wreess

worle

FEBRUARY $197530 p$

Digital clock

The issues are quite regular-and they discuss issues of vital importance to everyone who uses electronic test equipment.

The periodical, Marconi Instrumentation, which is mailed out free to all $\mathbf{m i}$ customers three times annually, contains technical articles about our latest instruments and up-to-the-minute information on their application to the solutions of measurement problems. It is written by engineers for engineers in English with summaries in four other languages.

And that's not all, by any means. mi Contact is a newspaper published six times a year to keep you
in touch with news and progress in the measurement business. Then there are our hardback publications, too. Already, there is a volume on TV Video Transmisson Measurement written by the Head of BBC Measurement Systems Laboratory, and another book discusses the techniques and development of 'white noise' testing. Shortly we will be publishing a book on pulse code modulation, by a senior Post Office engineer.

There are technical data sheets, applications notes, catalogues, concise catalogues and product brochures, all aimed to help you measure.

Are you reading us?

mi: THE COMMUNICATORS

LOW COST VOLTMETERS

POBTABLE INSTRUMENTS

Who else but the It alians could have produced the most sophisticated range of mixing and fading facilities ever offered in such a beautifully designed range of equipment.

Yet still apply the most precise and exacting manufacturing standards to provide the operational stability and reliability such complex electronics demand

This is why we are able to guarantee all Goodmans/Galactron equipment for three years.

And your guarantee will be signed personally by the quality controller who tests it before it leaves the factory inItaly

Galactron Mk 10

Stereo Integrated Amplifier

A remarkably compact pre and power amp combination with 90 watts RMS per channel. Features 5 mixable stereo inputs, 5 plug-in-modules-two of which can be cross-faded by slide potentiometer.

Galactron Mk 16

StereolQuad Amplifıer

No comparable equipment has all these 3 functions. 5 inputs, independently mixable and equalised by plug-in modules. Twin graphic equalisers having

10 filters each ($\pm 16 \mathrm{~dB}$) at octave intervals from 32 Hz to 16 kHz . Plug-in quadrophonic decoder panels for discrete and matrix systems allied to 4 output Jevel controls.

Galactron Mk 100

Stereo Power Amplifier

Originally designed as a monitor amp for recording studios, the Mk 100 is designed for use with the Mk 16 preamplifier. 100 watts RMS per channel output

Full facts and figures are available from Goodmans Loudspeakers Limited, Downley Road, Havant,Hants.

Hifistarts here

The quality of the sound you hear from your hi-fi depends on the quality of transcription from the record-so you won't want to skimp on quality. When you choose your turntable deck, you'll probably choose Garrard.

Fifty-five years of Garrard experience and know-how in producing top-quality record playing equipment is concentrated in the range of record playing units now available. There are three modules complete with attractive bases and lift-off covers, ready-wired for instant installation.

The SP25 mk IV is the most popular budget unit on the market. It features the famous Garrard four-pole synchronous motor to ensure smooth, constant speeds, the finely engineered pickup arm with resiliently mounted counterbalance weight, calibrated bias compensation and damped cueing.

The $\mathbf{8 6 S b}$ represents just about the best buy in hi-fi today. It incorporates belt drive, the famous Garrard four-pole synchronous motor, high inertia turntable, contoured mat, precision pickup arm with fine stylus force adjustment and bias compensation calibrated for elliptical and conical styli.

The Zero 100SB has every quality feature you could expect to find on a record deck. What makes it truly unique is the tangential tracking pickup arm virtually eliminating tracking error and consequent harmonic distortion. Other features include, adjustable, resiliently-mounted, counterbalance weight, fine stylus force

Sarrard
 A PLESSEY QUALITY PRODUCT

Garrard, Newcastle Street, Swindon, Wiltshire.
adjustment, magnetic bias compensation calibrated for elliptical and conical styli, high inertia turntable with contoured mat, a record counter and the famous Garrard four-pole synchronous motor.

Use the coupon to obtain your free copy of the fullcolour brochure on the complete range of Garrard record playing units.

noers menns

KESTREL RANGE

聞 Modern styling, with clearfront plastic case.

箽 Seven models, scale lengths from 1.3" to $5.25^{\prime \prime}$.

- Extensively used by many leading manufacturers of electronic and electrical equipment.
- Available in all ranges, moving coil and moving iron.
- Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}$, $8^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98° scale.

Models KE1 and KE2 Miniature Edgewise Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$ Available in sensitivities from 50 microamps Moving Coil.

Lancaster Long Scale $240^{\circ} .2$ models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

IMDERS ELEMRDMIS LIMTTEI 48/56 Bayham Place, Bayham Street, London, N.W.1. Telephone 01-3879092.

[^0] Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers requirements.

New automatic digital bridge fromWayne Kerr

Wayne Kerr's new $\mathrm{B900}$ is one of the best value-for-money bridges in the world.

It is universal, has a wide range, and gives immediate digital readout of resistive and reactive terms-simultaneously.

On all ten ranges, for every type of measurement available, the displays provide a complete indication of the numerical value (up to 19999), polarity, decimal points and units-automatically and in half a second.

Direct measurements of Q , dissipation and dc volts. 2,3,\& 4-terminal. Automatic lead compensation. 4- Quadrant: + ve or - ve C, L.1/C, G and R.
Overall coverage:

$10 \mu \Omega-200 \mathrm{M} \Omega$	1 nH	-20 kH
$0.001 \mathrm{pF}-20,000 \mu \mathrm{~F}$	$10 \mathrm{p} v$	$-200 v$

Accuracy: $0.1 \%(10 \Omega-200 \mathrm{M} \Omega), 0.3 \%(10 \mathrm{~m} \Omega-10 \Omega)$ in all quadrants. Frequency: 1 kHz Outputs: Analog and TTL.

For more information phone Bognor (02433) 25811, or fill in the coupon.

Please send me details of the B900.
For the attention of Mr
Company name and address \qquad
\qquad
WAYNE KERR
A member of the Wilmot Breeden group.

Post to Wayne Kerr, Durban Road, Bognor Regis, Sussex PO22 9RL

50mHz OSCILLOSCOPE TYPE C1-64

Made in USSR

Power supplies: $115 / 230 \mathrm{~V} \pm 10 \%, 50-40 \mathrm{~Hz}$.
Dimensions: $\quad 300 \times 200 \times 420 \mathrm{~mm}$.
Weight: 19 kg .
PRICE, complete with full complement of connectors, cables, adaptors and accessories $\mathbf{£ 4 7 0}$ exclusive of VAT.

Lightweight, portable, transistorized, dual trace oscilloscope.
Display:
Rectangular CRT 6×10 div. $(48 \times 80 \mathrm{~mm})$ with
illuminated graticule.
Vertical deflection:
Two input channels operated in alternate or chopped modes or algebraically summed.
Bandwidth:
DC to 50 mHz DC coupled.
3 Hz to $50 \mathrm{mHz} \mathrm{AC} \mathrm{coupled}$.
Sensitivity:
Channell and II: $5 \mathrm{mV} /$ div. to $10 \mathrm{~V} / \mathrm{div}$.
Summing mode: $1 \mathrm{mV} /$ div. max.
Horizontal deflection:
Sweep ' A ' $-0.1 \mu \mathrm{~s} / \mathrm{div}$. to $1 \mathrm{~s} / \mathrm{div}$.
Sweep 'B'-0.1 $\mu \mathrm{s} / \mathrm{div}$. to $50 \mathrm{~ms} / \mathrm{div}$.
Sweep delay:
$1 \mu \mathrm{~s}$ to 10 s .
Time Base Modes:
' A ' only: ' B ' only: ' A ' brightens ' B '.
' B ' delayed by ' A ': ' A ' and ' B ' chopped or alternate.

Z \& I AERO SERVICES LTD., 44A WESTBOURNE GROVE, LONDON W2 5SF

Tel: 7275641
Telex: 261306
WW-045 FOR FURTHER DETAILS

British...

Wherever there is appreciation of fine sound reproduction, insistence is upon British loudspeaker systems. Renowned among the discerning for their outstanding quality, the products of 4. Mordaunt-Short Ltd. are specified by professionals and by enthusiasts the world over. Choose them for your home - where the finest most concerns you.

[^1]
Complete the coupon and we'll send you our new catalogue.Completely free.

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'llalso get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now and we'll send you your free copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-f f_{1} equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading.

And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs.
Heath (Gloucester) Limited, Dept.WW-25,Bristol Road, Gloucester,GL2 6EE. Tel: Gloucester (0452) 29451.

Three Ways To Easier Colour Servicing

Colour Bar Generator

* 10 test signals
* Variable ampiitude of colour burst signal
* 4 preselected channels on the RF output
* Small size, low weight

2.

Convergator

* Battery operated
* UHF output covers 10 channels
* Video signal can be switched off for purity adjustment

3.

T.V. Visual Feld Strength Meter

* Varicap tuner with four channel selectors
* High sensitivity
* $6^{\prime \prime}$ pićcture tube
* Mains or battery operation

The speed and efficiency of your colour servicing with this Decca test equipment will save you time and therefore money. Send us the coupon or give us a call and we'll send you the full details

Decca Radio \& Television Ltd.
Educational and Industrial Services Division Ingate Place, Queenstown Road, London SW8 3NT (01-622 6677)

Please send me further details of your colour TV test and service equipment:

Name
Address

Now suitable for U.K., European and American voltages...

Minimod, the versatile British made range of encapsulated power supplies first introduced in 1973, has now been extended to cover European and North American mains voltages (and is interchangeable with most American types). Normally available ex-stock. all units are fully stabilised with fold back current limiting - the 5 V models have over voltage crowbar too!

STANDARD MODELS

| Type
 Number | Output
 Voltage | Output
 Current
 Amps | Short Circuit
 Current mA
 (Typical) | \% Regulation
 Line and Load
 (Typical) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PU01 | 5 ± 0.1 | 0.5 | 370 | 0.3 |
| PU02 | 5 ± 0.1 | 1.0 | 770 | 0.5 |
| PU03 | $15-0-15 \pm 0.2$ | 0.10 | 37 | 0.1 |
| PU04 | $15-0-15 \pm 0.2$ | 0.20 | 84 | 0.1 |
| PU05 | $12-0-12 \pm 0.2$ | 0.12 | 45 | 0.1 |
| PU06 | $12-0-12 \pm 0.2$ | 0.24 | 120 | 0.2 |

Input voltage ranges $103-126 \mathrm{~V}, 200 \cdot 240 \mathrm{~V}$.
210-250V. Frequency $50-400 \mathrm{~Hz}$ all types.
Comprehensive specification given in brochure GT 29b which is available on request.
\star SPECIAL DESIGN SERVICE
Custom built units for applications requiring different specifications are produced as part of our standard service. Try us first.

Gardners

Specialists in Electronic Transformers \& Power Supplies.

GARDNERS
 TRANSFORMERS LIMITED

Gardners Tran sformers Limited, Christchurch, Dorset, BH23 3PN Tel. Christchurch 2284 (STD 02015 2284) Telex. 41276 GARDNERS XCH WW- 056 FOR FURTHER DETAILS

good reasons why Shibaden - colour cameras are the best!

HV 1500
Compact, highly mobile unit, the only colour CCTV camera available with a single one-inch filter integrated colour vidicon tube.

FP 1500 As the HV 1500 but fitted with a $3^{\prime \prime}$ viewfinder for studio use.

FP1 212
A one-inch three tube \mathscr{I} Plumbicon ${ }^{\text {R }}$ Camera with freely detachable electronic viewfinder. Ideal for outside broadcast work and studio.

HV 1100
An extremely compact, lightweight three tube colour TV camera ideal for surveillance and observation applications.

The Shibaden range of colour cameras are compact, easy to operate and versatile in their application through educational, medical, business and broadcasting studios. Shibaden Colour Cameras are designed with the customer in mind both from an application and performance stand point. They are fully backed by Shibaden's in-depth opto-electronic technology, which has proved to be superior through many years of application in a vast range of broadcasting equipment.

When you buy Shibaden you buy the best.
For further details on the Shibaden range of Colour Cameras, contact the Technical Service Department.
Hitachi BROADCAST \& CCTV EQUIPMENT MANUFACTURERS Lodge House • Lodge Road • Hendon • London NW4 4DQ.

WW-122 FOR FURTHER DETAILS

Vertical Laminar Flow

Provides vertical flow of filtered air. Free standing unit utilising minimum floor space. Uses standard single phase electrics. Clean design.

DESIGNED FOR SAFETY

Cabinet draws in air through pre-filter beneath work bench. Air is pressurised and passes through absolute filter vertically downwards and through perforated work surface. Dirty air is then extracted to atmosphere via extract duct mounted on top of cabinet.

Write for technical details.
HEPAIRE MANUFACTURING LTD
SPECIALISTS IN THE DESIGN ANO MANUFACTUAE OF INDUSTRIAL ANO PHARMACEUTICAL CLEAN AIA EOUIPMENT WATER LANE • STORRINGTON • SUSSEX RH2O 3DN Telephone: Storrington (STD 090-66) 2394

The Greenwood cuide to professiond soldering.

Eidystone Redio

Economy! Simplicity! Reliability!

1830 Series C.W, M.C.W, A.M, S.S.B

Crystal controlled
Transistorized HF/MF general purpose receiver
$120 \mathrm{kHz}-30 \mathrm{MHz}$ in 9 ranges
Rack mounting as standard
Cabinet optional extra
AC or battery operation
British MPT approved as
ships reserve receiver
DCA No. 10D/CA 10696

Illustrated brochure from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP. Tel: 021-475 2231. Telex 337081.
A member of Marconi Communication Systems Ltd

METER PROBLEMS ?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-065 FOR FURTHER DETAILS

THE NEW P60 INTEGRATED STEREO AMPLIFIER

Low profile design only $2^{\prime \prime}$ high.
Recording with or without tone correction
*Peak level indicator for tape recording. Suitable for continual high power operation.
Dual independent tape operation *Light Emitting Diodes for level monitoring in main and pre-amplifiers. Toroidal mains transformer.

Facilities for three tape recorders.
*Separate main and pre-amp gain controls.
Fully protected output stages. RIAA phono correction unaffected by cartridge inductance. Ultra low distortion circuits.
*New tape monitoring, A-B and A-B-C facilities.
International state-of-the-art circuitry from Cambridge Audio in Britain.
*To the best of our knowledge these features have never been included in a comparable amplifier hitherto.

for people who listen to music

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the overall specification of the HD250. Look at extracts from the specification below.

Power output.

Rated:

Maximum: $\quad 90$ watts average power per channel into 5 ohms load.

Virtually zero. (Cannot be identified or measured as it is below inherent circuit noise.)

Less than 0.02% (typically 0.01% at 1 kHz). Typically 0.006%.

Overload margin. Disc input 40 dB min.

Hum and noise output.
-83dBV Measured flat with noise bandwidth of 23 kHz (ref. 5 mV .)
-88dBV Measured with 'A' weighted characteristic (ref. 5 mV .)
-85 dBV Measured flat (ref. 100 mV .) -88 dBV ' A ' weighted (ref. 100 mV .) 17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb.

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301
WW- 060 FOR FURTHER DETAILS

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Devonshire Road, London SE23 3EN Tet: 01-699 8844 Telex: 896161

WW-137 FOR FURTHER DETAILS

A new service from one of the largest United Kingdom exporters of tubes and semiconductors

AEL • GATWICK HOUSE • HORLEY • SURREY • RH6 9SU Telex 87116 . Cables Aerocon Telex Horley. Telephone Horiey 5353

WW-107 FOR FURTHER DETAILS

Four easy steps to improve your instructional video system.

First purchase a good monitor The ITC PM $171 T$ for example, is perfect. It guarantees clarity, brilliance and definition; even if the picture comes straight from the moon. And our price is strictly earthbound, just $£ 161$. With the special video effects we have in mind, you'll need the ITC PM 171T monitor.

Now add the VP 315 video pointer. This advanced unit superimposes an arrow indication on your video system picture. The joy-stick control panel makes arrow positioning simple. And the arrow can be shown in black or white in a steady or flashing model either horizontal or vertical, in any size you want. We bring it to you at only $£ 327.75$.

Next purchase the VTG-33F time and date generator It gives legible reading from 100th of a second, through seconds, minutes, hour, day, month.: Perfect for any countdown. The precise timing is provided by the electronic crystal control IC circuitry. This generator is compatible with any new or existing television system, colour or black and white. And costs just $£ 322$.
(Prices subject to VAT)
Lastly, step into Dixons Technical. That's where you can buy all the above hardware. While you're in, look over all the other spaceage equipment we have for improving your video system. We'll give you a personal demonstration, help you choose the equipment you need, then install it.

Please send full details for the
ITC PM 171T Mónitor
The VTG-33F Video Display Generator \square The VP 315 Video Pointer

Name
Address \qquad

To: Dixons Technical
3 Soho Square,
London WI
Tel:01-4378811

Also available showing seconds, minutes, hour, day, month, year. This model is very surtable for time lapse video recording.

THIIK 5cOPEK

Write or 'phone for details Scopex Instruments Ltd,
Pixmore Industrial Estate,
Pixmore Avenue, Letchworth, Herts. SG6 1JJ
Tel: Letchworth (04626) 72771

WW-149 FOR FURTHER DETAILS

Measureairflow accurately foronly $£ 67.00$

The AVM500 gives accurate and immediate metering of airflow. The standard scale is between 0 and 30 metres/ second (70 mph). Other calibrations can be supplied at cost.
Airflow is measured by a constant temperature bridge, supported on a lightweight probe, which is connected by cable to the meter. Operation is by battery. The AVM500 is therefore extremely quick and easy to move and instal. A recording instrument is available.
Please send details of your AVM500. I am interested in wind measurement for

Name ... \quad Position
Company
\qquad
ddress

NOW you can build our LUXURY F.M. STEREO TUNER

 CompleteAs announced in advance last month, we can now offer a complete kit to build this superb design. The cabinet and chassis kit now available are up to the same high original design standards as the circuit design, and the same high quality of materials has been used. The metal work is in rustproof cadnium plated steel sheet, fully drilled and prepared. The front panel is in two tone gold and brown brushed anodised finish, while the drop over cabinet is made from high grade solid wood, finished in a light satin gloss varnish. The net result is a tuner of the very highest standards of performance and appearance.

Kits now available		Price	Postage
K1-4	All parts to build the main receiver board	£24.95	30p
K5-7.	Complete stereo decoder with antibirdy filters	£9.95	30p
K8	A 44 way push button assembly for the function switching	¢3.45	10p
K9	A 6 way pre-select push button unit, gold plated contacts, cermet trimpots, P.C. Board with meter drive circuitry	f14-14	10p
K10	A regulated power supply including mains transformer (210-250v)	¢5.82	30p
K11	Complete cabinet/metalwork set as described, including all plugs and sockets, mains lead, nuts and bolts, wire, etc.	£25.00	50p
Meter	An edgwise meter with frequency calibration to suit K9	¢6.50	20p
K1-11	All above parts, package price	¢85-00	50p

Other individual parts available include the SL301B, SL3045, SBA750, MC1310P, Filter SFG10.7MA, etc. Also individual K1-7 prices available, other parts may be quoted on request. All parts and performance are guaranteed. Send a S.A.E. (9×4 preferred) for further details to :-

VconLesign $^{\text {Des }}$

33, Restrop View, Purton, WILTS
SN5 9DG

These active filters are designed to take over the functions of passive filter networks in audio telecommunications systems. They offer several advantages, in space-saving, economy and reliability.
As a size comparison, one active filter will take up the same space as two Post Office Type 3000 relays. By using the same fixing and terminal holes as the relays, it offers an extra convenience when baseboards are being prepared. By replacing inductive components with solid state devices, filter characteristics have been obtained at less cost, without insertion loss, and with increased flexibility and economy. These new active filters have B.P.O. approval, and have wide applications, in the audio area and in signalling and control systems.

ELECTRONIC \& ELECTRICAL DESIGN

CABINET MAKING

SHEET ME゙TAL FORMING/FINISHNG

plastics moulding

ENCAPSULATION

WHITELEY ELECTRICAL RADIO CO. LTD.

Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074 WW-042 FOR FURTHER DETAILS

Linstead

TwinStabilised

PowerSupplies

Each comprising:

Two powerful bench supplies. Continuously variable. Independently operable, or in series, or parallel. Fully protected against overload and short circuit. In one compact robust case.

2×0 to 20 V 0 to 0.5 A
with twenty 1 voit steps and fine
control.
Voltage set by controls
Current continuously m
f78.80
plus VAT

Current limiting pronA.

S7
2×0 to 30 V 0 to 1 A .
Set by switches and fine control.
Meters switchable for volts.
0 to 100 mA and 0 to 9 A .
0 to 100 mA and 0 to 1 A .
Re-entrant protection. Pilot
indication of overioad. indication of overload.

the best for less british made by linstead
Linstead Electronics, Roslyn Works, Roslyn Road London N15 5JB. Telephone 01-802 5144
Ireland, Lennox Laboratory Supplies Letd, 3-4 South Leinster Street P.O. Box 212A, Dublin 2

Denmark, Scanfysik, iJ:is Hjorringzade, DK 2100, Copenhagen Sweden, EMI Svenska A/B, Tritonvagen 17, Fack, 17119 Solna : Norway, EMI Norsik A/S, Postboks 42 Korsvoll, Oslo 8
Malaysia, Laboratory Equipmant Sdn. Bhd., P.O. Box 60 , Batu Pahat
Benelux, A.S.E. Led., Nationalestreet 38 , B 2000 Ant Benelux, A.S.E. Led., Nationalestreet 3B, B-2000 Antworp

MODTEC solid state Series M monitors offer the most advanced design in video monochrome monitors available to date. 800 line resolution provides crisp, detailed pictures. The 100% modular chassis consists of five individually shielded circuit modules that plug in directly from the rear of the chassis. This unique and exclusive feature simplifies and speeds necessary maintenance with minimum down time. All plug-in circuit modules are common to $9,12,15,19$, and 23" CRT's.

LEE ENGINEERING LIMITED

Ashley House, Ashley Road Walton-On-Thames, Surrey KT12-1JE Phone: Walton-On-Thames 287-83/4 Telex: 928-475

WW-135 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids. Machinery. etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe. and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price f20.00 (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD. LONDON WC1X 8AX ('Phone 01-837 7937)

a thumb switch for direct PC mounting

EECo STRIPSWITCH

The Series 21 Stripswitch which is available in units comprising up to six stations is mounted directly to the printed circuit board. The switch solder tabs are used to provide the mechanical mounting to the circuit board and also the interconnection between the switch and the printed circuit.

Series 21 switch assemblies may be mounted horizontally or vertically and on either side of a P.C. board. The bezels offer a finished appearance if the switches are exposed through the equipment panel. Toothed wheels provide for a rapid setting of the switch positions but the Series 21 may also be used as a preset screwdriver operated switch. Knurled shafts which are available on request provide an alternative means of a rapid setting.

MAYCOM LIMITED

Wokingham Road, Bracknell, Berks RG12 1ND Tel: Bracknell 22751 Telex: 848402

P.C.BOREO?

- not with the
 IAIO ${ }^{3} 3 \mathrm{P} 6$

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!

£1.00 for one-off, $£ 4.00$ for six, $£ 8.00$ for twelve plus VAT post included. A vailable now in every country in Europe.

Please send me further details on the 33PC:
Name
Address
Post to: DECON LABORATORIES LTD.
FREEPOST
PORTSLADE, BRIGHTON, ENGLAND
(No Stamp Needed) Phone O273 414371

for electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits. Prices on request.
Teonex offers more than 3,000 devices. They are the Teonex range are nearly always availabie for competitively priced and they are superlative in immediate delivery.
performance, because the company imposes strict Write now for technical specifications and prices quality control. Teonex concentrates entirely on export to Teonex Limited, 2a Westbourne Grove Mews, and now operates in more than sixty countries. on London W112RY, England.

Electronic valvas,

WW-050 FOR FURTHER DETAILS

- TRANSISTORS \& DIODES

AC127	18p	BFY52	20p
AC 12 B	18p	BY126	13p
AC176	17p	BY127	13p
AD169/		BY164	49p
162 MP	93p	BZYB8	
BA100	9 p	series	13p
BA145	22p	MPF102	36p
BC107	10p	OA91	¢

Purpose-bullt servo and actutior systems usins standard components

McLennan Engineering Ltd. have considerable experience in the solution of actuator and servo problems using synchronous, stepping and DC motor techniques, an important facet of our skill lying in purpose-designing around. standard components for speed and economy: The illustrations show a selection of modules from the standard range and include the new EM/ 100/100 A servo drive system. All items are available individually or can be supplied engineered to custom-built systems.

1. EM 100/100A SERVO AMPLIFIER. A new addition to the
range. A complete servo drive system including
power supply which is eminently suitable for driving printed circuit motors and other
servo motors up to $1 / 6$ h.p. EM 100 - output
$\pm 24 \mathrm{~V}, 4$ amps continuous, 45 amps peak
EM 100 A - output $\pm 24 \mathrm{~V}, 7 \mathrm{amps}$
continuous, 75 amps peak.
2. DC SERVO AM 1006 S

With integral potentiometer. Max
continuous output Torque
14.6 kgcm at 7 r.p.m.
3. LOW INERTIA DC SERVOMOTOR Output 5W
4. CONT'ROL AMPLIFIER EM 40 Output $\pm 15 \mathrm{~V} 0.5 \mathrm{amp}$
5. TYPICAL PRECISIION GEARS 120 to 32 DP

Redan House, 1 Redan Place, London W2 4SA Telephone: 01-727 0091/2 Telex: 265531 Cables: Edicron London W2

WW-108 FOR FURTHER DETAILS

47-49 HIGH STREET.KINGSTON-UPON-THAMES, SURREY. KT1 ILP Tel:01-546 4585

TPASERIE - P integrated circuit power omplifier

H||H ELECTRONIC
CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7
WW—006 FOR FURTHER DETALS

STARWET

Spectrum Analyser Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 chm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width 11 in (28 cm .) Height 4.375in. $(11.2 \mathrm{~cm}$.) Depth $8.5 \mathrm{in} .(21.6 \mathrm{~cm}$.) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg})$ Gross weight $10 \mathrm{lbs}(4.5 \mathrm{Kg}$.)

For further details contact the sole distributors of STARWET equipment:

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

BYWOOD ELECTRONICSONE STOP SHOPPING FOR-

Clock Chips
Calculator Chips
Led Displays Liquid Crystals Phosphor-Diodes
Gas Discharge
Display Drivers
MHI Kits
Digitronic Clocks
Customised Units

With Products from -
Beckman, Brown-Boveri, Cal-Tex, Diacon, E.R.G., Fuji, Futaba, Imtech, Itoka, Jermyn, Litronix, Mostek, National, RCA, Siemens,
Swarovski, Texas, 3M

Just about all you need to go digital is some of our ICs, some of our digits and drivers, some data and some advice. As they are all available at the end of a telephone line it would make sense to ring 0442-62757 before doing anything else.

Latest lists, prices and products are advertised each month in ETI.
EXTRACTUS DIGITUS, DIALUS and DIGITISE DIRECTLY!

BYWOOD ELECTRONICS
181 Ebberns Road
Hemel Hempstead, Hertfordshire
Tel: 0442-62757

WW-143 FOR FURTHER DETAILS

TAKE A CLOSE LOOK

at a professional recorder that offers high performance, excellent reliability and is very easy to maintain. Ask yourself why so many commercial radio stations and recording studios are doing their best to wear them out. and not having much success. Decide if you need mono or stereo, console transportable or rack mounting versions and then inquire about prices.
We are sure you will be very pleasantly surprised.

Transit Damage cost you?

How much does

In damaged goods. In doubled delivery charges. It need not cost you a penny. Because it needn't happen. PROTECTOMUFFS are tough, padded, weatherproof, dustproof. They are tailored to fit your product. Slipped on in seconds by unskilled staff, they provide all the packing required. And because
 they are re-useable again and again and again, packing costs become a non-recurring item. Be like Hoover, Ferranti, Rediffusion - use Protectomuffs and show your customers you care.
\qquad
\qquad

IP I.L. P. (Electronics)Lto

Mono electrical circuit diagram with interconnections for stereo shown

The HY5 is a complete mono hybrid preamplifier, ideally suited for both
mono and stereo applications. Internally mono and stereo applications. Internally amplifiers - the first contains frequency equalisation and gain correction, while the second caters for tone control and
balance
TECHNICAL SPECIFICATION
inputs
Magnetic Pick-up 3 mV .RIAA
Ceramic Pick-up
Microphone
Tuner
Auxillary
Input impedance
Outputs
Main output Oab (0.775 volts RMS)
Active Tone Controls
Treble $\pm 12 \mathrm{ab}$ at 10 kHz
Distortion 0.05% at 1 kHz
Signal/Noise Ratio $\quad 68 \mathrm{db}$
Overload Capability 40 db on most
Supply Voltage $\begin{aligned} & \text { sensitive input } \\ &+1 G-25 \text { volts. }\end{aligned}$
PRICE E4.50 +0.36 V.A.T. P \& P free.
two years guarantee on all our products
I.L.P. Electronics Ltd, Crossland House,
Nackington, Canterbury,
Kent CT4 7AD
Tel (0227) 63218

The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink hermetically sealed conductivity heatsink hermetically seale in black epoxy resin. Only five connec-
tions are provided: Input, output, power tions are provid
lines and earth.
TECHNICAL SPECIFICATION
Output Power 25 watts RMS into $8 \Omega 2$ Load Impedance $4-16 \Omega$
Input Sensitivity Odb (0.775 volts RMS) Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts typically 0.05%
Signal/Noise Ratio Better than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz}+3 \mathrm{db}$
Supply Voltage 125 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$
PRICE $£ 5.98+0.48$ V.A.T. P \& P free.

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage 50 volts $(25-0-25)$
Input voltage $210-240$ volts
Size L.70.D.90. H. 60 mm
PRICE $6.00+0.48$ V.A.T. P \& P free.

Ellentini

You told us you enjoyed Elektor 1

Don't miss Elektor 2, out now

Elektor is a fund of well thought-out and thoroughly tested projects, new ideas using modern electronic components, objective comment on new developments.

Try it

Use the Elektor printed circuit board service for immediate delivery of high quality epoxy glass boards for all major projects.

In Elektor 2

\dagger	Electronic drum kit	\dagger
Modulation systems - AM to		
\dagger	Touch sensitive switches	
	CPM	

[^2]
(1) naim audio MANUFACTURERS OFAUDIO EQUIPMENT

have moved.

You can now find our factory and showroum at... II Salt Lane, Salisbury, Wilts, SPIIDT The telephone number nemains the same...

$$
\text { SALISBURY } 3746
$$

WW- 020 FOR FURTHER DETAILS

ANALOGUE \& HYBRID COMPUTERS
 \section*{C60 FEATURES:}

Eight low drift. high gain. IC operational amplifiers. 1% accuracy. Automatic function selection and meter switching. A four quadrant variable multiplier. Individual pot-set facilities. built-in stabilised
power supplies plus all of the features expected in our precision machines. Price $\mathbf{£ 4 7 5}$ complete with patching leads and instruction book.
We manufacture a wide range of analogue and hybrid computing equipment and can produce special machines built to your own specification. You will be pleasantly surprised at the cost of a computer built to your own requirements.
phone of writ for oetalls of our analogue or hybrio apparatus
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
manufacturers of precision electronic instruments \& computeris 28 Athenaeum Road, Whetstone, London N20. Tel. 01-445 7683

Otari DP4050

Ideal for 1 cassette copy or 10,000

From Japan's biggest manufacturer of Tape Duplication equipment, the DP4050 reel to cassette copier.

Foolproof operation for non-skilled personnel.

Eight times copy speed.
Automatic cycle through Record-Rewind-Stop.
Absolute consistency in manufacture through large volume production.

Modular construction.
Servo-controlled direct capstan drive.

WW-101 FOR FURTHER DETAILS

[^3]
THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING (6 Position)
 ('WW' JUNE '73)

Exclusive Designer Approved Kits

What are the important features to look for in an FM tuner kit ? Naturally it must have an attractive appearance when built, but it must also embody
the latest and best in circuit design such as:-
MDSFET front end for excellent cross modulation pertormance and fow nolse
3 GANG tuning ror high selectivity.
VARIGAP tuntor do lon distortion.
INTEGRATED cIrcult IF amplifiers for reilablity and excellent IImiting/AM relection.
PHASELDCKED Stereo decoder with Stereo mute, see below
LED fine tuning indlcators.
LED fine tuning ind cators.
IC STABILISED and S/C protected power supply.
CABINET double veneered against warp.
The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.

Typ. Speen: 20 dB quieting 0.75 uV . Image rejection - 70 dB .I.F. Rejection - 85 dB
Basic tuner module prices start as low as $\mathbf{£ 1 2 . 3 1 \text { , with complete kits starting a }}$ $£ 26.95$ (mono) + P.P. 65p. and of course all components are available separately. Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which details all of the many options and special low prices for complete kits. All our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level)! Supplied complete with Red LED.
Price $£ 7.02$ when bought with a complete $\mathrm{N}-\mathrm{J}$ tuner kit or $\mathbf{£ 8 . 2 9}$ if bought separately (P.P. 21p.)
PLEASE NOTE. Existing tuners are'readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $£ 30.78$ plus P.P. 65 p including Teak Sleeve.

NEW LOW COST STEREO TUNER Available as basic or complete kits

Basic stereo tuner $£ 15$ post free Basic mono tuner $£ 12$ post free. 6 position push button units with integral pots $\mathbb{E 2} .92$.
TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for 30 dB S/N Image rejection 40dB IF rejection 65 dB

VAT at 8% is included in all prices

No alignment required. Mullard LP1186 front end module used with Ceramic IF and C amplifier. Push button tuning (6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to $\mathrm{N}-\mathrm{J}$ Tuner.)

PRICE Complete stereo kit $£ \mathbf{2 8 . 4 2}$
Complete mono kit $£ \mathbf{£ 2 4 . 1 9}$ P. \& P. 65p

Phone Swadlincote (0283 87) 5432 Telex 377106

ww-079 FOR FURTHER DETAILS

We enjoy solving other peoples' problems!

Jasmin take a slightly different approach to their customers and they are proud of the rapport they attain with them. Research and development staff are always available to offer advice on technical issues. This in turn means that Jasmin are able to offer a unique service if you have problems in the following spheres - Complex automatic text and evaluation apparatus. -Digitalized video and Ceefax/Oracle display equipment. - Mini computer orientated systems. - Specialist contract engineering.

ARISTOCRATS IN CONTROL
WW-144 FOR FURTHER DETAILS

HART ELECTRONICS

Audio Kit Specialists since 1961

BAILEY/BURROWS/QUILTER PRE AMP This is the tone control section of the bes pre-amp kit currently available. Consider the advantages:-* First quahty fibreglass printed circuits with roller tinned finish and all component locations printed on reverse ganged controls with matched tracks and shafts cut to length. *Weil engineered layout to total stability. *Special decoupling and earthing arrangements to eliminate hum loops *Controis. switches and input sockets mount directly on the boards to TOTALLY controls mount directly on the board-and so they do. by their shaft bushes! You still have to wire them upl!
*We incorporate the Quilter modification which is most important as it reduces distortion and increases the bass and treble control range
As can be seen from the photograph the tone control unit is very slim fonly $1 \frac{1}{2}$ " from
tront to back) and may therefore be used in many other applications than our metalwork which it is designed to fit. METALWORK AND WOODEN
please send for latest information
F.M. TUNER This latest addition to our range is desioned to offer the post possible performance allied to the ease of operationgiven by push button varicap tuning. We have taken great care to look after the constructors point of view and there are no coits to wind. no RF circuits to wire and no alignment is required. in fact the whole unit can be easily completed and working in an evening as there are only 3 transistors, one $1 C$
and two ready built and aligned modules comprising the active components. We have abandoned the concept of having a tuner as large as the amplifier and this new unit has a frontal size of oniy $1 \frac{1}{2}$ in. $x 4$ in. It can be mounted on the side of our Bailey amplifier metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in. Cost of tuner chassis (no case) is $£ 22$ for mono. $£ 25.45$ for stereo.
An extended wooden case to fit tuner and amplifier will be offered shortly.
STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to convert any suitable quality deck into a very high quality Stereo Tape unit. Input and output levels suit Bailey pre amp. Total cost varies but around $\mathbf{£ 3 5}$ is all you need. We can offer tape heads as well if you want new ones.
FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in. $\times 4$ in. S.A.E REPRINTS Post fr
STUART TAPE RECORDER All 3 articles under one cover 30p. BAILEY/BURROWS/QUILTER Preamp circuits. layouts and as All prices exclude VAT.

0Phoenix Electronics (Portsmouth) Ltd
139-141 Havant Road.
Drayton, Portsmouth. Hants PO6 2AA
Full member of AFDEC-the industry's association of franchised electronic component distributors
Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free, too.

Please send your catalogue-free!
Name
Address \qquad

Eliminate TV receiver distortion with Celestion TELEFI

TELEFI

At last you can enjoy TV entertain-
ment with the added pleasure of true
$\mathrm{Hi}-\mathrm{Fi}$ sound. Telefi is a unique electronic invention which picks up VHF from the TV and relays this through your own $\mathrm{Hi}_{\mathrm{i}} \mathrm{Fi}$ equipment. Telefi ensures crisp, full-range, distortionfree reproduction of music and speech providing an improvement over ordinary TV sound which will amaze you. Telefi is safe and requires no permanent connection to the TV set. Telefi is indispensable to the TV viewer who requires Hi-Fi TV sound.

LOUDSPEAKERS

Celestion Loudspeakers are engineered to the highest standard and provide superlative sound reproduction. The cut-away illustration shows the high, mid and bass speakers used in the Ditton 44 Monitor, one of the most popular loudspeakers available to the discerning listener.
A range of models is available to suit your personal requirements, Celestion Hi-Fi Loudspeakers carry a five-year guarantee.

The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf speaker ever (Ditton 15) - but we set out not only to produce an immaculate loudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent $\mathrm{Hi}-\mathrm{Fi}$ system at reasonable outlay we recommend without hesitation the Hadleigh.

Celestion

Loudspeakers for the Perfectionist DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP.

AUDIO MEASURING INSTRUMENTS

LOW DISTORTION OSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time.

Specification:

Frequency range
Output voltage:
Output source resistance

Output attenuation:
Output attenuation accuracy: Sine wave distortion:

Square wave rise and fall time:
Monitor output meter:
Mains input:
Size:
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)
10 volts r.m.s. max.
150 ohms unbalanced
(optional 150 ohms unbalanced. plus $150 / 600$ ohms balanced/floating $0-100 \mathrm{~dB}$ leight, 10 dB steps plus $0-20 \mathrm{~dB}$ variable) 1\%
Less than $0.002 \% \quad 10 \mathrm{~Hz}-10 \mathrm{kHz}$ (typically below noise of measuring instrument)

40/60 n.secs.

Scaled 0-3. 0-10, and dBV.
$110 \mathrm{~V} / 130 \mathrm{~V} .220 \mathrm{~V} / 240 \mathrm{~V}$
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high x $8 \frac{3^{\prime \prime}}{4}(22 \mathrm{~cm})$ deep

Price: 150 ohms unbalanced output: $£ 250$
$150 / 600$ unbalanced/balanced floating output: $£ 300$

DISTORTION MEASURING SET, SERIES 3

(illustrated above)
A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibrated meter scale.
Specification:
Frequency range:
$5 \mathrm{~Hz}-50 \mathrm{kHz}$ (4 bands)
Distortion range (f.s.d.):
Input voltage measurement
range:
Input resistance:
High pass filter:
Power requirement:
Size:
Price:
$0.01 \%-100 \%$ (9 ranges)
50 mv -60V (3 ranges)
47 K ohms on ali ranges
$12 \mathrm{~dB} /$ octave below 500 Hz
$2 \times$ PP9, included.
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high $\times 8 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ $(22 \mathrm{~cm})$ deep
£200

Now available in reasonable delivery time
RADFORD LABORATORY INSTRUMENTS LIMITED

Bristol BS3 2HZ

 Telephone 0272662301To obtain further details of any -of the coded items mentioned in the Editorial or Advertise$=$ ment pages of this issue, please complete one or more of the -attached cards entering the -reference number(s). Y our enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad -require a stamp. These Service Cards are valid for six months from the date of publication. Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

BUSINESS REPLY SERVICE
 Licence No. 12045

WIRELESS WORLD,

 READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PSEnquiry Service for Professional Readers

WW	WW.	Ww
Ww	WW.	Ww.
Ww	ww	Ww
WW	Ww.	WW
Ww.	ww	WW
WW	Ww	Ww
WW	Ww	ww
WW.	WW	Ww
ww	Ww	WW
Ww	WW	WW
WW.	ww	ww
WW.	ww.	ww
WW.	Ww.	ww
ww.	Ww.	ww
WW.	ww	WW
WW.	ww. .	WW

Wireless World, February 1975
WIRELESS WORLD
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name .

Name of Company

Address .

Telephone Number.

PUBLISHERS USE ONLY		\because	A/E			

Position in Company
Nature of Company/Business .
No. of employees at this establishment.
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Postage will
be paid by
4. Licensee

Do not athx Postage Sumps if posted in
Gt. Britain, Channel Islands or N. Ireland

BUSINESS REPLY SERVICE Licence No. 12045
WIRELESS WORLD, READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional Readers

WIRELESS WORLD

Wireless World, February 1975

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name

Name of Company
Address

Telephone Number

PUBLISHERS USE ONLY		\cdots	A/E			

Position in Company
Nature of Company/Business
No. of employees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS DNLY

Postage will
be paid by Licensee

Do not affix Postage Stamps if posted in
Gt. Britain. Channel Islands or N. Ireland

BUSINESS REPLY SERVICE Licence No. 12045

 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PSEnquiry Service for Professional Readers

WIRELESS WORLD

Wireless World, February 1975

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name
Name of Company

Address

Telephone Number

PUBLISHERS
 USE ONLY

Position in Company
Nature of Company/Business .
No: of employees at this establishment
I wish to subscribe to Wireless world

OVERSEAS AGENTS

Argentine Alberto A. Mortz, Manzanares 2083, Buenos Aires
Australia BCN Agencies Ltd, 178 Collins Street, Melbourne 3000
Engineering Publications (A) (Pty) Ltd,
52 Pitt Street, Sydney, NSW 2000
Gordon \& Gotch (A'sia) Ltd, PO Box No 112, Camberwell E6, Melbourne
Austria Gerold \& Co., Graben 31, Vienna 1
Bélgium Office International de Librairie
SPRL, 30 Ave. Marnix, Brussels 5
W. H. Smith \& Son. 71-75 Blvd. Adolphe

Mx, B-1000 Brussels
Brazil Mr. H. Bincer, Caixa Postal 4316, Sao Paulo
Canada Franklin Square-Dawson Subscription Service Ltd, 6 Thorncliffe Park
Drive, Toronto 17, Ontario
Gordon \& Gotch (Canada) Ltd.
55 York Street, Toronto 1, Ontario
Ceylon SD Weerasuriya 9, Manning Place, Wellawatta, Colombo

Chile Artical Ltd, Casilla No. 9950,
Santiago
Central Africa International Magazines
Circulation, PO Box 2954, Lourenco Marques, Mozambique
Denmark Mr. Arnold Busck Boghandel Kjobmagergade 49, Copenhagen-K Jul Gjellerups Boghandel, Solvgade 87, DK-1307 Copenhagen-K
Finland Rautatiekirjakauppa Oy , Kampinkatu 2, Helsinki 10
France Dawson-France SA, BP, 40
Villebon-S/Yvette, F-91 Palaiseau Technique \& Documantation Librairies
Lavoisler, 11 Rue Lavoisler, Paris 8 e Office
Internationale de Documentation et
Librairie, 48 Gay-Lussac, Paris 5
Germany Buch \& Zeitschriften Union
MBH, Postfach 997, 2 Hamburg 1
Ex Libris Buchhandelsges, Ferdinand
Dirichs-Weg 26, 6 Frankfurt/Main
W.E. Saarbach GmbH, Postfach 101610 5 Cologne 1

Greace Librairie C. Cacoulides,
Panepistimlou 39, Athens 132
Hong Kong Yau Yuen Company, PO Box 1353, Hong Kong
India Mr. T. J. Pinto, PO Box No. 1141
GPO, Bombay-1
Italy Etas-Kompass SPA, 6 Via Mantegna 20154 Milan
Techna, Via Cesi 16, 40135 Bologna
Japan Maruzen Co. Ltd, PO Box 5050.
Tokyo International, 100-31 Japan
Mexico Crane Agency, Ave 16 de Sep-
tiembre Num 6-402, Pasaje Savoy Mexico
1 DF
Netherlands Dekker en Nordemann's,
Amsterdam
Ahrend NV. Amsterdam
Now Zealand Gordon \& Gotch (A'sia) Ltd, 102 Adelaide Road, Newtown, Wellington R. Hill \& Son Ltd., Cnr. Gillies Ave \& Eden Street, Newmarket, Auckland, SE1
Nigeria Daily Times of Nigeria Ltd;
PO Box 139, Lagos
Norway A/s Narvesens Litteraturtjeneste,
Postboks 6140-Etterstad, Osio 6
Portugal Livraria Ferin Lda, 70-74 Rua Nova Do Almada, Lisbon 2
South Africa American, \& Overseas
Publications Pty. Ltd, PO Box 3025, Port Elizabath
P. J. Kearney \& Sassin (Pty) Ltd, PO Box 1883, Johannesburg
Wim. Dawson \& Son (SA) (Pty) Ltd, Cape Town

Spain Distribuidora Internacional,
Apartado 9156, Madrid 9
Sweden Almqvist \& Wiksell Subscription Agency, PO Box 62, S-101 20, Stockholm Wennergren-Williams AB, Fack, S-104 25 Stockholm 30

Switzerland Kurt Staheli \& Co.
Bahnhofstrasse 70, 8001 Zurich
United States of America Illiffe-NTP Inc,

wireless world

Electronics, Television, Radio, Audio

FEBRUARY 1975 Vol 81 No 1470

Contents

51 Measuring what we perceive
52 Navigation by satellite by W. Blanchard
58 Project: Transformer phase reversal by T. Palmer
59 News of the month
BBC research in quadraphonics
Electronics industry surveyed
Miniature solid-state TV camera
61 Charge coupled devices- 3 by D. J. MacLennan
65 Letters to the editor
Quad broadcasting-an alternative view
Using l.e.ds as photocells
Series and parallel feedback
69 Solid-state digital clock by D. D. Clegg
73 About people
74 Electronic engineers' slide-rule by L. Nelson-Jones
75 Emergency power generator by J. M. Caunter
77 HF predictions
78 Space news
79 AF and r.f. speech clipping by D. A. Tong
82 Literature received
83 Figure of merit for f.m. tuner front ends by G. J. King
85 February meetings
86 World of amateur radio
87 Pseudo-random binary sequence generators by F. Butler
92 High capacity p.c.m. system
92 Sixty years ago
93 Circuit ideas
DC level clamp
Analogue gate with no offset
Converting an electronic organ to piano sound
Ramp generator with independent slope and amplitude control
95 Circards 20: Transistor pairs by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

97 New products
a74 APPOINTMENTS VACANT
a94 INDEX TO ADVERTISERS

[^4]

This month's front cover picture introduces the article on navigation by satellite in this issue and shows the polar orbits of the "Transit" satellites used in the system described.

IN OUR NEXT ISSUE

Simple f.m. tuner

Easy to build high quality design using commercial front end and new i.c. phase locked loop demodulator

Noise - confusion in more ways than one

Many special terms and ideas, seeming to have little in common, make it difficult to follow discussions about noise. This article looks at some of the basic ideas and prepares the ground for later articles

Using video tape recorders with domestic TV

The interface between video tape recorders and domestic receivers is examined, together with changes in receiver design to accommodate a reduced-quality video signal

ibpa

Service engineers, it's all for you in Telequipment's D61. In a robust, compact package you have all the tools of your trade. The D61 gives you single beam, dual-trace and $X-Y$ modes; automatic selection for TV line or frame displays, and for chopped or alternate modes.

The lightweight easily portable D61 provides a wide ranging performance at the minimal cost of $£ 125^{*}$ - a sum quickly recoverable in the time saved by the simplicity and reliability of its operation.

A minimum of controls makes it extremely simple to use and gives room for a large bright $8 \times 10 \mathrm{~cm}$ display. These features, plus the superb triggering qualities built into the instrument make the D61 ideal for the discerning test engineer

For full details contact

Telequipment < $>$

Tektronix U.K. Ltd.,
Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

wireless world

Measuring what we perceive

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8429

Technical Editor:
GEOFFREY SHORTER, B.Sc. Phone 01-261 8443

Assistant Editors:

BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043
Drawing Office:
LEONARD H. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597 JOHN GIBBON (Make-up and copy) Phone 01-261 8353
I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Administration Director: George H. Mansell Publisher: Gordon Henderson

An electronic reproduction system does not end at the acoustic or visual transducer but at the human brain, passing information via the human sense organs. Considering this, it's surprising how little work has been done on the psychology of perception in relation to electronic systems. The most familiar psychometric tests are of course the subjective assessment of sound quality from loudspeakers and of picture quality from television displays. With loudspeakers the commonest method is to make comparisons between two speakers at a time and from these derive an order of rank of the speakers under test. With television systems graded scales are often used, giving either grades of picture quality from "excellent" to "bad" or grades of picture impairment from "imperceptible" to "unusable". The trouble is that there are so many methods in use-for example eight different scales for picture assessment. It's unlikely that we shall make any important progress in the psychometry of electronic systems until international standardization of techniques is achieved.

The greatest prize to be won by improved methods of subjective assessment is the correlation of the subjective evaluations with objective data obtained from measurements. The aim, of course, is to be able to measure quality-hitherto a human experience -by instruments. With television systems this is not too difficult because picture quality can be largely defined by the magnitudes of various effects (e.g. noise) seen on the screen-which acts as a kind of oscilloscope-and these effects have direct electrical counterparts. With audio systems, as everyone knows, it is much more difficult, especially as subjective judgements are complicated by aesthetic responses of liking and disliking certain characteristics of the sound. Recently, however, there has been an interesting piece of research in Denmark* which claims to have derived two "psychological dimensions" from experimental data obtained through listening tests on loudspeakers. These "dimensions" cannot be explained by the subjects but are nevertheless composed of groups of the 35 subjective qualities (e.g. "brilliant") used in the listening tests. Correlations are claimed to exist between the subjective judgements made under the two "dimensions" and the measured sound pressure, power and phase responses of the loudspeakers.

Standardization of psychometric tests is needed first of all in the test conditions (e.g. room lighting for television, room acoustics for audio). Secondly, it is needed in the method of selecting subjects (e.g. whether experts or laymen or both). Then of course there must be standardization of the qualities to be assessed and standard terms to describe them, translatable into different languages. We also need standardization of the grading of scales and of the numerical "scores" assigned to particular grades. Finally there should be standardization of the statistical methods used, for example, to determine the uncertainty of the subjective data and the dependence of this data on the subjects and on the "programme" material. Only when such stringent controls are applied will it be possible to establish relationships between the results of different workers and so achieve real progress.

[^5]
Ship position finding using hyperbolic system and Doppler shift provided by orbiting satellite u.h.f. transmitters

By W. Blanchard
Redifon Telecommunications Ltd

Abstract

The US Navy's navigation satellite system, using five '"Transit' satellites, has been in operation for some years. This article, after explaining the basic principles of the system, describes modern British ship-borne equipment for navigating by it and discusses accuracy and uses.

Many radio navigation systems have been proposed in the last 50 years; quite a few of them never got any further than the files of patent offices, while of those that were actually built only a small number gained recognition as useful adjuncts to the navigator's stock-in-trade. Just about all the possible combinations and permutations of land-based systems have been investigated at some time or another, or so it seems when one goes through the files, and the emergence of a radically different system is a very rare event.

Examination of systems in current use reveals that as range is extended or accuracy requirements increase the problems become severe, particularly where both these features are demanded simultaneously. Very high accuracy at very short ranges is possible; moderate accuracy at moderate ranges is relatively easy; rather poor accuracy at very long ranges is also possible; but to give very high accuracy at very long ranges is beyond the capabilities of existing land-based techniques. It is not difficult to see why this should be so. The earth is approximately spherical, and to achieve long ranges means that whatever radio frequency is used must be capable of following the curve of the earth's surface. Medium and low frequency ground-waves do this to some extent, but changes in ground conductivity have a perturbing effect that can ruin any pretentions to high accuracy, as well as making sure that the wave does not get very far anyway. Ionospherically-reflected skywaves also can follow the curve, sometimes without any great attenuation for many thousand of miles, but now the great variation in the reflecting medium itself from hour to hour is the agency that prohibits any serious attempt at good accuracy. The highest accuracies are obtained by the use of radio frequencies sufficiently high to operate in the space-wave mode, which by definition cannot follow the earth's curvature and consequently have a very limited range. So the would-be designer of a worldwide high-accuracy system faces fundamental physical limitations that, until the
advent of satellites, were insurmountable.
Satellites opened up new possibilities. Now it became possible to put u.h.f. transmitters out into space where they could "see" a large proportion of the earth's surface at one time, and the use of the virtually unperturbed space-wave from these transmitters allowed highly accurate measurements. It was not long before an experimental navigation satellite had been launched, and by 1964 the first complete system for marine navigation was in being.

Like so many other advances, the US Navy Navigation Satellite System (NNSS) did not happen as a result of an official committee being appointed to study the problem. Observation of the Doppler changes in the signals from the Russian Sputnik in 1957 ("Artificial satellites of the earth," Wireless World, December 1957, page 574) led to speculation that it should be possible to establish the position of the observer if the satellite orbit were already known, and preliminary experiments confirmed that this was indeed so. There were considerable practical problems in implementing the basic idea, one of them being the difficulty of designing an ultrastable 5 MHz frequency source for the satellite that would survive the launch and remain stable without human intervention for years afterwards. Naturally, if the satellite frequency was unstable, unpredictable apparent Doppler shifts would be measured by the receiver. The current satellites were designed as a result of lessons learnt in the earlier tests, and have proved to be very reliable. There are five of them, orbiting the earth at an altitude of about 600 miles. The satellites are in polar orbits, and the orbit planes are at angles of about 45° from each other.

One way of describing the principles of the NNSS system is by comparing it with the perhaps better-known hyperbolic radio systems, Loran, Omega, and Decca (see "Hyperbolic radio navigation systems" by F. S. Stringer, Wireless World, August 1969, page 353). In these the receiver establishes a difference of range between two transmitters by measuring the dif-
ference in time of reception of radio signals transmitted at precisely known intervals. It is usually assumed that the speed of radio wave propagation is known and therefore that time can be translated into distance (although this is not always a safe assumption in practice). The operational differences between these systems lie in the actual modes of transmission, the radiated frequencies, the format of the transmission, and the way in which the signals are detected and used in the receiver-the underlying principle always remaining the same. This fundamental principle also applies to satellite positioning systems. The earth-bound systems usually have little difficulty in locating their transmitters to a high degree of precision, but they have considerably more difficulty in translating time intervals into distances. Until comparatively recently it was impossible to know precisely, at a remote site, the exact time at which a transmitter emitted (say) a pulse, absolute time standards not being good enough. Direct range measurements could not be made, and a differential system requiring two transmitters was necessary. Because these two could only provide a single position line, the familiar triplet came into being to provide two position lines and hence a fix. Again, because difference of range was being measured the single position line was hyperbolic in form, and it was this that gave these systems their generic name. It should be noted that the familiar hyperbolae drawn on navigation charts are actually only the intersection of hyperboloids with the earth's surface, and if the receiver is not on the earth's surface the use of these hyperbolae can cause errors.

The same principles can be applied to satellite navigation by thinking of the satellite as a moving transmitter successively occupying the positions that the transmitters of a hyperbolic system might have used, as shown in Fig. 1. If the interval between the satellite's positions P_{1} and P_{2} is two minutes, then the "baseline" between P_{1} and P_{2} is about 960 km , and a measurement of range difference between these points
produces a hyperboloid exactly as for a ground system. The intersection of two or more hyperboloids will uniquely locate the receiver, not only on the earth's surface, but also in the vertical plane (although this last measurement is not particularly accurate). Obviously, considerably more than three satellite transmitter positions will be available and the resultant fix will be that much more accurate.

But some basic problems remain. How do we know where the satellite is every two minutes (or whatever interval we choose), and how do we measure these range changes?

Superficially, the determination of a satellite's orbit is not particularly difficult, at least to the degree of accuracy sufficient for pointing aerials, but when a fix accuracy measured in metres is required something rather better is necessary. In fact, four tracking stations in the USA are engaged solely on the job of continuously tracking all the five satellites, known as Transit satellites, in the system described here. The resultant orbital data is used to compute, for some 16 hours ahead, where each satellite will be every two minutes throughout this period-or rather to compute the orbital parameters that will enable these positions to be calculated. There would be a massive logistics próblem if this data had to be distributed to all potential users world-wide and renewed every few hours -in fact it would be an impossible task. So it is arranged that the satellites themselves broadcast the data. A ground station injects into them their orbital parameters, where they are retained in a store and broadcast as phase modulation of the transmitted carriers. Because of the bumps and bulges on the earth's surface, which cause the satellites to follow a somewhat wobbly path, there are two sets of numbers: a "fixed" set, describing the basic Keplerian average orbit for the next 16 -hour period, and a second "ephemeral" set which changes every two minutes and describes the variations from basic at each twominute interval (Fig. 2).

The only other thing necessary for satellite position determination is accurate timing. With the satellite travelling at some $7 \frac{1}{2} \mathrm{~km} / \mathrm{s}$, a fraction of a second error could throw the fix out by several kilometres. It is still not possible to ensure precise absolute time world-wide to the required accuracy, so the satellite provides its own timing standard. Every two minutes it transmits a series of 23 digital ones, followed by a short burst of 400 Hz audio modulation. The transition between these indicates an exact even minute of Greenwich Mean Time accurate to within $33 \mu \mathrm{~s}$, reducing the residual error from this source to the order of centimetres. This audio "beep" can be heard quite easily on the satellites' transmission and is an easy way of identifying the Transit satellites, as well as being a very accurate time check. The phase modulation is at a 50 bit/s rate, sounding rather like a subdued mains hum.

The only other measurement to be made is the difference of range. It might be possible to do this directly by using a pulsed

Fig. 1 Hyperbolae representing range differences measured in a ship between 'transmitters" at P_{1}, P_{2} and P_{2}, P_{3}, which are in fact successive positions of an orbiting satellite carrying a u.h.f. transmitter. Intersection of two (or more) hyperbolae locates the ship's receiver.
transmission but it would require the ground station mentioned above to transmit and would suffer the usual limitations of all such co-operative systems. If the ground station cannot transmit, the only course left open is to use the Doppler shift of the satellite's transmitted frequency. Since this is caused entirely by the motion of the satellite relative to the observer, integration over a fixed time period yields the necessary change of range measurement.

The requisites for this to work are that (a) the satellite's frequency does not drift appreciably over the measurement period, (b) the receiver's standard frequency reference does not either, and (c) the transmission path does not itself introduce any Doppler shift. Both (a) and (b) can be controlled to a sufficient degree

640232334		ephemeral orbital parameters	
200172760			
210052942			two-minute period
020072630			
030172035			
050342053	073911\%		
060331084 (
$44^{2} 2315120$			
\$36677410			
303444370			
\$00196710			
300034370 507462210	0745072		
327767320		orbital	
700000330		parameters	
300003040			
300301300			
. 301003180	0753553		
310000000			
301470000			
000000000			
000000000			
000000000			J
54i) 5< Jc (077405)			
20017 2900			
210052342			
02007 CS36			
030172633			
040272374			
050344053			Doppler
000351034	07)3727		count every
670331303			30 seconds
$4223151<0$			
330533410	*		
30Sti4070			

Fig. 2 Real-time printout of orbital parameters transmitted by a Transit satellite.
by careful design, but (c) cannot be controlled and is actually, for daylight satellite passes, the limiting factor on overall system accuracy. There are two causes of such unwanted shifts: an effect proportional to frequency caused by tropospheric bending, and an effect inversely proportional to frequency caused by the ionosphere. The tropospheric effect is unfortunately of the same character as the wanted Doppler shift, and cannot be separated from it, although a reasonable correction can be made by measuring local meteorological conditions and applying an empirical correction in the computing process. Fortunately, the effect is not very large and does not normally contribute more than a few tens of metres to the final fix error even without specific correction.
The ionospheric effect, which can cause much larger errors, is separable from the wanted shift provided that measurements on more than one frequency are available, and to this end the satellites transmit two frequencies. These two frequencies are controlled by the same reference oscillator and one is an exact multiple of the other $(8 / 3)$. The actual frequencies transmitted are 400 MHz offset by $32 \mathrm{kHz}(399.968$ MHz), and 150 MHz offset by 12 kHz $(149.988 \mathrm{MHz})$. (The offsets are to prevent operation near nulls on crossovers, which would reduce the accuracy of the final Doppler count.) Under extreme conditions, a possible error of some 90 metres can be corrected in this way.

It is interesting to note that the correction falls to zero for most of the night hours, and hence the system is actually more accurate at night than by daythe reverse of most other radio navigation systems. When the system is being used only for normal marine navigation it is quite usual for only the 400 MHz transmission to be utilized since, without highly accurate velocity sensors, the errors intro-

Fig. 3 Doppler shifts for observers at three different distances from the satellite's orbital path.
duced by unknown ships' motion will greatly outweigh ionospheric errors.

The actual Doppler shift to be expected on each of the two frequencies is not difficult to calculate for the extreme cases where the satellite is either directly approaching or receding from the observer. If the average orbital height is 600 miles (960 km) then the orbital velocity will be about $7.37 \mathrm{~km} / \mathrm{s}$, and since a frequency of 400 MHz is a wavelength of 0.75 metre, the Doppler shift comes out at 9827 Hz . At 150 MHz it will be 3685 Hz . If the observer were actually directly in the path of the satellite (equipped with a space suit,

Fig. 4 Integrated Doppler count: f_{T} is the satellite's transmitted frequency; f_{R} the received frequency, f_{G} the ship's reference frequency; and $N_{l, 2}$ etc. the Doppler count ($t=$ time).

Fig. 5 Basic structure of a Transit satellite.
no doubt!) this shift would stay constant at all times, the only change being a sudden one from $f+D$ to $f-D$ as it passed him, as shown in graph 1 of Fig. 3. If he is a little farther away from the orbital path, the change would not be quite as sudden (graph 2) and farther away still it would start taking on the character of an S-shaped curve (graph 3), until in the limiting case where he is so far away that there is no change of range at all, the curve would be a straight line. There is obviously direct correlation between change of range and the shape of this curve.

The transformation of these measurements into position is as follows:
The satellite transmits a stable frequency f_{1} which is received by the ship-borne navigator and designated f_{r}. This is compared to a stable local oscillator output frequency f_{g} to produce a frequency difference

$$
\Delta f=f_{g}-f_{r}
$$

$$
f_{r} \ldots
$$

\qquad
Fig. 4 indicates the relationship between the frequencies. Over any time interval the number of beat cycles of the frequency difference are counted and integration accomplished.

From Fig. 4, using the first two intervals:

$$
N_{1,2}=\int \begin{gathered}
u+\Delta t 2 \\
\left(f_{g}-f_{)}\right) \mathrm{d} t= \\
u+\Delta t l
\end{gathered}
$$

$$
\begin{equation*}
\left(f_{g}-f_{l}\right)\left(t_{2}-t_{1}\right)+f_{g}\left(t_{2}-t_{l}\right) \tag{2}
\end{equation*}
$$

On the assumption that $f_{t}=f_{r}$ then $N_{t, 2}$ is the Doppler count corresponding to the first and second time marks. Further, the time difference $\Delta t_{2}-\Delta t_{l}$ is related to the slant range between satellite and receiver at P_{1} and P_{2} :

$$
t_{2}-t_{l}=\frac{1}{c}\left(S_{2}-S_{l}\right)
$$

where $c=$ vacuum speed of e.m. waves
$S_{t}=$ slant range from ship to satellite at P_{I}
$S_{2}=$ slant range from ship to satellite at P_{2}
Substituting (3) into (2) and solving for the difference in distance from the user to satellite yields the effective baseline, i.e.

$$
\begin{gather*}
\Delta S_{l, 2}=S_{2}-S_{l}= \\
\frac{c}{f_{g}} N_{l, 2}-\left(1-\frac{f_{l}}{f_{g}}\right) c\left(t_{2}-t_{l}\right) \tag{4}
\end{gather*}
$$

Similarly

$$
\begin{gather*}
\Delta S_{2,3}=S_{3}-S_{2}= \\
\frac{c}{f_{g}} N_{2,3}-\left(1-\frac{f_{1}}{f_{g}}\right) c\left(t_{3}-t_{2}\right) \tag{5}
\end{gather*}
$$

Noting that $t_{i+l}-t_{i}$ where $i=1,2, \ldots \ldots . n$ multiplied by c is the distance travelled by light in the time interval, allows some simplifying assumptions to be made. Further, note that $f_{g}=f_{i}+\Delta f$ and Δf is very small compared with f_{i}; thus, to preserve computational accuracy, the above equations must be rearranged to avoid calculations of the form $\Delta f / f_{g}$. This is easily accomplished by using an additional point P_{4}. Manipulating a third equation which is similar to the two above yields
$-S_{1}+2 S_{2}-S_{3}=\frac{c}{f_{g}}\left(N_{l, 2}-N_{2,3}\right)$
$-S_{2}+2 S_{3}-S_{4}=\frac{c}{f_{g}}\left(N_{2,3}-N_{3,4}\right)$
where S_{i} are functions of the ship and satellite positions at each point i where $i=1,2$, \qquad 9. Hence two equations in two unknowns allow the determination of the ship's two unknown co-ordinates, latitude and longitude.

A usable maximum of nine two-minute data points is available during optimum satellite passes. However, many factorslow elevation, interference, etc.- can cause data to be missed or be invalid in this basic two-minute Doppler, least squares formulation. The situation can be improved by dividing the two-minute period into smaller data intervals, when temporary loss of data would only involve discarding one of the smaller data intervals instead of the whole two minutes. Thereby the number of data intervals is increased, and the inherent noise rejection properties of the least squares formulation permit a more accurate position computation, provided that the interval chosen is not too small. The optimum interval appears to be about 23-30 seconds, and when such an interval is chosen, it is known as the short Doppler formulation.

The "Transit" satellites

The five satellites, launched into nearly circular polar orbits by Scout rockets, orbit the earth at heights from 450 to 700 miles. The choice of orbit is determined by the need to maintain them in almost a circular path to minimise acceleration and deceleration characteristics of noncircular paths, and to negate the precession of orbital planes towards eventual overlap which might occur with non-polar orbits.

Each satellite contains a command receiver; a data decoder; switching logic and memory banks; readout control circuits, digital data to phase modulation encoder; stable 5 MHz oscillators; and $1 \frac{1}{2}-\mathrm{W} \quad 150$ and 400 MHz transmitters. They weigh about 150 pounds and measure $18 \mathrm{in} \times 12 \mathrm{in}$ excluding solar panels and a stabilisation boom. The last-mentioned is necessary to ensure that the satellite is always oriented with its aerials pointing at the earth, eliminating unwanted modulation effects and enabling the use of simple aerials for ships' receivers. It also allows the use of a directional aerial on the satellite itself which radiates a circularly-polarised signal with some concentration of power towards the edges of cover.
Primary power is provided by a set of nickel-cadmium cells, recharged by the solar panels, providing about 30 watts of power at launch, dropping to some 25 watts after five years. Mechanical design is relatively simple, with no moving parts other than a few relays which operate only very infrequently. There are no tape recorders, television cameras, or anything like that, and reliability has been very high, as is shown by the fact that three of the five satellites now in use have been operating uninterruptedly for over six years.

Electronically, they are quite sophisticated, containing some 35,000 magnetic store cores and 6,200 other electronic

Fig. 6 Phase modulation patterns for transmitting orbital data from satellite to ship in binary digital form. Patterns representing 1 and 0 digits are: 1 , the (a) pattern followed by (b) pattern; 0 , the (b) pattern followed by (a) pattern. These choices, avoiding (a) (a) and (b) (b), keep sidebands at a safe separation whatever bit sequences occur.

Fig. 7 Satellite navigation receiver (Redifon RSN-1) showing computer keyboard and printed circuit board.

(b)

components. Of the 46,000 permanent joints, 40,000 are welds, and only 6,000 are solder connections. Generally, except for certain telemetry functions that could be lost without destroying operational usefulness, redundant wiring and solder connections are used, and where plugs have to be used, complete redundancy is provided.

The injected orbital data is stored in a magnetic core memory and transmitted as phase modulation on both frequencies that are radiated, these frequencies being derived from the stable 5 MHz oscillator that provides the basic timing and frequency for the satellite. This phase modulation is symmetrical so as not to introduce offset errors in the Doppler measurement, typical waveforms being shown at Fig. 6. The memory, read out every two minutes, contains 156 words of 39 bits each, plus an additional 19 bits. There are 11 semi-fixed parameters describing the satellite's orbit, and a further eight words that are used to describe the corrections that must be made to these 11 parameters, as described earlier.
Receivers. At one time receivers for the system tended to be rather large and bulky, the practice being to include the receiver, computer, power supplies and controls within a standard 6 - ft 19 -in rack. This approach is now obsolete, the same

Fig. 8 Aerial used with receiver in Fig. 7.
facilities being obtainable within a much smaller space, as demonstrated by the Redifon equipment shown in Fig. 7. This requires only a single unit 19 in wide and 10 in high in addition to the aerial unit. The aerial itself sometimes surprises those who imagine that all satellite operations require aerials of the Goonhilly type, being only a small quarterwave whip and ground plane (Fig. 8). Installation is correspondingly easy.

A block diagram of the receiver is shown in Fig. 9. The antenna signal is fed to a 400 MHz filter with a bandwidth of 5 MHz which is used to reject spurious

Fig. 9 Simplified receiver block diagram.
and unwanted signals. Signal output from the filter is received and amplified by a 400 MHz amplifier with a gain of 30 dB , a bandwidth of 15 MHz , and 2.5 dB noise figure. The overall sensitivity of these sub modules is -135 dBm .

The i.f. section of the receiver is composed of two i.f. amplifiers. The inputs to the first, double balanced, i.f. amplifier/ mixer are: (a) the received signal $(400 \mathrm{MHz}$ $-32 \mathrm{kHz} \pm$ Doppler shift); (b) a 360 MHz reference signal, and (c) an a.g.c. signal with 70 dB range. The output of the module is therefore a signal of $40 \mathrm{MHz}-$ $32 \mathrm{kHz} \pm$ Doppler shift. The second i.f. stage has a gain of 65 dB and a 65 dB a.g.c. signal. The output of this stage is an i.f. signal at a frequency of $15 \mathrm{MHz} \pm$ Doppler shift. The crystal mixer contained within this module has a 1.5 kHz bandwidth. This is followed by a phase detector, the output of which is a signal representing the Doppler shift frequency, the input signal from the second i.f. stage being compared to a $15 \mathrm{MHz}-32 \mathrm{kHz}$ reference signal. The bandwidth of this stage is less than 3 MHz but is immaterial as the overall bandwidth is controlled by the crystal mixer. The phase modulated data transmitted from the satellite is now detected and phase quadrature signals generated. The phase and correlation outputs are transmitted to the "cosine loop" and phase lock loop amplifier, respectively.

The phase lock loop amplifier inputs are the correlation and phase signal outputs of the phase detector and a d.c. to 200 Hz reference signal. The primary purposes of this amplifier are to null the difference error of the phase detector input and provide the acquisition control signals.

This module is designed for either automatic or manual tuning.
The voltage controlled oscillator functions as a combination of a v.c.x.o. amplifier and an oscillator/multiplier
section. The bandwidth of the v.c.x.o. and amplifier is 20 Hz with a second order loop implemented.

The basic functions of the cosine loop, message sync counter, doublet and sync modules, are to take the delayed acquisition, fast acquisition and correlation output signals from the phase lock loop and phase detector and to generate the demodulated signal information as well as forming the timing (or synchronization) signal. The cosine loop contains a phase locked crystal oscillator and a digital phase detector. The basic phase output frequency is 101 Hz . The output of the doublet and sync module is the basic satellite orbital data signal at a 50 Hz bit rate.

The frequency standard for the satellite receiver and the external realtime clock is a 5 MHz crystal oscillator, featuring good short-term stability, low phase noise and ageing as low as 1×10^{-9} per day. It employs a 5 MHz , third overtone metal-enclosed crystal mounted in an oven.

The software is responsible for the formation of the satellite message word and Doppler count accumulation. Some of the salient interface features include computer control via a strobe and clear command and a "hold while data transferring" feature to eliminate the possibility of writing one bit over one being transferred.

The computing operations for the Redifon satellite navigators are provided by a Data General Nova computer, fitted with memories appropriate to the user's requirements. This is a general purpose computer with a 16 -bit word length and a 1.2 microsecond memory cycle time. It is organised around four accumulators, two of which can be used as index registers, providing efficiency and ease of programming. As part of its standard con-
figuration, it has a direct memory access data channel in which data passes to the memory without having to go through the central processing unit. With its console removed, the Nova is operated as an integral part of the satellite navigator, and is controlled by the operator via a small keyboard on the front panel of the main receiver unit (see Fig. 7). This eliminates any need for a teleprinter to be installed for the sole purpose of "talking" to the computer, and does not presuppose any expertise in computer operation on the part of the operator. The most-used functions are given separate keyslatitude, longitude, GMT, etc.-while the inclusion of numerical keys allows the use of auxiliary functions.

Operation. Due to the Doppler shift the received frequency can be anywhere within a 20 kHz band centred on the actual transmitted frequency, and with only a 1.5 kHz bandwidth provision has to be made for sweeping over the band of possible frequencies. This is done by applying a ramp signal to the voltage controlled oscillator, which is locked out when a transmission is detected. Lock-on is indicated both by a light and by the meter. Also incorporated in the receiver is a small loudspeaker to give aural indications. Once the signal is locked, the next step is to synchronise with the satellite message. Obviously, large errors could occur if the data stream were entered at the wrong point. This is done, as described earlier, by sensing an end-ofmessage signal. When this is achieved, a green lamp lights and the computer begins message acquisition. Every two minutes, the data stream is repeated, the number of repetitions actually received depending upon the length of time the satellite is above the horizon. At least three repetitions are required by the computer before
it will process the message, in order to provide a measure of redundancy in the face of possible noise bursts. Therefore, if part of one message is destroyed by noise it can be filled by a subsequent repetition, and even if lock is completely lost on the satellite the computer can still derive a fix provided either that lock is regained subsequently on the same satellite, or sufficient repetitions have already been received. The period of lost lock can be as long as four minutes.

The Doppler count itself is performed by the computer in 30 -second blocks (see Fig. 2). Older equipments used a full two-minute period, which meant that fewer counts were obtained in any one pass and that the final fix was more liable to degradation due to noise. This 30 -second count period has enabled a much higher proportion of satellite passes to be used than formerly.

Once the satellite signal is lost the computer suspends operations while the receiver searches for the signal in case the loss of lock has only been due to noise. After four minutes, if no signal reappears, the computer declares "end-ofpass" and starts to calculate the fix, although it has first to decide whether it has sufficient Doppler and orbital information. If not, it will not proceed further.

Initially, the programme uses the deadreckoned position already stored in the computer as a starting point to calculate a Doppler shift curve, using the orbital parameters received from the satellite. This is compared with the curve actually measured, and unless they coincide, a new curve is computed using a slightly different position. This goes on until the two curves do actually coincide within certain limits, and the last position is assumed to be the actual true position. This takes no more than a few seconds, and the final fix is displayed to an accuracy of onethousandth of a minute of arc (about 6 feet) of both latitude and longitude, together with the time of fix to one second. The fix can thus be plotted directly on to normal marine charts, without any need for special charts or conversion tables.

The part played by the operator in all this is quite small, since the receiver itself operates without intervention and the computer needs only a few initial settings when first switched on. The most important of these are approximate latitude, longitude, and GMT. None of these need be very accurate-latitude and longitude need be only within 3° (about 120 nautical miles at $50^{\circ} \mathrm{N}$)-and time within 15 minutes.

After this, there is no absolute need for operator intervention at all. The navigator equipment can be switched into the "auto" mode, wherein it will produce GMT, latitude and longitude, updated every 18 seconds. The first usable satellite pass after switch-on will produce an accurate fix which will re-set the navigator's estimate to precise position-provided the two are not widely different (Fig. 10). This feature is incorporated so that in cases where a large difference exists the navigator

SSO1
$+051,27.3457,-000,11.9570$
FREQ + 1724437
ITER 0003
RES. 000
11E: 11111111111111000000000000000 LLAT + 0000034 ULU.V - 000027ó

Fig. 10 Satellite fix message: top line, satellite fix; second line, offset frequency; third, number of iterations; fourth, highest residual; fifth, Doppler string; bottom line, difference between dead reckoning and satellite fixes in feet.
can make his own decision whether or not to accept the satellite fix. There are other reasons why the computer may not automatically update the dead reckoned position, since it is programmed to perform mathematical tests on its computation and, if not satisfied, it will present the calculated fix together with an indication why it was not used for updating. The reason may be excessive noisiness of the data, inability to make calculated and actual Doppler curves fit precisely, insufficient data, and so on. But the navigator can always make the final decision.

System accuracy. Somebody once said that accuracies are just a matter of statistics, and after all the arguments about whether error curves have a Gaussian, exponential, square-law, or what-have-you distribution, or whether r.m.s., c.e.p., mean or standard deviations should be quoted, there sometimes seems to be little point in quoting anything at all.
But, anyway, of the ultimate accuracy of satellite navigation, it can be said that when used as a survey tool, put into a fixed position, and averaged over a period of some days, the repeatability accuracy has been shown to be better than 5 metres. Naturally, a receiver on board a moving vessel is not going to get anywhere near this figure, and it is interesting to see how the error budget is built up.

One of the errors used to be a rather imperfect knowledge of the earth's gravitational field, leading to errors in prediction of satellite position, but this knowledge has now been refined a great deal-over 415 parameters are now recognised as important in this respectand this factor alone has led to a doubling of system accuracy over the last six years. Errors due to this do not now exceed 30 metres maximum for a single pass.

Another effect is refraction in the ionosphere and atmosphere, already mentioned. Tropospheric refraction is relatively unimportant, contributing only about 30 metres to the finai error under worstcase conditions, but ionospheric refraction is more important, contributing about 90 metres error if uncorrected.

The major source of error for a ship at sea is uncertainty of the ship's velocity, particularly when this is in a north-south direction, and we are talking here of velocity over the ground, not through the water. Where greater accuracy is necessary, velocity-over-ground inputs are usually obtained either from Doppler sonar, or
from hyperbolic radio systems such as Loran-C.

One other correction has to be made, for aerial height. Actually, this is aerial height above the spheroid being used for calculation, and not simply height above sea-level, but the difference can be read directly off simple maps.

Usually, static accuracies of about 150 metres from a single pass for a single frequency, and about 50 metres for twofrequency equipment can be expected. Differences between individual equipments are very small-less than 15 metres.

Where a vessel is under way the additional errors due to movement are more complex to evaluate, but where sophisticated velocity-over-ground sensors are not installed, and only the standard ship's log and gyrocompass are available, a degradation of accuracy to some 500 metres may be expected. When these sensors are available, the accuracy reverts almost back to the static figures.

Uses. The strength of satellite navigation lies in its ability to provide virtually world-wide fixes to a high degree of accuracy, and its weakness in the fact that these fixes are not continuously available. The Redifon satellite navigation receivers overcome this latter problem by carrying on dead-reckoning between fixes, so that a position is always available. Provided that accurate inputs of speed and heading are available to the computer the accuracy of dead reckoning can be very high, but it is always time-dependent. Therefore satellite navigation becomes of less and less use as the vehicle velocity gets higher, and aircraft, for instance, make virtually no use of the system at all.

But slower vehicles such as ships are making excellent use of "satnav" for normal navigation as well as for the very demanding purposes of seismic and geophysical survey work. There is a growing trend for ships to carry automatic navigation systems to lessen the workload of the relatively few skilled officers they now carry, and satnav is an important ingredient of all such systems. In the field of geophysical exploration, the integration of a satellite navigator with hyperbolic systems is now common practice, the satnav providing ambiguity resolution for the hyperbolics. Satnav is even being used to provide remote location of buoys, a "barebones" receiver on board the buoy recording the Doppler curve as the satellite goes over, and transmitting it in digital form back to shore via another satellite link or via an h.f. link, where a central processor turns it into position.

Surveyors are using it, particularly in remote areas, for the location of control points. A portable receiver is set up at the , point to be checked and records all satellite passes over perhaps two or three days. Later analysis results in a precise position that can be as good as 5 metres, referred to another known point. If a number of passes can be analysed, it is even possible to derive height above sea-level with a reasonable degree of accuracy.

Transformer phase reversal

An experimental demonstration for schools

by T. Palmer, B.A., Assoc. I.E.R.E.

Acton Technical College

After reading Cathode Ray's article*, I repeated some experiments I had performed on transformers at very low frequencies $(0.1 \mathrm{~Hz})$ using centre-zero meters. Ordinary transformers do not have enough inductance to show the desired effects at 0.1 Hz but a $45,000 \mathrm{H}$ coil sold by Unilab is satisfactory. It has two windings, A and B. Winding A has 20,000 turns and sits on one limb of a C-core. B has 17,000 turns and sits on the second limb. Coil A is used as the primary of a transformer.

The first step is to determine the sense of the windings. The C -core has a portion at the top, which I shall call the cap; it can be detached from the main body of the core. When this has been removed, and the transformer is placed in a horizontal position, we can use a compass needle to find that current entering the primary at P gives clockwise flux in the core; so does current entering the secondary at C. Since flux is the most important feature of a transformer, terminals P and C were regarded as analogous.

An advantage of using centre-zero meters is that we do not know how to connect them until we have thought about conventions. Here are mine: Primary voltage is positive when P is positive to Q. Secondary voltage is positive when C is positive to D.

Now we know how to connect the voltmeters in a consistent way: the positive terminal of the primary voltmeter, V_{I}, is connected to P; that of the secondary voltmeter, V_{2}, is connected to C, as shown in Fig. 2.

In later stages of the demonstration, we shall wish to connect centre-zero microammeters. Secondary voltage is positive when C is positive to D. Secondary current will be regarded as positive when current is flowing from C through the secondary load. We connect the positive terminal of the meter which measures secondary current, A_{2}, to C.

Conditions are not the same in the primary. The reason why current flows at all in the primary is that an alternating voltage is applied to it. We regard the applied voltage as the "prime mover" and connect the positive terminal of the primary current meter to P_{I} and the negative terminal to P.
*Cathode Ray, "Transformer phase reversal". Wireless World, June 1971.

Of course, no claim is made that these are the only suitable conventions; I think Cathode Ray would regret that they have been mentioned; but in demonstrations at 0.1 Hz they seem unavoidable. Perhaps this is an argument for not performing experiments at low frequencies; but, by now, I am hooked.

With voltmeters V_{1} and V_{2} connected as shown in Fig. 2, when an alternating voltage is applied to the primary, it is easy to see that V_{1} and V_{2} swing in phase. On the basis of our conventions, there is no phase reversal.
Primary current shown on A, lags voltage by about 90°.

It is found that when the transformer is horizontal, compass needles placed at the junction of the cap and the main body of the core have sufficient leakage flux surrounding them to reverse their directions as the primary current passes through zero. It was the main purpose of the original experiments to draw attention to the alternation of the flux, which seems to me to be the most important feature of

Fig. 1. Arrangement of Unilab transformer windings.

Fig. 2. Connection of meters to the transformer.
transformer action that should be understood by elementary students. After the alternation of the flux has been shown by the compass needles, the transformer should be put in a vertical position. The weight of the cap reduces the minute air-gap at the junction and reduces leakage flux. When the transformer was horizontal, the cap had to be supported by a book at the correct height.

We can now go on to show that as the resistance of a secondary load is reduced, the secondary current increases, and so does the primary current. It must be admitted that the resistance of the primary and secondary windings does not allow a very large increase of primary current; but it can be seen.

Having shown the effects on centrezero meters, with no electrical connection between primary and secondary, it seemed a pity not to show the waveforms for primary and secondary voltages on a double-beam oscilloscope. The Airmec display oscilloscope 252 , with a very slow time base, is suitable. Since terminals Q and D on the transformer are analogous, they were strapped together and connected to the earth terminal of the scope. The input terminal for one trace was connected to P; that for a second trace, to D. The centre-zero meters can remain in circuit and the meters and the oscilloscope tell the same story in their own ways.

Almost the same story. The scope shows that secondary e.m.f. leads primary voltage by an angle too small to be detected on the meters. It is no doubt due to the voltage drop across the resistance of the primary winding (about $4 \mathrm{k} \Omega$). The small phase difference does not seem large enough to worry elementary students who, initially, are not concerned with primary resistance.

The oscilloscope shows that to avoid distortion in the transformer, the peak value of the voltage applied to the primary should not exceed 4 V .

To appreciate the phase relationships on the centre-zero meters, it is convenient to have edgewise meters mounted one above another on a panel. We have a panel with four $50-0-50 \mu \mathrm{~A}$ meters. To use a meter as a voltmeter, a $220 \mathrm{k} \Omega$ resistor was connected in series. To measure primary current, a meter was shunted by a 47Ω resistor.

BBC demonstrate matrix system

Research Department work at the BBC into quadraphonic (four-speaker) surroundsound systems was made public at an "exposition of quadraphony" during December. Organised by the IEE electronics division, demonstrations were given in separate rooms by the four commercial surround-sound proponents as well as by the BBC. Concentrating initially on two transmission channels, the research department have studied the commercial matrix systems (SQ, QS, BMX), finding that they suffered from poor stereo or mono compatibility or both. This led to the development of a matrix system that is similar to the Cooper/Nippon Columbia BMX matrix but modified in the light of experiments on directionality of the hearing system. The BBC say the coding gives improved stereo compatibility over other systems.

- We hear from Nippon Columbia that the BMX matrix is to be altered slightly, reducing the phase difference between channels for a centre front signal and improving stereo compatibility.

EEA promotions for 1975

The Electronic Engineering Association in the continuance of its policy to support industry operations concerned with overseas markets, will again sponsor and co-ordinate participations with the support of the British Overseas Trade Board during 1975. EEA-sponsored projects for UK based electronics companies will be on a world-wide basis. On the American continent groups will be organised to show at IEEE INTERCON in New York in April; The National Association of Broadcasters event, Las Vegas in April; SEMICON V, San Mateo in May and the WESCON Show, San Francisco in September. In late October there will be a group in Toronto attending the International Electrical-Electronic Conference and Exposition in October.

Other group participations are scheduled to be held at the Japan Electronics Show and Conference, Osaka in October;
in the same month a group will show at the Australian International Radio Electrical and Electronics event being held in Sydney in August. Nearer home, EEA will sponsor groups to Moscow Communications Exhibition, the Montreux TV event; both shows being held in May. In September another UK contingent will exhibit at MICROWAVE ' 75 due to take place in Hamburg. Further information can be obtained from The Electronic Engineering Association, Leicester House, 8 Leicester Street, London WC2H 7BN.

Troposcatter equipment for PO

Equipment has been ordered for two new radio stations to be set up near Peterhead in Aberdeenshire and on South Shetland to provide reliable high-quality worldwide communication for oil production platforms operating out of sight of land. The stations ordered from Marconi Communication Systems by the Post Office are expected to come into operation during October. The contract covers erection of 12 large dish aerials-four of 12 m and two of 18 m diameter near Peterhead and two of 12 m and four of 18 m diameter on South Shetland as well as the transmitters and receivers, switchgear and control equipment for operating a quadruplediversity, space polarization system (see "Electronics in Oil" published in the January issue). The Frigg, Beryl, mid-pipeline and Piper platforms will act as "master" platforms in the North Sea network, providing communication for other platforms in their areas over microwave links.

The troposcatter links will operate in 1° beams between onshore aerials with a gain of 47 dB and offshore aerials with a

41 dB gain. At the distances to be bridged by the troposcatter links, the common volume or that part of the troposphere "visible" to the transmitting and receiving aerials, lies about 1 km above sea level. Attenuation of the signal is about 210 dB . Tropospheric turbulence varies almost continuously and the level of signal received is on average 130 dB below 1 W .

Miniature solid-state TV camera

A miniature solid-state television camera has been introduced which is the second in a planned series using charge-coupled device technology. The camera has a cylindrical body, three inches in diameter and just under two inches deep while the weight is 11 ounces. The usual, comparatively bulky Vidicon tube used in TV cameras has been replaced by a compact image-sensing device which contains 10,000 photosensors on a standard 24pin dual-in-line integrated circuit unit.

Power consumption of the camera is 1.5 watts and it responds to illumination levels as low as two lux and is suitable for low-light applications such as night security and surveillance. Other applications include remotely piloted vehicles, space systems, periscopes and process control. Low geometrical distortion of the c.c.d. system allows its use in scientific measurement, medical instrumentation and microscopy.

The camera has a spectral response extending almost into the infrared range. It has a 100 -line horizontal resolution and a bandwidth of 1 MHz . Although a five-inch TV monitor adapted to the 123 frames per second c.c.d. camera sweep-rate is supplied as standard equip-

Sound outside broadcast van during its test programme before shipment by Pye TVT to
Sierra Leone. The vehicle is equipped with an eight-channel mixer, two transcription units, two tape-recorders, u.h.f. outside broadcast link, radiotelephone and is fully air-conditioned.

ment, the camera may be interfaced with any conventional monitor by a simple adjustment of the sweep-rate.

Operation is up to distances of 100 feet from the monitor and an optional battery pack is available when complete portability is required. The new camera is designated type MV101 and supersedes the MV100 which was introduced about 18 months ago by the Fairchild Camera and Instrument Corporation. (The MC100 was described in News of the Month, October 1973.)

Monitoring monitors

The US Electronic Industries Association announces the availability of two new standards for television monitors. They are RS-375-A, "Electrical Performance Standards for Direct View Monochrome Closed Circuit Television Monitors 525/60 Interlaced 2: 1" and RS-412-A, "Electrical Performance Standards for Direct View High Resolution Monochrome Closed Circuit Television Monitors".

These new standards replace the earlier
versions, RS- 375 and RS-412, which were the first developed by any standards organization relating to monochrome closed-circuit television monitors. They outline significant parameters describing the operation of closed-circuit monitors and also the minimum levels of performance desirable to develop an acceptable display. The standards will promote interchangeability of products from different manufacturers, thereby eliminating confusion on the level of performance that can be expected from an appropriately specified device. They will also assist the purchaser in selecting and obtaining the proper product for a particular need.

Electronics industry surveyed

The eighth edition of the annual statistical survey of the electronics industry* has been published by the Electronics Economic Development Committee. This charts the industry's progress in 1973 revealing that total sales reached over $£ 2,600$ million, a 12 per cent increase over 1972. After a brief pause in 1971/1972

Operating the control panel during a run of what is believed to be the first Briiish all-solid-state precision 300 kV d.c. power supply developed by Wallis Electronics. The high voltage assembly contains the r.f. power source and, in the tank, the voltage multiplier and feedback resistor chain. The high voltage output is available via a screened polythene cable.

the industry's expansion resumed but at a slower rate than before. Nevertheless it is clear that the industry's output has more than doubled since 1968 .

The survey shows that the electronics industry's renewed growth was led by the components sector with an 18 per cent growth rate and the consumer goods sector with a 16 per cent rate.

While the industry re-established its pattern of growth in 1973, the home market underwent enormous expansion. The resulting trade deficit was $£ 268$ million, almost a four-fold deterioration over 1972. The largest deficits were in consumer goods ($£ 219$ million), active components ($£ 68$ million), and computers ($£ 52$ million). None of the sectors with positive trade balances improved their position although the instruments sector exported a slightly higher proportion of total sales.

* Available from Neddy Books, NEDO, Millbank Tower, Millbank, London SW 1P 4 QX , price $£ 1$.

New trade exhibition

The Board of the Association of Manufacturers of Domestic Electrical Appliances (AMDEA) and the Executive Council of the British Radio Equipment Manufacturers' Association (BREMA) have recently decided to sponsor a trade exhibition at the new National Exhibition Centre near Birmingham. The trade exhibition will open on Sunday May 23,1976.

It will be organized as a single event, with separate exhibits for domestic electrical and electronic goods in adjacent halls with free access between the two areas. The BREMA section of the show will also be opened to the public for four days at its conclusion.

AMDEA's and BREMA's intention is to create a national electrical and electronic consumer goods trade show, of interest to retailers throughout the United Kingdom and which will also be of international standing to provide a world showcase for British goods.

AES Convention 1975

The fiftieth convention of the Audio Engineering Society will take place at the Cunard International Hotel, Hammersmith, London W6, from Monday, March 3 to Friday, March 7, 1975. A comprehensive programme of technical papers on subjects connected with audio engineering and acoustics is being arranged. Anyone wishing to present a paper at the Convention should in the first instance submit an abstract of 200-250 words to: Dr J. M. Bowsher, Audio Engineering Society, Department of Physics, University of Surrey, Guildford, Surrey, England.

An exhibition of professional products will also be held at the Cunard International Hotel.

Charge-coupled devices

3-Signal processing

by D. J. MacLennan

University of Edinburgh

Previous articles in this series have dealt with the basic operation of the c.c.d. as an analogue shift register (Dec., 1974) and the techniques for c.c.d. fabrication (Jan., 1975). This article outlines some of the primary considerations in designing c.c.ds for signal processing, with some simple examples taken from the radar and communication fields. Comparisons with the alternatives to charge-coupled devices are made.

When charge is transferred from one capacitor or gate to the next, a small fraction of this charge is left behind under the previous gate. The result of this charge transfer inefficiency is a "smearing" or bandwidth reduction. This may be visualized by considering an impulse or a single "one" being applied to the input of the device. The output should ideally consist of one pulse. Due to the transfer not being complete, however, there will be trailing pulses which corrupt the output signal. The magnitude, and hence the degradation in the signal quality, is a function of the charge left behind at each transfer, or the transfer inefficiency. In simple mathematical terms ${ }^{1,2}$, if we assume a fraction of charge ϵ is left r. \cdots ind. then the fraction of charge transt is given by

$$
\alpha=1-\epsilon
$$

where α is known as the transfer efficiency, and ϵ the transfer inefficiency. Fig. 1, whicl shows the charge distribution within a sing-phase, six-element c.c.d., demon-
strates the time sequence of charge packets at the output as

$$
\alpha^{6}, 6 \epsilon \alpha^{6}, 21 \epsilon^{2} a^{6}, \ldots
$$

As demonstrated by Vanstone ${ }^{2}$ et al, this sequence is independent of the number of clock phases used, to a first approximation. The size of the trailing pulse relative to the required pulse is a function of both the inefficiency and the number of transfers.

Fig. 2 demonstrates the effect of inefficiency on both impulse and frequency response of a device. As can be seen, for $n \epsilon<1$, the pulse immediately after the required signal is the largest residual, and its magnitude relative to the required signal is $n \epsilon$. The $n \epsilon$ product may thus be used as a criterion for device performance.

As an example, consider a device with $n \epsilon=0.1$ used in a pulsed radar system. At the output there will be an echo of any return at a level of 20 dB below the required signal, making it impossible to distinguish any target smaller than this within that range bin. For an application where pure analogue delay is required, the actual
bandwidth of the device is not only limited to half the sampling frequency by the Nyquist sampling criterion, but also by a factor depending on the $n \epsilon$ product, Fig. 2(b). It is thus obvious that an appropriate $n \epsilon$ product must be specified for

Clock phase		1	1	1	1	1	1
Transfer element	1	2	3	4	5	6	Output
Oiscrete time	1						
	ϵ	a					
	ϵ^{2}	$2 \in a$	a^{2}				
	ϵ^{3}	$3 \epsilon^{2} a$	$3 \epsilon a^{2}$	α^{3}			
	ϵ^{4}	$4 \varepsilon^{3} a$	$6 \epsilon^{2} a^{2}$	$4 \in \alpha^{3}$	a^{4}		
	ϵ^{5}	$5 \epsilon^{4} a$	$10 \epsilon^{3} a^{2}$	$10 \epsilon^{2} a^{3}$	$5 \in \alpha^{4}$	a^{5}	
	ϵ^{6}	$6 \epsilon^{5} \alpha$	$15 \epsilon^{4} a^{2}$	$20 \epsilon^{3} a^{3}$	$15 \epsilon^{2} a^{4}$	$6 \epsilon a^{5}$	a^{8}
	ϵ^{7}	$7 \epsilon^{8} a$	$21 \epsilon^{5} a^{2}$	$35 \varepsilon^{4} a^{3}$	$35 \epsilon^{3} a^{4}$	$21 \varepsilon^{2} a^{5}$	$6 \epsilon a^{6}$
	ϵ^{8}	$8 \epsilon^{7} a$	$28 \epsilon^{8} a^{2}$	$56 \epsilon^{5} a^{3} 7$	$70 \epsilon^{4} a^{4}$	$56 \epsilon^{3} a^{5}$	$21 \epsilon^{2} a^{8}$

Fig. 1. Charge distribution within a sixelement, single-phase c.c.d. when a single packet of charge is clocked from input to output.

Fig. 2. Impulse response of a c.c.d. analogue delay line with varying nє product (a). Frequency response modification for a c.c.d. analogue delay line with varying ne product (b).
any given system application.
Transfer inefficiencies of the order of 10^{-5} have been obtained at frequencies of MHz and 10^{-4} at 125 MHz . It should thus be possible to fabricate linear (meaning serial) devices with up to several thousand storage elements, which operate at several tens of MHz .

In addition to the incomplete transfer of charge, a small amount of charge is lost at each transfer due to recombination.

Device input

Several methods exist for putting charge into the c.c.d., each having its own advantages and disadvantages. All commonlyused techniques consist of a diode as a source of minority carriers (signal charge) and some form of gate structure, as in the m.o.s. transistor, to control the amount of charge, or the instant at which charge enters the c.c.d. register. A typical input structure for the linear injection of charge into a c.c.d. is shown in Fig. 3^{3}. Operation of this input structure is as follows.
The input signal, $V_{i g}$, is applied to the input gate, When the first transfer electrode, ϕ_{I}, is pulsed on the input diode is held at a voltage, $V_{i d}$, which saturates the potential well under the first transfer electrode. The input diode voltage is then modified to empty the well. When the surface potential under the first electrode is equal to the surface potential below the input gate, no more charge will leave the well, thus setting the surface potential (and hence signal charge) under the transfer electrode to the potential under the input gate.

Signal detection

There are many methods for converting the signal charge stored in the c.c.d. to an

Fig. 3. Technique for the linear injection of charge into a c.c.d.
electrical signal. As for the input structure case, each technique has its own particular advantages and disadvantages. In this article it is intended to concentrate on three particular circuits. The first is in common use as an output circuit in the simple analogue delay type of applications. The second is for use in situations where multiple outputs with fixed weighting coefficients are required from the device, as in matched filtering applications. The third is similar to the previous method, but in this case the weighting coefficients are electrically programmable.

Floating diffusion reset. In this detection method ${ }^{4}$, a diode diffusion is reversebiased by being charged to some appropriate potential, $V_{g g}$, through an m.o.s. transistor, Fig. 4.

Assuming negligible leakage current, the diode will remain at this potential when the charging transistor is switched off. If a charge signal is now clocked into the diffusion, at the end of the ϕ_{3} pulse, the potential on the diode and sensing transistor will change due to the new charge distribution. This change may then be amplified by the sensing transistor. A reset pulse is then applied to the charging transistor prior to the arrival of the succeeding charge packet.

Split gate tapping. This technique for sensing the signal charge being clocked along a shift register is attributable to Buss 5 et al. When charge is clocked under one of the split electrodes (Fig. 5), the current in each of the clock lines supplying this electrode is measured, i.e. I^{+}and I^{-}; output is proportional to the difference between the two. The magnitudes

Fig. 4. Floating diffusion reset method of converting the charge present in a c.c.d. to an electrical signal.
of the currents are directly proportional to the quantity of signal charge present; the voltage on the gate is maintained constant and thus current must be supplied from the clock source to maintain charge equilibrium. The difference between the currents, for a given quantity of charge, is determined by the position of the split in the electrode. The smaller area "sees" a lesser portion of the signal than the larger area and as a result requires less current to maintain charge equilibrium.

A means has therefore been realized for not only sensing the signal charge present in the device but also for multiplying this signal by some fixed weighting coefficient. The usefulness of this technique is discussed later. One of the limitations is that the weighting coefficients cannot be modified subsequent to device fabrication. However, in situations where many identical filters are to be realized with fixed responses, this type of device is likely to be extremely useful.

Biased floating gate. This technique is basically similar in operation to the first technique, except that instead of charging a diffusion, a gate electrode is charged to an appropriate d.c. level, $V_{g g}$ (Fig. 6).

When the preceding clock electrode, ϕ_{1}, switches off, signal charge is injected into the depletion; well below the charged gate. The resultant redistribution of charge in the capacitive network results in a potential variation on the charged gate which may be sensed and amplified by an m.o.s. transistor. When the next clock electrode, ϕ_{3}, is turned on, the gate potential reverts to its original potential. It is thus not necessary to reset the gate at every clock period. The signal charge is not destroyed or degraded, allowing other outputs to be taken at tapping points further along the register.

The moving target indicator

In many systems, it is required to monitor targets which are moving relative to the transmitter but may be surrounded by stationary objects. For this type of system it is necessary to eliminate the stationary clutter from the observer's display. To perform this a measurement of the phase changes due to Doppler shift in the frequency of the return signal in succeeding radar returns is required. It is therefore necessary to store one radar return, compare this with the succeeding return and subtract the two signals. Alternatively, in the frequency domain, it is necessary to build a notch filter which rejects frequencies of zero and multiples of the radar pulse repetition frequency. Both these methods of visualizing the problem are in fact identical and may be implemented as shown in Fig. ${ }^{7}$. Fig. 8 shows the performance of such a filter both in the time and frequency domain. The filter used was more complex than the simple schematic of Fig. 7-to obtain improved cancellation of clutter, steeper sides were required on the notch filter and this was achieved using three c.c.d. shift registers as delay elements in a three-pole Chebychev filter. The filled-in

Fig. 5. Split-gate tapping technique for the fabrication of fixed weighting coefficient transversal filters.

Fig. 6. Biased-gate tapping technique for the fabrication of transversal filters with electronically-variable weighting coefficients.

may be taken at each bit without degrading the signal being clocked along the device, and connect each of the outputs as shown in Fig. 9, the response of this device to a charge impulse, will be the sequence of pulses

$$
h_{1}, h_{2}, h_{3}, h_{4}, \ldots h_{n} .
$$

This device is more commonly known as a transversal filter and by controlling the weighting coefficients at each tapping point, it is possible to fabricate a virtually infinite number of different filters. Unfortunately, the impulse responses to many desirable filters are of infinite duration and therefore have to be truncated in such a device-only a finite number of coefficients are available-resulting in

Fig. 7. Schematic diagram for the implementation of a m.t.i. filter.

Fig. 8. Swept frequency response (i) and simulated clutter cancellation (ii) of a moving target indicator using c.c.ds. (Lower trace: filter input; upper trace: filter output.)
a non-ideal frequency response for the filter. In many cases, it is possible at the design stage to determine the impulse response required of any particular filter and ascertain the number of weighting coefficients necessary to specify the frequency response to any desired accuracy. Techniques are also available whereby the end weighting coefficients may be reduced to an insignificant level by speeding up the decay time of the impulse response.

This is not the only type of frequency filtering structure that may be realised using c.c.ds. The moving target indicator is an example of a recursive filter. In these types of filters the poles and zeros in the frequency domain response are determined by the weighting coefficients applied to the feedback loops used. In many situations, the loop feedback coefficients are critical to filter performance, leading to a requirement for extremely stable gain in the loop. Applications of c.c.ds in recursive filtering applications would at present appear to be limited and their use as transversal filters much more promising. The primary advantages in using a recursive filter rather than a transversal filter are that an infinite impulse response is achievable, because of the feedback, and a smaller number of delay elements is required using this technique. These advantages are at present offset by the need for highly stable onchip amplification in a technology compatible with c.c.ds.

intermediate frequencies. The linear fre-quency-modulated matched filter has in particular been extremely successful in radar applications and a television i.f. filter has also been fabricated. However, at low frequencies and large time delays, acoustic surface-wave filters become impractical. Hence, at base-band, the c.c.d. has to compete with digital matched filters in cost, performance, power, weight, reliability and flexibility.
A comparison of the advantages relevant to the adoption of either c.c.d. or digital filters in system implementations is given in the following table:

Matched filtering

In matched filtering, a special case of transversal filtering, the signal is coded to increase its bandwidth by some predetermined amount prior to transmission. On reception the signal is decoded in a transversal filter which is matched to the coded waveform. As an example of matched filtering, consider the transmitted sequence as being

$$
1,1,1,1,1,-1-1,1,1,-1,1,-1,1
$$

This sequence is commonly known as the 13-bit Barker code.

The impulse response of the filter which is matched to this waveform is the time reverse of the transmitted sequence, i.e. the weighting coefficients h_{1} to h_{13} are given by the sequence

$$
1,-1,1,-1,1,1,-1,-1,1,1,1,1,1 .
$$

Fig. 10 shows the effect of passing the received waveform into this filter. The output sequence is the autocorrelation function of a 13-bit Barker coded sequence

$$
1,0,1,0, \ldots 0,13,0,1, \ldots 0,1
$$

One of the most important aspects of matched filtering is the improvement in signal-to-noise ratio obtained over conventional processing techniques.
Consider the filter described above with an input signal which includes white additive noise. The output noise power is the product of the number of taps (13) and the input noise power; the noise at each tap is summed. The output signal power however is proportional to output signal voltage squared. Hence the output signal to noise ratio has been improved by a factor of 13. Typical waveforms for this situation are shown in Fig. 11, where the received Barker sequence is totally immersed in noise. The output correlation peak from the c.c.d. matched filter can clearly be identified in the upper trace.

Charge-coupled or digital filters?

Some potential uses of charge-coupled devices have been discussed briefly in simplified terms. The fine detail of the design processes have been omitted in the interest of clarity and brevity.
It is essential at this stage to discuss the relevent advantages and disadvantages of the c.c.d. with respect to other techniques for performing such basic filtering functions as described in this article-the
simple lumped element filter, for example, along with some more exotic devices such as acoustic surface wave and digital filters.

The simple lumped filter is not discussed further due to its limitations with respect to critical alignment and bulk. Acoustic surface-wave devices have in the past few years created a visible impact on the radar and communications field at radio and

Charge-coupled versus digital devices

CCD	Digital
Low cost	Flexible
Small size	Longer time delay possible
Low power	Proven technology
High reliability	

Standard m.o.s.
production

Fig. 10. Schematic of the operation of a matched filter when coded with a 13-bit Barker sequence. At clock cycle 1, the received sequence has just entered the matched filter. As the sequence progresses through the receiver filter, the auto-correlation function is output.

Fig. 11. Correlation of a 13-bit Barker sequence immersed in white additive noise. (Lower trace: input to c.c.d. matched filter; upper trace: filter output.)

Charge-coupled device performance	
Sampling rate	$\approx 10 \mathrm{MHz}$
	$>100 \mathrm{MHz}$ with some
	techniques
	up to 1 s
Time delay	
No. of storage elements	$>10^{3}$ linear
	$>10^{5}$ in array form
Transfer inefficiency	$<10^{-4}$ at 10 MHz
Signal/noise ratio	$>70 \mathrm{~dB}$ for a 256 -bit
Harmonic distortion	$<-40 \mathrm{linear}$ device
Time-bandwidth product	$>10^{3}$

The potentially low cost of c.c.ds emphasized in this table is attributed to the inherently high level of integration obtainable. Elimination of analogue-to-digital and digital-to-analogue converters is one of the more obvious cost benefits along with a potential reduction in the number of packages required to implement a system.

Performance parameters for c.c.ds given above are typical of their present capabilities and the c.c.d. designer should be prepared to meet specifications within these capabilities.

The c.c.d. is an extremely high packing density, low power consumption, analogue shift register which is rapidly becoming accepted as an extremely useful device in many signal processing applications. In reasonable quantities, it is expected to be extremely cost effective. It can be considered as a means for realizing systems in other implementations. Commercial application potential in the signal processing field alone is enormous. Ability to produce lower cost, higher quality filters-both recursive and non-recursive-is of prime importance in the manufacture of modems. The c.c.d. can also potentially perform functions in the field of sonar similar to those performed by acoustic surface-wave devices in radar systems.

References

1. Joyce, W. B. and Bertram, W. J., Bell Syst. Tech. J., vol. 50, 1971, p. 1741.
2. Vanstone, G. F., Roberts, J. B. G., and Long, A. E., Solid-State Electronics, vol. 17, 1974, p. 889.
3. Tompsett, M. F. CCD Applications Conference, San Diego, 1973, p. 147.
4. Kosonocky, W. F. and Carnes, J. E. IEEE J. of Solid-State Circuits, vol. SC-6, 1971, p. 314.
5. Buss, D. D., Collins, D. R., Bailey, W. H. and Reeves, C. R. IEEE J. of Solid-State Circuits, vol. SC-8, 1973.
6. MacLennan, D. J., Mavor, J., Vanstone, G. F. and Windle, D. J. Elect. Lett., vol. 9, 1973, p. 610.
7. Bounden, J. E. and Tomlinson, M. J. Elect. Lett., vol. 10, 1974, p. 89.

With reference to the article by Messrs Carey and Sager on quadraphonic broadcasting (Nov. 1974 issue) I would like to discuss one or two of the points that were raised.

To say that the problem of quadraphonic broadcasting is where to put the third and fourth channels is to virtually ignore the many suggestions for matrixed quadraphony systems (4-2-4) that only require two broadcast channels. In contrast broadcasters must give 4-2-4 systems very careful consideration as they might be able to provide a relatively inexpensive and more immediate answer to the problem. Not until it has been shown that all 4-2-4 systems are clearly incapable of providing both satisfactory quadraphony and compatible stereophonic and monophonic reception, can such systems be cast aside in favour of the more technically difficult and expensive 4-3-4 and 4-4-4 systems.

Why are the 4-3-4 and 4-4-4 systems more difficult and expensive? In the first instance if the transmission occupies the same r.f. channel bandwidth and uses the same transmitter power then the overall signal-to-noise ratio for the listener is likely to suffer. While in the "fringe area" there might be a relatively slight loss of signal-to-noise ratio for the monophonic listener, the loss could be significant for the stereo listener and, in many cases, quadraphonic reception might not be worthwhile. The exact figures will depend on the system being broadcast, the mode of operation of the receiver (mono, stereo or quad), and the relative depth of modulation associated with each component of the composite signal. In this matter Carey and Sager's estimates may not be too far out.

On the other hand in the present circumstances, quadraphonic listeners might also be at risk from adjacent channel interference. Messrs Carey and Sager state that 4-3-4 and 4-4-4 systems "do not inhibit the optimum use of bandwidth by other stations". I agree that the addition of the second 38 kHz channel or even
the 76 kHz channel may not very greatly increase the maximum bandwidth occupied by the transmitted signal. However, this is not the whole story. For mono and stereo listeners with conventional receivers there would be an increase in the sensitivity to co- and adjacent-channel interference similar in magnitude to the decrease in signal-to-noise ratio, and largely for the same reason, viz. the reduction in the modulation depth of the components of the signal to which their receivers respond, and which has to be made to accommodate the additional quadraphonic information.

The corresponding increases in sensitivity to interference for the quad listener are less easy to predict but it is estimated that, relative to stereo reception of the existing pilot-tone system, quadraphonic reception of 4-3-4 would require about 6 dB greater protection against co-channel and adjacentchannel interference at either 100 kHz or 200 kHz frequency spacing. With a $4-4-4$ system, the increase in the required protection ratio against the adjacent channel could well amount to about 15 dB . This particularly large penalty associated with the 4-4-4 system results not so much from the change in the transmitted signal spectrum as from the fact that the quadraphonic receiver is equipped with a 76 kHz subcarrier detector. This produces an audible output from interference components in the range $61-91 \mathrm{kHz}$ to which a conventional stereo receiver does not respond.

The other technical difficulty which was unfortunately overlooked in the article is the problem of compatibility between the suggested new broadcast format and existing v.h.f. stereo receivers: in particular there is the problem of crosstalk between the two 38 kHz subcarrier channels. In existing stereo receivers the phase accuracy of the regenerated 38 kHz subcarrier determines the accuracy of eventual decoding but it is not very critical. If for example the phase error is 20°, this would introduce crosstalk between the left and right stereo channels at only -30 dB , which is negligible in this context. If, however, the same receiver were used to receive stereo from a quadraphonic transmission using two quadrature 38 kHz channels, the crosstalk between these for a phase error of 20° would be -9 dB . The effect of this would depend on the design of the receiver. With an idealized square-waveswitching or synchronous-detector decoder the crosstalk would be substantially linear and the effect might be only a change in disposition of the audio images across the stereo sound stage; with many practical decoder circuits however the crosstalk could be appreciably distorted with rather more serious consequences.

With regard to cost, the susceptibility to noise and interference of the 4-3-4 and 4-4-4 systems implies that, with the present transmitter network, the stereo coverage of service areas could be prejudiced and, for quadraphony, may be appreciably less than that required. A
substantial increase in transmitter powers could avoid the degradation caused by random noise but it would not solve the interference problem within the UK and could give rise to interference problems internationally.

These, then, are some of the reasons why a broadcasting organization may not readily share Carey and Sager's enthusiasm for the immediate adoption of a three or four channel solution to the quadraphonic broadcasting problem. If, however, further studies show that a 4-2-4 system cannot provide a sufficiently good quadraphonic service, whilst maintaining the present stereo and mono standards, then it may well be necessary to think again.

The other aspect of the article by Carey and Sager dealt with the possibility of a three-dimensional surroundsound system, i.e. quad plus height. Whilst it appears to be true that four suitable microphones arranged in a tetrahedral cluster can pick up and record the three dimensions of the original sound field, it is very doubtful whether four loudspeakers are sufficient to provide the wanted subjective result.
D. J. Meares,

BBC Research Department,
Tadworth,
Surrey.

USE OF LEDs

AS PHOTO-CELLS

Light-emitting diodes made from gallium arsenide-phosphide or gallium phosphide have recently become available and are being made in very large numbers for sale at low prices. The question arises whether these devices can be used as photo-cells since they contain a semiconductor junction in an encapsulation designed to transmit visible light. It is not suggested that they are likely to perform better than properly designed cells; only that they may be more readily available to many readers.

Electrically the junctions have normal shaped diode characteristics but with forward conduction starting in the region of +2 volts, due to the wide energy-gap of the material, and reverse voltage limited to about -3 volts, since no special care is taken to prevent breakdown. The leakage current at this voltage, however, is extremely low provided the devices are kept dark. When light falls on them the leakage does indeed increase as expected, although the value must still be measured in nanoamps rather than milliamps.

The sensitivity varies considerably between different types of device, but every sample so far tested shows the effect to some extent. The diagram shows how two ordinary silicon transistors can be used as a simple Darlington pair to amplify the current and turn on a third transistor. Such an arrangement can be expected to switch tens of milliamps in the load with a threshold at about the normal indoor light level. The dark current of this sort of circuit is particularly low as the tran-

sistors lose gain at low currents, but. the frequency response is poor as the stored charge can only be removed by internal recombination. There is no problem, though, in devising faster amplifier circuits, particularly if d.c. response is not required, and the inherent speed of the 1.e.d. can be expected to be high.

The theory of energy levels tells us that the spectral response of the devices as photo-cells will be fairly broad and will lie on the high frequency (blue) side of the emission colour. If the normal emission process involves two or more quantum jumps in sequence, as I believe it does, then the absorbtion peak may be considerably more towards the blue than the emission. This leads to the idea that the major cause of the variations in the sensitivity between different types may perhaps be nothing more fundamental than the absorbtion characteristics of the dye which is put into the plastic lens to improve its appearance. There does seem to be some evidence that devices with paler plastic work better as photo-cells, and the manufacturers might perhaps consider this when selecting the mixture to be used in future designs.
K. C. Johnson,

Cheadle,
Cheshire.

KEYPAD LAYOUT:
 TELEPHONES AND CALCULATORS

Mr Harold Barnard (Letters, December issue) is not justified in taking the Post Office or industry to task for the keypad layout of telephones.

Confusion is not likely to result from the co-existence of two different layouts. The great majority of telephone users are not, and never likely to be, users of calculators in close proximity to a telephone. For those who are, the British Post Office foresaw a potential clash between the requirements for the two devices before either keypad layout had become standardized. In consequence, the Post Office sponsored a research project at the Medical Research Council's Applied Psychology Unit at Cambridge.
The results (available in 1966 and confirmed by a further study carried out independently by the same body in 1968) provided significant evidence in favour of the
present telephone keypad layout. They showed that although there was little to choose between one arrangement and another in respect of keying speed, there was a statistically significant advantage in keying accuracy from the version in present use-even when users had already been conditioned to some other layout (such as the calculator layout standardized by ISO in 1967).

A standard layout for telephone keypads throughout the world is clearly desirable because of the growing volume of international travel. The International Telegraph and Telephone Consultative Committee recommended the current layout (which was already in use in America and due for early introduction in Japan and Latin America) and the British Post Office observes this international agreement.
R. E. Abbiss,

Director, Public Relations,
Post Office,
London, W1.

OPTICALLY COUPLED VFO

I was most interested in A. K. Langford's article in the November issue, "Optically coupled v.f.o.". What a perfect way to isolate a v.f.o., and a fairly cheap one at that! I was, however, a little unhappy about the idea of using the 5082-4350 optical isolator at 5 MHz and above. There are two basic modes which the output transistor of the isolator can operate in: common collector, as used by Mr Langford, and common emitter. The former is only really suitable for low-frequency. operation, and the response of the isolator in this mode effectively drops to zero by 3 MHz , according to the spec. It is very likely that most devices will be comfortably within this spec., and will be usable at 5 MHz , but it is not good design practice to assume this.

The common emitter mode, on the other hand, gives a usable response in excess of 10 MHz with the same load resistor (470 ohms). So, I suggest the 470 -ohm pot. is transferred to the collector circuit, and the emitter grounded. Assuming the gain and bandwidth of the output amplifier is sufficient, I see no reason why the circuit should not be used up to 15 MHz reliably. Mr Langford does mention the common emitter mode, but in using the common collector mode, which offers no advantage in this circuit, he does not seem to have allowed for worst-case conditions.

Apart from that minor detail, I like it! Richard Sterry, G4BLT,
Reading,
Berks.

Mr Langford replies:

I appreciate Mr Sterry's concern over the configuration of the isolator output transistor that was used in my final design. There were two reasons for choosing the common collector mode. First, the output
using the "high frequency" common emitter configuration offers no advantage when working into the low impedance broadband amplifier, and at 5 MHz the output is actually less than that obtained using the "phototransistor" mode, with a crossover point at about 2 MHz . Secondly, the high output impedance at the collector made matching into the broadband amplifier difficult, and susceptible to stray pick-up unless the connection was very short. Using the low output impedance of the common collector configuration eliminated this problem; which is very important if good isolation is to be achieved without having to contend with a critical layout.

However, as mentioned in the article, with a tuned circuit in the collector of the optically coupled isolator the useful output can be extended well beyond 5.5 MHz .

FRONT PANEL
 LETTERING

For "one-off" jobs, the production of a nicely-lettered front panel is a considerable problem. One solution is the use of transparencies of the kind that are used on socalled overhead projectors in classrooms.

The transparency is made from a pencil drawing of the front panel lettering by passing this drawing and transparency film through a special heater. (One example is the 3 M "Thermofax" machine.) The transparency may then be sandwiched between a thin, clear Plexiglass sheet and the metal front panel of the equipment. The Plexiglass sheet is retained on the panel by the potentiometer and switch fixing nuts.

The advantages of the process, provided one has access to a suitable machine, are: the front panel layout may be done in pencil; the layout may be easily revised; and special symbols and lines may easily be incorporated.
P. Hiscocks,

Ryerson Polytechnical Institute,
Toronto,
Canada.

SUICIDE
 SOLDERING

Our company has been soldering m.o.s. transistors and i.cs with great success for some time now.

Mr Jack's letter in the November issue is of course rather worrying to us, as we too don't want to kill ourselves to protect our i.cs, and we would like to know more of the precise nature of the hazard.

We use the earthed terminal on our oscilloscope or power supply as a convenient point to discharge any static electricity. Is this dangerous, and is the hazard still present if the equipment is used in normal circumstances?

Also, during cold weather some of our operators seat themselves on an ordinary domestic convector heater, to centrally heat themselves while working at the
bench. Apart from any medical side effects, is this practice electrically dangerous?
D. M. Parkins,

Greenbank Electronics,
Bebington,
Cheshire.

ELECTRONIC MUSIC JOURNAL

Interest in electronic music has grown and because of my wide experience in the medium-both theoretical and practicalI am starting a new journal entitled Analog Sounds.

Wireless World has been a great stimulus to me in the development of my own creative work with the electronic medium. To help spread the word, I intend including with each issue of Analog Sounds a cumulative directory of relevant articles published in electronic magazines including yours. This directory will take the form of a subject index with abstracts. Analog Sounds is a quarterly journal, depending solely on readers for support.
Jacob Meyerowitz,
Editor, Analog Sounds,
New York, U.S.A.

VARIABLE FREQUENCY DIVISION

I must congratulate Mr Winn of Racal Communications for his excellent article on the RA1772 synthesized communications receiver (October 1974).

In his discussion of the limitations of synthesizers, Mr Winn says that the present "state of the art" of digital integrated circuits makes it impossible to use variable frequency division at frequencies above 50 MHz .

However, by using a two-modulus e.c.l. prescaler-say, the Plessey Semiconductors SP8645-in conjunction with t.t.l. programmable dividers, it is practical to directly synthesize from frequencies up to 500 MHz .

The basic two modulus prescaler ($\div 10 / 11$), is usually combined with other e.c.l. counters to generate ratios of $20 / 21$, $40 / 41$ or $80 / 81$-depending on the channel spacing required in the complete synthesizer. A typical scheme is shown below. The total division ratio shown is:

$$
N_{T . T}=P . N+A
$$

The only restriction is that A is less than N. If for any reason A must be greater than N, then a three-modulus counter, i.e. $\div 40 / 41 / 42$, can be used, thus halving the A count.
P. E. Battrick,

Plessey Semiconductors,
Swindon, Wilts:

Mr Winn replies:

It is agreed that recent developments have allowed an increase in the frequency at which variable division can take place, particularly by using the latest Plessey e.c.l. devices. As a small point, I did not state "impossible to use variable division above 50 MHz " but that we divide directly from 50 MHz and use a prescaler for higher output frequencies. It might still be preferable to do this since a hazard to be avoided in any digital-divider, phaselock loop system is phase jitter. We find that a synchronous divider is essential to minimise the resulting noise sidebands produced by the division process as is also the need to restrict the division ratio of the final output loop as far as practicable.

ELECTRICITY AND MAGNETISM

The articles by "Cathode Ray" concerning fundamentals of electricity and magnetism (September, October) reminded me of a principle, if indeed it be a principle, that I deduced from purely practical considerations as an engineering student.

The principle is, briefly, that when one is wholly immersed together with one's instruments in a magnetic field (such as Mr O in the article) it is not possible to determine one's velocity through the magnetic field, even if its strength be known, by measuring an e.m.f. generated by a flux cutting conductor.

I should be most interested to know if "Cathode Ray" or your readers believe this crypto relativistic principle to be true, novel, or obvious.

C. P. J. Meade,

London, S.W. 15.

"Cathode Ray" replies:

I am on record (in the September issue, p.348) as saying that observer O^{\prime}, moving in a magnetic field, finds also an electric field proportional to the magnetic flux density and his velocity. I discreetly refrained from explaining the means by

which he could find this. There is no doubt that he would be subject to an electric field caused by his motion through the magnetic field. Besides what the theory books say to this effect, there is a practical liquid flow meter which relies on precisely this principle. But the field is measured by a voltmeter that is not moving with the liquid. The observer O^{\prime}, moving along with the liquid, could measure his velocity through the magnetic field by reading this meter as he went past it. Because of the relative velocity between himself and the meter there would be a relativistic correction. Our comparison of the observations of O and O^{\prime} did indeed lead to the necessity for such a factor, β.

I cannot offhand think of any instruments that O^{\prime} could take with him which would disclose his velocity through the magnetic field. Connecting a voltmeter to the ends of his conductor would form a closed loop embracing a constant magnetic flux, so there would be no reading. Whether this case could be extended to a general proof of Mr Meade's theorem I cannot say. Intuitively I feel it is true; I have no information on whether it is novel; and the last question reminds me of the story of the professor who, after saying that a certain statement was obvious, stopped abruptly, retired to his room for deep thought, and an hour later emerged to announce triumphantly to the by now empty lecture room "Yes, gentlemen, it is obvious".

SERIES AND PARALLEL
 FEEDBACK

Some time ago a debate was going on in your "Letters" columns about the virtues of parallel feedback as compared with series feedback. On that occasion Mr Linsley Hood stated that the distortion with operational amplifiers in the seriesfeedback mode was higher due to commonmode failure. Recently I have been able to verify his statement, although the distortion figures obtained were rather lower than those measured by Mr Linsley Hood. A Weston CD100 precision oscillator was used as a signal source. The output of this generator was filtered with a twin-T filter to suppress the last traces of the harmonic to be measured. The output of the test amplifiers was kept at 2 V r.m.s. Twin-T and active notch filters were used to suppress the fundamental while harmonics were measured separately using synchronous detection methods.

With this test set-up it proved impossible to measure the distortion of the op-amps, connected as $-3 \times$ amplifiers by parallel feedback, below 8 kHz . Open-loop differential mode measurement yielded more useful results and from these distortion figures for the parallel-feedback connection were computed. They agreed well with the measured figures about 8 kHz . The seriesfeedback connection, set for a gain of +3 , produced harmonics that were readily measurable. Almost identical results were obtained from open-loop measurements

with common-mode signals of equal amplitude, proving Mr Linsley Hood's point about common-mode failure. It turned out that results varied widely between specimens, the best of the 20 op-amps tested producing about 0.001% at 2 V output and the worst about 0.1%, when measured with series feedback at $8 \mathrm{kHz}\left(A_{v}=3\right)$. From this one can conclude that it is wise to avoid series feedback at gains of less than, say, $10 \times$ when using these operational amplifiers in low-distortion circuits.

Unfortunately, the "error take-off" method of distortion reduction, as described by Mr Sandman in your October issue, suffers from the same drawback as the series-feedback arrangement, as can be seen in Mr Sandman's Fig. 2. Here the full input signal is present at the inputs of A_{2} as a common-mode signal. Particularly when the circuit is set for a low gain, this can easily lead to an increase in distortion rather than a decrease. Incidentally, the "error take-off" method has been known for some time now as "feedforward control". It has been thoroughly investigated at Delft University of Technology, where a more elegant circuit was devised that avoids the "floating" load, while preserving the advantages of feedforward control.
T. Magchielse,

Almelo,
Netherlands.
Editor's note: Mr Linsley Hood asks us to state that his earlier figures were for a $1 \mathrm{k} \Omega$ load, whereas those of Mr Magchielse could well be for a much higher output load (possibly the input impedance of his measurement equipment) and li.i.cs, like most other similar amplifiers, give a lower distortion into a higher load impedance.

Mr Sandman replies:

Unfortunately Mr Magchielse has misunderstood the functioning of both the error take-off and Delft University circuits! A_{2} in my Fig. 2 handles only a small signal and distorts only the distortion which is only a small effect and the Delft circuit
offends against the principle of "non/ interaction" and as its A_{l} has no negative feedback that of "rigidity of interconnection" as well.

ACTIVE CROSSOVER NETWORKS

As a designer of p.a. systems using active crossover networks, I was very interested to read the article by D. C. Read in your November, 1974, issue. However, I feel that readers may be confused by the graphs for the B110 unit in Fig. 1, and in particular by the conclusions drawn from them.

The graphs are obviously drawn for the free field responses, and predominantly show the effect not of internal cabinet volume, but of external cabinet dimensions. In fact the sound power output response for this unit is improved by the smaller cabinet, the 0.33 cu . ft enclosure being near the optimum for the B110, the enclosure Q being just under 1 at around 75 Hz , giving a response flat down to around 80 Hz and dropping at 12 dB / octave below this. Response curves for small speakers such as this should always be taken under the same conditions as their normal use, in this case almost certainly up against a wall, corresponding roughly to half-space conditions. Under these conditions the B1 10 will show a flat response up to around 600 Hz , rising after this up to about 2 kHz , where it levels out again. This unit should not be used on bass signals in as large a cabinet as 1 cu . ft , as there will be almost no stiffness control over the low-frequency cone excursions.

A worthwhile improvement with these small enclosures is to provide, electronically, deliberate cross-talk between stereo channels below about 150 Hz , thus cutting down considerably on cone excursions with bass signals predominantly in one channel or the other, unfortunately quite common with modern recording techniques. To the best of my knowledge, the first company to do this commercially was Servo-Sound.
K. C. Gale,

Poole,
Dorset.

THE STRIP IN
 bANK NOTES

A year or so ago, we were warned that spurious $£ 5$ and $£ 1$ notes were in circulat.on. I had a chance to examine some of these and one thing they all lacked was the metal strip. Surely (I thought) one of the metal detector circuits in the cashier's desk is all that is required. Then out of curiosity I tried to measure the resistance of the metal strip. It was infinity!

Question: what is the metal strip in a note made of?
A. Sproxton,

Home Radio (Components) Ltd.,
Mitcham, Surrey.

Solid-state digital clock

1-Design

by David C. Clegg

With the increase in the number of educational programmes on both radio and television, the Open University programmes for example, many now have to be broadcast at both unsocial, and very often, inconvenient times. While there is no substitute for watching or listening to the programme live, the next best thing is to record* it. This requires some sort of time switch which must be both accurate and reliable, which implies that the time switch should be independent of the mains electricity supply. It was to solve this, and other similar problems, that the digital clock described in this article was designed.

The priorities which were considered when designing this clock are as follows: Accuracy. Three frequency references were thought to be practical in this application; the mains 50 Hz , an electronically maintained tuning fork, and a quartz crystal oscillator. The mains was rejected because it limits the uses to which the
*Subject to copyright regulations.
clock can be put (it is no longer portable in the true sense of the word) and the stability (short term) and reliability of the mains leaves a lot to be desired, especially at the present time. A maintained tuning fork was rejected because of its high cost compared to the quartz crystal, which was finally adopted as the frequency reference. A good compromise between stability, size and power consumption was
obtained by using a frequency of about 200 kHz with a c.m.o.s. maintaining amplifier and divider stages. Using an unovened crystal (frequency 204.8 kHz) a stability of about one second per week was obtained.
Power consumption. The clock uses an l.e.d. display which does not result in low power consumption. Two supplies are, therefore, used: a main 12 -volt supply and

Fig. 1. Block diagram of the digital clock logic.

Fig. 2. Crystal oscillator and frequency divider. (For note on asterisked C_{4} see next month.)

Fig. 4. The clock chip with its associated presets and outputs.
a standby 9 -volt supply. The standby supply may consist of either nickelcadmium re-chargeable cells or a dry battery. When the 12 -volt supply is present, both the clock logic and the display are powered and if the standby cells are nickel-cadmium, these will be trickle charged. Under these conditions the current is a maximum of 120 mA ; i.e., a power consumption of 1.44 W .

When the 12 V supply is absent, the display is not powered and the standby supply powers the logic (and the crystal oscillator). Under these conditions the current is 8 mA ; i.e., a power consumption of 72 mW .

A key is provided to enable the time to be read under standby conditions. Use of this key should be kept to a minimum since the current from the 9 V supply rises to over 80 mA .

Size. The overall dimensions of the printed circuit board are 6.75 in $\times 4.5$ in $\times \operatorname{lin}$. All the operator controls are push-buttons arranged as a 3×4 keyboard. In the author's prototype the standby power supply consisted of nickel-cadmium cells and was mounted, together with the alarm speaker, in a perspex block under the p.c. board.

Circuit design

The clock was designed around the Mostek MK-5017-AA p.m.o.s.-1.s.i. integrated circuit, which contains all the logic required for a digital alarm clock. A block diagram is shown in Fig. 1.

The input to the chip may be either 50 or 60 Hz , this being selected by the organizing logic. There is also a built-in relaxation oscillator which will generate a $50 / 60 \mathrm{~Hz}$ waveform to keep the clock going in the event of failure of the external $50 / 60 \mathrm{~Hz}$. The frequency determining components for this oscillator are connected to pin 24. The stability is very poor, being dependent, both on temperature, and supply voltage.

In order to minimize the number of pins required on the package, the display is multiplexed. To further reduce the pin count, there are only two control inputs, but a matrix of diodes is formed with the two control inputs and four of the digit scanning outputs, making it possible to input the nine required control signals through these inputs. The frequency determining components for the display multiplex oscillator are external to the chip and consist of a resistor and capacitor chosen to give a frequency of 100 kHz . This frequency is also divided by 144 to provide the alarm tone of 694 Hz .

If the alarm has been enabled, pin 20 outputs the 694 Hz alarm tone, interrupted at 1 Hz intervals when the time counters and the contents of the alarm register agree.
Two additional facilities, which are not used in this design, are provided by the MK-5017-AA chip. Operation in the 12hour mode is achieved by omitting diode D_{g}; an a.m./p.m. indication is available at pin 16, logic $1\left(V_{s s}\right)$ indicating a.m. A 1 Hz output is available at pin 19 .

Fig. 3. Interface to enable the p.m.o.s. chip to drive the l.e.d. display.

Crystal oscillator. In order to minimize power consumption of the oscillator, shown in Fig. 2, it was decided to use both c.m.o.s. maintaining amplifier and a c.m.o.s. divider to provide the 50 Hz required by the MK-5017-AA. At the time of designing this clock, there were no c.m.o.s. dividers capable of dividing by an integral power of 10 -the next best thing was the RCA CD4040 which contains 12 binary dividers. Whilst it would have been possible, by the addition of external gating, to make the CD4040 divide by an integral power of 10 . it was decided to use this device as a divide by 4096 and to choose a suitable crystal frequency. Since the MK-5017-AA can accept either 50 or 60 Hz , there are two possible crystal frequencies to choose from: $50 \times 4096=$ 204.800 kHz , or $60 \times 4096=245.760 \mathrm{kHz}$. The only reason for choosing the former
was that it is a "simpler" frequency. The cost of having a crystal manufactured to the design frequency of 204.800 kHz is very little more than that of purchasing a crystal of, for example, 200 kHz .
The crystal is not mounted in an oven because of the considerable power requirements. While the external supply could power a suitable oven, the drain on the standby supply would be unacceptable; not to power the oven under standby conditions would cause an unacceptable frequency shift. The crystal is cut for operation at room temperature $\left(20^{\circ} \mathrm{C}\right)$ and provided the clock is used in an environment of reasonably constant temperature it will maintain a stability of one second per week.

The maintaining amplifier is a c.m.o.s. inverter biased into its linear mode by a $10 \mathrm{M} \Omega$ feedback resistor. For a more com-
plete description of the design of such an oscillator, readers are referred to RCA application note ICAN-6539.

Display interface. The MK-5017-AA chip is not capable of driving an l.e.d. display directly, so the interface shown in Fig. 3 must be provided. The segment interface circuits consist of emitter followers with current defining resistors in the emitters.

The digit outputs from the clock chip are also used to scan the control logic and to preserve the logic levels, the digit outputs being buffered by $I C_{4}$. Diodes D_{3} to D_{8} are to protect the base/emitter junctions of the digit drive transistors from reverse breakdown when the display supply is removed. D_{1}, D_{2} and $T r_{1}$ illuminate the decimal points between the hours and minutes and between the minutes and seconds.

Fig. 5. The circuit of the keyboard.

Fig. 6. Control logic circuit.

Fig. 7. The prototype clock. The unit is primarily intended as a timer, the display being of secondary importance. Connexions at top right are for an external power supply and switched output.

SPECIFICATION

Display. 6-digit 0.1 in l.e.d. display.
Displays time in the 24 -hour mode with decimal point between hours and minutes and between minutes and seconds, e.g. 18.27 .36

4 single l.e.ds indicate the following:

1) Alarm Set.
2) Relay On.
3) Display showing Alarm Time.
4) Count Stopped.

The display is not powered in the event of a supply failure.

Frequency

Reference. Quartz crystal, $f_{r} 204.800 \mathrm{kHz}$. c.m.o.s. maintaining amplifier.
c.m.o.s. divider. Division ratio 2^{12} (4096). Output of divider 50 Hz .
Stability about $1 \frac{1}{2}$ parts in 10^{6}
Power. Main supply 12 V 120 mA max. (1.44W)

Standby supply 9V Ni-Cd cells or dry
battery, providing 8 mA max. (72 mW) or 80 mA with display on (720 mW).

Alarm. Alarm time is adjustable in oneminute intervals.
Alarm tone is a 694 Hz interrupted at 1 Hz intervals.
When alarm sounds it may be completely cancelled or silenced for seven minutes after which time it will sound again.

Relay. When the alarm sounds the relay contact closes and remains closed even if the alarm is cancelled.
Independent control of the relay is also possible.
Contact rating: 100 V max.
80 mA max.
OFF resistance $\infty \Omega$
ON resistance 68Ω
Dimensions
$6 \frac{3}{4}$ in $\times 4 \frac{1}{2}$ in $\times 1$ in.

Control logic. Most of the controls provided require only momentary closure of the control keys; diodes and resistors are, therefore, all that is required to connect the appropriate digit lines to the control inputs of the clock chip. This is shown in Fig. 5.

The alarm on/off and relay on/off functions require a bistable, to store the information supplied by momentary closure of the selected key. The bistables are formed by $I C_{6}$ and $I C_{7}$ in Fig. 6 which, as before, are c.m.o.s. integrated
circuits to reduce to a negligible amount the power required.

Single l.e.ds D_{25} and D_{27} indicate that the alarm has been enabled, and that the relay contact is closed, respectively.

Single l.e.d. D_{23} indicates that the display is showing the contents of the alarm register, i.e., the time for which the alarm has been set, D_{24} indicating that the count has been stopped.

A series resistor is connected in the relay contact circuit, to prevent damage to the reed relay due to large cable discharge
currents. This resistor, $R_{s o}$, may be reduced in value, or removed altogether if the length of cable from the switched appliance to the relay is short. Without the series resistor the contact is rated at a maximum current of 250 mA , to switch a load of not more than 10 W .

The alarm output from the clock chip is buffered by an inverter in $I C_{8}$ and amplified by $\operatorname{Tr}_{I S}$ to drive a medium impedance speaker, the impedance of which should be in the region of $1 \mathrm{k} \Omega$. The author used a miniature dynamic microphone, but better results were obtained by using a 3 in 70Ω moving coil speaker and a matching transformer. R_{49} is to prevent damage to $T r_{16}$ should the output be inadvertently shorted to $V_{d d}$.
(To be continued)

About People

Edward Fennessy, C.B.E., B.Sc., F.I.E.E., was made a Knight Bachelor in the New Year Honours List. Mr Fennessy is managing director of Post Office telecommunications and was formerly managing director of the electronics group at Plessey. As an RAF group captain on the staff of 60 Group he led the teams working on Gee, Oboe and other ground radar chains, becoming head of the Decca Navigator Company after the war. He later formed Decca Radar and in 1972 was awarded an honorary doctorate by the University of Surrey.

Also in the Honours List is the award of the O.B.E. to John Scott-Taggart, M.I.E.E. for "services to radio engineering". Mr ScottTaggart has been a well-known innovator and writer on radio since the early years and, during the war, was Wing-Commander responsible for the majority of radar ground stations in England and Wales, including the training of their personnel. In 1963 he was made Knight Officer of the Order "Al Merito della Repubblica Italiana" by the Italian President.

Dr Per V. Bruel has received the Rayleigh Gold Medal of the Institute of Acoustics in recognition of his services to acoustics. Dr Bruel, one of the founders of Bruel and Kjaer, was presented with the Medal by the Hon. Guy Strutt, a descendant of Lord Rayleigh.

Godfrey Hounsfield, of the EMI Central Research Laboratories, has been awarded the Wilhelm Exner Medal by the Austrian Industrial Association for his work on the EMI-Scanner X-ray brain examination system. The system uses a computer to correlate a large number of readings from a narrow X-ray beam, the source rotating about the patient's head. Detailed cathode-ray tube displays can then be presented, giving about 100 times more information than a simple X -ray technique. Mr Hounsfield studied at the Faraday House College, obtaining a Diploma, and later joined EMI, working on radar and computers-in particular the EMIDEC 1100, for which he was head of the design team. He began work in the X-ray field in 1968, and in 1972 gained the McRobert Award for the work on EMI-Scanner.

Electronic engineers' slide rule

Designed for ease of calculation of commonly required parameters such as inductive and capacitive impedance and decibel ratios

by L. Nelson-Jones, F.I.E.R.E.

I have had a special slide rule for a number of years now which has a dB scale drawn up against the A and B scales of an otherwise standard slide rule, so that relative voltage dB ratios can be quickly calculated for any particular reference level. This rule has saved me many hours' work when drawing up response curves, both in audio and radio frequency work. Converting a table of readings to decibels can be a very tedious business using tables or logarithms; whereas, using the slide rule, one has only to move the slide to set the reference voltage against the " 0 dB " point of the dB scale and then all the other values are read off merely by moving the cursor to the voltage of each reading whose dB value is required.

Some months ago someone unknown stole the properly engraved version of the rule that I had been using, leaving me with only the very old hand-made wooden slide rule on which I first tried out the idea of the dB scale. Realizing how useful this rule had been to me, I decided to approach a slide rule manufacturer to put my ideas into practical form so that the idea could be made more widely available. This approach was made at the IEA exhibition and was received with interest, as the firm concerned was the one that had made the Units Converter for Wireless World (June 1969).
At that time I also had an L / C "slide
rule" originally distributed by the old A. H. Hunt (Capacitors) company as an advertising hand-out. This rule was made of stiff card and was very useful for quickly deriving the impedance of any $C \operatorname{or} L$; however, it had very cramped scales since it tried to cover a quite unnecessarily wide range of frequency $(0.000005 \mathrm{~Hz}$ to 20 GHz).

I decided therefore to aim at a doublesided rule having the dB scale added to the basic slide rule scales on one side and a simplified L / C calculator on the reverse. I tried many types of L / C scales using a large sized cardboard mock-up. With the scales chosen one first sets the slide against a triangular reference mark for the frequency of interest. The cursor is then moved to the value of the capacitor or inductor on the slide scale and the value of the impedance is read off from the appropriate scale on the body of the rule. The capacitive impedance scales have three ranges, for pF , for nF and for $\mu \mathrm{F}$. Likewise the inductive impedance scales have three ranges, for $\mu \mathrm{H}$, for mH , and for henrys. In this way, and by restricting the frequency range to 1 Hz to 100 MHz , the scales have been made relatively uncramped and will be quite accurate enough for most such calculations. I find the prototype of the new rule very easy to use for L / C calculations and it does not lend itself easily to mis-reading-quite an important point.

Reverting to the normal scales of the slide rule: The usual $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , scales (X^{2} and X) are provided, together with the reciprocal scale $\mathrm{Cl}(1 / X)$ used with the C and D scales, and the LL2 and LL3 ($\mathrm{e}^{0.1 x}$ and e^{x}). These provide all the necessary scales needed in everyday electronic circuit design work. I am sure some engineers will nevertheless find their favourite scale missing, but in the limited space available on a slide rule I had to choose those scales likely to be the greatest use to the greatest number of electronic engineers. In choosing the scales I was greatly assisted by the helpful comments and suggestions of the editorial staff of Wireless World.

I am sure many readers will at first wonder why I have chosen to introduce a new slide rule design at a time when calculators are getting so commonplace, and to this I would answer that, unless one has the price of a fully programmed calculator available (and few of us have), one cannot quickly do a dB calculation, or the L / C calculation for that matter. The slide rule on the other hand is quick and easy to use for these calculations, and its accuracy is usually more than adequate for everyday electronics. Until a simple and cheap electronic calculator capable of these calculations is available I, for one, shall be using the new slide rule.

Please do not think that I am anticalculator, as some are. I most certainly am not. I have had a calculator of my own for some two years now, and it has proved invaluable in my work. Incidentally, on the occasions when I have been without it I find that I can add up much faster and more accurately than I used to be able to, before I had the calculator (critics of the "It gives you a lazy mind" school please note).

The new rule is available to Wireless World readers at a price of $£ 2.50+$ VAT and it is supplied complete with a full instruction book.

For a limited period until the end of February, 1975 the rule will be available at a special introductory price of $£ 2.22+$ VAT (equals $£ 2.40$ at the current rate of 8% VAT) to Wireless World readers. The above prices apply to UK and Eire only. Overseas please add appropriate carriage. Enquiries and orders (with cheque or Postal Order) should be sent to KEY Electronics, PO Box 7, Bournemouth BH7 7BS.

Low-cost emergency power generator

220 V sine-wave generator using a lawn-mower engine and a scrap car dynamo

by J. M. Caunter

It has long been the dream of the author to become independent of the national grid during what seems to be the annual "silly season" of threatened disruptions in the supply of electricity. Inverters are attractive, being cheaper than petrol generating sets, but still expensive when one considers the batteries needed to run them. Most inverters have square-wave outputs, for optimum efficiency, which are not suitable for central heating pumps, 25% of the power being wasted in harmonics which could overheat the motors. Television sets should have the input taps changed because of the different peak-mean value of square waves. Sine-wave inverters are available at a price, but these are less efficient, and require even bigger batteries.

Alternative methods of generating lowcost power for the home have been investigated. The author's solution costs about $£ 12$ and makes use of a petrol mower. A 12 V car dynamo rescued from a scrapyard provides an excellent skeleton for an alternator, and a transformer at about $£ 8$ saves a tedious winding process. A scrap 12 V battery supplies the excitation current, and about $£ 2.50$ secures enough components to monitor the frequency of the output voltage and protect the field winding from setting fire to the garden shed when the motor stalls while you are in the bath (metaphorically speaking).

The armature of the dynamo is rewound for a slightly higher voltage which does not cause insulation problems but keeps brush currents down, since the area of contact with the slip rings is less than that with the original commutator. The design to be described is by no means an optimum one and can easily be changed to suit the reader. For example, if the armature was wound for 110 V a.c., it would require about 78 conductors of 22 swg per slot. However, the insulation would need more careful selection than in this proposed design.

Armature construction

Remove the armature from the dynamo yoke and dismantle from the drive-end bearing plate. Push out the paper rope filler from the outer edge of each armature slot, and after cutting the wires at the commutator remove the windings.

Fig. I. Sectional view of slip-ring assembly and brushes.

Fig. 2. Armature insulation.

Fig. 3. Developed winding diagram.

Clean the armature core with paraffin and then dry. Before removing the commutator measure its major dimensions and its position relative to the end of the shaft which is shown as dimension A in Fig. 1. Note the width and relative position of the brush marks on its circumference. These dimensions are vital to ensure correct alignment between brushes and slip rings, especially on dynamos without brush inspection windows. With reference to Fig. 1, the author's slip-ring assembly was made to the following dimensions:
overall diameter 37.25 mm ;
insulating bush bore 15 mm ;
width of each slip ring 8.5 mm ;
gap between slip rings 3 mm .
The remaining dimensions are less critical and can be varied to suit the reader. The commutator is now pulled off the shaft by brute force or ignorance.

Construction of the slip-ring assembly is shown sectioned in Fig. 1. The copper slip rings are retained on the Tuffiol bush by Araldite or Loctite adhesive. When completed, the assembly is pressed or drifted on to the shaft to a position determined by dimension A. The old armature insulation must be removed from the slots and renewed. The most successful method was to wind single layers of black cloth insulation tape between adjacent slots and between diametrically opposite bottoms of the slots as shown in Fig. 2. This has the added advantage of building up a cone-shaped collar where the shaft enters the armature laminations and greatly aids the winding operation. One or two layers of tape are also wound tightly around the armature shaft between this collar and the slip-ring assembly.

Before commencing with the winding, Fig. 3, which shows the armature slots laid out flat for simplification, should be studied. Each pair of slots is wound with 24 turns of 18 swg enamelled wire except the two outer pairs which are left empty. The slot nearest the hole through the slipring bush is designated slot 3 ; the remaining slots are numbered clockwise from this, through 14 and back to 2. When one is winding between slots 5 and 12 the coil is divided equally on each side of the armature shaft. Use thin but strong card cut into strips to insulate the open end of the armature slots as shown

Fig. 4. Completed armature assembly.

Fig. 5. Frequency-meter circuit diagram.

to frequency meters
Fig. 6. Cut-out and output circuit.
in Fig. 2. By tapering one end, the cards slide into position fairly easily. Bind the armature shaft with thin string, where the conductors enter the slip-ring bush, and tie securely. Impregnate the whole winding with shellac applied by brush, ensuring that the liquid penetrates the slots. The completed armature is shown in Fig. 4.

The brush gear

The brushes are modified to contact the slip rings as shown in Fig. 1. In the author's model the brushes were filed back to a width of 6.5 mm . If new brushes are used it may be necessary to bed them in with the aid of fine-grade carborundum paper wrapped around the slip rings. When finally fitting the brushes to the end plate it is important to position the pressure springs over the contact area as shown. The alternator may now be assembled.

Frequency indicator and control circuit

 To ensure that the alternator is driven at the correct speed it is necessary to monitor the frequency of the output voltage. Fig. 5 shows the circuit of a suitable frequency meter. D_{1}, R_{I}, D_{2} and C_{2} provide a stabilized 10 V d.c. supply to the circuit, derived from the input. The input voltage is squared by $T r_{I}$ to minimize errors caused by changes in input amplitude. R_{2} and D_{3} protect $T r_{1}$ from transients and reverse base-emitter potentials. A differentiating circuit- R_{3}, C_{1} and D_{4} into Tr_{2} is driven by Tr_{1} whose collector current is limited by R_{4} when discharging C_{I}. The current pulses developed in the collector circuit of Tr_{2} are of constant width and varying repetition rate depending on the input frequency. These pulses are integrated by the inertia of the meter movement and displayed as a steady reading, changing only with input frequency. The linearity of this circuit is dependent on the mark/space ratio of the current pulses at the maximum operating frequency. The values chosen for the differentiator in the author's circuit give a negligible error at the maximum meter reading of 100 Hz . The meter scale is calibrated directly from 0 to 100 Hz , and R_{6} is adjusted to give a reading of 50 Hz when the input is fed with $10 \mathrm{~V}-60 \mathrm{~V}$ a.c. from a mains-connected transformer. Fig. 6 shows the cut-out and output circuitry. The output from the alternator is stepped up to mains voltage by a transformer T_{I} which has a rating of 250 W . An auto transformer would be ideal for this function on the basis of size and cost. It is important for safety reasons to connect the N and E terminals together on the output socket and return both to the metalwork of the complete unit. The output of the transformer is used to energize a 230 V a.c. relay, the contacts of which complete the field circuit with the 12 V excitation voltage. A separate set of contacts is used for the indicator lamp to prevent the back e.m.f. from the field winding fusing the bulb when the relay drops out. The lamp is positioned on the control panel to illuminate the frequency meter. The relay

Fig. 7. Complete generator.

Fig. 8. Output waveform.
drops out if, for any reason, the output falls below 150 V a.c., e.g. overload or engine failure, the latter causing loss of air cooling to the field coils. To reset the output S_{I} is depressed. A battery charger may be connected to the output to maintain battery charge if needed.

Driving the alternator

The unit is shown mounted on a motor mower in Fig. 7. This engine is ideal because it has a governor incorporated at the air intake of the cooling fan which maintains a fairly constant speed during changes in load. The drive pulley is five inches in diameter giving a step-up ratio of about $2: 1$. This ratio was chosen to give maximum economy with minimum noise. A further reduction in noise was effected by fitting a cocoa tin, suitably perforated and filled with glass wool, over the silencer and held in place by a capacitor clip. The engine, at full load, runs for one hour on one pint of petrol if the carburettor is correctly adjusted.

Performance

The output waveform is shown in Fig. 8. A component at 700 Hz is present due to the variation in reluctance of the magnetic circuit as the armature slots rotate. This can be reduced by means of a $2 \mu \mathrm{~F} 240 \mathrm{~V}$

Fig. 9. Load characteristic for alternator.
a.c. capacitor connected at the output (Fig. 6) but some distortion of the waveform will result due to armature reaction on the field flux.

The open circuit output of the alternator at $I_{f}=1.9 \mathrm{~A}$ is 0.72 V r.m.s. $/ \mathrm{Hz}$ and the load characteristic for varying excitation is shown in Fig. 9. The speed regulation of the engine is such that a load of 180 W reduces the output frequency from 56 Hz to 50 Hz . The load characteristic of Fig. 9 includes the drop in output caused by the change in frequency. The broken line shows the output regulation at $I_{f}=1.9 \mathrm{~A}$ with the frequency held constant at 50 Hz . For a full-load voltage of 200 V at 50 Hz , the no-load voltage is 265 V at 56 Hz .

This generating set, while crude in its concept, is quite adequate to supply the demands of a typical central-heating system and has been used to power a monochrome television set with good results. The performance tests have prompted the author to experiment with a higher-power, self-excited version incorporating electronic regulation, using the same alternator and output transformer.

HF predictions

Ionospheric attenuation and MUF are directly proportional to sunspot number so they are both low at sunspot minimum. Less attenuation gives in turn a lower LUF but the degree of MUF reduction is much greater. Normal undisturbed conditions thus give good communication but the available spectrum is small. Disturbed conditions lower MUF further but raise LUF so small disturbances have a great effect on communication at sunspot minimum.

Solid state data recorder

A solid state NASA-developed data recorder with no moving parts may replace magnetic tape recorders aboard spacecraft in the 1980s. Other possible applications include use as aircraft flight data recorders. Failure of moving mechanical parts accounts for 70 per cent of magnetic tape recorder malfunctions aboard spacecraft. The new recorders offer high reliability and experimental models of the device have been pronounced successful.

Technology for such a recorder is based on the use of very small magnetic domains or spots known as "bubbles". These magnetic bubbles exist in specially prepared garnet chips. By applying a thin film of magnetic material in appropriate patterns over the chips, these bubbles can be moved and controlled to perform logic functions. The present experimental model has a 60-thousand bit data storage capacity. The overall objective of the present research programme is to provide a solid-state data storage system with a $100-$ million bit capacity by 1978. If successful, flight versions of such a recorder could be ready at the end of this decade.

Magnetosphere exploration

The International Sun Earth Explorer (ISEE) programme is a joint NASA/ESRO venture involving three satellites, two of which ISEE-A and ISEE-C are being developed under NASA auspices whereas ISEE-B is the responsibility of ESRO. The satellites will explore the Earth's magnetosphere and adjacent regions of interplanetary space close to Earth. As a result of previous satellite missions the main features of the magnetosphere are already known. However, there is still much to be discovered about its dynamic behaviour and the influence of the solar wind.

Satellites ISEE-A and ISEE-B, equipped with similar experiments will travel at a carefully controlled and variable distance from 100 km to $5,000 \mathrm{~km}$ between each other. These two satellites will be launched by a single Thor Delta Rocket in

Autumn 1977 and their orbit will be highly eccentric, close to the ecliptic plane. By this means, similar features will be seen by both spacecraft sequentially with a time interval between observations making it possible to distinguish between spatial and temporal variations of the physical and dynamic features recognized. A third spacecraft, ISEE-C will be launched one year later into a solar wind, undisturbed by the presence of Earth. Thus while A and B satellites are examining disturbances in the magnetosphere, the ISEE-C will provide vital information on the actual solar wind input to the magnetosphere.

New communications satellite

Contracts have been awarded for development of the communications payload of the ESRO maritime satellite MAROTS. This is to provide ship-to-shore communication vastly improved on the present, highly congested, conventional radio links. The launch of MAROTS is scheduled for the Autumn of 1977.
Marconi Space and Defence Systems, prime contractors for the communications payload, are also to study and define the basic parameters of the ship-borne and shore-based terminals. The former will be made as simple as possible and, to this end, MAROTS is to be equipped with a highefficiency shaped-beam antenna coupled with a transistorized L-band power amplifier. Ships will use the L-band frequencies to communicate to and from the satellite. As shore terminals will be able to use more sophisticated equipment, the shore-to-satellite frequency will be in the 14 GHz band while the satellite-to-shore communication will use the 11 GHz band.

Radio and space research 1971-73

The triennial report of the Science Research Council's Appleton Laboratory was published during December. One section of the report is devoted to an outline of important developments in work during the period

1971-73; these include UK and cooperative satellites such as Ariel-IV, Ariel V, and UK contribution to the International Ultra-Violet Explorer satellite and the UK experiment on the American satellite Copernicus involving the use of four X-ray telescopes. A major high latitude rocket campaign late in 1973 in Andøya, Norway, involved the launching of Skylark and Petrel rockets in a co-ordinated programme which included the first trials of a new pulse code modulation telemetry system and Doppler range measurement system. The report describes the Laboratory's own research in space science and on the scientific aspects of the propagation of radio waves through the ionosphere and troposphere. Copies are available from HMSO at $£ 1.25$.
Also recently published is a comprehensive survey published by the European Space Research Organization which summarizes European activities in space research and technology and the skills and facilities developed by European industry in this field.

Crop inventory experiment

The launch of the second Earth Resources Technology Satellite (ERTS-B), scheduled for launch during January is to make possible the next steps of experimentation in the various earth resources disciplines.

Several experimental demonstrations designed to show the practical benefits to resource management of multispectral remote sensing from space have been selected to include water management, agriculture, land use planning, and monitoring ice conditions in navigable lakes. One of these experiments is a "Large Area Crop Inventory Experiment" to test whether the use of data gathered by spacecraft and analyzed with the aid of computers can improve the timeliness and accuracy of major crop forecasts. At the outset, LACIE will concentrate on wheat grown in the North American area. The experiment will combine crop acreage measurements obtained from ERTS-B data with meteorological information from NOAA satellites and from ground stations designed to relate weather conditions. If during the first year this activity proves useful, it will be extended in the second year to other regions and other crops.

Did you know?

Pioneer 11, latest Jupiter probe transmits an eight-watt radio signal which reaches NASA's antennas with a power of $1 / 100,000,000,000,000,000$ watts. Collected for 19 million years, this energy would light a 7.5 -watt Christmas tree bulb for one-thousandth of a second.

Our " $U^{\bullet `}$ and you.

Every Shure cartridge comes equipped with its own "U" Factor. The "U" stands for uniformity in rigid production standards . . . tough quality control ... and satisfying listening pleasure. By-maintaining these high standards in every phase of engineering, production, and inspection, Shure provides a better cartridge . . over, and over, and over. And, with routine maintenance, your Shure cartridge will continue to perform at the published specifications. You may not see the U Factor, but you'll always be grateful for it.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

TO MINIMISE INVESTMENTS AND SOLVE STOCK PROBLEMS

You can increase your efficiency, too, by ordering large or small quantities of any one part, or making up an order of any number of assorted small quantities through the United-Carr Supplies service. We can deliver with more than usual promptitude because we carry such large and varied stocks of CINCH, DOT and FT electronic and electrical components.
Fastenings and assemblies.

So, make United-Carr Supplies your SINGLE SOURCE for

Products, including Barrier terminal strips, Edge Connectors, Subminiature Connectors, Rocker switches, Indicator lights, Press fasteners and Metal \& Plastic components.

[^6]WW-148 FOR FURTHER DETAILS

A.f. and r.f. clipping for speech processing

by D. A. Tong, B.Sc., Ph.D.

Datong Electronics Ltd

A comparison of audio and radio-frequency clipping for increased transmitter efficiency

If one examines the human voice using an oscilloscope, one of its most striking features is the low ratio of average amplitudes to peak amplitudes. An example is given in Fig. 1 which shows the first vowel sound in "hello". To the operators or designers of speech transmission equipment this small average-to-peak ratio can be an embarrassment because if the peak signal handling capability of the system (e.g., a radio transmitter or a public address system) is adequate to handle the peaks without distortion, it will be inefficiently utilized during the remaining sections of the speech waveform, that is, for most of the time. In a radio transmitter using any form of amplitude modulation (e.g., a.m. or s.s.b.) this means that for a given average radiated power a much higher peak power capability is required. Unfortunately the cost of a transmitter rises rapidly with its peak power capability. Additionally there is usually a statutory limit on the peak power that can be used. A radio transmitter using f.m. would similarly need a high peak deviation for a given average deviation, but here the cost is not in money but in frequency spectrum width.

For the above reasons there has long been much interest in "speech-processing" devices which raise the average-to-peak amplitude ratio of the speech waveform. In the remainder of this article we compare and contrast three speech-processing techniques which are at present quite extensively used. The techniques are audiofrequency clipping, audio-frequency compression, and radio-frequency clipping (that is, clipping of a single-sideband suppressed-carrier (s.s.b.) waveform). Reasons will be given for the marked superiority of r.f. clipping over the other methods.

A.f. clipping

This is probably the most obvious treatment and is probably also the simplest. As the name implies, one "clips" off any portion of the audio-frequency waveform which exceeds a given amplitude. Fig. 2 shows a sinewave at 500 Hz after passage through an a.f. clipper and 3 kHz low-pass filter at levels just below the clipping threshold (top) and with 20 dB of clipping

Fig. 1. A section of the first vowel sound in the word "hello" as seen on an oscilloscope

Fig. 2. Top: the output of an a.f. clipper when fed with a sine wave at a level just below' the clipping threshold. Bottom: the same but with the input level increased by $20 d B$.

Fig. 3. Intermodulation products produced by clipping a two-equal-tone signal, omitting the products centred on harmonics of the two basic frequencies.
(bottom). The clipping effect is clearly visible and if the input were a speech waveform its average-to-peak ratio would be greatly increased.
But there are snags. Firstly, a lot of distortion is introduced; secondly, the output signal is for a fundamental reason unsuitable for feeding into a single sideband transmitter (the most common kind in use today).

The distortion comprises both harmonic and intermodulation distortion. ${ }^{1}$ For example, if the input signal were simply two equal-amplitude sinusoids with frequencies f_{I} and f_{2}, the output would contain the intermodulation products

$$
\begin{gathered}
\left(f_{1}+f_{2}\right) / 2+n\left(f_{1}-f_{2}\right) / 2 \\
(n=1,3,5 \ldots \text { etc. })
\end{gathered}
$$

as shown in Fig. 3, together with other overlapping series of products centred on harmonics of f_{1} and f_{2}, i.e.,

$$
\begin{gathered}
m\left(f_{1}+f_{2}\right) / 2+m n\left(f_{1}-f_{2}\right) / 2 \\
\text { where } n=1,3,5 \ldots \text { etc., } \\
\text { and } m=2,3,4 \ldots \text { etc. }
\end{gathered}
$$

Thus if the two frequencies were 1 kHz and 2 kHz the output of the clipper would contain components every 0.5 kHz . Obviously, when more than two input signals are present the number of possible intermodulation products becomes very large indeed. As a result speech passed through an audio-frequency clipper acquires an unnatural and characteristically "clipped" sound. Despite this the intelligibility is
hardly impaired. This kind of processor has been widely used in conventional a.m. or f.m. transmitters because of its simplicity: the gain in "talk-power" more than offsets the quite high distortion.

The reason that the technique is unsuitable for s.s.b. transmitters is that it generates "square" waveforms. An ideal s.s.b. modulator with a square wave input signal would produce s.s.b. with peaks of infinite amplitude. Obviously in a real situation this is impossible but the "square" waves from an a.f. clipper can result in a s.s.b. signal with no improvement in the average-to-peak ratio to offset the considerable distortion.
This effect is illustrated in Fig. 4 which contrasts the s.s.b. signal at 60 kHz (a) produced from a sinewave (b) with that (c) produced from a "square" wave (d). These waveforms were obtained using a specially adapted commercial r.f. speech clipper made by Datong Electronics Ltd. Normally the s.s.b. signal shown is not accessible. Signals (d) and (b) were monitored at the output of the frequencyshaped preamplifier in the Datong r.f. clipper and this accounts for the distortion of the "square" wave. The point to note about these waveforms is that the peak amplitude ratio of the s.s.b. signals is 1.5 times that of the two input signals.

To some extent this difficulty can be partly circumvented by pre-emphasizing high frequencies in the speech bandwidth to such an extent that only speech components above 1 kHz are clipped. The harmonics then fall outside the speech bandwidth and are cut out by the 3 kHz low pass filter. But then, in addition to the distortion, the speech is excessively "toppy" and even more unnatural.

A.f. compression

Audio-frequency compressors use an automatic gain control system to ensure that if the input signal (the unprocessed speech waveform) exceeds a certain threshold, the gain is reduced rapidly (typically within 10 ms). A second time constant, usually one second, allows the gain to recover much more slowly to its full value. Some devices of this type allow the gain to "hang" at a fixed value for a predetermined time if the input signal ceases. This avoids a distracting effect wherein the background noise rises to a high level between bursts of speech.

Fig. 4. S.s.b. signals produced from different input signals. A is given by B, and C by D. The peak amplitude ratio of the s.s.b. signals is greater than that of the inputs.

Fig. 5. Photograph of the Datong

 Electronics Ltd r.f. speech clipper. It is basically a closed-circuit s.s.b. transmitter, clipper, and receiver, operating at 60 kHz . Thus both input and output are at audio frequencies and the device is designed simply to connect in series with the microphone lead on any transmitter.A.f. compressors are effective in maintaining a fairly constant peak signal level. Thus they can compensate nicely for unwitting changes in voice level or for different speakers. On the other hand they are not well suited to the task of raising the average-to-peak ratio of the speech waveform. In the limiting case of a compressor with zero "attack" and "decay" time constants there would be no difference between it and the audio clipper already discussed. But as soon as the time constants become non-zero (as they must to make the a.g.c. loop stable, and if distortion is to be less than that produced by an a.f. clipper) it is clear that, following a peak, the overall gain will be reduced for a time dependent on the decay time constant, and that this will reduce the amplitude of weaker signals following the peak. Unfortunately in speech, weak sounds which are important for intelligibility tend to closely follow strong peaks and therefore a compressor tends to affect adversely the intelligibility of the speech if its time constant is made low enough to increase the average-to-peak ratio ${ }^{2}$.

R.f. clipping

An ideal speech-processing device would combine the instantaneous response of the a.f. clipper with the low distortion of a compressor with a long decay time con-
stant. This ideal is closely approached by the so-called r.f. clipper. The essence of the technique is not to clip the a.f. waveform directly, but to first translate it to some much higher frequency. It is then a single sideband suppressed carrier (s.s.b.) signal. If this signal is clipped a similar range of products is generated internally as in the a.f. clipper, but with the important difference that $\left(f_{1}+f_{2}\right)$ is now very much greater than $\left(f_{1}-f_{2}\right)$. It is then a trivial matter to filter out all the components with $m>1$. In the example used earlier of two tones at 1 kHz and 2 kHz , if the r.f. clipping is carried out at say $60 \mathrm{kHz}, f_{1}$ and f_{2} will be 61 and 62 kHz . Products associated with different m values will then be centred on integral multiples of 60 kHz and the separate groups no longer overlap.

If the clipped s.s.b. signal is then heterodyned back to its original audio frequency range, the only frequencies left in the output will be

$$
\begin{gathered}
\left(f_{1}+f_{2}\right) / 2+n\left(f_{1}+f_{2}\right) / 2 . \\
(n=1,3,5 \ldots \text { etc. })
\end{gathered}
$$

The harmonic frequencies which were produced by the a.f. clipper do not appear and with them disappear a large number of intermodulation products as well.

A commercial device for doing the whole operation, audio \rightarrow s.s.b. \rightarrow clipped s.s.b. \rightarrow audio, the Datong Electronics Ltd "Universal r.f. Clipper", is shown in Fig. 5

(c)

(d)

Fig. 6. Block diagram of the Datong Electronics Ltd r.f. speech clipper.

Fig. 7. Top: same speech sound as in Fig. 1 appearing at the output of the Datong r.f. clipper with peak amplitude just below the clipping threshold. Bottom: same but with 20 dB of clipping, showing the absence of harmonic distortion.
and its block diagram is shown in Fig. 6. The device is intended for use as an accessory with existing communications trànsmitters and it is fitted simply by plugging in series with the microphone of the transmitter. The output waveform obtained using 20 dB of r.f. clipping with a section of the same speech sound as in Fig. 1 is shown in Fig. 7. A comparison of the top and bottom traces shows the large gain in average-to-peak ratio which is obtained. (For the top trace the input level was reduced until the peaks were just below the threshold of clipping). The "non-clipped" appearance of the output waveform shows that the output is entirely compatible with s.s.b. transmitters. Fig. 8 shows the output of the Datong r.f. clipper when fed with a sinusoidal input at 500 Hz and using 20 dB of r.f. clipping. The absence of harmonic distortion is clearly shown.
Subjectively, speech sounds remarkably undistorted when processed in this way but becomes strikingly louder for the same peak amplitude. Indeed a similar kind of device to the Datong clipper has even been used for short-wave broadcasting ${ }^{3}$. The considerable increase in average-topeak amplitude ratio which is possible using r.f. clipping allows the average sideband power output of an a.m. or s.s.b. transmitter (or deviation for an f.m. transmitter) to be greatly increased. It is generally agreed among the increasingly large number of radio amateurs who use r.f. clipping that it gives about the same improvement to a s.s.b. transmission as if its peak power rating were increased by a factor of ten, and at a far lower cost. Surprisingly perhaps, it also seems to be true that the intelligibility of the speech is actually increased by the r.f. clipping process so that there is a double benefit.

Obviously a s.s.b. transmitter already contains part of the circuitry shown in Fig. 6, therefore why duplicate it? In fact there are adaptors commercially available which allow the s.s.b. signal already produced inside the transmitter to be clipped, but contrary to what one might expect, there is almost invariably an extra cost penalty to add to the inconveniences of having to make connections internal to the transmitter and of the restriction to s.s.b. transmitters only. The reason is that in a device such as the one illustrated in Figs. 5 and 6, the internal s.s.b. signal is not radiated and therefore its spectral purity is irrelevant from the stand point of adjacent channel interference. Unwanted products close to the information bandwidth can be easily and cheaply re-

Fig. 8. Top: output of Datong r.f. clipper with input sinusoid just below clipping threshold. Bottom: same but input level 20dB above clipping threshold.
moved by an audio filter after the demodulator. In contrast, if the clipped s.s.b. signal is to be radiated directly, signals outside the information bandwidth must be reduced to a very low level to avoid radiating interference. This requires that a high-performance quartz crystal, ceramic, or mechanical filter be fitted. The high cost of such filters more than compensates for the cost of the duplicated circuitry in the "audio in/audio out" type of device.

To summarize, it can be said that a.f. clippers provide a useful improvement in average-to-peak ratios at the cost of quite severe distortion. They also have a fundamental disadvantage when used with s.s.b. transmitters.
A.f. speech compressors are good for maintaining a constant peak speech level despite different speech volume levels or different speakers, but are not very effective in raising the average-to-peak ratio.
R.f. speech clippers also compensate for different speech levels but at the same time give a big increase in average-topeak ratio with negligible apparent distortion. Provided they are of the "a.f. in/ a.f. out" type they are suitable for all modulation modes.

References

1. D. A. Tong, "Theoretical intermodulation distortion levels resulting from clipping a twotone s.s.b. signal; with a note on the effects of crossover distortion", Wireless World, to be published.
2. L. R. Kahn, "The use of speech clipping in s.s.b. communications systems", (1957) Proc. I.R.E., 45.2, 1148-9.
3. G. O. Herrick and H. W. Fallis, "A new approach to speech clipping for international broadcasters", I.E.E. Conference Publication No 69, International Broadcasting Convention (1970) 21-23.

Literafure Received

ACTIVE DEVICES
A 24-page catalogue from EMI-Varian lists over 350 microwave devices, and includes information on the company's capabilities in p.c. aerials, ceramics, power supplies and pulse modulators. EMI Varian Ltd, 248 Blyth Road, Hayes, Middx. WW401

Intel are to publish a bi-monthly technical magazine on their, range of memories, microcomputers and m.o.s. devices. The magazine, Intel News, is available free from Intel Corp. (UK) Ltd, Broadfield House, 4 Between Towns Road, Cowley Oxford ..WW402

Three leaflets from Brimar describe oscilloscope graticules, a $14-\mathrm{cm}$ data display tube and a range of c.r.t. deflection yokes. Thorn Radio Valves \& Tubes Ltd, Mollison Avenue, Brimsdown, Enfield, Middx. EN3 7NS
.WW403
Abridged data on the AEI range of microwave semiconductors and modules is contained in the new short-form catalogue from AEI Semiconductors Ltd, Carholme Road, Lincoln, LN1 1SG .. WW404

We are informed that Semiconductor Specialists have available the new Siliconix catalogues and price lists. New products include the dual-gate f.e.ts and $3 \frac{1}{2}$-digit meter circuits. Semiconductor Specialists (UK) Ltd, Premier House, Fairfield Road, Yiewsley, West Drayton, Middx.

WW405
A brochure from EMI describes a range of magnetically-focussed image intensifier tubes for use in spectroscopy, X-ray and electron diffraction and other low-light investigations. The publication is obtainable from EMI Electronics Ltd, Electron Tube Division, 243 Blyth Road, Hayes, Middx. . WW406

PASSIVE DEVICES

Rastra have sent us a leaflet on the AUGAT range of individual pin sockets for i.cs and a series of feed-through terminals. Catalogue 273 is obtainable from Rastra Electronics Ltd, 275-281 King Street, Hammersmith, London W6 9NF.
.WW407
A range of connectors for printed-circuit use and some multi-way plugs and sockets are illustrated on a wall-chart from Varelco, which gives full specifications. Hand tools are also featured, as is a modular racking system. Varelco Ltd, Exning Road, Newmarket, Suffolk. WW408

A leaflet-cum-wallchart, in colour, which is also a short-form catalogue of knobs, dials and turnscounting mechanisms, is obtainable from Argo Electronic Components Ltd, 28(b) Hamlet Court Road, Westcliff-on-Sea, Essex. WW409

The range of OT toroidal transformers by Avel Lindberg is described in leaflet AL4.71. The transformers are rated at between 15 to 500 VA and are equipped with flying leads. Dimensions of the 15VA model are 57 mm outside diameter, 36 mm deep, with a central fixing hole. Avel-Lindberg, South Ockendon, Essex, RM15 STD. WW4 10

A new brochure on the range of aerosol chemicals and lubricants has been published by Electrolube Ltd, Oxford Avenue, Slough, Bucks SL1 4LB. . . WW4 11

Aluminium "foil" or strip for coil winding is described on technical data sheet No. M204 from Rolled Products Division, British Aluminium Co. Ltd, Phelps House, Heath Road, Twickenham, Middx.
. . WW4 12

GENERAL CATALOGUES

The new RS Components catalogue for Dec, 1974 to March, 1975 is now with us, new products this time including new 20VA transformers, plastic cabinets, displays, a voltage regulator and several others. RS Components Ltd, PO Box 427, 13-17 Epworth Street, London EC2P 2HA (on company letter-head).

The new Heathkit catalogue is now published. The kits are produced for a wide range of equipment for the consumer and for industrial and professional use. New models include a digital clock-cum-radio, a calculator, engine tuning equipment and several others. Heath (Gloucester) Ltd, Gloucester GL2 6EE.

WW413
A publication entitled "Weir-The Facts" is a 16-page brochure on the company's capabilities in proprietary and custom-built electronic equipment. Available from Weir Electronics Ltd, Durban Road, Bognor Regis, Sussex.
.WW414

EQUIPMENT

A brochure giving specifications and installation information on the Data Sense 300 series of load cells has been sent to us by Transducers (CEL) Ltd, Trafford Road, Reading. \qquad .WW4 15

Analogue multiplexers in the c.m.o.s. technology are fully described in a leaflet MPC80, MPC168 from Burr-Brown Research Corp. The units feature 7.5 mW standby power, break-before-make switching and a two-microsecond settling time to within 0.1%. International Airport Industrial Park, Tucson, Arizona. WW416

The new catalogue of measuring instruments made by EIP, Exact, Cushman and Dana is now available from Dana Electronics Ltd, Collingdon Street, Luton, Beds
. WW417
A guide to manufacturers and service organizations working in the field of digital electronic systemsthe System Product Guide 1975 -has been produced by Gershire Ltd, 103 Kent Road, Dartford Kent, and is available from the publishers at $£ 4.50$.

The complete range of Pye and Philips broadcasting equipment, including cameras, telecine audio gear and transmitters, is covered by the new Pye TVT catalogue, which is available from John Hawes, Publicity Manager, Pye TVT Ltd, Coldhams Lane, Cambridge.

WW418
Oxford Electronic Instruments have sent us a leaflet on the Fenlow 710-A digital voltmeter-a $4 \frac{1}{2}$ digit instrument, which tracks the mains frequency to retain an 80 dB series-mode rejection ratio from $49-51 \mathrm{~Hz}$. The leaflet is obtainable from Oxford at Osney Mead, Oxford OX2 0DX. . . WW419

We have received a brochure from D. A. Pitman on their range of Gastec gas detector tubes, including a new one for use with vinyl chloride. The Gastec system uses a piston-type volumetric pump, in conjunction with a range of 72 tubes. D. A. Pitman Ltd, Mill Works, Jessamy Road, Weybridge, Surrey.

Standard impulse generators for the simulation of lightning and other transients in the range 200 to 3000 kV are described in a leaflet by Hipotronics Brewster, NY, USA
.WW421
Modular r.f. shielded enclosures in the L3000 series are described in a brochure from Belling and Lee Ltd, Great Cambridge Road, Enfield, Middx. WW422

A wide range of strain gauge transducers and associated instrumentation for measurements of pressure, flow and level is dealt with in a 110-page catalogue from Marketing Services Department, Siemens Ltd, Great West House, Great West Road, Brentford, Middx

Univac signal processing equipment, a transient recorder and a power line disturbance monitor are briefly described in a short catalogue from Data Laboratories Ltd, 28 Wates Way, Mitcham, Surrey CR4 4HR.
.WW424
Performance characteristics and applications information on the DMC 800 series voltage-to-frequency converters (27 models) are given in an eight-page catalogue from Amplicon Electronics Ltd, Lion Mews, Hove BN3 5RA. WW425

We have received from MI two leaflets describing equipment in the Autotest range of automatic test systems, one covering r.f. testing and the other on printed-circuit boards. Marconi Instruments Ltd, St. Albans, Herts.
. . WW426

Figure-of-merit for front-end selectivity of f.m. tuners

by Gordon J. King
Gordon J. King (Enterprises) Ltd

The documents of the British Standards Institution (BSI) and the Institute of High Fidelity (IHF, American) under BSI 4054:1966 and IHFM-T-100 respectively, along with others, describe methods for measuring and expressing the performance of a.m. and f.m. radio receivers and tuners, but in several areas these are dated with respect to state-of-art designs and the requirements for the contemporary f.m. tuner in particular.

With the advent of commercial radio broadcasting and the increasing utilisation of Band II for f.m. broadcasts, the ability of an f.m. tuner to respond, without interference, to a required signal in the presence of strong interfering signals is assuming increasing importance. A tuner hitherto operating from aerial signals of moderate level (circa 0.5 to 3 mV p.d.) due to the three BBC transmissions and possibly the "local" f.m. station, might suddenly be subjected to an additional, more powerful signal due to the launching of a nearby commercial f.m. station, this being aggravated by lack of station co-siting.
The degree of susceptibility of a tuner in this respect is determined by both the large-signal handling performance of the r.f. stage and the selectivity and quality factors up to the mixer. A tuner with inadequate front-end selectivity, therefore, might exhibit spurious responses within the tuning range or coincident with the frequency of the wanted signal, a typical example being image response. Insufficient signal handling capability of the input devices can also encourage increasing intermodulation, due to decreasing linearity of the transfer characteristic. Cross-modulation in general is not such a big problem with f.m., of course, since this can only occur if the interfering signal has a.m. components, though this is not to imply that all interfering signals will be free from amplitude modulation. Moreover, if the i.f. selectivity is also poor, adjacent signal intermodulation products might encourage a warbling type of interference on stereo.

One solution, of course, would be to attenuate the aerial signal, but unless a frequency-selective attenuator is used, (and one writer has advocated the use of a tunable notch filter with a tuning control separate from that of the main
tuning for notching out a strong, unwanted adjacent channel signal!) required signals of moderate level could be reduced sufficiently in level to impair the signal-to-noise ratio, particularly on stereo. Another solution might be an aerial of greater directivity allowing orientation for maximum discrimination against an unwanted signal, but this is not always the answer because a different orientation may be required for the least multipath distortion.

The real solution, of course, lies in the design of the receiver or tuner. The chief offender is the simple receiver whose frontend consists of a not particularly linear r.f. amplifier operating at low emitter current with an aperiodic input from the aerial and proceeded by a solitary variable tuned circuit to the mixer. Such simplicity is not found in hi-fi tuner design, however, the least in this type of design being two variable-tuned circuits up to the mixer (three in all, including the local oscillator tuning). The next step up the scale is the design with three variable-tuned circuits from aerial to mixer with possibly dual-gate m.o.s. f.e.ts for r.f. amplification and mixing. The square-law input characteristic of this type of transistor makes it particularly useful where a high degree of spurious response suppression is required and, of course, it is the ideal law for low-noise mixing. It has recently been demonstrated, however, that a bipolar transistor operating at $5 \mathrm{~mA}, I_{e}$ can exhibit excellent linearity ${ }^{1}$ and large-signal handling performance, though f.e.ts, when carefully biased, are still regarded by some workers as the ultimate in the present state of the art. A dual-gate f.e.t. as mixer gives a good isolated input for the local oscillator signal and avoids oscillator pulling problems, but again ${ }^{1}$ it has been demonstrated that a low cost Mullard BF245 f.e.t. can also be arranged for very acceptable results in this respect (see later).

Noise performance and hence usable sensitivity are not improved much by the use of two r.f. stages, but this technique is sometimes adopted to facilitate the introduction of an additional variable-tuned circuit or bandpass pair. Expensive f.m. tuners sometimes employ four or even five variable-tuned circuits in front of the mixer
and dual-gate m.o.s. f.e.ts for r.f. amplification and mixing, along with an oscillator buffer stage to minimise oscillator pulling. Maximum usable sensitivity threshold (just below $1 \mu \mathrm{~V}$ p.d. 75Ω) is being achieved by some top-flight designs, and more recently, attention has been directed towards generally improving the input dynamic range.

The various tests for measuring the spurious responses of f.m. tuners are well known, as are those for measuring the IHF adjacent and alternate channel selectivity. To supplement the latter in terms of front-end selectivity performance the author, in collaboration with Ted Rule*, set out to devise a simple "figure of merit"-test based on the use of two generators with the result being referred to the IHF usable sensitivity. This test, of course, does not measure the intrinsic large-signal handling capability of the front-end (for this a more elaborate test setup with spectrum analyser is often used), but it does fairly reflect the overall goodness of the front-end selectivity and thus provide a fair impression of the spurious response interference likely from a front-end of given transistors and design. It is meant to complement rather than supersede the more conventional spurious response tests such as i.f. and image rejection ratios, half i.f. rejection, etc., and it has also been found to correlate more meaningfully with the interference obtained from a multiplicity of signals fed to tuners from a six-over-six aerial array.

The test set-up is given in Fig. 1 where two v.h.f. generators are combined in a matched T-pad to the input of the tuner under test. Tuner output is monitored on the $y 1$ beam of an oscilloscope while being applied to the input of a distortion factor unit. The output of the distortion factor unit is coupled to an audio millivoltmeter through a decade attenuator, the signal at this point being monitored on the $y 2$ beam of the oscilloscope.

IHF usable sensitivity

The first test is for IHF usable sensitivity, which is conducted with generator No. 1

[^7]switched off. Generator No. 2 is adjusted for about 1 mV , e.m.f. at f_{2} which, as will become apparent later, should be around $88 \mathrm{MHz} \dagger$, and the signal is modulated 100% (i.e., $\pm 75 \mathrm{kHz}$ deviation) at 400 Hz or 1 kHz . The distortion factor unit is switched on and set to the "set 100% " position and the decade attenuator adjusted for a convenient 0 dB datum on the audio millivoltmeter, ensuring that the tuner is accurately adjusted to the generator
†IHF standard test frequencies are 90,98 and 106 MHz
signal. The distortion factor unit is then switched to the "read" position and its notch tuned and balanced to the frequency of the f_{2} modulation, while reducing the audio millivoltmeter attenuation correspondingly.

The IHF usable sensitivity is the least p.d. at f_{2} required at the tuner input for 30 dB ratio (as established by the decade attenuator) between the "set 100% " and "read" positions. It is generally necessary to optimise the tuning for the least distortion factor (i.e., noise plus total harmonic distortion). The IHF usable

Fig. 1. Block schematic of test arrangement for obtaining IHF usable sensitivity and figure-of-merit. Note that the attenuators and the T-pad should be matched to each other and to the aerial input of the tuner.

Fig. 2. Simple matched T pad for combining the outputs of two generators. When $Z_{01}=Z_{02}=Z_{03} R_{1}=R_{2}=R_{3}$, such that $R_{l}=Z_{01}(n-1) / n+1$, where n is the number of inputs (two in this case). Insertion loss is $6 d B$.

Fig. 3. Mullard f.m. front-end referred to in the text.
sensitivity (in $\mu \mathrm{V}$ or dB) should be noted in terms of setting of the attenuator of generator No. 2.

Generator No. 1 is next switched on and its frequency $\left(f_{1}\right)$ adjusted so that $f_{1}-f_{2}$ equals the i.f., which is usually close to 10.7 MHz , though some exploring may be necessary since tuners with ceramic i.f. filters may be slightly removed from the nominal. Attenuator No. 1 is adjusted for 50 mV p.d. at the tuner input and, initially, attenuator No. 2 is adjusted likewise. If both generators are modulated and the tuner adjusted away from f_{1} or f_{2} the $y 1$ trace will display a modulation beat when the mixer yields the i.f. from $f_{1}-f_{2}$. The modulation of generator No. 1 is then switched off, leaving only the modulation of f_{2}.
The scheme is then to run through the same exercise as for IHF usable sensitivity when the tuner is adjusted to $f_{2}+400 \mathrm{kHz}$. A greater difference may be necessary where the i.f. selectivity is poor to avoid blocking. The dB ratio for the "figure of merit" can be obtained from attenuator No. 2 by subtracting the dB setting for the IHF usable sensitivity from the dB setting finally used.

The display on $y 2$ trace is useful for ensuring that it is the noise-plus-distortion which is giving the readout!

A very simple tuner with aperiodic aerial coupling and single variable-tuned circuit to the mixer will exhibit little more than 20 dB ratio. Two variable-tuned circuits increase the ratio to $30-35 \mathrm{~dB}$, while three variable-tuned circuits can take the ratio up to 60 dB or more, depending on the quality factors of the selectivity. One tuner tested with four variable-tuned circuits (using mechanical capacitors as

distinct from varicaps) up to the mixer, returned a ratio as high as 100 dB .

Detailed evaluation of other secondorder and higher-order intermodulation products, of course, requires different signal combination using the receiver (i.e. BS $4054: 1966,43.1$) or a spectrum analyser to detect them. Reference 1 gives a set-up for measuring cross-modulation and hence intermodulation, since they are shown to be related effects, using three generators in a simulated single-sideband arrangement, in conjunction with a spectrum analyser.

One practical manifestation of thirdorder intermodulation arises from the three signals of Radios 2,3 and 4 of f_{2}, f_{3} and f_{4}, such that $f_{2}+f_{4}-f_{3}$ falls at f_{3}. Thus tuners prone to third-order products will tend to exhibit Radio 3 interference when operating in areas where the signal fields of Radios 2, 3 and 4 are very strong.
The almost exactly square-law of f.e.ts helps to reduce this trouble, and hi-fi tuners using correctly biased dual-gate f.e.ts with good front-end selectivity are capable of operating in most areas without interference and without the need for aerial attenuation.

Another cause of interference on stereo results from the sensitivity of some decoders to near harmonics of the 38 kHz switching frequency which can be present at the output of the f.m. detector under a number of interference conditions. As the audible note so produced is perturbed by the modulation, a warbling type of interference results, which has become known as "birdies". This problem is solved, or at least significantly reduced, by the inclusion of the low-pass filter (f_{0} circa 55 kHz) between the f.m. detector and the stereo decoder, and many manufacturers are now fitting this.

As already mentioned, local oscillators and oscillator pulling are other aspects of f.m. tuner design that are receiving attention. An interesting design by Mullard ${ }^{1}$ for improving the signal handling capability and reducing oscillator pulling at relatively low cost includes a BF254C f.e.t. for almost square-law mixing, a loosely-coupled oscillator feed to the gate, giving freedom from oscillator pulling for aerial signals as high as 250 mV e.m.f., 75 ohms; and a bipolar BF 324 common-base r.f. amplifier which, at $5 \mathrm{~mA} I_{e}$, has a large signal-handling capability and excellent linearity, thereby-from the input overload point of view-obviating the need for input selectivity, which helps from the noise aspect. The oscillator uses a BF195 also in common-base mode and operates at $1 \mathrm{~mA}, I_{c}$ and $9 \mathrm{~V}, V_{c e}$ for low noise and good stability. As shown in the circuit in Fig. 3, varicaps are used for bandpass tuning while the r.f. input is aperiodic.

Reference

1. Mullard Technical Communications, Vol. 12, No. 119, July 1973. Also issued as Application Note TP1395.

Meetings

LONDON

4th IEE-"Earth survey and weather applications of satellites" by R. Watson-Laing at 17.30 at Savoy P1., WC2.

4th IEE-"Air traffic control in the vicinity of a major airport" by S. Ratcliffe at 17.30 at Savoy Pl., WC2.

5th IEE-"Technology push versus market pull -the horns of the designer's dilemma" by D. A. E. Pannenborg at 17.30 at Savoy Pl., WC2.

5th IERE-"Hybrid computers and applications" by Dr R. L. Davey at 18.00 at 9 Bedford Sq., WC 1 .

6th RTS-"The role of law in today's environment of international broadcasting" by H. Bloom at 19.00 at London Weekend Television, South Bank TV Centre, Upper Ground, SEI.

11th AES-"Some acoustic thoughts on lightweight partitions" by P. Lord and "The use of acoustic scale models" by B. Day at 19.15 at the IEE, Savoy PI., WC2.

12th IERE-"Channel approach aid for Milford Haven Conservancy Board" by A. P. Tuthill at 18.00 at 9 Bedford Sq., WC1.

18th IEE-Discussion on "Area Navigation" opened by J. Inglefield and G. Belcher at 17.30 at Savoy Pl., WC2.

19th IEE-Discussion on "Oil rig instrumentation" opened by K. Gibbs, J. Ingram, D. Lomas and G. Thurgood at 17.30 at Savoy PI., WC2.
20th IEE-"The social computer", Faraday lecture by D. H. Pitcher at 18.00 at Central Hall, Westminster, SW1.
20th RTS-"A time multiplexed machine control system for broadcast television" by K. Allcock and J. Barrett at 19.00 at London Weekend Television, South Bank TV Centre, Upper Ground, SE 1.
21st IEE-"The social computer", Faraday lecture by D. H. Pitcher at 18.00 at Central Hall, Westminster, SW 1 .
26th IEE-"Fast megavolt pulse generators" by J. C. Martin at 17.30 at Savoy Pl., WC2.

26th IERE-"A novel low attenuation waveguide" by Prof. P. J. B. Clarricoats at 18.00 at 9 Bedford Sq., WCI.

BLANDFORD

Ilth IERE-"Autonull"-the suppression of large interfering signals in single- and multiequipment installations" by M. M. Zepler at 18.30 at the School of Signals, Blandford Camp.

BIRMINGHAM

19th RTS-"The opening of a commercial radio station" by David Pinnell at 19.00 at the BBC Broadcasting Centre, Pebble Mill Road.
27th IEETE/IES/IHVE/ASEE-Symposium on "Integrated environmental design" at 19.00 at the Bing Kendrick Suite, University of Aston, Gosta Green.

CARDIFF

5th IERE/IEE-"Digital techniques in broadcasting" by Dr C. J. Dalton at 19.00 at the Chemistry Lecture Theatre, Room I64, U.W.I.S.T.

ENFIELD

25th IEE-"The generation of electricity from sunlight" by P. Howell at 18.30 at Middlesex Polytechnic, Queensway.

FARNBOROUGH, Hants

6th IERE-"Bubble memories" by Dr J. R. Fairholme at 19.00 at Farnborough Technical College.

GLASGOW

25th IEETE-"Emergency stand-by generators" by H. A. Smedley at 19.00 at the Royal Stuart Hotel, Jamaica Street.

GUILDFORD

12th IEE-"An Institution of Engineers?" by Dr G. F. Gainsborough at 19.30 at C.E.G.B., Burymead House, Portsmouth Road.

IPSWICH

5th IERE--"Radar approach to weather forecasting" by Prof. E. Shearman at 18.30 at Ipswich Civil College.

LEEDS

20th IERE/E \& CS-"Oracle-information by domestic TV" by G. A. McKenzie and P. R. Hutt at 18.30 at Yorkshire TV Studios.

LEICESTER

6th IEE-"The social computer", Faraday lecture by D. H. Pitcher at 14.30 and 19.15 at the De Montford Hall.

LIVERPOOL

11th IEETE-"Thyristor controls for industry" by C. Smith at 19.30 at MANWEB Social Club, Thingwall Road.
12th IERE-"Solar energy" by W. R. Crooks at 19.00 at North East Liverpool Technical College.

LLANDAFF

12th SERT—"The RBM Z179 110° colour chassis" (lecturer from Rank Radio International) at 19.15 at Llandaff Coilege of Technology.

MAIDSTONE

12th IEETE-"Protection against electrocution and electrical fires" (speaker from Allen West-EAC Ltd) at 19.30 at the Royal Star Hotel, High St.

MALVERN

5th IERE-"Active filters" by Dr D. R. Wilson at 19.30 at The Foley Arms.

PLYMOUTH

6th IERE/IEE-"Television engineering-a look into the future" by M. Cox at 19.00 at the Main Lecture Theatre, Plymouth Polytechnic.

PRESTON

17th IEETE-"The watchful eye-computer monitoring in colour" by B. Baker and D. Wood at 19.15 at Preston Polytechnic, Corporation St.

READING

12th IERE-"CAD of type 2 phase lock loops" by P. Atkinson and A. Allen at 19.30 at the J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park.

SHEFFIELD

11th IEE-"The social computer", Faraday lecture by D. H. Pitcher at $10.15,14.30$ and 19.30 at the City Hall.

SOUTHALL

27th IEETE-"Understanding noise" by L. Minikin at 19.30 at Southall College of Technology, Beaconsfield Road.

SOUTHAMPTON

12th IERE-"Electronic ignition-is it worth it?" by Dr. E. M. Stafford at 19.30 at Southampton College of Technology, East Park Terrace.

19th SERT-"Aspects of electronic copying" by R. Hickman at 19.30 at Southampton College of Technology.

26th IERE-"Time series feature detection" by Dr D. W. Thomas at 18.30 at the Lanchester Theatre, Southampton University.

STONE, Staffs

20th IERE/IEE/IPOEE-"Communicationsbit by bit" by H. B. Law at 19.15 at P.O. Training Centre, Duncan Hall.

Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned.

World of Amateur Radio

All-solid-state stations

Recently in contact on 7 MHz with DJ6SI in Cologne I was interested to discover that his very good signals were coming from one of the small "Atlas 180 " all-transistor transceivers. This particular unit provides up to 180 watts p.e.p. on 1.8 to 14 MHz with an s.s.b. filter exciter on 5520 kHz . It is one of several compact units employing multiple r.f. power transistors and broadband techniques that have appeared on the amateur market in the past year or so; others include the Swan SS-200 and the new Heathkit SB104 which has just been launched in the United States. This covers all the amateur h.f. bands from 3.5 to 29.7 MHz with an r.f. power output of up to 100 watts p.e.p. (also providing a low-power output of 1 watt) for upper and lower sideband or 100 watts c.w. The transmitter and receiver tuned stages are broadbanded and it is claimed that, for example, it takes less than 10 seconds to change from c.w. on 3500 kHz to s.s.b. on 29 MHz . Another feature is direct six-digit read-out of frequency. With some 31 integrated circuits, 75 discrete transistors and 171 diodes and with a total of some 2800 components this unit must be one of the most ambitious kits ever produced for home construction; in its basic form it operates from 12 -volt car batteries and measures only 6 by 14 by 14 inches.

Artificial radio aurora

In his 1966 inaugural address as president of the IEE, J. A. Ratcliffe noted that when the long-wave broadcasting station at Droitwich is switched on the temperature of the electrons at a height of about 100 km increases by about $45^{\circ} \mathrm{C}$. This technique of using radio transmitters to heat up the electrons in the ionosphere is being investigated in the United States and the USSR as a means of producing artificial radio aurora to permit scatter communication on frequencies up to u.h.f. over distances of some hundreds of miles. Details of this work, on behalf of the US Department of Defence, have recently been given in two American amateur journals with a view to further participation by amateurs. Much of the basic research
has been done by the Institute for Telecommunications Sciences (ITS) and the Stanford Research Institute and has already shown that this propagation mode could be of interest to amateurs. For example, on May 11, 1972 K7PXI in Phoenix was heard via ARA in Socorro, New Mexico. In these tests yery highpower h.f. transmissions (typically about 5 MHz) are beamed upwards with an e.r.p. of the order of 5 megawatts, raising the temperature of the electron gas, forcing it to expand along the magnetic field and so permitting scattering from the fieldaligned irregularities.

The tests have shown that the effect on forward-scatter signals is almost coincident with the switching on and off of the "heater" transmitter both in the F-layer and the E-layer. High-power transmitters suitable for this work currently exist at Platteville, Colorado and at Arecibo, Puerto Rico and also in the USSR at Gorki.

Repeaters and beacons

With at least five 144 MHz f.m. repeaters now operational or testing in the UK (GB3SN Four Marks, Hampshire; GB3BC Mynydd Machen, South Wales; GB3PI Barkway Ridge, Cambridge; GB3LO Crystal Palace, London; and GB3MH Malvern Hills, Gloucester) and half a dozen more proposals at various stages including a recent attempt to gain support for a repeater in the Chelmsford area of Essex, this is currently one of the fastest growing areas of amateur radio. But, for a variety of reasons, including the fear that the operation of repeaters with simple hand-held and mobile equipment may diminish interest in the more advanced equipment needed for tropospheric and other long-distance modes, a number of British amateurs appear to be firmly opposed to this development. One even hears persistent stories of deliberate interference to the operation of the repeaters. In the United States an important relaxation in the regulations now permits operation through more than one repeater simultaneously, thus opening the way to the establishment of v.h.f. trunk networks stretching across the Continent.

GB3SN, the repeater of the UK FM Group (Southern) at Four Marks, has been undergoing trials as a beacon on 145.725 MHz before coming into operation as a repeater. At the time of writing this is controlled by a time-switch which switches it off for a couple of hours in the early morning and again from 1800 to 2015 GMT. Early reports indicate wide coverage and reliable operation.

Despite some lack of sensitivity the linear transposers on board Oscar 7 seem to be functioning well and one British amateur is reported to have been in contact with a station in California on the $432 / 145 \mathrm{MHz}$ unit. Frequencies for Oscar 7 are: Mode A uplink 145.85 to 145.95 MHz , downlink 29.4 to 29.5 MHz (beacon 29.5 MHz); Mode B uplink 432.125 to 432.175 MHz , downlink 145.925 to 145.975 MHz (beacon 145.98 MHz).

Additionally there is a beacon on 435.10MHz . Mode A and Mode B repeaters are operated on alternate days.

A 28 MHz beacon station, K 6 HME at Oceanside, California has been operating on 29.0 MHz using a Swan SS-200 solidstate transmitter. A low-power 1 -watt beacon operates on 28.150 MHz from Hopkinton, Mass.

Slow-scan progress

Richard Thurlow, G3WW of March, Cambridgeshire, comments on the increasing interest in slow-scan television transmission in the United Kingdom. There are now at least 125 amateurs authorized for this type of transmission. In the first ten months of 1974, C. C. Robinson, G3IAI, had two-way s.s.t.v. contacts with amateurs in more than 70 different countries; the total for G3WW is now more than 60 and several overseas stations including VU2AIK and W4MS are over the 80 mark.

Although rather over 100 amateurs in Japan are permitted to use s.s.t.v., it is believed that the number will increase considerably quite soon as a large backlog of applications developed during some reorganization of the licensing departments.

In brief

Among the recent qualifiers for the 5-band DXCC award is Arthur Milne who recently celebrated holding his callsign G2MI for 50 years. The German amateur Rudulf Bluel, DL8AL also joined those with 50 years of operating. Originally TS4SAC, his callsigns have included EZ4SAB, D4BWT, D4QBT and 9S4AL and he was also one of the German amateurs who held German wartime licences in 1942-44 under circumstances that seem to have had something in common with the special G7 permits held by some prominent British amateurs in the closing stages of the war. According to The Chiltern Carrier (newsletter of the Chiltern Amateur Radio Club) a firm of Southampton stamp dealers has recently been offering for sale QSL cards commemorating the first 1.8 MHz contacts between Tristan da Cunha and various other countries at prices between $£ 4.50$ (Brazil) and $£ 7.50$ (England)-the first time I have ever heard of anyone attempting to sell QSL cards in this way. A new 10 kHz "window" for Japanese 3.5 MHz stations, between 3793 and 3803 kHz , is expected to increase the number of contacts on this band with European and American s.s.b. stations (normal Japanese 3.5 MHz allocations are limited to 3500 to 3525 kHz c.w. and 3525 to 3575 kHz phone). The Australian amateur, Bill Hall, VK2XT, is believed to be the first station outside Japan to gain a JARL award for working all 644 Japanese cities. Several American states now have laws prohibiting the use of twin earphones while driving, although these regulations are apparently aimed at those using earphones for stereo and other entertainment.

PAT HAWKER, G3VA

Pseudo-random binary sequence generators

Used to construct fast, synchronous, programmable frequency dividers and a frequency synthesizer

by F. Butler, O.B.E., B.Sc., F.I.E.E., M.I.E.R.E.

A pseudo-random binary sequence generator (p.r.b.s.) alternatively known as a linear recursive sequence generator, (l.r.s.), is an assembly of bistables and exclusiveOR gates designed to produce a pulse sequence, of any desired length, in which individual pulses and spaces are randomly distributed over the sequence length. The bistables, in a shift-register configuration, are driven by a common clock pulse and each bistable drives the next in line. Outputs from certain stages, always including the last, are applied to an exclusive-OR gate, or to an array of such gates, the final output being taken back to the input of the shift register.

Illustrated in Fig. 1(a) is a general though not necessarily a practically useful method of connecting up such a system. The symbols for exclusive-OR gates have not been rigidly defined, nor has the terminology since the gates are also known as modulo-2 adders. Commonly-used symbols are shown in Fig. 1(b). Without using jargon, the properties of such a two-input gate are that when two identical inputs; 0 or 1 , are applied the output is at one particular logic level and when the inputs are different, the opposite logic output appears. In tabular form these properties can be expressed digitally as:

$$
\begin{array}{lll}
1+1=0 & \text { or, } & 1+1=1 \\
0+0=0 & \text { (equally } & 0+0=1 \\
1+0=1 & \text { valid) } & 1+0=0 \\
0+1=1 & & 0+1=0
\end{array}
$$

A standardized way of writing the exclusive-OR addition or modulo-2 sum of two quantities has been agreed upon. It is expressed as $C=A \oplus B$ and is read as " C equals A circle-sum $B^{\prime \prime}$. The above tables should be written in this way and, strictly speaking, one should differentiate between exclusive-OR and exclusive-NOR gates.
Before discussing practical circuits and applications, it will clear the ground if some of the statistical properties of linear recursive sequences are mentioned. The statements will be in the form of assertions, not backed by mathematical proofs, which would lead us into very deep water.

First, the maximum possible number of bits in the sequence generated by n bistables is $N=2^{n}-1$, one less than 2^{n} which might have been expected. The allzero combination is inadmissible. If it occurs, the bistables latch or lock up and
the sequence stops. This condition must be avoided.

With large, but still practicable, numbers of bistables, very long sequences can be generated. For example, 60 stages give a sequence length of about 1.15292×10^{18} bits. Such long sequences can be used in enciphering digital signals. In any given sequence, remembering that the total number of bits is always odd, there are, as nearly as possible, equal numbers of 0 's and l's. There are half as many runs of two bits, one quarter as many runs of three, and so on. At the end of a cycle, the sequence starts again and gives another identical train of pulses. The student of Fourier will recognize that such a sequence is not truly random but is periodic with a period equal to the cycle length. It has a line spectrum with discrete frequencies which can be filtered out by suitable equipment.

Though superficially the l.r.s. resembles random noise, more so as the cycle length increases, true random noise has a band spectrum with components at infinitesimal frequency separation. If a complete sequence is compared, term by term, with a cyclically shifted version of itself, the number of pulse polarity agreements and
disagreements, every possible pattern of n bits in the total sequence length N will appear once, and only once, at the outputs.

Exclusive-OR gates

Although these are available in packaged form, one integrated-circuit block containing four 2-input gates, it is instructive to see how they can be assembled from simple AND/OR or NAND/NOR gates. Fig. 2 shows in principle what has to be done, and how in practice, the scheme is implemented. By putting various inputs to the gate, the reader can verify that the exclusive-OR logical function is actually realized. If the two inputs A and B are taken from bistables, their complements \bar{A} and \bar{B} are normally accessible. The modulo-2 gate can then be simplified and assembled from three NAND gates only. A spare gate is then available in a quad package and can be used as an extra output buffer amplifier or inverter.

Practical generators

Integrated-circuit packages are currently available with quite large numbers of bistables assembled in shift-register form. Circuit blocks of this type, together with multiple modulo-2 gates will be used later

Fig. I(a). P.r.b.s. generator using a shift register with exclusive-OR (modulo-2) feedback.
to produce long l.r.s. streams in an economical way but it is instructive to build one or two simple models with bistables and NAND-gates using d.t.l. logic. These blocks are inexpensive and readily available. Though slower than t.t.1. equivalents, they are fast enough for many purposes and are trouble-free in use. Clock frequencies up to 4 MHz can be used with reasonably complex systems. A relatively simple but useful generator is shown in Fig. 3. Seven bistable stages are used to give a sequence length of 127 bits. Because both Q and \bar{Q} outputs are available from the bistables, the modulo-2 gate can be assembled from three of the four gates in a quad NAND-gate package, leaving one spare two-input gate for use as an inverter amplifier.

The d.t.l. bistables, SGS types 9945/ 9948, or their equivalents are basically R-S flip-flops but they can be used in the $\mathrm{J}-\mathrm{K}$ mode by connecting the outputs back to the inputs. Direct set and clear inputs override other inputs, allowing the unit to be presented as required. The 945 unit has a higher value load resistor than the 948 and is better able to drive capacitive loads. The 948 has a faster pulse rise time.

The experienced user can wire up the complete generator directly on printed circuit board though it would be wise to check all units before assembly. Alternatively, plug-in holders can be used, making it easier to trace faults or to replace defective units. The clock source can be any type of oscillator, square-wave or sinusoidal, crystal-controlled or not, up to a frequency around 4 MHz . Sinusoidal inputs must be squared up by Schmitt trigger or clipper circuits and must be

$$
\begin{aligned}
C & =A \cdot \bar{B}+\bar{A} \cdot B \\
& =A \oplus B
\end{aligned}
$$

Fig. 2. Logic function and circuit realization of exclusive-OR (modulo-2) gate.
capable of driving the load presented by the seven bistables. The random sequence can be taken from any bistable output Q or \bar{Q}. Outputs from consecutive bistables are identical but delayed in time by one clock period. Because of its random nature it is rather difficult to lock the trace on an oscilloscope display but with perseverance it can be done, allowing the sequence to be examined visually.

It will be noticed that feedback to the exclusive-OR gate is taken from the sixth and last bistable in the register. The adjoining Table shows the requisite feedback connexions for sequences of different lengths. It should be mentioned that any feedback connexions will produce a sequence of sorts but to get the maximum possible length of $N=2^{n}-1$ bits, only certain arrangements are admissible. Those given are suitable though not unique. For example, in a seven-stage register, one feedback link must always be from the last stage. The other can be from stage 3,4 or 6 . Because both Q and Q outputs
are accessible it is possible to use a simplified exclusive-OR gate. It will also be noticed that the output from this gate goes directly to one data input of the shift register. It is also applied to the other input through an inverter, which is in fact one of the four two-input NAND gates in a quad package. The other three gates form the modulo- 2 adder.

Standard frequencies from pseudonoise sources

The generator just described produces a pulse sequence which repeats after 127 bits, although the stream is random within this period. Suppose the clock frequency is exactly 127 kHz , derived from a crystal-controlled source. Clearly a run of 127 bits repeats at 1,000 times per second and it follows that the fundamental frequency of the complex waveform is 1 kHz . It has harmonics at all integral

Feedback	connexions length	for sequence
Number of bistables \mathbf{n}	Sequence length \mathbf{N}	Feedback connexions
2	3	1,2
3	7	2,3
4	15	3.4
5	31	3,5
6.	63	5.6
7	127	6.7
8	255	4.5 and 6.8
9	511	5.9
10	1023	7.10
11	2047	$\mathbf{9 , 1 1}$
12	4095	6.8 and 11.12
13	8191	$\mathbf{9 . 1 0}$ and 12,13
14	16383	4.8 and 13.14
15	32767	14.15

multiples of 1 kHz and these can be picked out, one by one, using a sufficiently selective tunable amplifier or filter.

Mathematical analysis shows that the amplitude of the harmonics falls off in a predictable way, roughly as indicated in Fig. 4. The first zero occurs at 127 kHz . It is well known that a train of narrow pulses with a stable recurrence frequency also has a spectrum of the same general form and the reader may well ask why one should construct a complex l.r.s. generator when something so much simpler would appear to do the same job. The advantage of the pseudo-noise source is that the harmonics are very much stronger because the power density of the noise spectrum is greater than that from a train of narrow pulses. Moreover, the amplitude of the higher harmonics falls off relatively slowly. Experience shows that with a clock frequency of 127 kHz , strong harmonics up to 100 kHz are available. Thus at least 100 standard frequencies of high stability can be picked out. The best equipment to do this is a wave analyzer. Such instruments commonly cover the band $0-50 \mathrm{kHz}$ with extremely high selectivity, bandwidths of $\pm 10 \mathrm{~Hz}$ to the -40 dB points being typical.
If the 127 kHz clock source is followed by several decade divider stages, the wave analyzer can easily pick out 100 frequencies between 0 and 1 kHz in 10 Hz steps, and 100 between 0 and 10 kHz in 100 Hz steps as well as the 1 kHz series just discussed. The synthesized frequencies are extremely "clean", free from noise and undesirable modulation. A lower limit to the usable frequency separation of signals is set by the selectivity and calibration reliability of the wave analyzer. By using more decade dividers to achieve a low clock frequency, standard frequencies with periods of several minutes have been picked out by means of a gyrator, the waveform being checked with a chart recorder. The upper limit of frequency depends on the speed of the logic elements; 4 MHz is easily achieved and 100 MHz is not unreasonable as a clock frequency for use with the latest circuits.

Many laboratories already possess wave analyzers and the construction of a p.r.b.s. generator could hardly be simpler. The useful range of standard frequencies so derived is good enough for routine work such as checking receivers, calibrating oscillators and testing filters. The system can provide clock sources for digital work and can generate coherent signals on multiple frequencies, the freedom from spurious signals and responses being of particular value.

The wave analyzer functions basically as shown in Fig. 5, though a practical instrument incorporates many refinements. The complex signal to be filtered is fed to a mixer or balanced modulator along with a higher-frequency signal from a tunable oscillator. The difference frequency is picked out by a narrow-band crystal filter, amplified and applied to a second mixer, together with the same variable-frequency oscillator signal. The desired component of the complex signal is thereby restored

Fig. 4. Line spectrum of a 127-bit l.r.s. clocked at 127 kHz .
to its original frequency but cleared of all other components. There is no degradation of signal frequency stability due to the v.f.o.. In the first mixer we derive $f_{o}-f_{s}$. In the second we recover $f_{o}-\left(f_{o}-f_{s}\right)=f_{s}$. This drift-cancelling technique is used in some communications receivers for much the same purpose.

It might be objected that the crystalcontrolled clock frequencies are awkward, non-standard values but it is surprisingly easy to grind down readily-available crystals to the required size on a cast-iron lap using in turn coarse, medium and fine carborundum paste. Thus to produce 127 kHz requires a stock 100 kHz bar. Values such as 1023 kHz are easily produced from a 1 MHz standard, though of course it is impossible to modify glassencapsulated units.
A solid state wave analyzer (illustrated), covering $0-150 \mathrm{kHz}$ has been built for use with l.r.s. sources as well as for the more usual applications of a tunable filter. A good deal of work is involved in the construction although, apart from the cost of the crystal filter, the instrument is not unduly expensive to build.

Programmable frequency dividers

The circuit of Fig. 3 is relatively easy to modify for use as a variable-ratio divider, programmable by a row of single-pole change-over switches, and hence adaptable for some forms of direct digital control.
In a normal shift register, initially loaded with a particular setting of bits, each clock pulse shifts the pattern along the register one bit at a time. This is also the case for a p.r.b.s. generator, except that the serial input to the register is derived by modulo-2 addition of selected outputs of the constituent bistables. An n-stage register displays in turn on its n outputs every
possible combination of bits, the pattern repeating after every $2^{n}-1$ clock pulses.
If we could recognize some particular pattern as it appeared during the sequence we could then use this information to reset the register and start again without going through the remainder of the sequence. This is easily done. All we need for an n-stage register is an n-input AND or NAND gate with the inputs connected via switches to the Q or \bar{Q} terminals of successive stages of the register. When the selected pattern appears, the resulting gate output resets the shift register and the count starts again.
An arrangement which satisfies these requirements is shown in Fig. 6. Such a counter or frequency divider is fast, synchronous with the clock, easily set up or programmed and very reliable. It uses just about the minimum number of logic blocks and requires only simple precautions in construction. However, a race condition can come about in the following way. Suppose a particular pattern appears in the register and it satisfies the gate condition. A gate output pulse appears which attempts to reset all the bistables in the register. If one is much faster than the rest, it resets first, changes its output and destroys the gate condition before the remaining bistables are reset. To avoid this effect, the gate output can be used to trigger a pulse monostable, the output of which lasts long enough to reset all the bistables. At the same time the pulse must have disappeared before the arrival of the next clock pulse. Durations around onetenth of a microsecond are about right for d.t.l. units at the fastest clock rates. The only other objectionable feature of the divider is that the natural output is a very narrow pulse, whereas a square wave would be preferable, particularly for synthesizer applications.
There is no obvious way of producing a square wave from a narrow pulse which is effective over a wide frequency range. A pulsed monostable can do this at a fixed frequency whereas if a bistable is used we get a true square wave but have to put up with a further division by two. We end up with a device which divides only by even numbers. This defect of course plagues other types of divider. One way out is to double the input frequency which allows us to end the chain with a bistable. Several aperiodic doublers are known but they will not work with square wave or pulse inputs.

Fig. 5. Wave analyzer used in restored-frequency mode as a narrow-band tunable filter.

Fig. 6. Programmable frequency divider (all even divisions 2-254).

A seven-stage shift-register divider as in Fig. 6 will give a square wave output for every even divisor between 2 and 254. It will operate at clock frequencies up to 4 MHz . Different divisors are selected by changing the switch settings. It is of course necessary to tabulate all these settings and this operation must be performed methodically. The equipment required is a counter and a stable oscillator. First, the switch settings must be found corresponding to division by two. Depending on the convention adopted for the switch positions, the pattern will be either 1000000 or 0111111 , the switch positions along the line being counted from the input end of the register. To divide by four, the second switch along the line must be changed over, thus moving the pattern along one bit to the right. The first switch may or may not need to be altered.

The correct setting is that which gives the proper divisor as checked by the counter. Each successive change involves moving the switch pattern along, cyclically, one step at a time and, if necessary, changing the setting of the first switch to give the next even-number divisor in the sequence. The procedure sounds tedious and complicated when described in words but is quick and simple in practice. Naturally it is not so easy as setting up a row of decade switches but it is a less expensive system and it has the advantages of fast synchronous working and simple wiring. Preparing the table of switch settings does not call for particularly high accuracy of the clock source or counter. For example, a clock source of 1 MHz divided by 200 gives an output of 5 kHz . dividing by 202 gives a result about 1%, 50 Hz , lower, a difference which is easily resolved.

Examination of the switch-setting table will bring out some interesting points. If we look down the first column we see the order of bits in a 127 -pulse sequence. The second column down is a similar sequence, delayed by one clock pulse, and so on for the other columns. We notice to, that each switch setting pattern occurs once, and only once, as it should.

Referring again to Fig. 6, the seven bistable outputs eventually feed a seveninput NAND gate. This is not a standard
item. Instead, we use a four-input gate which has an expander or extender node to which other inputs may be connected, (through diodes with d.t.l. units). The diodes may be discrete components or may be contained in a special extender package, (SGS type 9933 or equivalent).

Generators using i.c. shift registers
One of the first published papers ${ }^{1}$ giving practical information on random pulse

Fig. 7. 1023-bit l.r.s. generator using two five-bit t.t.l. shift registers and an exclusive-OR gate.
generators is still worth reading for the valuable background material it contains, its account of some applications, and because it shows the amount of effort required to construct such a generator from discrete components.

In contrast, an even more complex generator will now be described which can be built using only three integrated circuit packages. ${ }^{2}$ These comprise two five-bit shift registers and one exclusive-OR gate from a quad package. Both these items are in the type 7400 t.t.l. range. The gate, SN7486, calls for no particular comment but reference must be made to the properties of the shift registers. To clear all stages, logic 0 must be applied to the clear input, pin 16. For normal use, apply logic 1. To preset the register for any particular starting sequence, the individual presets must be set to 0 or 1 as required. The sequence is read into the register by applying logic 1 to the master preset input, pin 8. During normal operation, pin 8 must be at logic 0 . Shift in the register occurs when the clock input switches from 0 to 1 .

The complete wiring diagram of the 1023-bit generator is shown in Fig. 7. The output may be taken from any of the Q terminals. In the diagram it is shown coming from the first. When clocked at 1023 kHz , over 1,000 standard frequencies may be picked out by a suitable filter or selective amplifier.

Some extra packages are required to construct a programmable divider. Besides the multiple-input gate and bank of ten switches, we need ten inverter amplifiers to obtain the complements of the register outputs. Two standard packages provide twelve of these leaving two spares for use as buffers. Though unlikely, it may be necessary to drive a monostable from the gate output when resetting the register at the end of a count. Shorter sequences or simpler dividers can of course be built by omitting certain packages or units; in fact it is a simple matter to include switching to pick out runs of any length.

There is a growing interest in logic systems employing m.o.s. techniques. These i.c. packages are characterized by low power consumption, very high inpùt impedance, tolerance to wide variations in supply voltage and high noise-immunity. Manufacturing processes are simpler than bipolar techniques and large-scale integration is possible. At present, speeds are rather lower than for t.t.l. but fast enough for most purposes.

Motorola has embarked on a big programme of complementary m.o.s. development and most logic requirements can be met by off-the-shelf units at moderate prices. The range includes modulo-2 gates and a variety of shift registers suitable for use in p.r.b.s. generators and frequency dividers of almost any degree of complexity.

A publication entitled "McMOS by Motorola", lists all the packages now in production and contains some useful, though brief, application notes. One of these refers to a 255 -bit p.r.b.s. generator of the type under discussion.

Fig. 8. Internal layout of the dual ten-stage 1023-bit p.r.b.s. generator/programmable frequency divider.

Miscellaneous uses of generators

Apart from their use as pseudo-noise sources and synchronous dividers these devices find application as test-signal sources, modulators in secure communication systems and as key generators for enciphered digital communications. A note on this last application may be of interest. Suppose that a plain text message in the form of a stream of binary digits is to be enciphered by the addition of a random bit stream, the key synchronous with the traffic. The two sequences can be added modulo-2 and securely transmitted by line or radio. At the receiving end an identical key stream is once more added (exclusive-OR), to the enciphered signal. It will be found that the original plain text is recovered. An example illustrates the principle:
Transmitting
Plain text
10110001111011001011011
Random key
00101100010000111011001
Enciphered text
01100010010100001111101

Receiving

Enciphered text
01100010010100001111101
Random key
00101100010000111011001

Plain text

10110001111011001011011
It will be seen that the last line is the same as the first and the plain text has been completely recovered. Security clearly depends on the random nature of the key which must have a very long sequence before repeating; indeed it should never repeat.

Referring back to the statistical properties of l.r.s. generators it is not difficult to see that if two identical sequences are produced and matched up pulse for pulse and space for space, then if they are exclusive-OR gated together the logical output will be 1 (continuous high). If a similar operation is conducted with one of the sequences displaced from the other by an amount corresponding to one clock period then the gate output will be almost zero (low), if averaged over the whole period of the sequence because, as already

Fig. 9. Wave analyzer-used as a narrow-band tunable filter.
stated, the number of agreements and disagreements of the two patterns will, at most, differ only by unity. The same is true for any other relative shifts of the two patterns. This points to the possibility of developing a secure communications system.

If instead of transmitting a carrier, modulated or keyed in amplitude, frequency or phase, we transmit a random pulse train, this will sound like noise in the receiving telephones. If we switch from one sequence to a different one, or to a cyclically shifted version of the first, the transmission will still sound like noise, identical to the other. But if these digital streams are properly correlated with the outputs of similar generators at the receiving end, then intelligible communication becomes possible in Morse or in any normal printer code. There are obvious problems in setting up practical systems. Precise synchronization of the generators at each end of the link is required, the bandwidth of the transmission at high bit rates is very large and, in the h.f. band, multipath propagation effects cause difficulties.

An unauthorized interceptor hears nothing but noise during transmission. To read the traffic he must be in possession of 1.r.s. generators exactly the same as those used on the link and even if he had such generators there is still the problem of synchronization and of finding the correct starting point in the sequence to give maximum correlation of the two bit streams. With 60 -bit shift registers, the intercept task is a daunting one.

Few problems have been encountered in constructing the items so far discussed but, in the event of trouble, attention should be paid to the following points. Wiring runs should be as short as possible and a symmetrical layout of parts should be adopted. Some d.t.l. packages seem to work best with a supply voltage rather less than the nominal 5 V . Capacitive decoupling at the unit power supply pins may sometimes be required. Mains transients can sometimes stop or interrupt the pulse sequence. Noise immunity of some units is not all it might be and it may occasionally be found that, after switching on, a sequence generator fails to start. This is because the shiftregisters lock up in the all-zero state. Though it is possible to incorporate logic to avoid this, it is simpler to switch off and start again.

References

1. "Random Pulse Generator Tests Circuits; Encodes Messages", B. K. Ericksen, J. D. Schmidt, Electronics, June 23, 1961, pp.56-59. 2. "A pseudo-Random Pulse Train Generator with Controllable Rate for Modelling of Audiometric Systems", J. K. Moss, R. J. Simpson and W. Tempest, Radio and Electronic Engineer, Vol. 42, No. 9, September, 1972, pp. 419-424.

High capacity p.c.m. system

A high bit-rate p.c.m. line transmission system, working at $120 \mathrm{Mbit} / \mathrm{s}$, has been put into field trial operation by the Post Office between Guildford and Portsmouth. Built by Standard Telephones and Cables, it is claimed to be the first of its kind in Europe and represents the Post Office's first step in developing a digital trunk network capable of carrying a variety of traffic. Of course there are p.c.m. systems already operating in the UK but these work at only $1.5 \mathrm{Mbit} / \mathrm{s}$, carrying 24 simultaneous telephone conversations over distances up to about 30 km . The $120 \mathrm{Mbit} / \mathrm{s}$ system is capable of accommodating 1,680 telephone channels, one colour television channel, 14 viewphone channels, 224 broadcast-quality sound channels, or a mixture of these types of traffic within its capacity.

The p.c.m. signals are transmitted along two coaxial "tubes" of an existing eight-tube cable which is already in use for 12 MHz analogue carrier (f.d.m.) transmission. Repeater spacing and electrical power feeding are identical with those of the 12 MHz system and in fact the 78 p.c.m. repeaters between Guildford and Portsmouth are installed in existing repeater stations-some of which are underground watertight and pressurized housings. Most of the repeaters' active functions are, performed by the well proved BFY90 transistors. To allow maximum repeater spacing and remove d.c. component from the signal, the $120 \mathrm{Mbit} / \mathrm{s}$ binary information is converted for transmission into a

A main repeater for the $120 \mathrm{Mbit} / \mathrm{s}$ p.c.m. system between Guildford and Portsmouth.

90Mbaud ternary code consisting of the three voltage levels $+6 \mathrm{~V}, 0$ and -6 V .

At the Post Office's Portsdown repeater station near Portsmouth a demonstration was given, using a 30 -channel p.c.m. terminal, of voice transmission over a distance of 130 km from Portsmouth to Guildford and back. This used the system's multiplexing process for telephone channels. First, 30 channels are multiplexed to give a $2.048 \mathrm{Mbit} / \mathrm{s}$ stream, then four such streams are multiplexed to give a $8.448 \mathrm{Mbit} / \mathrm{s}$ stream and finally 14 of these are multiplexed to give the $120 \mathrm{Mbit} / \mathrm{s}$ stream.

International discussion of the multiplexing of digital signals based on the 30 -channel p.c.m. system has now resulted in the following hierarchy being adopted for use throughout Europe:
1st order $\quad 2.048 \mathrm{Mbit} / \mathrm{s} \quad 30$ channels 2nd order $\quad 8.488 \mathrm{Mbit} / \mathrm{s} \quad 120$ channels 3 rd order $\quad 34.368 \mathrm{Mbit} / \mathrm{s} \quad 480$ channels 4th order $139.264 \mathrm{Mbit} / \mathrm{s} 1,920$ channels The first and second orders have already been adopted by the Post Office for the UK. Future plans for digital radio relay, and higher rate transmission on coaxial cable, will be based on the fourth order in the hierarchy, approximately $140 \mathrm{Mbit} / \mathrm{s}$, and multiples of this. The same basis will also be used for waveguide and optical fibre systems.

Sixty Years Ago

Humour was certainly an important component in the armoury of the wireless engineer of 1915. This was exemplified by a Wireless World reader's letter published in February of that year proposing a somewhat novel method of electric propulsion for ships, and reporting on several apocryphal experiments.
"Last week, after a short paper on 'Directional aerials', one of the members suggested that as action and re-action are equal and opposite there would certainly be in a directional aerial a force produced in the contrary direction to that in which the maximum energy was sent, therefore in his opinion if a good directional aerial were installed on a vessel, it would experience a force in the direction of the free end of the aerial, and so would be propelled. The free end, of course, would be generally over the bows of the vessel in order that she should move forward, but to move astern it could easily be arranged to shift the downleads to the other end. The speaker predicted that this would be the method of propulsion of the future-at any rate for small craft-and he became so excited, sir, over that prospect, that he wanted to communicate his idea to the Admiralty personally and without delay. He had great trouble, so we could hear at the porter's lodge, and was only persuaded to come quietly back on the promise of an extra bun for tea."

D.C. level clamp

The need sometimes arises, e.g. after a stage of a.c. amplification, to clamp the minimum level of a signal voltage to a d.c. reference voltage. The circuit illustrated was developed to clamp, to the zerovolt level, signals having an amplitude of between 10 mV and 10 V . The familiar diode-and-capacitor clamp circuit is unsuitable here because of the diode's forward conduction characteristic.

In each cycle, the capacitor, C, charges to the peak negative value ($V_{b}=$ $-V_{p}$) of the input voltage, V_{i}. The voltage V_{a} then follows the input voltage ($V_{a}=$ $2 V_{i}+V_{p}$) while V_{b} remains at the level to which the capacitor was charged, decreasing only with a time constant

$$
T \approx \frac{\left(R_{4}+R_{6}\right) R_{2} C}{R_{4}+R_{6}+2 R_{2}}
$$

Lower trace is the input signal; upper trace is the output from the restorer. Oscillogram was obtained with the circuit operating on a 150 Hz signal with an amplitude of 40 mV peak-to-peak.

The required voltage waveform, with its minimum d.c. level restored to zero, appears as $V_{a}-V_{b}$. A low-impedance single-ended output is provided by $I C_{2}$ and, in this case, unity gain overall.

Using a $250-\mu \mathrm{F}$ electrolytic capacitor, the circuit clamps sinusoidal waveforms between 3 Hz and 10 kHz with little distortion. For use at higher frequencies, $I C_{\text {, }}$ should have a faster slew rate. Lower distortion can be achieved if $I C_{2}$ has a higher input impedance-allowing larger values of R_{4} and R_{5} to be used.
C. B. Mussell,

United Liverpool Hospitals.

Tolerant astable circuits

Some simple one-capacitor astable circuits are described below. They have none of the usual problems experienced with Eccles-Jordan and one-capacitor circuits, since they are reliable over a wide temperature and voltage range, and are substantially independent of transistor gain spreads.
Fig. 1 shows a $20-\mathrm{kHz}$ astable which can have 50 p.p.m./deg C temperature coefficient of frequency if an NP0 capacitor, and low-coefficient wire-wound resistors are used, providing the transistors $T r_{I}$ and $T r_{2}$ are of the same type. Frequency varies by 0.05% over 6 to 12 V supply, under these conditions.

Timing may be varied with resistors R_{l} and R_{2}, and with capacitor C. Duty cycle is determined by the ratio of resistors R_{3} and R_{4}. The values shown give 50% duty cycle. Resistor R_{5} may be decreased in value to allow higher output currents and/or high frequency operation; however, temperature stability is then slightly degraded.

Fig. 2 shows a high-performance pulser, capable of operating at from 10% to 1% duty cycle, approximately. The on current may be up to 50 mA , and the off current drawn by the pulser is about $1 \mu \mathrm{~A}$. This allows effective battery-power economy when operating at very low duty cycles. Standard Eccles-Jordan circuits cannot approach this performance.

Components R_{2} and C determine the on time; however, the $4.7 \mathrm{M} \Omega$ resistors and $T r_{1}$ gain affects this time at short duty cycles. Components R_{I} and C determine the off time. As shown, the circuit pulses about twice each second. This varies by

about 10% over the $-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ temperature range. This variation may be reduced to about 1% by the addition of an emitter follower on the base of $T r_{f}$, of complementary polarity to $T r_{I}$, to cancel the $V_{B E}$ temperature drift of this transistor.
This pulser circuit has been used for animal temperature and heart-rate studies. It is possible to have implanted transmitters operating from one mercury button cell for more than one year with a suitable choice of resistor values.
C. Horwitz,

University of Sydney,
Australia.

Analogue gate with no offset

An analogue gate capable of controlling audio signals by means of t.t.l. levels is shown. It is an improvement over existing gates in that when off there is negligible d.c. offset present at the output, thereby simplifying design of any subsequent stages in a large system.

Attenuation when off is approximately 66 dB and negligible when on and fed into high impedence stages. The control should be logic $1(+5 \mathrm{~V})$ to open the gate, and logic $0(0 \mathrm{~V})$ to close it again.
There are many possible applications for such a circuit in the design of programmed channel selectors in the field of music synthesis for instance, for which it was designed.
L. Cook,

Prescot,
Lancs.

Electronic organ to piano

A circuit was needed which would simply convert an organ to a more piano-like instrument. It exponentially attenuates the output from an oscillator to zero in a manner adequate to mimic the waveform of a piano. In addition this circuit has the advantage of being self-triggering. Thus the exponential decay starts only when the waveform from a multivibrator is applied -dispensing with the need for extra contacts on the keyboard. It has been used in conjunction with the J. H. Asbery multiphonic organ published in the June 1973 issue of Wireless World, although it has many other applications.

Operation of the circuit is as follows: when no signal is being applied, R_{2} draws a current through $T r_{1}$ thus biasing it on and maintaining the voltage at A at supply potential. Application of a signal results in Tr_{1} turning off-due to the rectifying and smoothing action of D_{1}, D_{2} and C_{2}. Capacitor C_{3} then discharges through R_{3} and R_{5}.

The f.e.t. gate is controlled by this discharging capacitor. Potentiometer R_{S} ensures the f.e.t. just switches off when C_{3} is fully discharged. When the signal is removed $T r_{1}$ conducts, C_{3} charges and so
rapid manipulation of the keyboard is possible.
C. J. Outlaw,

Farnham,
Surrey.

Complementary ramp generator with independent amplitude/slope control

A circuit was required to generate two complementary ramps to be used to amplitude modulate auditory signals to either ear to create the impression of a left to right scan.

It is a simple matter using standard circuit techniques to either generate complementary ramps or to generate one ramp with independent control over amplitude and frequency. For this application, however, it was desirable to have control of amplitude and frequency of the two ramps at the same time, while avoiding interaction between the two controls. This is accomplished as follows: a ramp is generated between a reference voltage, $V_{\text {ref }}$ and earth and its complement is generated by inversion through an operational ' amplifier and a level shift of $V_{\text {ref. }}$

The time taken to discharge a capacitor from an initial voltage $V_{\text {ref }}$ to zero volts
depends on two parameters, discharge current and the initial voltage. If the discharge current is from a constant current source and if the current source is made voltage controlled, it can easily be shown that $T=C R$, which is independent of $V_{\text {ref }}$, the ramp amplitude. The ramp time is then independently controlled by R_{s}. For the circuit shown, the output ramp amplitude and time are variable from 400 mV to 8 V , and 50 ms to 2.0 s , with negligible interaction between the two controls.

The capability of effecting this type of control described depends on a constant current source which avoids non-linearity due to $V_{b e}$ drops when $V_{r e f}$ becomes comparable to 0.7 volts. Hart* provides such a circuit which uses the high gain properties of operational amplifiers to reduce the effect of the $V_{b e}$ drop. It can be shown that this reduction is by a factor of $1 /(1+A)$ where A is the open-loop forward voltage gain of the amplifier.
A conventional current mirror is then used to transfer the constant current to a
useful voltage level and this current is then used to discharge the ramp capacitor. Each time the capacitor reaches approximately zero volts, it is reset to $V_{\text {re }}$ by a switching transistor controlled by a comparator. At the same time, a positive feedback loop is changing the comparator switching voltage to $V_{r e f}$ so that when the capacitor voltage reaches this value, the shorting transistor is switched off and the capacitor again begins discharging towards zero volts.

Due to the very high impedance at the ramp output, effectively that of the current source, a voltage follower output stage is required as an impedance transformer. Another op-amp is used for the inversion and level shifting of the complementary ramp, and so both ramps are available from very low impedance sources. L. J. Retallack, Southampton University.
*Hart, B. L., Current generators, Wireless World, vol. 27, 1970, pp. 511-4.

When flashover is the danger

UseEEVspark gaps.

Photograph courtesy of C.E.G.B.

You name it. EEV spark gaps can stop it from happening.

Our range covers any voltage from $400-40,000 \mathrm{~V}$ and handles powers up to 15 kilo joules.Types are available in glass or ceramic envelopes.

EEV spark gaps are very rugged and will work in any environment, unaffected by dust, damp or atmospheric changes. They are also compact, consistently dependable and long-lasting.

We make 2-electrode and 3-electrode types, and the whole range covers many applications including:

Flash-over protection. Crowbar protection circuits. Protection from transient phenomena. Protection circuitry for s / c drives for thermionic tubes.

Capacitor discharge circuits. Firing circuits. Relaxation oscillator circuits for gas ignition equipment. Quench circuits.TIG welding equipment.

For data and any help you need, write or'phone EEV at the address below.

Right, GXQ400, a crow bar protection device and Right, GXQ400, a crow bar protection device
GNU40, for protection circuits in ground;air communications equipment.

EEVand M-OV know how.

Now-two fascinating ways to enjoy saving money!

NEW! Sinclair Scientific kit sis.95t
 Components for Scientific kit

Britain's most original calculator now in kit form

The Sinclair Scientific is an altogether remarkable calculator
It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair Scientific costs a mere $£ 32.35$ (including VAT).
And as a kit it costs under $£ 20$!

Forget slide rules and four-figure

 tables!With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin.
cos and arccos,
tan and arctan,
automatic squaring and doubling,
$\log _{10}$, antilog ${ }_{10}$, giving quick access to x^{\vee} (including square and other roots).
plus, of course, addition, subtraction, multiplication, division, and any calculations based on them.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.
All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer - they're still exceptional value. Use the order form.
(illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc.)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific

Basic lunctions on simple keyboard Basic logs and trig functions (and their inverses), all from a keyboard as simple as a normal arithmetic calculator's. 'Upper and lower case' operation means basic arithmetıc keys each have two extra functions.

- Scientific notation Display shows 5-digit mantissa. 2-digit exponent, both signable.
- 200-decaderange
10^{-99} to 10^{+99}
- Reverse Polish logic

Post-fixed operators allow chaın calculations of unlimited length eliminate need for $\mathrm{an}=$ button.

25-hour battery life
4 AAA manganese alkaline batteries (e.g. MN 2400) give 25 hours continuous use. Complete independence from external power

- Genuinely pocketable , $41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$. Weight 4 oz . Attractively styled in grey, blue and white.

Sinclair Cambridge kit si4 somp

At its new low price, the original Sinclair Cambridge kit remains unbeatable value
In less than a year, the Cambridge has become Britain's most popular pocket calculator.

It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge kit 1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

WW- 142 FOR FURTHER DETAILS

Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question.

All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today

Scientific

Price in kit form $£ 19.95$ inc. VAT
Price built $£ 32.35$ inc. VAT
Cambridge
Price in kit form $£ 14.95$ inc. VAT
Price built $£ 21.55$ inc. VAT.

Sinclair Radionics Ltd.
FREEPOST,St Ives,
Huntingdon, Cambs. PE174BR
Reg. No : 699483 England. VAT Reg. No: 213817088.

Vocal Master of Ceremonies

There are precious few ceremonies, functions, meetings or entertainment events that Shure Vocal Master Sound Systems can't cover - regardless of room size or apparent acoustic difficulties. The Vocal Master is designed to project the voice with intelligibility and authority to the rear of large areas without overwhelming the listeners up front. It's versatile, easy to operate, and totally reliable. It's the system that earned its reputation for superb sound amplification by meeting the standards of professional entertainers and is now used in hotels, churches, schools, executive meeting rooms and entertainment facilities from Land's End to John O'Groats in preference to built-in "custom'' systems costing many times more.
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

WW-147 FOR FURTHER DETAILS

Transistor pairs

The pros and cons of d.c.-coupled pairs, circuits for which are given in set 20 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

Paisley College of Technology
"Supplementary or complementary, opposites or composites?" asked Tweedledum. "Contrariwise", said Tweedledee. It is not the intention to rewrite "Alice ...", but it is not always clear what the advantages are in d.c.-coupled pair con-figurations-voltage gain plus impedance change, super current-gains, p-n-p simulation, thermal compensation or perhaps a current source as a stabilizing network.

The pièce de resistance might be the long-tailed pair or differential amplifier (where would the linear i.c. be without it?) which provides some satisfying amplifying properties-some possible variations for small-signal operation are shown in Fig. 1. For example, the connection shown in Fig. 1(a) converts a signal difference between two inputs to equal, but antiphase collector signals. Signals common to both inputs (e.g. superposed noise signals from the same source) are reduced without affecting the differential gain, which is that due to a single transistor.

The ability of this amplifier to prevent amplification of a common signal is called the common-mode rejection ratio, being the ratio of the differential voltage gain to the common mode gain, usually expressed indB. The single-ended inputs of Fig. 1(b) and (e) produce an output at Tr_{2} collector, equivalent to $T r_{1}$ as an emitter-follower driving $T r_{2}$ as a common-base amplifier. In addition, the output of $T r$, is equal in magnitude but antiphase to that of Tr_{2}, on the assumption of constant total current (long-tail). Hence the differential output in Fig. 1(b) is twice the singleended output. The yoltage gains are approximately $R / h_{i b}$ and $R / 2 h_{l b}$ for Fig. 1(b) and (e) respectively, where $h_{i b}$ is the effective input resistance of the common base configuration. Fig. 1 (c) and (f) are not used as amplifiers, but are useful as a means of determining the gain to common mode signals. This should be much less than unity to give good rejection.

The common-emitter, common-base, connection shown in Fig. 2(a) is the cascode amplifier, where the first stage transistor $T r_{1}$ has current gain, and the second stage Tr_{2} has voltage gain. The advantages are a large gain-bandwidth
product and also, for high voltage outputs, the high breakdown value of the common base transistor Tr_{2} is essential.

The common collector-common collector pair of Fig. 2(b) is the familiar

(a)

(c)

(e)

Darlington connection, where the effective current would be approximately β^{2}, if the transistors were identical. This would be true for short-circuit outputs, but a practical value for the β of each transistor

(b)

(d)

(f)

Fig. I. Variations of the long-tailed pair include circuits with differential input, differential output (a), single-input, differential output (b) \& (c), differential input, single output (d), and single input and output (e) \& (f).

Fig. 2. Other ways of connecting two transistors are common-emitter, common-base i.e. cascode (a), common-collector pair i.e. Darlington (b), complementary pair with only one $V_{b e}$ drop (c), complementary pair with no $V_{b e}$ drop (d), symmetrical complementary pair i.e. class B amplifier (e), and the regenerative pair (f).
would be to specify the minimum value quoted by a manufacturer (assuming that discrete transistors are being discussed, because it must be remembered that super- β packages are also available with defined current gains). The complementary connection of Fig. 2(c) provides only one $V_{b e}$ drop compared with Fig. 2(b), and that of (d) cancels the $V_{b e}$ drops, but offers some second-order residual offset between input and output, and requires a separate bias path (not shown) for Tr_{1} emitter current and Tr_{2} base current. Complementary versions may provide an advantage, in that the transistor choice for the first stage can be that with the highest current gain at low currents.

When opposite types of transistors are connected in complementary form, such as Fig. 2(e), we have the basis of a class-B amplifier. The circuit for each half-cycle of signal is essentially identical, and the load is driven from a low-impedance source, because each transistor acts as an emitter follower. An advantage is that interstage and output transformers are not necessary when such a circuit is used at audio frequencies.
The interconnection of $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors as in Fig. 2(f) provides a regenerative switching action due to the positive feedback between collectors and bases. It is similar in operation to a unijunction transistor, and there are of course similarities with the thyristor. Switching speeds can be faster than a single unijunction device because highfrequency transistors can be employed. The same arrangement is the basis for a constant-current circuit (Circards set 6, card 5), while those sources which may be classed as current controlled tend to use the current-mirror-no self-respecting
operational amplifier would be without one!
The complementary-symmetry m.o.s. pair has been an excellent addition to the pair family. Besides being the basis of several logic gates, it also has application in multivibrators and as a linear amplifier.

A close study of most linear integratedcircuits will reveal the use of two or more of the pairs mentioned, to provide a composite arrangement which offers advantages that no single transistor or pair can do.

Titles of cards in set $\mathbf{2 0}$ of Circards (available shortly)
 are:

High current gain I (Darlington)
High current gain II
Cascode
Long-tailed pair
Current mirror
Complementary pair
Complementary emitter follower
CMOS pair
Mixed pairs
Triples

What are Circards?

Circards are a new method of collating and presenting data about circuits in a compact and easily retrievable way. The sets of $203 \times 127 \mathrm{~mm}(8 \times 5 \mathrm{in})$ doublesided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastic wallets keep the cards in good condition.

Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included
together with cross references to related circuits. The Circard concept was outlined more fully in the October 1972 issue of Wireless World, pp.469/70.

How to get Circards

Order a subscription by sending $£ 13.50$ for a series of ten sets to: Circards
IPC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs $£ 1.50$, postage included (all countries). Make cheques payable to IPC Business Press Ltd.
Topics covered so far in Circards are:
1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone controls, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C \& D)
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital counters
15 pulse modulators
16 current-differencing amplifierssignal processing
17 c.d.as-signal generation
18 c.d.as-measurement and detection
19 monostable circuits

new Products

P.c.b. supports

Ilex pillars are designed to support and insulate p.c.bs from a chassis. The pillars are made from nylon and have a girdershaped section with a spring-in fastening at the top and a push-in clip at the base.

The supports may be mounted horizontally or vertically and are available in sizes from $\frac{1}{4}$ in to $1 \frac{1}{2}$ in from West Hyde Developments Ltd, Ryefield Crescent, Northwood Hills, Middx HA6 1NN.
WW300 for further details

Digital watch kit

A series of l.e.d. digital watch kits designated LWS-6120 has been announced by Litronix. The kits are all based on the LMC-6120 low-power c.m.o.s. chip which counts hours, minutes and seconds. Also included in the kits are two monolithic $\mathrm{n}-\mathrm{p}-\mathrm{n}$ bipolar arrays, the LBC-1060 digit driver and the LBC-1070 segment driver. All three circuits are supplied in chip form intended for hybrid assembly methods. Eight different display options are available which may be supplied either as monolithic l.e.d. chips or pre-packaged and

WW300
aligned for flow solder mounting to the watch module. The kits are priced from $£ 16.62$ in quantities of 100 . Litronix, Bevan House, Bancroft Court, Hitchin, Herts SG5 1LW.
WW301 for further details

Digital X-Y plotter

The model WX5 11 plotter is designed for use with mini-computers or data output terminals. The instrument is compatible with a standard t.t.l. interface as well as t.t.l.-level pulses to give $+x,-x,+y,-y$, pen up and down (z axis), reset and chart change or feed operations. Specifications for the plotter are: a writing speed, in the x / y axis, of $400 \mathrm{steps} / \mathrm{sec}$ with a step width of 0.1 mm . A maximum z axis speed of ten times $/ \mathrm{sec}$, and a rise time of $1 \mu \mathrm{~s}$ with a pulse width of $1 \mu \mathrm{~s}$. The machine, which is claimed to have an overall accuracy to within $\pm 0.2 \%$, has a writing area of $350 \times$ 250 mm and overall dimensions of $400 \times$ $496 \times 140 \mathrm{~mm}$. Environmental Equipments Ltd, Eastheath Avenue, Wokingham, Berkshire RG11 2PP.
WW302 for further details

I.c. heat sink

A heat sink suitable for use with d.i.l. i.cs is available from G.D.S. The dissipator, which is designated LIC214, has a "staggered finger" configuration with a top plate for securing the i.c. in position. The heat sink will dissipate approximately 400 mW for every $10^{\circ} \mathrm{C}$ rise in junction temperature. Overall dimensions for the device are: width $\frac{3}{4} \mathrm{in}$, length 1.8 in , and fixing holes 1.043 in between centres. GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Berks.
WW303 for further details

Colour checker

Two colour checkers for shadowmask and Trinitron tubes have been introduced by BSP Ltd. The checkers, which are similar

in shape to a cheque card with a viewing window, are intended for use on static pictures such as test cards. The card is placed horizontally on the screen with the window over a selected part of the picture. The window area is a grid of lines in the Trinitron version and a matrix of black dots in the shadowmask type. This enables the colours to be analyzed separately.

Two colour checkers are supplied (mail order only) in a wallet with an instruction booklet for $£ 2.58$ including v.a.t. and postage. BSP Ltd, Sandwich, Kent CT13 9LP.
WW304 for further details

Hi-fi label kit

Bib Accessories are now marketing a pack of 76 printed-p.v.c. labels suitable for identifying audio leads. Each title has two labels and in the case of left and right leads the labels are printed in red and black. The kit also contains 38 blank labels enabling miscellaneous titles to be written. Bib Hi-Fi Accessories Ltd, Hemel Hempstead, Herts.
WW305 for further details

Liquid crystal display

A range of liquid crystal displays is now available from Hamlin Electronics. The range comprises $3 \frac{1}{2}$ digit types and one 8 digit type all operating in the dynamic scattering mode. The devices in the 3302 series are suitable for wrist-watch applications and have a power consumption of $30 \mu \mathrm{~W}$. Series 3400 consists of digital clock type displays and incorporate $\mathrm{am} / \mathrm{pm}$ indication, while the 3600 series is suitable for instrument readouts. The eight digit devices in the 3500 series have been specifically designed for use in calculators and incorporate a floating decimal point. Hamlin Electronics Ltd, 14 New Road, Southampton, Hants SO2 0AA.
WW306 for further details

WW302

WW303

Instrument case handles

A range of 12 handles comprising heavy duty, folding, and flush types, each having variation of size and fixing, has been introduced by West Hyde Developments. All of the models have concealed spring clips which hold the hinged handles in either the open or closed position. Rubber buffers are also incorporated to ensure quiet operation. Apart from the smallest version, which is constructed from chromium plated steel, the handles are polished aluminium with metal base plates and are supplied either un-assembled and unpainted or complete and painted. West Hyde Developments Ltd, Ryefield Crescent, Northwood, Middx HA6 1NN.
WW307 for further details

Interference filters

The JX 5100 series of filters is designed to protect equipment from mains-borne noise as well as protecting the mains from equipment noise. The filters are available for operation at $+125^{\circ} \mathrm{C}$ and 250 V a.c. in a range of current ratings from 1 to 30 A . The series is claimed to withstand a test voltage of 2100 V d.c. to ensure protection against high-voltage transients. Sprague Electric UK Ltd, 159 High Street, Yiewsley, West Drayton, Middx.
WW308 for further details

Digital multimeter

The DM2 multimeter from Sinclair is a five-function four-range instrument with a $3 \frac{1}{2}$ digit l.e.d. display. The meter uses a m.o.s. l.s.i. chip which has built-in 7 -segment decoding and provides an input impedance of typically $10 \mathrm{M} \Omega$. A chain of metal film resistors form a voltage divider to obtain ranges up to 1000 V , and to provide current shunts for ranges up to 1 A . A mean averaging a.c. to d.c. converter is also incorporated, to provide alternating voltage and current ranges; overload protection is provided. The meter is battery powered, measures $9 \times 6 \times 2 \mathrm{in}$, and costs $£ 59.00$ plus v.a.t. Sinclair Radionics Ltd,

WW307

London Road, St. Ives, Huntingdon, Cambs PE17 4HJ.
WW309 for further details

Resistor modules

ITT have introduced a range of single-inline packaged resistor modules comprising nine types in four package sizes. Resistor values between 10Ω and $1 \mathrm{M} \Omega \pm 10 \%$ are available with a power rating of $1 \overline{2} 5 \mathrm{~mW}$ per resistor in the temperature range -40 to $+75^{\circ} \mathrm{C}$. The networks cost between 6 p and 13.5 p and are available from ITT Components Group Europe, Film Circuit Operation, Brixham Road, Paignton, Devon.
WW310 for further details

Thermal wire-stripper

Litesold have introduced a pair of thermal wire-strippers suitable for removing p.v.c. and p.t.f.e. coverings up to 4 mm diameter. The electrically heated V-shaped jaws melt the insulation material which is then drawn off the conductor. The model PVC is a $14 \mathrm{~W}, 12$ or 24 V , tool for low temperature insulations while the model PTFE is a 48 W 24 V stripper suitable for p.t.f.e. insulations only. Light Soldering Developments Ltd, 97-99 Gloucester Road, Croydon, Surrey. WW311 for further details

Ultrasonic transducer

The Linden Laboratories model 70100 ultrasonic transducer is available for operation at two standard frequencies. The $25 \mathrm{kHz} \pm 2 \mathrm{kHz}$ version has a bandwidth of 0.4 kHz at -6 dB , a receiving sensitivity of -50 dB , relative to one volt per microbar, a capacitance of 1500 pF and a tuning inductance of 26 mH . The $40 \mathrm{kHz} \pm 2 \mathrm{kHz}$ version also has a 0.4 kHz bandwidth at -6 dB but the receiving sensitivity is -60 dB with a capacitance of 1600 pF and a tuning inductance of 10 mH . Both types of transducer use a piezoelectric ceramic housed in an aluminium case measuring $20.6 \times 26 \mathrm{~mm}$. Linden Labora-

WW309
tories Inc., PO Box 920, State college, Pa. 16801, USA.
WW312 for further details

Waveform monitor

The EV4040 colour-television waveform monitor is available in PAL or NTSC versions and offers a bright display under high gain conditions. The instrument can also display remotely-commanded RGB signals, and has internal/external sync selection. A filter switch enables individual display of low frequency components, chrominance, differential gain and line time non-linearity. An active d.c. restorer may be selected to maintain the position of the back porch on the display regardless of average picture level. The illuminated graticule has ten divisions with major parameter lines emphasised. Electronic Visuals Ltd, PO Box 16, Staines, Middx. WW313 for further details

Miniature transformer

The E75A is a recent addition to the 75 range of transformers from Belclere. This mains transformer will mount directly on to a p.c. board and occupy a volume of about 0.65 cubic in. The secondary winding, which is centre tapped, provides an output of 0.2 VA and the makers claim that the temperature will not exceed $55^{\circ} \mathrm{C}$ when the secondary winding is shorted. Belclere Ltd, Cowley, Oxford OX4 2BU.
WW314 for further details

Digital signal generator

The DG2 is a crystal controlled signal generator providing a square wave output from 0.1 Hz to 1 MHz . The output can be set to three significant figures above 1 Hz with an amplitude of either 5 or 2.5 V . An accuracy of ± 20 p.p.m. at $25^{\circ} \mathrm{C}$ with a stability of ± 50 p.p.m. from 0 to $+60^{\circ} \mathrm{C}$ is claimed for the instrument which can also be used to multiply an input frequency by factors from 0.001 to 1000 . The generator, which has both internal battery and

WW314
mains power supplies, measures $59 \times 215 \times$ 254 mm and costs $£ 140$ from Jiskoot Autocontrol Ltd, Tunbridge Wells, Kent.

WW315 for further details

Transistor covers

A range of insulating covers for T03 and T066 packages is available from Jermyn. There is a choice of either stretch on, screw hole or flange fixing types with different heights. All the covers are moulded from nylon and will withstand a temperature of $125^{\circ} \mathrm{C}$. Jermyn Manufacturing, Sevenoaks, Kent.
WW316 for further details

Audio spectrum analyzer

The Amber Audio model 4550 analyzer provides visual representation of the spectral energy content of an audio signal. The unit is a relatively low-cost, compact instrument $(13.3 \times 21 \times 27.9 \mathrm{~cm})$ whose application is in sound recording, mixdown of multichannel recordings and broadcasting. The device may also be used for acoustic and vibration analysis. Audio input is divided into ten octave-width segments (20 Hz to 20 kHz), each octave being displayed on a vertical column of ten l.e.ds. The instrument includes two independent accumulating memories and four inputs can be displayed separately or in any combination by means of front panel push buttons. The display range may be set to either 10 or 20 dB while a step type attenuator varies the input sensitivity in 2 dB increments over a 20 dB range. A sample button allows short spectra samples to be taken. Other main specifications are: centre frequencies 31.25 , $62.5,125,250,500 \mathrm{~Hz}, 1,2,4,8,16 \mathrm{kHz}$; centre frequency accuracy $\pm 5 \%$; filter slope $12 \mathrm{~dB} /$ octave; accuracy of display dB steps $\pm 0.25 \mathrm{~dB}$ noncumulative; input impedance greater than $18 \mathrm{k} \Omega$. The display indicates within 1 dB of actual value within 2 ms above 1 kHz or four cycles or less 1 kHz and below (40 ms at $100 \mathrm{~Hz}, 80 \mathrm{~ms}$ at 50 Hz). Display decay time is 2.3 seconds for a fall of 20 dB . The unit weighs 3.6 kg and is priced at $£ 815.00$ net. Scenic Sounds Equipment, 27-31 Bryanston Street, London W1H 7AB.
WW317 for further details

Products seen at Electronica 74

Ion-implant r.a.m.

As well as showing single, two-chip and four-chip microprocessors, General Instrument Microelectronics announced their emphasis on static memories for use with microprocessors. The new 1024 -bit random access memory for instance requires no external clock or peripheral refresh circuitry and its organization (4×256) means that a complete 256 -word eight-bit memory can be assembled with two of the new chips (RA-3-4256) instead of eight

WW313

WW315

WW317
1024×1 bit r.a.ms. It has separate data input and output lines, eliminating the need for external multiplexing circuitry. Tristate data outputs allow easy assembly of larger memories. Operated from a single +5 V supply, read access and write cycle time is $1 \mu \mathrm{~s}$. The circuit is the first to use General Instruments Giant II nchannel ion-implantation facility at Glenrothes. General Instruments Microelectronics Ltd, 57 Mortimer Street, London W1N 7TD.
WW320 for further details

Dynamic r.a.m.

National Semiconductor $.4096 \times 1$-bit random access read/write memory is a dynamic memory featuring a common input/output. The fully-decoded memory has an access time of 200 ns and a cycle time of 400 ns . The device is manufactured using the n-channel silicon gate technique with a single transistor cell providing a high memory density. It is housed in an 18-pin dual-in-line package. National Semiconductor GmbH , D808 Furstenfeldbruck, Industriestrasse 10 , Germany.
WW321 for further details

Hybrid active filters

Tantalum thin-film active filters by Siemens feature a maximum temperature coefficient of 40×10^{-6} parts per Kelvin (e.g. a temperature change of 50 deg C will give a change in frequency of 0.2%). The close compensation of resistance and capacitance coefficients is achieved by using tantalum nitride resistors and betatantalum capacitors. Op-amp types TAA861, 761 or TBA 221 are used in these hybrid circuits. The synthesis technique used allows design of second-order filters with a Q factor of 100 from 100 Hz to 1 kHz and a Q of 50 up to 10 kHz . Siemens Ltd, Great West House, Great West Road, Brentford, Middx.
WW322 for further details

Chalnicon TV tube

The Toshiba Chalnicon TV camera tube is claimed to have advantages over conventional vidicon and Plumbicon tubes in medicine, broadcasting, and industrial application. It has a target structure of photoconductive cadmium selenide, giving an almost-flat spectral response with a sharp cut off beyond 700 nm . Toshiba say that the dark-current increase or decrease in light sensitivity that occurs in conventional vidicons, and the white spot growth that occurs in Plumbicons seldom occurs in the Chalnicon. Tubes are available with either magnetic or electrostatic focus in 18 or $25-\mathrm{mm}$ sizes, having a 600 mW heater. One tube, type E5095 intended for compact TV cameras, has a target to all-otherelectrode capacitance of 2 pF . Tube types E5001 and E5063, intended for use with image intensifiers in x-ray equipment and featuring a sensitivity of 1.5 times that of the Plumbicon and 3.5 times that of the vidicon, enables patient x -ray dose to be reduced proportionately. Toshiba (UK)

Ltd, Tube \& Semiconductor Dept, Toshiba House, Great South West Road, Feltham, Middx TW14 OPG.
WW323 for further details

Semiconductor memory

A new type of semiconductor memorythe factory programmable read-only memory or f.r.o.m.-announced by Motorola offers advantages of a high-speed fusible-link p.r.o.m. but at lower cost. Like the standard p.r.o.m., programming is carried out by fusing nichrome resistor links, but in this case it is factory programmed. Because programming currents are applied using probes directly on the chip, the need for fuse-current steering and addressing circuitry is eliminated. The new device is produced in emitter-coupled circuitry with an organization of 256 word $\times 4$ bits. Enable-to-output access time is 7 ns , while address-to-output access time is 20 ns . This speed is achieved with a 150 mA drain from a -5.2 -Volt supply. Motorola Ltd, York House, Empire Way, Wembley, Middx.
WW324 for further details

Domestic infra-red headphone links?

The new photodiode type BPW34 from Siemens is developed especially for receiving modulated infra-red radiation over a room link from either television, radio or record players to headphones. The diffuse distribution of infra-red radiation means the head is free to turn in any direction. The problem in designing the photodiode is to collect as much radiation as possible whilst keeping capacitance small to obtain a high cut-off frequency. The Siemens diode can operate with modulation of a $100-\mathrm{kHz}$ and a bandwidth of 50 kHz despite the relatively large area of $9 \mathrm{~mm}^{2}$. An infra-red filter layer prevents visible light entering. Transmitter is an array of four LD241 luminescent diodes, the peak power of 60 mW being adequate for medium-sized rooms. Siemens Ltd, Great West House, Great West Road, Brentford, Middx.
WW325 for further details

Counter for electronic watches

A silicon-on-sapphire timing circuit (TA6778) is the first s.o.s. device from RCA. Use of sapphire as an insulating substrate rather than silicon for m.o.s. structures results in smaller unwanted capacitances, leading to higher speeds and lower power dissipation than with standard c.m.o.s. circuits. The timing circuit is a ripple-counter for single-battery circuits. Voltage range is 1.1 to 5 V but for a watch using a $4.195-\mathrm{MHz}$ AT-cut crystal, range is 1.45 to 1.6 V and for a $1.048-\mathrm{MHz}$ SL cut crystal range is 1.1 to 1.6 V . Circuit is capable of operating up to 80 MHz for 1.6 mW at 5 V . Consumption at 1 MHz and 1.6 V is about $2 \mu \mathrm{~W}$. RCA Ltd, Sunbury-on-Thames, Middx
WW326 for further details

Solid State Devices

The names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Sample and hold

A sample and hold amplifier, model 4855 , has an acquisition time of 250 ns and conversion rates of over 250 kHz with a claimed accuracy to within 0.01%. Bandwidth is 80 kHz and aperture settling time is 0.2 s .
WW350 for further details
Teledyne Philbrick

Switching transistors

Types BUY86 and BUY87 have a maximum current rating of 7.0 A with collector-toemitter saturation voltages of 1.0 and 1.3 V respectively. Both transistors are n-p-n silicon planar, epitaxial types in TO-3 metal cases and have a $V_{\text {CEO }}$ of 100 and 150 V respectively.
WW351 for further details
Mullard

R.f. transistors

A range of r.f. power transistors, MRF230 to MRF234, for use in the $40-100 \mathrm{MHz}$ band have power outputs of $1.5,3.5,7.5,15$ and 25 W respectively from a 12.5 V supply. All devices purchased are tested at $30: 1$ v.s.w.r. at all phase angles.
WW352 for further details
Motorola

High speed p.r.o.m.

The type 36044 k p.r.o.m. is organised as 512 words of 8 bits. The device has a typical power consumption of 0.3 mW per bit, an address-to-output delay of 70 ns , and a chip select-to-output delay of 30 ns .
WW353 for further details Walmore

High voltage op-amp

The new 3580 series of f.e.t.-input operational amplifiers provide output swings of up to 290 V peak-to-peak. The devices, which are either encapsulated modules or integrated, have self-contained automatic thermal protection and will dissipate about three watts or up to 4.5 W with a suitable heat sink.
WW354 for further details Burr Brown

Suppliers

Teledyne Philbrick, Heathrow House, Bath Road, Cranford, Middx.
Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middx.
Walmore Electronics Ltd, 11-15 Betterton Street, Drury Lane, London WC2 9BS. Burr Brown, 25A King Street, Watford, Herts WD1 8BT.

New Course in Digital Design

Understand the latest

 developments in calculators, computers, watches, telephones,television, automotive instrumentation....
Each of the 6 volumes of this self-instruction course measures $11 \frac{3}{1} 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

2-2

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit

Elements
3. Designing Circuits to Carry Out Logical
Functions
4. Flip flops and Registers

Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer Manager Enthusiast
 Scientist
 Engineer
 Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in 6 Volumes

1 Computer Arithmetic

 9 Boolean Logic 3 Arithmetic Circuits 4 Memories \& Counters 5 CalculatorDesign Computer Architecture
£5.95
including packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request. Total packaged weight does not exceed 41b -please allow enough extra for air mail.

To: Cambridge Learning Enterprises, FREEPOST, St. Ives, Huntingdon. Cambs PE17 4BR.
*Please send me.....set(s) of Design of Digital Systems at $£ 5.95$ each,
*or.....set(s) of Digital Computer Logic and Electronics at $£ 3.95$ each,
*or.....combined set(s) at $£ 9.25$ each.
Name.
Address..

TELEPHONE DIALS (New) £1 ea. RELAYS (G.P.O. '3000'). All types, Brand EXTENSION TELEPHONES (TVDe 706) Various Colours $\mathrm{E}^{\mathbf{5} 50 \text {. P.P. 50p. Excellent }}$
Condition. RELAYS. (310 ohm) Various
RATCHET RELAYS Types 85p. P.P. 15 p . UNISELECTORS (NEW) 25 way 12 Bank (Non Bridging) 68 ohms. fe

PRECISION A.C. MILLIVOLTMETER (Solartron) $1.5 \mathrm{~m} . \mathrm{V}$ to 15 v : 60 db to 20 db . 9 ranges. Excellent condition

HIGH CAPAGITY ELECTROLYTICS
,200 ff . at 50 v . ($2 \times 1 \frac{1}{\mathrm{t}} \mathrm{in}$.) 40p. P.P. 50. 2,200 f . 100 ($\frac{1}{2} \times 4 \mathrm{in}$.) $75 \mathrm{p} .3,150 \mu \mathrm{f} .40 \mathrm{v}$. ($1 \frac{1}{2} \times 4 \mathrm{in}$.) 60p. 10,000 ff . 25 v . $1 \frac{1}{4} \times 4 \frac{1}{2} \mathrm{in}$.) $60 \mathrm{p} .12,000 \mu \mathrm{f} .40 \mathrm{v}$. ($2 \times 4 \mathrm{in}$.) $75 \mathrm{p} .16,000 \mu \mathrm{f}$
 00v. ($4 \times 2 \mathrm{in}$.) 80p. $35,000 \mu \mathrm{f}$. 40 v . ($3 \times 4 \frac{1}{\mathrm{i}} \mathrm{in}$.) £1. P.P. 15 p H.D. ALARM BELLS. 6 in . Dome $6 / 8$ volt D.C. $£ 2 \mathbf{2 5}$. P. SOp.

OVERLOAD CUT-OUTS. Panel mounting $\left(1 \frac{3}{4} \times 1 \frac{1}{4} \times \frac{1}{2} \mathrm{in}\right.$. $)$ $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{amp} / 10 \mathrm{amp} .35 \mathrm{p}$ ea. P.P. 50
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 confident you will reorder
REGULATED POWER SUPPLY. Input $110 / 240 \mathrm{~V}$ Output 9v. DC. $1 \frac{1}{2}$ amp. 12 v . D.C. $500 \mathrm{~m} / \mathrm{a}$. £4. P.P. 40 p. S. Q. C.B.S. DECODER MODULE

Complete with I.C. M.C.1312P
With the removal of 6 components a direct electrical sub tute forP. E. 'RONDO' Board. $£ 4$ each.
U.K. ORDERS 8\% V.A.T. SURCHARGE

TRANSFORMERS

adVance "volstat" transformers. Input CV50. 38v. at $1 \mathrm{amp}: 25 \mathrm{v}$. at $100 \mathrm{~m} / \mathrm{a}$. $\mathbf{7 5 v}$. at $200 \mathrm{~m} / \mathrm{a}$, f2 ea. P.P. 40p
CV75. 25 v . at $2 \frac{1}{2} \mathrm{amp}$. $\mathbf{£ 2} 50$. P.P. 50 p
CV100. 50 v . at 2 amp : 50 v . at $100 \mathrm{~m} / \mathrm{a}$. £3. P.P. 50 p .

CV 500.45 v at $3 \mathrm{amp}: 35 \mathrm{v}$. at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp 57. RPRTM5. L.T. TRANSFORMER '"TOROIDAL'": Prim. 240 v .
Sec. 30 v . at 4.5 amp . Size 3 inch dia. inch thick at Sec. 30v. at 1.5 amp. Size 3 inch dia. finch thick at
L.T. TRANSSFORMER : Prim. 240v. Sec. 27-0-27 at L.T. TRANSFORMER: Prim. 240v. Sec. $27-0-27$ at
$800 \mathrm{~m} / \mathrm{a} 7.5 \mathrm{v}$ at 1.5 amp . 1.75 . P.P. 25p. $800 \mathrm{~m} / \mathrm{a} 7.5 \mathrm{v}$. at 1.5 amp . 11.75 . P.P. 25p.

$1 \frac{1}{5}$ amp. E1-20. P.P. 30p

L.T. TRANSFORMER. Prim. 110/240́v. Sec. 0/24/40v $1 \frac{1}{1}$ amp. (Shrouded). f1 50 . P.P. 30p.
L.T.TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v. at 2 amp. (Shrouded). E2:25. P.P. 40 O
L.T. TRANSFORMER (H.D.) Prim. 200/250v. Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$. at 9.8 amp : 40 v . at 3.6 amp 52 v . at 1 amp: 25 v . at 3.7 amp . £15. P.P. £2.
H.t. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. Sec. 400 v ,
E.H.T. TRANSFORMER. 240 v . Sec. 1800 v . 50 mA . £2.50. PP 50p
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C. Core). Secs. $1 / 3 / 9 / 27 \mathrm{v}$. at 10 amps . 6650 . P.P. £
L.T. TRANSFORMER. Prim. 240 V . Sec. $16 / 0 / 16 \mathrm{v}$. at 2 amp. $£ 1 \cdot 60$. P.P. 30 p .
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$. $\mathrm{Sec} .23 / 0 / 23 \mathrm{v}$: at $18 \mathrm{amp}: 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}: \mathbf{3} 15 / 0 / 3 \cdot 15 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}$. E1 75. P.P. 30p.
L.T. TRANSFORMER. Prim. 200/240v. ('C' Core). Secs. $1 \mathrm{v} . / 3 \mathrm{v} . / 8 \mathrm{v} . / 9 \mathrm{v}$. all at 1.5 A : 50 v . at 1 amp. £2. P.P. 30p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core). Sec. 13.5 V . $4 \mathrm{~A} .: 39 \mathrm{~V}$, at 2 A . $£ 2 \cdot 50$. P.P. 30 p .
L.T. TRANSFORMER. $110 / 240 \mathrm{~V}$. ('C' Core) $1 \mathrm{v} . /$ $3 \mathrm{~V} . / 9 \mathrm{v} / 20 \mathrm{v} . / 20 \mathrm{v}$. all at 2 amp . £3. P.P.
Secondaries but at 4 amp. $£ 4.25$. P.P. 50 p .
l.t. TRANSFORMER. 110/240v. ('C' Core). Secs. $1 \mathrm{v} / 3 \mathrm{v} . / 9 \mathrm{v}$, all at $10 \mathrm{amp}: 35 \mathrm{v}$, at $1 \mathrm{amp}: 50 \mathrm{v}$. at $750 \mathrm{~m} / \mathrm{a}$

HIGH-SPEED MAGNETIC or 48 v . (state which) $4 \times 1 \times 1 \mathrm{in}$. 40p. P.P. 10 p .
5 digit (Non-reset) 24 v . 75 p. P.P. 10 p

RIBBON CABLE (8 colours) $\mathbf{\text { E1.25. P.P. } 1 5 \mathrm { p } . 1 0 \mathrm { m } \text { : }}$:
f10. P.P. 50 p .100 m .8 cores $71 . \mathrm{mm}$ bonded side by side £10. P.P. 50 p. 100 m .8 cores $7 / \mathrm{mm}$ bonded side by side ,
1000 Type KEY SWITCHES. Single $2 \times 4 \mathrm{c} / \mathrm{o}$ Locking 50p.P.P. 1 P. Bank of $4.2 \times 4 \mathrm{c} / \mathrm{o}$ each switch (one biased). 51.20. P.P. 15 p .

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c / o contacts 35 p ea.; 6 make contacts 40 p ea.; 4 pole c/o contacts 50p ea. P.P. 5 p ea. 6-12-24-48v. types in stock.
12 VOLT H.D. RELAYS. 2 pole 3 way 40p. P.P. 10 o. 240v. A.C. RELAYS. (Plug-in type), 3 change-over 10 amp. contacts. 75p (with base). P.P. 100 .
P.A.R. BISTABLE RELAY (Latching) 24v. D.C. $4 \mathrm{c} / 0$ contacts 65p. P.P. 10 p.
SILICON BRIDGES. 100 P.I.V. 1 amp $\frac{5}{\text { E }} \times \mathrm{f}$ in. 30 p P.P. 5p. 200 P.I.V. 2 amp. 60p. P.P. 5 p.

24 VOLT A.C. RELAYS (Plug-in)
3 Pole Change-over 60 p. P.P. 5 p.
2 Pole Change-over 45 p. P.P. 5 p.
s. T. C. CRYSTAL FILTERS. (10.7 Mhz)

445-LQU-901A (50Khz spacing) £3.

We regret that all orders value under es
MUST BE ACCOMPANIED BY REMITTANCE.

191 LONDON ROAD • ROMFORD • ESSEX
ROMFORD 44473
RM7 90D

TELEPRINTER EQUIPMENT LIMITED
 Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
 Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
 TELEPRINTERS Models 7B, 54, 75, 444
 CREED EOUIPMENT
 TELETYPE CORP. EQUIPMENT
 SIEMENS EQUIPMENT
 OTHER
 EQUIPMENT

 SPECIAL

 SPECIAL
 EQUIPMENT
 TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74
 HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
 TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
 all configurations
 PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
 TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
 KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
 SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS. wW 350 for further details
 COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION)-20-way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, 48H, 49H, 149H, 3/16, 3/216, 3/48A, 3/43A, 48J, etc.
FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW 351 for further detalls

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

$$
\begin{aligned}
& \text { KEYBOARD PERFORATORS for offline tape preparation } \\
& \text { AUTOMATIC TAPE TRANSMITTERS with speeds up to } 250 \mathrm{w} . \mathrm{p} . \mathrm{m} \text {. } \\
& \text { MORSEINKERS specially designed for training, producing dots and dashes on tape } \\
& \text { HEAVY DUTY MORSE KEYS } \\
& \text { UNDULATORS for automatic record and W/T signals up to } 300 \text { w.p.m. } \\
& \text { CODE CONVERTERS converting from } 5-\text { unit tape to Morse and vice versa } \\
& \text { MORSE REPERFORATORS operating up to } 200 \text { w.p.m. } \\
& \text { TONE GENERATORS and all Students' requirements } \\
& \text { CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANS- } \\
& \text { MITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS } \\
& \text { LAMPS, etc. }
\end{aligned}
$$

77 AKEMAN STREET, TRING, HERTS., U.K.
 Telephone: Tring 4011, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

－the lowest prices！

	74 Series T．T．L．I．C＇S bi－paik still lowest in price full sproffication GUARANTEED．ALL FAMOUS HANUFACTURERS										
		25	10			25	$100+$				
8N74			3		${ }_{16}^{16}$	${ }_{0}^{0.15}$	${ }_{\text {O }}^{0.14}$	${ }_{\text {8N }}^{\text {8N74153 }}$	${ }_{81}^{81.00}$	－0．85	
GN74		0				0.					
							7				
8N74			0.13								
8N74		0.			0.4	0.38			c1．		
74	0.39		0.31	8N	0.41	0.38	0.35	SN7			
				8N74	${ }_{10} 10$	${ }_{1} 1.05$		SN	$\underline{1} 18$	${ }_{81} 1.7$	${ }_{\text {E1．70 }}$
SN		0	${ }_{0}^{0.23}$		0.90	0.85	0	8 s	1.8	1.5	
	0.28		${ }_{0} .26$	g\％7	${ }_{8} 1.20$	81.15	\＆1．	8N74174	c1．60	ع1．55	$\varepsilon 1.50$
74	32	0.31	0.30					8N74175	ع1．10	\＆1．05	$\varepsilon 1.00$
	0.					L1．55	．		c1	1.1 .20	
			－138	${ }_{\text {BN }}$	${ }_{4} 4.00$	${ }_{\text {c3．}} 15$	${ }^{\text {c }}$	s8741	$\underline{1}$.	ع1．	
	0.15	0．29					0.60	8N74180			
	0.40		0.38	sN74	11.10	$\underline{1.05}$	¢1	8 8 7418	23.	\＆3．	75
8 N 742			0.38	SN		0.71	．		21．25	21．20	E1．15
		0．38	${ }_{0} 3 \mathrm{Bb}$		0	${ }^{0.71}$	0.64 0.75	8N7			
SN742	0.4				0.8	${ }_{0} .82$	${ }_{0}^{0.75}$	sN74190	ع1．8	ع1．90	ع1．85
			0.13					8N7419	11.95	\＆1．80	ع1．85
$8 \mathrm{8N743}$	0.40	0.38	0.38	SN	$\varepsilon 1$	ع1．45	$\varepsilon 1.40$	8 C 7419	c1．85	11.90	11.85
	0	0.40	0.38	SN7410				N74	11．95	\＆1．90	¢1．
8N743	0	${ }_{0.32}^{0.32}$	0.30	8N	0.44	0.42	0.40	8N7419	ع1．30	\＆1．25	
8 N 744	0.15	0.14	0.13		． 6	0.55	0.50	8N74195	1.1		0
${ }_{8}^{8 N 744}$	${ }^{0.74}$	0.71	${ }_{0}^{0.64}$	SN7411	＋1．00	${ }_{0}^{0.8}$	${ }_{0}^{0.85}$	SN7419	ع1．20	${ }^{21.15}$	11.10
	11．20	c1．15	ع1．10			£1．40	${ }_{11.30}$	8N74197	£1．20	81.15	$\underline{1.10}$
81	${ }_{80}^{20}$			8N741	0.50 0.70	0.48 0.88	0.45	8N74199	${ }_{\text {c2 }} 50$	${ }_{82} 2.40$	
	${ }_{20}^{80}$	${ }_{81.15}^{81.55}$			0.70	0.88 0.73	0.65 0.70	B，74			
			ع1．05		0.85	0.82	0.78	for qua			
8N	${ }_{0}^{1} 1.15$	4		${ }_{\text {8N }}$	${ }_{\text {cki }}^{\substack{1.30}}$	${ }_{\substack{c \\ 18.1 .85}}^{1.80}$	${ }_{c}^{c 1.20}$	y）	is ${ }^{\text {ap }}$	${ }_{\text {In }}$	
451	0.15 0.15	4	0.13 0.13	${ }_{\text {SN }}$	${ }_{81.10}^{81.50}$	${ }_{\substack{\text { c1．05 }}}^{\text {k1．40 }}$	${ }_{\text {¢ } 1.00}^{\text {c1．30 }}$	ata $\begin{aligned} & \text { above seri } \\ & \text { form．Price }\end{aligned}$	35p．		

NOW WE GIVE YOU 50w PEAK（25w R．M．S．）PLUSTHERMALPROTECTION！ The NEW AL60 Hi－Fi Audio Amplifier FOR ONLY $£ 4.25$

FULLY BUILT－TESTED and GUARANTEED
STABILISED POWER
£3．25 MODULE SPM80

SPox80 is especially designed to power 2 of the Lifio Amplifiers，up to
15 watt（r．m．s．）per channel sinuultaneously．Thia nodule embodies the latest components and clrcult techniques incorpor ating complete shor the anit will provide outputs of up to 1.5 amps at 35 volts．Size $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$ ．These units enable you to build Audio syatems of the highest quasity at a hitherto unobtainable price．Also
ideail for many other appllicatlons including：Disco Sylems，Public TRANSFORMER BMT80 £2． 15 p．\＆p． $25 p$

，	Price	No．Conents		Paiko coment
	${ }_{0}^{0.54}$		${ }_{0}^{0.54}$	
	${ }_{0}^{0.54}$	U1050］ $12 \times$		
为 412×129	${ }_{\substack{\text { a }}}^{0.64}$	Uucss	${ }^{0.54}$	
$88 \times 8 \times 707$	${ }_{0}^{0.64}$	${ }_{\text {a }}^{8 \times 8 \times}$	${ }_{0}^{0.54}$	Comer
	${ }_{0}^{0.54}$	＝88	0.54	
			－	隹
	${ }_{0}^{0.54} 0.54$	夈	${ }_{\text {a }}^{0.54}$	
${ }^{444}$	${ }_{0}^{0.54}$		（	campo be pilt，bit

ALIO／AL20／AL30 AUDIO AMPLIFIER MODULES 			
Parmeter	Conditious		Peftormace
harmonic distortio	－3 WATts $=1 \mathrm{l}$		0．25\％
Loal impedange			${ }_{8}^{8-1}$
Input impedance	${ }_{\mathrm{f}=1 \mathrm{KHz}}$		100 k
Frequency response \pm 3 ${ }^{\text {ab }}$	Po $=2$ WAtts		${ }^{50 \mathrm{~Hz} z-26 \mathrm{KHz}}$
SExaitivity for Rated oip	va -25 V ． $\mathrm{Rl}=88 \mathrm{t}=1 \mathrm{KHz}$		7 mmV ．
dimensions			$3^{*} \times 24^{+\times 1}$
Parameter	53	2建	1.330
Maximum Buply Voltare	${ }^{3}$	31	30
 price	 	206	$\underset{\substack{10, \text { wath } \\ \text { RMS } \\ \text { sin } \\ 23.20}}{ }$

3 TERMINAL POSITIVE VOLTAGEREGULATORS

TRANSFORMERS

POWER SUPPLIES

STEREO PRE－AMPLIFIER TYPE PA100

Built to a apecifcation and NOT a price，and yet still the greatest value on the market，
the PAAOO Btereo pre－amplifier has been concelved from the latest circuit techniques， the PAl00 月tereo pre－amplifier has been concelved from the latest circuit techniques，
Designed for use with the Alfo power amplifer system，this quality made unit Designed for use with the Aldo power amplifer system，this quality made unit
lacorporates no lesi than eight silicon planar transistors，two of these are specially lecected low noise NPN devices for use in the input stages． Three switched stereo inputs，and rumble and acratch fitera are features of the
PA100，which alao has a STEREO／MONO switch，volume，balance and continuously SPECIFICATION：

Frequency response	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$
Harmonic distortion	better than 0.1%
Inpute：1．Tape head	$3 \cdot 25 \mathrm{mV}$ into $50 \mathrm{~K} \Omega$
2．Radio，Tuner	75 mV into $50 \mathrm{~K} \Omega$
3．Magnetic P．U．	3 mV Into $50 \mathrm{~K} \Omega$
All taput voltages are for	output of 250 m
Tape and P．U．Inputs equ	lised to RLAA
rithin $\pm 1 \mathrm{~dB}$ from 20 Hz	20kHz．

Bass contro
Treble control Filters：Rumble（high pase） Scratch（low pass）
Signal／noise ratio Ignal／noise ratio Supply

MK 60 AUDIO KIT

TEAK 60 AUDIO KIT
gime ar in thelr appearance and in their general specitication．
selection of the plastic power der，cares has 3 th 10 watts R．M．S deat use in record plapera tape recorders atereo amplifiers and cassette and carders， Cos

EMiROMASOMTE electronics

Dept. 5
56. Fortis Green Road, London, N10 3HN telephone: 01-883 3705

AMPLIFIER KITS OF Vistinclion

DESIGNER-APPROVED KIT

n Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts whilst maintaining distortion at less excess 0.01% wen at very low power levels. The powe han 0.O1\% even ai very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the
Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition requencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer

```
1 Fack Fibreglass printed circuit board
for power amp.
2 Set of resistors. capacitors, pre-sets
Set of semiconductors for power
3 Set of semiconductors for power
        M,
        B0529. BD530)
5 Fibreglass printed-circuit board
for pre-amp
6 Set of low noise resistors, capacitors
        l
    Set of low noise, high gain semicon-
    Set of low noise, high gain semicon-
8 Set of potentiometers lincluding
    mains switch)
Set of 4 push-button switches.
| rotary mode switch
    oroidal translornmer complete magng screen/housing primar
        l
        0.117-234 V.secondaries: Eq 
```

fo 85
Fibreglass printed-circuit board
12 Sot power supply
$£ 1.70-12$ Set of resistors. capacitors.
3 Setof miscellaneous parts
knobs
14 Set of metalwork parts including
parts. etc.
Handbook
Teak cabinet
2 each of packs
are required for complete
stereo system
ost of individuall
specially designed Toroidal transformer

Hi-Fi News Linsley-Hood 75 W Amplifier

secondary fuses. semicon
including DIN skts. mains
input skt. fuse holder, inter
connecting cable. control
silk screen printed fascia
paner and all brackets. fixing

Full circuit description in handbook (pack 15-price 30p)

FREE
TEAK CASE WITH FULL KITS KIT PRICE only
V.A.T. Please add 8\%* to all U.K. orders (*or at current rate if changed
f4. 25
for further information
please write for FREE LIST

FAST SERVICE
SEND C.W.O. ADD VAT TO ALL PRICES IN U.K. P
EHETTRDCIES ITI
58-60 GROVE ROAD, WINDSOR, BERKS.
gP 15P. EUROPL 25P.OVLRSEAS 65P

MONEY BACK IF NOT SATISFIED. LARGE STOCKS. LOW PRICES. ALL BRAND NEN TOP GRADE FULL SPEC DEVICES.CALLLER WLLCOME.

CATALOGUE/LIST FREE SEND S.A.

Imithlisitho

Mintitron 3015 F 0-90F $£ 1.15$ ea
 jumbo Led
 digit fl ! 14 p. CLIS 209 STYLE. NO CL big !" red led \& CLI

DiGiTAL ELDEH

חת7Th

CASSETTE mechanics

 COPPER CLAD VEROBOARD 0.1" $24 \times 5^{\prime \prime} \quad 27 \mathrm{p} \cdot 2 \frac{1}{2} \times 3^{\frac{3}{5} n^{\prime \prime}} 24 \mathrm{p} \cdot 3^{3} \times 3_{4}^{3 \times 1} 27 \mathrm{p}$ DIL IC'S BOARDS $6 \times 42^{\prime \prime \prime} \$ 1.50$ 24 way edge connector 60p
ID) E 1 (3)

HEATSINKS

CA PACITORS

POTS ABoregin
Sliders sival ab boun .iop.
\qquad
dIN plugs all 150 en socter

DIL sachets

FROM THE SPECIALISTS-POWERTRAN
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS}

 ELECTRONICS

 ELECTRONICS}

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set
30W BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pot Pk. 3 Semiconductor set 20W LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set
£0.80
E 1.75 £4.70
£0.85
£2.15
£5.60
£0.85
£2.40
£3. 35

GOV REGULATED POWER SUPPLY

Pk. 1 F/Glass PCB
$\begin{array}{ll}\text { Pk. } 1 \text { F/Glass PCB } & \text { £0.75 } \\ \text { Pk. } 2 \text { Resistors. capacitors, pots } & £ 1.40\end{array}$
k. 2 Resistors. capacilors, pots

BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pre-sets transistors
Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set
(with knobs)
1.40
3.10
$£ 2.05$
£4.95
£ 1.60
£2.70

20 WATTS/CHANNEL

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.

TRRP Pk. 1	Reply amplifier F/Glass PCB	£0.90
TRRC Pk. 1	Record amp./meter drive cct. F/Glass PCB	£1.40
TROS Pk. 1	Bias/erase/stabilizer cct. F/Glass PCB	$£ 1.00$
For details of component packs for this design for free list.		

TOROIDAL T20 + 20
Developed from the famous Practical Wireless Texan
Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal transformer, this slimline integrated circuit design, based upon a single F /Glass PCB. features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and headphones socket.

TEAK CASE and HANDBOOK with full kits

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately. though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant solution to this problem, described by D. C. Read in Wireless World. involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER Pack

Fibregłass PCB (accommo dates all filters for one channel)
Set of pre-sets, solid tantalum capacitors, 2% metal oxide resistors. 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS 20wamp.
Pack
 2 Set of resist tors presers, capacitors pre-sets (not includcitors) 3 Sets of $\begin{array}{ll}2.20 & 6 \text { off ea } \\ 2.65 & \text { system }\end{array}$

4 Special heat sink as-
sembly for set of 3
amplifiers
5 Set of $30 / P$ coupling
capacitors
off packs 4
2 off packs 4, 5 required for
stereo system

POWER SUPPLY
£0.70 FOR 20W/CHANNEL STEREO
Pack
$\begin{array}{lll} & 1 & \text { Fibreglass PCB } \\ \mathrm{f} 1.10 & 2 & \text { Set of rectifiers, zener } \\ \mathrm{£} 2.40 & & \text { diode capacitors, fuse }\end{array}$ diode. capacitors fuses 3 Toroidal transformer £2.60
f0.85 ENQUIRIES WELCOME
£1.00 For quality sets of speakers

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	f0. 25	2N4302	80.60	BC182L	f0. 10	MJ481	f1. 20	TIP29C	c0. 71
2 N 1613	80.20	2N5087	60.42	BC184L	E0.11	M J491	£1.30	TIP30C	f0. 78
2N1711	c0. 25	2N5210	c0.54	BC212L	¢0.12	MJE521	f0.60	TIP31A	80.60
2 N2926G	c0. 10	2 N 5457	¢0.45	BC214L	E0.14	MPSAO5	E0.30	TIP32A	c0.70
2 N 3053	¢0.15	2 N 5459	c0. 45	BCY72	${ }_{20.13}$	MPSA12	${ }_{\text {f00.55 }}$	TIP33A	E1.00
2 N3055	c0. 45	2 N 5330	c0. 30	BD529	c0. 85	MPSA14	¢0.35	TIP34A	$£ 1.50$
2 N3442	c1.20	40361	80.40	BD530	80.85	MPSA55	f0. 35	TIP41A	± 0.74
2 N 3704	80.10	40362	c0.45	BDY56	¢1.60	MPSA65	¢0.35	TIP42A	£0.90
2 N 3707	80.10	BC107	c0.10	BF257	80.40	MPSA66	£0.40	IN914	f0.07
2 2N3711	c0.09	BC108	20.10	BF259	¢0.47	MPSU05	E0.60	IN916	£0.07
2 N 3819 2 N 3904	${ }_{50} \mathbf{5 0 . 2 3}$	BC109	E0.10	EFR39	20. 25	MPSU55	¢0.70	15920	± 0.10
2N3904 2N3906	${ }_{60.20}$	BC 125	¢0. 15	BFR79	¢0. 25	SN72721P	¢0.58	5805	\$1.20
2 N 4058	c0. 21	BC 126 BC 182 K	£0.15	BFY50	¢0. 20	SN72748P	c0. 58 c0. 50		
2N4062	$\mathbf{8 0 . 1 1}$	BC212K	¢0.12	BFY52	¢0.20	TIP30A	¢0.60		

[^8]
post free (U.K.)

Pack		Price
1	Set of all low noise resistors	$£ 0.80$
2	Set of all small capacitors	$£ 1.50$
3	Set of 4 power supply capacitors	$£ 1.40$
4	Set of miscellaneous parts including	
DIN sockets, fuses. fuse holders.		
5	control knobs, etc.	
5	Set of slide and push-button	
6	switches	
6	Set of potentiometers and	$£ 0.90$
7	selector switch	
8	Set of all semiconductors	$£ 1.45$
8	Special Toroidal Transformer	$£ 8.25$
9	Fibreglass PC Panel	$£ 4.95$
10	Complete chassis work.	$£ 2.50$
11	hardware and brackets	$£ 4.20$
12	Peformed cable/leads	$£ 0.40$
13	Handbook	$£ 0.25$
	Teak Cabinet	$£ 2.75$

V.A.T. Please add 8\%* to all U.K. orders
(*or at current rate if changed)
U.K. ORDERS-Post free (mail order only)
OVERSEAS - Postage at cost $+50 p$ special packing

Dept. WWO2
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN

FANTASTIC INSTRUMENT BARGAINS

A rare opportunity to purchase electronic instruments by leading manufacturers at rock bottom prices.
This high quality equipment, surplus to our present requirements, is in good working brder and has been regularly maintained to the manufacturer's own standards.
One hundred different types of instruments are offered, representing more than f 15,000 worth of equipment. Just look at the prices, the lowest ever for equipment of this quality.
Ask for the catalogue sheet of the full range today.
Instruments may be viewed by arrangement only at the address below. Please telephone for an appointment.
Please check availability of instruments by telephone when ordering.
Calibration Service. Please ask for quotation.

AUDIO (Professional)
Crown
High Power Loudspeaker Units (Altec) $\quad \mathbf{7 0 . 0 0 - 8 0 . 0 0}$ Stereo Recorders
BRIDGES etc
Radiometer
CMB11B. Capacitance Comparator 400.00-500.00
30.00-35.00

Wayne Kerr
601Z. LCR Bridge.
Wide Frequency range
SR268. Source \& Detector
B221/O221. LCR Bridge
CALCULATORS
Canon
Briefcase size with charger and printer 20.00-25.00 COUNTERS \& TIMERS
Hewlett Packard
521612 MHz .7 Digits $\quad \mathbf{3 2 0 . 0 0} \mathbf{- 3 4 0 . 0 0}$
524650 MHz .6 Digit Counters $\quad \mathbf{1 9 0 . 0 0 - 2 9 0 . 0 0}$
5252 A 350 MHz . Pre-scaler plug-ins $\quad 100.00-120.00$ 5253 B 512 MHz . Converter plug-ins Marconi
Marconi
TF1417/2. O-15MHz. 6 Digits TF2401. Main Frames
TM7558. Plug-ins
TM8094/1. $0.3-2.5 \mathrm{GHz}$. Plug-ins
DEVIATION METERS
Marconi
TF791D. $4-1024 \mathrm{MHz}$.
00.00-210.00

DIGITAL VOLTMETERS
Dana
3800A Digital Multimeter.
$0.1 \% .3$ Digits $\quad 140.00-180.00$

Dynamco

DM2022. DV. 0.02\% 10, V resolution to 2 kV
130.00-290.00 DM2140/A1/B1. Mean AC. Converters 200.00-220.00 DM2140/A1/B3. RMS AC. Converters $\quad \mathbf{6 4 . 0 0 - 7 8 . 0 0}$ Hewlett Packard
3440 and range of plug-ins (Complete) 600.00-610.00 Solartron
LM1420. 2. DC. $0.05 \% 2.5 \mu \mathrm{~V}$
resolution to 1 kV
LM1420. 2. BA-DC and
RMS/Mean AC
£ Sale Price Range
OSCILLOSCOPES
Cossor
CDU 150. DC -35 MHz . $5 \mathrm{mV}-50 \mathrm{~V} /$ DIV dual trace
$400.00-410.00$
Dynamco
7100 . DC- 30 MHz . Main Frames
1Y2. DC-30MHz. Dual Trace
Amplifier Plug-ins
Y4. 625 lines TV Monito
1×1. Time Base plug-ins
1×2. Time Base plug-ins with Delay
Marconi TF2203. DC-15MHz. Single Trace. Battery/Mains
Telequipment
Telequipment
D. 43 . DC- 25 MHz .
Main Frames with Time Base
A. DC -15 MHz . Single Trace
A. DC- 15 MHz . Singte Trace
Amplifier plug-ins

Amplifier plug-ins
J. $\mathrm{DC}-25 \mathrm{MHz}$. Single Trace

Amplifier plug-ins
D53S with $2 \times$ ' A' amps.
Storage. Dual Trace
Storage. Dual Trace
POWER SUPPLIES
Roband
EGO 12/10. 0-12V. Pre-set
RECORDERS
Bell \& Howell
5-124 Ultra Violet Light Beam.
18 Channels (Galvos to 13 kHz
available at extra charge)
60.00-66.00

5-127. As above with 12 channels 180.00-198.00 SIGNAL SOURCES

SIGNAL Advance

Advance
SG70. Audio Oscillator. 600 Ohms. 4 Watts $\quad 100.00-180.00$

£ Sale Price Range
General Radio
1362. UHF Oscillator $\}$ both need a \quad 80.00-88.00 1363. UHF Oscillator $\}$ power supply $\left\{\begin{array}{l}\mathbf{8 0 . 0 0 - 8 8 . 0 0} \\ 90.00-97.00\end{array}\right.$ 1363. UHF Oscillat

Hewlett Packard
12A. $0.45-1.23 \mathrm{GHz}$. Internal or External
Amplitude Modulation
300.00-320.00

Marconi
TF144H/4. $10 \mathrm{kHz}-72 \mathrm{MHz}$. Xtal check
Int/Ext. AM. 50 Ohms 290.00-320.00
TF801 D/1. $10 \mathrm{MHz}-470 \mathrm{MHz}$. Int/Ext.
AM and Pulse Modulation
TF2005. $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
Twin Oscillators
320.00-350.00

Radiometer
Rodiometer
HO 32 C .21 kHz . Beat Frequency
Oscillator
220.00-290.00
$90.00-110.00$
Wayne Kerr
.22 D . $10 \mathrm{kHz}-10 \mathrm{MHz}$. Video $\quad 160.00-178.00$
Oscillator
SPECTRUM ANALYSERS
Hewlett Packard
$8551 \mathrm{~B} / 851 \mathrm{~B} .10 \mathrm{MHz}-12 \mathrm{GHz}$. $\quad \mathbf{2 , 4 0 0 . 0 0}$
SWEEP GENERATORS
Hewlett Packard

8690 Main Frames

260.00-300.00

8693B. 3.7-8.3GHz plug-ins 300.00-450.00
(Other plug-ins on application)
TELEPHONE TV AND MICROWAVE
Hewlett Packard
Hewlett Packard
423A. 12.4 GHz Crystal Detectors $\quad \mathbf{2 8 . 0 0 - 3 2 . 0 0}$
3701/02/03. Microwal Detector
3701/02/03. Microwave Link Analyser

2,520.00-2,700.00
Marconi
OA 2090A. White Noise Test Set
(Filters also available at extra charge) $\quad \mathbf{7 1 2 . 0 0} \mathbf{8 2 0 . 0 0}$
TF2909 TV Test Set.
Grey Scale 625 lines
Price to be advised
Richmond Hill
TSP. TV Studio Precision Signal
Generator. Sin 2 P \& B. Window.
Staircase. (Requires all drives) $\quad 580.00-595.00$
Siemens
REL3K53. Contact Fault Locators
1 MHz Test Signal. Variable
levels. High sensitivity
$130.00-140.00$
STC
74184B. Selective Measuring Sets
74216. Nelective Meas
$20 \mathrm{~Hz}-4 \mathrm{kHz}$
$20 \mathrm{~Hz}-4 \mathrm{kHz}$
74306 B . Oscillators $10 \mathrm{kHz}-20 \mathrm{MHz}$
230.00-260.00
110.00-135.00 74600. RF Attenuators. 10 steps
each unit total Att:0.9; 9.0; 90.Odb. 15.00-25.00 74832B. Selective Level Measuring Set $\mathbf{8 0 . 0 0 - 1 0 0 . 0 0}$ $\begin{array}{ll}\text { Field Telephone (Hand Generators) } & \mathbf{5 . 0 0 - 7 . 0 0}\end{array}$
Wandel 8 Golterman
TFPS75. 1.3MHz. Selective
Oscillators VXM1 Differential Phase Meters (TV)
140.00-160.00 VXM1 Differential Phase Meters (TV) $\quad \mathbf{3 2 5 . 0 0 - 2 4 0 . 0 0}$ VZMG1 Sampling Attachments $\quad 77.00-88.00$ WAVE ANALYSERS
Airmec/Racal
248A. $5-300 \mathrm{MHz}$. Harmonic
Analysers
ASSOCIATED EQUIPMENT
Hewlett Packard
412A DC. Electronic Multimeter On Application Marconi
TF893 Audio Power Meter 20 HW -10W $90.00-98.00$ TF2606 Differential Voltmeter.
0-1000V
120.00-140.00

Radiometer
RV24. DC Electronic Multimeter
60.00-78.00

Siemens
5.00*7.00

Multizet. RF Voltmeter. $0-100 \mathrm{~V}$.
*Uncalibrated

REMEMBER-these prices are unaffected by inflationary pressures. JUST COMPARE the 1974/75 replacement values.

Carston Electronics Limited
Shirley House, 27 Camden Road, London NW1.
Tel: 01-267 4257

hursit
 ELECTRONICS

92 Warwick Road, Ealing, London W5 5PT Telephone: 01-567 0424

HE 100 100 WATT POWER AMP MODULE

* Includes large black anodised heatsink - no further heatsinks required
\star Top grade glass-fibre P.C.B.
\star Uses high quality components.
\star Fully protected-short/open circuit proof
\star Only 5 external connections.
\star Fully guaranteed.

TECHNICAL SPECIFICATIONS

\star Power output
\star Distortion
\star Frequency response
\star Signal to noise
\star Input sensitivity
\star Input impedance
\star Supply volts

106W. R.M.S. into 8Ω
0.8% at full 0/P. Typ. 0.4\%
$15 \mathrm{~Hz}^{-23 \mathrm{kHz}}$
Better than - 96dB
OdB (0.775V)
$10 \mathrm{k} \Omega$
45-0-45V

Price $£ 15.98$ inc. VAT. (ready built)

Power supply for HE100 lincluding transformer, capacitors, rectifier) $\mathbf{f 9 . 4 0}$ inc. VAT. Postage \& packing 85 p.

Pre-amps etc., also available. SAE for details.

CALLERS WELCOME

Plain Board - for use with pins and hard wiring.
D.I.Y. - etch your own circuit but use our contacts
Finger Board - a plain board with gold plated contacts
Veroboard - over 100 types for all development and short run production work
D.I.P. boards - to mount I.C.'s, plug in and breadboard style available

Vero Electronics Limited,

 Industrial Estate, Chandler's Ford Eastleigh, Hants SO5 3ZRTel: Chandler's Ford 2952. Telex: 47551
World Leaders in Packaging Technology

Marshall's

A. Marshall \& Son (London) Limited Depl. W W 42 Cricklewood Broadway London NW2 3HD Telः 01-452 0161 \& 85 West Regent Sireet Glasgow G2 2QD Tel: 041-332 4133 Everything you need is in our nèw 1975 catalogue. Available now price 25p
Trade and exportienquiries welcome

PW TELETENNIS KIT

As featured on BBC Nationwide and in the Daily Mail, October 2, 1974.
This exciting new game is now available in kit form. Due to popular demand we are now able to offer a fantastic saving on list prices. Ideal game for whole family. No need to modify your TV set, just plugs into aerial socket. Parts list as follows:
A. Resistor Pack $£ 1.00$ p\&p 20p B. Potentiometer Pack $£ 1.25 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$ C. Capacitor Pack $£ 3.10$ p\& 20 p D. Semiconductor Pack $£ 14.50 \mathrm{p} \mathrm{\& p} 20 \mathrm{p}$ E. p\&p 20p H, Switches $\mathbf{£ 4 . 5 0} \mathbf{p} \& \mathrm{p} 20$ p I. UHF Modular Kit $£ 7.20 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$.
Special prices-Complete kit (excluding case) $\mathbf{£ 4 2 . 0 0}$ p\&p 50 p. Sections A-F incl. $£ 23.50$ p\&p 30p. Assembly instructions with complete kit or 75 p on request.

SN7400 16p	SN7420	16p	SN7453	16p	SN7491	1.10
SN7401 16p	SN7423	37 p	SN7454	16p	SN7492	75p
SN7401AN 38p	SN7425	37p	SN7460	16p	SN7493	65p
SN7402 16p	SN7427	45p	SN7470	30 p	SN7494	85p
SN7403 16p	SN7430	16p	SN7472	38p	SN7495	80 p
SN7404 24p	SN7432	45p	SN7473	44p	SN7496	£1.00
SN7405 24p	SN7437	35p	SN7474	48p	SN74100	¢2.16
SN7406 45p	SN7438	35p	SN7475	59p	SN74107	43 p
SN7407 45p	SN7440	16 p	SN7476	45p	SN74118	£1.00
SN7408 25p	SN7441	85p	SN7480	75p	SN74119	¢1.92
SN7409 33p	SN7442	85p	SN7481	$\underline{1} .25$	SN74121	57p
SN7410 16p	SN7445	¢1.59	SN7482	8^{87}	SN74122	80 p
SN7411 25p	SN7446	¢2.00	SN7483	f1.20	SN74123	72p
SN7412 28p	SN7447	$\mathrm{E}^{1.30}$	SN7484	$95 p$	SN74141	${ }^{\text {E1. }} 1.0$
SN7413 50p	SN7448	£1.50	SN7485	¢1.58	SN74150	f1.44
SN7416 45p	SN7450	${ }_{16 p}$	SN7486	$45 p$	SN74 190	E1.95
SN7417 30p	SN7451	16p	SN7490	$65 p$		
CMOS						
CD4000 51p	CD4011	51p	CD4023	51p	CD4041	£2.11
CD4001 51p	${ }^{\text {c P }} 4015$	${ }^{\text {f2. }} 66$	CD4024	¢1.90	CD4044	E2.11
$\mathrm{CD} 4002^{51 p}$	CD4016	${ }^{\text {f1. }} 1.02$	CD4027	c1.56	CD4047	f1.65
CD4009 CD4010	C04017	${ }_{\text {¢2. }}$. 66	CD4028	${ }_{\text {c }} \mathbf{2} 2.34$	CD4049	$90 p$
Veroboard				Plain		
$2.5 \times 3 \frac{3}{3}$	${ }^{36} \mathrm{p}$	26p				17 P
$2.5 \times 5 i n$ 3.3 $\times 3$ in	${ }_{45}{ }^{\text {p }}$	40p				19p
	45p					
$3 \frac{1}{} \times 17 \mathrm{in}$	f1.61	${ }_{\text {c1 }}^{47}$. 26		£1.00		92p

TRY OUR GLASGOW SHOP

Popular Semi-conductors

2N696	22p	2N3707	13p	AD 142	59p	BC309	10p	LM709	
2N697	16p	2N3708	70p	AD 143	$45 p$	BC327	21p	то 99	48p
2N698	$40 p$	2N3715	f1.50	ADi61	45p	BC328	19 p	8 DIL	38 p
2N699	$45 p$	2N3716	£1.80	AD 162	45p	8 CY 70	17p	14DIL	40p
2N1302	19p	2N3771	£2.20	AD161	r	BCY71	22p	LM723C	90p
2N1303	19p	2N3772	£1.80	AD162 ${ }^{\text {a }}$	£1. 05	8CY72	13p	LM741	
2N1304	24p	2N3773	f2.65	AF109R	40 p	8D123	32p	то 99	40p
2N1305	24p	2N3819	37p	AF115	24p	BD131	40p	8DIL	40p
2N1306	31p	2N3820	38p	AF124	30p	BD132	50p	14DIL	38p
2N1307	22p	2N3823	£1.42	AF125	30p	BD 135	42p	LM747	£1.00
2N1308	25p	2N3904	27p	AF126	28p	BD136	49p	LM7805	£2.00
2N1309	36p	2N3905	24p	AF127	28p	BD137	55p	MC1310	$E 2.92$
2 N 1671	£1.44	2N4036	63p	AF139	39p	BD138	63p	M $\mathbf{J 4 8 0}$	90p
2N1671A	£1.54	2 N 4037	42p	AF178	55p	BD139	71p	MJ481	f1. 14
2N1671B	£1.72	2N4126	20p	AF179	65p	BD140	87p	MJ490	98p
2N1671C	f4.32	2N4289	34 p	AF180	58p	BF115	25p	MJ491	f1.38
2N2102	50p	2N4929	73p	AF239	51p	BF116	23p	MJE340	45p
2N2147	78p	2 N 4922	84p	AF240	72p	BF117	43p	MJE2955	£1.12
2N2148	94p	2 N 4923	83p	AF279	$54 p$	BF154	16p	MJE3055	68p
2N2160	60p	2N5190	92p	AF280	54p	BF163	32p	MFC4000B	- 40p
2N2218A	22p	2N5191	$95 p$	BC107	16p	BF180	35p	MFC4010A	A 49p
2N2219	24p	2N5192	£1.24	BC108	15p	BF181	34p	MFC4060	54p
2N2219A	26p	2N5195	£1.46	BC109	19p	BF184	30p	MFC6040	91p
2N2221	18p	2N5245	43 p	BC147	12p	BF194	12p	NE555V	70p
2N2221A	21p	2N5457	49p	BC148	13p	BF 195	12p	NE560D	¢4.48
2N2222	20p	2N5458	45p	BC149	12p	BF196	13p	NE531	¢4.48
2N2222A	$25 p$	2N5459	49p	BC167B	13p	BF197	15p	NE565A	£4.48
2N2646	55p	40361	48p	BC168B	13p	BF198	$18 p$	OC28	76p
2N2904	22p	40362	50p	BC168C	11p	BF200	40 p	OC42	50p
2N2904A	24p	40363	88p	BC169B	13p	BF237	22 p	OC71	17p
2N2905	$24 p$	40406	44p	BC169C	13p	BF238	22p	OC72	25p
2N2905A	26p	40407	33p	BC 182	12p	BFX29	30p	SL414A	£1.80
2N2906	19 p	40408	50p	BC182L	12p	BFX30	27p	taa263	f1. 00
2N2906A	$21 p$	40409	52p	BC183	12p	BFX84	24p	TBA800	f1.50
2N2907	22p	40410	52p	BC183L	12p	BFX85	30 p	tBa810	£1.50
2N2907A	$25 p$	40411	f2. 25	BC 184	13p	BFX87	28p	TIP29A	49p
2N2926	$11 p$	40602	46p	BC184	13p	BFX88	25p	TIP30A	58p
2N3053	25p	40604	56p	BC212K	16p	BFX89	45p	TIP31A	62p
2N3054	60p	40669	f1.00	BC212L	$16 p$	BFY 19	62 p	TIP328	74p
2N3055	75p	AC117	20p	BC214L	21p	BFY51	23p	TIP33A	f1.01
2 N 3441	97p	AC126	20p	BC237	$13 p$	BFY52	21p	TIP34A	£1.51
2N3442	f1.69	AC 127	20p	BC238	13p	BFY90	75p	TIP35A	£2.90
2N3415	10p	AC12B	20p	BC239	13p	BRY39	48p	TIP36A	¢3.70
2 N 3416	15p	AC15iv.	25p	BC257	14p	C1060	$65 p$	TIP4 1A	79p
2N3417	$21 p$	AC152V	17p	BC258	13p	Ca3020A	£1.80	TIP42A	90 p
2N3702	$11 p$	AC153K	25p	BC259	14p	CA3046	70p	T1P2995	93p
2N3703	12p	AC176	18p	BC300	36p	CA3048	E2.11	T1P3055	60%
2N3704	$14 p$	AC176K	25p	BC301	34 p	CA3089E	£1.96	2TX300	13p
2N3705	12p	AC187K	23p	BC307	$11 p$	CA30900	£4.23	2TX302	20p
2N3706	9 p	AC188K	34p	BC308	12p	LM301a	46p	2TX500	15p
Prices correct at October 1974. but all exclusive of VAT. Post and Package 20p									

TRANSFORMERS

SAFETY MAINS 13 OLATING TRANSFORMERS $\begin{array}{lr}\text { ReF. } & \text { VA } \\ \text { No. } & \text { Wa } \\ 07 & 20 \\ 149 & 80 \\ 130 & 100 \\ 151 & 200 \\ 152 & 250 \\ 153 & 350 \\ 134 & 500 \\ 155 & 750 \\ 156 & 1000 \\ 157 & 1500 \\ 158 & 2000 \\ 159 & 3000\end{array}$ 000
500
000

0000 $\begin{array}{cc}\text { Weigh } \\ \text { W) } & \text { Woz } \\ 1 & 8 \\ 3 & 82 \\ 5 & 8 \\ 8 & 0 \\ 13 & 12 \\ 15 & 0 \\ 19 & 8 \\ 29 & 0 \\ 38 & 0 \\ 46 & 0 \\ 60 & 0 \\ 85 & 0\end{array}$

${ }_{\text {VA }}$	Weignt			
(Watts)				
75	21			
150	31			
300	6			
500	12			
1000	19			
1500	30			
2000	32			
3000	40 -	$\begin{array}{ll}\text { Size } \mathrm{cm} . & \text { Auto Tap } \\ 5.8 \times 5.9 \times 4.5 & 0-115-210-240 \\ 7.0 \times 6.7 \times 6.1 & 0-15.20-240 \\ 8.9 \times 7.7 \times 7.7 & 0-115-200-220\end{array}$	$P \& P$	
:---	:---			
1.52	39			
2.4	38			
3.75	4			
5.28	5			
8.92	6			
12.44	9			
16.65				
22.00				
31.90				

ASEO AUTO TRANSFORMER
\qquad
115V mains lead 50. P. \& P . 80 p .
LOW VOLTAGE TRANSFORMERS
PRIMARY $240-250$ VOLTS 12 AND/OR 24 VOLT RANGE

PRIMARY 200-250 VOLTATTERY CHARGER TYPES

45 5 86 146 50
 $\begin{array}{rrr} & 16 & 0 z \\ 1.5 & 1 & 8 \\ 40 & 3 & 4 \\ 6.0 & 6 & 4 \\ 8.0 & 6 & 12 \\ 12.5 & 12 & 0\end{array}$
 $7.0 \times 6.1 \times 6.1$ $8.9 \times 7.7 \times 7.7$ $9.9 \times 9.6 \times 88$ $9.9 \times 10.2 \times 8.6$ $14.0 \times 102 \times 11$
 Please note, the units do not in- clude rectifiers

Carriage via E.R.S.
Also stocked: SEMICONDUCTORS - VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 8\% FOR V.A.T. including P. \& P

BARidIE electronics
 3. THE MINORIES. LONDON EC3N 1BJ TELEPHONE: 01-488 33168
 NEAREST TUBE STATIONS ALDGATE \&゙ LIVE HPOOI ST

STEREO IC DECODER
 HICH PERFORMANCE PHASE LOCKED LOOP

MOTOROLA MC1310P EX STOCK DELIVERY
SPECIFICATION
Separation: $\mathbf{4 0 d B} 50 \mathrm{~Hz}-15 \mathrm{kHz}$.
$1 / P$ level : 560 mV ims \qquad O/P level: 485 mv Distortion: 0.3% Input impedance : $50 \mathrm{k} \Omega$ \qquad Power requirements : $8-16 \mathrm{~V}$ at 16 mA

KIT COMPRISES FIBREGLASS PCB (Rolle, tinned), Resistors, I.C.. Capacitors, Preset Potm. \& Comprehensive Instructions	$\begin{aligned} & \text { ONLY } \\ & \text { f3.98 } \end{aligned}$	WHY PAY MORE? post fiee.
LIGHT EMITTING DIODE Suitable as stereo "on' indicator for above	GREEN	$\begin{aligned} & \text { 29p } \\ & \text { 59p } \end{aligned}$

MC1310P only £3.15 plus p.p. 6p
NOTE
As the supplier of the first MC1310P decoder kit, of
V.A.T.

Please add V.A.T. at $\mathbf{0 \%}$ to all prices
FI-COMP ELECTRONICS
BURTON ROAD, EGGINTON, DERBY, DEG GGY

Audio Connectors

Broadcast pattern jackfields, jackcords plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street,
Londan W1V 3LE
$01-437$ 1892/3

EX BEA CONTROL UNITS

THESE PROVIDE MESSAGE ASSEMBLY-BUFFER STORAGE-CHARACTER GENERATION AND CONTROL FOR OPERATION OF UP TO 20 PLUS DISPLAY STATIONS AND OR OTHER INPUT OUTPUT DEVICES. THESE CONTROL UNITS ARE SUPPLIED COMPLETE WITH INTERNAL POWER SUPPLIES FOR OPERATION FROM 240 V 50 HZ SIGNAL PHASE MAINS. THEY ARE NOT TESTED. LIMITED SPARES ARE AVAILABLE WITH EACH UNIT AND ADEQUATE INFORMATION. FURTHER DETAILS AVAILABLE IF REQUIRED

£250 each pus cafrage

E.M.I. PROFESSIONAL RECORDERS. BTR2

COMPLETE EXCEPT FOR PLUG-IN HEADS £35 each. CARRIAGE $£ 2$

Breaking some-limited amount of spares. Your enquiries please (be specific in requirements).

CLEARANCE LISTS AVAILABLE. S.A.E.

TELEPHONES

STANDARD 300 Series. BLACK only $\mathbf{1} 1.00$ ea. P. \& P. 50p. MODERN STYLE 706 BLACK OR TWO-TONE GREY £3.75 ea. P. \& P. 35p. STYLE 7006 TWO-TONE GREEN $\mathbf{£ 3 . 7 5} \mathrm{ea}$. P. \& P. 35p. HANDSETS-complete with 2 insets and lead 75p ea. P. \& P. 37p. DIALS ONLY. 75p ea. P. \& P. 25p.
SCOOP FIRST TIME MODERN STANDARD TELEPHONES IN GREY OR GREEN WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746. A CHANCE NOT TO BE MISSED £3.00 ea. P. \& P. 35p.

LOW FREQUENCY WOBBULATOR

Primarily intended for the alignment of AM Radios: Communication Receivers; Filters, etc.. in the range of 250 KHZ to 5 MHZ . but can be effectively used to 30 MHZ . Can be used with any general purpose oscilloscope. Requires 12 V AC input. Three controlsRF level; sweep width and frequency. Price $\mathbf{£ 8} \mathbf{5 0}$. P. \& P. 35p.
A second model is available as above but which allows the range to be extended down in frequency to 20 KHZ by the addition of external capacitors. Price $\mathbf{£ 1 1 . 5 0}$. P. \& P. 35p.
Both models are supplied connected for automatic 50 HZ sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

don't forget

your manuals
S.A.E. WITH

REQUIREMENTS

> MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6.25. P. \&P. $25 p$.
> STILL AVAILABLE our 20 MHZ version at £9.75. P. \& P. $25 p$.

20 HZ to 200 KHZ

sine and square wave generator

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use 9 to 12 V supply required. $£ 8.85$ each. P. \& P. 25 p. Sine Wave only f6. 85 each. P. \& P. 25p

LARGE QUANTITY OF OSCILLOSCOPE \&

 DISPLAY TUBES FROM $\mathbf{1 "}^{\prime \prime}$ to $\mathbf{2 4 "}^{\prime \prime}$ S.A.E. FOR COMPREHENSIVE LISTAll of our tubes can be supplied with nu-metal shields or Telcon nu-metal tape.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6}$.75. P. \& P. 25p. (Not cased. not calibrated.)

TYPEA

Input: 12VDC Output: 1.3 kV AC 1.5 MA

Price $£ 3.45$

TRANSISTOR INVERTORS

TYPE Input: 12 V

Output: 1.3 kV DC 1.5 MA
Price $\mathbf{£ 4 . 7 0}^{\mathbf{7}}$

TYPE C

Input: 12 V to 24 V DC
Output: 1.5 kV to 4 kV AC 0.5 MA
Price $\mathbf{£ 6 . 3 5}$
Price $\mathbf{£ 6}$.
Postage \& Packing 36p

TYPE D
Input: 12 V to 24 V DC
Output: 14 kV DC 100 micro amps at 24 V . Progressively reducing for lower input voltages Price $\mathbf{£ 1 1}$

Unless stated - please add $\mathbf{£ 2 . 0 0}$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

'SLO-SYN' 3-LEAD SYNCHRONOUS STEPPING MOTOR

yechanical braking. Simple relay circuit can be appied to oilve DC.. to winding for a maximum hotding torque o

CARTER ELECTRIC

SMITHS RINGER-TIMER

FEW ONLY
Fully stabilised "Labgear" Power Supply Unit, Input
$90-240 \mathrm{~V} .50 \mathrm{~Hz}$. Outputs 6 v . 6 a D.C. and $6 \mathrm{v}+2 \mathrm{v}$, 100 ma

 E1.50. In manufacturer's carton.

'LABGEAR ELIMINAC'

 ipple content Suthed

ELECTRO-TECH сомponers sto
 ULTRA PRECISION CENTRIFUGAL BLOWER by Air Control Ltd. 30 segments individually balanced in
heavy cast alloy case. 2,300 r. min .
240 M A. C . Very powertul and silent

REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabicondition. $£ 8.50$. Carr. 75 p. AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$, 1000 watts. Mounted in strong steel case 5 in . $6 \frac{1}{2} \mathrm{in} . \quad 7 \mathrm{in}$. Bitumen impregnated. $£ 10$ each. Carr. f. 1
TELEPRINTER TYPE 7B: Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, $£ 25$ each; or second hand cond. (excellent order) no parts broken, $£ 15$ each. Carriage either type $£ 3.00$.
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a c. input. S hand good cond. $£ 30$ + $£ 1$ carr. BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2, £30 each. Carr. ©1. BRIDGE MEGGER: $2,500 \mathrm{~V}$, series $1 . £ 30$ each Carr. $£ 1$.
CRYSTAL TEST SET TYPE 193: used for checking crystals in freq, range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a'freq meter. $£ 17.50$. Carr. $£ 1.50$.
TYPE 174/1 FREQUENCY SHIFT ADAPTOR (Northern Radio Co.) Convert. mark and space frequencies from the output of one or two Receivers into d.c. pulses. Suitable to operate Teleprinters or similar devices. 110220 V . Further TELEGRAPH TERMINAL UNIT (ATE
rom Receivers into miNAL UNIT (A.T.E.) TYPE TFS3: Converts signals MUIRHEAD PAMETRADA WAVE ANALYSER D-489-EM: Primarily used for the analysis of complex vibration waveforms but will measure audio and power frequency waveforms from $19 \mathrm{~Hz}-21 \mathrm{KHz}$. Complete with power supply unit 230 V 50 Hz . Secondhand, good condition. $£ 90$. Carr. $£ 3$
FURZHILL SENSITIVE VALVE VOLTMETER V.200: Freq. $10 \mathrm{~Hz}-6 \mathrm{MHz}$ can be used beyond 6 MHz). Probe in circuit-voltage range $1 \mathrm{mV}-1 \mathrm{kV}$ in 6 decade ranges; full scale deflection $10 \mathrm{mV}, 100 \mathrm{mV}-1 \mathrm{kV}$. Without probe $100 \mu \mathrm{~V}$ 100 V in 6 decade ranges; full scale deflection $1 \mathrm{mV}, 10 \mathrm{mV}-100 \mathrm{~V}$. Accuracy $\pm 5^{\circ}$ £ 30 each. Carr. $£ 1$
NOISE FIGURE METER TYPE 113A (Magnetic AB, Sweden): $£ 125$ each. Carr. 6
PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5 ranges Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$ ROHDE \& SCHWARZ HF MILLIVOLTMETER: $30 \mathrm{~Hz}-30 \mathrm{MHz}$ Type UVH, lmV-1V in 7 ranges, 220 V . $£ 75$ each. Carr. $£ 2$.
ROHDE \& SCHWARZ VHF WATTMETER TYPE NAK: with matching indicator, 30 watts, $200-470 \mathrm{MHz}$. $£ 25$ each. Post 70 p
ADVANCE PULSE GENERATOR PG55: $£ 40$ each. Carr $£ 1$
PHILLIPS VALVE VOLTMETER TYPE GM6014: $1-300 \mathrm{mV}$ in 6 ranges, $70-20 \mathrm{~dB}$, probe $1000 \mathrm{~Hz}-30 \mathrm{MHz}, 300 \mathrm{mV}$ maximum. $£ 35$ each. Carr $£ 1$.
TF-1345/2 DIGITAL FREQUENCY COUNTER: Range $10 \mathrm{KHz}-100 \mathrm{MHz}$
with extension units. Details on request, s.a.e. $£ 100$. Carr. $£ 2$.
ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage).

UHF MICROWAVE MILLIWATTMETER TYPE 14: Direct reading, can be used to measure power from 100 MHz upwards. F.S.D. on 4 in . scale meter
2.5 mW . $£ 40$ each. Carr. $£ 1$. MARCONI HF SPECTRUM ANALYSER OA. 1094/3. Further details on request $£ 250$ each. Carr. $\subset 5$
Q METER: $30 \mathrm{MHz}-200 \mathrm{MHz} . £ 55$. Carr. $£ 1$.
SIGNAL GENERATOR AIRMEC TYPE 701: $30 \mathrm{KHz}-30 \mathrm{MHz}, 7$ ranges £65. Carr $£ 1.50$
TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: £125. Carr. £2. BPL A.C. MILLIVOLTMETER TYPE VM. 348 -D Mk. $3: 2$ millivolts- 2 volts, 6 ranges. $\mathbf{t} 30$. Carr.
WAYNE KERR WAVEFORM ANALYSER A.321: Low scale $0-1200 \mathrm{c} / \mathrm{s}$

SPECTRUM ANALYSER TYPE MW.69S (Decca): Further details on
request. $£ 200$. request. $£ 200$.

MARCONI DUAL TRACE UNIT TM-6456: $\mathfrak{f 3 0}$. Post 60 p

AVO TRANSISTOR TESTER CT.446: $£ \mathbf{~} 30$. Carr $£ 1$
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard) A portable, self-contained, gencral-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq. - $1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width- $0.5-10 \mathrm{micro}-$ secs. Iiming-Cndelayed or delayed from $3-300$ microsecs from external or ance- 500 . Price $f 120$ mill 127 dB variable. Output Impede H.V. TRANSFORMER
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in}$. TELEPHONE CABLE (T)
FIRE PRO TF. 2000 A.F SIELEPHONES: $£ 25 \cdot 00$ each, carr. $£ 1 \cdot 50$
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ 30.00$ each, carr. $£ 3.00$
SMOOTHING UNIT (for the above): $£ 10 \cdot 00$ each, carr. $£ 2 \cdot 00$
X-BANI MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott. $£ 125$ ea., Carr. $£ 1$
HP-766D DUAL DIRECTIONAL COUPLER: $940-1975 \mathrm{MHz}$, £35 ea., 75 p post.
BACKWARD WAVE OSCILLATOR TYPE SE-215: 6.3 heater, 105 V Anode,
7.9 mA . Mnfr. Watkins \& Johnson. £85 ea., Carr. £i.

LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists. ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF LONDON ONLY.

JOHN CRICHTON

 Electronic Equipment

 Electronic Equipment}558 Kingston Road London. SW2O Intand VAT add 8\% Prices shown include P \& P , oth prices gladly on request. Viewing by appointment please. Phone 01-540 9534

TEST SET FREQUENCY RESPONSE

 CT381Consisting of: sweep generator, indicator response curve. flat-faced tube long persistance. Power supply. Calibrator frequency ct432. Frequency range: $10 \mathrm{kc} / \mathrm{s}-33 \mathrm{Mc} / \mathrm{s}$ in nine directly calibrated ranges. Accuracy $\pm 3 \%$
of the indicated centre frequency. F.M. deviation: (nominal). $0-500 \mathrm{kc} / \mathrm{s}$ above- $4 \mathrm{Mc} / \mathrm{s}$. tion: (nominal). $0-500 \mathrm{kc} / \mathrm{s}$ above- $4 \mathrm{Mc} / \mathrm{s}$.
$0-400 \mathrm{kc} / \mathrm{s}$ at $1.5 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$. $0-165 \mathrm{kc} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$. falling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$. Output impedance: 75 ohms resistive. Power supplies: Mains $100-120 \mathrm{~V}$ and $180-250 \mathrm{~V}$. Frequency $50-500 \mathrm{c} / \mathrm{s}$. Consumption 340 W (nominall. Price f195. Belling Lee radio $100 \mathrm{Amps}, 400 \mathrm{~W} .440 \mathrm{~V}$. Single wave f 15 .

HEWLETT PACKARD

185B. 1 GHz SAM OSCILLOSCOPE.

OSCILLOSCOPE.
Horizontal Sweep speeds: 10 ranges. 10 Horizontal Sweep speeds: 10 ranges 10
nsec/cm to $10 \mathrm{sec} / \mathrm{cm}$. accuracy within $\pm 5 \%$ Magnification: 7 calibrated ranges
$\times 1 \times 2 \times 5 \times 10 \times 20 . \times 50$ and $\times 100$. $\overline{\mathrm{X}}$, $\times 2$. $\times 5$. $\times 10 . \times 20$. $\times 50$ and $\times 100$. Increases maximum calibrated sweep
speed to $0.1 \mathrm{nsec} / \mathrm{sm}$: with vernier maximum sweep speed is further extended to $0.04 \mathrm{nsec} / \mathrm{cm}$. Intensity and sampling intensity are not affected by magnification.
High frequency: Input frequency: 50 to High frequancy: Input frequency: 50 to
1000 mc 1000 mc for sweep speeds 200 mv and
$1000 \mathrm{mv}: \pm 3 \%$. Time: Approximately 5 sec burst of 50 mc sinewave. Frequency accuracy $\pm 2 \%$. In addition the Model 185B provides output signals for $\mathrm{X}-\mathrm{Y}$ recorders and provides means for controlling the display either manually or ex ternally. Full specification on request. Price $£ 295$.
430C Microwave power meter. $\mathbf{\text { H01 }}$ H01-8401A Leveller amplifier. 87094 Sy 8734B Pin modulator $7.0-12.4 \mathrm{GC}$. 8732A Pin Modulator $1.8-4.5 \mathrm{G}$
8431 A
Bandpass fiter $2-4 \mathrm{GC}$ 7970 Directional Coupler 1.9-4. 8436A Bandpass filter 8-12.4GC. 185A 800 MHz Sampling oscillos 185B Sampling oscilloscope

L30047 CAMBRIDGE UNIVERSAL

 BRIDGE.Measures DC resistance, self-inductance. mutual inductance: capacity and frequency
Full specification on request. $£ 95$.

Voltmeter Valve CT54 (Micovac). With
mains power supply (power supply not mains power supply (power supply not
available separately). In strong metal case available separately). In strong metal case
with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ meter. Complete with probe, $\mathbf{E 1 2 . 5 0}$ including p. and p. (Leads extra.)

MUIRHEAD FREQUENCY ANALYSER TYPE D-669-B.
Frequency range $30 \mathrm{c} / \mathrm{s}-30 \mathrm{kc} / \mathrm{s}$ Accuracy better than 1.5%. Input voltage $300 \mu \mathrm{~V}-100 \mathrm{~V}$ for full scale deflexion. Smallest indication
$15 \mu \mathrm{~V}$. Maximum input voltage 300 V rm.s. Price $£ 95$. Full spec. on request.

TEIKTRONIX

NON-PLUG-IN UNIT

OSCILLOSCOPE.
524AD. DC-10MHz. £100.
MAIN FRAME OSCILLOSCOPES:
545. DC-30MHz. 54 5A. DC-30MHz. 545B. DC-33MHZ
Type CA. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type CA. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type D. $1 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Type G. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type L. $5 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm} .0 .05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
230 DIGITAL UNIT
Digital readout parameters. Pulse amplitude. pulse risetime and falltime, pulse width. time interval.
R116. 10-NS PROGRAMMABLE
PULSE GE
with Delay.
with Delay. PROBE P6006 with 10X
PASSIVE PR attenuation. designed for oscilloscopes having an inpul resistance of 1 megohm and input capacitance of up to 55pt Price f10.
PROBE P6065 10X. 10 megohm 12.5 pf . 500 V D.C. max. Length 6 ft . Price f 15

MUIRHEAD 2-PH. L.F. DECADE
OSCILLATOR Type D880.
Frequency range $0.01 \mathrm{c} / \mathrm{s}-11.2 \mathrm{kc} / \mathrm{s}$ (continuously variable above $0.1 \mathrm{c} / \mathrm{s}$).
V.L.F. $0.01 \mathrm{c} / \mathrm{s}-0.1 \mathrm{c} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$. Hourly frequency stability
$\left.\begin{array}{l}\text { Ranges } \times 1 . \times 10 . \times 100 \pm 0.05 \% \\ \text { Ranges } \times 0.1 \text { Y } 1.5, \pm 0.1\end{array}\right\} \begin{aligned} & \text { After }\end{aligned}$ T.F. $801 \mathrm{D} / 1 / \mathrm{SA} . \mathrm{M}$. SIGNALGENERATOR. T.F.801D/1/SA.M.SIGNALGENERATOR Freq. range: 10 MHz to 485 MHz . Built-in
crystal calibrator. Internal and external sine a.m. External pulse modulation. Calibration Accuracy: Using crystal calibrator, within $\pm 0.2 \%$ over entire frequency range. R.F. outlevel $0.1 \mu \mathrm{~V}$ to IV source e.m.f.
OA. 1094A/3 H.F.SPECTRUM ANALYSER with L.F. extension unit type TM6448.
 width $0-30 \mathrm{KHz}$. Sweep duration: $0.1,0.3,1$. 3. 10. 30 sec . and manual. Full spec on request. $\mathbf{2} 250$ as seen condion, buyer to collect.
OA.1094A/S H.F. SPECTRUM ANALY. SER. Freq. range: 3 MHz to 30 MHz in nine steps, spectrum width 0 to 30 KHz . Sweep distortion: $0.1,0.3 .1,3,10.30$ secs. and
manual. Full spec. on request. $£ 150$ as seen condition, buyer to collect
T. 111 ROBAND TRANSISTORIIZED SUPPLY. Mains input 110 V or 230 V . outpu $0-50 \mathrm{~V}$ at 5 Amperes cont. variable. overloa cut-out. As seen f15

REMSCOPE SO1/7

OSCILLOSCOPE.
Fluorescence: Yellow. resolution: 40 lines $/ \mathrm{cm}$ E.H.T.: 8 kV . display time: 10 mins 1 hr approx.. sto
CD 1212 WIDE-BAND GENE
PURPOSE OSCILLOSCOPE.
PURPOSE OSCILLOSCOPE.
Employing plug-in pre-amplifiers for single or dual trace displays.
Wide-band pre-amplifier CX 1251 . Bandwidth: AC coupled $(-3 \mathrm{~dB}+1 \mathrm{~dB})$. Rise time 8 nanosec approx. Sensitivity: $50 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control. Dual trace pre-amplifier CX 1252. Bandwidth: $\mathrm{DC}-24 \mathrm{Mc} / \mathrm{s}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB}) \mathrm{AC}$ coupled. Rise time: 14 nanosec approx. Sensitivity: $50 \mathrm{mV} /$ $\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with fine gain control. Full specification on equest. 1128.
T.F. 801 B/3/S A.M. SIGNAL GENERATOR. freq. range: 12 MHz to 485 MHz in five bands. Built-in crystal calibrator. Full spec. on request.
CT. 373 TEST SET. Oscillator: $17 \mathrm{c} / \mathrm{s}$ $170 \mathrm{kc} / \mathrm{s} \quad \pm 1 \% . \quad \pm \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distortion Meter: Freq. range: $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. distortion range: $10 \%, 30 \%$,
100%
f.s.d. 0.5% readable. Signal input 100% f.s.d. 0.5% readable. Signal input.
approx. 500 mV to 130 V basic range. 250 mV approx. 500 mV to 130 V basic range. 250 mV
to 1300 V extreme limits. Full spec. on to 1300 V
request. $\mathrm{E30}$
AVo mOdEL 3 VALVE TESTER. Enables comprehensive characteristics to be plotted basis. $\mathbf{5 5 5}$.
AVO CT 160 VALVE TESTER. As above but in portable valise form. $\mathbf{~} 65$.
Viewing by appointment only.
TINSLEY TYPE 4363E AUTO VERNIER POTENTIOMETER.
PYE Precision vernier potentiometer 7568. $1 \mu V$ to 1.90100 V in two ranges. Accuracy DIE-CUT FOIL STRAIN GAUGES by DENTONICS TYPE M234C13L. Resistance in ohms $350 \pm .5$. Gauge factor $2.1 \pm \pm$. packet (5).
TF. 937 F.M./A.M. SIGNAL GENERATOR. Freq. range 85 KHz to 30 MHz . The carrier req. can be standardized against a built-in
dual freq. crystal calibrator, which is complete with minlature loudspeaker as an aural bear detector $\mathbf{£ 8 7}$.
TF.114H/S SIGNAL GENERATOR. FRE quency range: $10 \mathrm{KHz}-72 \mathrm{MHz}$. Stability calibrator. Good r.f. waveform at all fre quencies. Protected thermocouple level moni tor. Full spec. on request. $£ 220$.
TEST SET DEVIATION FM No 2. The carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$
to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a total $5 \mathrm{kc} / \mathrm{s}$. 0 to $25 \mathrm{kc} / \mathrm{s}$ and 0 to $75 \mathrm{kc} / \mathrm{s}$. $£ 48$.

TRANSISTORS AND DIODES

DIGITAL COUNTERS
Veeder Root Mech. Reset 4 dig. . . 50 p
STABILIZED POWER SUPPLIES Gresham Lion GX60/10a-60v, 10 amp. set to
Lambda
CC28v-Inp
$205-265 v . ~ o u t p u t ~$ 28 v dc $\pm 5 \% \quad 3.4 \mathrm{amp} \mathbf{£ 3 8} .50$ incl. p. \& p Power Elect. Inp 240 v outputs 20 v 6.5 a 10 v $3.4 \mathrm{amp}+10 \mathrm{v} 300 \mathrm{ma} \ldots \mathrm{£} 38-50 \mathrm{inc}$. carr.

RELAYS

Varley Min. $700 \Omega 12 \mathrm{v}50 \mathrm{c}$

CONNECTORS

McMurdo Red Range. Plug RP24
McMurdo Red Range. SK RS32 56p
.90 p Eng. Elect. Edge. 36 way 0.2 inch Mair 91.00
Sylvania Edge. 48 way 0.125 inch pair 40 . Amphenol MS3106B-36-10
Continental microminiature 2 B : 080 iN 26 E4.50
$\mathbf{E 1 . 3 0}$

CAPACITORS
Daly Electrolytic 9000uF 25 v 50 p p/p 15 p : $500 \mu \mathrm{~F} 50 \mathrm{v} 30 \mathrm{p}$ p/p 10 p : TCC $16 \mu \mathrm{~F}+16 \mu \mathrm{~F}$ $+8 \mu \mathrm{~F} 450 \mathrm{v} 75 \mathrm{p}$ p/p 15 p : CCL $50 \mu \mathrm{~F}+50 \mu \mathrm{~F} 275 \mathrm{v} 40 \mathrm{p}$ p/p $10 \mathrm{p}: \mathrm{CCL}$ Suppressor Unit Metallised Paper type 426 100 1 F 150v 50p p/p 25p: RIC $1.8 \mu \mathrm{~F} 440 \mathrm{v}$ a.c. 35p p/p 10 p . MOTORS
E. thp 230v. 50c 1 ph 50c. 1440 rpm complete with cap $80 / 100 \mathrm{uf} 275 \mathrm{v}$.... £15-50

3 phase 2 HP motor 60/50c.. 1800/1500 RPM. 208/220/440V........... $£ \mathbf{i n c}$. 50
Cat. 2026391 Potter Instruments flange mounting capstan motor. 0.2 HP cont. 110 V DC 4 amp
FANS, CENTRIFUGAL BLOWERS
Alrmax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller $\&$ casing (Corresponds to current type $3965{ }^{7 \frac{1}{2} \text { ". } 230 \mathrm{v} \text {. }} 1 \mathrm{ph} 50 \mathrm{c} 2900 \mathrm{rmm}$ Class "A" insulation ph 50 c free 3 is weight $9 \frac{1}{2} \mathrm{lbs}$. incl. p.o. £21.00.
21.00

2700rpm $220 / 250 \mathrm{~V}$ 1ph $50 \mathrm{c} \mathrm{c}^{6}$ plastic impeller incl. p.p. E11-50.

Service Electric HI-Velocity Fans, suitable for Gas
combustion Systems. Steam exhausting, Pneumatic conveving. Caoling Electronic equioment. Air blast or Oil burners. Secomak Model 365 (correspond continuous 160 cfm 12 in w.g. nett weight 44 lb price incl. cars. $\mathbf{£ 4 1 . 0 0 \text { . Secomak model } 3 5 0 2 5 0 \mathrm { V } , ~ (2)}$ iph 50c $0.166 \mathrm{hp}, 2800 \mathrm{rpm}$ continuous 50 cfm 2 in . w.9. net weight 34lbs, price incl. cart. $\mathbf{£ 2 6 0 0}$. Alr Controls type VBL4 200/250v 1 ph 50 c .110 cfm free air weight $l \frac{1}{2}$ lbs price incl. p.p. E14.50. Trpe VBL5 200/250v iph 50c. 172
Weight 10 1 ibs, price incl. p.p. f18. 50.
William Alday Alcosa Single Stage Vacuum Pump Niliam Allday Alcosa Single Stage Vacuum Pump
Model HSPOB 8 HG . Rpm 1420 . E.E. 3 phase moduction moter $1 / 3$ hp cont $220 / 250 \mathrm{v} 380 / 440 \mathrm{v}$ Class E ins. $£ 21.00$ incl. carriage
Gast MFG. Vacuum pump 0522-P702-R26X Motor 110/120v. A.C. 1 ph. 60c 1725 rpm . Class E

10cuft to 1 Oirr Mercury in 2 mins mantans vacuum
635 mm Mercusy. Or as com
15 psi cont. $£ 25.00$ incl. catr.
Where p.p. not advised add $10 p$ per $£$ handling and post (in UK). Cash with order. Pe'sonal callers welcone Open Mon.-Wed. 9.30-5.00 Fri. Sa

$$
9.30-5.00 \text {. Free Car Park adj. PRICES SHOWN ARE EXCLUSIVE OF V.A. }
$$

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail:

We are glad to say that it is now possible to supply from stock the following integrated circuits. ALL ARE BRANDED, FULL SPECIFICATION devices offered as unbeatable prices! This is YOUR chance to cut manufacturing costs and greatly increase profit margins!

	$1 / 99$ 60.15	$100 / 499$ $60 \cdot 125$	500/1000		1/99	100/499	500/1000		1/99	100/499	500/1000
7400	60.15	60.125	60.10	7442	¢0.645	60.537	60.43	7494	60.495	¢0.412	¢0. 33
7401	60. 15	20. 125	60. 10	7443	¢1. 275	¢1.062	60. 85	7495	60.63	\$0.525	¢0. 42
7402	c0. 15	60.125	60.10	7445	60.855	60.712	60.57	7496	60.72	¢0.60	60.48
7403	60.15	60.125	60. 10	7446	61.05	60.875	10.70	74104	60.315	C0. 262	CO. 21
7404	60.18	60.15	c0. 12	7446A	61.05	60.875	60.70	74105	60.315	60.262	60.21
7405	60.18	60.15	60.12	7447	61.05	60.875	60.70	74107	60.315	¢0. 262	C0.21
7406	60.375	60.312	60.25	7447A	61.05	60.875	¢0.70	74121	C0. 315	C0. 262	C0.21
7407	60. 375	60.312	60.25	7448	60.855	60.712	¢0.57	74122	60.45	60.375	CO. 30
7408	£0.15	¢0. 125	¢0.10	7450	60.15	C0. 125	60.10	74123	60.63	C0.525	60. 42
7409	£0.15	60.125	60.10	7451	60.15	60.125	60. 10	74141	20.75	60.625	¢0.50
7410	£0.15	60.125	60.10	7453	60.15	$60 \cdot 125$	60.10	74151	80.69	60.575	¢0.46
7412	20. 195	¢0.162	60.13	7454	60.15	60.125	60.10	74153	60.69	60.575	¢0.46
7413	c0.345	60.287	60.23	7460	60.15	60.125	60. 10	74155	60.69	60.575	60.46
7416	60.345	¢0. 287	60.23	7472	60.255	60.212	¢0.17	74156	60.69	60.575	60.46
7417	60.345	60.287	60.23	7473	60.153	c0. 262	¢0.21	74160	fl. 005	60.837	60.67
7420	c0. 15	20. 125	c0. 10	7474	60.315	C0. 262	60.21	74161	¢1.005	60.837	60.67
7423	60.27	¢0. 225	60.18	7475	60.465	60.387	60.31	74162	61.005	60.837	¢0.67
7425	60.27	60.225	20.18	7476	C0. 315	60.262	¢0.21	74163	E1.005	20.837	20.67
7426	60.27	60.225	60.18	7480	60.435	60.362	60. 29	74166	61.425	¢1.187	10.95
7427	c0. 27	60.225	60.18	7482	60.75	60.625	40.50	74174	¢1. 20	¢1.00	60.80
7430	40.15	c0. 125	C0. 10	7483	60.825	60.687	60.55	74175	60.975	c0.812	60.65
7432	60.25	60.225	60.18	7485	61.275	61.062	60.85	74192	61.275	c1.062	10.85
7437	60.27	60.225	60.18	7486	60.315	60.262	60.21	74193	E1. 275	¢ 1.062	40.85
7438	¢0. 27	C0. 225	60.18	7490	60.465	c0. 387	60.31	74198	62. 10	61.75	E1.40
7440	60.15	60.125	60.10	7.492	60.465	60.387	60.31	74199	$62 \cdot 10$	¢1.75	E1.40
7441 A	60.825	60.687	20.55	7493	60.465	60.387	60.31				

To secure the above prices. all orders for these devices must exceed $f 10$ in total value. Price rating is established by TOTAL NUMBER OF DEVICES ORDERED. Any mix may be made. For special quotations for large orders ring 021-327 2339 NOW!!!

CL8300	MICROWAVE DEVICES Gunn effect oscillator	9.4 GHz	£40
CL8370	ditto	9.5 GHz	£10
CL8380	ditto	10.5 GHz	£10
CL8390	ditto	11.5 GHz	¢10
CL8430	ditto	9.35 GHz	¢40
CL8450	ditto	9.35 GHz	£40
CL8470	ditto	9.35 GHz	£40
BXY27	Varacter Diode. "S" Band. Cut-off	70 GHz	f1
BXY28	Varacter Diode. Cut-off	100 GHz	$f 1$
BXY32	Frequency Multiplier. " X " Band	150 GHz	£1
BXY35A/C	ditto	25 GHz	£1
BXY36C/D	ditto	75 GHz	£1
BXY37C/D	ditto	100 GHz	£1
BXY38C/E	ditto	120 GHz	£1
BXY39C/D	ditto	150 GHz	£1
BXY40D/E	ditto	180 GHz	£1
BXY41C/D/E	dito	200 GHz	£1

12 VOLT FLUORESCENT LIGHTING

Inverter transformers 13/15W (circuit included) "Current economy" transistor (600 ma .)
"Maximum light" transistor (1.3A)
Resistors/capacitors to suit
Lampholders (long lead) (needed with cases) (short lead)
White enamel case 21 in (postage 30p
\qquad 70p

Note: HW-13W 45p
(Note: tube only supplied if case ordered. to prevent postal damage).
13 W fitting ready built and tested-including tube (postage 30 p) $\mathbf{£ 3 - 7 5}$ Post/packing. 25 p per order except where shown.

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner
Light sensitive aerosol spray
Developer and Etchant
spray
Single-sided Copper-clad Fibreglass Board
$\mathbf{8 1 . 0 0}$ plus postage 50p plus postage

Double-sided Copper-clad Fibreglass Board
75p sq. ft.
Boards cut to any multiple of $6^{\prime \prime}$. Max. size $3^{\prime} \times 4^{\prime}$
$1,000,000$
POTENTIOMETERS

We have bought a huge assortment of volume controls.
Pre-sets, sliders, etc. All are in manufacturer's original packing.
Manufacturing quantities of some types available.
Write or phone for details.
Sample bag
100 mixed $£ 2.50$

ELECTROLYTIC

 CAPACITORSSeveral thousand of each of the following types. Silly price to clear!

ALL NEW STOCK
$5 \mu f 10 \mathrm{~V}$
$10 \mu \mathrm{f} 10 \mathrm{~V}$
50 uf 10 V
100uf 10 V
$330 \mu f 16 \mathrm{~V}$
$330 \mu f 25 \mathrm{~V}$
$330 \mu f 35 \mathrm{~V}$
$2200 \mu \mathrm{~F} 16 \mathrm{~V}$
$2200 \mu f 16 \mathrm{~V}$
$T 5000 \mu \mathrm{f} 25 \mathrm{~V}$

HOBBY CORNER!

BRAN TUB ! ! !

\star Resistors, Wire-wound and

- Carbon
- Capacitors, Silver-mica, Paper, Ceramic, Polyester and Electrolytic
\star Controls, Volume, Pre-set,
Carbon, Wire
* Diodes, Silicon, Germanium,
* Transistors, Silicon, Germanium
All the above are new and unused stock.
We have made up packs of 2 lb gross weight, all are different in content and contain a mixture of components from the above list. This is a fantastic, you to get a good stock of spares at a tou fraction of normal pricel to make thing normal price - TWENTY OF THESE BAGS ALSO CONTAIN A POUND NOTE! TWENTY CUSTOMERS WILL BE VERY PLEASED INDEED!
And the price that we are asking? Only $\mathbf{£ 1} .50$ including both postage and VAT! Rush your order now! This offer is only made to reduce our surplus
stock! it is unlikely that in these days of rising prices we shall ever be able to repeat!
g
100 \&ERAMIC RESISTORS
CAPACITORS
100 DIODES
POSTAGE 25p_ PACK No. 1
100 RESISTORS
100 CERAMIC
CAPACITORS
100 POLYSTYRENE
CAAPACITORS
POSTAGE 25P PACK NO. 2
100 RESISTORS
100 CERAMIC
CAPACITORS
50 MULLARD POLYESTER
CAPACITORS
POSTAGE 25P

2OASSORTED UNUSED
MARKED,TESTED
TRANSISTORS BC108 ETC.
POSTAGE 25p PACK No. 5

£1

 POSTAGE 25p PACK No. 6-9 100 RESISTORS 100 CAPACITORS
(ASSORTED TYPES)

MAINS TRANSFORM All standard to $230-250$ volt primari	This is a drum type timing device	
1v 2.4v		Touch Switch. This switch suitable for up to 10 amps mains volage. Stands up approximately
		, ${ }^{\prime \prime}$ 'rather like a ioy stick and no matter which
$\begin{array}{lll}6.3 \mathrm{~V} & \\ 9 \mathrm{~V} & 3 \mathrm{amp} & 1.50 \\ 9.950\end{array}$	changeover micro switches each of 10 amp type operated by the trips. thus 15 circuits may be changed per revolution	on it is pushed, it makes contact. Base
$\begin{array}{lll}9 v & 3.5 \mathrm{amp} & 1.95\end{array}$		ght Switch. Automatically switches on lights
	many uses of this timer are Machinery	n. Can also be used
	Dispensing and Vending machines. Display lighting animated	
${ }_{24 \mathrm{~V}}^{20 \mathrm{v}}$		
	SWITCH TRIGGER MATS	Luminous rocker switch, suitable for 13 amps
		ugh amber panel., snap-in fixing into
		22p each,
	13 in \times Oin E 1.50	
60 v 5 amp \& 5 v 1 amp ample	High compliance $8^{\prime \prime}$ "round speakers suitable for $8-12$ ohm outputs. these speakers	Motor with fan blade-if you want something
		to cool a cabinet or if you are making a cooker
tapped 75v \& 70v $\quad 4 \mathrm{amp}$		ter, this may be the
	TEREO RADIO CA	diameter
Charger Transform	Low and Modern. Teak ve	
${ }^{6 v}$ 6van	front and tapered legs. Speaker spaces each Size approx. 442 in $\times 13$ in $\times 15 \mathrm{in}$. Probably	10 amp 250 v gold on silver contacts. standard fixing, normal operation. Price $\mathbf{1 0 p}$ each.
	20.00 to make. Our Price $£ 8.10$ each.	ix-
	HORSTMANN 24-HOUR TIME SWITCH With 6 position programmer. When fitted to hot water systems could programme as follows:	$3^{\prime \prime}$. Price 50 p each. Full cooling fins. these were intended for computers
OIL PUMP	Hot Water Central Heating	coot were never installed. Price $£ 3$ each.
Driven by Redmond Motor of approx. $1 / 20$ th horse power. pump originally intended for oil-fired boilers etc. with	$\begin{array}{ll}\text { all Daily } & \text { Off } \\ \text { All } & \text { Off }\end{array}$	Insulated zerminals. These are the popular type which will take a wire under the head or
normal inlet and outlet pipes and unions. $\mathbf{E 2 . 1 5}$ plus 30p post and insurance.	wice Daily Twice Daily All Day All Day	
		elay switch. Depending on the amount of
LIGHT DIMMER KIT For dimming up to 250 w without heat sink or 750 w with heat sink. This comprises quadrac variable control	upstrirs and downstairs electric heating or heating and cooling or taped mused	voltage applied. so this switch will delay making
potentiometer. condenser. resistors, tag strip for mounting		voltage) for up to 10 seconds. delay may be fixed or made variable with a suitable poten
RELAY BARGAIN		er. These can also be used as thermal as suitably connected a low curremt
Type 600 relay. 2 changeover one open and one closed contact. Twin 500 ohm coils make this suitable for closing off DC 6 v . DC 12 v . DC 24 v or AC mains using	dile. heavy fly wheel and capstan drive. on metal platorm with tape head and	relay can switch up to 100 amps or more- these are glass tubes plug in 4 pin base-with
	ald guide Not new but in good order. Price $£ 1.95$ plus $£ 1$ post and insurance.	base 75p each. Smiths central heating comtrollar 10 push button gives 10
AM/FM TUNER ${ }^{\text {resistor }}$: ${ }_{\text {central }}$
Unit made by the American GEC company. 8 transistor, all.wired ready to work. Complete with tuner condenser.	ATER	ating. (2) Continuous hot water but central ating off at night. (3) Continuous hot water
all-wired ready to work. Complete with tuner condenser.needs only scale and pointer. Tunes AM rang 540 to1620 KHz . FM range 88 to 108 MHz . Switches for on-off		
and AFC. Output for MXP or direct. Special snip price $\mathbf{£ 5}$ plus 30p post. Three or more post free.	be fitted into any metel line case or cabinet.	
Again by the American GEC company. This has exceptionally good tone quality. Is complete with pre-amp and	TERMS. ADD 8% V.A.T. Send postage these items is $£ 6$. otherwise add 30 p.	continuous. (8) Hot water day- Hot water twice daily. (10)
smoothing circuit and rectifiers so requires only mains transformer. Output for 15 ohm speakers. Inputs for tuner.		
pick-up, mike. etc.		old. we believe, at over
Special snip price $\mathbf{5 6}$ plus 30 p post. Three or more	02/3, TAMWORTH ROAD, CROYDON	£15-we offer these, while stocks last. at E5.95 each, post 30 p .

VARIABLE VOLTAGE TRANSFORMERS $\begin{array}{ll}\text { Carriage extra } & \text { INPUT } 230 \text { v.A.C. } 50 / 60 \\ \text { OUTPUT VARIABLE } 0 / 260 \text { v. A.C. }\end{array}$ BRAND NEW. All types 200W (1 Amp) 0.5 KVA (Max. $2 \frac{1}{2}$ Amp) 1 KVA (Max. 5 Amp) 2 KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp) (Max 375 Amp) Amp OPEN TYPE $\begin{array}{r}£ 9.00 \\ \mathbf{f 1 0 . 0 0} \\ £ 1470 \\ £ 28.10 \\ £ 31.25 \\ £ 72.50 \\ £ 102.50 \\ \\ \hline 900\end{array}$

SERVICE TRADING CO

300 VA ISOLATING TRANSFORMER $115 / 230-230 / 230$ volts. Screened. Primary two separate $0-115$
volts for 115 or 230 volts. Secondary two 115 volts at 150 VA
each tor 115 or 230 volts output. Can be used in series or parallel Connections. Fully tropicalised. Length 13.5 cm . Width 11 cm
Height 13.5 cm . Weight 15 lb . SPECIAL OFFER PRICE Only

VENEER TIME SWITCH
TYPE MS QP
200/250 Volt 2 -ON/2-OFF every 24 hours at any
manually preset time, 20 amp contacts. Fitted mie-cast case. Tested and in good condition

AC. MAINS TIMER UNIT

single-pole switch

 on for any length of time. from 10 omwitc incorporated. Ideal for An additional 60 min . audible timer is also etc. Attractive satin copper finish. Size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times$
60 mm . Price $\mathbf{f 2 . 0 0}$. Post 20 . (Total inc. VAT \& Post $£ 2.38$).
UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D. operation 60.90. Post 30p
BANK 25 WAY FULL WIPER 25 ohm B BANK 25 WAY FUI Post WIPR
24 BANK 2 War
MINIATURE UNISELECTOR SWITCH
2 Bank. 12 position, 24 volt D.C. contacts. NEW Price $\mathbb{E 2} 50$ Post 20 p .
As above but with 5 Bank. 12 position

PROGRAMME TIMERS 230/240 Volt AC. 15 RPM lighting effects, animated displays etc. Ex equipment tested. VERY SPECIAL OFFER
Miniature Roller Micro Switch. 5 amp.
ado contacts. NEW. Price 10 for $\mathbf{f 1 . 5 0}$
As above less rollerfleaver 20 for $\mathbf{£ 2 . 0 0}$. Post 10p. (Min. order 20.)
Ditto. Press to make. 20 for $£ 1.50$ Post 10 p .
Ditto. Press to break. 20 for $£ 1.50$ Post 10 D .
HONEYWELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY
Each bank comprises of a changeover
rated at 10 amps 240 volt A.C. Black
rated at 10 amps 240 volt A.C. Black
knob 11 in . dana. Fixing hole in. Prices:
1-bank
(Illustrated)
20p.
2-bank.
240 V A.C. SOLENOID OPERATED
FLUID VALVE
Rated 1 p.s.i. will handle up to 7 p.s.i, Forged
brass body. stainless steel core and spring. $\frac{1}{2}$ in. 88
b.s.p. infevoutlit. Precison made. British mig.
COIN MECHANISM (Ex-London Transport) Unit containing. selector mechanism for 1 p . 2 p \& 5 p coins.
Micro switches, relays. solenoid-operated hopper. 24 volt D.C.
Precision built to high standard. incredible VALUE at only P2.50 Post 60 p .

230-250 VOLT A.C. SOLENOID
Similar in appearance to illustration.
ii

24 VOLT DC SOLENOIDS

UNIT containing: 1 heavy duty solenoid approx. 25 lb . pull
 1 heavy duty 1 make relay. Price: $\mathbf{£ 2} \mathbf{5 0}$. Post 60p. ABSOLUTE
BARGAIN.
High Visibil
Panel Mounting LEDS
25 inch mounting. 16 inch lens. Typical parameters 2 vol
20 ma. all types. Supplied complete with snap in mounting and data. Red 4 for $£ 1 \cdot 00, G r e e n 3$ tor $£ 1 \cdot 00$, Yellow 3 for $£ 1 \cdot 00$

LED READOUTS

f6.00 post red

STBDBEI STinbis STRobe

* four easy to build kits using xenon white LIGHT FLASH TUBES, SOLID STATE TIMING +
TRIGGERING CIICUUIS, PROVISION FOR EX.
TERNAL TRIGGERING. 230-250V. AC. OPERATION.
EXPERIMENTERS "ECONOMY" KIT
Adjustable 1 to 30 Flash per sec. All electronIc com-
Instructions $£ 6.30$ ponents including Xenon Tube + Instructions $£ 6 \cdot 30$.
INDUSTRIAL KIT
dally suitable for schools, laboratories etc. Roller output of Hy-Lyght. Price $\mathbf{£ 1 4 . 0 0}$. Post 50p
HY-LITE STROBE Mk IV
Disicaned for use in large rooms, halls and utilizes a light output greater circuit. Speed adjustable 1-20 f.p.s. (10). Price $\mathbf{f 1 4 . 0 0}$. Post 50

SUPER' HY-LIGHT KIT
put of our well proven
Variable speed from 1.13 fash per sec
Reactor control circuit producIng an Intense white light. ONLY $£ 22.00$. Post 75p.
ATTRACTIVE, ROBUST, FULLY VENTILATED reflector C8.00
FOR MYIYGHT sTR OB
OR HY-LYGHT STROB
$\star \star * *$
COLOUR WHEEL PROSECTOR
Complete with oil filled colour wheel. 100 watt lamp. tremely efficient optical

I R.P.M. MOTOR and
COLOUR WHEEL

$200 / 240$ volt A.C. 1 r.p.m. motor, and wheel 55.60 6 INCH COLOUR WHEEL ONLY. Prot 30p.
BIG BLACK LIGHT
400 Watt. Mercury vapour ultra violet lamp Extremely compact and powerful source of up.
numerable industrial applications also ideal for stage. display. discos epic. P.F. ballast is essential
with these bulbs Price of matched ballast and bulb
$\mathbf{E 1 6 . 0 0}$. Post $£ 1$. Spare bulb $£ 7.00$. Post 40 p .
 Aft. 40 watt. Price $\mathbf{5 5} 50$ (Callers only). 2 ft .20 watt

\qquad
U.D.1. SINGLE CHANNEL. 750 watt MANUAL/AUTO DIMMER

```
*ade: Auto fade-up: Auto fade-down. Automatic
position' rocker switch. Two ranges of cycling fo  glass fibre board incorporating 10 amp TRIAC. Two
``` flashing effects. PRICE \(£ 15.00\) post 30 p

\section*{GENERAL ELECTRIC POWERGLAS TRIACS}
U.S.A. Long term reliability. Type SC 146 E 10 amp. 500 PIV . f1.00. Po
Disc 18p.

INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal con work, constant speed clutch.
W. 4 In. H. 6 in. weight 6 . 500 VOLTS, 500 megohms 60p. 1,000 VOLTS, 1,000 megohms

INSULATED TERMINALS
年llaw. blue and green. New 12 p
RELAYS SIEMENS PLESSEY
MINIATURE RELAYS

OPEN TYPE RELAYS
6 VOLT D.C. 1 make con. 35p. Post 10 D
9 VOLT DC. RELAY
12 VOLT D.C. RELAY
24 VOLT D.C. \(3 \mathrm{c} / \mathrm{o} 600\) ohm coil 75 p . Post 10 p

100 VOLT AC.
PLASTIC COVERED RELAYS
24 VOLT D.C. 3 hid. coo contacts 95p. Post 10p. 24 VOLT AC.
240 VOLT AC. RELAYITT
220/240 VOLT AC RELAY ARROW 230/240V AC \(2 \mathrm{c} / \mathrm{o} 15 \mathrm{amp}\) contacts

110 VOLT AC.
CLARE-ELLIOT TYpe RP 7641 GB
MANY OTHERS FROM STOCK, PHONE FOR DETAILS.

BLOWER UNIT
BL O-240 VOlt A.C. BLOWER UNIT Precision German bull. Dynamically reversible motor. Consumption rated, Size 120 mm . ia. \(\times 60 \mathrm{~mm}\). deep.
Price \(£ 3.00\). Post 30 .

PRECISION CENTRIFUGAL BLOWER Mfg. Airflow Developments Ltd. Heavy Duty,
continuously rated. smooth running. \(230 / 240 \mathrm{v}\) A.C. motor. Size: \(16 \times 14 \mathrm{~cm}\). (case only).
CAL 15 cm . Aperture \(6 \times 6 \mathrm{~cm}\). \(\mathbf{f 6 . 5 0}\).

230/240 VOLT A.C. EXTRACTOR FAN KIT Comprising of impeller, continuously rated motor motor housing and fixings as illustrated. Price
\(\mathbf{1 1 7 5}\). Post 25p. (Total inc. VAT \& Post f2.16.)
230V FAN ASSEMBLY
Continuously rated. removable aluminium
blades. Price \(£ 1.00\). Post 20 p
230/240V SYNCHRONOUS GEARED MOTOR

BODINE TYPE N.C.
GEARED MOTOR
(Type 1) 71 r.g.m. torque 10 lb in
Reversible \(1 / 7 \mathrm{th}\) hip. cycle. 38 amp
(Type 2) 28 r .pm. torque 20 lb in
(ever
(Type 2) 28 r.p.m. torque 20 lb
Reversible \(1 / 80\) th
precision made U.S.A. motors are offered
condition. Input voltage of motor 115 v A C年te with transformer for \(230 / 240\) A.C. A.C. Supplied com plate with transformer for \(230 / 240 \mathrm{v}\) A.C. input.
Price. either type \(\mathbf{£ 6 - 2 5}\) Post 50 p . or less tran These motors are ideal for rotating aerials, drawing curtains.
'FRACMO' 240 VOLTA.C. 50 cycle SINGLE PHASE GEARED MOTOR
with
\(£ 1400\)

600 WATT DIMMER SWITCH
Easily fitted. Fully guaranteed by makers. control up to 600 watts of all lighting except fluor-
escent at mains voltage Complete with simple 2000 WATT POWER CONTROL
For Power tools. Heating, Lighting etc. incorporating 13 amp
'GENTS' \(\mathbf{6}^{\prime \prime}\) ALARM BELL 200/250 volt AC/DC. Brand New. Price
'STG' \(6^{\prime \prime}\) RED ALARM BELL

Brand New. Price: \(\subset 400\) Post 50p. 24/48V DC METERS NEW! \(2 \frac{1}{2}\) in. FLUSH ROUND available as D. C. Amps \(1,5.10 .15\) or A.C. Amps
1.5 .10 .15 .20 Both types \(£ 2.00\). Post 15 .
VoltmeTER

ALL MAIL ORDERS, ALSO CALLERS AT:
57 BRIDGMAN ROAD, CHISWICK,
ONDON, W4 5BB. Phone: 01-995 1560 Closed Saturdays.

SERVICE TRADING CO.
PERSONAL CALLERS ONLY
SHOWROOMS NOW OPEN AMPLE PARKING

9 LITTLE NEWPORT STREET.
LONDON, WC2H 7

\title{
The big three from Wireless World
}

\section*{WIRELESS WORLD ANNUAL 1975}

The first ever Wireless World Annual contains 140 pages of features covering all aspects of electronics and communications, including new and established techniques both practical and theoretical. Content includes constructional projects for a general purpose audio oscillator and a small boat echo sounder. There is a reference section packed with useful information.

\section*{HIGH FIDELITY DESIGNS}

In response to demand for reprints of Wireless World constructional projects, we have collected fifteen of the most popular designs in one book. It covers tape, disc, radio, amplifiers, speakers and headphones. Where necessary, specifications have been updated to incorporate new components which have become available.

\section*{HI-FI YEAR BOOK 1975}

This is the book that tells you everything you need to know about the hi-fi equipment on the market. Separate illustrated sections cover every major category, together giving prices and specifications of over 2,000 products. And it's got a directory of dealers/rnanufacturers - plus a host of articles on the latest hi-fi developments and their application.

To: General Sales Department, Room 11. Dorset House, Stamford Street, London SE1 9LU

Please send me books as indicated below (state number of copies of each) :
Wireless World Annual 1975 (1 £ 1.35 each incl.
High Fidelity Designs (" \(£ 1.35\) each incl.
Hi-Fi Year Book 1975 (" £2.00 each incl.
I enclose remittance value \(\mathbf{f}\)
(cheques payable to IPC Business Press Ltd.)
Name
(please print)
Address

\section*{}

SPECIAL OFFER OF COLOUR T.V AND F.M. MEASURIN G EQUIPMENT BY WANDEL AND GOLTERMANN
VZM1 Measuring set our measuring phare (PAL Systems)
tion distortion for Colour TV. Sub carrien
\(\mathbf{E 4 9 5 . 0 0}\)
VZM2 Measuring set for measuring phase and amplitude modula-
tion distortion for Multichannel FM radio systems with base bands up to \(12 \mathrm{Mc} / \mathrm{s}\). \(\mathbf{2 9 5 . 0 0}\)
VZM83 Generator and Receiver used to measure transmission
distortion on FM radio link systems. Superimposed signal \(52 / 304 / 556 \mathrm{kHz}\). £275.00

PROGRAMME BOARDS BY SEALECTRO
These boards are basicaliy a multi-pole muti-throw switch device consisting of a X-Y Matrix with two contact decks in the \(Z\) Plane running at 90 degrees to each other. Contact is made by eicher shorting or plugging in pins. Ideal for prototype work. available in 2 planes. \(24 \times 50 £ 29.20 \times 11 £ 15\)

\section*{stoprress}

TEKTRONIX 453A Listed at over \(£ 1300\) Special Offer this month \(\mathbf{£ 7 9 5}\)

\section*{SPECIAL OFFER OF TELEPHONE CARRIER TEST EQUIPMENT}

An unusual offer of a system up to \(15 \mathrm{Mc} / \mathrm{s}\) for the measurement of level attenuation on telephone carrier equipment and wide band radio relay systems
SIEMENS sweep frequency system consisting of 3W518 Level Oscillator \(10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}: 3 \mathrm{D} 335\) Level Selective Meter \(10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}: 3 \mathrm{~W} 933\) Sweep Attach ment; 3D346 Large Screen Level Tracing Receiver Offered as a complete system as a 32 M 701
Special Offer less than Half-Price \(\mathbf{f 1 9 5 0 . 0 0}\) Enquire for individual items P.O.A. Also available manual point to point system consisting 3D335 Selective Level Meter \(10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}\)

\section*{}

LIMITED QUANTITY Made to meet the most stringent Government DC40 MHz DUAL TRACE Solartron C.T. 484 oscilloscope. 3\% accuracy. Dual Trace Displays.
DUAL TRACE Y AMPLIFIER Bandwidth:
BUA DUAL TRACE Y AMPLIE: 14 nanosecs
D.C. \(-24 \mathrm{Mc} / 5\) Rise Time: input Impedance: D.C.- \(-24 i t y: 50 \mathrm{mv} / \mathrm{cm}\). input Impedance:
Sensitivit:
In

 Sweep expansion Bandwidth: D.C. \(-150 \mathrm{Kc} / \mathrm{s}\).
\(\times\) AMPLIFIEL. \(200 \mathrm{mV} / \mathrm{cm}\) and \(\mathrm{V} / \mathrm{cm}\). Input Sensitivity: \(200 \mathrm{mV} / \mathrm{cm}\) mF.
 INTERNAL CALBRA AMPLIFIER PL MC/s. Rise
WIDE BAND Y
Y. AVALLABLE: Bandwid. Sensitivity: 50 Measuring Time: 8 medance: 1 M .
input impect.
Accuracy: \(\pm 5 \%\) direct.

INCREDIBLE DIGITAL voltmeters

Digital Voltmeters Type LM \(1420 £ 195\)
Type 1420.2£235
Type 1420.2 BC(Remote Ranging) \(\mathbf{£ 3 2 5}\)
Type 1420.2BM (DC + Wide Band Mean
AC Sensing DVM) \(£ 395\)
Wide Range of spares for Solartron Data Loggers Compact 1 and Series 2. Roband DM2004

\section*{Dynamco 2001 mk2 \\ \(£ 75\)
\(£ 175\)}

\section*{6 V 25A}

10\% VARIABLE VOLTAGE HIGH CURRENT HIGH STABILITY HIGH RELIABILITY
These powel sugplies ware designed for continuous operation in
compuyter equipment. Manutacured to highest engineering standard tor long term reliability and stabliliyy Independent voltage and curfent meters \(\subset\) Core Transtormer Marulacture's price probably in excess of \(£ 200\)

\section*{FABULOUS} RANGE OF SIGNAL GENERATORS H.P. VHF Signal Gen. 608B 10 MHz to \(400 \mathrm{MHz} \boldsymbol{E 1 7 5}\) H.P. VHF Signal Gen. 608 C
10MHz to 480 MHz
E495 10MHz to 480 MHz _
H.P. UHF Signal Gen. 612 A 450 MHz to 1250 MHz , H.P. UHF Signal Gen. 614 A 800 MHz to \(2100 \mathrm{MHz} £ 225\) H.P. Sweep Oscillator 693D 4 GHz to 8 GHz \(E 450\) Marconi VHF Signal Gen. 8018 12 MHz to 485 MHz £125 General Radio UHF Unit Oscill ator
+PSU 250 MHz to 960 MHz p.o.a Marconi PHM/AM Signal Genera. Marconi PHM/AM Signal Genera-
tor TF2003 400 KHz to р. .a.

\section*{ \\ \(D O\)}

\section*{Supplies}

10 m Sensitivity
Tus/DIV to Timebase A delay sweep lus magnified. Timeto in 23 sweep range facilities. Timebase \(3 \% 23\) steeps. range state. Limse as XY Modell triggering
stration quan stration Fully quantity of Fully solid special offerly tested and ex-demon-
\(\times 10\) glaranteed 10 probes avai49.50, Manuar gurreed

MULTI OUTPUT POWER SUPPLIES Ex-Computer offered at mere fraction of original manufacturer's cost. APT 13334 Mk III
 Advances DC 197 28. BRAND NEW MINIATURISED STRIP CHART RECORDER BY RUSTRAK Model 88
 This recorder indicates the magnitude of applied
currents of voltages by a continuous distortion currents of voltages by a continuous distortion free
line on pressure sensitive paper. Moving coll line on pressure sensitive paper. Moving coll
movement scale calibrated 1 milliamp D.C movement scale calibrated
internal resistance 100 ohms.
240 V 50 Hz 240 V 50 Hz .
Chart speeds \(90^{\prime \prime}\)
per hour \(£ 39\)

SINGLE PEN RECORDER by Record Electrical

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
AC CLAMP VOLTAMMETER \\
\(A C\) voltages and currents without breaking circuits. Specification Measurement ranges:-Current 10-25-100-250-500 Amps. Voltage 300, 600 Accuracy \(4 \%\). Scale length 60 mm . Overall
dimensions \(283 \times 94 \times 36 \mathrm{~mm}\). Weight 15 .
\end{tabular} \\
\hline
\end{tabular}

WIDE RANGE: Stroboscope- 200 to 6.000 flashes per minute,
Tachometer-200 to 6.000 RPM ACCURACY: \(3 \%\) or better Tachometer-200 to 6,000 RPM ACCURACY: \(3 \%\) or better
CIRCUITRY: \(100 \%\) solid state. BEAM ANGLE: \(80^{\circ}\). CALIBRATION: At 3,600 fPM against any known synchronous
speed- 7200 , 3600 , 1800 etc FLASH DURATION: Approximately 1011025 microseconds. LIGHT COLOUR: Xenon white \(500^{\circ} \mathrm{K}\). COMPACT. LIGHTWEIGHT: Can be carried in

\section*{SPECIAL PUBCHASE OF ADVANCE \\ Z EX-dEMONSTRATION TEST EQUPPMENT}

Advance PG56 Double Pulse
Generator
Independently variable. \(2 \mathrm{~Hz}-3 \mathrm{MHz}\) Pulse Width Delay \(70 n S-0.2\) secs. in 19 steps. Rise Time better than 10 nS . External trigger and internal rate generator. \(£ 120\)

Adivance PG52 Pulse Generator
Repetition frequency up to 20 MHz and output pulses up to 20 V into 5 ohms with rise and fall times of 5 nS . Also produces complex ramp wave forms not obtainable from conventional pulse generators. Fully protected against short cir cuit. \(£ 275\)

Advance T.V. Dot and Cross Hatch Generator SG73
Output in form of modulated signal at VHF and UHF at level suitable for aerial sockets of receiver Two Ranges
Band III on fundamental (MOD)
Band IV \& V On Harmonics (- MOD) Modulation 405 Lines or 625 Lines £49.50 EX-DEMONSTRATION BRAND NEW

TYPE BBR3125N
The new linear phase filter has negligable phase error across the relevent spectrum of the IF passband for MPX transmissions. Most ceramic filters introduce approx \(60^{\circ}\) of error across 10.69 10.72 - an error which cannot be permissable in true Hi - Fi FM stereo reception.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Centre Frequency \\
\(10.7 \mathrm{MHz} \pm 20 \mathrm{kHz}\)
\end{tabular} & \begin{tabular}{c}
Input/Output \\
Impedance \\
330 ohms
\end{tabular} & \begin{tabular}{c}
Bandwidth \\
\(-3 \mathrm{~dB}=250 \mathrm{kHz}\) \\
\(-30 \mathrm{~dB}=700 \mathrm{kHz}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{O.E.M. Enquiries to:}

\title{
TOKO U.K.
}

SHIRLEY LODGE 470 LONDON RD SLOUGH BUCKS tel 48444 tIx 847185 WWT SLOUGH

PRICES:
\begin{tabular}{lr}
\(1-24\) & \(£ 1.30\) \\
\(25-99\) & 80 p \\
\(100+\) & 60 p
\end{tabular}
ambit
INTERNATIONAL
37a HIGH STREET BRENTWOOD
ESSEX CM14 4RH
Telephone: (0277) 216029
Telex: 995194

\section*{TRANSFORMERS}

\(\frac{1}{4}\)-WATT CARBON FILM RESISTORS also available \(\frac{1}{4}\) watt at \(70^{\circ} \mathrm{CE} 12\) range \(100-1 \mathrm{Mn} .5 \%\) to above \(470 \mathrm{~K} \Omega 10 \%\) tol. at 95 p per 100 .

PLEASE ADD 8\% FOR VAT
A.S.P
(Dept. WW2)
Byre House, Simmonds Road Canterbury, Kent CT1 3RW

Tel: Canterbury (0227) 52436

CRYSTAL FREQUENCY STANDARD
LATEST IN THE RANGE TYPE 101 £80
OUTPUTS \(1 \mathrm{MHz}, 100 \mathrm{KHz}, 10 \mathrm{KHz}\)
STABILITY 5 parts in \(10^{10}\)

\section*{8 DIGIT INSTRUMENTS} WITH CRYSTAL OVENS

SENSITIVITY 10 mV STABILITY 3 parts in \(10^{8}\)

FREOUENCY COUNTERS 5 DIGIT TYPE 30132 MHz
SENSITIVITY 50 mV
STABILITY 3 parts in \(10^{6} \quad \mathbf{f 7 5}\)

\section*{6 DIGIT TYPE} 40132 MHz
SENSITIVITY 10 mV STABILITY 1 part in \(10^{6}\) \(\mathbf{f 1 1 5}\)

TYPE 501 32 MHz TYPE 501 M 32 MHz vamorn TYPE 701 50MHz

Directly coupled input and customers specific requirements to order Prices exclusive of VAT
Write for illustrated leaflet
R.C.S. ELECTRONICS NATIONAL WORKS, BATH ROAD, HOUNSLOW, MIDDX, TW4 TEE. TEL: 01-572 0933.

\title{
ELEGTROMLIUE \\ IMPORTANT ANNOUNCEMENT \\ PRICE STABILIZATION CATALOGUE DISCOUNTS
}
\[
\begin{aligned}
& 1975 \text { is the year of challenge. Rather than sit back } \\
& \text { and wait for things to happen. we have } \\
& \text { produced our own policy to help stabilize price structure } \\
& \text { and maintain the services which have made ELECTRO- } \\
& \text { VALUE pre-eminent. } \\
& \text { PRICES as shown in our latest catalogue (No. } 7 \text {, issue 3) } \\
& \text { will be maintained at least until March } 31 \text { st next } \\
& \text { lexcept in severe cases of market fluctuation) and then } \\
& \text { held after review for further } 3 \text {-month periods instead } \\
& \text { of making day to day price changes. } \\
& \text { CATALOGUE No. I. ISSUE } 3 \text { is now ready with } 108 \text { pages of } \\
& \text { bargains and information. Price- } 30 p \text { post paid. including } \\
& 25 p \text { refund voucher for use on orders for } £ 5 \text { or more. } \\
& \text { DISCOUNTS apply on all items except the few where prices } \\
& \text { are shown NEIT. } 5 \% \text { on orders from } £ 5 \text { to } 14.99 \text {; 10\% on } \\
& \text { orders value } £ 15 \text { or more. } \\
& \text { FREE POST \& PACKING in U.K. for pre-paid mail orders over } \\
& \text { £2 lexcept Baxandall cabinets). If under £2 there is an } \\
& \text { additional handling charge of } 10 p \text {. } \\
& \text { aUALITY GUARANTEE-All goods are sold on the under- } \\
& \text { standing that they conform to makers' specifications. No } \\
& \text { rejects. seconds or sub-standard merchandise. } \\
& \text { SUPPLIERS OF QUALITY COMPONENTS AND } \\
& \text { SEMI-CONDUCTORS AT COMPETITIVE PRICES }
\end{aligned}
\]

\section*{ELEGTROVALIE LTD}

28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW2O OHB Telephone Egham 3603. Telex 264475. Shop hours: 9-5.30 daily, 9-1 p.m. Sat NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M19 INA Telephone (061) 4324945 . Shop hours Daily 95.30 p.m.: g-1 p.m. Sats. U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27. Swarthmore PA 19081.

\section*{W'/kínsons P.O. type 3000 and 600 RELAYS}

\section*{}

The best known of all Relays with a large variety
of contact arrangements. all parts interchangeable of contact arrangements, all parts interchangeable, experience in building this type of Relay to your experience in building this type of Relay to your
own specification. Complete banks of contacts
made to order and component parks also supplied. Very highest quality at competitive prices with a
quick delivery service. Quotations by return. We are Specialists in export orders. DESK TYPE EXTENSION TELEPHONES P O. type 2201a MINIATURE UNISELECTORS inciuding Jack 12 outlet 2 bridging 1 non-
bridging wipers. This compact ratchet-driven 3 -level selector is of unique design and occupies no more space than a standard 3000 type Relay \(£ 8.50\) each. P.O. Type 2 Uni selectors 25 outiet 8 -level non-bridging wipers 300 ohms. E14 each. Eleven-level 1 bridging single homing arc 1 bridging 3 non-bridging wipers 3 Uniselectors 25 outlet 4 level including Give us a phone call, we may have the Uniselector you require.
MINIATURE DIGITAL INDICATORS size of digit \(\frac{5}{\text { s. in }}\) ifluminated by 28 volt midget
flanged lamps, weight only \(3 \frac{1}{2}\) ozs reading 0 to 9 with decimal points \(£ 450\) each if you require a Pump for Water supply or tndustrial use why not consult us. we are stockists of the World famous Stuart Turner Centrifugal Pump. why not consult us, we are stockists MINIATURE BUZZERS \(6-12\) volt with tone adjuster 50 p each as illus. 15 p each for lots of 50
ROOM THERMOSTAT adjustable between 45-75 degrees F. 10 amp 250 bakelite case with control knob \(E 2\) each.
All prices shown are cariage paid UK only but subject to VAT at the stan LONGLEY RD., CROYDON, CRO 3LH. Phone 01.6840236 . Grams: WilCo CROYDON WW - 066 FOR FURTHER DETAILS

\section*{Principles and Calculations for Radio Mechanics Part 1}
R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
1974 152pp., illustrated 0408001194 £1.50

Obtainable through any bookseller or from
NEWNES-BUTTERWORTH
Borough Green, Sevenoaks,
Kent TN 15 8PH. Tel. Borough Green 2247.

\section*{Build up the network you need with Barr \& Stroud Active Filter Modules}

For maximum flexibility, the EF Series Active Filter Modules* are well worth your consideration. They give Bessel, Butterworth or Chebyshev responses, high-pass, low-pass, band-pass or band-stop filtering, are solid-state, compact and fully encapsulated. They are equally suitable for general laboratory functions or incorporation into standard equipment
Your own external components are used for tuning and response selection. Complete details are in pamphlets 1700 and 1732 ; ask for your copies today.

BARR \& STROUD LIMITED London Office : 1 Pall Mall East, London SW1Y 5AU
Tel: 01-9301541 Telex : 261877
BARR AND
Glasgow and London

12

EF10 Series - low pass, response down to d.c \(1 \mathrm{~Hz}-30 \mathrm{kHz}\) cut-off. \(12-36 \mathrm{~dB}\) /octave stop-band attenuation.

EF20 Series - high pass, response up to 1 MHz , \(1 \mathrm{~Hz}-30 \mathrm{kHz}\) cut-off, 12-13dB/octave stop-band attenuation

EF40 and EF41 Universal - band-pass and band-stop with centre frequencies 0.1 Hz to 10 kHz - band-pass Q up to 200 - band-stop Q up to 10 . Supplementary operation in low-pass, high-pass and all-pass delay modes.

\section*{TAUT SUSPENSION MULTIMETERS}

\section*{Made in USSR \\ For ex-stock delivery}

SPECIAL OFFER OF L.E.D.S
Twelve Light Emitting Diodes Type HP5082/4850, 0.20 mm dia., bright diffused red light. Operating current 20 mA at 1.65 V . ONLY £1.75 incl. P.P. and VAT
1-AMP SILICON RECTIFIERS
20 pieces
\begin{tabular}{lll}
IN4001 & \(\mathbf{5 0}\) p.i.v. & \(\mathbf{£ 1 . 1 2}\) \\
1 N4002 & 100 p.i.v. & \(\mathbf{£ 1 . 2 5}\) \\
1N4003 & 200 p.i.v. & \(\mathbf{£ 1 . 3 5}\) \\
1N4004 & 400 p.i.v. & \(\mathbf{£ 1 . 4 5}\) \\
1N4005 & 600 p.i.v. & \(\mathbf{£ 1 . 5 5}\) \\
1N4006 & 800 p.i.v. & \(\mathbf{£ 1 . 8 5}\) \\
1N4007 & 1000 p.i.v. & \(\mathbf{£ 2 . 1 0}\)
\end{tabular}

This is a special offer and minimum quantity of 20 pcs must be ordered. These prices are inclusive of P.P. and VAT.

\subsection*{11.5 AMP THYRISTORS}

BTX47-1200R P-GATE Reverse blocking Thytistors Peak reverse voltage 1200 V . Trigger voltage 3.5 V Specials offer of 10 pcs \(\mathbf{£ 1 2 . 0 0}\) Inclusive of P.P. and VAT
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{PHOTO-CONDUCTIVE CELLS} \\
\hline RP12 & f0.60* & 0RP69 & f0.60* \\
\hline RP60 & f0.60* & ORP90 & f1.10* \\
\hline RP6 1 & £0.45* & ORP93 & f1.10* \\
\hline
\end{tabular} Exclusive of P.P. and VAT
Plaase write for full catalogue and Price List of Valves, Semi-conductors, Test Equipment and Passive Components.

Minimum Account Order \& Charge \(\mathbf{5 1 0 . 0 0}+\) VAT, otherwise cash with order. Prices are exclusive of VAT unless indicated. When remitting cash with order please add \(\mathbf{f 0 . 5 0}\) per Multimeter or \(\mathbf{f 0 . 1 5}\) in \(£\) for other items.

MINIMUM ACCOUNT ORDER CHARGE £10.00 PLUS VAT. OTHERWISE CASH WITH ORDER PLEASE Z \& I AERO SERVICES LTD

Tel. 7275641 44A WESTBOURNE GROVE, LONDON W2 5JF Telex 261306

\title{
\(\oplus \oplus \oplus \oplus \oplus\) TRANSISTOR DATA? \\ \\ THE SEMICON
} \\ \\ THE SEMICON
}

\section*{INTERNATIONAL TRANSISTOR DATA MANUAL}
lists over 20,000 transistors of international origin alpha-numerically. Single line entries with major characteristics over 14 columns makes quick and easy reference. 400 pages. We update if you find an omission.

\section*{EXTENSIVE SUBSTITUTION GUIDE}

\section*{CV NUMBERED DEVICES}

OUTLINE DRAWINGS
ALTERNATIVE
MANUFACTURERS
AND AGENTS ADDRESSES

\section*{NEEDS SEEING TO BE APPRECIATED}

ORDER NOW £8.80 includes postage (TO COUNTRIES OUTSIDE UK ADD 60p POSTAGE) FULL REFUND IF NOT COMPLETELY SATISFIED PUBLISHED BY

\section*{SEMICON INDEXES LTD.}

2 DENMARK ST. WOKINGHAM. Berks. RG11 2BB
Tel: WOKINGHAM (STD 0734) 786161

\section*{NEW FROM E.S.E.}

A FULL FREQUENCY RANGE GRAPHIC EQUALISER YOU CAN AFFORD!!

FOR JUST \(£ 30.00\) PLUS VAT
YOU CAN TUNE OUT ALL UNWANTED NOISES AT SEVEN DIFFERENT FREQUENCIES!
bRING ALL YOUR RECORDINGS, P.A., DISCOS, LEAD GUITAR, BASS GUITAR ORGAN ANYTHING AMPLIFIED TO LIFE AT THE TOUCH OF A SLIDER!!
NO MORE ANNOYING AMPLIFIER NOISES-JUST TRUE, CLEAR SOUND!
FRERUENCIES FROM 60 Hz TO 10KHz!
CUT OR BOOST EACH FREQUENCY BY MAXIMUM OF 15dB!
HIAND LOGAININPUTS.
POWERED BY JUST TWO P.P. 3
BATTERIES WHICH LAST FOR AGES TRY IT AND YOU'LL BUY IT-IT WILL CHANGE YOUR CONCEPT OF SOUND.
TRADE ENQUIRIES WELCOMED.

CONDENSED TECHNICAL SPECIFICATION

MAX OUTPUT: + 13dBminTO 600 OHMS MAX INPUT: + 8dBm INTO 600 OHMS SIGNAL TO NOISE RATIO: AT MAXIMUM BETTER THAN - 79dBm
FREQUENCY RESPONSE: ALL FILTERS CENTRAL. BETTER THAN \(\pm 2 \mathrm{dBm}\)
FILTER RANGES: MAXIMUM \(\pm 15 \mathrm{dBm}\) AT \(60.180,480 \mathrm{~Hz}: 12.4 .5\) AND 10 KHz OISTORTION:BETERTHANO.13\%@ OdBm
To E. S. Electronics, 2 Upper Fant Road, Maidstone, Kent. Tel: 58903

Please send me \(\square 1, \square 2 \square 3 \square 4 \square 5\) of your Graphic Equalisers. I enclose cheque or postal order for \(f\)
having
added 30 p tor P \& P on each item ordered and VAT at \(8 \%\). I understand that two batteries are included

NAME
ADDRESS
P. F. RALFE 10 CHAPEL ST. LONOON NW1. Phone 01-723 8753

\section*{SIGNAL GENERATORS}

MARCONI TF80ID/IS. \(10-480 \mathrm{mHz}\) P.O.A. MARCONI TF80IB/2S. \(10-480 \mathrm{mHz}\) E225 MARCONI TFI44H \(10 \mathrm{kHz}-72 \mathrm{mHz}\) P.O.A.
 ADVANCE SG63D. AM/FM \(7.5-230 \mathrm{mHz} \mathrm{E1} 25\).
HGN MS4U AM/FM \(9.6-240 \mathrm{mHz}\). N.Dev.Fac.
ROHDE \& SCHWARZ SMLR \(15-30 \mathrm{mHz}\) power generator. P.O.A. RACAL/AIRMEC 201A. \(30 \mathrm{kHz}-30 \mathrm{mHz}\). As new. P.O.A
ADVANCE SG2I VHF Square-wave generator \(9 \mathrm{kHz}-100 \mathrm{mHz}\). \(\mathbf{£ 2 5}\).

\section*{OSCILLOSCOPES}

TEKTRONIX 661 Sampling scope with 4 S 1 \& 5T1A plug-in units. 3 GHz . \(£ 200\).
TEKTRONIX \(545 A\) with CA unit. DC- 30 mHz .
Price only E 295.00 .
TEKTRONIX \(531 \mathrm{DC}-15 \mathrm{mHz}\) with L type plug-in
TEKTRONIX \(535 \mathrm{DC}-15 \mathrm{mHz}\) with L type plug-in
TEKTRONIX 545 B DC- 30 mHz with 'CA' plug-in.
NB: Due to the fragile nature of CRTs we regret that these oscilloscopes cannot be despatched by post. Collection only or delivery could be arranged.

\section*{MISCELLANEOUS TEST EQUIPMENT}

MARCONI TFI400S double pulse generator with TM6600/S secondary pulse unit. El05.
MARCONI TF79ID deviation meter. \(4-1024 \mathrm{mHz} .0-100 \mathrm{kHz}\) deviation.
MARCONI 455E Wave Analyser \(£ 120\)
MARCONI TF 2600 Valve Voltmeter 1 mV -300V. Excellent. \(\mathbf{£ 7 5}\)
ROHDE \& SCHWARZ USVD calibrated receiver \(280-4,600 \mathrm{mHz}\). ROHDE \& SCHWARZ A.F. Wave Analyser type FTA \(0-20 \mathrm{kHz}\) plus log/lin AF meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BNI0913 (late type) ImV-10V. With ' \(T\) ' type insertion unit, free probe and attenuator heads. \(1 \mathrm{kHz}-1,600 \mathrm{mHz}\). \(£ 175\).
COSSOR 1453 True RMS milli-voltmeter. Excellent. \(\mathbf{E 7 5}\).
ADVANCE PG54 Pulse generator. AS NEW.
SOLARTRON EMI006 production-line resistance tolerance check-set. 0 - 15 Mohm digital read-out.
AIRMEC TYPE 210 modulation meter. Excellent condition.
WAYNE KERR B52I LCR Bridge. Excellent condition. \(\mathbf{6 5 5}\).
RACAL SA520 Digital Frequency counter/timer. 300 kHz . \(\mathbf{£ 4 7 . 5 0}\) CAMBRIDGE A.C. Test Set. \(\mathbf{£ 7 5 . 0 0}\)
GAMBRELL Precision 4 Decade Resistance Box. 1-11, 110 ohms. E24.50

\section*{MUFFIN INSTRUMENT}

FANS
Dimensions \(4.5 \times 4.5 \times 1.5\) ins. Very quiet running, precision fan
specially designed for cooling specially designed for cooling etc. For 110 V . AC operation(practise is to run from split primary of mains transformer or use suitable mains dropper). CC only 11 Warts. List price over f 10 each. Our price, in brand new condition, is \(£ 3 \cdot 50\).

POLARAD Model SA84WA SPECTRUM ANALYSER
10 MHz .63 GHz . I.F. Markers. Spectrum calibrator. Log/Lin scale. NB. This is not the instrument with the expensive TWT to replace. Supplied in full working, excellent condition. Guafintee.

MANY TYPES of RF plugs and sockets in stock:-
BNC plugs 50 . 30p. BNC sockers \(50 \Omega\). 25p. N. Type plugs \(50 \Omega\). 50p. Burndept plugs. 40p. Burndept Miniature sockers. 20p.

All connectors are brand new. Immediate delivery. Please add appropriate postage.

DURATRAK VARIACS type 100 L 230 V . AC Input. 0-230V. AC Output, at 8 amps. Brand new units, less control knobs. Price only \(\mathbf{6 1 5 \cdot 0 0}\). Carriage f. MINI HELIPOTS
\(500 \Omega\) Beckman Linearity Tolerance \(0.075 \%\) (10 Turn). IK \(\Omega\) Beckman Linearity Tolerance \(0.25 \%\) (10 Turn). \(20 \Omega\) Colvern CLR 26/6310/9S (3 Turn). \(5 \mathrm{~K} \Omega\) Colvern (10 Turn).

AVO VALVE TESTERS
Brief.case type 160. Full working
condition throughout. 665 .
AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage Small size only, 2 in. \(x\) in. Offered brand new, boxed. Price \(\in 1 \cdot 50\), inc. P. \&P.
RACAL/AIRMEC VHF/UHF Millivoltmeter type 301A. Frequency range \(50 \mathrm{~Hz}-900 \mathrm{mHz}\). Voltage range \(300 \mu \mathrm{~V}-3 \mathrm{~V}\) in eight ranges. Co-axial input 50 and 75 ohms BNC connectors. DC Ranges \(100 \mu \mathrm{~V}\) - 10 V in operated instrument in as new condition with handbooks. Other makes of voltmeter also available from stock.

\section*{EDDYSTONE U.H.F. RECEIVER} type 7705.
Continuous coverage from 500 1000 mHz . AM/FM. Sensitivity approx. \(10 \mu \mathrm{~V}\) absolute. Completely
self-contained with speaker. Excel-self-contained with speaker. Exce
lent condition.

\section*{HEWLETT PACKARD/}

BOONTON TYPE 8900B
Peak-power calibrator. Measures true peak power \(\pm .6 \mathrm{db}\) absolute. Frequency range \(50-2000 \mathrm{Mhz}\). RF power range 200 mW peak, fullscale. RF Impedance 50 ohms. P.O.A.

\section*{MARCONI TF995A2/M AM/FM R.F. SIGNAL GENERATORS. \(1 \mu \mathrm{~V}-100 \mathrm{mV}\) output. Sold in excellent condition. P.O.A}

\title{
Howtostayahead of demand in the electronics ague
}

If you're an electrical or radio dealer you must have often pondered the above problem. You want to know what to stock and, of course, the best way to sell it. You need a regular source of information specially designed for retailers like you. And that's exactly what Electrical and Electronic Trader is. Its expert sales advice, shrewd comment and unrivalled technical intelligence service are used by thousands of successful retailers every week. Isn't it time you ordered it regularly too?

Regular features include:

\section*{Product News}

Every week new merchandise is fully described to assist retailers in evaluating the products they will sell and service.

\section*{Tips about tax}

Discusses the intricacies of tax and shows how you can save by adopting correct procedures.

\section*{Monitor}

Monthly business round-up of retail statistics at national level and a report of trade trends within regions.
Hi-Fi this week
Weekly comment on hi-fi topics for dealers extending their hi-fi interests.

\section*{Dealer marketing}

Every fortnight our business consultant describes methods of increasing profit with little expenditure.

\section*{Service Sheets}

Free every week for the service technician, a full size service sheet covering a popular make of TV (including colour) or audio equipment.

Annual subscription \(£ 8.00\)

\title{
ㄴ - - aThe SECOND-USER Computer Specialists
}
computer sales Peripherals and Systems for Data Processing Systems, Equipment and Components

\section*{Vini-Fomputer Systems}

Available for immediate delivery at greatly reduced prices due to special purchase

Litte-used PDP8E 12 K system including: High Speed Paper
Tape Reader. High Speed Paper Tape Punch. Memory Drum. ASR33 Teetyp
A phane call cauld save you a bomb! Ring now for Other models becoming available all the time-let us know your requirements
DEC High-Speed Paper Tape Reader Punch for PDP81 Hardly used. Our special price E1,500 DATA OYNAMICS 1114 RACK-MOUNTED 110 cps PUNCH.
As new. Mounted in sound-reducing rack cabinet and complete Ashe concrol and interface electronics and power supply unit
with shart circuit and overload protection. Asynchronous Operation up to 110 cps.
OUR SPECIAL PRICE 550 (list price f 790).
 mounting version (orb \(1 / 78\) channel dieletetric reader for speed
up to 500 cps
cor BRAND NEW UNIT AVAILABLE IN ORIGINAL MANUFAC
TURERS PACKING. OUR BARGAIN PRICE E895 (list price \begin{tabular}{l}
E1.128) \\
One sec \\
\hline
\end{tabular}
 Suitable for all types of tape including Mylare UNUSED
SURLUS-A BARGAIN AT E595 list price E 1.056).
Add B\% VAT to all prices shown

\section*{Keyboards}

Electro - mechanic numeric keyboards originally designed for 80 column card punch Numeric with 12 character keys and 8 instruction keys. Alphanumeric with 8 character keys
instruction keys.
 Price: Numeric \(\mathbf{5 4 . 5}\)
Paper Tape punchiverifier keyboards. Full alphanumeric key. board with 65 keys +4 shift keys in 4 -bank layout. ISO coded. Operating speed up to \(25 \mathrm{ch} / \mathrm{sec}\). Mounted in attractive case with control panel. Price \(\mathbf{f 2 5}\).
Reed-Switch 4 -bänk Alphanumeric keyboard. mounted on PC board and housed in metal case. 43 character keys +2
shitt keys and 16 instructional keys. Ideal for data displays. shitt keys and 16 instructional kevs.
computer programming. etc. Price \(\mathbf{E 3 0}\).
Photo-electric Encoded Keyboards. No metallic switches or contacts. Generates any eight bit code to specification. Photoelectric keyboard combines 45 key alphanumeric keyboard + space bar + key interlock. Output-Photocells 500 K to 2 Meg. for Logic \(1.800 \mathrm{Ohm}-2 \mathrm{KOhm}\) for Logic 2. \(-12 \mathrm{~V} \mathrm{DC-}\) OVDC Logic 1. Voltage requirements -26 V DC mA. -12 V \(60 \mathrm{~mA},+6 \mathrm{~V} 5 \mathrm{~mA}\). Price \(\mathbf{E 4 5}\).
STOP PRESS:!
JUST ARRIVED-FABULOUS BRAND NEW KEYBOARDS WITH READ ONLY MEMORY. Input Voltage -12 V DC:
positive logic: TTL compatibe: odd parity 8 -bit. two-key rollpositive logic: TTL
over: stroled Rome
-bank alphanumeric keyboard with 77 key positions + space bar. Ideal for communications equipment. Complete with bar. Ideal for communications equipment. Complete with
associated integrated crrcuitry. Power supply connections and binary-coded outputs are made to a printed card connector at rear of keyboard. OUR INCREDIBLE PRICE E49.50

\section*{Peripherals}

DE LUXE
MODEL
ncorporating tabu
lating
l 89.50 mechanism
c89.50 plus car-
ELECTRIC HAND VERIFIER

Punch Card
\({ }_{24}{ }_{24}\) Punch Card Equipment
\({ }_{0}^{26}\) Automatic alphanumerical printing
keypunch (for use with 024. 026)
TERMINALS
BRAND NEW KSRB33 Keyboard with stand. Price \(£ 525.00\) ASR 35 Heavy Duty Console
Terminal. as new. Price e700.00 Terminal as new. Price \(\mathbf{f 7 0 0 . 0 0}\)
IBM Model
BM Inpu/Output
IBpewriter. Price \(£ 125.00\)

MIL SYNCHROS EX STOCK
WE ARE ANXIOUS TO BUY Synchro Test Equipment manufactured by Muirhead. Singer-Gertsch etc. Test Dials.
Dividing Heads. Bridges. etc. to expand our test tacilities. SOLAR CELLS. Feranti silicon MSIIBE. active area 390
sq. mm. Open CCT volatage 550 mV at 3000 lumens \(/ \mathrm{sq}\). ft . Sht sq. mm. Open CCT ness. 6 mm . mtg thrd \(1 / 4-28\) unf 2A. Ex made up panel. \(\mathbf{£ 1 . 3 5}\)
(inc. \(\mathrm{P} . \& \mathrm{P}\). and VAT) PAMEL DISPLAY RECORDING CAMERA. Manufactured A.G.I. Specifically for the recording of complex instrument Shutter speeds \(1 / 100,1 / 50\). \(1 / 25 \mathrm{sec}\). and time exp. Focussing at 1.75 to 50 ft . in 18 steps. Aperture sttgs \(\mathbf{F 3 . 5}\) to F22. Prismatic viewfinder and facility for viewing direct on ground olass screen. Rotating filter attachment. Cord film advance and shutter cock
with septe. Button control and electrlcal release facility (24 V VC) Spool holds 40 exposures. Camera may be wall mounted on bracket supplied. Tripod mounting socket provided. In wooden
case. Two grades available 'as new' Grade A \& 35.10 (inc. P. case. Two grades available 'as new' Grade A E35. 10 (inc. P
and \(P\). and VAT). Somewhat used but serviceable Grade B and P. and VAT). Somewhat
£28.08 (inc. P. \& P. and VAT).

\author{
Metal Oxide Resistors (ELECTROSIL \& WELWYN) Tantalum Capacitors (KEMET, ITt, PLESSEY, ETC.) MANUFACTURING QUANTITIES
}

\section*{GAS CHROMATOGRAPHY RESEARCH OVEN \\ PV4051/4056}

A large capacity oven of low thermal mass for use between 35 and changes of air per min. The oven has forced air cooled oute surfaces when the internal temperature is high. \(210-250 \mathrm{~V} .50 \mathrm{~Hz}\).
2.6 KW . \(\mathbf{2 9 . 5 0}\). (C.Pd. England and Wales).

\section*{㝳}

Yoe SR
Educational Type SA65 Servo and Electronic Sales Ltd

IST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS EONNECTORS

Post Orders and Technical enquiries to: 24, HIGH ST., LYDD, KENT. TEL: Lydd 20252 (STD 0679) V.A.T. Reg. No. 201-1296-23

TELEX 965265 Also at 45 a HIGH ST., ORPINGTON, KENT. TEL: ORP 31066
 P.P. U.K. Telex your order now!
A.C. SUPPLY PANEL for 191 n . rack mounfing carrylng two 2kVA Variacs with double brush assemblies providing four individually fused and metered outputs of up to 4 kVa and 270 V
in excellent condition at \(£ 88.50\) including carriage and V.A.T. in excellent cond
(U.K. mainland).
TAPE STORAGE CANS. Brand new finished steel cans originally intended for 16 mm film but ideal for storing 7 in . reels
of tape. Our last supply of these items was quickly exhausted at 30 p each but as a result of a massive new purchase we can now ofler a case of 55 at \(£ 5.25 \mathrm{inc}\). P. \& P. and V.A.T. Sampl

STAINLESS STEEL VACUUM CONTAINERS FOR IOUIDS. Capacity 2 U.S. galls. fitted with delivery tap N.E.P. Mod. 10506 Channel U/V Recorder. Fitted 5 galvos.
With PS.U. for 230 v . A.C. \(14 \times 10 \times 12 \mathrm{in}\). (recorder) and \(\times 10 \times 8\). (P SUV. \(£ 220.00\) (inc. carr \(\vee\) A. (recorder) and RADAR CABLEFORM INSULATION TESTER for checking insulation between individual conductors and each other and ground at preselected voltages up to 10 Kv . Full details on application.
NEE MEGGERS, 250 V ع12.53. RECORD MEGGERS. 500 V
INDUCTION GENERATOR
Requires a sugply voltage of 50 V 5 OHz and provides an outpu strument has a wide variety of applications. e.g... anemometers. measuring shaft speed etc. In brand new condition \(£ 5.25\) pos strum
measu
paid.

Overall length 1.85 in . (Body length 1.1 ln .) Diameter 0.14 in . Overall Jength 1.85 in . (Body length \(1.1 / \mathrm{n}\).\() Diameter 0.1\) in. to
switch up to 500 mA at up to 250 v . D.C.C Gold clad contacts 10p per doz.; £4.10 per 100; £29.80 per 1,000; 2270 per 10.000. A
Heavy duty type (body length \(2 i n\).) diameter 0.221 nn . to switch
sid up to 1 A , at up to 255 . A.C. Ger 1,000 ; Changeover Heavy Duty type \(£ 270\) per doz. All carriage paid U.K. 100 : \(\mathbf{\varepsilon 6 5}\) per 1000. All carriage paidue.K. Operating Coils for 12 v supply to accept up to four standard
reeds \(£ 2.20\) per doz.: \(£ 12.30\) per 100 . All carriage paid U.K OVER 300,000 IN STOCK! MULTIWAY AND R.F. CONNECTORS by twenty different companies!
Send us your detailed requirements quoting Nato numbers if known. TELEX 965265.

\title{
Collect Wireless World Circards. And build a valuable dossleri on
} circuirt design.

Circards is a new and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design. Data not available from any other single source.

Each Circard is \(8^{\prime \prime} \times 5^{\prime \prime}\) and shows a specific circuit, a description of the circuit operation; component values and ranges; circuit limitations; circuit modifications; tested circuits; performance data and graphs.

The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well-protected.

Circard sets come in wallets and cost \(£ 1.50\) per set. A subscription for 10 consecutive sets costs \(£ 13.50\).

Start your personal dossier on circuit design by completing and returning the coupon bel ow.

Subjects already covered by Circards
1. Basic active filters. 2. Switching circuits, comparators and schmitts.
3. Waveform generators. 4. AC Measurements. 5. Audio circuits: preamplifiers, mixers, filters and tone controls.
6. Constant current circuits. 7. Power amplifiers. 8. Astables. 9. Opto-electronics.
10. Micropower circuits. 11. Basic logic gate circuits.
12. Wideband amplifiers. 13. Alarm circuits.
14. Digital counters. 15. Pulse modulators.
16. Current differencing amplifiers-Signal processing.
17. Current differencing amplifiers-Signal generation. 18. Current differencing amplifiers-Mëasurement and detection. 19. Monostable circuits.
Subjects planned
Two-Transistor circuits, Multipliers and Dividers, Code converters, DC Amplifiers and Choppers, Amplitude modulation and detection, Transistor arrays. Sets \(18-25\) will be sent to subscribers separately after publication. We shall be pleased to receive your order.

To: General Sales Dept., IPC Business Press Ltd., Room II
I Dorset House, Stamfor Street, London SEi 9LU
I
I Please send me set no(s)
(a) \(£ 1.50\) each \(\square^{*}\)

I I wish to subscribe to set no(s)
(a) \(£ 13.50 \square^{*}\)

I
I enclose cheque/money order for \(£\)
I *Tick as required/Cheques to be made payable to IPC Business Press Ltd.

I

I Company registered in England. Registered address, Dorset House,
I Stamford Street, SEI 9LU England. Registered Number 677128

\section*{APPOINTMENTS VACANT}

DISPLAYED APPOINTMENTS VACANT: \(£ 6.08\) per single col. centimetre (min. 3 cm).
LINE advertisements (run-on): 86 p per line (approx. 7 words), minimum three lines.
BOX NUMBERS: 35p extra. (Replies should be addressed to the Box number in the
advertisement, c/o Wireless World, Dorset House, Stamford Street, London, SE1 9LU.)
PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Advertisements accepted up to 12

Classified Advertisement Rates are currently zero rated for the purpose of V.A.T. March issue subject to space being available.

We have a number of opportunities for instructors to train our customer engineers to service and maintain data processing equipment including the latest 370 Systems and Software.

If you're an experienced or potential instructor with a background in software and/or electronics, educated to HNC, C \& G standard or perhaps you've had similar service experience - now's the chance to find out more about these secure, well paid positions, based in NW London. Salaries start from£3000 and career development prospects and training are excellent.

If you are interested please write to: Anne Dare, IBM United Kingdom Limited, 389 Chiswick High Road, London W4 4AL. Quoting ref: WW/92418.

\title{
Radio/Electronics Officers \\ \\ Does it make sense \\ \\ Does it make sense to settle for second best?
} to settle for second best?
}

When you're thinking about your family's future, it would be wise to think of Shell. Whether you're in the service now or ashore for the time being, you will already know a lot about us. Our British flag fleet of about 80 ships (with more on the way) is widely diversified, carrying many different cargoes-bitumen, luboils, crude, LNG, chemicals and black and white products. That means that you don't have to be stuck in one particular kind of tanker for long periods. You can move up and move around with equal familiarity. Our large and increasing investment in
training underwrites our determination to ensure that we will achieve our intended service periods of \(4 \frac{1}{2}\) months, and underlines our confidence in the future of the Fleet. When it comes to pay you'll find our salaries are highly competitive. Providing you are holding current certificates (PMG I or 2 or MPT and Radar Maintenance) you will earn between \(£ 3207\) and \(£ 6390\). Your experience and qualifications will determine the point at which you can enter this scale. Leave too is generous- \(15 \frac{1}{4}\) days for each month served. All Officers are members of the company
pension scheme and certificated officers can take their wives to sea whenever they wish and for this purpose wives are eligible for two free air passages a year. We will be pleased to tell you all about the extra benefits that Shell can offer you as a Radio/ Electronics Officer in our fleet. Write or phone, reversing the charges:

\section*{Radio Operatuors. How to see more of your wife without losing sight of the sea.}
 The work is just as interesting, just as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay for a man of 25 or over is \(£ 2,270\), plus cost of living allowance with further

In addition to your basic salary, you'll get an average allowance of \(£ 450\) a year for shift duties and there are opportunities for overtime.

Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For moreinformation, write to: ETE Maritime Radio Services Division (L531). ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London, ECIA IAS.

GOVERNMENT COMMUNICATIONS HEADQUARTERS

\section*{RADIO TECHNICIANS}

Applications are invited for posts in the London area.
Applicants must be at least 19, have had two years practical workshop experience, and hold
either \(C\) \& \(G\) Telecomms Technicians Intermediate Certificate or equivalent technical qualifications or GCE 'O' Levels in English Language, Maths and Physics.

Salary is from \(£ 2,094\) at age 19 to \(£ 2,974\) including London Weighting Allowance and Cost-of-Living Supplements as appropriate. Posts are unestablished, but opportunities exist for establishment.

Applicants must be British, born of British parents and have resided in the U.K. for the last ten years.

\section*{APPLYTO:}

Recruitment Officer, GCHQ, Block 2, Government Buildings, Eastcote Road, RUISLIP, Middx. HA4 8BS.
[4382

\section*{The Royal Fleet Auxiliary}
requires

\section*{Radio Officers}
with Ist Class PMG or MPT General Certificate or (with previous experience) 2nd Class PMG Certificate and DOT Radio Maintenance Certificate.
Basic rates of pay at entry depend on experience e.g. less than six months sea service \(£ 2,312\) : over six months sea service \(£ 2,570\). These rates are increased to take account of qualifications held.
Regular increments are awarded for Company service thereafter and there are excellent prospects for promotion into the senior grade with salaries rising to 66, 156 per annum.
* Leave 183 days per annum served.
* Study leave on full pay.
* Generous sick leave and welfare arrangements.
* Non-contributory personal pension scheme.
* Special training courses on full pay.
* Opportunities for wives to travel.

The Royal Fleet Auxiliary is a career service offering an interesting and exciting way of life to young men of above average ability who seek a more challenging technical job at sea.
For further details write to:-
The Careers Office, Royal Fleet Auxiliary
DGST(N) 74A, Room 603, Empress State Building,
London SW6 ITR. Or phone:-01-385 1244 ext. 2192.

\title{
Communications and Control Engineering MIDDLE EAST
}

BP seek the following staff for service with Abu Dhabi Marine Areas Ltd. The work involves the maintenance of comprehensive telecommunications, instrumentation and computer-based telemetry systems, which are being installed as part of a major development programme for large-scale offshore oil production in the Arabian Gulf. Starting salaries indicated are presently free of tax and include provision of an annual service benefit in lieu of pension

\section*{Control Engineer Offshore}

Telemetry

\section*{£7,500- \(£ 8,500\) net p.a.}

Based on a large offshore platform complex, he will be responsible for maintaining a computer-based remote control and supervisory system (dual Argus 500 computer installation, Ferranti 40,000 drive units and outstations, colour visual display units). Applicants, under 35 years of age, should have at least 7 years experience in telemetry including 3 years working with similar systems. Preferred qualifications are those leading to Chartered Engineer, though a lower standard could be accepted if the candidate has had particularly relevant experience. Some knowledge of transducers and process control instrumentation is required. Preliminary specific training can be provided. Reference ZH. 966

\section*{Control Engineer Offshore}

Process Instrumentation
\(£ 7,500-£ 8,500\) net p.a.
Based on a large offshore platform complex, he will head a small team of technicians in the maintenance of process control instrumentation (essentially pneumatic, but including electronic and hydraulic) covering gas/oil separation, water treatment and pumping, power generation and oil well-heads. Applicants, having HND/ HNC and preferably under 35 years of age, should have at least 10 years' relevant experience in the oil refining or petrochemical industries. Some knowledge of TDM telemetry systems is required. Preliminary specific training can be provided. Reference ZH. 967 .

\section*{Control Engineer}

\section*{Computers}

\section*{\(£ 8,500-£ 9,500\) net p.a.}

Based on the Abu Dhabi mainland, this specialist Engineer is to head the computer group which is responsible for the effective maintenance and operation of a number of Argus 500 machines located on large offshore platform complexes and used in conjunction with remote control and supervisory telemetry systems and associated display and data logging functions.
Technical leadership in the overall integration of these systems, in fault diagnosis and problem solving, is especially important. Applicants under 35 years of age should have had at least 5 years' experience with process control computer maintenance and operation, including 2 years in maintenance of Ferranti computers and their peripherals. Preferred qualifications are those leading to Chartered Engineer, though a lower standard could be accepted if the candidate has had particularly relevant experience. Reference ZH. 968

Telecommunications Technician
Das
£5,500-£6,500 net p.a.
Based on Das Island in the Arabian Gulf, he will be responsible for maintaining HF, VHF and UHF, SSB, FM and \(A M\) single and switched channel radio equipment, radar, echo-sounders and marine electronic equipment, general audio systems and cinema projectors. Applicants, having OND/ONC or equivalent and aged \(25-35\), should have at least 5 years experience in maintaining equipment as listed above. Knowledge of broadband radio systems and telephone multiplex or telephone exchanges would be advantageous. Reference ZH. 969

\section*{Telecommunications Technicians Rig/Marine}

\section*{£6,500-£7,500 net p.a.}

Based on the Abu Dhabi mainland, these two technicians will work within a team responsible for maintaining HF , VHF and UHF, SSB, FM and AM single and switched channel radio equipment, broadband microwave radio systems and associated multiplex equipment (up to 36 channels), MF radio beacons, small telephone exchanges and related line plant. Applicants, having OND/ONC and aged \(25-35\) years of age, should have at least 5 years' experience in maintaining most types of equipment listed above. Additional experience with teleprinter systems would be advantageous. Reference ZH. 970 .

\section*{Telecommunications Technicians Offshore}
\(£ 5,500-£ 6,500\) net p.a.
Based on a large offshore platform complex, these two technicians will be responsible to an engineer located on the mainland for, mainly, first line maintenance of the equipment listed under post reference 970 above, and should have similar qualifications and experience. Reference ZH. 971.

All posts carry staff status and are offered as three-year (extendible) engagements. Terms include incremental salaries presently free of local tax, plus the usual benefits of employment with a major British oil company. Home leave is granted on full pay with fares paid to UK. Good sports and recreational facilities are provided on Das Island and the mainland. Offshore and Das Island posts are on an unaccompanied basis, with messing and airconditioned accommodation provided free. Married and single accommodation at nominal rental (though without free catering) is provided on the mainland. Duty tours/UK leave entitlements are : mainland twelve months/ 60 days; Das Island 70 days \(/ 20\) days; with very generous arrange ments for offshore personnel.

Please send complete personal history, quoting the appropriate reference, to
The Manager, Central Recruitment,
The British Petroleum Company Limited,
Britannic House, Moor Lane, London EC2Y 9BU or phone 01-920 6344 for an application form.

\section*{RADIO MAINTENANCE ENGINEER}

An opportunity to work in a very small team in the Central Office of Information at Hercules Road, London SEI, as a Maintenance Engineer in their Overseas Press and Radio Division. The post is graded Assistant Information Officer. Applicants with suitable qualifications should have at least 5 years' experience which must include a thorough knowledge of mains and battery operated professional tape recording equipment and ancillary studio equipment. The ability to construct all kinds of audio amplifiers, equalisers and relay circuits, and experience in faultfinding in electromechanical equipment are also necessary. Knowledge of Post Office line plant would be an advantage.
Salary on a scale rising to \(£ 2,982\) plus \(£ 410\) London Weighting and \(£ 229.68\) threshold payments. Non-contributory pension scheme. Please send postcard for full details and application form to Central Office of Information, Atlantic House, Room 53, Floor 1, Holborn Viaduct, London ECIN 2PD, quoting reference number COI/OPR/11/. Closing date for completed forms 5 February 1975.

\section*{ELECTRONIC VACANCIES}

Engineers
Draughtsmen Designers
Service and Test Engineers
Technicians Technical Authors
Sales Engineers
f1,600-£5,000
pa
Permanent or Contract

01-387 0742
MALLA TECHNICAL STAFF LIMITED
376 Euston Rd., London NW1 3BG

\title{
Electronic \\ Engineers and Instructors: potent opportunity at Hemel Hempstead
}

Join the Company that invented the world's first electronic calculator now expanding continuously as British leaders in both calculators and more complex systems. As you would expect from part of the Rockwell Organization, world famous for space and microelectronic technology, salaries are high while further benefits are extensive. And inevitably, there are few environments which can equal the career potential provided.
ELECTRONIC ENGINEERS can be at anything from Junior Technician level (day release training is available where appropriate) to a level where full qualifications and experience have been gained,
Instructors can have either: (a) C \& G (Electronics) with a thorough knowledge of basic electricity plus teaching experience-for training Engineers in basic electricity and electronics; or (b) with qualifications/experience as specified in (a) plus calculating/computing techniques experience-for training engineers on Company products such as electronic and programmable calculators and business systems experience.
Please phone or write for more information and your application form to:
Mr. D. D. Davies
Sumlock Anita Ltd
1 Frogmore Road
Apsley. Hemel Hempstead. Herts
Tel: Hemel Hempstead 61771.

Sumlock Anita Ltd.
Rockwell International

\section*{UNIVERSITY OF SOUTHAMPTON} INSTITUTE OF SOUND AND VIBRATION RESEARCH

\section*{ELECTRONICS TECHNICIAN}
required by the Wolfson Unit for Noise and Vibration Control to work in support of consultancy teams investigating a wide range of noise and vibration control problems.
The Unit's work involves the use of sophisticated noise measuring instruments and other electronic equipment which the technician appointed will operate, maintain, and precisely calibrate, and previous experience would be an advantage. He may be involved in laboratory investigations or required to take responsibility for the operation of equipment on field work involving his absence from base for short periods.
Candidates should have a recognised qualification in electronics or electrical engineering (O.N.C./H.N.C. or equivalent), and relevant experience in applied electronics.
The appointment, for one year initially, will be made at Grade 5 (nonestablished) on salary scale \(£ 2,439-£ 2,895\) per annum.
Applications, stating age, qualifications and experience and giving the names of two referees should be sent to the Administrative Secretary's Section, The University, Southampton SO9 5NH, quoting reference 268/ T/WW.

\section*{Medical Physics Technician}
required for servicing hospital and home-based kidney machines. Considerable travel in South East England, and there are opportunities for research. Previous experience of kidney machines is not essential but proven ability in this or similar fields of engineering is of greater importance. Academic achievement should at least be ONC or equivalent standard. Current driving licence essential. Salary according to qualifications and experience.

Apply, Personnel, Guy's Hospital, St. Thomas Street, London SE1 9RT.
Telephone: 01-407 3662 Ext. 68.
[4015

\title{
Electronic Lecturers/Trainers TELECOMMUNICATIONS
} Princinal Lecturer
To investigate, develop and implement specialist software training courses to provide software training associated with processor systems.
Desirable qualifications are a degree or equivalent in a numerate discipline together with considerable experience of software systems and programming in machine codes and high level languages.

\section*{Senior Lecturers \& Lecturers C£3,200}

To teach on a number of advanced courses on topics which include one or more of the following systems. Electromechanical electronic and digital switching systems. Time will be made available for course preparation and learning new systems as the need arises.
Desirable qualifications are a degree or possibly H.N.C. or Full Tech. Certificate in Electronics or Telecommunications together with considerable background experience in telecommunications design, development or installation.
These appointments are located in the East Midlands where the housing situation is good and generous relocation expenses will be paid where appropriate. Our client can also help to obtain mortgage.

\section*{PERSONNEL ADVERTISING LIMITED}

Write in the first instance to David Macmillan, Personnel Advertising Limited, 22 Red Lion Street, London WC1R 4PX stating any companies to whom you do not wish your application forwarded and quoting reference GRS 309.

\section*{ELECTROSONIC LTD. \\ S.E. LONDON}

\section*{Senior Test Engineer/Supervisor}

\author{
Salary \(£ 2,600-£ 3,400\)
}

Electrosonic Ltd. a leading company in the rapidly expanding fields of lighting control, audio and audio-visual systems require a Senior Test Engineer.

Duties include the organisation and running of a production test shop employing \(8-10\) test engineers, the introduction and programming of automatic test equipment and the training of junior Test Engineers.

A capacity for work, a sound theoretical circuit knowledge, an appreciation of production engineering and organisation together with previous experience essential.
The company offers an attractive working environment, interesting work and excellent conditions of employment.

Apply: Electrosonic Ltd.,
815 Woolwich Road,
Charlton, SE7 8LT.
Telephone: 01-855 1101.

\section*{THE OPEN UNIVERSITY}

\section*{ELECTRONIC ENGINEER/TECHNICIAN GRADE 6}

We are looking for a person to design electronic equipment for use in teaching and research. Applicants should have experience of both digital and analogue circuit design. A degree in electronics is desirable, but applicants with H.N.C. or H.N.D. will also be considered. The person appointed will be expected to give design advice to academic and technical staff where necessary. Routine work with students is not part of the job function.
The appointment will be on the Technician Grade 6 Scale: \(£ 2,844\) to \(\mathbf{6 3 , 4 5 0}\) per annum.

Application forms and further particulars are available from the Personnel Manager (EE6), The Open University, P.O. Box 75, Walton Hall. Milton Keynes. MK7 6AL, and should be returned as soon as possible.
[4375

\section*{Electricul/Elecironic Mechunic}
required by the Trinity House Lighthouse Service to work in a small team involved in the prototype construction and testing of electrical/electronic equipment, including occasional travel
with field work.

Pay commences at \(£ 38.26\) plus \(£ 3.44\) bonus plus \(\mathbf{E 4 . 4 0}\) threshold pay per week, and assistance may be provided with further technical education.

For further details and application form apply to:-

The Establishment Officer,
Trinity House Lighthouse Service, Tower Hill,
'phone 01.4806601 Ext. 245.
[4403

\section*{ROYAL FREE HOSPITAL
HAMPSTEAD \\ MEDICAL PHYSICS TECHNICIAN (ELECTRONICS)}

A vacancy exists in the Electronics Workshop of this brand new major Teaching Hospital. Applicants should hold the final City and Guilds or an equivalent qualification. Some knowledge of Salary on a scale \(62,314-63,004\) dependent on qualifications and experience.
Application forms to be returned by 15 th February 1975, from the Personnel Department, Royal Free Hospital, 21 Pond Street, London, NW3. Tel: 01.794 0431.

An Engineer is required for electrioal design and development of new mass production TV receivers, at Philips Croydon, ian ultra modern TV manufacturing plant, within the international Philips Group of Companies.
The vacancy would suit an experienced graduate level electrical engineer, aged 23-32, wishing to broaden his career potential.
Good theoretical knowledge of circulits and experience of TV design is necessary.
Excellent conditions of employment apply, including more than 4 weeks holiday and annual bonus. Starting salary will match successful applicant's experience and qualifications. Substantial assistance will be provided towands removal costs where appropriate.

Applicants should submit brief details to:

> Merton, Sutton and Wandsworth Area Health Authority (Teaching) Wandsworth \& East Merton Teaching District ST. GEORGE'S HOSPITAL، LONDON, SW1 OPPORTUNITY IN ELECTRONICS

A vacancy exists in the Electronics Section of the Department of Medical Physics. The work involves the design, development and manufacture of a wide variety of medical and research instruments; in particular, the solution of problems arising from the use of cardiac pacemakers. Experience with digital integrated circuits very desirable. The salary is on the M.P.T. II scale, which is \(£ 2,727-£ 3,516\) p.a. plus Threshold. Minimum qualification H.N.C. or the M.P.T. Ill scaale, which is £2,316-£2,943 p.a. plus Threshold. Mininum qualification O.N.C. The salary point on the above scales depends on experience and qualifications.
Further information and application forms are available from the

\section*{Hospital Secretary's Office,}

St. George's Hospltal, Hyde Park Corner, London SW1X 7EZ.

\author{
Yorkshire \\ Regional Health \\ Authority \\ Regional Medical Physics Unit
}

\title{
MEDICAL PHYSICS TECHNICIAN (GRADE III)
}

\begin{abstract}
A Medical Physics Department is to be set up at Grimsby, as an integral part of the new District General Hospital now under construction. In the first stage, a pilot scheme is to be operated with one Medical Physics Technician Grade III. Initially, the service, mainly relating to Radioactive lsotopes, will be provided at Grimsby General Hospital to the Consultant Staff in the District. Subsequently, the variety of work will be largely dependent upon the demands made upon the Service and the experience and initiative of the person appointed.

Applications are invited from persons qualified to H.N.C. standard in Medical Physics or Electronics, or equivalent, with three years' relevant experience, and preferably in hospital work. Persons with O.N.C. qualifications and broader experience will also be considered.

Starting salary within the range \(£ 2,190\) to \(£ 2,355\) rising by annual increments to £2,817 plus threshold of \(£ 13.92\) per month.

The person appointed will work under the supervision of a Physicist and will receive training as necessary to provide the physics service.

Application forms to be obtained from and returned to the Regional Administrator, Yorkshire Regional Health Authority, Park Parade, Harrogate, HGl 5AH, within 14 days of the appearance of this notice.
\end{abstract}

\section*{WEST BERKSHIRE HEALTH DISTRICT AUDIO ENGINEER}

\section*{(SCIENTIFIC OFFICER)}
to join busy group of surgeons, scientists and audiology technicians working with child and adult patients. Duties include running small well-equipped electro-acoustic laboratory, calibrating and maintaining audiometric instruments, assessing performance of hearing aids, with occasional CCTV, tape-recording and apparatus design jobs. Applicants should have HNC or degree (in physics, applied physics or electrical engineering) and relevant experience would be an advantage. Salary on scale \(\mathrm{fl}, 689\) \(£ 2,994+\) threshold payments (approx. \(£ 229\) p.a.).
Further details from Dr. R. J. Bench, Audiology Unit, Royal Berkshire Hospital; applications to Hospital Secretary, Royal Berkshire Hospital, London Road, Reading.

\section*{Telecommunications Engineer}

Commercial Cable Company have a number of vacancies for Engineers experienced in telephony and data transmission. Salary according to experience and qualifications but not less than \(£ 3,700\) per annum. Please telephone Chief Engineer, Commercial Cable Company. Telephone: 01-251 1577 for appointment.

\section*{Harrow College of \\ Technology \& Art \\ FILM AND TELEVISION TECHNICIAN}
up to \(£ 2,677\)
A Technician/Engineer in Television and Sound is required for a post in the Film and Television Department of the School of Photography. Duties will include the technical operation and routine maintenance of a CC TV Studio requiring electronic and mechanical skills and knowledge in the television field.
Reasonable removal expenses reimbursed, lodging allowance of up to \(£ 6\) per week and up to \(£ 500\) towards legal and estate agents fees may be payable.
Good conditions of service including pension.
For more information and an application form telephone \(01-8644411\) Ext. 31 or write to Harrow College of Technology \& Art, Northwick Park, Watford Road, Harrow.

\section*{WEST SUSSEX COUNTY COUNCIL. INSTRUCTOR \\ Industrial Training Centre, College Road, Crawley}

The person appointed will be required to give industrial training in electronics to First Year "Off the Job" trainees at both Craft and Technician level. Candidates for this post should possess qualifications of at least an appropriate Ordinary National Certificate level. The present salary scale is \(£ 1,900 \times £ 54(3) \times £ 57(9)\) to a maximum of \(£ 2,575\) (under review) plus London Allowance. The commencing point on the scale is determined by qualifications and previous experience. Application forms and further particulars may be obtained from the Manager (Electrical) at the above Centre. Requests for application forms should be made within 14 days of this advertisement.
[4367

University of Wales instifute of Science and Technology
Department of Applied Physics and Electronics

\section*{M.Sc./DIPLOMA COURSE IN ELECTRONICS}

Applications are invited for places in the full-time one-year M.Sc./Diploma course in Electronics, commencing October 1, 1975.
Further details may be obtained from the Academic Registrar, UWIST, Cardiff CF1 3NU.
Application forms should be completed and returned to the College as soon as possible.

4371

\author{
THE UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF OPHTHALMIC OPTICS \\ ELECTRONICS TECHNICIAN (GRADE III) \\ (REF: 0/172/AU)
}

Required in the electronics workshop of the visual sciences research section of the above department. The duties will be varied over a
wide range including equipment repair, main. wide range including equipment repair, mainOpportunities will exist for gaining experience. in computer programming and electronic design A computer programming and electronic design. A sound knowledge of electronic rechniques is tice would be an advantage. Qualifications required are O.N.C. or equivalent together with relevant experience.
Salary within the scale: 22.013-62.343 per annum.
Write for application forms, quoting reference. to the Registrar, U.M.I.S.T., P.O. Box 88, Manchester, M60 IQD, to whom completed applications should be returned by 3rd February. 1975.

\section*{ARE YOU LONDON'S TOP VIDEO
NGINEER?}

We need the very best there is to take complete charge of the Engineering Side of our busy Video Company.
We are probably the country's biggest inde. We are probably the country's biggest independent systems house and already have top Grade Engineers so are looking for someone above all Technically Sound.
We are prepared to pay a super salary with fringe benefits, car, etc. commensurate with the responsibility of this situation. If you are capable of hard work and want to get right to
the top in an Expanding Business this is the the top in an Expanding Business this is the
job for you. This sort of opportunity only comes once in a lifetime. Please contact:-

Ian Crammond, Managing Director, Teletape Video,
76, Brewer Street,
London W1R 3PH,
Tel: 734/1319 434/1267.

KING'S COLLEGE LONDON
Department of
Electrical and Electronic Engineering

\section*{ELECTRONICS TECHNICIAN}

Interesting new position for electronics technician, Grade S, preferably with interest and experience in digital electronics. Some circuit design ability essential. The post offers good opportunity to acquire experience in computer systems. Four weeks annual holiday. Contributory Pension scheme. Salary on scale \(£ 2,849-£ 2,939\) rising to \(£ 3,305\) p.a. including London weighting. Apply in writing giving details of age, experience and qualifications to Head Clerk, (Ref. WW 138749) King's College London, Strand WC2R 2LS.

\section*{DEPARTMENT OF MEDICAL PHYSICS}

\section*{Electronics Technician (andel)}

Applicants should have a wide experience of analogue equipment and preferably a good working knowledge of digital techniques. Knowledge of Medical equipment an advantage but not essential.

\section*{ALSO \\ Graduate Electronic Engineer}

Knowledge of medical equipment an advantage but not essential. Whitley Council conditions of service apply. Salaries for both posts within the range of \(£ 1,689-£ 3,390\) p.a. plus London Weighting at \(£ 126\) p.a. (under review) and current Threshold payments. Point of entry on scale dependant upon qualifications and experience. Temporary single accommodation may be available for single men.

Application form and job description available from Mr. C. J. Hill,
Personnel Department, Fulham Palace Road, Hammersmith, London W6 8RF. Te: 7482050 Ext. 2992. Please quote ref. 106. Forms should be returned by 4th February 1975.

\section*{INSTITUTE OF GEOLOGICAL SCIENCES}

\section*{Professional and Technology Officer Grade IV}

Applications are invited for appointment-as a Professional and Technology Officer Grade IV in the Geomagnetism Unit of the Institute.

\section*{DUTIES}

The maintenance of equipment for the continuous monitoring of the Earth's Magnetic Field, to make the necessary calibrations and absolute observations and to assist in their reduction. There will be opportunities to assist in new development and proving.
Direct experience is not required as appropriate training will be given. Some electronic experience is, however, essential. The successful applicant may undergo a period of training at the Unit's geophysical observatory at Eskdalemuir, Dumfriesshire, prior to appointment to a permanent station.

\section*{QUALIFICATIONS}
(a) ONC or equivalent, in electrical engineering.
(b) All candidates must have served an apprenticeship, or have had equivalent training, appropriate to the duties of the post, plus, normally, at least 3 years of suitable engineering experience to the duties of the post, plus, normally, at least 3 years
(preferably assembly and testing of electronic equipment).
(c) Ability to drive would be an advantage.

\section*{SALARY}
\(£ 1845\) (age 21)- \(£ 2260\) (age 27 or over on entry) - \(£ 2625\). In addition Cost-of-Living supplement of £ 19.14 per month is paid. Non-contributory superannuation arrangements are available.
Application forms and further particulars, including the location in the UK of the Institute's geophysical observatories, may be obtained from Establishments, Institute of Geological Sciences, Exhibition Road, London SW7 2DE. Please quote Ref. ESK/75.
Closing date for applications: 22 January, 1975.

NATURAL ENVIRONMENT RESEARCH COUNCIL

\section*{AUDIO/VISUAL TECHNICIANS \\ (TWOPOSTS)}

The Commonwealth Institute has vacancies for two Audio Visual Technicians as follows:-
(A) AN Officer to head small AV Unit under Chief Exhibitions Officer.
The successful applicant will possess extensive knowledge of \(A V\) equipment (slide/tape, video, cine, etc.) and have practical experience in the operation and maintenance of such equipment related to exhibitions. The vacancy offers a varied and interesting position in congenial atmosphere for a person of initiative.
(B) A/V Assistant with good working knowledge of operation and maintenance of all AN equipment. Practical experience essential.
Post (A) is graded Scientific Officer with salary range \(£ 2,002\) by 12 increments to \(£ 3,085\) inclusive of London Allowance.
Post (\(B\)) is graded Technician III with salary range \(£ 1.997\) by 7 increments to \(£ 2,436\) inclusive of London Allowance. Both posts attract a cost of living supplement of \(£ 19.14\) per month.
Good work:ng conditions. 4 weeks' holiday.
Non-contributory pension scheme.
Some weekend working will be obligatory in both posts. Application forms are obtainable from the Establishment Officer. Commonwealth Institute, Kensington High Street, London W8 6NO. 01-602 3252.

\section*{TECHNICAL OPERATIONS MANAGER}

\section*{(Television Service)}

For the Educational Television Unit at Guildford County College of Technology. To be responsible for the daily operations of a team of technicans concerned with production and presentation of ETV material.
Applicants need a sound knowledge of closedcircuit television systems including colour. together with experience with helical-scan recorders and vidicon cameras. Organising ability, and an interest in the development of television and other audio-visual equipment as teaching aids, of considerable importance.
Salary (including Threshold and Surrey Allowance) \(£ 2,275-£ 2.947\) according to age, qualifications and experience.
Application form and details from the Vice-Principal, Guildford County College of Technology, Stoke Park, Guildford.

\section*{RADIO OFFICERS}

Do you have PMG I, PMG II. MPT 2 years operating experience?

Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to \(£ 3.096\) pa; commencing salary according to age-25 years and over \(£ 2,276\) pa. During training salary also by age, 25 years and over \(£ 1,724\) pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:

\section*{Recruitment Officer,}

Government Communications Headquarters, Room A/1105, Priors Road, Oakley,

Cheltenham, Glos GL52 5AJ
Telephone Cheltenham 21491 Ext 2270

\section*{ELECTRONIC TECHNICIAN GRADE III}

An electronic technician is required for the Electronics Department dealing with the maintenance of a wide variety of electronics and electro-medical apparatus./Applicants must possess HNC. HND or ONC in electronics or equivalent City and Guilds Certificate /General diagnostic maintenance experience in the electronic field is necessary. Training in maintenance experience in the electronic field is necessary. Training in maintenance of specialised hospital equipment will be given./Salary scale from \(£ 2,190\) to \(£ 2,817\) p.a. plus Threshold payment. Additional payments are made if overtime is required /Applications stating age, qualifications and experience, together with two referees should be sent to the Area Works Officer, Coventry Area Health Authority. The Birches Tamworth Road. Keresley End. Coventry CV7 8NN
COVENTRY
Area Health Authority
4020

\section*{ELECTRONIC ENGINEER}
aged 25-35 years, with knowledge of Logic and Audio equipment design, required by expanding Group of Companies. Must have H.N.C. or equivalent.

Write or telephone:
Personnel Department
SONTRANIC (C.H.C. GROUP) LTD.
The Forum, High Street,
Edgware HA8 7HB
Telephone: 01-952 6666

\section*{TOPARTISTS RECORDINGSTUDIO}

Well established in the heart of Paris have an opening for experienced recording engineer who is also able to do some maintenance on electronic recording equipment. Excellent prospects for a bachelor age about 25 . Living accommodation, bachelor flat, will be provided.
Please contact to-day
Loulou Gasté Studios
5 Rue du Bois de Bologne
Paris 16
France

We are a company that manufactures precision electronic measuring instruments and have a range of technical career vacancies within our Production and Engineering departments at St. Albans and Service Division at Luton. To fill these posts we are looking for people with a good electronic background, but not necessarily qualified. Attractive salaries are offered for the right candidates along with the normal benefits of staff employment.
For further information and or application forms contact John Prodger, mi Ltd., Longacres, St. Albans, Herts. Tel:59292.

\section*{LINK ELECTRONIC TEST ENGINEER TV CAMERAS}

We are looking for another engineer to join our young team testing and commissioning TV studio equipment.

Link Electronics is a successful. independent company making a complete range of units for TV broadcasting. from monochrome and colour cameras to complete studio systems and Outside Broadcast mobiles. Our modern factory, on the Broadcast mobiles. Our modern factory, on the
edge of Andover. is currently being extended to edge of Andover. is currently being extended to help us products.

For this position formal qualifications are less important than direct experience of similar equipment and this means you are unlikely to be younger than 23. A knowledge of both digital and linear techniques is essential and you should be used to fault finding down to
 component level.

We offer a competitive salary with above average benefits including subsidised canteen, excellent pension scheme with free life assurance, free health insurance and financial assistance with re-location where necessary.

Please write or telephone, giving brief details only at this stage, to M. D. Comber.

Andover, Hampshire, England Telephone: Andover (0264) 61345

\section*{T.V. Engineers for New Zealand}

Are you dissatisfied with your present position, feeling like a change of scene? Do something about it now! Be our guest-come down under and join the Tisco Team, N.Z.'s largest service organisation.
We are in service only and our engineers are all important people, every one of our 30 managers is an ex engineer.
We are now selecting staff to sponsor under the Immigration Scheme to arrive in N.Z. mid 1975.
If you,
- Have 5 years experience, preferably some in colour.
- Single or married with 3 children or less.
write now enclosing a photograph and details of past experience to:The Technical Staff Supervisor, Tisco Ltd, Private Bag, Royal Oak, AUCKLAND, NEW ZEALAND.

14070

\section*{LEEDS CITY COUNCIL}

Department of Education
Leeds Polytechnic
Educational Technology Unit

\section*{TELEVISION ENGINEER}
(REF. 13/21)
T.3. £2,187—£2,538
plus Threshold payment
To work with media production team in the operation and maintenance of the colour television studio and related recorded facilities.

Application form (quoting ref. no.) together with further particulars from the Administration Officer, Leeds Polytechnic, Calverley Street, Leeds LSI 3HE.
[4023

\section*{Radio Technicians}

A secure future with Overseas Division of one of the world's largest airlines is within easy reach if you are interested in either aircraft or ground radio and have at least 5 years' experience.
The vacancies are at Heathrow Airport -London.
Starting pay is \(£ 49.66\) per 40 hour week and there are chances of rapid promotion to \(£ 56.04\) per week.
Additional benefits include a contributory pension scheme, a first-class sports and social club and opportunities for concessional holiday air travel world wide.
Please write, quoting reference 430/WW/ BW, to:
Manager Selection Services, British Airways Overseas Division, PO Box 10, Heathrow Airport-London, Heathrow TW6 2JA
British
arrways
4021

\section*{B. BAMBER ELECTRONICS \\ 20 WELLINGTON STREET, LITTLEPORT, CAMBS.} TEL: ELY (0353) 860185 (TUESDAY-SATURDAY)

PYE AC10 POWER SUPPLY
240 V input. \(12 \mathrm{~V}(\) nominal) at 10 amp output, stabilized. fully enclosed, fused. used by tested \(£ \mathbf{£ 0 . 0 0}\)

\section*{TEST EQUIPMENT}

MARCONI UHF SIGNAL GENERATOR TF762B. \(300-600 \mathrm{MHz}\). \(£ 50.00\) MARCONI STANDARD SIGNAL 30 MHz E \(\mathbf{1 0 0 . 0 0}\)
MARCONITV SWEEP GENERATOR. TF \(1104 / 1\), £66.00 MARCONI VALVE VOLTMETER. TF428C, £28.00
MARCONI AMPLITUDE MODULATOR. TF \(1102 . £ 35.00\)
MARCONI VALVE MILLIVOLTMETER. TF899A, £30.00
MARCONI STANDARD SIGNAL GENERATOR.
WAYNE KERR VHF FREQUENCY WAYNE KERR VHF FREQUE
STANDARD. 12 -channel. \(£ 20.00\) STANDARD. BRIDGE HETERODYNE DETECTOR. Type 775, \(\mathbf{£ 6 5 . 0 0}\)
AIRMEC SIGNAL GENERATOR. Type \(201,30 \mathrm{kHz}-30 \mathrm{MHz}, \mathbf{£ 7 5 . 0 0}\) AVO PORTABLE TRANSISTOR ANALYSER.MKII. £45.00
HEWLETT PACKARD UHF SIGNAL GENERATOR Type 614A, 8002300MHz E175.00
Type LM \(1420 / 2\), with TYpe LM1420/2 with "TRUE RMS AC
UNIT", \(10 \mathrm{mV}-1000 \mathrm{~V}\). 5 -digit display, new condition. \(\mathbf{E 4 0 0 . 0 0}\)
TEKTRONIC TYPE-526 VECTORSCOPE, 240 V input. complete but needs slight attention, good external appearance.

Offers please

\section*{HIGH-QUALITY SPEAKERS}
\(8 \frac{3}{8}\) in. \(\times 6\) in. elliptical. 2 in deep. 4 ohms, inverse magnet. rated up to 10 Watts. \(£ 1.50\) each or \({ }^{2}{ }^{2}\)
discount available).

ELECTROLYTIC CAPACITORS
AXIAL LEAD AND SINGLE ENDED
\(\begin{array}{lllllll}\text { MFD } & 6.3 \mathrm{~V} & 10 \mathrm{~V} & 16 \mathrm{~V} & 25 \mathrm{~V} & 35 \mathrm{~V} & 50 \mathrm{~V} \\ 22 & 30 \mathrm{p} & - & - & 40 \mathrm{p} \\ 33 & - & 30 \mathrm{p} & 35 \mathrm{p} & \overline{40 p} & 40 \mathrm{p} & 45 \mathrm{p}\end{array}\)
47
100
100
220 \(\begin{array}{lllllll}120 & 40 p & 40 p & - & 50 p & 75 p & - \\ 330 & 40 p & 45 p & 60 p & 75 p & 95 p & 95 p\end{array}\) \(470{ }^{45 p} 60 p\)
330095 p 95p
PRICES PER PACK OF 5
Trade enquiries welcome for quantity

\section*{MAINS TRANSFORMERS}

240V in. voltages quoted approx. RMS.
TYPE F27BS lex Pye F27 base station TX) 500 V at \(350 \mathrm{~mA}, 6.3 \mathrm{~V}\) at \(8 \mathrm{~A}, \mathbf{\mathbf { E 6 } . \mathbf { 0 0 }}\). TYPE \(40 / 240 \mathrm{~V}\) at 2A, \(\mathbf{£ 1 . 0 0 \text { each }}\)
TYPE \(18 / 818 \mathrm{~V}\) at 8 A . \(£ 4.50\) each. carriage 50 p .
TYPE 16/6 16 V at \(6 \mathrm{~A}, 45 \mathrm{~V}\) at 100 mA . £4.00. carriage 50p.
YPE 28/4 28 V at 4A, 125 V at 500 mA . £4.00. carriage 50 p .
TYPE \(63 / 1\)
\(6.3 V\)
2 for E 1.50 10 mA .6 .3 V at 500 V at 20 mA . 200 V at
 6.3 V £1.75.

RADIOSPARES 500-WATT AUTO TRANSFORMER. 100/110/150/200 step up or step down facility, ex new equip. \(\mathbf{£ 6 . 0 0}\)
MAINS ISOLATING TRANSFORMER. 375 VA . tapped primary. 240 V cutput, new. E6. 00
MAINS ISOLATING TRANSFORMER. (ex equip). in metal cases, totally enclosed. tapped mains input. \(110-\) at 0.5A. £1 1,00 .
AS ABOVE, output 240 V at \(12 \mathrm{~A}+12 \mathrm{~V}\)
\(\begin{aligned} & \text { at } \\ & 3 \mathrm{~A}\end{aligned}+22 \mathrm{~V}\) at \(2.5 \mathrm{~A}, \quad \mathrm{f} 27.50\).

TERMS OF BUSINESS: CASH WITH ORDER. ALL PRICES INCLUDE POST \& PACKING (UK ONLY). EXPORT ENQUIRIES WELCOME.

PLEASE ADD 8\% VAT. CALLERS WELCOME BY APPOINTMENT MINIMUM ORDER£1 pLease enclose stamped adoressed envelope with all enauries

\section*{PYE RADIO-TELEPHONE}

\section*{PLUGS AND SOCKETS}

TV PLUGS (metal type) 6 for 50 p TV SOCKETS (metal type) 50 p
TV LINE CONNECTORS 5 for 50p TVLINE CONNECTORS 50 for 50p
PL259 (PTFE) PLUGS 50p each or 5 for \(£ 2.25\)
SO239 (PTFE) SOCKETS 50p each or 5 for \(£ 2.25\)
25-WAY ISEP PLUGS and SOCKETS 40p set (1 plug +1 skt). Plugs and sockets sold separately at \(25 p\) each CANNON Right-angled plugs XL LNR1575p
DIN SPEAKER SKTS. 2 -pin, 4 for 30p STANDARD JACK PLUGS. \(\frac{1}{4}\) in., 4 for 50 p
ANDREWS 44AN FREE SKTS (\(N\) TYPE) for \(\mathrm{FH} 4 / 50 \mathrm{~B}\) or \(\mathrm{FH} . \mathrm{J} 4 / 50 \mathrm{~B}\) cable £1.00 each
SO239 BACK-TO-BACK SOCKETS f1.25 each
BNC INSU
解

\section*{VALVES}
ago3/20A (ex equipmentl) \(£ 2.10\) each aqVO3/10 (ex equipment) \(75 p\) each 2C39A (ex equipment) \(£ 1.00\) each 4 CX 250 B (ex equipment) \(£ 2.10\) each \(4 \times 250 \mathrm{~B}\) (ex equipment) \(£ 1.50\) each DET-22 (ex equipment) 2 for \(£ 1.00\) EF80 (new) 25p, EZ81 (new) 25p ECC81 (new) 30p, ECC83 (new) 30p

\section*{TEST EQUIPMENT}

RACAL 125 MHz DIGITAL FREQUENCY METER. Type \(801 \mathrm{R} / 2\), new condition, \(\mathbf{£ 2 7 5 . 0 0}\). ROHDE AND SCHWARZ SIGNAL GENERATOR, SMAF. \(4-300 \mathrm{MHz}\). deviation and modulation metered. complete but needs attention. \(£ 300.00\) ROHDE AND SCHWARZ FREFMV AM/FM 20-300MHz \(£ 300.00\)

EQUIPMENT

\section*{Cambridge, Westminster, Motofone} Europa series. Send s.a.e. for full details. stating requirements. frequency. channel spacing, etc.

\section*{MISCELLANEOUS}

MAGNETIC DEVICES PROGRAMMERS. contain 9 microswitches with 9 adjustable drums for period switching needs slow-motion motor to drive drum ITT ITT HIGH-GRADE ELECTROLYTICS, 6800 mfd at 25 V . screw terminals, complete with capacitor clip for vertical
mounting. 50 p each (quantity discount mounting.
available) MULTIC
MULTICORE CABLE,
covered. in 22 ft . lengths with plug and covered. in 22 ft . lengths with plug and
socket fitted. 24 core stranded screened +1 twin screened (ideal mobile control lead) \(\mathbf{£ 2 . 1 0}\) each. TWIN HEAVY DUTY CABLE, PVCcovered \(50 / 0.25 \mathrm{~mm}\). 15 p per metre, or f 10.20 per 100 metre reel. CURLY LEADS, 4-core telephone-type 18 in . closed. approx. 5 ft . extended. 2 for 20p.

\section*{TEST EQUIPMENT}

ROHDE AND SCHWARZ POWER SIGNAL GENERATOR. SMLM. 30 300 MHz, up GRESHAM LION 625-LINE PULSE/ BAR/STAIRCASE GENERATOR £25.00
TEKTRONIX 524D SCOPE, DC-

\section*{PYE MF TRANSMITTERS} \(2 \times 5\) B254Ms in final. VFO 340 to 540 kHz (can be modded upward). \(2 \times\) 5 B 254 Ms in Modulator. Cw/mcw (can be modded for AM), units complete, but no PSUs, (supplied with circuits of TX

\section*{We've got prices} to put power in your profits

PAICES SUBVECT TO \(8 \%\) VAT AII goods aubject to sotllement discount of \(5 \% 7\) deys and \(2 \%\) monthy. Aew Price Lst from 1 at. May 1974.

\section*{ECONOMISE ON SEMICONDUCTORS}

All prices include VAT
\begin{tabular}{ll}
* Lower 741C prices 100+24p & * Plastic 3 terminal Regulators \\
* Economical Digital Clock IC & * Low price DIL sockets \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{709C 0p Amp + data 8 pin DIL} & \[
\begin{aligned}
& 1+ \\
& 34
\end{aligned}
\] & & \[
32+
\] & \[
\begin{aligned}
& 25+ \\
& \mathbf{3 0}
\end{aligned}
\] & & & & \\
\hline \multicolumn{3}{|l|}{723C Reg. + data 14 pin DIL} & 65 & & 63 & 59 & & & & \\
\hline 741 CDp & + & data 8 pin DIL & 30 & & 28 & 26 & \multicolumn{4}{|l|}{TL Mixed prices} \\
\hline \multicolumn{3}{|l|}{748 C Dp Amp + data 8 pin DiL} & 39 & & 37 & 35 & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\(10+25+\)} \\
\hline \multicolumn{3}{|l|}{NE555 Timer + data 8 pin DIL} & 65 & & 62 & 59 & 7400 & 17 & 16 & 15 \\
\hline \multicolumn{3}{|l|}{CA3046 Array 14 pin DIL} & 76 & & 73 & 69 & 7402 & 17 & 16 & 15 \\
\hline \multicolumn{3}{|l|}{TDA1405 Reg. 5V 650 mA} & 10 & & 92 & 85 & 7403 & 17 & 16 & 15 \\
\hline \multicolumn{3}{|l|}{TDA1412 Reg. 12 V 500 mA} & 10 & & 92 & 85 & 7404 & 18 & 17 & 16 \\
\hline \multicolumn{3}{|l|}{TDA1415 Reg. 15 V 450 mA} & 10 & & 92 & 85 & 7405 & 18 & 17 & 16 \\
\hline \multicolumn{3}{|l|}{BC107, 108, 109} & 10 & & 9.5 & 9 & 7410 & 17 & 16 & 15 \\
\hline \multicolumn{3}{|l|}{BC182, 184} & 11 & & 10.5 & 10 & 7413 & 36 & 34 & 32 \\
\hline \multicolumn{3}{|l|}{BC212, 214} & 12 & & 11.5 & 11 & 7420 & 17 & 16 & 15 \\
\hline \multicolumn{3}{|l|}{} & 18 & & 16 & 15 & 7442 & 70 & 66 & 63 \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { HP Red LED } \frac{11 "}{}{ }^{\prime \prime} \\
& \text { HP Red LED } 0.2
\end{aligned}
\]} & 19 & & 17 & 16 & 7447 & 90 & 85 & 80 \\
\hline \multicolumn{3}{|l|}{} & 11 & & 10 & 9 & 7473 & 38 & 36 & 34 \\
\hline \multicolumn{3}{|l|}{low profile} & 12 & & 11 & 10 & 7474 & 35 & 33 & 31 \\
\hline & & & 13 & & 12 & 11 & 7476 & 38 & 36 & 34 \\
\hline & & & & & & & 7486 & 30 & 28 & 26 \\
\hline BC109C & & & & & & & 7492 & 55 & 52 & 49 \\
\hline BC177 & 18 & 3V3-15V & 11 & & 4001 & 5 & 7493 & 55 & 52 & 49 \\
\hline BC178 & 18 & 2N3702 & 12 & & 4002 & 5 & 74121 & 44 & 42 & 40 \\
\hline BF244 & 24 & 2N3704 & 12 & & 4004 & 7 & & & & \\
\hline BF244B & 27 & 2N3708 & 10 & & 4148 & 5 & & & & \\
\hline BFY51 & 17 & 2N3055 & 48 & & & & & & & \\
\hline
\end{tabular}

AY-5-1224 Digital Clock IC, 12 or \(24 \mathrm{hr}, 7\) segment or BCD outputs, drives LED Minitron, LED displays. Simple interfacing. 16 pin DIL. IC + data + circuits \(£ 4.65\). HP 5082-7740 \(0.3^{\prime \prime}\) digits \(\mathbf{f 2 . 0 0}\). IC \(+40.3^{\prime \prime}\) digits \(\mathbf{f 1 2}\). IC \(+40.3^{\prime \prime}\) digits + transistors + transformer f14.00
TBA810AS 7W Audio Amp, Thermal protection + data + circuit \(\mathbf{f 1 . 6 0}\)
TCA940 10 W Audio Amp, Thermal protection, current limit + data + circuit \(£ 2.60\)
Carbon film High Stability \(\frac{1}{5}\) W 5\% resistors 10 ohm- \(2 \mathrm{~m} 21 \mathrm{p} \mathrm{ea}, 109 p, 10080 \mathrm{p}\) same value.
By return service. Prices include VAT. P \& P 8p (UK) overseas at cost. All items new TI. Motorola, Mullard, SGS etc. SAE lists, enquiries. Data sheets \(4 p\). Colleges etc. supplied.

\section*{SILICON SEMICONDUCTOR SERVICES}

41 Dunstable Road, Caddington, Luton LU1 4AL

\section*{DOUGLAS For Transformers}

\section*{\(\star\) Comprehensive stock range \(\star\) Rapid prototype service \(\star\) Quantity production orders.}

Douglas Electronic Industries Ltd.,
Eastfield Road, Louth, Lincolnshire LN11 7AL.
Tel: Louth (05-07) 3643 Telex: 56260

\section*{S.I.G.A. TOROIDAL TRANSFORMERS}
\(\star\) LOW PROFILE \(\quad \star\) LOW LEAKAGE FLUX
Especially suitable for Audio Amplifier Power Supplies.
Our comprehensive coil winding service also includes inductors,
A.C. and D.C. Current Transformers.

\author{
S.I.G.A. ELECTRONICS LIMITED \\ Sunderland Road, Sandy, Beds SG19 10Y. Tel: Sandy (0767) 81266. \\ 4349
}

\section*{WE SELL \\ CONSTRUCTION PLANS}

Phonevision, Television Camera, Pollice Radar Detector, Volce typewriter, Scrambler, Answer ing machine. Wireless quarter mike. Plans 3.50 each.

\section*{COURSES}

Detective-Electr, \(\quad \$ 36.50\). Security-Electr \(\$ 43.50\). Telephone Eng, \$59. OVER 750 ITEMS
Ask for Catalogue-Alrmalled \(\$ 0.75\) T. STRIK,

Postbox 618, Rotterdam, Holland.

\section*{CRYSTALS}

Fast delivery of prototype and production military quality crystals. Competitive prices all frequencies; LF crystals a speciality. Details from

HNTERFACE MTERNATIONAL
29 Market Street, Crewkerne, Somerse
Tel: (046031) 2578. Telex: 46283.

\section*{PARTRIDGE ELECTRONICS}

MANUFACTURERS OF AUDIO MIXER BYSTEME NEW PEAK READING - VU METER SYATEMS

Which olves the advantages normally only associated with PPM systems at much iower cost.

21/2s, Hart Row, W.W. Benfieet, Estex.
(Establlshed 23 years)
143

CAREON FILM RESIBTORS-E12 BERIES HIgh 5tab. IW OR iW \(5 \%\). 1p, 75p/100, \(85.50 / 1000\)

10E12 KES18TOR KITS 22, 10 -1M 2 E12 5ERIES

Regulated EQUIPMENT 8ALE
Regulated power supply modules. Now in original
packing. ATC \(24 \mathrm{~V} / 2 \mathrm{~A}, \mathrm{E}\). Fen!ow \(\pm 15 \mathrm{~V} / 1 \mathrm{~A}\), with

Marconi D-A Converters TF2402, E2A. Code Converter
Const Temp. Water Circulators type F-Junlor (\(\pm 0.10\))
 Honeywell Chart Recorders \&54. Solartron VF252 Pre-
clision Mlilivoltmeter \&35. Solartron CA512 V5. indicators \(£ 25.400 \mathrm{~V}, 250 \mathrm{~mA}\) Bench Power Supplies e15. Hatfield Ins. PUM1/16 400 cycle Generators \(£ 30\). Mulrhead 2PH. Dec. Osc., £30. Many other Items available. METAL FILM KITS ALSO AVAILABLE
METAL FILM KITS ALSO AVAILABLE.
CATALOGUE No. 3 (Approx. 240 Parts) 20p.
C.W.O. P. \& P. 10 on orders under \&5. Overseas at cost.

Dept. W. COMPONENT FACTORS LTD 6 Cheddington Road, PITSTONE
Nr. Leighton Buzzard, Beda. LU79AQ. Cheddlington (0296) 688446

\section*{SURPLUS BARGAINS}

\section*{EASTERLINE ANGUS}
chart recorders, model A601R 500-0-500u.a. f.s.d. \(110 \mathrm{v} A C\), as new, with manual. \(£ 35.00\) (carr. f1).
Kent Chart recorders single point \(\mathbf{f 2 0}\) multipoint \(£ \mathbf{3 0}\) (\(£ 1.50\)).
A.E.I. 4-stage sequential transistorised electronic timer, many applications, inc 3 channel auto-light flasher (750 watts 240 v). Circuits provided for fully interrupted and dim/bright flashing. Modification rupted and dim/bright flashing. Modification
instructions and mains transformer. £4.50 instructions
only (50p).
Printed circuit Kits. £1. 25 (30p)
Instant Heat Soldering Irons, 240v 100 watt £2.65 (30p)
Veedor root 4 digit resettable counters 115 v AC £1. 25 (10p)
AMPEX VIDIO Tape \(2^{\prime \prime} \times 1670^{\prime}\). New \(£ 9\) (50p),
Ferric Chloride 25p lb (20p). 10 lbs for \(\mathbf{£ 2 . 5 0 (4 5 p)}\)
TELEPRINTER PAPERS and TAPES, \(8 \frac{1}{2}{ }^{\prime \prime}\) wide, 3 -ply carbon, buff manilla 60p (35p), ditto 7 -ply NCR, no carbon required \(£ 1\) (35 p). TAPES. \(\frac{7}{8}\) ", white \(\mathbf{f} 2\) per 8 rolls (\(65 p\)). (35p). TAPES. \(\frac{7}{8}^{\prime \prime}\), white \(\mathbf{f 2} 2\) per 8 rolls (\(65 p\)).
\(\frac{110}{16^{\prime \prime}}\) buff £2 per 10 rolls \(\left(65 p\right.\)). \(1^{\prime \prime}\) tape suit \(\frac{11 " \text { buff }}{16} \mathbf{E 2}\) per 10 rolls (65 p).
Friden, etc, \(\mathbf{E 2}\) per 7 rolls (65 p).
Friden, etc, \(\mathbf{f 2}\) per 7 rolls (65 p)
VARIC Transformers 240 volt input. \(0-270 \mathrm{~V}\)
output. 2 amp \(£ 3.50\) (75 p). 8 amp \(£ 9\) (\(£ 1\))
20 amp f 18 (f2). 5 amp 110 v input
\(0-130 v\) output \(£ 3.50\) (\(75 p\)).
All prices plus (\(p \& p\)) total plus VAT 8\%
Large S.A.E. for list.
CASEY BROS, 235 Boundary Rd, St Helens,
Lancs.

\section*{LOST-BELIEVED STOLEN}
-a prototype model of the Wireless World noise reducer as sketched below. Dimensions are approximately 15 in wide. 3in high and 7 in front-toback. Front panel is brushed aluminium with lettering in black, spun aluminium control knobs and twin VU meters. Cabinet is teak veneered

Anyone who has seen this unit or knows of its whereabouts please contact the Editor. Wireless World. Dorset House. Stamford Street. London SE1 9LU (Tel. 01-261 8425). A reward will be offered for information leading to the recovery of the unit and the apprehension of the persons concerned

\section*{ARTICLES WANTED}

\section*{TOP PRICES PAID}
for semiconductor and component redundant or excess inventories

\section*{P.R.S. ELECTRONICS}

126 Headstone Road Harrow, Middlesex
Tel: 01-965 6864
[34

\section*{ELECTRO-TECH COMPONENTS LTD.}

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot!
ELECTRO-TECH COMPONENTS LTD.
315/317 Edgware Road, London, W. 2
Tel: 01-723 5667. 01-402 5580
137
TAPE RECORDING ETC.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ RECORDS MADE TO ORDER } \\
\hline DEMO DISCS & VINYLITE \\
MASTES FOR \\
RECORD COMPANIES & PRESSINGS \\
\hline
\end{tabular}

Single discs, 1-20, Mono or Stereo, delivery 4 days from your tapes. Quantity runs 25 to 1,000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery 3-4 weeks. Sleeves/ Labels. Finest quality many Studios UK/OVERSEAS. SAE list. DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs.
Tel. 2273

\section*{EDUCATIONAL}

\section*{C AND G EXAMS}

Make sure you succeed with an ICS home study course for C and
Technicians Relectrical installation work \&
Radio/TV/Electronics Technicians.

COLOUR TV SERVICING
Make the most of the current booml Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by leading manufacturers.

TECHNICAL TRAINING
Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV. Audio, Computer Engineering and Programming. Also self-build radio kits. Get the qualifications you need to succeed.
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept 734, Intertext House, London SW8 4UJ. \begin{tabular}{lll}
Dept 734, Intertext House, London SW8 \\
Or Phone \(01-622\) 9911 (all hours). \\
\hline 1391
\end{tabular}

\author{
* FACTORIES CLEARED *
}

\section*{MACK'S ELECTRONICS}

283 EDGWARE ROAD LONDON WV 1BB
Tel: 01-262 8614
[4014

EUSINESS OPPORTUNITIES

\section*{Hair \\ Transplant}

For free brochure, clip this ad. and send to:

Room 6
HAIR TRANSPLANT INTERNATIONAL
502 Eccleshall Road, Sheffield
[4224

\section*{APPOINTMENTS}

Television International Operations Limited 9-11 Windmill Street London W1P1HF

A vacancy exists for a Planning and Installation Senior Engineer within the Engineering Department of Television International Ltd. Working with a small group of engineers he would be responsible for the planning and installation of Studio and Outside Broadcast television equipment.
Applications in writing to Director of Engineering, Television International Ltd., 9-11 Windmill Street, London W. 1.

\section*{OPPORTUNITY FOR GRADUATE IN ELECTRONICS}
with some experience of industry to join fast expanding firm specializing in power supply and logic signalling equipment.

\section*{ALPHA OMETRIC LTD.,}

HOLMDALE, SIDMOUTH, DEVON.
TEL: Sidmouth 5151.
14319

\section*{APPOINTMENTS}

ELECTRONIC EXPERIENCE WANTED. EnE gineers, technicians or testers required to assist teams preparing electronic equipment manuals. Writing experience preferable but not essential. Interesting work on sites in London and Home Counties. TheSe, Essez [4273 on-Sea, Essex

PROFITABLE and interesting part-time assignment for knowledgeable and enthusiastic Hi-Fi journalist. Apply giving brief details of experience
to Box No. WW 4374 . to Box No. 4374.
\(\mathrm{R}^{\text {EDIFON TELECOMMUNICATIONS LTD., Lon- }}\) 1 don, S.W.18, have a vacancy for an enthusiastic. practical man with some experience of Volume Production Testing in the electronics industry. Phone: \(01-8747281\) and ask for Len Porter. 4288
SAFFRON WALDEN COLLEGE, ESSEX. TechWician required for Educational Technology Department from 1 March 1975 or as soon after as possible. The technician is responsible for management and maintenance of C.C.T.V. aural and visual equipment, making of aids and resources, demonstrating to students. The salary is on N.J.C. Technicians The past is likely to be for a minimum of two years. Application forms and further particulars from the Principal. Applications should be returned as soon as possible. [4392

S ERVICE ENGINEERS for audio visual equipment needed to supplement our present team, Salary negotiable. Burgess Lane \& Co. Ltd., Thornton 5953.

TECHNICAL OFFICER-INSTRUMENT AND 1 MEASUREMENT. An interesting opportunity is offered for a Physicist or electronics/instrumentation Engineer to join a project commissioned by the
Medical Research Council on the calibration and Medical Research Council on the calibration and
measurement of medical ultrasonic equipment. Canmeasurement of medical atrasonic equipment. Cequivqualification in Physics or Engineering and, preferably, some practical experience in instrumentation work. The project will be located at Guildford and the appointment will run to 30 th June 1977 in the first instance. Salary according to qualifications and experience either in Junior Technical Officer scale (\(£ 1,494-£ 2,592\)) or Technical Officer scale (\(£ 2,688\) £2,895) plus Threshold payments. Detailed applications in duplicate, giving addresses of two referees Sumner Place. London SW7 3NU, quoting ref. \(301 /\) \(\underset{\mathrm{B} / 538 \text {. }}{ }\) B/538.

\section*{STTUATIONS WANTED}

FREE LANCE professional Author/Communications F Engineer invites technical writing commissions. Full time employment also considered. Box No. WW 4384 Classifieds continued on page 90

\section*{Classifieds continued from page 89}

\section*{SITUATIONS VACANT}

ELECTRONIC engineer to design equipment for Luse of the physically handicapped. Knowledge/ interest in medical electronics, digital systems, communications, computers preferred. Interesting range of work with small Company in pleasant location Grange Electronics Ltd., Stone Lane, Wimborne,
Dorset.
.
HI-FI AUDIO ENGINEERS. We require experi to get them. Tell us about your abilities. \(01-4374607\) to get them. Tell us about your abilities. 01-437 460

\section*{ARTICLES FOR SALE}

A ARVAK ELECTRONICS. 3 Channel SoundA Light Converters from £17; Strobes, £21; Rainbow Strobes, \(£ 133\). Freaterne 98A (W), West
Green Road, (Side- Door), London NT5 FHS 8656.

500,000 CAPACITORS-POLYESTER C280-250v \& 5400 v , values from 0.01 UF to 2.2 UF mixed 100 £1.00, \(1000-58.00\). Electrolytics from IUF to 1000 UF 10 v to 63 v mixed, \(100-\mathrm{E} 1.50,500-\mathrm{f} 6.00\). Electronic Mailorder, Ramsbottom, Bury, Lancs.

COLOUR. UHF and TV SAARES. Colour and UHF lists available on request. 625 TV. If unit, suitable for Hi-Fi amp or tape recording, £6.75, P/P 35 p . Television construction cross hatch kit, t3.85, yoke and blue dat., \(£ 3.85\), P/P 40 p. New Philips single yoke and blue lat., 33.85, P/P 40 p . New Philips single
 40 p . New Colour Scan Coils, Mullard or Plessey plus convergence yoke and blue lateral. \(£ 10.00, \mathrm{P} / \mathrm{P} 40\). Mullard AT1025/05 Convergence Yoke, \(£ 2.50\), \(\mathrm{P} / \mathrm{P}\) 35 p . Mullard or Plessey Blue Laterals, \(75 \mathrm{p} \quad \mathrm{P} / \mathrm{P}\) 20 p . BRC 3000 type Scan Coils, \(£ 2.00 \mathrm{P} / \mathrm{P} 40 \mathrm{p}\) Delay Lines DL20, \(£ 3.50\), DLIE, DL1. \(£ 1.50\), P/P 25p. Lum Delay Lines, 50 p , P/P 15 p . EHT Colour Quadrupler for Bush Murphy CTVe5s \(111 / 174\) series, 8.25, P/P 35p. EHT Colour Tripler ITT TH25/1TH suitable most sets, £2.00 P/P 25 p . KB CVCt Dual E2.75, P/P 35p. CR1 Base panel, 75p. P/P 15p £2.75, P/P 35p. CR1 Base panel, 75 p . P/P 15p.
Makers
Colour Makers Colour surplus/salvaged Philips G8 panels part complete; Decoder, \({ }^{2} 25\). T. Base, \(£ 1.00, \mathrm{P} / \mathrm{P}\) 25p. CRT base, 75p, P/P
 \(1043-\mathrm{NEW}, 4450\). Philips VHF for Band 1 and 3 E2.85 incl. data. Salvaged VHF and UHF Varicap
tuners. \(£ 1.50, \mathrm{P} / \mathrm{P}\) 25p. UHF TUNERS NEW, tuners, £1.50, P/P 25p. UHF TUNERS NEW Transistorised. \(£ 2.85\) or incl. slow motion drive, \(£ 3.85\) 4 position and 6 pos. push-button transistorised, \(£ 4.95\). All tuners P/P 35p. MURPHY \(600 / 700\) series com 625 IF amplifier, 7 valves accessorics housed in cab 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly, \&7.50 P/P 50p. GEC \(405 / 62\) chassis incl. cot., \(£ 1.50 \mathrm{P} / \mathrm{P} 735 \mathrm{p}\) THORN 850 Dua chassis incl. cot., 1.50 P/P 35 p THORN 850 Dual 625 IF a mplifier panel incl. cct., 75 p . P/P 30 p . VHF turret tuners AT7650 incl. valves for K.B. Featherlight Philips 19TG170, GEC 2010, etc., £2.50. PYE miniature incremental for 110 to 830, Pam and Invicta £1.00. A.B. miniature with UHF injection suitable K.B. Baird, Ferguson, 75p. New fireball tuners Fer guson, HMV, Marconi, \(11.80 \mathrm{P} / \mathrm{P}\) all tuners 30 p Mullard \(110^{\circ}\) mono scan coils, new suitable all stand\(\underset{\mathrm{P} / \mathrm{P}}{\text { ard }}\) Philips, Stella, Pye, Ekco, Ferranti, Invicta, £2.00, for most popular makes. \(200+200+100\) Microfarad 350 v Electrolytic, \(£ 100 \mathrm{P} / \mathrm{P} 20 \mathrm{p}\). MANOR SUPPLIES 172 WEST END LANE, LONDON, N.W 6. Shop premises, callers welcome. (No. 28, 59, 159 Buses W. Hampstead Bakerloo and Brit. Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON. N.W.II. Tel. 01-794 8751.

CONSTRUCTION AIDS-Screws, nuts, spacers, punched in small quantities. Aluminium panels punched to spec. or plain sheet supplied. Fascia printed circuit boards-masters, negatives moard, one-off or small numbers. Send 9 p for list Ramar Constructor Services, 29 Shelbourne Road. Ramar Constructor Services, 29 Sherbourne Road (std 0789) 4879.

COSSOR CDU120 60MH3 Solid-State scope. DualTrace \(1 \mathrm{mv} / \mathrm{cm}\). 2 Timebases. Full delay sweep. With probe and manual. £220. 01-346 1103 [4410

ERNEST TURNER \(1.5 \mathrm{~m} / \mathrm{a}\) PPMs, \(£ 3\). Unused ex C BBC equalizers (bass, treble, prescence) \(£ 3.75\) each. Pair Mullard switchable audio high \& Jow pass each. Pair
filters
683618.50 . Optical PPM

HAVE YOU HAD YOUR CHIPS? AY-5-1224 Digital Clock chip+data and circuit diagram £3.66 -Details SAE. Jumbo 0.6" DL 747 seven segment L.E.D. display now only 22.04 . All post free, add New Chester Road, Wirral, Menseyside L62 5AG

Heath Ig-37 FM Stereo Generator factory aligned, 660 . I. G. Bowman, 35 Park Hill Road, Torquay, S. Devon

CREATE, 51 Midhurst Road, London W13 9XS 1 CREATE, Sl Michurst Road, London Wi lated. Integral Heatsink. Input 10UA 2V. \(£ 5.40\) each.

Philips PM3232 OsciHloscope for sale. Used only twice, one year old, £160. MEC Electronics Lid.
327 B Hedon Road, Hull, Humberside.

DYE INDUSTRIAL CAMERA MARK IV, type 2048. Ser. 69, with dens change attachment type 2081. Ser. 46. Camera control panel type 3716 Ser. 90. Industrial camera control unit type 2332c. Ser. 85. One tripod to fit and three lengths of cable. \(£ 400\)
[4381

TACUUM is our speciality. Now and second-hand
WaCUUM is our speciality. Now and second-hand
rotary pumps, diffusion outfits, accessories, rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassimg,
equipment from \(£ 40\). V. N. Barrett (Sales) Ltd., 1 Mayo Road, Croydon. 01-684 9917.
 ALVES, TRANSISTORS, STYLI. Valves 1930 to 1975, 1500 types in stock. Many obsolete; List . Diamond Styli, list 10p; transistors, list 15p. S.A.E. for quotation. Cox Radio (Sussex) Ltd., The
Parade, East Wittering, Sussex. West Wittering 2023. Parade, East Wittering, Sussex. West Wittering 2023.

WIRELESS WORLD 100 copies 1919 to 1937 Wffers? BBC Year Books 9 copies 1928 to 1934 15; Amplion Horn Speaker Type AR23 New E15; Valves (50), Coils. Transformers, all new 84 compo nents \(£ 15\). 01-882 0638 Palmers Green N. 13. \(60 \underset{\text { Receivers. Signal and } 75 \mathrm{KHz} \text { Neuchatel Radio }}{\mathrm{KHz} \text { MSF }}\) Bristol Road, Sherborne (3211), Dorset.

\section*{ARTICLES WANTED}

CCOPE TUBES. 1" Tupe 1cP1 or DH3/91 prefer ably with bases and screws. Price up to \(£ 5.00\) according to age and condition. Cheque or P.O. by eturn. Barry Childe, 370, Charminster Rd. Bournemouth BH8 9RX. Tel: 516565. Closed Mondays.

WANTED, all types of communications recervers Electronics, London. E.11. Ley. 4986. Old Hall, Ashvile Rd.

WANTED in good working condition. Philips Pai Colour T.V. Lattern generator tupe PM 5508 Wimilar generators would also be suitable. Box No WW 4411.

WANTED. Ericcson Counting Tubes Type Works, Shoreham-By-Sea. Phone 56il.
[4016

WE BUY modern 16 mm sound projectors. Burgess Lane \& Co. Ltd., Thornton Works, Thornton
Avenue, Chiswick W.4.' 994 5752/5953.

\section*{CAPACITY AVAILABLE}

A IRTRONICS LTD., for Coil Winding-large or plies. Suppliers to P.O., M.O.D., etc. Export enquiries welcomed. \({ }^{3 \mathrm{a}}\) Walerand Road, London,
[6E13 7PE. Tel. 01-852 1706 .

A VAILABLE Capacity for Electronic ElectroA. Mechanical Assembly Wiring of P.C.B.'s Panel cableforms, design work undertaken if required 0533-546649.

BATCH Production Wiring and Assembly to 1 sample or drawings. Deane Electricals, 19B Stan Parad 8976.
\(01-992\).

Tel:

CAPACITY available to the Electronic Industry. - Precision turned parts, engraving, milling, and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E9 6AB.

COMPLETE PRINTED CIRCUIT DOCUMEN - TATION including artwork masters, assembly drawings, mechanical drawings, circuit diagrams etc. double sided PC boards Assembled prototypes supplied. J. T. Electronics, Box No. WW 4390.

COMPREHENSIVE Electronics Service from design and manufacturer to installation of the finished product. Specialists in Audio-Visual equipment. Zeta Electronics. Box No. WW 4412.

DESIGN, development, repair test and small production of electronic equipment. Speciaist in production of prics 54 Lawford Road, London, NW 01-267 0201. [29

EN
NGINEER makes anything unusual. Inventors models, displays. Special tools and equipment Seymour, 30 Devonshire Drive, Stapleford, Nottingham.

SMALL Batch Production, wiring assembly, to sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 42 Bishopsfield,
Harlow, Essex. Harlow 33018.

\section*{COURSES}

R ADIO and Radar M.P.T. and C.G.L.I. Courses. FY7 Write: Principal, Nautical College, Fleetwood, FY7 8JZ.

\section*{LITERATURE WANTED}

R ADIOTELEPHONE INFORMATION. Collector 1 is interested in books and other information on radiotelephone pioneers and expermoents. Ronald Phillips, 1925 Baltimore, Kansas City, Missouri, 64108

\section*{NEW GAAM AND SOUND} EQUIPMENT

CLASGOW HI FI, Recorders, Video, CommunicaUTions Reciever always available we buy sell and exchange for photographic equipment. Victor Morris Audio Visual Ltd., 340 Argyle Street, Glasgow, G.2; 31 Sauchichall Street, Glasgow, G.1; 8/10 Glassforr
Street, Glasgow, G.2. Tel; \(041-2218958\).

\section*{RECEIVERS AND AMPLIFIERS
SURPLUS AND SECONDHAND}

HRO Rx5s, etc., AR88, CR100, BRT400, G209, 1 S640, etc., etc., in stock.-R. T. \& I. Electronics Ltd., Ashville Old Hall, Ashville Rd., London, E. 11 . \({ }_{\text {Ley. }}\) 4986.

SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range Lid., Ashville Old Hall, Ashville Rd., London, E. 11 Ley., 4986.

\section*{SERVICE AND REPAIRS}

CCRATCHED TUBES. Our experienced polishing \(\checkmark\) service can make your colour or monochrome tubes as new again for only \(£ 2.75\), plus carriage \(£ 1\). With absolute confidence send to Retube Ltd., North Somercote Louth, Lincs, or 'phone 0507-85 \({ }^{300 .}\)
\(T \mathrm{~V}\) Audio, Radio Servicing. Most spares \(1930-\) 1975. Equipment designed, tested and maintained. Technical Services (Luton), Ltd., 111 , Cutenhoe Road, Luton, Beds. LU1 3NG. 0582.
\(29673 / 2760\). 29673/27601.

\section*{TAPE RECORDING ETC}

TF QUALITY, durability matter, consult Britain's - oldest ransfer service. Quality records from your suitable tapes. (Excellent fund raisers for schools). Modern studio facilities with Steinway Grand.9951661 .

\section*{VALVES WANTED}

WE buy new valves, transistors and clean new components, large or small quantities, all details, Wolverhampton.

\section*{Wilmslow Audio} THE firm
for
speakers! Baker Group 25. 3.8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm
Baker Deluxe. 8 or 15 ohm Baker Major. 3. 8 or 15 ohm
Baker Regent. 8 or 15 ohm
Baker Superb. 8 or 15 ohm
Celestion MH 1000 horn. 8 or 15 ohm EMI \(13 \times 8.3 .8\) or 1580 EMI \(13 \times 8450 \mathrm{~V}\) tw 80 ohm ohm EMI \(13 \times 8.3508\) or 15 ohm EMI \(13 \times 8.350 .8\) or 150 EMI \(13 \times 8.20\) watt bas EMI \(8 \times 5.10\) watt. \(\mathrm{d} / \mathrm{c}\), roll \(/ \mathrm{s} 8 \mathrm{ohm}\) Elac 59RM 10945 ohm . 59RM 1148 ohm Elac \(6 \frac{1}{2}\) " \(\mathrm{d} /\) cone, roll/s 8 ohm Elac TW4 4" tweeter
Fane Pop 25T 30 watt 1 Fane Pop 50 watt. \(12^{\prime \prime}\) Fane Pop 60 watt. \(15^{\prime \prime}\)
Fane Fane Pop 100 watt. \(18^{\prime \prime}\)
Fane Crescendo 12A or B. 8 or 15 ohm Fane Crescendo 15, 8 or 15 ohm Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\), roll/s. 8 or 15 ohm Fane \(801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\). roll/s. 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm Goodmans Audiom 1008 or 15 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4018 or 15 ohm Goodmans Twinaxiom \(10^{\prime \prime} 8\) or 15 ohm Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN12
Kef DN13
Richard Allan CG8T 8" \(\mathrm{d} / \mathrm{c}\) roll/s STC 4001 G super tweeter Fane 701 twin ribbon horn Baker Major Module each Goodmans Mezzo each Goodmans DIN 204 ohm each Helme XLK25 (pair) Helme XLK30 (pair) Helme XLK50 (pai
Kefkit 1 each
Kefkit 3 each
Peerless 3-15 (3 sp. system) each
Richard Allan Twinkit each
Richard Allan Triple 8 each
Richard Allan Triple each
Richard Allan Super Triple each
Wharfedale Linton 2 kit (pair)
Wharedale Dovedale 3 kit (pair)

PRICES INCLUDE VAT

Cabinets for PA and HiFi, wadding, vynair. etc.
Send stamp for free booklet "Choosing a Speaker
FREE with orders over \(£ 7\)-"HiFi loudspeaker enclosures" book.

All units guaranteed new and perfect. Prompt despatch.
Carriage: Speakers \(38 p\) each, tweeters and crossovers 20 p each, kits 75 p each (pair £1.50).

\section*{WILMSLOW AUDIO}

\section*{Dept WW}

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1 HF Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan St Wimslow)

WW- 023 FOR FURTHER DETAILS

THE OUARTZ CRYSTAL CO.LTD.
o.c.c. WORKS. WELLINGTON CRESCENT,

NEW MALDEN, SURREY. \(01-942-033482988\)

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

\section*{l. Black}

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STDRE: LESWIN ROAD, N. 16

Tel: 01-249 2260

\section*{EXCLUSIVE OFFERS}

INSTRUMENTATION-TAPE RECORDER-REPRODUCERS

\section*{COMPUTER HARDWARE}

CARD READER 80 col. \(600 \mathrm{c} . \mathrm{p} . \mathrm{m}\). * TAPE READER, High speed \(5 / 8\) track 800 c.p.m.
Prices on Application
PLEASE ADD V.A.T. TO ABOVE
P. HARRIS

ORGANFORD-DORSET

HENGSTLER
Manufacturers of counters and counting systems

\section*{ExCOMPUTER \\ STABIILSED POWEE SUPPIIES}

\section*{RECONDITIONED, TESTED AND} GUARANTEED
Ripple \(<10 \mathrm{mV}\). Over-voltage protection 120-130v. \(50 \mathrm{c} / \mathrm{s}\) input. Stepdown transformer to suit about es.

Post \& Packing \(£ 1 \cdot 70\)
\(5-6 \mathrm{v} .8 \mathrm{~A}\). \(£ 12\) 5-6v. 16A
5-6V.12A. £14
PAPST FANS \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{~m} .100 \mathrm{cfm}\). \(240 \mathrm{v} .50 / 60 \mathrm{~Hz}\). \(£ 3.50\) (30 p).
PAPST FANS 6in. dia. \(x\) 2 \(\frac{1}{t} i n\). deep Type 7576 £5.00 (30p).
Few only 6 in . PAPST \(£ 4\) (30p)
TRANSISTORS
p\& p 10p
BC107/8/9 BC147/8/9 BC157/8/9 all 9p BF180 25p BF182/3/40p BF184 17p BC167 13p BFW10 55p BF336 35p 7418 DIL 34p 2N3771 £1•10, 2N3441 50p, BD131 40p
NE555 67p, 2N3055 45p
ELECTROLYTICS
\(30,000 \mu 25 \mathrm{v}, 68,000 \mu 16 \mathrm{v}, 15,000 \mu 30 \mathrm{v} 65 \mathrm{p}\) (20p) \(4000 \mu 70 \mathrm{v}\). \(3,600 \mu 40 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}\). dia. 55 p (15p) \(5,000 \mu 35 \mathrm{v} ., 40 \mathrm{p}\) (12p)
\(2.000 \mu 50 \mathrm{v}+\) clip 35p (8p)
\(2,200 \mu 63 v 35 p(8 p)\)
EX-COMPUTER PC PANELS \(2 \times 4 \mathrm{In}\). 25 boards for \(£ 1\) (30p).
QH Bulbs, 12v. 55w. 150 mixed HI-STABS 250 Mixed Resistors 250 Mixed Capacitors 50p (7p) 50p (7p) 200 SI Planar Min Glass Nens (8p) Min. Glass Neons 4 for \(\mathrm{for}^{\text {(10p }}\) (10p) Postage and packing shown in brackets Please add \(8 \%\) VAT to TOTAL

KEYTRONICS
Mafl Order only.
44 EARLS COURT ROAD, LONDON, W. 8 01-478 8499

QUARTZ CRYSTAL
UNITS from
- 1.0-60.0 M HZ
- fast deliverr
- high stability
- TD DEF 5271-A

\section*{BROADFIELDS \& MAYCO DISPOSALS}

21 Lodge Lane, N. Finchley, London, N12 8JG.

Telephone:
\(01-445 \quad 0749 \quad 01-445 \quad 2713 \quad 01-958 \quad 7624\)
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS.
We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.

\section*{Illustrations in Applied Network Theory}

\author{
F. E. Rogers
}

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.

1973240 pp., illustrated
\(040870425 \times\) cased \(£ 5.00\) 0408704268 limp £2.50

Obtainable through any bookseller or from

\section*{The Butterworth Group}

88 Kingsway, London WC2B 6AB Showroom: 4-5 Bell Yard, WC2.
\[
\begin{gathered}
\text { WE PURCHASE ALL FORMS } \\
\text { OF ELECTRONIC EQUIPMENT } \\
\text { AND COMPONENTS, ETC. } \\
\text { SPOT CASH } \\
\text { CHILTMEAD LTD. }
\end{gathered}
\]

7, 5, 11 Arthur Road. Reading,
Berks.
Tel: 582605

\section*{EXPRESS}

PRINTED CIRCUITS - ROLLER TINNING
GOLDPLATING - FLEXIBLE FILMS. ETC Electronic \& Mechanical
Highfield House, West Kingsdown Nr. Sevenoaks, Kent
Tel: West Kingsdown 2344

\section*{J. LINSLEY-HOOD}

New Phase Locked Loop F.M. TUNER
(As per Wireless World Annual) Basic kit of parts
\({ }_{*}\) f29.95 (tax \(\mathbf{f 2 . 4 0 \text {) }}\) Available in pack

form as follows:
Pack 1. Res. and capacitors \(\mathbf{f 2 . 9 5}\) 2. Semi conductors and I.C's \(\mathbf{5 5 . 5 0} 3\). Tuner head \(\mathbf{5 5 . 5 0} 4\). P.C. boards and drawings f 1.50 5. Chassis and tuning mechanism \(\mathbf{£ 5 . 0 0} 6\). Ceramic filters \(£ 1.50\) 7. Teak finish sleeve \(£ 3.008\). Meter and muting module \(£ 2.50\) ¢7.50 11. Push hution and trimmer pack \(£ 2.50\) *Excludes packs No. 8, 10 and 11 . VAT extra, p.p. 20p (pks. 5 and 750 p)

TELERADIO ELECTRONICS
325 Fore Street, Edmonton, Lond on N9 OPE. 01-807 3719
A.E. for further details of above and oth

\section*{Housing problems?}

West Hyde will have a CONTIL MOD-2 case to meet your BRIGHTCASE needs. Check now. Ring AMTRON, MINOS WEST HYDE ENVIRONMENTAL WEST HYDE DEVELOPMENTS LIMITED Ryefiedd Crescent, Morthwood Hill, Horthwood, Middx. HAG 1 INM.

\section*{STEREO DISC AMP}

FDR BROADCASTING AND DISC MONITDRING Mains in. Balanced lines our. Excellent distortion and LF
performance. MEETS IBA SPECIFICATION EB5.

\section*{PEAK PROGRAM METERS TO BS4297}
also \(\mathbf{2 0 0 K} \mathrm{Hz}\) version for high speed copying. Drive circuit. \(35 \times 80 \mathrm{~mm}\), tor 1 mA L.H. zero meter to BBC
ED 1477 . Gold 8 -way edge con supplied. 4 off

 \(642.71 \times 56 \mathrm{~mm} £ 12.60: 643.102 \times 79 \mathrm{~mm} £ 15.00\).
Twin movement. scale \(86 \times 54 \mathrm{~mm} £ 37.00\)

PUBLIC ADDRESS : SOUND REINFORCEMENT In any public-address system where the microphones and
loudspeakers are in the same vicinity acoustic feedback (how!round) occurs if the amplification exceeds a critical value. By shifting the audio spectrum fed to the speakers by a few Hertz the tendency to howling at room resonance frequencies is destroyed and an increase in qain of 6-8dB is possible before
the onset of feedback. SHIFTERS IN BOXES
BS 4491 mains connector overioad LED. shiftbypass switch BS4491 mains connector and housed in strong diecast boxes
finished in attractive durable blue acrylic. Jack or XLR audio con-

SHIFTER CIRCUIT BOARDS FOR WW July 1973 article
 SPECTRUM SHIFTER: variable shifts, \(\mathbf{0 . 1 - 1 0 0 0 H z}\) for weird special affects and phasing. Ring for leaflets.

\section*{SURREY ELECTRONICS}

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997

HANDBOOK OF THCK

\section*{FILM HYBRID MICROELECTBONICS}

A Practical Sourcebook for Designers, Fabricators \& Users by C. A. Harper Price \(£ 15.00\) motorola silicon rectifier hand. BOOK. Price El .40
ESSENTIAL FORMULAE FOR ELECTRONIC E ELECTRICAL ENGINEERS by N. M. Morris. Price Cl .05

THE A.R.R.L. ANTENNA BOOK by A.R.R.L. Price \&1.95
OPERATIONAL AMPLIFIERS by G. B. Clayton. Price 63.70
ELECTRONIC SECURITY SYSTEMS by L. G. Sands. Price \(\mathbf{6 3 . 3 0}\)

TRANSISTORAUDIO \& RADIO CIRCUITS by Mullard. Price E 2.05
THE TRANSISTOR \& DIODEDATA BOOK FOR DESIGN ENGINEERS VOL I by Texas instruments. Price \(\mathbf{6 2 . 2 5}\)
SCR MANUAL INCLUDING TRIACS * OTHER THYRISTORS by G. E. Price \(\& 1.85\) SEMICONDUCTOR ELECTRONICS BY WORKED EXAMPLE by F. Brogan. Price \(\mathfrak{6} . \mathrm{OR}^{\mathrm{F}}\)
ACTIVE FILTERS FOR INTEGRATED CIRCUITS by \(W\). Heinlein \(/ \mathrm{H}\). Holmes. Price \(£ 21.00\) \(\star A L L\) PRICES INCLUDE POSTAGE \(\star\)

\section*{THE MODERN BOOK CO.}

SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m.

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

\author{
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU
}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}
- Rate: 86p PER LINE. Average seven words per Rate: 86 p PER LINE. Aver
line. Minimum THREE lines.
- Name and address to be included in charge if used in adyertisement.
- Box No. Allow two words plus 35p.
- Cheques, etc., payable to "Wireless World" and
crossed
- Press Day February 7th, 1975 for March, 1975 issue. Subject to space being available.

NAME.
ADDRESS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & REMITTANCE & , & \\
\hline
\end{tabular}

\title{
STILL ON SPECIAL OFFER \\ LOW FREQUENCY ANALYZER \(50 \mathrm{~Hz}-50 \mathrm{KHz}\) \\ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E. \\ PRICE \(\mathbf{£ 2 7}_{\mathrm{p} \& \mathrm{p} 75 \mathrm{p}}\) P.U.). \\ V.A.T. at 8\% \\ \\ 100MHz SCOPE \\ \\ 100MHz SCOPE TUBES TUBES \\ MULLARD D13-450GH-03. P31 PHOSPHOR. INTERNAL GRATICULE-6CM \(\times 10 \mathrm{CM}\) RECTANGULAR. Y SENSITIVITY \(3 V\) PER CM \(\times 11 \mathrm{~V}\) PER CM. SINGLE GUN. DISTRIBUTED Y PLATES, TRACE ROTATE COILS. \\ BRAND NEW BOXED. \(£ \mathbf{~} \mathbf{3 0}\) each. CARRIAGE \(£ 2\).
}

\section*{INDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 74-90

\footnotetext{
nted In Great Britain by Hazells Offset Lld., Leigh Road, Slough, Bucks., and Published by the Proprietors I.P.C. Electrical-Electronic Press Lrd., Dorset Hoube, Stamford St., London, SE1 9LU telephone
11 8000. Wircless. World can be obtained abroad from the followtng: Australia and New Zealand: Gordon \& Gotch Ltd. India: A. H. Wheeler \& Co. Canada: The Wm. Dawson subscription Serviee, Ltd.
 - AND sUPPLY. This periodical is aold sublect to the following conditions namely that it shall not without the written consent of the publishers first given be lent re-sold, hirred out or otherwise disposed \(\checkmark\) of Trade or affixed to or as part of any publication or advertising, literary or poctorial matter whatsoever
}

\title{
SOUND SENSE=VORTEXION
}

\author{
VORTEXION Design and manufacture public address equipment to meet a range of specific requirements for AIRPORTS, HOTELS, THEATRES, GOVERNMENT AUTHORITIES, LOCAL AUTHORITIES, SUPERMARKETS, SCHOOLS, SPORTING COMPLEXES POP GROUPS AND THE LOCAL VILLAGE HALL
}

The high fidelity amplifier illustrated has bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E. T. 's for low noise, low intermodulation distortion and freedom from radio breakthrough.

A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is \(75 \%\) efficient and 100 V balanced line or \(8-16\) ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected

The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output 0.3 V out on 600 ohms upwards
\(50 / 70\) WATT ALL SILICON AMPLIFIER WITH
BUILT-IN 4-WAY MIXER using the circuit of our reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T Mixer Amplifier, again fully protected against overload and radio breakthrough. The mixer is arranged for 2-30/60 \(\Omega\) balanced line microphones, 1 -HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output OR 5-15 \(\Omega\) and 100 volt line

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 -channel F.E.T. mixer. 2-30/60 \(\Omega\) balanced microphone inputs, 1-HiZ gram input and l-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and preamps, compensating for a mains voltage drop of over \(25 \%\) and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. Standard model 1 -low mic. balanced input and Hiz gram. Outputs available 8'15 ohms OR 100 volt line.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fall. Protected inputs, and overload and short crrcuit protected outputs for 8 ohms15 hms and 100 volt line. Bass and treble controls fitted

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of \(30 \mathrm{cs}-20 \mathrm{Kcs}\). Can be used to drive mechanical devices for which power is 120 watts on continuous sine wave. Input 1 mW 600 ohms. Output \(100-120 \mathrm{~V}\) or \(200-240 \mathrm{~V}\) Additional matching transformers for other impedances are available
F.E.T. MIXERS and PPM's. Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter 4, 6, 8 and 10 Way Mixers. Twin 3, 4 and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPM's.

\section*{VORTEXION}

Vortexion Ltd., 257-263 The Broadway, Wimbledon, SW19 1SF.
Telephone: 01-542 2814 and 01-542 6242/3/4. Telegrams: "Vortexion London SW19'"

\title{

}

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally. we suggest ours. First, let's talk about quality products.

\section*{Extrusol and Multipure.}

EXTRUSOL Extruded Bars and MULTI-PURE Cast Bars are made from specially processed ultra high purity solder EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MULTI-PURE bars are probably the smoothest and brightest solder bars you will ever see.

\section*{Ersin Multicore Savbit.}

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.

For full information on these or any other Multicore products. please write on your company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP.
Tel: Hemel Hempstead 3636. Telex: 82363.

Right, those are the products. Now
for the advice. And we can't really say any more than: if you've a soldering problem or question, call us. We really do have all the answers and the widest range of problem soldering test equipment.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ROSIN BASE} \\
\hline ERSIN & & Solids & Specifications \\
\hline Flux No. & Type & Content w/w & \\
\hline & & & MIL-F-14256D Type R;DTD 599A \\
\hline 0360 & non-activated & 38\% & DIN8527F-SW 31 \\
\hline 5381 & mildly activated Chloride and Bromide free & 25\% & MIL-F-14256D Type RMA; DTD 599A \\
\hline 304D & mildly activated & 10\% & DIN8527 Type F-SW 32 \\
\hline 304W & Halide Free & 25\% & DTD 599A \\
\hline PC. 21A & activated & 38\% & DTD 599A; DIN 8527.F-SW 26 \\
\hline PC. 26 & activated (extra fast) & 15\% & DTD 599A; DIN 8527.F-SW 26 \\
\hline 366 & activated (extra fast) & 38\% & Meet DIN 8511 Type F-SW 26 and \\
\hline 366A-25 & activated (extrafast) & 25\% , & pass DTD 599A Corrosion Test \\
\hline \multicolumn{4}{|l|}{ORGANIC ACID} \\
\hline PC. 101 & water base & 12\% & Water soluble residues must \\
\hline PC. 112 & solvent base, fast drying & 9.5\% & be removed after soldering. \\
\hline \multicolumn{4}{|l|}{INORGANIC ACID} \\
\hline ARAX & water base extremely active & 40\% & Used with most "very difficult to solder" metals. Not for electronics assembly joints. \\
\hline
\end{tabular}

\section*{Solderability Test}

Instrument.
Already used by major electronic companies throughout the world, this novel instrument saves production novel instrument saves production
costs by controlling solderability of component leads which, unlike a component leads which, unlike a
printed circuit, cannot be assessed by a simple "immersion and inspection" test.

\section*{Multicore Soldering}

Chemicals.
We make.a complete, compatible range to assist in soldering processes. They clean, protect and preserve.

\section*{Liquid Fluxes.}

We have a whole family of them, so you're bound to find the right one for your job. One of our latest is PC 26, exceptionally fast but non-corrosive and non-conductive.Eliminates "icicles" and "bridging."

ROSIN BASE
```


[^0]:    Manułacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors cf FRAHM Resonant Reed Frequency

[^1]:    To receive immediately full information and the name and address of the
    Stockists nearest to you, please complete this coupon and return it to us direct

[^2]:    Write to us enclosing 35p P.O. or cheque for Elektor 2. If you would like a subscription for the next seven issues ( $£ 3.60$ till end 1975), send no money, write or phone for subscription card.

    Elektor Publishers Ltd.
    6, Stour Street, Canterbury CT1 2XZ. Tel Canterbury (0227) 54439

[^3]:    First time available, the real T.V. game in kit form as supplied to the amusement trade with five bat angles, fully automatic ball, digital score read out on screen and also simulated sound.
    Please send stamped addressed envelope for details and prices to:
    LOGIC LEISURE LIMITED, Kingfisher House, 68 Park Road, New Barnet, Herts.
    Telephone: 01-440 9173/4, Telex: 264397.

[^4]:    Price 30p (Back numbers 50p)
    Editorial \& Advertising offices: Dorset House. Stamford Street, London SEI 9LU.
    Telephones: Editorial 01-261 8620; Advertising 01-261 8339 .
    Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London SE1."
    Subscription rates: 1 year, $£ 6$ UK and overseas ( $\$ 15.60$ USA and Canada); 3 years, $£ 15.30$ UK and overseas ( $\$ 39.80$ USA and Canada). Student rates: 1 year, £3 UK and overseas ( $\$ 7.80$ USA and Canada); 3 years, $£ 7.70$ UK and overseas ( $\$ 20.00$ USA and Canada).
    Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
    Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281.

    Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
    (C) I.P.C. Business Press Ltd, 1975

[^5]:    *Staffeldt, Henrik, "Correlation between subjective and objective data for quality loudspeakers." J. Audio Eng., Soc., vol. 22, no. 6 (1974).

[^6]:    Send now, stating possible requirements, for free and post free catalogue.
    United-Carr Supplies Ltd., 112 Station Road, Ilkeston, Derbyshire DE7 5LF
    Tel: Ilkeston 78711 STD 0607278711 .Telex 377117 C.H.F.A.d.

[^7]:    *Armstrong Audio Ltd.

[^8]:    for further information please write for FREE LIST NOW!

