T  38 

(R, + RL -I- R )2 + (XA -I- X )2 

The ratio of the power W in the terminating impedance to the power density 
of the incident wave will be defined as the effective aperture A,. 

Thus, 

W 
Effective aperture = — = A.  (3-9) 

P 

If W is in watts and P in watts per square meter, then A. is in square 
meters.  If P is in watts per square wavelength, then A. is in square 
wavelengths, which is often a convenient unit of measurement for apertures. 
Substituting (3-8) into (3-9) gives the effective aperture in terms of the 

incident power density, the induced voltage, and the antenna and termi-
nating impedances, that is, 

V2Rr   
0-10) 

A ' — PRR, -I- RL ± R02 -I- (XA -F X02] 

Unless otherwise specified, it is assumed that V is the induced voltage 
when the antenna is oriented for maximum response and the incident 
wave has the same polarization as the antenna. As shown by (3-10), the 
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effective aperture takes into account antenna losses, as given by R L, and 
any mismatch between the antenna and its terminating impedance.' 
Let us now consider the special case where the terminating impedance is 

the complex conjugate of the antenna impedance so that maximum power 
is transferred. It will also be assumed that the antenna losses are zero 
(RL = 0 and therefore RA = R,). Thus, 

XT =  (3-12) 

and 

Rr = R. (3-13) 

Introducing the conditions for maximum power transfer as given by (3-12) 
and (3-13) into (3-8) results in the largest possible power W' in the termi-
nating impedance as follows: 

V2RT V2 V2 
= AD 2  A D = —A pp .1./ LT '21 lo T 21 r 

(3-14) 

The power W' is delivered to the terminating impedance under conditions 
of maximum power transfer and zero antenna losses. 
The ratio of this power to the power density of the incident wave is 

'It is sometimes convenient to express the induced voltage V in terms of the incident 
field intensity E and an effective height h of the antenna. That is 

V = hE 

where V is in volts if h is in meters and E in volts per meter (or h may be in wavelengths 
and E in volts per wavelength). The effective height and the effective aperture are 
related as may be shown in the following way. In (3-10) P  E'/Z, where Z is the in-
trinsic impedance of the medium (Z = V ol.). Thus, on solving (3-10) for V we have, 

v .1 A„[(R,  RL RT)2 (XA Xr)21 E 

RTZ 

so that the effective height is given by 

h =   ± EL ± RT)s + (X4 + 1)21 
RTZ 

Under the conditions considered in the next paragraphs of the text for the maximum 
effective aperture  the expression for the effective height reduces to 

h 2 VA„„R, 
or  —  (3-11) 

4R, 

As an example, for a thin linear i-wavelength antenna A.,,,  00..1133  square wavelength 
and R, = 73 ohms. Now Z = 377 ohms for free space, so that for the i-wavelength 
antenna the effective height h = 0.32 wavelength. 
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the maximum effective aperture' A..,. That is, 

W' 
Maximum effective aperture = — = A.. 

P 
(3-15) 

Substituting (3-14) in (3-15) yields an expression for the maximum 
effective aperture in terms of the incident power density, the induced 
voltage, and the antenna radiation resistance, as follows: 

V2 
A."' —  (3-16) 

4PR, 

The ratio of the effective aperture to the maximum effective aperture 
is called the effectiveness ratio a. That is, 

Effectiveness ratio = a = A' (dimensionless)  (3-17) 

The effectiveness ratio may assume values between zero and 1 (0 < a < 1). 
A perfectly matched, 100 per cent efficient antenna has an effectiveness 
ratio of unity. 
Ordinarily the terminating impedance is not located physically at the 

antenna terminals as suggested in Fig. 3-2. Rather, it is in a receiver 
which is connected to the antenna by a length of transmission line. In 
this case Z 7 is the equivalent impedance which appears across the antenna 
terminals. If the transmission line is lossless, the power delivered to the 
receiver is the same as that delivered to the equivalent terminating im-
pedance Z 7.  If the transmission line has attenuation, the power delivered 
to the receiver is less than that delivered to the equivalent terminating 
impedance by the amount lost in the line. 
3-3. Scattering Aperture. In the preceding section we discussed the 

effective area from which power is absorbed. Referring to Fig. 3-2b, the 
voltage induced in the antenna produces a current through both the 
antenna impedance ZA and the terminal or load impedance Z 7.  The 
power W absorbed by the terminal impedance is, as we have seen, the 
square of this current times the real part of the load impedance. Thus, 
as given in (3-6), W = 12R,.. Let us now inquire into the power appearing 
in the antenna impedance ZA. The real part of this impedance RA has 
two parts, the radiation resistance R. and the loss resistance RL (RA = 
H. + RI). Therefore, some of the power which is received will be dissipated 
as heat in the antenna as given by 

W = /2RL (3-18) 

1The "maximum effective aperture," as here defined, is equivalent to the "effective 
area" of an antenna based on its directivity as defined by the Institute of Radio 
Engineers' (IRE) Standards. 
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The remainder is "dissipated" in the radiation resistance, in other words, 
is reradiated from the antenna. The reradiated power is 

W" = PR,  (3-19) 

This reradiated or scattered power is analogous to the power that is 
dissipated in a generator in order that power be delivered to a load. Under 
conditions of maximum power transfer, as much power is dissipated in the 
generator as is delivered to the load. 
The reradiated power may be related to a scattering aperture or scattering 

cross section. This aperture A. may be defined as the ratio of the re-
radiated power to the power density of the incident wave. Thus 

A. = scattering aperture =  (3-20) 

V2R,   
= PR, - (R,  Rz  FIT ), 2  (3.'21) 

(XA  X02 

If the antenna loss resistance RL = 0, and RT = R. and XA = —XT for 
maximum power transfer, then 

where 

V2 
A. — 4PR, 

or the scattering aperture equals the maximum effective aperture, that is, 

A. = A.„,  (3-23) 

Thus, under conditions for which maximum power is delivered to the 
terminal impedance, an equal power is reradiated from the receiving 
antenna. 
The ratio of the scattering aperture to the effective aperture will be 

called the scattering ratio 0, that is, 

(3-22) 

A, 
Scattering ratio =  = #  (dimensionless)  (3-24) 

The scattering ratio may assume values between zero and infinity 
(0 <  
For conditions of maximum power transfer and zero antenna losses, 

the scattering ratio is unity. If the terminal resistance is increased, both 
the scattering aperture and the effective aperture decrease, but the scatter-
ing aperture decreases more rapidly so that the scattering ratio becomes 
smaller. By increasing the terminal resistance, the ratio of the scattered 
to absorbed power can be made as small as we please, although by so 
doing the absorbed power is also reduced (see Fig. 3-3). 
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On the other hand, it may be that we should like to make the reradiation 
as large as possible. This might be the case, for example, if the antenna 
is not connected to a receiver but is used as a so-called parasitic antenna 
whose function is to reradiate the power received from a nearby trans-
mitting antenna. The field reradiated by the parasitic antenna interferes 
with the field from the transmitting antenna so as to produce the desired 
directional pattern. Depending on the phase of the current in the parasitic 
antenna, it may act either as a director or as a reflector. To make the 
reradiated power a maximum, the terminal impedance should be zero and 

4 

0 
2  3  4  5  6  7  8 

Aer• 
X 

es.,  fir 

R• 

A ' 

Ac.A.+A• 

9 I 0 

Relative terminal resistance 

Pm. 3-3. Variation of effective aperture A., scattering aperture A., and collecting 
aperture A, as a function of the relative terminal resistance RT/R, of a small antenna. 
It is assumed that RL XA = XT = 0. 

the antenna should also be resonant, that is, Rr = X T = X A = 0. We 
also assume RL = 0. Then from (3-21) the reradiated power is 

V' = 
R, 

and the maximum scattering aperture becomes 

or 

(3-25) 

172  
A." =  (3-26) 

PR,. 

A.„, = 4A.„,  (3-27) 

The maximum cross section of an antenna as a scatterer of energy is thus 
four times as great as its maximum effective aperture as an absorber of 
energy. 
The relation between A, and A. as a function of the relative terminal 
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resistance RT/R, is shown in Fig. 3-3. In this graph it is assumed that 
RL = XA = X r = 0. 
The reradiated or scattered field of an absorbing antenna may be consid-

ered as interfering with the incident field so that a shadow is cast behind the 
antenna as illustrated in Fig. 3-4. The shadow will not be so sharply 
defined as suggested in Fig. 3-4, but a decrease in the field intensity or a 
partial shadow must be present. 

Antenna 

Incident 
plane 
wove 

N 
> Stattered 

), /  \ 1/4  waves 

Shadow 

FIG. 3-4.  Shadow cast by a receiving antenna. 

3-4. Loss Aperture. If RL is not zero, some power is dissipated as heat 
in the antenna. This may be related to a loss aperture AL which is given by 

/2RL   L   
AL —  — P  PRR, RL  RT)2 (X A ± X T)2  (3- 2 8) 

3-5. Collecting Aperture.' Three types of apertures have now been 
discussed: effective, scattering, and loss. These three apertures are re-
lated to three ways in which power collected by the antenna may be con-
verted: into heat in the terminal resistance (effective aperture); into heat 
in the antenna (loss aperture); or into reradiated power (scattering aper-
ture). By conservation of energy the total power collected is the sum of 
these three powers. Thus, adding these three apertures together yields 
what will be called the collecting aperture as given by 

r(R„  RL  R   
A, ± AL ± A,  (3-29) 

21 `  PRR, + RL  R T)2 ± (X A ± X 7)2] — 

The variation of A, with R7/R, for the case of AL = 0 is shown in Fig. 3-3. 
3-6. Physical Aperture. It is often convenient to speak of a fifth type of 

aperture called the physical aperture A,. This aperture is a measure of 

'Collecting aperture as here defined is different from that given in "Very High Fre-
quency Techniques," by Radio Research Laboratory staff, McGraw-Hill Book Com-
pany, Inc., New York, 1947, p. 227. Collecting aperture as defined in that reference is 
what we have here called the maximum effective aperture. 
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the physical size of the antenna. The manner in which it is defined is 
entirely arbitrary. For example, it may be defined as the physical cross 
section (in square meters or square wavelengths) perpendicular to the 
direction of propagation of the incident wave with the antenna oriented 
for maximum response. This is a practical definition in the case of many 
antennas. For example, the physical aperture of an electromagnetic horn 
is the area of its mouth, while the physical aperture of a linear cylindrical 
dipole is the cross-sectional area of the dipole. However, in the case of 
a short stub antenna mounted on a very large ground plane, the simple 
definition given above is of questionable significance owing to the im-
portance of the currents on the ground plane. Thus, the physical aperture 
has a simple, definite meaning only for some antennas.  On the other 
hand, the effective aperture has a definite, simply defined value for all 
antennas. 
The ratio of the maximum effective aperture to the physical aperture 

will be called the absorption ratio 7, that is, 

A 
Absorption ratio =  = 7  (dimensionless)  (3-30) 

A, 

The absorption ratio may assume values between zero and infinity 
(0 <  
3-7. Maximum Effective Aperture of a Short Dipole. In this section the 

maximum effective aperture of a short dipole with uniform current will 
be calculated. Let the dipole have a 
length 1 which is short compared 
with the wavelength (1 << X). Let it 
be coincident with the y axis at the 
origin as shown in Fig. 3-5, with a 
plane wave traveling in the negative 
x direction incident on the dipole.  Direction  Short 
The wave is assumed to be linearly  of 'flowe yr"'  dipole 

wove 
polarized with E in the y direction. 
The current on the dipole is assumed 
constant and in the same phase over 
its entire length, and the terminat-  rent induced by incident wave. 
ing resistance Rr is assumed equal 
to the dipole radiation resistance R„. The antenna loss resistance RL is 
assumed equal to zero. 
The maximum effective aperture of an antenna is given by (3-16) as 

V2  
— 4PR,  (3-31) 

where the effective value of the induced voltage V is here given by the 

Fra. 3-5.  Short dipole with uniform cur-



50  ANTENNAS  [CHAP. 3 

product of the effective electric field intensity at the dipole and its length,' 
that is, 

V = El  (3-32) 

The radiation resistance R, of a short dipole of length 1 with uniform 
current will be shown later to be given by 

807r2/2 
R - r  x2 (3-33) 

where X = wavelength 
The power density, or Poynting vector, of the incident wave at the dipole 
is related to the field intensity by 

E'2 
P = T  (3-34) 

where Z = intrinsic impedance of the medium 
In the present case, the medium is free space so that Z = 120x ohms. 
Now substituting (3-32), (3-33), and (3-34) into (3-31), we obtain for the 
maximum effective aperture of a short dipole 

1207rE2/2X2 _ 3 
— X2 = 0.119 X2 

A' — 320r2E2/2 87 
(3-35) 

Equation (3-35) indicates that the maximum effective aperture of a short 
dipole is somewhat more than 1/10 square wavelength and is independent 
of the length of the dipole provided only that it is small (1 << X). The 
maximum effective aperture neglects the effect of any losses, which prob-
ably would be considerable for an actual short dipole antenna.  If we 
assume that the terminating impedance is matched to the antenna im-
pedance but that the antenna has a loss resistance equal to its radiation 
resistance, the effective aperture from (3-10) is one-half the maximum 
effective aperture obtained in (3-35). 
3-8. Maximum Effective Aperture of a Linear 4-Wavelength Antenna. 

As a further illustration, the maximum effective aperture of a linear 
4-wavelength antenna will be calculated. It is assumed that the current 
has a sinusoidal distribution and is in phase along the entire length of the 
antenna. It is further assumed that RL = 0. Referring to Fig. 3-6a, the 
current I at any point y is then 

,  27ry 
I = 10 cos — 

X 
(3-36) 

A plane wave incident on the antenna is traveling in the negative x direc-
tion.  The wave is linearly polarized with E in the y direction. The 

1The effective height h of the short dipole with uniform current is equal to its length 1. 
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equivalent circuit is shown in Fig. 3-6h. The antenna has been replaced 
by an equivalent or Thevenin generator. The infinitesimal voltage dV of 
this generator due to the voltage induced by the incident wave in an 
infinitesimal element of length dy of the antenna is 

lry 
dV = E dy cos —X  (3-37) 

It is assumed that the infinitesimal induced voltage is proportional to the 
current at the infinitesimal element as given by the current distribution 
(3-36). 

IZ 

dV 

dl 

X  (a)  (6)  R1 

Fm. 3-6. Linear 4-wavelength antenna in field of electromagnetic wave (a) and 
equivalent circuit (b). 

The total induced voltage V is given by integrating (3-37) over the 
length of the antenna. This may be written as 

k/4 

V = 2 f  E cos 21 dy  (3-38) 
0 

Performing the integration in (3-38) we have 

V = EX —  (349) 
7 

The value of the radiation resistance R, of the linear 1-wavelength antenna 
will be taken as 73 ohms.' The terminating resistance Rr is assumed 
equal to R,. The power density at the antenna is as given by (3-34). 
Substituting (3-39), (3-34), and R, = 73 into (3-16), we obtain, for the 
maximum effective aperture of a linear I-wavelength antenna, 

. _ 1 207E 2X2 30 2 
A.. — 41.2E273  — ,j-i. X = 0.13 X2  

1The derivation of this value is given in Chap. 5. 
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Comparing (3-40) with (3-35), the maximum effective aperture of the 
linear 4-wavelength antenna is about 10 per cent greater than that of 
the short dipole. 
The maximum effective aperture of the 4-wavelength antenna is ap-

proximately the same as an area 4 by 4 wavelength on a side, as illustrated 
in Fig. 3-7a. This area is .4 square wavelength. An elliptically shaped 

Linear halt-wave 
antenna 

FIG. 3-7.  (a) Maximum effective aperture of linear 4-wavelength antenna is approxi-
mately represented by rectangle 4 by 4 wavelength on a side. (6) Maximum effective 
aperture of linear 4-wavelength antenna represented by elliptical area of 0.13 square 
wavelength. 

aperture of 0.13 square wavelength is shown in Fig. 3-7b. The physical 
significance of these apertures is that power from the incident plane wave 
is absorbed over an area of this size by the antenna and is delivered to 
the terminating resistance. 
A typical thin 4-wavelength antenna may have a conductor diameter 

of 1/400 wavelength, so that its physical aperture is only 1/800 square 
wavelength.  For such an antenna the maximum effective aperture of 
0.13 square wavelength is about 100 times larger. 
3-9. Relation of Aperture to Directivity and Gain. In Chap. 2 the con-

cept of directivity was developed for a point source of radiation or trans-
mitting antenna. By reciprocity, the shape of the radiation pattern of a 
transmitting antenna is identical with its pattern when it is a receiving 
antenna (see Sec. 10-2). Thus, the concept of directivity, which is based 
on pattern shape, can be extended to receiving antennas, the directivity 
being the same for both transmission and reception. 
The Aperture of receiving antennas has been discussed in the preceding 

sections. It follows that if the directivity of a receiving antenna is in-
creased, its maximum effective aperture is increased in direct proportion. 
Therefore, the maximum effective apertures of two antennas, A.., and 
A .„,,, are in the same proportion as the directivities of the two antennas, 
D, and D.. That is, 

D, A,,,,,1 
D.  A.„.2 

(3-41) 
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In Chap. 2 the gain of a transmitting antenna with respect to a lossless 
isotropic source was shown to be equal to the directivity times the antenna 
efficiency. If the definition of gain is now extended to include both losses, 
as expressed by the efficiency factor k and the effect of impedance mis-
match, we may replace k in (2-51) by the effectiveness ratio a; then 

Go = aD  (3-42) 

where Go is the gain of a transmitting or receiving antenna with respect to 
a lossless isotropic antenna.  The isotropic antenna is assumed to be 
terminated for maximum power transfer, but the antenna under con-
sideration may or may not be. If the antenna is terminated for maximum 
power transfer, a = k and (3-42) reduces to (2-51). 
Let us now compare the gain of two antennas, Go, and G02.  If the 

directivities of these antennas are D, and D2 and their effectiveness ratios, 
a, and a2, respectively, we have from (3-41) 

Go a D  a A 1  1 1 _ 1  • mil 
G02  a2D2  a2A ....2 

(3-43) 

By (3-17) the product of the maximum effective aperture and the effective-
ness ratio is the effective aperture. Therefore, (3-43) becomes 

G  A 01 _  •1 
G02 A.2 

(3-44) 

where A., and A., are the effective apertures of antennas 1 and 2. 
3-10. Maximum Effective Aperture of an Isotropic Source. The maxi-

mum effective aperture of an isotropic source will now be derived. The 
directivity of an isotropic source is unity. If antenna 1 is an isotropic 
source, then, in (3-41), D, = 1 and 

A.., = — = 
D, 

(3-45) 

Equation (3-45) states that the maximum effective aperture of an 
isotropic antenna (antenna 1) is equal to the ratio of the maximum effective 
aperture to the directivity of any antenna (antenna 2). We have already 
calculated the maximum effective aperture and directivity for a short dipole 
antenna. These are (3/87)X2 and 3/2, respectively.  Introducing these 
values into (3-45) gives 

A.,..1  3 x snr — 3 x 2 X2 X2 — 47  — 0.079 X2 (3-46) 

Substituting (3-46) in (3-45), we obtain the relation that the directivity 
of any antenna is equal to its maximum effective aperture, divided by the 
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maximum effective aperture of an isotropic antenna. That is, the directiv-
ity of any antenna is equal to 4r/X2 times its maximum effective aperture. 
Thus, 

(3-47) 

3-11. Maximum Effective Aperture and Directivity of Isotropic, Short 
Dipole, and I-Wavelength Antennas. The maximum effective aperture of 
a linear 4-wavelength antenna was calculated in Sec. 3-8 as 0.13 square 
wavelength.  The directivity of the 4-wavelength antenna can now be 
calculated from (3-47) as 

30 
D = 4r 7-3w = 1.64 (3-48) 

The maximum effective aperture and directivity of isotropic, short dipole. 
and 4-wavelength antennas have now been calculated. The values are 
summarized in Table 3-1. 

TABLE 3-1 

Antenna 
Maximum 
effective 
aperture, X' 

Directivity Db directivity' 

Isotropic   —1 = 0.079 1 0 
41-

Short dipole   3 
0.119 1.5 1.76 

8w 

Linear 4-wavelength   30 
-,57,-r --= 0.13  1.64 2.14 

• Db directivity = 10 logio D. 

3-12. Friis Transmission Formula. As a further illustration of the 
utility of the aperture concept, it will be applied to the derivation of a 
simple free-space transmission formula which has been presented by 
H. T. Friis.1 
Referring to Fig. 3-8, an isotropic, 100 per cent efficient' point source 

radiates a power W,. At a distance r in free space, the power density is 

1A Note on a Simple Transmission Formula, Proc. I.R.E., 34, 254-256, May, 1946. 
*Power radiated equals power input. 
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P = W 
4 2 (3-49) 

The power W, delivered to the equivalent impedance appearing across 
the antenna terminals is 

W,A,  
'  4 = A. P —  2. (3-50) irr 

where A., is the effective aperture of the receiving antenna.  If the 
source is not isotropic but has a directivity D,, (3-50) becomes 

W„   
1 W,  4 2  (3-5 ) 

From (3-47) we have 

41-
D. = — 3 A, x •..  (3-52) 

where A.„„ is the maximum effective aperture of the source or trans-
mitting antenna.  The concept of aperture, originally developed for 
receiving antennas, is here extended to transmitting antennas, the aperture 

isotropic 
source 

•  
WI 

Receiver 

Fla. 3-8.  Free-space transmission circuit consisting of isotropic source and receiving 
horn of maximum effective aperture A.,. 

of a transmitting antenna being equal to its aperture when used as a 
receiving antenna. Introducing (3-52) into (3-51) gives the Friis trans-
mission formula,' 

W,   
W,  X2r2 

(3-53) 

This formula may be made more general by replacing the maximum 
effective aperture of the source by its effective aperture A.,. Then we 
have 

W,   
(3-54) W.  — xy 

The ratio W,/W, in (3-54) may be called a power transfer ratio.  It 
expresses the fraction of the power input to a transmitting antenna 

1 In the formula as given by Friis both apertures are maximum effective apertures. 
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which is picked up and delivered to the terminals of a receiving antenna 
at a distance r in free space. The power-transfer ratio is expressed by 
(3-54) in terms of the effective apertures of the transmitting and receiving 
antennas, their separation, and the wavelength.  Equation (3-54) is a 
far-field relation and hence will not apply if r is too small compared with 
the size of the antenna. However, the error is less than a few per cent if 

2d 3 
r > — 

X 
(3-55) 

where d is the maximum linear dimension of either antenna. The formula 
is also restricted to free-space circuits. If transmission is via a direct path 
and a simple ground reflection, the power transfer ratio may lie between the 
extremes of four times the value given by (3-54) and zero, depending on 
whether the direct and reflected waves reinforce or cancel at the receiving 
location. 

PROBLEMS 

3-1. What is the maximum effective aperture of a microwave antenna with a 
directivity of 900? 
3-2. What is the maximum power received at a distance of 0.5 kilometer over a 

free-space 1,000-Mc circuit consisting of a transmitting antenna with a 25-db gain 
and a receiving antenna with a 20-db gain? The gain is with respect to a loss-
less isotropic source. The transmitting antenna input is 150 watts. 
3-3. What is the maximum effective aperture (approximately) for a beam an-

tenna having half-power widths of 30° and 35° in perpendicular planes intersecting 
in the beam axis? Minor lobes are small and can be neglected. 



CHAPTER 4 

ARRAYS OF POINT SOURCES 

4-1. Introduction.' In Chap. 2 an antenna was considered as a single 
point source.  In Chap. 3 an antenna was treated as an aperture. In 
this chapter we return again to the point-source concept, however, ex-
tending it to a consideration of arrays of point sources. This approach 
is of great value since the pattern of any antenna can be regarded as 
produced by an array of point sources.  Much of the discussion will 
concern arrays of isotropic point sources which may represent many 
different kinds of antennas.  Arrays of nonisotropic but similar point 
sources are also treated, leading to the principle of pattern multiplication. 
From arrays of discrete point sources we proceed to continuous arrays of 
point sources and Huygens' principle. 
4-2. Arrays of Two Isotropic Point Sources. Let us introduce the sub-

ject of arrays of point sources by considering the simplest situation, 
namely, that of two isotropic point sources. As illustrations, five cases 
involving two isotropic point sources will be discussed. 
Case 1. Two Isotropic Point Sources of Same Amplitude and Phase. The 

first case we shall analyze is that of two isotropic point sources having 
equal amplitudes and oscillating in the same phase. Let the two point 
sources, 1 and 2, be separated by a distance d and located symmetrically 
with respect to the origin of the coordinates as shown in Fig. 4-1a. The 
angle 0 is measured counterclockwise from the positive z axis.  The 
origin of the coordinates is taken as the reference for phase. Then at a 
distant point in the direction 0 the field from source 1 is retarded by 

cos 43, while the field from source 2 is advanced by id, cos qs, where 
d, is the distance between the sources expressed in radians. That is, 

24rd 
cl, = -r 

I In calculating patterns much labor may be saved in evaluating trigonometric func-
tions by expressing the argument of the function in turns instead of in radians or degrees. 
Those not already familiar with this timesaving technique may refer to the discussion 
in the Appendix on "Radians, degrees, and turns." A table of trigonometric functions 
of arguments expressed in turns is also included in the Appendix. 

57 
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The total field at a large distance r in the direction 4) is then 

E = Eoe-i t  Eoe't  (4-1) 

where 1,G = d, cos 4) and the amplitude of the field components at the 
distance r is given by Eo. 

To distant 
point 

(a) 

Eoe"iT (from source 2) 

toe-i (from source 1) (b) 

90* 

Fm. 4-1.  (a) Relation to coordinate system of two isotropic point sources separated 
by a distance d. (b) Vector addition of the fields from two isotropic points sources of 
equal amplitude and same phase located as in (a). (c) Field pattern of two isotropic 
point sources of equal amplitude and same phase located as in (a) for the case where 
the separation d is wavelength. 

The first term in (4-1) is the component of the field due to source 1 
and the second term the component due to source 2. Equation (4-1) 
may be rewritten 

E = 2Eoe+it2  + e-4  
2 

(4-2) 
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which by a trigonometric identity is 

E = 2E0 cos 11'- = 2E cos (cl-  th) 
2  2 c°8  

59 

(4-3) 

This result may also be obtained with the aid of the vector diagram' 
shown in Fig. 4-1b, from which (4-3) follows directly. We note in Fig. 
4-lb that the phase of the total field E does not change as a function of 
1,1,. To normalize (4-3), that is, make its maximum value unity, set 2E0 = 
1. Suppose further that d is I wavelength. Then dr = T.  Introducing 
these conditions into (4-3) gives 

( 
7 

E = cos -2 cos 4) (4-4) 

The field pattern of E vs.  as expressed by (4-4) is presented in Fig. 4-1c. 
The pattern is a bidirectional figure of eight with maxima along the y 
axis. The space pattern is doughnut-shaped, being a figure of revolution 
of this pattern around the x axis. 
The same pattern can also be obtained by locating source 1 at the 

origin of the coordinates and source 2 at a distance d along the positive 
x axis as indicated in Fig. 4-2a. Taking now the field from source 1 as 
reference, the field from source 2 in the direction 4) is advanced by dr 
cos 0. Thus, the total field E at a large distance r is the vector sum of 
the fields from the two sources as given by 

E = E0 Eoe+i#  (4-5) 

where 4, = dr cos 4) 
The relation of these fields is indicated by the vector diagram of Fig. 4-2b. 
From the vector diagram the magnitude of the total field is 

E = 2E0 cos —4/ = 2E0 cos d,  2 c°8  (4-6) 
2   

as obtained before in (4-3). The phase of the total field E is, however, 
not constant in this case but is 4,/ 2, as also shown by rewriting (4-5) as 

E = E0(1  e") = 2Eoe't(e4  +   — 2Eoe 't 2 cost  (4-7) 2   

Normalizing by setting 2E0 = 1, (4-7) becomes 

E = e 2 cos ft — Ye_ —  t fr 2 cos 2 2 (4-8) 

In (4-8) the cosine factor gives the amplitude variation of E, and the 

qt is to be noted that the quantities represented here by vectors are not true space 
vectors but merely vector representations of the time phase (i.e., phasors). 
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exponential or angle factor gives the phase variation with respect to source 
1 as the reference.  The phase variation for the case of I-wavelength 
spacing (d, = r) is shown by the dashed line in Fig. 4-2c. Here the phase 
angle with respect to the phase of source 1 is given by #12 = (T/2) cos 0. 

+ 90' 

0' 

— 90' 
0'  90'  1E30' 

Eoe #( from source 2) 

(b) 

-- -... .... 
\  z„,--Rotat,on 
\ 

Ne 
\ 
\ 

around 

RotatIon around r  

source 1 

center point of array / 

...- ..— 
..., 

/ 
/"... 

or 
\ 
\ 
\ 
N. ... 

\ ..... .... 

/ 
/ 

/ 
/ 

..." 
_  .... .., 

(c) 

270' 360' 

no. 4-2.  (a) Two isotropic point sources with the origin of the coordinate system 
coincident with one of the sources. (b) Vector addition of the fields from two isotropic 
point sources of equal amplitude and same phase located as in (a). (c) Phase of total 
field as a function of 43 for two isotropic point sources of same amplitude and phase 
spaced 4 wavelength apart. The phase change is zero when referred to the center point 
of the array but is 0/2 as shown by the dashed curve when referred to source 1. 

The magnitude variation for this case has already been presented in 
Fig. 4-1c. When the phase is referred to the point midway between the 
sources (Fig. 4-1a), there is no phase change around the array as shown 
by the solid line in Fig. 4-2c. Thus, an observer at a fixed distance ob-
serves no phase change when the array is rotated (with respect to ciS) 
around its mid-point, but a phase change (dashed curve of Fig. 4-2c) is 
observed if the array is rotated with source 1 as the center of rotation. 
Case 2. Two Isotropic Paint Sources of Same Amplitude But Opposite 

Phase. This case is identical with the one we have just considered except 
that the two sources are in opposite phase instead of in the same phase. 
Let the sources be located as in Fig. 4-1a. Then the total field in the 
direction ti6 at a large distance r is given by 

E = Eoe+ — Eoe-it  (4-9) 
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E  2jEo sin  = 2jEo sin (cl- cos (b) 
2  2 

(4-10) 

Whereas in Case 1 Eq. (4-3) involves the cosine of 0/2, (4-10) for 
Case 2 involves the sine.  Equation (4-10) also includes an operator j, 
indicating that the phase reversal of one of the sources in Case 2 results 
in a 90° phase shift of the total field as compared with the total field for 

Fm. 4-3. Relative field pattern for two isotropic point sources of the same amplitude 
,ut opposite phase, spaced j wavelength apart. 

Case 1. This is unimportant here. Thus, putting 2jEo = 1 and con-
sidering the special case of d = A/2, (4-10) becomes 

E = sin (11 cos (1)) 2  (4-11) 

The directions 0. of maximum field are obtained by setting the argu-
ment of (4-11) equal to ±(2k  1)7/2. Thus, 

I. 
cos 4)„, = ±(2k + 1) ;. (4-11a) 

where k = 0, 1, 2, 3. . . For k = 0, cos O. = ±1 and  = 0° and 180°. 
The null directions dlo are given by 

cos 00 = ±lor 

For k = 0, o = ±90°. 

(4-11b) 
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The half-power directions are given by 

-2 cos (1) =  (4-11c) 

For k = 0,  = ±60°, ±120°. 
The field pattern given by (4-11) is shown in Fig. 4-3.  fhe pattern 

is a relatively fat figure of eight with the maximum field in the same 
direction as the line joining the sources (x axis). The space pattern is a 
figure of revolution of this pattern around the x axis. The two sources, 
in this case, may be described as a simple type of "end-fire" array. In 
contrast to this pattern, the in-phase point sources produce a pattern 
with the maximum field normal to the line joining the sources, as shown 
in Fig. 4-1c. The two sources for this case may be described as a simple 
"broadside" type of array. 
Case 3. Two Isotropic Point Sources of the Same Amplitude and in Phase 

Quadrature. Let the two point sources be located as in Fig. 4-1a. Taking 
the origin of the coordinates as the reference for phase, let source 1 be 
retarded by 45° and source 2 advanced by 45°. Then the total field in 
the direction ck at a large distance r is given by 

E = E0e+3( 4+:)  E„e-'( ' a +I)  (4-12) 

From (4-12) we obtain 

E = 2E0 cos (71 t- cos 4))  (4-13) 

Letting 2E. = 1 and d = X/2, (4-13) becomes 

E = cos  -1-; cos y6)  (4-14) 

The field pattern given by (4-14) is presented in Fig. 4-4.  The space 
pattern is a figure of revolution of this pattern around the x axis. Most 
of the radiation is in the second and third quadrants. It is interesting to 
note that the field in the direction 4) = 0° is the same as in the direction 
= 180°. The directions 0„, of maximum field are obtained by setting 

the argument of (4-14) equal to kr, where k = 0, 1, 2, 3. . . . In this way 
we obtain 

For k = 0, 

7  I. 
-4  -2 cos 4)„, = kr  (4-15) 

-2 cos 0„, = —4-  (4- 16) 
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(fr. = 120° and 240° 

90* 

120° 

60' 

150°  30* 

180' 

(4-17) 

Fm. 4-4. Relative field pattern of two isotropic point sources of same amplitude and 
in phase quadrature for a spacing of i wavelength. The source to the right leads that 
to the left by 90°. 

If the spacing between the sources is reduced to I wavelength, (4-13) 
becomes 

E = cos (54 ± : cos 4,) (4-18) 

The field pattern for this case is illustrated by Fig. 4-5a. It is a cardioid-
shaped, unidirectional pattern with maximum field in the negative x 
direction.  The space pattern is a figure of revolution of this pattern 
around the x axis. 
A simple method of checking the direction of maximum field is illus-

trated by Fig. 4-5b. Source 2 leads source 1 by 90° as indicated by the 
vectors in the top diagram.  By the time the field from source 2 has 
arrived at source 1, the phase of source 1 has advanced 90° so that the 
fields add in the —x direction as shown in the middle diagram. On the 
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other hand, by the time the field from source 1 arrives at source 2, the 
phase of source 2 has advanced 90° so that the two fields are in phase 
opposition, and, therefore, the total field in the +x direction is zero as 
shown in the bottom diagram. 

—IP. 

r----1:4. 
4 -r. (b) 

ha. 4-5.  (a) Relative field pattern of two isotropic sources of same amplitude and 
in phase quadrature for a spacing of } wavelength. Source 2 leads source 1 by 90°. 
(b) Vector diagrams illustrating field reinforcement in —x direction and field cancellation 
in +x direction. 

Case 4. General Case of Two Isotropic Point Sources of Equal Amplitude 
and Any Phase Difference.  Proceeding now to a more general situation, 
let us consider the case of two isotropic point sources of equal amplitude 
but of any phase difference b. The total phase difference 0 between the 
fields from source 2 and source 1 at a distant point in the direction 0 (see 
Fig. 4-2a) is then 

1,1, = d, cos ck + 3  (4-19) 
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Taking source 1 as the reference for phase, the positive sign in (4-19) 
indicates that source 2 is advanced in phase by the angle a. A minus 
sign would be used to indicate a phase retardation.  If, instead of re-
ferring the phase to source 1, it is referred to the center point of the array, 
the phase of the field from source 1 at a distant point is given by —442 
and that from source 2 by -1-0/2. The total field is then 

it  -t E = E0(e 2 e') = 2E0 cos —41 
2 

(4-20) 

Normalizing (4-20), we have the general expression for the field pattern 
of two isotropic sources of equal amplitude and arbitrary phase, 

E = cos t (4-21) 

where ik is given by (4-19). The three cases we have discussed are ob-
viously special cases of (4-21). Thus, Cases 1, 2, and 3 are obtained 
from (4-21) when ö = 0°, 180°, and 90°, respectively. 
Case 5. Most General Case of Two Isotropic Point Sources of Unequal 

Amplitude and Any Phase Difference. A still more general situation, 
involving two isotropic point sources, exists when the amplitudes are 
unequal and the phase difference is arbitrary. Let the sources be situated 
as in Fig. 4-6a with source 1 at the origin.  Assume that the source 1 

(a) 

FIG. 4-6.  (a) Two isotropic point sources of unequal amplitude and arbitrary phase 
with respect to coordinate system. (b) Vector addition of fields from unequal sources 
arranged as in (a). The amplitude of source 2 is assumed to be smaller than that of 
source 1 by the factor a. 

has the larger amplitude and that its field at a large distance r has an 
amplitude of Et,. Let the field from source 2 be of amplitude aE0 
(0 < a < 1) at the distance r. Then, referring to Fig. 4-6b, the magnitude 
and phase angle of the total field E is given by 

/  a sin ik  
E = Eo .01 + a cos 1k)2 + a2 sin2 lk  arctan 1 + a cos 0  (4-22) 
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where 4, = d, cos 4, + 5 and the phase angle (L) is referred to source 1. 
This is the phase angle E shown in Fig. 4-6h. 
4-3. Nonisotropic But Similar Point Sources and the Principle of Pat-

tern Multiplication. The cases considered in the preceding section all 
involve isotropic point sources. These cases can readily be extended to a 
more general situation in which the sources are nonisotropic but similar. 
The word similar is here used to indicate that the variation with absolute 

angle 4, of both the amplitude and phase of the field is the same.' The 
maximum amplitudes of the individual sources may be unequal.  If, 

however, they are also equal, the 
Y  sources are not only similar but are 

Short  identical. 
dipoles  As an example, let us reconsider 

Case 4 of Sec. 4-2 in which the 
sources are identical, with the modi-
fication that both sources 1 and 2 
have field patterns given by 

E. = Ef, sin #  (4-23) 

Patterns of this type might be pro-
duced by short dipoles oriented parallel to the x axis as suggested by Fig. 
4-7. Substituting (4-23) in (4-20) and normalizing by setting 2E,; = 1 
gives the field pattern of the array as 

FIG. 4-7. Two nonisotropic sources with 
respect to coordinate system. 

E = sin 4, cos —41 
2 

(4-24) 

where # = d, cos 4) + 5 
This result is the same as obtained by multiplying the pattern of the 

individual source (sin qt.) by the pattern of two isotropic point sources 
(cos 0/2). 
If the similar but unequal point sources of Case 5 (Sec. 4-2) each has 

a pattern as given by (4-23), the total normalized pattern is 

E = sin 4, -01 ± a cos 1,02 ± a2 sin2 II, (4-25) 

Here again the result is the same as that obtained by multiplying the 
pattern of the individual source by the pattern of an array of isotropic 
point sources. 
These are examples illustrating the principle of pattern multiplication, 

which may be expressed as follows: The field pattern of an array of non-
isotropic but similar point sources is the product of the pattern of the 

1 The patterns not only must be of the same shape but also must be oriented in the 
same direction to be called "similar." 
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individual source and the pattern of an array of isotropic point sources, 
having the same locations, relative amplitudes, and phases as the non-
isotropic point sources. This principle may be applied to arrays of any 
number of sources provided only that they are similar.  The individual 
nonisotropic source or antenna may be of finite size but can be considered 
as a point source situated at the point in the antenna to which phase is 
referred. This point is said to be the "phase center." 
The above discussion of pattern multiplication has been concerned only 

with the field pattern or magnitude of the field. If the field of the non-
isotropic source and the array of isotropic sources vary in phase with space 
angle, that is, have a phase pattern which is not a constant, the statement 
of the principle of pattern multiplication may be extended to include this 
more general case as follows: The total field pattern of an array of non-
isotropic but similar sources is the product of the individual source pattern 
and the pattern of an array of isotropic point sources each located at the 
phase center of the individual source and having the same relative amplitude 
and phase, while the total phase pattern is the sum of the phase patterns of 
the individual source and the array of isotropic point sources. The total 
phase pattern is referred to the phase center of the array. In symbols, 
the total field E is then 

E = f(e, ck) F(0, (b) /L(0, (I)) + F„(e, qs) (4-26) 
Field   Pb... ',lettere 

where f(e,  = field pattern of individual source 
f„(0, q!)) = phase pattern of individual source 
F(0,16) = field pattern of array of isotropic sources 
F„(e,  = phase pattern of array of isotropic sources 

The patterns are expressed in (4-26) as a function of both polar angles 
to indicate that the principle of pattern multiplication applies to space 
patterns as well as to the two-dimensional cases we have been considering. 
To illustrate the principle, let us apply it to two special modifications 

of Case 1 (Sec. 4-2). 

Example 1. Assume two identical point sources separated by a distance d, each 
source having the field pattern given by (4-23) as might be obtained by two short 
dipoles arranged as in Fig. 4-7. Let d = X/2 and the phase angle 6 = 0. Then the 
total field pattern is 

E = sin  cos t cos 4)) (4-27) 

This pattern is illustrated by Fig. 4-8c as the product of the individual source 
pattern (sin 0) shown at (a) and the array pattern cos RT/2) cosckli as shown at (h). 
The pattern is sharper than it was in Case 1 (Sec. 4-2) for the isotropic sources. In 
this instance, the maximum field of the individual source is in the direction q5= 90°, 
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which coincides with the direction of the maximum field for the array of two iso-
tropic sources. 

Fla. 4-8. Example of pattern multiplication. Two nonisotropic but identical point 
sources of same amplitude and phase, spaced i wavelength apart, and arranged as in 
Fig. 4-7, produce the pattern shown at (c). The individual source has the pattern 
shown at (a), which, when multiplied by the pattern of an array of two isotropic point 
sources (of the same amplitude and phase) as shown at (b), yields the total array 
pattern of (c). 

Example 2. Let us consider next the situation in which d = X/2 and 6 = 0 as in 
Example 1 but with individual source patterns given by 

E0 = g cos 4)  (4-28) 

This type of pattern might be produced by short dipoles oriented parallel to the 
y axis as in Fig. 4-9. Here the maximum field of the individual source is in the 

direction (4) = 0) of a null from the ar-
ray, while the individual source has a 
null in the direction (4) = 90°) of the pat-
tern maximum of the array. By the 
principle of pattern multiplication the 
total normalized field is 

E = cos (6 cos t cos do) (4-29) 

Fio. 4-9. Array of two nonisotropic  The total array pattern in the x-y 
sources with respect to coordinate system.  plane as given by (4-29) is illustrated in 

Fig. 4-10c as the product of the individ-
ual source pattern (cos 4)) shown at (a) and the array pattern 1 cos [(T/2) cos On 
shown at (b). The total array pattern in the x-y plane has four lobes with nulls at 
the x and y axes. 

The above examples illustrate two applications of the principle of 
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pattern multiplication to arrays in which the source has a simple pattern. 
However, in the more general case the individual source may represent an 
antenna of any complexity provided that the amplitude and phase of its 
field can be expressed as a function of angle, that is to say, provided 
that the field pattern and the phase pattern with respect to the phase 
center are known. If only the total field pattern is desired, phase patterns 
need not be known provided that the individual sources are identical. 
If the arrays in the above examples are parts of still larger arrays, 

the smaller arrays may be regarded as nonisotropic point sources in the 
larger array, another application of the principle of pattern multiplication 
yielding the complete pattern.  In this way the principle of pattern 
multiplication can be applied n times to find the patterns of arrays of 
arrays of arrays. 

Fla. 4-10. Example of pattern multiplication. Total array pattern (c) as product of 
pattern (a) of individual nonisotropic source and pattern (6) of array of two isotropic 
sources. The pattern (b) for the array of two isotropic sources is identical with that 
of Fig. 4-86, but the individual source pattern (a) is rotated through 90° with respect 
to the one in Fig. 4-8a. 

4-4. Example of Pattern Synthesis by Pattern Multiplication. The 
principle of pattern multiplication, discussed in the preceding section, is 
of great value in pattern synthesis. By pattern synthesis is meant the 
process of finding the source or array of sources which produces a desired 
pattern. Theoretically an array of isotropic point sources can be found 
which will produce any arbitrary pattern. This process is not always 
simple and may yield an array which is difficult or impossible to construct. 
A simpler, less elegant approach to the problem of antenna synthesis is by 
the application of pattern multiplication to combinations of practical 
arrays, the combination which best approximates the desired pattern being 
arrived at by a trial-and-error process. 
To illustrate this application of pattern multiplication, let us consider 

the following hypothetical problem: A broadcasting station (in the 500-
to 1,500-kc frequency band) requires a pattern in the horizontal plane 
fulfilling the conditions indicated in Fig. 4-11a. The maximum field in-
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tensity, with as little variation as possible, is to be radiated in the 90° 
sector between northwest and northeast.  No nulls in the pattern can 
occur in this sector. However, nulls may occur in any direction in the 

NW 

Null 
SW 

Uniform maximum 
NE 

(a) 

(b) 

Flo. 4-11.  (a) Requirements for pattern of broadcast station, and (b) idealized pattern 
fulfilling them. 

complementary 270° sector, but, as an additional requirement, nulls must 
be present in the due east and due southwest directions in order to prevent 
interference with other stations in these directions. An idealized sector 

shaped pattern fulfilling those requirements 
is illustrated in Fig. 4-11b. The antenna pro-
ducing this pattern is to consist of an array of 
four vertical towers.  The currents in all 
towers are to be equal in magnitude, but the 
phase may be adjusted to any relationship. 
There is also no restriction on the spacing or 
geometrical arrangement of the towers. 
Since we are interested only in the hori-

zontal plane pattern, each tower may be con-
sidered as an isotropic point source. The 

Fio. 4-12.  Arrangement of two  problem then becomes one of finding a space 
isotropic point sources for both  and phase relation of four isotropic point 
primary and secondary arrays.  sources located in the horizontal plane which 

fulfills the above requirements. 
The principle of pattern multiplication will be applied to the solution 

of this problem by seeking the patterns of two pairs of isotropic sources 
which yield the desired pattern when multiplied together. First let us 
find a pair of isotropic sources whose pattern fulfills the requirements of 
a broad lobe of radiation with maximum north and a null southwest. 
This will be called the "primary" pattern. 
Two isotropic sources phased as an end-fire array can produce a pattern 

with a broader major lobe than when phased as a broadside array (for 
example, compare Figs. 4-1c and 4-5). Since a broad lobe to the north 
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is desired, an end-fire arrangement of two isotropic sources as shown in 
Fig. 4-12 will be tried.  From a consideration of pattern shapes as a 
function of separation and phase,' a spacing between } and I wavelength 

0=0  0=0  0=0 

4 5"  0=45°  0315° 

Primary pattern  secondoryj pattern  Total or oy pattern 
d = 0.3 X.6=-104° 

(c) 

• 0 t 
0.31  i 

• — 2 

0.31 . i 3 
• -.4 

Primary array  Secondary array  Total array 

Fla. 4-13. Field patterns of primary and secondary arrays of two isotropic sources 
which multiplied together give pattern of total array of four isotropic sources. 

appears suitable (see Fig. 11-11). Accordingly, let d = 0.3X. Then the 
field pattern for the array is 

(a) 

0.3 Ale 
• 

where 

(b) 
• 

10.6 'X 

• 

E = cos t (4-30) 

0 = 0.61 r cos 4) + 3  (4-31) 

For there to be a null in the pattern of (4-30) at 0 = 135° it is necessary 
that2 

0 = (2k + 1)7  (4-32) 

where k -= 0, 1, 2, 3 . . . 

1 See for example, G. H. Brown, Directional Antennas, Proc. I .R.E., 25, January, 
1937; F. E. Terman, "Radio Engineers' Handbook," McGraw-Hill Book Company, 
Inc., New York, 1943, p. 804; C. E. Smith, "Directional Antennas," Cleveland Institute 
of Radio Electronics, Cleveland, Ohio, 1946. 
'The azimuth angle 4. (Fig. 4-12) is measured counterclockwise (ccw) from the 

north. This is consistent with the engineering practice of measuring positive angles 
in a counterclockwise sense. However, it should be noted that the geodetic azimuth angle 
of a point is measured in the opposite, or clockwise (cw), sense fror- "— reference direc-
tion, which is sometimes taken as south and sometimes as north. 
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Equating (4-31) and (4-32) then gives 

1 
— 0.6T  = (2k + 1)r  (4-33) 

or 
(4-34) 5 = (2k -I- 1)r + 0.4257 

Fork = 0, ö = — 104°. The pattern for this case (d = 0.3X and 5 = —104°) 
is illustrated by Fig: 4-13a. 

+ 80e r mid-point as phase 
center 

-60 +90 

Ca 

a 

Southern source 
as phase center 

-180° 0*  90°  180'  270°  360' 

(a) Primary pattern. 

•I80° 

+90  1 
—Mid-point as 
r phase center 

Southern source 
as phase center 

- 180 •  90  180'  270°  360' 
0 

(b): Secondary pattern 

Fla. 4-14. Phase patterns of primary, secondary, and total arrays having the field 
patterns shown in Fig. 4-13. Phase patterns are given for the phase center at the 
mid-point of the array and at the southernmost source, the arrangement of the arrays 
and the phase centers being shown at (d). The phase angle E is adjusted to zero at 

0 in all cases. Parts (a) and (b) appear above and (c) and (d) on p. 73. 

Next, let us find the array of two isotropic point sources which will 
produce a pattern that fulfills the requirements of a null at  = 270° 
and that also has a broad lobe to the north. This will be called the 
"secondary" pattern.  This pattern multiplied by the primary array 
pattern will then yield the total array pattern. If the secondary isotropic 
sources are also arranged as in Fig. 4-12 and have a phase difference of 
180°, there is a null at 46 = 270°. Let the spacing d = 0.6 X. Then the 
secondary pattern is given by (4-30), where 

1,1/ = 1.27 cos 4 + 7  (4-35) 
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The pattern is illustrated by Fig. 4-13b.  By the principle of pattern 
multiplication, the total array pattern is the product of this pattern and 
the primary array pattern, or 

E = cos (54° cos 45 — 52°) cos (108° cos 4.• ± 90°)  (4-36) 

This pattern, which is illustrated by Fig. 4-13c, satisfies the pattern re-
quirements. The complete array is obtained by replacing each of the 
isotropic sources of the secondary pattern by the two-source array pro-
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(d) 
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(c): Total pattern 
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Flo. 4-14 (Continued). 
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source 

ducing the primary pattern.  The mid-point of each primary array is 
its phase center, so that this point is placed at the location of a secondary 
source. The complete antenna is then a linear array of four isotropic 
point sources as shown in the lower part of Fig. 4-13, where now each 
source represents a single vertical tower.  All towers carry the same 
current. The current of tower 2 leads tower 1 and the current of tower 
4 leads tower 3 by 104°, while the current in towers 1 and 3 and 2 and 4 
are in phase opposition. The relative phase of the current is illustrated 
by the vectors in the lower part of Fig. 4-13c. 
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The solution obtained is only one of an infinite number of possible 
solutions involving four towers. It is, however, a satisfactory and practical 
solution to the problem. 
The phase variation  around the primary, secondary, and total arrays 

is shown in Fig. 4-14a, b, and c with the phase center at the center point 
of each array and also at the southernmost source. The arrangement of 
the arrays with their phase centers is illustrated in Fig. 4-14d for both 
cases. 
4-5. Nonisotropic and Dissimilar Point Sources. In Sec. 4-3 noniso-

tropic but similar point sources were discussed, and it was shown that 
the principle of pattern multiplication could be applied. However, if the 
sources are dissimilar, this principle is no longer applicable and the fields 
of the sources must be added at each angle  for which the total field is 
calculated. Thus, for two dissimilar sources 1 and 2 situated on the x 
axis with source 1 at the origin and the sources separated by a distance d 
(same geometry as Fig. 4-6) the total field is in general 

E = El + E3 = E0 1/[f(99  aF(0) cos Or ± [aF(0) sin Ol2 

/ 
aF(ck) sin 4, 

(4-37) MO) arctan f, ON  aF(0) cos 

where the field from source 1 is taken as 

= E0  /LW (4-38) 

and from source 2 as 

Ez = aE0 F(4) /F;(0)  d, cos 41. -I- 5 (4-39) 

where  E0 = constant 
a = ratio of maximum amplitude of source 2 to source 1 

(0 < a < 1) 
= d, cos  ± 5 — MO) F(4)), where 
= relative phase of source 2 with respect to source 1 

f(0) = relative field pattern of source 1 
f„(0) = phase pattern of source 1 
F(0) = relative field pattern of source 2 
F,(0) = phase pattern of source 2 

In (4-37) the phase angle (L) is referred to the phase of the field from 
source 1 in some reference direction (4) = 40. 
Rather than perform the calculation of (4-37), it is usually much easier 

to find the amplitude and phase of the total field by a graphical vector 
addition of E1 and E2.  In the special case where the field patterns are 
identical but the phase patterns are not, a = 1, and 
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from which 

ARRAYS OF POINT SOURCES 

= F(b) 

E = 2E0 f(0) cos t  f„(0) + 1:-

where phase is again referred to source 1 in some reference direction 4%. 

90" 

270" 

Fla. 4-15.  Relation of two nonisotropic  Fro. 4-16.  Field pattern of array of two 
dissimilar sources to coordinate system.  nonisotropic dissimilar sources of Fig. 4-

15 for d = X/4 and ö = 90°. 

75 

(4-40) 

(4-41) 

+360° 

a; 
To +270° 

a, 
Xi +180° 
a. 

+ 90* 

0°  i  I 
Ce  910°  180  270°  360' 

0 
Fm. 4-17.  Phase pattern of array having field pattern of Fig. 4-16. The phase angle 
E is with respect to source 1 as phase center. 

As an illustration of nonisotropic, dissimilar point sources, let us con-
sider an example in which the field from source 1 is given by 

E, = cos (1)  (4-42) 

and from source 2 by 
E2 =  sin (t, (4-43) 

where  = d, cos (t. 
The relation of the two sources to the coordinate system and the individual 
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field patterns are shown in Fig. 4-15. Source 1 is located at the origin. 
The total field E is then the vector sum of E, and L'2, or 

E = cos  + sin 4) Z±  (4-44) 

Let us consider the case for I-wavelength spacing (d = X/4) and phase 
quadrature of the sources (b = 7/2).  Then 

=  (cos 0 + 1) (4-45) 

The calculation for this case is most easily carried out as a graphical 
vector addition. The resulting field pattern for the total field E of the 
array is presented in Fig. 4-16, and the resulting phase pattern for the 
angle t is given in Fig. 4-17. The angle t is the phase angle between the 
total field and the field of source 1 in the direction 4) = 0. 
4-6. a. Linear Arrays of n Isotropic Point Sources of Equal Amplitude 

and Spacing.' Let us now proceed to the case of n isotropic point sources 
of equal amplitude and spacing arranged as a linear array, as indicated 

in Fig. 4-18, where n is any positive 
0.90'  integer. The total field E at a large 
T • o• 

distance in the direction q!) is given by 

To distant point  E = 1 + e" 

e3" ± • • • + em"'" (4-46) 

where  is the total phase difference 
of the fields from adjacent sources 
as given by 

= dr cosi& +  (4-46a) 

where .5 is the phase difference of 
adjacent sources. In the case under consideration this phase difference can 
assume any value. The amplitudes of the fields from the sources are all 
equal and taken as unity. Source 1 (Fig. 4-18) is the phase center so that 
the field from source 2 is advanced in phase by 4,; the field from source 3 is 
advanced by 20, etc. 
Equation (4-46) is a geometric series. Each term represents a vector, 

and the amplitude of the total field E and its phase angle t can be ob-
tained by a graphical vector addition as in Fig. 4-19. However, a very 
simple trigonometric expression for E can be developed as follows: 

IS. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Company, Inc., 
New York, 1943, p. 342. 
J. A. Stratton, "Electromagnetic Theory," McGraw-Hill Book Company, Inc., 

New York, 1941, p. 451. 

d —+—d  d 
2  3  4  5 

0 0 

Flo. 4-18. Arrangement of linear array 
of n isotropic point sources. 
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Multiply (4-46) by e" , giving 

Ee" =  ei"  e'" -I- • • • +  (4-47) 

Now subtract (4-47) from (4-46), and divide by 1 — e", yielding 

1 — e'"  
E —  (4-48) 

1 — e" 

Equation (4-48) may be rewritten as 

es4  - e-'4  
E =  (4-49) 

eit — 

from which 

E = ei E sin (n0/2) sin (ntl, / 2) /t  
sin (0/2) — sin (0/2)  (4-50) 

where is referred to the field from source 1. The value of E is given by 

(4-50a) 

If the phase is referred to the center point of the array (4-50) becomes 

sin (n0/2) 
E —  (4-51) 

sin (0/2) 

:n this case the phase pattern is a step function as given by the sign of 

(a) 

(b) 

FIG. 4-19.  (a) Vector addition of fields at a large distance from linear array of five 
isotropic point sources of equal amplitude with source 1 as the phase center (reference 
for phase). (b) Same, but with mid-point of array (source 3) as phase center. 
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(4-51). The phase of the field is constant wherever E has a value but 
changes by 180° in directions for which E = 0 (null directions) and (4-51) 
changes sign. 
When 4, = 0 (4-50) or (4-51) is indeterminate so that for this case E 

must be obtained as the limit of (4-51) as 4, approaches zero. Thus, for 
4, = 0 we have the relation that 

E=n 

This is the maximum value which E can attain. Hence, the normalized 
value of the total field for Em.. = n is 

E = 1 sin (n0/2) 
. 

n sin (02) 

The field as given by (4-52) will be referred to as the "array factor." 
Values of the array factor as obtained from (4-52) for various numbers of 

1.0 

.9 

.8 
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.1 

11= 1 

4=2 

0115 

(4-52) 
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5 

O. 10* 20 30' 40* 50* 60' 70' 1110* 90° 100' 110* 120' 130* KO* 150' 160' 170' MO* 
360' 350' 340' 330' 320° 310° 300° 290° 280° 270° 260° 250° 240° 230° 220° 210* 200' 190° 180° 

±,y 
Flo. 4-20.  Universal field-pattern chart for arrays of various numbers n of isotropic 
point sources of equal amplitude and spacing. Charts for all integral values of n from 
1 through 24 are included in the Appendix. 

sources are presented in Fig. 4-20. 1 If 4, is known as a function of 4), then 
the field pattern can be obtained directly from Fig. 4-20. 
We may conclude from the above discussion that the field from the 

array will be a maximum in any direction 4) for which 4, = 0. Stated in 
another way, the fields from the sources all arrive at a distant point in 
the same phase when 4, = 0. In special cases, 4/ may not be zero for any 

1 Universal pattern charts giving the array factor as a function of 1,4 for all integral 
values of n from 1 through 24 are included in the Appendix. 
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value of 0, and in this case the field is usually a maximum at the minimum 
value of 4,. 
To illustrate some of the properties of linear arrays equation (4-52) will 

now be applied to several special cases. 
Case 1. Broadside array (sources in phase).  The first case is a linear 

array of n isotropic sources of the same amplitude and phase. Therefore, 
8 = 0, and 

4., = d, cos 4)  (4-53) 

To make 4, = 0 requires that 0 = (2k + 1)(r/2), where k = 0, 1, 2, 3 . . . 
The field is, therefore, a maximum when 

7 , 3ir 
0 =  - and — 

2  2 

That is, the maximum field is in a direction normal to the array. Hence, 
this condition, which is characterized by in-phase sources (3 = 0), results 
in a "broadside" type of array. 
As an example, the pattern of a broadside array of four in-phase isotropic 

point sources of equal amplitude is shown in Fig. 4-21a. The spacing 
between sources is i wavelength. The field pattern in rectangular co-
ordinates and the phase patterns for this array are presented in Fig. 4-21b. 
The calculation of the field pattern of this or other arrays is facilitated 

by first calculating and plotting 1,G as a function of 0. Then by means 
of this graph and one of the array factor vs. 4, for the appropriate num-
ber of sources (as in Fig. 4-20), the array factor E is obtained for any 
value of 0 in two steps. 
The range of # as a function of 0 for the broadside array of four isotropic 

sources spaced f wavelength is +180° to — 180° and back again for a 
variation of 0 from 0° to 360°. That is, 

vs  4, 

0° 
90° 
180° 
270° 
360° 

180° 
0° 

-180° 
0° 

180° 

On Fig. 4-20 ii, completes two cycles of values from 180° to 0° and back 
to 180° for a variation of 0 from 0° to 360°. 
Case 2. Ordinary end-fire array. Let us now find the phase angle be-

tween adjacent sources that is required to make the field a maximum in 
the direction of the array (0 = 0). An array of this type may be called 
an "end-fire" array. For this we substitute the conditions 0 = 0 and 
i6 = 0 into (4-46a), from which 

(4-54) 
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Hence, for an end-fire array, the phase between sources is retarded pro-
gressively by the same amount as the spacing between sources in radians. 
Thus, if the spacing is I wavelength, source 2 in Fig. 4-18 should lag 
source 1 by 900; source 3 should lag source 2 by 90°, etc. 

0 = 90* 

180° 

\ 
\ 

0°-

-90°-  ‘ 

g -180*   
0 
0 
2 -270°-  rr- Phase center 
a  at sourcel  „)  (b) 

t2 
.̀.  , ...."  t   

0  90° 180° 270° 360. 

10 
Fla. 4-21.  (a) Field pattern of broadside array of four isotropic point sources of same 
amplitude and phase. The spacing between sources in f wavelength. (b) Field pattern 
in rectangular coordinates and phase patterns of same array with phase center at mid-
point and at source 1. The reference direction for phase is taken at 0 n• 90°. 
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As an example, the field pattern of an end-fire array of four isotropic 
point sources is presented in Fig. 4-22a. The spacing between sources is 
i wavelength, and 8 = — 7. The field pattern in rectangular coordinates 
and the phase patterns are shown in Fig. 4-22h. The same shape of field 
pattern is obtained in this case if 6 = A-1r since with d = X/2 the pattern 
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is bidirectional. However, if the spacing is less than X/2, the maximum 
radiation is in the direction 4) = 0 when ö = —d, and in the direction 
= 180° when (5 = +d,. 

0=90° 

1E1 

270' 
Field pattern 

Array  1. d I d -1•d 
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Phase center at 
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ss  e  1 
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0  9e  18e  270. 360. 
0 

Fza. 4-22.  (a) Field pattern of ordinary end-fire array of four isotropic point sources 
of same amplitude. Spacing is wavelength, and the phase angle 8 = —r. (b) Field 
pattern in rectangular coordinates and phase patterns of same array with phase center 
at mid-point and at source 1. The reference direction for phase is at  = 0. 

Case 3. End-fire array with increased directivity.  The situation discussed 
in Case 2, namely, for & = —d,, produces a maximum field in the direction 
q5 = 0 but does not give the maximum directivity. It has been shown by 
Hansen and Woodyard' that a larger directivity is obtained by increasing 
the phase change between sources so that 

a = — (a, + 1.) (4-55) 

W. W. Hansen and J. R. Woodyard, A New Principle in Directional Antenna 
Design, Proc. I.R.E., 26, March, 1938, 333-345. 
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This condition will be referred to as the condition for "increased direc-
tivity." Thus for the phase difference of the fields at a large distance 
we have 

= d,(cos  — 1) —  (4-56) 

As an example, the field pattern of an end-fire array of four isotropic 
point sources for this case is illustrated in Fig. 4-23. The spacing between 

90° 

du-1-2 - -• -•  • • 

I 2 3 4 
Array 

Flo. 4-23. Field pattern of end-fire array of four isotropic point sources of equal 
amplitude spaced  wavelength apart.  The phasing is adjusted for increased di-
rectivity (6 

sources is wavelength, and therefore 5 = — (57/4). Hence, the condi-
tions are the same as for the array with the pattern of Fig. 4-22, except 
that the phase difference between sources is increased by r/4. Comparing 
the field patterns of Figs. 4-22a and 4-23, it is apparent that the additional 
phase difference yields a considerably sharper main lobe in the direction 
= 0. However, the back lobes in this case are excessively large because 

the large value of spacing results in too great a range in 
To realize the directivity increase afforded by the additional phase 

difference requires that!  be restricted in its range to a value of 7/n at 
= 0 and a value in the vicinity of 7 at 4) = 180°. This can be fulfilled 

if the spacing is reduced. For example, the field pattern of an end-fire 
array of 10 isotropic point sources of equal amplitude and spaced I wave-
length is presented in Fig. 4-24a for the phase condition giving increased 
directivity (o = —0.6r). In contrast to this pattern, one is presented in 
Fig. 4-24b for the identical antenna with the phasing of an ordinary end-
fire array (IS = —0.5r). Both patterns are plotted to the same maximum. 
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The increased directivity is apparent from the greater sharpness of the 
upper pattern. Integrating the pattern, including the minor lobes, the 
directivity of the upper pattern is found to be about 19 and of the lower 
pattern about 11. The beam widths and directivities for the two patterns 
are compared in Table 4-1. 

TABLE 4-1 

Ordinary endfire 
Endfire with 

increased directivity 

Beam width between half-power points 
Beam width between first nulls   
Directivity   

68° 
106° 
11 

37° 
74° 
19 

The maximum of the field pattern 
of Fig. 4-24a occurs at 4, = 0 and 
= —7/n.  In general, any in-

creased directivity end-fire array, 
with maximum at  = —7/n, has a 
normalized field pattern given by 

E = sin (7/2n) sin (n4./2) (4-56a) 
sin (0/2) 

Case 4. Array with maximum field 
in an arbitrary direction.  Let us 
consider the case of an array with a 
field pattern having a maximum in 
some arbitrary direction  Oi not equal 
to kw/2 where k = 0, 1, 2, or 3. 
Then (4-46a) becomes 

0 = dr cos c6i + 5 (4-57) 

By specifying the spacing d„ the re-
quired phase difference ö is then de-
termined by (4-57). 
As an example suppose that n = 4, 

d = X/2 and that we wish to have a maximum field in the direction of 
4, = 60°. Then S = —r/2, yielding the field pattern shown in Fig. 4-25. 
4-6. b. Null Directions for Arrays of n Isotropic Point Sources of Equal 

Amplitude and Spacing.  In this section simple methods are discussed for 
finding the directions of the pattern nulls of the arrays considered in 
Sec. 4-6a. 

Array 
1 2 3 4 5 6 7 8 9 10 

d d d  d=— X4 

(a) 

(b) 

Fla. 4-24. Field patterns of end-fire ar-
rays of 10 isotropic point sources of equal 
amplitude spaced  wavelength apart. 
The pattern at (a) has the phase adjusted 
for increased directivity (6 = —0.67), 
while the pattern at (14 has the phasing of 
an ordinary end-fire array (6 = —0.5 7). 
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Following the procedure given by Schelkunoff', the null directions for 
an array of n isotropic point sources of equal amplitude and spacing occur 
when E = 0 or, provided that the denominator of (4-48) is not zero, when 

Equation (4-58) requires that 

where K = 1, 2, 3 . .. 

180 
.  k-d-+-d-4.-d•1 

1  2  3  4 

Array 

d= 4-

el" = 1  (4-58) 

7/11,  ±2Ifir  (4-59) 

900 

300' 2706 

Fla. 4-25.  Field pattern of array of four isotropic point sources of equal amplitude 
with phasing adjusted to give maximum at ,/, -. 60°. The spacing is i wavelength. 

Equating the value of 4, in (4-59) to its value in (4-46a) gives 

1/, = d,. cos 00 -I- 5 — ± 2K7 
n 

Thus, 

00 = arccos F(±2K, _ 5)1_1 (4-61) L \ n  I d,J 

where (Po gives the direction of the pattern nulls. Note that values of K 
must be excluded for which K = mn, where m = 1, 2, 3, . . . Thus, if 
K = mn, Eq. (4-59) reduces to 4, = ±2mT and the denominator of (4-48) 
1 S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Company, Inc., 

New York, 1943, p. 343. 
S. A. Schelkunoff, "A Mathematical Theory of Arrays," Bell System Tech. J., 22, 

80-107, January, 1943 

(4-60) 
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equals zero so that the null condition of (4-58), that the numerator of 
(4-48) be zero, is insufficient. 
In a broadside array 5 = 0, so that for this case (4-61) becomes 

= arccos (± -2Kir ) — arccos (+12 )  (4-62) 
nd,  nd 

As an example, the field pattern of Fig. 4-21 (n = 4, d = X/2, 5 = 0) 
has the null directions 

= arccos (±I ) 
2 

(4-63) 

For K = 1,  =  60° and ±120°, and for K = 2, 00 = 0° and 180°. 
These are the six null directions for this array. 
If 00 in (4-60) is replaced by its complementary angle 70 (see Fig. 4-18), 

then (4-62) becomes 

'Yo = arcsin (±ndi—C—X)  (4-64) 

If the array is long, so that nX >> KX, 

KX 
± — nd 

(4-65) 

The first nulls either side of the maximum occur for K = 1. These angles 
will be designated m.  Thus, 

701 =' ±nd— (4-66) 

and the total beam width of the main lobe between first nulls for a long 
broadside array is then 

2 7 01 
n k‘ 

2 X 
(4-67) 

For the field pattern in Fig. 4-21 this width is exactly 60°, while as given 
by (4-67) it is 1 rad, or 57.3°. This pattern is for an array 2 wavelengths 
long. The agreement would be better with longer arrays. 
Turning next to end-fire arrays, the condition for an ordinary end-fire 

array is that 5 = —di. Thus, for this case (4-60) becomes 

cos 00 — 1 = 21C7 (4-67d1 nd, 

2 = arcsin ± r6r  (4-67b) 
nd, 

from which we obtain 
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or 

41. = 2 arcsin ±J  (4-67c) 
2nd 

As an example, the field pattern of Fig. 4-22 (n = 4, d = X/2, ô = —7) 
has the null directions 

= 2 arcsin ±NITI 

For K = 1, (th, = ±60°; for K = 2, dh = ±90°, etc. 
If the array is long, so that nd >> KX, (4-67c) becomes 

(4-67d) 

(4-68) 

The first nulls either side of the main lobe occur for K = 1. These angles 
will be designated Om. Thus, 

(1)01  ±4tJ— nd (4-69) 

and the total beam width of the main lobe between first nulls for a long 
ordinary end-fire array is then, 2 (4-70) 

For the field pattern in Fig. 4-22 this width is exactly 120°, while as given 
by (4-70) it is 2 rad, or 115°. 
For end-fire arrays with increased directivity as proposed by Hansen 

and Woodyard, the condition is that 8 = —(d, -I- 7/n). Thus, for this 
case (4-60) becomes 

d,(cos 4,0 — 1) —  = ±2 —Kr (4-71) 

from which 

= arcsin ±.\121711,  (2K — 1)  (4-72) 

or 

cko = 2 arcsin ±NIL (2K — 1)  (4-73) 

If the array is long, so that nd >> KX, (4-73) becomes 

NIA- (2K — 1)  (4-74) 

The first nulls either side of the main lobe, Om, occur for K = 1. Thus, 

4)01  ± jd (4-75) 



SEc. 4-6]  ARRAYS OF POINT SOURCES  87 

and the total beam width of the main lobe between first nulls for a long 
end-fire array with increased directivity is then 

200,  2\117  
nd 

(4-76) 

This width is 1/ 0, or 71 per cent, of the width of the ordinary end-fire 
array. As an example, the ordinary end-fire array pattern of Fig. 4-24b 
has a beam width between first nulls of 106°. The width of the pattern 
in Fig. 4-24a for the array with increased directivity is 74°, or 70 per 
cent as much. 
Table 4-2 lists the formulas for null directions and beam widths for 

the different arrays considered above. The null directions in column 2 
apply to arrays of any length. The formulas in the third and fourth 
columns are approximate and apply only to long arrays. 

TABLE 4-2 

NULL DIRECTIONS AND BEAM WIDTHS BETWEEN FIRST NULLS 
FOR LINEAR ARRAYS OF n ISOTROPIC POINT SOURCES 

OF EQUAL AMPLITUDE AND SPACING 

(The angles are expressed in radians. To convert to degrees, multiply by 57.3) 

Type of 
array 

Null directions 
(array any length) 

Null directions 
(long array) 

Beam width 
between first 

nulls 
(long array) 

General 
case • 

00= arccos[(±2nKr 6)t 

Broadside yo= arcsin(± I-C-X) 
nd 

KX 
l'o='"-±—  nd 

3 

1 nd 

Ordinary 
endfire 

00= 2 arcsin ±.\1- 
2nd dk  ±.„ii-f-Fx  nd 

-1-2nd X 24.01 -̂s22.\r 

Endfire 
with in-
creased di-
rectivity 
(Hansen 
and Wood-
yard) 

nd 
(too= 2 arcsin ±.Nlit -(2K— 1) 

4nd nd 
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The formulas in Table 4-2 have been used to calculate the curves pre-
sented in Fig. 4-26. These curves show the beam width between first 
nulls as a function of nd), for three types of arrays: broadside, ordinary 

Be
a
m 
wi
dt
h 
bet
w
ee
n
 
fir
st
 
nul
ls
 

200' 

150* 

I0 

50* 

- 

_ 

_ 

_ 
_ 
- 

rdinary end 

End 

-fire 

-fire with 
directivity' 

- 
_ 

13roadside 

increased 

c  10  20  50  IC 

n d 
(approx. array length) 

Fm. 4-26.  Beam width between first nulls as a function of nth, for arrays of n isotropic 
point sources of equal amplitude. For long arrays, ndx is approximately equal to the 
array length. 

end-fire, and end-fire with increased directivity.  The quantity nd), 
(= ntl/X) is approximately equal to the length of the array in wavelengths 
for long arrays. The exact value of the array length is (n — 1) clk. 
The beam width of long broadside arrays is inversely proportional to 

the array length, whereas the beam 
width of long end-fire types is in-
versely proportional to the square 
root of the array length. Hence, the 
beam width in the plane of a long 
linear broadside array is much 
smaller than for end-fire types of the 
same length as shown by Fig. 4-26. 
It should be noted, however, that 
the broadside array has a disc-
shaped pattern with a narrow beam 

Flo. 4-27. Volume array of point sources  width in a plane through the array 
with equal spacing in the three coordinate  axis but a circular pattern (360° 
directions. 

beam width) in the plane normal to 
the array axis. On the other hand, the end-fire array has a cigar-shaped 
pattern with the same beam width in all planes through the array axis. 
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4-6. c. Some Remarks on Volume Arrays. It is interesting to digress at 
this point to consider the possibilities and limitations of a volume dis-
tribution' of equally spaced point sources.  Suppose we have a space 
array consisting of linear arrays of n,, n,, and n, sources in the three co-
ordinate directions. For equal spacing in the three coordinate directions, 
the case where n, = 5, n, = 3, and n, = 2 is illustrated in Fig. 4-27. If 
the field patterns of the arrays in each coordinate direction are E.(0, 0), 
E.(0, 0), and E.(0, 0) then by the principle of pattern multiplication the 
total array factor E. of a volume distribution of isotropic point sources is 

E.(e, (I)) = E.(0, 44Er(0, (6)E.(0, (k)  (4-77) 

Suppose that we wish to have maximum radiation in the +x direction. 
Then the arrays in the y and z directions are broadside arrays while the 
array in the x direction is an end-fire array. The pattern in the x-y plane 
E„ depends only on the x and y arrays. Thus, 

E.. = E,(0, (b)E,(0, (I))  (4-78) 

The pattern in the x-z plane, E„, depends only on the x and z arrays, so 
that 

Es. = E.(0, (k)E.(0, el))  (4-79) 

If in (4-78) E.(0, 0) is much sharper than E.(0, 0), then E., is nearly 
equal to E.(0, 0). To have an appreciable effect on E„, E,(0, 0) must 
be approximately as sharp as E.(0, 0). That is to say, a sharp pattern 
must be multiplied by a pattern nearly as sharp in order to be made 
appreciably sharper. Therefore, if the y array is much sharper than the 
x array, one might as well use only the y array. On the other hand if 
the x array is much sharper, then one might as well use only the x array. 
For both to contribute equally it is required that both be equally sharp, 
or that 

E1(0, (4) = E(8, 44  (4-80) 

Similar remarks may be made concerning the pattern in the z-z plane 
as related to the x and z arrays. It follows that, for equal patterns in 
the x-y and x-z planes, we must make 

n, = n, 

if the spacing between sources is the same in both arrays. If the y and z 
arrays are, for example, 10 wavelengths long [(n, — 1)d = 10 X], then 
the x array must be nearly 100 wavelengths long to have much effect on 
the beam width of the main lobe. However, a small x array may be de-

' G. C. Southworth, Certain Factors Affecting the Gain of Directive Antennas, 
Proc. I.R.E., 18, 1502-1536, September, 1930 
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sirable in order to obtain a unidirectional pattern in the x direction. 
Assuming now that the x array is unidirectional, then any greater length 
would not produce much effect on the main-lobe beam width unless it is 
of the order of 100 wavelengths. An x array less than 100 wavelengths 
long would, nevertheless, have some effect on the directivity because of 
the change it produces in the minor-lobe pattern. From these considera-
tions it is apparent that broadside-area arrays are generally to be preferred 
over single linear end-fire types for pencil beams, since they require smaller 
maximum dimensions. However, for arrays of moderate directivity with 
dimensions of a few wavelengths or less these remarks do not necessarily 

apply. 
4-6. d. Directions of Maxima for Arrays of n Isotropic Point Sources of 

Equal Amplitude and Spacing. Let us now proceed to a discussion of the 
methods for locating the positions of the pattern maxima. The major-
lobe maximum usually occurs when 0 = 0. This is the case for the broad-
side or ordinary end-fire array. The main lobes of the broadside array 
are then at 0 = 90° and 270°, while for the ordinary end fire the main lobe 
is at 0° or 180° or both. For the end-fire array with increased directivity 
the main-lobe maximum occurs at a value of 0 = ±r/n with the main 
lobe at 0° or 180°. Referring to Fig. 4-24a, the main-lobe maximum (first 
maximum) for this case occurs at the first maximum of the numerator of 
(4-51). 
The maxima of the minor lobes are situated between the first- and 

higher-order nulls.  It has been pointed out by Schelkunoff that these 
maxima occur approximately whenever the numerator of (4-51) is a 
maximum, that is, when 

. nO  , 
sm — =.1. 

2 
(4-81) 

Referring to Fig. 4-28, we note that the numerator of (4-51) varies as a 
function of 0 more rapidly than the denominator sin (0/2).  This is 
especially true when n is large. Thus, although the nulls occur exactly 
where sin (4/2) = 0, the maxima occur approximately where sin 
(n0/2) = 1. This condition requires that 

n #  7 
(4-82) 

where K = 1, 2, 3 . . . 
Substituting the value of 4, from (4-82) into (4-46a) gives 

±(2K -I- 1)r 
d, cos (k„, + S — 

n 

Therefore 

(4-83) 
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arccos 
{[±(2Kn+ 1)7 

where (1),. = direction of the minor-lobe maxima 
For a broadside array, 6 = 0 so that (4-84) becomes 

arccos ±(2K + 1)X  
2nd 

(4-84) 

(4-85) 

As an example, the field pattern of Fig. 4-21 (n = 4, d = X/2, 5 = 0) 
has the minor-lobe maxima at 

±(2K + 1) 44, arccos 
4 

(4-86) 

For K = 1, 0„, = +41.4° and +138.6°.  These are the approximate 
directions for the maxima of the four minor lobes of this pattern. 

+1 

+i 

Sin!'" 

0 

1. 
W= 80° 

Fm. 4-28. Graphs of the numerator (sin mG/2) and denominator (sin 0/2) of the 
array factor as functions of 0, showing the values of 4, corresponding to maxima and 
nulls of a field pattern for the case n = 8. 

For an ordinary end-fire array 6 = — d, so that (4-84) becomes 

[±(2K -I- 1)X  
4)„,  arccos  -I- 1 

2nd (4-87) 



92  ANTENNAS [CilAp. 4 

while, for an end-fire array with increased directivity, 6 = — (d,  rItt) and 

X 
r=e. arccos  [1 ± (2K + 1)] + 1}  (4-88) 

The above formulas for the approximate location of the minor lobe 
maxima are listed in Table 4-3. 

TABLE 4-3 

DIRECTIONS OF MINOR-LOBE MAXIMA FOR LINEAR ARRAYS OF n 
ISOTROPIC POINT SOURCES OF EQUAL AMPLITUDE AND SPACING 

Type of array Directions of minor-lobe maxima 

General 
]1 } 4)•- arccos{[±(2K+1)ir 3 lc: 

n 

Broadside 
± (2K+ 1)X 

(/),„,..2-arccos 
2nd 

Ordinary endfire (2 K+ 1)X 4;6 „,••••arecos[±  +11 
2nd 

Endfire with increased directivity 
(Hansen and Woodyard) (1).̂-,arccos{ —x [1± (2K+ 1)1+ 

2n d 
1} 

The amplitudes of the field at the minor-lobe maxima are also of interest. 
It has been shown by Schelkunoff that since the numerator of (4-52) is 
approximately unity at the maximum of a minor lobe, the relative ampli-
tude of a minor-lobe maximum E mL is given by 

1   

E ML  n sin (0/2) 

Introducing the value of  from (4-82) into (4-89) yields 

Emz. f="-'  • n sm [(2K  1)7/2n] 
1 

(4-89) 

(4-90) 

When n >> K, that is, for the first few minor lobes of an array of a large 
number of sources, we have the further approximation 

2   
EUL  (2K  1)7 (4-91) 
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Thus, for arrays of a large number of sources the relative amplitude 
of the first few minor lobes is given by (4-91) for K = 1, 2, 3, etc. In a 
broadside or ordinary end-fire array, the major-lobe maximum is unity 
so that the relative amplitudes of the maximum and first five minor lobes 
for arrays of these types and many sources are 1, 0.21, 0.13, 0.09, 0.07, 
and 0.06. From the curve for n = 20 in Fig. 4-20 we have the corre-
sponding relative amplitudes given by 1, 0.22, 0.13, 0.09, 0.07, and 0.06. 
For an end-fire array with increased directivity the maximum for 4, = 0 
and n = 20 occurs at ii, = 7/20 = 9°. At this value of 11, the array factor 
is 0.63. Putting the maximum equal to unity then makes the relative 
amplitudes 1, 0.35, 0.21, 0.14, 0.11, and 0.09. It is interesting to note 
in (4-90) that the maximum amplitude of the smallest minor lobe occurs 
for 2K + 1 = n. Then 

sin  [(2K + 1)1 _ 1 
2n  (4-92) 

1 
EuL '-' —  (4-93) n 

The condition 2K + 1 = n is exactly fulfilled when n is odd for the minor-
lobe maximum at 0 = 180° (see Fig. 4-20). When n is even, the condition 
is approximately fulfilled by the minor lobes nearest 1// = 180°. Thus, 
the maximum amplitude of the smallest minor lobe of the field pattern of 
any array of n isotropic point sources of equal amplitude and spacing will 
never be less than 1/n of the major-lobe maximum. An exception to this 
is where the range of 0 ends after a null in the array factor has been passed 
but before the next maximum has been reached. In this case the maximum 
of the smallest minor lobe may be arbitrarily small. 
4-7. Linear Broadside Arrays with Nonuniform Amplitude Distribu-

tions. General Considerations. In the preceding section, our discussion 
was limited to linear arrays of n isotropic sources of equal amplitude. 
This discussion will now be extended to the more general case where the 
amplitude distribution may be nonuniform. In introducing this subject, 
it is instructive to compare field patterns of four types of amplitude dis-
tributions, namely, uniform, binomial, edge, and optimum. To be specific, 
let us consider a linear array of five isotropic point sources with 4 wave-
length spacing. If the sources are in phase and all equal in amplitude, 
we may calculate the pattern as discussed in Sec. 4-6, the result being as 
shown in Fig.4-29 by the pattern designated uniform.  A uniform dis-
tribution yields the maximum directivity. The pattern has a half-power 
beam width of 23°, but the minor lobes are relatively large. The ampli-
tude of the first minor lobe is 24 per cent of the major-lobe maximum (see 

and 
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Fig. 4-20, n = 5). In some applications this minor-lobe amplitude may 
be undesirably large 

Uniform Binomial 

1 1 1 1 1 
1 1 1 I 1 

• 1 1 1 • 
1 4 6 4 1 

Edge 

I  •  •  •  1 

1 0 0 0 1 

Optimum 

1 1 I 1 1 
I 1.6 1.916 1 

Fra. 4-29.  Normalized field patterns of broadside arrays of five isotropic point sources 
spaced  wavelength apart. All sources are in the same phase, but the relative ampli-
tudes have four different distributions: uniform, binomial, optimum, and edge. Only 
the upper half of the pattern is shown. The relative amplitudes of the five sources 
are indicated in each case by the array below the pattern, the height of the line at each 
source being proportional to its amplitude.  All patterns are adjusted to the same 
maximum amplitude. 

To reduce the side-lobe level of linear in-phase broadside arrays, John 
Stone Stone' proposed that the sources have amplitudes proportional to 
the coefficients of a binomial series of the form 

(a -I-  =  (n — 1)a-2b  (n — 1)(n — 2)  à ")b2 + • • • (4-94) 
2! 

I John Stone Stone, U.S. Patents 1,643,323 and 1,715,433. 
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where n is the number of sources.* Thus, for arrays of three to six sources 
the relative amplitudes are given by 

n  Relative amplitudes 

3  1, 2, 1 
4  1, 3, 3, 1 
5  1, 4, 6, 4, 1 
6  1, 5, 10, 10, 5, 1 

Applying the binomial distribution to the array of five sources spaced 
i wavelength apart, the sources have the relative amplitudes 1, 4, 6, 4, 1. 
The resulting pattern, designated binomial, is shown in Fig. 4-29. Methods 
of calculating such patterns are discussed in the next section. The pattern 
has no minor lobes, but this has been achieved at the expense of an in-
creased beam width (31°). For spacings of i wavelength or less between 
elements, the minor lobes are eliminated by Stone's binomial distribution. 
However, the increased beam width and the large ratio of current ampli-
tudes required in large arrays are disadvantages. 
At the other extreme from the binomial distribution, we might try an 

edge distribution in which only the end sources of the array are supplied 
with power, the three central sources being either omitted or inactive. 
The relative amplitudes of the five-source array are, accordingly, 1, 0, 
0, 0, 1. The array has, therefore, degenerated to two sources 2 wave-
lengths apart and has the field pattern designated as edge in Fig. 4-29. 
The beam width between half-power points of the "main" lobe (normal 
to the array) is 15°, but "minor" lobes are the same amplitude as the 
"main" lobe. 
Comparing the binomial and edge distributions for the five-source array 

with i-wavelength spacing, we have 

Type of distribution 
4-power 
beamwidth 

Minor-lobe amplitude 
(% of major lobe) 

Binomial   
Edge   

31° 
15° 

o 
100 

Although for most applications it would be desirable to combine the 
15° beam width of the edge distribution with the zero minor-lobe level 
of the binomial distribution, this combination is not possible. However, 
if the distribution is between the binomial and the edge type, a compromise 
between the beam width and the side-lobe level can be made. That is, 
the side-lobe level will not be zero, but the beam width will be less than 

'The coefficients of the binomial series are very simply obtained from Pascal's 
triangle (see Appendix). 
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for the binomial distribution. An amplitude distribution of this nature 
for linear in-phase broadside arrays has been proposed by Dolph' which 
has the further property of optimizing the relation between beam width 
and side-lobe level. That is, if the side-lobe level is specified, the beam 
width between first nulls is minimized; or, conversely, if the beam width 
between first nulls is specified, the side-lobe level is minimized. Dolph's 
distribution is based on the properties of the Tchebyscheff polynomials 
and accordingly will be referred to as the Dolph-Tchebyscheff or optimum 
distribution. 
Applying the Dolph-Tchebyscheff distribution to our array of five 

sources with 4-wavelength spacing, let us specify a side-lobe level 20 db 
below the main lobe, that is, a minor-lobe amplitude 10 per cent of the 
main lobe. The relative amplitude distribution for this side-lobe level is 
1, 1.6, 1.9, 1.6, 1 and yields the pattern designated optimum in Fig. 4-29. 
Methods of calculating the distribution and pattern are discussed in the 
next section. The beam width between half-power points is 27°, which 
is less than for the binomial distribution. Smaller beam widths can be 
obtained only by raising the side-lobe level. The Dolph-Tchebyscheff dis-
tribution includes all distributions between the binomial and the edge. 
In fact, the binomial and edge distributions are special cases of the Dolph-
Tchebyscheff distribution, the binomial distribution corresponding to an 
infinite ratio between main- and side-lobe levels and the edge distribution 
to a ratio of unity. The uniform distribution is, however, not a special 
case of the Dolph-Tchebyscheff distribution. 
Referring to Fig. 4-29, we may draw a number of general conclusions 

regarding the relation between patterns and amplitude distributions. We 
note that if the amplitude tapers to a small value at the edge of the array 
(binomial distribution), minor lobes can be eliminated.  On the other 
hand, if the distribution has an inverse taper with maximum amplitude 
at the edges and none at the center of the array (edge distribution), the 
minor lobes are accentuated being, in fact, equal to the "main" lobe. 
From this we may quite properly conclude that the minor-lobe level is 
closely related to the abruptness with which the amplitude distribution 
ends at the edge of the array. An abrupt discontinuity in the distribution 
results in large minor lobes, while a gradually tapered distribution ap-
proaching zero at the edge minimizes the discontinuity and the minor 
lobes. In the next section, we shall see that the abrupt discontinuity pro-
duces large higher "harmonic" terms in the Fourier series representing 

1 C. L. Dolph, A Current Distribution for Broadside Arrays Which Optimizes the 
Relationship between Beam Width and Side-lobe Level, Proc. I.R.E., 34, No. 6, 335-
348, June, 1946. 
H. J. Riblet, discussion on Dolph's Paper, Proc. I.R.E., 35, No, 5, 489-492, May, 

1947. 
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the pattern. On the other hand, these higher harmonic terms are small 
when the distribution tapers gradually to a small value at the edge. 
There is an analogy between this situation and the Fourier analysis of 
wave shapes. Thus, a square wave has relatively large higher harmonics, 
whereas a pure sine wave has none, the square wave being analogous to 
the uniform array distribution while the pure sine wave is analogous to 
the binomial distribution. 
The preceding discussion has been concerned with arrays of discrete 

sources separated by finite distances. However, the general conclusions 
concerning amplitude distributions which we have drawn can be extended 
to large arrays of continuous distributions of an infinite number of point 
sources, such as might exist in the case of a continuous current distribu-
tion on a metal sheet or in the case of a continuous field distribution across 
the mouth of an electromagnetic horn.  If the amplitude distribution 
follows a Gauss error curve, which is similar to a binomial distribution 
for discrete sources, then minor lobes are absent but the beam width is 
relatively large. An increase of amplitude at the edge reduces the beam 
width but results in minor lobes, as we have seen. Thus, in the case of a 
high-gain parabolic reflector type of antenna, the illumination of the 
reflector by the primary antenna is usually arranged to taper toward the 
edge of the parabola. However, a compromise is generally made between 
beam width and side-lobe level so that the illumination is not zero at the 
edge but has an appreciable value as in a Dolph-Tchebyscheff distribution. 
4-8. Linear Arrays with Nonuniform Amplitude Distributions.  The 

Dolph-Tchebyscheff Optimum Distribution. In this section linear in-
phase arrays with nonuniform amplitude distributions are analyzed, and 
the development and application of the Dolph-Tchebyscheff distribution 
are discussed. 
Let us consider a linear array of an even number n. of isotropic point 

sources of uniform spacing d arranged as in Fig. 4-30a. All sources are 
in the same phase. The direction 0 = 0 is taken normal to the array 
with the origin at the center of the array as shown. The individual sources 
have the amplitudes Ao A1, A2, etc., as indicated, the amplitude distri-
bution being symmetrical about the center of the array. The total field 
E.. from the even number of sources at a large distance in a direction 0 
is then the sum of the fields of the symmetrical pairs of sources, or 

34.  n. — 1  
E.. = 2A, cos Lk -I- 2A, cos  ---+ • • • -I- 2A k cos(  2 0)  (4-95) 

2 

where 

Perd 
= —x sin 0 = d, sin 0 (4-96) 
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Each term in (4-95) represents the field due to a symmetrically disposed 
pair of the sources. 
Now let 

2(k + 1) = el. 

where k = 0, 1, 2, 3 . . . so that 

n. — 1 2k + 1 
2  —  2 

Then (4-95) becomes 
k••N-I 

E„. = 2 E ilk cos (2k + 1  II,) 
k - 0  2 

(4-97) 

where N = n1/2 
Next let us consider the case of a linear array of an odd number no of 

0=0 

-40 

AK 

Even 

0=0 

Odd 

(a) 

S. 
AK 

Fm. 4-30.  Linear broadside arrays of n isotropic sources with uniform spacing for a 
even and a odd. 

isotropic point sources of uniform spacing arranged as in Fig. 4-30b. 
The amplitude distribution is symmetrical about the center source. The 
amplitude of the center source is taken as 2,40, the next as A,, the next as 
A2, etc. The total field E„. from the odd number of sources at a large 
distance in a direction 0 is then 

En. = 2A0 -I- 2A, cos 0 + 2.A 2 cos 20 + • • • + 2Ak cos (n°  —2 1 1,) (4-98) 
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Now for this case let 

2k + 1 = n0 

where k = 0, 1, 2, 3 . . . . Then (4-98) becomes 

.01 

E, = 2 kE A, cos (2k IP-)  (4-99) 
k()  2 

where N = (no — 1)/2 
The series expressed by (4-98) or by (4-99) may be recognized as a 

finite Fourier series of N terms.' For k = 0 we have a constant term 
2A0 representing the contribution of the center source. For k = 1 we 
have the term 2A 1 cos ii, representing the contribution of the first pair of 
sources on either side of the center source. For each higher value of k 
we have a higher harmonic term which in each case represents the con-
tribution of a pair of symmetrically disposed sources. Thus, the total 
field pattern is simply the sum of a series of terms of increasing order in 
the same way that the wave form of an alternating current can be repre-
sented as a Fourier series involving, in general, a constant term, a funda-
mental term, and higher harmonic terms. The field pattern of an even 
number of sources as given by (4-95) or (4-97) is also a finite Fourier 
series but one which has no constant term and only odd harmonics. The 
coefficients A0, A I, . . . in both series are arbitrary and express the ampli-
tude distribution. 
To illustrate the Fourier nature of the field-pattern expression, let us 

consider the simple example of an array of nine isotropic point sources 
spaced i wavelength apart, having the same amplitude and phase. Hence, 
the coefficients are related as follows: 2A0 = A1 = A 2 =  A 3 =  A, = I. 
The number of sources is odd; hence the expression for the field pattern 
is then given by (4-99) as 

E, = f ± cos 0 + cos 21,1, + cos 30 + cos 41/, (4-100) 

The first term (k = 0) is a constant so that the field pattern is a circle of 
amplitude i as shown in Fig. 4-31a. The second term (k = 1) may be 
regarded as the fundamental term of the Fourier series and gives the 
pattern of the two sources (A, in Fig 4-30b) either side of the center. This 
pattern has 4 lobes of maximum amplitude of unity as illustrated in 
Fig. 4-31b. The next term (k = 2) may be regarded as the second har-
monic term and gives the pattern of the next pair of sources (A, in Fig. 
4-30b). This pattern has 8 lobes as shown by Fig. 4-31c. The last two 
terms represent the third and fourth harmonics, and the patterns have 

1 Irving Wolff, Determination of the Radiating System Which Will Produce a Speci-
fied Directional Characteristic, Proc. I.R.E., 25, 630-643, May, 1937. 
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12 and 16 lobes, respectively, as indicated by Figs. 4-31d and (e). The 
above relations may be summarized as in Table 4-4. 

TABLE 4-4 

k Sources Spacing Fourier term Pattern 

0 1 0 Constant Circle 
1 2 1 X Fundamental 4 lobes 
2 2 2 X 2d harmonic 8 lobes 
3 2 3 X 3d harmonic 12 lobes 
4 2 4 X 4th harmonic 16 lobes 

The algebraic sum of the patterns given by the five terms is the total 
far-field pattern of the array which is presented in Fig. 4-31f.  If the 
middle source of the array has zero amplitude or is omitted, the total 
pattern is then the sum of the four terms for which k = 1, 2, 3, and 4. 
If in addition the pair of sources A, is omitted, the total pattern is the 
sum of three terms for which k = 2, 3, and 4. Since these are higher 

0 
(a) 

Fig. 4-31. 

(f) 
Total 
pattern 

Resolution of total pattern of array of nine isotropic sources into Fourier 
components due to center source and pairs of symmetrically disposed sources. The 
relative field pattern of the entire array is shown by (f). The lower halves of patterns 
are not shown. (Note that the end-fire lobes are wider than the broadside lobes.) 

harmonic terms, we may properly expect that in this case the minor lobes 
of the total pattern will be accentuated. It is apparent from the above 
discussion that the field pattern of any symmetrical amplitude distri-
bution can be expressed as a series of the form of (4-97) or (4-99). 
Proceeding now to the Dolph-Tchebyscheff amplitude distribution, it 

will be shown that the coefficients of the pattern series' can be uniquely 
determined so as to produce a pattern of minimum beam width for a 

lEquations (4-95), (4-97), (4-98), and (4-99). 
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specified side-lobe level. The first step in the development of the Dolph-
Tchebyscheff distribution is to show that (4-97) and (4-99) can be re-
garded as polynomials of degree n. — 1 and no — 1, that is, polynomials 
of degree equal to the number of sources less 1. In the present discussion 
we shall consider only the case of the broadside type of array, that is, 
where ö = 0. Thus, 

= d, sin 0  (4-101) 

Now by de Moivre's theorem, 

ei"" = cos m  + j sin m  = (cos'11 + j sin -tY" 2  2  (4-102) 

On taking real parts of (4-102) we have 

+ • • i cos m  _ — Re cos 2 sm y 
2 

(4-103) 

Expanding (4-103) as a binomial series gives 

m(m -1) - 2 /fl'  • 2 
cos in —Ik  =  cos" 2! CO8  

2  2  2  2 

m(m — 1)(m — 2)(m — 3) —4  • 4 cos  — sm — — • • • (4-104) 
4!  2  2 

Putting sin' (0/2) = 1 — cos' (0/2), and substituting particular values 
of m, (4-104) then reduces to the following: 

=  0,  CO8 M  =  1 
2 

m = 1, cos m 2- = cos 2 

0 m = 2, cos m 2 = 2 cos' 121i- — 1 

0 m = 3, cos m 2 = 4 cos' -4/ — 3 cos —41 
2  2 

m = 4, cos m 4-1 = 8 cos' -t — 8 cos' t ± 1 
2  2  2 

etc. 

Now let 

x = cos —2 

(4-105) 

(4-105a) 
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whereupon the equations of (4-105) become 

cos m  = 1 
2  ' 

cos m —  x 
2  ' 

cos m  = 2x2 -  1, 
2 

etc. 

when m = 0 

when m = 1 

when m = 2 

(4-106) 

The polynomials of (4-106) are called Tchebyscheff polynomials, which 
may be designated in general by 

T„,(x) = cos m '21 (4-107) 

For particular values of m, the first eight Tchebyscheff polynomials are 

To(x) = 1 

Ti(x) = x 

To(x) = 2x2 — 1 

T3(x) = 4x2 — 3x 

T4(x) = 8x4 — 8x2 ± 1 

T 5(x) = 16x5 — 20x2 + 5x 

To(x) = 32x1.1 — 48x4 18x2 — 1 

T7(x) = 64x7 — 112x5 56x2 — 7x 

We note in (4-108) that the degree of the polynomial is the same as 
the value of m. 
The roots of the polynomials occur when cos m(0/2) = 0 or when 

m —4' = (2k — 1) —2 2 

where k = 1, 2, 3, . . . 
The roots of x, designated x', are thus 

x' = cos [(2k — 1)  

(4-108) 

(4-109) 

(4-109a) 

We have shown that cos m(0/2) can be expressed as a polynomial of 
degree m. Thus, (4-97) and (4-99) are expressible as polynomials of degree 
2k  1 and 2k, respectively, since each are the sums of cosine polynomials 
of the form cos m(0/2). For an even number n, of sources 2k  1 = 
n, — 1, while for an odd number no, 2k = no — 1. Therefore, (4-97) 
and (4-99), which express the field pattern of a symmetric in-phase equi-
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spaced linear array of n isotropic point sources, are polynomials of degree 
equal to the number of sources less 1. If we now set the array polynomial 
as given by (4-97) or (4-99) equal to the Tchebyscheff polynomial of like 
degree (m = n — 1) and equate the array coefficients to the coefficients 
of the Tchebyscheff polynomial, then the amplitude distribution given by 
these coefficients is a Tchebyscheff distribution and the field pattern of 
the array corresponds to the Tchebyscheff polynomial of degree n - 1. 
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Fin. 4-32. Tchebyscheff polynomials of degree m = 0 through m = 5. 

The Tchebyscheff polynomials of degree m = 0 through m = 5 are 
presented in Fig. 4-32. Referring to Fig. 4-32, the following properties 
of the polynomials are worthy of note: 

1. All pass through the point (1, 1). 
2. For values of x in the range —1 < x < + 1, the polynomials all lie 
between ordinate values of +1 and —1. All roots occur between 
—1 < x < ± 1, and all maximum values in this range are ±1. 

We may now describe Dolph's method of applying the Tchebyscheff 
polynomial to obtain an optimum pattern. Suppose that we have an 
array of six sources. The field pattern is then a polynomial of degree 
5. If this polynomial is equated to the Tchebyscheff polynomial of degree 
5, shown in Fig. 4-33, then the optimum pattern may be derived as fol-
lows: Let the ratio of the main-lobe maximum to the minor-lobe level be 
specified as R. That is, 

R — main-lobe maximum 

side-lobe level 
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The point (4, R) on the T5(x) polynomial curve then corresponds to the 
main-lobe maximum, while the minor lobes are confined to a maximum 
value of 1. The roots of the polynomial correspond to the nulls of the 
field pattern. The important property of the Tchebyscheff polynomial is 
that if the ratio R is specified the beam width to the first null (x = xf) is 
minimized. The corollary also holds that if the beam width is specified the 
ratio R is maximized (side-lobe level minimized). 

(X0,R) 

T5 (X) 

1 0  .5  1 1  Al  X0 X*-0- 
Xi ' 

1  1   1   
0  .5  i 

FIG. 4-33. Tchebyscheff polynomial of fifth degree with relation to coordinate scales. 

The procedure will now be summarized. Let us write (4-97) and (4-99) 
again. It is to be noted that they are functions of 0/2. Thus, 

E„. = 2 E A k cos [(2k  1)11  (n even)  (4-110) 
k  2 

and 
k1.1 

= 2 E A k cos (2k 1 )  odd)  (4-111) 

Since we are usually interested only in the relative field pattern, the 
factor 2 before the summation sign in (4-110) and (4-111) may be dropped. 
For an array of n sources, the first step is to select the Tchebyscheff 

polynomial of the same degree as the array polynomial, (4-110) or (4-111). 
This is given by 

T.-1(x)  (4-112) 
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where n is the number of sources and m = n — 1. Next we choose fl and 
solve 

T,„(x0) = R  (4-113) 

for xo. Referring to Fig. 4-33, we note that, for R > 1, xo is also greater 
than 1. This presents a difficulty since according to (4-105a) x must be 
restricted to the range —1 < x < +1. If, however, a change of scale is 
made by introducing a new abscissa w (Fig. 4-33), where 

w  — 
xo 

then the restriction of (4-105a) can be fulfilled by putting 

w = cos 
2 

(4-114) 

(4-115) 

where now the range of w is restricted to —1 < w < + 1. The pattern 
polynomial, (4-110) or (4-111), may now be expressed as a polynomial in 
w. The final step is to equate the Tchebyscheff polynomial of (4-112) 
and the array polynomial obtained by substituting (4-115) into (4-110) or 
(4-111). Thus, 

T.-1(x) = E„  (4-115a) 

The coefficients of the array polynomial are then obtained from (4-115a), 
yielding the Dolph-Tchebyscheff amplitude distribution which is an 
optimum for the side-lobe level specified. 
As a proof of the optimum property of the Tchebyscheff polynomial, 

let us consider any other polynomial P(x) of degree 5 which passes through 
(xo, R) in Fig. 4-33 and the highest root xf and for all smaller values of x 
lies between +1 and —1. If the range in ordinate of P(x) is less than 
±1, then this polynomial would give a smaller side-lobe level for this same 
beam width, and To(x) would not be optimum. Since P(x) lies between 
±1 in the range —x; < x <  xf it must intersect the curve To(x) in 
at least m + 1 = 6 points, including (x0, R). Two polynomials of the 
same degree m which intersect in m  1 points must be the same poly-
nomial,' so that 

P(x) = To(x) 

and the To(x) polynomial is, therefore, the optimum. 
If the spacing between sources exceeds  wavelength, it should be 

This follows from the fact that a polynomial of degree m has m + 1 arbitrary 
constants. Further, if m ± 1 points on the polynomial's curve are specified, m  1 
independent equations with m -I- 1 unknowns can be written and the m + 1 constants 
thereby determinec. 
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noted that as the spacing approaches 1 wavelength a large lobe develops 
at 0 = ±90° which equals the main lobe when d = X. However, if the 
individual sources of the array are nonisotropic, that is, are directional 
with the maximum at 0 = 0 and with little or no radiation at 0 = ±90°, 
then by pattern multiplication the lobes of the total pattern at 0 = ±90° 
can be made small. 
4-9. Example of Dolph-Tchebyscheff Distribution for an Array of 

Eight Sources. To illustrate the method for finding the Dolph-Tcheby-
scheff distribution, let us work the following problem: 
An array of n = 8 in-phase isotropic sources, spaced i wavelength 

apart, is to have a side-lobe level 26 db below the main-lobe maximum. 
Find the amplitude distribution fulfilling this requirement that produces 
the minimum beam width between first nulls, and plot the field pattern. 
Since 

Side-lobe level in db below main-lobe maximum = 20 log10 R (4-115b) 

it follows that 
R = 20  (4-116) 

The Tchebyscheff polynomial of degree n — 1 is T7(x). Thus, we set 

T7(x0) = 20  (4-117) 

The value of xo may be determined by trial and error from the 777(x) 
expansion as given in (4-108), or xo may be calculated from 

xo = ER + VR2 - 0'1 ± (R - VR2 - 1)111 
Substituting R = 20 and m = 7 in (4-118) yields 

xo = 1.15 

(4-118) 

(4-119) 

Now substituting (4-115) in (4-110) and dropping the factor 2, we have 
Es = /15W ± A 1(40 — 3w) ± A2(160 — 200 -I- 5w) 

± A3(64w7 — 1120 -I- 560 — 7w) (4-120) 

But w = xixo so that making this substitution in (4-120) and grouping 
terms of like degree, 

64A3 7   E. —  ± 16442 — 112A3 z5 + 4A, — 20/12 ± 56A3 x3 
7 x   
xo  x:  x: 

+ Ao — 3A, ± 5A2 — 7A2 x 
xo 

(4-121) 

The Tchebyscheff polynomial of like degree is 

T7(x) = 64x7 — 112x5 -I- 562 — 7x  (4-122) 
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Now equating (4-121) and (4-122) 

E. = T7(x)  (4-123) 

For (4-123) to be true requires that the coefficients of (4-121) equal the 
coefficients of the terms of like degree in (4-122). Therefore, 

64 4o  64 
xo 

or 

(4-124) 

A, = xT, -= 1.15 = 2.66  (4-125) 

In a similar way we find that 

A, = 4.56} 
A, = 6.82 
Ao = 8.25 

(4-126) 

The relative amplitudes of the 8 sources are then 

1, 1.7, 2.6, 3.1, 3.1, 2.6, 1.7, 1 

To obtain the field pattern given by the Dolph-Tchebyscheff distribu-

-4 1 
T7(x) 

i —3 
To point 

—2 (1.15,20) ; 

—1 

! 
0 b 

-.6 - 
I 

-.2 
i f f f 
.2 4 .6 1.0 X0 

-i X-0 - 

1 

--2 

Fm. 4-34. Tchebyseheff polynomial of the seventh degree. 

tion, we recall that Iii/2 = (d, sin 0)/2, cos (0/2) = w, and w = x/x0, 
from which 

x = xo cos 
2 

d, sin 0 
(4-127) 

The value of x corresponding to a given value of 0, as obtained from 
(4-127), is then introduced in the appropriate Tchebyscheff polynomial, in 
this case T7(x), or scaled from a graph of this polynomial, as shown in 
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Fig. 4-34. The value of the polynomial for this value of x is then the 
relative field strength in the direction 0. In general, as 0 ranges from 
—7/2 to +7/2, the variables 1///2, w, and x range as indicated by Table 4-5. 

TABLE 4-5 

Variable Range 

2 

I. _ 
2 

2 

d, 
COS — 

2 

d, 
xo COS —2 

Thus, in general, as 0 ranges from —7/2 to 0 to +7/2, x ranges from 
some point, such as a in Fig. 4-34, to xo and back again to a, the ordinate 
value giving the relative field intensity. 
In our problem, d, = r, and xo = 1.15, so that the range of x is as 

shown in Table 4-6. 

TABLE 4-6 

Variable Range 

7 

0 

2 
0 

1.15 0 

Hence, at 0 = —90° we start at the origin in Fig. 4-34 (point b), and as 
o approaches 0° we proceed to the right along the polynomial curve reach-
ing the point (xo, R = 1.15, 20) when 0 = 0°. As 0 continues to increase, 
we retrace the polynomial curve, reaching the origin when 0 = 90°. 
Thus, the pattern is symmetrical about the 0 = 0° direction. 
As a preliminary step to plotting the field pattern, it is usually helpful 

to make a plot of x vs. 0 from (4-127). Then, knowing the values of x 
for the nulls and maxima of the T.(x) curve, the corresponding values 
of 0 may be determined.  As many intermediate points as are Deeded 
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may also be obtained in the same manner. Following this procedure, the 
field pattern for our problem of the eight-source array is presented in 
Fig. 4-35a in rectangular coordinates and in Fig. 4-35h in polar coordinates. 

Relative 
field 

(a) 

90*  60.  30'  Ct  30.  60° 90* 

9.= O• 

1)
1 Relative 

field 

(b) 

0  Array 

Ma. 4-35. Relative field pattern of broadside array of eight isotropic sources spaced 
i wavelength apart. The amplitude distribution gives a minimum beam width for a 
side-lobe level one-twentieth of the main lobe. The pattern is shown in rectangular 
coordinates at (a) and in polar at (b). Both diagrams show the pattern only from —91° 
to +90°, the other half of the pattern being identical. 

4-10. Comparison of Amplitude Distributions for Eight-source Arrays. 
In the problem worked in the preceding section, the side-lobe level was 
26 db below the maximum of the main beam (R = 20). It is of interest 
to compare the amplitude for this case with the distributions for other 
side-lobe levels. This is done in Fig. 4-36, in which the relative amplitude 
distributions are shown for eight-source arrays with side-lobe levels 
ranging from 0 db to an infinite number of decibels below the main beam 
maximum. The infinite db case corresponds to R = co (zero side-lobe level) 
and is identical with Stone's binomial distribution. The relative ampli-
tudes for this case are 1, 7, 21, 35, 35, 21, 7, 1. The ratio of amplitudes of 
the center sources to the edge sources is 35 to 1. Such a large ratio would 
be very difficult to achieve in practice. As the side-lobe level increases 
(R decreases), the amplitude distribution becomes more uniform, the ratio 
of the center to edge amplitudes being only about 3 to 1 for the 26-db 
(R = 20) case. The 20-db case (R = 10) is more uniform, with an ampli-
tude ratio of only 1.7 to 1. The 14-db case (R = 5) exhibits a still more 
uniform distribution but shows an inversion, the maximum amplitude 
having shifted to the outermost sources (1 and 8). The uniform dis-
tribution is not a special case of the Dolph-Tchebyscheff distribution, an 
inversion occurring before the uniform case is reached. As the side-lobe 
level is raised still further, the distribution tends more toward an edge type, 
the amplitude of the inner sources decreasing still further. In the extreme 
case, where the side lobes are equal to the main-lobe level (0 db, or R = 1), 
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the amplitudes of all of the inner sources are zero, and the distribution is 
of the edge type discussed in connection with Fig. 4-29. Thus, both the 
binomial and edge distributions are special cases of the Dolph-Tcheby-
scheff distribution, but the uniform amplitude distribution is not. The 
point of nearest approach to the uniform distribution is for an R value 
between 5 and 10. Referring to Fig. 4-20 and interpolating for n = 8 
between the curves for n = 10 and n = 5, it is interesting to note that 
the ratio of the main-lobe maximum to the minor-lobe maxima ranges 
from about 4.3 to 8 for an array of eight sources of uniform amplitude. 
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2  3  4  5  6  7  8 
Linear array of 6 sources 

FIG. 4-36.  Comparison of Dolph-Tchebyseheff amplitude distribution envelopes for 
various side-lobe levels. 

The Dolph-Tchebyscheff optimum amplitude distribution, as discussed 
in the preceding sections, is optimum only if d > X/2, which covers the 
cases of most interest for broadside arrays. By a generalization of the 
method, however, cases with smaller spacings can also be optimized.' 
In conclusion, it should be pointed out that the properties of the 

Tchebyscheff polynomials may be applied not only to antenna patterns 
as discussed above but also to other situations. It is necessary, however, 
that the function to be optimized be expressible as a polynomial. 
4-11. Continuous Arrays. In the preceding sections, the discussion has 

been restricted to arrays of discrete point sources, that is, to arrays of a 
finite number of sources separated by finite distances. We now proceed 

1H. J. Riblet, Proc. I.R.E., 35, No. 5, 489-492, May, 1947. 
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to a consideration of continuous arrays of point sources, that is, arrays of 
an infinite number of sources separated by infinitesimal distances. By 
Huygens' principle, a continuous array of point sources is equivalent to 
a continuous field distribution. In this way, our discussion of continuous 
arrays can be extended to include the radiation patterns of field distribu-
tions across apertures, as, for example, the pattern of an electromagnetic 
horn where the field distribution across the mouth of the horn is known. 
We shall now develop an expression for the far field of a continuous 

array of point sources of uniform amplitude and of the same phase. Let 
the array of length a be parallel to the y axis with its center at the origin 

F. 

-\\ To 
distant 
point 

X 

Continuous 
or ray 

Fla. 4-37.  Continuous broadside array of point sources of length a. 

as indicated in Fig. 4-37. Then the field dE at a distant point in the 
direction 0 due to the point sources in the infinitesimal length dy at a 
distance y from the origin is 

A j(_0) dy  dy 
Ti 

dE = A j — e  c dY =  6 (4-128) 

where # = co/c = 27/X and A is a constant involving amplitude. The 
total field E at the distant point is then the integrated value of (4-128) 
over the array of length a as given by 

E = fa/2 A—  e"" "" ) dy  (4-129) 
—a/2 r, 

Both A and the time factor may be taken outside the integral, and r, 
may also be if r, >> a. Thus, 

A e at t fa/2 

(4-130) 
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But, referring to Fig. 4-37, 

ri = r — y sin 0 

[CHAP. 4 

(4-131) 

Substituting (4-131) in (4-130) and taking the constant factor ein' out-
side the integral, we have 

where 

a/2 

L a/2 

E = A'  eJoy sin  d y  

Ae""-$') 
A' — 

Integrating (4-132) yields 

19.  .s. 

E 
2A'  e'T lin ° — e-17 sin ° 

— 
)3 sin 0  2j 

which may be written as 

2A'  . 
E — # sin 0 sin 

Let 

tk' = tla sin 0 = a, sin 0 

where a, = fia = 27ra/X = array length in radians 
Then 

But from (4-136) 

so that (4-137) becomes 

2A' 
sm 
. 

E —  . 
sm 0  2 

/3 sin 0 = 
a 

E = al' sin  (#72)  
4,72 

Normalizing (4-138) gives finally 

(4-132) 

(4-133) 

(4-134) 

(4-135) 

(4-136) 

(4-137) 

(4-138) 

E — sin (tV/2)  (4-139) 
/2 

Equation (4-139) expresses the far field, or Fraunhofer diffraction 
pattern, of a continuous broadside array of length a, having uniform 
amplitude and phase. For n discrete, equally spaced sources, it was pre-
viously shown by (4-52) that OP normalized value of the total field is 
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E 
sin (n0/2)  

—  n sin (0/2) (4-140) 

where 4., = d, cos ct) -I- a 
For in-phase sources, 5 = 0. Comparing Figs. 4-18 and 4-37 we note 
that ct. = 0 -I- 7/2, so that 

1,G = —d, sin 0 = —lid sin 0  (4-141) 

For small values of 0, which occur for small values of 0, d, or both, (4-140) 
can be expressed as 

E . sin (71.1,P/21  sin ((flnd/2) sin 0) 
n#12  —  (find/2) sin 0 

The length a of the array of discrete sources is 

a = d(n — 1)  (4-143) 

(4-142) 

where n = number of sources 
d = spacing 

If n >> 1, a _,_.,_‘ nd, and (4-142) becomes 

sin ((9a/2) sin 0) sin ((a,/2) sin 0) 
E —  (4-144) 

(3a/2) sin 0 —  (a,/2) sin 0 

where a,. = fla = 2Ta/X 
By (4-136) this can now be expressed as 

sin (C/2)  
E —  0,/2  (4-145) 

which is identical with the value obtained in (4-139) for the continuous 
array.  Thus, the field pattern for an array of many discrete sources 
(n >> 1) and for small values of v,I, is the same as the pattern of a con-
tinuous array of the same length. If the array is long, that is, if nd >> X, 
the main beam and the first minor lobes are confined to small values of 0. 
It, therefore, follows that the main features of the pattern of a large 
array are the same, whether the array has many discrete sources or is 
a continuous distribution of sources. Many of the conclusions derived in 
previous sections concerning amplitude distributions for arrays of dis-
crete sources can also be applied to continuous arrays provided that the 
arrays are large. 
The null directions 00 of the continuous array pattern are given by 

-E = ±Kir  (4-146) 
2 

where K = 1, 2, 3.. 
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KX 
00 = arcsin (± 7-‘) 

For a long array (4-147) can be expressed 

00 ±— rad c_--• ±57.3K  deg 
a),  a), 

(4-148) 

where a), = a/X 
The beam width between first nulls (K = 1) for a long array is then 

20o,  —2 rad  —115 deg 
a),  a), 

(4-149) 

It is to be noted that (4-147), (4-148), and (4-149) are identical with the 
expressions given for the broadside array of discrete sources, if ncl is re-
placed by a (see Table 4-2). Therefore, the null locations for arrays of 
either discrete or continuous sources are the same provided only that n >> 1. 

Relative 
field 

7 Power level 

Spherical 
wave 
front 

ii  (a)  (b) 

15  Id  5  O  5  10 15  /  ways Plane  

FIG. 4-38.  Main-lobe field patterns of  Fm. 4-39. Spherical and plane wave 
continuous uniform broadside arrays 5, 10,  fronts with secondary waves of Huygens. 
and 50 wavelengths long. 

The field patterns of the main beam of continuous arrays of point sources 
5, 10, and 50 wavelengths long are compared in Fig. 4-38. It may be 
noted that the beam width between half-power points, °Hp, of a long, 
uniform broadside array is given approximately by 

0.9 
OHP =  0.9001 = —  rad  (4-150) 

or 

°Hp 1  deg 
a), 

(4-151) 
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4-12. Huygens' Principle.' The principle proposed by Christian Huy-
gens (1629-1695), now often called Huygens' principle, has been of funda-
mental importance to the development of wave theory.  According to 
Huygens, each point of a wave front can be considered as the source of a 
secondary spherical wave.  The secondary spherical waves from the 
points on a wave front then combine to form a new wave front, the new 

Sheet 
.0" 

Relative amplitude 
Plane 
wave 

(a)  ( b) 
Fla. 4-40. Plane wave incident on opaque sheet with slot of width a. 

wave front being the envelope of the secondary wavelets. Thus a spherical 
wave from a single point source propagates as a spherical wave as indi-
cated in Fig. 4-39a. On the other hand, an infinite plane wave continues 
as a plane wave as suggested by Fig. 4-39b. 

I J. C. Slater and N. H. Frank, "Introduction to Theoretical Physics," McGraw-Hill 
Book Company, Inc., New York, 1933, Chaps. 26 and 27. 
Max Born, "Optik," Verlag Julius Springer, Berlin, 1933, Sec. 44, p. 142. 
Arnold Sommerfeld, Theorie der I3eugung, Chap. 20 of "Differential und Integral-

gleichungen der Mechanik und Physik," Frank and von Mises, Editors, Friedrich 
Vieweg dr Sohn, Brunswick, 1935. 
J. A. Stratton, "Electromagnetic Theory," McGraw-Hill Book Company, Inc., 

New York, 1941, p. 460. 
J. C. Slater, "Microwave Transmission," McGraw-Hill Book Company, Inc., New 

York, 1942, p. 256. 
R. C. Spencer, Fourier Integral Methods of Pattern Analysis, Radiation Lab. M.I.T. 

Rep. 762-1, 1946. 
B. B. Baker and E. T. Copson, "The Mathematical Theory of Huygens' Principle," 

Oxford University Press, New York, 1939. 
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Let us consider now the situation shown in Fig. 4-40a in which an 
infinite plane electromagnetic wave is incident on an infinite flat sheet 
which is opaque to the waves. The sheet has a slot of width a and of 
infinite length in the direction normal to the page. The field everywhere 
to the right of the sheet is the result of the section of the wave that passes 
through the slot. If a is many wavelengths, the field distribution across 
the slot may be assumed, in the first approximation, to be uniform as 

Minor 
lobe 

Sheet 

Plane 
wave 

(a)  (6) 

Fresnel patterns 

Fraunhofer 
patterns 

Major 
lobe 
1 

X 

(c) 

(d) 

Fla. 4-41.  Fresnel and Fraunhofer patterns of a slot of width a. 

shown in Fig. 4-40b. By Huygens' principle the field everywhere to the 
right of the sheet is the same as though each point in the plane of the 
slot is the source of a new spherical wave. Each of these point sources is 
of equal amplitude and phase. Thus, by Huygens' principle the slotted 
sheet with a uniform field across the opening can be replaced by a con-
tinuous array of point sources which just fills the opening. The field 
pattern in the x-y plane (Fig-40a) is then calculated the same as for a 
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continuous linear array of point sources of length a oriented parallel to 
the y axis. 
The far field, or Fraunhofer diffraction pattern, of such an array was 

shown in the preceding section to be given by 

sin (072) 
E —  0,/2  (4-152) 

where IP = (22-a/X) sin 0 and where 0 is in the x-y plane (Fig. 4-37). 
This pattern, in the x-y plane, is independent of the extent of the array 
in the z direction (normal to the page). 
In deriving (4-152), i.e., (4-145) of Sec. 4-11, the total field at a point 

was obtained by integrating the contributions from a continuous array 
of sources distributed over a length a. For points at a great distance 
from the array the integral can be simplified, and the integration is easy, 
as demonstrated in the preceding section. For points near to the array, 
however, the integral does not simplify in this way but can be reduced to 
a form known as Fresnel's integral.  This integral is often evaluated 
graphically with the aid of a curve known as a Cornu spiral. The field 
variation near the slot as obtained in this way is commonly called a 
Fresnel diffraction pattern. Along a straight line parallel to the slot and 
a short distance from it, the field variation is as suggested at (a) in Fig. 
4-41, the variation approximating the uniform distribution of field at the 
slot as shown in Fig. 4-40b. As the distance x from the slot is increased, 
the Fresnel patterns change through a series of transitional forms, such 
as suggested at (b) in Fig. 4-41, until at large distances we enter the 
Fraunhofer region and the pattern assumes a form as suggested by (c) in 
Fig. 4-41. Ordinarily the Fraunhofer pattern is obtained by rotating the 
slot around its center so that the field is observed at a constant radius 
rather than at a constant distance x. The resulting field pattern in polar 
coordinates is then as suggested at (d) in Fig. 4-41. Once we have entered 
the Fraunhofer region, this pattern is the same at all greater distances. 
For a point to be in the Fraunhofer region, it must be at a sufficient dis-
tance from the slot so that we can make the assumption that lines extending 
from the edges of the slot to the point are parallel. This is commonly 
assumed to be the case when the point is at a distance r from the slot 
given by 

(4-153) 

where a is the width or aperture of the slot, which is assumed to be large. 
Thus, the larger the aperture or the shorter the wavelength, the greater 
must be the distance at which the pattern is measured if we wish to avoid 
the effects of Fresnel diffraction. 
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A nearly uniform type of field distribution across an aperture such as 
discussed above in connection with Figs. 4-40 and 4-41 occurs in optics 
when a beam of light is incident on a slit. It also may be realized by 
the field distribution across the mouth of a long electromagnetic horn 
antenna as in Fig. 4-42a. Since the pattern of a uniform field distribution 
is the same as the pattern of a uniform distribution of point sources of 
equal extent, another form of antenna equivalent to the optical slit or 
electromagnetic horn is a uniform current sheet. This can be approxi-
mated by a "billboard" type of array, as in Fig. 4-42h, having many 
dipole antennas carrying equal currents.  The expressions which have 
been developed can thus be applied to a calculation of the Fraunhofer 
diffraction pattern of an optical slit or the far field of a horn or uniform 
current sheet. If the field or current distribution across the slit or antenna 
aperture is not uniform, the form factor for the distribution will appear in 
the integral for the field expression. The result may or may not be in-
tegrable analytically.  However, if the aperture is large, the relations 
developed for amplitude distributions of arrays of discrete sources can 
be applied to the case of continuous arrays of sources. 
It should be mentioned that Huygens' principle is not without its 

limitations. Thus, it neglects the vector nature of the electromagnetic 
field. It also neglects the effect of currents which flow at the edge of the 
slot, as in Figs. 4-40 and 441, or at the edge of the horn, as in Fig. 442a. 

Array 
of 

dipoles 
with 

reflector 

Flo. 4-42.  Electromagnetic horn antenna and array of dipoles with reflector. 

However, if the aperture is sufficiently large and we confine our attention 
to directions roughly normal to aperture, the scalar theory of IIuygens' 
principle gives satisfactory results. 
4-13. Rectangular-area Broadside Arrays. The method of obtaining 

the field patterns of linear arrays discussed in the preceding sections can 
be easily extended to the case of rectangular broadside arrays, that is, 
arrays of sources which occupy a flat area of rectangular shape, as in 
Fig. 4-43. For such a rectangular array, the field pattern in the x-y plane 
(as a function of 0) depends only on the y dimension (a) of the array, 
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while the field pattern in the x-z plane (as a function of 0) depends only 
on the z dimension (b) of the array. The assumption is made that the 
field or current distribution across the array in the y direction is the same 
for any values of z between ±b/2.  Likewise, it is assumed that the 
amplitude distribution across the array in the z direction is the same for 
all values of y between ±a/2.  Therefore, the field pattern in the x-y 
plane is calculated as though the array consists only of a single linear 
array of height a coincident with the y axis (y array). In the same way, 
the pattern in the x-z plane is obtained by calculating the pattern of a 

Fla. 4-43. Rectangular broadside array of height a and length b with relation to 
coordinates. 

single linear array of length b coincident with the z axis (z array). If 
the array also has depth in the x direction, that is, has end-fire directivity, 
then the pattern in the x-y plane is the product of the patterns of the 
single linear x and y arrays, while the pattern in the x-z plane is the product 
of the patterns of the x and z arrays. 
If the area occupied by the array is not rectangular in shape, the above 

principles do not hold. However, the approximate field patterns may be 
obtained in the case of an array of elliptical area, for example, by assuming 
that it is a rectangular area as in Fig. 4-44a or in the case of a circular 
area by assuming that it is square as in Fig. 4-44h. 
From the field patterns in two planes (x-y and x-z) of a rectangular 

array the beam widths between half-power points can be obtained. If 
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the minor lobes are not large, the directivity D is then given approxi-
mately by 

D = 41,253/0114  (4-154) 

where 0? and ce, are the half-power beam widths in degrees in the x-y and 
x-z planes, respectively. 
An expression for the directivity of a large rectangular broadside array 

C 
(a) 

) o 
(b) 

Fla. 4-44. Elliptical array with equivalent rectangular array (a) and circular array 
with equivalent square array (b). 

of height a and width b (Fig. 4-43) and with a uniform amplitude dis-
tribution may also be derived directly as follows: By (2-38) the directivity 
of an antenna is given by 

47r f(0,   
D — 

f f f(0, 4) sin 0 dO d4) 

where f(0, 4)) is the space power pattern, which varies as the square of the 
space field pattern.  From (4-152) the space field pattern of a large 
rectangular array is 

E(0, 4 
sin ((a, sin 00) sin ((b, sin 0)/2) 

)) —  (a, sin 012  (b, sin 0)/2 

(4-155) 

(4-156) 

where a, = 27ra/X 
b, = 23-b/X 

The main-beam maximum is in the direction 0 = 4) = 0 in Fig. 4-43. 
In (4-156), 0 = 0 at the equator, while in (4-155), 0 = 0 at the north 
pole. For large arrays and relatively sharp beams we can therefore re-
place sin 0 and sin 4) in (4-156) by the angles, while sin 0 in (4-155) can 
be set equal to unity. Assuming that the array is unidirectional (no field 
in —x direction), the integral in the denominator of (4-155) then becomes 

r/2  r/2 

Ir sin' (irctOIX) sin' (Tb4)/X) do  4  
J  (7a0/X)2 (rb4)/X)2 

-.12  - r/2 

(4-157) 
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Making the limits of integration — co to -I- co instead of —7/2 to +7/2, 
(4-157) may be evaluated as X2/ab. Therefore, the approximate direc-
tivity D of a large unidirectional rectangular broadside array with a 
uniform amplitude distribution is 

47ab  ab 
D = —r- = 12.6  (4-158) 

X 

As an example, the directivity of a broadside array of height a = 10 X 
and length b = 20 X is from (4-158) equal to 2,520, or 34 db. 
By the approximate formula of (4-154), and taking the half-power beam 

widths given by (4-151), the directivity of a large unidirectional broadside 
array with a uniform amplitude distribution is approximately 

41 ' 253ab ab 
D = 512 X,  -  15.9 -5X (4-159) 

This is about 25 per cent, or 1 db, higher than the value given by (4-158). 

PROBLEMS 

4-1. a. Show that the relative E(0) pattern of an array of two identical 
isotropic in-phase point sources arranged as in the figure is given by 
B() = cos [(d,/2) sin 4], where d, = 2vd/X. 

b. Show that the maxima, nulls, and half-power points of the pattern are 
given by the following relations: 

Maxima: 4) = arcsin (± 1) 

k  X] Nulls: 4) = arcsin [ (2 4- 1)  
2d 

[ (2k + 1) X] 
Half-power points: 4) = arcsin 

4d 

where k = 0, 1, 2, 3 . . 
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c. For d = X find the maxima, nulls, and half-power points, and from these 
points and any additional points that may be needed plot the E(4)) 
pattern for 0° < 4, < 360°. There are four maxima, four nulls, and 
eight half-power points. 

d. Repeat for d = 3 X/2. 
e. Repeat for d = 4 X. 
f. Repeat for d = X/4. Note that this pattern has two maxima and two 
half-power points but no nulls. The half-power points are minima. 

4-2. a. Derive an expression for E(0) for an array of four identical isotropic 
point sources arranged as in the figure. 

d 

d —0-A£•4—d  — — — — — 

4 

The spacing d between each source and the center point of the array is 
3 X/8. Sources 1 and 2 are in phase, and sources 3 and 4 in opposite 
phase with respect to 1 and 2. 

b. Plot, approximately, the normalized field pattern. 
4-3. a. What is the expression for E(4)) for an array of two point sources arranged 

as in the figure for Prob. 1. The spacing d is 3 X/8. The amplitude of 
source 1 in the 4, plane is given by I cos 4) I, and the phase by 4). The 
amplitude of source 2 is given by I cos (4) — 45°) I, and the phase by 
— 45°. 

b. Plot the normalized amplitude and the phase of E(4) referring the phase 
to the center point of the array. 

4-4. a. Derive an expression for E(0) for a linear in-phase broadside array of 
four identical isotropic point sources. Take ci) = 0 in the broadside 
direction. The spacing between sources is 5X/8. 

b. Plot, approximately, the normalized field pattern (0° < 4, < 360°). 
c. Repeat parts a and b with the changed condition that the amplitudes of 
the four sources are proportional to the coefficients of the binomial 
series for (a + b).-1 . 

4-5. a. Calculate and plot cos 0 as x, and cos 30 as y, for —1 < x < +1. 
Compare with the curve for T.(x). 

b. Calculate and plot cos 0 as x, and cos 60 as y, for —1 < x < +1. Com-
pare with the curve for T6(x). 

4-6. a. Find the Dolph-Tchebyscheff current distribution for the minimum beam 
width of a linear in-phase broadside array of five isotropic point sources. 
The spacing between sources is I wavelength, and the side-lobe level is to 
be 20 db down. Take (A= 0 in the broadside direction. 

b. Locate the nulls and maxima of the minor lobes. 
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c. Plot, approximately, the normalized field pattern (0° < 4. < 360°). 
d. What is the half-power beam width? 

4-7. a. Find the Dolph-Tchebyscheff current distribution for the minimum beam 
width of a linear in-phase broadside array of eight isotropic sources. 
The spacing between elements is I wavelength, and the side-lobe level is 
to be 40 db down. Take q!) = 0 in the broadside direction. 

b. Locate the nulls and the maxima of the minor lobes. 
c. Plot, approximately, the normalized field pattern (0° < ck < 360°). 
d. What is the half-power beam width? 

4-8. a. Derive an expression for E(0) for an array of n identical isotropic point 
sources where 0 = f(4), d, 6). 4) is the azimuthal position angle with 0 = 0 
in the direction of the array. 6 is the phase lag between sources as one 
moves along the array in the 0 = 0° direction and d is the spacing. 

b. Plot the normalized field as ordinate and 11/ as abscissa for n = 2, 4, 6, 8, 
10, and 12 for 0° < 0 < 180°. 

4-9. a. Plot E(0) for an end-fire array of n = 10 identical isotropic point sources 
spaced 3 X/8 apart with 6 = — 3214. 

b. Repeat with 6 = —1-[(3/4) + (1/n)]. 
4-10. a. Calculate the directivity of a broadside array of two identical isotropic 

in-phase point sources spaced 4 wavelength apart along the polar axis, 
the field pattern being given by 

E = cos (11 cos 0) 
2 

where 0 is the polar angle. 
b. Show that the directivity for a broadside array of two identical isotropic 
in-phase point sources spaced a distance d is given by 

D — 
1 -I- (X/ 27rd) sin (27a/X) 

4-11. a. Calculate the directivity of an end-fire array of two identical isotropic 
point sources in phase opposition, spaced 4 wavelength apart along the 
polar axis, the relative field pattern being given by 

2 

E = sin (1 cos 0) 
2 

where 0 is the polar angle. 
b. Show that the directivity of an ordinary end-fire array of two identical 
isotropic point sources spaced a distance d is given by 

D — 
1 + (X/42-d) sin (47d/X) 

4-12. A broadcasting station requires the horizontal plane pattern indicated by 
the figure. The maximum field intensity is to be radiated northeast with as little 
decrease as possible in field intensity in the 90° sector between north and east. No 

2 
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nulls are permitted in this sector. Nulls may occur in any direction in the comple-
mentary 270° sector. However, it is required that nulls must be present for the 
directions of due west and due southwest, in order to prevent interference with 
other stations in these directions. 

Null 

SW 

45. 

NE 

MOX 

Intensity nearly 
uniform 

Design a four-vertical-tower array to fulfill these requirements. The currents are 
to be equal in magnitude in all towers, but the phase may be adjusted to any rela-
tionship. There is also no restriction on the spacing or geometrical arrangements of 
the towers. Plot the field pattern. 
4-13. Calculate and plot the field and phase patterns for an array of two iso-

tropic sources of the same amplitude and phase, for two cases: 

a. d = -3 X 
4 

b. d = -3 X 
2 

Plot the field pattern in polar coordinates and phase pattern in rectan-
gular coordinates with 
1. Phase center at source 1 
2. Phase center at mid-point 

4-14. Calculate and plot the field and phase patterns of an array of two noniso-
tropic dissimilar sources for which the total field is given by 

E = cos ch ± sin Obi, 

where 1,G a= d, cos 4. + 3 =  (cos 4)  1) 

Take source 1 as the reference for phase. 
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4-15. Calculate the Dolph-Tchebyscheff distribution of a six-source broadside 
array for R = 5, 7, and 10. Explain the variation. 
4-16. In Case 5 of Sec. 4-2 for two isotropic point sources of unequal amplitude 

and any phase difference show that the phase angle of the total field with mid-point 
of the array as phase center is given by 

arctan (a  1  tan t) 
a ± 1  2 

4-17. Calculate and plot the field and phase patterns for the cases of Fig. 4-21 
and 4-22 and compare with the curves shown. 
4-18. a. What is an expression for the field pattern of an array of five identical 

isotropic point sources arranged in line and spaced a distance d apart? 
The phase lead of source 2 over 1, 3 over 2, etc., is a. 

b. What value should a have to make the array a broadside type? For 
this broadside case what are the relative current magnitudes of the 
sources for 
1. Maximum directivity 
2. No side lobes 
3. Side lobes equal in magnitude to "main" lobe 

4-19. A broadcast array of two vertical towers with equal currents is to have a 
horizontal plane pattern with a broad maximum of field intensity to the north and a 
null at an azimuth angle of 131° measured counterclockwise from the north. Spec-
ify the arrangement of the towers, their spacing, and phasing. Calculate and plot 
the field pattern in the horizontal plane. 
4-20. A broadcast array with three vertical towers arranged in a straight horizon-

tal line is to have a horizontal plane pattern with a broad maximum of field intensity 
to the north and nulls at azimuth angles of 105°, 147°, and 213° measured counter-
clockwise from the north. The towers need not have equal currents. For the pur-
pose of analysis the center tower (No. 2) may be regarded as two towers, one be-
longing to an array of towers 1 and 2 and the other to an array of towers 2 and 3. 
Specify the arrangement of towers, their spacing, currents, and phasing. Calculate 
and plot the field pattern in the horizontal plane. 
4-21. A broadcast array of four vertical towers with equal currents is to have a 

symmetrical four-lobed pattern in the horizontal plane with maximum field in-
tensity to the north, east, south, and west and a reduced field intensity to the north-
east, southeast, southwest, and northwest equal to one-half the maximum. Specify 
the array arrangement, orientation, spacing, and phasing. Calculate and plot the 
field pattern in the horizontal plane. 
4-22. a. Calculate and plot the field pattern of a linear array of eight isotropic 

point sources of equal amplitude spaced 0.2 wavelength apart for the 
ordinary end-fire condition. 

b. Repeat, assuming that the phasing satisfies the Hansen and Woodyard 
increased directivity condition. 

C. Calculate the directivity in both cases by graphical integration of the 
entire pattern. 
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4-23. Calculate and plot the patterns in both planes perpendicular to a rectan-
gular sheet carrying a current of uniform density and everywhere of the same direc-
tion and phase if the sheet measures 10 by 20 wavelengths. What is the approxi-
mate directivity? 
4-24. a. Calculate and plot the field pattern of a linear end-fire array of 12 iso-

tropic point sources of equal amplitude spaced  wavelength apart for 
the ordinary end-fire condition. 

b. Calculate the directivity by graphical integration of the entire pattern. 
Note that it is the power pattern (square of field pattern) which is to be 
integrated. It is most convenient to make the array axis coincide with 
the polar or z axis of Fig. 2-2 so that the pattern is a function only of O. 

c. Calculate the directivity by the approximate half-power beam-width 
method, and compare with that obtained in (b). 

4-25. a. Calculate and plot the pattern of a linear broadside array of 12 isotropic 
point sources of equal amplitude spaced  wavelength apart with all 
sources in the same phase. 

b. Calculate the directivity by graphical integration of the entire pattern, 
and compare with the directivity obtained in Prob. 24 for the same size 
array operating end fire. 

c. Calculate the directivity by the approximate half-power beam-width 
method, and compare with that obtained in (b). 

4-28. a. Calculate and plot the pattern of a linear end-fire array of 12 isotropic 
point sources of equal amplitude spaced wavelength apart and phased 
to fulfill the Hansen and Woodyard increased-directivity condition. 

b. Calculate the directivity by graphical integration of the entire pattern, 
and compare with the directivity obtained in Prob. 4-24 and 4-25. 

c. Calculate the directivity by the approximate half-power beam-width 
method, and compare with that obtained in (b). 

4-27. Referring to Fig. 4-18 assume that the uniform array of n isotropic point 
sources is connected by a transmission system extending along the array with the 
feed point at source 1 so that the phase of source 2 lags 1 by cod/ v, 3 lags 1 by 2tod/v, 
etc., where v is the phase velocity to the right along the transmission system. Show 
that the far field is given by (4-51) where  = d,[cos cts — (14)], where p is the 
relative phase velocity, i.e. p = v/ c where c is the velocity of light. Show also that 
p = co for the broadside case, p = 2 for maximum field at it) = 60°, p = 1 for ordi-
nary end-fire case, and p = 1/[1  (1/2nd)] for increased-directivity end-fire case. 
4-28. Consider that the array of discrete sources in Fig. 4-18 is replaced by a 

continuous array of length L and assume that it is energized like the array of Prob. 
4-27. Show that the far field for the general case of any phase lag $3' per unit dis-
tance along the continuous array is given by (4-145) where 4/ = L, cos —  L = 
L,[costp — (1/p)), where p = v/c as in Prob. 4-27. Show also that for the four cases 
considered in Prob. 4-27 the p values are the same except for the increased-direc-
tivity end-fire case where p = 1/[1  (1/2/4)]. 



CHAPTER 5 

THE ELECTRIC DIPOLE AND 
THIN LINEAR ANTENNAS 

5-1. The Short Electric Dipole. Since any linear antenna may be con-
sidered as consisting of a large number of very short conductors con-
nected in series, it is of interest to examine first the radiation properties 
of short conductors. From a knowledge of the properties of short con-
ductors, we can then proceed to a study of long linear conductors such as 
are commonly employed in practice. 
A short linear conductor is often called a short dipole. In the following 

discussion, a short dipole is always of finite length even though it may be 
very short. If the dipole is vanishingly short, it is an infinitesimal dipole. 
Let us consider a short dipole such as shown in Fig. 5-1a. The length 

L is very short compared to the wavelength 
(L << X).  Plates at the ends of the dipole 

— I T I 

+q 

provide capacitance loading. The short length 
and the presence of these plates result in a  L L Ii 

I I uniform current I along the entire length L Trannesmission 
of the dipole. The dipole may be energized  • -q 
by a balanced transmission line, as shown. It  (a)  (b) 

is assumed that the transmission line does not  Ma. 5-1. A short dipole 
radiate and, therefore, its presence will be dis-  antenna (a) and its equiva-
regarded,  Radiation from the end plates is lent (b). 
also considered to be negligible. The diameter 
d of the dipole is small compared to its length (d << L). Thus, for purposes 
of analysis we may consider that the short dipole appears as in Fig. 5-1b. 
Here it consists simply of a thin conductor of length L with a uniform 
current I and point charges q at the ends. The current and charge are 
related by 

Fig = 
dl 

(5-1) 

5-2. The Fields of a Short Dipole.' Let us now proceed to find the 

1J. Aharoni, "Antennae," Oxford University Press, New York, 1946, p. 116. 
A. Alford, Ultra-short Electromagnetic Waves: Radiation, Elec. Eng., July, 1943. 
Ramo and Whinnery, "Fields and Waves in Modern Radio," John Wiley and Sons, 

Inc., New York, 1944, p. 430. 

127 
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fields everywhere around a short dipole. Let the dipole of length L be 
placed coincident with the z axis and with its center at the origin as in 
Fig. 5-2.  The relation of the electric field components, E. and E0 is 
then as shown. It is assumed that the medium surrounding the dipole 
is air or vacuum. 

Dipole 

X 
Fm. 5-2. Relation of dipole to coordi-  Fin. 5-3. Geometry for short dipole. 
nates. 

Electric and magnetic fields can be expressed in terms of vector and 
scalar potentials. Since we will be interested not only in the fields near 
the dipole but also at distances which are large compared to the wave-
length, we must use retarded potentials, that is, expressions involving 
t — r/c. For a dipole located as in Fig. 5-2 or Fig. 5-3, the retarded 
vector potential of the electric current has only one component, namely, 
A. Its value is 

A =  f "2  M dz 
4T -L/2  8 

where [I] is the retarded current given by 

(5-2) 

[i] = 4e1"(1-10  (5-3) 

In (5-2) and (5-3) 
z = distance to a point on the conductor 
/0 = peak value in time of current (uniform along dipole) 
= permeability of free space 

If the distance from the dipole is large compared to its length (r >> L) 
and if the wavelength is large compared to the length (A >> L), we can 
put a = r and neglect the phase differences of the field contributions 
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from different parts of the wire.  The integrand in (5-2) can then be 
regarded as a constant, so that (5-2) becomes 

A .   
4rr 

The retarded scalar potential V of a charge distribution is 

v = 1 f [p] (IT 
4re Jv 8 - 

where [p] is the retarded charge density given by 

[pi = poe—o—D 

(5-4) 

(5-5) 

(5-6) 

and dr = infinitesimal volume element 
e = dielectric constant of free space 

Since the region of charge in the case of the dipole being considered is 
confined to the points at the ends as in Fig. 5-1b, (5-5) reduces to 

= — 
1 {10 — 10} 

V   
41re  St 83 

From (5-1) and (5-3) 

[q] =  [I] dt = 10 f "(1- ) dt = 
ico 

Substituting (5-8) into (5-7), 

V — /0 4rejw 

Fes"(1- e(* )] (5-9) 
L  

Referring to Fig. 5-4, when r >> L, 
the lines connecting the ends of the 
dipole and the point P may be con-
sidered as parallel so that 

81 = r — —2 cos 0  (5-10) 

and 

(5-7) 

(5-8) 

- \ To \  point 
P 

Dipole  4.C° 

no. 5-4.  Relations for short dipole when 
r >> L. 

8, = r ± —2 cos 0 (5-11) 

Substituting (5-10) and (5-11) into (5-9) and clearing fractions, we have 
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.eaL  dos •( L  awl  

h e i. ( t—i) re  r  cos  —  2,  —  cos 0) 
V —     (5-12) 

4rejca L  r2 
where the term L2 cos2 0/4 in the denominator has been neglected in com-
parison with r2 by assuming that r >> L. By de Moivre's theorem (5-12) 
becomes. 

we -D cos coL cos 0 L 
V — 4rejcur2 [(  a,  c°8  2c  ± j sin  2c Xr  cos 

( coL cos 0 . .  cos 0)(  L 
2c I sm  2c r —  cos _ cos  0)]  (5-13) 

If the wavelength is much greater than the length of the dipole (X >> L), 
then 

coL cos 0 rL cos 0 
cos  — cos  1  (5-14) 

2c  X 

Aind 

sin coL cos 0 cal. cos 0 
(5-15) 

2c  — 

Introducing (5-14) and (5-15) into (5-13), the expression for the scalar 
potential then reduces to 

.17 /0/, cos 0 ei"(̀ -i) (1  c 
4rec  \r  jco r / 

Equations (5-4) and (5-16) express the vector and scalar potentials every-
where due to a short dipole. The only restrictions are that r >> L and 
X >> L. These equations give the vector and scalar potentials at a point 
P in terms of the distance r to the point from the center of the dipole, 
the angle 0, the length of the dipole L, the current on the dipole, and 
some constants. 
Knowing the vector potential A and the scalar potential V, the electric 

and magnetic fields may then be obtained from the relations 

E = —jceA — V V  (5-17) 
and 

H = —1 V X A 
IL 

(5-16) 

(5-18) 

It will be desirable to obtain E and H in polar coordinates. The polar 
coordinate components for the vector potential are 

A = a,A,  a,A,  a,A,  (5-19) 
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Since the vector potential for the dipole has only a z component, A, = 0, 
and A, and A, are given by (see Fig. 5-5) 

A, = A, cos 0  (5-20) 

A, = —A, sin 0  (5-21) 

where A, is as given by (54). In polar coordinates the gradient of V is 

1 av  1  a V 
V V = a, --  a• 

(1r  r a0  r sin 0 ao 
(5-22) 

Calculating now the electric field E from (5-17), let us first express E 
in its polar coordinate components. Thus, 

E = a,E,  afEe as.E.  (5-23) 

From (5-17), (5-19) and (5-22) the 
three components of E are then 

aV 
E, =  — --a—r (5-24) 

1 av E. =  —  (5-25) 

= —jc0A, 
r sin o a4) 

In (5-26) A, = 0. The second term is also zero since V in (5-16) is inde-
pendent of 4, so that aV/a4) = 0. Therefore, E, = 0. Substituting (5-20) 
into (5-24) and (5-21) into (5-25), we have 

A, A, 

and 

Fin. 5-5. Resolution of vector potential 
1 aV  (5-26)  into A, and A, components. 

E, = —jtaA, cos 0 — 1.7 

b y 
E, = jcoA, sin 0 —  To-

(5-27) 

(5-28) 

Introducing now the values of A, from (5-4) and V from (5-16) into (5-27) 
and (5-28) and performing the indicated operations, we obtain 

and 

1,1, cos 0 el "(s j_ 1 ) 
2 -I- E, —  •  (5-29) 

2re  .7cor3 

Et  /oLsin Oc"(̀ -) + .1 a) 
(5-30) 

4re  \c r 3  icor / 
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In obtaining (5-29) and (5-30) the relation was used that µ = 1/c2, 
where c = velocity of light. 
Turning our attention now to the magnetic field, this may be calculated 

by (5-18). In polar coordinates the curl of A is 

A  a'  [0(r sin 0)Ao a(rA t)] 
V X  —  . 

r2 sift e  ae  ad, 

± 
a, aA,  a(r sin Otto 

r sin  ao  ] e[  or 

[a(7 .q_  8A ] 
r  ar  W . (5-31)  

Since A, = 0, the first and fourth terms of (5-31) are zero. From (5-4) 
and (5-20) and (5-21) we note that A, and At are independent of 0, so 
that the second and third terms of (5-31) are also zero. Thus, only the 
last two terms in (5-31) centribute so that V X A, and hence also H, have 
only a 4, component.  Introducing (5-20) and (5-21) into (5-31), per-
forming the indicated operations, and substituting this result into (5-18), 
we have 

and 

11  I = H, — 1°Lsin  0e' (s-D  ( ± i.  1) 
47  c7  -2-r 

H, = Ho = 0 

(5-32) 

(5-33) 

Thus, the fields from the dipole have only three components E„ Et, 
and 1/0. The components Eo, H„ and He are everywhere zero. 
When r is very large, the terms in 1/r2 and 1/r3 in (5-29), (5-30), and 

(5-32) can be neglected in favor of the terms in 1/r. Thus, in the far 
field E, is negligible, and we have effectively only two field components, Et 
and H., given by 

and 

Et — juLL sin 0e"(' ) 
47rec2r 

Ho — iwIoL sin 0   
4ircr 

Taking the ratio of Et to Ho as given by (5-34) and (5-35), 

Et 1 
• = e-- c- = NF: = 377 ohms 

This is the intrinsic impedance of free space. 

(5-34) 

(5-35) 

we obtain 

(5-36) 



Sze... 5-2]  THIN LINEAR ANTENNAS  133 

Comparing (5-34) and (5-35) we note that E• and Ho are in time phase 
in the far field. We note also that the field patterns of both are pro-
portional to sin 0. The pattern is independent of 4,, so that the space 
pattern is doughnut-shaped, being a figure of revolution of the pattern in 
Fig. 5-6a about the axis of the dipole. Referring to the near-field ex-
pressions given by (5-29), (5-30), and (5-32), we note that for a small r 
the electric field has two components Er and Eo, which are both in time 
phase quadrature with the magnetic field, as in a resonator.  At inter-
mediate distances, Er and Er can approach time quadrature so that the 
total electric field vector rotates in a plane parallel to the direction of 
propagation, thus exhibiting the 
phenomenon of cross-field.1 For the 
E. and Ho components, the near-
field patterns are the same as the 
far-field patterns, being proportional  Dipole  Dipole 

to sin 0 (Fig. 5-6a). However, the 
near-field pattern for E, is propor-
tional to cos 0 as indicated by Fig.  FIG. 5-6. Near- and far-field patterns of 

Et and H# components for short dipole 
5-6h. The space pattern for Er is a (a) and near-field pattern of E, component 
figure of revolution of this pattern  (b). 
around the dipole axis. 
Let us now consider the situation at very low frequencies. This will be 

referred to as the quasi-stationary, or d-c, case. Since from (5-8), 

(a)  (b) 

[I] = /0e1"(' -D = jwfq)  (5-37) 

(5-29) and (5-30) can be rewritten as 

[q]1, cos 0 Ow, + 
(5-38) 

Zre  \cr  r 
and 

[Of, sin 0 ( CO2 joo  1)  (5-39) 
E, =  4re  cr  cr  r  

The magnetic field is given by (5-32) as 

11 1ri 0 tko 
(5-40) 

4r  kcr  r 

At low frequencies, co approaches zero so that the terms with a, in the 
numerator can be neglected. As 0.1  0, we also have 

[q] = goei"(' -i) = go (5-41) 

I See "Very High Frequency Techniques," by Radio Research Laboratory Staff, 
McGraw-Hill Book Company, Inc., New York, 1947, p. 199. 
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and 
[I] = I.  (5-42) 

Thus, for the quasi-stationary, or d-c, case, the field components become 
from (5-38), (5-39), and (5-40), 

E ' _ 2 1,L, 7,_.17 
27ree 

E 2 2./L131!_i 0 
° _ zirer3 

H  h,/, sin 0 
# —  4711.2 

The restriction that r >> L still applies. 
The expressions for the electric field, (5-43) and (5-44), are identical 

to those obtained in electrostatics for the field of two point charges, -Fq. 
and —q0, separated by a distance L. The relation for the magnetic field, 
(5-45), may be recognized as the Biot-Savart relation for the magnetic 
field of a short element carrying a steady or slowly varying currtnt. Since 
in the expressions for the quasi-stationary case the fields decrease as 
1/r2 or 1/r5, the fields are confined to the vicinity of the dipole and there 
is negligible radiation. In the general expressions for the fields, (5-38), 
(5-39), and (5-40), it is the 1/r terms which are important in the far field 
and hence take into account the radiation. 
The expressions for the fields from a short dipole developed above are 

summarized in Table 5-1. 
If we had been interested only in the far field, the development be-

ginning with (5-5) could have been much simplified. The scalar potential 
V does not contribute to the far field, so that both E and H may be de-
termined from A alone. Thus, from (5-17), E and H of the far field may 
be obtained very simply from 

I E I = E* = —icolie  (5-45a) 
and 

(5-43) 

(5-44) 

(5-45) 

I H 1 = H# = l' = —° A.  (5-45h) 

where Z = V7-1/e = 377 ohms 
Or H may be obtained as before from (5-18) and E from this. Thus, 

IHI = I-1. = IAIV XIII  (5-45c) 

and neglecting terms in 1/e, 

lEl = Ef= ZH.= —z IV X Al 
A 

(5-45d) 



TABLE 5-1 
FIELDS OF A SHORT ELECTRIC DIPOLE* 

Component General expression Far field Quasi-stationary 

E, 
MI. cos 0 (1 0 qoL cos 0 2 ± .12) 

2we  cr  icor / 2Tera 

E. 
MI, sin 0 (co  1 

) 

[I]Ljo) sin 0 j60w[I] sin 0 L q0L sin 0 
+  -I- 2  2 4we  cr  Cr .13 

'ow trec2r —  r  X 4wer3 

H# 
[Ill, sin 0 (jai 1) [I]Ljw sin 0 j[I] sin 0 L loL sin 0 

+ 2 4r  cr  r 4wcr 
— 

2r  X 4172 

1-3 

•The restriction applies that r >> L and X >> L. The quantities in the table are in inks units, that is, E in volts per meter, H in am- ce 
peres per meter, I in amperes, r in meters, etc. [i] is as given by (5-37). Three of the field components of an electric dipole are everywhere 
zero, that is, 

Eio He  0 

Co 
Ca 
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5-3. Radiation Resistance of Short Electric Dipole. Let us now calcu-
late the radiation resistance of the short dipole of Fig. 5-1. This may be 
done as follows. The Poynting vector of the far field is integrated over a 
large sphere to obtain the total power radiated.  This power is then 
equated to 12/? where I is the rms current on the dipole and R is a re-
sistance, called the radiation resistance of the dipole. 
The average Poynting vector is given by 

P = i Re (E X H*)  (5-46) 

The far-field components are E. and H, so that the radial component of the 
Poynting vector is 

P. = i Re E.H:  (5-47) 

where E f and 14 are complex. 
The far-field components are related by the intrinsic impedance of the 

medium. Hence, 

E, = H,Z = H,\F: 

Thus, (5-47) becomes 

P. = i Re ZH,H: = 1 I 14 12 Re Z = i I 1412 NiTeLL 

The total power radiated W is then 

w = ff P, ds = 1 Nfl"- fa' f f 1 14 i.r. sin 0 do ck, 
e o  o 

(5-48) 

(5-49) 

(5-50) 

where the angles are as shown in Fig. 5-2 and IH.I is the absolute value of 
the magnetic field, which from (5-35) is 

I coloL sin 0H, I —   (5-51) 
4ircr 

Substituting this into (5-50) we have 

1 \FL  W  —  02/   r gL2 " f ' sine 0 c10 dit)  (5-52) 
32 e 72 Jo 0 

Upon integrating, (5-52) becomes 

iei /32/:L2 W =  (5-53) 
12r 

This is the average power or rate at which energy is streaming out of a 
sphere surrounding the dipole. Hence, it is equal to the power radiated. 
Assuming no losses, it is also equal to the power delivered to the dipole. 
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Therefore, W must be equal to the square of the rms current / flowing on 
the dipole times a resistance R called the radiation resistance of the dipole. 
Thus, 

Solving for R, 

fl 071‘7,L 7  \211.t R  

127r  — V2) 

R - NTI; °212 e Ow 

(5-54) 

(5-55) 

For air or vacuum N/ We = 377 = 120r ohms so that (5-55) becomes 

R = 80w2 ()2 = 807212  (5-56) 

As an example suppose that LA = 1/10.  Then R = 7.9 ohms.  If 
/A = 0.01, then R = 0.08 ohm. Thus, the radiation resistance of a short 
dipole is small. 
In developing the field expressions for the short dipole, which were 

used in obtaining (5-56), the restriction was made that X >> L. This 
made it possible to neglect the phase difference of field contributions from 
different parts of the dipole. If L = 4 we violate this assumption, but, 
as a matter of interest, let us find what the radiation resistance of a 4-
wavelength dipole is, when calculated in this way. Then for /A, = 4, 
we obtain It = 197 ohms. The correct value is 168 ohms (see Prob. 5-4), 
which indicates the magnitude of the error introduced by violating the 
restriction that X >> L to the extent of taking L = X/2. 
5-4. The Fields of a Short Dipole by the Hertz Vector Method. In 

Sec. 5-2 the fields of a short dipole were obtained by a method involving 
the use of vector and scalar potentials.  Another equivalent method 
which is sometimes employed makes use of the Hertz vector. Since this 
method is frequently found in the literature, it will be of interest to use 
it to find the fields of a short electric dipole. The fields so obtained are 
identical with those found by the vector-scalar potential method, indicating 
the equivalence of the two procedures. 
The retarded vector potential of any electric-current distribution is 

given by 

A = fII-1 dr v r 

where the retarded current density [J] is given by 

LT] =  

(5-57) 

(5-58) 
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Multiplying numerator and denominator by e (5-57) may be written as 

an 
A = me Tt- (5-59) 

where 
an _  rind  
at — 4ire iv r 

where t represents time and 7 volume. The quantity II is the retarded 
Hertz vector or retarded Hertzian potential. Since [J] is the only time 
dependent quantity on the right side of (5-60), we have for the retarded 
Hertz vector 

(5-60) 

n= 1 r f [J] di 1  
-W dr d7 —  A (5-61) 

4re J, r  %rem  r 

Since 

we obtain from (5-59) 

and 

n = 

A = jcumell  (5-62) 

H = - -j A 
come 

(5-63) 

If the retarded Hertz vector is known, both E and H everywhere can 
be calculated from the relations 

E = co2mell -I- V (V • H)  (5-64) 

= /we V X II  (5-65) 

Thus, E and H are derivable from a single potential function, H. Sub-
stituting (5-63) into (5-64) and (5-65), these relations may be also re-
expressed in terms of A alone. Thus, 

E = — jcoA —  V (V • A)  (5-66) 

H = -1 V X A  (5-67) 
A 

Let us now find the retarded Hertz vector for a short electric dipole. 
The vector potential for the dipole has only a z component as given by 
(5-4).  Therefore, from (5-63) the Hertz vector has only a z component 
given by 

n.  goLel̀•(̀ —D 
4rrcoe 

(5-68) 
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In polar coordinates II has two components, obtained in the same way as 
the components of A in (5-20) and (5-21). Thus, 

ri = a,II. cos 0 — a,II, sin 0  (5-69) 

Substituting (548) into (5-69), and this in turn in (5-65) and performing 
the indicated operations, yields the result that 

Ho -- Ill-1--js -11 9 (.c.277 ± 1-  (5-70) 
4r  r2/ 

This result is identical with that obtained previously in (5-32).  We 
could have anticipated this result since substituting (5-63) into (5-65) 
gives (5-67), from which (5-32) was obtained. 
Substituting (5-68) into (5-69) and this in turn in (5-64) then gives the 

electric field E everywhere.  The expressions for the two components, 
E, and Et, so obtained are identical with those arrived at in (5-29) and 
(5-30) by the use of vector and scalar potentials. 
5-5. The Thin Linear Antenna.' In this section expressions for the 

far-field patterns of thin linear antennas will be developed. It is assumed 
that the antennas are symmetrically fed at the center by a balanced two-
wire transmission line. The antennas may be of any length, but it is 
assumed that the current distribution is sinusoidal. Current-distribution 

y 
.\ 
- ) - 
\ 

/ 
T 1, I I 
n -/ / 

2.  +x  A  71-A  fx  2 A 2 

Flo. 5-7. Approximate natural current distribution for thin, linear center-fed antennas 
of various lengths. 

measurements indicate that this is a good assumption provided that the 
antenna is thin, that is, when the conductor diameter is less than, say, 
X/100. Thus, the sinusoidal current distribution approximates the natural 
distribution on thin antennas.  Examples of the approximate natural-
current distributions on a number of thin, linear center-fed antennas of 

I Ramo and Whinnery, "Fields and Waves in Modern Radio," John Wiley and Sons, 
Inc., New York, 1944, p. 432. 
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different length are illustrated in Fig. 5-7. The currents are in phase over 
each I-wavelength section and in opposite phase over the next. 
Referring to Fig. 5-8, let us now proceed to develop the far-field equa-

tions for a symmetrical, thin, linear, center-fed antenna of length L. The 
retarded value of the current at any 

.\ ro 
thstant 
',cunt  point z on the antenna referred to 

a point at a distance s is 

[I] = Jo 

sin[ r (1   X 2 

In (5-71) the function 

sin [-2Lr- (la± z)] 
X 2 

(5-71) 

is the form factor for the current 
on the antenna.  The expression 
(L/2)  z is used when z < 0 and 
(L/2) - z *i used when z > 0. By 

Flo. 5-8.  Relations for symmetrical, thin,  regarding tne antenna as made up of 

a series of infinitesimal dipoles of 
length dz, the field of the entire antenna may then be obtained by inte-
grating the fields from all of the dipoles making up the antenna. The far 
fields dE, and di/, at a distance s from the infinitesimal dipole dz are (see 
Table 5-1), 

linear, center-fed antenna of length L. 

dE,  jahr[/1 sin  dz 
sX 

dllo = j[11  sin  ° dz  
2sX 

(5-72) 

(5-73) 

Since E• = ZH, = 120wH., it will suffice to calculate Ho. The value of 
the magnetic field Ho for the entire antenna is the integral of (5-73) over 
the length of the antenna. Thus, 

L/2 

= dH4,  (5-74) 
—L/2 

Now introducing the value of [I] from (5-71) into (5-73) and substituting 
this into (5-74) we have 

j/0 sin 0 el" {f° 1 . r211.  'L  COS 

- s  z)] H, sin — -  e-1 dz 
2 X  —L/2  X 2 

f "2  I sin PI (-/-! - z)]e-i*  dz} (5-75) 
Jo  8  
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In (5-75), 1/s affects only the amplitude, and hence at a large distance it 
may be regarded as a constant. Also at a large distance, the difference 
between s and r can be neglected in its effect on the amplitude although 
its effect on the phase must be considered. Further, from Fig. 5-8, 

s = r — z cos 0  (5-76) 

Substituting (5-76) into (5-75) and also r for s in the amplitude factor. 
(5-75) becomes 

Ho  go sin Oefw('-) ff° [27r ( L  8  
sin — —  z)les  ' dz 

2Xr  -L/2  X 2 
rL/2 sin  [Lr  1.12 s [- _z 

±  x  1  • dz  (5-77) 

Since f3 = co/c = 27r/X and 0/4T = IX, (5-77) may be rewritten as 

0/0 sin e"(' )ff eith a"  sin [ 0(  z)] dz 
47rr  -L/2 

el,.  co.  sin  [13(k,  z)] dz} 

Jo 

Ho = 

The integrals are of the form 

fe" sin (c  bx) dx = a2  b 2 [a sin (c  bx) — b cos (c  bx)] 

where for the first integral 

(5-78) 

(5-79) 

a = 0 cos 0 

b= 

c = 13L/2 

For the second integral a and c are the same as in the first integral, but 
b = —0. Carrying through the two integrations, adding the results, and 
simplifying yields 

1/0 = 
An, [cos ((3L cos 0)(2) — cos (13L/2)] 
27r  sin 0  

Multiplying Ho by Z = 1207r gives E, as 

— j60[/0] [cos ((3L cos 0)/2) — cos (014/2)] 
(5-81) 

sin 0 

where [Id = Jo ei"('D 
Equations (5-80) and (5-81) are the expressions for the far fields, H, 

and Eo, of a symmetrical, center-fed, thin linear antenna of length L. 



Case 1. i-wavelength Antenna. 
comes 
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The shape of the far-field pattern is given by the factor in the brackets 
The factors preceding the brackets in (5-80) and (5-81) give the instanta-
neous magnitude of the fields as functions of the antenna current and the 
distance r. To obtain the rms value of the field, we let [Io]  equal the rms 
current at the location of the current maximum. There is no factor in-
volving phase in (5-80) or (5-81), since the center of the antenna is taken 
as the phase center. Hence any phase change of the fields as a function 
of 0 will be a jump of 180° when the pattern factor changes sign. 
As examples of the far-field patterns of linear center-fed antennas, three 

antennas of different lengths will be considered.  Since the amplitude 
factor is independent of the length, only the relative field patterns as given 
by the pattern factor will be compared. 

Flo. 5-9. Far-field patterns of I-wave-
length, full-wavelength, and 3-wave-
length antennas.  The antennas are 
center-fed, and the current distribution 
is assumed to be sinusoidal. 

When L = X/2, the pattern factor be-

I T-2 cos 0) 
E — 

sin 0 
(5-84) 

This pattern is shown in Fig. 5-9a. It is only slightly more directional 
than the pattern of an infinitesimal or short dipole which is given by sin 
0. The beam width between half-power points of the 4-wavelength an-
tenna is 78° as compared to 90° for the short dipole. 
Case 2. Full-wave Antenna. When L = X, the pattern factor becomes 

E — cos (ir cos 0) ± 1 
sin 0 

This pattern is shown in Fig. 5-9h. 

(5-85) 
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Case 3. 4-wavelength Antenna. When L = 3 X/2, the pattern factor is 

cos (- w cos 0) 3 

E - 
sin 0 

(5-86) 

The pattern for this case is presented in Fig. 5-9c. With the mid-point 
of the antenna as phase center, the phase shifts 180° at each null, the 
relative phase of the lobes being indicated by the + and - signs. In 
all three cases, (a), (b), and (c), the space pattern is a figure of revolution 
of pattern shown around the axis of the antenna. 
5-6. Radiation Resistance of 4-wavelength Antenna. To find the radia-

tion resistance, the Poynting vector is integrated over a large sphere 
yielding the power radiated, and this power is then equated to (/0/ 0)2Ro, 
where Ro is the radiation resistance at a current maximum point and Io is 
the peak value in time of the current at this point. The total power radi-
ated W was given in (5-50)' in terms of H, for a short dipole. In (5-50), 
I 14 I is the absolute value.  Hence, the corresponding value of H, for a 
linear antenna is obtained from (5-80) by putting I N o] I = /0. Substitut-
ing this into (5-50), we obtain 

Sr,  fiL12 

w  . 15/: j'"  
 de dit.  (5-87) 

7 0 Jo  sin 0 

, [cos (OL  —2 cos 0) - cos 11 2 
2  = 301: f. sin 9  de  (5-88) 

Equating the radiated power as given by (5-88) to VA0/2 we have 

w .  nRo 
2 

and 

(5-89) 

sr,  , 
0, [cos (-2- cos u) - cos )91 2 

Ro = 60 f  sin 0  2  de  (5-90) 

where the radiation resistance Ro is referred to the current maximum. In 
the case of a 4-wavelength antenna this is at the center of the antenna or 
at the terminals of the transmission line (see Fig. 5-7). 
Proceeding now to evaluate (5-90), let 

u = cos 0  and  du = - sin 0 de  (5-91) 

lw = SSP • cis = i N/177; ff I H, It d8 
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by which (5-90) is transformed to 

+, (cos — u — cos /3-1)2 ft/. 

Ro = 60 f -1  2 1 — u2  2  du  (5-92) 

But 

1  1   1 (  1 4.  1  ) 
(5-93) 

1 — u2 — (1 + u)(1 — u) — 2 \ 1 + u ' 1 — u/ 

Also putting k = 0L/2, (5-92) becomes 

R.  = 30  1+1 F(cos ku — cos k)2 ± (cos ku — cos k)21 du  
(5-94) 1 - u 

This integral gives the radiation resistance for a thin linear antenna of 
any length L. For the special case being considered where L = X/2, we 
have k = 7/2. Thus, in the case of a thin 1-wavelength antenna, (5-94) 
reduces to 

r+1 [coe (71-14/2) + cos2 (ru/2)1 
Ro = 30 J-1  1 + u  1 — u 

Now in the first term let 

1 + u = IL  and  du 
I. 

and in the second term let 

= 
dv _ 
7 

v'  chi 
1 — u = —  and  du = - -

7  7 

du  (5-95) 

(5-96) 

(5-97) 

Noting also that (v — 7)/2 = (7 — v')/2, Eq. (5-95) becomes 

f 2 r cos 2 ((v v_ . __..,  i /oN 

Ro =  60  ""̀  dv  (5-98) 

But cos' (x/2) = 1(1 + cos x) so that 

Ro = 30 f "  1  +  c°8  (I)  —  7)  dv — 30 f.2' 1 — vcm v  dv  (5-99) 
Jo  v 

The last integral in (5-99) is a form which is tabulated. This integral is 
often designated as Cin (x) (see Appendix). Thus, 

r 1 — cos v  CM (x) = J dv — in 7x — Ci (x) 
O V  

= 0.577 + In x — Ci (x)  (5-100) 

where 7 = e = 1.781, or in 7 = c = 0.577 = Euler's constant 
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The part of this integral given by 

Ci (x) = In 'yx — Cin (x)  (5-101) 

is called the cosine integral. The value of this integral is given by 

cos v  x2 X 4 X 6 
(5-102) 

212 + 414 — 616 + • • • 

When x is small (x < 0.2), 

Ci (x) ••-• in -yx = 0.577 + in x  (5-103) 

When x is large (x >> 1), 

A 

.2 

-.2 

-.3 

.4 

.6 

sin x 
Ci (x) = (5-104) 

2 3  4  5  6 
X 

FIG. 5-10.  Cosine integral. 

7 9 IC 

A curve of the cosine integral as a function of x is presented in Fig. 5-10. 
It is to be noted that Ci (x) converges around zero at large values of x. 
From (5-102) and (5-100) we obtain Cin (x) as an infinite series, 

x 2  x 4  xi3 
Cin (x) = 

212 — 414 + 616 — • • • 
(5-105) 
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While discussing Cin (x) and Ci (x), mention may be made of another 
integral which commonly occurs in impedance calculations. This is the 
sine integral,' Si (x), given by 

'sin v Si (x) = f —  dv —x   5!5  — • • •  (5-106) 
o v  3!3   

When x is small (x < 0.5), 

Si (x)  x  (5-107) 

When x is large (x >> 1), 

cos x 
(5-108) Si (x) -̂=-• 7 

2 

A curve of the sine integral as a function of x is presented in Fig. 5-11. 
It is to be noted that Si (x) converges around 7r/2 at large values of x. 

2.0 

1.0 

L6 

•41I 

1,4  

1.0  
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.6  

44  

.2  
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Fla. 5-11. Sine integral. 

Returning now to (5-99), this can be written as 

R. = 30 CM (27r) = 30 X 2.44 = 73 ohms  (5-109) 

This is the well-known value for the radiation resistance of a thin, linear, 
center-fed, I-wavelength antenna with sinusoidal current distribution. 
The terminal impedance also includes some inductive reactance in series 
with Ro (see Chap. 10).  To make the reactance zero, that is, to make 
the antenna resonant, requires that the antenna be a few per cent less 
than  wavelength. This shortening also results in a reduction in the 
value of the radiation resistance. 

'See Appendix. 
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In some cases it may be impossible or at least very tedious to integrate 
the radiation-resistance expression analytically.  In such cases one can 
carry out the integration graphically.' 
5-7. Radiation Resistance at a Point Which Is Not a Current Maximum. 

If we calculate, for example, the radiation resistance of a I-wavelength 
antenna (see Fig. 5-7) by the above method, we obtain its value at a 
current maximum. This is not the point at which the transmission line 
is connected. Neglecting antenna losses, the value 
of radiation resistance so obtained is the resistance 
Ro which would appear at the terminals of a trans-
mission line connected at a current maximum in 
the antenna, provided that the current distribution 
on the antenna is the same as when it is center-fed 
as in Fig. 5-7. Since a change of the feed point 
from the center of the antenna may change the 
current distribution, the radiation resistance Ro is 

nwoatv etlheen gvtahl uanaen tetwennhnnicaah  o rw oonu aldn yb sey mmmeaesturriceadl  aonnt ean na 

whose length is not an odd number of 4 wave-
lengths. However, Ro can be easily transformed 
to the value which would appear across the termi-
nals of the transmission line connected at the center 
of the antenna. 
This may be done by equating (5-89) to the 

power supplied by the transmission line, given by 
nR12, where I, is the current amplitude at the 
terminals and R, is the radiation resistance at this point. See Fig. 5-12. 
Thus, 

_112 R = _Al2 R 
2  2 ° 

Fm. 5-12. Relation of 
current /I at transmis-
sion-line terminals to 
current /0 at current 
maximum. 

(5-110) 

where Ro is the radiation resistance calculated at the current maximum. 
Thus, the radiation resistance appearing at the terminals is 

R, = (b)2R0 

The current I, at a distance x from the nearest current maximum, as 
shown in Fig. 5-12, is given by 

= lo cos 13x  (5-112) 

1 An example of such a calculation is given in N. Marchand, "Ultrahigh Frequency 
Transmission and Radiation," John Wiley and Sons, Inc., New York, 1947, p. 163. 
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Therefore, (5-111) can be expressed 

R, —  Ro (5-113) 
coe fix 

When x = 0, R, = Ro; but when 
the radiation resistance measured 
not infinite as would be calculated 

x = X/4, R, = Oa  if Ro 0 0. However, 
at a current minimum (x = X/4) is 
from (5-113), since an actual antenna 
is not infinitesimally thin and the cur-
rent at a minimum point is not zero. 
Nevertheless, the radiation resistance 
at a current minimum may in practice 
be very large, that is, thousands of 
ohms. 

5-8. Fields of a Thin Linear Antenna 

with a Uniform Traveling Wave. The 
foregoing discussion has been confined 
to the case of antennas with sinusoidal 
current distributions.  This current 
distribution may be regarded as the 
standing wave produced by two uni-
form (unattenuated) traveling waves 

of equal amplitude moving in opposite directions along the antenna. If, 
however, only one such wave is present on the antenna, the current dis-
tribution is uniform.  The amplitude is a constant along the antenna, 
and the phase changes linearly with distance as suggested by Fig. 5-13. 

Relative I   
current 

Relative 

phase 

angle 

(log) 

Distance along antenna 

Flo.  5-13. Current amplitude and 
phase relations along an antenna carry-
ing a single uniform traveling wave. 

Distance  along antenna 

Wave direction 

(b) 

Wave 

Terminated single wire antenna 

Terminated  rhombic antennn 

(c) Long  helical  beam  antenna 

(d) I  Long thick linear antenna 

Fro. 5-14. Various antennas having essentially a single traveling wave. 

The condition of a uniform traveling wave on an antenna is one of con-
siderable importance, as this condition may be approximated in a number 
of antenna systems. For example, a single-wire antenna terminated in 
its characteristic impedance, as in Fig. 5-14a, may have essentially a 



Szc. 5.81 THIN LINEAR ANTENNAS  149 

uniform traveling wave.' This type of antenna is often referred to as a 
Beverage or wave antenna. A terminated rhombic antenna (Fig. 5-14b) 
may also have essentially a single traveling wave. Other types of antennas 
that have, in the first approximation, a single outgoing traveling wave, 
are a long helical beam antenna and a long, thick linear antenna as illus-
trated in Fig. 5-14c and (d). These antennas have no terminating im-
pedance but behave similar to terminated antennas.  Thus, the thick 
linear conductor has a current distribution similar to a thin terminated 
linear conductor, and the patterns are similar if the conductor diameter 
is not too large. The results for a traveling wave on a linear conductor 
can be applied to a helix, as shown in Chap. 7, by considering that 
the helix consists of a number of short linear segments. On the linear 
antennas, the phase velocity of the traveling wave is substantially equal 
to the velocity of light. However, the phase velocity along the conductor 
of a helical beam antenna may differ 
appreciably from the velocity of 
light. Hence, to make the results op-  P 

plicable to any of the antenna types 
shown in Fig. 5-14, the fields from 
an antenna with a traveling wave 
will be developed for the general 
case where the phase velocity v of 
the wave along the conductor may 
have any arbitrary value.' 
Proceeding now to find the field  z, 

radiated by a traveling wave on a  Conductor 
thin linear conductor, let us consider  Fm. 5-15. Relation of conductor of 
a conductor of length b coincident  length b with single traveling wave to 
with the z axis and with one end at  cylindrical coordinate system. 
the origin of a cylindrical coordinate 
system (p, E, z) as in Fig. 5-15. It is assumed that a single, uniform travel-
ing wave is moving to the right along the conductor. 

Since the fields of an antenna are not confined to the immediate vicinity of the 
antenna, it is not possible to provide a nonreflecting termination with a lumped imped-
ance. However, a lumped impedance may greatly reduce reflections at the termination. 

2 A. Alford, A discussion of methods employed in calculations of electromagnetic 
fields of radiating conductors, Elec. Commun., 15, 70-88, July, 1936. Treats case where 
velocity is equal to light. 
J. D. Kraus and J. C. Williamson, Characteristics of helical antennas radiating in the 

axial mode, J. Applied Phys., 19, 87-96, January, 1948. Treats general case. 
J. Grosskopf, Ober die Verwendung zweier Losungsansiitze der Maxwellschen 

Gleichungen bei der Berechnung der electromagnetischen Felder strahlender Leiter, 
Hochfrequenztechnik und Eledroakustik, 49, 205-211, June, 1937. Treats case where 
velocity is equal to light. 

Wove 
direction 
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Since the current is entirely in the z direction, the magnetic field has 
but one component HE. The E direction is normal to the page at P in 
Fig. 5-15, and its positive sense is outward from the page. The magnetic 
field HE can be obtained from the Hertz vector H.  Since the current is 
entirely in the z direction, the Hertz vector has only a z component. Thus, 

. an, 
HE =  jo.m(C7 X 11)1 =  jcue —a p (5-114) 

where II, is the z component of the retarded Hertz vector at the point P, 
as given by 

—  1 f° 
d 

47rjwe 0 r 
where 

[I] = /0 sin w(t — re zv,) (5-116) 

where z, = a point on the conductor 
and 

(5-115) 

v  pc  or  P = (5-117) 

In (5-117), p is the ratio of the velocity along the conductor v to the 
velocity of light c. This ratio will be called the relative phase velocity. 
All the conditions required for calculating the magnetic field due to a 

single traveling wave on the linear conductor are contained in the relations 
(5-114) through (5-117).  That is, if [I] in (5-116) is substituted into 
(5-115), and II, from this equation into (5-114), and the indicated opera-
tions performed, we obtain the field HE. Let us now proceed to carry 
through this calculation. To do this, let 

u = t —  —  (5-118) 
C  v 

Now since 
r = [(z — z,)2 (5-119) 

we have 
1 

(5-120) 
dz,  re  Pc 

Equation (5-115) now becomes 

H. — IOc  zr  sin (du   •  du  (5-121) 
4rjcoe  — zi — rip 

where the new limits are 

u, = t — Ill and  u2 = t — 7:1  —  (5-122) 
C  v 
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Introducing (5-121) into (5-114) we have 

Ic a f"  sin cou   
HE =   z — z, — r/p du  (5-123) 

Confining our attention now to the far field, that is, at a large distance r, 
which is very much larger than b, the quantity z, can be neglected and the 
denominator of the integrand considered to be a constant z — rip. There-
fore (5-123) becomes 

oc a (— cos  + cos cult') 
HE — 

470.1  z — r/p 

Performing the differentiation with respect to p, (5-124) becomes, 

lop 
111 = 4.rr  

• [(z — r/P)(sin  cou2 — sin caul)  (X/2Tp)(cos cou2 — 
(z — r/p)2 

At arbitrarily large distances, that is, where 

z  r/p >> 27); 

sin co% — sin cou, 0 0 

I.°  Bin  7 (sin cou, — sin anti) 
H1  = 47fr cos 7 — 1/p 

where the relations have been introduced for r >> b that 

and for the case where 

(5-125) reduces to 

= COS  and  

COS   

(5-124) 

(5-125) 

(5-126) 

(5-127) 

Introducing the values of u, and u2 into (5-126) from (5-122) and by 
trigonometric manipulation, (5-127) can be put in the form, 

H 1 =  {   n — Sin  7 [si wb  (1 — p cos 7) 3 
27r, 1 — p cos 7  2pc 

cob 
/ [co(t —  — p cos 7)]  (5-128) 

Equation (5-128) gives the instantaneous magnetic field at large dis-
tances from the linear antenna carrying a single traveling wave of ampli-
tude /2, in terms of the distance r,, direction angle 7, relative phase 
velocity p, radian frequency co, conductor length b, time t, and velocity 



the braces { 1. The expression indicated as an angle L gives the phase 
of the field referred to the origin of the coordinates (see Fig. 5-15) as the 

phase center.  The relative phase 
pattern at a constant distance is 
given by the right-hand term, 

Wove  (cobl2pc) (1 — p cos -y). 
chrect,on 

Several examples will now be con-
j.-5A  sidered to illustrate the nature of 

the field patterns obtained on linear 
conductors carrying a uniform trav-
eling wave. T. se 
Case 1. Linear 4-wavelength An-

tenna.  Let us consider a linear 
FIG. 5-17.  Far-field pattern of linear five-  antenna, 4 wavelength long as 
wavelength antenna carrying a uniform 
traveling wave (p  1).  measured in free-space wavelengths. 

Assuming that p = 1, that is, the 
phase velocity along the antenna is equal to that of light, the pattern 
calculated from (5-128) is as shown by Fig. 5-16a. The difference between 
this pattern and that for a linear 4-wavelength antenna with a sinusoidal 
cuirent distribution or standing wave (Fig. 5-9a) is striking. The lobes 
are sharper and also tilted forward in the case of the traveling wave 
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of light c. The distant or far electric field E, is obtained from HE by 
E, = I-11Z where Z = 377 ohms. 
In (5-128) the shape of the field pattern is given by the expression in 

Wove 
direction 

(a)  (b)  (c) 
Flo. 5-16.  Far-field patterns of linear 4-wavelength antenna carrying a uniform travel-
ing wave (to right) for three conditions of relative phase velocity (p = 1.0, 0.8, and 0.6). 
The tilt angle r and the half-power beam widths are indicated for each pattern. 

p=1.0 
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antenna (Fig. 5-16a). The tilt is in the direction of the traveling wave. 
The tilt angle 7 of the direction of maximum radiation is 25° and the 
beam width between half-power points is about 60°. This is in contrast 
to 7 =  0 and a beam width of 78° for the 4-wavelength antenna with a 
sinusoidal current distribution or standing wave. 
As the phase velocity of the traveling wave on the 4-wavelength antenna 

is reduced, the tilt angle is increased and the beam width reduced further 
as illustrated by the patterns of Figs. 5-16b and (c) which are for the 
cases of p = 0.8 and p = 0.6, respectively. 
Case 2. Linear Antenna 5 Wavelengths Long. The field pattern for a 

5-wavelength linear antenna with a single traveling wave is presented 
in Fig. 5-17 for the case where p = 1 (that is, v = c). This pattern is 
typical of those for long, terminated antennas, the radiation being beamed 
forward in a cone having the antenna as its axis. The tilt angle for this 
antenna is about 68°. As the length of the antenna is increased, the 
tilt angle increases further, reaching a value of about 78° when the length 
is 20 wavelengths for p = 1. 

PROBLEMS 

5-1. a. Two equal static electric charges of opposite sign separated by a distance 
L constitute a static electric dipole. Show that the electric potential at a 
distance r from such a dipole is given by 

QL cos 0 
V — 

47er2 

where Q is the magnitude of each charge and 0 is the angle between the 
radius r and the line joining the charges (axis of dipole). It is assumed 
that r is very large compared to L. 

b. Find the vector value of the electric field E at a large distance from a 
static electric dipole by taking the gradient of the potential expression in 
part (a). 

5-2. Using the value of the Hertz vector for a short oscillating dipole as given 
in (5-68) obtain E and H by the Hertz vector method, that is, by performing the 
operations indicated in (5-64) and (5-65), and confirm the fact that the fields so ob-
tained are identical with the fields given in the column headed "General Expression" 
in Table 5-1. 
5-3. The instantaneous current distribution of a thin linear center-fed antenna 

2 wavelengths long is sinusoidal as shown. 

a. Calculate and plot the pattern of the far field. 
b. What is the radiation resistance referred to a current loop? 
c. What is the radiation resistance at the transmission-line terminals as 
shown? 
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d. What is the radiation resistance X/8 from a current loop? 
5-4. Assume that the current is of uniform magnitude and in phase along the 

entire length of a X/2 thin linear element. 
a. Calculate and plot the pattern of the far field. 
b. What is the radiation resistance? 
c. Tabulate for comparison 
(1) Radiation resistance of part b above. 
(2) Radiation resistance at the current loop of a X/2 thin linear element 
with sinusoidal in-phase current distribution. 

(3) Radiation resistance of a X/2 dipole calculated by means of the short 
dipole formula. 

d. Discuss the three results tabulated in part c and reasons for the differences. 
5-5. Calculate and plot the radiation-field pattern in the plane of two thin 

linear I-wavelength antennas with equal in-phase currents and the spacing rela-
tionship shown. Assume sinusoidal current distributions. 

- r 
)4 

I.._ - -).---10-1.. 

5-8. a. Express in integral form the retarded vector potential at a distance r 
from the center of a thin linear I-wavelength antenna. The antenna is 
parallel to the y axis, and its center is at the origin. The current is in 
phase along the antenna, and its magnitude corresponds to a cosine 
function of distance from the origin. 

b. What relations involving the vector potential yield the electric and mag-
netic fields (E and H) at a large distance? 

c. What is the integral form for the retarded Hertz vector at a distance r 
from the i-wavelength antenna of part (a)? 

5-7. Calculate the field pattern in the plane of the full-wave antenna shown in the 

..-------

figure. Assume that the current distribution on each wire is sinusoidal and that all 
currents are in phase. Plot the pattern. 
5-8. a. Calculate and plot the far-field pattern in the plane of a thin linear ele-

ment one free-space wavelength long, carrying a single uniform traveling 
wave for 2 cases of the relative phase velocity p = 1 and 0.5. 

b. Repeat for the single case nf an element 10 X long and p = 1. 



CHAPTER 6 

THE LOOP ANTENNA 

THIS chapter is devoted to the loop antenna. First, the field pattern 
of a small loop is derived very simply by considering that the loop is 
square and consists of four short linear dipoles. The same field equations 
are then developed by a somewhat longer method based on the assumption 
that the small loop is equivalent to a short magnetic dipole. Finally, the 
general case of the loop antenna with uniform current is treated for loops 
of any size. Although most of the development concerns circular loops, 
square loops are also discussed, and it is shown that the far fields of circular 
and square loops of the same area are the same when they are small but 
different when they are large. 
6-1. The Small Loop. A very simple method of finding the field pattern 

of a small loop is treated in this section.  Consider a circular loop of 
radius a with a uniform in-phase current as suggested by Fig. 6-1a. The 

A 

Square 
loop 

Fm. 6-1. Circular loop (a) and square  Flo. 6-2.  Relation of square loop to co-
loop (b).  ordinates. 

radius a is very small compared to the wavelength (a << X). Suppose 
now that the circular loop is represented by a square loop of side length 
d, also with a uniform in-phase current, as shown in Fig. 6-1b. In this 
way, the loop can be treated as four short linear dipoles, whose properties 
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we have already investigated in Chap. 5. Let d be chosen so that the 
area of the square loop is the same as the area of the circular loop. That 
is, 

d2 = Tas (6-1) 

If the loop is oriented as in Fig. 6-2, its far electric field has only an 
E# component. To find the far-field pattern in the y-z plane, it is only 
necessary to consider two of the four small linear dipoles (2 and 4). A 
cross section through the loop in the y-z plane is presented in Fig. 6-3. 

-\\
To distant point 

Fm. 6-3.  Construction for finding far field of dipoles 2 and 4 of square loop. 

Since the individual small dipoles 2 and 4 are nondirectional in the y-z 
plane, the field pattern of the loop in this plane is the same as that for 
two isotropic point sources as treated in Sec. 4-2. Thus, 

E. =  e""  E#0 e-""  (6-2) 

where Eg, = electric field from individual dipole and 

It follows that 

= —2rd sin 0 = d, sin 0 
X 

E. =  sin (g1 sin 0) 

(6-3) 

(6-4) 

The factor j in (6-4) indicates that the total field E4, is in phase quadrature 
with the field 4 0 of the individual dipole. This may be readily seen by a 
vector construction of the type of Fig. 4-lb of Chap. 4. Now if d << X, (6-4) 
can be written 

E. = —jE.0 d, sin 0  (6-5) 

The far field of the individual dipole was developed in Chap. 5, being 
given in Table 5-1. In developing the dipole formula, the dipole was in 
the z direction, whereas in the present case it is in the x direction (see 
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Figs. 6-2 and 6-3). The angle 0 in the dipole formula is measured from 
the dipole axis and is 90° in the present case. The angle 0 in (6-5) is a 
different angle with respect to the dipole, being as shown in Figs. 6-2 and 
6-3. Thus, we have for the far field E.0 of the individual dipole 

j601rVIL 
E.0 —  rX  (6-6) 

where [I] is the retarded current on the dipole and r is the distance from 
the dipole. Substituting (6-6) in (6-5) then gives 

60TVILd, sin 0 
—  (64) 

But the length L of the short dipole is the same as d, that is, L = d. 
Noting also that d„ = 2rd/X and that the area A of the loop is d2, (6-7) 
becomes 

1211r2V] sin 0 A 
— x2 (6-8) 

This is the instantaneous value of the E. component of the far field of a 
small loop of area A. The peak value of the field is obtained by replacing 
[I] by /0, where /0 is the peak current in time on the loop. The other compo-
nent of the far field of the loop is 
which is obtained from (6-8) by divid-
ing by the intrinsic impedance of the 
medium, in this case, free space. Thus, 

, _  _ 111/ 0 A 
(6-9) £• _1122007,rr  _ r -3 X 

6-2. The Short Magnetic Dipole. 
Equivalence to a Loop.  Another 
method of treating the small loop is by 
making use of its equivalence to a 
short magnetic dipole. Thus, a small loop of area A and carrying a uni-
form in-phase electric current I is replaced by an equivalent magnetic 
dipole of length 1 as shown in Fig. 6-4a. The magnetic dipole is assumed 
to carry .a fictitious magnetic current L. 
The relation between the loop and its equivalent magnetic dipole will 

now be developed. The moment of the magnetic dipole is q„,1 where q„, is 
the pole strength at each end as in Fig. 6-4h. The magnetic current is 
related to this pole strength by 

(a) (b) 

where I. = Ie 

Fla. 6-4.  (a) Relation of small loop 
of area A to short magnetic dipole 
of length 1. (b) Short magnetic dipole. 

= —A  di (6-10) 
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Integrating (6-10) with respect to time, 

I„, 

304i 

The magnetic moment of the loop is IA. Equating this to the moment 
of the magnetic dipole, we have 

q„,1 = IA 

Substituting (6-11) in (6-12), 

I 1 

.70.41 

This may be reexpressed as, 

X 
I„,1 = —jconI A = —j211— ALIA = —j2r —x IA 

or 

In retarded form (6-15) is 

Relation of short Fm. 6-5. 
dipole to coordinates. 

I „,1 = — j240r2 I 1T1‘ 

[/„,]/ = —j2407r1/1 

magnetic 

where V.] =  

[I] =  

Equations (6-15) and (6-16) relate a 
loop of area A and carrying a cur-
rent / to its equivalent magnetic 
dipole of length 1 carrying a fictitious 
magnetic current I„,. 
6-3. The Short Magnetic Dipole. 

Far Fields. In this section the far 
fields of a short magnetic dipole will 
be calculated.  Then applying the 
equivalence relation between a loop 
and magnetic dipole developed in 

Sec. 6-2, we obtain the far field of a small circular loop. 
The method of finding the fields of a short magnetic dipole is formally 

the same as that employed in Sec. 5-2 to find the far field of a short electric 
dipole.  The only difference is that electric current I is replaced by a 

(6-11) 

(6-12) 

(6-13) 

(6-14) 

(6-15) 

(6-16) 



BEc. 6-3]  THE LOOP ANTENNA  159 

fictitious magnetic current I., and that E is replaced by H. Then with 
the magnetic dipole oriented as in Fig. 6-5, the retarded vector potential 
F of the magnetic current is 

F =  f dv=k- f+112 g-mide  volts2 sec  
41-  r  amp meter 

(6-17) 

The vector potential F has only a z component F.. Introducing the value 
of the retarded current 

F am.  1.+1/2 ehqs-D dz  

F,  L i/2  r (6-18) 

If r >> land X >> 1, the phase difference of the contributions of the various 
current elements of length dz along the magnetic dipole can be neglected. 
Hence, the integmnd in (6-18) may be regarded as a constant, and (6-18) 
becomes 

_   
4rr 

The electric field E is obtained from F by the relation, 

E = 1- V XF 
IL 

(6-19) 

(6-20) 

Resolving F. into its spherical or polar coordinate components Fo and 
F. and taking the curl of F as in (6-20), the Eo component of the electric 
field is found to be 

E  [/„,]/ sin 0 (..ccro  1) 
o — (6-21) 

This is the only component of the electric field produced by a magnetic 
dipole oriented as in Fig. 6-5.  It is interesting to note that (6-21) is 
identical with the expression for Ho developed for a short electric dipole, 
provided that E in (6-21) is replaced by H and I., by I (see Table 5-1). 
The relation of (6-21) applies at any distance from the magnetic dipole, 

provided only that r >> / and X >> 1. At a large distance r the second 
term of (6-21) can be neglected, and (6-21) becomes 

E  j[L,10.)/ sin 0 j[I,„] sin 01 
o —   4wcr  2r  X 

This is the far electric field from a short magnetic dipole of length 1 and 
carrying a fictitious magnetic current I... The far magnetic field Ho of 
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the magnetic dipole is related to E., by the intrinsic impedance of the 
medium, in this case, free space. Hence 

H j[/] sin  / 
24hrr  X 

(6-23) 

Substituting now for the moment [/„,]/ in (6-22) and (6-23) the equivalent 
value for a loop as given by (6-16), we obtain 

12072[/] sin 0 A 
—  (6-24) x2 

and 

= TV] sin 0 A 
r  X2 

(6-25) 

These are then the far-field equations for a small loop of area A carrying 
a current I. They are identical with (6-8) and (6-9) developed in Sec. 6-1 
by the method using a square loop of four short linear electric dipoles. 
The field pattern in the plane of a circular loop with uniform current is by 
symmetry a circle. The far-field pattern in the plane of a small square loop 
with uniform current may also be shown to be a circle (Prob. 6-6). Thus, 
it appears that the far fields of small circular and square loops are identical 
provided that both have the same area. 
Both E, and Ho vary as the sine of the angle 0 as illustrated in Fig. 6-6. 

The fields are independent of 0. Hence, the space patterns are figures of 
revolution of the pattern of Fig. 6-6 around the polar axis, the form being 
that of a doughnut. This pattern is identical in shape to that of a short 

electric dipole oriented parallel to the polar 
or z axis. 
6-4. Comparison of Far Fields of Small 

Loop and Short Dipole.  It is of interest to 
compare the far-field expressions for a small 
loop with those for a short electric dipole. 
The comparison is made in Table 6-1. The 
presence of the operator j in the dipole ex-
pressions and its absence in the loop equations 
indicate that the fields of the electric dipole 
and of the loop are in time phase quadrature, 
the current I being in the same phase in 

both dipole and loop.  This quadrature relationship is a fundamental 
difference between the fields of loops and dipoles. 
The formulas in Table 6-1 apply to a loop oriented as in Fig. 6-2 and 

a dipole oriented parallel to the polar or z axis. The formulas are exact 
only for vanishingly small loops and dipoles. However, they are good 

Fm. 6-6. Far-field pattern for 
a small loop. 
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approximations for loops up to /11 wavelength in diameter and dipoles up 
to tto- wavelength long. 

TABLE 6-1 

FAR FIELDS OF SMALL ELECTRIC DIPOLES AND LOOPS 

Field Electric dipole Loop 

Electric E, — j607E/J sin 0 L 
r  A 

1201-2[/] sin 0 A 
r  x2 

Magnetic 
j[i] sin 0 L 

H, — 
2r  A 

eV] sin 0 A 
He —  r x2 

6-5. The Loop Antenna. General Case. The general case of a loop 
antenna with uniform, in-phase cur-
rent will now be discussed. The size 
of the loop is not restricted to a small 
value compared to the wavelength  d A0 
as in the preceding sections but may  dA0 \ \ 
assume any value. The method of  (SO) 1 \ 
treatment follows that given by 
Foster.' 
Let the loop of radius a be located  To point P 

-z 
with its center at the origin of the  inx plant 
coordinates as in Fig. 6-7. The cur-
rent I is uniform and in phase 
around the loop. Although this con-
dition is readily obtained when the 
loop is small, it is not a natural con-
dition for large loops energized at a 
point. For loops with perimeters of 
about 1 wavelength or larger, phase 

shifters of some type must be intro-  F. 6-7. Loop of any radius a with rela-
duced at intervals around the  tion to coordinates. 
periphery in order to approximate a 
uniform, in-phase current on the loop. Assuming that the current is uni-

1 Donald Foster, Loop Antennas with Uniform Current, Proc. I.R.E., 32, 603-607, 
October, 1944. 
A discussion of circular loops of circumference less than i wavelength (C), < i) with 

nonuniform current distribution is given by G. Glinski, Note on Circular Loop Antennas 
with Nonuniform Current Distribution, J. Applied Phys., 18, 638-644, July, 1947. 

/X 
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form and in phase, the far-field expressions will be derived with the aid of 
the vector potential of the electric current. The vector potential will first 
be developed for a pair of short, diametrically opposed electric dipoles of 
length ado, as in Fig. 6-7. Then integrating over the loop, the total vector 

potential is obtained, and from this 
the far-field components are derived. 
Since the current is confined to 

the loop, the only component of the 
vector potential having a value is 
.4. The other components are zero: 
A, = A,. = 0. The infinitesimal 
value at the point P of the 4, com-
ponent of A from two diametrically 
opposed infinitesimal dipoles is 

dA. —  dM  (6-26) 
4irr 

;Lb 

Perimeter of loop 

I'm. 6-8. Cross section in x-z plane 
through loop of Fig. 6-7. 

2(3o cos 0 sin 0. je 

where dM is the current moment 
due to one pair of diametrically op. 

posed infinitesimal dipoles of length, a do. In the 4) = 0 plane (Fig. 6-7) 
the s;6 component of the retarded current moment due to one dipole is 

[I] a do cos  (6-27) 

where [I] = Ic,e"(') and /0 is the peak current in time on the loop. 
Figure 6-8 is a cross section through the loop in the x-z plane of Fig. 6-7. 

Referring now to Fig. 6-8, the resultant moment dM at a large distance 
due to a pair of diametrically opposed dipoles is 

dM = 2j[I]a d4) cos 4) sin t-  (6-28) 

where 4, = 2,3a cos 4) sin 0 radians 
Introducing this value for 4, into (6-28) we have 

dM = 2.7[1]a cos 4) [sin (3a cos cf) sin 0)] d4)  (6-29) 

Now substituting (6-29) into (6-26) and integrating, 

A,  f 
sin ($a cos 4, sin 0) cos gb d4)  (6-30) 

2err  o 
or 

jjz[lla 
—  J Oa sin 0) 

2r 
(6-31) 

where J, is a Bessel function of the first order and of argument (3a sin 0). 
The integration of (6-30) is performed on equivalent dipoles which are 
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all situated at the origin but have different orientations with respect to 4,. 
The retarded current [I] is referred to the origin and, hence, is constant 
in the integration. 
The far electric field of the loop has only a it, component given by 

E, =  (6-32) 

Substituting the value of A, from (6-31) into (6-32) yields, 

E• — aco[fla J,(13a sin 0)  (6-33) 
2r 

or 

60113a [I] 
E, —  J,(fict sin 0)  (6-34) 

This expression gives the instantaneous electric field at a large distance 
r from a loop of any radius a. The peak value of Ed, is obtained by putting 
[I] = I., where Io is the peak value (in time) of the current on the loop. 
The magnetic field He at a large distance is related to E• by the intrinsic 
impedance of the medium, in this case, free space. Thus, 

fia2r[1]  He J,(fta sin 0)  (6-35) 

This expression gives the instantaneous magnetic field at a large distance 
r from a loop of any radius a. 
6-6. Far-field Patterns of Circular Loop Antennas with Uniform Current. 

The far-field patterns for a loop of any size are given by (6-34) and (6-35). 
They differ in magnitude by a factor (E, = I-1,Z). For a loop of a given 
size, tia is constant and the shape of the far-field pattern is given as a func-
tion of 0 by 

Ji(C>, sin 0) 

where C), is the circumference of the loop in wavelengths. That is, 

27ra 
CA =  = /3a 

(6-36) 

(6-37) 

The value of sin 0 as a function of 0 ranges in magnitude between zero 
and unity. When 0 = 90°, the relative field is .1,(Cx), and as 0 decreases 
to zero, the values of the relative field vary in accordance with the J, curve 
from J1(CA) to zero. This is illustrated by Fig. 6-9 in which a rectified 
first-order Bessel curve is shown as a function of C), sin 0. 
As an example, let us find the pattern for a loop 1 wavelength in diameter 

(C), = 7 = 3.14). The relative field in the direction 0 = 90° is then 0.285. 
As 0 decreases, the field intensity rises, reaching a maximum of 0.582 at 
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angle 0 of about 36°. As 0 decreases further, the field intensity also de-
creases, reaching zero at 0 = 0°. The pattern in the other four quadrants 
is symmetrical, the complete pattern being as presented in Fig. 6-106. 

0.6 

0.5 

=50.2 
0.1 

2  k  5 6 7 8 9 10 II 12 13 14 15 16 
9 CAsin 

30° 
0° 8 

Fla. 6-9. Pattern chart for loops with uniform current as given by first-order Bessel 
curve as a function of Cx sin 8. 

60° 

It is possible to obtain the pattern by a graphical construction. This 
is illustrated for the case we have just considered of C), = r by the auxiliary 
circle quadrant in Fig. 6-9. The angle 0 is laid off around the arc of the 
circle. The radius of the circle is equal to Cx sin 90° = Cx, which in this 
case is r. The field in the direction 0 = 60°, for instance, is then given by 
drawing a perpendicular to the axis of the abscissa and continuing this 
perpendicular until it intersects the J, curve giving a value of relative 
field, in this case, of 0.443, as shown in Fig. 6-9. 
Turning now to a consideration of loops of other size, it is to be noted 

from Fig. 6-9 that the maximum field is in the direction 0 = 90° for all 
loops which are less than 1.84 wavelengths in circumference (less than 
0.585 wavelength in diameter). As an example, the pattern for a loop 
illy wavelength in diameter is presented in Fig. 6-10a.  The pattern is 
practically a sine pattern as would be obtained with a very small loop. 
By way of contrast, the pattern for a loop 5 wavelengths in diameter 

is shown in Fig. 6-10c. In this case, which is typical for large circular 
loops with uniform current, the maximum field is in a direction nearly 
normal to the plane of the loop, while the field in the direction of the 
plane of the loop is.small. 
All patterns in Fig. 6-10 are adjusted to the same maximum.  The 

space patterns for the three cases in Fig. 6-10 are figures of revolution of 



SEC. 6-7]  THE LOOP ANTENNA  165 

the patterns around the polar axis. It is to be noted that the field exactly 
normal to the loop is always zero, regardless of the size of the loop. 

Diameter•-, 
C),..0-314 

Diameter-

CA 3.14 Diameter- 5A 
Ch- 15.7 

Fro. 6-10.  Far-field patterns of loops of 0.1, 1, and 5 wavelengths diameter. Uniform 
in-phase current is assumed on the loops. 

6-7. The Small Loop as a Special Case. The relations of (6-34) and 
(6-35) apply to loops of any size. It will now be shown that for the special 
case of a small loop, these expressions reduce to the ones obtained pre-
viously. 
For small arguments of the first-order Bessel function, the following 

approximate relation can be used.' 

J ,(x) = (6-38) 

where x is any variable. When x = 1, the approximation of (6-38) is 
about 1 per cent in error. The relation becomes exact as x approaches 
zero. Thus, if the perimeter of the loop is 1 wavelength or less (C), < 1), 

For small arguments, the J I curve is nearly linear (see Fig. 6-9). The general rela-
tion for a Hemel function of any order n is J(x)  x̂/n!2‘, where I x I << 1. 
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(6-38) may be applied to (6-34) and (6-35) with an error which is about 
1 per cent or less. Equations (6-34) and (6-35) then become 

6010a[I]$a sin 0 12071/lain 0 A 
— x2  (6-39) 2r   

t3a[II0a sin 0 ir[1] sin 0 A 
Ho — 

4r  r  X2 
(6-40) 

These far-field equations for a small loop are identical with those obtained 
in earlier sections (see Table 6-1). 
6-8. Radiation Resistance of Loops.' To find the radiation resistance of 

a loop antenna, the Poynting vector is integrated over 
a large sphere yielding the total power W radiated. This 
power is then equated to the square of the effective current 
on the loop times the radiation resistance R,. 

Fm. 6-11. Loop 
and transmission 
line. 

The average 

W=- IgR 2 R. (6-41) 

where /0 = peak current in time on the loop. The radia-
tion resistance so obtained is the value which would appear 
at the loop terminals connected to the transmission line as 
shown in Fig. 6-11. The situation shown in Fig. 6-11 
occurs naturally only on small loops. However, it will be 
assumed that the current is uniform and in phase for any 
radius a, this condition being obtained by means of phase 
shifters, multiple feeds, or other devices (see Sec. 14-20). 
Poynting vector of a far field is given by 

Pr =111112Rez (6-42) 

where I H I is the absolute value of the magnetic field and Z is the intrinsic 
impedance of the medium, which in this case is free space. Substituting 
the absolute value of Ho from (6-35) for I H I in (6-42) yields 

15w(fict10 
P, —  )2 J2,(3a sin 0)  (6-43) 

r2 

The total power radiated W is the integral of P, over a large sphere. 
That is, 

2r r  2 

W  =  ff  P, ds = 152-(3a10)2 f0  f  .1,(fla sm 0) sm 0 d0 d.c5  (6-44) 

1 The procedure follows that given by Foster, Loop Antennas with Uniform Current, 
Proc. I.R.E., 32, 603-607, October, 1944. 
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or 

W = 30T2(fta10)2 f 403a sin 0) sin 0 dO  (6-45) 
0 

In the case of a loop that is small in terms of wavelengths, the approxima-
tion of (6-38) can be applied. Thus (6-45) reduces to 

W = 12§ T2(pa)4n  s• 3 0 dO = 101r2/34a4/:  (6-46) 
0 

But the area A = Ta2 so (6-46) becomes 

W = 10#4A24  (6-47) 

Assuming no antenna losses, this power equals the power delivered to the 
loop terminals as given by (6-41). Therefore, 

R' = 10134A2I:  (6-48) 
2 

R, = 31,171(4)2 = 197C1, x2  ohms  (6-49) 

I?,  31,200(4 )2 ohms  (6-50) 

This is the radiation resistance of a small single-turn loop antenna, circular 
or square, with uniform in-phase current.  The relation is about 2 per 
cent in error when the loop perimeter is 1 wavelength. A circular loop of 
this perimeter has a diameter of about 110- wavelength. Its radiation re-
sistance by (6-50) is nearly 2.5 ohms. 
The radiation resistance of a small loop consisting of one or more turns 

is given byl 

and 

or 

R, = 31,200(n 1-1-)2 ohms x2 

where n = number of turns 
Let us now proceed to find the radiation resistance of a circular loop of 

any radius a. To do this we must integrate (6-45). However, the integral 
of (6-45) may be reexpressed. Thus, in general,' 

f0  2s j  i i(X sin 0) sin 0 dO =  f J2(y) dY 
.  2 X  0 

(6-51) 

IA. Alford and A. G. Kandoian, Ultrahigh-frequency Loop Antennas, Trans. 
A.I.E.E., 59, 843-848, 1940. 

2 G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge Uni-
versity Press, London, 1922. 
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where y is any function 
Applying (6-51) to (6-45) we obtain 

2$4 
W = 301.213aig f  J2(Y) dy 

0 

Equating (6-52) and (6-41) and putting tia = Ch yields 

(6-52) 

R, = 602-2C), ITCh J2(y) dy  ohms  (6-53) 

This is the radiation resistance as given by Foster for a single-turn circular 
loop with uniform in-phase current and of any circumference Ch. 
When the loop is large (Cx > 5), we can use the approximation 

J2(Y) di/  1 

so that (6-53) reduces to 

a 
R, = 60r2Cx = 592Cx = 3,720 

(6-54) 

(6-55) 

For a loop of 10 wavelengths perimeter, the radiation resistance by (6-55) 
is nearly 6,000 ohms. 
For values of Cx between I and 5 the integral in (6-53) can be evaluated 

using the transformation 

f2Ck 2Ch 
o J2(Y) dy = L  J  dy — 2J,(2Cx)  (6-56) 

where the expressions on the right of (6-56) are tabulated functions.' 
For perimeters of over 5 wavelengths (Cx > 5) one can also use the 

asymptotic development, 

•102s 

1 
J2(Y) dy  1 — — =[  11 sin (2x —  ±  cos  (2 7r\ 

Vrx  4/  16x  X — 4)]  (6-57) 

where x =  = Cx 
For small values of x, one can use a series obtained by integrating the 

ascending power series for J2. Thus, 

4 8 J.02:  X3 1  X2 X  X6 X  
J2(Y) dY =  (  56  1,080 + 31 0 ,68 

(6-58) 

When x = Ch = 2 (perimeter 2 wavelengths), the result with four terms 

The integral involving Jo for the interval 0 < x < 5 (where x  CO is given by 
A. N. Lowan and M. Abramowitz, J. Math. Phys., 22, 2-12, May, 1943; and also by 
Natl. Bur. Standards Tech. Memo 20. 
Values of Ji are given in many tables. See, for example, Jahnke and Emde, "Tables 

of Functions," B. G. Teubner, Leipzig, 1933, p. 157. 
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is about 2 per cent in error. This same percentage error is obtained with 
one term when the perimeter is about 1 wavelength. 
A graph showing the radiation resistance of single-turn loops with 

uniform current as a function of the circumference in wavelengths is pre-
sented in Fig. 6-12. The data for the curve are based on Foster's formulas 
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Fia. 6-12.  Radiation resistance of single-turn circular loop with uniform, in-phase 
current as a function of the loop circumference in wavelengths, C),. 

as given above. Curves for the approximate formulas of small and large 
loops are shown by the dashed lines. 
6-9. Directivity of Circular Loop Antennas with Uniform Current. The 

directivity D of an antenna was defined in (2-31) as the ratio of maximum 
radiation intensity to the average radiation intensity.  The maximum 
radiation intensity for a loop antenna is given by r2 times (6-43). The aver-
age radiation intensity is given by (6-45) divided by 4T. Thus, the direc-
tivity of a loop is 

2CAP(CA sin 0) 
D —  (6-59) 

fg" J2(y) di/ 

This is Foster's expression for the directivity of a circular loop with 
uniform in-phase current of any circumference CA. The angle 0 in (6-59) 
is the value for which the field is a maximum. 
For a small loop (CA < 1), the directivity expression reduces to 

3 • 2  3 
D = -2sin  = -2 (6-60) 
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3ince the field is a maximum at 0 = 90°. The value of 4 is the same as 
for a short electric dipole. This is to be expected since the pattern of a 
short dipole is the same as for a small loop. 
For a large loop (C), > 5), (6-59) reduces to 

D = 2Cx.I:(Cx sin 0)  (6-61) 

From Fig. 6-9 we note that for any loop with C), > 1.84, the maximum 
value of J,(C), sin 0) is 0.582. Thus, the directivity expression of (6-61) 
for a large loop becomes 

D = 0.68C), (6-62) 

The directivity of a loop antenna as a function of the loop circumference 
CA is presented in Fig. 6-13. Curves based on the approximate relations 
of (6-60) and (6-62) for small and large loops are indicated by dashed lines. 
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Fla. 6-13.  Directivity of circular loop antenna with uniform, in-phase current as a 
function of loop circumference in wavelengths, C. (After Foster.) 

6-10. Table of Loop Formulas. The relations developed in the preceding 
sections are summarized in Table 6-2. The general and large loop formulas 
are based on Foster's results. 
6-11. Square Loops. It was shown in Sec. 6-3 that the far-field patterns 

of square and circular loops of the same area are identical when the loops 
are small (A < A2/100). As a generalization, we may say that the prop-
erties depend only on the area and that the shape of the loop has no effect 
when the loop is small. However, this is not the case when the loop is 
large. The pattern of a circular loop of any size is independent of the 
angle 4, but is a function of 0 (see Fig. 6-2). On the other hand, the pattern 
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of a large square loop is a function of both 0 and 0. Referring to Fig. 6-14, 
the pattern in a plane normal to the plane of the loop and parallel to two 
sides (1 and 3), as indicated by the line AA', is simply the pattern of two 
point sources representing sides 2 and 4 of the loop. The pattern in a 

TABLE 6-2 

FORMULAS FOR CIRCULAR LOOPS WITH UNIFORM CURRENT 

Quantity 
General expression 
(any size loop) 

Small loop* 
A < X2/100 
Cx < 1 

Large loop 
C), > 5 

Far E, 

Far HO 

60wHIC),./1(Ch sin 0) 120T21/) sin 0 A 
Same as general r r  x 2 

[I]CxJ,(Ck sin 0) 7[11 sin 0 A 
Same as general 

2r r  X 2 

Radiation 
resistance, ohms 

2C),  

607r2Cx f  Jo(y) dy 
o 

31 200 0)2 = 197C: I  x 3 720 2 = 592CA t  x 

Directivity 2C)olf(r), sin 0) 3 

2 

a 
4.25  = 0.68C —x  ), 

Jr .12(1) dY 

A = area of loop; C.), circumference of circular loop, wavelengths. 
The small loop formulas apply not only to circular loops but also to square loops of 

area A and in fact to small loops of any shape having an area A. The formula involving 
C), applies, of course, only to a circular loop. 

plane normal to the plane of the loop and passing through diagonal cor-
ners, as indicated by the line BB', is different. The complete range in 
the pattern variation as a function of 4. is contained in this 45° interval 
between AA' and BB' in Fig. 6-14. 
An additional difference of large circular and square loops is in the 
patterns. For instance, Fig. 6-10c shows the pattern as a function of 0 
for a circular loop 5 wavelengths in diameter. By way of comparison, the 
pattern for a square loop of the same area is presented in Fig. 6-15. The 
square loop is 4.44 wavelengths on a side.  The pattern is in a plane 
perpendicular to the plane of the loop and parallel to the sides (plane 
contains AA' in Fig. 6-14). Comparing Figs. 6-10c and 6-15, we note 
that the pattern lobes of the circular loop decrease in magnitude as 0 
approaches 90° while the lobes of the square loop are of equal magnitude. 
This illustrates the difference of the Bessel function pattern of the circular 
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loop and the trigonometric function pattern of the square loop.  In the 

above discussion, uniform in-phase currents are assumed. 

Square 
oop 3 

45' 

X 

Flo. 6-14. Large square loop. Flo. 6-15. Pattern of square loop with 
uniform, in-phase current. The loop is 
4.44 wavelengths on a side. The pattern 
is in a plane normal to the plane of the 
loop and through the line AA' of Fig. 6-14. 

PROBLEMS 

6-1. Calculate and plot the far-field pattern normal to the plane of a circular loop 
I wavelength in diameter with a uniform in-phase current distribution. 
6-2. Calculate and plot the far-field pattern in a plane normal to the plane of a 

square loop and parallel to one side. The loop is 1 wavelength on a side. ASSUME 
uniform in-phase currents. 
6-3. What is the maximum effective aperture of a thin loop antenna 0.1 wave-

length in diameter with a uniform in-phase current distribution? 
6-4. What is the radiation resistance of the loop of Prob. 6-1? 
6-5. A circular loop antenna with uniform in-phase current has a diameter D. 

What is 
a. The far-field pattern (calculate and plot) 
b. The radiation resistance 
c. The directivity 

for each of three cases where 
(1) D = X/4 
(2) D = 1.5 X 
(3) D = 8 X 

6-6. Resolving the small square loop with uniform current into 4 short dipoles, 
show that the for-field pattern in the nlane of the loop is a circle. 



CHAPTER 7 

THE HELICAL ANTENNA 

7-1. Introduction. The helical antenna, which is discussed in this chap-
ter, may be regarded as the connecting link between the linear antenna 
and the loop antenna, discussed in preceding chapters.  The helical 
antenna is the general form of antenna of which the linear and loop an-
tennas are special cases. Thus, a helix of fixed diameter collapses to a 
loop as the spacing approaches zero. On the other hand, a helix of fixed 
spacing between turns straightens out into a linear conductor as the diam-
eter approaches zero. 
A helix may radiate in many modes. Two of these radiation modes will 

be considered in some detail. These are: (1) the axial mode of radiation' 
and (2) the normal mode of radiation.' 
In the axial mode of radiation the field is a maximum in the direction 

of the helix axis and is circularly polarized or nearly so. The axial mode 
of radiation occurs when the helix circumference is of the order of 1 wave-
length. For a given helix, this mode of radiation persists over a relatively 
wide frequency range. 
In the normal mode of radiation, the field is a maximum in a direction 

normal to the helix axis, and for a certain relation between the spacing 
and diameter the field is, in theory, circularly polarized. For the normal 
mode the dimensions of the helix must be small compared to the wave-
length, so that from band width and efficiency considerations this mode is 
not readily applicable in practice. 

I J. D. Kraus, Helical Beam Antenna, Electronics, 20, 109-111, April, 1947. 
J. D. Kraus and J. C. Williamson, Characteristics of Helical Antennas Radiating in 

the Axial Mode, J. Applied Phys., 19, 87-96, January, 1948. 
0. J. Glasser and J. D. Kraus, Measured Impedances of Helical Beam Antennas, 

J. Applied Phys., 19, 193-197, February, 1948. 
J. D. Kraus, Helical Beam Antennas for Wide-band Applications, Proc. I.R.E., 36, 

1236-1242, October, 1948. 
J. D. Kraus, The Helical Antenna, Proc. I.R.E., 37, 263-272, March, 1949. 
J. D. Kraus, Helical Beam Antenna Design Techniques, Communications, 29, 6-9, 

34-35, September, 1949. 
T. E. Tice and J. D. Kraus, The Influence of Conductor Size on the Properties of 

Helical Beam Antennas, Proc. I.R.E., 37, 1296, November, 1949. 
2 H. A. Wheeler, A Helical Antenna for Circular Polarization, Proc. I.R.E., 36, 1484-

1488, December, 1947. 
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The axial and normal radiation mode patterns of a helix are compared 
with the radiation patterns for straight conductors and loops in Fig. 7-1. 

STRAIGHT  CONDUCTORS  (0( = 90°) 
Short  Long 

00 

Small 

Small 

CO 

II= i 
12=0 
V = c 

II= 1 
12 = 1 
V = C 

II = 1 
12= 0 
V =OD  
All IX long 

LOOPS (a: = 0°) 

Large 

C=A 
I i = 1, 12= 1 

V=C 

C=12X 
11=1, 12=0 

v =co 

HELICES  ( 0°< a ( 90°) 
Large 

0 

C--4. X 
no. 7-1. Patterns of straight conductor, loop, and helix compared. /2 and /2 repre-
sent current magnitudes of waves traveling in opposite directions on antennas. If 
/2 = /1 there is a pure standing wave. If /2 = 0, only a pure traveling wave is present. 
(v = velocity of wave along antenna, c = velocity of light, C = circumference). 

It is to be noted that the patterns of a short linear conductor, a small 
loop, and a small helix are the same. 
7-2. Helix Dimensions. The following symbols will be used to describe 

a helix (see Fig. 7-2): 

D = diameter of helix (center to center) 
C = circumference of helix = 7D 
S = spacing between turns (center to center) 
a = pitch angle = arctan S/TD 
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L = length of 1 turn 
n = number of turns 
A = axial length = nS 
d = diameter of helix conductor 

The diameter D and circumference C refer to the imaginary cylinder 
whose surface passes through the center line of the helix conductor. A 
subscript X signifies that the dimension is measured in free-space wave-
lengths. For example: Dx is the helix diameter in free-space wavelengths. 

'Surface of imaginary  
helix cylinder 

d 
I 
-1 
1--s-i 

_ Helix__ 
axis 

C . ii D 

Flo. 7-2. Helix and a.ssociated dimen-  Fla. 7-3. Relation between circumfer-
sions.  ence, spacing, turn length, and pitch angle 

of a helix. 

If 1 turn of a circular helix is unrolled on a flat plane, the relation be-
tween the spacing S, circumference C, turn length L, and pitch angle a, 
are as illustrated by the triangle in Fig. 7-3. 
The dimensions of a helix are conveniently represented by a diameter-

spacing chart or, as in Fig. 7-4, by a circumference-spacing chart. On 
this chart the dimensions of a helix may be expressed either in rectangular 
coordinates by the spacing Sx and circumference Cy>, or in polar coordinates 
by the length of 1 turn 1.), and the pitch angle a. When the spacing is 
zero, a = 0, and the helix becomes a loop. On the other hand, when the 
diameter is zero, a = 90°, and the helix becomes a linear conductor. 
Thus, in Fig. 7-4 the ordinate axis represents loops while the abscissa 
axis represents linear conductors. The entire area between the two axes 
represents the general case of the helix. 
Suppose that we have a 1-turn helix with a turn length of 1 wavelength 

(L), = 1). When a = 0, the helix is a loop of 1 wavelength circumference 
or of diameter equal to 1/7r wavelengths. As the pitch angle a increases, 
the circumference decreases and the dimensions of the helix move along 
the 14, = 1 curve in Fig. 7-4, until, when a = 90°, the "helix" is a straight 
conductor 1 wavelength long. 
7-3. Radiation and Transmission Modes of Helices. In discussing the 

helix, it is necessary to distinguish between transmission and radiation 
diodes. 
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The term "transmission mode" is used to describe the manner in which 
an electromagnetic wave is propagated along an infinite helix as though 

Pitch Angle, a. 
rs 

2.8  1a. 
5° 
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.8 

u. 

4 

30° 

Axis of 
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Flo. 7-4.  Spacing-circumference chart for helices showing regions for different modes 
of operation. 

Normal 2  
mode 

00 

the helix constituted an infinite trans-
( a)  Tc mission line or wave guide. A variety 

of different transmission modes is 
possible. 

(1))  The term "radiation mode" is used 
to describe the general form of the far-

T2 +  T3 field pattern of a finite helix. Although 
c)  an infinite variety of patterns is pos-

_  sible, two kinds are of particular in-
terest. One is the axial or beam mode 
of radiation (R, mode), and the other 
is the normal mode of radiation (R0 
mode). 
The lowest transmission mode for a 

helical conductor has adjacent regions of positive and negative charge. 

End view of helices 

Fto. 7-5.  Approximate instantaneous 
charge distributions on helices for differ-
ent transmission modes. 
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separated by many turns. This mode is designated as the To transmission 
mode and the instantaneous charge distribution is as suggested by Fig. 7-5a. 
The To mode is important when the length of 1 turn is small compared to the 
wavelength (L<< X) and is the mode occurring on low-frequency inductances. 
It is also the important transmission mode in the traveling-wave tube.' Since 
the adjacent regions of positive and negative charge 
are separated by an appreciable axial distance, a  Polar 
substantial axial component of the electric field is 
present, and in the traveling-wave tube this field 
interacts with the electron stream. If the criterion 
LA <  is arbitrarily selected as a boundary for the 
To transmission mode, the region of the helix dimen-
sions for which this mode is important is shown by 
the shaded area in Fig. 7-4. 
A helix excited in the To transmission mode may 

radiate. Let us consider the case when the helix 
is very short (nL  X) and the current is assumed 
to be of uniform magnitude and in phase along the 
entire helix. It is theoretically possible to approxi-
mate this condition on a small, end-loaded helix. 
Although the radiation resistance of such a small 
helix would be very low, let us assume that appre-
ciable radiation can be obtained.  The maximum 
field from the helix is then normal to the helix axis 
for all helix dimensions provided only that nL  X. 
Thus, this condition is called a "normal radiation mode" (R0).2 Any com-
ponent of the field has a sine variation with 0 as shown in Fig. 7-6. The 
space pattern is a figure of revolution of the pattern shown, around the 
polar axis. The field is, in general, elliptically polarized but for certain helix 
dimensions may be circularly polarized and for other dimensions, linearly 
polarized. The transmission mode and radiation mode appropriate for 
very small helices can be described by combining the T. and R. designa-

I R. Komfner, The Traveling Wave Tube as Amplifier at Microwaves, Proc. I.R.E., 
35, No. 2, 124-127, February, 1947. 
J. R. Pierce and L. M. Field, Traveling Wave Tubes, Proc. I.R.E., 35, No. 2, 108-111, 

February, 1947. 
J. R. Pierce, Theory of the Beam-type Traveling Wave Tube, Proc. I.R.E., $5, 

No. 2, 111-123, February, 1947. 
C. C. Cutler, Experimental Determination of Helical Wave Properties, Proc. I.R.E., 

36, No. 2, 230-233, February, 1948. 
L. J. Chu and J. D. Jackson, Field Theory of Traveling Wave Tubes, Proc. I.R.E., 

36, No. 7, 853-863, July, 1948. 
I Any radiation mode, in general, may be arbitrarily designated by the shorthand 

notation R.„„ 8. where 0,,. is the angle from the helix axis to the direction of maximum 
radiation. For the normal mode 0.1 = 90° so that the designation is Ro. 

axis 

Fro. 7-6.  A small he-
lix and its radiation 
pattern. 
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tions as ToRo. This designation is applied in Fig. 7-4 to the region of 
helix dimensions near the origin. 
A first-order transmission mode on the helix, designated T„ becomes 

permissible when the helix circumference Cx in free-space wavelengths is 
of the order of 1 wavelength.  For small pitch angles, this mode has 
regions of adjacent positive and negative charge separated by approxi-
mately  turn or near the opposite ends of a diameter as shown in Fig. 
7-5b and also in end view by Fig. 7-5c. It is found that radiation from 
helices with circumferences of the order of 1 wavelength (Cy),  1) and a 
number of turns (n > 1) is usually a well-defined beam with a maximum 
in the direction of the helix axis. Hence, this type of operation is called 
the "axial or beam mode of radiation" and since O. = 0 the designation 
is R„ A helix radiating in the axial mode may be spoken of as a "helical 

beam antenna." The field in the 
axial direction from a helix radiating 
in the axial mode is circularly 
polarized or nearly so. 
Measured field patterns of a 7-

turn 12° helix with a circumference 
of 1 wavelength are shown in Fig. 

I6X  7-7. There are two patterns. Re-
ferring to the helix in Fig. 7-7, the 

o 94x 
E• pattern shows the variation with 
4) of the E. component (parallel to 
the page) of the field. The Et pat-
tern shows the variation with 4) of 
the Et component (normal to the 
page). Both patterns are functions 
of 4) and are measured in the plane 
of the page. Both patterns in Fig. 
7-7 are adjusted to the same maxi-
mum. However, the actual differ-
ence between the maxima of E. and 
Et is small, since the field is nearly 
circularly polarized. 
The axial mode of radiation with 

patterns similar to those of Fig. 7-7 
occurs over a considerable range of helix dimensions (C), and Sx or 1,), and ce), 
as shown by the crosshatched area in Fig. 7-4. Being associated with the 
T, transmission mode, the combined designation appropriate to this region 
of helix dimensions is T,R, as shown in Fig. 7-4. 
Still higher order transmission modes, T., T., and so forth, become 

permissible for larger values of C. For small pitch angles, the approximate 

ot=i2°,n=7, CA=1.0 

Fla. 7-7.  Field patterns of 12°, 7-turn 
helix radiating in the axial mode.  The 
helix circumference is 1 wavelength. 
Both E and Ee patterns are shown as a 
function of 0. E, is in the plane of the 
page, and Et, is normal to the page. 
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charge distribution around the helix for 
Fig. 7-5c. 
In Fig. 7-4, the normal radiation 

mode region (T0110) is shown as a 
shaded area. The axial or beam mode 
region (TIR1) is shown as a cross-
hatched area. In general, the radia-
tion mode associated with helix di-
mensions outside these areas is multi-
lobed or, in some cases, conical, as 
illustrated by the patterns in Fig. 7-8. 
Another example is the four-lobed 
mode' that occurs when the spacing is 
1 wavelength and the length of one 
turn is 2 wavelengths (a = 30°), the 
radiation being both normal and axial. 
See Fig. 7-0. 
7-4. The Normal Radiation Mode. Consider a helix oriented with its 

179 

these modes is as suggested by 

ec-24*,  CA-1.25 

Fio. 7-8.  Examples of multilobed and 
conical patterns. 

axis coincident with the polar or z axis as in Fig. 7-10a.  If the dimen-

Radiation 
patterns 

I  025X 

"pb--0.32 

Axial mode mode 

1-*--- 0 55X 

4-lobed mode 

0.05X 

l.-0.1X 

Normal mode 

Fm. 7-9.  Patterns for three helix radiation modes, the relative size of helices to pro-
duce the different modes at the same wavelength being indicated. 

ill. Chireix, U.S. Patent 1,843,445, Feb. 2, 1932. 
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sions of the helix are small (nL << X), the maximum radiation is always in 
a direction normal to the helix axis (see pattern in Fig. 7-6). Hence, the 

z 
olor 
axis 

Z 

SI 

Z 

x (a): Helix  x (b): Loop  x (c): Dipole 

Fro. 7-10(a), (b), and (c). Dimensions and coordinates for helix, loop, and dipole. 

maximum field of a small helix oriented as in Fig. 7-10a is in the x-y plane, 
with zero field in the direction of the z axis. 
When the pitch angle is zero, the helix becomes a loop as in Fig. 7-10b. 

When the pitch angle is 90°, the helix 
straightens out into a linear antenna I 4D fr1 
as in Fig. 7-10c, the loop and straight 
antenna being limiting cases of the Is  helix. 
The far field of the helix may be 

described by two components of the 
electric field, E# and Eo, as shown in 
Fig. 7-10a.  Let us now develop 
expressions for the far-field patterns 
of these components for a small helix. 
The development is facilitated by 
assuming that the helix consists of a 

number of small loops and short dipoles connected in series as in Fig. 7-10d. 
The diameter D of the loops is the same as the helix diameter, and the 
length of the dipoles S is the same as the spacing between turns of the 
helix. Provided that the helix is small, the modified form of Fig. 7-10d 
is equivalent to the true helix of Fig. 7-10a. The current is assumed to 
be uniform in magnitude and in phase over the entire length of the helix. 
Since the helix is small, the far-field pattern is independent of the number 
of turns. Hence, it suffices to calculate the far-field patterns of a singlE 
small loop and one short dipole as illustrated in Fig. 7-10e. 
The far field of the small loop has only an E‘ component. Its value is 

given in Table 6-1, as 

(d)  (e) 
FIG. 7-10(d) and (e). Modified helix for 
normal mode calculations. 

E.  _ 12072[/] sin 0 A 
r  x2 (7-1) 
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where the area of the loop A = rD214 
The far field of the short dipole has only an Es component. Its value is 
given in the same table as 

Es = j Miff sin 92 —X  (7-2) 

where S has been substituted for L as the length of the dipole. 
Comparing (7-1) and (7-2), the j operator in (7-2) and its absence in 

(7-1) indicates that E. and Es are in phase quadrature. The ratio of the 
magnitudes of (7-1) and (7-2) then gives the axial ratio of the polarization 
ellipse of the far field. Hence, dividing the magnitude of (7-2) by (7-1) 
we obtain for the axial ratio AR, 

AR  _  — 11i1  SX _ 2SX 
— I E. I 2rA  7r2D2 

Three special cases of the polarization ellipse are of interest. (1) When 
= 0, the axial ratio is infinite and the polarization ellipse is a vertical 

line indicating linear vertical polarization.  The helix in this case is a 
vertical dipole. (2) When Es = 0, the axial ratio is zero' and the polari-
zation ellipse is a horizontal line indicating linear horizontal polarization. 
The helix in this case is a horizontal loop. (3) The third special case of 
interest occurs when I E, I =I E. I. For this case the axial ratio is unity, 
and the polarization ellipse is a circle, indicating circular polarization. 
Thus, setting (7-3) equal to unity yields 

rD = V2SX  or  Ck =  " Vii K  (7-4) 

This relation was first obtained by Wheeler in an equivalent form.' The 
radiation is circularly polarized, not only in all directions in the x-y plane 
of Fig. 7-10a but in all directions in space except in the direction of the 
polar axis where the field is zero. 
We have considered three special cases of the polarization ellipse in-

volving linear and circular polarization. In the general case, the radiation 
is elliptically polarized. Therefore, the radiation from a helix of constant 
turn length changes progressively through the following forms as the pitch 
angle is varied. When a = 0, we have a loop (Fig. 7-10b) and the polariza-
tion is linear and horizontal. As a increases, let us consider the helix 
dimensions as we move along a constant Lxline in Fig. 7-4. As a increases 

The axial ratio is here allowed to range from 0 to infinity, instead of from 1 to 
infinity as customarily (Sec. 15-11), in order to distinguish between linear vertical and 
linear horizontal polarization. 

2 H. A. Wheeler, A Helical Antenna for Circular Polarization, Proc. I.R.E., 35, 1484-
1488, December, 1947. 

(7-3) 
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from zero, the polarization becomes elliptical with the major axis of the 
polarization ellipse horizontal. When a reaches a value such that 
Cx = V2Sx the polarization is circular. With the aid of Fig. 7-3, this 
value of a is given by 

a = arcsin —1 + VI +  (7-5) 

As a increases still further, the polarization again becomes elliptical but 
with the major axis of the polarization ellipse vertical. Finally, when a 
reaches 90°, we have a dipole (Fig. 7-10c) and the polarization is linear 
and vertical.  Wheeler's relation for circular polarization from a helix 
radiating in the normal mode as given by (7-4) or (7-5) is shown in Fig. 
7-4 by the curve marked Cx = V2Sx. 
In the preceding discussion on the normal mode of radiation, the as-

sumption is made that the current is uniform in magnitude and in phase 
over the entire length of the helix. This condition could be approximated 
if the helix is very small (nL << X) and is end-loaded. However, the 
band width of such a small helix would be very narrow, and the radiation 
efficiency would be low. The band width and radiation efficiency could 

be increased by increasing the size of 
the helix, but to approximate the uni-

  nom- ma. form, in-phase current distribution re-
quires that some type of phase shifter 
be placed at intervals along the helix. 

Ma,,.  max  This may be inconvenient or imprac-..— 
tical. Hence, the production of the 
normal mode of radiation from a helix 
has serious practical limitations. 
An antenna having four slanting 

Max  dipoles that is suggestive of a modi-
fied helix radiating in the normal 
mode has been built by Brown and 

Flo. 7-11.  Arrangements for producing  Woodward' (see Fig. 14-39f). Their 
the axial mode of radiation,  arrangement is based on a design de-

scribed by Lindenblad.2 
7-5. Arrangements for Producing the Axial Mode of Radiation. When 

the helix circumference Cx is increased to the order of 1 wavelength, the 
axial or beam mode of radiation is obtained.  This radiation mode is 
generated in practice with great ease.  In fact, the dimensions of the 

G. H. Brown and 0. M. Woodward, Circularly Polarized Omnidirectional Antenna, 
RCA Rev, 8, 259-269, June, 1947. 

2 N. E. Lindenblad, Antennas and Transmission Lines at the Empire State Television 
Stution, Communications, 21, 10-14, 24-26, April, 1941. 
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helix are so noncritical that a helical beam antenna is one of the simplest 
types of antennas it is possible to make. 
The arrangement illustrated in Fig. 7-11a affords a simple method of 

generating the axial mode of radiation from a helix. The radiation is in 
the form of a unidirectional beam as in Fig. 7-7. 
The radiation is a maximum in the direction of the helix axis and is 

circularly polarized, or nearly so. The helix is operated in conjunction 
with a ground plane and is energized by a coaxial transmission line. The 
inner conductor of the line connects to the helix, and the outer conductor 
terminates in the ground plane. The ground plane should be at least 
wavelength in diameter. An axial mode helical antenna of 7 turns and 
pitch angle of 12.5° is shown in the photograph of Fig. 7-12. 

no. 7-12.  Pole-mounted helical beam antenna (or axial mode helix) of 7 turns with 
pitch angle of 12.5°. 

An arrangement for energizing a helix in the beam mode with a two-
wire transmission line is shown in Fig. 7-11b. The antenna in this case 
produces a bidirectional pattern as indicated. The above helices are of 
uniform cross section. The beam mode of radiation can also be generated 
with a tapered helix as in Fig. 7-11c. 
The diameter, the spacing, or both may be tapered (see Sec. 7-16). If 

the taper is moderate, the effect is small, owing to the noncritical nature 
of the helix dimensions when radiating in the axial mode. 
The following discussion will be restricted to uniform helices. 
7-6. Current Distribution on Helices. When the circumference of the 

helix is less than about 1 wavelengths (C), < f) the current distribution is 



184 ANTENNAS [CHAP. 7 

nearly sinusoidal as on a long straight antenna. As an example,' the 
absolute magnitude of the measured current distribution on a 12°, 7-turn 
helix with a circumference of about 0.6 wavelength (CA 0.6) is presented 

Re
l
at
i
v
e
 
cu
rr
e
nt 

Distance along helix in wavelengths 

Re
l
ot
t
v
e
 
Cu
r
r
e
nt 

Distance 
along helix 

Open  Feed 
end  end 

D.stance 
along helix 

(d) 

Open  Feed Feed 
end 

(c) 

2  3 
Distance along helix in wavelengths 

Total outgoing wave 

Distance 
end  end  along helix 

(e) 

Open 
end 

Fm. 7-13.  (a) Measured current distribution on helix of 0.6 wavelength circumference. 
(b) Measured current distribution on same helix at higher frequency (CA w. 1.07) with 

radiation in the axial mode. 
(c) Resolution of current distribution when C), <  into two To transmission mode 

waves of nearly constant amplitude 4 traveling in opposite directions. 
(d) Resolution of current distribution on helix radiating in the axial mode (1 < 

< 1) into two outgoing waves and two reflected waves. 
(e) Resolution of current distribution on helix radiating in the axial mode into a 

total outgoing and a total reflected wave. 

in Fig. 7-13a. When the frequency is raised so that the circumference of 
this helix is about one wavelength (CA t 1), the measured current is of 

Kraus and Williamson, loc. cit. 



SEC. 7-6]  THE HELICAL ANTENNA  185 

distinctly different form as shown in Fig. 7-136. This type of distribution 
is characteristic of helices radiating in the axial mode. 
Thus, a helix with a circumference too small for the axial mode of 

radiation (C), < 1) has a nearly sinusoidal type of current distribution, 
caused by alternate reinforcement and cancellation of two oppositely 
directed traveling waves on the helix of nearly equal amplitude .10 as 
suggested in Fig. 7-13c. Both traveling waves are of the To transmission-
mode type. 
When the circumference of the helix is of the order of 1 wavelength and 

radiation is in the axial mode (I < Ck < f), the current distribution is 
relatively uniform over the central region of the helix since the outgoing 
waves are large in comparison with those returning. By assuming two 
outgoing traveling waves of different phase velocity, one (To mode) at-
tenuated and the other (T, mode) constant, and two smaller returning 
traveling waves of different phase velocity, one (To mode) attenuated and 
the other (T1 mode) constant, Marsh' has been able to account in detail 
for the complex appearance of a measured current distribution such as in 
Fig. 7-13b.  The To mode waves are rapidly attenuated while the T, 
mode waves are of relatively constant amplitude as suggested in Fig. 7-13d, 
so that in the central region of the helix only the relatively constant T, 
mode waves are of importance. 
Continuing the discussion of the current distribution on helices radiating 

in the axial mode (-1 < C), < -I), the two outgoing waves may be combined 
into a single total outgoing wave (To T, waves) and the two reflected 
waves into a single total reflected wave as in Fig. 7-13e. The total out-
going wave attenuates rapidly near the input end but reaches a relatively 
constant value about 1 wavelength from the input terminals (as measured 
along the helical conductor). This value is maintained to the open end 
of the helix. A dip in the total outgoing wave occurs where the two 
component outgoing waves (To and Ti) of different phase velocity are in 
phase opposition and of nearly equal amplitude. The total reflected wave 
starts back from the open end exhibiting a similar behavior. It decreases 
rapidly at first hut reaches a relatively constant value about 1 wavelength 
along the helix from the open end. This amplitude is usually very much 
less than that of the total outgoing wave,' so that the reflected wave 

' James A. Marsh, Measured Current Distributions on Helical Antennas, Proc I .R.E., 
39. firA-675, June 1951. 
This may be deduced from Fig. 7-136 by noting that the SWR of current on the helix 

approaches unity about 1 wavelength (or 1 turn in this case) from the open end. More 
detailed data are given by Marsh. A few earlier measurements were made by Milton 
Aronoff, "Measured Phase Velocity and Current Distribution Characteristics of Helical 
Antennas Radiating in the Beam Mode," master's thesis, Department of Electrical 
Engineering, The Ohio State University, 1948. 
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can usually be neglected in calculating helix patterns. Furthermore, if 
the helix is long, the outgoing To wave can also be neglected and the 
pattern calculated entirely on the basis of a single outgoing T, wave of 
constant amplitude. 

7-7. Terminal Impedance of Helices.'  When the helix circumference 
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ha. 7-14.  Measured impedance spiral for 12°, 8-turn helix (a) and 18°, 5-turn helix 
(b). The helices are of fixed physical size. The impedance (resistance R and reactance 
X, in ohms) is shown as a function of frequency, the circumference in wavelengths at a 
given frequency being indicated at intervals along the spirals. 

is less than about 1 wavelength (CY), < 1), the terminal impedance is 
highly sensitive to changes in frequency. However, when the helix cir-
cumference is of the order of 1 wavelength (I < C < 4) and the helix is 
radiating in the axial mode, the terminal impedance is nearly constant as 
a function of frequency, provided that the pitch angle and number of 
turns are not too small. This is illustrated by the impedance spirals of 
Fig. 7-14 which show the measured terminal impedance of 12° and 18° 
helices as a function of the frequency, the helix circumference in wave-
lengths for a given frequency being indicated at intervals along the spirals. 
When the circumference is too small for the axial mode of radiation, 

the impedance variation is similar to that on a mismatched transmission 
line of considerable length. On the other hand, the impedance variation, 
or lack of it, when the helix radiates in the axial mode, is similar to that 
on a transmission line terminated in approximately its characteristic 
impedance.  This relatively constant terminal impedance of a helix 
radiating in the axial mode may be explained by the marked attenuation 

10. J. Glasser and J. D. Kraus, Measured Impedances of Helical Beam Antennas, 
J. Applied Phys., 19, 193-197, February, 1948. 
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of both the total outgoing and total reflected waves. Thus, relatively little 
energy reflected from the open end of the helix reaches the input. The 
SWR of current at the input terminals 
is given by  Ground plane 

SWR — In +   
/0 — /2 

Helomisx 
where /0 and 12 are as indicated in 
Fig. 7-13e.  Since /2 is very small  7 Su—rface of imaginary 

compared to /0, the SWR at the termi- helix cylinder 

nals is nearly unity, like on a trans-  Fla. 7-15. Terminal arrangement of 
mission line terminated in approxi-  helical beam antenna. 
mately its characteristic impedance. 
The impedance spirals of Fig. 7-14 are measured on helices having the 

terminal arrangement shown in Fig. 7-15. Beyond point Q, the helix lies 
in the surface of the imaginary helix cylinder. Between points P and Q, 
the helix conductor lies in a plane through the helix axis and at approxi-
mately the same pitch angle as for the helix proper. The helix axis co-
incides with the center conductor of the coaxial line feeding the antenna. 
All terminal impedances are referred to the point P. Variations in the 
arrangement of the conductor between P and Q produce changes in the 
details of the impedance spirals. The nature of the dielectric structure 
supporting the helix and the size and shape of the ground plane also have 
an effect on the detail but not on the general form of the impedance 
spirals, it being assumed that the amount of dielectric is not excessive and 
that the size of the ground plane is not too small. The conductor diameter 
d has relatively little effect on the helix characteristics when the helix is 
radiating in the axial mode.' However, at frequencies outside the axial 
mode the effect of d may be considerable. In general, the terminal impe-
dance of helical antennas radiating in the axial mode is nearly a pure 
resistance with a value between 100 and 200 ohms. Based on a large 
number of impedance measurements, the terminal impedance of an axially 
fed helix (as in Fig. 7-15) is given within about ±20 per cent by the 
empirical relation, R = 140 C), ohms.  This applies to helices with 
12° < a < 15°, I < C), < 4, and n > 3. 
7-8. Axial Mode Patterns and the Phase Velocity of Wave Propagation 

on Helices.' As a first approximation, a helical antenna radiating in the 
axial mode may be assumed to have a single traveling wave of uniform 
amplitude along its conductor. By the principle of pattern multiplication, 

T. E. Tice and J. D. Kraus, The Influence of Conductor Size on the Properties of 
Helical Beam Antennas, Proc. I.R.E., 37, 1296, November, 1949. 

2 J. D. Kraus, The Helical Antenna, Proc. I.R.E., 37, 263-272, March, 1949. 
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the far-field pattern of a 
of the pattern for 1 turn 
sources as in Fig. 7-16. 

helix, such as shown in Fig. 7-15, is the product 
and the pattern for an array of n isotropic point 
The number n equals the number of turns. 

The spacing S between sources is 
equal to the turn spacing. When the 
helix is long (say, nS), > 1), the 
array pattern is much sharper than 
the single-turn pattern and hence 
largely determines the shape of the 
total far-field pattern. Hence, the 
approximate far-field pattern of a 
long helix is given by the array pat-
tern. Assuming now that the far-

field variation is given by the array pattern or factor and that the phase 
difference between sources of the array is equal to the phase shift over 1 
turn length L), for a single traveling wave, it is possible to obtain a simple, 
approximate expression for the phase velocity required to produce axial 
mode radiation.  This value of phase velocity is then used in pattern 
calculations. 
The array pattern or array factor E for an array of n isotropic point 

sources arranged as in Fig. 7-16 is given by (4-51). Thus, 

To distant 
0" point 

1-.S.4  Helix 

I  2  3  4  5  6  7  axis 

Fig.  7-16.  Array  of isotropic  point 
sources, each source representing 1 turn 
of the helix. 

E sin (n0/2) 
—  sin (0/2) (7-6) 

where n = number of sources and 

= S, cos  (/' -I- 43  (7-7) 

where S. = 27S/X 
In the present case, (7-7) becomes 

= 2T(S), cos 0 —  
P 

where p = v/c = relative phase velocity of wave propagation along the 
helical conductor, v being the phase velocity along the helical conductor 
and c being the velocity of light in free space. 
If the fields from all sources are in phase at a point on the helix axis 

(4) = 0), the radiation will be in the axial mode. For the fields to be in 
phase (ordinary end-fire condition) requires that 

= —22-m  (7-9) 
where m = 0, 1, 2, 3 . . . 
The minus sign in (7-9) results from the fact that the phase of source 2 is 
retarded by 27/4/p with respect to source 1. Source 3 is similarly re-
tarded with respect to source 2, etc. 

(7-8) 
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Now putting 4) = 0 and equating (7-8) and (7-9), we have 

LA 
(7-10) 

P 

When m = 1 and p = 1, we have the relation 

L), — th, =  1  or  L — S = X  (7-11) 

This is an approximate relation between the turn length and spacing re-
quired for a helix radiating in the axial mode.  Since for a helix 
12 = 1-2V + S2, (7-11) can be rewritten fiS 

V2S), + 1 
D), — 

I. 
or  C), = V2S), -I- 1  (7-12) 

Equation (7-12) is shown graphically by the curve marked C), = V2S), ± 1 
in Fig. 7-4. The curve defines approximately the upper limit of the axial 
or beam mode region. 
When m = 1, (7-10) is appropriate for a helix operating in the first-

order (TO transmission mode. When m = 2, (7-10) is appropriate for 
the T2 transmission mode, etc. A curve for m = 2 is shown in Fig. 7-4 
by the line marked C), = 2 VS), + 1. Hence, m corresponds to the order 
of the transmission mode on a helix radiating a maximum field in the axial 
direction. The case of particular interest here is where m = 1. 
The case where m = 0 does not represent a realizable condition, unless 

p exceeds unity, since when m --= 0 and p = 1 in (7-10) we have L = S. 
This is the condition for an end-fire array of isotropic sources excited by 
a straight wire connecting them (a = 90°). However, the field in the 
axial direction of a straight wire is zero so that there can be no axial mode 
of radiation in this case. 
Returning now to a consideration of the case where m = 1 and solving 
(7-10) for p, we have 

Lk   

P — 8), ± 1 

From the triangle of Fig. 7-3, (7-13) can also be expressed 

1   
P — sin a ± ((cos a)/ CO 

Equation (7-13a) gives the required variation in the relative phase velocity 
p as a function of the circumference C), for in-phase fields in the axial 
direction. The variation for helices of different pitch angles is illustrated 
in Fig. 7-17. These curves indicate that when a helix is radiating in the 
axial mode (I < C), < it) the value of p may be considerably less than 

(7-13) 

(7-13a) 



190  ANTENNAS  [CHAP. 7 

unity. This is borne out by direct measurements of the phase velocity. 
In fact, the observed phase velocity is found to be slightly less than called 
for by (7-13) or (7-13a). Calculating the array pattern for a 7-turn helix 
using values of p from (7-13) and (7-13a) yields patterns much broader 
than observed. The p value of (7-13) or (7-13a) corresponds to the ordinary 
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Fla. 7-17. Relative phase velocity p for different pitch angles a as a function of the 
helix circumference in free-space wavelengths ek for the condition of in-phase fields in 
the axial direction. 

end-fire condition discussed in Chap. 4. If the increased directivity 
condition of Hansen and Woodyard is presumed to exist, (7-9) becomes 

11, = — (2rm  (7-14) 

Now equating (7-14) and (7-8), putting 4) = 0, and solving for p we have 

P m  (1/2n) 

For the case of interest m = 1 and 

(7-15) 

IA P 
(7-16) 8), ((2n  1)/2n) 

For large values of n, (7-16) reduces to (7-13). Equation (7-16) can also 
be expressed' 

1   
P — sin a  [(2n  1)/2n][(cos a)/C).] 

It is to be noted that, as n becomes large, (7-17) reduces to (7-13a). 

(7-17) 
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Using p as obtained from (7-16) or (7-17) to calculate the array factor 
yields patterns in good agreement 
with measured patterns.  The p 
value from (7-16) or (7-17) also is 
in closer agreement with measured 
values of the relative phase velocity. 
Hence, it appears that the increased 
directivity condition is approxi-
mated as a natural condition on 
helices radiating in the axial mode.' 
Another method of finding the 

relative phase velocity p on helical 
antennas radiating in the axial 
mode is by measuring the angle (60 
at which the first minimum or null 
occurs in the far-field pattern. This 
corresponds to the first null in the 
array factor, which is at 00 (see 
Fig. 4-20). Then in this case (7-9)  x 
becomes Fla. 7-18. Helix showing points c and d 

at conductor surface. 
= — (2win ± 00)  (7-18) 

Now equating (7-18) and (7-8) and putting m = 1 and solving for p, we 
have 

L).   

P — SA COS 00 ±  1 +  (00/27) 

Three relations for the relative phase velocity p have been discussed 
for helices radiating in the axial mode with transmission in the T, mode. 
These are given by (7-13a), (7-17), and (7-19). 
A fourth relation for p appropriate to the Ti and higher order trans-

mission modes on infinite helices has been obtained by Bagby2 by applying 
boundary conditions approximating a helical conductor to a solution of 
the general wave equation expressed in a new coordinate system, called 
"helicoidal cylindrical coordinates."  Bagby's solution is obtained by 
applying boundary conditions to the two points c and d in Fig. 7-18. His 
value of the relative phase velocity is given by 

1 The axial mode region is shown by the crosshatched area in Fig. 7-4. Helices with 
dimensions in this region radiate in the axial mode, and (7-13a), or more properly (7-17), 
applies. Outside this region these equations generally do not apply. 

2 C. K. Bagby, "A Theoretical Investigation of Electro-magnetic Wave Propagation 
on the Helical Beam Antenna," master's thesis, Department of Electrical Engineering, 
The Ohio State University, 1948. 

(7-19) 
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Cy>,   
V  m cos a  hR sin a  (7-20) 

where 

m4(kR)   
hi? = tan a  (7-21) 

J.,_,(kR)J.„.,(kR) 

where m = order of transmission mode (=1, 2, 3 . . .) (m  0) 
R = radius of helix cylinder 
kR = VC: — (hR)2 
h = Constant 
J is a Bessel function of argument kR 

The variation of p as a function of Ck for a 13° helix as calculated by 
(7-20) and (7-21) for the case m = 1 is illustrated by the curve A, in Fig. 
7-19. A curve for the T, transmission mode (m = 1) as calculated for 
the in-phase condition from (7-13a) is shown by B,. A curve for the in-
creased directivity condition on a 13°, 7-turn helix, with m = 1 is pre-
sented by CI. 
Curves for the T, transmission mode for each of the three cases con-

sidered above are also presented in Fig. 7-19. In addition, a curve of 
the measured relative phase velocity on a 13°, 7-turn helix is shown for 
circumferences between about 0.4 and 1.5 wavelengths. It is to be noted 
that in the circumference range where the helix is radiating in the axial 
mode (I < C < It), the increased directivity curve, of the three calcu-
lated curves, lies closest to the measured curve.' The measured curve 
gives the value of the total or resultant phase velocity owing to all modes 
present (To, T„ etc.) as averaged over the region of the helix between 
the third and sixth turns from the feed end. The vertical lines indicate 
the spread, if any, in values observed at one frequency.  In general, 
each transmission mode propagates with a different velocity so that when 
waves of more than one transmission mode ale present the resultant phase 
velocity becomes a function of position along the helix and may vary 
over a considerable range of values.' When  < C), < 4 the phase velocity 
as measured in the region between the third and sixth turns corresponds 
closely to that of the T, transmission mode. The T. mode is also present 
on the helix but is only important near the ends (see Fig. 7-13d). When 
the circumference Cx < I, the T. mode may be obtained almost alone 

The increased directivity curve is the only curve calculated for a helix of 7 turns. 
The in-phase field's curve and Bagby's curve imply an infinite helix. The reason that 
the in-phase field curve can be considered as referring to an infinite helix follows from the 
fact that the increased directivity condition approaches the in-phase field condition as 
the number of turns becomes infinite. 
2 J. A. Marsh, Measured Current Distributions on Helical Antennas, Proc. I.R.E., 

39, 668-675, June 1951. 



SEC. 7-8]  T HE H ELI CAL A NTE N N A 193 

over the entire helix (see Fig. 7-13c) and the measured phase velocity 
approaches that for a pure To mode indicated by curve D in Fig. 7-19. 
Theoretical values of the phase velocity for the To transmission mode 

have been obtained by Pierce' and by Chu and Jackson' and a few meas-
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FIG. 7-19. Relative phase velocity p as a function of the helix circumference in free-
space wavelengths Cg for 13° helices. The solid curve is measured on a 13°, 7-turn 
helix. Curves A1 and A g are as calculated by Bagby for Ti and T1 transmission modes 
on an infinite 13° helix. Curves Bi and B2 are calculated for in-phase fields and curves 
CI and CI for increased directivity for Ti and Tg transmission modes. Curve D is from 
data by Chu and Jackson as calculated for To transmission mode. 

urements have been given by Cutler.' Curve D in Fig. 7-19 is for a 13° 
helix and is based on data given by Chu and Jackson. This curve indi-
cates that at small circumferences the relative velocity of a pure To mode 
wave attains values considerably greater than that of light in free space. 
At Cx = I, curve D has decreased to a value of nearly unity, and if no 
higher order transmission mode were permissible, the phase velocity would 
approach that of light for large circumferences. However, higher order 

1J. R. Pierce, Theory of the Beam-type Traveling Wave Tube, Proc. I.R.E., 35, No. 
2, 111-123, February, 1947. 

2 L. J. Chu and J. D. Jackson, Field Theory of Traveling Wave Tubes, Proc. I.R.E., 
36, No. 7, 853-863, July, 1948. 

C. C. Cutler, Experimental Determination of Helical Wave Properties, Proc. I.R.E., 
35, No. 2, 230-233, February, 1947. 
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modes are permissible, and when Cx exceeds about 1, the resultant velocity 
drops abruptly, as shown by the measured curve in Fig. 7-19. This change 
corresponds to a transition from the To to the T, transmission mode. 
For a circumference in the transition region, such as 0.7 wavelength, both 
To and T, modes are of about equal importance. 
When Ck is about I or somewhat more, the measured phase velocity 

approaches a value associated with the T, mode. As C), increases further, 
the relative phase velocity increases in an approximately linear fashion, 
agreeing most closely with the theoretical curve for the increased di-
rectivity condition (curve C1). When C), reaches about It, a still higher 
order transmission mode (T2) appears to become partially effective, 
causing further dips in the measured curve. However, the radiation may 
no longer be in the axial mode. 
7-9. Table of Relative Phase Velocities. The formulas given in the 

preceding section for helical antennas operating in the first-order trans-
mission mode (m = 1) are summarized in Table 7-1. 

TABLE 7-1 

RELATIVE PHASE VELOCITIES FOR 
FIRST-ORDER TRANSMISSION MODE ON HELICAL ANTENNAS 

Condition Relative phase velocity 

In-phase fields* (ordinary end-fire) Lk  1 
P —  _ S), + 1  sin a + [(cos a)/ CA] 

Increased directivity 

14 
P — S2 ± [(2n + 1)/2n] 

1 
— 
sin a + [(2n + 1)/2n] [(cos a)/ Ck] 

From first null of measured field pattern 14, 
p _ 

AS), CO8 4,0 ± (00/ 27 ) ±  1 

Helicoidal cylindrical coordinate 
solution 

CA 
P — cos a -I- hR sin a 

where hR is as given by (7-21) 

*It will be shown in Sec. 7-13 that this condition is also the one for circular polariza-
tion in the direction of the helix axis. 

7-10. Axial Mode Array Factor Patterns and Effect of Number of Turns. 
As mentioned in Sec. 7-8, the approximate far-field pattern of a helix 
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radiating in the axial mode is given by the array factor for n isotropic 
point sources, each source replacing a single turn of the helix (see Fig. 7-16). 
The normalized array factor is 

ir sin (ro('/2) 
E = sin 2n sin (0/2) (7-22) 

where  = 2r(S), cos 4) — LA/p) 
The normalizing factor is sin (7/2n) instead of 1/n since the increased 
directivity end-fire condition is assumed to exist (see Sec. 4-6a, Case 3). 
For a given helix, )3), and /4 are known and p can be calculated from (7-16) 
or (7-17). 1,1, is then obtained as a function of 0. From (7-22), these values 
of 1k give the field pattern. 
As an illustration, the calculated array factor patterns for a 7-turn 12° 

helix with C), = 0.95 are shown in Fig. 7-20 for p values corresponding to 

p=1.00 

p= 0.90 

p= 0.802 

(in-phase 

feIds 

cond,tion) 

- 17 

p =0 76 

(increased 
irectivity 

condition) 

p-0.725 

Measured 

average 

of Ece, 

and Ea ) 

Fm. 7-20.  Array factor patterns for 12°, 7-turn helix with C), = 0.95. Patterns are 
shown for p  1, 0.9, 0.802 (in-phase fields or ordinary end-fire condition), 0.76 (in-
creased directivity), and 0.725. A measured curve is also presented. All patterns are 
adjusted to the same maximum. 

increased directivity and also in-phase fields and for p = 1, 0.9, and 0.725. 
A measured curve (average of L'4, and Ef) is shown for comparison. It 
is apparent that the pattern calculated for the increased directivity condi-
tion (p = 0.76) agrees most closely with the measured pattern.  The 
measured pattern was taken on a helix mounted on a ground plane 0.88 
wavelength in diameter. The calculated patterns neglect the effect of a 
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ground plane. This effect is small if the back lobe is small compared to 
the front lobe as it is for p = 0.802 and p = 0.76. 
In general, an increase in the number of turns causes a decrease in 

the beam width, as illustrated by the patterns in Fig. 7-21. This can be 

Fin. 7-21.  Models showing effect of number of turns on measured field patterns. 
Helices have 12.2° pitch angle and 2, 4, 6, 8, 10 turns. Patterns shown are average 
of measured 4 and 4 patterns. 

shown by calculating the array factor pattern for various values of n. In 
effect this has been done in Fig. 4-26 in which a curve for the beam width 
of end-fire arrays with increased directivity is presented as a function of 
nd),. In Fig. 4-26, n is the number of sources and (1), is the spacing. To 
apply Fig. 4-26 to a helix, n is the number of turns and cl), = AS), = spacing 
between turns in wavelengths. Thus, nd), in Fig. 4-26 is the axial length 
of the helix in wavelengths (ngik nSx = Ax). For long axial lengths, 
the beam width between first nulls varies in inverse proportion to the 
square root of the axial length. Thus, doubling the axial length of a helix 
reduces the beam width to 1/  = 0.707 of its original value. 
Based on a large number of pattern measurements the beam width be-

tween half-power points and between first nulls is given by the following 
quasi-empirical relations, 

Beam width (half-power) — 
52 

C), VnAS), 
deg  (7-23a) 
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Beam width (first nulls) —  115 deg  (7-23b) 
VnS, 

These apply to helices with 12° < a < 15°, I < CA < 4, and n > 3. 
The half-power beam width as given by (7-23a) is shown graphically in 

Fig. 7-22. Dividing the square of (7-23a) into the number of square 
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Fm. 7-22.  Half-power beam width of axial mode helical antenna as a function of the 
axial length and circumference in free-space wavelengths and also as a function of the 
number of turns for C), = 1.0 and a = 12.5°. 

degrees in a sphere gives the approximate expression for the directivity 
D of an axial mode helix' 

D = 15 CZ nS),  (7-24) 

7-11. Axial Mode Single-turn Patterns.  In this section expressions 
will be developed for the far-field patterns from a single turn of a helix 
radiating in the axial mode. It is assumed that the single turn has a 

It is assumed that the patterns of both field components are of the same shape and 
are figures of revolution about the helix axis. The approximate directivity is then simply 
obtained as in (7-24) (see Appendix Sec. 20). 
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uniform traveling wave along its entire length. The product of the single-
turn pattern and the array factor then gives the total helix pattern. 
A circular helix may be treated approximately by assuming that it is 

- 
r 

S x 

Z Xr  Helix I conductor 
i 
I 

To point P 

(- - - 

[...-- - - 9 - -).1 

(a) 

— -;.1 

To point P 

(b) 

Flo. 7-23. Square helix used in calculating single-turn pattern. 

of square cross section. The total field from a single turn is then the 
resultant of the fields of four short, linear antennas as shown in Fig. 7-23a. 
A helix of square cross section can, of course, be treated exactly by this 

method.  Measurements indicate that the 
difference between helices of circular and 
square cross section is small. 
Referring to Fig. 7-24, the far electric 

field components, Eor and Eel., in the x-z 
plane will be calculated as a function of (1) 
for a single-turn helix. 

Elea  Let the area of the square helix be equal 
to that of the circular helix so that 

I-turn 
helix 

2  Eat  \A;D 
9 —  2 (7-25a) 

Fm. 7-24.  Field components 
with relation to single-turn helix,  where g is as shown in Fig. 7-23a. 

The far magnetic field for a linear element 
with a uniform traveling wave is given in Chap. 5 by (5-128). Multiplying 
(5-128) by the intrinsic impedance Z of free space, putting 7 = (37/2) ± 
a ± 1(), t = 0, and b = g/cos a, we obtain the expression for the 0 corn-
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ponent Ec of the far field in the x-z plane due to element 1 of the square 
helix as follows, 

= k 119  sin BA / ( -‘-1  - BA) 
A 

(7-25h) 

where k = 
2rri 

A = 1 - p cos 7 B -  cog   
2pc cos a 

The expressions for Eo, E., etc., due to elements 2, 3, and 4 of the square 
turn are obtained in a similar way (see Prob. 7-2a). Since the elements are 
all dissimilar sources, the total 0 component, Eon  from a single square turn 
is obtained by adding the fields from the four elements at each angle 0 for 
which the total field is calculated (see Sec. 4-5). The sum of the fields from 
the four elements is then, 

Eo• = k iny A sin BA A-BA  
▪ k sin 7" sin BA" sin a sin  A"(1 - sin2 a cos2 it)1 

A  -BA"   _ 4L(1:.c+  (S %cos 0 

▪ k  sin BA' 
/- BA' - ▪ g sin  - ri)1 

1.2.41 pc  ± we (S c 2os 0 

• k sin "Y" sin BA" sin a sin 4) A"(1 - sin2a cos2 4,)1 

/ [-BA" - 
4pc  c \ 4   

3Lco  PS cos 0 
r)1 

(7-26) 

37 
where -y = —2 + a  qt.,  = 2- - a -I- 4., 7" = arccos (sin a cos 0) A = 1 - p cos 7, A' = 1 - p cos 7', A" = 1 - p cos 7" 
When a helix of circular cross section is being calculated L = TD/cos a 
in (7-26) while for a helix of square cross section L = 4b. 
If the contributions of elements 2 and 4 are neglected. which is a good 
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approximation when both a and 4) are small, the expression for Eor is 
considerably simplified. Making this approximation, letting k = 1 and 
ri = constant, we obtain 

E T = sin 7 sin BA  (—BA) 
A 

+ sin/ sin BA' 

/[—BA' — 21/7-rB ± r(Si. cos 4, ± V -IrD sin 0)] (7-27) 

Equation (7-27) applies specifically 
0 . 0  to helices of circular cross section, 

so that B in (7-27) is 

B — D'iri  (7-28) 
2p cos a 

Equation (7-27) gives the ap-
proximate pattern of the 4) com-
ponent of the far field in the x-z 
plane from a single-turn helix of Er 
circular cross section. 

oc.12., n-I  In the case of the 0 component 
Fig. 7-25.  Calculated single turn pat,-  of the far field in the x-z plane, only 
terns for 12° helix.  elements 2 and 4 of the square 

turn contribute. Putting k = 1, the 
magnitude of the approximate 0 pattern of the far field of a single-turn 
helix of circular cross section can be shown to be 

sin-y" sin BA" cos a  
I Ear I =  2 

A "(1 — sin' a cos' 0)4 

• sin Eir(Sx cos 4) — V;Dk sin 4)) — 2 Vcr•B]  (7-29) 

where B is as given by (7-28) and •y" and A" are as in (7-26). 
As an example, the E07 and E.  patterns for a single turn 12° helix with 

Cx = 1.07 have been calculated and are presented in Fig. 7-25. Although 
the two patterns are of different form, both are broad in the axial direction 
(4) = 0). 
The individual E,, patterns of elements 1 and 3 of the single turn are 

as suggested in Fig. 7-26. One lobe of each pattern is nearly in the axial 
direction, the tilt angle r being nearly equal to the pitch angle a. The 
individual patterns add to give the E ior pattern for the single turn as 
shown (see also Fig. 7-25). 
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7-12. Complete Axial Mode Pattern. By the principle of pattern multi-
plication, the total far-field pattern of a helix radiating in the axial mode 
is the product of the single-turn pattern and the array factor. Thus the 
total co component E. of the distant electric field of a helix of circular 
cross section is the product of (7-27) and (7-22) or 

E# = E.TE  (7-30a) 

The total 0 component E, is the product of (7-29) and (7-22) or 

E, = E,TE 

As examples, the approximate E. and E, patterns, 
the above procedure, for a 12°, 7-turn uniform helix of 
tion with Ck = 1.07 are presented 
in Fig. 7-27 at (a) and (e). With 
reference to the helix shown at (e), 
E. is in the plane of the page and 
E, is normal to the page. The ar-
ray factor is shown at (b).  The 
single-turn patterns are as presented 
in Fig. 7-25. The value of p used in 
these calculations is approximately 
that for the increased directivity 
condition.  The product of the 
single-turn patterns (Fig. 7-25) and 
the array factor pattern at (b) yields 
the total patterns at (a) and (c). 
The agreement with the measured 
patterns shown at (d) and (f) is 
satisfactory. 
Comparing the patterns of Figs. 

7-25 and 7-27, it is to be noted that 
the array factor is much sharper 
than the single turn patterns. Thus, 
the total E. and E, patterns (a) and 
(c), Fig. 7-27, are nearly the same, 
in spite of the difference in the 
single-turn patterns. Furthermore, 
the main lobes of the E. and E, 
patterns are very similar to the array factor pattern. For long helices 
(say, nS), > 1) it is, therefore, apparent that a calculation of only the 
array factor suffices for an approximate pattern of any field component of 
the helix. Ordinarily the single-turn pattern need not be calculated except 
for short helices. However, to be able to neglect the single-turn pattern 

Wave 
direction 

(7-30b) 

as calculated by 
circular cross sec-

gTotal pattern 
of one turn 
E.4,T 

cb -0 
4 

Fm. 7-26. Individual E, patterns of ele-
ments 1 and 3 and total pattern of single 
turn, Eor . The single turn is shown in 
plan view (in z-z plane of Fig. 7-23). The 
single turn and coordinate axes have been 
rotated around the y axis so that the z-
direction (4, = 0) is toward the top of the 
page. 



202 ANTENNAS [CHAP. 7 

on long helices, it is necessary that the direction of maximum radiation 
from a single turn be approximately in the axial direction. 

(a) 

(d) 

Calculated 
E0 

Measured 

Array 
factor 

(b)  (c) 

Helix 
or.12* 
n= 7 
C7,0 07 

(7711— if) 
Fro. 7-27.  Comparison of calculated and measured field patterns for a 12°, 7-turn 
helix, 1.07 wavelengths in circumference, radiating in the axial mode. 

The far-field patterns of a helix radiating in the axial mode can, thus, 
be calculated to a good approximation from a knowledge of the dimensions 
of the helix and the wavelength. The value of the relative phase velocity 
used in the calculations may be computed for the increased directivity 
condition from the helix dimensions and number of turns. 
The effect of the ground plane on the axial mode patterns is small if 

there are at least a few turns, since the returning wave on the helix and 
also the back lobe of the outgoing wave are both small. Hence, the effect 
of the ground plane may be neglected unless the helix is very short 
(nth, < i). 
The approximate pattern of an axial mode helix can be calculated very 

simply, while including the approximate effect of the single-turn pattern, 
by assuming that the single-turn pattern is given by cos 0. Then the 
normalized total radiation pattern is expressed by 

E = (sin 9°° ) sin  (n°/2)  cos 0 n  sin (0/2) 
(7-31a) 

where n = number of turns and 

= 360°[S),(1 — cos 0) -I- (1/2n)]  (7-31 b) 

The value of 4, in (7-31b) is for the increased directivity condition and 
is obtained by substituting (7-16) in (7-8) and simplifying. The first factor 
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in (7-31a) is a normalizing factor, that is, makes the maximum value of 
E unity. 
7-13. Axial Ratio and Conditions for Circular Polarization from Helices 

Radiating in the Axial Mode.' In this section the axial ratio in the direc-
tion of the helix axis will be deter-
mined, and also the conditions 
necessary for circular polarization in 
this direction will be analyzed. 
Consider the helix shown in Fig. 

7-28. Let us calculate the electric 
field components E, and E., as 
shown, at a large distance from the 
helix in the z direction. The helix is 
assumed to have a single uniform 
traveling wave as indicated.  The 
relative phase velocity is p. The 
diameter of the helix is D, and the 
spacing between turns is S. Un-
rolling the helix in the x-z plane, 

the relations are as shown in Fig.  Fia.7-28.  Field components in the direc-
7-29. The helix as viewed from a tion of the helix axis. 
point on the z axis is as indicated 
in Fig. 7-30. The angle E is measured from the x-z plane. The coordinates 
of a point Q on the helix can be specified as r, E, z. The point Q is at a 
distance 1 from the terminal point T as measured along the helix. From 
the geometric relations of Figs. 7-29 and 7-30, we can write 

h = /sin a; z„ — h= z. — /sin « 

a = arctan — = arccos —1 7rD  (7-32) 

Helix 
axis 

YE. 

Wave 

rt = 1 cos a 

where z, is the distance from the origin to the distant point P on the z axis. 
At the point P the 4, component E. of the electric field for a helix of an 

integral number of turns n is 
2 n 

E. = E. J sin ei"(s- 7 +1 • In   1'17)  dt  (7-33) 
if) 

where E. is a constant involving the current magnitude on the helix. 
From (7-32) the last two terms of the exponent in (7-33) may be re-

written. Thus, 

/ sin a 1  rt  ri_q —  (tan  1  (7-34) 
c  pc  c  p COS a/  C 

'For a general discussion of elliptical and circular polarization see Secs. 15-10 to 15-17 
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q = tan a  1 
p cos a 
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(7-35) 

When a = 0, the helix becomes a loop and q = -1/p. The relation 

r § 

Helix conductor 

  - P 
To z, I 
Flo. 7-29. Geometrical relations for cal-  Fm. 7-30. Helix of Fig. 7-28 as 
culating fields in z direction,  viewed from the direction of the 

positive z axis. 

being obtained is, thus, a general one, applying not only to helices but 
also to loops as a special case. Equation (7-33) now reduces to 

2rw 

E. = Eo e'''' I sin ei"dE 
0 

(7-36) 

where quantities independent of E have been taken outside the integral 
and where 

and 

co  2r - = — 
c  X 

k = firq = L),(sin a - 

On integration (7-36) becomes 

E,  
E, - k2 1 ( erne  1) 

(7-37) 

(7-38) 

where El = E. e"* "") 
In a similar way we have for the 0 component Eo of the electric field 

at the point P 
2.. 

E. = E0 j cos ei"(8- 7 +1 "ea a M  dt  (7-39) 
0 

Making the same substitutions as in (7-33), we obtain from (7-39) 
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Ee = (le — 1) 

jE,k  (ei2 k  _1) (7-40) 

The condition for circular polarization in the direction of the z axis is 

(7-41) 

The ratio of (7-38) to (7-40) gives 

E, — jk —  k 

Accordingly, for circular polarization in the axial direction of a helix of 
an integral number of turns, k must equal ±1. 
Equation (7-42) indicates that E0 and E, are in time phase quadrature. 

Therefore, the axial ratio AR is given by the magnitude of (7-42) or 

AR  _ .I_Eii 
- 1 E, I - 

1 
jk 

_ 1 
— k 

(7-42) 

(7-43) 

The axial ratio will be restricted here to values between 1 and infinity. 
Hence, if (7-43) is less than 1, its reciprocal is taken. 
Substituting the value of k from (7-37) into (7-43) yields 

or 

AR —  Lax[si n a — (VP)] 1 
1 

AR =  
P 

(7-44) 

(7-45) 

Either (7-44) or (7-45) is used so that 1 < AR < co. 
From (7-44) and (7-45), it appears that the axial ratio can be calculated 

from the turn length Lk and pitch angle a of the helix, and the relative 
phase velocity p. If we introduce the value of p for the condition of in-
phase fields (see Table 7-1), it is found that AR = 1. In other words, 
the in-phase field condition is also the condition for circular polarization 
in the axial direction. 
This may also be shown by noting that (7-42) satisfies the condition 

for circular polarization when k = —1, or 

Lx(sin a - 1) = -1  (7-46) 
P 

Solving (7-46) for p, we obtain 

TA  
P — Sx + 1 

(7-47) 
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which is identical with the relation for in-phase fields (ordinary end-fire 
condition). 
Our previous discussion on phase velocity indicated that p followed 

more closely the relation for increased directivity than the relation for in-
phase fields. Thus, introducing p in (7-45) for the condition of increased 
directivity, we obtain 

AR 2n + 1 — 
2n 

(7-48) 

where n is the number of turns of the helix. If n is large the axial ratio 
approaches unity and the polarization is nearly circular. 
As an example, let us consider the axial ratio in the direction of the 

helix axis for a 13°, 7-turn helix. The axial ratio is unity if the relative 
velocity for the condition of in-phase fields is used. By (7-48) the axial 
ratio for the condition of increased directivity is 15/14 = 1.07. This 
axial ratio is independent of the frequency or circumference Ck as shown 
by the dashed line in Fig. 7-31. In this figure, the axial ratio is presented 
as a function of the helix circumference C), in free-space wavelengths. 

30 
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Axial mode 

of radiation 

.5  .6  .7  .8  .9  1.0  1.1  1 2  I 3  14  I 5 

Helix circumference, Cx 

Fm. 7-31.  Axial ratio as a function of helix circumference in free-space wavelengths 
for a 13°, 7-turn helical beam antenna. 

If the axial ratio is calculated from (7-44) or (7-45), using the measured 
value of p shown in Fig. 7-19, an axial ratio variation is obtained as indi-
cated by the solid curve in Fig. 7-31. This type of axial ratio vs. cir-
cumference curve is typical of ones measured on helical beam antennas. 
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Usually, however, the measured axial ratio increases more sharply as C), 
decreases to values less than about I (see Fig. 7-34).  This difference 
results from the fact that the calculation of axial ratio by (7-44) or (7-45) 
neglects the effect of the back wave on the helix. This is usually small 
when the helix is radiating in the axial mode but at lower frequencies or 
smaller circumferences (C), < I) the back wave is important. The back 
wave on the helix produces a wave reflected from the ground plane having 
the opposite direction of field rotation to that produced by the outgoing 
traveling wave on the helix. This causes the axial ratio to increase more 
rapidly than indicated in Fig. 7-31. 
The foregoing discussion applies to helices of an integral number of 

turns. Let us now consider a long helix where the number of turns may 
assume nonintegral values. Hence, the length of the helical conductor 
will be specified as  instead of 2rn. It is further assumed that k is nearly 
unity. Thus, (7-36) becomes 

E, 1̀ reick+m _  4  (7-49) E. =  .1 —7 
22 ,) 

Since k  —1, k  1- 0, and it follows that 

C%--' 1 + j(k  1)E,  (7-50) 

Now integrating (7-49) and introducing the condition that k is nearly 
equal to —1 and the approximation of (7-50), we have 

E. .  [ ...1 ei(k-1)E. 

2  k — 1 j 

Similarly the 0 component E, of the electric field is 

E. =  3E1 
E, [.  ei(" )1' — 11 

(7-52) 
k — 1 ] 

When the helix is very long 

E1 >> 1 

and (7-51) and (7-52) reduce to 

= —j E2,E, and  Et = -F, 2 

Taking the ratio of E• to Et, 

Et 

(7-51) 

(7-53) 

(7-54) 

which fulfills the condition for circular polarization. 
Still another condition resulting in circular polarization is obtained when 
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(k ± 1), = 2irm, where m is an integer. This condition is satisfied when 
either the positive or negative sign in k ± 1 is chosen but not for both. 
The important conditions for circular polarization are summarized as 

follows: 
1. The radiation in the axial direction from a helical antenna of any 

pitch angle and of an integral number of 1 or more turns will be circularly 
polarized if k = —1 (in-phase fields or ordinary end-fire condition). 
2. The radiation in the axial direction from a helical antenna of any 

pitch angle and a large number of turns, which are not necessarily an 
integral number, is nearly circularly polarized if k is nearly —1. 
7-14. Wide-band Characteristics of Helical Antennas Radiating in the 

Axial Mode. The helical beam antenna has inherent broad-band proper-
ties, possessing desirable pattern, impedance, and polarization char-
acteristics over a relatively wide frequency range. The natural adjust-
ment of the phase velocity so that the fields from each turn add nearly 
in phase in the axial direction accounts for the persistence of the axial 
mode of radiation over a nearly 2 to 1 range in frequency. If the phase 
velocity were constant as a function of frequency, the axial mode patterns 
would be obtained only over a narrow frequency range. The terminal 
impedance is relatively constant over the same frequency range because 
of the large attenuation of the wave reflected from the open end of the 
helix. The polarization is nearly circular over the same range in fre-
quency because the condition of fields in phase is also the condition for 
circular polarization. 
As shown in Fig. 7-32a, the dimensions of a helix in free-space wave-

lengths move along a constant pitch-angle line as a function of frequency. 
If F, is the lower frequency limit of the axial mode of radiation and F2 
the upper frequency limit of this mode, then the range in dimensions for 
a 10° helix would be as suggested by the heavy line on the diameter-
spacing chart of Fig. 7-32a. The center frequency F0 is arbitrarily defined 
as F0 = (F,  F2)/2. 
The properties of a helical beam antenna are a function of the pitch 

angle. The angle resulting in a maximum frequency range F, — F, of 
the axial mode of radiation is said to be an "optimum" pitch angle. To 
determine an optimum angle, the pattern, impedance, and polarization 
characteristics of helical antennas may be compared on a diameter-spacing 
chart as in Fig. 7-32b. The three contours indicate the region of satis-
factory pattern, impedance, and polarization values as determined by 
measurements on helices of various pitch angle as a function of frequency. 
The axial length of the helices tested is about 1.6 wavelengths at the 
center frequency. The pattern contour in Fig. 7-32b indicates the ap-
proximate region of satisfactory patterns. A satisfactory pattern is con-
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sidered to be one with a major lobe in the axial direction and with relatively 
small minor lobes. Inside the pattern contour, the patterns are of this 
form and have half-power beam widths of less than 60° and as small as 
30°. Inside the impedance contour in Fig. 7-32h the terminal impedance 
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Spacmg, SA (a) 

0.1  0.2  0.3 
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Fro. 7-32. Diameter-spacing charts for helices with measured performance contours 
for axial mode of radiation (b). 

is relatively constant and is nearly a pure resistance of 100 to 150 ohms. 
Inside the axial ratio contour, the axial ratio in the direction of the helix 
axis is less than 1.25. Note that all contours lie below the line for which 
D = VISA  1/7. This line may be regarded as an upper limit for the 
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beam mode. It is apparent that the frequency range F2 — F, is small if 
the pitch angle is either too small or too large. A pitch angle of about 
12° or 14° would appear to be "optimum" for helices about 1.6 wave-
lengths long at the center frequency. Since the properties of the helix 
change slowly in the vicinity of the optimum angle, there is nothing 
critical about this value. The contours are arbitrary but are suitable for 
a general-purpose beam antenna of moderate directivity. The exact values 
of the frequency limits, F, and F2, also are arbitrary but are relatively 
well defined by the close bunching of the contours near the frequency 
limits. 
Based on the above conclusions, a 14°, 6-turn helix was constructed and 

its properties measured. The helix has a diameter of 0.31 wavelength at 
the center frequency (400 Mc). The diameter of the conductor is about 
0.02 X. Conductor diameters of 0.006 X to 0.05 X can be used with little 
difference in the properties of this helix in the frequency range of the 
beam mode. 
The measured patterns between 275 and 560 Mc are presented in Fig. 

7-33. It is apparent that the patterns are satisfactory over a frequency 
range from 300 Mc (C), = 0.73) to 500 Mc (C), = 1.22). 
A summary of the characteristics of this antenna are given in Fig. 7-34 

in which the half-power beam width, axial ratio, and standing-wave ratio 
are shown as a function of the helix circumference. The half-power beam 
width is taken between half-power points regardless of whether these 
occur on the major lobe or on minor lobes. This definition is arbitrary 
but is convenient to take into account a splitting up of the pattern into 
many lobes of large amplitude. Beam widths of 180° or more are arbi-
trarily plotted as 180°.  The axial ratio is the value measured in the 
direction of the helix axis. The standing-wave ratio is the value measured 
on a 53-ohm coaxial line. A transformer section  wavelength long at the 
center frequency is located at the helix terminals to transform the terminal 
resistance of approximately 130 to 53 ohms. Considered altogether, these 
pattern, polarization, and impedance characteristics represent remarkably 
good performance over a wide frequency range for a circularly polarized 
beam antenna. 
Although the difference in characteristics between helices of 12° to 14° 

pitch angle is not large, the 14° type tends to have slightly better im-
pedance characteristics while the 12° type tends to have slightly better 
patterns. The choice of a particular pitch angle as the optimum value is 
arbitrary but may very appropriately lie in the range of 12° to 14°.' 

' Design data for a 12.5° helix are given by J. D. Kraus, Helical Beam Antenna Design 
Techniques, Communications, 29, September, 1949. 
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Fxo. 7-34. Summary of measured performance of 14°, 6-turn helix. The curves show 
the half-power beam width for both field components, the axial ratio in the direction 
of the helix axis, and the SWR on a 53-ohm line as a function of the circumference in 
free-space wavelengths (Ck). 

7-15. Table of Pattern, Beam Width, Directivity, Terminal Resistance, 
and Axial-ratio Formulas. Expressions developed in the preceding sections 
for calculating the pattern, beam width, directivity, terminal resistance, 
and axial ratio for axial mode helical antennas are summarized in Table 
7-2.  These relations apply specifically to helices for 12° < a < 15°, 
< C), < I, and n > 3. 
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TABLE 7-2 

FORMULAS FOR AXIAL MODE HELICAL ANTENNAS 

213 

Pattern 
= (sin 

90°) sin (ntk/2)  
E  cos 4) 

n  sin (4//2) 

where 1,/, = 3600[8),(1 — cos ci)) ± ;Id 

Beam width (half-power) 
52—  

B —  deg 
C), Vnth, 

Beam width (first nulls) 
115 

deg B —  ,—  
Ck Ninth, 

Directivity D = 15 CI nth, 

Terminal resistance R = 140 C), ohms 

Axial ratio 2n ± 1 
directivity) AR —  (increased 

2n 

Axial ratio AR = /)(sin a — 1— ) 
P 

(p unrestricted) 

n = number of turns of helix 
Ck = circumference in free-space wave-

lengths 
Sk = spacing between turns in free-

space wavelengths 

LA  turn length in free-space wave-
lengths 

a  pitch angle 
p = relative phase velocity 
•  = angle with respect to helix axis 

7-16. Tapered and Other Forms of Axial Mode Helical Antennas. The 
preceding sections have dealt with the uniform helix mounted on a flat 
ground plane and fed from the ground-plane end. This type is illustrated 
in Fig. 7-35a. Several other feed arrangements are also shown in Fig. 
7-35. At (b) the ground plane is conical instead of flat. The types at 
(c) and (d) have a conductor coincident with the helix axis. The effect 
of this conductor is not large since the longitudinal field at the axis of the 
helix is small. The balanced helix at (e) produces opposite types of cir-
cular polarization from the two ends while that at (f) produces the same 
type from both ends. The polarizations indicated in the figure are according 
to the IRE definition (see Sec. 15-12). Forms (g), (h), and (0 are other 
modifications involving multiple helices of the same or different diameter. 
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A wide variety of nonuniform or tapered helices are also possible. 
These may be grouped into the following types: (1) a constant but S 
and D variable, (2) D constant but a and S variable, and (3) S constant 
but a and D variable. The taper may be of several kinds. For example, 
it may be of the increasing, decreasing, or envelope type. These combi-
nations are suggested by the helices in Fig. 7-36. Several other kinds of 
tapered helices are shown in Fig. 7-37. The one at (a) has both a tapered 
and a uniform section. The helix at (b) involves still another kind of 
taper, that of conductor size. In this case the conductor is a flat strip of 
tapering width near the feed end and constant width at the open end. 

Thin dielectric 
sleeve 

Right-  Lett-circular 
circular 

Left-
Circular 

(e) 

(9) 

(f) 

Lef t-circular 

(d)  (h) 
FIG 7-35.  Axial mode helices showing various constructional and feed arrangements. 

Constant 

Constant 

Increasing Decreasing  Envelope 

--(-6nns- -rr6-6-o- -ro m-re 
-1  -1 

_J 
Constant  7 

FIG. 7-36. Types of tapered axial mode helical antennas. 
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At the open end this construction approaches that of a helical slot in a 
conducting cylinder. A tapered strip conductor in combination with an 
increasing D taper is shown at (c). Tapered conductors of circular cross 
section can also be used as in (d) and (e).  The one at (d) is tapered in 
both conductor and helix diameter while that at (e) is tapered only in 

-1-1T666060-070 
(a) 

Thin dielectric 
sleeve 

%Slotted metal 
Ground  cylinder 

plane 
(b) 

(d) 

(e) 

FIG. 7-37. Additional tapered types. 

conductor diameter. Since the characteristics of an axial mode helix are 
relatively insensitive to moderate changes in dimensions, the effect of 
moderate departures of the above types from a uniform helix is, in general, 
not large. 
An interesting application of axial mode helices is to produce linear 

polarization. Two helices, one wound left-handed and the other right-
handed but otherwise identical, are mounted as in Fig. 7-38a. The right-

Axis Axis 

Lett  Right 
handed  handed 
helix  helix 

(a) 

j Axis 

Right-handed 
helix 

Left-handed 
helix 

ir 
(b) 

FIG. 7-38.  Helical antenna arrangements for producing linear polarization. 
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and left-circular polarization combine on the axis to give linear polariza-
tion. If the resulting field is vertically polarized, then rotating one helix 
180° on its axis turns the plane of polarization to horizontal.  Another 
method of obtaining linearly polarized radiation in the axial direction is 
by connecting a left- and a right-handed helix in series as in Fig. 7-38b. 

PROBLEMS 

7-1. a. What is the approximate relation required between the diameter D and 
height H of an antenna having the configuration shown, in order to ob-

tain a circularly polarized far field at all points at which the field is not 
zero. The loop is circular and is horizontal, and the linear conductor 
of length H is vertical. Assume D and H small compared to the wave-
length, and assume the current of uniform magnitude and in phase over 
the system. 

b. What is the pattern of the far circularly polarized field? 
7-2. a. Prove that 7" --= arccos (sin a cos 4)) in Eq. (7-26). 

b. Confirm (7-29). 
7-3. A helical beam antenna has a = 12°, n = 8, D = 22.5 cm. 

a. What is the value of p at 400 Mc for (1) in-phase fields? (2) increased 
directivity? 

b. Calculate and plot the field patterns, assuming each turn is an isotropic 
point source for p = 1, 0.9, and 0.5, and also for p equal to the value for 
in-phase fields and for increased directivity. 

c. Repeat (b), assuming each turn has a cosine field pattern. 
7-4. A helix of uniform cross section consists of 6 turns. The diameter is 23.1 

cm, and the turn spacing is 18.1 cm. Neglect the effect of the ground plane. As-
sume a phase velocity along the helical conductor satisfying the increased directivity 
condition. Calculate and plot the following patterns as a function of 4) (0° to 360°) 
in the 0 = 90° plane at 400 Mc. Use the square helix approximation. 

a. E.  for a single turn and E, for the entire helix. 
b. Repeat (a) neglecting the contribution of elements 2 and 4 of the 
square turn. 

C. E.  for a single turn and Et for entire helix. 



CHAPTER 8 

THE BICONICAL ANTENNA AND ITS IMPEDANCE 

8-1. Introduction. In the preceding chapters it is assumed that the 
antenna conductor is thin, in fact, infinitesimally thin.  From known or 
assumed current distributions, the far-field patterns are calculated. The 
effect of the conductor thickness on the pattern is negligible provided 
that the diameter of the conductor is a small fraction of a wavelength. 
Thus, the patterns calculated on the basis of an infinitesimally thin con-
ductor are applicable to conductors of moderate thickness, say for 
d < 0.05 X where d is the conductor diameter. 
The radiation resistance of thin linear conductors and loops is calculated 

in Chaps. 5 and 6. This calculation is based on a knowledge of the pat-
tern and a known or assumed current distribution. The values so ob-
tained apply strictly to an infinitesimally thin conductor.  The con-
ductor thickness, up to moderate diameters, has only a small effect on the 
resistance at or near a current loop but may have a large effect on the 
resistance at or near a current minimum.' 
In this chapter, we shall consider the problem of finding the input 

terminal resistance and also the reactance, taking into account the effect 
of conductor thickness.  This problem is most simply approached by 
Schelkunoff's treatment of the biconical antenna' which will be out-
lined in the following sections.  Beginning with the infinite biconical 
antenna, the analysis proceeds to terminated biconical antennas, that is, 
ones of finite length. This method of treatment bears a striking similarity 
to that usually employed with transmission lines in which the infinite 
transmission line is discussed first, followed by the terminated line of 
finite length. 
8-2. The Characteristic Impedance of the Infinite Biconical Antenna. 

The infinite biconical antenna is analogous to an infinite uniform transmis-
sion line. The biconical antenna acts as a guide for a spherical wave in the 
same way that a uniform transmission line acts as a guide for a plane wave. 
The two situations are compared in Fig. 8-1. 

1 This is discussed in more detail in Chap. 9. 
2 S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Company, Inc., 

New York, 1943, Chap. 11, p. 441. 
217 
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The characteristic impedance of a biconical antenna will now be derived 
and will be shown to be uniform. Let a generator be connected to the 
terminals of an infinite biconical antenna as in Fig. 8-2. The generator 
causes waves with spherical phase fronts to travel radially outward from the 
terminals as suggested. The waves produce currents on the cones and a 
voltage between them. Let V be the voltage between points on the upper 
and lower cones a distance r from the terminals as in Fig. 8-2. Let / be 

Plane 
Wave (b) 

\ 

\ 

s 
i 
e 

i 
i 
i 

Fm. 8-1.  An infinite biconical antenna  FIG.  8-2.  Infinite  biconical  antenna 
(a) is analogous to an infinite uniform  showing voltage V and current I at a dis-
transmission line (b).  tance r from the terminals. 

the total current on the surface of one of the cones at a distance r from 
the terminals.  As on an ordinary transmission line, the ratio V// is 
the characteristic impedance of the antenna. For the characteristic im-
pedance to be uniform, it is necessary that the ratio V// be independent 
of r. 
Before V and / can be calculated, we must determine the nature of 

the electric and magnetic fields existing in the space between the con-
ducting cones. Although the biconical transmission line can support an 
infinite number of transmission modes, let us assume that only the TEM 
or principal transmission mode is present.  For the TEM mode, both 
E and H are entirely transverse, that is, they have no radial component. 
The E lines are along great circles passing through the polar axis as shown 
in Fig. 8-3. This satisfies the boundary conditions since E is normal to 
the surface of the cones. The H lines are circles lying in planes normal to 
the polar axis. 
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Maxwell's equation from Faraday's law for harmonically varying fields 
is 

V X E = —jcop.11  (8-1) 

The biconical antenna is most readily handled in spherical coordinates. 

Polar Axis 

FIG. 8-3. E and H lines of outgoing TEM  no. 8-4.  Biconical antenna with 
relation  to spherical  coordinates 
r, 0, 0. 

wave on biconical antenna. 

Let the spherical coordinates r, 0, (I) be related to the antenna as in Fig. 
84. Expanding the left side of (8-1) in spherical coordinates, we have 

V X E — 
a,  [a(r sin 0 E,)  

r2 sin e  ae 
+  a,  [aE 
r sin e 

a(r sin 0 E,)] 
or 

[a(rE,) aE,1 
(8-2) r  Or  ae 

Since E has only a 0 component, which by symmetry is independent of 4), 
only the fifth term of (8-2) does not vanish. Thus, 

_ V X E =  a (7  (8-3) 
r ar 
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Expanding the right side of (8-1) in spherical coordinates, 

—jovii = —jco(a,H, ± aell, ± a,110) 

Since H has only a (1) component, (8-4) reduces to 

—j0.1AH = —asjcoAH‘ 

Now equating (8-3) and (8-5) we have 

1 a (rE e)  
—  jon.iHo 

r ar 

[CHAP. 8 

(8-4) 

(8-5) 

(8-6) 

This is Maxwell's equation (8-1) reduced to a special form appropriate 
to a spherical wave. 
Maxwell's equation from Ampere's law for harmonically varying fields 

in a nonconducting medium is 

V X H = joJeE  (8-7) 

H has only a 9 component and E only a 0 component. Since E, = 0 it 
follows that 

a(sin 0 Ho) 0 
ae  — (8-8) 

Hence, (8-7) can be reduced by a similar procedure as used for (8-1) to 
the form 

a(rHo) 
—  jcue(rEe) 

ar 
(8-9) 

Now differentiating (8-9) with respect to r and introducing (8-6), we 
obtain a wave equation in (r14). Thus, 

a2(rH,) 
—  (41e(rHo) ar 2 (8-10) 

The condition of (8-8) requires that Ho vary inversely as the sine of 0. 
That is, 

1 
Ho cc . 

sm 0 

Hence, a solution of (8-10) which also fulfills (8-11) is 

1  
H  r sin 0 Ho e-i° ' H,   

where 0 = co V -Aii = 2r/X 

(8-11) 

(8-12) 
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This solution represents an outgoing traveling wave on the antenna. 
Since the biconical antenna is assumed to be in-
finitely long, only the outgoing wave need be con-
sidered. 
The electric and magnetic fields of a TEM 

wave are related by the intrinsic impedance Zo 
of the medium. Thus, we have  

Z o —  ° Ho e-'''' E', =   
r sm 0 

Polar 
axis 

Equations (8-12) and (8-13) give the variation 
of the magnetic and electric fields of a TEM out-
going wave in the space between the cones of a 
biconical antenna as a function of 0 and r. The 
fields are independent of 66. 
The voltage V (r) between points 1 and 2 on 

the cones at a distance r from the terminals (see 
Fig. 8-5) can now be obtained by taking the line 
integral of E, along a great circle between the 
two points. Thus, 

Fro. 8-5.  E0 and 14 field  V(r) E, r de  (8-14) 
components at a distance 

r from the terminals of a  where Okk is the half angle of the cone.  Sub-
biconical antenna. 

stituting (8-13) in (8-14) we have 

1r - Oh. a'0  c (0,,/2) V(r) = ZoHo f  in ot  ,  e  (8-15) 
sin  °  tan (Ohd2) 

Or 

V(r) = 2Z0Ho In cot t  (8-16) 

The total current I (r) on the cone at a distance r from the terminals 
can be obtained by applying Ampere's law. Thus, 

2 r 

l(r) = f  11,r sin 0 d = 21-rH, sin 0 

Now substituting 14 from (8-12) in (8-17) yields 

I(r) = 21-H0 a-it '? 

The characteristic impedance Zk of the biconical antenna is the ratio of 
V(r) to 1(r) as given by (8-16) and (8-18) or 

z ELI = Zo in cot Ai  (8-19) 
k I(r)  T  2 



222  ANTENNAS  [CHAp. 8 

For a medium of free space between the cones, Zo = 120r so that (8-18) 
becomes 

Bk. 
Zk = 120 ln cot —2  ohms 

When Ohe is small (Oh. < 20°), cot (Oh/2)  2/0k, so that 

Zh = 120 In 1 -  ohms 
Okc 

(8-20) 

(8-21) 

Equations (8-20) and (8-21) are Schelkunoff's relations for the char-
acteristic impedance of a biconical antenna. Since these equations are 
independent of r, the biconical antenna has a uniform characteristic 
impedance. 
8-3. Input Impedance of the Infinite Biconical Antenna. The input 

impedance of a biconical antenna with TEM waves is given by the ratio 
V(r)II(r) as r approaches zero.  For an infinite biconical antenna this 
ratio is independent of r, so that the input impedance of the infinite bi-
conical antenna equals the characteristic impedance.  The input im-
pedance depends only on the TEM wave and is unaffected by higher 
order waves. Thus 

Ze = Zh 
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Fm. 8-6.  Characteristic resistance of biconical antenna and of single cone with ground 
plane as a function of the half-cone angle in degrees. If the antenna is infinitely long, 
the terminal impedance is equal to the characteristic resistance as given in the figure. 
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where Zi is the input impedance of the biconical antenna and Zk is the 
characteristic impedance as given by (8-20) or for small cone angles by 
(8-21). The characteristic and input impedances are pure resistances so 
that they may be referred to as the characteristic resistance R and the 
input resistance R,. They are given by 

0 
Rk  Ri = 120 ln cot —Le  ohms  (8-23) 

2 

The variation of this resistance as a function of the half-cone angle 
Oh. is presented by the solid curve in Fig. 8-6. An infinite biconical antenna 
of 2° total cone angle (Oh, = 1°) has a resistance of 568 ohms, while one 
with a total cone angle of 100° (Oh, = 50°) has a resistance of 91 ohms. 
If the lower cone is replaced by a large ground plane (see insert in Fig. 8-6), 
the resistance is one-half the value given by (8-23) as shown by the dashed 
line in Fig. 8-6. 
8-4. Input Impedance of the Finite Biconical Antenna. In this section 

we will consider the finite biconical antenna. This is analogous to a finite 
or terminated transmission line. 
A TEM mode wave can exist along the biconical conductors, but in 

the space beyond the cones transmission can be only in higher order 
modes. Schelkunoff has defined the sphere coinciding with the ends of 
the cones the boundary sphere is indicated in Fig. 8-7. The radius of the 

Region of 
higher order 
modes 

Transition 
region 

Principal 
mode region 

Boundary 
sphere 

Fio. 8-7. Schelkunoff's finite biconical 
antenna and boundary sphere. 

Sn 

• 

,,,Infinit• permeability 

\  Shell of magnetic 
Energy No- material 

reflected 

Energy 
- -

escapes 

/  Unity relative 
permeability 

Fm. 8-8.  Finite biconical antenna with 
boundary sphere replaced by a shell of 
magnetic material. 

sphere is 1, being equal to the length of the cones (r = 1). Inside this 
sphere TEM waves can exist, and also higher order modes may be present, 
but outside only the higher order modes can exist. 
When an outgoing TEM reaches the boundary sphere, part of its energy 

is reflected as a TEM wave. If the reflection at the sphere were uniform, 
there would be only this reflected TEM wave. However, the reflection at 
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the sphere is not uniform, and some of the energy is reflected in higher order 
waves while some energy continues into space as higher order waves. It 

is as though the boundary sphere consists 
of a shell of magnetic material which is 
infinitely permeable near the cones and 
has a relative permeability of unity at the 

r=1.  equator.' At the cones most of the out-
going TEM waves is reflected, but near 
the equator most of the energy escapes, as 
suggested in Fig. 8-8. It is but a step to 
imagine that, from the impedance view-
point, the magnetic shell acts like a termi-
nating or load impedance ZL connected 
across the open end of the cones as sug-

(a)  gested in Fig. 8-9a. Neglecting the effect 
of the end caps of the cones, the finite bi-
conical antenna can now be treated as a 
transmission line of characteristic 

z, im-
Zk pedance Zk terminated in the load im-

(b)  L  pedance ZL (see Fig. 8-9b).  If the 

Fm. 8-9. Finite or terminated bi- impedance ZL can be found, the im-
conical antenna and equivalent  pedance Z. at the input terminals of the 
transmission line.  biconical antenna is calculable as the 

impedance ZL reflected back over a line 
of characteristic impedance Z,, and length 1. Thus (see Appendix Sec. 3), 

ZL jZk tan /3/ 
Z, = Lek  (8-24) 

Zk  j Zz, tan PI 

Thus, the problem resolves itself into one of finding ZL. Reduced to 
simple terms, Schelkunoff's method of finding ZL consists first of cal-
culating Z. at a current maximum on a very thin biconical antenna, a 
sinusoidal current distribution being assumed.  In Fig. 8-10a a thin 
biconical antenna of length 1 is shown. Z. is the impedance which appears 
between the current maximum on one cone and the corresponding point on 
the other cone. Since this impedance occurs wavelength from the open end 
of the antenna, ZL is then equal to Z. transformed over a line wavelength 
long as in Fig. 8-10b. Finally, the input impedance Zi is ZL transformed 
over a line of characteristic impedance Zk and length las in Fig. 8-9b. 
The impedance ZL is obtained from Z. by the transmission-line relation 

(see Appendix Sec. 3) 

1 The shell is assumed to have zero electrical conductivity and a relative dielectric 
constant of unity. 
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ZL =  jZ, tan t3x  Zk 
Z k iZ. tan fix 

But the line is I wavelength long so 
that I3x = 7/2 and (8-25) reduces to 

(8-26) 

Whereas Zk is entirely real, Z. in 
(8-26) may have both real and 
imaginary parts. Thus, 

Z. = R. + jX. 

(a) 

 zL 
f-A/4 

(6) 

225 

(8-25) 

Fla. 8-10. Thin finite biconical antenna 
The real part R„, is the same as the  and transmission line equivalent for find-
radiation resistance at a current  ing ZL. 
maximum of a very thin linear an-
tenna.  It has been calculated by Schelkunoff asi 

R. = 60 Cin 20/  30(0.577 -I- In  — 2 Ci 201  Ci 4130 cos 201 

+ 30(Si 01 — 2 Si 21) sin 2/3/  ohms  (8-27) 

Provided only that the antenna is thin, the radiation resistance R. is 
independent of the shape of the antenna (that is, whether cylindrical or 
conical). However, the radiation reactance depends on the shape and has 
been calculated by Schelkunoff for a thin cone as 

X. = 60 Si 2j31  30(Ci 40/ — ln /3/ — 0.577) sin 213/ 

— 30(Si 4f1/) cos 2,51  ohms (8-28) 

Now substituting (8-26) for ZL into (8-24), the input impedance is 

Z Z,,  jZ. tan IV (8-29) Z, — k 
Z.  jZ,, tan 1.1/ 

where 1 = length of one cone 
Zk = value given by (8-21) 
Z. = R. ± jX., where R,,. = value given by (8-27) and X„, = value 

given by (8-28). 
The value of Z. becomes independent of cone angle for thin cones. 

Thus, the real and imaginary parts of Z.., as given by (8-27) and (8-28), 
are independent of the cone angle, being functions only of the cone length 
1. However, the characteristic impedance Z,, is a function of the cone 

11 equals half the total length of the antenna. In Chap. 5, L is twice this value being 
equal to the total antenna length (that is, L = 21). 
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angle. Hence, the input impedance Z. as calculated by (8-29), is a function 
of both the cone angle and the cone length. The limitation in calculating 
Z. that the cone angle be small also limits the use of (8-29) to small cone 
angles, say, half-cone angles of less than about 3 degrees.' 

The radiation impedance Z. at 
300  the current maximum of Schel-

kunoff's biconical antenna as given 
by (8-27) and (8-28) is presented in 

200  Fig. 8-11. The impedance is given 
ohms  as a function of cone length, 4, in 
100  wavelengths, where 4, = //X. This 

impedance applies to small cone 
angles. 

0 100  200  300  400  Introducing Z. into (8-29), the in-
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.5 0 
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R ohms  put impedance can be obtained for 
Fm. 8-11. Resistance R„, and reactance  cones of different characteristic 
X„, of radiation impedance Z„, of a bicon-  impedance. As illustrations, the in-
ical antenna as a function of the cone  put impedance of a biconical an-
length in wavelengths (4). 

tenna of 1,000 ohms characteristic 
impedance (half-cone angle, Oh. = 

0.027°) and for one of 450 ohms characteristic impedance (half-cone angle, 
Oh. = 2.7°) are given in Fig. 8-12,2 as functions of the cone length in wave-
lengths (Q. If the lower cone is replaced by a large ground plane (see 
insert in Fig. 8-6), the input impedance is halved. 
It is significant that the terminal impedance of the thicker biconical 

antenna (lower characteristic impedance) is more constant as a function 
of cone length than the impedance of the thinner antenna. This difference 
in impedance behavior of thick and thin antennas is typical not only of 
conical antennas but also of antennas of other shapes, such as cylindrical 
antennas.  We, thus, conclude that the impedance characteristics of a 
thick antenna are, in general, more suitable for wide-band applications than 
those of a thin antenna. 
The curve in Fig. 8-12 for the 2.7° half-angle biconical antenna spirals 

inward and would eventually end at the point R = 450, X = 0, when the 
length 1), becomes infinite.  Likewise, the curve for the 0.027° antenna 
spirals into R = 1000, X = 0, when l = CO.  The effect of the cone angle 

1 Approximate solutions for wide cone angles are discussed by 
C. T. Tai, Application of a Variational Principle to Biconical Antennas, J. Applied 

Phys., 20, 1076-1084, November, 1949. 
P. D. P. Smith, The Conical Dipole of Wide Angle, J. Applied Phys., 19, 11-23, 

January, 1948. 
1 The curves in Figs. 8-11 and 8-12 are plotted from data given by Schelkunoff, 

loc. cit. 
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is greatest near the second, fourth, or even, resonances (/),  1, etc.) 
and least near the first, third, or odd, resonances (/),  I, etc.). 
We note in Fig. 8-12 that the geometric mean resistance R12 of the 

resistance at the first and second resonances is about one-half the char-
acteristic resistance of the biconical antenna. We take R12 = VRIR29 
where Ri is the resistance at the first resonance (/),  i) and R2 is the 
resistance at the second resonance (1),  I). Thus, for the antenna with 
2.7° half-cone angle, R12 = 224 which is about half the characteristic re-
sistance (RA = 450). For the antenna with the 0.027° half-cone angle, 
RI2 = 500 or half the characteristic resistance (RA = 1,000). The geo-
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Pia. 8-12.  Calculated input impedance of biconical antennas with 2.7° half-cone angle 
(solid curve) and with 0.027° half-cone angle (dashed curve). The resistance R and 
reactance X of the input impedance Z, are represented as a function of the length 1 of 
one cone in wavelengths, the length being indicated in 0.1-wavelength intervals. 
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metric mean resistance R23 of the resistance at the second and third  reso-
nances is closer to the characteristic resistance. We take R23 = N/R2R31 
where R3 is the resistance at the third resonance (ix I). Thus, for 
the antenna with the 2.7° half-cone angle, R23 = 317 (R, = 450) while 
for the antenna with the 0.027° half-cone angle, R23 = 710 (R, = 1000). 
The geometric mean of successive higher resonant resistances would be 
expected to approach closer yet to the characteristic resistance around 
which the impedance spiral converges. 
The impedance spirals in Fig. 8-12 are for a biconical antenna. If the 

lower cone is replaced by a large ground plane, the impedance values are 
halved.  Measured impedances of single cones with ground plane are 
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presented in Fig. 8-13 for cones with half-angles of 5°, 10°, 20°, and 30° 
and characteristic resistances (Rk = Zk) of 188, 146, 104, and 80 ohms, 
respectively.' The cones measured had a top hat consisting of an inverted 
cone of 90° total included angle (see insert in Fig. 8-13). It is to be noted 
that the trend toward reduced impedance variation with increasing cone 
angle, as predicted by the calculated curves of Fig. 8-12, is continued for 
the larger cone angles. 
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Flo. 8-13.  Measured input impedance of single cones with ground plane as a function 
of cone length in wavelengths (4). Impedance curves are presented for cones with 
half-angles of 5°, be,  20°, and 30°. 

8-5. Pattern of Biconical Antenna. The far-field pattern of a biconical 
antenna will be nearly the same as for an infinitesimally thin linear antenna 
provided that the cone angle is small.  It is assumed that the current 
distribution is sinusoidal. Thus, Eqs. (5-80) and (5-81) can be used for thin 
biconical antennas, the substitution being made that L = 2/, where 1 is the 
length of one cone. 
8-6. Input Impedance of Antennas of Arbitrary Shape. Schelkunoff has 

extended his analysis for thin biconical antennas, as outlined above, to 

' The curves in Fig. 8-13 are plotted from data presented in Chap. 4 by A. Dome, in 
"Very High Frequency Techniques," by Radio Research Laboratory Staff, McGraw-
Hill Book Company, Inc., New York, 1947. 
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thin antennas of other shapes by considering the average characteristic 
impedance of the antenna. Whereas the characteristic impedance of a 
biconical antenna is uniform, the impedance of antennas of shape other 
than conical is nonuniform. Thus, as an 
approximation the input impedance of 
the cylindrical antenna in Fig. 8-14a 
can be calculated as though it were a 

ZOove) 
biconical antenna of characteristic im-  •   

z.   
pedance equal to the average character-  1 , 1 
istic impedance of the cylindrical an-
tenna.  The cylindrical antenna is  L  (b) 

replaced by the equivalent biconical an-
tenna as suggested in Fig. 8-14a. The 

Fm. 8-14.  Cylindrical antenna and 
transmission-line circuit, equivalent to equivalent biconical antenna and 
the antenna, is shown in Fig. 8-14b, it transmission line. 
being assumed that the line of length / 
has a uniform characteristic impedance equal to the average char-
acteristic impedance of the cylindrical antenna. This topic is discussed 
further in Sec. 9-11. 

PROBLEMS 

8-1. Confirm Schelkunoff's result that the characteristic impedance of an unsym-
metrical biconical antenna (with unequal cone angles) is 

e Kt) 
Zk = 60 In (  K cot — cot 

2  2 

where tg, = half the upper cone angle 

= half the lower cone angle 
8-2. Prove that the characteristic impedance Zk for a single cone and ground 

plane is half Zk for a biconical antenna. 
8-3. Calculate the terminal impedance of a conical antenna of 2° total angle 

operating against a very large ground plane. The length 1 of the cone is j wave-
length. 



CHAPTER 9 

THE CYLINDRICAL ANTENNA: 
ITS CURRENT DISTRIBUTION AND IMPEDANCE 

9-1. Introduction.' In previous chapters, the assumption is made that 
the current distribution on a finite antenna is sinusoidal. This assump-
tion is a good one provided that the antenna is very thin. In this chapter, 
a method for calculating the current distribution of a cylindrical center-
fed antenna will be discussed, taking into account the thickness of the 
antenna conductor. 
This is a boundary-value problem. The antenna as a boundary-value 

problem was treated many years ago by Abraham,' who obtained an exact 
solution for a freely oscillating elongated ellipsoid of revolution. However, 
the earliest treatments of the cylindrical center-driven antenna as a 
boundary-value problem are those of Hallett" and L. V. King.' More 
recently the problem has been discussed by Synge and Albert.' Hallen's 
method leads to an integral equation, approximate solutions of which 
yield the current distribution. Knowing the current distribution and the 
voltage applied at the input terminals, the input impedance is then 
obtained as the ratio of the voltage to the current at the terminals. 
Halien's integral-equation method will not be presented in detail, but the 

important steps and results will be discussed in the following sections. 

1 In other chapters sufficient steps are given in most analyses that the reader should be 
able to supply the intermediate ones without undue difficulty. However, this is not the 
case in this chapter since in most instances a large number of steps is omitted between 
those given in order to reduce the length of the development. 

M. Abraham, Die electrischen Schwingungen um einen stabformingen Leiter, 
behandelt nach der Maxwellschen Theorie, Ann. Physik, 66, 435-472, 1898. 

3 Erik Haller', Theoretical Investigations into the Transmitting and Receiving Quali-
ties of Antennae, Nova Ada Regiae Soc. Sci. Upsaliensis, Ser. IV, 11, No. 4, 1-44, 1938. 

L. V. King, On the Radiation Field of a Perfectly Conducting Base-insulated Cylin-
drical Antenna Over a Perfectly Conducting Plane Earth, and the Calculation of the 
Radiation Resistance and Reactance, Phil. Trans. Roy. Soc. (London), 236, 381-422, 
1937. 

6 G. E. Albert and J. L. Synge, The General Problem of Antenna Radiation. I, Quart. 
Applied Math., 6, 117-131, July, 1948. 
J. L. Synge, The General Problem of Antenna Radiation and the Fundamental 

Integral Equation, With Application to an Antenna of Revolution. II, Quart. Applied 
Math., 6, 133-156, July, 1948. 
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9-2. Outline of the Integral-equation Method. Since this method is a 
long one, an outline of the important steps is given in this section. 
The objective of the method is twofold: 

1. To obtain the current distribution of a cylindrical center-fed antenna 
in terms of its length and diameter 

2. To obtain the input impedance 

An outline of the procedure is given by the following steps. These are 
treated more fully in the sections which follow. 

1. The field E inside the conductor is expressed in terms of the current 
and skin effect resistance. 

2. The field E outside the conductor is expressed in terms of the vector 
potential. 

3. The tangential components of E are equated, obtaining a wave 
equation in the vector potential A. 

Steps 1 through 3 are discussed in Sec. 9-3. 

4. The wave equation in A is solved as the sum of a complementary 
function and a particular integral. 

5. The constant C, in the solution is evaluated in terms of the condi-
tions at the input terminals. 

6. The vector potential A is expressed in terms of the antenna cur-
rent I. 

7. The value of C, from 5 and of A from 6 are inserted in the solution 
4, obtaining Hallen's integral equation. This is an integral equation 
in the current I. 

Steps 4 through 7 are discussed in Sec. 9-4. 

8. A partial solution for the current / is then obtained by evaluating 
one of the integrals so that the current is expressed as the sum of 
several terms, some of which also involve I. 

9. Neglecting certain terms in /, an approximate (zero order) solution 
is obtained for I. 

10. This value of / is substituted back in the current equation obtaining 
a first-order approximation for the current. This process of itera-
tion can be continued, yielding second-order and higher order 
solutions. 

11. The constant C, is evaluated and an asymptotic expansion obtained 
for the current. That is, 

/ . in 600  [sin 13(/ — 1 Y i) -I- (big) ± (b2/n2) ± • • •  ] 
'  cos ft/ -I- (d1/0) -I- (d2/92) + • • • 

where 0 = 2 in (21/a), where 1 is the half-length of the antenna and 
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a the radius. The first-order approximation involves terms only as 
high as b,/11 and d1/l.  A second-order approximation involves 
b2/Se and 4/0', etc. 

Steps 8 through 11 are discussed in Sec. 9-5. 

12. The input impedance is then obtained as the ratio of the input 
terminal voltage VT to the current at the input terminals Jr.  This 
is discussed in Sec. 9-9. 

9-3. The Wave Equation in the Vector Potential A.'  Consider the 
center-fed cylindrical antenna of total length 2/ and diameter 2a as shown 
in Fig. 9-1. Let us first state the boundary conditions. Since the tan-

End face\  

a =1   

(p,q5,Z) 

Ep 

a 

CyIiodricoI 
surface of 
antenna 

1-*-2a 

FIG. 9-1.  Symmetrical center-fed cy-  no. 9-2. The tangential components of 
lindrical antenna with relation to coordi-  the electric field at the surface of the an-
nate&  tenna are equal. 

gential components of the electric field are equal at a boundary, 

E; = E, (9-1) 

along the cylindrical surface. In (9-1), E: is the field just inside the con-
ductor (p = a — da), and E. is the field just outside the surface of the 

1 The development in this section and in Sec. 9-4, leading up to Hallen's integral equa-
tion, follows the presentation of Ronold King and C. W. Harrison, Jr., The Distribution 
of Current Along a Symmetrical Center-Driven Antenna, Proc. I.R.E., 31, 548-567, 
October, 1943. 
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conductor (p = a + da) as indicated in Fig. 9-2. At the end faces of the 
antenna we have 

E; = E,  (9-2) 

where E; = the radial field just inside the face (z = 1 — dl) 
E, = the radial field just outside (z = 1 + dl) as suggested in 

Fig. 9-2 
To simplify the problem, it is assumed that 1 is much larger than 

a (/ >> a) and that the radius is very small compared to the wavelength 
Oa << 1). The effect of the end face can then be neglected and the current 
I, taken equal to zero at z = ±1. Then, 

E; = ZI.  (9-3) 

where Z = the conductor impedance in ohms per meter length of the con-
ductor due to skin effect 

I, = the total current 
The electric field E outside the conductor is derivable entirely from the 

vector potential A. That is, 
e2 

E = —j; V (V • A) — jcoA (9-4) 

Neglecting the end faces, the tangential E outside the conductor will 
have only an E. component. Since the current is entirely in the z direction, 
A has only a z component. Hence, at the conductor surface (9-4) becomes 

E, = —j ( 4eoz -I- efts)  (9-5) 

Now equating (9-3) and (9-5) in accordance with the boundary condition 
of (9-1), we obtain a wave equation, 

a2A s + #2A. =ig zr az2 0, s (9-6) 

This completes the first three steps in the outline of Sec. 9-2. 
9-4. Halien's Integral Equation. We next proceed to obtain a solution 

of (9-6), which is a one-dimensional wave equation in the vector potential 
A.. The equation is of the second order and first degree. If the antenna 
conductivity is infinite, Z = 0 and the equation becomes homogeneous. 
However, when Z is not zero, the equation is not homogeneous and its 
solution is given as the sum of a complementary function A. and a partic-
ular integral A.  That is 

A. = A. ± A,  (9-7) 

' J. W. Mellor, "Higher Mathematics for Students of Chemistry and Physics," 
Longmans, Green & Co., Inc., New York, pp. 413-414. 
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Introducing the values of A. and A, (9-7) becomes 

A. =  (C, cos tiz + C2 sin 13z) +  f I(s) sin ti(z — s) ds  (9-8) 

Assume that the antenna is excited symmetrically by a pair of closely 
spaced terminals. Then 

dz, 

iz 

z=-1 — 

Fm. 9-3. Construction for obtaining 
vector potential A.. 

(p,th,z) 

/,(z) = I,(—z) 

and  A ,(z) = A ,(— z)  (9-9) 

The constant C2 in (9-8) may be eval-
uated as equal to one-half the applied 
terminal voltage VT. Thus, 

= IV,.  (9-10) 

Let us now express the vector po-
tential A, in terms of the current on the 
antenna.  For a conductor of length 
z = —1 to z = +1, as shown in Fig. 
9-3, the vector potential A. at any 
point outside the conductor or at its 
surface is 

A =  f+'  dz 
4r  r 

"" f +1 e „   
r dz,  (9-11) 

where r = [p2 — 
zi = a point on the conductor ( —1 < z, < + 1) 

Inserting the values of C2 and A, from (9-10) and (9-11) in (9-8) and re-
arranging yields Hallen's integral equation,' 

r-
u cos 9z -I- LT sin izi 

47  .1_,  2 

Z  f o I (8) sin (z — s) ds (9-12) 

An integral equation is an equation in which an unknown function appears under the 
integral sign. In this case, the unknown function is the antenna current /.,. 
In the integral-equation approach to a boundary-value problem, the independent 

variable ranges over the boundary surface (in this case, the antenna) so that the boun-
dary conditions are incorporated in the integral equation. This is in contrast to the 
situation with the differential equation approach, in which the independent variable 
ranges throughout space, with a solution being sought that satisfies the boundary 
conditions. 
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The absolute value sign on z in the second term of the right side of (9-12) 
has been introduced because of the symmetry condition of (9-9). Hallen's 
equation (9-12) is an equation in the current I„ on the conductor. If 
(9-12) could be solved for I„, the current distribution could be obtained 
as a function of the antenna dimensions and the conductor impedance. 
The term with Z has a negligible effect provided that the antenna is a 

good conductor. Thus, assuming that Z = 0 (conductivity infinite), we 
can put Halien's integral equation in a simplified form as follows, 

+1 /   dz  Vr . 
30j  i = CI cos Oz + —2 sin Pizi  (9-13) r 

In (9-13) we have put ei" = 1 and written cm/47 = 30. This completes 
steps 4 through 7 of the outline of Sec. 9-2. 
9-5. First-order Solution of Hallen's Equation.' The problem now is to 

obtain a solution of (9-13) for the antenna current I, which can be evalu-
ated. As a first step in the solution, let the integral in (9-13) be expanded 
by adding and subtracting I„ That is, 

+1 I 5-or  1:̀ I,  — I  
dzi =  dz,  (9-14) 

f+1 r+.  — I, dz,  (945)  
r 

Integrating the first term in (9-15) and putting p = a we have 

d2jr  =  ±  111 [ 1 —  2 ±  8  (9-16) 

where 

= 2 ln 2—/ = 2 in total antenna length (9-17) 
a  conductor radius 

and fir/   
a = in 14 01 1 +  ± 1 \11  4. (1 

a )2 11  (9-18) 

Substituting (9-16) into (9-15), and this in turn into (9-13), yields, 

/. = 3-4 2 (CI cos ftz -I-  VT sin iliz1) 

_ ri r+,  _ T 

dz,} (9-19) L W ± ± Li 
1 The development in this and following sections is similar to that given by Erik 

Hallen, Theoretical Investigations into the Transmitting and Receiving Qualities of 
Antennae, Nova Acta Regiac Soc. Sci. Upsaliensis, Ser. IV, 11, No. 4, 1-44, 1938; also by 
Ronold King and C. IV. Harrison, Jr., The Distribution of Current Along a Symmetrical 
Center-driven Antenna, Proc. I.R.E., 31, 548-567, October, 1943. 
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At the end of tbe antenna the current is zero. Thus, when z = 1, I, = 0 
so that (9-19) reduces to 

1 
0 =  (C, cos Si  T sin t3/) -I- 1 f I' e 

300  2  r, dzi  (9-20) 

where r, = V(/ — z,)2 ± a' 

Now subtracting (9-20) from (9-19) as done by Hallen, we have 

/, =  [C,(cos  — cos t30 +  VT(sin IzI — sin 00] 

111[1 — (z)1 + 1,6  f I 'se +̀ ' s' —  dzi 

f+ 1 dzi } 
(9-21) 

J-1  ri 

Proceeding with Hallen's solution, the quantity in the braces in (9-21) 
is taken as zero so that the current I., given by the terms in the brackets, 
becomes a zero-order approximation, designated Lo. Thus, 

1.0 1 =  (CIF°,  V. (7o)  (9-22) 

where the following symbols have been introduced 

Fo, = cos liz — cos 131 
Go, = sin  zI — sin )31 

Substituting 1,0, as given by (9-22), for I, on the right side of (9-21), a 
first-order approximation I. can be obtained for the current. That is, 

/., =  [Ci(Fo. -F —Fo") -1-  VT(Go. -F % 1)]  (9-24) 

where F1. = Fl(z) — F1( )   F1(z)  =  —Fo, In [1 — () 2 1.0.3 — 

1  J-1 
1+̀  — P. dzi  

Fi(i) =  f+i dzi  -1  ri 
Gis = Gi(z) — Gi(1) 

G1(z) is the same as F1(z) with G substituted for F and G1(1) is the same 
as F1(1) with G substituted for F. 
If (9-24) is now substituted for I, on the right side of (9-21), a second-

order approximation for the current can be obtained. Continuing this 
process yields third-order and higher order approximations, and the 
solution for the antenna current I. takes the form 

(9-23) 
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=  [c (F  + E21 + • • .) 
3012  °'  ft  Se 

1  G„  G2 

2  '  12  12 

Substituting I. as given by (9-25) into (9-20) yields 

1 T, [o(i) (1/0)G1(/) + • ''] 
=  F0(1) +  (1 / O) F 1(1) ±  • • • 

Dl (9-25) 

(9-26) 

Inserting C, from (9-26) in (9-25) and rearranging, the current is given 
by the asymptotic expansion, 

=  [sin 0(/ — I z I) +(b1/l)  (b2/n2) ± • • •1 
'  6012 L  cos tirt + (ado) + (d2/a2) + • • • 

(9-27) 

where b, = F1(z) sin 0/ — F,(1) sin /31zi  G,(1) cos fiz — G1(z) cos 01 
di = F,(1) 

Neglecting b2, d2, and higher order terms, the first-order solution for the 
antenna current is 

= LV1 [sin 0(/ — z i)  (b1/0)] (9-28) 
"  sou L  cos 0/ + (di/12) 

The quantities b, and d, have been calculated in terms of real and imagi-
nary functions' by King and Harrison for several values of 1 and curves 
given.' This completes steps 8 through 11 of the outline of Sec. 9-2. 
9-6. Length-Thickness Parameter 12. The above development is based 

on the assumptions that 1 >> a and Oa  /. The condition that / >> a 
will be arbitrarily taken to mean that 

- > 60 
a — 

(9-29) 

The ratio //a equals the ratio of the total length of the cylindrical antenna 
to the diameter. Thus, 

Total length 2/  1 
Diameter — 2a — a 

When 1/a = 60, the value of ft from (9-17) is 

= 2 ln  = 2 ln 120  9.6 
a 

b,  M11 + /Mall and  d1  ± jA 
I Ronold King and C. W. Harrison, Jr., The Distribution of Current Along a Sym-

metrical Center-driven Antenna, Proc. I.R.E., 31, 548-567, October, 1943. 
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A graph of 0 as a function of the ratio of the total length to the con-
ductor diameter is presented in Fig. 9-4. 
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Fm. 9-4.  The coefficient f2 as a function of the total length to diameter ratio (21/2a) 
or length-to-radius ratio (f/a) of a cylindrical antenna. 

Another factor which restricts 1/a to large values (1/a > 60) is that for 
asymptotic convergence of (9-27) 0 must exceed a certain value. If 0 is 
too small, the series may diverge. 
9-7. Equivalent Radius of Antennas with Noncircular Cross Section. 

The above discussion in this and preceding sections deals with uniform 
cylindrical antennas, that is, antennas of circular cross section (radius = a). 
According to Hallen,1 uniform antennas with noncircular cross section 

can also be treated by taking an 
equivalent radius. For square cross 
sections of side length g (Fig. 9-5), 
the equivalent radius is 0 

' a = 0.59g 
Flat 
strip 

Square 
conductor 

Fm. 9-5.  Conductors of square and flat 
cross section with equivalent circular 
conductors of radius a. 

while for thin flat strips of width w 
the equivalent radius is 

a = 0.25w 

For any shape of cross section there 
exists an equivalent radius and hence 

a value of a In all cases it is assumed that the cross section is uniform 
over the entire length of the antenna. 

1 Erik Hallen, Theoretical Investigations into the Transmitting and Receiving Qual-
ities of Antennae, Nova Ada Regiae Soc. Sci. Upsaliensis, Ser. IV, 11, No. 4, 1-44, 1938. 
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9-8. Current Distributions. The amplitude and phase of the current 
along cylindrical antennas of three lengths and two values of the total 
length-diameter ratio (//a) are presented in Figs. 9-6, 9-7, and 9-8. 
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Fm. 9-6. Relative current amplitude and phase along a center-fed 4-wavelength 
cylindrical antenna (2/  x/2) for total length-to-diameter ratios (//a) of 75 and infinity 
(after King and Harrison). Distance from the center of the antenna is expressed in 
wavelengths. 

Figure 9-6 is for a 4-wavelength antenna (2/ = X/2), Fig. 9-7 for a full-
wavelength antenna (21 = X), and Fig. 9-8 for a 11-wavelength antenna 
(2/ = 11 X). For each length the relative amplitude and phase of the 
current are presented for f2 = 10 and 12 = C° corresponding to total length-
to-diameter ratios (1/a) of 75 and co . The amplitude curves are adjusted 
to the same maximum value, and all phase curves are adjusted to the 
same value at the ends of the antenna. 
It is generally assumed that the current distribution of an infinitesimally 

thin antenna (1/a = 03) is sinusoidal, and that the phase is constant over a 
4-wavelength interval, changing abruptly by 180° between intervals. This 
behavior is illustrated by the solid curves in Figs. 9-6, 9-7, and 9-8. 
The dashed curves illustrate the current amplitude and phase variation 

for lla = 75 (S2 = 10). The difference between these curves and the 
solid curves (1/a = 03) is not large but is appreciable. The dashed curves 
(1/a = 75) are from the distributions given by King and Harrison' as 
calculated from (9-28), the current being expressed in terms of its ampli-
tude and the phase angle relative to a reference point. Thus, 

/, = 1 /, 1  (9-30) 

1 Ronold King and C. W. Harrison, Jr., The Distribution of Current Along a Sym-
metrical Center-driven Antenna, Proc. I.R.E., 31, 548-567, October, 1943. 
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The effect of the length-thickness ratio on the current amplitude is well 
illustrated by Fig. 9-7 for a full-wavelength antenna. When the antenna 

Cu
rr
e
nt
 
am
pl
it
u
d
e 
I I
z
I 

.5  .4  .3  .2  .  .1  .2  .3  .4  . 
Distance in wavelengths from center of antenna 

180' 

150' 

'az. 120° 

90° 0 
ct 60' 

30° 

0° 

• 

oc, 

Fla. 9-7.  Relative current amplitude and phase along a center-fed full-wavelength 
cylindrical antenna (2/ = X) for total length-to-diameter ratios (//a) of 75 and infinity 
(after King and Harrison). Distance from the center of the antenna is expressed in 
wavelengths. 
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Flo. 9-8.  Relative current amplitude and phase along a center-fed 11-wavelength 
cylindrical antenna (2/ = 11X) for total length-to-diameter ratios (//a) of 75 and infinity 
(after King and Harrison). Distance from the center of the antenna is expressed in 
wavelengths. 

is infinitesimally thin, the current is zero at the center. As the antenna 
becomes thicker, the current minimum increases and at the same time 
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shifts slightly toward the end of the antenna. For still thicker antennas 
(1/a < 75), Eq. (9-28) is no longer a good approximation for the current, 
but it might be expected that the above trend would continue. 
The effect of the length-thickness ratio on the phase variation is well 

illustrated by Fig. 9-8 for a 1I-wavelength antenna. When the antenna 
is infinitesimally thin, the phase varies as a step function, being constant 
over 4 wavelength and changing by 180° at end of the 4-wavelength 
interval (solid line, Fig. 9-8). This type of phase variation is observed in a 
pure standing wave. As the antenna becomes thicker, the phase shift at the 
end of the 4-wavelength interval tends to become less abrupt (dashed curve 
for //a = 75). For still thicker antennas (1/a < 75), it might be expected 
that this trend would continue and for very thick antennas would tend to 
approach that of a pure traveling wave as indicated by the straight dashed 
lines in Fig. 9-8. 
9-9. Input Impedance. The input impedance Zr of a center-fed cylin-

drical antenna is found by taking the ratio of the input or terminal voltage 
VT and the current I. at the input terminals. That is, 

ZT =  = RT jXT (9-31) 

where Ir = /,(0) 
RT = terminal resistance 
Xr = terminal reactance 

Therefore, setting z = 0 in (9-28) and inserting this value of current in 
(9-31) yields Hallen's relation for the input impedance, 

zr  = — ,;600[  cos '9/  (d,/0)1 
sin fi/  (bi/12) 

This is a first-order approximation for the input impedance. If the second-
order terms are included [see (9-27)], Hallen's input-impedance expression 
has the form 

Z  r cos /31  (d,/0)  (d2/02 )1 
r = —i6"Lsin  + (b1/0)  (b2/ 0 

(9-32) 

(9-33) 

This relation has been evaluated by Hallent who has also presented the 
results in chart form.' Impedance spirals based on Hallen's data are 
presented in Fig. 9-9 for center-fed cylindrical antennas with ratios of 
total length to diameter (//a) of 60 and 2,000. The half-length 1 of the 

'Erik Hallett, On Antenna Impedances, Trans. Roy. Inst. Technol., Stockholm, No. 13, 
1947. 

2 Erik Hallett, "Admittance Diagrams for Antennas and the Relation Between An-
tenna Theories," Cruft Laboratory Tech. Rep. No. 46, Harvard University, 1948. 
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antenna is given along the spirals in free-space wavelengths. The im-
pedance variation is that which would be obtained as a function of fre-
quency for an antenna of fixed physical dimensions. The difference in 
the impedance behavior of the thinner antenna (1/a = 2,000) and of the 
thicker antenna (//a = 60) is striking, the variation in impedance with 
frequency of the thicker antenna being much less than that of the thinner 
antenna. 
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Flo. 9-9.  Calculated input impedance (R  pr) in ohms for cylindrical center-fed 
antennas with ratios of total length to diameter (2//2a) of 60 and 2,000 (after Hallen). 

The impedance, given by (9-32) or (9-33), applies to center-fed cylin-
drical antennas of total length 2/ and diameter 2a. To obtain the im-
pedance of a cylindrical stub antenna of length 1 and diameter 2a operating 
against a very large perfectly conducting ground plane, (9-32) and (9-33) 
are divided by 2. The impedance curve based on Hallen's calculations 
for a cylindrical stub antenna with an 1/a ratio of 60 is given by the solid 
spiral in Fig. 9-10. The length 1 of the stub is indicated in free-space 
wavelengths along the spiral. The measured impedance variation of the 
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same type of antenna (1/a = 60) as given by Dome' is also shown in Fig. 
9-10 by the dashed spiral. The agreement is good considering the fact 
that the measured curve includes the effect of the shunt capacitance at 
the gap and the small but finite antenna terminals. 
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no. 9-10.  Comparison of calculated (solid curve) and measured (dashed curve) input 
impedance (I?  jX) in ohms for cylindrical stub antenna with ground plane for length-
to-radius ratio (//a) of 60. 

The measured input impedance of a cylindrical stub antenna with an 
1/a ratio of 20 is shown in Fig. 9-11. Comparing this curve with the 
dashed curve of Fig. 9-10, it is apparent that the trend toward decreased 
impedance variation with smaller 1/a ratio (increased thickness) sug-
gested by Fig. 9-9 is continued to smaller 1/a ratios. A measured im-
pedance curve for 1/a = 472 is also included in Fig. 9-11.2 

' Chap. 4 by A. Dome, "Very High Frequency Techniques," by Radio Research Lab-
oratory Staff, McGraw-Hill Book Company, Inc., New York, 1947. 
See also G. H. Brown and 0. M. Woodward, Experimentally Determined Impedance 

Characteristics of Cylindrical Antennas, Proc. I.R.E., 33, 257-262, April, 1945. 
D. D. King, The Measured Impedance of Cylindrical Dipoles, J. Applied Phys., 17, 

844-852, October, 1946. 
The curves in Fig. 9-11 are based on data presented by Dome.' 
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An antenna is said to be resonant when the input impedance is a pure 
resistance.  On the impedance diagrams of Figs. 9-9, 9-10, and 9-11 
resonance occurs where the spirals cross the X = 0 axis. At zero frequency 
all the impedance spirals start at R = 0 and X = — .  As the frequency 
increases, the reactance decreases and the resistance also increases although 
more slowly. The first resonance occurs when the length 1 of the antenna 
is about  wavelength. The resistance at the first resonance is designated 
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FIG. 9-11.  Measured input *napedance R  jX) in ohms of cylindrical stub antenna 
with ground plane for length-to-radius ratio (1/a) of 20 and 472. 

R,. As the frequency is increased, the length of the antenna becomes 
greater and the second resonance occurs when the length 1 is about 
wavelength. The resistance at the second resonance is designated R2. 
At the third resonance (resistance =RD, the antenna length 1 is about 
I wavelength and at the fourth resonance (resistance = R4) 1 is about 1 
wavelength. As the frequency is increased indefinitely, an infinite num-
ber of such resonances can be obtained. 
Since it is common practice to operate antennas at or near resonance, 

the values of the resonant resistances are of interest. Curves based on 
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Halien's calculated graphs' are presented in Fig. 9-12 for the first four 
resonances of a cylindrical stub antenna with large ground plane as a 
function of the length-radius ratio (1/a).  The lowest value of 1/a for 
which HaHen gives data is 60, since the accuracy of (9-33) tends to de-
teriorate for smaller //a values.  Thus, the solid part of the curves 
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Fro. 9-12. Resonant resistance of cylindrical stub antenna with ground plane as a 
function of the length-to-radius ratio (//a). Curves are shown for the first four reso-
nances. For cylindrical center-fed antennas (total length 2/) multiply the resistance 
by 2. 

(1/a > 60) are according to Hallen's calculated values. The dashed part 
of the curves are extrapolations to smaller values of 1/a. The extrapolation 
is without theoretical basis but is probably not much in error. A few 
measured values of resonant resistance from Dome's data' are shown as 

lErik Hallen, "Admittance Diagrams for Antennas and the Relation Between Antenna 
Theories," Cruft Laboratory Tech. Rep. No. 46, Harvard University, 1948. 

2 Chap. 4 by A. Dome, "Very High Frequency Techniques," by Radio Research Lab-
oratory Staff, McGraw-Hill Book Company, Inc., New York. 1947. 
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points in Fig. 9-12, the dotted lines indicating to which resonant resistance 
the points correspond. 
Figure 9-12 illustrates the difference in the effect of antenna thickness 

on the resistance at odd and even resonances.  The resistance at odd 
resonances (R„ R., etc.) is nearly independent of the antenna thickness. 
The first resonant resistance R, is about 35 ohms, and the third resonant 

21= 21=27t 
2 

T,=450 

w=50 

Fro. 9-13.  Field patterns of cylindrical center-fed linear antennas of total length 21 
as a function of the total length-to-diameter ratio (1/a) and also as a function of the 
total length (21) in wavelengths. 

resistance R. is about 50 ohms over a large range of //a ratios. On the 
other hand, the antenna thickness has a large effect on the resistance at 
even resonances (R., Ro etc.). The thicker the antenna, the smaller the 
resistance. For example, the second resonant resistance R2 is about 200 
ohms when 1/a = 10 and increases to about 1,500 ohms at 1/a = 1,000. 
The fourth resonant resistance behaves in a similar fashion, the values 
being somewhat less. 
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The difference in the resistance behavior at odd and even resonances is 
related to the current distribution. Thus, at odd resonances the antenna 
length 1 is an odd number of i wavelengths long (approximately), and a 
current maximum appears at or near the input terminals. At even reso-
nances the antenna length 1 is an even number of I wavelengths long 
(approximately), and a current minimum appears at or near the input 
terminals. As indicated by the current distribution curves of Figs. 9-7 
and 9-8, one of the most noticeable effects of an increase in antenna thick-
ness is the increase of the current at current minima.  Thus, when a 
current minimum is at or near the input terminals an increase in the 
antenna thickness raises the input current I. for a constant input voltage 
V r so that the resonant resistance given by the ratio V7//r is reduced. 
9-10. Patterns of Cylindrical Antennas. Formulas for calculating the 

far-field patterns of thin linear antennas were developed in Chap. 5. 
Although these relations apply strictly to infinitesimally thin conductors, 
they provide a first approximation to the pattern of even a relatively 
thick cylindrical antenna. This is illustrated by the patterns in Fig. 9-13 
for center-fed linear cylindrical antennas of total length 2/ equal to 4, 
1, 14, and 2 wavelengths. The calculated patterns for infinitesimally thin 
antennas are shown in the top row. Three of these patterns were given 
previously in Fig. 5-9.  In the next three rows patterns measured by 
Dome' are given for 1/a ratios of 450, 50, and 8.7.  The principal effect 
of increased antenna thickness appears to be that some of the pattern 
nulls are filled in and that some minor lobes are obliterated (note the 
patterns in the third column for 2/ = 14 X). 
9-11. The Thin Cylindrical Antenna. If the assumption is made that 

the cylindrical antenna is infinitesimally thin (0 —*co), the current dis-
tribution given by (9-27) or (9-28) reduces to 

I _ Ln: sin 0(/ — i z i) 
' 60S/  cos 0/ 

(9-34) 

Although 2 approaches infinity, the ratio V7/fl may be maintained con-
stant by also letting 177 approach infinity. According to (9-34), the shape 
of the current distribution is sinusoidal. That is, 

I, = k sin 0(1 — I z D  (9-35) 

where k = a constant 
The input impedance Zr is the ratio V./I7 where I. is the current at 

the terminals (z = 0). Thus from (9-34) 

1 Chap. 4 by A. Dome, "Very High Frequency Techniques," by Radio Research Lab-
oratory Staff, McGraw-Hill Book Company, Inc., New York, 1947. 
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VT 
ZT = —j6011 cot 411  (9-36) 

T 

In (9-36) we may regard S2 as large but finite. The terminal impedance 
Z. according to (9-36) is a pure reactance X. Equation (9-36) is identical 
to the relation for the input impedance of an open-circuited lossless trans-
mission line of length 131 (see Appendix Section 3) provided that 60S/ is 
taken equal to the characteristic impedance of the line. If, by analogy, 
6011 is taken equal to the average characteristic impedance Zk (ave.) of the 
center-fed cylindrical antenna then, from the value of 12 given in Sec. 9-6, 

Zk (ave.) = 600 = 120 in  (9-37) 

This relation is of the same form as Schelkunoff's expression for the char-
acteristic impedance Zk of a thin biconical antenna given by (8-21) since for 
small cone angles O. = a/1 so that (8-21) becomes 

2/ 
Zk = 120 ln —a  (9-38) 

where a = end radius of the cone as shown in Fig. 9-14. 

I 
I 
I 

\ it t 

I 

Pia. 9-14. Biconical antenna of end radius a and length /. 

The average characteristic impedance of a center-fed cylindrical antenna 
as given by Schelkunoff is 

Zk (ave.) = 120(ln  — 1)  (9-39) 
a 
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The average impedance of a cylindrical stub antenna with a large ground 
plane is one-half the value of (9-39). 
As 1/a - " 0 , (9-39) reduces to the form given in (9-37). However, for 

finite values of //a the average characteristic impedance of a cylindrical 
antenna is the same as for a biconical antenna of the same length 1 but 
with an end radius a which is larger than the radius of the cylindrical 
conductor. This is suggested in Fig. 8-14a. For example, a cylindrical 
antenna with an //a ratio of 500 has an average characteristic impedance 
equal to that of a biconical antenna of the same length with an end radius 
2.8 times larger than the radius of the cylindrical conductor. 
In Fig. 9-9 the calculated input impedance is presented for cylindrical 

center-fed antennas with total length-to-diameter ratios (2//2a = 1/a) of 
60 and 2,000. The average characteristic impedance of these antennas 
by (9-39) is 454 and 873 ohms, respectively. The curve for the 1/a ratio 
of 60 [Zh (ave.) = 454] has approximately the same form as the calculated 
impedance spiral in Fig. 8-12 for a 2.7° half-angle biconical antenna 
(Zh = 450). 
In Fig. 9-11 the measured input impedance is shown for cylindrical stub 

antennas with //a ratios of 20 and 472. The average characteristic im-
pedance of these antennas as given by one-half of (9-39) is 161 and 350 
ohms, respectively. The curve for 1/a = 20 [Zh (ave.) = 161] is of the 
same general form (although displaced downward) as would be anticipated 
from Fig. 8-13 since a spiral for Zh (ave.) = 161 should lie between those 
shown in Fig. 8-13 for Zh = 146 and Zh = 188. 
9-12. Cylindrical Antennas with Conical Input Sections. It is common 

practice to construct cylindrical antennas with short conical sections at 
the input terminals as indicated at the bottom of Fig. 9-13. If the cylinders 
are of large cross section, the conical sections are particularly desirable 
in order to reduce the shunt capacitance at the gap. Since the measured 
impedance of an antenna includes the effect of the gap capacitance and 
the small but finite terminals, the measured impedances will differ more 
or less from the theoretical values. It is to be expected that measured 
values will agree better with calculated ones when end cones are used 
rather than when the ends of the cylinders are butted close together. 
9-13. Antennas of Other Shapes: the Spheroidal Antenna. The solution 

of a boundary-value problem may be facilitated if the boundary can be 
specified by one coordinate of an appropriate coordinate system.  A 
spherical antenna or one in the shape of an elongated ellipsoid of revolu-
tion (prolate spheroid) as in Fig. 9-15, is amenable to such treatment since 
the surface of the spheroid corresponds to a particular value of one co-
ordinate of a spheroidal coordinate system. By varying the eccentricity 
of the ellipsoid, one may study the properties of the sphere at the one 
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extreme of eccentricity and of a long thin conductor at the other extreme. 
This problem has been treated at length by Stratton and Chu' and by 
Page and Adams.2 Stratton and Chu give admittance and impedance 

curves for various length-to-diameter (LID) 
 L.   ratios (see Fig. 9-15). For long, thin ellip-
 L soids the impedance characteristics are simi-T h   

  lar to those deduced by other methods. The 
current distribution for thin 4-wavelength 
spheroids is also found to be nearly sinusoi-

Fm. 9-15.  l'rolate spheroidal  dal. 
antenna.  A point of interest is that for spheroids of 

the order of 4-wavelength long, the imped-
ance variation with frequency decreases with decreasing LID ratios (thicker 
spheroids). That is to say, resonance with thick spheroids is broader than 
with thin ones. This is in agreement with the well-known fact that thick 
antennas have broader band impedance characteristics than thin ones. 

PROBLEMS 

9-1. What is the initial relation used in developing HaBen's integral equation? 
9-2. Indicate the principal steps required to arrive at the current distribution 

and terminal impedance of a cylindrical antenna by means of Halien's integral 
equation. 

J. A. Stratton and L. J. Chu, Steady State Solutions of Electromagnetic Field Prob-
lems, J. Applied Phys., 12, 230-248, March, 1941. 

2 L. Page and N. I. Adams, The Electrical Oscillations of a Prolate Spheroid, Phys. 
Rev., 53, 819-831, 1938. 



CHAPTER 10 

SELF AND MUTUAL IMPEDANCES 

10-1. Introduction. The impedance presented by an antenna 
transmission line can be represented by a two-terminal 
is illustrated in Fig. 10-1 in which the antenna is re-
placed by an equivalent impedance Z connected to 
the terminals of the transmission line.' In designing 
a transmitter and its associated transmission line, it 
is convenient to consider that the antenna is simply 
a two-terminal impedance.  This impedance into    
which the transmission line operates is called the 
terminal or driving-point impedance. If the antenna 
is isolated, that is, remote from the ground or other 
objects, and is lossless,2 its terminal impedance is 
the same as the self-impedance of the antenna. This 
impedance has a real part called the self-resistance 
(radiation resistance) and an imaginary part called 
the self-reactance. The self-impedance is the same 
for reception as for transmission. 
In case there are nearby objects, say, several 

other antennas, the terminal impedance can still be 
replaced by a two-terminal network. However, its 
value is determined not only by the self-impedance 
of the antenna but also by the mutual impedances 
between it and the other antennas and the currents 
flowing in them. 

network. 

Antenna 

to a 
This 

Transmissior 
line 

Equivalent --2(  
impedance 

Fm. 10-1.  Transmis-
sion line with antenna 
and with equivalent 
impedance. 

1 Because of the effect of the gap size at the center of the antenna and of the terminal 
arrangement, there may be some indefiniteness as to the value of the antenna impedance. 
Suppose, for example, that the antenna impedance Z is defined as that impedance which 
placed at the antenna terminals of the transmission line results in the same impedance at 
the left-hand end of the line (Fig. 10-1) as is actually measured. In general, this im-
pedance is a function of the characteristics of the transmission line.  Although this 
effect must sometimes be considered, it is usually negligible provided that the antenna 
gap or terminal spacing is small compared to the wavelength (gap of the order of 0.01 
wavelength or less). See R. King and T. W. Winternitz, The Cylindrical Antenna with 
Gap, Quart. Applied 21fath., 5, 403-416, January, 1948. 

3 By lossless is meant that there is no Joule heating associated with the antenna. 
There may, of course, be radiation. If the antenna is not lossless, an equivalent loss 
resistance appears at the terminals in series with the self-resistance or radiation 
resistance. 

251 
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In Chap. 5 an expression was developed for the radiation resistance 
(or self-resistance) of thin linear antennas.  In the following sections 
this analy sis is extended to yield expressions for both the self-resistance 
and the self-reactance. In addition, expressions are developed for the 
mutual resistance and mutual reactance of two thin linear antennas. These 
expressions will be used in Chap. 11 to find the driving-point impedance 
in an array of linear antennas. Even though the impedances apply strictly 
to infinitesimally thin antennas, they are useful in connection with practical 
types of cylindrical antennas, provided that the antennas are thin. 
In developing the subject of antenna impedance, an important and much-

used theorem is that of reciprocity. Accordingly, this topic is discussed 
first and then applied to the impedance problem. 
10-2. Reciprocity Theorem for Antennas. The Rayleigh-Helmholtz reci-

procity theorem' has been generalized by Carson' to include continuous 
media. This theorem as applied to antennas may be stated as follows: 
If an emf is applied to the terminals of an antenna A and the current measured 
at the terminals of another antenna B, then an equal current (in both ampli-
tude and phase) will be obtained at the terminals of antenna A if the same 
emf is applied to the terminals of antenna B. It is assumed that the emfs 
are of the same frequency and that the medium is linear, passive, and also 
isotropic. An important consequence of this theorem is the fact that under 
these conditions the transmitting and receiving patterns of an antenna are 
the same. 
As an illustration of the reciprocity theorem for antennas, consider the 

following two cases. 
Case 1. Let an emf V. be applied to the terminals of antenna A as in 

Fig. 10-2a. This antenna acts as a transmitting antenna, and energy flows 
from it to antenna B, which may be considered as a receiving antenna, 
producing a current I at its terminals.3 It is assumed that the generator 
supplying the emf and the ammeter for measuring the current have zero 
impedance, or if not zero, that the generator and ammeter impedances are 
equal. 

I Lord Rayleigh, "The Theory of Sound," The Macmillan Company, New York, Vol. 1 
(1877, 1937), pp. 98 and 150-157, and Vol. 2 (1878, 1929), p. 145. 

I J. R. Carson, A Generalization of the Reciprocal Theorem, Bell System Tech. .1., 3, 
393-399, July, 1924. 
J. R. Carson, Reciprocal Theorems in Radio Communication, Proc. I.R.E., 17, 

952-956, June, 1929. 
Stuart Ballantine, Reciprocity in Electromagnetic, Mechanical, Acoustical, and 

Interconnected Systems, Proc. I.R.E., 17, 929-951, June, 1929. 
'Although the emf V. and the current It, are scalar space quantities, they are complex 

or vector quantities with respect to time phase. The te- "phasor" is sometimes used to 
distinguish such a quantity from a true space vector 
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Case 2. If an emf Vb is applied to the terminals of antenna B, then it 
acts as a transmitting antenna and energy flows from it to antenna A as 
in Fig. 10-2b, producing a current I. at its terminals. 
Now if Vb = V., then by the reciprocity theorem 1„ = Ib. 
The ratio of an emf to a current is an impedance. In Case 1 the ratio 

of V. to lb may be called the transfer impedance Z.b, and in Case 2 the 
ratio Vb to I. may be called the transfer impedance Zb.. Then by the 
reciprocity theorem it follows that these impedances are equal. Thus, 

V  7 7 Vb 
= z.db=  = 

lb °  I. 
(10-1) 

In order to prove the reciprocity theorem for antennas, let the antennas 
and the space between them be replaced by a network of linear, passive, 

Antenna A 

Antenna A 

Energy 
flow 

(a) 

Energy 
flow 

(b) 

Antenna B 

(a) 

(b) 
FIG. 10-2. Illustrations for reciprocity  FICI. 10-3. Equivalent circuits used in 
theorem,  proof of reciprocity theorem. 

bilateral impedances. Since any four-terminal network can be reduced to 
an equivalent T section,' the antenna arrangement of Case 1 (see Fig. 
10-2a) can be replaced by the network of Fig. 10-3a. 

IThis is true in so far as the amplitude and phase of the input voltage and output cur-
rent are concerned. 



254  ANTENNAS  [CHAP. 10 

The current through the meter is 

where 

Z3  
= Z2-1- Z2 

(10-2) 

V.   , -  V.(Z,  Z,)   1 Z,  [Z,Z8/(Z2 ± Z3)] — ZiZ2  Z2Z3  Z3z,  (10-3) 

Introducing (10-3) into (10-2) yields the current through the meter in 
terms of the emf V. and the network impedances. Thus, 

V23   
1.6 —  (10-4) 

Z,Z2 Z 2Z3  Z3Zi 

If the locations of the emf and current meter are interchanged, as in 
Fig. 10-3b, we obtain 

VbZ2   
(10-5) 

Z,Z2 Z2Z3  Z3Zi 

Comparing (10-4) and (10-5), it follows that if V. = V6 then I. = /b, 
proving the theorem. 
10-3. Self-impedance of a Thin Linear Antenna. In this section an 

induced emf method' as used by Carter is applied to the determination of 
the self-impedance of a thin linear antenna.' The antenna is center-fed 
with the lower end located at the origin of the coordinates as shown in 
Fig. 10-4. The antenna is situated in air or vacuum and is remote from 
other objects. Since the antenna is thin, a sinusoidal current distribution 
will be assumed with the maximum current /, at the terminals. Only 
lengths L which are an odd multiple of  wavelength will be considered 
so that the current distribution is symmetrical, with a current maximum 
at the terminals. The current distribution shown in Fig. 10-4 is for the 
case where L = X/2. The current at a distance z from the origin is desig-
nated /,. Then, 

I. = /, sin ftz  (10-6) 

'The relation of this method to the one used in Chap. 5, for the calculation of radiation 
resistance, is discussed in Sec. 10-10. 

2P. S. Carter, Circuit Relations in Radiating Systems and Applications to Antenna 
Problems, Proc. I.R.E., 20, 1004-1041, June, 1932. 
J. Aharoni, "Antennae," Oxford University Press. New York, 1946, pp. 174, 185. 
A. A. Pistolkors, The Radiation Resistance of Beam Antennas, Proc. I.R.E., 17, 

562-579, March, 1929. 
R. Bechmann, Calculation of Electric and Magnetic Field Strengths of Any Oscillat-

ing Straight Conductors, Proc. I.R.E., 19, 461-466, March, 1931. 
R. Bechmann, On the Calculation of Radiation Resistance of Antennas and Antenna 

Combinations, Proc. I.R.E., 19, 1471-1180. Au -list 1031 
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Suppose that an emf V11 applied to the terminals of the antenna of 
Fig. 10-4 produces a current I, at a distance z from the lower end. The 
ratio of V. to I. may be designated as the transfer impedance Z,.. Thus, 

Z, =  (10-7) 

Next let the applied field at the antenna and parallel to it be E,. This 
is the field produced by the antenna's own current. This field induces a 
field E„ at the conductor such that the boundary conditions are satisfied. 
For a perfect conductor these are that the total field E„ is zero or that 
E., = E,  E„ = 0 and therefore E„ = —E.. The emf dV, pro-
duced by the induced field over a length dz 

Ez I is —E, dz or 

dV. =  dz  (10-8) 

If the antenna is short-circuited this emf will 
produce a current dI, at the terminals. Then 
the transfer impedance Z., is given by 

dV 
Z." = dI, 

Since the reciprocity theorem (Sec. 10-2) 
holds not only for two separate antennas but 
also for two points on the same antenna, it follows that the transfer 
impedances of (10-7) and (10-9) are equal. Therefore, 

V  dV  —E dz 
—ji  = Z I' = Z  —  —  (  ) 
4.  dI,  dI, 

dz 

and 

(10-9) 
0 

Ft°. 10-4. 
I-wavelength antenna. 

Center-fed linear 

V„ dI, = —I.E, dz  (10-11) 

The terminal impedance Z„ of the antenna is given by the ratio of VI, 
to the total terminal current I. Thus, 

V 
Z, =  (10-12) 

/1 

The impedance Zu is a constant and is independent of the current ampli-
tude. This follows from the fact that the system is linear. Therefore, 
Z1, can also be expressed as the ratio of an infinitesimal emf di'11 at the 
terminals to an infinitesimal current dI, at the terminals, or 

V  dV = 
I I,  dI, 

(10-13) 
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from which 

V11 d11 = I dVir  (10-14) 

Substituting (10-14) into (10-11), 

dV =  - E dz  (10-15) 

Integrating (10-15) over the length of the antenna, we obtain 

Vii = —T f I.E. dz  (10-16) 
Li  0 

where V,, is the emf which must be applied at the terminals to produce 
the current I, at the terminals. The terminal impedance Zi, is then 

1 
Zi, =  = f I.E. dz  (10-17) 

0 

Since the antenna is isolated, this impedance is called the self impedance. 
In (10-17) E. is the z component of the electric field at the antenna caused 
by its own current. It will be convenient to indicate explicitly this type 
of field by the symbol E1, in place of E.. Introducing also the value I. 
from (10-6) into (10-17), we obtain for the self-impedance 

1  

Z u =  El, sin ftz dz 
LI 0 

(10-18) 

To evaluate (10-18), it is first necessary to derive an expression for the 
field E1, along the antenna produced by its own current. Substituting 
this into (10-18) and integrating, it is possible to obtain an expression 
which can be evaluated numerically. The steps in this development are 
given in the following paragraphs. 
If expressions can be written for the retarded scalar potential V due 

to charges on the antenna and for the retarded vector potential A due to 
currents on the antenna, then the electric field everywhere is derivable 
from the relation 

E = — V V — jc0A 

More particularly the z component of E is given by 

av  . 
E. = - -az — )44, 

(10-19) 

(10-20) 

Referring to Fig. 10-5, let the antenna be coincident with the z axis. 
A point on the antenna is designated z,. A point P in space is given in 
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cylindrical coordinates by p, 4, z. Other distances are as shown. Only 
lengths L which are an odd multiple of  wavelength will be considered. 
Thus, 

where n = 1, 3, 5 • • • 
The scalar potential V at any point is given by 

1 
V = 

47e0 

where p is the volume charge density, 
r the distance from the charge ele-
ment to the point, and dr is a volume 
element.  From Fig. 10-5 

r  VP2 z1)2 

In the case of a thin wire of length 
L, (10-21) reduces to 

v  = 612, 4,-€0 0 r 
(10-22) 

where pi, = the linear charge density 
on the wire 
The vector potential A at any 

point is given by 

A =  Ur/  (10-23) 
47 JJJ r 10-5. Relation of coordinates 

antenna. 
where J = the current density 
In the case of a thin wire (10-23) reduces to 

A = -1421  L az A.  47  r 

(10-21) 

to 

(10-24) 

where /,, = the current on the wire 
By the continuity relation between current and linear charge density 

Ay, = — r di  (10-25) J az, 

The current on the antenna is assumed to have a sinusoidal distribution 
as given by (10-6). Introducing the retarded time factor, we have for 
the retarded current 

I „ = I, sin 0z, e"(' -i,) (10-26) 
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Substituting (10-26) into (10-25) and performing the indicated operations, 
the retarded linear charge density is 

PL =  cos fiz, e"(̀ -1)  (10-27) 

Introducing (10-27) into (10-22) and noting that ft/co = 1/c, the retarded 
scalar potential is 

g ist*  f L cos  sz,  e-or 

4reoc Jo   clzi (10-28) 

Likewise, introducing (10-26) into (10-24), the z component of the re-
tarded vector potential is 

A.  porie"" f L sin fiz, e-is r 
dzi 4r 

By de Moivre's theorem 

cos titz, = i(e  e-i0 ") 

and 

1 - sin  (e'0" —  

Making these substitutions in (10-28) and (10-29) 

v rt.  eo("_.) 
 dzi 8reoc J0 r 

and 

A.   e "'   
dz, 

Sr .0 

(10-29) 

(10-301 

(10-31, 

(10-32) 

(10-33) 

Equations (10-32) and (10-33) give the retarded scalar and vector 
potentials caused by current on the antenna with the assumed sinusoidal 
distribution.  Substituting these equations into (10-20) yields an ex-
pression for the z component of the electric field everywhere. Thus, 

E. = — 7,el" r a [e-38( "+') eic"-')] dz, 
8reoc J. as   

wizei   
8r 

j .4  r L [e-18(•.+,) _ 
  dzi (10-34) 

E, —  jI,e'" (e-'s"  e-i° ") (10-35) 
4reoc  r2 

= v p2  z5  (10-36) 
where 
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= V  p2 (L — z)2 (10-37) 

The factor 1/4ireoc  120w/47 = 30. Also putting the time factor equal to 
its absolute value e'" = 1, and Eq. (10-35) becomes 

  e-iø ") 
E. =   (10-38) 

r, Ta 

At the antenna (10-36) and (10-37) become 

and 
Ti = z 

r2 = L — z 

(10-39) 

(10-40) 

Substituting these into (10-38) yields the value of the z component of the 
e'ectric field Ell at the antenna due to its own current. Thus, 

e-o(L-.) 
E„ = —j301,[ — 

L — z 
(10-41) 

Introducing (10-41) into (10-18) we obtain the self-impedance Zi, of a 
thin linear antenna an odd number of  wavelengths long. Hence, 

L e -ie.  e-,s(L--.) 
Zu = j30 f  —z -I-   sin (3z dz  (10-42) 

0  

Applying de Moivre's theorem to sin Oz 

Z„ = —15 
iL re-20. — 1 e-oL(ens• — 1)1 dz  
L z  j 

(10-43) 

For L = nX/2 where n = 1, 3, 5, ..  e-1" = e1 = —1, so that Eq. 
(10-43) becomes 

te_;20. _1 e i2Os  1\ 

Zil =  —15 f L  (10-44) Jo  z  — z dz  
or 

e -120s dz  ± 15  rz.  _ e,20.  
(10-45) Z„ = 15  dz 

Jo z  j0 L — z 

In the first integral let 

u  2flz  or  du =2t1dz 

The upper limit z = L becomes u = 2f3L = 2rn, while the lower limit is 
unchanged. The first integral then transforms to 

2wr. 

15 .1:  e- " du (1046) 
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In the second integral let 

v = 213(L — z)  or  dv = —20 dz 

The upper limit becomes zero while the lower limit becomes 2rn. The 
second integral then transforms to 

—15 1 0 1 _ ei(2..-.) dv — 15 fo2rs 1  dv  
(10-47) 

2r.  V 

Equations (10-46) and (10-47) are definite integrals of identical form. 
Since their limits are the same, they are equal. Therefore (10-45) becomes 

Z11 = 30 f  1 u du  (10-48) 
0 

If we now put w = ju, (10-48) transforms to 

(10-49) 
i2rn 

=  30 r 1 dw 
Jo 

The integral in (10-49) is an exponential integral with imaginary argu-
ment. It is designated by Ein (iv).  Thus, 

Ein (jy) =  1 - dw f  (10-50) 

In our case y = 2rn. This integral can be expressed in terms of the sine 
and cosine integrals discussed in Sec. 5-6. Thus, 

Em (iv) = Cm (y)  j Si (y)  (10-51) 

or 

Ein (jy) = 0.577  in y — Ci (y)  j Si (y)  (10-52) 

Hence, the self-impedance is 

= R1, + j2Cii = 30 [CM (27rn)  j Si (27n)]  (10-53) 

or 

= 30 [0.577  ln (2rn) — Ci (2rn)  j Si (2rn)]  ohms  (10-54) 

The self-resistance is 

R„ = 30 Cin (27n) = 30 [0.577  in (2rn) — Ci (2r0]  ohms  (10-55) 

and the self-reactance is 

X11 = 30 Si (27n)  ohms  (10-56) 

I See for example, S. A. Schelkunoff, "Applied Mathematics for Engineers and Scien-
tists," D. Van Nostrand Company, Inc., New York, 1948, p. 377. 
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These equations give the impedance values for a thin linear center-fed 
antenna that is an odd number (n) of I wavelengths long. The current 
distribution is assumed to be sinusoidal (Fig. 10-6). The values are those 
appearing at the terminals at the center of the antenna. 
In the case of a 4-wavelength antenna as shown in Fig. 10-6a, n = 1, 

and we have for the self-resistance and self-reactance 

R., = 30 Cm (27) (10-57) 

and 

X11 = 30 Si (27)  (10-58) 

The value of (10-57) is identical with 
that given for the radiation resist-
ance of a 4-wavelength antenna, in 
Sec. 5-6, Eq. (5-109).  Evaluating 
(10-57) and (10-58), see Appendix 
Section 19, we obtain for the self-
impedance 

(a) (b) 

FIG. 10-6.  One-half and three-halves 
wavelength antennas. 

Z„ = R,, ± jX,, = 73 + j42.5 ohms  (10-59) 

Since XII is not zero, an antenna an exact i wavelength long is not resonant. 
To obtain a resonant antenna, it is common practice to shorten the antenna 
a few per cent to make X,i = 0. In this case the self-resistance is some-
what less than 73 ohms. 
For a I-wavelength antenna as shown in Fig. 10-6b, n = 3, and the self-

impedance is 
Z,1 = 30 [Cm n (67) -I- j Si (67)] 

or 
Z„ = 105.5 + j45.5 ohms  (10-60) 

It is interesting that the self-reactance of center-fed antennas, an exact 
odd number of i wavelengths long, is always positive since the sine integral 
Si (27n) is always positive. For large n the sine integral converges around 
a value of 7/2 (see Fig. 5-11) which corresponds to a reactance of 47.1 
ohms.  It should be noted that for antenna lengths not an exact odd 
number of i wavelengths the reactance may be positive or negative as 
illustrated for example by Fig. 9-9. However, the foregoing analysis of 
this section is limited to antennas that are an exact odd number of i 
wavelengths long. 
For large n, the self-resistance expression (10-55) approaches the value 

R,, -= 30[0.577 + ln (2rn)] (10-61) 

since Ci (27n) approaches zero.  Thus, the self-resistance continues to 
increase indefinitely with increasing n but at a logarithmic rate. 
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The more general situation, where the antenna length L is not restricted 
to an odd number of 4 wavelengths, has also been treated.' The antenna 
is center-fed, and the current distribution is assumed to be sinusoidal (see 
Fig. 5-7). The self-resistance for this case is 

= 30[(1 — cot' tf-) Chi 2/3L  4 coe  Cin 

-I- 2 cot —2 (Si 2L — 2 Si OL)]  ohms (10-62) 

When the length L is small, (10-62) reduces very nearly to 

R,, = 5(13L)1 ohms  (10-63) 

For the special case of L = nX/2, where n = 1, 3, 5 . . ., (10-62) reduces 
to the relation given previously by (10-55). 
The above discussion of this section applies to balanced center-fed 

antennas. For a thin linear stub an-7    tenna of height 1 perpendicular to an 
infinite, perfectly conducting ground 
plane as in Fig. 10-7a, the self-

Ground 1 impedance is one-half that for the 
plane\  corresponding balanced type (Fig. 

10-7b). The general formula (10-62) 
(a)  for self-resistance can be converted 

for a stub antenna above a ground 
plane by changing the factor 30 to 15 

(6) ± and making the substitution L = 2/. 
The formulas (10-55) and (10-56) 

Fin. 10-7.  Stub antenna of length 1 at (a)  can be converted for a stub antenna 
and center-fed antenna of length L at (b).  with ground plane where the an-

tenna is an odd number n of wave-
lengths long by changing the factor 30 to 15. Thus, for a I-wavelength an-
tenna perpendicular to an infinite perfectly conducting ground plane, the 
self-impedance is 

= 36.5 + j21 ohms 

10-4. Mutual Impedance of Two Parallel Linear Antennas. The mutual 
impedance of two coupled circuits is defined in circuit-theory as the 
negative of the ratio of the emf 1721 induced in circuit 2 to the current II 
flowing in circuit 1 with circuit 2 open. Consider for example the coupled 

1G. H. Brown and R. King, High Frequency Models in Antenna Investigations, 
Proc. 1.R.E., 22, 457-480, April, 1934. 
J. tabus, Recherische Ermittlung der Impedanz von Antennen, Hochfrequenztechnik 

and Electrookuxtik. 17, January, 1933. 
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circuit of Fig. 10-8 consisting of the primary and secondary coils of a 
transformer. The mutual impedance Z2, is then 

Z21 
V21 
/1 

where V21 is the emf induced across the terminals of the 
secondary by the current /, in the primary. The mutual 
defined, is not the same as a transfer impedance 
such as discussed in connection with the reci-
procity theorem in Sec. 10-2.  In general, a 
transfer impedance is the ratio of an emf im-
pressed in one circuit to the resulting current in 
another with all circuits closed. For example, 
if the generator in Fig. 8 is removed from the 
primary and is connected to the secondary 
terminals, the ratio of the emf V applied by this 
generator to the current I in the closed primary 
pedance Zr. Thus 

This impedance is not the 
(10-64). 

lz 
tEzmEe 

Fm. 10-9.  Parallel coupled 
antennas. 

(10-64) 

open-circuited 
impedance, so 

Pri. Sec. 

Fla. 10-8. Coupled circuit 
or transformer. 

circuit is a transfer im-

(10-65) 

same as the mutual impedance Z21 given in 

Instead of the coupled circuit of Fig. 10-8, 
let us consider now the case of two coupled an-
tennas 1 and 2 as shown in Fig. 10-9. Suppose 
a current II in antenna 1 induces an emf V2I 
at the open terminals of antenna 2. Then the 
ratio of — V21 to II is the mutual impedance 
Z21. Thus, 

Z2 —   (10-66) 

If the generator is moved to the terminals 
of antenna 2, then by reciprocity the mutual 
impedance Z12 or ratio of — V12 to /2 is the 
same as before, where V12 is the emf induced 
at the open terminals of antenna 1 by the cur-
rent /2 in antenna 2. Thus, 

— V21 z21  z ia  —  V12 
1, 

(10-67) 

To calculate the mutual impedance, we need to know V21 and /1. Let 
the antennas be in the z direction as shown in Fig. 10-9. The emf — V,, 
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induced in an antenna by its own current is indicated by (10-16). To 
obtain the emf V21 induced at the open terminals of antenna 2 by the 
current in antenna 1, we set E. = E21, V11 =  V21, and 1 = 12 in (10-16). 
Then, 

V2  =  r E21 Cig 

, 
1 /2 JO 

(10-68) 

where 12 is the maximum current and I. the value at a distance z from 
the lower end of antenna 2 with its terminals closed, and where E21 is 
the electric field along antenna 2 produced by the current in antenna 1. 
Assuming that this current distribution is sinusoidal as given by 

I. = I, sin 13z  (10-69) 

so that (10-68) becomes 

V21 = f E2 Sin I3Z dz  (10-70) 
0 

then 

72  — V21 f  E21 sin Pz  (10-71) 44  II /1 o 

This is the general expression for the mutual impedance of two thin 
linear, parallel, center-fed antennas with sinusoidal current distribution. 
We will consider first the situation where both antennas are the same 
length L, where L is an odd number of  wavelengths long (L = nX/2; 
n = 1, 3, 5, . . .). A case of particular interest is where both antennas 
are  wavelength long (n = 1). The relative positions of the antennas 
may be divided into three situations: side by side, collinear or end to end, 
and staggered or in echelon. These arrangements are illustrated in Fig. 

TI  TI 
L  L  1 

/ t    II  
Trf.—i 

d---.1 

I 1 1 ,   1 7-1.__d__,.... L 

h  Li 

S,cle-by-side  I  II   1   I   

Collinear  Staggered or in echelon 

' el)  (10)  
Fm. 10-10. Three arrangements of two parallel antennas. 
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10-10. Mutual-impedance expressions for the three arrangements are given 
in the following sections. 
10-5. Mutual Impedance of Parallel Antennas Side by Side: Let d be 

separation of the antennas. Referring to the arrangement of Fig. 10-10a 
and Fig. 10-11, the field E2, along antenna 2 
produced by the current I in antenna 1 is 
given by (10-38) where 

r, = s,/d2 z2 (10-72) 

and 

r2 = Vd2 (L — z)2 (10-73) 

Substituting this into (10-71), the mutual 
impedance becomes 

L [ e-10•47.747 
Z21 =  .10 v c - r- --iv z  cl=p --s1\ 

Antenna I  Antenna 2 

e ir Vd•+(L- 0.  FIG. 10-11. Parallel coupled 
d2 (L  — z)2 sin fiz dz (10-74)  antennas with dimensions. 

Carter has shown that upon integration of (10-74) 

Z2, = 30{2 Ei (—ji3d) — Ei [ —0(. 012 -I- L2 + LJ 

— Ei [ -0( 02 + L 2 —  L)]} 

where the exponential integral 

Ei (±jy) = Ci (y) ± j Si (y) 

Thus, the mutual resistance is, 

R2, = 30{2 Ci ($M) — Ci b9( Vd2 ± L2 ± 

ohms (10-75) 

(10-76) 

— Ci [$( Vd2 1.2 — L)]}  ohms (10-77) 

and the mutual reactance is 

X2, = —30{2 Si (flM) — Si [13( 02 ± L2 ± 

where 
— Si D3(  ± L2 — L)]}  ohms (10-78) 

R2I  i X21 =  Z2I =  ZI2 = RI2 (10-79) 

A number of mutual-impedance charts are presented by F. E. Terman, "Radio 
Engineers' Handbook," McGraw-Hill Book Company, Inc., New York, 1943, Sec. 11. 
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The mutual resistance and reactance calculated by (10-77) and (10-78) 
for the case of i-wavelength antennas (L = X/2) are presented by the 
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Fm. 10-12.  Curves of mutual resistance (R21) and reactance (X21) of two parallel side-
by-side linear i-wavelength antennas as a function of distance between them. Solid 
curves are for infinitesimally thin antennas as calculated from Carter's formulas. 
Dashed and dotted curves between 0 and 1.0 X spacing are from Tai's data for antennas 
with LID  ratios of 11,000 and 73 respectively. 
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solid curves in Fig. 10-12 as a function of the spacing d. The mutual re-
sistance R21 is also listed in Table 10-1. 
An integral-equation method for the calculation of the mutual im-

pedance of linear antennas has been presented by King and Harrison' 
and by Tai.' The method is related to that discussed in Chap. 9. In 
this method the diameter of the antenna conductor is a factor. By way 
of comparison, curves for the mutual resistance and reactance given by 
Tai are also shown in Fig. 10-12. The dashed curves are for a total length-
to-diameter ratio (LID) of 11,000 (very thin antenna) and the dotted 
curves for a ratio of 73. 
In Table 10-1 the quantity Ri, — R., which is important in array 

calculations, is also tabulated. When d is small, it has been shown by 
Brown' that this quantity is given approximately by the simple relation 

R. King and C. W. Harrison, Jr., "Mutual and Self Impedance for Coupled Antennas," 
J. Applied Phys., 15, 481-495, June, 1944. 
'C. T. Tai, Coupled Antennas, Proc. I.R.E., 36, 487-500, April, 1948. 
3 G. H. Brown, private communication to the author, June 16, 1938. 
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- R2, = 601r2(02 = 592.2(02 ohms  (10-80) 

where X = the free-space wavelength 
This relation is accurate to within 1 per cent when d < 0.05 X and to 
within about 5 per cent when d < 0.1 X. 

TABLE 10-1 

MUTUAL RESISTANCE VS. SPACING FOR THIN CENTER-FED SIDE-BY-

SIDE i-WAVELENGTH ANTENNAS (fiL = 180°), WITH SINUSOIDAL 

CURRENT DISTRIBUTION 

Spacing d 
Mutual 
resistance 
R21, ohms 

Self minus 
mutual resistance 
(Rii - R21), ohms 

0.00 
0.01 
0.05 
0.10 
0.125 

0.15 
0.20 
0.25 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

73.13 
73.07 
71.65 
67.5 
64.4 

60.6 
51.6 
40.9 
29.4 

+ 6.3 

-12.7 
-23.4 
-24.8 
-18.6 
- 7.2 

+ 3.8 
+12.1 
+15.8 
+12.4 
+ 5.8 

- 2.4 
- 8.3 
-10.7 
- 9.4 
- 4.8 
+ 1.1 

0.00 
0.06 
1.48 
5.63 
8.7 

12.5 
21.5 
32.2 
43.7 
66.8 

85.8 
96.5 
97.9 
91.7 
80.3 

69.3 
61.0 
57.3 
60.7 
67.3 

75.5 
81.4 
83.8 
82.5 
77.9 
72.0 

In the more general situation where the antenna length L is not re-
stricted to an odd number of  wavelengths, the mutual resistance and 
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reactance are given by Brown and King' as 

R21 = 30 • 2 sin (L/2) {2(2 + cos i3L) Ci ficl 
1   

[CHAP. 10 

— 4 cos2 /1212 [Ci  (v4d2  + L2 _ + ci (v4d2  + L. + L)] 
+ cos /3L[Ci /3(. 02 -I- L2 — L)  Ci 0(- 02 L2 + 

+ sin (3L[Si 0(. 02 L2 L) — Si )3( Vd2 — 

— 2 Si g (V4d2 L2 +  + 2 Si (V4d2 + L2 — L)]} ohms (10-81) 

and 

X21 = 30  • 2 /3L/2)  2(2  cos a /3L) Si 
sm (1  

-I- 4 cos2 gt_ [si V4c/2 —  + Si g( V4d2 + L2 ± L)] 

— 2 cos titL[Si )9( Vd2 L2 — L) + Si $(. 02 ± L2 ± L)] 

+ sin #L[Ci /3( Vd2 e + — Ci O( Vd2 ± L2 — 

— 2 Ci  (V4d2 -I- L2 L) + 2 Ci ( -V4d2 L2 — L) 3 ohms (10-82) 

In the special case of L = nX/2, 
2 where n is odd, (10-81) and (10-82) 

reduce to the relations given previously 
 •  d   1  by (10-77) and (10-78). 

The above relations of this section 
apply to balanced center-fed antennas. 

Ground plane  The mutual impedance of two stub an-

Fm. 10-13.  Two coupled linear par- tennas of height 1 = L/2 above an in-
aid l stub antennas.  finite, perfectly conducting ground 

plane as in Fig. 10-13 is one-half that 
given by (10-77) and (10-78) or (10-81) and (10-82). These relations are 
converted to the ground-plane case by changing the factor 30 to 15 and 
making the substitution L = 21. 

'G. H. Brown and R. King, High Frequency Models in Antenna Investigations, 
Proc. I.R E., 22, 457-480, April, 1934. 
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10-6. Mutual Impedance of Parallel Collinear Antennas  Let each 
antenna be an odd number of I wavelengths long and arranged as in 
Fig. 10-10b. For the case where h is greater than L, Carter' gives the 
mutual resistance and reactance as 

R21 = —15 cos t3h[ —2 Ci  Ci 20(h — L) 

+ Ci 213(h + L) — ln(h2  I12 )] 

+ 15 sin 0[2 Si  — Si 2/3(h — L) — Si 213(h + LA  ohms  (10-83) 

and 

X21 = —15 cos #h[2 Si 20 — Si 20(h — L) — Si 2)9(h 4- L)] 

+15 sin i3h[2 Ci  — Ci 2)3(h — L) 

— Ci 213(h + L) — 14112 IT, I12 )]  ohms (10-84) 

Curves for R21 and X21 of parallel collinear i-wavelength antennas 
(L = X/2) are presented in Fig. 10-14 as a function of the spacing s where 
8 = h — L (see Fig. 10-10b). 

30 

20 

10 

0 

R21 

1/2  is-1 'Y2 -I 

R71 

R21 

x21 R21 

10 0  0 2X  0 4X  0 6X  0 8X  10X  I.2X 

Spacing S 

Fla. 10-14.  Curves of mutual resistance (R21) and reactance (X21) of two parallel 
collinear infinitesimally thin I-wavelength antennas as a function of the spacing s 
between adjacent ends. 

1 4X 16),  1 8),  2DX 

10-7. Mutual Impedance of Parallel Antennas in Echelon. For this 
case the antennas are staggered or in echelon as in Fig. 10-10c. Each 

1P. S. Carter, Circuit Relations in Radiating Systems and Applications to Antenna 
Problems, Proc. I.R.E., 20, 1004-1041, June, 1932. 
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antenna is an odd number of 4 wavelengths long. The mutual resistance 
and reactance of two such antennas are given by Carter' as 

R 21 =  —15 cos 13h( —2 Ci A — 2 Ci A' 

+ Ci B + Ci B' + Ci C + Ci C') 

+15 sin ‘91(2 Si A — 2 Si A' 

— Si B + Si B' — Si C + Si C')  ohms (10-85) 

and 

X 21  =  —15 cos Sh(2 Si A + 2 Si A' 

— Si B — Si B' — Si C — Si C') 

+15 sin 13h(2 Ci A — 2 Ci A' 

— Ci B + Ci B' — Ci C + Ci C') ohms (10-86) 
where A = p( v d2 ▪ h2 

B = ft[ Vd2 + (h — L)2 + (h — 

B' = ft[ Vd2 + (h — L) 2 (h — 

C = 13[ 02 + (h + L)2 + (h + L)] 

▪ (h  L)2 — (h + 

Values of the mutual resistance in ohms as 
calculated from (10-85) are listed in Table 10-22 

-IL  I   as a function of d and h for the case where the 
antennas are 4 wavelength long (L = X/2) as 
indicated in Fig. 10-15. 

Fm.  10-15.  Two  parallel 
linear i-wavelength antennas  The staggered or echelon arrangement is 
in echelon,  the more general situation of which the side-

by-side position (Sec. 10-5) and the collinear 
position (Sec. 10-6) are special eases. 
10-8. Mutual Impedance of Other Configurations. There are many 

other antenna configurations for which the mutual impedance may be of 
interest. The variety is enormous, but two will be mentioned and refer-
ences given which the reader may consult for further information. 
1. Parallel Antennas of Unequal Height. This case has been treated by 

Cox.3 His data apply specifically to stub antennas perpendicular to an 
infinite, perfectly conducting ground, but can be used with symmetrical 

I Carter, op. cit. 
All but a few values are from a table by A. A. Pistolkors, The Radiation Resistance 

of Beam Antennas, Proc. I.R.E., 17,562-579, March, 1929. 
C. R. Cox, Mutual Impedance Between Vertical Antennas of Unequal Heights, 

Proc. I.R.E., 35, 1367-1370, November, 1947. 
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TABLE 10-2 

MUTUAL RESISTANCE AS A FUNCTION OF d AND h (FIG. 10-15) FOR 
THIN I-WAVELENGTH ANTENNAS IN ECHELON 

Spacing d 
Spacing h 

0.0X 0.5 X 1.0X 1.5X 2.0X 2.5 X 3.0X 

0.0 X +73.1 +26.4 -4.1 +1.8 -1.0 +0.6 -0.4 
0.5 X -12.7 -11.8 -0.8 +0.8 -1.0 +0.5 -0.3 
1.0 X +3.8 +8.8 +3.6 -2.9 +1.1 -0.4 +0.1 
1.5 X -2.4 -5.8 -6.3 +2.0 +0.6 -1.0 +0.9 
2.0 X +1.1 +3.8 +6.1 +0.2 -2.6 +1.6 -0.5 

2.5 X -0.8 -2.8 -5.7 -2.4 +2.7 -0.3 -0.1 
3.0 X +0.4 +1.9 +4.5 +3.2 -2.1 -1.6 +1.7 
3.5 X -0.3 -1.5 -3.9 -3.8 +0.7 +2.7 -1.0 
4.0 X +0.2 +1.1 +3.1 +3.7 +0.5 -2.5 -0.1 
4.5 X -0.2 -0.9 -2.5 -3.4 -1.3 +2.0 +1.1 

5.0 X +0.2 +0.7 +2.1 +3.1 +1.8 -1.4 -1.9 
5.5 X -0.1 -0.6 -1.8 -2.9 -2.2 +0.5 +1.8 
6.0 X +0.1 +0.5 +1.6 +2.6 +2.3 -0.1 -2.0 
6.5 X -0.1 -0.5 -1.2 -2.3 -2.3 -0.5 +1.7 
7.0 X +0.1 +0.4 +1.1 +2.1 +2.3 +0.9 -1.3 

7.5 X 0.0 -0.3 -1.0 -1.9 -2.1 -1.0 +0.7 

center-fed antennas of twice the length by multiplying the resistance and 
reactance values by two. 
2. V or skew antennas.  Some antenna systems involve nonparallel linear 

radiators.  The mutual impedance of such inclined antennas has been 
discussed by a number of writers,' but very few numerical data are 
available. 
10-9. Comparison of Self-impedance Formulas.  It is interesting to 

compare the formulas for self-resistance and reactance of thin linear 
center-fed antennas derived in this chapter with those for thin center-fed 
biconical antennas discussed in Chap. 8 for the case where the antennas 
are an odd number n of  wavelengths long. This is done in Table 10-3. 
A case of particular interest is for antennas  wavelength long (n = 1), 

P. S. Carter, Circuit Relations in Radiating Systems and Applications to Antenna 
Problems, Proc. I.R.E., 20, 1004-1041, June, 1932. 
F. H. Murray, Mutual Impedance of Two Skew Antenna Wires, Proc. I.R.E., 21, 

154-158, January, 1933. 
F. B. Pidduck, "Currents in Aerials and High-frequency Networks," Oxford Uni-

versity Press, New York, 1946, p. 21. 
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TABLE 10-3 

[CHAP. 10 

Case Self-resistance Ri, Self-reactance X1, 

Thin 
linear  
antenna 

(Car " 
ter)  

Antenna odd no. n 
i wavelengths long 

t-wavelength an-
t,enna (n = 1) 

30 Cin (2/rn) 

73.13 

30 Si (27rn) 

42.5 

Thin 
bicon- 
ical an-
tenna 
(Schel-
kunoff) 

1 
Antenna odd no. n 
i wavelengths long 

1-wavelength an-
tenna (n = 1) 

60 Cin (nT) — 30[0.577 

± in 1111. — 2 Ci (nm) 
2 

+ Ci (2n7r)] 

73.3 

60 Si (nw) + 30 Si (2ror) 

153.6 

and the values for this case are also tabulated. The self-resistances are in 
close agreement for the two antennas, but the self-reactance of the thin 
biconical antenna is nearly four times as much as for the thin linear antenna. 
10-10. A Discussion of the Methods Used for Calculating Antenna Im-

pedances. In this and preceding chapters a number of methods for calcu-
lating the impedance of antennas of finite length have been discussed. In 
this section, a brief summary and comparison of these methods is pre-
sented.' 
The methods may be classified into three principal types: (1) the 

boundary-value problem approach, (2) the transmission-line method, and 
(3) the Poynting vector method. 
1. The Boundary-value Problem Approach. This method might be con-

sidered as the most basic approach. The fundamental field equations are 
expressed in terms of a coordinate system most appropriate to the antenna 
shape. A solution of this equation is then obtained which satisfies the 
boundary condition, usually that the tangential component of the electric 
field vanishes at the conductor surface. From this the current distribution 
is determined and the input impedance then obtained as the ratio of the 
applied terminal emf to the current at the terminals. No assumption is 
made as to the current distribution; it is determined by the solution. 
The principal disadvantage of the method is that antenna shapes to 

1 A discussion is given by R. E. Burgess, Aerial Characteristics, Wireless Engr., 21, 
154-160, April, 1944. 
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which it can be applied exactly are limited.  In fact, the spheroidal 
antenna is the only shape which yields to an exact analysis. In this case, 
spheroidal coordinates are used and the antenna surface made to corre-
spond to a fixed value of one coordinate. The free oscillations of a prolate 
spheroid (football shape, see Fig. 9-15) have been studied by Abraham.' 
Forced oscillations, as produced by a transmission line connected at the 
center, have been treated by Stratton and Chu' and by Page and Adams.' 
A good discussion of the general subject is given by Aharoni.' 
Antennas are rarely made spheroidal in shape so that the results are 

not directly applicable to most practical types of antennas. An exception 
to this is the limiting case of a long, thin spheroidal antenna which may 
be considered as approximating a long, thin cylindrical conductor. 
A direct attack on the cylindrical antenna as a boundary-value problem 

has been formulated by Hall& who obtained an integral equation in the 
antenna current I. This method is discussed in Chap. 9. The solution 
of this equation is a formidable problem. Approximate solutions have 
been obtained yielding the current distribution. The terminal impedance 
is found by taking the ratio of the emf applied at the antenna terminals 
to the terminal current.  Results are most reliable for thin antennas. 
Both the resistive and reactive components of the self-impedance are 
obtained. Recently this method has been extended to finding the mutual 
impedance between antennas. 
In Halien's treatment the effect of the end cap on the cylindrical con-

ductor is neglected by assuming that the antenna length is much greater 
than the diameter.  Provided that the inside diameter of the hollow 
cylindrical conductor is sufficiently small that it cannot transmit a guided 
wave,' the difference in effect of an open or closed end is not large since 
the current flowing around an open end and into the interior of the hollow 
conductor vanishes in a short distance. The effect of neglecting the end 
caps is certainly no larger than that of changing the length of the antenna 
by an amount equal to the conductor diameter. 
2. The Transmission-line Method. In this method, the antenna is 

treated as a terminated transmission line.  This approach lends itself 
most appropriately to the biconical antenna with its uniform characteristic 

1M. Abraham, Die electrischen Schwingungen urn omen stabformingen Leiter, 
behandelt nach der Maxwellschen Theorie, Ann. Physik, 66, 435-472, 1898. 
' J. A. Stratton and L. J. Chu, Steady State Oscillations of Electromagnetic Field 

Problems, J. Applied Phys., 12, 230-248, March, 1941. 
3 L. Page and N. L. Adams, The Electrical Oscillations of a Prolate Spheroid, Phys. 

Rev., 53, 819-831, 1938. 
4 J. Aharoni, "Antennae," Oxford University Press, New York, 1946, pp. 62-86. 
3 The inside diameter would need to be at least 0.58 X in order to transmit a guided 

wave (TEn mode) inside the antenna conductor even if this mode were to be excited. 
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impedance. This method has been used by Schelkunoffl and is discussed 
in Chap. 8. The equivalent terminating impedance of a biconical antenna 
has been calculated by him for thin cones with an assumed sinusoidal cur-
rent distribution. The classification of this approach as a "transmission-
line method" is arbitrary. It may also be called a boundary-value method 
since the solution is subject to the boundary conditions that the tangential 
E along the cones is zero and that the fields at the boundary sphere are 
continuous. 
3. The Poynting Vector Method. The general approach in this method 

is to integrate the Poynting vector over a surface enclosing the antenna or 
to perform an equivalent calculation. Two limiting cases of this method 
have been discussed: (a) where the surface of integration coincides with the 
surface of the antenna and (b) where the surface of integration is a sphere 
at a large distance from the antenna. 
a. Integration over antenna surface. This is the so-called emf method 

employed by Carter, Pistolkors, Beclunann, and others and discussed in 
previous sections of this chapter. The terminal voltage V required to 
produce a terminal current I, in an infinitesimally thin antenna is shown 
to be 

a.', 
T =  E. sin I3z d,z 

The terminal impedance is then 

Y  . 
Z1 = — u 1=  f̀ E sm ftz dz 

I  II 0 

as in (10-18). The complex power supplied to the antenna is 

W = 4 Vat 

(10-87a) 

(10-87b) 

(10-88a) 

where VII is given by (10-87a) and Ir is the complex conjugate of I,. 
The power W in (10-88a) should also be given by the integral of the 

normal component of the total complex Poynting vector over the antenna 
surface. Thus, 

1 
W = —2 if (E X H*) • ds (10-88b) 

Assuming that the antenna is in the z direction, the element of surface 
ds = dl dz, where dl is a segment of arc on a circle enclosing the antenna as 
in Fig. 10-16. Hence, (10-88b) can be expressed 

W =  ff E„H: dl dz  (10-89a) 

IS. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Company, Inc., 
New York, 1943. 
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Since E„ is not a function of cti, and recalling that the line integral f  dl 
equals the current I: in the wire (Ampere's law), (10-89a) becomes 

1 
W = -2 f  dz  watts (10-89b) 

Both E„ and If are functions of z. Let it be assumed that I: is a sinusoidal 
function of z, that is,  =  sin ftz, where It is the maximum or terminal 
current. Then 

f L 

W =  I I E' sin t3z dz  (10-90) 
2   

Actually the perfectly conducting metal parts of an antenna can neither 
absorb nor radiate power but only guide it so that the only contribution 
to (10-88b) would come from the gap at the center of the antenna. Thus, 
if the terminals are at a current maximum, (10-90) reduces to 

W = I I* f E' dz  (10-91a) 
2   

where the gap or terminal voltage is equal to the line integral of the total 
field across the gap. Now W is also given by the integral of the complex 
Poynting vector of the induced field over the antenna or 

1 
W = — - I*  E sin 13z dz 

2 ' 
Hence, 

1. 

f E., dz = — f E, sin i3z dz = V,,  (10-91b) 
g p  0 

and the terminal voltage V1, is the same whether 
calculated by the emf method, by the integration 
of the total Poynting vector over the antenna (con-
tribution only from the gap) or by the integration 
of the Poynting vector of the induced field over 
the antenna (contribution from the antenna con-
ductor). The terminal impedance Zu is the ratio 
of W to the square of the absolute value of the 
terminal current 1,, or 

2W VIII? Zn —  VII 
1112 —  — —17 (10-91c) 

FIG. 10-16.  Antenna 
conductor and surface 
element. 

b. Integration over large sphere. In this method the normal component 
of the Poynting vector is integrated over the surface of a large sphere 
enclosing the antenna.  The power flowing through this sphere is all 
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radiated power, the reactive power being confined to regions near the 
antenna. Hence, this method yields only the real or resistive component 
of the antenna impedance. 
Examples of this method are given in Chap. 5 in the calculation of the 

radiation resistance of a thin linear antenna and also in Chap. 6 in finding 
the radiation resistance of thin loops. In this method a current distribu-
tion is assumed, and the radiated field pattern of this distribution is 
calculated. The average Poynting vector P. at any point of the far field is 
given by 

P. = II %  watts/mete? (10-92) 

where H is the rms magnetic-field intensity and Z. is the intrinsic im-
pedance of the medium (= 377 ohms for free space).  Integrating P. 

over a large sphere yields the power W radiated. The 
terminal radiation resistance R is then given by the ratio 
of the power W to the rms terminal current I squared. Thus, 

W   R  Z. f f H2 ds 
I.  12 (10-93) —  - 

0 

L 
The accuracy of this method depends on how closely the 

assumed current distribution corresponds to the actual 
distribution. In the case of linear antennas a sinusoidal 
distribution is assumed. This is a good approximation if 
the antenna is thin and yields quite accurate values of 

FIG. 10-17. Cy-  resistance provided that the terminals are at or near a 
lindrical center-  current maximum. 
fed antenna.  10-1.1. Simple Empirical Method. A very simple em-

pirical method for calculating the approximate self-imped-
ance of cylindrical center-fed antennas is outlined in this section. 
The terminal resistance at first and third resonances is relatively inde-

pendent of the ratio LID of antenna length to diameter (Fig. 10-17). 
Hence, let us arbitrarily take the following values (see Fig. 9-12): 

where 

Resonance Resistance, ohms Antenna length, L 

First, RI   
Third, li,   

67 
95 

L = 0.48 AA 
L = 1.44 AX 

LID   
A — 

(LID) ± 1 (10-94) 
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Let the geometric mean of the resistances at an odd resonance and at the 
next higher even resonance be called the natural resistance R. to distinguish 
it from the characteristic resistance. Then assuming R. to be constant, 
the resistance at the second and fourth resonances is given by 

and 

R2 

R2 =  R2-21  (L = 0.96AX) 
Ri 67 

R =  =  (L =  1.92AX) 

(10-95) 

(10-96) 

where the natural resistance is given by the empirical relation 

R,, = 150 log. —D  ohms  (10-97) 

where L is the total length and D the diameter of the antenna. 
This gives four values which can be entered on an impedance diagram. 

An approximate impedance spiral for the antenna can then be sketched 
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10-18.  Impedance spiral for cylindrical antenna with length-to-diameter ratio 
(LID) of 10 as constructed from empirical formula. 

and lengths between resonances estimated as indicated in the example of 
Fig. 10-18. This example is for the case of LID = 10. 
For cylindrical stub antennas mounted on large ground planes as in 

Fig. 10-19, the first and third resonant resistances are as follows: 

Resonance Resistance, ohms Antenna length, 1 

First, RI   
Third, R2   

34 
48 

1 = 0.24 A'X 
1 = 0.72 Aqt 
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where 

A'  1/r   (10-98) 
—  (Ur)  1 

where 1 is the length of the stub antenna and r is the radius. The second 

and fourth resonant resistances are then 

(R ,.)2  =  (R)2 
R1 34  (1 = 0.48A'X)  (10-99) 

2f 
R 2 = 

and   

Fm. 10-19. Cylindrical stub 
antenna. 

R 4 = 

(H:.)2  ( H 02 

  =    
R.  48 

(1 = 0.96A'X)  (10-100) 

where the natural resistance for stub antennas 
is given by 

1 
R„' = 75 log10 —  ohms  (10-101) 

PROBLEMS 

10-1. Calculate the self-resistance and self-reactance of a thin, symmetrical 
center-fed linear antenna I wavelengths long. 
10-2. Calculate the mutual resistance and mutual reactance for two parallel 

side-by-side thin linear 4-wave antennas with a separation of 0.15 wavelength. 
10-3. Calculate the mutual resistance and reactance of two parallel thin linear 

4-wavelength antennas in echelon for the case where d = 0.25 X and h = 1.25 X 
(see Fig. 10-15). 
10-4. Prove Brown's relation R11 — R21 =  601-2(d/X)2 given in (10-80). 
10-5. Three antennas are arranged as shown. The currents are of the same mag-

nitude in all antennas. The currents are in phase in (a) and (c), but the current in 

(b) is in antiphase. The self-resistance of each antenna is 100 ohms, while the mu-
tual resistances are: R„b = R44 =  40 ohms and R„,, = —10 ohms. What is the 
radiation resistance of each of the antennas? The resistances are referred to the 
terminals, which are in the same location in all antennas. 



CHAPTER 11 

ARRAYS OF LINEAR ANTENNAS 

11-1. Introduction. In discussing arrays of linear antennas a number of 
topics treated in previous chapters form an essential background. These 
topics are: arrays of point sources (Chap. 4), linear antennas (Chap. 5), 
and impedances of linear antennas (Chap. 10). It is assumed that the 
reader is already familiar with these subjects. 
In this chapter arrays of thin linear antennas are analyzed in some detail. 

The far- or radiation-field pattern, the driving-point impedance, and the 
gain in field intensity are determined in that order for several different 
types of arrays. The method of analysis is general and can be applied to 
other arrays, the specific types discussed serving merely as examples. The 
simplest type of array will be considered first. This is an array of two 
driven 4-wavelength elements. The term "element" is taken to mean the 
basic unit antenna of which the array is constructed. It is assumed in this 
chapter that the elements are thin and linear. 
11-2. Array of Two Driven 4-wavelength Elements.  Broadside Case. 

Consider two center-fed 4-wavelength elements arranged side by side with 
a spacing d as in Fig. 11-1. Two special cases will be considered: the broad-
side case' treated in this section in which the two elements are fed with 
equal in-phase currents, and the end-fire case2 (Sec. 11-3) in which the two 
elements are fed with equal currents in opposite phase. The more general 
case where the currents are equal in magnitude but in any phase relation is 
treated in Sec. 11-4. 
11-2a. Field Patterns. The first part of the analysis will be to determine 

the absolute far-field patterns. It is convenient to obtain two pattern 
expressions, one for the horizontal plane and one for the vertical plane. 
Ordinarily, the relative patterns would be sufficient. However, the abso-
lute patterns will be needed in gain calculations.  Let the elements be 

In the so-called "broadside case" there is always a major lobe of radiation broadside 
to the array, although at large spacings there may be an end-fire lobe of equal magnitude 
(as for example when the spacing is 1 wavelength). 

2 In the so-called "end-fire case" the pattern always has zero radiation broadside. 
The maximum radiation is always end fire if the spacing is wavelength or less. How-
ever, for greater spacings the maximum radiation is, in general, not end fire. Since 
spacings of wavelength or less are of principal interest, the array may be referred to as 
an end-fire type. 

279 
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vertical as shown in Fig. 11-2a. It is assumed that the array is in free space, 
that is, at an infinite distance from the ground or other objects. The field 
intensity E1(4) from a single element as a function of  and at a large 

distance D (D>> d) in a horizontal plane (0 = 90° 
or x-y plane in Fig. 11-2a) is 

E,(0) = kI,  (11-1) 

where k is a constant involving the distance D, and 
I, is the terminal current. Equation (11-1) is the 
absolute field pattern in the horizontal plane. It 
is independent of 4, so that the relative pattern is a 
circle as indicated in Fig. 11-2b. 
Next let the elements be replaced by isotropic 

point sources of equal amplitude. The pattern 
E,...(16) as a function of in the horizontal plane 

2  for two such isotropic in-phase point sources is 
given by (4-6) as 

= 2E0 cos (d, cos (1) 

FIG. 11-1.  Broadside ar-
ray of two in-phase 4-
wavelength elements. 

2 

where d, = the distance between sources expressed in radians 
That is, 

2rd 
d = — 

X 

(11-2) 

(11-3) 

Applying the principle of pattern multiplication, we may consider that E0 
is the field intensity from a single element at a distance D. Thus, 

= EI(9) = /ill  (11-4) 

Introducing (11-4) into (11-2) yields the field intensity E(0) as a function of 
4, in the horizontal plane at a large distance D from the array, or 

E(4,) = E1(0) 2 cos (d.  cc's 4)) — 2k11 cos (d. cos   4')  (11-5) 
k 2  2 

This expression may be called the absolute field pattern in the horizontal 
plane. The electric field at points in this plane is everywhere vertically 
polarized. The shape of this pattern is illustrated in Fig. 11-2c, and also 
partially in Fig. 11-2a, for the case where d = X/2. The maximum field 
intensity is at 4, = 90° or broadside to the array. 
The field intensity E1(0) as a function of 0 from a single i-wavelength 

element at a distance D in the vertical plane (y-z plane in Fig. 11-2a) is 
from (5-81) given by 

cos [(w/2) cos 01 
E1(0) = k.11 

sin 
(11-6) 
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The shape of this pattern is shown in Fig. 11-2d. It is independent of the 
angle 0. The pattern E 0. (0) in the vertical plane for two isotropic sources 
in place of the two elements is 

(0) = 2E0 (11-7a) 

Applying the principle of pattern multiplication, we put 

E0 = E1(0)  (11-7b) 

so that the field intensity E(0) in the vertical plane at a distance D from 
the array is 

E(0) = 21d, cos [(T/2) cos 01 
sin 0 

(a) 

1 element \ 

(11-8) 

Flo. 11-2. Patterns for broadside array of two linear in-phase 4-wavelength elements 
with spacing d of 4 wavelength. 
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This may be called the absolute field pattern in the vertical plane. This 
pattern has the same shape as the pattern for a single element in the vertical 

plane and is independent of the spac-
ing.  The relative pattern is pre-

Ci  in Fig. 11-2e and also partially 
in Fig. 11-2a. The relative three-

----r  dimensional field variation for the 1 II 
Driving 
point for 
array 

12 
V2 

To transmitter 

Pm. 11-3.  Broadside array of two linear 
i-wavelength  elements with arrange-
ment for driving elements with equal 
in-phase currents. 

case where d = X/2 is suggested in 
Fig. 11-2a. This pattern is actually 
bi-directional, only one-half being 
shown. 
11-2b. Driving-point Impedance. 

Suppose that the array is energized 
by the transmission-line arrange-
ment shown in Fig. 11-3.  Two 
transmission lines of equal length 1 
join at P to a third line extending to 
a transmitter. Let us find the driv-
ing-point impedance presented to 
the third line at the point P.' This 

will be called the driving point for the array. 
Let V, be the emf applied at the terminals of element 1. Then, 

V1  =  /1 Zii  /2Z12  (11-9) 

where I, is the current in element 1, 12 the current in element 2, Z11 is the 
self-impedance of element 1, and Z12 is the mutual impedance between the 
two elements.  Likewise, if V, is the emf applied at the terminals of 
element 2 

V2 = /2Z22  /1Z12 

where Z22 =  the self-impedance of element 2 
The currents are equal and in phase so 

/1 = 12 

Therefore, (11-9) and (11-10) become 

= I,(ZI, + Z12) 
and 

V2 = /2(Z22  Z12) 

The terminal impedance Z1 of element 1 is 

VI 7  

Z1 = " 7 11  "12 
II 

1 G. H. Brown, A Critical Study of the Characteristics of Broadcast Antennas as 
Affected by Antenna Current Distribution, Proc. I.R.E., 24, 48-81, January, 1936. 
G. H. Brown, Directional Antennas, Proc. I.R.E., 25, 78-145, January, 1937. 
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and the terminal impedance Z2 for element 2 is 

V2 
Z =  = Z  Z 
2 1 2  22  12 

Since the elements are identical 

Z22 = Zi 

Therefore, the terminal impedances given by (11-14) and (11-15) are 
equal. That is, 

= Z2 = ZI1  Z12 (11-17) 

Since Z1 = Z, and I = /2 it is necessary that the emf V1 applied at the 
terminals of element 1 be equal and in phase with respect to the emf V, 
applied at the terminals of element 2. 
For the case where the spacing d is 4-wavelength, the terminal im-

pedance Zi of each element is 

Zi = Z„  Z1, = R„ + Ri2 + J(Xu + 112) 
= 73 — 13 -I- j(43 — 29) 

= 60 + j14  ohms  (11-18) 

Suppose that the reactance of 14 ohms is tuned out at the terminals by a 
series capacitance.' The terminal impedance then becomes a pure re-
sistance of 60 ohms. If the length 1 of each transmission line between the 
antenna terminals and P is 4 wavelength, the driving-point impedance of 
the array at P is a pure resistance of 30 ohms. This value is independent 
of the characteristic impedance of the 4-wavelength lines. However, a 
resistance of 30 ohms is too low to be matched readily by an open-wire 
transmission line. Therefore, a more practical arrangement would be to 
make 1 equal to  wavelength. Suppose that we wish to have a driving-
point resistance of 600 ohms. To do this, we let  the characteristic im-
pedance of each 1-wavelength line be V1,200 X 60 = 269 °lune Each 
line transforms the 60 ohms to 1,200 ohms, and since two such lines are 
connected in parallel at P, the driving-point impedance for the array is a 
pure resistance of 600 ohms. This is the impedance presented to the line to 
the transmitter. For an impedance match this line should have a char-
acteristic impedance of 600 ohms. 
11-2c. Gain in Field Intensity. As the last part of the analysis of the 

1 It is often simpler to resonate the elements by shortening them slightly. This modi-
fies the resistive component of the impedance and also alters the E(0) field pattern, but to 
a first approximation these effects can usually be neglected. 
I For the special case of a I-wavelength line, the general transmission-line formula 

(see Appendix) reduces to Z,o Z20/Zi, where Z,„ is the input impedance, Zo the char-
acteristic impedance, and Zy the load impedance. Thus, Zo •V T, —ZL. 
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array, let us determine the gain in field intensity for the array. This 
could be done by pattern integration as in Chap. 2, but with self- and 
mutual-impedance values available a shorter method is as follows. 
Let the total power input (real power) to the array be W.* Assuming no 

heat losses, the power W, in element 1 is 

W, = /?(Fel, R12)  (11-19) 

the power W, in element 2 is 

W2 = I:(R22  R12)  (11-20) 

where I, and 12 are rms currents. 
But R22 = RH and /, = /1. Making these substitutions and adding 
(11-19) and (11-20) to obtain the total power W, we have 

W = W, -I- W2 = 2n(R11  (11-21) 

and 

I, —   W  2(R11 Ria)  (11-22) 

Suppose that we express the gain with respect to a single 1-wavelength 
element as the reference antenna. Let the same power W be supplied to 
this antenna. Then assuming no heat losses, the current I,, at its terminals 
is 

(11-23) 

where Fe,,0 is the self-resistance of the reference antenna. 
In general, the gain in field intensityt of an array over a reference antenna 

is given by the ratio of the field intensity from the array to the field 
intensity from the reference antenna when both are supplied with the 
same power W. The comparison is, of course, made in the same direction 
from both the array and the reference antenna. In the present case it 
will be convenient to obtain two gain expressions, one for the horizontal 
plane and the other for the vertical plane. 

• It is important that the antenna power W be considered constant. Most trans-
mitters are e.asentially constant power devices which can be coupled to a wide range of 
antenna impedance.  Until the antenna power was considered constant by G. H. 
Brown (Proc. I.R.E., January, 1937) the advantages of closely spaced elements were 
not apparent.  Prior to this time the antenna current had usually been considered 
constant. 
t The power gain discussed in Chap. 2 is equal to the square of the gain in field inten-

sity. The power gain is the ratio of the radiation intensities (power per unit solid angle) 
for the array and reference antennas, the radiation intensity being proportional to the 
square of the field intensity. 
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In the horizontal plane the field intensity EH. w. (CO, as a function of 4,, 
at a distance D from a single vertical center-fed 4-wavelength reference 
antenna is of the form of (11-1). Thus, 

Eg.w.(4)) = IcI0 (11-24) 

where Io is the terminal current and "H.W." indicates "Half-Wavelength 
antenna." Substituting the value of /0 from (11-23), we obtain 

ITV 
E0..(4,) = k —  (11-25) 

R00 

The field intensity E(0) in the horizontal plane at a distance D from the 
array is given by (11-5). Introducing the value of the terminal current 
I, from (11-22) into (11-5) yields 

E(0) = k NIR,12+WRIZ cos  (d' Cr 4)  (11-26) 

The ratio of (11-26) to (11-25) gives the gain in field intensity of the 
array (as a function of 4, in the horizontal plane) with respect to a vertical 
4-wavelength reference antenna with the same power input. This gain will 
be designated by the symbol Gf(4))[A./H.W.] where the expression in the 
brackets is by way of explanation that the gain is that of the Array (A.) 
with respect to a Half-Wavelength reference antenna (H.W.) 1 in the same 
direction from both array and reference antenna. Thus, 

G f(d))[ WI.]  Eff.w.(4))  ')R1, + R.. I \ 2 / 
A.  E(0) I 2R00  cos  (d, cos 0) 

The absolute value bars II are introduced so that the gain will be confined 
to positive values (or zero) regardless of the values of d, and 4). A negative 
gain would merely indicate a phase difference between the fields of the 
array and the reference antenna. 
If the gain is the ratio of the maximum field of the array to the maximum 

field of the reference antenna it is designated by G f  (see Sec. 2-15). 
The self-resistances R00 = R,, = 73 ohms. For the case where the spac-

ing is 4 wavelength, d, = 7 and R,, = —13 ohm so that (11-27) becomes 

  — 1.56 cos (11 cos  4,)2  (11-28) 

(11-27) 

1 Both the array and the i-wavelength reference antenna are assumed to be in free 
space.  Thus, to be more explicit the expression Gi(0)1A.F.S./H.W.F.S.1, meaning 
the gain in field intensity of the Array in Free Space (A.F.S.) with respect to a Half-
Wavelength reference antenna in Free Space (H.W.F.S.), might be used.  However, to 
simplify the notation, the letters "F.S." will be omitted when both antennas are in free 
space. 
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In the broadside direction (0 = 7/2), the pattern factor becomes unity. 
The gain is then 1.56. This is the ratio of the maximum field of the array 
to the maximum field of the reference antenna (see Fig. 11-4). Hence, 
GI = 1.56. 
It is also of interest to find the angle 00 for which the gain is unity. 

For this condition (11-28) becomes 

7 
COS (-2 cos 00) = 0.64 

or 

(fro = ±56°  or  ± 124° 

These angles are shown in Fig. 11-4. The array has a gain of greater than 
unity in both broadside directions over an angle of  

0=180' 

(11-29) 

Ø=-124 

0= —90° 

Half-wave reference 
antenna 

0=124° 

Array 

0=90° 

0=56° 

0-0° 
FIG. 11-4. Horizontal plane pattern of broadside array of two vertical in-phase 4-
wavelength elements spaced 4 wavelength. The pattern of a single vertical 4-wave-
length reference antenna with the same power input is shown for comparison. 

The gain as a decibel ratio is given by the relation 

Gain = 20 log,. Gf db 

where Gf = the gain in field intensity 
Thus, a field-intensity gain of 1.56 is equal to 3.86 db. 
Turning our attention now to the gain in the vertical plane (y-z plane 

of Fig. 11-2a), the field intensity E. ,(0) as a function of 0 in this vertical 
plane at a distance D from a single vertical 1-wavelength reference antenna 
with the same power input is of the form of (11-6). Thus, 

cos [(7/2) cos 01 
EH. w ( = kI0 

where /0 = the terminal current 

sin 0 
(11-30) 
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Substituting its value from (11-23), we get 

E  0 r  cos Kr/2) cos 01 
H. w. ()  k A Roo  sin  0 (11-31) 

The field intensity E(0) as a function of 0 in the vertical plane at a distance 
D from the array is given by (11-8). Introducing the value of the terminal 
current I from (11-22) into (11-8), we have 

2W   cos [(7/2) cos 01 
E(0)  =  + R12  sin 0  (11-32) 

The ratio of (11-32) to (11-31) gives the gain in field intensity, 
Gf(0)[A./H.W.], of the array as a function of 0 in the vertical plane over 
a vertical 4-wavelength reference antenna with the same power input. 
Thus, 

im  A.  E(0) 2Roo  
GA / H.W.  Ell.w.(0)  RI2 

(11-33) 

The gain is a constant, being independent of the angle 0. For the case 
where the spacing is 4 wavelength, (11-33) becomes 

A 
Gf(0)[rul ] — 1.56 (or 3.86 db)  (11-34) 

The shape of the pattern for the array and for the 4-wavelength reference 
antenna is the same as shown in Fig. 11-5, but the ratio of the radius vec-
tors in the same direction is a constant equal to 1.56. 

Zb  

Antenna 
elements 

Half-wove reference 
antenna 

Array 

Fin. 11-5.  Vertical-plane pattern of broadside array of two vertical in-phase 4-wave-
length elements spaced 4 wavelength. The pattern of a single vertical 4-wavelength 
reference antenna with the same power input is shown for comparison. 

If the reference antenna is an isotropic source instead of a 4-wavelength 
antenna, the gain in the vertical plane is a function of the angle 0. The 
maximum gain in field intensity of the array over an isotropic source with 
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the same power input is VF.T-4 times greater than the voltage gain over 
a 4-wavelength reference antenna. Thus, when the spacing is 4 wave-
length, the maximum gain in field intensity of the array with respect to an 
isotropic source is 

A . 
= 1.56 X V1.64 = 2.0 (or 6.0 db) 

This value is in the broadside direction (4, = 0 = 90°). 
11-3. Array of Two Driven 4-wavelength Elements.  End-fire Case. 

Consider an array of two center-fed vertical 4-wavelength elements in free 
space arranged side by side with a spacing d and 
equal currents in opposite phase as in Fig. 11-6. 
The only difference between this case and the one 
discussed in Sec. 11-2 is that the currents in the ele-
ments are taken to be in the opposite phase instead 
of in the same phase. As in Sec. 11-2, the analysis 
will be divided into 3 subsections on the field pat-

2  terns, driving-point impedance, and gain in field 
intensity. 
11-3a. Field Patterns. The field intensity E101)) 

as a function of cs at a distance D in a horizontal 
plane (x-y or 4, plane in Fig. 11-7a) from a single 
element is 

Fm. 11-6. End-fire ar-  EINS) 
ray of two i-wavelength 
elements with currents where k = a constant involving the distance D 
of equal magnitude but 
opposite phase.  = the terminal current 

Replacing the elements by isotropic point sources 
of equal amplitude, the pattern El... () in the horizontal plane for two such 
isotropic out-of-phase sources is given by (4-10) as 

= 2E„ sin (d• c2°841 ) (11-35) 

Applying the principle of pattern multiplication, we may consider that 
E. is the field intensity from a single element at a large distance D. Thus 

= E1(0) = /ill (11-36) 

and the field intensity E(0) as a function of (t. in the horizontal plane at 
a large distance D from the array is 

MO) = 2k1, sin (d.  c°8 /  (1147) 
\ 2   
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This is the absolute field pattern in the horizontal plane.  The electric 
field at points in this plane is everywhere vertically polarized.  The 
relative pattern for the case where the spacing d is wavelength is shown 
in Fig. 11-76 and also partially in Fig. 11-7a.  The maximum field in-

E(6) 

E(Ø) 

(6) (c) 

(a) 

FIG. 11-7.  Patterns for end-fire array of two linear out-of-phase 4-wavelength elements 
with spacing d of 4 wavelength. 

tensity is at  = 0° and ck = 180°. Hence, the array is commonly referred 
to as an "end-fire" type. 
The field intensity E1(0) as a function of 0 from a single I-wavelength 

element at a distance D in the vertical plane (x-z plane in Fig. 11-7a) is 
from (5-81) given by 

cos [(7/2) cos 0] 
E,(0) = k11 (11-38) 

sin 0 

The pattern E,  (0) as a function of 0 in the vertical plane for two isotropic 
sources in place of the two elements is from (4-10) 

= 2E0 
(d. sin 0) 

sin  (11-39) 
2 I 
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Note that 0 is complementary to (t. in (4-10), so cos 4) = sin 0. Putting 
E0 = E,(0) the field intensity E(0) as a function of 0 in the vertical plane 
at a large distance D from the array is 

cos [(T/2) cos 01 . (d, sin 0\ 
E(0) = 2kI,  sin  (11-40) 

sin 0  2 / 

This is the absolute field pattern in the vertical plane.  The relative 
pattern is illustrated in Fig. 11-7c, and also partially in Fig. 11-7a, for the 
case where the spacing is  wavelength. The relative three-dimensional 
field variation for this case (d = X/2) is suggested in Fig. 11-7a. This 
pattern is actually bidirectional, only one-half being shown. 
11-3b. Driving-point Impedance.  Let V, be the emf applied to the 

terminals of element 1. Then 

V, = I1Z11  I2Z12 

Likewise, if V2 is the emf applied to the terminals of element 2 

V2 = /2Z22  /1Z12 

The currents are equal in magnitude but opposite in phase so 

/2 = 

Therefore, (11-41) and (11-42) become 

and 

= /1(Z, — ZI2) 

V2 = /2(Z22  ZI2) 

The terminal impedance Z, of element 1 is 

7 VI 7 7 
=  =  Li u -  Ai n 
II 

and the terminal impedance Z, of element 2 is 

Therefore, 

or 

7  V2   ea2 = — 7  7 -  "12 
/2 

Z1 = Z2 = Z11  Z12 

V1 V2 
I,  /2 

Since /2 =  /1 it follows from (11-19) that V2 VI. This means that 
the two elements must be energized with emfs which are equal in magni-

(11-46) 
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tude and opposite in phase. This may be done by means of a crossover 
in the transmission line from the driving point P to one of the elements as 
shown in Fig. 11-8. The length 1 of each line is the same. 
For the case where the spacing between elements is 4 wavelength, the 

terminal impedance of each element is 

Z1 = R11  -  H12 ±  X12) 

= 86 -I- j72  ohms  (11-50) 

Consider that the reactance of 72 
ohms is tuned out by a series capaci-
tance at the terminals of each element. 
The terminal impedance is then a 
pure resistance of 86 ohms. To ob-
tain a driving-point resistance of 600 
ohms, let the length 1 of the line from 
P to each element be I wavelength 
and let the line impedance be 
V1,200 X 86 = 322 ohms. For an 
impedance match, the line from the 
driving point P to the transmitter 
should have a characteristic imped-
ance of 600 ohms. 
11-3c. Gain in Field Intensity.  Using the same method as in Sec. 11-2c, 

the current I in each element for a power input W to the array is given by 

Driving 
point for 
array 

To transmitter 

FIG. 11-8. End-fire array of two linear 
i-wavelength elements with arrange-
ment for driving elements with currents 
of equal magnitude but opposite phase. 

iV   
2(R11 — R.) 

(11-51) 

It is assumed that there are no heat losses. The current I in a single 
4-wavelength reference antenna is given by (11-23).  The gain in field 
intensity Gf(0)[A./H.W.] as a function of  in the horizontal plane with 
respect to a 4-wavelength reference antenna is obtained by substituting 
(11-51) in (11-37) and taking the ratio of this result to (11-25). This yields 

2/100   
G M[H.w.]  — RI2 

sin  (d, cos (k) I 
\  2 /  (11-52) 

For a spacing of 4 wavelength (11-52) reduces to 

G,(0)[H.W A '  — 1.3 I sin [(r/2) cos 0] I .  (11-53) 

In the end-fire directions (4) = 0° and 180°) the pattern factor becomes 
unity, and the gain is 1.3 or 2.3 db. This is the gain G f (see Fig. 11-9) 
The gain in field intensity Gf(0)[A./H.W.1 as a function of 0 in the 
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vertical plane (x-z plane of Fig. 11-7a) with respect to a I-wavelength 
reference antenna is found by substituting (11-51) in (11-40) and taking the 
ratio of this result to (11-31) obtaining 

GI(v i  AllNT. .1 - R — RI2  2 / 
sm 

) 2Roo  . (d, sin 0 
(11-54) 

which is of the same form as the gain expression (11-52) for the horizontal 
plane (note that maximum radiation is in a direction 0 = 90°,  = 0°). 
The gain in field intensity G f of the array over an isotropic source with 

the same power input is 1.3 X V 1..67.1 = 1.66 (or 4.4 db). 

Half -wave 
reference 
antenna 

(a)  (b) 

Elements 

Half-wave 
reference 
antenna 

Array 

Fla. 11-9.  Horizontal plane pattern (a) and vertical plane pattern (b) of end-fire 
array of two vertical i-wavelength elements with i-wavelength spacing. The patterns 
of a vertical i-wavelength reference antenna with the same power input are shown for 
comparison. 

11-4. Array of Two Driven I-wavelength Elements. General Case with 
Equal Currents of Any Phase Relation.'  In the preceding sections two 
special cases of an array of two 1-wavelength driven elements have been 
treated.  In one case the currents in the elements are in phase (phase 
difference = 0°), and in the other the currents are in opposite phase (phase 
difference = 180°). In this section the more general case is considered 
where the phase difference may have any value.  As in the preceding 
cases the two i-wavelength elements are arranged side by side with a 
spacing d and are driven with currents of equal magnitude. 
For the general phase case the radiation-field pattern in the horizontal 

plane (x-y plane of Fig. 11-7a) is from (4-20) given by 

MO) = 2k1, cos 12 (11-55) 

I For a more detailed discussion of this case and also of the most general case where the 
current amplitudes are unequal, see G. H. Brown, Directional Antennas, Proc. I.R.E., 
25, 78-145, January, 1937. 
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where 4, is the total phase difference between the fields from element 1 and 
element 2 at a large distance in the direction 4) (see Fig. 11-10). Thus, 

11, = d, cos 4) + 

where 5 = the phase difference of the 
currents in the elements 
A positive sign in (11-56) indicates 
that the current in element 2 of Fig. 
11-10 is advanced in phase by an 
angle 5 with respect to the current in 
element 1. That is 

/2 = Il LIS 

or  I, = I2/— (11-57) 

(11-56) 

Fm. 11-10.  Array of two side-by-side 
elements normal to plane of page. 

The voltages applied at each element are 

V1 = /iZii  /2Z12 = ii(Zil ± Z12 ZP.) 
and 

V2 = 12Z22 11Z12 = 12(Z22 + Z12 / -5) 

The driving-point impedances of the elements are then 

and 

4 = "711 ± Z 12 rj 
/1 

Z 2 = —v, = Z  Z 2  /2 2  12/— 8 

(11-58) 

(11-59) 

(11-60) 

(11-61) 

The real part of the driving-point resistances are 

RI = R11 +  Z32 1 COS (r  8)  (11-62) 
and 

R2 = R22 + I ZI2 I cos (T — (11-63) 

where 7 =  the phase angle of the mutual impedance Z12 (that is, 
=  arctan X,2/R,, where Z12 = RIT  iX12) 

Therefore, the power W1 in element 1 is 

TV1 = 1 II 12 R1 = 1 II 12 [Rii ± 1 Z,2 1 cos (7  EA  (11-64) 

and the power W 2 in element 2 is 

W 2 = 1 12 12 [R22 ± 1 Z12 1 cos (7 — 45)] 

Since RI, = R223 the total power W is 

W = W I ± w 2 = I /I 12 12R11 ± I Z12 I [COS Cr + a) + cos (r — a)]) 
= 2 1 /1 12 (R11 -1- 1 Z12 1 cos T cos 8) 

= 2 1 /1 12 (Rii  Ri2 COS  (11-66) 

(11-65) 
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It follows that the gain in field intensity as a function of 4) in the hori-
zontal plane' of the array over a single I-wavelength element with the same 
power input is 

A.  Gf(0)[ H.w.  2R,,   Cos  (d,. cos:  .3) (11-67) VR,1 ± R12 cos 3 
A polar plot of (11-67) with respect to the azimuth angle (1) gives the radia-
tion-field pattern of the array in the horizontal plane, the ratio of the 

8 
45*  90*  135" 

d • 

d•iX 

d- I) 

Element 's 

•  
1-4 —d —H 1, LA 

Fm. 11-11.  Horizontal-plane field patterns of two vertical elements as a function 
of the phase difference ö and spacing d. (After G. H. Brown.) Both elements are the 
same length and have currents of equal magnitude. The circles indicate the field in-
tensity of a single reference element of the same length with the same power input. 

0 

1 This is the plane of the page in Fig. 11-10. 
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magnitude of the radius vector to a unit radius indicating the gain over a 
reference 4-wavelength antenna. Brown' has calculated such patterns as a 
function of phase difference (5 and spacing d,.  Examples of these are 
shown in Fig. 11-11. 
The radiation-field pattern in the vertical plane containing the elements 

(in the plane of the page of Fig. 11-12) is 

E(0) = 2kI cos (d, sin 0 + (3) cos [(7r/2) cos 0]  (11-68) 
2  sin 0 

Thus, the pattern in the vertical plane has the shape of the patterns of 
Fig. 11-11 multiplied by the pattern of a single 4-wavelength antenna. The 
gain in the vertical plane over a vertical 4-wavelength reference antenna 
with the same power input is then 

G,(0) [  A. 2R11   
H .W .  N/Ri ± R12 cos 5 

It is often convenient to refer the gain to 
an isotropic source with the same power in-
put. Since the gain of a 4-wavelength an-
tenna over an isotropic source is 1.64, the 
gain in field intensity as a function of 0 in the 
vertical plane of a vertical 4-wavelength an-
tenna in free space over an isotropic source is 

= V1.64 
cos [(7/2) cos 01 

sin 0 
(11-70) 

The gain in field intensity in the vertical 
plane of the array over the isotropic source 
is then the product of (11-69) and (11-70) or 

G A )L (011- H  A.  X Gf(0)[ H i'W  
1,40 1  .W.  so. 

5 
NIR1, ± R12 cos 3 cm  \  2  sin 

4- ) cos [(T/2) cos 0] 3 .28R11 d, sin 0  

cos  (d, sin 0 ± 6) 
2 

e=o 

(11-69) 

Fm. 11-12.  Relation of polar an-
gle 9 in the plane of the elements. 

(11-71) 

11-5. Closely Spaced Elements and Radiating Efficiency.' The end-fire 
array of two side-by-side, out-of-phase 4-wavelength elements discussed in 
Sec. 11-3 produces substantial gains even when the spacing is decreased 

G. H. Brown, Directional Antennas, Proc. I.R.E., 25, 78-145, January, 1937. 
21 D. Kraus, Antenna Arrays with Closely Spaced Elements, Proc. I.R.E., 28, 

76-84, February, 1940. 
J. D. Kraus, The Corner Reflector Antenna, Proc. I.R.E., 28, 513-519, November, 

1940. 



296 ANTENNAS [CHAP. 11 

to small value 3. As indicated by the RL = 0 curve in the gain-vs.-spacing 
graph of Fig. 11-13a, the gain approaches 3.9 db at small spacings. At 
wavelength spacing the gain is 2.3 db. This curve is calculated from 

(11-52) for  = 0° or (11-54) for 0 = 90°. As the spacing d approaches 
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Fie. 11-13.  (a) Gain of end-fire array of two out-of-phase I-wavelength elements (flat-
top beam antenna) with respect to a i-wavelength reference antenna as a function of 
the spacing for five values of the loss resistance RL. (6) Gain curve for RL = 0 with 
variation of its component factors, the coupling factor and the pattern factor, for 
= 0. 

zero, the coupling factor becomes infinite, but at the same time the pattern 
factor approaches zero.  The product of the two or gain stays finite, 
leveling off at a value of about 3.9 db for small spacings as illustrated by 
Fig. 11-13b. The fact that increased gain is associated with small spacings 
makes this arrangement attractive for many applications. End-fire arrays 
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of this type with a spacing between elements of I wavelength or less may 
be called "flat-top beam" antennas,' since the array is commonly operated 
with both elements horizontal as illustrated in Fig. 11-14, and in this 
position it resembles in appearance a top-loaded or flat-top antenna. 
Thus far it has been assumed that 

there are no heat losses in the antenna 

system. In many antennas such losses  maximum  f Maximum 
are small and can be neglected. 

radiation  radiation 
However, in the flat-top antenna such 
losses may have considerable effect 
on the gain. Therefore, the question 
of losses and of radiating efficiency 
will be treated in this section in con-
nection with a discussion of arrays of 
two closely spaced, out-of-phase ele-
ments.  The term "closely-spaced" 
will be taken to mean that the ele-
ments are spaced i wavelength or less. 
A transmitting antenna is a device 

for radiating radio-frequency power. Let the radiating efficiency be defined 
as the ratio of the power radiated to the power input of the antenna. The 
real power delivered to the antenna that is not radiated is dissipated in the 
loss resistance and appears chiefly in the form of heat in the antenna con-
ductor, in the insulators supporting the antenna, etc. An antenna with a 
total terminal resistance RI r may be considered to have a terminal resis-
tance R„ which is all radiation resistance, and an equivalent terminal loss 
resistance R1 z. such that 

It follows that, 

Fm. 11-14. Flat-top beam antenna 
with closely spaced elements carrying 
equal out-of-phase currents. 

= R1 + RIL (11-72) 

Rt  
Radiating efficiency, % —  RI R X 100  (11-73) 

+ iz, 

Since many types of high-frequency antennas have radiation resistances 
that are large compared to any loss resistance, the efficiencies are high. 
In an array with closely spaced, out-of-phase elements, however, the 
radiation resistance may be relatively small and the antenna current very 
large as illustrated by Fig. 11-15. Hence, a considerable reduction in 
radiating efficiency may result from the presence of any loss resistance. 
The radiating efficiency may also be small for low-frequency antennas 
which are very short compared to the wavelength. Although the effect of 
loss resistance will be discussed specifically for an array of two closely 

1 J. D. Kraus, Antenna Arrays with Closely Spaced Elements, Proc. I .R.E., 28, 
76-84, February, 1940. 
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spaced i-wavelength elements, the method is general and may be applied 
to any type of antenna. 
Let the equivalent loss resistance at the terminals of each element be 

RIL. The elements are center-fed and are arranged side by side with a 

25 

20 
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10 

5 

I f d- 1 

I 

I, RI 

0 I  02  0.3  04 

Spacing d in wavelengths 

ha. 11-15. Current ri and radiation resistance R1 in each element of a flat-top beam 
antenna as a function of the spacing. The current is calculated for a constant input 
power of 100 watts to the array. 
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spacing d. The total terminal resistance R1T is as given by (11-72). The 
terminal radiation resistance R, is given by 

R, = RI, — R12  (11-74) 

Substituting (11-74) in (11-72) the total terminal resistance for each 
element is then 

R12' = RII  RIL  RI2  (11-75) 

If a power W is supplied to the two-element array, the current II in each 
element is 

I, -   
1/2(R1, + RIL — R12) (11-76) 

The total terminal resistance Ror of a single, center-fed I-wavelength 
reference antenna is 

ROT = ROO + ROL  (11-77) 

where Roo is the self-resistance and Roz, the loss resistance of the reference 
antenna 
The current /0 at the terminals of the reference antenna is then 

I0 — )IROO + ROL (11-78) 
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With the array elements vertical, the gain in field intensity as a function 
of 4) in the horizontal plane (x-y plane in Fig. 11-7a) is obtained by sub-
stituting (11-76) in (11-37), (11-78) in (11-24) and taking the ratio which 
gives 

r  A.  
G M[H. w .] 

2(R00  Roc)  
— R12 

. (d, cos 0 sm ) 
\ 2 (11-79) 

This expression reduces to (11-52) if the loss resistances are zero 
(Roz, = RIL = 0). 
In a similar way the gain in field intensity as a function of 0 in the 

vertical plane (x-z plane in Fig. 11-7a) is 

Gf( 0) 
2(Roo RoL)  

LIAM. .1 — I RI, ± RiL — RIR 
. (d, sin 0 sm  ) 
\ 2 / (11-80) 

This reduces to (11-54) if the loss resistances are zero. 
The effect of loss resistance on the gain of a closely spaced array of 

two out-of-phase 4-wavelength elements over a 4-wavelength reference 
antenna is illustrated by the curves in Fig. 11-13a. The gain presented is 
actually the maximum gain which occurs in the directions of maximum 
radiation from the array (4) = 0° and 180'; 0 = 90°). The top curve, 
which was mentioned earlier, is for zero loss resistance (Roz, =  = 0). 
The lower curves are for four different values of assumed loss resistance: 
1, 1, 5, and 20 ohms. The assumption is made that the loss resistance 
flu of each element of the array is the same as the loss resistance R ol, of 
the reference 4-wavelength antenna (that is X L = ROL). I t  is apparent 
from the curves that a loss resistance of only 1 ohm seriously limits the 
gain at spacings of less than  wavelength, and larger loss resistances 
cause reductions in gain at considerably greater spacings.  If the loss 
resistance is taken to be 1 ohm (a not unlikely value for a typical high-
frequency antenna), the gain is almost constant (within 0.1 db) for spacings 
between 4 and  4 wavelength. Smaller spacings result in reduced gain 
because of decreased efficiency while larger spacings also give reduced 
gain, not because of decreased efficiency, but because of the decrease in 
the coupling factor. A spacing of wavelength has the advantage that the 
physical size of the antenna is less. However, resonance is sharper for this 
spacing than for wider spacings. Hence, a spacing of 4 wavelength is to 
be preferred if a wide band width is desired. In some situations an inter-
mediate or compromise spacing is indicated. 
The Q of an antenna, like the Q of any resonant circuit, is proportional 

to the ratio of the energy stored to the energy lost (in heat or radiation) 
per cycle. For a constant power input to the closely spaced array the 
Q is nearly proportional to the square of the current I in each element. Refer-
ring to Fig. 11-15, it is apparent that the current for 4 wavelength spacing 
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is about twice the value for I wavelength spacing. Hence the Q for 
wavelength spacing is about four times the Q for  wavelength spacing. 
A large Q indicates a large amount of stored energy near the antenna 
in proportion to the energy radiated per cycle. This also means that the 
antenna acts like a sharply tuned circuit. Since the band width (if it is 
narrow) is inversely proportional to the Q, a spacing of I wavelength 
provides about four times the band width obtained with  wavelength 
spacing. Although the efficiency of an array with closely spaced, out-of-
phase elements might be increased, for example, by using a large diameter 
conductor for each element, any substantial increase in band width re-
quires an increase in the spacing between the elements. This increase 
also raises the radiating efficiency. 
The flat-top beam or closely spaced antenna array discussed above in 

this section consists of two side-by-side, out-of-phase I-wavelength ele-
ments as indicated in Fig. 11-14 and in Fig. 11-16a. Five other examples 
of flat-top beam antennas are shown in Fig. 11-16 with arrows located at 

T I E (a)  d  (d) 

- - *1 

1 7-1 7—  (b) 

Center-fed types 

Terminals 

End-fed types 

Pie. 11-16. Six types of flat-top beam antennas. 

(e) 

current maxima indicating the instantaneous current directions. The type 
at Fig. 11-16b has an additional collinear I-wavelength section, the two 
sections being energized from the center. A four section center-fed array 
is illustrated in Fig. 11-16c. The additional sections yield a higher gain 
by virtue of the sharper beam in the plane of the elements. The antennas 
of Figs. 11-16d, e, and f are end-fed types corresponding to the center-fed 
arrays in the left-hand group. The spacing d is usually between  and 
wavelength. 
11-6. Array of n Driven Elements. The field pattern of an array of 

many elements can often be obtained by an application of the principle 
of pattern multiplication. As an example, consider the volume array of 
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Fig. 11-17 consisting of sixteen 1-wavelength elements with equal currents. 
In the y direction the spacing between elements is d, in the x direction 
the spacing is a, and in the z direction the spacing is h. Let the y direction 
array and z direction arrays be broadside types and the x direction array 
an end-fire type such that the maximum radiation of the entire volume 
array is in the positive x direction. Let d = h = X/2 and a = X/4. Con-
sider that the currents in all elements are equal in magnitude and that 
the currents in the front eight elements are in phase but retarded by 90° 
with respect to the currents in the rear eight elements. By the principle 

z 

Maximum 
radiation 

X 

t 2 

Fin. 11-17.  Array of 16 1-wavelength elements. 

of pattern multiplication the pattern of the array is given by the pattern 
of a single element multiplied by the pattern of a volume array of point 
sources, where the point sources have the same space distribution as the 
elements. In general, the field pattern E(e, 4)) of a volume array as a 
function of 0 and 0 is 

E(e, qt.) = E.(e, 4)) .E.(e, 0) E.(e, 4.) E,(8, 4)  (11-81) 

where E„(e, 0) = pattern of single element 
E.(e, 4)) = pattern of linear array of point sources in x direction 
E.(e, 0) = pattern of linear array of point sources in y direction 
E.(e, 16) = pattern of linear array of point sources in z direction 

The product of the last three terms in (11-81) is the pattern of a volume 
array of point sources [see Eq. (4-77)]. If, for instance, we wish to obtain 
the pattern of the entire array E(0) as a function of ct) in the x-y plane 
(0 = 90°), we introduce the appropriate pattern expression in this plane 
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for each component array in (11-81). For the example being considered 
the normalized pattern becomes 

sin (2r sin 4)) Fir 
= 4 sin [(r/2) sin 44 cos  L-4 (1 — c°5  (11-82) 

Only the E.(16) broadside pattern and the E.(4,) end-fire pattern contribute 
to the array pattern in the x-y plane, since in this plane the E.(16) pattern 
of a single element and the E,(4)) broadside pattern are unity. 
The impedance relations for an array of any number n of identical 

elements are derived by an extension of the analysis used in the special 
cases in the preceding sections.' Thus, for n driven elements we have 

V1 = /,Z,,  /2Z12  /2Z13 ± • • • + 

V 2 =  11 Z21  /2 Z22  /3 Z23 +  • • • 

V g =  /1 Z8  /2 Z32  /3 Z33 +  • • • ±  /,, Z3. (11-83) 

V. = I,Z.3  /2Z,,2  /3Z.3 + • • • 

where V„ = terminal voltage of the nth element 
= terminal current of the nth element 

Z1. = mutual impedance between element 1 and the nth element 
= self-impedance of the nth element 

The driving-point or terminal impedance of one of the elements, say 
element 1, is then 

V1  • /2  /3 
Z  =  =  Z1  —r Z12 +  T.  Z13 -I- • • • -F  

If the currents in the elements and the self and mutual impedances are 
known, the driving-point impedance Z, can be evaluated. 
The voltage gain of an array of n elements over a single element can be 

determined in the same manner as outlined for the special cases considered 
in the previous sections. For instance, the gain in field intensity as a 
function of 4, in the x-y plane (0 = 90°) for the array of Fig. 11-17 with 
respect to a single vertical I-wavelength element with the same power 
input is 

GA60 

R,, Riz,   
RIL  R13-1- R,3-1- R17 +  l( R12  RIO) +  M14 ±  R18) 

sin [(r/2) sin 4,1 cos  [7.4 (1 — c°s  
sin (2r sin 4,)  

see for example, P. S. Carter, Circuit Relations in Radiating Systems and Applica-
tions to Antenna Problems, Proc. I.R.E., 20, 1007, June, 1932. 

(11-84) 

(11-85) 
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where R„ = self-resistance of one element 
R. = loss resistance of one element 

= mutual resistance between element 1 and element 2 
R,3 = mutual resistance between element 1 and element 3, etc. 

The numbering of the elements is as indicated in Fig. 11-17. It is assumed 
that d = h = X/2 and a = X/4 and that the current magnitudes are equal, 
the currents in the front eight elements being all in the same phase but 
retarded 90° with respect to the currents in the rear eight elements. 
11-7. Horizontal Antennas Above a Plane Ground. In the previous dis-

cussions it has been assumed that the antenna or array is in free space, 
that is, infinitely remote from the ground.  Although the fields near 
elevated microwave antennas may closely approximate this idealized 
situation, the fields of most antennas are affected by the presence of the 
ground. The change in the pattern 
from its free-space shape is of pri-  / Antenna 
mary importance. The impedance 
relations may also be different than 
when the array is in free space, espe-

Ground   
cially if the array is very close to the  
ground. In this section the effect of 
the ground on horizontal antennas is 
discussed. In Sec. 11-8 the effect of 
the ground is analyzed for vertical  x  —image 

2 

antennas. A number of special cases  FIG. 11-18.  i-wavelength antenna at 
are treated in each section, these be-  height h above ground with image at equal 
ing limited to single elements or to  distance below ground. 
simple arrays of several elements. 
11-7a. Horizontal 4-wavelength Antenna Above Ground. Consider the 

horizontal 4-wavelength antenna shown in Fig. 11-18 at a height h above 
a plane ground of infinite extent. Owing to the presence of the ground, 
the field at a distant point P is the resultant of a direct wave and a wave 
reflected from the ground as in Fig. 11-19. Assuming that the ground is 
perfectly conducting, the tangential component of the electric field must 
vanish at its surface.  To fulfill this boundary condition, the reflected 
wave must suffer a phase reversal of 180° at the point of reflection. 
To obtain the field at a distant point P, it is convenient to transform 

the problem by the "method of images." In this method the ground is 
replaced by an image of the antenna situated a distance h below the 
ground plane. By taking the current in the image equal in magnitude 
but reversed in phase by 180° with respect to the antenna current, the 
condition of zero tangential electric field is met at all points along a plane 
everywhere equidistant from the antenna and the image.  This is the 
plane of the ground which the image replaces. In this way, the problem 
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of a horizontal antenna above a perfectly conducting ground' of infinite 
extent can be transformed into the problem already treated in Sec. 11-3 
of a so-called end-fire array. One point of difference is that in developing 
the gain expression it is assumed that if a power W is delivered to the 
antenna, an equal power is also supplied to the image. Hence, a total 
power 2W is furnished to the "end-fire array" consisting of the antenna 
and its image. 
Owing to the presence of the ground, the driving-point impedance of the 

To distant 
point P 

Direct 
wave 

An 
(Element 1) 

Phase r 

Image 
(Element 2) 

FIG. 11-19.  Antenna above ground with image showing direct and reflected waves. 

Reflected 
wave 

Ground 

antenna is, in general, different than its free-space value. Thus, the ap-
plied voltage at the antenna terminals is 

V, = I,Z,,  I,Z.  (11-86a) 

where I = the antenna current 
/2 = the image current 
Z„ = the self-impedance of the antenna 
Z. = the mutual impedance of the antenna and its image at a 

distance of 2h 
Since /2 = —I„ the driving- or feed-point impedance of the antenna is 

Z1 =  = Z, — Z. (11-86b) 

The real part of (11-86b) or driving-point radiation resistance is 

R, = R,, — R.  (11-86c) 

The variation of this resistance at the center of the 4-wavelength antenna 
is shown in Fig. 11-20 as a function of the antenna height h above the 

1 It is also possible to apply the method of images to the case of a ground of infinite 
extent but of finite conductivity a and of dielectric constant e by properly adjusting the 
relative magnitude and phase of the image current with respect to the antenna current. 



Sac. 11-7]  ARRAYS OF LINEAR ANTENNAS  305 

ground. As the height becomes very large, the effect of the image on the 
resistance decreases, the radiation resistance approaching its free-space 
value. 
Since the antenna and image have currents of equal magnitude but 

opposite phase, there is zero radiation in the horizontal plane, that is, in 
the direction for which the elevation angle a is zero (see Fig. 11-19). If the 
height h is wavelength or less, the maximum radiation is always in the 
vertical direction (a = 90°). For larger heights the maximum radiation 
is, in general, at some elevation angle between 0° and 90°. 
It is convenient to compare the horizontal i-wavelength antenna at a 
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Fie. 11-20. Driving- or feed-point resistance RI at the center of a horizontal i-wave-
length antenna as a function of its height above a perfectly conducting ground. 

height h above ground with respect to a i-wavelength antenna in free space 
with the same power input. At a large distance the gain in field intensity 
of the "Half-Wavelength antenna Above Ground" (H.W.A.G.) with re-
spect to the "Half-Wavelength antenna in Free Space" (H.W.F.S.) is 
given by 

,FH.WA.G R11 ± Ric   
R.  

21  L H .W.F.S1  RIL  12 sin (hr sin a) I  (11-87) 

where h, = (2711)0h 
RI, = self-resistance of i-wavelength antenna 
RIL = loss resistance of I-wavelength antenna 
R. = mutual resistance of i-wavelength antenna and its image at a 

distance of 24 
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Flo. 11-21.  Vertical-plane patterns of a horizontal 4-wavelength antenna at various 
heights h above a perfectly conducting ground as calculated from (11-87) for RIL = 0. 

Equation (11-87) gives the gain in the vertical plane normal to the an-
tenna as a function of a (see Fig. 11-21). 

The vertical-plane patterns of a 
horizontal 4-wavelength antenna are 

elevation angle a  shown in Fig. 11-21 for heights 
Horizontal  h = 0.1, 0.25, 0.5, and 1.0 wavelength. 
antenna 

The circular pattern is for a 4-wave-
length antenna in free space (that is, 
with the ground removed) with the 
same power input.  It is assumed 
that loss resistances are zero. 
It is also of interest to calculate the 

field pattern as a function of the azi-
muth angle ei) for a constant elevation 
angle a. The radius vector to the 
distant point P then sweeps out a 
cone as suggested in Fig. 11-22. To 
find this field pattern, let us first con-
sider the field pattern of a horizontal 
antenna in free space as in Fig. 
11-23. The x-y plane is horizontal. 

II 

Cone of constant 

Ground 

To point 

Ground 

Image antenna 

FIG. 11-22.  Horizontal antenna at height 
h above ground (x-y plane) showing azi-
muth angle ck and elevation angle a for 
a distant point P. 
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The field intensity at a large distance in the direction a, 0 is then given 
by the length OA between the origin and the point of intersection of a 
cone of elevation angle a and the surface of the three-dimensional doughnut 
field pattern of the antenna as suggested in Fig. 11-23. This length is 

Cross-section 
Through doughnut 
shaped field pattern 

Cone of constant 
elevation angle 

Horizontal 
antenna 

Re). 11-23.  Geometrical construction for finding the field intensity at a constant 
elevation angle a. 

obtained from the field-pattern formula of the antenna in free space by 
expressing the polar angle 0' from the antenna axis in terms of a and 0. 
For the spherical right triangle in Fig. 11-23 we have 

cos 0' = cos 0 cos a  (11-88a) 
or 

sin (1)' = VI — cos' 0 cos' a  (11-88b) 

Substituting these relations in the pattern formula, we get the field in-
tensity in the direction a, 0. For example, by substituting (11-88a) and 
(11-88b) into (5-84), noting that 0' in (11-88a) and (11-88b) equals 0 in 
(5-84), we obtain for the field of a i-wavelength horizontal antenna 

E(  ¢)  cos [(i/2) cos  cos a] (11-89) 
( a,  -   V1 — cos' 0 cos' a 

Then the relative field pattern of the horizontal 4-wavelength antenna in 
free space as a function of 0 at a fixed elevation angle a0 is given by 

cos [(r/2) cos 0 cos a.] 
E(0) —  (11-90) 

V1 — cos' 41 cos' a. 
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To obtain the field pattern of the antenna when situated at a height h 
above a perfectly conducting ground, we multiply the above free-space 
relations by the pattern of two isotropic point sources of equal amplitude 
but opposite phase. The sources are separated by a distance 2h along the 
z axis. From (4-10) the pattern of the isotropic sources becomes in the 
present case 

E,... = sin (h, sin a)  (11-91) 

where h, is the height of the antenna above ground in radians, that is, 

2Th 
h = — ,  x 

This pattern is independent of the azimuth angle 4). Multiplying the free-
space field pattern of any horizontal antenna by (11-91) yields the field 
pattern for the antenna above a perfectly conducting ground. Thus, for 
a horizontal 4-wavelength antenna above a perfectly conducting ground 
the three-dimensional field pattern as a function of both a and 4) is obtained 
by multiplying (11-89) and (11-91) which gives 

cos [(T/2) cos (i) cos a] . 
E —    sm (14 sin a)  (11-92) 

V1 — coe 4) cos2 a 

where h, = the height of the antenna above ground in radians 
As an example, the field patterns as a function of the azimuth angle 4) at 
elevation angles a = 10°, 20°, and 30° are presented in Fig. 11-24 as 

180' 

.0 

O• 

no. 11-24.  Azimuthal field patterns of horizontal i-wavelength antenna i wavelength 
above ground at elevation angles a ... 10°, 20°, and 30°. 
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calculated from (11-92) for a horizontal 4-wavelength antenna at a height 
of 4 wavelength (h, = w) above a perfectly conducting ground of infinite 
extent. The relative magnitudes of these patterns at (t) = 90° or 270° are 
seen to correspond to the field intensi-
ties at a = 10°, 20°, and 30° in the ver-

Half-wave 
tical-plane pattern of Fig. 11-21 for  elements 
h = 0.5X. It should be noted that the 
field is horizontally polarized at 4) = 90° 
or 270° and is vertically polarized at 
= 0° and 4, = 180°. At intermediate 

azimuth angles the field is linearly po-
larized at a slant angle. 
11-7b. Flat-top Beam Antenna Above 

Ground. In this section the case of 
two horizontal, closely spaced, out-of-
phase 4-wavelength elements or flat-
top beam antenna above a perfectly 
conducting ground is discussed. Re-  3 
ferring to Fig. 11-25, let the 4-wave-

length elements be at a height h above  FIG. 11-25. Flat-top beam antenna 
the ground and separated by a distance  above ground. 
d. The gain in field intensity of this 
antenna relative to a 4-wavelength antenna in free space with the same 
power input is given by' 

Gf(a) l-  A.A.G.  1   RI,  R1L 

LH.W.F.S1  \1  --1- 2(Rii RIL ± R14 -  R12 -  R13)  (11-93) 

I [1 — 1 /(d, cos   — 1 A 2h, sin a) 1 /(d, cos a -I- 2h, sin a)1 I 
where d, = spacing of elements in radians = 2wd/X 

h, = height of element above ground in radians = 2wh/X 
R. = self-resistance of a single element 
R,L = loss resistance of a single element 
R. = mutual resistance of elements 1 and 2 
R13 =  mutual resistance of elements 1 and 3, etc. 

where the elements are numbered as in Fig. 11-25. The gain in (11-93) is 
expressed as a function of a in the vertical plane normal to the elements. 
Polar plots calculated by (11-93) for the gain in field intensity of a 

flat-top beam antenna consisting of two 4-wavelength elements spaced 

I J. D. Kraus, Antenna Arrays with Closely Spaced Elements, Proc. I.R.E., 28, 
76-84, February, 1940. 
• The symbols in the brackets are by way of explanation that the gain in field intensity 

is for the "Array Above Ground with respect to a Half-Wavelength (antenna in) Free. 
Space." 

Ground 

Image 
elements 
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Gain in field intensity 
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Gain in field intensity 
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Pm. 11-26.  Vertical-plane patterns (solid curves) of two-element flat-top beam 
antenna with [ wavelength spacing at heights of [ and I wavelength above ground. 
The patterns are plotted relative to a [-wavelength antenna in free space with the same 
power input. The vertical plane patterns of a single [-wavelength antenna at the same 
heights above ground and with the same power input are shown for comparison by the 
dashed curves. The left-hand quadrants of the vertical planes are omitted. 
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FIG. 11-27.  Gain in field intensity of two-element flat-top beam antenna with [ 
wavelength spacing (solid curves) and of a single [-wavelength antenna (dashed curves) 
as a function of the height above a perfectly conducting ground. Gains are relative to 
a single [-wavelength antenna in free space with the same power input. Curves are given 
for elevation angles a = 5°, 15°, and 30°. 
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wavelength apart are presented by the solid curves in Fig. 11-26 for 
antenna heights of 4 and  4 wavelength above ground. Patterns of a 
single 4-wavelength antenna at the same heights above ground and with 
the same power input are shown for comparison (dashed curves). The 
gain in field intensity is expressed relative to a 4-wavelength antenna in 
free space with the same power input. 
In Fig. 11-27 the gain is given as a function of height above ground for 

several elevation angles. Curves are shown for both a two-element flat-top 
beam and a single horizontal 4-wavelength antenna. It is assumed that 
loss resistances are zero. If for example, the effective elevation angle at a 
particular time on a certain short-wave circuit (transmission via iono-
spheric reflections) is 30°, we note from Fig. 11-27 that the optimum 

To distant 
point P 

Ft°. 11-28. Tilted flat-top beam antenna. 

Gain in field intensity 

Flo. 11-29. Vertical-plane patterns for horizontal two-element fiat-top beam antenna 
with  wavelength spacing at an average height of  wavelength above ground for tilt 
angles 7 mi. 0°, 30°, 45°, and 90°. Patterns give gain in field intensity over a single 
4-wavelength antenna in free space with the same power input. 



312 ANTENNAS [CHAP. 11 

height for a two-element flat-top beam is 0.5 wavelength. For a single 
i-wavelength antenna the optimum height is about 0.57 wavelength. 

0  1  2 
Gain in field intensity 

Pm. 11-30. Same as for Fig. 11-29 but with array elements at average height of I 
wavelength above ground. 

It is interesting to consider the effect of tilting the plane of the flat-top 
beam elements by an angle -y as in Fig. 11-28. Results calculated by an 

extension of the above analysis are 

,T cit illustrated in Figs. 11-29 and 11-30 
for two-element arrays at average 
heights of and  above a perfectly 

Stacked 
elements  )1h  1  shown for tilt angles -y = 0°, 30°, 45° 

i  I 
conducting ground.'  Patterns are 

21  h  and 90°. In all cases the effect of the 
tilt is to increase the field intensity 
at large elevation angles and to de-

Gr., nd  crease it at small angles. 
11-7c. Stacked Horizontal i-Wave-

length Antennas Above Ground. Con-

Image 

I  Bider the case of two horizontal I-
wavelength elements stacked in a 

4 i   

elements  vertical plane above a perfectly con-
ducting ground of infinite extent. 
The elements have equal in-phase 

Flo. 11-31. Array of stacked horizontal  currents. The arrangement of the 
elements and their images is shown 
in Fig. 11-31. The height of the up-

per element above ground is h. Let the spacing between elements be i 
wavelength so that the height of the lower element above ground is h — X/2. 

1J. D. Kraus, Characteristics of Antennas with Closely Spaced Elements, Radio, 9-19, 
February, 1939. 

4-wavelength elements. 
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The gain in field intensity of this array over a single i-wavelength antenna 
in free space with the same power input is 

,F  A A .G .  1  I Roo -I- ROL   
GI(Ct )L H. W. F.S 1  R1L ± R12 — R13) — R23 — R14 

• 2 I {sin (h,. sin a) + sin Kh, — r) sin all I (11-94) 

where R12 is the mutual resistance between elements 1 and 2, Rlo the mutual 
resistance between elements 1 and 3, etc. The elements are numbered as 
in Fig. 11-31. This expression gives the gain as a function of h and of the 
elevation angle a in the vertical plane normal to the plane of the elements. 
As an example, the gain in field intensity for two stacked in-phase hori-
zontal i-wavelength elements over a free-space I-wavelength antenna 
with the same power input is presented in Fig. 11-32 as a function of the 
height h above ground, for an elevation angle a = 20°. The gains at 

3.5 

3.0 

2.5 

.0 

0.5 

0 
0  05  I 0 

Height h above ground in wavelengths 

Fm. 11-32. Gain in field intensity of array of two stacked horizontal 4-wavelength 
elements as a function of the height of the upper element for an elevation angle of 20°. 
The elements are stacked 4 wavelength apart. The gain is relative to a single 4-wave-
length antenna in free space with the same power input. Gains of a two-element flat-
top beam antenna and single 4-wavelength antenna as a function of the height above 
ground are also shown for comparison at the same elevation angle. 
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a = 20° for a two-element flat-top beam antenna and a single horizontal 
i-wavelength antenna are also shown as a function of height for com-
parison. 
In practice it is common to compare a directional array such as we have 

been discussing to a horizontal I-wavelength antenna with the same power 
input and at the same height above ground (or at the average height of 
the array). Thus, the gain as a function of a in the vertical plane for a 
horizontal flat-top beam antenna at a height h above ground with respect 
to a single i-wavelength reference antenna at the same height is found by 
taking the ratio of Eq. (11-93) to Eq. (11-87). 

11-8. Vertical Antennas Above a 
Plane Ground. Consider a vertical 

Current To distant  distribution  point p  stub antenna of length 1 above a 
plane horizontal ground of infinite 
conductivity as in Fig. 11-33. By 
the method of images the ground 
may be replaced by an image an-

' tenna of length 1 with sinusoidal cur-
rent distribution and instantaneous 

1 A  current direction as indicated. The 
problem of the stub antenna above 
ground then reduces to the problem 
already treated in Chap. 5 of a lin-

fia. 11-33. Vertical stub antenna above  ear center-fed antenna with sym-
a ground plane.  metrical current distribution. The 

electric field intensity as a function 
of the elevation angle a and distance r may be derived from (5-81) obtaining 

,-Vertical stub antenna 

N"-Image antenna 

60 j  cos (/, sin a) — cos /, 
E(a,  —  (11-95) 

r  RiL  cos a 

where 1, = 131 = (2w/X)1 
Ri, = self-resistance of a vertical stub antenna of length lreferred to the 

point of current maximum 
RIL = effective loss resistance of antenna referred to same point 
W = power input 

The field intensity E(a, r) is in volts per meter if r is in meters, W in 
watts, and R11 and RI L in ohms. 
Values of the self-resistance referred to the current loop of a vertical 

stub antenna above a perfectly conducting ground have been given by 
Brown' and by Labus.2 These values are presented as a function of 

1 G. H. Brown, A Critical Study of the Characteristics of Broadcast Antennas as 
Affected by Antenna Current Distribution, Proc. I.R.E., 24, 48-81, January, 1936. 

2 J. Labus, Rechnerische Ermittlung der Impedanz von Antennen, Hochfrequenz-
technik und Electroakustik, 41, 17-23, January, 1933. 
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antenna length in Fig. 11-34. Using these values of self-resistance, or 
radiation resistance, the field intensity of a vertical stub antenna of any 
length 1 and power input W can be calculated by (11-95) at any elevation 
angle a and distance r. Thus, the field intensity by (11-95) along the 
ground (« = 0) for a 1-wavelength vertical antenna (1, = r/2) with a power 
input of 1 watt (W = 1) at a distance of 1 mile (r = 1,609 meters) is 

140 
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g 90 .c 
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.= cc 
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0  01  02  03  04  05  06  07  08  09  I 0 

Antenna height tin wavelengths 

Fm. 11-34.  Radiation resistance at the current loop of a thin vertical antenna as a 
function of the height 1 of the antenna. (After Brown and Lana.) 

6.5 millivolts/meter. The value of R,, for a 1-wavelength stub antenna is 
36.5 ohms, and R, 1, is assumed to be zero. 
Vertical stub antennas, singly or in directional arrays, are very widely 

used for broadcasting. In this application the field intensity along the 
ground (a = 0) is of particular interest. It is also customary to compare 
field intensities at some standard distance, say 1 mile, and for some 
standard input such as 1 kilowatt. For this case (11-95) reduces to 

1.18(1 — cos  
E —  volts/meter  (11-96) 

vR11  R1L 
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where E is the field intensity 
a power input of 1 kilowatt. 
presented in Fig. 11-35 as a 

300   intensity along the ground but as 
pointed out by Brown' the large 
high-angle radiation for this length 
reduces the nonfading range at broad-
cast frequencies (500 to 1,500 kc) as 
compared for example with an an-
tenna about wavelength long. The 
nonfading range is largest for an an-
tenna height of 0.528X. The verti-
cal-plane patterns calculated by 
(11-95) as a function of the elevation 
angle a for vertical antennas of vari-
ous heights are presented in Fig. 
11-36.1'2 It is assumed that the loss 
resistance RIL = 0, that is, the en-
tire input to the antenna is radiated. 
The small amount of high-angle radi-
ation, which is an important factor 
in reducing fading, is apparent for 
the 1= 0.528 X antenna as compared 
to other lengths. 
The analysis of arrays of several 

vertical stub antennas can be reduced 
in a similar fashion to arrays of sym-
metrical center-fed antennas. Many 
of these have been treated in previ-

ous sections. In this case it is often convenient to compare the pattern and 
refer the gain to a single vertical stub antenna with the same power input. 
The situation of a symmetrical center-fed vertical antenna with its lower 
end some distance above the ground can also be treated by the method of 
images. In this case the antenna is reduced to a collinear array. 
For the case of a linear array of vertical elements of equal height and 

of the same current distribution, the pattern E(4)) as a function of the 
azimuth angle  at a constant elevation angle a is given by 

ANTENNAS [CHAP. 11 

along the ground at a distance of 1 mile for 
The variation of E as given by (11-95) is 
function of antenna length.' 2 A length of 

about 0.64 X yields the greatest field 

E 250   

200  Ftc. 0   

o. 

-75" 150  t  

00  02  04  06 08  10 

Height lot antenna in wavelengths 

FIG. 11-35.  Field intensity at the ground 
(zero elevation angle) at a distance of 1 
mile from a vertical anten.na with 1 kilo-
watt input as a function of its height /. 
Perfectly conducting ground is assumed. 
The solid curve is for an assumed loss 
resistance RL = 0 and the dashed curve 
for 14,  1 ohm. 

E(0) = Ei...(') X El  (11-97a) 
I See G. H. Brown, A Critical Study of the Characteristics of Broadcast Antennas as 

Affected by Antenna Current Distribution, Proc. I.R.E., 25, 78-145, January, 1937. 
C. E. Smith, "Directional Antennas," Cleveland Institute of Radio Electronics, 

Cleveland, Ohio, 1946. 
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where Ei...(') = relative pattern of array of isotropic point sources used 
to replace elements 

E, = relative field intensity of a single vertical element at the 
elevation angle a 

The angle O' in the pattern formula of the array of isotropic sources is the 

Vertical 
antenna) 

1 XPI Ground  ci   

a=90* ct=90° 

08011=Q528X 

(19 on 

60* 
1=0.75X 
(2701 

1=1.0X 
(3601 

1=0.64X 
(2301 

o  ioo  ' 200 tt..... 3000 o  too  f 200  0 
Field intensity in f  Field intensity in 162 I i 276 
millivolts per meter 195 236 246  millivolts per meter 
ot one mile 

(a)  (b) 

at one mile  226 241 

(c) 
Fm. 11-36.  Vertical-plane field patterns of vertical antennas for several values of 
antenna height /. The field intensity is expressed in millivolts per meter at a distance 
of 1 mile for 1 kilowatt input. Perfectly conducting ground and zero loss resistance 
are assumed. 

angle with respect to the array axis or x axis in Fig. 11-37a. Before in-
serting this formula into (11-97a) it is necessary to express ct.' in terms of 

Linear 
array 

Array axis 

(a) 

Vertical 

(b) 

Fio. 11-37.  Geometrical construction for finding field intensity of a linear array of 
vertical elements at a constant elevation angle a. 

the azimuth angle  and elevation angle a (Fig. 11-37a). This is done by 
the substitutions 

(11-970 
and 

sin g6' --= N/1 — cos24) cos2 a  (11-97c) 

If the relative field intensity formula E, of a single vertical element is 

cos  = cos ci6 cos a 
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given in terms of the polar angle 0, the elevation angle a is introduced by 
means of the substitution 0 = 90° — a, since, as indicated in Fig. 11-37b, 
0 and a are complementary angles. 

11-9. Arrays with Parasitic Elements. 
In the above sections it has been assumed 
that all the array elements are driven, 
that is, all are supplied with power by 

-1 J1 means of a transmission line.  Direc- 
1; 
I  tional arrays can also be constructed 

with the aid of elements in which cur-
rents are induced by the fields of a driven 
element. Such elements have no trans-

/ I  2  Parasitic element 
mission-line connection to the trans-

Driven 
element  mitter and are usually referred to as 

"parasitic elements." 
Let us consider the case of an array in 

Fm. 11-38.  Array with one driven  free space consisting of one driven 
element and one parasitic element.  4-wavelength element (element 1) and 

one parasitic element (element 2) as 
in Fig. 11-38. The procedure follows that used by Brown.' Suppose that 
both elements are vertical so that the azimuth angle 4) is as indicated. The 
circuit relations for the elements are 

= /1Z11  12Z12 

0 = /2Z22  /1Z12 

From (11-98b) the current in element 2 is 

(11-98a) 

(11-98b) 

12 = _11 Zi2 = —I  I Z12 I Z ai. / Z12  / /.2 (11-99a) 
Z22  I Z22 I /72 I Z22  — 

or 

12 = I, 

where E = 7 +  r, — 12, in which 
X12 T. = arctan R— 
12 

X22 72 = arctan 
11,22 

where R12 + jX12 = Z12 = mutual impedance of elements 1 and 2 
R22 + jX22 = Z22 = self-impedance of the parasitic element 

The electric field intensity at a large distance from the array as a function 
of 4) is 

Z22 
(11-99b) 

1 G. H. Brown, Directional Antennas, Proc. I.R.E., 25, 78-145, January, 1937. 
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E(0) =  + I2 / +d, cos 0) (11-100) 

where d, =  =  d 

Substituting (11-99b) for /2 in (11-100) 

E(0) = k11(1 -I- Fl A  d, cos 0) (11-101) 

Solving (11-98a) and (11-98b) for the driving-point impedance Z, of the 
driven element, we get 

The real part of Z, is 

7 4 2  7  I 4 2 I /2r„, 
=  7 

G22 I Z.,7 22 I / 72 

=  R11 
Z!2 
z22 

(11-102) 

cos (2r„, — r2)  (11-103) 

Adding a term for the effective loss resistance if any is present, we have 

R, =-- Ri,  — 
Zf2 
z22 

cos (2r„, — r2) 

For a power input W to the driven element 

(11-104) 

,  Nr117   W   
=  — 

R,  NIR „ -I- Riz. — I 42/Z22 I cos (27.. — T2)  (11-105) 

and substituting (11-105) for I, in (11-101) yields the electric field in-
tensity at a large distance from the array as a function of O. Thus, 

KO) =  - I Z,/Z22 I cos (27„, — 
[i ± Z12 A  d, cos (d (11-106) 

Z22 

For a power input W to a single vertical 1-wavelength element the electric 
field intensity at the same distance is 

En.w .() = k10 kJft   (11-107) 
-r noz, 

where Roo = self-resistance of single 4-wavelength element 
Roy =  loss resistance of single 4-wavelength element 

The gain in field intensity (as a function of 0) of the array with respect 
to a single 4-wavelength antenna with the same power input is the ratio 
of (11-106) to (11-107). Since Roo = RI, and letting Roy =  Riy, we have 

GAOLHATJ  Rir, 
± RIL 

I 42/Z22 I cos (2r., — 72) 

• (1 + -11,7 A  d,. cos (k) (11-108) 
Z/22 
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If Z22 is made very large by detuning the parasitic element (that is, by 
making X 22 large), Eq. (11-108) reduces to unity, that is to say, the field of 
the array becomes the same as the single 4-wavelength comparison antenna. 
By means of a relation equivalent to (11-108), Brown' has analyzed 

the array with a single parasitic element for various values of parasitic 
element reactance (X„) and was the first to point out that spacings of 
less than  wavelength were desirable. 
The magnitude of the current in the parasitic element and its phase 

relation to the current in the driven element depends on its tuning. The 
parasitic element may have a fixed length of 4 wavelength, the tuning 

being accomplished by inserting a lumped 

maximum  reactance in series with the antenna at its 
center point. Alternatively the parasitic 
element may be continuous and the tun-
ing accomplished by adjusting the length. roMotion 

Direct :- This method is often simpler in practice 
but is more difficult of analysis. By chang-
ing the tuning of the parasitic element, 

Reflector Driven element  it can act as a reflector sending the maxi-
FIG. 11-39. Three-element array.  mum radiation in the  = 180° direction 

(Fig. 11-38) or as a director sending the 
maximum radiation in the  = 0° direction. 
Antenna arrays may also be constructed with more than one parasitic 

element.  A common arrangement uses one driven element and two 
parasitic elements and is usually referred to as a three-element array. An 
array of this type is shown in Fig. 11-39, one parasitic element acting as a 
reflector and the other as a director. The analysis for the three-element 
array is more complex than for the two-element type treated above. 
Experimentally measured field patterns of a horizontal three-element array 
situated 1 wavelength above a square horizontal ground plane about 13 
wavelengths on a side are presented in Fig. 11-40. The element lengths 
and spacings are as indicated. The gain at a = 15° for this array at a 
height of 1 wavelength is about 5 db with respect to a single 4-wavelength 
dipole antenna at the same height.2 The vertical plane pattern is shown 
in Fig. 11-40a. It is interesting to note that because of the finite size of 
the ground plane there is radiation at negative elevation angles. This 
phenomenon is characteristic of antennas with finite ground planes, the 
radiation at negative angles being largely the result of currents on the 

1 G. H. Brown, Directional Antennas, Proc. I.R.E., 25, 78-145, January, 1937. 
2 Note that it is necessary to specify both the height and elevation angle at which the 

comparison is made. In comparing one antenna with another, the gain as a function of 
elevation angle at a given height or as a function of height at a given elevation angle 
may, in general, range from zero to infinity. 
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edges of the ground planes or beneath it. The azimuthal patterns at 
elevation angles a = 10°, 15°, and 20° are shown in Fig. 11406. A parasitic 
array of this type with closely spaced elements has a small driving-point 
radiation resistance and a relatively narrow band width. 
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FIG. 11-40.  Measured vertical plane pattern (a) and horizontal plane patterns (b) 
at three elevation angles for a three-element array located 1 wavelength above a large 
ground plane.  (Patterns by D. C. Cleckner, Antenna Laboratory, The Ohio State Uni-

versity.) 

Arrays may be constructed with larger numbers of parasitic elements 
although customarily with larger spacings between elements. For example, 
Yagil has built arrays with a number of parasitic director elements ar-
ranged in a row in front of the driven element. He also used one or more 
parasitic reflector elements with such arrays. 

III. Yagi, Beam Transmission of Ultra-short Waves, Proc. I.R.E., 18, 715-740, 

June, 1928. 
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11-1. a. Calculate and plot the gain of a broadside array of two side-by-side 
4-wavelength elements in free space as a function of the spacing d for 
values of d from 0 to 2 wavelengths. Express the gain with respect to a 
single 4-wavelength element. Assume all elements are 100 per cent 
efficient. 

b. What spacing results in the largest gain? 
c. Calculate and plot the radiation-field patterns for 4 wavelength spacing. 
Show also the patterns of the 4 wavelength reference antenna to the 
proper relative scale. 

11-2. A two-element end-fire array in free space consists of two vertical side-by-
side 4-wavelength elements with equal out-of-phase currents. At what angles in 
the horizontal plane is the gain equal to unity? 

a. When the spacing is 4 wavelength? 
b. When the spacing is wavelength? 

11-3. Calculate and plot the field and phase patterns of the far field for an array 
of two vertical side-by-side 4-wavelength elements in free space with  wavelength 
spacing when the elements are 

a. in phase and 
b. 180° out of phase. 

For the in-phase case show the patterns in both the y-z or vertical plane and x-y 
or horizontal plane of Fig. 11-2a. For the out-of-phase case show the patterns in 
both the x-z or vertical plane and x-y or horizontal plane of Fig. 11-7a. 
11-4. Calculate the vertical and horizontal plane free-space field patterns of a 

flat-top beam antenna consisting of two horizontal out-of-phase 4-wavelength 
elements spaced 4 wavelength. Assume a loss resistance of 1 ohm and show the 
relative patterns of a 4-wavelength reference antenna with the same power input. 
11-5. Confirm Eqs. (11-85) and (11-93). 
11-6. a. Consider two 4-wavelength side-by-side vertical elements spaced a 

distance d with currents related by 12 = a/, /O. Develop the gain ex-
pression in a plane parallel to the elements and the gain expression in a 
plane normal to the elements, taking a vertical 4-wavelength element 
with the same power input as reference (0 < a < 1). Check that 
these reduce to (11-69) and (11-67) when a = 1. 

b. Plot the field patterns in both planes, and show also the field pattern of 
the reference antenna in proper relative proportion for the case where 
d = X/4, a = 4, and (5 = 120°. 

11-7. a. Calculate the driving-point impedance at the center of each element of 
an in-phase broadside array of six side-by-side 4-wavelength elements 
spaced 4 wavelength apart. The currents have a Dolph-Tchebyscheff 
distribution such that the minor lobes have 4 the field intensity of the 
major lobe. 

b. Design a feed system for the array. 
11-8. a. Develop Eq. (11-94). 

b. Calculate and plot from (11-94) the gain in field intensity for an array 
of two in-phase horizontal 4-wavelength elements stacked 4 wavelength 
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apart (as in Fig. 11-31) over a 4-wavelength antenna in free space with 
the same power input as a function of h up to h = 1.5 X for an elevation 
angle a = 10°. Also calculate and plot for comparison on the same 
graph the gains at a = 10° for a two-element horizontal flat-top beam 
antenna and for a single horizontal 4-wavelength antenna as a function 
of the height above ground from h = 0 to h = 1.5 X. Note difference of 
these curves and those for a = 20° in Fig. 11-32. 

11-9. A broadcast-station antenna array consists of two vertical I-wavelength 
towers spaced  wavelength apart. The currents are equal in magnitude and in 
phase quadrature. Assume a perfectly conducting ground and zero loss resistance. 
Calculate and plot the azimuthal field pattern in millivolts (rms) per meter at 1 mile 
with 1 kilowatt input for vertical elevation angles a = 0°, 20°, 40°, 60°, and 80°. 
The towers are series fed at the base. Assume that the towers are infinitesimally 
thin. 
11-10. Calculate and plot the relative field pattern in the vertical plane through 

the axis of the two-tower broadcast array fulfilling the requirements of Prob. 19, 
Chap. 4, if the towers are I-wavelength high and are series fed at the base. Assume 
that the towers are infinitesimally thin and that the ground is perfectly conducting. 
11-11. Calculate and plot the relative field pattern in the vertical plane through 

the axis of the three-tower broadcast array fulfilling the requirements of Prob. 20, 
Chap. 4, if the towers are wavelength high and are series fed at the base. Assume 
that the towers are infinitesimally thin and that the ground is perfectly conducting. 
11-12. Design a broadcast-station antenna array of two vertical base-fed towers 

I-wavelength high and spaced 1 wavelength which produces a broad maximum of 
field intensity to the north in the horizontal plane and a null at an elevation angle 
a = 30° and azimuth angle 4) = 135° measured ccw from north. Assume that the 
towers are infinitesimally thin, that the ground is perfectly conducting, and that the 
base currents of the two towers are equal. Specify the orientation and phasing of 
the towers. Calculate and plot the azimuthal field pattern at a = 0° and a = 30° 
and also the pattern in the vertical plane through 4) = 135°. Suggested procedure: 
Solve (11-97b) for 0' at the null. Then set ct, in the pattern factor in (11-67) equal 
WO' and solve for the value of b which makes the pattern factor zero. The relative 
field intensity at any angle (0, a) is then given by (11-68) where sin 0 = cos 01 = 
cos a cos 4) in the first pattern factor and 0 = 90° — a in the second pattern factor. 
11-13. Design a broadcast-station array of two vertical base-fed towers i-wave-

length high that produces a broad maximum of field intensity to the north in the 
horizontal plane and a null at all vertical angles to the west. Assume that the 
towers are infinitesimally thin and that the ground is perfectly conducting. Specify 
the spacing, orientation, and phasing of the towers. Calculate and plot the azi-
muthal relative field patterns at elevation angles of a = 0°, 30°, and 60°. 
11-14. Two, thin center-fed 4-wavelength antennas are driven in phase opposi-

tion. Assume that the current distributions are sinusoidal. If the antennas are 
parallel and spaced 0.2 wavelength, 

a. Calculate the mutual impedance of the antennas. 
b. Calculate the gain of the array in free space over one of the antennas 
alone. 



CHAPTER 12 

REFLECTOR-TYPE ANTENNAS 

12-1. Introduction. Reflectors are widely used to modify the radiation 
pattern of a radiating element. For example, the backward radiation from 
an antenna may be eliminated with a plane sheet reflector. In the more 
general case, a beam of predetermined characteristics may be produced 
by means of a large, suitably shaped, and illuminated reflector surface. 
The characteristics of antennas with sheet reflectors or their equivalent 
are considered in this chapter. 
A number of reflector types are illustrated in Fig. 12-1. The arrange-

ment in Fig. 12-la has a large, flat sheet reflector near a linear dipole 
antenna to reduce the backward radiation (to the left in the figure). With 
small spacings between antenna and sheet this arrangement also yields a 
substantial gain in the forward radiation. This case has been discussed in 
Sec. 11-7a with the ground acting as the flat sheet reflector. The desirable 
properties of the sheet reflector may be largely preserved with the reflector 
reduced in size as in Fig. 12-lb and even in the limiting case of Fig. 12-1c. 
Here the sheet has degenerated into a thin reflector element. Whereas the 
properties of the large sheet are relatively insensitive to small frequency 
changes, the thin reflector element may be highly sensitive to frequency. 
The case of a I-wavelength antenna with parasitic reflector element was 
treated in Sec. 11-9. 
With two flat sheets intersecting at an angle or corner as in Fig. 12-1d, 

a sharper radiation pattern can be obtained. This arrangement, called a 
corner-reflector antenna, is most practical where apertures of 1 or 2 wave-
lengths are of convenient size.  A corner reflector without an exciting 
antenna can be used as a passive reflector or target for radar waves. In 
this application the aperture may be many wavelengths, and the corner 
angle is always 90°. Reflectors with this angle have the property that an 
incident wave is reflected back toward its source as in Fig. 12-1e. 
When it is convenient to build antennas with apertures of many wave-

lengths, parabolic reflectors can be used to provide highly directional 
antennas.  A parabolic reflector antenna is shown in Fig. 12-1f.  The 
parabola reflects the waves originating from a source at the focus into a 
parallel beam.  Many other shapes of reflectors can be employed for 
special applications.  For instance, with an antenna at one focus, the 

324 
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ellipse reflector (Fig. 12-1g) produces a diverging beam with all reflected 
waves passing through the second focus of the ellipse.  Examples of 
reflectors of other shapes are the hyperbolic' and the circular reflectors' 
shown in Figs. 12-1h and i. 

Large flat o f  
sheet  / Reflector 

element 
sheet  Small flat 

Elliptical 
reflector 

(a) 

Corner 
reflector 
antenna 

Aperture 

Driven 
element 

(d) 

Driven element 

Ellipse 

(9) 

(b) 

Passive 
corner 
reflector 

Aperture 

(e) 

61 (  

(c) 

Parabolic 
reflector 

F:)riven element  at focus 

Aperture 

Hyperbolic 
reflector  Circular 

\%  reflector 

-- Driven  Driven 

(f) 

element  element 

I 

(h) 

FIG. 12-1.  Reflectors of various shapes. 

The plane sheet reflector, the corner reflector, and the parabolic reflector 
are discussed in more detail in the following sections. 
12-2. Plane Sheet Reflector. The problem of an antenna at a distance S 

from a perfectly conducting plane sheet reflector of infinite extent is 

1 Chap. 6 by G. Stevie and A. Dome, "Very High Frequency Techniques," Radio 
Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947. 

Ashmead and A. B. Pippard, The Use of Spherical Reflectors as Microwave 
Scanning Aerials, J.I.E.E. (London), 93, Part IIIA, No. 4, 627-632, 1946. 
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readily handled by the method of images.' In this method the reflector is 
replaced by an image of the antenna at a distance 28 from the antenna as 
in Fig. 12-2. This situation is identical with the one considered in Sec. 

11-7, for a horizontal antenna above ground. If 
Flat  ecto  sheet the antenna is a I-wavelength dipole this in turn refl r 

reduces to the problem of the two-element flat-top 
beam antenna discussed in Sec. 11-5. Assuming 
zero reflector losses, the gain in field intensity of a 
I-wavelength dipole antenna at a distance S from 

Image  Antenna  an infinite plane reflector is from (11-79), 
O--S--'---- S 

G,(0) —  iiiii R±"R±,R R̀i2  I sin (8, cos (1))  (12-1) 

where S. = 2ir —X 

FIG. 12-2.  Antenna The gain in (12-1) is expressed relative to a I-wave-
with flat sheet reflector,  length antenna in free space with the same power 

input. The field patterns of I-wavelength antennas 
at distances S = X/4, X/8, and X/16 from the flat sheet reflector are 
shown in Fig. 12-3. These patterns are calculated from (12-1) for the 
case where RL = 0. 

Half-ware 
antenna m 
free space 

Flat sheet reflector 

Antenna 14. Antenno 
le...Antenna 

414- 4 

F . 12-3.  Patterns of 1-wave ength antenna at spacings of 1, 1, and ie wavelengths 
from infinite flat sheet reflector. Patterns give gain in field intensity over 1-wavelength 
antenna in free space with same power input. 

1 See, for example, G. H. Brown, Directional Antennas, Proc. I.R.E., 25, 122, January, 
1937. 
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FIG. 12-5. 

are calculated from (12-1) for  = 0. It is apparent that very small 
spacings can be used effectively provided that losses are negligible. How-

Fl  h  ever, the band width is narrow for 
at seet 
reflector  small spacings as discussed in Sec. 11-5. 

With wide spacings the gain is less, but 
the band width is larger. Assuming an 
antenna loss resistance of 1 ohm, a 
spacing of 0.125 X yields the maximum 
gain. For S = 0.25 X, the gain is about 

Beam  1.3 db less. 
A large flat sheet reflector can con-

vert a bidirectional antenna array into 
a unidirectional system. An example 
is shown in Fig. 12-5. Here a broad-
side array of 16 in-phase 4-wavelength 
elements spaced 4 wavelength apart is 
backed up by a large sheet reflector so 
that a unidirectional beam is produced. 
The feed system for the array is indi-

ments with flat sheet reflector (bill-
cated, equal in-phase voltages being 
applied at the two pairs of terminals 

F-F. If the edges of the sheet extend some distance beyond the array, 
the assumption that the ground plane is infinite in extent is a good first 
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The gain as a function of the spacing S is presented in Fig. 12-4 for 
assumed antenna loss resistances RL = 0, 1, and 5 ohms. These curves 
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0.5 

Flat sheet 
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4-s441 
'Half-wave 
antenna 

ilitw5ohms 

oo 
0 I  02  03  04  05 

Spacing Sin wavelengths 

FIG. 12-4.  Gain in field intensity of 4-wavelength dipole antenna at distance S from 
flat sheet reflector. Gain is relative to 4-wavelength dipole antenna in free space with 
the same power input. Gain is in direction  = 0 and is shown for an assumed loss 
resistance RL = 0, 1, and 5 ohms. 

Array of 4-wavelength ele-

board or mattress antenna). 

06 07 
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approximation. The choice of the spacing S between the array and the 
sheet usually involves a compromise between gain and band width. If a 
spacing of 4 wavelength is used, the radiation resistance of the elements 
of a large array remains about the same as with no reflector present.' 
This spacing also has the advantage over wider spacings of reduced inter-
action between elements. On the other hand, a spacing such as 4 wave-
length provides a greater band width, and the precise value of S is less 
critical in its effect on the element impedance. 
12-3. Corner-reflector Antenna.2 Two flat reflecting sheets intersecting 

at an angle or corner as in Fig. 12-6 
Corner  form an effective directional antenna. 
reflector 

When the corner angle a = 90°, the 
Transmission  Driven  sheets intersect at right angles form-

Ime  antenna 

ing a square corner reflector. Corner 
Beam  angles both greater or less than 90° 

can be used although there are prac-
tical disadvantages to angles much 
less than 90°. A corner reflector with 
a = 180° is equivalent to a flat sheet 
reflector and may be considered as a 

limiting case of the corner reflector. This case has been treated in Sec. 12-2. 
Assuming perfectly conducting reflecting sheets of infinite extent, the 

method of images can be applied to analyze the corner-reflector antenna 
for angles a = 180°/n, where n is any positive integer. This method of 
handling corners is well-known in electrostatics.' Corner angles of 180° 
(flat sheet), 90°, 60°, etc. can be treated in this way. Corner reflectors 
of intermediate angle can not be determined by this method but can be 
interpolated approximately from the others. 
In the analysis of the 90° corner reflector there are three image elements 

2, 3, and 4 located as shown in Fig. 12-7a. The driven antenna 1 and 
the three images have currents of equal magnitude. The phase of the 
currents in 1 and 4 is the same. The phase of the currents in 2 and 3 is 
the same but 180° out of phase with respect to the currents in 1 and 4. 
All elements are assumed to be 4 wavelength long. 
At the point P at a large distance D from the antenna, the field intensity is 

Fm. 12-6.  Corner-reflector antenna. 

E(0) = 2k11 I [cos (S, cos cb) — cos (S, sin OA I  (12-2) 

H. A. Wheeler, The Radiation Resistance of an Antenna in an Infinite Array or 
Waveguide, Proc. I.R.E., 36, 478-487, April, 1948. 

I J. D. Kraus, The Corner Reflector Antenna, Proc. I.R.E., 28, 513-519, November, 
1940. 

3 See, for example, Sir James Jeans, "Mathematical Theory of Electricity and Mag-
netism," Cambridge University Press, London, 5th ed., p. 188. 
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(a)  (b) 

Flo. 12-7. Square corner reflector with images used in analysis (a) and four-lobed 
pattern of driven element and images (b). 

where I, = current in each element 
S, = spacing of each element from the corner in radians 
= 2T(S/X) 

k = constant involving the distance D, etc. 
The emf V1 at the terminals at the center of the driven element is 

= ',Zit +  IiZi4 — 211Z1,  (12-3) 

where Zi = self-impedance of driven element 
R1L = equivalent loss resistance of driven element 
Z1, = mutual impedance of elements 1 and 2 
Z„ = mutual impedance of elements 1 and 4 

Similar expressions can be written for the emfs at the terminals of each 
of the images. Then if W is the power delivered to the driven element 
(power to each image element is also W), we have from symmetry that 

—    
Ri4 — 2R12 

Substituting (12-4) in (12-2) yields 

(12-4) 

E(42) = 2k NIR  R1L -I- R14  2 R12 

• [COS (S, COS CO  CO8 (S, sin y6)] I (12-5) 

The field intensity at the point P at a distance D from the driven 4-
wavelength element with the reflector removed is 

E ) = k  , n, 
'V ail  ILIL 

(12-6) 

where k = the same constant as in (12-2) and (12-5) 
This is the relation for field intensity of a 4-wavelength dipole antenna 
in free space with a power input W and provides a convenient reference 
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for the corner-reflector antenna.  Thus, dividing (12-5) by (12-6), we 
obtain the gain in field intensity of a square corner reflector antenna over 
a single i-wavelength antenna in free space with the same power input, or 

G M — EH. w.(0) — 2 \1Rii + RIL + R14 — 2R12 
E(4))  RI, ± RIL   

• I [COS (S, COS CO —  COS (S, sin 41))] I (12-7) 

where the expression in brackets is the pattern factor and the expression 
included under the radical sign is the coupling factor. The pattern shape 
is a function of both the angle 4, and the antenna-to-corner spacing S. 
The pattern calculated by (12-7) has four lobes as shown in Fig. 12-7b. 
However, only one of the lobes is real. 

Expressions for the gain in field in-
tensity of corner reflectors with cor-
ner angles of 60°, 45°, etc. can be ob-
tained in a similar manner. For the 

0   6 o  60  • 60° corner the analysis requires a °  l 
+  total of six elements, one actual an-

tenna and five images as in Fig. 12-8. 
Gain-pattern expressions for corner 
reflectors of 90° and 60° are listed in 
Table 12-1. The expression for a 180° 
"corner" or flat sheet is also included. 
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Fro.  12-8.  60° corner reflector with 
images used in analysis. 

TABLE 12-1 
GAIN-PATTERN FORMULAS FOR CORNER-REFLECTOR ANTENNAS 

Corner 
angle 

Number of 
elements in 
analysis 

Gain in field intensity over i-wave-
length antenna in free space with 

same power input 

180° 2 RI, -I- RIL  . 
2NIR II ± RIL _ R12  sm (S, cos 0 

90° 4 
RI i 4- RIL 

2NiRli -I- RIL ± R14 —  2 R12 

I [COS (S, COS 43) — COS (S,. sin OA I 

60 0 6 

RI, 4- R1L 
2'I/RI I -I- RIL -I- 2R14 — 2R12 — R16 

I {sin (S, cos0) — sin [S, cos (60° — OA 

— sin [S, cos (60° ± OM I 
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In the formulas of Table 12-1 it is assumed that the reflector sheets are 
perfectly conducting and of infinite extent. Curves of gain vs. spacing 
calculated from these relations are presented in Fig. 12-9. The gain given 
is in the direction 4) = 0. Two curves are shown for each corner angle. 
The solid curve in each case is computed for zero losses (R,r, = 0), while 
the dashed curve is for an assumed loss resistance R1 L = 1 ohm. It is 
apparent that for efficient operation too small a spacing should be avoided. 
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FIG. 12-9.  Gain of corner reflector antennas over a 4-wavelength antenna in free 
space with the same power input as a function of the antenna-to-corner spacing. Gain 
is in the direction  = 0 and is shown for zero loss resistance (solid curves) and for an 
assumed loss resistance of 1 ohm (RIL = 1 ohm) (dashed curves). 

07 

A small spacing is also objectionable because of narrow band width. On 
the other hand, too large a spacing results in less gain. 
The calculated pattern of a 90° corner reflector with antenna-to-corner 

spacing S = 0.5 X is shown in Fig. 12-10a. The gain is nearly 10 db over 
a reference 4-wavelength antenna. This pattern is typical if the spacing 
S is not too large. If S exceeds a certain value, a multilobed pattern may 
be obtained. For example, a square-corner reflector with S = 1.0 X has 
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a two-lobed pattern as in Fig. 12-10b. If the spacing is increased to 1.5, 
the pattern shown in Fig. 12-10c is obtained with major lobe in the 4, = 0 
direction but with minor lobes present. This pattern may be considered 
as belonging to a higher order radiation mode of the antenna. The gain 
over a single 4-wavelength dipole antenna is 12.7 db. 

45. 

 H 
i.oX  \\ 

(6)  \ 

20* 

10. 

\ 

to. 

Flo. 12-10.  Calculated patterns of square corner-reflector antennas with antenna-to-
corner spacings of 0.5 wavelength (a), 1.0 wavelength (6), and 1.5 wavelengths (c). 
Patterns give gain relative to i-wavelength antenna in free space with same power 
input. 

Restricting patterns to the lower order radiation mode (no minor lobes), 
it is generally desirable that S lie between the following limits: 

a 

90 . 

180° (flat sheet) 

S 

0.25-0.7 A 
0.1-0.3 A 



Sec. 12-3]  REFLECTOR-TYPE ANTENNAS  333 

The terminal resistance RT of the driven antenna is obtained by dividing 
(12-3) by I, and taking the real parts of the impedances. Thus, 

R, =  RiL + R14 —  21112  (12-8) 

If R = 0, the terminal resistance is all radiation resistance. The varia-
tion of the terminal radiation resistance of the driven element is presented 
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Fin. 12-11.  Terminal radiation resistance of driven -wavelength antenna as a func-
tion of the antenna-to-corner spacing for corner reflectors of three corner angles. 
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in Fig. 12-11 as a function of the spacing S for corner angles a = 180°, 
90°, and 60°. 
In the above analysis it is assumed that the reflectors are perfectly 

conducting and of infinite extent, with the exception that the gains with 
a finitely conducting reflector may be approximated with a proper choice 
of R, L. The analysis provides a good first approximation to the gain-
pattern characteristics of actual corner reflectors with finite sides provided 
that the sides are not too small. Neglecting edge effects, a suitable value 
for the length of sides may be arrived at by the following line of reasoning. 
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An essential region of the reflector is that near the point at which a wave 
from the driven antenna is reflected parallel to the axis. For example, 
this is the point A of the square corner reflector of Fig. 12-12. This point 
is at a distance of 1.418 from the corner C, where S is the antenna-to-
corner spacing. If the reflector ends at the point B at a distance L = 2S 
from the corner, as in Fig. 12-12, the reflector extends approximately 
0.68 beyond A. With the reflector ending at B, it is to be noted that 
the only waves reflected from infinite sides, but not from finite sides, are 

S 
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antenna 
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Flo. 12-12.  Square corner reflector with sides of length L equal to twice the antenna-
to-corner spacing S. 

those radiated in the sectors 77. Furthermore, these waves are reflected 
with infinite sides into a direction that is at a considerable angle 61) with 
respect to the axis. Hence, the absence of the reflector beyond B should 
not have a large effect. It should also have relatively little effect on the 
driving-point impedance. The most noticeable effect with finite sides is 
that the measured pattern is appreciably broader than that calculated for 
infinite sides and a null does not occur at 0 = 45° but at a somewhat 
larger angle. If this is not objectionable, a side length of twice the antenna-
to-corner spacing (L = 28) is a practical minimum value for square 
corner reflectors. 
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Although the gain of a corner reflector with infinite sides can be increased 
by reducing the corner angle, it does not follow that the gain of a corner 
reflector with finite sides of fixed length will increase as the corner angle 
is decreased. To maintain a given efficiency with a smaller corner angle 
requires that S be increased. Also on a 60° reflector, for example, the 
point at which a wave is reflected parallel to the axis is at a distance of 
1.735 from the corner as compared to 1.412 for the square corner type. 
Hence, to realize the increase in gain requires that the length of the re-
flector sides be much larger than for a square corner reflector designed for 
the same frequency. Usually this is a practical disadvantage in view of 
the relatively small increase to be expected in gain. 
To reduce the wind resistance offered by a solid reflector, a grid of 

Tronsmission 
line 

Supporting 
member \ 

It  L-2S 

../19cr 

Driven 
element 

FIG. 12-13.  Grid-type reflector. 

parallel wires or conductors can be used as in Fig. 12-13. The supporting 
member joining the mid-points of the reflector conductors may be either 
a conductor or an insulator. In general the spacing G between reflector 
conductors should be equal to or less than 0.1 A. With a I-wavelength 
driven element the length H of the reflector conductors should be equal to 
or greater than 0.6 A. If the length H is reduced to values of less than 
0.6 A, radiation to the sides and rear tends to increase and the gain de-
creases. When H is decreased to as little as 0.3 A, the strongest radiation 
is no longer forward and the "reflector" acts as a director. 
Two square corner reflectors of practical dimensions are illustrated in 

Fig. 12-14. The one at (a) with 2 = 0.35 A and the side length L = 0.7 
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can be used where the physical size of the antenna must be a minimum. 
If physical size is not a restriction, the design of (b) may be used with the 
advantage of a greater band width.' 
The square corner reflectors of Fig. 12-14 have apertures between 1 

and 2 wavelengths.  If an aperture of 1 wavelength is inconveniently 
large, a corner reflector of smaller side length and larger corner angle can 
be used. Carrying this procedure to the limit results in a closely spaced 
flat-sheet reflector (a = 180°) as in Fig. 12-1b. If, on the other hand, 

0.35X-0.,\ 1.0X 

Antenna 

(a) 

LOX 

0.5X -1 4K\  1.4 X 

Antenna 

(b) 

FIG. 12-14. Dimensions for square corner-reflector antennas. 

an aperture of more than 2 wavelengths is convenient, more directivity 
can be obtained for a given physical size of antenna with a parabolic 
reflector. 
12-4. The Parabola.  General Properties. Suppose that we have a 

point source and that we wish to produce a plane-wave front over a large 
aperture by means of a sheet reflector.  Referring to Fig. 12-15a, it is 
then required that the distance from the source to the plane-wave front 
via path 1 and 2 be equal or' 

2L = R(1 -1- cos 0)  (12-9) 

and 

2L   
R — 

1 --1- cos 0 
(12-10) 

1 The type of driven element is also a factor in determining the band width. Thus, a 
fat cylindrical element or a biconical element gives more band width than a thin driven 
element. 

1 This is an application of the principle of equality of path length to the special case 
where all paths are in the same medium. For the more general situation involving more 
than one medium see Chap. 14. 
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This is the equation for the required surface contour. It is the equation 
of a parabola with the focus at F. 
Referring to Fig. 12-156, the parabolic curve may be defined as follows. 

The distance from any point P on a parabolic curve to a fixed point F, 
called the focus, is equal to the perpendicular distance to a fixed line called 
the directrix. Thus, in Fig. 12-156, PF = PQ. Referring now to Fig. 

Plane 
wave 
front 

Sheet' 
reflector 

(a) (b) 

Flo. 12-15. Parabolic reflectors. 

(c) 

Axis 

\  A 

Aperture 
plane 

12-15c, let AA' be a line normal to the axis at an arbitrary distance QS 
from the directrix. Since PS = QS — PQ and PF = PQ, it follows 
that the distance from the focus to S is 

PF + PS = PF + QS — PQ = QS  (12-11) 

Thus, a property of a parabolic reflector is that all waves from an isotropic 
source at the focus that are reflected from the parabola arrive at a line 
AA' with equal phase. The "image" of the focus is the directrix, and the 
reflected field along the line AA' appears as though it originated at the 
directrix as a plane wave. The plane BB' (Fig. 12-15c) at which a reflector 
is cut off is called the aperture plane. 
A cylindrical parabola converts a cylindrical wave radiated by an in-

phase line source at the focus, as in Fig. 12-16a, into a plane wave at the 
aperture. Or a paraboloid of revolution converts a spherical wave from 
an isotropic source at the focus as in Fig. 12-166 into a uniform plane wave 
at the aperture. Confining our attention to a single ray or wave path, the 
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(a) 

Cylindrical 
parabol 

ANTENNAS 

Paraboloid 

Line 
source 

[CHAp. 12 

Point 
source 

(b) 

Aperture  Aperture 

I'm. 12-16.  Line source and cylindrical parabolic reflector (a) and point Bourse and 
paraboloidal reflector (b). 

paraboloid has the property of reflecting any ray from the focus into a di-
rection parallel to the axis as suggested in Fig. 12-15b. 
12-5. A Comparison Between the Parabolic and Corner Reflector. Al-

though the corner reflector differs in principle from the parabolic reflector, 
there are situations in which the two may be nearly equivalent. This 

may be illustrated with the aid of Fig. 
Cylindrical  12-17. Let a linear antenna be located 
parabola  Square  at the focus F of a cylindrical parabolic 

corner 

reflector  reflector, and let this arrangement be 
compared with a square corner reflector 
of the same aperture and with an an-
tenna-to-corner spacing AF.  The 

Linear antenna  parabolic and corner reflectors are su-
perimposed for comparison in Fig. A 5 
12-17. A wave radiated in the positive 
y direction from F is reflected at 0 by 
the corner reflector and at 0' by the 
cylindrical parabolic reflector. Hence, 
this wave travels a shorter distance in 
the corner reflector by an amount 00'. 
If AF = 2 X, the electrical length of 
00' is about 180° so that a marked dif-
ference would be expected in the field 
patterns of the two reflectors. How-
ever, if AF = 0.35 X the electrical 
length of 00' is only about 30°, and 

this would be expected to cause only a slight difference in the field patterns. 
It follows that if AF is small in terms of the wavelength the exact shape 
of the reflector is not of great importance.  The practical advantage 
of the corner reflector is the simplicity and ease of construction of the 
fiat sides. 

FIG. 12-17.  Cylindrical parabolic re-
flector compared with square corner 
reflector. 
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12-6. The Paraboloidal Reflector.' The surface generated by the revo-
lution of a parabola around its axis is called a paraboloid or a parabola 
of revolution. If an isotropic source is placed at the focus of a paraboloidal 
reflector as in Fig. 12-18.1a, the portion A of the source radiation that is 

Secondary pattern 

Isotropic source pattern 
(primary pattern) 

(a) 

Tapered illumination 

(b) 

Relative 
field intensity 

Tapered Illumination 
with dashed primary pattern 

Nearly uniform illumination 
with solid primary pattern 

Primary 
patterns 

Relative field 
(c)  intensity 

Fin. 12-18.1.  Parabolic reflectors of different focal lengths (L) and with sources of 
different patterns. 

" Microwave Antenna Theory and Design," edited by S. Silver, McGraw-Hill Book 
Company, Inc., New York, 1949. 
H. T. Friis and W. D. Lewis, Radar Antennas, Bell System Tech.  26, 219-317, 

April, 1947. 
C. C. Cutler, Parabolic Antenna Design for Microwaves, Proc. I.R.E., 37, 1284-1294, 

November, 1947. 
J. C. Slater, "Microwave Transmission," McGraw-Hill Book Company, Inc., New 

York, 1942, pp. 272-276. 
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intercepted by the paraboloid is reflected as a plane wave of circular 
cross section provided that the reflector surface deviates from a true 
parabolic surface by no more than a small fraction of a wavelength. 
If the distance L between the focus and vertex of the paraboloid is 

an even number of I wavelengths, the direct radiation in the axial direc-
tion from the source will be in opposite phase and will tend to cancel the 
central region of the reflected wave. However, if 

(12-12) 

where n = 1, 3, 5, . . . , the direct radiation in the axial direction from 
the source will be in the same phase and will tend to reinforce the central 
region of the reflected wave.  Direct radiation from the source can be 
eliminated by means of a directional source or primary antenna' as in 
Fig. 12-18.1b and c. 
A primary antenna with the idealized hemispherical pattern shown in 

Fig. 12-18.1b (solid curve) results in a wave of uniform phase over the 
reflector aperture. However, the amplitude is tapered as indicated. To 
obtain a more uniform aperture field distribution or illumination, it is 
necessary to make 0, small as suggested in Fig. 12-18.1c by increasing the 
focal length L while keeping the reflector diameter D constant.' If the 

Half-wove antenna 
and reflector 
Secondary 
pattern 

og D 
'Primary pattern 

(a) 

/ 
\ Primary 

pattern 

Horn 

(b) 

Primary 
pattern 

Secondary 
pattern 

(c) 

Fm. 12-18.2. Parabolic reflectors with various feed arrangements. 

source pattern is uniform between the angles ±0, as for the solid pattern, 
the aperture illumination is then nearly uniform. A typical pattern for 
a directional source as indicated by the dashed curve at (c) gives a more 
tapered aperture distribution as shown by the dashed line. The greater 

1 It is convenient to refer to the pattern of the source or primary antenna as the 
primary pattern and the pattern of the entire antenna as the secondary pattern. 

I That is, by using a reflector system with a larger F number. The F number is the 
ratio of the focal distance L to the diameter D (F = LID). 
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amount of taper with resultant reduction in edge illumination may be 
desirable in order to reduce the minor-lobe level, this being achieved, how-
ever, at some sacrifice in directivity. 
The arrangement of Fig. 12-18.1b illustrates the case of a small ratio of 

focal distance L to aperture diameter D. The arrangement at (c) illus-
trates the case of a larger ratio. An extreme example of a parabolic 
reflector with large ratio of focal distance to aperture diameter is afforded 
by many astronomical telescopes of the reflecting type. 
Suitable directional patterns may be obtained with various types of 

primary antennas. As examples, a 4-wavelength antenna with a small 
ground plane is shown in Fig. 12-18.2a, and a small horn antenna in Fig. 
12-18.2b. 
The presence of the primary antenna in the path of the reflected wave, 

as in the above examples, has two principal disadvantages.  These are, 
first, that waves reflected from the parabola back to the primary antenna 
produce interaction and mismatching.'  Second, the primary antenna 
acts as an obstruction, blocking out the central portion of the aperture. 
To avoid both effects, only a portion of the paraboloid can be used and 
the primary antenna displaced as in Fig. 12-18.2c. 
Let us next develop an expression for the field distribution across the 

aperture of a parabolic reflector. Since the development is simpler for a 

Line source 
ot focus 

d8 

(a) 

dp 

f 

de 

Axis 

Point source 

at focus 

Flo. 12-19.  Cross sections of cylindrical parabola (a) and of paraboloid of revolu-
tion (b). 

cylindrical parabola, this case is treated first, as an introduction to the 
case for a paraboloid. Consider a cylindrical parabolic reflector with line 
source as in Fig. 12-19a. The line source is isotropic in a plane perpen-

1This may be greatly reduced by using a circularly polarized primary antenna, such 
as a helical beam antenna. If the primary antenna radiation is right circularly polarized, 
the wave reflected from the parabola is mostly left circularly polarized and the primary 
antenna is insensitive to this polarization. 
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dicular to its axis. For a unit distance in the z direction, Fig. 12-19a, 
the power W in a strip of width dy is 

W = dy P,  (12-13) 

where P, = the power density at y 
But we have also that 

W = do U'  (12-14) 

where U' = the power per unit angle per unit length in the z direction 
Thus, 

and 

where 

This yields 
1 -I- cos 0 

Pm —  2L  U'  (12-18) 

The ratio of the power density Po at 8 to the power density Po at 0 = 0 
is then given by the ratio of (12-18) when 0 = 0 to (12-18) when 0 = 0, 
or 

P,dy = U' de  (12-15) 

P   1   
U' — (d/d0)(R sin 0)  (12-16) 

2L   
R — 1 + cos  0  (12-17) 

Po 1 ± cos 0 
P. —  2 

Hence, in the aperture plane the field-intensity ratio is equal to the square 
root of the power ratio or 

(12-19) 

Eo \Ill ± cos 0 
(12-20) 

2 

where E,/E0 is the relative field intensity at a distance y from the axis 
as given by y = R sin 0. 
Turning now to the case of a paraboloid of revolution with an isotropic 

point source as in Fig. 12-19b, the total power W through the annular 
section of radius p and width dp is 

W = 2irp dp P,  (12-21) 

where P, = the power density at a distance p from the axis 
This power must be equal to the power radiated by the isotropic source 
over the solid angle 27 sin 0 dO. Thus, 

W = 2r sin 0 d0 U  (12-22) 
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where U = the radiation intensity (power per unit solid angle) 
Then 

p dp P, = sin 0 d0 U 
or 

where p = R sin 0 — 

This yields 

Et sin   
U  p(dp/d0) 

2L sin 0  
1 -I- cos 0 

( 1 ±  c o s 0 ) 2  T r 

4 L 2  U  

(12-23) 

(12-24) 

(12-25) 

The ratio of the power density Po at the angle 0 to the power density 
Po at 0 = 0 is then 

Po (1 ± cos 0)2 
Po 4 

(12-26) 

Hence, in the aperture plane the field-intensity ratio is equal to the square 
root of the power ratio or 

Eo 1 + cos 0 
E0 — 2 

where E./E0 is the relative field intensity at a radius p from the axis as 
given by p = R sin 0. 
12-7. Patterns of Large Circular Apertures with Uniform Illumination. 

The radiation from a large paraboloid with uniformly illuminated aperture 

Uniform 
illumination 

Paraboloid 

(a) 

Uniform 
plane 
wave 

Uniform 
illumination 

0 

1 Re ative field 
ntensity 

Infinite sheet 

(b) 

(12-27) 

FIG. 12-20. Large paraboloid with uniformly illuminated aperture (a) and equivalent 
uniformly illuminated aperture of same diameter D in infinite flat sheet (b). 
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is equivalent to that from a circular aperture of the same diameter D in 
an infinite metal plate with a uniform plane wave incident on the plate 
as in Fig. 12-20. The radiation-field pattern for such a uniformly illumi-
nated aperture can be calculated' by applying Huygens' principle in a 
similar way as done for a rectangular aperture in Chap. 4. The normalized 
field pattern E(0) as a function of 0 and D is 

2 X J,[(wD/X) sin 01 
E(0) —  (12-28) 

2-D  sin (I) 

where D = diameter of aperture 
X = free-space wavelength 
cl, = angle with respect to the normal to the aperture (Fig. 12-20) 
J1 = first-order Bessel function 

The angle cko to the first nulls of the radiation pattern are given by 

2-D . 
—x sm 00 = 3.83  (12-29) 

since Ji(x) = 0 when x = 3.83. Thus, 

. 3.83 X  . 1.22 X 
ctio = arC8111 -wD — arcsm 

D 

When 00 is very small (aperture large) 

1.22  70 
—D7  rad = 7) -x deg 

(12-30) 

(12-31) 

where D), = D/X = diameter of aperture, wavelengths 
The beam width between first nulls is twice this. Hence for large circular 
apertures, the beam width between first nulls is 

140 
--DT deg (12-32) 

By way of comparison the beam width between first nulls for a large 
uniformly illuminated rectangular aperture or a long linear array is from 
(4-149) 

115 
I-4 

(12-33) 

where LA = length of aperture, wavelengths 

1 See, for example, J. C. Slater and N. H. Frank, "Introduction to Theoretical 
Physics," McGraw-Hill Book Company, Inc., New York, 1933, p. 325. 
Also see "Microwave Antenna Theory and Design," edited by S. Silver, McGraw-

Hill Book Company, Inc., New York, 1949, p. 194. 
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The beam width between half-power points for a large circular aperture 
is' 

58 
DA 

These beam widths are summarized and compared with those for horn 
antennas in Table 13-1. 
The directivity D of a large uniformly illuminated aperture is given by 

D = 47  area 
X2 

For a circular aperture 

(12-34) 

(12-35) 

D = 4r = 9.87D2  (12-36) 
4X2 

where D), = the diameter of the aperture in wavelengths 
The power gain G of a circular aperture over a f-wavelength dipole an-
tenna is 

G = 6M,  (12-37) 

For example, an antenna with a uniformly illuminated circular aperture 
10 wavelengths in diameter has a gain of 600 or nearly 28 db with respect 
to a f-wavelength dipole antenna. 
For a square aperture, the directivity is 

L2 
D = 4T —x2 = 12.6L;  (12-38) 

and the power gain over a 1-wavelength dipole is 

G = 7.7V,  (12-39) 

where Lk = the length of a side 
For example, an antenna with a square aperture 10 wavelengths on a side 
has a gain of 770 or nearly 29 db over a f-wavelength dipole. 
The above directivity and gain relations are for uniformly illuminated 

apertures at least several wavelengths across.  If the illumination is 
tapered, the directivity and gain are less. 
The patterns for a square aperture 10 wavelengths on a side and for a 

circular aperture 10 wavelengths in diameter are compared in Fig. 12-21. 
In both cases the field is assumed to be uniform in both magnitude and 
phase across the aperture. The patterns are given as a function of ct, in 
the x-y plane. The patterns in the x-z plane are identical to those in the 
x-y plane. Although the main-lobe beam width for the circular aperture 

"Microwave Antenna Theory and Design," edited by S. Silver, McGraw-Hill Book 
Company, Inc., New York, 1949, p. 194. 
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is greater than for the square aperture, the side-lobe level for the circular 
aperture is smaller. A similar effect could be produced with the square 
aperture by tapering the illumination. 
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Fm. 12-21.  Relative radiation patterns of circular aperture of diameter D = 10 X and 
of square aperture of side length L = 10 X. 

12-8. The Cylindrical Parabolic Reflector. The cylindrical parabolic 
reflector is used with a line-source type of primary antenna. Two types 
are illustrated in Fig. 12-22.  Both produce fan beams, that is, a field 
pattern that is wide in one plane and narrow in the other. The antenna 

(b) 

Fm. 12-22.  Parabolic reflector with linear array of eight in-phase 4-wavelength 
antennas (a) and "pillbox" or "cheese" antenna (b). 
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in Fig. 12-22a has a line source of eight in-phase 4-wavelength antennas 
and produces a beam that is narrow in the E plane (x-z plane) and wide 
in the H plane (x-y plane). The antenna in Fig. 12-226 produces a beam 
that is wide in the E plane (x-z plane) and narrow in the H plane (x-y 
plane). The primary antenna consists of a driven stub element with a 
reflector element. The driven element is fed by a coaxial line. The side 
plates act as a parallel plane wave guide. They guide the radiation from 
the primary antenna to the parabolic reflector. This type of antenna is 
called a "pillbox" or "cheese" antenna. If L < X/2, propagation between 
the planes is restricted to the principal or TEM mode. In this case the 
source may be a stub antenna of length less than 4 wavelength (as in 
Fig. 12-226), or the source may be an open-ended wave guide or small horn. 
Neglecting edge effects, the patterns of the antennas of Fig. 12-22 are 
those of rectangular apertures of side dimensions L by H. If the illumina-
tion is substantially uniform over the aperture [0 small in Eq. (12-20)], 
the relations developed for rectangular apertures in Chap. 4 can be applied 
to calculate the patterns provided that the side length is large compared 
to the wavelength. 
12-9. Aperture Distributions. The field pattern in the x-y plane from a 

line source of length L (Fig. 12-23a) is identical with the pattern in the 
x-y plane from a rectangular aperture of length L (Fig. 12-236) provided 
that both have the same distribution in the y direction. The pattern of 
a circular aperture (D = L) with the same distribution will be different 
(wider beam width and smaller side lobes). However, the relative effect 
of a change in the taper of a distribution is the same in all cases. 
A long linear array of discrete closely spaced sources has nearly the 

same pattern as a continuous array with the same amplitude and phase 
distribution, so that some of the conclusions reached in Chap. 4 can be 
extended to flat constant-phase broadside arrays or apertures in general. 
To summarize: 

1. A uniform amplitude distribution yields the maximum directivity.' 
2. Tapering the amplitude from a maximum at the center to a smaller 
value at the edges reduces the side-lobe level but results in a wider 
main lobe and less directivity. 

3. A distribution with an inverse taper (amplitude depression at center)2 
results in a sharper main lobe but also in an increased side-lobe level 
and less directivity. 

If the amplitude is decreased gradually to a small valve at the edges of 

1 See S. Silver, op. cit., p. 177; see also T. T. Taylor, Proc. I.R.E., 36, 1135, Sep-
tember, 1948. 

2This type of distribution might be inadvertently produced by the primary antenna 
blocking out the center of the aperture as discussed in Sec. 12-6. 
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the aperture, as in a binomial or Gauss error-curve type of distribution, 
the side-lobe level is effectively zero. However, the attendant decrease in 

directivity generally makes this kind of 
distribution unacceptable. For a prede-
termined side-lobe level the optimum 

..--Line source  distribution is of the Dolph-Tchebyscheff 4,   
type. A number of other amplitude dis-

V  x tributions are of some interest, for ex-
ample, the triangular, cosine, and cosine 
squared types. These are conveniently 

(a)  analyzed by the Fourier transform 
method as described in the next section. 
In the above discussion it is assumed 

Square  that the phase is uniform over the aper-
aperture  ture. However, if the primary antenna 

is displaced from the focus of the parab-
ola, or if the phase pattern of the primary 

(b)  antenna is not constant, there will be a 
phase variation over the aperture. This 
is usually referred to as a phase error.' 
The effects of such phase errors are, in 
general, undesirable since increased side-
lobe level and reduced directivity re-

g  Circular 
aperture sult. The level of the minima between 

lobes is also increased. 
(c)   

shape are desired that may require distri-
In some applications beams of special 

Fm. 12-23. Line source, square ap- butions having both amplitude and phase 
erture, and circular aperture.  tapers. In general, a beam of any shape 

can be produced by the proper ampli-
tude and phase distribution over an aperture.' 
12-10. Fourier Transform Method. The Fourier transform method 

provides a convenient procedure for finding the field patterns of certain 

1 For a detailed discussion of both amplitude distributions and phase errors see 
"Microwave Antenna Theory and Design," edited by S. Silver, McGraw-Hill Book 
Company, Inc., New York, 1949; also H. T. Friis and W. D. Lewis, Radar Antennas, 
Bell System Tech. .I., 26, 219-317, April, 1947. 

Chap. 13 by L. C. Van Atta and T. J. Keary, "Microwave Antenna Theory and 
Design," McGraw-Hill Book Company, Inc., New York, 1949, p. 465. Gives a general 
survey of beam-shaping techniques. 
Chap. 6 by G. Stavis and A. Dome, "Very High Frequency Techniques," McGraw-

Hill Book Company, Inc., New York, 1947, p. 161. Gives a discussion of elliptical-
parabolic reflectors. 
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aperture distributions. Specifically, the field pattern can be formulated 
as the Fourier transform of the aperture distribution.' 
Consider a continuous linear in-phase source of length L or a rectangular 

aperture of height L as in Fig. 12-24. It is assumed that the amplitude 
distribution is known and that the phase distribution is uniform. It is 
further assumed that L >> X so that 
the beam width of the main lobe (in 
x direction) is small. Then it may 
be shown that if the amplitude dis-
tribution is given by F(y) the field  In-phase line 

source 
pattern as a function of 4, in the x-y 
plane is given by 

+L/2 
E(4,) =  F(y)  'in°  dy (12-40) 

-L/2 
Rectangular 

where (12-40) is the Fourier trans-  aperture 
form of F(y). The distribution func-

tion F(y) is real if the phase is uni-  Fm. 12-24.  Line source of height L and 
form over the aperture. Further, if rectangular aperture of height L. 
the amplitude distribution is sym-
metrical about the center of the aperture (origin in Fig. 12-24), F(y) is 
even and the pattern is given by the Fourier cosine transform of F(y). 
For example, if the amplitude distribution is uniform, F(y) = 1 and the 
field pattern is 

E(4)) — 2 sin [(L, sin 0)/21 
13 sin 4, 

The normalized field pattern is 

E(4)) — 2 sin [(L,. sin 0)/21 
L, sin 4, 

(12-41) 

(12-42) 

The field patterns for four types of amplitude distributions (see Ramsay') 
are listed in Table 12-2.2 

I J. F. Ramsay, Fourier Transforms in Aerial Theory, Marconi Rev., 9, 139, October-
December, 1946. 
R. C. Spencer, "Fourier Integral Methods of Pattern Analysis," M.I.T. Radiation 

Laboratory Rep. 762-1, January 21, 1946. 
2 For other distributions see "Microwave Antenna Theory and Design," edited by 

S. Silver, McGraw-Hill Book Company, Inc., New York, 1949; also R. C. Spencer, 
"Fourier Integral Methods of Pattern Analysis," M.I.T. Radiation Laboratory Rapt. 
762-1, January 21, 1946. 
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TABLE 12-2* 

[CHAP. 12 

Type of distribution 
Field pattern 

(normalized) 
Name Shape Formula 

Uniform 

Triangular 

L 

_ _.___ _ 1 
sin [(L, sin  
[(L, sin 4,)/2] 

_ _ _ 

_ L 
2 

_ 1 — 2Y  
L 

ry 
co.: - - 

L 

[(L, sin 0)/412 2[sin 
L, sin 4, 

Cosine 

Cosine 
squared 

+ 12 

- 

) (w/2)2 cos [(L, sin 4,)/2] 
(7/2)2 — [(L, sin 4,)/2] 2 

2 T Y 
cos L 

sin [(L, sin 4))/2]  2 
L, sin 4,  1 — [(L, sin 4,)2/4r21 

length of array or aperture in radians 
= 2w(L/X) 
= angle from the normal to the array or aperture (Fig. 12-24) 

PROBLEMS 

12-1. Calculate and plot the radiation pattern of a 4-wavelength dipole antenna 
spaced 0.15 wavelength from an infinite flat sheet for assumed antenna loss resist-
ances Ri = 0 and 10 ohms. Express the patterns in gain over a 4-wavelength 
dipole antenna in free space with the same power input (and zero loss resistance). 
12-2. A square-corner reflector has a driven 4-wavelength dipole antenna spaced 

0.5 wavelength from the corner. Assume perfectly conducting sheet reflectors of 
infinite extent (ideal reflector). Calculate and plot the radiation pattern in a plane 
at right angles to the driven element. 
12-3. Calculate and plot the pattern of an ideal square-corner reflector with 

4-wavelength driven antenna spaced 0.5 wavelength from the corner but with 
the antenna displaced 20° from the bisector of the corner angle. The pattern to 
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be calculated is in a plane perpendicular to the antenna and to the reflecting sides. 
12-4. Calculate and plot the radiation patterns of a paraboloidal reflector with 

uniformly illuminated aperture when the diameter is 8 wavelengths and when the 
diameter is 16 wavelengths. 
12-6. Calculate the radiation pattern of a cylindrical parabolic reflector of 

square aperture 16 wavelengths on a side when the illumination is uniform over the 
aperture and when the field intensity across the aperture follows a cosine variation 
with maximum intensity at the center and zero intensity at the edges. Compare the 
two cases by plotting the normalized curves on the same graph. 
12-6. a. Calculate and plot the pattern of a 90° corner reflector with a thin 

center-fed 4-wavelength driven antenna spaced 0.35 wavelength from 
the corner. Assume that the corner reflector is of infinite extent. 

b. Calculate the radiation resistance of the driven antenna. 
c. Calculate the gain of the antenna and corner reflector over the antenna 
alone. Assume that losses are negligible. 

12-7. Assume that the corner reflector of Prob. 6 is removed and that in its place 
the three images used in the analysis are present physically resulting in a four-ele-
ment driven array. 

a. Calculate and plot the pattern of this array. 
b. Calculate the radiation resistance at the center of one of the antennas. 
c. Calculate the gain of the array over one of the antennas alone. 

12-8. Four 90° corner-reflector antennas are arranged in line as a broadside array. 
The corner edges are parallel and side by side as in the figure. The spacing between 
corners is 1 wavelength. The driven antenna in each corner is a 4-wavelength 
element spaced 0.4 wavelength from the corner. All antennas are energized in phase 

riven 
element • 

and have equal current amplitude. Assuming that the properties of each corner are 
the same as if its sides were of infinite extent, what is 

a. the gain of the array over a single 4-wavelength antenna? 
b. the half-power beam width in the H plane? 

12-9. Show that the variation of field across the aperture of a paraboloidal re-
flector with an isotropic source is proportional to 1/(1 + (p/2L)z) where p is the 
radial distance from the axis of the paraboloid. Show that this relation is equivalent 
to (1 + cos 0)/2. 
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12-10. a. Show that the relative field pattern in the plane of the driven I-wave-
length element of a square corner reflector is given by 

cos (90° cos 0)  
E = [1 — cos (S, sin 0)] 

sin 0 

where 0 is the angle with respect to the element axis. Assume that the 
corner-reflector sheets are perfectly conducting and of infinite extent. 

b. Calculate and plot the field pattern in the plane of the driven element 
for a spacing of I wavelength to the corner. Compare with the pattern 
at right angles (Prob. 12-2). 



CHAPTER 13 

SLOT, HORN, AND COMPLEMENTARY ANTENNAS 

13-1. Slot Antennas. The antenna shown in Fig. 13-1a, consisting of 
two resonant I-wavelength stubs connected to a two-wire transmission 
line, forms an inefficient radiator.  The long wires are closely spaced 
(w << X) and carry currents of opposite phase so that their fields tend to 

Metal sheet 

7 /2f‘ 

(a) (b) 

Pia. 13-1. Parallel connected I-wavelength stubs (a) and simple slot antenna (b). 

cancel. The end wires carry currents in the same phase, but they are too 
short to radiate efficiently. Hence, enormous currents may be required 
to radiate appreciable amounts of power. 
The antenna in Fig. 13-1b, on the other hand, is a very efficient radiator. 

In this arrangement a 4-wavelength slot is cut in a flat metal sheet. 
Although the width of the slot is small (w << X), the currents are not con-
fined to the edges of the slot but spread out over the sheet. This is a 
simple type of slot antenna. Radiation occurs equally from both sides 
of the sheet. If the slot is horizontal, as shown, the radiation normal to 
the sheet is vertically polarized. 
A slot antenna may be conveniently energized with a coaxial transmis-

sion line as in Fig. 13-2a. The outer conductor of the cable is bonded to 
the metal sheet. Since the terminal resistance at the center of a resonant 
4-wavelength slot in a large sheet is about 500 ohms and the characteristic 
impedance of coaxial transmission lines is usually much less, an off-center 
feed such as shown in Fig. 13-2b may be used to provide a better im-

353 
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pedance match.  For a 50-ohm coaxial cable the distance s should be 
about  wavelength. Slot antennas fed by a coaxial line in this manner 
are illustrated in Fig. 13-2c and d. The radiation normal to the sheet with 
the horizontal slot (Fig. 13-2c) is vertically polarized while radiation normal 
to the sheet with the vertical slot (Fig. 13-2d) is horizontally polarized. 
The slot may be 4 wavelength long, as shown, or more. 
A flat sheet with a 4-wavelength slot radiates equally on both sides of 

the sheet. However, if the sheet is very large (ideally infinite) and boxed 
in as in Fig. 13-3a, radiation occurs only from one side. If the depth d 

V 
(a) 

Coble bonded 
to sheet 

(b) 

2 

Vertically 
polarized 
slot  Ho izontolly 

antenna  polarized 
lot 

(c) I  (d) p antenna 
Flo. 13-2. Slot antennas fed by coaxial transmission lines. 

of the box is appropriate (d  X/4 for a thin slot), no appreciable shunt 
susceptance appears across the terminals. With such a zero susceptance 
box, the terminal impedance of the resonant 4-wavelength slot is non-
reactive and approximately twice its value without the box or about 1,000 
ohms. 
The boxed-in slot antenna might be applied even at relatively long 

wavelengths' by using the ground as the flat conducting sheet and exca-

I H. G. Booker, Slot Aerials and Their Relation to Complementary Wire Aerials, 
1.I.E.E. (London), 93, Part IIIA, No. 4, 1946. 



(a) 
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vating a trench  wavelength long by I wavelength deep as suggested in 
Fig. 13-3b. The absence of any structure above the ground level might 
make this type of antenna attractive, for example, in applications near 
airports. To improve the ground conductivity, the walls of the trench 

Max.  7 Min 

Max   

..=Ground 
Mtn.  I  i 7f-

•  v__Ie 
(a) (b) 

Max. 

Fla. 13-3.  Boxed-in slot antenna (a) and application to provide flush radiator (b). 

and the ground surrounding the slot can be covered with copper sheet or 
screen. Radiation is maximum in all directions at right angles to the slot 
and is zero along the ground in the directions of the ends of the slot as 

.CW--ove guide 

Front view 

Side 
view 

(b) 

Wave-guide fed slot (a) and T-fed slot (b). 

suggested in Fig. 13-3b.  The radiation along the ground is vertically 
polarized. 
Radiation from only one side of a large flat sheet may also be achieved 

by a slot fed with a wave guide as in Fig. 134a. With transmission in the 
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guide in the TEH, mode the direction of the electric field E is as shown. 
The width L of the guide must be more than 4 wavelength to transmit 
energy, but it should be less than 1 wavelength to suppress higher order 
transmission modes. With the slot horizontal, as shown, the radiation 
normal to the sheet is vertically polarized. The slot opening constitutes 
an abrupt termination to the wave guide. It has been found' that the 
resulting impedance mismatch is least over a wide frequency band if the 
ratio L/w is less than 3. 
A compact wide-band method for feeding a boxed-in slot is illustrated 

in Fig. 13-4b. In this T-fed arrangement' the bar compensates the im-
pedance characteristics so as to provide a SWR on a 50-ohm feed line of 
less than 2 over a frequency range of nearly 2 to 1. The ratio L/w of the 
length to width of the slot is about 3. 
Dispensing with the flat sheet altogether, an array of slots may be cut 

Flo. 13-5. Broadside array of slots in wave guide. 

in the wave guide as in Fig. 13-5 so as to produce a directional radiation 
pattern.' With transmission in the guide in the TE,0 mode, the instan-
taneous direction of the electric field E inside the guide is as indicated by 
the dashed arrows. By cutting inclined slots as shown at intervals of 
X./2 (where X. is the wavelength in the guide), the slots are energized in 
phase and produce a directional pattern with maximum radiation broad-
side to the guide. If the guide is horizontal and E inside the guide is 
vertical, the radiated field is horizontally polarized as suggested in Fig. 13-5. 
13-2. Patterns of Slot Antennas in Flat Sheets. Consider the horizontal 

4-wavelength slot antenna of width w in a perfectly conducting flat sheet 
of infinite extent as in Fig. 13-6a. The sheet is energized at the terminals 
FF. It has been postulated by Booker that the radiation pattern of the slot 
is the same as that of the complementary horizontal 4-wavelength dipole 

1 Chap. 7 by A. Dome and D. Lazarus, "Very High Frequency Techniques," Radio 
Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947. 
2 W. H. Watson, "The Physical Principles of Wave Guide Transmission and Antenna 

Systems," Oxford University Press, London, 1947. 
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consisting of a perfectly conducting flat strip of width w and energized at 
the terminals FF as indicated in Fig. 13-6b but with two differences. 
These are (1) that the electric and magnetic fields are interchanged and 
(2) that the component of the electric field of the slot normal to the sheet 

(a) (b) 
FIG. 134.  i-wavelength slot in infinite flat sheet (a) and complementary j-wavelength 
dipole antenna (b). 

is discontinuous from one side of the sheet to the other, the direction of 
the field reversing. The tangential component of the magnetic field is, 
likewise, discontinuous. 
The patterns of the i-wavelength slot and the complementary dipole are 

(a) (b) 

'H Slot in sheet in 
x-z plane 

Fla. 13-7. Radiation field patterns of slot in infinite sheet (a) and of complementary 
dipole antenna (b). 

compared in Fig. 13-7. The infinite flat sheet is coincident with the x-z 
plane, and the long dimension of the slot is in the x direction (Fig. 13-7a). 
The complementary dipole is coincident with the x axis (Fig. 13-76). The 
radiation-field patterns have the same doughnut shape, as indicated, but 
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the directions of E and H are interchanged. The solid arrows indicate the 
direction of the electric field E and the dashed arrows the direction of 
the magnetic field H. 
If the x-y plane in Fig. 13-7a is horizontal and the z axis vertical, the 

radiation everywhere in the x-y plane from the horizontal slot is vertically 
polarized.  Turning the slot to a vertical position (coincident with the 
z axis) rotates the radiation pattern through 90° to the position shown in 

Slot in sheet in 
x-z plane 

Fla. 13-8. Radiation pattern of vertical slot in infinite flat sheet. 

Fig. 13-8. The radiation in this case is everywhere horizontally polarized. 
That is, the electric field has only an E4, component. If the slot is very 
thin (w << X) and  wavelength long (L = X/2), the variation of E. as a 
function of 0 is from (5-84) given by 

E  cos [(T/2) cos 01 
.( 0) — sin   0  (13-1) 

Assuming that the sheet is perfectly conducting and infinite in extent, the 
magnitude of the field component E, remains constant as a function of ch 
for any value of 0. Thus, 

E1(0) = constant  (13-2) 

Consider now the situation where the slot is cut in a sheet of finite 
extent as suggested by the dashed lines in Fig. 13-8. This change produces 
relatively little effect on the E.(0) pattern given by (13-1). However, there 
must be a drastic change in the E,(0) pattern since in the x direction, for 
example, the fields radiated from the two sides of the sheet are equal in 
magnitude but opposite in phase so that they cancel. Hence, there is a 
null in all directions in the plane of the sheet. For a sheet of given length 



x 

(a) 
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L in the x direction the field pattern in the x-y plane might then be as 
indicated by the solid curve in Fig. 13-9a. The dashed curve is for an 

x 

(b) 
Fla. 13-9. Solid curves show patterns in x-y plane for slot in finite sheet of length L. 
Slot is open on both sides in (a) and closed on left side in (b). Dashed curves show 
pattern for infinite sheet. All patterns idealized. 

infinite sheet (L = a)). If one side of the slot is boxed in, there is radiation 
in the plane of the sheet as suggested by the pattern in Fig. 13-9b.1 
With a finite sheet the pattern usually exhibits a scalloped or undulating 

z 

X 6.3X 

Pm. 13-10.  Measured 0-plane patterns of i-wavelength boxed-in slot antennas in 
finite sheets of three lengths L = 0.5, 2.75, and 5.3 wavelengths. The width of the 
slots is 0.1 wavelength. (After Dorm and Lazarus.) 

' According to H. G. Booker, Slot Aerials and Their Relation to Complementary 
Wire Aerials, J.I.E.E. (London), 93, Part IIIA, No. 4, 1946, the energy density in the 
0 = 0° or 180° directions is i that for an infinite sheet or the field intensity is 0.707 
that for an infinite sheet. 
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characteristic as suggested in Fig. 13-9. As the length L of the sheet is 
increased, the pattern undulations become more numerous but the magni-

tude of the undulations decreases so that T1  pattern for a very large sheet the patte  con-
forms closely to a circular shape. Mess-Sheet  ured patterns' illustrating this effect are 
shown in Fig. 13-10 for three values of L. 
A method due to Alford for locating the 

slot  angular positions of the maxima and 
minima is described by Dome and Laza-
rus.' In this method the assumption is 
made that the far field is produced by 
three sources (see Fig. 13-11), one (1) at 
the slot of strength 1 sin cut and two (2 

To point P 
and 3) at the edges of the sheet with a 
strength k sin (wt — 8) where k << 1 and 
gives the phase difference of the edge 
sources with respect to the source (1) at 
the slot. At the point P at a large dis-
tance in the direction  the relative field 

intensity is then 

E = sin wt  k sin (cot — 8 — e)  k sin (wt — ô + e)  (13-3) 

where e = (7/X) L cos c8 
By trigonometric expansion and rearrangement 

E = (1 + 2k cos cos e) sin wt — (2k sin S cos e) cos cot  (13-4) 

and the modulus of E is 

E I =  ± 2k cos S cos e)2 ± (2k sin 8 cos e)2 (13-5) 

Squaring and neglecting terms with 1e, since k << 1, (13-5) reduces to 

E I = V1 + 4k cos 8 cos e  (13-6) 

The maximum and minimum values of I E I as a function of e occur when 
e = nr, so that 

e = L cos 4, = (13-7) 

1 Chap. 7, by A. Dome and D. Lazarus, "Very High Frequency Techniques," Radio 
Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947 (see 
Sec 7-3). 
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where n is an integer. Thus 

nX  nX 
cos 4) = —L and  = STCCOS — L 

(13-8) 

The values of (I) for maxima and minima in the 4) pattern are given by (13-8). 
These locations are independent of k and S. If cos 8 is positive, then the 
maxima correspond to even values of n and the minima to odd value of n. 
13-3. Babinet's Principle and Complementary Antennas. By means of 

Babinet's principle many of the problems of slot antennas can be reduced 

Plane of screens 

Source 

Source 

Source 

a 
Plane of 
observation 

Complementary 
screen 

No screen 

Shad  vi Case 

Shadow 

Case 2 

Case 3 

Fm. 13-12. Optical illustration of Babinet's principle. 

to situations involving complementary linear antennas for which solutions 
have already been obtained. In optics Babinet's principle' may be stated 
as follows: 

' See, for example, Max Born, "Optik," Verlag Julius Springer, Berlin, 1933, p. 155. 
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The field at any point behind a plane having a screen, if added to the field 
at the same point when the complementary screen is substituted, is equal to 
the field at the point wiun no screen is present. 
The principle may be illustrated by considering an example with three 

cases. Let a source and two imaginary planes, plane of screens A, and 
plane of observation B, be arranged as in Fig. 13-12. As Case 1, let a 
perfectly absorbing screen be placed in plane A. Then in plane B there 
is a region of shadow as indicated. Let the field behind this screen be 
some function fi of x, y, and z. Thus, 

F. = fi(x, y, z,)  (13-9) 

As Case 2 let the first screen be replaced by its complementary screen and 
the field behind it be given by 

F. = f2(x, y, z)  (13-10) 

As Case 3 with no screen present the field is 

= f3(x, y, z).  (13-11) 

Then, Babinet's principle asserts that at the same point x,, yi, z, 

F. ± Fe. = Fo  (13-12) 

The source may be a point as in the above example or a distribution of 
sources. The principle applies not only to points in the plane of observa-
tion B as suggested in Fig. 13-12 but also to any point behind screen A. 
Although the principle is obvious enough for the simple shadow case 
above, it also applies where diffraction is considered. 
Babinet's principle has been extended and generalized by Booker' to 

take into account the vector nature of the electromagnetic field. In this 
extension it is assumed that the screen is plane, perfectly conducting, and 
infinitesimally thin. Furthermore, if one screen is perfectly conducting 
= co), the complementary screen must have infinite permeability 

(A = co). Thus, if one screen is a perfect conductor of electricity, the com-
plementary screen is a perfector "conductor" of magnetism. No infinitely 
permeable material exists, but the equivalent effect may be obtained 
by making both the original and complementary screens of perfectly 
conducting material and interchanging electric and magnetic quantities 
everywhere. Although no perfect conductors of electricity exist, many 
metals, such as silver and copper, have so high a conductivity that we 
may assume the conductivity is infinite with a negligible error in most 
applications. 

111. G. Booker, Slot Aerials and Their Relation to Complementary Wire Aerials, 
J.I.E.E. (London), 93, Part IIIA, No. 4, 1946. 
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As an illustration of Booker's extension of Babinet's principle, consider 
the cases in Fig. 13-13. The source in all cases is a short dipole. In 
Case 1 the dipole is horizontal, and the original screen is an infinite, per-
fectly conducting, plane, infinitesimally thin sheet with a vertical slot cut 
out as indicated.  At a point P behind the screen the field is E1. In 
Case 2 the original screen is replaced by the complementary screen con-

Strip 

Slot 

Sot 
Case I 

Case 2 

Case 3 

Fio. 13-13.  Illustration of Babinet's principle applied to a slot in an infinite metal 
sheet and the complementary metal strip. 

sisting of a perfectly conducting, plane, infinitesimally thin strip of the 
same dimensions as the slot in the original screen. In addition the dipole 
source is turned vertical so as to interchange E and H. At the same 
point P behind the screen the field is E2. As an alternative situation for 
Case 2 the dipole source is horizontal, and the strip is also turned hori-
zontal. Finally, in Case 3 no screen is present, and the field at point P 
is Eo. Then, by Babinet's principle 
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E,  E, = Ec,  (13-13) 

or 

E,  E, 
(13-14) 

.120 

Babinet's principle may also be applied to points in front of the screens. 
In the situation of Case 1 (Fig. 13-13) a large amount of energy may be 
transmitted through the slot so that the field El may be about equal to 
the field E0 with no intermediate screen (Case 3). In such a situation 
the complementary dipole acts like a reflector, and E2 would be very 
small. The fact that a metal sheet with a i-wavelength slot, or, in general, 
an orifice of at least I wavelength perimeter, may transmit considerable 
energy, means that s.ots or orifices of this size should be assiduously 
avoided in sheet reflectors such as described in Chap. 12 when E is not 
parallel to the slot. 
13-4. The Impedance of Complementary Screens. In this section Babi-

net's principle is appl.ed with the aid of a transmission-line analogy to 
finding the relation between the surface impedance Z, of a screen and the 
surface impedance Z, of the complementary metal screen.' 
Consider the infinite transmission line shown in Fig. 13-14a of char-

acteristic impedance Zo or characteristic admittance 17c, =  1/Z0. Let a 
shunt admittance Y, be placed across the line. An incident wave traveling 
to the right of voltage V. is partly reflected at Y, as a wave of voltage V, 
and partly transmitted beyond Y, as a wave of voltage V,. The voltages 
are measured across the line. 
This situation is anaogous to a plane wave of field intensity E, incident 

normally on a plane screen of infinite extent with a surface admittance, 
or admittance per square, of Y,.  That is, the admittance measured 
between the opposite edges of any square section of the sheet as in Fig. 
13-14c is Y,. Neglecting the impedance of the leads the admittance 

Yi = —I  mhos (per square) 
V 

(13-15) 

The value of Y is the same for any square section of the sheet. Thus, the 
section may be 1 cm square or 1 meter square. Hence, (13-15) has the 
dimensions of admittance rather than of admittance per length squared 
and is called a surface admittance, or admittance per square. The field 
intensities of the waves reflected and transmitted normally to the screen 
are E, and E,. Let the medium surrounding the screen be free space. It 
has a characteristic admittance Y. which is a pure conductance Go. Thus, 

1The treatment follows t,-at given by H. G. Booker. See Slot Aerials and Their Rela-
tion to Complementary Wire Aerials, J.I.E.E. (London), 93, Part IIIA, No. 4, 1946. 
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(13-16) 

The ratio of the magnetic to the electric field intensity of any plane 
traveling wave in free space has this value. Hence, 

Ii  Y He  H, 
=  =  = o —  — (13-17)  
Ei 

where H,, H„ and H, are the magnetic field intensities of the incident, 
reflected, and transmitted waves, respectively. 

V, V.  V, 
-0- -  - I.-

Y. Y, 

Incident 
plane 
wave 

E1  E. 

Zero 
impedonc 
straps 

Screen 

(a) 

(b) 

(c) 

Fm. 13-14. Shunt admittance across transmission line (a) is analogous to infinite 
screen in path of plane wave (6). Method of measuring surface admittance of screen 
is suggested in (c). 

The transmission coefficient for voltage 7, of the transmission line' 
(Fig. 13-14a) is 

V,  2 Yo 
2170 +  Y1 

See, for example, S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand 
Company, Inc., New York, 1943, p. 212. 

(13-18) 
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By analogy the transmission coefficient for the electric field (Fig. 13-14b) is 

E,   21',,   
rE —  — Ea 2Y0  (13-19) 

If now the original screen is replaced by its complementary screen with an 
admittance per square of Y2, the new transmission coefficient is the ratio 
of the new transmitted field E; to the incident field. Thus, 

E;   2170  
TIE —  E. —  2 Yo y2  (13-20) 

Applying Babinet's principle, we have from (13-14) that 

E,  E; 
Ea Ea 

or 

Therefore, 

+  • =  1 

2 Yo 21'0  
2 Yo Y,  2 Yo ± Y2 — 1 

and we obtain Booker'a result that 

Y1Y2 = 411 

Since Y1 = 1/Z1, Y2 = 1/Z2, and Yo = 1/Z,,, 

V, 
ZiZ2 = —4  or vz,z2 = z0 

2 

(13-21) 

(13-22) 

(13-23a) 

(13-23b) 

(13-24a) 

Thus, the geometric mean of the impedances of the two screens equals 
one-half the intrinsic impedance of the surrounding medium. Since, for 
free space, Z,, = 376.7 ohms, 

z 35,476 
ohms  (13-24b) 

Z2 

If screen 1 is an infinhe grating of narrow parallel strips as in Fig. 13-15a, 
then the complementary screen (screen 2) is an infinite grating of narrow 
slots as shown in Fig. 13-15b. Suppose that a low-frequency plane wave 
is incident normally on screen 1 with the electric field parallel to the strips. 
Then the grating acts as a perfectly reflecting screen and zero field pene-
trates to the rear. Thus Z, = 0 and from (13-24b) Z2  =  CO  so that the 
complementary screen of slots (screen 2) offers no impediment to the 
passage of the wave. If the frequency is increased sufficiently, screen 1 
begins to transmit part of the incident wave.  If at the frequency Fo 
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screen 1 has a surface impedance Z, = j188 ohms per square, the impe-
dance Z2 of screen 2 is —j188 ohms per square so that both screens transmit 
equally well. If screen 1 becomes more transparent (Z, larger) as the 
frequency is further increased, screen 2 will become more opaque (Z2 

Screen I ( strips) 

(a)  (b) 

FIG. 13-15. Screen of parallel strips (a) and complementary screen of slots (b). 

smaller). At any frequency the sum of the fields transmitted through 
screen 1 and through screen 2 is a constant and equal to the field without 
any screen present. 
13-5. The Impedance of Slot Antennas. In this section a relation is de-

veloped for the impedance Z. of a slot antenna in terms of the impedance 
Z,i of the complementary dipole antenna.' Knowing Za for the dipole, 
the impedance Z, of the slot can then be determined. 
Consider the slot antenna shown in Fig. 13-16a and the complementary 

dipole antenna shown in Fig. 13-16b. The terminals of each antenna are 
indicated by FF, and it is assumed that they are separated by an in-
finitesimal distance. It is assumed that the dipole and slot are cut from 
an infinitesimally thin, plane, perfectly conducting sheet. 
Let a generator be connected to the terminals of the slot. The driving-

point impedance Z. at the terminals is the ratio of the terminal voltage 
V. to the terminal current I,. Let E. and 11, be the electric and magnetic 
fields of the slot at any point P. Then the voltage V. at the terminals FF 
of the slot is given by the line integral of E. over the path C, (Fig. 13-16a) 
as C, approaches zero. Thus, 

v. = urn f E. • dl  (13-25) 
c, 

where dl = an infinitesimal vector element of length along the contour or 
path C, 

The treatment follows that given by H. G. Booker, Slot Aerials and Their Relation 
to Complementary Wire Aerials, J.I.E.E. (London), 93, Part IIIA, No. 4, 1946 with 
minor embellishments suggested by V. H. Ruinsey. 
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The current I. at the terminals of the slot is 

I. = 2 lim f H. • dl  (13-26) 

The path C2 is just putside the metal sheet and parallel to its surface. 
The factor 2 enters because only one-half the closed line integral is taken, 
the line integral over the other side of the sheet being equal by symmetry. 

(a)  ( 
Flo. 13-16. Slot antenna and complementary dipole antenna. 

Turning our attention to the complementary dipole antenna, let a gene-
rator be connected to the terminals of the dipole.  The driving-point 
impedance Zd at the terminals is the ratio of the terminal voltage V d to 
the terminal current /d. Let Ed and H d be the electric and magnetic fields 
of the dipole at any point P. Then the voltage at the dipole terminals is 

and the current is 

But 

and 

Vd =  Ed • dl  (13-27) 
c. 

= 2 lirn  H, • dl  (13-28) 
c, 

lira f Ed • dl = Zo urn f H. • dl 
c..  c.-.o C.  (13-29) 

him f H d • dl =  lim f E. • dl  (13-30) 
c,-.0 • c,  zao c,-.0 c. 
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where Z. is the intrinsic impedance of the surrounding medium. Substi-
tuting (13-27) and (13-26) in (13-29) yields 

Zo 
= —2 I.  (13-31) 

Substituting (13-28) and (13-25) in (13-30) gives 

Zr, 
V. =  

Multiplying (13-31) and (13-32) we have 

V. Vd _ 
I.  Id  —  4 

or 

Z.Zd = —4  or 

(13-32) 

(13-33) 

(13-34) 

Thus, we obtain Booker's result that the terminal impedance Z, of a slot 
antenna is equal to  of the square of the intrinsic impedance of the sur-
rounding medium divided by the terminal impedance Zd of the comple-
mentary dipole antenna. For free space Zo = 376.7 ohms, so 

Z: Z' = —  — 35 ,476  7 ohms'  (13-35) 
4Zd 

The impedance of the slot is proportional to the admittance of the dipole, 
or vice versa. Since, in general, Za may be complex, we may write 

35 476 35,476  ,D 2 
Z — n  jn .  —  n2 j_ y2 kiLd  .1"1v.  ,11 

a  na  ‘1,1 
(13-36) 

where Rd and X d are the resistive and reactive components of the dipole 
terminal impedance Zd.  Thus, if the dipole antenna is inductive, the slot 
is capacitative and vice versa. Lengthening a 4-wavelength dipole makes 
it more inductive, but lengthening a 4-wavelength slot makes it more 
capacitative. 
Let us now consider some numerical examples proceeding from known 

dipole types to the complementary slot types.  The impedance of an 
infinitesimally thin 4-wavelength antenna (L = 0.5 X and LID = .) is 
73 -I- j42.5 ohms (see Chap. 10). Therefore, the terminal impedance of 

1If the intrinsic impedance Zo of free space were unknown, (13-35) provides a 
means of determining it by measurements of the impedance Z. of a slot antenna and 
the impedance Zd of the complementary dipole antenna. The impedance Zo is twice 
the geometric means of Z. and Za or 

Zo 2 VI TZ,/ (13-37) 
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an infinitesimally thin 1-wavelength slot antenna (L = 0.5 X and 
L/w = co) is 

Z, — 73 + 3 35 '4.42.5 76  — 363 — j211 ohms 

See Fig. 13-17a. 

Half-wave dipole 

L4-1- - L 4 - 1 

D-+0  7 11-

Z=73+j42 5 

Resonant half-wave dipole 

L=0A75A-H  

0= 1-X0 005X mo  . 

Z= 67+j0 

'Full wave dipole 

I=  L=0 925X + m  

D=2L8a0.03 73X  
Z=710+10 

(a) 

(b) 

(c) 

"».32)" 

Resonant half-wave slot 

L-0.475X 

L -0.925X 

"Full wave" slot 

/ Z=50+10 /w=20740.06,6/y / 

no. 13-17.  Comparison of impedances of cylindrical dipole antennas with comple-
mentary slot antennas. 

As another more practical example, a cylindrical antenna with a length-
to-diameter ratio of 100 (L/D = 100) is resonant when the length is about 
0.475 wavelength (L = 0.475 X). The terminal impedance is resistive and 
equal to about 67 ohms. The terminal resistance of the complementary 
slot antenna is then 

35,476 
Z, —  67  530  j0 ohms 

See Fig. 13-17b. 
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The complementary slot has a length L = 0.475 X, the same as for the 
dipole, but the width of the slot should be twice the diameter of the cylin-
drical dipole. As indicated in Sec. 9-7, a flat strip of width w is equivalent 
to a cylindrical conductor of diameter D provided that w = 2D. Thus, 
in this example, the width of the complementary slot is 

2L  2 X 0.475 X 
w = 2D —  —  0.01 X 

100  100 

As a third example, a cylindrical dipole with an LID ratio of 28 and 
length of about 0.925 wavelength has a terminal resistance of about 
710 + j0 ohms. The terminal resistance of the complementary slot is 
then about 50 + j0 ohms so that an impedance match will be provided 
to a 50-ohm coaxial line. See Fig. 13-17c. 
If the slots in these examples are enclosed on one side of the sheet with 

a box of such size that zero susceptance is shunted across the slot terminals, 
due to the box, the impedances are doubled. 
The band width or selectivity characteristics of a slot antenna are 

the same as for the complementary dipole. Thus, widening a slot (smaller 
L/w ratio) increases the band width of the slot antenna the same as in-
creasing the thickness of a dipole antenna (smaller LID ratio) increases 
its band width. 
The above discussion of this section applies to slots in sheets of infinite 

extent. If the sheet is finite, the impedance values are substantially the 
same provided that the edge of the sheet is at least a wavelength from 
the slot. However, the measured slot impedance is sensitive to the nature 
of the terminal connections. 
13-6. Horn Antennas. Several types of horn antennas are illustrated in 

Fig. 13-18.  Those in the left column are rectangular horns.  All are 
energized from rectangular wave guides. Those in the right column are 
circular types. To minimize reflections of the guided wave, the transition 
region or horn between the wave guide at the throat and free space at 
the aperture could be given a gradual exponential taper as in Figs. 13-18a 
or e. However, it is the general practice to make horns with straight 
flares as suggested by the other types in Fig. 13-18. The types in Fig. 13-
186 and c are sectoral horns. They are rectangular types with a flare in 
only one dimension. Assuming that the rectangular wave guide is ener-
gized with a TE,0 mode wave electric field (E in y direction), the horn in 
Fig. 13-18b is flared out in a plane perpendicular to E. This is the plane 
of the magnetic field H. Hence, this type of horn is called a sectoral 
horn flared in the H plane or simply an H-plane sectoral horn. The horn 
in Fig. 13-18c is flared out in the plane of the electric field E, and, hence, 
it is called an E-plane sectoral horn. A rectangular horn with flare in both 
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planes, as in Fig. 13-18d, is called a pyramidal horn. With a TE10 wave in 
the wave guide the magnitude of the electric field is quite uniform in the 
y direction across the apertures of the horns of Figs. 13-186, c and d but 
tapers to zero in the x direction across the apertures. This variation is 
suggested by the arrows at the apertures in Figs. 13-186, c, and d. The 

RECTANGULAR HORNS 

Wave 
guide 

( a) Exponentially tapered pyramidal 

(b)Sectoral H-plane 

( d) Pyramidal 

(C)Sectorol E-r lane 

CIRCULAR HORNS 

(e) Exponentially tapered 

(g) TEM biconical 

(h)TE01 biconical 

no. 13-18.  T rpes of rectangular and circular horn antennas. 

arrows indicate the direction of the electric field E, and their length gives 
an approximate indication of the magnitude of the field intensity.  For 
small flare angles the field variation across the aperture of the rectangular 
horns is similar to the sinusoidal distribution of the TE10 mode across 
the wave guide. 
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The horn shown in Fig. 13-18f is a conical type. When excited with a 
circular guide carrying a TE, i mode wave, the electric field distribution 
at the aperture is as shown by the arrows. The horns in Fig. 13-18g and h 
are bizonical types. The one in Fig. 13-18g is excited in the TEM mode 
by a vertical radiator while the one in Fig. 13-18h is excited in the TE01 
mode by a small horizontal loop antenna. These biconical horns are non-
directional in the horizontal plane. 
Neglecting edge effects, the radiation pattern of a horn antenna can be 

determined if the aperture dimensions and aperture field distribution are 
known. For a given aperture the directivity is maximum for a uniform 
distribution. Variations in the magnitude or phase of the field across the 
aperture decrease the directivity. Since the H-plane sectoral horn (Fig. 
13-18b) has a field distribution over the x dimension which tapers to zero 
at the edge of the aperture, one would expect a pattern in the x-z plane 
relatively free of minor lobes as compared to the y-z plane pattern of an 
E-plane sectoral horn (Fig. 13-18c) for which the magnitude of E is quite 
constant over the y dimension of the aperture. This is borne out experi-
mentally. 
To obtain as uniform an aperture distribution as possible, a very long 

horn with a small flare angle is required. However, from the standpoint 
of practical convenience the horn should be as short as possible.  An 
optimum horn is between these extremes and has the minimum beam width 
without excessive side-lobe level for a given length. 
Consider the longitudinal section through a horn antenna of Fig. 13-19. 

FIG. 13-19.  Construction for finding path difference 8. 

The axial length of the horn is L, the aperture is A, and the total flare 
angle is 00. The length 8 is the difference in path length for a wave 
reaching the aperture at the axis and one reaching the aperture at the side 
of the horn. If 8 is a sufficiently small fraction of a wavelength, the field 
is nearly uniform over the entire aperture. For a constant length L the 
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directivity of the horn increases (beam width decreases) as the aperture 
A and flare angle O. are increased. However, if A and 4), become so large 
that 8 is equivalent to 180 electrical degrees, the field at the edge of the 
aperture is in phase opposition to the field at the axis. For all but very 
large flare angles the ratio L/L  is so nearly unity that the effect of 
the additional path length 5 on the distribution of the field magnitude 
can be neglected. However, when 8 = 180°, the phase reversal at the 
edges of the aperture reduces the directivity (increases side lobes).  It 
follows that the maximum directivity occurs at the largest flare angle for 
which (5 does not exceed a certain value (S). Thus, the optimum horn 
dimensions can be related by 

or 

Dr 

5. —   
cos (0/2) 

80 cos (0/2)  L — 
1 — cos (0/2) 

= 2 arccos L ± So 
(13-40) 

It turns out that the value of Bo must usually be in the range of 0.1 to 
0.4 free-space wavelength.' Suppose that for an optimum horn 8. = 0.25 
and that the axial length L = 10 A. Then from (13-40), 4). = 26°. This 
flare angle then results in the maximum directivity for a 10-wavelength 
horn. 
The path length, or 8 effect, discussed above is an inherent limitation 

of all horn antennas of the conventional type.' The relations of (13-38), 
(13-39), and (13-40) can be applied to all the horns of Fig. 13-18, to de-
termine the optimum dimensions. However, the appropriate value of So 

may differ as discussed in the following sections. Another limitation of 
horn antennas is that for the most uniform aperture illumination higher 
modes of transmission in the horn must be suppressed. It follows that 
the width of the wave guide at the throat of the horn must be between 
and 1 wavelength, or if the excitation system is symmetrical, so that even 
modes are not energized, the width must be between  and  wavelengths. 

'At a given frequency the wavelength in the horn X5 is always equal to or greater than 
the free-space wavelength X. Since X depends on the horn dimensions, it is more con-
venient to express do in free-space wavelengths X. 
'In the lens-compensated type of horn antenna (see Chap. 14) the velocity of the 

wave is increased near the edge of the horn with respect to the velocity at the axis in 
order to equalize the phase over the aperture. 
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13-7. The Rectangular Horn Antenna.' Provided that the aperture in 
both planes of a rectangular horn exceeds 1 wavelength, the pattern in 
one plane is substantially independent of the aperture in the other plane. 
Hence, in general, the H-plane pattern of an H-plane sectoral horn is the 
same as the H-plane pattern of a pyramidal horn with the same H-plane 
cross section. Likewise, the E-plane pattern of an E-plane sectoral horn 
is the same as the E-plane pattern of a pyramidal born with the same 
E-plane cross section. Referring to Fig. 13-20, the total flare angle in 

E-plane cross-section 

(a) (b) 
H-plane cross-section 

FIG. 13-20.  E-plane and H-plane cross sections. 

the E plane is 00 and the total flare angle in the H plane is dh. The axial 
length of the horn from throat to aperture is L, and the radial length is 
R. In Fig. 13-21a measured patterns' in the E plane and H plane are 
compared as a function of R. Both sets are for a flare angle of 20°. The 
E-plane patterns have minor lobes whereas the H-plane patterns have 
practically none. In Fig. 13-21b measured patterns2 for horns 8 wave-
lengths long are compared as a function of flare angle. In the upper row 
E-plane patterns are given as a function of the E-plane flare angle Bo, 
and in the lower row H-plane patterns are shown as a function of the 

1W. L. Barrow and F. D. Lewis, The Sectoral Electromagnetic Horn, Proc. I.R.E., 
27, 41-50, January, 1939. 
W. L. Barrow and L. J. Chu, Theory of the Electromagnetic Horn, Proc. I.R.E., 

27, 51-64, January, 1939. 
L. J. Chu and W. L. Barrow, Electromagnetic Horn Design, Trans. A.I.E.E., 68, 

333-337, July, 1939. 
F. E. Terman, "Radio Engineers' Handbook," McGraw-Hill Book Company, Inc., 

New York, 1943, pp. 824-837. This reference includes a summary of design data on 
horns. 
Chap. 10 by J. R. Risser, "Microwave Antenna Theory and Design," edited by S. 

Silver, McGraw-Hill Book Company, Inc., New York, 1949, pp. 349-365. 
Chap. 6, by G. Stavis and A. Dome, "Very High Frequency Techniques," by Radio 

Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947. 
'D. R. Rhodes, An Experimental Investigation of the Radiation Patterns of Electro-

magnetic Horn Antennas, Proc. I.R.E., 38, 1101-1105, September, 1948. 
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H-plane flare angle 00. For a flare angle 00 = 50° the E-plane pattern is 
split, whereas for 00 = 50° the H-plane pattern is not. This is because a 
given phase shift at the aperture in the E-plane horn has more effect 
on the pattern than the same phase shift in the H-plane horn. In the 
H-plane horn the field goes to zero at the edge of the aperture, so the 
phase near the edge is relatively less important. Accordingly, we should 

R= I \ 

4=20* 

560=20* 

R= X  R=4X  R=8X  R=16). 

(lt 
Ft= 2X  R  \  R=8X  R=16), 

000 

E-plane 

H- plane 

66=5.  6!-IO  9=2O  00=30° 00= 40°  00=50° 

/\)  C  

00=30° 00=4CP 

E-
plane 

= 50° 

H-
plane 

(a) 

ha. 13-21.  Measured E- and H-plane patterns of rectangular horns as a function of 
flare angle and horn length. (After Rhodes.) 

expect the value of Bo for the optimum H-plane horn to be larger than 
for the optimum E-plane horn. This is illustrated in Fig. 13-22 discussed 
in the next paragraph. 
From Rhodes's experimental patterns, optimum dimensions' were se-

lected for both E- and H-plane flare as a function of flare angle and horn 
length L. These optimum dimensions are indicated by the solid lines in 
Fig. 13-22. The corresponding half-power beam widths and apertures in 
wavelengths are also indicated. The dashed curves show the calculated 

Minimum beam width as a function of eo or 4N) for a constant length L. 
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Apertures 
in 

wavelengths 

\ AEA 

25  30 

optimum dimensions for rectangular horn 
are angle 00 in E plane and flare angle 00 in 
The corresponding half-power beam widths 
ted along the curves. Dashed curves show 
0.4 X. 

dimensions for a path length So = 0.25 X and So = 0.4 X. The value of 
0.25 X gives a curve close to the experimental curve for E-plane flare, 
while the value of 0.4 X gives a curve close to the experimental one for 
H-plane flare over a considerable range of horn length. Thus, the tolerance 
in path length is greater for H-plane flare than for E-plane flare as indi-
cated above. 
To illustrate the use of Fig. 13-22, 

suppose that we wish to construct an 
optimum horn with a 14° half-power 
beam width in the H plane. From 
the upper solid curve in Fig. 13-22, 
the horn should have a flare angle 
= 36° and a length L = 7.8.X. 

The corresponding H-plane aperture 
is 5 X. If the maximum directivity 
is also desired in the E plane with 
this same horn (L = 7.8 X), we note 
from the lower solid curve that 
the flare angle 00 in the E plane should be 29° and that the half-power 
beam width to be expected in the E plane is 12°.  The corresponding 
aperture E plane is about 4 X. Thus, although the E-plane aperture is 
not so large as the H-plane aperture, the beam width is less (but minor 

E-plans 
sectorol horn 

Fm. 13-23. Cylindrical 
E-plane sectoral horn. 

Axis ci halt 

x 

coordinates for 
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lobes larger) because the E-plane aperture distribution is more uniform. 
For horn operation over a frequency band it is desirable to determine the 
optimum dimensions for the highest frequency to be used, since (5 as 
measured in wavelengths is largest at this highest frequency. 
The field in a sectoral horn may be determined by developing from 

Maxwell's equations a wave equation in cylindrical coordinates and then 
finding a solution appropriate to the boundary conditions at the walls of 
the horn. The horn is considered as a sectoral guide of infinite length. 
The general solutions for the fields in the horn have been given by Barrow 
and Chu.' For example, the fields inside the E-plane sectoral horn are 
given in terms of the cylindrical coordinates (r, 0, z) of Fig. 13-23 by 

E = K, cos (22—w)[H12)(1cr)  K 21-11" (kr)]  (13-41) 

H, = .27-g—C1 sin (1-1[11 i2) (kr) ± K 211.1" (kr)] 
wow  w 

H1 = ig—(1 cos (11z-)[11 2) (kr)  K 2HV) (kr)] 
Ago 

(13-42) 

(13-43) 

where K, = complex constant 
ratio of reflected to incident wave amplitudes at a point in 
the horn 

k = A 632  —  0 0 0 2 

W  =  height of horn 
=  21rf 

= Hankel function of first kind and zero order 
HOE = Hankel function of second kind and zero order 
11 1) = Hankel function of first kind and first order 

= Hankel function of second kind and first order' 

'See W. L. Barrow and L. J. Chu, Theory of the Electromagnetic Horn, Proc. I.R.E., 
27, 51-64, January, 1939; also Chap. 10 by J. R. Risser, "Microwave Antenna Theory 
and Design," edited by S. Silver, McGraw-Hill Book Company, Inc., New York, 1949, 
pp. 349-365. 
21-10(1)(kr)  Jo(kr)  jNo(kr) 
How(kr) = Jo(kr) - jNo(kr) 
1/1(1)(kr) = JI(kr)  jAri(kr) 
1/1(1)(kr) = J t(kr) - jNi(kr) 

where J represents a Bessel function and N a Neumann function. 
Bessel and Neumann functions are somewhat analogous to sine and cosine functions. 

Similarly there is an analogy between Hankel functions and exponential functions. For 
example, compare 

and 
Hom(u) = Jo(u)  jNo(u) 

eiu = cos u  j sin u 
(Footnote continued on p. 379.) 



SEC. 13-7]  SLOT AND HORN ANTENNAS  379 

Assuming field distributions across the horn aperture of the type given 
above, the radiation-field patterns of horns have been calculated by 
Barrow' and by Chu.' The method is similar to that discussed in Chap. 4 
in which Huygens' principle is applied and the contributions to the far 
field integrated over the aperture. It is assumed that the aperture is at 
least several wavelengths. Edge effects are also neglected, that is, it is 
assumed that the field at the aperture is the same as though the sectoral 
guide extended to infinity. The actual field distribution differs from this 
because the abrupt termination of the sectoral guide at the aperture 
results in higher mode waves and also currents on the outside surface of 
the horn.  Hence, extremely close agreement between calculated and 
measured patterns is not to be expected. 
By calculating the radiation intensity in the direction of the horn axis 

and comparing this with the radiation intensity from an isotropic source 
radiating the same power, the directivity can be obtained for large sectoral 
horns. For example the directivity D for horns with only E-plane flare is 
given by Schelkunofe as 

D MR  =  A [c2 (  A Ex  )  s 2(  A Ex   )] 
W AS ‘lin  V211),  (13-44) 

where R = radial side length of horn (in Fig. 13-19, R = L  d) 
A g =  aperture of horn in E plane 
•  =  aperture of horn in E plane in free-space wavelengths 
•  =  aperture of horn in H plane in free-space wavelengths and 

where C and S indicate the Fresnel integrals. That is, 

And 

•  7rn2 
C(X) = I  Cos -2 du 

0 

•  Tn 2 
S(x) = a sin — du 2 

(13-45) 

(13-46) 

A cylindrical traveling wave may be represented by a Henkel function just as a plane 
traveling wave may be represented by an exponential function.  Thus, in (13-41), 
(13-42), and (13-43) 11(2) represents a cylindrical wave traveling in the +r direction, 
and Ho) represents a cylindrical wave traveling in the —r direction. 
1W. L. Barrow and L. J. Chu, Theory of the Electromagnetic Horn, Proc. I.R.E., 27, 

51-64, January, 1939; W. L. Barrow and F. M. Greene, Rectangular Hollow Pipe 
Radiators, Proc. I.R.E., 26, 1498-1519, December, 1938. 
11. J. Chu, Calculation of Radiation Properties of Hollow Pipes and Horns, J. Ap-

plied Phys., 11, 603-610, September, 1940. 
'S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Company, Inc., 

New York, 1943, pp. 360-365. 
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A simple approximate expression for the directivity of a horn antenna 
with large aperture may be written in terms of the maximum effective 
aperture. Thus, from (3-47) 

D = 741rA inAin,  (13-47) 

where Airk =  aperture in free-space wavelengths in E plane 
Aff =  aperture in free-space wavelengths in H plane 
7 = ratio of maximum effective aperture to physical aperture 

(see absorption ratio, Sec. 3-6). 
For optimum horns a value of 7  0.6 is appropriate. Thus, (13-47) 
becomes 

D  7.5 A Exit irk (13-48) 

The power gain G of the horn over a i-wavelength dipole antenna is then 

G  4.5 A skArix  (13-49) 

13-8. Beam-width Comparison. It is interesting to compare the beam 
width between first nulls and between half-power points for uniformly 
illuminated rectangular and circular apertures obtained in previous 
chapters with those for optimum rectangular horn antennas (sectoral or 

TABLE 13-1* 

Beam width in degrees 

Type of aperture 
Between 
first nulls 

Uniformly illuminated rectangular aperture 
or linear array 

Uniformly illuminated circular aperture 

Optimum E-plane rectangular horn 

Optimum H-plane rectangular horn 

115 

140 
Dx 

115 
Ain 

172 
AHX 

Between 
half-power points 

51 

58 
D), 

56 
A Ex 

67 
Ain 

*  = length of rectangular aperture or linear array in free-space wavelengths 
= diameter of circular aperture in free-space wavelengths 

AK,, = aperture in E plane in free-space wavelengths 
= aperture in H plane in free-space wavelengths 
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pyramidal). This is done in Table 13-1. In general, the relations apply 
to apertures that are at least several wavelengths.  The beam widths 
between nulls for the horns are calculated, and the half-power beam 
widths are empirical.' 
13-9. Circular Horn Antennas. The conical horn' (Fig. 13-18f) can be 

directly excited from a circular wave guide. Optimum dimensions can be 
determined from (13-38), (13-39), and (13-40) by taking (30 = 0.32 X. 
The biconical horns3 of Fig. 13-18 have patterns that are nondirectional 

in the horizontal plane (axis of horns vertical).  These horns may be 
regarded as modified pyramidal horns with a 360° flare angle in the hori-
zontal plane. The optimum vertical-plane flare angle is about the same 
as for a sectoral horn of the same cross section excited in the same mode. 

PROBLEMS 

13-1. What is the terminal impedance of a slot antenna boxed in to radiate only 
in one half-space whose complementary dipole antenna has a driving point impe-
dance of Z = 100 + j0 ohms. The box adds no shunt susceptance across the 
terminals. 
13-2. What dimensions are required of a slot antenna in order that its terminal 

impedance be 75 ± JO ohms. The slot is open on both sides. Use the empirical 
formula of Sec. 10-11 for the complementary dipole. 
13-3. What is the approximate maximum power gain of an optimum horn an-

tenna with a square aperture 10 wavelengths on a side? 
13-4. a. Calculate and plot the E-plane pattern of the horn of Prob. 3, assuming 

uniform illumination over the aperture. 
b. What is the half-power beamwidth and the angle between first nulls? 

1 Chap. 6, by G. Stavis and A. Dome, "Very High Frequency Techniques," by Radio 
Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947. 
*G. C. Southworth and A. P. King, Metal Horns as Directive Receivers of Ultra-

short Waves, Proc. I.R.E., 27, 95-102, February, 1939. 
A. P. King, The Radiation Characteristics of Conical Horn Antennas, Proc. I.R.E., 

38, 249-251, March, 1950. For optimum conical horns King gives half-power beam 
widths of 60/An in the E plane and 70/Am  in the H plane. These are about 6 per cent 
more than the values for a rectangular horn as given in Table 13-1. 
* W. L. Barrow, L. J. Chu, and J. J. Jansen, Biconical Electromagnetic Horns, Proc. 

I.R.E., 27, 769-779, December, 1939. 



CHAPTER 14 

LENS, LONG WIRE, 
AND OTHER TYPES OF ANTENNAS 

IN THIS chapter a considerable variety of antennas is considered. Some 
are combinations or modifications of types discussed in previous chapters, 
while others, such as the lens antennas treated in the first sections, are 
based on entirely different principles. 
14-1. Lens Antennas. At centimeter wavelengths many optical devices 

can be applied.  The parabolic reflector has already been considered 
(Chap. 12). The lens is another optical device which offers interesting 
possibilities. 
Lens antennas may be divided into two distinct types: (1) those in 

which the electrical path length is increased by the lens medium and (2) 

Dielectric lens 

Source 
or 

primary 
antenna 

Source 
or 

primary 
antenna 

\ \ 

.) ) ) ) )  

/ j / 
Wave fronts 

(a) 

Plane 
wave 
front 

Wave 
retarded 

E-plane metal plate lens 

(I)) 
Flo. 14-1.  Comparison of dielectric lens and E-plane metal-plate lens actions. 
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those in which the electrical path length is decreased by the lens medium. 
The first type is sometimes called a delay lens since the wave is retarded 
by the lens medium.  Dielectric lenses and H-plane metal-plate lenses 
belong to this type. E-plane metal-plate lenses belong to the second type. 
The actions of a dielectric lens and an E-plane metal plate lens are com-
pared in Fig. 14-1. 
The dielectric antennas may be subdivided into two groups: 
1. Lenses constructed of nonmetallic dielectrics, such as lucite or poly-
styrene 

2. Lenses constructed of metallic or artificial dielectrics 
These types are considered in the next two sections. 
14-2. Nonmetallic Dielectric Lens Antennas.' This type is similar to 

the optical lens.  It may be designed by the ray analysis methods of 
geometrical optics. As an example, let us determine the shape of the 
piano-convex lens of Fig. 14-la for transforming the spherical wave front 
from an isotropic point source or primary antenna into a plane wave front.2 

Source or 
primary antenna 

Pm 14-2. Path lengths in dielectric lens. 

The field over the plane surface can be made everywhere in phase by 
shaping the lens so that all paths from the source to the plane are of equal 
electrical length. This is the principle of equality of electrical (or optical) 
path length. Thus, in Fig. 14-2, the electrical length of the path OPP' 

1 A detailed discussion is given by J. R. Risser, Chap. 11, "Microwave Antenna 
Theory and Design," edited by S. Silver, McGraw-Hill Book Company, Inc., New 
York, 1949. 

2 A wave front is defined as a surface at all points of which the field is in the same 
phase. 
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must equal the electrical length of the path OQQ'Q". Or more simply 
OP must equal OQ'. Let OQ = L and OP = R, and let the medium sur-
rounding the lens be air or vacuum. Then, 

R  L , R cos 0 — L 
To = To 7- Xd 

where X. = wavelength in free space (air or vacuum) 
Xd =  wavelength in the lens 

Multiplying (14-1) by X. 

(14-1) 

R = L + n(R cos 0 — L)  (14-2) 

where n = Xo/Xd = index of refraction 
In general, 

)to  fX0  vo  Vme— 
Xd  fXd  Vd  

(14-3) 

where f = frequency 
vo = velocity in free space 
vd = velocity in dielectric 
12 =  permeability of the dielectric medium 
e = dielectric constant of the dielectric medium 
I Lo =  permeability of free space = 47 X 10-7 henry/meter 
eo = dielectric constant of free space = 8.85 X 10-12  farad/meter 

But 

and 
A = AoAr  (14-4) 

e = Eofr 

where µ, = Li  = relative permeability of dielectric medium 
Ato 

e, = —e = relative dielectric constant of dielectric medium 
(0 

Thus, from (14-3) 

n =  µ,e, 

(14-5) 

(14-6) 

For nonmagnetic materials pr is very nearly unity so that 

n = Ve—, 

The index of refraction of dielectric substances is always greater than 1. 
For vacuum e„ = 1 by definition. For air at atmospheric pressure e, = 
1.0006, but in most applications it is sufficiently accurate to take e, = 1 
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for air. The relative dielectric constant, index of refraction, and power 
factor for a number of lens materials are listed in Table 14-1 in order of 
increasing e,.  Although the dielectric constant of materials may vary 
with frequency (e, for water is 81 at radio frequencies and about 1.8 at 
optical frequencies), the table values are appropriate at radio wavelengths 

TABLE 14-1 

Relative 
Material dielectric Index of Power 

constant 
er 

refraction 
n 

factor 

Paraffin   2.1 1.4 0.0003 
Polyethylene   2.2 1.5 0.0003 
Lucite or plexiglass (methacrylic resin)   2.6 1.6 0.01 
Polystyrene   2.5 1.6 0.0004 
Flint glass   7 2.5 0.004 
Polyglas (TiO2 or titanate fillers)   4-16* 2-4 0.003 
Rutile (TiO2)   85-170t 9-13 0.0006 

*Depends on composition. 
tDepends on orientation of crystal with respect to field. 

down to the order of 1 cm. The power factor also is a function of frequency. 
The values listed merely indicate the order of magnitude at radio fre-
quencies. 
Returning now to Eq. (14-2) and solving for R, we have 

R 
(n - 1)L  

-  n cos 0 - 1 (14-7) 

This equation gives the required shape of the lens. It is the equation of 
a hyperbola. The distance L is the focal length of the lens.' The asymp-
totes of the hyperbola are at an angle 00 with respect to the axis. The 
angle 00 may be determined from (14-7) by letting R = co. Thus, 

1 
00 = arccos - n 

(14-8) 

The point 0 is at one focus of the hyperbola. The other focus is at 0'. 
For a point source at the focus the three-dimensional lens surface is a 
spherical hyperbola obtained by rotating the hyperbola on its axis. For 
an in-phase line source normal to the page (Fig. 14-2) as the primary 
antenna, the lens surface is a cylindrical hyperbola obtained by translating 

'The F or f number of a lens is the ratio of the focal distance to the diameter A of the 
lens aperture. Thus, F n. L/A. 
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the hyperbola parallel to the line source. The lens contours of Fig. 14-2 
illustrate but one of many possible lens configurations. 
Although Eq. (14-7) for the lens surface was derived without using 

Snell's laws of refraction,' these laws are satisfied by the lens boundary 
as given by (14-7). 
The plane wave emerging from the right side of the lens produces a 

secondary pattern with maximum radiation in the direction of the axis. 
The shape of the secondary pattern is a function of both the aperture A 
and the type of illumination. This aperture-pattern relation has been dis-

cussed in previous chapters. 
For an isotropic point-source pri-

mary antenna and a given focal dis-
tance L, the field at the edge of the 
lens (0 = 0,) is less than at the center 
(0 = 0), the effects of reflections at 
the lens surfaces and losses in the 
lens material being neglected. The 
variation of field intensity in the 

aperture plane of the spherical lens can be determined by calculating the 
power per unit area passing through an annular section of the aperture as a 
function of the radius p.2 Referring to Fig. 14-3, the total power IV through 
the annular section of radius p and width dp is given by 

W = 2wp dp P,  (14-9) 

where P, = power density (power per unit area) at radius p 
This power must be equal to that radiated by the isotropic source over 
the solid angle 2r sin o do. Thus, 

Fla. 14-3. Annular zone. 

W = 2ir sin 0 dO U  (14-10) 

where U = radiation intensity of the isotropic source (power per unit solid 
angle) 

Equating (14-9) and (14-10) 

p dp P, = sin 0 d0 U  (14-11) 

1 Snell's laws of refraction are (1) that the incident ray, the refracted ray, and the 
normal to the surface lie in a plane and (2) that the ratio of the sine of the angle of inci-
dence to the sine of the angle of refraction equals a constant for any two media. If the 
medium of the incident wave is air, the constant is the index of refraction n of the 
medium with the refracted ray. Thus, sin a/sin 13  n, where a is the angle between 
the incident ray in air and the normal to the surface and ft is the angle between the 
refracted ray in the dielectric medium and the normal to the surface. 

2 J. R. Risser, Chap. 11, "Microwave Antenna Theory and Design," edited by S. 
Silver, McGraw-Hill Book Company, Inc., New York, 1949. 
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and 

Et sin 0  
U  p(dp/c10) 

But p = R sin 0 and introducing the value of R from (14-7) 

(n cos 0 — 1)8   
P — 
°  (n — 1)8(n — cos 0)L2 U 

(14-12) 

(14-13) 

The ratio of the power density Po at the angle 0 to the power density 
Po at the axis (0 = 0) is given by the ratio of (14-13) when 0 = 0, to 
(14-13) when 8 = 0. Thus, 

P.   (n cos 0 — 1)8 
Po — (n — 1)2(n — cos 0) 

(14-14) 

In the aperture plane the field-intensity ratio is equal to the square root 
of (14-14), or' 

E.  \IP-0  1  l(n cos 0 — 1)8 
Eo n —  n — cos 0 

(14-15a) 

The ratio E,/E0 is the relative field intensity at a radius p given by 
p = R sin 0. For n = 1.5, 

E. 
— = 0.7 at 0 = 20° 
Eo 

and 

Es 
— = 0.14 at 0 = 40° 

Hence, for a nearly uniform aperture illumination an angle 0, to the edge 
of the lens even less than 20° is essential unless the pattern of the primary 
antenna is an inverted type, that is, one with less intensity in the axial 
direction (0 = 0) than in directions off the axis. For a constant size of 
aperture a small value of 0, results in a large focal length L. 
Instead of uniform aperture illumination, a tapered illumination may 

be desired in order to suppress minor lobes. Thus, in the above example 

' Equation (11-15 1) is for a spherical lens. Attenuation in the lens is neglected. For a 
cylindrical lens the field intensity ratio is 

Eo   n cos 0 — 1 

Eo Vin — 1)(n — cos 0) 

where Eo/Eo is the relative field intensity at a distance y from the axis given by 
y = R sin 0 

(14-156) 
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with 0, = 40°, the field at the edge of the lens is 0.14 its value at the 
center. The disadvantage of this method of producing a taper is that the 
lens is bulky (Fig. 14-4a).  An alternative arrangement, shown in Fig. 
14-4b, has a lens of smaller 01 value with the desired taper obtained with 
a directional primary antenna at a larger focal distance (relative to the 
aperture). The lens in this case is less bulky, but the focal distance is 
larger (F number larger). 
For compactness and mechanical lightness it would be desirable to corn-

Isotropic 
primary 
antenna 

Directional 
primary ontenno 

(a) 

(b) 

1(  

2X0 
Primary 
antenna 

(C) 

FIG. 14-4.  Short-focus lens (a), long-focus lens (6), and zoned lens (c). 

Zoned lens 

bine the short focal distance of the lens at (a) with the light weight of 
the lens at (b). This combination may be largely achieved with the short 
focal distance zoned lens of Fig. 14-4c. The weight of this lens is reduced 
by the removal of sections or zones, the geometry of the zones being such 
that the lens performance is substantially unaffected at the design fre-
quency. Whereas the unzoned lens is not frequency sensitive, the zoned 
lens is and this may be a disadvantage. The thickness z of a zone step 
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is such that the electrical length of z in the dielectric is an integral number 
of wavelengths longer (usually 1) than the electrical length of z in air. 
Thus, for a 1-wavelength difference 

2 z _ _ — = 1  (14-16) 
Xd  X0 

or 

X0 z —  (14-17) 
n — 1 

For a dielectric with index of refraction n = 1.5 

z = 2X0 

that is, each zone step is twice the free-space wavelength. Since n = 

Xo/kt 
z = 3X4 

Thus, in this case, the electrical length of z in the dielectric is 3 wave-
lengths, while the electrical length of z in air is 2 wavelengths (see Fig. 
14-4c). 
In lens antennas the primary antenna does not interfere with the plane 

wave leaving the aperture as it does in a symmetrical parabolic reflector 
(Fig. 12-18.2b). However, the energy reflected from the lens surfaces may 
be sufficient to cause a mismatch of the primary antenna to its feed line 

..L 2F d guide 

---....., 

Primary 
antenna 

Primary 
antenna 
- -,' 

(a) 

Antenna axis 

T 

( 6) 

FIG. 14-5. Reflected waves entering primary antenna (a) and refocused to one side 
of primary antenna (b). 
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or guide. In the lens of Fig. 14-5a reflections from the convex surface of 
the lens do not return to the source except from points at or near the axis. 
This is not serious. But the wave reflected internally from the plane lens 
surface is refocused at the primary antenna and may be disturbing. In 
this case, the wave is reflected at normal incidence, and the reflection co-
efficient is 

Zo — Z 

P Zo Z 
(14-18) 

where Zo = intrinsic impedance of free space = 
Z = intrinsic impedance of dielectric lens material = Vi.t/e 

Thus, 

(Zo/Z) — 1 n — 1 
P (Zo/Z) ± 1  n  1 

(14-19) 

where n = the index of refraction of the dielectric lens material 
For n = 1.5, p = 0.2; while for n = 4, p = 0.6. Hence, for a small 

reflection a low index of refraction is desirable. The reflection can also be 
minimized by other methods. For example, a I-wavelength plate can be 
applied to the plane lens surface with the refractive index of the plate 
made equal to Vti, where n is the refractive index of the lens proper.' 
Another method is to use a type of lens which does not have an equiphase 
surface. A third method is to tilt the lens slightly as indicated in Fig. 
14-5b so that the reflected wave refocuses to one side of the primary 
antenna. 
14-3. Artificial Dielectric Lens Antennas. Instead of using ordinary, 

nonmetallic dielectrics for the lens, Kock' has demonstrated that artificial 
or metallic dielectrics can be substituted, generally with a saving in weight. 
Whereas the ordinary dielectric consists of molecular particles of micro-
scopic size, the artificial dielectric consists of discrete metal particles of 
macroscopic size. The size of the metal particles should be small com-
pared to the design wavelength to avoid resonance effects. It is found 
that this requirement is satisfied if the maximum particle dimension 
(parallel to the electric field) is less than I wavelength. A second require-
ment is that the spacing between the particles be less than a wavelength 
to avoid diffraction effects. 
The particles may be metal spheres, discs, strips, or rods. For example, 

'In general the refractive index of a I-wavelength matching plate between two media 
should be equal to the geometric mean of the indices of the two media. This is equiva-
lent to saying that the intrinsic impedance Z,, of the plate material is made equal to the 
geometric mean of the intrinsic impedances Z1 and Z2 of the two media.  Thus, 

Zt, = VZIZt. 
2W. E. Kock, Metallic Delay Lens, Bell System Tech. J., 27, 58-82. January, 1948. 
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a piano-convex lens constructed of metal spheres is illustrated in Fig. 14-6. 
The spheres are arranged in a three-dimensional array or lattice structure. 
Such an arrangement simulates the crystalline lattice of an ordinary 
dielectric substance but on a much 
larger scale. The radio waves from the 
source or primary antenna cause oscil-
lating currents to flow on the spheres. 

The spheres are, thus, analogous to the  Source oscillating molecular dipoles of an ordi-  L  
•  - 

nary dielectric. 
An artificial dielectric lens can be de-

Plane signed in the same manner as an ordi-  wove 

nary dielectric lens (Sec. 14-2). To do  FIG. 14-6. Artificial dielectric lens of 
this, it is necessary to know the effec-  metal spheres. 
tive index of refraction of the artificial 
dielectric. This can be measured experimentally with a slab of the material, 
or it can be calculated approximately by the following method of analysis.' 
Although metal discs or strips' are generally preferable to spheres because 

El 
Cross section of lens 

PP 

Convex side of lens 

( a)  ( b) 
Fm. 14-7. Artificial dielectric lens of flat metal strips. 

they are lighter in weight, the sphere is more readily analyzed, and the 
method will be illustrated for the case of the sphere. 
Let an uncharged conducting sphere be placed in an electric field E as 

in Fig. 14-8a. The field induces positive and negative charges as indicated. 
At a distance the effect of these charges may be represented by point 
charges +q and —q separated by a distance 1 as in Fig. 14-8b. Such a 
configuration is an electric dipole of dipole moment ql. At a distance r >> 1 
the potential due to the dipole is given by 

v = ql cos 0 
47€0r2 

1 W. E. Kock, Metallic Delay Lens, Bell System Tech. J., 27, 58-82, January, 1948. 
' The strips may be continuous in a direction perpendicular to the electric field as 

indicated in Fig. 14-7. 

(14-20) 
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The polarization P of the artificial dielectric is given by 

P = Nql  (14-21) 

where N = number of spheres per cubic meter 
1 = vector joining the charges q 

The electric displacement D, the electric field intensity E, the polarization 
P are related by 

D = eE = eoE + P  (14-22) 

where eo = dielectric constant of free space 
Thus, the effective dielectric constant e of the artificial dielectric medium is 

P 
e = eo ± -i = so - I - N V (14-23) 

Hence, if the number of spheres per unit volume and the dipole moment 
per unit applied field are known, the effective dielectric constant can be 

(b) 
FIG. 14-8. Charged sphere and equivalent dipole. 

determined. Let us now determine the dipole moment per unit applied 
field. 
We have E = — V V. Then in a uniform field the potential 

V = — f E cos 0 dr = —Er cos 0  (14-24) 

where 0 is the angle between the radius vector and the field (see Fig. 14-8b). 
The potential Vo outside the sphere placed in an originally uniform field 
is the sum of (14-20) and (14-24) or 

al cos 0 
V,, = —Er cos 0 + ------

4reor2 
(14-25) 
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At the sphere (radius a) (14-25) becomes' 

a/ cos 0 
0 = —Ea cos 0 ± 

4e-eoa2 

and solving for ql/E we obtain 

= 4r  3 
E  e2a  

393 

(14-26) 

Introducing this value for the dipole moment per unit applied field in 
(14-23) 

or 

e  eo 4reoNas 

e, = 1 + 4711ras (14-27) 

where e, = effective relative dielectric constant of the artificial dielectric. 
If the effective relative permeability of the artificial dielectric is unity, 

the index of refraction is given by the square root of (14-27). However, 
the lines of magnetic field of a radio wave are deformed around the sphere 
since high-frequency fields penetrate to only a very small distance in good 
conductors. The effective relative permeability of an artificial dielectric 
of conducting spheres is 

Mr = 1 — 2e-Nce 

TABLE 14-2* 

ARTIFICIAL DIELECTRIC MATERIALS 

(14-28) 

Type of 
particle 

Relative 
dielectric 
constant e, 

Relative 
permeability 

p, 

. 
Index of 
refraction n 

Sphere   1 ± 4rNa3 1 — 27Na3 •\/(1 -1-- 4rNa3)(1 — 2rNa3) 

Disc   1 + 5.3Na2 ,-,-,1 V1 ± 5.3Na 3 

Strip   1 ± 7.8N'w2 ,-,1 V1 ± 7 .8Nito2 

•N — number of spheres or discs per cubic meter 
a  radius of sphere or disc in meters 
N' — number of strips per square meter in lens cross section (see Fig. 14-7a) 
w  width of strips in meters (see Fig. 14-7) 

The potential of the sphere is zero since there is as much positive as negative charge 
on its surface. 
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The effective index of refraction of the artificial dielectric of conducting 
spheres is then given by 

n = Ve,µ, = V(1 + 471-Na3)(1 — 22-Na3)  (14-29) 

Equation (14-29) gives a smaller n than obtained by the square root of 
(14-27) alone. According to (14-29) the index of refraction of an artificial 
dielectric of conducting spheres can be calculated if the radius a of the 
sphere (in meters) and the number N of spheres per cubic meter are known. 
The relative permeability of disc or strip-type artificial dielectrics is more 
nearly unity so that one can take \/,. as their index of refraction. Theo-
retical values of e„ ,u,., and n for artificial dielectrics made of conducting 
spheres, discs, and strips are listed in Table 14-2. 1 According to Kock the 
table values are reliable only for e, < 1.5, and only approximate for larger 
e,. For e, > 1.5, N becomes sufficiently large that the particles interact 
because of their close spacing. This effect is neglected by the formulas. 
14-4. E-plane Metal-plate Lens Antennas.' Whereas the ordinary and 

artificial dielectric lens depend for their action on a retardation of the 
wave in the lens, the E-plane metal-plate type of lens depends for its 

FIG. 14-9. Wave between 
plates in E-plane type of 
metal-plate lens. 

2V0 

vo  

 0 
0 5  1:0  15  2 0 

b in tree space wavelengths 

Fru. 14-10. Velocity v of wave be-
tween parallel plates and equivalent 
index of refraction n as a function of 
spacing b between plates. 

action on an acceleration of the wave by the lens. In this type of lens the 
metal plates are parallel to the E plane (or plane of the electric field). 
Referring to Fig. 14-9, the velocity v of propagation of a TEio wave (E as 

I From W. E. Kock, Metallic Delay Lens, Bell System Tech. J., 27, 58-82, January, 
1948. 

2 W. E. Kock, Metal Lens Antenna, Proc. I.R.E., 34, 828-836, November, 1946. 
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indicated) in the x direction between two parallel conducting plates of 
large extent is given by' 

V — 

\11 — 
x )2 

Vo 

(14-30) 

where vo = velocity in free space 
X = wavelength in free space 
b = spacing of plates or sheets 

The plates act as a guide, transmitting the wave for values of b > X/2. 
The spacing b = X/2 is the critical spacing since for smaller values of b 
the guide is opaque and the wave is not transmitted. The variation of the 
velocity for a fixed wavelength as a function of the plate spacing b is 
illustrated in Fig. 14-10. The velocity of the wave between the plates is 
always greater than the free-space velocity vo. It approaches infinity as 
b approaches 0.5 X, and it approaches vo as b becomes infinite. 
The equivalent index of refraction of a medium constructed of many 

such parallel plates with a spacing b is 

v  2b 
(14-31) 

The index is always less than 1 as shown in Fig. 14-10. 
The acceleration of waves between plates has been applied2 in a metal-

plate lens for focusing radio waves. For instance, a metal lens equivalent 
to the plano-convex dielectric lens of Fig. 14-la or Fig. 14-2 is a plano-
concave type as illustrated in Fig. 14-11. The plates are cut from flat 

FIG. 14-11.  E-plane type of metal-plate lens. 

sheets, the thickness t at any point being such as to transform the spherical 
wave from the source into a plane wave on the plane side of the lens. The 
electric field is parallel to the plates. 

IL. J. Chu and W. L. Barrow, Electromagnetic Waves in Hollow Metal Tubes of 
Rectangular Cross Section, Proc. I.R.E., 26, 1520-1555, December, 1938. 
2W. E. Kock. Metal Lens Antennas, Proc. I.R.E., 34, 828-836, November, 1946. 
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The lens plate on the axis of the lens in Fig. 14-11 i shown in Fig. 14-12. 
The shape of the plate can be determined by the principle of equality of 
electrical path length. Thus, in Fig. 14-12 OPP' must be equal to OQQ' 
in electrical length. Or 

L  R  L— Rcos0 
— 

where X = wavelength in free space 
X, = wavelength in lens 

Then 

R 
(1 — n)L  

— 1 — n  cos 0 

(14-32) 

(14-33) 

This relation is identical with (14-7). However, to keep both numerator 
and denominator positive (since n < 1 in the present case), the numerator 
and denominator of (14-7) should be multiplied by minus 1. With n < 1, 

(14-33) is the equation of an ellipse. 
The three-dimensional concave sur-
face of the lens in Fig. 14-11 would be 
generated by rotating the contour for 

Et  the center plate, as given by (14-33), 
on the axis. If the primary antenna 
were a line source perpendicular to the 
page in Fig. 14-12, all the plates would 
be identical and the lens surface 
would be in the form of an elliptical 
cylinder. 
Waves entering the lens of Fig. 

14-11 at the point P obey Snell's laws of refraction. However, this is not 
necessarily the case for waves entering at P' where the metal plates con-
strain the wave to travel between them. E-plane metal-plate lenses may be 

Fm. 14-12. Geometry for E-plane type 
of metal-plate lens. 

Source 

E 

(a) 

Source) 

(b) 
Fla. 14-13. Cross sections of constrained types of E-olane metal-plate lenses. 
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constructed that have only such constrained 
illustrated in cross section in Fig. 14-13. Both 
the page. The electric field E is paral-
lel to the source. All lens cross sec-
tions perpendicular to the line sources 
are the same as the ones shown in the 
figure. In the lens at (a) the spacing 
between plates is uniform, but the 
width varies from plate to plate. In 
the lens at (b) all plates have the same 
width, but the spacing varies. 
A disadvantage of the E-plane 

metal-plate lens as compared to the 
dielectric type is that it is frequency-
sensitive, that is, the lens has a relatively small band width. To determine 
the band width,' consider the geometry of Fig. 14-14.  At the design 
frequency f 

ANTENNAS  397 

or 

refraction. Two types are 
have a line source normal to 

Fro. 14-14. 
considerations. 

L  R  t 

Geometry for band-width 

L = R + nt 

where n = index of refraction at the design frequency f 
At some other frequency f' 

(14-34) 

(14-35) 

L +  = R + n't  (14-36) 

where 6 = the difference in electrical path length of OQ and OPP' 
n' = index of refraction at the frequency f' 

Subtracting (14-35) from (14-36) 

= An t  (14-37) 

where An = n' — n 
But for a small wavelength difference AX, 

an 
= — ax (14-38) 

Introducing n from (14-31) into (14-38), differentiating, and substituting 
this value of An in (14-37) yields 

o — n2 — 1 AX° 
n  X0 

(14-39) 

1.1. R. Risser, Chap. 11, "Microwave Antenna Theory and Design," edited by S. 
Silver, McGraw-Hill Book Company, Inc., New York, 1949. 
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or 

n a  
IXo - (1 — n2)t 

[CHAP. 14 

(14-40) 

The total band width B is twice (14-40) so 

B 
2n a 2n  8), 

—  (14-41) 
(1 — n2)t  - 1 — n2 4 

where a), = maximum tolerable path difference in free-space wavelengths 
4 = thickness of lens plate at edge of lens in free-space wavelengths 

If we arbitrarily take ô = 0.25 X, 

50n   
B — 

(1 — n2)t7° 

For n = 0.5 and t = 6 X, the band width 

B = 5.5% 
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(14-42) 

FIG. 14-15.  Zoned type of E-plane metal-plate lens with a square aperture 40 wave-
lengths on a side. (Courtesy W. E. Kock, Bell Telephone Laboratories.) 
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Thus, the usable frequency band for 
design frequency.' Although zoning 
sensitivity, the effect of zoning an 
E-plane metal-plate lens is to de-
crease the frequency sensitivity. 
Hence, zoning is desirable with E-
plane metal-plate lens, both to save 
weight and to increase the band 
width. An E-plane metal-plate lens 
40 wavelengths square with nine 
zones is illustrated in Fig. 14-15. The 
radiation-field patterns of this lens, 
fed with a short primary horn an-
tenna, are shown in Fig. 14-16. 
The band width of a zoned E-

plane metal-plate lens is given ap-
proximately by 

B —   1 50n  Kn %  (14-43) 

where n = index of refraction at the design frequency 
K = number of zones. The zone on the axis of the lens is counted 

as the first zone. 
A zoned lens comparable to the unzoned lens of n = 0.5, t = 6 X, and 
B = 5.5 per cent, has n = 0.5 and K = 3 since with n = 0.5, K  4/2. 
The band width B of this zoned lens is 10 per cent, or nearly double the 
band width of the unzoned lens. 
The maximum absorption ratio 7 to be expected of large lens antennas 

is about 0.6 so that the directivity and gain are about the same as for 
optimum horns of the same size aperture [see (13-48) and (13-49)]. 
Referring to Fig. 14-17a, the thickness z of a zone step is given by 

this antenna is 5.5 per cent of the 
a dielectric lens introduces frequency 

5 

-10 

15 

20 

-25 

-30 

-35 

0  Kr -30* -20  -10' 20 30* 

or 

Flo. 14-16. E-plane pattern (solid) and 
H-plane pattern (dashed) of 40-wave-
length square zoned E-plane lens of Fig. 
14-15. (After W. E. Kock.) 

z  z 
X  X, 

—   
1 — n 

(14-44) 

2AX  Xi —  — (1/A)  — — I, 2.1f 

(11f)  lift  — 
where X = 

I = 
xi = 
X2 = 
f = 
12 = 

design wavelength 
design frequency 
short wavelength limit of band 
long wavelength limit of band 
high-frequency limit of band 
low-frequency limit of band 
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The equation for the contour of the zoned lens is the same as (14-33) for 
the unzoned lens except that L is replaced by Lb where 

— 1)X 
Lk = L  (K —  — L  (K — 1)z  (14-45) 

1  n 

For the first zone (on the axis) Lk = L. For the second zone Lk = L  z, 
for the third zone Lk = L  2z, etc. 
To shield against stray radiation from the source side of a lens, a 

metallic enclosure may be used as in Fig. 14-17b. This enclosure forms an 
electromagnetic horn of wide flare angle with a lens at the aperture. With-

( a)  ( b) 

no. 14-17.  (a) Zoned lens plate. (6) Horn with lens. 

Lens 

out the lens an optimum horn of the same aperture would be much longer 
(smaller flare angle).  The fact that the lens permits a much shorter 
structure for the same size aperture is, perhaps, the principal advantage of 
a lens or lens-horn combination over a simple horn antenna. 
14-5. Tolerances on Lens Antennas.' Let the maximum allowable vari-

ation ô in electrical path length be arbitrarily set at wavelength (5 =  
In a dielectric lens, differences in the path length may be caused by devia-
tions in thickness from the ideal contour and by variations in the index 
of refraction.  Then assigning an allowable variation of X/16 to each 
cause, we have as the thickness tolerance that 

At  At _ 1 
Xd  —  X  —  16 

or 

At —   
16(n — 1) 

or 
0.03 X 

At — 3  2(n —1) —  (14-46) ±n — 1 

1J. R. Risser, Chap. 11, "Microwave Antenna Theory and Design," edited by S. 
Silver, McGraw-Hill Book Company, Inc., New York, 1949. 

2 The maximum allowable deviation from the mean is then ±1/16 wavelength. 
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For n = 1.5 

At = ±0.06X 

For the tolerance on n 

X 
An t = .1 

or 

0.03 
An — ± 4, 

where tx = thickness of lens in free-space wavelengths 
Dividing (14-47) by n 

An  3 _ = ±_._ oz, 
n  nix '" 

(14-47) 

(1448) 

If n = 1.5 and t = 4 X, An/n = ±4%. 
In an E-plane metal-plate lens the path length may be affected by both 

the thickness of the lens and by the spacing b between lens plates. Taking 
/3 = X/8 as for the dielectric lens and assigning X/16 to each cause, we have 
as the thickness tolerance that 

X   0.03 X 
t — 1 — n 16(1 — n)  (14-49a) 

For the tolerance on the spacing b between plates we have 

A b  3n   
(14-40) 

b — ± (1 — n2)4 %  

It is interesting to compare these tolerances with the surface contour 
requirement of a parabolic reflector. A displacement Ax normal to the 
surface of the reflector at the vertex (that is, a displacement in the axial 
direction) results in a change in wave path of 2 Ax. Taking a = X/8, as 
for the lens antennas, the tolerance Ax on normal surface displacements of 
the reflector surface is given by 

X 
Ax = ±3-2 = ±0.03 X (14-50) 

This is a severe requirement for a large reflector and small wavelength, 
since it means that the surface contour should be maintained to ± 0.03 X 
with respect to the vertex and focus as reference points. This places a 
severe limitation on the allowable warping or twisting of the reflector. 
In contrast to this, the thickness tolerance on a lens refers only to the 
thickness dimension. It does not imply that the lens contour be main-
tained to this accuracy. With a lens, a relatively large amount of warping 
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or twisting can be tolerated, and this is an important advantage of this 
type of antenna. Furthermore, the lens axis can be tilted a considerable 
angle r with respect to the axis through the primary antenna and center 
of the lens (see Fig. 14-5b) without serious effects.' 

TABLE 14-3 
TOLERANCES ON LENS AND REFLECTOR ANTENNAS 

Type of antenna Type of tolerance Amount of tolerance 

Parabolic reflector Surface contour ±0.03 X 

Dielectric lens* (unzoned) 

Thickness 

Index of refraction 

0.03 X 
±n — 1 

3 

Dielectric lens* (zoned) 
Thickness 

Index of refraction 

± 3% 

3(n — 1) , 
±  70 n 

E-plane metal-plate lenst (unzoned) 

Thickness 

Plate spacing 

0.03 X 
± 1 — n 

3n   
±  2 %  ( 1 .._. ni  ix 

E-plane metal-plate lensf (zoned) 
Thickness 

Plate spacing 

± 3% 

3n 

n = index of refraction 
t = lens thickness 
tx •• lens thickness in free-space wavelengths 
• n > 1. 
t n < 1. 

The above-mentioned tolerances are summarized in Table 14-3. Toler-
ances for zoned lenses are also listed. These are derived from the unzoned 
lens tolerances by taking the dielectric lens thickness as nearly equal to 

'But little difference in radiation-field patterns of an E-plane metal-plate lens antenna 
is revealed for a tilt angle 7 as large as 30° according to patterns presented by Friis and 
Lewis. See H. T. Friis and W. D. Lewis, Radar Antennas, Bell System Tech. J., 26, 
270, April, 1947. 
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X/n — 1 and the metal-plate lens thickness as nearly equal to X/1 — n. If 
the index tolerance of the lens antenna is zero, then the allowable tolerance 
on the thickness is doubled, or vice versa. Likewise, if the plate-spacing 
tolerance of the E-plane metal-plate lens antenna is zero, the thickness 
tolerance is doubled or vice versa. All tolerances in the table are based 
on a maximum allowable deviation in path length (from all causes) of 
±X/16 from a mean value (total variation ö = X/8). For a larger allowable 
deviation in path length the tolerances are proportionately greater. For 
example, if the total variation 6 = X/4, the tolerances are doubled. 
14-6. H-plane Metal-plate Lens Antennas.' A wave entering a stack of 

metal plates oriented parallel to the H plane (perpendicular to the E 

Direction 
of wave 

El 

(a) 

(e) 

Direction 
of wave 

El 

Source 

Slanted 
metal plates 

Fla. 14-18.  (a) H-plane stack of flat metal plates. (b) H-plane stack with increased 
path length. (c) Slanted H-plane plates. (d) H-plane metal-plate lens using slanted 
plate construction. 

plane) as in Fig. 14-18a is affected but little in its velocity. However, 
the wave is constrained to pass between the plates so that, once inside, the 
path length can be increased if the plates are deformed, as suggested in 
Fig. 14-18b. An increase in path length can also be produced by slanting 
the plates as at (c). The increase of path length is S — T. Using the 

1W. E. Kock, Path Length Microwave Lenses, Proc. I.R.E., 37, 852-855, August, 
1949. 
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slant plate method of increasing the path length, an H-plane metal-plate 
lens can be designed by applying the principle of equality of electrical 
path length. This type of lens is called an H-plane type since the plates 
are parallel to the magnetic field (perpendicular to the E plane). 
Referring to Fig. 14-18d, the condition for equality of electrical path 

length requires that 

R cos 0 — L 
R = L  (14-51a) 

cos E 

or 

(n — 1)L  
R —  (14-51b) 

n cos 0 — 1 

where n = 1/cos E = effective index of refraction of the slant plate lens 
medium 

In this case the index of refraction is equal to or greater than 1 so that 
(14-51b) is identical with (14-7) for a dielectric lens. The index n depends 
only on the plate slant angle E and is not a function of the frequency as 
in the E-plane type of metal-plate lens. The most critical dimension is 
the path length S in the lens. This may be affected by a change in T or 
in E. Assuming a maximum allowable variation ö = X/8 in electrical path 
length, the tolerance in S is given by 

AS = ±0.06 X 

A disadvantage of the H-plane metal-plate lens is that this type of con-
struction tends to produce unsymmetrical aperture illumination in the E 
plane. 
14-7. Polyrod Antennas.  A dielectric rod or wire can act as a guide for 

electromagnetic waves.'  The guiding action, however, is imperfect since 
considerable power may escape through the wall of the rod and be radiated. 
This tendency to radiate is turned to advantage in the polyrod antenna,2 
so-called because the dielectric rod is usually made of polystyrene. A 
6-wavelength-long polyrod antenna is shown in cross section in Fig. 14-19a. 
The rod is fed by a short section of cylindrical wave guide which, in turn, 

1D. Hondros and P. Debye, Elektromagnetische Wellen an dielektrischen Drahten, 
Ann. Physik, 32, 465-476, 1910. 
S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Company, Inc., 

New York, 1943, pp. 425-428. 
R. M. Whitmer, Fields in Non-metallic Guides, Proc. I.R.E., 36, 1105-1109, Sep-

tember, 1948. 
'G. E. Mueller and W. A. Tyrrell, Polyrod Antennas, Bell System Tech. J., 26, 837-

851, October, 1947. 
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is energized by a coaxial transmission line. This type of polyrod acts as 
an end-fire antenna.' 
The phase velocity of wave propagation in the rod and also the ratio 

of the power guided outside the rod to the power guided inside are both 
functions of the rod diameter D in wavelengths and the dielectric constant' 
of the rod material.' For polystyrene rods with D < X/4, the rod possesse-s 

Tuning 
stub 

14 3X  3X   

0.5X  D  Polystyrene 
Circular metal tubing 

wave guide 

IkCooxial feed line 
(a) 

0 

(b) 

Maximum 
radiation 

Fio. 14-19.  (a) Cylindrical polystyrene antenna 6 wavelengths long in cross section. 
(b) Radiation pattern. (After Mueller and Tyrrell.) 

little guiding effect on the wave, and only a small fraction of the power is 
confined to the inside of the rod. The phase velocity in the rod is also 
close to that for the surrounding medium (free space). For diameters of 
the order of a wavelength, however, most of the power is confined to the 
rod, and the phase velocity in the rod is nearly the same as in an unbounded 
medium of polystyrene. For increased directivity operation the diameter 
D), in free-space wavelengths of a uniform rod (length LA > 2 and 2 < 
er < 5) is 

3   
D), '•••     41'  2/A ± 0.2  (14-52a) 

In practice, polystyrene rod diameters in the range 0.5 X to 0.3 X are used.' 

An end-fire polyrod antenna may be regarded as a degenerate form of lens antenna 
with an effective lens cross section of the order of a wavelength. See Gilbert Wilkes, 
Wavelength Lens, Proc. I.R.E., 36, 206-212, February, 1948. 
'The relative dielectric constant fr 2.5 for polystyrene. See Table 14-1. 
'G. E. Mueller and W. A. Tyrrell, Polyrod Antennas, Bell System Tech. J., 26, 

837-851, October, 1947. 
'To transmit the lowest (TEii) mode in a circular wave guide, the diameter D of the 

guide must be at least 0.58 X/ VT, where x is the free-space wavelength and e, is the 
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The rod may be uniform or to reduce minor lobes can be tapered as in 
Fig. 14-19a. This polyrod is tapered halfway and uniform in cross section 
the remainder of its length. The diameter D is 0.5 X at the butt end and 
0.3 X at the far end. The radiation-field pattern for this polyrod as given by 
Mueller and Tyrrell is shown in Fig. 14-19b. The gain over an isotropic 
source is about 16 db. 
To a first approximation the radiation pattern of a polyrod antenna 

excited uniformly along its length may be calculated by assuming that it 
is a continuous array of isotropic point sources with a phase shift of about 
300 (1 -I- 1/2Lx) deg/wavelength of antenna, where LA is the total length 
of the antenna in wavelengths.' The relative field pattern as a function 
of the angle 0 from the axis is then given by 

sin (1,1//2)  
E(0) —  (14-52b) 

1  1 
where IV = 2114 cos 9 — 2wL),(1  = 2r[LA(cos e — 1) — 

The radiation field could be calculated exactly by applying Schelkunoff's 
equivalence principle, provided the fields on the surface were known! 
By this principle the fields at the rod surfaces are replaced by equivalent 
electric and fictitious magnetic current sheets, and the radiation field is 
calculated from these currents. However, the fields are not known on 
the polyrod but an approximate calculation may be made by assuming a 
field distribution.3 
The directivity D of a polyrod antenna is given approximately by' 

D  8Lk (14-53) 

and the half-power beam width B by 

60 
B  (14-54) 

VLA 

where Lk = length of polyrod in free-space wavelengths 
Polyrod antennas may also be of square or rectangular cross section. 

relative dielectric constant of the guide. Thus, for a rod of polystyrene (e, = 2.5) fed 
from a circular wave guide as in Fig. 14-19a, the guide diameter must be at least 0.37 X 
to allow transmission in the metal tube. 
This is the Hansen and Woodyard condition for increased directivity of an end-fire 

array. See Sec. 4-6. 
I S. A. Schelkunoff, Equivalence Theorems in Electromagnetics, Bell System Tech. J., 

15, 92-112, 1936. 
' R. B. Watson and C. W. Horton, The Radiation Patterns of Dielectric Rods— 

Experiment and Theory, J. Applied Phys., 19, 661-670, July, 1948. 
' G. E. Mueller and W. A. Tyrrell, Polyrod Antennas, Bell System Tech. J., 26, 837-

851, October, 1947. 
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Another possibility is to use a dielec-
tric sleeve of circular or square cross 
section, the interior of the sleeve 
being air-filled. In this case the ap-
propriate diameter of the sleeve may 
be of the order of 1 wavelength. 
14-8. Long Wire Antennas.  In 

the next sections antennas of quite a 
different type are considered briefly. 
These are long wire antennas. Their 
principal application is found in the 
wavelength range of 1 to 50 meters. 
14-9. V Antennas.'  By assum-

ing a sinusoidal current distribution, 
the pattern of a long thin wire an-
tenna can be calculated as described 
in Chap. 5. A typical pattern is 
shown in Fig. 14-20a for a wire 2 
wavelengths long. The main lobes 
are at an angle ft = 36° with respect 
to the wire. By arranging two such 
wires in a V with an included angle 
7 = 72° as in Fig. 14-20b, a bidirec-
tional pattern can be obtained. This 
pattern is the sum of the patterns of 
the individual wires or legs.  Al-
though an included angle 7 = 2$ 
results in the alignment of the major 
lobes at zero elevation angle (wires 
horizontal) and in free space, it is 
necessary to make 7 somewhat less 
than 20 in order to obtain align-
ment at elevation angles greater 
than zero.'  This is because the 
space pattern of a single wire is 
conical, being obtained by revolv-
ing the pattern of Fig. 14-20a, for example, with the wire acting as the axis. 

IP. S. Carter, C. W. Hansen, and N. E. Lindenblad, Development of Directive Trans-
mitting Antennas by R.C.A. Communications, Inc., Proc. I.R.E., 19, 1773-1842, 
October, 1931. 
P. S. Carter, Circuit Relations in Radiating Systems and Applications to Antenna 

Problems, Proc. I.R.E., 20, 1004-1041, June, 1932. 
"The A.R.R.L. Antenna Book," American Radio Relay League, Inc., West Hartford, 

Conn., 1949, p. 174. Gives design charts. 

V- or tenno 

Terminated 
V.-antenna 

407 

(a) 

(b) 

(c) 

(d) 
20 

Fm. 14-20.  (a) Calculated pattern of 
2-wavelength wire with standing wave. 
(h) V antenna of two such wires.  (c) Ter-
minated V antenna with legs 2 wave-
lengths long.  (d) V antenna of cylindri-
cal conductors 1.25 wavelengths long with 
measured pattern. 
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If the legs of the thin wire V antenna are terminated in their char-
acteristic impedance, as in Fig. 14-20c, so that the wires carry only an out-
going traveling wave, the back radiation is greatly reduced. The patterns 
of the individual wires can be calculated, assuming a single traveling wave 
as done in Chap. 5. 
A similar effect may be produced without terminations by the use of 

V conductors of considerable thickness. The reflected wave on such a 
conductor may be small compared to the outgoing wave, and a condition 
approaching that of a single traveling (outgoing) wave may result. For 
example, a V antenna consisting of two cylindrical conductors 1.25 wave-
lengths long and 21(r wavelength diameter with an included angle 13 = 90° 
has the highly unidirectional pattern' of Fig. 14-20d. 
14-10. Rhombic Antennas.' A rhombic antenna may be regarded as a 

double-V type. The wires at the end remote from the feed end are in close 

Axis of 
rhombic 

Terminating 
resistance 

Azimuthal pottern oti:X=10. 

(b) 

Vertical pattern 

(c) 

Fla. 14-21. Terminated rhombic antenna 
(a) with azimuthal pattern (b) and vertical 
plane pattern (c) for a rhombic 6 wave-
lengths long on each leg, 4, == 70°, and at a 
height of 1.1 wavelengths above a perfectly 
conducting ground. (After A. E. Harper.) 

proximity, as in Fig. 14-21a. A termination resistance, usually 600 to 800 
ohms, can be conveniently connected at this location so that there is 
substantially a single outgoing traveling wave on the wires. The length 
of each leg is L, and one-half the included side angle is 4). The calculated 

'Chap. 4 by A. Dorm, "Very High Frequency Techniques," Radio Research Labora-
tory Staff, McGraw-Hill Book Company, Inc., New York, 1947, p. 115. 
IE. Bruce, Development in Short-wave Directive Antennas, Proc. I.R.E., 19, 1406-

1433, August, 1931. 
E. Bruce, A. C. Beck, and L. R. Lowry, Horizontal Rhombic Antennas, Proc. I.R.E. 

23, 24-46, January, 1935. 
A. E. Harper, "Rhombic Antenna Design," D. Van Nostrand Company, Inc., New 

York, 1941. 
Donald Foster, Radiation from Rhombic Antennas, Proc. I.R.E., 25, 1327-1353, 

October, 1937. 
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patterns' of a terminated rhombic with legs 6 wavelengths long are shown 
in Fig. 14-21b and c. The rhombic is assumed to be 1.1 wavelengths above 
a perfectly conducting ground, and 4) = 70°. 
In designing a rhombic antenna, the angle 4), the leg length, and the 

height above ground may be so chosen that (1) the maximum of the main 
lobe coincides with the desired elevation angle a (alignment design), or 
(2) so the maximum relative field intensity E for a constant antenna cur-
rent is obtained at the desired elevation angle a (maximum E design)! 
If the height above ground is less than that required for these designs, 
alignment may be obtained by increasing the leg length. If the height is 
maintained but the leg length is reduced, alignment may be obtained by 
changing the angle lb. Or as a third possibility, if both the height and the 
leg length are reduced, the angle 4, can be changed to produce alignment. 
Any of these three modifications results in a so-called compromise design' 
having reduced gain. If moderate departures from optimum performance 
are acceptable, a rhombic antenna can be operated without adjustment 
over a frequency band of the order of 2 to 1.  . 
The pattern of a rhombic antenna may be calculated as the sum of the 

patterns of four tilted wires each with a single outgoing traveling wave. 
The effect of a perfectly conducting ground may be introduced by the 
method of images. For a horizontal rhombic of perfectly conducting wire 
above a perfectly conducting plane ground, Bruce, Beck, and Lowry° give 
the relative field intensity E in the vertical plane coincident with the 
rhombic axis* as a function of a, lb, Lx, and Ilk as 

E
(cos 4))[sin (H, sin «Akin (4,L,)12 

— (14-55) 

where a = elevation angle with respect to ground 
= half included side angle of rhombic antenna 
=  H/X = height of rhombic antenna above ground 

LA = L /X = leg length 
H, = 27H,, = 2r(H/X) 
L, = 2rLA = 2rL/X 
= (1 — sin 4) cos a)/2 

A constant antenna current is assumed, and mutual coupling is neglected. 

'From A. E. Harper, "Rhombic Antenna Design," D. Van Nostrand Company, Inc., 
New York, 1941. 
'E. Bruce, A. C. Beck, and L. R. Lowry, Horizontal Rhombic Antennas, Proc. I.R.E., 

23, 24-26, January, 1935. 
* The radiation in this plane is horizontally polarized. However, in other planes the 

polarization is not, in general, horizontal. 
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Following the procedure of Bruce, Beck, and Lowry, the various designs 
may be determined as follows. For the maximum E condition, E is maxi-
mized with respect to HA, that is, we make 

which yields 

which is satisfied when 

aH), 
aE = o 

cos (27rlix sin a) = 0 

2wHA sin a = n 2-

where n = 1, 3, 5, . . . 
For the lowest practical height, n = 1. Therefore, 

HA —   
4 sin a 

(14-56) 

(14-57) 

Equation (14-57) gives the height HA for the antenna. To find the leg 
length, E is maximized with respect to LA, obtaining 

1 
Lo. —   (14-58) 2(1 — sin  cos a) 

Finally, by maximizing E with respect to 4) and introducing the condition 
of (14-58) 

= 90° — a 

Substituting (14-59) back into (14-58) yields 

1   
LA —  • 2 

2 sm a 

(14-59) 

(14-60a) 

Equations (14-57), (14-59), and (14-60a) then give the height in wave-
lengths HA, the half-side angle (1), and the leg length in wavelengths LA, for 
maximum E at the desired elevation angle a. This is for a constant antenna 
current. It does not follow that the field intensity at the desired elevation 
angle is a maximum for a given power input to the antenna. However, 
it is probably very close to this condition. It is also of interest that for 
the maximum E condition the maximum point of the main lobe of radiation 
is not, in general, aligned with the desired elevation angle. 
In the alignment design the maximum point of the main lobe of radiation 

is aligned with the desired elevation angle a. For this condition, E at a 
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TABLE 14-4 

DESIGN FORMULAS FOR TERMINATED RHOMBIC ANTENNAS* 

Type of 
rhombic antenna Formulas 

Maximum E at eleva-
tion angle a 

1 
Fix = 

4 sin a 

4) = 90° — a 

0.5 
IA — s in2 a 

Alignment of major 
lobe with elevation 
angle a 

1 
Hx — 

4 sin a 

42 = 90° — a 

0.371 
sin2 a 

Reduced height H' 
Compromise design 
for alignment at ele- 
vation angle a 

4) = 90° — a 

tan E(L,/2) sin2 a] 1  11;, LA _ 
sin a 

H' 
where 11; = — and H: 

X 

L2ar sin a — tan (11: sin a) 

H' 
= 2w — 

X 

Reduced length L' 
Compromise design 
for alignment at ele- 
vation angle a 

1 
Hx — 

4 sin a 

[L>, — 0.371] 
(fr = arcsin 

L)', cos a 

where L'k = L'/X 

Reduced height H' 
and length L' 
Compromise design 
for alignment at ele-
vation angle a 

Solve this equation for 0: 

1 
sin 42 tan a tan (H: sin a)  424  tan (0 0 

1 — sin  cos a L' 
where 4, -  and L: = 2ar — 

2  X 

*After E. Bruce, A. C. Beck, and L. R. Lowry, Horizontal Rhombic Antennas, 
Proc. I.R.E., 23, 24-26, January, 1935. 
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is slightly less than for the maximum E condition. Alignment is accom-
plished by maximizing E with respect to a and introducing the condition 
of (14-57). This gives 

0.371   
Lo. —  (14-60b) 

1 — sin  cos a 

Substituting (14-60b) in (14-55) and maximizing the resulting relation for 
the field with respect to 4) gives 

ct, = 90° — a  (14-61) 

as before. Finally substituting (14-61) in (14-60b) we obtain 

0.371  
— • 2  (14-62) 
sm a 

Equations (14-57), (14-61), and (14-62) then give 1-1),, 43, and fak for align-
ment of the maximum point of the main lobe of radiation with the desired 
elevation angle a.  Only the length is different in the alignment design, 
being 0.371/0.5 = 0.74 of the value for the maximum E design. 
The above design relations are summarized in Table 14-4 together with 

design formulas for three kinds of compromise designs. 
An end-to-end receiving array of a number of rhombics may be so con-

nected as to provide an electrically controllable vertical plane pattern 
which can be adjusted to coincide with the optimum elevation angle of 
downcoming waves. This Multiple Unit Steerable Antenna,' or Musa, con-
stitutes the present-day ultimate for long-distance short-wave reception of 
horizontally polarized downcoming waves. 
14-11. Beverage or Wave Antenna.2 The electric field of a wave travel-

ing along a perfectly conducting surface is perpendicular to the surface as 
in Fig. 14-22a. However, if the surface is an imperfect conductor, such 
as the earth's surface or ground, the electric-field lines have a forward 
tilt near the surface as in Fig. 14-22b. Hence, the field at the surface has a 
vertical component E. and a horizontal component E..* The component 
E. is associated with that part of the wave that enters the surface and is 
dissipated as heat. The E. component continues to travel along the surface. 

1H. T. Friis and C. B. Feldman, A Multiple Unit Steerable Antenna for Short-wave 
Reception, Proc. I.R.E., 25, 841-917, July, 1937. 

2 H. H. Beverage, C. W. Rice, and E. W. Kellogg, The Wave Antenna, a New Type of 
Highly Directive Antenna, Trans. A.I.E.E., 42, 215, 1923. 
'Actually the wave exhibits elliptical cross-field, that is, the electric vector describes 

an ellipse whose plane is parallel to the direction of propagation. However, the axial 
ratio of this ellipse is usually very large, and the field may be regarded as being linear. 
For a discussion of cross-field see Chap. 9 by A. Alford, J. D. Kraus, and E. C. Barkofsky, 
"Very High Frequency Techniques," Radio Research Laboratory Staff, McGraw-Hill 
Book Company, Inc., New York, 1947, p. 200. 
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The fact that a horizontal component E. exists is applied in the Beverage 
or wave type of antenna for receiving vertically polarized waves. This 
antenna consists of a long horizontal wire terminated in its characteristic 
impedance at the end toward the transmitting station as in Fig. 14-22c. 
The ground acts as the imperfect conductor. The emfs induced along the 
antenna by the E. component, as the wave travels toward the receiver, all 
add up in etc same phase at the receiver. Energy from a wave arriving 
from the opposite direction is largely absorbed in the termination. Hence, 

Direction of 

propagation 

Direction of 

propagation 

Perfect conductor  Imperfect conductor 

(a) 

To 
transmitter 

Termination 

(b) 

Ground 

(C) 

FIG. 14-22.  (a) Wave front over a perfect conductor. (b) Wave front over imperfect 
conductor. (c) Beverage or wave antenna. 

the antenna exhibits a directional pattern in the horizontal plane with 
maximum response in the direction of the termination (to left in Fig. 
14-22c). The Beverage antenna finds application in the low and medium 
frequency range. 
14-12. Curtain Arrays.  In short-wave communications the curtain type 

of array finds many applications. As an example, a curtain type is illus-
trated in Fig. 14-23a that consists of an array of i-wavelength dipoles with 
a similar curtain at a distance of about X/4 acting as a reflector.' If the 
array is large in terms of wavelengths, the reflector curtain is nearly 
equivalent to a large sheet reflector. 

1H. Bruckmann, "Antennen, ihre Theorie und Technik," S. Hirzel, Leipzig, 1939, 
p. 300. 
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Several other examples of curtain arrays are the Bruce type of Fig. 
14-23b, the Sterba type' of Fig. 14-23c, and the Chireix-Mesny type2 of 
Fig. 14-23d.  The arrows are located at or near current maxima and 

(a) (c) 

(d) 

IN 
4 

', .. .. .. 

Fie. 14-23.  (a) Array of i-wavelength dipoles with reflectors, (b) symmetrical Bruce 
antenna, (c) Sterba curtain array, and (d) Chireix-Nlesny array. Arrows indicate in-
stantaneous current directions, and dots indicate current minimum points. 

indicate the instantaneous current direction. The small dots indicate the 
locations of current minima. 
14-13. Location and Method of Feeding Antennas  It is interesting to 

note the effect which the method and location of feeding has on the char-
acteristics of an antenna. As illustrations, let us consider the following 
cases. 

'E. J. Sterba, Theoretical and Practical Aspects of Directional Transmitting Systems, 
Proc. I.R.E., 19, 1184-1215, July, 1931. 
'H. Chireix, French System of Directional Aerials for Transmission on Short Waves, 

Exp. Wireless and Wireless Eng., 6, 235, May, 1929. 
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If an antenna is fed with a balanced two-wire line, equal out-of-phase 
currents must flow at the feed point. Thus, a square loop 1 wavelength 
in perimeter and fed at the bottom as in Fig. 14-24a must have the current 

A 

(b) 

  h- -1 
, 1 1  

1 1I  lig• 1 
(c)  (d) 

k Ground plane 

(e) 
Fm. 14-24.  (a) Loop with two-wire feed, (10 loop with one-wire feed, (c) center-fed 
broadside array of two 5-wavelength dipoles, (d) end-fed end-fire array of two 5-wave-
length dipoles, and (e) end-fed broadside array of two 5-wavelength dipoles. Arrows 
indicate instantaneous current directions, and dots indicate current minimum points. 

distribution indicated.  The arrows indicate the instantaneous current 
directions and the dots the locations of current minima. The radiation 
normal to this loop is horizontally polarized. 
Consider now the situation shown in Fig. 14-24b. Here the loop is fed 

at the same location.  However, the loop is continuous and is fed at a 
point by an unbalanced line. In this case, the antenna currents flowing 
to the feed point are equal and in phase so that the current distribution 
on the antenna must be as indicated. The radiation normal to this loop 
is vertically polarized. 
The location at which an antenna is energized also may be important. 

For example, two 4-wavelength elements have in-phase currents when 
symmetrically fed as in Fig. 14-24c but out-of-phase currents when fed 
from one end as in Fig. 14-24d. For the currents to be in phase when the 
array is fed from one end requires that the line between the elements be 
transposed as in Fig. 14-24e. 
14-14. Folded Dipole Antenna. A simple 4-wavelength dipole has a 

terminal resistance of about 70 ohms so that an impedance transformer is 
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required to match this antenna to an ordinary open two-wire line of 300 
to 600 ohms characteristic impedance (see Sec. 14-24).  However, the 
terminal resistance of the modified i-wavelength dipole shown in Fig. 
14-25a is nearly 300 ohms so that it can be directly connected to an open 
two-wire line having a characteristic impedance of the same value. This 
type of antenna is called a folded dipole. More specifically the one in 
Fig. 14-25a is a "two-wire folded i-wavelength dipole." The antenna 

,   
>  

2 -w ire 
folded 
dipole 

I 4v  '1 

(a)  (b) 

1   3-wire folded 
dipole (c) 

Flo. 14-25. Folded dipoles. 

consists of two closely-spaced I-wavelength elements connected together 
at the outer ends. The currents in the elements are substantially equal 
and in phase. 
Assuming that both conductors of the dipole have the same diameter, 

the approximate value of the terminal impedance may be deduced very 
simply as follows.' Let the emf V applied to the antenna terminals be 
divided between the two dipoles as in Fig. 14-25b. Then 

V  y  7= ziza  n  . T 2"7  12 2 (14-63) 

where I = current at terminals of dipole 1 
= current at terminals of dipole 2 

211 = self-impedance of dipole 1 
Zig =  mutual impedance of dipole 1 and 2 

1R. W. P. King, H. R. Mimno, and A. H. Wing, "Transmission Lines, Antennas and 
Wave Guides," McGraw-Hill Book Company, Inc., New York, 194.5, p. 224. 
W. V. B. Roberts, Input Impedance of a Folded Dipole, RCA Rev., 8, 289-300, June, 

1947. Treats folded dipoles with conductors of equal diameter and also of unequal 
diameter. 
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Since /1 = 4, (14-63) becomes 

V = 2.1,(Z„  Z.) 

417 

(14-64) 

Further, since the two dipoles are close together, usually d is of the order 
of 7-6-i wavelength, Z13 .Z-"' Zil. Thus, the terminal impedance Z of the 
antenna is given by 

Z = —I, •_••-, 4ZI, (14-65) 

Taking Z„  70  j0 for a I-wavelength dipole, the terminal impedance 
of the two-wire folded dipole becomes 

  "  

Z  280 ohms 

A x 
4 

(a) 

-  1 I   
Total 

_x 
2   

t r Y   

11 
(h) 

Total 

( 

>(d) 

Fia. 14-26.  (a). Three-wire folded i-wavelength dipole, (b) four-wire folded i-wave-
length dipole, (c) two-wire I-wavelength antenna, (d) four-wire j-wavelength antenna, 
and (e) two-wire j-wavelength stub antenna. Arrows indicate instantaneous current 
directions, and dots indicate current minimum points. 
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For a three-wire folded 4-wavelength dipole as in Fig. 14-25c the terminal 
resistance calculated in this way is 9 X 70 = 630 ohms. In general, for 
a folded 4-wavelength dipole of N wires, the terminal resistance is 70N2 
ohms. 
Several other types of folded wire antennas' are shown in Fig. 14-26. 

The one at (a) is a three-wire type which differs from the one in Fig. 14-25c 
in that there are no closed loops. The measured terminal resistance of 
this antenna is about 900 ohms. The antenna at (b) is a four-wire type 
with a measured terminal resistance of about 1,400 ohms. Thus far, all 
the folded dipoles discussed have been 4-wavelength types.  The total 
current distribution for these types is nearly sinusoidal, the same as for 
a simple 4-wavelength dipole.  Folded dipoles of length other than 
wavelength' are illustrated in Fig. 14-26c and (d). The one at (c) is a 
two-wire type I wavelength long and that at (d) is a four-wire type 
wavelength long. The instantaneous current directions, the current dis-
tribution on the individual conductors, and the total current distribution 
are also indicated.  One-half the two-wire 4-wavelength dipole can be 
operated with a ground plane as in Fig. 14-26e, yielding the 4-wavelength 
stub antenna with total current distribution shown.  The measured 
terminal resistance of the two-wire 4-wavelength dipole is about 450 ohms, 
of the four-wire 4-wavelength dipole about 225 ohms, and of the two-wire 
4-wavelength stub antenna about 225 ohms. 
14-15. Modifications of Folded Dipoles. Consider a two-wire folded 

dipole shown in Fig. 14-27a. The terminal resistance is approximately 
300 ohms. By modifying the dipole to the general form shown in Fig. 14-
27b, a wide range of terminal resistances can be obtained, depending on 

)2' 

Folded dipole 

0.48X 

0.12 X 

 2   

D 

L - 1 1 Hmatch 

•••, 0.0001 to 0.001  XT match 

•-•-•0.01X 
600 
ohm  (c) 
line 

Pia. 14-27. Folded dipole and T-match antennas. 

1J. D. Kraus, Multi-wire Dipole Antennas, Electronics, 13, 26-27, January, 1940. 
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the value of D. This arrangement is called a T-match antenna.' Dimen-
sions in wavelengths for providing an impedance match to a 600-ohm line 
are shown in Fig. 14-27c. 
A two-wire folded 4-wavelength dipole is also shown in Fig. 14-28a. 

The arrows indicate the instantaneous current direction, and the small dots 
indicate the locations of current minima  By pulling the dipole wires 

14-28. (a) Two-wire folded dipole and (b) as modified to form single turn loop. 
(c) Four-wire folded dipole and (d) as modified to form 2-turn loop. 

apart at the center, the single-turn loop antenna of Fig. 14-28b is obtained. 
The length of each side is I wavelength. The loop has a lower terminal 
resistance than the folded dipole. 
A four-wire folded 4-wavelength dipole is shown in Fig. 14-28c. This 

dipole is the same type as shown in Fig. 14-26b. It is, however, sketched 
in a different manner. By pulling this dipole apart at the center the 2-
turn loop or so-called "quad antenna" of Fig. 14-28d results. 
The directivity of all the types shown in Fig. 14-28 is nearly the same 

as for a simple 4-wavelength dipole. With the loop types vertical and the 
terminals at the lowest corner, the radiation normal to the plane of the 
loops is horizontally polarized. 

1J. D. Kraus and S. S. Sturgeon. The T-matched Antenna, QST, 24, 24-25, Septem-
ber, 1940. 
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14-16. Ground-plane Antennas. Several types of ground plane or re-
lated antennas are shown in Fig. 14-29. The type at (a) has a vertical 
I-wavelength stub with a circular sheet ground plane about  wavelength 
in diameter. The antenna is fed by a coaxial transmission line with the 
inner conductor connected to the I-wavelength stub and the outer con-
ductor terminating in the ground plane. In (b) the ground plane has been 
modified to a skirt or cone shape. By replacing the I-wavelength stub 
with a disc as in (c), a "cfiscone" antenna' is obtained. The dimensions 

Axis 

•••• 0.25X 

Coaxial 
line 

Fut. 14-29.  (a) Stub antenna with flat circular ground plane, (1) same antenna with 
ground plane modified to skirt or cone, (c) discone antenna, (d) stub antenna with four 
radial conductors to simulate ground plane, and (e) a method of feeding ground-plane 
antenna. 

Cross section. 

(e) 

given are appropriate for the center frequency of operation.  In Fig. 
14-29d the solid sheet ground plane is replaced by four radial conductors. 
A modification of this antenna is shown at (e) in which a short-circuited 
I-wavelength section of coaxial line is connected in parallel with the 
antenna terminals.' This widens the impedance band width (see Sec. 

1A. G. Kandoian, Three New Antenna Types and Their Applications, Proc. I.R.E., 
34, 70W-75W, February, 1946. 
A. G. Kandoian, W. Sichak, and G. A. Felsenheld, High Gain with Discone Antennas, 

Proc. Natl. Electronics Conf., 3, 318-328, 1947. 
2 These radial conductor ground-plane antennas were originated by G. H. Brown. 
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14-24) and also places the stub antenna at d-c ground potential. This is 
desirable to protect the transmission line from lightning surges. 
With reference to solid sheet ground-plane antennas, it should be noted 

that the radiation pattern of a vertical i-wavelength stub on a finite 
ground sheet differs appreciably from the pattern with an infinite sheet. 
This is illustrated by Fig. 14-30. The solid curve is the calculated pattern 
with a ground sheet of infinite extent. 
The dashed curve is for a sheet sev-
eral wavelengths in diameter and the 
dotted curve for a sheet of the order 
of 1 wavelength in diameter. With 
finite solid sheet ground planes the 
maximum radiation is generally not  ••.... 
in the direction of the ground plane  FIG. 14-30. Vertical-plane patterns of }- 
but at an angle a above it. In order  wavelength stub antenna on infinite 

ground plane (solid), and on finite ground 
that maximum radiation be in the  planes several wavelengths in diameter 
horizontal plane, the ground plane  (dashed) and about 1 wavelength in 
may be modified as in Figs. 14-29b or  diameter (dotted). 
(c). The maximum radiation from 
the discone antenna is nearly horizontal (normal to axis) over a considerable 
band width.' 
By top loading a vertical stub antenna, it may be modified through the 

lines 

Stub 
antenna 

I a ) 

Elise 

Disc 

,-*  

Top loaded  Disc 
stub antenna  antenna 

-̂ 0.02X 

I d 
Fin. 14-31.  Evolution of flush disc antenna from vertical }-wavelength stub antenna. 

IA. G. Kandoian, Three New Antenna Types and Their Applications, Proc. 
34, 70W-75W. February. 1946. 
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successive stages of Fig. 14-31 to the form in Fig. 14-31d. This antenna 
consists of a circular disc with an annular slot between it and the ground 
plane. The ground plane is depressed below the disc forming a shallow 
cavity." The radiation pattern of the antenna at (d) is quite similar to 
the pattern for the vertical stub at (a).2 
14-17. Sleeve Antennas. Carrying the ground-plane modification of 

Fig. 14-29b, a step further results in the vertical i-wavelength sleeve 
antenna of Fig. 14-32a. Here the ground plane has degenerated into a 

Axis 

(a) 

(c) 

FIG. 14-32.  (a) I-wavelength sleeve antenna, (b) sleeve antenna above ground plane, 
and (c) balanced sleeve antenna. 

'A. A. Pistolkom Theory of Circular Diffraction Antenna, Proc. I.R.E., 36, 56-60, 
January, 1948. 
'D. R. Rhodes, Flush-mounted Antenr.x. for Mobile Application, Electronics, 22. 

115-117, March. 1949. 
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sleeve or cylinder  wavelength long. Maximum radiation is normal to 
the axis of this antenna. 
Another variety of sleeve antenna is illustrated in Fig. 14-32b.1 The 

antenna is similar to a stub antenna with ground plane but with the feed 
point moved to approximately the center of the stub. This is accom-
plished by enclosing the lower end of the stub in a cylindrical sleeve. By 
varying the characteristic impedance of this 1-wavelength-long section, 
some control is afforded over the impedance presented to the coaxial line 
at the ground plane. 
A balanced sleeve dipole antenna corresponding to the sleeve stub type 

of Fig. 14-326 is illustrated in Fig. 14-32c. It is shown with a coaxial line 
feed and balance-to-unbalance transformer or balun.1 This antenna may 
be operated over a frequency range of about 2 to 1 such that L is in the 
range from about  to 1 wavelength. 
14-18. Slotted Cylinder Antennas.2 A slotted sheet antenna is shown 

in Fig. 14-33a. By bending the sheet into a U-shape as in (b) and finally 

I ) (c) 
Fm. 14-33. Evolution of slotted cylinder from slotted sheet. 

into a cylinder as in (c), we arrive at a slotted cylinder antenna. The 
impedance of the path around the circumference of the cylinder may be 

'Chap. 5 by E. L. Bock, J. A. Nelson, and A. Dome, "Very High Frequency Tech-
niques," Radio Research Laboratory Staff, McGraw-Hill Book Company, Inc., New 
York, 1947. 
'George Sinclair, The Patterns of Slotted Cylinder Antennas, Proc. I.R.E., 36, 1487-

1492, December, 1948. 
A. Alford, Long Slot Antennas, Proc. Nail. Electronics Conf., 1946, p. 143. 
E. C. Jordan and W. E. Miller, Slotted Cylinder Antennas, Electronics, 20, 90-93, 

February, 1947. 
A. Alford, Antenna for F-M Station WGHF, Communications, 26, 22, February, 

1946. 
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sufficiently low so that most of the current tends to flow in horizontal 
loops around the cylinder as suggested. If the diameter D of the cylinder 
is a sufficiently small fraction of a wavelength, say, less than 4 wavelength, 
the vertical slotted cylinder radiates a horizontally polarized field with a 
pattern in the horizontal plane which is nearly circular.' As a diameter 

of the cylinder is increased, the pat-
 tern in the horizontal plane tends to 

become more unidirectional with the 
maximum radiation from the side of 
the cylinder with the slot. For reso-
nance the length L of the slot is 
greater than 4 wavelength.  This 
may be explained as follows. Refer-
ring to Fig. 14-34a, the two-wire 
transmission line is resonant when it 

/  is  wavelength long. However, if 
this line is loaded with a series of 

( a)  (b)  loops of diameter D as at (b), the 

Fia. 14-34. Slotted cylinder as a loop  phase velocity of wave transmission 
on the line can be increased, so that 
the resonant frequency is raised. 

With a sufficient number of shunt loops the arrangement of (b) becomes 
equivalent to a slotted cylinder of diameter D. Typical slotted cylinder 
dimensions are D = 0.125 X, L = 0.75 X, and the slot width about 0.02 X. 
This type of antenna has found considerable application for broadcasting 

a horizontally polarized wave with an omnidirectional or circular pattern 
in the horizontal plane. Vertical plane directivity may be increased by 
using a long cylinder with stacked, that is, collinear, slots. 
14-19. Turnstile Antennas 2 Consider two crossed infinitesimal dipoles 

energized with currents of equal magnitude but in phase quadrature. This 
arrangement, shown in plan view in Fig. 14-35a, produces a circular pattern 
in the 0 plane since the field pattern E as a function of 0 and time is given by 

loaded transmission line. 

E = sin 0 cos cot ± cos 0 sin cot  (14-66) 

which reduces to 
E = sin (0 ± cot)  (14-67) 

At any value of 0 the maximum amplitude of E is unity at some instant 
during each cycle. Hence, the rms field pattern is circular as shown by 

'George Sinclair, The Patterns of Slotted Cylinder Antennas, Proc. I.11.E., 36, 1487-
1492, December, 1948. 
'G. H. Brown, The Turnstile Antenna, Eledronics, 9, 15, April, 1936. 
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the circle in Fig. 14-35b. At any instant of time the pattern is a figure of 
eight of the same shape as for a single infinitesimal dipole. An instan-
taneous pattern is shown in Fig. 14-35b for cot = 135°. As a function of 
time this pattern rotates, completing 1 revolution per cycle. In the case 
being considered in Fig. 14-35, the pattern rotates clockwise. Thus, the 
phase of the field as a function of 0 is given by 0 ± cut = constant, and if the 
constant is zero by 

cut = —0  (14-68) 

If the field is a maximum in the direction 0 = 0 at a given instant, then 
according to (14-68) the field is a maximum in the 0 = — 45° direction I 
period later. 
The above discussion concerns the field in the 0 plane (plane of the 

crossed dipoles). The field in the axial direction (normal to the crossed-
infinitesimal dipoles) has a constant magnitude given by 

IEI=  cos2 cot + sin2 cot = 1  (14-69) 

Thus, the field normal to the infinitesimal dipoles is circularly polarized.' 
In the case being considered in Fig. 14-35 the field rotates in a clockwise 
direction. 
Replacing the infinitesimal dipoles by 4-wavelength dipoles results in a 

practical type of antenna with approximately the same pattern char-
acteristics. This kind of antenna is called a turnstile antenna.2 Since the 
pattern of a 4-wavelength element is slightly sharper than for an in-
finitesimal dipole, the 0-plane pattern of the turnstile with 4-wavelength 
elements is not quite circular but departs from a circle by about ±5 per 
cent. The relative pattern is shown in Fig. 14-35c. The relative field as 
a function of 0 and time is expressed by 

cos (90° cos 0) cos (90° sin 0) . 
E — cos cut  sm cut  (14-70) 

sin 0  cos 0 

Although the 0-plane pattern with 4-wavelength elements differs from 
the pattern with infinitesimal dipoles, the radiation is circularly polarized 
in the axial direction from the 4-wavelength elements provided that the 
currents are equal in magnitude and in phase quadrature. 
A turnstile antenna may be conveniently mounted on a vertical mast. 

The mast is coincident with the axis of the turnstile. To increase the 
vertical plane directivity, several turnstile units can be stacked at about 
4-wavelength intervals as in Fig. 14-35d. The arrangement at (d) is called 

'See Secs. 15-10 to 15-17, for a more detailed discussion of circular polarization. 
'G. H. Brown, The Turnstile Antenna, Electronics, 9, 15, April, 1936. 
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a "four-bay" turnstile. It requires two bays to obtain a field intensity 
approximately equal to the maximum field from a single 4-wavelength 
dipole with the same power input. 
In order that the currents on the 4-wavelength dipoles be in phase quad-

rature, the dipoles may be connected to separate nonresonant lines of 

L+90. 

• Dipole 2 

F.-Dipole 1  InstantoneouS 
pattern 

at (at= 135* 

(a) 

Half-wave 
dipoles 

(c) 

70 ohms 

35ohms 
(e) 

Fm. 14-35.  Turnstile antenna arrangements. 

(b) 

Series, 
reactance 

(f) 

Rms pottern 

tic  
Ve axisr oaf I tm u ronsst toote 5 

(d) 

Holf-wave dipole 

Half-wave dipole 2 

unequal length. Suppose, for example, that the terminal impedance of 
each dipole in a single-bay turnstile antenna is 70 + j0 ohms. Then by 
connecting 70-ohm lines (dual coaxial type), as in the schematic diagram 
of Fig. 14-35e, with the length of one line 90 electrical degrees longer than 
the other, the dipoles will be driven with currents of equal magnitude and 



and 
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in phase quadrature. By connecting a 35-ohm line between the junction 
point P of the two 70-ohm lines and the transmitter, the entire trans-
mission-line system is matched. 
Another method of obtaining quadrature 

currents is by introducing reactance in series 
with one of the dipoles.' Suppose, for exam-
ple, that the length and diameter of the dipoles 
in Fig. 14-35f result in a terminal impedance 
of 70 — j70 ohms. By introducing a series 
reactance (inductive) of A-j70 ohms at each 
terminal of dipole 1 as in Fig. 14-35f, the 
terminal impedance of this dipole becomes 
70  j70 ohms. With the two dipoles con-
nected in parallel, the currents are 

V   
— 
70 + j70 

and  /2 —   (14-71) 
70 — j70 

where V = impressed emf 
I, = current at terminals of dipole 1 
I, = current at terminals of dipole 2 

Thus, 

V 
/2 =  / A-45° (14-72) 

Fla. 14-36. Six-bay superturn-
stile antenna.  (Courtesy Radio 
Corporation of America.) 

so that I, and I, are equal in magnitude, but Ia leads I, by 90°. The two 
impedances in parallel yield 

z- 1   1   —  — Y  [1/(70 -I- j70)]  [1/(70 — j70)] — 70 + j0  ohms (14-73) 

so that a 70-ohm (dual coaxial) line will be properly matched when con-
nected to the terminals FF. 
In order to obtain a very low SWR over a considerable band width, the 

turnstile described above has been modified to the form shown in the 
photograph of Fig. 14-36. In this arrangement, called a "supertumstile," 
the simple dipole elements are replaced by flat sheets or their equivalent.' 

1G. H. Brown and J. Epstein, A Pretuned Turnstile Antenna, Electronics, 18. 102-107, 
June, 1945. 

2R. W. Masters, The Super-turnstile Antenna, Broadcast News, 42, January, 1946. 
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Each "dipole" is equivalent to a slotted sheet about 0.7 X by 0.5 X as 
in Fig. 14-37a.  The terminals are at FF.  As in the slotted cylinder 
antenna, the length of the slot for resonance is more than 4 wavelength 
(about 0.7 X). The dipole can be mounted on a mast as in Fig. 14-37b. 
To reduce wind resistance, the solid sheet is replaced by a grid of con-
ductors.  Typical dimensions for the center frequency of operation are 
shown. This arrangement gives a SWR of about 1.1 or less over about a 
30 per cent band width, which makes it convenient as a mast-mounted 
television transmitting antenna for frequencies as low as about 50 Mc. 
Unlike the simple turnstile there is relatively little radiation in the axial 

(a) 

Tubing 

solid sheet 

Steel most 

0.23X-'l 

0.08 15)1 

0.65X 

(b) —.  Oo25X 
Fm. 14-37. Single dipole element of superturnstile antenna.  (a) Solid sheet con-
struction, (b) tubing construction showing method of mounting on mast. 

direction (along the mast), and only one bay is required to obtain a field 
intensity approximately equal to the maximum field from a single 4-
wavelength dipole with the same power input. For decreased beam width 
in the vertical plane the superturnstile bays are stacked at intervals of 
about 1 wavelength between centers. 
14-20. Other Omnidirectional Antennas. The radiation patterns of 

slotted cylinder and the turnstile antennas are nearly circular in the hori-
zontal plane. Such antennas are sometimes referred to as omnidirectional 
types, it being understood that "omnidirectional" refers only to the hori-
zontal plane. 
As shown in Chap. 6, a circular loop with a uniform current radiates 

a maximum in the plane of the loop provided that the diameter D is less 
than about 0.58 wavelength. The pattern is doughnut shaped with a null 
in the axial direction as suggested by the vertical plane cross section in 
Fig. 14-38a. 
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One method of simulating the uniform loop is illustrated in Fig. 14-38b. 
Here four smaller loops are connected in parallel across a coaxial line. 
This arrangement is called a "cloverleaf" antenna.' Another method is 
shown in Fig. 14-38c, three folded dipoles being connected in parallel 

Vertical 
axis 

a) 

I- Effective diameter 

Horizontal  Coaxial 
loop  line 

Vertical 
plane 
pattern 

Coaxial 
line 

(c) 

Effective 
diameter 
fv0.3X 

(b) 

(d) 

Fia. 14-38.  Circular loop antenna (a) and approximately equivalent arrangements of 
"clover-leaf" type (b), "triangular-loop" type (c), and square loop, or Alford type (d). 

across a coaxial line.' A third method utilizing a square loop is illustrated 
in Fig. 14-38d.3 The terminals are at FF. The side length L may be of 
the order of  wavelength. A single equivalent loop or bay of any of 
these types produces approximately the same field intensity as the maxi-
mum field from a single I-wavelength dipole with the same power input. 
For increased directivity in the vertical plane, several loops may be stacked, 
forming a multibay arrangement. 
14-21. Circularly Polarized Antennas. Circularly polarized radiation 

may be produced with various antennas. The axial mode helical antenna 

11). H. Smith, Cloverleaf Antenna for FM Broadcasting, Proc. I.R.E.. 35, 1556-1563, 
December, 1947. 
2A. G. Kandoian and R. A. Felsenheld, Triangular High-band TV Loop Antenna 

System, Communications, 29, 16-18, August, 1949. 
'A. Afford and A. G. Kandoian, Ultra-high Frequency Loop Antennas, Trans. 

A.I.E.E., 59, 843-848, 1940.  . 
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(a) 

Coaxial 
lines 

(d) 

(b) 

dipoles 

Axis 

Slotted 
cylinder 

Fie. 14-39. Antenna types for circular polarization. 

(c) 

Axis 

(Fig. 14-39a) is a simple, effective type of antenna for generating circular 
polarization. The helix is discussed in Chap. 7. Circular polarization may 
also be produced in the axial direction from a pair of crossed i-wavelength 
dipoles with equal currents in phase quadrature (Fig. 14-39b). This was 
mentioned in connection with the turnstile antenna. If radiation in one 
axial direction is right circularly polarized, it is left circularly polarized in 
the opposite axial direction. 
A third type of circularly polarized antenna consists of two in-phase 

crossed dipoles separated in space by  wavelength as in Fig. 14-39c. 
With this arrangement the type of circular polarization is the same in 
both axial directions. 
Any of these three arrangements can serve as a primary antenna that 

illuminates a parabolic reflector. Or they can be placed within a circular 
wave guide so as to generate a circularly polarized TE,, mode wave. By 
flaring the guide out into a conical horn, a circularly polarized beam can 
be produced. 
Another technique by which a circularly polarized beam may be obtained 

with a parabolic reflector of large focal length with respect to the diameter 
is with the aid of a metal grid or grating of parallel wires spaced  wave-
length from the reflector and oriented at 45° with respect to the plane 
of polarization of the wave from the primary antenna.  The primary 
antenna in this case is linearly polarized. 
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Three arrangements for producing an omnidirectional pattern of cir-
cularly polarized radiation are illustrated by Figs. 14-39d, (e), and (f). 
At (e) four short axial mode helices of the same type are disposed around 
a metal cylinder with axis vertical and fed in phase from a central coaxial 
line.' In the system at (e) vertically polarized omnidirectional radiation is 
obtained from two vertical 1-wavelength cylinders when fed at FF and 
horizontally polarized omnidirectional radiation is obtained from the slots 
fed at F'F'. By adjusting the power and phasing to the two sets of termi-
nals so that the vertically polarized and horizontally polarized fields are 
equal in magnitude and in phase quadrature, a circularly polarized omni-
directional pattern is produced.' At (f) four in-phase 1-wavelength dipoles 
are mounted around the circumference of an imaginary circle about 1 
wavelength in diameter.' Each dipole is inclined to the horizontal plane 
as suggested in the figure. 
In general, any linearly polarized 

wave can be transformed to an ellip-  Dielectric 
tically or circularly polarized wave,  slobs — 
or vice versa, by means of a wave 
polarizer.'  For example, assume 
that a linearly polarized wave is 
traveling in the negative z direction 
and that the plane of polarization is 
at a 45° angle with respect to the 
positive x axis (Fig. 14-40). Suppose 
that this wave is incident on a large 
grating of many dielectric slabs of 
depth L with air spaces between. A 
section of this grating is shown in Fig. 14-40.  The slab spacing (in x 
direction) is assumed to be a small part of a wavelength. 
The incident electric field E can be resolved into two components, one 

parallel to the x axis (Es) and the other parallel to the y axis (Es). That 
is, E = iEs jEw. The x component (Es) will be relatively unaffected 
by the slabs. However, Es will be retarded (velocity reduced). If the 
depth L of the slabs is just sufficient to retard Es by 90° in time phase 
behind E., the wave emerging from the back side of the slabs will be cir-

FIG. 14-40.  Wave polarizer. 

1J. D. Kraus, Helical Beam Antenna for Wide-band Applications, Proc. I.R.E., 313, 
1236-1242, October, 1948. 
C. E. Smith and R. A. Fouty, Circular Polarization in F-M Broadcasting, Eledronics, 

21, 103-107, September, 1948. 
'G. H. Brown and 0. M. Woodward, Jr., Circularly-polarized Omnidirectional 

Antenna, RCA Rev., 8, 259-269, June, 1947. 
4F. Braun, "Elektrische Schwingungen und drahtlose Telegraphie," Jahrbuch der 

drahllosen Telegraphic und Telephonic, Vol. 4. No. 1, 1910. m 17. 
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cularly polarized if I E. I = I E. I. Viewing the approaching wave from a 
point on the negative z axis, the E vector rotates clockwise. 
If the depth of the slabs is increased to 2L, the wave emerging from 

the back side will again be linearly polarized since E. and E„ are in op-
posite phase, but E is at a negative angle of 45° with respect to the positive 
x axis. Increasing the slab depth to 3L makes the emerging wave circularly 
polarized but this time with a counterclockwise rotation direction for E 
(as viewed from a point on the negative z axis). Finally, if the slab depth 
is increased to 4L, the emerging wave is linearly polarized at a slant 
angle of 45° the same as the incident wave. The dielectric grating in this 
example behaves similar to the atomic planes of a uniaxial crystal, such 
as calcite or rutile, to the propagation of light.  For such crystals the 
velocity of propagation of light, linearly polarized parallel to the optic 
axis, is different than the velocity for light, linearly polarized perpendicular 
to the optic axis. 
14-22. Receiving vs. Transmitting Considerations. According to the 

principle of reciprocity the field pattern of an antenna is the same for 
reception as for transmission. However, it does not always follow that 
because a particular antenna is desirable for a given transmitting appli-
cation it is also desirable for reception.  In transmission the main 
objective is usually to obtain the largest field intensity possible at the 
point or points of reception. To this end, high efficiency and gain are 
desirable. In reception, on the other hand, the primary requirement is 
usually a large signal-to-noise ratio. Thus, although high efficiency and 
also gain may be desirable, they are important only insofar as they improve 
the signal-to-noise ratio. As an example, a receiving antenna with the 
pattern of Fig. 14-41a may be preferable to a higher gain antenna with 

- 0. 
Interfering 
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(a) 

... 
Desired 
signal 

-7,4- * _) 7 
Interfering  Desired 
signal  signal 

(b) 

FIG. 14-41. Patterns for discussion on receiving antennas. 

the more directional pattern of Fig. 14-41b, if there is an interfering signal 
or noise arriving from the back direction as indicated. Although the gain 
of the antenna with the pattern at (a) is less, it may provide a much higher 
signal-to-noise ratio since its pattern has a null directed toward the source 
of the noise or interference. 
However, by way of contrast suppose that circuit noise in the receiver 

is the limiting factor. Then high antenna gain and efficiency would be 
important in order to raise the signal-to-noise ratio. 
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There is a special class of receiving antennas that finds application in 
direction finding. The directional characteristic of the antenna is em-
ployed to determine the direction of arrival of the radio wave. If the 
signal-to-noise ratio is high, a null in the field pattern may be used to find 
the direction of arrival.' With a low signal-to-noise ratio, however, the 
maximum of the main lobe may provide a more satisfactory indication.' 
14-23. Band-width Considerations. The useful band width of an an-

tenna depends, in general, on both its pattern and impedance character-
istics. In thin dipole antennas the band width is usually determined by 
the impedance variation since the pattern changes less rapidly.' However, 
with very thick cylindrical antennas or biconical antennas of considerable 
cone angle, the impedance characteristics may be satisfactory over so wide 
a band width that the pattern variation determines one or both of the 
frequency limits. The pattern may also determine the useful band width 
of horn antennas, metal-plate lens antennas, or zoned lens antennas. 
If the acceptable band width for pattern exceeds that for impedance, 

the band width can be arbitrarily specified by the frequency limits F1 
and F2 at which the SWR on the transmission line exceeds an acceptable 
value. What is acceptable varies widely depending on the application. In 
some cases the SWR must be close to unity. In others it may be as high as 
10 to 1 or higher. The frequency band width can be specified as the ratio of 
Fa — F1 to F0 or in per cent as 

F2  F,  
X 100 

Fo 

where F0 = the center or design frequency 
The band width due to the impedance can also be specified (if the band 

width is small) in terms of its reciprocal or Q at F0 where 

Q — 2  total energy stored by antenna   
r 
energy dissipated or radiated per cycle 

In some instances an attempt is made to obtain as much gain as possible 
from an antenna of given physical sizè or conversely to obtain a given 

'R. Keen, "Wireless Direction Finding," Iliffe and Sons, Ltd., London, 1938. 
D. S. Bond, "Radio Direction Finders," McGraw-Hill Book Company, Inc., New 

York, 1944. 
'Chap. 9, A. Alford, J. D. Kraus, and E. C. Barkofsky, "Very High Frequency Tech-

niques," Radio Research Laboratory Staff, McGraw-Hill Book Company, Inc., New 
York, 1947. 
'A dipole  wavelength long has a half-power beam width of 78°. If the frequency is 

reduced so that the dipole length approaches an infinitesimal fraction of a wavelength, 
the beam width only increases from 78° to 90°, while if the frequency is doubled so that 
the dipole is 1 wavelength long the beam width decreases from 78° to about 47°. 
'That is, a high gain-to-size ratio. 
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gain with as small an antenna as possible.  Such attempts generally 
reduce the band width of the antenna and also decrease its radiating 
efficiency. This effect was discussed in Chap. 11 where it was pointed out 
that a spacing of less than about illy wavelength between parallel out-of-
phase 4-wavelength elements is usually impractical because of reduced band 
width and efficiency. The rapidity with which the band width and effi-
ciency fall off if the gain-to-size ratio is increased too far has been empha-
sized by Chu' and by Taylor.' The limitations imposed are particularly 
severe for arrays that are large in terms of the wavelength, and it may be 
concluded that it is impractical to attempt any appreciable increase in di-
rectivity with a large broadside array or aperture of fixed size over that 
given with a uniform aperture distribution. 
14-24. Matching Arrangements. Impedance matching between a trans-

mission line and antenna may be accomplished in various ways.' As 
illustrations, several methods for matching a transmission line to a simple 
4-wavelength dipole will be considered. Suppose that the antenna is a 
cylindrical dipole with a length diameter ratio of 60 (LID = 60) and that 
the measured terminal impedances at 5 frequencies are as follows: 

Frequency Antenna length Terminal impedance 

1.15F0 L = 0.53 X 110 + j90 
1.07Fo L = 0.49 X 80 + j40 
Fo = center frequency L = 0.46 X 65 ± j0 
0.93Fo L = 0.43 X 52 — j40 
0.85F0 L = 0.39 X 40 — j100 

The center frequency Fe corresponds to the resonant frequency of the 
antenna. At this frequency the terminal impedance is 65 + j0 ohms. 
The most direct arrangement for obtaining an impedance match is to 

feed the dipole with a dual coaxial transmission line of 65 ohms character-
istic impedance as in Fig. 14-42a. The variation of the antenna impedance 
referred to 65 ohms is shown by the solid curve in the Smith chart' of 

IL. J. Chu, Physical Limitations of Omni-directional Antennas, J. Applied Phys., 19, 
1163-1175, December, 1948. 
'T. T. Taylor, A Discussion of the Maximum Directivity of an Antenna, Proc. I.R.E., 

36, 1135, September, 1948. 
'Only arrangements with transmission-line elements will be described. These are 

convenient at high frequencies. However, at low or medium frequencies the length of the 
required transmission-line sections may be inconveniently large so that it is the usual 
practice to use matching circuits with lumped elements. Radio-frequency transformers, 
w, T, and L sections are employed in this application. See, for example, W. L. Everitt, 
"Communication Engineering," McGraw-Hill Book Company, Inc., New York, 1937, 
Chap. 8. 

4P. H. Smith, An Improved Transmission Line Calculator, Electronics, 17, 130, 
January, 1944. 
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Fig. 14-43. The normalized impedances plotted on the chart are obtained 
by dividing the antenna terminal impedances by 65. The SWR on the 
65-ohm line as a function of frequency and antenna length is presented 
by the solid curve in Fig. 14-44. 
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FIG. 14-42. Matching arrangements for cylindrical 4-wavelength dipole antenna. 

The dipole antenna may also be energized with a two-wire open type of 
transmission line. Since the characteristic impedance of convenient sizes 
of open two-wire line is in the range of 200 to 600 ohms, an impedance 
transformer is required between the line and the antenna.  A suitable 
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Halt-wove antenna and 65-ohm line 

  Half-wove antenna and 500-ohm lire with one k4 transformer 

-- -• —  Holf-wave antenna and 500-ohm line with two %transformers 

[CiiAr. 14 

Fm. 14-43.  Normalized impedance variation for cylindrical 4-wavelength dipole an-
tenna (LID  60) fed directly by 65-ohm line (solid), by a 500-ohm line with one 
4-wavelength transformer (dashed), and by a 500-ohm line with two 4-wavelength 
transformers in series (dash-dot). 

transformer design may be deduced as follows. Referring to Fig. 14-42b, 
the impedance Z5 at the terminals of a lossless transmission line terminated 
in an impedance ZA is 

= (J 
7O ZA iZO tan fix Z5  
ZO iZA tan fix 

(14-74) 

where fix = (2r/X)x = length of line, radians 
Zo = characteristic impedance of the transmission line (since the 

line is assumed to be lossless, Zo is a pure resistance) 
Equation (14-74) may be reexpressed as 

(Z4/tan 04 ± iZO 
Z5 = Go 

(Z0/tan 13x) + iZa 
(14-75) 
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When the line is wavelength long (#x = 90°), (14-75) reduces to 

72 
ZB = 

ZIA 

or 

= ZAZH  (14-76) 

or 

= VzAz8 (14-77) 

If ZA  is the antenna terminal impedance and Z, is the character-
istic impedance of the transmission line we wish to use, the two can be 
matched with a I-wavelength section having a characteristic imped-
dance Zo given by (14-77).  The ar-
rangement is shown in Fig. 14-42c. 
At the center frequency, ZA  =  65. 
Supposing that the characteristic im-
pedance of the line we wish to use is  4 
500 ohms (Z, = 500), we have from 
(14-77) that the characteristic imped-
ance of the I-wavelength section should 
be Z,, = 180 ohms.  3 
This type of transformer gives a per-  SWR 

feet match (zero reflection coefficient) 
at only the center frequency.  At a 
higher frequency the antenna imped-
ance is different, and the line length is 
also greater than  wavelength. The 
resultant impedance variation with fre-
quency on the 500-ohm line for the  .4o 
LID = 60-dipole antenna and 180-ohm 

0.85  0.90 0.95  1.0  1.05  1.10  ea 
transformer (X/4 at Fo) is shown by the 
dashed curve in Fig. 14-43, and the  Relative frequency 
SWR (standing-wave ratio) on the 500- Flo. 14-44.  SWR as a function of an-
ohm line is indicated by the dashed tenna length L in wavelengths and as 

a function of the frequency (the reso-
curve in Fig. 14-44. It is apparent that nant frequency Fo is taken as unity)• 
this arrangement is more frequency- The SWR curves are for the same three 
sensitive than the arrangement with cases of Fig. 14-43. 
the dual coaxial 65-ohm line. 
Instead of making the transformation from the 500-ohm line to the an-

tenna in a single step with a single-section transformer, two sections may 
be connected in series as in Fig. 14-42d. Each is  wavelength long at 
the center frequency Fo. At Fo the first section (Zo = 108) transforms 
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the antenna resistance of 65 ohms to 180 ohms.  The second section 
(Z. = 300) transforms this to 500 ohms. The antenna and line are per-
fectly matched at only the center frequency, as before. However, this 
two-section arrangement is less frequency-sensitive than the single section. 
The normalized impedance variation with the two-section transformer is 
indicated by the dash-dot curve in Fig. 14-43, and the SWR on the 500-
ohm line is shown by the dash-dot dotted curve in Fig. 14-44. 
If the number of sections in the transformer is increased further, it 

should be possible to approach closer to the frequency sensitivity with 
the direct connected 65-ohm line.' As the number of sections is increased 
indefinitely, we approach in the limit a transmission line tapered gradually 
in characteristic impedance over a distance of many wavelengths.' At 
one end the line has a characteristic impedance equal to the antenna re-
sistance (65 ohms in the example) and at the other end has a characteristic 
impedance equal to that of the transmission line we wish to use (500 ohms 
in the example). 
Another more frequency-sensitive method of matching a 500-ohm line to 

a i-wavelength dipole is with a stub' as shown in Fig. 14-42e. The line 
between the stub and the transmitter may be nonresonant or perfectly 
matched to the antenna at one frequency with the stub as shown. The 
stub may also be placed i wavelength farther from the antenna as shown 
by the dashed lines.' In this case, however, the resonant line between 
the stub and antenna is longer, and this arrangement is more frequency-
sensitive than with the stub closer to the antenna. In general, it is de-

iThe logarithms of the impedance ratios may be made to correspond to a set of 
binomial coefficients.  (See J. C. Slater, "Microwave Transmission," McGraw-Hilt 
Book Company, Inc., New York, 1942, P. 60.) Thus, the logarithms of the impedance 
ratios for two-, three-, and four-section transformers would be as follows: 

two-sections:  1, 2, 1 
three-sections:  1, 3, 3, 1 
four-sections:  1, 4, 6, 4, 1 

In the two-section transformer of Fig. 14-42d these ratios are followed since 

108 300  500 
log — : log —  108 : log —  •--, 1:2:1 

65   300 

'C. R. Burrows, The Exponential Transmission Line, Bell System Tech. J., 17, 555-
573, October, 1938. 
H. A. Wheeler, Transmission Lines with Exponential Taper, Proc. I.R.E., 27, 65-71, 

January, 1939. 
3F. E. Terman, "Radio Engineers' Handbook," McGraw-Hill Book Company, Inc., 

New York, 1943, pp. 187-191. Gives design charts for open stub, closed stub, and 
reentrant matching arrangements. 

4In general, the distance of the stub from the antenna can be increased by nX/2 where 
n is an integer. 
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sirable to place matching or compensating networks as close to the antenna 
as possible if frequency sensitivity is to be a minimum. 
With the single stub as in Fig. 14-42e both the length of the stub and 

its distance S from the antenna are adjustable. The stub may be open 
or short-circuited at the end remote from the line, the stub length being 
} wavelength different for the two cases. To adapt this arrangement to 
a coaxial line requires that a line stretcher be inserted between the stub 
and the antenna. An alternative arrangement is a double stub tuner 
which has two stubs at fixed distances from the antenna but with the 
lengths of both stubs adjustable.' 
The frequency sensitivity2 of a dipole antenna may be made less than 

for the LID = 60 dipole direct-connected to a 65-ohm line, as above, in 
several ways. A larger diameter dipole can be used (smaller LID ratio) 
since, as shown in Chap. 9, the impedance variation with frequency is 
inherently less for thick dipoles as compared to thin dipoles. The thick 
dipole is desirable for very wide-band applications. If such a dipole is 
inconvenient, the impedance variation can often be reduced over a moder-
ate band width by means of a compensating network. For example, the 
frequency sensitivity of the LID = 60 dipole with direct-connected 65-
ohm line can be reduced over a considerable band width by connecting a 
compensating line in parallel with the antenna terminals as in Fig. 14-421 
If this line or stub has an electrical length of i wavelength at the center 
frequency and has a 65-ohm characteristic impedance, the same as the 
transmission line, the variation of normalized antenna terminal impe-
dance with frequency, as referred to 65 ohms, is shown by the dash-dot 
curve in Fig. 14-45a. The variation without compensation (antenna of 
Fig. 14-42a) is given by the solid curve (same curve as in Fig. 14-43). The 
SWR on a 65-ohm line are compared in Fig. 14-45b for the antenna without 
compensation (solid curve) and with the compensating stub (dash-dot 
curve).  The frequency sensitivity of the compensated arrangement is 
appreciably less over the frequency range shown. For instance, the band 
width for SWR < 2 is about 14 per cent for the uncompensated dipole 
but is about 18 per cent for the compensated dipole. 
The action of the parallel-connected compensating line or stub is as 

follows. At the center frequency Fo it is 180° in length. Since it is open 

1These arrangements are discussed in many texts on transmission lines.  See, for 
example, 
R. W. P. King, H. R. Mimno, and A. H. Wing, "Transmission Lines, Antennas, and 

Wave Guides," McGraw-Hill Book Company, Inc., New York, 1945, Chap. 1. 
E. W. Kimbark, "Electrical Transmission of Power and Signals," John Wiley and 

Sons, Inc., New York, 1949, Chap. 13. 
2 Frequency sensitivity as used here refers only to impedance. The pattern of an 

antenna also varies with frequency. 
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ended, it places an infinite impedance across the antenna terminals and 
has no effect. At a frequency slightly above Fo the line becomes capacita-
tive. Hence, it places a positive susceptance in parallel with the antenna 
admittance which at this frequency has a negative susceptance.' Admit-
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Fla. 14-45.  Normalized impedance (a) and SWR (b) for cylindrical 4-wavelength 
dipole (LID = 60) fed directly with 65-ohm line as in Fig. 14-42a (solid curves); with 
65-ohm line and 65-ohm 4-wavelength compensating stub as in Fig 14-42f (dash-dot 
curves); and with a 120-ohm line and 65-ohm 4-wavelength compensating stub (dashed 
curves). 

tances in parallel are additive so this tends to reduce the total susceptance 
at the antenna terminals, and, therefore, the SWR on the line. At a 
frequency slightly below Fo the result is similar, but in this case the stub 
is inductive and the antenna has capacitative reactance. 
The above matching arrangements provide for a perfect impedance 

1 The antenna impedance at this frequency has a positive reactance. Hence, 

Y 1   1  =  =  
Z  R ± j1C 

where G is the conductance component and B the susceptance component of the ad-
mittance Y. 
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match (SWR = 1) at the resonant frequency of the antenna. Sometimes 
a perfect impedance match is not required at any frequency, and it is 
sufficient to make the SWR less than a certain value over as wide a fre-
quency band as possible. For example, the SWR for the 4-wavelength di-
pole (LID = 60) may be made less than 2 over nearly the entire frequency 
band under consideration if the antenna with 65-ohm compensating stub 
is fed with a 120-ohm line instead of a 65-ohm line. The impedance and 
SWR curves for this case are shown by the dashed lines in Figs. 14-45a 
and b. 
Although the above discussion deals specifically with matching arrange-

ments between a 4-wavelength dipole and a two-conductor transmission 
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Pie. 14-46.  Methods of feeding a balanced antenna with a single coaxial line. 

line, the principles are general and can be applied to other types of an-
tennas and to coaxial lines. 
Antenna impedance characteristics may also be compensated by series 

reactances or by combinations of series and parallel reactances.' Many 
of the techniques of impedance compensation are discussed with examples 
by J. A. Nelson and G. Stavis.2 
It is often convenient to use a single coaxial cable to feed a balanced 

antenna. This may be accomplished with the aid of a balance-to-unbalance 
transformer or balun.' One type of balun suitable for operation over a 

IF. D. Bennett, P. D. Coleman, and A. S. Meier, The Design of Broadband Aircraft-
antenna Systems, Proc. I.R.E., 33, 671-700, October, 1945. 
IL J. Rowland, The Series Reactance in Coaxial Lines, Proc. I.R.E., 36, 65-69, 

January, 1948. 
J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, Coaxial-line Discontinuities, 

Proc. I.R.E., 32, 695-709, November, 1944. 
'Chap. 3, "Very High Frequency Techniques," Radio Research Laboratory Staff, 

McGraw-Hill Book Company, Inc., New York, 1947, pp. 53-92. 
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wide frequency band is illustrated in Fig. 14-32c. Another more compact 
type is shown in Fig. 14-46a. The gap spacing at the center of the dipole 
is made small to minimize unbalance.  The length L may be about } 
wavelength at the center frequency with operation over a frequency range 
of 2 to 1 or more. With this arrangement a reactive impedance Z = jZo 
tan /3/. appears in parallel with the antenna impedance at the gap, Zo 
being the characteristic impedance of the two-conductor line of length L. 
Yet another form of balun is shown in Fig. 14-466. This form provides a 
balanced transformation only when L is I wavelength and, accordingly, is 
suitable only for operation over a few per cent band width. 

PROBLEMS 

14-1. a. Design a piano-convex dielectric lens for 5,000 Mc with a diameter of 
10 wavelengths. The lens material is to be paraffin, and the F number 
is to be unity. Draw the lens cross section. 

b. What type of primary antenna pattern is required to produce a uniform 
aperture distribution? 

14-2. Design an artificial dielectric with a dielectric constant of 1.4 for use at 
3,000 Mc when the artificial dielectric consists of 

a. copper spheres 
b. copper discs 
c. copper strips 

14-3. Design an unzoned plano-concave E-plane type of metal-plate lens of the 
unconstrained type with an aperture 20 wavelengths square for use with a 3,000-Mc 
line source 20 wavelengths long. The source is to be 20 wavelengths from the lens 
(ill lens). Make the index of refraction 0.6. 

a. What should the spacing between the plates be? 
b. Draw the shape of the lens, and give dimensions. 
c. What is the band width of the lens if the maximum tolerable path 
difference is } wavelength? 

14-4. Give the answers to parts b and c of Prob. 3 if the lens is a zoned type. 
14-5. Design a maximum E type rhombic antenna for an elevation angle 

a = 17.5°. 
14-6. Design an alignment type rhombic antenna for an elevation angle 

a = 17.5°.  . 
14-7. Design a compromise type of rhombic antenna for an elevation angle 

a = 17.5° but at a height above ground of 0.5 wavelength. 
14-8. Design a compromise type of rhombic antenna for an elevation angle 

a = 17.5° but with a leg length of 3 wavelengths. 
14-9. Design a compromise type of rhombic antenna for an elevation angle 

a = 17.5° but at a height above ground of 0.5 wavelength and a leg length of 3 
wavelengths. 
14-10. Calculate the relative vertical plane patterns in the axial direction for the 
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rhombics of Probs. 5, 6, 7, 8, and 9. Compare the patterns with the main lobes 
adjusted to the same maximum value. 
14-11. Derive (14-55) for the relative field intensity of a horizontal rhombic 

antenna above a perfectly conducting ground. 
14-12. Verify (14-57), (14-61), and (14-62) for the alignment design rhombic 

sntenna. 
14-13. Calculate the SWR on a 65-ohm line connected to the LID = 60 dipole 

of Sec. 14-24 over a 30 per cent band width if an open-ended line of 40 ohms charac-
teristic impedance is connected in parallel with the antenna terminals. The line 
is 180° long at the center frequency Fo. 
14-14. Prove (14-15b). 
14-15. a. What is the terminal impedance of a ground plane mounted stub 

antenna fed with a 50-ohm air-filled coaxial line if the SWR on the 
line is 2.5 and the first voltage minimum is 0.17 wavelength from the 
terminals? 

b. Design a transformer so that the SWR = 1. 
14-16. Calculate and plot the far-field pattern in the plane of a loop antenna 

consisting of four 4-wavelength center-fed dipoles with sinusoidal current distribu-
tion arranged to form a square 4 wavelength on a side. The dipoles are all in phase 
around the square. 
14-17. Calculate and plot the far-field pattern in the plane of a loop antenna con-

sisting of three 4-wavelength center-fed dipoles with sinusoidal current distribution 
arranged to form a triangle 4 wavelength on a side. The dipoles are all in phase 
around the triangle. 



CHAPTER 15 

ANTENNA MEASUREMENTS 

15-1. Introduction. Most of the discussion in the preceding chapters 
deals with methods of analyzing and calculating antenna characteristics. 
In this chapter methods and techniques are discussed for experimental 
measurements on antennas. There are sections on the measurement of 
pattern, gain, current distribution, impedance and polarization. The dis-
cussion on polarization occupies several sections and includes an analysis 
of elliptically polarized waves. According to the reciprocity relation, the 
same pattern will be measured whether the antenna is transmitting or 
receiving. The same is true of certain other characteristics, so that it will be 
convenient in some cases to regard the antenna as a radiator and in other 
cases as a receiver. 
15-2. Patterns. The far- or radiation-field pattern of an antenna is one 

of its most important characteristics. The field pattern is actually a three-

Z 

Polar or vertical axis 

9=0* 

8 90 

=0* 
Equator 

8•90• 

Meridian of constant 
longitude 

Circle of constant 
latitude or polar angle 

0= 90° 
0= 0° 

Fm. 15-1.  Antenna and coordinates for pattern measurements. 

444 
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dimensional or space pattern, and its complete description requires field 
intensity measurements in all directions in space. 
A space pattern may be measured according to the following procedure. 

Let the antenna under test be situated at the origin with the x-y plane 
horizontal and the z axis vertical as in Fig. 15-1. Then on an imaginary 
sphere of large radius with the origin at the center, patterns of the 0 and 
0 components of the electric field (E, and E,) are measured along latitude 
circles (that is, circles of constant latitude or polar angle, 0).  These 
patterns are measured as a function of the longitude or azimuth angle 0. 1 

Measuring such patterns at 10° intervals in latitude from 0 = 0° to 
0 = 180° requires a total of 36 patterns, 18 for E0 and 18 for E,. At the 
poles the measurements reduce to polarization patterns at a point. For 
more detail, smaller increments are taken in the angle 0. It also may 

Fm. 15-2.  Polarization ellipses on distant sphere. 

11/4"--- --- Polarization ellipses 

be desirable to measure patterns for the field components at angles be-
tween the q$ and 0 directions. In fact, if the field from the antenna is, in 
general, elliptically polarized, it may be useful to measure polarization 
patterns for different directions and then to draw the corresponding polari-
zation ellipses on a sphere as in Fig. 15-2.  The subject of elliptically 
polarized waves and their measurement is discussed in more detail in a 
later section. 

'The angle 0 is the longitude angle of an imaginary sphere with the antenna at its 
center. It is also the azimuth angle since the x-y plane is taken to be horizontal. 
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Although comprehensive pattern surveys such as outlined above are 
sometimes necessary, it is frequently possible to obtain sufficient informa-
tion with only a few patterns. For example, suppose that the antenna is 
a horizontally polarized type with its major lobe of radiation in the x 
direction as shown in Fig. 15-3a. In this figure the x-y plane is horizontal. 

Epi (0,0=0) 

0=-90° 
0=90° 

=0° 
0 =90° 

q=o° 

Horizontally 
polarized antenna 

0=90° 

4(0=90 0) 

0=180' (a) 

0=90° 

=0° 
0 =90° 

E8(0,0=0) 0=0' 

Vertically 
polarized antenna 

, =90' 
e =90' 

E9(8=9010) 

0=180  (b) 

Fm. 15-3.  Vertical and horizontal plane patterns for horizontally polarized antenna (a) 
and vertically polarized antenna (b). 

Then two patterns may be sufficient. In one, the 4, component of the 
electric field (horizontal) is measured as a function of 4, in the x-y plane 
(0 = 90°). This pattern is the so-called E-plane pattern and may be 
designated E,,(0 = 90°, cp) as indicated in Fig. 15-3a. In the other pattern 
the 4, component of the field is measured as a function of 0 in the x-z plane 
(plane of meridian for 4) = 0°). This is the so-called H-plane pattern and 
may be designated EV0, 4, = 0°). Since these patterns bisect the major 
lobe of radiation in two mutually perpendicular planes, they may provide 
sufficient information for many applications. 
If the antenna is a vertically polarized type with its major lobe of 

radiation in the x direction, the patterns are measured as a function of 4) 
and 0 in the same planes as for the horizontally polarized antenna except 
that measurements are made of the 0 component of the field. Thus, the 
patterns measured are the E,(0 = 90°, 4)) and the E,(0, 4, = 0°) patterns 
as suggested in Fig. 15-3b. 
Although the dominant radiation from an antenna may be horizontally 

polarized, some of the minor lobes may be vertically polarized. To observe 
such cross-polarization in both the vertical (x-z) plane and horizontal 
(x-y) planes requires the measurement of all four patterns mentioned 
above. To summarize, these are: 
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E,(0 = 90°, 4)) = pattern of q5 component of electric field as a function 
of 4) in x-y plane (0 = 90°) 

E,(0, (it) = 0°) = pattern of 4) component as a function of 0 in x-z plane 
(4) = 0°) 

E,(0 = 90°, i6) = pattern of 0 component as a function of 4) in x-y plane 
(0 = 90°) 

E,(0, y6 = 0°) = pattern of 0 component as a function of 0 in the x-z 
plane (4) = 0°) 

In the case of a circularly or elliptically polarized antenna, the measure-
ments might consist of these four patterns or, for measurements in only 
one plane, of two patterns, one for each field component (E, and E,). 
Field patterns are commonly plotted in terms of relative or absolute 

field intensity. They may also be conveniently presented as a decibel 
ratio with the maximum field intensity as the zero or reference level. This 
type of presentation is particularly valuable with high-gain antennas when 
accurate information as to the level of minor lobes is needed. See, for 
example, Fig. 14-16. 
15-3. Pattern Measurement Arrangements. In pattern measurements 

it is usually convenient to operate the antenna under test as a receiver, 
placing it under suitable illumination by a transmitting antenna as illus-
trated in Fig. 15-4. The transmitting antenna is fixed in position, and the 

Transmitting 
antenna 

Transmitter 
or 

oscillator 

Antenna 
under test 

Receiver 

Indicator 

no. 15-4.  Antenna pattern measuring arrangement. 

Antenna 
support shaft 

Antenna 
rotator 
mechanism 

antenna under test is rotated on a vertical axis by the antenna support 
shaft.  Assuming that both antennas are linearly polarized, the 
E,(0 = 90°, 4)) pattern is measured by rotating the antenna support shaft 
with both antennas horizontal as in Fig. 15-4. To measure the E,(0, 4) = 0) 
pattern, the antenna support shaft is rotated with both antennas vertical. 
Indication may be on a direct reading meter calibrated in field intensity, 

or the meter may always be adjusted to a constant value by means of a 
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calibrated att,enuator. Where large numbers of patterns are taken, work 
is facilitated by an automatic pattern recorder such as shown in Fig. 15-5. 
15-3a. Distance Requirement. For an accurate far-field or Fraunhofer 

pattern of an antenna a first requirement is that the measurements be 
made at a sufficiently large distance.' Suppose that the antenna to be 

Flo. 15-5.  Automatic antenna pattern recorder. The pattern is drawn by a pen on 
polar coordinate paper. Control equipment is at the right. (Antenna Laboratory, The 
Ohio State University.) 

measured is a broadside array consisting of a number of in-phase linear 
elements as suggested in Fig. 15-6. The width or physical aperture of the 
array is a. At an infinite distance normal to the center of the array, the 
fields from all parts of the aperture will arrive in the same phase. How-

• • • • + 

i  • 

:4-Broadside 
array 

FIG. 15-6. Geometrical relations for distance requirement. 

'If the distance is insufficient, the near field or Fresnel pattern is measured. In gen-
eral, this pattern is a function of the distance at which it is measured. 
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ever, at any finite distance r, as in Fig. 15-6, the field from the edge of the 
array must travel a distance r  6 and, hence, is retarded in phase by 
(360°/X)6 with respect to the field from the center of the array. If 5 is 
a large enough fraction of a wavelength, the measured pattern will depart 
appreciably from the true far-field pattern. Referring to Fig. 15-6, 

If 6 << a and 6 <<r 

a' 
r2 2r6  62 = r2 

a9 
— 
85 

(15-1) 

(15-2) 

Thus, the minimum distance r depends on the maximum value of 6 which 
can be tolerated. Some workers' recommend that 6 be equal to or less 
than X/16. Then 

r > 2 —a2 
X 

(15-3) 

In general the constant factor [equal to 2 in (15-3)] may be represented 
by k. Thus, 

(15-4) 

The phase difference for 6 = X/16 is 22.5° since 

360 0 
Phase difference = —x 

In some special cases phase differences of more than 22.5° can be tolerated 
and in other cases less. The table on p. 450 gives the constant factor 
k "[Eq. (15-4)] for three values of tolerable phase difference equal to 10°, 
22.5°, and 30°. 
According to (15-4) the minimum distance of measurement is a function 

of both the antenna aperture a and the wavelength X. In the case of 
antennas of large physical aperture and small wavelength, large distances 
may be required. For example, consider a 30,000-Mc broadside beam 
antenna with a physical aperture of 1 meter. Taking k = 2, we obtain 
for the minimum distance r = 200 meters. 
15-3b. Requirement of Uniform Field. A second requirement for an 

accurate field pattern is that the transmitting antenna produce as nearly 

IC. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements, 
Proc. I.R.E., 35, 1462-1471, December, 1947. 
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Maximum tolerable 

phase difference 
5 k* 

10° 

22.5° 

30° 

36 

16 

12 

4.5 

2 

1.5 

To reduce the interaction of microwave antennas under test, it is recommended that 
k have a value at least equal to 2. See Chap. 15 by H. Krutter, "Microwave Antenna 
Theory and Design," edited by S. Silver, McGraw-Hill Book Company, Inc., New 
York, 1949, p. 592. 

as possible a plane wave of uniform amplitude and phase over a region at 
least as great as that occupied by the antenna under test. Variations or 
gradients in the field could be caused by interference of the direct wave 

Transmitting 
antenna Direct 

Test 
location 

Antenna 
under test 

Ground 

Flo. 15-7.  Interference of direct and reflected waves may produce undesirable varia-
tions in the field at the test location. 

with waves reflected from the ground as in Fig. 15-7 or from other objects. 
Reflections from walls or buildings can be avoided by selecting an open 
field or a flat roof as the measuring site. 
The effect of the ground reflection may be minimized by using a di-

rectional transmitting antenna and placing both antennas on towers as 
in Fig. 15-8a or near the edges of adjacent buildings as in Fig. 15-8b. With 
such arrangements the amplitude of the reflected wave is reduced since 
the groundward radiation from the transmitting antenna is reduced and 
also since the path length of the reflected wave is appreciably greater than 
the path length of the direct wave. In a typical case the variation of the 
field intensity as a function of the height at the test location may be as 
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indicated by the solid curve in Fig. 15-9. The transmitting antenna is 
directional and is at a fixed height h. There is a considerable region near 
the height h with a relatively uniform field. If the transmitting antenna 

Transmitting 
antenna 

Antenna 
under test 

(a)  (b) 

FIG. 15-8.  Antenna test setups. 

00 

0 

were nondirectional in the vertical plane, a much greater field variation 
would result at the test location as indicated by the dashed curve in Fig. 
15-9. 
Sometimes the distance requirement of (15-4) is so large that the re-

quired tower height may be impractical. In this case the test antenna 

Tronsmitti 
ante 

Ground 

Height 

Relative field 
intensity 

at test location 

Fie. 15-9.  Variation of field intensity with height at the test location with trans-
mitting antenna relatively close. 

can be situated in a region of maximum field intensity such as at the 
height h, or h2 in Fig. 15-10. This arrangement has the limitation that 
the height of the test antenna must be adjusted for each change in fre-
quency. This may be a considerable inconvenience when testing very 
wide-band antennas. 
Other causes of a nonuniform field at the test location are an improperly 
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directed transmitting antenna or one with too narrow a beam. In making 
pattern measurements, it is good practice to explore the entire volume to 
be occupied by the test antenna with a 4-wavelength antenna at each 
frequency of operation while observing the received field intensity. A 

Test location 

Transmitting 
antenna 

Ground 

Relative field 
intensity—o. 

FIG. 15-10.  Variations of field intensity with height at test location with transmitting 
mitenna at large distance. 

variation of 4 db is sometimes taken as the maximum tolerable field varia-
tion.' 
15-4. Phase Measurements. The preceding sections on pattern meas-

urements deal only with the magnitude of the field intensity. To measure 
the phase variation of the field, an arrangement such as shown in Fig. 15-11 

Transmitting 
antenna 

Transmitter 

Attenuator 
Calibrated 
line stretcher 
or phase shifter 

vs—Probe 
path 

i Probe 
,antenna 

Receiver 

Indicator 

FIG. 15-11.  Setup for phase measurements. 

'See C. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements, 
Proc. I.R.E., 35, 1462-1471, December, 1947. This reference also discusses the use of 
fences to reduce ground reflection effects. See also Chaps. 2 and 10, "Very High Fre-
quency Techniques," Radio Research Laboratory Staff, McGraw-Hill Book Company. 
Inc., New York, 1947. 
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can be used. The antenna under test is operated as a transmitting antenna. 
The output of a receiving antenna is combined with the signal conveyed 
by cable from the oscillator. The receiving antenna is then moved so as 
to maintain either a minimum or a maximum indication. The path traced 
out in this way is a line of constant phase. This method was mentioned 
earlier in Chap. 2. 
In another type of measurement the receiving antenna is moved along 

a reference line. A calibrated line stretcher or phase shifter is then adjusted 
to maintain a maximum or minimum indication. The measured phase 
shift can then be plotted as a function of position along the reference line.' 
15-5. Directivity. The directivity of an antenna can be determined from 

the measured field pattern. Thus, as defined in Chap. 2, the directivity 
of an antenna is 

41. 
D — f f(0, 4)) sin 0 d0 d4) (15-5) 

where f(0, 4)) = relative radiation intensity (power per square radian) as 
a function of the space angles 8 and  (see Fig. 15-1) 

Since the radiation intensity is proportional to the square of the field 
intensity, the directivity expression (15-5) can be written as 

47   
D—  

If P2(0 4)) sin 6# do d4) (15-6) 

where F(0, 4)) = relative field pattern, that is, the relative total field in-
tensity as a function of 0 and (j) (see Appendix, Sec. 20). 

The directivity is determined by the shape of the field pattern by graph-
ical integration and is independent of antenna loss or mismatch. 
15-6. Gain. The gain of an antenna over an isotropic source is defined 

in Chap. 3 as 

Go = aD  (15-7) 

where Go = gain with respect to an isotropic source (G without a subscript 
indicates the gain with reference to some antenna other than 
an isotropic source) 

D = directivity 
a = effectiveness ratio (0 < a < 1) 

C. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements, 
Proc. I.R.E., 35, 1462-1471, December, 1947. 
Chap. 15 by H. Knitter, "Microwave Antenna Theory and Design," edited by S. 

Silver, McGraw-Hill Book Company, Inc., New York, 1949, p. 543. 
Harley Iams, Phase Plotter for Centimeter Waves, RCA Rev., 8, 270-275, June, 1947. 

Describes automatic device for plotting phase fronts near antennas. 
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The constant a takes into account the radiating efficiency of the antenna 
and the effects of any mismatch. If matching is proper, a is equal to 
the radiating efficiency k of the antenna. Since the radiating efficiency 
of many very high-frequency antennas is high (nearly 100 per cent or 
rs-, 1), we have a = k t 1, and the measured gain closely approximates the 
directivity D calculated by the method of Sec. 15-5. The gain of an actual 
antenna is always less than the directivity. Assuming perfect matching, 
any difference between the gain and directivity can be attributed to 
antenna losses. 
15-6a. Gain by Comparison. Gain is always measured with respect to 

some reference antenna.  Since an isotropic source is a hypothetical 
standard, it is common practice to make actual gain measurements with 
respect to a i-wavelength reference antenna. The gain G is then 

G  1 = C-Liv )2 
2  \v21 

(15-8) 

where W, = power received with antenna under test 
W2 = power received with I-wavelength reference antenna 
V, = voltage received with antenna under test 
V2 = voltage received with I-wavelength reference antenna 

It is assumed that both antennas are properly matched.  Making the 
additional assumption that the I-wavelength antenna is lossless, the gain 
Go over a lossless isotropic source is 

= 1.64G (15-9) 

The comparison should be made with both antennas in a suitable loca-
tion where the wave from a distant source is substantially plane and of 
constant amplitude. The requirements of Secs. 15-3a and 15-3b should be 
fulfilled. 

Transmitting 
antenna 

Calibrated 
attenuator 

Oscillator 

Plane 

wave 

(Antenna under  
test 

reference 
antenna 

FIG. 15-12.  Gain measurement by comparison. 

Indicator 

Receiver 

Both antennas may be mounted side by side as in Fig. 15-12 and the 
comparison made by switching the receiver from one antenna to the other. 
The ratio V. IV is observed nn an output indicator calibrated in relative 
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voltage. An alternative method is to adjust the power radiated by the 
transmitting antenna with a calibrated attenuator so that the received 
indication is the same for both antennas.  The ratio 1471/117, is then 
obtained from the attenuator settings. 
Mounting both antennas side by side as in Fig. 15-12 but in too close 

proximity may vitiate the measurements because of coupling between the 
antennas. To avoid such coupling, a direct substitution may be made 
with the idle antenna removed to some distance. If the antennas are of 
unequal gain, it is more important that the high-gain antenna be thus 
removed. 
If the gain of the antenna under test is large, it is often more con-

venient to use a reference antenna of higher gain than that of a 4-wave-
length element. At microwave frequencies electromagnetic horns are fre-
quently employed for this purpose.' 
Short-wave directional antenna arrays, such as used in transoceanic com-

munication, are situated at a fixed height above the ground. The gain of 
such antennas is customarily referred to either a vertical or a horizontal 
4-wavelength antenna placed at a height equal to the average height of the 
array. This gain comparison is at the elevation angle a of the downcoming 
wave.  If the directional antenna is a high-gain type and any mutual 
coupling exists between it and the 4-wavelength antenna, the directional 
antenna can be rendered completely inoperative by lowering it to the 
ground or sectionalizing its elements when receiving with the 4-wavelength 
antenna. 
In the above discussion it has been assumed that the antennas are 

perfectly matched. It is not always practical to provide such matching. 
This is particularly true with wide-band receiving antennas that are only 
approximately matched to the transmission line. In general, another mis-
match may occur between the transmission line and the receiver. In such 
cases the measured gain is a function of the receiver input impedance and 
the length of the transmission line.2 To determine the range of fluctuation 
of gain of such wide band antennas with a given receiver as a function of 
the frequency and line length, the length of the line can be adjusted at 
each frequency to a length giving maximum gain and then to a length 
giving minimum gain. The average of this maximum and minimum may 
be called the average gain. 
15-6b. Absolute Gain of Identical Antennas. The gain can also be mess-

'Chap. 15 by H. Krutter, "Microwave Antennas," edited by S. Silver, McGraw-Hill 
Book Company, Inc., New York, 1949, p. 543. 
'Chap. 10 by Kraus, Clark, Barkofsky, and Stavis, "Very High Frequency Tech-

niques," Radio Research Laboratory Staff, McGraw-Hill Book Company, Inc., New 
York, 1947, pp. 232 and 271. 
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ured by a so-called absolute method' in which two identical antennas are 
arranged in free space as in Fig. 15-13. One antenna acts as a transmitter 

r 

Transmitter  Receiver 

Pia. 15-13.  Absolute gain measurements with two identical antennas. 

and the other as a receiver. By the Friis transmission formula (Chap. 3) 

W,  A„A„ 
Tv, -  x y (15-10) 

where W, = received power 
W, = transmitted power 
A„, = effective aperture of receiving antenna 
A. = effective aperture of transmitting antenna 
X = wavelength 
r = distance between antennas 

The distance requirement of Sec. 15-3a should be fulfilled. If r is large 
compared to the depth d of the antenna, the precise points on the antennas 
between which r is measured will not be critical. Since 

A., = Go —x2 (15-11) 

where G0G o = gain of antenna over an isotropic source 
and since it is ft ssumed that A., = A.,, (15-10) becomes 

W r Ggx2  
TV,  (4r)2r2 

and 
4-irr rV,. 

Go = 7,  Tr :  (15-13) 

Thus, by measuring the ratio of the received to transmitted power, the 
distance r, and the wavelength X, the gain of either antenna can be de-
termined. Although it may have been intended that the antennas be 

1C. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements, 
Proc. I.R.E., 36, 1462-1471, December, 1947; also Chap. 15 by H. Knitter, "Micro-
wave Antennas," edited by S. Silver, McGraw-Hill Book Company, Inc., New York, 
1949, p. 543. 

(15-12) 
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identical, they may actually differ in gain by an appreciable amount. The 
gain measured in this case is 

Go = VanG02  (15-14) 

where G01 = gain of antenna 1 of the "identical" pair 
=  gain of antenna 2 of the "identical" pair 

both gains referred to an isotropic source. To find G0, and G02, the above 
measurement is supplemented by a comparison of each of the antennas 
with a third reference antenna whose gain need not be known. This gives 
a gain ratio between "identical" antennas of 

G' =  (15-15) 
.72 

where G, = gain of antenna 1 over reference antenna 
G2 =  gain of antenna 2 over reference antenna 

Then since 

we have 

and 

G  G 
G' =  = 

G2  GO2 
(15-16) 

Go, = Go VUI (15-17) 

Go 
— (15-18) 

15-7. Terminal Impedance Measurements. The terminal impedance of 
UHF antennas is conveniently measured by transmission-line methods. 
The antenna terminals are connected to the end of a transmission line ener-
gized by a transmitter or oscillator as shown in Fig. 15-14. Measurement of 
the SWR of voltage or current along the line and of the distance d between 
either a current minimum or a voltage minimum and the antenna terminals 
permits a determination of the terminal impedance by well known meth-
ods.' This is done simply with a Smith chart.' The impedance values 

'F. E. Terman, "Radio Engineering," 3d ed., McGraw-Hill Book Company, Inc., 
New York, 1947, pp. 94-98. 
F. E. Terman, "Radio Engineers' Handbook," McGraw-Hill Book Company, Inc., 

New York, 1943, pp. 172-197. 
Chap. 2 by Nelson, Lazarus, Christensen, and Buss, "Very High Frequency Tech-

niques," McGraw-Hill Book Company, Inc., New York, 1947. 
Chap. 8 by J. F. Reintjes, "Principles of Radar," by M.I.T. Radar School Staff, 

McGraw-Hill Book Company, Inc., New York, 1946. 
R. W. P. King, H. R. Mimno, and A. H. Wing, "Transmission Lines, Antennas, and 

Wave Guides," McGraw-Hill Book Company, Inc., New York, 1945, Chap. 1. 
J. C. Slater, "Microwave Transmission," McGraw-Hill Book Company, Inc., New 

York, 1943, Chap. 1. 
'P. H. Smith, Transmission Line Calculator, Eledronics, 12, 29-31, January, 1939. 
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so obtained at each frequency of measurement may be connected to 
form an impedance-vs.-frequency curve. The shape of this curve on a 
Smith chart is a function of the characteristic impedance of the transmis-
sion line. To avoid this dependence, it is sometimes desirable to replot the 
impedance values on a simple R vs. X diagram such as Fig. 8-12 or Fig. 9-9. 

On balanced antennas with two-
wire transmission lines the meas-
urement of the SWR and of the 
current minimum point are con-
veniently made with a small loop 
connected to a current indicator 
as in Fig. 15-14. The indicating 
device may be a crystal rectifier 
(square law) with current meter, 
or it may be a thermocouple meter. 
The indicator can be coupled to 
one wire of the line as shown. By 
measuring both wires, the amount 
of unbalance of the transmission 

mission line for impedance measurements,  line can also be measured. 
On antennas fed with unbal-

anced or coaxial transmission lines the impedance measurements can be 
made with a slotted coaxial line as in Fig. 15-15. Usually a voltage probe 
is used to give the SWR and distance to a voltage minimum. 
Measurements on balanced antennas can often be conveniently made 

with a slotted coaxial line and ground-plane arrangement (Fig. 15-15) by 

Fm. 15-14.  Balanced antenna and trans-

Receiver 

Ground  F OIndicator 
plane  (Slotted line 

l'  18 
Probe 

'(Stub  
antenna 

sot• B' 

o▪ St hercot ui ognh 
BB'  tuner 

Double stub 

R F 
filter 

Oscillator 

Fro. 15-15.  Stub antenna and ground (image) plane with typical coaxial line for 
impedance measurements. 

measuring one-half the antenna and then multiplying the measured im-
pedance values by 2. Thus, instead of measuring a balanced I-wavelength 
dipole with a two-wire transmission line (Fig. 15-14), measurements are 
made of one-half the dipole as a I-wavelength stub antenna with a large 
ground plane (Fig. 15-15). Ideally the ground plane should be perfectly 
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conducting and infinite in extent to produce a perfect image of the stub 
antenna. The ground plane of finite extent used in practice should, there-
fore, be as large as possible. Even though the ground plane is several 
wavelengths in diameter, the measured impedance of a stub antenna varies 
appreciably as a function of the diameter.' This variation is reduced as 
the ground-plane diameter is increased. Meier and Summers' found that 
a large square ground plane results in about half the variation of impe-
dance observed with a circular ground plane of approximately the same 
size. The antennas were mounted symmetrically on both ground planes. 
The reduced variation with the square ground plane is presumably due to 
the partial cancellation of waves reflected to the antenna terminals from 
the edge of the ground plane. These waves travel different distances on 
a square ground plane, and, hence, all cannot arrive in the same phase. 
The ratio of the longest to the shortest distance is the ratio of the diagonal 
of a square to the length of one side (1.41). With a circular ground plane 
and symmetrically located antenna, all the waves reflected from the edge 
return in the same phase. 
The ground (image) plane technique can also be used to advantage in 

measuring the terminal impedance of slot antennas. A sheet with a half 
slot (equal in length to the full slot but of one-half the width) is butted 
against an image plane placed perpendicular to the slot plane. The half 
slot is energized by a coaxial line with the inner conductor connected to the 
terminal of the slot and the outer conductor terminated in the image plane. 
The terminal impedance of the full slot is twice the impedance of the half 
slot. The impedance Z./2 of the half slot is related to the impedance ZeI/2 

of the complementary stub antenna or 4 dipole by Z./2 =  8, 869/ Zd/2. 

With horn or slot antennas that are fed with a wave guide, measure-
ments of the field in the guide can be made with a slotted wave guide and 
probe arrangement. In this way measurements of the SWR, reflection co-
efficient, and equivalent load impedance may be obtained in a manner 
analogous to that used with a coaxial line.2 
15-8. Radiation Resistance by Reflection Method. The method of 

Sec. 15-7 requires that the antenna terminals be available for the connec-
tion of a transmission line.  In the case of a short-circuited resonant 
element (such as a parasitic element), however, no terminals are available. 
To measure the relative radiation resistance of such an element, a re-
flection method' can be employed.  Consider that the antenna is a 1-

I A. S. Meier and W. P. Summers, Measured Impedance of Vertical Antennas Over 
Finite Ground Planes, Proc. I.R.E., 37, 609-616, June, 1949. 

3 See, for example, "Very High Frequency Techniques," Radio Research Laboratory 
Staff, McGraw-Hill Book Company, Inc., New York, 1947, pp. 39-46. 

3 Edwin Istvanffy, Antenna Impedance Measurement by Reflection Wthod, Proc. 
I.R.E., 37, 604-608, June, 1949. 
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wavelength element that has been adjusted in length to resonance. As 
shown in Fig. 15-16, the antenna is placed in the field of a transmitting 

(
Antenna under test 

Receiver 

Transmitter 

FIG. 15-16. Reflection method for comparison of resistances. 

antenna and the reflected power that is received by another antenna is 
measured.  The power the antenna under test reradiates is 

= k  (15-19) 
R, 

where E, = field of transmitting antenna at antenna under test (test an-
tenna 1) 

/., = effective length of resonant test antenna 1 
R, = radiation resistance of resonant test antenna 1 
k = constant involving the distance between antennas 

For another resonant 4-wavelength element (test antenna 2) of different 
thickness and, hence, different effective length 1,2 but of substantially the 
same pattern, the reflected power is 

W2 = k  (15-20) 
R2 

where R2 is the radiation resistance of the resonant test antenna 2 and k 
is the same constant as in (15-19). Then dividing (15-19) by (15-20) 

122.  w1  (L2 )2 

RI — W2 \i.1 
(15-21) 

Assuming that for small changes in length the effective length is pro-
portional to the physical length, 

1  1 _1 = 
12 1.2 

where l = physical length of test antenna 1 
= physical length of test antenna 2 

Thus, 
R2 WI 12)9 
R1 W2 /1 

The ratio WI/W2 can be conveniently measured as the ratio (V,/172)2 
where V, is the voltage received when test antenna 1 is observed and V, 

(15-22) 

(15-23) 
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is the voltage received when test antenna 2 is observed. Thus, from the 
ratio W,/W2 or (VI/V2)2 and the length ratio (4//i), the relative radiation 
resistance of one resonant antenna with respect to another can be evaluated. 
To determine the absolute value of the resistance requires that the re-
sistance of one of the antennas be known. 
15-9. Current-distribution Measurements. In many cases it is impor-

tant to know the current distribution along an antenna. For example, if 
both the magnitude and phase of the current is known at all points along 
an antenna, the far field of the antenna can be calculated. 
The measurement of current distributions is based on a current sampling 

method. A small pickup loop is placed close to the antenna conductor. 
A current is induced in the loop proportional to the adjacent antenna 
current. If the wavelength is sufficiently long, the loop and indicating 
meter can be combined in a single unit as in Fig. 15-17a. At very high 
frequencies the indicating instrument may be too large to be placed near 
the antenna without seriously disturbing the field, so that an arrangement 

0 

To receiver 

Mo. 15-17.  Sampling loops for current distribution measurements. 

such as illustrated in Fig. 15-17b is resorted to. Here the indicating meter 
is remote from the pickup loop. The loop is connected to a crystal rectifier. 
Very fine insulated output wires from the rectifier are twisted together 
and then wound as a helical choke on a dielectric rod which may act as a 
handle or support for the loop probe. The diameter of the choke is about 
X/50 with a spacing about equal to the diameter. The choke minimizes 
the current induced on the output wires by the field near the antenna. 
Hence, this reduces the reaction of the probe on the antenna. A by-pass 
condenser in the loop prevents a d-c short circuit on the crystal. A current 
distribution measured by a loop of the above construction is presented in 
Fig. 15-18.1 

1Bhupendra N. Bhargava, "A Study of Current Distribution on Long Radiators," 
master's thesis, Department of Electrical Engineering, The Ohio State University, 
Columbus, Ohio, 1947 
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Another type of sampling loop is shown in Fig. 15-17c. This loop is 
constructed of small diameter coaxial cable.'  The loop is of balanced 
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FIG. 15-18. Relative current distribution on long thick cylindrical antenna.  (After 
Bhargava.) 

D=7-6 

construction.  The cable leading away from the loop is wound into a 
helical choke of small diameter (about X/50 diameter). 
In order to remove completely the leads between loop and indicator 

Oscillator 

Matched termination 

Slotted line  Attenuator 
Slotted antenna Sampling loop N  

Receiver 

Indicator 

Small coaxial 
line from 
sampling loop 4,-Ground plane 

End 
view 

FIG. 15-19a.  Slotted antenna and sampling loop. 

'For microwave frequencies, coaxial cable as small as 0.042 in. outside diameter is 
obtainable from Precision Tube Co., 3824 Terrace St., Philadelphia, Pa. 
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from the field of the antenna, the arrangement shown in Fig. 15-19a can 
be employed.' In this method a narrow longitudinal slot is cut in the 
hollow cylindrical antenna conductor. The loop projects through the slot. 
The output cable from the loop is confined within the antenna conductor 
and is brought out through the end of a grounded stub as shown. 
On broadcast-station arrays the current can be monitored with a loop 

in this manner as shown in Fig. 15-19b. A loop is mounted permanently 
in place on each tower of the array and the relative phase of the outputs 
of the loops monitored in the station to ensure that the field pattern does 
not shift. 
The variation of current magnitude as a 

,—Section function of position on an antenna can be 
of tower 

measured with any of the types of sampling 
loops shown in Fig. 15-17 by moving the loop  Jj / Loop 
along the antenna. If in addition it is desired 
to measure the phase variation, a comparison 
must be made between the phase of the sam-
pled current and a reference current. This 

Coaxial line 

may be done, for example, as indicated by  bonded to leg 
adding the dashed connections shown in the  44  of tower 

schematic diagram of Fig. 15-19a. Here the 
signal picked up by the sampling loop is 
mixed with a signal of approximately equal 
amplitude extracted by a probe on a matched 
slotted line. With the antenna sampling loop 
fixed, the line probe is moved to give a mini-
mum indication. When the antenna sampling 
loop is displaced to a new location, the line probe is moved so as to maintain 
a minimum indication. The phase shift between the line-probe positions 
then equals the phase shift between the two antenna sampling-loop loca-
tions. The phase shift is a linear function of distance on a line with matched 
termination.  Assuming the phase velocity equals that of light in free 
space, the phase shift 0 along the line in degrees per unit length is given by 
3607X where X is the free-space wavelength of the applied signal. The 
phase change between two points on the line is then the distance between 
the points multiplied by 0. 
The phase velocity v along the antenna is given by v = Xof where f is 

the frequency and Xo is the wavelength measured along the antenna. 

I Milton Aronoff, "Measured Phase Velocity and Current Distribution Characteristics 
of Helical Beam Antennas Radiating in the Beam Mode," master's thesis, Department 
of Electrical Engineering, The Ohio State University, 1948. 
Giorgio Barzilai, Experimental Determination of the Distribution of Current and 

Charge Along Cylindrical Antennas, Proc. I.R.E., 37, 825-829, July, 1949. 

Fm. 15-19b. Current samp-
ling loop on broadcast-station 
tower. 
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This is the length for a 360° shift in phase along the antenna. This may 
be determined from a phase-vs.-length curve measured as above. Or the 
measurement may be simplified by measuring only the distance intervals 
for a 360° phase shift. In this case the slotted matched line can be dis-
pensed with and the reference voltage fed directly to the junction J, as 
indicated by the dotted line in Fig. 15-19a. The distance along the antenna 
between successive minimum readings on the indicator corresponds to 1 
wavelength X0. This method is suitable when the current amplitude 
distribution is relatively uniform. If the SWR is very large, this method 
is difficult to apply and it may be simpler to take Xo as equal to twice 
the distance between successive current minima, excluding the minimum 
at the end of the antenna. The phase-velocity curve of Fig. 7-19 was 
measured on a slotted helix using the probe arrangement of Fig. 15-19a 
(without slotted line) and a combination of the above phase-velocity 
methods. At low frequencies the SWR on the helix is large, and twice 
the distance between successive current minima was taken for Xo. At 
axial mode frequencies the current amplitude is more uniform along the 
helix, and X0 was measured as a 360° phase shift. 
15-10. Wave Polarization. With some antennas it is of interest to 

measure the nature of the polarization. This may be measured at one 
frequency as a function of the space angles 0 and ck (see Fig. 15-2). Or it 
may be measured at one angular position (00, q5o) as a function of the fre-
quency. Such measurements are desirable where the dominant radiation 
is circularly or elliptically polarized. Before describing methods of meas-
uring the polarization (Sec. 15-17), the general subject of wave polarization 
will be reviewed. 
It is convenient to consider linear polarization and circular polarization 

as special cases of elliptical polarization. The electric field vectors for a 
linearly polarized wave' are shown in Fig. 15-20a. The magnitude and 
direction of the electric field E are indicated as a function of distance for 
a given instant of time. In Fig. 15-20b the wave is viewed from the di-
rection of the positive z axis (wave approaching reader). The electric 
field E varies in magnitude between positive and negative E2, the direction 
of E being confined to the y direction. In Fig. 15-20c the instantaneous 
space distribution of E is presented for an elliptically polarized wave travel-
ing in the positive z direction. As viewed from the positive z axis, the 
tip of the electric field vector E at a fixed position z describes an ellipse 
with major and minor semiaxes E, and E, as shown in Fig. 15-20d. The 
special case of the linearly polarized wave of Fig. 15-20a and b occurs 

IA linearly polarized wave is sometimes called a "plane-polarized" wave. However, 
"plane" is used here in another sense; so to avoid confusion the term linearly polarized 
will be emnloyed. 
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when E, = 0. On the other hand, when EI = E2, the ellipse becomes a 
circle and we have another special case of elliptical polarization called 
circular polarization. The variation of E for a circularly polarized wave is 
illustrated by Fig. 15-20e and f. 

Linear polarization 

Locus of tips of 
instantaneous E ., 

Elliptical polarization 

Circular polarization 
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/ Wove direction 
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/ Wave 
direction 
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(e) 

(b) 

(d) 

cn 

Rio. 15-20. Linear, elliptical, and circular polarization. 

An elliptically polarized wave may be regarded from two points of view: 
(1) as the resultant of two linearly polarized waves of the same frequency 
and (2) as the resultant of two circularly polarized waves of the same 
frequency but having opposite rotation directions. Both points of view 
will be discussed, the former being taken up first. 
15-11. Elliptical Polarization as Produced by Two Linearly Polarized 

Waves.' In this section an elliptically polarized wave is considered as the 

1 Max Born, "Optik," Verlag Julius Springer, Berlin, 1933, p. 21. 
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resultant of two linearly polarized waves of the same frequency. Assume 
that both waves are traveling in the positive z direction and that the plane 

of polarization' of one wave is in the 
x direction and the other in the y 
direction as in Fig. 15-21. If z is 

E x  horizontal, the wave with E in the x 
direction may also be called a hori-

Direction of propagation 
zontally polarized wave and the 
wave with E in the y direction a 
vertically polarized wave. 

FIG. 15-21. Linearly polarized compo- Let the instantaneous electric field 
nents of an elliptically polarized wave,  of the horizontally polarized wave be 

designated E, and the instantaneous 
electric field of the vertically polarized wave be designated as E,. Then 
as a function of time and distance, 

= E1 sin (cot — Oz)  (15-24) 
and 

E, = E2 sin (cot — z + 5)  (15-25) 
where El = amplitude of horizontally polarized wave 

E2 = amplitude of vertically polarized wave 
6 = time-phase angle by which E, leads E. (the horizontally pola-

rized wave is taken as the reference for phase) 
The component of the field in the z direction is everywhere zero (E. = 0). 
The instantaneous values of the fields may also be expressed as the 
imaginary part (Im) of a complex function. Thus, 

E. = Im Es = E, Im eu"-P') = E, sin (Cid —  134  (15-26a) 

E, = Im E. = E2 IM e" ") = E2 sin (cot — fiz  6)  (15-26b) 

where' 
E (.8-no  (15-27a) 

and 
= E2e io.,-0.+8)  (15-27b) 

The instantaneous value of the total field E resulting from the two linearly 
polarized waves is 

E = iE, sin (cot — ftz)  jE2 sin (cot — iftz + a)  (15-28) 
'The direction of the E vector (E plane) is usually taken as the direction of the "plane 

of polarization" of a linearly polarized wave. 
'The dot C) indicates that E. and E, are complex functions of t, z, and ö but a scalar 

space component of the total field vector E. In general, the instantaneous value of the 
field is 

E = ilm t +jImE, 

and 
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At z = 0, (15-28) reduces to 

E = iE, sin cot  jE2 sin (cot + 

467 

(15-29) 

Evaluating (15-29) as a function of time t and plotting the values of the 
total field E, the time variation of E in the x-y plane is obtained.  In 
general the tip of the vector E describes a locus that is an ellipse. If 
E, = E2 and 5 = 90°, the ellipse becomes a circle. 
The fact that, in general, the locus is an ellipse may be shown in an-

other way by proving that (15-24) and (15-25) with z = 0 are the 
parametric equations of an ellipse. Thus, we have 

E, = E, sin cot  (15-30) 

E, = E2 sin (cot  d)  (15-31) 

where cot is the independent variable. The procedure used in the proof 
will be to eliminate cot and rearrange the resulting expression into the 
form of the equation for an ellipse. First we expand (15-31). That is, 

E, = E2 (sin cot cos 3  cos wt sin 5)  (15-32) 

From (15-30) 

sin cot = 
E, 

We also can write 

cos cot = V1 — sin2 cot =  — 

Substituting (15-33) and (15-34) in (15-32) and rearranging and 
yields, 

w2  2E,E cos 3 E'2 . 
±  = sm2 

Dividing by sin2 6, (15-35) can be reduced to 

aE: — bE,E,  cE: = 1 

(15-33) 

(15-34) 

squaring 

(15-35) 

(15-36) 

where a = 1/E; sin2 5 

b = 2 cos 3/E,E2sin2 

c = 1/E: sin2 3 
Equation (15-36) may be recognized as the equation for an ellipse in its 
most general form, the axes of the polarization ellipse not, in general, co-
inciding with the x and y axes (Fig. 15-22). This is the general case of 
elliptical polarization. The line segment OA is the semimajor axis, and 
the line segment OB is the semiminor axis of the ellipse. The ratio OA to 
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OB is called the axial ratio (AR) of the polarization ellipse or simply the 
axial ratio.' Thus 

OA 
Axial ratio = 0—B (15-37) 

Returning now to (15-35), three special cases will be considered. 
Case 1. First consider the case where E, is either exactly in phase 

or 180° out of phase with E.  Then 6 = kr, where k = 0, 1, 2, 3, • • • 
and Eq. (15-35) then reduces to 

E: 2E,E  g2 ., __ 
El  ± E,E, -1- E:  

Polarization 
ellipse 

FIG. 15-22. Polarization ellipse. 

which may be rewritten as 

or 

(f. ± 92 = 0 
, E 2 

(15-39) 

E 
Ey = ±-1 Ey  (15-40) 

E, 

Equation (15-40) is the equation of 
a straight line of the form 

E, = mE,  (15-41) 

where m = the slope equal to±E2/Ei 
When k is even (5 = 0, 2T, 47r, etc.), the slope is positive, and when k is 
odd (6 = 7r, 37r, 5T, etc.) the slope is negative. 
Thus, when the two linearly polarized component waves are exactly in 

phase or 180° out of phase, the resultant wave is linearly polarized with E, 
in general, not in the x or y direction. However, if E2 = 0, E is in the 
x direction and the resultant wave is horizontally polarized. If E, = 0, 
E is in the y direction and the wave is vertically polarized. If E, = Es 

and 5 = 0, then m = +1 and E is at a 45° angle with respect to the 
positive x axis (Fig. 15-23a). If E, = E3 and 5 = 7r, then m = -1 and 
E is at a negative 45° angle with respect to the positive x axis (Fig. 15-23b). 
The angle 7 (Fig. 15-23a and 23b) is related to the slope m by 

7 = arctan m  (15-42) 

'The term ellipticity is also used synonymously with axial ratio. However, ellipticity 
also may mean the ratio of the difference of the major and minor axes to the major axis. 
Another term used in connection with ellipses is eccentricity. The eccentricity of an 
ellipse is the ratio of the distance between a focus and the center to the slant distance 
between a focus and the end of the minor axis. 
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Case 2. Next consider the situation where E. and E. are in time phase 
quadrature. That is, 

1 -I- 2k 7 5 — 
2 

(15-43) 

where k = 0, 1, 2, 3 . . . 
Then the cross-product term in (15-35) disappears and (15-35) reduces to 

g g +  = 1 
Ef 

(15-44) 

This is the standard form of the equation for an ellipse, that is, an ellipse 
with its axes coincident with the coordinate axes. This is a special case 

(c) 

Y 

E, 
x 

(d) 

1 
x 

Fro. 15-23. Examples of linearly, elliptically, and circularly polarized waves. 

of elliptical polarization. For example if E2 = lEi the polarization ellipse 
is as shown in Fig. 15-23c. 
Case 3. Finally consider Case 2 for the special condition of E1 = E2. 

Then (15-44) becomes 

E: + E: = E!  (15-45) 
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This is the equation of a circle (Fig. 15-23d). Hence, when the two linearly 
polarized component waves are in time phase quadrature and also are 
equal in amplitude, the resultant wave is circularly polarized. 
15-12. Clockwise and Counterclockwise Circular Polarization. Let us 

now consider the case of circular polarization (Case 3, Sec. 15-11) in more 
detail.  According to (15-45) the locus of the tip of the vector E is a 
circle. That is, at a fixed position on the z axis the resultant electric field 
vector E is constant in magnitude and rotates uniformly with time in the 
x-y plane completing one revolution each cycle. However, (15-45) gives 
no information as to the direction in which E rotates, that is, clockwise 
or counterclockwise. To determine the rotation direction, let us rewrite 
(15-30) and (15-31) for the special case we are considering, namely, 

5 = 1 ± 2k  7  and  E, = E, 
2 

where k = 0, 1, 2 . . . 
Then, when k is even 

E. = +E, sin cot  (15-46) 

E. = +E, cos cot  (15-47) 

and when k is odd E. is the same but 

E, = —E, cos cut  (15-48) 

Consider first the case where k is even (3 = 7/2, 5r/2, etc.). When 
t = 0, E. = 0, and E. = +E, so that E is in the positive y direction. 

E 
x  s  Ex 

Z  Z  E 

1..0  t- i t.• 0 

Fla. 15-24.  Examples of clockwise rotation of E (a) and counterclockwise rotation (b). 

T 

One-quarter of a cycle later E. = +E, and E, = 0 so that E is in the 
positive x direction. Hence, at a fixed position on the z axis the resultant 
electric field vector E rotates in a clockwise direction as illustrated in 
Fig. 15-24a. 
Next consider the case for k odd (3 = 37/2, 77/2, etc.). When t = 0, 

E. = 0, and E, = —E, so that E is in the negative y direction. One 
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quarter cycle later E. = -FEi and E. = 0 so that E is in the positive x 
direction. Hence, at a fixed position on the z axis the resultant electric 
field vector E rotates in a counterclockwise direction as illustrated in 
Fig. 15-24b. The wave is traveling in the positive z direction (out of page) 
in both this case and the one illustrated by Fig. 15-24a. To avoid any 
uncertainty as to the wave direction, we can call the first case (Fig. 15-24a) 
"clockwise circular polarization wave approaching" and the second case 
(Fig. 15-24b) "counterclockwise circular polarization wave approaching." 
If the electric vector appears to rotate clockwise with the wave ap-

proaching, the electric vector of the same wave appears to rotate counter-
clockwise when the wave is viewed from the opposite direction, that is, 
with the wave receding from the observer.  Hence, we may say that 
"clockwise circular polarization wave approaching" is the same as "counter-
clockwise circular polarization wave receding." 
According to the usage of classical physics, "clockwise circular polariza-

tion wave approaching" is called "right-circular polarization." However, 
according to the IRE Standards' "clockwise circular polarization wave 
receding" is called "right-circular polarization." Where the terms "right-
circular" or "left-circular" are used in the following discussion, the IRE 
definition will be employed because of the convenient relation for helical 
beam antennas. Thus, a right-handed helical beam antenna transmits or 
receives right-circular polarization. 
The two types of circular polarization and the various terms used to 

describe them are summarized in Table 15-1. 

TABLE 15-1 

Polarization 
Classical 
physics 
usage 

I.R.E. 
definition 
(1942) 

Type of helical 
beam antenna for 
generating or re-
ceiving polarization 

Clockwise wave approaching 
or 

Counterclockwise wave receding 

Counterclockwise wave approaching 
or 

Clockwise wave receding 

Right Left Left-handed 

Left Right Right-handed 

15-13. Clockwise and Counterclockwise Elliptical Polarization. In the 
general situation where the resultant wave is elliptically polarized, it is 

1I.R.E. Standards on Radio Wave Propagation (definition of terms) 1942, p. 2, 
Supplement to Proc. I.R.E., 30, No. 7, Part III. 
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also of interest to know the direction of rotation of E. This can be de-
termined by plotting E for several instants of time as calculated from E. 
and E. in (15-30) and (15-31). Or we can proceed in the following manner. 
Divide (15-27b) by (15-27a) obtaining 

Equation (15-49) will now be applied to several special cases as illustrations. 
Case 1. When E. and E. are in phase, 8 = 0. Then (15-49) reduces to 

Er _ _,E2 
E. — 7- El or 

Er= -FP Ea 

(15-49) 

(15-50) 

When .k, and E. are 180° out of phase, 5 = T.  Then (15-49) becomes 

E9 

E. — E1 
or =  k 

Ei 
(15-51) 

Both (15-50) and (15-51) are equations of straight lines, the resultant wave 
being linearly polarized. 
Case 2. Next consider the situation where E1 leads E. by 90° or 6 = 7/2. 

Then (15-49) reduces to 

(15-52) 

This is the case of clockwise elliptical polarization (wave approaching) .1 
The axial ratio of the polarization ellipse is in this instance E2/E1. If 
the axial ratio is unity (E2 = E1), then 

I: +j  (15-53) 

This is the case of clockwise circular polarization (wave approaching). It 
should be noted that the ratio E2/E, equals the axial ratio only when 
5 =  
Case 3. Finally consider the situation where E„ lags Ea by 90° or 
o = — 7/2. Then (15-49) becomes 

E, . E9 

—3 (15-54) 

lAccording to the IRE definition this would be called "left-elliptical polarization." 
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This is the case of counter clockwise elliptical polarization (wave approach-
ing). When E 2 = E1 (15-54) reduces to 

k = —j  (15-55) 
Ex 

This is the case of counterclockwise circular polarization (wave approaching). 
Thus, from Cases 2 and 3 we can conclude that a +j indicates clockwise 
rotation while a —j indicates counterclockwise rotation of E (wave ap-
proaching). 
15-14. Polarization as a Function of E2/E1 and S. In the previous sec-

tions we have seen that the ratio Ez/E, (or E1/E3) and the phase angle 
determine the type of polarization of the resultant wave produced by two 
linearly polarized component waves (with their planes of polarization at 
right angles). The polarization ellipses for E of the resultant wave as a 
function of E2/E1 and 6 are presented in Fig. 15-25 for E2/E1 values of co , 

00 I I I I I I I 1 I 
2 
Is L\.3  

g_2 
E  Counter i 

j 
Clock-

1 N  
lc -)  

N  
......) 

clockwise  wise 

0 

-18Cr  -135° -90° -45° 0° +45° +90° +135° +180° 
8 

Fm. 15-25. Chart of polarization ellipses as a function of the ratio E2/E1 and phase 
angle 6 (wave approaching) 

2, 1, 0.5, and 0 and 5 values of 0°, ±45°, ±90°, ±135°, and ±180°. The 
direction of rotation of E is indicated. It is clockwise for positive values 
of 6 and counterclockwise for negative values of 5 (wave approaching). 
Referring to Fig. 15-25, the resultant wave is linearly polarized and 

vertical for all values of 5 when E2/E1 = co , that is, when EI = 0. When 
E2/E1 = 0, that is, when E2 =  0, the wave is linearly polarized and hori-
zontal for all values of S. The wave is also linearly polarized when 5 = 0 
or ±180°, the plane of polarization (horizontal, slant, or vertical) de-
pending on the ratio E2/El. Circular polarization occurs only for the case 
where E2/E, = 1 and 6 = ±90°. When 6 = +90°, the rotation direction 
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is clockwise (wave approaching), and when ö = —90°, the rotation direc-
tion is counterclockwise (wave approaching).  All these situations are 
special limiting cases of the general situation in which the wave is ellipti-
cally polarized. In Fig. 15-25 there are 16 cases of elliptical polarization. 
In Fig. 15-25 we note that for a given value of E2/E1 all polarization 
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a 
FIG. 15-26. Wave polarization chart. 

ellipses are contained within a rectangle (dashed lines) of height-to-width 
ratio equal to E2/Ei. For E2/E, = 0 or co the rectangle degenerates to 
a line. 
Two linearly polarized antennas oriented at right angles and energized 

with equal voltages in phase quadrature are sometimes employed to pro-
duce circular polarization. If the voltages are unequal or the phase rela-
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tion is not 90°, the polarization becomes elliptical. By means of polariza-
tion measurements of the radiated wave (Sec. 15-17) it is possible to 
determine what adjustments should be made on the antenna to obtain 
circular polarization.  For example, suppose that one of the linearly 
polarized antennas is vertical and the other is horizontal. Then if the 
polarization is elliptical, with the major axis of the polarization ellipse 
either vertical or horizontal, the phasing is ±90° but the two antennas are 
radiating unequal powers (see Fig. 15-25).  If the major axis of the 
polarization ellipse is at r = ±45°, it indicates that the two antennas 
are radiating the same power but the phase is not ±90°.  For other 
ellipses, the power division and phasing can be estimated with the aid of 
Fig. 15-25. 
To present wave polarization data, a chart with coordinates similar to 

those in Fig. 15-25 is useful. A chart of this type is presented in Fig. 15-26. 
The ordinate is the ratio E2/E1, and the abscissa is the phase angle 6. 
A point on the chart defines the polarization uniquely. Thus, the point 
E2/E, = 1 and 8 = +90° corresponds to clockwise circular polarization 
(wave approaching).  If the polarization of an antenna is observed to 
change as a function of frequency, this variation can be plotted as a line 
on the chart of Fig. 15-26. The val-
ues of E2/E, and 6 can also be con-  Point  
veniently presented on the charts of  I (x ,y) 
Fig. 15-33 discussed in Sec. 15-17. 
15-15. Orientation of Polarization 

Ellipse with Respect to Coordinates. 
It is often of interest to know the  Polarization 

ll 
angle of tilt 7 of the major axis of the  e ipse  sin r 
polarization ellipse with respect to 
the reference axis. The angle 7 will 
be called the tilt angle. It may be de-, iecosT  c sin r 
termined graphically from the polar-
ization ellipse as evaluated from 
(15-30) and (15-31) as a function of Fla. 15-27. Construction for finding the 
time. Or T can be obtained explic- angle 7 between the x axis and the major 
itly as a function of E„ E2, and 6 in or minor axis of the polarization ellipse 
the following manner. 
The reference axes are X, Y as shown in Fig. 15-27. Let a new set of 

axes X', Y' also be constructed. The coordinates of any point P may then 
be expressed in the new coordinates as 

x =  cos r — y/ sin r  (15-56) 

y = x' sin 7 + y' cos 7  (1S-57) 



476  ANTENNAS  [CHAP. 15 

Therefore, the electric field components (E. and E.) can be expressed in 
terms of new field components (E., and Es.) as follows, 

E. = E. cos r — E., sin  (15-58) 

E. = E. sin T ±  E., cos 7  (15-59) 

Now substituting (15-58) and (15-59) into (15-35) yields 

1 
— 5 (E:. cos2 7 — 2E..E., sin 7 cos T +  E: • sin2 7) 
E, 

2 cos 5  [(E2., — 4.) sin r cos r + E..E..(cos2 r — sin2 7)] 
E,E2 

1 2  • 2 
±  -- 2" (E , sin2 7 -I- 2E.,E., sin 7 cos r ± E. cos2 7-) = sin2 8 

E 2 ' 

(15-60) 

Equation (15-60) is the general relation for an ellipse involving the field 
components in the direction of the new coordinate axes and the angle 7 
between the old and new x axes. If 7 is adjusted so that the new co-
ordinate axes coincide with the major and minor axes of the polarization 
ellipse, as in Fig. 15-27, then the sum of the cross-product terms in (15-60) 
is zero. This relation can then be solved for T.  Thus, setting the sum 
of the cross-product terms equal to zero, 

2E..E., sin 7 cos 7 2E..E., sin r cos r 
E:  E: 

cos  5 (cos  7 — sin 2  2 r) = 0  (15-61) 
EIE2 

Solving (15-61) for the tilt angle 7 yields' 

2E,E2 cos 5 
tan 27 — Ef - E: (15-62) 

or 

1 4 2E,E2 cos 5 
T =  - 2  arcon E:  _ E:  (15-63) 

By means of (15-63) the tilt angle 7 between the major or minor axis of 
the polarization ellipse and the positive x axis can be calculated from a 
knowledge of the phase angle 8 and the amplitudes E, and E2 in the x 
and y directions. The angle 7 as given by (15-63) is the angle between 
the x axis and either the major or minor axis of the ellipse since (15-61) 
is true whether the ellipse is as shown in Fig. 15-27 or turned through 90° 
so that its major axis is in the y' direction. 

1 Max Born, "Optik," Verlag Julius Springer, Berlin, 1933, p. 23. 
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Consider an example. For equal in-phase component fields ô = 0 and 
= E2, we find from (15-63) that T = 45°. This is the case of linear 

polarization at a slant (45°) angle. From (15-63) it is also apparent that 
r = ±45° when E1 = E2 for all values of 6 (see Fig. 15-25, row for E2/E, = 
1). As another example, take the case for a = 45° and E2 = 2E,. Then 
T = —21.7°.  This is the angle between the x axis and the minor axis of 
the ellipse (see ellipse at 6 = 45° and E2/E, = 2 in Fig. 15-25). The 
angle to the major axis is 90° — 21.7° = +68.3°. 
15-16. Elliptical Polarization as Produced by Two Circularly Polarized 

Waves. In this section an elliptically polarized wave will be regarded from 
the point of view that it is the resultant of two circularly polarized waves. 
The circularly polarized waves are of the opposite rotation direction and, 
in general, of unequal amplitude. 
When the amplitudes are equal, the resultant wave is linearly polarized 

(Fig. 15-28a). The plane of polarization depends on the phase relation 

Circularly polarized 
component wove  Resultant 

wave 

Eccw  =  

3 
ECC w  2ECW 

• 

Ec.,•0 

Fm. 15-28. Circularly polarized components of linearly, elliptically, and circularly 
polarized waves. 

(a) 

(b) 

(0) 

between the two circularly polarized waves. In the example of Fig. 15-28a 
the E vectors for both component waves are in the positive y direction at 
the same instant. Hence, the resultant wave is vertically polarized. 



478  ANTENNAS  [CHAP. 15 

When the amplitudes are unequal, the resultant wave is elliptically 
polarized. If, for example, the counterclockwise rotating wave has twice 
the amplitude of the clockwise rotating wave (E„„ = 2E ,,). the resultant 
wave is elliptically polarized as illustrated in Fig. 15-28b.  Since the E 
vector of both waves is in the positive y direction at the same instant, 
the major axis of the polarization ellipse is vertical. The rotation direction 
is counterclockwise, the same as for the larger component wave 
If one of the component waves becomes zero, we have a limiting case 

and the resultant wave is equal to the other component wave (Fig. 15-28c). 
The fact that the resultant of two circularly polarized waves (of opposite 

rotation direction) is, in general, an elliptically polarized wave can also 
be demonstrated analytically as follows. 
Let the E vector of the counterclockwise rotating component wave be 

expressed by 

E„. = Eel" 

and for the clockwise component by 

Ec. = E.e-""+" 

(15-64) 

(15-65) 

The instantaneous x and y components of the resultant wave are then 

E. = Re (E„. + E..)  (15-66) 

and 

E. = Im (E„. + E..)  (15-67) 
Therefore, 

= E3 cos wt  E4 cos (Cid +  (15-68) 

and 

E. = E3 sin cot — E. sin (wt  a')  (15-69) 

Equations (15-68) and (15-69) are the parametric equations of an ellipse 
since by eliminating cot they can be reduced to an equation for an ellipse 
of the form 

qE!  pE.E.  rE: = 1  (15-70) 

where q, p, and r are functions of E3, E., and 5. 
The electric vector of a circularly polarized wave rotates with a uniform 

angular velocity. For a linearly polarized wave, E is in a fixed direction 
for one half cycle and then is in the opposite direction for the next half 
cycle. The situation for elliptical polarization is between these extremes. 
The angular velocity of E for an elliptically polarized wave is smaller when 
E is in the direction of the major axis of the polarization ellipse and larger 
when it is in the direction of the minor axis. The angular velocity is such 
that the rate of sweeping out the area of the polarization ellipse is constant. 
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15-17. Polarization Measurements. Three methods by which the polar-
ization characteristics of a wave can be measured are: 

1. By measuring the polarization pattern with a linear antenna and also 
observing the direction of rotation of E. This will be called the 
polarization-pattern method. 

2. By measuring the amplitudes (E1 and E3) of two perpendicular 
linearly polarized components of the wave and the phase angle 5 
between them. This will be called the linear-component method. 

3. By measuring the amplitudes CE, and E4) of the two circularly 
polarized components (of opposite rotation direction) of the wave and 
the phase angle (S' between them. This will be called the circular-
component method. 

15-17a. Polarization-pattern Method. In this method a rotatable linearly 
polarized antenna, such as the I-wavelength antenna in Fig. 15-29, is 
connected to a receiver calibrated to read relative field intensity.' Let 

antenna 

Receiver 

Indicator 

Fm. 15-29. Schematic arrange-
ment of rotatable linearly polar-
ized antenna for measuring polar-
ization pattern. 

(a) 

(6) 

Polarization 
pattern 

Polarization 
ellipse 

Polarization 
pattern 

Polarization 
ellipse 

(linear polarization) 

Flo  15-30. Relation of polarization 
ellipse to polarization pattern for elliptical 
polarization (a) and linear polarization (6). 

1In practice a linearly polarized antenna of considerable directivity would be preferred 
to a 4-wavelength type. Precautions must also be taken that the transmission line does 
not affect the antenna polarization characteristics. 
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the wave be approaching (out of page). Then as the antenna is rotated 
in the plane of the page, the field intensity observed at each position is 
proportional to the maximum component of E in the direction of the an-
tenna. Such measurements of the incident wave with a rotatable linearly 
polarized antenna do not yield the polarization ellipse of the wave but 
rather its polarization pattern (Fig. 15-30a). Thus, if the tip of the electric 
vector E describes the polarization ellipse shown in Fig. 15-30a (dashed 
curve), the variation measured with a linearly polarized receiving antenna 
is given by the polarization pattern in Fig. 15-30a (solid line). For a given 
orientation OP of the linearly polarized antenna, the response is pro-
portional to the greatest ellipse dimension measured normally to OP. As 
shown in Fig. 15-30a, this is the length OP'. If the linearly polarized 
antenna orientation is OQ, the response is proportional to the length OQ'. 
For the case of linear polarization, the polarization ellipse degenerates to 
a straight line and the corresponding polarization pattern is a figure of 
eight as indicated in Fig. 15-30b. By graphical construction as in Fig. 
15-30, the polarization ellipse can be constructed if the polarization pattern 
is known or vice versa.' To determine the direction of rotation of E an 
auxiliary measurement is necessary.  For example, the output of two 
circularly polarized antennas could be compared, one responsive to clock-
wise and the other to counterclockwise rotation. The rotation direction 
of E then corresponds to the polarization of the antenna with the larger 
response. 

Vertically polarized antennas 

Horizontally polarized antennas 

j 
Receiver 

Indicator 

(a) 

Attenuator 

Receiver 

Slotted 
line 

Indicator  il Matched 
termination 

(b) 

FIG. 15-31.  Schematic arrangement of linearly polarized antennas for measuring ratio 
E,/E, (a) and for measuring phase angle 5 in linear-component method (b). 

'See, for example, Chap. 6 by G. Stavis and A. Dome, "Very High Frequency 
Techniques," Radio Research Laboratory Staff, McGraw-Hill Book Co., Inc., New 
York, 1947, p. 158. 
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Thus, by this method the polarization ellipse can be drawn and the 
rotation direction indicated (see Figs. 15-30 and 15-25). Although such a 
diagram completely describes the polarization characteristics of a wave, it 
is simpler to measure merely the maximum amplitude A/2 and the mini-
mum amplitude B/2 and take the ratio of the two amplitudes which, as 
indicated in Sec. 15-11, is called the axial ratio of the polarization ellipse or 
simply the axial ratio (AR). The axial ratio is usually expressed so that 
it is equal to or greater than unity. The axial ratio of the polarization 
ellipse of Fig. 15-30a is 

A 
AR = — 

B 

Thus, by specifying AR, 7, and the rotation direction of E the polarization 
characteristics are completely described. 
15-17b.  Linear-component Method. 

In this method two fixed linearly po-
larized antennas can be mounted at 
right angles, like the two i-wavelength 
antennas in Fig. 15-31a. The wave is 
approaching normally out of the page. 
By connecting the receiver first to the 
terminals of one antenna and then the 
other, as in Fig. 15-31a, the ratio E,/E, 
can be measured. Then, by connect-
ing both antennas to a phase compara-
tor, the angle ô can be measured. This 
may be done as in Fig. 15-31b, using a 
matched slotted line. From a knowl-
edge of E,, E,, and 6 the polarization 
ellipse can be calculated from (15-35) 
or from (15-30) and (15-31) and the 
direction of rotation E determined from 
(15-30) and (15-31) (see Fig. 15-25). 
The values of E2/E, (or E1/E2) and 5 
can be plotted on the charts of Fig. 
15-26 or 15-33. 
15-17c. Circular-component Method. In this method two circularly pola-

rized antennas of opposite rotation direction are connected successively 
to the receiver and the amplitudes E, and E4 of the circularly polarized 
component waves measured. The antennas can very conveniently consist 
of two long helical beam antennas' one wound left-handed and the other 
wound right-handed as in Fig. 15-32. The left-handed helix responds to 

1J. D. Kraus, Thl Helical Antenna, Proc I .R.E., 37, 263-272, March, 1949. 

Left-
handed 
helix 

Ground 
plane 

Coaxial 
line 

1 Wave 
direction 

IC D  P:ght-
r a nde d p he n 

(S. 

Rotary 
joint 

3-position 
switch 

Indicator 

no. 15-32. Arrangement for measur-
ing left and right circular components 
of wave and phase angle a' between 
them in circular component method. 
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left-circular polarization and the right-handed helix to right-circular pola-
rization (IRE definition). The left-circular component EL of the wave is 
measured with the switch to the left as in Fig. 15-32 so that the receiver 
is connected to the left-handed helix. The right-circular component ER 
of the wave is measured with the switch thrown to the right so that the 
receiver is connected to the right-handed helix. The axial ratio (AR) of 
the received wave is then given by 

ER + EL  AR —  (15-71) 
ER — EL 

According to (15-71) the axial ratio may have values between +1 and 
± CO and between —1 and — co. For positive values of AR the wave is 
right-elliptical and for negative values is left-elliptical. The tilt angle 7 
of the polarization ellipse may be measured by finding the direction of 
maximum E with a rotable linearly polarized antenna. Or 7 may be de-
termined with the helical antennas of Fig. 15-32 by rotating one helix on 
its axis with both helices connected in parallel to the receiver (switch 
segment up in Fig. 15-32). Assuming that the axes of the helices are in a 
horizontal plane, let the helix rotation angle be (5' and let its reference point 
(43' = 0) be taken when the receiver output is a minimum for a horizontally 
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polarized incident wave.  Then for any type of polarization with the 
polarization ellipse at a tilt angle r to the horizontal, r = 3'/2. Thus, three 
measurements EL, ER, and 5' with the helical antennas determine the 
polarization characteristics of the received wave completely. 
The circular-component method using helical beam antennas is probably 

the most practical of the three methods, especially for measurements over 
a considerable frequency range. The accuracy depends on the circularity 
of polarization of the helices. This is improved (AR nearer unity) by 
making the helices long since by (7-48) 

AR 2n + 1 — 
2n 

where n = the number of turns of the helix 

Axial  r=45 r=45. 
ratio  b' = 90° 
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Rumsey and Tice have devised the very convenient presentation for 
wave-polarization data shown in Fig. 15-33a. This presentation employs 
a chart similar to a bipolar impedance chart except that AR takes the 
place of SWR and the tilt angle r of the polarization ellipse takes the 
place of line length. The right half of the chart is for right-handed waves 
and the left half is for left-handed waves. The rectangular coordinates 
P1 and P, are the real and imaginary parts of a complex polarization 
parameter P that is related to the linearly polarized components E1 and E2 

of the wave and the phase angle 6 between them (see Sec. 15-14) by 
the equation 

.E, 
P = P1 + iP2 =.7  

A circle diagram similar to a Smith chart can also be used for this type of 
presentation as shown in Fig. 15-33b. Here the chart is limited to either 
left- or to right-handed waves, unless some convention is adopted as, for 
example, that measurements of left-handed waves be plotted as circles 
and right-handed as crosses. Either of the charts in Fig. 15-33 is especially 
convenient for plotting polarization data measured by the circular-com-
ponent method. 
15-18. Antenna Rotation Experiments. Consider the radio circuit 

shown in Fig. 15-34a in which both the transmitting and receiving an-

Antenna__ 
'am 

(a) 

Antenna 
ox's 

(h) 
Fm. 15-34.  Arrangements for antenna rotation experiments. 

(15-73) 
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tennas are linearly polarized. If either of the antennas is rotated about 
its axis at a frequency f (rps), the received signal is amplitude modulated 
at this frequency. The direction of rotation is immaterial. 
Consider next the radio circuit shown in Fig. 15-34b in which one antenna 

is circularly polarized and the other is linearly polarized. If one of the 
antennas is rotated about its axis at a frequency f (rps), the received signal 
is shifted to F ±f, where F is the transmitter frequency. This experiment 
may also be conducted with two circularly polarized antennas of the same 
type. The frequency f is added or subtracted from F depending on the 
direction of antenna rotation relative to the rotation direction of E. 
15-19. Model Measurements. Pattern and impedance measurements 

of actual antennas are often difficult or impractical because of the large 
size of the antenna system. In such cases a scale model of the antenna 
system may be built to a convenient size and then measurements made on 
the properties of the model.' This technique is especially useful in meas-
uring patterns of antennas mounted on aircraft. Although the antenna 
proper may be small, it may excite currents over much of the airplane 
surface so that the entire airplane becomes part of the antenna system, and, 
hence, the measurements must be made of the airplane with antenna. 
Another advantage is that the patterns of antennas on aircraft in flight 
(remote from the ground) can be easily simulated by the model technique 
by placing the model on a suitable tower. To measure such patterns on 
actual aircraft is both tedious and expensive. 
Let the scale factor for the model be p. Then any length dimension L,,, 

on the model is related to the corresponding dimension L on the actual 
antenna by 

L = 
"  P 

(15-74) 

Then the frequency fa. used to measure the model must be related to the 
frequency f used with the actual antenna by 

f. = pf  (15-75) 

A further requirement of an accurate model for pattern and impedance 
measurements is that the conductivity of the antenna metal be scaled 
according to the relation 

cr. = Pu  (15-76) 

'George Sinclair, Theory of Models of Electromagnetic Systems, Proc. I.R.E., 36, 
1364-1370, November, 1948. 
G. H. Brown and Ronold King, High-frequency Models in Antenna Investigations, 

Proc. I.R.E., 22. 457-480, April, 1934. 
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where a,. = conductivity of metal in model 
a = conductivity of metal in actual antenna 

However, if a is large enough, the metal can be considered to be a "perfect 

conductor" (a = co) and the conductivity need not be modeled.  Thus, 
actual antennas of copper can usually be modeled in copper. It is assumed 
that ferromagnetic materials are excluded from both actual antenna and 

model and that the model is measured in air. A detailed discussion of the 
model problem is given by Sinclair.' 

PROBLEMS 

15-1. A wave traveling normally out of the page (toward reader) has two 
linearly polarized components 

E. = 2 cos cot 

E. = 3 cos (cot ± 90°) 

a. What is the axial ratio of the resultant wave? 
b. What is the tilt angle r of the major axis of the polarization ellipse? 
c. Does E rotate clockwise or counterclockwise? 

15-2. A wave traveling normally outward from the page (toward reader) is the 
resultant of two elliptically polarized waves, one with E-vector components given by 

E: = 2 cos cut 

E: = 6 cos (cot ±  

and the other with components given by 

= 1 cos cot 

.67 .= 3 cos (cot — -11) 
2 

a. What is the axial ratio of the resultant wave? 
b. Does E rotate clockwise or counterclockwise? 

15-3. An elliptically polarized plane wave traveling normally out of the page 
(toward reader) has linearly polarized components E. and E. Given that E. = 
E. = 1 volt/meter and that E. leads E. by 72°. 

a. Calculate and sketch the polarization ellipse. 
b. What is the axial ratio? 
c. What is the angle r between the major axis and the x axis? 

15-4. Answer the same questions as in Prob. 3 for the case where E. leads E. by 
72° as before but E. = 2 volts/meter and E. = 1 volt/meter. 

1George Sinclair, Theory of Models of Electromagnetic Systems, Proc. I.R.E., 36, 
1364-1370, November, 1948. 
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15-5. Verify the relation (15-63) for the angle r between the x axis and the direc-
tion of a major or minor axis of the polarization ellipse by expressing (15-35) in 
polar coordinates (r, 0). That is, let E. = E, cos 0 and E. = E, sin 0. Then apply 
the condition that dE,/ de = 0 for a maximum or minimum value of E,. 
15-6. Two circularly polarized waves intersect at the origin. One (y wave) is 

traveling in the positive y direction with E rotating clockwise as observed from a 
point on the positive y axis. The other (x wave) is traveling in the positive x direc-
tion with E rotating clockwise as observed from a point on the positive x axis. At 
the origin, E for the y wave is in the positive z direction at the same instant that E 
for the x wave is in the negative z direction. What is the locus of the resultant 
E vector at the origin? 
15-7. Prove that the instantaneous Poynting vector of a plane traveling wave is a 

constant when the wave is circularly polarized. 
15-8. Prove that the average Poynting vector of a circularly polarized wave is 

twice that of a linearly polarized wave if the maximum field intensity is the same 
for both waves. 
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APPENDIX 

A number of useful tables, formulas, and charts are given on the fol-
lowing pages. 
1. Table of Units. In this book the rationalized mks system of units is 

used.' The rationalized system has the advantage that the factor 47 does 
not appear in Maxwell's equations although it does appear in certain other 
relations. 
In the following table the units that are commonly used in electro-

magnetics are listed. In the first column the name of the dimension or 
quantity is given and in the second column the common symbol for 
designating it. In the third column (Description) the dimension is de-
scribed in terms of the fundamental dimensions (mass, length, time, and 
electric charge) or other secondary dimensions. The fourth column lists 
the rationalized mks unit for the dimension, and the fifth column gives 
equivalent units. The last column indicates the fundamental dimensions 
by means of the symbols M (mass), L (length), T (time), and Q (electric 
charge). Quotation marks are applied to several magnetic quantities, for 
example, "magnetic charge" and "magnetic current," to indicate that the 
quantities are fictitious, i.e., they have no physical reality. Such quantities 
are convenient, however, in some theoretical analyses. 

1 To be more explicit, the rationalized inksc (meter-kilogram-second-coulomb) system 
is employed. However, the choice of the coulomb instead of the ampere or ohm as the 
fourth fundamental unit does not affect the size of the units. Hence, the system will 
usually be referred to simply as the rationalized inks system. 
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Name of dimension 
or quantity Symbol Description Mk Mks 

unit Equivalent units 
Fundamental 
dimensions 

Length L meter 100 centimeters L 

Mass 
M kilogram 

second 

1000 grams M 

Time 
T, t 

cycles/second 

1  1  1 
hour  day T — minute =  = 

60  3,600  86,400 

Frequency 
I 

cps 

(hertz) 

1 ___ 
T 

Area meter2 L2 

ATO W M8 
T meters L3 

Velocity 
V _ length meter L 

T time 

velocity  length 

second 

Acceleration 
a meter L 

T2 time  time' second' 

Force 
F mass x acceleration newton 

kilogram-meter joule 
102 dynes 

ML 
= 

second'  meter T2 

Momentum mass x velocity 

= force X time 

energy 

newton- 

seconds 

kilogram-meter  joule-second ML _ ... 

second  meter T 

m 
velocity 

S
V
N
N
3
I
N
V 



Name of dimension 
or quantity 

Symbol  Description  

force X length 

= power X time 

Mks 
twit Equivalent units Fundamental 

dimensions 

Energy or work joule newton-meter = watt-second 

= volt-coulomb = 107 ergs 

= 107 dyne centimeter 

ML' 

T° 

Energy density 

II 

energy joule M 
volume meter' LT2 

Power force X length watt joule  newton-meter Mi.° 
time 

energy 

second  second 

kilogram meter' 

T° 

=. 
time seconds 

Charge 

Q, q 

current X time 

or 

f (current) dt 

coulomb 6.25 X 10" electroncharges 

= ampere-second = 3 X 10° cgs esu' 

= 0.1 cgs emut 

Q 

Electric flux 
‘1, ff D • ds coulombs ampere-second Q 

Current 

I, i 

charge ampere coulomb 
— 3  10' Q — 

T time 
X  cgs em 

second 

= 0.1 cgs emu 

Current density 
J current ampere coulomb Q 

TL° area meter' second meter' 

cgs em = centimeter-gram-second electrostatic unit (stat unit). 
t cgs emu = centimeter-gram-second electromagnetic unit (ab unit). 

X
I
CI
NI
a
d
d
V 



Name of dimension 
or quantity 

Linear charge density 

Symbol 

PL 

Description Mks Mk 
unit Equivalent units Fundamental 

dimensions 

Q 
L 

charge coulombs ampere-second 

length meter meter 

Surface charge density 

D vector (displacement) (flux 
density) 

p8 

D 

charge coulomb ampere-second Q — 
L2 area meters meter' 

charge coulomb ampere-second  ampere Q 
LI area meter' 

.. 
meter'  mete/4/second 

Charge (volume) density P charge coulomb ampere-second Q 
L8 volume meter' meter' 

Electric (scalar) potential V work volt joule  newton-meter ML' 

charge 
.. 

coulomb  coulomb 

watt-second watt  weber 

T2(1 

ML' 

...  .. 
coulomb  ampere  second 

1 
= — cgs esu = 108 cgs emu 
300 

Emf V fE.cil volt 

7442 

ML 

74(2 

E vector (electric field intensity) E potential  force volt newton  joule 

length  charge meter coulomb  coulomb-meter 

= 4 X 10-4 cgs can = 108 cgs emu 

S
V
M
N
R
I
N
V 



Name of dimension 
or quantity Symbol Description Mks 

uni t Equivalent unita Fundamental 
dimensions 

Electric dipole moment 
91 charge X length 

coulomb- 

meter 
ampere-second-meter LQ 

Electric polarization 
P dipole moment coulomb ampere-second Q 

1,11 volume meter' meter' 

Dielectric constant (permittivity) 
(for vacuum, eo = 8.85 X 10-1 ' 
=10-°/36r farad/meter) 

e capacitance farad coulomb 
TV' 

ML3 
length meter volt meter 

Relative dielectric constant 
(relative permittivity) e, 

e 
Ratio Rati 

eo 

Dimen-

sionless 

Capacitance C charge farad coulomb  coulomb' TVs 
potential volt  joule 

= 9 X 1011 cm (cgs esu) 

ampere-second 

MI,' 

volt 

Resistance R potential ohm volt  joule-second MI" 

current ampere  coulomb' 

1 
= 9- X 10-" cgs eau 

= 10-4  cgs emu 

TQ' 

XI
G
Isl
a
d
d
V 



Name of dimension 
or quantity Symbol Description 

Mks 
unit Equivalent units Fundamental 

dimensions 

Conductance G 1 mho 

(siemens) 

ohm 

ampere  coulomb' TQ' 

resistance volt  joule-second ML' 

Reactance X potential volt ML' 

current ampere TQ' 

Susceptance B 1 mho ampere T(22 

reactance volt ML' 

Impedance Z potential ohm volt ML' 

current ampere TQ' 

Admittance Y 1 mho ampere TQ' 

impedance volt ML' 

Resistivity (specific resistance) S 

o 

resistance X length ohm meter volt-meter ML' 

ampere TQ' 

Conductivity 1 mho 1  1 TQ2 

resistivity meter 
=  mho/centimeter 

ohm meter  100 MI,' 

"Magnetic charge" 
m "magnetic current" 

X time 

= pole strength 

X permeability 

weber volt-second =. 108 maxwell (cgs emu) MLA 

TQ 

"Magnetic current" 
/81  "magnetic charge" volt weber ML' 

time second TV 

S
V
N
M
3
I
N
V 



Name of dimension 
or quantity Symbol Description Mks 

unit Equivalent units 
Fun damenta l 
dimensions 

"Magnetic current density" 
J". "magnetic current" volt weber M 

area meter' second meter' TV 

"Magnetic charge volume 
density" P" "magnetic charge" weber volt-second M 

volume meter' meter TQL 

Magnetic pole strength 
(2"" q" electric current 

X length 

ampere- 

meter 
coulomb-meter QL 

T second 

Magnetic flux 1,1= 
f f B • ds weber volt-second ... 10' maxwell (cgs emu) ML' 

TQ 

B vector (magnetic flux density) B 
magnetic flux weber volt-second M 

—TQ area 

force 
.. 

meter' 
.=. 104 gauss (egs emu) 

meter' 

newton 

pole 

work 

= 
ampere-meter 

Magnetic scalar potential (for H) 

Magnetic scalar potential (for B) 
(Ub  PO U A) 

Elk ampere 

(ampere turn) 

joule  watt  coulomb Q _ 
T "magnetic charge" weber  volt  second 

4T gilberts (cgs emu) 

Ub work weber joules ML 
pole meter ampere-meter TQ 

X
I
G
N
3
cI
d
V 



Name of dimension 
or quantity Symbol 

Mmf U 

Description 

f H • dl 

H vector (magnetic field 
intensity) 

H mmf 

length 

force 

"magnetic charge" 

Mks 
unit Equivalent units 

  c.n 
cz 

Fundamental c' 
dimensions 

ampere 

(ampere turn) 

ampere 

meter 

(ampere turn) 

1 meter  j 

Q 
T 

newton  watt 
ME 

weber  volt-meter 

.= 4r X 10-8 oersteds (cgs emu) 

= 4ir X 100 gammas 

Magnetic (dipole) moment magnetic pole 

strength x length 

ampere-

meter' 

Magnetization (magnetic 
polarization) 

M 

Permeability (magnetic induc-
tive capacity) for vacuum, 
pc, = 4r X 10-7 = 1.257 X 
10-1 henry/meter 

A 

Relative permeability 

Inductance 

12, 

L 

magnetic moment 

volume 

inductance 

length 

ampere 

meter 

henry 

meter 

weber volt-second  
= 

ampere-meter  ampere-meter 

Q 
TL  I 

1 
1 
I 

QV 

T 

Q 
TL 

ML 

Qz 

Ratio —A 
/Jo 

magnetic flux 

current 

henry weber joule .• 1 
=    X 10-11  cgs esu 

ampere  ampere'  9 

= 109 centimeters (cgs emu) 

Dimen-

sionless 

MI.' 

Q' 

S
V
M
W
3
I
NI
V 



Name of dimension 
or quantity 

Symbol Description Mk Mks 
unit Equivalent units Fundamental 

dimensions 

Reluctance mmf 1 ampere Q' 
magnetic flux henry weber ML' 

Permeance magnetic flux henry weber ML' 

mmf ampere Q2 

Vector potential 

Poynting vector (power surface 
density) 

A electric current 

X permeability 

weber ML 

meter TQ 

M _ 
T3 

/' power watts 

area meter' 

X
I
CI
N
3
d
d
V 
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2. Tables of Maxwell's Equations. Maxwell's equations are summarized 
in the tables. The first table gives Maxwell's equations in differential form 
and the second table in integral form. The equations are stated for the gen-
eral case, free-space case, harmonic-variation case, steady case (static fields 
but with conduction currents), and static case (static fields with no cur-
rents).  In the table giving the integral form, the equivalence is also 
indicated between the various equations and the electric potential or emf 
V, the magnetic potential or mmf U, the electric current I, the electric 
flux 1Y, and the magnetic flux 0 .. 



MAXWELL'S EQUATIONS IN Da  ERENTIAL FORM 

From Ampere From Faraday From Gauss From Gauss 

---- \ Lii_n_ensions 

Case  ----___....„. 

General 

Free space 

Electric current Electric potential Electric flux Magnetic flux 

area area volume volume 

a D 
V X H =J-F w 

dB 
V X E = —, V • D = p V • B = 0 

a D 
V X H = -T 

aB 
V X E = — V • D = 0 V • B = 0 

Harmonic variation V X H = (a ± jcat)E V X E = —jcoldi V • D = p V • B = 0 

Steady V X H =J V XE =0 V • D = p V • B = 0 

Static V X H =0 V XE =0 V • D = p V • B = 0 

S
V
INI
N
3
I
N
V 



MAXWELL'S EQUATIONS IN INTEGRAL FORM 

Dimensions 
From Ampere From Faraday From Gauss From Gauss 

Magnetic potential Electric potential Electric flux 

coulombs 

Magnetic flux 

webers 

Mks 

units amperes volts 

General U=fH•d1= ff(J-Fa—D).ds=/,,,,„L 
at 

6. aB 
v. 11di  _if.ds 

JJ at 
4, —  ffD•ds— ff f p dr Om= fiB • ds = 0 

Free space 
aD 

U= iH • dl — ff —•ds — /di., 
at 

V = /I•d1 = — if ata—B •ds 0— LTD • ds =0 0.. = fiB • ds = 0 

0.= ffB • ds =0 

0.= fiB • ds =0 

Harmonic 

variation 
U = f H• dl = (cr +/we) flit • ds = /tow V = ifl • dl = —jwaffH • ds 0 = ffD • ds = f ff p dr 

Steady U = j6 H • dl = if j• ds = /....d V =5CE• dl = 0 4, = fiD • ds = iff, dr 

Static U=961.1•d1=0 V= 6E• dl =0 V, = if]) • ds = fit-, dr #.= fiB • ds =0 

X
I
U
M
a
d
d
V 
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3. Formulas for Input Impedance of Terminated Transmission Line. 
Formulas for the input impedance Z. appearing at a distance x from a 
load or terminating impedance Z on a transmission line of characteristic 
impedance Z. as shown in the figure are listed in the table for three-load 

0  

conditions: (1) any value of impedance Z, (2) Z = 0 or short-circuited 
line, and (3) Z = C° or open-circuited line. For each load condition there 
are columns for two cases: (1) the general case in which attentuation is 
present on the line (a 0 0), and (2) the lossless case where the line losses 
are negligible (a = 0). 

Load 
condition 

General case 
(a 0 0) 

Lossless case 
(a = 0) 

Any value Z 

Z = 0 
Short-circuited 
line 

Z  Z0 tanh -yx  
Z. — Zo 

Zo Ztanhyx 

Z  jZo tan flx 
Z. = Zo 

Zo  jZ tan /Ix 

Z, =  Z* 

= Zo tanh .yx 

„  tanh ax  j tan flx  
= ho 

1  . j tanh ax tan /3x 

Z. = Z0 coth ax* 

jZo tan f3x 

Z = co 
Open-circuited 
line 

Z, = Z0 coth -yx 

„ 1 j tanh ax tan I3x  
= ho 

tanh ax  j tan I3x 

= Zo tanh ax* 

= — jZo cot Ox 

• When fix  nr/2 where n = 1, 3, 5, . . . 
In the table 7 = a + j0 where a = attenuation constant and 13 =t 2r/X. 

4. Reflection and Transmission Coefficients and SWR.  For a trans-
mission line of characteristic impedance Zo terminated in a load im-
pedance Z, the reflection coefficient for voltage p., the reflection coefficient 
for current pi, the transmission coefficient for voltage or relative voltage at 
the load To, the transmission coefficient for current or relative current at 
the load r., and the SWR are given by 
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Z — Z  
° P — reflection coefficient for voltage g Z    

Zo — Z 
Pi  —  0 

— reflection coefficient for current Z  Z 

2Z  
- 1 +  = transmission coefficient for voltage 

Z   

2Z0  
Ti -  0  

— 1  p, = transmission coefficient for current Z  Z 

1 +  P. 1 P. 1 — ±  I   SWR — 1 I p.  — 1 standing wave ratio 
P. I  

5. Formulas for the Characteristic Impedance of Transmission Lines. 
In the following table the characteristic impedance Zo of a transmission 
line is given for three cases: (1) general case where losses are present, 
(2) special case where losses are small, and (3) lossless case. In the table 

Zo = characteristic impedance, ohms 
= characteristic resistance, ohms 

Z = series impedance, ohms per meter 
R = series resistance, ohms per meter 
L = series inductance, henrys per meter 
Y = shunt admittance, mhos per meter 
G = shunt conductance, mhos per meter 
C = shunt capacitance, farads per meter 
Z = R  jcoL 
Y = G  jae 

General case 
zo =  NIR  jcoL 

Y  G  jwC 

Small losses zo = • [1 + i(L - 
Lossless case* 
R = 0, G = 0 

Zo =  • = Ro 

• Also holds approximately for case where losses are not zero but col.>> R and we >> G. 

6. Trigonometric Relations 

sin (x ± y) = sin x cos y ± cos x sin y 

cos (x ± y) = cos x cos y  sin x sin y 

sin (x  y) ± sin (x — y) = 2 sin x cos y 
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cos (x  y) + cos (x — y) = 2 cos x cos y 

sin (x  y) — sin (x — y) = 2 cos x sin y 

cos (x  y) — cos (x — y) = —2 sin x sin y 

sin 2x = 2 sin x cos x 

cos 2x = cos' x — sin' x = 2 cos' x — 1 = 1 — 2 sin' x 

cos x = 2 cos' x — 1 = 1 — 2 sin' ix 

sin x = 2 sin ix cos ix 

sin' x  cos' x = 1 
tan x ± tan y  

tan (x  y) — 
1 — tan x tan y 

tan x — tan y  
tan (x — y) — 

1  tan x tan y 

2 tan x  
tan 2x — 1 — tan2 x 

r = 3.1416 

71" 2 =  9.8696 

1 rad = 57.296° 

7. Hyperbolic Relations 

-. x'  
sinh x — e — e  x ± 3—! ± —5! -1-- —7! + • • • 

2 
X 2  X 4  X 6 j_ 

cosh x 2  A -1-  2! 1- 4! -I- 6! -1 • • • 

sinh x 
tanh x 

cosh x 

cosh x  1  
coth x 

sinh x  tanh x 

sinh (x ± jy) = sinh x cos y ± j cosh x sin y 

cosh (x  jy) = cosh x cosy ± jsinh x sin y 

cosh (jx) = i(e+'  = cos x 
sinh (jx) =  —  = j sin x de Moivre's theorem 

= cos x  j sin x 

cosh x = cos jx 

j sinh x = sin jx 

sinh 2x sin 2y   
tanh (x ± jy) —  ± j 

cosh 2x + cos 2y  cosh 2x + cos 2y 

sinh 2x sin 2y   
coth (x ±jy) — cosh 2x — cos 2y ±  cosh 2x — cos 2y 
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8. Logarithmic Relations 

x = log x 

log. x = ln x 

log 0 x = 0.4343 log, x = 0.4343 in x 

In x = log, x = 2.3026 log,0 x 

e = 2.7183 

9. Approximation Formulas for Small Quantities 

(S is a small quantity compared to unity) 

(1 ± S)2 = 1 ± 2S 

(1 ± 8)" = 1 ± no 

-Vi + 8 = 1 + is 
1 1 
  — 1 — 

N/1 4-

= 1  S 

In (1 + 8) = 

J"(s) = n!2; (for I SI << 1) 

where J,, is Bessel function of order n 

Thus, J,(S) = —6 
2 

10. Series 
_ n(n — 1) „_ 

Binomial: (x  y)" = x*  nx" ty +  21 x 9y9 

n(n — 1)(n — 2) x( „_31y3  
3! 

Taylor's: f(x  y) = f(x)  1(x)  f"(x)  f " (x) Y;.! 

11. Solution of Quadratic Equation 

If ax2 ±  c = 0 then 

— b ±  Vb2 — 4ae 
x — 

2a 

12. Pascal's Triangle. The coefficients of the binomial series for 
(a ± V' are conveniently Dresented by the rows of Pascal's triangle. Any 
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inside number in the triangle is equal to the sum of the adjacent numbers in 
the row above. 

n = 1:  1 

n = 2:  1  1 

n = 3:  1  2  1 

n = 4:  1  3  3  1 

n = 5:  1  4  6  4  1 

n = 6:  1  5  10  10  5  1 

n = 7:  1  6  15  20  15  6  1 

n = 8:  1  7  21  35  35  21  7  1 

n = 9:  1 8  28  56  70  56  28  8  1 

n = 10:  1 9  36  84  126  126  84  36  9  1 

13. Vector Identities (f and g are scalar functions; F, G, and H are 
vectors) 

••• 

V • (V X F) = 0 

V • Vf = V21 

V X Vf = 0 

V(f  g) = V f -1-- Vg 

V • (F  G) = V• F + V• G 

V X (F  G) = V X F + V X G 

V fg = gV f  fVg 

V • fG = G • (V f)  f(V • G) 

V X fG = Vf X G  f(V X G) 

V X (V X F) = V(V • F) — V2F 

V • (F X G) = G • (V X F) — F • (V X G) 

F • (G X H) =  • (H X F) = H • (F X G) 

14. Gradient, Divergence, Curl, and Laplacian in Rectangular, Cylin-
drical, and Spherical Coordinates (f is a scalar function; F is a vector 
function) 
a. Rectangular Coordinates (unit vectors are i, j, k; the vector F = 

iF,  jF,  kF.) 

• M  ?I V f = lax  ± • ay  k az  

V • F aF  aF  aF 
= ax  Oz 
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aF  aF„1  .(aF,  aF,1 aF  aF 
V XF =i  , — —az )  —  )  k(-1 — 

cy  ax  ay 

i  j  k 

a  a  a 
ax  ay  az 

F.  F„  F. 
v 2  2_24  a  (7.f 2 f  2 

ax  ay2 az2 

v2F = iv2F. + iv2F, + 1672F, 

b. Cylindrical Coordinates (unit vectors are a„ af, a,; the vector F = 
a,F,  a.F0 a,F,) (related to rectangular coordinates by x = r cos 0,y = 
r sin 0, z = z) 

V f = a,  + a, 1 21. + a, al 
ar  r ae  az 

a  1 OF,  aF. 
vr • F =  ±  —a73 - —Tz 

ar r 
ar (1 OF,  OF,,\ ,  OF,  aF,) C a(rF,)  

v X F =  — —  -r a,(—w —  a ae  az  r a 0 

V 2 =  (7* -Yr) +  ± 

C.  Spherical Coordinates (unit vectors are a„ ao, a.; the vector F = 
a,F,  a.F.  a.F4,) (related to rectangular coordinates by x = r sin 0 
cos 0, y = r sin 0 sin 0, z = r cos 0) 

i31  1 2(i  1  
Vf  = a' ar  ae + ar• r sin 04 

V • F = — 1  (r F,) +  , s 1 (F in 0) -I-  .1  2  aF 
r ar  r sin 0 ae  r  ao 

V X F = a,  1 (a (F,, sin 0) — g—'2) 
r sin  ae 

a (s. 1 aF, _  (rF,.)) 
m 0 ai6  Or 

la  aF,) 
+  (rF  

V2 f = 
a  a  1  a  0 1  el 
Yr (7.2 lar  ae (\ si n ae) ± r2  sin2 e ao2 

15. Radians, Degrees, and Turns. In this book the arguments of trig-
onometric functions are generally expressed in radians or degrees as is 
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the usual custom. Much time and effort may often be saved, however, by 
expressing the argument in turns instead of in radians or degrees. Radians, 
degrees, and turns are related as follows: 

22- rad = 360° = 1 turn 

The symbol r is used to designate turns in the same way that ° designates 
degrees. Thus, 

27 rad = 360° = lr 

To take advantage of the simplification afforded by using turns, a table 
of trigonometric functions of arguments expressed in decimal fractions of 
a turn is needed. A table of this kind with argument increments of 0.005 
of a turn (1.8°) is given in Sec. 16. For smaller increments, reference may 
be made to 'Rae's' table in which the argument increment is 0.001 of a 
turn (0.36°). 

I 1  
0.25  015  075  1.0 Turns 

L   
7  1T  Fr 2r Rodions 

I   
) 90 I BO 2270  360 Degrees 

To convert an argument from radians to degrees, we let 

2r rad = 360° 

To convert an argument from radians to turns, we let 

2w rad = 1 r 

1F. Tolke, "Praktische Funktionlehre," lithoreprint by Edwards Bros., Inc., Ann 
Arbor, Mich., 1945. 
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That is, the conversion from radians to turns is made by dropping the 
factor 27.* 
Trigonometric quantities as a function of turns, radians, and degrees are 

shown graphically in the figure. 
To illustrate a case where it is an advantage to use turns, let us find the 

value of 

. 27 
y = am 71/4. L 

where L = 0.615 X 
by using turns and also by using radians or degrees. 
By the turn method, we find from the table below that 

y = sin (1/4L')T = sin 0.615r = —0.6613' 

By the radian or degree method, we write 

y = sin (27 X 0.615) 

Since tables of trigonometric functions in degrees are more common than 
tables in radians, we usually convert to degrees. Thus, 

y = sin (360 X 0.615) = sin 221.4° 

Since tables generally do not give functions for arguments exceeding 90°, 
we must convert the argument to a value less than 90°. Thus, 

221.4° — 180° = 41.4° 

Then, from a trigonometric table 

sin 41.4° = 0.6613 

However, we must note that 221.4° is in the third quadrant so that the 
sine is negative and the result is 

y = —0.6613 

With the turn method the result is obtained in a single step, whereas 
with the radian or degree method several steps are required. Each extra 
step not only takes time but also increases the probability of introducing 
an error. 
The trigonometric function of an argument is unchanged by subtracting 

or adding an integral number of turns. Thus, any argument can be con-

In expressing an angle in turns it may be said that the angle is rationallzed, that is, 
the factor 2ir does not appear. 
'Note that (L/X)r is numerically equal to LA, the length in wavelengths (Lk = L/X). 
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verted to a value between 0 and +1, as in the table, by subtracting or add-
ing the appropriate integer to the argument. For any positive number of 
turns we can disregard the number to the left of the decimal in using the 
table. Thus, 

sin 7.6157 = sin 0.615T = — 0.6613 

Although in this book the arguments of trigonometric functions are 
usually expressed in radians, it should be kept in mind that calculations 
will often be facilitated by dividing the argument by 27 to convert it to 
turns. 
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16. Table of Trigonometric Functions for Decimal Fractions of a Turn 

Turns Sin Cos Tan Ca 

0.00 0.0000 1.0000 0.0000 co 

0.005 0.0314 0.9995 0.0314 31.8214 

0.010 0.0628 0.9980 0.0629 15.8947 

0.015 0.0941 0.9956 0.0945 10.5787 

0.020 0.1253 0.9921 0.1263 7.9160 

0.025 0.1564 0.9877 0.1584 6.3139 

0.030 0.1874 0.9823 0.1908 5.2422 

0.035 0.2181 0.9759 0.2235 4.4738 

0.040 0.2487 0.9686 0.2568 3.8947 

0.045 0.2790 0.9603 0.2905 3.4420 

0.050 0.3090 0.9511 0.3249 3.0777 

0.055 0.3387 0.9409 0.3600 2.7776 

0.060 0.3681 0.9298 0.3959 2.5256 

0.065 0.3972 0.9178 0.4327 2.3108 

0.070 0.4258 0.9048 0.4706 2.1251 

0.075 0.4540 0.8910 0.5095 1.9626 

0.080 0.4818 0.8763 0.5498 1.8190 

0.085 0.5090 0.8607 0.5914 1.6909 

0.090 0.5358 0.8443 0.6346 1.5757 

0.095 0.5621 0.8271 0.6796 1.4715 

0.100 0.5878 0.8090 0.7266 1.3764 

0.105 0.6129 0.7902 0.7757 1.2892 

0.110 0.6374 0.7705 0.8273 1.2088 

0.115 0.6613 0.7501 0.8816 1.1343 

0.120 0.6846 0.7290 0.9391 1.0649 

0.125 0.7071 0.7071 1.0000 1.0000 

0.130 0.7290 0.6846 1.0649 0.9391 

0.135 0.7501 0.6613 1.1343 0.8816 

0.140 0.7705 0.6374 1.2088 0.8273 

0.145 0.7902 0.6129 1.2892 0.7757 

0.150 0.8090 0.5878 1.3764 0.7266 

0.155 0.8271 0.5621 1.4715 0.6796 

0.160 0.8443 0.5358 1.5757 0.6346 

0.165 0.8607 0.5090 1.6909 0.5914 

0.170 0.8763 0.4818 1.8190 0.5498 

0.175 0.8910 0.4540 1.9626 0.5092 

0.180 0.9048 0.4258 2.1251 0.4706 

0.185 0.9187 0.3972 2.3108 0.4327 

0.190 0.9298 0.3681 2.5258 0.3959 

0.195 0.9409 0.3387 2.7776 0.3600 

0.200 0.9511 0.3090 3.0777 0.3249 

0.205 0.9603 0.2790 3.4420 0.2905 

0.210 0.9686 0.2487 3.8947 0.2568 

0.215 0.9759 0.2181 4.4738 0.2235 

0.220 0.9823 0.1874 5.2422 0.1908 

0.225 0.9877 0.1564 6.3139 0.1584 
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Turns Sin Coe Tan Coll 

0.230 0.9921 0.1253 7.9160 0.1263 

0.235 0.9956 0.0941 10.5787 0.0945 

0.240 0.9980 0.0628 15.8947 0.0629 

0.245 0.9995 0.0314 31.8214 0.0314 

0.250 1.0000 0.0000 :i:co 0.0000 

0.255 0.9995 --0.0314 --31.8214 -0.0314 

0.260 0.9980 --0.0628 --15.8947 --0.0629 

0.265 0.9956 --0.0941 -10.5787 --0.0945 
0.270 0.9921 -0.1253 -7.9160 --0.1263 

0.275 0.9877 --0.1564 --6.3139 --0.1584 

0.280 0.9823 --0.1874 -5.2422 --0.1908 

0.285 0.9759 -0.2181 --4.4738 --0.2235 

0.290 0.9686 --0.2487 -3.8947 --0.2568 

0.295 0.9603 --0.2790 --3.4420 --0.2905 

0.300 0.9511 --0.3090 --3.0777 --0.3249 

0.305 0.9409 --0.3387 --2.7776 --0.3600 

0.310 0.9298 -0.3681 -2.5258 --0.3959 

0.315 0.9178 -A3.3972 --2.3108 --0.4327 

0.320 0.9048 --0.4258 --2.1251 --0.4706 
0.325 0.8910 --0.4540 -1.9626 --0.5095 

0.330 0.8763 --0.4818 --1.8190 -0.5498 
0.335 0.8607 --0.5090 -1.6909 --0.5914 

0.340 0.8443 --0.5358 -1.5757 --0.6346 

0.345 0.8271 -0.5621 --1.4715 --0.6796 
0.350 0.8090 --0.5878 -1.3764 --0.7266 
0.355 0.7902 --0.6129 --1.2892 -0.7757 

0.360 0.7705 --0.6374 --1.2088 -0.8273 
0.365 0.7501 --0.6613 -1.1343 --0.8816 

0.370 0.7290 --0.6846 -1.0649 --0.9391 

0.375 0.7071 --0.7071 -1.0000 -1.0000 
0.380 0.6846 --0.7290 --0.9391 -1.0649 
0.385 0.6613 --0.7501 --0.8816 --1.1343 

0.390 0.6374 --0.7705 --0.8273 -1.2088 
0.395 0.6129 --0.7902 --0.7757 --1.2892 
0.400 0.5878 --0.8090 --0.7266 -1.3764 
0.405 0.5621 --0.8271 --0.6796 --1.4715 
0.410 0.5358 --0.8443 --0.6346 --1.5757 
0.415 0.5090 --0.8607 --0.5914 --1.6909 
0.420 0.4818 --0.8763 -0.5498 -1.8190 

0.425 0.4340 --0.8910 --0.5095 --1.9626 

0.430 0.4258 --0.9048 --0.4706 --2.1251 

0.435 0.3972 --0.9178 --0.4327 --2.3108 

0.440 0.3681 --0.9298 -0.3959 --2.5258 

0.445 0.3387 --0.9409 --0.3600 --2.7776 

0.450 0.3090 --0.9511 --0.3249 --3.0777 

0.455 0.2790 -0.9603 --0.2905 --3.4420 

0.460 0.2487 --0.9686 --0.2568 -3.8947 

0.465 0.2181 --0.9759 -0.2235 --4.4738 
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Turns  Sin  Cos  Tan  Cot 

0.470  0.1874  --0.9823  --0.1908  --5.2422 
0.475  0.1564  --0.9877  --0.1584  --6.3139 
0.480  0.1253  --0.9921  --0.1263  --7.9160 
0.485  0.0941  --0.9956  --0.0945  -10.5787 
0.490  0.0628  --0.9980  --0.0629  -15.8947 

0.495  0.0314  --0.9995  -0.0314  --31.8214 
0.500  0.0000  -1.0000  0.0000  T co 

0.505  --0.0314  -0.9995  +0.0314  +31.8214 
0.510  --0.0628  --0.9980  0.0629  15.8947 

0.515  --0.0941  --0.9956  0.0945  10.5787 
0.520  --0.1253  --0.9921  0.1263  7.9160 
0.525  --0.1564  --0.9877  0.1584  6.3139 
0.530  --0.1874  --0.9823  0.1908  5.2422 
0.535  --0.2181  --0.9759  0.2235  4.4738 
0.540  --0.2487  --0.9686  0.2568  3.8947 
0.545  --0.2790  --0.9603  0.2905  3.4420 
0.550  --0.3090  --0.9510  0.3249  3.0777 
0.555  --0.3387  --0.9408  0.3600  2.7776 
0.560  --0.3681  --0.9298  0.3959  2.5258 
0.565  --0.3972  --0.9178  0.4327  2.3108 
0.570  --0.4258  --0.9048  0.4706  2.1251 

0.575  --0.4540  --0.8910  0.5095  1.9626 
0.580  --0.4818  --0.8763  0.5498  1.8190 
0.585  --0.5090  --0.8607  0.5914  1.6909 
0.590  --0.5358  --0.8443  0.6346  1.5757 

0.595  --0.5621  --0.8271  0.6796  1.4715 
0.600  --0.5878  --0.8090  0.7266  1.3764 
0.605  --0.6129  --0.7902  0.7757  1.2892 
0.610  --0.6374  --0.7705  0.8273  1.2088 
0.615  --0.6613  --0.7501  0.8816  1.1343 
0.620  --0.6846  --0.7290  0.9391  1.0649 
0.625  --0.7071  --0.7071  1.0000  1.0000 
0.630  --0.7290  --0.6846  1.0649  0.9391 
0.635  --0.7501  --0.6613  1.1343  0.8816 
0.640  --0.7705  --0.6374  1.2088  0.8273 

0.645  --0.7902  --0.6129  1.2892  0.7757 
0.650  --0.8090  --0.5878  1.3764  0.7266 
0.655  --0.8271  --0.5621  1.4715  0.6796 
0.660  --0.8443  --0.5358  1.5757  0.6346 
0.665  --0.8607  --0.5090  1.6909  0.5914 
0.670  --0.8763  --0.4818  1.8190  0.5498 
0.675  --0.8910  --0.4540  1.9626  0.5095 
0.680  --0.9048  --0.4258  2.1251  0.4706 
0.685  --0.9178  --0.3972  2.3108  0.4327 
0.690  --0.9298  --0.3681  2.5258  0.3959 
0.695  --0.9409  --0.3388  2.7776  0.3600 
0.700  --0.9511  --0.3090  3.0777  0.3249 
0.705  --0.9603  --0.2790  3.4420  0.2905 
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Turns Sin COS Tan Cot 

0.710 --0.9686 --0.2487 3.8947 0.2568 
0.715 --0.9759 --0.2181 4.4738 0.2235 
0.720 --0.9823 -43.1874 5.2422 0.1908 
0.725 --0.9877 --0.1564 6.3139 0.1584 
0.730 --0.9921 -0.1253 7.9160 0.1263 
0.735 --0.9956 --0.0941 10.5787 0.0945 
0.740 --0.9980 -43.0628 15.8947 0.0629 
0.745 --0.9995 -0.0314 31.8214 0.0314 
0.750 --1.0000 0.0000 :i: , 0.0000 
0.755 --0.9995 0.0314 --31.8214 -0.0314 
0.760 --0.9980 0.0628 --15.8947 -43.0629 
0.765 --0.9956 0.0941 --10.5787 -43.0945 
0.770 --0.9921 0.1253 --7.9160 --0.1263 
0.775 -4).9877 0.1564 --6.3139 -0.1584 
0.780 -0.9823 0.1874 --5.2422 --0.1908 
0.785 -0.9759 0.2181 --4.4738 --0.2235 
0.790 --0.9686 0.2487 -3.8947 --0.2568 
0.795 --0.9603 0.2790 --3.4420 --0.2905 
0.800 --0.9510 0.3090 --3.0777 --0.3249 
0.805 --0.9409 0.3387 -2.7776 --0.3600 
0.810 --0.9298 0.3681 --2.5256 -43.3959 
0.815 --0.9178 0.3972 --2.3108 -4).4327 
0.820 --0.9048 0.4258 --2.1251 --0.4706 
0.825 --0.8910 0.4540 --1.9626 -A3.5095 
0.830 --0.8763 0.4818 --1.8190 -A3.5498 
0.835 --0.8607 0.5090 --1.6909 -43.5914 
0.840 -43.8443 0.5358 --1.5757 --0.6346 
0.845 --0.8271 0.5621 --1.4717 --0.6796 
0.850 --0.8090 0.5878 --1.3764 -0.7266 
0.855 --0.7902 0.6129 --1.2892 -0.7759 
0.860 --0.7705 0.6374 --1.2088 -A3.8273 
0.865 --0.7501 0.6613 --1.1343 --0.8816 
0.870 --0.7290 0.6846 --1.0649 -0.9391 
0.875 --0.7071 0.7071 --1.0000 --1.0000 
0.880 --0.6846 0.7290 --0.9391 --1.0649 
0.885 -0.6613 0.7501 -0.8816 --1.1343 
0.890 -A3.6374 0.7705 --0.8273 --1.2088 
0.895 --0.6129 0.7902 --0.7757 --1.2892 
0.900 --0.5878 0.8090 -43.7266 --1.3764 
0.905 --0.5621 0.8271 --0.6796 --1.4715 
0.910 --0.5358 0.8443 -0.8346 --1.5757 
0.915 --0.5090 0.8607 --0.5914 --1.6909 
0.920 --0.4818 0.8763 -43.5498 --1.8190 
0.925 --0.4540 0.8910 -43.5095 --1.9626 
0.930 --0.4258 0.9048 --0.4706 --2.1251 
0.935 --0.3972 0.9178 --0.4327 --2.3108 
0.940 -4).3681 0.9298 --0.3959 --2.5258 
0.945 -43.3387 0.9409 --0.3600 -2.7776 
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Turns Sin Cos Tan Cot 

0.950 -0.3090 0.9511 -0.3249 -3.0777 
0.955 -0.2790 0.9603 -0.2905 -3.4420 
0.960 -0.2487 0.9686 -0.2568 -3.8947 
0.965 -0.2181 0.9759 -0.2235 -4.4738 
0.970 -0.1874 0.9823 -0.1908 -5.2422 
0.975 -0.1664 0.9877 -0.1584 -6.3139 
0.980 -0.1253 0.9921 -0.1263 -7.9160 
0.985 -0.0941 0.9956 -0.0945 -10.5787 
0.990 -0.0628 0.9980 -0.0629 -15.8947 
0.995 -0.0314 0.9995 -0.0314 -31.8214 
1.000 0.0000 1.0000 0.0000 co 

17. Universal Pattern Charts. A universal field pattern chart for linear 
arrays of n isotropic point sources of equal amplitude and spacing is pre-
sented in Fig. 4-20 for n = 1, 2, 3, 4, 5, 10, and 20. The following charts 
give n for all integral values from 1 through 24.' The abscissa is given in 
both turns and degrees. The array factor is normalized for all patterns for 
which the range of tf, includes zero. 
It is sometimes advantageous to employ a graphical method with these 

charts in order to be able to observe at a glance the range of 4., as a function 
of 4). This method may be illustrated by the following example. A linear 
array consists of five isotropic point sources of equal amplitude and spacing. 
The spacing d between sources is 0.25 X, and the phase difference is ST = 
-0.3. The angle between the radius vector to a distant point and the 
array axis is 0 (see Fig. 4-18). Then the value of 0 in turns is 

or = dk cos  0 + or 

or 

-Or = 0.3 - 0.25 cos 4) 

The value Or is laid off along the abscissa of the universal pattern chart 
for n = 5 and a circle of radius dk constructed as shown in the figure. For 
4) = 30° the value of dk cos q$ is then the projection of the radius on the 
abscissa as in the figure on p. 520. Continuing the projection to the n = 5 
curve gives the array factor E at 4) = 30° as equal to 0.75. To have 
sufficient space for making the graphical construction it may be most con-
venient to first trace the n = 5 curve and as much of the coordinates as 
required on a sheet of tracing paper with large margins. 
In extensive pattern calculations that do not employ the above graphical 

method it is desirable, as in calculations of any type, to systematize the 

'These curves were furnished by J. C. Williamson. 
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90' 

calculation by tabulating the work. This both facilitates the calculation 
and reduces the probability of introducing an error. For example, a sample 
calculation of the array factor for the above example is given below: 

(1) 
0 

(2) 
cos (1) 

cos 0 

(3) 
dx 

(4) 
(3) X (2) 

(6) 
e 

(6) 
(5) — (4) 

or 

(7) 
E 

0 1.000 0.25 0.250 0.30 —0.050 0.902 
10 0.985 0.25 0.246 0.30 —0.054 0.885 
20 0.940 0.25 0.235 0.30 —0.065 0.84 
30 0.866 0.25 0.217 0.30 —0.083 0.75 
Etc. 

Column (7) is evaluated by referring to the umversal pattern chart for n  5. 
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18. Sine, Cosine, and Exponential Integral Relations 

Ci(x) =  cos u du = cosine integral u 

where 

X 2  X 4  X6 

C i(X)  =  ln -yx — 
2!2  4!4  6!6 

7 = è = 1.781 

In y = C = 0.577 = Euler's constant 
X 2  X 4  X 6 

C l(X)  =  0.577 + in x — 2!2  6!6 

When x < 0.2,  Ci(x)  0.577 + in x 

When x >> 1,  Ci(x)  sin  x 

r- 1 — cos u 
Cin(x) =  du 

Jo  U 

Cin(x) --= In  — C i(x) 

2  x 4  x 6 

Cin(x) =   
2x!2  4!4  6!6 

Ci(x) = in -yx — Cin(x) 

Curves for Ci (x), in -yx, and Cin (x) are compared in the graph. 

• • • 

+3 

In 

Ci(x), n Ti, and Cin(x) as o function of x 

Tx 

2  3  4 

Cin( 

n Tx 

Ci(x) 

5 

Si(x) = f: sin u  du = sine integral 

x° x7 
Si(x) = x —  ±  —  + • • • 

• • • 

6 
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When x < 0.5, 

When x >> 1, 

ANTENNAS 

Si(x)  x 

ir  cos x 
Si(x/  2  X 

f: 1 — e — 
Em(z) =  du = exponential integral 

where z = x  jy 

Ein(jy) = r iy 1 - du 
Jo  u 

Ein(jy) = Cin(y)  j Si(y) 

Ei(±iY) = Ci(Y)  Si(y) 

19. Tables of Sine and Cosine Integrals. The following tables give 
values for the sine integral Si(x), the cosine integral Ci(x), and for Cin(x) 
for values of x from 0 to 50. Most of the entries in the tables have 
been compiled from various sources' but a considerable number, not to be 
found elsewhere, were calculated. 

1F. E. Terman, "Radio Engineers' Handbook," McGraw-Hill Book Company, Inc., 
New York, 1943, pp. 16-17. Gives Si(x) and Cin(x) [listed as Si(x)]. 
E. Jahnke and F. Emde, "Tables of Functions," lithoreprint by Dover Publications, 

New York, 1943, pp. 6-9. Gives Si(x) and Ci(x). 
K. Tani, "Tables of si(x) and ci(x)," Naval Experimental and Research Establish-

ment, Tokyo, 1931. [si(x)  Si(x) — 7/2, and ci(x)  Ci(x)]. 
"Tables of Sine, Cosine, and Exponential Integrals," vol. 2, Federal Works Agency, 

Works Projects Administration, for the City of New York, 1940. Gives Si(x) and Ci(x) 
in increments of 0.001 but only up to x  10. 
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TABLE OF Si(x) 

537 

x Si(x) x Si(x) x Si(x) x Si(x) 

0.0 0.0000 8.0 1.5742 16.0 1.6313 24.0 1.5547 
0.2 0.1996 8.2 1.5981 16.2 1.6266 24.2 1.5476 
0.4 0.3965 8.4 1.6198 16.4 1.6197 24.4 1.5415 
0.6 0.5881 8.6 1.6386 16.6 1.6111 24.6 1.5367 
0.8 0.7721 8.8 1.6538 16.8 1.6011 24.8 1.5333 

1.0 0.9461 9.0 1.6650 17.0 1.5901 25.0 1.5315 
1.2 1.1081 9.2 1.6721 17.2 1.5787 26.0 1.5449 
1.4 1.2562 9.4 1.6747 17.4 1.5671 27.0 1.5803 
1.6 1.3892 9.6 1.6732 17.6 1.5560 28.0 1.6047 
1.8 1.5058 9.8 1.6676 17.8 1.5457 29.0 1.5973 

2.0 1.6054 10.0 1.6584 18.0 1.5366 30.0 1.5668 
2.2 1.6876 10.2 1.6460 18.2 1.5291 31.0 1.5418 
2.4 1.7525 10.4 1.6311 18.4 1.5234 32.0 1.5442 
2.6 1.8004 10.6 1.6144 18.6 1.5197 33.0 1.5703 
2.8 1.8321 10.8 1.5965 18.8 1.5181 34.0 1.5953 

3.0 1.8487 11.0 1.5783 19.0 1.5186 35.0 1.5969 
3.2 1.8514 11.2 1.5604 19.2 1.5212 36.0 1.5751 
3.4 1.8419 11.4 1.5436 19.4 1.5257 37.0 1.5506 
3.6 1.8220 11.6 1.5284 19.6 1.5319 38.0 1.5455 
3.8 1.7933 11.8 1.5154 19.8 1.5395 39.0 1.5633 

4.0 1.7582 12.0 1.5050 20.0 1.5482 40.0 1.5870 
4.2 1.7184 12.2 1.4976 20.2 1.5577 41.0 1.5949 
4.4 1.6758 12.4 1.4933 20.4 1.5674 42.0 1.5808 
4.6 1.6325 12.6 1.4922 20.6 1.5771 43.0 1.5583 
4.8 1.5900 12.8 1.4943 20.8 1.5864 44.0 1.5481 

5.0 1.5499 13.0 1.4994 21.0 1.5949 45.0 1.5587 
5.2 1.5137 13.2 1.5071 21.2 1.6023 46.0 1.5798 
5.4 1.4823 13.4 1.5172 21.4 1.6082 47.0 1.5918 
5.6 1.4567 13.6 1.5291 21.6 1.6126 48.0 1.5845 
5.8 1.4374 13.8 1.5423 21.8 1.6153 49.0 1.5651 

6.0 1.4247 14.0 1.5562 22.0 1.6161 50.0 1.5516 
6.2 1.4187 14.2 1.5704 22.2 1.6151 
6.4 1.4192 14.4 1.5841 22.4 1.6124 
6.6 1.4258 14.6 1.5970 22.6 1.6081 
6.8 1.4379 14.8 1.6085 22.8 1.6023 

7.0 1.4546 15.0 1.6182 23.0 1.5955 
7.2 1.4751 15.2 1.6258 23.2 1.5877 
7.4 1.4983 15.4 1.6309 23.4 1.5795 
7.6 1.5233 15.6 1.6336 23.6 1.5710 
7.8 1.5489 15.8 1.6337 23.8 1.5626 
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x Ci(x) x a(x) x a(x) x a(x) 

0.01 --4.0280 5.40 --0.1544 14.40 0.0677 23.40 --0.0417 

0.02 --3.3349 5.60 -0.1287 14.60 0.0628 23.60 --0.0423 

0.03 --2.9296 5.80 --0.0994 14.80 0.0555 23.80 --0.0411 

0.04 --2.6421 6.00 --0.0681 15.00 0.0463 24.00 --0.0383 

0.05 --2.4191 6.20 -43.0359 15.20 0.0354 24.20 --0.0341 

0.10 --1.7279 6.40 -0.0042 15.40 0.0234 24.40 -43.0286 

0.15 --1.3255 6.60 0.0258 15.60 0.0108 24.60 --0.0220 

0.20 --1.0422 6.80 0.0531 15.80 --0.0019 24.80 --0.0147 

0.25 --0.8247 7.00 0.0767 16.00 --0.0142 25.00 --0.0068 

0.30 -43.6492 7.20 0.0960 16.20 --0.0257 26.00 --0.0283 

0.35 -0.5031 7.40 0.1104 16.40 -0.0358 27.00 0.0357 

0.40 -0.3788 7.60 0.1196 16.60 --0.0443 28.00 0.0109 

0.45 --0.2715 7.80 0.1236 16.80 --0.0509 29.00 --0.0219 

0.50 --0.1778 8.00 0.1224 17.00 --0.0552 30.00 --0.0330 

0.55 --0.0953 8.20 0.1164 17.20 -43.0573 31.00 --0.0140 

0.60 -0.0223 8.40 0.1061 17.40 --0.0571 32.00 0.0164 

0.65 0.0427 8.60 0.0919 17.60 -43.0546 33.00 0.0303 

0.70 0.1005 8.80 0.0747 17.80 -43.0500 34.00 0.0163 

0.75 0.1522 9.00 0.0553 18.00 --0.0435 35.00 --0.0115 

0.80 0.1983 9.20 0.0345 18.20 -0.0354 36.00 --0.0274 

0.85 0.2394 9.40 0.0133 18.40 -0.0261 37.00 -43.0179 

0.90 0.2761 9.60 --0.0077 18.60 --0.0160 38.00 0.0071 

0.95 0.3086 9.80 --0.0275 18.80 --0.0054 39.00 0.0245 

1.00 0.3374 10.00 --0.0455 19.00 0.0052 40.00 0.0190 

1.20 0.4205 10.20 --0.0609 19.20 0.0153 41.00 --0.0033 

1.40 0.4620 10.40 --0.0733 19.40 0.0246 42.00 --0.0216 

1.60 0.4717 10.60 --0.0824 19.60 0.0327 43.00 -43.0196 

1.80 0.4568 10.80 --0.0878 19.80 0.0394 44.00 -A3.0001 

2.00 0.4230 11.00 --0.0896 20.00 0.0444 45.00 0.0186 

2.20 0.3751 11.20 --0.0877 20.20 0.0476 46.00 0.0198 

2 40 0.3173 11.40 --0.0824 20.40 0.0487 47.00 0.0031 

2.60 0.2533 11.60 --0.0740 20.60 0.0480 48.00 --0.0157 

280 0.1865 11.80 --0.0630 20.80 0.0453 49.00 -43.0196 

3.00 0.1196 12.00 --0.0498 21.00 0.0409 50.00 --0.0056 

3.20 0.0553 12.20 --0.0350 21.20 0.0349 

3.40 -43.0045 12.40 --0.0194 21.40 0.0277 

3.60 --0.0580 12.60 --0.0034 21.60 0.0195 

3.80 --0.1038 12.80 0.0121 21.80 0.0107 

4.00 -43.1410 13.00 0.0268 22.00 0.0016 

4.20 --0.1690 13.20 0.0399 22.20 --0.0073 

4.40 --0.1877 13.40 0.0510 22.40 --0.0159 

4.60 --0.1970 13.60 0.0598 22.60 --0.0236 

4.80 --0.1976 13.80 0.0660 22.80 --0.0303 

5.00 -43.1900 14.00 0.0694 23.00 --0.0357 

5 20 --0.1753 14.20 0.0699 23.20 --0.0395 

538 
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x Cin(x) x an(x) x an(x) x an(x) 

0.0 0.0000 8.0 2.5342 16.0 3.3640 24.0 3.7936 

0.2 0.0100 8.2 2.5649 16.2 3.3879 24.2 3.7977 

0.4 0.0397 8.4 2.5994 16.4 3.4103 24.4 3.8004 

0.6 0.0887 8.6 2.6370 16.6 3.4310 24.6 3.8020 

0.8 0.1558 8.8 2.6772 16.8 3.4495 24.8 3.8027 

1.0 0.2398 9.0 2.7191 17.0 3.4657 25.0 3.8030 

1.2 0.3391 9.2 2.7619 17.2 3.4795 26.0 3.8070 

1.4 0.4517 9.4 2.8047 17.4 3.4908 27.0 3.8373 

1.6 0.5755 9.6 2.8467 17.6 3.4997 28.0 3.8985 

1.8 0.7082 9.8 2.8871 17.8 3.5064 29.0 3.9664 

2.0 0.8474 10.0 2.9253 18.0 3.5111 30.0 4.0118 

2.2 0.9906 10.2 2.9605 18.2 3.5140 31.0 4.0252 

2.4 1.1354 10.4 2.9923 18.4 3.5157 32.0 4.0265 

2.6 1.2794 10.6 3.0205 18.6 3.5163 33.0 4.0434 

2.8 1.4204 10.8 3.0446 18.8 3.5165 34.0 4.0873 

3.0 1.5562 11.0 3.0647 19.0 3.5166 35.0 4.1441 

3.2 1.6851 11.2 3.0808 19.2 3.5169 36.0 4.1881 

3.4 1.8055 11.4 3.0932 19.4 3.5179 37.0 4.2060 

3.6 1.9161 11.6 3.1023 19.6 3.5200 38.0 4.2077 

3.8 2.0160 11.8 3.1083 19.8 3.5235 39.0 4.2163 

4.0 2.1045 12.0 3.1119 20.0 3.5285 40.0 4.2471 

4.2 2.1813 12.2 3.1137 20.2 3.5354 41.0 4.2941 

4.4 2.2465 12.4 3.1143 20.4 3.5440 42.0 4.3365 

4.6 2.3003 12.6 3.1144 20.6 3.5546 43.0 4.3580 

4.8 2.3434 12.8 3.1145 20.8 3.5669 44.0 4.3615 

5.0 2.3767 13.0 3.1154 21.0 3.5809 45.0 4.3653 

5.2 2.4011 13.2 3.1175 21.2 3.5963 46.0 4.3860 

5.4 2.4180 13.4 3.1214 21.4 3.6129 47.0 4.4243 

5.6 2.4287 13.6 3.1275 21.6 3.6304 48.0 4.4641 

5.8 2.4345 13.8 3.1358 21.8 3.6484 49.0 4.4886 

6.0 2.4370 14.0 3.1469 22.0 3.6666 50.0 4.4948 

6.2 2.4376 14.2 3.1605 22.2 3.6847 

6.4 2.4377 14.4 3.1768 22.4 3.7022 

6.6 2.4385 14.6 3.1955 22.6 3.7188 

6.8 2.4411 14.8 3.2163 22.8 3.7343 

7.0 2.4464 15.0 3.2390 23.0 3.7484 

7.2 2.4553 15.2 3.2631 23.2 3.7609 

7.4 2.4683 15.4 3.2881 23.4 3.7717 

7.6 2.4858 15.6 3.3136 23.6 3.7807 

7.8 2.5078 15.8 3.3391 23.8 3.7880 
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20. General Poynting Vector and Directivity Formulas. The derivation 
of a number of special Poynting vector relations used in the text from the 
more general relations is given in this section. Their application to radiated 
power and directivity formulas is also considered. 
The instantaneous Poynting vector P, is given by 

Pi=E X H  (1) 

In the far field, the field components are transverse so that (see coordinates 
of Fig. 2-16) 

E = 14E. -I- aoE, = 4E0 cos cot -I- 14ER, cos (cot -I- (3)  (2) 

and 

H = —a,ll  = —aeHoo cos (wt  E)  114.140 cos (cot -I- + E) (3) 

The instantaneous Poynting vector is then 

Pi = — a, X 1441  ao X gt.E,H# = a,(41-1.  (4) 

and its radial component is 

P,, = EX,  Eoll,  (5) 

The average value P. is obtained by the integration of (5) over one cycle 
as given by 

P. =  f "  EJ-1,) d(cot)  (6) 

from which 

P. = 140H ro cos E  lE•olio cos E 

The magnitudes of the far-field components are related by 

_ E, _ z 
Ho H, 

so (7) can be written 

P, = i11:0Z cos E  111:oZ cos E 

(7) 

(8) 

(9) 

But Z cos E = Re Z. In free space Z = Zo = 1207, which is real, so 
Re Z = Zo and 

or 

Z  2  2 
P =  (Ho  HO) = 6 07 (1 4 0 +  MO) 2 

E2 E 0 : E20  E 0 : p r .0   •   

2Z0 2407 

(10) 
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The above derivation may also be made using complex notation as fol-
lows. The complex Poynting vector is 

= AE X H*  (12) 

In the far field, the field components are transverse so that 

E = a4,E0 = ad,E4,0el"'  ailE006'  +a)  

H* = — aelf:  a#H: = —141-1,0e-i("+t)  asHooe -i (.1 +a+e) 

The average Poynting vector (time average) is given by 

P = Re (E X H*) = ia, Re (E.Ht  Eerl:) 

= ia,(E00Heo cos t  E00H,40 cos t)  (15) 

The radial component of the average Poynting vector is then 

Pr = lEoHeo cos t  iEeoH00 cos t  (16) 

as in (7) and, hence, in free space P. reduces to the same form as in (10) and 
(11). 
The total power W radiated through a large sphere is then 

W = if P. as = 4r2 121. f r Re (E#1-17  E.1-4) sin 0 c10 clAk 
do  0 

2r f r 

Re (E4,11:  E,H:) c/12 
0  0 

(13) 

(14) 

(17 ) 

where dO = sin 0 c10 (14) = element of solid angle 
From (17) 

W = ir2zo 12. f' (H7,0 + H:0) dn =  f" (E:0 + EL) dl  (18) 
do do   Jo do 

In general 4 0 and Elm may be different functions of 0 and 0. Thus, 

E,0 = EiFi(0, cp)  (19) 
and 

E.0 = E2F2(0, (b)  (20) 

The directivity D of an antenna is given by 

U  4TU 4Tr2P,„, 
Uo 4ir Uo W 

where Pr„, is the value of the radial component of the average Poynting 

(21) 
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vector in the direction from the source in which it is a maximum. From 
(11) 

P,,,, — [EL ± EL] . [gi ne, (1)) ± EIF:(0, 4,)]... 

From (18) and (19) 

2Z0 2Z0 

2  r 1r 
w  r 
- = 2Z0 0 fr [E no, cs) + E no, 0)] dil 

(22) 

(23) 

Introducing (22) and (23) in (21), the directivity of an antenna of any 
polarization is 

4r   4r 
D — 

jo 21r jo 7 

[ElF1( 0, CO ±  E ne, 0)] du — B 

[E;Ff(o, 4)) ± EV:(e, 0)] . 

where B = beam area 
Equation (24) may also be expressed 

4r 
D — 

.1.0 0 F2(0, 4)) c/(1 

F2(0, 4)),,,,„ 

(24) 

(24a) 

where F(o, 4)) = total field pattern 
For F(0, y6)„. = 1, (24a) reduces to (15-6). If both field components have 
identical patterns 

F,(0, 41) = F2(0, (1))  (25) 

so that 

4r   
D —  (26) 

f0 0 F;(0, 4)) do 

n0, (6)m.. 

Whenever (25) is fulfilled, the directivity of a source of any polarization is 
a function of the space pattern of only a single field component. If also 
F1(0, q5)... = 1, (26) reduces to 

D — 
47 

1.2. I., 
Jo fq no, 0) dO 

(27) 
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In the denominator of (24) the integrand divided by the denominator is 
equal to the relative radiation intensity pattern [f(0, 0)/f(0, 0)..] so that 
(24) reduces to (2-39). 
The above expressions apply to fields of any polarization. It is to be 

noted that the relations are independent of the time-phase difference 5 
between E# and E,. 
If the field is linearly polarized, for example, let it be everywhere hori-

zontally polarized, E•0 = Ho = E2 =  0, and (24) reduces to (26). 

I 
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Abraham, M., 230, 273 
Abramowitz, M., 168 
Absolute gain, 455 
Adams, N. I., 250, 273 
Admittance per square, 364 
Aharoni, J., 127, 254, 273 
Albert, G. E., 230 
Alford, A., 8, 127, 149, 167, 360, 412, 423, 

429, 433 
Alford loop, 429 
Antenna (see specific type) 
definition of, 1, S 

Antenna adjustments of polarization, 474 
Antenna region, 5-8 
Aperture, beam widths of, 380 
circular, 343 
collecting, 48 
of dipole, 49 
effective, 42 
of isotropic source, 53 
loss, 48 
maximum effective, 42 
maximum scattering, 47 
physical, 48 
rectangular, 115, 344 
relation of, to directivity, 52 
to gain, 52 

scattering, 45 
square, 345 
table, 54 
of i-wavelength antenna, 51 

Aperture distributions, 343-3.50 
Aperture patterns, 120, 350 
Aperture plane, 337 
Approximation formulas, 509 
Arbitrary shape, 228 
Aronoff, M., 185, 463 
Arrays, broadside, 57, 79, 93-110, 279 
closely spaced, 295 
driven, 292, 300 
end-fire, 62, 288 

increased directivity, 81-83 
ordinary, 79-81 

of linear antennas, 279-323 
of point sources, 57-110 
stacked, 312, 424-431 
wave-guide type, 356 

Artificial dielectrics, 390-394 
Ashmead, J., 325 
Axial mode, 175, 182 
Axial ratio, 181, 203, 468 
Azimuth, geodetic, 71 

B 

Babinet's principle, 361-364 
Bagby, C. K., 191 
Baker, B. B., 115 
Ballentine, S., 252 
Baluns, 423, 441 
Band width, 208, 433-439 
of lens antennas, 397 

Barkofsky, E. C., 41, 412, 433, 455 
Barrow, W. L., 375-381, 395 
Barzilai, G., 463 
Beam area, 24, 542 
Beam widths, 83, 87, 95 
for helices, 213 
for horns, 380 

Bechmann, It., 254, 274 
Beck, A. C., 408-412 
Bennett, F. D., 441 
Besse) functions, 162-170, 378 
Beverage, H. H., 412 
Beverage antenna, 149, 412 
Bhargava, B. N., 461, 462 
Biconical antenna, 4-7, 217-229 
characteristic impedance of, 217 
equivalent line for, 224 
finite, 223 
infinite, 223 
input impedance of, 222 
pattern of, 228 

Biconical horn, 372, 381 
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Billboard antenna, 118, 327 
Binomial coefficients, 510 
Binomial distribution, 93-97 
Binomial series, 509 
Bock, E. L., 423 
Bond, D. S., 433 
Booker, H. G., 354-369 
Born, M., 115, 361, 465, 476 
Boundary sphere, 4 
Boundary-value method, 230, 272 
Boxed-in slot antenna, 354-359 
Braun, F., 431 
Broad-band antennas, 8, 208 
Broadside array, 57, 79, 90, 118, 279 
Brown, G. H., 71, 243, 266, 268, 282, 284, 

292-295, 314-320, 326, 420-427, 431, 
485 

Bruce, E., 408-411 
Bruce antenna, 414 
Briickmann, H., 413 
Burgess, R. E., 272 
Burrows, C. R., 438 
Buss, R. R., 457 

C 

Carson, J. R., 252 
Carter, P. S., 254, 269-274, 302 
Characteristic impedance, of biconical an-

tennas, 217 
of transmission lines, 507 

Charts, pattern, 78, 519-534 
polarization, 473, 474, 482, 483 

Chireix, H., 179, 414 
Chireix-Mesny array, 414 
Christensen, J. W., 457 
Chu, L. J., 177, 193, 250, 273, 375-381, 

395, 434 
Cin function, 144, 260 
relations of, 535 
table of, 539 

Circular aperture, 344 
Circular horn, 372, 381 
Circular loops, 155-170 
Circular polarization, 203, 464-484 
Circular reflector, 325 
Circularly polarized antennas, dipole type, 

424, 430 
helical type, 173-216, 430 
slanted dipole type, 430 
slotted cylinder type, 430 

Clark, H. K., 41, 455 
Cleckner, D. C., 321 
Closely spaced array, 295-300 
Clover-leaf antenna, 429 
Coleman, P. D., 441 
Collecting aperture, 48 
Compensating line, 439 
Complementary antennas, 356-371 
impedance of, 367-371 

Complementary screens, 361-367 
impedance of, 364-367 

Complex polarization parameter, 484 
Complex Poynting vector, 541 
Conical horn, 372, 381 
Conical input sections, 249 
Constrained lens, 396 
Continuous array, 110-121 
Corner reflector, passive, 324-325 
Corner-reflector antenna, 324, 328-336, 

338 
Copson, E. T., 115 
Cosine distribution, 350 
Cosine integral, 145, 260, 265 
relations of, 535 
table of, 538 

Cosine squared distribution, 350 
Cox, C. R., 270 
Curl, 510 
Current distribution, on cylindrical an-

tennas, 239-241, 462 
on helices, 183 
measurement of, 461-464 

Current moment, 162 
Curtain arrays, 413 
Cutler, C. C., 177, 193, 339, 449-456 
Cylindrical antenna, 230-250 
conical input of, 249 
current distribution of, 239-241, 462 
input impedance of, 241 
patterns of, 247 
thin, 247 

Cylindrical parabolic reflector, 346 

D 

Db (decibel) directivity, 27 
Db gain, 27 
Debye, P., 404 
Degrees, 511 
Delay lenses, 383 
de Moivre's theorem, 508 
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Dielectric constant, 384, 385, 497 
Dielectric lens antennas, 382-394 
Dimensions, 493-501 
Dipole, short, aperture of, 49 

fields of, 127-135, 137-139 
magnetic, 157 
radiation resistance of, 136 
table of field formulas for, 135 

Direction-finding antennas, 433 
Directions, of pattern maxima, 90 
of pattern nulls, 83 

Directivity, approximate formulas for, 25 
definition of, 23, 453 
general formulas for, 540-543 
of helices, 197, 213 
of horns, 379, 380 
of loops, 169 
relation of, to aperture, 52 

Directivity calculations, 23-26 
graphical, 40 (Prob. 2-5) 

Directrix, 337 
Disc antenna, 421 
Discone antenna, 420 
Distance requirement, 448 
Distributions, binomial, 93-97 
cosine, 350 
cosine squared, 350 
Dolph-Tchebyscheff, 93-110 
edge, 93-97 
for lens antennas, 387 
optimum, 93-110 
for parabolic reflectors, 342, 343 
tapered, 339, 347 
triangular, 350 
uniform, 115, 339, 349 

Divergence, 510 
Dolph, C. L., 96 
Dolph-Tchebyscheff distribution, 93-110 
Dome, A., 228, 243, 245, 325, 348, 356-

360, 375, 381, 408, 423, 480 
Driven array, 292, 300 
Driving-point impedance, 282, 290 

Eccentricity, 468 
Edge distribution, 93-97 
Effective aperture, 42 
maximum, 44 

Effective height, 44 
Effectiveness ratio, 45 
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Electromagnetic spectrum, 3 
Elevation angle, 303-318 
Ellipsoidal antenna, 230, 249 
Elliptical polarization, 464-484 
Elliptical reflector, 325 
Ellipticity, 468 
Emde, F., 168, 536 
Empirical method, 276 
End-fire array, 62, 79-81, 187, 288 
E-plane lens, 382, 394-403 
Epstein, J., 427 
Equality of path length, 336 
Equivalent loop, 429 
Equivalent radius, 238 
Euler's constant, 535 
Everitt, W. L., 434 
Exponential horn, 371 
Exponential integral relations, 260, 265, 

536 
Exponential line, 438 

F number, 340, 385 
Far field, 6 
Feed point, effect of, 414 
Feldman, C. B., 412 
Felsenheld, G. A., 420, 429 
Field, L. M., 177 
Field distribution (see Distributions) 
Field intensity at one mile, 317 
Field patterns, 27-32 
azimuthal, 308 

Fields, comparison of, loop and dipole, 
160-161 

dipole, 127-139 
table of, 135 

of linear antenna, 139-153 
loop, 155-172 
magnetic dipole, 158 

(See also specific antenna, fields or patterns 
of) 

Flat sheet reflector, 325-328 
Flat-top beam antenna, 297-300 
above ground, 309 
tilt, 312 

Flush disc antenna, 421 
Flush slot antenna, 355 
Folded dipoles, 415-419 
Foster, D., 161-170, 408 
Fourier series, 99 
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Fourier transform, 348 
Fouty, R. A., 431 
Frank, N. H., 115, 344 
Fraunhofer pattern, 116 
Fraunhofer region, 6 
Frequency sensitivity, 433-439 
Fresnel integrals, 379 
Fresnel pattern, 116 
Fresnel region, 6 
Friis. H. T., 41, 54, 339, 348, 402, 412 
Fri is transmission formula, 54 
Full-wave antenna pattern, 142 

G 

Gain, by comparison, 454 
db, 27 
definition of, 26 
in field intensity, 26, 283, 284, 291 
relation of, to aperture, 52 

Glasser, 0. J., 173, 186 
Glinski, G., 161 
Gradient, 510 
Greene, F. M., 379 
Grid reflector, 335 
Grosskopf, J., 149 
Ground, effect of, 303-318 
Ground plane antennas, 420 
dimensions of, 459 

H 

Half-wavelength antenna, aperture of, 51 
field of, 142 
radiation resistance of, 143-147 

Ha!len, E., 230-245, 273 
Halien's integral equation, 233 
first-order solution, 235 

Hankel functions, 378 
Hansen, W. W., 81, 86, 92, 190 
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Helical antennas, 173-216 
axial mode of, 182 
axial ratio of, 203 
current distribution of, 183 
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table of formulas of, 213 
tapered, 213 
velocity of propagation on, 187 
wide-band properties of, 208 

Helicoidal cylindrical coordinates, 191 
Helmholtz, Rayleigh-Helmholtz theorem, 

252 
Hemisphere pattern, 16 
Hertz vector, 137 
Hondros, D., 404 
Horizontal antenna, above ground, 303 
Horn antennas, 371-381 
beam widths, 380 
biconical, 372, 381 
circular, 372, 381 
conical, 372, 381 
exponential, 371 
optimum, 373-377 
pyramidal, 372 
rectangular, 371, 375 
sectors!, E-plane, 371-381 
H-plane, 371-381 

tapered, 371 
Horton, C. W., 406 
H-plane horn, 371-381 
H-plane lens, 403 
Huygens' principle, 115, 379 
Hyperbolic reflector, 325 
Hyperbolic relations, 508 
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lams, H., 453 
Illumination of aperture, 343 
Image elements, 303-318, 329 
Image-plane technique, 458, 459 
Images, 303-318 
Impedance, characteristic, 217, 507 
driving-point, 282, 290 
empirical, 276 
measurements of, 457 
methods of calculating, 272 
mutual, 251-278 
self-, 241, 251-278 

Impedance ratios, 438 
Increased directivity, end-fire, 79-81 
Index of refraction, 384 
Isotropic source, 15 
Isotropic aperture, 53 
letvanffy, E., 469 



INDEX 

Jackson, J. D., 177, 193 
Jahnke, E., 168, 536 
Jamieson, H. W., 441 
Jansen, J. J., 381 
Jeans, Sir James, 328 
Jordan, E. C., 423 

Kandoian, A. G., 167, 420, 421, 429 
Keary, T. J., 348 
Keen, R., 433 
Kellogg, E. W., 412 
Kimbark, E. W.• 439 
King, A. P., 381, 449-453, 456 
King, D. D., 243 
King, L. V., 230 
King, R. W. P., 232-239, 252, 266, 268, 

416, 439, 457, 485 
Kock, W. E., 390-397, 403, 449-453, 456 
Komfner, R., 177 
Kraus, J. D., 41, 149, 173-210, 295, 309, 

312, 328, 412, 418, 431, 455, 481 
Krutter, H., 450, 453, 455, 456 

Labus, J., 314, 315 
Laplacian, 510 
Lazarus, D., 356-360, 457 
Length chart, 3 
Lens antennas, 382-404 
artificial dielectric, 390-394 
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clover-leaf, 429 
directivity of, 169 
feed point of, 415 
fields of, 155-172 
radiation resistance of, 166 
small, 155 
square, 170, 415, 419, 429, 443 
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left, 471 
right, 471 

clockwise, 470 
counterclockwise, 470 
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Radiating efficiency, 295-300 
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self-resistance, 272 
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